

Visual Basic® 2005
Programmer’s Reference

Rod Stephens

01_571982 ffirs.qxd 9/1/05 7:12 PM Page i

01_571982 ffirs.qxd 9/1/05 7:12 PM Page i

Visual Basic® 2005
Programmer’s Reference

Rod Stephens

01_571982 ffirs.qxd 9/1/05 7:12 PM Page i

Visual Basic® 2005 Programmer’s Reference
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-7645-7198-5
ISBN-10: 0-7645-7198-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1MA/SS/QZ/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107
or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or autho-
rization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed
to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax
(317) 572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRE-
SENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION
WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED
BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT
BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUB-
LISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF
PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON
SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARIS-
ING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE
AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PRO-
VIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK
WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be avail-
able in electronic books.

Library of Congress Cataloging-in-Publication Data

Stephens, Rod, 1961-
Visual Basic 2005 programmer’s reference / Rod Stephens.

p. cm.
Includes index.
ISBN-13: 978-0-7645-7198-5 (paper/website)
ISBN-10: 0-7645-7198-2 (paper/website)
1. Microsoft Visual BASIC. 2. BASIC (Computer program language) I. Title.
QA76.73.B3S83397 2005
005.2’768--dc22

2005008717

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Visual Basic is a registered trademark of Microsoft Corporation in the
United States and/or other countries. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc., is not associated with any product or vendor mentioned in this book.

01_571982 ffirs.qxd 9/1/05 7:12 PM Page ii

About the Authors
Rod Stephens started out as a mathematician but, while studying at MIT, discovered the joys of pro-
gramming and has been programming professionally ever since. During his career, he has worked on an
eclectic assortment of applications in such fields as telephone switching, billing, repair dispatching, tax
processing, wastewater treatment, and training for professional football players.

Rod has written 14 books that have been translated into half a dozen different languages, and more than
200 magazine articles covering Visual Basic, Visual Basic for Applications, Delphi, and Java. He is cur-
rently a columnist for Visual Basic Developer (www.pinnaclepublishing.com).

Rod’s popular VB Helper Web site (www.vb-helper.com) receives several million hits per month and
contains thousands of pages of tips, tricks, and example code for Visual Basic programmers, as well as
example code for this book.

Credits
Executive Editor
Robert Elliott

Development Editor
Kevin Shafer

Technical Editor
John Mueller

Production Editor
Felicia Robinson

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinators
Michael Kruzil
Erin Smith

Graphics and Production Specialists
Carrie A. Foster
Lauren Goddard
Denny Hager
Jennifer Heleine
Barbara Moore
Melanee Prendergast
Amanda Spagnuolo
Ron Terry
Julie Trippetti

Quality Control Technician
Leeann Harney
Jessica Kramer
Carl William Pierce

Proofreading and Indexing
TECHBOOKS Production Services

01_571982 ffirs.qxd 9/1/05 7:12 PM Page iii

iv

Acknowledgments

Thanks to Bob Elliott, Kevin Shafer, Felicia Robinson, Kathryn Bourgoine, and all of the others who
make producing any book possible.

Thanks also to technical editor John Mueller for making sure I wasn’t putting my foot too deeply in my
mouth and for helping to add extra depth to the book. Visit http://www.mwt.net/~jmueller to learn
about John’s books and to sign up for his free newsletter .NET Tips, Trends & Technology eXTRA.

01_571982 ffirs.qxd 9/1/05 7:12 PM Page iv

v

Introduction

When Visual Basic first appeared, it revolutionized Windows programming. By handling many of the
tedious details of processing Windows events, it enabled programmers to focus on application details
instead of Windows programming trivia.

Unfortunately, early versions of Visual Basic had a few drawbacks. Protection from the underlying
Windows details came at the price of reduced flexibility. Using Visual Basic meant you didn’t need to
mess with the sticky details of Windows event loops, but it also made working directly with those
events more difficult when you really wanted to. Advanced programmers could still pry off the cover
and work at this lower level, but this was somewhat dangerous. If your code didn’t handle all the details
correctly, it could crash the program and possibly Windows itself.

Visual Basic also followed a path different from that taken by other Windows programming languages
such as C++. It provided a more productive development environment and a generally more intuitive
syntax. Its syntax for object-oriented development was more restrictive, however. A developer could still
build safe, reliable, extensible applications, but it took some experience and care.

Visual Studio .NET addressed many of these shortcomings. It merged the Visual Basic and C++ develop-
ment environments into an even more powerful tool. It added the C# language (pronounced “C-sharp”)
and gave all three a common underlying run-time language called Common Language Runtime (CLR).
Visual Basic .NET incorporated changes to bring the language more into line with CLR and the other
languages. It included more structured error handling, new syntax for declaring and initializing vari-
ables, overloaded functions and subroutines, and a more powerful model for creating classes that
include true inheritance.

Visual Basic 2005 adds new features that make Visual Basic a more powerful language than ever. It
includes new language features such as unsigned data types, operator overloading, and short-circuit
logical operators; object-oriented enhancements such as more flexible property procedure accessibility,
generics, and custom events; and coding improvements such as Extensible Markup Language (XML)
comments, better IntelliSense, and code snippets.

Visual Basic 2005 is the language’s second major release. Most of the obvious bugs in the first release
(surprisingly few for such a major reshaping of the language) have been ironed out, so there has never
been a better time to learn the language. The first release has proven stable and the current release brings
new capabilities to Visual Basic programmers. Developers waiting to see what would become of Visual
Basic .NET have their answer: it is here to stay.

Should You Use Visual Basic .NET?
A Visual Basic programmer’s joke asks, “What’s the difference between Visual Basic .NET and C#?
About three months!” The implication is that Visual Basic .NET syntax is easier to understand, and

01_571982 ffirs.qxd 9/1/05 7:12 PM Page v

vi

Introduction

building applications with it is faster. Similarly, C# programmers have their jokes about Visual Basic
.NET, implying that C# is more powerful.

In fact, Visual Basic .NET is not a whole lot easier to use than C#, and C# is not significantly more power-
ful. The basic form of the two languages is very similar. Aside from a few stylistic differences (Visual
Basic is line-oriented; C# uses lots of braces and semicolons), the languages are comparable. Both use the
Visual Studio development environment, both provide access to the .NET Framework of support classes
and tools, and both provide similar syntax for performing basic programming tasks.

In fact, the languages are so similar that many of Microsoft’s Web pages lump the two together. For exam-
ple, the page http://msdn.microsoft.com/library/en-us/vbcon/html/vboriWhatsNewVB70.asp
is titled “What’s New in Visual Basic and Visual C#.”

The main difference between these languages is one of style. If you have experience with previous ver-
sions of Visual Basic, you will probably find Visual Basic .NET easier to get used to. If you have experi-
ence with C++ or Java, you will probably find C# (or Visual C++ or Visual J#) easy to learn.

Visual Basic does have some ties with other Microsoft products. For example, ASP uses Visual Basic to
create interactive Web pages. Microsoft Office applications (Word, Excel, PowerPoint, and so forth) and
many third-party tools use Visual Basic for Applications (VBA) as a macro programming language. If
you know Visual Basic, you have a head start in using these other languages. Active Server Pages (ASP)
and Visual Basic for Application (VBA) are based on pre-.NET versions of Visual Basic, so you won’t
instantly know how to use them, but you’ll have a big advantage if you need to learn ASP or VBA.

If you are new to programming, either Visual Basic .NET or C# is a good choice. I think Visual Basic
.NET may be a little easier to learn, but I may be slightly biased because I’ve been using Visual Basic
lately. You won’t be making a big mistake either way, and you can easily switch later. Of course, if you
have already bought this book, you should stick with Visual Basic to get the most benefit.

Who Should Read This Book
This book is intended for programmers of all levels. It describes the Visual Basic .NET language from
scratch, so you don’t need experience with previous versions of the language. The book also covers
many intermediate and advanced topics. It covers topics in enough depth that even experienced devel-
opers will discover new tips, tricks, and language details. After you have mastered the language, you
may still find useful tidbits throughout the book, and the reference appendices will help you look up
easily forgotten details.

The chapters move quickly through the more introductory material. If you have never programmed
before and are intimidated by computers, then you might want to read a more introductory book first. If
you are a beginner who’s not afraid of the computer, then you should have few problems learning Visual
Basic .NET from this book.

If you have programmed in any other language, then fundamentals such as variable declarations, data
types, and arrays should be familiar to you, so you should have no problem with this book. The index
and reference appendices should be particularly useful in helping you translate from the languages you
already know into the corresponding Visual Basic syntax.

01_571982 ffirs.qxd 9/1/05 7:12 PM Page vi

vii

Introduction

How This Book Is Organized
You could divide the chapters in this book into four parts plus appendices. The chapters in each part are
described here. If you are an experienced programmer, you can use these descriptions to decide which
chapters to skim and which to read in detail.

Part I: Getting Started
The chapters in this part of the book explain the basics of Visual Basic .NET programming. They describe
the development environment, basic program syntax, and how to interact with standard controls. More
advanced topics include how to build custom controls and how to implement drag and drop.

Chapter 1, “IDE,” describes the integrated development environment (IDE). It explains the IDE’s win-
dows and how to customize the IDE. It also explains tools that provide help while you’re programming
such features as the Object Browser and the code window’s Intellisense.

Chapter 2, “Controls in General,” describes general control concepts. It explains how to add controls to a
form, how to read and change a control’s properties at design time and at run time, and how to use
some of the more complicated control properties (such as Dock and Anchor). This chapter shows how to
catch and respond to events, and how to change event handlers in code.

Chapter 3, “Program and Module Structure,” analyzes a simple Visual Basic program and explains the
structure created by Visual Studio. It describes the program’s code regions and comments, and tells how
you can use similar techniques to make your code more readable and manageable.

Chapter 4, “Data Types, Variables, and Constants,” explains the standard data types provided by Visual
Basic. It shows how to declare and initialize variables and constants, and explains variable scope. It dis-
cusses value and reference types, passing parameters by value or reference, and creating parameter vari-
ables on the fly. It also explains how to create arrays, enumerated types, and structures.

Chapter 5, “Operators,” describes the operators a program uses to perform calculations. These include
mathematical operators (+, *, \), string operators (&), and Boolean operators (And, Or). The chapter
explains operator precedence and type conversion issues that arise when an expression combines more
than one type of operator (for example, arithmetic and Boolean).

Chapter 6, “Subroutines and Functions,” explains how you can use subroutines and functions to break a
program into manageable pieces. It describes routine overloading and scope.

Chapter 7, “Program Control Statements,” describes the statements that a Visual Basic program uses to
control code execution. These include decision statements (If Then Else, Select Case, IIF, Choose)
and looping statements (For Next, For Each, Do While, While Do, Repeat Until).

Chapter 8, “Error Handling,” explains error handling and debugging techniques. It describes the Try
Catch structured error handler in addition to the older On Error statement inherited from earlier ver-
sions of Visual Basic. It discusses typical actions a program might take when it catches an error. It also
describes techniques for preventing errors and making errors more obvious when they do occur.

Chapter 9, “Introduction to Windows Forms Controls,” explains the Visual Basic’s standard controls that
you can use on Windows forms. It describes the most useful properties, methods, and events provided

01_571982 ffirs.qxd 9/1/05 7:12 PM Page vii

viii

Introduction

by these controls, and it gives examples showing how to use them. It also describes cases where these
controls rely on each other. For example, several controls such as the ToolBar obtain images from an
associated ImageList control.

Chapter 10, “Forms,” explains typical uses of forms. It tells how to build partially transparent forms for
use as splash, login, and About forms. It describes form cursors and icons, how to override WndProc to
intercept a form’s Windows messages, how to make a Multiple Document Interface (MDI) application,
and how to implement a Most Recently Used (MRU) file list. It does not cover all of the Form object’s
properties, methods, and events in detail; those are described in Appendix H, “Form Objects.”

Chapter 11, “Database Controls and Objects,” explains how to use Visual Basic’s standard database con-
trols. These include database connection components that handle connections to a database, DataSet
components that hold data within an application, and data adapter controls that move data between
data connections and DataSets.

Chapter 12, “Custom Controls,” explains how to build your own customized controls that you can then
use in other applications. It covers the three main methods for creating a custom control: derivation,
composition, and building from scratch. This chapter also provides several examples that you can use as
a starting point for controls of your own.

Chapter 13, “Drag and Drop, and the Clipboard,” explains how a Visual Basic program can support
drag-and-drop operations. It tells how your program can start a drag to another application, how to
respond to drag operations started by another application, and how to receive a drop from another
application. This chapter also explains how a program can copy data to and from the clipboard. Using
the clipboard is similar to certain types of drag-and-drop operations, so these topics fit naturally in
one chapter.

Part II: Object-Oriented Programming
The chapters in this part of the book explain fundamental concepts in object-oriented programming
(OOP) with Visual Basic. It also describes some of the more important classes and objects that you can
use when building an application.

Chapter 14, “OOP Concepts,” explains the fundamental ideas behind object-oriented programming. It
describes the three main features of OOP: encapsulation, polymorphism, and inheritance. It explains the
benefits of these features and tells how you can take advantage of them in Visual Basic.

Chapter 15, “Classes and Structures,” explains how to declare and use classes and structures. It explains
what classes and structures are, and it describes their differences. It shows the basic declaration syntax
and tells how to create instances of classes and structures. It also explains some of the trickier class
issues (such as private class scope, declaring events, and shared variables and methods).

Chapter 16, “Namespaces,” explains namespaces. It tells how Visual Studio uses namespaces to catego-
rize code and to prevent name collisions. It describes a project’s root namespace, tells how Visual Basic
uses namespaces to resolve names (such as function and class names), and tells how you can add names-
paces to an application yourself.

Chapter 17, “Collection Classes,” explains classes included in Visual Studio that you can use to hold
groups of objects. It describes the various collection, dictionary, queue, and stack classes; tells how to

01_571982 ffirs.qxd 9/1/05 7:12 PM Page viii

ix

Introduction

make strongly typed versions of those classes; and gives some guidance on deciding which class to use
under different circumstances.

Chapter 18, “Generics,” explains templates that you can use to build new classes designed to work with
specific data types. For example, you can build a generic binary tree and then later use it to build classes
to represent binary trees of customer orders, employees, or work items.

Part III: Graphics
The chapters in this part of the book describe graphics in Visual Basic .NET. They explain the Graphics
Device Interface+ (GDI+) routines that programs use to draw images in Visual Basic. They explain how
to draw lines and text; how to draw and fill circles and other shapes; and how to load, manipulate, and
save bitmap images. This part also explains how to generate printed output and how to send reports to
the screen or to the printer.

Chapter 19, “Drawing Basics,” explains the fundamentals of drawing graphics in Visual Basic .NET. It
describes the graphics namespaces and the classes they contain. It describes the most important of these
classes, Graphics, in detail. It also describes the Paint event handler and other events that a program
should use to keep its graphics up to date.

Chapter 20, “Brushes, Pens, and Paths,” explains the most important graphics classes after Graphics:
Pen and Brush. It tells how you can use Pens to draw solid lines, dashed lines, lines with custom
dash patterns, and lines with custom lengthwise stripe patterns. It tells how to use Brushes to fill areas
with colors, hatch patterns, linear color gradients, color gradients that follow a path, and tiled images.
This chapter also describes the GraphicsPath class, which represents a series of lines, shapes, curves,
and text.

Chapter 21, “Text,” explains how to draw strings of text. It shows how to create different kinds of fonts,
determine exactly how big text will be when drawn in a particular font, and use GDI+ functions to make
positioning text simple. It shows how to use a StringFormat object to determine how text is aligned,
wrapped, and trimmed, and how to read and define tab stops.

Chapter 22, “Image Processing,” explains how to load, modify, and save image files. It shows how to
read and write the pixels in an image, and how to save the result in different file formats such as
BMP GIF, and JPEG. It tells how to use images to provide auto-redraw features, and how to manipulate
an image pixel by pixel, both using a Bitmap’s GetPixel and SetPixel methods and using “unsafe”
access techniques that make pixel manipulation much faster than is possible with normal GDI+ methods.

Chapter 23, “Printing,” explains different ways that a program can send output to the printer. It shows
how you can use the PrintDocument object to generate printout data. You can then use the
PrintDocument to print the data immediately, use a PrintDialog control to let the user select the
printer and set its characteristics, or use a PrintPreviewDialog control to let the user preview the
results before printing.

Chapter 24, “Reporting,” provides an introduction to Crystal Reports, a tool that makes generating
reports in Visual Basic relatively easy. The chapter explains the basics of Crystal Reports and steps
through an example that builds a simple report.

01_571982 ffirs.qxd 9/1/05 7:12 PM Page ix

x

Introduction

Part IV: Interacting with the Environment
The chapters in this part of the book explain how an application can interact with its environment. They
show how the program can save and load data in external sources (such as the System Registry, resource
files, and text files); work with the computer’s screen, keyboard, and mouse; and interact with the user
through standard dialog controls.

Chapter 25, “Configuration and Resources,” describes some of the ways that a Visual Basic program can
store configuration and resource values for use at run time. Some of the most useful of these include
environment variables, the Registry, configuration files, and resource files.

Chapter 26, “Streams,” explains the classes that a Visual Basic application can use to work with stream
data. Some of these classes are FileStream, MemoryStream, BufferedStream, TextReader, and
TextWriter.

Chapter 27, “File-System Objects,” describes classes that let a Visual Basic application interact with the
file system. These include classes such as Directory, DirectoryInfo, File, and FileInfo that make
it easy to create, examine, move, rename, and delete directories and files.

Chapter 28, “Useful Namespaces,” describes some of the most commonly useful namespaces defined by
the .NET Framework. It provides a brief overview of some of the most important System namespaces
and gives more detailed examples that demonstrate regular expressions, XML, cryptography, reflection,
threading, and Direct3D.

Appendixes
The book’s appendices provide a categorized reference of the Visual Basic .NET language. You can use
them to quickly review the syntax of a particular command, select from among several overloaded ver-
sions of a routine, or refresh your memory of what a particular class can do. The chapters earlier in the
book give more context, explaining how to perform specific tasks and why one approach might be pre-
ferred over another.

Appendix A, “Useful Control Properties, Methods, and Events,” describes properties, methods, and
events that are useful with many different kinds of controls.

Appendix B, “Variable Declarations and Data Types,” summarizes the syntax for declaring variables. It
also gives the sizes and ranges of allowed values for the fundamental data types.

Appendix C, “Operators,” summarizes the standard operators such as +, <<, OrElse, and Like. It also
gives the syntax for operator overloading.

Appendix D, “Subroutine and Function Declarations,” summarizes the syntax for subroutine, function,
and property procedure declarations.

Appendix E, “Control Statements,” summarizes statements that control program flow such as If Then,
Select Case, and looping statements.

Appendix F, “Error Handling,” summarizes both structured and “classic” error handling. It describes
some useful exception classes and gives an example showing how to build a custom exception class.

01_571982 ffirs.qxd 9/1/05 7:12 PM Page x

xi

Introduction

Appendix G, “Standard Controls and Components,” describes standard components provided by Visual
Basic .NET. It explains the properties, methods, and events that I have found most useful when working
with these components.

Appendix H, “Form Objects,” describes forms. In a very real sense, forms are just another type of com-
ponent. They play such a key role in Visual Basic applications, however, that they deserve special atten-
tion in their own appendix.

Appendix I, “Classes and Structures,” summarizes the syntax for declaring classes and structures, and
defining their constructors and events.

Appendix J, “Generics,” summarizes the syntax for declaring generic classes.

Appendix K, “Graphics,” summarizes the objects used to generate graphics in Visual Basic .NET. It cov-
ers the most useful graphics namespaces.

Appendix L, “Useful Exception Classes,” lists some of the more useful exception classes defined by
Visual Basic. You may want to throw these exceptions in your own code.

Appendix M, “Date and Time Format Specifiers,” summarizes specifier characters that you can use to
format dates and times. For example, they let you display a time using a 12-hour or 24-hour clock.

Appendix N, “Other Format Specifiers,” summarizes formatting for numbers and enumerated types.

Appendix O, “The Application Class,” summarizes the Application class that provides properties
and methods for controlling the current application.

Appendix P, “The My Namespace,” describes the My namespace, which provides shortcuts to useful
features scattered around other parts of the .NET Framework. It provides shortcuts for working with the
application, computer hardware, application forms, resources, and the current user.

Appendix Q, “Streams,” summarizes Visual Basic’s stream classes such as Stream, FileStream,
MemoryStream, TextReader, CryptoStream, and so forth.

Appendix R, “File-System Classes,” summarizes methods that an application can use to learn about and
manipulate the file system. It explains classic Visual Basic methods such as FreeFile, WriteLine, and
ChDir, as well as newer .NET Framework classes such as FileSystem, Directory, and File.

How to Use This Book
If you are an experienced Visual Basic .NET programmer, you may want to skim the language basics
covered in the first parts of the book. You may find a few new features that have appeared in Visual
Basic 2005, so you probably shouldn’t skip these chapters entirely, but most of the basic language fea-
tures are the same as in previous versions.

Intermediate programmers and those with less experience with Visual Basic .NET should take these
chapters a bit more slowly. The chapters in Part II, “Object-Oriented Programming,” cover particularly
tricky topics. Learning all the variations on inheritance and interfaces can be rather confusing.

01_571982 ffirs.qxd 9/1/05 7:12 PM Page xi

xii

Introduction

Beginners should spend more time on these first chapters because they set the stage for the material that
follows. It will be a lot easier for you to follow a discussion of file management or regular expressions if
you are not confused by the error-handling code that the examples take for granted.

Programming is a skill best learned by doing. You can pick up the book and read through it quickly if
you like, but the information is more likely to stick if you open the Visual Basic .NET development envi-
ronment and experiment with some programs of your own. Normally, when I read a new programming
book, I work through every example myself, modifying the code to see what happens if I try different
things not covered by the author. I experiment with new variations and pay particular attention to
errors, which are hard to cover completely in a book. It’s one thing to read about strongly typed collec-
tions; it’s another to build one yourself using data that is meaningful to you.

Learning by doing may encourage you to skip sections of the book. For example, Chapter 1 covers the
interactive development environment in detail. After you’ve read for a while, you may want to skip
some sections and start experimenting with the environment on your own. I encourage you to do so.
Lessons learned by doing stick better than those learned by reading. Later, when you have some experi-
ence with the development environment, you can go back and examine Chapter 1 in more detail to learn
more advanced customization techniques.

The final part of the book is a Visual Basic .NET reference. These appendices present more concise, cate-
gorized information about the language. You can use these appendices to recall the details of specific
operations. For example, you can read Chapter 9 to learn which controls are useful for different pur-
poses. Then use Appendix G to learn about specific controls’ properties, methods, and events.

Throughout your work, you can also refer to the appendices to get information on specific classes, con-
trols, and syntax. For example, you can quickly find the syntax for declaring a generic class in Appendix
J. If you need more information on generics, you can find it in Chapter 18 or the online help. If you just
need to refresh your memory of the basic syntax, however, scanning Appendix J will be faster.

Necessary Equipment
To read this book and understand the examples, you will need no special equipment. To use Visual Basic
.NET and to run the examples found on the book’s Web page, you need any computer that can reason-
ably run Visual Basic .NET. That means a reasonably modern, fast computer with a lot of memory. See
the Visual Basic .NET documentation for Microsoft’s exact requirements and recommendations.

To build Visual Basic .NET programs, you will also need a copy of Visual Basic .NET. Don’t bother trying
to run the examples shown here if you have a pre-.NET version of Visual Basic such as Visual Basic 6.
The changes between Visual Basic 6 and Visual Basic .NET are huge, and many Visual Basic .NET con-
cepts don’t translate well into Visual Basic 6. With some experience in C#, it would be much easier to
translate programs into that language.

Much of the Visual Basic 2005 release is compatible with Visual Basic .NET 2003 and earlier versions of
Visual Basic .NET, however, so you can make many of the examples work with earlier versions of Visual
Basic .NET. You will not be able to load the example programs downloaded from the book’s Web site,
however. You will need to copy and paste the significant portions of the code into your version of Visual
Basic .NET.

01_571982 ffirs.qxd 9/1/05 7:12 PM Page xii

xiii

Introduction

The Book’s Web Site
On the book’s Web site, www.vb-helper.com/vb_prog_ref.htm, you can do the following:

❑ Download the examples in this book

❑ Download other Visual Basic programming examples

❑ View updates and corrections

❑ Read other readers’ comments and suggestions

This book was written using beta versions of Visual Basic 2005. Microsoft often makes changes between
beta versions and the final release (the whole point of the betas is to identify areas that need fixing or
modification) and sometimes even produces patch releases shortly after the main product rollout. The
book’s Web page will include any modifications that the examples need to handle those changes.

If you have corrections or comments of your own, please send them to me at RodStephens@vb-helper.
com. I will do my best to keep the Web site as up to date as possible.

01_571982 ffirs.qxd 9/1/05 7:12 PM Page xiii

01_571982 ffirs.qxd 9/1/05 7:12 PM Page xiv

xv

Contents

Acknowledgments iv
Introduction v

Chapter 1: IDE 1

Projects and Solutions 2
IDE Overview 3
Menus 5

File 5
Edit 8
View 10
Project 12
Build 18
Debug 22
Data 33
Format 34
Tools 36
Window 45
Community 47
Help 48

Toolbars 49
Secondary Windows 49
Toolbox 50
The Visual Basic Code Editor 52

Margin Icons 53
Outlining 54
Tooltips 56
IntelliSense 57
Code Coloring and Highlighting 58
Code Snippets 60
The Code Editor at Run Time 65

Summary 66

Chapter 2: Controls in General 67

Controls and Components 68
Creating Controls 70

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xv

xvi

Contents

Creating Controls at Design Time 70
Creating Controls at Run Time 73

Properties 75
Properties at Design Time 76
Properties at Run Time 83
Useful Control Properties 84
Position and Size Properties 89

Methods 90
Events 90

Creating Event Handlers at Design Time 91
WithEvents Event Handlers 92
Setting Event Handlers at Run Time 93
Changing Design Time Event Handlers 94
Control “Array” Events 94
Validation Events 95

Summary 100

Chapter 3: Program and Module Structure 103

Hidden Files 103
Code File Structure 108

Code Regions 109
Conditional Compilation 110
Namespaces 118

Typographic Code Elements 120
Comments 121
XML Comments 122
Line Continuation 125
Line Joining 126
Line Labels 126

Summary 127

Chapter 4: Data Types, Variables, and Constants 129

Data Types 130
Type Characters 131
Data Type Conversion 134

Narrowing Conversions 134
Data Type Parsing Methods 137
Widening Conversions 137

Variable Declarations 137
attribute_list 138
accessibility 138

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xvi

xvii

Contents

Shared 139
Shadows 140
ReadOnly 142
Dim 143
WithEvents 143
name 145
bounds_list 146
New 147
initialization_expression 148
Multiple Variable Declarations 150

Option Explicit and Option Strict 151
Scope 154

Block Scope 154
Procedure Scope 155
Module Scope 155
Namespace Scope 156
Restricting Scope 156

Parameter Declarations 157
Property Procedures 159
Enumerated Data Types 161
Constants 163

accessibility 163
As type 164
initialization_expression 164

Delegates 165
Naming Conventions 166
Summary 168

Chapter 5: Operators 169

Arithmetic Operators 169
Concatenation Operators 170
Comparison Operators 171
Logical Operators 172
Bitwise Operators 174
Operator Precedence 174
Assignment Operators 175
The StringBuilder Class 176
Date and TimeSpan Operations 178
Operator Overloading 181
Summary 184

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xvii

xviii

Contents

Chapter 6: Subroutines and Functions 187

Subroutines 187
attribute_list 188
inheritance_mode 191
accessibility 192
subroutine_name 193
parameters 193
Implements interface.subroutine 200
statements 201

Functions 202
Property Procedures 204
Summary 204

Chapter 7: Program Control Statements 205

Decision Statements 205
Single Line If Then 205
Multiline If Then 207
Select Case 208
IIf 212
Choose 214

Looping Statements 216
For Next 216
Noninteger For Next Loops 219
For Each 220
Enumerators 223
Iterators 224
Do Loop Statements 225
While End 227
Exit and Continue 227

GoTo 228
Summary 231

Chapter 8: Error Handling 233

Bugs versus Unplanned Conditions 233
Catching Bugs 234
Catching Unexpected Conditions 235
Global Exception Handling 239

Structured Error Handling 239
Exception Objects 241
StackTrace Objects 243

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xviii

xix

Contents

Throwing Exceptions 246
Custom Exceptions 248

Visual Basic Classic Error Handling 250
On Error GoTo line 250
On Error Resume Next 251
On Error GoTo 0 252
On Error GoTo -1 252
Error-Handling Mode 253

Structured versus Classic Error Handling 254
The Err Object 256
Debugging 257
Summary 257

Chapter 9: Introduction to Windows Forms Controls 259

Controls Overview 260
Choosing Controls 264

Containing and Arranging Controls 265
Making Selections 266
Entering Data 267
Displaying Data 268
Providing Feedback 269
Initiating Action 270
Displaying Graphics 271
Displaying Dialogs 271
Supporting Other Controls 272

Third-Party Controls 272
Summary 273

Chapter 10: Forms 275

Transparency 275
About, Splash, and Login Forms 279
Mouse Cursors 281
Icons 282

Application Icons 283
Notification Icons 284

Properties Adopted by Child Controls 284
Property Reset Methods 285
Overriding WndProc 285
SDI and MDI 289

MDI Features 290

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xix

xx

Contents

MDI Events 293
MDI Versus SDI 295

MRU Lists 296
Dialogs 302
Wizards 303
Summary 304

Chapter 11: Database Controls and Objects 305

Automatically Connecting to Data 305
Automatically Created Objects 314
Other Data Objects 316
Data Overview 317
Connection Objects 318
Transaction Objects 322
Data Adapters 326
Command Objects 330
DataSet 332

DataTable 336
DataRow 339
DataColumn 341
DataRelation 343
Constraints 345

DataView 347
DataRowView 350
Simple Data Binding 351
CurrencyManager 352
Complex Data Binding 356

Binding a ListBox 359
Summary 359

Chapter 12: Custom Controls 361

Custom Controls in General 362
Making the Control Project 362
Setting the Toolbox Icon 363
Testing in the UserControl Test Container 363
Making a Test Project 364
Test the Control 365
Implement Properties, Methods, and Events 366
Assign Attributes 368
Manage Design Time and Run Time 369

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xx

xxi

Contents

Derived Controls 370
Shadowing Parent Features 373
Hiding Parent Features 374

Composite Controls 375
Controls Built from Scratch 376
Components 377
Invisible Controls 379
Picking a Control Class 380
Controls and Components in Executable Projects 380

UserControls in Executable Projects 381
Inherited UserControls in Executable Projects 381
Controls in Executable Projects 382
Inherited Controls in Executable Projects 382
Components in Executable Projects 382

Summary 382

Chapter 13: Drag and Drop, and the Clipboard 385

Drag-and-Drop Events 386
A Simple Example 387
Moving between ListBoxes 389
Moving and Copying between ListBoxes 393
Learning Data Types Available 393
Dragging within an Application 394
Accepting Dropped Files 395
Dragging Objects 396
Changing Format Names 399
Dragging Multiple Data Formats 400

Using the Clipboard 402
Summary 405

Chapter 14: OOP Concepts 407

Classes 407
Encapsulation 409
Inheritance 410

Inheritance Hierarchies 411
Refinement and Abstraction 412
“Has-a” and “Is-a” Relationships 414
Adding and Modifying Class Features 415
Interface Inheritance 417

Polymorphism 417

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xxi

xxii

Contents

Overloading 418
Summary 420

Chapter 15: Classes and Structures 421

Classes 421
attribute_list 422
Partial 422
accessibility 423
Shadows 424
inheritance 425
Of type_list 426
Inherits parent_class 427
Implements interface 427

Structures 431
Structures Cannot Inherit 431
Structures are Value Types 432
Memory Required 433
Heap and Stack Performance 434
Object Assignment 435
Parameter Passing 436
Boxing and Unboxing 437

Class Instantiation Details 438
Structure Instantiation Details 440
Garbage Collection 442

Finalize 442
Dispose 444

Constants, Properties, and Methods 446
Events 448

Declaring Events 448
Raising Events 450
Catching Events 450
Declaring Custom Events 451
Shared Variables 455
Shared Methods 456

Summary 458

Chapter 16: Namespaces 461

The Imports Statement 462
Automatic Imports 464
Namespace Aliases 465
Namespace Elements 466

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xxii

xxiii

Contents

The Root Namespace 467
Making Namespaces 467
Classes, Structures, and Modules 469
Resolving Namespaces 470
Summary 473

Chapter 17: Collection Classes 475

What Is a Collection? 475
Arrays 476

Array Dimensions 477
Lower Bounds 477
Resizing 478
Speed 479
Other Array Class Features 481

Collections 486
ArrayList 486
StringCollection 488
Strongly Typed Collections 488
Read-Only Strongly Typed Collections 491
NameValueCollection 491

Dictionaries 493
ListDictionary 494
Hashtable 496
HybridDictionary 497
Strongly Typed Dictionaries 497
Other Strongly Typed Derived Classes 499
StringDictionary 500
SortedList 500

CollectionsUtil 501
Stacks and Queues 502

Stack 502
Queue 504

Generics 507
Summary 508

Chapter 18: Generics 511

Advantages of Generics 511
Defining Generics 512

Generic Constructors 514
Multiple Types 514
Constrained Types 516

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xxiii

xxiv

Contents

Using Generics 518
Imports Aliases 519
Derived Classes 519

Predefined Generic Classes 519
Summary 520

Chapter 19: Drawing Basics 521

Drawing Overview 521
Drawing Namespaces 524

System.Drawing 524
System.Drawing.Drawing2D 525
System.Drawing.Imaging 528
System.Drawing.Text 529
System.Drawing.Printing 532

Graphics 532
Drawing Methods 533
Filling Methods 539
Other Graphics Properties and Methods 540
Anti-Aliasing 542
Transformation Basics 546
Advanced Transformations 551
Saving and Restoring Graphics State 556

Drawing Events 558
Summary 561

Chapter 20: Brushes, Pens, and Paths 563

Pen 563
Alignment 566
CompoundArray 567
Custom Line Caps 568
Pen Transformations 569

Brush 572
SolidBrush 572
TextureBrush 572
HatchBrush 574
LinearGradientBrush 575
PathGradientBrush 580

GraphicsPath Objects 585
Garbage-Collection Issues 590
Summary 591

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xxiv

xxv

Contents

Chapter 21: Text 593

Drawing Text 593
Text Formatting 595

FormatFlags 597
Tab Stops 601
Trimming 602

MeasureString 605
Font Metrics 609
Summary 613

Chapter 22: Image Processing 615

Image 615
Bitmap 617

Loading Bitmaps 618
Saving Bitmaps 619
Implementing AutoRedraw 620
Pixel-by-Pixel Operations 625

Metafile Objects 630
Summary 632

Chapter 23: Printing 635

How Not to Print 635
Basic Printing 636
Printing Text 640
Centering Printouts 647
Fitting Pictures to the Page 649
Simplifying Drawing and Printing 651
Summary 654

Chapter 24: Reporting 655

Report Objects 655
Building a Report 656
CrystalReportViewer 666
Customizing a Report 667
External Reports 671
ReportDocument 672
Summary 673

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xxv

xxvi

Contents

Chapter 25: Configuration and Resources 675

My 675
Me and My 676
My Sections 677

Environment 677
Environ 677
System.Environment 679

Registry 681
Native Visual Basic Registry Methods 682
My.Computer.Registry 683

Configuration Files 685
Resource Files 689

Application Resources 689
Using Application Resources 692
Embedded Resources 694
Strongly Typed Embedded Resources 695
Satellite Resources 695
Localization Resources 696
ComponentResourceManager 698

Application 700
Application Properties 700
Application Methods 702
Application Events 703

Summary 705

Chapter 26: Streams 707

Stream 708
FileStream 709
MemoryStream 710
BufferedStream 711
BinaryReader and BinaryWriter 711
TextReader and TextWriter 713
StringReader and StringWriter 714
StreamReader and StreamWriter 715
Custom Stream Classes 716
Summary 716

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xxvi

xxvii

Contents

Chapter 27: File-System Objects 717

Visual Basic Methods 717
File Methods 718
File-System Methods 719
Sequential-File Access 720
Random-File Access 720
Binary-File Access 723

.NET Framework Classes 723
Directory 723
File 724
DriveInfo 726
DirectoryInfo 727
FileInfo 729
FileSystemInfo 731
FileSystemWatcher 731
Path 733

My.Computer.FileSystem 734
My.Computer.FileSystem.SpecialDirectories 737
Summary 737

Chapter 28: Useful Namespaces 739

High-Level Namespaces 740
The Microsoft Namespace 740
The System Namespace 740

Advanced Examples 742
Regular Expressions 742
XML 745
Cryptography 747
Reflection 751
Direct3D 756

Summary 762

Appendix A: Useful Control Properties, Methods, and Events 763

Properties 763
Methods 766
Events 769
Event Sequences 772

Mouse Events 772
Resize Events 772
Move Events 773

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xxvii

xxviii

Contents

Appendix B: Variable Declarations and Data Types 775

Variable Declarations 775
Enumerated Type Declarations 776
Option Explicit and Option Strict 776
Data Types 776
Data Type Characters 777
Literal Type Characters 778
Data Type Conversion Functions 778

Appendix C: Operators 781

Arithmetic Operators 781
Concatenation Operators 782
Comparison Operators 782
Logical Operators 783
Bitwise Operators 783
Operator Precedence 784
Assignment Operators 784
Date and TimeSpan Operators 785
Operator Overloading 786

Appendix D: Subroutine and Function Declarations 787

Subroutines 787
Functions 787
Property Procedures 788

Appendix E: Control Statements 789

Decision Statements 789
Single-Line If Then 789
Multiline If Then 790
Select Case 790
IIf 791
Choose 791

Looping Statements 791
For Next 791
For Each 791
Do Loop 792
While End 792

GoTo 793

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xxviii

xxix

Contents

Appendix F: Error Handling 795

Structured Error Handling 795
Throwing Exceptions 795
Custom Exceptions 796
Useful Exception Classes 796
Classic Error Handling 799

Appendix G: Standard Controls and Components 801

Components’ Purposes 803
Pointer 804
BackgroundWorker 805
BindingNavigator 806
BindingSource 807
Button 807
CheckBox 807
CheckedListBox 808
ColorDialog 810
ComboBox 812
ContextMenuStrip 813
DataGridView 814
DataSet 814
DateTimePicker 814
DirectoryEntry 816
DirectorySearcher 816
DomainUpDown 816
ErrorProvider 817
EventLog 818
FileSystemWatcher 820
FlowLayoutPanel 820
FolderBrowserDialog 821
FontDialog 823
GroupBox 826
HelpProvider 826
HScrollBar 828
ImageList 829
Label 829
LinkLabel 830
ListBox 831

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xxix

xxx

Contents

ListView 833
ListView Helper Code 837
Custom ListView Sorting 839

MaskedTextBox 842
MenuStrip 845
MessageQueue 847
MonthCalendar 847
NotifyIcon 852
NumericUpDown 854
OpenFileDialog 855
PageSetupDialog 858
Panel 859
PerformanceCounter 860
PictureBox 860
PrintDialog 862
PrintDocument 866
PrintPreviewControl 866
PrintPreviewDialog 868
Process 869
ProgressBar 870
PropertyGrid 871
RadioButton 871
ReportViewer 872
RichTextBox 873
SaveFileDialog 877
SerialPort 878
ServiceController 879
SplitContainer 879
StatusStrip 881
TabControl 882
TableLayoutPanel 886
TextBox 889
Timer 891
ToolStrip 891
ToolStripContainer 893
ToolTip 894
TrackBar 896
TreeView 896
VScrollBar 902
WebBrowser 902

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xxx

xxxi

Contents

Appendix H: Form Objects 905

Properties 905
Methods 911
Events 915
Property-Changed Events 918

Appendix I: Classes and Structures 921

Classes 921
Structures 922
Constructors 922
Events 922

Appendix J: Generics 925

Appendix K: Graphics 927

Graphics Namespaces 927
System.Drawing 927
System.Drawing.Drawing2D 928
System.Drawing.Imaging 929
System.Drawing.Text 930
System.Drawing.Printing 930

Drawing Classes 930
Graphics 930
Pen 933
Brushes 934
GraphicsPath 935
StringFormat 936
Image 936
Bitmap 937
Metafile 938

Appendix L: Useful Exception Classes 939

Appendix M: Date and Time Format Specifiers 943

Standard Format Specifiers 943
Custom Format Specifiers 944

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xxxi

xxxii

Contents

Appendix N: Other Format Specifiers 947

Standard Numeric Format Specifiers 947
Custom Numeric Format Specifiers 948
Numeric Formatting Sections 949
Composite Formatting 950
Enumerated Type Formatting 950

Appendix O: The Application Class 953

Properties 953
Methods 955
Events 956

Appendix P: The My Namespace 957

My.Application 957
My.Computer 962

Audio 963
Clipboard 963
Clock 964
FileSystem 965
Info 966
Keyboard 967
Mouse 967
Name 968
Network 968
Ports 968
Registry 970
Screen 972

My.Forms 973
My.Resources 974
My.User 974

Appendix Q: Streams 975

Stream Class Summary 975
Stream 976
BinaryReader and BinaryWriter 977
TextReader and TextWriter 979
StringReader and StringWriter 980
StreamReader and StreamWriter 980
Console Streams 980

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xxxii

xxxiii

Contents

Appendix R: File-System Classes 981

Visual Basic Methods 981
Framework Classes 983

FileSystem 983
Directory 985
File 986
DriveInfo 988
DirectoryInfo 989
FileInfo 991
FileSystemWatcher 992
Path 994

My.Computer.FileSystem 995
My.Computer.FileSystem.SpecialDirectories 997

Index 999

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xxxiii

02_571982 ftoc.qxd 9/1/05 7:13 PM Page xxxiv

IDE
This chapter describes Visual Studio’s integrated development environment (IDE). It explains the
most important windows, menus, and toolbars that make up the environment, and shows how to
customize them to suit your personal preferences. It also explains some of the tools that provide
help while you are writing Visual Basic applications.

Even if you are an experienced Visual Basic programmer, you should at least skim this material.
The IDE is extremely complex and provides hundreds (if not thousands) of commands, menus,
toolbars, windows, context menus, and other tools for editing, running, and debugging Visual
Basic projects. Even if you have used the IDE for a long time, there are sure to be some features
that you have overlooked. This chapter describes some of the most important of those features,
and you may discover something useful that you’ve never noticed before.

Even after you’ve read this chapter, you should periodically spend some time wandering through
the IDE to see what you’ve missed. Every month or so, spend a few minutes exploring the menus
and right-clicking on things to see what their context menus contain. As you become a more profi-
cient Visual Basic programmer, you will find uses for tools that you may have previously dis-
missed or failed to understand.

It is important to remember that the Visual Studio IDE is extremely customizable. You can move,
hide, or modify the menus, toolbars, and windows; create your own toolbars; dock, undock, or
rearrange the toolbars and windows; and change the behavior of the built-in text editors (change
their indentation, colors for different kinds of text, and so forth).

These capabilities let you display the features you need the most and hide those that are unneces-
sary for a particular situation. If you need to use the Properties window, you can display it. If you
want to make room for a very wide form, you can make it short and wide, and move it to the bot-
tom of the screen. If you have a collection of favorite tools and possibly some you have written
yourself, you can put them all in one convenient toolbar. Or you can have several toolbars for
working with code, forms in general, and database forms in particular.

This chapter describes the basic Visual Studio development environment as it is initially installed.
Because Visual Studio is so flexible, your development environment may not look like the one
described here. After you’ve moved things around a bit to suit your personal preferences, your
menus and toolbars may not contain the same commands described here, and other windows may
be in different locations or missing entirely.

03_571982 ch01.qxd 9/1/05 7:16 PM Page 1

To avoid confusion, you should probably not customize the IDE’s basic menus and toolbars too much.
Removing the help commands from the Help menu and adding them to the Edit menu will only cause
confusion later. It’s less confusing to leave the menus more or less alone. Hide any toolbars you don’t
want and create new customized toolbars to suit your needs. Then you can find the original standard
toolbars if you decide you need them later. The section “Customize” later in this chapter has more to say
about rearranging the IDE’s components.

This chapter describes the Visual Studio IDE. Before you can understand how to use the IDE to manage
Visual Basic projects and solutions, however, you should know what projects and solutions are.

Projects and Solutions
A project is a group of files that produces some specific output. This output may be a compiled exe-
cutable program, a dynamic-link library (DLL) of classes for use by other projects, or a custom control
for use on other Windows forms.

A solution is a group of one or more projects that should be managed together. For example, suppose that
you are building a server application that provides access to your order database. You are also building a
client program that each of your sales representatives will use to query the server application. Because
these two projects are closely related, it might make sense to manage them in a single solution. When
you open the solution, you get instant access to all the files in both projects.

Both projects and solutions can include associated files that are useful for building the application but
that do not become part of a final compiled product. For example, a project might include the applica-
tion’s proposal and architecture documents. These are not included in the compiled code, but it is useful
to associate them with the project.

When you open the project, Visual Studio lists those documents along with the program files. If you
double-click one of these documents, Visual Studio opens the file using an appropriate application.
For example, if you double-click a file with a .doc extension, Visual Studio normally opens it with
Microsoft Word.

To associate one of these files with a project or solution, right-click the project in the Solution Explorer
(more on the Solution Explorer shortly). Select the Add command’s Add New Item entry, and use the
resulting dialog to select the file you want to add.

Often a Visual Basic solution contains a single project. If you just want to build a small executable pro-
gram, you probably don’t need to include other programming projects in the solution.

Another common scenario is to place Visual Basic code in one project and to place documentation (such
as project specifications and progress reports) in another project within the same solution. This keeps the
documentation handy whenever you are working on the application but keeps it separate enough that it
doesn’t clutter the Visual Studio windows when you want to work with the code.

While you can add any file to a project or solution, it’s not a good idea to load dozens of unrelated files.
While you may sometimes want to refer to an unrelated file while working on a project, the extra clutter

2

Chapter 1

03_571982 ch01.qxd 9/1/05 7:16 PM Page 2

brings additional chances for confusion. It will be less confusing to shrink the Visual Basic IDE to an icon
and open the file using an external editor such as Word or WordPad. If you won’t use a file very often
with the project, don’t add it to the project.

IDE Overview
Figure 1-1 shows the IDE immediately after starting a new project. The IDE is extremely configurable, so
it may not look much like Figure 1-1 after you have rearranged things to your own liking.

If you don’t have a reason to modify the IDE’s basic arrangement, you should probably leave it alone.
Then when you read a magazine article that tells you to use the Project menu’s Add Reference com-
mand, the command will be where it should be. Using the standard IDE layout also reduces confusion
when you need to consult with another developer. It’s a lot easier to share tips about using the Format
menu if you haven’t removed that menu from the IDE.

Figure 1-1: Initially the IDE looks more or less like this.

1
2

3

4

5

6

7

3

IDE

03_571982 ch01.qxd 9/1/05 7:16 PM Page 3

The key pieces of the IDE are labeled with numbers in Figure 1-1. The following list briefly describes
each of these pieces.

❑ (1) Menus — The menus contain standard Visual Studio commands. These generally manipu-
late the current solution and the modules it contains, although you can customize the menus as
needed. Visual Studio changes the menus, and their contents depending on the object you cur-
rently have selected. In Figure 1-1, a Form Designer (marked with the number 4) is open so the
IDE is displaying the menus for editing forms.

❑ (2) Toolbars — Toolbars contain tools that you can use to perform frequently needed actions.
The same commands may be available in menus, but they are easier and faster to use in tool-
bars. The IDE defines several standard toolbars such as Formatting, Debug, and Image Editor.
You can also build your own custom toolbars to hold your favorite tools. Visual Studio changes
the toolbars displayed to match the object you currently have selected.

❑ (3) Toolbox — The Toolbox contains tools appropriate for the item that you currently have
selected and for the project type that you are working on. In Figure 1-1, a Form Designer is
selected in a Windows Forms application so the Toolbox contains tools appropriate for a Form
Designer. These include Windows Forms controls and components, plus tools in the other
Toolbox tabs: Crystal Reports, Data, and Components (plus the General tab is scrolled off the
bottom of the Toolbox). You can add other customized tabs to the Toolbox to hold your favorite
controls and components. Other project types may display other tools. For example, a Web proj-
ect would display Web controls and components instead of Windows Forms components.

❑ (4) Form Designer — A Form Designer lets you modify the graphical design of a form. Select a
control tool from the Toolbox, and click and drag to place an instance of the control on the form.
Use the Properties window (marked with the number 6) to change the new control’s properties.
In Figure 1-1, no control is selected, so the Properties window shows the form’s properties.

❑ (5) Solution Explorer — The Solution Explorer lets you manage the files associated with the cur-
rent solution. For example, in Figure 1-1, you could select Form1.vb in the Project Explorer and
then click the View Code button (the icon third from the right at the top of the Solution Explorer)
to open the form’s code editor. You can also right-click an object in the Solution Explorer to get a
list of appropriate commands for that object.

❑ (6) Properties — The Properties window lets you change an object’s properties at design time.
When you select an object in a form designer or in the Solution Explorer, the Properties window
displays that object’s properties. To change a property’s value, simply click the property and
enter the new value.

❑ (7) Error List — The Error List window shows errors and warnings in the current project. For
example, if a variable is used and not declared, this list will say so.

If you look at the bottom of Figure 1-1, you’ll notice that the Toolbox and Error List windows each have
a series of tabs. The Toolbox’s other tab displays the Document Outline window, which displays an out-
line view of a project showing its forms and components.

The Error List window’s Output tab shows output printed by the application. Usually an application
interacts with the user through its forms and dialogs, but it can display information here to help you
debug the code. The Output window also shows informational messages generated by the IDE. For

4

Chapter 1

03_571982 ch01.qxd 9/1/05 7:16 PM Page 4

example, when you compile an application, the IDE sends messages here to tell you what it is doing and
whether it succeeded.

The following sections describe the major pieces of the IDE in more detail.

Menus
The IDE’s menus contain standard Visual Studio commands. These are generally commands that manip-
ulate the project and the modules it contains. Some of the concepts are similar to those used by any
Windows application (File\New, File\Save, Help\Contents), but many of the details are specific to
Visual Studio programming, so the following sections describe them in a bit more detail.

The menus are customizable, so you can add, remove, and rearrange the menus and the items they con-
tain. This can be quite confusing, however, if you later need to find a command that you have removed
from its normal place in the menus. Some developers place extra commands in standard menus, particu-
larly the Tools menu, but it is generally risky to remove standard menu items. Usually it is safest to leave
the standard menus alone and make custom toolbars to hold customizations. For more information on
this, see the section “Customize” later in this chapter.

Many of the menus’ most useful commands are also available in other ways. Many provide shortcut key
combinations that make using them quick and easy. For example, Ctrl-N opens the New Project dialog
just as if you had selected the File\New Project menu command. If you find yourself using the same
command very frequently, look in the menu and learn its keyboard shortcut to save time later.

Many menu commands are also available in standard toolbars. For example, the Debug toolbar contains
many of the same commands that are in the Debug menu. If you use a set of menu commands fre-
quently, you may want to display the corresponding toolbar to make using the commands easier.

Visual Studio also provides many commands through context menus. For example, if you right-click on
a project in the Solution Explorer, the context menu includes an Add Reference command that displays
the Add Reference dialog just as if you had invoked Project\Add Reference. Often it is easier to find a
command by right-clicking an object related to whatever you want to do than it is to wander through
the menus.

The following sections describe the general layout of the standard menus. You might want to open the
menus in Visual Studio as you read these sections, so you can follow along.

Note that Visual Studio displays different menus and different commands in menus depending on what
editor is active. For example, when you have a form open in the form editor, Visual Studio displays a
Format menu that you can use to arrange controls on the form. When you have a code editor open, the
Format menu is hidden because it doesn’t apply to code.

File
The File menu, shown in Figure 1-2, contains commands that deal with creating, opening, saving, and
closing projects and project files.

5

IDE

03_571982 ch01.qxd 9/1/05 7:16 PM Page 5

Figure 1-2: The File menu holds commands that deal with the solution and its files.

Following is a description of the commands contained in the File menu and its submenus:

❑ New — The New submenu shown in Figure 1-2 contains commands that let you create a new
Visual Basic project, Web site project (generally ASP.NET or a Web Service), or file (text file,
bitmap, Visual Basic class, icon, and many others). The Project From Existing Code command cre-
ates a new project and puts all of the files in a directory in it, optionally including subdirectories.

❑ New\File — The New submenu’s File command displays the dialog shown in Figure 1-3. The
IDE uses integrated editors to let you edit the new file. For example, the simple bitmap editor
lets you set a bitmap’s size, change its number of colors, and draw on it. When you close the file,
Visual Studio asks if you want to save the file and lets you decide where to put it. Note that this
doesn’t automatically add the file to your current project. You can save the file and use the
Project\Add Existing Item command if you want to do so.

❑ Open — The Open submenu contains commands that let you open a project or solution, Web
site, or file. The Convert command displays the Convert dialog shown in Figure 1-4. From this
dialog, you can launch the Visual Basic 2005 Upgrade Wizard, which can help you convert
Visual Basic 6 programs to Visual Basic 2005.

❑ Close — This command closes the current editor. In Figure 1-2, Form1 is open in the form
designer editor. This command would close this editor.

6

Chapter 1

03_571982 ch01.qxd 9/1/05 7:16 PM Page 6

Figure 1-3: The File\New\File command displays this dialog to let you select the new file’s type.

Figure 1-4: The File\Open\Convert command displays this dialog
to help you convert Visual Basic 6 applications to Visual Basic 2005.

❑ Close Project — This command closes the entire project and all of the files it contains. If you
have a solution open, this command is labeled Close Solution.

❑ Save Form1.vb — This command saves the currently open file, in this example, Form1.vb.

❑ Save Form1.vb As — This command lets you save the currently open file in a new file.

❑ Save All — This command saves all modified files.

❑ Export Template — This command displays the dialog shown in Figure 1-5. The Export Template
Wizard lets you create project or item templates that you can use later.

7

IDE

03_571982 ch01.qxd 9/1/05 7:16 PM Page 7

Figure 1-5: The File\Export Template command displays this dialog to help you create project or
items templates that you can easily use in other projects.

❑ Page Setup and Print — The Page Setup and Print commands let you configure printer settings
and print the current document. These commands are enabled only when it makes sense to
print the current file. For example, if you are viewing a source code file or a configuration file
(which is XML text), you can use these commands. If you are viewing bitmap or a form in
design mode, these commands are disabled.

❑ Recent Files and Recent Projects — The Recent Files and Recent Projects submenus let you quickly
reopen files, projects, and solutions that you have opened recently.

Edit
The Edit menu, shown in Figure 1-6, contains commands that deal with manipulating text and other
objects. These include standard commands such as the Undo, Redo, Copy, Cut, and Paste commands
that you’ve seen in other Windows applications.

Following is a description of other commands associated with the Edit menu:

❑ Cycle Clipboard Ring — The clipboard ring contains the last several items that you copied into
the clipboard. This command copies the previous clipboard ring item to the current location.
By using this command repeatedly, you can cycle through the items until you find the one
you want.

8

Chapter 1

03_571982 ch01.qxd 9/1/05 7:16 PM Page 8

Figure 1-6: The Edit menu holds commands that deal with manipulating text and other objects.

❑ Find and Replace\Quick Find — This command displays a find dialog where you can search the
project for specific text. A drop-down lets you indicate whether the search should include only
the current document, all open documents, the current project, or the entire solution. Options let
you determine such things as whether the text must match case or whole words.

❑ Find and Replace\Quick Replace — This command displays the same dialog as the Quick except
with some extra controls. It includes a text box where you can specify replacement text, and but-
tons that let you replace the currently found text or all occurrences of the text.

❑ Find and Replace\Find in Files — This command is similar to Quick Find except that it displays
its results as a list in a new window. Double-click on an entry in the list to view the occurrence
in its file.

❑ Find and Replace\Replace in Files — This command is similar to Quick Replace except that it dis-
plays its results as a list in a new window.

❑ Go To — This command lets you jump to a particular line number in the current file.

❑ Advanced — The Advanced submenu contains commands for performing more complex docu-
ment formatting such as converting text to upper- or lowercase, controlling word wrap, and
commenting, and uncommenting code.

9

IDE

03_571982 ch01.qxd 9/1/05 7:16 PM Page 9

❑ Bookmarks — The Bookmarks submenu lets you add, remove, and clear bookmarks, and move
to the next or previous bookmark.

❑ Outlining — The Outlining submenu lets you expand or collapse sections of code, and turn
outlining on and off.

❑ IntelliSense — The IntelliSense gives access to IntelliSense features. For example, its List
Members command makes IntelliSense display the current object’s properties, methods,
and events.

View
The View menu, shown in Figure 1-7, contains commands that let you hide or display different windows
and toolbars in the Visual Studio IDE.

Figure 1-7: The View menu lets you show and hide IDE windows and toolbars.

10

Chapter 1

03_571982 ch01.qxd 9/1/05 7:16 PM Page 10

Following is a description of commands associated with the View menu:

❑ Code — The Code command opens the selected file in a code editor window. For example, to edit
a form’s code, you can click on the form in the Solution Explorer and then select View\Code.

❑ Designer — The Designer command opens the selected file in a graphical editor if one is defined
for that type of file. For example, if the file is a form, Visual Studio opens it in a graphical form
editor. If the file is a class module or a code module, the View menu hides this command because
Visual Studio doesn’t have a graphical editor for those file types.

❑ Open — Opens the selected item with its default editor.

❑ Open With — Opens the selected item with an editor of your choosing. For example, you could
open a form’s code with a text editor.

❑ Standard windows — The next several commands shown in Figure 1-7 display the standard IDE
windows Solution Explorer, Class View, Resource View, Server Explorer, Properties Window,
Bookmark Window, Object Browser, Toolbox, Start Page, and Property Manager. These com-
mands are handy if you have hidden one of the windows and want to get it back. The most use-
ful of these windows are described later in this chapter.

❑ Web Browser — The Web Browser submenu lets you display and manage a Web Browser within
the IDE. When the Web Browser is visible, the IDE displays a Web toolbar that lets you enter a
URL, jump to one of your favorite links, or add the current page to your Web favorites. The Web
Browser is particular useful for debugging Web applications because it lets you see what Web
pages will look like before you publish them.

❑ Other Windows — The Other Windows submenu lists other standard menus that are not listed
in the View menu itself. These include the Macro Explorer, Document Outline, Task List, Error
List, Command Window, Output, Code Definition Window, and Object Test Bench. It also
includes find results windows that list the results of searches you make using the Edit\Find and
Replace commands.

❑ Tab Order — If a form contains controls, the Tab Order command displays the tab order on top
of each control. You can click on the controls in the order you want them to have to set their tab
order’s quickly and easily.

❑ Toolbars — The Toolbars submenu lets you toggle the currently defined toolbars to hide or dis-
play them. This submenu lists the standard toolbars in addition to any custom toolbars you
have created.

❑ Full Screen — The Full Screen command hides all toolbars and windows except for any editor
windows that you currently have open. It also hides the Windows taskbar so that the IDE occu-
pies as much space as possible. This gives you the most space possible for working with the files
you have open. The command adds a small box to the title bar containing a Full Screen button
that you can click to end full-screen mode.

❑ Navigate Backward, Navigate Forward — These commands let you move back and forth through
the last several locations you visited.

❑ Next Task, Previous Task — These commands move through the items in the Task List.

❑ Property Pages — This command displays the current item’s property pages. For example, if you
select an application in Solution Explorer, this command displays the application’s property
pages similar to those shown in Figure 1-8.

11

IDE

03_571982 ch01.qxd 9/1/05 7:16 PM Page 11

Figure 1-8: The View menu’s Property Pages command displays an application’s property pages.

Project
The Project menu shown in Figure 1-9 contains commands that let you add and remove items to and
from the project. Which commands are available depends on the currently selected item.

Following is a description of commands associated with the Project menu:

❑ New items — The first several commands let you add new items to the project. These com-
mands are fairly self-explanatory. For example, the Add Class command adds a new class mod-
ule to the project. Later chapters explain how to use each of these file types.

❑ Add New Item — The Add New Item command displays the dialog shown in Figure 1-10. The
dialog lets you select from a wide assortment of items such as text files, bitmap files, and class
modules.

❑ Add Existing Item — The Add Existing Item command lets you browse for a file and add it to
the project.

❑ Exclude From Project — This command removes the selected item from the project. Note that
this does not delete the item’s file; it just removes it from the project.

12

Chapter 1

03_571982 ch01.qxd 9/1/05 7:16 PM Page 12

Figure 1-9: The Project menu lets you add files and references to the currently selected project.

Figure 1-10: The Project menu’s Add New Item command lets you add a wide variety of
items to the project. 13

IDE

03_571982 ch01.qxd 9/1/05 7:16 PM Page 13

❑ Show All Files — The Show All Files command makes Solution Explorer list files that are nor-
mally hidden. These include resource files corresponding to forms, hidden partial classes such
as designer-generated form code, resource files, and files in the obj and bin directories that are
automatically created by Visual Studio when it compiles your program. Normally, you don’t
need to work with these files, so they are hidden. Select this command to show them. Select the
command again to hide them.

❑ Add Reference — The Add Reference command displays the dialog shown in Figure 1-11. Select
the category of the external object, class, or library that you want to find. For a .NET component,
select the .NET tab. For a Component Object Model (COM) component such as an ActiveX
library or control built using Visual Basic 6, select the COM tab. Select the Projects tab to add a
reference to another Visual Studio project. Click the Browse tab to manually locate the file you
want to reference.

Figure 1-11: Use the Add Reference dialog to add references
to external libraries.

Scroll through the list of references until you find the one you want and select it. You can use
Shift-Click and Ctrl-Click to select more than one library at the same time. When you have
made your selections, click OK to add the references to the project. After you have added a ref-
erence to the project, your code can refer to the reference’s public objects. For example, if the file

14

Chapter 1

03_571982 ch01.qxd 9/1/05 7:16 PM Page 14

MyMathLibrary.dll defines a class named MathTools and that class defines a public function
Fibonacci, a project with a reference to this DLL could use the following code.

Dim math_tools As New MyMathLibrary.MathTools
MsgBox(“Fib(5) = “ & math_tools.Fibonacci(5))

❑ Add Web Reference — The Add Web Reference command displays the dialog shown in Figure 1-12.
You can use this dialog to find Web Services and add references to them so your project can invoke
them across the Internet.

❑ WindowsApplication1 Properties — This command displays the application’s property pages
shown in Figure 1-13.

Figure 1-12: Use the Add Web Reference dialog to add references to Web Services.

15

IDE

03_571982 ch01.qxd 9/1/05 7:16 PM Page 15

In Figure 1-13, the Toolbox, Solution Explorer, Properties window, Errors List, and other secondary win-
dows have been hidden to make more room for the large Properties page. You can see these other win-
dows’ icons lurking along the left, right, and bottom edges of the figure.

Click the tabs on the left to view and modify different types of application settings. You can leave many
of the property values alone and many are set in other ways. For example, by default, the Assembly
name and Root namespace values shown in Figure 1-13 are set to the name of the project when you first
create it.

There are three properties on the Compile tab shown in Figure 1-14 that deserve special mention.

First, Option Explicit determines whether Visual Basic requires you to declare all variables before using
them. Leaving this option turned off can sometimes lead to subtle bugs. For example, the following code
is intended to print a list of even numbers between 0 and 10. Unfortunately, a typographical error makes
the Debug.WriteLine statement print the value of the variable j not i. Because j is never initialized, the
code prints out a bunch of blank values. If you set Option Strict to On, the compiler complains that the
variable j is not declared and the problem is easy to fix.

For i = 1 To 10
If i Mod 2 = 0 Then Debug.WriteLine(j)

Next i

Figure 1-13: Property pages let you set a project’s properties.

16

Chapter 1

03_571982 ch01.qxd 9/1/05 7:16 PM Page 16

Figure 1-14: The Compile tab contains important properties for controlling code generation.

The second compiler option is Option Strict. When this option is turned off, Visual Studio allows your
code to implicitly convert from one data type to another, even if the types are not always compatible. For
example, Visual Basic will allow the following code to try to copy the string s into the integer i. If the
value in the string happens to be a number, as in the first case, this works. If the string is not a number,
as in the second case, this fails at run time.

Dim i As Integer
Dim s As String
s = “10”
i = s ‘ This works.
s = “Hello”
i = s ‘ This Fails.

If you set Option Strict to On, the IDE warns you that the two data types are incompatible, so you can
easily resolve the problem while you are writing the code. You can still use conversion functions such as
CInt, Int, and Integer.Parse to convert a string into an Integer, but you must take explicit action to
do so. This makes you think about the code and reduces the chances that the conversion is just an acci-
dent. This also helps you use the correct data types and avoid unnecessary conversions that may make
your program slower.

17

IDE

03_571982 ch01.qxd 9/1/05 7:16 PM Page 17

To avoid confusion and long debugging sessions, you should always set Option Explicit On and Option
Strict On. You can turn them on for a project using the project page. To make them on by default for new
projects, open the Tools menu and select Options. Open the Projects and Solutions folder, select the VB
Defaults page, and turn the options on, as shown in Figure 1-15.

Figure 1-15: The Projects and Solutions folder’s VB Defaults page lets you set default
values for Option Explicit and Option Strict.

The final compiler directive, Option Compare, can take the values Binary or Text. If you set Option
Compare to Binary, Visual Basic compares strings using their binary representations. If you set Option
Compare to Text, Visual Basic compares strings using a case-insensitive method that depends on your
computer’s localization settings. Option Compare Binary is faster, but may not always produce the
result you want.

If you select a solution and then invoke the Project menu’s Properties command, Visual Studio displays
the Solution Properties Pages dialog shown in Figure 1-16. Select an item on the left to view, and modify
the corresponding values on the right.

Build
The Build menu, shown in Figure 1-17, contains commands that let you compile projects within a
solution.

18

Chapter 1

03_571982 ch01.qxd 9/1/05 7:16 PM Page 18

Figure 1-16. The Solution Properties Pages dialog lets you set solution properties.

Figure 1-17: The Build menu lets you compile projects. 19

IDE

03_571982 ch01.qxd 9/1/05 7:16 PM Page 19

Following is a description of commands associated with the Build menu:

❑ Build WindowsApplication1 — This command compiles the currently selected project, in this case
the project WindowsApplication1. Visual Studio examines the project’s files to see if any have
changed since the last time it compiled the project. If any of the files have changed, Visual
Studio recompiles those files to update the result.

❑ Rebuild WindowsApplication1 — This command recompiles the currently selected project from
scratch. The Build WindowsApplication1 command compiles only the files that you have modified
since they were last built. This command rebuilds every file.

❑ Clean WindowsApplication1 — This command removes temporary and intermediate files that
were created while building the application, leaving only the source files and the final result
.exe and .dll files.

❑ Publish WindowsApplication1 — This command displays the Publish Wizard shown in Figure
1-18. It can walk you through the process of making your application available for distribution
on a local file, file share, FTP site, or Web site.

Figure 1-18: The Publish Wizard helps you deploy an application.

❑ Configuration Manager — The Configuration Manager command displays the dialog shown in
Figure 1-19. You can use this dialog to indicate the type of build you want to use for each project
(debug or release), and the platforms you want to target (for example Itanium, x64, or x86). You
can also use the Build check boxes shown in the figure to determine which projects get built.
You can use this feature to skip compilation of some projects within the solution. If you find that
some parts of a solution are not compiling, check the Configuration Manager.

20

Chapter 1

03_571982 ch01.qxd 9/1/05 7:16 PM Page 20

Figure 1-19: The Configuration Manager lets you manage project builds.

Release configurations use more optimizations than Debug configurations, so they provide smaller,
faster executable programs. They do not include support for debugging, however, so you cannot debug
a program compiled for release.

In the “Active solution configuration” drop-down, select the <New...> entry to create a new configura-
tion. When you select this entry, Visual Studio displays the New Solution Configuration dialog shown in
Figure 1-20. Enter the name you want to give the configuration, select the existing configuration from
which it should copy default values, and click OK.

Figure 1-20: The New Solution Configuration dialog
lets you create new configurations.

The “Active solution configuration” drop-down also contains an item labeled <Edit...>. If you select this
entry, Visual Studio displays a dialog where you can rename or remove configurations.

21

IDE

03_571982 ch01.qxd 9/1/05 7:16 PM Page 21

Use the drop-downs and check boxes in the grid to select features for the solution’s projects. For exam-
ple, if the solution contains several projects, you could flag some to compile using the Debug configura-
tion and others to compile using the Release configuration. If you then rebuilt the solution, you would
be able to debug some of the projects but not all of them. This approach may be useful if you want to
give some of the projects to customers in their release versions while you keep working on others.

If you uncheck a project’s Build box, that project is excluded from any builds. If you build the solution, it
is not compiled. Visual Studio writes its results into the Output window and counts the skipped project
in its final summary line. The following line shows an example where one project was compiled and one
skipped.

========== Build: 1 succeeded or up-to-date, 0 failed, 1 skipped ==========

Debug
The Debug menu, shown in Figure 1-21, contains commands that help you debug a program. These
commands help you run the program in the debugger, move through the code, set and clear breakpoints,
and generally follow the code’s execution to see what it’s doing and hopefully what it’s doing wrong.

Figure 1-21: The Debug menu contains commands for debugging an application.

22

Chapter 1

03_571982 ch01.qxd 9/1/05 7:16 PM Page 22

Effectively using these debugging techniques can make finding problems in the code much easier, so
you should spend some time learning how to use these tools. They can mean the difference between
finding a tricky error in minute, hours, or days.

The commands visible in the Debug window change, depending on several conditions such as the type
of file you have open, whether the program is running, the line of code that contains the cursor, and
whether that line contains a breakpoint. This section discusses the menu items shown in Figure 1-21.
You will see other menus items under different circumstances.

The following list briefly describes the Debug menu’s commands.

❑ Windows — This submenu’s commands display other debugging-related windows. This sub-
menu is described in more detail in the following section, “The Debug\Windows Submenu.”

❑ Continue — This command resumes program execution. The program runs until it finishes, it
reaches another breakpoint, or you stop it.

❑ Break All — This command stops execution of all programs running within the debugger. This
may include more than one program if you are debugging more than one application at the
same time. This can be useful, for example, if two programs work closely together.

❑ Stop Debugging — This command halts the program’s execution and ends its debugging ses-
sion. The program stops immediately, so it does not get a chance to execute any cleanup code.

❑ Detach All — This command detaches the debugger from any processes to which it is attached.
Note that this does not stop those processes.

❑ Terminate All — This command terminates any processes to which the debugger is attached.

❑ Restart — This command stops the currently running process and restarts the startup project.

❑ Attach to Process — This command displays the dialog shown in Figure 1-22 to let you attach
the debugger to a running process. Select the process to which you want to attach and click
Attach.

❑ Exceptions — This command displays the dialog shown in Figure 1-23. If you check a Thrown
box, the debugger stops whenever the selected type of error occurs. If you check a User-
unhandled box, the debugger stops when the selected type of error occurs and the program
does not catch it with error handling code. For example, suppose that your code calls a sub-
routine that causes a divide-by-zero exception. Use the dialog to select Common Language
Runtime Exceptions/System/System.DivideByZeroException (use the Find button to find it
quickly). If you check the Thrown box, the debugger stops in the subroutine when the divide-
by-zero exception occurs even if the code is contained in an error handler. If you check the User-
unhandled box, the debugger stops only if no error handler is active when the error occurs.

23

IDE

03_571982 ch01.qxd 9/1/05 7:16 PM Page 23

Figure 1-22: The Attach to Process dialog lets you attach the debugger to running processes.

Figure 1-23: The Exceptions dialog lets you determine how Visual Basic handles
uncaught exceptions.

24

Chapter 1

03_571982 ch01.qxd 9/1/05 7:16 PM Page 24

❑ Step Into — This command makes the debugger execute the current line of code. If that code
invokes a function, subroutine, or some other procedure, the point of execution moves into that
procedure. It is not always obvious whether a line of code invokes a procedure. For example, a
line of code that sets an object’s property may be simply setting a value or invoking a property
procedure.

❑ Step Over — This command makes the debugger execute the current line of code. If that code
invokes a function, subroutine, or some other procedure, the debugger calls that routine but
does not step into it, so you don’t need to step through its code. However, if a breakpoint is set
inside that routine, execution will stop at the breakpoint.

❑ Step Out — This command makes the debugger run until it leaves the routine it is currently
executing. Execution pauses when the program reaches the line of code that called this routine.

❑ QuickWatch — This command displays a dialog that gives information about the selected code
object. Figure 1-24 shows the dialog displaying information about a TextBox control named
txtDirectory. If you look closely, you can see some of the control’s properties including
TabIndex, TabStop, Tag, and Text.

Figure 1-24: The QuickWatch dialog lets you examine an object’s properties
and optionally set a new watch on it.

If you double-click on a property’s value, you can change it within the dialog. If you click the
Add Watch button, the debugger adds the expression to the Watch window shown in Figure 1-25.
You can also highlight a variable’s name in the code and drag and drop it into a Watch window
to create a watch very quickly. Right-click a watch in this window and select Delete Watch to
remove it.

25

IDE

03_571982 ch01.qxd 9/1/05 7:16 PM Page 25

Figure 1-25: The Watch window lets you easily track expression values.

❑ Toggle Breakpoint — This command toggles whether the current code line contains a breakpoint.
When execution reaches a line with an active breakpoint, execution pauses so you can examine
the code and program variables. You can also toggle a line’s breakpoint by clicking on the mar-
gin to the left of the line in the code editor. In Figure 1-21, line number 4 displays a circle con-
taining an arrow on the left, indicating that it has a breakpoint (the circle) and that it is the
current line of execution (the arrow). The following line also contains a breakpoint, and line 7
contains a disabled breakpoint, indicated by a hollow circle in the left margin.

❑ New Breakpoint — This submenu contains the Break At Function command. This command dis-
plays a dialog that lets you specify a function where the program should break.

❑ Delete All Breakpoints — This command removes all breakpoints from the entire solution.

❑ Enable All Breakpoints — This command reenables any disabled breakpoints. The Enable All
Breakpoints command is available if any breakpoints are currently disabled. Note that you can
right-click a line of code that contains a disabled breakpoint and select Enable Breakpoint to
enable only that breakpoint.

❑ Disable All Breakpoints — This command temporarily disables all the solution’s breakpoints. The
breakpoints are still defined but they don’t interrupt the program’s execution. The Disable All
Breakpoints command is available if any breakpoints are currently enabled. Note that you can
right-click a line of code that contains a breakpoint and select Disable Breakpoint to disable only
that breakpoint.

The Debug\Windows Submenu
The Debug menu’s Windows submenu, shown in Figure 1-26, contains commands that display debugging-
related windows. The following list briefly describes these commands. The two sections that follow
describe some of the more complicated windows in greater detail.

❑ Breakpoints — This command displays the Breakpoints window shown in Figure 1-27. This dia-
log shows the breakpoints, their locations, and their conditions. Check or uncheck the boxes on
the left to enable or disable breakpoints. Right-click a breakpoint to edit its location, condition,
hit count, and action. Use the dialog’s toolbar to create a new function breakpoint, delete a
breakpoint, delete all breakpoints, enable or disable all breakpoints, go to a breakpoint’s source
code, and change the columns displayed by the dialog. Right-click on a breakpoint to change its
condition (a condition that determines whether the breakpoint is activated), hit count (a count
that determines whether the breakpoint is activated), and “When Hit” (action to take when acti-
vated). See the section “The Breakpoints Window” later in this chapter for more detail.

26

Chapter 1

03_571982 ch01.qxd 9/1/05 7:16 PM Page 26

Figure 1-26: The Debug menu’s Windows submenu contains commands that display debugging-related
windows.

Figure 1-27: The Breakpoints window helps you manage breakpoints.

❑ Output — This command displays the Output window. This window displays compilation
results and output produced by Debug and Trace statements.

❑ Script Explorer — This command displays the Script Explorer, which can help you debug script
code written in VBScript or JScript.

❑ Watch — The Watch submenu contains the commands Watch 1, Watch 2, Watch 3, and Watch 4.
These commands display four different watch windows. When you create a watch using the

27

IDE

03_571982 ch01.qxd 9/1/05 7:16 PM Page 27

Debug menu’s QuickWatch command described earlier, the new watch is placed in the Watch 1
window (shown in Figure 1-25). You can click and drag watches from one watch window to
another to make a copy of the watch in the second window. You can also click on the Name col-
umn in the empty line at the bottom of a watch window and enter an expression to watch. One
useful IDE trick is to drag watch windows 2, 3, and 4 onto Watch 1 so that they all become tabs
on the same window. Then you can easily use the tabs to group and examine four sets of watches.

❑ Autos — This command displays the Autos window shown in Figure 1-28. This window dis-
plays the values of local and global variables used in the current line of code and in the three
lines before and after it.

Figure 1-28: The Autos window displays the variables used
in the current code statement and the three statements
before and the three after.

❑ Locals — This command displays the Locals window shown in Figure 1-29. The Locals window
displays the values of variables defined in the local context. To change a value, click on it and
enter the new value. Click the plus and minus signs to the left of a value to expand or collapse
it. For example, the Me entry shown in Figure 1-29 is an object with lots of properties that have
their own values. Click the plus sign to expand the object’s entry and view its properties. Those
properties may also be objects, so you may be able to expand them further.

Figure 1-29: The Locals window displays the values of variables
defined in the local context.

❑ Immediate — This command displays the Immediate window, where you can type and execute
ad hoc Visual Basic statements. The section “The Command and Immediate Windows” later in
this chapter describes this window in a bit more detail.

❑ Call Stack — This command displays the Call Stack window shown in Figure 1-30. This win-
dow lists the routines that have called other routines to reach the program’s current point of

28

Chapter 1

03_571982 ch01.qxd 9/1/05 7:16 PM Page 28

execution. In this example, the program is at the line 20 in function SearchDatabase. That
function was called by function FindEmployee at line 17, and that function was called by the
Form_Load event handler. Double-click on a line to jump to the corresponding code in the pro-
gram’s call stack. This technique lets you move up the call stack to examine the code that called
the routines that are running. This can be a very effective technique when you need to find out
what code is calling a particular routine.

Figure 1-30: The Call Stack window shows which routines have called which to get to the
program’s current point of execution.

❑ Threads — This command displays the Threads window shown in Figure 1-31. A thread is a sep-
arate execution path that is running. A multithreaded application can have several threads run-
ning to perform more than one task at the same time. The Threads window lets you control the
threads’ priority and suspended status. The last line has the location WindowsApplication1
.Form1.SearchDatabase, indicating that this thread is executing the SearchDatabase rou-
tine in the Form1 module in program WindowsApplication1. The arrow on the left indicates
that this is the currently active thread.

Figure 1-31: The Threads window displays information about the program’s
threads of execution.

Right-click a thread and select Freeze to suspend it. Select Thaw to make it resume execution.
Double-click a thread or right-click it and select Switch To Thread to activate that thread.

❑ Modules — This command displays the Modules window shown in Figure 1-32. This window
displays information about the DLL and EXE files used by the program. It shows each module’s
file name and path. It indicates whether the module is optimized, whether it is your code (ver-
sus an installed library), and whether debugging symbols are loaded. Scrolled off the right edge

29

IDE

03_571982 ch01.qxd 9/1/05 7:16 PM Page 29

of Figure 1-32, the window shows each module’s load order (lower-numbered modules are
loaded first), the module’s version, timestamp, and the process using the module. Click on a col-
umn to sort the modules by that column.

Figure 1-32: The Modules window displays information about the modules used by the program.

❑ Processes — This window lists processes that are attached to the Visual Studio session. This
includes any programs launched by Visual Studio and processes that you attached to using the
Debug menu’s Attach to Process command.

The Breakpoints Window
A breakpoint is a line of code that you have flagged to stop execution. When the program reaches that
line, execution stops and Visual Studio displays the code in a code editor window. This lets you examine
or set variables, see which routine called the one containing the code, and otherwise try to figure out
what the code is doing.

The Breakpoints window lists all the breakpoints you have defined for the program. This is useful for
a couple of reasons. First, if you define a lot of breakpoints, it can be hard to find them all later. While
other commands let you disable, enable, or remove all of the breakpoints at once, there are times when
you may need to find a particular breakpoint.

A common debugging strategy is to comment out broken code, add new code, and set a breakpoint near
the modification so that you can see how the new code works. When you have finished testing the code,
you probably want to remove either the old or new code, so you don’t want to blindly remove all of the
program’s breakpoints. The Breakpoints window lists all of the breakpoints and, if you double-click a
breakpoint in the list, you can easily jump to the code that holds it.

The Breakpoints window also lets you modify the breakpoints you have defined. Check or uncheck the
boxes on the left to enable or disable breakpoints. Use the dialog’s toolbar to enable or disable all break-
points, clear all breakpoints, or jump to a breakpoint’s source code.

Right-click a breakpoint and select Condition to display the dialog shown in Figure 1-33. By default, a
breakpoint stops execution whenever it is reached. You can use this dialog to add an additional condi-
tion that determines whether the breakpoint activates when reached. In this example, the breakpoint

30

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 30

stops execution only if the expression (i = j) And (i > 20) is True when the code reaches the break-
point. Note that specifying a breakpoint condition can slow execution considerably.

Figure 1-33: The Breakpoint Condition dialog lets you
specify a condition that determines whether Visual
Studio stops at the breakpoint.

Right-click a breakpoint and select Hit Count to display the Breakpoint Hit Count dialog shown in
Figure 1-34. Each time the code reaches a breakpoint, it increments the breakpoint’s hit count. You can
use this dialog to make the breakpoint’s activation depend on the hit count’s value.

Figure 1-34: The Breakpoint Hit Count dialog lets you
make a breakpoint’s activation depend on the number
of times the code has reached it.

From the drop-down list you can select the options “break always,” “break when the hit count is equal
to,” “break when the hit count is a multiple of,” or “break when the hit count is greater than or equal to.”
If you select any but the first option, you can enter a value in the text box and the program will pause
execution when the breakpoint has been reached the appropriate number of times. For example, if you
select the option “break when the hit count is a multiple of” and enter “2” into the text box, then execu-
tion will pause every other time it reaches the breakpoint.

Right-click a breakpoint and select When Hit to display the When Breakpoint Is Hit dialog shown in
Figure 1-35. This dialog lets you specify the actions that Visual Basic takes when the breakpoint is acti-
vated. Check the “Print a message” box to make the program display a message in the Output window.
Check the “Run a macro” box to make the program execute a VBA macro. Check the “Continue execu-
tion” box to make the program continue running without stopping.

31

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 31

Figure 1-35: The When Breakpoint Is Hit Condition dialog
lets you determine what actions Visual Basic takes when
the breakpoint is activated.

The Command and Immediate Windows
The Command and Immediate windows both allow you to execute commands while the program is
stopped in the debugger. One of the more useful commands in each of these windows is the Debug.Print
statement. For example, the command Debug.Print x displays the value of the variable x.

You can use a question mark as an abbreviation for Debug.Print. The following text shows how the
command might appear in the Command window. Here the > symbol is the command prompt provided
by the window and 123 is the result: the value of variable x. In the Immediate window, the statement
would not include the “>” character.

>? x
123

The command >immed tells the Command window to open the Immediate window. Conversely, the
command >cmd tells the Immediate window to open the Command window.

While there is some overlap between these two windows, they serve two mostly different purposes. The
Command window can issue commands to the Visual Studio IDE. Typically, these are commands that
appear in menus or toolbars, or that could appear in menus and toolbars. For example, the following
command uses the Debug menu’s QuickWatch command to open a QuickWatch window for the vari-
able first_name.

>Debug.QuickWatch first_name

32

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 32

One particularly useful command is Tools.Alias. This command lists command aliases defined by
the IDE. For example, it indicates that ? is the alias for Debug.Print and that ?? is the alias for Debug
.QuickWatch.

The Command window includes some IntelliSense support. If you type the name of a menu, for exam-
ple Debug or Tools, IntelliSense will display the commands available within that menu.

While the Command window issues commands to the IDE, the Immediate window executes Visual Basic
statements. For example, suppose that you have written a subroutine named CheckPrinter. Then the
following statement in the Immediate window executes that subroutine.

CheckPrinter

Executing subroutines in the Immediate window lets you quickly and easily test routines without writ-
ing user interface code to handle all possible situations. You can call a subroutine or function, passing it
different parameters to see what happens. If you set breakpoints within the routine, the debugger will
pause there.

Similarly, you can also set the values of global variables and then call routines that use them. The follow-
ing Immediate window commands set the value of the m_PrinterName variable and then calls the
CheckPrinter subroutine.

m_PrinterName = “LP_REMOTE”
CheckPrinter

You can execute much more complex statements in the Command and Intermediate windows. For exam-
ple, suppose that your program uses the following statement to open a file for reading.

Dim fs As FileStream = File.OpenRead(_
“C:\Program Files\Customer Orders\Summary” & _
datetime.Now().ToString(“yymmdd”) & “.dat”)

Suppose that the program is failing because some other part of the program is deleting the file. You can
type the following code (all on one line) into the Immediate window to see if the file exists. As you step
through different pieces of the code, you can use this statement again to see if the file has been deleted.

?System.IO.File.Exists(“C:\Program Files\Customer Orders\Summary” & _
DateTime.Now().ToString(“yymmdd”) & “.dat”)

The window evaluates the complicated string expression to produce a file name. It then uses the
System.IO.File.Exists command to determine whether the file exists and displays True or False
accordingly.

Data
The Data menu, shown in Figure 1-36, contains commands that deal with data and data sources. Some of
the commands in this menu are only visible and enabled if you are designing a form and that form con-
tains the proper data objects.

33

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 33

Figure 1-36: The Data menu holds commands that deal with datasets.

The following list describes commands shown in Figure 1-36:

❑ Show Data Sources — This command displays the Data Sources window, where you can work
with the program’s data sources. For example, you can drag and drop tables and fields from this
window onto a form to create controls bound to the data.

❑ Preview Data — This command displays a dialog that lets you load data into a DataSet and
view it at design time.

❑ Add New Data Source — This command displays the Data Source Configuration Wizard, which
walks you through the process of adding a data source to the project.

❑ Add Query — This command is available when you are designing a form and have selected a
data bound control such as a DataGridView or bound TextBox. This command opens a dialog
where you can specify a query to add to the form. This places a ToolStrip on the form contain-
ing TooStripButton that populates the bound control by executing the query.

Format
The Format menu, shown in Figure 1-37, contains commands that arrange controls on a form. The fol-
lowing list describes the Format menu’s submenus:

34

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 34

Figure 1-37: The Format menu contains commands for formatting and arranging controls on a form.

❑ Align — This submenu contains commands that align the controls you have selected in various
ways. It contains the commands Lefts, Centers, Rights, Tops, Middles, Bottoms, and “to Grid.”
For example, the Lefts command aligns the controls so their left edges line up nicely. The “to
Grid” command snaps the controls to the nearest grid position. This is useful if you have moved
some controls off of the alignment grid, possibly by using one of the other Align commands or
by changing a control’s Location property in the Properties window.

❑ Make Same Size — This submenu contains commands that change the size of the controls you
have selected. It contains the commands Width, Height, Both, and “Size to Grid.” The “Size to
Grid” command adjusts the selected controls’ widths so that they are a multiple of the align-
ment grid size. The other commands give the selected controls the same width, height, or both.

❑ Horizontal Spacing — This submenu contains commands that change the spacing between the
controls you have selected. It contains the commands Make Equal, Increase, Decrease, and
Remove. For example, if you have selected three controls, the Make Equal command makes
the spacing between the first two the same as the spacing between the second two. This can be
handy for making columns that line up nicely.

❑ Vertical Spacing — This submenu contains the same commands as the Horizontal Spacing sub-
menu except it adjusts the controls’ vertical spacing rather than their horizontal spacing.

35

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 35

❑ Center in Form — This submenu contains commands that center the selected controls on the
form. It contains the commands Horizontally and Vertically. Note that the selected controls are
centered as a group; they are not centered individually on top of each other.

❑ Order — This submenu contains the commands Bring to Front and Send to Back, which move
the selected controls to the top or bottom of the stacking order.

❑ Lock Controls — This command locks all of the controls on the form so that they cannot be
moved or resized by clicking and dragging. You can still move and resize the controls by chang-
ing their Location and Size properties in the Properties window. Invoking this command again
unlocks the controls. Locking the controls can be useful if you have spent a long time position-
ing them precisely. After they are locked, you can work on the controls without fear of acciden-
tally messing up your careful design.

Tools
The Tools menu, shown in Figure 1-38, contains miscellaneous tools that do not fit particularly well in
the other menus. It also contains a few duplicates of commands in other menus and commands that
modify the IDE itself.

Figure 1-38: The Tools menu contains miscellaneous commands and commands that modify the IDE.

36

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 36

The following list describes the Tools menu’s most useful commands:

❑ Attach to Process — This command displays the dialog shown in Figure 1-22 to let you attach the
debugger to a running process. Select the process to which you want to attach and click Attach.

❑ Connect to Device — This command lets you connect to a physical device or emulator such as
Pocket PC or Smartphone devices or emulators. You can use the devices and emulators to test
software you are writing for devices other than the Windows platform where you are building
the application.

❑ Connect to Database — This command displays the Connection Properties dialog, where you
can define a database connection. The connection is added to the Server Explorer window.
You can later use the connection to define data adapters and other objects that use a database
connection.

❑ Code Snippets Manager — This command displays the Code Snippets Manager, which you can
use to add and remove code snippets.

❑ Choose Toolbox Items — This command displays a dialog that lets you select the tools displayed
in the Toolbox. For instance, by default the OleDbDataAdapater and OleDbConnection com-
ponents are not included in the Toolbox. You can use this command to add them if you will use
them frequently.

❑ Add-in Manager — This command displays the Add-in Manager, which lists the add-in projects
registered on the computer. You can use the Add-in Manager to enable or disable these add-ins.

❑ Macros — The Macros submenu contains commands that help you create, edit, and execute
macros. See the section “Macros,” later in this chapter, for details.

❑ ActiveX Control Test Container — This command displays the ActiveX Control Test Container,
which lets you test and debug ActiveX controls. You can use it to change the control’s proper-
ties, call its methods, and raise its events.

❑ Create GUID — This command displays the Create GUID dialog shown in Figure 1-39 to let you
create a new globally unique identifier (GUID, pronounced to rhyme with “squid”). Select the
GUID format that you need and click New GUID to generate a new GUID. Click Copy to copy
the result to the clipboard.

❑ Dotfuscater Community Edition — This command launches the displays the Dotfuscater
Community Edition, a tool that you can use to make the intermediate language (IL) code
generated by Visual Basic more obscure and harder to reverse engineer.

❑ Error Lookup — This command displays a small dialog where you can enter an error code and
see a description of the error.

❑ ATL/MFC Trace Tool — If you are building Active Template Library (ATL) or Microsoft Foundation
Classes (MFC) projects, this command displays a tool that lets you view debug trace messages.

❑ Spy++ — This command launches the Spy++ tool, which lets you view the messages sent to the
application.

❑ External Tools — This command displays a dialog that lets you add and remove commands
from the Tools menu. For example, you could add a command to launch WordPad, MS Paint,
WinZip, and other handy utilities from the Tools menu.

❑ Device Emulation Manager — This command displays the Device Emulation Manager, which lets
you connect, reset, shut down, and otherwise manipulate device emulators.

37

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 37

Figure 1-39: The Create GUID dialog generates GUIDs.

❑ Import/Export Settings — This command displays a dialog that you can use to save, restore, or
reset your Visual Studio IDE settings.

❑ Customize — This command allows you to customize the Visual Studio IDE. See the “Customize”
section later in this chapter for details.

❑ Options — This command allows you to specify options for the Visual Studio IDE. See the
“Options” section later in this chapter for details.

Macros
The Macros submenu, shown in Figure 1-40, provides commands that help you create, edit, and execute
macros that automate repetitive Visual Studio programming chores. If you must perform a series of
actions many times, you can record a macro that performs them. Then you can call the macro repeatedly
to perform the actions rather than executing them manually.

After you have recorded a macro, you can edit the macro’s code and make changes. For example, if you
want to run the code a certain number of times, you can include it in a For loop. Often, a quick inspec-
tion of the code lets you figure out how to modify the code to perform actions similar to (but not exactly
the same as) the actions you originally recorded.

Most of the commands in the macros submenu are self-explanatory. Use the Record TemporaryMacro
command to record a macro for quick temporary use. When you select this command, a small window
pops up that contains buttons you can click to suspend, finish, or cancel recording. Visual Studio saves
the commands you execute in a macro named “TemporaryMacro.”

Select Run TemporaryMacro to run this macro. If you record a new TemporaryMacro, it overwrites the
existing one without warning you. Select the Save TemporaryMacro command to rename the macro so
you can record a new TemporaryMacro without destroying this one.

38

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 38

Figure 1-40: The Macros submenu contains commands for recording and executing macros.

Select the Macro Explorer command to display the window shown in Figure 1-41. If you right-click on
a macro, the resulting pop-up menu lets you run, edit, rename, or delete the macro. Notice the Macro
Explorer’s predefined Samples section, which contains example macros that you can use or modify for
your own use.

Figure 1-41: The Macro Explorer lets you edit,
run, and delete macros.

39

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 39

Sometimes when you perform a series of programming tasks many times, there are better ways to
approach the problem than writing a macro. For example, you may be able to make your program repeat
the steps inside a loop. Or you may be able to extract the common code into a subroutine and then call it
repeatedly rather than repeating the code many times. In these cases, your application doesn’t need to
contain a long sequence of repetitive code that may be hard to debug and maintain.

Macros are generally most useful when you must write similar pieces of code that cannot be easily
extracted into a routine that can be shared by different parts of the application. For example, suppose
that you need to write event handlers for several dozen TextBox controls. You could record a macro
while you write one of them. Then you could edit the macro to make it generate the others in a loop
using different control names for each event handler. You could place the bulk of the event-handling
code in a separate subroutine that each event handler would call. That would avoid the need for exten-
sive duplicated code. (In fact, you could even use the AddHandler statement to make all the controls use
the same event handler. Then you wouldn’t even need to write all of the separate event handlers.)

Macros are also useful for manipulating the IDE and performing IDE-related tasks. For example, you can
write macros to show and hide your favorite toolbars, or to change whether the current file is opened
read-only.

Customize
The Tools menu’s Customize command displays the dialog shown in Figure 1-42. On the Toolbars tab,
check the boxes next to the toolbars that you want to be visible. Click New to create a new toolbar where
you can add your favorite tools. You can leave the toolbar floating or drag it to the edge of the IDE and
dock it. If you drag it to the top, it joins the other toolbars.

Figure 1-42: The Customize dialog’s Toolbar tab lets you
determine which toolbars are visible.

40

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 40

Click the Commands tab to see a list of categories as shown in Figure 1-43. Select a category on the left.
Then click and drag a command from the list on the right. If you drop the command on a toolbar, the
command is added to the toolbar. Hover over a menu to open the menu so that you can drop the com-
mand in it.

Figure 1-43: The Customize dialog’s Commands tab lets
you add commands to toolbars and menus.

To create a new menu, select the New Menu item in the list on the left. Then drag and drop the New
Menu entry from the right list onto the IDE’s menu area.

To make a command that executes a macro you have created, select the Macros category in the list on the
left. Find the macro you want to use in the list on the right, and drag it onto a toolbar or menu.

To remove a command from a toolbar or menu, right-click it and select Delete. Alternatively, you can
click and drag the command somewhere that it cannot be placed. For example, you can drop it on the
Customize dialog or most places in the IDE other than on a menu or toolbar (code editors, the Properties
window, the Toolbox). The mouse cursor changes to a box with an “X” beside it when the mouse is over
one of these areas.

Modifying the IDE’s standard menus and toolbars can cause confusion later. You may later discover
that you need a command that you have removed from a menu, and it may take you quite a while to find
it again. A better approach to modifying standard commands is to create a new custom toolbar or menu.
Add the commands you want to use to the new toolbar and then hide the standard toolbar that you are
replacing. Later you can restore the hidden standard toolbar if necessary.

41

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 41

If you right-click a command in a menu or toolbar while the Customize dialog is open, Visual Studio dis-
plays the pop-up menu shown in Figure 1-44. Click the Name text box and enter a new name to change
the text displayed in the menu or toolbar.

Figure 1-44: Right-click menu and
toolbar commands to change
their appearances.

Use the Copy Button Image command to copy the button’s image to the clipboard. Use Paste Button
Image to paste a copied image onto a button. Usually you will use these two commands to copy the
image from an existing button to one you are adding. However, the Paste Button Image command will
paste any graphical image from the clipboard. For example, you can open a bitmap using Microsoft
Paint, press Ctrl-A to select the whole image, and press Ctrl-C to copy it to the clipboard. Then you can
use the Paste Button Image command to paste the image into a button. Note that the buttons are 16 by
16 pixels. If the image you copy is larger, Visual Studio shrinks it to fit.

Select the Reset Button Image command to restore the button to its default image. For a command tied to
a macro, this erases the image.

Select the Edit button image command to display the simple button editor shown in Figure 1-45. If you
click on a pixel that is not the selected foreground color (black in Figure 1-45), the editor changes the
pixel to the foreground color. If you hold the mouse down and drag it, the editor gives the pixels you
cross that color, too. If you click on a pixel that is already the foreground color, the editor erases the pixel
and any others that you drag over.

If you click the Change Button Image command, a menu containing several dozen standard images pops
out. Click one to assign that image to the button. A useful technique is to start with one of these images
and then edit it to customize it for your command.

42

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 42

Figure 1-45: You can use Visual Studio’s simple
button editor to change a command’s button.

The pop-up menu’s Default Style command makes the command use a style that depends on whether it
is in a menu or toolbar. In a menu, the command displays a button and text. In a toolbar, the command
displays only a button. Ironically, a new button’s default style is not Default Style. When you create a
new toolbar or menu command, the button initially displays only text. You need to use the Default Style
command to make the button use this style.

Text Only (Always) makes the command display only text. Text Only (in Menus) makes a command in a
toolbar display a button and a command in a menu display text.

Image and Text makes the command display both an icon and text whether it is in a toolbar or a menu.

Finally, the Begin a Group command makes the IDE insert a group separator before the button.

The Customize dialog’s Rearrange Commands button displays a dialog that lets you rearrange the com-
mands in an existing menu or toolbar, and change the appearance of those commands. It’s usually easier
to just click and drag the commands on its menu or toolbar, however.

The Customize dialog’s Keyboard button displays the dialog shown in Figure 1-46. You can use this dis-
play to view and edit keyboard shortcuts.

Enter words in the “Show commands containing” text box to filter the commands. When you click on a
command, the dialog displays any keyboard shortcuts associated with it.

To make a new shortcut, click on the “Press shortcut key(s)” text box and press the keys that you want to
use as a shortcut. The “Shortcut currently used by” drop-down lists any commands that already use the
shortcut you entered. To make the assignment, click the Assign button.

43

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 43

Figure 1-46: The Options dialog’s Keyboard section lets you view and modify
keyboard shortcuts.

Options
The Tools menu’s Options command displays the dialog shown in Figure 1-47. This dialog contains a
huge number of pages of options that configure the Visual Studio IDE. The Customize dialog’s Keyboard
button described in the previous section uses the same dialog with the Keyboard item selected in the list
on the left.

Figure 1-47: The Options dialog lets you specify IDE options.

44

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 44

The following list describes the Options dialog’s most important categories.

❑ Environment — Contains general IDE settings such as whether the IDE uses an Multiple
Document Interface (MDI) or Single Document Interface (SDI) interface, the number of items
listed in the MRU lists, and how often the IDE saves AutoRecover information. The Fonts and
Colors subsection lets you determine the colors used by the editors for different types of text.
For example, comments are shown in green by default, but you can change this color.

❑ Projects and Solutions — Contains the default settings for Option Explicit, Option Strict, and
Option Compare.

❑ Source Control — Contains entries that deal with the source code control system (for example,
Source Safe).

❑ Text Editor — Contains entries that specify the text editors’ features. For example, you can use
these pages to determine whether delimiters are highlighted, the editor provides drag-and-drop
editing, scroll bars are visible, long lines are automatically wrapped, line numbers are displayed,
and the editor provides smart indentation. The Basic\VB Specific subsection lets you specify
options such as whether the editor uses outlining, whether it displays procedure separators, and
suggested corrections for errors.

❑ Database Tools — Contains database parameters such as default lengths for fields of various types.

❑ Debugging — Contains debugging settings such as whether the debugger displays messages
as modules are loaded and unloaded, whether it should make you confirm when deleting all
breakpoints, and whether it should allow Edit-and-Continue.

❑ Device Tools — Contains options for development on devices such as Smartphones, Pocket PCs,
or Windows CE.

❑ HTML Designer — Contains options for configuring HTML Designer. These options determine
such settings as whether the designer starts in source or design view, and whether it displays
Smart Tags for controls in design view.

❑ Windows Form Designer — Contains settings that control the Form Designer. For example, this
section lets you determine whether the designer uses a snap-to grid or snap lines.

Window
The Window menu contains commands that control Visual Studio’s windows. Which commands are
enabled depends on the type of window that has the focus. Figure 1-48 shows this menu when the
Toolbox has the focus.

45

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 45

Figure 1-48: The Window menu displays commands that control Visual Studio’s windows.

The following list briefly describes these commands.

❑ New Window — Creates a new window displaying the contents of the current code window.

❑ Split — Splits a code window into two panes that can display different parts of the code at the
same time. This command changes to Remove Split when you use it.

❑ Dockable, Floating, Tabbed Document — Secondary windows such as the Toolbox, Solution
Explorer, and Properties windows can be displayed as dockable, as floating, or as tabbed docu-
ments. A dockable window can be attached to the edges of the IDE or docked with other sec-
ondary windows. A floating window stays in its own independent window even if you drag it
to a position where it would normally dock. A tabbed document window is displayed in the
main editing area in the center of the IDE with the forms, classes, and other project files.

❑ Auto Hide — Puts a secondary window in Auto Hide mode. The window disappears, and its
title is displayed at the IDE’s nearest edge. When you click on the title or hover over it, the win-
dow reappears so that you can use it. If you click on another window, this window hides itself
again automatically.

❑ Hide — Removes the window.

❑ Auto Hide All — Makes all secondary windows enter Auto Hide mode.

46

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 46

❑ New Horizontal Tab Group — Splits the main document window horizontally so that you can
view two different documents at the same time.

❑ New Vertical Tab Group — Splits the main document window vertically so that you can view
two different documents at the same time.

❑ Close All Documents — Closes all documents.

❑ Reset Window Layout — Resets the window layout to a default configuration.

❑ Form1.vb — The bottom part of the Window menu lists the open documents. In Figure 1-48, it
lists Form1.vb in the code editor and Form1.vb [Design] in the Form Designer (Design mode).
The code editor entry is checked because it is the currently active document.

❑ Windows — If you have too many open documents to display in the Window menu, select this
command to see a list of windows in a dialog. This dialog lets you switch to another document,
close one or more documents, or save documents. By using Ctrl-Click and Shift-Click you can
select more than one document and quickly close them.

Community
The Community menu shown in Figure 1-49 contains commands that can help you connect with the
Visual Basic programming community. These commands lead to various Microsoft Web pages where
you can ask questions, send feedback, search for examples, find snippets, and so forth.

Figure 1-49: The Community menu contains commands that give access to Microsoft’s Visual Basic
developer community. 47

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 47

For other Visual Basic community resources, see the “community support” topic in the MSDN help or
visit the Web page http://msdn.microsoft.com/library/en-us/vsintro7/html/vxoriAdditionalResources
ForVisualStudioDevelopers.asp. Also see the Visual Studio 2005 Home Page at http://msdn.microsoft
.com/vs2005/default.aspx. Microsoft may move these pages but you should be able to find them if
you search Microsoft’s Web site for “Additional Resources for Visual Studio Developers” and “Visual
Studio 2005.”

Help
The Help menu shown in Figure 1-50 displays the usual assortment of help commands. You should be
familiar with most of these from previous experience.

Figure 1-50: The Help menu contains commands that give you help.

One new item in the Help menu is the How Do I command. This command opens the help system and
displays a page full of links to common programming topics. These topics lead to a hierarchical series
of categorized tutorials on various programming topics. For example, the Visual Basic > Language >
Basics > Data Types > Data Type Summary topic describes the Visual Basic data types, their storage
requirements, and their ranges of allowed values.

48

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 48

Toolbars
Visual Studio’s toolbars are easy to rearrange. Grab the four gray dots on a toolbar’s left or upper edge
and drag the toolbar to its new position. If you drag a toolbar to one of Visual Studio’s edges, it will dock
there either horizontally (on the IDE’s top or bottom edge) or vertically (on the IDE’s left or right edge). If
you drop a toolbar away from the IDE’s edges, it becomes a floating window not docked to the IDE.

You can use the menu commands described earlier in this chapter to determine which toolbars are visi-
ble, to determine what they contain, and to make custom toolbars of your own.

Many menu commands are also available in standard toolbars. For example, the Debug toolbar contains
many of the same commands that are in the Debug menu. If you use a set of menu commands frequently,
you may want to display the corresponding toolbar to make using the commands easier.

Secondary Windows
You can rearrange secondary windows such as the Toolbox and Solution Explorer almost as easily as
you can rearrange toolbars. Click and drag the window’s title area to move it. As the window moves, the
IDE displays little blue icons to help you dock the window, as shown in Figure 1-51. This figure probably
looks somewhat confusing, but it’s fairly easy to use.

The IDE displays four docking icons near the edges of the IDE. You can see these icons near the edges of
Figure 1-51. If you drop the window on one of these icons, the window docks to the corresponding edge
of the IDE.

When you drag the window over another window, the IDE displays docking icons for the other window.
In Figure 1-51, these are the five icons near the mouse in the middle of the screen. The four icons on the
sides dock the window to the corresponding edge of the other window.

The center icon places the dropped window in a tab within the other window. If you look closely at
Figure 1-51, you can see a little image of a document with two tabs on the bottom in this icon.

When you drag the mouse over one of the docking icons, the IDE displays a dark gray rectangle to give
you an idea of where the window will land if you drop it. In Figure 1-51, the mouse is over the main
document window’s right docking icon, so the grayed rectangle shows the dropped window taking up
the right half of the main document window.

If you drop a window somewhere other than on a docking icon, the window becomes free-floating.

Once you drop a window on the main document area, it becomes a tabbed document, and you cannot
later pull it out. To free the window, select it and use the Window menu’s Dockable or Floating command.

49

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 49

Figure 1-51: Use the IDE’s docking icons to help you dock windows.

Sometimes the IDE is so cluttered with windows that it’s hard to figure out exactly where the window
will be dropped. It’s usually fairly easy to just move the mouse around a bit and watch the grayed rect-
angle to see what’s happening.

The windows in the Microsoft Document Explorer used by the MSDN Library and other external help
files provides the same arranging and docking tools for managing its subwindows such as Index,
Contents, Help Favorites, Index Results, and Search Results.

Toolbox
The Toolbox window displays a series of sections containing tools for the currently active document.
These tools are grouped into sections called tabs, although they don’t look much like the tabs on most doc-
uments. In Figure 1-52, the Toolbox displays tools for the form designer grouped into the All Windows
Forms, Common Controls, Containers, Menus & Toolbars, Data, Components, Printing, Dialogs, and
General tabs. In this figure, the Toolbox was enlarged greatly to show most of its contents. Most develop-
ers keep this window much smaller and docked on the left edge of the IDE.

50

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 50

Figure 1-52: The Toolbox window can display tools by name or icon.

You can customize the Toolbox by right-clicking on it and selecting one of the commands in the context
menu. The following list briefly describes these commands.

❑ List View — Toggles the current tab to display tools either as a list of names or a series of icons.

❑ Show All — Shows or hides less commonly used tool tabs such as XML Schema, Dialog Editor,
DataSet, Login, WebParts, Report Items, Device Controls, and many others.

❑ Choose Items — displays the dialog shown in Figure 1-53. Use the .NET Framework Components
tab to select .NET tools, and use the COM Components tab to select COM tools. Click the Browse
button to locate tools that are not in either list.

❑ Sort Items Alphabetically — Sorts the items within a Toolbox tab alphabetically.

❑ Reset Toolbox — Restores the Toolbox to a default configuration. This removes any items you
may have added by using the Choose Items command.

❑ Add Tab — Creates a new tab where you can place your favorite tools. You can drag tools from
one tab to another. Hold down the Ctrl key while dragging to add a copy of the tool to the new
tab without removing it from the old tab.

51

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 51

❑ Delete Tab — Deletes a tab.

❑ Rename Tab — Lets you rename a tab.

❑ Move Up, Move Down — Moves a tab up or down in the Toolbox. You can also click and drag
the tabs to new positions.

Figure 1-53: Use the Choose Toolbox Items dialog to select the tools in the Toolbox.

The Visual Basic Code Editor
Visual Studio includes editors for many different kinds of documents, including several different kinds
of code. For example, it has Hypertext Markup Language (HTML), Extensible Markup Language (XML),
and Visual Basic editors. These editors share some common features, such as displaying comments and
keywords in different colors.

As a Visual Basic developer, you will use the Visual Basic code editor frequently, so you should spend a
few minutes learning about its specialized features.

Figure 1-54 shows the code editor displaying some Visual Basic code at run time. To make referring to
the code lines easier, this figure displays line numbers. To display line numbers, invoke the Tools menu’s
Options command, navigate to the Text Editor\Basic\General page, and check the Line Numbers box.

52

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 52

Figure 1-54: The Visual Basic code editor provides many features, including line numbers and icons that
indicate breakpoints and bookmarks.

Margin Icons
The gray margin to the left of the line numbers contains icons giving information about the correspond-
ing lines of code. The following table describes the icons on lines 4 through 11.

Line Icon Meaning

4 Yellow arrow Indicates that execution is paused at this line

5 Red circle Indicates a breakpoint

6 Hollow red circle Indicates a disabled breakpoint

7 Red circle with plus sign Indicates a breakpoint with a condition or hit count test

10 Red diamond Indicates a breakpoint that executes an action when reached

11 Blue and white rectangle Indicates a bookmark

53

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 53

These icons can combine to indicate more than one condition. For example, line 12 shows a blue and
white rectangle to indicate a bookmark, a hollow red diamond to indicate a disabled breakpoint that
performs an action, and a plus sign to indicate that the breakpoint has a condition or hit count test.

Note that the editor marks some of these lines in other ways than just an icon. It highlights the currently
executing line with a yellow background. It marks lines that hold enabled breakpoints with white text
on a red background.

To add or remove a simple breakpoint, click in the gray margin.

To make a more complex breakpoint, click in the margin to create a simple breakpoint. Then right-click
the breakpoint icon and select one of the context menu’s commands. The following list describes these
commands.

❑ Delete Breakpoint — Removes the breakpoint.

❑ Disable Breakpoint — Disables the breakpoint. When the breakpoint is disabled, this command
changes to Enable Breakpoint.

❑ Location — Lets you change the breakpoint’s line number. Usually it is easier to click in the
margin to remove the old breakpoint and then create a new one.

❑ Condition — Lets you place a condition on the breakpoint. For example, you can make the
breakpoint stop execution only when the variable num_employees has a value greater than 100.

❑ Hit Count — Lets you set a hit count condition on the breakpoint. For example, you can make
the breakpoint stop execution when it has been reached a certain number of times.

❑ When Hit — Lets you specify the action that the breakpoint performs when it triggers. For
example, it might display a message in the Output window or run a macro.

To add or remove a bookmark, place the cursor on a line and then click the Toggle Bookmark tool. You
can find this tool, which looks like the blue and white bookmark icon, in the Text Editor toolbar (under
the mouse in Figure 1-54) and at the top of the Bookmarks window. Other bookmark tools let you move
to the next or previous bookmark, the next or previous bookmark in the current folder, or the next or
previous bookmark in the current document. The final bookmark command clears all bookmarks.

Outlining
By default, the code editor displays an outline view of code. If you look at the first line in Figure 1-54,
you’ll see a box with a minus sign in it just to the right of the line number. That box represents the out-
lining for the Form1 class. If you click this box, the editor collapses the class’s definition and displays it
as a box containing a plus sign. If you then click the new box, the editor expands the class’s definition
again.

The gray line leading down from the box leads to other code items that are outlined, and that you can
expand or collapse to give you the least cluttered view of the code you want to examine. Near the bot-
tom of Figure 1-54, you can see that the RandomizeArray subroutine has been collapsed. The ellipsis
and rectangle around the routine name provided an extra indication that this code is hidden.

54

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 54

The editor automatically creates outlining entries for namespaces, classes and their methods, and mod-
ules and their methods. You can also use the Region statement to group a section of code for outlining.
For example, you can place several related subroutines in a region so you can collapse and expand the
routines as a group.

Figure 1-55 shows more examples of outlining. Line 37 begins a region named Randomization Functions
that contains three collapsed subroutines. Notice that the corresponding End Region statement includes a
comment giving the region’s name. This is not required but it makes the code easier to understand when
you are looking at the end of a region.

Line 90 contains a collapsed region named Utility Functions.

Line 96 starts a module named HelperRoutines that contains one collapsed subroutine.

Finally, Line 109 holds the collapsed ImageResources namespace.

Notice that the line numbers skip values for any collapsed lines. For example, the
RandomizeIntegerArray subroutine is collapsed on line 39. This subroutine contains 15 lines
(including the Sub statement), so the next visible line is labeled 54.

Figure 1-55: The code editor outlines namespaces, classes and their methods, modules and their
methods, and regions.

55

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 55

Also notice that comments before a subroutine are not collapsed with the subroutine. You can make
reading collapsed code easier by placing a short descriptive comment before each routine.

Tooltips
If you hover the mouse over a variable at design time, the editor displays a tooltip describing the vari-
able. For example, if you hover over an integer variable named num_actions, the tooltip would display
“Dim num_actions As Integer.”

If you hover over a subroutine or function call, the tooltip displays information about that method. For
example, if you hover over the RandomizeArray subroutine (which takes an array of integers as a
parameter), the tooltip says, “Private Sub RandomizeArray(arr() As Integer).”

At run time, if you hover over a variable, the tooltip displays the variable’s value. If the variable is com-
plex (such as an array or structure), the tooltip displays the variable’s name and a plus sign. If you click
or hover over the plus sign, the tooltip expands to show the variable’s members.

In Figure 1-56, the mouse hovered over variable arr. The editor displayed a plus sign and the text arr
{Length = 100}. When the mouse hovered over the plus sign, the editor displayed the values shown in
the figure. Moving the mouse over the up and down arrows at the top and bottom of the list makes the
values scroll.

Figure 1-56: You can hover the mouse over a variable at run time to see its value.

56

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 56

If a variable has properties that are references to other objects, you can hover over their plus signs to
expand those objects. You can continue following the plus signs to drill into the variable’s object hierar-
chy as deeply as you like.

IntelliSense
If you start typing a line of code, the editor tries to anticipate what you will type. For example, if you
type “Me.” then the editor knows that you are about to use one of the current object’s properties or
methods.

IntelliSense displays a list of the properties and methods that you might be trying to select. As you type
more of the property or method, IntelliSense scrolls to show the choices that match what you have typed.

In Figure 1-57, the code includes the text me.Set, so IntelliSense is displaying the current object’s meth-
ods that begin with the string Set.

While the IntelliSense window is visible, you can use the up and down arrows to scroll through the list.
While IntelliSense is displaying the item that you want to use, you can press the Tab key to accept that
item. Press the Escape key to close the IntelliSense window and type the rest manually.

Figure 1-57: IntelliSense displays a list of properties and methods that you might be trying to type.

57

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 57

After you finish typing a method and its opening parenthesis, IntelliSense displays information about
the method’s parameters. Figure 1-58 shows parameter information for a form object’s SetBounds
method. This method takes four parameters: x, y, width, and height.

IntelliSense shows a brief description of the current parameter x. As you enter parameter values,
IntelliSense moves on to describe the other parameters.

IntelliSense also indicates whether there are overloaded versions of the method. In Figure 1-58, IntelliSense
is describing the first version of two available versions. You can use the up and down arrows on the left to
move through the list of overloaded versions.

Code Coloring and Highlighting
The code editor displays different types of code items in different colors. You can change the colors used
for different items by selecting the Tools menu’s Options command, and opening the Environment\Fonts
and Colors option page. To avoid confusion, however, you should probably leave the colors alone unless
you have a good reason to change them.

Figure 1-58: IntelliSense displays information about a method’s parameters.

58

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 58

The following table describes some of the default colors that the code editor uses to highlight different
code elements.

Item Highlighting

Comment Green text

Compiler error Underlined with a wavy blue underline

Other error Underlined with a wavy green underline

Keyword Blue text

Preprocessor keyword Blue text

Read-only region Light gray background

Stale code Purple text

User types Navy text

User types, delegates Navy text

User types, enums Teal text

User types, interfaces Navy text

User types, value types Teal text

Warning Underlined with a wavy purple underline

A few other items that may be worth changing have white backgrounds and black text by default. These
include identifiers (variable names, types, object properties and methods, namespace names, and so
forth), numbers, and strings.

When the code editor finds an error in your code, it highlights the error with a wavy underline. If you
hover over the underline, the editor displays a tooltip describing the error. If Visual Studio can guess
what you are trying to do, it adds a small flat rectangle to the end of the wavy error line to indicate that
it may have useful suggestions.

The assignment statement i = “12” shown in Figure 1-59 has an error because it tried to assign a string
value to an integer variable and that violates the Option Strict On setting. The editor displays the wavy
error underline and a suggestion indicator because it knows a way to fix this error.

If you hover over the suggestion indicator, the editor displays a tooltip describing the problem and an
error icon. If you click the icon, Visual Studio displays a dialog describing the error and listing the
actions that you may want to take. Figure 1-60 shows the suggestion dialog for the error in Figure 1-59. If
you click the text over the revised sample code, or if you double-click the sample code, the editor makes
the change.

59

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 59

Figure 1-59: If the code editor can figure out what’s wrong, it displays a suggestion indicator.

Code Snippets
A code snippet is a piece of code that you might find useful in many applications. It is stored in a snip-
pet library so that you can quickly insert it into a new application.

Visual Studio comes with hundreds of snippets for performing standard tasks. Before you start working
on a complicated piece of code, you should take a look at the snippets that are already available to you.
In fact, it would be worth your time to use the Snippet Manager available from the Tools menu to take a
good look at the available snippets right now before you start a new project. There’s little point in you
reinventing methods for calculating statistical values if someone has already done it and given you
the code.

Snippets are stored in simple text files with XML tags, so it is easy to share snippets with other develop-
ers. Go to this book’s Web page, www.vb-helper.com/vbprogref.htm, to contribute snippets and to
download snippets contributed by others.

60

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 60

Figure 1-60: The error suggestion dialog proposes likely solutions to an error.

The following sections explain how to use snippets in your applications and how to create new snippets.

Using Snippets
To insert a snippet, right-click where you want to insert the code and select Insert Snippet to make the
editor display a list of snippet categories. Double-click a category to find the kinds of snippets that you
want. If you select a snippet, a tooltip pops up to describe it. Figure 1-61 shows the editor preparing to
insert the snippet named “Create a public property” from the “VbProgRef CodeSnippets” category.

61

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 61

Figure 1-61: When you select a code snippet, a pop-up describes it.

Double-click on the snippet to insert it into your code. The snippet may include values that you should
replace in your code. These replacement values are highlighted with a light green background, and the
first value is initially selected. If you hover the mouse over one of these values, a tooltip appears to
describe the value. You can use the Tab key to jump between replacement values.

Figure 1-62 shows the inserted code for this example. The text An Integer Property is highlighted and
selected. Other selected text includes Integer, 0, and MyProperty. The mouse is hovering over the
value An Integer Property, so the tooltip explains that value’s purpose.

62

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 62

Figure 1-62: Values that you should replace in a snippet are highlighted.

Creating Snippets
To create a new snippet, you need to build an XML file containing the property tags to define the snippet
and any replacements that the user should make. The following code shows the “Create a public prop-
erty” snippet used in the previous section. The outer CodeSnippets and CodeSnippet tags are stan-
dard and you should not change them.

Use the Title tag in the Header section to describe the snippet.

Inside the Snippet tag, build a Declarations section describing any literal text that the user should
replace. This example defines DataType, Description, DefaultValue, and PropertyName symbols.
Each literal definition includes an ID, and can include a ToolTip and Description.

After the declarations, the Code tag contains the snippets source code. The syntax <![CDATA[...]]>
tells XML processors to include any characters including carriage returns between the <![CDATA[and
the]]> in the enclosing tag.

63

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 63

<CodeSnippets xmlns=”http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet”>
<CodeSnippet Format=”1.0.0”>

<Header>
<Title>Create a public property</Title>

</Header>
<Snippet>

<Declarations>
<Literal>

<ID>DataType</ID>
<ToolTip>The property’s data type.</ToolTip>
<Default>Integer</Default>

</Literal>
<Literal>

<ID>Description</ID>
<ToolTip>The property’s description.</ToolTip>
<Default>An Integer property.</Default>

</Literal>
<Literal>

<ID>DefaultValue</ID>
<ToolTip>The property’s default value.</ToolTip>
<Default>0</Default>

</Literal>
<Literal>

<ID>PropertyName</ID>
<ToolTip>The property’s name.</ToolTip>
<Default>MyProperty</Default>

</Literal>
</Declarations>
<Code Language=”VB”>

<![CDATA[
‘ $Description$
Private m_$PropertyName$ As $DataType$ = $DefaultValue$
Public Property $PropertyName$() As $DataType$

Get
Return m_$PropertyName$

End Get
Set(ByVal value As $DataType$)

m_$PropertyName$ = value
End Set

End Property
]]>

</Code>
</Snippet>

</CodeSnippet>
</CodeSnippets>

Save the snippet’s XML definition in a snippet directory. To add the directory to the list of usable
snippet locations, select the Tool menu’s Code Snippets Manager command to display the tool shown
in Figure 1-63. Click the Add button, browse to the new snippet directory, and click OK. Now the direc-
tory and the snippets that it contains will be available in the Insert Snippet pop-ups.

64

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 64

Figure 1-63: The Code Snippets Manager lets you add and remove
snippet directories.

The Code Editor at Run Time
The code editor behaves slightly differently at run time and design time. Many of its design time fea-
tures still work. Breakpoints, bookmarks, IntelliSense, and snippets still work.

At run time, the editor adds new tools for controlling the program’s execution. Right-click on a value
and select Add Watch or QuickWatch to examine and monitor the value. Use the Stop Into, Step Over,
and Step Out commands on the Debug menu or toolbar to make the program walk through the code.

Right-click on a statement and select Show Next Statement to move the cursor to the next statement that
the program will execute. Select Run To Cursor to make the program continue running until it reaches
the cursor’s current line.

Right-click and select Set Next Statement to make the program jump to a new location. You can also
drag the yellow arrow indicating the next statement to a new location in the left margin. There are some
restrictions on where you can move the execution position. For example, you cannot jump out of one
routine and into another.

You can discover other run-time features by exploring the editor at run time. Right-click on different
parts of the editor to see which commands are available in that mode.

65

IDE

03_571982 ch01.qxd 9/1/05 7:17 PM Page 65

Summary
The Visual Studio integrated development environment provides many tools for writing and debugging
applications. It provides code snippets that make saving and reusing code easy. It lets you add, remove,
and disable complex breakpoints that check conditions and hit counts, and that can perform customized
actions. You can use regions and bookmarks to organize and find pieces of code, and you can step
through the code line by line at execution time.

The IDE is extremely flexible. You can show, hide, and rearrange windows; add and remove items from
menus and toolbars; and write macros to automate simple chores. Context menus attached to all sorts of
objects provide help, tools, and other features that make sense for their particular objects and under dif-
ferent situations.

This chapter describes some of the most useful parts of the IDE, but listing every last nook and cranny
would be tedious and not terribly useful. Rather than reading about the IDE further, you would be better
off experimenting with it. Spend a few hours really examining all of the menus. Create a snippet with
some replacement values and then insert it into your code. Step through a small program and try the
Immediate and Command windows.

While you do all this, and while you’re developing real applications, right-click on things to see what
sort of context menus they provide. The IDE is packed with so many tools that it is sometimes hard to
find the one you want. Because context menus are tied closely to the objects that you click to display
them, they often provide more appropriate and focused commands than the toolbars or menus.

After you have used the IDE for a while and are comfortable with it, customize it to match your prefer-
ences. Build custom toolbars and menus to make using your favorite tools easier. When you have the
tools that you use most at your fingertips, you will see just how productive Visual Studio can be.

Once you have become familiar with the IDE, you can start building applications. One way to begin is to
design the application’s user interface: the forms, labels, text boxes, and other controls that the user sees
and manipulates to control the application. Chapter 2, “Controls in General,” describes controls in gen-
eral terms. It explains what controls are, how you can add them to a form, and how you can control and
interact with them at design time and run time.

66

Chapter 1

03_571982 ch01.qxd 9/1/05 7:17 PM Page 66

Controls in General
A control is a programming object that has a graphical component. A control sits on a form and
interacts with the user, providing information and possibly allowing the user to manipulate it.
Text boxes, labels, buttons, scroll bars, drop-down lists, menu items, toolstrips, and just about
everything else that you can see and interact with in a Windows application is a control.

A component is similar to a control, except it has no visible component at run time. When you add a
component to a form at design time, it appears in the component tray below the bottom of the form.
You can select the component and use the Properties window to view and change its properties. At
run time, the component is invisible to the user, although it may display a visible object such as a
menu, dialog, or status icon.

Figure 2-1 shows Visual Basic’s Toolbox displaying a standard assortment of 67 controls and com-
ponents. The arrow tool in the upper-left corner represents the selection tool and is not a control or
component.

This chapter explains controls and components in general terms. It describes different kinds of
controls and components. It explains how your program can use them at design time and run time
to give the user information and to allow the user to control your application.

It explains in general terms how a control’s properties, methods, and events work, and it lists
some of the most useful properties, methods, and events provided by the Control class. Other con-
trols that are derived from this class inherit the use of those properties, methods, and events unless
they are explicitly overridden.

Appendix G, “Standard Controls and Components,” describes specific controls in greater detail.

04_571982 ch02.qxd 9/1/05 7:19 PM Page 67

Figure 2-1: Visual Basic provides a rich assortment
of controls.

Controls and Components
Most controls are graphic by nature. Buttons, text boxes, and labels provide graphical input and feed-
back for the user. They display data and let the user trigger program actions. Some controls (such as grid
controls, tree view controls, and calendar controls) are quite powerful and provide a rich variety of tools
for interacting with the user.

On the other hand, components are represented by graphical icons at design time, and they are hidden
at run time. They may display some other object (such as a dialog, menu, or graphical indicator), but the
component itself is hidden from the user.

Generally, your code could use a component’s features at run time without requiring you to place an
object on a form. For example, the program could easily call a method that displays a dialog. However,
putting important functions in components rather than making them subroutine calls provides several
benefits.

First, because you can add a component to a form graphically at design time, you don’t need to write
code to instantiate it and set its properties at run time. That would not be particularly difficult, but it
would just be a little less convenient.

68

Chapter 2

04_571982 ch02.qxd 9/1/05 7:19 PM Page 68

Adding a component to a form at design time also lets you manipulate it at design time instead of in
code. You can use the Properties window to view and modify a component’s properties at design time.
You can also use the code editor to make event handlers for the component (event-handler creation is
described in greater detail later in this chapter).

There are still times when it’s useful to create controls at run time. For instance, if you don’t know how
many text boxes you will need until run time, you cannot create them all at design time. Fortunately,
you get the best of both worlds: Visual Basic lets you create controls at either design time or run time.

Some components also provide information needed by graphical controls. For example, a program can
use connection, data adapter, and data set components to define data that should be selected from a
database. Then a grid control could then display the data to the user. Because the connection, data
adapter, and data set objects are components, you can define all this at design time without writing code.

Figure 2-2 shows a form at design time that contains several components. The components appear in the
Component Tray at the bottom of the form, not on the form’s graphical surface.

Figure 2-2: Some components provide data for graphical controls.

69

Controls in General

04_571982 ch02.qxd 9/1/05 7:19 PM Page 69

This example contains four components. Timer1 fires an event periodically so the program can take
some action at specified time intervals. ErrorProvider1 displays an error icon and error messages for
certain controls on the form such as TextBoxes. BackgroundWorker1 performs tasks asynchronously
while the main program works independently. ImageList1 contains a series of images. Usually an
ImageList is associated with a control such as a Button, ListView, or TreeView, and provides images
for the control.

Aside from the lack of a graphical component on the form, working with components is about the same
as working with controls. You use the Properties window to set components’ properties, the code editor
to define event handlers, and code to call their methods. The rest of this chapter focuses on controls, but
the same concepts apply just as well to components.

Creating Controls
Usually you add controls to a form graphically at design time. In some cases, however, you may want to
add new controls to a form at run time. This gives you a bit more flexibility so that you can change the
program’s appearance at run time in response to the program’s needs or the user’s commands.

For example, suppose that an application might need between 1 and 100 text boxes. Most of the time it
needs only a few, but depending on the user’s input, it might need a lot. You could give the form 100
text boxes and then hide the ones it didn’t need, but that would be a waste of memory most of the time.
By creating only the number of text boxes actually needed, you can conserve memory in the most com-
mon cases.

The following sections explain how to create controls both at design time and at run time.

Creating Controls at Design Time
To create a control at design time, double-click on a form in Solution Explorer to open it in the form edi-
tor. Decide which control you want to use from the Toolbox. If the Toolbox tab you are using is in List
View mode, it displays the controls’ names. If the tab displays only control icons, you can hover the
mouse over a tool to see a tooltip that gives the control’s name and a brief description. Figure 2-3 shows
a tooltip describing the HelpProvider component.

After you have chosen a control, there are several ways you can add it to the form. First, you can double-
click on the tool to place an instance of the control on the form at a default size in a default location.
After adding the control to the form, the IDE deselects the tool and selects the pointer tool (the upper
leftmost tool in the Toolbox’s current tab).

A second way you can add a control to a form is to select it in the Toolbox, and then click and drag to
place it on the form. If you click on the form without dragging, the IDE adds a new control at that posi-
tion with a default size. After you add the control, the IDE deselects the tool and selects the pointer tool.

Third, if you click and drag a tool from the Toolbox onto the form, Visual Basic makes a new control
with a default size at the position where you dropped the tool.

70

Chapter 2

04_571982 ch02.qxd 9/1/05 7:19 PM Page 70

Figure 2-3. Hover the mouse over a toolbox icon to see the tool’s description.

Fourth, if you plan to add many copies of the same type of control to the form, hold down the Ctrl key
and click on the tool. Now the tool remains selected even after you add a control to the form. If you click
and drag on the form, the IDE creates a new control at that position and keeps the tool selected so that
you can immediately create another control. If you click on the form without dragging the mouse, the
IDE adds a new control at that position with a default size. When you are finished adding instances of
that control type, click the pointer tool to stop adding new controls.

After you have added controls to a form, there are a couple ways you can make copies of those controls.
First, you can select some controls, press Ctrl-C to copy them to the clipboard, and press Ctrl-V to paste
them back onto the form at a default location.

Similarly, you can copy and paste controls to other forms. For example, an application might need sev-
eral dialog boxes that all display similar text in labels, pictures in picture boxes, and OK and Cancel but-
tons. After you create one dialog, you can copy and paste its controls onto other dialogs to build them
more quickly.

The copied controls have the same property values as the originals (except for their names, which must
always be unique). If you want to make a series of controls with the same properties, you can make one,
set its properties, and then use copy and paste to make the others.

71

Controls in General

04_571982 ch02.qxd 9/1/05 7:19 PM Page 71

Another way to copy existing controls is to select them, click and drag, and hold down the Ctrl key
when you drop them. This makes copies of the controls at the position where you drop them. This tech-
nique is particularly useful for making a large array of controls aligned in rows or columns. If you use
Ctrl-C and Ctrl-V to copy and paste the controls, they appear in a default location and you must reposi-
tion them in a separate step. If you drag and drop while pressing the Ctrl key, you can position the
copies as you make them.

Selecting Controls
Telling you to select controls to copy them begs the question, how do you select the controls? Click on a
control on the form to select it. Hold down the Shift or Ctrl key while clicking to add or remove a control
from the selection without removing any other controls from the current selection.

Click and drag over part of the form to select all of the controls that intersect the rectangle you define
with the mouse. Hold down the Ctrl key while you click and drag to select controls without removing
any currently selected controls from the selection.

Some controls can contain other controls. When you click and drag to select the controls in an area,
Visual Basic selects only controls contained in the control on which you initially click. For example,
Figure 2-4 shows a form that contains eight buttons. The four buttons on the left are contained in the
form itself. The four buttons on the right are contained in a Panel control.

Figure 2-4: When you click and drag on a form, Visual Basic selects only controls with the same
container.

72

Chapter 2

04_571982 ch02.qxd 9/1/05 7:19 PM Page 72

If you click on an open piece of form and drag to select an area that covers every control on the form,
Visual Basic selects the four buttons on the left and the Panel control because they are all contained in the
form itself. It does not select the buttons on the right because they are contained in the Panel control.

If you click on the interior of the Panel control and then drag to surround all of the controls, Visual
Basic selects only the four buttons on the right because they are contained in the Panel control.

If you want to select controls from more than one container, you must hold down the Ctrl key and click
(or click and drag) to select the controls in several steps. In this case, you might click and drag on the
form to select the buttons on the left and the Panel control. Next you would press Ctrl, click in the
Panel control, and drag to select the remaining buttons. Unfortunately, clicking on the Panel control
deselects it so you need to press Ctrl and click on the Panel again to reselect it. (If you want to select all
of the controls on the form, you can also click on the form and press Ctrl-A.)

After you have selected the controls you want to manipulate, you can delete them, copy them, drag
them to a new location, modify their common properties using the Properties window, and so forth.

Container Controls
As the previous section mentions, some controls can contain other controls. For example, the GroupBox
and Panel controls can hold other controls.

There are several ways you can place a control in a container. If you select the container and then double-
click a control’s tool in the Toolbox, Visual Basic places the new control inside the container.

If you select a tool and click and drag inside a container, Visual Basic also places the new control inside
the container, whether it is selected or not.

You can also click and drag a Toolbox tool onto the container, or click and drag controls from one part of
the form onto the container. If you hold down the Ctrl key when you drop the controls, Visual Basic
makes new copies of the controls.

Two common mistakes programmers make with containers is placing a control above a container when
they want it inside the container, and vice versa. For example, you can place different controls inside dif-
ferent Panel controls and then hide or display the Panels to show different controls at different times. If
a control lies above a Panel but is not inside it, the control remains visible even if the Panel is not.

To tell if a control is inside a container, move the container slightly. If the control also moves, it is inside
the container. If the control doesn’t move, it is above the container but not inside it.

Creating Controls at Run Time
Normally, you create controls interactively at design time. Sometimes, however, it’s more convenient to
create new controls at run time. For example, you may want to provide different interfaces for different
users. Users with different skill levels or authorizations may need to use different controls to do their
jobs. Or you may not know how many pieces of data you will need to display until run time. Sometimes
you can display unknown amounts of data using a list, grid, or other control that can hold a variable
number of items, but other times you might like to display the data in a series of labels or text boxes. In
cases such as these, you need to create new controls at run time.

73

Controls in General

04_571982 ch02.qxd 9/1/05 7:19 PM Page 73

The following code shows how a program might create a new Label control. First it declares a variable
of type Label and initializes it with the New keyword. It uses the label’s SetBounds method to position
the label and sets its Text property to “Hello World!” The code then adds the label to the current form’s
Controls collection.

Dim lbl As New Label
lbl.SetBounds(10, 50, 100, 25)
lbl.Text = “Hello World!”
Me.Controls.Add(lbl)

Usually, a label just displays a message so you don’t need to catch its events. Other controls such as but-
tons and scroll bars, however, are not very useful if the program cannot respond to their events.

There are two approaches you can take to catching a new control’s events. First, you can declare the con-
trol’s variable with the WithEvents keyword. Then you can open the form in the code editor, select the
variable’s name from the left drop-down list, and select the event from the right drop-down list to give
the control an event handler.

The following code demonstrates this approach. It declares variable btnHi at the module level using the
WithEvents keyword. When you click the btnMakeHiButton button, its event handler initializes the
variable. It sets the control’s position and text, and adds it to the form’s Controls collection. When the
user clicks this button, the btnHi_Click event handler executes and displays a message.

‘ Declare the btnHi button WithEvents.
Private WithEvents btnHi As Button

‘ Make the new btnHi button.
Private Sub btnMakeHiButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnMakeHiButton.Click

btnHi = New Button
btnHi.SetBounds(96, 50, 75, 23)
btnHi.Text = “Say Hi”
Me.Controls.Add(btnHi)

End Sub

‘ The user clicked the btnHi button.
Private Sub btnHi_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnHi.Click

MessageBox.Show(“Hi”)
End Sub

This first approach works if you know how many controls you need. Then you can define variables for
them all using the WithEvents keyword. If you don’t know how many controls you need to create,
however, this isn’t practical. For example, suppose that you want to create a button for each file in a
directory. When the user clicks on a button, the file should open. If you don’t know how many files the
directory might hold, you don’t know how many variables you might need.

One solution to this dilemma is to use the AddHandler statement to add event handlers to the new con-
trols. The following code demonstrates this approach. When you click the btnMakeHelloButton but-
ton, its Click event handler creates a new Button object, storing it in a locally declared variable. It sets
the button’s position and text and adds it to the form’s Controls collection as before. Next, the program

74

Chapter 2

04_571982 ch02.qxd 9/1/05 7:19 PM Page 74

uses the AddHandler statement to make subroutine Hello_Click an event handler for the button’s
Click event. When the user clicks the new button, subroutine Hello_Click displays a message.

‘ Make a new Hello button.
Private Sub btnMakeHelloButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnMakeHelloButton.Click

‘ Make the button.
Dim btnHello As New Button
btnHello.SetBounds(184, 50, 75, 23)
btnHello.Text = “Say Hello”
Me.Controls.Add(btnHello)

‘ Add a Click event handler to the button.
AddHandler btnHello.Click, AddressOf Hello_Click

End Sub

‘ The user clicked the Hello button.
Private Sub Hello_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

MessageBox.Show(“Hello”)
End Sub

You can use the same routine as an event handler for more than one button. In that case, the code can
convert the sender parameter into a Button object and use the button’s Name, Text, and other properties
to determine which button was pressed.

To remove a control from the form, simply remove it from the form’s Controls collection. To free the
resources associated with the control, set any variables that refer to it to Nothing. For example, the fol-
lowing code removes the btnHi control created by the first example.

Me.Controls.Remove(btnHi)
btnHi = Nothing

This code will also remove controls that you created interactively at design time, as well as controls you
create during run time.

Proper ties
A property is some value associated with a control. Often, a property corresponds in an obvious way one
of the control’s visual or behavioral features. For example, the Text property represents the text that the
control displays, BackColor represents the control’s background color, Top and Left represent the con-
trol’s position, and so forth.

Many properties, including Text, BackColor, Top, and Left, apply to many kinds of controls. Other
properties only work with certain specific types of controls. For example, the ToolStrip control has an
ImageList property that indicates the ImageList control containing the images the ToolStrip should
display.

You can manipulate a control’s properties interactively at design time or using code at run time.

75

Controls in General

04_571982 ch02.qxd 9/1/05 7:19 PM Page 75

Properties at Design Time
To modify a control’s properties at design time, open its form in the Form Designer and click on the con-
trol. The Properties window displays the control’s properties. Figure 2-5 shows the Properties window
displaying a Button control’s properties. For example, the control’s Text property has the value “Make
Hi Button”, and its TextAlign property (which determines where the button displays its text) is set to
MiddleCenter.

The drop-down at the top of the Properties window, just below the Properties title, indicates that this
control is named btnMakeHiButton and that it is of the System.Windows.Forms.Button class.

You can set many properties by clicking on a property’s value in the Properties window and then typing
the new value. This works with simple string values such as the controls’ name and Text property, and
it works with some other properties where typing a value makes some sense.

For example, the HScrollBar control (horizontal scrollbar) has Minimum, Maximum, and Value proper-
ties that determine the control’s minimum, maximum, and current values. You can click on those proper-
ties in the Properties window and enter new values. When you press the Enter key or move to another
property, the control validates the value you typed. If you entered a value that doesn’t make sense (for
example, if you typed “ABC” instead of a numeric value), the IDE reports the error and lets you fix it.

Figure 2-5: The Properties window lets you change a
control’s properties at design time.

76

Chapter 2

04_571982 ch02.qxd 9/1/05 7:19 PM Page 76

Compound Properties
A few properties have compound values. The Location property includes the X and Y coordinates of
the control’s upper-left corner. The Size property contains the control’s width and height. The Font
property includes the font’s name, size, boldness, and other font properties.

The Properties window displays these properties with a plus sign on the left. If you click the plus sign,
the window expands the property to show the values that it contains. Figure 2-6 shows the same
Properties window shown in Figure 2-5 with the Font and Location properties expanded. You can
click on these subvalues and set them independently just as you can set any other property value.

When you expand a compound property, a minus sign appears to the left (see the Font and Location
properties in Figure 2-6). Click this minus sign to collapse the property and hide its members.

In some cases, you can also set a compound property’s values in a single step. The Location property
shown in Figure 2-6 has the value “8, 8.” You can type a new value (say, “16, 8”) directly into the
Property window.

Figure 2-6: The Properties window lets you change even
complex properties at design time.

77

Controls in General

04_571982 ch02.qxd 9/1/05 7:19 PM Page 77

Some compound properties provide more sophisticated methods for setting the property’s values. If you
click the ellipsis button to the right of the Font property shown in Figure 2-6, the IDE presents the font
selection dialog shown in Figure 2-7. You can use this dialog to set many of the font’s properties.

Figure 2-7: The Font property displays a dialog that lets
you set the font’s properties.

Restricted Properties
Some properties allow more restricted values. For example, the Visible property is a Boolean, so it can
only take the values True and False. If you click on the property, a drop-down arrow appears on the
right. If you click this arrow, the window displays a drop-down list where you can select one of the
choices, True or False.

Many properties have enumerated values. The Button control’s FlatStyle property allows the values
Flat, Popup, Standard, and System. If you click the drop-down arrow to the right of this property,
you’ll see the list shown in Figure 2-8. You can select a new value from this list.

You can also double-click on the property to cycle through its allowed values. After you select a prop-
erty, you can use the up and down arrows to move through the values.

Some properties determine at any given moment exactly what values they can take. For example, some
properties contain references to other controls. The Button control’s ImageList property is a reference
to an ImageList component that contains the picture that the Button control should display. If you
click the drop-down arrow to the right of this value, the Properties window displays a list of the
ImageList components on the form that you might use for this property. This list also contains the
entry (none), which you can select to remove any previous control reference in the property.

78

Chapter 2

04_571982 ch02.qxd 9/1/05 7:19 PM Page 78

Figure 2-8: Some properties provide an enumerated
list of allowed value.

Many properties take very specialized values and provide specialized property editors to let you select
values easily. For example, the Anchor property lets you anchor a control’s edges to the edges of its con-
tainer. Normally, a control is anchored to the top and left edges of the container so that it remains in the
same position even if the container is resized. If you also anchor the control on the right, its right edge
moves in or out as the container gets wider or narrower. This lets you make controls that resize with
their containers in certain useful ways.

If you select the Anchor property and click the drop-down arrow on the right, the Properties window
displays the small graphical editor shown in Figure 2-9. Click on the skinny rectangles on the left, top,
right, or bottom to anchor or unanchor the control on those sides. Press the Enter key to accept your
choices or press Escape to cancel them.

79

Controls in General

04_571982 ch02.qxd 9/1/05 7:19 PM Page 79

Figure 2-9: Some properties, such as Anchor, provide
specialized editors to let you select their values.

Other complex properties may provide other editors. These are generally self-explanatory. Click the ellip-
sis or drop-down arrow to the right of a property value, and experiment to see how these editors work.

You can right-click any property and select Reset from its context menu to reset the property to a default
value. Many complex properties can take the value “(none),” and for those properties, selecting Reset
usually sets the value to “(none).”

Collection Properties
Some properties represent collections of objects. For example, the ListBox control displays a list of
items. Its Items property is a collection containing those items. The Properties window displays the
value of this property as “(Collection).” If you select this property and click the ellipsis to the right, the
Properties window displays a simple dialog where you can edit the text displayed by the control’s items.
This dialog is quite straightforward: Enter the items’ text on separate lines and click OK.

Other properties are much more complex. For example, to create a TabControl that displays images on
its tabs, you must also create an ImageList component. Select the ImageList’s Images property, and
click the ellipsis to the right to display the dialog shown in Figure 2-10. When you click the Add button,
the dialog displays a file selection dialog that lets you add an image file to the control. The list on the left
shows you the images you have loaded and includes a small thumbnail picture of each image. The val-
ues on the right show you the images’ properties.

80

Chapter 2

04_571982 ch02.qxd 9/1/05 7:19 PM Page 80

Figure 2-10: This dialog lets you load images into an ImageList control
at design time.

After you add pictures to the ImageList control, create a TabControl. Select its ImageList property,
click the drop-down arrow on the right, and select the ImageList control you created. Next, select the
TabControl’s TabPages property, and click the ellipsis on the right to see the dialog shown in Figure 2-11.

Figure 2-11: This dialog lets you edit a TabControl’s tab pages.

81

Controls in General

04_571982 ch02.qxd 9/1/05 7:19 PM Page 81

Select a tab page, click on its ImageIndex property, click the drop-down arrow to the right, and pick the
number of the image in the ImageList that you want to use for this tab. Figure 2-12 shows the result.

Some properties even contain a collection of objects, each of which contains a collection of objects. For
example, the ListView control has an Items property that is a collection. Each item in that collection is
an object that has a SubItems property, which is itself a collection. When you display the ListView con-
trol as a list with details, an object in the Items collection represents a row in the view and the SubItems
property represents the secondary values in a row.

To set these values at design time, select the control and click the ellipsis to the right of the control’s
Items property in the Properties window. Create an item in the editor, and click the ellipsis to the right
of the item’s SubItems property. Figure 2-13 shows these editors in action. The one in the back is the
Items editor; the one in front is the SubItems editor.

Other complicated properties provide similarly complex editors. While they may implement involved
relationships among various controls and components, they are usually easy enough to figure out with a
little experimentation.

Figure 2-12: A TabControl displays the images in an ImageList component on its tabs.

82

Chapter 2

04_571982 ch02.qxd 9/1/05 7:19 PM Page 82

Figure 2-13: The objects in the ListView control’s Items collection each have a SubItems property,
which is also a collection.

Properties at Run Time
Visual Basic lets you set most control properties at design time, but often you will need to view and
modify property values at run time. For example, you might need to change a label’s text to tell the user
that something has changed, disable a button because it is not applicable at a particular moment, or read
the value selected by the user from a list.

As far as your code is concerned, a property is just like any other public variable defined by an object.
You get or set a property by using the name of the control, followed by a dot, followed by the name of
the property. For example, the following code examines the text in the TextBox named txtPath. If the
text doesn’t end with a / character, the code adds one. This code both reads and sets the Text property.

If Not txtPath.Text.EndsWith(“/”) Then txtPath.Text &= “/”

If a property contains a reference to an object, you can use the object’s properties and methods in your
code. The following code displays a message box indicating whether the txtPath control’s font is bold.
It examines the TextBox’s Font property. That property returns a reference to a Font object that has a
Bold property.

83

Controls in General

04_571982 ch02.qxd 9/1/05 7:19 PM Page 83

If txtPath.Font.Bold Then
MessageBox.Show(“Bold”)

Else
MessageBox.Show(“Not Bold”)

End If

Note that a Font object’s properties are read-only, so the code cannot set the value of txtPath.Font
.Bold. To change the TextBox control’s font, the code would need to create a new font as shown in the
following code. This code passes the Font object’s constructor a copy of the TextBox control’s current
font to use as a template, and a value indicating that the new font should be bold.

txtPath.Font = New Font(txtPath.Font, FontStyle.Bold)

If a property represents a collection or array, you can loop through or iterate over the property just as if it
were declared as a normal collection or array. The following code lists the items the user has selected in
the ListBox control named lstChoices. (If the ListBox control’s SelectionMode property is set to
MuliExtended, the user can select any or all of the items.)

For Each selected_item As Object In lstChoices.SelectedItems()
Debug.WriteLine(selected_item.ToString)

Next selected_item

A few properties are read-only at run time, so your code can examine them but not change their values.
For example, a Panel control’s Controls property returns a collection holding references to the controls
inside the Panel. This property is read-only at run time so you cannot set it equal to a new collection.
Note that the collection provides methods for adding and removing controls so you don’t really need to
replace the whole collection, you can change the controls that it contains instead.

Note also that at design time, this collection doesn’t appear in the Properties window. Instead of explic-
itly working with the collection, you add and remove controls interactively by dropping them in and out
of the Panel control.

A control’s Bottom property is also read-only and not shown in the Properties window. It represents the
distance between the top of the control’s container and the control’s bottom edge. This value is really
just the control’s Top property plus its Height property (control.Bottom = control.Top + control.
Height), so you can modify it using those properties instead of setting the Bottom property directly.

In theory, a property can also be write-only at run time. Such a property is really more like a method
than a property, however, so most controls use a method instead. In practice, read-only properties are
uncommon and write-only properties are extremely rare.

Useful Control Properties
Appendix A, “Useful Control Properties, Methods, and Events,” summarizes the Control class’s most
important properties.

All controls (including the Form control) inherit directly or indirectly from the Control class. That
means they inherit the Control class’s properties, methods, and events, unless they take action to over-
ride the Control class’s behavior.

84

Chapter 2

04_571982 ch02.qxd 9/1/05 7:19 PM Page 84

While these properties are available to all controls that inherit from the Control class, many are consid-
ered “advanced,” so they are not shown by the IntelliSense pop-up’s Common tab. For example, a pro-
gram is intended to set a control’s position by using its Location property not its Left and Top
properties, so Location is in the Common tab while Left and Top are only in the Advanced tab.

Figure 2-14 shows the Common tab on the IntelliSense pop-up for a Label control. It shows the Location
property but not the Left property. If you click on the All tab, you can see Left and the other advanced
properties. If you type the control’s name and enough of the string Left to differentiate it from the
Location property (in this case lblDirectory.Le), the pop-up automatically switches to the All tab.

Many of the properties described in the previous list are straightforward, but a few deserve special
attention. The following sections describe some of the more confusing properties in greater detail.

Anchor and Dock
The Anchor and Dock properties allow a control to automatically resize itself when its container is
resized. The Anchor property determines which of the controls edges should remain a fixed distance
from the corresponding edges of the container.

Figure 2-14: The Location property is on the IntelliSense Common tab but the Left property is not.

85

Controls in General

04_571982 ch02.qxd 9/1/05 7:19 PM Page 85

For example, normally a control’s Anchor property is set to Top, Left. That means the control’s top and
left positions remain fixed when the container resizes. If the control’s upper-left corner is at the point
(8, 16) initially, it remains at the position (8, 16) when you resize the container. This is the normal control
behavior, and it makes the control appear fixed on the container.

For another example, suppose that you set a control’s Anchor property to Top, Right, and you place
the control in the container’s upper-right corner. When you resize the container, the control moves, so it
remains in the upper-right corner.

If you set two opposite Anchor values, the control resizes itself to satisfy them both. For example, sup-
pose that you make a button that starts 8 pixels from its container’s left, right, and top edges. Then sup-
pose that you set the control’s Anchor property to Top, Left, Right. When you resize the container, the
control resizes itself so that it is always 8 pixels from the container’s left, right, and top edges.

In a more common scenario, you can place Label controls on the left with Anchor set to Top, Left so
they remain fixed on the form. On the right, you can place TextBoxes and other controls with Anchor
set to Top, Left, Right, so they resize themselves to take advantage of the resizing form’s new width.

Figure 2-15 shows a New Customer dialog. The Labels, state ComboBox, and ZIP code TextBox con-
trols all have Anchor set to Top, Left so they do not move when the form resizes. The two buttons have
Anchor set to Top, Right, so they keep their positions relative to the upper-right corner of the form. The
First Name, Last Name, Street, and City TextBox controls have Anchor set to Top, Left, Right, so
they resize themselves to fill in whatever space is between the labels and the buttons. This arrangement
lets the TextBox controls use as much of the form’s available space as possible. The Anchor properties
are set at design time and do all the work automatically, so you don’t need to write any extra code to
rearrange the controls at run time.

Figure 2-15: This dialog uses Anchor
properties to make its TextBox controls
use whatever space is available on the form.

Similarly, you can make controls that stretch vertically as the form resizes. Figure 2-16 shows a form list-
ing customer orders. The upper ListView control has Anchor set to Top, Left, Right, so it keeps its ini-
tial height and fills the width of the form. The bottom ListView has Anchor set to Top, Bottom, Left,
Right. It fills the width of the form and fills the form from its initial Top position to the bottom of the
form. If the user makes the form taller, the control resizes itself to use the available space.

86

Chapter 2

04_571982 ch02.qxd 9/1/05 7:19 PM Page 86

Figure 2-16: The bottom ListView control
resizes itself to use up any extra vertical
space on the form.

If you do not provide any Anchor value for either the vertical or horizontal directions, the control
anchors its center to the container’s center. For example, suppose that you position a button in the bot-
tom middle of the form and you set Anchor to Bottom (omitting Left and Right). Because you placed
the control in the middle of the form, the control’s center coincides with the form’s center. When you
resize the form, the control moves so it remains centered horizontally.

If you place other controls on either side of the centered one, they will all move so they remain together
centered as a group as the form resizes. Figure 2-17 shows a form containing a group of controls with
Anchor set to Bottom. You may want to experiment with this property to see the effect.

Figure 2-17: Controls with Anchor set to
Bottom remain centered as a group.

At run time, you can set a control’s Anchor property to AnchorStyles.None or to a Boolean com-
bination of the values AnchorStyles.Top, AnchorStyles.Bottom, AnchorStyles.Left, and
AnchorStyles.Right. For example, the following code moves the Button1 control to the form’s
lower-right corner and sets its Anchor property to Bottom, Right, so it stays there.

87

Controls in General

04_571982 ch02.qxd 9/1/05 7:19 PM Page 87

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Button1.Location = New Point(_
Me.ClientRectangle.Width - Button1.Width, _
Me.ClientRectangle.Height - Button1.Height)

Button1.Anchor = AnchorStyles.Bottom Or AnchorStyles.Right
End Sub

Dock
The Dock property determines whether a control attaches itself to one or more of its container’s sides.
For example, if you set a control’s Dock property to Top, the control docks to the top of its container. It
fills the container from left to right and is flush with the top of the container. If the container is resized,
the control remains at the top, keeps its height, and resizes itself to fill the container’s width. This is how
a typical toolbar behaves. The effect is similar to placing the control at the top of the container so that it
fills the container’s width and then setting the Anchor property to Top, Left, Right.

You can set a control’s Dock property to Top, Bottom, Left, Right, Fill, or None. The value Fill
makes the control dock to all of its container’s remaining interior space. If it is the only control in the
container, that makes it fill the whole container.

If the container holds more than one control with Dock set to a value other than None, the controls are
arranged according to their stacking order (also called the Z-order). The control that is first in the stack-
ing order (would normally be drawn first at the back) is positioned first using its Dock value. The con-
trol that comes next in the stacking order is arranged second, and so on until all of the controls are
positioned.

Figure 2-18 shows four TextBoxes with Dock set to different values. The first in the stacking order has
Dock set to Left so it occupies the left edge of the form. The next control has Dock set to Top, so it occu-
pies the top edge of the form’s remaining area. The third control has Dock set to Right, so it occupies the
right edge of the form’s remaining area. Finally, the last control has Dock set to Fill so it fills the rest of
the form.

Figure 2-18: Controls with Dock not equal to None
are arranged according to their stacking order.

Controls docked to an edge resize to fill the container in one dimension. For example, a control with
Dock set to Top fills whatever width the container has available. A control with Dock set to Fill resizes
to fill all of the form’s available space.

88

Chapter 2

04_571982 ch02.qxd 9/1/05 7:19 PM Page 88

Other than that, the Dock property does not arrange controls very intelligently when you resize the con-
tainer. For example, suppose that you have two controls, one above the other. The first has Dock set to
Top and the second has Dock set to Fill. You can arrange the controls so that they evenly divide the
form vertically. When you make the form taller, however, the second control, with Dock set to Fill,
takes up all of the new space, and the other control remains the same size.

You cannot use the Dock property to make the controls divide the form evenly when it is resized. You
cannot use the Anchor property to evenly divide the form either. Instead, you need to use code similar
to the following. When the form resizes, this code moves and sizes the two controls TextBox1 and
TextBox2 to fill the form, evenly dividing it vertically.

Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load

ArrangeTextBoxes()
End Sub

Private Sub Form1_Resize(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Resize

ArrangeTextBoxes()
End Sub

Private Sub ArrangeTextBoxes()
Dim wid As Integer = Me.ClientRectangle.Width
Dim hgt1 As Integer = Me.ClientRectangle.Height \ 2
Dim hgt2 As Integer = Me.ClientRectangle.Height - hgt1
TextBox1.SetBounds(0, 0, wid, hgt1)
TextBox2.SetBounds(0, hgt1, wid, hgt2)

End Sub

When you want to divide a form, the SplitterContainer control can also be useful. The
SplitterContainer contains two panels that can hold other controls. The user can drag the divider
between the two panels to adjust the size allocated to each.

Position and Size Properties
Controls contain many position and size properties, and the differences among them can be confusing.
Some of the more bewildering aspects of controls are the ideas of client area, nonclient area, and
display area.

A control’s client area is the area inside the control where you can draw things or place other controls. A
control’s nonclient area is everything else. In a typical form, the borders, title bar, and menus are the non-
client area. The client area is the space inside the borders and below the menus where you can place con-
trols or draw graphics.

A control’s display area is the client area minus any internal decoration. For example, a GroupBox control
displays an internal border and a title. While you can place controls over these, you normally wouldn’t.
The display area contains the space inside the GroupBox’s borders and below the space where the
title sits.

The following table describes properties related to the control’s size and position.

89

Controls in General

04_571982 ch02.qxd 9/1/05 7:19 PM Page 89

Property Data Type Read/Write Purpose

Bounds Rectangle Read/Write The control’s size and position
within its container including non-
client areas.

ClientRectangle Rectangle Read The size and position of the client
area within the control.

ClientSize Size Read/Write The size of the client area. If you
set this value, the control adjusts its
size to make room for the nonclient
area, while giving you this client
size.

DisplayRectangle Rectangle Read The size and position of the area
within the control where you
would normally draw or place
other controls.

Location Point Read/Write The position of the control’s upper-
left corner within its container.

Size Point Read/Write The control’s size including non-
client areas.

Left, Top, Width, Integer Read/Write The control’s size and position
Height within its container including

nonclient areas.

Bottom, Right Integer Read The position of the control’s lower-
right corner within its container.

Methods
A method executes code associated with a control. The method can be a function that returns a value or
a subroutine that does not return a value. Methods can take parameters just like any other function or
subroutine.

Because methods execute code, you cannot invoke them at design time. You can only invoke them using
code at run time.

Appendix A summarizes the Control class’s most important methods. Controls that inherit from the
Control class also inherit these methods unless they have overridden the Control class’s behavior.

Events
A control or other object raises an event to let the program know about some change in circumstances.
Sometimes raising an event is also called “firing” or “throwing” the event. Specific control classes

90

Chapter 2

04_571982 ch02.qxd 9/1/05 7:19 PM Page 90

provide events that are relevant to their special purposes. For example, the Button control provides a
Click event to let the program know when the user clicks on the button.

The program responds to an event by creating an event handler that “catches” the event and takes what-
ever action is appropriate. Each event defines its own event-handler format and determines the parameters
that the event handler will receive. Often, these parameters give additional information about the event.

For example, when part of the form is covered and exposed, the form raises its Paint event. The Paint
event handler takes as a parameter an object of type PaintEventArgs. That object’s gr property is a ref-
erence to a Graphics object that the program can use to redraw the form’s contents.

Some event handlers take parameters that are used to send information about the event back to the
object that raised it. For example, the Form class’s FormClosing event handler has a parameter of type
FormClosingEventArgs. That parameter is an object with that has a property named Cancel. If the
program sets Cancel to True, the Form cancels the FormClosing event and remains open. For example,
the event handler can verify that the data entered by the user was properly formatted. If the values didn’t
make sense, the program can display an error message and keep the form open.

While many of a control’s most useful events are specific to the control type, controls do inherit some
common events from the Control class. Appendix A summarizes the Control class’s most important
events. Controls that inherit from the Control class also inherit these events unless they have overrid-
den the Control class’s behavior.

Creating Event Handlers at Design Time
There are a couple of ways that you can create an event handler at design time. If you open a form in the
Form Designer and double-click on a control, the code editor opens and displays the control’s default
event handler. For example, a TextBox control opens its TextChanged event handler, a Button control
opens its Click event handler, and the form itself opens its Load event handler.

To create some other nondefault event handler for a control, open the code window, select the control
from the left drop-down list, and then select the event handler from the right drop-down list, as shown
in Figure 2-19. To create an even handler for the form itself, select “(Form1 Events)” from the left drop-
down and then select an event from the right drop-down.

The code window creates an event handler with the correct parameters and return value. For example,
the following code shows an empty TextBox control’s Click event handler (note that the first two lines
are wrapped in this text and appear on one line in the code editor). Now you just need to fill in the code
that you want to execute when the event occurs.

Private Sub TextBox1_Click(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles TextBox1.Click

End Sub

91

Controls in General

04_571982 ch02.qxd 9/1/05 7:19 PM Page 91

Figure 2-19: To create an event handler in the code window, select a control from the left drop-down,
and then select an event from the right drop-down.

WithEvents Event Handlers
If you declare an object variable using the WithEvents keyword, you can catch its events. After you
declare the variable, you can select it in the code designer’s left drop-down, just as you can select any
other control. Then you can select one of the object’s events from the right drop-down.

When the code assigns an instance of an object to the variable, any event handlers defined for the vari-
able receive the object’s events.

Usually, you don’t need to create WithEvents variables for controls because Visual Basic does it for you.
However, using a variable declared WithEvents lets you enable and disable events quickly and easily.
For example, suppose that a program wants to track a PictureBox’s mouse events at some times, but
not at others. It could declare a PictureBox variable as shown in the following code.

Private WithEvents m_Canvas As PictureBox

92

Chapter 2

04_571982 ch02.qxd 9/1/05 7:19 PM Page 92

When the program wants to receive events, it can set this variable equal to its PictureBox control as in
this code. Now the variable’s event handlers such as m_Canvas_MouseDown, m_Canvas_MouseMove,
and m_Canvas_MouseUp are enabled.

m_Canvas = PictureBox1

When it no longer wants to receive these events, the program can set m_Canvas to Nothing as in the fol-
lowing statement. While m_Canvas is Nothing, it has no associated control to generate events for it.

m_Canvas = Nothing

Setting Event Handlers at Run Time
Not only can you create event handlers at design time, but you can also assign them at run time. First
create the event handler. You must get the routine’s parameters exactly correct for the type of event han-
dler you want to create. For example, a TextBox control’s Click event handler must take two parame-
ters with types System.Object and System.EventArgs.

To ensure that you get the details right, you can start by creating an event handler for a normal control at
design time. Select the control from the code designer’s left drop-down, and then select the event from
the right. Change the resulting event handler’s name to something appropriate (for example, you might
change Button1_Click to ToolClicked) and remove the Handles statement that ties the event han-
dler to the control. You can also delete the original control if you don’t need it for anything else.

Now you can use the AddHandler and RemoveHandler statements to add and remove the event han-
dler from a control. The following code shows how a program can switch the event handler that a button
executes when it is clicked.

When RadioButton1 is checked or unchecked, its CheckedChanged event handler adds or removes the
ButtonHandler1 event handler from the Button1 control’s Click event. Similarly, when RadioButton2
is checked or unchecked, its CheckedChanged event handler adds or removes the ButtonHandler2
event handler from the Button1 control’s Click event.

The ButtonHandler1 and ButtonHandler2 event handlers simply display a message telling you
which is executing. The form’s Load event handler selects the first radio button.

‘ Add or remove ButtonHandler1.
Private Sub RadioButton1_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles RadioButton1.CheckedChanged

If RadioButton1.Checked Then
AddHandler Button1.Click, AddressOf ButtonHandler1

Else
RemoveHandler Button1.Click, AddressOf ButtonHandler1

End If
End Sub

‘ Add or remove ButtonHandler2.
Private Sub RadioButton2_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles RadioButton2.CheckedChanged

If RadioButton2.Checked Then

93

Controls in General

04_571982 ch02.qxd 9/1/05 7:19 PM Page 93

AddHandler Button1.Click, AddressOf ButtonHandler2
Else

RemoveHandler Button1.Click, AddressOf ButtonHandler2
End If

End Sub

‘ Display a message telling which event handler this is.
Private Sub ButtonHandler1(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

MessageBox.Show(“ButtonHandler1”)
End Sub

Private Sub ButtonHandler2(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

MessageBox.Show(“ButtonHandler2”)
End Sub

‘ Start with RadioButton1 selected.
Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

RadioButton1.Checked = True
End Sub

You can also use AddHandler and RemoveHandler to enable and disable events as needed much as the
previous section showed how to enable and disable events using variables declared with the WithEvents
keyword.

AddHandler and RemoveHandler allow you to switch one or two events relatively easily. If you must
switch many event handlers for the same control at once, however, it may be easier to use a variable
declared using the WithEvents keyword.

Changing Design Time Event Handlers
An event handler you create for a particular control at design time is just like any other event handler
subroutine at run time. You can use RemoveHandler to detach it from the control’s events, and you can
use AddHandler to reattach it to an event.

Typically, an event handler that you create attached to a particular control seems different from those
you write separately from any control. It may follow different naming conventions (perhaps btnTool_
Click versus ToolClickEventHandler), and its declaration includes a Handles clause that a “hand-
coded” event-handling routine will not have.

This lack of symmetry may make switching these event handlers with those you create on your own a
bit confusing. On the other hand, using AddHandler and RemoveHandler to remove and reattach an
event handler is relatively straightforward. As long as you don’t mix and match the two kinds of event
handlers, this should cause no confusion.

Control “Array” Events
Visual Basic 6 and earlier versions allowed you to use control arrays. A control array was an array of con-
trols with the same name that shared the same event handlers. A parameter to the event handlers gave

94

Chapter 2

04_571982 ch02.qxd 9/1/05 7:19 PM Page 94

the index of the control in the array that fired the event. If the controls perform closely related tasks, the
common event handler may be able to share a lot of code for all of the controls. Visual Basic .NET does
not allow control arrays, but you can get similar effects in a couple of ways.

First, suppose that you add a control to a form and give it event handlers. Then you copy and paste the
control to make other controls on the form. All these controls share the event handlers you already cre-
ated by default. If you look at the event handlers’ code, you’ll see the Handles statements list all of the
copied controls. You can also modify an event handler’s Handles clause manually to attach it to more
than one control.

Another way to make controls share event handlers is to attach them to the controls by using the
AddHandler statement.

An event handler’s first parameter is a variable of the type System.Object that contains a reference to
the object that raised the event. The program can use this object and its properties (for example, its Name
property) to determine which control raised the event and take appropriate action.

Validation Events
Data validation is an important part of many applications. Visual Basic provides two events to make val-
idating data easier: Validating and Validated.

The Validating event fires when the code should validate a control’s data. This happens when the con-
trol has the input focus and the form tries to close, and when focus moves from the control to another
control that has CausesValidation property set to True.

The Validation event handler can verify that the data in a control has a legal value and take appropriate
action if it doesn’t. For example, consider the form shown in Figure 2-20. The first TextBox’s Validating
event handler checks that the control’s value contains exactly five digits. If the value does not contain five
digits, as is the case in the figure, the program uses an ErrorProvider control to flag the TextBox’s
value as being in error and moves the input focus back to the TextBox. The ErrorProvider displays the
little exclamation mark icon to the right of the control and makes the icon blink several times to get the
user’s attention. If the user hovers the mouse over the icon, the ErrorProvider displays the error text in
a tooltip.

Figure 2-20: The Validating event fires when the focus
moves to a control that has CausesValidation set to True.

The second TextBox control in this example has a CausesValidation property value of False. When
the user moves from the first TextBox control to the second one, the Validating event does not fire
and the TextBox control is not flagged. The third TextBox control has CausesValidation set to True
so, when the user moves into that TextBox control, the first TextBox’s Validating event fires, and the
value is flagged if it is invalid. The Validating event also fires if the user tries to close the form.

95

Controls in General

04_571982 ch02.qxd 9/1/05 7:19 PM Page 95

The following code shows the Validating event handler used by this example. Notice that the Handles
clause lists all three TextBoxes’ Validating events so this event handler catches the Validating event
for all three controls.

The event handler receives the control that raised the event in its sender parameter. It uses DirectCast
to convert that generic Object into a TextBox object and passes it to the ValidateFiveDigits subrou-
tine. It also passes the e.Cancel parameter, so the subroutine can cancel the action that caused the event
if necessary.

ValidateFiveDigits checks the TextBox’s contents and sets its cancel_event parameter to True if
the text has nonzero length and is not exactly five digits. This parameter is passed by reference so this
changes the original value of e.Cancel in the calling event handler. That will restore focus to the
TextBox control that raised the event and that contains the invalid data.

If cancel_event is True, then the value is invalid so the program uses the ErrorProvider component
named ErrorProvider1 to assign an error message to the TextBox control.

If cancel_event is False, then the value is valid so the program blanks the ErrorProvider’s mes-
sage for the TextBox control.

The event handler receives the control that raised the event in its sender parameter. It uses DirectCast
to convert that generic Object into a TextBox object and passes it to the ValidateFiveDigits subrou-
tine. It also passes the e.Cancel parameter, so the subroutine can cancel the action that caused the event
if necessary.

ValidateFiveDigits checks the TextBox’s contents and sets its cancel_event parameter to True if
the text has nonzero length and is not exactly five digits. This parameter is passed by reference, so this
changes the original value of e.Cancel in the calling event handler. That will restore focus to the
TextBox that raised the event and that contains the invalid data.

If cancel_event is True, the value is invalid, so the program uses the ErrorProvider component
named ErrorProvider1 to assign an error message to the TextBox control.

If cancel_event is False, then the value is valid so the program blanks the ErrorProvider’s mes-
sage for the TextBox.

‘ Validate the TextBox’s contents.
Private Sub TextBox1_Validating(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles TextBox1.Validating, TextBox2.Validating, TextBox3.Validating

‘ Get the TextBox.
Dim text_box As TextBox = DirectCast(sender, TextBox)

‘ Validate the control’s value.
ValidateFiveDigits(text_box, e.Cancel)

End Sub

‘ Verify that the TextBox contains five digits.
Private Sub ValidateFiveDigits(ByVal text_box As TextBox, _
ByRef cancel_event As Boolean)

If text_box.Text.Length = 0 Then

96

Chapter 2

04_571982 ch02.qxd 9/1/05 7:19 PM Page 96

‘ Allow a zero-length string.
cancel_event = False

Else
‘ Allow five digits.
cancel_event = Not (text_box.Text Like “#####”)

End If

‘ See if we’re going to cancel the event.
If cancel_event Then

‘ Invalid. Set an error.
ErrorProvider1.SetError(text_box, _

text_box.Name & “ must contain exactly five digits”)
Else

‘ Valid. Clear any error.
ErrorProvider1.SetError(text_box, “”)

End If
End Sub

The event handler receives the control that raised the event in its sender parameter. It uses DirectCast
to convert that generic Object into a TextBox object and passes it to the ValidateFiveDigits subrou-
tine. It also passes the e.Cancel parameter, so the subroutine can cancel the action that caused the event
if necessary.

ValidateFiveDigits checks the TextBox’s contents and sets its cancel_event parameter to True if
the text has nonzero length and is not exactly five digits. This parameter is passed by reference, so this
changes the original value of e.Cancel in the calling event handler. That will restore focus to the
TextBox that raised the event and that contains the invalid data.

If cancel_event is True, the value is invalid, so the program uses the ErrorProvider component
named ErrorProvider1 to assign an error message to the TextBox control.

If cancel_event is False, then the value is valid so the program blanks the ErrorProvider’s mes-
sage for the TextBox control.

Separated Validation
A control’s Validated event fires after the focus successfully leaves the control, either to another control
with CausesValidation set to True or when the form closes. The control should have already validated
its contents in its Validating event, hence the event name Validated.

This event doesn’t really have anything directly to do with validation, however, and it fires whether or
not the code has a Validating event handler and even if the control’s value is invalid. The only time it
will not execute is if the validation does not complete. That happens if the Validating event handler
cancels the event causing the validation.

The previous section showed how to set or clear a control’s error in its Validating event handler. An
alternative strategy is to set errors in the Validating event handler and clear them in the Validated
event handler, as shown in the following code. If the control’s value is invalid, the Validating event
handler cancels the event causing the validation so the Validated event does not occur. If the control’s
value is valid, the Validating event handler does not cancel the event and the Validated event han-
dler executes, clearing any previous error.

97

Controls in General

04_571982 ch02.qxd 9/1/05 7:19 PM Page 97

‘ Validate the TextBox’s contents.
Private Sub TextBox1_Validating(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles TextBox1.Validating, TextBox2.Validating, TextBox3.Validating

‘ Validate the control’s value.
ValidateFiveDigits(DirectCast(sender, TextBox), e.Cancel)

End Sub

‘ Verify that the TextBox contains five digits.
Private Sub ValidateFiveDigits(ByVal text_box As TextBox, _
ByRef cancel_event As Boolean)

‘ Cancel if nonzero length and not five digits.
cancel_event = (text_box.Text.Length <> 0) And _

Not (text_box.Text Like “#####”)

‘ See if we’re going to cancel the event.
If cancel_event Then

‘ Invalid. Set an error.
ErrorProvider1.SetError(text_box, _

text_box.Name & “ must contain exactly five digits”)
End If

End Sub

‘ Validation succeeded. Clear any error.
Private Sub TextBox1_Validated(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles TextBox1.Validated, TextBox2.Validated, TextBox3.Validated

‘ Valid. Clear any error.
ErrorProvider1.SetError(DirectCast(sender, TextBox), “”)

End Sub

Deferred Validation
By keeping focus in the control that contains the error, the previous approaches force the user to fix
problems as soon as possible. In some applications, it may be better to let the user continue filling out
other fields and fix the problems later. For example, a user who is touch-typing data into a lot several
fields may not look up to see the error until much later, after failing to enter many values in the invalid
field and wasting a lot of time.

The following code shows one way to let the user continue entering values in other fields. The
Validating event handler calls the ValidateFiveDigits subroutine much as before, but this time
ValidateFiveDigits does not take the cancel_event parameter. If the TextBox’s value has an error,
the routine uses the ErrorProvider to assigns an error message to it and exits.

When the user tries to close the form, the FormClosing event handler executes. This routine assumes that
some field contains invalid data, so it sets e.Cancel to True. It then calls function IsInvalidField for
each of the controls that it wants to validate. If IsInvalidField returns True, the event handler exits,
e.Cancel remains True, and the form refuses to close. If all of the fields pass validation, then the event
handler sets e.Cancel to False, and the form closes.

Function IsInvalidField uses the ErrorProvider’s GetError method to get a control’s assigned
error message. If the message is blank, the function returns False to indicate that the control’s data is

98

Chapter 2

04_571982 ch02.qxd 9/1/05 7:19 PM Page 98

valid. If the message is not blank, then the function displays it in a message box, sets focus to the control,
and returns True to indicate that the data is invalid.

When the user tries to close the form, the FormClosing event handler executes. This routine assumes that
some field contains invalid data, so it sets e.Cancel to True. It then calls function IsInvalidField for
each of the controls that it wants to validate. If IsInvalidField returns True, the event handler exits,
e.Cancel remains True, and the form refuses to close. If all of the fields pass validation, the event han-
dler sets e.Cancel to False, and the form closes.

Function IsInvalidField uses the ErrorProvider’s GetError method to get a control’s assigned
error message. If the message is blank, then the function returns False to indicate that the control’s data
is valid. If the message is not blank, then the function displays it in a message box, sets focus to the con-
trol, and returns True to indicate that the data is invalid.

‘ Validate the TextBox’s contents.
Private Sub TextBox1_Validating(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles TextBox1.Validating, TextBox2.Validating, TextBox3.Validating

‘ Validate the control’s value.
ValidateFiveDigits(DirectCast(sender, TextBox))

End Sub

‘ Verify that the TextBox contains five digits.
Private Sub ValidateFiveDigits(ByVal text_box As TextBox)

‘ See if the data is valid.
If (text_box.Text.Length <> 0) And _

Not (text_box.Text Like “#####”) _
Then

‘ Invalid. Set an error.
ErrorProvider1.SetError(text_box, _

text_box.Name & “ must contain exactly five digits”)
Else

‘ Valid. Clear the error.
ErrorProvider1.SetError(text_box, “”)

End If
End Sub

‘ See if any fields have error messages.
Private Sub Form1_FormClosing(ByVal sender As Object, _
ByVal e As System.Windows.Forms.FormClosingEventArgs) _
Handles Me.FormClosing

‘ Assume we will cancel the close.
e.Cancel = True

‘ Check for errors.
If IsInvalidField(TextBox1) Then Exit Sub
If IsInvalidField(TextBox3) Then Exit Sub

‘ If we got this far, the data’s okay.
e.Cancel = False

End Sub

‘ If this control has an error message assigned to it,

99

Controls in General

04_571982 ch02.qxd 9/1/05 7:19 PM Page 99

‘ display the message, set focus to the control,
‘ and return True.
Private Function IsInvalidField(ByVal ctl As Control) As Boolean

‘ See if the control has an associated error message.
If ErrorProvider1.GetError(ctl).Length = 0 Then

‘ No error message.
Return False

Else
‘ There is an error message.
‘ Display the message.
MessageBox.Show(ErrorProvider1.GetError(ctl))

‘ Set focus to the control.
ctl.Focus()
Return True

End If
End Function

When the user tries to close the form, the FormClosing event handler executes. This routine assumes
that some field contains invalid data so it sets e.Cancel to True. It then calls function IsInvalidField
for each of the controls that it wants to validate. If IsInvalidField returns True, the event handler
exits, e.Cancel remains True, and the form refuses to close. If all of the fields pass validation, the event
handler sets e.Cancel to False, and the form closes.

The function IsInvalidField uses the ErrorProvider’s GetError method to get a control’s
assigned error message. If the message is blank, the function returns False to indicate that the control’s
data is valid. If the message is not blank, then the function displays it in a message box, sets focus to the
control, and returns True to indicate that the data is invalid.

If the focus is in a TextBox when the form tries to close, its Validating event fires before the form’s
FormClosing event so the TextBox control has a chance to validate its contents before the
FormClosing event fires.

Summary
This chapter describes controls, components, and objects in general terms. It tells how to create controls
and how to use their properties, methods, and events. It spends some extra time on data-validation
events, as well as adding and removing event handlers.

Appendix A, “Useful Control Properties, Methods, and Events,” describes the most useful properties,
methods, and events provided by the Control class. All controls that inherit from this class also inherit
these properties, methods, and events, unless they take action to override the Control class’s behavior.

Appendix G, “Standard Controls and Components,” describes the standard Windows controls in detail.
This appendix can help you understand the controls and decide which is best for a particular situation.

100

Chapter 2

04_571982 ch02.qxd 9/1/05 7:19 PM Page 100

This chapter gives some useful background for working with controls in general, but there’s more to
building a Visual Basic application than just controls. You also need to understand the code behind the
controls that lets the program take values from controls, manipulate those values, and display a result in
the controls. The next several chapters cover these topics in detail. Chapter 3, “Program and Module
Structure,” starts the process by explaining the files that make up a Visual Basic project and the structure
contained within code files.

101

Controls in General

04_571982 ch02.qxd 9/1/05 7:19 PM Page 101

04_571982 ch02.qxd 9/1/05 7:19 PM Page 102

Program and Module
Structure

A Visual Basic solution contains one or more related projects. A project contains files related to
some topic. Usually, a project produces some kind compiled output (such as an executable pro-
gram, class library, control library, and so forth). The project includes all the files related to the out-
put, including source code files, resource files, documentation files, and whatever other kinds of
files you decide to add to it.

This chapter describes the basic structure of a Visual Basic project. It explains the functions of
some of the most common files and tells how you can use them to manage your applications.

This chapter also explains the basic structure of source code files. It explains regions, namespaces,
and modules. It also describes some simple typographic features provided by Visual Basic such as
comments, line continuation, and line labels. These features do not execute programming com-
mands themselves, but they are an important part of how you can structure your code.

Hidden Files
Figure 3-1 shows the Solution Explorer window for a solution that contains two projects.
The solution named MySolution contains two projects named WindowsApplication1 and
WindowsApplication2. Each project contains a My Project item that represents the project’s prop-
erties, an app.config file containing project configuration settings, and a form named Form1.

05_571982 ch03.qxd 9/1/05 7:11 PM Page 103

Figure 3-1: A solution contains one or more projects
that contain files.

In WindowsApplication2, the Show Hidden Files button has been pushed (the second button from the
left with the box around it) so that you can see all the project’s files. WindowsApplication1 has similar
files, but they are hidden by default.

These files are generated by Visual Basic for various purposes. For example, Resources.resx contains
resources used by the project and Settings.settings contains project settings.

Resources are chunks of data that are distributed with the application but that are not intended to be
modified by the program. These might include prompt strings, error message strings, icons, and sound
files. For example, resources are commonly used for customizing applications for different languages.
You build different resource files for different languages, and the program loads its prompts and error
messages from the appropriate resource file. Chapter 25,” Configuration and Resources,” has more to
say about resources.

Settings are values that control the execution of the application. These might include flags telling the pro-
gram what options to display or how to perform certain tasks. For example, you could build different pro-
files to provide settings that make the program run in a restricted demo mode or in a fully licensed mode.

The following list describes the files contained in WindowsApplication2 and shown in Figure 3-1. The
types of files generated for a project changed a bit between some of the early versions of Visual Studio
2005, so the exact files you see may be different from those shown here. This list should give you an idea
of what’s involved in building a project, however.

104

Chapter 3

05_571982 ch03.qxd 9/1/05 7:11 PM Page 104

❑ WindowsApplication2 — This folder represents the entire project. You can expand or collapse it
to show and hide the project’s details.

❑ My Project — This folder represents the project’s assembly information, application-level events,
resources, and configuration settings. Double-click the My project entry to view and edit these
values.

❑ Application.myapp — This XML file defines application properties (such as whether it’s
a single instance program and whether its shutdown mode is AfterMainFormCloses or
AfterAllFormsClose).

❑ Application.Designer.vb — This file contains code that works with the values defined in
Application.myapp.

❑ AssemblyInfo.vb — This file contains information about the application’s assembly such as
copyright information, company name, trademark information, and assembly version.

❑ Resources.resx — This resource file contains project’s resources.

❑ Resources.Designer.vb — This file contains Visual Basic code for manipulating resources
defined in Resources.resx. For example, if you define a string resource named Greeting in
Resources.resx, Visual Basic adds a read-only property to this module so you can read the
value of Greeting as shown in the following code.

MessageBox.Show(My.Resources.Greeting)

❑ Settings.settings — This file contains settings that you can define to control the application.

❑ Settings.Desginer.vb — This file contains Visual Basic code for manipulating settings
defined in Settings.settings, much as Resources.Designer.vb contains code for working
with Resources.resx. For example, the following code uses the UserLevel setting.

If My.Settings.UserMode = “Clerk” Then ...

❑ References — This folder lists references to external components such as DLLs and COM
components.

❑ bin — This folder is used to build the application before it is executed. It contains the compiled
.exe file.

❑ obj — This folder is used to build the application before it is executed.

❑ app.config — This XML file contains configuration information for the application. It
includes the information in MySettings.settings.

❑ ApplicationEvents.vb — This code file contains application-level event handlers for the
MyApplication object. For example, it contains the application’s Startup, Shutdown, and
NetworkAvailabilityChanged event handlers.

❑ Form1.vb — This is a form file. It contains the code you write for the form, its controls, their
event handlers, and so forth.

❑ Form1.Designer.vb — This file contains designer-generated Visual Basic code that builds the
form. It initializes the form when it is created, adds the controls you placed on the form, and
defines variables with the WithEvents keyword for the controls so that you can easily catch
their events.

105

Program and Module Structure

05_571982 ch03.qxd 9/1/05 7:11 PM Page 105

Some projects may have other hidden files. For example, when you add controls to a form, the designer
adds a resource file to the form to hold any resources needed by the controls.

Normally, you do not need to work directly with the hidden files. You can use other tools to modify
them indirectly instead. For example, the files Resources.Designer.vb, Settings.Designer.vb,
and Form1.Designer.vb are automatically generated when you modify their corresponding source
files Resources.resx, Settings.settings, and Form1.vb.

You don’t even need to work with all of these source files directly. For example, if you double-click the
My Project item, the property pages shown in Figure 3-2 appear. The Application tab shown in this fig-
ure lets you set high-level application settings such as the shutdown mode (stored in Application
.myapp). The View Code button scrolled off the bottom of the figure lets you edit the application-level
events stored in ApplicationEvents.vb.

The Resources tab shown in Figure 3-2 lets you view, add, and remove project references. As you can
probably guess, the Resources and Settings tabs let you edit the project’s resources and settings.

A particularly important section hidden away in these tabs is the assembly information. If you click the
Assembly Information button shown in Figure 3-2, the dialog shown in Figure 3-3 appears.

Figure 3-2: These property pages let you define project resources, settings, and general configuration.

106

Chapter 3

05_571982 ch03.qxd 9/1/05 7:11 PM Page 106

Figure 3-3: The Assembly Information dialog lets you
define basic project information such as title, copyright,
and version number.

An assembly is the fundamental unit of deployment and version control in Visual Studio .NET. An
assembly can contain an executable application, a DLL, or control library. Usually a project is contained
in a single assembly.

The Assembly Information dialog lets you define information that should be associated with the assem-
bly, including the assembly’s company name, description, copyright, trademark, name, product name,
title, and version (which includes major, minor, revision, and build values).

The My.Application.AssemblyInfo namespace provides easy access to these values at run time. The
following code shows how a program can display this information in a series of labels when it starts.

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

lblCompanyName.Text = My.Application.Info.CompanyName
lblDescription.Text = My.Application.Info.Description
lblCopyright.Text = My.Application.Info.Copyright
lblTrademark.Text = My.Application.Info.Trademark
lblDirectoryPath.Text = My.Application.Info.DirectoryPath
lblProductName.Text = My.Application.Info.ProductName
lblTitle.Text = My.Application.Info.Title
lblVersion.Text = My.Application.Info.Version.ToString

End Sub

107

Program and Module Structure

05_571982 ch03.qxd 9/1/05 7:11 PM Page 107

Code File Structure
A form, class, or code module should contain the following sections in this order (if they are present):

❑ Option statements — Option Explicit, Option Strict, or Option Compare.

❑ Imports statements — These declare namespaces that the module will use.

❑ A Main subroutine — The routine that starts execution when the program runs.

❑ Class, Module, and Namespace statements — As needed.

Some of these items may be missing. For example, Option and Imports statements are optional. Note
that an executable Windows program can start from a Main subroutine or it can start by displaying a
form, in which case it doesn’t need a Main subroutine. Classes and code modules don’t need Main
subroutines.

The following code shows a simple code module. It sets Option Explicit On (variables must be declared
before used) and Option Strict On (implicit type conversions cause an error). It imports the System.IO
namespace so the program can easily use classes defined there. It then defines the Employee class.

Option Explicit On
Option Strict On

Imports System.IO

Public Class Employee
...

End Class

Usually, you put each class or module in a separate file, but you can add more Class or Module state-
ments to a file if you like. Figure 3-4 shows a code module that contains two classes and two modules.

Class and Module statements define top-level nodes in the code hierarchy. Click the minus sign to the
left of one of these statements to collapse the code it contains. When the code is collapsed, click the plus
sign to the left of it to expand the code. In Figure 3-4, the BillingTools module and Employee class are
collapsed, hiding whatever code they contain.

The project can freely refer to any public class, or to any public variable or routine in a module. If two
modules contain a variable or routine with the same name, the program can select the version it wants by
prefixing the name with the module’s name. For example, if the AccountingTools and BillingTools
modules both have a subroutine named ConnectToDatabase, the following statement executes the ver-
sion in the BillingTools module:

BillingTools.ConnectToDatabase

108

Chapter 3

05_571982 ch03.qxd 9/1/05 7:11 PM Page 108

Figure 3-4: A single file can contain multiple Class and Module statements.

Code Regions
Class and Module statements define regions of code that you can expand or collapse to make the code
easier to understand. Similarly, you can use the Region statement to organize your code. You can place
subroutines that have a common purpose in a region so you can collapse and expand the code as needed.
The following code shows a simple region:

#Region “Drawing Routines”
...

#End Region

Note that the IDE’s search-and-replace features normally work only on expanded regions. If you col-
lapse a region and make a global search-and-replace in the current document or the current selection, the
collapsed code remains unchanged. If you make a global replace throughout the whole project, the
replacement occurs within collapsed regions as well.

By itself, the End Region statement does not tell you which region it is ending. You can make your code
easier to understand, particularly if you have many regions in the same module, by adding a comment
after the End Region statement giving the name of the region, as shown in the following code:

109

Program and Module Structure

05_571982 ch03.qxd 9/1/05 7:11 PM Page 109

#Region “Drawing Routines”
...

#End Region ‘ Drawing Routines

Sometimes it may be easier to move related pieces of code into separate files. The Partial keyword
allows you to place parts of a class in different files. For example, you could move a form’s code for
loading and saving data in a separate file and use the Partial keyword to indicate that the code was
part of the form. Chapter 15, “Classes and Structures,” describes the Partial keyword in detail.

However, you cannot use the Partial keyword with modules so a module’s code must all go in one
file. In that case, you can use regions to similarly separate a group of related routines and make the code
easier to read.

Conditional Compilation
Conditional compilation statements allow you to include or exclude code from the program’s compila-
tion. The basic conditional compilation statement is similar to a multiline If Then Else statement. The
following code shows a typical statement. If the value condition1 is True, the code in code_block_1
is included in the compiled program. If that value is False but the value condition2 is True, the code
in code_block_2 becomes part of the compiled program. If neither condition is True, the code in
code_block_3 is included in the program.

#If condition1 Then
code_block_1...

#ElseIf condition2 Then
code_block_2...

#Else
code_block_3...

#End If

It is important to understand that the code not included by the conditional compilation statements is
completely omitted from the executable program. At compile time, Visual Studio decides whether a
block of code should be included or not. That means any code that is omitted does not take up space in
the executable program. It also means that you cannot set the execution statement to omitted lines in the
debugger because those lines are not present.

In contrast, a normal If Then Else statement includes all the code in every code block in the executable,
and then decides which code to execute at run time.

Because the conditional compilation statement evaluates its conditions at compile time, those conditions
must be expressions that can be evaluated at compile time. For example, they can be expressions con-
taining values that you have defined using compiler directives (described shortly). They cannot include
values generated at run time (such as the value of variables).

In fact, a conditional compilation statement evaluates its conditions at design time, so it can give feed-
back while you are writing the code. For example, if Option Explicit is set to On, then Visual Basic
flags the following assignment statement as in error. Because the first condition is True, the variable X is
declared as a string. Option Explicit On disallows implicit conversion from an integer to a string, so
the IDE flags the statement as an error.

110

Chapter 3

05_571982 ch03.qxd 9/1/05 7:11 PM Page 110

#If True Then
Dim X As String

#Else
Dim X As Integer

#End If

X = 10

That much makes sense, but it’s also important to realize that the code not included in the compilation is
not evaluated by the IDE. If the first condition in the previous code were False, the code would work
properly because variable X would be declared as an integer. The IDE doesn’t evaluate the other code, so
it doesn’t notice that there is an error if the condition is False. You probably won’t notice the error until
you try to actually use the other code.

You can set conditional compilation constants in two main ways: in code and in the project’s compilation
settings.

Setting Constants in Code
To set conditional compilation constants explicitly in your program, use a #Const statement, as shown
in the following code:

#Const UserType = “Clerk”

#If UserType = “Clerk” Then
‘ Do stuff appropriate for clerks...
...

#ElseIf UserType = “Supervisor” Then
‘ Do stuff appropriate for supervisors...
...

#Else
‘ Do stuff appropriate for others...
...

#End If

Note that these constants are defined only after the point at which they appear in the code. If you use a
constant before it is defined, its value is False (unfortunately Option Explicit doesn’t apply to these
constants). That means the following code displays the value Slow followed by the value Fast:

#If UseFastAlgorithm Then
MessageBox.Show(“Fast”)

#Else
MessageBox.Show(“Slow”)

#End If

#Const UseFastAlgorithm = True

#If UseFastAlgorithm Then
MessageBox.Show(“Fast”)

#Else
MessageBox.Show(“Slow”)

#End If

111

Program and Module Structure

05_571982 ch03.qxd 9/1/05 7:11 PM Page 111

To avoid possible confusion, many programmers define these constants at the beginning of the file.

Also note that your code can redefine a constant using a new #Const statement later. That means these
are not really constants in the sense that their values are unchangeable.

Setting Constants with the Project’s Compilation Settings
To set constants with the project’s compilation settings, open Solution Explorer and double-click on My
Project. Click on the Compile tab to see the form shown in Figure 3-5.

Click the Advanced Compile Options button to open the Advanced Compiler Settings dialog shown in
Figure 3-6. Enter the names and values of the constants in the Custom Constants text box. Enter each
value in the form ConstantName=Value. Separate multiple constants with commas.

Constants you specify on the Advanced Compiler Settings dialog are available everywhere in the proj-
ect. However, your code can redefine the constant using a #Const directive. The constant has the new
value until the end of the file or until you redefine it again.

Figure 3-5: Click the Compile tab’s Advanced Compile Options button to set compilation constants.

112

Chapter 3

05_571982 ch03.qxd 9/1/05 7:11 PM Page 112

Figure 3-6: Use the Advanced Compiler Settings dialog
to define compilation constants.

Predefined Constants
Visual Basic automatically defines several conditional compilation constants that you can use to deter-
mine the code that your application compiles. The following table describes these constants.

Constant Meaning

CONFIG A string that gives the name of the current build. Typically, this will be
“Debug” or “Release”.

DEBUG A Boolean that indicates whether this is a debug build. By default, this
value is True when you build a project’s Debug configuration.

TARGET A string that tells the kind of application the project builds. This can be
winexe (Windows form application), exe (console application), library
(class library), or module (code module).

TRACE A Boolean that indicates whether the Trace object should generate
output in the Output window.

VBC_VER A number giving Visual Basic’s major and minor version numbers. The
value for Visual Basic 2005 is 8.0.

The following sections describe the DEBUG, TRACE, and CONFIG constants and their normal uses in
more detail.

113

Program and Module Structure

05_571982 ch03.qxd 9/1/05 7:11 PM Page 113

DEBUG
Normally when you make a debug build, Visual Basic sets the DEBUG constant to True. When you com-
pile a release build, Visual Basic sets DEBUG to False. The Configuration Manager lets you select the
Debug build, the Release build, or other builds that you defined yourself.

Initially, the Configuration Manager should be available, but if you find that it is not, you can activate it.
Open the Tools menu and select Options command. Select the Projects and Solutions node’s General
entry, and check the “Show advanced build configurations” box.

After you have activated the Configuration Manager, you can open it by clicking on the project in the
Solution Explorer and then selecting the Build menu’s Configuration Manager command. Figure 3-7
shows the Configuration Manager. Select Debug or Release from the dropdown list, and click Close.

Figure 3-7: Use the Configuration Manager to select a Debug or Release build.

When the DEBUG constant is True, the Debug object’s methods send output to the Output window.
When the DEBUG constant is not True, the Debug object’s methods do not generate any code, so the
object doesn’t produce any output. This makes the Debug object useful for displaying diagnostic mes-
sages during development and then hiding the messages in release builds sent to customers.

The following sections describe some of the Debug object’s most useful properties and methods.

Assert
The Debug.Assert method evaluates a Boolean expression and, if the expression is False, displays an
error message. This method can optionally take as parameters an error message and a detailed message
to display. The following code shows how a program might use Debug.Assert to verify that the vari-
able NumEmployees is greater than zero:

114

Chapter 3

05_571982 ch03.qxd 9/1/05 7:11 PM Page 114

Debug.Assert(NumEmployees > 0, _
“NumEmployees must be greater than zero”, _
“The program cannot generate timesheets if no employees are defined.”)

Figure 3-8 shows the dialog displayed by this statement if NumEmployees is zero.

If you click the dialog’s Abort button, the program immediately halts. If you click Retry, the program
breaks into the debugger, so you can examine the code. If you click Ignore, the program continues as if
the Assert statement’s condition was True.

A good use for the Assert method is to verify that a routine’s parameters or other variable values are
reasonable before starting calculations. For example, suppose that the AssignJob subroutine assigns a
repair person to a job. The routine could begin with a series of Assert statements that verify that the
person exists, the job exists, the person has the skills necessary to perform the job, and so forth. It is usu-
ally easier to fix code if you catch these sorts of errors before starting a long calculation or database mod-
ification that may later fail because, for example, the repair person doesn’t have the right kind of truck to
perform the job.

If the DEBUG constant is not True, the Assert method does nothing. This lets you automatically remove
these rather obscure error messages from the compiled executable that you send to customers. You
wouldn’t want a user to see the dialog Figure 3-8!

Figure 3-8: Debug.Assert displays an error message if a Boolean expression is False.

115

Program and Module Structure

05_571982 ch03.qxd 9/1/05 7:11 PM Page 115

You should take some care when deciding what tests should be placed in Assert statements so that they
are removed from the compiled executable. For example, you might use Assert to verify that a string
entered by the user contains a valid value. When you run the compile executable, however, this test is
removed, so the program does not protect itself from bad data. When you use Assert to verify a condi-
tion, you must be certain that the program can run safely if the Assert statement is removed and the
condition fails.

Fail
The Debug.Fail method displays an error message just as Debug.Assert does when its Boolean condi-
tion parameter is False.

IndentSize, Indent, Unindent, and IndentLevel
These properties and methods determine the amount of indentation used when the Debug object writes
into the Output window. You can use them, for example, to indent the output in subroutines to show the
program’s structure more clearly.

The IndentSize property indicates the number of spaces that should be used for each level of indenta-
tion. The IndentLevel property determines the current indentation level. For example, if IndentSize
is 4 and IndentLevel is 2, output is indented by eight spaces.

The Indent and Unindent methods increase and decrease the indentation level by one.

Write, WriteLine, WriteIf, and WriteLineIf
These routines send output to the Output window. The Write method prints text and stops without
starting a new line. WriteLine prints text and follows it with a new line.

The WriteIf and WriteLineIf methods take a Boolean parameter and act the same as Write and
WriteLine if the parameter’s value is True.

TRACE
The Trace object is very similar to the Debug object and provides the same set of properties and meth-
ods. The difference is that it generates output when the TRACE constant is defined rather than when the
DEBUG constant is defined.

Normally, the TRACE constant is defined for both debug and release builds so Trace.Assert and other
Trace object methods work in both builds. By default, DEBUG is defined only for debug builds, so you
get Debug messages for debug builds. You can add “listener” objects to the Trace object (or the Debug
object) to perform different actions on any Trace output. For example, a listener could write the Trace
output into a log file.

CONFIG
The Config constant’s value is the name of the type of build. Normally, this is either Debug or Release,
but you can also create your own build configurations. You can use these for interim builds, point releases,
alpha and beta releases, or any other release category you can think of.

116

Chapter 3

05_571982 ch03.qxd 9/1/05 7:11 PM Page 116

To select the debug or release build, click on the project in the Solution Explorer and then select the Build
menu’s Configuration Manager command to display the dialog shown in Figure 3-7. Select <New...>
from the dropdown list to display the New Solution Configuration dialog shown in Figure 3-9. Enter a
name for the new configuration, select the existing configuration from which the new one should ini-
tially copy its settings, and click OK.

Figure 3-9: You can use the Configuration Manager
to create your own configurations.

The following code shows how to use the CONFIG compiler constant to determine which build is being
made and take different actions accordingly:

#If CONFIG = “Debug” Then
‘ Do stuff for a Debug build...

#ElseIf CONFIG = “Release” Then
‘ Do stuff for a Release build...

#ElseIf CONFIG = “InterimBuild” Then
‘ Do stuff for a custom InterimBuild...

#Else
MsgBox(“Unknown build type”)

#End If

Note that a compilation constant’s value is case-sensitive; for example, you should compare CONFIG to
“Debug” not “debug” or “DEBUG.”

Debugging Level Constants
Sometimes it is helpful to be able to easily adjust the level of diagnostic output a program generates. You
could define the constant DEBUG_LEVEL and then send data to the Output window, depending on its
value. For example, you might place level 1 Debug statements in major subroutines, level 2 statements in
secondary routines, and level 3 statements throughout important routines to provide step-by-step infor-
mation. Then you can define the DEBUG_LEVEL constant to quickly give you the amount of information
you want.

The following code shows a small example. The IsPhoneNumberValid function determines whether its
parameter looks like a valid 7- or 10-digit U.S. phone number. If DEBUG_LEVEL is at least 1, the function
displays messages when it starts and when it exits. It also indents the output when it starts and unin-
dents the output before it exits. If DEBUG_LEVEL is at least 2, the function also displays statements telling
when it is about to check for 7- and 10-digit phone numbers.

117

Program and Module Structure

05_571982 ch03.qxd 9/1/05 7:11 PM Page 117

#Const DEBUG_LEVEL = 2

Private Function IsPhoneNumberValid(ByVal phone_number As String) As Boolean
#If DEBUG_LEVEL >= 1 Then

Debug.WriteLine(“Entering IsPhoneNumberValid(“ & phone_number & “)”)
Debug.Indent()

#End If

‘ Check for a 7-digit phone number.
#If DEBUG_LEVEL >= 2 Then

Debug.WriteLine(“Checking for 7-digit phone number”)
#End If

Dim is_valid As Boolean = _
phone_number Like “###-####”

If Not is_valid Then
#If DEBUG_LEVEL >= 2 Then

Debug.WriteLine(“Checking for 10-digit phone number”)
#End If

is_valid = phone_number Like “###-###-####”
End If

#If DEBUG_LEVEL >= 1 Then
Debug.Unindent()
Debug.WriteLine(“Leaving IsPhoneNumberValid, returning “ & is_valid)

#End If
Return is_valid

End Function

The following text shows the results in the Output window when DEBUG_LEVEL is set to 2.

Entering IsPhoneNumberValid(123-4567)
Checking for 7-digit phone number

Leaving IsPhoneNumberValid, returning True

From this output, you can tell that the function examined the string “123-4567”, did not need to check
for a 10-digit phone number, and returned True.

For more information on debugging Visual Basic applications, see Chapter 8, “Error Handling.”

Namespaces
Visual Studio uses namespaces to categorize code. A namespace can contain other namespaces, which can
contain others, forming a hierarchy of namespaces.

You can define your own namespaces to help categorize your code. By placing different routines in sepa-
rate namespaces, you can allow pieces of code to include only the namespaces they are actually using.
That makes it easier to ignore the routines that the program isn’t using. It also allows more than one
namespace to define items that have the same names.

For example, you could define an Accounting namespace that contains the AccountsReceivable
and AccountsPayable namespaces. Each of those might contain a subroutine named

118

Chapter 3

05_571982 ch03.qxd 9/1/05 7:11 PM Page 118

ListOutstandingInvoices. The program could select one version or the other by calling either
Accounting.AccountsReceivable.ListOutstandingInvoices or
Accounting.AccountsPayable.ListOutstandingInvoices.

You can only use the Namespace statement at the file level or inside another namespace, not within a
class or module. Within a namespace, you can define nested namespaces, classes, or modules. The fol-
lowing example defines the AccountingModules namespace. That namespace contains the two classes
PayableItem and ReceivableItem, the module AccountingRoutines, and the nested namespace
OrderEntryModules. The AccountingRoutines module defines the PayInvoice subroutine. All the
classes, modules, and namespaces may define other items.

Namespace AccountingModules
Public Class PayableItem

...
End Class

Public Class ReceivableItem
...

End Class

Module AccountingRoutines
Public Sub PayInvoice(ByVal invoice_number As Long)

...
End Sub
...

End Module

Namespace OrderEntryModules
Public Class OrderEntryClerk

...
End Class
...

End Namespace
End Namespace

Code using a module’s namespace does not need to explicitly identify the module. If a module defines a
variable or routine that has a unique name, you do not need to specify the module’s name to use that
item. In this example, there is only one subroutine named PayInvoice, so the code can invoke it as
AccountingModules.PayInvoice(). If the AccountingModules namespace contained another mod-
ule that defined a PayInvoice subroutine, the code would need to indicate which version to use as in
AccountingModules.AccountingRoutines.PayInvoice().

While modules are transparent within their namespaces, nested namespaces are not. Because the nested
OrderEntryModules namespace defines the OrderEntryClerk class, the code must specify the full
namespace path to the class, as in the following code:

Dim oe_clerk As New AccountingModules.OrderEntryModules.OrderEntryClerk

Note that a Visual Basic project defines its own namespace that contains everything else in the project.
Normally, the namespace has the same name as the project. To view or modify this root namespace,
double-click on the Solution Explorer’s My Project entry to open the project property page shown in
Figure 3-10. Enter the new root namespace name in text box in the upper right.

119

Program and Module Structure

05_571982 ch03.qxd 9/1/05 7:11 PM Page 119

Figure 3-10: The project’s Application property page lets you view or change the project’s root
namespace.

You can use an Imports statement to simplify access to a namespace inside a file. For example, suppose
that you are working on the GeneralAccounting project that has root namespace GeneralAccounting.
The first statement in the following code allows the program to use items defined in the
AccountingModules namespace without prefixing them with “AccountingModules.” The second
statement lets the program use items defined in the AccountingModules nested namespace
OrderEntryModules. The last two lines of code declare variables using classes defined in those
namespaces.

Imports GeneralAccounting.AccountingModules
Imports GeneralAccounting.AccountingModules.OrderEntryModules
...
Private m_OverdueItem As PayableItem ‘ In the AccountingModules namespace.
Private m_ThisClerk As OrderEntryClerk ‘ In the namespace

‘ AccountingModules.OrderEntryModules.

Typographic Code Elements
A few typographic code elements can make a program’s structure a bit easier to understand. They
do not execute programming commands themselves, but they are an important part of how you can

120

Chapter 3

05_571982 ch03.qxd 9/1/05 7:11 PM Page 120

structure your code. These elements include comments, line continuation and joining characters, and
line labels.

Comments
Comments can help other developers (or you at a later date) understand the program’s purpose, struc-
ture, and method. You start a comment by typing a single quotation mark (‘) that is not inside a quoted
string. All of the characters starting at the quote and continuing until the end of the line are part of the
comment and are ignored by Visual Basic.

If a line with a comment ends with a line continuation character (described shortly), Visual Basic ignores
that character. That means the line is not continued onto the next line, so the comment ends with the cur-
rent line. In other words, you cannot use line continuation characters to make a multiline comment.

In the following code, the first declaration is followed by a comment. The comment ends with a line con-
tinuation character so you might expect the second declaration to be part of the comment. That is not the
case. Because this can be misleading, you should not end comments with a line continuation character.
The second statement declares and initializes a string using a value that contains a single quote. Because
the quote is inside a quoted string, it becomes part of the string and does not start a comment. The next
single quotation mark outside of the string begins a new comment.

Dim num_customers As Integer ‘ The number of customers in the application. _
Dim product_name As String = “Miracle Code Fixer” ‘ The name of this program.

If you want to continue a comment on the following line, you must use another comment character, as in
the following example:

‘ Return True if the address is valid. This function checks the address’s
‘ format to see that it makes sense. It also looks up the ZIP code and
‘ verifies that the city is valid for that ZIP code. It does not verify
‘ that the street and street number exist.
Private Function IsAddressValid(ByVal address_text As String) As Boolean
...

To quickly comment or uncomment a large block of code, select it using the mouse and then open the
Edit menu’s Advanced submenu. Select the Comment Selection command to comment out the selection
or select Uncomment Selection to remove the comment characters from the front of the selection. Those
commands are also available more conveniently as buttons in the Text Editor toolbar. Use the View
menu, Toolbars submenu’s Text Editor command to show or hide this toolbar.

Another way to quickly remove a chunk of code from the program is to surround it with compiler direc-
tives, as in the following code:

#If False Then
Dim A As Integer
Dim B As Integer
Dim C As Integer

#End If

Use comments to make your code clear. Comments do not slow the executable program down, so there’s
no good reason to exclude them.

121

Program and Module Structure

05_571982 ch03.qxd 9/1/05 7:11 PM Page 121

XML Comments
A normal comment is just a piece of text that gives information to a developer trying to read your code.
XML comments let you add some context to a comment. For example, you can mark a comment as a
summary describing a subroutine.

Visual Studio automatically extracts XML comments to build an XML file describing the project. This file
displays the hierarchical shape of the project, showing comments for the project’s modules, namespaces,
classes, and other elements.

The result is not particularly easy to read, but you can use it to automatically generate more useful
documentation.

You can place a block of XML comments before code elements that are not contained in methods.
Generally, you use them to describe a module, class, variable, property, method, or event.

To begin a comment block, place the cursor on the line before the element you want to describe and type
three single quotes ('"). Visual Studio automatically inserts a template for an XML comment block. If the
element that follows takes parameters, it includes sections describing the parameters, so it is in your best
interest to completely define the parameters before you create the XML comment block.

The following code shows the XML comment block created for a simple subroutine. It includes a sum-
mary area to describe the subroutine, two param sections to describe the subroutine’s parameters, and a
remarks section to provide additional detail.

‘’’ <summary>
‘’’
‘’’ </summary>
‘’’ <param name=”jobs”></param>
‘’’ <param name=”employees”></param>
‘’’ <remarks></remarks>
Public Sub AssignJobs(ByVal jobs() As Job, ByVal employees() As Employee)

End Sub

Note that XML elements can span multiple lines, as the summary element does in this example.

You can add more XML comment sections to the block simply by typing them, following the convention
that they should begin with three single quotes. For example, the following code adds some content for
the comments in the previous code and an extra WrittenBy element that contains a date attribute:

‘’’ <summary>
‘’’ Assigns jobs to employees, maximizing the total value of jobs assigned.
‘’’ </summary>
‘’’ <param name=”jobs”>The array of Jobs to assign.</param>
‘’’ <param name=”employees”>The array of Employees to assign.</param>
‘’’ <remarks>The full assignment is not guaranteed to be unique.</remarks>
‘’’ <WrittenBy date=”7/24/04”>Rod Stephens</WrittenBy>
Public Sub AssignJobs(ByVal jobs() As Job, ByVal employees() As Employee)

End Sub

122

Chapter 3

05_571982 ch03.qxd 9/1/05 7:11 PM Page 122

These XML comments are somewhat bulky and hard to read. In the previous example, it isn’t easy to
pick out the subroutine’s most important summary information with a quick glance at the code. To make
reading XML comments easier, Visual Basic defines an outlining section for each XML comment block.
If you click the minus sign to the left of the first line in the block, the whole block collapses and shows
only the summary information. If you then click the plus sign to the left of the summary, Visual Studio
expands the comments to show them all.

The following code shows the beginning of an application that assigns jobs to employees. The project
contains two files, a form named Form1.vb and a code module named Module1.vb. The form contains
very little code. The code module defines the Job and Employee classes and the AssignJobs subrou-
tine. Each of these has an XML comment block.

Public Class Form1

Private m_Jobs() As Job
Private m_Employees() As Employee

End Class

Module Module1
Public Class Job

Public JobNumber As Integer

‘’’ <summary>
‘’’ A list of skills required to perform this job.
‘’’ </summary>
‘’’ <remarks>Represent required equipment as skills.</remarks>
Public SkillsRequired As New Collection

‘’’ <summary>
‘’’ The value of this job.
‘’’ </summary>
‘’’ <remarks>Higher numbers indicate more priority.</remarks>
Public Priority As Integer

End Class

Public Class Employee
Public FirstName As String
Public LastName As String
‘’’ <summary>
‘’’ A list of skills this employee has.
‘’’ </summary>
‘’’ <remarks>Represent special equipment as skills.</remarks>
Public Skills As New Collection

End Class

‘’’ <summary>
‘’’ Assigns jobs to employees.
‘’’ </summary>
‘’’ <param name=”jobs”>Array of Jobs to assign.</param>

123

Program and Module Structure

05_571982 ch03.qxd 9/1/05 7:11 PM Page 123

‘’’ <param name=”employees”>Array of Employees to assign jobs.</param>
‘’’ <remarks>The assignment maximizes total value of jobs assigned.</remarks>
‘’’ <WrittenBy date=”7/26/04”>Rod Stephens</WrittenBy>
Public Sub AssignJobs(ByVal jobs() As Job, ByVal employees() As Employee)

End Sub
End Module

Figure 3-11 shows the Object Browser describing the Job class’s SkillsRequired property. The area
on the lower right shows the property’s XML summary and remarks sections. This project’s name is
AssignJobsProject and its root namespace is AssignJobsRoot, so the complete path to the Job class
shown in the tree view on the left is AssignJobsProject (project), AssignJobsRoot (root namespace),
Module1 (module), Job (class).

Figure 3-11: The Object Browser displays an item’s XML summary and remarks sections.

124

Chapter 3

05_571982 ch03.qxd 9/1/05 7:11 PM Page 124

When you compile the application, Visual Studio extracts the XML comments and places them in an
XML file with the same name as the executable file in the project’s bin\Debug directory. The following
text shows the result. If you look through the document carefully, you can pick out the XML comments.

<?xml version=”1.0”?>
<doc>
<assembly>
<name>
AssignJobs
</name>
</assembly>
<members>
<member name=”F:AssignJobs.Module1.Job.SkillsRequired”>
<summary>
A list of skills required to perform this job.
</summary>

<remarks>Represent required equipment as skills.</remarks>
</member><member name=”F:AssignJobs.Module1.Job.Priority”>
<summary>
The value of this job.
</summary>

<remarks>Higher numbers indicate more priority.</remarks>
</member><member name=”F:AssignJobs.Module1.Employee.Skills”>
<summary>
A list of skills this employee has.
</summary>

<remarks>Represent special equipment as skills.</remarks>
</member><member name=”M:AssignJobs.Module1.AssignJobs(

AssignJobs.Module1.Job[],AssignJobs.Module1.Employee[])”>
<summary>
Assigns jobs to employees.
</summary>

<param name=”jobs”>Array of Jobs to assign.</param>
<param name=”employees”>Array of Employees to assign jobs.</param>
<remarks>The assignment maximizes total value of jobs assigned.</remarks>
<WrittenBy date=”7/26/04”>Rod Stephens</WrittenBy>
</member>
</members>
</doc>

Line Continuation
Line continuation characters let you break long lines across multiple shorter lines so that they are easier
to read. To continue a line, end it with a space followed by an underscore (_). Visual Basic treats the fol-
lowing line as if it were tacked on to the end of the first line:

Dim background_color As Color = _
Color.FromName(_

My.Resources.ResourceManager.GetString(_
“MainFormBackgroundColor”))

125

Program and Module Structure

05_571982 ch03.qxd 9/1/05 7:11 PM Page 125

As the previous section explains, you cannot continue comments. A comment includes any space and
underscore at the end of its line so the comment does not apply to the following line.

You can break a line just about anywhere that a space is allowed and between program elements. For
example, you can break a line after the opening parenthesis in a parameter list, as shown in the follow-
ing code:

AReallyReallyLongSubroutineNameThatTakesFiveParameters(_
parameter1, parameter2, parameter3, parameter4, parameter5)

You cannot break a line inside a quoted string. If you want to break a string, end the string and restart it
on the next line, as in the following example:

Dim txt As String = “To break a long string across multiple lines, “ & _
“end the string, add the line continuation character (space + underscore) “ & _
“and restart the string on the next line.”

Visual Basic does not enforce its usual indentation rules on continued lines, so you can indent the lines
in any way you like to make the code’s structure more clear. For example, many programmers align
parameters in long subroutine calls.

DoSomething(_
parameter1, _
parameter2, _
parameter3)

Line Joining
Not only can you break a long statement across multiple lines, but you can also join short statements on
a single line. To use two statements on a single line, separate them with a colon (:). The following line of
code contains three statements that store the red, green, and blue components of a form’s background
color in the variables r, g, and b:

r = BackColor.R : g = BackColor.G : b = BackColor.B

Line joining is most useful when you have many lines in a row that all have a very similar structure. By
scanning down the lines, you can tell if there are differences that may indicate a bug.

Use line joining with some caution. If the statements are long, or if you have a series of joined lines with
dissimilar structure, combining lots of statements on a single line can make the code harder to read. If
the code is easier to read with each statement on a separate line, write the code that way. Using more
lines doesn’t make the code run any slower.

Line Labels
You can place a label to the left of any line of code. The label can be either a name or a number, followed
by a colon. The following code defines three labels. The first is named DeclareX and marks the declara-
tion of the variable X. The second has value 10 and is located on a line containing a comment. The third
label, named Done, labels a blank line.

126

Chapter 3

05_571982 ch03.qxd 9/1/05 7:11 PM Page 126

DeclareX: Dim X As Single
10: ‘ Do something here.
Done:

You label a line if you will later want to jump to that line. For example, the GoTo, On Error GoTo, and
Resume statements can make code jump to a labeled line. These are less useful in Visual Basic .NET than
they were in Visual Basic 6 and previous versions that didn’t have structured error handling (the Try
Catch block), but they are still available.

Summary
A Visual Studio solution contains a hierarchical arrangement of items. At the top level, it contains one or
more projects. Each project contains several standard items such as My Project (that represents the proj-
ect as a whole), References (that records information about references to external objects), the bin and
obj items (that are used by Visual Studio when building the application), and app.config (which holds
configuration information). Projects also contain form, class, and other code modules.

Normally, many of these files are hidden and you do not need to edit them directly. Instead, you can
double-click Solution Explorer’s My Project entry and use the project’s Properties pages to view and
modify application values. Other hidden files store code and resources that determine a form’s appear-
ance, and you can modify them by altering the form with the Form Designer.

Within a code module, you can use modules, classes, regions, and namespaces to group related code into
blocks. You can use conditional compilation statements and conditional compilation constants to easily
add or remove code to or from the compiled application. The Debug and Trace objects let you generate
messages and alerts, depending on whether certain predefined constants are defined.

Finally, typographic elements such as comments, line continuation, and line joining let you format
the code so that it is easier to read and understand. XML comments provide additional information
that is useful to the Object Browser and that you can use to automatically generate more complete
documentation.

While all of these components are not required by Visual Basic, they can make the difference between
understanding the code quickly and completely, and not understanding it at all. Over an application’s
lifetime of development, debugging, upgrading, and maintenance, this can determine a project’s success.

This chapter describes structural elements that make up code files. Within those elements, you can place
the code that gathers, manipulates, stores, and displays data. Chapter 4, “Data Types, Variables, and
Constants,” describes the variables that a program uses to hold data values. It explains how to declare
variables, what types of data they can hold, and how Visual Basic converts from one data type to
another.

127

Program and Module Structure

05_571982 ch03.qxd 9/1/05 7:11 PM Page 127

05_571982 ch03.qxd 9/1/05 7:11 PM Page 128

Data Types, Variables,
and Constants

Variables are among the most fundamental building blocks of a program. A variable is a program
object that stores a value. The value can be a number, letter, string, date, structure containing other
values, or an object representing both data and related actions.

Once a variable contains a value, the program can manipulate it. It can perform arithmetic opera-
tions on numbers, string operations on strings (concatenation, calculating substrings, finding a tar-
get within a string), date operations (find the difference between two dates, add a time period to a
date), and so forth.

Four factors determine a variable’s exact behavior:

❑ Data type determines the kind of the data (integer, character, string, and so forth).

❑ Scope defines the code that can access the variable. For example, if you declare a variable
inside a For loop, only other code inside the For loop can use the variable. If you declare
a variable at the top of a subroutine, all the code in the subroutine can use the variable.

❑ Accessibility determines what code in other modules can access the variable. If you declare
a variable at the module level (outside of any subroutine in the module) and you use the
Private keyword, only the code in the module can use the variable. If you use the
Public keyword, code in other modules can use the variable as well.

❑ Lifetime determines how long the variable’s value is valid. A variable inside a subroutine
that is declared with a normal Dim statement is created when the subroutine begins and is
destroyed when it exits. If the subroutine runs again, it creates a new copy of the variable
and its value is reset. If the variable is declared with the Static keyword, however, the
same instance of the variable is used whenever the subroutine runs. That means the vari-
able’s value is preserved between calls to the subroutine.

06_571982 ch04.qxd 9/1/05 7:18 PM Page 129

For example, a variable declared within a subroutine has scope equal to the subroutine. Code outside of
the subroutine cannot access the variable. If a variable is declared on a module level outside any subrou-
tine, it has module scope. If it is declared with the Private keyword, it is accessible only to code within
the module. If it is declared with the Public keyword, then it is also accessible to code outside of the
module.

Visibility is a concept that combines scope, accessibility, and lifetime. It determines whether a certain
piece of code can use a variable. If the variable is accessible to the code, and the code is within the vari-
able’s scope, and the variable is within its lifetime (has been created and not yet destroyed), the variable
is visible to the code.

This chapter explains the syntax for declaring variables in Visual Basic. It explains how you can use dif-
ferent declarations to determine a variable’s data type, scope, accessibility, and lifetime. It also discusses
some of the issues you should consider when selecting a type of declaration.

Constants, parameters, and property procedures all have concepts of scope and data type that are simi-
lar to those of variables, so they are also describe here.

The chapter finishes with a brief explanation of naming conventions. Which naming rules you adopt
isn’t as important as the fact that you adopt some. This chapter tells where you can find the conventions
used by Microsoft Consulting Services. From those, you can build your own coding conventions.

Data Types
The following table summarizes Visual Basic’s elementary data types.

Type Size Values

Boolean 2 bytes True or False

Byte 1 byte 0 to 255 (unsigned byte)

SByte 1 byte -128 to 127 (signed byte)

Char 2 bytes 0 to 65,535 (unsigned character)

Short 2 bytes -32,768 to 32,767

UShort 2 bytes 0 through 65,535 (unsigned short)

Integer 4 bytes -2,147,483,648 to 2,147,483,647

UInteger 4 bytes 0 through 4,294,967,295 (unsigned integer)

Long 8 bytes -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

ULong 8 bytes 0 through 18,446,744,073,709,551,615 (unsigned long)

Decimal 16 bytes 0 to +/-79,228,162,514,264,337,593,543,950,335 with no decimal point.
0 to +/-7.9228162514264337593543950335 with 28 places

130

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 130

Type Size Values

Single 4 bytes -3.4028235E+38 to -1.401298E-45 (negative values)
1.401298E-45 to 3.4028235E+38 (positive values)

Double 8 bytes -1.79769313486231570E+308 to -4.94065645841246544E-324 (negative
values)
4.94065645841246544E-324 to 1.79769313486231570E+308 (positive
values)

String variable Depending on the platform, a string can hold approximately 0 to 2
billion Unicode characters

Date 8 bytes January 1, 0001 0:0:00 to December 31, 9999 11:59:59 pm

Object 4 bytes Points to any type of data

Structure variable Structure members have their own ranges

The System namespace also provides integer data types that specify their number of bits explicitly. For
example, Int32 represents a 32-bit integer. Using these values instead of Integer emphasizes the fact that
the variable uses 32 bits. That can sometimes make code clearer. For example, suppose that you need to
call an application programming interface (API) function that takes a 32-bit integer as a parameter. In
Visual Basic 6, a Long uses 32 bits but in Visual Basic .NET, an Integer uses 32 bits. You can make it obvi-
ous that you are using a 32-bit integer by giving the parameter the Int32 type.

The data types that explicitly give their sizes are Int16, Int32, Int64, UInt16, UInt32, and UInt64.

The Integer data type is usually the fastest of the integral types. You will generally get better performance
using Integers than you will with the Char, Byte, Short, Long, or Decimal data types. You should stick
with the Integer data type unless you need the extra range provided by Long and Decimal, or you need to
save space with the smaller Char and Byte data types. In many cases, the space savings you will get using
the Char and Byte data types isn’t worth the extra time and effort, unless you are working with a very
large array of values.

Note that you cannot safely assume that a variable’s storage requirements are exactly the same as its
size. In some cases, the program may move a variable so that it begins on a boundary that is natural for
the hardware platform. For example, if you make a structure containing several Short (2-byte) variables,
the program may insert 2 extra bytes between them so they can all start on 4-byte boundaries, because
that may be more efficient for the hardware.

Some data types also come with some additional overhead. For example, an array stores some extra
information about each of its dimensions.

Type Characters
Data type characters identify a value’s data type. The following table lists Visual Basic’s data type
characters.

131

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 131

Character Data Type

% Integer

& Long

@ Decimal

! Single

Double

$ String

You can specify a variable’s data type by adding a data type character after a variable’s name when you
declare it. When you use the variable later, you can omit the data type character if you like. For example,
the following code declares variable num_desserts as a Long and satisfaction_quotient as a
Double. It then assigns values to these variables.

Dim num_desserts&
Dim satisfaction_quotient#

num_desserts = 100
satisfaction_quotient# = 1.23

If you have Option Explicit turned off, you can include a data type character the first time you use
the variable to determine its data type. If you omit the character, Visual Basic picks a default data type
based on the value you assign to the variable.

If the value you assign is an integral value that will fit in an Integer, Visual Basic makes the variable an
Integer. If the value is too big for an Integer, Visual Basic makes the variable a Long. If the value contains
a decimal point, Visual Basic makes the variable a Double.

The following code shows the first use of three variables (Option Explicit is off). The first statement
sets the variable an_integer equal to the value 100. This value fits in an Integer, so Visual Basic makes
the variable an Integer. The second statement sets a_long equal to 10000000000. That value is too big to
fit in an Integer, so Visual Basic makes it a Long. The third statement sets a_double to 1.0. That value
contains a decimal point, so Visual Basic makes the variable a Double.

an_integer = 100
a_long = 10000000000
a_double = 1.0

If you set a variable equal to a True or False, Visual Basic makes it a Boolean.

Dates in Visual Basic are delimited with # characters. If you assign a variable to a date value, Visual
Basic gives the variable the Date data type. The following code assigns Boolean and Date variables:

a_boolean = True
a_date = #12/31/2007#

132

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 132

In addition to data type characters, Visual Basic provides a set of literal type characters that determine the
data type of literal values. These are values that you explicitly type into your code in statements such as
assignment and initialization statements. The following table lists Visual Basic’s literal type characters.

Character Data Type

S Short

US UShort

I Integer

UI UInteger

L Long

IL ULong

D Decimal

F Single (F for “floating point”)

R Double (R for “real”)

c Char (note that this is a lower case “c”)

A literal type character determines the data type of a literal value in your code and may indirectly deter-
mine the data type of a variable assigned to it. For example, suppose that the following code is the first
use of the variables i and ch (with Option Explicit turned off). Normally, Visual Basic would make i
an Integer, because the value 123 fits in an Integer. Because the literal value 123 ends with the L charac-
ter, however, the value is a Long, so the variable i is also a Long.

Similarly, Visual Basic would normally make variable ch a String because the value “X” looks like a
string. The “c” following the value tells Visual Basic to make this a Char variable instead, as shown here:

i = 123L
ch = “X”c

Visual Basic also lets you precede a literal integer value with &H to indicate that it is hexadecimal (base
16) or &O to indicate that it is octal (base 8). For example, the following three statements set the variable
flags to the same value. The first statement uses the decimal value 100, the second uses the hexadeci-
mal value &H64, and the third uses the octal value &O144.

flags = 100 ‘ Decimal 100.
flags = &H64 ‘ Hexadecimal &H64 = 6 * 16 + 4 = 96 + 4 = 100.
flags = &O144 ‘ Octal &O144 = 1 * 8 * 8 + 4 * 8 + 4 = 64 + 32 + 4 = 100.

As an aside, note that the Hex and Oct functions let you convert numeric values into hexadecimal and
octal strings, respectively. In some sense, this is the opposite of what the &H and &O codes do: make
Visual Basic interpret a string literal as hexadecimal or octal. The following example displays the value
of the variable flags in decimal, hexadecimal, and octal:

Debug.WriteLine(flags) ‘ Decimal.
Debug.WriteLine(Hex(flags)) ‘ Hexadecimal.
Debug.WriteLine(Oct(flags)) ‘ Octal.

133

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 133

Sometimes you must use literal type characters to make a value match a variable’s data type. For example,
the first assignment in the following code tries to assign the value “X” to a Char variable. This throws an
error because “X” is a String value. While it is obvious to a programmer that this code is trying to assign
the character X to the variable, Visual Basic thinks the types don’t match. The second assignment statement
works because it assigns the Char value “X”c to the variable. The next assignment fails when it tries to
assign the Double value 12.34 to a Decimal variable. The final assignment works because the value
12.34D is a Decimal literal.

Dim ch As Char
ch = “X” ‘ Error because “X” is a String.
ch = “X”c ‘ Okay because “X”c is a Char.

Dim amount As Decimal
amount = 12.34 ‘ Error because 12.34 is a Double.
amount = 12.34D ‘ Okay because 12.34D is a Decimal.

The following code shows another way to accomplish these assignments. This version uses the data type
conversion functions CChar and CDec to convert the values into the proper data types. The following
section, “Data Type Conversion,” has more to say about data type conversion functions.

ch = CChar(“X”)
amount = CDec(12.34)

Using data type characters, literal type characters, and Visual Basic’s default data type assignments can
lead to very confusing code. You cannot expect every programmer to notice that a particular variable is a
Single because it is followed by ! in its first use, but not in others. You can make your code less confus-
ing by using variable declarations that include explicit data types.

Data Type Conversion
Normally, you assign a value to a variable that has the same data type as the value. For example, you
assign a string value to a string variable, you assign an integer value to an integer variable, and so forth.
Whether you can assign a value of one type to a variable of another type depends on whether the con-
version is a narrowing or widening conversion.

Narrowing Conversions
A narrowing conversion is one where data is converted from one type to another type that cannot hold
all of the possible values allowed by the original data type. For example, the following code copies the
value from a Long variable into an Integer variable. A Long value can hold values that are too big to fit
in an Integer, so this is a narrowing conversion. The value contained in the Long variable may or may
not fit in the Integer.

Dim an_integer As Integer
Dim a_long As Long
...
an_integer = a_long

The following code shows a less obvious example. Here the code assigns the value in a String variable
to an Integer variable. If the string happens to contain a number (for example “10” or “1.23”), the

134

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 134

assignment works. If the string contains a non-numeric value (such as “Hello”), however, the assign-
ment fails with an error.

Dim an_integer As Integer
Dim a_string As String
...
an_integer = a_string

Another non-obvious narrowing conversion is from a class to a derived class. Suppose that the Employee
class inherits from the Person class. Then setting an Employee variable equal to a Person object, as shown
in the following code, is a narrowing conversion because you cannot know without additional information
whether the Person is a valid Employee. All Employees are Persons, but not all Persons are Employees.

Dim an_employee As Employee
Dim a_person As Person
...
an_employee = a_person

If you have Option Strict turned on, Visual Basic will not allow implicit narrowing conversions. If
Option Strict is off, Visual Basic will attempt an implicit narrowing conversion and throw an error
if the conversion fails (for example, if you try to copy the Integer value 900 into a Byte variable).

To make a narrowing conversion with Option Strict turned on, you must explicitly use a data type
conversion function. Visual Basic will attempt the conversion and throw an error if it fails. The CByte
function converts a numeric value into a Byte value, so you could use the following code to copy an
Integer value into a Byte variable:

Dim an_integer As Integer
Dim a_byte As Byte
...
a_byte = CByte(an_integer)

If the Integer variable contains a value less than 0 or greater than 255, the value will not fit in a Byte
variable so CByte throws an error.

The following table lists Visual Basic’s data type conversion functions.

Function Converts To

CBool Boolean

CByte Byte

CChar Char

CDate Date

CDbl Double

CDec Decimal

CInt Integer

Table continued on following page

135

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 135

Function Converts To

CLng Long

CObj Object

CSByte SByte

CShort Short

CSng Single

CStr String

CUInt UInteger

CULng ULong

CUShort UShort

The CInt and CLng functions round fractional values off to the nearest whole number. If the fractional
part of a number is exactly .5, the functions round to the nearest even whole number. For example, 0.5
rounds to 0, 0.6 rounds to 1, and 1.5 rounds to 2.

In contrast, the Fix and Int functions truncate fractional values. Fix truncates toward zero, so
Fix(-0.9) is 0 and Fix(0.9) is 0. Int truncates downward, so Int(-0.9) is -1 and Int(0.9) is 0.

Fix and Int also differ from CInt and CLng because they return the same data type they are passed.
CInt always returns an Integer no matter what type of value you pass it. If you pass a Long into Fix,
Fix returns a Long. In fact, if you pass a Double into Fix, Fix returns a Double.

The CType function takes as parameters a value and a data type, and it converts the value into that type
if possible. For example, the following code uses CType to perform a narrowing conversion from a Long
to an Integer. Because the value of a_long can fit within an integer, the conversion succeeds.

Dim an_integer As Integer
Dim a_long As Long = 100
an_integer = Ctype(a_long, Integer)

The DirectCast statement changes value types much as CType does, except that it only works when
the variable it is converting implements or inherits from the new type. For example, suppose that the
variable dessert_obj has the generic type Object and you know that it points to an object of type
Dessert. Then the following code converts the generic Object into the specific Dessert type.

Dim dessert_obj As Object = New Dessert(“Ice Cream”)
Dim my_dessert As Dessert
my_dessert = DirectCast(dessert_obj, Dessert)

DirectCast throws an error if you try to use it to change the object’s data type. For example, the follow-
ing code doesn’t work, even though converting an Integer into a Long is a narrowing conversion.

Dim an_integer As Integer = 100
Dim a_long As Long
a_long = DirectCast(an_integer, Long)

136

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 136

The TryCast statement converts data types much as DirectCast does, except that it returns Nothing if
there is an error, rather than throwing an error.

Data Type Parsing Methods
Each of the fundamental data types except for String has a Parse method that attempts to convert a
string into the variable type. For example, the following two statements both try to convert the string
value txt_entered into an Integer:

Dim txt_entered As String = “112358”
Dim num_entered As Integer
...
num_entered = CInt(txt_entered) ‘ Use CInt.
num_entered = Integer.Parse(txt_entered) ‘ Use Integer.Parse.

Some of these parsing methods can take additional parameters to control the conversion. For example, the
numeric methods can take a parameter that gives the international number style the string should have.

The class parsing methods have a more object-oriented feel than the conversion functions. They are also
a bit faster. They only parse strings, however, so if you want to convert from a Long to an Integer, you
need to use CInt rather than Integer.Parse.

Widening Conversions
In contrast to a narrowing conversion, a widening conversion is one where the new data type is always big
enough to hold the old data type’s values. For example, a Long is big enough to hold any Integer value,
so copying an Integer value into a Long variable is a widening conversion.

Visual Basic allows widening conversions. Note that some widening conversions can still result in a loss
of data. For example, a Decimal variable can store more significant digits than a Single variable can. A
Single can hold any value that a Decimal can but not with the same precision. If you assign a Decimal
value to a Single variable, you may lose some precision.

Variable Declarations
The complete syntax for a variable declaration is as follows:

[attribute_list] [accessibility] [Shared] [Shadows] [ReadOnly] _
Dim [WithEvents] name [(bounds_list)] [As [New] type] [= initialization_expression]

All declarations have only one thing in common: They contain a variable’s name. Other than the name,
different declarations may have nothing in common. Variable declarations with different forms can use
or omit any other piece of the general declaration syntax. For example, the following two declarations
don’t share a single keyword:

Dim i = 1 ‘ Declare a private Integer named i. (Option Explicit Off)
Public j As Integer ‘ Declare a public Integer named j.

137

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 137

The many variations supported by a variable declaration make the general syntax rather intimidating. In
most cases, however, declarations are straightforward. The previous two declarations are fairly easy to
understand.

The following sections describe the pieces of the general declaration in detail.

attribute_list
The optional attribute list is a comma-separated list of attributes that apply to the variable. An attribute
further refines the definition of a variable to give more information to the compiler and the run-time
system.

Attributes are rather specialized and address issues that arise when you perform very specific program-
ming tasks. For example, when you write code to serialize and deserialize data, you can use serialization
attributes to gain more control over the process.

The following code defines the OrderItem class. This class declares three public variables: ItemName,
Quantity, and Price. It uses attributes on its three variables to indicate that ItemName should be stored
as text, Price should be stored as an attribute named “Cost,” and Quantity should be stored as an
attribute with its default name, “Quantity.”

Public Class OrderItem
<XmlText()> _

Public ItemName As String
<XmlAttributeAttribute(AttributeName:=”Cost”)> _

Public Price As Decimal
<XmlAttributeAttribute()> _

Public Quantity As Integer
End Class

The following code shows the XML serialization of an OrderItem object:

<OrderItem Cost=”1.25” Quantity=”12”>Cookie</OrderItem>

Because attributes are so specialized, they are not described in more detail here. For more information,
see the sections in the online help related to the tasks you need to perform. For more information in XML
serialization attributes, for example, search for “System.Xml.Serialization Namespace,” or go to http
://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemXmlSerialization.asp.

For more information on Attributes, see the “Attributes” section of the Visual Basic Language Reference
or go to http://msdn.microsoft.com/library/en-us/vbls7/html/vblrfVBSpec4_10.asp.
For a list of attributes you can use to modify variable declarations, search the online help for
“Attribute Hierarchy,” or go to http://msdn.microsoft.com/library/en-us/cpref/html
/frlrfsystemattributeclasshierarchy.asp.

accessibility
A variable declaration’s accessibility clause can take one of the following values:

138

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 138

❑ Public — You can use the Public keyword only for variables declared at the module, class,
structure, namespace, or file level but not inside a subroutine. Public indicates that the variable
should be available to all code inside or outside of the variable’s module. This allows the most
access to the variable.

❑ Protected — You can use the Protected keyword only at the class level, not inside a module
or inside a routine within a class. Protected indicates that the variable should be accessible
only to code within the same class or a derived class. The variable is available to code in the
same or a derived class, even if the instance of the class is different from the one containing the
variable. For example, one Employee object can access a Protected variable inside another
Employee object.

❑ Friend — You can use the Friend keyword only for variables declared at the module, class,
namespace, or file level, not inside a subroutine. Friend indicates that the variable should be
available to all code inside or outside of the variable’s module within the same project. The dif-
ference between this and Public is that Public allows code outside of the project to access the
variable. This is generally only an issue for code and control libraries. For example, suppose that
you build a code library containing dozens of routines and then you write a program that uses
the library. If the library declares a variable with the Public keyword, the code in the library
and the code in the main program can use the variable. In contrast, if the library declares a vari-
able with the Friend keyword, only the code in the library can access the variable, not the code
in the main program.

❑ Protected Friend — You can use Protected Friend only at the class level, not inside a
module or inside a routine within a class. Protected Friend is the union of the Protected
and Friend keywords. A variable declared Protected Friend is accessible only to code within
the same class or a derived class and only within the same project.

❑ Private — You can use the Private keyword only for variables declared at the module, class,
or structure, not inside a subroutine. A variable declared Private is accessible only to code in
the same module, class, or structure. If the variable is in a class or structure, it is available to
other instances of the class or structure. For example, one Customer object can access a
Private variable inside another Customer object.

❑ Static — You can use the Static keyword only for variables declared within a subroutine or
a block within a subroutine (for example, a For loop or Try Catch block). You cannot use Static
with Shared or Shadows. A variable declared Static keeps its value between lifetimes. For exam-
ple, if a subroutine sets a Static variable to 27 before it exits, the variable begins with the value 27
the next time the subroutine executes. The value is stored in memory, so it is not retained if you
exit and restart the whole program. Use a database, the System Registry, or some other means of
permanent storage if you need to save values between program runs.

Shared
You can use the Shared keyword at the module, class, structure, namespace, or file level, not within a
subroutine. This keyword means that all instances of the class or structure containing the variable share
the same variable.

For example, suppose that the Order class declares the Shared variable NumOrders to represent
the total number of orders in the application. Then all instances of the Order class share the same
NumOrders variable. If one instance of an Order sets NumOrders to 10, all instances of Order see
NumOrders equals 10.

139

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 139

You can access a Shared variable either by using a specific class instance or by using the class itself. For
example, the following code uses the order1 object’s NumOrders variable to set the value of NumOrders
to 100. It then displays this value by using order1 and another Order object named order2. Next, it
uses the class itself to set the value of NumOrders and uses the class to display the result.

order1.NumOrders = 100 ‘ Use order1 to set NumOrders = 100.
MessageBox.Show(order1.NumOrders) ‘ Use order1 to display 100.
MessageBox.Show(order2.NumOrders) ‘ Use a different Order to Display 100.
Order.NumOrders = 101 ‘ Use the class to set NumOrders = 101.
MessageBox.Show(Order.NumOrders) ‘ Use the class to display 101.

You cannot use the Shared keyword with the Static keyword. This makes sense because a Shared
variable is in some fashion static to the class or structure that contains it. If one instance of the class mod-
ifies the variable, the value is available to all other instances. In fact, even if you destroy every instance
of the class or never create any instances at all, the class itself still keeps the variable’s value safe. That
provides a persistence similar to that given by the Static keyword.

Shadows
You can use the Shadows keyword only for variables declared at the module, class, structure, name-
space, or file level, not inside a subroutine. Shadows indicates that the variable hides a variable with the
same name in a base class. In a typical example, a subclass provides a variable with the same name as a
variable declared in one of its ancestor classes.

The following code defines a Person class that contains public String variables LastName and
EmployeeId. The Employee class inherits from Person and declares its own version of the EmployeeId
variable. It uses the Shadows keyword so this version covers the version defined by the Person class. Note
that Shadows works here even though the two versions of EmployeeId have different data types: Long
versus String. An Employee object gets the Long version, and a Person object gets the String version.

The Manager class inherits from the Employee class and defines its own version of the LastName vari-
able. A Manger object uses this version, while an Employee or Person object uses the version defined by
the Person class.

Having defined these three classes, the program works with them to demonstrate shadowing. First, it
creates a Manager object, and sets its LastName variable to Manager Last Name and its EmployeeId
variable to 1. The LastName value is stored in the Manager class’s version of the variable declared with
the Shadows keyword. The EmployeeId value is stored in the EmployeeId variable declared with the
Shadows keyword in the Employee class.

The program then creates an Employee variable and makes it point to the Manager object. This makes
sense because Manager inherits from Employee. A Manager is a type of Employee so an Employee
variable can point to a Manager object. The program sets the Employee object’s LastName variable to
Employee Last Name and its EmployeeId variable to 2. The LastName value is stored in the Person
class’s version of the variable. The EmployeeId value is stored in the EmployeeId variable declared
with the Shadows keyword in the Employee class. Because the Manager class does not override this dec-
laration with its own shadowing declaration of EmployeeId, this value overwrites the value stored by
the Manager object.

140

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 140

Next, the program creates a Person variable and makes it point to the same Manager object. Again this
makes sense because a Manager is a type of Person so a Person variable can point to a Manager object.
The program sets the Person object’s LastName variable to “Person Last Name” and its EmployeeId
variable to “A.” The Person class does not inherit, so the program stores the values in the versions of
the variables defined by the Person class. Because the Employee class does not override the Person
class’s declaration of LastName with its own shadowing declaration, this value overwrites the value
stored by the Employee object.

Finally, the program prints the values of the EmployeeId and LastName variables for each of the objects.

Public Class Person
Public LastName As String
Public EmployeeId As String

End Class

Public Class Employee
Inherits Person
Public Shadows EmployeeId As Long

End Class

Public Class Manager
Inherits Employee
Public Shadows LastName As String

End Class

Private Sub TestShadows()
Dim mgr As New Manager
mgr.LastName = “Manager Last Name”
mgr.EmployeeId = 1

Dim emp As Employee = CType(mgr, Employee)
emp.LastName = “Employee Last Name”
emp.EmployeeId = 2

Dim per As Person= CType(mgr, Person)
per.LastName = “Person Last Name”
per.EmployeeId = “A”

Debug.WriteLine(mgr.EmployeeId & “: “ & mgr.LastName)
Debug.WriteLine(emp.EmployeeId & “: “ & emp.LastName)
Debug.WriteLine(per.EmployeeId & “: “ & per.LastName)

End Sub

The following output shows the program’s results. Notice that the Employee object’s value for
EmployeeId (2) overwrote the value saved by the Manager object (1) and that the Person object’s
value for LastName (Person Last Name) overwrote the value saved by the Employee object (Employee
Last Name).

2: Manager Last Name
2: Person Last Name
A: Person Last Name

141

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 141

Normally, you don’t need to access shadowed versions of a variable. If you declare a version of LastName
in the Employee class that shadows a declaration in the Person class, you presumably did it for a good
reason (unlike in the previous example which does it just to show how it’s done), and you don’t need to
access the shadowed version directly.

However, if you really do need to access the shadowed version, you can use variables from ancestor
classes to do so. For example, the previous example creates Employee and Person objects pointing to a
Manager object to access that object’s shadowed variables.

Within a class, you can similarly cast the Me object to an ancestor class. For example, the following code
in the Manager class makes a Person variable pointing to the same object and sets its LastName value:

Public Sub SetPersonEmployeeId(ByVal employee_id As String)
Dim per As Person = CType(Me, Person)
per.EmployeeId = employee_id

End Sub

Code in a class can also use the MyBase keyword to access the variables defined by the parent class.
The following code in the Manager class sets the object’s LastName variable declared by the Employee
parent class:

Public Sub SetManagerLastName(ByVal last_name As String)
MyBase.LastName = last_name

End Sub

ReadOnly
You can use the ReadOnly keyword only for variables declared at the module, class, structure, name-
space, or file level, not inside a subroutine. ReadOnly indicates that the program can read, but not mod-
ify, the variable’s value.

You can initialize the variable in one of two ways. First, you can include an initialization statement in the
variable’s declaration, as shown in the following code:

Public Class EmployeeCollection
Public ReadOnly MaxEmployees As Integer = 100
...

End Class

Second, you can initialize the variable in the object’s constructors. The following code declares the
ReadOnly variable MaxEmployees. The empty constructor sets this variable to 100. A second construc-
tor takes an integer parameter and sets the MaxEmployees to its value.

Public Class EmployeeCollection
Public ReadOnly MaxEmployees As Integer

Public Sub New()
MaxEmployees = 100

End Sub

Public Sub New(ByVal max_employees As Integer)

142

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 142

MaxEmployees = max_employees
End Sub
...

End Class

After the object is initialized, the program cannot modify the ReadOnly variable. This restriction applies
to code inside the module that declared the variable, as well as code in other modules. If you want to
allow code inside the same module to modify the value but want to prevent code in other modules from
modifying the value, you should use a property procedure instead. See the section “Property
Procedures” later in this chapter for more information.

Dim
The Dim keyword officially tells Visual Basic that you want to create a variable.

You can omit the Dim keyword if you specify Public, Protected, Friend, Protected Friend, Private,
Static, or ReadOnly. In fact, if you include one of these keywords, the Visual Basic editor automatically
removes the Dim keyword if you include it.

If you do not specify otherwise, variables you declare using a Dim statement are Private. The following
two statements are equivalent:

Dim num_people As Integer
Private num_people As Integer

For certainty’s sake, many programmers explicitly specify Private to declare private variables. Using
Private means that programmers don’t need to remember that the Dim keyword gives a private vari-
able by default.

One place where the Dim keyword is common is when declaring variables inside subroutines. You can-
not use the Private keyword inside a subroutine (or Public, Protected, Friend, Protected Friend,
or ReadOnly, for that matter), so you must use either Static or Dim.

WithEvents
The WithEvents keyword tells Visual Basic that the variable is of a specific object type that may raise
events that you will want to catch. For example, the following code declares the variable Face as a
PictureBox object that may raise events you want to catch:

Private WithEvents Face As PictureBox

When you declare a variable with the WithEvents keyword, Visual Basic creates an entry for it in the
left drop-down in the module’s code window, as shown in Figure 4-1.

143

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 143

Figure 4-1: Visual Basic creates a drop-down entry for variables declared WithEvents.

If you select the object in the left drop-down list, Visual Basic fills the right drop-down with the object’s
events that you might want to catch, as shown in Figure 4-2.

If you select an event, Visual Basic creates a corresponding empty event handler. Letting Visual Basic
automatically generate the event handler in this way is easier and safer than trying to type the event
handler yourself, creating all of the required parameters by hand.

Declaring variables using the WithEvents keyword is a powerful technique. You can make the variable
point to an object to catch its events. Later, if you want to process events from some other object using
the same event handlers, you can set the variable to point to the new object. If you no longer want to
receive that any events, you can set the variable to Nothing.

Unfortunately, you cannot declare an array using the WithEvents keyword. That means you cannot use
a simple declaration to allow the same event handlers to process events from more than one object.
However, you can achieve this by using the AddHandler method to explicitly set the event handler rou-
tines for a series of objects. For more information on this technique, see the section “Catching Events” in
Chapter 15.

144

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 144

Figure 4-2: When you select an object declared WithEvents in the left drop-down, Visual Basic fills the
right drop-down with events you might want to catch.

name
A declaration’s name clause gives the name of the variable. This must be a valid Visual Basic identifier.
The rules for valid identifiers are a bit confusing, but generally an identifier should begin with a letter or
underscore, followed by any number of letters, digits, or underscores. If the identifier begins with an
underscore (which is unusual), it must contain at least one other valid character (letter, digit, or under-
score) so that Visual Basic doesn’t confuse it with a line continuation character. Here are some examples:

num_employees Valid

NumEmployees Valid

_manager Valid (but unusual)

_ Invalid (contains only a single underscore)

__ Valid (two underscores is valid but could be very confusing)

1st_employee Invalid (doesn’t begin with a letter or underscore)

145

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 145

Normal identifiers cannot be the same as a Visual Basic keyword. However, you can escape an identifier
by enclosing it in square brackets. If you escape an identifier, you can give it the same name as a Visual
Basic keyword. For example, in the following code, the ParseString subroutine takes a single param-
eter named String of type String:

Public Sub ParseString(ByVal [String] As String)
Dim values() As String = Split([String])
...

End Sub

If you begin writing a call to this subroutine in the code editor, the IntelliSense popup describes this rou-
tine as ParseString(String As String).

These rules let you come up with some strange and potentially confusing identifier names. For example,
you can make escaped variables named String, Boolean, ElseIf, and Case. Depending on your sys-
tem’s settings, underscores may be hard to read either on the screen or in printouts. That may make vari-
ables such as __ (two underscores) seem to vanish and may make it hard to tell the difference between
_Name and Name.

While these identifiers are all legal, they can be extremely confusing and may lead to long, frustrating
debugging sessions. To avoid confusion, use escaped identifiers and identifiers beginning with an
underscore sparingly.

bounds_list
A variable declaration’s bounds_list clause specifies bounds for an array. This should be a comma-separated
list of non-negative integers that give the upper bound for the array’s dimensions. All dimensions have a
lower bound of zero. You can optionally specify the lower bound, but it must always be zero.

The following code declares two arrays in two different ways. The first statement declares a one-
dimensional array of 101 Customer objects with indexes ranging from 0 to 100. The second statement
defines a two-dimensional array of Order objects. The first dimension has bounds ranging from 0 to 100
and the second dimension has bounds ranging from 0 to 10. The array’s entries are those between
orders(0, 0) and orders(100, 10) giving a total of 101 * 11 = 1111 entries. The last two statements
define similar arrays, while explicitly declaring the arrays’ lower bounds.

Private customers(100) As Customer
Private orders(100, 10) As Order
Private customers2(0 To 100) As Customer
Private orders2(0 To 100, 0 To 10) As Order

You may find that specifying the lower bound makes the code easier to read because it gives the lower
bound explicitly rather than requiring you to remember that lower bounds are always 0. It can be partic-
ularly helpful for those who have used Visual Basic 6 and earlier versions because those versions of
Visual Basic allowed arrays to have lower bounds other than 0.

Note that declarations of this sort that use an object data type do not instantiate the objects. For example,
the first declaration in the previous example defines 101 array entries that all point to Nothing. They do
not initially point to instances of the Customer class. After this declaration, the program would need to
create each object reference individually, as shown in the following code:

146

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 146

Private customers(100) As Customer
For i As Integer = 0 To 100

customers(i) = New Customer
Next i

Alternatively, the program can use an initialization statement to declare and initialize the objects in a sin-
gle step. See the section “initialization_expression” later in this chapter for more information on initializ-
ing arrays in their declarations.

If you provide parentheses but no bounds_list, Visual Basic defines the array, but doesn’t create it with
specific bounds. Later, you can use the ReDim statement to give it bounds. Note that you can also use
ReDim to change the bounds of an array that you initially give bounds. The following example declares
two arrays named a1 and a2. Initially, the program allocates 11 items for array a1 but no items for array
a2. The program then uses ReDim to allocate 21 entries for both arrays.

Dim a1(10) As Integer
Dim a2() As Integer

ReDim a1(20)
ReDim a2(0 To 20)

The ReDim statement cannot change the number of bounds in an array. If you want to declare but not
initialize a multidimensional array, include commas as if you were defining the bounds. The following
code declares a three-dimensional array and initializes its separate steps:

Dim a1(,,) As Integer

ReDim a1(10, 20, 30)

New
If you are declaring an object variable, the New keyword tells Visual Basic to create a new instance of the
object. Without this keyword, Visual Basic makes an object variable that doesn’t yet hold a reference to
any object. It initially holds Nothing.

For example, the first line in the following code declares an Employee object variable named emp1. After
that line, the variable is defined, but it doesn’t point to anything. If you examine the variable, you will
find that it has the value Nothing. The second line sets emp1 equal to a new Employee object. The last
line creates an Employee object variable named emp2 and assigns it to a new Employee object. This does
the same thing as the first and second line but in a single statement.

Dim emp1 As Employee
emp1 = New Employee

Dim emp2 As New Manager

If the object’s class has constructors that take parameters, you can include the parameters after the class
name. For example, suppose that the Employee class has two constructors: an empty constructor (one
that takes no parameters) and a constructor that takes first and last name strings as parameters. Then,
the following code creates two Employee objects using the different constructors:

147

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 147

Dim emp1 As New Employee
Dim emp2 As New Employee(“Rod”, “Stephens”)

Note that you must provide parameters that match some constructor. If the class does not have a con-
structor that takes no arguments, you cannot use the New keyword without specifying parameters. If the
Employee class didn’t have an empty constructor, the first line in the previous example would be illegal.

initialization_expression
The initialization_expression clause gives data that Visual Basic should use to initialize the variable. The
most straightforward form of initialization assigns a simple value to a variable. The following code
declares the variable num_employees and assigns it the initial value zero:

Dim num_employees As Integer = 0

More complicated data types may require more complex initialization clauses. If the declaration declares
an object variable, you can use the New keyword to initialize the variable. For example, the first line in
the following code declares an Employee variable named emp1 and sets it equal to a new Employee
object. The second statement uses the As New form of declaration to do the same thing without a sepa-
rate initialization clause. This version is slightly more compact, but you can use whichever version
seems most natural to you.

Dim emp1 As Employee = New Employee(“Rod”, “Stephens”)
Dim emp2 As New Employee(“Rod”, “Stephens”)

Initializing Arrays
Arrays have their own special initialization syntax. To declare and initialize an array in one statement,
you must omit the array’s bounds. Visual Basic uses the initialization data to discover the bounds.

Place the array’s values inside curly braces separated by commas. The following code initializes a one-
dimensional array of integers:

Dim fibonacci() As Integer = {1, 1, 2, 3, 5, 8, 13, 21, 33, 54, 87}

For a multidimensional array, put commas in the variable’s parentheses to indicate the number of
dimensions. Use curly braces to surround the array data. Nest each dimension of data inside the previ-
ous one, enclosing each dimension’s data with braces and separating entries with commas.

This probably makes the most sense if you think of a multidimensional array as an array of arrays. For
example, a three-dimensional array is an array of two-dimensional arrays. Each of the two-dimensional
arrays is an array of one-dimensional arrays. You can use line continuation characters and indentation to
make the array’s structure more obvious.

The following code declares and initializes a two-dimensional array of integers and then prints the values:

Dim int_values(,) As Integer = _
{ _

{1, 2, 3}, _
{4, 5, 6} _

148

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 148

}
For i As Integer = 0 To 1

For j As Integer = 0 To 2
Debug.Write(int_values(i, j))

Next j
Debug.WriteLine(“”)

Next i

The following shows this code’s output:

123
456

The following code declares and initializes a three-dimensional array of strings. The text for each value
gives its position in the array. For example, the value str_values(0, 1, 1) is “011.” Notice how the
code uses indentation to make the data a bit easier to understand. Items in the first dimension are
indented one level and items in the second dimension are indented two levels. The final level is basically
a one-dimensional array, which is fairly easy to understand with just commas separating its values. After
initializing the array, the code loops through its entries and prints them.

Dim str_values(,,) As String = _
{ _

{ _
{“000”, “001”, “002”}, _
{“010”, “011”, “012”} _

}, _
{ _

{“100”, “101”, “102”}, _
{“110”, “111”, “112”} _

} _
}
Debug.WriteLine(“”)
For i As Integer = 0 To 1

For j As Integer = 0 To 1
For k As Integer = 0 To 2

Debug.Write(str_values(i, j, k) & “ “)
Next k

Next j
Debug.WriteLine(“”)

Next i

The following text shows this code’s output:

000 001 002 010 011 012
100 101 102 110 111 112

Note that you must provide the correct number of items for each of the array’s dimensions. For example,
the following declaration is invalid because the array’s second row contains fewer elements than its
first row:

149

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 149

Dim int_values(,) As Integer = _
{ _

{1, 2, 3}, _
{4, 5} _

}

Initializing Object Arrays
The basic syntax for initializing an array of objects is similar to the syntax you use to initialize any other
array. You still omit the array bounds from the declaration and then include values inside curly braces.
The values you use to initialize the array, however, are different because object variables do not take sim-
ple values such as 12 and “Test” that you would use to initialize integer or string arrays.

If you create an array of objects without an initialization clause, Visual Basic creates the object variables
but does not create objects for them. Initially, all of the array’s entries are Nothing.

The following code creates an array containing 11 references to Employee objects. Initially, all of the ref-
erences are set to Nothing.

Dim employees(0 To 10) As Employee

If you want to initialize the objects, you must initialize each object in the array separately using Nothing
or the class’s constructors. The following code declares an array of Employee objects. It initializes two
entries using an Employee object constructor that takes as parameters the employee’s first and last
names, two entries with an empty constructor, and two final entries with Nothing.

Dim employees() As Employee = _
{ _

New Employee(“Alice”, “Andrews”), _
New Employee(“Bart”, “Brin”), _
New Employee, _
New Employee, _
Nothing, _
Nothing _

}

To initialize higher-dimensional arrays of objects, use the syntax described in the previous section. Use
Nothing or the New keyword and object constructors to initialize each array entry individually.

Multiple Variable Declarations
Visual Basic .NET allows you to declare more than one variable in a single declaration statement. For
example, the following statement declares two Integer variables named num_employees and num
_customers:

Private num_employees, num_customers As Integer

You can place accessibility keywords (Private, Public, and so on), Shared, Shadows, and ReadOnly
only at the beginning of the declaration and they apply to all of the variables in the declaration. In the
previous statement, both num_employees and num_customers are Private.

150

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 150

You can declare variables with different data types by including more than one As clause separated by
commas. The following statement declares two Integer variables and one String variable:

Private emps, custs As Integer, cust As String

You cannot use an initialization statement if more than one variable share the same As clause, but you
can include an initialization statement for variables that have their own As clause. In the previous exam-
ple, you cannot initialize the two Integer variables, but you can initialize the String variable as shown in
the following statement.

Private emps, custs As Integer, cust As String = “Cozmo”

To initialize all three variables, you would need to give them each their own As clauses, as shown in the
following example:

Private emps As Integer = 5, custs As Integer = 10, cust As String = “Cozmo”

You can also declare and initialize multiple objects, arrays, and arrays of objects all in the same statement.

While all of these combinations are legal, they quickly become too confusing to be of much practical use.
Even the relatively simple statement that follows can lead to later misunderstandings. Quickly glancing
at this statement, the programmer may think that all three variables are declared as Long.

Private num_employees, num_customers As Integer, num_orders As Long

You can reduce the possibility of confusion by using one As clause per declaration. Then a programmer
can easily understand how the variables are defined by looking at the beginning and ending of the dec-
laration. The beginning tells the programmer the variables’ accessibility and whether they are shared,
shadowing other variables, or read-only. The end gives the variables’ data type.

You can also keep the code simple by giving variables with initialization statements their own declara-
tions. Then a programmer reading the code won’t need to decide whether an initialization statement
applies to one or all of the variables.

There’s nothing particularly wrong with declaring a series of relatively short variables in a single state-
ment, as long as you don’t find the code confusing. The following statements declare five Integer vari-
ables and three Single variables. Breaking this into eight separate Dim statements would not make it
much clearer.

Dim i, j, k, R, C As Integer
Dim X, Y, Z As Single

Option Explicit and Option Strict
The Option Explicit and Option Strict compiler options play an important role in variable
declarations.

When Option Explicit is set to On, you must declare all variables before you use them. If Option
Explicit is Off, Visual Basic automatically creates a new variable whenever it sees a variable that it has

151

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 151

not yet encountered. For example, the following code doesn’t explicitly declare any variables. As it exe-
cutes the code, Visual Basic sees the first statement, num_managers = 0. It doesn’t recognize the variable
num_managers, so it creates it. Similarly, it creates the variable i when it sees it in the For loop.

Option Explicit Off
Option Strict Off

Public Class Form1
...
Public Sub CountManagers()

num_managers = 0
For i = 0 To m_Employees.GetUpperBound(0)

If m_Employees(i).IsManager Then num_managrs += 1
Next i

MsgBox(num_managers)
End Sub
...

End Class

Keeping Option Explicit turned off can lead to two very bad problems. First, it silently hides typo-
graphical errors. If you look closely at the previous code, you’ll see that the statement inside the For
loop increments the misspelled variable num_managrs instead of the correctly spelled variable
num_managers. Because Option Explicit is off, Visual Basic assumes that you want to use a new
variable, so it creates num_managrs. After the loop finishes, the program displays the value of num
_managers, which is zero because it was never incremented.

The second problem that occurs when Option Explicit is off is that Visual Basic doesn’t really know
what you will want to do with the variables it creates for you. It doesn’t know whether you will use a
variable as an Integer, Double, String, or PictureBox. Even after you assign a value to the variable (say,
an Integer), Visual Basic doesn’t know whether you will always use the variable as an Integer or
whether you might later want to save a String in it.

To keep its options open, Visual Basic creates undeclared variables as generic objects. Then it can fill the
variable with just about anything. Unfortunately, this can make the code much less efficient than it needs
to be. For example, programs are much better at manipulating integers than they are at manipulating
objects. If you are going to use a variable as an integer, creating it as an object makes the program run
much slower.

In more advanced terms, integers are value types, while objects are reference types. A reference type is
really a fancy pointer that represents the location of the actual object in memory. When you treat a value
type as a reference type, Visual Basic performs an operation called “boxing,” where it wraps the value in
an object so it can use references to the boxed value. If you then perform an operation involving two
boxed values, Visual Basic must unbox them, perform the operation, and then possibly box the result to
store it in another reference variable. All of this boxing and unboxing has a significant overhead.

The following code executes two For loops. In the first loop, it explicitly declares its looping variable to
be of type Integer. In the second loop, the code doesn’t declare its looping variable, so Visual Basic auto-
matically makes it an object when it is needed. In one test, the second loop took more than 60 times as
long as the first loop.

152

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 152

Const TRIALS As Integer = 10000000
Dim start_time As DateTime
Dim stop_time As DateTime
Dim elapsed_time As TimeSpan

Dim i As Integer
start_time = Now
For i = 1 To TRIALS

Next i
stop_time = Now
elapsed_time = stop_time.Subtract(start_time)
MsgBox(elapsed_time.TotalSeconds.ToString(“0.000000”))

start_time = Now
For j = 1 To TRIALS

Next j
stop_time = Now
elapsed_time = stop_time.Subtract(start_time)
MsgBox(elapsed_time.TotalSeconds.ToString(“0.000000”))

The second compiler directive that influences variable declaration is Option Strict. When Option
Strict is turned off, Visual Basic silently converts values from one data type to another, even if the
types are not very compatible. For example, Visual Basic will allow the following code to try to copy the
string s into the integer i. If the value in the string happens to be a number (as in the first case), this
works. If the string is not a number (as in the second case), this throws an error at run time.

Dim i As Integer
Dim s As String
s = “10”
i = s ‘ This works.
s = “Hello”
i = s ‘ This Fails.

If you turn Option Strict on, Visual Basic warns you of possibly illegal conversions at compile time.
You can still use conversion functions such as CInt, Int, and Integer.Parse to convert a string into an
Integer, but you must take explicit action to do so.

To avoid confusion and ensure total control of your variable declarations, you should always turn on
Option Explicit and Option Strict. (Frankly it’s strange that Visual Basic doesn’t have these options
on by default. Or it could simply remove them completely and behave as if they were on. Possibly this is
done for historical reasons or perhaps it’s so because the related language VBScript doesn’t allow vari-
able declarations.)

For more information on Option Explicit and Option Strict (including instructions for turning
these options on), see the “Project” section in Chapter 1.

153

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 153

Scope
A variable’s scope tells which other pieces of code can access it. For example, if you declare a variable
inside a subroutine, only code within that subroutine can access the variable. The four possible levels of
scope are (in increasing size of scope) block, procedure, module, and namespace.

Block Scope
A block is a series of statements enclosed in construct that ends with some sort of End, Else, Loop, or
Next statement. If you declare a variable within a block of code, the variable has block scope, and only
other code within that block can access the variable. Furthermore, only code that appears after the vari-
able’s declaration can see the variable.

Variables declared in the block’s opening statement are also part of the block. Note that a variable is visi-
ble within any subblock contained within the variable’s scope.

The following example uses a For loop with the looping variable i declared in the For statement. The
scope of variable i is block-defined by the For loop. Code inside the loop can see variable i, but code
outside of the loop cannot.

Inside the loop, the code declares variable j. This variable’s scope is also the For loop’s block.

If i equals j, the program declares variable M and uses it. This variable’s scope includes only the two
lines between the If and Else statements.

If i doesn’t equal j, the code declares variable N. This variable’s scope includes only the two lines
between the Else and End If statements.

The program then declares variable k. This variable also has block scope, but it is available only after it is
declared, so the code could not have accessed it earlier in the For loop.

For i As Integer = 1 To 5
Dim j As Integer = 3
If i = j Then

Dim M As Integer = i + j
Debug.WriteLine(“M: “ & M)

Else
Dim N As Integer = i * j
Debug.WriteLine(“N: “ & N)

End If

Dim k As Integer = 123
Debug.WriteLine(“k: “ & k)

Next i

Other code constructs that define blocks include the following:

❑ Select Case statements — Each Case has its own block.

❑ Try Catch statements — The Try section and each Exception statement defines a block. Note
also that the exception variable defined in each Exception statement is in its own block; for
example, they can all have the same name.

154

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 154

Try
Dim i As Integer = CInt(“bad value”)

Catch ex As InvalidCastException
Dim txt As String = “InvalidCastException”
MsgBox(txt)

Catch ex As Exception
Dim txt As String = “Exception”
MsgBox(txt)

End Try

❑ Single-Line If Then statements — These are strange and confusing enough that you should
avoid them, but the following code is legal:

If manager Then Dim txt As String = “M” : MsgBox(txt) Else _
Dim txt As String = “E” : MsgBox(txt)

❑ While loops — Variables declared inside the loop are local to the loop.

❑ Using statements — Resources acquired by the block and variables declared inside the block are
local to the block. The Using statement in the following code defines two Employee objects and
variable i within its block. Those variables are visible only within the block.

Using _
emp1 As New Employee(“Ann”, “Archer”), _
emp2 As New Employee(“Bob”, “Beagle”)

Dim i As Integer
...

End Using

Because block scope is the most restrictive, you should use it whenever possible to reduce the chances
for confusion. The section “Restricting Scope” later in this chapter discusses more about restricting vari-
able scope.

Procedure Scope
If you declare a variable inside a subroutine, function, or other procedure, but not within a block, the
variable is visible in any code inside the procedure that follows the declaration. The variable is not visi-
ble outside of the procedure. In a sense, the variable has block scope where the block is the procedure.

A procedure’s parameters also have procedure scope. For example, in the following code, the scope of
the order_object and order_item parameters is the AddOrderItem subroutine:

Public Sub AddOrderItem(ByVal order_object As Order, ByVal order_item As OrderItem)
order_object.OrderItems.Add(order_item)

End Sub

Module Scope
A variable with module scope is available to all code in its code module, class, or structure, even if the
code appears before the variable’s declaration. For example, the following code works even though the
DisplayLoanAmount subroutine is declared before the m_LoanAmount variable that it displays:

155

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 155

Private Class Lender
Public Sub DisplayLoanAmount()

MsgBox(m_LoanAmount)
End Sub

Private m_LoanAmount As Decimal
...

End Class

To give a variable module scope, you should declare it with the Private, Protected, or Protected
Friend keyword. If you declare the variable Private, it is visible only to code within the same module.

If you declare the variable Protected, it is accessible only to code in its class or a derived class. Remember
that you can only use the Protected keyword in a class.

A Protected Friend variable is both Protected and Friend. That means it is available only to code
that is inside the variable’s class or a derived class (Protected), and that is within the same project
(Friend).

These keywords apply to both variable and procedure declarations. For example, you can declare a sub-
routine, function, or property procedure Private, Protected, or Protected Friend.

For more information on accessibility keywords, see the section “accessibility” earlier in this chapter.

Namespace Scope
By default, a project defines a namespace that includes all the project’s variables and code. However,
you can use Namespace statements to create other namespaces if you like. This may be useful to help
categorize the code in your application.

If you declare a variable with the Public keyword, it has namespace scope and is available to all code in
its namespace, whether inside the project or in another project. It is also available to code in any name-
spaces nested inside the variable’s namespace. If you do not create any namespaces of your own, the
whole project lies in a single namespace, so you can think of Public variables as having global scope.

If you declare a variable with the Friend keyword, it has namespace scope and is available to all code in
its namespace within the same project. It is also available to code in any namespaces nested inside the
variable’s namespace within the project. If you do not create any namespaces if your own, the whole
project lies in a single namespace so you can think of Friend variables as having project scope.

For more information on the Public and Friend keywords, see the section, “accessibility,” earlier in
this chapter.

Restricting Scope
There are several reasons why you should give variables the most restrictive scope possible that still lets
them do their jobs.

Limited scope keeps the variable localized so that programmers cannot use the variable incorrectly in far
off code that is unrelated to the variable’s main purpose.

156

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 156

Having fewer variables with global scope means programmers have less to remember when they are
working on the code. They can concentrate on their current work, rather than worrying about whether
variables r and c are declared globally and whether the current code will interfere with them.

Limiting scope keeps variables closer to their declarations, so it’s easier for programmers to check the
declaration. One of the best examples of this situation is when a For loop declares its looping variable
right in the For statement. A programmer can easily see that the looping variable is an integer without
scrolling to the top of the subroutine hunting for its declaration. It is also easy to see that the variable has
block scope, so other variables with the same names can be used outside of the loop.

Limited scope means a programmer doesn’t need to worry about whether a variable’s old value will
interfere with the current code, or whether the final value after the current code will later interfere with
some other code. This is particularly true for looping variables. If a program declares variable i at the
top of a subroutine, and then uses it many times in various loops, you might need to do a little thinking
to be sure the variable’s past values won’t interfere with new loops. If you declare i separately in each
For statement, each loop has its own version of i, so there’s no way they can interfere with each other.

Finally, variables with larger scope tend to be allocated more often, so they take up memory more often.
For example, block variables and nonstatic variables declared with procedure scope are allocated when
they are needed and are destroyed when their scope ends, freeing their memory. A variable declared
Static or with module or namespace scope is not freed until your application exits. If those variables
are large arrays, they may take up a lot of memory the entire time your application is running.

Parameter Declarations
Parameter declarations for subroutines, functions, and property procedures always have nonstatic proce-
dure scope. Visual Basic creates parameter variables when a procedure begins and destroys them when
the procedure ends. The subroutine’s code can access the parameters, but code outside of the routine
cannot.

For example, the following subroutine takes an integer as a parameter. The subroutine calls this value
employee_id. Code within the subroutine can access employee_id, while code outside of the subrou-
tine cannot.

Public Sub DisplayEmployee(ByVal employee_id As Integer)
...

End Sub

While a parameter’s basic scope is straightforward (nonstatic procedure scope), parameters have some
special features that complicate the situation. While this isn’t exactly a scoping issue, it’s related closely
enough to scope that it’s worth covering here.

You can declare a parameter ByRef or ByVal (ByVal is the default if you use neither keyword). If you
declare the variable ByVal, the routine makes its own local parameter variable with procedure scope just
as you would expect.

157

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 157

If you declare a parameter with the ByRef keyword, the routine does not create a separate copy of the
parameter variable. Instead, it uses a reference to the parameter you pass in, and any changes the routine
makes to the value are reflected in the calling subroutine.

For instance, the following code includes two routines that double their parameters. Subroutine
DoubleItByVal declares its parameter with the ByVal keyword. This routine makes a new variable
named X and copies the value of its parameter into that variable. The parameter X is available within the
subroutine, the routine multiplies it by 2, and then exits. At that point, the parameter variable goes out of
scope and is destroyed.

Subroutine DoubleItByRef declares its parameter with the ByRef keyword. This routine’s variable X is
a reference to the variable passed into the routine. The subroutine doubles X and that doubles the vari-
able in the calling code.

Subroutine TestParameters calls each of these routines. It declares a variable named value, passes
it to subroutine DoubleItByVal, and displays the result after DoubleItByVal returns. Because
DoubleItByVal declares its parameter ByVal, the variable value is not changed so the result is 10.

Subroutine TestParameters then calls subroutine DoubleItByRef and displays the result after the call
returns. Subroutine DoubleItByRef declares its parameter ByRef so the variable value is changed to 20.

Sub DoubleItByVal(ByVal X As Single)
X*= 2

End Sub
Sub DoubleItByRef(ByRef X As Single)

X*= 2
End Sub
Sub TestParameters()

Dim value As Single

value = 10
DoubleItByVal(value)
Debug.WriteLine(value)

value = 10
DoubleItByRef(value)
Debug.WriteLine(value)

End Sub

Even this more complex view of how procedures handle parameters has exceptions. If you pass a literal
value or the result of an expression into a procedure, there is no variable to pass by reference, so Visual
Basic must create its own temporary variable. In that case, any changes made to a ByRef parameter are
not returned to the calling routine, because that code did not pass a variable into the procedure. The fol-
lowing code shows statements that pass a literal expression and the result of an expression into the
DoubleItByRef subroutine:

DoubleItByRef(12) ‘ Literal expression.
DoubleItByRef(X + Y) ‘ Result of an expression.

Another case where a ByRef parameter does not modify a variable in the calling code is when you omit
an optional variable. For example, the following subroutine takes an optional ByRef parameter. If you

158

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 158

call this routine and omit the parameter, Visual Basic creates the employee_id parameter from scratch
so the subroutine can use it in its calculations. Because you called the routine without passing it a vari-
able, the subroutine does not update a variable.

Sub UpdateEmployee(Optional ByRef employee_id As Integer = 0)
...

End Sub

Probably the sneakiest way a ByRef variable can fail to update a variable in the calling routine is if you
enclose the variable in parentheses. The parentheses tell Visual Basic to evaluate their contents as an
expression, so Visual Basic creates a temporary variable to hold the result of the expression. It then
passes the temporary variable into the procedure. If the procedure’s parameter is declared ByRef, it
updates the temporary variable, but not the original variable, so the calling routine doesn’t see any
change to its value.

The following code calls subroutine DoubleItByRef, passing the variable value into the routine sur-
rounded with parentheses. The DoubleItByRef subroutine doubles the temporary variable Visual Basic
creates, leaving value unchanged.

DoubleItByRef((value))

Keep these issues in mind when you work with parameters. Parameters have nonstatic procedure scope
but the ByRef keyword can sometimes carry their values outside of the routine.

For more information on routines and their parameters, see Chapter 6, “Subroutines and Functions.”

Proper ty Procedures
Property procedures are routines that can represent a variable-like value. To other pieces of the program,
property procedures look just like variables, so they deserve mention in this chapter.

The following code shows property procedures that implement a Name property. The Property Get pro-
cedure simply returns the value in the private variable m_Name. The Property Set procedure saves a
new value in the m_Name variable.

Private m_Name As String

Property Name() As String
Get

Return m_Name
End Get
Set(ByVal Value As String)

m_Name = Value
End Set

End Property

A program could use these procedures exactly as if there was a single public Name variable. For example,
if this code is in the Employee class, the following code shows how a program could set and then get the
Name value for the Employee object named emp.

159

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 159

emp.Name = “Rod Stephens”
MessageBox.Show(emp.Name)

There are several reasons why you might want to use property procedures rather than a public variable.
First, the routines give you extra control over the getting and setting of the value. For example, you
could use code to validate the value before saving it in the variable. The code could verify that a postal
code or phone number has the proper format and throw an error if the value is badly formatted.

You can set breakpoints in property procedures. Suppose that your program is crashing because a piece
of code is setting an incorrect value in a variable. If you implement the variable with property proce-
dures, you can set a breakpoint in the Property Set procedure and stop whenever the program sets the
value. This can help you find the problem relatively quickly.

Property procedures let you set and get values in formats other than those you want to actually use to
store the value. For example, the following code defines Name property procedures that save a name in
m_FirstName and m_LastName variables. If your code would often need to use the last and first names
separately, you could also provide property procedures to give access to those values separately.

Private m_LastName As String
Private m_FirstName As String

Property MyName() As String
Get

Return m_FirstName & “ “ & m_LastName
End Get
Set(ByVal Value As String)

m_FirstName = Value.Split(“ “c)(0)
m_LastName = Value.Split(“ “c)(1)

End Set
End Property

Finally, you can use property procedures to create read-only and write-only variables. The following code
shows how to make a read-only NumEmployees property procedure and a write-only NumCustomers
property procedure. (Write-only property procedures are unusual but legal.)

Public ReadOnly Property NumEmployees() As Integer
Get

...
End Get

End Property

Public WriteOnly Property NumCustomers() As Integer
Set(ByVal Value As Integer)

...
End Set

End Property

You don’t need to remember all of the syntax for property procedures. If you type the first line and press
Enter, Visual Basic fills in the rest of the empty property procedures. If you use the keyword ReadOnly
or WriteOnly, Visual Basic only includes the appropriate procedure.

160

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 160

Enumerated Data Types
An enumerated type is a discrete list of specific values. You define the enumerated type and the values
allowed. Later, if you declare a variable of that data type, it can take only those values.

For example, suppose that you are building a large application where users can have one of three access
levels: clerk, supervisor, and administrator. You could define an enumerated type named AccessLevel
that allows the values Clerk, Supervisor, and Administrator. Now, if you declare a variable to be of
type AccessLevel, Visual Basic will only allow the variable to take those values.

The following code shows a simple example. It defines the AccessLevel type and declares the variable
m_AccessLevel using the type. Later the MakeSupervisor subroutine sets m_AccessLevel to the
value AccessLevel.Supervisor. Notice that the value is prefixed with the enumerated type’s name.

Public Enum AccessLevel
Clerk
Supervisor
Administrator

End Enum

Private m_AccessLevel As AccessLevel ‘ The user’s access level.

‘ Set supervisor access level.
Public Sub MakeSupervisor()

m_AccessLevel = AccessLevel.Supervisor
End Sub

The syntax for declaring an enumerated type is as follows:

[attribute_list] [accessibility] [Shadows] Enum name [As type]
[attribute_list] value_name [= initialization_expression]
[attribute_list] value_name [= initialization_expression]
...

End Enum

Most of these terms, including attribute_list and accessibility, are similar to those used by variable declara-
tions. See the section “Variable Declarations” earlier in this chapter for more information.

The type value must be an integral type and can be Byte, Short, Integer, or Long. If you omit this value,
Visual Basic stores the enumerated type values as integers.

The value_name pieces are the names you want to allow the enumerated type to have. You can include
an initialization_expression for each value if you like. This value must be compatible with the underlying
data type (Byte, Short, Integer, or Long). If you omit a value’s initialization expression, the value is set to
one greater than the previous value. The first value is zero by default.

For example, in the previous example, Clerk = 0, Supervisor = 1, and Administrator = 2.
The following code changes the default assignments so Clerk = 10, Supervisor = 11, and
Administrator = -1:

161

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 161

Public Enum AccessLevel
Clerk = 10
Supervisor
Administrator = -1

End Enum

Usually, all that’s important about an enumerated type is that its values are unique, so you don’t need to
explicitly initialize the values.

Note that you can give enumerated values the same integer value either explicitly or implicitly. For
example, the following code defines several equivalent AccessLevel values. The first three values,
Clerk, Supervisor, and Administrator, default to 0, 1, and 2, respectively. The code explicitly sets
User to 0, so it is the same as Clerk. The values Manager and SysAdmin then default to the next two
values, 1 and 2 (the same as Supervisor and Administrator, respectively). Finally, the code explicitly
sets Superuser = SysAdmin.

Public Enum AccessLevel
Clerk
Supervisor
Administrator
User = 0
Manager
SysAdmin
Superuser = SysAdmin

End Enum

This code is somewhat confusing. The following version makes it more obvious that some values are
synonyms for others:

Public Enum AccessLevel
Clerk
Supervisor
Administrator

User = Clerk
Manager = Supervisor
SysAdmin = Administrator
Superuser = Administrator

End Enum

You can get an effect similar to enumerated types using integer variables and constants, as shown in the
following code. This code does roughly the same thing as the previous examples.

Public Const Clerk As Integer = 0
Public Const Supervisor As Integer = 1
Public Const Administrator As Integer = 2

Private m_AccessLevel As Integer ‘ The user’s access level.

‘ Set supervisor access level.
Public Sub MakeSupervisor()

m_AccessLevel = Supervisor
End Sub

162

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 162

Declaring an enumerated type has a couple of advantages over using integers and constants, however.
First, it prevents you from assigning nonsense values to the variable. In the previous code, you could set
m_AccessLevel to 10, which wouldn’t make any sense.

Using an enumerated data type allows Visual Basic to verify that the value you are assigning to the vari-
able makes sense. You can only set the variable equal to one of the values in the enumerated type or to
the value stored in another variable of the same enumerated type.

If you really need to set an enumerated variable to a calculated value for some reason, you can use the
CType function to convert an integer value into the enumerated type. For example, the following state-
ment uses the value in the variable integer_value to set the value of the variable m_AccessLevel.
Making you use CType to perform this type of conversion makes it less likely that you will set an enu-
merated value accidentally.

m_AccessLevel = CType(integer_value, AccessLevel)

Another benefit of enumerated types is that they allow Visual Basic to provide IntelliSense help. If you
type m_AccessLevel =, Visual Basic provides a list of the allowed AccessLevel values.

A final benefit of enumerated types is that they provide a ToString method that returns the textual
name of the value. For example, the following code displays the message “Clerk.”

Dim access_level As AccessLevel = AccessLevel.Clerk
MessageBox.Show(access_level.ToString())

If you have a value that can take only a fixed number of values, you should probably make it an enu-
merated type. Also, if you discover that you have defined a series of constants to represent related val-
ues, you should consider converting them into an enumerated type. Then you can gain the benefits of
Visual Basic’s improved type checking and IntelliSense.

Constants
In many respects, a constant is a lot like a read-only variable. Both variable and constant declarations
may have attributes, accessibility keywords, and initialization expressions. Both read-only variables and
constants represent a value that the code cannot change after it is assigned.

The syntax for declaring a constant is as follows:

[attribute_list] [accessibility] [Shadows] _
Const name [As type] = initialization_expression

For the general meanings of the various parts of a constant declaration, see the section “Variable
Declarations” earlier in this chapter. The following sections describe differences between read-only
variable and constant declarations.

accessibility
When you declare a variable, you can omit the Dim keyword if you use any of the keywords Public,
Protected, Friend, Protected Friend, Private, Static, or ReadOnly. You cannot omit the Const

163

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 163

keyword when you declare a constant, because it tells Visual Basic that you are declaring a constant
rather than a variable.

You cannot use the Static, ReadOnly, or Shared keywords in a constant declaration. Static implies
that the value will change over time, and the value should be retained when the enclosing routine starts
and stops. Because the code cannot change a constant’s value, that doesn’t make sense.

The ReadOnly keyword would be redundant because you already cannot change a constant’s value.

You use the Shared keyword in a variable declaration within a class to indicate that the variable’s value
is shared by all instances of the class. If one object changes the value, all objects see the changed value.
Because the program cannot change a constant’s value, the value need not be shared. All objects have the
same version of the constant at all times. You can think of a constant as always shared.

You can use the other accessibility keywords in a constant declaration: Public, Protected, Friend,
Protected Friend, and Private.

As type
If you have Option Strict turned on, you must include the constant’s data type. A constant can only be
an intrinsic type (Boolean, Byte, Short, Integer, Long, Decimal, Single, Double, Char, String, Date, or Object)
or the name of an enumerated type. You cannot declare a constant that is a class, structure, or array.

If you declare the constant with the Object data type, the initialization_expression must set the object equal
to Nothing. If you want a constant that represents some other object, or a class, structure, or array, use a
read-only variable instead.

Because the generic Object class doesn’t raise any events, and because you cannot make a constant of
some other class type, it doesn’t make sense to use the WithEvents keyword in a constant declaration.

initialization_expression
The initialization_expression assigns the constant its never-changing value. You cannot use variables in the
initialization_expression, but you can use conversion functions such as CInt. You can also use the values
of previously defined constants and enumeration values. The expression can include type characters
such as # or &H, and if the declaration doesn’t include a type statement (and Option Explicit is off),
the type of the value determines the type of the constant.

The following code demonstrates these capabilities. The first statement uses the CInt function to convert
the value 123.45 into an integer constant. The second and third statements set the values of two Long
constants to hexadecimal values. The next statement combines the values defined in the previous two
using a bitwise Or. The final statement sets a constant to a value defined by the enumerated type
AccessLevel.

Private Const MAX_VALUES As Integer = CInt(123.45)
Private Const MASK_READ As Long = &H1000&
Private Const MASK_WRITE As Long = &H2000&
Private Const MASK_READ_WRITE As Long = MASK_READ Or MASK_WRITE
Private Const MAX_ACCESS_LEVEL As AccessLevel = AccessLevel.SuperUser

164

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 164

Delegates
A delegate is an object that refers to a subroutine, function, or other method. The method can be an instance
method provided by an object, a class’s shared method, or a method defined in a code module. A delegate
variable acts as a pointer to a subroutine or function. Delegate variables are sometimes called type-safe func-
tion pointers.

The Delegate keyword defines a delegate class and specifies the parameters and return type of the
method to which the delegate will refer.

The following code uses a Delegate statement to declare the StringDisplayerType to be a
delegate to a subroutine that takes a string as a parameter. Next the code declares the variable
m_DisplayStringRoutine to be of this type. This variable can hold a reference to a subroutine that
takes a string parameter. The code then sets the variable equal to the ShowStringInOutputWindow sub-
routine. Finally, the code invokes the delegate’s subroutine, passing it a string.

‘ Define a StringDisplayerType delegate to be a pointer to a subroutine
‘ that has a string parameter.
Private Delegate Sub StringDisplayerType(ByVal str As String)
...
‘ Declare a StringDisplayerType variable.
Dim m_DisplayStringRoutine As StringDisplayerType

‘ Assign the variable to a subroutine.
m_DisplayStringRoutine = AddressOf ShowStringInOutputWindow

‘ Invoke the delegate’s subroutine.
m_DisplayStringRoutine(“Hello world”)

The delegate in the previous example holds a reference to a subroutine defined in a code module. A dele-
gate can also hold the address of a class’s shared method or an instance method. For example, suppose
the Employee class defines the shared function GetNumEmployees that returns the number of employ-
ees loaded. Suppose that it also defines the instance function ToString that returns an Employee
object’s first and last names.

The following code uses delegates for both of these functions. First, it declares and initializes an
Employee object named emp. It then defines a delegate named NumEmployeesDelegate, which is a
pointer to a function that returns an integer. The btnShared_Click event handler declares a variable of
this type, sets it to the address of the Employee class’s shared GetNumEmployees function, and calls the
function. Then the code defines a delegate named GetNameDelegate, which is a pointer to a function
that returns a string. The btnInstance_Click event handler declares a variable of this type, sets it to
the address of the emp object’s ToString function, and then calls the function.

Dim emp As New Employee(“Rod”, “Stephens”)

Private Delegate Function NumEmployeesDelegate() As Integer

Private Sub btnShared_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnShared.Click

Dim show_num As NumEmployeesDelegate
show_num = AddressOf Employee.GetNumEmployees

165

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 165

MessageBox.Show(show_num().ToString)
End Sub

Private Delegate Function GetNameDelegate() As String

Private Sub btnInstance_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnInstance.Click

Dim show_name As GetNameDelegate
show_name = AddressOf emp.ToString
MessageBox.Show(show_name())

End Sub

These examples are somewhat contrived because the code could easily invoke the subroutines and func-
tions directly without delegates, but they show how a program can save a delegate pointing to a subrou-
tine or function and then call it later. A real application might set the delegate variable’s value and only
use it much later.

A particular delegate variable could hold references to different methods, depending on the program’s
situation. For example, different subroutines might generate output on a form, on the printer, or into a
bitmap file. The program could set a delegate variable to any of these routines. Later, the program could
invoke the variable’s routine without needing to know which routine will actually execute.

Another useful technique is to pass a delegate variable into a subroutine or function. For example, sup-
pose that you are writing a subroutine that sorts an array of Customer objects. This routine could take
as a parameter a delegate variable that references the function to use when comparing the objects in the
array. By passing different functions into the routine, you could make it sort customers by company
name, contact name, customer ID, total past sales, or anything else you can imagine.

Delegates are particularly confusing to many programmers, but understanding them is worth a little
extra effort. They can add an extra dimension to your programming by essentially allowing you to
manipulate subroutines and functions as if they were data.

Naming Conventions
Many development teams adopt naming conventions to make their code more consistent and easier to
read. Different groups have developed their own conventions, and you cannot really say that one of
them is best. It doesn’t really matter which convention you adopt. What is important is that you develop
some coding style that you use consistently.

One rather simple convention is to use lowercase_letters_with_underscores for variables with
routine scope, MixedCaseLetters for variables with module and global scope, and ALL_CAPS for con-
stants of any scope. Use the prefixes m_ and g_ to differentiate between module and global scope, and an
abbreviation to give an object’s data type. For example, the following statement defines a module-scope
PictureBox variable:

Private m_picCanvas As PictureBox

166

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 166

Routine names are generally MixedCase.

Many developers carry these rules a bit further and add type prefix abbreviations to all variables, not
just objects. For example, this statement declares an integer variable:

Dim iNumEmployees As Integer

If you apply these rules strictly enough, you should never need to assign one variable to another vari-
able’s value, unless the two have the same type abbreviation. If you see a statement that mixes variable
types, you should examine the code more closely to see if there is a real data type mismatch problem.
For example, the following statement should make the developer suspicious because it’s assigning an
Integer value to a Long variable.

mlngNumEmployees = intNumAbsent + intNumPresent

Some developers extend the rules to cover all programming objects, including functions and subroutines.
For example, a global function that returns a string might be named gstrGetWebmasterName.

Generally, this scope and type information is more important the farther you are from a variable’s decla-
ration. If you declare a variable inside a subroutine, a developer can usually remember the variable’s
data type. If there is any doubt, it’s easy to scroll up and review the variable’s declaration.

In contrast, if a variable is declared globally in an obscure code module that developers rarely need to
read, a programmer may have trouble remembering the variable’s scope and data type. In that case,
using prefixes to help the developers’ memory can be important.

No matter which convention you use, the most important piece of a name is the descriptive part. The
name mblnDL tells you that the value is a module-scope Boolean, but it doesn’t tells you what the value
means (and variables with such terrible names are all too common). The name mblnDataIsLoaded is
much more descriptive. I have never seen a project that suffered because it lacked variable prefixes such
as mbln. On the other hand, I have seen developers waste huge amounts of time because the descriptive
parts of variable names were confusing.

Building an all-encompassing naming convention that defines abbreviations for every conceivable type
of data, control, object, database component, menu, constant, and routine name takes a lot of time and
more space than it’s worth in a book such as this. For an article that describes the conventions used by
Microsoft Consulting Services, go to http://support.microsoft.com/default.aspx?scid=kb
;en-us;110264. It explains everything, including data type abbreviations, making the first part of a
function name contain a verb (GetUserName rather than UserName), and commenting conventions.

Naming and coding conventions make it easier for other programmers to read your code. Look over the
Microsoft Consulting Services conventions or search the Web for others. Pick the features that you think
make the most sense and ignore the others. It’s more important that you write consistent code than that
you follow a particular set of rules.

167

Data Types, Variables, and Constants

06_571982 ch04.qxd 9/1/05 7:18 PM Page 167

Summary
Two of the most important things you control with a variable declaration are its data type and its visibil-
ity. Visibility combines scope (the piece of code that contains the variable such as a For loop, subroutine,
or module), accessibility (the code that is allowed to access the variable determined by keywords such as
Private, Public, and Friend), and lifetime (when the variable has been created and not yet destroyed).

To avoid confusion, always explicitly declare the data type and use the most limited scope possible for
the variable’s purpose. Turn Option Explicit and Option Strict on to allow the IDE to help you
spot potential scope and type errors before they become a problem.

Parameters, property procedures, and constants have similar data type and scope issues. Once you
become comfortable with variable declarations, these should give you little trouble.

One of the most important steps you can take to make your code easier to debug and maintain is to
work to make your code consistent. A good naming convention can help. Review the guidelines used by
Microsoft Consulting Service, and adopt the pieces that make the most sense to you.

Once you know how to declare variables, you are ready to learn how to combine them. Chapter 5,
“Operators,” explains the symbols such as +, -, and ^ that you can use to combine variables to produce
new results.

168

Chapter 4

06_571982 ch04.qxd 9/1/05 7:18 PM Page 168

Operators
An operator is a basic code element that performs some operation on one or more values to create a
result. The values the operator acts upon are called operands. For example, in the following statement,
the operator is + (addition), the operands are B and C, and the result is assigned to the variable A:

A = B + C

Visual Basic’s operators fall into five main categories: arithmetic, concatenation, comparison, logi-
cal, and bitwise. The following sections explain these categories and the operators they contain.
This chapter then discusses other operator issues such as precedence, assignment operators, and
operator overloading. Also included are discussions of some specialized issues that arise when
you work with strings and dates.

Arithmetic Operators
The following table lists the arithmetic operators provided by Visual Basic. Most programmers
should be very familiar with these. Four that may need a little extra explanation are \, Mod, <<,
and >>. The last two rows in the table manipulate bit values.

Operator Purpose Example Result

^ Exponentiation 2 ^ 3 (2 to the power 3) = 2 * 2 * 2 = 8.

- Negation -2 -2

* Multiplication 2 * 3 6

/ Division 3 / 2 1.5

\ Integer division 17 \ 5 3

Mod Modulus 17 Mod 5 2

+ Addition 2 + 3 5

Table continued on following page

07_571982 ch05.qxd 9/1/05 7:22 PM Page 169

Operator Purpose Example Result

- Subtraction 3 - 2 1

<< Bit left shift 10110111 << 1 01101110

>> Bit right shift 10110111 >> 1 01011011

The \ operator performs integer division. It returns the result of dividing its first operand by the second,
dropping any remainder. It’s important to understand that the result is truncated toward zero, not
rounded.

The Mod operator returns the remainder after dividing its first operand by its second. For example,
17 Mod 5 = 2 because 17 = 3 * 5 + 2.

The << operator shifts the bits of an integer value to the left, padding the empty bits on the right with
zeros. For example, the byte value with bits 10110111 shifted 1 bit to the left gives 01101110. Shifting
10110111 2 bits to the left gives 11011100.

The >> operator shifts the bits of a value to the right, padding the empty bits on the left with zeros. For
example, the byte value with bits 10110111 shifted 1 bit to the right gives 01011011. Shifting 10110111
2 bits to the right gives 00101101.

Unfortunately, Visual Basic doesn’t work easily with bit values, so you cannot use a value such as
10110111 in your code. Instead, you must write this value as the hexadecimal value &HB7 or the decimal
value 183. The last two entries in the table show the values in binary, so it is easier to understand how
the shifts work.

The Calculator application that comes with Windows lets you easily convert between binary, octal,
hexadecimal, and decimal. To start the Calculator, open the Start menu and select Programs→
Accessories→Calculator. Open the View menu and select Scientific. Now you can click the Bin, Oct,
Dec, or Hex radio buttons to select a base, enter a value, and select another base to convert the value.

Concatenation Operators
Visual Basic provides two concatenation operators: + and &. Both join two strings together. Because the
+ symbol also represents an arithmetic operator, your code will be easier to read if you use the & symbol
for concatenation. Using & can also make your code faster and lead to fewer problems because it lets
Visual Basic know that the operands are strings.

Comparison Operators
Comparison operators compare one value to another and return a Boolean value (True or False),
depending on the result. The following table lists the comparison operators provided by Visual Basic.
The first six (=, <>, <, <=, >, and >=) are relatively straightforward. Note that the Not operator is not a
comparison operator, so it is not listed here. It is described in the next section, “Logical Operators.”

170

Chapter 5

07_571982 ch05.qxd 9/1/05 7:22 PM Page 170

Operator Purpose Example Result

= Equals A = B True if A equals B

<> Not equals A <> B True if A does not equal B

< Less than A < B True if A is less than B

<= Less than or equal to A <= B True if A is less than or
equal to B

> Greater than A > B True if A is greater than B

>= Greater than or equal to A >= B True if A is greater than or
equal to B

Is Equality of two objects emp Is mgr True if emp and mgr refer to
the same object

IsNot Inequality of two objects emp IsNot mgr True if emp and mgr refer to
different objects

TypeOf...Is Object is of a certain TypeOf(obj) True if obj points to a
type Is Manager Manager object

Like Matches a text pattern A Like True if A contains three
“###-####” digits, a dash, and four

digits

The Is operator returns True if its two operands refer to the same object. For example, if you create an
Order object and make two different variables, A and B point to it, the expression A Is B is True. Note
that Is returns False if the two operands point to different Order objects that happen to have the same
property values.

The IsNot operator is simply shorthand for a more awkward Not...Is construction. For example, the
statement A IsNot Nothing is equivalent to Not (A Is Nothing).

The TypeOf operator returns True if its operand is of a certain type. This operator is particularly useful
when a subroutine takes a parameter that could be of more than one object type. It can use TypeOf to see
which type of object it has.

The Like operator returns True if its first operand matches a pattern specified by its second operand.
Where the pattern includes normal characters, the string must match those characters exactly. The pat-
tern can also include several special character sequences summarized in the following table.

Character(s) Meaning

? Matches any single character

* Matches any zero or more characters

Matches any single digit

Table continued on following page

171

Operators

07_571982 ch05.qxd 9/1/05 7:22 PM Page 171

Character(s) Meaning

[characters] Matches any of the characters between the brackets

[!characters] Matches any character not between the brackets

A-Z When inside brackets, matches any character in the range A to Z

You can combine ranges of characters and individual characters inside brackets. For example, the pat-
tern [a-zA-Z] matches any letter between “a” and “z” or between “A” and “Z.” The following table
lists some useful patterns.

Pattern Meaning

[2-9]##-#### Seven-digit phone number

[2-9]##-[2-9]##-#### Ten-digit phone number, including area code

1-[2-9]##-[2-9]##-#### Eleven-digit phone number, beginning with 1 and area code

Five-digit ZIP code

#####-#### Nine-digit ZIP + 4 code

?*@?*.?* E-mail address

These patterns are not completely foolproof. For example, the e-mail address pattern verifies that the
string contains at least one character, an “@” character, at least one other character, a dot, and at least one
more character. For example, it allows RodStephens@vb-helper.com. However, it does not verify that
the extension makes sense, so it allows RodStephens@vb-helper.commercial, and it allows more
than one @ character, as in RodStephens@vb-helper.com@bad_value.

Regular expressions provide much more powerful pattern-matching capabilities. For more information,
look up “regular expressions” in the online help.

Logical Operators
Logical operators combine two Boolean values and return True or False, depending on the result. The
following table summarizes Visual Basic’s logical operators.

Operator Purpose Example Result

Not Logical or bitwise Not A True if A is false
negation

And Logical or bitwise And A And B True if A and B are both true

Or Logical or bitwise Or A Or B True if A or B or both are true

172

Chapter 5

07_571982 ch05.qxd 9/1/05 7:22 PM Page 172

Operator Purpose Example Result

Xor Logical or bitwise A Xor B True if A or B but not both
exclusive Or is true

AndAlso Logical or bitwise And A AndAlso B True if A and B are both true
with short-circuit (see notes)
evaluation

OrElse Logical or bitwise Or A OrElse B True if A or B or both are true
with short-circuit (see the following notes)
evaluation

The operators Not, And, and Or are relatively straightforward. The Xor operator returns true if one of
its operands is true and the other one is false.

The AndAlso and OrElse operators are similar to the And and Or operators, except that they provide
short-circuit evaluation. In short-circuit evaluation, Visual Basic is allowed to stop evaluating operands if
it can deduce the final result without them. For example, consider the expression A AndAlso B. If Visual
Basic evaluates the value A and discovers that it is false, the program knows that the expression A
AndAlso B is also false no matter what value B has, so it doesn’t need to evaluate B.

Whether the program evaluates both operands doesn’t matter much if A and B are simple Boolean vari-
ables. However, assume that they are time-consuming functions, as shown in the following code. For
example, the TimeConsumingFunction function might need to look up values in a database or down-
load data from a Web site. In that case, not evaluating the second operand might save a lot of time.

If TimeConsumingFunction(“A”) AndAlso TimeConsumingFunction(“B”) Then ...

Just as AndAlso can stop evaluation if it discovers one of its operands is false, the OrElse operand can
stop evaluating if it discovers that one of its operands is true. The expression A OrElse B is true if either
A or B is true. If the program finds that A is true, it doesn’t need to evaluate B.

Because AndAlso and OrElse do the same thing as And and Or but sometimes faster, you might wonder
why you would ever use And and Or. The main reason is that the operands may have side effects. A side
effect is some action a routine performs that is not obviously part of the routine. For example, suppose
that the NumEmployees function opens an employee database and returns the number of employee
records, leaving the database open. The fact that this function leaves the database open is a side effect.

Now, suppose that the NumCustomers function similarly opens the customer database, and then con-
sider the following statement:

If (NumEmployees() > 0) AndAlso (NumCustomers() > 0) Then ...

After this code executes, you cannot be certain which databases are open. If NumEmployees returns 0,
the AndAlso operator’s first operand is false, so it doesn’t evaluate the NumCustomers function and that
function doesn’t open the customer database.

173

Operators

07_571982 ch05.qxd 9/1/05 7:22 PM Page 173

The AndAlso and OrElse operators can improve application performance under some circumstances.
However, to avoid possible confusion and long debugging sessions, do not use AndAlso or OrElse with
operands that have side effects.

Bitwise Operators
Bitwise operators work much like logical operators do, except they compare values one bit at a time.
The bitwise negation operator Not flips the bits in its operand from 1 to 0 and vice versa. The following
shows an example:

10110111
Not 01001000

The And operator places a 1 in a result bit if both of the operands have a 1 in that position. The following
shows the results of combining two binary values by using the bitwise And operator:

10101010
And 00110110

00100010

The bitwise Or operator places a 1 bit in the result if either of its operands has a 1 in the corresponding
position. The following shows an example:

10101010
Or 00110110

10111110

The bitwise Xor operator places a 1 bit in the result if exactly one of its operands, but not both, has a 1 in
the corresponding position. The following shows an example:

10101010
Xor 00110110

10011100

There are no bitwise equivalents for the AndAlso and OrElse operators.

Operator Precedence
When Visual Basic evaluates a complex expression, it must decide the order in which to evaluate opera-
tors. For example, consider the expression 1 + 2 * 3 / 4 + 2. The following text shows three orders in
which you might evaluate this expression to get three different results.

1 + (2 * 3) / (4 + 2) = 1 + 6 / 6 = 2
1 + (2 * 3 / 4) + 2 = 1 + 1.5 + 2 = 4.5
(1 + 2) * 3 / (4 + 2) = 3 * 3 / 6 = 1.5

174

Chapter 5

07_571982 ch05.qxd 9/1/05 7:22 PM Page 174

Precedence determines which operator Visual Basic executes first. For example, Visual Basic’s precedence
rules say the program should evaluate multiplication and division before addition, so the second equa-
tion is correct.

The following table lists the operators in order of precedence. When evaluating an expression, the pro-
gram evaluates an operator before it evaluates those lower than it in the list. When operators are on the
same line, or if an expression contains more than one instance of the same operator, the program evalu-
ates them in left-to-right order.

Operator Description

() Grouping (parentheses)

^ Exponentiation

- Negation

*, / Multiplication and division

\ Integer division

Mod Modulus

+, -, + Addition, subtraction, and concatenation

& Concatenation

<<, >> Bit shift

=, <>, <, <=, >, >=, Like, Is, All comparisons
IsNot, TypeOf...Is

Not Logical and bitwise negation

And, AndAlso Logical and bitwise And with and without short-circuit
evaluation

Xor, Or, OrElse Logical and bitwise Xor, and Or with and without short-
circuit evaluation

Parentheses are not really operators, but they do have a higher precedence than the true operators, so
they’re listed to make the table complete. You can always use parentheses to explicitly dictate the order
in which Visual Basic will perform an evaluation. If there’s the slightest doubt about how Visual Basic
will handle an expression, add parentheses to make it obvious. There’s no extra charge for using paren-
theses, and they may avoid some unnecessary confusion.

Assignment Operators
Visual Basic has always had the simple assignment operator =. Visual Basic .NET added several new
assignment operators to handle some common statements where a value was set equal to itself com-
bined with some other value. For example, the following two statements both add the value 10 to the
variable iterations.

175

Operators

07_571982 ch05.qxd 9/1/05 7:22 PM Page 175

iterations = iterations + 10 ‘ Original syntax.
iterations += 10 ‘ New syntax.

All the other assignments operators work similarly by adding an equals sign to an arithmetic operator.
For example, the statement A ^= B is equivalent to A = A ^ B.

You can still use the original syntax if you like. However, the new syntax allows the compiler to perform
additional optimizations that may give you better performance under some circumstances.

The complete list of assignment operators is: =, ^=, *=, /=, \=, +=, -=, &=, <<=, and >>=.

If you have Option Strict set to on, the variables must have the appropriate data types. For example,
/= returns a Double, so you cannot use that operator with an Integer, as in the following code:

Dim i As Integer = 100
i /= 2 ‘ Not allowed.

To perform this operation, you must explicitly convert the result into an Integer, as shown in the follow-
ing statement:

i = CInt(i / 2)

This makes sense because you are trying to assign the value of floating-point division to an integer. It’s
less obvious why the following code is also illegal. Here the code is trying to assign an Integer result to a
Single variable, so you would think it should work.

Dim x As Single
x \= 10 ‘ Not allowed.

The problem isn’t in the assignment, but in performing the calculation. The following statement is equiv-
alent to the previous one, and it is also illegal:

x = x \ 10 ‘ Not allowed.

The problem with both of these statements is that the \ operator takes as arguments two integers. If
Option Strict is on, the program will not automatically convert a floating-point variable into an inte-
ger for the \ operator. To make this statement work, you must manually convert the variable into an
Integer data type, as shown in the following example:

x = CLng(x) \ 10 ‘ Allowed.

While the += and &= operators will both combine strings, &= is less ambiguous, so you should use it
whenever possible. It may also give you better performance because it tells Visual Basic that the
operands are strings.

The StringBuilder Class
The & and &= operators are useful for concatenating a few strings together. However, if you must com-
bine a large number of strings, you may get better performance using the StringBuilder class. This
class is optimized for performing long sequences of concatenations to build big strings.

176

Chapter 5

07_571982 ch05.qxd 9/1/05 7:22 PM Page 176

For small pieces of code, the difference between using a String and a StringBuilder is not noticeable.
On one hand, if you need only to concatenate a dozen or so strings once, using a StringBuilder won’t
make much difference in run time. On the other hand, if you make huge strings built up in pieces, or if
you build simpler strings but many times in a loop, StringBuilder may make your program run faster.

The following code concatenates the string 1234567890 a large number of times, first using a String
variable and then using a StringBuilder. In one test that performed the concatenation 10,000 times to
build strings 100,000 characters long, using a String took roughly 1.6 seconds. Using a StringBuilder,
the program was able to build the string in roughly 0.001 seconds.

Private Sub btnGo_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnGo.Click

Const ADD_STRING As String = “1234567890”
Dim num_trials As Long = Long.Parse(txtNumTrials.Text)
Dim start_time As DateTime
Dim stop_time As DateTime
Dim elapsed_time As TimeSpan
Dim txt As String
Dim string_builder As New StringBuilder

lblString.Text = “”
lblStringBuilder.Text = “”
Application.DoEvents()

txt = “”
start_time = Now
For i As Long = 1 To num_trials

txt = txt & ADD_STRING
Next i
stop_time = Now
elapsed_time = stop_time.Subtract(start_time)
lblString.Text = elapsed_time.TotalSeconds.ToString(“0.000000”)

txt = “”
start_time = Now
For i As Long = 1 To num_trials

string_builder.Append(ADD_STRING)
Next i
txt = string_builder.ToString()
stop_time = Now
elapsed_time = stop_time.Subtract(start_time)
lblStringBuilder.Text = elapsed_time.TotalSeconds.ToString(“0.000000”)

End Sub

Admittedly, building such enormous strings is not a common programming task. Even when the strings
are shorter, you can sometimes see a noticeable difference in performance. The following code concate-
nates the string 1234567890 to itself 100 times to build a string 1,000 characters long. It builds the string
repeatedly for a certain number of trials. In one test building the 1,000 character string 10,000 times,
using a String took around 0.95 seconds, whereas using a StringBuilder took about 0.06 seconds.

177

Operators

07_571982 ch05.qxd 9/1/05 7:22 PM Page 177

Private Sub btnGo_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnGo.Click

Const ADD_STRING As String = “1234567890”
Dim num_trials As Long = Long.Parse(txtNumTrials.Text)
Dim start_time As DateTime
Dim stop_time As DateTime
Dim elapsed_time As TimeSpan
Dim txt As String
Dim string_builder As New StringBuilder

lblString.Text = “”
lblStringBuilder.Text = “”
Application.DoEvents()

start_time = Now
For i As Long = 1 To num_trials

txt = “”
For j As Long = 1 To 100

txt = txt & ADD_STRING
Next j

Next i
stop_time = Now
elapsed_time = stop_time.Subtract(start_time)
lblString.Text = elapsed_time.TotalSeconds.ToString(“0.000000”)

txt = “”
start_time = Now
For i As Long = 1 To num_trials

string_builder = New StringBuilder
For j As Long = 1 To 100

string_builder.Append(ADD_STRING)
Next j
txt = string_builder.ToString()

Next i
stop_time = Now
elapsed_time = stop_time.Subtract(start_time)
lblStringBuilder.Text = elapsed_time.TotalSeconds.ToString(“0.000000”)

End Sub

Strings and string operations are a bit more intuitive than the StringBuilder class, so your code will
usually be easier to read if you use String variables when performance isn’t a big issue. If you are build-
ing enormous strings, or are building long strings a huge number of times, the performance edge given
by the StringBuilder class may be worth slightly more complicated-looking code.

Date and TimeSpan Operations
The Date data type is fundamentally different from other data types. When you perform an operation on
most data types, you get a result that has the same data type or that is at least of some compatible data
type. For example, if you subtract two Integer variables, the result is an Integer. If you divide two Integers
using the / operator, the result is a Double. That’s not another Integer, but it is a compatible numeric data
type used because an Integer cannot always hold the result of a division.

178

Chapter 5

07_571982 ch05.qxd 9/1/05 7:22 PM Page 178

If you subtract two Date variables, however, the result is not a Date. For example, what’s August 7 minus
July 20? It doesn’t make sense to think of the result as a Date. Instead, Visual Basic defines the difference
between two Dates as a TimeSpan. A TimeSpan measures the elapsed time between two Dates. In this
example, August 7 minus July 20 is 18 days.

The following equations define the arithmetic of Dates and TimeSpans.

❑ Date – Date = TimeSpan

❑ Date + TimeSpan = Date

❑ TimeSpan + TimeSpan = TimeSpan

❑ TimeSpan – TimeSpan = TimeSpan

The TimeSpan class also defines unary negation (ts2 = -ts1), but other operations (such as multiplying
a TimeSpan by a number) are not defined. However, in some cases, you can still perform the calculation
if you must. For example, the following statement makes the TimeSpan ts2 equal to 12 times the dura-
tion of TimeSpan ts1.

ts2 = New TimeSpan(ts1.Ticks * 12)

A unary operator takes a single operand. For example, A = +B (unary plus), C = -D (unary negation),
and E = Not F (logical unary negation) all use unary operators.

In Visual Basic 2005, the +, -, <, >, <=, >=, <>, and = operators are defined for Dates and TimeSpans.
Previous versions did not define these operators, but the Date class did provide equivalent operator
methods. For example, the Date class’s op_Subtraction method subtracts two Dates and returns a
TimeSpan.

These operator methods are still available and you may want to use them if you find using the normal
operator symbols less clear. The following table lists the Date operator methods. Note that the Common
Language Runtime name for the Date data type is DateTime, so you need to look for DateTime in the
online help for more information on these methods.

Syntax Meaning

result_date = Date.op_Addition Returns date1 plus timespan1
(date1, timespan1)

result_boolean = Date.op_Equality True if date1 > date2
(date1, date2)

result_boolean = Date.op_ True if date1 > date2
GreaterThan(date1, date2)

result_boolean = Date.op_ True if date1 >= date2
GreaterThanOrEqual(date1, date2)

result_boolean = Date.op_ True if date1 <> date2
Inequality(date1, date2)

Table continued on following page

179

Operators

07_571982 ch05.qxd 9/1/05 7:22 PM Page 179

Syntax Meaning

result_boolean = Date.op_ True if date1 < date2
LessThan(date1, date2)

result_boolean = Date.op_ True if date1 <= date2
LessThanOrEqual(date1, date2)

result_timespan = Date.op_ Returns the TimeSpan between date1 and date2
Subtraction(date1, date2)

result = Date.Compare Returns a value indicating whether date1 is
(date1, date2) greater than, less than, or equal to date2

The Compare method is a bit different from the others, returning an Integer rather than a Boolean or
Date. Its value is less than zero if date1 < date2, greater than zero if date1 > date2, and equal to zero
if date1 = date2.

These are shared methods, so you do not need to use a specific instance of the Date data type to use
them. For example, the following code displays the number of days between July 20 and August 7:

Dim date1 As Date = #7/20/04#
Dim date2 As Date = #8/7/04#
Dim elapsed_time As TimeSpan

elapsed_time = Date.op_Subtraction(date2, date1)
Debug.WriteLine(elapsed_time.Days)

These operators are a bit cumbersome. To make these kinds of calculations easier, the Date data type
provides other methods for performing common operations that are a bit easier to read. While the opera-
tor methods take both operands as parameters, these methods take a single operand as one parameter
and use the current object as the other. For example, a Date object’s Add method adds a TimeSpan to the
date and returns the resulting date. The following table summaries these methods.

Syntax Meaning

result_date = date1.Add(timespan1) Returns date1 plus timespan1

result_date = date1.AddYears Returns the date plus the indicated number of
(num_years) years

result_date = date1.AddMonths Returns the date plus the indicated number of
(num_months) months

result_date = date1.AddDays Returns the date plus the indicated number of days
(num_days)

result_date = date1.AddHours Returns the date plus the indicated number of
(num_hours) hours

result_date = date1.AddMinutes Returns the date plus the indicated number of
(num_minutes) minutes

180

Chapter 5

07_571982 ch05.qxd 9/1/05 7:22 PM Page 180

Syntax Meaning

result_date = date1.AddSeconds Returns the date plus the indicated number of
(num_seconds) seconds

result_date = date1.AddMilliseconds Returns the date plus the indicated number of
(num_milliseconds) milliseconds

result_date = date1.AddTicks Returns the date plus the indicated number of ticks
(num_ticks) (100-nanosecond units)

result_timespan = date1.Subtract Returns the time span between date2 and date1
(date2)

result_integer = date1.CompareTo Returns a value indicating whether date1 is
(date2) greater than, less than, or equal to date2

result_boolean = date1.Equals Returns True if date1 equals date2
(date2)

The CompareTo method returns a value less than zero if date1 < date2, greater than zero if date1 >
date2, and equal to zero if date1 = date2.

Operator Overloading
Visual Basic defines operators for expressions that use standard data types such as integers and Boolean
values. It defines a few operators such as Is and IsNot for objects, but operators such as * and Mod
don’t make sense for objects in general.

However, you can also define those operators for your structures and classes by using the Operator
statement. This is a more advanced topic, so if you’re new to Visual Basic, you may want to skip this
section and come back to it later, perhaps after you read Chapter 15, “Classes and Structures.”

The general syntax for operator overloading is:

[<attributes>] Public [Overloads] Shared [Shadows] _
[Widening | Narrowing] Operator symbol (operands) As type

...
End Operator

The parts of this declaration are:

❑ attributes — Attributes for the operator.

❑ Public — All operators must be Public Shared.

❑ Overloads — You can only use this if the operator takes two parameters that are from a base
class and a derived class as its two operators. In that case, it means the operator overrides the
operator defined in the base class.

181

Operators

07_571982 ch05.qxd 9/1/05 7:22 PM Page 181

❑ Shared — All operators must be Public Shared.

❑ Shadows — The operator replaces a similar operator defined in the base class.

❑ Widening — Indicates that the operator defines a widening conversion that always succeeds at
run time. This operator must catch and handle all errors. The CType operator must include
either the Widening or Narrowing keyword.

❑ Narrowing — Indicates that the operator defines a narrowing conversion that may fail at run
time. The CType operator must include either the Widening or Narrowing keyword.

❑ symbol — The operator’s symbol. This can be +, -, *, /, \, ^, &, <<, >>, =, <>, <, >, <=, >=, Mod,
Not, And, Or, Xor, Like, IsTrue, IsFalse, or CType.

❑ operands — Declarations of the objects to be manipulated by the operator. The unary operators
+, -, Not, IsTrue, and IsFalse take a single operand. The binary operators +, -, *, /, \, ^, &,
<<, >>, =, <>, <, >, <=, >=, Mod, And, Or, Xor, Like, and CType take two operands.

❑ type — All operators must have a return type and must return a value by using a Return
statement.

Operator overloading is subject to several constraints:

❑ Some operands come in pairs, and if you define one you must define the other. The pairs are =
and <>, < and >, <= and >=, and IsTrue and IsFalse.

❑ For the standard unary or binary operators, the class or structure that defines the operator must
appear in an operand. For the CType conversion operator, the class or structure must appear in
the operand or return type.

❑ The IsTrue and IsFalse operators must return Boolean values.

❑ The second operands for the << and >> operators must be Integers.

If you define an operator, Visual Basic can automatically handle the same operator followed by the =
sign. For example, if you define the + operator, Visual Basic can understand the += assignment operator.

While you cannot use the IsTrue and IsFalse operators directly, you can use them indirectly. If you
define IsTrue for a class, Visual Basic uses it to determine whether an object should be treated as True
in a Boolean expression. For example, the following statement uses the IsTrue operator to decide
whether the object c1 should be considered True:

If c1 Then ...

If you define the And and IsFalse operators, Visual Basic uses them to handle the AndAlso operator as
well. For this to work, the And operator must return the same type of class or structure where you define
it. For example, suppose you have defined And and IsFalse for the Composite class and suppose vari-
ables c1, c2, and c3 are all instances of this class. Then consider the following statement:

c3 = c1 AndAlso c2

182

Chapter 5

07_571982 ch05.qxd 9/1/05 7:22 PM Page 182

Visual Basic uses IsFalse to evaluate c1. If IsFalse returns True, the program doesn’t bother to evalu-
ate c2. Instead it assumes the whole statement is false and returns a False value. Because IsFalse
returned True for c1, Visual Basic knows that c1 is a false value so it sets c3 equal to c1.

This is pretty confusing. It may make more sense if you think about how Visual Basic evaluates Boolean
expressions that use the normal AndAlso operator.

Similarly, if you define the Or and IsTrue operators, Visual Basic automatically provides the OrElse
operator.

While you generally cannot make two versions of a function in Visual Basic that differ only in their return
types, you can do that for CType conversion operators. When the program tries to make a conversion,
Visual Basic can tell by the type of the result which conversion operator to use.

The following code shows a Complex class that represents a complex number. It defines +, -, and * oper-
ators to implement normal addition, subtraction, and multiplication on complex numbers. It also defines
=, <>, and unary negation operators, and a conversion operator that converts a Complex object into a
Double giving its magnitude.

Public Class Complex
Public Re As Double
Public Im As Double

‘ Constructors.
Public Sub New()
End Sub
Public Sub New(ByVal real_part As Double, ByVal imaginary_part As Double)

Re = real_part
Im = imaginary_part

End Sub

‘ ToString.
Public Overrides Function ToString() As String

Return Re.ToString & “ + “ & Im.ToString & “i”
End Function

‘ Operators.
Public Shared Operator *(ByVal c1 As Complex, ByVal c2 As Complex) As Complex

Return New Complex(_
c1.Re * c2.Re - c1.Im * c2.Im, _
c1.Re * c2.Im + c1.Im * c2.Re)

End Operator
Public Shared Operator +(ByVal c1 As Complex, ByVal c2 As Complex) As Complex

Return New Complex(_
c1.Re + c2.Re, _
c1.Im + c2.Im)

End Operator
Public Shared Operator -(ByVal c1 As Complex, ByVal c2 As Complex) As Complex

Return New Complex(_

183

Operators

07_571982 ch05.qxd 9/1/05 7:22 PM Page 183

c1.Re - c2.Re, _
c1.Im - c2.Im)

End Operator
Public Shared Operator =(ByVal c1 As Complex, ByVal c2 As Complex) As Boolean

Return (c1.Re = c2.Re) AndAlso (c1.Im = c2.Im)
End Operator
Public Shared Operator <>(ByVal c1 As Complex, ByVal c2 As Complex) As Boolean

Return (c1.Re <> c2.Re) OrElse (c1.Im <> c2.Im)
End Operator
Public Shared Operator -(ByVal c1 As Complex) As Complex

Return New Complex(c1.Im, c1.Re)
End Operator
Public Shared Narrowing Operator CType(ByVal c1 As Complex) As Double

Return System.Math.Sqrt(c1.Re * c1.Re + c1.Im * c1.Im)
End Operator

End Class

It is easy to get carried away with operator overloading. Just because you can define an operator for a
class doesn’t mean you should. For example, you might be able to concoct some meaning for addition
with the Employee class, but it would probably be a counterintuitive operation. You would probably be
better off writing a subroutine or function with a meaningful name.

Summary
A program uses operators to manipulate variables, constants, and literal values to produce new results.
Visual Basic’s operators fall into five main categories: arithmetic, concatenation, comparison, logical, and
bitwise. In most cases, using operators is straightforward and intuitive.

Operator precedence determines the order in which Visual Basic applies operators when evaluating an
expression. In cases where an expression’s operator precedence is unclear, add parentheses to make the
order obvious. Even if you don’t change the way that Visual Basic handles the statement, you can make
the code more understandable and avoid possibly time-consuming bugs.

The String data type has its own special needs. String manipulation plays a big role in many applica-
tions, so Visual Basic provides a StringBuilder class for manipulating strings more efficiently. On
one hand, if your program only works with a few short strings, it probably doesn’t need to use a
StringBuilder, and using the String data type will probably make your code easier to understand. On
the other hand, if your application builds enormous strings or concatenates a huge number of strings,
you may be able to save a noticeable amount of time using the StringBuilder class.

The Date data type also behaves differently from other data types. The normal operators such as + and -
have different meanings than they do for other data types. For example, a Date minus a Date gives a
TimeSpan, not another Date. These operations generally make sense if you think carefully about what
dates and time spans are.

Just as addition, subtraction, and the other operators have special meaning for Dates and TimeSpans, you
can use operator overloading to define operators for your classes. Defining division or exponentiation
may not make much sense for Employees, Customer, or Orders, but in some cases custom operators can

184

Chapter 5

07_571982 ch05.qxd 9/1/05 7:22 PM Page 184

make your code more readable. For example, you might imagine the following statement adding an
OrderItem to a CustomerOrder:

the_order += new_item

This chapter explains how to use operators to combine variables to calculate new results. A typical pro-
gram may perform the same set of calculations many times for different variable values. While you
might be able to perform those calculations in a long series, the result would be cumbersome and hard
to maintain. Chapter 6, “Subroutines and Functions,” explains how you can use subroutines and func-
tions to break a program into manageable pieces that you can then reuse to make performing all of the
calculations easier and more uniform.

185

Operators

07_571982 ch05.qxd 9/1/05 7:22 PM Page 185

07_571982 ch05.qxd 9/1/05 7:22 PM Page 186

Subroutines and Functions
Subroutines and functions enable you to break an otherwise unwieldy chunk of code into manage-
able pieces. They enable you to extract code that you may need to use under more than one circum-
stance and place it in one location where you can call it as needed. This not only reduces repetition
within your code; it also enables you to maintain and update the code in a single location.

A subroutine performs a task for the code that invokes it. A function performs a task and then
returns some value. The value may be the result of a calculation, or a status code indicating
whether the function succeeded or failed.

Together, subroutines and functions are sometimes called routines or procedures. They are also
sometimes called methods, particularly when they are subroutines or functions belonging to a class.
Subroutines are also occasionally called sub procedures.

This chapter describes subroutines and functions. It explains the syntax for declaring and using each
in a Visual Basic application. It also provides some tips for making routines more maintainable.

Subroutines
A Sub statement defines the subroutine’s name. It declares the parameters that the subroutine
takes as arguments and defines the parameters’ data types. Code between the Sub statement and
an End Sub statement determines what the subroutine does when it runs.

The syntax for defining a subroutine is as follows:

[attribute_list] [inheritance_mode] [accessibility] _
Sub subroutine_name([parameters]) [Implements interface.subroutine]

[statements]
End Sub

The following sections describe the pieces of this declaration.

08_571982 ch06.qxd 9/1/05 7:14 PM Page 187

attribute_list
The optional attribute list is a comma-separated list of attributes that apply to the subroutine. An
attribute further refines the definition of a class, method, variable, or other “thing” to give more infor-
mation to the compiler and the run-time system.

Attributes are specialized and address issues that arise when you perform very specific programming
tasks. For example, the Conditional attribute means the subroutine is conditional upon the definition
of some compiler constant. The following code defines the compiler constant DEBUG_LIST_CUSTOMERS.
The value DEBUG_LIST_EMPLOYEES is not defined, because it is commented out.

This program’s Form1_Load event handler calls subroutines ListCustomers and ListEmployees.
ListCustomers is defined using the Conditional attribute with parameter DEBUG_LIST_CUSTOMERS.
That tells the compiler to generate code for the routine only if DEBUG_LIST_CUSTOMERS is defined.
Because that constant is defined, the compiler generates code for this subroutine.

Subroutine ListEmployees is defined using the Conditional attribute with parameter DEBUG_LIST_
EMPLOYEES. Because that constant is not defined, the compiler does not generate code for this subroutine
and, when Form1_Load calls it, the subroutine call is ignored.

#Const DEBUG_LIST_CUSTOMERS = True
‘ #Const DEBUG_LIST_EMPLOYEES = True

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

ListCustomers()
ListEmployees()

End Sub

<Conditional(“DEBUG_LIST_CUSTOMERS”)> _
Private Sub ListCustomers()

Debug.WriteLine(“ListCustomers”)
End Sub

<Conditional(“DEBUG_LIST_EMPLOYEES”)> _
Private Sub ListEmployees()

Debug.WriteLine(“ListEmployees”)
End Sub

The following text shows the output from this program:

ListCustomers

Visual Basic 2005 defines around 200 attributes. Many have fairly specialized purposes that won’t inter-
est you most of the time, but some are pretty useful.

Many attributes give metadata for editors and the IDE, so you will often see their effects only when you
view an object in an editor or the IDE. If you are building a control or component, you can put one on a
form and then see its properties in the Properties window. In that case, many kinds of attributes will be
useful. If you’re building an Employee class that’s used only in code, fewer attributes are useful in any
obvious way.

188

Chapter 6

08_571982 ch06.qxd 9/1/05 7:14 PM Page 188

However, Visual Basic 2005 comes with a powerful PropertyGrid control that lets you display an
object’s properties on a form much as the Properties window displays them to a developer. That control
honors all of the property-related attributes and gives them a whole new level of usefulness.

The following list describes some of the most useful attributes. Most of them are in the System.
ComponentModel namespace. Check the online help to find the namespaces for the others and to learn
about each attribute’s parameters. Even these most useful attributes are fairly specialized and advanced
so you may not immediately see their usefulness. If one of them doesn’t make sense, skip it and scan the
list again after you have more experience with such topics as building custom controls.

❑ AttributeUsage — You can build your own custom attributes by inheriting from the
Attribute class. You can give your attribute class the AttributeUsage attribute to specify
how your attribute can be used. You can determine whether an item can have multiple instances
of your attribute, whether your attribute can be inherited by a derived class, and the kinds of
things that can have your attribute (assembly, class, method, and so forth).

❑ Browsable — This indicates whether a property or event should be displayed in an editor
such as the Properties window. If you pass the attribute’s constructor the value False, the
Properties window does not display the property.

❑ Category — This indicates the grouping that should hold the property or event in a visual
designer such as the Properties window. For example, if the user clicks the Categorized button in
the Properties window, the window groups the properties by category. This attribute tells which
category should hold the property. Note that the category names are not magic. You can use any
string you like and the Properties window will make a new category for you if necessary.

❑ DefaultEvent — This gives a class’s default event name. If the class is a control or component
and you double-click on it in a form, the code editor opens to this event. For example, the default
event for a Button is Click, so when you double-click a Button at design time, the code editor
opens the control’s Click event handler.

❑ DefaultProperty — This gives a class’s default property name. Suppose that the Employee
component has LastName set as its default property. Then suppose that you select the form
and click on the FormBorderStyle property in the Properties window. Now you click on an
Employee. Because Employee doesn’t have a FormBorderStyle property, the Properties win-
dow displays its default property: LastName.

❑ DefaultValue — This gives a property a default value. If you right-click on the property in
the Properties window and select Reset, the property is reset to this value. Be sure to use a valid
value. For example, don’t set this to the string “unknown” if the property is an Integer.

❑ Description — This gives a description of the item. If a property has a Description and you
select the property in the Properties window, the window displays the description text at the
bottom.

Visual Basic 2005 carries this one step further and also allows you to use XML comments to pro-
vide a description of routines and their parameters for use by IntelliSense. For more informa-
tion, see the section, “XML Comments,” in Chapter 3.

❑ Localizable — This determines whether a property should be localizable. If this is True,
localized values are automatically stored in the appropriate resource files. If this is False (the
default), all locales share the same property value.

189

Subroutines and Functions

08_571982 ch06.qxd 9/1/05 7:14 PM Page 189

To try this out, set the form’s Localizable property to True and enter a value for the property.
Then set the form’s Language property to another language and give the localizable property a
new value. Visual Basic automatically applies the right value for the user’s locale when it runs
the program.

❑ MergableProperty — This indicates whether or not the property can be merged with the
same property provided by other components in the Properties window. If this is False and
you select more than one instance of a control with the property, the Properties window does
not display the property.

If this is True and you select more than one control with the property, the Properties window
displays the value if the controls all have the same value. If you enter a new value, all of the
controls are updated. This is the way the Text property works for TextBox, Label, and many
other kinds of controls.

❑ ParenthesizePropertyName — This indicates whether editors such as the Properties win-
dow should display parentheses around the property’s name. If the name has parentheses, the
Properties window moves it to the top of the list when displaying properties alphabetically or to
the top of its category when displaying properties by category.

❑ ReadOnly — This indicates whether designers should treat this property as read-only. For
example, the Properties window displays the property grayed out and doesn’t let the user
change its value. This attribute is a little strange in practice because ReadOnly is a Visual Basic
keyword. If you enter just the attribute name ReadOnly, Visual Basic gets confused. Either use
the full name System.ComponentModel.ReadOnly or enclose the name in square brackets as
in <[ReadOnly](True)>

❑ RecommendedAsConfigurable — This indicates that a property should be tied to the configu-
ration file. When you select the object at design time and expand the “(Dynamic Properties)”
item, the property is listed. If you click the ellipsis to the right, a dialog appears that lets you
map the property to a key in the configuration file.

❑ RefreshProperties — This indicates how an editor should refresh the object’s other proper-
ties if this property is changed. The value can be Default (do not refresh the other properties),
Repaint (refresh all other properties), or All (requery and refresh all properties).

❑ Conditional — This indicates that the method is callable if a compile-time constant such as
DEBUG or MY_CONSTANT is defined. If the constant is not defined, code for the method is still
generated and parameters in the method call are checked against the parameter types used by
the method, but calls to the method are ignored at run time. If the method has more than one
Conditional attribute, the method is callable if any of the specified compile-time constants
is defined.

Note that the constant must be defined in the main program not in the component if you are
building a component. Select the main program, open the Project menu, select the Properties
item at the bottom, open the Configuration Properties folder, click Build, and in the “Custom
constants” box enter a value such as IS_DEFINED=True.

You can also use the compiler directive #if to exclude code completely from compilation.
However, if you eliminate a method in this way, any calls to the routine will generate compile-
time errors because the method doesn’t exist. The Conditional attribute lets you hide a
method while still allowing the code to contain calls to it.

190

Chapter 6

08_571982 ch06.qxd 9/1/05 7:14 PM Page 190

❑ DebuggerHidden — This tells debuggers whether a method should be debuggable. If
DebuggerHidden is True, the IDE skips over the method and will not stop at breakpoints
inside it.

❑ DebuggerStepThrough — This tells debuggers whether to let the developer step through a
method in the debugger. If DebuggerStepThrough is True, the IDE will not step through the
method, although it will stop at any breakpoints inside it.

❑ ToolboxBitmap — This tells the IDE where to find a control or component’s Toolbox bitmap.
This can be a file, or it can be a type in an assembly that contains the bitmap and the bitmap’s
name in the assembly. It’s awkward but essential if you’re developing controls or components.

❑ NonSerializedAttribute — This indicates that a member of a serializable class should not
be serialized. This is useful for excluding values that need not be serialized.

❑ Obsolete — This indicates that the item (class, method, property, or whatever) is obsolete.
Optionally, you can specify the message that the code editor should display to the developer if
code uses the item (for example, “Use the NewMethod instead”). You can also indicate whether
the IDE should treat using this item as a warning or an error.

❑ Serializable — This indicates that a class is serializable. All public and private fields are
serialized by default. Note that some routines require a class to be serializable even though you
don’t use the serialization yourself. Also note that attributes in the System.Xml.Serialization
namespace can provide a lot of control over serializations.

❑ ThreadStaticAttribute — This indicates that a Shared class variable should not be shared
across threads. Different threads get their own copies of the variable and all instances of the
class within each thread share the thread’s copy.

inheritance_mode
The inheritance_mode can be one of the values Overloads, Overrides, Overridable, NotOverridable,
MustOverride, Shadows, or Shared. These values determine how a subroutine declared within a class
inherits from the parent class or how it allows inheritance in derived classes. The following list explains
the meanings of these keywords.

❑ Overloads — Indicates that the subroutine has the same name as another subroutine defined
for this class. The parameter list must be different in the different versions so that Visual Basic
can tell them apart (if they are the same, this works just like Overrides described next). If you
are overloading a subroutine defined in a parent class, you must use this keyword. If you are
overloading only subroutines in the same class, you can omit the keyword. If you use the key-
word in any of the overloaded subroutines, however, you must include it for them all.

❑ Overrides — Indicates that this subroutine replaces a subroutine in the parent class that has
the same name and parameters.

❑ Overridable — Indicates that a derived class can override this subroutine. This is the default
for a subroutine that overrides another one.

❑ NotOverridable — Indicates that a derived class cannot override this subroutine. You can
only use this with a subroutine that overrides another one.

191

Subroutines and Functions

08_571982 ch06.qxd 9/1/05 7:14 PM Page 191

❑ MustOverride — Indicates that any derived classes must override this subroutine. When
you use this keyword, you omit all subroutine code and the End Sub statement, as in the follow-
ing code:

MustOverride Sub Draw()
MustOverride Sub MoveMap(ByVal X As Integer, ByVal Y As Integer)
MustOverride Sub Delete()
...

If a class contains a subroutine declared MustOverride, you must declare the class using the
MustInherit keyword. Otherwise, Visual Basic won’t know what to do if you call this subrou-
tine, because it contains no code.

MustOverride is handy for defining a subroutine that derived classes must implement, but for
which a default implementation in the parent class doesn’t make sense. For example, suppose
that you make a Drawable class that represents a shape that can be drawn and that you will
derive specific shape classes such as Rectangle, Ellipse, Line, and so forth. To let the pro-
gram draw a generic shape, the Drawable class defines the Draw subroutine. Because Drawable
doesn’t have a particular shape, it cannot provide a default implementation of that subroutine.
To require the derived classes to implement Draw, the Drawable class declares it
MustOverride.

❑ Shadows — Indicates that this subroutine replaces an item (probably a subroutine) in the par-
ent class that has the same name, but not necessarily the same parameters. If the parent class
contains more than one overloaded version of the subroutine, this subroutine shadows them all.
If the derived class defines more than one overloaded version of the subroutine, they must all be
declared with the Shadows keyword.

❑ Shared — Indicates that this subroutine is associated with the class itself, rather than with a
specific instance of the class. You can invoke it using the class’s name (ClassName.SharedSub)
or using a specific instance (class_instance.SharedSub). Because the subroutine is not asso-
ciated with a specific class instance, it cannot use any properties or methods that are provided
by a specific instance. The subroutine can only use other Shared properties and methods, as
well as globally available variables.

accessibility
A subroutine’s accessibility clause can take one of these values: Public, Protected, Friend, Protected
Friend, and Private. These values determine which pieces of code can invoke the subroutine. The fol-
lowing list explains these keywords.

❑ Public — Indicates that there are no restrictions on the subroutine. Code inside or outside of
the subroutine’s class or module can call it.

❑ Protected — Indicates that the subroutine is accessible only to code in the same class or in
a derived class. You can only use the Protected keyword with subroutines declared inside
a class.

❑ Friend — Indicates that the subroutine is available to all code inside or outside of the subrou-
tine’s module within the same project. The difference between this and Public is that Public
allows code outside of the project to access the subroutine. This is generally only an issue for
code libraries (DLLs) and control libraries. For example, suppose that you build a code library
containing dozens of routines and then you write a program that uses the library. If the library
declares a subroutine with the Public keyword, the code in the library and the code in the main

192

Chapter 6

08_571982 ch06.qxd 9/1/05 7:14 PM Page 192

program can use the subroutine. In contrast, if the library declares a subroutine with the Friend
keyword, only the code in the library can access the subroutine, not the code in the main program.

❑ Protected Friend — Indicates that the subroutine has both Protected and Friend status.
The subroutine is available only within the same project and within the same class or a
derived class.

❑ Private — Indicates that the subroutine is available only within the class or module that
contains it.

To reduce the amount of information that developers must remember, you should generally declare sub-
routines with the most restricted accessibility that allows them to do their jobs. If you can, declare the
subroutine Private. Then, developers working on other parts of the application don’t even need to
know that the subroutine exists. They can create other routines with the same name if necessary and
won’t accidentally misuse the subroutine.

Later, if you discover that you need to use the subroutine outside of its class or module, you can change
its declaration to allow greater accessibility.

subroutine_name
The subroutine’s name must be a valid Visual Basic identifier. That means it should begin with a letter or
an underscore. It can then contain zero or more letters, numbers, and underscores. If the name begins
with an underscore, it must include at least one other character so that Visual Basic can tell it apart from
a line continuation character.

Many developers use “camel case” when naming subroutines so a subroutine’s name consists of several
descriptive words with their first letters capitalized. A good method for generating subroutine names is
to use a short phrase beginning with a verb and describing what the subroutine does. Some examples
include LoadData, SaveNetworkConfiguration, and PrintExpenseReport.

Subroutine names with leading underscores can be hard to read, so you should either save them for special
purposes or avoid them entirely. Names such as _1 and __ (two underscores) are particularly confusing.

parameters
The parameters section of the subroutine declaration defines the arguments that the subroutine takes as
parameters. The parameter declarations define the numbers and types of the parameters. This section
also gives the names by which the subroutine will know the values.

Declaring parameters is very similar to declaring variables. See Chapter 4, “Data Types, Variables, and
Constants,” for information on variable declarations, data types, and other related topics.

The following sections describe some of the more important details related to subroutine parameter
declarations.

ByVal
If you include the optional ByVal keyword before a parameter’s declaration, the subroutine makes its
own local copy of the parameter with procedure scope. The subroutine can modify this value all it wants
and the corresponding value in calling procedure isn’t changed.

193

Subroutines and Functions

08_571982 ch06.qxd 9/1/05 7:14 PM Page 193

For example, consider the following code. The main program initializes the variable A and prints its
value in the Output window. It then calls subroutine DisplayDouble, which declares its parameter X
with the ByVal keyword. It doubles X and displays the new value. Because the parameter X is declared
ByVal, the subroutine has its own local copy of the variable, so doubling it doesn’t change the value of
the variable A in the main program. When the subroutine ends and the main program resumes, it dis-
plays the value of variable A.

Private Sub Main()
Dim A As Integer = 12
Debug.WriteLine(“Main: “ & A)
DisplayDouble(A)
Debug.WriteLine(“Main: “ & A)

End Sub

Private Sub DisplayDouble(ByVal X As Integer)
X *= 2
Debug.WriteLine(“DisplayDouble: “ & X)

End Sub

The following text shows the results:

Main: 12
DisplayDouble: 24
Main: 12

ByRef
If you declare a parameter with the ByRef keyword, the subroutine does not create a separate copy of
the parameter variable. Instead, it uses a reference to the original parameter passed into the subroutine
and any changes the subroutine makes to the value are reflected in the calling subroutine.

Consider the following code. This code is the same as the previous example except that the
DisplayDouble subroutine declares its parameter using the ByRef keyword. As before, the main
program initializes the variable A and prints its value in the Output window. It then calls subroutine
DisplayDouble, which doubles its parameter X and displays the new value. Because X is declared ByRef,
this doubles the value of the variable A that was passed by the main program into the subroutine. When
the subroutine ends and the main program resumes, it displays the new doubled value of variable A.

Private Sub Main()
Dim A As Integer = 12
Debug.WriteLine(“Main: “ & A)
DisplayDouble(A)
Debug.WriteLine(“Main: “ & A)

End Sub

Private Sub DisplayDouble(ByRef X As Integer)
X *= 2
Debug.WriteLine(“DisplayDouble: “ & X)

End Sub

The following text shows the results.

194

Chapter 6

08_571982 ch06.qxd 9/1/05 7:14 PM Page 194

Main: 12
DisplayDouble: 24
Main: 24

Arrays Declared ByVal and ByRef
If you declare an array parameter using ByVal or ByRef, those keywords apply to the array itself, not to
the array’s values. In either case, the subroutine can modify the values inside the array.

The DoubleArrayValues subroutine shown in the following code has a parameter named arr. This
parameter is an array of integers and is declared ByVal. The routine loops through the array, doubling
each of its values. It then loops through the array, displaying the new values. Next, the subroutine assigns
the variable arr to a new array of integers. It loops through the array, again displaying the new values.

Private Sub DoubleArrayValues(ByVal arr() As Integer)
‘ Double the values.
For i As Integer = arr.GetLowerBound(0) To arr.GetUpperBound(0)

arr(i) *= 2
Next i

‘ Display the values.
For i As Integer = arr.GetLowerBound(0) To arr.GetUpperBound(0)

Debug.WriteLine(arr(i))
Next i
Debug.WriteLine(“----------”)

‘ Create a new array of values.
arr = New Integer() {-1, -2}

‘ Display the values.
For i As Integer = arr.GetLowerBound(0) To arr.GetUpperBound(0)

Debug.WriteLine(arr(i))
Next i
Debug.WriteLine(“----------”)

End Sub

The following code declares an array of integers containing the values 1, 2, and 3. It invokes the subroutine
DoubleArrayValues and then loops through the array, displaying the values after DoubleArrayValues
returns.

Dim the_values() As Integer = {1, 2, 3}
DoubleArrayValues(the_values)

For i As Integer = the_values.GetLowerBound(0) To the_values.GetUpperBound(0)
Debug.WriteLine(the_values(i))

Next i

The following text shows the results. The DoubleArrayValues subroutine lists the array’s doubled val-
ues 2, 4, 6, assigns a new array to its local variable arr, and then displays the new values -1 and -2.
When DoubleArrayValues returns, the main program displays its version of the values. Notice that the
values were updated by DoubleArrayValues but that the subroutine’s assignment of its arr variable to
a new array had no effect on the main program’s array the_values.

195

Subroutines and Functions

08_571982 ch06.qxd 9/1/05 7:14 PM Page 195

2
4
6

-1
-2

2
4
6

Now suppose that the subroutine DoubleArrayValues was declared with the following statement:

Private Sub DoubleArrayValues(ByRef arr() As Integer)

In this case, when DoubleArrayValues assigns a new array to its arr variable, the calling routine sees
the change, so the the_values array receives the new array. The following text shows the new results:

2
4
6

-1
-2

-1
-2

Parenthesized Parameters
There are a couple ways that a subroutine can fail to update a parameter declared using the ByRef key-
word. The most confusing occurs if you enclose a variable in parentheses when you pass it to the sub-
routine. Parentheses tell Visual Basic to evaluate their contents as an expression. Visual Basic creates a
temporary variable to hold the result of the expression and then passes the temporary variable into the
procedure. If the procedure’s parameter is declared ByRef, the subroutine updates the temporary vari-
able but not the original variable, so the calling routine doesn’t see any change to its value.

The following code calls subroutine DisplayDouble, passing it the variable A surrounded by parenthe-
ses. Subroutine DisplayDouble modifies its parameter’s value, but the result doesn’t get back to the
variable A.

Private Sub Main()
Dim A As Integer = 12
Debug.WriteLine(“Main: “ & A)
DisplayDouble((A))
Debug.WriteLine(“Main: “ & A)

End Sub

Private Sub DisplayDouble(ByRef X As Integer)
X *= 2
Debug.WriteLine(“DisplayDouble: “ & X)

End Sub

196

Chapter 6

08_571982 ch06.qxd 9/1/05 7:14 PM Page 196

The following text shows the results:

Main: 12
DisplayDouble: 24
Main: 12

Chapter 4 has more to say about parameters declared with the ByVal and ByRef keywords.

Optional
If you declare a parameter with the Optional keyword, the code that uses it may omit that parameter.
When you declare an optional parameter, you must give it a default value for the subroutine to use if the
parameter is omitted by the calling routine.

The DisplayError subroutine in the following code takes an optional string parameter. If the calling
routine provides this parameter, the subroutine displays it. If the calling routine leaves this parameter
out, then DisplayError displays its default message “An error occurred.” The PlaceOrder subroutine
checks its the_customer parameter. If this parameter is Nothing, PlaceOrder calls DisplayError to
show the message “Customer is Nothing in subroutine PlaceOrder.” Next, subroutine PlaceOrder calls
the_customer’s IsValid function. If IsValid returns False, the subroutine calls DisplayError. This
time it omits the parameter so DisplayError presents its default message.

Private Sub DisplayError(Optional ByVal error_message As String = _
“An error occurred”)

MsgBox(error_message)
End Sub

Private Sub PlaceOrder(ByVal the_customer As Customer, _
ByVal order_items() As OrderItem)

‘ See if the_customer exists.
If the_customer Is Nothing Then

DisplayError(“Customer is Nothing in subroutine PlaceOrder”)
Exit Sub

End If

‘ See if the_customer is valid.
If Not the_customer.IsValid() Then

DisplayError()
Exit Sub

End If

‘ Generate the order.
...

End Sub

Optional parameters must go at the end of the parameter list. If one parameter uses the Optional key-
word, all of the following parameters must use it too.

Optional parameters are particularly useful for initializing values in a class’s constructor. The following
code shows a DrawableRectangle class. Its constructor takes as parameters the rectangle’s position
and size. All the parameters are optional, so the main program can omit them if it desires. Because each
parameter has default values, the constructor always knows it will have the four values, so it can always
initialize the object’s Bounds variable.

197

Subroutines and Functions

08_571982 ch06.qxd 9/1/05 7:14 PM Page 197

Public Class DrawableRectangle
Public Bounds As Rectangle

Public Sub New(_
Optional ByVal X As Integer = 0, _
Optional ByVal Y As Integer = 0, _
Optional ByVal Width As Integer = 100, _
Optional ByVal Height As Integer = 100)

Bounds = New Rectangle(X, Y, Width, Height)
End Sub
...

End Class

Note that overloaded subroutines cannot differ only in optional parameters. If a call to the subroutine
omitted the optional parameters, Visual Basic would be unable to tell which version of the subroutine
to use.

Optional versus Overloading
Different developers have varying opinions on whether you should use optional parameters or over-
loaded routines under various circumstances. For example, suppose that the FireEmployee method
could take one or two parameters giving either the employee’s name or the name and reason for dis-
missal. You could make this a subroutine with the reason parameter optional, or you could make one
overloaded version of the FireEmployee method for each possible parameter list.

One argument in favor of optional parameters is that overloaded methods might duplicate a lot of code.
However, it is easy to make each version of the method call another version that allows more parameters,
passing in default values. For example, in the following code the first version of the FireEmployee
method simply invokes the second version.

Public Sub FireEmployee(ByVal employee_name As String)
FireEmployee(employee_name, “Unknown reason”)

End Sub

Public Sub FireEmployee(ByVal employee_name As String, ByVal reason As String)
...

End Sub

Method overloading is generally superior when the different versions of the routine need to do some-
thing different. You might be able to make a single routine with optional parameters take different
actions based on the values of its optional parameters, but separating the code into overloaded routines
will probably produce a cleaner solution.

Parameter Arrays
Sometimes it is convenient to allow a subroutine to take a variable number of parameters. For example,
a subroutine might take as parameters the addresses of people who should receive e-mail. It would loop
through the names to send each a message.

198

Chapter 6

08_571982 ch06.qxd 9/1/05 7:14 PM Page 198

One approach is to include a long list of optional parameters. For example, the e-mail subroutine might
set the default value for each of its parameters to an empty string. Then it would need to send e-mail to
every address parameter that was not empty.

Unfortunately, this type of subroutine would need to include code to deal with each optional parameter
separately. This would also place an upper limit on the number of parameters the subroutine can take
(however many you are willing to type in the subroutine’s parameter list).

A better solution is to use the ParamArray keyword to make the subroutine’s final argument a parameter
array. A parameter array contains an arbitrary number of parameter values. At run time, the subroutine can
loop through the array to process the parameter values.

The DisplayAverage subroutine shown in the following code takes a parameter array named values.
It checks the array’s bounds to make sure it contains at least one value. If the array isn’t empty, the sub-
routine adds the values it contains and divides by the number of values to calculate the average.

‘ Display the average of a series of values.
Private Sub DisplayAverage(ByVal ParamArray values() As Double)

‘ Do nothing if there are no parameters.
If values Is Nothing Then Exit Sub
If values.Length < 1 Then Exit Sub

‘ Calculate the average.
Dim total As Double = 0
For i As Integer = LBound(values) To UBound(values)

total += values(i)
Next i

‘ Display the result.
MessageBox.Show((total / values.Length).ToString)

End Sub

The following code shows one way the program could use this subroutine. In this example,
DisplayAverage would display the average of the integers 1 through 7, which is 4.

DisplayAverage(1, 2, 3, 4, 5, 6, 7)

Parameter arrays are subject to several restrictions.

❑ A subroutine can have only one parameter array, and it must come last in the parameter list.

❑ All other parameters in the parameter list must not be optional.

❑ All parameter lists are declared ByVal, so any changes the subroutine makes to the array’s con-
tents do not affect the calling routine.

❑ Parameter array values are implicitly optional, so the calling routine can provide any number of
values (including zero) for the array. However, you cannot use the Optional keyword when
you declare the parameter array.

199

Subroutines and Functions

08_571982 ch06.qxd 9/1/05 7:14 PM Page 199

❑ All the items in the parameter array must have the same data type. However, you can use an
array that contains the generic Object data type and then it can hold just about anything. The
downside is you may need to convert the items into a more specific type (for example, using
DirectCast or CInt) to use their features.

The calling routine can pass any number of values (including zero) for the parameter array. It can also
pass the value Nothing, in which case the subroutine’s parameter array has value Nothing.

The program can also pass an array of the appropriate data type in place of the parameter array values.
The following two calls to the DisplayAverage subroutine produce the same result inside the
DisplayAverage subroutine.

DisplayAverage(1, 2, 3, 4, 5, 6, 7)

Dim values() As Double = {1, 2, 3, 4, 5, 6, 7}
DisplayAverage(values)

Implements interface.subroutine
An interface defines a set of properties, methods, and events that a class implementing the interface must
provide. An interface is a lot like a class with all of its properties, methods, and events declared with the
MustOverride keyword. Any class that inherits from the base class must provide implementations of
those properties, methods, and events.

The IDrawable interface shown in the following code defines a Draw subroutine, a Bounds function,
and a property named IsVisible. The DrawableRectangle class begins with the statement
Implements IDrawable. That tells Visual Basic that the class will implement the IDrawable interface.
If you make the class declaration, type the Implements statement, and then press the Enter key, Visual
Basic automatically fills in the declarations you need to satisfy the interface. In this example, it creates
the empty Bounds function, Draw subroutine, and IsVisible property procedures shown here. All you
need to do is fill in the details.

Developers often begin the name of interfaces with a capital I so that it’s obvious that it’s an interface.

Public Interface IDrawable
Sub Draw(ByVal gr As Graphics)
Function Bounds() As Rectangle
Property IsVisible() As Boolean

End Interface

Public Class DrawableRectangle
Implements IDrawable

Public Function Bounds() As System.Drawing.Rectangle _
Implements IDrawable.Bounds

End Function

Public Sub Draw(ByVal gr As System.Drawing.Graphics) _
Implements IDrawable.Draw

200

Chapter 6

08_571982 ch06.qxd 9/1/05 7:14 PM Page 200

End Sub

Public Property IsVisible() As Boolean Implements IDrawable.IsVisible
Get

End Get
Set(ByVal Value As Boolean)

End Set
End Property

End Class

If you look at the previous code, you can see where the subroutine declaration’s “Implements interface.
subroutine” clause comes into play. In this case, the Draw subroutine implements the IDrawable inter-
face’s Draw method.

When you type the Implements statement and press the Enter key, Visual Basic generates empty rou-
tines to satisfy the interface; then you don’t need to type the “Implements interface.subroutine” clause
yourself. Visual Basic enters this for you.

The only time you should need to modify this statement is if you change the interface’s name or subrou-
tine name or you want to use some other subroutine to satisfy the interface. For example, you could give
the DrawableRectangle class a DrawRectangle method and add Implements IDrawable.Draw to its
declaration. Visual Basic doesn’t care what you call the routine, as long as some routine implements
IDrawable.Draw.

statements
A subroutine’s statements section contains whatever Visual Basic code is needed to get the routine’s job
done. This can include all the usual variable declarations, For loops, Try blocks, and other Visual Basic
paraphernalia.

The subroutine’s body cannot include module, class, subroutine, function, structure, enumerated type,
or other file-level statements. For example, you cannot define a subroutine within another subroutine.

One new statement that you can use within a subroutine is Exit Sub. This command makes the subrou-
tine immediately exit and return control to the calling routine. Within a subroutine, the Return state-
ment is equivalent to Exit Sub.

You can use Exit Sub or Return as many times as you like to allow the subroutine to exit under differ-
ent conditions. For example, the following subroutine checks whether a phone number has a 10-digit or
7-digit format. If the phone number matches a 10-digit format, the subroutine exits. Then if the phone
number matches a 7-digit format, the subroutine exits. If the number doesn’t match either format, the
subroutine displays an error message to the user.

Private Sub ValidatePhoneNumber(ByVal phone_number As String)
‘ Check for a 10-digit phone number.
If phone_number Like “###-###-####” Then Exit Sub

‘ Check for a 7-digit phone number.

201

Subroutines and Functions

08_571982 ch06.qxd 9/1/05 7:14 PM Page 201

If phone_number Like “###-####” Then Return

‘ The phone number is invalid.
MsgBox(“Invalid phone number “ & phone_number, _

MsgBoxStyle.Exclamation, _
“Invalid Phone Number”)

End Sub

Functions
Functions are basically the same as subroutines, except that they return some sort of value. The syntax
for defining a function is:

[attribute_list] [inheritance_mode] [accessibility] _
Function function_name([parameters]) [As return_type] [Implements
interface.function]

[statements]
End Function

This is almost the same as the syntax for defining a subroutine. See the section “Subroutines” earlier in
this chapter for information about most of this declaration’s clauses.

One simple difference is that a function ends with the End Function statement rather than End Sub.
Similarly a function can exit before reaching its end using Exit Function rather than Exit Sub.

The one really new piece in the declaration is the clause “As return_type” that comes after the function’s
parameter list. This tells Visual Basic the type of value that the function will return.

The function can set its return value in one of two ways. First, it can set its name equal to the value it
wants to return. The Factorial function shown in the following code calculates the factorial of a num-
ber. Written N!, the factorial of N is N * (N - 1) * (N - 2) . . . * 1. The function initializes its result variable
to 1, and then loops over the values between 1 and the number parameter, multiplying these values to
the result. It finishes by setting its name, Factorial, equal to the result value that it should return.

Private Function Factorial(ByVal number As Integer) As Double
Dim result As Double = 1

For i As Integer = 2 To number
result *= i

Next i

Factorial = result
End Function

A function can assign and reassign its return value as many times as it wants to before it returns.
Whatever value is assigned last becomes the function’s return value.

202

Chapter 6

08_571982 ch06.qxd 9/1/05 7:14 PM Page 202

The second way a function can assign its return value is to use the Return keyword followed by the
value that the function should return. The following code shows the Factorial function rewritten to
use the Return statement:

Private Function Factorial(ByVal number As Integer) As Double
Dim result As Double = 1

For i As Integer = 2 To number
result *= i

Next i

Return result
End Function

The Return statement is roughly equivalent to setting the function’s name equal to the return value, and
then immediately using an Exit Function statement. The Return statement may allow the compiler to
perform extra optimizations, however, so it is generally preferred to setting the function’s name equal to
the return value.

Proper ty Procedures
Property procedures are routines that can represent a property-like value. A normal read-write property
procedure contains a function for returning the property’s value and a subroutine for assigning it.

The following code shows property procedures that implement a Value property. The Property Get
procedure is a function that returns the value in the private variable m_Value. The Property Set sub-
routine saves a new value in the m_Value variable.

Private m_Value As Single

Property Value() As Single
Get

Return m_Value
End Get
Set(ByVal Value As Single)

m_Value = Value
End Set

End Property

While the property is implemented as a pair of property procedures, the program could treat the value
as a simple property. For example, suppose that the OrderItem class contains the previous code. Then
the following code sets the Value property for the OrderItem object named paper_item:

paper_item.Value = 19.95

You can add property procedures to any type of object module. For example, you can use property pro-
cedures to implement a property for a form or for a class of your own.

203

Subroutines and Functions

08_571982 ch06.qxd 9/1/05 7:14 PM Page 203

It’s less obvious that you can also use property procedures in a code module. The property procedures
look like an ordinary variable to the routines that use them. If you place the previous example in a code
module, the program could act as if there were a variable named Value defined in the module.

For more information on property procedures, see the section “Property Procedures” in Chapter 4.

Summary
Subroutines and functions let you break an application into manageable, reusable pieces. A subroutine
performs a series of commands. A function performs a series of commands and returns a value.

Property procedures use paired functions and subroutines to provide the behavior of a simple property
using routines.

These form the fundamental building blocks of the procedural part of an application. Chapters 14
through 18 explain the other half of an application’s structure, the objects that encapsulate the applica-
tion’s behavior. Together, the program’s objects and its procedural subroutines and functions define the
application.

This chapter explains how to break an otherwise unwieldy expanse of code into subroutines and func-
tions of manageable size. However, the chapters so far have not explained how to write anything other
that straight-line code that executes one statement after another with no deviation. Most programs need
to follow more complex paths of execution, performing some statements only under certain conditions
and repeating others a given number of times. Chapter 7, “Program Control Statements,” describes the
statements that a Visual Basic program uses to control the flow of code execution. These include decision
statements (If Then Else, Select Case, IIF, Choose) and looping statements (For Next, For Each, Do
While, While Do, Repeat Until).

204

Chapter 6

08_571982 ch06.qxd 9/1/05 7:14 PM Page 204

Program Control Statements
Program control statements tell an application which other statements to execute under a particular
set of circumstances. They control the path that execution takes through the code. They include
commands that tell the program to execute some statements but not others and to execute certain
statements repeatedly.

The two main categories of control statements are decision (or conditional) statements and looping
statements. The following sections describe in detail the decision and looping statements provided
by Visual Basic .NET.

Decision Statements
A decision or conditional statement represents a branch in the program. It marks a place where the
program can execute one set of statements or another, or possibly no statements at all, depending
on some condition. These include If, Choose, and Select Case statements.

Single Line If Then
The single-line If Then statement has two forms. The first allows the program to execute a single
statement if some condition is true. The syntax is as follows:

If condition Then statement

If the condition is true, the program executes the statement. In the most common form of single-
line If Then statement, the statement is a single simple command (such as assigning a value to a
variable or calling a subroutine).

The following example checks the emp object’s IsManager property. If IsManager is true, the
statement sets the emp object’s Salary property to 90,000.

If emp.IsManager Then emp.Salary = 90000

09_571982 ch07.qxd 9/1/05 7:11 PM Page 205

The other variations on the single-line If Then statement are more confusing and generally harder to
debug and maintain. To prevent unnecessary confusion, many programmers switch to the multiline If
Then statement described in the next section when the simple single-statement version won’t work.

The second form of single-line If Then statement uses the Else keyword. The syntax is as follows:

If condition Then statement1 Else statement2

If the condition is true, the code executes the first statement. If the condition is false, the code executes
the second statement. The decision about which statement to execute is an “either-or” decision; the code
executes one statement or the other, but not both.

This type of single-line If Then Else statement is very confusing if it is too long to easily see in the code
editor. For longer statements, a multiline If Then Else statement is easier to understand and debug.
The performance of single-line and multiline If Then Else statements is comparable (in one test, the
multiline version took only about 80 percent as long), so you should use the one that seems easiest for
you to read.

The statements executed by a single-line If Then statement can be simple commands (such as assigning
a value to a variable). They can also be a series of simple statements separated by colons on the same
line. For example, the following code tests the value of the Boolean variable is_new_customer. If
is_new_customer is true, the program calls the customer object’s Initialize method and then calls
its Welcome method.

If is_new_customer Then customer.Initialize() : customer.Welcome()

Using more than one simple statement separated by colons like this can be perplexing. It gets even
worse if you use single-line If Then Else, as shown here:

If order.Valid() Then order.Save() : order.Post() Else order.Delete()

The single-line If Then statement can also include Else If clauses. For example, the following code
examines the variable X. If X is 1, the program displays a message box saying “One.” If X has the value 2,
the program displays a message box saying “Two.” If X is not 1 or 2, the program displays a message box
containing a question mark.

If X = 1 Then MsgBox(“One”) Else If X = 2 Then MsgBox(“Two”) Else MsgBox(“?”)

The code can include as many Else If clauses as you like, and each execution statement can be com-
posed of multiple simple statements separated by colons. However, confusing code such as these exam-
ples can lead to puzzling bugs that are easy to avoid if you use multiline If Then statements instead.

In summary, if you can write a simple single-line If Then statement with no Else If or Else clauses,
and the whole thing fits nicely on the line so that it’s easy to see the whole thing without confusion, go
ahead. If the statement is too long to read easily, contains Else If or Else clauses, or executes a series of
statements separated by colons, you are usually better off using a multiline If Then statement. It may
take more lines of code, but the code will be easier to read, debug, and maintain later.

206

Chapter 7

09_571982 ch07.qxd 9/1/05 7:11 PM Page 206

Multiline If Then
A multiline If Then statement can execute more than one line of code when a condition is true. The syn-
tax for the simplest form of multiline If Then statement is as follows:

If condition Then
statements...

End If

If the condition is true, the program executes all the commands that come before the End If statement.
For example, the following code shows a multiline version of one of the statements shown in the previ-
ous section. If the Boolean variable is_new_customer has value True, the program calls the customer
object’s Initialize method and then calls its Welcome method.

If is_new_customer Then
customer.Initialize()
customer.Welcome()

End If

Like the single-line If Then statement, the multiline version can include Else If and Else clauses. For
possibly historical reasons, ElseIf is spelled as a single word in the multiline If Then statement. The
syntax is as follows:

If condition1 Then
statements1...

ElseIf condition2
statements2...

Else
statements3...

End If

If the first condition is true, the program executes the first set of statements. If the first condition is false,
the code examines the second condition and, if that one is true, the code executes the second set of state-
ments. The program continues checking conditions until it finds one that is true and it executes the cor-
responding code.

If the program reaches an Else statement, it executes the corresponding code. If the program reaches the
End If statement without finding a true condition or an Else clause, it doesn’t execute any of the state-
ment blocks.

The following simple example shows a multiline version of the confusing single-line If Then Else
statement shown in the section, “Single-Line If-Then,” earlier in this chapter.

If order.Valid() Then
order.Save()
order.Post()

Else
order.Reject()
order.Delete()

End If

207

Program Control Statements

09_571982 ch07.qxd 9/1/05 7:11 PM Page 207

It is important to understand that the program exits the If Then construction immediately after it has
executed the block of statements that goes with the first condition it finds that is true. It does not exam-
ine the other conditions. This saves the program some time and is particularly important if the condi-
tions involve functions. If each test calls a relatively slow function, skipping these later tests can save the
program a significant amount of time.

You need to be particularly aware of this issue if the conditions call functions that have side effects. A side
effect is some change in the program’s state that can affect parts of the program outside of the function. If
you don’t know how many of an If Then statement’s conditions are executed, you cannot know which
side effects may have occurred.

For example, suppose the GetEmployee function pulls data from a database to initialize an Employee
object and returns that object. The following code loads Alice Adams’ record and checks to see if she is a
manager. If Alice is not a manager, the code loads Brian Buckley’s data and sees if he is a manager. If
Brian isn’t a manager either, the code checks Cindy Cantrell and possibly others.

If GetEmployee(“Alice Adams”).IsManager() Then
...

ElseIf GetEmployee(“Brian Buckley”).IsManager() Then
...

ElseIf GetEmployee(“Cindy Cantrell”).IsManager() Then
...

ElseIf ...
...

End If

After this code finishes executing, how many Employee objects has the program loaded? Are all of the
employees loaded, or are some still only in the database? The answers depend on which of these people
is a manager. If Alice is a manager, the program loads only her record. If none of these people is a man-
ager, the program loads data for everyone. If someone later in the list is a manager, the program loads
some but not all of the employees. There’s no easy way to tell how many Employee objects were created
without knowing all the details contained in the employee data.

In this example, knowing the number of employees loaded might not be big deal. However, whenever
an If Then statement uses a series of conditions with side effects, you cannot easily tell what state the
program is in afterward.

You can avoid this type of potential confusion by not using routines with side effects in this sort of If
Then structure. One alternative would be to load every employee and then look for one who is a man-
ager. In this example, that may take a little longer if Alice Adams is a manager, but at least the program
is in a well-known state afterwards.

Select Case
The Select Case statement lets a program execute one of several pieces of code depending on a single
value. The basic syntax is as follows:

Select Case test_value
Case comparison_expression1

statements1
Case comparison_expression2

208

Chapter 7

09_571982 ch07.qxd 9/1/05 7:11 PM Page 208

statements2
Case comparison_expression3

statements3
...
Case Else

else_statements
End Select

If test_value matches comparison_expression1, the program executes the statements in the block
statements1. If test_value matches comparison_expression2, the program executes the state-
ments in the block statements2. The program continues checking the expressions in the Case state-
ments in order until it matches one, or it runs out of Case statements.

If test_value doesn’t match any of the expressions in the Case statements, the program executes the
code in the else_statements block. Note that you can omit the Case Else section. In that case, the
program executes no code if test_value doesn’t match any of the expressions.

For example, the following code checks the value in the txtDessertSelection text box and displays a
message. If the text box doesn’t contain one of the strings Pie, Cake, or Cookies, the code displays the
message “You have not selected a dessert.”

Select Case txtDessertSelection.Text
Case “Pie”

MessageBox.Show(“You have selected pie”)
Case “Cake”

MessageBox.Show(“You have selected cake”)
Case “Cookies”

MessageBox.Show(“You have selected cookies”)
Case Else

MessageBox.Show(“You have not selected a dessert”)
End Select

Select Case is functionally equivalent to an If Then Else statement. The following code does the
same thing as the previous version:

If txtDessertSelection.Text = “Pie” Then
MessageBox.Show(“You have selected pie”)

ElseIf txtDessertSelection.Text = “Cake” Then
MessageBox.Show(“You have selected cake”)

ElseIf txtDessertSelection.Text = “Cookies” Then
MessageBox.Show(“You have selected cookies”)

Else
MessageBox.Show(“You have not selected a dessert”)

End If

Select Case is sometimes easier to understand than a long If Then Else statement. It is often faster
as well, largely because Select Case doesn’t need to reevaluate test_value for every Case statement.
In the previous code, each ElseIf clause must find the value of txtDessertSelection.Text. The
Select Case version only calculates this value once, and then compares the result to the comparison
expressions in the Case statements. The savings in time can be significant in frequently executed code
when test_value is extremely complicated. For example, in the following code, the test expression
accesses a deeply nested series of object properties. Reevaluating this expression for each ElseIf state-
ment would take a relatively long time.

209

Program Control Statements

09_571982 ch07.qxd 9/1/05 7:11 PM Page 209

If employee.Department.Manager.Secretary. _
HomeAddress.Phone.SubString(0, 3) = “212” Then

...
ElseIf employee.Department.Manager.Secretary. _

HomeAddress.Phone.SubString(0, 3) = “213” Then
...

ElseIf employee.Department.Manager.Secretary. _
HomeAddress.Phone.SubString(0, 3) = “214” Then

...
End If

If you think a particular piece of code will be easier to understand using an If Then Else statement
instead of a Select Case statement, you can speed the code up (and make it easier to read) by storing a
complex test_value in a variable. The following code shows an improved version of the previous If
Then Else statement:

Dim phone_prefix As String = employee.Department.Manager.Secretary. _
HomeAddress.Phone.SubString(0, 3) = “123”

If phone_prefix = “212” Then
...

ElseIf phone_prefix = “213” Then
...

ElseIf phone_prefix = “214” Then
...

End If

The comparison expressions used in a Select Case statement are often constants. In the earlier exam-
ples, the expressions are the constant strings Pie, Cake, and Cookies. A comparison expression can also
specify ranges using the To and Is keywords, and include a comma-separated list of expressions. These
forms are described in the following sections.

To
The To keyword specifies a range of values that test_value should match. The following code exam-
ines the variable num_items. If num_items is between 1 and 10, the program calls subroutine
ProcessSmallOrder. If num_items is between 11 and 100, the program calls subroutine
ProcessLargeOrder. If num_items is less than 1 or greater than 100, the program beeps.

Select Case num_items
Case 1 To 10

ProcessSmallOrder()
Case 11 To 100

ProcessLargeOrder()
Case Else

Beep()
End Select

Is
The Is keyword lets you perform comparisons using num_items. The word Is takes the place of
num_items in a comparison expression. For example, the following code does almost the same things as
the previous version. If the value num_items is less than or equal to 10, the program calls subroutine

210

Chapter 7

09_571982 ch07.qxd 9/1/05 7:11 PM Page 210

ProcessSmallOrder. If the first Case clause doesn’t apply and num_items is less than or equal to 100,
the program calls subroutine ProcessLargeOrder. If neither of these cases applies, the program beeps.

Select Case num_items
Case Is <= 10

ProcessSmallOrder()
Case Is <= 100

ProcessLargeOrder()
Case Else

Beep()
End Select

This version is slightly different from the previous one. If num_items is less than 1, this code calls sub-
routine ProcessSmallOrder while the previous version beeps.

Note also that the order of the Case clauses is important in this example. If you were to reverse the first
two Case clauses, ProcessSmallOrder would never be used. Any value less than or equal to 10 is also
less than or equal to 100, so any value that would satisfy the case Is <= 10 would be handled by the case
Is <= 100 before the program reached the second Case clause.

You can use the operators =, <>, <, <=, >, and >= in an Is clause. (In fact, if you use a simple value in a
Case clause as in Case 7, you are implicitly using Is = as in Case Is = 7.)

Comma-Separated Expressions
A comparison expression can include a series of expressions separated by commas. If the test value
matches any of the comparison values, the program executes the corresponding code.

For example, the following code examines the department_name variable. If department_name is R &
D, Test, or Computer Operations, the code adds the text “Building 10” to the address_text string.
If department_name is Finance, Purchasing, or Accounting, the code adds Building 7 to the
address. More Case clauses could check for other department_name values and the code could include
an Else statement.

Select Case department_name
Case “R & D”, “Test”, “Computer Operations”

address_text &= “Building 10”
Case “Finance”, “Purchasing”, “Accounting”

address_text &= “Building 7”
...

End Select

Note that you cannot use comma-separated expressions in a Case Else clause. For example, the follow-
ing code doesn’t work:

Case Else, “Corporate” ‘ This doesn’t work.

However, you can simply omit any values you want to use with the Else clause. If the values don’t
appear in another Case clause, the program will execute the Else clause code when it finds those val-
ues. You can make the code more self-documenting by including the comparison values in a comment
after the Else keyword, as in the following statement:

Case Else ‘ Corporate

211

Program Control Statements

09_571982 ch07.qxd 9/1/05 7:11 PM Page 211

You can mix and match constants, To, and Is expressions in a single Case clause, as shown in the fol-
lowing example. This code checks the variable item_code and calls subroutine DoSomething if the
value is less than 10, between 30 and 40 inclusive, exactly equal to 100, or greater than 200.

Select Case item_code
Case Is < 10, 30 To 40, 100, Is > 200

DoSomething()
End Select

Complex comparison expressions are sometimes difficult to read. If an expression is too complicated,
you should consider rewriting the code to make it easier to understand. Storing values in temporary
variables can help.

IIf
The IIf statement evaluates a Boolean expression and then returns one of two values, depending on
whether the expression is true or false. This statement may look more like an assignment statement or a
function call than a decision statement such as If Then.

The syntax is as follows:

variable = IIf(condition, value_if_false, value_if_true)

For example, the following code examines an Employee object’s IsManager property. If IsManager is
true, the code sets the employee’s Salary to 90,000. If IsManager is false, the code sets the employee’s
Salary to 10,000.

emp.Salary = IIf(emp.IsManager, 90000, 10000)

Note that the IIf statement returns an Object data type. If you have Option Strict turned on, Visual
Basic will not allow this statement, because it assigns a result of type Object to an Integer variable. To
satisfy Visual Basic, you must explicitly convert the value into an Integer, as in the following code:

emp.Salary = CInt(IIf(emp.IsManager, 90000, 10000))

The IIf statement has several drawbacks. First, it is confusing. When you type an IIf statement,
IntelliSense will remind you that its parameters give a condition, a “true value,” and a “false value.”
When you are reading the code, however, you must remember what the different parts of the statement
mean. If you use IIf in some other statement, the chances for confusion increase. For example, consider
the following code:

For i = 1 To CType(IIf(employees_loaded, num_employees, 0), Integer)
‘ Process employee i.
...

Next i

Code is generally much easier to understand if you replace IIf with an appropriate If Then statement.
The following code takes more lines of code but is easier to understand than the previous version:

212

Chapter 7

09_571982 ch07.qxd 9/1/05 7:11 PM Page 212

If employees_loaded Then
max_i = num_employees

Else
max_i = 0

End If

For i = 1 To max_i
‘ Process employee i.
...

Next i

Another drawback to IIf is that it evaluates both the true and false values whether the condition is true
or false. For example, consider the following code. If the Boolean use_groups is true, the code sets num_
objects to the result of the CountGroups function. If use_groups is false, the code sets num_objects
to the result of the CountIndividuals function. IIf evaluates both functions no matter which value it
actually needs. If the functions are time-consuming or executed inside a large loop, this can waste a lot
of time.

num_objects = CType(IIf(use_groups, CountGroups(), CountIndividuals()), Integer)

For an even more dangerous example, consider the following code. If data_loaded is true, this state-
ment sets num_loaded = num_employees. If data_loaded is false, the code sets num_loaded to the
value returned by the LoadEmployees function (which loads the employees and returns the number of
employees it loaded).

num_loaded = CType(IIf(data_loaded, num_employees, LoadEmployees()), Integer)

IIf evaluates both the value num_employees and the value LoadEmployees() no matter what. If the
employees are already loaded, IIf calls LoadEmployees() to load the employees again, ignores the
returned result, and sets num_loaded = num_employees. LoadEmployees may waste quite a while
loading the data that is already loaded. Even worse, the program may not be able to handle loading the
data when it is already loaded.

A final drawback to IIf is that it is slower than a comparable If Then Else statement. In one test, IIf
took roughly twice as long as a comparable If Then statement.

One case where you can argue that IIf is easier to understand is when you have a long series of very
simple statements. In that case, IIf statements may allow you to easily see the common features in the
code and notice if anything looks wrong. For example, the following code initializes several text boxes
using strings. It uses an IIf statement to set a text box’s value to <Missing> if the string is not yet
initialized.

txtLastName.Text = IIf(last_name Is Nothing, “<Missing>”, last_name)
txtFirstName.Text = IIf(first_name Is Nothing, “<Missing>”, first_name)
txtStreet.Text = IIf(street Is Nothing, “<Missing>”, street)
txtCity.Text = IIf(city Is Nothing, “<Missing>”, city)
txtState.Text = IIf(state Is Nothing, “<Missing>”, state)
txtZip.Text = IIf(zip Is Nothing, “<Missing>”, zip)

The following code uses If Then statements to avoid the IIf statements. This version is a bit more diffi-
cult to read, partly because it is much longer.

213

Program Control Statements

09_571982 ch07.qxd 9/1/05 7:11 PM Page 213

If last_name Is Nothing Then
txtLastName.Text = “<Missing>”

Else
txtLastName.Text = last_name

End If
If first_name Is Nothing Then

txtFirstName.Text = “<Missing>”
Else

txtFirstName.Text = first_name
End If
If street Is Nothing Then

txtStreet.Text = “<Missing>”
Else

txtStreet.Text = street
End If
If city Is Nothing Then

txtCity.Text = “<Missing>”
Else

txtCity.Text = city
End If
If state Is Nothing Then

txtState.Text = “<Missing>”
Else

txtState.Text = state
End If
If zip Is Nothing Then

txtZip.Text = “<Missing>”
Else

txtZip.Text = zip
End If

In larger programming projects, debugging and maintenance are much bigger costs than development.
Use IIf only if it makes the code easier to understand.

Choose
The IIf statement uses a Boolean expression to pick between two values. The Choose statement uses an
integer to decide among any number of options. The syntax is as follows:

variable = Choose(index, value1, value2, value3, value4, ...)

If the index parameter is 1, Choose returns the first value, value1; if index is 2, Choose returns
value2; and so forth. If index is less than 1 or greater than the number of values in the parameter list,
Choose returns Nothing.

This statement has the same drawbacks as IIf. Sometimes Choose is more confusing than a comparable
Select Case statement. If the values look dissimilar (mixing integers, objects, function calls, and so
forth), involve complicated functions, or are wrapped across multiple lines, a Select Case statement
may be easier to read.

214

Chapter 7

09_571982 ch07.qxd 9/1/05 7:11 PM Page 214

However, if the Choose statement’s values are short and easy to understand, and the statement contains
many values, the Choose statement may be easier to read. For example, the following Choose and
Select Case statements do the same thing. Because the Choose statement’s values are short and easy to
understand, this statement is easy to read. The Select Case statement is rather long. If the program had
more choices, the Select Case statement would be even longer, making it more difficult to read.

fruit = Choose(index, “apple”, “banana”, “cherry”, “date”)

Select Case index
Case 1

fruit = “apple”
Case 2

fruit = “banana”
Case 3

fruit = “cherry”
Case 4

fruit = “date”
End Select

While it’s not always clear whether a Choose statement or a Select Case statement will be easier to
read, Select Case is certainly faster. In one test, Choose took more than five times as long as Select
Case. If the code lies inside a frequently executed loop, the speed difference may be an issue.

Choose and Select Case are not your only options. You can also store the program’s choices in an
array, and then use the index to pick an item from the array. For example, the following code stores the
strings from the previous example in the values array. It then uses the index to pick the right choice from
the array.

Dim values() As String = {“apple”, “banana”, “cherry”, “date”}

fruit = values(index - 1)

Notice that the code subtracts 1 from the index when using it to pick the right choice. The Choose state-
ment indexes its values starting with 1, but arrays in Visual Basic .NET start with index 0. Subtracting 1
allows the program to use the same index values used in the previous example.

This version makes you think about the code in a different way. It requires that you know that the
values array contains the names of the fruits that the program needs. If you understand the array’s pur-
pose, then the assignment statement is easy to understand.

The assignment code is even slightly faster than Select Case, at least if you can initialize the values
array ahead of time.

If you find Choose easy to understand and it doesn’t make your code more difficult to read in your par-
ticular circumstances, by all means use it. If Select Case seems clearer, use that. If you will need to per-
form the assignment many times and prebuilding an array of values makes sense, using a value array
might improve your performance.

215

Program Control Statements

09_571982 ch07.qxd 9/1/05 7:11 PM Page 215

Looping Statements
Looping statements make the program execute a series of statements repeatedly. The loop can run for a
fixed number of repetitions, run while some condition holds true, or run until some condition is true.

Broadly speaking, there are two types of looping statement. For loops execute a certain number of times
that (in theory at least) is known. For example, a For loop may execute a series of statement exactly 10
times. Or, it may execute the statements once for each object in a certain collection. If you know how
many items are in the collection, you can calculate the number of times the loop will execute.

A While loop executes while a condition is true or until a condition is met. Without a lot more informa-
tion about the application, it is impossible to tell how many times the code will execute. For example,
suppose that a program looks through a list of employees until it finds one who is a manager. Even if
you know the number of employees in the list and the number who are managers, you cannot easily tell
how many records you will need to search before you find a manager.

The following sections describe the looping statements supported by Visual Basic .NET. The next two
sections describe For loops, and the sections after those describe While loops.

For Next
The For Next loop is the most common type of looping statement in Visual Basic. The syntax is:

For variable [As data_type] = start_value To stop_value [Step increment]
statements
[Exit For]
statements
[Continue For]
statements

Next [variable]

The value variable is the looping variable that controls the loop. When the program reaches the For
statement, it sets variable equal to start_value. It then compares variable to stop_value. If variable
has passed stop_value, the loop exits. This is important. It means the loop may not execute even once
depending on the start and stop values.

Normally, you would not intentionally write a loop that doesn’t execute, but this can occur when
you use variables for the start and stop values. For example, the following loop runs for the values
employee_num = 1, employee_num = 2, . . . , employee_num = num_employees. If the program has not
loaded any employees so num_employees = 0, the code inside the loop is not executed at all.

For employee_num = 1 To num_employees
ProcessEmployee(employee_num)

Next employee_num

After it compares variable to stop_value, the program executes the statements inside the loop.
It then adds increment to variable and starts the process over, again comparing variable to
stop_value. If you omit increment, the program uses an increment of 1.

216

Chapter 7

09_571982 ch07.qxd 9/1/05 7:11 PM Page 216

Note that increment can be negative or a fractional number, as in the following example:

For i As Double = 3 To 1 Step -0.5
Debug.WriteLine(i)

Next i

If increment is positive, the program executes as long as variable <= stop_value. If increment is
negative, the program executes as long as variable >= stop_value. This means that the loop would
not execute infinitely if increment were to move variable away from stop_value. For example, in
the following code start_value = 1 and increment = -1. The variable i would take the values i = 1, i
= 0, i = -1, and so forth, so i will never reach the stop_value of 2. However, because increment is neg-
ative, the loop only executes while i >= 2. Because i starts with the value 1, the program immediately
exits and the loop doesn’t execute at all.

For i As Integer = 1 To 2 Step -1
Debug.WriteLine(i)

Next i

The program doesn’t need for you to include the variable’s name in the Next statement, although
including the name helps make the code easier to read. If you specify the name in the Next statement, it
must match the name you use in the For statement.

If you do not specify the looping variable’s data type in the For statement and you have Option
Explicit turned on, you must declare the variable before the loop. For example, the following loop
declares the variable i outside of the loop:

Dim i As Integer

For i = 1 To 10
Debug.WriteLine(i)

Next i

You cannot declare the same variable both inside and outside of a loop. If you declare a variable in the
For statement, the variable’s scope is limited to the loop, and code outside of the loop cannot access the
variable.

Declaring the variable in the For statement is a good practice. It limits the scope of the variable so you
don’t need to remember what the variable is for in other pieces of code. It keeps the variable’s declara-
tion close to the code where it is used, so it’s easier to remember the variable’s data type. It also lets you
more easily reuse counter variables without fear of confusion. If you have several loops that need an
arbitrarily named looping variable, they can all declare and use the variable i without interfering with
each other.

The program calculates its start_value and stop_value before the loop begins and it never
recalculates them, even if their values change. For example, the following code loops from 1 to this_
customer.Orders(1).NumItems. The program calculates this_customer.Orders(1).NumItems
before executing the loop and doesn’t recalculate that value even if it later changes. This saves the pro-
gram time, particularly for long expressions such as this one, which could take a noticeable amount of
time to reevaluate each time through a long loop.

217

Program Control Statements

09_571982 ch07.qxd 9/1/05 7:11 PM Page 217

For item_num As Integer = 1 To this_customer.Orders(1).NumItems
this_customer.ProcessItem(item_num)

Next item_num

If you must reevaluate stop_value every time the loop executes, use a While loop.

The Exit For statement allows the program to leave a For loop before it would normally finish. For
example, the following code loops through the employees array. When it finds an entry with IsManager
property set to True, it saves the employee’s index and uses Exit For to immediately stop looping.

Dim manager_index As Integer

For i As Integer = employees.GetLowerBound(0) To _
employees.GetUpperBound(0)

If employees(i).IsManager Then
manager_index = i
Exit For

End If
Next i

The Exit For statement exits only the For loop immediately surrounding the statement. For example, in
the following code, variable i loops from 1 to 5. Within that loop, variable j loops from 1 to 5. If the two
values are equal, the Exit For statement ends the inner loop, but the outer loop continues.

For i As Integer = 1 To 5
For j As Integer = 1 To 5

If i = j Then Exit For
Debug.WriteLine(“(“ & i & “, “ & j & “)”)

Next j
Next i

The following shows this code’s result. You may want to walk through the code either mentally or in the
debugger to convince yourself that this makes sense.

(2, 1)
(3, 1)
(3, 2)
(4, 1)
(4, 2)
(4, 3)
(5, 1)
(5, 2)
(5, 3)
(5, 4)

The Continue For statement makes the loop jump back to its For statement, increment its looping vari-
able, and start the loop over again. This is particularly useful if the program doesn’t need to execute the
rest of the steps within the loop and wants to quickly start the next iteration.

218

Chapter 7

09_571982 ch07.qxd 9/1/05 7:11 PM Page 218

Your code can change the value of the control variable inside the loop, but that’s generally not a good
idea. The For Next loop has a very specific intent, and modifying the control variable inside the loop
violates that intent making the code more difficult to understand and debug. If you must modify the
control variable in more complicated ways than are provided by a For Next loop, use a While loop
instead. Then programmers reading the code won’t expect a simple incrementing loop.

Noninteger For Next Loops
Usually a For Next loop’s control variable is an integral data type such as an Integer or Long, but it can
be any of Visual Basic’s fundamental numeric data types. For example, the following code uses a vari-
able declared as Single to display the values 1.0, 1.5, 2.0, 2.5, and 3.0:

For x As Single = 1 To 3 Step 0.5
Debug.WriteLine(x.ToString(“0.0”))

Next x

Because floating-point numbers cannot exactly represent every possible value, however, these data types
are subject to rounding errors that can lead to unexpected results in For Next loops. The previous code
works as you would expect, at least on my computer. The following code, however, has problems.
Ideally, this code would display values between 1 and 2, incrementing them by 1/7. Because of rounding
errors, however, the value of x after seven trips through the loop is approximately 1.85714316. The pro-
gram adds 1/7 to this and gets 2.0000003065381731. This is greater than the stopping value 2, so the pro-
gram exits the loop and the Debug statement does not execute for x = 2.

For x As Single = 1 To 2 Step 1 / 7
Debug.WriteLine(x)

Next x

One solution to this type of problem is to convert the code into a loop that uses an Integer control vari-
able. Integer variables do not have the same problems with rounding errors that floating-point numbers
do, so you have more precise control over the values used in the loop.

The following code does roughly the same thing as the previous code. It uses an Integer control variable,
however, so this loop executes exactly eight times as desired. The final value printed into the Output
window by the program is 2.

Dim x As Single

x = 1
For i As Integer = 1 To 8

Debug.WriteLine(x)
x += CSng(1 / 7)

Next i

If you look at the value of variable x in the debugger, you will find that its real value during the last trip
through the loop is roughly 2.0000001702989851. If this variable were controlling the For loop, the pro-
gram would see that this value is greater than 2, so it would not display its final value.

219

Program Control Statements

09_571982 ch07.qxd 9/1/05 7:11 PM Page 219

For Each
A For Each loop iterates over the items in a collection, array, or other container class that supports For
Each loops. The syntax is as follows:

For Each variable [As object_type] In group
statements
[Exit For]
statements
[Continue For]
statements

Next [variable]

Here, group is a collection, array, or other object that supports For Each. As in For Next loops, the con-
trol variable must be either declared in or before the For statement.

To support For Each, the group object must implement the System.Collections.IEnumerable
interface. This interface defines a GetEnumerator method that returns an enumerator. For more
information, see the next section, “Enumerators.”

The control variable must be of a data type compatible with the objects contained in the group. If the
group contains Employee objects, the variable could be an Employee object. It could also be a generic
Object or any other class that readily converts into an Employee object. For example, if Employee inher-
its from the Person class, then the variable could be of type Person.

Visual Basic doesn’t automatically understand what kinds of objects are stored in a collection or array
until it tries to use them. If the control variable’s type is not compatible with an object’s type, the program
generates an error when the For Each loop tries to assign the control variable to that object’s value.

For example, the following code creates a collection containing an Employee object and a Customer
object. It then uses a For Each loop to display the name of each object. The control variable emp is of
type Employee. The first time through the loop, the program sets emp equal to the collection’s Employee
object and displays its name as expected. The second time through the loop, the program tries to set emp
equal to the collection’s Customer object. That causes an “invalid cast exception.”

Dim people As New Collection

people.Add(New Employee(“Alice Auxley”))
people.Add(New Customer(“Bob Brentwood”))
For Each emp As Employee In people

Debug.WriteLine(emp.Name)
Next emp

When a collection or array contains more than one type of object (as in the previous example), the
control variable must be of a type that can hold all of the objects. Assuming that the Employee and
Customer classes in the previous example are not derived from a common ancestor class, the code must
use a control variable of type Object, as in the following code:

For Each person As Object In people
Debug.WriteLine(person.Name)

Next person

220

Chapter 7

09_571982 ch07.qxd 9/1/05 7:11 PM Page 220

This code works as long as the Employee and Customer classes both have a Name property. However, if
you have set Option Strict On, the compiler will complain because the generic Object class does not
have a Name method. To avoid this error, you need to convert the generic Object variable into a specific
type that does have the Name method.

The following code shows one way to use specific object types. The program uses the TypeOf statement
to check the control variable’s class type. If the object has type Employee, then the code uses CType to
convert the Object variable into an Employee object. It then uses that object’s Name method. Similarly, if
the object is a Customer, the code uses CType to convert the generic Object into a Customer and uses its
Name method.

Dim emp As Employee
For Each person As Object In people

If TypeOf person Is Employee Then
emp = CType(person, Employee)
Debug.WriteLine(emp.Name)

ElseIf TypeOf person Is Customer Then
Debug.WriteLine(CType(person, Customer).Name)

End If
Next person

You can use the Exit For statement to jump out of a For Each loop early. The following code loops
through the employees collection using TypeOf to examine each object’s type. When it finds an object
that has type Manager, the code saves a reference to the Manager object and uses Exit For to stop
looping.

Dim a_manager As Manager

For Each emp As Employee in employees
If TypeOf emp Is Manager Then

a_manager = CType(emp, Manager)
Exit For

End If
Next emp

The Continue For statement makes the loop jump back to its For statement, fetch the next object from
the collection, and start the loop over again. This is particularly useful if the program doesn’t need to
execute the rest of the steps within the loop and wants to quickly start the next iteration.

You should not rely on the value of the looping variable outside of the loop, even if you declare the vari-
able before the loop begins. After the loop ends in the current version of Visual Basic .NET, the variable
contains a reference to the last object the code processed. If the code uses an Exit For statement, the
variable refers to whatever object the code was processing at the time. If the loop examines all the objects
in the group and finishes normally, the variable refers to the last object in the collection.

This behavior is different from previous versions of Visual Basic, however. In Visual Basic 6, the looping
variable is set to Nothing if the loop examines all the collection’s objects and finishes normally.

To avoid confusion and possibly subtle bugs in future versions of Visual Basic, do not use the control
variable outside of the loop. If you must use one of the objects in the collection later, save a reference to it
in a variable declared outside of the loop, as shown in the previous example.

221

Program Control Statements

09_571982 ch07.qxd 9/1/05 7:11 PM Page 221

You cannot declare the same variable both inside and outside of a For Each loop. If you declare a vari-
able in the For Each statement, the variable’s scope is limited to the loop, and code outside of the loop
cannot access the variable.

Declaring the variable in the For Each statement is a good practice. It limits the scope of the variable, so
you don’t need to remember what the variable is for in other pieces of code. It keeps the variable’s decla-
ration close to the code where it is used, so it’s easier to remember the variable’s data type. It also lets
you more easily reuse counter variables without fear of confusion. If you have several loops that need an
arbitrarily named looping variable, they can all declare and use the variable obj, person or whatever
else makes sense without interfering with each other.

Your code can change the value of the control variable inside the loop, but that has no effect on the
loop’s progress through the collection or array. The loop resets the variable to the next object inside the
group and continues as if you had never changed the variable’s value.

To avoid confusion, you should not change the control variable’s value, because that may lead other pro-
grammers to believe that you are trying to change the way the loop works through the group of objects.
If you must do something more elaborate with an object, assign the control variable to a temporary vari-
able and work with that instead. If you need to move arbitrarily through the group, consider using a
While loop instead of a For Each loop.

Changes to a collection are immediately reflected in the loop. For example, if the statements inside the
loop add a new object to the end of the collection, then the loop continues until it processes the new
item. Similarly if the loop’s code removes an item from the end of the collection (that it has not yet
reached), the loop does not process that item.

The exact effect on the loop depends on whether the item added or removed comes before or after the
object the loop is currently processing. For example, if you remove an item before the current item, the
loop has already examined that item, so there is no change to the loop. If you remove an item after the
current one, the loop doesn’t examine it. If you remove the current item, the loop seems to get confused
and exits without raising an error.

Additions and deletions to an array are not reflected in the loop. If you use a ReDim statement to add
items to the end of the array, the loop does not process them. If you try to access those objects, however,
the program generates an “Index was outside the bounds of the array” error.

If you use ReDim to remove items from the end of the array, the loop processes those items anyway! If
you modify the values in the array, for example, you change an object’s properties or set an array entry
to an entirely new object, the loop sees the changes.

To avoid all these possible sources of confusion, don’t modify a collection or array while a For Each
loop is examining its contents.

One common scenario when dealing with collections is examining every item in the collection and
removing some of them. If you use a For Each loop, removing the loop’s current item makes the loop
exit prematurely.

Another approach that seems like it might work (but doesn’t) is to use a For Next loop, as shown in the
following code. If the code removes an object from the collection, the loop skips the next item because its
index has been reduced by one and the loop has already passed that position in the collection. Worse

222

Chapter 7

09_571982 ch07.qxd 9/1/05 7:12 PM Page 222

still, the control variable i will increase until it reaches the original value of employees.Count. If the
loop has removed any objects, the collection no longer holds that many items. The code tries to access an
index beyond the end of the collection and throws an error.

Dim emp As Employee

For i As Integer = 1 To employees.Count
emp = CType(employees(i), Employee)
If emp.IsManager Then employees.Remove(i)

Next i

One solution to this problem is to use a For Next loop to examine the collection’s objects in reverse
order, as shown in the following example. In this version, the code never needs to use an index after it
has been deleted because it is counting backwards. The index of an object in the collection also doesn’t
change unless that object has already been examined by the loop. The loop examines every item exactly
once, no matter which objects are removed.

For i As Integer = employees.Count To 1 Step -1
emp = CType(employees(i), Employee)
If emp.IsManager Then employees.Remove(i)

Next i

Enumerators
An enumerator is an object that lets you move through the objects contained by some sort of container
class. For example, collections, arrays, and hash tables provide enumerators. This section discusses enu-
merators for collections, but the same ideas apply for other classes that provide enumerators.

You can use an enumerator to view the objects in a collection but not to modify the collection itself.
You can use the enumerator to alter the objects in the collection, but you can generally not use it to add,
remove, or rearrange the objects in the collection.

Initially, an enumerator is positioned before the first item in the collection. Your code can use the enu-
merator’s MoveNext method to step to the next object in the collection. MoveNext returns True if it suc-
cessfully moves to a new object or False if there are no more objects in the collection.

The Reset method restores the enumerator to its original position before the first object, so you can step
through the collection again.

The Current method returns the object that the enumerator is currently reading. Note that Current
returns a generic Object, so you will probably need to use CType to convert the result into a more spe-
cific data type before you use it. Invoking Current throws an error if the enumerator is not currently
reading any object. That happens when the enumerator is first created and it is before the first object,
and after the enumerator has moved past the last object.

The following example uses an enumerator to loop through the items in a collection named
m_Employees. It declares an Employee variable named emp and an IEnumerator object named
employee_enumerator. It uses the collection’s GetEnumerator method to obtain an enumerator for
the collection. The program then enters a While loop. If employee_enumerator.MoveNext returns
True, the enumerator has successfully moved to the next object in the collection. As long as it has read

223

Program Control Statements

09_571982 ch07.qxd 9/1/05 7:12 PM Page 223

an object, the program uses CType to convert the generic object returned by Current into an Employee
object, and it displays the Employee object’s Title, FirstName, and LastName values. When it has fin-
ished processing all of the objects in the collection, employee_enumerator.MoveNext returns False
and the While loop ends.

Dim emp As Employee
Dim employee_enumerator As IEnumerator
employee_enumerator = m_Employees.GetEnumerator()
Do While (employee_enumerator.MoveNext)

emp = CType(employee_enumerator.Current, Employee)
Debug.WriteLine(emp.Title & “ “ & emp.FirstName & “ “ & emp.LastName)

Loop

A For Each loop provides roughly the same access to the items in a container class as an enumerator.
Under some circumstances, however, an enumerator may provide a more natural way to loop through a
container class than a For Each loop. For example, an enumerator can skip several items without exam-
ining them closely. You can also use an enumerator’s Reset method to restart the enumeration. To
restart a For Each loop, you would need to repeat the loop, possibly by placing it inside yet another
loop that determined when to stop looping.

The Visual Basic documentation states that an enumerator is valid only as long as you do not modify the
collection. If you add or remove an object to or from the collection, the enumerator throws an “invalid
operation” exception the next time you use it. In at least some cases, however, this doesn’t seem to be
true, and an enumerator can still work even if you modify its collection. This could lead to extremely
confusing situations, however. To avoid unnecessary confusion, do not modify a collection while you are
accessing it with an enumerator.

The IEnumerable interface defines the features needed for enumerators so any class that implements
the IEnumerable interface provides enumerators. Any class that supports For Each must also imple-
ment the IEnumerable interface, so any class that supports For Each also supports enumerators. A few
of the classes that implement IEnumerable include the following:

Array ArrayList ControlCollection Collection

CollectionBase DataView DictionaryBase DictionaryEntries

Hashtable HybridDictionary ListDictionary MessageQueue

OdbcDataReader OleDbDataReader OracleDataReader Queue

ReadOnlyCollectionBase SortedList SqlDataReader Stack

String StringCollection StringDictionary TableCellCollection

TableRowCollection XmlNode XmlNodeList

Iterators
An iterator is similar in concept to an enumerator. It also provides methods that allow you to step
through the objects in some sort of container object. Iterators are more specialized than enumerators and
work with a particular kind of class. While you can use a generic IEnumerator object to step through
the items contained in any class that implements IEnumerable (an array, collection, hash table, or what-
ever), a certain iterator class is associated with a specific container class.

224

Chapter 7

09_571982 ch07.qxd 9/1/05 7:12 PM Page 224

For example, a GraphicsPath object represents a series of connected lines and curves. A
GraphicsPathIterator object can step through the line and curve data contained in a GraphicsPath
object.

Iterators are much more specialized than enumerators. How you use them depends on what you need to
do and on the kind of iterator, so they are not described in detail here.

Do Loop Statements
Visual Basic .NET supports three basic forms of Do Loop statements. The first form is a loop that repeats
forever. The syntax is as follows:

Do
statements
[Exit Do]
statements
[Continue Do]
statements

Loop

This kind of Do Loop executes the code it contains until the program somehow ends the loop. The fol-
lowing loop processes work orders. It calls the WorkOrderAvailable function to see if a work order is
available. If an order is available, the code calls ProcessWorkOrder to process it. The code then repeats
the loop to look for another work order.

Do
‘ See if a work order is available.
If WorkOrderAvailable() Then

‘ Process the next work order.
ProcessWorkOrder()

End If
Loop

This example keeps checking for work orders forever. Most programs include some method for the loop
to end so that the program can eventually stop. For example, the loop might use the Exit Do statement
described shortly to end the loop if the user clicks a Stop button.

The second and third forms of Do Loop statements both include a test to determine whether they should
continue looping. The difference between the two versions is where they place the test.

The second version of Do Loop places its test at the beginning, so the test is evaluated before the code is
executed even once. If the test initially indicates that the loop should not continue, the statements inside
the loop are never executed. The syntax is as follows:

Do {While | Until} condition
statements
[Exit Do]
statements
[Continue Do]
statements

Loop

225

Program Control Statements

09_571982 ch07.qxd 9/1/05 7:12 PM Page 225

The final version of Do Loop places its test at the end. In this version, the statements inside the loop are
executed before the loop performs its test. That means that the code is always executed at least once. The
syntax is as follows:

Do
statements
[Exit Do]
statements
[Continue Do]
statements

Loop {While | Until} condition

If the code uses the While keyword, the loop executes as long as the condition is true. If the code uses
the Until keyword, the loop executes as long as the condition is false. Note that the statement Until
condition is equivalent to While Not condition. Visual Basic provides these two variations so that
you can pick the one that makes your code more readable. Use the one that makes the most sense to you.

The Exit Do statement allows the program to leave a loop before it would normally finish. For example,
the following code uses an enumerator to look through the m_Employees collection. If it finds an
Employee object that has title Manager, it exits the Do While Loop. Note that the loop eventually exits
whether it finds a manager or not, so the code must later check to see if it found a manager.

Dim emp As Employee
Dim employee_enumerator As IEnumerator
employee_enumerator = m_Employees.GetEnumerator()
Do While (employee_enumerator.MoveNext)

emp = CType(employee_enumerator.Current, Employee)
If emp.Title = “Manager” Then Exit Do

Loop

‘ Process the Manager.
If emp.Title = “Manager” Then ...

The Exit Do statement exits only the Do Loop immediately surrounding the statement. For example, the
following code makes the variable R run from 1 to 10. For each value of R, the program makes variable C
run from 1 to 100. Within the inner loop, the program checks cost(R, C). If that value is greater than
100, the program displays R, C, and cost(R, C) and then uses Exit Do to stop the inner loop. The loop
over C ends and the code continues with the next value of R.

R = 1
Do While R < 10

C = 1
Do While C < 100

If cost(R, C) > 100 Then
Debug.WriteLine(“(“ & R & “, “ & C & “) = “ & cost(R, C))

End If
Loop

Loop

The Continue Do statement makes the loop jump back to its Do statement and start the loop over again.
This is particularly useful if the program doesn’t need to execute the rest of the steps within the loop and
wants to quickly start the next iteration. Unlike a For loop, the Do loop does not automatically increment

226

Chapter 7

09_571982 ch07.qxd 9/1/05 7:12 PM Page 226

a looping variable or move to the next object in a collection. The code must explicitly change the loop’s
condition before calling Continue Do or else the loop will continue forever.

While End
A While End loop is equivalent to a Do While Loop. The syntax is as follows:

While condition
statements
[Exit While]
statements
[Continue While]
statements

End While

This is equivalent to the following:

Do While condition
statements
[Exit Do]
statements

Loop

The End While statement exits a While End loop just as an Exit Do statement exits a Do While Loop.

The difference between While End and Do While Loop is stylistic, and you can use whichever seems
clearer to you. Because Do Loop provides more flexibility, having four different versions using While or
Until at the start or finish of the loop, you might want to stick to them for consistency’s sake.

Previous versions of Visual Basic ended While loops with the Wend keyword, as in the following Visual
Basic 6 code:

i = 1
While i < 5

Debug.Print i
i = i + 1

Wend

The Wend keyword is no longer supported, so you should use End While instead.

Exit and Continue
The Exit statement lets you end a loop early. The Continue statement lets you jump to the start of a loop
before reaching its end.

Both of these statements work on the innermost loop of the appropriate type. For example, the following
code contains a For loop, that contains Do loop, that contains a second For loop. Within the innermost
loop, an Exit For statement exits the inner For loop. An Exit Do statement exits the Do loop. There is
no simple Exit statement that can exit the outer For loop from this position.

227

Program Control Statements

09_571982 ch07.qxd 9/1/05 7:12 PM Page 227

For i As Integer = 1 To 3
Dim j As Integer = 1
Do While j < 3

For k As Integer = 1 To 3
‘...
If test1 Then Exit For ‘ Exits the For K loop.
‘...
If test2 Then Exit Do ‘ Exits the Do.
‘...

Next k
Loop

Next i

Similarly, a Continue statement continues the innermost loop of the appropriate type: For, Do, or While.

GoTo
A GoTo statement unconditionally tells the program to jump to a specific location in the code. Because it
tells the program what to do, it is a program control statement. The syntax is as follows:

GoTo line_label
...

line_label:
...

While GoTo by itself isn’t a decision statement, it is often used to mimic a decision statement. For exam-
ple, the following code fragment uses GoTo to mimic an If Then Else statement. It examines the
purchase_total variable. If purchase_total is less than 1000, the code jumps to the line labeled
SmallOrder. If purchase_total is greater than or equal to 1000, the program continues to execute the
code that processes a larger order.

If purchase_total < 1000 Then GoTo SmallOrder
‘ Process a large order.
...
Exit Sub

SmallOrder:
‘ Process a small order.
...

The following code does roughly the same thing as the previous version but without the GoTo statement:

If purchase_total < 1000 Then
‘ Process a large order.
...

Else
‘ Process a small order.
...

End If

228

Chapter 7

09_571982 ch07.qxd 9/1/05 7:12 PM Page 228

Similarly, GoTo is sometimes used to build a loop. The following code uses GoTo to jump backward in
the code to call subroutine DoSomething 10 times:

Dim i As Integer = 1
StartLoop:

DoSomething()
i += 1
If i <= 10 Then GoTo StartLoop

The following code does the same thing without the GoTo statement:

For i As Integer = 1 To 10
DoSomething()

Next i

The problem with the GoTo statement is its flexibility. By using GoTo in a haphazard way, an undisci-
plined programmer can make the program jump all over the place with little rhyme or reason. This can
lead to “spaghetti code” (so called because a diagram showing the program’s flow of control can look
like a pile of spaghetti) that is extremely difficult to understand, debug, and maintain.

Many programming groups prohibit any use of GoTo because it can lead to this kind of code. Some even
believe GoTo should be removed from the Visual Basic language. You can always use If Then Else
statements, For Next loops, While loops, and other control statements in place of GoTo statements, so
GoTo is not absolutely necessary.

However, some programmers feel that GoTo simplifies code under certain very specific circumstances.
The following code begins by performing some sort of initialization. It may open databases, create tem-
porary files, connect to the Internet, and perform other startup chores. It then executes a series of tasks,
each of which may fail or otherwise make it pointless for the program to continue. If any of these steps
sets the variable should_stop to True, the program uses a GoTo statement to jump to its clean up code.
This code closes any open database, deletes temporary files, closes permanent files, and performs any
other necessary clean up chores.

‘ Get started, open database, open files, etc.
Initialize()

‘ Perform a long series of tasks.
DoStuff1()
If should_stop Then GoTo CleanUp

DoStuff2()
If should_stop Then GoTo CleanUp

DoStuff3()
If should_stop Then GoTo CleanUp

...

CleanUp:
‘ Close database, delete tempporary files, etc.
PerformCleanUp()

229

Program Control Statements

09_571982 ch07.qxd 9/1/05 7:12 PM Page 229

The GoTo statement in this code lets the program jump to the clean-up code any time it needs to stop
performing its tasks. That may be because a task failed, the user canceled the operation, or all the tasks
are finished.

Note that this is a very specific use of GoTo. The code only jumps forward, never backward. It also only
jumps to clean-up code, not to some arbitrary point in the code. These facts help make the GoTo state-
ment easier to understand and prevent spaghetti code.

The following code does the same thing as the previous version without using GoTo. At each step, the
program checks the value of should_stop to see if it should continue working through its tasks.

‘ Get started, open database, open files, etc.
Initialize()

‘ Perform a long series of tasks.
DoStuff1()

If Not should_stop Then DoStuff2()

If Not should_stop Then DoStuff3()

‘ Close database, delete tempporary files, etc.
PerformCleanUp()

The following code shows another version that doesn’t use GoTo. This version places the code that for-
merly contained the GoTo statement in a new subroutine. Instead of using GoTo, this routine uses Exit
Sub to stop performing tasks early if necessary.

Sub DoWork()
‘ Get started, open database, open files, etc.
Initialize()

‘ Perform all of the tasks.
PerformTasks()

‘ Close database, delete tempporary files, etc.
PerformCleanUp()

End Sub

‘ Perform a long series of tasks.
Sub PerformTasks()

DoStuff1()
If should_stop Then Exit Sub

DoStuff2()
If should_stop Then Exit Sub

DoStuff3()
If should_stop Then Exit Sub

End Sub

230

Chapter 7

09_571982 ch07.qxd 9/1/05 7:12 PM Page 230

Conceptually, an Exit Sub statement is little different from a GoTo statement. After all, it, too, is an
unconditional jump command. However, Exit Sub has a very specific, well-known effect: It makes the
program stop executing the current subroutine. It cannot make the program jump around arbitrarily,
possibly leading to spaghetti code.

If you ever feel tempted to use GoTo, take a few moments to think about ways you might rewrite the
code. If the only ways you can think of to rewrite the code are more confusing than the original version,
go ahead and use GoTo. You should probably add some fairly detailed comments to ensure that the GoTo
statement doesn’t cause trouble later.

Summary
Control statements form the heart of any program. Decision statements determine what commands are
executed, and looping statements determine how many times they are executed.

Single-line and multiline If Then statements, as well as Select Case, are the most commonly used
decision statements. IIf and Choose statements are often more confusing and sometimes slower, so
usually you should use If Then and Select Case statements instead. Under some specific circum-
stances, however, IIf and Choose may make your code more readable. Use your judgment and pick
the method that makes the most sense in your application.

For Next, For Each, and Do Loop are the most common looping statements. Some container classes also
support enumerators that let you step through the items in the container. An enumerator can be more
natural than a For Each loop under some circumstances.

While End is equivalent to Do While Loop. You can use whichever you think makes more sense, although
you might want to use Do While Loop because it is more consistent with the other forms of Do Loop.

Finally, the GoTo statement is often used in a decision statement or to create a loop. Unfortunately,
undisciplined use of GoTo statements can lead to “spaghetti code” that is extremely hard to understand,
debug, and maintain. To avoid later frustration, you should comment GoTo statements whenever possi-
ble. Some programmers use GoTo in very specialized cases, while others avoid it at all costs. You can
always rewrite code to avoid GoTo statements, and usually that is better in the long run.

Using the control statements described in this chapter, you can build extremely complex and powerful
applications. In fact, you can build applications that are so complex that it is difficult to ensure that they
work correctly. Even a relatively simple application sometimes encounters errors. For example, it might
try to use an array index that lies outside of the array’s bounds or to modify a collection while using an
enumerator for it. Chapter 8, “Error Handling,” explains how you can protect an application from these
and other unexpected errors and let it take action to correct any problems or at least not crash.

231

Program Control Statements

09_571982 ch07.qxd 9/1/05 7:12 PM Page 231

09_571982 ch07.qxd 9/1/05 7:12 PM Page 232

Error Handling
While it is theoretically possible to write a program that perfectly predicts every possible situation
that it might encounter, in practice that’s very difficult for nontrivial programs. For large applica-
tions, it is very difficult to plan for every eventuality. Errors in the program’s design and implemen-
tation can introduce bugs that give unexpected results. Users and corrupted databases may give the
application values that it doesn’t know how to manage.

Similarly, changing requirements over time may introduce data that the application was never
intended to handle. The “Y2K bug” is a good example. When engineers wrote accounting, auto
registration, financial, inventory, and other systems in the 1960s and 1970s, they didn’t think their
programs would still be running in the year 2000. At the time, disk storage and memory were rela-
tively expensive, so they stored years as 2-byte values (for example, “89” meant “1989”). When the
year 2000 rolled around, the applications couldn’t tell whether the value 01 meant the year 1901 or
2001. In one humorous case, an auto registration system started issuing “horseless carriage”
license plates to new cars because it thought cars built in 00 must be antiques.

The Y2K problem wasn’t really a bug. It was a case of software used with data that wasn’t part of
its original design.

This chapter explains different kinds of exceptional conditions that can arise in an application.
These range from unplanned data (as in the Y2K problem) to bugs where the code is just plain
wrong. With some advanced planning, you can build a robust application that can keep running
gracefully, even when the unexpected happens.

Bugs versus Unplanned Conditions
Several different types of unplanned condition can derail an otherwise high-quality application.
How you should handle these conditions depends on their nature.

For this discussion, a bug is a mistake in the application code. Some bugs become apparent right
away and are easy to fix. These usually include simple typographic errors and cases where you
misuse an object (for example, by using the wrong control property). Other bugs are subtler and
may only be detected long after they occur. For example, a data-entry routine might place invalid
characters into a rarely used field in a Customer object. Only later when the program tries to
access that field will you discover the problem. This kind of bug is difficult to track down and fix,
but there are some proactive steps you can take to make these sorts of bugs easier to find.

10_571982 ch08.qxd 9/1/05 7:17 PM Page 233

As an historical note, the term “bug” has been used since at least the time of the telegraph to mean some
sort of defect. Probably the origin of the term in computer science was an actual moth that was caught
between two relays in an early computer in 1945. For a bit more information including a picture of this
first computer bug, see www.jamesshuggins.com/h/tek1/first_computer_bug.htm.

An unplanned condition is some predictable condition that you don’t want to happen, but that you know
could happen despite your best efforts. For example, there are many ways that a simple printing opera-
tion can fail. The printer might be unplugged, disconnected from its computer, disconnected from the
network, out of toner, out of paper, experiencing a memory fault, clogged by a paper jam, or just be plain
broken. These are not bugs, because the application software is not at fault. There is some condition out-
side of the program that must be fixed.

Another common unplanned condition occurs when the user enters invalid data. You may want the user
to enter a value between 1 and 10 in a text box, but the user might enter 0, 9999 or “lunch” instead.

Catching Bugs
By definition, bugs are unplanned. No programmer sits down and thinks, “Perhaps I’ll put a bug in this
variable declaration.”

Because bugs are unpredictable, you cannot know ahead of time where a bug will lie. However, you can
watch for behavior in the program that indicates that a bug may be present. For example, suppose that
you have a subroutine that sorts a purchase order’s items by cost. If the routine receives an order with
100,000 items, something is probably wrong. If one of the items is a computer keyboard with a price of
$73 trillion, something is probably wrong. If the customer who placed the order doesn’t exist, something
is probably wrong.

This routine could go ahead and sort the 100,000 items with prices ranging from a few cents to $73 tril-
lion. Later, the program would try to print a 5000-page invoice with no shipping or billing address. Only
then would the developers realize that there is a problem.

Rather than trying to work around the problematic data, it would be better for the sorting routine to
immediately tell developers that something is wrong so that they can start trying to find the cause of the
problem. Bugs are easier to find the sooner they are detected. This bug will be easier to find if the sorting
routine notices it, rather than waiting until the application tries to print an invalid invoice. Your routines
can protect themselves and the program as a whole by proactively validating their inputs and outputs,
and reporting anything suspicious to developers.

Some developers object to making routines spend considerable effort validating data that they “know” is
correct. After all, one routine generated this data and passed it to another, so you know that it is correct
because the first routine did its job properly. That’s only true if every routine that touches the data works
perfectly. Since it’s difficult for any nontrivial program to anticipate every possible condition, you cannot
assume that all the routines are perfect and that the data remains uncorrupted.

Many companies these days use automated testing tools to try to flush out problems early. Regression
testing tools can execute code to verify that its outcome isn’t changed after you have made modifications
to other parts of the application. If you build a suite of testing routines to validate data and subroutines’
results, you may be able to work them into an automated testing system, too.

234

Chapter 8

10_571982 ch08.qxd 9/1/05 7:17 PM Page 234

To prevent validation code from slowing down the application, you can use the Debug object’s Assert
method to check for strange conditions. When you are debugging the program, these statements throw
an error if they detect something suspicious. When you make a release build to send to customers, the
Debug.Assert code is removed from the application. That makes the application faster and doesn’t
inflict cryptic error messages on the user.

You can also use the DEBUG, TRACE, and CONFIG compiler constants to add other input and output vali-
dation code.

The following subroutine starts by validating its input. It verifies that the Order object it is passed has
an Items collection and that its Customer variable is not Nothing. It also verifies that the order contains
fewer than 100 items. If a larger order comes along during testing, developers can increase this number
to 200 or whatever value makes sense, but there’s no need to start with an unreasonably large default.

Before the subroutine exits, it loops through the sorted items to verify that they are correctly sorted. If
any item has cost less than the one before, the program throws an error. Because this test is contained
within an #If DEBUG Then statement, this code is removed from release builds.

Private Sub SortOrderItems(ByVal the_order As Order)
‘ Validate input.
Debug.Assert(the_order.Items IsNot Nothing, “No items in order”)
Debug.Assert(the_order.Customer IsNot Nothing, “No customer in order”)
Debug.Assert(the_order.Items.Count < 100, “Too many order items”)
...

‘ Sort the items.
...

‘ Validate output.
#If DEBUG Then

‘ Verify that the items are sorted.
Dim order_item1 As OrderItem
Dim order_item2 As OrderItem
order_item1 = DirectCast(the_order.Items(1), OrderItem)
For i As Integer = 2 To the_order.Items.Count

order_item2 = DirectCast(the_order.Items(i), OrderItem)
Debug.Assert(order_item1.Price <= order_item2.Price, _

“Order items not properly sorted”)
order_item1 = order_item2

Next i
#End If
End Sub

After you have tested the application long enough, you should have discovered most of these types of
errors. When you make the release build, the compiler automatically removes the validation code, making
the finished executable smaller and faster.

Catching Unexpected Conditions
While you don’t want an unexpected condition to happen, with some careful thought, you can predict
where an unexpected condition might occur. Typically, these situations arise when the program must

235

Error Handling

10_571982 ch08.qxd 9/1/05 7:17 PM Page 235

work with something outside of its own code. For example, when the program needs to access a file,
printer, Web page, floppy disk, or CD-ROM, that item may be unavailable. Similarly, whenever the
program takes input from the user, the user may enter the wrong data.

Notice how this differs from the bugs described in the previous section. After sufficient testing, you should
have found and fixed most of the bugs. No amount of testing can remove the possibility of unexpected
conditions. No matter what code you use, the user may still remove a floppy disk from the drive before the
program is ready.

Whenever you know that an unexpected condition might occur, you should write code to protect the
program from dangerous conditions. It is generally better to test for these conditions explicitly rather
than simply attempting to perform whatever action you were planning and then catching an error if one
occurs. Testing for problem conditions generally gives you more complete information about what’s
wrong. It’s also usually faster than catching an error because the structured error handling described
shortly comes with considerable overhead.

For example, the following statement sets an integer variable using the value the user entered in a text
box:

Dim num_items As Integer = Integer.Parse(txtNumItems.Text)

The user might enter a valid value in the text box. Unfortunately, the user may also enter something that
is not a number, a value that is too big to fit in an integer, or zero or a negative number when you are
expecting a positive number. The user may even leave the field blank.

The following code shows an improved version of this declaration. It checks that the field is not blank and
uses the IsNumeric function to verify that the field contains a vaguely numeric value. Unfortunately, the
IsNumeric function doesn’t exactly match the behavior of functions such as Integer.Parse. IsNumeric
returns False for values such as &H10, which is a valid hexadecimal value that Integer.Parse can
correctly interpret. IsNumeric also returns True for values such as 123456789012345 that lie outside of the
values allowed by integers. Because IsNumeric doesn’t exactly match Integer.Parse, the program still
needs to use a Try Catch block to protect itself when it actually tries to convert the string into an integer.
The code finishes by verifying that the value lies within a reasonable bound. If the value passes all of these
checks, the code uses the value.

‘ Check for blank entry.
Dim num_items_txt As String = txtNumItems.Text
If num_items_txt.Length < 1 Then

MessageBox.Show(“Please enter Num Items”)
txtNumItems.Focus()
Exit Sub

End If

‘ See if it’s numeric.
If Not IsNumeric(num_items_txt) Then

MessageBox.Show(“Num Items must be a number”)
txtNumItems.Select(0, num_items_txt.Length)
txtNumItems.Focus()
Exit Sub

End If

‘ Assign the value.

236

Chapter 8

10_571982 ch08.qxd 9/1/05 7:17 PM Page 236

Dim num_items As Integer
Try

num_items = Integer.Parse(txtNumItems.Text)
Catch ex As Exception

MessageBox.Show(“Error in Num Items.” & vbCrLf & ex.Message)
txtNumItems.Select(0, num_items_txt.Length)
txtNumItems.Focus()
Exit Sub

End Try

‘ Check that the value is between 1 and 100.
If num_items < 1 Or num_items > 100 Then

MessageBox.Show(“Num Items must be between 1 and 100”)
txtNumItems.Select(0, num_items_txt.Length)
txtNumItems.Focus()
Exit Sub

End If

A typical subroutine might need to read and validate many values, and retyping this code would be
cumbersome. A better solution is to move it into the function shown in the following code:

‘ If the TextBox doesn’t contain an integer between min_value and max_value,
‘ display an error message, set focus to the TextBox, and return False.
‘ Otherwise return True and return the integer through the ByRef
‘ parameter result.
Private Function IsValidInteger(ByRef result As Integer, _
ByVal txt As TextBox, ByVal field_name As String, _
Optional ByVal min_value As Integer = Integer.MinValue, _
Optional ByVal max_value As Integer = Integer.MaxValue) As Boolean

‘ Check for blank entry.
Dim num_items_txt As String = txt.Text
If num_items_txt.Length < 1 Then

MessageBox.Show(“Please enter “ & field_name & “.”)
txt.Focus()
Return False

End If

‘ See if it’s numeric.
If Not IsNumeric(num_items_txt) Then

MessageBox.Show(field_name & “ must be a number.”)
txt.Select(0, num_items_txt.Length)
txt.Focus()
Return False

End If

‘ Assign the value.
Try

result = Integer.Parse(txt.Text)
Catch ex As Exception

MessageBox.Show(“Error in “ & field_name & “.” & _
vbCrLf & ex.Message)

txt.Select(0, num_items_txt.Length)
txt.Focus()
Return False

237

Error Handling

10_571982 ch08.qxd 9/1/05 7:17 PM Page 237

End Try

‘ Check that the value is between min_value and max_value.
If result < min_value Or result > max_value Then

MessageBox.Show(field_name & “ must be between “ & _
min_value.ToString & “ and “ & max_value.ToString & “.”)

txt.Select(0, num_items_txt.Length)
txt.Focus()
Return False

End If

‘ The value is okay.
Return True

End Function

Now the program can use this function, as in the following code:

Dim num_items As Integer
If Not IsValidInteger(num_items, txtNumItems, “Num Items”, 1, 100) Then Exit Sub
...

You can write similar routines to validate other types of data fields such as phone numbers, e-mail
addresses, street addresses, and so forth.

Global Exception Handling
Normally, you should try to catch an error as close as possible to the place where it occurs. If an error
occurs in a particular subroutine, it will be easiest to fix the bug if you catch it in that subroutine.

However, bugs often arise in unexpected places. Unless you protect every subroutine with error-
handling code (a fairly common strategy), a bug may arise in code that you have not protected. In early
versions of Visual Basic, you could not catch the bug, so the application crashed. In Visual Basic 2005,
however, you can define a global error handler to catch any bug that isn’t caught by other error-handling
code.

To define application-level event handlers such as this one, double-click My Project in the Project
Explorer. Open the Application tab and click the View Application Events button. This opens a code
window for application-level events.

In the left drop-down list, select “(MyApplication Events).” Then in the right drop-down list, you can
select one of several events including NetworkAvailabilityChanged, Shutdown, Startup,
StartupNextInstance, and UnhandledException. Select the last of these commands to open the
UnhandledException event handler.

In the event handler, you can take whatever action is appropriate for the error. Since you probably didn’t
anticipate the error, there’s usually little chance that the program can correct it properly. However, you
can at least log the error and possibly save data before shutting down the application.

The event parameter e has an ExitApplication property that you can set to True or False to tell
Visual Basic whether the application should terminate.

238

Chapter 8

10_571982 ch08.qxd 9/1/05 7:17 PM Page 238

The following code displays a message giving the unhandled exception’s error message. It then sets
e.ExitApplication to False, so the program keeps running.

Private Sub MyApplication_UnhandledException(_
ByVal sender As Object, ByVal e As _
Microsoft.VisualBasic.ApplicationServices.UnhandledExceptionEventArgs) _
Handles Me.UnhandledException

MessageBox.Show(“Exception caught globally” & vbCrLf & _
e.Exception.Message)

e.ExitApplication = False
End Sub

When you run the application in the IDE, Visual Basic stops execution in the debugger when it reaches the
statement that causes the error. If you run the compiled executable, however, the UnhandledException
event fires and the global error-handler runs.

Structured Error Handling
Visual Basic .NET introduced structured error handling using the Try block. The syntax is as follows:

Try
try_statements...

[Catch ex As exception_type_1
exception_statements_1...]

[Catch ex As exception_type_2
exception_statements_2...]

...
[Catch

final_exception_statements...]
[Finally

finally_statements...]
End Try

The program executes the code in the try_statements block. If any of that code throws an exception, the
program jumps to the first Catch statement.

If the exception matches exception_type_1, the program executes the code in exception_statements_1.
The exception type might match the Catch statement’s exception class exactly, or it might be a subclass
of the listed class. For example, suppose that the code in the try_statements block performs a calculation
that divides by zero. That raises a DivideByZeroException. That class inherits from the
ArithmeticException class, which inherits from SystemException, which inherits from Exception.
That means the code would stop at the first Catch statement it finds that looks for
DivideByZeroException, ArithmeticException, or SystemException.

If the raised exception does not match the first exception type, the program checks the next Catch state-
ment. The program keeps comparing the exception to Catch statements until it finds one that applies, or
it runs out of Catch statements.

If no Catch statement matches the exception, the exception “bubbles up” to the next level in the call
stack and Visual Basic moves to the routine that called the current one. If that routine has appropriate

239

Error Handling

10_571982 ch08.qxd 9/1/05 7:17 PM Page 239

error-handling code, it deals with the error. If that routine can’t catch the error, then the exception bub-
bles up again until Visual Basic eventually either finds error-handling code that can catch the exception,
or it runs off the top of the call stack. If it runs off the call stack, Visual Basic calls the global
UnhandledException event handler described in the previous section, if one exists. If there is no
UnhandledException event handler, the program crashes.

If you include a Catch statement with no exception type, that block matches any exception. If the raised
exception doesn’t match any of the previous exception types, the program executes the final_exception_
statements block of code. Note that the statement Catch ex As Exception also matches all exceptions, so
it’s just good as Catch by itself. It also gives you easy access to the exception object’s properties and
methods.

There are several ways you can figure out what exception classes to use in Catch statements. First, you
can spend a lot of time digging through the online help. An easier method is to let the program crash
and then look at the error message it produces. Figure 8-1 shows the error message a program throws
when it tries to convert the non-numeric string “TextBox1” into an integer with Integer.Parse. From
this message it’s easy to see that the program should look for an FormatException.

Figure 8-1: When a program crashes, the message it generates tells you the type of exception it raised.

240

Chapter 8

10_571982 ch08.qxd 9/1/05 7:17 PM Page 240

Another way to decide what types of exceptions to catch is to place a final generic Catch ex As
Exception statement at the end of the Catch list. Place code inside that Catch block that displays either
the exception’s type name (use TypeName) or the result of its ToString method. When you encounter
new exception types, you can give them their own Catch statements and take more specific action
appropriate to different exception types.

In some cases, it may not be possible to take meaningful action when you catch certain exceptions.
For example, if a program uses up all of the available memory, Visual Basic throws an
OutOfMemoryException. If there is no memory available, then you may have trouble doing anything
useful. Similarly, if there’s a problem with the file system, you may be unable to write error descriptions
into a log file.

After it has finished running the code in try_statements and it has executed any necessary exception code
in a Catch block, the program executes the code in finally_statements. You can use the Finally section to
execute code whether the code in try_statements succeeds or fails.

You do not need to include any Catch statements in a Try block, but leaving them all out defeats the
Try block’s purpose. If the try_statements raise an error, the program doesn’t have any error code to
execute, so it sends the error up the call stack. Eventually, the program finds an active error handler or
the error pops off the top of the stack and the program crashes. You may as well not bother with the Try
block if you aren’t going to use any Catch sections.

A Try block must include at least one Catch or Finally section, although those sections do not need to
contain any code. For example, the following Try block calls subroutine DoSomething and uses an
empty Catch section to ignore any errors that occur:

Try
DoSomething()

Catch
End Try

Using an empty Finally section is legal but not terribly useful. The following code doesn’t protect the
program from any exceptions and doesn’t do anything in the Finally block. You may as well just call
the DoSomething subroutine without a Try block.

Try
DoSomething()

Finally
End Try

Exception Objects
When a Catch statement catches an exception, its exception variable contains information about the
error that raised the exception. Different exception classes may provide different features, but they all
provide the basic features defined by the Exception class from which they are all derived. The follow-
ing table lists the most commonly used Exception class properties and methods.

241

Error Handling

10_571982 ch08.qxd 9/1/05 7:17 PM Page 241

Item Purpose

InnerException The exception that caused the current exception. For example, suppose that
you write a tool library that catches an exception and then throws a new
custom exception describing the problem in terms of your library. You
should set InnerException to the exception that you caught before you
throw the new exception.

Message Returns a brief message that describes the exception.

Source Returns the name of the application or object that threw the exception.

StackTrace Returns a string containing a stack trace giving the program’s location
when the error occurred.

TargetSite Returns the name of the method that threw the exception.

ToString Returns a string describing the exception and including the stack trace.

In the following code, the btnCalculate_Click event handler calls subroutine
CalculateEmployeeSalaries within a Try block. That routine calls subroutine CheckVacationPay,
which performs a calculation that divides by zero. When the program encounters the error, it looks for an
active error handler in subroutine CheckVacationPay. It doesn’t find one so the code travels up the call
stack to subroutine CalculateEmployeeSalaries and looks for an error handler there. Again, the pro-
gram doesn’t find one, so it moves up the call stack to subroutine Calculate. There it finds an active Try
block so it jumps to the block’s Catch statements. The Catch statement here looks for a generic Exception
object so it matches any exception. The code displays the exception’s Message, StackTrace, and
ToString values.

Private Sub btnCalculate_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCalculate.Click

Try
CalculateEmployeeSalaries()

Catch ex As Exception
Debug.WriteLine(“***********”)
Debug.WriteLine(ex.Message)
Debug.WriteLine(“***********”)
Debug.WriteLine(ex.StackTrace)
Debug.WriteLine(“***********”)
Debug.WriteLine(ex.ToString)
Debug.WriteLine(“***********”)

End Try
End Sub

Private Sub CalculateEmployeeSalaries()
CheckVacationPay()

End Sub

Private Sub CheckVacationPay()
Dim i As Integer
Dim j As Integer

i = 1 \ j
End Sub

242

Chapter 8

10_571982 ch08.qxd 9/1/05 7:17 PM Page 242

The following text shows this program’s output. The exception’s Message property returns the string
“Attempted to divide by zero.” The StackTrace method returned a series of strings listing the routines
that called each other on the way to the error. The lines are broken to fit here but each appears on a sin-
gle line in the program’s actual output. Each line shows the file and line number where the subroutine
calls occurred. This program was called StackTraceTest so that name prefixes all of the routine names.
For instance, StackTraceTest.Form1.CheckVacationPay is the CheckVacationPay subroutine in the
Form1 module in project StackTraceTest. The exception’s ToString method returned a brief message
describing the error followed by a stack trace.

Attempted to divide by zero.

at ShowExceptionInfo.Form1.CheckVacationPay() in C:\Documents and
Settings\Rod\Local Settings\Application Data\Temporary
Projects\ShowExceptionInfo\Form1.vb:line 25

at ShowExceptionInfo.Form1.CalculateEmployeeSalaries() in C:\Documents and
Settings\Rod\Local Settings\Application Data\Temporary
Projects\ShowExceptionInfo\Form1.vb:line 18

at ShowExceptionInfo.Form1.btnCalculate_Click(Object sender, EventArgs e) in
C:\Documents and Settings\Rod\Local Settings\Application Data\Temporary
Projects\ShowExceptionInfo\Form1.vb:line 5

System.DivideByZeroException: Attempted to divide by zero.

at ShowExceptionInfo.Form1.CheckVacationPay() in C:\Documents and
Settings\Rod\Local Settings\Application Data\Temporary
Projects\ShowExceptionInfo\Form1.vb:line 25

at ShowExceptionInfo.Form1.CalculateEmployeeSalaries() in C:\Documents and
Settings\Rod\Local Settings\Application Data\Temporary
Projects\ShowExceptionInfo\Form1.vb:line 18

at ShowExceptionInfo.Form1.btnCalculate_Click(Object sender, EventArgs e) in
C:\Documents and Settings\Rod\Local Settings\Application Data\Temporary
Projects\ShowExceptionInfo\Form1.vb:line 5

The StackTrace and ToString values can help developers find a bug, but they can be intimidating to
end users. Even the abbreviated format used by the exception’s Message property is usually not very
useful to a user. If the user clicked the “Find Outstanding Invoices” button, the message “Attempted to
divide by zero” doesn’t really tell the user what the problem is or what to do about it.

When a program catches an error, a good strategy is to record the full ToString message in a log file or
e-mail it to a developer. Then display a message that recasts the error message in terms that the user can
understand. For example, the program might say the following: “Unable to total outstanding invoices. A
bug report has been sent to the development team.” The program should then try to continue as grace-
fully as possible. It may not be able to finish this calculation, but it should not crash, and it should allow
the user to continue working on other tasks if possible.

StackTrace Objects
An exception object’s ToString and StackTrace methods return textual representations of the program’s
stack trace. Your code can also use StackTrace objects to examine the program’s execution position with-
out generating an error.

243

Error Handling

10_571982 ch08.qxd 9/1/05 7:17 PM Page 243

In the following code, the btnCalculate_Click event handler calls subroutine
CalculateEmployeeSalaries, which calls subroutine CheckVacationPay, which calls subroutine
ShowCallStack. Subroutine ShowCallStack creates a new CallStack object, passing it the parameter
True to indicate that it should generate file name and line number information for the stack trace. The
CallStack object contains an ordered series of StackFrame objects that represent the programs subrou-
tine calls. Subroutine ShowCallStack loops through the StackFrame objects, displaying the routine
names, file names, and line numbers for each.

Imports System.Diagnostics
...
Private Sub btnCalculate_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCalculate.Click

CalculateEmployeeSalaries()
End Sub

Private Sub CalculateEmployeeSalaries()
CheckVacationPay()

End Sub

Private Sub CheckVacationPay()
ShowCallStack()

End Sub

‘ Loop through the call stack from the bottom up.
Private Sub ShowCallStack()

‘ Create a StackTrace object with
‘ file names and line numbers.
Dim stack_trace As New System.Diagnostics.StackTrace(True)

‘ Display the frame information.
For i As Integer = 0 To stack_trace.FrameCount - 1

With stack_trace.GetFrame(i)
Debug.WriteLine(_

“Method: “ & .GetMethod().ToString & _
“, File: ‘“ & _
.GetFileName() & _
“‘, Line: “ & .GetFileLineNumber())

End With
Next i

End Sub

The following text shows the program’s output. In this example, subroutine ShowCallStack was called
by CheckVacationPay, which was called by CalculateEmployeeSalaries, which was called by the
btnCalculate_Click event handler. Beyond that, the code moves into the Visual Basic system code
behind the scenes. Notice that the output does not include a line number or file name for the routines
beyond this point. The button’s Click event handler was called by an OnClick routine. This button was
triggered by clicking the mouse on the button. You can move farther up the stack to see other hidden
system routines all the way through the Windows message loop and back to the call to ThreadStart,
which started the program running.

Method: Void ShowCallStack()
Line: 21, File: ‘C:\VB Prog Ref\CeSrc\Ch08\ShowStackTrace\Form1.vb’

Method: Void CheckVacationPay()
Line: 14, File: ‘C:\VB Prog Ref\CeSrc\Ch08\ShowStackTrace\Form1.vb’

244

Chapter 8

10_571982 ch08.qxd 9/1/05 7:17 PM Page 244

Method: Void CalculateEmployeeSalaries()
Line: 10, File: ‘C:\VB Prog Ref\CeSrc\Ch08\ShowStackTrace\Form1.vb’

Method: Void btnCalculate_Click(System.Object, System.EventArgs)
Line: 6, File: ‘C:\VB Prog Ref\CeSrc\Ch08\ShowStackTrace\Form1.vb’

Method: Void OnClick(System.EventArgs)
Line: 0, File: ‘’

Method: Void OnClick(System.EventArgs)
Line: 0, File: ‘’

Method: Void PerformClick()
Line: 0, File: ‘’

Method: Boolean ProcessDialogKey(System.Windows.Forms.Keys)
Line: 0, File: ‘’

Method: Boolean ProcessDialogKey(System.Windows.Forms.Keys)
Line: 0, File: ‘’

Method: Boolean PreProcessMessage(System.Windows.Forms.Message ByRef)
Line: 0, File: ‘’

Method: Boolean PreTranslateMessage(MSG ByRef)
Line: 0, File: ‘’

Method: Boolean
System.Windows.Forms.UnsafeNativeMethods.IMsoComponent.FPreTranslateMessage(
MSG ByRef)

Line: 0, File: ‘’
Method: Boolean
System.Windows.Forms.UnsafeNativeMethods.IMsoComponentManager.FPushMessageLoop(
Int32, Int32, Int32)

Line: 0, File: ‘’
Method: Void RunMessageLoopInner(Int32, System.Windows.Forms.ApplicationContext)

Line: 0, File: ‘’
Method: Void RunMessageLoop(Int32, System.Windows.Forms.ApplicationContext)

Line: 0, File: ‘’
Method: Void Run(System.Windows.Forms.ApplicationContext)

Line: 0, File: ‘’
Method: Void OnRun()

Line: 0, File: ‘’
Method: Void DoApplicationModel()

Line: 0, File: ‘’
Method: Void Run(System.String[])

Line: 0, File: ‘’
Method: Void Main(System.String[])

Line: 76, File: ‘17d14f5c-a337-4978-8281-53493378c1071.vb’
Method: Int32 nExecuteAssembly(System.Reflection.Assembly, System.String[])

Line: 0, File: ‘’
Method: Int32 ExecuteAssembly(System.String, System.Security.Policy.Evidence,
System.String[])

Line: 0, File: ‘’
Method: Void RunUsersAssembly()

Line: 0, File: ‘’
Method: Void ThreadStart_Context(System.Object)

Line: 0, File: ‘’
Method: Void Run(System.Threading.ExecutionContext,
System.Threading.ContextCallback, System.Object)

Line: 0, File: ‘’
Method: Void ThreadStart()

Line: 0, File: ‘’

245

Error Handling

10_571982 ch08.qxd 9/1/05 7:17 PM Page 245

The StackTrace class has a ToString method that provides a similar output in a single string,
although it omits the file names and line numbers. The StackFrame objects contained in the
StackTrace object also have ToString methods that provide output similar to the results shown here.

Throwing Exceptions
In addition to catching exceptions, your program may need to generate its own exceptions. Because han-
dling an exception is called “catching” it, logically, raising an exception must be “throwing” it. (This is
just a silly pun. People also catch lions and colds, but I don’t think many people throw them. It’s as good
a term as any, however, so don’t worry too much about it.)

To throw an error, the program creates an instance of the type of exception it wants to generate, passing
the constructor additional information describing the problem. The program can set other exception
fields if you like. For example, it might set the exception’s Source property to tell any other code that
catches the error where it originated. The program then uses the Throw statement to raise the error. If an
error handler is active somewhere in the call stack, Visual Basic jumps to that point and the error handler
processes the exception.

The following code shows how the DrawableRectangle class can protect itself against invalid input.
The class’s constructor takes four arguments: an X and Y position, and a width and height. If the width
is less than or equal to zero, the program creates a new ArgumentException object. It passes the excep-
tion’s constructor a description string and the name of the argument that is invalid. After creating the
exception object, the program uses the Throw statement to raise the error. The code checks the object’s
new height similarly, but it creates and throws the exception in a single statement to demonstrate
another style for throwing an error.

Public Class DrawableRectangle
Public Sub New(ByVal new_x As Integer, ByVal new_y As Integer, _
ByVal new_width As Integer, ByVal new_height As Integer)

‘ Verify that new_width > 0.
If new_width <= 0 Then

‘ Throw an ArgumentException.
Dim ex As New ArgumentException(_

“DrawableRectangle must have a width greater than zero”, _
“new_width”)

Throw ex
End If

‘ Verify that new_height> 0.
If new_height <= 0 Then

‘ Throw an ArgumentException.
Throw New ArgumentException(_

“DrawableRectangle must have a height greater than zero”, _
“new_height”)

End If

‘ Save the parameter values.
...

End Sub

‘ Other code for this class omitted.
...

End Class

246

Chapter 8

10_571982 ch08.qxd 9/1/05 7:17 PM Page 246

The following code shows how a program might use a Try block to protect itself while creating a new
DrawableRectangle object:

Try
Dim rect As New DrawableRectangle(10, 20, 0, 100)

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

Figure 8-2 shows the error message generated by this code. The exception class composed the message
based on the description and parameter name used in the call to the exception class’s constructor.

Figure 8-2: An ArgumentException object generates
its Message value from the description and parameter
name passed to its constructor.

When your application needs to throw an exception, it’s easiest to use an existing exception class. There are
a few ways to get lists of exception classes so that you can find one that makes sense for your application.
First, Appendix F lists some of the more useful exception classes. The online help topic, “Introduction to
Exception Handling in Visual Basic .NET,” also has a good list of exception classes at the end.

Another method for finding exception classes is to open the Object Browser (select the View menu’s
Object Browser command) and search for “Exception.” Figure 8-3 shows the Object Browser displaying
roughly 400 matches, many of which are exception classes. The System.FormatException class is
selected, so the Object Browser is showing that class’s description.

When you throw exceptions, you must use your judgment about selecting these classes. For example,
Visual Basic uses the System.Reflection.AmbiguousMatchException class when it tries to bind a
subroutine call to an object’s method, and it cannot determine which overloaded method to use. This
happens at a lower level than your program will act, so you won’t use that class for exactly the same
purpose. It may be useful, for example, if your routine parses a string and, based on the string, cannot
decide what action to take. In that case, you might use this class to represent the error, even though
you’re not using it exactly as it was originally intended.

Before you use one of these classes, look it up in the online help to make sure that it fits your purpose. If
there’s no good fit, you can always create your own as described in the section “Custom Exceptions,”
later in this chapter.

Specialized classes and libraries sometimes have their own particular exception classes. For example, seri-
alization and cryptographic objects have their own sets of exception classes that make sense within their
own domains. Usually, these are fairly specialized, so you won’t need to throw them in your program
unless you are reraising an error you received from a serialization or cryptographic object.

247

Error Handling

10_571982 ch08.qxd 9/1/05 7:17 PM Page 247

Figure 8-3: You can use the Object Browser to find exception classes.

Custom Exceptions
When your application needs to raise an exception, it’s easiest to use an existing exception class. Reusing
existing exception classes makes it easier for developers to understand what the exception means. It also
prevents exception proliferation, where the developer needs to watch for dozens or hundreds of types of
exceptions.

Sometimes, however, the predefined exceptions don’t quite fit your needs. For example, suppose that
you build a class that contains data that may exist for a long time. If the program tries to use an object
that has not refreshed its data for a while, you want to raise some sort of “data expired” exception. You
could squeeze this into the System.TimeoutException class, but that exception doesn’t quite fit this
use. The Expired class is a better fit, but it’s part of the System.Net.Cookie namespace. Using it would
require your application to include the System.Net.Cookie namespace just to define the exception class,
even if the program has nothing to do with cookies.

In this case, it would be better to create your own exception class. Building a custom exception class is
easy. Make a new class that inherits from the System.ApplicationException class. Then, provide
constructor methods to let the program create instances of the class. That’s all there is to it.

248

Chapter 8

10_571982 ch08.qxd 9/1/05 7:17 PM Page 248

By convention, an exception class’s name should end with the word Exception. Also by convention,
you should provide at least three overloaded constructors. The first takes no parameters and initializes
the exception with a default message describing the general type of error.

The other two versions take as parameters an error message, and an error message plus an inner exception
object. These constructors pass their parameters to the base class’s constructors to initialize the object
appropriately.

For completeness, you can also make a constructor that takes as parameters a SerializationInfo object
and a StreamingContext object. This version can also pass its parameters to a base class constructor to
initialize the exception object. This constructor is useful if the exception will be serialized and deserialized.
If you’re not sure whether you need this constructor, you probably don’t. If you do include it, however, you
will need to import the System.Runtime.Serialization namespace in the exception class’s file to
define the SerializationInfo and StreamingContext classes.

The following code shows how you might define the ObjectExpiredException class:

Imports System.Runtime.Serialization

Public Class ObjectExpiredException
Inherits System.ApplicationException

‘ No parameters. Use a default message.
Public Sub New()

MyBase.New(“This object has expired”)
End Sub

‘ Set the message.
Public Sub New(ByVal new_message As String)

MyBase.New(new_message)
End Sub

‘ Set the message and inner exception.
Public Sub New(ByVal new_message As String, ByVal inner_exception As Exception)

MyBase.New(new_message, inner_exception)
End Sub

‘ Include SerializationInfo object and StreamingContext objects.
Public Sub New(ByVal info As SerializationInfo, _

ByVal context As StreamingContext)
MyBase.New(info, context)

End Sub
End Class

After you have defined the exception class, you can throw and catch it just as you can throw and catch
any exception class defined by Visual Basic. For example, the following code throws an
ObjectExpiredException.

Throw New ObjectExpiredException(“This Customer object has expired.”)

The parent class System.ApplicationException automatically handles the object’s Message,
StackTrace, and ToString properties so you don’t need to implement them yourself.

249

Error Handling

10_571982 ch08.qxd 9/1/05 7:17 PM Page 249

Visual Basic Classic Error Handling
Structured error handling using the Try block is a relatively recent innovation, appearing in the first ver-
sions of Visual Basic .NET. Visual Basic 6 and earlier versions used a more line-oriented syntax sometimes
called “Visual Basic Classic Error Handling.” While the Try block is generally preferred, you can still use
classic error handling in your Visual Basic .NET applications. In fact, you can use both styles in the same
program, although not in the same routine. The section “Structured versus Classic Error Handling” later
in this chapter discusses the pros and cons of each.

A classic error handler begins with an On Error statement that tells Visual Basic what it should do if it
encounters an error. This statement can take one of four forms: On Error GoTo line, On Error Resume
Next, On Error GoTo 0, and On Error GoTo -1.

On Error GoTo line
After this statement, if Visual Basic encounters an error, it enters error-handling mode and jumps to the
indicated line. The error handler that begins at the indicated line can take whatever action is appropriate.

The following code executes the statement On Error GoTo LoadPayrollError and then calls subroutine
LoadPayrollFile. If that routine causes an error, Visual Basic jumps to the line labeled
LoadPayrollError. The error-handler code displays an error message and exits the subroutine. The pro-
gram then executes the statement On Error GoTo PrintPaychecksError and calls the PrintPaychecks
routine. If that routine throws an error, the code starting at the PrintPaychecksError label executes.
After it has finished its work, the routine uses an Exit Sub statement to end without falling into the error-
handling code.

Private Sub ProcessPayroll()
‘ Load the payroll file.
On Error GoTo LoadPayrollError
LoadPayrollFile()

On Error GoTo PrintPaychecksError
‘ Print paychecks.
PrintPaychecks()

‘ We’re done.
Exit Sub

LoadPayrollError:
MessageBox.Show(“Error loading the payroll file.”)
Exit Sub

PrintPaychecksError:
MessageBox.Show(“Error printing paychecks.”)
Exit Sub

End Sub

The program can leave error-handling mode using the statements Exit Sub, Exit Function, Resume,
or Resume Next.

An Exit Sub or Exit Function statement makes the program immediately leave the routine in which
the error occurred, and that’s the end of error-handling mode for this error.

250

Chapter 8

10_571982 ch08.qxd 9/1/05 7:17 PM Page 250

The Resume statement makes the program resume execution with the statement that caused the error. If
the problem has not been fixed, the error will occur again and the program may enter an infinite loop.
You should use the Resume statement only if there is a chance that the error has been fixed. For example,
if the program tries to read from a floppy disk and the drive is empty, the program could ask the user to
insert the disk and then it could try to read the disk again.

The Resume Next statement makes the program resume execution with the statement after the one that
caused the error. This statement is appropriate when the program cannot fix the problem but should
continue anyway. For example, suppose that a program fails to read a value from a file. It might want to
continue anyway so that it can close the file in the next statement.

On Error Resume Next
After this statement, if Visual Basic encounters an error, it skips the statement that caused the error and
resumes execution with the following statement. If the program doesn’t care whether the statement
completed, On Error Resume Next lets it continue without checking for errors.

If the program needs to take action when an error occurs, it can use the Err object to check for errors
after each statement. For example, the following code uses the On Error Resume Next statement and
then calls subroutine DoSomething. When the subroutine returns, the program checks the Err object’s
Number property to see if an error occurred. If there is an error, the program displays a message and
exits the subroutine. If subroutine DoSomething did not cause an error, the program calls subroutine
DoSomethingElse and performs a similar check for errors.

On Error Resume Next
DoSomething()
If Err.Number <> 0 Then

MessageBox.Show(“Error in DoSomething”)
Exit Sub

End If

DoSomethingElse()
If Err.Number <> 0 Then

MessageBox.Show(“Error in DoSomethingElse”)
Exit Sub

End If
...

A program can also use this statement to check for different kinds of errors and take appropriate action.
The following example takes no special action if there is no error. If Err.Number is 11, the program tried
to divide by zero. In that case, the code sets variable X to a default value. If there is some other error, the
program tells the user and exits the subroutine.

‘ Try to calculate X.
On Error Resume Next
X = CalculateValue()

Select Case Err.Number
Case 0 ‘ No error. Do nothing.
Case 11 ‘ Divide by zero. Set a default value.

X = 1000

251

Error Handling

10_571982 ch08.qxd 9/1/05 7:17 PM Page 251

Case Else ‘ Unexpected error. Tell the user.
MessageBox.Show(“Error calculating X.” & vbCrLf & Err.Description)
Exit Sub

End Select
...

On Error GoTo 0
The On Error GoTo 0 statement disables any active error handler. You should deactivate an error handler
when it no longer applies to what the program is doing. The following code installs an error handler while
it loads some data. When it is finished loading the data, it uses On Error GoTo 0 to deactivate the error
handler before it performs other tasks.

On Error GoTo LoadDataError
‘ Load the data.
...
‘ Done loading data.
On Error GoTo 0
...
Exit Sub

LoadDataError:
MessageBox.Show(“Error loading data.” & vbCrLf & Err.Description)
Exit Sub

End Sub

Deactivating the error handler stops the program from taking inappropriate action for an error. In the
previous example, it might confuse the user to say there was an error loading data when the program
was doing something else. In other cases, the program might incorrectly try to fix problems that are not
there if you leave an old error handler installed. For example, the program might ask the user to insert a
floppy disk when it had already finished reading from the disk.

Deactivating old error handlers also lets the program fail if an unexpected error occurs. That lets develop-
ers discover and handle new types of failure, possibly by adding a new error handler.

On Error GoTo -1
The On Error GoTo -1 statement is very similar to On Error GoTo 0. It deactivates any active error han-
dler. However, it also ends error-handling mode if it is running. The following code shows the difference.
The program uses On Error GoTo DivideError1 to install an error handler and then executes a command
that causes a “divide by zero” error.

In this code, the error-handler code uses On Error GoTo -1 to end error-handling mode and continue exe-
cution. It then calls On Error Resume Next to ignore errors and performs another calculation that divides
by zero. Because the On Error Resume Next statement is in effect, the program ignores this error.

Next, the code uses On Error GoTo DivideError2 to install another error handler. It divides by zero
again to jump to the error handler and enter error-handling mode.

252

Chapter 8

10_571982 ch08.qxd 9/1/05 7:17 PM Page 252

This time the error handler uses the On Error GoTo 0 statement. This uninstalls the current error handler
(On Error GoTo DivideError2), but does not end error-handling mode. The program then uses the On
Error Resume Next statement. Unfortunately, this statement is ignored while the program is running in
error-handling mode. If the program used a Resume statement to exit error-handling mode, this statement
would then have an effect, but it does nothing until error-handling mode ends. Now, when the program
divides by zero again, there is no active error handler, so the program crashes.

Dim i As Integer
Dim j As Integer = 0

On Error GoTo DivideError1
i = 1 \ j ‘ This raises an error.

DivideError1: ‘ We enter error-handling mode here.
On Error GoTo -1 ‘ This ends error-handling mode.
On Error Resume Next ‘ Ignore errors in the future.
i = 1 \ j ‘ This error is ignored.

On Error GoTo DivideError2
i = 1 \ j ‘ This raises an error.

DivideError2: ‘ We enter error-handling mode here.
On Error GoTo 0 ‘ This does NOT end error-handling mode.
On Error Resume Next ‘ This statement doesn’t work in error-handling mode.
i = 1 \ j ‘ This error is not caught and crashes the program.

To avoid confusion, you should not use this style of error handling with error-handling code running
through the body of a subroutine. Instead, place error-handling code at the end of the routine and use
Exit Sub, Exit Function, Resume, or Resume Next to return to the routine’s main body of code. The
On Error GoTo -1 statement is usually more confusing than it’s worth.

Error-Handling Mode
Undoubtedly the most confusing part of classic error handling is error-handling mode. The On Error
GoTo line statement makes the program enter a special error-handling mode that remains in effect until
the error handler calls Exit Sub, Exit Function, Resume, Resume Next, or On Error GoTo -1. While in
error-handling mode, most other error-handling statements do not work as they normally do. Generally,
their effects only take place when error-handling mode finally ends.

For example, consider the following code fragment. The program uses the statement On Error GoTo
EquationError to install an error handler and then performs a calculation that divides by zero. The
program jumps to the line labeled EquationError and enters error-handling mode. The error-handling
code starts by executing the statement On Error Resume Next. Because the program is running in error-
handling mode, this statement has no immediate effect. The program then performs another calculation
that divides by zero. Because the code is already running in error-handling mode, it cannot jump to a
new error handler, so the program crashes.

Private i, j As Integer

Private Sub PerformCalculation()
On Error GoTo EquationError

253

Error Handling

10_571982 ch08.qxd 9/1/05 7:17 PM Page 253

i = 1 \ j
Exit Sub

EquationError:
On Error Resume Next
i = 2 \ j
Resume Next

End Sub

The previous example demonstrates one of the most common mistakes programmers make when working
with error-handling mode. The error-handler code must be safe, or the program will crash (or at least the
error will propagate up to the calling routine).

If you really need to perform risky operations in the error handler’s code, you should move that code
into a subroutine. That routine can use its own error-handling code to protect itself from another error.
The following example demonstrates this approach. The SetDefaultValue subroutine uses its own On
Error Resume Next statement to avoid crashing if it has problems of its own.

Private i, j As Integer

Private Sub PerformCalculation()
On Error GoTo EquationError
i = 1 \ j
Exit Sub

EquationError:
SetDefaultValue()
Resume Next

End Sub

Private Sub SetDefaultValue()
On Error Resume Next
i = 2 \ j

End Sub

Structured versus Classic Error Handling
The newer structured error-handling approach provided by the Try statement has several advantages
over classic error handling. First, classic error handling doesn’t make it immediately obvious whether a
piece of code is protected by an error handler. To determine whether a statement is protected, you must
look back through the code until you find an On Error statement. If you come to a labeled line, you also
must track down any places where a GoTo or a Resume line statement could jump to that line and see
what error handler might be installed at the time.

Classic error handling also doesn’t make it obvious whether the code is running in error-handler mode. In
some cases, it is impossible to tell until run time. The following code uses an On Error GoTo statement to
protect itself and then initializes an integer from a value that the user entered in a text box. If the user
enters a valid integer, the code works normally and keeps running in normal (not error-handling) mode. If
the user enters a value that is not a valid integer, the program jumps to the label BadFormat and enters
error-handling mode. There’s no way to tell before run time whether the program will be in error-handling
mode when it reaches the following comment.

254

Chapter 8

10_571982 ch08.qxd 9/1/05 7:17 PM Page 254

Dim i As Integer
On Error GoTo BadFormat
i = CInt(txtNumber.Text)

BadFormat:
‘ Are we in error-handling mode here?
...

Finally, you cannot nest classic error-handling code. If you must perform a risky action in an error handler,
you must place the code in a separate subroutine that contains its own error-handling code to protect itself.

Structured error handling addresses these shortcomings. By looking at the enclosing Try or Catch block,
you can easily tell whether a line of code is protected (inside the Try block) or part of an error handler
(in the Catch block).

You can even nest Try statements, as shown in the following code. The program tries to initialize an
integer from a value that the user entered in a text box. If the user enters an invalid value, the code
moves into the first Catch block. There it tries to set the value of the integer using a calculation. If that
calculation fails (for example, if j is 0), the next Catch block sets the variable to a default value.

‘ Get the user’s value.
Try

i = Integer.Parse(txtNumber.Text)
Catch ex As Exception

‘ The user’s value is no good.
‘ Calculate a different value.
Try

i = 1 \ j
Catch ex2 As Exception

‘ The calculated value is no good.
‘ Use a default value.
i = 3

End Try
End Try

Finally, the Try block doesn’t have a bewildering error-handling mode. The potential for confusion there
alone is probably worth using structured error handling.

One of the few advantages to classic error handling is that it is easier to ignore errors by using the On
Error Resume Next statement. The following code uses classic error handling to execute three subroutines
and ignore any errors they produce:

On Error Resume Next
DoSomething()
DoSomethingElse()
DoSomethingMore()
...

The following version shows the same code using structured error handling. This version is quite a bit
more verbose.

255

Error Handling

10_571982 ch08.qxd 9/1/05 7:17 PM Page 255

Try
DoSomething()

Catch
End Try

Try
DoSomethingElse()

Catch
End Try

Try
DoSomethingMore()

Catch
End Try
...

The Err Object
When an error occurs, Visual Basic initializes an object named Err. You can use this object’s properties to
learn more about the error. These properties correspond to those provided by the exception objects used
by the Try statement’s Catch sections. The following table lists these properties.

Property Purpose

Description A message describing the error.

Erl The line number at which the error occurred.

HelpContext The help context ID for the error.

HelpFile The full path to the help file describing the error.

LastDLLError A system error code generated by a call to a DLL (if appropriate).

Number The error number. The value 0 means no error has occurred.

Source The name of the object or application that caused the error.

The Err object also provides three useful methods for working with errors: Clear, Raise, and
GetException. The Clear method clears the object’s information and resets it for the next statement. If
the statement following an error does not raise an error itself, the Err object may still show the previous
error unless you clear it, as shown in the following code:

On Error Resume Next
X = Single.Parse(txtX.Text)
If Err.Number <> 0 Then

MessageBox.Show(Err.Description) ‘ Display the error.
Err.Clear ‘ Clear the error.

End If

Y = Single.Parse(txtY.Text)

256

Chapter 8

10_571982 ch08.qxd 9/1/05 7:17 PM Page 256

If Err.Number <> 0 Then
MessageBox.Show(Err.Description) ‘ Display the error.
Err.Clear ‘ Clear the error.

End If
...

The Err object’s Raise method generates an error. For example, the following statement raises error
number 5, “Procedure call or argument is invalid”:

Err.Raise(5)

Finally, the GetException method returns an exception object representing the Err object’s error. You
can use this object just as you can use any other exception object. In particular, you can use its
StackTrace property to get a trace starting where the error occurred.

If you use classic error handling, you can use the Err object to learn about the error. If you use structured
error handling with the Try statement, you can use the exception objects provided by Catch statements,
and you can do without the Err object.

Debugging
Visual Basic provides a rich set of tools for debugging an application. Using the development environment,
you can stop the program at different lines of code and examine variables, change variable values, look at
the call stack, and call routines to exercise different pieces of the application. You can step through the pro-
gram, executing the code one statement at a time to see what it is doing. You can even make some modifi-
cations to the source code and let the program continue running.

Chapter 1, “IDE,” describes the development environment, including the tools you can use to debug an
application such as breakpoints, watches, and the locals, autos, immediate, and call stack windows. See
Chapter 1 for details.

In addition to setting breakpoints in the code, you can use the Stop statement to pause execution at a par-
ticular line. This can be particularly useful for detecting unexpected values during testing. For example,
the following statement stops execution if the variable m_NumEmployees is less than 1 or greater than 100.

If (m_NumEmployees < 1) Or (m_NumEmployees > 100) Then Stop

Summary
In practice, it’s extremely difficult to anticipate every condition that can occur within a large application.
You should try to predict as many incorrect situations as possible, but you should also plan for unfore-
seen errors. You should write error-checking code that makes bugs obvious when they occur and recov-
ers from them if possible. You may not be able to anticipate every possible bug, but with a little thought
you can make the program detect and report obviously incorrect values. The sooner you detect a bug,
the easier it is to find and fix.

257

Error Handling

10_571982 ch08.qxd 9/1/05 7:17 PM Page 257

You should also look for unexpected conditions (such as the user entering a phone number in a Social
Security number field) and make the program react gracefully. Your program cannot control everything
in its environment (such as the user’s actions, printer status, and network connectivity), but it should be
prepared to act when things aren’t exactly the way they should be.

When you do encounter an error, you can use tools such as breakpoints, watches, and the development
environment’s Locals, Auto, Immediate, and Call Stack windows to figure out where the problem begins
and how to fix it. You may never be able to remove every last bug from a 100,000-line program, but you
can make any remaining bugs appear so rarely that the users can do their jobs in relative safety.

The chapters up to this point have focused mostly on the code that lies behind a Visual Basic application.
Another major component to an application is the interface that the user sees. In Visual Basic, you
assemble the user interface with forms, and controls and components added to the forms. Chapter 9,
“Introduction to Windows Forms Controls,” introduces the Windows forms controls and components. It
describes the most commonly used controls and components and gives some guidelines for selecting
those that are most appropriate for different user interface needs.

258

Chapter 8

10_571982 ch08.qxd 9/1/05 7:17 PM Page 258

Introduction to Windows
Forms Controls

Controls are an extremely important part of any interactive application. They give information to the
user (Label, ToolTip, TreeView, PictureBox) and organize the information so that it’s easier to
understand (GroupBox, Panel, TabControl). They enable the user to enter data (TextBox,
RichTextBox, ComboBox, MonthCalendar), select options (RadioButton, CheckBox, ListBox),
control the application (Button, MenuStrip, ContextMenuStrip), and interact with objects outside
of the application (OpenFileDialog, SaveFileDialog, PrintDocument, PrintPreviewDialog).
Some controls also provide support for other controls (ImageList, ToolTip, ContextMenuStrip,
ErrorProvider).

This chapter provides only a very brief description of the standard Windows Forms controls and
some tips that can help you decide which control to use for different purposes. Appendix G,
“Standard Controls and Components,” covers the controls in much greater detail, describing each
control’s most useful properties, methods, and events.

Figure 9-1 shows the Visual Basic toolbox displaying the standard Windows forms controls.

11_571982 ch09.qxd 9/1/05 7:13 PM Page 259

Figure 9-1: Visual Basic provides a large number of standard controls for
Windows forms.

Controls Overview
The following table briefly describes the controls shown in Figure 9-1 in the order in which they appear
in the figure (starting at the top, or row 1, and reading from left to right).

Control Purpose

Row 1

Pointer This is the pointer tool, not a control. Click this tool to deselect any
selected controls on a form. Then you can select new controls.

BackgroundWorker Executes a task asynchronously and notifies the main program when
it is finished.

BindingNavigator Provides a user interface for navigating through a data source. For
example, it provides buttons that let the user move back and forth
through the data, add records, delete records, and so forth.

BindingSource Encapsulates a form’s data source and provides methods for navigat-
ing through the data.

260

Chapter 9

11_571982 ch09.qxd 9/1/05 7:13 PM Page 260

Control Purpose

Button A simple push button. When the user clicks it, the program can
perform some action.

CheckBox A box that the user can check and uncheck.

CheckedListBox A list of items with check boxes that the user can check and
uncheck.

ColorDialog Lets the user pick a standard or custom color.

ComboBox A text box with an attached list or drop-down list that the user
can use to enter or select a textual value.

ContextMenuStrip A menu that appears when the user right-clicks on a control. You
set a control’s ContextMenuStrip property to this control, and
the rest is automatic.

Row 2

DataGridView A powerful grid control that lets you display large amounts of
complex data with hierarchical or Web-like relationships rela-
tively easily.

DataSet An in-memory store of data with properties similar to those of a
relational database. It holds objects representing tables containing
rows and columns, and can represent many database concepts
such as indexes and foreign key relationships.

DateTimePicker Lets the user select a date and time in one of several styles.

DirectoryEntry Represents a node in an Active Directory hierarchy.

DirectorySearcher Performs searches of an Active Directory hierarchy.

DomainUpDown Lets the user scroll through a list of choices by clicking up-arrow
and down-arrow buttons.

ErrorProvider Displays an error indicator next to a control that is associated
with an error.

EventLog Provides access to Windows event logs.

FileSystemWatcher Notifies the application of changes to a directory or file.

FlowLayoutPanel Displays the controls it contains in rows or columns. For example,
when laying out rows, it places controls next to each other horizon-
tally in a row until it runs out of room and then it starts a new row.

Row 3

FolderBrowserDialog Lets the user select a folder.

FontDialog Lets the user specify a font’s characteristics (name, size, boldness,
and so forth).

Table continued on following page

261

Introduction to Windows Forms Controls

11_571982 ch09.qxd 9/1/05 7:13 PM Page 261

Row 3

GroupBox Groups related controls for clarity. It also defines a default
RadioButton group for any RadioButtons that it contains.

HelpProvider Displays help for controls that have help if the user sets focus on
the control and presses F1.

HScrollBar A horizontal scroll bar.

ImageList Contains a series of images that other controls can use. For exam-
ple, the images that a TabControl displays on its tabs are stored in
an associated ImageList control. Your code can also pull images
from an ImageList for its own use.

Label Displays text that the user cannot modify or select by clicking and
dragging.

LinkLabel Displays a label, parts of which may be hyperlinks. When the user
clicks a hyperlink, the program can take some action.

ListBox Displays a list of items that the user can select. Depending on the
control’s properties, the user can select one or several items.

ListView Displays a list of items in one of four possible views: LargeIcon,
SmallIcon, List, and Details.

Row 4

MaskedTextBox A text box that requires the input to match a specific format (such
as a phone number or ZIP code format).

MenuStrip Represents the form’s main menus, submenus, and menu items.

MessageQueue Provides communication between different applications.

MonthCalendar Displays a calendar that allows the user to select a range of dates.

NotifyIcon Displays an icon in the system tray or status area.

NumericUpDown Lets the user change a number by clicking up-arrow and down-
arrow buttons.

OpenFileDialog Lets the user select a file for opening.

PageSetupDialog Lets the user specify properties for printed pages. For example, it
lets the user specify the printer’s paper tray, page size, margins,
and orientation (portrait or landscape).

Panel A control container. Using the control’s Anchor and Dock properties,
you can make the control resize itself so that its child controls resize
themselves in turn. The control can automatically provide scroll bars
and defines a RadioButton group for any RadioButtons that it
contains.

PerformanceCounter Provides access to Windows performance counters.

262

Chapter 9

11_571982 ch09.qxd 9/1/05 7:13 PM Page 262

Row 5

PictureBox Displays a picture. Also provides a useful drawing surface.

PrintDialog Displays a standard print dialog. The user can select the printer,
pages to print, and printer settings.

PrintDocument Represents output to be sent to the printer. A program can use this
object to print and display print previews.

PrintPreviewControl Displays a print preview within one of the application’s forms.

PrintPreviewDialog Displays a print preview in a standard dialog.

Process Allows the program to interact with processes, and to start and
stop them.

ProgressBar Displays a series of colored bars to show the progress of a long
operation.

PropertyGrid Displays information about an object in a format similar to the one
used by the Properties window at design time.

RadioButton Represents one of an exclusive set of options. When the user selects
a RadioButton, Visual Basic deselects all other RadioButtons in
the same group. Groups are defined by GroupBoxes, Panels, and
the form.

RichTextBox A text box that supports Rich Text extensions. The control can dis-
play different pieces of text with different font names, sizes, bolding,
and so forth. It also provides paragraph-level formatting for justifi-
cation, bullets, hanging indentation, and more.

Row 6

SaveFileDialog Lets the user select the name of a file where the program will save
data.

SerialPort Represents a serial port and provides methods for controlling,
reading, and writing it.

ServiceController Represents a Windows service and lets you manipulate services.

SplitContainer Lets the user drag a divider vertically or horizontally to split avail-
able space between two areas within the control.

StatusStrip Provides an area (usually at the bottom of the form) where the
application can display status messages, small pictures, and other
indicators of the application’s state.

TabControl Displays a series of tabs attached to pages that contain their own
controls. The user clicks a tab to display the associated page.

TableLayoutPanel Displays the controls it contains in a grid.

Table continued on following page

263

Introduction to Windows Forms Controls

11_571982 ch09.qxd 9/1/05 7:13 PM Page 263

Row 6

TextBox Displays some text that the user can edit.

Timer Triggers an event periodically. The program can take action when
the event occurs.

ToolStrip Displays a series of buttons, drop-downs, and other tools that let
the user control the application.

Row 7

ToolStripContainer A container that allows a ToolStrip control to dock to some or all
of its edges. You might dock a ToolStripContainer to a form to
allow the user to dock a ToolStrip to each of the form’s edges.

ToolTip Displays a tooltip if the user hovers the mouse over an associated
control.

TrackBar Allows the user to drag a pointer along a bar to select a numeric
value.

TreeView Displays hierarchical data in a graphical, treelike form.

VScrollBar A vertical scroll bar.

WebBrowser A Web browser in a control. You can place this control on a form and
use its methods to navigate to a Web page. The control displays the
results exactly as if the user were using a standalone browser. One
handy use for this control is displaying Web-based help.

See Appendix G, “Standard Controls and Components,” for detailed descriptions of the controls.

Choosing Controls
Keeping all of the intricacies of each of these controls in mind at once is a daunting task. With so many
powerful tools to choose from, it’s not always easy to pick the one that’s best for a particular situation.

To simplify error-handling code, you should generally pick the most restrictive control that can accomplish
a given task, because more restrictive controls give the user fewer options for entering invalid data.

For example, suppose that the user must pick from the choices Small, Medium, and Large. The application
could let the user type a value in a TextBox control, but then the user could type Weasel. The program
would need to verify that the user typed one of the valid choices and display an error message if the text
was invalid. The program might also need to use precious screen real estate to list the choices so that the
user can tell what to type.

A better idea would be to use a group of three RadioButtons or a ComboBox with DropDownStyle set
to DropDownList. Then the user can easily see the choices available and can only select a valid choice. If
the program initializes the controls with a default value rather than leaving them initially undefined, it
knows that there is always a valid choice selected.

264

Chapter 9

11_571982 ch09.qxd 9/1/05 7:13 PM Page 264

The following sections summarize different categories of controls and provide some tips about when to
use each.

Containing and Arranging Controls
These controls contain, group, and help arrange other controls. These controls include FlowLayoutPanel,
TableLayoutPanel, GroupBox, Panel, TabControl, and SplitContainer.

The FlowLayoutPanel arranges the controls it contains in rows or columns. For example, when its
FlowDirection property is LeftToRight, the control arranges its contents in rows from left to right. It
positions its contents in a row until it runs out of room and then it starts a new row. FlowLayoutPanel
is particularly useful for Toolboxes and other situations where the goal is to display as many of the con-
tained controls as possible at one time, and the exact arrangement of the controls isn’t too important.

The TableLayoutPanel control displays its contents in a grid. All the cells in a particular row have the
same height, and all the cells in a particular column have the same width. In contrast the
FlowLayoutPanel, control simply places controls next to each other until it fills a row and then starts a
new one. Figure 9-2 shows these two controls side by side.

Figure 9-2: FlowLayoutPanel places controls close together. TableLayoutPanel
arranges controls in a grid.

A GroupBox control is good for grouping related controls or the RadioButtons in a RadioButton
group. (The RadioButton control is discussed later in this chapter in the section, “Making Selections.”)
It provides a visible border and caption so that it can help the user make sense out of a very complicated
form.

The rule of thumb in user interface design is that a user can evaluate seven items plus or minus two at any
given time. A list of five or six choices is manageable, but a list containing dozens of options can be confus-
ing. By placing choices into categories visibly separated in GroupBoxes, you can make the interface much
easier for the user to understand. Rather than trying to keep dozens of options straight all at once, the user
can mentally break the problem into smaller pieces and consider each group of options separately.

The Panel control can also contain the RadioButtons in a RadioButton group. It doesn’t display a
visible border, however, so you must use some other method to ensure that the user can tell that the
buttons form a group. For example, you could use several Panels in a row, each containing a column of
RadioButtons. Then the user would select one option from each column.

265

Introduction to Windows Forms Controls

11_571982 ch09.qxd 9/1/05 7:13 PM Page 265

One of the Panel control’s more powerful features is its ability to automatically display scroll bars. If
you set a Panel control’s AutoScroll property to True and the Panel resizes so that all of its contents
cannot fit, it automatically displays the scroll bars so the user can still see all of the content. Scrolling
back and forth can be cumbersome for the user, however, so this is not the best way to display data if the
user must view it all frequently. If the user must jump back and forth between different controls inside a
scrolling Panel, it may be better to use a TabControl.

TabControl displays data grouped by pages. The tabs enable the user to quickly jump from page to
page. The control can display scroll bars if necessary, although that makes using the control much more
awkward. TabControl works well if the data falls into natural groupings that you can use for the tab
pages. It doesn’t work as well if the user must frequently compare values on one page with those on
another, forcing the user to jump back and forth.

The SplitContainer control allows the user to divide an area between two adjacent regions.
SplitContainer contains two Panel controls in which you can place your own controls. When the user
drags the splitter between the two panels, the control resizes the panels accordingly. You can set the
Panels’ AutoScroll properties to True to make them automatically provide scroll bars when necessary.

SplitContainer is helpful when the form isn’t big enough to hold all the data the program must display,
and the user can trade area in one part of the form for area in another. It is particularly useful when the
user must compare values in the two areas by viewing them at the same time.

While you can nest SplitContainers inside other SplitContainers, they are easiest to use when they
separate only two areas. Large groups of SplitContainers separating many areas are usually clumsy
and confusing.

These container controls help arrange the controls they contain. The Anchor and Dock properties of any
controls inside the containers work relative to the containers. For example, suppose that you place a
series of buttons with Anchor = Top, Left, Right inside a SplitContainer so that they are as wide
as the Panel containing them. When you drag the splitter, the buttons automatically resize to fit the
width of their Panel.

Making Selections
Selection controls enable the user to choose values. If you use them carefully, you can reduce the chances
of the user making an invalid selection, so you can reduce the amount of error-handling code you need
to write.

These controls include CheckBox, CheckedListBox, ComboBox, ListBox, RadioButton,
DateTimePicker, MonthCalendar, DomainUpDown, NumericUpDown, TrackBar, HScrollBar, and
VScrollBar.

CheckBox enables the user to select an option or not, independently of all other selections. If you want the
user to select only one of a series of options, use a RadioButton instead. If a form requires more than, say,
five to seven CheckBoxes that have related purposes, consider using a CheckedListBox instead.

The CheckedListBox control enables the user to select among several independent options. It is basically
a series of CheckBoxes arranged in a list that provides scroll bars if necessary.

266

Chapter 9

11_571982 ch09.qxd 9/1/05 7:13 PM Page 266

The ComboBox control enables the user to make one brief selection. This control is particularly useful
when its DropDownStyle property is set to DropDownList because then the user must pick a value from
a list. If you want to allow the user to select a value or enter one that is not on the list, set the control’s
DropDownStyle to Simple or DropDown. This control does roughly the same things as a simple ListBox
but takes less space.

The ListBox control displays a list of items that the user can select. You can configure the control to let the
user select one or more items. A ListBox takes more room than a ComboBox but can be easier to use if the
list is very long. If you have a long list and want to allow the user to select many items, it is relatively easy
for the user to accidentally deselect all of the previous selections by clicking on a new item. To make things
easier for the user, you should consider using a CheckedListBox, which doesn’t have that problem.

The RadioButton control lets the user pick one of a set of options. For example, three RadioButtons
might represent the choices Small, Medium, and Large. If the user selects one, Visual Basic automatically
deselects the others. This control is useful when the list of choices is relatively small, and there is a benefit
to allowing the user to see all the choices at the same time. If the list of choices is long, consider using a
ListBox or ComboBox.

The DateTimePicker and MonthCalendar controls enable the user to select dates and times. They vali-
date the user’s selections, so they are generally better than other controls for selecting dates and times. For
example, if you use a TextBox to let the user enter month, date, and year, you must write extra validation
code to ensure that the user doesn’t enter February 29, 2007.

The DomainUpDown and NumericUpDown controls let the user scroll through a list of values. If the list is
relatively short, a ListBox or ComboBox may be easier for the user. The DomainUpDown and
NumericUpDown controls take very little space, however, so they may be helpful on very crowded forms.
By holding down one of the controls’ arrow buttons, the user can scroll very quickly through the values,
so these controls can also be useful when they represent a long list of choices.

The TrackBar control lets the user drag a pointer to select an integer value. This is usually a more intuitive
way to select a value than a NumericUpDown control, although it takes a lot more space on the form. It also
requires some dexterity if the range of values allowed is large.

The HScrollBar and VScrollBar controls let the user drag a “thumb” across a bar to select an integral
value much as the TrackBar does. HScrollBar, VScrollBar, and TrackBar even have similar proper-
ties. The main difference is in the controls’ appearances. On one hand, the two scroll bar controls allow
more flexible sizing (the TrackBar has definite ideas about how tall it should be for a given width), and
they may seem more elegant to some users. On the other hand, users are familiar with their normal pur-
pose of scrolling an area on the form, so using them as numeric selection bars may sometimes be confusing.

Entering Data
Sometimes it is impractical to use the selection controls described in the previous section. For example,
the user cannot reasonably enter biographical data or comments using a ComboBox or RadioButton.

The RichTextBox, TextBox, and MaskedTextBox controls let the user enter text with few restrictions.
These controls are most useful when the user must enter a large amount of textual data that doesn’t
require any validation.

267

Introduction to Windows Forms Controls

11_571982 ch09.qxd 9/1/05 7:13 PM Page 267

The TextBox is less complex than the RichTextBox, so you may want to use it unless you need the
RichTextBox’s extra features. If you need those features (such as multiple fonts, indentation, paragraph
alignment, superscripting and subscripting, multiple colors, more than one level of undo/redo, and so
forth), you need to use a RichTextBox.

The MaskedTextBox is a TextBox that requires the user to enter data in a particular format. For example,
it can help the user enter a phone number of the form 234-567-8901. This is useful only for short fields
where the format is tightly constrained. In those cases, however, it reduces the chances of the user making
mistakes.

Displaying Data
These controls display data to the user. They include Label, DataGridView, ListView, TreeView, and
PropertyGrid.

The Label control displays a simple piece of text that the user can view but not select or modify. Because
you cannot select the text, you cannot copy it to the clipboard. If the text contains a value that you think
the user might want to copy to the clipboard and paste into another application (for example, serial
numbers, phone numbers, email addresses, Web URLs, and so forth), you can use a TextBox with its
ReadOnly property set to True to allow the user to select and copy the text.

The DataGridView control can display tablelike data. The control can also display several tables linked
with master/detail relationships and the user can quickly navigate through the data. You can also config-
ure this control to allow the user to update the data.

The ListView control displays data that is naturally viewed as a series of icons or as a list of values with
columns providing extra detail. With a little extra work, you can sort the data by item or by detail
columns.

The TreeView control displays hierarchical data in a treelike format similar to the directory display
provided by Windows Explorer. You can determine whether the control allows the user to edit the
nodes’ labels.

The PropertyGrid control displays information about an object in a format similar to the one used by the
Properties window at design time. The control enables the user to organize the properties alphabetically
or by category and lets the user edit the property values. Figure 9-3 shows a PropertyGrid displaying
information about an Employee object.

268

Chapter 9

11_571982 ch09.qxd 9/1/05 7:13 PM Page 268

Figure 9-3: The PropertyGrid control displays an object’s properties.

Providing Feedback
These controls provide feedback to the user. These controls include ToolTip, HelpProvider,
ErrorProvider, NotifyIcon, StatusStrip, and ProgressBar. Their general goal is to tell the user
what is going on without becoming so obtrusive that the user cannot continue doing other things. For
example, the ErrorProvider flags a field as incorrect but doesn’t prevent the user from continuing to
enter data in other fields.

The ToolTip control provides the user with a brief hint about a control’s purpose when the user hovers the
mouse over it. The HelpProvider provides the user with more detailed help about a control’s purpose
when the user sets focus to the control and presses F1. A high-quality application provides both tooltips
and F1 help for every control that could confuse the user. These features are unobtrusive and only appear if
the user needs them, so it is better to err on the side of providing too much help rather than not enough.

The ErrorProvider control flags a control as containing invalid data. It is better to use selection controls
that do not allow the user to enter invalid data, but this control is useful when that is not possible.

The NotifyIcon control can display a small icon in the taskbar notification area to let the user easily
learn the application’s status. This is particularly useful for applications that run in the background
without the user’s constant attention. If the application needs immediate action from the user, it should
display a dialog or message box rather than relying on a NotifyIcon.

The taskbar notification area, also called the Windows system tray, is the small area in the task bar usually
on the right that displays the current time and icons indicating the status of various running applications.

269

Introduction to Windows Forms Controls

11_571982 ch09.qxd 9/1/05 7:13 PM Page 269

The StatusStrip control displays an area (usually at the bottom of the form) where the program can
give the user some information about its state. This information can be in the form of small images or
short text messages. It can contain a lot more information than a NotifyIcon, although it is visible only
when the form is displayed.

The ProgressBar indicates how much of a long task has been completed. Usually, the task is performed
synchronously, so the user is left staring at the form while it completes. The ProgressBar lets the user
know that the operation is not stuck.

Initiating Action
These controls make the program perform some action. These controls include Button, MenuStrip,
ContextMenuStrip, ToolStrip, LinkLabel, TrackBar, HScrollBar, VScrollBar and Timer. All
except the Timer control let the user initiate the action.

All of these controls interact with the program through event handlers. For example, the Button control’s
Click event handler normally makes the program perform some action when the user clicks the button.

Other controls also provide events that can initiate action. For example, the CheckBox control provides
CheckChanged and Click events that you could use to perform some action. By catching the proper
events, you can use almost any control to initiate an action. Because the main intent of those controls is
not to execute code, they are not listed in this section.

The Button control allows the user to tell the program to execute a particular function. A button is nor-
mally always visible on its form, so it is most useful when the user must perform the action frequently or
the action is part of the program’s central purpose. For actions less frequently performed, use a MenuStrip
or ContextMenuStrip control.

Items in a MenuStrip control also enable the user to make the program perform an action. You must
perform more steps to open the menu, find the item, and select it than you must to click a button, so a
Button control is faster and easier. On the other hand, menus take up less form real estate than buttons.
You can also assign keyboard shortcuts (such as F5 or Ctrl-S) to frequently used menu items, making
them even easier to invoke than buttons.

A ContextMenuStrip control provides the same advantages and disadvantages as a MenuStrip control.
ContextMenuStrip is available only from certain controls on the form, however, so it is useful for com-
mands that are appropriate only within specific contexts. For example, a Save command applies to all the
data loaded by a program, so it makes sense to put it in a MenuStrip. A command that deletes a particular
object in a drawing only applies to that object. By placing the command in a ContextMenuStrip control
attached to the object, the program keeps the command hidden when the user is working on other things.
It also makes the relationship between the action (delete) and the object clear to both the user and the
program.

The ToolStrip control combines some of the best features of menus and buttons. It displays a series of
buttons so they are easy to use without navigating through a menu. The buttons are small and grouped
at the top of the form, so they don’t take up as much space as a series of larger buttons.

270

Chapter 9

11_571982 ch09.qxd 9/1/05 7:13 PM Page 270

It is common to place buttons or ToolStrip buttons on a form to duplicate frequently used menu com-
mands. The menu commands provide keyboard shortcuts for more advanced users and the buttons make
it easy to invoke the commands for less-experienced users.

The LinkLabel control displays text much as a Label control does. It also displays some text in blue with
an underline, displays a special cursor when the user moves over that text, and raises an event if the user
clicks the text. That makes the control appropriate when clicking on a piece of text should perform some
action. For example, on a Web page, clicking on a link typically navigates to the link’s Web page.

The TrackBar, HScrollBar, and VScrollBar controls let the user drag a “thumb” across a bar to select
an integral value. As mentioned in the section, “Making Selections,” earlier in this chapter, you can use
these controls to let the user select a numeric value. However, they can also be used to perform some action
interactively. For example, the scroll bars are often used to scroll an area on the form. More generally, they
are used to make the program take action based on some new value. For example, you could use a scroll
bar to let the user select new red, green, and blue color components for an image. As the user changed a
scroll bar’s value, the program would update the image’s colors.

The Timer control triggers some action at a regular interval. When the Timer control raises its Timer
event, the program takes action.

Displaying Graphics
These controls display graphics, either on the screen or on a printout. These controls include Form,
PictureBox, PrintPreviewControl, PrintDocument, and PrintPreviewDialog.

A Form (which can also display graphics) provides methods for drawing, but it’s often better to draw in
a PictureBox control instead of the form itself. That makes it easier to move the drawing if you later
need to redesign the form. For example, if you decide that the picture might be too big, it is easy to move
a PictureBox into a scrolling Panel control. It would be much harder to rewrite the code to move the
drawing from the Form into a PictureBox later.

PrintPreviewControl displays a print preview for a PrintDocument object. The program responds to
events raised by the PrintDocument object. PrintPreviewControl displays the results within a control
on one of the program’s forms.

The PrintPreviewDialog control displays graphics from a PrintDocument object much as a
PrintPreviewControl does, but it provides its own dialog. Unless you need to arrange the print preview
in some special way, it is easier to use a PrintPreviewDialog rather than build your own preview dialog
with a PrintPreviewControl. The PrintPreviewDialog control provides many features that enable the
user to zoom, scroll, and move through the pages of the preview document. Implementing those features
yourself would be a lot of work.

Displaying Dialogs
Visual Basic provides a rich assortment of dialogs that enable the user to make standard selections.
Figuring out which of these dialogs to use is usually easy because each has a very specific purpose. The
following table lists the dialogs and their purposes.

271

Introduction to Windows Forms Controls

11_571982 ch09.qxd 9/1/05 7:13 PM Page 271

Dialog Purpose

ColorDialog Select a color

FolderBrowserDialog Select a folder (directory)

FontDialog Select a font

OpenFileDialog Select a file to open

PageSetupDialog Specify page set up for printing

PrintDialog Print a document

PrintPreviewDialog Display a print preview

SaveFileDialog Select a file for saving

Supporting Other Controls
Many of Visual Basic’s controls require the support of other controls. The two controls used most by
other controls are ImageList and PrintDocument. These controls also include DataConnector and
DataNavigator.

The ImageList control holds images for other controls to display. Your code can also take images from
an ImageList control to use in whatever way it needs.

The PrintDocument control provides support for printing and print previewing. It generates the graphics
sent to the printer, PrintPreviewDialog, or PrintPreviewControl.

The DataConnector control provides a link between a data source and controls bound to the connector.
The program can use the DataConnector’s methods to navigate, sort, filter, and update the data, and the
control updates its bound controls appropriately.

The DataNavigator control provides methods for navigating through a data source such as a
DataConnector.

Third-Par ty Controls
Visual Basic comes with a large number of useful controls ready to go, but there are many other controls
you can use if you need them. If you right-click on the Toolbox and select Choose Items, you can select
from a huge list of .NET Framework and COM components available on your system.

You can also obtain other controls provided by other companies and available for purchase and sometimes
for free on the Web. Many of these controls perform specialized tasks such as generating bar codes, making
shaped forms, warping images, and providing special graphical effects.

272

Chapter 9

11_571982 ch09.qxd 9/1/05 7:13 PM Page 272

Other controls extend the standard controls to provide more power or flexibility. Several controls are
available that draw two- and three-dimensional charts and graphs. Other controls provide more powerful
reporting services than those provided by Visual Studio’s own tools.

If you use any major Web search engine to search for “windows forms controls,” you will find lots of Web
sites where you can download controls for free or for a price. A few places you might like to explore
include:

❑ MVPs.org (www.mvps.org), a site leading to resources provided by people related to Microsoft’s
Most Valuable Professional (MVP) program. The Common Controls Replacement Project
(ccrp.mvps.org) provides controls that duplicate and enhance standard Visual Basic 6 controls.
Development on this project has stopped but some of the old Visual Basic 6 controls may give
you some ideas for building controls of your own. MVPs.org is also a good general resource.

❑ Windows Forms .NET (www.windowsforms.net), Microsoft’s official Windows Forms .NET
community.

❑ ASP.NET (www.asp.net), Microsoft’s official ASP.NET community.

❑ Download.com (www.download.com)

❑ Shareware.com (www.shareware.com)

❑ Shareware Connection (www.sharewareconnection.com)

You should use these as a starting point for your own search, not as a definitive list. You can download
controls from hundreds (if not thousands) of Web sites.

Summary
Controls form the main connection between the user and the application. They allow the application to
give information to the user, and they allow the user to control the application. Controls are everywhere
in practically every Windows application. Only a tiny percentage of applications that run completely in
the background can do without controls.

This chapter briefly describes purposes of the standard Visual Basic controls and provides a few tips for
selecting the controls appropriate for different purposes. Appendix G, “Standard Controls and
Components,” describes the controls in much greater detail.

Even knowing all about the controls doesn’t guarantee that you can produce an adequate user interface.
There’s a whole science to designing user interfaces that are intuitive and easy to use. A good design
enables the user to get a job done naturally and with a minimum of wasted work. A bad interface can
encumber the user and turn even a simple job into an exercise in beating the application into submission.

273

Introduction to Windows Forms Controls

11_571982 ch09.qxd 9/1/05 7:13 PM Page 273

For more information on building usable applications, read some books on user-interface design. They
explain standard interface issues and solutions. You can also learn a lot by studying other successful
applications. Look at the layout of their forms and dialogs. You shouldn’t steal their designs outright,
but you can try to understand why they arrange their controls in the way they do. Look at applications
that you like and find particularly easy to use. Compare them with applications that you find awkward
and confusing.

This chapter provides an introduction to Windows Forms controls. These are graphical objects that can
sit on a Windows form to interact with the user. In fact, forms themselves are also controls. The Form
class inherits from the ContainerControl class, which inherits from the ScrollableControl class,
which inherits from the Control base class. While in a sense forms are just another kind of control, they
are such an important type of control that they deserve special attention. Chapter 10, “Forms,” provides
an introduction to forms and explains some of the special form-related issues that don’t apply to other
kinds of controls.

274

Chapter 9

11_571982 ch09.qxd 9/1/05 7:13 PM Page 274

Forms
Visual Basic’s Windows Form class is a descendant of the Control class. The inheritance trail is
Control → ScrollableControl → ContainerControl → Form. That means a form is a type of
control. Except where overridden, it inherits the properties, methods, and events defined by the
Control class. In many ways, a form is just another kind of control (like a TextBox or ComboBox).

At the same time, Forms have their own special features that set them apart from other kinds of
controls. You usually place controls inside a form, but you rarely place a form inside another form.
Forms also play a very central role in most Visual Basic applications. They are the largest graphical
unit with which the user interacts directly. The user can minimize, restore, maximize, and close
forms. They package the content provided by the other controls so that the user can manage them
in a meaningful way.

This chapter describes some of the special features of Windows forms not provided by other
objects. It focuses on different ways that typical applications use forms. For example, it explains
how to build multiple-document interface (MDI) applications, custom dialogs, and splash screens.

An MDI application displays more than one document at a time in separate windows within a
larger MDI parent form. MDI applications usually provide tools for managing the child forms
they contain. These let the user minimize child forms, arrange the icons for the minimized forms,
tile the parent form’s area with the child forms, and so forth. Visual Studio can display many
windows (form designers, code editors, bitmap editors, and so forth) all within its main form, so
it is an MDI application.

A single-document interface (SDI) application displays only one document in each form. For exam-
ple, Microsoft Paint can manage only one picture at a time, so it is an SDI application. Some SDI
applications can display more than one document at a time, but each has its own separate form.

The chapter covers the Form object’s properties, methods, and events only in passing. For a detailed
description of specific Form properties, methods, and events, see Appendix H, “Form Objects.”

Transparency
The Form object provides a couple of properties that you can use to make a form partially trans-
parent. Opacity determines the form’s opaqueness. At design time, the Properties window shows

12_571982 ch10.qxd 9/1/05 7:20 PM Page 275

Opacity as a percentage where 100% means the form is completely opaque, and 0% means that the form
is completely transparent. At run time, your program must treat Opacity as a floating-point value
between 0.0 (completely transparent) and 1.0 (completely opaque).

A program can use an Opacity value less than 100% to let the user see what lies below the form. For
example, you might build a partially transparent Search dialog so the user could see the underlying
document as a search progresses.

Figure 10-1 shows a form with Opacity set to 66%. You can still see the form’s borders, title bar, system
menus, and button, but you can also see the Visual Basic IDE showing through from behind.

Figure 10-1: A form with Opacity set to 66% allows the Visual Basic IDE to show through.

If Opacity is greater than 0%, the form behaves normally aside from its ghostlike appearance. The user
can click on it, interact with its controls, minimize and maximize it, and grab its borders to resize it.

If Opacity is 0%, the form is completely transparent and the user can only interact with the form
through the keyboard. For example, the user can press the Tab key to move between the form’s controls,
type text, press the Spacebar to invoke a button that has the focus, and press Esc or Cancel to fire the
form’s Accept and Cancel buttons. However, the form and its controls will not detect mouse clicks. The
user also cannot see the form (obviously), so figuring out which control has the focus can be difficult.

276

Chapter 10

12_571982 ch10.qxd 9/1/05 7:20 PM Page 276

If Opacity is 1%, the form is still invisible, but it recognizes mouse clicks.

A second property that helps determine the form’s transparency is TransparencyKey. This property is a
color that tells Visual Basic which parts of the form should be completely transparent. When the form is
rendered, any areas with this color as their background colors are not drawn.

Figure 10-2 shows a form with TransparencyKey set to red. Both the form and a label that says “Hole”
have red backgrounds so they are transparent. The form’s Paint event handler draws a blue ellipse
around the inside of the form.

Figure 10-2: A form’s TransparencyKey property lets you make shaped forms such as this one with a
hole in it.

Not only are the transparent pixels not drawn, but the form also doesn’t respond to mouse events that
they would normally receive. For example, if the user clicks on a hole in the form caused by removed
pixels, the mouse click falls through to whatever application lies below the hole.

TransparencyKey applies to both the form’s client and nonclient areas, and to any controls on the form.
That can cause some strange side effects. For example, the form, many controls, and the tops of form
borders have BackColor values of SystemColors.Control. If you set TransparencyKey to
SystemColors.Control, the form, control, and border backgrounds disappear.

277

Forms

12_571982 ch10.qxd 9/1/05 7:20 PM Page 277

Figure 10-3 shows a form in this rather unusual state. The form contains a button, label, and check box that
all float over whatever lies beneath. If you look very closely, you may be able to see some pale-colored
pixels near the text. Those are anti-aliasing pixels that would have made the text appear smoother on a
light gray form. These pixels are out of place when the background behind the form is dark, as is it here.

Figure 10-3: TransparencyKey applies to the form’s client and nonclient areas, as well as its controls.

If you look closely at the form’s Minimize, Maximize, and Close system buttons on the upper right in
Figure 10-3, you’ll see parts of the Visual Basic IDE showing through. If you click on part of the button
that has been cut out, the click falls through to the Visual Basic IDE. If you click on the tiny pieces of the
buttons that are not transparent, the buttons function normally.

The most common use for TransparencyKey is to create shaped forms. Set the form’s FormBorderStyle
property to None to remove the borders, title bar, and system buttons. Set the form’s BackColor and
TransparencyKey properties to a color that you don’t want to appear on the form. Then draw the shape
you want the form to have in some other color.

Figure 10-4 shows a form shaped like a smiley face. The form’s Paint event handler draws the image
from a bitmap file. These sorts of forms make interesting splash screens and About dialogs, although
they are often too distracting for use in a program’s main user interface.

278

Chapter 10

12_571982 ch10.qxd 9/1/05 7:20 PM Page 278

Figure 10-4: The TransparencyKey property lets you make shaped forms such as this one.

Note that this form has no title bar, borders, or system buttons, so the user cannot move, resize, minimize,
maximize, or close it. To use this form as a splash screen, add a Timer control to make the form disappear
after a few seconds. To use it as an About dialog or some other kind of dialog, add a button that closes it.

If you use Opacity and TransparencyKey together, pixels that match TransparencyKey are completely
removed and any remaining pixels are shown according to the Opacity value.

About, Splash, and Login Forms
The TransparencyKey and Opacity properties enable you to build forms with unusual and interesting
shapes. While these would be distracting if used for the bulk of a business application, they can add a
little interest to About dialogs, splash screens, and login forms.

These three kinds of forms have quite a bit in common. Usually, they all display the application’s name,
version number, copyright information, trademarks, and so forth. They may also display a serial number,
the name of the registered user, and a Web site or phone number where the user can get customer support.

279

Forms

12_571982 ch10.qxd 9/1/05 7:20 PM Page 279

The main difference between these forms is in how the user dismisses them. A splash screen automatically
disappears after a few seconds. The user closes an About dialog by pressing an OK button. A login form
closes when the user enters a valid user name and password and then clicks OK. It also closes if the user
clicks Cancel, although then it doesn’t display the main application.

Sometimes a splash screen is displayed while the application initializes, loads needed data, and other-
wise prepares itself for work. In that case, the application removes the splash screen after initialization is
complete or a few seconds have passed, whichever comes second.

The forms also differ slightly in the controls they contain. A splash screen needs a Timer control to
determine when it’s time to close the form. An About dialog needs a single OK button. A login form
needs TextBoxes to hold the user name and password, two Labels to identify them, and OK and
Cancel buttons.

Splash screens and login forms both serve to greet the user, so there’s no need to provide both, but that
still leaves you with the task of building two nearly identical forms: splash and About, or login and
About. With a little planning, you can use a single form as a splash screen, About dialog, and login form.
At run time, you can add whichever set of controls is appropriate to the form’s use. Alternatively, you
can build the form with all three sets of controls at design time and then hide the ones you don’t need
for a particular purpose.

The following code shows how a form can display itself as either a splash screen or an About dialog. The
form contains both a Timer named tmrUnload and an OK button named btnAboutOk. The form’s
ShowSplash method enables the tmrUnload Timer control and calls Show to display the form. The
Timer control’s Interval property was set to 3,000 milliseconds at design time, so its Timer event fires
after three seconds and closes the form.

The ShowAbout method makes the btnOk button visible and calls ShowDialog to display the form
modally. A modal form holds the application’s focus so the user cannot interact with other parts of the
application until the modal form is dismissed. When the user clicks the button, the button’s Click event
handler closes the form.

‘ Display as a splash screen.
Public Sub ShowSplash()

Me.tmrUnload.Enabled = True ‘ The Timer close the dialog.
Me.TopMost = True ‘ Keep on top of main form.
Me.Show() ‘ Show non-modally.

End Sub

‘ Unload the splash screen.
Private Sub tmrUnload_Tick(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles tmrUnload.Tick

Me.Close()
End Sub

‘ Display as an About dialog.
Public Sub ShowAbout()

btnOK.Visible = True ‘ The OK button closes the dialog.
Me.ShowDialog() ‘ Show modally.

End Sub

‘ Close the About dialog.

280

Chapter 10

12_571982 ch10.qxd 9/1/05 7:20 PM Page 280

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Me.Close()
End Sub

Mouse Cursors
A form’s Cursor property determines the kind of mouse cursor the form displays. The Form class inherits
the Cursor property from the Control class, so other controls have a Cursor property, too. If you want
to give a particular control a special cursor, you can set its Cursor property. For example, if you use a
Label control as a hyperlink, you could make it display a pointing hand similar to those displayed by
Web browsers to let the user know that the control is a hyperlink.

The Cursors class provides several standard cursors as shared values. For example, the following state-
ment sets a form’s cursor to the system default cursor (normally an arrow pointing up and to the left):

Me.Cursor = Cursors.Default

Figure 10-5 shows the names and images of the standard cursors defined by the Cursors class.

Figure 10-5: The Cursors class defines standard cursors.

Unless a control explicitly sets its own cursor, it inherits the cursor of its container. If the control is placed
directly on the form, it displays whatever cursor the form is currently displaying. That means you can
set the cursor for a form and all of its controls in a single step by setting the form’s cursor.

Similarly, if a control is contained within a GroupBox, Panel, or other container control, it inherits the
container’s cursor. You can set the cursor for all the controls within a container by setting the cursor for
the container.

One common use for cursors is to give the user a hint when the application is busy. The program sets its
cursor to Cursors.WaitCursor when it begins a long task and then sets it back to Cursors.Default
when it finishes. The following code shows an example:

281

Forms

12_571982 ch10.qxd 9/1/05 7:20 PM Page 281

Me.Cursor = Cursors.WaitCursor
‘ Perform the long task.
...
Me.Cursor = Cursors.Default

If the program displays more than one form, it must set the cursors for each form individually. It can set the
cursors manually, or it can loop through the My.Application.OpenForms collection. The
SetAllCursors subroutine shown in the following code makes setting the cursor for all forms a bit easier:

Private Sub SetAllCursors(ByVal the_cursor As Cursor)
For Each frm As Form In My.Application.OpenForms

frm.Cursor = the_cursor
Next frm

End Sub

The following code uses the SetAllCursors subroutine while performing a long task:

SetAllCursors(Cursors.WaitCursor)
‘ Perform the long task.
...
SetAllCursors(Cursors.Default)

To use a custom cursor, create a new Cursor object using a file or resource containing cursor or icon
data. Then assign the new object to the form’s Cursor property. The following code sets a form’s cursor
to the program resource named SmileIcon.ico:

Me.Cursor = New Cursor(My.Resources.SmileIcon.Handle)

Icons
Each form in a Visual Basic application has its own icon. A form’s icon is displayed on the left side of its
title bar, in the system’s taskbar, and by applications such as the Task Manager and Windows Explorer.

Some of these applications display icons at different sizes. For example, if you set Windows Explorer’s
view to Large Icons, it displays 32 × 32 pixel icons. Windows Explorer displays 16 × 16 pixel icons for its
other views.

If an icon file doesn’t provide whatever size Windows needs, the system shrinks or enlarges an existing
image to fit. That may produce an ugly result. To get the best appearance, you should ensure that icon
files include at least 16 × 16 and 32 × 32 pixel sizes. Depending on the characteristics of your system, you
may also want to include other sizes.

Visual Studio’s integrated icon editor enables you to define images for various color models ranging
from monochrome to 256 colors, and sizes ranging from 16 × 16 to 96 × 96 pixels. It even lets you build
icon images with custom sizes such as 32 × 48 pixels, although it is unlikely that Windows will need to
use those.

To use this editor, open Solution Explorer and double-click on the My Project entry to open the project
properties window. Select the Resources tab, open the Add drop-down, and select New Icon. Use the

282

Chapter 10

12_571982 ch10.qxd 9/1/05 7:20 PM Page 282

drawing tools to build the icons. Right-click the icon and use the Current Icon Image Types submenu to
work with icons of different sizes.

To assign an icon to a form at design time, open the Form Designer and select the Icon property in the
Properties window. Click the ellipsis on the right and select the icon file that you want to use.

To assign an icon to a form at run time, set the form’s Icon property to an Icon object. The following
code sets the form’s Icon property to an icon resource named MainFormIcon.

Me.Icon = My.Resources.MainFormIcon

Some applications change their icons to provide an indication of their status. For example, a process-
monitoring program might turn its icon red when it detects an error. It could even switch back and forth
between to icons to make the icon blink in the taskbar.

Application Icons
Windows displays a form’s icon in the form’s title bar, in the taskbar, and in the Task Manager.
Applications (such as Windows Explorer) that look at the application as a whole rather than at its individ-
ual forms display an icon assigned to the application not to a particular form. To set the application’s icon,
open Solution Explorer and double-click on the My Project entry to open the Project Properties window. In
the Icon drop-down, select the icon file that you want to use or select <Browse...> to look for the file you
want to use.

Notification Icons
Visual Basic applications can display one other kind of icon by using the NotifyIcon control. This control
can display an icon in the system tray. The system tray (also called the status area) is the little area holding
small icons that is usually placed in the lower-left part of the taskbar, and shown in Figure 10-6. The little
stop light in the upper left is an icon displayed by a NotifyIcon control.

Figure 10-6: An application can use a NotifyIcon
control to display status icons in the system tray.

The control’s Icon property determines the icon that it displays. A typical application will change this
icon to give information about the program’s status. For example, a program that monitors the system’s
load could use its system tray icon to give the user an idea of the current load. Notification icons are
particularly useful for programs that have no user interface or that run in the background so that the
user isn’t usually looking at the program’s forms.

Notification icons also often include a context menu that appears when the user right-clicks on the icon.
The items in the menu enable the user to control the application. If the program has no other visible
interface, this may be the only way the user can control it.

Appendix G, “Standard Controls and Components,” describes the NotifyIcon control in greater detail.

283

Forms

12_571982 ch10.qxd 9/1/05 7:20 PM Page 283

Proper ties Adopted by Child Controls
Some properties are adopted by many of the controls contained on a form. For example, by default, a
Label control uses the same background color as the form. If you change the form’s BackColor property,
its Label controls change to display the same color.

Some properties adopted by a form’s controls include BackColor, ContextMenu, Cursor, Enabled,
Font, and ForeColor. Not all controls use all of these properties, however. For example, a TextBox
only matches its form’s Enabled and Font properties.

If you explicitly set one of these properties for a control, its value takes precedence over the form’s settings.
For example, if you set a Label control’s BackColor property to red, the control keeps its red background
even if you change the Form’s BackColor property.

Some of these properties are also not tremendously useful to the Form object itself, but they give guidance
to the form’s controls. For example, a form doesn’t automatically display text on its surface, so it never
really uses its Font property. Its Label, TextBox, ComboBox, List, RadioButton, CheckBox, and many
other controls adopt the value of this property, however, so the form’s Font property serves as a central
location to define the font for all of these controls. If you change the form’s Font property, even at run
time, all of the form’s controls change to match. The change applies to all of the form’s controls, even
those contained within GroupBoxes, Panels, and other container controls so that they do not sit directly
on the form.

These properties can also help your application remain consistent both with the controls on the form and
with other parts of the application. For example, the following code draws the string “Hello World!” on
the form whenever the form needs to be repainted. This code explicitly creates the Comic Sans MS font.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

Dim new_font As New Font(“Comic Sans MS”, 20)
e.Graphics.DrawString(“Hello World!”, _

new_font, Brushes.Black, 10, 10)
new_font.Dispose()

End Sub

Rather than making different parts of the program build their own fonts, you can use the forms’ Font
properties as shown in the following code. This makes the code simpler and ensures that different pieces
of code use the same font.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

e.Graphics.DrawString(“Hello World!”, Me.Font, Brushes.Black, 10, 100)
End Sub

As a nice bonus, changing the form’s Font property raises a Paint event, so, if the form’s font changes,
this code automatically runs again and redraws the text using the new font.

284

Chapter 10

12_571982 ch10.qxd 9/1/05 7:20 PM Page 284

Proper ty Reset Methods
The Form class provides several methods that reset certain property values to their defaults. The most
useful of those methods are ResetBackColor, ResetCursor, ResetFont, ResetForeColor, and
ResetText.

If you change one of the corresponding form properties, either at design time or at run time, these methods
restore them to their default values. The default values may vary from system to system, but currently on
my computer BackColor is reset to Control, Cursor is reset to Default, Font is reset to 8-point regular
(not bold or italic) Microsoft Sans Serif, ForeColor is reset to ControlText, and Text is reset to an empty
string.

Because the controls on a form adopt many of these properties (all except Text), these methods also
reset the controls on the form.

Overriding WndProc
The Windows operating system sends all sorts of messages to applications that tell them about changes
in the Windows environment. Messages tell forms to draw, move, resize, hide, minimize, close, respond
to changes in the Windows environment, and do just about everything else related to Windows.

All Windows applications have a subroutine tucked away somewhere that responds to those messages.
That routine is traditionally called a WindowProc. A Visual Basic .NET form processes these messages in
a routine named WndProc. You can override that routine to take special actions when the form receives
certain messages.

For example, the following code shows how a program can ensure that a form always keeps the same
aspect ration (ratio of height to width). The program overrides the form’s WndProc subroutine and looks
for the WM_SIZING message. This message receives as parameters a flag indicating the edge that the user
is dragging to resize the form and a Rect structure giving the form’s new size and location.

This code begins by defining the Rect structure. It then declares the overridden WndProc routine. That
routine defines some constants and a static variable to hold the form’s original aspect ratio.

Next, WndProc determines the type of message it is processing. If the message is WM_SIZING, then the
routine uses the Marshal.PtrToStructure function to copy the m.LParam parameter into a Rect
structure. It uses this structure to calculate the form’s new width and height, and its aspect ratio.

If this is the first time the WndProc has executed, the static value fixed_aspect_ratio is zero. If the code
sees that the value is zero, it saves the form’s current aspect ratio in the variable fixed_aspect_ratio.

Next WndProc decides whether the form’s aspect ratio is different from its original value. If the ratio has
changed, then it determines which dimension (width or height) it should save. If the user is dragging
one of the form’s corners, the routine saves whichever of the width and height is bigger, and calculates a
value for the other dimension that gives the desired aspect ratio.

If the user is dragging one of the form’s sides, the program keeps the new width and calculates an
appropriate height. Similarly, if the user is dragging the form’s top or bottom, the program keeps the
height and calculates an appropriate width.

285

Forms

12_571982 ch10.qxd 9/1/05 7:20 PM Page 285

Next, the program determines whether it should move the form’s left or right side and its top or bottom
edge. The program moves whichever edges the user is dragging. For example, if the user is dragging the
form’s lower-left corner, the program adjusts the form’s left and bottom values so the upper-right corner
remains stationary.

WndProc then calls Marshal.StructureToPtr to copy the Rect structure back into the m.LParam
parameter.

Finally, WndProc calls MyBase.WndProc to make the parent class’s original version of WndProc process
the message. If the code changed the values in the Rect structure, the parent’s WndProc uses the new
values to resize the form.

Calling the parent class’s WndProc routine is extremely important. If the program doesn’t do this for
every message that it does not completely handle itself, the message will not be processed. In that case,
the window will not handle all of its Windows messages. It may not repaint, move, load, unload, display
menus, and perform all sorts of other Windows tasks correctly.

Imports System.Runtime.InteropServices

Public Class Form1
Public Structure Rect

Public left As Integer
Public top As Integer
Public right As Integer
Public bottom As Integer

End Structure

Protected Overrides Sub WndProc(ByRef m As System.Windows.Forms.Message)
Const WM_SIZING As Long = &H214
Const WMSZ_LEFT As Integer = 1
Const WMSZ_RIGHT As Integer = 2
Const WMSZ_TOP As Integer = 3
Const WMSZ_TOPLEFT As Integer = 4
Const WMSZ_TOPRIGHT As Integer = 5
Const WMSZ_BOTTOM As Integer = 6
Const WMSZ_BOTTOMLEFT As Integer = 7
Const WMSZ_BOTTOMRIGHT As Integer = 8
Static fixed_aspect_ratio As Double = 0

Dim new_aspect_ratio As Double

If m.Msg = WM_SIZING And m.HWnd.Equals(Me.Handle) Then
‘ Turn the message’s lParam into a Rect.
Dim r As Rect
r = DirectCast(_

Marshal.PtrToStructure(m.LParam, GetType(Rect)), _
Rect)

‘ Get the current dimensions.
Dim wid As Double = r.right - r.left
Dim hgt As Double = r.bottom - r.top

‘ Get the new aspect ratio.

286

Chapter 10

12_571982 ch10.qxd 9/1/05 7:20 PM Page 286

new_aspect_ratio = hgt / wid

‘ The first time, save the form’s aspect ratio.
If fixed_aspect_ratio = 0 Then

fixed_aspect_ratio = new_aspect_ratio
End If

‘ See if the aspect ratio is changing.
If fixed_aspect_ratio <> new_aspect_ratio Then

‘ To decide which dimension we should preserve,
‘ see what border the user is dragging.
If m.WParam.ToInt32 = WMSZ_TOPLEFT Or _

m.WParam.ToInt32 = WMSZ_TOPRIGHT Or _
m.WParam.ToInt32 = WMSZ_BOTTOMLEFT Or _
m.WParam.ToInt32 = WMSZ_BOTTOMRIGHT _

Then
‘ The user is dragging a corner.
‘ Preserve the bigger dimension.
If new_aspect_ratio > fixed_aspect_ratio Then

‘ It’s too tall and thin. Make it wider.
wid = hgt / fixed_aspect_ratio

Else
‘ It’s too short and wide. Make it taller.
hgt = wid * fixed_aspect_ratio

End If
ElseIf m.WParam.ToInt32 = WMSZ_LEFT Or _

m.WParam.ToInt32 = WMSZ_RIGHT _
Then

‘ The user is dragging a side.
‘ Preserve the width.
hgt = wid * fixed_aspect_ratio

ElseIf m.WParam.ToInt32 = WMSZ_TOP Or _
m.WParam.ToInt32 = WMSZ_BOTTOM _

Then
‘ The user is dragging the top or bottom.
‘ Preserve the height.
wid = hgt / fixed_aspect_ratio

End If

‘ Figure out whether to reset the top/bottom
‘ and left/right.
‘ See if the user is dragging the top edge.
If m.WParam.ToInt32 = WMSZ_TOP Or _

m.WParam.ToInt32 = WMSZ_TOPLEFT Or _
m.WParam.ToInt32 = WMSZ_TOPRIGHT _

Then
‘ Reset the top.
r.top = r.bottom - CInt(hgt)

Else
‘ Reset the bottom.
r.bottom = r.top + CInt(hgt)

End If

‘ See if the user is dragging the left edge.
If m.WParam.ToInt32 = WMSZ_LEFT Or _

287

Forms

12_571982 ch10.qxd 9/1/05 7:20 PM Page 287

m.WParam.ToInt32 = WMSZ_TOPLEFT Or _
m.WParam.ToInt32 = WMSZ_BOTTOMLEFT _

Then
‘ Reset the left.
r.left = r.right - CInt(wid)

Else
‘ Reset the right.
r.right = r.left + CInt(wid)

End If

‘ Update the Message object’s LParam field.
Marshal.StructureToPtr(r, m.LParam, True)

End If
End If

MyBase.WndProc(m)
End Sub

End Class

In Visual Basic 6 and earlier versions, a program could install a custom WindowProc to perform roughly
the same operations. This process was called subclassing, an unfortunate choice of name given that
object-oriented languages use the term to mean “deriving one class from another” as Visual Basic does
with its Inherits statement.

Overriding WndProc in Visual Basic .NET is much easier and safer than subclassing in Visual Basic 6. As
you can see from the example, however, it still requires some tricks to convert the IntPtr stored in
m.LParam to and from the appropriate structure. You must also figure out what messages to intercept,
what m.LParam and m.WParam parameters they take, and what you can do to safely affect them.

One way to learn about messages is to insert the following WndProc and then perform the action that
you want to study (resizing the form, in this example):

Protected Overrides Sub WndProc(ByRef m As System.Windows.Forms.Message)
Debug.Print(m.ToString)
MyBase.WndProc(m)

End Sub

The following statement shows the result for the WM_SIZING message sent to the form while the user
resizes it. It at least shows the message name (WM_SIZING) and its numeric value (hexadecimal 0x214).

msg=0x214 (WM_SIZING) hwnd=0x30b8c wparam=0x2 lparam=0x590e29c result=0x0

Searching for the message name on Microsoft’s Web site and on other programming sites usually gives
you the other information you need to know (such as what m.WParam and m.LParam mean).

Note also that the Form class inherits the WndProc subroutine from the Control class, so all other
Windows forms controls inherit it as well. That means you can override their WndProc routines to change
their behaviors.

288

Chapter 10

12_571982 ch10.qxd 9/1/05 7:20 PM Page 288

For example, the following code shows how the NoCtxMnuTextBox class works. This control is derived
from the TextBox control. Its WndProc subroutine checks for WM_CONTEXTMENU messages and calls the
base class’s WndProc for all other messages. By failing to process the WM_CONTEXTMENU message, the
control prevents itself from displaying the TextBox’s normal Copy/Cut/Paste context menu when you
right-click on it.

Public Class NoCtxMnuTextBox
Inherits System.Windows.Forms.TextBox

Protected Overrides Sub WndProc(ByRef m As System.Windows.Forms.Message)
Const WM_CONTEXTMENU As Integer = &H7B

If m.Msg <> WM_CONTEXTMENU Then
MyBase.WndProc(m)

End If
End Sub

End Class

SDI and MDI
A single-document interface (SDI) application displays a single “document” in each form. Here, a “docu-
ment” can be an actual disk file, or it can be a group of related items such as those on an order, employee
record, or architectural drawing. For example, Microsoft Paint and Notepad are both SDI applications.
Figure 10-7 shows an SDI application showing three files in separate forms.

Figure 10-7: An SDI application displays separate documents in separate forms.

289

Forms

12_571982 ch10.qxd 9/1/05 7:20 PM Page 289

In contrast, a multiple-document interface (MDI) application displays its documents in their own forms,
but then places the forms inside a container form. For example, Visual Studio can act either as an MDI
application or it can display its child forms (form designers, code editors, and so forth) using tabs. The
individual document windows are called MDI child forms and the container form is called the MDI
container or MDI parent form. Figure 10-8 shows an MDI application with three MDI child forms.

Figure 10-8: An MDI application displays documents in forms contained within an MDI
container form.

The following sections describe some of the features provided by MDI forms and discuss reasons you
might want to use an MDI or SDI application style.

MDI Features
The MDI container form provides several services for its child forms. It contains the forms and keeps
them all together so that they are easy to find. If you move a form so that it won’t fit within the container,
the container automatically displays scroll bars so you can view it.

The program displays an icon in the taskbar and Task Manager for the MDI container, but not for the child
forms. If you minimize the MDI container, all of the forms it contains are hidden with it. If you minimize a
child form, its icon is displayed within the container, not separately in the taskbar. If you maximize an MDI
child, it fills the parent form and its caption becomes part of the parent’s. For example, if the MDI parent
form’s caption is Parent and the child’s caption is Child, then when you maximize the child the parent’s
caption becomes “Parent - [Child].”

290

Chapter 10

12_571982 ch10.qxd 9/1/05 7:20 PM Page 290

The MDI container also provides some methods for arranging its child forms. The following code shows
how an MDI container’s code can cascade the children so that they overlap nicely, tile the children verti-
cally or horizontally, and arrange the icons of any minimized child forms.

Private Sub CascadeToolStripMenuItem_Click(ByVal sender As Object, _
ByVal e As EventArgs) Handles CascadeToolStripMenuItem.Click

Me.LayoutMdi(MdiLayout.Cascade)
End Sub

Private Sub TileVerticleToolStripMenuItem_Click(ByVal sender As Object, _
ByVal e As EventArgs) Handles TileVerticalToolStripMenuItem.Click

Me.LayoutMdi(MdiLayout.TileVertical)
End Sub

Private Sub TileHorizontalToolStripMenuItem_Click(ByVal sender As Object, _
ByVal e As EventArgs) Handles TileHorizontalToolStripMenuItem.Click

Me.LayoutMdi(MdiLayout.TileHorizontal)
End Sub

Private Sub ArrangeIconsToolStripMenuItem_Click(ByVal sender As Object, _
ByVal e As EventArgs) Handles ArrangeIconsToolStripMenuItem.Click

Me.LayoutMdi(MdiLayout.ArrangeIcons)
End Sub

Some other useful commands that you can add to an MDI application include Minimize All, Restore All,
Maximize All, and Close All. You can implement these commands by looping through the MDI con-
tainer’s MdiChildren collection, as shown in the following code:

Private Sub MinimizeAllToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MinimizeAllToolStripMenuItem.Click

For Each frm As Form In Me.MdiChildren
frm.WindowState = FormWindowState.Minimized

Next frm
End Sub

Private Sub RestoreAllToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles RestoreAllToolStripMenuItem.Click

For Each frm As Form In Me.MdiChildren
frm.WindowState = FormWindowState.Normal

Next frm
End Sub

Private Sub MaximizeAllToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MaximizeAllToolStripMenuItem.Click

For Each frm As Form In Me.MdiChildren
frm.WindowState = FormWindowState.Maximized

Next frm
End Sub

Private Sub CloseAllToolStripMenuItem_Click(ByVal sender As Object, _
ByVal e As EventArgs) Handles CloseAllToolStripMenuItem.Click

For Each frm As Form In Me.MdiChildren
frm.Close()

Next
End Sub

291

Forms

12_571982 ch10.qxd 9/1/05 7:20 PM Page 291

Depending on your application, you might also provide commands that operate on subsets of the child
forms. Suppose that a program displays a main order record and its many related order items in MDI
child forms. You might want to let the user close all the order items, while keeping the main order form
open.

Many MDI programs include a Window menu that displays a list of the MDI child forms that are open.
You can select one of these menu items to move that form to the top of the others.

Building an MDI child list is easy in Visual Basic. Select the main MenuStrip control. Then in the
Properties window, set the control’s MdiWindowListItem property to the menu that you want to hold
the child list. When you open and close child windows, Visual Basic automatically updates the list.

Figure 10-9 shows a menu displaying an MDI child list. The form with the caption MDIEdit.sln cur-
rently has the focus, so the list displays a check mark next to that form’s entry.

Figure 10-9: The MenuStrip’s MdiWindowListItem property determines which menu item
displays an MDI child list.

Most “normal” Visual Basic applications use SDI and when you create a new application, you get SDI by
default. To build an MDI application, start a new application as usual. Then set the startup form’s
IsMdiContainer property to True. In the Form Designer, this form will change appearance, so it’s
obvious that it is an MDI parent form.

Alternatively you can select the Project menu’s Add Windows Form command. In the new form dialog,
select MDI Parent Form, give the form a reasonable name, and click Add. Visual Basic adds a new MDI
parent form and gives it an assortment of standard controls that you might like it to have including a

292

Chapter 10

12_571982 ch10.qxd 9/1/05 7:20 PM Page 292

menu strip containing standard menus (File, Edit, View, and so forth) and a toolbar with standard tools
(new, open, save, and so forth).

At design time, an MDI child form looks just like any other form. To make the child form sit inside the
MDI container, you must set its MdiParent property to the MDI container form at run time.

The following code shows how the MDI parent form in Figure 10-8 creates new MDI children. When the
user selects the File menu’s Open command or the toolbar’s Open tool, this event handler executes and
displays a file open dialog. If the user selects a file and clicks OK, the code creates a new Form1 object. It
loads the selected file into the form’s txtContents TextBox, sets the form’s caption to the file’s name
(without the path), sets the form’s MdiParent property to Me (the MDI parent form), and displays the
form. The form is automatically shown in the MDI container and added to the MDI child list.

Private Sub OpenFile(ByVal sender As Object, ByVal e As EventArgs) Handles _
OpenToolStripMenuItem.Click, OpenToolStripButton.Click

Dim dlgOpen As New OpenFileDialog
If dlgOpen.ShowDialog(Me) = Windows.Forms.DialogResult.OK Then

Dim frm As New Form1
frm.txtContents.Text = File.ReadAllText(dlgOpen.FileName)
frm.txtContents.Select(0, 0)
frm.Text = New FileInfo(dlgOpen.FileName).Name
frm.MdiParent = Me
frm.Show()

End If
End Sub

Normally, the system menu in the left of a form’s title area includes a Close command with the shortcut
Alt-F4. This command closes the form. An MDI child’s system menu also contains a Close command,
but this one’s shortcut is Ctrl-F4. If you select this command or invoke its shortcut, the application closes
the MDI child form but not the MDI container.

The MDI child’s system menu also includes a Next command that moves the focus to the MDI container’s
next MDI child. The menu shows this command’s shortcut as Ctrl-F6. However, Ctrl-Tab works as well.
Ctrl-Tab may be a bit easier to remember because it is more similar to the Alt-Tab shortcut that moves to the
next application on the desktop. This is also more consistent with the shortcuts for closing forms: Alt-F4
closes a top-level form, while Ctrl-F4 closes an MDI child; Alt-Tab moves to the next desktop application,
while Ctrl-Tab moves to the next MDI child form.

MDI Events
Events for an MDI child form generally occur before the corresponding MDI parent’s events. For example,
if you try to close an MDI form, the child forms all receive FormClosing events before the MDI parent
receives its FormClosing event. Next, the MDI child forms receive FormClosed events, and finally the
MDI parent receives its FormClosed event.

Note that MDI child forms also receive these events if only the child form is closing. If the user closes an
MDI child form, it receives a FormClosing event followed by its FormClosed event.

If a form’s FormClosing event handler sets its e.Cancel parameter to True, the close is canceled and
the form remains open. The form can use this to guarantee that its data is consistent and has been saved.

293

Forms

12_571982 ch10.qxd 9/1/05 7:20 PM Page 293

For example, the following code checks the m_IsDirty variable to see if the form’s data has been modified
since it was loaded. If m_IsDirty is True, the program displays a message box to the user asking if it
should save the changes.

If the user clicks the Yes button, the code calls subroutine SaveFile to save the changes. This routine
saves the data and sets m_IsDirty to False if it is successful. If SaveFile fails (for example, if the data
file is locked), it leaves m_IsDirty set to True. If the user clicks No to indicate that the program should
discard the changes, the FormClosing event handler leaves e.Cancel equal to False so the form closes
normally. If the user clicks the Cancel button to indicate that the form should not be closed after all, the
event handler sets e.Cancel to True to keep the form open.

‘ See if it’s safe to close the form.
Private Sub mdiChild_FormClosing(ByVal sender As Object, _
ByVal e As System.Windows.Forms.FormClosingEventArgs) _
Handles Me.FormClosing

If m_IsDirty Then
‘ There are unsaved changes.
‘ Ask the user if we should save them.
Select Case MessageBox.Show(_

“The data has changed. Save the changes?”, _
“Save Changes?”, _
MessageBoxButtons.YesNoCancel, _
MessageBoxIcon.Question)

Case Windows.Forms.DialogResult.Yes
‘ Save the changes.
SaveFile()

‘ See if we succeeded.
e.Cancel = m_IsDirty

Case Windows.Forms.DialogResult.No
‘ Discard the changes.
‘ Leave e.Cancel = False.

Case Windows.Forms.DialogResult.Cancel
‘ Cancel the close.
e.Cancel = True

End Select
End If

End Sub

If the user tries to close the MDI container and any of the MDI child forms’ FormClosing event handlers
sets e.Cancel to True, the close is canceled for all the child forms. Any child forms that have not yet
received a FormClosing event do not get one. All of the children remain open, even those that set
e.Cancel = False.

After the children process their FormClosing events, the MDI parent form still gets the final word. It
receives a FormClosing event with its e.Cancel value set to True if any of the child forms set it to
True. The value e.Cancel value is False if all of the child forms left it False.

The MDI parent can leave the e.Cancel alone to accept whatever value the child forms selected, or it
can override the value and force the program to exit or not as it desires.

294

Chapter 10

12_571982 ch10.qxd 9/1/05 7:20 PM Page 294

The child forms still have one chance to save their data in their FormClosed events. At this point, they
will close, however, so they had better take action if they need to save their data.

MDI Versus SDI
MDI and SDI applications both have their advantages. In an SDI application, building and understanding
the menus is simpler. A menu applies to exactly one form, and there is no merging and swapping of
menus as the user changes MDI child forms.

SDI applications work particularly well when the program works with only one document at a time.
Notepad, Microsoft Paint, and similar applications that only let the user work with one file at a time are
SDI applications. These programs are light enough in weight that the user can easily run more than one
instance of the program to view more than one file at a time if necessary.

MDI applications help the user display many related files at once without cluttering up the desktop. For
example, Visual Studio can use an MDI interface to let you examine all of the files in a project side by side.
Displaying all of a project’s form designers, code editors, resource editors, and other files in separate win-
dows might bury the desktop under forms and fill the taskbar with icons. Putting all of these forms inside
an MDI container makes using the application easier. It lets the system represent the Visual Studio program
with a single container form and a single icon. The Windows menu provides an MDI child list that makes it
easier to find a particular form.

You can also build a hybrid application that displays several MDI containers, each holding any number of
MDI child forms. For example, each MDI container might hold all the forms related to a particular order:
customer data, order items, and so forth. This would keep these related items together. It would also
enable the user to display information about more than one order at a time in separate MDI containers.

In practice, examples of this kind of hybrid application are often cumbersome and poorly designed. It
would generally be simpler to build this application as a standard MDI application and let the user launch
multiple instances to display more than one order’s data at once, but there may be times when it is easier
to build a single multiple-MDI application. For example, if the program must work with a password-
protected database, the program would need only to prompt the user for a username and password once,
and all the MDI containers could share the same database connection. Often, you can avoid the need for
multiple forms (and hence an MDI format) by using other controls to fit more information on a single form.
For example, ComboBox, ListBox, TreeView, SplitterContainer, and many other controls can display
large amounts of data in a limited space, providing scroll bars as necessary.

The TabControl lets an application display many pages of data on a single form. For example, you
might use different tabs to display the different pages that are relevant to an order: customer data, the
order itself, order items, shipping and billing addresses, and so forth. This type of tabbed form placed
inside an MDI container can make a very powerful application that enables the user to easily manage
and understand huge amounts of information.

One drawback to many of these controls is that they make it more difficult to perform side-by-side com-
parisons of values. For example, suppose that a single form displays different addresses (billing, shipping,
contact, and so forth) on different tabs. Then it would be difficult for the user to compare two addresses to
see if they are identical. If you know that the user may want to compare two pieces of data, try to arrange
them so they can both be visible at the same time.

295

Forms

12_571982 ch10.qxd 9/1/05 7:20 PM Page 295

MRU Lists
MDI and SDI interfaces provide different ways to manage documents. Another tool that helps users
manage documents is a Most Recently Used (MRU) list. The MRU list is a series of menu items (usually at
the bottom of an application’s File menu) that displays the files most recently accessed by the user. If the
user clicks on one of these menu items, the program reopens the corresponding file. Figure 10-10 shows
an MRU list in a simple editing application.

Figure 10-10: An MRU list makes it easier for users to reopen the files they
have used most recently.

By convention, these menu items begin with the accelerator characters 1, 2, 3, and so forth. If you opened
the File menu shown in Figure 10-10 and pressed 2, for example, the program would reopen the file
SdiEdit.sln.

When the user opens a new file or saves a file with a new name, that file is placed at the top of the list.
Most applications display up to four items in the MRU list and, if the list ever contains more items, the
oldest are removed.

Most applications remove a file from the MRU list if the applications try to open it and fail. For example,
if the user selects an MRU menu item but the corresponding file has been removed from the system, the
program removes the file’s menu item.

Building an MRU list isn’t too difficult in Visual Basic. The following code shows a simple MruList class.
The class has its own private variables to store the application’s name, a reference to the main program’s
File menu (or whichever menu should hold the MRU list), and the maximum number of MRU list entries
that it should display. It also uses private collections to hold the names of the files in the MRU list and ref-
erences to the menu items it has added to the File menu.

After declaring the private variables, the class declares a public OpenFile event. It raises this event to
tell the main program that the user has selected one of the MRU files.

296

Chapter 10

12_571982 ch10.qxd 9/1/05 7:20 PM Page 296

The class’s constructor takes as parameters the application’s name, a reference to the File menu, and the
maximum number of entries it should display. It stores those values, calls LoadMruList to load the
MRU list that was saved the last time the program ran, and then calls DisplayMruList to add the MRU
items to the File menu.

The subroutine LoadMruList loops through the numbers 1 to the maximum number of entries it should
display and uses GetSetting to fetch a file name from the System Registry. These values are stored in
the Registry area named for the application (in the section named MruList). The values themselves are
named FileName1, FileName2, and so forth.

The program passes the call to GetSetting a default value of “”, so it returns a zero-length string if the
value is not in the Registry. If GetSetting returns a nonblank string, the code adds it to the m_FileNames
collection.

The subroutine SaveMruList saves the MRU list’s current file names into the registry. It starts by using
GetSetting to see if there is a FileName1 entry. If this entry is present, the program uses the
DeleteSetting statement to remove the entire MruList section from the program’s area in the Registry.
Then SaveMruList loops through the m_FileNames collection, making the appropriate Registry entries.

The subroutine DisplayMruList builds the MRU menu items. First it loops through the m_MenuItems
collection and removes any menu items that it created previously. Next, if the m_FileNames collection
contains any file names, the subroutine adds a separator to the File menu. In Figure 10-10, this is the hori-
zontal gray line above the first MRU item and below the Properties item. The routine creates this item,
saves a reference to it in the m_MenuItems collection, and adds the item to the File menu.

DisplayMruList then loops through the MRU file names making their menu items. For each file, it
makes a new menu item with an appropriate caption. The caption starts with an ampersand followed by
a number. That makes the number appear underlined in the menu and makes the number the item’s
accelerator. For example, the caption “&1 Text.txt” would be displayed as “1 Test.txt.” If you opened
the File menu and pressed 1, this menu item would fire.

The subroutine DisplayMruList assigns the MruItem_Click event handler with the new menu item’s
Click event, saves a reference to the new item in the m_MenuItems collection, and then adds the item to
the File menu.

The MruItem_Click event handler executes when the user clicks one of the MRU menu items. It uses
DirectCast to convert the sender parameter into the ToolStripMenuItem object that raised the event.
It then loops through the m_MenuItems collection looking for that item. When it finds the item, the code
looks up the corresponding file name and raises the OpenFile event, passing it the file name. Note that
the indexes in the m_MenuItems and m_FileNames collections differ by one, because the separator has an
entry in the m_MenuItems collection but not in m_FileNames.

The subroutines Add and Remove let the main program control the MruList object. Add takes as a parame-
ter the name of a file to add to the MRU list. It uses the FileNameIndex function to see if the file is already
on the list, and it removes the file if it is present. Add then inserts the file at the front of the MRU list. If this
makes the list too long, the routine removes the last entry from the m_FileNames collection. Finally, the
program calls DisplayMruList to recreate the MRU list’s File menu items and calls SaveMruList to
update the list’s registry entries.

The FileNameIndex helper function loops through the m_FileNames collection and returns a file
name’s index if it is present.

297

Forms

12_571982 ch10.qxd 9/1/05 7:20 PM Page 297

Finally, the subroutine Remove takes as a parameter the name of a file to remove from the MRU list. It
uses FileNameIndex to get the file’s index in the m_FileNames collection. If the file is present, the code
removes if from the collection, calls DisplayMruList to recreate the menu items, and calls SaveMruList
to update the list’s registry entries.

Imports System.IO

Public Class MruList
Private m_ApplicationName As String
Private m_FileMenu As ToolStripMenuItem
Private m_NumEntries As Integer
Private m_FileNames As Collection
Private m_MenuItems As Collection

Public Event OpenFile(ByVal file_name As String)

Public Sub New(ByVal application_name As String, _
ByVal file_menu As ToolStripMenuItem, ByVal num_entries As Integer)

m_ApplicationName = application_name
m_FileMenu = file_menu
m_NumEntries = num_entries
m_FileNames = New Collection
m_MenuItems = New Collection

‘ Load saved file names from the Registry.
LoadMruList()

‘ Display the MRU list.
DisplayMruList()

End Sub

‘ Load previously saved file names from the Registry.
Private Sub LoadMruList()

Dim file_name As String
For i As Integer = 1 To m_NumEntries

‘ Get the next file name and title.
file_name = GetSetting(m_ApplicationName, _

“MruList”, “FileName” & i, “”)

‘ See if we got anything.
If file_name.Length > 0 Then

‘ Save this file name.
m_FileNames.Add(file_name, file_name)

End If
Next i

End Sub

‘ Save the MRU list into the Registry.
Private Sub SaveMruList()

‘ Remove previous entries.
If GetSetting(m_ApplicationName, “MruList”, _
“FileName1”, “”).Length > 0 Then

DeleteSetting(m_ApplicationName, “MruList”)

298

Chapter 10

12_571982 ch10.qxd 9/1/05 7:20 PM Page 298

End If

‘ Make the new entries.
For i As Integer = 1 To m_FileNames.Count

SaveSetting(m_ApplicationName, _
“MruList”, “FileName” & i, _
m_FileNames(i).ToString)

Next i
End Sub

‘ Display the MRU list.
Private Sub DisplayMruList()

‘ Remove old menu items from the File menu.
For Each mnu As ToolStripItem In m_MenuItems

m_FileMenu.DropDownItems.Remove(mnu)
Next mnu
m_MenuItems = New Collection

‘ See if we have any file names.
If m_FileNames.Count > 0 Then

‘ Make the separator.
Dim sep As New ToolStripSeparator()
m_MenuItems.Add(sep)
m_FileMenu.DropDownItems.Add(sep)

‘ Make the other menu items.
Dim mnu As ToolStripMenuItem
For i As Integer = 1 To m_FileNames.Count

mnu = New ToolStripMenuItem()
mnu.Text = “&” & i & “ “ & _

New FileInfo(m_FileNames(i).ToString).Name
AddHandler mnu.Click, AddressOf MruItem_Click
m_MenuItems.Add(mnu)
m_FileMenu.DropDownItems.Add(mnu)

Next i
End If

End Sub

‘ MRU menu item event handler.
Private Sub MruItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

Dim mnu As ToolStripMenuItem
mnu = DirectCast(sender, ToolStripMenuItem)

‘ Find the menu item that raised this event.
For i As Integer = 1 To m_FileNames.Count

‘ See if this is the item. (Add 1 for the separator.)
If m_MenuItems(i + 1) Is mnu Then

‘ This is the item. Raise the OpenFile
‘ event for its file name.
RaiseEvent OpenFile(m_FileNames(i).ToString)
Exit For

End If
Next i

299

Forms

12_571982 ch10.qxd 9/1/05 7:20 PM Page 299

End Sub

‘ Add a file to the MRU list.
Public Sub Add(ByVal file_name As String)

‘ Remove this file from the MRU list
‘ if it is present.
Dim i As Integer = FileNameIndex(file_name)
If i > 0 Then m_FileNames.Remove(i)

‘ Add the item to the begining of the list.
If m_FileNames.Count > 0 Then

m_FileNames.Add(file_name, file_name, m_FileNames.Item(1))
Else

m_FileNames.Add(file_name, file_name)
End If

‘ If the list is too long, remove the last item.
If m_FileNames.Count > m_NumEntries Then

m_FileNames.Remove(m_NumEntries + 1)
End If

‘ Display the list.
DisplayMruList()

‘ Save the updated list.
SaveMruList()

End Sub

‘ Return the index of this file in the list.
Private Function FileNameIndex(ByVal file_name As String) As Integer

For i As Integer = 1 To m_FileNames.Count
If m_FileNames(i).ToString = file_name Then Return i

Next i
Return 0

End Function

‘ Remove a file from the MRU list.
Public Sub Remove(ByVal file_name As String)

‘ See if the file is present.
Dim i As Integer = FileNameIndex(file_name)
If i > 0 Then

‘ Remove the File.
m_FileNames.Remove(i)

‘ Display the list.
DisplayMruList()

‘ Save the updated list.
SaveMruList()

End If
End Sub

End Class

The following code shows how a main program can use the MruList class. This program is a simple text
viewer that lets the user open and view files.

300

Chapter 10

12_571982 ch10.qxd 9/1/05 7:20 PM Page 300

This program declares an MruList variable named m_MruList. It uses the WithEvents keyword so that
it is easy to catch the object’s OpenFile event.

The form’s New event handler initializes the MruList object, passing it the application’s name, the File
menu, and the number of items the MRU list should hold.

When the user selects the File menu’s Open command, the program displays an open file dialog. If the
user selects a file and clicks OK, the program calls subroutine OpenFile, passing it the name of the
selected file.

If the user selects a file from the MRU list, the m_MruList_OpenFile event handler executes and calls
subroutine OpenFile, passing it the name of the selected file.

Subroutine OpenFile loads the file’s contents into the txtContents TextBox. It then calls the MruList
object’s Add method, passing it the file’s name. It finishes by setting the form’s caption to the file’s name
without its directory path.

Imports System.IO

Public Class Form1

Private WithEvents m_MruList As MruList

‘ Initialize the MRU list.
Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load

m_MruList = New MruList(“SdiMruList”, mnuFile, 4)
End Sub

‘ Let the user open a file.
Private Sub mnuFileOpen_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles mnuFileOpen.Click

If dlgOpen.ShowDialog() = Windows.Forms.DialogResult.OK Then
OpenFile(dlgOpen.FileName)

End If
End Sub

‘ Open a file selected from the MRU list.
Private Sub m_MruList_OpenFile(ByVal file_name As String) _
Handles m_MruList.OpenFile

OpenFile(file_name)
End Sub

‘ Open a file and add it to the MRU list.
Private Sub OpenFile(ByVal file_name As String)

txtContents.Text = File.ReadAll(file_name)
txtContents.Select(0, 0)
m_MruList.Add(file_name)
Me.Text = “[“ & New FileInfo(file_name).Name & “]”

End Sub
End Class

301

Forms

12_571982 ch10.qxd 9/1/05 7:20 PM Page 301

You could easily convert the MruList class into a component. If you give the component
ApplicationName, FileMenu, and MaxEntries properties, you can set those values at design time. For
more information about building components, see Chapter 12, “Custom Controls.”

Dialogs
Using a form as a dialog is easy. Create the form and give it whatever controls it needs to do its job. Add
one or more buttons to let the user dismiss the dialog. Many dialogs use OK and Cancel buttons, but you
can also use Yes, No, Retry, and others. You may also want to set the form’s FormBorderStyle property
to FixedDialog, although that’s not mandatory

Set the form’s AcceptButton property to the button you want to invoke if the user presses the Enter
key. Set its CancelButton property to the button you want to invoke when the user presses the Esc key.

The form’s DialogResult property indicates the dialog’s return value. If the main program displays the
dialog by using its ShowDialog method, ShowDialog returns the DialogResult value. The following
code shows how the main program can display a dialog and react to its result. It creates a new instance of
the dlgEmployee form and displays it by calling its ShowDialog method. If the user clicks OK, then
ShowDialog returns DialogResult.OK and the program displays the employee’s name entered on the
dialog. If the user clicks the Cancel button, ShowDialog returns DialogResult.Cancel and the program
displays the message “Canceled.”

Private Sub btnShowDialog_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnShowDialog.Click

Dim dlg As New dlgEmployee
If dlg.ShowDialog() = Windows.Forms.DialogResult.OK Then

MessageBox.Show(_
dlg.txtFirstName.Text & “ “ & _
dlg.txtLastName.Text)

Else
MessageBox.Show(“Canceled”)

End If
End Sub

If the user clicks the Cancel button or closes the form by using the system menu, the form automatically
sets its DialogResult property to Cancel and closes the form.

If the user clicks some other button, your event handler should set DialogResult to an appropriate
value. Setting this value automatically closes the form.

You can also set a button’s DialogResult property to indicate the value that the dialog should return
when the user presses that button. When the user presses the button, Visual Basic sets the form’s
DialogResult property automatically.

The following code shows how the employee form reacts when the user clicks the OK button. It sees if the
first and last name TextBox controls contain nonblank values. If either value is blank, the event handler
displays an error message and returns without setting the form’s DialogResult property. If both values
are nonblank, the code sets DialogResult to OK, and setting DialogResult closes the form. Note that
the dialog doesn’t need an event handler for the Cancel button. If the user clicks Cancel, Visual Basic
automatically sets the form’s DialogResult to Cancel and closes the form.

302

Chapter 10

12_571982 ch10.qxd 9/1/05 7:20 PM Page 302

Private Sub btnOk_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOk.Click

‘ Verify that the first name is present.
If txtFirstName.Text.Length = 0 Then

MessageBox.Show(_
“Please enter a First Name”, _
“First Name Required”, _
MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation)

txtFirstName.Select()
Exit Sub

End If

‘ Verify that the last name is present.
If txtLastName.Text.Length = 0 Then

MessageBox.Show(_
“Please enter a Last Name”, _
“Last Name Required”, _
MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation)

txtLastName.Select()
Exit Sub

End If

‘ Accept the dialog.
Me.DialogResult = Windows.Forms.DialogResult.OK

End Sub

Many dialogs provide OK and Cancel buttons, so they usually set DialogResult to OK or Cancel.
However, you can also set DialogResult to Abort, Ignore, No, None, Retry, and Yes if that makes
sense for your program. The main program can use an If Then or Select Case statement to see which
value was set.

Wizards
One common type of dialog is called a wizard. A wizard is a form that guides the user through a series of
steps to do something. For example, building a database connection is complicated, so Visual Basic pro-
vides a data connection configuration wizard that helps the user enter the correct information for different
kinds of databases. When it finishes, the wizard adds a connection object to the current form.

Figure 10-11 shows a typical wizard. The user enters data on each tab and then moves on to the next one.
This wizard asks the user to enter an employee’s name, identification (Social Security number and
Employee ID), address and phone number, office location and extension, and privileges.

When the user has filled in all the fields, the wizard enables the OK button. When the user clicks the OK
or Cancel button, control returns to the main program, which handles the result just as it handles any
other dialog.

Figure 10-12 shows a different style of wizard. Instead of tabs, it uses buttons to let the user move
through its pages of fields. The wizard only enables a button when the user has filled in the necessary
information on the previous page. In Figure 10-12, the Office button is disabled because the user has not
filled in all the fields on the Address page.

303

Forms

12_571982 ch10.qxd 9/1/05 7:20 PM Page 303

Figure 10-11: A wizard guides the user through the steps of some
complicated task.

Figure 10-12: This wizard uses buttons instead of tabs to move through its
pages of data.

Summary
While forms are just one kind of control, they have some very special characteristics. They form the basic
pieces of an application that sit on the desktop, and they have many properties, methods, and events
that set forms apart from other controls. Appendix H, “Form Objects,” provides more information about
form properties, methods, and events.

This chapter describes some of the more typical uses of forms. It explains how to build About, Splash,
and Login Forms; manage a form’s mouse cursors and icons; override WndProc to intercept a form’s
Windows messages; build MDI applications and tools that help the user manage MDI child forms; and
make dialogs and wizards. After you master these tasks, you can build the forms that implement the
large-scale pieces of an application.

Chapter 9 described standard Windows Forms controls and components. This chapter explained forms,
which are specialized types of controls. Chapter 11, “Database Controls and Objects,” explains controls
and components that are useful in database applications. They include components to connect an appli-
cation to a database and to move data between the database and the application.

304

Chapter 10

12_571982 ch10.qxd 9/1/05 7:20 PM Page 304

Database Controls
and Objects

The Windows forms controls described in Chapter 10 allow the application and the user to commu-
nicate. They let the application display data to the user, and they let the user control the application.

Visual Basic’s database controls play roughly the same role between the application and a database.
They move data from the database to the application, and they allow the application to send data
back to the database.

Database programming is an enormous topic, and many books have been written that focus exclu-
sively on database programming. This is such a huge field that no general Visual Basic book can
adequately cover it in any real depth. However, database programming is also a very important
topic, and every Visual Basic programmer should know at least something about using databases
in applications.

This chapter explains how to build data sources and use drag and drop to create simple table- and
record-oriented displays. It also explains the most useful controls and objects that Visual Basic
provides for working with databases. While this is far from the end of the story, it will help you get
started building basic database applications.

Automatically Connecting to Data
Visual Studio 2005 provides new tools that make getting started with databases easier than ever.
To build a simple database program, start a new application and select the Data menu’s Add New
Data Source command to display the Data Source Configuration Wizard shown in Figure 11-1.

Visual Studio 2005 allows you to use databases, Web Services, and objects in your application. The
most straightforward choice is Database.

Select the type of data source you want add and click Next to pick a data connection on the page
shown in Figure 11-2.

13_571982 ch11.qxd 9/1/05 7:21 PM Page 305

Figure 11-1: The Data Source Configuration Wizard lets you add or configure data sources.

Figure 11-2: Pick the data connection or click New Connection to create a new one.

306

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 306

If you have previously created data connections, you can select one from the dropdown. If you have not
created any data connections, click the New Connection button to open the dialog shown in Figure 11-3.

Figure 11-3: Use the Add Connection dialog to create
a data connection.

If you don’t like the default data source type selected by the dialog (in this example, Microsoft Access
Database File), click the Change button to display the dialog shown in Figure 11-4. This dialog lets you
select different kinds of databases such as Microsoft Access, ODBC data sources, SQL Server databases,
and Oracle databases.

Figure 11-4: The Change Data Source dialog to select a new kind of
database.

After you have selected the database type, close the Change Data Source dialog and return to the Add
Connection dialog. Depending on the type of database you selected in Figure 11-4, this dialog may no
longer look like Figure 11-3. For example, Figure 11-5 shows what the Add Connection dialog looks like
if you select a SQL Server database.

307

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 307

Figure 11-5: The Add Connection dialog looks like
this for SQL Server databases.

Enter the necessary data in the Add Connection dialog. For a SQL Server database, select the server
name, authentication method, database name, and other information.

For a Microsoft Access database, enter the file name or click the Browse button shown in Figure 11-3 and
find the database file. Enter a user name and password if necessary and click OK.

When you return to the Data Source Configuration Wizard, select the new connection as shown in
Figure 11-6. If you click the plus sign next to the “Connection string” label, the wizard shows the connec-
tion information it will use to connect the data source to the database.

When you click Next, the wizard tells you that you have selected a local database file that is not part of the
project and it asks if you want to add it to the project. If you click Yes, the wizard adds the database to the
project so it shows up in Project Explorer. If you plan to distribute the database with the application, you
may want to do this to make it easier to manage the database and the Visual Basic source code together.

Next the wizard displays the dialog shown in Figure 11-7, asking if you want to save the connection
string in the project’s configuration file. If you leave this box checked, the wizard adds the configuration
string to the project’s app.config file.

308

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 308

Figure 11-6: Select the new connection in the Data Source Configuration Wizard.

Figure 11-7: Decide whether you want to include the connection string in the
configuration file.

309

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 309

The following shows the part of the configuration file containing the connection string.

<connectionStrings>
<add name=”SimpleDBApp.Settings.ClassRecordsConnectionString”

connectionString=”Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=|DataDirectory|\ClassRecords.mdb”

providerName=”System.Data.OleDb” />
</connectionStrings>

Later, the program uses the Settings.Default.ClassRecordsConnectionString values to get this
value and connect to the database. You can easily make the program connect to another data source by
changing this configuration setting and then restarting the application.

You should never save database passwords in the configuration file. The file is stored in plain text and
anyone can read it. If you need to use a password, store a connection string that contains a placeholder
for the real password. Then at run time, load the connection string and replace the placeholder with a
real password entered by the user.

Click Next to display the dialog shown in Figure 11-8. This page shows the objects available in the
database. In this example, the database contains two tables named Students and TestScores. By clicking
on the plus signs next to the objects, you can expand them to see what they contain. In Figure 11-8, the
tables are expanded so you can see the fields they contain.

Figure 11-8: Select the database objects that you want included in the data source.

Select the database objects that you want to include in the data source. In Figure 11-8, both of the tables
are selected.

When you click Finish, the wizard adds a couple objects to the application. The Solution Explorer shown
in Figure 11-9 lists the database ClassRecords.mdb and the new file ClassRecordsDataSet.xsd. This is a
schema definition file that describes the data source.

310

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 310

Figure 11-9: The Data Source Configuration Wizard
adds a database and schema to Solution Explorer.

If you double-click the schema file, Visual Basic opens it in the editor shown in Figure 11-10. This display
shows the tables defined by the schema and their fields.

Figure 11-10: The Schema Editor shows the tables defined by the schema and their relationships.

311

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 311

The line between the files with the little key on the left and the infinity symbol on the right indicates that
the tables are joined by a one-to-many relationship. In this example, the Students.StudentId field and
TestScores.StudentId field form a foreign key relationship. That means every StudentId value in the
TestScores table must correspond to some StudentId value in the Students table. If you double-click the rela-
tionship link or right-click it and select Edit Relation, the editor displays the dialog shown in Figure 11-11.

Figure 11-11: Use this dialog to edit relationships among data source tables.

At the bottom of the tables shown in Figure 11-10, you can see two data adapter objects containing the
labels “Fill,GetData().” These represent data adapter objects that the program will later use to move data
from and to the data source.

In addition to adding the schema file to Solution Explotet, the wizard also added a new DataSet object to
the Data Sources window shown in Figure 11-12. (If this window is not visible, select the Data menu’s
Show Data Sources command.)

You can use the plus signs next to expand the objects contained within the DataSet. In Figure 11-12, the
DataSet is expanded to show its tables, and the tables are expanded to show their fields. Notice that the
TestScores table is listed below the Students table because it has a parent/child relationship with that table.

It takes a lot of words and pictures to describe this process, but using the wizard to build the data source
is actually quite fast. After you have created the data source, you can build a simple user interface with
no extra work. Simply drag objects from the Data Sources window onto the form.

312

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 312

Figure 11-12: The Data Sources window lists the
new data source.

If you click and drag a table from the Data Sources window onto the form, Visual Basic automatically
creates BindingNavigator and DataGridView controls, and other components to display the data
from the table. Figure 11-13 shows the result.

Figure 11-13: Drag and drop a table from the Data Sources
window onto the form to create a simple DataGridView.

Instead of dragging an entire table onto the form, you can drag individual database columns. In that
case, Visual Basic adds controls to the form to represent the column. Figure 11-14 shows the columns
from the Students table dragged onto a form.

If you select a table in the Data Sources window, a drop-down arrow appears on the right. Open the
drop-down to give the table a different display style, as shown in Figure 11-15. For example, if you set a
table’s style to Details and drag the table onto a form, Visual Basic displays the table’s data using a
record detail view similar to the one shown in Figure 11-14 instead of the grid shown in Figure 11-13.

313

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 313

Figure 11-14: Drag and drop table columns onto a form
to create a record-oriented view instead of a grid.

Figure 11-15: Use the drop-down in the Data Sources
window to give a table a different display style.

Similarly, you can change the display styles for specific database columns. Select a column in the Data
Sources window and click its drop-down arrow to make it display in a text box, label, link label, combo
box, or other control. Now, when you drag the column onto a form, or when you drag the table onto the
form to build a record view, Visual Basic uses this type of control to display the column’s values.

Automatically Created Objects
When you drag database tables and columns from the Data Sources window onto a form, Visual Basic does
a lot more than simply placing a DataGridView control on a form. It also creates about two dozen other
controls and components. Four of the more important of these objects are the DataSet, TableAdapter,
BindingSource, and BindingNavigator. You can see these components in the component area below
the form in Figure 11-16.

314

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 314

Figure 11-16: Visual Basic uses DataSet, TableAdapter, BindingSource, and BindingNavigator
components to manage a DataGridView display.

The program stores data in a DataSet object. A single DataSet object can represent an entire database.
It contains DataTable objects that represent database tables. Each DataTable contains DataRow objects
that represent rows in a table, and each DataRow contains items representing column values for the row.

The TableAdapter object copies data between the database and the DataSet. It has methods for per-
forming operations on the database (such as selecting, inserting, updating, and deleting records).
Hidden inside the TableAdapter is a connection object that contains information on the database so
that the TableAdapter knows where to find it.

The BindingSource object encapsulates all of the DataSet’s data and provides programmatic control
functions. These perform such actions as moving through the data, adding and deleting items, and so forth.

The BindingNavigator provides a user interface so the user can control the BindingSource.

Figure 11-17 shows the relationships among the DataSet, TableAdapter, BindingSource, and
BindingNavigator objects.

315

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 315

Figure 11-17: Visual Basic uses DataSet, TableAdapter, BindingSource, and
BindingNavigator objects to display data.

Even all these objects working together don’t quite do everything you need to make the program display
data. When it creates these objects, Visual Basic also adds the following code to the form. The Form1_Load
event handler makes the TableAdapter copy data from the database into the DataSet.

The bindingNavigatorSaveItem_Click event handler fires when the user clicks the
BindingNavigator’s Save tool. This routine makes the TableAdapter save any changes to the
Students table to the database.

Public Class Form1

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘TODO: This line of code loads data into the ‘ClassRecordsDataSet.Students’
‘ table. You can move, or remove it, as needed.
Me.StudentsTableAdapter.Fill(Me.ClassRecordsDataSet.Students)

End Sub

Private Sub StudentsBindingNavigatorSaveItem_Click(ByVal sender As
System.Object, _

ByVal e As System.EventArgs) Handles StudentsBindingNavigatorSaveItem.Click
Me.Validate()
Me.StudentsBindingSource.EndEdit()
Me.StudentsTableAdapter.Update(Me.ClassRecordsDataSet.Students)

End Sub
End Class

Visual Basic builds all this automatically, and if you ran the program at this point, it would display data
and let you manipulate it. It’s still not perfect, however. It doesn’t perform any data validation, and it
will let you close the application without saving any changes you have made to the data. It’s a pretty
good start for such a small amount of work, however.

Other Data Objects
If you want a simple program that can display and modify data, then the solution described in the previ-
ous sections may be good enough. In that case, you should let Visual Basic do most of the work for you,
and you don’t need to dig into the lower-level details of database access.

Database

B
in

di
ng

S
ou

rc
e

TableAdapter

DataSet BindingNavigator

R
ow

Ta
ble

s

316

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 316

You can also use objects similar to those created by Visual Basic to build your own solutions. On one
hand, you can create your own DataSet, TableAdapter, BindingSource, and BindingNavigator
objects to bind controls to a database.

On the other hand, if you need to manipulate the database directly with code, it doesn’t necessarily
make sense to create all these objects. If you simply want to modify a record programmatically, it cer-
tainly doesn’t make sense to create DataGridView, BindingNavigator, and BindingSource objects.

For cases such as this, Visual Basic provides several other kinds of objects that you can use to interact
with databases. These objects fall into the following four categories:

❑ Data containers hold data after is has been loaded from the database into the application much as
a DataSet does. You can bind controls to these objects to automatically display and manipulate
the data.

❑ Connections provide information that lets the program connect to the database.

❑ Data adapters move data between a database and a data container.

❑ Command objects provide instructions for manipulating data. A command object can select, update,
insert, or delete data in the database. It can also execute stored procedures in the database.

Data container and adapter classes are generic and work with different kinds of databases, while different
types of connection and command objects are specific to different kinds of databases. For example, the
connection objects OleDbConnection, SqlConnection, OdbcConnection, and OracleConnection
objects work with Object Linking and Embedding Database (OLE DB); SQL Server, including Microsoft
Data Engine (MSDE); Open Database Connectivity (ODBC); and Oracle databases, respectively. The SQL
Server and Oracle objects work only with their specific brand of database, but they are more completely
optimized for those databases and may give better performance.

Aside from the different database types they support, the various objects work in more or less the same
way. The following sections explain how an application uses those objects to move data to and from the
database. They describe the most useful properties, methods, and events provided by the connection,
transaction, data adapter, and command objects.

Later sections describe the DataSet and DataView objects and tell how you can use them to bind controls
to display data automatically.

Data Overview
An application uses three basic objects to move data to and from a database: a connection, a data
adapter, and a data container such as a DataSet. The connection object defines the connection to the
database. It contains information about the database’s name and location, any username and password
needed to access the data, database engine information, and flags that determine the kinds of access the
program will need.

The data adapter object defines a mapping from the database to the DataSet. It determines what data is
selected from the database, and which database columns are mapped to which DataSet columns.

317

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 317

The DataSet object stores the data within the application. It can hold more than one table and can define
and enforce relationships among the tables. For example, the database used in the earlier examples in this
chapter has a TestScores table that has a StudentId field. The values in this field must be values listed in
the Students table. This is called a foreign key constraint. The DataSet can represent this constraint and
raise an error if the program tries to create a TestScores record with a StudentId value that does not appear
in the Students table.

Once the connection, data adapter, and DataSet objects are initialized, the program can call the data
adapter’s Fill method to copy data from the database into the DataSet. Later it can call the data
adapter’s Update method to copy any changes to the data from the DataSet back into the database.
Figure 11-18 shows the process.

Figure 11-18: An application uses connection, data adapter, and DataSet objects to move
data to and from the database.

If you compare Figure 11-18 to Figure 11-17, you’ll see several similarities. Both approaches use an
adapter to copy data between the database and a DataSet. At first glance, it may seem that Figure 11-17
doesn’t use a connection object, but actually the TableAdapter contains a connection object internally
that it uses to access the database.

One major difference is that Figure 11-17 uses a BindingSource to provide an extra layer between the
DataSet and the program’s controls. It also includes a DataNavigator object that lets the user control
the BindingSource to move through the data.

As in the previous example, a program using the objects shown in Figure 11-18 could call the data
adapter’s Fill method in a form’s Load event handler. Later it could call the Update method when the
user clicked a Save button, in the form’s FormClosing event handler, or whenever you wanted to save
the data.

Connection Objects
The connection object manages the application’s connection to the database. It allows a data adapter to
move data in and out of a DataSet.

The different flavors of connection object (OleDbConnection, SqlConnection, OdbcConnection,
OracleConnection, and so forth) provide roughly the same features, but there are some differences.
Check the online help to see if a particular property, method, or event is supported by one of the
flavors. The Web page http://msdn.microsoft.com/library/en-us/cpguide/html/
cpconADONETConnections.asp provides links to pages that explain how to connect to SQL Server,

Database DataAdapter

(Data Connection)

DataSet

R
ow

Ta
ble

s

318

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 318

OLE DB, ODBC, and Oracle data sources. Other links lead to information on the SqlConnection,
OleDbConnection, and OdbcConnection classes.

If you will be working extensively with a particular type of database (for example, SQL Server), also
review the features provided by its type of connection object to see if it has special features for that type
of database.

Some connection objects can work with more than one type of database. For example, the
OleDbConnection object works with any database that supports ODBC connections. Generally, connec-
tions that work with a specific kind of database (such as SqlConnection and OracleConnection) give
better performance. If you think you might later need to change databases, you can minimize the
amount of work required by sticking to features that are shared by all the types of connection object.

The Toolbox window does not automatically display tools for these objects. To add them, right-click on
the Toolbox tab where you want them and select Choose Items. Check the boxes next to the tools you
want to add (for example, OracleCommand or OdbcConnection) and click OK.

The following table describes the most useful properties provided by the OleDbConnection and
SqlConnection classes.

Property Purpose

ConnectionString The string that defines the connection to the database.

ConnectionTimeout The time the object waits while trying to connect to the database. If
this timeout expires, the object gives up and raises an error.

Database Returns the name of the current database.

DataSource Returns the name of the current database file or database server.

Provider (OleDbConnection only) Returns the name of the OLE DB database
provider (for example, “Microsoft.Jet.OLEDB.4.0”).

ServerVersion Returns the database server’s version number. This value is available
only when the connection is open and may look like “04.00.0000.”

State Returns the connection’s current state. This value can be Closed,
Connecting, Open, Executing (executing a command), Fetching
(fetching data), and Broken (the connection was open but then broke;
you can close and reopen the connection).

The ConnectionString property includes many fields separated by semicolons. The following text
shows a typical ConnectionString value for an OleDbConnection object that will open an Access
database. The text here shows each embedded field on a separate line, but the actual string would be all
run together in one long line.

Jet OLEDB:Global Partial Bulk Ops=2;
Jet OLEDB:Registry Path=;
Jet OLEDB:Database Locking Mode=1;
Data Source=”C:\Personnel\Data\Personnel.mdb”;
Mode=Share Deny None;

319

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 319

Jet OLEDB:Engine Type=5;
Provider=”Microsoft.Jet.OLEDB.4.0”;
Jet OLEDB:System database=;
Jet OLEDB:SFP=False;
persist security info=False;
Extended Properties=;
Jet OLEDB:Compact Without Replica Repair=False;
Jet OLEDB:Encrypt Database=False;
Jet OLEDB:Create System Database=False;
Jet OLEDB:Don’t Copy Locale on Compact=False;
User ID=Admin;
Jet OLEDB:Global Bulk Transactions=1”

Many of these properties are optional and you can omit them. Remembering which ones are optional (or
even which fields are allowed for a particular type of connection object) is not always easy. Fortunately,
it’s also not necessary. Instead of typing all these fields into your code or in the connection control’s
ConnectString property in the Properties window, you can let Visual Basic build the string for you.

Select the View menu’s Server Explorer command to display the Server Explorer shown in Figure 11-19.
(Yes, the Server Explorer command displays the Server Explorer, at least in Visual Basic 2005 Beta 2.
Perhaps this will be fixed before the final release.)

Figure 11-19: The Database Explorer can generate a connection
string for you.

Right-click on the Database Connections item and select Add Connection to display the dialog shown in
Figure 11-20. Use the Change button to select a different kind of database such as SQL Server or Oracle.

Enter the information necessary to connect to your selected kind of database. For a Microsoft Access
Database File (OLE DB) connection, enter the database file’s name or click Browse to locate it. Then click
OK to create the connection.

On the Server Explorer window, click on the new connection. Then open the Properties window and
select the Connection String property. You cannot change this value, but you can select it. Click on the
value and press Home to move to the beginning. Then press Shift-End to select the value, and press
Ctrl-C to copy it to the clipboard. Now you can paste the value into your code. The following shows the
result for one database. This text is broken across two lines so it’s easier to read but it comes from the
Properties window all on one long line.

320

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 320

Provider=Microsoft.Jet.OLEDB.4.0;
Data Source=”C:\VB Prog Ref\JulyCTPSrc\Ch11\books.mdb”

Figure 11-20: Use the Add Connection dialog to
configure a new database connection.

The following code fragment shows how a program can create, open, use, and close an
OleDbConnection object.

‘ To use this Imports statement, add a reference to System.Data.
Imports System.Data.OleDb

Public Class Form1
Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ Create the connection.
Dim conn As New OleDbConnection(_

“Provider=Microsoft.Jet.OLEDB.4.0;” & _
“Data Source=””C:\VB Prog Ref\JulyCTPSrc\Ch11\books.mdb””;”)

“Persist Security Info=True;” & _
“Jet OLEDB:Database Password=MyPassword”)

‘ Open the connection.
conn.Open()

‘ Do stuff with the connection.
‘...

‘ Close the connection.
conn.Close()
conn.Dispose()

End Sub
End Class

321

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 321

The following table describes the most useful methods provided by the OleDbConnection and
SqlConnection classes.

Method Purpose

BeginTransaction Begins a database transaction and returns a transaction object represent-
ing it. A transaction lets the program ensure that a series of commands
are either all performed or all canceled as a group. See the section
“Transaction Objects” later in this chapter for more information.

ChangeDatabase Changes the currently open database.

Close Closes the database connection.

CreateCommand Creates a command object that can perform some action on the database.
The action might select records, create a table, update a record, and so
forth.

Open Opens the connection using the values specified in the
ConnectionString property.

The connection object’s most useful events are InfoMessage and StateChange. The InfoMessage
event occurs when the database provider issues a warning or informational message. The program can
read the message and take action or display it to the user. The StateChange event occurs when the
database connection’s state changes.

Note that the method for using a connection object shown in Figure 10-18 relies on the data adapter’s
Fill and Update methods, not on the connection object’s Open and Close methods. Fill and Update
automatically open the connection, perform their tasks, and then close the connection so that you don’t
need to manage the connection object yourself. For example, when the program calls Fill, the data
adapter quickly opens the connection, copies data from the database into the DataSet, and then closes
the database. When you use this model for database interaction, the data connections are open only very
briefly.

Transaction Objects
A transaction defines a set of database actions that should be executed “atomically” as a single unit.
Either all of them should occur or none of them should occur, but no action should execute without all of
the others.

The classic example is a transfer of money from one account to another. Suppose that the program tries to
subtract money from one account and then add it to another. After it subtracts the money from the first
account, however, the program crashes. The database has lost money — a bad situation for the owners of
the accounts.

322

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 322

On the other hand, suppose that the program performs the operations in the reverse order: first it adds
money to the second account and then subtracts it from the first. This time if the program gets halfway
through the operation before crashing, the database has created new money — a bad situation for the
bank.

The solution is to wrap these two operations in a database transaction. If the program gets halfway
through the transaction and then crashes, the database engine unwinds the transaction, so the data looks
as if nothing had happened. This isn’t as good as performing the whole transaction flawlessly, but at
least the database is consistent and the money has been conserved.

To use transactions in Visual Basic, the program uses a connection object’s BeginTransaction method
to open a transaction. It then creates command objects associated with the connection and the transac-
tion, and it executes them. When it has finished, the program can call the transaction object’s Commit
method to make all the actions occur, or it can call Rollback to cancel them all.

The following code shows an example. The program begins by defining a connection string. When it
starts, the program uses the string to open a database connection. It calls the subroutine ShowValues
and closes the connection.

The subroutine ShowValues creates a command object that selects records from the Accounts table. It
executes the command and gets an OleDbDataReader to process the results. It then loops through the
returned records building a string holding the records’ AccountName and Balance fields, and displays
the result in the program’s txtValues text box.

When the user clicks the Update button, the program reopens the connection and uses its
BeginTransaction method to make the transaction object trans. Next, the code defines an
OleDbCommand object named cmd, setting its command text to “UPDATE People SET Balance=Balance +
? WHERE AccountName=?” Note that it passes the transaction object into the command object’s constructor
to make the command part of the transaction.

The question marks in the command text represent parameters to the command. The program defines
the parameters’ values by adding two parameter objects to the command object. It then calls the com-
mand’s ExecuteNonQuery method to perform the query.

The code clears the command’s parameters, adds two parameters with different values and calls the
command’s ExecuteNonQuery method again.

Now the program displays a message box asking whether you want to commit the transaction. If you
click “Yes,” then the program calls the transaction’s Commit method and both of the update operations
occur. If you click “No,” the program calls the transaction’s Rollback method and both of the update
operations are canceled.

The program finishes by calling ShowValues to display the updated data and by closing the connection.

323

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 323

Imports System.Data
Imports System.Data.OleDb

Public Class Form1

Private Const CONNECT_STRING As String = _
“Provider=Microsoft.Jet.OLEDB.4.0;” & _
“Data Source=C:\VB Prog Ref\” & _

“JulyCTP\Ch11\Transactions\CustomerAccounts.mdb;” & _
“Persist Security Info=False”

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ Open the connection.
Dim connAccounts As New OleDbConnection(CONNECT_STRING)
connAccounts.Open()

‘ Display the current balances.
ShowValues(connAccounts)

‘ Close the connection.
connAccounts.Close()

End Sub

‘ Display the account values.
Private Sub ShowValues(ByVal conn As OleDbConnection)

Dim txt As String = “”
Dim select_cmd As New OleDbCommand(_

“SELECT * FROM Accounts”, _
conn)

Dim reader As OleDbDataReader = select_cmd.ExecuteReader()
Do While reader.Read()

txt &= _
reader.Item(“AccountName”).ToString & “: “ & _
reader.Item(“Balance”).ToString & vbCrLf

Loop

txtValues.Text = txt
End Sub

Private Sub btnUpdate_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnUpdate.Click

‘ Open the connection.
Dim connAccounts As New OleDbConnection(CONNECT_STRING)
connAccounts.Open()

‘ Make the transaction.
Dim trans As OleDbTransaction = _

connAccounts.BeginTransaction(IsolationLevel.ReadCommitted)

‘ Make a Command for this connection.
‘ and this transaction.
Dim cmd As New OleDbCommand(_

“UPDATE Accounts SET Balance=Balance + ? WHERE AccountName=?”, _

324

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 324

connAccounts, _
trans)

‘ Create parameters for the first command.
cmd.Parameters.Add(New OleDbParameter(“Balance”, _

Decimal.Parse(txtAmount.Text)))
cmd.Parameters.Add(New OleDbParameter(“AccountName”, _

“Alice’s Software Emporium”))

‘ Execute the second command.
cmd.ExecuteNonQuery()

‘ Create parameters for the second command.
cmd.Parameters.Clear()
cmd.Parameters.Add(New OleDbParameter(“Balance”, _

-Decimal.Parse(txtAmount.Text)))
cmd.Parameters.Add(New OleDbParameter(“AccountName”, _

“Bob’s Consulting”))

‘ Execute the second command.
cmd.ExecuteNonQuery()

‘ Commit the transaction.
If MessageBox.Show(_

“Commit transaction?”, _
“Commit?”, _
MessageBoxButtons.YesNo, _
MessageBoxIcon.Question) = Windows.Forms.DialogResult.Yes _

Then
‘ Commit the transaction.
trans.Commit()

Else
‘ Rollback the transaction.
trans.Rollback()

End If

‘ Display the current balances.
ShowValues(connAccounts)

‘ Close the connection.
connAccounts.Close()

End Sub
End Class

Instead of clicking “Yes” or “No” when the program asks if it should commit the transaction, you can
use the IDE to stop the program. If you then restart the program, you will see that neither update was
processed.

In addition to the Commit and Rollback methods, transaction objects may provide other methods for per-
forming more complex transactions. For example, the OleDbTransaction class has a Begin method that
enables you to create a nested transaction. Similarly, the SqlTransaction class has a Save method that
creates a “savepoint” that you can use to roll back part of the transaction. See the online help for the type of

325

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 325

transaction object you are using to learn about these methods. The Web page http://msdn.microsoft
.com/library/en-us/cpguide/html/cpconperformingtransactionusingadonet.asp gives an
overview or using transactions. Links at the bottom lead to information about the OleDbTransaction,
SqlTransaction, and OdbcTransaction classes.

Data Adapters
A data adapter transfers data between a connection and a DataSet. This object’s most important methods
are Fill and Update, which move data from and to the database. A data adapter also provides properties
and other methods that can be useful. The following table describes the object’s most useful properties.

Property Purpose

DeleteCommand The command object that the adapter uses to delete rows.

InsertCommand The command object that the adapter uses to insert rows.

SelectCommand The command object that the adapter uses to select rows.

TableMappings A collection of DataTableMapping objects that determine how tables in the
database are mapped to tables in the DataSet. Each DataTableMapping
object has a ColumnMappings collection that determines how the columns in
the database table are mapped to columns in the DataSet table.

UpdateCommand The command object that the adapter uses to update rows.

There are a couple of ways you can create the command objects. For example, if you use the Data Adapter
Configuration Wizard (described shortly) to build the adapter at design time, the wizard automatically
creates these objects. You can select the adapter and expand these objects in the Properties window to read
their properties, including the CommandText property that defines the commands.

Another way to create these commands is to use a command builder object. If you attach a command
builder to a data adapter, the adapter uses the command builder to generate the commands it needs
automatically.

The following code shows how a program could associate an OleDbCommandBuilder object with an
OleDbDataAdapter. When it calls the adapter’s Update method, the adapter uses the command builder
if necessary to generate insert, update, and delete commands. The Debug.WriteLine statements display
the text of the automatically generated commands.

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘TODO: This line of code loads data into the ‘BooksDataSet.Books’ table.
‘ You can move, or remove it, as needed.
Me.BooksTableAdapter.Fill(Me.BooksDataSet.Books)

‘ Attach a command builder to the data adapter
‘ and display the geneated commands.
Dim command_builder As New OleDbCommandBuilder(OleDbDataAdapter1)

326

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 326

Debug.WriteLine(command_builder.GetDeleteCommand.CommandText)
Debug.WriteLine(command_builder.GetInsertCommand.CommandText)
Debug.WriteLine(command_builder.GetUpdateCommand.CommandText)

End Sub

The following text shows the results of the previous Debug statements. The UPDATE statement is wrapped
across two lines, but is one line in the Output window. The command builder generated these commands
based on the select statement “SELECT Title, URL From Books” that was used to load the DataSet.

DELETE FROM Books WHERE ((Title = ?) AND ((? = 1 AND URL IS NULL) OR (URL = ?)))
INSERT INTO Books (Title, URL) VALUES (?, ?)
UPDATE Books SET Title = ?, URL = ? WHERE ((Title = ?) AND ((? = 1 AND URL IS NULL)
OR (URL = ?)))

A data adapter’s TableMappings property enables you to change how the adapter maps data in the
database to the DataSet. For example, you could make it copy the Employees table in the database into
a DataSet table named People. You don’t usually need to change the table and column names, however,
and you can make these changes interactively at design time more easily than you can do this in code, so
you will usually leave these values alone at run time.

To create a data adapter control at design time, open a form in the form designer, select the Toolbox’s
Data tab, and double-click the appropriate data adapter control. (If the data adapter you want doesn’t
appear in the Toolbox, right-click on the Toolbox, select Choose Items, and pick the data adapter that
you want to use.)

When you create a data adapter, the Data Adapter Configuration Wizard shown in Figure 11-21 appears.
The first steps are similar to those described earlier for configuring a new data source. Select a connection
or click the New Connection button and define one.

Figure 11-21: The Data Adapter Configuration Wizard helps you define a data
adapter.

327

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 327

Click Next to display the page shown in Figure 11-22. Use the option buttons to tell select the method the
adapter should to work with the data source. This type determines how the data adapter will fetch, update,
delete, and insert data in the database. Select “Use SQL Statements” to make the adapter use simple SQL
statements. Pick “Create new stored procedures” to make the wizard generate stored procedures in the
database. Pick “Use existing stored procedures” to make the wizard use procedures you have already cre-
ated. In Figure 11-22, the first choice is the only one enabled because it is the only option available to the
OleDbDataAdapter attached to an Access database that was used in this example.

Figure 11-22: Select the method the data adapter will use to manipulate
database data.

If you select “Use SQL Statements” and click Next, the form shown in Figure 11-23 appears. If you are
experienced at writing SQL statements, enter the SELECT statement that you want the data adapter to
use to select its data.

If you have less experience or are not familiar with the database’s structure, click the Query Builder but-
ton to use the Query Builder shown in Figure 11-24. Select the database tables containing the data you
want to use and click Add. Figure 11-24 shows only one table, Books, because that database contains
only one table. After you have selected the tables you want, close the Add Table dialog and check the
boxes next to the fields. You can use other columns in the second panel to determine how the fields are
sorted. The third panel shows the SQL statement you are building. Click the Execute Query button to
run the query and display the results in the bottom panel. When you are satisfied with the results,
click OK.

328

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 328

Figure 11-23: Enter an SQL SELECT statement or click the Query Builder button.

Figure 11-24: You can use the Query Builder to interactively define the data that a data adapter
selects.

329

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 329

When you click Next, the Data Adapter Configuration Wizard displays a summary similar to the one
shown in Figure 11-25. The summary describes the actions that the wizard will and will not perform.
Depending on the query you use to select data, the wizard may not generate all the commands to select,
update, insert, and delete data. For example, if the query joins more than one table, the wizard will be
unable to figure out how to update the tables, so it won’t generate insert, update, or delete commands.

Figure 11-25: The Data Adapter Configuration Wizard displays a summary of
the tasks it will perform.

When you click Finish, the wizard creates the new data adapter and a new connection object to go with it.
It sets the adapter’s DeleteCommand, InsertCommand, SelectCommand, and UpdateCommand properties
to new command objects with appropriate CommandText values and with Connection property set to the
database connection you selected. It also generates default table mappings to transform database values
into DataSet values.

Command Objects
The command object classes (OleDbCommand, SqlCommand, OdbcCommand, and OracleCommand) define
database commands. The command can be a SQL query, or some nonquery statement such as an
INSERT, UPDATE, DELETE, or CREATE TABLE statement.

The object’s Connection property gives the database connection object on which it will execute its
command. CommandText gives the SQL text that the command represents.

330

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 330

The CommandType property tells the database the type of command text the command holds. This can be
StoredProcedure (CommandText is the name of a stored procedure), TableDirect (CommandText is the
name of one or more tables from which the database should return data), or Text (an SQL statement).

The command object’s Parameters collection contains parameter objects that define any values needed
to execute the command text. For example, the following code creates an OleDbCommand object to execute
the SQL statement “INSERT INTO PeopleNames (FirstName, LastName) VALUES (?, ?)” The question
marks are placeholders for parameters that will be added later. The code then adds two new
OleDbParameter objects to the command’s Parameters collection. When the code invokes the
command’s ExecuteNonQuery method, the adapter replaces the question marks with these parameter
values in the order in which they appear in the Parameters collection. In this example, the value of
txtFirstName.Text replaces the first question mark and txtLastName.Text replaces the second.

Private Sub btnAdd_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAdd.Click

‘ Open the connection.
Dim conn_people As New OleDbConnection(CONNECT_STRING)
conn_people.Open()

‘ Make a Command to insert data.
Dim cmd As New OleDbCommand(_

“INSERT INTO PeopleNames (FirstName, LastName) “ & _
“VALUES (?, ?)”, _
conn_people)

‘ Create parameters for the command.
cmd.Parameters.Add(New OleDbParameter(“FirstName”, txtFirstName.Text))
cmd.Parameters.Add(New OleDbParameter(“LastName”, txtLastName.Text))

‘ Execute the command.
Try

cmd.ExecuteNonQuery()
Catch ex As Exception

MessageBox.Show(ex.Message)
End Try

‘ Show the data.
ShowValues(conn_people)

‘ Close the connection.
conn_people.Close()
conn_people.Dispose()

End Sub

The command object’s Transaction property gives the transaction object with which it is associated.
See the section “Transaction Objects” earlier in this chapter for more information about transactions.

The command object provides three methods for executing its CommandText. ExecuteNonQuery executes
a command that is not a query and that doesn’t return any values.

331

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 331

ExecuteScalar executes a command and returns the first column in the first row selected. This is useful
for commands that return a single value such as “SELECT COUNT * FROM Users.”

ExecuteReader executes a SELECT statement and returns a data reader object (for example,
OleDbDataReader). The program can use this object to navigate through the returned rows of data.

The command object’s two other most useful methods are CreateParameter and Prepare. As you may
be able to guess, CreateParameter adds a new object to the command’s Parameters collection. The
Prepare method compiles the command into a form that the database may be able to execute more
quickly. It is often faster to execute a compiled command many times using different parameter values
than it is to execute many new commands.

DataSet
DataSet is the flagship object when it comes to holding data in memory. It provides all the features you
need to build, load, store, manipulate, and save data similar to that stored in a relational database. It can
hold multiple tables related with complex parent/child relationships and uniqueness constraints. It pro-
vides methods for merging DataSets, searching for records that satisfy criteria, and saving data in differ-
ent ways (such as into a relational database or an XML file). In many ways, it is like a complete database
stored in memory rather than on a disk.

One of the most common ways to use a DataSet is to load it from a relational database when the pro-
gram starts, use various controls to display the data and let the user manipulate it interactively, and then
save the changes back into the database when the program ends.

In variations on this basic theme, the program can load its data from an XML file or build a DataSet in
memory without using a database. The program can use controls bound to the DataSet to let the user
view and manipulate complex data with little extra programming.

The following code builds and initializes a DataSet from scratch. It starts by creating a new DataSet
object named Scores. It makes a DataTable named Students and adds it to the DataSet’s Tables
collection.

Next, the code uses the DataTable’s Columns.Add method to add FirstName, LastName, and StudentId
columns to the table. It then sets the StudentId column’s Unique property to True to make the DataSet
prohibit duplicated StudentId values.

The program then makes an array of DataColumn objects containing references to the FirstName and
LastName columns. It uses the array to create a UniqueConstraint and adds it to the table’s
Constraints collection. This makes the DataSet ensure that each record’s FirstName/LastName pair is
unique.

Similarly, the program creates the TestScores table, gives it StudentId, TestNumber and Score columns,
and adds a uniqueness constraint on the StudentId/TestNumber pair of columns.

Next, the code adds a relationship linking the Students table’s StudentId column and the TestScores
table’s StudentId column.

332

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 332

The program then adds some Students records and some random TestScores records.

Finally, the program attaches the DataSet to a DataGrid control to display the result. The user can use
the DataGrid to examine and modify the data just as if it had been loaded from a database.

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ Make the DataSet.
Dim scores_dataset As New DataSet(“Scores”)

‘ Make the Students table.
Dim students_table As DataTable = _

scores_dataset.Tables.Add(“Students”)

‘ Add columns to the Students table.
students_table.Columns.Add(“FirstName”, GetType(String))
students_table.Columns.Add(“LastName”, GetType(String))
students_table.Columns.Add(“StudentId”, GetType(Integer))

‘ Make the StudentId field unique.
students_table.Columns(“StudentId”).Unique = True

‘ Make the combined FirstName/LastName unique.
Dim first_last_columns() As DataColumn = { _

students_table.Columns(“FirstName”), _
students_table.Columns(“LastName”) _

}
students_table.Constraints.Add(_

New UniqueConstraint(first_last_columns))

‘ Make the TestScores table.
Dim test_scores_table As DataTable = _

scores_dataset.Tables.Add(“TestScores”)

‘ Add columns to the TestScores table.
test_scores_table.Columns.Add(“StudentId”, GetType(Integer))
test_scores_table.Columns.Add(“TestNumber”, GetType(Integer))
test_scores_table.Columns.Add(“Score”, GetType(Integer))

‘ Make the combined StudentId/TestNumber unique.
Dim studentid_testnumber_score_columns() As DataColumn = { _

test_scores_table.Columns(“StudentId”), _
test_scores_table.Columns(“TestNumber”) _

}
test_scores_table.Constraints.Add(_

New UniqueConstraint(studentid_testnumber_score_columns))

‘ Make a relationship linking the
‘ two tables’ StudentId fields.
scores_dataset.Relations.Add(_

“Student Test Scores”, _
students_table.Columns(“StudentId”), _
test_scores_table.Columns(“StudentId”))

‘ Make some student data.

333

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 333

students_table.Rows.Add(New Object() {“Art”, “Ant”, 1})
students_table.Rows.Add(New Object() {“Bev”, “Bug”, 2})
students_table.Rows.Add(New Object() {“Cid”, “Cat”, 3})
students_table.Rows.Add(New Object() {“Deb”, “Dove”, 4})

‘ Make some random test scores.
Dim score As New Random
For id As Integer = 1 To 4

For test_num As Integer = 1 To 10
test_scores_table.Rows.Add(_

New Object() {id, test_num, score.Next(65, 100)})
Next test_num

Next id

‘ Attach the DataSet to the DataGrid.
grdScores.DataSource = scores_dataset

End Sub

The following table describes the DataSet object’s most useful properties.

Property Purpose

CaseSensitive Determines whether string comparisons inside DataTable objects
are case-sensitive.

DataSetName The DataSet’s name. Often, you don’t need to use this for much. If
you need to use the DataSet’s XML representation, however, this
determines the name of the root element.

DefaultViewManager Returns a DataViewManager object that you can use to determine
the default settings (sort order, filter) of DataViews you create later.

EnforceConstraints Determines whether the DataSet should enforce constraints while
updating data. For example, if you want to add records to a child table
before the master records have been created, you can set Enforce-
Constraints to False while you add the data. You should be able to
avoid this sort of problem by adding the records in the correct order.

HasErrors Returns True if any of the DataSet’s DataTable objects contains
errors.

Namespace The DataSet’s namespace. If this is nonblank, the DataSet’s XML
data’s root node includes an xmlns attribute as in <Scores
xmlns=”my_namespace”>.

Prefix Determines the XML prefix that the DataSet uses as an alias for its
namespace.

Relations A collection of DataRelation objects that represent parent/child
relations among the columns in different tables.

Tables A collection of DataTable objects representing the tables stored in
the DataSet.

334

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 334

The DataSet’s XML properties affect the way the object reads and writes its data in XML form. For
example, if the Namespace property is my_namespace and the Prefix property is pfx, the DataSet’s
XML data might look like the following:

<pfx:Scores xmlns:pfx=”my_namespace”>
<Students xmlns=”my_namespace”>

<FirstName>Art</FirstName>
<LastName>Ant</LastName>
<StudentId>1</StudentId>

</Students>
<Students xmlns=”my_namespace”>

<FirstName>Bev</FirstName>
<LastName>Bug</LastName>
<StudentId>2</StudentId>

</Students>
...
<TestScores xmlns=”my_namespace”>

<StudentId>1</StudentId>
<TestNumber>1</TestNumber>
<Score>78</Score>

</TestScores>
<TestScores xmlns=”my_namespace”>

<StudentId>1</StudentId>
<TestNumber>2</TestNumber>
<Score>81</Score>

</TestScores>
...

</pfx:Scores>

The following table describes the DataSet object’s most useful methods.

Method Purpose

AcceptChanges Accepts all changes to the data that were made since the data was
loaded, or since the last call to AcceptChanges. When you modify a
row in the DataSet, the row is flagged as modified. If you delete a row,
the row is marked as deleted but not actually removed. When you call
AcceptChanges, new and modified rows are marked as Unchanged
instead of Added or Modified, and deleted rows are permanently
removed.

Clear Removes all rows from the DataSet’s tables.

Clone Makes a copy of the DataSet including all tables, relations, and con-
straints, but not including the data.

Copy Makes a copy of the DataSet including all tables, relations, constraints,
and the data.

GetChanges Makes a copy of the DataSet containing only the rows that have been
modified. This method’s optional parameter indicates the type of
changes that the new DataSet should contain (added, modified,
deleted, or unchanged).

Table continued on following page

335

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 335

Method Purpose

GetXml Returns a string containing the DataSet’s XML representation.

GetXmlSchema Returns the DataSet’s XML schema definition (XSD).

HasChanges Returns True if any of the DataSet’s tables contains new, modified, or
deleted rows.

Merge Merges a DataSet, DataTable, or array of DataRow objects into this
DataSet.

ReadXml Reads XML data from a stream or file into the DataSet.

ReadXmlSchema Reads an XML schema from a stream or file into the DataSet.

RejectChanges Undoes any changes made since the DataSet was loaded or since the
last call to AcceptChanges.

WriteXml Writes the DataSet’s XML data into a file or stream. It can optionally
include the DataSet’s schema.

WriteXmlSchema Writes the DataSet’s XSD schema into an XML file or stream.

Several of these methods mirror methods provided by other finer-grained data objects. For example,
HasChanges returns True if any of the DataSet’s tables contain changes. The DataTable and DataRow
objects also have HasChanges methods that return True if their more limited scope contains changes.

These mirrored methods include AcceptChanges, Clear, Clone, Copy, GetChanges, and
RejectChanges. See the following sections that describe the DataTable and DataRow objects for more
information.

DataTable
The DataTable class represents the data in one table within a DataSet. A DataTable contains DataRow
objects representing its data, DataColumn objects that define the table’s columns, constraint objects that
define constraints on the table’s data (for example, a uniqueness constraint requires that only one row
may contain the same value in a particular column), and objects representing relationships between the
table’s columns and the columns in other tables. This object also provides methods and events for
manipulating rows.

The following table describes the DataTable’s most useful properties.

336

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 336

Property Purpose

CaseSensitive Determines whether string comparisons inside the DataTable are
case-sensitive.

ChildRelations A collection of DataRelation objects that define parent/child relation-
ships where this table is the parent. For example, suppose the Orders table
defines order records and contains an OrderId field. Suppose that the
OrderItems table lists the items for an order and it also has an OrderId
field. One Orders record can correspond to many OrderItems records, all
linked by the same OrderId value. In this example, Orders is the parent
table and OrderItems is the child table.

Columns A collection of DataColumn objects that define the table’s columns (column
name, data type, default value, maximum length, and so forth).

Constraints A collection of Constraint objects represent restrictions on the table’s
data. A ForeignKeyConstraint requires that the values in some of the
table’s columns must be present in another table (for example, the
Addresses record’s State value must appear in the States table’s
StateName column). A UniqueConstraint requires that the values in a
set of columns must be unique within the table (for example, only one
Student record can have a given FirstName and LastName pair).

DataSet The DataSet object that contains this DataTable.

DefaultView Returns a DataView object that you can use to view, sort, and filter the
table’s rows.

HasErrors Returns True if any of the DataTable’s rows contains an error.

MinimumCapacity The initial capacity of the table. For example, if you know you are about to
load 1000 records into the table, you can set this to 1000 to let the table
allocate space all at once instead of incrementally as the records are added.
That will be more efficient.

Namespace The DataTable’s namespace. If this is nonblank, the DataTable’s XML
records’ root nodes include an xmlns attribute as in <Students
xmlns=”my_namespace”>.

ParentRelations A collection of DataRelation objects that define parent/child relation-
ships where this table is the child. See the description of the
ChildRelations property for more details.

Prefix Determines the XML prefix that the DataTable uses as an alias for its
namespace.

PrimaryKey Gets or sets an array of DataColumn objects that define the table’s primary
key. The primary key is always unique and provides the fastest access to
the records.

Rows A collection of DataRow objects containing the table’s data.

TableName The table’s name.

337

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 337

The DataTable’s XML properties affect the way the object reads and writes its data in XML form. For
example, if the Namespace property is my_namespace and the Prefix property is tbl1, one of the
DataTable’s XML records might look like the following:

<pfx:Students xmlns:pfx=”my_namespace”>
<FirstName xmlns=”my_namespace”>Art</FirstName>
<LastName xmlns=”my_namespace”>Ant</LastName>
<StudentId xmlns=”my_namespace”>1</StudentId>

</pfx:Students>

The following list describes the DataTable object’s most useful methods.

Method Purpose

AcceptChanges Accepts all changes to the table’s rows that were made since the data was
loaded or since the last call to AcceptChanges.

Clear Removes all rows from the table.

Clone Makes a copy of the DataTable, including all relations and constraints, but
not including the data.

Compute Computes the value of an expression using the rows that satisfy a filter
condition. For example, the statement tblTestScores.Compute
(“SUM(Score)”, “StudentId = 1”) calculates the total of the
tblTestScores DataTable’s Score column where the StudentId is 1.

Copy Makes a copy of the DataTable including all relations, constraints, and
data.

GetChanges Makes a copy of the DataTable containing only the rows that have been
modified. This method’s optional parameter indicates the type of changes
that the new DataSet should contain (added, modified, deleted, or
unchanged).

GetErrors Gets an array of DataRow objects that contain errors.

ImportRow Copies the data in a DataRow object into the DataTable.

LoadDataRow This method takes an array of values as a parameter. It searches the table for
a row with values that match the array’s primary key values. If it doesn’t
find such a row, it uses the values to create the row. The method returns the
DataRow object it found or creates.

NewRow Creates a new DataRow object that matches the table’s schema. To add the
new row to the table, you can create a new DataRow, fill in its fields, and
use the table’s Rows.Add method.

RejectChanges Undoes any changes made since the DataTable was loaded or since the
last call to AcceptChanges.

Select Returns an array of DataRow objects selected from the table. Optional
parameters indicate a filter expression that the selected rows must match,
sort columns and sort order, and the row states to select (new, modified,
deleted, and so forth).

338

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 338

The DataTable object also provides several useful events, which are listed in the following table.

Event Purpose

ColumnChanged Occurs after a value has been changed in a row.

ColumnChanging Occurs when a value is being changed in a row.

RowChanged Occurs after a row has changed. A user might change several of a row’s
columns and ColumnChanged will fire for each one. RowChanged fires
when the user moves to a new row.

RowChanging Occurs when a row is being changed.

RowDeleted Occurs after a row has been deleted.

RowDeleting Occurs when a row is being deleted.

DataRow
A DataRow object represents the data in one record in a DataTable. This object is relatively simple. It
basically just holds data for the DataTable, and the DataTable object does most of the interesting work.

The following table describes the DataRow’s most useful properties.

Property Purpose

HasErrors Returns True if the row’s data has errors.

Item Gets or sets one of the row’s item values. Overloaded versions of this property
use different parameters to identify the column. This parameter can be the
column’s zero-based index, its name, or a DataColumn object. An optional
second parameter can indicate the version of the row so, for example, you can
read the original value in a row that has been modified.

ItemArray Gets or sets all of the row’s values by using an array of generic Objects.

RowError Gets or sets the row’s error message text.

RowState Returns the row’s current state: Added, Deleted, Modified, or Unchanged.

Table Returns a reference to the DataTable containing the row.

If a row has an error message defined by its RowError property, the DataGrid control displays a red circle
containing a white exclamation point to the left of the row as an error indicator. If you hover the mouse
over the error indicator, a tooltip displays the RowError text. In Figure 11-26, the third row has RowError
set to “Missing registration.”

339

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 339

Figure 11-26: The DataGrid control marks a DataRow
that has a nonblank RowError.

The following table describes the DataRow object’s most useful methods.

Method Purpose

AcceptChanges Accepts all changes to the row that were made since the data was loaded or
since the last call to AcceptChanges.

BeginEdit Puts the row in data-editing mode. This suspends events for the row, so
your code or the user can change several fields without triggering valida-
tion events. BeginEdit is implicitly called when the user modifies a bound
control’s value and EndEdit is implicitly called when you invoke
AcceptChanges. While the row is in edit mode, it stores the original and
modified values, so you can retrieve either version, accept the changes with
EndEdit or cancel the changes with CancelEdit.

CancelEdit Cancels the current edit on the row and restores its original values.

ClearErrors Clears the row’s column and row errors.

Delete Deletes the row from its table.

GetChildRows Returns an array of DataRow objects representing this row’s child rows as
specified by a parent/child data relation.

GetColumnError Returns the error text assigned to a column.

GetParentRow Returns a DataRow object representing this row’s parent record as specified
by a parent/child data relation.

GetParentRows Returns an array of DataRow objects representing this row’s parent records
as specified by a data relation.

340

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 340

Method Purpose

HasVersion Returns True if the row has a particular version (Current, Default,
Original, or Proposed). For example, while a row is being edited, it
has Current and Proposed versions.

IsNull Indicates whether a particular column contains a NULL value.

RejectChanges Removes any changes made to the row since the data was loaded or
since the last call to AcceptChanges.

SetColumnError Sets error text for one of the row’s columns. If a column has an error
message, then a DataGrid control displays a red circle containing a
white exclamation point to the left of the column’s value as an error
indicator. In Figure 11-26, the second row’s second column has a col-
umn error set. If you hover the mouse over the error indicator, a
tooltip displays the error’s text.

SetParentRow Sets the row’s parent row according to a data relation.

DataColumn
The DataColumn object represents a column in a DataTable. It defines the column’s name and data
type, and your code can use it to define relationships among different columns.

The following table describes the DataColumn object’s most useful properties.

Property Purpose

AllowDBNull Determines whether the column allows NULL values.

AutoIncrement Determines whether new rows automatically generate auto-
incremented values for the column.

AutoIncrementSeed Determines the starting value for an auto-increment column.

AutoIncrementStep Determines the amount by which an auto-incrementing column’s
value is incremented for new rows.

Caption Gets or sets a caption for the column. Note that some controls may
not use this value. For example, the DataGrid control displays the
column’s ColumnName, not its Caption.

ColumnMapping Determines how the column is saved in the table’s XML data. This
property can have one of the values Attribute (save the column as
an attribute of the row’s element), Element (save the column as a
subelement), Hidden (don’t save the column), and SimpleContent
(save the column as XmlText inside the row’s element). If a column
is hidden, the DataGrid control doesn’t display its value. See the text
following this table for an example.

Table continued on following page

341

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 341

Property Purpose

ColumnName Determines the name of the column in the DataTable. Note that
data adapters use the column name to map database columns to
DataSet columns, so, if you change this property without updating
the table mapping, the column will probably not be filled.

DataType Determines the column’s data type. Visual Basic raises an error if you
change this property after the DataTable begins loading data. Visual
Basic supports the data types Boolean, Byte, Char, DateTime, Decimal,
Double, Int16, Int32, Int64, SByte, Single, String, TimeSpan, UInt16,
UInt32, and UInt64.

DefaultValue Determines the default value assigned to the column in new rows.

Expression Sets an expression for the column. You can use this to create calculated
columns. For example, the expression Quantity * Price makes the
column display the value of the Quantity column times the value of
the Price column.

MaxLength Determines the maximum length of a text column.

Namespace The column’s namespace. If this is nonblank, the rows’ XML root
nodes include an xmlns attribute as in <StudentId xmlns=”my_
namespace”>12</StudentId>.

Ordinal Returns the column’s index in the DataTable’s Columns collection.

Prefix Determines the XML prefix that the DataColumn uses as an alias for
its namespace. For example, if Namespace is my_namespace and
Prefix is pfx, then a row’s StudentId field might be encoded in
XML as <pfx:StudentId xmlns:pfx=”my_namespace”>12</
pfx:StudentId>.

ReadOnly Determines whether the column allows changes after a record is
created.

Table Returns a reference to the DataTable containing the column.

Unique Determines whether different rows in the table can have the same
value for this column.

The following example defines the Students table’s XML column mappings. It indicates that the table’s
FirstName and LastName columns should be saved as attributes of the row elements, and that the
StudentId column should be saved as XmlText. Note that you cannot use the SimpleContent
ColumnMapping if any other column has a ColumnMapping of Element or SimpleContent.

students_table.Columns(“FirstName”).ColumnMapping = MappingType.Attribute
students_table.Columns(“LastName”).ColumnMapping = MappingType.Attribute
students_table.Columns(“StudentId”).ColumnMapping = MappingType.SimpleContent

342

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 342

The following text shows some of the resulting XML Students records:

<Students FirstName=”Art” LastName=”Ant”>1</Students>
<Students FirstName=”Bev” LastName=”Bug”>2</Students>
<Students FirstName=”Cid” LastName=”Cat”>3</Students>
<Students FirstName=”Deb” LastName=”Dove”>4</Students>

The following code makes the FirstName and LastName columns elements of the Students rows, and it
makes the StudentId an attribute:

students_table.Columns(“FirstName”).ColumnMapping = MappingType.Element
students_table.Columns(“LastName”).ColumnMapping = MappingType.Element
students_table.Columns(“StudentId”).ColumnMapping = MappingType.Attribute

The following text shows the resulting records:

<Students StudentId=”1”>
<FirstName>Art</FirstName>
<LastName>Ant</LastName>

</Students>
<Students StudentId=”2”>

<FirstName>Bev</FirstName>
<LastName>Bug</LastName>

</Students>
<Students StudentId=”3”>

<FirstName>Cid</FirstName>
<LastName>Cat</LastName>

</Students>
<Students StudentId=”4”>

<FirstName>Deb</FirstName>
<LastName>Dove</LastName>

</Students>

DataRelation
A DataRelation object represents a parent/child relationship between sets of columns in different tables.
For example, suppose that a database contains a Students table containing FirstName, LastName, and
StudentId fields. The TestScores table has the fields StudentId, TestNumber, and Score. The StudentId fields
connect the two tables in a parent/child relationship. Each Students record may correspond to any number
of TestScores records. In this example, Students is the parent table, and TestScores is the child table.

The following code defines this relationship. It uses the Students.StudentId field as the parent field and
the TestScores.StudentId field as the child field.

‘ Make a relationship linking the two tables’ StudentId fields.
scores_dataset.Relations.Add(_

“Student Test Scores”, _
students_table.Columns(“StudentId”), _
test_scores_table.Columns(“StudentId”))

A DataRelation can also relate more than one column in the two tables. For example, two tables might
be linked by the combination of the LastName and FirstName fields.

343

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 343

Most programs don’t need to manipulate a relation after it is created. The DataSet’s Relations.Add
method shown in the previous code creates a relation and thereafter the program can usually leave it
alone. However, the DataRelation object does provide properties and methods in case you do need to
modify one. The following table describes the DataRelation object’s most useful properties.

Property Purpose

ChildColumns Returns an array of DataColumn objects representing the child
columns.

ChildKeyConstraint Returns the ForeignKeyConstraint object for this relation. You can
use this object to determine the relation’s behavior when the program
updates, deletes, or modifies the values used in the relationship. For
example, if the StudentId field links the Students and TestScores tables
and you delete a Students record, you can use this object to make the
database automatically delete any corresponding TestScores records.

ChildTable Returns a DataTable object representing the relation’s child table.

DataSet Returns a reference to the DataSet containing the relation.

Nested Determines whether the child data should be nested within parent
rows in the DataSet’s XML representation. See the text following
this table for more detail.

ParentColumns Returns an array of DataColumn objects representing the parent
columns.

ParentKeyConstraint Returns the UniqueConstraint object for this relation. This object
requires that the values in the parent’s columns are unique within the
parent table.

ParentTable Returns a DataTable object representing the relation’s parent table.

RelationName Determines the relation’s name.

Normally, tables are stored separately in a DataSet’s XML representation, but you can use the Nested
property to make the XML include one table’s records inside another’s. For example, suppose that the
Students and TestScores tables are linked by a common StudentId field. If you set this relation’s Nested
property to True, the XML data would include the TestScores for a student within the Students record,
as shown in the following:

<Students>
<FirstName>Deb</FirstName>
<LastName>Dove</LastName>
<StudentId>4</StudentId>
<TestScores>

<StudentId>4</StudentId>
<TestNumber>1</TestNumber>
<Score>81</Score>

</TestScores>
<TestScores>

<StudentId>4</StudentId>

344

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 344

<TestNumber>2</TestNumber>
<Score>68</Score>

</TestScores>
...

</Students>

Note that in this representation the TestScores table’s StudentId value is redundant because the same value
is contained in the Students element’s StudentId subelement. If you set the TestScores.StudentId column’s
ColumnMapping value to Hidden, you can remove the redundant values and get the following result:

<Students>
<FirstName>Deb</FirstName>
<LastName>Dove</LastName>
<StudentId>4</StudentId>
<TestScores>

<TestNumber>1</TestNumber>
<Score>81</Score>

</TestScores>
<TestScores>

<TestNumber>2</TestNumber>
<Score>68</Score>

</TestScores>
...

</Students>

Constraints
A constraint imposes a restriction on the data in a table’s columns. DataSets support two kinds of
constraint objects:

❑ A ForeignKeyConstraint restricts the values in one table based on the values in another table.
For example, you could require that values in the Addresses table’s State field must exist in the
States table’s StateName field. That would prevent the program from creating an Addresses
record where State is XZ.

❑ A UniqueConstraint requires that the combination of one or more fields within the same table
must be unique. For example, an Employee table might require that the combination of the
FirstName and LastName values be unique. That would prevent the program from creating two
Employees records with the same FirstName and LastName.

The following sections describe each of these types of constraint in greater detail.

ForeignKeyConstraint
In addition to requiring that values in one table must exist in another table, a ForeignKeyConstraint
can also determine how changes to one table propagate to the other. For example, suppose that the
Addresses table has a ForeignKeyConstraint requiring that its State field contain a value that is present
in the States table’s StateName field. If you delete the States table’s record for Colorado, the constraint
could automatically delete all of the Addresses records that used that state’s name.

345

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 345

The following table describes the ForeignKeyConstraint object’s most useful properties.

Property Purpose

AcceptRejectRule Determines the action taken when the AcceptChanges method
executes. This value can be None (do nothing) or Cascade (update
the child fields’ values to match the new parent field values).

Columns Returns an array containing references to the constraint’s child
columns.

ConstraintName Determines the constraint’s name.

DeleteRule Determines the action taken when a row is deleted. This value can be
Cascade (delete the child rows), None (do nothing), SetDefault
(change child field values to their default values), or SetNull
(change child field values to NULL).

RelatedColumns Returns an array containing references to the constraint’s parent
columns.

RelatedTable Returns a reference to the constraint’s parent table.

Table Returns a reference to the constraint’s child table.

UpdateRule Determines the action taken when a row is updated. This value can be
Cascade (update the child rows’ values to match), None (do nothing),
SetDefault (change child field values to their default values), or
SetNull (change child field values to NULL).

The following code makes a foreign key constraint relating the Students.StudentId parent field to the
TestScores.StudentId child field:

scores_dataset.Relations.Add(_
“Student Test Scores”, _
students_table.Columns(“StudentId”), _
test_scores_table.Columns(“StudentId”))

UniqueConstraint
If you want to require the values in a single column to be unique, you can set the column’s Unique prop-
erty to True. This automatically creates a UniqueConstraint object and adds it to the DataTable. The
following code shows how a program can make the Students table’s StudentId column require unique
values:

students_table.Columns(“StudentId”).Unique = True

You can use the UniqueConstraint object’s constructors to require that a group of fields has a unique
combined value. The following code makes an array of DataColumn objects representing the Students
table’s FirstName and LastName fields. It passes the array into the UniqueConstraint object’s con-
structor to require that the FirstName/LastName pair be unique in the table.

346

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 346

‘ Make the combined FirstName/LastName unique.
Dim first_last_columns() As DataColumn = { _

students_table.Columns(“FirstName”), _
students_table.Columns(“LastName”) _

}
students_table.Constraints.Add(_

New UniqueConstraint(first_last_columns))

After executing this code, the program could add two records with the same FirstName and different
LastNames or with the same LastName and different FirstNames, but it could not create two records
with the same FirstName and LastName values.

The following table describes the UniqueConstraint object’s properties.

Property Purpose

Columns Returns an array of DataColumn objects representing the columns that
must be unique. ConstraintName determines the name of the constraint.

IsPrimaryKey Returns True if the columns form the table’s primary key.

Table Returns a reference to the DataTable that contains the constraint.

DataView
A DataView object represents a customizable view of the data contained in a DataTable. You can use the
DataView to select some or all of the DataTable’s data and display it sorted in some manner without
affecting the underlying DataTable.

A program can use multiple DataViews to select and order a table’s data in different ways. You can then
bind the DataViews to controls such as the DataGrid control to display the different views. If any of the
views modifies its data, for example by adding or deleting a row, the underlying DataTable’s data is
updated and any other views that need to see the change are updated as well.

The following code builds a DataTable named Contacts containing the fields FirstName, LastName,
Street, City, State, and Zip. It places a uniqueness constraint on the FirstName/L:astName pair and
adds some rows of data to the table. It then binds the DataTable to the DataGrid control named grdAll.
Next the program makes a DataView named dv_co based on the table, sets its RowFilter property to
make it select rows where the State field has the value CO, and binds the DataView to the DataGrid
named grdCO. Finally, the code makes another DataView with RowFilter set to select records where the
FirstName field is greater than or equal to “E” and binds that DataView to the grdName DataGrid.

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ Make a DataTable.
Dim contacts_table As New DataTable(“Contacts”)

‘ Add columns.
contacts_table.Columns.Add(“FirstName”, GetType(String))

347

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 347

contacts_table.Columns.Add(“LastName”, GetType(String))
contacts_table.Columns.Add(“Street”, GetType(String))
contacts_table.Columns.Add(“City”, GetType(String))
contacts_table.Columns.Add(“State”, GetType(String))
contacts_table.Columns.Add(“Zip”, GetType(String))

‘ Make the combined FirstName/LastName unique.
Dim first_last_columns() As DataColumn = { _

contacts_table.Columns(“FirstName”), _
contacts_table.Columns(“LastName”) _

}
contacts_table.Constraints.Add(_

New UniqueConstraint(first_last_columns))

‘ Make some contact data.
contacts_table.Rows.Add(New Object() {“Art”, “Ant”, _

“1234 Ash Pl”, “Bugville”, “CO”, “11111”})
contacts_table.Rows.Add(New Object() {“Bev”, “Bug”, _

“22 Beach St”, “Bugville”, “CO”, “22222”})
contacts_table.Rows.Add(New Object() {“Cid”, “Cat”, _

“3 Road Place Lane”, “Programmeria”, “KS”, “33333”})
contacts_table.Rows.Add(New Object() {“Deb”, “Dove”, _

“414 Debugger Way”, “Programmeria”, “KS”, “44444”})
contacts_table.Rows.Add(New Object() {“Ed”, “Eager”, _

“5746 Elm Blvd”, “Bugville”, “CO”, “55555”})
contacts_table.Rows.Add(New Object() {“Fran”, “Fix”, _

“647 Foxglove Ct”, “Bugville”, “CO”, “66666”})
contacts_table.Rows.Add(New Object() {“Gus”, “Gantry”, _

“71762-B Gooseberry Ave”, “Programmeria”, “KS”, “77777”})
contacts_table.Rows.Add(New Object() {“Hil”, “Harris”, _

“828 Hurryup St”, “Programmeria”, “KS”, “88888”})

‘ Attach grdAll to the DataTable.
grdAll.DataSource = contacts_table
grdAll.CaptionText = “All Records”

‘ Make a DataView for State = CO.
Dim dv_co As New DataView(contacts_table)
dv_co.RowFilter = “State = ‘CO’”
grdCO.DataSource = dv_co
grdCO.CaptionText = “CO Records”

‘ Make a DataView for FirstName >= E.
Dim dv_name As New DataView(contacts_table)
dv_name.RowFilter = “FirstName >= ‘E’”
grdName.DataSource = dv_name
grdName.CaptionText = “LastName >= E”

End Sub

Figure 11-27 shows the result. The DataGrid on the top is bound to the DataTable and shows all the
table’s rows. The second DataGrid is bound to the dv_co DataView and displays records where State =
CO. The bottom DataGrid is bound to the dv_name DataView, so it displays records where FirstName >=
E. If you use any of these DataGrid controls to modify the data, the other grids immediately show the
updates.

348

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 348

Figure 11-27: Different DataView objects can show different views of
the same data.

The DataView class is geared more toward data display than toward storage. It basically refers to data
stored in a DataTable object, so it doesn’t provide the same features for managing relations and con-
straints that the DataTable does. It does, however, provide links to the DataRow objects it represents.
From those objects, you can get back to the rows’ DataTable objects if necessary.

The following table describes the DataView object’s most useful properties.

Property Purpose

AllowDelete Determines whether the DataView allows row deletion. If this is False, any
bound controls such as the DataGrid will not allow the user to delete rows.

AllowEdit Determines whether the DataView allows row editing. If this is False, any
bound controls (such as the DataGrid) will not allow the user to edit rows.

AllowNew Determines whether the DataView allows new rows. If this is False, any
bound controls (such as the DataGrid) will not allow the user to add rows.

Count Returns the number of rows selected by the view.

Item Returns a DataRowView object representing a row in the view.

RowFilter A string that determines the records selected by the view.

Table continued on following page

349

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 349

Property Purpose

RowStateFilter The state of the records that should be selected by the view. This can be
Added, CurrentRows (unchanged, new, and modified rows), Deleted,
ModifiedCurrent (current version of modified rows), ModifiedOriginal
(original version of modified rows), None, OriginalRows (original,
unchanged, and deleted rows), and Unchanged.

Sort A string giving the columns that should be used to sort the data. For example,
“State, City, Zip” sorts by State, then City, and then Zip in descending
order.

Table Specifies the underlying DataTable object.

The following table describes some of the most useful DataView methods.

Method Purpose

AddNew Adds a new row to the underlying DataTable.

Delete Deletes the row with a specific index from the underlying DataTable.

Find Returns the index of a row that matches the view’s sort key columns. This
method returns -1 if no row matches the values it is passed. It raises an error
if the number of values it receives does not match the number of the
DataView’s key values.

FindRows Returns an array of DataRowView objects representing rows that match the
view’s sort key columns.

The DataView’s Sort property determines not only the fields by which the data is sorted but also the key
fields used by the Find method. The following code makes the dv_name DataView sort by FirstName
and LastName. It then uses the Find method to display the index of a row with FirstName = Hil and
LastName = Harris.

dv_name.Sort = “FirstName, LastName”
MessageBox.Show(dv_name.Find(New String() {“Hil”, “Harris”}).ToString)

DataRowView
A DataRow object can hold data for more than one state. For example, if a DataTable row has been
modified, its DataRow object contains the row’s original data and the new modified values.

The DataRowView object represents a view of a DataRow object in a particular state. That state can be
one of Current, Default, Original, or Proposed.

A DataView object holds DataRowView objects representing a view of a DataTable selecting particular
rows in a particular state.

350

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 350

The DataRowView object’s purpose is to represent a row in a specific state so this object is relatively simple.
It basically indicates the chosen state and refers to a DataRow.

The following table describes the DataRowView objects most useful properties.

Property Purpose

DataView The DataView that contains the DataRowView

IsEdit Returns True if the row is in editing mode

IsNew Returns True if the row is new

Item Gets or sets the value of one of the row’s fields

Row The DataRow object that this DataRowView represents

RowVersion The version of the DataRow represented by this object (Current,
Default, Original, or Proposed)

Simple Data Binding
Binding a simple property such as Text to a data source is relatively easy. First, create a DataSet,
DataTable, or DataView to act as the data source. You can create this object at design time using controls
or at run time using object variables.

If you build the data source at design time, you can also bind the property at design time. Select the control
that you want to bind and open the Properties window. Expand the (DataBindings) entry and find the
property you want to bind (for example, Text). Click the drop-down arrow on the right, and use the pop-
up display to select the data source item that you want to bind to the property.

Figure 11-28 shows the pop-up binding the txtTitle control’s Text property to the dsBooks DataSet’s
Books table’s Title field.

At run time, your code can bind a simple property to a data source by using the control’s DataBindings
collection. This collection’s Add method takes as parameters the name of the property to bind, the data
source, and the name of the item in the data source to bind.

The following statement binds the txtUrl control’s Text property to the dsBooks DataSet’s Books
table’s URL field.

txtUrl.DataBindings.Add(“Text”, dsBooks.Books, “URL”)

That’s all there is to binding simple properties. By itself, however, this binding doesn’t provide any form of
navigation. If you were to bind the Text properties of a bunch of TextBox controls and run the program,
you would see the data for the data source’s first record and nothing else. To allow the user to navigate
through the data source, you must use a CurrencyManager object.

351

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 351

Figure 11-28: You can bind a simple control
property to a data source at design time.

CurrencyManager
Some controls such as the DataGrid provide their own forms of navigation. If you bind a DataGrid to a
DataSet, it allows the user to examine the DataSet’s tables, view and edit data, and follow links between
the tables. A simpler control such as a TextBox can display only one data value at a time. You must pro-
vide some means for the program to navigate through the data source’s records.

A data source manages its position within its data by using a CurrencyManager object. The
CurrencyManager supervises the list of Binding objects that bind the data source to controls such as
TextBoxes.

The following table describes the CurrencyManager object’s most useful properties.

Property Purpose

Bindings A collection of the bindings that the object manages.

Count Returns the number of rows associated with the CurrencyManager.

Current Returns a reference to the current data object (row).

352

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 352

Property Purpose

List Returns an object that implements the IList interface that provides
the data for the CurrencyManager. For example, if the data source is
a DataSet or DataTable, this object is a DataView.

Position Gets or sets the current position within the data. For example, in a
DataTable this is the row number.

The CurrencyManager also provides some methods for manipulating the data. The following table
describes the CurrencyManager object’s most useful methods.

Method Purpose

AddNew Adds a new item to the data source

CancelCurrentEdit Cancels the current editing operation

EndCurrentEdit Ends the current editing operation, accepting any changes

Refresh Refills the bound controls

RemoveAt Removes the data source item at a specified index

The CurrencyManager class raises a PositionChanged event when its position in the data changes.

The following code shows how a program can use a CurrencyManager to let the user navigate through a
DataTable. The code begins by declaring the DataTable and CurrencyManager objects. The form’s
Load event handler builds the DataTable and gives it some data. Next the event handler uses the
DataBindings collections of several TextBox controls to bind them to the fields in the DataTable. The
event handler finishes by saving a reference to the DataTable’s CurrencyManager. The form’s
BindingContext property is a collection that contains references to the BindingManagerBase objects
used by the controls on the form. That includes the CurrencyManager used by the DataTable. This code
passes the DataTable as a parameter to the BindingContext collection to get the table’s
CurrencyManager. If the data source contained multiple objects (for example, a DataSet can contain
multiple DataTables), you also need to pass the collection a path to the data object that you want to use.

The user can move through the DataTable by clicking the program’s navigation buttons btnFirst,
btnPrev, btnNext, and btnLast. The event handlers for these buttons move through the data by
adjusting the CurrencyManager’s Position property.

When the user clicks the Add button, the btnAdd_Click event handler calls the CurrencyManager’s
AddNew method to create a new record.

When the user clicks the Delete button, the btnDelete_Click event handler displays a message box
asking if the user really wants to delete the record. If the user clicks “Yes,” the code uses the
CurrencyManager’s RemoveAt method to delete the current record.

353

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 353

‘ The data source.
Private m_ContactsTable As DataTable

‘ The data source’s CurrencyManager.
Private m_CurrencyManager As CurrencyManager

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ Make a DataTable.
m_ContactsTable = New DataTable(“Contacts”)

‘ Add columns.
m_ContactsTable.Columns.Add(“FirstName”, GetType(String))
m_ContactsTable.Columns.Add(“LastName”, GetType(String))
m_ContactsTable.Columns.Add(“Street”, GetType(String))
m_ContactsTable.Columns.Add(“City”, GetType(String))
m_ContactsTable.Columns.Add(“State”, GetType(String))
m_ContactsTable.Columns.Add(“Zip”, GetType(String))

‘ Make the combined FirstName/LastName unique.
Dim first_last_columns() As DataColumn = { _

m_ContactsTable.Columns(“FirstName”), _
m_ContactsTable.Columns(“LastName”) _

}
m_ContactsTable.Constraints.Add(_

New UniqueConstraint(first_last_columns))

‘ Make some contact data.
m_ContactsTable.Rows.Add(New Object() {“Art”, “Ant”, _

“1234 Ash Pl”, “Bugville”, “CO”, “11111”})
m_ContactsTable.Rows.Add(New Object() {“Bev”, “Bug”, _

“22 Beach St”, “Bugville”, “CO”, “22222”})
m_ContactsTable.Rows.Add(New Object() {“Cid”, “Cat”, _

“3 Road Place Lane”, “Programmeria”, “KS”, “33333”})
m_ContactsTable.Rows.Add(New Object() {“Deb”, “Dove”, _

“414 Debugger Way”, “Programmeria”, “KS”, “44444”})
m_ContactsTable.Rows.Add(New Object() {“Ed”, “Eager”, _

“5746 Elm Blvd”, “Bugville”, “CO”, “55555”})
m_ContactsTable.Rows.Add(New Object() {“Fran”, “Fix”, _

“647 Foxglove Ct”, “Bugville”, “CO”, “66666”})
m_ContactsTable.Rows.Add(New Object() {“Gus”, “Gantry”, _

“71762-B Gooseberry Ave”, “Programmeria”, “KS”, “77777”})
m_ContactsTable.Rows.Add(New Object() {“Hil”, “Harris”, _

“828 Hurryup St”, “Programmeria”, “KS”, “88888”})

‘ Bind to controls.
txtFirstName.DataBindings.Add(“Text”, m_ContactsTable, “FirstName”)
txtLastName.DataBindings.Add(“Text”, m_ContactsTable, “LastName”)
txtStreet.DataBindings.Add(“Text”, m_ContactsTable, “Street”)
txtCity.DataBindings.Add(“Text”, m_ContactsTable, “City”)
txtState.DataBindings.Add(“Text”, m_ContactsTable, “State”)
txtZip.DataBindings.Add(“Text”, m_ContactsTable, “Zip”)

‘ Save a reference to the CurrencyManager.
m_CurrencyManager = _

354

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 354

DirectCast(Me.BindingContext(m_ContactsTable), CurrencyManager)
End Sub

Private Sub btnFirst_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnFirst.Click

m_CurrencyManager.Position = 0
End Sub

Private Sub btnPrev_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPrev.Click

m_CurrencyManager.Position -= 1
End Sub

Private Sub btnNext_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnNext.Click

m_CurrencyManager.Position += 1
End Sub

Private Sub btnLast_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnLast.Click

m_CurrencyManager.Position = m_CurrencyManager.Count - 1
End Sub

‘ Add a new record.
Private Sub btnAdd_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAdd.Click

m_CurrencyManager.AddNew()
End Sub

Private Sub btnDelete_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnDelete.Click

If MsgBox(“Are you sure you want to delete this record?”, _
MsgBoxStyle.Question Or MsgBoxStyle.YesNo, _
“Confirm Delete?”) = MsgBoxResult.Yes _

Then
m_CurrencyManager.RemoveAt(m_CurrencyManager.Position)

End If
End Sub

Figure 11-29 shows the program in action.

Figure 11-29: This program’s buttons use a
CurrencyManager to let the user add, delete,
and navigate through a table’s records. 355

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 355

Complex Data Binding
For some controls (such as the TextBox and Label) binding the Text property is good enough. Other
controls, however, do not display a simple textual value.

For example, suppose that you have a database containing a Users table with fields FirstName, LastName,
and UserType. The UserTypes table has fields UserTypeId and UserTypeName. The Users.UserType field
contains a value that should match UserTypes.UserTypeId. The UserTypes.UserTypeName field contains
values such as Programmer, Project Manager, Department Manager, Program Manager, and Lab Director.

When you build a form to display the Users table data, you would like to use a ComboBox to allow the
user to select only the allowed choices Programmer, Project Manager, and so on. However, the Users
table doesn’t store those string values. Instead it stores the UserTypeId value corresponding to the
UserTypeName value that the user selects. When the user picks a UserTypes.UserTypeName value, the
ComboBox should look up the corresponding UserTypes.UserTypeId value and save it in the
Users.UserType field.

Clearly the simple binding strategy used for TextBoxes won’t work here. Binding this control requires two
rather complicated steps: defining the DataSet and binding the control. Each piece of the operation is easy,
but you must do everything correctly. If you miss any detail, the ComboBox won’t work, and Visual Basic’s
error messages probably won’t give you enough information to figure out how to fix the problem.

The first step is building a data connection. Select the Data menu’s Add New Data Source command. Use
the Data Source Configuration Wizard to make a data source that selects both the Users and UserTypes
tables from the database.

Next, create a ComboBox named cboUserType to the form. In the Properties window, select the control’s
DataSource property and click the drop-down arrow on the right. Select the DataSet’s UserTypes table
as shown in Figure 11-30. This tells the ComboBox where to look up values.

When you set this property, Visual Basic also adds a DataSet, BindingSource, and TableAdapter to
the form. These components provide access to the UserTypes table.

Set the ComboBox’s DisplayMember property to the field in the lookup table (specified by the DataSource
property) that the control will display to the user. In this example, the field is UserTypeName.

Set the ComboBox’s ValueMember property to the field in the lookup table that represents the value that
the ComboBox will need to read and write from the database. In this example, that’s the UserTypeId field.

Next, you need to bind the ComboBox to the field that it must read and write in the database. In this exam-
ple, that’s the Users table’s UserType field. To simplify this binding, add a new BindingSource to the
form. Change its name to “UsersBindingSource” and set its DataSource property to the
ComputerUsersDataSet as shown in Figure 11-31. Then set the BindingSource’s DataMember property
to the Users table.

356

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 356

Figure 11-30: Set the ComboBox’s DataSource
property to the UserTypes table.

Figure 11-31: Set the BindingSource’s DataSource
to the ComputerUsersDataSet.

357

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 357

The last ComboBox property you need to set is SelectedValue. Click on the ComboBox, open the
Properties window, and expand the (DataBindings) entry at the top. Click the drop-down arrow to the
right of the SelectedValue property and select the field that the control must read and write in the
database. For this example, that’s the UsersBindingSource’s UserType field. Figure 11-32 shows the
Property window setting this property.

Figure 11-32: Set the BindingSource’s SelectedValue
to the UsersBindingSource’s UserType field.

Next, create TextBox controls to display the Users table’s FirstName and LastName fields. In the
Properties window, open their (Data Bindings) items and set their Text properties to the
UserBindingSource’s FirstName and LastName fields.

Finally, to give the user a way to navigate through the data, add a BindingNavigator to the form. Set
this component’s BindingSuorce property to UserBindingSource and the program is ready to run.
Figure 11-33 shows the program in action.

Figure 11-33: At run time, the ComboBox displays
the field bound to its DisplayMember property while
updating the field bound to its SelectedValue property.

358

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 358

The choices allowed by the ComboBox are taken from the values in the UserTypes table’s UserTypeName
field. If you select a new user value from the ComboBox, the control automatically makes the appropriate
change to the Users table.

Binding a ListBox
The steps for binding a ListBox control are exactly the same as those for binding a ComboBox. Figure 11-34
shows a program that uses a Listbox to display user types. As you move through the records, the
ListBox selects the appropriate user type for each user.

Figure 11-34: The steps for binding a ListBox
are the same as those for binding a ComboBox.

Summary
Working with databases in Visual Basic is an enormous topic. This chapter does not cover every detail of
database programming, but it does explain the basics. It tells how to build data sources and how to drag
and drop tables and fields from the Data Sources window onto a form. It describes the most important
database controls and objects, such as connection, data adapter, DataSet, and DataTable objects. It also
explains the fundamentals of simple and complex data binding, and using CurrencyManager objects to
navigate through data.

For more information on database programming in Visual Basic .NET, see a book about database program-
ming. Database programming has changed considerably in Visual Basic 2005, so be sure to get a book that
covers this version. Older books explain many of the fundamental database objects such as DataSet,
DataTable, DataRow, and CurrencyManager, but they won’t cover new objects such as TableAdapter,
DataConnector, and DataNavigator.

359

Database Controls and Objects

13_571982 ch11.qxd 9/1/05 7:21 PM Page 359

If you must build and maintain large databases, you should also read books about database management.
These can tell you how to design, build, and maintain a database throughout the application’s lifetime.
You should also read about the particular kinds of databases that you need to use. For example, if you are
working with SQL Server databases, get a good book on using SQL Server.

Becoming an expert database developer is a big task, but the techniques described in this chapter should
at least get you started.

Chapters 9, 10, and this chapter, describe a wide variety of controls. Chapter 9, “Introduction to
Windows Forms Controls,” describes the standard controls that applications use to interact with the
user. Chapter 10, “Forms,” describes a special kind of control: forms. This chapter describes controls that
you can use to manipulate databases.

Even all of these different kinds of controls cannot satisfy every application’s needs. Chapter 12,
“Custom Controls,” explains how you can build controls of your own to satisfy unfulfilled needs. These
controls can implement completely new features or combine existing controls to provide a neat package
that is easy to reuse.

360

Chapter 11

13_571982 ch11.qxd 9/1/05 7:21 PM Page 360

Custom Controls
Visual Basic .NET provides a rich assortment of controls that you can use to build applications.
However, those controls may not always be able to do what you need. In that case, you may want
to build a control of your own. Building your own control lets you get exactly the behavior and
appearance that you want.

Custom controls solve a couple of problems. First, they let you package a particular behavior or
appearance so that you can easily reuse it later. If you need to draw one engineering diagram, you
can draw it on a PictureBox. If you will need to draw many engineering diagrams (possibly in
different applications), it would be easier to make an EngineeringDiagram control that you can
use to make all the diagrams.

Another benefit to custom controls is that developers are familiar with controls and comfortable
using them. Any experienced Visual Basic developer understands how to create instances of a con-
trol, set its properties, call its methods, and respond to its events. If you build a custom control to
perform some complex task, developers already know a lot about how to use it. You just need to
explain the specific features of your control.

Finally, controls can save and restore property information at design time. A developer can set
properties for a control at design time, and the control uses those properties at run time. This is
useful for graphical controls, where properties such as Text, BackColor, and BorderStyle deter-
mine the controls’ appearance. It is also useful for nongraphical controls such as database connec-
tion, data adapter, DataSet, and DataView controls that use properties to determine what data is
loaded and how it is arranged.

This chapter explains how to build custom controls. There are three main approaches to building
custom controls. First, you can derive a control from an existing control. If a control already does
most of what you want your custom control to do, you may be able to inherit from the existing
control and avoid reimplementing all of its useful features.

The second way to build a custom control is to compose your control out of existing controls. For
example, you might want to make a color selection control that enables the user to select red, green,
and blue color components by using scroll bars, and then displays a sample of the resulting color.
You could build this control using three scroll bars and a PictureBox. This gives you the advan-
tages provided by the constituent controls without requiring you to reimplement their functionality.

14_571982 ch12.qxd 9/1/05 7:27 PM Page 361

Finally, you can build a custom control from scratch. This is the most work but gives you absolute con-
trol over everything that the control does.

This chapter explains the basics of building a control library project and testing its controls. It also
describes the three approaches to building custom controls: deriving from an existing control, compos-
ing existing controls, and building a control from scratch.

A component is similar to a control that is invisible at run time. Like controls, you can place components
on a form at design time. Unlike controls, however, components do not sit on the form itself. Instead,
they sit in the component tray below the form at design time, and they are invisible to the user at run
time. Most of this chapter’s discussion of custom controls applies equally to custom components.

Custom Controls in General
Building a custom control requires five basic steps:

1. Create the control’s project.

2. Make a Toolbox bitmap icon for the control.

3. Test the control in the UserControl Test Container.

4. Give the control properties, methods, and events.

5. Make a test project to debug the control more thoroughly.

6. Test the control at design time and run time to make sure it works.

The following sections describe these steps.

Making the Control Project
To make a new control library in Visual Basic, select the File menu’s New Project command, select the
Windows Control Library template, enter the project’s name, and click OK. The library can contain sev-
eral controls, so it may not always make sense to name the library after a single control. This example
assumes that you are building a control that displays a smiley face. In that case, you might name the
library FaceControls in case you want to add bored, sad, and other faces later.

Initially, Visual Basic gives the control library a single UserControl object named UserControl1.
Change this file’s name to something more descriptive such as SmileyFace. If you look at the file in the
code editor, you should find that Visual Basic has automatically changed the control’s class name to
match.

Add code to the control to make it do whatever you want it to do. For a SmileyFace control, you might
add properties such as FaceColor, NodeColor, and EyeColor. The control’s Paint event handler will
draw the smiley face.

Next use the Build menu to compile the control library. The project’s bin directory contains the library’s
compiled .dll file.

362

Chapter 12

14_571982 ch12.qxd 9/1/05 7:27 PM Page 362

Setting the Toolbox Icon
If you add the control to the form designer’s Toolbox now, you’ll see a default image that looks like a
gear. To make your control display something more meaningful, you must set its Toolbox icon.

You can set the control’s Toolbox icon by adding a ToolboxBitmap attribute to the control’s class. The
constructor for the ToolboxBitmap attribute can take as parameters the name of the bitmap file, a class
that contains the bitmap resource to use, or a class and the name of a bitmap resource to use (if the class
contains more than one bitmap resource). This section assumes that you will use the last method. See the
online help for more information. The Web page http://msdn.microsoft.com/library/en-us/
cpref/html/frlrfSystemDrawingToolboxBitmapAttributeClassTopic.asp describes the
ToolboxBitmapAttribute class and its constructors.

Open Solution Explorer and double-click on the My Project entry to view the project’s property pages.
Click the Resources tab and open the Add Resource drop-down. Select the Add Existing File command,
and select bitmap file to create a new bitmap resource. Double-click the new bitmap to open it in the
integrated Bitmap Editor and modify it if necessary. Use the Properties window to make the bitmap 16 ×
16 pixels in size.

Set the pixel in the lower-left corner to the color that you want to use as the Toolbox bitmap’s transpar-
ent color. Visual Basic will replace the pixels having this color with the Toolbox’s background color.
Draw and save the bitmap, and then close it.

Click on the bitmap file in Solution Explorer, and open the Properties window. Select the file’s Build
Action property, click the drop-down arrow on the right, and select Embedded Resource. Now when
you compile the control library, this bitmap will be embedded as a resource inside the .dll file.

Next, open the control’s module in the code editor, and insert a ToolboxBitmap attribute in front of the
control’s class declaration, as shown in the following code. This example tells Visual Basic that the con-
trol’s Toolbox icon should come from the SmileyFaceTool resource embedded in the SmileyFace
class. Notice the line continuation character at the end of the first line so that the ToolboxBitmap state-
ment is on the same code line as the class declaration.

<ToolboxBitmap(GetType(SmileyFace), “SmileyFaceTool”)> _
Public Class SmileyFace
...
End Class

Now when you build the control library, the SmileyFace control includes the information it needs to
display its Toolbox bitmap.

Testing in the UserControl Test Container
If you use the Debug menu’s Start command to “execute” a control library project, Visual Studio dis-
plays a sample control in the UserControl Test Container shown in Figure 12-1. The drop-down list at
the top lets you select different controls in the project. You can use the property grid on the right to
experiment with different property values to see how the control behaves.

363

Custom Controls

14_571982 ch12.qxd 9/1/05 7:27 PM Page 363

Figure 12-1: Visual Basic lets you preview controls in the
UserControl Test Container.

As its name hints, the UserControl Test Container only displays UserControls. If you create a control
that inherits from the Control class or from some other control, then the UserControl Test Container
does not list it and will not display it. In that case, you must skip this step and move on to the next one,
making a test project.

Making a Test Project
The UserControl Test Container only lets you test UserControls, not those that inherit from the
Control class or some other control. It also only lets you test a control’s properties. You can see the con-
trol’s design time behavior, but not how its methods and events work at run time.

To test controls that are not UserControls and to test the control’s run-time behavior, you must build a
test project. You can either build a completely separate project, or you can add a new Windows applica-
tion to the control’s project.

To add an application to the control’s project, open the File menu’s Add submenu and select New
Project. Select the Windows Application template, give the project a meaningful name (such as
FaceControlsTest), and click OK. This adds the test project to the same solution that already contains the
control library.

364

Chapter 12

14_571982 ch12.qxd 9/1/05 7:27 PM Page 364

To make Visual Basic start execution with the test project, open the Solution Explorer, right-click the new
project, and select Set as StartUp Project.

When you open the new project’s form, the Toolbox will contain a FaceControls Components section
(assuming that the control project is named FaceControls) that holds icons representing the controls
defined by the control library. You can use these tools just as you would use any other control tools.

When you create separate applications that are not part of the control library’s solution, you must add
the controls to the Toolbox manually. To add the controls, open a form in the form designer. Right-click
on the Toolbox, and select Choose Items. On the Choose Toolbox Items dialog shown in Figure 12-2, click
the Browse button. Select the .dll file in the control library’s bin folder, and click Open to make the
controls appear in the dialog’s .NET Framework Components tab. Check the boxes next to the controls
(they should be checked by default), and click OK.

Figure 12-2: Use the Customize Toolbox dialog to add your control to the
Toolbox.

If you change the control’s Toolbox icon, you must rebuild the control library’s .dll file. Then open the
test project’s form, right-click the Toolbox, select Add/Remove Items again, click the Browse button, and
reselect the control library’s .dll file.

Test the Control
After you add it to the Toolbox, you can use the control on the test project’s form just as you can use any
other control. Click on the Toolbox icon to select the control, and click and drag to place an instance of
the control on the form. Double-click on the control to place an instance of the control in a default loca-
tion with a default size. Initially, Visual Basic sets the controls’ names to their class’s name followed by a
number, as in SmileyFace1, SmileyFace2, and so forth.

365

Custom Controls

14_571982 ch12.qxd 9/1/05 7:27 PM Page 365

Use the Properties window to set the controls’ properties at design time. Use code to examine and mod-
ify the controls’ properties, methods, and events at run time.

Implement Properties, Methods, and Events
At this point, you can test the control, but if you haven’t given it any properties, methods, and events,
you can only work with the default behavior that it inherits from its parent class. If the control is to do
something useful, you must give it new properties, methods, and events.

Controls implemented from scratch often use Paint event handlers to draw the control. Composite con-
trols often respond to events raised by their constituent controls and take actions, which may include
raising new events for the form containing the control.

When a developer places the control on a form, the Properties window automatically displays any pub-
lic properties that are not read-only. This feature is remarkably intelligent. If a property has the Integer
data type, the Properties window will only allow the developer to enter an integer. If a property has an
enumerated type, the Properties window automatically displays a drop-down list containing the types
of allowed values.

If a property has the Font data type, the Properties window automatically provides an ellipsis to the
right of the property’s value and displays a font selection dialog if the user clicks it. Similarly, if the
property is a Color, Image, or Date, the Properties window provides an appropriate dialog or drop-
down to let the user select the property’s value.

If a property’s data type is OleDbDataConnection, DataSet, TextBox, Label, or some other control or
component type, then the Properties window provides a drop-down list that lets the developer pick
from any appropriate item on the form. If the data type is TextBox, then the drop-down will list all of
the form’s TextBoxes.

In fact, the Properties window can even handle custom controls and components that you build your-
self. For example, suppose that you create a control named EmployeeRegister. You can then create
another control that has a property of type EmployeeRegister. If the developer selects the control,
opens the Properties window, clicks on that property, and clicks the drop-down arrow on the right,
Visual Basic will display a list of any EmployeeRegister controls on the form.

Even more miraculously, the Properties window can handle collections of objects that you define. For
example, the following code defines a WorkItem class. It then defines a UserControl class named
WorkItemLister. This class has a property named WorkItems that is a collection of WorkItem objects.

Imports System.Collections.Generic

‘ Represents a piece of work.
<Serializable()> _
Public Class WorkItem

‘ The ItemName property.
Private m_ItemName As String
Public Property ItemName() As String

Get
Return m_ItemName

End Get
Set(ByVal value As String)

366

Chapter 12

14_571982 ch12.qxd 9/1/05 7:27 PM Page 366

m_ItemName = value
End Set

End Property
End Class

‘ UserControl that has the property.
Public Class WorkItemLister

‘ The WorkItems property.
Private m_WorkItems As New List(Of WorkItem)
Public Property WorkItems() As List(Of WorkItem)

Get
Return m_WorkItems

End Get
Set(ByVal value As List(Of WorkItem))

‘ Copy the new items into the
‘ m_WorkItems List.
For Each work_item As WorkItem In value

m_WorkItems.Add(work_item)
Next work_item

End Set
End Property

End Class

If you add a WorkItemLister object to a form and select it, the Properties window lists the WorkItems
property’s value as “(Collection)” and displays a drop-down arrow to the right. If you click the
arrow, Visual Basic displays the collection editor shown in Figure 12-3.

Figure 12-3: Visual Basic automatically provides collection editors for
collection properties.

367

Custom Controls

14_571982 ch12.qxd 9/1/05 7:27 PM Page 367

Assign Attributes
You can modify a control’s behavior by adding attributes to its properties, methods, and events, and to
its class declaration. The following code demonstrates some of the most useful control (or component)
and property attributes for a UserControl named EmployeeRegister:

The ToolboxBitmap attribute tells Visual Basic that it can find a Toolbox bitmap for the class in the
assembly containing the EmployeeRegister type, and that the bitmap resource’s name is
“EmployeeRegisterTool.”

The DefaultProperty attribute sets the component’s default property. If you click on an
EmployeeRegister control in the form designer, the property named TextValue is initially selected in
the Properties window.

Note that the DefaultProperty doesn’t always work as advertised because the Properties window
tries to display the same property when you select different controls. For example, suppose that you
click on a TextBox control and select its Name property in the Properties window. If you then click on an
EmployeeRegister control, the Properties window shows its Name property because EmployeeRegister
has a Name property. On the other hand, if you select a TextBox’s MultiLine property and then click
on an EmployeeRegister control, the Properties window selects the TextValue property because
EmployeeRegister doesn’t have a MultiLine property.

The DefaultEvent attribute indicates the component’s default event. If you double-click on an
EmployeeRegister control in the form designer, Visual Basic opens the code editor and displays the
control’s default event handler.

The DesignTimeVisible attribute determines whether the component is visible in the form designer at
design time. If you set this to False, the control or component does not appear in the Toolbox. If a form
already contains an instance of the object, a component is hidden in the component tray, although a con-
trol remains visible. You can use this attribute to build a control that the program can create and manip-
ulate at run time but that the developer cannot create at design time.

The TextValue property’s Description attribute gives the text displayed at the bottom of the
Properties window when you select the property.

The Category attribute determines the category that contains the property when you select the Property
window’s Categorized button. This attribute’s value can be any string. The Property window will make
a new category with this name if it doesn’t name an existing category.

The Browsable attribute determines whether the Property window displays the property. If you set this
value to False, you cannot set the property’s value at design time.

Finally the DefaultValue property determines the default value for the property. If you set a control’s
property to this value, Visual Basic does not store the property’s value with the form. Later, when it
reloads the form, Visual Basic does not load any value for the property. This code shows one way to ini-
tialize a property’s value when it declares Private m_TextValue As String = “Default Value”. To
avoid confusion, you should generally initialize the private variable representing a property to the same
value you set with faultValue attribute.

368

Chapter 12

14_571982 ch12.qxd 9/1/05 7:27 PM Page 368

If you right-click on a property in the Properties window and select the Reset command, Visual Basic
sets the property to the value defined by the DefaultValue attribute. This is particularly useful for
images and other objects where you might want to make the default value Nothing.

Imports System.ComponentModel

<ToolboxBitmap(GetType(EmployeeRegister), “EmployeeRegisterTool”), _
DefaultProperty(“TextValue”), _
DefaultEvent(“TheEvent”), _
DesignTimeVisible(True)> _

Public Class EmployeeRegister
‘ Declare a public event.
Public Event TheEvent()

‘ The TextValue property.
Private m_TextValue As String = “Default Value”
<Description(“The object’s text value.”), _
Category(“String Values”), _
Browsable(True), _
DefaultValue(“Default Value”)> _

Public Property TextValue() As String
Get

Return m_TextValue
End Get
Set(ByVal value As String)

m_TextValue = value
End Set

End Property
End Class

See the online help for more information on these attributes and others that you might find useful under
less common circumstances.

Manage Design Time and Run Time
A control or component can use its predefined DesignMode property to determine whether it is running
at design time or run time and take different actions if that is appropriate. For example, a control might
allow the developer to manipulate its data directly at design time but prevent the user from changing
the data at run time.

The following code shows how the control can check whether it is running at design or run time:

If Me.DesignMode Then
‘ Let the developer manipulate the data at design time.
...

Else
‘ Don’t let the user change the data at run time.
...

End If

369

Custom Controls

14_571982 ch12.qxd 9/1/05 7:27 PM Page 369

Derived Controls
If an existing control does almost what you need to do, you can derive a new control from the existing
one. That enables you to take advantage of all of the existing control’s features while adding new ones of
your own.

To make a derived control, start a control library project as usual and give the library a meaningful
name. Discard the default UserControl1 class, add a new class, and give it an appropriate Inherits
statement. For example, the following code derives the RowSortingListView class from the ListView
class:

Public Class RowSortingListView
Inherits ListView

End Class

That’s about all there is to building a derived control. Now you just need to write code that implements
the new features and modifies inherited features. One particularly common task for derived controls is
overriding the functionality provided by the parent control class. The RowSortingListView control
provides a good example.

The standard ListView control lets a program display data items with subitems in a variety of ways.
The control can display items as large icons, small icons, a list showing the items’ names, or a detail list
showing the items and their subitems. The list and detail displays even allow you to sort the items in
ascending and descending order. Unfortunately, the ListView control doesn’t use the subitems in the
sort even to break ties. It sorts only on the main items’ names.

For example, suppose that several items all have the item value Book and their first subitems contain
book titles. If you set the ListView control’s Sorting property to Ascending or Descending, the con-
trol will group these items together because they all have the same item value: Book. Unfortunately, the
items’ order in the list is arbitrary. The control does not sort the Book items by their titles.

Fortunately, the ListView control provides a back door for implementing custom sort orders. To imple-
ment a custom sort order, you set the ListView control’s ListViewItemSorter property to an object
that implements the IComparer interface. To satisfy the interface, this object must provide a Compare
function that compares two ListView items and returns -1, 0, or 1 if the first item should be considered
less than, equal to, or greater than the second item.

The ListViewComparerAllColumns class shown in the following code implements the IComparer
interface. Its private m_SortOrder variable tells the object whether to sort in ascending or descending
order. The class’s constructor takes a parameter that sets this value. The Compare function converts the
generic Objects that it is passed into ListViewItems. It calls the ListViewItemValue helper function
to get strings containing the items and their subitems separated by Tab characters. It then uses the
String class’s Compare method to determine which value should come first in the sort order.

‘ Implements a ListViewItem comparer
‘ that sorts on all columns.
Private Class ListViewComparerAllColumns

Implements IComparer

‘ Ascending or Descending.

370

Chapter 12

14_571982 ch12.qxd 9/1/05 7:27 PM Page 370

Private m_SortOrder As SortOrder

‘ Initialize with a sort order.
Public Sub New(ByVal sort_order As SortOrder)

m_SortOrder = sort_order
End Sub

‘ Compare two items’ subitems.
Public Function Compare(ByVal x As Object, ByVal y As Object) As Integer _
Implements System.Collections.IComparer.Compare

‘ Get the ListViewItems.
Dim item_x As ListViewItem = DirectCast(x, ListViewItem)
Dim item_y As ListViewItem = DirectCast(y, ListViewItem)

‘ Get the ListViewItems’ values.
Dim values_x As String = ListViewItemValue(item_x)
Dim values_y As String = ListViewItemValue(item_y)

‘ Compare the values.
If m_SortOrder = SortOrder.Ascending Then

Return String.Compare(values_x, values_y)
Else

Return String.Compare(values_y, values_x)
End If

End Function

‘ Return a delimited string containing all of
‘ the ListViewItem’s values.
Private Function ListViewItemValue(ByVal lvi As ListViewItem, _
Optional ByVal delimiter As String = vbTab) As String

Dim txt As String = “”
For i As Integer = 0 To lvi.SubItems.Count - 1

txt &= delimiter & lvi.SubItems(i).Text
Next i
Return txt.Substring(delimiter.Length)

End Function
End Class

The RowSortingListView control uses the ListViewComparerAllColumns class and the following
code to sort its data using all of the items’ values and their subitems’ values. To provide the new sorting
behavior, the control must override the Sorting property defined by the parent ListView class.

The control defines a private m_Sorting variable to store the property’s value and declares property
procedures to let the program get and set it. The property is declared with the Shadows keyword, so it
hides the definition of the parent class’s Sorting property. That prevents the developer or a program
that uses the RowSortingListView control from using the original ListView version of the property.

The Sorting Property Get procedure simply returns the value of m_Sorting.

The Property Set procedure saves the new value. Then if the new Sorting value is None, the code sets
the control’s inherited ListViewItemSorter property to Nothing to remove any previously installed
sorter object. If Sorting is not None, the code sets the control’s ListViewItemSorter property to a
new ListViewComparerAllColumns object configured to sort the items in the proper order.

371

Custom Controls

14_571982 ch12.qxd 9/1/05 7:27 PM Page 371

‘ Reimplement the Sorting property.
Private m_Sorting As SortOrder
Public Shadows Property Sorting() As SortOrder

Get
Return m_Sorting

End Get
Set(ByVal Value As SortOrder)

‘ Save the new value.
m_Sorting = Value

‘ Make a new ListViewItemSorter if necessary.
If m_Sorting = SortOrder.None Then

MyBase.ListViewItemSorter = Nothing
Else

MyBase.ListViewItemSorter = _
New ListViewComparerAllColumns(m_Sorting)

End If
End Set

End Property

Adding new properties and methods that don’t shadow those of base class is even easier. Simply declare
the property or method as you would for any other class. You can also create new events for the derived
control just as you would add events to any other class.

Shadowing Parent Features
The RowSortingListView control’s code implements a Sorting property that shadows the property in
its parent class. You can provide new versions of methods and events in the same way.

For example, normally, the ListView control raises a ColumnClick event when the user clicks on a col-
umn header. By default, the RowSortingListView control inherits that behavior, so it also raises the
event when the user clicks on a column header.

The following code replaces the parent class’s ColumnClick event with a new version. The event decla-
ration uses the Shadows keyword so this version hides the parent’s version from the program that uses
the RowSortingListView control so the program cannot receive the original version of the event. The
inherited version of ColumnClick passes the event handler a parameter that gives information about
the event. The new version just returns the index of the column clicked. The control’s ColumnClick
event handler (which handles the MyBase.ColumnClick event) raises the new event handler. The con-
trol could also raise the event from some other code or not at all.

Public Shadows Event ColumnClick(ByVal column_number As Integer)

Private Sub RowSortingListView_ColumnClick(ByVal sender As Object, _
ByVal e As System.Windows.Forms.ColumnClickEventArgs) Handles MyBase.ColumnClick

RaiseEvent ColumnClick(e.Column)
End Sub

372

Chapter 12

14_571982 ch12.qxd 9/1/05 7:27 PM Page 372

The following code shows how a program could handle the new event. This code simply displays the
column number that the user clicked.

Private Sub RowSortingListView1_ColumnClick(ByVal column_number As Integer) _
Handles RowSortingListView1.ColumnClick

MessageBox.Show(column_number)
End Sub

In the same way, you can shadow a method provided by the parent class. The following code shows
how the RowSortingListView class can replace its parent’s Clear method. Instead of removing all of
the data from the control, this version removes only items with text value “Book.”

Public Shadows Sub Clear()
For Each item As ListViewItem In Me.Items

If item.Text = “Book” Then item.Remove()
Next item

End Sub

Hiding Parent Features
Sometimes you might want to completely hide a parent feature rather than replace it with a new version.
Hiding an event is easy. Declare a new event with the Shadows keyword as described in the previous
section and then never raise the event. A program using the control can write an event handler for the
event, but it will never be called.

Hiding properties and methods is a little more difficult. One approach you might try would be to create
a private version of the property or method with the Shadows keyword. For example, the intent of the
following code is to hide the control’s inherited Clear method. The idea is that the Private keyword
makes the method inaccessible to the program and the Shadows keyword hides the parent’s version.

Private Shadows Sub Clear()
For Each item As ListViewItem In Me.Items

If item.Text = “A” Then item.Remove()
Next item

End Sub

Unfortunately, if you use the Shadows keyword but the program cannot see the property or method (in
this case, because it is private), Visual Basic exposes the parent’s version. This approach won’t work.

While you can’t completely hide inherited properties and methods from the program using the control,
you can disable them. The following code declares a shadowing version of the ListView control’s
Clear method. If the program invokes this method, the control throws the MissingMethodException.
If the program catches the error, the exception object’s error message says, “Method
RowSortingListView.Clear not found.” Next the code defines a shadowing version of the Tag
property. It gives the property the BrowsableAttribute with the value False. This prevents the prop-
erty from appearing in the Properties window at design time. If the program tries to read or set the con-
trol’s Tag property at run time, the control throws a MissingFieldException. If the program catches
the error, the exception object’s error message says, “Field RowSortingListView.Tag not found.”

373

Custom Controls

14_571982 ch12.qxd 9/1/05 7:27 PM Page 373

Public Shadows Sub Clear()
Throw New System.MissingMethodException(“RowSortingListView”, “Clear”)

End Sub

<System.ComponentModel.BrowsableAttribute(False)> _
Public Shadows Property Tag() As Object

Get
Throw New System.MissingFieldException(“RowSortingListView”, “Tag”)

End Get
Set(ByVal Value As Object)

Throw New System.MissingFieldException(“RowSortingListView”, “Tag”)
End Set

End Property

Composite Controls
A composite control combines several existing controls into one new control. For example, the
ColorScroller control shown in Figure 12-4 contains three labels, three scroll bars, and a panel. At run
time, the user can drag the scroll bars to select a color’s red, green, and blue components. The control
displays a sample of the color in the panel on the right.

Figure 12-4: The ColorScroller control lets
the user select a color interactively by dragging
scroll bars.

To build a composite control, start a new control library project as usual. Give the library a meaningful
name, and change the name of the default control UserControl1 to something more descriptive.

Next, in Solution Explorer, double-click on the control to open it in the form designer. Use the Toolbox to
add constituent controls to the UserControl just as you would add controls to a form. Set the controls’
design time properties using the Properties window.

Edit the UserControl’s code to make the constituent controls work together to provide the behavior
that you want. For the ColorScroller control shown in Figure 12-4, you would make the scroll bars’
events adjust the color displayed in the sample area on the right. You can handle the constituent con-
trols’ events, get and set their property values, and invoke their methods. You can also define new prop-
erties, methods, and events for the composite control.

The following code shows how the ColorScroller control works. It starts by declaring the
ColorChanged event to tell the program when the user changes the control’s selected color. It then
includes property procedures that define the SelectedColor property. The Property Get procedure
uses the Color class’s FromArgb to convert the scroll bars’ values into a color. The Property Set proce-
dure sets the control’s Red, Green, and Blue properties to the components of the new Color value. The

374

Chapter 12

14_571982 ch12.qxd 9/1/05 7:27 PM Page 374

Red Property Get procedure returns the value of the red scroll bar. The Property Set procedure sets
the red scroll bar’s value, displays the value in the red label, displays a sample of the current color, and
raises the ColorChanged event. The Green and Blue property procedures are basically the same so they
are not shown here. When the user changes the red scroll bar’s value, the hbarRed_Scroll event han-
dler sets the control’s new Red property value. The event handlers for the Green and Blue scroll bars
are similar, so they are not shown here.

Public Class ColorScroller
‘ Tell the program that the color has changed.
Public Event ColorChanged(ByVal new_color As Color)

‘ Get or set the currently selected Color.
Public Property SelectedColor() As Color

Get
Return Color.FromArgb(_

255, _
hbarRed.Value, _
hbarGreen.Value, _
hbarBlue.Value)

End Get
Set(ByVal value As Color)

Red = value.R
Green = value.G
Blue = value.B

End Set
End Property

‘ Get: Return the color component value.
‘ Set: Set the scroll bar value,
‘ display the color, and
‘ raise the ColorChanged event.
Public Property Red() As Byte

Get
Return CByte(hbarRed.Value)

End Get
Set(ByVal Value As Byte)

hbarRed.Value = Value
lblRed.Text = hbarRed.Value.ToString
panSample.BackColor = SelectedColor
RaiseEvent ColorChanged(SelectedColor)

End Set
End Property

‘ Green and Blue property procedures omitted...

‘ The user has changed a color value.
‘ Set the appropriate color component value.
Private Sub hbarRed_Scroll(ByVal sender As System.Object, _
ByVal e As System.Windows.Forms.ScrollEventArgs) Handles hbarRed.Scroll

Red = CByte(hbarRed.Value)
End Sub

‘ Green and Blue scroll bar Scroll event handlers omitted...
End Class

375

Custom Controls

14_571982 ch12.qxd 9/1/05 7:27 PM Page 375

Composite controls are useful when you can build the behavior you want by using existing controls.
They are most useful when you will need to use the combined controls many times, either in the same
application or in several applications. If you need to implement these features only once, you can simply
place the constituent controls right on a form and include code to handle their events.

Composite controls are also useful for keeping the related controls and their code together. This keeps
some of the details of the controls and their code separate from the rest of the application. If the interac-
tions among the controls are complex, it may make sense to build a separate UserControl to simplify
the project.

Composite controls (or any control, for that matter) also provide a nice, clean separation between devel-
opers. If you build a complex control and add it to a large project, other developers can interact with the
control only through the properties, methods, and events that it exposes. They cannot access the con-
stituent controls directly, and that removes a potential source of bugs.

Controls Built from Scratch
If no existing control or group of controls can provide the behavior that you want, you can build a con-
trol completely from scratch. Start a new control library project as usual. Give the library a meaningful
name and remove the default control UserControl1.

Add a new class, open it in the code editor, and add the statement “Inherits Control”. Then add
whatever code you need to make the control do what you want.

The following code shows how the SimpleSmiley control works. When the control receives a Paint or
Resize event, it calls subroutine DrawFace, passing it the Graphics object on which it should draw.
Subroutine DrawFace clears the control using the parent’s background color. It then calls a series of
Graphics object methods to draw a smiley face on the control’s surface. This drawing code isn’t terribly
relevant for this discussion, so it is omitted here to save space.

<ToolboxBitmap(GetType(SimpleSmiley), “SmileyFaceTool”)> _
Public Class SimpleSmiley

Inherits Control

Private Sub SimpleSmiley_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

DrawFace(e.Graphics)
End Sub
Private Sub SimpleSmiley_Resize(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Resize

Me.Invalidate()
End Sub

‘ Draw the smiley face.
Private Sub DrawFace(ByVal gr As Graphics)

If (Me.ClientSize.Width = 0) Or _
(Me.ClientSize.Height = 0) Then Exit Sub

gr.Clear(Me.BackColor)

376

Chapter 12

14_571982 ch12.qxd 9/1/05 7:27 PM Page 376

gr.SmoothingMode = Drawing2D.SmoothingMode.HighQuality

‘ Face.
Dim face_rect As New Rectangle(0, 0, _

Me.ClientSize.Width - 1, _
Me.ClientSize.Height - 1)

gr.FillEllipse(Brushes.Yellow, face_rect)
gr.DrawEllipse(Pens.Black, face_rect)

‘ More drawing code omitted...
End Sub

End Class

When you build your own control from scratch, you can make it do just about anything that you like.
The obvious drawback is that you need to write code to make it do everything that you want. If there’s
already a control that does almost what you need, it will generally be easier to derive a control from that
one rather than building one from scratch.

If you can display the data in standard controls such as Label, TextBox, or TreeView controls, it would
be easier to build a composite control. If you must display information by drawing it yourself anyway, a
composite control won’t help, so you might want to use this kind of control. For example, if you are
building a mapping or drafting system, you might want to build a control from scratch to load and dis-
play maps and architectural drawings.

Components
A component is basically a control with no visible component at run time. Instead of appearing on the
form at design time, a component appears in the component tray below the form. Figure 12-5 shows a
form containing several components.

You can select a component in the component tray and then view and modify its properties in the
Properties window. In Figure 12-5, the FontDialog1 component is selected, so the Properties window is
displaying that component’s properties.

Building a component is just as easy as building a control. To make a new component, open the Project
menu and select Add Component. Leave the Component Class template selected, enter the name you
want to give the component, and click OK.

Initially, Visual Basic displays the component as shown in Figure 12-6. To add instances of existing com-
ponents to the new component, click and drag tools from Server Explorer or the Toolbox onto the new
component.

377

Custom Controls

14_571982 ch12.qxd 9/1/05 7:27 PM Page 377

Figure 12-5: The form designer displays components in the component tray below the form.

If you click the Solution Explorer’s Show All Files button and then open the component’s designer-
generated code file, you’ll see that the class inherits from the System.ComponentModel.Component
class rather than from the System.Windows.Forms.Control class.

You can add properties, methods, and events to the component just as you would add them to a control.
You can also use the same attributes to modify the component and its properties and events. For exam-
ple, you can give the component a Toolbox bitmap, a default property and event, add descriptions to
properties, and assign properties to categories. In addition to displaying the bitmap in the Toolbox,
Visual Basic also displays it in the component tray below the form when you add an instance of the com-
ponent to the form.

378

Chapter 12

14_571982 ch12.qxd 9/1/05 7:27 PM Page 378

Figure 12-6: You can add existing components to a new component.

Invisible Controls
You can make a control invisible at run time by having its code set its Visible property to False. For
example, the following code shows how the InvisibleControl class works. Whenever it needs to
draw itself, the controls DrawControl method sets the control’s Visible property equal to its
DesignMode property, so the control is visible at design time and hidden at run time.

Public Class InvisibleControl
Inherits Control

Private Sub InvisibleControl_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

DrawControl(e.Graphics)
End Sub

Private Sub InvisibleControl_Resize(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Resize

Me.Invalidate()

379

Custom Controls

14_571982 ch12.qxd 9/1/05 7:27 PM Page 379

End Sub

Private Sub DrawControl(ByVal gr As Graphics)
Me.Visible = Me.DesignMode

gr.Clear(Me.BackColor)
gr.DrawEllipse(New Pen(Me.ForeColor), _

0, 0, _
Me.ClientRectangle.Width - 1, _
Me.ClientRectangle.Height - 1)

End Sub
End Class

If you want a control to be invisible at run time, you should consider making it a component instead of a
control. Components take fewer resources and don’t take up space on the form at design time. The only
reason you should make a control invisible in this manner is if you want it to display some sort of com-
plex data at design time that should be hidden from the user at run time.

Picking a Control Class
There are several ways you can build objects that sit on a form at design time. Depending on the features
you need, these objects can inherit from the Component, Control, and UserControl classes. They can
also inherit from an existing control class such as a Button, TextBox, or ListView.

The Component class is the simplest of these classes. It doesn’t take up space on the form at design time,
so it is appropriate when you don’t want an object that is visible to the user. If you want a class with
properties that you can set at design time, but that should be invisible at run time, build a Component.

The Control class is visible on the form at design and run time but it is simpler than the UserControl
class. Unlike a UserControl, it cannot contain constituent controls. If you want a control that draws
itself without using any constituent controls, make your control inherit from the Control class.

The UserControl class is visible on the form at design and run time. Unlike the Control class, it can
contain constituent controls. If you want a control that uses constituent controls, make your control
inherit from the UserControl class.

Finally, if some existing class provides some of the features that you need to use, make your control
inherit from that class. The standard Visual Basic controls are very powerful and extensively tested, so
you can save yourself a considerable amount of time by taking advantage of their existing features.

Controls and Components in Executable Projects
Most of this chapter explains how to build a control library containing any number of controls and com-
ponents. You can compile the library into a .dll file and use it in executable applications.

You can also build custom controls or components within an executable project. In that case, the controls
or components are compiled into the executable rather than a separate .dll file, so you cannot use them

380

Chapter 12

14_571982 ch12.qxd 9/1/05 7:27 PM Page 380

in other applications. If these are very specialized objects that you probably won’t need to use in other
applications, this is not a major disadvantage and saves you the trouble of installing an extra .dll file
with the application.

UserControls in Executable Projects
To add a custom UserControl to a project, open the Project menu and select Add User Control. Leave
the User Control template selected, enter a name for the control, and click Add. Add constituent controls
to the UserControl as usual.

Initially, the control does not appear in the Toolbox, so you cannot use it on a form. Select the Build
menu’s Build command to compile the control and the rest of the project. Visual Basic places the new
control in a Toolbox section named after the project. If the project’s name is Billing, it places the control
in a Toolbox section named Billing Components. Now you can use the control as usual.

Inherited UserControls in Executable Projects
To build a UserControl that inherits from an existing UserControl class, select the Project menu’s Add
New Item command. In the resulting dialog, select the Inherited User Control template, enter a name for
the control, and click Add. The Inheritance Picker dialog shown in Figure 12-7 lists compiled compo-
nents in the current project. Select the control from which you want to inherit and click OK.

Figure 12-7: Use the Inheritance Picker to make a control that inherits from an
existing UserControl.

Add properties, methods, and events to the control as usual. Select the Build menu’s Build command to
compile the control and add it to the Toolbox.

Alternatively, you can create a new class and add an Inherits statement that makes the class inherit
from the previously built UserControl.

381

Custom Controls

14_571982 ch12.qxd 9/1/05 7:27 PM Page 381

Controls in Executable Projects
To build a control that inherits from the Control class in an executable project, select the Project menu’s
Add Class command. Leave the Class template selected, enter a name for the control, and click Add.
Add the statement Inherits Control to the control’s code.

Add properties, methods, and events to the control as usual. For example, you may want to give the
control Paint and Resize event handlers so that it can draw itself. You may also want to override the
parent class’s behaviors.

Select the Build menu’s Build command to compile the control and add it to the Toolbox.

Inherited Controls in Executable Projects
To build a control that inherits from a predefined control, select the Project menu’s Add Class command.
Leave the Class template selected, enter a name for the control, and click Add. Add an Inherits state-
ment that makes the class inherit from the previously built control.

Add properties, methods, and events to the control as usual. For example, you may want to give the
control Paint and Resize event handlers so that it can draw itself. You may also want to override the
parent class’s behaviors.

Select the Build menu’s Build command to compile the control and add it to the Toolbox.

Components in Executable Projects
To add a component to an executable project, select the Project menu’s Add Component command.
Leave the Component Class template selected, enter a name for the component, and click Add.

Add properties, methods, and events to the component as usual. Then select the Build menu’s Build
command to compile the component and add it to the Toolbox.

Summary
Visual Basic provides a large assortment of controls that you can use on your forms. When they don’t do
exactly you need, you can build others.

If an existing control does most of what you need, derive a new control from that one. If a group of con-
trols together with their properties, methods, and events can do what you need, combine them into a
composite control that inherits from the UserControl object. If you want to build a new control from
scratch, make a class that inherits from the Control class. Finally, if you want an object that is available
at design time but invisible at run time, build a component.

When you build a control or component, you can use attributes to give extra information to Visual
Studio. The ToolboxBitmap, DefaultProperty, DefaultEvent, DesignTimeVisible, Description,
Category, Browsable, and DefaultValue attributes are some of the more useful for control and com-
ponent classes.

382

Chapter 12

14_571982 ch12.qxd 9/1/05 7:27 PM Page 382

Visual Basic provides many other features that you can use to build other kinds of control-related classes
and their properties. An extender provider class adds new properties to the other controls on a form much
as the ErrorProvider and ToolTip controls do. A type converter (which translates data from one type
to another) can translate between values and text for display in the Properties window, and can generate
a customized list of choices for a property drop-down. A UI type editor enables you to build a graphical
editor that the developer can use to view and manipulate special property values. These are more
advanced topics that lie beyond the scope of this book.

Visual Basic also provides tools for designer localization, control licensing, multithreading, control con-
tainers, and much more. Most of the time, however, you can do what you want using standard controls,
derived controls, composed controls, controls built from scratch, and components. If you really must
offer more exotic features (such as fancy editors and wizards), read the online help or search Visual Basic
discussion groups on the Web.

Chapters 9 through 12 all deal with different kinds of controls. Chapter 13, “Drag and Drop, and The
Clipboard,” moves away from the topic of controls and explains how an application can support drag-
and-drop applications. Using the clipboard is similar to certain types of drag-and-drop operations, so
Chapter 13 also explains how to use the clipboard.

383

Custom Controls

14_571982 ch12.qxd 9/1/05 7:27 PM Page 383

14_571982 ch12.qxd 9/1/05 7:27 PM Page 384

Drag and Drop, and the
Clipboard

The clipboard is an object where programs can save and restore data. A program can save data in
multiple formats and retrieve it later, or another program might retrieve the data. Windows, rather
than Visual Basic, provides the clipboard, so it is available to every application running on the sys-
tem, and any program can save or fetch data from the clipboard.

The clipboard can store remarkably complex data types. For example, an application can store a
representation of a complete object in the clipboard for use by other applications that know how to
use that kind of object.

Drag and drop enables the user to drag information from one control to another. The controls may
be in the same application or in different applications. For example, your program could let the
user drag items from one list to another, or it could let the user drag files from Windows Explorer
into a file list inside your program.

A drag occurs in three main steps. First, a drag source control starts the drag, usually when the user
presses the mouse down on the control. The control starts the drag, indicating the data that it
wants to drag and the type of drag operations it wants to perform (such as Copy, Link, or Move).

When the user drags over a control, that control is a possible drop target. The control examines the
kind of data being dragged and the type of drag operation requested (such as Copy, Link, or
Move). The drop target then decides whether it will allow the drop and what type of feedback it
should give to the user. For example, if the user drags a picture over a label control, the label
might refuse the drop and display a “no drop” icon (a circle with a line through it). If the user
drags the picture over a PictureBox that the program is using to display images, it might display
a “drop link” icon (a box with a curved arrow in it).

Finally, when the user releases the mouse, the current drop target receives the data and does what-
ever is appropriate. For example, if the drop target is a TextBox control and the data is a string,
the TextBox control might display the string. If the same TextBox control receives a file name, it
might read the file and display its contents.

15_571982 ch13.qxd 9/1/05 7:27 PM Page 385

The following sections describe drag and drop in more detail and give several examples of common
drag-and-drop tasks. The section “Using the Clipboard” near the end of the chapter explains how to use
the clipboard. Using it is very similar to using drag and drop, although it doesn’t require as much user
feedback, so it is considerably simpler.

Drag-and-Drop Events
The drag source control starts a drag operation by calling its DoDragDrop method. It passes this method
the data to be dragged and the type of drag operation that the control wants to perform. The drag type
can be Copy, Link, or Move.

If you are dragging to other general applications, the data should be a standard data type such as a
String or Bitmap so that the other application can understand it. If you are dragging data within a sin-
gle application or between two applications that you have written, you can drag any type of data. This
won’t necessarily work with general objects and arbitrary applications. For example, WordPad doesn’t
know what an Employee object is, so you can’t drop an Employee on it.

As the user drags the data around the screen, Visual Basic sends events to the controls it moves over.
Those controls can indicate whether they will accept the data and how they can accept it. For example, a
control might indicate that it will allow a Copy, but not a Move. The following table describes the events
that a drop target receives as data is dragged over it.

Event Purpose

DragEnter The drag is entering the control. The control can examine the type of
data available and set e.Effect to indicate the types of drops it can
handle. These can include All, Copy, Move, Link, and None. The control
can also display some sort of highlighting to indicate that the data is
over it. For example, it might display a dark border or shade the area
where the new data would be placed.

DragLeave The drag has left the control. If the control displays some sort of high-
lighting or other indication that the drag is over it in the DragEnter
event, it should remove that highlight now.

DragOver The drag is over the control. This event continues to fire a few times per
second until the drag is no longer over the control. The control may take
action to indicate how the drop will be processed much as the DragEnter
event handler does. For example, as the user moves the mouse over a
ListBox, the control might highlight the list item that is under the
mouse to show that this item will receive the data. The program can also
check for changes to the mouse or keyboard. For example, it might
allow a Copy if the Ctrl key is pressed and a Move if the Ctrl key is not
pressed.

DragDrop The user has dropped the data on the control. The control should pro-
cess the data.

386

Chapter 13

15_571982 ch13.qxd 9/1/05 7:27 PM Page 386

A drop target with simple needs can specify the drop actions it will allow in its DragEnter event han-
dler and not provide a DragOver event handler. It knows whether it will allow a drop based solely on
the type of item being dropped. For example, a graphical application might allow the user to drop a
bitmap on it, but not a string.

A more complex target that must track such items as the keyboard state, mouse position, and mouse but-
ton state can provide a DragOver event handler and skip the DragEnter event handler. For example, a
circuit design application might check the drag’s position over its drawing surface, and highlight the
location where the dragged item would be positioned. As the user moved the object around, the
DragOver event would continue to fire so the program could update the drop highlighting.

After the drag and drop finishes, the drag source’s DoDragDrop method returns the last type of action
that was displayed when the user dropped the data. That lets the drag source know what the drop target
expects the source to do with the data. For example, if the drop target accepted a Move, the drag source
should remove the data from its control. If the drop target accepted a Copy, the drag source should not
remove the data from its control.

The following table describes the two events that the drag source control receives to help it control the
drop.

Event Purpose

GiveFeedback The drag has entered a valid drop target. The source can take
action to indicate the type of drop allowed. For example, it might
allow a Copy if the target is a Label and allow Move or Copy if
the target is a TextBox.

QueryContinueDrag The keyboard or mouse button state has changed. The drag source
can decide whether to continue the drag, cancel the drag, or drop
the data immediately.

The following sections describe some examples that demonstrate common drag-and-drop scenarios.

A Simple Example
The following code shows one of the simplest examples possible that contains both a drag source
and a drop target. To build this example, start a new project and add two Label controls named
lblDragSource and lblDropTarget.

Note that the lblDropTarget control must have its AllowDrop property set to True either at design
time or at run time or it will not receive any drag-and-drop events. When the user presses a mouse
button down over the lblDragSource control, the MouseDown event handler calls that control’s
DoDragDrop method passing it the text “Here’s the drag data!” and indicating that it wants to perform a
Copy. When the user drags the data over the lblDropTarget control, its DragEnter event handler exe-
cutes. The event handler sets the routine’s e.Effect value to indicate that the control will allow a Copy
operation. If the user drops the data over the lblDropTarget control, its DragDrop event handler
executes. This routine uses the e.Data.GetData method to get a text data value and displays it in a
message box.

387

Drag and Drop, and the Clipboard

15_571982 ch13.qxd 9/1/05 7:27 PM Page 387

Public Class Form1
‘ Start a drag.
Private Sub lblDragSource_MouseDown(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MouseEventArgs) _
Handles lblDragSource.MouseDown

lblDragSource.DoDragDrop(“Here’s the drag data!”, DragDropEffects.Copy)
End Sub

‘ Make sure the drag is coming from lblDragSource.
Private Sub lblDropTarget_DragEnter(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DragEventArgs) _
Handles lblDropTarget.DragEnter

e.Effect = DragDropEffects.Copy
End Sub

‘ Display the dropped data.
Private Sub lblDropTarget_DragDrop(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DragEventArgs) _
Handles lblDropTarget.DragDrop

MessageBox.Show(e.Data.GetData(“Text”).ToString)
End Sub

End Class

As it is, this program lets you drag and drop data from the lblDragSource control to the
lblDropTarget control. You can also drag data from the lblDragSource control into Word, WordPad,
and any other application that can accept a drop of text data.

Similarly, the lblDropTarget control can act as a drop target for any application that provides drag
sources. For example, if you open WordPad, enter some text, select it, and then click and drag it onto the
lblDropTarget control, the application will display the text you dropped in a message box.

This example is a bit too simple to be really useful. If the drop target does nothing more, it should check
the data it will receive and ensure that it is text. If you drag a file from Windows Explorer and drop it
onto the lblDropTarget control, the e.Data.GetData method returns Nothing so the program cannot
display its value. Because the program cannot display a file, it is misleading for the lblDropTarget
control to display a Copy cursor when the user drags a file over it.

The following version of the lblDropTarget_DragEnter event handler uses the e.Data.GetDataPresent
method to see if the data being dragged has a textual format. If a text format is available, the control allows a
Copy operation. If the data does not come in a textual form, the control doesn’t allow a drop.

‘ Make sure the drag is coming from lblDragSource.
Private Sub lblDropTarget_DragEnter(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DragEventArgs) Handles lblDropTarget.DragEnter

‘ See if the drag data includes text.
If e.Data.GetDataPresent(“Text”) Then

e.Effect = DragDropEffects.Copy
Else

e.Effect = DragDropEffects.None
End If

End Sub

388

Chapter 13

15_571982 ch13.qxd 9/1/05 7:27 PM Page 388

Now, if you drag a file from Windows Explorer onto lblDropTarget, the control displays a no-drop icon.

The lblDropTarget_DragDrop event handler doesn’t need to change because Visual Basic doesn’t raise
the event if the control does not allow any drop operation. For example, if the user drags a file from
Windows Explorer onto lblDropTarget, then that control’s DragEnter event handler sets e.Effect to
DragDropEffects.None, so Visual Basic doesn’t raise the DragDrop event handler if the user drops the
file there.

Moving between ListBoxes
The following code provides a more complete example that demonstrates many of the drag-and-drop
events. It allows the user to drag items between two ListBoxes named lstUnselected and
lstSelected. It also allows the user to drag an item to a specific position in its new ListBox and to
drag an item from one position to another within a ListBox.

The code uses the variable m_DragSource to remember the control that started the drag. If this variable
is Nothing during a drag, then the application knows that the drag was started by another application.
In this example, the program ignores drags from other applications.

When the form loads, it sets the AllowDrop properties for its two ListBoxes. It then uses the
AddHandler statement to give the two controls the same MouseDown, DragOver, DragDrop, and
DragLeave event handlers.

When the user presses the mouse down on one of the ListBoxes, the List_MouseDown executes. If the
user is pressing the right mouse button, the program casts the sender parameter into a ListBox to see
which control raised the event. It uses the control’s IndexFromPoint method to see which item is under
the mouse and selects that item. If there is no item under the mouse, the routine exits. Next, the program
saves a reference to the control in m_DragSource and calls the DoDragDrop method to start the drag for
a Move operation. When DoDragDrop ends, the code sets m_DragSource to Nothing to indicate that the
drag is over.

When the drag sits over one of the ListBoxes, the List_DragOver event handler executes. If
m_DragSource is Nothing, then the drag event was caused by another application and the event han-
dler exits without allowing the operation. If m_DragSource is not Nothing, the control allows a Move
operation. It then uses the control’s IndexFromPoint method to see which item is under the mouse and
it selects that item.

If the user drags off of a ListBox, the List_DragLeave event handler unselects the item that is cur-
rently selected in that ListBox. This may help prevent some confusion about where the item will be
dropped if the user releases the mouse button.

When the user drops over a ListBox, the List_DragDrop event handler executes. It uses the
e.Data.GetData method to get the dropped text and calls subroutine MoveItem to move the item from
the m_DragSource control to the drop target.

Subroutine MoveItem determines which item is selected in the drop target. If no item is selected, it adds
the new item to the end of the target list. If an item is selected, the code inserts the new item in front of
the selected item. In either case, the program selects the newly inserted item.

389

Drag and Drop, and the Clipboard

15_571982 ch13.qxd 9/1/05 7:27 PM Page 389

MoveItem then removes the original item from the drag source. If the drag source and the drop target
are the same, then the code finds the first instance of the item being moved. If that is the same item that
was just added, the code uses the source list’s RemoveAt method to remove the next occurrence of the
item. If the first item is not the one that was just added, the code removes it.

Public Class Form1
‘ Remember where we got it.
Private m_DragSource As ListBox = Nothing

‘ Allow drag events.
Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

lstUnselected.AllowDrop = True
lstSelected.AllowDrop = True

‘ Add event handlers.
AddHandler lstUnselected.MouseDown, AddressOf List_MouseDown
AddHandler lstUnselected.DragOver, AddressOf List_DragOver
AddHandler lstUnselected.DragDrop, AddressOf List_DragDrop
AddHandler lstUnselected.DragLeave, AddressOf List_DragLeave

AddHandler lstSelected.MouseDown, AddressOf List_MouseDown
AddHandler lstSelected.DragOver, AddressOf List_DragOver
AddHandler lstSelected.DragDrop, AddressOf List_DragDrop
AddHandler lstSelected.DragLeave, AddressOf List_DragLeave

End Sub

‘ Start a drag.
Private Sub List_MouseDown(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MouseEventArgs)

‘ Make sure this is the right button.
If e.Button <> MouseButtons.Right Then Exit Sub

‘ Select the item at this point.
Dim this_list As ListBox = DirectCast(sender, ListBox)
this_list.SelectedIndex = this_list.IndexFromPoint(e.X, e.Y)
If this_list.SelectedIndex < 0 Then Exit Sub

‘ Remember where the drag started.
m_DragSource = this_list

‘ Start the drag.
this_list.DoDragDrop(_

this_list.SelectedItem.ToString, _
DragDropEffects.Move)

‘ We’re done dragging.
m_DragSource = Nothing

End Sub

‘ Highlight the item under the mouse.
Private Sub List_DragOver(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DragEventArgs)

390

Chapter 13

15_571982 ch13.qxd 9/1/05 7:27 PM Page 390

If m_DragSource Is Nothing Then Exit Sub

e.Effect = DragDropEffects.Move
Dim this_list As ListBox = DirectCast(sender, ListBox)
Dim pt As Point = _

this_list.PointToClient(New Point(e.X, e.Y))
Dim drop_index As Integer = _

this_list.IndexFromPoint(pt.X, pt.Y)
this_list.SelectedIndex = drop_index

End Sub

‘ Unhighlight the target item when the drag leaves.
Private Sub List_DragLeave(ByVal sender As Object, ByVal e As System.EventArgs)

Dim this_list As ListBox = DirectCast(sender, ListBox)
this_list.SelectedIndex = -1

End Sub

‘ Accept the drop.
Private Sub List_DragDrop(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DragEventArgs)

Dim this_list As ListBox = DirectCast(sender, ListBox)
MoveItem(e.Data.GetData(DataFormats.Text).ToString, _

m_DragSource, this_list, e.X, e.Y)
End Sub

‘ Move the value txt from drag_source to drop_target.
Private Sub MoveItem(ByVal txt As String, ByVal drag_source As ListBox, _
ByVal drop_target As ListBox, ByVal X As Integer, ByVal Y As Integer)

‘ See which item is selected in the drop target.
Dim drop_index As Integer = drop_target.SelectedIndex
If drop_index < 0 Then

‘ Add at the end.
drop_index = drop_target.Items.Add(txt)

Else
‘ Add before the selected item.
drop_target.Items.Insert(drop_target.SelectedIndex, txt)

End If

‘ Select the item.
drop_target.SelectedIndex = drop_index

‘ Remove the value from drag_source.
If drag_source Is drop_target Then

‘ Make sure we don’t remove the item we just added.
Dim target_index As Integer = drag_source.FindStringExact(txt)
If target_index = drop_index Then _

target_index = drag_source.FindStringExact(txt, target_index)
drag_source.Items.RemoveAt(target_index)

Else
‘ Remove the item.
drag_source.Items.Remove(txt)

End If
End Sub

End Class

391

Drag and Drop, and the Clipboard

15_571982 ch13.qxd 9/1/05 7:27 PM Page 391

This example shows how to drag items from one ListBox to another or to a new position within a sin-
gle ListBox. The case is somewhat simpler if you don’t need to worry about dragging items within a
single ListBox. In that case, the MoveItem subroutine doesn’t need to worry about removing the item
you just added.

Moving and Copying between ListBoxes
It isn’t too difficult to modify the previous example to allow the user to move or copy items between the
two lists. If the user holds down the Ctrl key while dropping an item, the program copies the item and
leaves the original item where it started. If the user doesn’t hold down the Ctrl key while dropping the
item, the program moves it as before.

The code is almost the same as in the previous example. The first change is in the way the program starts
the drag in the List_MouseDown event handler. In the call to DoDragDrop, the new code allows both
Move and Copy operations.

‘ Start the drag.
this_list.DoDragDrop(_

this_list.SelectedItem.ToString, _
DragDropEffects.Move Or DragDropEffects.Copy)

Instead of always allowing the Move operation, the new DragOver event handler uses the following
code to allow a Move or Copy, depending on whether the Ctrl key is pressed:

‘ Display the Move or Copy cursor.
Const KEY_CTRL As Integer = 8
If (e.KeyState And KEY_CTRL) <> 0 Then

e.Effect = DragDropEffects.Copy
Else

e.Effect = DragDropEffects.Move
End If

Remember that the DragOver event handler fires periodically as long as the drag sits over the control.
This not only lets the program highlight the item beneath the mouse but also lets the code change the
drag effect if the user presses and releases the Ctrl key while the drag is still in progress.

The new DragDrop event handler must determine whether the Ctrl key was pressed when the data was
dropped. The e.Effect parameter indicates which drag-and-drop effect was displayed when the drop
occurred. The new DragDrop compares e.Effect with DragDropEffects.Move and passes the
MoveItem subroutine True if the effect was Move.

‘ Accept the drop.
Private Sub List_DragDrop(ByVal sender As Object, ByVal e As
System.Windows.Forms.DragEventArgs)

Dim this_list As ListBox = DirectCast(sender, ListBox)
MoveItem(e.Data.GetData(DataFormats.Text).ToString, _

m_DragSource, this_list, e.X, e.Y, _
e.Effect = DragDropEffects.Move)

End Sub

392

Chapter 13

15_571982 ch13.qxd 9/1/05 7:27 PM Page 392

Finally, the MoveItem subroutine takes a new Boolean parameter move_item, which indicates whether it
should move the item or copy it. It is similar to the previous version, except that it does not remove the
item from its original list if move_item is False.

‘ Move the value txt from drag_source to drop_target.
Private Sub MoveItem(ByVal txt As String, ByVal drag_source As ListBox, _
ByVal drop_target As ListBox, ByVal X As Integer, ByVal Y As Integer, _
ByVal move_item As Boolean)

‘ See which item is selected in the drop target.
Dim drop_index As Integer = drop_target.SelectedIndex
If drop_index < 0 Then

‘ Add at the end.
drop_index = drop_target.Items.Add(txt)

Else
‘ Add before the selected item.
drop_target.Items.Insert(drop_target.SelectedIndex, txt)

End If

‘ Select the item.
drop_target.SelectedIndex = drop_index

‘ See if we are moving or copying.
If move_item Then

‘ Remove the value from drag_source.
If drag_source Is drop_target Then

‘ Make sure we don’t remove the item we just added.
Dim target_index As Integer = drag_source.FindStringExact(txt)
If target_index = drop_index Then _

target_index = drag_source.FindStringExact(txt, target_index)
drag_source.Items.RemoveAt(target_index)

Else
‘ Remove the item.
drag_source.Items.Remove(txt)

End If
End If

End Sub

Learning Data Types Available
When the user drags data over a drop target, the target’s DragEnter event handler decides which kinds
of drop to allow. The event handler can use the e.GetDataPresent method to see whether the data is
available in a desired data format.

GetDataPresent takes as a parameter a string giving the desired data type. An optional second param-
eter indicates whether the program will accept another format if the system can derive it from the origi-
nal format. For example, the system can convert Text data into System.String data so you can decide
whether to allow the system to make this conversion.

The DataFormats class provides a shared series of standardized string values specifying various data
types. For example, DataFormats.Text returns the string “Text” representing the text data type.

393

Drag and Drop, and the Clipboard

15_571982 ch13.qxd 9/1/05 7:27 PM Page 393

If you use a DataFormats value, you don’t need to worry about misspelling one of these formats. Some
of the most commonly used DataFormats include Bitmap, Html, StringFormat, and Text. See the
online help for other formats. The Web page http://msdn.microsoft.com/library/en-us/cpref/
html/frlrfsystemwindowsformsdataformatsmemberstopic.asp lists the DataFormats class’s
supported formats.

GetDataPresent can also take as a parameter a data type. For example, the following code fragment
uses GetDataPresent to allow a Copy operation if the drag data contains an Employee object.

If e.Data.GetDataPresent(GetType(Employee)) Then
‘ Allow Copy.
e.Effect = DragDropEffects.Copy

Else
‘ Allow no other drops.
e.Effect = DragDropEffects.None

End If

In addition to GetDataPresent, you can use the e.Data.GetFormats method to get an array of strings
giving the names of the available formats. The following code shows how a program can list the formats
available. It clears its lstWithoutConversion ListBox and then loops through the values returned by
e.Data.GetFormats adding them to the ListBox. It passes GetFormats the parameter False to indi-
cate that it should return only data formats that are directly available, not those that can be derived from
others. The program then repeats these steps again, this time passing GetFormats the parameter True
to include derived formats.

Private Sub lblDropTarget_DragEnter(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DragEventArgs) Handles lblDropTarget.DragEnter

lstWithoutConversion.Items.Clear()
For Each fmt As String In e.Data.GetFormats(False)

lstWithoutConversion.Items.Add(fmt)
Next fmt

lstWithConversion.Items.Clear()
For Each fmt As String In e.Data.GetFormats(True)

lstWithConversion.Items.Add(fmt)
Next fmt

End Sub

Dragging within an Application
Sometimes, you may want a drop target to accept only data dragged from within the same application.
The following code shows one way to handle this. Before it calls DoDragDrop, the program sets its
m_Dragging variable to True. The lblDropTarget control’s DragEnter event checks m_Dragging. If
the user drags data from a program other than this one, m_Dragging will be False and the program
sets e.Effect to DragDropEffects.None, prohibiting a drop. If m_Dragging is True, that means this
program started the drag, so the program allows a Copy operation. After the drag and drop finishes, the
lblDragSource control’s MouseDown event handler sets m_Dragging to False, so the drop target will
refuse future drags from other applications.

394

Chapter 13

15_571982 ch13.qxd 9/1/05 7:27 PM Page 394

Public Class Form1
‘ True while we are dragging.
Private m_Dragging As Boolean

‘ Start a drag.
Private Sub lblDragSource_MouseDown(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MouseEventArgs) _
Handles lblDragSource.MouseDown

m_Dragging = True
lblDragSource.DoDragDrop(“Some text”, DragDropEffects.Copy)
m_Dragging = False

End Sub

‘ Only allow Copy if we are dragging.
Private Sub lblDropTarget_DragEnter(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DragEventArgs) Handles lblDropTarget.DragEnter

If m_Dragging Then
e.Effect = DragDropEffects.Copy

Else
e.Effect = DragDropEffects.None

End If
End Sub

‘ Display the dropped text.
Private Sub lblDropTarget_DragDrop(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DragEventArgs) Handles lblDropTarget.DragDrop

MessageBox.Show(e.Data.GetData(DataFormats.Text).ToString)
End Sub

End Class

There is no easy way to allow your program to drag data to its own controls, but not allow it to drag
data to another program. The philosophy is that a drag source provides data for any application that can
handle it.

If you don’t want other applications to read data dragged from your application, you can package the
data in an object and drag the object as described in the section “Dragging Objects” later in this chapter.
This will make it very difficult for most applications to understand the data, even if they try to accept it.

Accepting Dropped Files
Many applications let you drop files onto them. When you drag files over a drop target, the data object
contains data of several types, including FileDrop. This data is an array of strings containing the names
of the files being dragged.

The following code shows how a program might process files dragged onto it. The lblDropTarget con-
trol’s DragEnter event handler uses the GetDataPresent method to see if the drag contains FileDrop
data, and allows the Copy operation if it does. The control’s DragDrop event handler uses GetData to
get the data in FileDrop format. It converts the data from a generic object into an array of strings, and
then loops through the entries, adding each to the lstFiles ListBox.

395

Drag and Drop, and the Clipboard

15_571982 ch13.qxd 9/1/05 7:27 PM Page 395

Public Class Form1
‘ Allow Copy if there is FileDrop data.
Private Sub lblDropTarget_DragEnter(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DragEventArgs) Handles lblDropTarget.DragEnter

If e.Data.GetDataPresent(DataFormats.FileDrop) Then
e.Effect = DragDropEffects.Copy

Else
e.Effect = DragDropEffects.None

End If
End Sub

‘ Display the dropped file names.
Private Sub lblDropTarget_DragDrop(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DragEventArgs) Handles lblDropTarget.DragDrop

lstFiles.Items.Clear()
Dim file_names As String() = _

DirectCast(e.Data.GetData(DataFormats.FileDrop), String())
For Each file_name As String In file_names

lstFiles.Items.Add(file_name)
Next file_name

End Sub
End Class

A more realistic application would do something more useful than simply listing the files. For example,
it might delete them, move them into the wastebasket, copy them to a backup directory, display thumb-
nails of images files, and so forth.

Dragging Objects
Dragging text is simple enough. Simply pass the text into the DoDragDrop method and you’re finished.

You can drag an arbitrary object in a similar manner, as long as the drag source and drop target are
within the same application. If you want to drag objects between applications, however, you must use
serializable objects. A serializable object is one that provides methods for translating the object into and
out of a streamlike format. Usually, this format is text, and lately XML is the preferred method for stor-
ing text streams.

For example, consider the following Employee class:

Public Class Employee
Public FirstName As String
Public LastName As String

Public Sub New()
End Sub

Public Sub New(ByVal first_name As String, ByVal last_name As String)
FirstName = first_name
LastName = last_name

End Sub
End Class

396

Chapter 13

15_571982 ch13.qxd 9/1/05 7:27 PM Page 396

You could serialize an Employee object having FirstName = “Rod” and LastName = “Stephens” with
the following XML text:

<Employee>
<FirstName>Rod</FirstName>
<LastName>Stephens</LastName>

</Employee>

You can use drag and drop to move a serializable object between applications. The drag source converts
the object into its serialization and sends the resulting text to the drop target. The drop target uses the
serialization to recreate the object.

You might think it would be hard to make an object serializable. Fortunately, Visual Basic .NET provides
many features for automatically discovering the structure of objects, so it can do most of the work for
you. In most cases, all you need to do is add the Serializable attribute to the class, as shown in the
following code:

<Serializable()> _
Public Class Employee

Public FirstName As String
Public LastName As String

Public Sub New()
End Sub

Public Sub New(ByVal first_name As String, ByVal last_name As String)
FirstName = first_name
LastName = last_name

End Sub
End Class

The drag source can pass objects of this type to the DoDragDrop method.

The following code shows how an application can act as a drag source and a drop target for objects of the
Employee class. It starts by defining the Employee class. It also defines the constant DATA_EMPLOYEE. This
value, “DragEmployee.frmDragEmployee+Employee,” is the name of the data format type assigned to
the Employee class. This name combines the project name, module name where the class is defined, and
the class name.

When the user presses the mouse down over the lblDragSource control, its MouseDown event handler
creates an Employee object, initializing it with the values contained in the txtFirstName and
txtLastName text boxes. It then calls the lblDragSource control’s DoDragDrop method, passing it the
Employee object and allowing the Move and Copy operations. If DoDragDrop returns the value Move,
the user performed a Move rather than a Copy, so the program removes the values from its text boxes.

When the user drags over the lblDropTarget control, its DragOver event handler executes. The rou-
tine first uses the GetDataPresent method to verify that the dragged data contains an Employee object.
It then checks the Ctrl key’s state. If the user is holding down the Ctrl key, then the event handler allows
the Copy operation. If the user is not holding down the Ctrl key, the subroutine allows the Move
operation.

397

Drag and Drop, and the Clipboard

15_571982 ch13.qxd 9/1/05 7:27 PM Page 397

If the user drops the data on the lblDropTarget control, its DragDrop event handler executes. It uses
the GetData method to retrieve the Employee object. GetData returns a generic Object, so the program
uses DirectCast to covert the result into an Employee object. The event handler finishes by displaying
the object’s FirstName and LastName properties in its text boxes.

Imports System.IO
Imports System.Xml.Serialization

Public Class frmDragEmployee
Public Const DATA_EMPLOYEE As String = “DragEmployee.frmDragEmployee+Employee”
<Serializable()> _
Public Class Employee

Public FirstName As String
Public LastName As String
Public Sub New()
End Sub
Public Sub New(ByVal first_name As String, ByVal last_name As String)

FirstName = first_name
LastName = last_name

End Sub
End Class

‘ Start dragging the Employee.
Private Sub lblDragSource_MouseDown(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MouseEventArgs) _
Handles lblDragSource.MouseDown

Dim emp As New Employee(txtFirstName.Text, txtLastName.Text)

If lblDragSource.DoDragDrop(emp, _
DragDropEffects.Copy Or DragDropEffects.Move) = DragDropEffects.Move _

Then
‘ A Move succeeded. Clear the TextBoxes.
txtFirstName.Text = “”
txtLastName.Text = “”

End If
End Sub

‘ If an Employee object is available, allow a Move
‘ or Copy depending on whether the Ctrl key is pressed.
Private Sub lblDropTarget_DragOver(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DragEventArgs) _
Handles lblDropTarget.DragOver

If e.Data.GetDataPresent(DATA_EMPLOYEE) Then
‘ Display the Move or Copy cursor.
Const KEY_CTRL As Integer = 8
If (e.KeyState And KEY_CTRL) <> 0 Then

e.Effect = DragDropEffects.Copy
Else

e.Effect = DragDropEffects.Move
End If

End If
End Sub

‘ Display the dropped Employee object.

398

Chapter 13

15_571982 ch13.qxd 9/1/05 7:27 PM Page 398

Private Sub lblDropTarget_DragDrop(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DragEventArgs) _
Handles lblDropTarget.DragDrop

Dim emp As Employee = DirectCast(e.Data.GetData(DATA_EMPLOYEE), Employee)
lblFirstName.Text = emp.FirstName
lblLastName.Text = emp.LastName

End Sub
End Class

If you compile this program, you can run two copies of the executable program stored in the bin direc-
tory and drag from the drag source in one to the drop target in the other.

If you remove the Serializable attribute from the Employees class, the program still works if you
drag from the drag source to the drop target within the same instance of the application. If you run two
instances and drag from one to the other, however, the drop target gets the value Nothing from the
GetData method, so the drag and drop fails.

Changing Format Names
The previous example dragged data with the rather unwieldy data format name “DragEmployee
.frmDragEmployee+Employee.” This name identifies the class reasonably well, so it is unlikely that
another application will try to load this data if it has some other definition for the Employee class.

On the other hand, the name is rather awkward. It is also problematic if you want to drag objects between
two different applications, because each will use its project and module name to define the data format
type. If you want to drag Employee objects between the TimeSheet program and the EmployeePayroll
program, the names of the data formats generated by the two programs won’t match.

The DataObject class provides more control over how the data is represented. Instead of dragging an
Employee object directly, you create a DataObject, store the Employee object inside it with the data for-
mat name of your choosing, and then drag the DataObject.

The following code fragment shows this technique. It creates an Employee object as before and then cre-
ates a DataObject. It calls the DataObject’s SetData method, passing it the Employee object and the
data format name.

Dim emp As New Employee(txtFirstName.Text, txtLastName.Text)
Dim data_object As New DataObject()
data_object.SetData(“Employee”, emp)

If lblDragSource.DoDragDrop(data_object, _
DragDropEffects.Copy Or DragDropEffects.Move) = DragDropEffects.Move _

Then
‘ A Move succeeded. Clear the TextBoxes.
txtFirstName.Text = “”
txtLastName.Text = “”

End If

399

Drag and Drop, and the Clipboard

15_571982 ch13.qxd 9/1/05 7:27 PM Page 399

In general, you should try to avoid very generic names such as “Employee” for data types. Using such a
simple name increases the chances that another application will use the same name for a different class.
Another program will not be able to convert your Employee data into a different type of Employee class.

To ensure consistency across applications, you must define a naming convention that can identify objects
across projects. To ensure that different applications use exactly the same object definitions, you might
also want to define the objects in a separate DLL used by all of the applications. That simplifies the nam-
ing problem, because you can use the DLL’s name as part of the object’s name.

For example, suppose that you build an assortment of billing database objects such as Employee,
Customer, Order, OrderItem, and so on. If the objects are defined in the module
BillingObjects.dll, you could give the objects name such as BillingObjects.Employee,
BillingObjects.Customer, and so forth.

Dragging Multiple Data Formats
The DataObject not only allows you to pick the data form name used by a drag; it also allows you to
associate more than one piece of data with a drag. To do this, the program simply calls the object’s
SetData method more than once, passing it data in different formats.

The following code shows how a program can drag the text in a RichTextBox control in three data for-
mats: RTF, plain text, and HTML. The lblDragSource control’s MouseDown event handler makes a
DataObject and calls its SetData method, passing it the rchSource control’s contents in the Rtf and
Text formats. It then builds an HTML string and passes that to the SetData method as well.

‘ Start a drag.
Private Sub lblDragSource_MouseDown(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MouseEventArgs) Handles lblDragSource.MouseDown

‘ Make a DataObject.
Dim data_object As New DataObject

‘ Add the data in various formats.
data_object.SetData(DataFormats.Rtf, rchSource.Rtf)
data_object.SetData(DataFormats.Text, rchSource.Text)

‘ Build the HTML version.
Dim html_text As String
html_text = “<HTML>” & vbCrLf
html_text &= “ <HEAD>The Quick Brown Fox</HEAD>” & vbCrLf
html_text &= “ <BODY>” & vbCrLf
html_text &= rchSource.Text & vbCrLf
html_text &= “ </BODY>” & vbCrLf & “</HTML>”
data_object.SetData(DataFormats.Html, html_text)

‘ Start the drag.
lblDragSource.DoDragDrop(data_object, DragDropEffects.Copy)

End Sub

400

Chapter 13

15_571982 ch13.qxd 9/1/05 7:27 PM Page 400

The following code shows how the lblDropTarget control’s DragEnter event handler. If the data
includes the RTF, Text, or HTML data formats, the control allows a Copy operation.

‘ Allow drop of Rtf, Text, and HTML.
Private Sub lblDropTarget_DragEnter(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DragEventArgs) Handles lblDropTarget.DragEnter

If e.Data.GetDataPresent(DataFormats.Rtf) Or _
e.Data.GetDataPresent(DataFormats.Text) Or _
e.Data.GetDataPresent(DataFormats.Html) _

Then
e.Effect = DragDropEffects.Copy

End If
End Sub

The following code shows how a program can read these formats. If the dropped data includes the RTF
format, the code displays it in the RichTextControl rchTarget. It also displays the RTF data in the
lblRtf Label. This lets you see the Rich Text codes. If the data includes the Text format, the program
displays it in the lblTarget label. Finally, if the data includes HTML the program displays it in the
lblHtml label.

‘ Display whatever data we can.
Private Sub lblDropTarget_DragDrop(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DragEventArgs) Handles lblDropTarget.DragDrop

If e.Data.GetDataPresent(DataFormats.Rtf) Then
rchTarget.Rtf = e.Data.GetData(DataFormats.Rtf).ToString
lblRtf.Text = e.Data.GetData(DataFormats.Rtf).ToString

Else
rchTarget.Text = “”
lblRtf.Text = “”

End If

If e.Data.GetDataPresent(DataFormats.Text) Then
lblTarget.Text = e.Data.GetData(DataFormats.Text).ToString

Else
lblTarget.Text = “”

End If

If e.Data.GetDataPresent(DataFormats.Html) Then
lblHtml.Text = e.Data.GetData(DataFormats.Html).ToString

Else
lblHtml.Text = “”

End If
End Sub

Figure 13-1 shows the results. The RichTextBox on the top shows the original data in rchSource.
Below the drag source and drop target labels, other controls show the dropped results. The first control
is a RichTextBox that shows the Rtf data. The second control is a label displaying the Rich Text codes.
The third control is a label showing the Text data, and the final control is a label showing the H data.

401

Drag and Drop, and the Clipboard

15_571982 ch13.qxd 9/1/05 7:27 PM Page 401

Figure 13-1: This program drags and drops data
in Text, Rtf, and Html formats.

If you drag data from another application onto the drop target, this program displays only the data that
is available. For example, if you drag data from WordPad, this program will display only Rtf and Text
data, because those are the only compatible formats provided by WordPad.

Using the Clipboard
Using the clipboard is very similar to using drag and drop. To save a single piece of data, call the
Clipboard object’s SetDataObject method passing, it the data that you want to save. For example, the
following code copies the text in the txtLastName control to the clipboard.

Clipboard.SetDataObject(txtLastName.Text)

Copying data to the clipboard in multiple formats is very similar to dragging and dropping multiple
data formats. First, create a DataObject and use its SetData method to store the data exactly as before.
Then call the Clipboard object’s SetDataObject method, passing it the DataObject.

The following code adds Rtf, Text, and Html data to the clipboard:

‘ Copy data to the clipboard.
Private Sub btnCopy_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCopy.Click

‘ Make a DataObject.
Dim data_object As New DataObject

‘ Add the data in various formats.
data_object.SetData(DataFormats.Rtf, rchSource.Rtf)

402

Chapter 13

15_571982 ch13.qxd 9/1/05 7:27 PM Page 402

data_object.SetData(DataFormats.Text, rchSource.Text)

‘ Build the HTML version.
Dim html_text As String
html_text = “<HTML>” & vbCrLf
html_text &= “ <HEAD>The Quick Brown Fox</HEAD>” & vbCrLf
html_text &= “ <BODY>” & vbCrLf
html_text &= rchSource.Text & vbCrLf
html_text &= “ </BODY>” & vbCrLf & “</HTML>”
data_object.SetData(DataFormats.Html, html_text)

‘ Copy data to the clipboard.
Clipboard.SetDataObject(data_object)

End Sub

To retrieve data from the clipboard, use the GetDataObject method to get an IDataObject represent-
ing the data. Use that object’s GetDataPresent method to see if a data type is present, and use its
GetData method to get data with a particular format.

The following code displays Rtf, Text, and Html data from the clipboard:

‘ Paste data from the clipboard.
Private Sub btnPaste_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPaste.Click

Dim data_object As IDataObject = Clipboard.GetDataObject()

If data_object.GetDataPresent(DataFormats.Rtf) Then
rchTarget.Rtf = data_object.GetData(DataFormats.Rtf).ToString
lblRtf.Text = data_object.GetData(DataFormats.Rtf).ToString

Else
rchTarget.Text = “”
lblRtf.Text = “”

End If

If data_object.GetDataPresent(DataFormats.Text) Then
lblTarget.Text = data_object.GetData(DataFormats.Text).ToString

Else
lblTarget.Text = “”

End If

If data_object.GetDataPresent(DataFormats.Html) Then
lblHtml.Text = data_object.GetData(DataFormats.Html).ToString

Else
lblHtml.Text = “”

End If
End Sub

The IDataObject returned by the GetDataObject method also provides a GetFormats method that
returns an array of the data formats available. This array is very similar to the one returned by the
GetFormats method provided by the DragEnter event described earlier in this chapter.

403

Drag and Drop, and the Clipboard

15_571982 ch13.qxd 9/1/05 7:27 PM Page 403

You can copy and paste objects using the clipboard much as you drag and drop objects. Simply make the
object’s class serializable and add an instance of the class to the DataObject.

The following code shows how a program can copy and paste an Employee object. The btnCopy_Click
event handler makes an Employee object and a DataObject. It passes the Employee object to the
DataObject’s SetData method, giving it the data format name “Employee.” The program then passes
the DataObject to the Clipboard object’s SetDataObject method. The btnPaste_Click event han-
dler retrieves the clipboard’s data object and uses its GetDataPresent method to see if the clipboard is
holding data with the “Employee” format. If the data is present, the program uses the data object’s
GetData method to fetch the data, casts it into an Employee object, and displays the object’s property
values.

‘ Copy the Employee to the clipboard.
Private Sub btnCopy_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCopy.Click

Dim emp As New Employee(txtFirstName.Text, txtLastName.Text)
Dim data_object As New DataObject
data_object.SetData(“Employee”, emp)
Clipboard.SetDataObject(data_object)

End Sub

‘ Paste data from the clipboard.
Private Sub btnPaste_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPaste.Click

Dim data_object As IDataObject = Clipboard.GetDataObject()
If data_object.GetDataPresent(“Employee”) Then

Dim emp As Employee = _
DirectCast(data_object.GetData(“Employee”), Employee)

txtPasteFirstName.Text = emp.FirstName
txtPasteLastName.Text = emp.LastName

End If
End Sub

The following table lists the most methods provided by the Clipboard object, including several that
make working with common data types easier.

Method Purpose

Clear Removes all data from the clipboard.

ContainsAudio Returns True if the clipboard contains audio data.

ContainsData Returns True if the clipboard contains data in a particular format.

ContainsFileDropList Returns True if the clipboard contains a file drop list.

ContainsImage Returns True if the clipboard contains an image.

ContainsText Returns True if the clipboard contains text.

GetAudioStream Returns the audio stream contained in the clipboard.

GetData Returns data in a specific format.

404

Chapter 13

15_571982 ch13.qxd 9/1/05 7:27 PM Page 404

Method Purpose

GetDataObject Returns the clipboard’s DataObject.

GetFileDropList Returns the file drop list contained in the clipboard.

GetImage Returns the image contained in the clipboard.

GetText Returns the text contained in the clipboard.

SetAudio Saves audio bytes or an audio stream in the clipboard.

SetData Saves data in a particular format in the clipboard.

SetDataObject Saves the data defined by a DataObject in the clipboard.

SetFileDropList Saves a file drop list in the clipboard. The data should be a
StringCollection containing the filenames.

SetImage Saves an image in the clipboard.

SetText Saves text in the clipboard.

The following code retrieves file drop list data from the clipboard:

Private Sub btnPaste_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPaste.Click

lstFiles.Items.Clear()
If Clipboard.ContainsFileDropList() Then

Dim file_names As StringCollection = Clipboard.GetFileDropList()
For Each file_name As String In file_names

lstFiles.Items.Add(file_name)
Next file_name

End If
End Sub

Summary
Drag and drop and the clipboard both move data from a source to a destination. The source and destina-
tion can be in the same program or in two different applications.

The clipboard lets a program save and retrieve data in a central, shared location. Data copied to the clip-
board may remain in the clipboard for a long time so that the user can paste it into another application
later.

Drag and drop lets the user directly copy or move date immediately. Once the operation is complete, the
data is not left lying around as it is in the clipboard. A user who wants to copy the data again later must
perform a new drag-and-drop operation.

405

Drag and Drop, and the Clipboard

15_571982 ch13.qxd 9/1/05 7:27 PM Page 405

Providing drag and drop with appropriate feedback is more work than using the clipboard, but it
provides the user with more direct control, and it doesn’t replace whatever data currently sits in the
clipboard.

Together, these two tools let you provide the user with more control over the application’s data. They let
the user move data between different parts of an application and between different applications. While
drag and drop and the clipboard are usually not the main purpose of an application, they can add to the
user’s experience an extra dimension of hands-on control.

The chapters in the book so far have focused on specific Visual Basic programming details. They
explained the Visual Basic development environment, language syntax, standard controls and forms,
custom controls, drag and drop, and the clipboard.

The chapters in the next part of the book deal with higher-level object-oriented programming (OOP)
issues. They explain fundamental concepts in object-oriented development and how they apply to Visual
Basic. They tell how to build and use classes and objects, and they describe some of the standard classes
that Visual Basic and the .NET Framework provide to perform common programming tasks.

Chapter 14, “OOP Concepts,” starts by explaining fundamental ideas behind object-oriented program-
ming such as the three main features of OOP: encapsulation, polymorphism, and inheritance. It explains
the benefits of these features and tells how you can take advantage of them in Visual Basic.

406

Chapter 13

15_571982 ch13.qxd 9/1/05 7:27 PM Page 406

OOP Concepts
This chapter explains the fundamental ideas behind object-oriented programming (OOP). It describes
the three main features of OOP languages: encapsulation, inheritance, and polymorphism. It explains
the benefits of these features and tells how you can take advantage of them in Visual Basic.

This chapter also describes method overloading. In a sense, overloading provides another form of
polymorphism. It lets you create more than one definition of the same class method, and Visual
Basic decides which version to use based on the parameters the program passes to the method.

Many of the ideas described in this chapter will be familiar to you from your experiences with
forms, controls, and other building blocks of the Visual Basic language. Those building blocks are
object-oriented constructs in their own rights, so they provide you with the benefits of encapsula-
tion, inheritance, and polymorphism whether you knew about them or not.

Classes
A class is a programming entity that gathers together all the data and behavior that characterizes
some sort of programming abstraction. It wraps the abstraction in a nice, neat package with well-
defined interfaces to outside code. Those interfaces determine exactly how code outside of the
class can interact with the class. A class determines which data values are visible outside of the
class and which are hidden. It determines the routines that the class supports and their availability
(visible or hidden).

A class defines properties, methods, and events that let the program work with the class:

❑ A property is some sort of data value. It may be a simple value (such as a name or num-
ber), or it may be a more complex item (such as an array, collection, or object containing
its own properties, methods, and events).

❑ A method is a subroutine or function. It is a piece of code that makes the object defined by
the class do something.

❑ An event is an action notification defined by the class. An event calls some other piece of
code to tell it that some condition in a class object has occurred.

16_571982 ch14.qxd 9/1/05 7:29 PM Page 407

For a concrete example, imagine a Job class that represents a piece of work to be done by an employee.
This class might have the properties shown in the following table.

Property Purpose

JobDescription A string describing the job

EstimatedHours The number of hours initially estimated for the job

ActualHours The actual number of hours spent on the job

Status The job’s status (New, Assigned, In Progress, or Done)

ActionTaken A string describing the work performed, parts installed, and so forth

JobCustomer An object of the Customer class that describes the customer (name,
address, phone number, service contract number, and so on)

AssignedEmployee An object of the Employee class that describes the employee
assigned to the job (name, employee ID, Social Security number,
and so on)

The JobDescription, EstimatedHours, ActualHours, Status, and ActionTaken properties are rela-
tively simple string and numeric values. The JobCustomer and AssignedEmployee properties are
objects themselves with their own properties, methods, and events.

This class might provide the methods shown in the following table.

Method Purpose

AssignJob Assign the job to an employee.

BillJob Print an invoice for the customer after the job is finished.

EstimatedCost Returns an estimated cost based on the customer’s service contract
type and EstimatedHours.

The class could provide the events shown in the following table to keep the main program informed
about the job’s progress.

Event Purpose

Created Occurs when the job is first created

Assigned Occurs when the job is assigned to an employee

Rejected Occurs if an employee refuses to do the job, perhaps because the
employee doesn’t have the right skills or equipment to do the work

Canceled Occurs if the customer cancels the job before it is worked

Finished Occurs when the job is finished

408

Chapter 14

16_571982 ch14.qxd 9/1/05 7:29 PM Page 408

Thus, in a nutshell, a class is an entity that encapsulates the data and behavior of some programming
abstraction such as a Job, Employee, Customer, LegalAction, TestResult, Report, or just about any-
thing else you could reasonably want to manipulate as a single entity.

After you have defined a class, you can make instances of the class. An instance of the class is an object of
the class type. For example, if you define a Job class, you can then make an instance of the class that rep-
resents the specific job of installing a new computer for a particular customer. The process of creating an
instance is called instantiation.

There are a couple of common analogies to describe instantiation. One compares the class to a blueprint.
After you define the class, you can use it to create any number of instances of the class, much as you can
use the blueprint to make any number of similar houses.

Another analogy compares a class definition to a cookie cutter. Once you define the cookie cutter, you
can use it to make any number of cookies.

Note that Visual Basic is jam-packed with classes. Every type of control and component (Form, TextBox,
Label, Panel, GroupBox, Button, PictureBox, Timer, and so forth) is a class. The parent classes
Control and Component are classes. Even Object, from which all other classes derive, is a class.
Whenever you work with any of these (getting or setting properties calling methods and responding to
events), you are working with instances of classes.

Because all of these ultimately derive from the Object class, they are often simply called objects. If you
don’t know or don’t care about an item’s class, you can simply refer to it as an object.

When you read the section “Polymorphism” later in this chapter, you’ll see that this makes technical as
well as intuitive sense. Because all classes eventually derive from the Object class, all instances of all
classes are in fact Objects.

The following sections describe some of the features that OOP languages in general, and Visual Basic in
particular, add to this bare-bones definition of a class.

Encapsulation
A class’s public interface is the set of properties, methods, and events that are visible to code outside of
the class. The class may also have private properties, methods, and events that it uses to do its job. For
example, the Job class described in the previous section provides an AssignJob method. That method
might call a private FindQualifiedEmployee function, which looks through an employee database to
find someone who has the skills and equipment necessary to do the job. That routine is not used outside
of the class, so it can be declared private.

The class may also include properties and events hidden from code outside of the class. These hidden
properties, methods, and events are not part of the class’s public interface.

The class encapsulates the programming abstraction that it represents (a Job in this ongoing example). Its
public interface determines what is visible to the application outside of the class. It hides the ugly details
of the class’s implementation from the rest of the world. Because the class hides its internals in this way,
encapsulation is also sometimes called information hiding.

409

OOP Concepts

16_571982 ch14.qxd 9/1/05 7:29 PM Page 409

By hiding its internals from the outside world, a class prevents exterior code from messing around with
those internals. It reduces the dependencies between different parts of the application, allowing only
those dependencies that are explicitly permitted by its public interface.

Removing dependencies between different pieces of code makes the code easier to modify and maintain.
If you must change the way the Job class assigns a job to an employee, you can modify the AssignJob
method appropriately. The code that calls the AssignJob routine doesn’t need to know that the details
have changed. It simply continues to call the method and leaves the details up to the Job class.

Removing dependencies also helps break the application into smaller, more manageable pieces. A devel-
oper who calls the AssignJob method can concentrate on the job at hand, rather than on how the rou-
tine works. This makes developers more productive and less likely to make mistakes while modifying
the encapsulated code.

The simpler and cleaner a class’s public interface is, the easier it is to use. You should try to hide as much
information and behavior inside a class as possible while still allowing the rest of the program to do its
job. Keep properties, methods, and events as simple and focused as possible. When you write code that
the class needs to use to perform its tasks, do not expose that code to the outside program unless it is
really necessary. Adding extra features complicates the class’s public interface and makes the program-
mer’s job more difficult.

This can be a troublesome concept for beginning programmers. Exposing more features for developers
to use gives them more power, so you might think it would make their jobs easier. Actually, it makes
development more difficult. Rather than thinking in terms of giving the developer more power, you
should think about giving the developer more things to worry about and more ways to make mistakes.
Ideally, you should not expose any more features than the developer will actually need.

Note that you can achieve many of the benefits of encapsulation without classes. Decades before the
invention of object-oriented languages, programmers were making code libraries that encapsulated
functionality. For example, a library of trigonometry functions would expose public function calls to cal-
culate sines, cosines, tangents, arctangents, and so forth. To perform its calculations, the library might
contain private lookup tables and helper functions that calculate series expansions. The tables and
helper functions were hidden from the main program calling the library functions.

One big benefit of classes over this sort of library encapsulation is intuitiveness. When you make a class
named Job, Customer, or Employee, anyone familiar with your business can make a lot of assumptions
about what the class represents. Even if you don’t know how the Job class works, you can probably
guess what a new ReassignJob method would do. As long as everyone has a common vision of what
the class does, you get an extra level of intuitive encapsulation that you don’t necessarily get with a more
procedural approach.

Inheritance
Inheritance is the process of deriving a child class from a parent class. The child class inherits all of the
properties, methods, and events of the parent class. It can then modify, add to, or subtract from the par-
ent class. Making a child class inherit from a parent class is also called deriving the child class from the
parent, and subclassing the parent class to form the child class.

410

Chapter 14

16_571982 ch14.qxd 9/1/05 7:29 PM Page 410

For example, you might define a Person class that includes variables named FirstName, LastName,
Street, City, State, Zip, Phone, and Email. It might also include a DialPhone method that dials the
person’s phone number on the phone attached to the computer’s modem.

You could then derive the Employee class from the Person class. The Employee class inherits the
FirstName, LastName, Street, City, State, Zip, Phone, and Email variables. It then adds new
EmployeeId, SocialSecurityNumber, OfficeNumber, Extension, and Salary variables. This class
might override the Person class’s DialPhone method, so it dials the employee’s office extension instead
of the home phone number.

You can continue deriving classes from these classes to make as many types of objects as you need. For
example, you could derive the Manager class from the Employee class and add fields such as
Secretary, which is another Employee object that represents the manager’s secretary. Similarly, you
could derive a Secretary class that includes a reference to a Manager object. You could derive
ProjectManager, DepartmentManager, and DivisionManager from the Manager class, Customer
from the Person class, and so on for other types of people that the application needed to use. Figure
14-1 shows these inheritance relationships graphically.

Figure 14-1: You can derive classes from other classes to form
quite complex inheritance relationships.

Inheritance Hierarchies
One of the key benefits of inheritance is code reuse. When you derive a class from a parent class, the
child class inherits the parent’s properties, methods, and events, so the child class gets to reuse the par-
ent’s code. That means you don’t need to implement separate FirstName and LastName properties for
the Person, Employee, Manager, Secretary, and other classes shown in Figure 14-1. These properties
are defined only in the Person class, and all of the other classes inherit them.

Person

Employee Customer

SecretaryManager

Department
Manager

Division
Manager

Project
Manager

411

OOP Concepts

16_571982 ch14.qxd 9/1/05 7:29 PM Page 411

Code reuse not only saves you the trouble of writing more code but also makes maintenance of the code
easier. Suppose that you build the hierarchy shown in Figure 14-1 and then decide that everyone needs a
new BirthDate property. Instead of adding a new property to every class, you can simply add it to the
Person class and all of the other classes inherit it.

Similarly, if you need to modify or delete a property or method, you only need to make the change in the
class where it is defined, not in all of the classes that inherit it. If the Person class defines a SendEmail
method and you must modify it so that it uses a particular email protocol, you only need to change the
routine in the Person class, not in all the classes that inherit it.

Some languages allow multiple inheritance, where one class can be derived from more than one parent
class. For example, suppose that you create a Vehicle class that defines properties of vehicles (number
of wheels, horsepower, maximum speed, acceleration, and so forth) and a House class that defines prop-
erties of living spaces (square feet, number of bedrooms, number of bathrooms, and so forth). Using
multiple inheritance, you could derive a MotorHome class from both the Vehicle and House classes.
This class would have the features of both Vehicles and Houses.

Visual Basic does not allow multiple inheritance, so a class can have at most one parent class. That
means relationships such as those shown in Figure 14-1 are treelike and form an inheritance hierarchy.

If you think you need multiple inheritance, you can use interface inheritance. Instead of defining multi-
ple parent classes, define parent interfaces. Then you can make the child class implement as many inter-
faces as you like. The class doesn’t inherit any code from the interfaces, but at least its behavior is
defined by the interfaces. See the section “Implements interface” in Chapter 15, “Classes and
Structures,” for more information on interfaces.

Refinement and Abstraction
There are two different ways you can think about the relationship between a parent class and its child
classes. First, using a top-down view of inheritance, you can think of the child classes as refining the par-
ent class. They provide extra detail that differentiates among different types of the parent class.

For example, suppose that you start with a broadly defined class such as Person. The Person class
would need general fields such as name, address, and phone number. It would also need more specific
fields that do not apply to all types of person. For example, employees would need employee ID, Social
Security number, office number, and department fields. Customers would need customer ID, company
name, and discount code fields. You could dump all these fields in the Person class, but that would
mean stretching the class to make it play two very different roles. A Person acting as an Employee
would not use the Customer fields, and vice versa.

A better solution is to derive new Employee and Customer classes that refine the Person class and dif-
ferentiate between the types of Person.

A bottom-up view of inheritance considers the parent class as abstracting common features out of the
child classes into the parent class. Common elements in the child classes are removed and placed in the
parent class. Because the parent class is more general than the child classes (it includes a larger group of
objects), abstraction is sometimes called generalization.

Suppose that you are building a drawing application and you define classes to represent various draw-
ing objects such as Circle, Ellipse, Polygon, Rectangle, and DrawingGroup (a group of objects that

412

Chapter 14

16_571982 ch14.qxd 9/1/05 7:29 PM Page 412

should be drawn together). After you work with the code for a while, you may discover that these
classes share a lot of functionality. Some, such as Ellipse, Circle, and Rectangle, are defined by
bounding rectangles. All the classes need methods for drawing the object with different pens and
brushes on the screen or on a printer.

You could abstract these classes and create a new parent class named Drawable. That class might pro-
vide basic functionality such as a simple variable to hold a bounding rectangle. This class would also
define a DrawObject routine for drawing the object on the screen or printer. It would declare that rou-
tine with the MustOveride keyword, so each child class would need to provide its own DrawObject
implementation, but the Drawable class would define its parameters.

Sometimes you can pull variables and methods from the child classes into the parent class. In this exam-
ple, the Drawable class might include Pen and Brush variables that the objects would use to draw
themselves. Putting code in the parent class reduces the amount of redundant code in the child classes,
making debugging and maintenance easier.

To make the classes more consistent, you could even change their names to reflect their shared ancestry.
You might change their names to DrawableEllipse, DrawablePolygon, and so forth. This not only
makes it easier to remember that they are all related to the Drawable class but also helps avoid confu-
sion with class names such as Rectangle that are already used by Visual Basic.

The Drawable parent class also allows the program to handle the drawing objects more uniformly. It can
define a collection named AllObjects that contains references to all the current drawing’s objects. It
could then loop through the collection, treating the objects as Drawables, and calling their DrawObject
methods. The section “Polymorphism” later in this chapter provides more details.

Usually application architects define class hierarchies using refinement. They start with broad general
classes and then refine them as necessary to differentiate among the kinds of objects that the application
will need to use. These classes tend to be relatively intuitive, so you can easily imagine their relationships.

Abstraction often arises during development. As you build the application’s classes, you notice that
some have common features. You abstract the classes and pull the common features into a parent class to
reduce redundant code and make the application more maintainable.

Refinement and abstraction are useful techniques for building inheritance hierarchies, but they have
their dangers. Designers should be careful not to get carried away with unnecessary refinement or over-
refinement. For example, suppose that you define a Vehicle class. You then refine this class by creating
Auto, Truck, and Boat classes. You refine the Auto class into Wagon and Sedan classes and further
refine those for different drive types (four-wheel drive, automatic, and so forth). If you really go crazy,
you could define classes for specific manufacturers, body styles, and color.

The problem with this hierarchy is that it captures more detail than the application needs. If the program
is a repair dispatch application, it might need to know whether a vehicle is a car or truck. It will not need
to differentiate between wagons and sedans, different manufacturers, or colors. Vehicles with different
colors have the same behaviors as far as this application is concerned.

Avoid unnecessary refinement by only refining a class when doing so lets you capture new information
that the application actually needs to know.

413

OOP Concepts

16_571982 ch14.qxd 9/1/05 7:29 PM Page 413

Just as you can take refinement to ridiculous extremes, you can also overdo class abstraction. Because
abstraction is driven by code rather than intuition, it sometimes leads to unintuitive inheritance hierar-
chies. For example, suppose that your application needs to mail work orders to remote employees and
invoices to customers. If the WorkOrder and Invoice classes have enough code in common, you might
decide to give them a common parent class named MailableItem that contains the code needed to mail
a document to someone.

This type of unintuitive relationship can confuse developers. Because Visual Basic doesn’t allow multi-
ple inheritance, it can also cause problems if the classes are already members of other inheritance hierar-
chies. You can avoid some of those problems by moving the common code into a library and having the
classes call the library code. In this example, the WorkOrder and Invoice classes would call a common
set of routines for mailing documents and would not be derived from a common parent class.

Unnecessary refinement and overabstracted classes lead to overinflated inheritance hierarchies.
Sometimes the hierarchy grows very tall and thin. Other times, it may include several root classes (with
no parents) on top of only one or two small classes each. Either of these can be symptoms of poor
designs that include more classes than necessary. If your inheritance hierarchy starts to take on one of
these forms, you should spend some time reevaluating the classes. Ensure that each adds something
meaningful to the application and that the relationships are reasonably intuitive. Too many classes with
confusing relationships can drag a project to a halt as developers spend more time trying to understand
the hierarchy than they spend implementing the individual classes.

If you are unsure whether to add a new class, leave it out. It’s usually easier to add a new class later if
you discover that it is necessary than it is to remove a class once developers start using it.

“Has-a” and “Is-a” Relationships
Refinement and abstraction are two useful techniques for generating inheritance hierarchies. The “has-a”
and “is-a” relationships can help you understand whether it makes sense to make a new class using refine-
ment or abstraction.

The “is-a” relationship means one object is a specific type of another class. For example, an Employee
“is-a” specific type of Person object. The “is-a” relation maps naturally into inheritance hierarchies.
Because an Employee “is-a” Person, it makes sense to derive the Employee class from the Person class.

The “has-a” relationship means that one object has some item as an attribute. For example, a Person
object “has-a” street address, city, state, and ZIP code. The “has-a” relation maps most naturally to embed-
ded objects. For example, you could give the Person class Street, City, State, and Zip properties.

Suppose that the program also works with WorkOrder, Invoice, and other classes that also have street,
city, state, and ZIP code information. Using abstraction, you might make a HasPostalAddress class
that contains those values. Then you could derive Person, WorkOrder, and Invoice as child classes.
Unfortunately, that makes a rather unintuitive inheritance hierarchy. Deriving the Person, WorkOrder,
and Invoice classes from HasPostalAddress makes those classes seem closely related when they are
actually related almost coincidentally.

A better solution would be to encapsulate the postal address data in its own PostalAddress class and
then include an instance of that class in the Person, WorkOrder, and Invoice classes. The following
code shows how the Person class would include an instance of the PostalAddress class:

414

Chapter 14

16_571982 ch14.qxd 9/1/05 7:29 PM Page 414

Public Class Person
Public MailingAddress As PostalAddress
...

End Class

You make a parent class through abstraction in part to avoid duplication of code. The parent class con-
tains a single copy of the common variables and code, so the child classes don’t need to have their own
separate versions for you to debug and maintain. Placing an instance of the PostalAddress class in
each of the other classes provides the same benefit without confusing the inheritance hierarchy.

You can often view a particular relationship as either an “is-a” or “has-a” relationship. A Person “has-a”
postal address. At the same time, a Person “is-a” “thing that has a postal address.” Use your intuition to
decide which view makes more sense. One hint is that “postal address” is easy to describe while “thing
that has a postal address” is more awkward and ill-defined. Also, think about how the relationship
might affect other classes. Do you really want Person, WorkOrder, and Invoice to be siblings in the
inheritance hierarchy? Or would it make more sense for them to just share an embedded class?

Adding and Modifying Class Features
Adding new properties, methods, and events to a child class is easy. You simply declare them as you
would in any other class. The parent class knows nothing about them, so the new items are added only
to the child class.

The following code shows how you could implement the Person and Employee classes in Visual Basic.
The Person class includes variables that define the FirstName, LastName, Street, City, State, Zip,
Phone, and Email values. It also defines the DialPhone method. The version shown here simply dis-
plays the Person object’s Phone value. A real application could connect to the computer’s modem and
dial the number.

The Employee class inherits from the Person class. It declares its own EmployeeId,
SocialSecurityNumber, OfficeNumber, Extension, and Salary variables. It also defines a new ver-
sion of the DialPhone method that displays the Employee object’s Extension value rather than its
Phone value. The DialPhone method in the Person class is declared with the Overridable keyword to
allow derived classes to override it. The version defined in the Employee class is declared with the
Overrides keyword to indicate that it should replace the version defined by the parent class.

Public Class Person
Public FirstName As String
Public LastName As String
Public Street As String
Public City As String
Public State As String
Public Zip As String
Public Phone As String
Public Email As String

‘ Dial the phone using Phone property.
Public Overridable Sub DialPhone()

MessageBox.Show(“Dial “ & Me.Phone)
End Sub

415

OOP Concepts

16_571982 ch14.qxd 9/1/05 7:29 PM Page 415

End Class

Public Class Employee
Inherits Person
Public EmployeeId As Integer
Public SocialSecurityNumber As String
Public OfficeNumber As String
Public Extension As String
Public Salary As Single

‘ Dial the phone using Extension property.
Public Overrides Sub DialPhone()

MessageBox.Show(“Dial “ & Me.Extension)
End Sub

End Class

A class can also shadow a feature defined in a parent class. When you declare a property, method, or
event with the Shadows keyword, it hides any item in the parent that has the same name. This is very
similar to overriding, except that the parent class does not have to declare the item as overridable and
the child item needs only to match the parent item’s name.

For example, the parent might define a SendMail subroutine that takes no parameters. If the child class
defines a SendMail method that takes some parameters and uses the Shadows keyword, the child’s ver-
sion hides the parent’s version.

In fact, the child and parent items don’t even need to be the same kind of item. For example, the child
class could make a subroutine named FirstName that shadows the parent class’s FirstName variable.
This type of change can be confusing, however, so usually you should only shadow items with similar
items.

The following code shows how the Employee class might shadow the Person class’s SendMail subrou-
tine. The Person class displays the mailing address where it would send a letter. A real application
might print a letter on a specific printer for someone to mail. The Employee class shadows this routine
with one of its own, which displays the employee’s office number instead of a mailing address.

Public Class Person
...
‘ Send some mail to the person’s address.
Public Sub SendMail()

MessageBox.Show(“Mail “ & Street & “, “ & City & “, “ & State & “ “ & Zip)
End Sub

End Class

Public Class Employee
Inherits Person
...
‘ Send some mail to the person’s office.
Public Shadows Sub SendMail()

MessageBox.Show(“Mail “ & OfficeNumber)
End Sub

End Class

416

Chapter 14

16_571982 ch14.qxd 9/1/05 7:29 PM Page 416

Interface Inheritance
When you derive one class from another, the child class inherits the properties, methods, and events defined
by the parent class. It inherits both the definition of those items as well as the code that implements them.

Visual Basic also allows you to define an interface. An interface defines a class’s behaviors, but does not
provide an implementation. After you have defined an interface, a class can use the Implements key-
word to indicate that it provides the behaviors specified by the interface. It’s then up to you to provide
the code that implements the interface.

For example, consider again the MotorHome class. Visual Basic does not allow a class to inherit from
more than one parent class, but a class can implement as many interfaces as you like. You could define
an IVehicle interface (by convention, interface names begin with the capital letter I) that defines prop-
erties of vehicles (number of wheels, horsepower, maximum speed, acceleration, and so forth) and an
IHouse interface that defines properties of living spaces (square feet, number of bedrooms, number of
bathrooms, and so forth). Now, you can make the MotorHome class implement both of those interfaces.
The interfaces do not provide any code, but they do declare that the MotorHome class implements the
interface’s features.

Like true inheritance, interface inheritance provides polymorphism (see the next section, “Polymorphism,”
for more details on this topic). You can use a variable having the type of the interface to refer to objects
that define the interface. For example, suppose that the Employee class implements the IPerson inter-
face. Then you can use a variable of type IPerson to refer to an object of type Employee.

Suppose that the people collection contains Employee objects. The following code uses a variable of
type IPerson to display the objects’ names:

For Each person As IPerson In people
Debug.WriteLine(person.FirstName & “ “ & person.LastName)

Next person

Polymorphism
Roughly speaking, polymorphism means treating one object as another. In OOP terms, it means that you
can treat an object of one class as if it were from a parent class.

For example, suppose that Employee and Customer are both derived from the Person class. Then you
can treat Employee and Customer objects as if they were Person objects because in a sense they are
Person objects. They are specific types of Person objects. After all, they provide all of the properties,
methods, and events of a Person object.

Visual Basic allows you to assign a value from a child class to a variable of the parent class. In this exam-
ple, you can place an Employee or Customer object in a Person variable, as shown in the following code:

Dim emp As New Employee ‘ Create an Employee.
Dim cust As New Customer ‘ Create a Customer.
Dim per As Person ‘ Declare a Person variable.
per = emp ‘ Okay. An Employee is a Person.
per = cust ‘ Okay. A Customer is a Person.
emp = per ‘ Not okay. A Person is not necessarily an Employee.

417

OOP Concepts

16_571982 ch14.qxd 9/1/05 7:29 PM Page 417

One common reason to use polymorphism is to treat a collection of objects in a uniform way that makes
sense in the parent class. For example, suppose that the Person class defines the FirstName and
LastName fields. The program could define a collection named AllPeople and add references to
Customer and Employee objects to represent all the people that the program needs to work with. The
code could then iterate through the collection, treating each object as a Person, as shown in the follow-
ing code:

For Each per As Person In AllPeople
Debug.WriteLine(per.FirstName & “ “ & per.LastName)

Next Per

You can only access the features defined for the type of variable you actually use to refer to an object. For
example, if you use a Person variable to refer to an Employee object, you can only use the features
defined by the Person class not those added by the Employee class.

If you know that a particular object is of a specific subclass, you can convert the variable into a more spe-
cific variable type. The following code loops through the AllPeople collection and uses the TypeOf
statement to test each object’s type. If the object is an Employee, the code uses DirectCast to convert
the object into an Employee object. It can then use the Employee object to perform Employee-specific
tasks.

Similarly, the code determines whether the object is a Customer object. If it is, the code converts the
generic Person variable into a Customer variable and uses the new variable to perform Customer-
specific tasks, as shown here:

For Each per As Person In AllPeople
If TypeOf per Is Employee Then

Dim emp As Employee = DirectCast(per, Employee)
‘ Do something Employee-specific.
...

ElseIf TypeOf per Is Customer Then
Dim cust As Customer = DirectCast(per, Customer)
‘ Do something Customer-specific.
...

End If
Next per

Overloading
Visual Basic .NET allows you to give a class more than one method with the same name but with differ-
ent parameters. The program decides which version of the method to use based on the parameters being
passed to the method.

For example, the Person class shown in the following code has two constructors named New. The first
takes no parameters and initializes the object’s FirstName and LastName variables to default values.
The second overloaded constructor takes two strings as parameters and uses them to initialize
FirstName and LastName.

418

Chapter 14

16_571982 ch14.qxd 9/1/05 7:29 PM Page 418

Public Class Person
Public FirstName As String
Public LastName As String

Public Sub New()
FirstName = “<first>”
LastName = “<last>”

End Sub

Public Sub New(ByVal first_name As String, ByVal last_name As String)
FirstName = first_name
LastName = last_name

End Sub
End Class

The following code uses these constructors. The first statement passes no parameters to the constructor,
so Visual Basic uses the first version of the New method. The second statement passes two strings to the
constructor, so Visual Basic uses the second constructor.

Dim person1 As New Person()
Dim person2 As New Person(“Rod”, “Stephens”)

A common technique for providing constructors that take different numbers of arguments is to make the
simpler constructors call those with more parameters. In the following code, the empty constructor calls
a constructor that takes two parameters, passing it default values.

Public Class Person
Public FirstName As String
Public LastName As String

Public Sub New()
Me.New(“<first>”, “<last>”)

End Sub

Public Sub New(ByVal first_name As String, ByVal last_name As String)
FirstName = first_name
LastName = last_name

End Sub
End Class

Two overloaded methods cannot differ only by optional parameters. For example, the first_name and
last_name parameters in the previous constructor could not both be optional. If they were, then Visual
Basic could not tell which version of the New subroutine to call if the program passed it no parameters.
While you cannot make the parameters optional in the second constructor, you can get a similar result
by combining the two constructors, as shown in the following code:

Public Class Person
Public FirstName As String
Public LastName As String

Public Sub New(_
Optional ByVal first_name As String = “<first>”, _

419

OOP Concepts

16_571982 ch14.qxd 9/1/05 7:29 PM Page 419

Optional ByVal last_name As String = “<last>”)
FirstName = first_name
LastName = last_name

End Sub
End Class

Overloaded functions also cannot differ only in their return types. For example, you cannot have two
versions of a function with the same name and parameters but different return types.

If you have Option Strict set to Off, there are many circumstances where Visual Basic performs auto-
matic type conversion. In that case, it might not be able to decide which of two functions to use if they
differ only in return type. For example, suppose that one version of the TotalCost function returns an
Integer and another version returns a Double. If you set a string variable equal to the result of the func-
tion, Visual Basic wouldn’t know whether to use the Integer version or the Double version.

Summary
Classes are programming abstractions that group data and related behavior in nicely encapsulated pack-
ages. After you define a class, you can instantiate it to create an instance of the class. You can interact
with the new object by using its properties, methods, and events.

Inheritance enables you to derive one class from another. You can then add, remove, or modify the
behavior that the child class inherits from the parent class. Sometimes it makes sense to think of the
classes in inheritance hierarchies in a top-down manner, so child classes refine the features of their par-
ents. At other times, it makes sense to use a bottom-up view and think of a parent class as abstracting the
features of its children.

Interface inheritance lets you define some of the features of a class without using true class inheritance.
This gives you another method for using polymorphism and lets you build classes that, in a sense,
appear to inherit from multiple parents.

Polymorphism enables you to treat an object as if it were of an ancestor’s type. For example, if the
Manager class inherits from Employee and Employee inherits from Person, then you can treat a
Manager object as if it is a Manager, Employee, or Person.

In addition to these features, Visual Basic .NET allows you to overload a class’s subroutines, functions,
and operators. It lets you create different methods with the same name but different parameters. The
compiler selects the right version of the method based on the parameters you pass to it.

These object-oriented concepts provide the general background you need to understand classes in Visual
Basic. Chapter 15, “Classes and Structures,” describes the specifics of classes and structures in Visual
Basic .NET. It shows how to declare and instantiate classes and structures and explains the differences
between the two.

420

Chapter 14

16_571982 ch14.qxd 9/1/05 7:29 PM Page 420

Classes and Structures
A variable holds a single value. It may be a simple value such as an Integer or String, or a refer-
ence that points to a more complex entity. Two kinds of more complex entities are classes and
structures.

Classes and structures are both container types. They group several related data values into a con-
venient package that you can manipulate as a group.

For example, an EmployeeInfo structure might contain fields that hold information about an
employee (such as first name, last name, employee ID, office number, extension, and so forth). If
you make an EmployeeInfo structure and fill it with the data for a particular employee, you can
then move the structure around as a single unit instead of passing around a bunch of separate
variables holding the first name, last name, and the rest.

This chapter explains how to declare classes and structures, and how to create instances of them
(instantiate them). It also explains the differences between classes and structures and provides
some advice about which to use under different circumstances.

Classes
A class packages data and related behavior. For example, a WorkOrder class might store data
describing a customer’s work order in its properties. It could contain methods (subroutines and
functions) for manipulating the work order. It might provide methods for scheduling the work,
modifying the order’s requirements, and setting the order’s priority.

The syntax for declaring a class is:

[attribute_list] [Partial] [accessibility] [Shadows] [inheritance] _
Class name[(Of type_list)]

[Inherits parent_class]
[Implements interface]
statements

End Class

17_571982 ch15.qxd 9/1/05 7:30 PM Page 421

The only things that all class declarations must include are the Class clause and the End Class state-
ment. Everything else is optional. The following code describes a valid (albeit not very interesting) class:

Class EmptyClass
End Class

The following sections describe the pieces of the general declaration in detail.

attribute_list
The optional attribute_list is a comma-separated list of attributes that apply to the class. An attribute fur-
ther refines the definition of a class to give more information to the compiler and the run-time system.

Attributes are rather specialized. They address issues that arise when you perform very specific pro-
gramming tasks. For example, if your application must use drag and drop to copy instances of the class
from one application to another, you must mark the class as serializable, as shown in the following code:

<Serializable()> _
Class Employee

Public FirstName As String
Public LastName As String

End Class

Some attributes are particular to specific kinds of classes. For example, the DefaultEvent attribute
gives the form designer extra information about component classes. If you double-click on a component
on a form, the code designer opens to the component’s default event.

Because attributes are so specialized, they are not described in more detail here. For more information,
see the sections in the online help that are related to the tasks you need to perform.

For more information on Attributes, see the “Attributes” section of the Visual Basic Language Reference or
go to http://msdn.microsoft.com/library/en-us/vbls7/html/vblrfVBSpec4_10.asp. For a
list of attributes defined by Visual Basic, search the online help for “Attribute Hierarchy” or go to
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemattributeclass
hierarchy.asp.

Partial
The Partial keyword tells Visual Basic that the current declaration defines only part of the class. The
following code shows the Employee class broken into two pieces:

Partial Public Class Employee
Public FirstName As String
Public LastName As String
...

End Class

... other code, possibly unrelated to the Employee class ...

Partial Public Class Employee

422

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 422

Public Email As String
...

End Class

The program could contain any number of other pieces of the Employee class, possibly in different code
modules. At compile time, Visual Basic finds these pieces and combines them to define the class.

One of the primary benefits of classes is that they hold the code and data associated with the class
together in a nice package. Scattering the pieces of a class in this way makes the package less self-
contained and may lead to confusion. To prevent confusion, you should avoid splitting a class unless
you have a good reason to (for example, to allow different developers to work on different pieces of
the class at the same time).

At least one of the pieces of the class must be declared with the Partial keyword, but in the other
pieces it is optional. Explicitly providing the keyword in all of the class’s partial definitions emphasizes
the fact that the class is broken into pieces and may minimize confusion.

accessibility
A class’s accessibility clause can take one of the values: Public, Protected, Friend, Protected
Friend, and Private.

Public indicates that the class should be available to all code inside or outside of the class’s module.
This allows the most access to the class. Any code can create and manipulate instances of the class.

You can only use the Protected keyword if the class you are declaring is contained inside another class.
For example, the following code defines an Employee class that contains a protected EmployeeAddress
class:

Public Class Employee
Public FirstName As String
Public LastName As String
Protected Address As EmployeeAddress

Protected Class EmployeeAddress
Public Street As String
Public City As String
Public State As String
Public Zip As String

End Class

... other code ...
End Class

Because the EmployeeAddress class is declared with the Protected keyword, it is only visible within
the enclosing Employee class and any derived classes. For example, if the Manager class inherits from
the Employee class, code within the Manager class can access the Address variable.

423

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 423

The Friend keyword indicates that the class should be available to all code inside or outside of the
class’s module within the same project. The difference between this and Public is that Public allows
code outside of the project to access the class. This is generally only an issue for code libraries (.dll
files) and control libraries. For example, suppose that you build a code library containing dozens of rou-
tines and then you write a program that uses the library. If the library declares a class with the Public
keyword, the code in the library and the code in the main program can use the class. On the other hand,
if the library declares a class with the Friend keyword, only the code in the library can access the class,
not the code in the main program.

Protected Friend is the union of the Protected and Friend keywords. A class declared Protected
Friend is accessible only to code within the enclosing class or a derived class and only within the same
project.

A class declared Private is accessible only to code in the enclosing module, class, or structure. If the
EmployeeAddress class were declared Private, only code within the Employee class could use that
class.

If you do not specify an accessibility level, it defaults to Friend.

Shadows
The Shadows keyword indicates that the class hides the definition of some other entity in the enclosing
class’s base class.

The following code shows an Employee class that declares a public class OfficeInfo and defines an
instance of that class named Office. The derived class Manager inherits from Employee. It declares a
new version of the OfficeInfo class with the Shadows keyword. It defines an instance of this class
named ManagerOffice.

Public Class Employee
Public Class OfficeInfo

Public OfficeNumber As String
Public Extension As String

End Class

Public FirstName As String
Public LastName As String
Public Office As New OfficeInfo

End Class

Public Class Manager
Inherits Employee

Public Shadows Class OfficeInfo
Public OfficeNumber As String
Public Extension As String
Public SecretaryOfficeNumber As String
Public SecretaryExtension As String

End Class

Public ManagerOffice As New OfficeInfo
End Class

424

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 424

The following code uses the Employee and Manager classes. It creates instances of the two classes and
sets their Office.Extension properties. Both of those values are part of the Employee class’s version of
the OfficeInfo class. Next, the code sets the Manager object’s ManagerOffice.SecretaryExtension
value.

Dim emp As New Employee
Dim mgr As New Manager
emp.Office.Extension = “1111”
mgr.Office.Extension = “2222”
mgr.ManagerOffice.SecretaryExtension = “3333”

Note that the Manager class contains two different objects of type OfficeInfo. Its Office property is
the Employee class’s flavor of OfficeInfo class. Its ManagerOffice value is the Manager class’s ver-
sion of OfficeInfo.

The presence of these different classes with the same name can be confusing. Usually, you are better off
not using the Shadows keyword in the declarations and giving the classes different names. In this case,
you could call the Manager class’s included class ManagerOfficeInfo.

It is more common to use the Shadows keyword to allow the derived class to replace a method in the
parent class.

inheritance
A class’s inheritance clause can take the value MustInherit or NotInheritable.

MustInherit prohibits the program from creating instances of the class. The program should create an
instance of a derived class instead. This kind of class is sometimes called an abstract class.

By using MustInherit, you can make a parent class that defines some of the behavior that should be
implemented by derived classes without implementing the functionality itself. The parent class is not
intended to be used itself, just to help define the children.

For example, the following code defines the Vehicle class with the MustInherit keyword. This class
defines features that are common to all vehicles. It defines a NumWheels variable and a Drive subroutine
declared with the MustOverride keyword. The real world doesn’t contain generic vehicles, however.
Instead, it contains cars, trucks, and other specific kinds of vehicles. The code defines a Car class that
inherits from the Vehicle class. When you enter the Inherits statement and press Enter, Visual Basic
automatically adds the empty Drive subroutine required by the Vehicle class.

Public MustInherit Class Vehicle
Public NumWheels As Integer
Public MustOverride Sub Drive()

End Class

Public Class Car
Inherits Vehicle

Public Overrides Sub Drive()

End Sub
End Class

425

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 425

The following code uses these classes. It declares a Vehicle and a Car variable. The first assignment
statement causes an error because it tries to make a new Vehicle object. This is not allowed, because
Vehicle is declared with the MustInherit keyword. The program sets variable a_car to a new Car vari-
able and then sets variable a_vehicle to a_car. This works because a Car is a type of Vehicle, so the
a_vehicle variable can refer to a Car object. This lets the program handle different kinds of vehicles
(Cars, Trucks, BigRigs) using the generic Vehicle type if that is convenient. In its last line, the code
assigns a_vehicle directly to a new Car object.

Dim a_vehicle As Vehicle
Dim a_car As Car

a_vehicle = New vehicle ‘ This causes an error because Vehicle is MustInherit.
a_car = New Car ‘ This works.
a_vehicle = a_car ‘ This works.
a_vehicle = New Car ‘ This works.

The NotInheritable keyword does the opposite of the MustInherit keyword. MustInherit says that
a class must be inherited to be instantiated. NotInheritable says no class can inherit from this one.

You can use NotInheritable to stop other developers from making new versions of the classes you
have built. This isn’t really necessary if you design a well-defined object model before you start pro-
gramming and if everyone obeys it. NotInheritable can prevent unnecessary proliferation of classes if
developers don’t pay attention, however. For example, declaring the Car class NotInheritable would
prevent overeager developers from deriving FrontWheelDriveCar, RedCar, and Subaru classes from
the Car class.

Of type_list
The Of type_list clause makes the class generic. It allows the program to create instances of the class
that work with specific data types. For example, the following code defines a generic Tree class. The
class includes a public variable named RootObject that has the data type given in the class’s Of
data_type clause.

Public Class Tree(Of data_type)
Public RootObject As data_type
...

End Class

When you read this declaration, you should think “Tree of something,” where something is defined later
when you make an instance of the class.

The following code fragment declares the variable my_tree to be a “Tree of Employee.” It then instanti-
ates my_tree and sets its RootObject variable to an Employee object.

Dim my_tree As Tree(Of Employee)
my_tree = New Tree(Of Employee)
my_tree.RootObject = New Employee
...

Chapter 18, “Generics,” discusses generic classes further.

426

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 426

Inherits parent_class
The Inherits statement indicates that the class (the child class) is derived from another class (the par-
ent class). The child class automatically inherits the parent’s properties, methods, and events.

The following code defines an Employee class that contains LastName, FirstName, OfficeNumber, and
Extension variables. It then derives the Manager class from the Employee class. Because it inherits
from the Employee class, the Manager class automatically has LastName, FirstName, OfficeNumber,
and Extension variables. It also adds new SecretaryOfficeNumber and SecretaryExtension vari-
ables. These are available to instances of the Manager class but not to the Employee class.

Public Class Employee
Public FirstName As String
Public LastName As String
Public OfficeNumber As String
Public Extension As String

End Class

Public Class Manager
Inherits Employee

Public SecretaryOfficeNumber As String
Public SecretaryExtension As String

End Class

The following code makes a new Employee object and sets its Extension property to “1000.” It then
creates a Manager object and sets its Extension and SecretaryExtension values.

Dim emp As New Employee
emp.Extension = “1000”

Dim mgr As New Manager
mgr.Extension = “2000”
mgr.SecretaryExtension = “2001”

If a class inherits from another class, the Inherits statement must be the first statement after the Class
statement that is not blank or a comment. Also note that a class can inherit from at most one parent class,
so a class definition can include at most one Inherits statement.

For more information on inheritance, see the Chapter 14, “OOP Concepts.”

Implements interface
The Implements keyword indicates that a class will implement an interface. An interface defines behav-
iors that the implementing class must provide, but it does not provide any implementation for the
behaviors.

For example, the following code defines the IDomicile interface. By convention, the names of interfaces
should begin with the capital letter “I.” This interface defines the SquareFeet, NumBedrooms, and
NumBathrooms properties, and the Clean subroutine.

427

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 427

The interface also defines the read-only property FileSystemNeeded. Usually a read-only property cal-
culates its return from other property values. For example, FileSystemNeeded might return True if a
house has more than a certain number of square feet. You can define write-only properties similarly,
although they are much less common than read-only properties.

The House class implements the IDomicile interface. When you type the Implements statement and
press Enter, Visual Basic automatically generates empty routines to provide the features defined by the
interface.

Public Interface IDomicile
Property SquareFeet() As Integer
Property NumBedrooms() As Integer
Property NumBathrooms() As Integer
ReadOnly Property NeedsFireSystem() As Boolean
Sub Clean()

End Interface

Public Class House
Implements IDomicile

Public Sub Clean() Implements IDomicile.Clean

End Sub

Public Property NumBathrooms() As Integer Implements IDomicile.NumBathrooms
Get

End Get
Set(ByVal Value As Integer)

End Set
End Property

Public Property NumBedrooms() As Integer Implements IDomicile.NumBedrooms
Get

End Get
Set(ByVal Value As Integer)

End Set
End Property

Public Property SquareFeet() As Integer Implements IDomicile.SquareFeet
Get

End Get
Set(ByVal Value As Integer)

End Set
End Property

Public ReadOnly Property NeedsFireSystem() As Boolean _
Implements IDomicile.NeedsFireSystem

428

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 428

Get

End Get
End Property

End Class

An interface defines behaviors but does not supply them. When you derive a class from a parent class,
the derived class inherits all the code that the parent class uses to implement its features. When you
implement an interface, the behavior is defined, but not supplied for you. That makes interfaces more
difficult to use than inheritance, so inheritance is generally preferred whenever it is possible.

One case where Visual Basic’s inheritance is insufficient is when you need to implement multiple inheri-
tance. In multiple inheritance, one child class can inherit from more than one parent class. For example,
you might define a Domicile class and a Boat class, and then make the HouseBoat class inherit from
both. You can do this in some languages but not in Visual Basic. However, you can make a class imple-
ment more than one interface.

The following code defines the IBoat interface. It then defines the HouseBoat class and uses two
Implements statements to indicate that it implements both the IDomicile and IBoat interfaces.

Public Interface IBoat
Property HasMotor() As Boolean
Property HorsePower() As Integer
Property Capacity() As Integer
Sub Sail()

End Interface

Public Class HouseBoat
Implements IDomicile
Implements IBoat

Public Sub Clean() Implements IDomicile.Clean

End Sub

Public ReadOnly Property NeedsFireSystem() As Boolean Implements
IDomicile.NeedsFireSystem

Get

End Get
End Property

Public Property NumBathrooms() As Integer Implements IDomicile.NumBathrooms
Get

End Get
Set(ByVal Value As Integer)

End Set
End Property

Public Property NumBedrooms() As Integer Implements IDomicile.NumBedrooms

429

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 429

Get

End Get
Set(ByVal Value As Integer)

End Set
End Property

Public Property SquareFeet() As Integer Implements IDomicile.SquareFeet
Get

End Get
Set(ByVal Value As Integer)

End Set
End Property

Public Property Capacity() As Integer Implements IBoat.Capacity
Get

End Get
Set(ByVal Value As Integer)

End Set
End Property

Public Property HasMotor() As Boolean Implements IBoat.HasMotor
Get

End Get
Set(ByVal Value As Boolean)

End Set
End Property

Public Property HorsePower() As Integer Implements IBoat.HorsePower
Get

End Get
Set(ByVal Value As Integer)

End Set
End Property

Public Sub Sail() Implements IBoat.Sail

End Sub
End Class

Using an interface in place of inheritance is sometimes called interface inheritance. The class doesn’t
inherit a parent class’s code, but it does inherit the definition of the features that it must provide.

430

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 430

Note that a class can inherit from one class and also implement one or more interfaces. To save coding,
you could make one of the parent interfaces into a class. For example, if the IDomicile interface defines
more behaviors than the IBoat interface, and if those behaviors are generic enough to provide help for
derived classes, you could turn IDomicile into a Domicile class that implemented those features. Then
the House and HouseBoat classes could inherit the Domicile class’s features, and HouseBoat would
implement IBoat.

If a class declaration uses any Implements statements, they must come after any Inherits statement
and before any other statements (other than comments).

Structures
Structures are very similar to classes. The syntax for declaring a structure is as follows:

[attribute_list] [Partial] [accessibility] [Shadows] _
Structure name[(Of type_list)]

[Implements interface]
statements

End Structure

The only thing that all structure declarations must include is the Structure clause and the End
Structure statement. The rest is optional.

Unlike a class, however, a structure cannot be empty. It must contain at least one variable or event decla-
ration. The following code describes a valid structure. Its only member is a Private variable, so this
structure wouldn’t be of much use, but it is valid.

Structure EmptyStructure
Private m_Num As Integer

End Structure

The structure’s attribute_list and accessibility clauses, Shadows and Partial keywords, and the
Implements statement are the same as those for classes. See the sections “attribute_list” and
“accessibility”earlier in this chapter for details.

The are two main differences between a structure and a class: Structures cannot inherit and structures
are value types rather than reference types.

Structures Cannot Inherit
A structure cannot inherit, so it cannot use the MustInherit, NotInheritable, or Inherits key-
words. However, a structure can implement any number of interfaces. The following code declares the
IPerson interface, which defines the FirstName and LastName properties. The Employee structure
implements this interface, providing code to handle those properties and adding two new variables
named OfficeNumber and Extension.

431

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 431

Public Interface IPerson
Property FirstName() As String
Property LastName() As String

End Interface

Public Structure Employee
Implements IPerson

Public OfficeNumber As String
Public Extension As String
Private m_FirstName As String
Private m_LastName As String

Public Property FirstName() As String Implements IPerson.FirstName
Get

Return m_FirstName
End Get
Set(ByVal value As String)

m_FirstName = value
End Set

End Property

Public Property LastName() As String Implements IPerson.LastName
Get

Return m_LastName
End Get
Set(ByVal value As String)

m_LastName = value
End Set

End Property
End Structure

Structures are Value Types
The biggest difference between a structure and a class is in how each allocates memory for its data.
Classes are reference types. That means an instance of a class is actually a reference to the object’s storage
in memory. When you create an instance of a class, Visual Basic actually creates a 4-byte value that
points to the object’s actual location in memory.

On the other hand, structures are value types. An instance of a structure contains the data inside the struc-
ture rather than simply pointing to it. Figure 15-1 illustrates the difference.

The difference between reference and value type has several important consequences that are described
in the following sections.

432

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 432

Figure 15-1: A structure object contains the
data, while a class object contains a reference
that points to data.

Memory Required
The difference in memory required by classes and structures is small when you consider only a single
object. If you look at an array, however, the distinction is more important. An array of class objects con-
tains references to data in some other part of memory. When you first declare the array, the references all
have the value Nothing, so they don’t point to any data and no memory is allocated for the data. The
references take 4 bytes each, so the array uses only 4 bytes per array entry.

An array of structure instances, on the other hand, allocates space for the data inside the array. If each
structure object takes up 1000 bytes of memory, then an array containing N items uses 1000 * N bytes of
memory. Each structure object’s memory is allocated, whether its fields contain meaningful data or not.

Figure 15-2 illustrates this situation. The array of class objects on the left uses very little memory when
the references are Nothing. The array of structure objects on the right uses a lot of memory even if its
elements have not been initialized.

If you must use a large array of objects where only a few at a time will have values other than Nothing,
then using a class may save the program a considerable amount of memory. If you will need most of the
objects to have values other than Nothing at the same time, it may be faster to allocate all the memory at
once using a structure. This will also use slightly less memory, because an array of class references
requires an extra 4 bytes per entry to hold the references.

FirstName

LastName

Street

City

State

Zip

Structure Class Object

FirstName

(Reference)

LastName

Street

City

State

Zip

433

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 433

Figure 15-2: An array of class objects contains small
references to data, many of which may be Nothing.
An array of structures takes up a significant amount
of memory.

Heap and Stack Performance
Visual Basic programs allocate variables from two pools of memory called the stack and the heap. It takes
memory for value types (such as integers and dates) from the stack.

Space for reference types comes from the heap. More than one reference can point to the same chunk of
memory allocated on the heap. That makes garbage collection and other heap-management issues more
complex than using the stack, so using the heap is generally slower than using the stack.

Because structures are value types and classes are reference types, structures are allocated on the stack
and class objects are allocated from the heap. That makes structures faster than classes. The exact differ-
ence for a particular program depends on the application.

Note that arrays are themselves reference types, so all arrays are allocated from the heap whether they
contain structures or references to class objects. The memory for an array of structures is allocated all at
once, however, so there is still some benefit to using structures. All the memory in an array of structures
is contiguous, so the program can access its elements more quickly than it would if the memory were
scattered throughout the heap.

Reference

Reference

Reference

<Nothing>

<Nothing>

<Nothing>

FirstName

LastName

Street

City

State

Zip

FirstName

LastName

Street

City

State

Zip

FirstName

LastName

Street

City

State

Zip

Class Structure

434

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 434

Object Assignment
When you assign one reference type variable to another, you make a new reference to an existing object.
When you are finished, the two variables point to the same object. If you change the object’s fields using
one variable, the fields shown by the other are also changed.

On the other hand, if you set one value type variable equal to another, Visual Basic copies the data from
one to the other. If you change the fields in one object, the fields in the other remain unchanged. Figure
15-3 illustrates the difference.

Figure 15-3: Assigning one class reference to another makes them both point to
the same object. Assigning one structure variable to another makes a new copy
of the data.

To see the difference in code, consider the following declarations. The CPerson class and the SPerson
structure are the same, except that one is a class and the other is a structure.

Public Class CPerson
Public FirstName As String
Public LastName As String

End Class

Public Structure SPerson
Public FirstName As String
Public LastName As String

End Structure

Now consider the following code. The program creates two CPerson references and initializes the first
to a new CPerson object. It sets cperson1.FirstName to “Alice” and then sets cperson2 = cperson1.
The code then sets cperson2.FirstName to “Ben.” Because these are reference variables, they both
point to the same object, so this changes the FirstName value of the underlying object and the message
box displays the text “Ben, Ben.” Next the program repeats these steps using the SPerson structure

FirstName

LastName

Street

City

State

Zip

StructureClass

FirstName

LastName

Street

City

State

Zip

A B

FirstName

LastName

Street

City

State

Zip

A B

435

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 435

instead of the CPerson class. When the code sets sperson2 = sperson1, Visual Basic copies the values
from sperson1 into sperson2. At that point, both objects have a FirstName value of “Alice.” The code
then sets sperson2.FirstName to “Ben.” Because the two structure variables refer to different objects,
this does not affect sperson1 and the message box displays the text “Alice, Ben.”

Dim cperson1 As New CPerson
Dim cperson2 As CPerson
cperson1.FirstName = “Alice”
cperson2 = cperson1
cperson2.FirstName = “Ben”
MessageBox.Show(cperson1.FirstName & “, “ & cperson2.FirstName)

Dim sperson1 As New SPerson
Dim sperson2 As SPerson
sperson1.FirstName = “Alice”
sperson2 = sperson1
sperson2.FirstName = “Ben”
MessageBox.Show(sperson1.FirstName & “, “ & sperson2.FirstName)

Parameter Passing
When you pass a parameter to a function or subroutine, you can pass it by reference using the ByRef
keyword, or by value using the ByVal keyword. If you pass a parameter by reference, any changes that
the routine makes are reflected in the original parameter passed into the routine.

For example, consider the following code. Subroutine TestByRef creates an integer named i and sets its
value to 1. It then calls subroutine PassByVal. That routine declares its parameter with the ByVal key-
word, so i is passed by value. PassByVal multiplies its parameter by 2 and ends. Because the parameter
was declared ByVal, the original variable i is unchanged, so the message box displays the value 1. Next
the program calls subroutine PassByRef passing it the variable i. Subroutine PassByRef declares its
parameter with the ByRef keyword, so a reference to the variable is passed into the routine. PassByRef
doubles its parameter and ends. Because the parameter is declared with the ByRef keyword, the value of
variable i is modified so the message box displays the value 2.

Public Sub TestByRef()
Dim i As Integer = 1

PassByVal(i)
MessageBox.Show(i.ToString) ‘ i = 1.

PassByRef(i)
MessageBox.Show(i.ToString) ‘ i = 2.

End Sub

Public Sub PassByVal(ByVal the_value As Integer)
the_value *= 2

End Sub

Public Sub PassByRef(ByRef the_value As Integer)
the_value *= 2

End Sub

436

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 436

When you work with class references and structures, you must think a bit harder about how ByRef and
ByVal work. There are four possible combinations: reference ByVal, structure ByVal, reference ByRef,
and structure ByRef.

If you pass a class reference to a routine by value, the routine receives a copy of the reference. If it changes
the reference (perhaps making it point to a new object), the original reference passed into the routine
remains unchanged. It still points to the same object it did when it was passed to the routine. However,
the routine can change the values in the object to which the reference points. If the reference points to a
Person object, the routine can change the object’s FirstName, LastName, and other fields. It cannot
change the reference itself to make it point to a different Person object, but it can change the object’s data.

On the other hand, suppose that you pass a structure into a routine by value. In that case, the routine
receives a copy of the entire structure. The routine can change the values contained in its copy of the
structure, but the original structure’s values remain unchanged. It cannot change the original structure’s
fields the way it could if the parameter were a reference type.

If you pass a class reference variable by reference, then the routine can not only modify the values in the
object to which the reference points but can also change the object to which it points. The routine could
use the New keyword to make the variable point to a completely new object.

If you pass a structure by reference, the routine receives a pointer to the structure’s data. If it changes the
structure’s data, the fields in the original variable passed into the routine is modified.

In addition to these differences in behavior, passing class references and structures by reference or by
value can make differences in performance. When you pass a pointer to data, Visual Basic only needs to
send the routine a 4-byte value. If you pass a structure into a routine by value, Visual Basic must dupli-
cate the entire structure, so the routine can use its own copy. If the structure is very large, that may take a
little extra time.

Boxing and Unboxing
Visual Basic allows a program to treat any variable as an object. For example, a collection class stores
objects. If you add a simple value type such as an Integer to a collection, Visual Basic wraps the Integer
in an object and adds that object to the collection.

The process of wrapping the Integer in an object is called boxing. Later, if you need to use the Integer as a
value type again, the program unboxes it. Because structures are value types, the program must box and
unbox them whenever it treats them as objects, and that adds some extra overhead.

Some operations that require boxing and possibly unboxing include assigning a structure to an Object
variable, passing a structure to a routine that takes an Object as a parameter, or adding a structure to a
collection class. Note that this last operation includes adding a structure to a collection used by a control
or other object. For example, adding a structure to a ListBox’s Items collection requires boxing.

Note that arrays are themselves reference types, so treating an array as an object doesn’t require boxing.

437

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 437

Class Instantiation Details
When you declare a reference variable, Visual Basic allocates space for the reference. Initially, that refer-
ence is set to Nothing, so it doesn’t point to anything and no memory is allocated for an actual object.

You create an object by using the New keyword. Creating an actual object is called instantiating the class.

The following code shows a simple object declaration and instantiation. The first line declares the refer-
ence variable. The second line makes the variable point to a new Employee object.

Dim emp As Employee ‘ Declare a reference to an Employee object.
emp = New Employee ‘ Make a new Employee object and make emp point to it.

Visual Basic also allows you to declare and initialize a variable in a single statement. The following code
shows how to declare and initialize an object reference in one statement:

Dim emp As Employee = New Employee ‘ Declare and instantiate an Employee object.

Visual Basic lets you declare a variable to be of a new object type, as shown in the following statement.
This version has the same effect as the previous one but is slightly more compact.

Dim emp As New Employee ‘ Declare and instantiate an Employee object.

Both of these versions that define and initialize an object in a single statement ensure that the variable is
initialized right away. They guarantee that the object is instantiated before you try to use it. If you place
these kinds of declarations immediately before the code where the object is used, they also make it easy
to see where the object is defined.

While you can declare and instantiate a reference variable separately, value type variables are allocated
when they are declared. Because structures are value types, when you declare one you also allocate
space for its data, so you don’t need to use the New keyword to initialize a structure variable.

Both classes and structures can provide special subroutines called constructors. A constructor is a special
subroutine named New that Visual Basic calls when a new instance of the class or structure is created.
The constructor can perform initialization tasks to get the new object ready for use.

A constructor can optionally take parameters to help in initializing the object. For example, the Person
class shown in the following code has a constructor that takes as parameters first and last names and
saves them in the control’s FirstName and LastName variables.

Public Class Person
Public FirstName As String
Public LastName As String

Public Sub New(ByVal first_name As String, ByVal last_name As String)
FirstName = first_name
LastName = last_name

End Sub
End Class

438

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 438

The following code shows how a program might use this constructor to create a new Person object:

Dim author As New Person(“Rod”, “Stephens”)

You can overload the New method just as you can overload other class methods. The different over-
loaded versions of the constructor must have different parameter lists so that Visual Basic can decide
which one to use when it creates a new object.

The following code shows a Person class that provides two constructors. The first takes no parameters
and sets the object’s FirstName and LastName values to “<unknown>.” The second version takes two
strings as parameters and copies them into the object’s FirstName and LastName values.

Public Class Person
Public FirstName As String
Public LastName As String

Public Sub New()
Me.New(“<unknown>”, “<unknown>”)

End Sub

Public Sub New(ByVal first_name As String, ByVal last_name As String)
FirstName = first_name
LastName = last_name

End Sub
End Class

The following code uses each of these constructors:

Dim person1 As New Person ‘ <unknown> <unknown>.
Dim person2 As New Person(“Olga”, “O’Toole”) ‘ Olga O’Toole.

If you do not provide any constructors for a class, Visual Basic allows the program to use the New key-
word with no parameters. If you create any constructor, however, Visual Basic does not allow the pro-
gram to use this default empty constructor (without parameters) unless you build one explicitly. For
example, if the previous version of the Person class did not include an empty constructor, the program
could not use the first declaration in the previous code that doesn’t include any parameters.

You can use this feature to ensure that the program assigns required values to an object. In this case, it
would mean that the program could not create a Person object without assigning FirstName and
LastName values.

If you want to allow an empty constructor in addition to other constructors, an alternative is to create a
single constructor with optional parameters. The following code shows this approach. With this class,
the program could create a new Person object, passing its constructor zero, one, or two parameters.

Public Class Person
Public FirstName As String
Public LastName As String

Public Sub New(_
Optional ByVal first_name As String = “<unknown>”, _

439

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 439

Optional ByVal last_name As String = “<unknown>”)
FirstName = first_name
LastName = last_name

End Sub
End Class

Structure Instantiation Details
Structures handle instantiation somewhat differently from object references. When you declare a refer-
ence variable, Visual Basic does not automatically allocate the object to which the variable points. On the
other hand, when you declare a value type such as a structure, Visual Basic automatically allocates space
for the variable’s data. That means you never need to use the New keyword to instantiate a structure.

However, the Visual Basic compiler warns you if you do not explicitly initialize a structure variable
before using it. To satisfy the compiler, you can use the New keyword to initialize the variable when you
declare it.

A structure can also provide constructors, and you can use those constructors to initialize the structure.
The following code defines the SPerson structure and gives it a constructor that takes two parameters,
the second optional:

Public Structure SPerson
Public FirstName As String
Public LastName As String

Public Sub New(_
ByVal first_name As String, _
Optional ByVal last_name As String = “<unknown>”)

FirstName = first_name
LastName = last_name

End Sub
End Structure

To use a structure’s constructor, you initialize the structure with the New keyword much as you initialize
a reference variable. The following code allocates a SPerson structure variable using the two-parameter
constructor:

Dim artist As New SPerson(“Sergio”, “Aragones”)

You can also use structure constructors later to reinitialize a variable or set its values, as shown here:

‘ Allocate the artist variable.
Dim artist As SPerson

‘ Do something with artist.
...

‘ Reset FirstName and LastName to Nothing.
artist = New SPerson

440

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 440

...

‘ Set FirstName and LastName to Bill Amend.
artist = New SPerson(“Bill”, “Amend”)

Structure and class constructors are very similar, but there are some major differences. A structure can-
not declare a constructor that takes no parameters. It also cannot provide a constructor with all optional
parameters, because that would allow the program to call it with no parameters. Visual Basic always
allows the program to use a default empty constructor to declare a structure variable, but you cannot
make it use your empty constructor. Unfortunately, that means you cannot guarantee that the program
always initializes the structure’s values as you can with a class. If you need that feature, you should use
a class instead of a structure.

You also cannot provide initialization values for variables declared within a structure as you can with a
class. That means you cannot use this technique to provide default values for the structure’s variables.

The following code demonstrates these differences. The CPerson class defines initial values for its
FirstName and LastName variables, provides an empty constructor, and provides a two-parameter con-
structor. The SPerson structure cannot define initial values for FirstName and LastName and cannot
provide an empty constructor.

‘ Class.
Public Class CPerson

Public FirstName As String = “<unknown>” ‘ Initialization value allowed.
Public LastName As String = “<unknown>” ‘ Initialization value allowed.

‘ Empty constructor allowed.
Public Sub New()
End Sub

‘ Two-parameter constructor allowed.
Public Sub New(ByVal first_name As String, ByVal last_name As String)

FirstName = first_name
LastName = last_name

End Sub
End Class

‘ Structure.
Public Structure SPerson

Public FirstName As String ‘ = “<unknown>” ‘ Initialization value NOT allowed.
Public LastName As String ‘ = “<unknown>” ‘ Initialization value NOT allowed.

‘’ Empty constructor NOT allowed.
‘Public Sub New()
‘End Sub

‘ Two-parameter constructor allowed.
Public Sub New(ByVal first_name As String, ByVal last_name As String)

FirstName = first_name
LastName = last_name

End Sub
End Structure

441

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 441

Garbage Collection
When a program starts, the system allocates a chunk of memory for the program called the managed heap.
When it allocates data for reference types (class objects), Visual Basic uses memory from this heap.

When the program no longer needs to use a reference object, Visual Basic does not mark the heap mem-
ory as free for later use. If you set a reference variable to Nothing so that no variable points to the object,
the object’s memory is no longer available to the program, but Visual Basic does not reuse the object’s
heap memory, at least not right away.

The garbage collector’s optimizing engine determines when it needs to clean up the heap. If the program
allocates and frees many reference objects, a lot of the heap may be full of memory that is no longer
used. In that case, the garbage collector will decide to clean house.

When it runs, the garbage collector examines all the program’s reference variables, parameters that are
object references, CPU registers, and other items that might point to heap objects. It uses those values to
build a graph describing the heap memory that the program can still access. It then compacts the objects
in the heap and updates the program’s references so that they can find any moved items. The garbage
collector then updates the heap itself so that the program can allocate memory from the unused portion.

When it destroys an object, the garbage collector frees the object’s memory and any managed resources
it contains. It may not free unmanaged resources, however. You can determine when and how an object
frees its managed and unmanaged resources by using the Finalize and Dispose methods.

Finalize
When it destroys an object, the garbage collector frees any managed resources used by that object. For
example, suppose that an unused object contains a reference to an open file stream. When the garbage
collector runs, it notices that the file stream is inaccessible to the program, so it destroys the file stream as
well as the object that contains its reference.

However, suppose that the object uses an unmanaged resource that is outside of the scope of objects that
Visual Basic understands. For example, suppose the object holds an integer representing a file handle,
network connection, or channel to a hardware device that Visual Basic doesn’t understand. In that case,
the garbage collector doesn’t know how to free that resource.

You can tell the garbage collector what to do by overriding the class’s Finalize method, which is inher-
ited from the Object class. The garbage collector calls an object’s Finalize method before permanently
removing the object from the heap. Note that there are no guarantees about exactly when the garbage
collector calls this method, or the order in which different objects’ methods are called. Two objects’
Finalize methods may be called in either order even if one contains a reference to the other or if one
was freed long before the other. If you must guarantee a specific order, you must provide more specific
clean-up methods of your own.

The following code demonstrates the Finalize method. The Form1 class defines the public variable
Running. It then defines the Junk class, which contains a variable referring to the Form1 class. This
class’s constructor saves a reference to the Form1 object that created it. Its Finalize method sets the
Form1 object’s Running value to False.

442

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 442

When the user clicks the form’s Go button, the btnGo_Click event handler sets Running to True and
starts creating Junk objects, passing the constructor this form as a parameter. The routine keeps creating
new objects as long as Running is True. Note that each time it creates a new object, the old object that
the variable new_obj used to point to becomes inaccessible to the program so it is available for garbage
collection.

Eventually the program’s heap runs low, so the garbage collector executes. When it destroys one of the
Junk objects, the object’s Finalize subroutine executes and sets the form’s Running value to False.
When the garbage collector finishes, the btnGo_Click event handler sees that Running is False, so it
stops creating new Junk objects. It displays the number of the last Junk object it created and is done.

Public Class Form1
Public Running As Boolean

Private Class Junk
Public MyForm As Form1

Public Sub New(ByVal my_form As Form1)
MyForm = my_form

End Sub

‘ Garbage collection started.
Protected Overrides Sub Finalize()

‘ Stop making objects.
MyForm.Running = False

End Sub
End Class

‘ Make objects until garbage collection starts.
Private Sub btnGo_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnGo.Click

Running = True

Dim new_obj As Junk
Dim max_i As Long
For i As Long = 1 To 100000

new_obj = New Junk(Me)

If Not Running Then
max_i = i
Exit For

End If
Next i
MessageBox.Show(“Allocated “ & max_i.ToString & “ objects”)

End Sub
End Class

In one test, this program created 30,456 Junk objects before the garbage collector ran. In a second trial
run immediately after the first, the program created 59,150 objects, and in a third it created 26,191. The
garbage collector gives you little control over when it finalizes objects.

Visual Basic also calls every object’s Finalize method when the program ends. Again, there are no
guarantees about the exact timing or order of the calls to different objects’ Finalize methods.

443

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 443

The following example code tests the Finalize method when the program ends. The Numbered class
contains a variable m_Number and initializes that value in its constructor. Its Finalize method writes
the object’s number in the Output window. The btnGo_Click event handler creates a new Numbered
object, giving it a new number. When the event handler ends, the new_numbered variable referring to
the Numbered object goes out of scope, so the object is no longer available to the program. If you look at
the Output window at this time, you will probably find that the program has not bothered to finalize the
object yet. If you click the button several times and then close the application, Visual Basic calls each
object’s Finalize method. If you click the button five times, you should see five messages displayed by
the objects’ Finalize methods.

Public Class Form1
Private Class Numbered

Private m_Number As Integer
Public Sub New(ByVal my_number As Integer)

m_Number = my_number
End Sub

‘ Garbage collection started.
Protected Overrides Sub Finalize()

‘ Display the object’s number.
Debug.WriteLine(“Number: “ & m_Number)

End Sub
End Class

‘ Make objects until garbage collection starts.
Private Sub btnGo_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnGo.Click

Static i As Integer = 0
i += 1
Dim new_numbered As New Numbered(i)
Me.Text = i.ToString

End Sub
End Class

If your class allocates unmanaged resources, you should give it a Finalize method to free them.

Dispose
Because Visual Basic doesn’t keep track of whether an object is reachable at any given moment, it doesn’t
know when it can permanently destroy an object until the program ends or the garbage collector
reclaims it. That means the object’s memory and resources may remain unused for quite a while. The
memory itself isn’t a big issue. If the program’s heap runs out of space, the garbage collector runs to
reclaim some of the unused memory.

If the object contains a reference to a resource, however, that resource is not freed until the object is final-
ized. That can have dire consequences. You generally don’t want control of a file, network connection,
scanner, or other scarce system resource left to the whims of the garbage collector.

By convention, the Dispose subroutine frees an object’s resources. Before a program frees an object that
contains important resources, it can call that object’s Dispose method to free them explicitly.

444

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 444

To handle the case where the program does not call Dispose, the class should also free any unmanaged
resources that it holds in its Finalize subroutine. Because Finalize is executed whether the program
calls Dispose or not, it must also be able to execute both the Dispose and Finalize subroutines with-
out harm. For example, if the program shuts down some piece of unusual hardware, it probably should
not shut down the device twice.

To make building a Dispose method a little easier, Visual Basic defines the IDisposable interface,
which declares the Dispose method. If you enter the statement Implements IDisposable and press
Enter, Visual Basic creates an empty Dispose method for you.

The following code demonstrates the Dispose and Finalize methods. The Named class has a Name
variable that contains a string identifying an object. Its Finalize method simply calls its Dispose
method. Dispose uses a static variable named done_before to ensure that it only performs its task only
once. If it has not already run, the Dispose method displays the object’s name. In a real application, this
method would free whatever resources the object holds. Whether the program explicitly calls Dispose,
or whether the garbage collector calls the object’s Finalize method, this code is executed exactly once.

The main program has two buttons labeled Dispose and No Dispose. When you click the Dispose but-
ton, the btnDispose_Click event handler makes a Named object, giving it a new name, and then calls
the object’s Dispose method, which immediately displays the object’s name.

When you click the No Dispose button, the btnNoDispose_Click event handler makes a new Named
object with a new name and then ends without calling the object’s Dispose method. Later, when the
garbage collector runs or when the program ends, the object’s Finalize method executes and calls
Dispose, which displays the object’s name.

Public Class Form1
Private Class Named

Implements IDisposable

‘ Save our name.
Public Name As String
Public Sub New(ByVal new_name As String)

Name = new_name
End Sub

‘ Free resources.
Protected Overrides Sub Finalize()

Dispose()
End Sub

‘ Display our name.
Public Sub Dispose() Implements System.IDisposable.Dispose

Static done_before As Boolean = False
If done_before Then Exit Sub
done_before = True

Debug.WriteLine(Name)
End Sub

End Class

‘ Make an object and dispose it.
Private Sub btnDispose_Click(ByVal sender As System.Object, _

445

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 445

ByVal e As System.EventArgs) Handles btnDispose.Click
Static i As Integer = 0
i += 1
Dim obj As New Named(“Dispose “ & i)
obj.Dispose()

End Sub

‘ Make an object and do not dispose it.
Private Sub btnNoDispose_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnNoDispose.Click

Static i As Integer = 0
i += 1
Dim obj As New Named(“No Dispose “ & i)

End Sub
End Class

If your class allocates managed or unmanaged resources and you don’t want to wait for the garbage col-
lector to get around to freeing them, you should implement a Dispose method and use it when you no
longer need an object.

Constants, Proper ties, and Methods
Declaring constants, properties, and methods within a class is the same as declaring them outside a
class. The main difference is that the context of the declaration is the class rather than a namespace. For
example, a variable declared Private within a class is available only to code within the class.

For information on declaring variables and constants, see Chapter 4, “Data Types, Variables, and
Constants.” For information on declaring methods, see Chapter 6, “Subroutines and Functions.” Chapter
6 also describes property procedures, special routines that implement a property for a class.

One issue that is sometimes confusing is that the unit scope of a class is the class’s code, not the code
within a specific instance of the class. If you declare a variable within a class Private, then all code
within the class can access the variable, whether or not that code belongs to the instance of the object
that contains the variable.

For example, consider the following Student class. The m_Scores array is Private to the class, so you
might think that a Student object could only access its own scores. In fact, any Student object can
access any other Student object’s m_Scores array as well. The CompareToStudent subroutine calcu-
lates the total score for the current Student object. It then calculates the total score for another student
and displays the results.

Public Class Student
Public FirstName As String
Public LastName As String
Private m_Scores() As Integer
...
Public Sub CompareToStudent(ByVal other_student As Student)

Dim my_score As Integer = 0
For i As Integer = 0 To m_Scores.GetUpperBound(0)

446

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 446

my_score += m_Scores(i)
Next i

Dim other_score As Integer = 0
For i As Integer = 0 To other_student.m_Scores.GetUpperBound(0)

other_score += other_student.m_Scores(i)
Next i

Debug.WriteLine(“My score: “ & my_score)
Debug.WriteLine(“Other score: “ & other_score)

End Sub
...

End Class

Breaking the encapsulation provided by the objects in this way can lead to unnecessary confusion. It is
generally better to try to access an object’s Private data only from within that object. Usually, you can
provide access routines that make using the object’s data easier to understand.

The following version of the Student class includes a TotalScore function that returns the total of a
Student object’s scores. This function works only with its own object’s scores, so it does not pry into
another object’s data. The CompareToStudent subroutine uses the TotalScore function to display the
total score for its object and for a comparison object.

Public Class Student
Public FirstName As String
Public LastName As String
Private m_Scores() As Integer
...
Public Sub CompareToStudent(ByVal other_student As Student)

Debug.WriteLine(“My score: “ & TotalScore())
Debug.WriteLine(“Other score: “ & other_student.TotalScore())

End Sub

‘ Return the total of this student’s scores.
Private Function TotalScore() As Integer

Dim total_score As Integer = 0
For i As Integer = 0 To m_Scores.GetUpperBound(0)

total_score += m_Scores(i)
Next i

Return total_score
End Function
...

End Class

Function TotalScore is itself declared Private, so only code within the class can use it. In this exam-
ple, the CompareToStudent subroutine calls another object’s Private TotalScore function, so the sep-
aration between the two objects is not absolute, but at least CompareToStudent doesn’t need to look
directly at the other object’s data.

447

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 447

Events
Properties let the application view and modify an object’s data. Methods let the program invoke the
object’s behaviors and perform actions. Together, properties and methods let the program send informa-
tion (data values or commands) to the object.

In a sense, events do the reverse: They let the object send information to the program. When something
noteworthy occurs in the object’s code, it can raise an event to tell the main program about it. The main
program can then decide what to do about the event.

The following sections describe events. They explain how a class declares events and how other parts of
the program can catch events.

Declaring Events
A class object can raise events whenever it needs to notify to the program of changing circumstances.
Normally, the class declares the event using the Event keyword. The following text shows the Event
statement’s syntax:

[attribute_list] [accessibility] [Shadows] _
Event event_name([parameters]) [Implements interface.event]

The following sections describe the pieces of this declaration. Some of these are similar to earlier sections
that describe constant, variable, and class declarations. By now, you should notice some familiarity in
the use of the attribute_list and accessibility clauses. For more information on constant and variable decla-
rations, see Chapter 4, “Data Types, Variables, and Constants.” For more information on class declara-
tions, see the section “Classes” earlier in this chapter.

attribute_list
The attribute_list defines attributes that apply to the event. For example, the following declaration
defines a description that the code editor should display for the ScoreAdded event:

Imports System.ComponentModel

Public Class Student
<Description(“Occurs when a score is added to the object”)> _
Public Event ScoreAdded(ByVal test_number As Integer)
...

End Class

accessibility
The accessibility value can take one of the following values: Public, Protected, Friend, Protected
Friend, and Private. These values determine which pieces of code can catch the event. Following is an
explanation of these keywords:

❑ Public — Indicates that there are no restrictions on the event. Code inside or outside the class
can catch the event.

❑ Protected — Indicates that the event is accessible only to code in the same class or in a
derived class.

448

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 448

❑ Friend — Indicates that the event is available to all code inside or outside the class module
within the same project. The difference between this and Public is that Public allows code
outside of the project to access the subroutine. This is generally only an issue for code libraries
(.dll files) and control libraries. For example, suppose that you build a code library containing
a class that raises some events. You then you write a program that uses the class. On one hand,
if the class declares an event with the Public keyword, then the code in the library and the
code in the main program can catch the event. On the other hand, if the class declares an event
with the Friend keyword, only the code in the library can catch the event, not the code in the
main program.

❑ Protected Friend — Indicates that the event has both Protected and Friend status. The
event is available only within the same project and within the same class or a derived class.

❑ Private — Indicates that the event is available only within the class that contains it. An
instance of the class can catch this event, but code outside of the class cannot.

Shadows
The Shadows keyword indicates that this event replaces an event in the parent class that has the same
name but not necessarily the same parameters.

parameters
The parameters clause gives the parameters that the event will pass to event handlers. The syntax for the
parameter list is the same as the syntax for declaring the parameter list for a subroutine or function.

If an event declares a parameter with the ByRef keyword, the code that catches the event can modify
that parameter’s value. When the event handler ends, the class code that raised the event can read the
new parameter value.

Implements interface.event
If the class implements an interface and the interface defines an event, this clause identifies this event as
the one defined by the interface. For example, the IStudent interface shown in the following code
defines the ScoreChanged event handler. The Student class implements the IStudent interface. The
declaration of the ScoreChanged event handler uses the Implements keyword to indicate that this
event handler provides the event handler defined by the IStudent interface.

Public Interface IStudent
Event ScoreChanged()
...

End Interface

Public Class Student
Implements IStudent

Public Event ScoreChanged() Implements IStudent.ScoreChanged
...

End Class

449

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 449

Raising Events
After it has declared an event, a class raises it with the RaiseEvent keyword. It should pass the event
whatever parameters were defined in the Event statement.

For example, the Student class shown in the following code declares a ScoreChange event. Its
AddScore method makes room for a new score, adds the score to the Scores array, and then raises the
ScoreChanged event, passing the event handler the index of the score in the Scores array.

Public Class Student
Private Scores() As Integer
...
Public Event ScoreChanged(ByVal test_number As Integer)
...
Public Sub AddScore(ByVal new_score As Integer)

ReDim Preserve Scores(Scores.Length)
Scores(Scores.Length - 1) = new_score
RaiseEvent ScoreChanged(Scores.Length - 1)

End Sub
...

End Class

Catching Events
There are two ways that you can catch an object’s events. First, you can declare the object variable using
the WithEvents keyword, as shown in the following code:

Private WithEvents TopStudent As Student

In the code editor, click the left drop-down list and select the variable’s name. In the right drop-down
list, select the event. This makes the code editor create an empty event handler similar to the following
one. When the object raises its ScoreChanged event, the event handler executes.

Private Sub TopStudent_ScoreChanged(ByVal test_number As Integer) _
Handles TopStudent.ScoreChanged

End Sub

The second method for catching events is to use the AddHandler statement to define an event handler
for the event. First, write the event handler subroutine. This subroutine must take parameters of the
proper type to match those defined by the event’s declaration in the class. The following code shows a
subroutine that can handle the ScoreChanged event. Note that the parameter’s name has been changed,
but its accessibility (ByRef or ByVal) and data type must match those declared for the ScoreChanged
event.

Private Sub HandleScoreChanged(ByVal quiz_num As Integer)

End Sub

450

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 450

If the event handler’s parameter list is long and complicated, writing an event handler can be tedious. To
make this easier, you can declare an object using the WithEvents keyword and use the drop-down lists
to give it an event handler. Then you can edit the event handler to suit your needs (change its name,
remove the Handles clause, change parameter names, and so forth).

After you build the event handler routine, use the AddHandler statement to assign the routine to a par-
ticular object’s event. The following statement makes the HandleScoreChanged event handler catch the
TopStudent object’s ScoreChanged event:

AddHandler TopStudent.ScoreChanged, AddressOf HandleScoreChanged

Using AddHandler is particularly handy when you want to use the same event handler with more than
one object. For example, you might write an event handler that validates a TextBox control’s contents to
ensure that it contains a valid phone number. By repeatedly using the AddHandler statement, you can
make the same event handler validate any number of TextBox controls.

AddHandler is also convenient if you want to work with an array of objects. The following code shows
how a program might create an array of Student objects and then use the HandleScoreChanged sub-
routine to catch the ScoreChanged event for all of them:

‘ Create an array of Student objects.
Const MAX_STUDENT As Integer = 30
Dim students(MAX_STUDENT) As Student
For i As Integer = 0 To MAX_STUDENT

students(i) = New Student
Next i

‘ Add ScoreChanged event handlers.
For i As Integer = 0 To MAX_STUDENT

AddHandler students(i).ScoreChanged, AddressOf HandleScoreChanged
Next i
...

If you plan to use AddHandler in this way, you may want to ensure that the events provide enough
information for the event handler to figure out which object raised the event. For example, you might
modify the ScoreChanged event so that it passes a reference to the object raising the event into the event
handler. Then the shared event handler can determine which Student object had a score change.

If you add an event handler with AddHandler, you can later remove it with the RemoveHandler state-
ment. The syntax is the same as the syntax for AddHandler, as shown here:

RemoveHandler TopStudent.ScoreChanged, AddressOf HandleScoreChanged

Declaring Custom Events
A second form of event declaration provides more control over the event. This version is quite a bit more
complicated and at first can seem very confusing. Skim through the syntax and description that follows
and then look at the example. Then if you go back and look at the syntax and description again, they
should make more sense. This version is also more advanced and you may not need it often (if ever), so
you can skip it for now if you get bogged down.

451

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 451

This version enables you to define routines that are executed when the event is bound to an event han-
dler, removed from an event handler, and called. The syntax is as follows:

[attribute_list] [accessibility] [Shadows] _
Custom Event event_name As delegate_name [Implements interface.event]

[attribute_list] AddHandler(ByVal value As delegate_name)
...

End AddHandler
[attribute_list] RemoveHandler(ByVal value As delegate_name)

...
End RemoveHandler
[attribute_list] RaiseEvent(delegate_signature)

...
End RaiseEvent

End Event

The attribute_list, accessibility, Shadows, and Implements interface.event parts have the same meaning as
in the previous, simpler event declaration. See the section “Declaring Events” earlier in this chapter for
information on these pieces.

The delegate_name tells Visual Basic the type of event handler that will catch the event. For example, the
delegate might indicate a subroutine that takes as a parameter a String variable named new_name. The
following code shows a simple delegate for this routine. The delegate’s name is NameChangedDelegate.
It takes a String parameter named new_name.

Public Delegate Sub NameChangedDelegate(ByVal new_name As String)

For more information on delegates, see the section “Delegates” in Chapter 4, “Data Types, Variables, and
Constants.”

The main body of the custom event declaration defines three routines named AddHandler,
RemoveHandler, and RaiseEvent. You can use these three routines to keep track of the event handlers
assigned to an object (remember that the event declaration is declaring an event for a class) and to call
the event handlers when appropriate.

The AddHandler routine executes when the program adds an event handler to the object. It takes as a
parameter a delegate variable named value. This is a reference to a routine that matches the delegate
defined for the event handler. For example, if the main program uses the AddHandler statement to add
the subroutine Employee_NameChanged as an event handler for this object, then the parameter to
AddHandler is a reference to the Employee_NameChanged subroutine.

Normally, the AddHandler subroutine saves the delegate in some sort of collection so that the
RaiseEvent subroutine described shortly can invoke it.

The RemoveHandler subroutine executes when the program removes an event handler from the object.
It takes as a parameter a delegate variable indicating the event handler that should be removed.
Normally, the RemoveHandler subroutine deletes the delegate from the collection that AddHandler
used to originally store the delegate.

452

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 452

Finally, the RaiseEvent subroutine executes when the object’s code uses the RaiseEvent statement to
raise the event. For example, suppose that the Employee class defines the NameChanged event. When
the class’s FirstName or LastName property procedure changes an Employee object’s name, it uses the
RaiseEvent statement to raise the NameChanged event. At that point, the custom RaiseEvent subrou-
tine executes.

Normally, the RaiseEvent subroutine calls the delegates stored by the AddHandler subroutine in the
class’s collection of event delegates.

The following code shows how the Employee class might implement a custom NameChanged event. It
begins with the FirstName and LastName property procedures. The Property Set procedures both use
the RaiseEvent statement to raise the NameChanged event. This is fairly straightforward and works just
as it would if the class used the simpler event declaration. Next the code defines an ArrayList named
m_EventDelegates that it will use to store the event handler delegates. It then uses a Delegate state-
ment to define the types of event handlers that this event will call. In this example, the event handler
must be a subroutine that takes a String parameter passed by value. Now the code defines the
NameChanged custom event. Notice that the Custom Event statement ends with the delegate
NameChangedDelegate. If you type this first line and press Enter, Visual Basic creates empty
AddHandler, RemoveHandler, and RaiseEvent subroutines for you.

Subroutine AddHandler displays a message and saves the delegate in the m_EventDelegates list. When
AddHandler is called, the value parameter refers to an event handler routine that has the proper type.

The subroutine RemoveHandler displays a message and removes a delegate from the
m_EventDelegates list. In a real application, this routine would need some error-handling code in case
the delegate is not in m_EventDelegates.

When the FirstName and LastName property set procedures use the RaiseEvent statement, the
RaiseEvent subroutine executes. This routine’s parameter takes whatever value the class used when it
used the RaiseEvent statement. This subroutine displays a message and then loops through all the del-
egates stored in the m_EventDelegates list, invoking each. It passes each delegate the new_name value
it received in its parameter, with spaces replaced by plus signs.

Public Class Employee
‘ The FirstName property.
Private m_FirstName As String
Public Property FirstName() As String

Get
Return m_FirstName

End Get
Set(ByVal value As String)

m_FirstName = value
RaiseEvent NameChanged(m_FirstName & “ “ & m_LastName)

End Set
End Property

‘ The LastName property.
Private m_LastName As String
Public Property LastName() As String

Get
Return m_LastName

453

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 453

End Get
Set(ByVal value As String)

m_LastName = value
RaiseEvent NameChanged(m_FirstName & “ “ & m_LastName)

End Set
End Property

‘ List to hold the event handler delegates.
Private m_EventDelegates As New ArrayList

‘ Defines the event handler signature.
Public Delegate Sub NameChangedDelegate(ByVal new_name As String)

‘ Define the custom NameChanged event.
Public Custom Event NameChanged As NameChangedDelegate

AddHandler(ByVal value As NameChangedDelegate)
Debug.WriteLine(“AddHandler”)
m_EventDelegates.Add(value)

End AddHandler

RemoveHandler(ByVal value As NameChangedDelegate)
Debug.WriteLine(“RemoveHandler”)
m_EventDelegates.Remove(value)

End RemoveHandler

RaiseEvent(ByVal new_name As String)
Debug.WriteLine(“RaiseEvent (“ & new_name & “)”)
For Each a_delegate As NameChangedDelegate In m_EventDelegates

a_delegate(new_name.Replace(“ “, “+”))
Next a_delegate

End RaiseEvent
End Event

End Class

The following code demonstrates the NameChanged event handler. It creates a new Employee object and
then uses two AddHandler statements to assign the event Employee_NameChanged handler to the
object’s NameChanged event. This makes the custom AddHandler subroutine execute twice and save
two references to the Employee_NameChanged subroutine in the delegate list. Next, the program sets the
Employee object’s FirstName. The FirstName property set procedure raises the NameChanged event so
the RaiseEvent subroutine executes. RaiseEvent loops through the delegate list and calls the dele-
gates. In this example, that means the subroutine Employee_NameChanged executes twice. The program
then uses a RemoveHandler statement to remove an Employee_NameChanged event handler. The cus-
tom RemoveHandler subroutine executes and removes one instance of the Employee_NameChanged
subroutine from the delegate list. Next the program sets the Employee object’s LastName. The
LastName property set procedure uses the RaiseEvent statement so the RaiseEvent subroutine exe-
cutes. Now there is only one instance of the Employee_NameChanged subroutine in the delegate list, so
it is called once. Finally, the code uses the RemoveHandler statement to remove the remaining instance
of Employee_NameChanged from the delegate list. The RemoveHandler subroutine executes and
removes the instance form the delegate list.

454

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 454

Dim emp As New Employee
AddHandler emp.NameChanged, AddressOf Employee_NameChanged
AddHandler emp.NameChanged, AddressOf Employee_NameChanged
emp.FirstName = “Rod”
RemoveHandler emp.NameChanged, AddressOf Employee_NameChanged
emp.LastName = “Stephens”
RemoveHandler emp.NameChanged, AddressOf Employee_NameChanged

The following text shows the result in the Debug window. It shows where the AddHandler,
RaiseEvent, and RemoveHandler subroutines execute. You can also see where the
Employee_NameChanged event handler executes and displays its name.

AddHandler
AddHandler
RaiseEvent (Rod)
Employee_NameChanged: Rod+
Employee_NameChanged: Rod+
RemoveHandler
RaiseEvent (Rod Stephens)
Employee_NameChanged: Rod+Stephens
RemoveHandler

Shared Variables
If you declare a variable in a class with the Shared keyword, all objects of the class share a single
instance of that variable. You can get or set the variable’s value through any instance of the class.

For example, suppose the Student class declares a shared NumStudents variable, as shown in the fol-
lowing code:

Public Class Student
Shared NumStudents As Integer

...
End Class

In this case, all instances of the Student class share the same NumStudents value. The following code
creates two Student objects. It uses one to set the shared NumStudents value and uses the other to dis-
play the result.

Dim student1 As New Student
Dim student2 As New Student
student1.NumStudents = 100
MessageBox.Show(student2.NumStudents)

Because all instances of the class share the same variable, any changes to the value that you make using
one object are visible to all the others. Figure 15-4 illustrates this idea. Each Student class instance has
its own FirstName, LastName, Scores, and other “individual” data values, but they all share the same
NumStudents value.

455

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 455

Figure 15-4: If a variable in a class is declared Shared, all
instances of a class share the same value.

Because a shared variable is associated with the class as a whole and not a specific instance of the class,
Visual Basic lets you refer to it using the class’s name in addition to using specific instance variables. The
following code defines a new Student object and uses it to set NumStudents to 100. It then uses the
class name to display the NumStudents value.

Dim student1 As New Student
student1.NumStudents = 100
MessageBox.Show(Student.NumStudents)

Shared Methods
Shared methods are a little less intuitive than shared variables. Like shared variables, shared methods
are accessible using the class’s name. For example, the NewStudent function shown in the following
code is declared with the Shared keyword. This function creates a new Student object, initializes it by
adding it to some sort of database and then returns the new object.

Public Class Student
...
‘ Return a new Student.
Public Shared Function NewStudent() As Student

‘ Instantiate the Student.
Dim new_student As New Student

‘ Add the new student to the database.
‘...

‘ Return the new student.
Return new_student

End Function
...

End Class

The type of function that creates a new instance of a class is sometimes called a factory method. In some
cases, you can use an appropriate constructor instead of a factory method. One time when a factory

Student Class

NumStudents
S

tu
de

nt
 In

st
an

ce
s

LastName

Scores

...

FirstName

NumStudents

NumStudents

LastName

Scores

...

FirstName

NumStudents

LastName

Scores

...

FirstName

456

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 456

method is useful is when object creation might fail. If data passed to the method is invalid, some
resource (such as a database) prohibits the new object (perhaps a new Student has the same name as an
existing Student), or the object may come from more than one place (for example, it may either be a
new object or one taken from a pool of existing objects). In those cases, a factory method can return
Nothing. A constructor could raise an error, but it cannot force an object to not be created.

If you want to force the program to use a factory method rather than creating an instance of the object
directly, give the class a private constructor. Code that lies outside of the class cannot use the constructor
because it is private. It also cannot use the default constructor associated with the New statement because
the class has an explicit constructor. The code must create new objects by using the factory method,
which can use the private constructor because it’s inside the class.

As is the case with shared variables, you can access a shared method by using any instance of the class
or by using the class’s name. The following code declares the student1 variable and initializes it by call-
ing the NewStudent factory method using the class’s name. Next, the code declares student2 and uses
the student1 object’s NewStudent method to initialize it.

Dim student1 As Student = Student.NewStudent()
Dim student2 As Student = student1.NewStudent()

By default, Visual Basic warns you if you try to access a shared member by using a specific variable such
as student1 rather than the class name.

One oddity of shared methods is that they can use class variables and methods only if they are also
shared. If you think about accessing a shared method through the class name rather than an instance of
the class, this makes sense. If you don’t use an instance of the class, then there is no instance to give the
method data.

In the following code, the Student class declares the variable NumStudents with the Shared keyword
so shared methods can use that value. It declares the instance variables FirstName and LastName with-
out the Shared keyword, so shared methods cannot use those values. The shared NewStudent method
starts by incrementing the shared NumStudents value. It then creates a new Student object and initial-
izes its FirstName and LastName values. It can initialize those values because it is using a specific
instance of the class and that instance has FirstName and LastName values.

Public Class Student
Public Shared NumStudents As Integer
Public FirstName As String
Public LastName As String
...
‘ Return a new Student.
Public Shared Function NewStudent() As Student

‘ Increment the number of Students loaded.
NumStudents += 1

‘ Instantiate the Student.
Dim new_student As New Student
new_student.FirstName = “<unknown>”
new_student.LastName = “<unknown>”

‘ Add the new student to the database.

457

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 457

...

‘ Return the new student.
Return new_student

End Function
...

End Class

Figure 15-5 illustrates the situation. The shared NewStudent method is contained within the class itself
and has access to the NumStudents variable. If it wanted to use a FirstName, LastName, or Scores
value, however, it needs to use an instance of the class.

Figure 15-5: A shared method can only access other shared
variables and methods.

Summary
Classes and structures are very similar. Both are container types that group related variables, methods,
and events in a single entity.

Most developers use classes exclusively, primarily because structures are relatively new and developers
are more familiar with classes. Structures also have the additional restriction that they cannot take
advantage of inheritance.

Another significant factor when picking between classes and structures, however, is their difference in
type. Classes are reference types, while structures are value types. This gives them different behaviors
when defining and initializing objects, and when passing objects to routines by value and by reference.

Once you understand the differences between classes and structures, you can pick the one that is more
appropriate for your application.

Student Class

NumStudents

S
tu

de
nt

 In
st

an
ce

s

LastName

Scores

...

FirstName

NumStudents

NewStudent method

NumStudents

LastName

Scores

...

FirstName

NumStudents

LastName

Scores

...

FirstName

458

Chapter 15

17_571982 ch15.qxd 9/1/05 7:30 PM Page 458

If you build enough classes and structures, you may start to have naming collisions. It is common for
developers working on different projects to define similar business classes such as Employee, Customer,
Order, and InventoryItem. While these objects may be similar, they may differ in important details.
The Customer class defined for a billing application might include lots of account and billing address
information, while a repair assignment application might focus on the customer’s equipment and needs.

Having two Customer classes around can result in confusion and programs that cannot easily interact
with each other. Namespaces can help categorize code and differentiate among classes. You can define
separate namespaces for the billing and repair assignment applications, and use them to tell which ver-
sion of the Customer class you need for a particular purpose.

Chapter 16 describes namespaces in detail. It explains how to create namespaces and how to use them to
refer to classes created in other modules.

459

Classes and Structures

17_571982 ch15.qxd 9/1/05 7:30 PM Page 459

17_571982 ch15.qxd 9/1/05 7:30 PM Page 460

Namespaces
In large applications, it is fairly common to have name collisions. One developer might create an
Employee class, while another makes a function named Employee that returns the employee ID
for a particular person’s name. Or two developers might build different Employee classes that
have different properties and different purposes. When multiple items have the same name, this
is called a namespace collision or namespace pollution.

These sorts of name conflicts are most common when programmers are not working closely
together. For example, different developers working on the payroll and human resources systems
might both define Employee classes.

Namespaces enable you to classify and distinguish among programming entities that have the
same name. For instance, you might build the payroll system in the Payroll namespace and the
human resources system in the HumanResources namespace. Then, the two Employee classes
would have fully qualified names Payroll.Employee and HumanResources.Employee, so they
could coexist peacefully.

The following code shows how an application would declare these two types of Employee objects:

Dim payroll_emp As Payroll.Employee
Dim hr_emp As HumanResources.Employee

Namespaces can contain other namespaces, so you can build a hierarchical structure that groups
different entities. You can divide the Payroll namespace into pieces to give developers working on
that project some isolation from each other.

Namespaces can be confusing at first, but they are really fairly simple. They just break the code up
into manageable pieces so that you can group parts of the program and tell different parts from
each other.

This chapter describes namespaces. It explains how to use namespaces to categorize programming
items and how to use them to select the right versions of items with the same name.

18_571982 ch16.qxd 9/1/05 7:24 PM Page 461

The Impor ts Statement
Visual Studio defines an enormous number of variables, classes, routines, and other entities to provide
tools for your applications. It categorizes them in namespaces to prevent name collisions and to make it
easier for you to find the items you need.

Visual Studio’s root namespaces are named Microsoft and System. The Microsoft namespace includes
the CSharp, JScript, VisualBasic, and Vsa namespaces that support different programming languages.
The Microsoft namespace also includes the Win32 namespace, which provides classes that handle oper-
ating system events and that manipulate the registry.

The System namespace contains a huge number of useful programming items, including many
nested namespaces. For example, the System.Drawing namespace contains classes related to drawing,
System.Data contains classes related to databases, System.Threading holds classes dealing with multi-
threading, and System.Security includes classes for working with security and cryptography.

Note that these namespaces are not necessarily available to your program at all times. For example, by
default, the Microsoft.JScript namespace is not available to Visual Basic programs. To use it, you must
first add a reference to the Microsoft.JScript.dll library.

Visual Studio includes so many programming tools that the namespace hierarchy is truly enormous.
Namespaces are refined into subnamespaces, which may be further broken into more namespaces until
they reach a manageable size. While this makes it easier to differentiate among all of the different pro-
gramming entities, it makes the fully qualified names of some classes rather cumbersome.

For example, the following code draws a rectangle inside a form. Fully qualified names such as
System.Drawing.Drawing2D.DashStyle.DashDotDot are so long that they make the code hard
to read.

Private Sub DrawDashedBox(ByVal gr As System.Drawing.Graphics)
Dim my_pen As New System.Drawing.Pen(System.Drawing.Color.Blue, 5)
my_pen.DashStyle = System.Drawing.Drawing2D.DashStyle.DashDotDot

Dim rect As System.Drawing.Rectangle = Me.ClientRectangle
rect.X += 10
rect.Y += 10
rect.Width -= 20
rect.Height -= 20
gr.Clear(Me.BackColor)
gr.DrawRectangle(my_pen, rect)

End Sub

You can use the Imports statement at the top of the file to make using namespaces easier. After you
import a namespace, your code can use the items it contains without specifying the namespace.

The following version of the previous code imports the System.Drawing and System.Drawing.Drawing2D
namespaces, so it doesn’t need to mention the namespaces in its object declarations. This version is much
easier to read.

462

Chapter 16

18_571982 ch16.qxd 9/1/05 7:24 PM Page 462

Imports System.Drawing
Imports System.Drawing.Drawing2D
...
Private Sub DrawDashedBox(ByVal gr As Graphics)

Dim my_pen As New Pen(Color.Blue, 5)
my_pen.DashStyle = DashStyle.DashDotDot

Dim rect As Rectangle = Me.ClientRectangle
rect.X += 10
rect.Y += 10
rect.Width -= 20
rect.Height -= 20
gr.Clear(Me.BackColor)
gr.DrawRectangle(my_pen, rect)

End Sub

Figure 16-1 shows the results.

Figure 16-1: The Imports statement greatly simplifies the code that
draws this dashed rectangle.

A file can include any number of Imports statements. The statements must appear at the beginning of
the file, and they define namespace shortcuts for the entire file. If you want different pieces of code to
use different sets of Imports statements, you must place the pieces of code in different files. If the pieces
of code are in the same class, use the Partial keyword so you can split the class into several files.

If a program imports more than one namespace that defines the same class, it must use fully qualified
names to select the right versions. For example, suppose that the Payroll and HumanResources modules
both define Employee classes. Then you must use the fully qualified names Payroll.Employee and
HumanResources.Employee to differentiate between the two.

The complete syntax for the Imports statement is as follows:

Imports [alias =] namespace[.element]

The following sections describe namespace aliases and elements in detail.

463

Namespaces

18_571982 ch16.qxd 9/1/05 7:24 PM Page 463

Automatic Imports
Visual Basic lets you quickly import a namespace for all of the modules in a project. In Solution Explorer,
double-click My Project. Click on the References tab to display the page shown in Figure 16-2.

Figure 16-2: Use the My Project References tab to import namespaces for every module in a project.

In the Imported Namespaces list at the bottom, check the box next to the namespaces that you want to
import. The program’s files will be able to use the objects defined in these namespaces, even though they
do not include Imports statements.

This is most useful when most of the program’s modules need to import the same namespaces.
Including the Imports statement in the files makes it easier for developers to see which namespaces are
available, however, so you might want to do this instead, particularly if you use unusual namespaces.

By default, Visual Basic loads imports for the type of application you are building. For example, when
you start a Windows form application, Visual Basic imports the following namespaces:

❑ Microsoft.VisualBasic

❑ System

❑ System.Collections

464

Chapter 16

18_571982 ch16.qxd 9/1/05 7:24 PM Page 464

❑ System.Collections.Generic

❑ System.Drawing

❑ System.Diagnostics

❑ System.Windows.Forms

You can use the upper half of the References property page to manage project references. Use the Add
and Remove buttons (scrolled off to the right in Figure 16-2) to add and remove references.

Click the Unused References button (scrolled off to the right in Figure 16-2) to see a list of referenced
libraries not currently used by the project. Before you distribute the program, you can remove the
unused references.

Namespace Aliases
You can use the alias clause to define a shorthand notation for the namespace. For instance, the following
code imports the System.Drawing.Drawing2D namespace and gives it the alias D2. Later, it uses D2 as
shorthand for the fully qualified namespace.

Imports D2 = System.Drawing.Drawing2D
...
Dim dash_style As D2.DashStyle = D2.DashStyle.DashDotDot

An Imports statement with an alias is more restrictive than an Imports statement without one. The
previous code defines a namespace alias, so the code must use the alias to access the namespace. On one
hand, if you remove the occurrences of D2 from the declaration of the dash_style variable, Visual Basic
will not understand what the DashStype type and the DashStyle.DashDotDot value mean. On the
other hand, if you omit the alias from the Imports statement, the previous code works without the
occurrences of D2.

You can get the best of both worlds by importing the namespace twice, once with an alias and once with-
out. The following code imports the System.Drawing.Drawing2D namespace twice. In the declaration
of the variable dash_style, the variable’s type DashStyle does not use the namespace alias, but the
initialization value D2.DashStyle.DashDotDot does.

Imports System.Drawing.Drawing2D
Imports D2 = System.Drawing.Drawing2D
...
Dim dash_style As DashStyle = D2.DashStyle.DashDotDot

This technique is handy if you need to use two namespaces that define different classes with the same
name. Normally, if two namespaces define classes with the same name, you must use the fully qualified
class names so that Visual Basic can tell them apart. You can use aliases to indicate the namespaces more
concisely.

Suppose that the JobClasses and FinanceStuff namespaces both define an Employee class. If you declare
a variable using the unqualified class Employee, Visual Basic would not know which version to use. The
following code shows how you can declare fully qualified versions of the Employee class:

465

Namespaces

18_571982 ch16.qxd 9/1/05 7:24 PM Page 465

Imports MyApplication.JobClasses
Imports MyApplication.FinanceStuff
...
Dim job_emp As MyApplication.JobClasses.Employee
Dim finance_emp As MyApplication.FinanceStuff.Employee
...

You can use aliases to simplify these declarations. You could use Job as an alias for MyApplication
.JobClasses and Finance as an alias for MyApplication.FinanceStuff.

Now suppose that the JobClasses namespace also defines the Dispatcher class. The FinanceStuff name-
space does not define a Dispatcher class, so there is no name conflict between the namespaces. You
could use the Job alias to refer to the Dispatcher class, or you could import the JobClasses namespace
again without an alias as shown in the following code:

Imports MyApplication.JobClasses
Imports Job = MyApplication.JobClasses
Imports Finance = MyApplication.FinanceStuff
...
Dim job_emp As Job.Employee
Dim finance_emp As Finance.Employee
Dim job_dispatcher As Dispatcher
...

Namespace Elements
In addition to importing a namespace, you can import an element within the namespace. This is particu-
larly useful for enumerated types.

For example, the following code imports the System.Drawing.Drawing2D namespace, which defines the
DrawStyle enumeration. It declares the variable dash_style to be of the DashStyle type and sets its
value to DashStyle.DashDotDot.

Imports System.Drawing.Drawing2D
...
Dim dash_style As DashStyle = DashStyle.DashDotDot
...

The following code also imports the System.Drawing.Drawing2D.DashStyle enumeration. That allows it
to set the value of the dash_style variable to DashDotDot without needing to specify the name of the
enumeration (DashStyle).

Imports System.Drawing.Drawing2D
Imports System.Drawing.Drawing2D.DashStyle
...
Dim dash_style As DashStyle = DashDotDot
...

466

Chapter 16

18_571982 ch16.qxd 9/1/05 7:24 PM Page 466

The Root Namespace
Every project has a root namespace, and every item in the project is contained directly or indirectly within
that namespace. To view or change the project’s root namespace, open Solution Explorer and double-click
the My Projects entry. View or modify the root namespace on the Application tab shown in Figure 16-3.

Figure 16-3: The Application tab shows the project’s root namespace.

Making Namespaces
You can create new namespaces nested within the root namespace to further categorize your code. The eas-
iest way to create a namespace is by using the Namespace statement. The following code declares a name-
space called SchedulingClasses. It includes the definition of the TimeSlot class and possibly other classes.

Namespace SchedulingClasses
Public Class TimeSlot

...
End Class
...

End Namespace

467

Namespaces

18_571982 ch16.qxd 9/1/05 7:24 PM Page 467

After defining this namespace, code inside the namespace can refer to the new class as simply TimeSlot.
Code outside of the namespace can refer to the class using the namespace as shown in the following code
(assuming MyApplication is the project’s root namespace):

Dim time_slot As New MyApplication.SchedulingClasses.TimeSlot

You can nest namespaces within other namespaces to any depth. In fact, because all of your application’s
code is contained within the root namespace, any namespace you create must be contained within another
namespace. There is no way to make a namespace that is not contained within the root namespace.

If you want to make a namespace that lies outside of the application’s root namespace, you must create a
library project. Then the code in that project lies within its own root namespace.

The following code defines the DispatchClasses namespace. That namespace contains the
AppointmentClasses and JobClasses namespaces, each of which defines some classes.

Namespace DispatchClasses
Namespace AppointmentClasses

Public Class AppointmentWindow
...

End Class
...

End Namespace

Namespace JobClasses
Public Class SkilledJob

...
End Class
...

End Namespace
End Namespace

The following code shows how an application could create references to AppointmentWindow and
SkilledJob objects using the class’s fully qualified names:

Dim appt As New MyApplication.DispatchClasses.AppointmentClasses.AppointmentWindow
Dim job As New MyApplication.DispatchClasses.JobClasses.SkilledJob

A Namespace statement can only appear at the namespace level. You cannot create a namespace within a
module, class, or structure.

Inside a namespace, you can define other namespaces, classes, structures, modules, enumerated types,
and interfaces. You cannot directly define variables, properties, subroutines, functions, or events. Those
items must be contained within some other entity (such as a class, structure, module, or interface).

You can use more than one Namespace statement to define pieces of the same namespace. For example,
the following code uses a Namespace statement to make the OrderEntryClasses namespace, and it
defines the Employee class inside it. Later, the code uses another Namespace statement to add the
Customer class to the same namespace. In this case, the single namespace contains both classes.

468

Chapter 16

18_571982 ch16.qxd 9/1/05 7:24 PM Page 468

Namespace OrderEntryClasses
Public Class Employee

...
End Class

End Namespace
...
Namespace OrderEntryClasses

Public Class Customer
...

End Class
End Namespace

Scattering pieces of a namespace throughout your code will probably confuse other developers. One
case where it might make sense to break a namespace into pieces would be if you want to put different
classes in different code files, either to prevent any one file from becoming too big or to allow different
programmers to work on the files at the same time. In that case, it might make sense to place related
pieces of the application in the same namespace but in different files.

Classes, Structures, and Modules
Modules, classes, and structures create their own name contexts that are similar in some ways to name-
spaces. For example, a class can contain the definition of another class and a structure can contain the
definition of another structure, as shown in the following code:

Public Class Class1
Public Class Class2

...
End Class

End Class

Public Structure Struct1
Public Name As String

Public Structure Struct2
Public Name As String

End Structure
End Structure

You can access public module members and shared class or structure members using a fully qualified syn-
tax similar to the one used by namespaces. For example, the following code creates the GlobalValues
module and defines the public variable MaxJobs within it. Later, the program can set MaxJobs using its
fully qualified name.

Module GlobalValues
Public MaxJobs As Integer
...

End Module
...
MyApplication.GlobalValues.MaxJobs = 100

469

Namespaces

18_571982 ch16.qxd 9/1/05 7:24 PM Page 469

While these cases look very similar to namespaces, they really are not. One big difference is that you can-
not use a Namespace statement inside a class, structure, or module.

IntelliSense gives another clue that Visual Basic treats classes, structures, and modules differently from
namespaces. The IntelliSense popup shown in Figure 16-4 displays curly braces {} next to the FinanceStuff
and JobClasses namespaces, but it displays different icons for the classes Employer and Form1, and the
module Module1.

Figure 16-4: IntelliSense displays curly braces {} to the left of namespaces such as FinanceStuff and
JobClasses.

Resolving Namespaces
Normally, Visual Basic does a pretty good job of resolving namespaces, and you don’t need to worry
too much about the process. If you import a namespace, you can omit the namespace in any declarations
that you use. If you have not imported a namespace, you can fully qualify declarations that use the
namespace and you’re done. There are some in-between cases, however, that can be confusing. To
understand them, it helps to know a bit more about how Visual Basic resolves namespaces.

470

Chapter 16

18_571982 ch16.qxd 9/1/05 7:24 PM Page 470

When Visual Basic sees a reference that uses a fully qualified namespace, it looks in that namespace for
the item it needs and that’s that. It either succeeds or fails. For example, the following code declares a
variable of type System.Collections.Hashtable. Visual Basic looks in the System.Collections name-
space and tries to find the Hashtable class. If the class is not there, the declaration fails.

Dim hash_table As New System.Collections.Hashtable

When Visual Basic encounters a qualified namespace, it first assumes that it is fully qualified. If it cannot
resolve the reference as described in the previous paragraph, it tries to treat the reference as partially
qualified and it looks in the current namespace for a resolution. For example, suppose you declare a
variable as shown in the following code:

Dim emp As JobClasses.Employee

In this case, Visual Basic searches the current namespace for a nested namespace called JobClasses. If it
finds such a namespace, it looks for the Employee class in that namespace.

If Visual Basic cannot resolve a namespace using these methods, it moves up the namespace hier-
archy and tries again. For example, suppose that the current code is in the MyApplication.JobStuff
.EmployeeClasses.TimeSheetRoutines namespace. Now, suppose that the SalaryLevel class is defined
in the MyApplication.JobStuff namespace and consider the following code:

Dim salary_level As New SalaryLevel

Visual Basic examines the current namespace MyApplication.JobStuff.EmployeeClasses.TimeSheetRoutines
and doesn’t find a definition for SalaryLevel. It moves up the namespace hierarchy and searches the
MyApplication.JobStuff.EmployeeClasses namespace, again failing to find SalaryLevel. It moves up the
hierarchy again to the MyApplication.JobStuff namespace, and there it finally finds the SalaryLevel class.

Movement up the namespace hierarchy can sometimes be a bit confusing. It may lead Visual Basic to
resolve references in an ancestor of the current namespace, in some sort of “uncle/aunt” namespace, or
in a “cousin” namespace.

For example, consider the namespace hierarchy shown in Figure 16-5. The root namespace MyApplication
contains the namespaces BusinessClasses and AssignmentStuff. BusinessClasses defines the Employee
and Customer classes. AssignmentStuff contains the AssignmentGlobals module, which defines the
MakeAssignment subroutine and a different version of the Employee class.

Now, suppose that the Customer class contains the following subroutine:

Public Sub AssignEmployee()
AssignmentStuff.AssignmentGlobals.MakeAssignment(Me)
...

End Sub

This code lies in the MyApplication.BusinessClasses namespace. Visual Basic cannot find a meaning
for the AssignmentStuff namespace locally in that context, so it moves up the namespace hierarchy to
MyApplication, where it finds the AssignmentStuff namespace. Within that namespace, it finds the
AssignmentGlobals module and the MakeAssignment subroutine that it contains.

471

Namespaces

18_571982 ch16.qxd 9/1/05 7:24 PM Page 471

Figure 16-5: Visual Basic may move all over the namespace hierarchy to resolve a declaration.

Visual Basic can also peer into modules as if their public contents were part of the namespace itself. That
means you can rewrite the previous code in the following slightly simpler version:

Public Sub AssignEmployee()
AssignmentStuff.MakeAssignment(Me)
...

End Sub

In this example, there is only one MakeAssignment subroutine, so there’s little doubt that Visual Basic has
found the correct one. If different namespaces define items with the same names, the situation can be some-
what more confusing. Suppose that the Customer class declares an object that is from the Employee class
defined in the MyApplication.AssignmentStuff namespace, as shown in the following code:

Dim emp As New AssignmentStuff.Employee

If you understand how Visual Basic performs namespace resolution, you can figure out that the object is
of the Employee class defined in the MyApplication.AssignmentStuff namespace. This isn’t completely
obvious, however.

If you add Imports statements to the program, the situation gets more confusing. Suppose that the pro-
gram imports the AssignmentStuff namespace and then the Customer class declares a variable of type
Employee. Because this code is in the BusinessClasses namespace, Visual Basic uses that namespace’s
version of Employee. If the code is in some other namespace (such as MyApplication), the program uses
the imported AssignmentStuff version of the class.

MyApplication

Namespace

AssignmentStuff

Namespace

BusinessClasses

Employee

Namespace

Class

Employee
Class

MakeAssignment
Subroutine

AssignEmployee
Subroutine

Customer
Class

AssignmentGlobals
Module

472

Chapter 16

18_571982 ch16.qxd 9/1/05 7:24 PM Page 472

Finally, suppose that the program imports both BusinessClasses and AssignmentStuff.AssignmentGlobals
and then makes the following declaration in another namespace. In this case, Visual Basic cannot decide
which version of the class to use, so it generates an error.

Dim emp As Employee

This example is so confusing, however, that you would probably be better off restructuring the name-
spaces and possibly renaming one of the versions of the Employee class rather than trying to figure out
how Visual Basic is resolving the namespaces.

You can simplify these issues by avoiding duplicate names across all namespaces. When you do use dupli-
cate namespaces, you can use fully qualified namespaces to avoid ambiguity. You can also use Imports
statements to make namespace aliases and then use the aliases to avoid ambiguity more concisely.

Summary
Namespaces are everywhere in Visual Basic. Every piece of code you write is contained in some name-
space, even if it is only the application’s root namespace. Despite their pervasiveness, many developers
never need to use namespaces explicitly, so they find them somewhat mystical.

Namespaces are really quite simple, however. They merely divide programming items into a hierarchy.
They allow you to categorize related items and resolve name collisions in different parts of the application.

You can use the Imports statement to allow the program to refer to items in a namespace without giv-
ing its fully qualified name. A namespace alias lets you explicitly specify an item’s namespace in an
abbreviated form. This is particularly useful to resolve ambiguous names that appear in more than one
namespace included in Imports statements.

This chapter describes namespaces in general. Chapter 17, “Collection Classes,” describes some of
the useful classes for grouping object classes, including those in the System.Collections and System
.Collections.Generic namespaces.

473

Namespaces

18_571982 ch16.qxd 9/1/05 7:24 PM Page 473

18_571982 ch16.qxd 9/1/05 7:24 PM Page 474

Collection Classes
Visual Basic .NET includes a large assortment of prebuilt classes that store and manage groups of
objects. These collection classes provide a wide variety of different features, so the right class for a
particular purpose depends on your application.

For example, an array is good for storing objects in a particular fixed order. An ArrayList enables
you to add, remove, and rearrange its objects much more easily than an array does. A Queue lets a
program easily add items and remove them in first in, first out order. In contrast, a Stack lets the
program remove items in last in, first out order.

This chapter describes these different kinds of collection classes and provides tips for selecting the
right one for various purposes.

What Is a Collection?
The word “collection” means a group of objects that should be kept together. Unfortunately, that’s
such a useful concept that Visual Basic adopted the word and made a specific Collection class.
The Collection class does keep a group of objects together, but it reserves for its own use the per-
fect word for these kinds of groups of objects.

That leads to some ambiguity when you talk about collection classes. Do you mean the
Collection class? Or do you mean some other class that groups objects? Even the Visual Basic
documentation has this problem and sometimes uses “collection classes” to mean classes that
group things together.

This chapter describes the Collection class as well as other “collection classes.”

One of the most basic Visual Basic entities that groups objects is an array. An array stores data val-
ues or references to objects in a simple, block of memory with one entry directly following another.
The Array class does provide some special methods for manipulating arrays (such as reversing,
sorting, or searching the array).

19_571982 ch17.qxd 9/1/05 7:28 PM Page 475

The Collection class provides a few specific features for working with its group of objects. It allows
you to add an item to the Collection, optionally specifying a key for the item. You can then search for
the item or remove the item using its key or its index in the Collection.

One of the key features of the Collection class is that it supports enumerators and For Each loops.
That lets you easily loop over the objects in a Collection without worrying about the number of
objects it contains.

Other classes derived from the Collection class provide additional features. For example, the HashTable
class can store a large number of objects with associated keys very efficiently. The Queue class makes it easy
to work with objects on a first in, first out (FIFO) basis, while the Stack class helps you work with objects
in a last in, first out order (LIFO).

The remainder of this chapter describes these classes in detail.

Arrays
Visual Basic .NET provides two basic kinds of arrays. First, it provides the normal arrays that you get
when you declare a variable by using parentheses. For example, the following code declares an array of
Integers named squares. The array contains 11 items with indexes ranging from 0 to 10. The code loops
over the items, setting each one’s value. Next, it loops over the values again, adding them to a string.
When it has finished building the string, the program displays the result.

Private Sub ShowSquares()
Dim squares(10) As Integer

For i As Integer = 0 To 10
squares(i) = i * i

Next i

Dim txt As String = “”
For i As Integer = 0 To 10

txt &= squares(i).ToString & vbCrLf
Next i
MessageBox.Show(txt)

End Sub

Visual Basic’s Array class provides another kind of array. This kind of array is actually an object that
provides methods for managing the items stored in the array.

The following code shows the previous version of the code rewritten to use an Array object. This ver-
sion creates the array by using the Array class’s shared CreateInstance method, passing it the data
type that the array should contain and the number of items that it should hold. The code then loops over
the items using the array’s SetValue method to set the items’ values. If you have Option Strict turned
off, the code can set the items’ values exactly as before by using the statement squares(i) = i * i. If
Option Strict is on, you need to use SetValue. Next, the program loops over the items again, using the
array’s GetValue method to add the item values to a string. If Option Strict is off, you can use the same
syntax as before: txt &= squares(i).ToString & vbCrLf. If Option Strict is on, you need to use the
array’s GetValue method. After building the string, the program displays it in a message box as before.

476

Chapter 17

19_571982 ch17.qxd 9/1/05 7:28 PM Page 476

Private Sub ShowSquares()
Dim squares As Array = _

Array.CreateInstance(GetType(Integer), 11)

For i As Integer = 0 To 10
squares.SetValue(i * i, i)

Next i

Dim txt As String = “”
For i As Integer = 0 To 10

txt &= squares.GetValue(i).ToString & vbCrLf
Next i
MessageBox.Show(txt)

End Sub

The following sections describe the similarities and differences between normal arrays and Array
objects.

Array Dimensions
Both normal variable arrays and Array objects can support multiple dimensions. The following state-
ment declares a three-dimensional array with 11 items in the first dimension, 11 in the second, and 21 in
the third. It then sets the value for the item in position (1, 2, 3).

Dim values(10, 10, 20) As Integer
values(1, 2, 3) = 100

The following code does the same thing with an Array object:

Dim values As Array = _
Array.CreateInstance(GetType(Integer), 11, 21, 31)
values.SetValue(100, 1, 2, 3)

If Option Strict is off, the code can use the same syntax for getting and setting the Array item’s value.
The following code sets the (1, 2, 3) item’s value to 100 and then displays its value:

Option Explicit Off
...
values(1, 2, 3) = 100
Debug.WriteLine(values(1, 2, 3))

Lower Bounds
A normal array of variables always has lower bound 0 in every dimension. The following code declares
an array with indexes ranging from 0 to 10:

Dim values(10) As Integer

You can fake a variable array that has nonzero lower bounds, but it requires extra work on your part.
You must add or subtract an appropriate amount from each index to map the indexes you want to use to
zero-based indexes.

477

Collection Classes

19_571982 ch17.qxd 9/1/05 7:28 PM Page 477

The following code fragment uses an index variable i that ranges from 100 to 110. The code subtracts 100
from each index to map the values 100 to 110 to the values 0 to 10. If you wanted a multi-dimensional array
with nonzero lower bounds, you would need to add or subtract from the indexes in each dimension.

For i As Integer = 100 To 110
values(i - 100) = i

Next i

Array objects can handle nonzero lower bounds for you. The following code creates a two-dimensional
array with indexes ranging from 1 to 10 in the first dimension, and 101 to 120 in the second dimension.
First, it defines an array containing the lower bounds it wants to use for each dimension. Next, it defines
an array containing the number of elements it wants for each dimension.

The code then calls the Array class’s shared CreateInstance method, passing it the data type of the
array’s objects, the array of dimension lengths, and the array of lower bounds. The CreateInstance
method uses the arrays of lower bounds and dimensions to create an Array object with the appropriate
bounds.

Dim lower_bounds() As Integer = {1, 101}
Dim dimension_lengths() As Integer = {10, 20}
Dim values As Array = _

Array.CreateInstance(GetType(Integer), dimension_lengths, lower_bounds)

The following code sets the values in this array:

For i As Integer = 1 To 10
For j As Integer = 101 To 120

values.SetValue(i * 100 + j, i, j)
Next j

Next i

If Option Explicit is off, the program can use the following simpler syntax:

For i As Integer = 1 To 10
For j As Integer = 101 To 120

values(i, j) = i * 100 + j
Next j

Next i

Resizing
You can use the ReDim statement to change a normal array’s dimensions. Add the Preserve keyword if
you want the array to keep its existing values, as shown here:

Dim values(100) As Integer
...
ReDim Preserve values(200)

An Array object cannot resize itself, but it is relatively easy to copy an Array object’s items to another
Array object. The following code creates a values array containing 101 items with indexes ranging from
0 to 100. Later, it creates a new Array object containing 201 items and uses the values array’s CopyTo

478

Chapter 17

19_571982 ch17.qxd 9/1/05 7:28 PM Page 478

method to copy its values into the new array. The second parameter to CopyTo gives the index in the
destination array where the copy should start placing values.

Dim values As Array = _
Array.CreateInstance(GetType(Integer), 101)

...
Dim new_array As Array = _

Array.CreateInstance(GetType(Integer), 201)
values.CopyTo(new_array, 0)
values = new_array

The Array class’s shared Copy method allows you greater control. It lets you specify the index in the
source array where the copy should start, the index in the destination array where the items should be
copied, and the number of items to be copied.

While building a new Array object and copying items into it is more cumbersome than using ReDim to
resize a variable array, the process is surprisingly fast.

Speed
There’s no doubt that arrays of variables are much faster than Array objects. In one test, setting and get-
ting values in an Array object took more than 100 times as long as performing the same operations in a
variable array.

If your application performs only a few hundred or a thousand array operations, the difference is unim-
portant. If your application must access array values many millions of times, you may need to consider
using an array of variables even if the Array class would be more convenient for other reasons (such as
nonzero lower bounds).

Microsoft has also optimized one-dimensional variable arrays, so they are faster than multidimensional
arrays. The difference is much less dramatic than the difference between variable arrays and Array
classes, however.

The following code compares the speeds of a one-dimensional array and a two-dimensional array. After
some setup, it creates a one-dimensional array, fills it with values, and displays the elapsed time.

Next, the program erases the first array to free its memory. If you don’t do this, then the second array
might use up all of the system’s memory and force the program to swap data to the disk. That greatly
slows the program and makes the two-dimensional array seem even slower than it really is.

The program then creates the two-dimensional array, fills it with values, and displays the elapsed time.
It repeats these steps for one- and two-dimensional Array objects as well.

Private Sub btnGo_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnGo.Click

Dim start_time As DateTime
Dim stop_time As DateTime
Dim elapsed_time As TimeSpan

‘ Clear any previous results.
lbl1D.Text = “”

479

Collection Classes

19_571982 ch17.qxd 9/1/05 7:28 PM Page 479

lbl2D.Text = “”
lbl1Dclass.Text = “”
lbl2Dclass.Text = “”
Cursor = Cursors.WaitCursor
Refresh()

‘ Get the number of items.
Dim num_items As Integer = Integer.Parse(txtNumItems.Text)

‘ One-dimensional array.
Dim array1(0 To num_items - 1) As Integer
start_time = Now
For i As Integer = 0 To num_items - 1

array1(i) = i
Next i
stop_time = Now
elapsed_time = stop_time.Subtract(start_time)
lbl1D.Text = elapsed_time.TotalSeconds().ToString
lbl1D.Refresh()

‘ Free the first array’s memory.
Erase array1

‘ Two-dimensional array.
Dim array2(0 To 0, 0 To num_items - 1) As Integer
start_time = Now
For i As Integer = 0 To num_items - 1

array2(0, i) = i
Next i
stop_time = Now
elapsed_time = stop_time.Subtract(start_time)
lbl2D.Text = elapsed_time.TotalSeconds().ToString

‘ Free the second array’s memory.
Erase array2

‘ One-dimensional Array.
Dim array3 As Array = _

Array.CreateInstance(GetType(Integer), num_items)
start_time = Now
For i As Integer = 0 To num_items - 1

array3.SetValue(i, i)
Next i
stop_time = Now
elapsed_time = stop_time.Subtract(start_time)
lbl1Dclass.Text = elapsed_time.TotalSeconds().ToString
lbl1Dclass.Refresh()

‘ Free the Array’s memory.
array3 = Nothing

‘ Two-dimensional Array.
Dim array4 As Array = _

Array.CreateInstance(GetType(Integer), 1, num_items)

480

Chapter 17

19_571982 ch17.qxd 9/1/05 7:28 PM Page 480

start_time = Now
For i As Integer = 0 To num_items - 1

array4.SetValue(i, 0, i)
Next i
stop_time = Now
elapsed_time = stop_time.Subtract(start_time)
lbl2Dclass.Text = elapsed_time.TotalSeconds().ToString

Cursor = Cursors.Default
End Sub

Figure 17-1 shows the results. Variable arrays are much faster than array classes. One-dimensional vari-
able arrays generally seem to be slightly faster than two-dimensional arrays.

Figure 17-1: Variable arrays are faster than array classes.

Other Array Class Features
The Array class provides several other useful shared methods that were not available in Visual Basic 6 and
earlier versions. For example, the IndexOf and LastIndexOf methods return the position of a particular
item in an Array object’s items. The following code creates an Array object and fills it with integers. It then
displays the indexes of the first occurrence of the value 6 and the last occurrence of the value 3.

Dim values As Array = _
Array.CreateInstance(GetType(Integer), 11)

For i As Integer = 0 To 10
values.SetValue(i, i)

Next i

MessageBox.Show(Array.IndexOf(values, 6).ToString)
MessageBox.Show(Array.LastIndexOf(values, 3).ToString)

Methods such as IndexOf and LastIndexOf would be a strong argument supporting Array objects
over normal arrays of variables if it weren’t for one somewhat surprising fact: Those same methods
work with regular arrays of variables, too! The following code is similar to the previous example, except
that it uses an array of variables instead of an Array object:

481

Collection Classes

19_571982 ch17.qxd 9/1/05 7:28 PM Page 481

Dim values(10) As Integer
For i As Integer = 0 To 10

values(i) = i
Next i

MessageBox.Show(Array.IndexOf(values, 6).ToString)
MessageBox.Show(Array.LastIndexOf(values, 3).ToString)

The following sections describe some of the Array class’s other useful shared methods. All of these work
both for arrays of variables and Array objects.

Array.Reverse
The Array.Reverse method reverses the order of the items in an array. The following code demon-
strates this method. It builds and initializes an array of integers, calls Array.Reverse, and then dis-
plays the items in their new order.

Dim values(10) As Integer
For i As Integer = 0 To 10

values(i) = i
Next i

Array.Reverse(values)

Dim txt As String
For i As Integer = 0 To 10

txt &= values(i) & “ “
Next i
MessageBox.Show(txt)

There’s nothing particular confusing about this method. It can easily reverse its items even if the items
are not things that you can reasonably compare. For example, it can reverse an array of integers, strings,
StockOption objects, or TreeView controls.

Array.Sort
The Array.Sort method sorts the items in the array. To sort the items, this method must compare them
to each other. That means the items must be things that can be reasonably compared (such as integers,
strings, or dates). More precisely, the method can sort the items if they implement the IComparable
interface, meaning they contain the means to compare themselves to each other.

The following code shows a Person class that implements the IComparable interface. The class defines
two public strings FirstName and LastName. For convenience, it also defines a constructor and a
ToString function. The code then defines the CompareTo function that is required by the IComparable
interface. This function should compare the value of the current object (object1) to the value of the object
passed as a parameter (object2) and return the following: -1 if object1 should come before object2, 0 if nei-
ther object must come before the other, and 1 if object2 should come before object1. The String.Compare
function makes exactly that calculation for two strings, so the CompareTo function uses it to compare the
two Person objects’ names. You could use a more complicated CompareTo function to order just about
anything.

482

Chapter 17

19_571982 ch17.qxd 9/1/05 7:28 PM Page 482

Public Class Person
Implements IComparable

Public FirstName As String
Public LastName As String

Public Sub New(ByVal first_name As String, ByVal last_name As String)
FirstName = first_name
LastName = last_name

End Sub

Public Overrides Function ToString() As String
Return LastName & “, “ & FirstName

End Function

Public Function CompareTo(ByVal obj As Object) As Integer _
Implements System.IComparable.CompareTo

Dim other_Person As Person = DirectCast(obj, Person)
Return String.Compare(Me.ToString, other_Person.ToString)

End Function
End Class

The following code makes and sorts an array of Person objects:

‘ Make the array of Person objects.
Dim people(4) As Person
people(0) = New Person(“Rod”, “Stephens”)
people(1) = New Person(“Sergio”, “Aragones”)
people(2) = New Person(“Terry”, “Pratchett”)
people(3) = New Person(“Homer”, “Simpson”)
people(4) = New Person(“Eoin”, “Colfer”)

‘ Sort.
Array.Sort(people)

‘ Display the results.
Dim txt As String = “”
For i As Integer = 0 To people.GetUpperBound(0)

txt &= people(i).ToString() & vbCrLf
Next i
MessageBox.Show(txt)

You can also sort objects that do not implement the IComparable interface if you pass the Sort method
an object that can sort them. The following code defines a Manager class that is similar to the Employee
class without the IComparable interface. It also defines a ManagerComparer class that implements the
IComparer interface. This class’s Compare method takes two objects as parameters and returns -1, 0, or
1 to indicate which should come before the other.

Public Class Manager
Public FirstName As String
Public LastName As String

Public Sub New(ByVal first_name As String, ByVal last_name As String)
FirstName = first_name

483

Collection Classes

19_571982 ch17.qxd 9/1/05 7:28 PM Page 483

LastName = last_name
End Sub

Public Overrides Function ToString() As String
Return LastName & “, “ & FirstName

End Function
End Class

Public Class ManagerComparer
Implements IComparer

Public Function Compare(ByVal x As Object, ByVal y As Object) As Integer _
Implements System.Collections.IComparer.Compare

Dim mgr1 As Manager = DirectCast(x, Manager)
Dim mgr2 As Manager = DirectCast(y, Manager)

Return String.Compare(mgr1.ToString, mgr2.ToString)
End Function

End Class

The call to DirectCast converts its parameters from one type to another. In this code, it converts the
variables x and y into Manager objects.

Note that DirectCast only works if the variables are of the new type. In this case, we know that vari-
ables x and y are Manager objects that have been passed to the Compare function as Object variables.

If the variables have some other type that can be converted into the desired type, you would need to use
CType instead of DirectCast. For example, suppose that x and y were Supervisor objects and
Supervisor is a subclass of Manager. Then you could convert x and y into Manager objects because
a Supervisor is a type of Manager, but you would need to use CType instead of DirectCast.

The following code uses a ManagerComparer object to sort an array of Manager objects:

‘ Make the array of Manager objects.
Dim managers(4) As Manager
managers(0) = New Manager(“Rod”, “Stephens”)
managers(1) = New Manager(“Sergio”, “Aragones”)
managers(2) = New Manager(“Terry”, “Pratchett”)
managers(3) = New Manager(“Homer”, “Simpson”)
managers(4) = New Manager(“Eoin”, “Colfer”)

‘ Make a comparer.
Dim manager_comparer As New ManagerComparer

‘ Sort.
Array.Sort(managers, manager_comparer)

‘ Display the results.
Dim txt As String = “”
For i As Integer = 0 To managers.GetUpperBound(0)

txt &= managers(i).ToString() & vbCrLf
Next i
MessageBox.Show(txt)

484

Chapter 17

19_571982 ch17.qxd 9/1/05 7:28 PM Page 484

Other overloaded versions of the Sort method let you sort two arrays (one containing keys and the
other values) in tandem or sort only parts of the array.

Array.BinarySearch
If the array contains items that are sorted, and the items implement the IComparable interface, the
Array.BinarySearch method uses a binary search algorithm to locate a specific item within the array.

For example, suppose that the array contains Person objects as defined in the previous section. Then you
could use the following code to find the object representing “Rod Stephens” in the people array. The code
starts by using Array.Sort to sort the array. If you know that the array is already sorted, the program can
skip this step. Next the program makes a new Person object that has the name “Rod Stephens.” The pro-
gram needs this object to represent the target. The program calls the ArrayBinarySearch method to find
the index of the object with the target name and saves the result in the variable target_index. It then uses
that index to assign the target_person variable to the corresponding Person object in the array.

‘ Sort the array.
Array.Sort(people)

‘ Find Rod Stephens.
Dim target_person As New Person(“Rod”, “Stephens”)
Dim target_index As Integer = Array.BinarySearch(people, target_person)
target_person = people(target_index)
MessageBox.Show(target_person.ToString)

Binary search is extremely fast. To understand why, you must understand how the algorithm works. The
details are tricky, but the idea is straightforward. At each step, the program picks the item in the middle
of the part of the array that it is considering and compares it to the target item. If the target comes before
the middle item, then the algorithm repeats the search in the first half of the items. If the target comes
after the middle item, the algorithm repeats the search in the second half of the items.

Figure 17-2 illustrates a binary search for the value 12. The program starts considering the whole array. It
picks the item in the middle with value 9 and compares it to the target 12. The target value 12 is greater
than 9, so the routine discards the items on the left and considers those with values 12 through 22.

Figure 17-2: Binary search quickly locates a target value in an array.

Next, the program picks the middle item from those remaining and compares it to the target. The middle
value 17 is greater than 12, so the program discards the items to the right and considers the remaining
items to the left. In this example, only one item remains and it has the target value 12.

In this example, a binary search needs to examine only three items to find the target value 12. More gen-
erally, each time it examines an item, the program removes half of the remaining items from considera-
tion. If the array contains N items, then the algorithm only needs to repeat this process Log2(N) times
before it has found the target or eliminated every item from consideration. For example, if the array

2221171296641

485

Collection Classes

19_571982 ch17.qxd 9/1/05 7:28 PM Page 485

contains 1,048,576 = 220 items, then the program will need to examine only around 20 items before it
finds the target. That’s pretty fast! An array large enough to really slow binary search down would be so
large that you probably couldn’t store it all in your computer’s memory at once anyway. For such huge
arrays, you would be better off storing the data in a database and using a database engine to search it.

Collections
Visual Basic’s collection classes basically hold items and don’t provide a lot of extra functionality. Other
classes described later in this chapter provide more features.

The following sections describe Visual Basic’s simple collection classes: ArrayList, StringCollection,
and NameValueCollection. They also describe strongly typed collections that you can build to make
code that uses these classes a bit easier to debug and maintain.

ArrayList
The ArrayList class is a resizable array. You can add and remove items from any position in the list and
it resizes itself accordingly. The following table describes some of the class’s more useful properties and
methods.

Property/Method Purpose

Add Adds an item at the end of the list.

AddRange Adds the items in an object implementing the ICollection interface
to the end of the list.

BinarySearch Returns the index of an item in the list. The items must implement the
IComparable interface, or you must provide the Sort method with an
IComparer object.

Capacity Gets or sets the number of items that the list can hold. For example, if
you know that you will need to add 1000 items to the list, you may get
better performance by setting Capacity to 1000 before starting, rather
than letting the object grow incrementally as you add the items.

Clear Removes all of the items from the list. The Capacity property remains
unchanged, so the ArrayList keeps any space it has previously
allocated to improve performance.

Contains Returns True if a specified item is in the list.

CopyTo Copies some or the entire list into a one-dimensional Array object.

Count The number of items currently in the list. This is always less than or
equal to Capacity.

GetRange Returns an ArrayList containing the items in part of the list.

IndexOf Returns the zero-based index of the first occurrence of a specified item
in the list.

486

Chapter 17

19_571982 ch17.qxd 9/1/05 7:28 PM Page 486

Property/Method Purpose

Insert Adds an item at a particular position in the list.

InsertRange Adds the items in an object implementing the ICollection interface
to a particular position in the list.

Item Returns the item at a particular position in the list.

LastIndexOf Returns the zero-based index of the last occurrence of a specified item
in the list.

Remove Removes the first occurrence of a specified item from the list.

RemoveAt Removes the item at the specified position in the list.

RemoveRange Removes the items in the specified positions from the list.

Reverse Reverses the order of the items in the list.

SetRange Replaces the items in part of the list with new items taken from an
ICollection object.

Sort Sorts the items in the list. The items must implement the IComparable
interface, or you must provide the Sort method with an IComparer
object.

ToArray Copies the list’s items into a one-dimensional array.

TrimToSize Reduces the list’s allocated space so that it is just big enough to hold its
items. This sets Capacity = Count.

The ToArray method can copy the items into an array of objects, an array of a specific type, or an Array
object (holding objects). The following code demonstrates each of these. ToArray returns a generic array
of Object even if the objects are some other data type such as strings, so the second method must use a
DirectCast statement to convert the result into an array of strings, if Option Strict is On.

‘ Declare and initialize the ArrayList.
Dim array_list As New ArrayList
array_list.Add(“Apple”)
array_list.Add(“Banana”)
array_list.Add(“Cherry”)
...

‘ Array of objects.
Dim obj_array() As Object
obj_array = array_list.ToArray()

‘ Array of strings.
Dim string_array() As String
string_array = DirectCast(array_list.ToArray(GetType(String)), String())

‘ Array object of objects.
Dim astring_array As Array
astring_array = array_list.ToArray()

487

Collection Classes

19_571982 ch17.qxd 9/1/05 7:28 PM Page 487

A single ArrayList object can hold objects of many different kinds. The following code creates an
ArrayList and adds a string, Form object, integer, and Bitmap to it. It then loops through the items in
the list and displays their types.

Dim array_list As New ArrayList
array_list.Add(“What?”)
array_list.Add(Me)
array_list.Add(1001)
array_list.Add(New Bitmap(10, 10))
For Each obj As Object In array_list

Debug.WriteLine(obj.GetType.ToString)
Next obj

The following text shows the results:

System.String
UseArrayList.Form1
System.Int32
System.Drawing.Bitmap

The value displayed for the second item depends on the name of the project (in this case, “UseArrayList”).

StringCollection
A StringCollection is similar to an ArrayList, except that it can hold only strings. Because it works
only with strings, this class provides some extra type checking that the ArrayList does not. If your pro-
gram tries to add an Employee object to a StringCollection, the collection raises an error.

To take advantage of this extra error checking, you should always use a StringCollection instead of an
ArrayList if you are working with strings. Of course, if you need other features (such as the fast lookups
provided by a Hashtable), you should use one of the classes described in the following sections.

Strongly Typed Collections
A strongly typed collection is a collection class built to work with a particular data type. An ArrayList
can store objects of any data type. A StringCollection is strongly typed to work only with strings.
That gives you extra error checking that makes finding and fixing programming mistakes easier. If the
program tries to insert an IncidentReport object into a StringCollection, the collection immedi-
ately raises an error and the problem is relatively easy to find.

Similarly, you can define your own collection classes that are strongly typed. For example, you could
make an OrderCollection class that holds Order items. If the program tries to add a Manager or
Secretary object to it, the collection raises an error.

To build a strongly typed collection “from scratch,” create a new class that inherits from System
.Collections.CollectionBase. Inheriting from this class automatically gives your class an
ArrayList object named List. It also gives your class some inherited routines that do not depend
on the type of object you want the collection to hold. For example, the RemoveAt method removes the
object at a specific index in the list. It doesn’t care whether the collection holds Employee objects,
bitmaps, or Pizzas, so the parent class CollectionBase can implement it for you.

488

Chapter 17

19_571982 ch17.qxd 9/1/05 7:28 PM Page 488

Your class can implement other methods for adding and retrieving items in the collection. For example,
it can implement the Add, Remove, and Item methods.

Fortunately, you don’t need to build these methods from scratch. You can simply delegate them to the
inherited List object. For example, the Add method can simply call List.Add, as shown in the follow-
ing code:

‘ Add an Employee.
Public Sub Add(ByVal value As Employee)

List.Add(value)
End Sub

This code does nothing other than call the List object’s methods. The only magic here is that the
EmployeeCollection class’s Add method takes a parameter of a particular type (Employee), while the
List object’s Add method takes a generic Object as a parameter. It is the EmployeeCollection class’s
insistence on Employee objects that makes the collection strongly typed.

The Add and Item methods are about the minimum useful feature set you can provide for a strongly
typed collection class.

The following table lists the standard methods provided by a strongly typed collection class. The third
column indicates whether the CollectionBase parent class automatically provides the method, or
whether you must delegate the method to the List object.

Method Purpose Provided By

Add Adds an item to the collection List

Capacity Returns the amount of space in the collection CollectionBase

Clear Removes all items from the collection CollectionBase

Contains Returns True if the collection contains a particular item List

CopyTo Copies items from the collection into an array List

Count Returns the number of items in the collection CollectionBase

IndexOf Returns the index of an item List

InnerList Returns an ArrayList holding the collection’s objects CollectionBase

Insert Inserts an item at a specific position List

Item Returns the item at a specific position List

List Returns an IList holding the collection’s objects CollectionBase

Remove Removes an item List

RemoveAt Removes the item at a specific position CollectionBase

You can also add other more specialized methods if they would be useful in your application. For exam-
ple, you could add methods for working with object field values rather than with the objects themselves.
You might make an overloaded version of the Item method that takes as parameters a first and last

489

Collection Classes

19_571982 ch17.qxd 9/1/05 7:28 PM Page 489

name and returns the corresponding Employee object if it is in the list. You could also modify the simple
Add method shown previously so that it doesn’t allow duplicates. And, you could make an Add function
that takes first and last names as parameters, creates a new Employee object using those names, and
returns the new object.

The following code shows a complete EmployeeCollection class. Most of its methods are straightfor-
ward delegations to the List object. The most interesting method is the Item property. This method is
implemented as a read-only property, so it can include the Default keyword (which is not allowed on
functions). This keyword marks Item as the class’s default property and that allows a program to access
it by providing an index to an object of the class as in emp_collection(3). Notice that the Item prop-
erty procedure uses DirectCast to convert the generic Object stored in List into an Employee object.

‘ A strongly typed collection of Employees.
Public Class EmployeeCollection

Inherits CollectionBase

‘ Add an Employee.
Public Sub Add(ByVal value As Employee)

List.Add(value)
End Sub

‘ Return True if the collection contains this employee.
Public Function Contains(ByVal value As Employee) As Boolean

Return List.Contains(value)
End Function

‘ Return this Employee’s index.
Public Function IndexOf(ByVal value As Employee) As Integer

Return List.IndexOf(value)
End Function

‘ Insert a new Employee.
Public Sub Insert(ByVal index As Integer, ByVal value As Employee)

List.Insert(index, value)
End Sub

‘ Return the Employee at this position.
Default Public ReadOnly Property Item(ByVal index As Integer) As Employee

Get
Return DirectCast(List.Item(index), Employee)

End Get
End Property

‘ Remove an Employee.
Public Sub Remove(ByVal value As Employee)

List.Remove(value)
End Sub

End Class

An additional benefit that comes with inheriting from the CollectionBase class is For Each loop sup-
port. The following code shows how a program might use this EmployeeCollection class. It creates
the collection and adds five Employee objects to the list. It then uses a For Each loop to display the
Employees.

490

Chapter 17

19_571982 ch17.qxd 9/1/05 7:28 PM Page 490

Dim emp_list As New EmployeeCollection
emp_list.Add(New Employee(“Ann”, “Anderson”))
emp_list.Add(New Employee(“Bart”, “Baskerville”))
emp_list.Add(New Employee(“Candy”, “Cant”))
emp_list.Add(New Employee(“Durk”, “Distant”))
emp_list.Add(New Employee(“Edwina”, “Evers”))

For Each emp As Employee In emp_list
Debug.WriteLine(emp.ToString)

Next emp

Generics provide another method for building strongly typed collections. See the section “Generics”
later in this chapter for more information on generic collections. For more general information on gener-
ics, see Chapter 18, “Generics.”

Read-Only Strongly Typed Collections
The CollectionBase class enables you to build a strongly typed collection class that allows a program
to store and retrieve values. In some cases, you might want a function to return a collection of objects
that the calling program cannot modify. For example, suppose that your function returns a list of your
company’s production locations. You don’t want the program to modify the list because it cannot change
the locations. In this case, you can build a read-only strongly typed collection.

You can do this much as you build a strongly typed collection. Instead of deriving the new collection
class from CollectionBase, however, derive it from the ReadOnlyCollectionBase class. Provide
read-only Item methods, but do not provide any Add or Remove methods. The class itself can access its
inherited InnerList object to add and remove items, but it must not give the program using your class
access to that object.

Your program still needs a way to get objects into the collection, however. One method is to build the
collection class in a separate library project and give it initialization methods declared with the Friend
keyword. Other code in the library project could use those methods while the main program could not.

Another technique is to pass initialization data to the class’s constructor. Your code creates the collection
and returns it to the main program. The main program cannot change the collection’s contents. It can
create an instance of the collection of its own, but it cannot modify the one you built.

NameValueCollection
The NameValueCollection class is a collection that can hold more than one string value for a particular
key (name). For example, you might use employee names as keys. The string values associated with a
particular key could include extension, job title, employee ID, and so forth.

Of course, you could also store the same information by putting extension, job title, employee ID, and
the other fields in an object or structure, and then storing the objects or structures in some sort of collec-
tion class such as an ArrayList. A NameValueCollection, however, is very useful if you don’t know
ahead of time how many strings will be associated with each key.

The following table describes some of the NameValueCollection’s most useful properties and methods.

491

Collection Classes

19_571982 ch17.qxd 9/1/05 7:28 PM Page 491

Property/Method Description

Add Adds a new name/value pair to the collection. If the collection
already holds an entry for the name, it adds the new value to that
name’s values.

AllKeys Returns a string array holding all of the key values.

Clear Removes all names and values from the collection.

CopyTo Copies items starting at a particular index into a one-dimensional
Array object. This copies only the items (see the Item property) not
the keys.

Count Returns the number of key/value pairs in the collection.

Get Gets the item for a particular index or name as a comma-separated
list of values.

GetKey Returns the key for a specific index.

GetValues Returns a string array containing the values for a specific name or
index.

HasKeys Returns True if the collection contains any non-null keys.

Item Gets or sets the item for a particular index or name as a comma-
separated list of values.

Keys Returns a collection containing the keys.

Remove Removes a particular name and all of its values.

Set Sets the item for a particular index or name as a comma-separated
list of values.

The following code demonstrates some of these features. It creates a NameValueCollection and fills it
with values. It associates the name Food with the values Sandwich, Salad, and Taco. It associates the
name Dessert with the values Ice Cream, Pie, Cake, and Cookie. Next, the code loops through the collec-
tion’s keys. For each key, it displays the key’s name, uses the collection’s GetValues method to get an
array containing the corresponding values, and then displays those values. The code then displays the
values again in comma-separated lists. It again loops through the collection’s keys, this time using the
Item method to display each key’s list of values.

Dim nvc As New NameValueCollection
nvc.Add(“Food”, “Sandwich”)
nvc.Add(“Food”, “Salad”)
nvc.Add(“Food”, “Taco”)
nvc.Add(“Dessert”, “Ice Cream”)
nvc.Add(“Dessert”, “Pie”)
nvc.Add(“Dessert”, “Cake”)
nvc.Add(“Dessert”, “Cookie”)

Dim values() As String
For Each key As String In nvc.Keys

492

Chapter 17

19_571982 ch17.qxd 9/1/05 7:28 PM Page 492

Debug.WriteLine(key & “:”)
values = nvc.GetValues(key)
For Each value As String In values

Debug.WriteLine(“ “ & value)
Next value

Next key

Debug.WriteLine(“*****”)
For Each key As String In nvc.Keys

Debug.WriteLine(key & “: “ & nvc.Item(key))
Next key

The following text shows the result:

Food:
Sandwich
Salad
Taco

Dessert:
Ice Cream
Pie
Cake
Cookie

Food: Sandwich,Salad,Taco
Dessert: Ice Cream,Pie,Cake,Cookie

Note that there is no easy way to remove a particular value from a name. For example, it’s not trivial to
remove the value Pie from the name Dessert. The following statement shows one method, although you
would need to modify it slightly if you didn’t know whether the Pie entry was last in the list (so it might
or might not be followed by a comma):

nvc.Item(“Dessert”) = nvc.Item(“Dessert”).Replace(“Pie,”, “”)

Dictionaries
A dictionary is a collection that associates keys with values. You look up a key, and the dictionary pro-
vides you with the corresponding value. This is similar to the way a NameValueCollection works,
except that a dictionary’s keys and values need not be strings, and a dictionary associates each key with
a single value object.

Visual Studio provides several different kinds of dictionary classes that are optimized for different uses.
Their differences come largely from the ways in which they store data internally. While you don’t need
to understand the details of how the dictionaries work internally, you do need to know how they behave
so that you can pick the best one for a particular purpose.

Because all of the dictionary classes provide the same service (associating keys with values), they have
roughly the same properties and methods. The following table describes some of the most useful of
these.

493

Collection Classes

19_571982 ch17.qxd 9/1/05 7:28 PM Page 493

Property/Method Description

Add Adds a key/value pair to the dictionary.

Clear Removes all key/value pairs from the dictionary.

Contains Returns True if the dictionary contains a specific key.

CopyTo Copies the dictionary’s data starting at a particular position into
a one-dimensional array of DictionaryEntry objects. The
DictionaryEntry class has Key and Value properties.

Count Returns the number of key/value pairs in the dictionary.

Item Gets or sets the value associated with a key.

Keys Returns a collection containing all of the dictionary’s keys.

Remove Removes the key/value pair with a specific key.

Values Returns a collection containing all of the dictionary’s values.

The following sections describe Visual Studio’s different dictionary classes in more detail.

ListDictionary
A ListDictionary stores its data in a linked list. In a linked list, each item is held in an object that
contains its data plus a reference or link to the next item in the list. Figure 17-3 illustrates a linked list.
This list contains the key/value pairs Appetizer/Salad, Entrée/Sandwich, Drink/Water, and Dessert/
Cupcake. The link out of the Dessert/Cupcake item is set to Nothing, so the program can tell when it
has reached the end of the list. A reference variable inside the ListDictionary class, labeled Top in
Figure 17-3, points to the first item in the list.

Adding and removing items in a linked list is simple. To add a new item at the top of the list, you create
a new item, set its link to point to the item that is currently at the top, and then make the list’s Top vari-
able point to the new item.

To remove a target item from the list, you find the item before the target and set its link to point to the
item after the target. This is a lot easier than removing an item from the middle of an array of contiguous
items and then shifting everything over to fill in the hole.

Figure 17-4 shows the linked list from Figure 17-3 with a new Side/Fries item added at the top and the
Drink/Water item removed.

Linked lists make adding and removing items from the dictionary easy. By using links, the list can rear-
range itself without your needing to slide items back and forth, as you might in a contiguous array.

Unfortunately, if the list grows long, finding items can take a long time. To find an item in the list, the
program starts at the top and works its way down, following the links between items, until it finds the
one it wants. If the list is short, that doesn’t take very long. If the list holds 100,000 items, this means
potentially a 100,000-item crawl from top to bottom. That means a ListDictionary object’s perfor-
mance degrades if it contains too many items.

494

Chapter 17

19_571982 ch17.qxd 9/1/05 7:28 PM Page 494

Figure 17-3: Each item in a linked list keeps
a reference to the next item in the list.

Figure 17-4: Adding and removing items
from a linked list is relatively easy.

Appetizer/Salad

Entrée/Sandwich

Drink/Water

Dessert/Cupcake

Top

Side/Fries

Top

Appetizer/Salad

Entrée/Sandwich

Drink/Water

Dessert/Cupcake

495

Collection Classes

19_571982 ch17.qxd 9/1/05 7:28 PM Page 495

If you only need to store a few hundred items in the dictionary and you don’t need to access them fre-
quently, a ListDictionary is fine. If you need to store 100,000 entries, or if you need to access the dic-
tionary’s entries a huge number of times, you may get better performance using a “bigger” object such
as a Hashtable. A Hashtable has more overhead than a ListDictionary but is faster at accessing its
entries.

Hashtable
A Hashtable looks a lot like a ListDictionary on the outside, but internally it stores its data in a very
different way. Rather than using a linked list, this class uses a hash table to hold data.

A hash table is a data structure that allows extremely fast access to items using their keys. It works by
mapping an object’s key into a bucket by calculating the key’s hash value.

For example, suppose that you want to make a dictionary associating Employee objects with their Social
Security numbers. You could make an array holding 10 buckets and then map employees to bucket num-
bers using the last digit of their Social Security numbers. Employee 123-45-6789 goes in bucket 9, employee
111-22-3333 goes in bucket 3, and employee 865-29-8361 goes in bucket 1, as shown in Figure 17-5.

Figure 17-5: A Hashtable maps key values into buckets.

This kind of hash table is easy to enlarge. If you add a few dozen employees, you might use 100 buckets
and map Social Security numbers using their last two digits. Then employee 123-45-6789 goes in bucket
89, employee 111-22-3333 goes in bucket 33, and employee 865-29-8361 goes in bucket 61.

More employees? Make more buckets! You can use 1000, 10,000, or more buckets if necessary.

To find an employee’s data in the dictionary, you need only to calculate the hash value (last digits of
Social Security number) and then look in that bucket. For a large dictionary, this is much faster than dig-
ging through a linked list. If you have 10,000 employees perfectly divided one to a bucket in a table of
10,000 buckets, you need only to look in one bucket to find the data you want. That’s a lot faster than
slogging through a 10,000-item linked list.

Of course, there is a catch. Actually, there are two catches.

First, if you have too many employees, you are eventually going to find two that map to the same
bucket. Suppose that you have 10 buckets and two employees with Social Security numbers 732-45-7653
and 145-76-4583. These both map to bucket 3. This is called a key collision, and the hash table must use
some sort of collision resolution policy to figure out what to do when two keys map to the same bucket.
This policy is generally some simple method such as making a linked list in the bucket or letting the sec-
ond item spill over into the following bucket. Whatever collision resolution scheme you use, it takes a
little extra time to search through full buckets.

8 97654321

865-29-8361

0

123-45-6789

111-22-3333

496

Chapter 17

19_571982 ch17.qxd 9/1/05 7:28 PM Page 496

You can make the buckets less full if you use more of them. In this example, if you switched to 100 buck-
ets, the two employees would map to buckets 53 and 83, so no collision occurs. That makes looking up
these items faster.

The second catch is that you can make a hash table faster by adding more buckets, but using more buck-
ets means using more space. When a hash table starts to fill up, collisions are common, so performance
suffers. Add more space and performance improves, but there’s a lot of “wasted” space not occupied by
any data.

Those are the advantages and disadvantages of the Hashtable class. A Hashtable gives better perfor-
mance than a ListDictionary, but takes more space.

In addition to the usual dictionary properties and methods, the Hashtable has a few that help manage
the internal hash table that it uses to store its items.

One overloaded version of the Hashtable’s constructor takes a parameter that tells how many items the
table should initially be able to hold. If you know you are going to load 1000 items, you might make the
table initially hold room for 1500. Then the program could add all the items without filling the table too
much, so it would still give good performance. If you don’t set an initial size, the hash table might need
to resize itself many times before it could hold 1000 items, and that will slow it down.

Another version of the constructor lets you specify the hash table’s load factor. The load factor is a num-
ber between 0.1 and 1.0 that gives the largest ratio of elements to buckets that the Hashtable will allow
before it enlarges its internal table. For example, suppose that the hash table’s capacity is 100 and its load
factor is 0.8. Then when it holds 80 elements, the Hashtable will enlarge its internal table.

HybridDictionary
A HybridDictionary is a cross between a ListDictionary and a Hashtable. If the dictionary is
small, the HybridDictionary stores its data in a ListDictionary. If the dictionary grows too large,
HybridDictionary switches to a Hashtable.

If you know that you will only need a few items, you can use a ListDictionary. If you know you will
need to use a very large number of items, you can use a Hashtable. If you are unsure whether you will
have few or many items, you can hedge your bet with a HybridDictionary.

Strongly Typed Dictionaries
Just as you can make strongly typed collections, you can also make strongly typed dictionaries. The idea
is exactly the same. You derive your strongly typed class from a class that supports basic dictionary
functionality. In this case, that parent class is DictionaryBase, and it provides a Dictionary object
that your class can use to implement its dictionary features.

Next, you implement dictionary methods such as Add, Item, Keys, and so forth. Your code requires
specific data types and uses the parent class’s Dictionary variable to do all the hard work through
delegation.

The following table lists the standard methods provided by a strongly typed dictionary class. The third
column indicates whether the DictionaryBase parent class automatically provides the method or
whether you must delegate the method to the Dictionary object.

497

Collection Classes

19_571982 ch17.qxd 9/1/05 7:28 PM Page 497

Method Purpose Provided By

Add Adds a key/value pair to the dictionary Dictionary

Clear Removes all key/value pairs from the dictionary DictionaryBase

Contains Returns True if the dictionary contains a Dictionary
specific key

CopyTo Copies elements from the dictionary into an DictionaryBase
Array of DictionaryEntry objects

Count Returns the number of key/value pairs in the DictionaryBase
dictionary

Dictionary Returns a Dictionary holding the dictionary’s DictionaryBase
key/value pairs

InnerHashtable Returns a Hashtable holding the dictionary’s DictionaryBase
key/value pairs

Item Returns the value corresponding to a specific key Dictionary

Keys Returns an ICollection containing the Dictionary
dictionary’s keys

Remove Removes the key/value pair for a specific key Dictionary

Values Returns an ICollection containing the Dictionary
dictionary’s values

As is the case with strongly typed collections, you can add other more specialized methods if they
would be useful in your application.

The following code shows an EmployeeDictionary class with keys that are strings and values that are
Employee objects. The Add method takes a string and an Employee object as parameters, and passes
them on to the Dictionary object’s Add method. The Item property procedure gets or sets an item
using a string key and an Employee object as a value. The property’s get procedure uses the Dictionary
object’s Item method to get the object for a particular key. It uses DirectCast to turn the resulting
generic Object into an Employee. The property’s set procedure uses the Dictionary object’s Item
method to set the value for the key. The Keys and Values properties’ get procedures simply pass their
requests on to the Dictionary object. (Actually, the DictionaryBase class could provide these func-
tions, since they return generic collections rather than, for example, collections of strings or Employee
objects. For whatever reason, DictionaryBase doesn’t do that.) Finally, the Contains and Remove
methods take strongly typed string parameters and pass their requests along to the Dictionary object.

Public Class EmployeeDictionary
Inherits System.Collections.DictionaryBase

‘ Add a Dictionary entry.
Public Sub Add(ByVal new_key As String, ByVal new_employee As Employee)

Dictionary.Add(new_key, new_employee)
End Sub

498

Chapter 17

19_571982 ch17.qxd 9/1/05 7:28 PM Page 498

‘ Return an object with the given key.
Default Public Property Item(ByVal key As String) As Employee

Get
Return DirectCast(Dictionary.Item(key), Employee)

End Get
Set(ByVal Value As Employee)

Dictionary.Item(key) = Value
End Set

End Property

‘ Return a collection containing the Dictionary’s keys.
Public ReadOnly Property Keys() As ICollection

Get
Return Dictionary.Keys

End Get
End Property

‘ Return a collection containing the Dictionary’s values.
Public ReadOnly Property Values() As ICollection

Get
Return Dictionary.Values

End Get
End Property

‘ Return True if the Dictionary contains this Employee.
Public Function Contains(ByVal key As String) As Boolean

Return Dictionary.Contains(key)
End Function

‘ Remove this entry.
Public Sub Remove(ByVal key As String)

Dictionary.Remove(key)
End Sub

End Class

The following code uses the EmployeeDictionary class. It makes a new EmployeeDictionary object
and adds some Employee objects to it. It then uses the Item method to locate a particular object and dis-
play its data.

Dim dict As New EmployeeDictionary
dict.Add(“123-45-6789”, New Employee(“Al”, “Ankh”))
dict.Add(“111-22-3333”, New Employee(“Bertie”, “Bithoin”))
dict.Add(“365-76-5476”, New Employee(“Carl”, “Catabalpas”))
dict.Add(“832-77-6847”, New Employee(“Dee”, “Divers”))

Dim emp As Employee = dict.Item(“365-76-5476”)
MessageBox.Show(emp.ToString)

Other Strongly Typed Derived Classes
How a class stores its data internally is generally not a developer’s concern. As long as it does its job,
you shouldn’t care whether the DictionaryBase class stores its data in a linked list, hash table, or some
other data structure. (Although the DictionaryBase class has an InnerHashtable method that returns
its data in a Hashtable form, so perhaps that’s a hint.)

499

Collection Classes

19_571982 ch17.qxd 9/1/05 7:28 PM Page 499

However, if you really want a strongly typed class that you know uses a ListDictionary instead of
a hash table (or whatever CollectionBase uses), you could derive a strongly typed class from the
ListDictionary class.

The following code shows the EmployeeListDictionary class, which is derived from the
ListDictionary class. It uses the Shadows keyword to replace the ListDictionary class’s Add, Item,
Contains, and Remove methods with new strongly typed versions. Those methods simply pass their
requests along to the base class ListDictionary.

Public Class EmployeeListDictionary
Inherits ListDictionary

‘ Add a Dictionary entry.
Public Shadows Sub Add(ByVal new_key As String, ByVal new_employee As Employee)

MyBase.Add(new_key, new_employee)
End Sub

‘ Return an object with the given key.
Default Public Shadows Property Item(ByVal key As String) As Employee

Get
Return DirectCast(MyBase.Item(key), Employee)

End Get
Set(ByVal Value As Employee)

MyBase.Item(key) = Value
End Set

End Property

‘ Return True if the Dictionary contains this Employee.
Public Shadows Function Contains(ByVal key As String) As Boolean

Return MyBase.Contains(key)
End Function

‘ Remove this entry.
Public Shadows Sub Remove(ByVal key As String)

MyBase.Remove(key)
End Sub

End Class

StringDictionary
The StringDictionary class uses a hash table to manage keys and values that are all strings. Because it
uses a hash table, it can handle very large data sets quickly.

Its methods are strongly typed to require strings, so they provide extra type checking that can make
finding potential bugs easier. For that reason, you should use a StringDictionary instead of a generic
ListDictionary or Hashtable if you want to work exclusively with strings.

SortedList
The SortedList class acts as a Hashtable/Array hybrid. When you access a value by key, it acts as a
hash table. When you access a value by index, it acts as an array containing items sorted by key value.

500

Chapter 17

19_571982 ch17.qxd 9/1/05 7:28 PM Page 500

For example, suppose that you add a number of Job objects to a SortedList named jobs using their
priorities as keys. Then jobs(0) always returns the job with the smallest priority value.

The following code shows an example. It makes a SortedList and then adds four items with priorities.
Notice that it adds leading zeros to priorities less than 10, so their alphabetical order is the same as their
numeric order. It then loops through the jobs displaying their keys and values. Next, the code clears the
SortedList and creates similar items using integer values instead of strings as keys. Again it loops
through the items displaying their keys and values.

Dim jobs As New SortedList
jobs.Add(“02”, “Two”)
jobs.Add(“10”, “Ten”)
jobs.Add(“01”, “One”)
jobs.Add(“06”, “Six”)

For i As Integer = 0 To jobs.Count - 1
Debug.WriteLine(jobs.GetKey(i).ToString() & “: “ & _

jobs.GetByIndex(i).ToString())
Next i

jobs.Clear()
jobs.Add(2, “Two”)
jobs.Add(10, “Ten”)
jobs.Add(1, “One”)
jobs.Add(6, “Six”)

For i As Integer = 0 To jobs.Count - 1
Debug.WriteLine(jobs.GetKey(i).ToString() & “: “ & _

jobs.GetByIndex(i).ToString())
Next i

The following text shows the results:

01: One
02: Two
06: Six
10: Ten
1: One
2: Two
6: Six
10: Ten

This code clears the SortedList before adding the second set of values with numeric keys. If it did not,
the list would have raised an error when it tried to compare numeric and textual key values.

CollectionsUtil
Normally Hashtables and SortedLists are case-sensitive. The CollectionsUtil class provides two
shared methods, CreateCaseInsensitiveHashtable and CreateCaseInsensitiveSortedList,
that create Hashtables and SortedLists objects that are case-insensitive.

501

Collection Classes

19_571982 ch17.qxd 9/1/05 7:28 PM Page 501

The following code creates a normal case-sensitive SortedList. It then adds two items with keys that
differ only in their capitalization. This works because a case-sensitive SortedList treats the two keys as
different values. The code then creates a case-insensitive SortedList. When it tries to add the same two
items, the list raises an exception, complaining that it already has an object with key value “Sport.”

Dim sorted_list As SortedList

‘ Use a normal, case-sensitive SortedList.
sorted_list = New SortedList
sorted_list.Add(“Sport”, “Volleyball”)
sorted_list.Add(“sport”, “Golf”) ‘ Okay because Sport <> sport.

‘ Use a case-insensitive SortedList.
sorted_list = CollectionsUtil.CreateCaseInsensitiveSortedList()
sorted_list.Add(“Sport”, “Volleyball”)
sorted_list.Add(“sport”, “Golf”) ‘ Error because Sport = sport.

If you can use case-insensitive Hashtables and SortedLists, you should generally do so. This pre-
vents the program from adding two entries that are supposed to be the same but have different capital-
ization. For example, if one routine spells a key value “Law Suit” and another spells it “law suit,” the
case-insensitive Hashtable or SortedList will quickly catch the error.

Stacks and Queues
Stacks and queues are specialized data structures that are useful in many programming applications. These
objects are useful for storing objects temporarily before you process them and remove them from the
stack or queue. Visual Basic’s Stack and Queue classes implement stacks and queues.

Usually, items are removed shortly after they are added. For example, an algorithm might fill a stack
with objects to process and then, as long as the stack is not empty, remove one and process it. Processing
one job might add others to the stack, which would be processed later. The process would continue until
the stack was empty.

The difference between a stack and a queue is the order in which they return the items stored in them.
The following two sections describe stacks and queues and explain the ways in which they return items.

Stack
A stack returns items in last in, first out (LIFO, pronounced “life-o”) order. Because of the LIFO behavior,
a stack is sometimes called a LIFO list or simply a LIFO.

Adding an item to the stack is called pushing the item onto the stack and removing an item is called popping
the item off of the stack. These operations have the names push and pop because a stack is like a spring-
loaded stack of plates in a cafeteria or buffet. You push new plates down onto the top of the stack and
the plates sink into the counter. You pop the top plate off and the stack rises to give you the next plate.

Figure 17-6 illustrates this kind of stack. If you haven’t seen this sort of thing before, don’t worry about
it. Just remember that push adds an item and pop removes the top item.

502

Chapter 17

19_571982 ch17.qxd 9/1/05 7:28 PM Page 502

Figure 17-6: A Stack lets you remove items in
last in, first out (LIFO) order.

Normally, you use a Stack object’s Push and Pop methods to add and remove items, but the Stack class
also provides some “cheating” methods that let you peek at the Stack’s top object or convert the Stack
into an array. The following table describes the Stack class’s most useful properties and methods.

Property/Method Purpose

Clear Removes all items from the Stack.

Contains Returns True if the Stack contains a particular object.

CopyTo Copies some or all of the Stack’s objects into a one-dimensional
array.

Count Returns the number of items in the Stack.

Peek Returns a reference to the Stack’s top item without removing it
from the Stack.

Pop Returns the Stack’s top item and removes it from the Stack.

Push Adds an item to the top of the Stack.

ToArray Returns a one-dimensional array containing references to the objects
in the Stack. The Stack’s top item is placed first in the array.

A Stack allocates memory to stores its items. If you Push an object onto a Stack that is completely full,
the Stack must resize itself to make more room and that slows the operation down.

To make memory management more efficient, the Stack class provides three overloaded constructors.
The first takes no parameters and allocates a default initial capacity. The second takes as a parameter the
number of items it should initially be able to hold. If you know that you will add 10,000 items to the
Stack, you can avoid a lot of resizing by initially allocating room for 10,000 items.

Push Pop

503

Collection Classes

19_571982 ch17.qxd 9/1/05 7:28 PM Page 503

The third version of the constructor takes as a parameter an object that implements the ICollection
interface. The constructor allocates enough room to hold the items in the collection and copies them into
the Stack.

The following code uses a stack to reverse the characters in a string. It gets the string from the txtInput
TextBox and creates a stack. For each letter in the string, it adds the letter to the stack.

Next, while the stack is not empty, the program removes the top letter from the stack and adds it to the
result string. Because the letters are popped off the stack in LIFO order, the result is the reverse of the
original string.

Dim txt As String = txtInput.Text
Dim letter_stack As New Stack

‘ Add the letters to the stack.
For i As Integer = 0 To txt.Length - 1

Debug.WriteLine(i)
letter_stack.Push(txt.Substring(i, 1))

Next

‘ Remove the letters from the stack.
txt = “”
Do While letter_stack.Count > 0

txt &= DirectCast(letter_stack.Pop(), String)
Loop

‘ Display the result.
lblResult.Text = txt

Queue
A queue returns items in first in, first out (FIFO, pronounced “fife-o”) order. Because of the FIFO behav-
ior, a queue is sometimes called a FIFO list or simply a FIFO.

A queue is similar to a line at a customer service desk. The first person in line is the first person to leave
it when the service desk is free. Figure 17-7 illustrates a queue.

Figure 17-7: In a queue, items are removed in first in, first out (FIFO) order.

Customer
Service

DequeueEnqueue

504

Chapter 17

19_571982 ch17.qxd 9/1/05 7:28 PM Page 504

Queues are particularly useful for processing items in the order in which they were created. For exam-
ple, an order-processing application might keep orders in a queue so that customers who place orders
first are satisfied first (or at least their order is shipped first, whether they are satisfied or not).

Historically, the routines that add and remove items from a queue are called Enqueue and Dequeue. The
following table describes these methods and the Queue class’s other most useful properties and methods.

Property/Method Purpose

Clear Removes all items from the Queue.

Contains Returns True if the Queue contains a particular object.

CopyTo Copies some or all of the Queue’s objects into a one-dimensional
array.

Count Returns the number of items in the Queue.

Dequeue Returns the item that has been in the Queue the longest and removes
it from the Queue.

Enqueue Adds an item to the back of the Queue.

Peek Returns a reference to the Queue’s oldest item without removing it
from the Queue.

ToArray Returns a one-dimensional array containing references to the objects
in the Queue. The Queue’s oldest item is placed first in the array.

TrimToSize Frees empty space in the Queue to set its capacity equal to the num-
ber of items it actually contains.

A Queue object stores its items in a circular array, as shown in Figure 17-8. The array isn’t really circular;
the Queue just pretends it is. If it goes past the last item in the normal one-dimensional array, the Queue
wraps around to the first item as if the array were circular.

Figure 17-8: A Queue stores its items in a circular array.

First Item

Last Item

A B C
 D

505

Collection Classes

19_571982 ch17.qxd 9/1/05 7:28 PM Page 505

Counters keep track of where the first and last items in the Queue are stored. When you Dequeue an
item, the Queue returns the first item and moves the first item pointer to the next item in the array. When
you Enqueue an item, the Queue places the new item after the last item and updates the last item pointer.

If you Enqueue an item when the Queue’s array is full, the Queue must resize its array to make more
room and that slows down the operation. To make memory management more efficient, the Queue class
provides four overloaded constructors. The first takes no parameters and allocates a default initial capacity.
If the Queue is full, it enlarges its array by a default growth factor.

The second constructor takes as a parameter its initial capacity. If you know that you will add 600 items
to the Queue, you can save some time by initially allocating room for 600 items. With this constructor,
the Queue also uses a default growth factor.

The third constructor takes as a parameter an object that implements the ICollection interface. The
constructor allocates enough room to hold the items in the collection and copies them into the Queue. It
also uses a default growth factor.

The final version of the constructor takes as parameters an initial capacity and a growth factor between
1.0 and 10.0. A larger growth factor will mean that the Queue resizes itself less often, but it may contain
many empty array entries.

Queues are useful for scheduling items in a FIFO order. For example, a shared network computer uses a
queue. Users on different computers send jobs to the printer, and they are printed in FIFO order.

The following code shows how a program might use a queue to arrange strings for output. When you
click the btnAdd1 Button control, the program takes the text from the txtInput1 TextBox control and
adds it to the queue. It then calls subroutine DisplayQueue to show the items currently in the queue.
Other Button event handlers not shown similarly take strings from other TextBox controls and add
them to the queue.

When you click the btnDequeue Button, the program removes the first entry from the queue and adds
it to the lstResult ListBox. It then calls DisplayQueue again to show the queue’s contents.

Subroutine DisplayQueue uses the queue’s ToArray method to fetch the items in the queue. It loops
through the items, adding them to a ListBox, so you can see what’s in the queue. Note that the code
uses DirectCast to convert the generic Object array entries into Strings.

‘ Create the queue.
Private m_Queue As New Queue

‘ Add an item to the queue.
Private Sub btnAdd1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAdd1.Click

m_Queue.Enqueue(txtInput1.Text)
DisplayQueue()

End Sub

‘ Other routines for adding items to the queue.
...

506

Chapter 17

19_571982 ch17.qxd 9/1/05 7:28 PM Page 506

‘ Remove the first item from the queue.
Private Sub btnDequeue_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnDequeue.Click

Dim txt As String = DirectCast(m_Queue.Dequeue(), String)
lstResult.Items.Add(txt)
DisplayQueue()

End Sub

‘ Display the items in the queue.
Private Sub DisplayQueue()

lstQueue.Items.Clear()
For Each str As String In m_Queue.ToArray()

lstQueue.Items.Add(str)
Next str

‘ Enable or disable the Dequeue button.
btnDequeue.Enabled = (m_Queue.Count > 0)

End Sub

Generics
The System.Collections.Generic namespace provides several generic collection classes that you can use
to build strongly typed collections. These collections work with a specific data type that you supply in a
variable’s declaration. For example, the following code makes a List that holds strings:

Imports System.Collections.Generic

...
Dim places As New List(Of String)
places.Add(“Chicago”)

The places object’s methods are strongly typed and work only with strings, so they provide extra error
protection that a less specialized collection doesn’t provide. To take advantage of this extra protection,
you should use generic collections or strongly typed collections derived from the CollectionBase class
whenever possible.

When you derive a strongly typed collection from the CollectionBase class, you can add extra conve-
nience functions to it. For example, an EmployeeCollection class could include an overloaded version
of the Add method that accepts first and last names as parameters, makes a new Employee object, and
adds it to the collection.

You cannot directly modify a generic collection class, but you can derive an enhanced collection from
one. For example, the following code defines an EmployeeCollection class that inherits from the
generic Collection(Of Employee). It then adds an overloaded version of the Add method that takes
first and last names as parameters.

Imports System.Collections.Generic

Public Class EmployeeList
Inherits List(Of Employee)

507

Collection Classes

19_571982 ch17.qxd 9/1/05 7:28 PM Page 507

Public Overloads Sub Add(ByVal first_name As String, ByVal last_name As String)
Dim emp As New Employee(first_name, last_name)
MyBase.Add(emp)

End Sub
End Class

The following table lists the some of the most useful classes defined by the System.Collections.Generic
namespace.

Collection Purpose

Comparer Compares two objects of the specific type and returns -1, 0, or 1 to
indicate whether the first is less than, equal to, or greater than the
second

Dictionary A strongly typed dictionary

LinkedList A strongly typed linked list

LinkedListNode A strongly typed node in a linked list

List A strongly typed list

Queue A strongly typed queue

SortedDictionary A strongly typed sorted dictionary

SortedList A strongly typed sorted list

Stack A strongly typed stack

For more information on generics (including instructions for writing your own generic classes), see
Chapter 18, “Generics.”

Summary
This chapter describes five types of objects: arrays, collections, dictionaries, stacks, and queues. It also
explains how to convert any of these into strongly typed classes and how to use generic collections.

Arrays store objects sequentially. They allow fast access at any point in the array. The Array class lets
you make arrays indexed with nonzero lower bounds, although they provide slower performance than
arrays of variables, which require lower bounds of zero. The Array class provides several useful meth-
ods for working with Array objects and normal variable arrays, including Sort, Reverse, IndexOf,
LastIndexOf, and BinarySearch.

Collections store data in ways that are different from those used by arrays. An ArrayList stores
items in a linked list. That works well for short lists, but slows down when the list grows large. A
StringCollection holds a collection of strings. StringCollection is an example of a strongly typed
collection (it holds only strings). The NameValueCollection class is a specialized collection that can
hold more than one string value for a given key value.

508

Chapter 17

19_571982 ch17.qxd 9/1/05 7:28 PM Page 508

Dictionaries associate key values with corresponding data values. You look up the key to find the data
much as you might look up a word in the dictionary to find its definition. The ListDictionary class
stores its data in a linked list. It is fast for small data sets but slow when it contains too much data. A
Hashtable, on the other hand, has substantial overhead, but is extremely fast for large dictionaries. A
HybridDictionary acts as a ListDictionary if it doesn’t contain too much data, and switches to a
Hashtable when it gets too big. The StringDictionary class is basically a Hashtable that is strongly
typed to work with strings. The SortedList class is a Hashtable/Array hybrid that lets you access
values by key or in sorted order.

Stacks provide access to items in last in, first out (LIFO) order, while Queues give access to their items
in first in, first out (FIFO) order.

The generic Dictionary, LinkedList, List, Queue, SortedDictionary, SortedList, and Stack
classes enable you to use strongly typed data structures without going to the trouble of building your
own strongly typed classes.

All of these classes, plus other strongly typed collections that you can derive from the CollectionBase,
DictionaryBase, and other classes, providing significant flexibility and options, so you can pick the
class that best satisfies your needs. Deciding which class is best can be tricky, but making the right choice
can mean the difference between a program that processes a large data set in seconds, hours, or not at
all. Spend some time reviewing the different characteristics of the class so that you can make the best
choice possible.

This chapter explains how you can use the generic collection classes provided by the System.Collections
.Generic namespace to build strongly typed collection classes of several useful types. Chapter 18,
“Generics,” explains how you can build generic classes of your own. Using generics, you can build
strongly typed classes that manipulate objects in any way you can imagine.

509

Collection Classes

19_571982 ch17.qxd 9/1/05 7:28 PM Page 509

19_571982 ch17.qxd 9/1/05 7:28 PM Page 510

Generics
Classes are often described as cookie cutters for creating objects. You define a class, and then you
can use it to make any number of objects that are instances of the class.

Similarly, a generic is like a cookie cutter for creating classes. You define a generic, and then you
can use it to create any number of classes that have similar features.

For example, Visual Basic comes with a generic List class. You can use it to make lists of strings,
lists of integers, lists of Employee objects, or lists of just about anything else.

This chapter explains generics. It shows how you define generics of your own and how you can
use them.

Advantages of Generics
A generic class is tied to one or more specific data types. For example, you can build a list of
OrderItem objects, a hash table containing PurchaseOrders identified by number, or a Queue
that contains Customer objects.

Tying generics to specific data types gives them a few advantages over more traditional classes:

❑ Strong typing — Methods can take parameters and return values that have the class’s
instance type. For example, a List(Of String) can only hold string values, and its Item
method returns string values. This makes it more difficult to accidentally add the wrong
type of object to the collection.

❑ IntelliSense — By providing strong typing, a class built from a generic lets Visual Studio
provide IntelliSense. If you make a List(Of Employee), Visual Studio knows that the
items in the collection are Employee objects, so it can give you appropriate IntelliSense.

❑ No boxing — Because the class manipulates objects with a specific data type, Visual Basic
doesn’t need to convert items to and from the plain Object data type. For example, if a
program stores TextBox controls in a normal collection, the program must convert the
TextBox controls to and from the Object class when it adds and uses items in the collec-
tion. Avoiding these steps makes the code more efficient.

20_571982 ch18.qxd 9/1/05 7:29 PM Page 511

❑ Code reuse — You can use a generic class with more than one data type. For example, if you
have built a generic PriorityQueue class, then you can make a PriorityQueue holding
Employee, Customer, Order, or Objection objects. Without generics, you would need to build
four separate classes to build strongly typed priority queues for each of these types of objects.
Reusing this code makes it easier to write, test, debug, and maintain the code.

Defining Generics
Visual Basic allows you to define generic classes, structures, interfaces, procedures, and delegates. The
basic syntax is similar, so once you understand how to make generic classes, the others should be fairly
easy.

To define a generic class, make a class declaration as usual. After the class name, add a parenthesis, the
keyword Of, and a placeholder for a data type. For example, the following code shows the outline of a
generic MostRecentList class. Its declaration takes one type that the class internally names ItemType.
This is similar to a variable name that you would give to a subroutine. The class’s code can use the name
ItemType to refer to the type associated with the instance of the generic class.

Public Class MostRecentList(Of ItemType)
...

End Class

For example, suppose that you want to make a list that can act as a most recently used (MRU) file list. It
should be able to hold at most four items. New items are added at the top of the list, and the others are
bumped down one position with the last item being dropped if the list contains too many items. If you
add an existing item to the list, it jumps to the top of the list.

The following code shows a generic MostRecentList class. The Of ItemType clause indicates that the
class will take a single type that it internally names ItemType. The class stores its items in a private list
named m_Items. It declares this list using the generic list class defined in the System.Collections.Generic
namespace, and it indicates that this is a list that will hold ItemType objects. This refers to the ItemType
parameter used in the generic MostRecentList class’s declaration. If the program makes a
MostRecentList of strings, m_Items is a list of strings.

In this code, the Item property procedures simply let the main program get and set the values in the
m_Items list. The MaxItems property lets the program determine the number of items that the list can
hold. The property set routine saves the new size and then resizes the m_Items list appropriately if
necessary. The Count property returns the number of items currently in the list. The subroutine Add
first removes the new item if it is already in the list. It then adds the new item at the top of the list and
removes the last item if the list now contains too many items. The Remove and RemoveAt routines sim-
ply call the m_Items .list’s Remove and RemoveAt methods.

Imports System.Collections.Generic

‘ A list of at most MaxItems items.
Public Class MostRecentList(Of ItemType)

‘ The Item property.
Private m_Items As New List(Of ItemType)

512

Chapter 18

20_571982 ch18.qxd 9/1/05 7:29 PM Page 512

Public Property Item(ByVal index As Integer) As ItemType
Get

Return m_Items(index)
End Get
Set(ByVal value As ItemType)

m_Items(index) = value
End Set

End Property

‘ The MaxItems property.
Private m_MaxItems As Integer = 4
Public Property MaxItems() As Integer

Get
Return m_MaxItems

End Get
Set(ByVal value As Integer)

m_MaxItems = value

‘ Resize appropriately.
Do While m_Items.Count > m_MaxItems

m_Items.RemoveAt(m_Items.Count - 1)
Loop

End Set
End Property

‘ The current number of items.
Public ReadOnly Property Count() As Integer

Get
Return m_Items.Count

End Get
End Property

‘ Add an item to the top of the list.
Public Sub Add(ByVal value As ItemType)

‘ Remove the item if it is present.
If m_Items.Contains(value) Then m_Items.Remove(value)

‘ Add the item to the top of the list.
m_Items.Insert(0, value)

‘ Make sure there are at most MaxItems items.
If m_Items.Count > m_MaxItems Then m_Items.RemoveAt(m_Items.Count - 1)

End Sub

‘ Remove an item.
Public Sub Remove(ByVal value As ItemType)

m_Items.Remove(value)
End Sub

‘ Remove an item at a specific position.
Public Sub RemoveAt(ByVal index As Integer)

m_Items.RemoveAt(index)
End Sub

End Class

513

Generics

20_571982 ch18.qxd 9/1/05 7:29 PM Page 513

The following code creates a new MostRecentList of strings and then adds some values to it:

Dim the_items As New MostRecentList(Of String)
the_items.Add(“Apple”)
the_items.Add(“Banana”)
the_items.Add(“Cherry”)
the_items.Add(“Date”)
the_items.Add(“Banana”)
the_items.Add(“Fig”)

After this code executes, the list contains the values in the following order: Fig, Banana, Date, Cherry.

Generic Constructors
You can give constructors to a generic class just as you can give them to any other class. For example, the
following constructor initializes the MostRecentList class’s MaxItem property:

‘ Initialize MaxItems for the new list.
Public Sub New(ByVal max_items As Integer)

MaxItems = max_items
End Sub

To use the constructor, the main program adds normal parameters after the type parameters in the object
declaration. The following statement creates a new MostRecentList of strings, passing its constructor
the value 4:

Dim the_items As New MostRecentList(Of String)(4)

Multiple Types
If you want the class to work with more than one type, you can add other types to the declaration sepa-
rated by commas. For example, suppose that you want to create a list of data items associated with two
keys. You might want to be able to look up customer data using customer ID or customer name.

The following code defines the generic PairDictionary class. This class acts as a dictionary that associ-
ates a key value with a pair of data values. Notice how the Class declaration includes three data types
named KeyType, DataType1, and DataType2.

The PairDictionary class defines its own private DataPair class to hold data pairs. The DataPair
class has two public variables of types DataType1 and DataType2. Its only method is a constructor that
makes initializing the two variables easier.

The PairDictionary class then declares a generic Dictionary object named m_Dictionary using the
key type KeyType and data type DataPair. It delegates most of its work to the m_Dictionary object.

PairDictionary then provides Count, Add, Clear, ContainsKey, GetItem, SetItem, Keys, and
Remove methods. Notice how it delegates these to the m_Dictionary object and how it uses the
DataPair class to store values in m_Dictionary.

514

Chapter 18

20_571982 ch18.qxd 9/1/05 7:29 PM Page 514

Imports System.Collections.Generic

‘ A Dictionary that associates
‘ a pair of data values with each key.
Public Class PairDictionary(Of KeyType, DataType1, DataType2)

‘ A structure to hold paired data.
Private Structure DataPair

Public Data1 As DataType1
Public Data2 As DataType2
Public Sub New(ByVal data_value1 As DataType1, _

ByVal data_value2 As DataType2)
Data1 = data_value1
Data2 = data_value2

End Sub
End Structure

‘ A Dictionary to hold the paired data.
Private m_Dictionary As New Dictionary(Of KeyType, DataPair)

‘ Return the number of data pairs.
Public ReadOnly Property Count() As Integer

Get
Return m_Dictionary.Count

End Get
End Property

‘ Add a key and data pair.
Public Sub Add(ByVal key As KeyType, ByVal _

data_value1 As DataType1, _
ByVal data_value2 As DataType2)

m_Dictionary.Add(key, New DataPair(data_value1, data_value2))
End Sub

‘ Remove all data.
Public Sub Clear()

m_Dictionary.Clear()
End Sub

‘ Return True if the PairDictionary contains this key.
Public Function ContainsKey(ByVal key As KeyType) As Boolean

Return m_Dictionary.ContainsKey(key)
End Function

‘ Return a data pair.
Public Sub GetItem(ByVal key As KeyType, _

ByRef data_value1 As DataType1, _
ByRef data_value2 As DataType2)

Dim data_pair As DataPair = m_Dictionary.Item(key)
data_value1 = data_pair.Data1
data_value2 = data_pair.Data2

End Sub

‘ Set a data pair.
Public Sub SetItem(ByVal key As KeyType, _

515

Generics

20_571982 ch18.qxd 9/1/05 7:29 PM Page 515

ByVal data_value1 As DataType1, _
ByVal data_value2 As DataType2)

m_Dictionary.Item(key) = _
New DataPair(data_value1, data_value2)

End Sub

‘ Return a collection containing the keys.
Public ReadOnly Property Keys() As System.Collections.ICollection

Get
Return m_Dictionary.Keys()

End Get
End Property

‘ Remove a particular entry.
Public Sub Remove(ByVal key As KeyType)

m_Dictionary.Remove(key)
End Sub

End Class

The following code creates an instance of the generic PairDictionary class that uses integers as keys
and strings for both data values. It adds three entries to the PairDictionary and then retrieves and
displays the entry with key value 32.

‘ Create the PairDictionary and add some data.
Dim pair_dictionary As New PairDictionary(Of Integer, String, String)
pair_dictionary.Add(10, “Ann”, “Archer”)
pair_dictionary.Add(32, “Bill”, “Beach”)
pair_dictionary.Add(17, “Cynthia”, “Campos”)
‘ Print the values for index 32.
Dim value1 As String = “”
Dim value2 As String = “”
pair_dictionary.GetItem(32, value1, value2)
Debug.WriteLine(value1 & “, “ & value2)

Constrained Types
To get the most out of your generic classes, you should make them as flexible as possible. Depending
on what the class will do, however, you may need to constrain the types used to create instances of the
generic.

For example, consider the generic MostRecentList class described earlier in this chapter. It stores at
most a certain number of objects in a list. When you add an object to the list, the class first removes the
object from the list if it is already present.

That works with simple data types such as integers and strings. However, suppose that you want the list
to hold Employee objects. When you add a new Employee object, the list tries to remove the item if it
is already present in its m_Items list. However, you are adding a new instance of the Employee class.
The object may have the same values as an object that is already in the list, but the list won’t know that
because the values are stored in two different objects.

What the list needs is a way to compare objects in the list to see if they are equal. It can then look through
the list and remove an existing item if it matches the new one.

516

Chapter 18

20_571982 ch18.qxd 9/1/05 7:29 PM Page 516

One way to allow the list to compare items is to guarantee that the items implement the IComparable
interface. Then the program can use their CompareTo methods to see if two objects match.

The following code shows a new version of MostRecentList. Instead of calling the m_Items list’s
Remove method directly, the Add method now calls the class’s Remove method. That method loops
through the list using each item’s CompareTo method to see if the item matches the target item. If there
is a match, the program removes the item from the list.

Public Class MostRecentList(Of ItemType As IComparable)
...
‘ Add an item to the top of the list.
Public Sub Add(ByVal value As ItemType)

‘ Remove the item if it is present.
Remove(value)

‘ Add the item to the top of the list.
m_Items.Insert(0, value)

‘ Make sure there are at most MaxItems items.
If m_Items.Count > m_MaxItems Then m_Items.RemoveAt(m_Items.Count - 1)

End Sub

‘ Remove an item.
Public Sub Remove(ByVal value As ItemType)

‘ Find the item.
For i As Integer = m_Items.Count - 1 To 0 Step -1

If value.CompareTo(m_Items(i)) = 0 Then
m_Items.RemoveAt(i)

End If
Next i

End Sub
...

End Sub

A type’s As clause can specify any number of interfaces and at most one class from which the type must
be derived. It can also include the keyword New to indicate that the type used must provide a construc-
tor that takes no parameters. If you include more than one constraint, the constraints should be sepa-
rated by commas and enclosed in brackets.

The following code defines the StrangeGeneric class that takes three type parameters. The first type
must implement the IComparable interface and must provide an empty constructor. The second type
has no constraints and the third type must be a class that inherits from Control.

Public Class StrangeGeneric(Of Type1 As {IComparable, New}, Type2, _
Type3 As Control)

...
End Class

The following code declares an instance of the StrangeGeneric class:

Dim my_strange_generic As New StrangeGeneric(Of Integer, Employee, Button)

517

Generics

20_571982 ch18.qxd 9/1/05 7:29 PM Page 517

Constraining a type gives Visual Basic more information about that type, so it lets you use the properties
and methods defined by the type. In the previous code, for example, if a variable is of type Type3, then
Visual Basic knows that it inherits from the Control class, so you can use Control properties and meth-
ods such as Anchor, BackColor, Font, and so forth.

Using Generics
The previous sections have already shown a few examples of how to use a generic class. The program
declares the class and includes whatever data types are required in parentheses. The following code
shows how a program might create a generic list of strings:

Imports System.Collections.Generic
...
Dim names As New List(Of String)

To use a generic class’s constructor, add a second set of parentheses and any parameters after the type
specifications. The following statement creates an IntStringList object, passing it the types Integer,
String, and Employee. It calls the class’s constructor, passing it the value 100.

Dim the_employees As New IntStringList(Of Integer, String, Employee)(100)

If the program needs to use only a few generic classes (for example, a single collection of strings), this isn’t
too bad. If the program needs to use many instances of the class, however, the code becomes cluttered.

For example, suppose that the TreeNode class shown in the following code represents a node in a tree.
Its MyData field holds some piece of data and its Children list holds references to child nodes.

Public Class TreeNode(Of DataType)
Public MyData As DataType
Public Children As New List(Of TreeNode(Of DataType))

Public Sub New(ByVal new_data As DataType)
MyData = new_data

End Sub
End Class

The following code uses this class to build a small tree of Employee objects:

Dim root As New TreeNode(Of Employee)(New Employee(“Annabelle”, “Ant”))
Dim child1 As New TreeNode(Of Employee)(New Employee(“Bert”, “Bear”))
Dim child2 As New TreeNode(Of Employee)(New Employee(“Candice”, “Cat”))

root.Children.Add(child1)
root.Children.Add(child2)

Repeating the nodes’ data types in the first three lines makes the code rather cluttered. Two techniques
that you can use to make the code a bit simpler are using an imports alias and deriving a new class. Both
of these let you create a simpler name for the awkward class name TreeNode(Of Employee).

518

Chapter 18

20_571982 ch18.qxd 9/1/05 7:29 PM Page 518

Imports Aliases
Normally, you use an Imports statement to make it easier to refer to namespaces and the symbols they
contain. However, the Imports statement also lets you define an alias for a namespace entity. To use this
to make using generics easier, create an Imports statement that refers to the type of generic class you
want to use and give it a simple alias.

For example, the following code is in the DataTreeTest namespace. It uses an Imports statement to
refer to a TreeNode of Employee. It gives this entity the alias EmployeeNode. Later, the program can use
the name EmployeeNode to create a TreeNode of Employee.

Imports EmployeeNode = DataTreeTest.TreeNode(Of DataTreeTest.Employee)
...
Dim root As New EmployeeNode(New Employee(“Annabelle”, “Ant”))
Dim child1 As New EmployeeNode(New Employee(“Bert”, “Bear”))
Dim child2 As New EmployeeNode(New Employee(“Candice”, “Cat”))

root.Children.Add(child1)
root.Children.Add(child2)
...

Derived Classes
A second method that simplifies using generics is to derive a class from the generic class. The following
code derives the EmployeeNode class from TreeNode(Of Employee). Later, it creates instances of this
class to build the tree.

Public Class EmployeeNode
Inherits TreeNode(Of Employee)
Public Sub New(ByVal new_data As Employee)

MyBase.New(new_data)
End Sub

End Class
...
Dim root As New EmployeeNode(New Employee(“Annabelle”, “Ant”))
Dim child1 As New EmployeeNode(New Employee(“Bert”, “Bear”))
Dim child2 As New EmployeeNode(New Employee(“Candice”, “Cat”))

root.Children.Add(child1)
root.Children.Add(child2)
...

Predefined Generic Classes
The System.Collections.Generic namespace defines several generic classes. These are basically collection
classes that are strongly typed to work with the data type you specify. See the section “Generics” near
the end of Chapter 17, “Collection Classes,” for more information and a list of the predefined generic
collection classes.

519

Generics

20_571982 ch18.qxd 9/1/05 7:29 PM Page 519

Summary
A class abstracts the properties and behaviors of a set of objects to form a template that you can use to
make objects that implement those properties and behaviors. After you define the class, you can make
many instances of it and they all have the features defined by the class.

Generics take abstraction one level higher. A generic class abstracts the features of a set of classes defined
for specific data types. It determines the properties and methods that any class in the generic group pro-
vides. After you define the generic class, you can easily make classes that work with different data types
but that all provide the common set of features defined by the generic.

By defining common functionality, generic classes let you reuse code to perform similar actions for dif-
ferent data types. By allowing you to parameterize the class instances with a data type, they let you
build strongly typed classes quickly and easily. That, in turn, lets Visual Basic provide IntelliSense to
make programming faster and easier.

Together these benefits, easier code reuse, strong typing, and IntelliSense support, help you write, test,
debug, and maintain code more easily.

Chapters 1 through 13 explained Visual Basic programming details. They explained the Visual Basic
development environment, language syntax, standard controls and forms, custom controls, drag and
drop, and the clipboard.

Chapters 14 through 18 describe object-oriented concepts such as classes, structures, namespaces, and
generics.

The chapters in the next part of the book deal with graphics programming. They explain how to draw
lines, ellipses, curves, and text. They show how to use different colors, line styles, and brush types. They
also explain how to manipulate bitmapped images, print, and generate reports.

Chapter 19, “Drawing Basics,” explains the fundamentals of drawing graphics in Visual Basic 2005. It
provides the information you need to start drawing simple shapes and curves.

520

Chapter 18

20_571982 ch18.qxd 9/1/05 7:29 PM Page 520

Drawing Basics
Visual Basic .NET provides a large assortment of objects for drawing and for controlling drawing
attributes. The Graphics object provides methods that enable you to draw and fill rectangles,
ellipses, polygons, curves, lines, and other shapes. Pen and Brush objects determine the appearance
of lines (solid, dashed, dotted) and filled areas (solid colors, hatched, filled with a color gradient).

This chapter provides an overview of the drawing process and a survey of the most important
drawing namespaces and their classes. It describes in detail the most central of these classes,
Graphics, and provides examples showing how to use it.

Chapter 20, “Brushes, Pens, and Paths,” describes some of the other important drawing classes in
greater detail.

If you are new to graphics, this chapter and those that follow may involve a lot of new concepts
and unfamiliar terms. The examples available on the book’s Web site will help make many of the
concepts more concrete. If you find some term confusing, you can find additional details by using
Microsoft’s advanced search page http://search.microsoft.com/search/search.aspx?st=
a&View=en-us. You can also consult online glossaries such as the Webopedia (www.webopedia.com)
and Wikipedia (www.wikipedia.org).

Drawing Overview
Whenever you draw something in Visual Basic, you must use a Graphics object. This object repre-
sents the surface where you are drawing, whether it is a PictureBox, Form, or PrintDocument.
Sometimes you will have to create a Graphics object, and other times (as in a Paint event handler)
one is provided for you.

The Graphics Device Interface+ (GDI+), or the .NET version of GDI drawing routines use two
classes, Pen and Brush, to determine the appearance of whatever they are drawing.

A Pen object determines how lines are drawn. A Pen sets a line’s color, thickness, dash style, end
cap style, and other properties. The Pen applies to all lines drawn by a GDI+ routine. For example,
the DrawPolygon subroutine draws a series of lines, and its Pen parameter determines how all the
lines are drawn.

21_571982 ch19.qxd 9/1/05 7:25 PM Page 521

A Brush object determines how areas are filled. A Brush sets the area’s fill color, hatch pattern (a pattern
of lines, dots, checks, or other shapes), color gradient (shading from one color to another), and texture
(image tiled over the area). Chapter 20 provides more advanced details of these and provides figures
showing examples. The Brush applies to GDI+ routines that fill closed areas such as FillRectangle,
FillEllipse, and FillPolygon.

The basic steps for drawing a simple shape are:

1. Obtain a Graphics object.

2. Define a Brush object and fill with it.

3. Define a Pen object and draw with it.

For example, the Paint event handler shown in the following code runs when the form needs to redraw
itself. The Paint event handler’s e.Graphics parameter gives the Graphics object on which the pro-
gram should draw. When the event handler is finished, Visual Basic copies the contents drawn in this
Graphics object onto the parts of the form that must be redrawn. The event handler creates an orange
SolidBrush object. SolidBrush is a class derived from the Brush class, so it will serve as a Brush. The
program uses the brush to fill the circle bounded by the square with upper-left corners at (10, 10) and
100 pixels wide and 100 pixels tall. The code then creates a pen representing a 10-pixel wide blue line
and uses it to draw the outline of the same circle.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim circle_brush As New SolidBrush(Color.Orange)
e.Graphics.FillEllipse(circle_brush, 10, 10, 100, 100)

Dim circle_pen As New Pen(Color.Blue, 10)
e.Graphics.DrawEllipse(circle_pen, 10, 10, 100, 100)

End Sub

Whenever the form is hidden and exposed, partially covered and exposed, minimized and restored or
maximized, or resized to expose a new part of the form, the Paint event handler executes and redraws
the circle. Figure 19-1 shows the result. You can’t see the colors in the book, but you can see that the solid
circle has a thick border.

Figure 19-1: This program uses SolidBrush and Pen
objects to draw an orange circle with a wide blue outline.

522

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 522

The Graphics object’s filling and drawing methods provide several overloaded versions. Most can take
an object parameter that defines the shape to draw. For example, the FillEllipse and DrawEllipse
methods can take a Rectangle as a parameter to define the ellipse’s bounding rectangle.

This provides a convenient method for ensuring that the filled and drawn areas match exactly. The fol-
lowing code draws the same circle as the previous example, but it uses a Rectangle to define the circle.
It uses the same Rectangle for its calls to FillEllipse and DrawEllipse, so it’s easy to tell that they
define exactly the same circle. If you modify this code to change the circle, you don’t need to remember
to change its coordinates everywhere they occur, because the circle is defined in only one place (the
Rectangle).

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim rect As New Rectangle(10, 10, 100, 100)
Dim circle_brush As New SolidBrush(Color.Orange)
e.Graphics.FillEllipse(circle_brush, rect)

Dim circle_pen As New Pen(Color.Blue, 10)
e.Graphics.DrawEllipse(circle_pen, rect)

End Sub

All GDI+ drawing is based on these simple steps, but there are a lot of variations. Pens and Brushes can
be much more complicated. For example, you can fill a polygon with a color gradient that follows a path
you define and then outline it with a custom dash pattern. The Graphics object also provides some fairly
exotic drawing routines such as DrawBezier, which draws a Bézier curve.

A Bézier curve is a smooth curve guided by a set of four control points. The curve starts at the first
point and ends at the last. The middle two points control the curve’s direction and curvature. The sec-
tion “DrawBezier” later in this chapter gives more information on Bézier curves and Figure 19-7
shows an example.

The following sections describe the namespaces containing the most useful GDI+ objects. Chapter 20,
“Brushes, Pens, and Paths,” provides additional details and contains pictures of the results produced by
many of these objects.

Drawing Namespaces
Before jumping into GDI+ graphics, it’s worth taking a moment to learn which namespaces contain which
objects. By default, the System.Drawing namespace is imported into new applications automatically, so
you don’t need to explicitly import it to work with Graphics, Pen, Brush, and the other basic drawing
objects. However, if you want to create custom dash patterns (long dashes, dot-dash-dot), linear gradient
color fills (shading from one color to another and possibly to others), or advanced image files (JPEG, GIF,
TIFF), you must know which namespaces to import into your application.

System.Drawing
The System.Drawing namespace contains the most important and basic GDI+ classes. These classes
include Graphics, Pen, Brush, Font, FontFamily, Bitmap, Icon, and Image. The following table
describes the most useful System.Drawing classes.

523

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 523

Class Description

Graphics This is without doubt the most important object you’ll use when creating
graphics. A Graphics object represents the surface you’re going to draw
on. That could be a PictureBox, form, bitmap in memory, or whatever. The
Graphics object provides the methods for drawing lines, rectangles, ellipses,
and so forth.

Pen This class represents the drawing characteristics of a line, including the line’s
color, thickness, dash style, and so forth.

Pens This class provides a large number of predefined pens with different colors
and width 1. For example, you can use Pens.Blue as a standard blue pen.

Brush This class represents how solid areas are filled. It determines whether the
area is solidly colored, hatched, filled with a pattern, and so forth.

Brushes This class provides a large number of predefined solid brushes with different
colors. For example, you can use Brushes.Green to fill an area with green.

SolidBrush This class represents a solid brush. When you want to fill an object with a
solid color, you use a SolidBrush. This is by far the most common type of
fill for most applications.

Bitmap This class represents a bitmap image defined by pixel data rather than drawn
lines.

Icon This class represents a Windows icon similar to a bitmap.

Metafile This class represents a graphic metafile that contains graphical operations
that a program can record, save to a file, load from a file, and play back later.

Image This is an abstract base class from which Bitmap, Icon, and Metafile
inherit. Some routines can work with any of these kinds of objects, so they
take an Image parameter. (In brief, a bitmap is a typical picture. An icon has
additional transparency and possibly hot-spot information so it can act as
a form or application icon or mouse pointer. A metafile contains drawing
instructions that some applications can use to scale the picture smoothly.)

Font This class represents a particular font. It defines the font’s name, size, and
style (such as italic or bold).

FontFamily This class represents a group of typefaces with similar characteristics.

Region This class defines a shape created from rectangles and paths. You can fill a
region, use it to perform hit testing, or clip a drawing to a region.

The System.Drawing namespace also defines some structures that a program can use for drawing. The
following table describes the most useful of these structures.

524

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 524

Structure Description

Color This object defines a color’s red, green, and blue components as values between
0 and 255, plus an alpha value that indicates the color’s transparency. An alpha
value of 0 means the object is completely transparent, while a value of 255
means it is totally opaque.

Point This object defines a point’s X and Y coordinates.

Size This object defines a width and height.

Rectangle This object defines a rectangle using a Point and a Size.

GDI+ routines work in pixels on the screen, printer, or whatever object they are drawing on, so the Point,
Size, and Rectangle structures hold integral coordinates and sizes. However, the System.Drawing
namespace also defines PointF, SizeF, and RectangleF classes to work with floating-point values.

The Color class provides a large number of predefined color values. For example, Color.PaleGreen
defines a light green color. You can use these predefined colors instead of creating a new color object.

System.Drawing.Drawing2D
The System.Drawing.Drawing2D namespace contains most of the other objects you’ll need to draw
more advanced two-dimensional graphics. Some of these classes refine the more basic drawing classes,
or define values for those classes. For example, the HatchBrush class represents a specialized type of
Brush that fills with a hatch pattern. The following table describes this namespace’s most useful classes.

Class Description

HatchBrush This class defines a Brush that fills an area with a hatch pattern. It
defines the pattern, a foreground color, and a background color.

LinearGradientBrush This class defines a Brush that fills an area with a linear color
gradient. By default the fill shades smoothly from one color to
another along a line that you define, but it can also represent
multicolor gradients. (Chapter 20 has more to say about
LinearGradientBrushes, and Figure 20-11 shows some examples.)

Blend This class represents a blend pattern for a LinearGradientBrush
or PathGradientBrush. For example, suppose that you define a
gradient running from red to yellow. Normally the gradient is
smooth and linear, but you can use a Blend to change this. For
example, you might want the color to change from red to yellow
very quickly, so it is 80 percent yellow only 20 percent of the way
across the gradient. (The effects of a Blend are subtle but you can
see them in Figure 20-11.)

PathGradientBrush This class is similar to a LinearGradientBrush except its gradient
follows a path rather than a line. (Figure 20-12 shows some examples.)

Table continued on following page

525

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 525

Class Description

ColorBlend This class defines colors and positions for LinearGradientBrush
or PathGradientBrush. This lets you make the colors vary
between several different colors along the brush’s path. (Figure
20-11 shows an example.)

GraphicsPath This class represents a series of connected lines and curves. You can
draw, fill, or clip to a GraphicsPath. For example, you could add
text to a GraphicsPath and then draw its outline or clip a drawing
so that it only shows within the text’s path. (Figure 20-13 shows a
GraphicsPath filled with TextureBrush.)

Matrix This class represents a 3 × 3 transformation matrix. You can use
matrices to translate, scale, and rotate graphics operations. See
the section “Transformations Basics” later in this chapter for more
information.

The System.Drawing.Drawing2D namespace also defines some enumerations that are useful for more
advanced drawing. The following able describes the most useful of these enumerations.

Enumeration Description

DashCap These values determine how the ends of a dash in a dashed line are
drawn. DashCap values include Flat, Round, and Triangle. These give
the same appearance as the Flat, Round, and Triangle LineCaps shown
in Figure 19-2.

DashStyle These values determine how a dashed line is drawn. DashStyle values
include Dash, DashDot, DashDotDot, Dot, Solid, and Custom. If you set
a Pen’s DashStyle property to DashStyle.Custom, then you should
also set its DashPattern property to an array telling the Pen how many to
pixels to draw and skip. For example, the array {10, 20, 5, 2} means draw
10, skip 2, draw 5, skip 2, and then repeat as necessary.

LineCap These values determine how the ends of a line are drawn. Values include
ArrowAnchor, DiamondAnchor, Flat, NoAnchor, Round, RoundAnchor,
Square, SquareAnchor, Triangle, and Custom. If LineCap is Custom,
you should use a CustomLineCap object to define the cap. Figure 19-2
shows the standard LineCaps.

LineJoin These values determine how lines are joined by a GDI+ method that
draws connected lines. For example, the DrawPolygon and DrawLines
methods use this property. Values include Bevel, Miter, Round, and
MiterClipped. Figure 19-3 shows the first three values. MiterClipped
produces either a mitered or beveled corner, depending on whether the
miter’s length exceeds a certain limit.

HatchStyle These values define the hatch style used by a HatchBrush object to fill an
area. This enumeration includes 54 values, so they are not all listed here.
Figure 19-4, however, lists them and shows samples.

526

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 526

Figure 19-2: The LineCap enumeration
determines how a line’s endpoint is drawn.

Figure 19-3: The LineJoin enumeration determines how lines are joined.

Figure 19-4: The HatchStyle enumeration determines how a HatchBrush fills an area.

527

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 527

System.Drawing.Imaging
The System.Drawing.Imaging namespace contains classes that deal with more advanced bitmap graphics.
It includes classes that define image file formats such as GIF and JPG, classes that manage color palettes,
and classes that define metafiles. The following table describes this namespace’s most useful classes.

Class Description

ImageFormat This class specifies an image’s format. This can be one of bmp,
emf, exif, gif, icon, jpeg, memory bitmap, png, tiff, or wmf. (For
descriptions of these image format types, try searching for them
at Web sites such as Webopedia (www.webopedia.com). The
page www.webopedia.com/DidYouKnow/Internet/2002/
JPG_GIF_PNG.asp discusses the differences between the three
most common Web image formats: GIF, JPEG, and PNG.
Microsoft’s Web site has a comparison of the BMP, GIF, JPEG,
Exif, PNG, and TIFF formats at msdn.microsoft.com/
library/en-us/gdicpp/GDIPlus/aboutGDIPlus/
imagesbitmapsandmetafiles/typesofbitmaps.asp.

ColorMap This class defines a mapping from old color values to new ones.
You can use ColorMaps to change some colors in an image to
others.

ColorPalette This class represents a palette of color values. (A palette is a
collection of color values that are used in a particular image. For
example, 8-bit color images can contain only 256 different colors.
The image’s color palette lists the colors used and an 8-bit
numeric value gives each pixel’s color index in the palette.
Recently, higher color models such as 16-, 24-, and 32-bit color
have become more common. In those color models, the bits give
each pixel’s red, green, and blue color components directly
rather than referring to a color palette, so no palette is needed.)

Metafile This class represents a graphic metafile that contains drawing
instructions. You can create, save, reload, and play back metafile
information.

MetafileHeader This class defines the attributes of a Metafile object. (A metafile
lets a program define a drawing in terms of lines, curves, and
filled areas rather than using pixels in a bitmap. This lets the
program later redraw the image scaled, rotated, or otherwise
transformed smoothly without the distortion that would occur
in a bitmapped image.)

MetaHeader This class contains information about a Windows metafile (WMF).

WmfPlaceableFileHeader This class defines how a metafile should be mapped to an output
device. You can use this to ensure that the metafile is properly
sized when you import it into a drawing program such as
CorelDRAW!.

528

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 528

System.Drawing.Text
The System.Drawing.Text namespace contains only three classes. These three classes provide a some-
what awkward method for learning about the fonts installed on the system or the fonts installed for an
application. The following table describes these three classes.

Class Description

FontCollection A base class for the derived InstalledFontCollection
and PrivateFontCollection classes. It provides a method
that returns an array of FontFamily objects.

InstalledFontCollection This is derived from the FontCollection class. This class’s
Families method returns an array containing FontFamily
objects representing the fonts installed on the system.

PrivateFontCollection This is also derived from the FontCollection class.
Objects from this class represent fonts installed by an
application from font files. The program can use this object
to install fonts just for the use of the application and not
for the rest of the system. This class provides methods for
installing and listing the application’s fonts.

It is rather odd that this class is defined just to provide one method that returns an array of
FontFamily objects. It would have made more sense to give the FontCollection class a method such
as ListInstalledFonts or to give the InstalledFontCollection class a shared method that creates
such a FontCollection object. That’s not the way these classes work, however.

To list the system’s fonts, a program creates an instance of the InstalledFontCollection and uses
that object’s Families method to get an array of the installed FontFamily objects. The program can
then loop through the array to list the fonts. The following code demonstrates this method:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ Get the installed fonts collection.
Dim installed_fonts As New InstalledFontCollection

‘ Get an array of the system’s font familiies.
Dim font_families() As FontFamily = installed_fonts.Families()

‘ Display the font families.
For Each font_family As FontFamily In font_families

lstFonts.Items.Add(font_family.Name)
Next font_family
lstFonts.SelectedIndex = 0

End Sub

Figure 19-5 shows the result.

529

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 529

Figure 19-5: An InstalledFontCollection object
provides access to an array of FontFamily objects
representing the fonts installed on the system.

The System.Drawing.Text namespace also defines the TextRenderingHint enumeration. Anti-aliasing is
a process that uses pixels of different shades to make jagged edges and curves appear smoother. You can
set a Graphics object’s TextRenderingHint property to tell Visual Basic whether it should use anti-
aliasing to smooth the text. The following table describes the TextRenderingHint enumeration values.

Enumeration Value Description

AntiAlias Characters are drawn anti-aliased without hinting.

AntiAliasGridFit Characters are drawn anti-aliased with hinting to improve
stems and curves.

ClearTypeGridFit Characters are drawn using ClearType glyphs with hinting.
This takes advantage of ClearType font features. (In this
context, a glyph is the image of a letter. Some fonts are
drawn as glyphs and others such as TrueType fonts are
drawn as outlines. TrueType was developed jointly by
Microsoft and Apple. ClearType is a newer type of glyph
font developed by Microsoft.)

SingleBitPerPixel Characters are drawn without anti-aliasing or hinting. This
is the fastest and lowest-quality setting.

SingleBitPerPixelGridFit Characters are drawn without anti-aliasing, but with
hinting.

SystemDefault Characters are drawn using the system default setting.

530

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 530

The following code shows how a program can display text with and without anti-aliasing. First it creates
a large font. It sets the Graphics object’s TextRenderingHint property to AntiAliasGridFit and
draws some text. Then it sets TextRenderingHint to SingleBitPerPixel and draws the text again.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Make a big font.
Dim the_font As New Font(Me.Font.FontFamily, _

40, FontStyle.Bold, GraphicsUnit.Pixel)

‘ Draw without anti-aliasing.
e.Graphics.TextRenderingHint = TextRenderingHint.AntiAliasGridFit
e.Graphics.DrawString(“Alias”, _

the_font, Brushes.Black, 5, 5)

‘ Draw with anti-aliasing.
e.Graphics.TextRenderingHint = TextRenderingHint.SingleBitPerPixel
e.Graphics.DrawString(“Alias”, _

the_font, Brushes.Black, 5, 50)
End Sub

Figure 19-6 shows the result, greatly enlarged to emphasize the difference. Notice how the anti-aliased
version uses different shades of gray to make the text appear smoother.

Figure 19-6: Anti-aliasing (top) makes characters appear smoother.

531

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 531

System.Drawing.Printing
The System.Drawing.Printing namespace contains objects for printing and managing the printer’s
characteristics.

Normally, to generate a printed document, you create a PrintDocument object. You set the object’s
properties to define printing attributes and then call its Print method. As it prints, the PrintDocument
object generates PrintPage events that let you draw on the printout’s pages.

Other classes in this namespace define properties for the PrintDocument object. The following table
describes the most useful of these property objects.

Class Description

PageSettings This class defines the page settings for either an entire
PrintDocument or for a particular page. This object has properties
that are Margins, PaperSize, PaperSource, PrinterResolution,
and PrinterSettings objects.

Margins This class defines the margins for the printed page through its Top,
Bottom, Left, and Right properties.

PaperSize This class defines the paper’s size. You can set the object’s Kind
property to a standard value such as A2, Legal, or Letter.
Alternatively, you can set the object’s Height and Width properties
explicitly.

PaperSource This class defines the printer’s paper source. You can set this object’s
Kind property to such values as AutomaticFeed, Upper, Middle,
Lower, Envelope, and ManualFeed.

PrinterResolution This class defines the printer’s resolution.

PrinterSettings This class defines the printer’s settings. You can use this class to
get setting values such as whether the printer can print double-
sided (CanDuplex), the names of the installed printers
(InstalledPrinters), and the printer’s supported resolutions
(PrinterResolutions). You can use other properties to control
the printer. For example, you can set the number of copies (Copies),
set the minimum and maximum page number the user can select in
a print dialog (MinimumPage and MaximumPage), and determine
whether the printer collates its output (Collate).

Graphics
Whenever you draw in Visual Basic .NET, you need a Graphics object. A Graphics object represents a
drawing surface, whether it is a Form, PictureBox, Bitmap in memory, metafile, or printer surface.

532

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 532

The Graphics class provides many methods for drawing shapes and filling areas. It also includes prop-
erties and methods that modify the graphics results. For example, its transformation methods let you
scale, translate, and rotate the drawing output.

The following sections describe the Graphics object’s properties and methods for drawing, filling, and
otherwise modifying the drawing.

Drawing Methods
The Graphics object provides many methods for drawing lines, rectangles, curves, and other shapes.
The following table describes these methods.

Method Description

DrawArc Draws an arc of an ellipse.

DrawBezier Draws a Bézier curve. See the section “DrawBezier” later in this
chapter for an example.

DrawBeziers Draws a series of Bézier curves. See the section “DrawBezier” later
in this chapter for an example.

DrawClosedCurve Draws a closed curve that joins a series of points, connecting the
final point to the first point. See the section “DrawClosedCurve”
later in this chapter for an example.

DrawCurve Draws a smooth curve that joins a series of points. This is similar to
a DrawClosedCurve, except that it doesn’t connect the final point to
the first point.

DrawEllipse Draws an ellipse. To draw a circle, draw an ellipse with a width
equal to its height.

DrawIcon Draws an Icon onto the Graphics object’s drawing surface.

DrawIconUnstretched Draws an Icon object onto the Graphics object’s drawing surface
without scaling. If you know that you will not resize the icon, this
may be faster than the DrawIcon method.

DrawImage Draws an Image object onto the Graphics object’s drawing surface.
Note that Bitmap is a subclass of Image, so you can use this method
to draw a Bitmap on the surface.

DrawImageUnscaled Draws an Image object onto the drawing surface without scaling. If
you know that you will not resize the image, this may be faster than
the DrawImage method.

DrawLine Draws a line.

DrawLines Draws a series of connected lines. If you need to draw a series of
connected lines, this is much faster than using DrawLine repeatedly.

DrawPath Draws a GraphicsPath object. See the section “DrawPath” later in
this chapter for an example.

Table continued on following page

533

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 533

Method Description

DrawPie Draws a pie slice taken from an ellipse.

DrawPolygon Draws a polygon. This is similar to DrawLines, except that it
connects the last point to the first point.

DrawRectangle Draws a rectangle.

DrawRectangles Draws a series of rectangles. If you need to draw a series of
rectangles, this is much faster than using DrawRectangle repeatedly.

DrawString Draws text on the drawing surface.

The following sections provide examples of some of the more complicated of these drawing methods.

DrawBezier
The DrawBezier method draws a Bézier curve. A Bézier curve is a smooth curve defined by four control
points. The curve starts at the first point and ends at the last point. The line between the first and second
points gives the curve’s initial direction. The line connecting the third and fourth points gives its final
direction as it enters the final point.

The following code draws a Bézier curve. It starts by defining the curve’s control points. It then draws
dashed lines connecting the points, so you can see where the control points are in the final drawing. You
would omit this step if you just wanted to draw the curve. Next the program sets the Graphics object’s
SmoothingMode property to HighQuality, so the program draws a smooth, anti-aliased curve. The
SmoothingMode property is described in the section “SmoothingMode” later in this chapter. The pro-
gram creates a black pen three pixels wide and draws the Bézier curve.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Define the Bezier curve’s control points.
Dim pts() As Point = { _

New Point(10, 10), _
New Point(200, 10), _
New Point(50, 200), _
New Point(200, 150) _

}

‘ Connect the points with dashed lines.
Dim dashed_pen As New Pen(Color.Black, 0)
dashed_pen.DashStyle = Drawing2D.DashStyle.Dash
For i As Integer = 0 To 2

e.Graphics.DrawLine(dashed_pen, pts(i), pts(i + 1))
Next i

‘ Draw the Bezier curve.
e.Graphics.SmoothingMode = Drawing2D.SmoothingMode.HighQuality
Dim bez_pen As New Pen(Color.Black, 3)
e.Graphics.DrawBezier(bez_pen, pts(0), pts(1), pts(2), pts(3))

End Sub

534

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 534

Figure 19-7 shows the result. You can see in the picture how the control points determine the curve’s end
points and the direction it takes at them.

Figure 19-7: The DrawBezier method draws a
smooth curve controlled by four control points.

DrawBeziers
The DrawBeziers method draws a series of Bézier curves with common end points. It takes as parame-
ters an array of points that determine the curves’ end points and interior control points. The first four
entries in the array represent the first curve’s starting point, its two interior control points, and the
curve’s end point. The next curve uses the first curve’s end point as its starting point, provides two inte-
rior control points, and its own end point. This pattern repeats for each of the curves. To draw N curves,
the array should contain 3 * N + 1 points.

The following code draws two Bézier curves. It defines seven points (3 * 2 + 1 = 7) and connects them
with dashed lines. It sets the Graphics object’s SmoothingMode property and calls the DrawBeziers
method.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Define the Bezier curve’s control points.
Dim pts() As Point = { _

New Point(10, 10), _
New Point(200, 10), _
New Point(50, 200), _
New Point(200, 150), _
New Point(250, 50), _
New Point(250, 200), _
New Point(100, 250) _

}

‘ Connect the points with dashed lines.
Dim dashed_pen As New Pen(Color.Black, 0)
dashed_pen.DashStyle = Drawing2D.DashStyle.Dash

535

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 535

For i As Integer = 0 To pts.Length - 2
e.Graphics.DrawLine(dashed_pen, pts(i), pts(i + 1))

Next i

‘ Draw the Bezier curve.
e.Graphics.SmoothingMode = Drawing2D.SmoothingMode.HighQuality
Dim bez_pen As New Pen(Color.Black, 3)
e.Graphics.DrawBeziers(bez_pen, pts)

End Sub

Figure 19-8 shows the result. Notice that the two Bézier curves share a common end point, but they do
not meet smoothly. To make them meet smoothly, you would need to ensure that the last two points in
the first curve and the first two points in the second curve (one of which is the same as the last point in
the first curve) all lie along the same line.

Figure 19-8: The DrawBeziers method draws a
series of Bézier curves with common end points.

DrawClosedCurve
Using the DrawBeziers method, you can draw a series of connected curves, but joining them smoothly
is difficult. The DrawClosedCurve method connects a series of points with a smooth curve.

The following code draws a closed curve. It defines a series of points, sets the Graphics object’s
SmoothingMode property, and calls DrawClosedCurve to draw the curve. It the loops through the
curve’s control points, drawing a box over each so you can see where they are.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Define the curve’s control points.
Dim pts() As Point = { _

New Point(10, 50), _
New Point(200, 30), _

536

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 536

New Point(20, 200), _
New Point(200, 150), _
New Point(250, 50), _
New Point(250, 200), _
New Point(100, 250) _

}

‘ Draw the closed curve.
e.Graphics.SmoothingMode = Drawing2D.SmoothingMode.HighQuality
Dim curve_pen As New Pen(Color.Black, 3)
e.Graphics.DrawClosedCurve(curve_pen, pts)

‘ Draw rectangles on the control points.
For i As Integer = 0 To pts.Length - 1

e.Graphics.FillRectangle(Brushes.White, pts(i).X - 2, pts(i).Y - 2, 5, 5)
e.Graphics.DrawRectangle(Pens.Black, pts(i).X - 2, pts(i).Y - 2, 5, 5)

Next i
End Sub

Figure 19-9 shows the result. Notice that the curve is smooth and that it passes through each of the con-
trol points exactly. If you just want to connect a series of points smoothly, it is easier to use a closed curve
than Bézier curves.

Figure 19-9: The DrawClosedCurve method draws
a smooth curve connecting a series points.

The DrawCurve method is similar to DrawClosedCurve, except that it doesn’t connect the last point to
the first.

Overloaded versions of the DrawClosedCurve method take a tension parameter that indicates how
tightly the curve bends. Usually this value is between 0 and 1. The value 0 makes the method connect
the curve’s points with straight lines. The value 1 draws a nicely rounded curve. Tension values greater
than 1 produce some strange (but sometimes interesting) results.

537

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 537

The following code draws closed curves with tension set to 0.0, 0.25, 0.5, 0.75, and 1.0. It uses progres-
sively thicker lines so you can see which curves are which.

For tension As Single = 0 To 1 Step 0.25
Dim curve_pen As New Pen(Color.Black, tension * 4 + 1)
e.Graphics.DrawClosedCurve(curve_pen, pts, tension, _

Drawing2D.FillMode.Alternate)
Next tension

Figure 19-10 shows the result. You can see the curves growing smoother as the tension parameter
increases and the pen thickens.

Figure 19-10: The DrawClosedCurve method can take a tension
parameter that determines how tightly the curve bends.

Overloaded versions of the DrawCurve method also take tension parameters.

DrawPath
The DrawPath method draws a GraphicsPath object as shown in the following code. The program cre-
ates a new, empty GraphicsPath object and uses its AddString method to add a string to the path. This
method takes as parameters a string, FontFamily, font style, font size, point where the text should start,
and a string format. The code sets the Graphics object’s SmoothingMode property to draw anti-aliased
curves. It then calls the FillPath method to fill the area defined by the GraphicsPath object with
white and uses the DrawPath method to draw the path’s outline in black.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Create a GraphicsPath.
Dim graphics_path As New Drawing2D.GraphicsPath

538

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 538

‘ Add some text to the path.
graphics_path.AddString(“GraphicsPath”, _

New FontFamily(“Times New Roman”), _
CInt(FontStyle.Bold), _
80, New Point(10, 10), _
StringFormat.GenericTypographic)

‘ Draw the path.
e.Graphics.SmoothingMode = SmoothingMode.AntiAlias
e.Graphics.FillPath(Brushes.White, graphics_path)
e.Graphics.DrawPath(New Pen(Color.Black, 3), graphics_path)

End Sub

Figure 19-11 shows the result.

Figure 19-11: The DrawPath method draws the outline defined by a
GraphicsPath object.

You can use GraphicsPath objects to make all sorts of interesting effects. For example, you could fill a
GraphicsPath with a color gradient, hatch pattern, or bitmap.

Filling Methods
The Graphics object provides many methods for filling areas. These correspond exactly to the drawing
methods that define a closed shape. For example, DrawRectangle draws a rectangle and
FillRectangle fills one.

Corresponding draw and fill methods take exactly the same parameters, except that the drawing methods
use a Pen object while the filling methods use a Brush object. For example, the following statements fill
and draw a GraphicsPath object. The only difference in the parameters is the Pen or Brush.

e.Graphics.FillPath(Brushes.White, graphics_path)
e.Graphics.DrawPath(Pens.Black, graphics_path)

The Graphics object provides the following methods for filling areas: FillClosedCurve, FillEllipse,
FillPath, FillPie, FillPolygon, FillRectangle, and FillRectangles. These methods work
the same way as the corresponding drawing methods (DrawClosedCurve, DrawEllipse, DrawPath,
DrawPie, DrawPolygon, DrawRectangle, and DrawRectangles), except they fill an area with a brush
rather than drawing it with a pen. See the section “Drawing Methods” earlier in this chapter for descrip-
tions of these methods.

539

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 539

Other Graphics Properties and Methods
The following table describes the Graphics object’s most useful properties and methods, other than
those that draw or fill shapes.

Properties/Methods Description

AddMetafileComment If the Graphics object is attached to a metafile, this adds a
comment to it. Later, if an application enumerates the metafile’s
records, it can view the comments.

Clear Clears the Graphics object and fills it with a specific color. For
example, a form’s Paint event handler might use the statement
e.Graphics.Clear(Me.BackColor) to clear the form using its
background color.

Clip Determines the Region object used to clip a drawing on the
Graphics surface. Any drawing command that falls outside of
this Region is clipped off and not shown in the output.

Dispose Releases the resources held by the Graphics object. You can use
this method to free the resources of an object that you no longer
need sooner than they would be freed by garbage collection. For
a more detailed discussion, see the section “Dispose” in Chapter
15, “Classes and Structures.”

DpiX Returns the horizontal number of dots per inch (DPI) for this
Graphics object’s surface.

DpiY Returns the vertical number of DPI for this Graphics object’s
surface.

EnumerateMetafile If the Graphics object is attached to a metafile, this sends the
metafile’s records to a specified callback subroutine one at a time.

ExcludeClip Updates the Graphics object’s clipping region to exclude the
area defined by a Region or Rectangle.

FromHdc Creates a new Graphics object from a handle to a device context
(DC). (A device context is a structure that defines an object’s
graphic attributes: pen, color, fill, and so forth. Usually, you can
use the GDI+ drawing routines and ignore DCs. They are more
useful if you need to use older GDI functions.)

FromHwnd Creates a new Graphics object from a window handle (hWnd).

FromImage Creates a new Graphics object from an Image object. This is
a very common way to make a new Graphics object to
manipulate a bitmap.

InterpolationMode Determines whether drawing routines use anti-aliasing when
drawing images. See the section “InterpolationMode” later in
this chapter for an example.

540

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 540

Properties/Methods Description

IntersectClip Updates the Graphics object’s clipping region to be the
intersection of the current clipping region and the area defined
by a Region or Rectangle. (The clipping region determines
where GDI+ will draw output. If a line falls outside of the
clipping region, GDI+ doesn’t draw the part that sticks out.
Normally, an image’s clipping region includes its whole visible
area, but you can redefine it so that, for example, parts of the
visible area are not drawn.)

IsVisible Returns True if a specified point is within the Graphics object’s
visible clipping region.

MeasureCharacterRanges Returns an array of Region objects that show where each
character in a string will be drawn.

MeasureString Returns a SizeF structure that gives the size of a string drawn
on the Graphics object with a particular font.

MultiplyTransform Multiplies the Graphics object’s current transformation matrix
by another transformation matrix.

PageScale Determines the amount by which drawing commands are
scaled. For example, if you set this to 2, then every coordinate
and measurement is scaled by a factor of 2 from the origin.

PageUnits Determines the units of measurement. This can be Display
(1/75 inch), Document (1/300 inch), Inch, Millimeter, Pixel,
or Point (1/72 inch).

RenderingOrigin Determines the point used as a reference when hatching.
Normally this is (0, 0), so all HatchBrushes use the same
RenderingOrigin and, if you draw two overlapping hatched
areas, their hatch patterns line up. If you change this property,
you can make their hatch patterns not line up.

ResetClip Resets the object’s clipping region, so the drawing is not clipped.

ResetTransformation Resets the object’s transformation matrix to the identity matrix,
so the drawing is not transformed.

Restore Restores the Graphics object to a state saved by the Save
method. See the section “Saving and Restoring Graphics” later
in this chapter for an example.

RotateTransform Adds a rotation to the object’s current transformation. This
rotates all drawing by a specified amount. See the section
“Transformation Basics” later in this chapter for an example.

Save Saves the object’s current state in a GraphicsState object, so
you can later restore it by calling the Restore method. See the
section “Saving and Restoring Graphics” later in this chapter for
an example.

Table continued on following page

541

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 541

Properties/Methods Description

ScaleTransform Adds a scaling transformation to the Graphics object’s current
transformation. This scales all drawing by a specified factor in
the X and Y directions. See the section “Transformation Basics”
later in this chapter for an example.

SetClip Sets or merges the Graphics object’s clipping area to another
Graphics object, a GraphicsPath object, or a Rectangle. Only
parts of drawing commands that lie within the clipping region
are displayed.

SmoothingMode Determines whether drawing routines use anti-aliasing when
drawing lines and curves. See the section “SmoothingMode”
later in this chapter for an example.

TextRenderingHint Determines whether text is drawn with anti-aliasing and
hinting. See the section “TextRenderingHint” later in this
chapter section and the section, “System.Drawing.Text” earlier
in this chapter for more details.

Transform Gets or sets the Graphics object’s transformation matrix. This
matrix represents all scaling, translation, and rotation applied
to the object.

TransformPoints Applies the object’s current transformation to an array of points.

TranslateTransform Adds a translation transformation to the Graphics object’s
current transformation. This offsets all drawing a specified
distance in the X and Y directions. See the section
“Transformation Basics” later in this chapter for an example.

The following sections give examples of some of the more important (but confusing) Graphics proper-
ties and methods.

Anti-Aliasing
Aliasing is an effect caused when you draw lines, curves, and text that do not line up exactly with the
screen’s pixels. For example, if you draw a vertical line, it neatly fills in a column of pixels. If you draw
a line at a 45-degree angle, it also fills a series of pixels that are nicely lined up, but the pixels are a bit
farther apart and that makes the line appear lighter on the screen. If you draw a line at some other angle
(for example, 30 degrees), then the line does not line up exactly with the pixels. The line will contain
some runs of two or three pixels in a horizontal group. The result is a line that is lighter than the vertical
line and that is noticeably jagged.

A similar affect occurs when you resize an image. If you enlarge an image by simply drawing each pixel
as a larger block of the same color, the result is blocky. If you shrink an image by removing some pixels,
the result may have tears and gaps.

542

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 542

Anti-aliasing is a process that smoothes out lines, text, and images. Instead of drawing a series of pixels
that all have the same color, the drawing routines give pixels different shades of color to make the result
smoother.

The Graphics object provides three properties that control anti-aliasing for lines and curves, text, and
images: SmoothingMode, TextRenderingHint, and InterpolationMode.

SmoothingMode
The SmoothingMode property controls anti-aliasing for drawn lines and curves, and for filled shapes.
This property can take the values AntiAlias, Default, HighQuality, HighSpeed, and None. The fol-
lowing code shows how a program might draw a circle’s outline and a filled circle using the
HighQuality SmoothingMode:

gr.SmoothingMode = SmoothingMode.HighQuality
gr.DrawEllipse(Pens.Black, 10, 10, 20, 20)
gr.FillEllipse(Brushes.Black, 30, 10, 20, 20)

Figure 19-12 shows the effects of each of the SmoothingModes. It’s not clear whether there’s any differ-
ence between the Default, HighSpeed, and None modes, or between HighQuality and AntiAlias, at
least on this computer. The HighQuality and AntiAlias modes are noticeably smoother than the oth-
ers, however.

Figure 19-12: The Graphics object’s SmoothingMode property
controls anti-aliasing for lines, curves, and filled shapes.

TextRenderingHint
The TextRenderingHint property controls anti-aliasing for text. This property can take the values
AntiAlias, AntiAliasGridFit, ClearTypeGridFit, SingleBitPerPixel, SingleBitPerPixel
GridFit, and SystemDefault. The following code shows how a program can draw text using the
TextRenderingHint value AntiAliasGridFit:

gr.TextRenderingHint = TextRenderingHint.AntiAliasGridFit
gr.DrawString(“TextRenderingHint”, Me.Font, Brushes.Black, 10, 10)

Figure 19-13 shows the effects of each of the TextRenderingHint values. The TextRenderingHint
value SingleBitPerPixel produces a poor result. SystemDefault and SingleBitPerPixelGridFit
give an acceptable result (the default appears to be AntiAliasGridFit on this computer). AntiAlias
and AntiAliasGridFit give the best results.

543

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 543

Figure 19-13: The Graphics object’s TextRenderingHint
property controls anti-aliasing for text.

Most of the differences are quite subtle. The “grid fit” versions use hinting about where the characters
are positioned to try to improve stems and curves. If you look extremely closely (perhaps with a
magnifying glass), you can see that the base of the initial “T” is a bit cleaner and more solid in the
AntiAliasGridFit and ClearTypeGridFit modes than in the AntiAlias mode. The “grid fit” modes
also provide text that is slightly more compact horizontally than the AntiAlias mode. In any case, each
of the last three versions provides a very high-quality result.

InterpolationMode
The InterpolationMode property controls anti-aliasing when a program shrinks or enlarges an
image. This property can take the values Bicubic, Bilinear, Default, High, HighQualityBicubic,
HighQualityBilinear, Low, and NearestNeighbor.

The following code shows how a program can draw images using the InterpolationMode value
HighQualityBilinear. The program starts by creating a Bitmap object and a Graphics object associ-
ated with it. It then uses the Graphics object to draw a smiley face on the Bitmap. The program uses
the form’s Graphics object’s DrawImage method to draw the Bitmap onto the form at its full size. It
then draws the Bitmap at a reduced size and draws the center of the Bitmap enlarged.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Draw a smiley face in the rectangle (0, 0) - (100, 100).
Dim bm As New Bitmap(101, 101)
Dim gr As Graphics = Graphics.FromImage(bm)
gr.FillEllipse(Brushes.Yellow, 0, 0, 99, 99) ‘ Face.
gr.DrawEllipse(Pens.Black, 0, 0, 99, 99)
gr.DrawArc(Pens.Black, 20, 20, 60, 60, 0, 180) ‘ Smile.
gr.FillEllipse(Brushes.Black, 40, 40, 20, 25) ‘ Nose
gr.FillEllipse(Brushes.White, 25, 15, 20, 25) ‘ Left eye.
gr.DrawEllipse(Pens.Black, 25, 15, 20, 25)
gr.FillEllipse(Brushes.Black, 35, 20, 10, 15)
gr.FillEllipse(Brushes.White, 55, 15, 20, 25) ‘ Right eye.
gr.DrawEllipse(Pens.Black, 55, 15, 20, 25)
gr.FillEllipse(Brushes.Black, 65, 20, 10, 15)

‘ Display at full scale at (10, 10)-(110, 110).
e.Graphics.DrawImage(bm, 10, 10)

544

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 544

‘ Display shrunk to fit the rectangle (120, 10)-(170, 60).
e.Graphics.InterpolationMode = InterpolationMode.Bilinear
e.Graphics.DrawImage(bm, 120, 10, 50, 50)

‘ Display the Bitmap rectangle (35, 35)-(65, 65)
‘ enlarged to fit the rectangle (180, 10)-(230, 60).
Dim src_rect As New Rectangle(35, 35, 30, 30)
Dim dest_rect As New Rectangle(180, 10, 50, 50)
e.Graphics.DrawImage(bm, dest_rect, src_rect, GraphicsUnit.Pixel)
e.Graphics.DrawRectangle(Pens.Red, dest_rect)

End Sub

Figure 19-14 shows the effects of each of the InterpolationMode values. The large smiley face in the
upper left shows the original image. Each of the other images shows the face shrunk and enlarged. It’s hard
to see the differences between the enlarged images (although the NearestNeighbor example is noticeably
blockier than the others), but you can easily see breaks in the lower-quality shrunken versions.

Figure 19-14: The Graphics object’s InterpolationMode property
controls anti-aliasing for shrunk or enlarged images.

The InterpolationMode value NearestNeighbor gives the worst result when both shrinking and
enlarging. The others give comparable results when enlarging. You can’t see it in the book, but on the
screen you can see very small differences between them.

When shrinking the image, however, Default, Low, Bilinear, and Bicubic all show ugly aliasing
affects. Pieces of the lines are missing, so the lines appear broken.

The values High, HighQualityBilinear, and HighQualityBicubic produce much smoother results.
You probably can’t tell in the book without a microscope, but on the screen HighQualityBilinear
gives a slightly better result than HighQualityBicubic and High (which is probably the same as
HighQualityBicubic on this computer). These tiny differences will probably depend on the image you
are shrinking. For example, most of these effects are much less noticeable when you enlarge and shrink
photographs instead of drawn images.

545

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 545

Speed Considerations
The anti-aliasing settings for all three of these properties provide smoother results, but they are slower.
For a few lines, strings, and images, the difference in performance won’t be an issue. However, if you
build a more intensive application (such as a mapping program that draws several thousand street seg-
ments on the form), you may notice a difference in speed.

Transformation Basics
Graphical transformations modify the coordinates and sizes you use to draw graphics to produce a
result that is scaled, translated, or rotated. For example, you could apply a scaling transformation that
multiples by 2 in the X direction and 3 in the Y direction. If you then drew a line between the points
(10, 10) and (20, 20), the result drawn on the screen would connect the points (10 * 2, 10 * 3) = (20, 30) and
(20 * 2, 20 * 3) = (40, 60). This stretches the line so it is larger overall, but it stretches its height more than
its width (a factor of 3 versus a factor of 2). Notice that this also moves the line farther from the origin
[from (10, 10) to (20, 30)]. In general, a scaling transformation moves an object farther from the origin
unless it lies on the origin.

You don’t really need to understand all the details of the mathematics of transformations to use them,
but a little background is quit helpful.

In two dimensions, you can represent scaling, translation, and rotation with 3 × 3 matrices. You represent
a point with a vector of three entries, two for the X and Y coordinates and a final 1 that gives the vector
three entries so that it matches the matrices.

When you multiply a point’s coordinates by a transformation matrix, the result is the transformed point.

To multiply a point by a matrix, you multiply the point’s coordinates by the corresponding entries in the
matrix’s columns. The first transformed coordinate is the point’s coordinates times the first column, the
second transformed coordinate is the point’s coordinates times the second column, and the third trans-
formed coordinate is the point’s coordinates times the third column.

The following calculation shows the result when you multiple a generic vector <A, B, C> by a matrix.
When you work with two-dimensional transformations, the value C is always 1.

| m11 m12 m13 |
<A, B, C> * | m21 m22 m23 |

| m31 m32 m33 |
= <A * m11 + B * m21 + C * m31,

A * m12 + B * m22 + C * m32,
A * m13 + B * m23 + C * m33>

The following matrix represents scaling by a factor of Sx in the X direction and a factor of Sy in the Y
direction:

| Sx 0 0 |
| 0 Sy 0 |
| 0 0 1 |

546

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 546

The following example shows the point (10, 20) multiplied by a matrix that represents scaling by a factor
of 2 in the X direction and 3 in the Y direction. The result is the vector <20, 60, 1>, which represents the
point (20, 60) as you should expect.

| 2 0 0 |
<10, 20, 1> * | 0 3 0 |

| 0 0 1 |
= <10 * 2 + 20 * 0 + 1 * 0,

10 * 0 + 20 * 3 + 1 * 0,
10 * 0 + 20 * 0 + 1 * 1>

= <20, 60, 1>

The following matrix represents translation through the distance Tx in the X direction and Ty in the Y
direction:

| 1 0 Tx |
| 0 1 Ty |
| 0 0 1 |

The following matrix represents rotation through the angle t:

| Cos(t) Sin(t) 0 |
| -Sin(t) Cos(t) 0 |
| 0 0 1 |

Finally, the following transformation, called the identity transformation, leaves the point unchanged. If
you multiply a point by this matrix, the result is the same as the original point.

| 1 0 0 |
| 0 1 0 |
| 0 0 1 |

You can work through some examples to verify that these matrices represent translation, scaling, rota-
tion, and the identity, or consult an advanced graphics programming book for proofs.

One of the most useful and remarkable properties of matrix/point multiplication is that it is associative.
If p is a point and T1 and T2 are transformation matrices, p * T1 * T2 = (p * T1) * T2 = p * (T1 * T2).

This result means that you can multiply any number of transformation matrices together to create a sin-
gle combined matrix that represents all of the transformations applied one after the other. You can then
apply this single matrix to all the points that you need to draw. This can save a considerable amount of
time over multiplying each point by a long series of matrices one at a time.

The Graphics object maintains a current transformation matrix at all times, and it provides several meth-
ods that let you add more transformations to that matrix. The ScaleTransform, TranslateTransform,
and RotateTransform methods add a new transformation to the current transformation. These methods
take parameters that specify the amount by which points should be rotated, scaled, translated, or rotated.

A final parameter indicates whether you want to prepend the new transformation on the left
(MatrixOrder.Prepend) or append it on the right (MatrixOrder.Append) of the current transforma-
tion. If you prepend the new transformation on the left, that transformation is applied before any that

547

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 547

are already part of the current transformation. If you append the new transformation on the right, that
transformation is applied after any that are already part of the current transformation.

Strangely, the default if you omit this parameter is to prepend the new transformation on the left. That
means the new transformation applies to the point before any other transformations that you have pre-
viously applied. That, in turn, means that you must compose a combined transformation backward. If
you want to rotate, then scale, then translate, you need to prepend the translation first, the scaling sec-
ond, and the rotation last. That seems very counterintuitive.

A more natural approach is to explicitly set this final parameter to MatrixOrder.Append so that later
transformations are applied after existing ones.

The following code shows how a program can use transformations to draw a complex result with a simple
drawing routine. Subroutine DrawArrow draws an arrow within the rectangle 0 <= X <= 4, 0 <= Y <= 4.
If you were to call this routine without any transformations, you would see a tiny arrow four pixels long
and four pixels wide drawn in the upper-left corner of the form.

This form’s Paint event handler uses the ScaleTransform method to give the Graphics object a trans-
formation that scales by a factor of 30 in both the X and Y directions. It then calls the DrawArrow routine,
passing it the parameter HatchStyle.Horizontal. The result is an arrow near the upper-left corner but
30 times larger than the original arrow and filled with a horizontal hatch pattern.

Next the program uses the TranslateTransform method to add a transformation that translates 150
pixels in the X direction and 60 pixels vertically. It appends this transformation so that the drawing is
first scaled (the scaling transformation is still part of the Graphics object’s current transformation) and
then translated. It calls DrawArrow again, passing it the parameter HatchStyle.Vertical, so the result
is an arrow 30 times larger than the original, moved 150 pixels to the right and 60 pixels down, and filled
with a vertical hatch pattern.

Finally, the program uses the RotateTransform method to add a transformation that rotates the drawing
by 30 degrees clockwise around the origin in the upper-left corner. It again appends the transformation
so that the drawing is first scaled, then translated, and then rotated. It calls DrawArrow, passing it the
parameter HatchStyle.Cross, so the result is an arrow 30 times larger than the original, moved 150
pixels to the right and 60 pixels down, rotated 30 degrees, and filled with a crosshatch pattern.

‘ Draw an arrow outline.
Private Sub DrawArrow(ByVal gr As Graphics, ByVal hatch_style As HatchStyle)

Dim pts() As Point = { _
New Point(0, 1), _
New Point(2, 1), _
New Point(2, 0), _
New Point(4, 2), _
New Point(2, 4), _
New Point(2, 3), _
New Point(0, 3) _

}
gr.FillPolygon(New HatchBrush(hatch_style, Color.Black, Color.White), pts)
gr.DrawPolygon(New Pen(Color.Black, 0), pts)

End Sub

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

548

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 548

‘ Scale by a factor of 30.
e.Graphics.ScaleTransform(30, 30, MatrixOrder.Append)
DrawArrow(e.Graphics, HatchStyle.Horizontal)

‘ Translate 150 horizontally and 60 vertically.
e.Graphics.TranslateTransform(150, 60, MatrixOrder.Append)
DrawArrow(e.Graphics, HatchStyle.Vertical)

‘ Rotate 30 degrees.
e.Graphics.RotateTransform(30, MatrixOrder.Append)
DrawArrow(e.Graphics, HatchStyle.Cross)

End Sub

Figure 19-15 shows the result.

Figure 19-15: This program draws arrows scaled, translated, and rotated.

It is very important to realize that the order in which you apply transformations matters. You cannot
change the order of scaling, translation, and rotation and expect the result to be the same.

The following code demonstrates this fact. This version of the DrawArrow subroutine draws a larger
arrow that is not positioned in the upper-left corner of the screen. It fills the arrow with white and then
outlines it in black. It then draws some text inside the arrow.

The form’s Paint event handler sets the form’s font, enables font anti-aliasing, and uses the DrawArrow
subroutine to draw the untransformed arrow. Next, it uses a transformation to translate 150 pixels the X
direction and 50 pixels in the Y direction, and draws the arrow again containing the text “A1.” It then adds
a rotation transformation to rotate 45 degrees and draws the arrow again, now containing the text “A2.”

The program then uses the Graphics object’s ResetTransformation method to remove the translation
and rotation. It rotates 45 degrees and draws the arrow containing the text “B1.” Finally, it translates the
same distances as before and draws the arrow one last time, containing the text “B2.”

549

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 549

‘ Draw an arrow outline containing some text.
Private Sub DrawArrow(ByVal gr As Graphics, ByVal txt As String)

‘ Draw the arrow.
Dim pts() As Point = { _

New Point(80, 20), _
New Point(120, 20), _
New Point(120, 10), _
New Point(140, 30), _
New Point(120, 50), _
New Point(120, 40), _
New Point(80, 40) _

}
gr.FillPolygon(Brushes.White, pts)
gr.DrawPolygon(Pens.Black, pts)

‘ Draw the text.
Dim layout_rectangle As New RectangleF(80, 20, 50, 20)
Dim string_format As New StringFormat
string_format.LineAlignment = StringAlignment.Center
string_format.Alignment = StringAlignment.Center
gr.DrawString(txt, Me.Font, Brushes.Black, _

layout_rectangle, string_format)
End Sub

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Set the font and font anti-aliasing properties.
Me.Font = New Font(“Times New Roman”, 20, FontStyle.Bold, GraphicsUnit.Pixel)
e.Graphics.TextRenderingHint = TextRenderingHint.AntiAliasGridFit

‘ Draw the original arrow.
DrawArrow(e.Graphics, “”)

‘ Translate 150 horizontally and 50 vertically.
e.Graphics.TranslateTransform(150, 50, MatrixOrder.Append)
DrawArrow(e.Graphics, “A1”)

‘ Rotate 45 degrees.
e.Graphics.RotateTransform(45, MatrixOrder.Append)
DrawArrow(e.Graphics, “A2”)

‘ Reset the transformation.
e.Graphics.ResetTransform()

‘ Rotate 45 degrees.
e.Graphics.RotateTransform(45, MatrixOrder.Append)
DrawArrow(e.Graphics, “B1”)

‘ Translate 150 horizontally and 50 vertically.
e.Graphics.TranslateTransform(150, 50, MatrixOrder.Append)
DrawArrow(e.Graphics, “B2”)

End Sub

550

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 550

Figure 19-16 shows the result. The translation followed by rotation gives the arrow labeled “A2.” The
rotation followed by translation gives the arrow labeled “B2.” It’s clear from the figure that these are not
even close to the same results.

Figure 19-16: A translation followed by a rotation (A1 and A2) is
not the same as a rotation followed by a translation (B1 and B2).

The Graphics object’s methods for working with transformations include MultiplyTransform,
PageScale, PageUnits, ResetTransformation, RotateTransform, ScaleTransform, Transform,
TransformPoints, and TranslateTransform. See the section “Other Graphics Properties and
Methods,” earlier in this chapter for descriptions of those methods.

Notice also that the transformations apply to text as well as drawn lines and filled shapes.

Advanced Transformations
You can build very complex transformations by combining simple ones. For example, you can scale
around an arbitrary point by combining simple translation and scaling transformations.

A normal scaling transformation moves an object farther away from the origin. If you scale the point
(10, 20) by a factor of 20 in the X and Y directions, you get the point (200, 400), which is much father from
the origin. Similarly, if you scale all the points in a shape, all the points move farther from the origin.

To scale the object around some point other than the origin, first translate it so the point of rotation is
centered at the origin. Then scale it and translate it back to its original position.

The following code scales a diamond around its center. The DrawDiamond subroutine draws a diamond
centered at the point (125, 125). The form’s Paint event handler calls DrawDiamond to draw the original
diamond. It then translates to move the diamond’s center to the origin, scales by a factor of 2 vertically

551

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 551

and horizontally, and then reverses the first translation to move the origin back to the diamond’s origi-
nal center.

Private Sub DrawDiamond(ByVal gr As Graphics)
Dim pts() As Point = { _

New Point(75, 125), _
New Point(125, 75), _
New Point(175, 125), _
New Point(125, 175) _

}
gr.DrawPolygon(Pens.Black, pts)

End Sub

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Draw the original diamond.
DrawDiamond(e.Graphics)

‘ Translate to center at the origin.
e.Graphics.TranslateTransform(-125, -125, MatrixOrder.Append)

‘ Scale by a factor of 2.
e.Graphics.ScaleTransform(2, 2, MatrixOrder.Append)

‘ Translate the center back to where it was.
e.Graphics.TranslateTransform(125, 125, MatrixOrder.Append)

‘ Draw the diamond.
DrawDiamond(e.Graphics)

End Sub

Figure 19-17 shows the result.

Figure 19-17: To scale an object at a point other than the origin,
translate it to the origin, scale it, and then translate it back.

552

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 552

Notice that the lines’ widths have also been scaled by a factor of 2 in this figure. The Pen object’s Width
property is a Single, so you can use fractional pen widths if necessary. For example, if you want to scale
an object by a factor of 4 and you want the result to have a line width of 2, you can set the Pen’s Width
to 0.5 and let it scale.

If you want the final result to have a line width of 1, you can also set the Pen’s Width to 0. This value
tells the GDI+ routines to use a single pixel line width, no matter how the drawing is scaled.

Note also that the line width will not go below 1 if you use a scaling transformation to reduce the size of
the drawing.

A particularly useful transformation maps a specific rectangle in world coordinates (the coordinates in
which you draw) to a specific rectangle in device coordinates (the coordinates on the drawing surface).
For example, you might graph a function in the world coordinates -1 <= X <= 1, -1 <= Y <= 1 and want
to map it to the drawing surface rectangle 10 <= X <= 200, 10 <= Y <= 200.

To do this, you can first translate to center the world coordinate rectangle at the origin, scale to resize the
rectangle to match the size of the device coordinate rectangle, and then translate to move the origin to
the center of the device coordinate rectangle.

The MapRectangles subroutine shown in the following code maps a world coordinate rectangle into a
device coordinate rectangle for a Graphics object. It begins by resetting the Graphics object’s transforma-
tion to clear out anything that may already be in there. Next, the routine translates the center of the world
coordinate rectangle to the origin, scales to stretch the world coordinate rectangle to the device coordinate
rectangle’s size, and then translates to move the origin to the center of the device-coordinate rectangle.

‘ Map a world coordinate rectangle to a device coordinate rectangle.
Private Sub MapRectangles(ByVal gr As Graphics, _
ByVal world_rect As Rectangle, ByVal device_rect As Rectangle)

‘ Reset the transformation.
gr.ResetTransform()

‘ Translate to center the world coordinate
‘ rectangle at the origin.
gr.TranslateTransform(_

CSng(-(world_rect.X + world_rect.Width / 2)), _
CSng(-(world_rect.Y + world_rect.Height / 2)), _
MatrixOrder.Append)

‘ Scale.
gr.ScaleTransform(_

CSng(device_rect.Width / world_rect.Width), _
CSng(device_rect.Height / world_rect.Height), _
MatrixOrder.Append)

‘ Translate to move the origin to the center
‘ of the device coordinate rectangle.
gr.TranslateTransform(_

CSng(device_rect.X + device_rect.Width / 2), _
CSng(device_rect.Y + device_rect.Height / 2), _
MatrixOrder.Append)

End Sub

553

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 553

The following code shows how a program can use this subroutine to position a drawing. The DrawSmiley
subroutine draws a smiley face within the area 0 <= X <= 1, 0 <= Y <= 1. The Paint event handler creates a
Rectangle representing the device coordinates where it wants to draw the smiley face. It draws the rectan-
gle so that you can see where the target is. The code then creates a world coordinate rectangle representing
the area where the DrawSmiley subroutine draws the face. It calls subroutine MapRectangles to make the
necessary transformation and calls DrawSmiley to draw the transformed face.

‘ Draw a smiley face in the rectangle
‘ 0 <= X <= 1, 0 <= Y <= 1.
Private Sub DrawSmiley(ByVal gr As Graphics)

Dim the_pen As New Pen(Color.Black, 0)
gr.FillEllipse(Brushes.Yellow, 0, 0, 1, 1) ‘ Face.
gr.DrawEllipse(the_pen, 0, 0, 1, 1)
gr.DrawArc(the_pen, 0.2, 0.2, 0.6, 0.6, 0, 180) ‘ Smile.
gr.FillEllipse(Brushes.Black, 0.4, 0.4, 0.2, 0.25) ‘ Nose
gr.FillEllipse(Brushes.White, 0.25, 0.15, 0.2, 0.25) ‘ Left eye.
gr.DrawEllipse(the_pen, 0.25, 0.15, 0.2, 0.25)
gr.FillEllipse(Brushes.Black, 0.35, 0.2, 0.1, 0.15)
gr.FillEllipse(Brushes.White, 0.55, 0.15, 0.2, 0.25) ‘ Right eye.
gr.DrawEllipse(the_pen, 0.55, 0.15, 0.2, 0.25)
gr.FillEllipse(Brushes.Black, 0.65, 0.2, 0.1, 0.15)

End Sub

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Draw the target rectangle.
Dim device_rect As New Rectangle(50, 50, 150, 150)
e.Graphics.DrawRectangle(Pens.Black, device_rect)

‘ Map between world and device coordinate rectangles.
Dim world_rect As New Rectangle(0, 0, 1, 1)
MapRectangles(e.Graphics, world_rect, device_rect)

‘ Draw the smiley face.
DrawSmiley(e.Graphics)

End Sub

Figure 19-18 shows the result. Notice that the smiley face fits the target device coordinate rectangle nicely.

The previous example uses subroutine MapRectangles to scale and translate a drawing, but the routine
can also stretch or flip the drawing. The program shown in Figure 19-19 is exactly the same as the previ-
ous example, except that it uses the following statement to define its device coordinate rectangle:

Dim device_rect As New Rectangle(50, 50, 50, 150)

Subroutine MapRectangles can be particularly handy if you need to graph an equation. Normally, in
device coordinates, the origin is in the upper-left corner and Y values increase downward. When you
draw a graph, however, the origin is in the lower-left corner and Y values increase upward. You could
work out how to modify the equation you are trying to draw so that it comes out in the proper orienta-
tion, but it’s much easier to use subroutine MapRectangles to flip the Y coordinates.

554

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 554

Figure 19-18: This program uses the MapRectangles
subroutine to map a smiley face in world coordinates
into a rectangle in device coordinates.

Figure 19-19: The MapRectangles subroutine can stretch
a drawing by different amounts vertically and horizontally.

To invert the Y coordinates, set the device coordinate Rectangle structure’s Y property to the largest
Y coordinate you want to use, and set its height to the negative of the height you really want to use. For
example, suppose that you want the graph to fill the device coordinate rectangle 50 <= X <= 200, 50 <=
Y <= 200. The rectangle has width and height 150, so you would use the following statement to map the
coordinate windows:

Dim device_rect As New Rectangle(50, 200, 150, -150)

555

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 555

Figure 19-20 shows the same smiley face program used in the previous examples drawn with this map-
ping. This doesn’t particularly help the smiley face program because the DrawSmiley subroutine was
written for a coordinate system where Y increases downward. It is more useful in situations such as
graphing, where it is more natural for Y to increase upward.

Figure 19-20: The MapRectangles subroutine can flip a drawing’s
Y coordinates so that they increase upward instead of downward.

Notice that the target rectangle is not drawn in Figure 19-20 as it was in the previous two versions. The
DrawRectangle subroutine won’t draw rectangles with widths or heights less than 1, so the target rect-
angle doesn’t appear.

You could also use subroutine MapRectangles to flip a drawing’s X coordinates, although the need for
that is much less common.

Saving and Restoring Graphics State
The Graphics object’s Save method takes a snapshot of the object’s graphic state and stores it in a
GraphicsState object. Later, you can pass this GraphicsState object to the Graphics object’s
Restore method to return to the saved state.

Note that you can pass a particular GraphicsState object to the Restore method only once. If you
want to use the same state again, you can call the Save method to save it again right after you restore it.
That’s the approach used by the following code. The program creates transformations that scale by a
factor of 90 and then translate to move the origin to the center of the form. It then starts a loop to draw
a rectangle rotated by angles between 5 degrees and 90 degrees.

Within the loop it calls the Save method to record the Graphics object’s current state. That state includes
the initial scaling and translation. The loop then adds a rotation transformation to the Graphics object.
It passes the RotateTransform method the value MatrixOrder.Prepend, so the rotation is added to
the front of the transformation matrix. That makes the combined transformation apply the rotation before
the scaling and translation. In other words, drawings are rotated, then scaled, and then translated.

556

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 556

The loop then draws the rectangle -1 <= X <= 1, -1 <= Y <= 1, and then calls Restore to restore the saved
graphics state that holds just the scaling and translation.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Scale by a factor of 90.
e.Graphics.ScaleTransform(90, 90, MatrixOrder.Append)

‘ Translate to center on the form.
e.Graphics.TranslateTransform(_

Me.ClientRectangle.Width \ 2, _
Me.ClientRectangle.Height \ 2, _
MatrixOrder.Append)

For i As Integer = 5 To 90 Step 5
‘ Save the state.
Dim graphics_state As GraphicsState = e.Graphics.Save()

‘ Rotate i degrees.
e.Graphics.RotateTransform(i, MatrixOrder.Prepend)

‘ Draw a rectangle.
e.Graphics.DrawRectangle(New Pen(Color.Black, 0), -1, -1, 2, 2)

‘ Restore the saved state.
e.Graphics.Restore(graphics_state)

Next i
End Sub

Figure 19-21 shows the result.

Figure 19-21: This program saves and restores the
Graphics object’s state containing a scaling and
translation, adding an extra rotation as needed.

557

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 557

There are usually many other ways to achieve the same affect in graphics programming. While changing
the order of transformations generally does not give the same result, you can always use different sets of
transformations to produce the same outcome.

The following code shows a simpler For loop that creates the same result as the previous version. Rather
than using Restore to remove the Graphics object’s current rotation and replacing it with a new one,
this version simply adds another 5-degree rotation to the current rotation. For example, a single 10-degree
rotation is the same as two 5-degree rotations.

For i As Integer = 5 To 90 Step 5
‘ Rotate 5 degrees.
e.Graphics.RotateTransform(5, MatrixOrder.Prepend)

‘ Draw a rectangle.
e.Graphics.DrawRectangle(New Pen(Color.Black, 0), -1, -1, 2, 2)

Next i

Normally, you would not use Save and Restore if such a simple solution is available without them.
Save and Restore are more useful when you want to perform several operations using the same trans-
formation and other transformations are interspersed.

The following code shows yet another version. This code creates the initial transformation including the
scaling and translation, and then saves the Graphics object’s Transfom property in a transformation
matrix variable. Then, in its For loop, the code sets the Graphics object’s Transfom property to this
saved matrix before applying the new rotation.

‘ Save the transformation.
Dim trans As Matrix = e.Graphics.Transform

For i As Integer = 5 To 90 Step 5
‘ Restore the saved transformation.
e.Graphics.Transform = trans

‘ Rotate i degrees.
e.Graphics.RotateTransform(i, MatrixOrder.Prepend)

‘ Draw a rectangle.
e.Graphics.DrawRectangle(New Pen(Color.Black, 0), -1, -1, 2, 2)

Next i

Drawing Events
When part of a control must be redrawn, it generates a Paint event. For example, if you minimize a
form and then restore it, partially cover a form with another form, or enlarge a form, parts of the form
must be redrawn.

The Paint event handler provides a parameter e of type PaintEventArgs. That parameter’s Graphics
property holds a reference to a Graphics object that the event handler should use to redraw the control.
This Graphics object has its clipping region set to the part of the control that must be redrawn. For
example, if you make a form wider, the Graphics object is clipped, so it only draws on the new piece of

558

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 558

form on the right that was just exposed. Clipping the Graphics object makes drawing a faster because
the GDI+ routines can ignore drawing commands outside of the clipping region more quickly than it can
draw them.

Clipping the Graphics object sometimes leads to unexpected results, particularly if the Paint event
handler draws something that depends on the form’s size. The following code draws a rectangle with an
X in it filling the form whenever the form resizes:

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

e.Graphics.Clear(Me.BackColor)
e.Graphics.DrawRectangle(Pens.Black, 0, 0, _

Me.ClientSize.Width - 1, _
Me.ClientSize.Height - 1)

e.Graphics.DrawLine(Pens.Black, 0, 0, _
Me.ClientSize.Width - 1, _
Me.ClientSize.Height - 1)

e.Graphics.DrawLine(Pens.Black, _
Me.ClientSize.Width - 1, 0, _
0, Me.ClientSize.Height - 1)

End Sub

Figure 19-22 shows the result after the form has been resized several times. Each time the form resizes,
the Paint event handler draws the newly exposed region, but the existing drawing remains, giving the
appearance of stacked envelopes.

Figure 19-22: Paint event handlers that adjust their drawings
based on the form’s size may produce unexpected results.

Some computers generate Paint events every time the mouse moves during a resize, so the newly
exposed areas are filled with a densely packed series of lines.

Paint event handlers also don’t execute when the form shrinks. If the form shrinks, no new areas are
exposed, so no Paint events fire.

559

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 559

Paint event handlers work well if the image on the control does not depend on the control’s size. For
example, if you want to draw an ellipse with bounds 10 <= X <= 300, 10 <= Y <= 10, then a Paint event
handler works nicely.

If a drawing depends on the control’s size, you must also draw the picture in the control’s Resize event
handler. The Resize event handler does not receive a Graphics object representing the control as a
parameter, however, but you can use the control’s CreateGraphics method to make one.

If you only draw in the Resize event handler, the image will not refresh if the control needs repainting.
The solution is to draw the control in both the Paint and Resize event handlers. To avoid duplicating
code, you can move the drawing statements into a separate subroutine and then call it from both the
Paint and Resize event handlers. Because the Paint event handler provides a Graphics object for
drawing, but the Resize event handler does not, you should pass the Graphics object on which this
routine should draw into the routine. The following code shows an improved version of the previous
example. Its Paint event handler calls subroutine DrawGraphics, passing it the event handler’s
Graphics object. The Resize event handler calls DrawGraphics, passing it a new Graphics object
created for the form. Subroutine DrawGraphics uses its Graphics object parameter to draw a rectangle
and an X filling the form.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

DrawGraphics(e.Graphics)
End Sub

Private Sub Form1_Resize(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.Resize

DrawGraphics(Me.CreateGraphics())
End Sub

Private Sub DrawGraphics(ByVal gr As Graphics)
gr.Clear(Me.BackColor)
gr.DrawRectangle(Pens.Black, 0, 0, _

Me.ClientSize.Width - 1, _
Me.ClientSize.Height - 1)

gr.DrawLine(Pens.Black, 0, 0, _
Me.ClientSize.Width - 1, _
Me.ClientSize.Height - 1)

gr.DrawLine(Pens.Black, _
Me.ClientSize.Width - 1, 0, _
0, Me.ClientSize.Height - 1)

End Sub

When the form shrinks, only the Resize event handler fires. Similarly, if some or all of the form is hid-
den and then exposed, only the Paint event handler executes.

When the form is enlarged, however, the Resize event fires and draws the entire form. Then the Paint
event handler fires and redraws the newly exposed areas. For simple images, this is not a problem. For
very complex images that take a long time to draw, the user may see a noticeable delay or flicker.

Visual Basic provides an alternative strategy that allows a form to redraw itself only once when it is
exposed or resized. As shown in the following code, first, set the form’s ResizeRedraw property to
True to indicate that the form should redraw itself when it is resized. Next use the form’s SetStyle

560

Chapter 19

21_571982 ch19.qxd 9/1/05 7:25 PM Page 560

method to set the AllPaintingInWmPaint style to True. This tells Visual Basic that the form does all of
its drawing in its Paint event handler. Now, when the form resizes, Visual Basic raises the Paint event
in addition to the Resize event, so the program can do all of its drawing in the Paint event and not
worry about why the Resize event.

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Me.ResizeRedraw = True
Me.SetStyle(ControlStyles.AllPaintingInWmPaint, True)

End Sub

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

e.Graphics.Clear(Me.BackColor)
e.Graphics.DrawRectangle(Pens.Black, 0, 0, _

Me.ClientSize.Width - 1, _
Me.ClientSize.Height - 1)

e.Graphics.DrawLine(Pens.Black, 0, 0, _
Me.ClientSize.Width - 1, _
Me.ClientSize.Height - 1)

e.Graphics.DrawLine(Pens.Black, _
Me.ClientSize.Width - 1, 0, _
0, Me.ClientSize.Height - 1)

End Sub

Another way to minimize drawing time is to make the drawing on a Bitmap and then set a PictureBox’s
Image property to the result. When part of the PictureBox is exposed, it automatically redisplays the
image without needing a Paint event handler. The section “Implementing ‘AutoRedraw’” in Chapter 22,
“Image Processing,” describes technique in greater detail.

Summary
Visual Basic .NET provides a huge number of graphical classes. This chapter provides an overview of these
classes. It also focuses on the most important graphics class: Graphics. The Graphics class provides
methods that let you draw and fill rectangles, ellipses, polygons, curves, lines, and other shapes. Pen and
Brush objects determine the appearance of lines (solid, dashed, dotted) and filled areas (solid colors,
hatched, filled with a color gradient). Other Graphics properties and methods let you determine the
types of anti-aliasing used when drawing different kinds of objects, and how drawings are transformed.

Chapter 20, “Brushes, Pens, and Paths,” describes the next two most important graphics classes: Brush
and Pen. It also explains the GraphicsPath object that you can use to draw and fill paths consisting of
lines, shapes, curves, and text.

561

Drawing Basics

21_571982 ch19.qxd 9/1/05 7:25 PM Page 561

21_571982 ch19.qxd 9/1/05 7:25 PM Page 562

Brushes, Pens, and Paths
After Graphics, Pen and Brush are the two most important graphics classes. Whenever you per-
form any drawing operation that does not manipulate an image’s pixels directly, you use a Pen or
a Brush.

❑ Pens control the appearance of lines. They determine a line’s color, thickness, dash style,
and caps.

❑ Brushes control the appearance of filled areas. They can fill an area with solid colors,
hatched colors, a tiled image, or different kinds of color gradients.

This chapter describes Pens and Brushes in detail. It shows how to use these classes to draw and
fill all sorts of interesting shapes.

This chapter also describes the GraphicsPath class that represents a series of lines, shapes,
curves, and text. You can fill a GraphicsPath using Pens and Brushes.

Pen
The Pen object determines how lines are drawn. It determines the lines’ color, thickness, dash
style, join style, and end cap style.

A program can explicitly create Pen objects, but often it can simply use one of the more than 280
pens that are predefined by the Pens class. For example, the following code draws a rectangle
using a hot pink line that’s one pixel wide:

gr.DrawRectangle(Pens.HotPink, 10, 10, 50, 50)

Pens are scaled by transformations applied to a Graphics object, however, so the result is not nec-
essarily one pixel thick. If the Graphics object applies a transformation that scales by a factor of
10, the resulting line will have thickness 10.

One solution to this problem is to create a new Pen object setting its thickness to 0.1, as shown in
the following code. The thickness is scaled to 0.1 * 10 = 1.

22_571982 ch20.qxd 9/1/05 7:26 PM Page 563

gr.DrawRectangle(New Pen(Color.HotPink, 0.1), 10, 10, 50, 50)

Another solution is to create a pen with thickness 0. The GDI+ routines always draw lines with 0 thick-
ness one pixel wide.

The Pen class provides several overloaded constructors, which are described in the following table.

Constructors Description

Pen(brush) Creates a pen of thickness 1 using the indicated Brush. Lines are
drawn as rectangles filled with the Brush. This makes the most
sense for relatively thick lines, so the fill is visible. It produces
sometimes irregular dashed or dotted results for thin lines.

Pen(color) Creates a pen of thickness 1 using the indicated color.

Pen(brush, thickness) Creates a pen with the indicated thickness (a Single) using a
Brush.

Pen(color, thickness) Creates a pen with the indicated thickness (a Single) using the
indicated color.

The following table describes some of the Pen class’s most useful properties and methods.

Property or Method Purpose

Alignment Determines whether the line is drawn inside or centered on the
theoretical perfectly thin line specified by the drawing routine. See
the section “Alignment” later in this chapter for examples.

Brush Determines the Brush used to fill lines.

Color Determines the lines’ color.

CompoundArray Lets you draw lines that are striped lengthwise. See the section
“CompoundArray” later in this chapter for examples.

CustomEndCap Determines the line’s end cap. See the section “Custom Line
Caps” later in this chapter for examples.

CustomStartCap Determines the line’s start cap. See the section, “Custom Line
Caps,” later in this chapter for examples.

DashCap Determines the cap drawn at the ends of dashes. This can be
Flat, Round, or Triangle.

DashOffset Determines the distance from the start of the line to the start of the
first dash.

DashPattern An array of Singles that specifies a custom dash pattern. The
array entries tell how many pixels to draw, skip, draw, skip, and
so forth. Note that these values are scaled if the pen is not one
pixel wide.

564

Chapter 20

22_571982 ch20.qxd 9/1/05 7:26 PM Page 564

Property or Method Purpose

DashStyle Determines the line’s dash style. This value can be Dash, DashDot,
DashDotDot, Dot, Solid, or Custom. If you set the DashPattern
property, this value is set to Custom. Note that the dashes and gaps
between them are scaled if the pen is not one pixel wide.

EndCap Determines the cap used at the end of the line. This value can
be ArrowAnchor, DiamondAnchor, Flat, NoAnchor, Round,
RoundAnchor, Square, SquareAnchor, Triangle, and Custom.
If LineCap is Custom, you should use a CustomLineCap object to
define the cap. Figure 20-1 shows the standard LineCap values.

LineJoin Determines how lines are joined by a GDI+ method that draws
connected lines. For example, the DrawPolygon and DrawLines
methods use this property. This value can be Bevel, Miter, and
Round. Figure 20-2 shows these values.

MultiplyTransform Multiplies the Pen’s current transformation by another
transformation matrix. See the section, “Pen Transformations,”
later in this chapter for more information and examples.

ResetTransform Resets the Pen’s transformation to the identity transformation.
See the section, “Pen Transformations,” later in this chapter for
more information and examples.

RotateTransform Adds a rotation transformation to the Pen’s current
transformation. See the section, “Pen Transformations,” later
in this chapter for more information and examples.

ScaleTransform Adds a scaling transformation to the Pen’s current transformation.
See the section, “Pen Transformations,” later in this chapter for
more information and examples.

SetLineCap This method takes parameters that let you specify the Pen’s
StartCap, EndCap, and LineJoin properties at the same time.

StartCap Determines the cap used at the start of the line. See the EndCap
property for details.

Transform Determines the transformation applied to the initially circular
“pen tip” used to draw lines. The transformation lets you draw
with an elliptical tip. See the section, “Pen Transformations,” later
in this chapter for more information and examples.

TranslateTransform Adds a translation transformation to the Pen’s current
transformation. Pens ignore any translation component in their
transformations, so this method does has no effect on the Pen’s
final appearance and was probably added for consistency and
completeness. See the section, “Pen Transformations,” later in
this chapter for more information and examples.

Width The width of the pen. This value is scaled if the pen is
transformed either by its own transformation or by the
transformation of the Graphics object that uses it.

565

Brushes, Pens, and Paths

22_571982 ch20.qxd 9/1/05 7:26 PM Page 565

Figure 20-1: The LineCap enumeration
determines how a line’s endpoints are drawn.

Figure 20-2: The LineJoin enumeration
determines how lines are joined.

The following sections describe some of the Pen class’s more confusing properties and methods.

Alignment
The Alignment property determines whether thick lines for closed curves are drawn inside or centered
on the theoretical perfectly thin line specified by the drawing routine. This property can take the values
Center or Inset.

The following code draws a circle with a thick white line and its pen’s Alignment set to Center. It then
draws the same circle with a thin black line. Next, the code repeats these steps, drawing its thick white
circle with Alignment set to Inset.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim the_pen As New Pen(Color.White, 20)

the_pen.Alignment = PenAlignment.Center
e.Graphics.DrawEllipse(the_pen, 25, 25, 100, 100)
e.Graphics.DrawEllipse(Pens.Black, 25, 25, 100, 100)

the_pen.Alignment = PenAlignment.Inset
e.Graphics.DrawEllipse(the_pen, 150, 25, 100, 100)
e.Graphics.DrawEllipse(Pens.Black, 150, 25, 100, 100)

End Sub

566

Chapter 20

22_571982 ch20.qxd 9/1/05 7:26 PM Page 566

Figure 20-3 shows the result.

The Alignment property applies only to closed figures such as ellipses, rectangles, and polygons. Open
figures such as line segments, arcs, and unclosed curves are always drawn centered.

The PenAlignment enumeration also defines the values Left, Right, and Outset, but these have the
same effect as the value Center.

Figure 20-3: A Pen’s Alignment property determines whether the line is
drawn on or inside its theoretical perfectly thin line.

CompoundArray
The CompoundArray property lets a program draw lines that are striped lengthwise. This property is an
array of Single values that determine where the solid and empty parts of the line lie as a fraction of the
line’s width. For example, an array containing the values {0.0, 0.25, 0.75, 1.0} makes the first quarter of
the line solid (0.0–0.25), the next half of the line not drawn (0.25–0.75), and the last quarter of the line
solid (0.75–1.0).

The following code demonstrates the CompoundArray property. It creates a thick pen, sets its
CompoundArray property to draw a line with a thin empty stripe down the middle, and draws a line.
Next, the code sets the CompoundArray property to draw three equally sized and spaced stripes, and
draws a rectangle and circle. Finally, the code sets the Graphics object’s SmoothingMode property to
AntiAlias, resets CompoundArray to draw a line with two thin empty stripes and draws another circle.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim the_pen As New Pen(Color.Black, 10)

the_pen.CompoundArray = New Single() {0.0, 0.45, 0.55, 1.0}
e.Graphics.DrawLine(the_pen, 10, 20, 400, 20)

the_pen.CompoundArray = New Single() {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
e.Graphics.DrawRectangle(the_pen, 20, 50, 100, 100)
e.Graphics.DrawEllipse(the_pen, 150, 50, 100, 100)

the_pen.CompoundArray = New Single() {0.0, 0.1, 0.2, 0.8, 0.9, 1.0}
e.Graphics.SmoothingMode = Drawing2D.SmoothingMode.AntiAlias
e.Graphics.DrawEllipse(the_pen, 300, 50, 100, 100)

End Sub

567

Brushes, Pens, and Paths

22_571982 ch20.qxd 9/1/05 7:26 PM Page 567

Figure 20-4 shows the result.

Figure 20-4: A Pen’s CompoundArray property
lets you draw lines that are striped lengthwise.

Custom Line Caps
The Pen class’s CustomEndCap and CustomStartCap properties let you define your own end caps for
lines. To make a custom cap, make a GraphicsPath object that defines the cap’s drawing commands.
This object should use a coordinate system where X increases to the left of the line, and Y increases in the
direction of the line, as shown in Figure 20-5.

Figure 20-5: When building a custom line cap, X increases
to the line’s left and Y increases in the line’s direction.

Next, create a CustomLineCap object, passing its constructor the GraphicsPath object. Pass the
GraphicsPath as the first parameter if it defines a fill for the cap. Pass it as the second parameter if
it defines drawn lines for the cap. Pass Nothing for the other parameter.

You can use the CustomLineCap object’s properties and methods to modify its appearance. For exam-
ple, its StrokeJoin property determines the style used to join the lines in the GraphicsPath, and its
SetStrokeCaps method lets you specify the end caps for the lines in the GraphicsPath.

The following code shows an example. It defines an array of points that defines lines that make an X.
It makes a GraphicsPath object and uses its AddLines method to add the lines to it. It then creates a
CustomLineCap object, passing its constructor this GraphicsPath. The code makes a Pen and sets its
CustomStartCap and CustomEndCap properties to the CustomLineCap object. It then draws four lines
with different widths.

X

Y

Line

568

Chapter 20

22_571982 ch20.qxd 9/1/05 7:26 PM Page 568

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Make a GraphicsPath that draws an X.
Dim pts() As Point = { _

New Point(-2, -2), _
New Point(0, 0), _
New Point(-2, 2), _
New Point(0, 0), _
New Point(2, 2), _
New Point(0, 0), _
New Point(2, -2) _

}

Dim cap_path As New GraphicsPath
cap_path.AddLines(pts)

‘ Make the CustomLineCap.
Dim x_cap As New CustomLineCap(Nothing, cap_path)

‘ Draw some lines with x_cap.
Dim the_pen As New Pen(Color.Black, 1)
the_pen.CustomStartCap = x_cap
the_pen.CustomEndCap = x_cap
e.Graphics.DrawLine(the_pen, 50, 10, 200, 10)

the_pen.Width = 5
e.Graphics.DrawLine(the_pen, 50, 40, 200, 40)

the_pen.Width = 10
e.Graphics.DrawLine(the_pen, 50, 100, 200, 100)

the_pen.Width = 20
e.Graphics.DrawLine(the_pen, 50, 200, 200, 200)

End Sub

Figure 20-6 shows the result.

Pen Transformations
The Pen class has properties and methods that let you define a transformation. The Pen applies this
transformation to its initially circular “tip” when drawing lines. The Pen ignores any translation compo-
nent in the transformation, so the result is always an ellipse. (With some thought, you can probably con-
vince yourself that any combination of scaling and rotation applied to a circle always gives an ellipse.)
When the program draws with the transformed pen, its lines may have thick and thin elements similar
to the ones you get when you draw with a calligraphy pen.

The following code uses a transformed Pen to draw a circle. It begins by defining some constants to
make working with the circle easier. It defines the circle’s center (Cx, Cy) and its radius R. It also defines
a constant to represent the Pen’s Width. Next, the program creates a new Pen with the desired width. It
applies a scaling transformation to the pen, scaling by a factor of 4 in the Y direction. For the purposes of
scaling Pens, the X and Y directions match those on the screen. This transformation stretches the Pen’s
tip vertically on the screen. Next, the program rotates the Pen’s tip by 45 degrees.

569

Brushes, Pens, and Paths

22_571982 ch20.qxd 9/1/05 7:26 PM Page 569

Figure 20-6: This program uses a CustomLineCap
that draws an X at the end of lines.

The program sets the Graphics object’s SmoothingMode property to AntiAlias and draws a circle cen-
tered at (Cx, Cy) with radius R.

Next, the program draws some ellipses showing where the Pen’s tip was while it was drawing the circle.
It starts by applying the same scaling and rotation transformations to the Graphics object. The program
will later draw a circle with a diameter equal to the line’s thickness and centered at the origin. These
transformations give the circle the same shape as the Pen’s transformed tip. The final step is to translate
these ellipses so that they lie along the path of the circle drawn earlier with the transformed Pen.

The program uses a loop to make an angle vary from 0 to 2 * PI radians in steps of PI /8. For each angle,
the code saves the Graphics object’s state so it doesn’t lose the scaling and rotation it already applied. It
then applies a translation transformation to move the origin to a point on the circle drawn earlier. The
center of the circle is at (Cx, Cy). The points on the circle are offset from that point by R * Cos(angle) in
the X direction and R * Sin(angle) in the Y direction.

Having defined all these transformations, the program draws a white ellipse centered at the origin and
with diameter matching the Pen’s width. The transformations scale, rotate, and translate the ellipse to
match one of the Pen’s tip positions while it drew the large ellipse. Finally, the code restores the saved
graphics state so it is ready for the next trip through the loop.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Const Cx As Integer = 120
Const Cy As Integer = 120
Const R As Integer = 100
Const PEN_WID As Integer = 10

570

Chapter 20

22_571982 ch20.qxd 9/1/05 7:26 PM Page 570

‘ Draw a circle with a transformed Pen.
Dim the_pen As New Pen(Color.Black, PEN_WID)
the_pen.ScaleTransform(1, 4, MatrixOrder.Append)
the_pen.RotateTransform(45, MatrixOrder.Append)
e.Graphics.SmoothingMode = SmoothingMode.AntiAlias
e.Graphics.DrawEllipse(the_pen, Cx - R, Cx - R, R * 2, R * 2)

‘ Draw “Pen tips” on the circle.
e.Graphics.ScaleTransform(1, 4, MatrixOrder.Append)
e.Graphics.RotateTransform(45, MatrixOrder.Append)

For angle As Single = 0 To 2 * PI Step PI / 8
Dim graphics_state As GraphicsState = e.Graphics.Save
e.Graphics.TranslateTransform(_

CSng(Cx + R * Cos(angle)), _
CSng(Cy + R * Sin(angle)), _
MatrixOrder.Append)

e.Graphics.DrawEllipse(Pens.White, _
-PEN_WID / 2, -PEN_WID / 2, PEN_WID, PEN_WID)

e.Graphics.Restore(graphics_state)
Next angle

End Sub

Figure 20-7 shows the result. The small white ellipses show the positions that the Pen’s tip took while
drawing the large black ellipse. This picture should give you a good intuition for how transformed
Pens work.

Figure 20-7: The white circles show where the Pen’s transformed tip
was as it drew the large black circle.

571

Brushes, Pens, and Paths

22_571982 ch20.qxd 9/1/05 7:26 PM Page 571

Brush
The Brush object determines how areas are filled when you draw them using the Graphics object’s
methods FillClosedCurve, FillEllipse, FillPath, FillPie, FillPolygon, FillRectangle,
and FillRectangles. Different types of Brushes fill areas with solid colors, hatch patterns, and color
gradients.

The Brush class itself is an abstract or MustInherit class, so you cannot make instances of the Brush
class itself. Instead, you can create instances of one of the derived classes SolidBrush, TextureBrush,
HatchBrush, LinearGradientBrush, and PathGradientBrush. The following table briefly describes
these classes.

Class Purpose

SolidBrush Fills areas with a single solid color

TextureBrush Fills areas with a repeating image

HatchBrush Fills areas with a repeating hatch pattern

LinearGradientBrush Fills areas with a linear gradient of two or more colors

PathGradientBrush Fills areas with a color gradient that follows a path

The following sections describe these classes in more detail and provide examples.

SolidBrush
A SolidBrush fills areas with a single solid color. This class is extremely simple. It provides a single
constructor that takes a parameter giving the brush’s color. It’s only commonly useful property is Color,
which determines the brush’s color.

A program can create a SolidBrush using its constructor, or it can use one of the 280+ predefined solid
brushes defined by the Brushes class. The following code demonstrates both techniques. First, it creates
a red SolidBrush and uses it to fill a rectangle. Then, it uses the Brushes class’s Blue property to get a
standard blue solid brush and fills another rectangle with that brush.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim red_brush As New SolidBrush(Color.Red)
e.Graphics.FillRectangle(red_brush, 10, 10, 200, 100)

Dim blue_brush As Brush = Brushes.Blue
e.Graphics.FillRectangle(blue_brush, 10, 120, 200, 100)

End Sub

TextureBrush
A TextureBrush fills areas with an image, usually a Bitmap. The following table describes this class’s
most useful properties and methods.

572

Chapter 20

22_571982 ch20.qxd 9/1/05 7:26 PM Page 572

Property or Method Purpose

Image The image that the brush uses to fill areas.

MultiplyTransform Multiplies the brush’s current transformation by another
transformation matrix.

ResetTransform Resets the brush’s transformation to the identity transformation.

RotateTransform Adds a rotation transformation to the brush’s current transformation.

ScaleTransform Adds a scaling transformation to the brush’s current transformation.

Transform A transformation that the brush applies to its image before using it
to fill areas.

TranslateTransform Adds a translation transformation to the brush’s current
transformation.

WrapMode Determines how the brush wraps the image. This property can take
the values Clamp (use a single copy that overlaps the origin of the
shape’s bounding rectangle), Tile (tile normally), TileFipX
(tile flipping every other column of images over horizontally),
TileFlipY (tile flipping every other row of images over vertically),
and TileFlipXY (tile flipping every other column horizontally and
every other row vertically). Figure 20-8 shows examples of these
settings.

If you look closely at Figure 20-8, you’ll see that the images do not always begin in the upper-left corner
of the shape being filled. The brush essentially sets its tiling origin to the form’s upper-left corner and
then spaces its images accordingly.

If you want to move the tiling origin, you can apply a translation transformation to the brush to move
the image to the new origin. The following code creates a TextureBrush using a PictureBox’s Image
property to define its image and sets WrapMode to TileFlipXY. It translates the brush to the point (50,
100) and then fills a rectangle with upper-left corner at this same point. This ensures that the first copy of
the brush’s image is placed exactly in the rectangle’s upper-left corner. It also ensures that the first image
is not flipped vertically or horizontally.

‘ Make a TextureBrush using the smiley face.
Dim texture_brush As New TextureBrush(picSmiley.Image)
texture_brush.WrapMode = System.Drawing.Drawing2D.WrapMode.TileFlipXY

texture_brush.TranslateTransform(50, 100)
DrawSample(e.Graphics, texture_brush, 50, 100)

The following code uses a transformed TextureBrush. First, it generates points to define a star-shaped
polygon and creates a TextureBrush using a PictureBox’s Image property to define its image. Next,
the program scales the brush by a factor of 2 in the X direction, making the smiley face wider than nor-
mal. It then rotates the brush by 30 degrees, fills the star-shaped polygon with the brush, and then out-
lines the polygon in black.

573

Brushes, Pens, and Paths

22_571982 ch20.qxd 9/1/05 7:26 PM Page 573

Figure 20-8: The TextureBrush’s WrapMode
property determines how the brush tiles its image.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Generate points to draw a star shape.
Dim cx As Integer = Me.ClientSize.Width \ 2
Dim cy As Integer = Me.ClientSize.Height \ 2
Dim r1 As Integer = Min(cx, cy) - 10
Dim r2 As Integer = Min(cx, cy) \ 2
Dim pts(9) As Point
For i As Integer = 0 To 9 Step 2

pts(i).X = cx + CInt(r1 * Cos(i * PI / 5 - PI / 2))
pts(i).Y = cy + CInt(r1 * Sin(i * PI / 5 - PI / 2))
pts(i + 1).X = cx + CInt(r2 * Cos((i + 1) * PI / 5 - PI / 2))
pts(i + 1).Y = cy + CInt(r2 * Sin((i + 1) * PI / 5 - PI / 2))

Next i

‘ Make a TextureBrush using the smiley face.
Dim texture_brush As New TextureBrush(picSmiley.Image)
texture_brush.ScaleTransform(2, 1, MatrixOrder.Append)
texture_brush.RotateTransform(30, MatrixOrder.Append)

e.Graphics.FillPolygon(texture_brush, pts)
e.Graphics.DrawPolygon(Pens.Black, pts)

End Sub

Figure 20-9 shows the result. Notice that not only is the image transformed, but the tiled rows and
columns are also transformed.

HatchBrush
A TextureBrush gives you complete control over every pixel in the filled area. You could build your
own images to use as hatch patterns, but it’s generally easier to use the HatchBrush class.

574

Chapter 20

22_571982 ch20.qxd 9/1/05 7:26 PM Page 574

HatchBrush is a relatively simple class. Its three most useful properties are BackgroundColor,
ForegroundColor, and HatchStyle. ForegroundColor and BackgroundColor determine the colors
the brush uses. HatchStyle can take one of 54 values. Figure 20-10 lists the HatchStyle values and
shows samples.

Figure 20-9: This star is filled with a
TextureBrush that is scaled and rotated.

The following code shows how a program can fill a rectangle with a HatchBrush. It makes a brush
using the LargeConfetti style with a blue foreground and light blue background. It calls a Graphics
object’s FillRectangle method to fill a rectangle with this brush, and then calls DrawRectangle to
outline the rectangle in black.

Dim the_brush As New HatchBrush(HatchStyle.LargeConfetti, _
Color.Blue, Color.LightBlue)

gr.FillRectangle(the_brush, 10, 10, 200, 200)
gr.DrawRectangle(Pens.Black, 10, 10, 200, 200)

LinearGradientBrush
A LinearGradientBrush fills areas with a linear gradient of two or more colors. The simplest of these
brushes shades an area smoothly from one color to another along a specified direction. For example, a
rectangle might be red at one end and shade smoothly to blue at the other.

With some extra work, you can specify exactly how the colors blend from one to the other. For instance,
you could make the colors blend quickly at the start and then slowly across the rest of the rectangle.

575

Brushes, Pens, and Paths

22_571982 ch20.qxd 9/1/05 7:26 PM Page 575

Figure 20-10: The HatchStyle enumeration determines
which of 54 patterns a HatchBrush uses to fill an area.

You can also specify more than two colors for the brush. You could make the colors blend from red to
green to blue.

The following table describes the LinearGradientBrush’s most useful properties and methods.

Property or Method Purpose

Blend A Blend object that determines how quickly the colors blend
across the brush. By default, this is a simple linear blending.

InterpolationColors A ColorBlend object that determines the colors (possibly more
than two) that the brush blends and their positions within the
blend.

LinearColors An array of two colors that determines the starting and ending
colors for a simple linear blend.

MultiplyTransform Multiplies the brush’s current transformation by another
transformation matrix.

ResetTransform Resets the brush’s transformation to the identity transformation.

576

Chapter 20

22_571982 ch20.qxd 9/1/05 7:26 PM Page 576

Property or Method Purpose

RotateTransform Adds a rotation transformation to the brush’s current
transformation.

ScaleTransform Adds a scaling transformation to the brush’s current
transformation.

SetBlendTriangularShape Makes the brush use a midpoint gradient where the color
blends from the start color to the end color, and then back to
the start color. You could do something similar with the Blend
property, but this is easier.

SetSigmaBellShape Makes the brush’s color gradient change according to a bell
curve instead of linearly.

Transform A transformation that the brush applies to its gradient before
using it to fill areas.

TranslateTransform Adds a translation transformation to the brush’s current
transformation.

WrapMode Determines how the brush wraps when it doesn’t completely
fill the area. This property can take the values Clamp, Tile,
TileFipX, TileFlipY, and TileFlipXY. Because the brush
is infinitely tall in the direction perpendicular to the line
that determines its direction, not all of these values make a
difference for all brushes.

Figure 20-11 shows an assortment of LinearGradientBrushes.

Figure 20-11: LinearGradientBrushes can produce all these
effects and more.

577

Brushes, Pens, and Paths

22_571982 ch20.qxd 9/1/05 7:26 PM Page 577

The following code fills the rectangles shown in Figure 20-11. As you step through the code, refer to the
figure to see the result.

The code begins by making a relatively straightforward LinearGradientBrush shading from black
to white along the line starting at (9, 10) and ending at (210, 10). It then fills a rectangle with the brush.
Notice that the points defining the brush determine the brush’s drawing origin. The rectangle’s X coordi-
nates cover the same range as those of the brush, so the brush’s origin lines up nicely with the rectangle.
If the two did not line up, then the brush would finish its gradient before it reached the end of the rect-
angle and it would need to wrap. Usually, you will want the brush to line up with the object it is filling.
You can arrange that by carefully defining the brush to fit over the object or by using a transformation to
make it fit.

Next, the code creates a ColorBlend object. It passes the object’s constructor the value 3 to indicate that
it will use three colors. The code sets the ColorBlend object’s Colors property to an array containing
the three colors black, white, and black. This example uses black and white, so the result will show up
well in the book, but you could use any colors here such as orange, hot pink, and blue. Next, the code
sets the ColorBlend object’s Positions property to an array of Singles that define the positions
within the blend where the colors should be located. In this example, the first color (black) begins 0.0 of
the way through the blend, the second color (white) sits 0.2 or 20 percent of the distance through the
blend, and the third color (black again) sits at the end of the blend. You can see in Figure 20-11 that the
white area is to the left of the center in this rectangle.

The code then creates a Blend object, passing its constructor the parameter 4 to indicate that the pro-
gram will set four blend points. It sets the object’s Factors property to an array of Singles that deter-
mine the fraction of the blend that should occur at the four points. It then sets the object’s Positions
property to an array that sets the positions of the blend points. In this example, the point 0.0 of the dis-
tance through the blend has factor 0.0, so the blend has not begun and that point has the start color. The
point 0.2 of the distance through the blend has a factor of 0.5, so the blend should be half done at that
point. The point 0.8 of the distance through the blend has a factor of 0.5, so the blend should still be only
half done at that point. Finally, the point at the end of the blend should have the end color. The result is
a blend that changes quickly initially, remains fixed for a stretch in the middle, and then finishes quickly.
(An optical illusion makes the area on the left of the “flat” region in the middle appear brighter than it
really is, and the area on the right appears darker than it really is.)

Next, the program makes a LinearGradientBrush that is defined by points too close together to cover
its whole rectangle. The brush repeats its gradient as many times as necessary to cover the rectangle.

The program then changes the previous brush’s WrapMode property to TileFlipX. When the brush
must repeat its gradient to fill the rectangle, it reverses the start and end colors to produce a series of
gradient bands.

Next, the program calls a brush’s SetBlendTriangularShape method. This makes the gradient shade
from the start color to the end color and back. The SetBlendTriangularShape method’s parameter
gives the position in the gradient where the end color should occur. You could get a similar affect using
a Blend, but this method is easier for this kind of fill.

The program then calls the brush’s SetSigmaBellShape method. It uses the same position parameter
0.5 as the previous call to SetBlendTriangularShape, so it places the end color in the middle of the
gradient. The effect is similar to the triangular brush, except that the colors vary according to a bell curve
instead of linear relationship. These two rectangles are lined up vertically in Figure 20-11, so it is easy to
see the difference.

578

Chapter 20

22_571982 ch20.qxd 9/1/05 7:26 PM Page 578

The code defines the final brush with a line that is not horizontal, so its gradient moves diagonally
across its rectangle.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim y As Integer = 10
Dim x As Integer = 10
Dim wid As Integer = 200
Dim hgt As Integer = 50

‘ Make a rectangle that shades from black to white.
e.Graphics.DrawString(“Simple”, Me.Font, Brushes.Black, x, y)
y += 15
Dim black_white_brush As New _

LinearGradientBrush(_
New Point(x, y), New Point(x + wid, y), _
Color.Black, Color.White)

e.Graphics.FillRectangle(black_white_brush, _
x, y, wid, hgt)

y += hgt + 10

‘ ColorBlend.
e.Graphics.DrawString(“ColorBlend”, Me.Font, Brushes.Black, x, y)
y += 15
Dim color_blend As New ColorBlend(3)
color_blend.Colors = New Color() {Color.Red, Color.Green, Color.Blue}
color_blend.Colors = New Color() {Color.Black, Color.White, Color.Black}
color_blend.Positions = New Single() {0.0, 0.2, 1.0}
black_white_brush.InterpolationColors = color_blend
e.Graphics.FillRectangle(black_white_brush, _

x, y, wid, hgt)
y += hgt + 10

‘ Make a brush that makes 50 percent of the color change
‘ in the first 20 percent of the distance, stays there
‘ until 80 percent of the distance, and then finishes
‘ in the remaining distance.
e.Graphics.DrawString(“Blend”, Me.Font, Brushes.Black, x, y)
y += 15
Dim the_blend As New Blend(4)
the_blend.Factors = New Single() {0.0, 0.5, 0.5, 1.0}
the_blend.Positions = New Single() {0.0, 0.2, 0.8, 1.0}
black_white_brush.Blend = the_blend
e.Graphics.FillRectangle(black_white_brush, _

x, y, wid, hgt)
y += hgt + 10

‘ This brush’s line is too short to cross the whole rectangle.
e.Graphics.DrawString(“Short”, Me.Font, Brushes.Black, x, y)
y += 15
Dim short_brush As New _

LinearGradientBrush(_
New Point(x, y), New Point(x + 50, y), _
Color.Black, Color.White)

e.Graphics.FillRectangle(short_brush, _

579

Brushes, Pens, and Paths

22_571982 ch20.qxd 9/1/05 7:26 PM Page 579

x, y, wid, hgt)
y += hgt + 10

x += wid + 10
y = 10

‘ Change the brush’s WrapMode.
e.Graphics.DrawString(“WrapMode = TileFlipX”, Me.Font, Brushes.Black, x, y)
y += 15
short_brush.WrapMode = WrapMode.TileFlipX
e.Graphics.FillRectangle(short_brush, _

x, y, wid, hgt)
y += hgt + 10

‘ Trangular brush.
e.Graphics.DrawString(“SetBlendTriangularShape”, Me.Font, Brushes.Black, x, y)
y += 15
black_white_brush.SetBlendTriangularShape(0.5)
e.Graphics.FillRectangle(black_white_brush, _

x, y, wid, hgt)
y += hgt + 10

‘ Sigma bell shape.
e.Graphics.DrawString(“SetSigmaBellShape”, Me.Font, Brushes.Black, x, y)
y += 15
black_white_brush.SetSigmaBellShape(0.5, 1)
e.Graphics.FillRectangle(black_white_brush, _

x, y, wid, hgt)
y += hgt + 10

‘ A diagonal brush.
x += wid + 10
y = 10
wid = hgt
e.Graphics.DrawString(“Diagonal”, Me.Font, Brushes.Black, x, y)
y += 15
Dim diag_brush As New _

LinearGradientBrush(_
New Point(x, y), New Point(x + wid, y + hgt), _
Color.Black, Color.White)

e.Graphics.FillRectangle(diag_brush, _
x, y, wid, hgt)

y += hgt + 10
End Sub

PathGradientBrush
A PathGradientBrush object fills areas with a color gradient that blends colors from a center point to
the points along a path. For example, you might shade from white in the middle of an ellipse to blue
along its edges.

The Blend, InterpolationColors, SetBlendTriangularShape, SetSigmaBellShape, and other
properties and methods that deal with the characteristics of the blend work along lines running from the

580

Chapter 20

22_571982 ch20.qxd 9/1/05 7:26 PM Page 580

center point to the points on the path. For example, you can use this object’s Blend property to deter-
mine how quickly colors blend across the brush. In the LinearGradientBrush class, this property
determines how the colors blend from one side of the brush to the other. In a PathGradientBrush, it
controls how the colors blend from the center point to the path’s points.

The following table describes the PathGradientBrush’s most useful properties and methods.

Property or Method Purpose

Blend A Blend object that determines how quickly the colors blend
across the brush. By default, this is a simple linear blending.

CenterColor Determines the color at the center point.

CenterPoint Determines the location of the center point. By default, this
point is set to the center of the path.

InterpolationColors A ColorBlend object that determines the colors (possibly more
than two) that the brush blends and their positions within the
blend.

MultiplyTransform Multiplies the brush’s current transformation by another
transformation matrix.

ResetTransform Resets the brush’s transformation to the identity transformation.

RotateTransform Adds a rotation transformation to the brush’s current
transformation.

ScaleTransform Adds a scaling transformation to the brush’s current
transformation.

SetBlendTriangularShape Makes the brush use a midpoint gradient where the color
blends from the start color to the end color and then back to
the start color. You could do something similar with the Blend
property, but this is easier.

SetSigmaBellShape Makes the brush’s color gradient change according to a bell
curve instead of linearly.

SurroundColors An array of Colors that correspond to the points on the path.
The color gradient blends from the CenterColor to these
colors around the edge of the path. If there are more points in
the path than colors, the final color is repeated as needed. Note
that curves such as ellipses define a large number of colors that
you do not explicitly specify, so making these colors match up
with points on the curve can be difficult. This property is easier
to understand for polygons.

Transform A transformation that the brush applies to its gradient before
using it to fill areas.

TranslateTransform Adds a translation transformation to the brush’s current
transformation.

Table continued on following page

581

Brushes, Pens, and Paths

22_571982 ch20.qxd 9/1/05 7:26 PM Page 581

Property or Method Purpose

WrapMode Determines how the brush wraps when it doesn’t completely
fill the area. This property can take the values Clamp, Tile,
TileFipX, TileFlipY, and TileFlipXY. Because the brush
is infinitely tall in the direction perpendicular to the line
that determines its direction, not all of these values make a
difference for all brushes.

Figure 20-12 shows an assortment of PathGradientBrushes.

The following code fills the shapes shown in Figure 20-12. As you step through the code, refer to the fig-
ure to see the result.

The code first creates an array of Point objects initialized to form a rectangle. It passes those points to
the constructor for a PathGradientBrush and then uses the brush to fill that rectangle. This is about the
simplest PathGradientBrush you can build, so it’s worth studying a bit before moving on to more con-
fusing examples. Notice that the color shades smoothly from black in the center to white on the rectan-
gle’s edges (those are the default colors).

Figure 20-12: PathGradientBrushes can produce
all these effects and more.

Next, the program makes a GraphicsPath object and adds an ellipse to it. It passes the GraphicsPath
to the PathGradientBrush’s constructor. It then sets the brush’s CenterColor and SurroundColors

582

Chapter 20

22_571982 ch20.qxd 9/1/05 7:26 PM Page 582

properties. The SurroundColors array doesn’t contain enough values for every point on the elliptical
path, so the last color (black) is repeated as much as necessary. The program fills the ellipse with this
brush.

The code then creates a new GraphicsPath object, adds a new ellipse, and uses it to make a
PathGradientBrush as before. It also sets the brush’s CenterColor and SurroundColors properties
as before. The program then calls the brush’s SetBlendTriangularShape method to make the colors
along the lines from the center point to the path’s edges blend from the end color to the start color and
back. The parameter 0.5 makes the start color appear halfway from the center point to the edge.

Next, the program repeats these same steps, except that it calls the brush’s SetSigmaBellShape method
instead of SetBlendTriangularShape. The result is similar to the previous result, except that the colors
vary according to a bell curve instead of a linear relationship.

The code then generates an array of points that defines a star shape. It creates a new GraphicsPath
object and calls its AddPolygon method to add the star. It passes this GraphicsPath object to the
PathGradientBrush’s constructor to make the brush use the star as its path. The program then sets
the brush’s SurroundPoints property to an array containing the Colors it should use for each of the
star’s points. The code fills the star using this brush to draw a star where the tips of the star are black
and the rest of the shape’s points vary from white to black.

Finally, the program repeats the previous steps to define a new star-shaped brush. It creates a new Blend
object and sets its Position and Factors properties to indicate how the gradient should progress from
the center point to the shape’s edges. The Positions values give locations along a line from the center
to an edge point. The Factors values indicate how far the blend should have progressed for the corre-
sponding point. For example, this code’s second entries for those arrays are 0.25 and 1.0 to indicate that
the point one quarter of the distance from the center point to an edge point should have blended com-
pletely to the end color. This example sets its Factors values so the color blends from the start color to
the end color several times.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim x As Integer = 10
Dim y As Integer = 10
Dim wid As Integer = 100
Dim hgt As Integer = 50

‘ Fill a rectangle.
Dim rect_pts() As Point = { _

New Point(x, y), _
New Point(x + wid, y), _
New Point(x + wid, y + hgt), _
New Point(x, y + hgt) _

}
Dim path_brush As New PathGradientBrush(rect_pts)
e.Graphics.FillPolygon(path_brush, rect_pts)
y += hgt + 10

‘ Fill an ellipse setting CenterColor and SurroundColors.
Dim ellipse_path As New GraphicsPath
ellipse_path.AddEllipse(x, y, wid, hgt)

583

Brushes, Pens, and Paths

22_571982 ch20.qxd 9/1/05 7:26 PM Page 583

path_brush = New PathGradientBrush(ellipse_path)
path_brush.CenterColor = Color.White
path_brush.SurroundColors = New Color() {Color.Black}
e.Graphics.FillEllipse(path_brush, x, y, wid, hgt)
y += hgt + 10

‘ Fill an ellipse using SetBlendTriangularShape.
ellipse_path = New GraphicsPath
ellipse_path.AddEllipse(x, y, wid, hgt)
path_brush = New PathGradientBrush(ellipse_path)
path_brush.CenterColor = Color.White
path_brush.SurroundColors = New Color() {Color.Black}
path_brush.SetBlendTriangularShape(0.5)
e.Graphics.FillEllipse(path_brush, x, y, wid, hgt)
y += hgt + 10

‘ Fill an ellipse using SetSigmaBellShape.
ellipse_path = New GraphicsPath
ellipse_path.AddEllipse(x, y, wid, hgt)
path_brush = New PathGradientBrush(ellipse_path)
path_brush.CenterColor = Color.White
path_brush.SurroundColors = New Color() {Color.Black}
path_brush.SetSigmaBellShape(0.5, 1)
e.Graphics.FillEllipse(path_brush, x, y, wid, hgt)
y += hgt + 10

‘ Fill a star shape.
x += wid + 10
y = 10
wid = 150
hgt = 150
Dim cx As Integer = x + wid \ 2
Dim cy As Integer = y + hgt \ 2
Dim r1 As Integer = CInt(wid * 0.5)
Dim r2 As Integer = CInt(hgt * 0.25)
Dim star_pts(9) As Point
For i As Integer = 0 To 9 Step 2

star_pts(i).X = cx + CInt(r1 * Cos(i * PI / 5 - PI / 2))
star_pts(i).Y = cy + CInt(r1 * Sin(i * PI / 5 - PI / 2))
star_pts(i + 1).X = cx + CInt(r2 * Cos((i + 1) * PI / 5 - PI / 2))
star_pts(i + 1).Y = cy + CInt(r2 * Sin((i + 1) * PI / 5 - PI / 2))

Next i
Dim star_path As New GraphicsPath
star_path.AddPolygon(star_pts)
Dim star_brush As New PathGradientBrush(star_pts)
star_brush.CenterColor = Color.Black
star_brush.SurroundColors = New Color() { _

Color.Black, Color.White, _
Color.Black, Color.White, _
Color.Black, Color.White, _
Color.Black, Color.White, _
Color.Black, Color.White _

}
e.Graphics.FillPolygon(star_brush, star_pts)
y += hgt + 10

584

Chapter 20

22_571982 ch20.qxd 9/1/05 7:26 PM Page 584

‘ Fill a star shape.
cx = x + wid \ 2
cy = y + hgt \ 2
r1 = CInt(wid * 0.5)
r2 = CInt(hgt * 0.25)
For i As Integer = 0 To 9 Step 2

star_pts(i).X = cx + CInt(r1 * Cos(i * PI / 5 - PI / 2))
star_pts(i).Y = cy + CInt(r1 * Sin(i * PI / 5 - PI / 2))
star_pts(i + 1).X = cx + CInt(r2 * Cos((i + 1) * PI / 5 - PI / 2))
star_pts(i + 1).Y = cy + CInt(r2 * Sin((i + 1) * PI / 5 - PI / 2))

Next i
star_path = New GraphicsPath
star_path.AddPolygon(star_pts)
star_brush = New PathGradientBrush(star_pts)
star_brush.CenterColor = Color.White
star_brush.SurroundColors = New Color() { _

Color.White, Color.Black, _
Color.White, Color.Black, _
Color.White, Color.Black, _
Color.White, Color.Black, _
Color.White, Color.Black _

}
Dim star_blend As New Blend
star_blend.Positions = New Single() {0.0, 0.25, 0.5, 0.75, 1.0}
star_blend.Factors = New Single() {0.0, 1.0, 0.0, 1.0, 0.0}
star_brush.Blend = star_blend
e.Graphics.FillPolygon(star_brush, star_pts)
y += hgt + 10

End Sub

GraphicsPath Objects
A GraphicsPath object represents a path defined by lines, curves, text, and other drawing commands.
A GraphicsPath can even include other GraphicsPath objects.

You can use a Graphics object’s DrawPath and FillPath methods to draw or fill a GraphicsPath.
For example, the following code creates a GraphicsPath object and adds a string to it. It creates a
TextureBrush from a PictureBox’s image and uses the FillPath method to fill the path with the
TextureBrush. It finishes by calling the DrawPath method to outline the path in black.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Make a GraphicsPath containing text.
Dim txt As String = “Path”
Dim graphics_path As New GraphicsPath
graphics_path.AddString(txt, _

New FontFamily(“Times New Roman”), _
FontStyle.Bold, 150, _
New Point(0, 0), _
New StringFormat)

585

Brushes, Pens, and Paths

22_571982 ch20.qxd 9/1/05 7:26 PM Page 585

‘ Fill the path with an image.
Dim smiley_brush As New TextureBrush(picSmiley.Image)
e.Graphics.FillPath(smiley_brush, graphics_path)
e.Graphics.DrawPath(Pens.Black, graphics_path)

End Sub

Figure 20-13 shows the result.

Figure 20-13: A program can use a Graphics object’s FillPath and
DrawPath methods to fill and draw a GraphicsPath object.

In addition to drawing and filling a GraphicsPath, you can also use one to define a region. The follow-
ing code creates a GraphicsPath representing text much as the previous example does. It then sets the
form’s Region property equal to a new Region object created from the GraphicsPath. This restricts the
form to the region. Any pieces of the form that lie outside of the textual path are chopped off, so they are
not drawn and mouse events in those areas fall through to whatever lies below the form.

When you use a path to define a form’s region, the path is taken relative to the form’s origin, which
is not the same as the origin of the form’s client area. The form’s origin is at the upper-left corner of
the form, including its borders and title bar. To allow for this difference in origins, the code uses the
PointToScreen method to get the screen coordinates of the client area’s origin.

The code applies a translation transformation to the Graphics object so the client area origin is mapped
to the form’s origin. It then sets the Graphics object’s SmoothingMode, fills the path with white, and
then outlines the path with a thick black pen.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Make a GraphicsPath containing text.
Dim txt As String = “Path”
Dim graphics_path As New GraphicsPath
graphics_path.AddString(txt, _

New FontFamily(“Times New Roman”), _
FontStyle.Bold, 150, _
New Point(0, 0), _
New StringFormat)

‘ Set the form’s region to the path.
Me.Region = New Region(graphics_path)

586

Chapter 20

22_571982 ch20.qxd 9/1/05 7:26 PM Page 586

‘ Fill the path with white and outline it in black.
Dim origin As Point = Me.PointToScreen(New Point(0, 0))
e.Graphics.TranslateTransform(Me.Left - origin.X, Me.Top - origin.Y)
e.Graphics.SmoothingMode = SmoothingMode.AntiAlias
e.Graphics.FillPath(Brushes.White, graphics_path)
e.Graphics.DrawPath(New Pen(Color.Black, 5), graphics_path)

End Sub

Figure 20-14 shows the result. Here the form is sitting above the Visual Basic development environment.

Because the 5-pixel wide line around the path is centered on the edge of the form’s region, half of it is
cut off.

Notice also that the path used in this example cut the form’s borders and title bar off, so the user has
no way to resize, move, or close this form. If you use this technique in an application, be sure to at least
provide some method for the user to close the form. For example, you could provide a button or context
menu. Or you could unload the form if the user clicked on it or pressed a certain key while the form had
the input focus.

Figure 20-14: A program can use a GraphicsPath to define a form’s Region.

587

Brushes, Pens, and Paths

22_571982 ch20.qxd 9/1/05 7:26 PM Page 587

One more use for GraphicsPaths is to define clipping regions. The following code creates a
GraphicsPath containing text much as the previous examples do. It then calls the Graphics object’s
SetClip method to make this path the form’s clipping region. Next, the program draws 200 lines between
randomly generated points on the form. Only the parts of the lines inside the clipping region are drawn.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Make a GraphicsPath containing text.
Dim txt As String = “Path”
Dim graphics_path As New GraphicsPath
graphics_path.AddString(txt, _

New FontFamily(“Times New Roman”), _
FontStyle.Bold, 150, _
New Point(0, 0), _
New StringFormat)

e.Graphics.SetClip(graphics_path)

‘ Fill the ClientRectangle with white.
e.Graphics.FillRectangle(Brushes.White, Me.ClientRectangle)

‘ Draw a bunch of random lines on the form.
Dim rnd As New Random
Dim x1, y1, x2, y2 As Integer
For i As Integer = 1 To 200

x1 = rnd.Next(0, Me.ClientSize.Width - 1)
y1 = rnd.Next(0, Me.ClientSize.Height - 1)
x2 = rnd.Next(0, Me.ClientSize.Width - 1)
y2 = rnd.Next(0, Me.ClientSize.Height - 1)
e.Graphics.DrawLine(Pens.Black, x1, y1, x2, y2)

Next i
End Sub

Figure 20-15 shows the result.

Figure 20-15: A program can use a GraphicsPath
object to define a clipping region.

The GraphicsPath class provides many methods for adding lines, curves, text, and other shapes to
the path. These methods include AddArc, AddBezier, AddBeziers, AddClosedCurve, AddCurve,
AddEllipse, AddLine, AddLines, AddPath, AddPie, AddPolygon, AddRectangle, AddRectangles,
and AddString. These are roughly analogous to the Draw and Fill methods provided by the Graphics
object. For example, DrawEllipse draws an ellipse, FillEllispe fills an ellipse, and AddEllipse
adds an ellipse to a path.

588

Chapter 20

22_571982 ch20.qxd 9/1/05 7:26 PM Page 588

The following table describes the GraphicsPath object’s other most useful properties and methods.

Property or Method Purpose

CloseAllFigures Closes all open figures by connecting their last points with their
first points, and then starts a new figure.

CloseFigure Closes the current figure by connecting its last point with its first
point, and then starts a new figure. For example, if you draw a
series of lines and arcs, this method closes the figure.

FillMode Determines how the path handles overlaps when you fill it. This
property can take the values Alternate and Winding. Figure
20-16 shows the difference.

Flatten Converts any curves in the path into a sequence of lines. For
example, this lets you explicitly calculate colors for every point in
the path when setting a PathGradientBrush’s SurroundColors
property.

GetBounds Returns a RectangleF structure representing the path’s
bounding box.

GetLastPoint Returns the last PointF structure in the PathPoints array.

IsOutlineVisible Returns True if the indicated point lies beneath the path’s outline.

IsVisible Returns True if the indicated point lies within the path’s interior.

PathData Returns a PathData object that encapsulates the path’s graphical
data. It holds arrays similar to those returned by the PathPoints
and PathTypes properties.

PathPoints Returns an array of PointF structures giving the points in the
path.

PathTypes Returns an array of Bytes representing the types of the points in
the path.

PointCount Returns the number of points in the path.

Reset Clears the path data and resets FillMode to Alternate.

Reverse Reverses the order of the path’s data.

StartFigure Starts a new figure so future data is added to the new figure.
Later, calling CloseFigure will close this figure, but not the
previous one.

Transform Applies a transformation matrix to the path.

Warp Applies a warping transformation to the path. The transformation
is defined by mapping a parallelogram to a rectangle.

Widen Enlarges the curves in the path to enclose a line drawn by a
specific pen.

589

Brushes, Pens, and Paths

22_571982 ch20.qxd 9/1/05 7:26 PM Page 589

Figure 20-16: These polygonal paths were filled with white and drawn with black.
The GraphicsPath object’s FillMode property determines how the areas
between the lines are filled.

Garbage-Collection Issues
Objects such as brushes contain references to memory and graphics resources. If you allocate a lot of
brushes and then let them go out of scope, they become candidates for garbage collection. Later, when
the system decides it needs to free some memory, it walks through all of the objects that you have previ-
ously allocated and determines which ones are not reachable by your code. It frees those objects and
makes their memory available for future use.

Unfortunately, if those objects contain references to other objects, the garbage collector may think those
second-hand objects are still referenced by the original object, so it will not collect them until it runs a
second time.

For example, suppose that your program allocates a brush, uses it, and lets it fall out of scope. When the
garbage collector runs, it sees that the brush refers to some resources, so it doesn’t reclaim them. It sees
that your program is no longer using the brush, however, so it frees that memory. The next time the
garbage collector runs, the brush is gone, so nothing refers to the brush’s secondary resources and the
garbage collector can free those, too.

While the garbage collector eventually frees all of the memory, it takes longer than necessary. It ties up
memory longer and that may force more frequent garbage collection.

You can speed up the process greatly by explicitly calling the brush object’s Dispose method. Dispose
makes the brush free its internal resources and prepare for garbage collection. Now, when the garbage
collector runs, it frees both the brush and its secondary resources in a single pass.

The following code shows how to use the Dispose method. When the form loads, this code makes a
new Bitmap object to fit the form. It attaches a Graphics object to the Bitmap, makes a HatchBrush

590

Chapter 20

22_571982 ch20.qxd 9/1/05 7:26 PM Page 590

and Pen, and uses them to draw a filled ellipse on the Bitmap. The program then sets the form’s
BackgroundImage property to the Bitmap. Finally, the code calls the Dispose method for the
HatchBrush, Pen, and Graphics objects.

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ Make a new bitmap to fit the form.
Dim bm As New Bitmap(Me.ClientRectangle.Width, Me.ClientRectangle.Height)
Dim gr As Graphics = Graphics.FromImage(bm)
gr.Clear(Me.BackColor)

‘ Fill an ellipse.
Dim hatch_brush As New HatchBrush(HatchStyle.LargeConfetti, _

Color.Blue, Color.Yellow)
Dim rect As New Rectangle(10, 10, _

Me.ClientRectangle.Width - 20, _
Me.ClientRectangle.Height - 20)

gr.FillEllipse(hatch_brush, rect)

‘ Outline the ellipse.
Dim thick_pen As New Pen(Color.Black, 5)
gr.DrawEllipse(thick_pen, rect)

‘ Set the result as the form’s BackgroundImage.
Me.BackgroundImage = bm

‘ Free resources.
hatch_brush.Dispose()
thick_pen.Dispose()
gr.Dispose()

End Sub

Whenever you can call an object’s Dispose method, you should. This lets the garbage collector reclaim
memory more efficiently.

You cannot always call Dispose, however. If you call Dispose on an object that is still needed by some
other object, the program will crash. For example, the previous code uses a Bitmap object. It’s not obvi-
ous from the code, but the form’s BackgroundImage property continues to reference that object after
this subroutine exits. If the program calls the Bitmap’s Dispose method, then the form later throws an
“Invalid parameter used” exception.

Summary
Visual Basic .NET provides a huge variety of objects for drawing graphics. The three most important
drawing classes are Graphics, Pen, and Brush.

The Graphics object represents the canvas on which you will draw. It provides methods that let you
draw and fill all sorts of shapes including lines, rectangles, ellipses, polygons, text, and curves. It also
provides methods for transforming those commands to translate, scale, and rotate the results.

591

Brushes, Pens, and Paths

22_571982 ch20.qxd 9/1/05 7:26 PM Page 591

The Pen object determines the appearance of lines. It sets the lines’ color, thickness, dash style, fill pat-
tern, and caps.

Various kinds of brush objects determine the appearance of filled areas. They can fill areas with solid
colors, tiled images, hatch patterns, linear color gradients, and color gradients that follow a path.

These classes and the others described in this chapter give you powerful tools for drawing graphics of
practically unlimited complexity and sophistication.

This chapter discusses the brushes, pens, and paths that you use to draw lines, curves, and other shapes.
Chapter 21, “Text,” explains how to draw text. While you can display simple text in a Label, TextBox,
or other control, when you draw text using GDI+ routines you have greater control over exactly how the
text is drawn.

592

Chapter 20

22_571982 ch20.qxd 9/1/05 7:26 PM Page 592

Text
Text is different from the lines, rectangles, ellipses, and other kinds of shapes that a program typi-
cally draws. A program normally draws and fills a rectangle in separate steps. On the other hand,
a program typically draws text in a single step, usually with a solid color.

Text also differs in the way it is drawn by the GDI+ routines. To draw a line, rectangle, or ellipse,
the program specifies the shape’s location, and the GDI+ routines draw it accordingly. Text is not
specified by simple location data. A program can specify the text’s general location but has only
limited control over its size. Different characters may have different widths in a particular font, so
strings containing the same number of characters may have different sizes when displayed.

Even if you know every character’s nominal size, you may not be able to add them up to calculate
the size of a string. Fonts sometimes use special algorithms that adjust the spacing between certain
pairs of letters to make the result look better. For example, a font might decrease the spacing between
the characters A and W when they appear next to each other (as in AW) to allow the W to lean
over the A.

This chapter describes some of the tools that Visual Basic provides for controlling text. It explains
how to draw text aligned and formatted in various ways, and how to measure text so that you can
figure out more exactly where it will appear.

Note that several examples use the Graphics object’s TextRenderingHint property to make text
appear smoother. For more information on this property, see the section “System.Drawing.Text” in
Chapter 19, “Drawing Basics.”

Drawing Text
The Graphics object’s DrawString method draws text. It provides several overloaded versions
that let you specify the string, font, positioning, and alignment information.

One of the simplest versions of DrawString takes only four parameters: the text to draw, the font
to use, the brush to use when filling the text, and the position where the text should start. The

23_571982 ch21.qxd 9/1/05 7:55 PM Page 593

following code draws some text starting at the point (10, 10) on the form. It then draws a circle around
this point.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim txt As String = “The quick brown fox jumps over the lazy dog.”
Dim big_font As New Font(“Times New Roman”, 30, FontStyle.Bold)

e.Graphics.TextRenderingHint = _
System.Drawing.Text.TextRenderingHint.AntiAliasGridFit

e.Graphics.DrawString(txt, big_font, Brushes.Black, 10, 10)
e.Graphics.DrawEllipse(Pens.Black, 8, 8, 4, 4)

End Sub

Figure 21-1 shows the result. Notice that the text doesn’t begin exactly at the point (10, 10). The text con-
tains some leading space on the top and bottom that move it slightly right and downward from the start-
ing point.

Figure 21-1: Text doesn’t begin exactly at the
starting point passed to the DrawString method.

Notice also that the text runs blithely off the edge of the form. The following section describes ways you
can format text so it automatically provides alignment and wrapping as necessary.

DrawString automatically starts a new line when it encounters a Carriage Return/Line Feed pair in
the text. It also advances to the next tab stop when it encounters a Tab character. The following code is
similar to the previous version, except that the text includes Tab characters and Carriage Return/Line
Feed pairs:

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim txt As String = “The” & vbTab & “quick” & vbCrLf & _
“brown” & vbTab & “fox” & vbCrLf & _
“jumps” & vbTab & “over” & vbCrLf & _
“the” & vbTab & “lazy” & vbCrLf & _
“dog.”

Dim big_font As New Font(“Times New Roman”, 30, FontStyle.Bold)

e.Graphics.TextRenderingHint = _
System.Drawing.Text.TextRenderingHint.AntiAliasGridFit

e.Graphics.DrawString(txt, big_font, Brushes.Black, 10, 10)
e.Graphics.DrawEllipse(Pens.Black, 8, 8, 4, 4)

End Sub

Figure 21-2 shows the result.

594

Chapter 21

23_571982 ch21.qxd 9/1/05 7:55 PM Page 594

Figure 21-2: DrawString automatically processes
Tab characters and Carriage Return/Line Feed pairs.

Text Formatting
Some of the overloaded versions of the Graphics object’s DrawString method take additional parame-
ters that help format the text. The first of these parameters is a layout rectangle. This is a RectangleF
structure that indicates the area where the text should be drawn. The second parameter is a StringFormat
object that determines how the text is formatted.

The following code draws text inside a rectangle. It begins by defining the text, font, and the layout rect-
angle. It then creates a StringFormat object. It sets the object’s Alignment property to Center to posi-
tion each line of text centered horizontally in the layout rectangle. It sets the object’s LineAlignment
property to Near. That makes the text align vertically to the near vertical edge of the rectangle (its top).
The program calls DrawString to draw the text and then uses DrawRectangle to display the layout
rectangle.

The Alignment and LineAlignment properties both can take the values Near, Center, and Far.
Using these values for both properties can make the properties somewhat confusing. On systems that
draw right to left and top to bottom, the values are relative to a point in the upper-left corner of the text,
so Near means left/top, Center means center/center, and Far means right/bottom.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim txt As String = “The quick brown fox jumps over the lazy dog.”
Dim big_font As New Font(“Times New Roman”, 30, FontStyle.Bold)

Dim layout_rect As New RectangleF(10, 10, _
Me.ClientSize.Width - 20, Me.ClientSize.Height - 20)

595

Text

23_571982 ch21.qxd 9/1/05 7:55 PM Page 595

Dim string_format As New StringFormat
string_format.Alignment = StringAlignment.Center
string_format.LineAlignment = StringAlignment.Near

e.Graphics.DrawString(txt, big_font, Brushes.Black, layout_rect, string_format)

e.Graphics.DrawRectangle(Pens.Black, Rectangle.Round(layout_rect))
End Sub

Figure 21-3 shows the result. Notice that the text is centered horizontally and aligned to the top of the
layout rectangle.

Figure 21-3: The DrawString method can use a layout rectangle and a
StringFormat object to format text.

The StringFormat object provides several other properties and methods that you can use to position
text. The following table describes the most useful of these.

Property or Method Purpose

Alignment Determines the text’s horizontal alignment. This can be
Near (left), Center (middle), or Far (right).

FormatFlags Gets or sets flags that modify the StringFormat
object’s behavior. See the section “FormatFlags” later
in this chapter for more information.

GetTabStops Returns an array of Singles, giving the positions of tab
stops. See the section “Tab Stops” later in this chapter
for more information.

596

Chapter 21

23_571982 ch21.qxd 9/1/05 7:55 PM Page 596

Property or Method Purpose

HotkeyPrefix Determines how the hotkey prefix character is
displayed. (In a menu caption or label, the hotkey is
underlined to show that pressing Alt-<hotkey> performs
some special action. For example, in most applications
Alt-F opens the File menu. A program specifies a con-
trol’s hotkey character by placing an ampersand in
front of it. For example, “&File” is displayed as “File.”)
If HotkeyPrefix is Show, any character that follows an
ampersand is drawn as an underlined hotkey (a double
ampersand is drawn as a single ampersand). If this is
None, any ampersands are drawn as ampersands. If this
is Hide, hotkey ampersands are hidden.

LineAlignment Determines the text’s vertical alignment. This can be
Near (top), Center (middle), or Far (bottom).

SetMeasureableCharacterRanges Sets an array of CharacterRange structures representing
ranges of characters that will later be measured by the
Graphics object’s MeasureCharacterRanges method.

SetTabStops Sets an array of Singles giving the positions of tab
stops. See the section “Tab Stops” later in this chapter
for more information.

Trimming Determines how the text is trimmed if it cannot fit in
the layout rectangle. See the section “Trimming” later in
this chapter for more information.

The following sections describe some of the more complex formatting issues in greater detail.

FormatFlags
The StringFormat object’s FormatFlags property determines the object’s behavior. This property can
take a bitwise combination of the values described in the following table.

FormatFlags Value Purpose

DirectionRightToLeft Indicates that the text is drawn from right to left.

DirectionVertical Indicates that the text is drawn vertically.

FitBlackBox Indicates that no character should extend beyond the layout
rectangle. If this is not set, some characters in certain fonts may
stick out a bit.

LineLimit If the last line displayed in the layout rectangle is too tall to fit,
this flag indicates that it should be omitted. By default, that line is
clipped to show whatever parts will fit.

Table continued on following page

597

Text

23_571982 ch21.qxd 9/1/05 7:55 PM Page 597

FormatFlags Value Purpose

MeasureTrailingSpaces Indicates that the Graphics object’s MeasureString method
should include spaces at the ends of lines. By default, it does not.

NoClip Indicates that parts of characters that hang over the layout
rectangle are not clipped.

NoFontFallback If a character is missing from the selected font, the GDI+ normally
looks for an equivalent character in another font. This flag
prevents that and forces the character to be displayed as the
font’s missing character glyph (usually an open square).

NoWrap Indicates that text should not be wrapped.

Figure 21-4 shows the difference between the default, NoClip, and LineLimit flags. If the last visible
line won’t fit within the layout rectangle, the default behavior is to clip the line to show whatever fits. If
FormatFlags is NoClip, that line is displayed entirely. If FormatFlags is LineLimit, the line is omit-
ted entirely.

Figure 21-4: The NoClip and LineLimit
flags change how a StringFormat
object handles the text’s last displayed line.

The following code uses the DirectionVertical flag. After defining a string, font, and layout rectangle, it
creates a StringFormat object. It sets the object’s Alignment and LineAlignment properties to center the
text and then sets its FormatFlags property to the combination of the values DirectionVertical and
DirectionRightToLeft. Then the program draws the text as usual.

598

Chapter 21

23_571982 ch21.qxd 9/1/05 7:55 PM Page 598

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim txt As String = “The quick brown fox jumps over the lazy dog.”
Dim the_font As New Font(“Times New Roman”, 30, _

FontStyle.Bold, GraphicsUnit.Pixel)
Dim layout_rect As New RectangleF(0, 0, _

Me.ClientSize.Width - 1, Me.ClientSize.Height - 1)

Dim string_format As New StringFormat
string_format.Alignment = StringAlignment.Center
string_format.LineAlignment = StringAlignment.Center
string_format.FormatFlags = _

StringFormatFlags.DirectionVertical Or _
StringFormatFlags.DirectionRightToLeft

e.Graphics.TextRenderingHint = _
System.Drawing.Text.TextRenderingHint.AntiAliasGridFit

e.Graphics.DrawString(txt, the_font, Brushes.Black, layout_rect, string_format)
End Sub

Figure 21-5 shows the result.

This example sets the FormatFlags property to DirectionVertical plus DirectionRightToLeft. If
you omit the second flag, the lines of text are drawn left to right. That means the line “The quick” appears
on the left and the subsequent lines appear moving to the right, so the lines are drawn in the reverse of
the order that you might expect.

Note that you can also draw vertical text by applying a transformation to the Graphics object that
translates the text to the origin, rotates it, and translates the text back to where it belongs.

Figure 21-5: Setting the StringFormat object’s
FormatFlags property to DirectionVertical
produces vertical text.

599

Text

23_571982 ch21.qxd 9/1/05 7:55 PM Page 599

The following code demonstrates this technique. It defines its text and font and makes a layout rectan-
gle. It uses the form’s width to define the rectangle’s height and the form’s height to define the rectan-
gle’s width, so the rectangle will fit the form after it is rotated. The code creates a StringFormat object
to center the text and applies the transformations to the Graphics object. Finally, the code draws the
text. The result is similar to the text produced by the previous example.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Define the text and font.
Dim txt As String = “The quick brown fox jumps over the lazy dog.”
Dim the_font As New Font(“Times New Roman”, 30, _

FontStyle.Bold, GraphicsUnit.Pixel)

‘ Define the layout rectangle. It’s slightly smaller
‘ than the form rotated 90 degrees so the rotated
‘ text will fit the form nicely.
Dim rect_wid As Integer = Me.ClientSize.Height - 20
Dim rect_hgt As Integer = Me.ClientSize.Width - 20
Dim layout_rect As New RectangleF(_

(Me.ClientSize.Width - rect_wid) \ 2, _
(Me.ClientSize.Height - rect_hgt) \ 2, _
rect_wid, rect_hgt)

‘ Set the StringFormat to center the text.
Dim string_format As New StringFormat
string_format.Alignment = StringAlignment.Center
string_format.LineAlignment = StringAlignment.Center

‘ Translate to the origin, rotate, and translate back.
e.Graphics.TranslateTransform(_

-Me.ClientSize.Width \ 2, _
-Me.ClientSize.Height \ 2, _
MatrixOrder.Append)

e.Graphics.RotateTransform(90, MatrixOrder.Append)
e.Graphics.TranslateTransform(_

Me.ClientSize.Width \ 2, _
Me.ClientSize.Height \ 2, _
MatrixOrder.Append)

‘ Draw the text and layout rectangle.
e.Graphics.TextRenderingHint = _

System.Drawing.Text.TextRenderingHint.AntiAliasGridFit
e.Graphics.DrawString(txt, the_font, Brushes.Black, layout_rect, string_format)
e.Graphics.DrawRectangle(Pens.Black, Rectangle.Round(layout_rect))

End Sub

This approach is a bit more complicated than the previous method of setting the StringFormat object’s
FormatFlags property to DirectionVertical, but it gives you more flexibility. Simply by changing
the rotation transformation, you can draw text at any angle, not just rotated 90 degrees. Figure 21-6
shows this program with the angle of rotation changed from 90 to 60 degrees.

600

Chapter 21

23_571982 ch21.qxd 9/1/05 7:55 PM Page 600

Figure 21-6: Transformations can produce text rotated
at any angle.

Tab Stops
The StringFormat object’s GetTabStops and SetTabStops methods let you get and set an array of
Singles that determine the position of the layout rectangle’s tab stops. Each entry in the array gives the
distance between two tab stops. For example, the values {50, 50, 50} specify tab stops 50, 100, and 150
pixels from the left edge of the layout rectangle.

The following code shows how to use the SetTabStops method. It starts by creating a font, layout rect-
angle, and StringFormat object. It sets two tab stops 60 and 140 (60 + 80) pixels from the left edge of
the layout rectangle. It then draws the rectangle and draws vertical lines showing the positions of the
tab stops.

The program generates some random data, separating values on each row with Tab characters and sepa-
rating each row with Carriage Return/Line Feed pairs. Finally, the program draws the text.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Define the font, layout rectangle, and StringFormat.
Dim the_font As New Font(“Times New Roman”, 15, _

FontStyle.Regular, GraphicsUnit.Pixel)
Dim layout_rect As New RectangleF(10, 10, _

Me.ClientSize.Width - 20, Me.ClientSize.Height - 20)
Dim string_format As New StringFormat

‘ Set the tab stops.
Dim tab_stops() As Single = {60, 80}
string_format.SetTabStops(0, tab_stops)

601

Text

23_571982 ch21.qxd 9/1/05 7:55 PM Page 601

‘ Draw the layout rectangle and tab stops.
e.Graphics.DrawRectangle(Pens.White, Rectangle.Round(layout_rect))
Dim x As Single = layout_rect.X
For i As Integer = 0 To tab_stops.Length - 1

x += tab_stops(i)
e.Graphics.DrawLine(Pens.White, x, layout_rect.Top, x, layout_rect.Bottom)

Next i

‘ Generate some random values.
Dim rnd As New Random
Dim txt As String = “Alpha” & vbTab & “Gamma” & vbTab & “Value” & vbCrLf
For r As Integer = 1 To 10

txt &= rnd.Next(10, 99) & vbTab & _
rnd.NextDouble.ToString(“0.000000”) & vbTab & _
rnd.NextDouble.ToString(“0.00”) & vbCrLf

Next r

‘ Draw the text.
e.Graphics.TextRenderingHint = _

System.Drawing.Text.TextRenderingHint.AntiAliasGridFit
e.Graphics.DrawString(txt, the_font, Brushes.Black, layout_rect, string_format)

End Sub

Figure 21-7 shows the result.

Figure 21-7: The SetTabStops method lets you easily align text.

Trimming
Normally, a string is wrapped as necessary until its layout rectangle is full. If there is still text that has
not been displayed, the Trimming property determines how that text is handled. The following table
describes the values this property can take.

602

Chapter 21

23_571982 ch21.qxd 9/1/05 7:55 PM Page 602

Trimming Value Purpose

Character The text is trimmed to the nearest character.

EllipsisCharacter The text is trimmed to the nearest character and an ellipsis
is displayed at the end of the line.

EllipsisPath The center of the line is removed and replaced with an
ellipsis. This is sometimes a good choice when displaying
file paths because it shows the beginning of the path and
the file name. This method keeps as much of the last
backslash (\) delimited part of the text as possible
(it assumes that this is a file name).

EllipsisWord The text is trimmed to the nearest word and an ellipsis is
displayed at the end of the line.

None The text is not trimmed. Instead, it is wrapped to the next
line, which is hidden because it is below the bottom of the
layout rectangle. If the last visible line contains a word
break, the line will wrap after the last word that fits. That
makes this seem similar to the Word setting.

Word The text is trimmed to the nearest word.

The following code draws samples of the Trimming values. The form’s Paint event handler calls sub-
routine DrawSample to draw samples of text that contain backslash (\) or space-delimited strings.

Subroutine DrawSample draws the name of the indicated Trimming value. It draws the sample text
using the Trimming value in a specified layout rectangle, and then draws the rectangle so that you
can see it. The routine finishes by incrementing its parameter Y, so the next sample is drawn below
this one.

Public Class Form1
Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load
Me.ResizeRedraw = True

End Sub

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim txt As String
Dim the_font As New Font(“Times New Roman”, 30, _

FontStyle.Bold, GraphicsUnit.Pixel)
Dim layout_rect As RectangleF
e.Graphics.TextRenderingHint = _

System.Drawing.Text.TextRenderingHint.AntiAliasGridFit

layout_rect = New RectangleF(100, 0, 180, 70)
txt = “ABC\DEF\GHI\JKL\MNO\PQR\STU\VWX\YZ”

603

Text

23_571982 ch21.qxd 9/1/05 7:55 PM Page 603

DrawSample(e.Graphics, txt, the_font, layout_rect, _
StringTrimming.Character)

DrawSample(e.Graphics, txt, the_font, layout_rect, _
StringTrimming.EllipsisCharacter)

DrawSample(e.Graphics, txt, the_font, layout_rect, _
StringTrimming.EllipsisPath)

DrawSample(e.Graphics, txt, the_font, layout_rect, _
StringTrimming.EllipsisWord)

DrawSample(e.Graphics, txt, the_font, layout_rect, _
StringTrimming.None)

DrawSample(e.Graphics, txt, the_font, layout_rect, _
StringTrimming.Word)

layout_rect.X += layout_rect.Width + 10
layout_rect.Y = 0
txt = “ABC DEF GHI JKL MNO PQR STU VWX YZ”
DrawSample(e.Graphics, txt, the_font, layout_rect, _

StringTrimming.Character)
DrawSample(e.Graphics, txt, the_font, layout_rect, _

StringTrimming.EllipsisCharacter)
DrawSample(e.Graphics, txt, the_font, layout_rect, _

StringTrimming.EllipsisPath)
DrawSample(e.Graphics, txt, the_font, layout_rect, _

StringTrimming.EllipsisWord)
DrawSample(e.Graphics, txt, the_font, layout_rect, _

StringTrimming.None)
DrawSample(e.Graphics, txt, the_font, layout_rect, _

StringTrimming.Word)
End Sub

Private Sub DrawSample(ByVal gr As Graphics, ByVal txt As String, _
ByVal the_font As Font, ByRef layout_rect As RectangleF, _
ByVal string_trimming As StringTrimming)

Dim string_format As New StringFormat
string_format.Trimming = string_trimming

gr.DrawString(string_trimming.ToString, Me.Font, _
Brushes.Black, 0, layout_rect.Y + 5)

gr.DrawString(txt, the_font, Brushes.Black, layout_rect, _
string_format)

gr.DrawRectangle(Pens.Black, Rectangle.Round(layout_rect))
layout_rect.Y += layout_rect.Height + 10

End Sub
End Class

Figure 21-8 shows the results.

604

Chapter 21

23_571982 ch21.qxd 9/1/05 7:55 PM Page 604

Figure 21-8: The StringFormat object’s Trimming
property determines how text is trimmed.

MeasureString
The Graphics object’s MeasureString method returns a SizeF structure holding the string’s width
and height drawn in a particular font. You can use that information to arrange the text and other drawn
objects on the form.

The following code shows how a program might center text on its form. It starts by defining the font it
will use (in this case, a bold 40 pixel tall Times New Roman font). The code also defines the text it will
draw. Next, the program uses the Graphics object’s MeasureString method to get the string’s size in
that font. It uses the size to determine where it needs to draw the text to center it, and then draws the
text. The code then makes a Rectangle object using the text’s position and the size it got from
MeasureString. It finishes by drawing the rectangle around the string.

605

Text

23_571982 ch21.qxd 9/1/05 7:55 PM Page 605

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

‘ Define the font and text we will use.
Dim the_font As New Font(“Times New Roman”, 40, _

FontStyle.Bold, GraphicsUnit.Pixel)
Dim the_string As String = “MeasureString”

‘ Get the text’s size.
Dim string_size As SizeF = e.Graphics.MeasureString(“MeasureString”, the_font)

‘ Draw the text centered on the form.
Dim x As Integer = (Me.ClientSize.Width - CInt(string_size.Width)) \ 2
Dim y As Integer = (Me.ClientSize.Height - CInt(string_size.Height)) \ 2
e.Graphics.DrawString(the_string, the_font, Brushes.Black, x, y)

‘ Draw a rectangle around the text.
Dim string_rect As New Rectangle(x, y, _

CInt(string_size.Width), CInt(string_size.Height))
e.Graphics.DrawRectangle(Pens.Black, string_rect)

End Sub

Figure 21-9 shows the result. Notice that the rectangle includes some extra space above, below, and to the
sides of the string. The section “Font Metrics” later in this chapter has more to say about this extra space.

Figure 21-9: You can use the Graphics object’s MeasureString
method to see how big a string will be when drawn in a particular font.

Occasionally, it is useful to know where parts of a string will be drawn. For example, you might want to
draw a box around certain words or know when the user has clicked on a particular letter.

The Graphics object provides a MeasureCharacterRanges method that returns an array of Regions
representing the positions of ranges of characters within a string. To use MeasureCharacterRanges, the
program must first create an array of CharacterRange objects defining the ranges of interest. It calls a
StringFormat object’s SetMeasurableCharacterRanges method passing it this array. Finally, it calls
MeasureCharacterRanges.

The following code uses MeasureCharacterRanges to show the positions of all of the characters in a
string. It begins by defining its text, font, layout rectangle, and StringFormat object as usual. It then
creates an array of CharacterRange objects, one for each character in the string. It loops through this
array, filling it with new CharacterRange objects, each of which represents a single character. When it
has filled the array, the code passes it to the StringFormat object’s SetMeasurableCharacterRanges

606

Chapter 21

23_571982 ch21.qxd 9/1/05 7:55 PM Page 606

method. The program then calls the Graphics object’s MeasureCharacterRanges method to get
Region objects representing the characters’ positions. It loops through this array, calling each Region’s
GetBounds method to convert the region into a RectangleF structure. It transforms the RectangleF
into a Rectangle and draws it. Finally, the program draws the string.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim txt As String = “Great Galloping Giraffes”
Dim the_font As New Font(“Times New Roman”, 50, _

FontStyle.Bold, GraphicsUnit.Pixel)
Dim layout_rect As New RectangleF(0, 0, _

Me.ClientSize.Width, Me.ClientSize.Height)
Dim string_format As New StringFormat
string_format.LineAlignment = StringAlignment.Center
string_format.Alignment = StringAlignment.Center

e.Graphics.TextRenderingHint = _
System.Drawing.Text.TextRenderingHint.AntiAliasGridFit

‘ Define an array of CharacterRange objects,
‘ one for each character.
Dim character_ranges(txt.Length - 1) As CharacterRange
For i As Integer = 0 To txt.Length - 1

character_ranges(i) = New CharacterRange(i, 1)
Next i

‘ Set the ranges in the StringFormat object.
string_format.SetMeasurableCharacterRanges(character_ranges)

‘ Get the character range regions.
Dim character_regions() As Region = _

e.Graphics.MeasureCharacterRanges(txt, _
the_font, layout_rect, string_format)

‘ Draw each region’s bounds.
For Each rgn As Region In character_regions

‘ Convert the region into a Rectangle.
Dim character_bounds As RectangleF = rgn.GetBounds(e.Graphics)
Dim character_rect As Rectangle = _

Rectangle.Round(character_bounds)

‘ Draw the bounds.
e.Graphics.DrawRectangle(Pens.White, character_rect)

Next rgn

‘ Draw the text.
e.Graphics.DrawString(txt, the_font, Brushes.Black, _

layout_rect, string_format)
End Sub

Figure 21-10 shows the result.

607

Text

23_571982 ch21.qxd 9/1/05 7:55 PM Page 607

Figure 21-10: The Graphics object’s MeasureCharacterRanges
method shows where ranges of characters will be drawn in a string.

For some reason, the array of CharacterRange objects you pass to the SetMeasurableCharacterRanges
method can hold at most 32 items. If the array is larger, SetMeasurableCharacterRanges raises an over-
flow error. Microsoft says this behavior is by design and they don’t plan to change it. If you need to mea-
sure the positions of individual characters in a longer string, you should break the string into pieces
smaller than 32 characters, probably at word boundaries, and arrange the pieces yourself.

Note that the characters do not necessarily actually stay within their assigned regions. Depending on the
font, they may stick out slightly. Figure 21-11 shows the program used in the previous example with an
italic bold Garamond font.

Figure 21-11: Characters do not always
stay within their assigned regions.

608

Chapter 21

23_571982 ch21.qxd 9/1/05 7:55 PM Page 608

Many of the characters in this figure stray outside of their assigned regions. The “ll” and “ff” pairs are
particularly shameless in their trespassing. The first “f” in the “ff” pair leans almost all the way across
the second one’s region.

Font Metrics
The Graphics object’s MeasureString method tells you approximately how big a string will be when
drawn on that object. Its MeasureCharacterRanges method enables you to get more information about
the positioning of ranges within a string.

The FontFamily class provides some additional methods that a program can use to get more informa-
tion about how characters are drawn. Before you can use these values, you must understand a bit of
extra character anatomy.

Figure 21-12 shows how a font’s internal leading, ascent, descent, and external leading values help
determine a character’s position.

The following table describes these font metrics.

Value Meaning

Internal Leading Extra space left above the characters but considered part of the
string

Em Height The height within which the characters are drawn

Ascent The part of the character cell above the baseline

Descent The part of the character cell below the baseline

Cell Height The height of the character area including internal leading

External Leading Extra space left below one line and above the next

Line Spacing The distance between one line and the next

From the figure, you can verify the following relationships:

Cell Height = Ascent + Descent = Internal Leading + Em Height
Line Spacing = Cell Height + External Leading

The FontFamily object provides several methods for determining font metric values. These methods
include GetCellAscent, GetCellDescent, GetEmHeight, and GetLineSpacing.

All of these methods return values in font design units. The key to converting them into some other unit
is to realize that the Font object’s Size property returns the font’s em size in whatever units the font is
currently using. For example, if you specify the font’s size in pixels, then Font.Size returns the em size
in pixels.

609

Text

23_571982 ch21.qxd 9/1/05 7:55 PM Page 609

Figure 21-12: How text is positioned depends on many font metrics, including
internal leading, ascent, descent, and external leading.

Using Font.Size and the value returned by the FontFamily’s GetEmHeight method, you can convert
the other values into pixels. For example, the following equation shows how to calculate a font family’s
ascent in pixels.

Ascent Pixels = FontFamily.GetCellAscent * Font.Size / FontFamily.GetEmHeight

The following code draws the font metrics for some text in three different fonts. It starts by defining some
text, a layout rectangle, and a StringFormat object. Then, for each of three fonts, the code creates the font
and calls subroutine MeasureCharacters to display the font metrics. Subroutine MeasureCharacters
defines an array of CharacterRange objects and initializes them so that they each refer to a single charac-
ter in the string. It calls SetMeasurableCharacterRanges and then MeasureCharacterRanges, as
described in section “MeasureString,” earlier in this chapter. Next, the code calculates the font’s em
height, ascent, descent, cell height, internal leading, line spacing, and external leading. The program then
loops through the Regions returned by MeasureCharacterRanges. It converts each Region into a
Rectangle and draws it. It then draws lines showing the internal leading, ascent, and descent values and
fills an area representing the external leading space. The subroutine finishes by drawing the text.

Private Sub Form1_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim txt As String = “Mgfi”
Dim layout_rect As New RectangleF(0, 0, _

Me.ClientSize.Width \ 3, Me.ClientSize.Height)
Dim string_format As New StringFormat
string_format.LineAlignment = StringAlignment.Center
string_format.Alignment = StringAlignment.Center
Dim the_font As Font

Mg Ascent

Internal
Leading

External
Leading

Em
Height

Cell
Height

Line
Spacing

Baseline

Descent

Mg

610

Chapter 21

23_571982 ch21.qxd 9/1/05 7:55 PM Page 610

e.Graphics.TextRenderingHint = _
System.Drawing.Text.TextRenderingHint.AntiAliasGridFit

the_font = New Font(“Times New Roman”, 80, FontStyle.Bold, GraphicsUnit.Pixel)
MeasureCharacters(e.Graphics, the_font, txt, layout_rect, string_format)

layout_rect.X += Me.ClientSize.Width \ 3
the_font = New Font(“Comic Sans MS”, 80, FontStyle.Bold, GraphicsUnit.Pixel)
MeasureCharacters(e.Graphics, the_font, txt, layout_rect, string_format)

layout_rect.X += Me.ClientSize.Width \ 3
the_font = New Font(“Courier New”, 80, FontStyle.Bold, GraphicsUnit.Pixel)
MeasureCharacters(e.Graphics, the_font, txt, layout_rect, string_format)

End Sub

Public Sub MeasureCharacters(ByVal gr As Graphics, ByVal the_font As Font, _
ByVal txt As String, ByVal layout_rect As RectangleF, _
ByVal string_format As StringFormat)

‘ Define an array of CharacterRange objects,
‘ one for each character.
Dim character_ranges(txt.Length - 1) As CharacterRange
For i As Integer = 0 To txt.Length - 1

character_ranges(i) = New CharacterRange(i, 1)
Next i

‘ Set the ranges in the StringFormat object.
string_format.SetMeasurableCharacterRanges(character_ranges)

‘ Get the character range regions.
Dim character_regions() As Region = _

gr.MeasureCharacterRanges(txt, _
the_font, layout_rect, string_format)

‘ Get the font’s ascent.
Dim em_height As Integer = the_font.FontFamily.GetEmHeight(FontStyle.Bold)
Dim em_height_pix As Single = the_font.Size
Dim design_to_pixels As Single = the_font.Size / em_height
Dim ascent As Integer = the_font.FontFamily.GetCellAscent(FontStyle.Bold)
Dim ascent_pix As Single = ascent * design_to_pixels
Dim descent As Integer = the_font.FontFamily.GetCellDescent(FontStyle.Bold)
Dim descent_pix As Single = descent * design_to_pixels
Dim cell_height_pix As Single = ascent_pix + descent_pix
Dim internal_leading_pix As Single = cell_height_pix - em_height_pix
Dim line_spacing As Integer = _

the_font.FontFamily.GetLineSpacing(FontStyle.Bold)
Dim line_spacing_pix As Single = line_spacing * design_to_pixels
Dim external_leading_pix As Single = line_spacing_pix - cell_height_pix

‘ Draw each region’s bounds.
For Each rgn As Region In character_regions

‘ Convert the region into a Rectangle.
Dim character_bounds As RectangleF = rgn.GetBounds(gr)

611

Text

23_571982 ch21.qxd 9/1/05 7:55 PM Page 611

Dim character_rect As Rectangle = _
Rectangle.Round(character_bounds)

‘ Draw the bounds.
gr.DrawRectangle(Pens.Black, character_rect)

‘ Draw the internal leading.
gr.DrawLine(Pens.White, _

character_rect.X, _
character_rect.Y + internal_leading_pix, _
character_rect.Right, _
character_rect.Y + internal_leading_pix)

‘ Draw the ascent.
gr.DrawLine(Pens.Yellow, _

character_rect.X, _
character_rect.Y + ascent_pix, _
character_rect.Right, _
character_rect.Y + ascent_pix)

‘ Draw the descent.
gr.DrawLine(Pens.Orange, _

character_rect.X, _
character_rect.Y + ascent_pix + descent_pix, _
character_rect.Right, _
character_rect.Y + ascent_pix + descent_pix)

‘ Draw the external leading.
gr.FillRectangle(Brushes.Red, _

character_rect.X, _
character_rect.Y + ascent_pix + descent_pix, _
character_rect.Width, _
external_leading_pix)

Next rgn

‘ Draw the text.
gr.DrawString(txt, the_font, Brushes.Black, _

layout_rect, string_format)
End Sub

Figure 21-13 shows the result.

Notice that the font metrics are not always rigidly followed. For example, sometimes a character may
extend into the external leading space.

612

Chapter 21

23_571982 ch21.qxd 9/1/05 7:55 PM Page 612

Figure 21-13: The FontFamily and Font classes provide the methods
you need to calculate font metrics.

Summary
When you draw lines, rectangles, and other shapes, you can completely define the shape by giving its
size and position. Text is different. Different fonts produce very different results, even for the same text.
A single font sometimes even produces different results for a character, depending on the characters that
surround it and the area in which it is drawn.

This chapter describes some of the methods you can use to position and measure text in Visual Basic.
Layout rectangles and StringFormat objects let you easily draw text that is centered or aligned verti-
cally and horizontally. The DrawString method automatically wraps text if necessary and can under-
stand tabs and Carriage Return/Line Feed characters contained in the text.

The StringFormat object’s flags let you determine how text is aligned, wrapped, and trimmed. The
StringFormat’s methods let you read and define tab stops.

The Graphics object’s MeasureString method lets you determine roughly how big a string will be
when drawn on the object. Its MeasureCharacterRanges method lets you determine the placement of
regions of text within a string.

With all of these methods at your disposal, you can position text almost exactly where you want it.

Chapters 20 and 21 explain how to draw objects such as lines, ellipses, and text at a relatively high level.
When you draw a line from one point to another, you don’t need to specify exactly how the pixels on the
screen should be colored. You set values for higher-level properties such as the pen color and dash style,
brush color and style, and so forth. Then Visual Basic figures out the details.

Chapter 22, “Image Processing,” explains how you can read and manipulate images on a pixel-by-pixel
basis. It tells how to load and save image files in different formats (such as BMP, GIF, JPEG, and PNG)
and how to get and set the colors of individual pixels.

613

Text

23_571982 ch21.qxd 9/1/05 7:55 PM Page 613

23_571982 ch21.qxd 9/1/05 7:55 PM Page 614

Image Processing
The Graphics class represents a drawing surface at a logical level. Below that level, a Graphics
object is attached to a Bitmap or Metafile object. Those objects understand the slightly lower-
level needs of managing more “physical” data structures. For example, a Bitmap object maps
abstract drawing commands such as DrawLine and DrawEllipse to colored pixels that can be
displayed on a PictureBox or saved into a file. Similarly, a Metafile maps the Graphics object’s
abstract commands into metafile records that you can play back on a drawing surface, or save in a
graphical metafile.

This chapter describes the more down-to-earth classes Bitmap and Metafile classes. It explains
methods for building, modifying, and manipulating these objects. It shows how to load and save
them from graphics files and, in the case of Bitmaps, how to work with files saved in a variety of
graphic formats such as BMP, GIF, JPEG, TIFF, and PNG.

Image
An Image object represents some sort of picture that you can draw on, copy, transform, and dis-
play. Image is an abstract (MustInherit) class, so you cannot create instances of this class directly.
Instead you must make instances of its derived classes Bitmap and Metafile.

The Image class provides useful graphical methods that the Bitmap and Metafile classes inherit.
Many other objects can work with any type of Image object, so you can pass them either a Bitmap
or a Metafile. For example, the Graphics object’s FromImage method takes an Image object as a
parameter and returns a Graphics object attached to that Image. This parameter can be either a
Bitmap or a Metafile. The following code creates a new Bitmap object, attaches a Graphics
object to it, and then uses the Graphics object to draw a rectangle on the Bitmap.

Dim bm As New Bitmap(100, 100)
Dim gr As Graphics = Graphics.FromImage(bm)
gr.DrawRectangle(Pens.Black, 10, 10, 80, 80)

The Image class itself provides several useful methods, particularly Load and Save. The following
table describes these and some of the class’s other useful properties and methods.

24_571982 ch22.qxd 9/1/05 7:35 PM Page 615

Property or Method Purpose

Dispose Frees the resources associated with this image. See the sections
“Loading Bitmaps” and “Saving Bitmaps” later in this chapter for
more information.

Flags Returns attribute flags for the image. These provide information such
as whether the pixel data contains alpha values and whether the
image is a gray scale. For more information, look in the online help
for the ImageFlags enumeration.

FromFile This shared function loads an image from a file as in bm =
Bitmap.FromFile(file-name).

FromHbitmap This shared function loads a Bitmap image from a Windows bitmap
handle. (A bitmap handle is a 32-bit integer that gives a value associ-
ated with the bitmap in the GDI environment. Windows uses the
handle to refer to the bitmap when it needs to manipulate it. In the
.NET environment, you generally work with Bitmap and Image
objects and don’t need to worry about bitmap handles. It’s useful to
know about this method, however, in case you need to manipulate a
bitmap loaded using older GDI routines.)

FromStream This shared function loads an image from a data stream.

GetBounds Returns a RectangleF structure representing the rectangle’s bounds.

GetPixelFormatSize Returns the color resolution (bits per pixel) for a specified
PixelFormat.

GetThumbnailImage Returns a thumbnail representation of the image.

Height Returns the image’s height.

HorizontalResolution Returns the horizontal resolution of the image in pixels per inch.

IsAlphaPixelFormat Returns True if the specified PixelFormat contains alpha information.

Palette Determines the ColorPalette object used by the image.

PhysicalDimension Returns a SizeF structure giving the image’s dimensions in pixels
for Bitmaps and 0.01 millimeter units for Metafiles.

PixelFormat Returns the image’s pixel format. This property can take such
values as Format24bppRgb (24-bit red/green/blue data),
Format32bppArgb (32-bit alpha/red/green/blue data), and
Format8bppIndexed (8-bit index into a 256-color table). For more
information, see the online help for the PixelFormat property and
the PixelFormat enumeration.

RawFormat Returns an ImageFormat object representing the image’s raw format.
The ImageFormat class has shared members for each of the standard
image types. For example, the following code checks whether the
Bitmap bm was loaded from a JPEG file.
If bm.RawFormat.Equals(ImageFormat.Jpeg) Then ...

616

Chapter 22

24_571982 ch22.qxd 9/1/05 7:35 PM Page 616

Property or Method Purpose

RotateFlip Rotates, flips, or rotates and flips the image. The parameter indicates
which combination of flips (vertical, horizontal, or both) and rotation
(0, 90, 180, or 270 degrees) to use.

Save Saves the image in a file or stream with a given data format (BMP,
GIF, JPEG, and so forth). See the sections “Loading Bitmaps” and
“Saving Bitmaps” later in this chapter for more information.

Size Returns a Size structure containing the image’s width and height in
pixels.

VerticalResolution Returns the vertical resolution of the image in pixels per inch.

Width Returns the image’s width.

Bitmap
The Bitmap class represents an image defined by pixel data. You can use a Bitmap to create, load, mod-
ify, and save image data to sources that display pixel data such as screen objects (PictureBoxes, Forms,
UserControls, and so forth) and image files (BMP, GIF, JPEG, PNG, TIFF, and so forth).

Many of the Bitmap’s most useful properties and methods are inherited from the Image class. These
include Height, HorizontalResolution, Palette, RawFormat, Size, Width, GetThumbnailImage,
RotateFlip, and Save. See the section “Image” earlier in this chapter for information about those and
other inherited properties and methods.

The following table describes some of the most useful methods that the Bitmap class adds to those
inherited from the Image class.

Method Purpose

FromHicon This shared function loads a Bitmap image from a Windows icon han-
dle. (An icon handle is a 32-bit integer that gives a value associated with
the icon in the GDI environment. Windows uses the handle to refer to
the icon when it needs to manipulate it. In the .NET environment, you
generally work with Icon objects and don’t need to worry about icon
handles. It’s useful to know about this method, however, in case you
need to manipulate an icon loaded using older GDI routines).

FromResource This shared function loads a Bitmap image from a Windows
resource.

GetPixel Returns a specified pixel’s Color.

LockBits Locks the Bitmap’s data in memory, so it cannot move until the pro-
gram calls UnlockBits.

Table continued on following page

617

Image Processing

24_571982 ch22.qxd 9/1/05 7:35 PM Page 617

Method Purpose

MakeTransparent Makes all pixels with a specified color transparent by setting their
alpha components to 0.

SetPixel Sets a specified pixel’s Color value.

SetResolution Sets the Bitmap’s horizontal and vertical resolution in dots per inch
(DPI).

UnlockBits Unlocks the Bitmap’s data in memory so the system can relocate it if
necessary.

For most applications, the GetPixel and SetPixel methods provide adequate performance when
manipulating pixels, but there is some overhead in moving through the different layers between the pro-
gram’s code and the actual pixel data. For applications that work with very large images or that need to
process pixel data on many images very quickly, performance may be an issue.

In cases where speed is an issue, you can access the pixel data more directly using so-called “unsafe”
access. The program locks the Bitmap’s data, reads and updates the pixel values, and then unlocks the
data. See the section “Pixel-by-Pixel Operations” later in this chapter for more information and examples.

Loading Bitmaps
Loading a Bitmap from a file is simple. Simply pass the file’s name into the Bitmap’s constructor. The
following code loads the bitmap file whose name is stored in the variable file_name, and then displays
it in the PictureBox control named picImage.

Dim bm As New Bitmap(file_name)
picImage.Image = bm

Once you have loaded a Bitmap, you can attach a Graphics object to it, draw on it, display it, and save
the results in a new bitmap file. The following code loads the bitmap file, attaches a Graphics object to
it, uses that object to draw an ellipse, and displays the result in the picImage control.

Dim bm As New Bitmap(file_name)
Dim gr As Graphics = Graphics.FromImage(bm)
gr.DrawEllipse(Pens.White, 0, 0, bm.Width - 1, bm.Height - 1)
picImage.Image = bm

Unfortunately, the Bitmap object holds some sort attachment to the bitmap file. If you try to delete the
file while the program is running and still using the Bitmap, the operating system complains that the file
is locked by another process. Similarly, if you open the file in a program such as Microsoft Paint, make
some changes, and try to save the file, the operating system complains about a sharing violation.

To release the file for other programs to use, you must dispose of the Bitmap object that opened it.
However, if you assign the Bitmap to a property (such as a PictureBox’s Image property), the property
keeps a reference to the Bitmap and will later generate an error when it tries to use the Bitmap that you
have disposed.

618

Chapter 22

24_571982 ch22.qxd 9/1/05 7:35 PM Page 618

One solution to this dilemma is to create a second Bitmap that is a copy of the first Bitmap, as shown in
the following code. Then you can safely dispose of the first Bitmap. Because the second Bitmap was
never associated with the bitmap file, the file is not locked.

‘ Load the bitmap file.
Dim bm As New Bitmap(file_name)

‘ Make a copy.
Dim new_bm As New Bitmap(bm)

‘ Dispose of the original Bitmap.
bm.Dispose

‘ Draw on the new Bitmap and display the result.
Dim gr As Graphics = Graphics.FromImage(new_bm)
gr.DrawEllipse(Pens.White, 0, 0, new_bm.Width - 1, new_bm.Height - 1)
picImage.Image = new_bm

Saving Bitmaps
You can use a Bitmap object’s Save method to save the bitmap into a file or data stream. To save the
Bitmap into a file, the Save method’s first parameter should be the file’s name. If you provide only the
filename, the Bitmap is saved in PNG format no matter what extension you give the file. If you save the
file in PNG format but the file’s extension is something other than .PNG, such as .BMP or .GIF, you may
become very confused later when Microsoft Paint refuses to open the file.

To save the Bitmap in some format other than PNG, pass the format as the Save method’s second
parameter. To avoid confusion, you should give the file the appropriate extension. If you save a BMP file,
give the file a .BMP extension.

The following code generates a 256 × 256 pixel bitmap from scratch and saves it in a JPEG file:

‘ Make a 256x256 pixel Bitmap.
Dim bm As New Bitmap(256, 256)

‘ Draw on it.
Dim gr As Graphics = Graphics.FromImage(bm)
gr.Clear(Color.White)
gr.DrawEllipse(Pens.Red, 0, 0, bm.Width - 1, bm.Height - 1)
gr.DrawLine(Pens.Green, 0, 0, bm.Width - 1, bm.Height - 1)
gr.DrawLine(Pens.Blue, bm.Width - 1, 0, 0, bm.Height - 1)

‘ Save the result as a JPEG file.
bm.Save(“C:\test.jpg”, ImageFormat.Jpeg)

The ImageFormat enumeration includes the formats Bmp, Emf, Exif, Guid, Icon, Jpeg, MemoryBmp,
Png, Tiff, and Wmf.

If you save a Bitmap image in the Wmf (Windows metafile) or Emf (Enhanced metafile) format, the Save
method creates a metafile that contains a bitmapped image. If you create a metafile by using a Metafile
object, on the other hand, the result is a metafile that contains records that draw lines, curves, text, and
so forth. The difference can have a couple of important consequences.

619

Image Processing

24_571982 ch22.qxd 9/1/05 7:35 PM Page 619

First, if the image is large, the bitmapped version may take up a lot more space than the version that
records only drawing commands. It may also take a lot longer to draw a large bitmap than it would to
draw a few circles and lines.

Second, you can transform a metafile that contains commands more readily than you can transform a
metafile that contains a bitmap. If you enlarge a metafile containing commands, the result contains
enlarged lines, curves, and other output. If you enlarge a metafile containing a bitmap, the result is a rel-
atively blocky enlarged bitmap. Anti-aliasing may help a little, but the metafile containing drawing com-
mands will produce a much better result.

On the other hand, not all programs understand all metafile commands. You may load a metafile contain-
ing drawing commands into another application and find that your ellipses and text don’t work. While a
metafile containing a bitmap won’t resize nicely, at least it should look similar to what you created.

See the section “Metafile Objects” later in this chapter for more information on metafiles.

Implementing AutoRedraw
In Visual Basic 6 and earlier versions, the Form and PictureBox objects had an AutoRedraw property. If
you set this property to True, anything you drew on the object was automatically saved. If the object
was later obscured and redrawn, the drawing was automatically restored.

This method required Visual Basic to allocate a chunk of internal memory to store the image, so it was
not free. However, it could be a lot easier and faster than redrawing a complex image from scratch every
time the drawing is exposed. For example, drawing a Mandelbrot set or other complex fractal may
require hundreds or thousands of calculations per pixel in the image. Drawing a large image may take
10 or 20 seconds even on a relatively fast computer. Redrawing the image from scratch every time such a
form was exposed would be impractical.

The bad news is that Visual Basic .NET has no AutoRedraw property. If you want similar functionality,
you must implement it yourself. The good news is that Visual Basic .NET has a couple of controls that
can display a persistent image, and they can do a lot of the work for you.

The Form object’s BackgroundImage property holds an image that covers the form’s background. If the
image is too big to fit, it is cropped. If the image is too small to cover the whole form, it is repeated to tile
the form.

The PictureBox’s Image property also displays a persistent image. The control’s SizeMode property
determines how Visual Basic uses the image to cover the control. This property can take the values
Normal (the image is drawn at full scale in the upper-left corner of the PictureBox and is cropped if it
is too big), StretchImage (the image is stretched or squashed to fit the control, possibly changing its
shape), AutoSize (the PictureBox resizes to fit the image), and CenterImage (the image is drawn at
full scale in the center of the PictureBox and is cropped if it is too big).

One relatively easy method for implementing AutoRedraw is to make a Bitmap and assign it to a
PictureBox’s Image property. Then the PictureBox automatically redisplays the image whenever it is
exposed. The following example demonstrates this approach.

620

Chapter 22

24_571982 ch22.qxd 9/1/05 7:36 PM Page 620

This program’s form contains a PictureBox named picCanvas with its Dock property set to Full, so
it covers the entire form. When the form is loaded or resizes, its event handlers call the DrawDiamond
subroutine.

DrawDiamond gets the PictureBox’s size and makes a Bitmap that fits it. It makes a HatchBrush and
uses it to fill the Bitmap. The code then defines the points needed to draw a diamond-shaped polygon
on the form, fills the polygon with white, and outlines it in black.

The next statement is the key. It assigns the Bitmap to the PictureBox’s Image property.

The code finishes by calling the HatchBrush and Graphics objects’ Dispose methods to free their
resources.

Private Sub Form1_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles MyBase.Load

DrawDiamond()
End Sub

Private Sub Form1_Resize(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles MyBase.Resize

DrawDiamond()
End Sub

Private Sub DrawDiamond()
‘ Get the drawing surface’s size.
Dim wid As Integer = picCanvas.ClientSize.Width
Dim hgt As Integer = picCanvas.ClientSize.Height

‘ Do nothing if we have no size.
‘ This happens, for example, if the form is minimized.
If wid < 1 Or hgt < 1 Then Exit Sub

‘ Make a Bitmap and Graphics to fit.
Dim bm As New Bitmap(wid, hgt)
Dim gr As Graphics = Graphics.FromImage(bm)

‘ Fill the drawing area with a hatch pattern.
Dim bg_brush As New HatchBrush(HatchStyle.HorizontalBrick, _

Color.Blue, Color.Aqua)
gr.FillRectangle(bg_brush, picCanvas.ClientRectangle)

‘ Draw a dimond.
Dim pts() As Point = { _

New Point(wid \ 2, 0), _
New Point(wid, hgt \ 2), _
New Point(wid \ 2, hgt), _
New Point(0, hgt \ 2) _

}
gr.FillPolygon(Brushes.White, pts)
gr.DrawPolygon(Pens.Black, pts)

‘ Display the result.

621

Image Processing

24_571982 ch22.qxd 9/1/05 7:36 PM Page 621

picCanvas.Image = bm

‘ Free resources.
bg_brush.Dispose()
gr.Dispose()

End Sub

Whenever this program is hidden and exposed, the picCanvas PictureBox automatically redisplays
its image.

Some programs don’t need to redraw their images when the form resizes. For example, a mapping
application might display its map at a specific size. In that case, you don’t need to redraw the map in the
form’s Resize event handler. Instead, you would probably add menus and buttons to let the user zoom
in and out, and scroll to different parts of the map. In an application such as that one, the code would
need to draw images only when the content changed. The rest is automatic.

Other applications draw in several routines and not just in the form’s Load and Resize event handlers.
For example, a drawing program might let the user draw various shapes (such as lines, rectangles,
ellipses, and free-form curves). The program would need to add these shapes to a Bitmap as they were
drawn and display the result.

In programs such as this, you can create Bitmap and Graphics objects at a module or application level
and then use them whenever the user modifies the image.

The following code lets the user draw free-form curves. At the module level, it declares the variables
m_Bitmap and m_Graphics, as well as some variables used while the user is drawing. When the form is
loaded and when the user clicks the File menu’s Clear command, the program calls the MakeNewBitmap
subroutine.

MakeNewBitmap creates a new Bitmap to fit the form’s picCanvas control and makes a Graphics
object attached to it. It clears the Bitmap with the form’s background color and displays the result by
setting the picCanvas control’s Image property to the Bitmap.

When the picCanvas control receives a MouseDown event, it records the mouse’s X and Y coordinates
and sets m_Drawing to True to indicate that a scribble is in progress.

The picCanvas_MouseMove event handler checks m_Drawing and, if it is True, draws a line connecting
the mouse’s previous position to its current location and saves the mouse’s new X and Y coordinates
for the next time. It then sets the picCanvas control’s Image property to the Bitmap to display the new
results.

Finally, the picCanvas_MouseUp event handler sets m_Drawing to False so that future MouseMove
events don’t draw on the Bitmap.

‘ The Bitmap and Graphics objects we will draw on.
Private m_Bitmap As Bitmap
Private m_Graphics As Graphics

‘ Used for scribbling.
Private m_Drawing As Boolean

622

Chapter 22

24_571982 ch22.qxd 9/1/05 7:36 PM Page 622

Private m_X As Integer
Private m_Y As Integer

‘ Make the initial blank image.
Private Sub Form1_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles MyBase.Load

MakeNewBitmap()
End Sub

‘ Make a new blank image.
Private Sub mnuFileClear_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles mnuFileClear.Click

MakeNewBitmap()
End Sub

‘ Make a new Bitmap to fit the canvas.
Private Sub MakeNewBitmap()

‘ Get the drawing surface’s size.
Dim wid As Integer = picCanvas.ClientSize.Width
Dim hgt As Integer = picCanvas.ClientSize.Height

‘ Make a Bitmap and Graphics to fit.
m_Bitmap = New Bitmap(wid, hgt)
m_Graphics = Graphics.FromImage(m_Bitmap)

‘ Clear the drawing area.
m_Graphics.Clear(Me.BackColor)

‘ Display the result.
picCanvas.Image = m_Bitmap

End Sub

‘ Start scribbling.
Private Sub picCanvas_MouseDown(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MouseEventArgs) Handles picCanvas.MouseDown

m_Drawing = True
m_X = e.X
m_Y = e.Y

End Sub

‘ Continue scribbling.
Private Sub picCanvas_MouseMove(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MouseEventArgs) Handles picCanvas.MouseMove

If Not m_Drawing Then Exit Sub

m_Graphics.DrawLine(Pens.Black, m_X, m_Y, e.X, e.Y)
m_X = e.X
m_Y = e.Y

‘ Display the result.
picCanvas.Image = m_Bitmap

End Sub

‘ Stop scribbling.

623

Image Processing

24_571982 ch22.qxd 9/1/05 7:36 PM Page 623

Private Sub picCanvas_MouseUp(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MouseEventArgs) Handles picCanvas.MouseUp

m_Drawing = False
End Sub

Figure 22-1 shows this program in action.

Figure 22-1: Program Scribble automatically
redisplays its image when the form is hidden
and exposed.

A final issue related to auto-redraw is resizing. If the user makes the form larger or smaller, you need to
figure out what to do about the auto-redraw image. There are several approaches you can take, depend-
ing on your application.

The simplest approach is to not allow the user to resize the form or at least not to resize the PictureBox
that displays the auto-redraw image. Then you can ignore the whole issue.

A second approach is to create a new Bitmap of the new correct size. Use a Graphics object’s Clear
method to erase the new Bitmap. Then use the object’s DrawImage method to copy the contents of the
old Bitmap into the new one.

In this approach, if the new Bitmap is larger than the old one, all of its data is saved. On the other hand,
if the new Bitmap is smaller, then some of the old drawing is lost. You can preserve that information if
you only allow the Bitmap to grow and never shrink. When the user resizes the form, you make the new
Bitmap’s width and height the larger of the old Bitmap’s size and the form’s new size.

Finally, if you think the program will often run maximized, you could just allocate a really big Bitmap
when the program begins and forget the whole resizing issue.

624

Chapter 22

24_571982 ch22.qxd 9/1/05 7:36 PM Page 624

Pixel-by-Pixel Operations
The Bitmap object provides two methods, GetPixel and SetPixel, that let a program easily read and
write pixel values in the image. The following discussion describes an example that uses these methods
to invert an image.

GetPixel and SetPixel are easy to use and fast enough for many applications. For high-performance
graphics, however, they are relatively slow. The section “‘Unsafe’ Pixel Manipulation” later in this chap-
ter explains how you can use “unsafe” methods to access pixel data more directly. This is a bit more dif-
ficult, but it is much faster for large images.

GetPixel and SetPixel
The Bitmap object’s GetPixel method returns a Color structure for a pixel in a specific X and Y loca-
tion. SetPixel sets the Color of a pixel at a particular position. These two methods are quite easy to
use and provide good enough performance for many applications.

The following code shows how a program can use those methods to invert the pixel values in an image.

When the user selects the File menu’s Open command and selects a file, the program loads the file into
the Bitmap named bm. It copies the image into a new Bitmap named source_bm and disposes of the
original Bitmap so that the image’s file isn’t locked. It then assigns source_bm to the picSource
PictureBox’s Image property to display the original image.

The program then arranges its controls nicely. The picSource control’s SizeMode property is set to
AutoSize so that it automatically resizes itself to fit the picture. The program gives the picDest
PictureBox the same size, positions it to the right of picSource, and resizes the form to fit the two
PictureBoxes.

Next, the program copies the source Bitmap into a new Bitmap named dest_bm and calls subroutine
InvertImage to invert the pixels in that bitmap. When InvertImage returns, the program assigns the
dest_bm Bitmap to the picDest control’s Image property to display the result.

Subroutine InvertImage loops over all of the pixels in the image. It uses the bitmap’s GetPixel func-
tion to get the color of each pixel. It inverts the red, green, and blue components of the pixel’s color by
subtracting them from the maximum allowed value 255. It then calls the destination Bitmap’s
SetPixel method to set the result pixel’s value.

Private Sub mnuFileOpen_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles mnuFileOpen.Click

If dlgOpenImage.ShowDialog() = DialogResult.OK Then
‘ Load and display the image.
Dim bm As New Bitmap(dlgOpenImage.FileName)
Dim source_bm As New Bitmap(bm)
bm.Dispose()
picSource.Image = source_bm

‘ Arrange the controls.
picDest.Size = picSource.Size

‘ Make the result Bitmap.

625

Image Processing

24_571982 ch22.qxd 9/1/05 7:36 PM Page 625

Dim dest_bm As New Bitmap(source_bm)

‘ Invert the image’s pixels.
InvertImage(dest_bm)

‘ Display the results.
picDest.Image = dest_bm

End If
End Sub

Private Sub InvertImage(ByVal bm As Bitmap)
‘ Process the image’s pictures.
For y As Integer = 0 To bm.Height - 1

For x As Integer = 0 To bm.Width - 1
‘ Get this pixel’s color.
Dim clr As Color = bm.GetPixel(x, y)

‘ Invert the color’s components.
clr = Color.FromArgb(255, _

255 - clr.R, _
255 - clr.G, _
255 - clr.B)

‘ Set the result pixel’s color.
bm.SetPixel(x, y, clr)

Next x
Next y

End Sub

Figure 22-2 shows the result. The output image on the right is essentially the photographic negative of
the original image on the left.

Figure 22-2: This program uses GetPixel and SetPixel to invert an
image’s pixel values.

626

Chapter 22

24_571982 ch22.qxd 9/1/05 7:36 PM Page 626

“Unsafe” Pixel Manipulation
The GetPixel and SetPixel methods are very easy to use, and they are fast enough for many applica-
tions. For example, a program that generates fractals such as the Mandelbrot set spends a considerable
amount of time calculating colors for each individual pixel. If it takes the program 5 seconds to generate
the image and a tenth of a second of that time is spent by the SetPixel method, then SetPixel is prob-
ably fast enough. Using “unsafe” array methods may shave a few hundredths of a second off the total
time, but the program’s time is dominated by the code that calculates the pixels’ colors, so it’s hardly
worth the extra complication.

However, suppose that you need to transform a series of images very quickly to display an animated
sequence. In that case, the time spent by GetPixel and SetPixel may be significant. In that case, you
may get much better performance using “unsafe” methods.

The basic idea is to directly access the array of bytes containing the red, green, and blue component val-
ues for the image’s pixels. The Bitmap object’s LockBits method copies the pixel data for a rectangular
part of the image into a temporary buffer where you can manipulate it. Later, you call the UnlockBits
method to copy any changes you made back into the bitmap.

Unfortunately the LockBits method returns the buffer of data as a pointer to memory and Visual Basic
cannot work directly with that kind of pointer. To resolve this problem, you can use the Marshal class’s
Copy method to move the data into a Visual Basic array. You can then modify the data and, when you
are finished, use Marshal.Copy to move the results back into the buffer.

The following code shows the BitmapBytesRGB24 class that makes this somewhat simpler for the main
program. This class works with 24-bit image representations. Your call to LockBits can specify other
formats, but this one is particularly easy to work with because it uses one byte for each of the pixels’ red,
green, and blue components.

The class’s ImageBytes array will contain the pixel data stored as a one-dimensional array. Each pixel is
represented by a byte for its blue component, a byte for its green component, and a byte for its red com-
ponent, in that order.

The RowSizeBytes property tells how many bytes are stored in the array per row of pixels. The system
may pad the array, so the number of bytes in each row is a multiple of four or some other number that is
convenient for the operating system. Thus, RowSizeBytes may not always be three times the number of
pixels in each row.

The constant PixelDataSize is 24 for this class because it works with 24-bit (3-byte) pixel data.

The class’s constructor takes as a parameter a reference to a Bitmap and saves that reference for later use.

The class next declares a BitmapData object named m_BitmapData. This object will contain data
describing the bitmap.

The LockBitmap method creates a Rectangle bounding the bitmap. This is the area in the bitmap that
the routine will lock. This class doesn’t mess around and simply locks the entire bitmap.

LockBitmap calls the Bitmap object’s LockBits method, passing it the bounding Rectangle, a flag
indicating that it wants to lock the data for reading and writing, and a flag indicating that we want to

627

Image Processing

24_571982 ch22.qxd 9/1/05 7:36 PM Page 627

work with 24-bit pixel data. LockBits returns information about the bitmap in a BitmapData object,
which the routine saves in m_BitmapData. The routine sets the RowSizeBytes value so that it is easy
for the main program to use.

LockBitmap then calculates the total number of bytes needed to hold the pixel data, makes the
ImageBytes array big enough, and calls Marshal.Copy to copy the pixel; data into the array.

The class’s UnlockBitmap method copies the modified pixel data back into the bitmap. It recalculates
the size of the array and uses Marshal.Copy to copy the data from the ImageBytes array back into the
buffer allocated by LockBits. Finally, it calls the Bitmap object’s UnlockBits method.

Imports System.Drawing.Imaging
Imports System.Runtime.InteropServices

Public Class BitmapBytesRGB24
‘ Provide public access to the picture’s byte data.
Public ImageBytes() As Byte
Public RowSizeBytes As Integer
Public Const PixelDataSize As Integer = 24

‘ A reference to the Bitmap.
Private m_Bitmap As Bitmap

‘ Save a reference to the bitmap.
Public Sub New(ByVal bm As Bitmap)

m_Bitmap = bm
End Sub

‘ Bitmap data.
Private m_BitmapData As BitmapData

‘ Lock the bitmap’s data.
Public Sub LockBitmap()

‘ Lock the bitmap data.
Dim bounds As Rectangle = New Rectangle(_

0, 0, m_Bitmap.Width, m_Bitmap.Height)
m_BitmapData = m_Bitmap.LockBits(bounds, _

Imaging.ImageLockMode.ReadWrite, _
Imaging.PixelFormat.Format24bppRgb)

RowSizeBytes = m_BitmapData.Stride

‘ Allocate room for the data.
Dim total_size As Integer = m_BitmapData.Stride * m_BitmapData.Height
ReDim ImageBytes(total_size)

‘ Copy the data into the ImageBytes array.
Marshal.Copy(m_BitmapData.Scan0, ImageBytes, _

0, total_size)
End Sub

‘ Copy the data back into the Bitmap
‘ and release resources.
Public Sub UnlockBitmap()

628

Chapter 22

24_571982 ch22.qxd 9/1/05 7:36 PM Page 628

‘ Copy the data back into the bitmap.
Dim total_size As Integer = m_BitmapData.Stride * m_BitmapData.Height
Marshal.Copy(ImageBytes, 0, _

m_BitmapData.Scan0, total_size)

‘ Unlock the bitmap.
m_Bitmap.UnlockBits(m_BitmapData)

‘ Release resources.
ImageBytes = Nothing
m_BitmapData = Nothing

End Sub
End Class

The following code shows how a main program can use the BitmapBytesRGB24 class to invert an
image’s pixels. The code creates a new BitmapBytesRGB24 object, passing the constructor the Bitmap
that it wants to modify. It then calls the object’s LockBitmap method to copy the pixel data into the
object’s ImageBytes array. Next, the program loops over the rows in the image. For each row, the code
calculates the position in the pixel data that holds the row’s first pixel’s information. It then loops over
the pixels in the row, modifying each pixel’s blue, green, and red components. Remember that the com-
ponents are in stored in the order blue, green, red. When it has finished modifying the pixel data, the
program calls the BitmapBytesRGB24 object’s UnlockBitmap method to copy the results back into the
bitmap.

‘ Invert the pixel values in this Bitmap.
Private Sub InvertImage(ByVal bm As Bitmap)

‘ Make a BitmapBytesRGB24 object.
Dim bm_bytes As New BitmapBytesRGB24(bm)

‘ Lock the bitmap.
bm_bytes.LockBitmap()

Dim pix As Integer
For y As Integer = 0 To bm.Height - 1

pix = y * bm_bytes.RowSizeBytes
For x As Integer = 0 To bm.Width - 1

‘ Blue component.
bm_bytes.ImageBytes(pix) = CByte(255) - bm_bytes.ImageBytes(pix)
pix += 1
‘ Green component.
bm_bytes.ImageBytes(pix) = CByte(255) - bm_bytes.ImageBytes(pix)
pix += 1
‘ Red component.
bm_bytes.ImageBytes(pix) = CByte(255) - bm_bytes.ImageBytes(pix)
pix += 1

Next x
Next y

‘ Unlock the bitmap.
bm_bytes.UnlockBitmap()

End Sub

629

Image Processing

24_571982 ch22.qxd 9/1/05 7:36 PM Page 629

This is quite a bit more complicated than the previous program that uses GetPixel and SetPixel, so
it’s not the best method for simple applications. For high-performance image processing, however, the
extra complication is worth it. In one set of tests on a 798-MHz Athlon 64 processor, the previous version
using GetPixel and SetPixel took roughly 1.109 seconds to invert an 800 × 600 pixel image, while the
version using the BitmapBytesRGB24 class took only 0.047 seconds.

Metafile Objects
The Metafile class represents image data defined by metafile records. These records encapsulate typi-
cal graphics commands that scale, rotate, draw lines, display text, and so forth. Using a Metafile object,
you can build the metafile records and save them into a metafile, load a metafile, and “play” the metafile
records on a display surface such as a Bitmap.

Many of the Metafile’s most useful properties and methods are inherited from the Image class. These
include Height, HorizontalResolution, Palette, RawFormat, Size, Width, GetThumbnailImage,
RotateFlip, and Save. See the section “Image” earlier in this chapter for information about those and
other inherited properties and methods.

The following table describes some of the most useful methods that the Metafile class adds to those
inherited from the Image class.

Method Purpose

GetMetafileHeader Returns the MetafileHeader object associated with this
Metafile. See the following text for more information on the
MetafileHeader class.

PlayRecord Plays a metafile record. To play the whole metafile, you can use a
Graphics object’s DrawImage method to copy the metafile’s
image onto a Bitmap and then display the Bitmap. PlayRecord
lets you selectively play metafile records.

To build a Metafile, you create a Metafile object, attach a Graphics object to it, and then use draw-
ing methods to draw into the metafile. In that respect, the Metafile behaves just like a Bitmap does.

The Graphics object also provides two special methods for working with its Metafile.
AddMetafileComment adds a comment to the metafile. EnumerateMetafile sends the metafile’s
records to a callback subroutine one at a time. You can use that routine if you want to play back only
some of the Metafile’s records.

The following code shows how to make and use a metafile. It starts by calculating a file name for the
metafile. If the file already exists, the program deletes it. Next the program makes a Graphics object to
get a handle to its device context. It uses that handle as a parameter to the Metafile object’s constructor.
It also passes the constructor the name of the file, a RectangleF that defines the metafile’s bounds, and
the units used by the bounds.

After creating the Metafile object, the program attaches a Graphics object to it. It uses the Graphics
object to clear the metafile in white and to draw a circle and two lines.

630

Chapter 22

24_571982 ch22.qxd 9/1/05 7:36 PM Page 630

The program then disposes of the Graphics and Metafile objects. That closes the metafile.

The program then calls the Metafile constructor again, passing it the file’s name. It makes a Bitmap
and associated Graphics object, and defines source and destination RectangleF structures to use when
copying the image. It enlarges the source rectangle slightly so the metafile doesn’t crop off the circle’s
right and bottom pixels.

Next, the code uses the Graphics object’s DrawImage method to copy the metafile onto the Bitmap. It
then sets the picOrig control’s Image property to the Bitmap to display the result.

The program then repeats these steps to display the metafile on the picSmall control. This time it
makes the control half as large as the full-scale image and uses a scaling transformation to shrink the
metafile data when it calls DrawImage.

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Const WID As Integer = 200
Dim path_name As String = Application.StartupPath
If path_name.EndsWith(“\bin”) Then _

path_name = path_name.Substring(0, path_name.Length - 4)
Dim file_name As String = path_name & “\test.wmf”

‘ Delete the file if it exists.
If Len(Dir$(file_name)) > 0 Then Kill(file_name)

‘ Make a Graphics object so we can use its hDC as a reference.
Dim me_gr As Graphics = Me.CreateGraphics
Dim me_hdc As IntPtr = me_gr.GetHdc

‘ Make the Metafile, using the reference hDC.
Dim bounds As New RectangleF(0, 0, WID, WID)
Dim mf As New Metafile(file_name, me_hdc, _

bounds, MetafileFrameUnit.Pixel)
me_gr.ReleaseHdc(me_hdc)

‘ Make a Graphics object and draw.
Dim gr As Graphics = Graphics.FromImage(mf)
gr.PageUnit = GraphicsUnit.Pixel
gr.Clear(Color.White)
gr.DrawEllipse(Pens.Red, bounds)
gr.DrawLine(Pens.Blue, 0, 0, WID, WID)
gr.DrawLine(Pens.Blue, WID, 0, 0, WID)

‘ Close the metafile and free resources.
gr.Dispose()
mf.Dispose()

‘ Reload the metafile and copy it into a Bitmap.
mf = New Metafile(file_name)
Dim bm As New Bitmap(WID, WID)
gr = Graphics.FromImage(bm)
Dim dest_bounds As New RectangleF(0, 0, WID, WID)
Dim source_bounds As New RectangleF(0, 0, WID + 1, WID + 1)
gr.DrawImage(mf, bounds, source_bounds, GraphicsUnit.Pixel)

631

Image Processing

24_571982 ch22.qxd 9/1/05 7:36 PM Page 631

picOrig.SizeMode = PictureBoxSizeMode.AutoSize
picOrig.Image = bm
gr.Dispose()
mf.Dispose()

‘ Redisplay the result shrunk by 50%.
mf = New Metafile(file_name)
picSmall.SetBounds(_

picOrig.Right + 10, picOrig.Top, _
picOrig.Width \ 2, picOrig.Height \ 2)

bm = New Bitmap(_
picSmall.ClientSize.Width, _
picSmall.ClientSize.Height)

gr = Graphics.FromImage(bm)
gr.ScaleTransform(0.5, 0.5)
gr.DrawImage(mf, bounds, source_bounds, GraphicsUnit.Pixel)
picSmall.Image = bm
gr.Dispose()
mf.Dispose()

End Sub

Figure 22-3 shows the result.

Figure 22-3: Program MakeMetafile creates a
metafile and then draws two copies of it.

Summary
The Image class represents a generic image. Its two child classes Bitmap and Metafile represent spe-
cific file types.

The Bitmap class lets you manipulate pixel-oriented image data. Its GetPixel and SetPixel methods let
you get and set a pixel’s color. Those methods are fast enough for most applications, but when performance
is really critical, you can use “unsafe” methods to access the pixel data more directly and manipulate

632

Chapter 22

24_571982 ch22.qxd 9/1/05 7:36 PM Page 632

pixels much faster. When you are finished, you can use the Bitmap’s Save method to save the result in
many different kinds of graphics files including BMP, EMF, EXIF, GUID, Icon, JPEG, MemoryBmp, PNG,
TIFF, and WMF.

The Metafile class represents a collection of drawing commands. Metafiles are reasonably standard-
ized, so you can use them to import and export graphic data between your application and external pro-
grams (such as Microsoft Word and CorelDRAW!).

Chapters 19 through 22 explain how to draw shapes, text, and images on the screen. Chapter 23,
“Printing,” shows how to generate similar output on a printer. The basic approach you use for generat-
ing shapes, text, and image is the same as it is for a screen, but when and where you generate printed
output requires some new techniques.

633

Image Processing

24_571982 ch22.qxd 9/1/05 7:36 PM Page 633

24_571982 ch22.qxd 9/1/05 7:36 PM Page 634

Printing
Visual Basic .NET provides several good tools for printing. String formatting objects enable you to
determine how text is wrapped and truncated if it won’t fit in a printing area. Methods provided
by Graphics objects enable you to easily scale, rotate, and translate drawing commands.

The basic process, however, seems somewhat backward to many programmers. Rather than issu-
ing commands to a printer object, a program responds to requests to draw pages generated by a
PrintDocument object. Instead of telling the printer what to do, the program responds to the
PrintDocument’s requests for data.

In some cases, generating a printout using only Visual Basic commands can be difficult. The fol-
lowing section explains alternative methods for generating a printout and tells when you might
want to use those methods. If you just want to print several pages of text, it’s often easier to pull
the text into Microsoft Word or some other application that specializes in formatting text rather
than writing your own.

In other cases, however, you cannot take an easy way out. If the program generates very complex
images and graphs, or produces text that is positioned and formatted in a complex manner, you
probably need to work through Visual Basic’s printing system. The rest of this chapter explains the
techniques that you use to generate printouts in Visual Basic. It shows how to draw graphics and
text on the printer and how to scale and center the results.

How Not to Print
While Visual Basic provides many tools for arranging graphics on a printout, it does not always
provide the best approach to printing. The general method for printing in Visual Basic requires
you to generate each page of output in turn. For simple documents (such as a line drawing con-
taining a few lines and circles on a single page), this is easy.

On the other hand, suppose that you want to print several dozen pages of text interspersed with
tables and pictures. Figuring out where each page break should be placed and how the text should
flow around the tables and pictures could be a huge undertaking. To really do the job right, you
might need to consider orphan lines (when the first line of a paragraph sits at the bottom of a

25_571982 ch23.qxd 9/1/05 7:39 PM Page 635

page), widow lines (the last line of a paragraph sits at the top of a page), orphan and widow words
(when the first or last word sits on a separate line), inserting extra space between words to make a line
look nicer, page numbers, headers and footers, hyphenation, different left and right margins, mirrored
margins, page gutters, bulleted lists, indentation and justification, different font sizes and styles, and a
host of other issues.

Word processing and text-formatting applications such as Microsoft Word spend a great deal of effort on
these issues — effort that you probably don’t want to duplicate. In fact, Word is so good at handling
these issues that you should consider using it to print your output instead of writing an elaborate Visual
Basic program to do it.

If your output is simple text, you can drop it into a text file and then use Word to open, format, and print
it. For printouts that you don’t need to generate too frequently, and for printouts where the user may
want to edit the results before printing anyway, this is a simple, flexible solution that doesn’t require you
to write, debug, and maintain a lot of complicated formatting code.

For more elaborate printouts, programs such as Word may still be useful. Using Visual Studio Tools for
Office (VSTO), you can open a Microsoft Word application and control it from your Visual Basic pro-
gram. Your program can use the Word object model to add text, insert pictures, build tables, set page
printing options, and even print the result. You can then save the document for later use or discard it.

Using VSTO, not only can you control Microsoft Word, but you can also use the other Microsoft Office
applications. For example, you can load information into Excel so that you can use its tools to analyze
and graph the data, copy information into Access for analysis by other database applications, or com-
pose email messages in Outlook.

VSTO is relatively complicated and outside of the scope of this book, so it isn’t described here. For more
information, see Microsoft’s Web site or a book on Microsoft Office programming.

Basic Printing
The PrintDocument class sits at the heart of the printing process in Visual Basic. The program creates
an instance of this class and installs event handlers to catch its events. When the object must perform
printing-related tasks, it raises events to ask the program for help.

The PrintDocument object raises four key events:

❑ BeginPrint — The PrintDocument raises its BeginPrint event when it is about to start
printing. The program can initialize data structures, load data, connect to databases, and per-
form any other chores it must do to get ready to print.

❑ QueryPageSettings — Before it prints a page, the PrintDocument object raises its
QueryPageSettings event. A program can catch this event and modify the document’s mar-
gins for the page that it is about to print.

❑ PrintPage — The PrintDocument object raises its PrintPage event to generate a page. The
program must catch this event and use the Graphics object provided by the event handler’s
parameters to generate output. When it is finished, the event handler should set the value
e.HasMorePages to True or False to tell the PrintDocument whether there are more pages to
generate.

636

Chapter 23

25_571982 ch23.qxd 9/1/05 7:39 PM Page 636

❑ EndPrint — Finally, when it has finished printing, the PrintDocument object raises its
EndPrint event. The program can catch this event to clean up any resources it used while print-
ing. It can free data structures, close data files and database connections, and perform any other
necessary cleanup chores.

Having created a PrintDocument object and its event handlers, you can do three things with it. First
you can call the object’s Print method to immediately send a printout to the currently selected printer.
The PrintDocument object raises its events as necessary as it generates the printout.

Second, you can set a PrintPreviewDialog’s Document property to the PrintDocument object and
then call the dialog’s ShowDialog method. The PrintPreviewDialog displays the print preview win-
dow shown in Figure 23-1, using the PrintDocument object to generate the output it displays.

Figure 23-1: The PrintPreviewDialog control lets the user zoom in and out and view the printout’s
various pages.

The preview dialog’s printer button on the left sends the printout to the printer. Note that this makes the
PrintDocument object regenerate the printout using its events, this time sending the results to the
printer instead of to the print preview dialog. The magnifying glass button displays a drop-down list
where the user can select various scales for viewing the printout. The next five buttons let the user dis-
play one, two, three, four, or six of the printout’s pages at the same time. The Close button closes the dia-
log and the Page up/down arrows let the user move through the printout’s pages.

The PrintPreviewControl displays a print preview much as the PrintPreviewDialog control does,
except that it sits on your form. It does not provide all the buttons that the dialog does, but it does pro-
vide methods that let you implement similar features. For example, it lets your program set the zoom
level, number of columns in the display, and so forth.

637

Printing

25_571982 ch23.qxd 9/1/05 7:39 PM Page 637

The third thing you can do with a PrintDocument is assign it to a PrintDialog’s Document property
and then call the dialog’s ShowDialog method to display the dialog shown in Figure 23-2. The user can
select the printer and set its properties (for example, selecting landscape or portrait orientation). When
the user clicks Print, the dialog uses the PrintDocument object to send the printout to the printer.

Figure 23-2: The PrintDialog control lets the user send a
printout to a printer.

Your results could look different from those shown here. The print preview adjusts its appearance based
on such factors as the type of printer you are using, its settings, the size of the paper you are using, and
the paper’s orientation.

The following code shows how a simple printing application can send output to the printer. This is just
about the smallest program that demonstrates all three uses for a PrintDocument object: printing
immediately, displaying a print preview dialog, and displaying a print dialog.

The code declares a PrintDocument object named m_PrintDocument. It uses the WithEvents key-
word, so it can easily catch the object’s events.

When the user clicks the Print Now button, the btnPrintNow_Click event handler assigns
m_PrintDocument to a new PrintDocument object and calls its Print method.

If the user clicks the Print Preview button, the btnPrintPreview_Click event handler assigns
m_PrintDocument to a new PrintDocument object, sets the PrintPreviewDialog object’s Document
property equal to the new object, and invokes the dialog’s ShowDialog method.

The Print Dialog button works similarly. When the user clicks this button, the btnPrintDialog_Click
event handler assigns m_PrintDocument to a new PrintDocument object, sets the PrintDialog
object’s Document property equal to the new object, and calls the dialog’s ShowDialog method.

638

Chapter 23

25_571982 ch23.qxd 9/1/05 7:39 PM Page 638

In all three cases, the PrintDocument object raises its PrintPage event when it is ready to print a page.
The program’s event handler creates a 10-pixel wide pen and defines an array of Point objects to define
a diamond shape. It then calls the DrawPolygon method provided by the event handler’s Graphics
object to draw the diamond. It calls the pen’s Dispose method to free resources and sets
e.HasMorePages to False to tell the PrintDocument that the printout is complete.

Imports System.Drawing.Printing

Public Class Form1
Private WithEvents m_PrintDocument As PrintDocument

‘ Print now.
Private Sub btnPrintNow_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPrintNow.Click

m_PrintDocument = New PrintDocument
m_PrintDocument.Print()

End Sub

‘ Display a print preview dialog.
Private Sub btnPrintPreview_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPrintPreview.Click

m_PrintDocument = New PrintDocument
dlgPrintPreview.Document = m_PrintDocument
dlgPrintPreview.ShowDialog()

End Sub

‘ Display a print dialog.
Private Sub btnPrintDialog_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPrintDialog.Click

m_PrintDocument = New PrintDocument
dlgPrint.Document = m_PrintDocument
If dlgPrint.ShowDialog() = Windows.Forms.DialogResult.OK Then

dlgPrint.Document.Print()
End If

End Sub

‘ Print a page with a diamond on it.
Private Sub m_PrintDocument_PrintPage(ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
Handles m_PrintDocument.PrintPage

Dim the_pen As New Pen(Color.Black, 10)
Dim pts() As Point = { _

New Point(e.MarginBounds.Left + e.MarginBounds.Width \ 2, _
e.MarginBounds.Top), _

New Point(e.MarginBounds.Right, _
e.MarginBounds.Top + e.MarginBounds.Height \ 2), _

New Point(e.MarginBounds.Left + e.MarginBounds.Width \ 2, _
e.MarginBounds.Bottom), _

New Point(e.MarginBounds.Left, _
e.MarginBounds.Top + e.MarginBounds.Height \ 2) _

}
e.Graphics.DrawPolygon(the_pen, pts)
the_pen.Dispose()

e.HasMorePages = False
End Sub

End Class

639

Printing

25_571982 ch23.qxd 9/1/05 7:39 PM Page 639

The PrintDocument’s PrintPage event handler provides a parameter of type PrintPageEventArgs
to let the program control the printout and to give information about the printer. This object’s
PageBounds and MarginBounds properties give the location of the printer’s printable surface and the
page’s margins, respectively. Typically, the printable area might be a quarter inch smaller than the
paper’s physical size, and the margins might be an inch or more inside the paper’s physical size.

Figure 23-3 shows these rectangles in a print preview. The MarginBounds are drawn with a thick line,
and the PageBounds are shown with a thick dashed line.

Figure 23-3: The e.PageBounds and
e.MarginBounds parameters give the paper’s
printable area and margins.

Printing Text
The printing application described in the previous section is extremely simple. It prints a very straight-
forward shape on a single page. You know the positions of the diamond before starting, so the program
needs to perform little arranging and formatting. The only formatting it does is to make its diamond fit
the page’s margins.

This section describes a more useful example that prints a long series of paragraphs using different font
sizes. The program must figure out how to break the text into pages. It also assumes that you will print
the pages double-sided and then later bind the results into a booklet. To allow extra room for the bind-
ing, the program adds a gutter to the margin of edge of each page on the side where the binding will be.
The program assumes that you will place the first page on the outside of the booklet, so it adds the gut-
ter to the left margin on odd-numbered pages and to the right margin or even-numbered pages. Finally,
the program displays a page number in the upper corner opposite the gutter.

640

Chapter 23

25_571982 ch23.qxd 9/1/05 7:39 PM Page 640

Figure 23-4 shows the results displayed in a print preview dialog, so you can understand the goals. If
you look closely, you can see that the left margins on the first and third pages and the right margin on
the second page are enlarged to allow room for the gutter. You can also see that the page numbers are
in the upper corner on the side that doesn’t have the gutter. Imagine the second page printed on the
back of the first, so their gutters lie on the same edge of the paper.

Figure 23-4: This preview shows text broken across pages with a gutter and displaying page numbers
along the outside edges.

The following code shows the program generated this printout. The program begins by declaring a new
PrintDocument object with the WithEvents keyword. The program uses ParagraphInfo structures to
hold information about the paragraphs it will print. Each ParagraphInfo entry contains a font size and
some text. The m_Paragraphs collection holds the ParagraphInfo objects that describe the program’s
text. The m_ParagraphsToPrint collection holds a copy of the text while the program is printing. The
code uses this copy to keep track of the text that has yet to be printed. Variable m_PagesPrinted keeps
track of the number of pages printed during the printing process. The code uses this value to display
page numbers and to determine whether it is printing an odd or even page.

This little piece of code should have been omitted. When the program loads, the Form1_Load event han-
dler attaches the program’s print and print preview dialogs to the PrintDocument object. It then creates
the m_Paragraphs collection and adds ParagraphInfo objects to it. This is just a bunch of data, so little
of it is shown here.

When the user clicks the Print Preview or Print Dialog buttons, the corresponding event handlers simply
display the appropriate dialogs. When the user clicks the Print Now button, the program calls the
PrintDocument object’s Print method.

More interesting differences between this program and the one described in the previous section come in
the PrintDocument’s event handlers. The BeginPrint event handler sets m_PagesPrinted to zero. It
then fills the m_ParagraphsToPrint collection with copies of the ParagraphInfo structures holding
the program’s text data. The program will use the objects in this collection to keep track of the para-
graphs printed.

641

Printing

25_571982 ch23.qxd 9/1/05 7:39 PM Page 641

The QueryPageSettings event handler sets the margins for the page that the PrintDocument object is
about the print. First, it sets the gutter size to 100 printer units (or one inch). Next, the program adjusts
the margins based on the page number. If the page to be printed is the first page in the document, the
program adds the gutter size to the left margin. If the page is some other odd-numbered page, the pro-
gram moves the whole page to the right by increasing the left margin and decreasing the right margin.
Finally, if the next page will be odd numbered, the program shifts the page to the left by decreasing the
left margin and increasing the right margin.

The PrintPage event handler starts by incrementing the number of pages printed. It then includes com-
mented code to draw a rectangle around the page’s margins. When you are debugging a printing rou-
tine, drawing this rectangle can help you see where your drawing is in relation to the page’s margins.

Next, the routine creates a font for the page number. Depending on whether this page is odd or even
numbered, it calculates an X coordinate halfway between the nongutter margin and the edge of the
printable page. It sets a StringFormat object’s Alignment property to make numbers in the left margin
left-justified and to make numbers in the right margin right-justified. It then draws the page number at
the calculated X position, halfway between the top margin and the paper’s top printable boundary.

The program then prepares to draw the text for this page. It sets the StringFormat object’s properties
so that the text is left-justified and lines wrap at word boundaries instead of in the middle of words. It
sets the FormatFlags property to LineLimit. If only part of a line of text would fit vertically on the
page, this makes Visual Basic not draw the line rather than drawing just the top halves of its letters.

After this preparation, the program sets variable ymin to the minimum Y coordinate where the routine
can draw text. Initially, this is the top margin. It then enters a Do loop to process as much text as will fit
on the page.

Inside the loop, the program takes the first ParagraphInfo structure from the m_ParagraphsToPrint
collection and makes a font that has the right size for that paragraph. It creates a RectangleF represent-
ing the remaining area on the page. This includes the area between the left and right margins horizon-
tally, and between ymin and the bottom margin vertically.

The program then uses the e.Graphics object’s MeasureString method to see how much space the
next piece of text will need. It passes MeasureString the layout rectangle’s size and the StringFormat
object so that Visual Basic can decide how it will need to wrap the paragraph’s text when it prints it. The
code also passes in the variables characters_fitted and lines_filled. These parameters are passed
by reference, so MeasureString can fill in the number of characters and lines it could draw within the
allowed size.

The routine then checks characters_fitted to see if any characters will fit in the available area. If any
characters can fit, the program draws the paragraph. Commented code draws a rectangle around the
text to help with debugging. The program increases ymin by the paragraph’s printed height plus half of
the font’s height to provide a break between paragraphs.

Next, the program determines whether the entire paragraph fit in the allowed area. If some of the para-
graph did not fit, the program stores the remaining text in the ParagraphInfo structure and puts the
structure back at the beginning of the m_ParagraphsToPrint collection so that it can be printed on the
next page. It then exits the Do loop because the current page is full.

When the page is full or the m_ParagraphsToPrint collection is empty, the PrintPage event handler is
finished. It sets e.HasMorePages to True if m_ParagraphsToPrint is not empty.

642

Chapter 23

25_571982 ch23.qxd 9/1/05 7:39 PM Page 642

Finally, when the PrintDocument has finished printing the whole document, the EndPrint event han-
dler executes. This routine cleans up by setting the m_ParagraphsToPrint variable to Nothing, freeing
up the collection object’s memory. In this program, freeing the collection is a small matter. In a program
that allocated more elaborate data structures, cleaning up in this event handler would be more important.

‘ The PrintDocument.
Private WithEvents m_PrintDocument As New PrintDocument

‘ Information about the paragraphs to print.
Private Structure ParagraphInfo

Public FontSize As Integer
Public Text As String
Public Sub New(ByVal font_size As Integer, ByVal txt As String)

FontSize = font_size
Text = txt

End Sub
End Structure

‘ The paragraphs.
Private m_Paragraphs As Collection
Private m_ParagraphsToPrint As Collection
Private m_PagesPrinted As Integer

‘ Load the paragraph info.
Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ Attach the PrintDocument to the
‘ PrintDialog and PrintPreviewDialog.
dlgPrint.Document = m_PrintDocument
dlgPrintPreview.Document = m_PrintDocument

‘ Make the text to print.
m_Paragraphs = New Collection
m_Paragraphs.Add(New ParagraphInfo(45, “23”))
m_Paragraphs.Add(New ParagraphInfo(27, “Printing”))
... Code omitted...

End Sub

‘ Display the preview dialog.
Private Sub btnPrintPreview_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPrintPreview.Click

dlgPrintPreview.WindowState = FormWindowState.Maximized
dlgPrintPreview.ShowDialog()

End Sub

‘ Display the print dialog.
Private Sub btnPrintDialog_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPrintDialog.Click

If dlgPrint.ShowDialog() = Windows.Forms.DialogResult.OK Then
dlgPrint.Document.Print()

End If
End Sub

‘ Print immediately.
Private Sub btnPrintNow_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPrintNow.Click

643

Printing

25_571982 ch23.qxd 9/1/05 7:39 PM Page 643

m_PrintDocument.Print()
End Sub

‘ Get ready to print pages.
Private Sub m_PrintDocument_BeginPrint(ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintEventArgs) _
Handles m_PrintDocument.BeginPrint

‘ We have not yet printed any pages.
m_PagesPrinted = 0

‘ Make a copy of the text to print.
m_ParagraphsToPrint = New Collection
For Each para_info As ParagraphInfo In m_Paragraphs

m_ParagraphsToPrint.Add(_
New ParagraphInfo(para_info.FontSize, para_info.Text))

Next para_info
End Sub

‘ Set the margins for the following page.
Private Sub m_PrintDocument_QueryPageSettings(ByVal sender As Object, _
ByVal e As System.Drawing.Printing.QueryPageSettingsEventArgs) _
Handles m_PrintDocument.QueryPageSettings

‘ Use a 1 inch gutter (printer units are 100 per inch).
Const gutter As Integer = 100

‘ See if the next page will be the first, odd, or even.
If m_PagesPrinted = 0 Then

‘ The next page is the first.
‘ Increase the left margin.
e.PageSettings.Margins.Left += gutter

ElseIf (m_PagesPrinted Mod 2) = 0 Then
‘ The next page will be odd.
‘ Shift the margins right.
e.PageSettings.Margins.Left += gutter
e.PageSettings.Margins.Right -= gutter

Else
‘ The next page will be even.
‘ Shift the margins left.
e.PageSettings.Margins.Left -= gutter
e.PageSettings.Margins.Right += gutter

End If
End Sub

‘ Print the next page.
Private Sub m_PrintDocument_PrintPage(ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
Handles m_PrintDocument.PrintPage

‘ Increment the page number.
m_PagesPrinted += 1

‘ Draw the margins (for debugging).
‘e.Graphics.DrawRectangle(Pens.Red, e.MarginBounds)

‘ Print the page number right justified

644

Chapter 23

25_571982 ch23.qxd 9/1/05 7:39 PM Page 644

‘ in the upper corner opposite the gutter
‘ and outside of the margin.
Dim the_font As Font
Dim x As Integer
Dim string_format As New StringFormat
the_font = New Font(“Times New Roman”, _

20, FontStyle.Regular, GraphicsUnit.Point)

‘ See if this is an odd or even page.
If (m_PagesPrinted Mod 2) = 0 Then

‘ This is an even page.
‘ The gutter is on the left.
x = (e.MarginBounds.Left + e.PageBounds.Left) \ 2
string_format.Alignment = StringAlignment.Near

Else
‘ This is an odd page.
‘ The gutter is on the right.
x = (e.MarginBounds.Right + e.PageBounds.Right) \ 2
string_format.Alignment = StringAlignment.Far

End If
e.Graphics.DrawString(m_PagesPrinted.ToString, _

the_font, Brushes.Black, x, _
(e.MarginBounds.Top + e.PageBounds.Top) \ 2, _
string_format)

‘ Draw the rest of the text left justified,
‘ wrap at words, and don’t draw partial lines.
string_format.Alignment = StringAlignment.Near
string_format.FormatFlags = StringFormatFlags.LineLimit
string_format.Trimming = StringTrimming.Word

‘ Draw some text.
Dim paragraph_info As ParagraphInfo
Dim ymin As Integer = e.MarginBounds.Top
Dim layout_rect As RectangleF
Dim text_size As SizeF
Dim characters_fitted As Integer
Dim lines_filled As Integer
Do While m_ParagraphsToPrint.Count > 0

‘ Print the next paragraph.
paragraph_info = DirectCast(m_ParagraphsToPrint(1), ParagraphInfo)
m_ParagraphsToPrint.Remove(1)

‘ Get the font.
the_font = New Font(“Times New Roman”, _

paragraph_info.FontSize, _
FontStyle.Regular, GraphicsUnit.Point)

‘ Get the area available for this paragraph.
layout_rect = New RectangleF(_

e.MarginBounds.Left, ymin, _
e.MarginBounds.Width, _
e.MarginBounds.Bottom - ymin)

645

Printing

25_571982 ch23.qxd 9/1/05 7:39 PM Page 645

‘ Make sure the layout rectangle is at least 1 pixel tall
‘ to avoid confusing MeasureString.
If layout_rect.Height < 1 Then layout_rect.Height = 1

‘ See how big the text will be and
‘ how many characters will fit.
text_size = e.Graphics.MeasureString(_

paragraph_info.Text, the_font, _
New SizeF(layout_rect.Width, layout_rect.Height), _
string_format, characters_fitted, lines_filled)

‘ See if any characters will fit.
If characters_fitted > 0 Then

‘ Draw the text.
e.Graphics.DrawString(paragraph_info.Text, _

the_font, Brushes.Black, _
layout_rect, string_format)

‘ Draw a rectangle around the text (for debugging).
‘e.Graphics.DrawRectangle(Pens.Green, _
‘ layout_rect.Left, _
‘ layout_rect.Top, _
‘ text_size.Width, _
‘ text_size.Height)

‘ Increase the location where we can start.
‘ Add a little interparagraph spacing.
ymin += CInt(text_size.Height + _

e.Graphics.MeasureString(“M”, the_font).Height / 2)
End If

‘ See if some of the paragraph didn’t fit on the page.
If characters_fitted < Len(paragraph_info.Text) Then

‘ Some of the paragraph didn’t fit.
‘ Prepare to print the rest on the next page.
paragraph_info.Text = paragraph_info.Text. _

Substring(characters_fitted)
m_ParagraphsToPrint.Add(paragraph_info, Before:=1)

‘ That’s all that will fit on this page.
Exit Do

End If
Loop

‘ If we have more paragraphs, we have more pages.
e.HasMorePages = (m_ParagraphsToPrint.Count > 0)

End Sub

‘ Clean up.
Private Sub m_PrintDocument_EndPrint(ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintEventArgs) _
Handles m_PrintDocument.EndPrint

m_ParagraphsToPrint = Nothing
End Sub

646

Chapter 23

25_571982 ch23.qxd 9/1/05 7:39 PM Page 646

Centering Printouts
The previous section explained how to handle a common scenario: printing large amounts of text.
Another common scenario is printing a picture centered on the printed page. To do that, you must move
the drawing vertically and horizontally to put it at the correct position. You can do this by using the
Graphics object’s TranslateTransform method. That method defines a translation transformation for
all the graphics drawn by the object. After you set the transformation, you can draw any graphics as
usual, and the Graphics object automatically moves them to the correct position.

The CenterPictureInMargins subroutine shown in the following code defines a translation transfor-
mation that centers an area within some specified bounds. The routine begins by calling the Graphics
object’s ResetTransform method to remove any transformations that may already be defined. Next, the
routine calculates the horizontal and vertical offsets by which it must translate the rectangle
picture_bounds so that it will be centered within the rectangle margin_bounds. It calls the Graphics
object’s TranslateTransform method to make the translation.

‘ Transform the Graphics object to center the rectangle
‘ picture_bounds within margin_bounds.
Private Sub CenterPictureInMargins(ByVal gr As Graphics, _
ByVal picture_bounds As RectangleF, ByVal margin_bounds As RectangleF)

‘ Remove any existing transformation.
gr.ResetTransform()

‘ Apply the transformation.
Dim dx As Single = _

margin_bounds.Left - picture_bounds.Left + _
(margin_bounds.Width - picture_bounds.Width) / 2

Dim dy As Single = _
margin_bounds.Top - picture_bounds.Top + _
(margin_bounds.Height - picture_bounds.Height) / 2

gr.TranslateTransform(dx, dy)
End Sub

You can use subroutine CenterPictureInMargins to prepare the e.Graphics object provided by the
PrintPage event handler to center a drawing on a printout. For example, the following PrintPage
event handler code draws a bar chart in the coordinate space 100 <= X <= 600, 100 <= Y <= 400. It begins
with commented code that draws the page’s margins for debugging purposes.

The code defines rectangles representing the area in which it will draw and the printed page’s margin
bounds. It passes those rectangles to the CenterPictureInMargins subroutine to prepare the
Graphics object for centering.

Next, the program fills the picture area’s rectangle with light gray and outlines it in black. It then calls
subroutine DrawBar several times to draw five values for the bar chart. The event handler sets
e.HasMorePages to False and ends.

647

Printing

25_571982 ch23.qxd 9/1/05 7:39 PM Page 647

Subroutine DrawBar draws a rectangle for the bar chart. It draws its rectangle at the X coordinate passed
as a parameter, making it 100 units wide and hgt units tall. It fills the rectangle with a hatch pattern and
then outlines it in black. The subroutine finishes by adding 100 to x, so the next call to DrawBar draws a
rectangle to the right.

‘ Print the page.
Private Sub Print_PrintPage(ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintPageEventArgs)

‘ Draw the margins (for debugging). Be sure
‘ to do this before transforming the Graphics object.
e.Graphics.DrawRectangle(Pens.Red, e.MarginBounds)

‘ This routine draws a bar chart for 5 values
‘ in printer coordinates between
‘ (100, 100) - (600, 400).
‘ Transform the Graphics object to center the results.
Dim picture_rect As New RectangleF(100, 100, 600, 400)
Dim margin_rect As New RectangleF(_

e.MarginBounds.X, _
e.MarginBounds.Y, _
e.MarginBounds.Width, _
e.MarginBounds.Height)

CenterPictureInMargins(e.Graphics, picture_rect, margin_rect)

‘ Draw a rectangle around the chart.
e.Graphics.FillRectangle(Brushes.LightGray, picture_rect)
e.Graphics.DrawRectangle(Pens.Black, Rectangle.Round(picture_rect))

‘ Draw the values.
Dim x As Integer = 100
DrawBar(e.Graphics, x, 200, HatchStyle.BackwardDiagonal)
DrawBar(e.Graphics, x, 280, HatchStyle.Vertical)
DrawBar(e.Graphics, x, 240, HatchStyle.ForwardDiagonal)
DrawBar(e.Graphics, x, 170, HatchStyle.Horizontal)
DrawBar(e.Graphics, x, 290, HatchStyle.DiagonalCross)

‘ There are no more pages.
e.HasMorePages = False

End Sub

‘ Draw a bar in (x, 400)-(x + 100, 400 - hgt).
Private Sub DrawBar(ByVal gr As Graphics, ByRef x As Integer, _
ByVal hgt As Integer, ByVal hatch_style As HatchStyle)

Dim rect As New Rectangle(x, 400 - hgt, 100, hgt)
gr.FillRectangle(_

New HatchBrush(hatch_style, Color.Black, Color.White), _
rect)

gr.DrawRectangle(Pens.Black, rect)
x += 100

End Sub

Figure 23-5 shows the result. You can see in the picture that the bar chart is centered within the margins.

648

Chapter 23

25_571982 ch23.qxd 9/1/05 7:39 PM Page 648

Figure 23-5: Subroutine CenterPictureInMargins
makes it easy to center a picture within a printed page.

Fitting Pictures to the Page
Another common scenario is drawing a picture as large as possible on the page without distorting it. You
can use the same approach to this problem that was described in the previous section: Apply a transfor-
mation to the PrintPage event handler’s Graphics object to make the picture fit the printed page.

The subroutine FitPictureToMargins shown in the following code makes this transformation. It
begins by calling the Graphics object’s ResetTransform method to remove any existing transforma-
tion. Next the subroutine translates to center the picture_bounds rectangle at the origin. Scaling an
object centered at the origin is relatively simple because the object’s center remains at the origin, so the
program starts by centering picture_bounds.

The program compares aspect ratios (ratios of height/width) of the picture_bounds and
margin_bounds rectangles. If picture_bounds has the greater aspect ratio, then it is relatively taller
and thinner than margin_bounds. In that case, the program scales to make picture_bounds the same
height as margin_bounds and sets its width appropriately.

649

Printing

25_571982 ch23.qxd 9/1/05 7:39 PM Page 649

If picture_bounds has the smaller aspect ratio, it is relatively wider and shorter than margin_bounds.
In that case, the program scales to make picture_bounds the same width as margin_bounds and sets
its height accordingly.

After calculating the scale factor it needs, the program calls the Graphics object’s ScaleTransform
method to add it to the Graphics object’s transformation. It uses the MatrixOrder.Append parameter
to make the object apply the scaling transformation after its first translation.

Finally, the subroutine applies another translation to move the center of the scaled picture_bounds
rectangle from the origin to the center of margin_bounds. It again uses the MatrixOrder.Append
parameter, so the new transformation is applied after the previous ones.

‘ Transform the Graphics object to fit the rectangle
‘ picture_bounds to margin_bounds and center it.
Private Sub FitPictureToMargins(ByVal gr As Graphics, _
ByVal picture_bounds As RectangleF, ByVal margin_bounds As RectangleF)

‘ Remove any existing transformation.
gr.ResetTransform()

‘ Translate to center picture_bounds at the origin.
gr.TranslateTransform(_

-(picture_bounds.Left + picture_bounds.Width / 2), _
-(picture_bounds.Top + picture_bounds.Height / 2))

‘ Scale to make picture_bounds fit margin_bounds.
‘ Compare the aspect ratios.
Dim margin_aspect As Single = margin_bounds.Height / margin_bounds.Width
Dim picture_aspect As Single = picture_bounds.Height / picture_bounds.Width
Dim scale As Single
If picture_aspect > margin_aspect Then

‘ picture_bounds is relatively tall and thin.
‘ Make it as tall as possible.
scale = margin_bounds.Height / picture_bounds.Height

Else
‘ picture_bounds is relatively short and wide.
‘ Make it as wide as possible.
scale = margin_bounds.Width / picture_bounds.Width

End If
‘ Scale.
gr.ScaleTransform(scale, scale, MatrixOrder.Append)

‘ Translate to move the origin to the center of margin_bounds.
gr.TranslateTransform(_

margin_bounds.Left + margin_bounds.Width / 2, _
margin_bounds.Top + margin_bounds.Height / 2, _
MatrixOrder.Append)

End Sub

A program can use subroutine FitPictureToMargins exactly as it can use subroutine
CenterPictureInMargins. Figure 23-6 shows the result. This routine works whether the picture area is
relatively short and wide (as in this case) or tall and thin. It will also shrink a picture that is bigger than
the page.

650

Chapter 23

25_571982 ch23.qxd 9/1/05 7:39 PM Page 650

Figure 23-6: Subroutine FitPictureToMargins
makes it easy to center a picture within a printed
page, making it as large as possible without distortion.

Simplifying Drawing and Printing
Many applications draw some graphics, possibly with some user interaction, and then later print the
same graphics, perhaps centered and scaled to fit the page.

You can make this process easier if you move all of the program’s drawing code into subroutines that are
independent of the drawing or printing surface. These drawing routines should take as a parameter a
Graphics object on which to draw. Then it doesn’t matter whether the program passes these routines
the Graphics object provided by a PrintPage event handler or a control’s Paint event handler. They
can even use a Graphics object generated by control’s CreateGraphics method.

The DrawGraphics subroutine shown in the following code encapsulates the drawing code used in the
previous sections. It takes a Graphics object as a parameter, draws a background on it, and calls
DrawBar to draw five hatched rectangles to form a bar chart.

651

Printing

25_571982 ch23.qxd 9/1/05 7:39 PM Page 651

‘ Draw the bar chart with world coordinate bounds (100, 100)-(600, 400).
Private Sub DrawGraphics(ByVal gr As Graphics)

‘ Draw a rectangle around the chart.
Dim picture_rect As New Rectangle(100, 100, 500, 300)
gr.FillRectangle(Brushes.LightGray, picture_rect)
gr.DrawRectangle(Pens.Black, picture_rect)

‘ Draw the values.
Dim x As Integer = 100
DrawBar(gr, x, 200, HatchStyle.BackwardDiagonal)
DrawBar(gr, x, 280, HatchStyle.Vertical)
DrawBar(gr, x, 240, HatchStyle.ForwardDiagonal)
DrawBar(gr, x, 170, HatchStyle.Horizontal)
DrawBar(gr, x, 290, HatchStyle.DiagonalCross)

End Sub

Now the PrintPage event handler and other code can call this subroutine to draw the program’s graph-
ics. The following code shows how a program can use this routine to draw the bar chart on a
PictureBox named picCanvas. The control’s Resize event handler invalidates the control, so the
Paint event handler can redraw the entire surface. The control’s Paint event handler clears the
PictureBox, calls FitPictureToMargins to fit the bar chart to the PictureBox’s surface (minus a 3-
pixel margin), and calls DrawGraphics to draw the bar chart.

Private Sub picCanvas_Resize(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles picCanvas.Resize

picCanvas.Invalidate()
End Sub
Private Sub picCanvas_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles picCanvas.Paint

‘ Clear the picture.
e.Graphics.Clear(picCanvas.BackColor)

‘ This routine draws a bar chart for 5 values
‘ in printer coordinates between
‘ (100, 100) - (600, 400).
‘ Transform the Graphics object to center the results.
Dim picture_rect As New RectangleF(100, 100, 500, 300)
Dim margin_rect As New RectangleF(_

picCanvas.ClientRectangle.X + 3, _
picCanvas.ClientRectangle.Y + 3, _
picCanvas.ClientRectangle.Width - 6, _
picCanvas.ClientRectangle.Height - 6)

FitPictureToMargins(e.Graphics, picture_rect, margin_rect)

‘ Draw the bar chart.
DrawGraphics(e.Graphics)

End Sub

Figure 23-7 shows the result.

652

Chapter 23

25_571982 ch23.qxd 9/1/05 7:39 PM Page 652

Figure 23-7: A program can use subroutine FitPictureToMargins to make a
picture fit a PictureBox as well as a printed page.

This technique minimizes the amount of drawing code. It lets the program share the same code for
drawing, printing, and print previewing. That means less code to debug and maintain. It also means that
you need only to modify the code in one place if you need to change it later.

By calling FitPictureToMargins, the program makes the bar chart fill the PictureBox as much as
possible without distorting it. If the control is anchored or docked so that it resizes when the form does,
the bar chart also resizes so that it is as big as possible, a fairly impressive feat at the cost of a single sub-
routine call.

While very useful, the technique of using a common routine to draw and print graphics is not appropri-
ate for every application. Sometimes a program must take advantage of the particular characteristics of a
printer or screen object, and the results may not make sense for other types of devices.

For example, suppose that a program draws fractals by performing time-consuming calculations for
each pixel. It may make sense to show the results as the pixels are calculated on the screen. That would
take advantage of the fact that the user can immediately see the results of pixels drawn on the screen. On
the printer, however, the results aren’t visible until the complete page is printed, so sending pixels to the
printer one at a time doesn’t particularly help the user and may slow printing. It might make more sense
to draw the complete image on a Bitmap in memory and then send the result to the printer all at once by
using the Graphics object’s DrawImage method.

653

Printing

25_571982 ch23.qxd 9/1/05 7:39 PM Page 653

Similarly, the text-printing example described earlier in this chapter prints a long series of paragraphs
broken across several pages. It takes advantage of the printed page’s exact size and margins. You might
be able to display the same page data in a scrolling window on the screen, but that probably wouldn’t
make much sense. In that application, trying to force screen drawing and page printing routines to pro-
duce exactly the same result would probably be a waste of time.

Summary
The PrintDocument object sits at the heart of the standard Visual Basic printing process. A program
makes a PrintDocument object and then responds to its BeginPrint, QueryPageSettings,
PrintPage, and EndPrint events to generate a printout.

The PrintDocument object’s Print method immediately generates a printout. You can also attach the
PrintDocument to a PrintDialog, PrintPreviewDialog, or PrintPreviewControl and use those
objects to display previews and generate printouts.

This chapter describes printing in general. Using the Graphics object provided by the
PrintDocument’s PrintPage event, you can print lines, curves, text, images, and anything else you
can draw to the screen.

One particular kind of printing is very common in business applications: reporting. While you can use
the general printing techniques described in this chapter to draw your own reports, Visual Studio 2005
Professional Edition comes with a tool that simplifies many reporting tasks: Crystal Reports.

Crystal Reports can help you build, format, display, and print reports. It can automatically load data
from a database and display it in tabular form complete with headers, sections, totals, subtotals, and
graphs. Chapter 24, “Reporting,” provides an introduction to Crystal Reports.

654

Chapter 23

25_571982 ch23.qxd 9/1/05 7:39 PM Page 654

Reporting
Visual Studio 2005 Professional Edition and the higher editions come with Crystal Reports
for Visual Studio 2005. Crystal Reports is a product that helps you build, display, and print
reports in Visual Basic applications.

Crystal Reports is a large and complex application that provides a huge number of wizards, for-
mats, charts, and other tools for building reports, so there isn’t enough room here to do it justice.
This chapter provides a quick introduction to using Crystal Reports to build a few simple exam-
ples. For more detailed information about particular topics, consult the online help at
msdn.microsoft.com/library/en-us/crystlmn/html/crconcrystalreports.asp. The
help includes several examples that show how to make reports with certain common formats.

You may also want to visit the Web site of Business Objects (the makers of Crystal Reports) at
www.businessobjects.com and their Web page for Crystal Reports www.businessobjects.com/
products/reporting/crystalreports/default.asp.

For more in-depth information, read a book that covers only Crystal Reports. Quite a few books
about Crystal Reports are available for developers with all levels of experience, including
Professional Crystal Reports for Visual Studio .NET (Wiley Publishing, 2004).

Repor t Objects
Normally, when you think of a report, you probably think of some sort of physical output, either
on a computer screen or on paper. In Crystal Reports, a Report object represents the information
needed to generate a report. It determines which fields are selected from what data source, how
the fields are arranged and summarized, and any text that is displayed on the result.

A report is stored in a file with a .rpt extension. This file can be either included inside the appli-
cation or loaded from a separate file. Each of these approaches has its advantages. Embedding a
report in an application makes using and distributing the application somewhat easier. On the
other hand, if an application loads a report from an external file, you can modify or replace the
report file without recompiling the application.

26_571982 ch24.qxd 9/1/05 7:33 PM Page 655

At run time, a program can attach a report (either internal or external) to a data source and then use a
CrystalReportViewer control to display the result. This control provides tools that enable the user to
move between the report’s different pages, zoom in and out, navigate through report groups using a tree
view, view subreports, print or export the report, and so forth.

Building a Repor t
This section describes a simple example that uses an internal report to display student test scores. The
report’s data is taken from an Access database containing two tables.

The Students table contains the fields LastName, FirstName, and StudentId. The Scores table contains
the fields StudentId, TestNumber, and Score. The StudentId field provides the link between the two
tables.

Figure 24-1 shows the desired result. Each student’s scores are grouped in a separate section that ends
with the student’s average score. The report as a whole ends by displaying the class average.

Figure 24-1: This report displays students’ test scores.

656

Chapter 24

26_571982 ch24.qxd 9/1/05 7:33 PM Page 656

To build the example program, start a new Windows application project. First you must define the
report. Open the Project menu and select the Add New Item command. Select the Crystal Report tem-
plate and enter a meaningful name for the report file, as shown in Figure 24-2.

Figure 24-2: To create a report, select the Crystal Report template.

When you click Add, the Crystal Reports Gallery shown in Figure 24-3 appears (possibly after you
accept a Crystal Reports license agreement). You can use the gallery to build a blank report, a report
based on an existing report, or a report built by a wizard. For this example, select the “Using the Report
Wizard” option and the Standard expert, and click OK.

The Standard Report Creation Wizard, shown in Figure 24-4, starts by letting you define the report’s
data source. Use the Available Data Sources display on the left to select the data source. To create a new
data source, open the Create New Connection item. Then expand the appropriate connection type. For
this example, which uses an Access database, you would expand the OLE DB (ADO) item.

657

Reporting

26_571982 ch24.qxd 9/1/05 7:33 PM Page 657

Figure 24-3: Select the report type from the
Crystal Reports Gallery.

Figure 24-4: The Standard Report Creation Wizard’s Data step lets you
define the report’s data source.

658

Chapter 24

26_571982 ch24.qxd 9/1/05 7:33 PM Page 658

If a connection item contains no connections, expanding it displays an appropriate connection wizard. If
the item contains some previously built connections, expanding the item lists those connections and dis-
plays a Make New Connection item. Double-clicking this item also displays an appropriate connection
wizard.

Figure 24-5 shows the connection wizard for an OLE DB (ADO) connection. Select the provider you
want to use for the connection, and click Next. For an Access database, select Microsoft Jet 4.0 OLE DB
Provider.

Figure 24-5: Use this wizard to define an OLE DB (ADO)
connection.

When you click Next, the connection wizard asks you to enter the database name, as shown in Figure
24-6. Click the Browse button to search for the database. You can also select the database type from the
drop-down list. In this example, the data comes from an Access database, but the provider can also read
data from a number of other data sources such as dBASE, Excel, Lotus, Paradox, and text files.

After you enter the database name, click Finish to build the connection. The Standard Report Creation
Wizard then lists the database’s tables, as shown in Figure 24-4. Select the tables that contain the data
you want to display and click the > button to add them to the Selected Tables list. In Figure 24-4, the
Students and TestScores tables are selected.

659

Reporting

26_571982 ch24.qxd 9/1/05 7:33 PM Page 659

Figure 24-6: Enter the database’ name.

When you click Next, the wizard displays the Link page shown in Figure 24-7. Drag the tables into con-
venient positions. Then click and drag the StudentId field from the Students table onto the StudentId
field in the TestScores table. This defines the relationship between the two tables. If you click Auto-
Arrange, the wizard will rearrange the tables so that it’s easier to see the link.

Click Next to see the Fields page shown in Figure 24-8. Select the fields that you want to display and
click the > button to move them to the “Fields to Display” list. In Figure 24-8, the Students table’s
FirstName, LastName, and StudentId fields are selected, together with the TestScores table’s
TestNumber and Score fields. The TestScores table’s StudentId field is not selected because it duplicates
the value in the Students table’s StudentId field.

660

Chapter 24

26_571982 ch24.qxd 9/1/05 7:33 PM Page 660

Figure 24-7: Use the Link page to define links between tables.

Figure 24-8: Use the Fields page to select the fields displayed by the report.

661

Reporting

26_571982 ch24.qxd 9/1/05 7:33 PM Page 661

When you click Next, the wizard displays the Grouping page shown in Figure 24-9. Here, you can select
fields that should be used to group results. In Figure 24-9, the Students.StudentId field has been selected
as the primary group. When the report runs, it will group together all of the records for each student.
The figure also selects the TestScores.TestNumber field. This ensures that the values in this field will be
sorted.

Figure 24-9: Use the Grouping page to determine how the report groups records.

Click Next to display the Summaries page shown in Figure 24-10. This page lets you add summary
information to the report. Initially, the page displays some rather odd selections (including the sums of
the StudentId, TestScore, and TestNumber values). It’s hard to imagine wanting to add up all of the test
numbers.

In the upper group, select the sum of TestScores.Score and use the drop-down on the lower right to
select Average instead of Sum. Remove the other summary fields.

Click Next to display the Group Sorting page shown in Figure 24-11. You can use this page to sort
groups based on their summary data. For example, you could sort students based on their average test
scores. This example doesn’t sort the groups by summary data, so they will appear sorted by the group
field StudentId. (Go back to Figure 24-9 and notice that the drop-down on the lower right says that the
group will be sorted in ascending order.)

662

Chapter 24

26_571982 ch24.qxd 9/1/05 7:33 PM Page 662

Figure 24-10: The Summaries page lets you add summary information to the report.

Figure 24-11: Use the Group Sorting page to sort the items in groups.

663

Reporting

26_571982 ch24.qxd 9/1/05 7:33 PM Page 663

When you click Next, the wizard displays the Chart page shown in Figure 24-12. Select the type of chart
you want to add to the report. Figure 24-12 is shown selecting a bar chart, but this example assumes that
you don’t want any chart, so select the No Chart option before continuing.

Figure 24-12: Indicate the kind of chart you want to add to the report, if any.

After you select a chart type, click Next to display the Record Selection page shown in Figure 24-13. This
page lets you filter the records that are selected for the report. Move the fields you want to use to select
records to the list on the right. Pick the selection operator you want to use in the drop-down below the
list. If the operator requires extra data, additional fields appear below the drop-down.

For example, in Figure 24-13 the selection operator is “is less than or equal to.” When you select this
operator, another drop-down appears to let you enter a value to compare to the Students.LastName
field. The wizard populates the drop-down with Students.LastName values taken from the database.

Figure 24-13 shows a record selection field selected, but this example assumes that you want all of the
records, so remove this field before you continue.

When you click Next, the wizard displays its final page, the Report Style page shown in Figure 24-14.
Select a style and click Finish.

664

Chapter 24

26_571982 ch24.qxd 9/1/05 7:33 PM Page 664

Figure 24-13: Use the Record Selection page to filter the records included in the report.

Figure 24-14: The Report Style page lets you pick report formatting options.

665

Reporting

26_571982 ch24.qxd 9/1/05 7:33 PM Page 665

Figure 24-15 shows the resulting report in the development environment. The horizontal gray bars indi-
cate the report’s different sections. These include report headers and footers, page headers and footers,
group headers and footers, and a details section inside the innermost group.

Figure 24-15: You can modify the report in the development environment.

Within each section, text surrounded by brackets indicates labels and text fields on the report. When the
report executes, it will fill these in with values taken from the database.

CrystalRepor tViewer
At this point, the report is ready to generate output, but you still need to display the result somehow.
One way to view the report is using a CrystalReportViewer control.

Open a form, select the Toolbox’s Crystal Reports section, and add a CrystalReportViewer control to
the form. Select the control, open the Properties window, click on the control’s ReportSource property,
and click the drop-down arrow on the right. Select the entry labeled TestScores.StudentTestScores. Here
“TestScores” is the project’s namespace and “StudentTestScores” is the name of the report you created in
the previous section.

666

Chapter 24

26_571982 ch24.qxd 9/1/05 7:33 PM Page 666

When you select this entry, Visual Basic makes an instance of the report, adds it to the form’s component
area, and attaches the CrystalReportViewer control to the new instance so the CrystalReportViewer
displays the report. If you run the program now, you will see a result similar to the one shown in
Figure 24-16.

Figure 24-16: The initial report may need some formatting changes.

Customizing a Repor t
If you look closely at Figure 24-16, you can probably think of several ideas for improving the report.
While the StudentId field groups records, it is probably not the value that you would use to locate a
student’s records. It would be more convenient to display the students’ names instead.

The StudentId, LastName, and FirstName fields are repeated for every detail row, even though they are
the same for each StudentId group.

The report also has some basic arrangement problems. The date field in the upper-left corner is also too
small to show the entire date. Each student’s average test score is shown, but the label to the left is the
student’s ID, not something meaningful. The average would also look better aligned below the students’
scores. Finally, the columns are a lot wider than they probably need to be, making it hard to read the
whole report.

667

Reporting

26_571982 ch24.qxd 9/1/05 7:33 PM Page 667

Fortunately, it’s relatively easy to customize the report. The basic idea is similar to using the Visual
Studio development environment to customize a form. The Toolbox provides tools that you can place on
the report just as you place controls on a form. When you select an object on the report, you can view
and modify the object’s properties in the Properties window.

While the basic idea is the same, some of the details are different. For example, you cannot change a Text
Object’s text in the Properties window. Instead you need to right-click on the object, select the Edit Text
Object command, and enter the new text on the report.

Other properties have names that differ from those used by Visual Basic. For example, the
HorAlignment property determines the object’s horizontal alignment instead of Visual Basic’s
Alignment property, the Width and Height properties determine the object’s size instead of Visual
Basic’s Size property, and the TextColor property determines the field’s color instead of Visual Basic
ForeColor property.

The details are different, but the ideas should be familiar to you and you should be able to achieve the
effects you want with a little experimentation.

To make this example easier to read, start by opening the report in the development environment. Click
on the Print Date field in the page header and use its drag handles to make the field wide enough to dis-
play the full date.

To change the text displayed by the first group from StudentId to the students’ names, right-click on the
Group Header #1 bar at the top of the first group and select the Group Expert command to display the
Group Expert dialog shown in Figure 24-17.

Figure 24-17: Use the Group Expert to add, remove, and rearrange groups.

Select the Students.StudentId field in the list on the right and click the Options button to see the dialog
shown in Figure 24-18.

668

Chapter 24

26_571982 ch24.qxd 9/1/05 7:33 PM Page 668

Figure 24-18: Use the Change Group Options
command to modify a group’s properties.

Select the Options tab and check the “Customize Group Name Field” checkbox. Select the “Use a
Formula as Group Name” option. Next click the X+2 button to the option button’s right to display the
Formula Workshop shown in Figure 24-19.

Figure 24-19: The Formula Workshop helps you define formulas for the report.

669

Reporting

26_571982 ch24.qxd 9/1/05 7:33 PM Page 669

From the Formula Workshop’s field tree (the second tree from the left with the LastName field high-
lighted), drag the Students.FirstName and Students.LastName fields into the text box at the bottom. Add
text to concatenate a space between the two fields as shown in Figure 24-19.

When you are finished, click the Save and close button at the upper left. Then close the Change Group
Options dialog and the Group Expert. Now, when you run the report, this group’s name includes the
students’ names. This value is displayed both in the group’s header for each student and in the group
tree display on the left of the CrystalReportViewer control.

Select the Group #1 Name field in the group’s header, and use its grab handles to make it wide enough
to display a reasonably long name.

Because the group header displays the students’ first and last names, the report doesn’t need them in the
details section. Select those fields and delete them.

To prevent each student’s test scores from appearing in a separate visible group, right-click on the Group
Header #2 and select the Suppress (No Drill-Down) command. Then delete the Group #2 Name field
from this section and resize the section to make it as short as possible. Similarly, remove the Group #2
Name field from the Group Footer #2 section and make that section as short as possible.

Next, remove the Group #1 Name field from the Group Footer #1 section. Then use the Toolbox to add a
new Text Object to that section on the left of the existing Scores.Score control. Double-click on the control
and set its text to “Average.”

In the Report Footer section, right-click on the Grand Total field, select Edit Text Object, and change the
control’s text to “Class Average.” Finally, drag the StudentId field from the Details section to the Group
Header #1 section and drag all of the fields into more pleasing locations.

Figure 24-20 shows the rearranged report.

670

Chapter 24

26_571982 ch24.qxd 9/1/05 7:33 PM Page 670

Figure 24-20: The rearranged report is much easier to read.

External Repor ts
The previous example uses a report that is embedded in the application. Using an external report is just
as easy.

First, you must prevent Visual Basic from embedding the report in the project. In Solution Explorer,
select the report. Then in the Properties window, set the report’s Build Action property to None and set
its Copy to Output Directory property to Copy if newer. Now, when you build the application,
Visual Studio will copy the report file into the directory where it places the compiled application.

To load the report at run time, set the CrystalReportViewer control’s ReportSource property to the
report’s location, as shown in the following code:

‘ Attach the report to the CrystalReportViewer.
Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

crvTestScores.ReportSource = Application.StartupPath & “\StudentTestScores.rpt”
End Sub

671

Reporting

26_571982 ch24.qxd 9/1/05 7:33 PM Page 671

That’s all there is to it. Now, if you must modify the report, you can distribute the new report file and the
application will load the new version. You can also build a library of report files and let the application
load whichever reports the user wants to see.

Repor tDocument
The CrystalReportViewer control provides properties and methods for manipulating report output
programmatically. For example, you can set the control’s DisplayGroupTree and
ShowGroupTreeButton properties to False to prevent the user from displaying the group tree on the
control’s left.

The CrystalReportViewer does not provide properties and methods that work with the report itself,
however. For example, it cannot export the report into a file.

The ReportDocument object serves as an intermediate layer between a report and the
CrystalReportViewer control to give your program more control over the report. ReportDocument
provides access to a much larger object model that lets you interact with the report’s sections, fields, data
source, and other underlying entities.

When you create a CrystalReportViewer and attach it to a report as described earlier in this chapter,
Visual Basic makes a typed ReportDocument object and adds it to the form. If you followed the earlier
instructions carefully, you should see an object named StudentTestScores1 in the component tray below
the form. The CrystalReportViewer’s ReportSource property is attached to this object.

Your code can access this object to manipulate the report. For example, the following code gets an object
representing the report’s field named TestNumber1. It displays the object’s name and formula name.

‘ Manipulate the ReportDocument.
Dim field_object As FieldObject
field_object = DirectCast(_

StudentTestScores1.ReportDefinition.ReportObjects(“TestNumber1”), _
FieldObject)

Debug.WriteLine(“The “ & field_object.Name & _
“ field has data source “ & field_object.DataSource.FormulaName)

The following text shows the result:

The TestNumber1 field has data source {TestScores.TestNumber}

The following code exports a report into an Excel file:

‘ Export the report.
Dim output_file As String
output_file = Application.StartupPath & “\scores.xls”
StudentTestScores1.ExportToDisk(_

CrystalDecisions.Shared.ExportFormatType.Excel, output_file)

672

Chapter 24

26_571982 ch24.qxd 9/1/05 7:33 PM Page 672

The following example makes the GroupFooterSection1 section tall and gives it an aqua background. It
then makes the AvgofScore1 field red and surrounded by a double line box with a drop shadow.

‘ Make GroupFooterSection1 tall and aqua.
Dim section1 As Section
section1 = DirectCast(_

StudentTestScores1.ReportDefinition.Sections(“GroupFooterSection1”), _
Section)

section1.Height = 600
section1.SectionFormat.BackgroundColor = Color.Aqua

‘ Make the average score field red and surrounded by a box.
Dim avg_field_object As FieldObject
avg_field_object = DirectCast(_

StudentTestScores1.ReportDefinition.ReportObjects(“AvgofScore1”), _
FieldObject)

avg_field_object.Color = Color.Red
avg_field_object.Top = (section1.Height - avg_field_object.Height) \ 2
With avg_field_object.Border

.TopLineStyle = CrystalDecisions.Shared.LineStyle.DoubleLine

.BottomLineStyle = CrystalDecisions.Shared.LineStyle.DoubleLine

.LeftLineStyle = CrystalDecisions.Shared.LineStyle.DoubleLine

.RightLineStyle = CrystalDecisions.Shared.LineStyle.DoubleLine

.HasDropShadow = True
End With

Usually you can make formatting changes at design time but, as these examples show, you can manipu-
late the report’s objects at run time if necessary.

Summary
Crystal Reports is a powerful tool for generating reports. It is so powerful, in fact, that it provides far too
many features to describe in any detail here. This chapter only gives a glimpse into Crystal Reports. It
shows how to build a relatively simple report and explains how to customize it a little.

See the online help for tips and examples, and for information about specific Crystal Reports objects
such as the CrystalReportViewer control and the ReportDocument object. Read a good book on
using Crystal Reports for a more tutorial and in-depth presentation.

A few chapters up to this point have shown how to interact with the operating system. Chapter 13,
“Drag and Drop, and the Clipboard,” explains how a Visual Basic program can interact with other pro-
grams through drag and drop and the clipboard. Chapter 23, “Printing,” shows how a program can use
the system’s printer.

The chapters in the next part of the book explain more ways a program can interact with the system.
Chapter 25, “Configuration and Resources,” describes some of the ways that a Visual Basic program can
store configuration and resource values for use at run time. Some of the most useful of these include
environment variables, the Registry, configuration files, and resource files.

673

Reporting

26_571982 ch24.qxd 9/1/05 7:33 PM Page 673

26_571982 ch24.qxd 9/1/05 7:33 PM Page 674

Configuration and
Resources

A very simple application performs a well-defined task that changes minimally over time. You
may not need to configure such an application for different circumstances.

Many more complex applications, however, must be configured differently to meet different con-
ditions. For example, the application might display different data for different kinds of users (such
as data-entry clerks, supervisors, managers, and developers). Similarly, you might configure an
application for various levels of support. You might have different configurations for trial, basic,
professional, and enterprise versions.

The application may also need to save state information between sessions. It might remember the
types of forms that were last running, their positions, and their contents. The next time the pro-
gram runs, it can restore those forms so that the user can get back to work as quickly as possible.

Visual Studio provides many ways to store and use application configuration and resource infor-
mation. This chapter describes some of these tools. It starts by describing the My namespace that
was invented to make these tools easier to find. It then tells how an application can use environ-
ment variables, the Registry, configuration files, resource files, and the Application object.

This chapter does not explain how to work with disk files more directly. Databases, XML files, text
files, and other disk files are generally intended for storage of larger amounts of data, rather than
simple configuration and resource information. Those topics are described more thoroughly in
Chapter 11, “Database Controls and Objects,” and Chapter 27, “File System Objects.”

My
In previous versions of Visual Basic .NET, programmers discovered that many common tasks were
difficult to perform. For example, many programs get the name of the user logged on to the com-
puter, read a text file into a string, get the program’s version number, or examine all of the applica-
tion’s currently loaded forms. While you can accomplish all of these tasks in previous versions of
Visual Basic .NET, doing so is awkward.

27_571982 ch25.qxd 9/1/05 7:32 PM Page 675

To make these common tasks easier, Visual Basic 2005 introduced the My namespace to provide short-
cuts for basic chores such as these. For example, to read the text in a file in Visual Basic .NET 2003, you
must create some sort of object that can work with a file such as a StreamReader, use the object to read
the file (the ReadToEnd method for a StreamReader), and the dispose of the object. The following code
shows how you might do this in Visual Basic .NET 2003:

Dim stream_reader As New IO.StreamReader(file_name)
Dim file_contents As String = stream_reader.ReadToEnd()
stream_reader.Close()

This isn’t too difficult, but it does seem more complicated than such a simple everyday task should be.

The My namespace provides a simpler method for reading a file’s contents. The Computer
.FileSystem.ReadAllText method reads a text file in a single statement. The following statement
reads the text in the file C:\Temp\Test.txt and displays it in a message box:

Dim file_contents As String = _
My.Computer.FileSystem.ReadAllText(“C:\Temp\Test.txt”)

There is nothing new in the My namespace. All the tasks it performs you can already handle using exist-
ing methods. The My namespace just makes some things easier.

This chapter describes the My namespace and the shortcuts it provides.

Me and My
Some programmers confuse the Me object and the My namespace. Me is a reference to the object that is
currently executing code. If a piece of code is inside a particular class, Me is a reference to the class object
that is running.

For example, if the class is a form, then within the form’s code, Me returns a reference to the running
form. If the form’s code must change the form’s BackColor property, it can use the Me object to explic-
itly refer to its own form. It can also omit the keyword to refer to its form implicitly. That means the fol-
lowing two statements are equivalent:

Me.BackColor = SystemColors.Control
BackColor = SystemColors.Control

If you build several instances of a class, the code in each instance gets a different value for Me. Each
instance’s Me object returns a reference to that instance.

On the other hand, My isn’t an object at all. It is a namespace that contains objects, values, routines, and
other namespaces that implement common functions. The My namespace is a single unique entity
shared by all of the code throughout the application.

It may help if you try not to think of the My namespace as a thing in and of itself. The My namespace
doesn’t do anything all alone. It needs to be paired with something within the namespace. Think of
My.Application, My.User, My.Computer, and so forth. It makes sense to think of My.Computer as repre-
senting the computer.

676

Chapter 25

27_571982 ch25.qxd 9/1/05 7:32 PM Page 676

My Sections
The following table briefly outlines the major sections within the My namespace. Later parts of this
chapter and Appendix P describe these sections in greater detail.

Section Purpose

My.Application Provides information about the current application: current directory,
culture, assembly information (such as program version number, log,
splash screen, and forms)

My.Computer Controls the computer hardware and system software: audio, clock,
keyboard, clipboard, mouse, network, printers, Registry, and file system

My.Forms Provides access to an instance of each type of Windows form defined in
the application

My.Resources Provides access to the application’s resources: strings, images, audio,
and so forth

My.Settings Provides access to the application’s settings

My.User Provides access to information about the current user

My.WebServices Provides access to an instance of each XML Web service referenced by
the application

Environment
Visual Basic provides a couple of tools for working with the application’s environment. The following
sections describe two: the Environ function and the System.Environment object.

Environ
Environment variables are normally set on a systemwide basis before the program begins. In older oper-
ating systems, batch files such as autoexec.bat set these values. More recent systems provide Control
Panel tools to set environment variables. In Windows XP, open the Control Panel, run the System applet,
select the Advanced tab to see the page shown in Figure 25-1. Alternatively, you can right-click on My
Computer and select Properties from the context menu.

677

Configuration and Resources

27_571982 ch25.qxd 9/1/05 7:32 PM Page 677

Figure 25-1: Click the Advanced tab to see the
Environment Variables button.

Click the Environment Variables button to display the dialog shown in Figure 25-2. Use the dialog to
add, modify, or remove environment variables.

Figure 25-2: Use this dialog to add, modify, and
delete environment variables.

678

Chapter 25

27_571982 ch25.qxd 9/1/05 7:32 PM Page 678

Environment variables are loaded when a process starts, and they are inherited by any process launched
by the initial process. For Visual Basic development, that means the variables are loaded when you start
Visual Studio and they are inherited by the program you are working on when you start it. That means
if you make changes to the system’s environment variables, you need to close and reopen Visual Studio
before your program will see the changes.

At run time, a Visual Basic application can use the Environ function to retrieve environment variable
values. If you pass this function a number, it returns a string giving the statement that assigns the corre-
sponding environment variable. For example, Environ(1) might return the following string:

ALLUSERSPROFILE=C:\Documents and Settings\All Users

You should pass the function a number between 1 and 255. Environ returns a zero-length string if the
number does not correspond to an environment variable. The following code uses this fact to list all the
application’s environment variables: When it finds a variable that has zero length, it knows it has read
all of the variables with values.

For i As Integer = 1 To 255
If Environ(i).Length = 0 Then Exit For
Debug.WriteLine(Environ(i))

Next i

If you pass the Environ function the name of an environment variable, the function returns the vari-
able’s value or Nothing if the variable does not exist. The following code displays the value assigned to
the USERNAME variable:

MessageBox.Show(Environ(“USERNAME”))

System.Environment
The Environ function is easy to use, but it’s not very flexible; it cannot create or modify variable values.
Setting and modifying environment variables isn’t as useful as it might seem, however, because each
process has its own environment variables. If an application creates a new variable, other processes will
not see it anyway. The only way another process will see the variable is if an application sets the vari-
able’s value and then starts the new process (for example, by using the Shell statement).

The System.Environment object provides methods for getting and setting environment variables. It
also provides properties and methods for working with many other items in the application’s environ-
ment. The following table describes the Environment object’s most useful properties.

Property Purpose

CommandLine Returns the process’s command line.

CurrentDirectory Gets or sets the fully qualified path to the current directory.

ExitCode Gets or sets the process’s exit code. If the program starts from a Main
function, that function’s return value also sets the exit code.

HasShutdownStarted Returns True if the common language run time is shutting down.

Table continued on following page

679

Configuration and Resources

27_571982 ch25.qxd 9/1/05 7:32 PM Page 679

Property Purpose

MachineName Returns the computer’s NetBIOS name.

NewLine Returns the environment’s defined new line string. For example, this
might be a carriage return followed by a line feed.

OSVersion Returns an OperatingSystem object containing information about the
operating system. This object provides the properties ServicePack
(name of the most recent service pack installed), Version (includes
Major, Minor, Build, and Revision; ToString combines them all),
VersionString (combines operating system name, version, and
most recent service pack), and Platform, which can be Unix,
Win32NT (Windows NT or later), Win32S (runs on 16-bit Windows to
provide access to 32-bit applications), Win32Windows (Windows 95
or later), or WinCE.

ProcessorCount Returns the number of processors on the computer.

StackTrace Returns a string describing the current stack trace.

SystemDirectory Returns the system directory’s fully qualified path.

TickCount Returns the number of milliseconds that have elapsed since the sys-
tem started.

UserDomainName Returns the current user’s network domain name.

UserInteractive Returns True if the process is interactive. This only returns False if
the application is a service process or Web Service.

UserName Returns the name of the user who started the process.

Version Returns a Version object describing the Common Language Run-
time. This object provides the properties Major, Minor, Build, and
Revision. Its ToString method combines them all.

WorkingSet Returns the amount of physical memory mapped to this process in
bytes.

The following table describes the Environment object’s most useful methods.

Method Purpose

Exit Ends the process immediately. Form Closing and
Closed event handlers do not execute.

ExpandEnvironmentVariables Replaces environment variable names in a string with
their values. For example, the following code displays
the current user’s name.
MessageBox.Show(“I am %username%.”)

GetCommandLineArgs Returns an array of strings containing the application’s
command-line arguments. The first entry (with index 0)
is the name of the program’s executable file.

680

Chapter 25

27_571982 ch25.qxd 9/1/05 7:32 PM Page 680

Method Purpose

GetEnvironmentVariable Returns an environment variable’s value.

GetEnvironmentVariables Returns an IDictionary object containing the names
and values of all environment variables.

GetFolderPath Returns the path to a system folder. This method’s
parameter is a SpecialFolder enumeration value such
as Cookies, Desktop, SendTo, and Recent. See the
online help for a complete list of available folders.

GetLogicalDrives Returns an array of strings containing the names of the
logical drives on the current computer.

SetEnvironmentVariable Creates, modifies, or deletes an environment variable.

Registr y
The System Registry is a hierarchical database that stores values for applications on the system. The hier-
archy’s root is named MyComputer and is divided into the six subtrees described in the following table.

Registry Branch Contains

HKEY_CLASSES_ROOT Definitions of types or classes, and properties associated
with those types.

HKEY_CURRENT_CONFIG Information about the system’s current hardware
configuration.

HKEY_CURRENT_USER The current user’s preferences (such as environment
variable settings, program group information, desktop
settings, colors, printers, network connections, and pref-
erences specific to applications). Each user has separate
HKEY_CURRENT_USER values. This is usually the sub-
tree where a Visual Basic application stores and retrieves
its settings.

HKEY_DYN_DATA Performance data for Windows 95, 98, and Me.

HKEY_LOCAL_MACHINE Information about the computer’s physical state, includ-
ing bus type, system memory, installed hardware and
software, and network logon and security information.

HKEY_USERS Default configuration information for new users and the
current user’s configuration.

Depending on your operating system, the Registry may also contain the unsupported keys HKEY_
PERFORMANCE_DATA, HKEY_PERFORMANCE_NLSTEXT, and HKEY_PERFORMANCE_TEXT.

681

Configuration and Resources

27_571982 ch25.qxd 9/1/05 7:32 PM Page 681

Visual Basic provides two main ways to access the Registry. First, you can use Visual Basic’s native
Registry methods: SaveSetting, GetSetting, GetAllSettings, and DeleteSetting. Second, you
can use the tools in the My.Computer.Registry namespace. These two methods are described in the fol-
lowing sections.

You can also use API functions to manipulate the Registry. These are more complicated and not gener-
ally necessary (the My.Computer.Registry namespace contains some very powerful tools), so they are
not described here.

Native Visual Basic Registry Methods
Visual Basic provides four methods for saving and reading Registry values for a particular application:
SaveSetting, GetSetting, GetAllSettings, and DeleteSetting.

The SaveSetting method saves a value into a Registry key. This routine takes as parameters the name
of the application, a section name, the setting’s name, and the setting’s value. For example, the following
code saves the value stored in the m_CurrentDirectory variable in the ImageOrganizer application’s
Config section with the name CurrentDirectory:

SaveSetting(“ImageOrganizer”, “Config”, “CurrentDirectory”, m_CurrentDirectory)

SaveSetting automatically creates the application and section areas in the Registry if they don’t
already exist.

This value is saved at the following Registry location. This is all one name; it just doesn’t fit on one line
here.

HKEY_CURRENT_USER\Software\VB and VBA Program Settings\
ImageOrganizer\Config\CurrentDirectory

If you use Visual Basic’s SaveSetting, GetSetting, GetAllSettings, and DeleteSetting method,
you don’t need to worry about the first part of this Registry path. You need only to remember the appli-
cation name, section name, and setting name.

The GetSetting function retrieves a Registry value. It takes as parameters the application name, section
name, and setting name you used to save the value. It can optionally take a default value to return if the
setting doesn’t exist in the Registry. The following code displays the value saved by the previous call to
SaveSetting. If no value is saved in the Registry, it displays the string “<none>.”

MessageBox.Show(_
GetSetting(“ImageOrganizer”, “Config”, “CurrentDirectory”, “<none>”)

The GetAllSettings function returns a two-dimensional array of name and value pairs for a Registry
section. The following code uses GetAllSettings to fetch the values stored in the ImageOrganizer
application’s Config section. It loops through the results, displaying the setting names and values.

Dim settings As String(,) = GetAllSettings(“ImageOrganizer”, “Config”)
For i As Integer = 0 To settings.GetUpperBound(0)

Debug.WriteLine(settings(i, 0) & “ = “ & settings(i, 1))
Next i

682

Chapter 25

27_571982 ch25.qxd 9/1/05 7:32 PM Page 682

If an application needs to use all of the settings in a section, GetAllSettings may be faster than using
GetSetting repeatedly.

The DeleteSetting method removes a setting, section, or an entire application’s setting area from the
Registry. The following code shows how to remove each of those kinds of items:

‘ Remove the ImageOrganizer/Config/CurrentDirectory setting.
DeleteSetting(“ImageOrganizer”, “Config”, “CurrentDirectory”)

‘ Remove the ImageOrganizer/Config section.
DeleteSetting(“ImageOrganizer”, “Config”)

‘ Remove all of the ImageOrganizer application’s settings.
DeleteSetting(“ImageOrganizer”)

As part of its uninstallation procedure, a program should remove any Registry entries it has made. All
too often, programs leave the Registry cluttered with garbage. This not only makes it harder to figure
out what real values the Registry contains, but it can also slow the system down.

In an attempt to combat this problem, Microsoft is promoting “XCopy compatibility,” where applica-
tions store values in configuration files instead of the Registry. Then you can easily copy and remove
these files rather than modifying the Registry.

My.Computer.Registry
The My.Computer.Registry namespace provides objects that manipulate the Registry.
My.Computer.Registry has seven properties that refer to objects of type RegistryKey. The following
table lists these objects and the corresponding Registry subtrees.

My.Computer.Registry Property Registry Subtree

ClassesRoot HKEY_CLASSES_ROOT

CurrentConfig HKEY_CURRENT_CONFIG

CurrentUser HKEY_CURRENT_USER

DynData HKEY_DYNAMIC_DATA

LocalMachine HKEY_LOCAL_MACHINE

PerformanceData HKEY_PERFORMANCE_DATA

Users HKEY_CURRENT_CONFIG

The program can use these RegistryKey objects to work with the corresponding Registry subtree. The
following table describes the most useful properties and methods provided by the RegistryKey class.

683

Configuration and Resources

27_571982 ch25.qxd 9/1/05 7:32 PM Page 683

Property or Method Purpose

Name Returns the key’s Registry path.

Close Closes the key and writes it to disk if it has been modified.

CreateSubKey Creates a new subkey or opens an existing subkey within this key.

DeleteSubKey Deletes the specified subkey. This method will delete the subkey if
it contains values, but not if it contains other subkeys. The subkey
to be deleted need not be a direct child of this key. For example,
the following code uses the CurrentUser RegistryKey object to
delete the descendant key Software\VB and VBA Program Settings\
ImageOrganizer\Config.
My.Computer.Registry.CurrentUser.DeleteSubKey(_
“Software\VB and VBA Program Settings\ImageOrganizer\Config”)

DeleteSubKeyTree Recursively deletes a subkey and any child subkeys it contains. The
subkey to be deleted need not be a direct child of this key. For exam-
ple, the following code uses the CurrentUser RegistryKey object
to delete all of the settings for the ImageOrganizer application.
My.Computer.Registry.CurrentUser.DeleteSubKeyTree(_

“Software\VB and VBA Program Settings\ImageOrganizer”)

DeleteValue Deletes a value from the key.

Flush Writes any changes to the key into the Registry.

GetSubKeyNames Returns an array of strings giving subkey names.

GetValue Returns the value of a specified value within this key.

GetValueKind Returns the type of a specified value within this key. This can be
Binary, DWord, ExpandString, MultiString, QWord, String,
or Unknown.

GetValueNames Returns an array of strings giving the names of all of the values
contained within the key.

OpenSubKey Returns a RegistryKey object representing a descendant key.
Parameters give the subkey name, and indicate whether the
returned RegistryKey should allow you to modify the subkey.

SetValue Sets a value within the key.

SubKeyCount Returns the number of subkeys that are this key’s direct children.

ToString Returns the key’s name.

ValueCount Returns the number of values stored in this key.

The following example opens the HKEY_CURRENT_USER\Software\VB and VBA Program
Settings\ImageOrganizer\Config key. It reads the CurrentDirectory value from that key using

684

Chapter 25

27_571982 ch25.qxd 9/1/05 7:32 PM Page 684

the default value “C:\” and saves the result in the variable current_directory. It closes the key and
then uses the DeleteSubKey method to delete the ImageOrganizer application’s Config section.

‘ Open the application’s Config subkey.
Dim config_section As Microsoft.Win32.RegistryKey = _

My.Computer.Registry.CurrentUser.OpenSubKey(_
“Software\VB and VBA Program Settings\ImageOrganizer\Config\”)

‘ Get the CurrentDirectory value.
Dim current_directory As String = _

CType(config_section.GetValue(“CurrentDirectory”, “C:\”), String)

‘ Close the subkey.
config_section.Close()

‘ Delete the application’s whole Config section.
My.Computer.Registry.CurrentUser. DeleteSubKey DeleteSubKey (_

“Software\VB and VBA Program Settings\ImageOrganizer\Config”)

The following code shows the equivalent operations using Visual Basic’s native Registry methods.

‘ Get the CurrentDirectory value.
Dim current_directory As String = _

GetSetting(“ImageOrganizer”, “Config”, “CurrentDirectory”, “C:\”)

‘ Delete the application’s whole Config section.
DeleteSetting(“ImageOrganizer”, “Config”)

It is generally easier to use Visual Basic’s native Registry methods. Those methods work only
with values in the HKEY_CURRENT_USER\Software\VB and VBA Program Settings Registry
subtree, however. If you need to access keys and values outside of this subtree, you must use the
My.Computer.Registry objects.

Configuration Files
Configuration files let you store information for a program to use at run time in a standardized external
file. You can change the values in the configuration file, and the program will use the new value the next
time it starts. That enables you to change some of the application’s behavior without needing to recom-
pile the executable program.

One way to use configuration files is through dynamic properties. Dynamic properties are automatically
loaded from the configuration file at run time by Visual Basic.

Start by defining the settings you will bind to the dynamic properties. In Solution Explorer, double-click
My Project and select the Settings tab to see the property page shown in Figure 25-3. Use this page to
define the settings that you will load at run time.

685

Configuration and Resources

27_571982 ch25.qxd 9/1/05 7:32 PM Page 685

Figure 25-3: Use this page to define application settings.

Next, add a control to a form and select it. In Properties window, open the (ApplicationSettings) entry,
click the PropertyBinding subitem, and click the ellipsis to the right to display a list of the control’s
properties.

Select the property that you want to load dynamically and click the drop-down arrow on the right to see
a list of defined settings that you might assign to the property. Figue 25-4 shows the Application Setting
dialog with this drop-down displayed. From the list, pick the setting that you want to assign to the
property.

Visual Studio adds the setting to the program’s configuration file. If you open Solution Explorer and
double-click the app.config entry, you’ll see the new dynamic property.

686

Chapter 25

27_571982 ch25.qxd 9/1/05 7:32 PM Page 686

Figure 25-4: Use the drop-down to assign a setting to the
dynamic property.

The following text shows the configuration setting sections of an app.config file. The userSettings sec-
tion is empty. The applicationSettings section defines the settings shown in Figure 25-3.

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

...
<userSettings>

<ConfigFile.Settings />
</userSettings>
<applicationSettings>

<ConfigFile.Settings>
<setting name=”txtBackColor” serializeAs=”String”>

<value>Yellow</value>
</setting>
<setting name=”txtForeColor” serializeAs=”String”>

<value>Blue</value>
</setting>
<setting name=”txtFontName” serializeAs=”String”>

<value>Comic Sans MS</value>
</setting>
<setting name=”txtFontSize” serializeAs=”String”>

<value>50</value>
</setting>
<setting name=”clrForeColor” serializeAs=”String”>

<value>Blue</value>
</setting>
<setting name=”clrBackColor” serializeAs=”String”>

<value>Yellow</value>
</setting>
<setting name=”fntFont” serializeAs=”String”>

<value>Comic Sans MS, 48pt</value>
</setting>

</ConfigFile.Settings>
</applicationSettings>

</configuration>

687

Configuration and Resources

27_571982 ch25.qxd 9/1/05 7:32 PM Page 687

When the application starts, Visual Basic loads the app.config file, reads the settings, and assigns their
values to any properties bound to them.

So far, this is just a very roundabout way to set the control’s property value. The real benefit of this
method comes later when you want to change this setting. If you look in the compiled application’s
directory (normally the bin\Debug directory when you’re developing the program), you’ll find a file
with the same name as the application but with a .config extension. If the application is called
ConfigFile.exe, then this file is called ConfigFile.exe.config.

If you open this file with any text editor and change the value of the TheDynamicValue setting, the pro-
gram uses the new value the next time it runs. Instead of recompiling the whole application, you only
need to change this simple text file. If you have distributed the application to a large number of users,
you need only to give them the revised configuration file and not a whole new executable.

When you make a new setting, Visual Basic automatically generates code that adds the setting to the
My.Settings namespace. That makes the values easy for a program to read. The following code displays
the values of the TheUserSetting and TheAppSetting settings:

MessageBox.Show(My.Settings.txtFontSize & “pt “ & My.Settings.txtFontName)

The My.Settings namespace provides several other properties and methods that make working with set-
tings easy. The following table summarizes the most useful My.Settings properties and methods.

Property or Method Purpose

Item A name-indexed collection of the values for the settings.

Properties A name-indexed collection of SettingsProperty objects that
contain information about the settings, including their names
and default values.

Reload Reloads the settings from the configuration file.

Save Saves any modified settings into the configuration file. The
program can modify settings with user scope. Settings with
application scope are read-only.

The following example uses the My.Settings.Properties collection to list all of the application’s set-
tings and their values:

Imports System.Configuration

Public Class Form1
Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Dim txt As String = “”
For Each settings_property As SettingsProperty In My.Settings.Properties

txt &= settings_property.Name & “ = “ & _
settings_property.DefaultValue.ToString & vbCrLf

688

Chapter 25

27_571982 ch25.qxd 9/1/05 7:32 PM Page 688

Next settings_property

txtSettings.Text = txt
txtSettings.Select(0, 0)

End Sub
End Class

Resource Files
Resource files contain text, images, and other data for the application to load at run time. The intent of
resource files is to let you easily replace one set of resources with another. One of the most common rea-
sons for using resource files is to provide different resources for different languages. To create installa-
tion packages for different languages, you simply ship the executable and a resource file that uses the
right language. Alternatively, you can ship resource files for all of the languages you support and then
let the application pick the appropriate file at run time based on the user’s computer settings.

Resource files are not intended to store application configuration information and settings. They are
intended to hold values that you might want to change, but only infrequently. Configurations and set-
tings, on the other hand, may change relatively often. You should store that kind of data in configuration
files or the System Registry.

The distinction is small and frankly somewhat artificial. Both configuration files and resource files store
data that you can swap without recompiling the application. Rebuilding resources files can be a little
more complex, however, so perhaps the distinction that configuration and setting data changes more fre-
quently makes some sense.

Resource files can also be embedded within a compiled application. In that case, you cannot swap the
resource file without recompiling the application. While this makes embedded resource files less useful
for storing frequently changing information, they still give you a convenient place to group resource
data within the application. This is particularly useful if several parts of the application must use the
same pieces of data. For example, if every form should display the same background image, it makes
sense to store the image in a common resource file that they can all use.

The following sections describe the four most common types of resources: application, embedded, satel-
lite, and localization.

Application Resources
To create application resources in Visual Basic, open Solution Explorer, double-click the My Project entry,
and select the Resources tab. Use the drop-down on the left to select one of the resource categories
Strings, Images, Icons, Audio, Files, or Other. Figure 25-5 shows the application’s resources tab display-
ing the application’s images.

689

Configuration and Resources

27_571982 ch25.qxd 9/1/05 7:32 PM Page 689

Figure 25-5: The Resources tab contains image resources used by the application.

If you double-click on an item, Visual Studio opens an appropriate editor. Figure 25-6 shows the Dog
picture in the integrated bitmap editor.

Figure 25-7 shows the string resource editor. Click on an entry and type to create or modify a value.
Click to the left of the Name column to select a row and then click the Remove button or press the Delete
key to remove a string.

690

Chapter 25

27_571982 ch25.qxd 9/1/05 7:32 PM Page 690

Figure 25-6: If you double-click on a resource, Visual Studio opens it in an appropriate editor.

Click the Add Resource drop-down and select the New String, New Image, New Icon, or New Text File
commands to add new items to the resource file. The New Image item opens a cascading submenu that
lets you create new PNG, bitmap, GIF, JPEG, and TIFF images.

691

Configuration and Resources

27_571982 ch25.qxd 9/1/05 7:32 PM Page 691

Figure 25-7: The string resource view lets you edit string resources in a grid.

Using Application Resources
When you create application resources, Visual Studio automatically generates code that adds strongly
typed resource properties to the My.Resources namespace. If you open Solution Explorer and click the
Show All Files button, you can see the file Resources.Designer.vb below the Resources.resx item. This file
is highlighted in Figure 25-8.

For example, the following code shows the property that Resources.Designer.vb contains to retrieve the
Octahedron image resource.

Friend ReadOnly Property Octahedron() As System.Drawing.Bitmap
Get

Return CType(ResourceManager.GetObject(“Octahedron”, _
resourceCulture),System.Drawing.Bitmap)

End Get
End Property

692

Chapter 25

27_571982 ch25.qxd 9/1/05 7:32 PM Page 692

Figure 25-8: The file Resources.Designer.vb
contains strongly typed properties that fetch
resource values.

The following code shows how a program can use these My.Resources properties. It sets the
lblGreeting control’s Text property to the string returned by the My.Resources.Greeting property.
Then it sets the form’s BackgroundImage property to the image resource named Dog.

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

lblGreeting.Text = My.Resources.Greeting
Me.BackgroundImage = My.Resources.Dog

End Sub

Because these property procedures are strongly typed, IntelliSense can offer support for them. If you
type “My.Resources.” IntelliSense lists the values defined in the application’s resource file.

The strongly typed resources properties use a ResourceManager object to fetch the application’s
resources. The My.Resources namespace exposes that object through its ResourceManager property, so
you can use that object directly to retrieve the application’s resources. The following code does the same
things as the previous version, except is uses the ResourceManager directly. Note that the
ResourceManager ‘s GetObject method returns a generic Object, so the code uses CType to convert
the result into an Image before assigning it to the form’s BackgroundImage property.

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

lblGreeting.Text = My.Resources.ResourceManager.GetString(“Greeting”)
Me.BackgroundImage = CType(_

My.Resources.ResourceManager.GetObject(“Dog”), _
Image)

End Sub

693

Configuration and Resources

27_571982 ch25.qxd 9/1/05 7:32 PM Page 693

Generally, you should use the automatically generated resource properties in the My.Resources name-
space because they are easier to use and they are strongly typed. The ResourceManager class is much
more useful when you use other embedded resource files.

Embedded Resources
In addition to storing resources in the application’s resource file Resources.resx, you can add other
resources files to the application. Open the Project menu and select the Add New item command. Pick
the Resources File template, give the file a meaningful name, and click OK.

After you add a resource file to the project, you can double-click it in Solution Explorer to open it in the
resource editor. Then you can add resources to the file exactly as you do for the application’s resources
file.

At run time, you can use a ResourceManager object to fetch the resources from the embedded file. The
following code loads the Dog image from the file Images.resx and the string Greeting from the file
StringResources.resx.

It starts by declaring a ResourceManager variable. It then initializes the variable, passing its constructor
the resource file’s path and the assembly containing the file. The file’s path consists of the application’s
root namespace EmbeddedResources followed by the file’s name Images.

The program then uses the ResourceManager’s GetObject method to fetch the Dog image, converts
the generic Object returned into an Image, and assigns the result to the form’s BackgroundImage
property.

Next, the code reinitializes the ResourceManager object so it represents the StringResources resource
file. It calls the manager’s GetString method to get the value of the Greeting resource and saves the
result in the lblGreeting control’s Text property.

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Dim resource_manager As ResourceManager

‘ Get the Dog image from Images.resx.
resource_manager = New ResourceManager(_

“EmbeddedResources.Images”, _
Me.GetType.Assembly)

Me.BackgroundImage = CType(_
resource_manager.GetObject(“Dog”), _
Image)

‘ Get the Greeting from StringResources.resx.
resource_manager = New ResourceManager(_

“EmbeddedResources.StringResources”, _
Me.GetType.Assembly)

lblGreeting.Text = resource_manager.GetString(“Greeting”)
End Sub

694

Chapter 25

27_571982 ch25.qxd 9/1/05 7:32 PM Page 694

Strongly Typed Embedded Resources
Just as it can generate code to provide properties that fetch application resources, Visual Studio can gen-
erate similar code for other embedded resource files. Select the file in Solution Explorer and open the
Properties window. Set the file’s Custom Tool property to VbMyResourcesResXFileCodeGenerator. Then
set its Custom Tool Namespace property to the namespace that you want to contain the resource proper-
ties. For example, you might set this value for a string resource file to My.StringResources. The following
code shows how the program could use the automatically generated Greeting property:

lblGreeting.Text = My.StringResources.Greeting

Setting the Custom Tool and Custom Tool Namespace properties requires some lengthy typing, but once
you’ve set these values, using the strongly typed properties is much easier than fetching resources by
using a ResourceManager.

Satellite Resources
Embedded resource files enable you to organize data in central locations. For example, you can keep all
the images used by the application in a single resource file, and all of the program’s forms can fetch the
images from that file.

Rather than embedding a resource file in the application, you can load it at run time. Then if you must
make changes to the resources, you can replace the resource file and the program will load the new
resources the next time it runs.

To make switching resources easy, you can place them in a resource-only assembly. This “satellite assem-
bly” contains data for the application but doesn’t contain any program logic.

To make a resource-only satellite assembly, start a new Visual Basic project, selecting the Class Library
template. Delete the project’s initial class. Then, add resources to the project as you would add them to
any other project. You can add resources to the project’s resources or to embedded resource files. When
you are finished adding resources, compile the project to build a .dll file.

You can then build an executable Windows application that loads resources from the assembly as shown
in the following code. The program declares an Assembly object and uses the shared Assembly.LoadForm
method to load information about the resource-only assembly SatelliteResources.dll. In this exam-
ple, the file was copied into the executable program’s startup directory so the program does not need to
pass a complete path to the LoadFrom method.

Next, the program uses the Assembly object to create a ResourceManager. For the resource file’s name,
it passes the ResourceManager’s constructor the assembly’s root namespace SatelliteResources, fol-
lowed by the name of the resource file within the satellite project. In this case, the first resource is stored
in the project’s resources, so the file is MyResources.resx. Now the program uses the
ResourceManager’s GetString method to fetch the Greeting resource.

The program then creates a new ResourceManager using the same Assembly object, this time using the
resource file named ImageResources.resx. It uses the GetObject method to fetch the image named
Dog, converts the result into an Image, and saves the result in the form’s BackgroundImage property.

695

Configuration and Resources

27_571982 ch25.qxd 9/1/05 7:32 PM Page 695

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ Get the resource Assembly.
Dim satellite_assembly As Assembly
satellite_assembly = Assembly.LoadFrom(“SatelliteResources.dll”)

‘ Create a ResourceManager for the satellite’s
‘ main resource file.
Dim resource_manager As ResourceManager
resource_manager = New ResourceManager(_

“SatelliteResources.Resources”, _
satellite_assembly)

‘ Get the string resource from the satellite’s
‘ main resource file.
lblGreeting.Text = resource_manager.GetString(“Greeting”)

‘ Create a ResourceManager for the satellite’s
‘ Images resource file.
resource_manager = New ResourceManager(_

“SatelliteResources.Images”, _
satellite_assembly)

‘ Get the form’s background image from the satellite’s
‘ Images resource file.
Me.BackgroundImage = CType(_

resource_manager.GetObject(“Dog”), Image)
End Sub

Later, if you must change the value of the Greeting string or the Dog image, you can update the satellite
project, build a new DLL file, and copy the DLL file into the executable program’s startup directory. The
next time you run the program, it will load the new resources.

Localization Resources
One of the most important reasons for inventing resources files was to allow localization: supporting dif-
ferent text, images, and other items for different languages and cultures. In Visual Studio .NET, localiza-
tion is easy.

First, create a form using whatever language you typically use from day to day. For me, that’s English as
spoken in the United States. Open the form in the form designer and give it whatever controls you need.
Set the form’s and controls’ properties as usual.

Next, set the form’s Localizable property to True. Then set the form’s Language property to the first
language you want to support other than the default language that you have been working with so far.
Modify the controls’ properties for the new language.

As you modify a form, Visual Studio saves the changes you make into a new resource file attached to the
form. Figure 25-9 shows the Solution Explorer for an application with a form that has English and
German resources. Below the Form1.vb entry, you can see two resource files. The default file containing
English resources is named Form1.resx. The resource file containing the German settings is named
Form1.de.resx.

696

Chapter 25

27_571982 ch25.qxd 9/1/05 7:32 PM Page 696

Figure 25-9: Visual Studio saves resources for
different languages in separate resource files.

At run time, the application automatically checks the user’s computer and selects the correct resource
file based on the system’s regional settings.

Normally, you should let the application pick the appropriate resource file automatically, but you can
explicitly select a resource file for testing purposes. To do that, open the Solution Explorer and click the
Show All Files button. Find the form’s design file (for example, Form1.Designer.vb) and open it.

Give the form an empty constructor that sets the current thread’s CurrentCulture and
CurrentUICulture properties to the culture that you want to use. See the online help for the
CultureInfo class to get a list of possible cultures such as en-US (US English) or de-DE (German). The
result should look something like the following code:

Imports System.Threading
Imports System.Globalization

Public Class Form1
Public Sub New()

MyBase.New()

‘ Set the culture and UI culture to German.
Thread.CurrentThread.CurrentCulture = New CultureInfo(“de-DE”)
Thread.CurrentThread.CurrentUICulture = New CultureInfo(“de-DE”)

‘This call is required by the Windows Form Designer.
InitializeComponent()

End Sub
End Class

The rest is automatic. When the form’s InitializeComponent method executes, it loads the resources
it needs for the culture you selected.

697

Configuration and Resources

27_571982 ch25.qxd 9/1/05 7:32 PM Page 697

ComponentResourceManager
The ResourceManager class provides tools for loading resources from resource file one at a time. The
ComponentResourceManager class also provides GetString, and GetObject methods that work
much as the ResourceManager’s methods do.

ComponentResourceManager also provides the ApplyResources method, which makes applying
resources to an object easier. ApplyResources searches a resource file for items with a particular object
name. It then applies any resources it finds to an object’s properties.

For example, you could use ApplyResources to search for resources with the object name ExitButton
and apply them to the btnExit control. If the resource file contained an item named ExitButton.Text,
ApplyResources would apply it to the btnExit control’s Text property. If the method found other
resources (such as ExitButton.Location and ExitButton.Size), it would apply those properties to
the control, too.

When you localize a form, Visual Studio automatically creates entries in the appropriate resource files
for the form’s controls. If you set the form’s Language to German and set the btnYes button’s Text
property to “Ja,” then Visual Studio adds a string entry named “btnYes.Text” with value “Ja” to the
form’s German resource file.

Visual Studio uses the special name “$this” to represent the form’s properties. For example, if you set
the form’s Text property, the IDE adds a string resource named $this.Text to the appropriate resource
file.

Figure 25-10 shows the German string resources for Form1 stored in the file Form1.de.resx. The
resources define values for the form itself ($this), and the radEnglish, radGerman, and lblPrompt
controls.

The following code uses ComponentResourceManager objects to load different localized resources.
When the user clicks the radEnglish radio button, the program creates a new CultureInfo object rep-
resenting United States English. It creates a ComponentResourceManager for the form’s type, and uses
its ApplyResources method to apply any English form resources to the form. It then loops through the
form’s controls, using ApplyResources to apply any English resources for the form’s controls. When it
is finished, the form and all of its controls are using the English resources. When the user clicks the
radGerman radio button, the program similarly applies the German resources to the form and its
controls.

‘ Select English.
Private Sub radEnglish_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles radEnglish.CheckedChanged

Dim culture_info As New CultureInfo(“en-US”)
Dim component_resource_manager As New ComponentResourceManager(Me.GetType)
component_resource_manager.ApplyResources(Me, “$this”, culture_info)
For Each ctl As Control In Me.Controls

component_resource_manager.ApplyResources(ctl, ctl.Name, culture_info)

698

Chapter 25

27_571982 ch25.qxd 9/1/05 7:32 PM Page 698

Next ctl
End Sub

‘ Select German.
Private Sub radGerman_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles radGerman.CheckedChanged

Dim culture_info As New CultureInfo(“de-DE”)
Dim component_resource_manager As New ComponentResourceManager(Me.GetType)
component_resource_manager.ApplyResources(Me, “$this”, culture_info)
For Each ctl As Control In Me.Controls

component_resource_manager.ApplyResources(ctl, ctl.Name, culture_info)
Next ctl

End Sub

Figure 25-10: Locale-specific resource files include values for specific controls.

The following code shows a slightly different method for accomplishing the same tasks. Instead of pass-
ing a CultureInfo object into the ApplyResources method, the program sets the current thread’s

699

Configuration and Resources

27_571982 ch25.qxd 9/1/05 7:32 PM Page 699

CurrentCulture and CurrentUICulture properties. It then calls ApplyResources and lets it use
those properties to figure out which resource file to use.

‘ Select English.
Private Sub radEnglish_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles radEnglish.CheckedChanged

‘ Set the current culture and UI culture.
Thread.CurrentThread.CurrentCulture = New CultureInfo(“en-US”)
Thread.CurrentThread.CurrentUICulture = New CultureInfo(“en-US”)

‘ Load resources.
Dim component_resource_manager As New ComponentResourceManager(Me.GetType)
component_resource_manager.ApplyResources(Me, “$this”)
For Each ctl As Control In Me.Controls

component_resource_manager.ApplyResources(ctl, ctl.Name)
Next ctl

End Sub

‘ Select German.
Private Sub radGerman_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles radGerman.CheckedChanged

‘ Set the current culture and UI culture.
Thread.CurrentThread.CurrentCulture = New CultureInfo(“de-DE”)
Thread.CurrentThread.CurrentUICulture = New CultureInfo(“de-DE”)

‘ Load resources.
Dim component_resource_manager As New ComponentResourceManager(Me.GetType)
component_resource_manager.ApplyResources(Me, “$this”)
For Each ctl As Control In Me.Controls

component_resource_manager.ApplyResources(ctl, ctl.Name)
Next ctl

End Sub

The program can later use the CurrentCulture and CurrentUICulture properties if it needs to
remember which culture it is currently using.

Application
The Application object represents the running application at a very high level. It provides properties
and methods to starting an event loop to process Windows messages, possibly for a form. It also pro-
vides methods for controlling and stopping the event loop.

Don’t confuse the Application object with the My.Application namespace. The two have somewhat
similar purposes but very different features.

The following sections describe the Application object’s most useful properties, methods, and events.

Application Properties
The following table describes the Application object’s most useful properties.

700

Chapter 25

27_571982 ch25.qxd 9/1/05 7:32 PM Page 700

Property Purpose

CommonAppDataPath Returns the path where the program should store application
data shared by all users. By default, this path has the form
base_path\company_name\product_name\product_
version. The base_path is typically C:\Documents and
Settings\All Users\Application Data.

CommonAppDataRegistry Returns the Registry key where the program should store appli-
cation data shared by all users. By default, this path has the form
HKEY_LOCAL_MACHINE\Software\company_name\
product_name\product_version.

CompanyName Returns the application’s company name.

CurrentCulture Gets or sets the CultureInfo object for this thread.

CurrentInputLanguage Gets or sets the InputLanguage for this thread.

ExecutablePath Returns the fully qualified path to the file that started the execu-
tion, including the file name.

LocalUserAppDataPath Returns the path where the program should store data for this
local, nonroaming user. By default, this path has the form
base_path\company_name\product_name\product_
version. The base_path is typically C:\Documents and
Settings\user_name\Local Settings\Application Data.

MessageLoop Returns True if the thread has a message loop. If the program
begins with a startup form, this loop is created automatically. If
it starts with a custom Sub Main, the loop doesn’t initially exist
and the program must start it by calling Application.Run.

OpenForms Returns a collection holding references to all of the application’s
open forms.

ProductName Returns the application’s product name.

ProductVersion Gets the product version associated with this application.

StartupPath Returns the fully qualified path to the directory where the pro-
gram starts.

UserAppDataPath Returns the path where the program should store data for this
user. By default, this path has the form base_path\
company_name\product_name\product_version. The
base_path is typically C:\Documents and Settings\
user_name\Application Data.

UserAppDataRegistry Returns the Registry key where the program should store appli-
cation data for this user. By default, this path has the form
HKEY_CURRENT_USER\Software\company_name\
product_name\product_version.

UseWaitCursor Determines whether this thread’s forms display a wait cursor.
Set this to True before performing a long operation, and set it to
False when the operation is finished.

701

Configuration and Resources

27_571982 ch25.qxd 9/1/05 7:32 PM Page 701

To set the CompanyName, ProductName, and ProductVersion, open Solution Explorer, double-click the
My Project entry, and select the Application tab. Then click the Assembly Information button and enter
the values on the Assembly Information dialog.

Application Methods
The following table describes the Application object’s most useful methods.

Method Purpose

AddMessageFilter Adds a message filter to monitor the event loop’s Windows mes-
sages. See the following text for an example.

DoEvents Processes Windows messages that are currently in the message
queue. If the thread is performing a long calculation, it would nor-
mally prevent the rest of the thread from taking action such as
processing these messages. Calling DoEvents lets the user inter-
face catch up with the user’s actions. Note that you can often
avoid the need for DoEvents if you perform the long task on a
separate thread.

Exit Ends the whole application. This is a rather abrupt halt and any
forms that are loaded do not execute their FormClosing or Form-
Closed event handlers, so be certain that the application has exe-
cuted any necessary clean-up code before calling
Application.Exit.

ExitThread Ends the current thread. This is a rather abrupt halt, and any
forms running on the thread do not execute their FormClosing or
FormClosed event handlers.

OnThreadException Raises the Application object’s ThreadException event, pass-
ing it an exception. If your application throws an uncaught excep-
tion in the IDE, the IDE halts. That makes it hard to test
Application.ThreadException event handlers. You can call
OnThreadException to invoke the event handler.

RemoveMessageFilter Removes a message filter.

Run Runs a message loop for the current thread. If you pass this
method a form object, it displays the form and processes its mes-
sages until the form closes.

SetSuspendState Makes the system suspend operation or hibernate. When the sys-
tem hibernates, it writes its memory contents to disk. When you
restart the system, it resumes with its previous desktop and appli-
cations running. When the system suspends operation, it enters
low-power mode. It can resume more quickly than a hibernated
system, but memory contents are not saved, so they will be lost if
the computer loses power.

702

Chapter 25

27_571982 ch25.qxd 9/1/05 7:32 PM Page 702

The following code gives a form a message filter that ignores left mouse button down messages. The
NoLeftDownMessageFilter class provides the filter. It implements the IMessageFilter interface,
which specifies the PreFilterMessage function.

PreFilterMessage examines a message and returns True if it wants to filter the message out of the
form’s message queue. In this example, it returns True if the message is WM_LBUTTONDOWN, indicating
that the left button has been pressed down.

The form’s Load event handler creates a new instance of the filter class and uses the Application
object’s AddMessageFilter method to install the filter object.

The form’s Click event handler toggles the state of the Application object’s UseWaitCursor property.
This displays or hides the wait cursor.

When you left-click on the form, the message filter intercepts the left button down message, so the
Click event doesn’t occur. If you right-click on the form, the filter allows all messages through so the
Click event occurs and the form displays or hides the wait cursor.

Public Class Form1
‘ Filter out left mouse button down messages.
Public Class NoLeftDownMessageFilter

Implements IMessageFilter

Public Function PreFilterMessage(ByRef m As System.Windows.Forms.Message) _
As Boolean Implements IMessageFilter.PreFilterMessage

‘ If the message is left mouse down, return True
‘ to indicate that the message should be ignored.
Const WM_LBUTTONDOWN As Long = &H201
Return (m.Msg = WM_LBUTTONDOWN)

End Function
End Class

‘ Install the message filter.
Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Dim no_left_down_message_filter As New NoLeftDownMessageFilter
Application.AddMessageFilter(no_left_down_message_filter)

End Sub

‘ Toggle the wait cursor.
Private Sub Form1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Click

Application.UseWaitCursor = Not Application.UseWaitCursor
End Sub

End Class

Application Events
The Application object provides a few events that give you information about the application’s state.
The following table describes these events.

703

Configuration and Resources

27_571982 ch25.qxd 9/1/05 7:32 PM Page 703

Event Purpose

ApplicationExit Occurs when the application is about to shut down.

Idle Occurs when the application finishes executing some code and is
about to enter an idle state to wait for events.

ThreadException Occurs when the application throws an unhandled exception. See the
following code for an example.

ThreadExit Occurs when a thread is about to exit.

When you end an application by unloading its form, the program receives the events FormClosing,
FormClosed, ThreadExit, and ApplicationExit, in that order.

If you end the application by calling the Application object’s Exit method, the program only receives
the ThreadExit and ApplicationExit events. If more than one thread is running, they each receive
ThreadExit events, and then they each receive ApplicationExit events.

The following code uses a ThreadException event handler to catch all exceptions thrown by the appli-
cation. When it starts, the form’s Load event handler uses the Application object’s AddHandler
method to add the app_ThreadException subroutine as a handler for the Application’s
ThreadException event.

The app_ThreadException subroutine simply displays an error message so that you can tell that it exe-
cuted. A real application would take different actions such as logging the error and a stack trace, restart-
ing the application, and so forth.

When the user clicks the Throw button, the program throws an exception. If you are running the pro-
gram in the development environment, Visual Studio halts at the Throw statement and tells you that it
encountered an unhandled exception. If you run the compiled executable outside of the development
environment, the application’s ThreadException event occurs. The app_ThreadException routine
catches the event and displays its message.

When the user clicks the OnThreadException button, the program calls the Application object’s
OnThreadException method, passing it an exception object. Whether you are running in the develop-
ment environment or running the compiled executable, the application’s ThreadException event
occurs and the app_ThreadException routine catches it.

Imports System.IO

Public Class Form1
‘ Install the ThreadException event handler.
Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load

AddHandler Application.ThreadException, AddressOf Me.app_ThreadException
End Sub

‘ Catch a ThreadException event.
Private Sub app_ThreadException(ByVal sender As Object, _

704

Chapter 25

27_571982 ch25.qxd 9/1/05 7:32 PM Page 704

ByVal e As System.Threading.ThreadExceptionEventArgs)
MessageBox.Show(“Caught unhandled exception”)

End Sub

‘ Throw an InvalidDataException.
Private Sub btnThrow_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnThrow.Click

Throw New InvalidDataException(“Bad data! Bad!”)
End Sub

‘ Call the OnThreadException method.
Private Sub btnOnThreadException_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOnThreadException.Click

Application.OnThreadException(New InvalidDataException(“Bad data! Bad!”))
End Sub

End Class

Summary
Visual Studio provides many ways to store and use application configuration and resource information.
Some of the most useful of these include environment variables, the Registry, configuration files, and
resource files. The My namespace and the Application object make working with some of these easier.

Store configuration information that may change relatively quickly in configuration files. Store resources
that determine the application’s appearance in resource files. If you will distribute the application in
multiple languages, use localized resource files to manage the different languages. If necessary, you can
change the data stored in configuration and resource files and redistribute them to your users without
rebuilding the entire application.

You can store small pieces of information between program runs in the System Registry. Use databases,
XML files, and other files to store larger amounts of data.

Using all of these techniques, you can make your application easily configurable. You can satisfy the
needs of different kinds of users and customize the application without recompiling it.

This chapter explains ways that a program can save configuration and resource information using tools
such as the Registry, environment variables, and resource files. Generally, these kinds of data are of rela-
tively limited size. If an application needs to store larger amounts of data, it generally uses a database
or file.

Chapter 26, “Streams,” explains classes that a Visual Basic application can use to work with stream data
in general, and files in particular. Using streams attached to files, a program can read and write large
amounts of data without cluttering up the Registry, environment variables, or resource files.

705

Configuration and Resources

27_571982 ch25.qxd 9/1/05 7:32 PM Page 705

27_571982 ch25.qxd 9/1/05 7:32 PM Page 706

Streams
At some very primitive level, all pieces of data are just piles of bytes. The computer doesn’t really
store invoices, employee records, and recipes. At its most basic level, the computer stores bytes of
data (or even bits, but the computer naturally groups them in bytes). It is only when a program
interprets those bytes that they acquire a higher-level meaning that is valuable to the user.

While you generally don’t want to treat high-level data as undifferentiated bytes, there are times
when thinking of the data as bytes lets you treat it in more uniform ways.

One type of bytelike data is the stream, an ordered series of bytes. Files, data flowing across a net-
work, messages moving through a queue, and even the memory in an array all fit this description.

Defining the abstract idea of a stream lets applications handle these different types of objects uni-
formly. If an encryption or serialization routine manipulates a generic stream of bytes, it doesn’t
need to know whether the stream represents a file, a chunk of memory, or data flowing across a
network.

Visual Studio provides several classes for manipulating different kinds of streams. It also provides
higher-level classes for working with this kind of data at a more abstract level. For example, it pro-
vides classes for working with streams that happen to represent files and directories.

This chapter describes some of the classes you can use to manipulate streams. It explains lower-
level classes that you may use only rarely and higher-level classes that let you read and write
strings and files relatively easily.

28_571982 ch26.qxd 9/1/05 7:34 PM Page 707

The following table summarizes the most useful stream classes.

Class Use

FileStream Read and write bytes in a file.

MemoryStream Read and write bytes in memory.

BinaryReader, BinaryWriter Read and write specific data types in a stream.

StringReader, StringWriter Read and write text with or without new lines in a string.

StreamReader, StreamWriter Read and write text with or without new lines in a
stream (usually a file stream).

Stream
The Stream class defines properties and methods that derived stream classes must provide. These let
the program perform relatively generic tasks with streams such as determining whether the stream
allows writing.

The following table describes the Stream class’s most useful properties.

Property Purpose

CanRead Returns True if the stream supports reading.

CanSeek Returns True if the stream supports seeking to a particu-
lar position in the stream.

CanTimeout Returns True if the stream supports timing out of read
and write operations.

CanWrite Returns True if the stream supports writing.

Length Returns the number of bytes in the stream.

Position Returns the stream’s current position in its bytes. For a
stream that supports seeking, the program can set this
value to move to a particular position.

ReadTimeout Determines the number of milliseconds that a read oper-
ation will wait before timing out.

WriteTimeout Determines the number of milliseconds that a write oper-
ation will wait before timing out.

708

Chapter 26

28_571982 ch26.qxd 9/1/05 7:34 PM Page 708

The following table describes the Stream class’s most useful methods.

Method Purpose

BeginRead Begins an asynchronous read.

BeginWrite Begins an asynchronous write.

Close Closes the stream and releases any resources it uses (such as file handles).

EndRead Waits for an asynchronous read to finish.

EndWrite Ends an asynchronous write.

Flush Flushes data from the stream’s buffers into the underlying storage medium
(device, file, memory, and so forth).

Read Reads bytes from the stream and advances its position by that number of bytes.

ReadByte Reads a byte from the stream and advances its position by one byte.

Seek If the stream supports seeking, sets the stream’s position.

SetLength Sets the stream’s length. If the stream is currently longer than the new length,
it is truncated. If the stream is shorter than the new length, it is enlarged. The
stream must support both writing and seeking for this method to work.

Write Writes bytes into the stream and advances the current position by this number
of bytes.

WriteByte Writes one byte into the stream and advances the current position by one byte.

FileStream
The FileStream class provides a stream representation of a file.

The FileStream’s parent class Stream defines most of its properties and methods. See the section
“Stream” earlier in this chapter for descriptions of those properties and methods.

FileStream adds two useful new properties. First, IsAsync returns True if the FileStream was
opened asynchronously. Second, the Name property returns the file name passed into the object’s
constructor.

The class also adds two new useful methods. The Lock method locks the file, so other processes can read
it but not modify it. Unlock removes a previous lock.

Overloaded versions of the FileStream’s constructor let you specify a file name or handle, the file
mode (Append, Create, CreateNew, Open, OpenOrCreate, or Truncate), access mode (Read, Write, or
ReadWrite), file sharing (Inheritable, which allows child processes to inherit the file handle; None,
Read; Write; or ReadWrite), a buffer size, and file options (Asynchronous, DeleteOnClose,
Encrypted, None, RandomAccess, SequentialScane, or WriteThrough).

709

Streams

28_571982 ch26.qxd 9/1/05 7:34 PM Page 709

The following code shows a small example that uses a FileStream. It creates a file and uses a Universal
Transformation Format (UTF) UTF8Encoding object to convert a string into an array of bytes. It writes
the bytes into the file and then closes the FileStream.

Dim file_name As String = Application.StartupPath & “\test.txt”
Dim file_stream As New FileStream(file_name, FileMode.Create)
Dim bytes As Byte() = New UTF8Encoding().GetBytes(“Hello world!”)

file_stream.Write(bytes, 0, bytes.Length)
file_stream.Close()

The 8-bit UTF encoding is the most popular type on the Web, although there are other encoding formats
such as UTF-7 and UTF-16. For additional information, see zsigri.tripod.com/fontboard/
cjk/unicode.html.

As this example demonstrates, the FileStream class provides only low-level methods for reading and
writing files. These methods let you read and write bytes, but not integers, strings, or the other types of
data that you are more likely to want to use.

The BinaryReader and BinaryWriter classes let you read and write binary data more easily than the
FileStream class does. The StringReader and StringWriter classes let you read and write string
data more easily. See the section “StringReader and StringWriter,” describing these classes, later in
this chapter for more information.

MemoryStream
Like FileStream, the MemoryStream class inherits from the Stream class. This class represents a stream
with data stored in memory. Like the FileStream, it provides only relatively simple methods for read-
ing and writing data. Usually, you will want to attach a higher-level object to the MemoryStream to
make using it easier.

The following code creates a MemoryStream object. It then creates a BinaryWriter attached to the
MemoryStream and uses it to write some text into the stream. Next, the program creates a
BinaryReader object attached to the same MemoryStream. It uses the stream’s Seek method to rewind
the stream to its beginning, and then uses the BinaryReader object’s ReadString method to read the
string out of the MemoryStream.

Dim memory_stream As New MemoryStream()
Dim binary_writer As New BinaryWriter(memory_stream)
binary_writer.Write(“Peter Piper picked a peck of pickled peppers.”)

Dim binary_reader As New BinaryReader(memory_stream)
memory_stream.Seek(0, SeekOrigin.Begin)
MessageBox.Show(binary_reader.ReadString())
binary_reader.Close()

710

Chapter 26

28_571982 ch26.qxd 9/1/05 7:34 PM Page 710

The following example does the same things as the previous example, except that it uses the
StreamWriter and StreamReader classes instead of BinaryWriter and BinaryReader. Note that this
version must call the StreamWriter’s Flush method to ensure that all of the text is written into the
MemoryStream before it can read the memory using the StreamReader.

Dim memory_stream As New MemoryStream()
Dim stream_writer As New StreamWriter(memory_stream)
stream_writer.Write(“Peter Piper picked a peck of pickled peppers.”)
stream_writer.Flush()

Dim stream_reader As New StreamReader(memory_stream)
memory_stream.Seek(0, SeekOrigin.Begin)
MessageBox.Show(stream_reader.ReadToEnd())
stream_reader.Close()

BufferedStream
The BufferedStream class adds buffering to another stream class. For example, you can create a
BufferedStream attached to a network stream that communicates with another application through
sockets. The BufferedStream class buffers data passing through the network connection.

Most programs don’t need to explicitly create their own buffered streams, so this class isn’t described
further here. See the online help for more information.

BinaryReader and BinaryWriter
The BinaryReader and BinaryWriter classes are not stream classes. Instead, they are helper classes
that work with stream classes. They let you read and write data in files using a specific encoding. For
example, the BinaryReader object’s ReadInt32 method reads a 4-byte (32-bit) signed integer from the
stream. Similarly, the ReadUInt16 method reads a 2-byte (16-bit) unsigned integer.

These classes still work at a relatively low level, and you should generally use higher-level classes to
read and write data. For example, you shouldn’t tie yourself to a particular representation of an integer
unless you really must.

BinaryReader and BinaryWriter objects are attached to stream objects that provide access to the
underlying bytes. Both of these classes have a BaseStream property that returns a reference to the
underlying stream. Note also that the Close method provided by each of these classes automatically
closes the underlying stream.

711

Streams

28_571982 ch26.qxd 9/1/05 7:34 PM Page 711

The following table describes the BinaryReader class’s most useful methods.

Method Purpose

Close Closes the BinaryReader and its underlying stream.

PeekChar Reads the stream’s next character but does not advance the reader’s position,
so other methods can still read the character later.

Read Reads characters from the stream and advances the reader’s position.

ReadBoolean Reads a Boolean from the stream and advances the reader’s position by 1 byte.

ReadByte Reads a byte from the stream and advances the reader’s position by 1 byte.

ReadBytes Reads a number of bytes from the stream into a byte array and advances the
reader’s position by that number of bytes.

ReadChar Reads a character from the stream, and advances the reader’s position accord-
ing to the stream’s encoding and the character.

ReadChars Reads a number of characters from the stream, returns the results in a charac-
ter array, and advances the reader’s position according to the stream’s encod-
ing and the characters.

ReadDecimal Reads a decimal value from the stream and advances the reader’s position by
16 bytes.

ReadDouble Reads an 8-byte floating-point value from the stream and advances the
reader’s position by 8 bytes.

ReadInt16 Reads a 2-byte signed integer from the stream and advances the reader’s posi-
tion by 2 bytes.

ReadInt32 Reads a 4-byte signed integer from the stream and advances the reader’s posi-
tion by 4 bytes.

ReadInt64 Reads an 8-byte signed integer from the stream and advances the reader’s
position by 8 bytes.

ReadSByte Reads a signed byte from the stream and advances the reader’s position by 1 byte.

ReadSingle Reads a 4-byte floating-point value from the stream and advances the reader’s
position by 4 bytes.

ReadString Reads a string from the current stream and advances the reader’s position
past it. The string begins with its length.

ReadUInt16 Reads a 2-byte unsigned integer from the stream and advances the reader’s
position by 2 bytes.

ReadUInt32 Reads a 4-byte unsigned integer from the stream and advances the reader’s
position by 4 bytes.

ReadUInt64 Reads an 8-byte unsigned integer from the stream and advances the reader’s
position by 8 bytes.

712

Chapter 26

28_571982 ch26.qxd 9/1/05 7:34 PM Page 712

The following table describes the BinaryWriter class’s most useful methods.

Name Description

Close Closes the BinaryWriter and its underlying stream.

Flush Writes any buffered data into the underlying stream.

Seek Sets the position within the stream.

Write Writes a value into the stream. This method has many overloaded versions
that write characters, arrays of characters, integers, strings, unsigned 64-bit
integers, and so forth.

TextReader and TextWriter
The TextReader and TextWriter classes are also not stream classes. They provide properties and
methods for working with text, which is stream-related. In particular, the StreamWriter and
StreamReader classes derived from TextReader and TextWriter are associated with streams.

TextReader and TextWriter are abstract (MustInherit) classes that define behaviors for derived
classes that read or write text characters. For example, the StringWriter and StreamWriter classes
derived from TextWriter let a program write characters into a string or stream, respectively. Normally,
you would use these derived classes to read and write text, but you might want to use the TextReader
or TextWriter classes to manipulate the underlying classes more generically. You may also encounter a
method that requires a TextReader or TextWriter object as a parameter. In that case, you could pass
the method either a StringReader/StringWriter or a StreamReader/StreamWriter. For more
information on these, see the sections “StringReader and StringWriter” and “StreamReader and
StreamWriter,” which follow.

The following table describes the TextReader’s most useful methods.

Method Purpose

Close Closes the reader and releases any resources that it is using.

Peek Reads the next character from the text without changing the reader’s state, so
other methods can read the character later.

Read Reads data from the input. Overloaded versions of this method read a single
character or an array of characters up to a specified length.

ReadBlock Reads data from the input into an array of characters.

ReadLine Reads a line of characters from the input and returns the data in a string.

ReadToEnd Reads any remaining characters in the input and returns them in a string.

713

Streams

28_571982 ch26.qxd 9/1/05 7:34 PM Page 713

The TextWriter class has three useful properties. Encoding specifies the text’s encoding (ASCII,
UTF-8, Unicode, and so forth).

FormatProvider returns an object that controls formatting. For example, you can build a
FormatProvider object that knows how to display numbers in different bases (such as hexadecimal
or octal).

The NewLine property gets or sets the string used by the writer to end lines. Usually, this value is some-
thing similar to a carriage return or a carriage return plus a line feed.

The following table describes the TextWriter’s most useful methods.

Method Purpose

Close Closes the writer and releases any resources it uses.

Flush Writes any buffered data into the underlying output.

Write Writes a value into the output. This method has many overloaded versions
that write characters, arrays of characters, integers, strings, unsigned 64-bit
integers, and so forth.

WriteLine Writes data into the output followed by the new line sequence.

StringReader and StringWriter
The StringReader and StringWriter classes let a program read and write text in a string.

These classes are derived from TextReader and TextWriter and inherit the definitions of most of their
properties and methods from those classes. See the section “TextReader and TextWriter” earlier in
this chapter for details.

The StringReader provides methods for reading lines, characters, or blocks of characters from the
string. Its ReadToEnd method returns any of the string that has not already been read. The
StringReader’s constructor takes as a parameter the string that it should process.

The StringWriter class lets an application build a string. It provides methods to write text into the
string with or without a new-line character. Its ToString method returns the StringWriter’s string.

The StringWriter stores its string in an underlying StringBuilder class. StringBuilder is
designed to make incrementally building a string more efficient. For example, if an application needs to
build a very large string by concatenating a series of long substrings, it may be more efficient to use a
StringBuilder rather than adding the strings to a normal String variable. StringWriter provides a
simple interface to the StringBuilder class.

The most useful method provided by StringWriter that is not defined by the TextWriter parent class
is GetStringBuilder. This method returns a reference to the underlying StringBuilder object that
holds the class’s data.

714

Chapter 26

28_571982 ch26.qxd 9/1/05 7:34 PM Page 714

The following code shows a simple example that uses the StringWriter and StringReader classes. It
creates a StringWriter object and uses its WriteLine method to add two lines to the string. It then
displays the result of the writer’s ToString method. This method returns the writer’s current contents.
Next, the program creates a StringReader, passing its constructor the string from which it will read. It
closes the StringWriter because it is no longer needed. The code displays the result of the
StringReader’s ReadLine method. Because the StringWriter created the string as two separate lines,
this displays only the first line, “The quick brown fox.” Next, the code uses the StringReader’s
ReadToEnd method to read and display the rest of the text, “jumps over the lazy dog.” The code finishes
by closing the StringReader.

‘ Use a StringWriter to write into a string.
Dim string_writer As New StringWriter()
string_writer.WriteLine(“The quick brown fox”)
string_writer.WriteLine(“jumps over the lazy dog.”)
MessageBox.Show(string_writer.ToString)

‘ Use a StringReader to read from the string.
Dim string_reader As New StringReader(string_writer.ToString)
string_writer.Close()
MessageBox.Show(string_reader.ReadLine())
MessageBox.Show(string_reader.ReadToEnd())
string_reader.Close()

StreamReader and StreamWriter
The StreamReader and StreamWriter classes let a program read and write data in a stream. The
underlying stream is usually a FileStream. You can pass a FileStream into these class’s constructors,
or you can pass a file name and the object will create a FileStream automatically.

The StreamReader provides methods for reading lines, characters, or blocks of characters from the
stream. Its ReadToEnd method returns any of the stream that has not already been read.

The StreamWriter class provides methods to write text into the stream with or without a new-line
character.

StreamReader and StreamWriter are derived from the TextReader and TextWriter classes and
inherit the definitions of most of their properties and methods from those classes. See the section
“TextReader and TextWriter” earlier in this chapter for a description of these properties and methods.

The StreamWriter class adds a new AutoFlush property that determines whether the writer flushes its
buffer after every write.

The following simple example shows how to use a StreamReader and StreamWriter. It generates a
file name and passes it into a StreamWriter’s constructor. It uses the StreamWriter’s Write and
WriteLine methods to place two lines of text in the file. It then closes the file. If you were to open the
file now with a text editor, you would see the text. The program then creates a new StreamReader,
passing its constructor the same file name. It uses the reader’s ReadToEnd method to grab the file’s con-
tents and displays the results.

715

Streams

28_571982 ch26.qxd 9/1/05 7:34 PM Page 715

Dim file_name As String = Application.StartupPath & “\test.txt”
Dim stream_writer As New StreamWriter(file_name)
stream_writer.Write(“The quick brown fox”)
stream_writer.WriteLine(“ jumps over the lazy dog.”)
stream_writer.Close()

Dim stream_reader As New StreamReader(file_name)
MessageBox.Show(stream_reader.ReadToEnd())
stream_reader.Close()

This example would have been much more awkward using a FileStream object’s lower-level Write
and Read methods to manipulate byte arrays. Compare this code to the example in the “FileStream”
section earlier in this chapter.

Custom Stream Classes
Visual Studio provides a few other stream classes with more specialized uses.

The CryptoStream class applies a cryptographic transformation to data that passes through it. For exam-
ple, if you attach a CryptoStream to a file using a particular cryptographic transformation and then use it
to write data, the CryptoStream automatically transforms the data and produces an encrypted file.
Similarly, you can use a CryptoStream to read an encrypted file and recover the original text.

The NetworkStream class represents a socket-based stream over a network connection. You can use this
class to make different applications communicate over a network.

Three other special uses of streams are standard input, standard output, and standard error. Console appli-
cations define these streams for reading and writing information to and from the console. An application
can interact directly with these streams by accessing the Console.In, Console.Out, and Console.Error
properties. It can change these streams to new stream objects such as StreamReaders and
StreamWriters by calling the Console.SetIn, Console.SetOut, and Console.SetError methods.

Summary
Streams let a program consider a wide variety of data sources in a uniform way. If a subroutine takes a
stream as a parameter, it doesn’t care whether the stream is attached to a string, file, block of memory, or
network connection.

Many applications use the StringReader and StringWriter classes to read and write text in strings,
and the StreamReader and StreamWriter classes to read and write text in streams (usually files). The
other stream classes are often used at lower levels or as more abstract classes to allow a routine to pro-
cess different kinds of streams in a uniform way. If you focus on these four classes, you will quickly
learn how to perform the most common stream operations.

Programs often use the StreamReader and StreamWriter classes to read and write files. Chapter 27,
“File-System Objects,” describes classes that let a Visual Basic application interact with the file system in
other ways. These classes let a program examine, rename, move, and delete files and directories.

716

Chapter 26

28_571982 ch26.qxd 9/1/05 7:34 PM Page 716

File-System Objects
Visual Basic includes a bewildering assortment of objects that you can use to manipulate drives,
directories, and files. The stream classes described in Chapter 26 let you read and write files, but
they don’t really capture any of the special structure of the file system.

A Visual Basic application has two main choices for working with the file system: Visual Basic
methods and .NET Framework classes. This chapter describes these two approaches and the
classes that they use. It finishes by describing some of the My namespace properties and methods
that you can use to access file-system tools more easily. For more information on the My name-
space, see the section “My” in Chapter 25, “Configuration and Resources,” and Appendix P,
“The My Namespace.”

Visual Basic Methods
Visual Basic provides a number of commands for manipulating the file system. These commands
are relatively flexible and easy to understand. Most of them have been around since Visual Basic’s
youth, so many long-time Visual Basic developers prefer to use them rather than the newer .NET
Framework methods.

One disadvantage to these methods is that they do not natively allow you to read and write non-
standard data types. They can handle string, date, integer, long, single, double, and decimal data.
They can also handle structures and arrays of those types. They cannot, however, handle classes
themselves. You can use XML serialization to convert a class object into a string and then use these
methods to read and write the result, but that requires an extra step with some added complexity.

The section “File-System Methods” later in this chapter describes Visual Basic’s native file-system
methods. The sections “Sequential-File Access,” “Random-File Access,” and “Binary-File Access,”
later in this chapter describe specific issues for working with sequential, random, and binary files.

29_571982 ch27.qxd 9/1/05 7:35 PM Page 717

File Methods
The following table describes the methods Visual Basic provides for working with files.

Function Purpose

EOF Returns True if a file open for reading is at the end of file. (“EOF” stands
for End of File.)

FileClose Closes an open file.

FileGet Reads data from a file opened in Random and Binary mode into a variable.

FileGetObject Reads data as an object from a file opened in Random and Binary mode
into a variable.

FileOpen Opens a file for reading or writing. Parameters indicate the mode (Append,
Binary, Input, Output, or Random), access type (Read, Write, or Read-
Write), and sharing (Shared, LockRead, LockWrite, or LockReadWrite).

FilePut Writes data from a variable into a file opened for Random or Binary access.

FilePutObject Writes an object from a variable into a file opened for Random or Binary
access.

FreeFile Returns a file number that is not currently associated with any file in this
application. You should use FreeFile to get file numbers rather than
using arbitrary numbers such as 1.

Input Reads data written into a file by the Write method back into a variable.

InputString Reads a specific number of characters from the file.

LineInput Returns the next line of text from the file.

Loc Returns the current position within the file.

LOF Returns the file’s length in bytes. (“LOF” stands for Length Of File.)

Print Prints values into the file. Multiple values separated by commas are
aligned at tab boundaries.

PrintLine Prints values followed by a new line into the file. Multiple values separated
by commas are aligned at tab boundaries.

Seek Moves to the indicated position within the file.

Write Writes values into the file, delimited appropriately so that they can later be
read by the Input method.

WriteLine Writes values followed by a new line into the file, delimited appropriately
so that they can later be read by the Input method.

Many of Visual Basic’s file methods use a file number to represent an open file. The file number is just a
number used to identify the file. There’s nothing magic about it. You just need to be sure not to use the
same file number for more than one file at a time. The FreeFile method returns a number that is not in
use so that you know it is safe to use as a file number.

718

Chapter 27

29_571982 ch27.qxd 9/1/05 7:35 PM Page 718

The following example uses FreeFile to get an available file number. It uses FileOpen to open a file
for reading. Then, while the EOF method indicates that the code hasn’t reached the end of the file, the
program uses LineInput to read a line from the file and it displays the line. When it finishes reading the
file, the program uses FileClose to close it.

‘ Get an available file number.
Dim file_num As Integer = FreeFile()

‘ Open the file.
FileOpen(file_num, _

“C:\Temp\test.txt”, _
OpenMode.Input, OpenAccess.Read, OpenShare.Shared)

‘ Read the file’s lines.
Do While Not EOF(file_num)

‘ Read a line.
Dim txt As String = LineInput(file_num)
Debug.WriteLine(txt)

Loop

‘ Close the file.
FileClose(file_num)

File-System Methods
Visual Basic also provides several methods for working with the file system. The following table
describes methods that manipulate directories and files.

Method Purpose

ChDir Changes the application’s current working directory.

ChDrive Changes the application’s current working drive.

CurDir Returns the application’s current working directory.

Dir Returns a file matching a directory path specification that may include
wildcards, and matching certain file properties such as ReadOnly, Hidden,
or Directory. The first call to Dir should include a path. Subsequent calls
can omit the path to fetch the next matching file for the initial path. Dir
returns file names without the path and returns Nothing when no more
files match.

FileCopy Copies a file to a new location.

FileDateTime Returns the date and time when the file was created or last modified.

FileLen Returns the length of a file in bytes.

GetAttr Returns a value indicating the file’s attributes. The value is a combination
of the values vbNormal, vbReadOjnly, vbHidden, vbSystem,
vbDirectory, vbArchive, and vbAlias.

Table continued on following page

719

File-System Objects

29_571982 ch27.qxd 9/1/05 7:35 PM Page 719

Method Purpose

Kill Permanently deletes a file.

MkDir Creates a new directory.

Rename Renames a directory or file.

RmDir Deletes an empty directory.

SetAttr Sets the file’s attributes. The attribute value is a combination of the values
vbNormal, vbReadOjnly, vbHidden, vbSystem, vbDirectory,
vbArchive, and vbAlias.

Sequential-File Access
With sequential file access, a program reads or writes the contents of a file byte by byte from start to fin-
ish with no jumping around. In contrast, in a random access file, the program can jump freely to any
position in the file and write data wherever it likes.

A text file is a typical sequential file. The program can read the text in order, and read it one line at a
time, but it cannot easily jump around within the file.

The Input, InputString, LineInput, Print, PrintLine, Write, and WriteLine methods provide
sequential access to files.

The Print and PrintLine methods provide mostly unformatted results. If you pass these methods
multiple parameters separated by commas, they align the results on tab boundaries. Write and
WriteLine, on the other hand, delimit their output so that it can be easily read by the Input method.

A program cannot directly modify only part of a sequential file. For example, it cannot modify, add, or
remove a sentence in the middle of a paragraph. If you must modify the file, you should read it into a
string, make the changes you want, and the rewrite the file.

If you must frequently modify text in the middle of a file, you should consider using random or binary
access, or storing the data in a database.

Random-File Access
A random-access file contains a series of fixed-length records. For example, you could make an
employee file that contains a series of values defining an employee. Each record would have fixed-
length fields to hold an employee’s ID, first name, last name, street address, and so forth, as shown in
the following structure definition:

Structure Employee
Public Id As Long
<VBFixedString(20)> Public FirstName As String
<VBFixedString(20)> Public LastName As String
<VBFixedString(40)> Public Street As String
...

End Structure

720

Chapter 27

29_571982 ch27.qxd 9/1/05 7:35 PM Page 720

When you open a file for random access, you can jump to any record in the file. That makes certain
kinds of file manipulation easier. For example, if the file is sorted, you can use a binary search to locate
records in it.

You can overwrite the values in a record within the file, but you cannot add or remove records in the
middle of the file. If you must make those sorts of changes, you must load the file into memory and then
rewrite it from scratch.

The FileGet, FileGetObject, FilePut, and FilePutObject methods read and write records in random-
access files. The following code demonstrates the FilePut and FileGet methods. First, it defines a struc-
ture named Employee to hold the data in a record. Notice how the code uses the VBFixedString attribute
to flag the strings as fixed length. The structure must have a fixed length if you want to jump randomly
through the file because Visual Basic calculates a record’s position by multiplying a record’s size by its index
in the file. If records contained strings of unknown length, the calculation wouldn’t work.

When the user clicks the Make Records button, the btnMakeRecords_Click event handler executes.
This code declares a variable of the record type, Employee. It uses the FreeFile method to get an avail-
able file number and uses FileOpen to open the file for random access. The final parameter to
FileOpen is the length of the file’s records. To calculate this length, the program uses the Len function,
passing it the Employee instance emp.

Next, the program uses the FilePut method to write six records into the file. It passes FilePut the file
number and a new Employee structure. The structure’s constructor makes initializing the new records
easy.

The program then uses FileGet to retrieve the six records using their indexes as keys, fetching them out of
numeric order to demonstrate random access. It then displays each record’s data in the Output window.

There are two key points to notice here. First, the file numbers records starting with 1 not 0, so the first
record in the file has index 1.

Second, the FileGet method does not have an overloaded version that takes an Employee structure as a
parameter. Because this example has Option Strict set to On, the code must perform some shenanigans
to pass FileGet a ValueType variable and then later convert it into an Employee.

If you set Option Strict to Off, you can pass an Employee object directly into FileGet. Turning off
Option Explicit is generally a bad idea, because it can hide implicit data type conversions that may
indicate a mistake. You can minimize the danger by placing as little code as possible in the file with
Option Explicit Off. For example, if the code that uses FileGet is in a class, you can use the
Partial keyword to move that code into a separate module. Then that module can turn off Option
Explicit while the rest of the class’s code keeps Option Explicit On.

After if it has read and displayed the records, the program uses FileClose to close the file.

Public Class Form1
Public Structure Employee

Public ID As Integer
<VBFixedString(15)> Public FirstName As String
<VBFixedString(15)> Public LastName As String

Public Sub New(ByVal new_id As Integer, ByVal first_name As String, _

721

File-System Objects

29_571982 ch27.qxd 9/1/05 7:35 PM Page 721

ByVal last_name As String)
ID = new_id
FirstName = first_name
LastName = last_name

End Sub

Public Overrides Function ToString() As String
Return ID & “: “ & FirstName & “ “ & LastName

End Function
End Structure

Private Sub btnMakeRecords_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnMakeRecords.Click

‘ Declare a record variable.
Dim emp As New Employee

‘ Get an available file number.
Dim file_num As Integer = FreeFile()

‘ Open the file.
FileOpen(file_num, “MYFILE.DAT”, OpenMode.Random, _

OpenAccess.ReadWrite, OpenShare.Shared, _
Len(emp))

‘ Make some records.
FilePut(file_num, New Employee(1, “Alice”, “Altanta”))
FilePut(file_num, New Employee(2, “Bob”, “Bakersfield”))
FilePut(file_num, New Employee(3, “Cindy”, “Chicago”))
FilePut(file_num, New Employee(4, “Dan”, “Denver”))
FilePut(file_num, New Employee(5, “Erma”, “Eagle”))
FilePut(file_num, New Employee(6, “Fred”, “Frisco”))

‘ Fetch and display the records.
Dim obj As ValueType = DirectCast(emp, ValueType)
For Each i As Integer In New Integer() {3, 1, 5, 2, 6}

FileGet(file_num, obj, i)
emp = DirectCast(obj, Employee)
Debug.WriteLine(emp.ToString())

Next i

‘ Close the file.
FileClose(file_num)

End Sub
End Class

The following text shows the result. Notice that the first names are padded with spaces to 15 characters,
the length of the Employee structure’s fixed-length strings. The last names are also padded to 15 charac-
ters, but it’s less obvious from this display.

3: Cindy Chicago
1: Alice Altanta
5: Erma Eagle
2: Bob Bakersfield
6: Fred Frisco

722

Chapter 27

29_571982 ch27.qxd 9/1/05 7:35 PM Page 722

Binary-File Access
Binary access is similar to random access, except that it does not require its data to fit into neat records.
You get control over pretty much every byte in the file, and you can jump to an arbitrary byte number in
the file. If the items in the file are not fixed-length records, however, you cannot jump to a particular
record because you cannot calculate where that record would begin.

.NET Framework Classes
The System.IO namespace provides several classes for working with the file system. The Directory and
File classes provide shared methods that you can use to manipulate the file system without creating
instances of helper objects.

The DirectoryInfo and FileInfo classes let you work with specific relevant file system objects. For
example, a FileInfo object represents a particular file and provides methods to create, rename, delete,
and get information about that file.

The following sections describe these and the other classes that the Framework provides to help you
work with the file system.

Directory
The Directory class provides shared methods for working with directories. These methods let you cre-
ate, rename, move, and delete directories. They let you enumerate the files and subdirectories within a
directory, and get and set directory information such as the directory’s creation and last access time.

The following table describes the Directory class’s shared methods.

Method Purpose

CreateDirectory Creates a directory and any missing ancestors (parent, grand-
parent, and so forth).

Delete Deletes a directory and its contents. It can recursively delete all
subdirectories.

Exists Returns True if the path points to an existing directory.

GetCreationTime Returns a directory’s creation date and time.

GetCreationTimeUtc Returns a directory’s creation date and time in Coordinated
Universal Time (UTC).

GetCurrentDirectory Returns the application’s current working directory.

GetDirectories Returns an array of strings holding the fully qualified names of
a directory’s subdirectories.

GetDirectoryRoot Returns the directory root for a path (the path need not exist).
For example, “C:\”.

Table continued on following page

723

File-System Objects

29_571982 ch27.qxd 9/1/05 7:35 PM Page 723

Method Purpose

GetFiles Returns an array of strings holding the fully qualified names of
a directory’s files.

GetFileSystemEntries Returns an array of strings holding the fully qualified names of
a directory’s files and subdirectories.

GetLastAccessTime Returns a directory’s last access date and time.

GetLastAccessTimeUtc Returns a directory’s last access date and time in UTC.

GetLastWriteTime Returns the date and time when a directory was last modified.

GetLastWriteTimeUtc Returns the date and time in UTC when a directory was last
modified.

GetLogicalDrives Returns an array of strings listing the system’s logical drives as
in “A:\”. The list only includes drives that are attached. For
example, it lists an empty floppy drive and a connected
flashdisk but doesn’t list a flashdisk after you disconnect it.

GetParent Returns a DirectoryInfo object representing a directory’s
parent.

Move Moves a directory and its contents to a new location on the
same disk volume.

SetCreationTime Sets a directory’s creation date and time.

SetCreationTimeUtc Sets a directory’s creation date and time in UTC.

SetCurrentDirectory Sets the application’s current working directory.

SetLastAccessTime Sets a directory’s last access date and time.

SetLastAccessTimeUtc Sets a directory’s last access date and time in UTC.

SetLastWriteTime Sets a directory’s last write date and time.

SetLastWriteTimeUtc Sets a directory’s last write date and time in UTC.

File
The File class provides shared methods for working with files. These methods let you create, rename,
move, and delete files. They also make working with file streams a bit easier.

724

Chapter 27

29_571982 ch27.qxd 9/1/05 7:35 PM Page 724

The following table describes the File class’s most useful shared methods.

Method Purpose

AppendAll Adds text to the end of a file, creating it if it doesn’t exist, and
then closes the file.

AppendText Opens a file for appending UTF-8 encoded text and returns a
StreamWriter attached to it.

Copy Copies a file.

Create Creates a new file and returns a FileStream attached to it.

CreateText Creates or opens a file for writing UTF-8 encoded text and
returns a StreamWriter attached to it.

Delete Permanently deletes a file.

Exists Returns True if the specified file exists.

GetAttributes Gets a file’s attributes. This is a combination of flags defined by
the FileAttributes enumeration: Archive, Compressed,
Device, Directory, Encrypted, Hidden, Normal, NotCon-
textIndexed, Offline, ReadOnly, ReparsePoint, Sparse-
File, System, and Temporary.

GetCreationTime Returns a file’s creation date and time.

GetCreationTimeUtc Returns a file’s creation date and time in UTC.

GetLastAccessTime Returns a file’s last access date and time.

GetLastAccessTimeUtc Returns a file’s last access date and time in UTC.

GetLastWriteTime Returns a file’s last write date and time.

GetLastWriteTimeUtc Returns a file’s last write date and time in UTC.

Move Moves a file to a new location.

Open Opens a file and returns a FileStream attached to it. Parameters
let you specify the mode (Append, Create, CreateNew, Open,
OpenOrCreate, or Truncate), access (Read, Write, or Read-
Write), and sharing (Read, Write, ReadWrite, or None) settings.

OpenRead Opens a file for reading and returns a FileStream attached to it.

OpenText Opens a UTF-8-encoded text file for reading and returns a
StreamReader attached to it.

OpenWrite Opens a file for writing and returns a FileStream attached to it.

ReadAllBytes Returns a file’s contents in an array of bytes.

ReadAllLines Returns a file’s lines in an array of strings.

ReadAllText Returns a file’s contents in a string.

Table continued on following page

725

File-System Objects

29_571982 ch27.qxd 9/1/05 7:35 PM Page 725

Method Purpose

Replace This method takes three file paths as parameters, representing
a source file, a destination file, and a backup file. If the backup
file exists, the method permanently deletes it. It then moves the
destination file to the backup file, and moves the source file to
the destination file. For example, imagine a program that
writes a log file every time it runs. It could use this method to
keep three versions of the log: the current log (the method’s
source file), the most recent backup (the method’s destination
file), and a second backup (the method’s backup file). This
method throws an error if either the source or destination file
doesn’t exist.

SetAttributes Sets a file’s attributes. This is a combination of flags defined by
the FileAttributes enumeration: Archive, Compressed,
Device, Directory, Encrypted, Hidden, Normal, NotCon-
textIndexed, Offline, ReadOnly, ReparsePoint, Sparse-
File, System, and Temporary.

SetCreationTime Sets a file’s creation date and time.

SetCreationTimeUtc Sets a file’s creation date and time in UTC.

SetLastAccessTime Sets a file’s last access date and time.

SetLastAccessTimeUtc Sets a file’s last access date and time in UTC.

SetLastWriteTime Sets a file’s last write date and time.

SetLastWriteTimeUtc Sets a file’s last write date and time in UTC.

WriteAllBytes Creates or replaces a file, writes an array of bytes into it, and
closes the file.

WriteAllLines Creates or replaces a file, writes an array of strings into it, and
closes the file.

WriteAllText Creates or replaces a file, writes a string into it, and closes the
file.

DriveInfo
A DriveInfo object represents one of the computer’s drives. The following table describes the proper-
ties provided by this class. Note that some of these properties are available only when the drive is ready,
as indicated in the Must Be Ready column. If you try to access them when the drive is not ready, Visual
Basic throws an exception. The program should check the IsReady property to determine whether the
drive is ready before trying to use the AvailableFreeSpace, DriveFormat, TotalFreeSpace, or
VolumeLabel properties.

726

Chapter 27

29_571982 ch27.qxd 9/1/05 7:35 PM Page 726

DriveInfo Property Purpose Must Be Ready

AvailableFreeSpace Returns the amount of free space available True
on the drive in bytes.

DriveFormat Returns the name of the file-system type True
such as NTFS (NT File System) or FAT32
(32-bit File Allocation Table). (For a
comparison of these, see
www.ntfs.com/ntfs_vs_fat.htm.)

DriveType Returns a DriveType enumeration value False
indicating the drive type. This value can be
CDRom, Fixed, Network, NoRootDirectory,
Ram, Removable, or Unknown.

IsReady Returns True if the drive is ready. Many False
DriveInfo properties are unavailable and
raise exceptions if you try to access them
while the drive is not ready.

Name Return’s the drive’s name. This is the False
drive’s root name (as in “A:\” or “C:\”).

RootDirectory Returns a DirectoryInfo object False
representing the drive’s root directory.
See the section “DirectoryInfo” later in this
chapter for more information on this class.

TotalFreeSpace Returns the total amount of free space True
on the drive in bytes.

VolumeLabel Gets or sets the drive’s volume label. True

The DriveInfo class also has a public shared method GetDrives that returns an array of DriveInfo
objects describing the system’s drives.

DirectoryInfo
A DirectoryInfo object represents a directory. You can use its properties and methods to create and
delete directories and to move through a directory hierarchy.

The following table describes the most useful public properties and methods provided by the
DirectoryInfo class.

Property or Method Purpose

Attributes Gets or sets flags for the directory from the FileAttributes enu-
meration: Archive, Compressed, Device, Directory, Encrypted,
Hidden, Normal, NotContentIndexed, Offline, ReadOnly,
ReparsePoint, SparseFile, System, and Temporary.

Table continued on following page

727

File-System Objects

29_571982 ch27.qxd 9/1/05 7:35 PM Page 727

Property or Method Purpose

Create Creates the directory. You can create a DirectoryInfo object, pass-
ing its constructor the fully qualified name of a directory that doesn’t
exist. You can then call the object’s Create method to create the
directory.

CreateSubdirectory Creates a subdirectory within the directory and returns a Directory
Info object representing it. The subdirectory’s path must be relative
to the DirectoryInfo’s directory, but can contain intermediate
subdirectories. For example, dir_info.CreateSubdirectory
(“Tools\Bin”) creates the Tools subdirectory and the Bin directory
inside that.

CreationTime Gets or sets the directory’s creation time.

CreationTimeUtc Gets or sets the directory’s creation time in UTC.

Delete Deletes the directory if it is empty. A parameter lets you tell the object
to delete its contents, too, if it isn’t empty.

Exists Returns True if the directory exists.

Extension Returns the extension part of the directory’s name. Normally, this is
an empty string for directories.

FullName Returns the directory’s fully qualified path.

GetDirectories Returns an array of DirectoryInfo representing the directory’s
subdirectories. An optional parameter gives a pattern to match. This
method does not recursively search the subdirectories.

GetFiles Returns an array of FileInfo objects representing files inside the
directory. An optional parameter gives a pattern to match. This
method does not recursively search subdirectories.

GetFileSystemInfos Returns a strongly typed array of FileSystemInfo objects, represent-
ing subdirectories and files inside the directory. The items in the array
are DirectoryInfo and FileInfo objects, both of which inherit
from FileSystemInfo. An optional parameter gives a pattern to
match. This method does not recursively search subdirectories.

LastAccessTime Gets or sets the directory’s last access time.

LastAccessTimeUtc Gets or sets the directory’s last access time in UTC.

LastWriteTime Gets or sets the directory’s last write time.

LastWriteTimeUtc Gets or sets directory’s last write time in UTC.

MoveTo Moves the directory and its contents to a new path.

Name The directory’s name without the path information.

Parent Returns a DirectoryInfo object, representing the directory’s parent.
If the directory is its file system’s root (for example, C:\), then this
returns Nothing.

728

Chapter 27

29_571982 ch27.qxd 9/1/05 7:35 PM Page 728

Property or Method Purpose

Refresh Refreshes the DirectoryInfo object’s data. For example, if the
directory has been accessed since the object was created, you must
call Refresh to load the new LastAccessTime value.

Root Returns a DirectoryInfo object representing the root of the direc-
tory’s file system.

ToString Returns the directory’s fully qualified path and name.

FileInfo
A FileInfo object represents a file. You can use its properties and methods to create and delete directo-
ries and to move through a directory hierarchy.

The following table describes the most useful public properties and methods provided by the FileInfo
class.

Property or Method Purpose

AppendText Returns a StreamWriter that appends text to the file.

Attributes Gets or sets flags for the file from the FileAttributes enumeration:
Archive, Compressed, Device, Directory, Encrypted, Hidden,
Normal, NotContentIndexed, Offline, ReadOnly, ReparsePoint,
SparseFile, System, and Temporary.

CopyTo Copies the file and returns a FileInfo object, representing the new
file. A parameter lets you indicate whether the copy should overwrite
an existing file. If the destination path is relative, it is relative to
the application’s current directory, not to the FileInfo object’s
directory.

Create Creates the file and returns a FileStream object attached to it. For
example, you can create a FileInfo object, passing its constructor
the name of a file that doesn’t exist. Then you can call the Create
method to create the file.

CreateText Creates the file and returns a StreamWriter attached to it. For
example, you can create a FileInfo object passing its constructor
the name of a file that doesn’t exist. Then you can call the Create-
Text method to create the file.

CreationTime Gets or sets the file’s creation time.

CreationTimeUtc Gets or sets the file’s creation time in UTC.

Delete Deletes the file.

Directory Returns a DirectoryInfo object representing the file’s directory.

Table continued on following page

729

File-System Objects

29_571982 ch27.qxd 9/1/05 7:35 PM Page 729

Property or Method Purpose

DirectoryName Returns the name of the file’s directory.

Exists Returns True if the file exists.

Extension Returns the extension part of the file’s name, including the period.
For example, the extension for game.txt is .txt.

FullName Returns the file’s fully qualified path and name.

IsReadOnly Returns True if the file is marked read-only.

LastAccessTime Gets or sets the file’s last access time.

LastAccessTimeUtc Gets or sets the file’s last access time in UTC.

LastWriteTime Gets or sets the file’s last write time.

LastWriteTimeUtc Gets or sets the file’s last write time in UTC.

Length Returns the number of bytes in the file.

MoveTo Moves the file to a new location. If the destination uses a relative
path, it is relative to the application’s current directory, not to the
FileInfo object’s directory. When this method finishes, the File-
Info object is updated to refer to the file’s new location.

Name The file’s name without the path information.

Open Opens the file with various mode (Append, Create, CreateNew,
Open, OpenOrCreate, or Truncate), access (Read, Write, or Read-
Write), and sharing (Read, Write, ReadWrite, or None) settings.
This method returns a FileStream object attached to the file.

OpenRead Returns a read-only FileStream attached to the file.

OpenText Returns a StreamReader with UTF-8 encoding attached to the file
for reading.

OpenWrite Returns a write-only FileStream attached to the file.

Refresh Refreshes the FileInfo object’s data. For example, if the file has
been accessed since the object was created, you must call Refresh to
load the new LastAccessTime value.

Replace Replaces a target file with this one, renaming the old target as a
backup copy. If the backup file already exists, it is deleted and
replaced with the target. You can use this method to save backups of
logs and other periodically updated files.

ToString Returns the file’s fully qualified name.

730

Chapter 27

29_571982 ch27.qxd 9/1/05 7:35 PM Page 730

FileSystemInfo
The FileSystemInfo class is the parent class for the FileInfo and DirectoryInfo classes. It is a
MustInherit class so you cannot create instances of it directly, but some routines return this class rather
than the more specific child classes. For example, the DirectoryInfo class’s GetFileSystemInfos
method returns an array of FileSystemInfo objects describing the files in the directory.

FileSystemWatcher
The FileSystemWatcher class keeps an eye on part of the file system and raises events to let your pro-
gram know if something changes. For example, you could make a FileSystemWatcher monitor a work
directory. For example, when a new file with a .job extension arrives, the watcher would raise an event
and your application could process the file.

The FileSystemWatcher’s constructor takes parameters that tell it which directory to watch and that
give it a filter for selecting files to watch. For example, the filter might be “*.txt” to watch for changes
to text files. The default filter is “*.*”, which catches changes to all files that have an extension. Set the
filter to the empty string “”to catch changes to all files.

The following table describes the FileSystemWatcher’s most useful properties.

Property Purpose

EnableRaisingEvents Determines whether the component is enabled. Note that this
property is False by default, so the watcher will not raise any
events until you set it to True.

Filter Determines the files for which the watcher reports events. You
cannot watch for multiple file types as in *.txt and *.dat.
Instead use multiple FileSystemWatchers. If you like, you
can use AddHandler to make all of the FileSystemWatchers
use the same event handlers.

IncludeSubdirectories Determines whether the object watches subdirectories within
the main path.

InternalBufferSize Determines the size of the internal buffer. If the watcher
is monitoring a very active directory, a small buffer may
overflow.

NotifyFilter Determines the types of changes that the watcher reports. This
is a combination of values defined by the NotifyFilters enu-
meration and can include the values Attributes, Creation-
Time, DirectoryName, FileName, LastAccess, LastWrite,
Security, and Size.

Path Determines the path to watch.

The FileSystemWatcher class provides only two really useful methods. First, Dispose releases
resources used by the component. When you are finished using a watcher, call its Dispose method to
allow garbage collection to reclaim its resources more efficiently.

731

File-System Objects

29_571982 ch27.qxd 9/1/05 7:35 PM Page 731

Second, the WaitForChanged method waits for a change synchronously (with an optional timeout).
When a change occurs, the method returns a WaitForChangedResult object, giving information about
the change that occurred.

When the FileSystemWatcher detects a change asynchronously, it raises an event to let the program
know what has happened. The following table describes the class’s events.

Name Description

Changed A file or subdirectory has changed.

Created A file or subdirectory was created.

Deleted A file or subdirectory was deleted.

Error The watcher’s internal buffer overflowed.

Renamed A file or subdirectory was renamed.

The following simple example shows how to use a FileSystemWatcher to look for new files in a direc-
tory. The program uses the WithEvents keyword to declare a FileSystemWatcher object. When the
program’s main form loads, the Form1_Load event handler allocates this object. Its constructor sets the
object’s path to the program’s startup directory’s parent. It sets the object’s filter to “*.job” so that the
object will watch for changes to files that end with a .job extension.

The event handler sets the watcher’s NotifyFilter to FileName, so it will raise its Created event if a
new file name appears in the target directory. Unfortunately, the NotifyFilter values (Attributes,
CreationTime, DirectoryName, FileName, LastAccess, LastWrite, Security, and Size) do not
match up well with the events provided by the FileSystemWatcher, so you need to figure out which
NotifyFilter values to set to raise different kinds of events.

The Form1_Load event handler finishes by setting the watcher’s EnableRaisingEvents property to
True so the object starts watching.

When a .job file’s is created in the watcher’s target directory, the program’s fswJobFiles_Created
executes. The program processes and then deletes the file. In this example, the program processes the file
by displaying a message giving its fully qualified name. A more realistic example might read the file;
parse fields, indicating the type of job this is; assign it to an employee for handling; and then e-mail it to
that employee.

Private WithEvents fswJobFiles As FileSystemWatcher

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Dim watch_path As String = _
FileSystem.GetParentPath(Application.StartupPath)

fswJobFiles = New FileSystemWatcher(watch_path, “*.job”)
fswJobFiles.NotifyFilter = NotifyFilters.FileName
fswJobFiles.EnableRaisingEvents = True

End Sub

Private Sub fswJobFiles_Created(ByVal sender As Object, _

732

Chapter 27

29_571982 ch27.qxd 9/1/05 7:35 PM Page 732

ByVal e As System.IO.FileSystemEventArgs) Handles fswJobFiles.Created
‘ Process the new file...
MessageBox.Show(“Process new job: “ & e.FullPath)

File.Delete(e.FullPath)
End Sub

Path
The Path class provides shared properties and methods that you can use to manipulate paths. Its meth-
ods return the path’s file name, extension, directory name, and so forth. Other methods provide values
that do not relate to a specific path. For example, they can give you the system’s temporary directory
path, or the name of a temporary file.

The following table describes the Path class’s most useful public properties.

Property Purpose

AltDirectorySeparatorChar Returns the alternate character used to separate directory
levels in a hierarchical path. Typically this is /.

DirectorySeparatorChar Returns the character used to separate directory levels in
a hierarchical path. Typically this is \ (as in C:\Tests\
Billing\2005q2.dat).

InvalidPathChars Returns a character array that holds characters that are
not allowed in a path string. Typically, this array includes
characters such as “, <, >, and |, as well as nonprintable
characters such as those with ASCII values between 0
and 31.

PathSeparator Returns the character used to separate path strings in
environment variables. Typically this is ;.

VolumeSeparatorChar Returns the character placed between a volume letter
and the rest of the path. Typically this is : (as in
C:\Tests\Billing\2005q2.dat).

The following table describes the Path class’s most useful methods.

Method Purpose

ChangeExtension Changes a path’s extension.

Combine Returns two path strings concatenated.

GetDirectoryName Returns a path’s directory.

GetExtension Returns a path’s extension.

GetFileName Returns a path’s file name and extension.

Table continued on following page

733

File-System Objects

29_571982 ch27.qxd 9/1/05 7:35 PM Page 733

Method Purpose

GetFileNameWithoutExtension Returns a path’s file name without the extension.

GetFullPath Returns a path’s fully qualified value. This can be partic-
ularly useful for converting a partially relative path into
an absolute path. For example, the statement Path.Get-
FullPath(“C:\Tests\OldTests\Software\..\..\N
ew\Code”) returns the string “C:\Tests\New\Code”.

GetInvalidFileNameChars Returns an array listing characters that are invalid in file
names.

GetInvalidPathChars Returns an array listing characters that are invalid in file
paths.

GetPathRoot Returns a path’s root directory string. For example, the
statement Path.GetPathRoot(“C:\Invoices\
Unpaid\Deadbeats”) returns the string “C:\”.

GetRandomFileName Returns a random file name.

GetTempFileName Creates a uniquely named, empty temporary file and
returns its fully qualified path. Your program can open
that file for scratch space, do whatever it needs to do,
close the file, and then delete it. A typical file name
might be “C:\Documents and Settings\Rod\Local
Settings\Temp\tmp19D.tmp”.

GetTempPath Returns the path to the system’s temporary folder. This is
the path part of the file names returned by GetTemp-
FileName.

HasExtension Returns True if a path includes an extension.

IsPathRooted Returns True if a path is an absolute path. This includes
“\Temp\Wherever” and “C:\Clients\Litigation,”
but not “Temp\Wherever” or “..\Uncle”.

My.Computer.FileSystem
The My.Computer.FileSystem object provides tools for working with drives, directories, and files. The
following table summarizes this object’s properties.

Property Description

CurrentDirectory Gets or sets the fully qualified path to the application’s current directory.

Drives Returns a read-only collection of DriveInfo objects describing the
system’s drives. See the section “DriveInfo” earlier in this chapter for
information about the DriveInfo class.

734

Chapter 27

29_571982 ch27.qxd 9/1/05 7:35 PM Page 734

Property Description

SpecialDirectories Returns a SpecialDirectoriesProxy object that has properties
giving the locations of various special directories (such as the sys-
tem’s temporary directory and the user’s MyDocuments directory).
See the section “My.Computer.FileSystem.SpecialDirectories” later in
this chapter for more information.

The following list describes the My.Computer.FileSystem object’s methods.

Method Purpose

CombinePath Combines a base path with a relative path reference and returns a
properly formatted fully qualified path. For example, the follow-
ing code displays the name of the directory that is the parent of
the application’s current directory:
MessageBox.Show(_

My.Computer.FileSystem.CombinePath(_
My.Computer.FileSystem.CurrentDirectory(), _
“..”)

CopyDirectory Copies a directory. Parameters indicate whether to overwrite
existing files, whether to display a progress indicator, and what to
do if the user presses Cancel during the operation.

CopyFile Copies a file. Parameters indicate whether to overwrite existing
files, whether to display a progress indicator, and what to do if the
user presses Cancel during the operation.

CreateDirectory Creates a directory. This method will create ancestor directories if
necessary. For example, if the C:\Temp directory contains no sub-
directories, creating C:\Temp\Project\Data will automatically
create C:\Temp\Project and C:\Temp\Project\Data.

DeleteDirectory Deletes a directory. Parameters indicate whether to recursively
delete subdirectories, prompt the user for confirmation, or move
the directory into the Recycle Bin.

DeleteFile Deletes a file. Parameters indicate whether to prompt the user for
confirmation or move the file into the Recycle Bin, and what to do
if the user presses Cancel while the deletion is in progress.

DirectoryExists Returns True if a specified directory exists.

FileExists Returns True if a specified file exists.

FindInFiles Returns a read-only collection of strings listing files that contain a
target string.

GetDirectories Returns a string collection listing subdirectories of a given direc-
tory. Parameters tell whether to recursively search the subdirecto-
ries, and the wildcards to match.

Table continued on following page

735

File-System Objects

29_571982 ch27.qxd 9/1/05 7:35 PM Page 735

Method Purpose

GetDirectoryInfo Returns a DirectoryInfo object for a directory. See the section
“DirectoryInfo” earlier in this chapter for more information.

GetDriveInfo Returns a DriveInfo object for a drive. See the section “Drive-
Info” earlier in this chapter for more information.

GetFileInfo Returns a FileInfo object for a file. See the section “FileInfo” ear-
lier in this chapter for more information.

GetFiles Returns a string collection holding the names of files within a
directory. Parameters indicate whether the search should recur-
sively search subdirectories, and give wildcards to match.

GetParentPath Returns the fully qualified path of a path’s parent. For example,
this returns a file’s or directory’s parent directory.

MoveDirectory Moves a directory. Parameters indicate whether to overwrite files
that have the same name in the destination directory and whether
to prompt the user when such a collision occurs.

MoveFile Moves a file. Parameters indicate whether to overwrite a file that
has the same name as the file’s destination and whether to prompt
the user when such a collision occurs.

OpenTextFieldParser Opens a TextFieldParser object attached to a delimited or
fixed-field file such as a log file. You can use the object to parse the
file.

OpenTextFileReader Opens a StreamReader object attached to a file. You can use the
object to read the file.

OpenTextFileWriter Opens a StreamReader object attached to a file. You can use the
object to write into the file.

ReadAllBytes Reads all of the bytes from a binary file into an array.

ReadAllText Reads all of the text from a text file into a string.

RenameDirectory Renames a directory within its parent directory.

RenameFile Renames a file with its directory.

WriteAllBytes Writes an array of bytes into a binary file. A parameter tells
whether to append the data or rewrite the file.

WriteAllText Writes a string into a text file. A parameter tells whether to
append the string or rewrite the file.

736

Chapter 27

29_571982 ch27.qxd 9/1/05 7:35 PM Page 736

My.Computer.FileSystem.SpecialDirectories
The My.Computer.FileSystem.SpecialDirectories property returns a SpecialDirectoriesProxy
object that has properties giving the locations of various special directories (such as the system’s temporary
directory and the user’s MyDocuments directory).

The following table describes these special directory properties.

Property Purpose

AllUsersApplicationData Application settings for all users.

CurrentUserApplicationData Application settings for the current user.

Desktop The current user’s desktop directory.

MyDocuments The current user’s MyDocuments directory.

MyMusic The current user’s MyMusic directory.

MyPictures The current user’s MyPictures directory.

Programs The current user’s Start Menu\Programs directory.

Temp The current user’s temporary directory.

The following output shows typical examples of these directory paths. The first two are quite long, so
they are broken into multiple lines, although the output from the methods is on a single line.

C:\Documents and Settings\All Users\Application Data\ShowSpecialDirectories\
ShowSpecialDirectories\1.0.0.0

C:\Documents and Settings\Rod\Application Data\ShowSpecialDirectories\
ShowSpecialDirectories\1.0.0.0

C:\Documents and Settings\Rod\Desktop
C:\Documents and Settings\Rod\My Documents
C:\Documents and Settings\Rod\My Documents\My Music
C:\Documents and Settings\Rod\My Documents\My Pictures
C:\Documents and Settings\Rod\Start Menu\Programs
C:\Documents and Settings\Rod\Local Settings\Temp

Summary
Visual Basic provides a native set of methods for reading and writing files, including FreeFile,
FileOpen, Input, LineInput, Print, Write, and FileClose. It also provides method for working
with the file system (such as ChDir, MkDir, Kill, and RmDir). If you have a lot of previous experience
with Visual Basic, you may prefer these familiar methods.

The System.IO namespace offers many objects that provide even more powerful capabilities than Visual
Basic’s native methods. Classes such as Directory, DirectoryInfo, File, and FileInfo make it easy
to create, examine, move, rename, and delete directories and files. The File class’s methods make it par-
ticularly easy to read or write an entire file and to create streams attached to files for reading or writing.

737

File-System Objects

29_571982 ch27.qxd 9/1/05 7:35 PM Page 737

The FileSystemWatcher class lets an application keep an eye on a file or directory and take action
when it is changed. For example, a program can watch a spooling directory and take action when a new
file appears in it.

The Path class provides miscellaneous support for working with paths. For example, it provides meth-
ods for examining a path’s file name or extension.

The My.Computer.FileSystem namespace provides shortcuts to some of the more useful of the methods
offered by the other file system classes. Its methods let you create, examine, and delete files and directories.
The SpecialDirectories object also provides information about the locations of system directories.

There is considerable overlap among all of these tools, so you don’t need to feel that you have to use
them all. Take a good look so you know what’s there, and then pick the tools that you find the most
comfortable.

Many of the objects described in this chapter are in the System.IO or My namespaces. These namespaces
are extremely useful when you need to examine and manipulate the file system. Chapter 28, “Useful
Namespaces,” describes some of the other useful namespaces defined by the .NET Framework. It pro-
vides a brief overview of some of the most important System namespaces and gives more detailed exam-
ples that demonstrate regular expressions, XML, cryptography, reflection, threading, and Direct3D.

738

Chapter 27

29_571982 ch27.qxd 9/1/05 7:35 PM Page 738

Useful Namespaces
The .NET Framework is a library of classes, interfaces, and types that add extra power to Visual
Studio .NET. These features go beyond what is normally provided by a programming language
such as Visual Basic.

The .NET Framework is truly enormous. To make it more manageable, Microsoft has broken it into
namespaces. The namespaces form a hierarchical catalog that groups related classes and functions
in a meaningful way.

For example, the System namespace contains basic classes and methods that an application can
use to perform common tasks. The System.Drawing namespace is the part of the System name-
space that holds graphical tools. The System.Drawing.Design, System.Drawing.Drawing2D,
System.Drawing.Imaging, System.Drawing.Printing, and System.Drawing.Text namespaces fur-
ther subdivide System.Drawing into finer groupings.

Many of the Framework namespaces are essential for day-to-day programming. For example,
many Visual Basic applications need to produce printouts, so they use the System.Drawing.
Printing namespace. Different applications draw graphics or images on the screen, so they need to
use other System.Drawing namespaces.

Because so much of the .NET Framework is used in everyday programming tasks, this book doesn’t
strongly differentiate between Visual Basic and .NET Framework functionality. Presumably, the book
could have focused solely on the Visual Basic language and ignored the .NET Framework, but it
would have been a much less useful book.

Although the book covers many useful .NET Framework features, there’s a huge amount that it
doesn’t cover. Currently the .NET Framework defines more than 160 namespaces that define a
huge number of classes, types, enumerated values, and other paraphernalia.

The following sections describe some of the highest-level and most useful namespaces provided
by the .NET Framework.

30_571982 ch28.qxd 9/1/05 7:38 PM Page 739

High-Level Namespaces
The .NET Framework includes two root namespaces: Microsoft and System.

Your program may include references to many other namespaces. If you add references to development
libraries, your program will have access to their namespaces. For example, you might have Amazon,
Google, eBay, and other development toolkits installed and they come with their own namespaces. Later
versions of Windows will also provide namespaces that you may want to reference.

Also note that the My namespace provides shortcuts that make common programming tasks easier. For
more information on the My namespace, see the section “My” in Chapter 25, “Configuration and
Resources,” and Appendix P, “The My Namespace.”

The Microsoft Namespace
The Microsoft root namespace contains Microsoft-specific items. In theory, any vendor can implement
.NET languages that translate into Intermediate Language (IL) code. If you were to build such a lan-
guage, the items in the Microsoft namespace would generally not apply to your language. Items in the
System namespace described next would be as useful to users of your language as they are to program-
mers who use the Microsoft languages, but the items in the Microsoft namespace would probably not be
as helpful.

The following table briefly describes the second-level namespaces contained in the Microsoft root
namespace.

Namespace Contains

Microsoft.Csharp Items supporting compilation and code generation for C#.

Microsoft.JScript Items supporting compilation and code generation for JScript.

Microsoft.VisualBasic Items supporting compilation and code generation for Visual
Basic. Some of the items in this namespace are useful to Visual
Basic programmers, mostly for compatibility with previous ver-
sions of Visual Basic.

Microsoft.Vsa Items supporting Visual Studio for Applications (VSA), which lets
you including scripting in your application.

Microsoft.WindowsCE Items supporting Pocket PC and Smartphone applications using
the .NET Compact Framework.

Microsoft.Win32 Classes that handle operating system events and that manipulate
the System Registry.

The System Namespace
The System namespace contains basic classes used to define fundamental data types. It also defines
important event handlers, interfaces, and exceptions.

740

Chapter 28

30_571982 ch28.qxd 9/1/05 7:38 PM Page 740

The following table briefly describes the second-level namespaces contained in the System root namespace.

Namespace Contains

System.CodeDom Classes for representing and manipulating source-code
documents.

System.Collections Interfaces and classes for defining various collection classes,
lists, queues, hash tables, and dictionaries.

System.ComponentModel Classes that control design-time and run-time behavior of com-
ponents and controls. Defines several useful code attributes
such as Description, DefaultEvent, DefaultProperty,
and DefaultValue. Also defines some useful classes such as
ComponentResourceManager.

System.Configuration Classes and interfaces for working with configuration files.

System.Data Mostly ADO.NET classes. Subnamespaces include features for
specific kinds of databases and database technologies such as
SQL Server, Oracle, OLE DB, and so forth.

System.Deployment Classes that let you programmatically update ClickOnce
deployments.

System.Diagnostics Classes for working with system processes, performance coun-
ters, and event logs.

System.DirectoryServices Classes for working with Active Directory.

System.Drawing Classes for using GDI+ graphics routines to draw
two-dimensional graphics, text, and images.

System.EnterpriseServices Tools for working with COM+ and building enterprise
applications.

System.Globalization Classes that help with internationalization. Includes tools for
customizing an application’s language and resources, and for
using localized formats such as date, currency, and number
formats.

System.IO Classes for reading and writing streams and files.

System.Management Classes for system management and monitoring.

System.Messaging Classes for working with message queues to send and receive
messages across the network.

System.Net Classes for working with network protocols.

System.Reflection Classes for working with loaded types. A program can use
these to learn about classes and their capabilities, and to invoke
an object’s methods.

System.Resources Classes to create and manage culture-specific resources pro-
grammatically.

Table continued on following page

741

Useful Namespaces

30_571982 ch28.qxd 9/1/05 7:38 PM Page 741

Namespace Contains

System.Runtime Classes for working with metadata for compilers, interop ser-
vices (interoperating with unmanaged code), marshalling,
remoting, and serialization.

System.Security Classes for security and cryptography.

System.ServiceProcess Classes that let you implement, install, and control Windows
service processes.

System.Text Classes representing various character encodings. Also contains
the StringBuilder class, which lets you build large strings
quickly, and classes for working with regular expressions.

System.Threading Classes for multithreading.

System.Timers Contains the Timer class.

System.Transactions Classes for working with transactions involving multiple dis-
tributed components and multiphase notifications.

System.Web Classes for Web programming and browser/server interactions.

System.Windows.Forms Defines the Windows forms controls.

System.Xml Classes that let you manipulate XML files.

Advanced Examples
Several chapters in this book have covered the many pieces of the .NET Framework namespaces in some
detail. For example, Chapter 25, “Configuration and Resources,” describes many of the most useful tools
provided by the System.Globalization and System.Resources namespaces. Similarly, Chapters 19
through 23 explain many of the most useful drawing tools provided by the System.Drawing namespace.

Other parts of the .NET Framework namespaces are quite specialized, and you may never need to use
their capabilities. Many developers can use fairly standard installation techniques, so they will never
need to use the System.Deployment classes to programmatically update ClickOnce deployments.

A few namespaces bear some special mention here, however. They don’t really fit into the rest of the
book, but they are important enough that you may find a few examples helpful. The following sections
give a few examples that use some of the more useful namespaces.

Regular Expressions
To most programmers, a regular expression is a series of symbols that represents a class of strings. A pro-
gram can use regular expression tools to determine whether a string matches a regular expression or to
extract pieces of a string that match an expression. For example, a program can use regular expressions
to see if a string has the format of a valid phone number, Social Security number, ZIP code or other
postal code, e-mail address, and so forth.

742

Chapter 28

30_571982 ch28.qxd 9/1/05 7:38 PM Page 742

The following regular expression represents a 7- or 10-digit phone number in the United States:

^([2-9]{3}-)?[2-9]{3}-\d{4}$

The following table describes the pieces of this expression.

Subexpression Meaning

^ (The caret symbol.) Matches the beginning of the string.

[2-9] Matches the characters 2 through 9 (United States phone numbers
cannot begin with 0 or 1).

{3} Repeat the previous group ([2-9]) exactly three times.

- Match a dash.

([2-9]{3}-)? The parentheses group the items inside. The ? makes the expression
match the previous item exactly zero or one times. Thus the subex-
pression ([2-9]{3}-)? matches three digits 2 through 9 followed
by a dash, zero or one times.

[2-9]{3}- Matches three digits 2 through 9 followed by a dash.

\d{4} Matches any digit (0 through 9) exactly four times.

$ Matches the end of the string.

Taken together, this regular expression matches strings of the form NXX-XXXX and NXX-NXX-XXXX
where N is a digit 2 through 9 and X is any digit.

A complete discussion of regular expressions is outside the scope of this book. Search the online help
or Microsoft’s Web site to learn about the rules for building regular expressions. The Web page
msdn.microsoft.com/library/en-us/cpgenref/html/cpconregularexpressionslanguage
elements.asp provides useful links to information about regular expression language elements.
Another useful page is www.regexlib.com/RETester.aspx, which provides a regular expression
tester and a library of useful regular expressions.

As you read the rest of this chapter and as you visit regular expression Web sites, be aware that there are
a couple different types of regular expression languages and that they won’t all work with every regular
expression class.

The following code shows how a program can validate a text field against a regular expression. When
the user changes the text in the txtTestExp control, its Changed event handler creates a new Regex
object, passing its constructor the regular expression held in the txtRegExp text box. It then calls the
Regex object’s IsMatch method to see if the text matches the regular expression. If the text matches, the
program sets the txtTestExp control’s background color to white. If the text doesn’t match the expres-
sion, the program makes the control’s background yellow to indicate an error.

Private Sub txtTestExp_TextChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles txtTestExp.TextChanged

Dim reg_exp As New Regex(txtRegExp.Text)
If reg_exp.IsMatch(txtTestExp.Text) Then

743

Useful Namespaces

30_571982 ch28.qxd 9/1/05 7:38 PM Page 743

txtTestExp.BackColor = Color.White
Else

txtTestExp.BackColor = Color.Yellow
End If

End Sub

The following example uses a Regex object’s Matches method to retrieve a collection of Match objects
that describe the places where a string matches a regular expression. It then loops through the collection,
highlighting the matches in a Rich Text Box.

Private Sub btnGo_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnGo.Click

Dim reg_exp As New Regex(txtPattern.Text)
Dim matches As MatchCollection
matches = reg_exp.Matches(txtTestString.Text)

rchResults.Text = txtTestString.Text
For Each a_match As Match In matches

rchResults.Select(a_match.Index, a_match.Length)
rchResults.SelectionBackColor = Color.Black
rchResults.SelectionColor = Color.White

Next a_match
End Sub

Figure 28-1 shows the result. In this example, the regular expression is “(in|or)”, so the program finds
matches where the string contains “in” or “or.”

Figure 28-1: The Regex object’s Matches
method returns a collection describing the
places where a string matches a regular
expression.

The following code uses a Regex object to make replacements in a string. It creates a Regex object, pass-
ing its constructor the IgnoreCase option to tell the object to ignore capitalization in the string. It then
calls the object’s Replace, passing it the string to modify and the pattern that it should use to make the
replacement.

Dim reg_exp As New Regex(txtPattern.Text, RegexOptions.IgnoreCase)
lblResult.Text = reg_exp.Replace(Me.txtTestString.Text, txtReplacementPattern.Text)

744

Chapter 28

30_571982 ch28.qxd 9/1/05 7:38 PM Page 744

Figure 28-2 shows an example that uses the regular expression “[aeiou]” to match vowels. It replaces
the vowels with periods.

Figure 28-2: The Regex object’s Matches method
returns a collection describing the places where a
string matches a regular expression.

The Regex class can perform much more complicated matches. For example, you can use it to find fields
within each line in a multiline string and then build a string containing the fields reformatted or
reordered. See the online help for more details.

XML
Extensible Markup Language (XML) is a simple language for storing data in a text format. It encloses
data within tags that delimit the data. You can give those tags any names that you want. For example,
the following text shows an XML file containing three Employee records.

<?xml version=”1.0” encoding=”utf-8” standalone=”yes”?>
<Employees>

<Employee>
<FirstName>Albert</FirstName>
<LastName>Anders</LastName>
<EmployeeId>11111</EmployeeId>

</Employee>
<Employee>

<FirstName>Betty</FirstName>
<LastName>Beach</LastName>
<EmployeeId>22222</EmployeeId>

</Employee>
<Employee>

<FirstName>Chuck</FirstName>
<LastName>Cinder</LastName>
<EmployeeId>33333</EmployeeId>

</Employee>
</Employees>

745

Useful Namespaces

30_571982 ch28.qxd 9/1/05 7:38 PM Page 745

The System.Xml namespace contains classes for reading, writing, and manipulating XML data. Different
classes let you process XML files in different ways. For example, the XmlDocument class lets you repre-
sent an XML document completely within memory. Using this class, you can perform complex manipu-
lations of an XML file, adding and removing elements, searching for elements with particular attributes,
and merging XML documents.

On the other hand, the XmlTextReader and XmlTextWriter classes let you read and write XML data in
a fast, forward-only fashion. These classes can be more efficient than XmlDocument when you must
quickly build or scan very large XML files that might not easily fit in memory all at once.

The following code shows one way a program can use the System.Xml namespace to generate the previ-
ous employee XML file. Note that Visual Basic programs do not initially contain a reference to the
System.Xml namespace by default. To use the namespace, you must select the Project menu’s Add
Reference command and select the System.Xml.dll reference.

The code starts by creating an XmlTextWriter object. This class provides methods for efficiently writing
items into of an XML file. The code sets the writer’s Formatting and Indentation properties to make
the object indent the resulting XML file nicely. If you don’t set these properties, the file comes out all run
together on a single line. That’s fine for programs that process XML files but makes the file hard for
humans to read.

The program calls the WriteStartDocument method to write the file’s XML declaration, including the
XML version, encoding, and standalone attribute. It calls WriteStartElement to write the starting
<Employees> XML tag and then calls subroutine MakeEmployee to generate three Employee items. It
calls the WriteEndElement method to write the </Employees> end tag, and calls WriteEndDocument
to end the document. The program then closes the XmlTextWriter to close the file.

Subroutine MakeEmployee writes a starting <Employee> element into the file. It then uses the
WriteStartElement, WriteString, and WriteEndElement methods to add the employee’s
FirstName, LastName, and EmployeeId elements to the document. The routine finishes by calling
WriteEndElement to create the </Employee> end tag.

Private Sub btnGo_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnGo.Click

Dim xml_text_writer As _
New XmlTextWriter(“employees.xml”, System.Text.Encoding.UTF8)

‘ Use indentation to make the result look nice.
xml_text_writer.Formatting = Formatting.Indented
xml_text_writer.Indentation = 4

‘ Write the XML declaration.
xml_text_writer.WriteStartDocument(True)

‘ Start the Employees node.
xml_text_writer.WriteStartElement(“Employees”)

‘ Write some Employee elements.
MakeEmployee(xml_text_writer, “Albert”, “Anders”, 11111)
MakeEmployee(xml_text_writer, “Betty”, “Beach”, 22222)

746

Chapter 28

30_571982 ch28.qxd 9/1/05 7:38 PM Page 746

MakeEmployee(xml_text_writer, “Chuck”, “Cinder”, 33333)

‘ End the Employees node.
xml_text_writer.WriteEndElement()

‘ End the document.
xml_text_writer.WriteEndDocument()

‘ Close the XmlTextWriter.
xml_text_writer.Close()

End Sub

‘ Add an Employee node to the document.
Private Sub MakeEmployee(ByVal xml_text_writer As XmlTextWriter, _
ByVal first_name As String, ByVal last_name As String, ByVal emp_id As Integer)

‘ Start the Employee element.
xml_text_writer.WriteStartElement(“Employee”)

‘ Write the FirstName.
xml_text_writer.WriteStartElement(“FirstName”)
xml_text_writer.WriteString(first_name)
xml_text_writer.WriteEndElement()

‘ Write the LastName.
xml_text_writer.WriteStartElement(“LastName”)
xml_text_writer.WriteString(last_name)
xml_text_writer.WriteEndElement()

‘ Write the EmployeeId.
xml_text_writer.WriteStartElement(“EmployeeId”)
xml_text_writer.WriteString(emp_id.ToString)
xml_text_writer.WriteEndElement()

‘ Close the Employee element.
xml_text_writer.WriteEndElement()

End Sub

Other classes within the System.Xml namespace let you load and manipulate XML data in memory, read
XML data in a fast forward-only manner, and search XML documents for elements matching certain cri-
teria. XML is quickly becoming a common language that allows unrelated applications to communicate
with each other. Using the XML tools provided by the System.Xml namespace, your application can
read, write, and manipulate XML data, too.

Cryptography
The System.Security namespace includes objects for performing various cryptographic operations. The
four main scenarios supported by these objects include the following:

❑ Secret-key encryption — This technique encrypts data so you cannot read it unless you know the
secret key. This is also called symmetric cryptography.

❑ Public-key encryption — This technique encrypts data using a public key that everyone knows.
Only the person with a secret private key can read the data. This is useful when you want any-
one to be able to send messages to you, but you should be able to read them. This is also called
asymmetric cryptography.

747

Useful Namespaces

30_571982 ch28.qxd 9/1/05 7:38 PM Page 747

❑ Signing — This technique signs data to guarantee that it really came from a specific party. For
example, you can sign an executable program to prove that it’s really your program and not a
virus substituted by some hacker.

❑ Hashing — This technique maps a piece of data such as a document into a hash value in a way
that guarantees that two different documents are unlikely to hash to the same value. If you
know a document’s hash value, you can later hash the document again and compare the values.
If the calculated value matches the previously known value, it is very unlikely that anyone has
modified the file since the first hashing.

The first example appearing later in this section encrypts and decrypts files. The basic idea is to create a
CryptoStream object attached to a file stream opened for writing. As you write data into the
CryptoStream, it encrypts or decrypts the data and sends the result to the output file stream.

While the classes provided by Visual Studio 2005 are easier to use than the routines contained in the
underlying cryptography API, the details are still somewhat involved. To encrypt and decrypt files, you
must first select an encryption algorithm. You need to pick a key size and block size that is supported by
the corresponding encryption provider.

To use an encryption provider, you must pass it a key and initialization vector (IV). Each of these is a
series of bytes that the encryption provider uses to initialize its internal state before it encrypts or
decrypts files.

If you want to control the encryption with a textual password, you must convert it into a series of bytes
that you can use for the key and initialization vector. You can do that with a PasswordDeriveBytes
object, but that object also requires the name of the hashing algorithm that it should use to convert the
password into the key and initialization vector bytes.

Working through the following example should make this less confusing. This example uses a triple DES
encryption algorithm to encrypt and decrypt files. It uses the SHA384 hashing algorithm to convert a
text password into key and initialization vector bytes.

Subroutine CryptFile encrypts or decrypts a file, saving the result in a new file. It takes as parameters a
password string, the names of the input and output files, and a Boolean indicating whether it should
perform encryption or decryption.

The routine starts by opening the input and output files. It then makes a TripleDESCryptoServiceProvider
object to provide the encryption and decryption algorithms using triple DES.

Next, the program must find a key length that is supported by the encryption service provider. This code
counts backward from 1,024 until it finds a value that the provider’s ValidKeySize method approves.
On my computer, the largest key size the provider supports is 128 bits.

The triple DES algorithm encrypts data in blocks. The program uses the provider’s BlockSize
property to see how big those blocks are. The program must generate an initialization vector that
has this same size.

Next, the program calls the MakeKeyAndIV subroutine. This routine, which is described shortly, converts
a text password into arrays of bytes for use as the key and initialization vector.

748

Chapter 28

30_571982 ch28.qxd 9/1/05 7:38 PM Page 748

The program then makes an object to perform the encryption or decryption transformation, depending
on whether the subroutine’s encrypt parameter is True or False. The program uses the encryption
provider’s CreateEncryptor or CreateDecryptor method, passing it the key and initialization vector.

Now, the program makes a CryptoStream object attached to its output file stream. It passes the object’s
constructor and output file stream, the cryptographic transformation object, and a flag indicating that
the program will write to the stream.

At this point, the program has set the stage and can finally begin processing data. It allocates a buffer to
hold data and then enters a Do loop. In the loop, it reads data from the input file into the buffer. If it read
no bytes, the program has reached the end of the input file, so it exits the loop. If it read some bytes, the
program writes them into the CryptoStream. The CryptoStream uses its cryptographic transformation
object to encrypt or decrypt the data and sends it on to its attached output file stream.

When it has finished processing the input file, the subroutine closes its streams.

Subroutine MakeKeyAndIV uses a text password to generate arrays of bytes to use as a key and initializa-
tion vector. It begins by creating a PasswordDeriveBytes object, passing its constructor the password
text, the name of the hashing algorithm to use (SHA384), and the number of iterations the object should
use to generate the key. The second parameter (which is set to Nothing in this example) is an array of
bytes called a salt. This can be any array of bytes as long as it’s the same when encrypting and decrypt-
ing the file. The salt can make it harder for an attacker to build a dictionary of key and initialization vec-
tor values for every possible password string.

Having built the PasswordDeriveBytes object, the subroutine calls its GetBytes method to get the
proper number of bytes for the key and initialization vector.

‘ Encrypt or decrypt a file, saving the results
‘ in another file.
Private Sub CryptFile(ByVal password As String, ByVal in_file As String, _
ByVal out_file As String, ByVal encrypt As Boolean)

‘ Create input and output file streams.
Dim in_stream As New FileStream(in_file, FileMode.Open, FileAccess.Read)
Dim out_stream As New FileStream(out_file, FileMode.Create, FileAccess.Write)

‘ Make a triple DES service provider.
Dim des_provider As New TripleDESCryptoServiceProvider()

‘ Find a valid key size for this provider.
Dim key_size_bits As Integer = 0
For i As Integer = 1024 To 1 Step -1

If des_provider.ValidKeySize(i) Then
key_size_bits = i
Exit For

End If
Next i
Debug.Assert(key_size_bits > 0)

‘ Get the block size for this provider.
Dim block_size_bits As Integer = des_provider.BlockSize

‘ Generate the key and initialization vector.

749

Useful Namespaces

30_571982 ch28.qxd 9/1/05 7:38 PM Page 749

Dim key As Byte() = Nothing
Dim iv As Byte() = Nothing
MakeKeyAndIV(password, key_size_bits, block_size_bits, key, iv)

‘ Make the encryptor or decryptor.
Dim crypto_transform As ICryptoTransform
If encrypt Then

crypto_transform = des_provider.CreateEncryptor(key, iv)
Else

crypto_transform = des_provider.CreateDecryptor(key, iv)
End If

‘ Attach a crypto stream to the output stream.
Dim crypto_stream As New CryptoStream(out_stream, crypto_transform, _

CryptoStreamMode.Write)

‘ Encrypt or decrypt the file.
Const BLOCK_SIZE As Integer = 1024
Dim buffer(BLOCK_SIZE) As Byte
Dim bytes_read As Integer
Do

‘ Read some bytes.
bytes_read = in_stream.Read(buffer, 0, BLOCK_SIZE)
If bytes_read = 0 Then Exit Do

‘ Write the bytes into the CryptoStream.
crypto_stream.Write(buffer, 0, bytes_read)

Loop

‘ Close the streams.
crypto_stream.Close()
in_stream.Close()
out_stream.Close()

End Sub

‘ Use the password to generate key bytes.
Private Sub MakeKeyAndIV(ByVal password As String, _
ByVal key_size_bits As Integer, ByVal block_size_bits As Integer, _
ByRef key As Byte(), ByRef iv As Byte())

Dim password_derive_bytes As New PasswordDeriveBytes(_
txtPassword.Text, Nothing, “SHA384”, 1000)

key = password_derive_bytes.GetBytes(key_size_bits \ 8)
iv = password_derive_bytes.GetBytes(block_size_bits \ 8)

End Sub

The following code uses the CryptFile subroutine to encrypt and then decrypt a file. First it calls
CryptFile, passing it a password, input and output file names, and the value True to indicate that
the routine should encrypt the file. Next, the code calls CryptFile again, this time to decrypt the
encrypted file.

750

Chapter 28

30_571982 ch28.qxd 9/1/05 7:38 PM Page 750

‘ Encrypt the file.
CryptFile(txtPassword.Text, txtPlaintextFile.Text, txtCyphertextFile.Text, True)

‘ Decrypt the file.
CryptFile(txtPassword.Text, txtCyphertextFile.Text, txtDecypheredFile.Text, False)

See the online help for information about the other main cryptographic operations (secret-key encryp-
tion, public-key encryption, signing, and hashing). Other books may also provide additional insights
into cryptography. For example, see Applied Cryptography: Protocols, Algorithms, and Source Code in C,
Second Edition by Bruce Schneier (Hoboken, NJ: Wiley, 1996).

Reflection
Reflection lets a program learn about itself and other programming entities. It includes objects that tell
the program about assemblies, modules, and types.

For example, the following code examines the program’s form and displays a list of its properties, their
types, and their values. The program starts by formatting the ListView control named lvwProperties.
Next, the program defines an array of PropertyInfo objects named properties_info. It uses GetType
to get type information about the Form1 class and then uses the type’s GetProperties method to get
information about the properties. The program then loops through the PropertyInfo objects.

If the object’s GetIndexParameters array contains no entries, the property is not an array. In that case,
the program uses the PropertyInfo object’s GetValue method to get the property’s value. The code
then displays the property’s name, type, and value.

If the PropertyInfo object’s GetIndexParameters array contains entries, the property is an array. In
that case, the program displays the property’s name, type, and the string “<array>.”

The subroutine finishes by sizing ListView control’s columns and then making the form fit the columns.

The helper subroutine ListViewMakeRow adds a row of values to the ListView control. It adds a new
item to the control and then adds subitems to the item. The item appears in the control’s first column
and the subitems appear in the other columns.

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ Make column headers.
lvwProperties.View = View.Details
lvwProperties.Columns.Clear()
lvwProperties.Columns.Add(“Property”, 10, _

HorizontalAlignment.Left)
lvwProperties.Columns.Add(“Type”, 10, _

HorizontalAlignment.Left)
lvwProperties.Columns.Add(“Value”, 10, _

HorizontalAlignment.Left)

‘ List the properties.
Dim property_value As Object
Dim properties_info As PropertyInfo() = _

751

Useful Namespaces

30_571982 ch28.qxd 9/1/05 7:38 PM Page 751

GetType(Form1).GetProperties()
lvwProperties.Items.Clear()
For i As Integer = 0 To properties_info.Length - 1

With properties_info(i)
If .GetIndexParameters().Length = 0 Then

property_value = .GetValue(Me, Nothing)
If property_value Is Nothing Then

ListViewMakeRow(lvwProperties, _
.Name, _
.PropertyType.ToString, _
“<Nothing>”)

Else
ListViewMakeRow(lvwProperties, _

.Name, _

.PropertyType.ToString, _
property_value.ToString)

End If
Else

ListViewMakeRow(lvwProperties, _
.Name, _
.PropertyType.ToString, _
“<array>”)

End If
End With

Next i

‘ Size the columns to fit the data.
lvwProperties.Columns(0).Width = -2
lvwProperties.Columns(1).Width = -2
lvwProperties.Columns(2).Width = -2

‘ Size the form.
Dim new_wid As Integer = 30
For i As Integer = 0 To lvwProperties.Columns.Count - 1

new_wid += lvwProperties.Columns(i).Width
Next i
Me.Size = New Size(new_wid, Me.Size.Height)

End Sub

‘ Make a ListView row.
Private Sub ListViewMakeRow(ByVal lvw As ListView, _
ByVal item_title As String, ByVal ParamArray subitem_titles() As String)

‘ Make the item.
Dim new_item As ListViewItem = lvw.Items.Add(item_title)

‘ Make the subitems.
For i As Integer = subitem_titles.GetLowerBound(0) To _

subitem_titles.GetUpperBound(0)
new_item.SubItems.Add(subitem_titles(i))

Next i
End Sub

Figure 28-3 shows this code in action. It displays its form’s properties, their types, and their values.

752

Chapter 28

30_571982 ch28.qxd 9/1/05 7:38 PM Page 752

Figure 28-3: This program uses reflection to learn about its form’s properties.

Using reflection to learn about your application is interesting, but not always necessary. After all, if you
build an object, you probably know what its properties are.

However, reflection can also tell you a lot about other applications. The following example shows how a
program can learn about another application. This program reads the assembly information in a file and
lists the embedded resources that it contains. The user can then select a resource view it.

The user enters the name of the assembly to load in the txtFile text box. For example, this can be the
name of a .NET executable.

When the user clicks the List button, the btnList_Click event handler uses the Assembly class’s
shared LoadFile method to load an Assembly object representing the indicated assembly. It then loops
through the array of strings returned by the Assembly object’s GetManifestResourceNames method
adding the resource file names to the ListBox named lstResourceFiles.

When the user selects a resource file from the list, the lstResourceFiles_SelectedIndexChanged event
handler displays a list of resources in the file. It uses the Assembly object’s GetManifestResourceStream
method to get a stream for the resources. It uses the stream to make a ResourceReader object and then
enumerates the items found by the ResourceReader. It saves each object in a new ResourceInfo object
(this class is descriebd shortly) and adds it to the lstResources list.

When the user selects a resource from lstResources, its SelectedIndexChanged event handler
retrieves the selected ResourceInfo object, converts its Value property into an appropriate data type,
and displays the result.The ResourceInfo class stores Key and Value information for a resource enu-
merated by a ResourceReader’s enumerator. It provides an oveloaded ToString that the
lstResources list uses to represent the items.

753

Useful Namespaces

30_571982 ch28.qxd 9/1/05 7:38 PM Page 753

Private m_TargetAssembly As Assembly

‘ List the target assembly’s resources.
Private Sub btnList_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnList.Click

‘ Get the target assembly.
m_TargetAssembly = Assembly.LoadFile(txtFile.Text)

‘ List the target’s manifest resource names.
lstResourceFiles.Items.Clear()
For Each str As String In m_TargetAssembly.GetManifestResourceNames()

lstResourceFiles.Items.Add(str)
Next str

End Sub

‘ List this file’s resources.
Private Sub lstResourceFiles_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles lstResourceFiles.SelectedIndexChanged

lstResources.Items.Clear()

Dim resource_reader As ResourceReader
resource_reader = New ResourceReader(_

m_TargetAssembly.GetManifestResourceStream(lstResourceFiles.Text))
Dim dict_enumerator As IDictionaryEnumerator = resource_reader.GetEnumerator()
While dict_enumerator.MoveNext()

lstResources.Items.Add(New ResourceInfo(_
dict_enumerator.Key, _
dict_enumerator.Value))

End While
resource_reader.Close()

End Sub

‘ Display the selected resource.
Private Sub lstResources_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles lstResources.SelectedIndexChanged

lblString.Text = “”
picImage.Image = Nothing

Dim resource_info As ResourceInfo = _
DirectCast(lstResources.SelectedItem, ResourceInfo)

Select Case resource_info.Value.GetType.Name
Case “Bitmap”

picImage.Image = CType(resource_info.Value, Bitmap)
lblString.Text = “”

Case “String”
picImage.Image = Nothing
lblString.Text = CType(resource_info.Value, String)

End Select
End Sub

Private Class ResourceInfo
Public Key As Object
Public Value As Object
Public Sub New(ByVal new_key As Object, ByVal new_value As Object)

Key = new_key

754

Chapter 28

30_571982 ch28.qxd 9/1/05 7:38 PM Page 754

Value = new_value
End Sub
Public Overrides Function ToString() As String

Return Key.ToString & “ (“ & Value.ToString & “)”
End Function

End Class

Figure 28-4 shows the result.

Figure 28-4: This application uses reflection to display another
application’s resources.

This is admittedly a fairly complex example, but it performs the fairly remarkable feat of pulling
resources out of another compile application.

Reflection can provide a lot of information about applications, modules, types, methods, properties,
events, parameters, and so forth. It lets a program discover and invoke methods at run time and build
types at run time.

An application also uses reflection indirectly when it performs such actions as serialization, which uses
reflection to learn how to serialize and deserialize objects.

Reflection is a very advanced and somewhat arcane topic, but it is extremely powerful.

Note that the behavior of some of these reflection routines changed fairly late in the Visual Basic 2005
beta process, so it’s possible they will change again before the final release. Check the book’s Web site
www.vb-helper.com/vb_prog_ref.htm for updates.

755

Useful Namespaces

30_571982 ch28.qxd 9/1/05 7:38 PM Page 755

Direct3D
DirectX is a set of APIs that provide tools for high-performance multimedia applications. These APIs
include tools for working with audio, music, input devices (such as joysticks and force-feedback
devices), and other multimedia objects.

Direct3D is the three-dimensional drawing component provided by DirectX. Figure 28-5 shows a simple
Direct3D application that displays an octahedron rotating around a vertical axis. Each of the octahe-
dron’s faces has a different color so that it’s easy to see it rotating.

Figure 28-5: This Direct3D application displays a
rotating octahedron.

Before an application can use the DirectX and Direct3D libraries, you must perform a few preliminary
tasks. First, go to Microsoft’s download Web site, www.microsoft.com/downloads, and download the
latest DirectX development kit. As of this writing, the most recent version is DirectX 9.0b. After you
download the toolkit, install it.

Next, start a new application. Use the Project menu’s Add Reference command to add references to the
Microsoft.DirectX and Microsoft.DirectX.Direct3D libraries.

The following code shows how the application works. The OctahedronForm class is a form that dis-
plays the Direct3D animation. The class begins by defining private constants giving the number of trian-
gles it displays (8 triangles in an octahedron) and the number of vertices it needs to define the triangles
(3 * 8 = 24). It also defines private variables to hold references to a Device, a VertexBuffer, and an
array of PresentParameters items.

When the form loads, its Load event handler calls subroutine InitializeGraphics to prepare the
Direct3D subsystem. If that succeeds, the program displays the form. It then enters a rendering loop. This
loop calls the form’s Render method to display an image and then calls Application.DoEvents to let

756

Chapter 28

30_571982 ch28.qxd 9/1/05 7:38 PM Page 756

the system respond to Windows events. For example, this lets the program respond if the user closes,
resizes, or moves the form. The rendering loop runs as long as the form’s Created property is True,
indicating that the form has not been closed.

Subroutine InitializeGraphics sets some presentation parameters and creates a new Device object
to represent the device on which the program will draw. The Windowed parameter means the device will
sit within the form’s window. The SoftwareVertexProcessing flag in the device’s constructor means
Direct3D should use software to process the data, rather than relying on special graphics hardware.
Graphics hardware would produce a faster program, but the code would need to perform extensive
checks to verify that the system actually had the necessary hardware.

The subroutine adds an event handler for the device’s DeviceReset event. This event occurs when the
device is reset, which happens if the form’s window is recreated when it is maximized or restored. The
subroutine calls subroutine CreateVertexBuffer to create the vertex buffer. It finishes by calling
OnResetDevice to prepare the device for use.

Subroutine CreateVertexBuffer creates a buffer to hold data defining the octahedron’s vertices. It
passes the VertexBuffer class’s constructor parameters giving the type of vertex (PositionColored
means each entry gives the vertex’s position and color), the number of vertices, the device, a usage flag
(0 means no flags), the vertex format (position colored), and the memory pool that should contain the
buffer memory.

The routine then adds an event handler for the buffer object’s Created event. This event occurs when
the buffer is recreated. That happens when the device is reset. Finally, the routine calls
OnCreateVertexBuffer to initialize the vertex data.

When the device is reset, subroutine OnResetDevice prepares the device for use. In this example, the
event handler disables Direct3D lighting. Lighting would allow the program to illuminate the scene with
various light sources, but this example explicitly gives the colors of all of its vertices, so light sources are
unnecessary.

When the vertex buffer is created, subroutine OnCreateVertexBuffer initializes it. The routine calls
the buffer’s Lock method to lock the vertex memory and retrieve an array containing a usable copy of
the vetex data. The routine calls subroutine MakeTriangle eight times to initialize the vertices for the
octahedron’s eight faces. Then it calls the buffer’s Unlock method to unlock the data.

Subroutine MakeTriangle simply initializes a triangle’s vertices.

Subroutine Render draws the scene onto the graphics device. First, it clears the device’s background. It
calls the device’s BeginScene method to tell Direct3D that it is about to draw objects. Next, the code
calls subroutine SetupMatrices to build transformation matrices that define how the scene should be
drawn. It sets the device’s data source to the vertex buffer, tells the device the buffer’s format, and calls
subroutine DrawPrimatives to draw the triangles stored in the buffer. The routine finishes by calling
the device’s EndScene method to tell Direct3D that it is finished drawing and by calling its Present
method to display the result.

Subroutine SetupMatrix defines the matrices that Direct3D uses to map three-dimensional objects onto
the two-dimensional screen. The routine defines three matrices. The “world” matrix tells Direct3D how
to transform the objects’ coordinates before drawing. This could be an identity matrix (one that leaves

757

Useful Namespaces

30_571982 ch28.qxd 9/1/05 7:38 PM Page 757

the data unchanged) if you don’t need to transform the data. In this example, this matrix rotates the
points around the vertical axis. The code calculates the angle of rotation, so the data rotates around the
axis completely every two seconds.

The second “view” matrix tells Direct3D how the program should view the data. You can think of this
as the camera position. You can define this matrix by specifying the location where the viewer is stand-
ing, the direction the viewer is looking, and an “up” direction. For example, imagine a camera hanging
from a boom, pointed toward some center of interest. The “up” direction tells which way the camera is
rotated: right side up, upside down, sideways, and so forth. In this example, the camera is at position (0,
3, –10) looking toward the origin (0, 0, 0), and the “up” direction is in the normal up direction. In the
Direct3D coordinate system, that’s the direction of the positive Y axis.

The third matrix is a projection matrix that tells Direct3D how to project the three-dimensional data into
two-dimensions. This example uses a perspective projection.

Imports Microsoft.DirectX
Imports Microsoft.DirectX.Direct3D

Public Class OctahedronForm
Private Const NUM_TRIANGLES As Integer = 8
Private Const NUM_POINTS As Integer = 3 * NUM_TRIANGLES

Private m_Device As Device = Nothing
Private m_VertexBuffer As VertexBuffer = Nothing
Private m_PresentParams As New PresentParameters()

‘ Get started and enter the rendering loop.
Private Sub OctahedronForm_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ Make a new form.
‘Dim frm As New OctahedronForm()

‘ Initialize Direct3D.
If Not InitializeGraphics() Then

MessageBox.Show(“Error initializing Direct3D.”)
Return

End If
Show()

‘ Enter the rendering loop.
While Created

Render()
Application.DoEvents()

End While
End Sub

‘ Initialize Direct3D.
Public Function InitializeGraphics() As Boolean

Try
‘ Initialize presentation parameters.
m_PresentParams.Windowed = True
m_PresentParams.SwapEffect = SwapEffect.Discard

‘ Make the device.

758

Chapter 28

30_571982 ch28.qxd 9/1/05 7:38 PM Page 758

m_Device = New Device(0, DeviceType.Hardware, _
Me, CreateFlags.SoftwareVertexProcessing, _
m_PresentParams)

‘ Add an event handler for DeviceReset.
‘ This event is called when the device is reset
‘ (you probably guessed that). That happens when
‘ the form is recreated when it is maximized
‘ or restored.
AddHandler m_Device.DeviceReset, _

AddressOf Me.OnResetDevice

‘ Call CreateVertexBuffer and OnResetDevice.
Me.CreateVertexBuffer()
Me.OnResetDevice(m_Device, Nothing)
Return True

Catch e As DirectXException
Return False

End Try
End Function

‘ Create a vetex buffer for the device.
Public Sub CreateVertexBuffer()

‘ Create a vertex buffer.
Dim dev As Device = CType(sender, Device)
m_VertexBuffer = New VertexBuffer(_

GetType(CustomVertex.PositionColored), _
NUM_POINTS, m_Device, 0, CustomVertex.PositionColored.Format, _
Pool.Default)

‘ Add an event handler for m_VertexBuffer.Created.
‘ This event occurs when the device is recreated
‘ and the vertex buffer is reinitialized.
AddHandler m_VertexBuffer.Created, _

AddressOf Me.OnCreateVertexBuffer

‘ Call m_VertexBuffer.Created to initialize
‘ the vertex data.
Me.OnCreateVertexBuffer(m_VertexBuffer, Nothing)

End Sub

‘ Reset the device.
Public Sub OnResetDevice(ByVal sender As Object, ByVal e As EventArgs)

‘ Turn off D3D lighting because
‘ we set the vertex colors explicitly.
Dim dev As Device = CType(sender, Device)
dev.RenderState.Lighting = False

End Sub

‘ Define in the vertics.
Public Sub OnCreateVertexBuffer(ByVal sender As Object, ByVal e As EventArgs)

Dim vb As VertexBuffer = CType(sender, VertexBuffer)

‘ Lock the vertex buffer.
‘ Lock returns an array of positionColored objects.

759

Useful Namespaces

30_571982 ch28.qxd 9/1/05 7:38 PM Page 759

Dim vertices As CustomVertex.PositionColored() = _
CType(vb.Lock(0, 0), _

CustomVertex.PositionColored())
Dim start_index As Integer = 0

Const WID As Single = 2
MakeTriangle(vertices, start_index, Color.FromArgb(255, &HFF, 0, 0), _

0, WID, 0, _
0, 0, WID, _
WID, 0, 0)

...
MakeTriangle(vertices, start_index, Color.FromArgb(255, 0, 0, &H60), _

0, -WID, 0, _
0, 0, WID, _
-WID, 0, 0)

vb.Unlock()
End Sub

Private Sub MakeTriangle(_
ByVal vertices As CustomVertex.PositionColored(), _
ByRef start_index As Integer, ByVal clr As Color, _
ByVal x1 As Single, ByVal y1 As Single, ByVal z1 As Single, _
ByVal x2 As Single, ByVal y2 As Single, ByVal z2 As Single, _
ByVal x3 As Single, ByVal y3 As Single, ByVal z3 As Single)

With vertices(start_index)
.X = x1
.Y = y1
.Z = z1
.Color = clr.ToArgb()

End With
start_index += 1

With vertices(start_index)
.X = x2
.Y = y2
.Z = z2
.Color = clr.ToArgb()

End With
start_index += 1

With vertices(start_index)
.X = x3
.Y = y3
.Z = z3
.Color = clr.ToArgb()

End With
start_index += 1

End Sub

‘ Render the scene.
Private Sub Render()

‘ Do nothing if the device has not been created yet.

760

Chapter 28

30_571982 ch28.qxd 9/1/05 7:38 PM Page 760

If m_Device Is Nothing Then Return

‘ Clear the back buffer.
m_Device.Clear(ClearFlags.Target, Color.White, 1, 0)

‘ Begin the scene.
m_Device.BeginScene()

‘ Setup the world, view, and projection matrices.
SetupMatrices()

‘ Set the device’s data stream source
‘ (the vertex buffer).
m_Device.SetStreamSource(0, m_VertexBuffer, 0)

‘ Tell the device the format of the vertices.
m_Device.VertexFormat = CustomVertex.PositionColored.Format

‘ Draw the primitives in the data stream.
m_Device.DrawPrimitives(PrimitiveType.TriangleList, 0, NUM_TRIANGLES)

‘ End the scene.
m_Device.EndScene()

‘ Display the result.
m_Device.Present()

End Sub

‘ Setup the world, view, and projection matrices.
Private Sub SetupMatrices()

‘ World Matrix:
‘ Rotate the object around the Y axis by
‘ 2 * Pi radians per 2000 ticks (2 seconds).
Const TICKS_PER_REV As Integer = 2000
Dim ms_rotated As Integer = Environment.TickCount Mod TICKS_PER_REV
Dim angle As Double = ms_rotated * (2 * Math.PI) / TICKS_PER_REV
m_Device.Transform.World = Matrix.RotationY(CSng(angle))

‘ View Matrix:
‘ This is defined by giving:
‘ An eye point (0, 3, -10)
‘ A point to look at (0, 0, 0)
‘ An “up” direction <0, 1, 0>
m_Device.Transform.View = Matrix.LookAtLH(_

New Vector3(0, 3, -10), _
New Vector3(0, 0, 0), _
New Vector3(0, 1, 0))

‘ Projection Matrix:
‘ Perspective transformation defined by:
‘ Field of view Pi / 4
‘ Aspect ratio 1
‘ Near clipping plane Z = 1
‘ Far clipping plane Z = 100

761

Useful Namespaces

30_571982 ch28.qxd 9/1/05 7:38 PM Page 761

m_Device.Transform.Projection = _
Matrix.PerspectiveFovLH(Math.PI / 4, 1, 1, 100)

End Sub
End Class

Setting all this up is a lot of work, but once it is running, it’s not too hard to make changes. You can add,
remove, or modify the vertex data. You can also change the view matrix to look at the data from differ-
ent positions.

Direct3D is just one part of DirectX, and even that part is too complicated to describe completely here.
For more information, see the online help, the examples, and the tutorials that come with the develop-
ment kit. For more information about three-dimensional graphics in general, transformations, and the
matrices that define transformations, you can also see a more theoretical three-dimensional graphics
book such as 3D Computer Graphics, Third Edition by Allan H. Watt (Boston: Addison Wesley, 2000). My
book Visual Basic Graphics Programming: Hands-On Applications and Advanced Color Development, Second
Edition (Hoboken, NJ: John Wiley & Sons, 1999) also covers three-dimensional graphics in addition to
many other graphics topics. Unfortunately the examples use Visual Basic 6 code (although perhaps there
will be a Visual Basic .NET edition at some point).

Summary
The .NET Framework defines more than 160 namespaces, and this chapter describes only a few. It pro-
vides a brief overview of some of the most important System namespaces and gives more detailed exam-
ples that demonstrate regular expressions, XML, cryptography, reflection, and Direct3D.

Even in these somewhat specialized areas, the examples can cover only a tiny fraction of the capabilities
of the namespaces. However, the examples should give you an idea of the types of features that these
namespaces can add to your application. If you need to do something similar, they will hopefully inspire
you to do more in-depth research so that you can take full advantage of these powerful tools.

The chapters in this book cover a wide variety of Visual Basic programming topics. In the first part of the
book, Chapters 1 through 13 explain basic topics of Visual Basic programming (such as the language
itself, using standard controls, and draw and drop). In the second part of the book, Chapters 14 through
18 describe object-oriented concepts (such as class and structure declaration, namespaces, and generics).
In the third part of the book, Chapters 19 through 24 cover graphical topics (such as how to draw shapes
and text, image manipulation, printing, and report generation). In the fourth and final part of the book,
Chapters 25 through 28 explain ways a program can interact with its environment by using such tech-
niques as configuration files, the Registry, streams, and file system objects.

The rest of this book contains appendices that provide a categorized reference for Visual Basic .NET. You
can use them to quickly review the syntax of a particular command, select from among several over-
loaded versions of a routine, or refresh your memory of what a particular class can do.

762

Chapter 28

30_571982 ch28.qxd 9/1/05 7:38 PM Page 762

Useful Control Properties,
Methods, and Events

A control interacts with a program or the user through properties, methods, and events. While
each type of control provides different features, they are all derived from the Control class. This
class provides many useful properties, methods, and events that other controls inherit, if they
don’t take special action to override them. The following sections describe some of the most useful
of these inherited features.

Proper ties
The following table lists properties implemented by the Control class. All controls that inherit
from this class inherit these properties unless they override the Control class’s behavior.

Property Purpose

AllowDrop Determines whether the control allows drag and drop.

Anchor Determines which of the control’s edges are anchored to
the edges of the control’s container.

AutoSize Determines whether the control automatically resizes to
fit its contents.

BackColor Determines the control’s background color.

BackgroundImage Determines the control’s background image.

BackgroundImageLayout Determines how the control’s background image is used
to fill the control. This can be Center, None, Tile,
Stretch, and Zoom.

Table continued on following page

31_571982 appa.qxd 9/1/05 7:37 PM Page 763

Property Purpose

Bottom Returns the distance between the top edge of the control’s con-
tainer and the bottom edge of the control. This is read-only.
Modify the Top and Height properties to change this value.

Bounds Determines the control’s size and location, including nonclient
areas.

CanFocus Determines whether the control can receive the input focus. See
also the Focus method.

CanSelect Determines whether the control can select. For example, a
TextBox can select some or all of its text. See also the Select
method.

Capture Determines whether the control has captured the mouse.

CausesValidation Determines whether the control makes other controls validate
when it receives the focus.

ClientRectangle This Rectangle structure represents the control’s client area.

ClientSize This Size structure represents the control’s height and width.

ContainsFocus Indicates whether the control or one of its child controls has the
input focus. This is read-only.

ContextMenu Determines the context menu associated with the control.

ContextMenuStrip Determines the context menu strip associated with the control.

Controls This collection contains references to the controls contained
within this control.

Cursor Determines the cursor that the control displays when the
mouse is over it.

DeteBindings Gets the control’s DataBindings, used to bind the control to a
data source.

DefaultBackColor Returns the control’s default background color.

DefaultFont Returns the control’s default font.

DefaultForeColor Returns the control’s default foreground color.

DisplayRectangle Returns a Rectangle structure giving the control’s display
area. Figure A-1 shows two GroupBoxes containing two
Labels each. The Labels in the left GroupBox show the
GroupBox’s ClientRectangle and DisplayRectangles.

Dock Determines the edge of the control’s parent to which the con-
trol is docked.

Enabled Determines whether the control will interact with the user.

Focused Indicates whether the control has the input focus. This is read-only.

764

Appendix A

31_571982 appa.qxd 9/1/05 7:37 PM Page 764

Property Purpose

Font Determines the control’s font.

ForeColor Determines the control’s foreground color.

Handle Returns the control’s window handle. This is read-only.

HasChildren Indicates whether the control holds any child controls. This is
read-only. Also see the Controls property.

Height Determines the control’s height.

InvokeRequired Returns True if the calling code is running on a thread different
from the control’s thread and therefore must use an invoke
method to interact with the control.

Left Determines the X coordinate of the control’s left edge.

Location This Point structure determines the position of the control’s
upper-left corner.

Margin Determines the spacing between this control and another con-
trol’s margin within an arranging container.

MaximumSize Determines the control’s largest allowed size.

MinimumSize Determines the control’s smallest allowed size.

ModifierKeys Indicates what modifier keys (Shift, Ctrl, and Alt) are
pressed. This is read-only.

MouseButtons Indicates what mouse buttons (Left, Right, Middle, None)
are pressed. This is read-only.

MousePosition Returns a Point structure giving the mouse’s current position
in screen coordinates (the point (0, 0) is in the screen’s upper-
left corner). This is read-only.

Name Determines the control’s name.

Padding Determines the spacing of the control’s contents.

Parent Determines the parent containing the control.

PreferredSize Returns a size that is big enough to hold the control’s contents.

Region Determines the control’s window region. This is the area in
which the control may draw.

Right Returns the distance between the left edge of the control’s con-
tainer and the right edge of the control. This is read-only. Mod-
ify the Left and Width properties to change this value.

Size This Size structure determines the control’s size including
client and nonclient areas.

Table continued on following page

765

Useful Control Properties, Methods, and Events

31_571982 appa.qxd 9/1/05 7:37 PM Page 765

Property Purpose

TabIndex Determines the control’s position in its container’s tab order. If
more than one control has the same TabIndex, they are tra-
versed front-to-back using the stacking order.

TabStop Determines whether the user can tab to the control.

Tag This property can hold an object that you want to associate
with the control.

Text Determines the control’s text.

Top Determines the Y coordinate of the control’s top edge.

TopLevelControl Returns the control’s top-level ancestor. Usually that is the out-
ermost Form containing the control. This is read-only.

Visible Determines whether the control is visible.

Width Determines the control’s width.

Figure A-1: The DisplayRectangle property
gives the area in which you should normally place
items within a control.

Methods
The following table lists useful methods implemented by the Control class. All controls that inherit
from this class inherit these properties unless they override the Control class’s behavior.

Method Purpose

Sub BringToFront() Brings the control to the front of the stacking order.

Function Contains(ByVal Returns True if the control child is contained by
child As Control) As Boolean this control.

766

Appendix A

31_571982 appa.qxd 9/1/05 7:37 PM Page 766

Method Purpose

Function CreateGraphics() Creates a Graphic object that you can use to draw
As Graphic on the control’s surface.

Function DoDragDrop(ByVal Starts a drag-and-drop operation.
dragging_object As Object,
ByVal allowed_effects As
DragDropEffects)

Sub DrawToBitmap(ByVal bm As Draws an image of the control including an
Bitmap, ByVal rect As Rectangle) contained controls onto the Bitmap in the indicate

Rectangle.

Function FindForm() As Form Returns the Form that contains this control.

Function Focus() As Boolean Gives the control the input focus.

Function GetChildAtPoint(ByVal Returns the control’s child that contains the
pt As Point) As Control indicated point. If more than one control contains

the point, the method returns the control that is
higher in the stacking order.

Function GetNextControl(ByVal If next is True, returns the next control in the tab
ctl As Control, ByVal next As order of this control’s children after control ctl.
Boolean) As Control If next is False, returns the previous control in

the tab order. Set ctl = Nothing to start from the
start/end of the tab order. Returns Nothing when
you reach the start/end.

Function GetPreferredSize(ByVal Returns a size that is big enough to hold the
proposed_size) As Size control’s contents.

Function GetType() As Type Returns a Type object representing the control’s
class. You can use this object to get information
about the class.

Sub Hide() Hides the control by setting its Visible property
to False.

Sub Invalidate() Invalidates some or all of the control and sends it a
Paint event so that it redraws itself.

Sub Invoke(ByVal delegate As Invokes a delegate on the thread that owns the
Delegate) control.

Function PointToClient(ByVal Converts a Point in screen coordinates into the
screen_point As Point) As Point control’s coordinate system.

Function PointToScreen(ByVal Converts a Point in control coordinates into the
control_point As Point) As Point screen coordinate system.

Function RectangleToClient(ByVal Converts a Rectangle in screen coordinates into
screen_rect As Rectangle) the control’s coordinate system.
As Rectangle

Table continued on following page

767

Useful Control Properties, Methods, and Events

31_571982 appa.qxd 9/1/05 7:37 PM Page 767

Method Purpose

Function RectangleToScreen(ByVal Converts a Rectangle in control coordinates into
control_rect As Rectangle) the screen coordinate system.
As Rectangle

Sub Refresh() Invalidates the control’s client area, so the control
redraws itself and its child controls.

Sub ResetBackColor() Resets the control’s background color to its default
value.

Sub ResetCursor() Resets the control’s cursor to its default value.

Sub ResetFont() Resets the control’s font to its default value.

Sub ResetForeColor() Resets the control’s foreground color to its default
value.

Sub ResetText() Resets the control’s text to its default value.

Sub Scale(ByVal scale_factor Scales the control and any contained controls by
As Single) multiplying the Left, Top, Width, and Height

properties by scale_factor.

Sub Select() Moves the input focus to the control. Some controls
have overloaded versions.

Function SelectNextControl(ByVal Moves the input focus to the next control
ctl As Control, ByVal forward contained within this one.
As Boolean, ByVal tab_stop_only As
Boolean, ByVal include_nested
As Boolean, ByVal wrap As Boolean)
As Boolean

Sub SendToBack() Sends the control to the back of the stacking order.

Sub SetBounds(ByVal x As Integer, Sets the control’s position and size.
ByVal y As Integer, ByVal width As
Integer, ByVal height As Integer)

Sub Show() Displays the control by setting its Visible prop-
erty to True.

Function ToString() As String Returns a textual representation of the control. This
is generally the type of the control followed by its
most commonly used property.

Sub Update() Makes the control redraw any invalidated areas.

768

Appendix A

31_571982 appa.qxd 9/1/05 7:37 PM Page 768

Events
The following table lists useful events implemented by the Control class. All controls that inherit from
this class inherit these properties unless they override the Control class’ behavior.

Event Purpose

AutoSizeChanged Occurs when the control’s AutoSize property changes.

BackColorChanged Occurs when the control’s BackColor property
changes.

BackgroundImageChanged Occurs when the control’s BackgroundImage property
changes.

BackgroundImageLayoutChanged Occurs when the control’s BackgroundImageLayout
property changes.

Click Occurs when the user clicks on the control. This event
is at a higher logical level than the MouseClick event,
and it can be triggered by other actions than a mouse
click (such as pressing the Enter key or a shortcut key).

ContextMenuChanged Occurs when the control’s ContextMenu property
changes.

ContextMenuStripChanged Occurs when the control’s ContextMenuStrip prop-
erty changes.

ControlAdded Occurs when a new control is added to the control’s
contained child controls.

ControlRemoved Occurs when a control is removed from the control’s
contained child controls.

CursorChanged Occurs when the control’s Cursor property changes.

DockChanged Occurs when the control’s Dock property changes.

DoubleClick Occurs when the user double-clicks the control.

DragDrop Occurs when the user drops something on the control
in a drag-and-drop operation. This event handler
should process the dropped information appropriately.

DragEnter Occurs when the user drags something over the control
in a drag-and-drop operation.

DragLeave Occurs when the user drags something off of the con-
trol in a drag-and-drop operation.

DragOver Occurs when the user has dragged something over the
control in a drag-and-drop operation. This event fires
repeatedly until the user drags off of the control, drops
on the control, or cancels the drop.

EnabledChanged Occurs when the control’s Enabled property changes.

Table continued on following page

769

Useful Control Properties, Methods, and Events

31_571982 appa.qxd 9/1/05 7:37 PM Page 769

Event Purpose

Enter Occurs when the control is entered. This event fires
before the GotFocus event.

FontChanged Occurs when the control’s Font property changes.

ForeColorChanged Occurs when the control’s ForeColor property
changes.

GiveFeedback Occurs during a drag-and-drop operation to let the
drag source control take action.

GotFocus Occurs when the control receives the input focus. This
event fires after the Enter event. Generally, the Enter
event is preferred.

HelpRequested Occurs when the user requests help for the control. For
example, if the user moves the focus to a TextBox and
presses F1, the TextBox raises this event.

Invalidated Occurs when part of the control is invalidated.

KeyDown Occurs when the user presses a key while the control
has the input focus.

KeyPress Occurs when the user presses and releases a key while
the control has the input focus.

KeyUp Occurs when the user releases a key while the control
has the input focus.

Layout Occurs when the control should arrange its child con-
trols. This event occurs before the Resize and
SizeChanged events and is preferred for arranging
child controls.

Leave Occurs when the input focus leaves the control. This
event fires before the LostFocus event.

LocationChanged Occurs when the control’s Location property changes.
This event fires after the Move event fires.

LostFocus Occurs when the input focus leaves the control. This
event fires after the Leave event. Generally, the Leave
event is preferred.

MarginChanged Occurs when the control’s Margin property changes.

MouseCaptureChanged Occurs when the control loses a mouse capture.

MouseClick Occurs when the user clicks the mouse on the control.

MouseDoubleClick Occurs when the user double-clicks the mouse on the
control.

MouseDown Occurs when the user presses a mouse button down
over the control.

770

Appendix A

31_571982 appa.qxd 9/1/05 7:37 PM Page 770

Event Purpose

MouseEnter Occurs when the mouse enters the control.

MouseHover Occurs when the mouse hovers over the control.

MouseLeave Occurs when the mouse leaves the control.

MouseMove Occurs when the mouse moves over the control.

MouseUp Occurs when the user releases a mouse button over the
control.

MouseWheel Occurs when the user moves the mouse wheel while
the control has the input focus.

Move Occurs when the control is moved. This event fires
before the LocationChanged event fires.

PaddingChanged Occurs when the control’s Padding property changes.

Paint Occurs when the control must redraw itself. Normally
the program draws on the control during this event (if
it draws on the control at all).

ParentChanged Occurs when the control’s Parent property changes.

QueryContinueDrag Occurs when something changes during a drag-and-
drop operation so that the drag source can decide
whether to modify or cancel the drag.

RegionChanged Occurs when the control’s Region property changes.

Resize Occurs while the control is resizing. This event occurs
after the Layout event, but before the SizeChanged
event.

SizeChanged Occurs while the control is resizing. This event occurs
after the Layout and Move events.

SystemColorsChanged Occurs when the system colors change. For instance,
you might want to draw something using the same
color that the operating system uses for active forms. If
the user changes the system’s color for borders, you can
use this event to update your application.

TabIndexChanged Occurs when the control’s TabIndex property changes.

TabStopChanged Occurs when the control’s TabStop property changes.

TextChanged Occurs when the control’s Text property changes.

Validated Occurs when the control has successfully finished vali-
dating its data.

Validating Occurs when the control should validate its data.

VisibleChanged Occurs when the control’s Visible property changes.

771

Useful Control Properties, Methods, and Events

31_571982 appa.qxd 9/1/05 7:37 PM Page 771

Event Sequences
Several situations generate a series of events in a precise order.

Mouse Events
When you click on a control, the following events are raised in the order shown. The first instance of the
MouseMove event can occur any number of times if you move the mouse while holding the mouse but-
ton down. The final MouseMove event occurs whether you move the mouse or not.

MouseDown

[MouseMove]

Click

MouseClick

MouseUp

MouseCaptureChanged

MouseMove

When you double-click on a control, the following events are raised in the order shown.

MouseDown

[MouseMove]

Click

MouseClick

MouseUp

MouseCaptureChanged

MouseMove

MouseDown

DoubleClick

MouseDoubleClick

MouseUp

MouseCaptureChanged

MouseMove

Resize Events
When you resize a control, the following events are raised in this order. These events are repeated as
long as you are resizing the control.

772

Appendix A

31_571982 appa.qxd 9/1/05 7:37 PM Page 772

Layout

Resize

SizeChanged

Form controls also provide ResizeBegin and ResizeEnd events that occur before and after the other
events, respectively.

Move Events
When you move a control, the following events are raised in this order. These events are repeated as
long as you are moving the control.

Move

LocationChanged

Form controls also provide ResizeBegin and ResizeEnd events that occur before and after the other
events, respectively.

773

Useful Control Properties, Methods, and Events

31_571982 appa.qxd 9/1/05 7:37 PM Page 773

31_571982 appa.qxd 9/1/05 7:37 PM Page 774

Variable Declarations
and Data Types

This appendix provides information about variable declarations and data types.

Variable Declarations
The following code shows a standard variable declaration:

[attribute_list] [accessibility] [Shared] [Shadows] [ReadOnly] _
Dim [WithEvents] name [(bounds_list)] [As [New] type] [=
initialization_expression]

In this code, the following is true:

❑ attribute_list — A comma-separated list of attributes specific to a particular task. For
example, <XmlAttributeAttribute(AttributeName:=”Cost”)>.

❑ accessibility — Public, Protected, Friend, Protected Friend, Private, or
Static.

❑ Shared — Means that all instances of the class or structure containing the variable share
the same variable.

❑ Shadows — Indicates that the variable hides a variable with the same name in a base class.

❑ ReadOnly — Indicates that the program can read, but not modify, the variable’s value.
You can set the value in an initialization statement or in an object constructor.

❑ Dim — Officially tells Visual Basic that you want to create a variable. You can omit the
Dim keyword if you specify Public, Protected, Friend, Protected Friend, Private,
Static, or ReadOnly.

❑ WithEvents — Tells Visual Basic that the variable is of a specific object type that may
raise events that you will want to catch.

32_571982 appb.qxd 9/1/05 7:34 PM Page 775

❑ name — Gives the name of the variable.

❑ bounds_list — Bounds for an array.

❑ New — Use New to make a new instance of an object variable. Include parameters for the class’s
constructor if appropriate.

❑ type — The variable’s data type.

❑ initialization_expression — An expression that sets the initial value for the variable.

Visual Basic allows you to declare and initialize more than one variable in a single declaration statement,
but that can make the code more difficult to read. To avoid possible later confusion, declare only vari-
ables of one type in a single statement.

Enumerated Type Declarations
The syntax for declaring an enumerated type is as follows:

[attribute_list] [accessibility] [Shadows] Enum name [As type]
[attribute_list] value_name [= initialization_expression]
[attribute_list] value_name [= initialization_expression]
...

End Enum

Most of these terms (including attribute_list and accessibility) are similar to those used by variable decla-
rations. See the section “Variable Declarations” earlier in this appendix for more information.

Option Explicit and Option Strict
When Option Explicit is on, you must explicitly declare all variables before using them. When
Option Explicit is off, Visual Basic creates a variable the first time it is encountered if is has not yet
been declared. To make your code easier to understand, and to avoid problems such as Visual Basic cre-
ating a new variable because of a typographical error, you should always turn Option Explicit on.

When Option Strict is on, Visual Basic will not implicitly perform narrowing type conversions. For
example, if you set an Integer variable equal to a String value, Visual Basic will raise an error. When
Option Strict is off, Visual Basic will silently attempt narrowing conversions. It tries to convert the
String value into an Integer and raises an error if the String doesn’t contain an integral value. To avoid
confusion and potentially slow conversions, always turn Option Strict on.

Data Types
The following table summarizes Visual Basic’s data types.

776

Appendix B

32_571982 appb.qxd 9/1/05 7:34 PM Page 776

Type Size Values

Boolean 2 bytes True or False

Byte 1 byte 0 to 255 (unsigned byte)

SByte 1 byte -128 to 127 (signed byte)

Char 2 bytes 0 to 65,535 (unsigned character)

Short 2 bytes -32,768 to 32,767

UShort 2 bytes 0 through 65,535 (unsigned short)

Integer 4 bytes -2,147,483,648 to 2,147,483,647

UInteger 4 bytes 0 through 4,294,967,295 (unsigned integer)

Long 8 bytes -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

ULong 8 bytes 0 through 18,446,744,073,709,551,615 (unsigned long)

Decimal 16 bytes 0 to +/-79,228,162,514,264,337,593,543,950,335 with no
decimal point.

0 to +/-7.9228162514264337593543950335 with 28 places

Single 4 bytes -3.4028235E+38 to -1.401298E-45 (negative values)

1.401298E-45 to 3.4028235E+38 (positive values)

Double 8 bytes -1.79769313486231570E+308 to -4.94065645841246544E-324
(negative values)

4.94065645841246544E-324 through
1.79769313486231570E+308 (positive values)

String variable Depending on the platform, approximately 0 to 2 billion
Unicode characters

Date 8 bytes January 1, 0001 0:0:00 to December 31, 9999 11:59:59 pm

Object 4 bytes Points to any type of data.

Structure variable Structure members have their own ranges.

Data Type Characters
The following table lists Visual Basic’s data type characters.

Character Data Type

% Integer

& Long

Table continued on following page

777

Variable Declarations and Data Types

32_571982 appb.qxd 9/1/05 7:34 PM Page 777

Character Data Type

@ Decimal

! Single

Double

$ String

Literal Type Characters
The following table lists Visual Basic’s literal type characters.

Character Data Type

S Short

US UShort

I Integer

UI UInteger

L Long

IL ULong

D Decimal

F Single (F for “floating point”)

R Double (R for “real”)

c Char (note that this is a lowercase “c”)

Data Type Conversion Functions
The following table lists Visual Basic’s data type conversion functions.

Function Converts To

CBool Boolean

CByte Byte

CChar Char

CDate Date

778

Appendix B

32_571982 appb.qxd 9/1/05 7:34 PM Page 778

Function Converts To

CDbl Double

CDec Decimal

CInt Integer

CLng Long

CObj Object

CSByte SByte

CShort Short

CSng Single

CStr String

CUInt UInteger

CULng ULong

CUShort UShort

Remember that data types have their own parsing methods in addition to these data type conversion
functions. For example, the following code converts the String variable a_string into an Integer value:

an_integer = Integer.Parse(a_string)

These methods are faster than using the corresponding data type conversion function (in this case, CInt).

779

Variable Declarations and Data Types

32_571982 appb.qxd 9/1/05 7:34 PM Page 779

32_571982 appb.qxd 9/1/05 7:34 PM Page 780

Operators
Visual Basic’s operators fall into five main categories: arithmetic, concatenation, comparison, logi-
cal, and bitwise. The following sections explain these categories and the operators they contain.
The end of this appendix describes special Date and TimeSpan operators, as well as operator
overloading.

Arithmetic Operators
The following table lists the arithmetic operators provided by Visual Basic.

Operator Purpose Example Result

^ Exponentiation 2 ^ 3 (2 to the power 3) = 2 * 2 * 2 = 8.

- Negation -2 -2

* Multiplication 2 * 3 6

/ Division 3 / 2 1.5

\ Integer division 17 \ 5 3

Mod Modulus 17 Mod 5 2

+ Addition 2 + 3 5

- Subtraction 3 - 2 1

<< Bit left shift 10110111 << 1 01101110

>> Bit right shift 10110111 >> 1 01011011

Visual Basic doesn’t work with bits such as 10110111, so you must use decimal, hexadecimal, or
octal in your code.

33_571982 appc.qxd 9/1/05 7:38 PM Page 781

Concatenation Operators
Visual Basic provides two concatenation operators: + and &. Both join two strings together. Because the +
symbol also represents an arithmetic operator, your code will be easier to read if you use the & symbol
for concatenation.

Comparison Operators
The following table lists the comparison operators provided by Visual Basic.

Operator Purpose Example Result

= Equals A = B True if A equals B

<> Not equals A <> B True if A does not equal B

< Less than A < B True if A is less than B

<= Less than or A <= B True if A is less than or equal
equal to to B

> Greater than A > B True if A is greater than B

>= Greater than or A >= B True if A is greater than or
equal to equal to B

Is Equality of two emp Is mgr True if emp and mgr refer to
objects the same object

IsNot Inequality of emp IsNot mgr True if emp and mgr refer to
two objects different objects

TypeOf...Is Object is of a TypeOf(obj) True if obj points to a
certain type Is Manager Manager object

Like Matches a text A Like True if A contains three digits,
pattern “###-####” a dash, and four digits

The following table lists characters with special meanings to the Like operator.

Character(s) Meaning

? Matches any single character

* Matches any zero or more characters

Matches any single digit

[characters] Matches any of the characters between the brackets

[!characters] Matches any character not between the brackets

A-Z When inside brackets, matches any character in the range A to Z

782

Appendix C

33_571982 appc.qxd 9/1/05 7:38 PM Page 782

The following table lists some useful Like patterns.

Pattern Meaning

[2-9]##-#### Seven-digit phone number

[2-9]##-[2-9]##-#### Ten-digit phone number including area code

1-[2-9]##-[2-9]##-#### Eleven-digit phone number beginning with 1 and area code

Five-digit ZIP code

#####-#### Nine-digit ZIP+4 code

?*@?*.?* E-mail address

Logical Operators
The following table summarizes Visual Basic’s logical operators.

Operator Purpose Example Result

Not Logical or bitwise Not A True if A is false
negation

And Logical or bitwise And A And B True if A and B are both true

Or Logical or bitwise Or A Or B True if A or B or both are true

Xor Logical or bitwise A Xor B True if A or B but not both is
exclusive Or true

AndAlso Logical or bitwise A AndAlso B True if A and B are both true
And with short-circuit
evaluation

OrElse Logical or bitwise A OrElse B True if A or B or both are true
Or with short-circuit
evaluation

Bitwise Operators
Bitwise operators work much as logical operators do, except that they compare values one bit at a time.
Visual Basic provides bitwise versions of Not, And, Or, and Xor but not bitwise versions of AndAlso or
OrElse.

783

Operators

33_571982 appc.qxd 9/1/05 7:38 PM Page 783

Operator Precedence
The following table lists the operators in order of precedence. When evaluating an expression, the pro-
gram evaluates an operator before it evaluates those lower than it in the list. When operators are on the
same line, the program evaluates them from left to right.

Operator Description

^ Exponentiation

- Negation

*, / Multiplication and division

\ Integer division

Mod Modulus

+, -, + Addition, subtraction, and concatenation

& Concatenation

<<, >> Bit shift

=, <>, <, <=, >, >=, Like, Is, All comparisons
IsNot, TypeOf...Is

Not Logical and bitwise negation

And, AndAlso Logical and bitwise And with and without short-circuit
evaluation

Xor, Or, OrElse Logical and bitwise Xor, and Or with and without short-
circuit evaluation

Assignment Operators
The following table summarizes Visual Basic’s assignment operators.

Operator Example Original Syntax Equivalent

= A = B A = B

^= A ^= B A = A ^ B

*= A *= B A = A * B

/= A /= B A = A / B

\= A \= B A = A \ B

+= A += B A = A + B

-= A -= B A = A - B

&= A &= B A = A & B

784

Appendix C

33_571982 appc.qxd 9/1/05 7:38 PM Page 784

Date and TimeSpan Operators
The Date and TimeSpan data types are related through their operators. The following list shows the rela-
tionships between these two data types.

❑ Date – Date = TimeSpan

❑ Date + TimeSpan = Date

❑ TimeSpan + TimeSpan = TimeSpan

❑ TimeSpan – TimeSpan = TimeSpan

The following table lists convenience methods provided by the Date data type.

Syntax Meaning

result_date = date1.Add(timespan1) Returns date1 plus timespan1

result_date = date1.AddYears Returns the date plus the indicated number
(num_years) of years

result_date = date1.AddMonths Returns the date plus the indicated number
(num_months) of months

result_date = date1.AddDays Returns the date plus the indicated number
(num_days) of days

result_date = date1.AddHours Returns the date plus the indicated number
(num_hours) of hours

result_date = date1.AddMinutes Returns the date plus the indicated number
(num_minutes) of minutes

result_date = date1.AddSeconds Returns the date plus the indicated number
(num_seconds) of seconds

result_date = date1.AddMilliseconds Returns the date plus the indicated number
(num_milliseconds) of milliseconds

result_date = date1.AddTicks Returns the date plus the indicated number
(num_ticks) of ticks (100 nanosecond units)

result_timespan = date1. Returns the time span between date2
Subtract(date2) and date1

result_integer = date1. Returns a value indicating whether date1 is
CompareTo(date2) greater than, less than, or equal to date2

result_boolean = date1.Equals(date2) Returns True if date1 equals date2

785

Operators

33_571982 appc.qxd 9/1/05 7:38 PM Page 785

Operator Overloading
The syntax for defining an operator for a class is:

[<attributes>] Public [Overloads] Shared [Shadows] _
[Widening | Narrowing] Operator symbol (operands) As type

...
End Operator

The operator’s symbol can be +, -, *, /, \, ^, &, <<, >>, =, <>, <, >, <=, >=, Mod, Not, And, Or, Xor, Like,
IsTrue, IsFalse, or CType.

Some operands come in pairs, and if you define one, you must define the other. The pairs are = and <>, <
and >, <= and >=, and IsTrue and IsFalse.

If you define And and IsFalse, Visual Basic uses them to define the AndAlso operator. Similarly, if you
define Or and IsTrue, Visual Basic automatically provides the OrElse operator.

786

Appendix C

33_571982 appc.qxd 9/1/05 7:38 PM Page 786

Subroutine and Function
Declarations

This appendix provides information about subroutine, function, and generic declarations. A prop-
erty procedure includes a subroutine and function pair, so they are also described here.

Subroutines
The syntax for writing a subroutine is:

[attribute_list] [interitance_mode] [accessibility]
Sub subroutine_name [(parameters)] [Implements interface.procedure]

[statements]
End Sub

The inheritance_mode can be one of the following values: Overloads, Overrides, Overridable,
NotOverridable, MustOverride, Shadows, or Shared. These values determine how a subroutine
declared within a class inherits from the parent class or how it allows inheritance in derived classes.

The accessibility clause can take one of the following values: Public, Protected, Friend,
Protected Friend, and Private. These values determine which pieces of code can invoke
the subroutine.

Functions
The syntax for writing a function is:

[attribute_list] [interitance_mode] [accessibility] _
Function function_name([parameters]) [As return_type] [Implements
interface.function]

[statements]
End Function

34_571982 appd.qxd 9/1/05 7:37 PM Page 787

This is the same as the syntax used for declaring a subroutine, except that a function includes a return
type and ends with End Function.

The inheritance_mode can be one of the values Overloads, Overrides, Overridable, NotOverridable,
MustOverride, Shadows, or Shared. These values determine how a subroutine declared within a class
inherits from the parent class or how it allows inheritance in derived classes.

The accessibility clause can take one of the following values: Public, Protected, Friend, Protected
Friend, and Private. These values determine which pieces of code can invoke the subroutine.

A function assigns its return value either by setting its name equal to the value or by using the Return
statement. Using the Return statement may allow the compiler to optimize the code more, so it is gener-
ally preferred.

Proper ty Procedures
The syntax for read/write property procedures is:

Property property_name() As data_type
Get

...
End Get
Set(ByVal Value As data_type)

...
End Set

End Property

The syntax for a read-only property procedure is:

Public ReadOnly Property property_name() As data_type
Get

...
End Get

End Property

The syntax for write-only property procedure is:

Public WriteOnly Property property_name() As data_type
Set(ByVal Value As data_type)

...
End Set

End Property

In all three of these cases, you don’t need to remember all the declaration details. If you type the first line
(including the ReadOnly or WriteOnly keywords if you want them) and press Enter, Visual Basic cre-
ates blank property procedures for you.

The Property Get procedures should all assign return values, as in property_name = return_value
or by using the Return statement, as in Return return_value.

788

Appendix D

34_571982 appd.qxd 9/1/05 7:37 PM Page 788

Control Statements
Control statements tell an application which other statements to execute under a particular set of
circumstances. They control the path that execution takes through the code. They include state-
ments that tell the program to execute some statements but not others and to execute certain state-
ments repeatedly.

The two main categories of control statements are decision statements and looping statements. The
following sections describe the decision and looping statements provided by Visual Basic .NET.

Decision Statements
A decision statement represents a branch in the program. It marks a place where the program can
execute one set of statements or another or possibly no statements at all. These include If state-
ments, Choose, and Select Case statements.

Single-Line If Then
A single-line If Then statement tests a condition and, if the condition is true, executes a piece of
code. The code may include more than one simple statement separated by a colon.

Optional Else If clauses let the program evaluate other conditions and execute corresponding
pieces of code. A final optional Else clause lets the program execute a piece of code if none of the
previous conditions is true.

The syntax is:

If condition Then statement

If condition Then statement1 Else statement2

If condition1 Then statement1 Else If condition2 Then statement2 Else
statement3

35_571982 appe.qxd 9/1/05 7:36 PM Page 789

If condition Then statement1 : statement2

If condition Then statement1 : statement2 Else statement3 : statement4

Multiline If Then
A multiline If Then statement is similar to the single-line version, except the pieces of code executed
by each part of the statement can include multiple lines. Each piece of code ends before the following
ElseIf, Else, or End If keywords. In complex code, this format is often easier to read than a compli-
cated single-line If Then statement.

The syntax is:

If condition1 Then
statements1...

ElseIf condition2
statements2...

Else
statements3...

End If

Select Case
A Select Case statement lets a program execute one of several pieces of code based on a test value.
Select Case is equivalent to a long If Then Else statement.

The syntax is:

Select Case test_value
Case comparison_expression1

statements1
Case comparison_expression2

statements2
Case comparison_expression3

statements3
...
Case Else

else_statements
End Select

A comparison expression can contain multiple expressions separated by commas, can use the To key-
word to specify a range of values, and can use the Is keyword to evaluate a logical expression using the
test value. The following example’s first case looks for a string in the range “A” to “Z” or “a” to “z.” Its
second and third cases look for values less than “A” and greater than “Z,” respectively.

Select Case key_pressed
Case “A” To “Z”, “a” To “z”

...
Case Is < “A”

...
Case Is > “Z”

...
End Select

790

Appendix E

35_571982 appe.qxd 9/1/05 7:36 PM Page 790

IIf
IIf takes a Boolean value as its first parameter. It returns its second parameter if the value is true, and it
returns its third parameter if the value is false. IIf is often confusing and is slower than an If Then
Else statement, so you should usually use If Then Else instead.

The syntax is:

variable = IIf(condition, value_if_false, value_if_true)

Choose
Choose takes an index value as its first parameter and returns the corresponding one of its other
parameters.

The syntax is:

variable = Choose(index, value1, value2, value3, value4, ...)

Looping Statements
A looping statement makes the program execute a series of statements repeatedly. The loop can run for a
fixed number of repetitions, run while some condition holds true, run until some condition holds true,
or run indefinitely.

For Next
A For Next loop executes a piece of code while a loop control variable ranges from one value to another.

The syntax is:

For variable [As data_type] = start_value To stop_value [Step increment]
statements
[Exit For]
statements

Next [variable]

For Each
A For Each loop executes a piece of code while a loop control variable ranges over all of the items con-
tained in a group class such as a collection or array.

The syntax is:

For Each variable [As object_type] In group
statements
[Exit For]
statements

Next [variable]

791

Control Statements

35_571982 appe.qxd 9/1/05 7:36 PM Page 791

Do Loop
Do Loop statements come in three forms. First, if the statement has no While or Until clause, the loop
repeats infinitely or until the code uses an Exit Do, Exit Sub, GoTo, or some other statement to break
out of the loop.

The syntax is:

Do
statements
[Exit Do]
statements

Loop

The other two forms of Do Loop statements execute as long as a condition is true (Do While condition)
or until a condition is true (Do Until condition).

The second form of Do Loop statement tests its condition before it executes, so the code it contains is not
executed even once if the condition is initially false.

The syntax is:

Do {While | Until} condition
statements
[Exit Do]
statements

Loop

The third form of Do Loop statement tests its condition after it executes, so the code it contains is exe-
cuted at least once even if the condition is initially false.

The syntax is:

Do
statements
[Exit Do]
statements

Loop {While | Until} condition

While End
The While End loop executes a series of statements as long as a condition is true. It tests its condition
before it executes, so the code it contains is not executed even once if the condition is initially false.

The syntax is:

While condition
statements
[Exit While]
statements

End While

792

Appendix E

35_571982 appe.qxd 9/1/05 7:36 PM Page 792

This statement is equivalent to the Do Loop:

Do While condition
statements
[Exit Do]
statements

Loop

GoTo
GoTo performs an unconditional jump to a specified line.

The syntax is:

GoTo line_label
...

line_label:
...

Because undisciplined use of GoTo can lead to “spaghetti code,” which is difficult to understand, debug,
and maintain, you should generally avoid using GoTo.

793

Control Statements

35_571982 appe.qxd 9/1/05 7:36 PM Page 793

35_571982 appe.qxd 9/1/05 7:36 PM Page 794

Error Handling
This appendix gives information about error handling.

Structured Error Handling
A Try block tries to execute some code and reacts to errors. The syntax is:

Try
try_statements...

[Catch ex As exception_type_1
exception_statements_1...]

[Catch ex As exception_type_2
exception_statements_2...]

...
[Catch

final_exception_statements...]
[Finally

finally_statements...]
End Try

When an error occurs, the program examines the Catch statements until it finds one that matches
the current exception. The program executes the finally_statements after the try_statements succeed
or after any Catch block is done executing.

Throwing Exceptions
Use the Throw statement to throw an exception, as in the following code:

Throw New ArgumentException(“Width must be greater than zero”)

36_571982 appf.qxd 9/1/05 7:47 PM Page 795

Custom Exceptions
You can derive your own custom exception classes from the System.ApplicationException class,
as shown in the following example. By convention, the name of an exception class should end with
“Exception.” Also by convention, you should provide at least the first three constructors shown here.

Imports System.Runtime.Serialization

Public Class ObjectExpiredException
Inherits System.ApplicationException

‘ No parameters. Use a default message.
Public Sub New()

MyBase.New(“This object has expired”)
End Sub

‘ Set the message.
Public Sub New(ByVal new_message As String)

MyBase.New(new_message)
End Sub

‘ Set the message and inner exception.
Public Sub New(ByVal new_message As String, _
ByVal inner_exception As Exception)

MyBase.New(new_message, inner_exception)
End Sub

‘ Include SerializationInfo object and StreamingContext objects.
Public Sub New(ByVal info As SerializationInfo, _
ByVal context As StreamingContext)

MyBase.New(info, context)
End Sub

End Class

Useful Exception Classes
The following table lists some useful exception classes.

Class Purpose

AmbiguousMatchException The program could not figure out which over-
loaded object method to use.

ApplicationException This is the ancestor class for all nonfatal applica-
tion errors. When you build custom exception
classes, you should inherit this class or one of its
descendants.

ArgumentException An argument is invalid.

ArgumentNullException An argument that cannot be Nothing has value
Nothing.

796

Appendix F

36_571982 appf.qxd 9/1/05 7:47 PM Page 796

Class Purpose

ArgumentOutOfRangeException An argument is out of its allowed range.

ArithmeticException An arithmetic, casting, or conversion operation has
occurred.

ArrayTypeMismatchException The program tried to store the wrong type of item
in an array.

ConfigurationException A configuration setting is invalid.

ConstraintException A data operation violates a database constraint.

DataException The ancestor class for ADO.NET exception classes.

DirectoryNotFoundException A needed directory is missing.

DivideByZeroException The program divided by zero.

DuplicateNameException An ADO.NET operation encountered a duplicate
name (for example, it tried to create a second table
with the same name).

EvaluateException Occurs when a DataColumn’s Expression prop-
erty cannot be evaluated.

FieldAccessException The program tried to access a class property
improperly.

FormatException An argument’s format doesn’t match its required
format. For example, Integer.Parse(“Oops”).

IndexOutofRangeException The program tried to access an item outside of the
bounds of an array or other container.

InvalidCastException The program tried to make an invalid conversion.
For example, CInt(“oops”).

InvalidOperationException The operation is not currently allowed.

IOException The ancestor class for input/output (I/O) excep-
tion classes. A generic I/O error occurred.

EndOfStreamException A stream reached its end.

FileLoadException Error loading a file.

FileNotFoundException Error finding a file.

InternalBufferOverflowException An internal buffer overflowed.

MemberAccessException The program tried to access a class member
improperly.

MethodAccessException The program tried to access a class method
improperly.

Table continued on following page

797

Error Handling

36_571982 appf.qxd 9/1/05 7:47 PM Page 797

Class Purpose

MissingFieldException The program tried to access a class property that
doesn’t exist.

MissingMemberException The program tried to access a class member that
doesn’t exist.

MissingMethodException The program tried to access a class method that
doesn’t exist.

NotFiniteNumberException A floating-point number is PositiveInfinity,
NegativeInfinity, or NaN (not a number). You
can get these values from the floating-point classes
as in Single.Nan or Double.PositiveInfinity.

NotImplementedException The requested operation is not implemented.

NotSupportedException The requested operation is not implemented. For
example, the program might be asking a routine to
modify data that was opened read-only.

NullReferenceException The program tried to use an object reference that is
Nothing.

OutOfMemoryException There isn’t enough memory. For example, if the
user wants to generate a really huge data set, you
may be able to predict how much memory the pro-
gram will need, see if it is available, and throw this
exception if it is not.

OverflowException An arithmetic, casting, or conversion operation cre-
ated an overflow. For example, if X is a Byte vari-
able containing the value 100, then the statement X
= X * X throws this error.

PolicyException Policy prevents the code from running.

RankException A routine is trying to use an array with the wrong
number of dimensions.

ReadOnlyException The program tried to modify read-only data.

ResourceException A needed resource is missing.

SecurityException A security violation occurred.

SyntaxErrorException A DataColumn’s Expression property contains
invalid syntax.

UnauthorizedAccessException The system is denying access because of an I/O or
security error.

798

Appendix F

36_571982 appf.qxd 9/1/05 7:47 PM Page 798

Classic Error Handling
The On Error statement controls error handlers in Visual Basic classic error handling. You can use struc-
tured and classic error handling in the same program but not in the same routine.

The following list briefly describes the On Error statement’s four variations.

❑ On Error GoTo line — If an error occurs, the program enters error-handling mode and control
jumps to the indicated line.

❑ On Error Resume Next — If an error occurs, the program ignores it. The code can use the Err
object to see whether an error occurred and what error it was.

❑ On Error GoTo 0 — This command disables any currently active error handler. If the program
encounters an error after this statement, the routine fails and control passes up the call stack
until the program finds an active error handler or the program crashes.

❑ On Error GoTo -1 — This command is similar to On Error GoTo 0, except that it also ends
error-handling mode if the program is in error-handling mode.

Visual Basic provides four ways to exit error-handling mode.

❑ Exit Sub (or Exit Function) — Ends error-handling mode and exits the current routine.

❑ Resume — Makes the program resume execution with the statement that caused the error. If the
program has not taken some action to correct the problem, the error will occur again, triggering
the error handler and possibly entering an infinite loop.

❑ Resume Next — Makes the program resume execution with the statement after the one that
caused the error.

❑ On Error GoTo -1 — Ends error-handling mode and lets execution continue with the statement
that follows.

Using On Error GoTo -1 to end error-handling mode can be very confusing because it’s hard to tell
when the program is in error-handling mode and when it isn’t. Usually, the code is easier to understand
if all of the error-handling code is grouped at the end of the routine and if each block of error-handling
code ends with one of the other methods (Exit Sub, Exit Function, Resume, or Resume Next).

799

Error Handling

36_571982 appf.qxd 9/1/05 7:48 PM Page 799

36_571982 appf.qxd 9/1/05 7:48 PM Page 800

Standard Controls
and Components

This appendix describes the standard controls and components provided by Visual Basic .NET.
Some of these are quite complicated, providing dozens or even hundreds of properties, methods,
and events, so it would be impractical to describe them all completely here. Besides, the online
help does a better job of explaining all of the controls’ properties, methods, and events than a book
can, covering all of the overloaded versions of the methods and providing hyperlinks to related
topics.

The sections in this appendix describe the components’ general purposes and give examples of
what I believe to be their simplest, most common, and most useful usages. The idea is to help you
decide which components to use for which purposes, and to give you some idea about the compo-
nents’ most commonly used properties, methods, and events. To learn more about a particular
component, see the online help.

Note that all of these components inherit from the Component class, and the controls inherit from
the Control class. Except where overridden, the components and controls inherit the properties,
methods, and events defined by the Component and Control classes. Chapter 2, “Controls in
General,” discusses some of the more useful properties, methods, and events provided by the
Control class, and many of those apply to these controls as well.

Figure G-1 shows the Visual Basic toolbox displaying the standard Windows forms controls.

37_571982 appg.qxd 9/1/05 7:44 PM Page 801

Figure G-1: Visual Basic provides
a large number of standard
components and controls for
Windows forms.

The following table lists the components shown in Figure G-1 in the same order in which they appear in
the figure.

Pointer BackgroundWorker BindingNavigator BindingSource

Button CheckBox CheckedListBox ColorDialog

ComboBox ContextMenuStrip DataGridView DataSet

DateTimePicker DirectoryEntry DirectorySearcher DomainUpDown

ErrorProvider EventLog FileSystemWatcher FlowLayoutPanel

FolderBrowserDialog FontDialog GroupBox HelpProvider

HScrollBar ImageList Label LinkLabel

802

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 802

ListBox ListView MaskedTextBox MenuStrip

MessageQueue MonthCalendar NotifyIcon NumericUpDown

OpenFileDialog PageSetupDialog Panel PerformanceCounter

PictureBox PrintDialog PrintDocument PrintPreviewControl

PrintPreviewDialog Process ProgressBar PropertyGrid

RadioButton RichTextBox SaveFileDialog SerialPort

ServiceController SplitContainer StatusStrip TabControl

TableLayoutPanel TextBox Timer ToolStrip

ToolStripContainer ToolTip TrackBar TreeView

VScrollBar WebBrowser

Components’ Purposes
By default, the Toolbox provides several tabs that group related components together. With such a large
number of components at your fingertips, having categorized tabs sometimes makes finding a particular
tool easier. Each tab also contains a Pointer tool.

The following table lists the tools in various Toolbox tabs. You can use this table to help decide which
tool to use for a particular purpose.

Common Controls

Button CheckBox CheckedListBox ComboBox

DateTimePicker Label LinkLabel ListBox

ListView MaskedTextBox MonthCalendar NotifyIcon

NumericUpDown PictureBox ProgressBar RadioButton

RichTextBox TextBox ToolTip TreeView

WebBrowser

Containers

FlowLayoutPanel GroupBox Panel SplitContainer

TabControl TableLayoutPanel

803

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 803

Menus & Toolbars

ContextMenuStrip MenuStrip StatusStrip ToolStrip

ToolStripContainer

Data

DataSet DataGridView BindingSource BindingNavigatot

ReportViewer

Components

BackgroundWorker DirectoryEntry DirectorySearcher ErrorProvider

EventLog FileSystemWatcher HelpProvider ImageList

MessageQueue PerformanceCounter Process SerialPort

ServiceController Timer

Printing

PageSetupDialog PrintDialog PrintDocument PrintPreviewControl

PrintPreviewDialog

Dialogs

ColorDialog FolderBrowserDialog FontDialog OpenFileDialog

SaveFileDialog

One other section, General, is initially empty.

The following sections describe the tools shown in Figure G-1. Except for the generic pointer tool, all
tools are presented in alphabetical order.

Pointer
Each of the Toolbox’s sections begins with an arrow in its upper-left corner. This is the only tool shown
in Figure G-1 that does not represent a type of control or component. Selecting the pointer deselects any
other currently selected tool. You can then click the controls on the form to select them without creating
a new control.

804

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 804

BackgroundWorker
The BackgroundWorker component simplifies multithreading. When a program invokes its
RunWorkerAsync method, the component starts running on a new thread. It raises its DoWork method
on the new thread, and the corresponding event handler should perform the necessary work. While it
runs, the worker can call the component’s ReportProgress method to raise a ProgressChanged event
on the main thread to let the program know how it is progressing.

When the worker thread finishes, the component receives a RunWorkerCompleted event on the main
thread.

The following code demonstrates the BackgroundWorker component. When the user clicks the Start
button, the program disables its Start button, enables its Cancel button, and sets its ProgressBar’s
Value property to 0. It then prepares the bgrLongProcess BackgroundWorker component and calls its
RunWorkerAsync method. If the user clicks the Cancel button while the worker is running, the program
calls the BackgroundWorker’s CancelAsync method to tell it to stop running. As the worker runs, it
raises ProgressChanged events. When the main thread receives one of these events, it sets its
ProgressBar’s Value property to display the worker’s progress. When the worker finishes, the
RunWorkerCompleted event handler enables the Start button and disables the Cancel button.

All the code described so far runs on the main program thread. The worker’s DoWork event handler runs
on the worker thread. In this example, the code loops for several seconds. Each time through the loop,
the program waits for one second. It then checks the worker component’s CancellationPending prop-
erty to see if the user clicked the Cancel button. If CancellationPending is True, then the event han-
dler exits and the worker is done.

If CancellationPending is False, then the event handler calls the worker’s ReportProgress method
to tell the main thread how far it has gotten.

When the For loop ends, the event handler exits and the worker stops executing.

‘ Start the long process.
Private Sub btnStartProcess_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnStartProcess.Click

‘ Get ready.
btnStartProcess.Enabled = False
btnCancel.Enabled = True
prgLongProcess.Value = 0

‘ Start the worker.
bgrLongProcess.WorkerReportsProgress = True
bgrLongProcess.WorkerSupportsCancellation = True
bgrLongProcess.RunWorkerAsync()

End Sub

‘ Cancel the long process.
Private Sub btnCancel_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCancel.Click

bgrLongProcess.CancelAsync()
End Sub

805

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 805

‘ Display the progress.
Private Sub bgrLongProcess_ProgressChanged(ByVal sender As Object, _
ByVal e As System.ComponentModel.ProgressChangedEventArgs) _
Handles bgrLongProcess.ProgressChanged

prgLongProcess.Value = e.ProgressPercentage
End Sub

‘ The worker is done.
Private Sub bgrLongProcess_RunWorkerCompleted(ByVal sender As Object, _
ByVal e As System.ComponentModel.RunWorkerCompletedEventArgs) _
Handles bgrLongProcess.RunWorkerCompleted

btnStartProcess.Enabled = True
btnCancel.Enabled = False

End Sub

‘ Do the work.
Private Sub bgrLongProcess_DoWork(ByVal sender As Object, _
ByVal e As System.ComponentModel.DoWorkEventArgs) Handles bgrLongProcess.DoWork

‘ This example just wastes some time.
Const NUM_SECONDS As Integer = 5
For i As Integer = 1 To NUM_SECONDS

‘ Pause 1 second.
Dim wait_until As Date = Now.AddSeconds(1)
Do While Now < wait_until

Loop

‘ If the user has canceled, stop.
If bgrLongProcess.CancellationPending Then Exit Sub

‘ Report our progress.
bgrLongProcess.ReportProgress(CInt(100 * i / NUM_SECONDS))

Next i
End Sub

BindingNavigator
A BindingNavigator provides a user interface so the user can control a data source. It initially appears
as a toolbar docked to the top of the form, although you can move it if you like. It contains navigation
buttons that move to the beginning, previous record, next record, and end of the data source. It also con-
tains a text box where you can enter a record number to jump to, a label showing the current record
number, and buttons to add and delete records.

See Chapter 11, “Database Controls and Objects,” for more information on BindingNavigator and
other database controls.

806

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 806

BindingSource
A BindingSource provides control of bound data on a form. It provides programmatic methods for
navigating through the data, adding items, deleting items, and otherwise managing the data at the
code level.

Typically you attach the BindingSource to a data source. You then bind controls to the BindingSource.
When the BindingSource changes its position in the data source, it automatically updates the bound
controls. If you attach a BindingNavigator to the BindingSource, then the user can use the
BindingNavigator to control the BindingSource.

See Chapter 11, “Database Controls and Objects,” for more information on BindingNavigator and
other database controls.

Button
The Button control is a simple push button. You can use it to let the user tell the program to do
something.

A Button can display a textual caption, a picture, or both. Use the ImageAlign and TextAlign proper-
ties to determine where the caption and picture appear in the Button.

When the user clicks the Button, it raises its Click event. The program can take the appropriate action
in the Button’s Click event handler, as shown in the following code:

Private Sub btnValidatePhoneNumber_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnValidatePhoneNumber.Click

ValidatePhoneNumber(txtPhoneNumber.Text)
End Sub

You can use the control’s ImageList and ImageIndex properties to assign an image to the Button.

If you set a form’s AcceptButton property to a Button, the Button’s Click event handler runs when
the user pressed the Enter key while the form has focus. Similarly if you set a form’s CancelButton
property to a Button, the Button’s Click event handler runs when the user pressed the Escape key
while the form has focus.

CheckBox
A CheckBox displays a box that the user can check and uncheck. You can use it to let the user select and
deselect options.

A CheckBox can display a textual caption, a picture, or both. Use the ImageAlign and TextAlign prop-
erties to determine where the caption and picture appear in the CheckBox.

807

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 807

You can also use the control’s ImageList and ImageIndex properties to assign an image to the
CheckBox.

Use the control’s CheckAlign property to determine where the check box appears. Normally the box
appears on the left, but you can make it appear on the right, center, upper-left corner, and so forth.

Usually a program uses the CheckBox control’s Checked property to tell if it is checked. This property
returns True if the CheckBox is checked and False if it is not. Your program can also set this property
to True or False to check or uncheck the control.

While a CheckBox usually is either checked or not, this control also has a third “indeterminate” state.
This state is represented as a grayed-out check in the box. Some applications use this state to represent a
partial or unknown selection.

For example, some installation programs allow the user to select categories of files to install. Checking
the box next to the “Images” choice would install all of the program’s image files. Unchecking this box
would tell the program not to install any images. Some programs allow you to click a plus sign or some
other indicator to expand the “Images” category and select the specific files you want to install. In that
case, the program displays the check box in the indeterminate state to indicate that you selected some
but not all of the files.

If you want to allow the user to cycle through the three values (checked, indeterminate, and unchecked),
set the control’s ThreeState property to True.

Most programs use CheckBoxes to gather information and only process the information when the user
clicks a button or selects a menu item, so they don’t need to process any CheckBox events. The control
does provide a CheckedChanged event, however, that fires whenever the control’s value changes, either
because the user clicked it or because your program’s code changed the value. For example, the program
could hide and display extra information that only applies when the box is checked, as shown in the fol-
lowing code:

Private Sub chkExtraInfo_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles chkExtraInfo.CheckedChanged

grpExtraInfo.Visible = chkExtraInfo.Checked
End Sub

CheckedListBox
A CheckedListBox control displays a series of items with check boxes in a list format. This enables the
user to pick and choose similar items from a list of choices. You can also use a ListBox to allow the user
to select items in a list, but there are some differences between the two controls’ behaviors.

First, in a CheckedListBox, previously checked items remain checked when the user clicks on another
item. If the user clicks an item in a ListBox, the control deselects any previously selected items,
although you can use the Shift and Ctrl keys to modify this behavior.

808

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 808

Second, the user must click each CheckedListBox item individually to select it. You can make a
ListBox allow simple or extended selections. That means, for example, the user could Shift-click to
select all of the items in a range. If the user is likely to want that type of selection, consider using a
ListBox instead of a CheckedListBox.

If a CheckedListBox isn’t big enough to display all of its items at once, it displays a vertical scroll bar to
let the user see all the items. If some of the items are too wide to fit, set the control’s
HorizontalScrollBar property to True to display a horizontal scroll bar.

If you set the MultiColumn property to True, the control displays items in multiple columns.

By default, the user must click on an item and then click on its box to check the item. To allow the user to
select an item with a single click, set the control’s CheckOnClick property to True.

If the control’s IntegralHeight property is True, the control will not display a partial item. For exam-
ple, if the control is tall enough to display 10.7 items, it will make itself slightly shorter so that it can only
display 10 items.

Set the control’s Sorted property to True to make the control display its items in sorted order.

Use the control’s Items.Add method to add an item to the list. This method has three overloaded ver-
sions. All three take a generic Object as the first parameter. The control uses this object’s ToString
method to generate the text that it displays to the user. The first overloaded version takes no extra
parameters. The second version takes a Boolean parameter indicating whether the new item should be
checked. The last version takes a parameter that indicates whether the new item should be checked,
unchecked, or indeterminate.

For example, suppose that a program defines the following Employee class. The important part here is
the ToString method, which tells the CheckedListBox how to display an Employee object, as shown
in the following code:

Public Class Employee
Public FirstName As String
Public LastName As String

Public Sub New(ByVal first_name As String, ByVal last_name As String)
FirstName = first_name
LastName = last_name

End Sub

Public Overrides Function ToString() As String
Return FirstName & “ “ & LastName

End Function
End Class

The following code shows how the program might add three items to the CheckedListbox named
clbEmployees. It makes the first item checked, the second unchecked, and the third indeterminate.

809

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 809

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

clbEmployees.Items.Add(New Employee(“Alicia”, “Anderson”), True)
clbEmployees.Items.Add(New Employee(“Brutus”, “Bentley”), False)
clbEmployees.Items.Add(New Employee(“Cynthia”, “Colefield”), _

CheckState.Indeterminate)
End Sub

The CheckedListBox’s CheckedItems property returns a collection containing the objects that are
checked, including those that are in the indeterminate state. The following code fragment displays the
text values of the selected objects in the Output window:

Dim checked_items As CheckedListBox.CheckedItemCollection = _
clbEmployees.CheckedItems

For Each item As Object In checked_items
Debug.WriteLine(item.ToString)

Next item

The control’s CheckedIndices property returns a collection of integers representing the items that are
checked or indeterminate (numbered starting with zero).

ColorDialog
The ColorDialog component displays a dialog that enables the user to select a color from a standard
palette or from a custom color palette. A program calls its ShowDialog method to display a color selec-
tion dialog. ShowDialog returns DialogResult.OK if the user selects a color and clicks OK. It returns
DialogResult.Cancel if the user cancels. Figure G-2 shows the dialog in action.

Figure G-2: The ColorDialog component enables the user
to select a color.

810

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 810

The following code sets the dialog’s Color property to the btnPickColor control’s current background
color. It displays the dialog and, if the user clicks OK, it sets the btnPickColor control’s background
color to the user’s selection.

Private Sub btnPickColor_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPickColor.Click

dlgColor.Color = btnPickColor.BackColor
If dlgColor.ShowDialog() = DialogResult.OK Then

btnPickColor.BackColor = dlgColor.Color
End If

End Sub

On the right in Figure G-2, the dialog provides an area where the user can define custom colors. Set the
component’s AllowFullOpen property to True to allow the user access this area. Set the FullOpen
property to True to make the dialog appear with this area already open (otherwise the user must click
the Define Custom Colors button to show this area).

If you set the SolidColorOnly property to True, the dialog only allows the user to select solid colors.
This applies only systems using 256 or fewer colors, where some colors are dithered combinations of
other colors. All colors are solid on systems using more than 256 colors.

Dithering is the process of using dots or other shapes of various sizes to create the illusion of another
color. For example, you can make orange by displaying a red area with tiny yellow dots or checks. On a
system that uses a higher color model such as 24-bit color, the system can display every color directly. If
you’re using a lower color model system such as 8-bit color (256 colors), the system might dither to sim-
ulate colors that it cannot display directly.

The component’s CustomColors property is an array of integers that determine the colors that the dia-
log displays in its custom colors area. These color values are a combination of red, green, and blue val-
ues between 0 and 255. In hexadecimal, the form of a value is BBGGRR, where BB is the blue component,
GG is the green component, and RR is the red component.

For example, the color &HFF8000 has a blue component of &HFF = 255, a green component of &H80 =
128, and a red component of 0. This color is light blue. Unfortunately, the Color object’s ToArgb method
returns the color in the reversed format RRGGBB, so you cannot use that method to calculate these val-
ues. Instead, you need to calculate them yourself.

The following code initializes a color dialog’s custom colors to a range of yellows and oranges with red
component 255, blue component 0, and the green component ranging from 0 to 255:

‘ Initialize the color dialog’s custom colors.
Dim colors() As Integer = { _

&HFF, &H11FF, &H22FF, &H33FF, _
&H44FF, &H55FF, &H66FF, &H77FF, _
&H88FF, &H99FF, &HAAFF, &HBBFF, _
&HCCFF, &HDDFF, &HEEFF, &HFFFF}

dlgColor.CustomColors = colors

811

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 811

ComboBox
The ComboBox control contains a text box where the user can enter a value. It also provides a list box or
drop-down list where the user can select a value. How the text box, list box, and drop-down list work
depends on the control’s DropDownStyle property. Figure G-3 shows the three styles.

Figure G-3: The ComboBox provides three different
styles: Simple, DropDown, and DropDownList.

When DropDownStyle is Simple, the ComboBox displays a text box and a list, as shown on the left in
Figure G-3. The user can type a value in the text box, or select one from the list. The user can enter any
text in the text box, even if it does not appear in the list.

When DropDownStyle is DropDown, the ComboBox displays a text box and a drop-down list, as shown
in the middle in Figure G-3. The user can type a value in the text box. If the user clicks the drop-down
arrow to the right of the text box, the control displays the list where the user can select an item. The user
can enter any text in the text box, even if it does not appear in the list. In Figure G-3, the middle
ComboBox’s text box contains the value “Dog,” which does not appear in the list.

When DropDownStyle is DropDownList, the ComboBox displays a noneditable text box and a drop-
down list. If the user clicks on the control, the ComboBox displays a drop-down list exactly as it does
when DropDownStyle is DropDown. The difference is that the user must select an item from the list. If
the user sets focus to the control and types a letter, the control selects the next item in the list that begins
with that letter. If the user presses the same letter again, the control moves to the next choice beginning
with that letter.

Setting DropDownStyle to DropDownList restricts the user’s choices the most and allows the least room
for error. So, if you know all of the user’s choices, you should use the DropDownList style. If you must
allow the user to enter new values, you should use one of the other styles. The DropDown style takes less
room on the form and is more familiar to most users, so that is often the better choice.

The control’s DropDownWidth property determines how wide the drop-down list should be. It can some-
times be useful to make the drop-down area wider than the control. Then the control displays only the
first part of the selected item, while the drop-down list can display extra detail. For example, you could
make the items be state abbreviations, followed by some spaces, followed by state names as in “CA
California.” The user would see the abbreviation CA in the ComboBox, but would see the whole item
(including the state name) in the drop-down list.

812

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 812

The ComboBox’s MaxDropDownItems property determines how many items the control displays in its
drop-down list. For example, if you set this to 10 and the list contains more than 10 items, then the drop-
down list displays a scroll bar to let the user find the additional items.

The MaxLength property lets you specify the maximum number of characters the user can type into the
control’s text box. Note, however, that the control will display a longer value if the user selects it from
the control’s list box or drop-down list. Set MaxLength to 0 to allow entries of any length.

If you set the control’s Sorted property to True, the ComboBox lists its choices in sorted order.

The ComboBox’s Text property gets or sets the value displayed by the control’s text box. If the control’s
DropDownStyle is DropDownList, this property does nothing at design time and the program can only
set it to values that are in the control’s list of allowed values at run time. Many programs use this prop-
erty to see what value is selected in the control.

Like the CheckedListBox described earlier in this appendix, the items in a ComboBox can be any type of
object and the control uses the objects’ ToString methods to figure out what text to display to the user.
As is the case with the CheckedListBox, you can use the ComboBox’s Items.Add method to add new
objects to the control. See the “CheckedListBox” section earlier in this appendix for more information
and an example that will also work with ComboBox controls.

If an item is selected, the ComboBox’s SelectedItem property returns the item’s object. If no item is
selected, this property returns Nothing.

If an item is selected, the ComboBox’s SelectedIndex property returns the item’s index, numbered
starting with zero. If no item is selected, this property returns -1.

Note that the SelectedItem and SelectedIndex properties return Nothing and -1, respectively, if the
user types a new value into the text area, even if the user types a value that appears in the control’s item
list. If you want the user to select an item rather than typing some text, you should set the control’s
DropDownStyle property to DropDownList. Note that the control initially has no item selected when
the program starts. If you want to ensure that something is always selected, select an item in the form’s
Load event handler, as shown in the following code:

‘ Select the first customer.
cboCustomer.SelectedIndex = 0

‘ Select the last employee.
cboEmployee.SelectedIndex = cboEmployee.Items.Count - 1

ContextMenuStrip
The ContextMenuStrip component represents a context menu. When you select it on the form at
design time, the development environment displays the menu at the top of the form. Enter the menu’s
items, use the Property window to set their names and other properties, and double-click the items to
edit their event handlers. See the section “MenuStrip” later in this appendix for information on menu
item properties and events.

813

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 813

To use a ContextMenuStrip, you need to attach it to a control. Select the control that you want to use it.
Open the Properties window, click the drop-down arrow to the right of the control’s
ContextMenuStrip property, and select your ContextMenuStrip component from the list. The rest is
automatic. When the user right-clicks on this control at run time, Visual Basic automatically displays the
ContextMenuStrip. If the user selects one of the menu’s items, Visual Basic triggers the menu item’s
event handler.

DataGridView
The DataGridView control displays a tablelike grid display. The control’s underlying data can come
from a data source such as a DataSet or BindingSource, or the program can add rows and columns
directly to the control. The DataGridView provides many properties for customizing the grid’s appear-
ance. For example, it lets you change column header styles, cell border styles, determine whether rows
and columns are resizable, and determine whether the control displays tooltips and errors in data cells.

Visual Basic can automatically create a DataGridView bound to a BindingSource and associated
with a BindingNavigator. To do this, create a data source and drag a table from the Data Sources
window onto a form. For more information on this technique, or for information on using the control in
general, see Chapter 11, “Database Controls and Objects.”

DataSet
The DataSet component holds data in a relational format. It provides all the features you need to build,
load, store, manipulate, and save data similar to that stored in a relational database. It can hold multiple
tables related with complex parent/child relationships and uniqueness constraints. It provides methods
for merging DataSets, searching for records that satisfy criteria, and saving data in different ways (such
as into a relational database or an XML file).

One of the most common ways to use a DataSet is to load it from a relational database when the pro-
gram starts, use various controls to display the data and let the user manipulate it interactively, and then
save the changes back into the database when the program ends.

For more information on the DataSet component, see the online help and Chapter 11, “Database
Controls and Objects.”

DateTimePicker
The DateTimePicker control allows the user select a date and time. The control can display one of sev-
eral styles, depending on its property values.

If the ShowUpDown property is True, the control displays small up and down arrows on its right, as
shown at the top of Figure G-4. Click on part a date field (month, date, year) to select it and use the up
and down arrow buttons to adjust that field.

814

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 814

Figure G-4: The DateTimePicker control lets the
user select a date and time.

If ShowUpDown is False (the default), the control displays a drop-down arrow on its right, as shown in
the second DateTimePicker in Figure G-4. If you click this arrow, the control displays the calendar
shown under the control in Figure G-4. The right and left arrows at the top of the calendar let you move
through months. If you click on the calendar’s month, the control displays a pop-up menu listing the
months so that you can quickly select one. If you click on the year, the control displays small up and
down arrows that you can use to change the year. When you have found the month and year you want,
click a date to select it and close the calendar.

If you get lost while scrolling through the calendar’s months, you can click the Today entry at the bot-
tom of the calendar to jump back to the current date. You can also right-click on the calendar and select
the “Go to today” command.

Whether ShowUpDown is True or False, you can click on a date field (month, date, year) and then use
the up and down arrow keys to adjust the field’s value. You can also type a new value into numeric
fields (such as the date and year).

The control’s Format property determines the way in which the control displays dates and times. This
property can take the values Long, Short, Time, and Custom. The results depend on the regional set-
tings on the computer. The following table shows typical results for the Long, Short, and Time settings
in the United States.

Format Property Example

Long Friday, February 20, 2004

Short 2/20/2004

Time 3:12:45 PM

815

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 815

When the Format property is set to Custom, the control uses the date and time format string stored in
the control’s CustomFormat property. For example, the DateTimePicker on the bottom in Figure G-4
has CustomFormat set to h:mm tt, MMM d, yyyy to display the time, abbreviated month, date, and year.
See Appendix M, “Date and Time Format Specifiers,” for information on date and time format specifiers.

If the control displays time (either because Format is set to Time or because a CustomFormat value
includes time fields), then the user can click on a time field and use the arrow keys to adjust its value.
You can also click on a numeric field or AM/PM designator and type a new value.

The DateTimePicker control’s MinDate and MaxDate properties determine the first and last dates that
the control will let the user select.

The control has several properties that determine the appearance of the calendar, if it displays one. These
include CalendarFont, CalendarForeColor, CalendarMonthBackground, CalendarTitleBackColor,
CalendarTitleForeColor, and CalendarTrailingForeColor.

The program can use the control’s Value property to get or set the control’s date and time.

DirectoryEntr y
The DirectoryEntry component represents a node or object in an Active Directory hierarchy. Active
Directory is a service that provides a common, hierarchical view of distributed resources and services on
a network.

Active Directory is really a Windows operating system topic, not a Visual Basic topic, so it is not covered
further here. For more information, see the DirectoryEntry class’s Web page msdn.microsoft.com/
library/en-us/cpref/html/frlrfsystemdirectoryservicesdirectoryentryclasstopic.asp.

DirectorySearcher
The DirectorySearcher component performs searches on an Active Directory hierarchy. See the online
help for more information on Active Directory and the DirectorySearcher component.

DomainUpDown
The DomainUpDown control displays a list of items that the user can select by clicking the up and down
arrow buttons beside the control. For example, the control might let the user select one of the values
High, Medium, and Low.

If the control’s InterceptArrowKeys property is True, the user can also scroll through the items by
using the up and down arrow keys. If InterceptArrowKeys is False, then the user must click the
arrow buttons to change the value.

816

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 816

Normally, the control’s ReadOnly property is set to False so the user can type text into the control’s text
area much as you can enter text in a ComboBox. If ReadOnly is True, then the user cannot type in this
area and must use the arrow keys or buttons to pick one of the control’s items. Unfortunately, setting
ReadOnly to True gives the control a gray background, so it appears disabled unless you look closely
and notice that the text is black rather than dark gray.

Like the CheckedListBox control, the DomainUpDown control can hold arbitrary objects as items. It dis-
plays the string returned by an object’s ToString method. See the “CheckedListBox” section earlier in
this appendix for more information about displaying objects in the control.

The control’s SelectedItem property returns the object representing the item that is currently selected.
Note that there may be no item selected if the user typed a value in the text area, rather than selecting a
value from the list of items. The SelectedIndex property returns the index of the currently selected
item or -1 if no choice is selected.

The control’s Text property returns the text that the control is currently displaying. This property
returns something meaningful whether the user typed a value or selected an item from the list.

When the control is first displayed, no item is selected. You can use the Properties window to give the
control a Text value at design time but you cannot make it select an item, even if the Text value matches
an item’s text. If you want the control to begin with an item selected, you can use code similar to the fol-
lowing in the form’s Load event handler:

‘ Select the first Priority value.
dudPriority.SelectedIndex = 0

If you set the control’s Sorted property to True, then the control displays its items in sorted order.

If you set the Wrap property to True, then the control wraps its list of items around if the user moves
past the beginning or end of the list.

ErrorProvider
The ErrorProvider component indicates to the user that another control has an error associated
with it.

The following code shows how a program might use an ErrorProvider component. Suppose that
the TextBox txtZip should contain a five-digit ZIP code. When the user enters a value and moves to
another field, the control’s Validating event handler, shown in the code, fires. The code uses a Like
statement to see if the text contains exactly five digits.

If the text does not contain five digits, then the program calls the ErrorProvider’s SetError method
to associate the error “Invalid ZIP code format” with the TextBox. At this point, the ErrorProvider
displays an icon showing a little red circle containing a white exclamation mark next to the text box and
makes the icon blink several times to draw the user’s attention to the error. If the user hovers the mouse
over the error icon, the component displays a tooltip showing the error message.

817

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 817

If the text does contain five digits, then the code calls the ErrorProvider component’s SetError
method to clear any error currently set for the txtZip TextBox. This makes the ErrorProvider
remove any error icon it is currently displaying next to the control.

‘ Verify that this is a 5-digit ZIP code.
Private Sub txtZip_Validating(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) Handles txtZip.Validating

If Not (txtZip.Text Like “#####”) Then
‘ It’s invalid. Display an error.
ErrorProvider1.SetError(txtZip, “Invalid ZIP code format”)

Else
‘ It’s valid. Clear any error.
ErrorProvider1.SetError(txtZip, “”)

End If
End Sub

The component’s BlinkRate property determines how quickly the error icon blinks. The BlinkStyle
property determines how it blinks.

If BlinkStyle is BlinkIfDifferentError, then the component makes the icon blink several times
whenever the program sets a control’s error message to a new nonblank value. Because the previous
code uses the same error message whenever the ZIP code value does not contain exactly five digits, the
message remains unchanged if the user changes the ZIP code to a new invalid value, so the icon does
not blink again.

If BlinkStyle is AlwaysBlink, then the component makes the icon blink as long as the control has an
associated error. The icon continues blinking, even if another application has the focus, until the user
fixes the error and moves to a new field to trigger the Validating event handler again.

If BlinkStyle is NeverBlink, then the component displays the error icon without blinking.

The component’s Icon property gives the icon that the component displays for an error. You can change
this icon if you want to use a special error image.

Blinking text can be extremely irritating to users, so don’t abuse it. The default behavior of blinking a
couple of times and then stopping is probably reasonable, but a message that is constantly blinking very
quickly is a bad idea. Note that the United States Accessibility code prohibits objects that blink faster
than 2 Hz and slower than 55 Hz (see 508.nih.gov/saos/excerpted_stds.html).

EventLog
The EventLog component enables an application to manipulate event logs. It provides methods to cre-
ate logs, write and read log messages, and clear logs.

The following code demonstrates some of the EventLog component’s features. Before a program can
write into an event log, it must register with the log as an event source. When this program’s form loads,
it uses the EventLog class’s shared SourceExists method to see if the StatusSource event source is

818

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 818

defined. If the source is not defined, the program uses the CreateEventSource method to define it. The
program sets the logStatus EventLog component’s Source property to “StatusSource” and uses
the component’s WriteEntry method to place an entry in the log. It then calls the ShowLog subroutine
described shortly to display the log entries. The form’s Closing event handler writes a message into the
log indicating that the program is closing.

When the user clicks the program’s Add To Log button, the code writes the text in the txtMessage text
box into the log, clears the text box, and calls ShowLog to display the log entries.

When the user clicks the Clear Log button, the program calls the EventLog component’s Clear method
to remove all of the entries from the log.

Finally, subroutine ShowLog clears the lstLog list box. It then loops through the EventLogEntry
objects contained in the component’s Entries collection, adding each object’s message to the list box.

‘ Connect to the log.
Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ See if the log exists and create it if it doesn’t.
If Not EventLog.SourceExists(“StatusSource”) Then

EventLog.CreateEventSource(“StatusSource”, “StatusLog”)
Debug.WriteLine(“Creating event source”)

End If

‘ Set the EventLog component’s source.
logStatus.Source = “StatusSource”

‘ Write a Starting message to the log.
logStatus.WriteEntry(Now & “> “ & “Starting”)
ShowLog()

End Sub

‘ Write a Closing message to the log.
Private Sub Form1_FormClosing(ByVal sender As Object, _
ByVal e As System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing

logStatus.WriteEntry(Now & “> “ & “Closing”)
End Sub

‘ Add an entry to the log.
Private Sub btnAddToLog_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAddToLog.Click

logStatus.WriteEntry(Now & “> “ & txtMessage.Text)
txtMessage.Text = “”
txtMessage.Select(0, 0)
ShowLog()

End Sub

‘ Enable or disable btnAddToLog.
Private Sub txtMessage_TextChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles txtMessage.TextChanged

btnAddToLog.Enabled = (txtMessage.Text.Length > 0)
End Sub

819

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 819

‘ Clear the log.
Private Sub btnClearLog_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnClearLog.Click

logStatus.Clear()
ShowLog()

End Sub

‘ List the items in the log.
Private Sub ShowLog()

lstLog.Items.Clear()

For Each log_entry As EventLogEntry In logStatus.Entries
lstLog.Items.Add(log_entry.Message)

Next log_entry
lstLog.SelectedIndex = lstLog.Items.Count - 1

End Sub

FileSystemWatcher
The FileSystemWatcher component keeps an eye on part of the file system and raises events to let
your program know if something changes. For example, it can notify your program if a file is created in
a particular directory.

For more information on the FileSystemWatcher component, see Chapter 27, “File-System Objects,”
and Appendix R, “File-System Classes.”

FlowLayoutPanel
The FlowLayoutPanel control displays the controls that it contains in rows or columns. For example,
when laying out rows, it places controls next to each other horizontally in a row until it runs out of
room, and then it starts a new row.

The FlowLayoutPanel is particularly useful for Toolboxes and in situations where the goal is to display
as many of the contained controls as possible at one time, and the exact arrangement of the controls isn’t
too important.

The control’s FlowDirection property determines the manner in which the control arranges its con-
tained controls. This property can take the values LeftToRight, RightToLeft, TopDown, and
BottomUp. Figure G-5 shows these different arrangements.

The control’s AutoScroll property determines whether the control automatically provides scroll bars if
its contents won’t fit within the control all at once.

The Padding property determines how much space the control leaves between its edges and the con-
trols it contains. Use the Margin properties of the contained controls to specify the spacing between the
controls.

820

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 820

Figure G-5: The FlowLayoutPanel control can
arrange its contents from left to right, from right to
left, top-down, or bottom-up.

The TableLayoutPanel control also arranges contained controls, but in a grid. For information on that
control, see the section, “TableLayoutPanel,” later in this appendix.

FolderBrowserDialog
The FolderBrowserDialog component displays a dialog that lets the user select a folder (directory) in
the file system. The program displays the dialog by calling the component’s ShowDialog method.

The following code shows how a program can use the dialog. The program sets the dialog component’s
Description property to a string telling the user to select the folder containing configuration data and
calls the component’s ShowDialog method. If the user selects a folder and clicks OK, ShowDialog
returns DialogResult.OK, and the program calls the LoadConfiguration subroutine, passing it the
name of the folder that the user selected.

dlgFolder.Description = _
“Select the folder that contains the configuration data XML files.”

If dlgFolder.ShowDialog() = DialogResult.OK Then
LoadConfiguration(dlgFolder.SelectedPath)

End If

Figure G-6 shows the dialog. Notice that the Description text is displayed above the folder area.

821

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 821

Figure G-6: The FolderBrowserDialog
component lets the user select a directory.

The component’s SelectedPath property returns the path selected by the user, but it also determines
where the dialog begins browsing. If your code uses the dialog, does not change this value, and then
uses the dialog again later, the dialog starts the second time where it left off the first time.

The program can also explicitly set the SelectedPath value to start browsing at a particular folder. For
example, the following code makes the dialog begin browsing in the C:\Temp directory:

dlgFolder.SelectedPath = “C:\Temp”

Alternatively, you can use the component’s RootFolder property to make the component start in one
of the system folders. Set this property to one of the Environment.SpecialFolder values shown in
the following table. For example, to start browsing in the MyPictures directory, set RootFolder to
Environment.SpecialFolder.MyPictures.

ApplicationData CommonApplicationData CommonProgramFiles Cookies

Desktop DesktopDirectory Favorites History

InternetCache LocalApplicationData MyComputer MyMusic

MyPictures Personal ProgramFiles Programs

Recent SendTo StartMenu Startup

System Templates

822

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 822

The dialog will not allow the user to leave the root folder. For example, if you set the RootFolder prop-
erty to Environment.SpecialFolder.ProgramFiles, then the user will be able to browse through the
Program Files hierarchy (normally, C:\Program Files), but will not be able to move to other parts of
the system.

If you want to start browsing at a particular directory but want to allow the user to move to other parts
of the directory hierarchy, leave the RootFolder with its default value of Environment.SpecialFolder.
Desktop and then set the SelectedPath property appropriately. For example, the following code uses
the Environment object’s SpecialFolder method to make the browser start browsing at the Program
Files folder:

dlgFolder.RootFolder = Environment.SpecialFolder.Desktop
dlgFolder.SelectedPath = _

Environment.GetFolderPath(Environment.SpecialFolder.ProgramFiles)

FontDialog
The FontDialog component displays the dialog shown in Figure G-7 to let the user select a font. If the
user selects a font and clicks OK, the ShowDialog method returns DialogResult.OK.

Figure G-7: The FontDialog component lets the user
select a font.

The component has several properties that determine the options that the dialog displays and the types
of fonts it will allow the user to select. The following table describes some of the most important of the
component’s properties.

823

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 823

Property Purpose

AllowScriptChange Determines whether the component allows the user to change the
character set shown in the Script combo box (Western in Figure G-7).
If this is False, the drop-down is still visible, but it only contains
one choice.

AllowSimulations Determines whether the component allows graphics device font sim-
ulations. For example, many fonts do not include bold or italics, but
the graphics device interface (GDI) can simulate them.

AllowVectorFonts Determines whether the component allows vector fonts. (Characters
in a raster font are drawn as bitmaps. Characters in a vector font are
drawn as a series of lines and curves. Vector fonts may provide a
nicer look because they scale more easily than raster fonts, but vector
fonts may take longer to draw.)

AllowVerticalFonts Determines whether the component allows vertical fonts (such as
Chinese).

Color Sets or gets the font’s color. Note that this is not part of the Font
property, so if you want to let the user set a control’s font and color,
you must handle them separately, as shown in the following code:

dlgFont.Font = Me.Font
dlgFont.Color = Me.ForeColor
dlgFont.ShowColor = True
If dlgFont.ShowDialog() = DialogResult.OK Then

Me.Font = dlgFont.Font
Me.ForeColor = dlgFont.Color

End If

FixedPitchOnly Determines whether the dialog only allows fixed-pitch (fixed-width)
fonts. (In a fixed-width font, all characters have the same width.
For example, this sentence is in the Courier font,
which is fixed-width. In a variable-width font, some characters
such as “l” and “i” are thinner than other characters such as “W.”
This sentence is in the Times New Roman font, which has variable width.

Font Sets or gets the font described by the dialog.

FontMustExist Determines whether the component raises an error if the user tries
to select a font that doesn’t exist.

MaxSize Determines the maximum allowed point size.

MinSize Determines the minimum allowed point size.

ShowApply Determines whether the dialog displays the Apply button. If you
set this to True, you should catch the component’s Apply event
(as shown in the code example later in this section).

ShowColor Determines whether the component allows the user to select a color.

824

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 824

Property Purpose

ShowEffects Determines whether the component displays the Effects group
box that includes the Strikeout and Underline boxes and the Color
drop-down.

ShowHelp Determines whether the dialog displays the Help button. If you set
this to True, you should catch the component’s HelpRequest event.
The event handler might explain to the user how the font will be
used. For example, “Select the font to be used for item descriptions.”

The following code shows how a program might use the dialog to let the user set a form’s font. The
btnSetFont_Click event handler runs when the user clicks the program’s Set Font button. The code
saves a copy of the form’s current font and foreground color. It sets the dialog’s ShowColor and
ShowEffects properties to True so the user can select the font’s color, Strikeout, and Underline values.
It sets ShowApply to True to make the dialog display its Apply button.

Next, the program calls the dialog’s ShowDialog method. If ShowDialog returns DialogResult.OK,
then the user selected a font and clicked OK. In that case, the program sets the form’s font by calling sub-
routine SetFormFont, passing it the dialog’s current font and color.

If ShowDialog returns DialogResult.Cancel, then the user clicked Cancel. In that case, the program
calls subroutine SetFormFont, passing it the form’s original saved font and color to restore those values.

If the user clicks the dialog’s Apply button, then the dlgFont_Apply event handler executes. That routine
calls subroutine SetFormFont, passing it the dialog’s current font and color to apply the current values.

Subroutine SetFormFont simply sets the form’s font and foreground color.

‘ Let the user pick a new font for the form.
Private Sub btnSetFont_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSetFont.Click

‘ Save the current font and color.
Dim old_font As Font = Me.Font
Dim old_color As Color = Me.ForeColor

dlgFont.ShowColor = True ‘ Let the user select font color.
dlgFont.ShowEffects = True ‘ Let the user select Strikeout and Underline.
dlgFont.ShowApply = True ‘ Display the Apply button.
dlgFont.Font = Me.Font ‘ Set the initial font.

‘ Display the dialog.
If dlgFont.ShowDialog() = DialogResult.OK Then

‘ The user clicked OK. Apply the new font.
SetFormFont(dlgFont.Font, dlgFont.Color)

Else
‘ The user canceled. Restore the old font.
SetFormFont(old_font, old_color)

End If
End Sub

825

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 825

‘ Apply the dialog’s currently selected font.
Private Sub dlgFont_Apply(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles dlgFont.Apply

Dim dlg As FontDialog = DirectCast(sender, FontDialog)
SetFormFont(dlg.Font, dlg.Color)

End Sub

‘ Set the form’s Font and ForeColor.
Private Sub SetFormFont(ByVal new_font As Font, ByVal new_color As Color)

‘ Set the form’s font and color.
Me.Font = new_font
Me.ForeColor = new_color

End Sub

GroupBox
The GroupBox control displays a caption and a border. This control is mostly for decoration and pro-
vides a visually appealing method for grouping related controls on the form.

The GroupBox is also a control container, so you can place other controls inside it. If a GroupBox con-
tains RadioButtons, those buttons form a group separate from any other RadioButtons on the form.
If you click one of those buttons, the other buttons in the GroupBox deselect, but any selected
RadioButtons outside of the GroupBox remain unchanged. This is important if you need to create
more than one group of RadioButtons.

If you want to create multiple RadioButton groups, but you don’t want to display a caption and border,
use a Panel control instead of a GroupBox.

The GroupBox control provides a typical assortment of properties that determine its appearance (such as
BackColor, BackgroundImage, and Font). These properties are straightforward.

If you set the control’s Enabled property to False, then its caption is grayed out and any controls it
contains are also disabled. This is a convenient way for a program to enable or disable a group of con-
trols all at once.

The GroupBox’s Controls property returns a collection containing references to the controls inside the
GroupBox.

One of the few confusing aspects to working with GroupBox’s in code is figuring out where to position
controls within the GroupBox. The control’s borders and caption take up room inside the control’s client
area, so deciding how to position controls without covering those decorations is not obvious. Fortunately,
the control’s DisplayRectangle property returns a Rectangle object that you can use to position items.
This rectangle fills most of the control’s area that isn’t occupied by the caption and borders.

HelpProvider
The HelpProvider component displays help for other controls. You can associate a HelpProvider with
a control. Then, if the user sets focus to the control and presses the F1 key, the HelpProvider displays

826

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 826

help for the control. The HelpProvider either displays a small tooltip-like pop-up displaying a help
string, or it opens a help file.

To assign a help string to a control at design time, open the form in the form designer and select the
control. In the Properties window, look for a property named “HelpString on HelpProvider1,”
where HelpProvider1 is the name of your HelpProvider component. If the form contains more than one
HelpProvider, the control should have more than one “HelpString on” property.

Enter the text you want the HelpProvider to display in this property and you’re finished. When the
user sets focus to the control and presses F1, the HelpProvider displays the string automatically.

To set the help string programmatically, call the HelpProvider’s SetHelpString method passing it
the control and the help string that it should display for the control. The following code defines help
strings for a series of address text box controls:

HelpProvider1.SetHelpString(txtName, “Enter the customer’s name.”)
HelpProvider1.SetHelpString(txtStreet, _

“Enter the customer’s delivery street number and name, “ & _
“plus any apartment or suite number.”)

HelpProvider1.SetHelpString(txtCity, “Enter the customer’s delivery city.”)
HelpProvider1.SetHelpString(txtState, “Enter the customer’s delivery state.”)
HelpProvider1.SetHelpString(txtZip, “Enter the customer’s delivery ZIP code.”)

To provide help using a help file, set the HelpProvider component’s HelpNamespace property to the
full name and path to the help file. Set the other control’s “HelpNavigator on HelpProvider1” prop-
erty to one of the values shown in the following table to tell the HelpProvider how to use the help file
when the user asks for help on this control.

HelpNavigator Value Purpose

AssociateIndex Opens the help file’s Index page and goes to the first entry that
begins with the same letter as the control’s “HelpKeyword on
HelpProvider1” property.

Find Opens the help file’s Index tab.

Index Opens the help file’s Index tab and searches for the value
entered in the control’s “HelpKeyword on HelpProvider1”
property.

KeywordIndex Opens the help file’s Index tab and searches for the value
entered in the control’s “HelpKeyword on HelpProvider1”
property.

TableOfContents Opens the help file’s Table of Contents tab.

Topic Displays the topic in the help file that has URL stored in the
control’s “HelpKeyword on HelpProvider1” property. For
instance, the URL “street_name.htm” might contain the help
file’s page for the Street field.

827

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 827

To set a control’s HelpNavigator value in code, call the HelpProvider’s SetHelpNavigator method
passing it the control and the navigator method that you want to use. For example, the following code
prepares to give help for the btnSetColor control. It sets the HelpProvider1 component’s help file
to C:\Tools\littledraw.chm. It then sets the btnSetColor control’s HelpNavigator method to
HelpNavigator.Topic. Finally it sets the control’s HelpKeyword to “select_color.htm.” Now if the
user sets focus to this control and presses F1, the HelpProvider opens the help file and displays the
topic at “select_color.htm.”

HelpProvider1.HelpNamespace = “C:\Tools\littledraw.chm”
HelpProvider1.SetHelpNavigator(btnSetColor, HelpNavigator.Topic)
HelpProvider1.SetHelpKeyword(btnSetColor, “select_color.htm”)

A control’s “ShowHelp on HelpProvider1” property indicates whether the control should use the
HelpProvider to display its help.

HScrollBar
The HScrollBar control represents a horizontal scroll bar. The user can drag the scroll bar’s “thumb” to
select a number.

The control’s Value property gets and sets its current numeric value. The Minimum and Maximum
properties determine the range of values that the control can display. These are integer values, so the
HScrollBar control is not ideal for letting the user select a nonintegral value (such as 1.25).

The control’s SmallChange property determines how much the control’s Value property changes when
the user clicks the arrows at the scroll bar’s ends. The LargeChange property determines how much the
Value changes when the user clicks on the scroll bar between the thumb and the arrows.

Strangely, the control does not let the user to actually select the value given by its Maximum property.
The program can select that value using code, but the largest value the user can select is Maximum –
LargeChange + 1. For example, if Maximum is 100 and LargeChange is 10 (the default values), then the
user can select values up to 100 – 10 + 1 = 91.

If you set the control’s TabStop property to True, then the control can hold the input focus. While the
control has the focus, you can use the arrow keys to change its value by the SmallChange amount.

The control’s Scroll event fires when the user changes the control’s value interactively. The ValueChanged
event occurs when the control’s value changes either because the user changed it interactively, or
because the program changed it with code. The following code shows how a program can display the
hbarDays control’s Value property when the user or program changes it:

Private Sub hbarDays_ValueChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles hbarDays.ValueChanged

lblDays.Text = hbarDays.Value.ToString
End Sub

Note that many controls that might otherwise require scroll bars can provide their own. For example, the
ListBox, TextBox, and Panel controls can display their own scroll bars when necessary, so you don’t
need to add your own.

828

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 828

ImageList
The ImageList component stores a series of images for use by other controls or by the program’s code.
For example, one way to display an image on a Button control is to create an ImageList component
holding the image. Set the Button’s ImageList property to the ImageList component and set its
ImageIndex property to the index of the image in the ImageList.

To add images to the component at design time, open the form designer, select the component, click
on the Images property in the Properties window, and click the ellipsis (...) on the right. The Image
Collection Editor that appears has buttons that let you add, remove, and rearrange the images.

The ImageList component’s ImageSize property determines the size of the images. The component
stretches any images of different sizes to fit the ImageSize. This means that a single ImageList compo-
nent cannot provide images of different sizes. If you must store images of different sizes in the applica-
tion, use another method such as multiple ImageList components, PictureBoxes (possible with
Visible property set to False), or resources.

Label
The Label control displays some read-only text. Note that you cannot even select the text at run time so,
for example, you cannot copy it to the clipboard. If you want to allow the user to select and copy text,
but not modify it, use a TextBox with ReadOnly property set to True.

The Label control can display an image in addition to text. To display an image, either set the control’s
Image property to the image or set the control’s ImageList and ImageIndex properties. Use the
ImageAlign and TextAlign properties to determine where the image and text are positioned within
the control.

If you set the Label’s AutoSize property to True (the default), then the control resizes itself to fit its
text. This can be particularly useful for controls that contain text that changes at run time because it
ensures that the control is always big enough to hold the text. Note that the control does not automati-
cally make itself big enough to display any image it contains.

The Label control automatically breaks lines that contain embedded carriage returns. The following
code makes a label display text on four lines:

lblInstructions.Text = “Print this message and either:” & vbCrLf & _
“ - Mail it to the recipient” & vbCrLf & _
“ - Fax it to the recipient” & vbCrLf & _
“ - Throw it away”

Text that contains carriage returns confuses the control’s AutoSize capabilities, however, so you should
not use AutoSize with multiline text.

The Label control also automatically wraps to a new line if the text it contains is too long to fit within
the control’s width.

829

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 829

LinkLabel
The LinkLabel control displays a label that is associated with a hyperlink. By default, the label is blue
and underlined, so it is easy to recognize as a link. It also displays a pointing hand cursor when the
mouse moves over it, so it looks more or less like a link on a Web page.

When the user clicks a LinkLabel, the control raises its LinkClicked event. The program can catch the
event and take whatever action is appropriate. For example, it could display another form, open a docu-
ment, or open a Web page.

The following code shows how a program might display a Web page with URL stored in the LinkLabel’s
Tag property. The call to System.Diagnostics.Process.Start makes the operating system perform
the default action for the string value stored in the Tag property. If that value is a URL, the system will
normally open the URL with the system’s default browser.

Private Sub llblBookUrl_LinkClicked(ByVal sender As System.Object, _
ByVal e As System.Windows.Forms.LinkLabelLinkClickedEventArgs) _
Handles llblBookUrl.LinkClicked

System.Diagnostics.Process.Start(llblBookUrl.Tag.ToString)
End Sub

The LinkLabel control provides all the formatting properties that the Label control does. See the sec-
tion “Label,” earlier in this appendix for more information on formatting the control’s label.

The control also provides several properties for determining the appearance of its link. The following
table describes some of the most useful.

Property Purpose

ActiveLinkColor The color of an active link.

DisabledLinkColor The color of a disabled link.

LinkArea The piece of the control’s text that is represented as a link. This
includes a start position and a length in characters.

LinkBehavior Determines when the link is underlined. This can take the values
AlwaysUnderline, HoverUnderline, NeverUnderline, and
SystemDefault.

LinkColor The color of a normal link.

Links A collection of objects representing the link(s) within the
control’s text.

LinkVisited A Boolean that indicates whether the link should be displayed
as visited.

VisitedLinkColor The color of a visited link.

830

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 830

A LinkLabel can display more than one link within its text. For example, in the text “The quick brown
fox jumps over the lazy dog,” the control might display the text “fox” and “dog” as links and the rest as
normal text. At design time, you can use the LinkArea property to specify only one link. To make “fox”
the link, the program would set LinkArea to 16, 3 to start with letter 16 and include 3 letters.

At run time, the program can add other links to the control. The following code clears the llblPangram
control’s Links collection and then adds two new link areas. The program sets each of the new Link
objects’ LinkData property to a URL that the program should display when the user clicks that link.

Dim new_link As System.Windows.Forms.LinkLabel.Link

llblPangram.Links.Clear()
new_link = llblPangram.Links.Add(16, 3)
new_link.LinkData = “http://www.somewhere.com/fox.htm”
new_link = llblPangram.Links.Add(40, 3)
new_link.LinkData = “http://www.somewhere.com/dog.htm”

The following code shows how the program displays the URL corresponding to the link the user clicked.
The code gets the appropriate Link object from the event handler’s event arguments, converts the Link
object’s LinkData property into a string, and uses System.Diagnostics.Process.Start to open it
with the system’s default browser.

‘ Display the URL associated with the clicked link.
Private Sub llblPangram_LinkClicked(ByVal sender As System.Object, _
ByVal e As System.Windows.Forms.LinkLabelLinkClickedEventArgs) _
Handles llblPangram.LinkClicked

System.Diagnostics.Process.Start(e.Link.LinkData.ToString)
End Sub

ListBox
The ListBox control displays a list of items that the user can select. The following table describes some
of the control’s most useful properties.

Property Purpose

SelectionMode Determines how the user can select text. See the following text for
details.

MultiColumn If this is True, the control does not display a vertical scroll bar.
Instead, if there are too many items to fit, the control displays them
in multiple columns. If the columns will not all fit, the control dis-
plays a horizontal scroll bar to let you see them all. The control’s
ColumnWidth property determines the width of the columns.

IntegralHeight If this is True, the control will not display a partial item. For exam-
ple, if the control is tall enough to display 10.7 items, it will shrink
slightly so it can only display 10 items.

Table continued on following page

831

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 831

Property Purpose

ScrollAlwaysVisible If this is True, the control displays its vertical scroll bar even if all of
its items fit. This can be useful if the program will add and remove
items to and form the list at run time and you don’t want the control
to change size depending on whether the items all fit.

Sorted Determines whether the control displays its items in sorted order.

SelectedItem Returns a reference to the first selected item or Nothing if no item is
selected. This is particularly useful if the control’s SelectionMode
is One.

SelectedIndex Returns the zero-based index of the first selected item or -1 if no item
is selected. This is particularly useful if the control’s SelectionMode
is One.

Text Returns the text displayed for the first currently selected item, or an
empty string if no item is selected. Your code can set this property
to a string to make the control select the item that displays exactly
that string.

SelectedItems A collection containing references to all the items that are currently
selected

SelectedIndices A collection containing the indexes of all the items that are currently
selected.

UseTabStops Determines whether the control recognizes tabs embedded within its
items’ text. If UseTabStops is True, the control replaces tab charac-
ters with empty space. If UseTabStops is False, the control displays
tab characters as thin black boxes.

The control’s SelectionMode property determines how the user can select items. This property can take
the values None, One, MultiSimple, or MultiExtended.

When SelectionMode is None, the user cannot select any items. This mode can be useful for displaying
a read-only list. It can be particularly handy when the list is very long and the control’s automatic
scrolling is useful, allowing the user see all of the list’s items.

When SelectionMode is One, the user can select a single item. When the user clicks on an item, any pre-
viously selected item is deselected.

When SelectionMode is MultiSimple, the user can select multiple items by clicking on them one at a
time. When the user clicks on an item, the other items keep their current selection status. This mode is
useful when the user needs to select multiple items that are not necessarily near each other in the list. It
is less useful if the user must select a large number of items. For example, clicking 100 items individually
would be tedious.

832

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 832

When SelectionMode is MultiExtended, the user can select multiple items in several ways. The user
can click and drag to manipulate several items at once. If the first item clicks is not selected, then all of
the items are selected. If the first item is already selected, then all of the items are deselected. If the user
holds down the Ctrl key and clicks an item, the other items’ selection status remains unchanged. If the
user doesn’t hold down the Ctrl key, any other items are deselected when the user selects new items. If
the user clicks on an item and then clicks on another item while holding down the Shift key, all of the
items between those two are selected. If the user holds down the Ctrl key at the same time, those items
are selected and the other items’ selection status remains unchanged.

The MultiExtended mode is useful when the user needs to select many items, some of which may be
next to each other. This mode is quite complicated, however, so MultiSimple may be a better choice if
the user doesn’t need to select ranges of items or too many items.

Use the control’s Items.Add method to add an object to the list. If the object isn’t a string, the control
uses the object’s ToString method to determine the value it displays to the user.

The ListBox’s FindString method returns the index of the first item that begins with a given string.
For example, the following code selects the first item that begins with the text “Code”:

lstTask.SelectedIndex = lstTask.FindString(“Code”)

The FindStringExact method returns the index of the first item that matches a given string exactly.

ListView
The ListView control displays a list of items in one of five possible views, determined by the control’s
View property. The View property can take the following values:

❑ Details — For each item, displays a small icon, the item’s text, and the subitems’ text on
a row.

❑ LargeIcon — Displays large icons above the item’s text. Entries are arranged from left to right
until they wrap to the next row.

❑ List — Displays small icons to the left of the item’s text. Each entry is placed on its own row.

❑ SmallIcon — Displays small icons to the left of the item’s text. Entries are arranged from left
to right until they wrap to the next row.

❑ Tile — Displays large icons to the left of the item’s text. Entries are arranged from left to right
until they wrap to the next row.

Figure G-8 shows each of these views for the same list of items. The second tiled view shown in the
lower right corner uses the control’s CheckBoxes and StateImageList properties, and is described
shortly.

833

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 833

Figure G-8: The ImageList control can display four views.

Set the control’s LargeImageList and SmallImageList properties to ImageList controls containing
the images that you want to use for the LargeIcon and SmallIcon views.

Each of the ListView control’s items may contain one or more subitems that are displayed in the Details
view. To create the items and subitems, open the form designer, select the ListView control, click on the
Items property in the Properties window, and click the ellipsis (...) to the right. This displays the
ListViewItem Collection Editor shown in Figure G-9.

Figure G-9: Use the ListViewItem Collection Editor to define a ListView
control’s items at design time.

834

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 834

Click the Add button to make a new item. Set the item’s Text property to the string you want the control
to display. If you have attached ImageList controls to the ListView, set the new item’s ImageIndex
property to the index of the image you want to display for this item in the LargeIcon and SmallIcon
views.

For example, the program in Figure G-8 contains two ImageList controls. The imlBig control contains
32 × 32 pixel images and the imlSmall control contains 16 × 16 pixel images. Each holds one image of
a book. All of the items in the ListView items have ImageIndex set to 0, so they all display the first
images in the imlBig and imlSmall controls.

To give an item subitems, select it in the ListViewItem Collection Editor, click on its SubItems prop-
erty, and then click the ellipsis (...) to the right to display the ListViewSubItem Collection Editor shown
in Figure G-10. Use the Add button to make subitems. Set the subitems’ Text properties to determine
what the Details view displays.

Figure G-10: Use the ListViewSubItem Collection Editor to define a
ListView item’s subitems.

If you set the ListView control’s CheckBoxes property to True, the control displays check boxes next
to its items. If you set the control’s StateImageList property to an ImageList control, then the control
displays the images in that list. When the user double-clicks on an item, the control toggles the image
index between 0 and 1 and displays the first or second image. In Figure G-8, the ListView on the lower-
right uses check box images that look like circles with numbers inside. If you set CheckBoxes to True
but do not set the ListView’s StateImageList property, the control displays simple boxes containing
checkmarks.

835

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 835

If CheckBoxes is True, the program can use the CheckedIndices or CheckedItems collections to see
which items the user has “checked.” If the StateImageList control holds more than two images, an
item is considered checked if it is displaying any picture other than the first one. The following code lists
the currently checked items in the lvwMeals ListView control:

For Each checked_item As ListViewItem In lvwMeals.CheckedItems
Debug.WriteLine(checked_item.ToString)

Next checked_item

The control’s SelectedIndices and SelectedItems collections let the program see which items the
user has currently selected. The user can select items by clicking on them. If the user holds down the Ctrl
key while clicking, any items that are already selected remain selected. If the user clicks an item, holds
down the Shift key, and then clicks another item, the control selects all of the items in between the two.

If you are using the ListView in Details mode, you must define the control’s columns. Open the form
designer, select the control, click the Columns property in the Properties window, and click the ellipsis
(...) to the right to display the ColumnHeader Collection Editor shown in Figure G-11.

Figure G-11: Use the ColumnHeader Collection Editor to define the
columns a ListView displays in Detail mode.

Use the Add button to create column headers and then set each header’s text. If you don’t define enough
columns for all of the subitems, some of the subitems will not be visible to the user.

The LabelEdit control has several other properties that determine its appearance and how the control
interacts with the user. The following table describes some of the most important of these.

836

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 836

Property Purpose

AllowColumnReorder If True, the user can rearrange the columns by dragging their col-
umn headers while in Detail mode.

FullRowSelect If True, then clicking on an item or any of its subitems selects the
item. If False, the user must click the item not a subitem to select
the item. If AllowColumnReorder is True, you may want to set
FullRowSelect to True also so the user doesn’t need to figure out
which rearranged column contains the item itself.

GridLines If True, the control displays gray lines between the rows and
columns while in Detail mode.

HeaderStyle When in Detail mode, this can be None to not display column
headers, Clickable to allow the user to click column headers, or
Nonclickable to not let the user click column headers. If this is
Clickable, the program can catch the control’s ColumnClick event
to learn the index of the column clicked. For example, you may want
to sort the ListView’s items using the clicked column.

LabelEdit If True, the user can modify the items’ labels. The user can never
change the subitems’ labels.

MultiSelect If True, the user can use the Ctrl and Shift keys to select multiple
items.

Sorting Indicates whether the control displays its items sorted ascending,
sorted descending, or not sorted.

ListView Helper Code
In addition to using the ListView control’s collection property editors at design time, you can manipu-
late the control’s items and subitems at run time using code.

The control’s Columns collection contains ColumnHeader objects representing the control’s column
headers. You can use the collection’s Add, Count, Remove, RemoveAt, and other methods to manage the
text displayed above the columns.

The ListViewMakeColumnHeaders subroutine shown in the following code uses the Columns collec-
tion to define a ListView control’s column headers. The routine takes as parameters a ListView control
and a ParamArray of values that contain title strings, alignment values, and widths. The code clears the
control’s Columns collection and then loops through the ParamArray. For each triple of array entries,
the control creates a column header using the title string, alignment value, and width.

837

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 837

‘ Make the ListView’s column headers.
‘ The ParamArray entries should be triples holding
‘ column title, HorizontalAlignment value, and width.
Private Sub ListViewMakeColumnHeaders(ByVal lvw As ListView, _
ByVal ParamArray header_info() As Object)

‘ Remove any existing headers.
lvw.Columns.Clear()

‘ Make the column headers.
For i As Integer = header_info.GetLowerBound(0) To _

header_info.GetUpperBound(0) Step 3
Dim col_header As ColumnHeader = lvw.Columns.Add(_

DirectCast(header_info(i), String), _
-1, _
DirectCast(header_info(i + 1), HorizontalAlignment))

col_header.Width = DirectCast(header_info(i + 2), Integer)
Next i

End Sub

The following code shows how a program might use subroutine ListViewMakeColumnHeaders to
define the lvwBooks control’s column headers. Because the Pages and Year columns contain numeric
values, the control aligns them on the right of their columns.

‘ Make the ListView column headers.
ListViewMakeColumnHeaders(lvwBooks, _

“Title”, HorizontalAlignment.Left, 120, _
“URL”, HorizontalAlignment.Left, 120, _
“ISBN”, HorizontalAlignment.Left, 90, _
“Picture”, HorizontalAlignment.Left, 120, _
“Pages”, HorizontalAlignment.Right, 50, _
“Year”, HorizontalAlignment.Right, 40)

The ListView control’s Items collection contains ListViewItem objects that represent the control’s
items. Each ListViewItem has a SubItems collection that represents the item’s subitems. These collec-
tions provide the usual assortment of methods for managing collections: Count, Add, Remove,
RemoveAt, and so forth.

The ListViewMakeRow subroutine shown in the following code uses these collections to add an item
and its subitems to a ListView. The routine takes as parameters the ListView control, the name of the
item, and a ParamArray containing the names of any number of subitems. The code uses the ListView
control’s Items.Add method to make the new item. It then loops through the subitem names, using the
new item’s SubItems.Add method to make the subitems.

‘ Make a ListView row.
Private Sub ListViewMakeRow(ByVal lvw As ListView, ByVal image_index As Integer, _
ByVal item_title As String, ByVal ParamArray subitem_titles() As String)

‘ Make the item.
Dim new_item As ListViewItem = lvw.Items.Add(item_title)
new_item.ImageIndex = image_index

838

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 838

‘ Make the subitems.
For i As Integer = subitem_titles.GetLowerBound(0) To _

subitem_titles.GetUpperBound(0)
new_item.SubItems.Add(subitem_titles(i))

Next i
End Sub

If you set a ListView column’s width to -1, the control automatically resizes the column so it is wide
enough to displays all of its data. If you set a column’s width to -2, the control makes the column wide
enough to displays all of its data and its header text.

The ListViewSizeColumns subroutine shown in the following code sizes all of a ListView control’s
columns so that they fit their data. If the allow_room_for_header parameter is True, it also allows
room for the column headers.

‘ Set column widths to -1 to fit data, -2 to fit data and header.
Private Sub ListViewSizeColumns(ByVal lvw As ListView, _
ByVal allow_room_for_header As Boolean)

Dim new_wid As Integer = -1
If allow_room_for_header Then new_wid = -2

‘ Set the width for each column.
For i As Integer = 0 To lvw.Columns.Count - 1

lvw.Columns(i).Width = new_wid
Next i

End Sub

These helper routines make working with ListView controls a bit easier.

Custom ListView Sorting
The ListView control’s Sorting property enables you to sort items in ascending or descending order,
but it only considers the items not the subitems. It doesn’t even use the subitems to break ties when two
items have the same values.

Fortunately, the ListView control’s ListViewItemSorter property provides the flexibility to change
the sort order in any way you like. To use this property, you must create a class that implements the
IComparer interface. The ListView control will use an object of this type to decide which items to place
before other items.

The following example shows how to use the IComparer interface. You can also find examples in the
section “Array.Sort” in Chapter 17 and in the section “Derived Controls” in Chapter 12.

The ListViewComparer class shown in the following code allows a ListView to sort in ascending or
descending order on any of its columns. The control uses private m_ColumnNumber and m_SortOrder
variables to remember which column to sort and the direction in which to sort. The class’s constructor
initializes these values.

The key to the IComparer interface is the Compare function. This routine must compare two objects x
and y. It should return a value less than zero, zero, or greater than zero, depending on whether object x
should be considered as less than, equal to, or greater than object y according to the sort.

839

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 839

This version of the Compare function starts by converting the two generic objects x and y into
ListViewItems. For each item, the code initializes a string to either the appropriate item or subitem’s
text, or to a blank string if the item does not have that subitem. For example, if the program is trying to
sort using the fifth subitem, but an item only has two subitems, the code cannot try to access that item’s
fifth subitem.

After it has strings representing the two items, the code uses the String class’s Compare method to
compare them.

‘ Implements a comparer for ListView columns.
Class ListViewComparer

Implements IComparer

Private m_ColumnNumber As Integer
Private m_SortOrder As SortOrder

Public Sub New(ByVal column_number As Integer, ByVal sort_order As SortOrder)
m_ColumnNumber = column_number
m_SortOrder = sort_order

End Sub

‘ Compare the items in the appropriate column
‘ for objects x and y.
Public Function Compare(ByVal x As Object, ByVal y As Object) _
As Integer Implements System.Collections.IComparer.Compare

Dim item_x As ListViewItem = DirectCast(x, ListViewItem)
Dim item_y As ListViewItem = DirectCast(y, ListViewItem)

‘ Get the subitem values.
Dim string_x As String
If item_x.SubItems.Count <= m_ColumnNumber Then

string_x = “”
Else

string_x = item_x.SubItems(m_ColumnNumber).Text
End If

Dim string_y As String
If item_y.SubItems.Count <= m_ColumnNumber Then

string_y = “”
Else

string_y = item_y.SubItems(m_ColumnNumber).Text
End If

‘ Compare them.
If m_SortOrder = SortOrder.Ascending Then

Return String.Compare(string_x, string_y)
Else

Return String.Compare(string_y, string_x)
End If

End Function
End Class

840

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 840

The following code shows how a program might use the ListViewComparer class to enable the user to
sort in ascending or descending order on any column in Details view. The user can click on any column
to sort on that column. If the user clicks on the same column again, the program reverses the sort order.

This code keeps track of the column that it is currently using for sorting in its m_SortingColumn variable.

When the user clicks on a column header, the lvwBooks control’s ColumnClick event handler fires. The
event handler begins by getting a reference to the column that the user clicked and determines the sort
order it should use. If the current sorting column is Nothing, then the program sets the new sort order
to Ascending.

If the current sorting column is not Nothing, then the program compares that column to the newly
clicked column. If the two are the same, the program switches the sort order. It knows the current sort
order because the sorting column begins with > if the program is sorting in ascending order, and < if the
program is sorting in descending order.

If the current sorting column is not Nothing and the newly clicked column is different from the current
sort column, then the program sorts in ascending order.

Having decided on a sport order, the program removes the > or < from the front of the current sorting
column’s header if the program is currently sorting on a column.

The code then saves a reference to the new sorting column and adds a > or < to its column header to
indicate the direction of the sort. The program sets the ListView control’s ListViewItemSorter prop-
erty to a new ListViewComparer object that is initialized, so it sorts the correct column in the proper
order. Finally, the program calls the control’s Sort method to make it resort its items.

‘ The column currently used for sorting.
Private m_SortingColumn As ColumnHeader

‘ Sort using the clicked column.
Private Sub lvwBooks_ColumnClick(ByVal sender As System.Object, _
ByVal e As System.Windows.Forms.ColumnClickEventArgs) Handles lvwBooks.ColumnClick

‘ Get the new sorting column.
Dim new_sorting_column As ColumnHeader = _

lvwBooks.Columns(e.Column)

‘ Figure out the new sorting order.
Dim sort_order As System.Windows.Forms.SortOrder
If m_SortingColumn Is Nothing Then

‘ New column. Sort ascending.
sort_order = SortOrder.Ascending

Else
‘ See if this is the same column.
If new_sorting_column.Equals(m_SortingColumn) Then

‘ Same column. Switch the sort order.
If m_SortingColumn.Text.StartsWith(“> “) Then

sort_order = SortOrder.Descending
Else

sort_order = SortOrder.Ascending
End If

Else

841

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 841

‘ New column. Sort ascending.
sort_order = SortOrder.Ascending

End If

‘ Remove the old sort indicator.
m_SortingColumn.Text = m_SortingColumn.Text.Substring(2)

End If

‘ Display the new sort order.
m_SortingColumn = new_sorting_column
If sort_order = SortOrder.Ascending Then

m_SortingColumn.Text = “> “ & m_SortingColumn.Text
Else

m_SortingColumn.Text = “< “ & m_SortingColumn.Text
End If

‘ Create a comparer.
lvwBooks.ListViewItemSorter = New ListViewComparer(e.Column, sort_order)

‘ Sort.
lvwBooks.Sort()

End Sub

This example is rather complicated because it allows the user to sort on any column in either order.
Building a comparer class that sorts the items in one order considering both the item values and the
subitem values to break ties would be a bit simpler.

MaskedTextBox
The MaskedTextBox control is a text box that provides a mask that helps guide the user in entering a
value in a particular format. The mask determines which characters are allowed at different positions
in the text. It displays placeholder characters to help prompt the user and underscores where the user
can enter characters. For example, an empty United States phone number field would appear as
“(___)___-____” in the MaskedTextBox.

The control’s Mask property uses the characters shown in the following table.

Character Meaning

0 A required digit between 0 and 9.

9 An optional digit or space.

An optional digit, space, +, or -. If the user leaves this blank,
this character appears as a space in the control’s Text,
InputText, and OutputText properties.

842

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 842

Character Meaning

L A required letter a–z or A–Z.

? An optional letter a–z or A–Z.

& A required nonspace character.

C An optional character.

A A required alpha-numeric character a–z, A–Z, or 0–9.

a An optional alphanumeric character a–z, A–Z, or 0–9.

. A decimal separator placeholder. The control automatically dis-
plays the appropriate decimal separator character for the cur-
rent UI culture.

, A thousands separator placeholder. The control automatically
displays the appropriate thousands separator character for the
current UI culture.

: A time separator placeholder. The control automatically dis-
plays the appropriate time separator character for the current
UI culture.

/ A date separator placeholder. The control automatically dis-
plays the appropriate date separator character for the current
UI culture.

$ A currency symbol placeholder. The control automatically dis-
plays the appropriate currency symbol character for the current
UI culture.

< Automatically converts the characters that the user types after
this point into lowercase.

> Automatically converts the characters that the user types after
this point into uppercase.

| Disables the previous < or > character.

\ Escapes a character so it is displayed literally by the control
even if the character would otherwise have special meaning.
For example, \9 places a “9” in the output and \\ displays
a “\.”

All other characters appear as literals within the mask. Dashes and parentheses are common literal char-
acters. For example, the Social Security number mask “000-00-0000” displays dashes as in “ - - “.

The control’s MaskCompleted property returns True if the user has entered characters to satisfy all of
the required pieces of the mask. For example, suppose that the control uses the mask “(999)000-0000”

843

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 843

to represent a United States phone number. The control’s MaskCompleted property returns True if the
user enters “(123)456-7890” (here the parentheses and dashes are added automatically by the control).
Because the first three digits are optional, the property is also True if the user enters “()456-7890”.
Because the last seven digits are required, the MaskCompleted property returns False if the user enters
“(123) -7890”.

The following table shows the MaskTextBox control’s most useful properties. Note that this control
inherits from the TextBox control, so it inherits most of that control’s properties, methods, and events.
See the section “TextBox” later in this appendix for more information.

Property Purpose

AllowPromptAsInput Determines whether the user can enter the prompt character
determined by the PromptChar property (normally an
underscore).

AsciiOnly Determines whether the control allows non-ASCII Unicode
characters.

BeepOnError Determines whether the control beeps whenever the user types
an invalid keystroke.

EnableCutCopyLiterals Determines whether literal characters such as the parentheses
in the mask “(999)000-0000” are included when the user copies
and pastes the control’s text.

HidePromptOnLeave Determines whether the control hides its prompt characters
when it loses the focus.

IncludeLiterals Determines whether the control includes literal characters in
the Text and OutputText properties.

IncludePrompt Determines whether the control includes the PromptChar
character in the OutputText property.

InputText Gets or sets the characters input by the user. This doesn’t
include any literal mask characters.

Mask Gets or sets the mask.

MaskCompleted Returns True if he user’s input satisfies the required mask
characters.

MaskFull Returns True if the user has entered characters for all of the
mask’s required and optional elements.

OutputText Returns the user’s text modified by the IncludeLiterals and
IncludePrompt properties.

PromptChar Determines the character that the control uses as a placeholder
for user input.

Text Gets or sets the text as it is currently displayed to the user,
including prompt and literal characters.

844

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 844

The following table describes the control’s most useful events.

Event Occurs When

InputTextChanged The control’s text has been modified.

MaskChanged The control’s mask changed.

MaskInputRejected The user’s input does not satisfy mask at the current position.

OutputTextChanged The control’s text has been modified.

TextChanged The control’s text has been modified.

Unfortunately, the MaskedTextBox control is relatively inflexible. It requires the user to enter exactly the
right characters at the right positions, and there can be no variation in the format. For example, a single
mask cannot let the user enter a telephone number in either of the formats “456-7890” or “(123)456-7890.”
The mask “(999)000-0000” makes the first three digits optional, but the user must enter spaces in those
positions or skip over them. The mask also considers each character separately, so this mask accepts the
value “(3)456-7890”.

This inflexibility means the MaskedTextBox control is most useful when you know exactly what the
user will need to enter. If you want the user to type a four-digit telephone extension, a seven-digit phone
number, or a five-digit ZIP code, then the control works well. If the user might enter either a seven- or
ten-digit phone number, a five-digit ZIP code or a nine-digit ZIP+4 code, or an arbitrary e-mail address,
the control is much less useful. In these cases, you might want to use regular expressions to validate the
user’s input more precisely. For more information on regular expressions, see the “Regular Expressions”
section in Chapter 28, “Useful Namespaces.”

MenuStrip
The MenuStrip control represents a form’s menus, submenus, and menu items. To make the form
display the menu, its Menu property must be set to the MenuStrip control. The first time you add a
MenuStrip control to the form, Visual Basic automatically sets the form’s Menu property to the new
control, so you usually don’t need to worry about this. If you later delete the control and create a new
MenuStrip, you may need to set this property yourself.

At design time, the MenuStrip control is visible both at the top of the form and in the component tray.
Click on a menu entry and type to change the caption it displays. Place an ampersand in front of the
character that you want to use as a keyboard accelerator. For example, to make the caption of the File
menu display as “File,” set the menu’s text to &File. If you type Alt-F at run time, the program opens
this menu.

To make a cascading submenu, click on a menu item and enter its caption. A ghostly text box appears to
the right containing the text “Type Here.” Click on this and enter the submenu’s name.

When you select a menu item, the Properties window displays the menu item’s properties. The follow-
ing table describes the most useful menu item properties.

845

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 845

Property Purpose

Checked Indicates whether the item is checked. You can use this prop-
erty to let the user check and uncheck menu items.

CheckOnClick Determines whether the item should automatically check and
uncheck when the user clicks it.

CheckState Determines whether the item is checked, unchecked, or dis-
played as in an indeterminate state.

DisplayStyle Determines whether the item displays text, an image, both, or
neither. The image appears on the left where a check box
would otherwise go. If the item displays an image, it draws a
box around the image when the item is checked.

Enabled Determines whether the menu item is enabled. If an item is dis-
abled, its shortcut is also disabled and the user cannot open its
submenu if it contains one.

Font Determines the font used to draw the item.

MergeAction Determines how Visual Basic merges MDI child and parent
form menus. See the online help for more information.

MergeIndex Determines the order in which Visual Basic merges MDI
child and parent form menus. See the online help for more
information.

Name Gives the menu item’s name.

ShortcutKeys Determines the item’s keyboard shortcut. For instance, if you
set an item’s Shortcut to F5, then the user can instantly invoke
the item at run time by pressing the F5 key.

ShowShortcutKeys Determines whether the menu displays its shortcut to the right
at run time. Usually this should be True, so users can learn
about the items’ shortcuts.

Text Gives the caption displayed by the item. Place an ampersand in
front of the character you want to use as a keyboard accelerator
as already described.

Visible Determines whether the item is visible. An item’s shortcut will
still work even if the item is not visible. You can use that fea-
ture to provide keyboard shortcuts for functions that are not
available in any menu.

When the user selects a menu item, the item raises a Click event. You can write an event handler to take
whatever action is appropriate. For example, the following code shows how the File menu’s Exit item
closes the form:

846

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 846

Private Sub mnuFileExit_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles mnuFileExit.Click

Me.Close()
End Sub

To create a menu item event handler, open the item in the form editor and double-click it.

MessageQueue
The MessageQueue component provides access to a queue on a message-queuing server. An application
can use a message queue to communicate with other applications. This is a fairly advanced and special-
ized topic, so it is not covered in detail here. See the online help for more information.

MonthCalendar
The MonthCalendar control displays a calendar that allows the user to select a range of dates. This cal-
endar is similar to the one that the DateTimePicker control displays when its ShowUpDown property is
False and you click the control’s drop-down arrow. See the section “DateTimePicker,” earlier in this
appendix for more information on that control.

Figure G-12 shows a dialog that uses the MonthCalendar control. The right and left arrows at the top
of the calendar let you move through months. If you click on the month, the control displays a pop-up
menu listing the months so that you can quickly select one. If you click on the year, the control displays
small up and down arrows that you can use to change the year. When you have found the month and
year you want, click a date to select it.

Figure G-12: The MonthCalendar control lets
the user select dates or a range of dates.

If you get lost scrolling through the calendar’s months, you can click the Today entry at the bottom of
the calendar to jump back to the current date. You can also right-click on the calendar and select the
“Go to today” command.

847

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 847

The MonthCalendar control’s MinDate and MaxDate properties determine the first and last dates that
the control will let the user select.

The DateTimePicker control is designed to let the user select a single date. The MonthCalendar
control is a bit more powerful. For example, this control can allow the user to select a range of dates
by clicking and dragging across the calendar. The program can use the control’s SelectionRange,
SelectionStart, and SelectionEnd properties to see what dates the user has selected.

The following table describes the control’s most useful properties for controlling its more advanced
features.

Property Purpose

AnnuallyBoldedDates An array that specifies dates that should be bolded every year.
For example, you can bold April 1 for every year displayed.

BoldedDates An array that specifies specific dates that should be displayed
in bold.

CalendarDimensions Sets the number of columns and rows of months the control
displays. Figure G-13 shows a MonthCalendar control with
CalendarDimensions = 3, 2 (three columns and two rows).

FirstDayOfWeek Sets the day of the week shown in the leftmost column of each
month. Figure G-13 uses the default value Sunday.

MaxDate The last date the user is allowed to select.

MaxSelectionCount The maximum number of days the user can select.

MinDate The first date the user is allowed to select.

MonthlyBoldedDates An array that specifies dates that should be bolded every
month. For example, you can bold the 13th of every month
displayed.

SelectionEnd A DateTime object representing the control’s first selected
date.

SelectionRange A SelectionRange object representing the control’s selected
range of dates.

SelectionStart A DateTime object representing the control’s last selected date.

ShowToday Determines whether the control displays today’s date at the
bottom.

ShowTodayCircle Determines whether the control circles today’s date (March 12,
2006 in Figure G-13). (Although on this system at least the date
is “circled” with a rectangle.)

ShowWeekNumbers Determines whether the control displays the number of each
week in the year to the left of each week.

848

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 848

Property Purpose

SingleMonthSize Returns the minimum size needed to display a single month.

TodayDate Determines the date displayed as today’s date (March 12, 2006
in Figure G-13).

TodayDateSet Boolean that indicates whether the control’s TodayDate prop-
erty has been explicitly set.

Figure G-13: The MonthCalendar control can display more than one month at a time.

The TodayDate property has an annoying side effect. If you set this value at design time and then set it
back to the current day’s date, the control’s TodayDateSet property still returns True, indicating that
you have set the TodayDate property. To clear TodayDate so that TodayDateSet returns False, right-
click on the name (not the value) of the TodayDate property in the Properties window and select Reset.

The following code demonstrates several of these properties. It begins by initializing a DateTime vari-
able to the first date allowed by the control. It checks the variable’s day of the week and adds a number
of days to move the variable to the following Monday. The code then builds an array of DateTime
objects holding all of the Mondays between the first and last dates allowed by the MonthCalendar con-
trol and sets the control’s BoldedDates property to this array. The program then sets the TodayDate
property, and uses a new SelectionRange object to specify the dates that the control should initially
display as selected.

‘ Get the first Monday in the allowed range.
Dim mon As DateTime
mon = CalReservation.MinDate
Select Case mon.DayOfWeek

Case DayOfWeek.Tuesday
mon = mon.AddDays(6)

Case DayOfWeek.Wednesday

849

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 849

mon = mon.AddDays(5)
Case DayOfWeek.Thursday

mon = mon.AddDays(4)
Case DayOfWeek.Friday

mon = mon.AddDays(3)
Case DayOfWeek.Saturday

mon = mon.AddDays(2)
Case DayOfWeek.Sunday

mon = mon.AddDays(1)
End Select

‘ Make an array of the allowed Mondays.
Dim num_mondays As Integer
Dim mondays() As DateTime = Nothing
Do While mon <= CalReservation.MaxDate

num_mondays += 1
ReDim Preserve mondays(num_mondays - 1)
mondays(num_mondays - 1) = mon
CalReservation.AddBoldedDate(mon)
mon = mon.AddDays(7)

Loop

‘ Bold the Mondays.
CalReservation.BoldedDates = mondays

‘ Set today’s date to 6/27/2005.
CalReservation.TodayDate = New Date(2005, 6, 27)

‘ Start with the dates 7/28/2005 - 6/30/2005 selected.
CalReservation.SelectionRange = _

New SelectionRange(_
New Date(2005, 6, 28), _
New Date(2005, 6, 30))

The following code shows how the program can display the dates selected by the control. It presents a
message box showing the control’s SelectionStart and SelectionEnd properties. The result would
be similar to “6/28/2005 to 6/30/2005.”

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

MessageBox.Show(_
calReservation.SelectionStart & “ to “ & _
calReservation.SelectionEnd)

End Sub

The MonthCalendar control provides several useful methods. The following table describes the most
useful.

Method Purpose

AddAnnuallyBoldedDate Adds a date to the control’s array of annually bolded
dates. You must call UpdateBoldedDates after using
this method.

850

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 850

Method Purpose

AddBoldedDate Adds a date to the control’s array of bolded dates. You
must call UpdateBoldedDates after using this method.

AddMonthlyBoldedDate Adds a date to the control’s array of monthly bolded
dates. You must call UpdateBoldedDates after using
this method.

GetDisplayRange Returns a SelectionRange object that indicates the
range of dates currently displayed by the control. If
this method’s “visible” parameter is True, the
SelectionRange includes only dates that are included
in the months that are visible (1/1/2006 to 6/30/
2006 in Figure G-13). If this parameter is False, the
SelectionRange includes all of the displayed dates
even if they are in the months before or after the first
and last months displayed (12/26/2005 to 7/9/2006
in Figure G-13).

RemoveAllAnnuallyBoldedDates Empties the control’s array of annually bolded dates.
You must call UpdateBoldedDates after using this
method.

RemoveAllBoldedDates Empties the control’s array of bolded dates. You must
call UpdateBoldedDates after using this method.

RemoveAllMonthlyBoldedDates Empties the control’s array of monthly bolded dates.
You must call UpdateBoldedDates after using this
method.

RemoveAnnuallyBoldedDate Removes a specific annually bolded date. You must call
UpdateBoldedDates after using this method.

RemoveBoldedDate Removes a specific bolded date. You must call
UpdateBoldedDates after using this method.

RemoveMonthlyBoldedDate Removes a specific monthly bolded date. You must call
UpdateBoldedDates after using this method.

SetCalendarDimensions Sets the control’s CalendarDimensions property.

SetDate Selects the specified date.

SetSelectionRange Selects the range defined by two dates.

UpdateBoldedDates Makes the control update itself to show changes to its
bolded dates.

The control’s bolded dates, monthly bolded dates, and annually bolded dates are all tracked separately
and the control displays any date that is listed in any of those groups as bold. That means, for instance,
that the RemoveAllBoldedDates subroutine does not change the monthly bolded dates or annually
bolded dates.

851

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 851

The following code sets April 1 as an annually bolded date and January 13 as a monthly bolded date. It
then removes all of the nonspecific bolded dates and calls UpdateBoldedDates. The result is that April
1 in every year is bold and that the 13th of every month is bold.

calStartDate.AddAnnuallyBoldedDate(#4/1/2005#)
calStartDate.AddMonthlyBoldedDate(#1/13/2005#)
calStartDate.RemoveAllBoldedDates()
calStartDate.UpdateBoldedDates()

NotifyIcon
The NotifyIcon component is invisible at run time. A program can use the NotifyIcon to display an
icon in the system tray. The system tray (also called the status area) is the little area holding small icons in
the lower-left part of the taskbar. The program can use this icon to indicate the application’s state.

Figure G-14 shows program UseNotifyIcon, which uses the NotifyIcon component to display an icon
in the system tray. When you check the Happy box, this program displays the happy face shown in
Figure G-14. When you check the Sad box, the program displays a sad face.

Figure G-14: The NotifyIcon component displays an icon in the system tray.

852

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 852

In Figure G-14, the icon shown by the NotifyIcon component is in the system tray on the lower-right
near the time. The form’s title bar, the system toolbar at the bottom of the screen, and the Task Manager
also display a happy face. The pictures used for these come from the form’s Icon property, not from the
NotifyIcon component, so you can display different images for these and the one in the system tray.

Notification icons are particularly useful for programs that have no user interface or that run in the back-
ground. For example, a program that monitors the system’s load could use its system tray icon to give
the user an idea of the current load.

These sorts of programs, particularly those without normal user interfaces, often add a context menu to
their tray icons so that the user can interact with them. This menu might include commands to minimize
or restore the application if it has a user interface, or to make the application exit.

The NotifyIcon component only has a few interesting properties. Its Icon property determines the
icon that the component displays. Its Text property sets the tooltip text that the component displays
when the user hovers the mouse over the icon. The Visible property determines whether the icon is
visible. Finally, the component’s ContextMenuStrip property sets the ContextMenuStrip control that
displays when the user right-clicks on the icon.

The following code shows how the UseNotifyIcon program works. The program includes four icon
resources that are used by the program. The happy and sad icons contain happy and sad images at two
sizes: 16 × 16 pixels and 32 × 32 pixels. The happy_small and sad_small icons contain only the smaller
16 × 16 pixel images.

When the user clicks the Happy button, the program sets the nicoStatus NotifyIcon component’s
Icon property to the happy_small icon and it sets the form’s Icon property to the happy icon. It would
be more convenient to use the same icon for both purposes. However, if you use the happy icon for both,
the NotifyIcon component uses the 32 × 32 pixel image shrunk to a smaller size and the result looks
bad. If you use the happy icon for both purposes, the Task Manager enlarges the 16 × 16 pixel image and
that also looks bad.

When the user clicks the Sad button, the program similarly sets the nicoStatus NotifyIcon compo-
nent’s Icon property to the sad_small icon and it sets the form’s Icon property to the sad icon.

At design time, a ContextMenuStrip was attached to the NotifyIcon component. When the user right-
clicks on the icon, and then selects the menu’s Exit command, the ExitToolStripMenuItem_Click event
handler closes the program’s form.

Public Class Form1
‘ Display the happy status icon.
Private Sub radHappy_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles radHappy.CheckedChanged

nicoStatus.Icon = My.Resources.happy_small
Me.Icon = My.Resources.happy

End Sub

‘ Display the sad status icon.
Private Sub radSad_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles radSad.CheckedChanged

nicoStatus.Icon = My.Resources.sad_small
Me.Icon = My.Resources.sad

End Sub

853

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 853

‘ Close the application.
Private Sub ExitToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ExitToolStripMenuItem.Click

Me.Close()
End Sub

End Class

NumericUpDown
The NumericUpDown control displays a number with up and down arrows that you can use to change
the number. If you click on an arrow and hold it down, the number changes repeatedly. After a small
delay, the changes start happening faster, so you can make some fairly large changes in a reasonable
amount of time. You can also change the number by clicking on it and typing in a new value.

The following table lists the control’s most interesting properties.

Property Purpose

DecimalPlaces Determines the number of decimal places that the control
displays. This has no effect when Hexadecimal is True.

Hexadecimal Determines whether the control displays the number using
a hexadecimal format as in A1C when the control’s value is
2588 (decimal).

Increment Determines the amount by which the values is modified
when the user clicks an arrow.

InterceptArrowKeys If this is True, then the user can also adjust the number’s
value using the up and down arrow keys.

Maximum Determines the largest value that the control allows.

Minimum Determines the smallest value that the control allows.

ReadOnly Determines whether the user can type in a new value.
Note that the arrow keys and arrow buttons still work
when ReadOnly is True. You can disable them by setting
InterceptArrowKeys to False and Increment to 0.

TextAlign Determines whether the number is aligned on the left, right,
or center of the control.

ThousandsSeparator If this is True, then the control displays thousands separa-
tors when the value is greater than 999. This has no effect
when Hexadecimal is True.

UpDownAlign Determines whether the up and down arrows are posi-
tioned on the left or right.

Value The control’s numeric value.

854

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 854

The control’s more important event, ValueChanged, fires whenever the control’s numeric value changes,
whether because the user changed it or because the program’s code changed it.

The Click event handler is not as useful for deciding when the control’s value has changed. It executes
when the user changes the value by clicking an arrow button, but it does not execute if the user types a
new value into the field or uses the arrow buttons. It also fires if the user clicks on the control’s number
but doesn’t make any changes.

OpenFileDialog
The OpenFileDialog component displays a dialog that lets the user select a file to open. A program
calls the component’s ShowDialog method to display a file selection dialog. ShowDialog returns
DialogResult.OK if the user selects a file and clicks OK, and it returns DialogResult.Cancel if the
user cancels. The following code shows how a program might use the component to let the user select
a configuration file:

If dlgConfigurationFile.ShowDialog() = DialogResult.OK Then
‘ Load the configuration information.
...

End If

Figure G-15 shows the dialog in action.

Figure G-15: The OpenFileDialog component lets the user select a file.

This component provides many properties for determining the kinds of files the user can select. The fol-
lowing table describes the most useful of these.

855

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 855

Property Purpose

AddExtension If True, then the component adds the default extension specified in
the DefaultExt property to the file name if the user does not
include an extension.

CheckFileExists If True, then the component verifies that the file exists. If the user
types in the name of a nonexistent file, then the component warns the
user and refuses to close.

CheckPathExists If True, then the component verifies that the file’s directory path
exists. If the user types in a file and path and the path doesn’t exist,
then the component warns the user and refuses to close.

DefaultExt The default extension that the component adds to the file’s name if
the user omits the extension. This property should have a value such
as “txt.”

DereferenceLinks If this is True and the user selects a shortcut file (.lnk), then the
component returns the name of the file referenced by the shortcut
rather than the link file.

FileName Sets the first file selected when the dialog is initially displayed. When
the user closes the dialog, this property returns the name of the file
selected. The dialog retains this value so the next time it is displayed
it begins with this file selected.

FileNames Gets an array of all of the files selected (if the dialog allows multiple
selections).

Filter A string giving the filter that the dialog should use. This string holds
pairs of display names (such as “Bitmaps”) and their corresponding
filter expressions (such as “*.bmp”) separated by vertical bar charac-
ters (|). Separate multiple expressions within a filter entry with semi-
colons. For example, the value “GIFs|*.gif|JPGs|*.jpg;*.jpeg|
Both|*.gif;*.jpg;*.jpeg|All Files|*.*” lets the user search
for GIF files, JPG files, both GIFs and JPGs, or all files.

FilterIndex Gives the index of the filter entry that the dialog initially displays.
The indexes start with 1.

InitialDirectory Determines the path where the dialog starts when it is displayed. If
you later redisplay the same dialog, it will start at the path deter-
mined by its FileName property, so it continues where it last left off.
If you want to change InitialDirectory to start in some other
directory, you also need to set FileName = “”.

MultiSelect Determines whether the user can select multiple files.

856

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 856

Property Purpose

ReadOnlyChecked Determines whether the dialog’s “Open as read-only” check box is
initially selected. This has no effect unless ShowReadOnly is True.
The dialog retains this value so that the next time it is displayed it
has the value that the user selected. If you want the box checked
every time the dialog appears, you must set ReadOnlyChecked to
True before you display the dialog each time.

RestoreDirectory If this value is True, then the dialog restores its initial directory after
the user closes it, if the user has navigated to some other directory.
However, if you later redisplay the same dialog, it will start at the
path determined by its FileName property, so it continues where it
last left off. That means if you want to restore the initial directory,
you must also set FileName = “” before redisplaying the dialog.

ShowHelp Determines whether the dialog displays a Help button. If you set this
to True, then the application should catch the dialog’s HelpRequest
event and give the user some help.

ShowReadOnly Determines whether the dialog displays an “Open as read-only”
check box.

Title Determines the dialog’s title text.

The OpenFileDialog component raises its FileOk event when the user tries to accept a file. You can
use an event handler to catch the event and perform extra validation. Set the event’s e.Cancel value to
True to stop the dialog from accepting the selection.

The following code allows the dlgBitmapFile dialog to accept only bitmap files. The code loops
through the dialog’s selected files. If it finds one with a name that doesn’t end in “.bmp,” then the pro-
gram displays an error message, sets e.Cancel to True, and exits the function.

‘ Ensure that the user only selects bitmap files.
Private Sub dlgBitmapFile_FileOk(ByVal sender As System.Object, _
ByVal e As System.ComponentModel.CancelEventArgs) Handles dlgBitmapFile.FileOk

For Each file_name As String In dlgBitmapFile.FileNames
‘ See if this file name ends with .bmp.
If Not file_name.EndsWith(“.bmp”) Then

MessageBox.Show(“File ‘“ & file_name & “‘ is not a bitmap file”, _
“Invalid File Type”, _
MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation)

e.Cancel = True
Exit Sub

End If
Next file_name

End Sub

857

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 857

PageSetupDialog
The PageSetupDialog component displays a dialog that lets the user specify properties for printed
pages. For example, the user can specify the printer’s paper tray, page size, margins, and orientation
(portrait or landscape). Figure G-16 shows the dialog in action.

Figure G-16: The PageSetupDialog component
lets the user specify printing settings.

Before you can display the dialog, you must assign it a PageSetting object to modify. You can do this in
two ways. First, you can set the component’s Document property to a PrintDocument object. If the user
clicks OK, then the dialog modifies the PrintDocument’s settings. This method is preferred because a
PrintDocument object defines both page settings and printer settings.

Second, you can set the dialog’s PageSettings property to a PageSettings object. If the user clicks
OK, then the dialog modifies that object’s settings.

Your program calls the component’s ShowDialog method to display the dialog. ShowDialog returns
DialogResult.OK if the user makes setting and clicks OK. It returns DialogResult.Cancel if the user
cancels. Often, the program doesn’t need to know whether the user accepted or canceled the dialog,
however, because the dialog modifies a PageSettings object. The program can use that object when
printing later, so it doesn’t need to keep track of whether the user accepted or canceled the dialog.

The following code displays a PageSetupDialog attached to a PrintDocument object.

PageSetupDialog1.Document = New PrintDocument
PageSetupDialog1.ShowDialog()

858

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 858

The following table describes the PageSetupDialog’s most useful properties.

Property Purpose

AllowMargins Determines whether the dialog lets the user modify its margin settings.

AllowOrientation Determines whether the dialog lets the user modify its orientation
settings.

AllowPaper Determines whether the dialog lets the user modify its paper settings.

AllowPrinter Determines whether the dialog lets the user modify its printer settings.

Document The PrinterDocument object that the dialog will modify.

MinMargins Gives the smallest allowed margin values. MinMargins is a reference
to a Margins object that has Left, Right, Top, and Bottom properties
that you can use to specify each margin separately.

PageSettings The PageSettings object that the dialog will modify.

PrinterSettings The PrinterSettings object that the dialog will modify if the user
clicks the Printer button. If you set the Document property, then the
PrinterDocument object includes a PrinterSettings object.

ShowHelp Determines whether the dialog displays a Help button. If you set this
to True, then the application should catch the dialog’s HelpRequest
event and give the user some help.

ShowNetwork Determines whether the dialog displays a Network button on the
Printer setup dialog if the user clicks the Printer button.

Panel
The Panel control is a container of other controls. By setting the Anchor and Dock properties of the con-
tained controls, you can make those controls arrange themselves when the Panel is resized.

You can use a Panel to make it easy to manipulate the controls it contains as a group. If you move the
Panel, then the controls it contains move also. If you set the Panel’s Visible property to False, then
the controls it contains are hidden. If you set the Panel’s Enabled property to False, then the controls
it contains are also disabled.

Similarly, you can set the Panel’s other style properties such as BackColor, ForeColor, and Font and
any controls contained in the Panel inherit these values (although a few controls insist on keeping their
own values for some properties, such as the TextBox’s ForeColor and BackColor properties).

A Panel also defines a separate group for radio buttons. If you have two Panel controls, each contain-
ing several radio buttons, then the two groups of buttons work independently, so clicking a button in
one Panel doesn’t deselect the buttons in the other Panel.

859

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 859

The most advanced feature of the Panel control is its auto-scroll capability. If you set the AutoScroll
property to True, then the control automatically provides working scroll bars if the controls that it con-
tains won’t fit. The AutoScrollMargin property lets you define extra space that the control should add
around its contents when it is auto-scrolling.

Use the AutoScrollMinSize property to ensure that the control’s scrolling area is at least a certain min-
imum size. For example, suppose that the Panel contains controls with coordinates between 0 and 100
in both the X and Y directions. Normally, the control would let you scroll over the area 0 <= X <= 100, 0
<= Y <= 100 so that you can see all of the controls. If you set AutoScrollMinSize to “200, 50,” then
the control would let you scroll over the area 0 <= X <= 200, 0 <= Y <= 100 so that you can see the con-
trols plus the area defined by AutoScrollMinSize.

The AutoScrollPosition property lets your program get or set the scroll bars’ position at run time.
For example, the following code makes the panMap control scroll to make the upper-left corner of its
contents visible.

panMap.AutoScrollPosition = New Point(0, 0)

If you set AutoScrollPosition to a point that is outside of the Panel’s display area, the control
adjusts the point so that it lies within the area.

While a program often uses a Panel control as an invisible container for other controls, you can use its
BackColor and BorderStyle properties to make it visible if you like.

PerformanceCounter
The PerformanceCounter component represents a Windows NT-style performance counter. You can
use the component’s methods to read, increment, and decrement the counters. This is a fairly advanced
and specialized topic, so it is not covered in detail here. See the online help for more information.

PictureBox
The PictureBox control displays images. It also provides a Graphics object that you can use to draw
lines, rectangles, ellipses, and other shapes at run time.

The control’s Image property determines the picture that the control displays. Its SizeMode property
determines how the image is sized to fit into the control. The following table describes the allowed
SizeMode values.

Value Meaning

Normal The image is not resized. If it sticks off the edge of the PictureBox, the
image is clipped.

StretchImage The image is stretched to fill the control. This may change the image’s
shape, making it shorter and wider or taller and thinner than it should be.

860

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 860

Value Meaning

AutoSize The PictureBox adjusts its size to fit the image. If the control is dis-
playing borders, it allows extra room for them.

CenterImage The image is centered in the PictureBox at its normal size. If it sticks
off the edge of the PictureBox, the image is clipped.

If you set the control’s BackgroundImage property to a picture, the control tiles itself completely with
copies of the picture. If you also set the Image property, then the background shows behind the image. If
you have SizeMode set to StretchImage or AutoSize, then the image fills the entire control, so you
will not see the background image.

The PictureBox control has several properties that deal with its size internally and externally. Its Size,
Width, and Height properties give information about the size of the control, including its border if it
has one. The ClientRectangle, ClientSize, and DisplayRectangle properties give information
about the area inside the control, not including its border. You should use these properties when you
draw on the control.

The PictureBox control’s CreateGraphics method returns a Graphics object that represents the con-
trol’s client area. Your code can use that object’s methods to draw on the control.

The following code draws an ellipse on the picCanvas control when the user presses the btnDrawCircle
button. It uses the PictureBox’s CreateGraphics method to make the Graphics object and uses that
object’s DrawEllipse method to draw the ellipse. The code uses the PictureBox’s DisplayRectangle
property to get the dimensions of the PictureBox’s interior. The code subtracts 1 from the rectangle’s
width and height so the ellipse will lie completely inside the control’s display area.

Private Sub btnDrawCircle_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnDrawCircle.Click

Dim gr As Graphics = picCanvas.CreateGraphics()
gr.DrawEllipse(Pens.Blue, _

picCanvas.DisplayRectangle.X, _
picCanvas.DisplayRectangle.Y, _
picCanvas.DisplayRectangle.Width - 1, _
picCanvas.DisplayRectangle.Height - 1)

End Sub

This routine draws an ellipse on a PictureBox, but it does not ensure that the drawing remains. If you
hide the PictureBox with another form and then bring it back to the top, the ellipse is gone. There are
two main approaches to keeping a drawing visible on a PictureBox.

First, you can place the drawing commands in the PictureBox’s Paint event handler. The Paint
event occurs any time part of the control needs to be refreshed. That happens if the control is covered
and then uncovered, when its form is minimized and then restored, and when the control is enlarged so
that a new part of its display area is exposed.

The following code draws an ellipse on the picCanvas PictureBox whenever it generates a Paint
event. Notice that the even handler’s e.Graphics parameter gives the Graphics object on which the
routine should draw.

861

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 861

Private Sub picCanvas_Paint(ByVal sender As Object, _
ByVal e As System.Windows.Forms.PaintEventArgs) Handles picCanvas.Paint

e.Graphics.DrawEllipse(Pens.Red, _
picCanvas.DisplayRectangle.X, _
picCanvas.DisplayRectangle.Y, _
picCanvas.DisplayRectangle.Width - 1, _
picCanvas.DisplayRectangle.Height - 1)

End Sub

The second approach to keeping a drawing visible is to make a Bitmap that fits the PictureBox, draw
on the Bitmap, and then set the control’s Image property equal to the Bitmap. After that, the control
automatically displays its image.

The following code shows how a program can make the picCanvas PictureBox permanently display an
ellipse. It starts by creating a new Bitmap object with the same size as the PictureBox’s display area.
Next, it makes a Graphics object associated with the Bitmap. It uses that object’s DrawEllipse method to
draw the ellipse on the Bitmap. Finally, it sets the PictureBox’s Image property to the Bitmap.

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ Make a Bitmap to fit the PictureBox.
Dim bm As New Bitmap(_

picCanvas.DisplayRectangle.Width, _
picCanvas.DisplayRectangle.Height)

‘ Get a Graphics object to draw on the Bitmap.
Dim gr As Graphics = Graphics.FromImage(bm)

‘ Draw the ellipse.
gr.DrawEllipse(Pens.Yellow, _

picCanvas.DisplayRectangle.X, _
picCanvas.DisplayRectangle.Y, _
picCanvas.DisplayRectangle.Width - 1, _
picCanvas.DisplayRectangle.Height - 1)

‘ Assign the Bitmap to the control’s Image property.
picCanvas.Image = bm

End Sub

This method takes more memory than the previous method of drawing in the control’s Paint event
handler. If the drawing is very complicated and takes a long time, however, it may be faster to generate
the Bitmap once rather than redrawing the picture every time the control raises its Paint event.

The final PictureBox feature that is relevant to drawing is its Invalidate method. This method invali-
dates some or all of the control’s display area and generates a Paint event. You can use this method to
redraw the control if you have changed some data that will affect the drawing’s appearance.

PrintDialog
The PrintDialog component displays the dialog shown in Figure G-17. A program calls the compo-
nent’s ShowDialog method to display the dialog.

862

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 862

Figure G-17: The PrintDialog component lets the user specify
printing options.

The following table describes the dialog’s most useful properties.

Property Purpose

AllowPrintToFile Determines whether the “Print to file” button is enabled.

AllowSelection Determines whether the Selection radio button is enabled.

AllowSomePages Determines whether the Pages radio button, as well as the From
and To text boxes, are enabled.

Document The PrintDocument object that provides the dialog with a
PrinterSettings object.

PrinterSettings The PrinterSettings object that the dialog modifies.

PrintToFile Determines whether the “Print to file” box is checked.

ShowHelp Determines whether the Help button is visible. If this is True, you
should catch the component’s HelpRequest event and give the
user some help.

ShowNetwork Determines whether the Network button is visible.

If the user clicks Print, the dialog returns DialogResult.OK. If the user clkicks Cancel, the dialog
returns DialogResult.Cancel. The program can use the dialog’s PrintToFile property to see if the
user checked the “Print to file” box, and it can use the PrinterSettings object to learn about the user’s
other selections.

863

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 863

The following table lists the PrinterSettings object’s properties that are most useful for learning
about the user’s selections. You can set many of these properties before displaying the dialog to give it
initial values. After the dialog closes, the properties indicate the user’s selections.

Property Purpose

CanDuplex Indicates whether the printer can print in duplex.

Collate Indicates whether the user checked the Collate box.

Copies The number of copies the user selected.

Duplex Indicates whether the user asked for duplex printing.

FromPage The number the user entered in the From text box.

InstalledPrinters Returns a collection listing the system’s installed printers.

IsDefaultPrinter True if the printer given by the PrinterName property is the
default printer.

IsPlotter True if the printer is a plotter device.

IsValid True if the printer given by the PrinterName property is a
valid printer.

LandscapeAngle The angle at which the printout is rotated to produce landscape
printing. The valid angles are 90 and 270 degrees, or 0 if the
printer doesn’t support landscape printing.

MaximumCopies The maximum number of copies that the printer will let you
print at a time.

MaximumPage The largest value that the user is allowed to enter in the To and
From boxes.

MinimumPage The smallest value that the user is allowed to enter in the To and
From boxes.

PaperSizes Returns a collection of objects describing the paper sizes
supported by the printer. These PaperSize objects have the
properties Height, Width, PaperName, and Kind (for example,
Letter).

PaperSources Returns a collection of objects describing the paper trays
provided by the printer. These PaperSource objects have the
properties SourceName (for example, “Default tray”) and Kind
(for example, Upper).

PrinterName Gets or sets the name of the printer to use.

PrinterResolutions Returns a collection of PrinterResolution objects that describe
the resolutions supported by the printer. PrinterResolution
objects have the properties Kind (High, Medium, Low, Draft, or
Custom), X, and Y. The X and Y properties return negative values
for standard resolutions and the number of dots per inch (dpi)
for custom resolutions.

864

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 864

Property Purpose

PrintRange Inndicates the pages that the user wants to print. This can have
the values AllPages (print everything), Selection (print the
current selection), or SomePages (print the pages between
FromPage and ToPage).

PrintToFile Indicates whether the “Print to file” box is checked.

SupportsColor True if the printer supports color.

ToPage The number the user entered in the To text box.

The FromPage and ToPage properties must lie between the MinimumPage and MaximumPage values
before you display the dialog or the dialog raises an error. If the user enters a value outside of the range
MinimumPage to MaximumPage and clicks Print, the dialog displays a message similar to “This value is
not within the page range. Enter a number between 10 and 30.” It then refuses to close.

Usually a program associates a PrintDialog with a PrintDocument object and that object provides the
PrinterSettings object. You can either create the PrintDialog object at run time, or you can use the
PrintDocument component described in the following section. If you create a PrintDocument compo-
nent at design time, then you can also set the PrintDialog’s Document property to that component at
design time.

The following code shows how a program might print a document. In this example, the pdlgRectangle
and pdlgRectangle components were created and pdlgRectangle.Document was set to
pdlgRectangle at design time. When the user clicks the Print button, the program displays the
PrintDialog. If the user clicks the dialog’s Print button, then the code calls the PrintDocument object’s
Print method. When the PrintDocument object needs to generate a page for printing, it raises its
PrintPage event. In this example, the event handler draws a rectangle and indicates that the document
has no more pages to draw.

Imports System.Drawing.Printing

Public Class Form1
‘ Display the print dialog.
Private Sub btnPrint_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPrint.Click

If pdlgRectangle.ShowDialog() = Windows.Forms.DialogResult.OK Then
‘ Print the document.
pdocRectangle.Print()

End If
End Sub

‘ Print a page of the document.
Private Sub PrintDocument1_PrintPage(ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
Handles pdocRectangle.PrintPage

e.Graphics.DrawRectangle(Pens.Black, 100, 100, 600, 300)
e.HasMorePages = False

End Sub
End Class

865

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 865

For more information on the PrintDocument object, see the following section.

PrintDocument
The PrintDocument component represents an object that will be printed. Your program can use this
object to send output to a printer.

The general procedure for printing using this object is to create the object, set its properties to determine
how the printout is generated (the printer’s name, paper tray, and so forth), and then call the object’s
Print method.

When the object needs to generate a page of output, it raises its PrintPage event. Your code catches that
event, draws the page, and then sets the event handler’s e.HasMorePages value to indicate whether
that was the last page of output. See the previous section, “PrintDialog,” for a small example.

The PrintDocument object provides only a few important properties itself. You set most of the values
that describe the printing operation using the PrinterSettings object referenced by the component’s
PrinterSettings property. See the previous section, “PrintDialog,” for information on the
PrinterSettings object.

In addition to its PrinterSettings property, the PrintDocument object provides a DocumentName
property that determines the name displayed for the document in printing-related dialogs such as the
printer queue display.

This component also provides an OriginAtMargins property that determines whether each page’s
graphical origin begins at the page’s margins. Setting OriginAtMargins to True makes it easier to
draw relative to the left and top margins, rather than the upper-left corner of the physical page.

PrintPreviewControl
The PrintPreviewControl control (and yes, the word “Control” is part of the control’s name, possibly
to differentiate it from the PrintPreviewDialog control) displays a print preview within one of your
forms. Usually, it is easier to use the PrintPreviewDialog control described in the next section to dis-
play a print preview dialog, but you can use this control to display a preview integrated into some other
part of your application.

Figure G-18 shows a form displaying the PrintPreviewControl. This control and a PrintDocument
control named pdocShapes were added to the form at design time and the PrintPreviewControl’s
Document property was set to pdocShapes.

The following code shows how the program works. The module-level variable m_PageNum indicates the
next page that the pdocShapes object should draw. When it needs to generate a page, the pdocShapes
object raises its PrintPage event. The event handler uses a Select Case statement to see which page it
should geneate, and it draws an appropriate shape. It sets e.HasMorePages appropriately and incre-
ments the page number.

866

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 866

Figure G-18: The PrintPreviewControl control displays a print preview
within your form.

Public Class Form1
‘ The number of the current page.
Private m_PageNum As Integer = 1

‘ Generate the print document.
Private Sub pdocShapes_PrintPage(ByVal sender As System.Object, _
ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
Handles pdocShapes.PrintPage

Select Case m_PageNum
Case 1 ‘ Page 1. Draw a triangle.

Dim pts() As Point = { _
New Point(e.MarginBounds.X + e.MarginBounds.Width \ 2, _

e.MarginBounds.Y), _
New Point(e.MarginBounds.X + e.MarginBounds.Width, _

e.MarginBounds.Y + e.MarginBounds.Height), _
New Point(e.MarginBounds.X, _

e.MarginBounds.Y + e.MarginBounds.Height) _
}
e.Graphics.DrawPolygon(Pens.Red, pts)
e.HasMorePages = True
m_PageNum += 1

Case 2 ‘ Page 2. Draw a rectangle.
e.Graphics.DrawRectangle(Pens.Green, e.MarginBounds())
e.HasMorePages = True
m_PageNum += 1

Case 3 ‘ Page 3. Draw an ellipse.
e.Graphics.DrawEllipse(Pens.Blue, e.MarginBounds())
e.HasMorePages = False
m_PageNum = 1

End Select
End Sub

End Class

That’s all the code that the program needs. When the program starts, the PrintPreviewControl con-
trol uses pdocShapes to generate the pages it needs and it displays them.

867

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 867

The following table describes some of the PrintPreviewControl’s most useful properties.

Property Purpose

AutoZoom Determines whether the control automatically adjusts its Zoom property to
make the display fill the control.

Columns The number of columns of pages that the control displays. In Figure
G-18, Columns = 3.

Document The PrintDocument object that the control previews.

Rows The number of rows of pages that the control displays. In Figure G-18,
Rows = 1.

StartPage The page number (starting with 0) displayed in the control’s first page.
Your code can use this property to change the pages displayed.

UseAntiAlias Determines whether the control uses the system’s anti-aliasing features to
smooth the preview image. Setting this to True may make the image
smoother, but it may also slow down the display.

Zoom Determines the size of the pages within the control. The value 1.0 is full
size, 0.5 is half-size, 2.0 is double size, and so forth. It’s usually easier to
just set AutoZoom to True and let the control make the pages as large as
possible. If you set the scale so large that the page(s) won’t fit, the control
adds scroll bars so the user can see the results.

The control’s InvalidatePreview method makes the control regenerate the print preview.

See the following section for information about the PrintPreviewDialog control. You can use that con-
trol to display a print preview without needing to build your own dialog.

PrintPreviewDialog
The PrintPreviewDialog component displays a dialog that shows what a print document will look
like when it is printed. You can use this component to display a print preview dialog similar to the one
shown in Figure G-19. This dialog contains a PrintPreviewControl, plus some extra tools to let the
user control the preview.

The tools that run from left to right across the top of the dialog automatically give the user the following
features:

❑ A Print button that prints the document

❑ A Zoom menu that lets the user zoom to scales between 10% and 500%, or to select Auto zoom

❑ Buttons that make the dialog display one, two, three, four, or six pages at a time

❑ A button that closes the dialog

❑ A text box and numeric up/down control that let the user select the number of the page to display

868

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 868

Figure G-19: The PrintPreviewDialog compmonent lets you easily display a full-featured print
preview dialog.

The dialog’s most important property is Document. This property determines the PrintDocument object
that the dialog previews. See the earlier section “PrintDocument” for more information about this class.

The component’s most important methods are Show, which displays the dialog, and ShowDialog, which
displays the dialog modally.

Using this component is remarkably simple. Set its Document property and catch the PrintDocument
object’s PrintPage event as shown in the previous section. Display the dialog and print the document if
the user clicks OK as in the following code:

If dlgPrintPreview.ShowDialog() = Windows.Forms.DialogResult.OK Then
dlgPrintPreview.Document.Print()

End If

The rest is automatic. The dialog lets the user move through the document’s pages, zoom in and out,
and even print the document.

Process
The Process component provides access to the processes running on the computer. You can use this
object to start, stop, and monitor processes. You can use the object to get information about a running
process (such as its threads, the modules it has loaded, and the amount of memory it is using).

The following code shows how a program can start an excutable program. It creates a new Process object
and sets values in its StartInfo property to define the application to run. This example sets the executable
file name to the string contained in the txtFileName text box and sets the component’s Verb to “Open”
(“opening” an executable file makes it run). The program then calls the object’s Start method.

869

Standard Controls and Components

U
p
a
t

37_571982 appg.qxd 9/1/05 7:44 PM Page 869

‘ Start the process.
Private Sub btnRun_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnRun.Click

Dim new_process As New Process
new_process.StartInfo.FileName = txtFileName.Text
new_process.StartInfo.Verb = “Open”
new_process.Start()

End Sub

The Process object’s StartInfo property contains several values that tell the object how to start the
new process. These values indicate whether the new process should be created without a window; what
environment variables it should use; whether the new process’s standard input, output, and error
streams should be redirected; and the new process’s working directory.

The Process object itself provides only a few properties at design time. Other than the StartInfo
property, the most useful of these is EnableRaisingEvents. If this property is True, then the compo-
nent monitors the new process and raises an Exited event when the process ends.

At run time, the Process object also provides read-only StandardInput, StandardOutput, and
StandardError properties that the program can use to interact with the new process. It also provides
methods for reading and writing with these streams, and properties for monitoring the process. For
example, it lets you learn about the process’s working set size, paged memory size, total processor time,
and so forth.

This is a fairly advanced and specialized topic, so it is not covered in greater detail here. For more infor-
mation, see the Process component’s Web page msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemdiagnosticsprocessclasstopic.asp.

ProgressBar
The ProgressBar control lets a program display a visible indication of its progress during a long task.
As the task proceeds, the ProgressBar fills in from the left to the right. Ideally, the ProgressBar is
completely full just as the task finishes.

The control’s Minimum and Maximum properties determine the integers over which the ProgressBar’s
values will range. When the control’s Value property equals its Minimum property, the control is com-
pletely blank. When its Value property equals its Maximum property, the control is completely filled.

By default, Minimum and Maximum are set to 0 and 100, respectively, so the Value property indicates the
percentage of the task that is complete. However, you can set Minimum and Maximum to any values that
make sense for the application. For example, if a program must back up some data by copying 173 files
from one directory to another, you could set these properties to 0 and 173. As it copied each file, the pro-
gram would set the ProgressBar’s Value property to the number of files it has copied.

Instead of setting the control’s Value property to indicate the task’s status, you can set the Step prop-
erty to indicate how much the control should update at each step. Then you can call the ProgressBar’s
PerformStep method to increment the Value by that amount.

870

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 870

Note that the Minimum, Maximum, Value, and Step properties are all integers. If the value you want to
display has some other data type (such as Double or TimeSpan), you must convert the values into inte-
gers before you use them with the ProgressBar.

Proper tyGrid
The PropertyGrid control displays information about an object in a format similar to the one used by
the Properties window at design time. The control lets the user organize the properties alphabetically or
by category, and lets the user edit the property values. Figure G-20 shows a PropertyGrid displaying
information about an Employee object.

Figure G-20: The PropertyGrid control displays an object’s
properties.

The control’s two most important properties are SelectedObject and SelectedObjects, which get or
set the object(s) associated with the PropertyGrid.

The PropertyGrid control only displays object properties not public variables. It also only displays prop-
erties that are browsable. If you give a property the Browsable(False) attribute, the PropertyGrid will
not display it.

For more information, see the PropertyGrid class’s Web page msdn.microsoft.com/library/
en-us/cpref/html/frlrfsystemwindowsformspropertygridclasstopic.asp.

RadioButton
A RadioButton control represents one of an exclusive set of options. For example, suppose that you want
to let the user select between the choices Small, Medium, and Large. You could add three RadioButtons to
a form with those captions. When the user clicks one button, Visual Basic selects it and deselects the others.

All the RadioButtons within a particular container are part of the same RadioButton group. If the user
clicks a RadioButton, Visual Basic automatically deselects the others in the same group.

871

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 871

If you want to make more than one group on the same form, you must place the controls in separate con-
tainers (such as GroupBox or Panel controls). For example, you could put the Small, Medium, and Large
buttons in one GroupBox and then put the Red, Green, and Blue buttons in another GroupBox. Then,
when the user selects a size button, the other size buttons are deselected, but the color buttons are unaf-
fected. When the user selects a color, the other colors are deselected, but the size buttons are unaffected.

RadioButton groups provide special navigation for the user. If one of the buttons in the group has the
focus, then the user can press the arrow keys to move forward and backward through the group. If the
user presses the Tab key, focus moves out of the group to the next control in the tab sequence.

The following table describes the RadioButton’s most useful properties.

Property Purpose

Appearance Determines whether the control displays with its default appearance of a
selection circle containing a black dot (Appearance = Normal) or a raised
button (Appearance = Button).

AutoCheck Determines whether the control automatically selects itself when the user
clicks it. If this is False, the code must check and uncheck the control and
any other controls in the RadioButton group. Usually it’s better to use a
CheckBox control instead if you don’t want the button to behave like a nor-
mal RadioButton.

CheckAlign Determines whether the control’s selection circle is positioned in the bottom
center, top center, middle right, and so forth.

Checked Determines whether the control is selected.

Image Determines the image that the control displays.

ImageAlign Determines whether the control’s image is positioned in the bottom center,
top center, middle right, and so forth.

Text Determines the text that the control displays.

TextAlign Determines whether the control’s text is positioned in the bottom center, top
center, middle right, and so forth.

The RadioButton’s most useful events are Click, which occurs when the user clicks the control, and
CheckedChanged, which occurs when the control is checked or unchecked either because the user
clicked a RadioButton in the group or because the code changed the button’s state.

Repor tViewer
The ReportViewer control displays a report generated by Crystal Reports. The control provides tools
that let the user move between the report’s different pages, zoom in and out, navigate through report
groups using a tree view, view subreports, print or export the report, and so forth. See Chapter 24,
“Reporting,” for more information about Crystal Reports and this control.

872

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 872

RichTextBox
The RichTextBox control is a text box that supports “rich text” extensions. Those extensions let the con-
trol display text that is bold, underlined, italicized, indented, in different fonts, and that has other special
visual properties.

The control can load and save its contents in plain-text files (in which case the formatting is lost) or in
Rich Text Format (RTF) files (which preserve formatting).

A program can use the RichTextBox’s Select method to select some of its text. It can then use one of
the control’s properties to change the appearance of the selected text. For example, the following code
selects the 10 characters starting with character 50 (the first character is number 0). It then sets the selec-
tion’s color to red and makes its font bold.

rchNotes.Select(50, 10)
rchNotes.SelectionColor = Color.Red
rchNotes.SelectionFont = New Font(RichTextBox1.SelectionFont, FontStyle.Bold)

The following table lists the RichTextBox’s most useful properties.

Property Purpose

AcceptsTab For multiline controls, determines whether pressing the Tab
key adds a Tab to the text, rather than moving to the next
control in the tab sequence.

AutoSize For single-line controls, determines whether the control
automatically sets its height for the fonts it contains.

BulletIndent Determines the number of pixels added after a bullet as
indentation. If you make the selection a bulleted paragraph
and then change this value, the paragraph’s indentation is
adjusted accordingly.

CanRedo Indicates whether the control has any redo information that
it can apply. See the discussion later in this section for an
example.

CanUndo Indicates whether the control has any undo information that
it can apply. See the discussion later in this section for an
example.

DetectUrls Determines whether the control automatically recognizes Web
URLs when they are typed. If some text looks like a URL,
the control displays it in blue, underlines it, and displays a
hyperlink cursor (pointing hand) when the mouse hovers
over the text. If the user clicks a recognized link, the control
raises its LinkClicked event.

Table continued on following page

873

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 873

Property Purpose

Lines An array of strings giving the lines of text (separated by
carriage returns) that are displayed by the control. You can
use this property to give the control more than one paragraph
at design time.

MaxLength The maximum number of characters the user can enter into
the control.

MultiLine Determines whether the control displays multiple lines.

PreferredHeight Returns the height a single-line control would want for the
font size.

ReadOnly Determines whether the user can modify the control’s text.

RedoActionName The name of the action that will be redone if the program
calls the control’s Redo method (for example, “Typing” or
“Delete”). You can use this property to show the user what
the next redo action is.

RightMargin Determines the control’s right margin in pixels. The value 0
means there is no right margin.

Rtf Determines the RTF codes for the control’s text. This includes
the text itself, font information, and paragraph information
(such as indentation, bulleting, and so forth).

ScrollBars Determines which scroll bars the control displays. The values
Horizontal, Vertical, and Both make the control display
the corresponding scroll bars only when they are needed.
The values ForcedHorizontal, ForcedVertical, and
ForcedBoth make the control display the corresponding
scroll bars always. The value None makes the control display
no scroll bars. Note that some of these values may not
always be honored. For example, if WordWrap is True or
RightMargin is nonzero, the control never displays
horizontal scroll bars.

SelectedRtf Determines the selected text’s value and RTF formatting code.

SelectedText Determines the selected text’s value without RTF formatting
codes.

SelectionAlignment Determines the selected text’s alignment (Left, Center, or
Right).

SelectionBullet Determines whether the selected text’s paragraph is bulleted.

SelectionCharOffset Determines the selected text’s character offset above or below
the baseline in pixels.

SelectionColor Determines the selected text’s color.

874

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 874

Property Purpose

SelectionFont Determines the selected text’s font.

SelectionHangingIndent Determines the selected text’s hanging indent.

SelectionIndent Determines the number of pixels by which subsequent lines
are indented in the selected text’s paragraph.

SelectionLength Determines the length of the selected text. You can use
SelectionStart and SelectionLength to selected text, or
you can use the Select method.

SelectionProtected Determines whether the selected text is protected so that the
user cannot modify it.

SelectionRightIndent Determines number of pixels by which the selected text’s
paragraph is indented on the right.

SelectionStart Determines the start of the selection. You can use Selection-
Start and SelectionLength to selected text, or you can use
the Select method.

SelectionTabs Determines the tabs for the selected text’s paragraph. For
example, the array {20, 40, 60} sets tabs 20, 40, and 60
pixels from the left margin.

ShowSelectionMargin If True, the control adds a selection margin on the left. If the
user clicks inside this margin, the control selects the text to
the right.

Text Determines the control’s text, not including any formatting
information. If you want to preserve formatting information,
use the SelectedRtf property.

TextLength Returns the length of the control’s text.

UndoActionName The name of the action that will be undone if the program
calls the control’s Undo method (for example, “Typing” or
“Delete”). You can use this property to show the user what
the next undo action is.

WordWrap For multiline controls, determines whether the control wraps
text to a new line if it is too long to fit.

The control also provides several important methods, as shown in the following table.

Method Purpose

AppendText Adds text to the end of the control’s text.

CanPaste Determines whether you can paste data of a specified for-
mat from the clipboard into the control.

Table continued on following page

875

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 875

Method Purpose

Clear Clears the control’s text.

ClearUndo Empties the control’s undo list.

Copy Copies the control’s selection to the clipboard.

Cut Copies the control’s selection to the clipboard and removes
it from the control’s text.

Find Finds and selects text. Overloaded versions let you search
for one of a group of characters or a string, possibly
with options (MatchCase, NoHighlight, Reverse, or
WholeWord), and possibly within a range of characters.

GetCharFromPosition Finds the character closest to a specified (X, Y) position.

GetCharIndexFromPosition Finds the index of the character closest to a specified (X, Y)
position.

GetLineFromCharIndex Returns the number of the line containing the specified
character index.

GetPositionFromCharIndex Returns the (X, Y) position of the character as a specified
index.

LoadFile Loads an RTF or text file or a stream into the control.

Paste Pastes the clipboard’s contents into the control, replacing
the current selection.

Redo Reapplies the last action that was undone.

SaveFile Saves the control’s text into an RTF or text file or stream.

ScrollToCaret Scrolls the text so the insertion position is visible.

Select Selects the indicated text.

SelectAll Selects all of the control’s text.

Undo Undoes the most recent action.

A program can use the CanUndo and CanRedo properties to determine when it should enable Undo and
Redo buttons and menu items. The following code shows how a program can manage Undo and Redo
buttons for the rchNotes control. When the control’s contents change, the TextChanged event handler
enables or disables the buttons, depending on which information the control has. The buttons simply
call the control’s Undo and Redo methods.

Private Sub rchNotes_TextChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles rchNotes.TextChanged

btnUndo.Enabled = rchNotes.CanUndo
btnRedo.Enabled = rchNotes.CanRedo

End Sub

876

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 876

Private Sub btnUndo_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnUndo.Click

rchNotes.Undo()
End Sub

Private Sub btnRedo_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnRedo.Click

rchNotes.Redo()
End Sub

The following version of the TextChanged event handler adds the values returned by the
UndoActionName and RedoActionName methods to the buttons’ captions. For example, after the user
deletes some text, the undo button’s caption says “Undo Delete.”

Private Sub rchNotes_TextChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles rchNotes.TextChanged

btnUndo.Enabled = rchNotes.CanUndo
btnRedo.Enabled = rchNotes.CanRedo

If btnUndo.Enabled Then
btnUndo.Text = “Undo “ & rchNotes.UndoActionName

Else
btnUndo.Text = “Undo”

End If

If btnRedo.Enabled Then
If btnRedo.Enabled Then btnRedo.Text = “Redo “ & rchNotes.RedoActionName

Else
If btnRedo.Enabled Then btnRedo.Text = “Redo”

End If
End Sub

The RichTextBox control’s most useful event is TextChanged. You can use this event to take action when
the user changes the control’s text. For example, you can display a visible indication that the data has been
modified or, as the previous examples show, you can enable and disable Undo and Redo buttons.

SaveFileDialog
The SaveFileDialog component displays a dialog that lets the user select a file for saving. The
ShowDialog method returns DialogResult.OK if the user selects a file and clicks OK. It returns
DialogResult.Cancel if the user cancels. The following code shows how a program might use the
component to let the user select a file in which to save data.

If dlgSaveData.ShowDialog = DialogResult.OK Then
‘ Save the data.
...

End If

This component provides many properties for determining the kinds of files the user can specify. Most
of these properties are the same as those provided by the OpenFileDialog component described earlier

877

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 877

in this appendix. See the section “OpenFileDialog,” earlier in this appendix for more information about
those properties.

Unlike OpenFileDialog, this component does not provide the properties MultiSelect,
ReadOnlyChecked, and ShowReadOnly because those properties don’t make sense when the user is
selecting a file for saving. The FileNames collection is also less useful for this component because the
user will always select only one file, so you can use the FileName property instead.

The SaveFileDialog component provides one additional property not provided by the
OpenFileDialog: CreatePrompt. If this property is True and the user enters the name of a file that
doesn’t exist, then the dialog asks the user if it should create the file. If the user clicks No, then the dialog
continues letting the user select a different file.

Like the OpenFileDialog, this component raises its FileOk event when the user tries to accept a file.
You can use an event handler to catch the event and perform extra validation. Set the event’s e.Cancel
value to True to stop the dialog from accepting the selection.

The following code only allows the dlgSaveData dialog to accept files that end with the .dat exten-
sion. If the dialog’s selected file doesn’t end with .dat, the event handler sets e.Cancel to True.

‘ Ensure that the user selects a .dat file.
Private Sub dlgSaveData_FileOk(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) Handles dlgSaveData.FileOk

If Not dlgSaveData.FileName.EndsWith(“.dat”) Then
MsgBox(“File “ & dlgSaveData.FileName & _

“ is not a .dat file”, _
MsgBoxStyle.Exclamation, _
“Invalid File Type”)

e.Cancel = True
End If

End Sub

Note that the dialog adds its default extension if applicable before it raises the FileOk event. If the com-
ponent has DefaultExt = “dat” and AddExtension = True, then this example would accept a file
name with no extension.

SerialPor t
The SerialPort component represents one of the computer’s physical serial ports. It provides proper-
ties and methods for reading and configuring the port’s baud rate, break signal, Data Set Ready (DSR)
state, port name, parity, and stop bits. The class has methods to write data to the port and to read syn-
chronously or asynchronously.

Serial communications is a fairly advanced and specialized topic that depends on your particular appli-
cation, so it is not covered in detail here. See the online help for more information. If you plan to work
extensively with serial communication, you might want to find a good book on the topic such as Visual
Basic Programmer’s Guide to Serial Communications, 4th Edition by Richard Grier (Stanwood, WA: Mabry
Software, 2004).

878

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 878

ServiceController
The ServiceController component represents a Windows service process. It provides methods that
let you connect to a running or stopped service to control it or get information about it.

The ServiceController’s ServiceName property gets or sets the name of the service associated with
the component. To set this value at design time, select a ServiceController in the form designer.
Then, click on the ServiceName property in the Properties window and click the drop-down arrow on
the right to see a list of available services on the system. The class’s methods let you start, pause, con-
tinue, or stop the service.

Windows services and their control is a relatively advanced topic, so it is not covered in detail here. For
more information, see the ServiceController class’s Web page msdn.microsoft.com/library/
en-us/cpref/html/frlrfsystemserviceprocessservicecontrollerclasstopic.asp. For
an introduction to Windows service applications, see msdn.microsoft.com/library/en-us/
vbcon/html/vbconintroductiontontserviceapplications.asp. For a walkthrough that
creates a Windows service application, see msdn.microsoft.com/library/en-us/vbcon/html/
vbwlkwalkthroughcreatingwindowsserviceapplication.asp.

SplitContainer
The SplitContainer control represents are area divided into two regions either vertically or horizon-
tally. The control contains a bar (called the splitter) that the user can drag to adjust the amount of space
given to each region. A SplitContainer divides the form in Figure G-21 vertically into two regions that
contain pictures.

Figure G-21: This SplitContainer control
divides vertically.

879

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 879

Each of the SplitContainer’s regions holds a Panel control. You can place other controls (such as the
PictureBoxes used in Figure G-21) inside the Panels. You can also use the Panels’ properties to affect
their behavior. In Figure G-21, the Panels’ AutoScroll properties were set to True so the Panels dis-
play scroll bars when either image cannot fit in its Panel.

The following table describes the SplitContainer’s most useful properties.

Property Purpose

BorderStyle Determines the control’s border style.

FixedPanel Determines which panel keeps the same size when the control is
resized.

IsSplitterFixed Determines whether the user can drag the splitter.

Orientation Determines whether the Panels are arranged vertically or
horizontally.

Panel1 Returns a reference to the first panel (left or top depending on
Orientation).

Panel1Collapsed Determines whether the first Panel is collapsed. When collapsed,
a Panel is completely hidden and the user cannot get it back by
dragging the splitter.

Panel1MinSize Determines the minimum size (width or height depending on
Orientation) of the first Panel.

Panel2 Returns a reference to the second panel (right or bottom depending
on Orientation).

Panel2Collapsed Determines whether the second Panel is collapsed. When collapsed,
a Panel is completely hidden and the user cannot get it back by
dragging the splitter.

Panel2MinSize Determines the minimum size (width or height depending on
Orientation) of the second Panel.

SplitterDistance Determines the distance from the control’s left or top edge (depending
on Orientation) to the splitter.

SplitterIncrement Determines the number of pixels by which the splitter will move
when dragged. For example, if SplitterIncrement is 10, the splitter
jumps in 10 pixel increments are you drag it. The default is 1.

SplitterRectangle Returns a Rectangle representing the splitter’s current size and
location within the SplitContainer.

SplitterWidth Determines the splitter’s width in pixels. The default is 4.

880

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 880

The SplitterContainer control’s most interesting events are SplitterMoving and SplitterMoved.
You can catch these events if you need to take action when the user drags the splitter. You can also use
the Panels’ sizing events Resize, ResizeBegin, ResizeEnd, and SizeChanged to take action when
the Panels resize.

One rather confusing feature of the SplitterContainer is the way its contained Panel controls behave
in the form designer. The drop-down at the top of the Properties window lets you select the controls on
the form, including the SplitterContainer. The Panels are contained inside the SplitterContainer,
so they are not always listed in this drop-down. If you click on one of the Panels, then the drop-down
lists the Panel and the Properties window lets you view and edit the control’s properties. If some other
control is selected, however, the SplitterContainer is listed in the drop-down, but not its Panels.

StatusStrip
The StatusStrip control provides an area where the application can display brief status information.
Usually the StatusStrip is at the bottom of the form, as shown in Figure G-22.

Figure G-22: The StatusStrip control allows a program
to display status information.

The StatusStrip can contain several kinds of objects such as drop-down buttons, progress bars, and
panels. These objects are represented by different kinds of controls contained in the form. For example, a
progress bar is represented by a ToolStripProgressBar control.

You can edit a StatusStrip much as you edit a MenuStrip. When you click on the StatusStrip, a
box appears that contains the text “Type Here.” Enter the text that you want to display in on this object
and press Enter. Click on an object and then click the little action arrow on the object’s right edge to
change the object’s type (progress bar, panel, and so forth) and to configure the item.

You can also edit an object’s properties in the Properties window. Simply click on the object and then use
the Properties window to change its appearance.

The StatusStrip control provides access to the objects it contains through its Items collection. If you
click the ellipsis to the right of this property in the Properties window, the Items Collection Editor shown
in Figure G-23 appears.

To make new items, select the type of object you want to add from the drop-down in the upper left and
click the Add button. Click on an item and use the other buttons to move or delete it. Use the properties
grid on the right to modify the object’s appearance.

881

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 881

Figure G-23: The Items Collection Editor lets you edit the objects contained within a StatusStrip
control.

The following table lists the types object objects you can add to a StatusStrip control.

StatusStripPanel ToolStripButton ToolStripComboBox

ToolStripDropDownButton ToolStripLabel ToolStripProgressBar

ToolStripSeparator ToolStripSplitButton ToolStripTextBox

See the online help for more information about these classes and the StatusStrip control.

TabControl
The TabControl control (for some reason, the word “Control” is part of the class’s name) displays a
series of tabs attached to separate pages. Each page is a control container and can hold whatever controls
you want for that tab. When you click a tab at design time or the user clicks one at run time, the control
displays the corresponding page.

Figure G-24 shows a TabControl displaying information about an employee. The tabs contain the
employee’s name and picture, personnel information (employee ID, Social Security number, and so on),
home address, and office information (location and extension).

The control’s tabs are represented programmatically by TabPage objects contained in the control’s
TabPages collection. To edit these objects interactively at design time, select the control’s TabPages
property and click the ellipsis on the right to display the collection editor shown in Figure G-25.

882

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 882

Figure G-24: A TabControl lets you easily
display pages of related data.

Figure G-25: Use the TabPage Collection Editor to define a TabControl’s tabs.

The following table describes the TabPage object’s most useful properties.

Property Purpose

AutoScroll If True, then the tab page automatically provides scroll bars if it is not
big enough to display all of its contents.

BackColor Determines the tab page’s background color. This affects the tab’s
page, not the tab itself.

BackgroundImage Determines the background image that tiles the tab page’s. This affects
the tab’s page, not the tab itself.

Table continued on following page

883

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 883

Property Purpose

BorderStyle Determines the style of border around the tab’s page. This can be
None, FixedSingle, or Fixed3D.

Font Determines the font used by the controls contained in the tab’s page.
To change the font used to draw the tabs, set the TabControl’s Font
property.

ImageIndex If the TabControl’s ImageList property is set to an ImageList
control, this property determines the image within that list that the
tab displays.

Text Determines the text displayed on the tab.

ToolTipText Determines the tooltip text displayed when the user hovers the mouse
over the tab. This is ignored unless the TabControl’s ShowToolTips
property is True.

The TabPage object provides several events of its own. These include the usual assortment of events for
a control container such events as Click, Layout, Resize, Paint, and various mouse events.

The TabControl provides several properties that are useful for arranging the tabs. The following table
describes the most useful of these properties.

Property Purpose

Alignment Determines whether the control places its tabs on the Top, Bottom, Left
or Right. If you set this to Left or Right, then the control rotates its
tabs’ text sideways. If a tab contains an image, the image is not rotated.

Appearance Determines how the control displays its tabs. This property can take the
values Normal, Buttons, or FlatButtons.

DrawMode Determines whether the control draws the tabs automatically
(DrawMode = Normal) or whether the code draws them (DrawMode =
OwnerDrawFixed). See the discussion later in this section for an example.

Enabled Determines whether the TabControl is enabled. If Enabled is False,
then none of the tabs will respond to the user (although the tabs do not
look disabled) and all of the controls on the tab pages are disabled.

Font Determines the font that the control uses to draw its tabs. This does not
affect the font used within the tab pages.

HotTrack If this is True, then the tabs visually change when the mouse moves over
them. For example, the tabs’ text may change color.

ImageList Determines the ImageList control that provides images for the tabs.

ItemSize Determines the height of all of the tabs. Also determines the width of
fixed-width tabs (see the SizeMode property) and owner-drawn tabs (see
the DrawMode property).

884

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 884

Property Purpose

MultiLine Determines whether the control allows more than one line of tabs. If
MultiLine is False and the tabs won’t all fit, the control displays left-
arrow and right-arrow buttons on the right to let the user scroll through
the tabs.

Padding Determines the horizontal and vertical space added around the tabs’ text
and images.

RowCount Returns the current number of tab rows.

SelectedIndex Sets or gets the index of the currently selected tab. At design time, you
can simply click on the tab you want to select.

SelectedTab Sets or gets the currently selected TabPage object. At design time, you
can simply click on the tab you want to select.

ShowToolTips Determines whether the control displays the TabPages’ ToolTip values
when the user hovers the mouse over the tabs.

SizeMode Determines how the control sizes its tabs. This property can take the
values Normal (tabs fit their contents), FillToRight (if the control needs
more than one row of tabs, the tabs resize so each row fills the width of
the control), and Fixed (all tabs have the same width).

TabCount Returns the number of tabs.

TabPages The collection of TabPage objects.

The TabControl’s most useful event is SelectedIndexChanged, which fires when the control’s
selected tab index changes either because the user clicked a new tab, or because the code set the
SelectedIndex or SelectedTab property.

The following code shows how a program can draw ellipses on owner-drawn tabs, assuming that the
TabControl’s DrawMode property is set to OwnerDrawFixed. The code uses the DrawItem event han-
dler parameters to get the tab’s bounds. It moves the bounding rectangle in from the upper-left corner
and makes it a little smaller so it will fit completely inside the tab. The code outlines the ellipse on the
selected tab with a wide line so it allows a little extra room if the tab it is drawing is currently selected.
Next, the code checks the tab’s index and fills a green, yellow, or red ellipse. Finally, the program checks
the tab’s state again and draws a black outline around the ellipse. If the tab is selected, it makes the out-
line four pixels wide.

‘ Draw ellipses in the tabs.
Private Sub tabProject_DrawItem(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DrawItemEventArgs) Handles tabProject.DrawItem

‘ Get the drawing bounds.
Dim rect As Rectangle = e.Bounds
If (e.State And DrawItemState.Selected) = DrawItemState.Selected Then

‘ Allow extra room for the selected tab.
rect.X += 4
rect.Y += 4
rect.Width -= 8
rect.Height -= 8

885

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 885

Else
rect.X += 2
rect.Y += 2
rect.Width -= 4
rect.Height -= 4

End If

‘ Fill the ellipse with the right color.
Select Case e.Index

Case 0
e.Graphics.FillEllipse(Brushes.Green, rect)

Case 1
e.Graphics.FillEllipse(Brushes.Yellow, rect)

Case 2
e.Graphics.FillEllipse(Brushes.Red, rect)

End Select

‘ Outline the ellipse in black.
If (e.State And DrawItemState.Selected) = DrawItemState.Selected Then

‘ Use a thick line for the selected tab.
e.Graphics.DrawEllipse(_

New Pen(Color.Black, 3), _
rect)

Else
e.Graphics.DrawEllipse(Pens.Black, rect)

End If
End Sub

The TabControl is ideal for displaying multiple pages of related information in a limited amount of
space. It works particularly well when the information is naturally categorized and each tab represents
a category of data. It doesn’t work as well if different tabs contain data that the user might want to com-
pare to each other.

For example, suppose that the tabs contain information about a customer’s orders. Having different
orders’ data on separate tabs makes it difficult for the user to compare two orders. If it is likely that the
user will need to do that, you should consider some other method for displaying order data. For exam-
ple, you could display orders in separate windows contained with an MDI container form.

TableLayoutPanel
The TableLayoutPanel control displays the controls that it contains in rows and columns. This makes
it easy to build grids of regularly spaced controls.

Figure G-26 shows a form that uses a TableLayoutPanel running on top of the IDE displaying the
same form. The TableLayoutPanel control displays prompts and data-entry controls displayed in two
columns. The label at the top that says “Employee” is set to span both of the control’s columns. The
Form Designer in the background shows the control’s rows and columns using dashed lines. In this
example, the control doesn’t draw its grid lines at run time.

886

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 886

Figure G-26: In this example, the TableLayoutPanel control displays two columns of controls
arranged in a grid.

The following table describes the TableLayoutPanel control’s most useful properties.

Property Purpose

AutoScroll Determines whether the control automatically provides scroll bars if
the controls it contains won’t fit.

CellBorderStyle Determines the cell border style. This can be None, NotSet (an
appropriate style is selected based on the row and column styles),
Inset (single sunken line), InsetDouble (double sunken line),
Outset (single raised line), OutsetDouble (double raised line),
OutsetPartial (single line containing a raised area), and Single
(single line).

ColumnCount Determines the number of columns.

ColumnStyles A collection giving column styles.

ColumnWidths An array of column widths.

Table continued on following page

887

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 887

Property Purpose

Controls A collection of controls contained within the control.

Enabled Determines whether the control is enabled. If the TableLayoutPanel
is disabled, then the controls it contains are also disabled.

GrowStyle Determines how the control grows when you add new child controls
to it. This can be AddRows, AddColumns, or FixedSize (the control
throws an exception if you add more controls).

RowCount Determines the number of rows.

RowHeights An array of row heights.

RowStyles A collection of row styles.

Visible Determines whether the control and its contents are visible.

The following table describes the TableLayoutPanel control’s most useful methods.

Method Purpose

GetColumn Returns a child control’s column number.

GetColumnSpan Returns the number of columns that a child control spans.

GetRow Returns a child control’s row number.

GetRowSpan Returns the number of rows that a child control spans.

ScrollControlIntoView If the TableLayoutPanel control has AutoScroll set to
True, then this scrolls an indicated child control into view.

SetColumn Sets a child control’s column number.

SetColumnSpan Sets a child control’s column span.

SetRow Sets a child control’s row number.

SetRowSpan Sets a child control’s row span.

In addition to providing its own properties, the TableLayoutPanel acts as a property provider for
its child controls. These properties include Column, ColumnSpan, Row, and RowSpan. For example, if
you add a button to the TableLayoutPanel control named TableLayoutPanel1, then the button’s
Properties window will contain an entry labeled “Column on TableLayoutPanel1” that determines the
button’s column.

The TableLayoutPanel control also changes the meaning of its child controls’ Anchor property. By
default, a child control has Anchor property set to None, so it is centered in its table cell. If you set
Anchor to “Left,” then the control is moved to the left edge of the cell. If you set Anchor to “Left,
Right,” then both of the control’s edges are attached to the cell’s edges, so the control is stretched to fit
the cell’s width. The Top and Bottom Anchor settings work similarly.

888

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 888

The FlowLayoutPanel control also arranges contained controls, but not in a grid. It places controls one
after another to fill either rows or columns. For information on that control, see the section
“FlowLayoutPanel,” earlier in this appendix.

TextBox
The TextBox control is a typical everyday text box. The user can enter and modify text, click and drag to
select text, press Ctrl-C to copy the selected text to the clipboard, and so forth.

The TextBox control is much simpler than the RichTextBox control described earlier in this appendix.
It can use only one font, background color, and foreground color for all of its text. It also cannot provide
special formatting such as bullets, hanging indentation, and margins the way the RichTextBox can. If
you need those extra features, use a RichTextBox instead of a TextBox control.

The following table describes the TextBox control’s most useful properties.

Property Purpose

AcceptsReturn For multiline controls, determines whether pressing the Enter key
adds a new line to the text rather than triggering the form’s Accept
button.

AcceptsTab For multiline controls, determines whether pressing the Tab key adds
a Tab to the text rather than moving to the next control in the tab
sequence.

AutoSize For single-line controls, determines whether the control automatically
sets its height for the fonts it contains.

CharacterCasing Determines whether the control automatically changes the case of text
as it is entered. This property can take the values Normal (leave the
case alone), Upper (uppercase), and Lower (lowercase). The control
changes the text’s case whether the user types or pastes it into the
control, or if the program sets the control’s text.

Lines An array of strings giving the lines of text (separated by carriage
returns) displayed by the control. You can use this property to give the
control more than one paragraph at design time.

MaxLength The maximum number of characters the user can enter into the control.

MultiLine Determines whether the control displays multiple lines.

PasswordChar Determines the password character displayed by a single-line
TextBox control for each character it contains. For example, if you set
PasswordChar to “*,” then each character the user types appears as a
“*” in the text box. The control’s Text property returns the actual text
to the program.

Table continued on following page

889

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 889

Property Purpose

PreferredHeight Returns the height a single-line control would want to use for the font
size.

ReadOnly Determines whether the user can modify the control’s text. You can
display read-only text in a label, but then the user cannot select it and
copy it to the clipboard. If you want to display information that
the user might want to copy, place it in a TextBox control and set
ReadOnly to True.

ScrollBars Determines which scroll bars the control displays. This property
can take the values None, Vertical, Horizontal, and Both. The
appropriate scroll bars are always displayed. although they are
disabled when they are not needed. Note that some of these values
may not always be honored. For example, if WordWrap is True, then
the control never displays horizontal scroll bars.

SelectedText Gets or sets the selected text’s value.

SelectionLength Gets the length of the selected text, or selects this number of letters.
You can use SelectionStart and SelectionLength to selected text,
or you can use the Select method.

SelectionStart Gets or sets the start of the selection. You can use SelectionStart
and SelectionLength to selected text, or you can use the Select
method.

Text Gets or sets the control’s text.

TextAlign Determines the text’s alignment within the control. This can be Left,
Right, or Center.

TextLength Returns the length of the control’s text.

WordWrap For multiline controls, determines whether the control wraps text to a
new line if it is too long to fit.

The control also provides several important methods described in the following table.

Method Purpose

AppendText Adds text to the end of the control’s text.

Clear Clears the control’s text.

ClearUndo Empties the control’s undo list.

Copy Copies the control’s selection to the clipboard.

Cut Copies the control’s selection to the clipboard and removes it from the
control’s text.

890

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 890

Method Purpose

Paste Pastes the clipboard’s contents into the control, replacing the current
selection. This method does nothing if the clipboard doesn’t contain
textual data.

ScrollToCaret Scrolls the text so the insertion position is visible.

Select Selects the indicated text.

SelectAll Selects all of the control’s text.

Undo Undoes the most recent action. The TextBox only stores information for
one undo action, so calling Undo again undoes the undo. That also means
that the TextBox doesn’t need a Redo method because it would do the
same thing as Undo.

The TextBox control’s most useful event is TextChanged. You can use this event to take action when
the user changes the control’s text. For example, you can display a visible indication that the data has
been modified.

Timer
The Timer component periodically raises a Tick event so the program can take action at specific intervals.

The component’s Interval property determines the number of milliseconds (1000ths of a second)
between events. This property is a 32-bit integer that must be greater than zero, so it can hold values
between 1 and 2,147,483,647. If you set Interval to its maximum value 2,147,483,647, the component
raises its Tick event roughly every 24.86 days.

The Timer component’s Enabled property determines whether the Timer generates Tick events. The
component continues raising its event as long as Enabled is True.

The component’s Start and Stop methods simply set its Enabled property to True and False,
respectively.

ToolStrip
The ToolStrip control displays a series of buttons, drop-downs, and other tools. The user can access
these tools quickly without navigating through a series of menus, so they are most useful for performing
frequently needed tasks. Menus are more appropriate for commands that are needed less often.

The following table lists the types of items that a ToolStrip may contain.

ToolStripButton ToolStripComboBox ToolStripDropDownButton ToolStripLabel

ToolStripProgressBar ToolStripSeparator ToolStripSplitButton ToolStripTextBox

891

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 891

Figure G-27 shows each of these tools. The mouse is hovering over the ToolStripSplitButton so that
control is displaying its border and tooltip.

Figure G-27: The ToolStrip component contains tools the user may want to use
frequently.

These tools are relatively straightforward. ToolStripButton is a button that sits on a ToolStrip,
ToolStripComboBox is a combo box that sits on a ToolStrip, and so forth. The only tool that doesn’t
correspond to another type of control is the SplitButton. This control is a button with a drop-down
area. If the user clicks the button, it raises a Click event. If the user clicks the drop-down arrow, the
control displays a drop-down menu containing menu items that the user can select as usual. See the
online help for more information on SplitButton and the other tool control classes.

The ToolStrip control stores its tools in its Items collection. At run time, a program can access the con-
trols inside this collection, or it can refer to the tools directly by name. At design time, you can select a
ToolStrip, click on its Items property in the Properties window, and click the ellipsis to the right to
display the Items Collection Editor shown in Figure G-28.

Figure G-28: You can use the Items Collection Editor to define a ToolStrip’s tools at design time.

You can also click on the ToolStrip and add items to it much as you edit a MenuStrip control.

892

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 892

The following table describes the ToolStrip control’s most useful properties.

Property Purpose

AllowItemReorder Determines whether the user can drag-and-drop items to reorder them.

AllowMerge Determines whether the ToolStrip can merge with others.

CanOverflow Determines whether items can be sent to an overflow menu if the
ToolStrip doesn’t fit completely on the form.

GripDisplayStyle Gets the orientation of the control’s move handle.

GripMargin Determines the space around the control’s move handle.

GripRectangle Gets the boundaries of the control’s move handle.

GripStyle Determines whether the control’s move handle is visible or hidden.

Items Returns a collection of ToolStripItem objects representing the
control’s tools.

OverflowButton Returns a ToolStripItem representing the control’s overflow button.

ShowItemToolTips Determines whether the control’s tool display their tooltips.

ToolStripContainer
The ToolStripContainer control contains a ToolStripPanel along each of its edges where a
ToolStrip control can dock. The control’s center is filled with another ToolStripPanel that can con-
tain other controls that are not part of the menus.

The user can drag the ToolStrips around and position them inside of any of the ToolStripPanel con-
trols much as you can move the menus in the Visual Basic development envirtonment. The user can drag
the ToolStrips into multiple rows or columns within the panels.

Figure G-29 shows a form containing a ToolStripContainer with Dock property set to Fill so it fills the
form. The lighter area in the middle is a PictureBox sitting inside the middle ToolStripPanel, also with
Dock property set to Fill.

The ToolStripContainer holds five ToolStrip controls positioned in the container’s various edge panels.
The ToolStrip3 control’s TextDirection property is set to Vertical90 so it sits along the right edge of the
form. The ToolStrip1 and ToolStrip2 controls have been dragged into two rows at the top of the form.
The ToolStrip1 and ToolStrip2 controls share a row at the bottom.

The control’s LeftToolStripPanel, RightToolStripPanel, TopToolStripPanel,
BottomToolStripPanel, and ContentPanel properties contain references to the ToolStripPanel
controls that this control contains. Its LeftToolStripPanelVisible, RightToolStripPanelVisible,
TopToolStripPanelVisible, and BottomToolStripPanelVisible properties let you show or hide
specific panels. For example, you can hide the bottom or side panels if you don’t want the user to drag
ToolStrips there.

893

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 893

Figure G-29: The ToolStripContainer control
lets the user rearranged ToolStrip controls at
run time.

The ToolStripContainer’s other properties are relatively straightforward. See the online help for more
information.

ToolTip
The ToolTip component allows you to provide tooltip help when the user hovers the mouse over a con-
trol. After you add a ToolTip component to a form, the other controls on the form get a special ToolTip
property. For example, suppose that you create a ToolTip component named ttHint. Then a button on
the form would have a new property named “ToolTip on ttHint.” Set that property to the text you
want the ToolTip to display, and you are all set.

The following table describes the ToolTip component’s most useful properties.

Property Purpose

Active Determines whether the component displays tooltips.

AutomaticDelay Sets the AutoPopDelay, InitialDelay, and ReshowDelay properties
to values that are appropriate for this value.

AutoPopDelay The number of milliseconds before the tool tip disappears if the mouse
remains stationary in the tooltip’s area.

BackColor Determines the tooltip’s background color.

ForeColor Determines the tooltip’s foreground color.

894

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 894

Property Purpose

InitialDelay The number of milliseconds that the mouse must remain stationary
inside the tooltip’s area before the component displays the tooltip.

IsBalloon Determines whether the tooltip is displayed as a balloon rather than a
rectangle.

OwnerDraw Determines whether your code will draw the tooltip. If you set this
to True, catch the ToolTip component’s Draw method and draw the
tooltip. Parameters to the method give the Graphics object to use,
the bounds of the area to draw, and the tooltip text. This property is
ignored if IsBalloon is True.

ReshowDelay The number of milliseconds before the next tooltip will display when
the mouse moves from one tool tip area to another. The idea is that
subsequent tooltips display more quickly if one is already visible.

ShowAlways Determines whether the component still displays tooltips, even if the
form does not have the focus. The mouse still must hover over the
tooltip area as usual if ShowAlways is True.

StripAmpersands Determines whether the component removes ampersand characters
from tooltip text. This can be useful if the tooltip text looks like menu
and label captions where ampersands are converted into underscores.

UseAnimation Determines whether animation effects are used to show and hide the
tooltip.

UseFading Determines whether fading effects are used to show and hide the tooltip.

The ToolTip component’s SetToolTip method lets a program associate a tooltip with a code at run
time. The following code adds tooltip text to several address controls.

ttHint.SetToolTip(txtFirstName, “Customer first name”)
ttHint.SetToolTip(txtLastName, “Customer last name”)
ttHint.SetToolTip(txtStreet, “Mailing address street number and name”)
ttHint.SetToolTip(txtCity, “Mailing address city”)
ttHint.SetToolTip(cboState, “Mailing address state”)
ttHint.SetToolTip(txtZip, “Mailing address ZIP code”)

The following table lists the ToolTip component’s most useful methods.

Method Purpose

GetToolTip Returns a control’s associated tooltip text.

RemoveAll Removes all tooltip text associated with this ToolTip component.

SetToolTip Sets a control’s associated tooltip text. Set the text to Nothing or an empty to
remove that control’s tooltip text.

Show Displays a tooltip over a specific control. Different overloaded versions let
you specify the tooltip’s location and duration.

895

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 895

TrackBar
The TrackBar control allows the user to drag a pointer along a bar to select a numeric value. This con-
trol is very similar to a horizontal scroll bar, but with a different appearance.

The following table describes the control’s most useful properties.

Property Purpose

AutoSize Determines whether the control automatically sets its height or width,
depending on its Orientation property. For example, if the control’s
orientation is horizontal, then setting AutoSize to True makes the
control pick a height that is appropriate for the control’s width.

LargeChange The amount by which the control’s value changes when the user clicks
on the TrackBar, but not on its pointer.

Maximum The largest value that the user can select.

Minimum The smallest value that the user can select.

Orientation Determines the control’s orientation. This can be Horizontal or
Vertical.

SmallChange The amount by which the control’s value changes when the user
presses an arrow key.

TickFrequency The number of values between tick marks on the control.

TickStyle Determines the position of tick marks on the control. This can be
TopLeft (on the top if Orientation is Horizontal; on the left
if Orientation is Vertical), BottomRight (on the bottom if
Orientation is Horizontal; on the right if Orientation is
Vertical), Both, or None.

Value The control’s current numeric value.

The control’s Value, Minimum, Maximum, and TickFrequency properties are integer values, so the
TrackBar control is not ideal for letting the user select a nonintegral value such as 1.25.

The control’s Scroll event fires when the user changes the control’s value interactively. The
ValueChanged event occurs when the control’s value changes either because the user changed it inter-
actively or because the program changed it with code.

TreeView
The TreeView control displays a hierarchical data set graphically, as shown in Figure G-30.

896

Appendix G

37_571982 appg.qxd 9/1/05 7:44 PM Page 896

Figure G-30: The TreeView control displays
hierarchical data graphically.

The TreeView control uses TreeNode objects to represent the items it contains. The control’s Nodes col-
lection contains references to the top-level objects called its root nodes. In Figure G-30, the “R & D” and
“Sales & Support” items are the root nodes.

Each TreeNode object has a Nodes collection of its own that contains references to its child nodes. For
example, in Figure G-30 the “R & D” root node has children labeled “Engineering” and “Test.” Each of
those nodes has child nodes representing employees.

You can assign each of the TreeNode objects icons to display. In Figure G-30, the nodes display images
representing factories, workgroups, and people.

Your program can manipulate the TreeNode objects at run time, but you can also edit the tree data at
design time. Select the TreeView control, select its Nodes property in the Properties window, and click
the ellipsis to the right to make Visual Basic display the TreeNode Editor shown in Figure G-31.

Click Add Root to add a new root node to the tree. Select a node and click Add Child to give the node a
new child. Select a node and click Delete to remove the node and any descendants it contains.

If the TreeView control’s ImageList property is set to an ImageList control, then you can set a node’s
ImageIndex property to the index of the image in the ImageList that the node should display. Set the
node’s SelectedImageIndex to the index of the image that the control should display when the node is
selected.

The following table describes the TreeView control’s most useful properties.

897

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:44 PM Page 897

Figure G-31: The TreeNode Editor lets you edit a TreeView control’s data at design time.

Property Purpose

BorderStyle Determines the control’s border style.

CheckBoxes Determines whether the control displays check boxes next to the
nodes.

DrawMode Determines whether your code draws nothing (the default), the
nodes’ text, or the nodes’ text and lines.

FullRowSelect Determines whether selection highlights span the whole width of
the control.

HideSelection Determines whether the selected node remains visibly highlighted
even when the TreeView control loses the focus.

HotTracking Determines whether node labels look like hyperlinks when the
mouse moves over them.

ImageIndex Determines the default image index for the nodes.

ImageList Determines the ImageList control that contains the images used
by the nodes.

Indent Determines the indentation distance for each level in the tree.

ItemHeight Determines the height of each node.

LabelEdit Determines whether the user can edit the nodes’ labels.

LineColor Determines the color of the lines connecting the nodes.

898

Appendix G

37_571982 appg.qxd 9/1/05 7:45 PM Page 898

Property Purpose

Nodes Returns the collection of tree nodes.

PathSeparator Determines the delimiter string used to represent paths in the tree.
For example, using the default separator “\”, the path to the first
person in Figure G-31 is “R & D\Engineering\Cameron, Charlie.”

Scrollable Determines whether the control displays scroll bars when necessary.

SelectedImageIndex Determines the default image index for the selected nodes.

SelectedNode Determines the currently selected node.

ShowLines Determines whether the control draws lines connecting the nodes.

ShowNodeToolTips Determines whether the control displays tooltips when the mouse
hovers over a node. Use the TreeNode objects’ ToolTipText
properties to set the tooltip text.

ShowPlusMinus Determines whether the control displays plus and minus signs
next to tree nodes. The user can click the plus and minus signs or
double-click the nodes to expand and collapse them.

ShowRootLines Determines whether the control draws lines between the root
nodes. In Figure G-31, ShowRootLines is True.

Sorted Determines whether the control displays the nodes in sorted order.

TopNode Returns the first node that is currently completely visible.

VisibleCount Returns the number of nodes that could be fully visible. Fewer
nodes may actually be visible if some are collapsed.

The TreeView control provides several methods that let your code manage the data at run time. The fol-
lowing table describes the most useful of these methods.

Method Purpose

CollapseAll Collapses all of the control’s nodes.

ExpandAll Expands all of the control’s nodes. In the process, the control scrolls down,
so the last node is visible and selects the topmost visible control. To select
some other control, such as the topmost root node, set the control’s
SelectedNode property as in trvOrgChart.SelectedNode =
trvOrg.Nodes(0).

GetNodeAt Returns the TreeNode object at a specific (X, Y) location.

GetNodeCount Returns the number of the tree’s nodes. If the method’s includeSubTrees
parameter is False, the routine returns only the number of root nodes. If
includeSubTrees is True, then the routine returns the total number of
nodes in the tree.

899

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:45 PM Page 899

The control provides a series of events that fire before and after the user takes certain actions. For exam-
ple, when the user clicks a node’s check box, the control raises its BeforeCheck event, changes the node’s
checked state, and then raises its AfterCheck event. The other actions that have similar Before and
After event handlers are Collapse, Expand, LabelEdit, and Select.

Each of the Before event handlers provides a parameter that the code can set to cancel the event. For
example, the following code shows how a program can prevent the user from editing the labels of the
tree’s root nodes. When the user tries to edit a node’s label, the BeforeLabelEdit event fires. The value
e.Node represents the node that the user is about to edit. Its FullPath property returns a delimited
path showing the node’s position in the tree.

The code searches this path for the path separator character (normally \). If the node is a root node, then
the separator is not in the path so the IndexOf method returns -1 and the code sets e.CancelEdit to
True so the edit never occurs. If IndexOf finds the path separator in the node’s FullPath, the code
leaves e.CancelEdit equal to False so the edit takes place as usual.

Private Sub trvOrgChart_BeforeLabelEdit(ByVal sender As Object, _
ByVal e As System.Windows.Forms.NodeLabelEditEventArgs) _
Handles trvOrgChart.BeforeLabelEdit

e.CancelEdit = (e.Node.FullPath.IndexOf(trvOrgChart.PathSeparator) = -1)
End Sub

The TreeNode object also provides properties and methods if its own. The following table describes the
TreeNode object’s most useful properties.

Property Purpose

Checked Determines whether the node is checked, assuming that the
TreeView control’s CheckBoxes property is True.

FirstNode Returns the node’s first child node.

FullPath Returns a string representing the node and its ancestors in the tree,
delimited by the character specified by the TreeView control’s
PathSeparator property.

ImageIndex Determines the index of the node’s image in the ImageList
control specified by the TreeView control’s ImageList property.

Index Returns the node’s index within its parent node’’s collection of
children.

IsEditing Indicates whether the user is editing the node’s label.

IsExpanded Indicates whether the node is expanded.

IsSelected Indicates whether the node is selected.

IsVisible Indicates whether the node is at least partly visible.

LastNode Returns the node’s last child node.

Level Returns the node’s level in the tree. Root nodes have level 0, their
children have level 1, the children of those nodes have level 2, and
so forth.

900

Appendix G

37_571982 appg.qxd 9/1/05 7:45 PM Page 900

Property Purpose

NextNode Returns the node’s next sibling node.

NextVisibleNode Returns the next node that is not hidden because of a collapse. This
may be a sibling, child, or some other node, depending on which
nodes are expanded at the time. Note that this node may lie below
the visible scrolling area, so it may not really be visible.

NodeFont The font used to draw the node’s text. If the node’s font makes the
text bigger than the TreeView control’s Font property does, then
the text is clipped.

Nodes The collection of this node’s child nodes.

Parent Returns a reference to the node’s parent node in the tree.

PrevNode Returns the node’s previous sibling node.

PrevVisibleNode Returns the previous node that is not hidden because of a collapse.
This may be a sibling, parent, or some other node, depending on
which nodes are expanded at the time. Note that this node may be
above the visible scrolling area, so it may not really be visible.

SelectedImageIndex Determines the index of the node’s selected image in the ImageList
control specified by the TreeView control’s ImageList property.
The node displays this image while it is selected.

Text Determines the text displayed in the node’s label.

ToolTipText Determines the node’s tooltip text.

TreeView Returns a reference to the TreeView control that contains the node.

The TreeNode object also provides several methods. The following table describes the most useful of
these.

Method Purpose

BeginEdit Begins editing of the node’s label. This raises an error if the
TreeView control’s LabelEdit property is False.

Clone Copies the node and its entire subtree.

Collapse Collapses the node’s subtree.

EndEdit Ends editing of the node’s label.

EnsureVisible Expands nodes and scrolls the TreeView as necessary to ensure
that the node is visible.

Expand Expands the node to display its children.

ExpandAll Expands the node’s whole subtree.

Table continued on following page

901

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:45 PM Page 901

Method Purpose

GetNodeCount Returns the number of child nodes.

Remove Removes the node and its subtree.

Toggle Toggles the node between expanded and collapsed.

VScrollBar
The VScrollBar control is similar to the HScrollBar control, except that it is oriented vertically instead
of horizontally. See the section “HScrollBar” earlier in this appendix for more information on the control.

WebBrowser
The WebBrowser control displays the contents of Web pages, XML documents, text files, and other docu-
ments understood by the browser. The control can automatically follow links that the user clicks in the
document and provides a standard Web browser context menu, containing commands such as Back,
Forward, Save Background As, and Print.

Using this control, you can easily add Web-based hypertext to your applications. For example, you could
display an HTML help system or tutorial pages within the control.

The control provides several properties and methods for navigating to different documents. The follow-
ing table describes the most useful of these.

Property/Method Purpose

Url Gets or sets the control’s current Web address.

Navigate Makes the control open a specific URL.

GoBack Makes the control move to the URL it previously displayed.

GoForward After a call to GoBack, makes the control move forward to the
next URL it displayed.

GoHome Makes the control go to the current user’s home page.

GoSearch Makes the control go to the current user’s search page.

Whenever the control moves to a new document, it fires three events. The Navigating event fires before
the control moves to the new document. The Navigated event occurs after the control has navigated to
the new document and is loading it. The DocumentCompleted event occurs when the control has fin-
ished loading the document.

902

Appendix G

37_571982 appg.qxd 9/1/05 7:45 PM Page 902

The control also supports a variety of other events that tells a program when something has changed. Some
of the more useful of these notification events include CanGoBackChanged, CanGoForwardChanged,
DocumentTitleChanged, NewWindow (the browser is about to open a new window), ProgressChanged
(gives progress information on the download of a document), and StatusTextChanged.

After the control loads a document, the program can manipulate the document through the control’s
Document property. This property contains a reference to an HtmlDocument object that gives access to
the document’s images, forms, links, and other HTML document elements.

In addition to opening existing documents, a program can make the WebBrowser display a file gener-
ated within the application by setting its DocumentText or DocumentStream properties.

The WebBrowser control provides all of the power and flexibility of Internet Explorer. Unfortunately,
that power and flexibility makes the control quite complicated, so it is not described further here. See the
online help for more information.

903

Standard Controls and Components

37_571982 appg.qxd 9/1/05 7:45 PM Page 903

37_571982 appg.qxd 9/1/05 7:45 PM Page 904

Form Objects
This appendix describes the most useful properties, methods, and events provided by the
Windows Form class.

The Form class inherits indirectly from the Control class (Control is Form’s “great-grandparent”),
so in many ways, a form is just another type of control. Except where overridden, Form inherits
the properties, methods, and events defined by the Control class. Chapter 2, “Controls in
General,” discusses some of the more useful properties, methods, and events provided by the
Control class and most of those apply to the Form class as well.

Proper ties
The following table describes some of the most useful Form properties.

Property Description

AcceptButton Determines the button that clicks when the user presses
the Enter key. This button basically gives the form a
default action. Most forms used as dialogs should
have an Accept button and a Cancel button (see the
CancelButton property described shortly). This makes
the form more accessible to the visually impaired and is
more efficient for users who prefer to use the keyboard.

ActiveControl Gets the form’s currently active control.

ActiveForm Gets the application’s currently active form. If an MDI
child form is active, this returns the active form’s MDI
parent.

ActiveMdiChild Gets the MDI parent form’s currently active MDI child
form.

Table continued on following page

38_571982 apph.qxd 9/1/05 7:45 PM Page 905

Property Description

AllowDrop Determines whether the form processes drag and drop events.
See Chapter 13, “Drag and Drop, and the Clipboard,” for more
information on drag and drop.

Anchor Determines which edges of the form are anchored to the edges
of its container. This lets MDI child forms resize with their MDI
parents.

AutoScroll Determines whether the form automatically provides scroll
bars when it is too small to display all of the controls it
contains.

AutoScrollMargin If AutoScroll is True, then the control will provide scroll bars
if necessary to display its controls plus this much margin.

AutoScrollPosition Adjusts the AutoScroll scroll bars so this point on the form is
placed at the upper-left corner of the visible area (if possible).
For example, if a button has location (100, 20), the statement
AutoScrollPosition = New Point(100, 20) scrolls the form
so the button is in the upper-left corner of the visible area.

BackColor Determines the form’s background color.

BackgroundImage Determines the image displayed in the form’s background.

BackgroundImageLayout Determines how the BackgroundImage is displayed. This can
be None (the image is displayed at up to normal scale, or
compressed, if necessary, to make it fit vertically or horizontally),
Tile (the image is tiled to fill the form), Center (the image is
centered on the form at up to normal scale, or compressed, if
necessary, to make it fit vertically or horizontally), Stretch (the
image is resized to fill the form exactly), or Zoom (the image is
resized to fill the form as much as possible without distorting it).

Bottom Returns the distance between the form’s bottom edge and the
top edge of its container.

Bounds Determines the form’s size and location within its container.
These bounds include the form’s client and nonclient areas
(such as the borders and caption area).

CancelButton Determines the button that clicks when the user presses the
Escape key. This button basically gives the form a cancel
action. If the form is being displayed modally, clicking this
button either manually or by pressing Escape automatically
closes the form.

Capture Determines whether the form has captured mouse events.
While this is True, all mouse events go to the form’s event
handlers. For example, pressing the mouse button sends the
form a MouseDown event even if the mouse is over a control on
the form or even if it is off of the form completely.

906

Appendix H

38_571982 apph.qxd 9/1/05 7:45 PM Page 906

Property Description

ClientRectangle Returns a Rectangle object representing the form’s client area.

ClientSize Gets or sets a Size object representing the client area’s size. If
you set this value, the form automatically adjusts to make the
client area this size while allowing room for its nonclient areas
(such as borders and title bar). For example, the following
statement makes the form just big enough to display the
txtNotes control within the client area.

Me.ClientSize = New Size(_
lblNotes.Left + lblNotes.Width, _
lblNotes.Top + lblNotes.Height)

ContainsFocus Returns True if the form or one of its controls has the input
focus.

ContextMenuStrip Gets or sets the form’s context menu. If the user right-clicks on
the form, Visual Basic automatically displays this menu. Note
that controls on the form share this menu unless they have
context menus of their own. Also note that some controls have
their own context menus by default. For example, a TextBox
displays a Copy, Cut, Paste menu, unless you explicitly set its
ContextMenu property.

ControlBox Determines whether the form displays a control box (the
minimize, maximize, restore, and close buttons) on the right
side of its caption area.

Controls Returns a collection containing references to all the controls
on the form. This includes only the controls contained directly
within the form, and not controls contained within other
controls. For example, if a form contains a GroupBox that holds
several TextBox controls, then only the GroupBox is listed in
the form’s Controls collection. You would need to search the
GroupBox’s Controls collection to find the TextBoxes.

Cursor Determines the cursor displayed by the mouse when it is over
the form.

DesktopBounds Determines the form’s location and size as a Rectangle.

DesktopLocation Determines the form’s location as a Point.

DialogResult Gets or sets the form’s dialog result. If code displays the form
modally using its ShowDialog method, the method returns the
DialogResult value the form has when it closes. Setting the
form’s DialogResult value automatically closes the dialog.
Triggering the form’s CancelButton automatically sets
DialogResult to Cancel and closes the dialog.

Table continued on following page

907

Form Objects

38_571982 apph.qxd 9/1/05 7:45 PM Page 907

Property Description

DisplayRectangle Gets a Rectangle representing the form’s display area. This
is the area where you should display things on the form. In
theory, this might not include all of the client area and could
exclude form decorations, although in practice it seems to be
the same as ClientRectangle.

Enabled Determines whether the form will respond to user events. If
the form is disabled, all of its controls are disabled and drawn
grayed out. The user can still resize the form and its controls’
Anchor and Dock properties still rearrange the controls
accordingly. The user can also click the form’s Minimize,
Maximize, Restore, and Close buttons. Note that you cannot
display a form modally using ShowDialog if it is disabled.

Font Determines the form’s font.

ForeColor Determines the foreground color defined for the form.

FormBorderStyle Determines the form’s border style. This can be None,
FixedSingle, Fixed3D, FixedDialog, Sizeable,
FixedToolWindow, and SizeableToolWindow.

Handle Returns the form’s integer window handle (hWnd). You can
pass this value to API functions that work with window
handles. Many of the API functions that are necessary in Visual
Basic 6 are no longer needed in Visual Basic .NET because their
functions have been incorporated into the .NET Framework,
but there are still occasions when the form’s handle is useful.

HasChildren Returns True if the form contains child controls.

Height Determines the form’s height.

HelpButton Determines whether the form displays a Help button
displaying a question mark in the caption area to the left of the
close button. The button is only visible if the MaximizeBox and
MinimizeBox properties are both False. If the user clicks the
Help button, the mouse pointer turns into a question mark
arrow. When the user clicks on the form, Visual Basic raises the
form’s HelpRequested event. The form can provide help
based on the location of the click and, if it provides help, it
should set the event handler’s hlpevent.Handled parameter
to True.

Icon Determines the form’s icon displayed in the left of the
form’s caption area, in the taskbar, and by the Task Manager.
Typically, this icon should contain images at the sizes 16 × 16
pixels and 32 × 32 pixels, so different displays can use an image
with the correct size without resizing.

908

Appendix H

38_571982 apph.qxd 9/1/05 7:45 PM Page 908

Property Description

IsMdiChild Returns True if the form is an MDI child form. To make an MDI
application, set IsMdiContainer = True for the MDI parent
form. Then display a child form, as shown in the following code.
In the child form, IsMdiChild will return True.

Dim child_form As New MyChildForm
child_form.MdiParent = MdiParentForm
child_form.Show

IsMdiContainer Returns True if the form is an MDI parent form. See the
description of IsMdiChild for more information.

KeyPreview Determines whether the form receives key events before they
are passed to the control with the input focus. If KeyPreview is
True, the form’s key event handlers can see the key, take
action, and hide the key from the control that would normally
receive it, if necessary. For example, the following statement in
a KeyDown event handler would close the form if the user
presses Escape, no matter what control has the focus.

If e.Keys = Keys.Escape Then Me.Close

Left Determines the distance between the form’s left edge and the
left edge of its container.

Location Determines the coordinates of the form’s upper-left corner.

MainMenuStrip Gets or sets the form’s main menu.

MaximizeBox Determines whether the form displays a Maximize button on
the right of its caption area.

MaximumSize This Size object determines the maximum size the form can
take.

MdiChildren Returns an array of forms that are this form’s MDI children.

MdiParent Gets or sets the form’s MDI parent form.

MinimizeBox Determines whether the form displays a Maximize button on
the right of its caption area.

MinimumSize This Size object determines the minimum size the form can
take.

Modal Returns True if the form is displayed modally.

Name Gets or sets the form’s name. Initially, this is the form’s class
name, but your code can change it to anything, possibly even
duplicating another form’s name.

Opacity Determines the form’s opacity level between 0.0 (transparent)
and 1.0 (opaque).

Table continued on following page

909

Form Objects

38_571982 apph.qxd 9/1/05 7:45 PM Page 909

Property Description

OwnedForms Returns an array listing this form’s owned forms. To make this
form own another form, call this form’s AddOwnedForm method,
passing it the other form. Owned forms are minimized and
restored with the owner and can never lie behind the owner.
Typically, they are used for things like Toolboxes and search
forms that should remain above the owner form.

Region Gets or sets the region that defines the area that the form can
occupy. Pieces of the form that lie outside of the region are
clipped. For more information on regions, see Chapter 20,
“Brushes, Pens, and Paths.”

Right Returns the distance between the form’s right edge and the left
edge of its container.

ShowIcon Determines whether the form displays an icon in its title bar. If
this is False, the system displays a default icon in the taskbar
and Task Manager if ShowInTaskbar is True.

ShowInTaskbar Determines whether the form is displayed in the taskbar and
Task Manager.

Size Gets or sets a Size object representing the form’s size, including
client and nonclient areas.

SizeGripStyle Determines how the resize grip is shown in the form’
lower-right corner. This can be Show, Hide, or Auto.

StartPosition Determines the form’s position when it is first displayed at
run time. This can be Manual (use the size and position
specified by the form’s properties), CenterScreen (center
the form on the screen taking the taskbar into account),
WindowsDefaultLocation (use a default position defined
by Windows and use the form’s specified size), and
WindowsDefaultBounds (use Windows default position
and size).

Tag Gets or sets an object associated with the form. You can use this
for whatever purpose you see fit.

Text Determines the text displayed in the form’s caption.

Top Determines the distance between the form’s top edge and the
top edge of its container.

TopMost Determines whether the form is a topmost form. A topmost
form always sits above all other nontopmost forms, even when
the other forms have the input focus.

910

Appendix H

38_571982 apph.qxd 9/1/05 7:45 PM Page 910

Property Description

TransparencyKey Gets or sets a color that determines the areas of the form that are
shown as transparent. This applies to the form itself and any
controls it contains. For example, if you set TransparencyKey
to the default form and control color Colors.Control, then the
whole form and the bodies of many of its controls are invisible,
so you will see text and borders floating above whatever forms
lie behind.

UseWaitCursor Determines whether the form should is currently displaying
the wait cursor.

Visible Determines whether the form is visible. If the form is not
visible, the user cannot interact with it. If you set Visible =
False, the form’s icon is also removed from the taskbar and
Task Manager.

Width Determines the form’s width.

WindowState Gets or sets the form’s state. This can be Normal, Minimized,
or Maximized.

Methods
The following table describes some of the most useful Form methods.

Method Description

Activate Activates the form and gives it the focus. Normally, this pops
the form to the top. Note that forcing a form to the top takes
control of the desktop away from the user, so you should use
this method sparingly. For example, if the user dismisses one
form, you might activate the next form in a logical sequence.
You should not activate a form to get the user’s attention every
few minutes.

AddOwnedForm Adds an owned form to this form. Owned forms are minimized
and restored with the owner and can never lie behind the
owner. Typically, they are used for things like Toolboxes and
search forms that should remain above the owner form.

BringToFront Brings the form to the top of the z-order. This applies only to
other forms in the application. This form will pop to the top of
other forms in this program, but not forms in other applications.

Close Closes the form. The program can still prevent the form from
closing by catching the FormClosing event and setting
e.Cancel to True.

Table continued on following page

911

Form Objects

38_571982 apph.qxd 9/1/05 7:45 PM Page 911

Method Description

Contains Returns True if a specified control is contained in the form.
This includes controls inside GroupBoxes, Panels, and other
containers, which are not listed in the form’s Controls
collection.

CreateGraphics Creates a Graphics object that the program can use to draw
on the form’s surface. For example, the following code draws a
circle when the user presses a button:

Private Sub Button1_Click(ByVal sender As
System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim gr As Graphics = Me.CreateGraphics()
gr.FillEllipse(Brushes.Orange, 10, 10, 210, 220)
gr.DrawEllipse(Pens.Red, 10, 10, 210, 220)

End Sub

Note that the Paint event handler provides a Graphics object
in its e.Graphics parameter when the form needs to be
redrawn. You should use that object rather than a new one
returned by CreateGraphics while inside a Paint event
handler. Otherwise, the Paint event handler’s version will
draw over anything that you draw using the object returned
by CreateGraphics.

DoDragDrop Begins a drag-and-drop operation. For more information on
drag and drop, see Chapter 13, “Drag and Drop, and the
Clipboard.”

GetChildAtPoint Returns a reference to the child control at a specific point.
Note that the control is the outermost control at that point.
For example, if a GroupBox contains a Button and you
call GetChildAtPoint for a point above the Button,
GetChildAtPoint returns the GroupBox. To find the Button,
you would need to use the GroupBox’s GetChildAtPoint
method. Note also that the position of the Button within the
GroupBox is relative to the GroupBox’s origin, so you would
need to subtract the GroupBox’s position from the X and Y
coordinates of the point relative to the form’s origin.

GetNextControl Returns the next control in the tab order. Parameters indicate
the control to start from and whether the search should move
forward or backward through the tab order.

Hide Hides the form. This sets the form’s Visible property to
False.

Invalidate Invalidates some or all of the form’s area and generates a
Paint event.

912

Appendix H

38_571982 apph.qxd 9/1/05 7:45 PM Page 912

Method Description

LayoutMdi If this form is an MDI parent form, arranges its MDI child
forms. This method can take the parameters ArrangeIcons,
Cascade, TileHorizontal, and TileVertical. Typically,
this command is used in a menu titled Window.

PointToClient Converts a point from screen coordinates into the form’s
coordinate system.

PointToScreen Converts a point from the form’s coordinate system into screen
coordinates.

RectangleToClient Converts a rectangle from screen coordinates into the form’s
coordinate system.

RectangleToScreen Converts a rectangle from the form’s coordinate system into
screen coordinates.

Refresh Invalidates the form’s client area and forces it to redraw itself
and its controls.

RemoveOwnedForm Removes an owned form from this form’s OwnedForms
collection.

ResetBackColor Resets the form’s BackColor property to its default value
(Control). This change is adopted by any controls on the form
that do not have their BackColor properties explicitly set.

ResetCursor Resets the form’s Cursor property to its default value
(Default). This change is adopted by any controls on the form
that do not have their Cursor properties explicitly set.

ResetFont Resets the form’s Font property to its default value (8-point
regular Microsoft Sans Serif). This change is adopted by any
controls on the form that do not have their Font properties
explicitly set.

ResetForeColor Resets the form’s ForeColor property to its default value
(ControlText). This change is adopted by any controls on the
form that do not have their ForeColor properties explicitly set.

ResetText Resets the form’s Text property to its default value (an empty
string).

Scale Resizes the form and the controls it contains by a scale factor.
A second overloaded version scales by different amounts in the
X and Y directions. Note that this doesn’t change the controls’
font sizes, just their dimensions.

Table continued on following page

913

Form Objects

38_571982 apph.qxd 9/1/05 7:45 PM Page 913

Method Description

ScrollControlIntoView If the form has AutoScroll set to True, this scrolls to make
the indicated control visible.

SelectNextControl Activates the next control in the tab order. Parameters indicate
the control to start at, whether the search should move forward
or backward through the tab order, whether the search should
include only controls with TabStop set to True or all controls,
whether to include controls nested inside other controls, and
whether to wrap around to the first/last control if the search
passes the last/first control.

SendToBack Sends the form to the back of the z-order. This puts the form
behind all other forms in all applications, although it does not
remove the focus from this form.

SetAutoScrollMargin If AutoScroll is True, this method sets the AutoScroll
margin. The control will provide scroll bars if necessary to
display its controls plus this much margin.

SetBounds Sets some or all of the form’s bounds: X, Y, Width, and Height.

SetDesktopBounds Sets the form’s position and size in desktop coordinates. See
SetDesktopLocation for more information.

SetDesktopLocation Sets the form’s position in desktop coordinates. Desktop
coordinates include only the screen’s working area and do not
include the area occupied by the taskbar. For example, if the
taskbar is attached to the left edge of the screen, then the point
(0, 0) in screen coordinates is beneath the taskbar. However the
point (0, 0) in desktop coordinates is just to the right of the taskbar.
If you set the form’s location to (0, 0), part of the form is
hidden by the taskbar. If you set the form’s desktop location to
(0, 0), then the form is visible just to the right of the taskbar.

Show Displays the form. This has the same effect as setting the
form’s Visible property to True.

ShowDialog Displays the form as a modal dialog. The user cannot interact
with other parts of the application before this form closes. Note
that some other processes may still be running. For example, a
Timer control on another form still raises Tick events and the
program can still respond to them.

Events
The following table describes some of the most useful Form events.

914

Appendix H

38_571982 apph.qxd 9/1/05 7:45 PM Page 914

Event Description

Activated Occurs when the form activates.

Click Occurs when the user clicks on the form. Normally, if the user clicks
on a control, the control rather than the form receives the Click
event. If the form’s Capture property is set to True, however, the
event goes to the form.

ControlAdded Occurs when a new control is added to the form.

ControlRemoved Occurs when a control is removed from the form.

Deactivate Occurs when the form deactivates.

DoubleClick Occurs when the user double-clicks on the form. Normally, if the
user double-clicks on a control, the control rather than the form
receives the DoubleClick event. If the form’s Capture property is
set to True, however, the first click goes to the form and the second
goes to the control.

DragDrop Occurs when the user drops data onto the form. The form should
process the data in an appropriate way. See Chapter 13, “Drag and
Drop, and the Clipboard,” for more information on drag and drop.

DragEnter Occurs when a drag-and-drop operation moves over the form.
The form should indicate what drag operations it will allow and
optionally display a visible indication that the drag is over it. See
Chapter 13, “Drag and Drop, and the Clipboard,” for more
information on drag and drop.

DragLeave Occurs when a drag-and-drop operation leaves the form. If the
form is displaying a visible indicator of the pending drop, it should
remove that indicator now. See Chapter 13, “Drag and Drop, and the
Clipboard,” for more information on drag and drop.

DragOver Occurs repeatedly as long as a drag-and-drop operation is being
performed over the form. The form can use this event to display a
more complex visible indicator of the pending drop. For example, it
might show where on the form the data will be dropped or it might
highlight the area on the form under the mouse. See Chapter 13,
Drag and Drop, and the Clipboard for more information on drag
and drop.

FormClosed Occurs when the form is closed. The program can still access
the form’s properties, methods, and controls, but it is going
away. See also the FormClosing event. Note that if the program
calls Application.Exit, then the form’s FormClosed and
FormClosing events do not occur. If you want the program to free
resources before the form disappears, it should do so before calling
Application.Exit.

Table continued on following page

915

Form Objects

38_571982 apph.qxd 9/1/05 7:45 PM Page 915

Event Description

FormClosing Occurs when the form is about to close. The program can cancel the
close (for example, if some data has not been saved) by setting the
even handler’s e.Cancel parameter to True.

GiveFeedback Occurs when a drag moves over a valid drop target. The source can
take action to indicate the type of drop allowed. For example, it
might change the drag cursor displayed. See Chapter 13, “Drag and
Drop, and the Clipboard,” for more information on drag and drop.

GotFocus Occurs when focus moves into the form.

HelpRequested Occurs when the user requests help from the form, usually by
pressing F1 or by pressing a context-sensitive Help button (see
the HelpButton property) and then clicking a control on the
form. Help requests move up through control containers until a
HelpRequested event sets its hlpevent.Handled parameter
to True. For example, suppose that the user sets focus to a
TextBox contained in the form and presses F1. The TextBox’s
HelpRequested event handler executes. If that routine doesn’t set
hlpevent.Handled to True, the event bubbles up to the TextBox’s
container, the form, and its HelpRequested event handler executes.

KeyDown Occurs when the user presses a keyboard key down.

KeyPress Occurs when the user presses and releases a keyboard key.

KeyUp Occurs when the user releases a keyboard key.

Layout Occurs when the form should reposition its child controls. If your
code needs to perform custom repositioning, this is the event where
it should do so.

Load Occurs after the form is loaded but before it is displayed. You can
perform one-time initialization tasks here.

LostFocus Occurs when the focus moves out of the form.

MdiChildActivate Occurs when an MDI child form contained in this MDI parent
form is activated or closed. This activation only applies to the MDI
children within this form. For example, setting focus to a different
form or application and then back to the MDI child does not raise
this event, but switching back and forth between two MDI children
does. This event basically occurs when the MDI parent’s active MDI
child changes. You can catch the event to update the MDI parent’s
menus or perform other actions when the active child changes.

MouseClick Occurs when the user clicks on the form. You should consider the
Click event to be on a logically higher level than MouseClick. For
example, the Click event may be triggered by actions other than an
actual mouse click (such as the user pressing the Enter key).

916

Appendix H

38_571982 apph.qxd 9/1/05 7:45 PM Page 916

Event Description

MouseDoubleClick Occurs when the user double-clicks on the form. You should
consider the DoubleClick event to be on a logically higher level
than MouseDoubleClick.

MouseDown Occurs when the user presses the mouse down over the form. Also
see the Capture property.

MouseEnter Occurs when the mouse first moves so that it is over the form. If the
mouse moves over one of the form’s controls, that counts as leaving
the form, so when it moves back over an unoccupied part of the
form, it raises a MouseEnter event.

MouseHover Occurs when the mouse remains stationary over the form for a
while. This event is raised once when the mouse first hovers and
then is not raised again until the mouse leaves the form and returns.
Note that the mouse moving over one of the form’s controls counts
as leaving.

MouseLeave Occurs when the mouse leaves the form. Note that the mouse
moving over one of the form’s controls counts as leaving.

MouseMove Occurs when the mouse moves while over the form.

MouseUp Occurs when the user releases the mouse button. When the user
presses a mouse button down, the form will capture subsequent
mouse events until the user releases the button. While the capture is
in place, the form receives MouseMove events, even if the mouse is
moving off of the form. It will receive a MouseHover event, even if
the mouse is off of the form, if no such event has been raised since
the last time the mouse moved over the form. When the user finally
releases the button, the form receives a MouseUp event and then, if
the mouse is no longer over the form, a MouseLeave event.

MouseWheel Occurs when the user moves the mouse wheel. The event’s e.X and
e.Y parameters give the mouse’s current position. The e.Delta
parameter gives the signed distance by which the wheel has been
rotated. Currently, this is defined as 120 “detents” per notch of
the wheel. Standards dictate that you should scroll data when
the accumulated delta reaches plus or minus 120 detents, and that
you should then scroll the data by the number of lines given by
SystemInformation.MouseWheelScrollLines (currently this
is 3). If higher-resolution mouse wheels are added some day,
a notch might send a value smaller than 120, and you could
update the data more often, but you should keep the same ratio:
SystemInformation.MouseWheelScrollLines lines per 120
detents.

Move Occurs when the form is moved.

Table continued on following page

917

Form Objects

38_571982 apph.qxd 9/1/05 7:45 PM Page 917

Event Description

Paint Occurs when part of the form must be redrawn. You can use the
e.ClipRectangle parameter to see what area needs to be drawn.
For very complicated drawings, you may be able to draw more
quickly if you only draw the area indicated by e.ClipRectangle.
Note also that Visual Basic clips drawings outside of this rectangle
and may clip some areas inside this rectangle that do not need to be
redrawn. That makes drawing faster in some cases. The idea here is
that part of the form has been covered and exposed so only that part
must be redrawn. If you need to adjust the drawing when the form
is resized, you should invalidate the form in the Resize event
handler to force a redraw of the whole form.

QueryContinueDrag Occurs during a drag-and-drop operation (with this form as the
drag source) when the keyboard or mouse button state has changed.
The form can decide to continue the drag, cancel the drag, or drop
the data immediately. See Chapter 13, “Drag and Drop, and the
Clipboard,” for more information on drag and drop.

Resize Occurs when the form is resized.

ResizeBegin Occurs when the user starts resizing the form.

ResizeEnd Occurs when the user has finished resizing the form.

SizeChanged Occurs when the form is resized.

When focus moves into and out of a form, the sequence of events is: Activated, GotFocus,
Deactivate, Validating, Validated, LostFocus.

Typically, when the user clicks on the form, the sequence of events is: MouseDown, Click, MouseClick,
MouseUp.

Typically, when the user double-clicks on the form, the sequence of events is: MouseDown, Click,
MouseClick, MouseUp, MouseDown, DoubleClick, MouseDoubleClick, MouseUp.

When code resizes the form, the sequence of events is: Resize, SizeChanged.

When the user resizes the form, the sequence of events is: ResizeBegin, Resize, SizeChanged,
Resize, SizeChanged, . . ., ResizeEnd.

Proper ty-Changed Events
The Form class provides several events that fire when certain form properties change. The name of each
of these events has the form PropertyNameChanged where PropertyName is the name of the correspond-
ing property. For example, the BackColorChanged event fires when the form’s BackColor property
changes.

918

Appendix H

38_571982 apph.qxd 9/1/05 7:45 PM Page 918

The following table lists these events.

BackColorChanged BackgroundImageChanged ContextMenuChanged

CursorChanged DockChanged EnabledChanged

FontChanged ForeColorChanged LocationChanged

MaximumSizeChanged MinimumSizeChanged ParentChanged

SizeChanged StyleChanged SystemColorsChanged

TextChanged VisibleChanged

The names of most of these controls are self-explanatory, so they are not described further here. The
exception is the SystemColorsChanged event. This occurs when the system’s colors are changed either
by the user or programmatically.

For example, suppose that you want the form to draw using its ForeColor property and you want that
property to match the active title bar text color. Then, you could use the following code to update
ForeColor when the user changed the system colors:

Private Sub Form2_SystemColorsChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.SystemColorsChanged

Me.ForeColor = SystemColors.ActiveCaptionText
End Sub

Note that Visual Basic invalidates the form after raising the SystemColorsChanged event, so the form
immediately repaints itself using the new settings.

919

Form Objects

38_571982 apph.qxd 9/1/05 7:45 PM Page 919

38_571982 apph.qxd 9/1/05 7:45 PM Page 920

Classes and Structures
This appendix provides information about class and structure declarations.

Classes
The syntax for declaring a class is:

[attribute_list] [Partial] [accessibility] [Shadows] [inheritance] _
Class name[(Of type_list)]

[Inherits parent_class]
[Implements interface]
statements

End Class

The attribute_list can include any number of attribute specifiers separated by commas.

The accessibility clause can take one of the values: Public, Protected, Friend, Protected
Friend, and Private.

The Partial keyword indicates that this is only part of the class declaration and that the program
may include other partial declarations for this class.

The Shadows keyword indicates that the class hides the definition of some other entity in the
enclosing class’s base class.

The inheritance clause can take the value MustInherit or NotInheritable.

The type_list clause defines type parameters for a generic class. For information on generics, see
Chapter 18, “Generics,” and Appendix J, “Generics.”

The Inherits statement tells which class this class inherits from. A class can include at most one
Inherits statement and, if present, this must be the first noncomment statement after the Class
statement.

39_571982 appi.qxd 9/1/05 7:49 PM Page 921

The Implements statement specifies an interface that the class implements. A class can implement any
number of interfaces. You can specify interfaces in separate Interface statements or in a single state-
ment separated by commas.

Structures
The syntax for writing a structure is:

[attribute_list] [Partial] [accessibility] [Shadows] Structure name[(Of
type_list)]

[Implements interface]
statements

End Structure

The structure’s attribute_list, Partial, accessibility, Shadows, type_list, and Implements statements are
the same as those for classes. See the previous section for details.

The differences between a structure and a class are:

❑ Structures cannot use the MustInherit or NotInheritable keywords (because you cannot
inherit from a structure).

❑ Structures cannot use the Inherits clause.

❑ Structures are value types, while classes are reference types. See Chapter 15, “Classes and
Structures,” for information on the consequences of this difference.

Constructors
A constructor is a special subroutine named New.

Class constructors can take any number of parameters. If you provide no constructors, Visual Basic
allows a default empty constructor that takes no parameters. If you provide any constructor, Visual Basic
does not provide a default empty constructor. If you want to allow the program to use an empty con-
structor in that case, you must either provide one or provide a constructor with all optional parameters.

Structure constructors are very similar to class constructors with two major exceptions. First, you cannot
make an empty structure constructor. Second, Visual Basic always provides a default empty constructor,
even if you give the structure other constructors.

Events
The syntax for declaring an event is:

[accessibility] [Shadows] Event event_name(parameters)

922

Appendix I

39_571982 appi.qxd 9/1/05 7:49 PM Page 922

The accessibility clause can take one of the values: Public, Protected, Friend, Protected Friend, and
Private.

Use the Shadows keyword to indicate that the event shadows an item with the same name in the parent
class. Any type of item can shadow any other type of item. For example, an event can shadow a subrou-
tine, function, or variable. This would be rather bizarre and confusing, but it is possible.

The parameters clause specifies the parameters that you will pass when raising the event. An event han-
dler catching the event will receive those parameters. Use ByRef parameters to allow the event handler
to provide feedback to the code that raises the event.

The syntax for raising an event is:

RaiseEvent event_name(parameters)

The parameters that you pass to the event handler must match those declared in the Event statement.

923

Classes and Structures

39_571982 appi.qxd 9/1/05 7:49 PM Page 923

39_571982 appi.qxd 9/1/05 7:49 PM Page 924

Generics
The syntax for declaring a generic is:

[attribute_list] [Partial] [accessibility] [Shadows] [inheritance] _
Class name[(Of type_list)]

[Inherits parent_class]
[Implements interface]
statements

End Class

All of these parts of the declaration are the same as those used by a normal (nongeneric) class. See
Chapter 15, “Classes and Structures,” and Appendix I, “Classes and Structures,” for information
about nongeneric classes.

The key to a generic class is the (Of type_list) clause. Here, type_list is a list of data types
separated by commas that form the generic’s parameter types. Each type can be optionally fol-
lowed by the keyword As and a list of constraints that the corresponding type must satisfy. The
constraint list can contain any number of interfaces and, at most, one class. It can also contain the
New keyword to indicate that the corresponding type must provide an empty constructor. If a con-
straint list contains more than one item, the list must be surrounded by braces.

The following code defines the generic MyGeneric class. It takes three type parameters. The first is
named Type1 within the generic’s code and has no constraints. The second type, named Type2,
must satisfy the IComparable interface. The third parameter, named Type3, must provide an
empty constructor, must satisfy the IDisposable interface, and must inherit directly or indirectly
from the Person class.

Public Class MyGeneric(Of _
Type1, _
Type2 As IComparable, _
Type3 As {New, IDisposable, Person})

40_571982 appj.qxd 9/1/05 7:46 PM Page 925

40_571982 appj.qxd 9/1/05 7:46 PM Page 926

Graphics
This appendix provides information about graphics classes.

Graphics Namespaces
This section describes the most important graphics namespaces and their most useful classes,
structures, and enumerated values.

System.Drawing
This namespace defines the most important graphics objects such as Graphics, Pen, Brush, Font,
FontFamily, Bitmap, Icon, and Image. The following table describes the namespace’s most use-
ful classes and structures.

Classes and Structures Purpose

Bitmap Represents a bitmap image defined by pixel data.

Brush Represents area fill characteristics.

Color Defines a color’s red, green, blue, and alpha
components as values between 0 and 255. Alpha = 0
means the object is transparent; alpha = 255 means it is
opaque.

Font Represents a particular font (name, size, and style, such
as italic or bold).

FontFamily Represents a group of typefaces with similar
characteristics.

Graphics Represents a drawing surface. Provides methods to
draw on the surface.

Table continued on following page

41_571982 appk.qxd 9/1/05 7:43 PM Page 927

Classes and Structures Purpose

Icon Represents a Windows icon.

Image Abstract base class from which Bitmap, Icon, and Metafile
inherit.

Metafile Represents a graphic metafile.

Pen Represents line drawing characteristics (such as color,
thickness, and dash style).

Pens Provides a large number of predefined pens with different
colors and width 1.

Point Defines a point’s X and Y coordinates.

PointF Defines a point’s X and Y coordinates with floating-point
values.

Rectangle Defines a rectangle using a Point and a Size.

RectangleF Defines a rectangle using a PointF and a SizeF (with
floating-point values).

Region Defines a shape created from rectangles and paths for filling,
hit testing, or clipping.

Size Defines a width and height.

SizeF Defines a width and height with floating-point values.

SolidBrush Represents a solid brush.

System.Drawing.Drawing2D
This namespace contains classes for more advanced two-dimensional drawing. Some of these classes
refine more basic drawing classes. For example, the HatchBrush class represents a specialized type of
Brush that fills with a hatch pattern. Other classes define values for use by other graphics classes. For
example, the Blend class defines color-blending parameters for a LinearGradientBrush.

The following table describes this namespace’s most useful classes and enumerations.

Classes and Enumerations Purpose

Blend Defines blend characteristics for a LinearGradient-
Brush

ColorBlend Defines blend characteristics for a PathGradientBrush

DashCap Enumeration that determines how the ends of a dash in a
dashed line are drawn

928

Appendix K

41_571982 appk.qxd 9/1/05 7:43 PM Page 928

Classes and Enumerations Purpose

DashStyle Enumeration that determines how a dashed line is
drawn

GraphicsPath Represents a series of connected lines and curves for
drawing, filling, or clipping

HatchBrush Defines a Brush that fills an area with a hatch pattern

HatchStyle Enumeration that determines the hatch style used by a
HatchBrush object

LinearGradientBrush Defines a Brush that fills an area with a linear color
gradient

LineCap Enumeration that determines how the ends of a line are
drawn

LineJoin Enumeration that determines how lines are joined by a
GDI method that draws connected lines

Matrix Represents a transformation matrix

PathGradientBrush Defines a Brush that fills an area with a color gradient
that follows a path

System.Drawing.Imaging
This namespace contains objects that deal with more advanced bitmap graphics. It includes classes that
define image file formats such as GIF and JPG, classes that manage color palettes, and classes that define
metafiles. The following table describes this namespace’s most useful classes.

Class Purpose

ColorMap Defines a mapping from old color values to new ones

ColorPalette Represents a palette of color values

ImageFormat Specifies an image’s format (bmp, emf, gif, jpeg, and so
forth)

Metafile Represents a graphic metafile that contains drawing
instructions

MetafileHeader Defines the attributes of a Metafile object

MetaHeader Contains information about a Windows metafile (WMF)

WmfPlaceableFileHeader Specifies how a metafile should be mapped to an output
device

929

Graphics

41_571982 appk.qxd 9/1/05 7:43 PM Page 929

System.Drawing.Text
This namespace contains only three classes for working with installed fonts. The following table
describes these classes.

Class Purpose

FontCollection Base class for the derived InstalledFontCollection and
PrivateFontCollection classes

InstalledFontCollection Provides a list of the system’s installed fonts

PrivateFontCollection Provides a list of the application’s privately installed fonts

System.Drawing.Printing
This namespace contains objects for printing and managing the printer’s characteristics. The following
table describes the most useful of these classes.

Class Purpose

PageSettings Defines the page settings for either an entire PrintDocument or
for a particular page. This object has properties that are Margins,
PaperSize, PaperSource, PrinterResolution, and
PrinterSettings objects.

Margins Defines the margins for the printed page.

PaperSize Defines the paper’s size.

PaperSource Defines the printer’s paper source.

PrinterResolution Defines the printer’s resolution.

PrinterSettings Defines the printer’s settings.

Drawing Classes
The following sections describe the most useful properties and methods provided by key drawing
classes.

Graphics
The Graphics object represents a drawing surface. It provides many methods for drawing shapes, fill-
ing areas, and determining the appearance of drawing results.

The following table lists the Graphics object’s drawing methods.

930

Appendix K

41_571982 appk.qxd 9/1/05 7:43 PM Page 930

Drawing Method Purpose

DrawArc Draws an arc of an ellipse

DrawBezier Draws a Bézier curve

DrawBeziers Draws a series of connected Bézier curves

DrawClosedCurve Draws a closed curve that connects a series of points, joining the
final point to the first point

DrawCurve Draws a smooth curve that connects a series of points

DrawEllipse Draws an ellipse

DrawIcon Draws an Icon onto the Graphics object’s drawing surface

DrawIconUnstretched Draws an Icon object onto the Graphics object’s drawing
surface without scaling

DrawImage Draws an Image object onto the Graphics object’s drawing
surface

DrawImageUnscaled Draws an Image object onto the drawing surface without scaling

DrawLine Draws a line

DrawLines Draws a series of connected lines

DrawPath Draws a GraphicsPath object

DrawPie Draws a pie slice taken from an ellipse

DrawPolygon Draws a polygon

DrawRectangle Draws a rectangle

DrawRectangles Draws a series of rectangles

DrawString Draws text on the drawing surface

The following table lists the Graphics object’s area filling methods.

Filling Method Purpose

FillClosedCurve Fills a smooth curve that connects a series of points

FillEllipse Fills an ellipse

FillPath Fills a GraphicsPath object

FillPie Fills a pie slice taken from an ellipse

FillPolygon Fills a polygon

FillRectangle Fills a rectangle

FillRectangles Fills a series of rectangles

FillRegion Fills a Region object

931

Graphics

41_571982 appk.qxd 9/1/05 7:43 PM Page 931

The following table lists other useful Graphics object properties and methods.

Properties and Methods Purpose

AddMetafileComment Adds a comment to a metafile

Clear Clears the Graphics object and fills it with a specific color

Clip Determines the Region object used to clip drawing on the
Graphics surface

Dispose Releases the resources held by the Graphics object

DpiX Returns the horizontal number of dots per inch (DPI) for
this object’s surface

DpiY Returns the vertical number of dots per inch (DPI) for this
object’s surface

ExcludeClip Updates the Graphics object’s clipping region to exclude
the area defined by a Region or Rectangle

FromHdc Creates a new Graphics object from a device context
handle (hDC)

FromHwnd Creates a new Graphics object from a window handle
(hWnd)

FromImage Creates a new Graphics object from an Image object

InterpolationMode Controls anti-aliasing when drawing images

IntersectClip Updates the Graphics object’s clipping region to be the
intersection of the current clipping region and the area
defined by a Region or Rectangle

IsVisible Returns True if a specified point is within the Graphics
object’s visible clipping region

MeasureCharacterRanges Returns an array of Region objects that show where each
character in a string will be drawn

MeasureString Returns a SizeF structure that gives the size of a string
drawn on the Graphics object with a particular font

MultiplyTransform Multiplies the Graphics object’s current transformation
matrix by another transformation matrix

PageScale Determines the amount by which drawing commands are
scaled

PageUnit Determines the units of measurement: Display (depends
on the device, typically pixel for monitors and 1/100 inch
for printers), Document (1/300 inch), Inch, Millimeter,
Pixel, or Point (1/72 inch)

RenderingOrigin Determines the point used as a reference when hatching

932

Appendix K

41_571982 appk.qxd 9/1/05 7:43 PM Page 932

Properties and Methods Purpose

ResetClip Resets the object’s clipping region so that the drawing is not
clipped

ResetTransformation Resets the object’s transformation matrix to the identity
matrix

Restore Restores the Graphics object to a state saved by the Save
method

RotateTransform Adds a rotation to the object’s current transformation

Save Saves the object’s current state

ScaleTransform Adds a scaling transformation to the Graphics object’s
current transformation

SetClip Sets or merges the Graphics object’s clipping area to
another Graphics object, a GraphicsPath object, or a
Rectangle

SmoothingMode Controls anti-aliasing when drawing lines, curves, or filled
areas

TextRenderingHint Controls anti-aliasing and hinting when drawing text

Transform Gets or sets the Graphics object’s transformation matrix

TransformPoints Applies the object’s current transformation to an array of
points

TranslateTransform Adds a translation transformation to the Graphics object’s
current transformation

Pen
The Pen object determines the appearance of drawn lines. It determines such properties as a line’s width,
color, and dash style. The following table lists the Pen object’s most useful properties and methods.

Properties and Methods Purpose

Alignment Determines whether the line is drawn inside or centered on the
theoretical perfectly thin line specified by the drawing routine.

Brush Determines the Brush used to fill lines.

Color Determines the lines’ color.

CompoundArray Lets you draw lines that are striped lengthwise.

CustomEndCap Determines the line’s end cap.

CustomStartCap Determines the line’s start cap.

Table continued on following page

933

Graphics

41_571982 appk.qxd 9/1/05 7:43 PM Page 933

Properties and Methods Purpose

DashCap Determines the cap drawn at the ends of dashes.

DashOffset Determines the distance from the start of the line to the start
of the first dash.

DashPattern An array of Singles that specifies a custom dash pattern.

DashStyle Determines the line’s dash style.

EndCap Determines the cap used at the end of the line.

LineJoin Determines how lines are joined by a GDI method that
draws connected lines.

MultiplyTransform Multiplies the Pen’s current transformation by another
transformation matrix.

ResetTransform Resets the Pen’s transformation to the identity
transformation.

RotateTransform Adds a rotation transformation to the Pen’s current
transformation.

ScaleTransform Adds a scaling transformation to the Pen’s current
transformation.

SetLineCap This method takes parameters that let you specify the
Pen’s StartCap, EndCap, and LineJoin properties at the
same time.

StartCap Determines the cap used at the start of the line.

Transform Determines the transformation applied to the initially
circular “pen tip” used to draw lines.

Width The width of the pen.

Brushes
The Brush class is an abstract class, so you cannot make instances of it. Instead, you must make instances
of one of its derived classes: SolidBrush, TextureBrush, HatchBrush, LinearGradientBrush, and
PathGradientBrush. The following table briefly describes these classes.

Class Purpose

SolidBrush Fills areas with a single solid color

TextureBrush Fills areas with a repeating image

HatchBrush Fills areas with a repeating hatch pattern

LinearGradientBrush Fills areas with a linear gradient of two or more colors

PathGradientBrush Fills areas with a color gradient that follows a path

934

Appendix K

41_571982 appk.qxd 9/1/05 7:43 PM Page 934

GraphicsPath
The GraphicsPath object represents a path defined by lines, curves, text, and other drawing com-
mands. You can use Graphics object methods to fill and draw a GraphicsPath, and you can use a
GraphicsPath to define a clipping region. The following table lists the GraphicsPath object’s most
useful properties and methods.

Properties and Methods Purpose

CloseAllFigures Closes all open figures by connecting their last points with
their first points and then starts a new figure.

CloseFigure Closes the current figure by connecting its last point with its
first point and then starts a new figure.

FillMode Determines how the path handles overlaps when you fill it.
This property can take the values Alternate and Winding.

Flatten Converts any curves in the path into a sequence of lines.

GetBounds Returns a RectangleF structure representing the path’s
bounding box.

GetLastPoint Returns the last PointF structure in the PathPoints array.

IsOutlineVisible Returns True if the indicated point lies beneath the path’s
outline.

IsVisible Returns True if the indicated point lies in the path’s interior.

PathData Returns a PathData object that encapsulates the path’s
graphical data.

PathPoints Returns an array of PointF structures giving the points in
the path.

PathTypes Returns an array of Bytes representing the types of the
points in the path.

PointCount Returns the number of points in the path.

Reset Clears the path data and resets FillMode to Alternate.

Reverse Reverses the order of the path’s data.

StartFigure Starts a new figure, so future data is added to the new
figure.

Transform Applies a transformation matrix to the path.

Warp Applies a warping transformation defined by mapping a
parallelogram onto a rectangle to the path.

Widen Enlarges the curves in the path to enclose a line drawn by a
specific pen.

935

Graphics

41_571982 appk.qxd 9/1/05 7:43 PM Page 935

StringFormat
The StringFormat object determines how text is formatted. It enables you to draw text that is centered
vertically or horizontally, aligned on the left or right, and wrapped or truncated. The following table lists
the StringFormat object’s most useful properties and methods.

Properties and Methods Purpose

Alignment Determines the text’s horizontal alignment. This can
be Near (left), Center (middle), or Far (right).

FormatFlags Gets or sets flags that modify the StringFormat
object’s behavior.

GetTabStops Returns an array of Singles giving the positions of
tab stops.

HotkeyPrefix Determines how the hotkey prefix character is dis-
played. This can be Show, Hide, or None.

LineAlignment Determines the text’s vertical alignment. This can be
Near (top), Center (middle), or Far (bottom).

SetMeasureableCharacterRanges Sets an array of CharacterRange structures
representing ranges of characters that will later
be measured by the Graphics object’s
MeasureCharacterRanges method.

SetTabStops Sets an array of Singles giving the positions of tab
stops.

Trimming Determines how the text is trimmed if it cannot fit
within the layout rectangle.

Image
The Image class represents the underlying “physical” drawing surface hidden below the logical layer
created by the Graphics class. Image is an abstract class, so you cannot directly create instances of it.
Instead, you must create instances of its child classes Bitmap and Metafile.

The following table describes the Image class’s most useful properties and methods, which are inherited
by the Bitmap and Metafile classes.

Properties and Methods Purpose

Dispose Frees the resources associated with this image.

Flags Returns attribute flags for the image.

FromFile Loads an image from a file.

FromHbitmap Loads a Bitmap image from a Windows bitmap handle.

936

Appendix K

41_571982 appk.qxd 9/1/05 7:43 PM Page 936

Properties and Methods Purpose

FromStream Loads an image from a data stream.

GetBounds Returns a RectangleF structure representing the rectangle’s
bounds.

GetPixelFormatSize Returns the color resolution (bits per pixel) for a specified
PixelFormat.

GetThumbnailImage Returns a thumbnail representation of the image.

Height Returns the image’s height.

HorizontalResolution Returns the horizontal resolution of the image in pixels
per inch.

IsAlphaPixelFormat Returns True if the specified PixelFormat contains alpha
information.

Palette Determines the ColorPalette object used by the image.

PhysicalDimension Returns a SizeF structure giving the image’s dimensions in
pixels for Bitmaps and 0.01 millimeters for Metafiles.

PixelFormat Returns the image’s pixel format.

RawFormat Returns an ImageFormat object representing the image’s raw
format.

RotateFlip Rotates, flips, or rotates and flips the image.

Save Saves the image in a file or stream with a given data format.

Size Returns a Size structure containing the image’s width and
height in pixels.

VerticalResolution Returns the vertical resolution of the image in pixels per inch.

Width Returns the image’s width.

Bitmap
The Bitmap class represents an image defined by pixel data. It inherits the Image class’s properties and
methods described in the previous section. The following table describes some of the most useful new
properties and methods added by the Bitmap class.

Method Purpose

FromHicon Loads a Bitmap image from a Windows icon handle

FromResource Loads a Bitmap image from a Windows resource

GetPixel Returns a Color representing a specified pixel

Table continued on following page

937

Graphics

41_571982 appk.qxd 9/1/05 7:43 PM Page 937

Method Purpose

LockBits Locks the Bitmap’s data in memory, so it cannot move until the
program calls UnlockBits

MakeTransparent Makes all pixels with a specified color transparent by setting the
alpha component of those pixels to 0

SetPixel Sets a specified pixel’s Color value

SetResolution Sets the Bitmap’s horizontal and vertical resolution in DPI

UnlockBits Unlocks the Bitmap’s data in memory so that the system can
relocate it, if necessary

Metafile
The Metafile class represents an image defined by metafile records. It inherits the Image class’s prop-
erties and methods described in the earlier section “Image.” The following table describes some of the
most useful new properties and methods added by the Metafile class.

Method Purpose

GetMetafileHeader Returns the MetafileHeader object associated with this Metafile

PlayRecord Plays a metafile record

938

Appendix K

41_571982 appk.qxd 9/1/05 7:43 PM Page 938

Useful Exception Classes
When your program throws an exception, it’s easy enough to use a Try Catch block to catch the
exception and examine it to determine its class. When you want to throw your own exception,
however, you must know what exception classes are available so that you can pick the right one.
The following table lists some of Visual Basic .NET’s most useful exception classes. You can raise
one of these or create a new class of your own.

Class Purpose

AmbiguousMatchException The program could not figure out which
overloaded object method to use.

ApplicationException This is the ancestor class for all nonfatal
application errors. When you build custom
exception classes, you should inherit from
this class, or from one of its descendants.

ArgumentException An argument is invalid.

ArgumentNullException An argument that cannot be Nothing has
value Nothing.

ArgumentOutOfRangeException An argument is out of its allowed range.

ArithmeticException An arithmetic, casting, or conversion
operation has occurred.

ArrayTypeMismatchException The program tried to store the wrong type
of item in an array.

ConfigurationException A configuration setting is invalid.

ConstraintException A data operation violates a database
constraint.

DataException The ancestor class for ADO.NET exception
classes.

Table continued on following page

42_571982 appl.qxd 9/1/05 7:43 PM Page 939

Class Purpose

DirectoryNotFoundException A needed directory is missing.

DivideByZeroException The program tried to divide by zero.

DuplicateNameException An ADO.NET operation encountered a duplicate
name (for example, it tried to create a second table
with the same name).

EvaluateException Occurs when a DataColumn’s Expression
property cannot be evaluated.

FieldAccessException The program tried to access a class property
improperly.

FormatException An argument’s format doesn’t match its required
format.

IndexOutofRangeException The program tried to access an item outside of the
bounds of an array or other container.

InvalidCastException The program tried to make an invalid conversion.
For example, Integer.Parse(“oops”).

InvalidOperationException The operation is not currently allowed.

IOException The ancestor class for input/output (I/O)
exception classes. A generic I/O error occurred.

EndOfStreamException A stream reached its end.

FileLoadException Error loading a file.

FileNotFoundException Error finding a file.

InternalBufferOverflowException An internal buffer overflowed.

MemberAccessException The program tried to access a class member
improperly.

MethodAccessException The program tried to access a class method
improperly.

MissingFieldException The program tried to access a class property that
doesn’t exist.

MissingMemberException The program tried to access a class member that
doesn’t exist.

MissingMethodException The program tried to access a class method that
doesn’t exist.

NotFiniteNumberException A floating-point number is PositiveInfinity,
NegativeInfinity, or NaN (Not a Number).
You can get these values from the floating-
point classes (as in Single.Nan or
Double.PositiveInfinity).

940

Appendix L

42_571982 appl.qxd 9/1/05 7:43 PM Page 940

Class Purpose

NotImplementedException The requested operation is not implemented.

NotSupportedException The requested operation is not supported. For
example, the program might be asking a routine to
modify data that was opened as read-only.

NullReferenceException The program tried to use an object reference that
is Nothing.

OutOfMemoryException There isn’t enough memory. Note that
sometimes a program cannot recover from an
OutOfMemoryException because it doesn’t have
enough memory to do anything useful. This
exception is most useful if you can predict
beforehand that you will run out of memory
before you actually use up all of the memory and
crash the program. For example, if the user wants
to generate a really huge data set, you may be able
to predict how much memory the program will
need, see if it is available, and throw this error
without actually allocating the data set.

OverflowException An arithmetic, casting, or conversion operation
created an overflow. For example, the program
tried to assign a large Integer value to a Byte
variable.

PolicyException Policy prevents the code from running.

RankException A routine is trying to use an array with the wrong
number of dimensions.

ReadOnlyException The program tried to modify read-only data.

SecurityException A security violation occurred.

SyntaxErrorException A DataColumn’s Expression property contains
invalid syntax.

UnauthorizedAccessException The system is denying access because of an I/O or
security error.

941

Useful Exception Classes

42_571982 appl.qxd 9/1/05 7:43 PM Page 941

42_571982 appl.qxd 9/1/05 7:43 PM Page 942

Date and Time Format
Specifiers

A program uses date and time format specifiers to determine how dates and times are represented
as strings. For example, the Date object’s ToString method returns a string representing a date
and time. An optional parameter to this method tells the object whether to format itself as in
“2/20/2004, 02.20.04 A.D,” or “Friday, February 20, 2004 2:37:18 PM.”

Visual Basic provides two kinds of specifiers that you can use to determine a date and time value’s
format: standard format specifiers and custom format specifiers.

Standard Format Specifiers
A standard format specifier is a single character that you use alone to indicate a standardized for-
mat. For example, the format string “d” indicates a short date format (as in “2/20/2004”).

The following table lists standard format specifiers that you can use to format date and time
strings. The results depend on the regional settings on the computer. The examples shown in this
table are for a typical computer in the United States.

Specifier Meaning Example

d Short date. 2/20/2004

D Long date. Friday, February 20, 2004

t Short time. 2:37 PM

T Long time. 2:37:18 PM

f “Full” date/time with short time. Friday, February 20, 2004
2:37 PM

Table continued on following page

43_571982 appm.qxd 9/1/05 7:41 PM Page 943

Specifier Meaning Example

F “Full” date/time with long time. Friday, February 20, 2004
2:37:18 PM

g “General” date/time with short time. 2/20/2004 2:37 PM

G “General” date/time with long time. 2/20/2004 2:37:18 PM

m or M Month and date. February 20

r or R RFC1123 pattern. Formatting does not Fri, 20 Feb 2004 14:37:18 GMT
convert the time to Greenwich Mean
Time (GMT), so you should convert
local times to GMT before formatting.

s Sortable ISO 8601 date/time. 2004-02-20T14:37:18

u Universal sortable date/time. 2004-02-20 14:37:18Z
Formatting does not convert the time
to universal time, so you should
convert local times to universal time
before formatting.

U Universal full date/time. This is the Friday, February 20, 2004
full universal time, not the local time. 9:37:18 PM

y or Y Year and month. February, 2004

Custom Format Specifiers
Custom format specifiers describe pieces of a date or time that you can use to build your own customized
formats. For example, the specifier “ddd” indicates the abbreviated day of the week, as in “Wed.”

The following table lists characters that you can use to build custom formats for date and time strings.

Specifier Meaning Example

d Date of the month. 3

dd Date of the month with two digits. 03

ddd Abbreviated day of the week. Wed

dddd Full day of the week. Wednesday

f Fractions of seconds, one digit. Add additional f’s for up 8
to seven digits (fffffff).

g Era. A.D.

h Hour, 12-hour clock with one digit, if possible. 1

944

Appendix M

43_571982 appm.qxd 9/1/05 7:41 PM Page 944

Specifier Meaning Example

hh Hour, 12-hour clock with two digits. 01

H Hour, 24-hour clock with one digit, if possible. 13

HH Hour, 24-hour clock with two digits. 07

m Minutes with one digit, if possible. 9

mm Minutes with two digits. 09

M Month number (1–12) with one digit, if possible. 2

MM Month number (1–12) with two digits. 02

MMM Month abbreviation. Feb

MMMM Full month name. February

s Seconds with one digit, if possible. 3

ss Seconds with two digits. 03

t AM/PM designator with one character. A

tt AM/PM designator with two characters. AM

y Year with up to two digits, not zero-padded. 4

yy Year with two digits. 04

yyyy Year with four digits. 2004

z Time zone offset (hours from GMT in the range –12 to +13). –7

zz Time zone offset with two digits. -07

zzz Time zone offset with two digits of hours and minutes. -07:00

: Time separator.

/ Date separator.

“...” Quoted string. Displays the enclosed characters without
trying to interpret them.

‘...’ Quoted string. Displays the enclosed characters without
trying to interpret them.

% Displays the following character as a custom specifier.
(See the following discussion.)

\ Displays the next character without trying to interpret it.

Some of the custom specifier characters in this table are the same as characters used by standard speci-
fiers. For example, if you use the character “d” alone, Visual Basic interprets it as the standard specifier
for short date. If you use the character “d” in a custom specifier, Visual Basic interprets it as the date of
the month.

945

Date and Time Format Specifiers

43_571982 appm.qxd 9/1/05 7:41 PM Page 945

If you want to use a custom specifier alone, precede it with the “%” character. The following shows two
queries and their results executed in the Immediate window:

?Now.ToString(“d”)
“2/20/2004”
?Now.ToString(“%d”)
“20”

Custom specifiers are somewhat sensitive to the computer’s regional settings. For example, they at least
know the local names and abbreviations of the months and days of the week.

The standard specifiers have even more information about the local culture, however. For example, the
date specifiers know whether the local culture places months before or after days. The “d” specifier
gives the result “2/20/2004” for the en-US culture (English, United States), and it returns “20/02/2004”
for the culture en-NZ (English, New Zealand).

To simplify cultural differences, you should use the standard specifiers whenever they will satisfy
your needs rather than building your own custom format specifiers. For example, use “d” instead of
“M/d/yyyy.”

946

Appendix M

43_571982 appm.qxd 9/1/05 7:41 PM Page 946

Other Format
Specifiers

A program uses format specifiers to determine how objects are represented as strings. For exam-
ple, by using different format specifiers, you can make an integer’s ToString method return a
value as -12345, -12,345, (12,345), or 012,345-.

Visual Basic provides standard format specifiers in addition to custom specifiers. The standard
specifiers make it easy to display values in often used formats (such as currency or scientific nota-
tion). Custom specifiers provide more control over how results are composed.

Standard Numeric Format Specifiers
Standard numeric format specifiers enable you to easily display commonly used numeric formats.
The following table lists the standard numeric specifiers.

Specifier Meaning

C or c Currency. The exact format depends on the computer’s
internationalization settings. If a precision specifier follows the C, it
indicates the number of digits that should follow the decimal point.
On a standard system in the United States, the value –1234.5678
with the specifier “C” produces ($1,234.57).

D or d Decimal. This specifier works only with integer types. It simply displays
the number’s digits. If a precision specifier follows the D, it indicates the
number of digits the result should have, padding on the left with zeros,
if necessary. If the value is negative, the result has a minus sign on the
left. The value –1234 with the specifier “D6” produces –001234.

Table continued on following page

44_571982 appn.qxd 9/1/05 7:41 PM Page 947

Specifier Meaning

E or e Scientific notation. The result always has exactly one digit to the left of the
decimal point, followed by more digits, an E or e, a plus or minus sign, and at
least three digits of exponent (padded on the left with zeros, if necessary). If a
precision specifier follows the E, it indicates the number of digits the result
should have after the decimal point. The value –1234.5678 with the specifier
“e2” produces –1.23e+003.

F or f Fixed point. The result contains a minus sign if the value is negative, digits, a
decimal point, and then more digits. If a precision specifier follows the F, it
indicates the number of digits the result should have after the decimal point.
The value –1234.5678 with the specifier “f3” produces –1234.568.

G or g General. Either scientific or fixed point notation depending on which is more
compact.

N or n Number. The result has a minus sign if the value is negative, digits with
thousands separators, a decimal point, and more digits. If a precision specifier
follows the N, it indicates the number of digits the result should have after the
decimal point. The value –1234.5678 with the specifier “N3” produces –1,234.568.

P or p Percentage. The value is multiplied by 100 and then formatted according to
the computer’s settings. If a precision specifier follows the P, it indicates the
number of digits that should follow the decimal point. On a typical computer,
the value 1.2345678 with the specifier “P” produces 123.46%.

R or r Round trip. The value is formatted in such a way that the result can be
converted back into its original value. Depending on the data type and value,
this may require 17 digits of precision. The value 1/7 with the specifier “R”
produces 0.14285714285714285.

X or x Hexadecimal. This works for integer types only. The value is converted into
hexadecimal. The case of the X or x determines whether hexadecimal digits
above 9 are written in uppercase or lowercase. If a precision specifier follows the
X, it indicates the number of digits the result should have, padding on the left
with zeros, if necessary. The value 183 with the specifier “x4” produces 00b7.

Custom Numeric Format Specifiers
Custom numeric format specifiers describe how a number should be formatted. The following table lists
characters that you can use to build custom numeric formats.

Specifier Meaning

0 A digit or zero. If the number doesn’t have a digit in this position, the specifier
adds a 0. The value 12 with the specifier 000.00 produces 012.00.

A digit. If the number doesn’t have a digit in this position, nothing is printed.

948

Appendix N

44_571982 appn.qxd 9/1/05 7:41 PM Page 948

Specifier Meaning

, If used between two digits (either 0 or #), adds thousands separators to the
result. The value 1234567 with the specifier “#,#” produces 1,234,567.

, If used immediately to the left of the decimal point, the number is divided by
1000 for each comma. The value 1234567 with the specifier “#,#,.” produces
1,234.

% Multiplies the number by 100 and inserts the % symbol where it appears in the
specifier. The value 0.123 with the specifier “.00%” produces 12.30%.

E0 (or e0) Displays the number in scientific notation inserting an E (or e) between
the number and its exponent. Use # and 0 to format the number before the
exponent. The number of 0’s after the E determines the number of digits in
the exponent. If you place a + sign between the E and 0, the result’s exponent
includes a + or - sign. If you omit the + sign, the exponent only includes a
sign if it is negative. The value 1234.5678 with the specifier “00.000E+000”
produces 12.346E+002.

\ Displays the following character literally without interpreting it. Use \\ to
display the \ character. The value 12 with the specifier “#\%” produces 12%,
while the same value with the specifier “#%” produces 1200%.

‘ABC’ or Displays the characters in the quotes literally. The value 12 with the specifier
“ABC” “#’%” (single quotes around the % symbol) produces 12%.

Numeric Formatting Sections
A numeric format specifier may contain one, two, or three sections separated by semicolons. If the speci-
fier contains one section, the specifier is used for all numeric values.

If the specifier contains two sections, the first is used to format values that are positive or zero, and the
second is used to format negative values.

If the specifier contains three sections, the first is used to format positive values, the second is used to
format negative values, and the third is used to format values that are zero.

The following text shows output from the Immediate window for three values using the format specifier
“#,#.00;<#,#.00>;ZERO”:

?(1234.5678).ToString(“#,#.00;<#,#.00>;ZERO”)
1,234.57
?(-1234.5678).ToString(“#,#.00;<#,#.00>;ZERO”)
<1,234.57>
?(0).ToString(“#,#.00;<#,#.00>;ZERO”)
ZERO

949

Other Format Specifiers

44_571982 appn.qxd 9/1/05 7:41 PM Page 949

Composite Formatting
The String.Format, Console.WriteLine, and TextWriter.WriteLine methods provide a different
method for formatting strings. These routines can take a composite formatting string parameter that
contains literal characters plus placeholders for values. Other parameters to the methods give the values.

The value placeholders have the following format:

{index[,alignment][:format_specifier]}

The index value gives the index numbered from 0 of the parameter that should be inserted in this place-
holder’s position.

The optional alignment value tells the minimum number of spaces the item should use and the result is
padded with spaces, if necessary. If this value is negative, the result is left-justified. If the value is posi-
tive, the result is right-justified.

The format_specifier indicates how the item should be formatted.

For example, consider the following code:

Dim emp As String = “Crazy Bob”
Dim sales As Single = -12345.67
MessageBox.Show(String.Format(“{0} {1:earned;lost} {1:c} this year”, emp, sales))

The first placeholder refers to parameter number 0, which has value “Crazy Bob.” The second place-
holder refers to parameter number 1 and includes a two-part format specifier that displays “earned”
if the value is positive or zero, and “lost” of the value is negative. The third placeholder refers to
parameter number 1 again, this time formatted as currency.

The following text shows the result:

Crazy Bob lost ($12,345.67) this year

Enumerated Type Formatting
Visual Basic provides special formatting capabilities that can display the values of enumerated variables.
For example, consider the following code:

Private Enum Dessert
Cake = 1
Pie = 2
Cookie = 3
IceCream = 4

End Enum
...
Dim dessert_choice As Dessert = Dessert.Cake
MessageBox.Show(dessert_choice.ToString)

950

Appendix N

44_571982 appn.qxd 9/1/05 7:41 PM Page 950

This code displays the string “Cake.”

For variables of an enumerated type such as dessert_choice, the ToString method can take a speci-
fier that determines how the value is formatted.

The specifier G or g formats the value as a string if possible. If the value is not a valid entry in the Enum’s
definition, the result is the variable’s numeric value. For example, the previous code does not define a
Dessert enumeration for the value 7 so, if you set dessert_choice to 7, then dessert_choice
.ToString(“G”) returns the value 7.

If you define an enumerated type with the Flags attribute, variables of that type can be a combination
of the Enum’s values, as shown in the following code:

<Flags()> _
Private Enum Dessert

Cake = 1
Pie = 2
Cookie = 4
IceCream = 8

End Enum
...
Dim dessert_choice As Dessert = Dessert.IceCream Or Dessert.Cake
MessageBox.Show(dessert_choice.ToString(“G”))

In this case, the G format specifier returns a string that contains all of the flag values separated by com-
mas. In this example, the result is “Cake, IceCream.” Note that the values are returned in the order in
which they are defined by the enumeration, not the order in which they are assigned to the variable.

If you do not use the Flags attribute when defining an enumerated type, the G format specifier always
returns the variable’s numeric value if it is a combination of values rather than a single value from the
list. On the other hand, the F specifier returns a list of comma-separated values if it makes sense. If you
omit the Flags attribute from the previous code, dessert_choice.ToString(“G”) would return 9,
but dessert_choice.ToString(“F”) would return “Cake, IceCream.”

The D or d specifier always formats the variable as a number.

The specifier X or x formats the value as a hexadecimal number.

951

Other Format Specifiers

44_571982 appn.qxd 9/1/05 7:41 PM Page 951

44_571982 appn.qxd 9/1/05 7:41 PM Page 952

The Application Class
The Application class provides static properties and methods for controlling the application.
This appendix contains a summary of the Application class’s most useful properties, methods,
and events. Chapter 25, “Configuration and Resources,” has a bit more to say about the
Application class and provides some example code.

Proper ties
The following table describes the Application class’s most useful properties.

Property Purpose

CommonAppDataPath Returns the path where the program should store
application data that is shared by all users. By default,
this path has the form base_path\company_name\
product_name\product_version. The base_path is
typically C:\Documents and Settings\All Users\
Application Data.

CommonAppDataRegistry Returns the Registry key where the program should store
application data that is shared by all users. By default, this
path has the form HKEY_LOCAL_MACHINE\Software\
company_name\product_name\product_version.

CompanyName Returns the application’s company name.

CurrentCulture Gets or sets the CultureInfo object for this thread. The
CultureInfo object specifies information about a spe-
cific culture (such its name, writing system, calendar, and
its formats for dates, times, and numbers).

Table continued on following page

45_571982 appo.qxd 9/1/05 7:47 PM Page 953

Property Purpose

CurrentInputLanguage Gets or sets the InputLanguage for this thread. The Input-
Language object defines the layout of the keyboard for the cul-
ture. It determines how the keyboard keys are mapped to the
characters in the culture’s language.

ExecutablePath Returns the fully qualified path to the file that started the exe-
cution, including the file name.

LocalUserAppDataPath Returns the path where the program should store data for
this local, nonroaming user. By default, this path has the form
base_path\company_name\product_name\product_
version. The base_path is typically C:\Documents and
Settings\user_name\Local Settings\Application Data.

MessageLoop Returns True if the thread has a message loop. If the program
begins with a startup form, this loop is created automatically.
If it starts with a custom Sub Main, then the loop doesn’t
initially exist, and the program must start it by calling
Application.Run.

OpenForms Returns a collection holding references to all of the applica-
tion’s open forms.

ProductName Returns the application’s product name.

ProductVersion Gets the product version associated with this application.

StartupPath Returns the fully qualified path to the file that started the exe-
cution, including the filename.

UserAppDataPath Returns the path where the program should store data for
this user. By default, this path has the form base_path\
company_name\product_name\product_version. The
base_path is typically C:\Documents and Settings\
user_name\Application Data.

UserAppDataRegistry Returns the Registry key where the program should store
application data for this user. By default, this path has the form
HKEY_CURRENT_USER\Software\company_name\product_
name\product_version.

UseWaitCursor Determines whether this thread’s forms display a wait cursor.
Set this to True before performing a long operation, and set it
to False when the operation is finished.

954

Appendix O

45_571982 appo.qxd 9/1/05 7:47 PM Page 954

Methods
The following table describes the Application class’s most useful methods.

Method Purpose

AddMessageFilter Adds a message filter to monitor the event loop’s Windows
messages. See the following text for an example.

DoEvents Processes Windows messages that are currently in the message
queue. If the thread is performing a long calculation, it would
normally prevent the rest of the thread from taking action
(such as processing these messages). Calling DoEvents lets the
user interface catch up with the user’s actions. Note that you
can often avoid the need for DoEvents if you perform the long
task on a separate thread.

Exit Ends the whole application. This is a rather abrupt halt, and
any forms do not execute their FormClosing or FormClosed
event handlers, so be sure the application has executed any
necessary clean-up code before calling Application.Exit.

ExitThread Ends the current thread. This is a rather abrupt halt, and any
forms on the thread do not execute their FormClosing or
FormClosed event handlers.

OnThreadException Raises the Application object’s ThreadException event,
passing it an exception. If your application throws an uncaught
exception in the IDE, the IDE halts. That makes it hard to test
Application.ThreadException event handlers. You can call
OnThreadException to invoke the event handler.

RemoveMessageFilter Removes a message filter.

Run Runs a message loop for the current thread. If you pass this
method a form object, it displays the form and processes its
messages until the form closes.

SetSuspendState Makes the system suspend operation or hibernate. When the
system hibernates, it writes its memory contents to disk. When
you restart the system, it resumes with its previous desktop
and applications running. When the system suspends operation,
it enters low-power mode. It can resume more quickly than a
hibernated system, but memory contents are not saved, so they
will be lost if the computer loses power.

955

The Application Class

45_571982 appo.qxd 9/1/05 7:47 PM Page 955

Events
The following table describes the Application object’s events.

Event Purpose

ApplicationExit Occurs when the application is about to shut down.

Idle Occurs when the application finishes executing some code and
is about to enter an idle state to wait for events.

ThreadException Occurs when the application throws an unhandled exception.

ThreadExit Occurs when a thread is about to exit.

956

Appendix O

45_571982 appo.qxd 9/1/05 7:47 PM Page 956

The My Namespace
The My namespace provides shortcuts to make performing common tasks easier. The following
sections describe the major items within the My namespace and describe the tools that they make
available.

My.Application
My.Application provides information about the current application. It includes properties that
tell you the program’s current directory, culture, Log object, and splash screen. It also includes
information about the application’s assembly, including the program’s version numbering.

The following table describes the most useful My.Application properties, methods, and events.

Item Purpose

ApplicationContext Returns an ApplicationContext object for the
currently executing thread. It provides a reference to the
thread’s form. Its ExitThread method terminates the
thread and its ThreadExit event fires when the thread is
exiting.

ChangeCurrentCulture Changes the thread’s culture used for string manipula-
tion and formatting.

ChangeCurrentUICulture Changes the thread’s culture used for retrieving
resources.

CommandLineArgs Returns a collection containing the command-line argu-
ment strings used when the application was started. The
first entry (with index 0) is the fully qualified name of the
executable application.

Table continued on following page

46_571982 appp.qxd 9/1/05 7:46 PM Page 957

Item Purpose

CurrentCulture Returns a CultureInfo object that represents the settings used
for culture-specific string manipulation and formatting. This
includes calendar information, date and time specifications, the
culture’s name, keyboard layout, number formats for general
numbers (for example, the thousands separator character and
decimal character), currency, and percentages.

CurrentUICulture Returns a CultureInfo object that represents the culture-
specific settings used by the thread to retrieve resources. It
determines the culture used by the Resource Manager and
My.Resources.

Deployment Returns the application’s current ApplicationDeployment
object used for ClickOnce deployment. Normally, you
don’t need to manage deployment yourself, but this object
lets you check for updates, start an update synchronously
or asynchronously, download files, and restart the updated
application.

DoEvents Makes the application process all of the Windows messages
currently waiting in the message queue. Doing this allows
controls to process messages and update their appearances
while the program is performing a long calculation. Often, you
can avoid using DoEvents by performing long calculations on
a separate thread, so the user interface can continue running
normally.

GetEnvironmentVariable Returns the value of the specified environment variable. For
example, the following code displays the value of the PATH
environment variable.

MessageBox.Show(My.Application.GetEnvironment
Variable(“PATH”))

This method raises an exception if the named environment
variable doesn’t exist. The method Environment.
GetEnvironmentVariable performs the same function,
except that it returns Nothing if the variable doesn’t exist.

Info Returns an AssemblyInfo object that provides information
about the assembly such as assembly name, company name,
copyright, trademark, and version.

IsNetworkDeployed Returns True if the application was deployed over the net-
work. You should check this property and only try to use the
My.Application.Deployment object if it returns True.

958

Appendix P

46_571982 appp.qxd 9/1/05 7:46 PM Page 958

Item Purpose

Log An object of the class MyLog. You can use this object’s
WriteEntry and WriteException methods to log mes-
sages and exceptions.

MainForm Gets or sets the application’s main form.

NetworkAvailabilityChanged The application raises this event when the network’s avail-
ability changes.

OpenForms Returns a collection containing references to all of the appli-
cation’s open forms.

Shutdown The application raises this event when it is shutting down.
This event occurs after all forms’ FormClosing and
FormClosed event handlers have finished.

SplashScreen Gets or sets the application’s splash screen.

Startup The application raises this event when it is starting up.

StartupNextInstance The application raises this event when the user tries to start
a second instance of a single-instance application.

UICulture Gets the thread’s culture used for retrieving resources.

UnhandledException The application raises this event if it encounters an unhan-
dled exception.

The following table lists the Info object’s properties.

Property Purpose

AssemblyName Gets the assembly’s name.

CompanyName Gets the assembly’s company name.

Copyright Gets the assembly’s copyright information.

Description Gets the assembly’s description.

DirectoryPath Gets the directory where the assembly is stored.

LoadedAssemblies Returns a collection of Assembly objects for the
application’s currently loaded assemblies.

ProductName Gets the assembly’s product name.

StackTrace Gets a stack trace.

Table continued on following page

959

The My Namespace

46_571982 appp.qxd 9/1/05 7:46 PM Page 959

Property Purpose

Title Gets the assembly’s title.

Trademark Gets the assembly’s trademark information.

Version Gets the assembly’s version number.

WorkingSet Gets the number of bytes mapped to the process context.

To set most of the Info values at design time, open Solution Explorer, double-click the My Project entry,
select the Application tab shown in Figure P-1, and click the Assembly Information button.

Figure P-1. Click the Assembly Information button to view and set assembly information.

960

Appendix P

46_571982 appp.qxd 9/1/05 7:46 PM Page 960

Enter the assembly information in the dialog shown in Figure P-2 and click OK.

Figure P-2. Use this dialog to enter information
that the program can later retrieve using
My.Application.AssemblyInfo.

To place code in the My.Application object’s NetworkAvailabilityChanged, Shutdown, Startup,
StartupNextInstance, or UnhandledException event handlers, open Solution Explorer, double-click
the My Project entry, select the Application tab, and click the View Application Events button at the bot-
tom, as shown in Figure P-3.

Alternatively, you can open Solution Explorer, click the Show All Files button, expand the My Project
entry, and open the file ApplicationEvents.vb.

To make the application a single-instance application, open the property page shown in Figure P-3 and
check the “Make single instance application” box.

961

The My Namespace

46_571982 appp.qxd 9/1/05 7:46 PM Page 961

Figure P-3. Click the View Application Events button to add code to the My.Application object’s
NetworkAvailabilityChanged, Shutdown, Startup, StartupNextInstance, or
UnhandledException event handlers.

My.Computer
My.Computer provides methods to understand and control the computer’s hardware and the system
software. It lets you work with the audio system, clock, keyboard, clipboard, mouse, network, printers,
registry, and file system.

The following sections describe the properties, methods, and events available through My.Computer
in detail.

962

Appendix P

46_571982 appp.qxd 9/1/05 7:46 PM Page 962

Audio
This object provides access to the computer’s audio system. Its methods let you play a .wav file syn-
chronously or asynchronously, stop a file playing asynchronously, or play a system sound. For example,
the following code plays the system’s exclamation sound:

My.Computer.Audio.PlaySystemSound(SystemSounds.Exclamation)

The following table describes the Audio object’s methods.

Method Purpose

Play Plays .wav data from a file, byte array, or stream. The second
parameter can be Background (play asynchronously in the
background), BackgroundLoop (play asynchronously in the
background and repeat when it ends), or WaitToComplete
(play synchronously).

PlaySystemSound Plays a system sound. The parameter should be a member of
the SystemSounds enumeration and can have the value
Asterisk, Beep, Exclamation, Hand, or Question.

Stop Stops the sound currently playing asynchronously.

Clipboard
The Clipboard object described in Chapter 13, “Drag and Drop, and the Clipboard,” enables you to
move data in and out of the system’s clipboard. The My.Computer.Clipboard object provides extra
tools that simplify some clipboard operations. The following table briefly summarizes the
My.Computer.Clipboard object’s methods.

Method Purpose

Clear Removes all data from the clipboard.

ContainsAudio Returns True if the clipboard contains audio data.

ContainsData Returns True if the clipboard contains data in a specific custom
format.

ContainsFileDropList Returns True if the clipboard contains a file drop list.

ContainsImage Returns True if the clipboard contains image data.

ContainsText Returns True if the clipboard contains textual data.

Table continued on following page

963

The My Namespace

46_571982 appp.qxd 9/1/05 7:46 PM Page 963

Method Purpose

GetAudioStream Gets audio data from the clipboard.

GetData Gets data in a specific custom format from the clipboard.

GetDataObject Gets a DataObject from the clipboard.

GetFileDropList Gets a StringCollection holding the names of the files
selected for drop from the clipboard.

GetImage Gets image data from the clipboard.

GetText Gets textual data from the clipboard.

SetAudio Saves audio data to the clipboard.

SetData Saves data in a specific custom format to the clipboard.

SetDataObject Saves a DataObject to the clipboard.

SetFileDropList Saves a StringCollection containing a series of fully quali-
fied file names to the clipboard.

SetImage Saves an image to the clipboard.

SetText Saves textual data to the clipboard.

See Chapter 13 for more information about using the clipboard.

Clock
This property returns an object of type MyClock that you can use to learn about the current time. The
following table describes this object’s properties.

Property Purpose

GmtTime Returns a Date object that gives the current local date and
time converted into Coordinated Universal Time (UTC) or
Greenwich Mean Time (GMT).

LocalTime Returns a Date object that gives the current local date and time.

TickCount Returns the number of milliseconds since the computer started.

For example, suppose that you live in Colorado, which uses Mountain Standard Time (MST), seven
hours behind Greenwich Mean Time. If My.Computer.Clock.LocalTime returns 2:03 PM, then
My.Computer.Clock.GmtTime returns 9:03 PM.

If you must store a date and time for later use (for example, in a database), you should generally store it
in UTC. Then you can meaningfully compare that value with other times stored on other computers in
different time zones such as those across the Internet.

964

Appendix P

46_571982 appp.qxd 9/1/05 7:46 PM Page 964

FileSystem
The FileSystem object provides tools for working with drives, directories, and files. The following table
summarizes this object’s properties and methods.

Item Description

CombinePath Returns a properly formatted combined path as a String.

CopyDirectory Copies a directory.

CopyFile Copies a file.

CreateDirectory Creates a directory.

CurrentDirectory Determines the fully qualified path to the application’s current
directory.

DeleteDirectory Deletes a directory.

DeleteFile Deletes a file.

DirectoryExists Returns a Boolean indicating whether a directory exists.

Drives Returns a read-only collection of DriveInfo objects describing
the system’s drives. See Chapter 27, “File-System Objects,” for
information about the DriveInfo class.

FileExists Returns a Boolean indicating whether a file exists.

FindInFiles Returns a collection holding names of files that contain a search
string.

GetDirectories Returns a String collection representing the path names of sub-
directories within a directory.

GetDirectoryInfo Returns a DirectoryInfo object for the specified path.

GetDriveInfo Returns a DriveInfo object for the specified path.

GetFileInfo Returns a FileInfo object for the specified path.

GetFiles Returns a read-only String collection representing the names of
files within a directory.

GetParentPath Returns a String representing the absolute path of the parent of
the provided path.

MoveDirectory Moves a directory.

MoveFile Moves a file.

OpenTextFieldParser Opens a TextFieldParser.

OpenTextFileReader Opens a TextReader.

Table continued on following page

965

The My Namespace

46_571982 appp.qxd 9/1/05 7:46 PM Page 965

Item Description

OpenTextFileWriter Opens a TextWriter.

ReadAllBytes Reads from a binary file.

ReadAllText Reads from a text file.

RenameDirectory Renames a directory.

RenameFile Renames a file.

SpecialDirectories Returns a SpecialDirectoriesProxy object that has proper-
ties giving the locations of various special directories such as
the systems temporary directory and the user’s MyDocuments
directory. See Chapter 27, “File System Objects,” for more
information.

WriteAllBytes Writes to a binary file.

WriteAllText Writes to a text file.

Info
The My.Computer.Info object provides information about the computer’s memory and operating sys-
tem. The following list describes this object’s properties.

Property Purpose

AvailablePhysicalMemory Returns the computer’s total amount of free physical memory
in bytes.

AvailableVirtualMemory Returns the computer’s total amount of free virtual address
space in bytes.

InstalledUICulture Returns the current user-interface culture.

LoadedAssemblies Returns a collection of the assemblies loaded by the application.

OSFullName Returns the computer’s full operating-system name as in
“Microsoft Windows XP Home Edition”.

OSPlatform Returns the platform identifier for the operating system of
the computer. This can be Unix, Win32NT (Windows NT or
later), Win32S (runs on 16-bit Windows to provide access to
32-bit applications), Win32Windows (Windows 95 or later),
or WinCE.

OSVersion Returns the operating system’s version in a string with the
format major.minor.build.revision.

StackTrace Returns a string containing the application’s current stack trace.

966

Appendix P

46_571982 appp.qxd 9/1/05 7:46 PM Page 966

Property Purpose

TotalPhysicalMemory Returns the computer’s total amount of physical memory in
bytes.

TotalVirtualMemory Returns the computer’s total amount of virtual address space
in bytes.

WorkingSet Returns the amount of physical memory mapped to the pro-
cess context in bytes.

Keyboard
This object returns information about the current keyboard state. The following list describes this
object’s properties.

Property Purpose

AltKeyDown Returns True if the Alt key is down.

CapsLock Returns True if Caps Lock is on.

CtrlKeyDown Returns True if the Ctrl key is down.

NumLock Returns True if Num Lock is on.

ScrollLock Returns True if Scroll Lock is on.

ShiftKeyDown Returns True if the Shift key is down.

The My.Computer.Keyboard object also provides one method named SendKeys. This method sends
keystrokes to the currently active window just as if the user had typed them. You can use this method to
provide some automated control over applications.

Mouse
The My.Computer.Mouse object provides information about the computer’s mouse. The following table
describes this object’s properties.

Property Description

ButtonsSwapped Returns True if the functions of the mouse’s left and right but-
tons have been switched. This can make using the mouse easier
for left-handed users.

WheelExists Returns True if the mouse has a scroll wheel.

WheelScrollLines Returns a number indicating how much to scroll when the
mouse wheel rotates one notch.

967

The My Namespace

46_571982 appp.qxd 9/1/05 7:46 PM Page 967

Name
The My.Computer.Name property simply returns the computer’s name.

Network
The My.Computer.Network object provides a few simple properties and methods for working with the
network. Its single property, IsAvailable, returns True if the network is available.

The following table describes the object’s methods.

Method Description

DownloadFile Downloads a file from a remote computer. Parameters give
such values as the file name, username, password, and connec-
tion timeout.

IsAvailable Returns True if the network is available.

Ping Pings a remote computer to see if it is connected to the network.

UploadFile Uploads a file to a remote computer. Parameters give such
values as the file name, username, password, and connection
timeout.

This object also provides one event, NetworkAvailabilityChanged, that you can catch to learn when
the network becomes available or unavailable.

Ports
This object provides one property and a single method. Its SerialPortNames property returns an array
of strings listing the names of the computer’s serial ports.

The OpenSerialPort method opens the serial port with a particular name (optional parameters give
the baud rate, parity, data bits, and stop bits) and returns a reference to a SerialPort object.

The SerialPort class is much more complex than the My.Computer.Ports object. The following table
describes the SerialPort’s most useful properties.

Property Purpose

BaseStream Returns the underlying Stream object.

BaudRate Gets or sets the port’s baud rate.

BreakState Gets or sets the break signal state.

BytesToRead Returns the number of bytes of data in the receive buffer.

BytesToWrite Returns the number of bytes of data in the send buffer.

968

Appendix P

46_571982 appp.qxd 9/1/05 7:46 PM Page 968

Property Purpose

CDHolding Returns the state of the port’s Carrier Detect (CD) line.

CtsHolding Returns the state of the port’s Clear-to-Send (CTS) line.

DataBits Gets or sets the standard length of data bits per byte.

DiscardNull Determines whether null characters are ignored.

DsrHolding Returns the state of the Data Set Ready (DSR) signal.

DtrEnable Determines enabling of the Data Terminal Ready (DTR) signal.

Encoding Determines the character encoding for text conversion.

Handshake Determines the handshaking protocol.

IsOpen Returns True if the port is open.

NewLine Determines the end of line sequence for the ReadLine and
WriteLine methods. This is a linefeed by default.

Parity Determines the parity-checking protocol.

ParityReplace Determines the character used to replace invalid characters
when a parity error occurs.

PortName Gets or selects the port.

ReadBufferSize Determines the port’s read buffer size.

ReadTimeout Determines the read timeout in milliseconds.

ReceivedBytesThreshold Determines the number of bytes in the input buffer before a
ReceivedEvent is raised.

RtsEnable Determines whether the Request to Transmit (RTS) signal is
enabled.

StopBits Determines the standard number of stop bits per byte.

WriteBufferSize Determines the port’s write buffer size.

WriteTimeout Determines the write timeout in milliseconds.

The following table describes the SerialPort object’s most useful methods.

Method Purpose

Close Closes the port.

DiscardInBuffer Discards any data that is currently in the read buffer.

DiscardOutBuffer Discards any data that is currently in the write buffer.

Table continued on following page

969

The My Namespace

46_571982 appp.qxd 9/1/05 7:46 PM Page 969

Method Purpose

GetPortNames Returns an array of strings holding the serial ports’ names.

Open Opens the port’s connection.

Read Reads data from the read buffer.

ReadByte Synchronously reads one byte from the read buffer.

ReadChar Synchronously reads one character from the read buffer.

ReadExisting Reads all immediately available characters in both the stream
and the read buffer.

ReadLine Reads up to the next NewLine value in the read buffer.

ReadTo Reads a string up to the specified value in the read buffer.

Write Writes data into the port’s write buffer.

WriteLine Writes a string and a NewLine into the write buffer.

The SerialPort object also has a few events that you can use to learn about changes in the port’s sta-
tus. The following table describes the object’s most useful events.

Event Purpose

DataReceived Occurs when the port receives data. The e.EventType param-
eter indicates the type of data and can be SerialData.Eof
(end of file received) or SerialData.Chars (characters were
received).

ErrorEvent Occurs when the port encounters an error. The e.EventTytpe
parameter indicates the type of error and can be Frame (fram-
ing error), Overrun (character buffer overrun), RxOver (input
buffer overrun), RxParity (hardware detected parity error), or
TxFull (output buffer full).

PinChangedEvent Occurs when the port’s serial pin changes. The e.EventTytpe
parameter indicates the type of change and can be Break
(break in the input), CDChanged (Receive Line Signal Detect, or
RLSD, signal changed state), CtsChanged (CTS signal changed
state), DsrChanged (DSR signal changed state), and Ring
(detected a ring indicator).

Registry
My.Computer.Registry provides objects that manipulate the Registry. My.Computer.Registry has
seven properties that refer to objects of type RegistryKey. The following table lists these objects and the
corresponding Registry subtrees.

970

Appendix P

46_571982 appp.qxd 9/1/05 7:46 PM Page 970

My.Computer.Registry Property Registry Subtree

ClassesRoot HKEY_CLASSES_ROOT

CurrentConfig HKEY_CURRENT_CONFIG

CurrentUser HKEY_CURRENT_USER

DynData HKEY_DYNAMIC_DATA

LocalMachine HKEY_LOCAL_MACHINE

PerformanceData HKEY_PERFORMANCE_DATA

Users HKEY_USERS

My.Computer.Registry also provides two methods, GetValue and SetValue, that get and set
Registry values.

The program can use the RegistryKey objects to work with the corresponding Registry subtrees. The
following table describes the most useful properties and methods provided by the RegistryKey class.

Property or Method Purpose

Close Closes the key and writes it to disk if it has been modified.

CreateSubKey Creates a new subkey or opens an existing subkey within
this key.

DeleteSubKey Deletes the specified subkey.

DeleteSubKeyTree Recursively deletes a subkey and any child subkeys it contains.

DeleteValue Deletes a value from the key.

Flush Writes any changes to the key into the Registry.

GetSubKeyNames Returns an array of strings giving subkey names.

GetValue Returns the value of a specified value within this key.

GetValueKind Returns the type of a specified value within this key. This can
be Binary, DWord, ExpandString, MultiString, QWord,
String, or Unknown.

GetValueNames Returns an array of strings giving the names of all of the values
contained within the key.

Name Returns the key’s Registry path.

OpenSubKey Returns a RegistryKey object representing a descendant
key. A parameter indicates whether you need write access to
the key.

Table continued on following page

971

The My Namespace

46_571982 appp.qxd 9/1/05 7:46 PM Page 971

Property or Method Purpose

SetValue Sets a value within the key.

SubKeyCount Returns the number of subkeys that are this key’s direct
children.

ToString Returns the key’s name.

ValueCount Returns the number of values stored in this key.

Visual Basic’s native Registry methods SaveSetting and GetSetting are generally easier to use than
My.Computer.Registry, although they don’t provide access to the entire Registry.

Screen
The My.Computer.Screen property returns a Screen object representing the computer’s main display.
The following table describes the Screen object’s most useful properties.

Property Purpose

AllScreens Returns an array of Screen objects representing all of the
system’s screens.

BitsPerPixel Returns the screen’s color depth in bits per pixel.

Bounds Returns a Rectangle giving the screen’s bounds in pixels.

DeviceName Returns the screen’s device name as in “\\.\DISPLAY1”.

Primary Returns True if the screen is the computer’s primary screen.

PrimaryScreen Returns a reference to a Screen object representing the
system’s primary display. For a single display system, the
primary display is the only display.

WorkingArea Returns a Rectangle giving the screen’s working area bounds
in pixels. This is the desktop area excluding taskbars, docked
windows, and docked toolbars.

The following table describes the Screen class’s most useful methods.

Method Purpose

FromControl Returns a Screen object representing the display that contains
the largest piece of a specific control.

FromHandle Returns a Screen object representing the display that contains
the largest piece of the object with a given handle.

972

Appendix P

46_571982 appp.qxd 9/1/05 7:46 PM Page 972

Method Purpose

FromPoint Returns a Screen object representing the display that contains
a given point.

FromRectangle Returns a Screen object representing the display that contains
the largest piece of a given Rectangle.

GetBounds Returns a Rectangle giving the bounds of the screen that con-
tains the largest piece of a control, rectangle, or point.

GetWorkingArea Returns a Rectangle giving the working area of the screen
that contains the largest piece of a control, rectangle, or point.

The AllScreens and PrimaryScreen properties, and all of these methods, are shared members of the
Windows.Forms.Screen class. If you refer to them using an instance of the class such as My.Computer
.Screen, the IDE flags the code with a warning. You can avoid the warning by using the class itself
(System.Windows.Forms.Screen) rather than an instance to refer to these properties as in the follow-
ing code:

Debug.WriteLine(System.Windows.Forms.Screen.AllScreens(0).DeviceName)
Debug.WriteLine(System.Windows.Forms.Screen.PrimaryScreen.DeviceName)

The WorkingArea property does not update after you access the Screen object. If the user moves the
system taskbar, the WorkingArea property does not show the new values.

The GetWorkingArea method retrieves the screen’s current working area, however. If you must be cer-
tain that the user has not moved the taskbar or a docked object, use the GetWorkingArea method.

My.Forms
My.Forms provides properties that give references to an instance of each of the types of forms defined
by the application. If the program begins with a startup form, then the corresponding My.Forms entry
refers to that form. For example, suppose the program begins by displaying Form1. Then, My.Forms
.Form1 refers to the startup instance of the Form1 class.

You can also refer to these forms directly. For example, the following two statements set the text and dis-
play the predefined instance of the Form2 class:

My.Forms.Form2.Text = “Hello!”
Form2.Show()

Other forms that you create using the New keyword are separate instances from those provided by
My.Forms.

973

The My Namespace

46_571982 appp.qxd 9/1/05 7:46 PM Page 973

If you know you will only want one instance of a particular form, for example if the form is a dialog, you
can use this instance instead of creating new instances of the class. If you will need to use more than one
instance of the form at the same time, you must use New to create them.

You can set these properties to Nothing to dispose of the forms, but you can never set them to anything
else. In particular, you cannot set them to new instances of their form classes later. Once you destroy one
of these instances, it is gone forever. If you will need to reuse the form later, set its Visible property to
False rather than setting it equal to Nothing. Alternatively, you can just create new instances of the
class when you need them and ignore the forms in My.Forms.

My.Resources
My.Resources provides access to the application’s resources. Its ResourceManager property returns a
reference to a ResourceManager object attached to the project’s resources. You can use this object to
retrieve the application’s resources.

My.Resources also provides strongly typed properties that return the application’s resources. For
example, if you create a string resource named Greeting, the following code sets the form’s caption to
that string’s value:

Me.Text = My.Resources.Greeting

See Chapter 25, “Configuration and Resources,” for more information on using My.Resources to access
the application’s resources.

My.User
My.User returns information about the current user. The following table describes the Screen object’s
most useful properties.

Property or Method Purpose

CurrentPrincipal Gets or sets an IPrincipal object used for role-based
security.

InitializeWithWindowsUser Sets the thread’s principal to the Windows user who
started it.

IsAuthenticated Returns True if the user’s identity has been authenticated.

IsInRole Returns True if the user belongs to a certain role.

Name Returns the current user’s name in the format domain\
user_name.

974

Appendix P

46_571982 appp.qxd 9/1/05 7:46 PM Page 974

Streams
Visual Studio provides several classes that treat data as a stream. These classes are not difficult to
use, but they are similar enough to be confusing. This appendix summarizes the stream classes
and describes their properties and their methods.

Stream Class Summary
The following table lists Visual Studio’s stream classes. It can provide you with some guidance for
selecting a stream class.

Class Purpose

Stream A generic stream class. This is a virtual (MustInherit) class,
so you cannot create one directly. Instead, you must instantiate
one of its subclasses.

FileStream Represents a file as a stream. Usually, you can use a helper
class such as BinaryReader or TextWriter to make working
with a FileStream easier.

MemoryStream Lets you read and write stream data in memory. This is useful
when you need a stream but don’t want to read or write a file.

BufferedStream Adds buffering to another stream type. This sometimes
improves performance on relatively slow underlying devices.

BinaryReader, Read and write data from an underlying stream using routines
BinaryWriter that manage specific data types (such as ReadDouble and

ReadUInt16).

TextReader, These virtual (MustInherit) classes define methods that make
TextWriter working with text on an underlying stream easier.

Table continued on following page

47_571982 appq.qxd 9/1/05 7:48 PM Page 975

Class Purpose

StringReader, These classes inherit from TextReader and TextWriter. They
StringWriter provide methods for reading and writing text into an underlying

string.

StreamReader, These classes inherit from TextReader and TextWriter. They
StreamWriter provide methods for reading and writing text into an underlying

stream, usually a FileStream.

CryptoStream Applies a cryptographic transformation to its data.

NetworkStream Sends and receives data across a network connection.

Stream
The following table describes the Stream class’s most useful properties.

Class Purpose

CanRead Returns True if the stream supports reading.

CanSeek Returns True if the stream supports seeking to a particular position
in the stream.

CanTimeout Returns True if the stream supports timeouts.

CanWrite Returns True if the stream supports writing.

Length Returns the number of bytes in the stream.

Position Returns the stream’s current position in its bytes. For a stream
that supports seeking, the program can set this value to move to
a particular position.

ReadTimeout Determines the stream’s read timeout in milliseconds.

WriteTimeout Determines the stream’s write timeout in milliseconds.

The following table describes the Stream class’s most useful methods.

Method Purpose

BeginRead Begins an asynchronous read.

BeginWrite Begins an asynchronous write.

Close Closes the stream and releases any resources it uses (such as file
handles).

EndRead Waits for an asynchronous read to finish.

976

Appendix Q

47_571982 appq.qxd 9/1/05 7:48 PM Page 976

Method Purpose

EndWrite Ends an asynchronous write.

Flush Flushes data from the stream’s buffers into the underlying storage
medium (device, file, and so forth).

Read Reads bytes from the stream and advances its position by that
number of bytes.

ReadByte Reads a byte from the stream and advances its position by 1 byte.

Seek If the stream supports seeking, sets the stream’s position.

SetLength Sets the stream’s length. If the stream is currently longer than the
new length, it is truncated. If the stream is shorter than the new
length, it is enlarged. The stream must support both writing and
seeking for this method to work.

Write Writes bytes into the stream and advances the current position
by this number of bytes.

WriteByte Writes 1 byte into the stream and advances the current position
by 1 byte.

The FileStream and MemoryStream classes add few methods to those defined by the Stream class.
The most important of those are new constructors specific to the type of stream. For example, the
FileStream class provides constructors for opening files in various modes (append, new, and so forth).

BinaryReader and BinaryWriter
These are stream helper classes that make it easier to read and write data in specific formats onto an
underlying stream. The following table describes the BinaryReader class’s most useful methods.

Method Purpose

Close Closes the BinaryReader and its underlying stream.

PeekChar Reads the reader’s next character, but does not advance the reader’s
position, so other methods can still read the character later.

Read Reads characters from the stream and advances the reader’s position.

ReadBoolean Reads a Boolean from the stream and advances the reader’s position
by 1 byte.

ReadByte Reads a byte from the stream and advances the reader’s position
by 1 byte.

ReadBytes Reads a number of bytes from the stream into a byte array and
advances the reader’s position by that number of bytes.

Table continued on following page

977

Streams

47_571982 appq.qxd 9/1/05 7:48 PM Page 977

Method Purpose

ReadChar Reads a character from the stream and advances the reader’s position
according to the stream’s encoding and the character.

ReadChars Reads a number of characters from the stream, returns the results
in a character array, and advances the reader’s position according
to the stream’s encoding and the number of characters.

ReadDecimal Reads a decimal value from the stream and advances the reader’s
position by 16 bytes.

ReadDouble Reads an 8-byte floating-point value from the stream and advances
the reader’s position by 8 bytes.

ReadInt16 Reads a 2-byte signed integer from the stream and advances the
reader’s position by 2 bytes.

ReadInt32 Reads a 4-byte signed integer from the stream and advances the
reader’s position by 4 bytes.

ReadInt64 Reads an 8-byte signed integer from the stream and advances the
reader’s position by 8 bytes.

ReadSByte Reads a signed byte from the stream and advances the reader’s
position by 1 byte.

ReadSingle Reads a 4-byte floating-point value from the stream and advances
the reader’s position by 4 bytes.

ReadString Reads a string from the current stream and advances the reader’s
position past it. The string begins with its length.

ReadUInt16 Reads a 2-byte unsigned integer from the stream and advances the
reader’s position by 2 bytes.

ReadUInt32 Reads a 4-byte unsigned integer from the stream and advances the
reader’s position by 4.

ReadUInt64 Reads an 8-byte unsigned integer from the stream and advances
the reader’s position by 8 bytes.

The following table describes the BinaryWriter class’s most useful methods.

Name Description

Close Closes the BinaryWriter and its underlying stream.

Flush Writes any buffered data into the underlying stream.

Seek Sets the position within the stream.

Write Writes a value into the stream. This method has many overloaded
versions that write characters, arrays of characters, integers, strings,
unsigned 64-bit integers, and so forth.

978

Appendix Q

47_571982 appq.qxd 9/1/05 7:48 PM Page 978

TextReader and TextWriter
These are stream helper classes that make it easier to read and write text data onto an underlying stream.
The following table describes the TextReader class’s most useful methods.

Method Purpose

Close Closes the reader and releases any resources that it is using.

Peek Reads the next character from the text without changing
the reader’s state so other methods can read the character
later.

Read Reads data from the input. Overloaded versions of this
method read a single character, or an array of characters
up to a specified length.

ReadBlock Reads data from the input into an array of characters.

ReadLine Reads a line of characters from the input and returns the
data in a string.

ReadToEnd Reads any remaining characters in the input and returns
them in a string.

The following table describes the TextWriter class’s most useful properties.

Property Purpose

Encoding Specifies the data’s encoding (ASCII, UTF-8, Unicode,
and so forth).

FormatProvider Returns an object that controls formatting.

NewLine Gets or sets the stream’s new-line sequence.

The following table describes the TextWriter class’s most useful methods.

Method Purpose

Close Closes the writer and releases any resources it uses.

Flush Writes any buffered data into the underlying output.

Write Writes a value into the output. This method has many
overloaded versions that write characters, arrays of
characters, integers, strings, unsigned 64-bit integers,
and so forth.

WriteLine Writes data into the output followed by the new-line
sequence.

979

Streams

47_571982 appq.qxd 9/1/05 7:48 PM Page 979

StringReader and StringWriter
The StringReader and StringWriter classes let a program read and write text in a string. They
implement the features defined by their parent classes TextReader and TextWriter. See the section
“TextReader and TextWriter,” earlier in this appendix, for a list of those features.

StreamReader and StreamWriter
The StreamReader and StreamWriter classes let a program read and write data in an underlying
stream, often a FileStream. They implement the features defined by their parent classes TextReader
and TextWriter. See the section,”TextReader and TextWriter,” earlier in this appendix, for a list of
the features.

Console Streams
Console applications define standard input, standard output, and standard error streams that the pro-
gram can use to read and write information to and from the console. An application can also change
these streams to new stream objects, thereby making the program read input and write output into the
new streams.

980

Appendix Q

47_571982 appq.qxd 9/1/05 7:48 PM Page 980

File-System Classes
A Visual Basic application can take three basic approaches to file system manipulation: Visual
Basic methods, System.IO Framework classes, and the My.Computer.FileSystem namespace. This
appendix summaries the properties, methods, and events provided by these approaches.

Visual Basic Methods
The following table summarizes Visual Basic’s methods for working with files. They let a program
create, open, read, write, and learn about files.

Function Purpose

EOF Returns True if the file is at the end of file.

FileClose Closes an open file.

FileGet Reads data from a file opened in Random and Binary
mode into a variable.

FileGetObject Reads data as an object from a file opened in Random and
Binary mode into a variable.

FileOpen Opens a file for reading or writing. Parameters indicate
the mode (Append, Binary, Input, Output, or Random),
access type (Read, Write, or ReadWrite), and sharing
(Shared, LockRead, LockWrite, or LockReadWrite).

FilePut Writes data from a variable into a file opened for Random
or Binary access.

FilePutObject Writes an object from a variable into a file opened for
Random or Binary access.

Table continued on following page

48_571982 appr.qxd 9/1/05 7:42 PM Page 981

Function Purpose

FreeFile Returns a file number that is not currently associated with any file
in this application. You should use FreeFile to get file numbers
rather than using arbitrary numbers such as 1.

Input Reads data written into a file by the Write method back into a
variable.

InputString Reads a specific number of characters from the file.

LineInput Returns the next line of text from the file.

Loc Returns the current position within the file.

LOF Returns the file’s length in bytes.

Print Prints values into the file. Multiple values separated by commas
are aligned at tab boundaries.

PrintLine Prints values followed by a new line into the file. Multiple values
separated by commas are aligned at tab boundaries.

Seek Moves to the indicated position within the file.

Write Writes values into the file, delimited appropriately so that they
can later be read by the Input method.

WriteLine Writes values followed by a new line into the file, delimited
appropriately so that they can later be read by the Input method.

The following table describes Visual Basic methods that manipulate directories and files. They let an
application list, rename, move, copy, and delete files and directories.

Method Purpose

ChDir Changes the application’s current working directory.

ChDrive Changes the application’s current working drive.

CurDir Returns the application’s current working directory.

Dir Returns a file matching a directory path specification that may
include wildcards, and matching certain file properties such
as ReadOnly, Hidden, or Directory. The first call to Dir should
include a path. Subsequent calls can omit the path to fetch the
next matching file for the initial path. Dir returns file names with-
out the path and returns Nothing when no more files match.

FileCopy Copies a file to a new location.

FileDateTime Returns the date and time when the file was created or last
modified.

FileLen Returns the length of a file in bytes.

982

Appendix R

48_571982 appr.qxd 9/1/05 7:42 PM Page 982

Method Purpose

GetAttr Returns a value indicating the file’s attributes. The value is a
combination of the values vbNormal, vbReadOjnly, vbHidden,
vbSystem, vbDirectory, vbArchive, and vbAlias.

Kill Permanently deletes a file.

MkDir Creates a new directory.

Rename Renames a directory or file.

RmDir Deletes an empty directory.

SetAttr Sets the file’s attributes The value is a combination of the values
vbNormal, vbReadOjnly, vbHidden, vbSystem, vbDirectory,
vbArchive, and vbAlias.

Framework Classes
The System.IO namespace provides several classes for working with the file system. The following sec-
tions describe the properties, methods, and events provided by these classes.

FileSystem
The FileSystem class provides shared methods for working with the file system at a large scale. The
following table describes its most useful properties and methods.

Property or Method Purpose

CombinePath Combines a base path with a relative child path and returns
the resulting path. For example, the statement FileSystem.
CombinePath(“C:\Someplace\Lost”, “..\Else”) returns
“C:\Someplace\Else.”

CopyDirectory Copies a directory and its contents to a new location. A parameter
indicates whether you want to overwrite existing files that have
the same names.

CopyFile Copies a file to a new location, possibly overwriting an
existing file.

CreateDirectory Creates a new directory.

DeleteDirectory Deletes an existing directory. Parameters indicate whether the
method should recursively delete the directory’s contents and
whether the deleted files should be placed in the Recycle Bin or
deleted permanently.

Table continued on following page

983

File-System Classes

48_571982 appr.qxd 9/1/05 7:42 PM Page 983

Property or Method Purpose

DeleteFile Deletes a file. A parameter indicates whether the file should
be placed in the Recycle Bin or deleted permanently.

DirectoryExists Returns True if the specified directory exists.

FileExists Returns True if the specified file exists.

FindInFiles Returns a collection holding names of files that contain a
search string.

GetDirectories Returns a read-only collection of strings giving the subdirecto-
ries within a specific directory. Parameters indicate whether
the method should recursively search the subdirectories and
whether the routine should allow wildcards.

GetDirectoryInfo Returns a DirectoryInfo object representing a directory.
Note that the directory need not exist yet. For example, you
can create a DirectoryInfo object and then uses its Create
method to create the directory.

GetDriveInfo Returns a DriveInfo object representing a drive.

GetFileInfo Returns a FileInfo object representing a file. Note that the file
need not exist yet. For example, you can create a FileInfo
object and then uses its Create method to create the file.

GetFiles Returns a read-only collection of strings giving the names of
files within a specific directory. Parameters indicate whether
the method should recursively search the subdirectories and
whether the routine should allow wildcards.

GetName Returns the name portion of a file path.

GetParentPath Returns a directory’s parent directory path.

GetTempFileName Creates a uniquely named empty file and returns its full path.

MoveDirectory Moves a directory to a new parent directory. A parameter indi-
cates whether you want to overwrite existing files with the
same names.

MoveFile Moves a file to a new directory. Parameters indicate whether
the file should overwrite an existing file at the new location.

OpenTextFieldParser Returns a TextFieldParser for a file. A TextFieldParser
makes it easy to read fields from a delimited file or from a file
with fixed-width field columns.

OpenTextFileReader Returns a StreamReader attached to a file.

OpenTextFileWriter Returns a StreamWriter attached to a file. A parameter indi-
cates whether the StreamWriter should append to the file or
create a new file.

ReadAllBytes Returns a file’s contents as an array of bytes.

984

Appendix R

48_571982 appr.qxd 9/1/05 7:42 PM Page 984

Property or Method Purpose

ReadAllText Returns a file’s contents as a string.

RenameDirectory Changes a directory’s name within its current parent directory.

RenameFile Changes a file’s name within its current directory.

WriteAllBytes Writes a byte array into a file. A parameter indicates whether
the method should append the bytes to the file or create a
new file.

WriteAllText Writes a string into a file. A parameter indicates whether
the method should append the string to the file or create a
new file.

Directory
The Directory class provides shared methods for working with directories. The following table sum-
marizes its shared methods.

Method Purpose

CreateDirectory Creates all of the directories along a path.

Delete Deletes a directory and its contents. It can recursively delete
all subdirectories.

Exists Returns True if the path points to an existing directory.

GetCreationTime Returns a directory’s creation date and time.

GetCreationTimeUtc Returns a directory’s creation date and time in Coordinated
Universal Time (UTC).

GetCurrentDirectory Returns the application’s current working directory.

GetDirectories Returns an array of strings holding the fully qualified names
of a directory’s subdirectories.

GetDirectoryRoot Returns the directory root for a path, which need not exist
(for example, “C:\”).

GetFiles Returns an array of strings holding the fully qualified names
of a directory’s files.

GetFileSystemEntries Returns an array of strings holding the fully qualified names
of a directory’s files and subdirectories.

GetLastAccessTime Returns a directory’s last access date and time.

GetLastAccessTimeUtc Returns a directory’s last access date and time in UTC.

GetLastWriteTime Returns the date and time when a directory was last modified.

Table continued on following page

985

File-System Classes

48_571982 appr.qxd 9/1/05 7:42 PM Page 985

Method Purpose

GetLastWriteTimeUtc Returns the date and time when a directory was last modified
in UTC.

GetLogicalDrives Returns an array of strings listing the system’s logical drives as
in “A:\.” The list includes drives that are attached. For exam-
ple, it lists an empty floppy drive and a connected flashdisk
but doesn’t list a flashdisk after you disconnect it.

GetParent Returns a DirectoryInfo object representing a directory’s
parent directory.

Move Moves a directory and its contents to a new location on the
same disk volume.

SetCreationTime Sets a directory’s creation date and time.

SetCreationTimeUtc Sets a directory’s creation date and time in UTC.

SetCurrentDirectory Sets the application’s current working directory.

SetLastAccessTime Sets a directory’s last access date and time.

SetLastAccessTimeUtc Sets a directory’s last access date and time in UTC.

SetLastWriteTime Sets a directory’s last write date and time.

SetLastWriteTimeUtc Sets a directory’s last write date and time in UTC.

File
The File class provides shared methods for working with files. The following table summarizes its
most useful shared methods.

Method Purpose

AppendAllText Adds text to the end of a file, creating it if it doesn’t exist,
and then closes the file.

AppendText Opens a file for appending UTF-8 encoded text and returns
a StreamWriter attached to it.

Copy Copies a file.

Create Creates a new file and returns a FileStream attached to it.

CreateText Creates or opens a file for writing UTF-8 encoded text and
returns a StreamWriter attached to it.

Delete Permanently deletes a file.

Exists Returns True if the specified file exists.

986

Appendix R

48_571982 appr.qxd 9/1/05 7:42 PM Page 986

Method Purpose

GetAttributes Gets a file’s attributes. This is a combination of flags defined by
the FileAttributes enumeration, which defines the values
Archive, Compressed, Device, Directory, Encrypted,
Hidden, Normal, NotContextIndexed, Offline, ReadOnly,
ReparsePoint, SparseFile, System, and Temporary.

GetCreationTime Returns a file’s creation date and time.

GetCreationTimeUtc Returns a file’s creation date and time in UTC.

GetLastAccessTime Returns a file’s last access date and time.

GetLastAccessTimeUtc Returns a file’s last access date and time in UTC.

GetLastWriteTime Returns a file’s last write date and time.

GetLastWriteTimeUtc Returns a file’s last write date and time in UTC.

Move Moves a file to a new location.

Open Opens a file and returns a FileStream attached to it.
Parameters let you specify the mode (Append, Create,
CreateNew, Open, OpenOrCreate, or Truncate), access
(Read, Write, or ReadWrite), and sharing (Read, Write,
ReadWrite, or None) settings.

OpenRead Opens a file for reading and returns a FileStream attached to it.

OpenText Opens a UTF-8 encoded text file for reading and returns a
StreamReader attached to it.

OpenWrite Opens a file for writing and returns a FileStream
attached to it.

ReadAllBytes Returns a file’s contents in an array of bytes.

ReadAllLines Returns a file’s lines in an array of strings.

ReadAllText Returns a file’s contents in a string.

Replace This method takes three file paths as parameters representing a
source file, a destination file, and a backup file. If the backup
file exists, the method permanently deletes it. It then moves the
destination file to the backup file, and moves the source file to
the destination file. For example, imagine a program that
writes a log file every time it runs. It could use this method to
keep three versions of the log: the current log (the method’s
source file), the most recent backup (the method’s destination
file), and a second backup (the method’s backup file). This
method throws an error if either the source or destination file
doesn’t exist.

Table continued on following page

987

File-System Classes

48_571982 appr.qxd 9/1/05 7:42 PM Page 987

Method Purpose

SetAttributes Sets a file’s attributes. This is a combination of flags defined
by the FileAttributes enumeration, which defines the
values Archive, Compressed, Device, Directory, Encrypted,
Hidden, Normal, NotContextIndexed, Offline, ReadOnly,
ReparsePoint, SparseFile, System, and Temporary.

SetCreationTime Sets a file’s creation date and time.

SetCreationTimeUtc Sets a file’s creation date and time in UTC.

SetLastAccessTime Sets a file’s last access date and time.

SetLastAccessTimeUtc Sets a file’s last access date and time in UTC.

SetLastWriteTime Sets a file’s last write date and time.

SetLastWriteTimeUtc Sets a file’s last write date and time in UTC.

WriteAllBytes Creates or replaces a file, writes an array of bytes into it,
and closes the file.

WriteAllLines Creates or replaces a file, writes an array of strings into it,
and closes the file.

WriteAllText Creates or replaces a file, writes a string into it, and closes
the file.

DriveInfo
A DriveInfo object represents one of the computer’s drives. The following table describes the proper-
ties provided by this class. The final column in the table indicates whether a drive must be ready for the
property to work without throwing an exception. Use the IsReady property to see whether the drive is
ready before using those properties.

Property Purpose Must Be Ready?

AvailableFreeSpace Returns the amount of free space True
available on the drive in bytes. This
value takes quotas into account, so it
may not match TotalFreeSpace.

DriveFormat Returns the name of the file system True
type (such as NTFS or FAT32).

DriveType Returns a DriveType enumeration False
value indicating the drive type. This
value can be CDRom, Fixed, Network,
NoRootDirectory, Ram, Removable,
and Unknown.

988

Appendix R

48_571982 appr.qxd 9/1/05 7:42 PM Page 988

Property Purpose Must Be Ready?

IsReady Returns True if the drive is ready. False
Many DriveInfo properties are
unavailable and raise exceptions if
you try to access them while the
drive is not ready.

Name Return’s the drive’s name. This is the False
drive’s root name as in “A:\” or “C:\.”

RootDirectory Returns a DirectoryInfo object False
representing the drive’s root directory.
See the section “DirectoryInfo” later
in this appendix for more information.

TotalFreeSpace Returns the total amount of free space True
on the drive in bytes.

TotalSize Returns the total amount of space on True
the drive in bytes.

VolumeLabel Gets or sets the drive’s volume label. True

DirectoryInfo
A DirectoryInfo object represents a directory. The following table summarizes its most useful proper-
ties and methods.

Property or Method Purpose

Attributes Gets or sets flags from the FileAttributes enumeration for the
directory. These flags can include Archive, Compressed, Device,
Directory, Encrypted, Hidden, Normal, NotContentIndexed,
Offline, ReadOnly, ReparsePoint, SparseFile, System, and
Temporary.

Create Creates the directory. You can create a DirectoryInfo object,
passing its constructor the fully qualified name of a directory that
doesn’t exist. You can then call the object’s Create method to cre-
ate the directory.

CreateSubdirectory Creates a subdirectory within the directory and returns a
DirectoryInfo object representing it. The subdirectory’s path
must be relative to the DirectoryInfo’s directory but can con-
tain intermediate subdirectories. For example, the statement
dir_info.CreateSubdirectory(“Tools\Bin”) creates the
Tools subdirectory and the Bin directory inside that.

CreationTime Gets or sets the directory’s creation time.

Table continued on following page

989

File-System Classes

48_571982 appr.qxd 9/1/05 7:42 PM Page 989

Property or Method Purpose

CreationTimeUtc Gets or sets the directory’s creation time in UTC.

Delete Deletes the directory if it is empty. A parameter lets you tell the
object to delete its contents, too, if it isn’t empty.

Exists Returns True if the directory exists.

Extension Returns the extension part of the directory’s name. Normally, this
is an empty string for directories.

FullName Returns the directory’s fully qualified path.

GetDirectories Returns an array of DirectoryInfo objects representing the
directory’s subdirectories. An optional parameter gives a
pattern to match. This method does not recursively search the
subdirectories.

GetFiles Returns an array of FileInfo objects representing files inside the
directory. An optional parameter gives a pattern to match. This
method does not recursively search subdirectories.

GetFileSystemInfos Returns a strongly typed array of FileSystemInfo objects repre-
senting subdirectories and files inside the directory. The items
in the array are DirectoryInfo and FileInfo objects, both of
which inherit from FileSystemInfo. An optional parameter
gives a pattern to match. This method does not recursively search
subdirectories.

LastAccessTime Gets or sets the directory’s last access time.

LastAccessTimeUtc Gets or sets the directory’s last access time in UTC.

LastWriteTime Gets or sets the directory’s last write time.

LastWriteTimeUtc Gets or sets the directory’s last write time in UTC.

MoveTo Moves the directory and its contents to a new path.

Name Returns the directory’s name without the path information.

Parent Returns a DirectoryInfo object representing the directory’s
parent. If the directory is its file system’s root (for example, C:\),
this returns Nothing.

Refresh Refreshes the DirectoryInfo object’s data. For example, if the
directory has been accessed since the object was created, you must
call Refresh to load the new LastAccessTime value.

Root Returns a DirectoryInfo object representing the root of the
directory’s file system.

ToString Returns the directory’s fully qualified path and name.

990

Appendix R

48_571982 appr.qxd 9/1/05 7:42 PM Page 990

FileInfo
A FileInfo object represents a file. The following table summarizes its most useful properties and
methods.

Property or Method Purpose

AppendText Returns a StreamWriter that appends text to the file.

Attributes Gets or sets flags from the FileAttributes enumeration
for the file. These flags can include Archive, Compressed,
Device, Directory, Encrypted, Hidden, Normal,
NotContentIndexed, Offline, ReadOnly, ReparsePoint,
SparseFile, System, and Temporary.

CopyTo Copies the file and returns a FileInfo object representing
the new file. A parameter lets you indicate whether the copy
should overwrite an existing file if it already exists. If the
destination path is relative, it is relative to the application’s
current directory, not to the FileInfo object’s directory.

Create Creates the file and returns a FileStream object attached to
it. For example, you can create a FileInfo object passing
its constructor the name of a file that doesn’t exist. Then you
can call the Create method to create the file.

CreateText Creates the file and returns a StreamWriter attached to it.
For example, you can create a FileInfo object passing its
constructor the name of a file that doesn’t exist. Then you
can call the CreateText method to create the file.

CreationTime Gets or sets the file’s creation time.

CreationTimeUtc Gets or sets the file’s creation time in UTC.

Delete Deletes the file.

Directory Returns a DirectoryInfo object representing the file’s
directory.

DirectoryName Returns the name of the file’s directory.

Exists Returns True if the file exists.

Extension Returns the extension part of the file’s name including the
period. For example, the extension for game.txt is .txt.

FullName Returns the file’s fully qualified path and name.

Table continued on following page

991

File-System Classes

48_571982 appr.qxd 9/1/05 7:42 PM Page 991

Property or Method Purpose

IsReadOnly Returns True if the file is marked read-only.

LastAccessTime Gets or sets the file’s last access time.

LastAccessTimeUtc Gets or sets the file’s last access time in UTC.

LastWriteTime Gets or sets the file’s last write time.

LastWriteTimeUtc Gets or sets the file’s last write time in UTC.

Length Returns the number of bytes in the file.

MoveTo Moves the file to a new location. If the destination uses a rel-
ative path, it is relative to the application’s current directory
not to the FileInfo object’s directory. When this method
finishes, the FileInfo object is updated to refer to the file’s
new location.

Name The file’s name without the path information.

Open Opens the file with different mode (Append, Create,
CreateNew, Open, OpenOrCreate, or Truncate), access
(Read, Write, or ReadWrite), and sharing (Read, Write,
ReadWrite, or None) settings. This method returns a
FileStream object attached to the file.

OpenRead Returns a read-only FileStream attached to the file.

OpenText Returns a StreamReader with UTF-8 encoding attached to
the file for reading.

OpenWrite Returns a write-only FileStream attached to the file.

Refresh Refreshes the FileInfo object’s data. For example, if the
file has been accessed since the object was created, you must
call Refresh to load the new LastAccessTime value.

Replace Replaces a target file with this one, renaming the old target
as a backup copy. If the backup file already exists, it is
deleted and replaced with the target. You can use this
method to save backups of logs and other periodically
updated files.

ToString Returns the file’s fully qualified name.

FileSystemWatcher
The FileSystemWatcher class lets an application watch for changes to a file or directory. The following
table summarizes its most useful properties.

992

Appendix R

48_571982 appr.qxd 9/1/05 7:42 PM Page 992

Property Purpose

EnableRaisingEvents Determines whether the component is enabled. Note that this
property is False by default, so the watcher will not raise any
events until you set it to True.

Filter Determines the files for which the watcher reports events. You
cannot watch for multiple file types as in *.txt and *.dat.
Instead, use multiple FileSystemWatchers. If you like, you
can use AddHandler to make all of the FileSystemWatchers
use the same event handlers.

IncludeSubdirectories Determines whether the object watches subdirectories within
the main path.

InternalBufferSize Determines the size of the internal buffer. If the watcher is
monitoring a very active directory, a small buffer may
overflow.

NotifyFilter Determines the types of changes that the watcher reports. This
is a combination of values defined by the NotifyFilters
enumeration and can include the values Attributes,
CreationTime, DirectoryName, FileName, LastAccess,
LastWrite, Security, and Size.

Path Determines the path to watch.

The following table summarizes the FileSystemWatcher’s two most useful methods.

Method Purpose

Dispose Releases resources used by the object.

WaitForChanged Synchronously waits for a change to the target file or
directory.

The following table summarizes the class’s events.

Name Description

Changed A file or subdirectory has changed.

Created A file or subdirectory was created.

Deleted A file or subdirectory was deleted.

Error The watcher’s internal buffer overflowed.

Renamed A file or subdirectory was renamed.

993

File-System Classes

48_571982 appr.qxd 9/1/05 7:42 PM Page 993

Path
The Path class provides shared properties and methods that you can use to manipulate paths. The fol-
lowing table summarizes its most useful public properties.

Property Purpose

AltDirectorySeparatorChar Returns the alternate character used to separate
directory levels in a hierarchical path (typically, /).

DirectorySeparatorChar Returns the character used to separate directory
levels in a hierarchical path (typically, \ ,as in
C:\Tests\Billing\2005q2.dat).

InvalidPathChars Returns a character array that holds characters that
are not allowed in a path string. Typically, this array
will include characters such as “, <, >, and |, as well
as nonprintable characters such as those with ASCII
values between 0 and 31.

PathSeparator Returns the character used to separate path strings
in environment variables (typically, ;).

VolumeSeparatorChar Returns the character placed between a volume
letter and the rest of the path (typically, :, as in
C:\Tests\Billing\2005q2.dat).

The following table summarizes the Path class’s most useful methods.

Method Purpose

ChangeExtension Changes a path’s extension.

Combine Returns two path strings concatenated. This does not
simplify the result as the FileSystem.CombinePath
method does.

GetDirectoryName Returns a path’s directory.

GetExtension Returns a path’s extension.

GetFileName Returns a path’s file name and extension.

GetFileNameWithoutExtension Returns a path’s file name without the extension.

GetFullPath Returns a path’s fully qualified value. This can be
particularly useful for converting a partially relative
path into an absolute path. For example, the statement
Path.GetFullPath(“C:\Tests\OldTests\
Software\..\..\New\Code”) returns
“C:\Tests\New\Code.”

994

Appendix R

48_571982 appr.qxd 9/1/05 7:42 PM Page 994

Method Purpose

GetInvalidFileNameChars Returns a character array that holds characters that are not
allowed in a file names.

GetPathRoot Returns a path’s root directory string. For example, the
statement Path.GetPathRoot(“C:\Invoices\Unpaid\
Deadbeats”) returns “C:\”.

GetRandomFileName Returns a random file name.

GetTempFileName Creates a uniquely named, empty temporary file, and
returns its fully qualified path. Your program can open
that file for scratch space, do whatever it needs to do, close
the file, and then delete it. A typical file name might be
“C:\Documents and Settings\Rod\Local Settings\
Temp\tmp19D.tmp.”

GetTempPath Returns the path to the system’s temporary folder. This is
the path part of the file name returned by
GetTempFileName.

HasExtension Returns True if a path includes an extension.

IsPathRooted Returns True if a path is an absolute path. This includes
“\Temp\Wherever” and “C:\Clients\Litigation,”
but not “Temp\Wherever” or “..\Uncle.”

My.Computer.FileSystem
The My.Computer.FileSystem object provides tools for working with drives, directories, and files. The
following table summarizes this object’s properties.

Property Description

CurrentDirectory Gets or sets the fully qualified path to the application’s
current directory.

Drives Returns a read-only collection of DriveInfo objects
describing the system’s drives. See Chapter 27, “File-System
Objects,” for information about the DriveInfo class.

SpecialDirectories Returns a SpecialDirectoriesProxy object that has
properties giving the locations of various special directories
such as the system’s temporary directory and the user’s
My Documents directory. See the section “My.Computer.
FileSystem.SpecialDirectories” later in this appendix for
more information.

995

File-System Classes

48_571982 appr.qxd 9/1/05 7:42 PM Page 995

The following list summarizes the My.Computer.FileSystem object’s methods.

Method Purpose

CombinePath Combines a base path with a relative path reference and returns a
properly formatted fully qualified path.

CopyDirectory Copies a directory. Parameters indicate whether to overwrite
existing files, whether to display a progress indicator, and what to
do if the user presses Cancel during the operation.

CopyFile Copies a file. Parameters indicate whether to overwrite existing
files, whether to display a progress indicator, and what to do if the
user presses Cancel during the operation.

CreateDirectory Creates all of the directories along a path.

DeleteDirectory Deletes a directory. Parameters indicate whether to recursively
delete subdirectories, prompt the user for confirmation, or move
the directory into the Recycle Bin.

DeleteFile Deletes a file. Parameters indicate whether to prompt the user for
confirmation, or move the file into the Recycle Bin, and what to do
if the user presses Cancel while the deletion is in progress.

DirectoryExists Returns True if a specified directory exists.

FileExists Returns True if a specified file exists.

FindInFiles Returns a collection holding names of files that contain a search
string.

GetDirectories Returns a string collection listing subdirectories of a given direc-
tory. Parameters tell whether to recursively search the subdirecto-
ries, and wildcards to match.

GetDirectoryInfo Returns a DirectoryInfo object for a directory. See the section
“DirectoryInfo,” earlier in this appendix for more information.

GetDriveInfo Returns a DriveInfo object for a drive. See the section “Drive-
Info,” earlier in this appendix for more information.

GetFileInfo Returns a FileInfo object for a file. See the section “FileInfo,”
earlier in this appendix for more information.

GetFiles Returns a string collection holding the names of files within a
directory. Parameters indicate whether the search should recur-
sively search subdirectories and give wildcards to match.

GetParentPath Returns the fully qualified path of a path’s parent. For example,
this returns a file’s or directory’s parent directory.

MoveDirectory Moves a directory. Parameters indicate whether to overwrite files
that have the same name in the destination directory and whether
to prompt the user when such a collision occurs.

996

Appendix R

48_571982 appr.qxd 9/1/05 7:42 PM Page 996

Method Purpose

MoveFile Moves a file. Parameters indicate whether to overwrite a file that
has the same name as the file’s destination and whether to prompt
the user when such a collision occurs.

OpenTextFieldParser Opens a TextFieldParser object attached to a delimited or
fixed-field file (such as a log file). You can use the object to parse
the file.

OpenTextFileReader Opens a StreamReader object attached to a file. You can use the
object to read the file.

OpenTextFileWriter Opens a StreamReader object attached to a file. You can use the
object to write into the file.

ReadAllBytes Reads all the bytes from a binary file into an array.

ReadAllText Reads all the text from a text file into a string.

RenameDirectory Renames a directory within its parent directory.

RenameFile Renames a file with its directory.

WriteAllBytes Writes an array of bytes into a binary file. A parameter tells
whether to append the data or rewrite the file.

WriteAllText Writes a string into a text file. A parameter tells whether to
append the string or rewrite the file.

My.Computer.FileSystem.SpecialDirectories
The My.Computer.FileSystem.SpecialDirectories property returns a SpecialDirectoriesProxy
object that has properties giving the locations of various special directories (such as the system’s tempo-
rary directory and the user’s My Documents directory). The following table summarizes these special
directory properties.

Property Purpose

AllUsersApplicationData The directory where applications should store settings
for all users (typically, C:\Documents and Settings\
All Users\Application Data\<company>\
<product>\<version>).

CurrentUserApplicationData The directory where applications should store settings
for the current user (typically, C:\Documents and
Settings\<user>\Application Data\<company>\
<product>\<version>).

Table continued on following page

997

File-System Classes

48_571982 appr.qxd 9/1/05 7:42 PM Page 997

Property Purpose

Desktop The current user’s desktop directory (typically, C:\Documents
and Settings\<user>\Desktop).

MyDocuments The current user’s My Documents directory (typically,
C:\Documents and Settings\<user>\My Documents).

MyMusic The current user’s My Music directory (typically, C:\Documents
and Settings\<user>\My Documents\My Music).

MyPictures The current user’s My Pictures directory (typically, C:\Documents
and Settings\<user>\My Documents\My Pictures).

Programs The current user’s Programs directory (typically, C:\Documents
and Settings\<user>\Start Menu\Programs).

Temp The current user’s temporary directory (typically, C:\Documents
and Settings\<user>\Local Settings\Temp).

998

Appendix R

48_571982 appr.qxd 9/1/05 7:42 PM Page 998

In
de

x

Index

SYMBOLS & NUMERICS
% (percent sign) preceding custom format specifiers, 946
3D Computer Graphics (Watt, Allan H.), 762

A
About dialogs, 279–281
abstraction, 412–414
accessibility

of classes, 423–424
of constants, 163–164
of events, 448–449
of subroutines, 192–193
of variables, 129, 138–139, 150–151

Add Connection dialog, 307–308, 320–321
Add New Item dialog, 12, 13
Add Reference dialog, 14–15
Add Web Reference dialog, 15
AddHandler statement

catching events, 74–75, 450–451
for custom events, 452
making controls share events, 95
setting event handlers at run time, 93–94

Advanced Compiler Settings dialog, 112–113
aliases

with generics, 519
listing for commands, 33
for namespaces, 465–466, 519

aliasing. See anti-aliasing
Alignment property (Pen class), 566–567
Alignment property (StringFormat class), 595,

642
Anchor property, 79–80, 85–88
anti-aliasing

aliasing defined, 542
displaying text with and without, 531
InterpolationMode property for, 544–545
overview, 542–543
SmothingMode property for, 543
speed considerations, 546
TextRenderingHint property for, 543–544

Application class or object
events, 703–705, 956
methods (table), 702, 955
My.Application namespace versus, 700
properties, 700–702, 953–954

application environment. See environment variables
application icons, 283
application resources. See resources
application settings. See configuring applications
arithmetic operators, 169–170, 781
Array class
Array.BinarySearch method, 485–486
Array.Reverse method, 482
Array.Sort method, 482–485
IndexOf and LastIndexOf methods, 481–482
multiple dimensions for arrays, 477
nonzero lower bounds for arrays, 477–478
normal arrays versus Array objects, 476–477,

479–481
performance, 479–481
resizing arrays, 478–479

ArrayList class, 486–488
arrays. See also Array class
ArrayList class for resizable arrays, 486–488
changing dimensions of, 478
circular, in queues, 505
creating with variable declarations, 476
declared ByVal and ByRef, 195–196
IndexOf and LastIndexOf methods, 481–482
initializing, 148–150
normal arrays versus Array objects, 476–477
of objects, initializing, 150
parameter arrays for subroutines, 198–200
performance, 479–481
structures versus classes and, 433–434

assemblies, defined, 107
Assembly Information dialog, 106–107
Assert method, 235
assignment operators, 175–176, 784
attribute_list clause

for classes, 422
for events, 448

49_571982 bindex.qxd 9/1/05 7:48 PM Page 999

attribute_list clause (continued)
for subroutines, 188–190
for variables, 138

attributes for custom controls, assigning, 368–369
Audio object (My.Computer), 963
AutoRedraw implementation, 620–624
Autos window, 28

B
BackgroundWorker component, 805–806
Bézier curves

defined, 523
DrawBezier method for, 534–535
DrawBeziers method for, 535–536

binary-file access, 723
BinaryReader class, 711–712, 973–978
BinaryWriter class, 711, 713, 978
BindingNavigator component

attaching BindingSource component to, 814
automatic creation for databases, 313
DataGridView control for, 814
overview, 806

BindingSource component, 807, 814
Bitmap class
GetPixel method, 625–626, 630
implementing AutoRedraw, 620–624
loading bitmaps, 618–619
LockBits method, 627
methods (table), 617–618, 936–937
overview, 617–618, 632–633
pixel-by-pixel operations, 625–630
saving bitmaps, 619–620
SetPixel method, 625–626, 630

BitmapBytesRGB24 class, 629–630
bitwise operators, 174, 783
blocks

defined, 154
scope of variables, 154–155

bookmarks in code editor, 53
bounds_list clause for variables, 146–147
Breakpoint Condition dialog, 30–31
Breakpoint Hit Count dialog, 31
breakpoints

code editor commands for, 53
common debugging strategy, 30
counting hits for, 31
defined, 30
setting actions for hits, 31–32
setting conditions for, 30–31
setting in property procedures, 160

Breakpoints window
opening, 26
overview, 30–32

Brush class
derived classes, 572, 934
garbage collection issues, 590–591
HatchBrush derived class, 572, 574–575
LinearGradientBrush derived class,

572, 575–580

overview, 522, 572
PathGradientBrush derived class, 572, 580–585
Pen class versus, 563
SolidBrush derived class, 572
TextureBrush derived class, 572, 572–575

BufferedStream class, 711
bugs. See also debugging; error handling

catching, 234–235
defined, 233
first computer bug, 234
unplanned conditions versus, 233–234

Build menu
commands, 20–22
Configuration Manager command, 20–22
overview, 18, 19

building
custom components, 377–379
custom controls, approaches, 361–362
custom controls from scratch, 362, 376–377
data sources, 312–314
DataSet component, 332–334
MDI applications, 292–293
Metafile, 630
MRU lists, 296–300
reports, 656–666
RowSortingListView derived control, 370

Business Objects Web site, 655
Button control, 270, 807
Button Editor dialog, 42, 43
buttons
Button control for, 807
for navigation, 806
with PrintPreviewDialog component, 868–869
RadioButton control for, 871–872

ByRef keyword
array parameters and, 195–196
overview, 157, 158–159
parameter passing and, 436–437
in subroutine declarations, 194–196

ByVal keyword
array parameters and, 195–196
overview, 157–158
parameter passing and, 436–437
in subroutine declarations, 193–194, 195–196

C
calendars, MonthCalendar control for, 267, 847–852
Call Stack window, 28–29
CancellationPending property

(BackgroundWorker component), 805
Catch statement, 239, 240–241
catching events, 74–75, 450–451
CausesValidation property, 95, 97
centering printouts, 647–649
Change Data Source dialog, 307
Change Group Options dialog, 668–669
characters. See also operators

data type (table), 132, 133, 777–778
date and time format specifiers, 943–946

1000

attribute_list clause (continued)

49_571982 bindex.qxd 9/1/05 7:48 PM Page 1000

with Like operator, 171–172, 783
literal type (table), 133, 778
for MaskedTextBox control Mask property, 842–843
numeric format specifiers, 947–949

CheckBox control, 266, 807–808
CheckedListBox control

displaying text in Output window, 810
Items.Add method, 809–810
overview, 266, 808–810

Choose statement
overview, 214–215, 791
Select Case statement versus, 214–215

Choose Toolbox Items dialog, 50, 51
Class statement

code regions defined by, 109
top-level nodes defined by, 108

classes. See also collection classes; generics; inheritance;
specific classes

accessibility, 423–424
adding and modifying features, 415–416
attribute_list clause, 422
code regions, 109–110
command object classes, 330
constructors, 438–440, 922
for custom controls, 380
for custom exceptions, 248–249, 796
data types for parameters, 925
declaring classes, 421–431, 921–922
declaring custom events, 451–455
declaring events normally, 448–449
declaring methods, properties, and constants within,

446–447
defined, 407
derived from generics, 519
DictionaryBase class, 497–499
Dispose method, 444–446
drawing classes, 930–938
encapsulation by, 409–410, 446–447
exception classes, finding, 247–248
exception classes (table), 796–798, 939–941
Finalize method, 442–444
garbage collection, 442–446
generic collection classes, 507–508
heap and, 434
Implements keyword, 427–431
inheritance clause, 425–426
Inherits statement, 427
instantiation, 409, 438–440
memory requirements, 433–434
name collisions and, 459
namespaces versus, 469–470
object assignment by, 435–436
Of type_list clause, 426
overloading, 418–420
overview, 407–409
parameter passing by, 436–437
Partial keyword, 422–423
performance and, 434
public interface, 409–410
as reference types, 432–433
sections, 108–109

Shadows keyword, 424–425
shared methods in, 456–458
shared variables in, 455–456
stream classes (table), 708, 975–976
structures versus, 431, 432–437, 458, 922
syntax, 421
in System.Drawing namespace (table), 927–928
in System.Drawing.Drawing2D namespace (table),

525–526, 928–929
in System.Drawing.Imaging namespace (table), 528, 929
in System.Drawing.Printing namespace (table), 532, 930
in System.Drawing.Text namespace (table), 529, 930
unit scope of, 446–447
unmanaged resources and, 442–446

classic error handling
error-handling mode for, 253–254
exiting error-handling code, 799
On Error GoTo line statement, 250–251, 799
On Error GoTo -1 statement, 252–253, 799
On Error GoTo 0 statement, 252, 799
On Error Resume Next statement,

251–252, 799
structured error handling versus, 254–256

client area of controls, 89
clipboard
Clipboard object methods (table), 404–405, 963–964
copy and paste using, 404–405
copying data to, 402–403
overview, 385
retrieving data from, 403

Clipboard object (My.Computer), 404–405, 963–964
Clock object (My.Computer), 964
cmd command, 32
code editor

bookmarks, 53
breakpoint commands, 53
code coloring and highlighting, 57–59
code snippets, 59–64
creating event handlers, 91–92
IntelliSense, 56–57
margin icons, 52–53
outlining, 53–55
overview, 51–52
at run time, 54
tooltips, 55–56, 58

code file structure
code regions, 109–110
conditional compilation, 110–118
line continuation, 126
line joining, 126–127
line labels, 127
namespaces, 118–120
overview, 108–109, 127–128
sections, 108
typographic code elements, 120–127
Visual Basic comments, 121
XML comments, 122–125

code reuse
generic classes and, 512
inheritance and, 411–412

1001

code reuse

In
de

x

49_571982 bindex.qxd 9/1/05 7:48 PM Page 1001

code snippets
Code Snippets Manager, 59, 63–64
creating, 62–63
defined, 59
using, 60–62

Code Snippets Manager, 59, 63–64
code window. See code editor
Collection class, 475, 476
collection classes
Array class, 475, 476–486
ArrayList class, 486–488
Collection class, 475, 476
collection defined, 475
CollectionBase class, 488–491
CollectionsUtil class, 501–502
dictionaries, 493–501
generics, 507–508
HashTable class, 496–497
HybridDictionary class, 497
ListDictionary class, 494–496, 500
NameValueCollection class, 491–493
overview, 475–476, 508–509
queues, 501, 504–507
read-only strongly typed collections, 491
ReadOnlyCollectionBase class, 491
SortedList class, 500–501
stacks, 501–504
StringCollection class, 488
StringDictionary class, 500
strongly typed collections, 488–491

collection properties controls, 80–83, 84
CollectionBase class, 488–491
CollectionsUtil class, 501–502
ColorDialog component, 810–811
colors

in code editor, 57–58
ColorDialog component for, 810–811

ColorScroller composite control, 374–375
ComboBox control

binding, 356–359
overview, 267, 812–813

command objects
classes, 330
creating for data adapters, 326–327
defined, 317
methods, 331–332
properties, 330–331

Command window, 32–33
comments

normal, 121
XML, 122–125

comparison operators
characters with Like, 171–172, 782
Is, 171
IsNot, 171
Like, 171–172, 782–783
Like patterns, 172, 783
overview, 170–172
table summarizing, 171, 782
TypeOf, 171

Compile tab (Properties Page)
Option Compare, 18
Option Explicit, 16, 18, 776
Option Strict, 17–18, 776

compiling
conditional compilation, 110–118
Option Compare compiler option, 18
Option Explicit compiler option, 16, 18,

151–153, 776
Option Strict compiler option, 17–18, 153, 776

Component class. See also components
for custom components, 380
inheritance from, 801

ComponentResourceManager class, 698–700
components. See also Component class; controls; Tool-

box; specific components
adding at design time, 68–70
controls versus, 67, 68
custom, 362, 377–379, 382
defined, 67, 377
information provided for controls by, 69
inheritance, 801
listed by purpose, 803–804

composite controls, 361, 374–376
composite formatting, 950
compound properties of controls, 77–78
CompoundArray property (Pen class), 567–568
concatenation

operators, 170, 782
StringBuilder class for, 176–178

conditional compilation
CONFIG constant, 113, 116–117
DEBUG constant, 113, 114–116
DEBUG_LEVEL constant, 117–118
overview, 110–111
predefined constants, 113–118
setting constants in code, 111–112
setting constants with project settings, 112–113
TARGET constant, 113
TRACE constant, 113, 116
VBC_VER constant, 113

CONFIG constant
defined, 113
overview, 116–117

configuration files
app.config file example, 687–688
assigning dynamic properties to, 685–687
My.Settings namespace properties and methods

for, 688–689
overview, 685
uninstalling programs and, 683

Configuration Manager dialog
creating new configurations, 21
Debug versus Release configurations, 21
excluding projects from builds, 22
overview, 20–22

configuring applications. See also resources
configuration files for, 685–689
environment variables, 677–681
hidden files for, 104, 105

1002

code snippets

49_571982 bindex.qxd 9/1/05 7:48 PM Page 1002

overview, 675, 705
Registry for, 681–685
settings versus resources, 104

connection objects
adding connections, 320–321
ConnectionString property, 319–320
databases support by, 319
defined, 317, 318
further information, 318–319
methods (table), 322
performance and, 319
properties (table), 319
types of, 318–319

connection wizard, 659–660
ConnectionString property, 319–320
console streams, 980
Const keyword, 163
constants. See also specific constants

accessibility, 163–164
for conditional compilation, 111–118
declaring, 163–164, 446–447
initialization_expression clause, 164
Option Strict compiler option and, 164

constrained types with generics, 516–518
constraints (database)
DataSet support for, 345
defined, 345
ForeignKeyConstraint, 345–346
UniqueConstraint, 345, 346–347

constructors
for classes, 438–440, 922
generic, 514
Pen class (table), 564
for stacks, overloaded, 503–504
for structures, 440–441, 922

container controls
adding controls to, 73
dragging, 72
FlowLayoutPanel control, 265, 820–821, 889
GroupBox control, 265, 826
list of, 803
overview, 265–266
Panel control, 265–266, 859–860
SplitContainer control, 266, 879–881
TabControl control, 266, 882–886
TableLayoutPanel control, 265, 821, 886–889

container types, 421. See also classes; structures
ContextMenuStrip component, 270, 813–814
Continue statement
For loops, 218, 221, 228
While loops, 226–227, 228

continuing lines of code, 126
control array events, 94–95
Control class. See also controls

for custom controls, 380
customizing in executable projects, 382
events (table), 769–771
inheritance from, 84–85, 801
inherited in executable projects, 382
methods (table), 766–768
properties (table), 763–766

Control Panel (Windows XP), 677–678
control statements. See also specific kinds

decision statements, 205–215, 789–791
defined, 205, 789
GoTo, 228–231, 793
looping statements, 216–228, 791–793

controls. See also components; custom controls; Toolbox;
specific controls

AddHandler statement for, 74–75, 93–94, 95
adding to containers, 73
binding (complex strategy), 356–359
binding (simple strategy), 351–352
catching events, 74–75
changing events at design time, 94
choosing, 264–272
client area, 89
collection properties, 80–83, 84
components versus, 67, 68
compound properties, 77–78
container controls, 72, 73, 265–266
control array events, 94–95
copying, 71–72
creating at design time, 70–73
creating at run time, 73–75
creating event handlers at design time, 91–92
defined, 67
display area, 89
for displaying data, 268–269
for displaying dialogs, 271–272
for displaying graphics, 271
for entering data, 267–268
events, 90–100, 769–771
forms as, 275
information provided by components, 69
inheritance, 84–85, 801
for initiating action, 270–271
listed by purpose, 803–804
for making selections, 266–267
methods, 90, 766–768
nonclient area, 89
overview, 100–101
position and size properties, 89–90
properties defined, 75
properties (table), 763–766
for providing feedback, 269–270
raising events, 90
read-only properties, 84
RemoveHandler statement for, 93–94
restricted properties, 78–80
selecting from Toolbox, 72–73
setting event handlers at run time, 93–94
setting properties at design time, 76–83
setting properties at run time, 83–84
specialized property editors for, 78, 79–80
for supporting other controls, 272
third-party controls, 272–273
validation events, 95–100
Windows forms controls (table), 259–264
WithEvents variables for, 74, 92–93

Convert dialog, 6, 7

1003

convert dialog

In
de

x

49_571982 bindex.qxd 9/1/05 7:48 PM Page 1003

converting applications from Visual Basic 6 to
Visual Basic 2005, 6, 7

converting data types
functions (table), 135–136, 778–779
narrowing conversions, 134–137
Option Strict compiler option and, 17, 153
parsing methods, 137
widening conversions, 137

copying
controls, 71–72
copy and paste using clipboard, 404–405
data to clipboard, 402–403
dragging items between ListBoxes, 392–393

Create GUID dialog, 37, 38
cryptography, 747–751
CryptoStream object, 748
Crystal Reports for Visual Studio 2005

building a report, 656–666
Crystal Reports Gallery, 657, 658
CrystalReportViewer control, 666–667, 671–673
further information, 655
Report object, 655–656
Standard Report Creation Wizard, 657–665

CrystalReportViewer control
external reports with, 671–672
manipulating output programmatically, 672–673
ReportDocument object and, 672–673
ReportSource property, 671
viewing reports, 656, 666–667

CurrencyManager object
methods (table), 353
overview, 352
program demonstrating, 353–355
properties (table), 352–353

Cursor property of forms, 281
Cursors class, 281–282
cursors for forms, 281–282
curves

Bézier, 523, 534–536
DrawBezier method for, 534–535
DrawBeziers method for, 535–536
DrawClosedCurve method for, 535–538

custom components
building, 377–379
in executable projects, 382
overview, 362

custom controls
approaches to building, 361–362
assigning attributes, 368–369
building from scratch, 362, 376–377
ColorScroller composite control, 374–375
composite controls, 361, 374–376
derived controls, 361, 370–374
in executable projects, 380–382
implementing properties, methods, and events, 366–367
inheritance for, 380
invisible controls, 379–380
making the control project, 362
managing design time and run time, 369
overview, 361–362, 382–383
RowSortingListView derived control, 370–374
setting the Toolbox icon, 363

SimpleSmiley custom control, 376–377
steps for building, 362
test project for, 364–365
testing, 365–366
UserControl Test Container for, 363–364
uses for, 361

custom dialogs
About dialogs, 279–281
ColorDialog component for, 810–811
FolderBrowserDialog component for, 821–823
FontDialog component for, 823–826
forms as, 302–303
list of components for, 804
OpenFileDialog component for, 855–857
SaveFileDialog component for, 877–878
wizards, 303–304

custom events, 451–455
custom exception classes, 248–249, 796
custom format specifiers, 944–946
custom menus
ContextMenuStrip component for, 270, 813–814
MenuStrip control for, 270, 845–847
MRU lists, 296–302
tools for, 804
Window menu for MDI child forms, 292, 293

custom stream classes, 716
custom toolbars
StatusStrip control for, 270, 881–882
tools for, 804
ToolStrip control for, 270–271, 891–893
ToolStripContainer control for, 893–894

CustomEndCap property (Pen class), 567–568
Customize command (Tools menu), 40
Customize dialog

Commands tab, 41
Keyboard button, 43–44
opening, 40
Rearrange Commands button, 43
right-click menu for, 42–43
Toolbars tab, 40

customizing reports, 667–671
CustomStartCap property (Pen class), 567–568

D
Data Adapter Configuration Wizard, 327–330
data adapters

associating command builder object with, 326–327
creating at design time, 327–330
creating command objects, 326–327
defined, 317, 326
overview, 317, 318
in Relation editor, 312

data binding
for ComboBox control, 356–359
complex, 356–359
for ListBox control, 359
simple, 351–352

data containers
DataSet object, 317–318, 332–336
defined, 317

Data menu, 33–34

1004

converting applications from Visual Basic 6 to Visual Basic 2005

49_571982 bindex.qxd 9/1/05 7:48 PM Page 1004

Data Source Configuration Wizard
changing the default data source, 307
choosing a data source, 305–306
choosing database objects, 310–311
choosing or creating a data connection, 306–309
opening, 305
saving the connection string, 308–310

Data Sources window, 312–314
data types

characters (table), 132, 777–778
characters, using, 131–134
for constants, 164
constrained, with generics, 516–518
conversion functions (table), 135–136, 778–779
for drag and drop, 386
elementary (table), 130–131
enumerated types, 161–163, 776, 950–951
for generic class parameters, 925
integer, with explicit sizes, 131
literal type characters (table), 133, 778
literal types, using, 133–134
multiple declarations in single statement and, 151
multiple, with generics, 514–516
narrowing conversions, 134–137
parsing methods, 137, 779
performance and, 131
table summarizing, 776–777
variable behavior determined by, 129
widening conversions, 137

Database Explorer window, 320
database programming. See also reporting

automatically created objects, 314–316
building a data source, 312–314
command objects, 317, 326–327, 330–332
complexity of, 305
connecting to data automatically, 305–314
connection objects, 317, 318–322
constraints, 345–347
CurrencyManager object, 352–355
data adapters, 312, 317, 318, 326–330
data binding, complex, 356–359
data binding, simple, 351–352
data containers, 317
data overview, 317–318
Data Source Configuration Wizard, 305–311
DataColumn object, 341–343
DataRelation object, 343–345
DataRow object, 339–341
DataRowView object, 350–351
DataSet object, 332–336
DataTable object, 336–339
DataView object, 347–350
objects for database access, 316–317
overview, 359–360
Relation editor, 312
Schema Editor, 311–312
transaction objects, 322–326

DataColumn object
examples, 342–343
overview, 341
properties (table), 341–342

DataConnector control, 272

DataFormats class, 393–394
DataGrid control, 339–340
DataGridView control

automatic creation for databases, 313
overview, 268, 814

DataNavigator control, 272
DataObject class, 399–400
DataRelation object

nested tables using, 344–345
overview, 343–344
properties (table), 344

DataRow object
DataGrid control and, 339–340
DataRowView object and, 350
methods (table), 340–341
overview, 339
properties (table), 339

DataRowView object, 350–351
DataSet component

building and initializing, 332–334
methods, 335–336
overview, 317–318, 814
properties, 334–335
uses for, 332

DataTable object
events, 339
methods, 338
overview, 336
properties, 337–338

DataView object
binding to controls, 347
DataRowView object and, 350
example, 347–349
methods (table), 350
overview, 347
properties (table), 349–350
sorting and, 350

Date data type, operations with, 178–181, 785
Date object format specifiers, 943–946
dates

custom format specifiers, 944–946
Date data type operations, 178–181, 785
DateTimePicker control for, 814–816
standard format specifiers, 943–944, 945, 946
TimeSpan data type operations, 179–180, 785

DateTimePicker control
Format property, 815–816
overview, 267, 814–816
ShowUpDown property, 814–815

Debug configurations, Release configurations versus, 21
DEBUG constant
Debug.Assert method, 114–116
Debug.Fail method, 116
defined, 113
indentation properties, 116
output methods, 116
overview, 114
for validating data, 235

Debug menu
commands, 23–26
overview, 22–23
Windows submenu, 26–30

1005

Debug menu

In
de

x

49_571982 bindex.qxd 9/1/05 7:48 PM Page 1005

Debug object, 235
debugging. See also conditional compilation; error handling

adjusting level of diagnostic output, 117–118
custom controls, 363–364
Debug configurations, 21
Debug menu, 22–30
overview, 257
unplanned conditions versus bugs, 233–234

DEBUG_LEVEL constant, 117–118
Debug.Print statement, 32
decision statements
Choose, 214–215, 791
defined, 205, 789
IIf, 212–214, 791
multiline If Then, 207–208, 790
Select Case, 208–212, 790
single-line If Then, 205–206, 789–790

declaring. See also variable declarations
classes, 421–431, 921–922
constants, 163–164, 446–447
custom events, 451–455
enumerated types, 161
events, 448–449, 922–923
functions, 202–203, 787–788
generics, 512–513, 925
methods within classes, 446–447
operator overloading, 181–182
parameters, 157–159
properties within classes, 446–447
property procedures, 160, 203, 788
structures, 431, 922
subroutines, 187–202, 787

deferred validation, 98–100
delegates

for custom events, 452
defined, 165
overview, 165–166

DeleteSetting method, 683
derived classes, from generics, 519
derived controls

hiding parent features, 373–374
overview, 361, 370–372
shadowing parent features, 372–373

design time
adding components at, 68–70
changing events at, 94
control properties at, 76–83
creating controls at, 70–73
creating data adapters at, 327–330
creating event handlers at, 91–92
managing custom controls for, 369
methods and, 90

dialogs, custom. See custom dialogs
dictionaries

defined, 493
DictionaryBase class, 497–499
HashTable class, 496–497
HybridDictionary class, 497
ListDictionary class, 494–496, 500
properties and methods, 493–494
SortedList class, 500–501

StringDictionary class, 500
strongly typed dictionaries, 497–500

DictionaryBase class, 497–499
Dim keyword

for constants, 163
for variables, 143

Directory class, 723–724, 985–986
DirectoryEntry component, 816
DirectoryInfo class, 727–729, 989–990
directory-manipulation methods, 719–720, 982–983.

See also file systems
DirectorySearcher component, 816
Direct3D

adding references to libraries for, 756
defined, 756
further information, 762
program demonstrating, 756–762

DirectX, 756
display area of controls, 89
Dispose method, 444–446, 590–591, 731
Do Loop statement
Continue Do statement, 226–227, 228
enumerators, 223–224
Exit Do statement, 226, 227–228
iterators, 224–225
overview, 225–227
repeating forever, 225, 792
testing condition after execution, 226, 792
testing condition before execution, 225, 792
While End statement and, 793

Dock property, 85, 88–89
DoDragDrop method, 387, 389, 392, 394, 396
DomainUpDown control, 267, 816–817
drag and drop

accepting dropped files, 395–396
changing format names, 399–400
checking for textual format, 388–389
drag source defined, 385
drag source events, 387
dragging multiple data formats, 400–402
dragging objects, 396–399
dragging within an application, 394–395
drop target defined, 385
drop target events, 386–387
learning data types available, 393–394
moving and copying between ListBoxes, 392–393
moving between ListBoxes, 389–392
overview, 405–406
simple example, 387–388
steps for, 385

DrawBezier method, 534–535
DrawBeziers method, 535–536
DrawClosedCurve method, 535–538
drawing. See also drawing classes; Graphics class;

image processing
advanced transformations, 551–556
anti-aliasing, 531, 542–546
basic steps, 522–523
Bézier curves, 534–536
closed curves, 536–537
curves, 534–538

1006

Debug object

49_571982 bindex.qxd 9/1/05 7:48 PM Page 1006

events, 558–561
filling areas, 539
fitting pictures to the page for printing, 649–651
garbage collection issues, 590–591
GraphicsPath objects, 585–590
namespaces, 523–532, 927–930
outlines, 538–539
overview, 521–523
Paint event handler for, 522
printing and, simplifying, 651–654
saving and restoring graphics states, 556–558
text, 593–595
transformation basics, 546–551

drawing classes. See also drawing; Graphics class;
specific classes

Bitmap class, 617–630, 937–938
Brush classes, 572–585, 934
GraphicsPath class, 585–590, 935
Image class, 615–617, 936–937
Metafile class, 630–633, 938
namespaces, 523–532, 927–930
Pen class, 563–571, 933–934
StringFormat class, 595–605, 936

DrawPath method, 538–539
DrawString method, 593–595
DriveInfo class, 726–727, 988–989
drop target. See also drag and drop

defined, 385
events, 386–387

E
Edit menu, 8–10
editors. See also code editor

for icons, 282–283
Relation editor, 312
Schema Editor, 311–312
specialized property editors for controls, 79–80

embedded resources, 694–695
encapsulation

breaking, confusion from, 446–447
by classes, 409–410
by code libraries, 410

End Region statement, comments for, 109–110
enumerated types

declaring, 161
defined, 161
formatting, 950–951
overview, 161–163
variable declaration for, 161, 776

enumerations
HatchStyle, 527, 576
LineCap, 527
LineJoin, 527
in System.Drawing.Drawing2D namespace (table),

526, 928–929
in System.Drawing.Text namespace (table), 530

enumerators, 223–224
Environ function, 679
environment variables

Environment Variables dialog (Windows XP), 678–679

modifying with System.Environment object,
679–681

retrieving with Environ function, 679
error handling. See also debugging; exceptions

bugs versus unplanned conditions, 233–234
catching bugs, 234–235
catching unplanned conditions, 235–238
classic, 250–254, 799
custom exceptions for, 248–249, 796
Err object, 256–257
error-handling mode, 253–254
exception classes, 796–798
Exception objects, 241–243
exiting error-handling code, 799
global exception handling, 238–239
need for, 233
On Error statements, 250–253, 799
overview, 257–258
StackTrace objects for, 243–246
structured, 239–249, 795
structured versus classic, 254–256
throwing exceptions, 246–248, 795
Try block for, 239–241, 795

Error List window, 4–5
ErrorProvider component, 269, 817–818
event handlers. See also drag and drop

creating at design time, 91–92
for drawing events, 558–561
for global exception handling, 238–239
for MDI forms, 293–295
overview, 91
setting at run time, 93–94
for validation events, 95–100
WithEvents keyword for, 74, 92–93

Event statement, 448–449
EventLog component, 818–820
events. See also events, tables summarizing

accessibility, 448–449
AddHandler statement, 74–75, 93–94, 95, 450–451
assigning attributes for custom controls, 368
attribute_list clause, 448
catching, 74–75, 450–451
changing at design time, 94
control array events, 94–95
creating handlers at design time, 91–92
custom, 451–455
DataTable object (table), 339
declaring custom events, 451–455
declaring normally, 448–449, 922–923
defined, 407
drag-and-drop, 386–387
drawing events, 558–561
Form class (property-changed events), 918–919
implementing for custom controls, 366–367
Implements keyword, 449
MaskedTextBox control (table), 845
MDI, 293–295
mouse events sequence, 772
move events sequence, 773
overview, 90–91
parameters clause, 449

1007

events

In
de

x

49_571982 bindex.qxd 9/1/05 7:48 PM Page 1007

events (continued)
PrintDocument component, 636–637
properties and methods versus, 448
raising, 90, 450, 452–453, 923
RemoveHandler statement for, 93–94
resize events sequence, 772–773
sequences, 772–773
setting handlers at run time, 93–94
Shadows keyword, 449
table summarizing, 769–771
validation events, 95–100
WithEvents keyword for, 74, 92–93, 450

events, tables summarizing
Application class, 704, 956
Control class, 769–771
drag source events, 387
drop target events, 386
FileSystemWatcher class, 992
Form class, 914–918
Form class (property-changed events), 919
MaskedTextBox control, 845
My.Application, 957–962
Network object (My.Computer), 968
SerialPort class, 970
SplitContainer control, 881

Exception class, 242
Exception objects, 241–243
exceptions. See also error handling

classes, finding, 247–248
classes (table), 796–798, 939–941
custom classes, 248–249, 796
Exception objects for, 241–243
global exception handling, 238–239
throwing, 246–248, 795
Try block for, 239–241, 795

Exceptions dialog, 23–24
Exit statement
For loops, 218, 221, 227–228
While loops, 227–228

Exit Sub statement, 230–231
exiting error-handling code, 799
Export Template Wizard, 7–8
Extensible Markup Language. See XML
external reports, 671–672

F
FIFO lists. See queues
File class, 724–726, 986–988
File menu, 5–8
file systems. See also files

binary-file access, 723
file methods (table), 718, 981–982
file-system methods (table), 719–720, 982–983
My.Computer.FileSystem object for, 734–736,

965–966, 995–998
.NET Framework classes for, 723–734
random-file access, 720–722
sequential-file access, 720
System.IO Framework namespace for, 983–995

Visual Basic commands for manipulating, 718–723
Visual Basic methods for, 981–983

FileInfo class, 729–730, 991–992
files. See also file systems

accessing namespaces inside, 120, 462–463
cryptography, 747–751
hidden, 103–107
methods for manipulating (table), 718, 982–983
separate, for related pieces of code, 110

FileStream class, 709–710
FileSystem class (System.IO), 983–985
FileSystem object (My.Computer)

methods (table), 735–736, 965–966, 992–997
properties (table), 734–735, 965–966, 995
SpecialDirectoriesProxy object,

737, 997–998
FileSystemInfo class, 731
FileSystemNeeded property, 428
FileSystemWatcher class
Dispose method, 731
events (table), 992
methods (table), 992
overview, 731, 992
properties (table), 731, 992
using, 732–733
WaitForChanged method, 732

FileSystemWatcher component, 820
filling areas of drawings, 539
Finalize method, 442–444
firing events. See raising events
fitting pictures to the page for printing, 649–651
FlowLayoutPanel control

overview, 265, 820–821
TableLayoutPanel control versus, 821, 889

FolderBrowserDialog component, 821–823
Font property, 78
FontDialog component, 823–826
fonts. See also text

listing system fonts, 529–530
measuring width and height of text, 605–607
metrics, 609–612

For Each statement
Continue For statement, 221, 228
enumerators versus, 224
Exit For statement, 221, 227
interface for groups with, 220
overview, 220–225
syntax, 220, 791

For Next statement
Continue For statement, 218, 228
Exit For statement, 218, 227–228
noninteger loops, 219
overview, 216–219
syntax, 216, 791

ForeignKeyConstraint, 345–346
Form class

events (table), 914–918
inheritance trail for, 275
methods (table), 911–914
overview, 905

1008

events (continued)

49_571982 bindex.qxd 9/1/05 7:48 PM Page 1008

properties (table), 905–911
property-changed events, 918–919

Form Designer, 4
Form object
Opacity property, 275–277, 279
TransparencyKey property, 277–279

Format menu, 34–36
Format property (DateTimePicker control), 815–816
format specifiers

composite formatting, 950
date and time, custom, 944–946
date and time, standard, 943–944, 945, 946
enumerated type formatting, 950–951
numeric, custom, 948–949
numeric, sections for, 949
numeric, standard, 947–948

FormatFlags property (StringFormat class),
597–601, 642

formatting strings. See format specifiers
formatting text. See also text

format flags for, 597–601
positioning, 595–597
rotating at any angle, 600–601
tab stops, 601–602
trimming, 602–605
vertical text, 598–599

forms. See also Windows forms controls
About dialogs, 279–281
adding components at design time, 68–70
as controls, 275
creating controls at design time, 70–73
creating controls at run time, 73–75
dialogs, 302–303
event sequence for controls, 773
icons for, 282–283
login forms, 279–281
MDI applications, 290–295
MDI versus SDI applications, 295
mouse cursors, 281–282
MRU (Most Recently Used) lists, 296–302
overriding WndProc routine, 285–289
overview, 304
properties adopted by child controls, 284
property reset methods, 285
SDI applications, 289, 292, 295
sections, 108–109
splash screens, 279–281
transparency properties for, 275–279
wizards, 303–304

Formula Workshop, 669–670
Friend keyword

for classes, 424
for constants, 163, 164
for events, 449
for subroutines, 192–193
for variables, 138

functions
for data type conversion (table), 135–136, 778–779
declaring, 202–203, 787–788
defined, 187

delegates, 165–166
overloading, 420
parameter declarations, 157–159
scope of variables, 155
setting return values, 202–203
side effects, 208
syntax, 202
for validating data, 237–238

G
garbage collection

brushes and, 590–591
Dispose method, 444–446, 590–591
Finalize method, 442–444
overview, 442

GDI+ (Graphics Device Interface+), 521, 523. See also
drawing

generics
advantages of, 511–512
code example, 925
collection classes, 507–508
constrained types with, 516–518
constructors, 514
data type, 925
declaring classes, 925
defining, 512–514
derived classes, 519
Imports statement with, 519
multiple types with, 514–516
overview, 511, 520
predefined classes, 519
using, 518–519

GetAllSettings method, 682–683
GetDataPresent method, 393, 395
GetFormats method, 394
GetPixel method, 625–626, 630
GetSetting method, 682
GetTabStops method, 601–602
GoTo statement, 228–231, 793
Graphics class. See also drawing

advanced transformations, 551–556
anti-aliasing, 542–546
DrawBezier method, 534–535
DrawBeziers method, 535–536
DrawClosedCurve method, 535–538
drawing methods (table), 533–534, 931
DrawPath method, 538–539
DrawString method, 593–595
filling methods (table), 931
Graphics object, 532
InterpolationMode property, 544–545
MeasureCharacterRanges method, 606–609
MeasureString method, 605–607, 642
overloaded methods in, 523
overview, 532–533
properties and methods (table), 540–542, 932–933
ResetTransform method, 647, 649
saving and restoring graphics states, 556–558
ScaleTransform method, 650

1009

Graphics class

In
de

x

49_571982 bindex.qxd 9/1/05 7:48 PM Page 1009

Graphics class (continued)
SmothingMode property, 543
TextRenderingHint property, 543–544
transformation basics, 546–551
TranslateTransform method, 647

graphics classes. See drawing classes; specific classes
Graphics Device Interface+ (GDI+), 521, 523. See also

drawing
GraphicsPath class or object

defining clipping regions using, 588
defining form regions using, 586–588
drawing and filling, 585–586
properties and methods, 588–590, 935

GraphicsState object, 556
Group Expert dialog, 668
GroupBox control, 265, 826
gutter for printing, 640–641

H
“has-a” relationships, 414–415
HashTable class, 496–497
HatchBrush class, 572, 574–575
HatchStyle enumeration, 527, 575–576
heap

classes and, 434
garbage collection, 442
managed, 442
performance and, 434

Help menu
How Do I command, 48
overview, 47

HelpNavigator property values, 827
HelpProvider component, 826–828
hidden files

list of, 105
modifying, 106
purposes of, 104–106
showing, 104

highlighting in code editor, 58–59
How Do I command (Help menu), 48
HScrollBar control

for initiating action, 271
for making selections, 267
overview, 828

HybridDictionary class, 497

I
icons

application icons, 283
in code editor margins, 52–53
displaying in system tray, 283, 852–854
editor for, 282–283
for forms, 282–283
for MDI container forms, 290
setting for custom controls, 363

IDE (integrated development environment). See also spe-
cific pieces

avoiding customizing, 2, 3, 41

code editor (overview), 51–64
complexity of, 1
customizability of, 1–2
key pieces, 4
menus (overview), 4, 5
overview, 3–5, 65
projects, 2–3
Properties Page (overview), 16–18
rearranging secondary windows, 48–49
solutions, 2–3
toolbars, 4, 48
Toolbox (overview), 4, 49–51, 802–804

If Then statements
IIf statement versus, 212–214, 791
multiline, 207–208, 790
Select Case statement versus, 209–210
single-line, 205–206, 789–790

IIf statement, 212–214, 791
Image class

overview, 615, 632
properties and methods (table), 616–617, 936–937

image processing. See also drawing; specific classes
Bitmap class for, 617–630
Image class for, 615–617
Metafile class for, 630–632
overview, 632–633

ImageList component
overview, 272, 829
for TabControl control, 80–82

immed command, 32
Immediate window

opening, 28, 32
overview, 32–33

Implements keyword
in class declarations, 427–431
in event declarations, 449

Imports statement
accessing namespaces inside files, 120, 462–463
aliases with, 465–466
automatic imports without, 464–465
for generics, 519
for namespace elements, 466

IndexOf method, 481–482
Info object (My.Application)

properties (table), 959–960
setting values, 960–962

Info object (My.Computer), 966–967
information hiding. See encapsulation
inheritance

adding and modifying class features and, 415–416
child as refinement of parent, 412, 413
for child controls on forms, 284
in class declarations, 425–426
code reuse and, 411–412
from Component class, 801
from Control class, 84–85, 801
for custom controls, 380
defined, 410
deriving the child class, 410
Form class trail for, 275
“has-a” and “is-a” relationships, 414–415

1010

Graphics class (continued)

49_571982 bindex.qxd 9/1/05 7:49 PM Page 1010

hierarchies, 411–412
interface, 412, 417, 430–431
multiple, 412, 429–430
overview, 410–411
parent as abstraction of children, 412–414
subclassing the parent class, 410

inheritance clause for classes, 425–426
inheritance_mode clause for subroutines, 181–182
Inherits statement in class declarations, 427
initialization_expression clause for

constants, 164
initialization_expression clause for

variables
initializing arrays, 148–150
initializing object arrays, 150
overview, 148

instantiation
of classes, 409, 438–440
of structures, 440–441

integrated development environment. See IDE
IntelliSense

in code editor, 56–57
Command window support for, 33
generic classes and, 511

interfaces
defined, 200
FileSystemNeeded property, 428
for groups with For Each statement, 220
implemented by classes, 427–430
implemented by structures, 431–432
implemented by subroutines, 200–201
inheritance, 412, 417, 430–431
naming conventions, 427
public interface of a class, 409–410

Internet resources
Business Objects site, 655
connection object information, 318–319
cryptography information, 751
Crystal Reports for Visual Studio 2005 information, 655
regular expression information, 743
third-party controls, 273
transaction object information, 325–326

InterpolationMode property (Graphics class),
544–545

InvisibleControl class, 379–380
Is operator, 171
“is-a” relationships, 414–415
IsNot operator, 171
Items.Add method, 809–810
iterators, 224–225

J
joining lines of code, 126–127

K
Keyboard object (My.Computer), 967
keyboard shortcuts, 43–44

L
Label control, 268, 829
labels for code lines, 127
LastIndexOf method, 481–482
libraries

encapsulation by, 410
removing unused references, 465
Windows Control Library template, 362

lifetime of variables, 129
LIFO lists. See stacks (data structures)
Like operator

characters with special meaning, 171–172, 782
overview, 171–172
patterns, 172, 783

line continuation
comments and, 121
overview, 126

line joining, 126–127
line labels, 127
LineAlignment property (StringFormat class),

595
LinearGradientBrush class, 572, 575–580
LineCap enumeration, 527
LineJoin enumeration, 527
linked lists, ListDictionary class for, 494–496
LinkLabel control, 271, 830–831
ListBox controls

binding, 359
moving and copying items between, with drag and drop,

392–393
moving items between, with drag and drop, 389–392
overview, 267, 831–833
properties (table), 832

ListDictionary class
overview, 494–496
for strongly typed dictionaries, 500

ListView control
creating items and subitems, 834–835
defining columns, 836
displaying check boxes, 835–836
helper code for, 837–839
manipulating items at run time, 837–839
overview, 268, 833–837
properties (table), 837
RowSortingListView derived from, 370–374
Sorting property, 839–841
View property, 833–834

literal type characters, 133, 778
loading bitmaps, 618–619
localization resources, 696–697
Locals window, 28
Location property, 77–78
LockBits method, 627
logical operators, 172–174, 783
login forms, 279–281
looping statements
Continue statement, 228
defined, 216, 791
Do Loop, 225–227, 792

1011

looping statements

In
de

x

49_571982 bindex.qxd 9/1/05 7:49 PM Page 1011

looping statements (continued)
enumerators, 223–224
Exit statement, 227–228
For Each, 220–225, 791
For Next, 216–219, 791
iterators, 224–225
overview, 216
While End, 227, 792–793

M
Macro Explorer command (Tools menu), 38
Macro Explorer window, 38
macros

adding to menus or toolbars, 41
alternative approaches to problems, 40
recording temporary, 38
running temporary, 38
saving temporary, 38
uses for, 40

Macros submenu (Tools menu)
Macro Explorer command, 38
overview, 38–40
Record TemporaryMacro command, 38
Run TemporaryMacro command, 38

managed heap, 442
MaskedTextBox control

events (table), 845
Mask property characters, 842–843
overview, 268, 842–845
properties (table), 844

MDI (multiple-document interface) applications
building, 292–293
child forms and, 290–291, 293
defined, 290
events, 293–295
features, 290–293
implementing commands, 291–292
SDI applications versus, 295
Window menu for child forms, 292, 293

Me object, My namespace versus, 676
MeasureCharacterRanges method, 606–609
MeasureString method, 605–607, 642
memory

garbage collection, 442–446
heap, 434, 442
stack, 434
structures versus classes and, 433–434

MemoryStream class, 710–711
menus. See also custom menus

adding macros to, 41
Build, 18–22
creating new menus, 41
Data, 33–34
Debug, 22–33
Edit, 8–10
File, 5–8
Format, 34–36
Help, 48
overview, 4, 5
Project, 12–18

removing commands, 41
right-click menus, 42–43, 50–51
Tools, 36–45
View, 10–12
Window, 45–47

MenuStrip control, 270, 845–847
MessageQueue component, 847
Metafile class

building a Metafile, 630
methods (table), 630, 938
overview, 630, 633
program demonstrating, 630–632

methods. See also methods, tables summarizing; specific
methods

assigning attributes for custom controls, 368
of command objects, 331–332
of controls, 90, 766–768
declaring within classes, 446–447
defined, 407
delegates, 165–166
events versus, 448
implementing for custom controls, 366–367
overloading, 418–420
for Registry access, 682–683
shared, 456–458
for transformations (Graphics class), 547, 551

methods, tables summarizing
Application class, 702, 955
ArrayList class, 486–487
Audio object (My.Computer), 963
BinaryReader class, 712, 973–978
BinaryWriter class, 713, 978
Bitmap class, 617–618, 936–937
Clipboard object (My.Computer), 404–405, 963–964
Clock object (My.Computer), 964
CollectionBase class, 489
connection objects, 322
Control class, 766–768
CurrencyManager object, 353
DataRow object, 340–341
DataSet component, 335–336
DataTable object, 338
DataView object, 350
dictionary methods, 494
Directory class, 723–724, 985–986
DirectoryInfo class, 727–729, 989–990
Exception class, 242
File class, 724–726, 986–988
file methods, 718, 981–982
FileInfo class, 729–730, 991–992
FileSystem class (System.IO), 983–985
file-system methods, 719–720, 982–983
FileSystem object (My.Computer), 735–736,

965–966, 992–997
FileSystemWatcher class, 992
Form class, 911–914
Graphics class, 533–534, 540–542, 931–933
GraphicsPath class, 589, 935
Image class, 616–617, 936–937
LinearGradientBrush class, 575–577
Metafile class, 630, 938
MonthCalendar control, 850–851

1012

looping statements (continued)

49_571982 bindex.qxd 9/1/05 7:49 PM Page 1012

My.Application, 957–962
My.Settings namespace, 688
My.User namespace, 974
NameValueCollection class, 492
Network object (My.Computer), 968
OleDbConnection class, 322
Path class, 733–734, 990–995
PathGradientBrush class, 580–582
Pen class, 564–565, 933–934
queue methods, 505
Registry class (My.Computer), 684, 971–972
RegistryKey class, 684, 971–972
RichTextBox control, 875–876
Screen object (My.Computer), 972–973
Screen object (My.User), 974
SerialPort class, 969–970
SqlConnection class, 322
stack methods, 503
Stream class, 709, 976–977
StringFormat class, 596–597, 936
strongly typed dictionaries, 498
System.Environment object, 680–681
TableLayoutPanel control, 888
TextBox control, 890–891
TextReader class, 713, 979
TextureBrush class, 572–573
TextWriter class, 714, 979
ToolTip component, 895
TreeNode objects, 901–902
TreeView control, 899
WebBrowser control, 902

Microsoft
Visual Studio Tools for Office (VSTO), 636
Word, printing from, 636

Microsoft namespace, 740
Module statement

code regions defined by, 109
top-level nodes defined by, 108

modules
code regions, 109–110
namespaces versus, 469–470
scope of variables, 155–156
sections, 108–109
simple example, 108

Modules window, 29–30
MonthCalendar control

clearing current day’s date, 849
methods (table), 850–851
overview, 267, 847–852
properties (table), 848–849

Most Recently Used lists. See MRU lists
mouse cursors, 281–282
mouse events. See also drag and drop

drag source events, 387
drop target events, 386–387
sequence, 772

Mouse object (My.Computer), 967
move events, sequence for, 773
MRU (Most Recently Used) lists

building, 296–300
defined, 296
main program use of, 300–302

multiline If Then statement
function side effects and, 208
overview, 207–208, 790

multiple inheritance, 412, 429–430
multiple-document interface applications. See MDI

applications
multithreading, BackgroundWorker component

for, 805
My namespace
Me object versus, 676
My.Application, 957–962
My.Computer, 962–973
My.Computer.FileSystem object, 734–736,

965–966, 995–998
My.Forms, 973–974
My.Resources, 974
My.User, 970
need for, 675–676
sections, 677

My.Application namespace
Application class versus, 700
Info object properties (table), 959–960
overview, 957
properties, methods, and events (table), 957–962
setting Info values, 960–962

My.Application.AssemblyInfo namespace, 107
My.Computer namespace
Audio object, 963
Clipboard object, 963–964
Clock object, 964
FileSystem object, 734–736, 965–966, 992–997
Info object, 966–967
Keyboard object, 967
Mouse object, 967
Name property, 968
Network object, 968
overview, 962
Ports object, 968–970
Registry object, 970–972
Screen object, 972

My.Computer.FileSystem object
methods (table), 735–736, 965–966, 992–997
properties (table), 734–735, 965–966, 995
SpecialDirectoriesProxy object, 737, 997–998

My.Computer.FileSystem.
SpecialDirectoriesProxy object,
737, 997–998

My.Computer.Registry namespace
overview, 683
properties (table), 683
RegistryKey class, 683–685, 971–972

My.Forms namespace, 973–970
My.Resources namespace, 970
My.Settings namespace, 688–689
My.User namespace, 970

N
name clause for variables, 145–146
name collisions, 459, 461
Name property (My.Computer), 968

1013

Name property (My.Computer)

In
de

x

49_571982 bindex.qxd 9/1/05 7:49 PM Page 1013

Namespace statement, 467–469
namespaces. See also specific namespaces

aliases, 465–466, 519
automatic imports, 464–465
classes, structures, and modules versus, 469–470
creating, 467–469
defined, 118
defining, 118–119
Direct3D, 756–762
drawing namespaces, 523–532, 927–930
high-level .NET Framework namespaces, 740–742
importing elements, 466
Imports statement for, 120, 462–467
Microsoft namespace, 740
name collisions avoided by, 459, 461
overview, 473
for projects, 119
referencing modules, 119
reflection, 751–755
regular expressions, 742–745
resolving, 470–473
root namespace, 467
scope of variables, 156
System namespace, 740–742
System.Security, 747–751
System.Xml, 746–747

NameValueCollection class, 491–493
naming conventions for variables, 166–167
.NET Framework
Directory class, 723–724, 985–986
DirectoryInfo class, 727–729, 989–990
Direct3D, 756–762
DriveInfo class, 726–727, 988–989
File class, 724–726, 986–988
FileInfo class, 729–730, 991–992
FileSystemInfo class, 731
FileSystemWatcher class, 731–733, 992
high-level namespaces, 740–742
Microsoft namespace, 740
overview, 723, 739, 762
Path class, 733–734, 990–995
reflection, 751–755
regular expressions, 742–745
System namespace, 740–742
System.Security namespace, 747–751
System.Xml namespace, 745–747

Network object (My.Computer), 968
New File dialog, 6, 7
New keyword

for class instantiation, 438
for variables, 147–148

New Solution Configuration dialog, 21
nonclient area of controls, 89
notification icons, 283, 852–854
NotifyIcon component, 269, 283, 852–854
numeric format specifiers

custom, 948–949
sections, 949
standard, 947–948

NumericUpDown control, 267, 854–855

O
Object class, 409
object-oriented programming concepts. See OOP concepts
objects

class instantiation, 409, 438–440
defined, 409
Dispose method, 444–446
Finalize method, 442–444
polymorphism, 417–418
structure instantiation, 440–441

Of type_list clause
for classes, 426
for generics, 925

OleDbConnection class, 319, 322
On Error statements

exiting error-handling code, 799
On Error GoTo line, 250–251, 799
On Error GoTo -1, 252–253, 799
On Error GoTo 0, 252, 799
On Error Resume Next, 251–252, 799

OOP (object-oriented programming) concepts
abstraction, 412–414
classes, 407–409
encapsulation, 409–410
inheritance, 410–417
overloading, 418–420
overview, 420
polymorphism, 417–418
refinement, 412, 413

Opacity property (Form object), 275–277, 279
OpenFileDialog component, 855–857
operators

arithmetic, 169–170, 781
assignment, 175–176, 784
bitwise, 174, 783
comparison, 170–172, 782–783
concatenation, 170, 782
Date data type operations, 178–181, 785
defined, 169
logical, 172–174, 783
overloading, 181–184, 786
overview, 184–185
precedence of, 174–175, 784
StringBuilder class for concatenation, 176–178
TimeSpan data type operations, 179–180, 785

Option Compare compiler option, 18
Option Explicit compiler option

debugging and, 18
performance and, 152–153
problems from keeping turned of, 152–153
variable declarations and, 16, 151–153, 776

Option Strict compiler option
constant declarations and, 164
data type conversion and, 17
debugging and, 18
variable declarations and, 153, 776

Optional keyword for subroutines, 197–198
Options dialog, 43–44
order of precedence for operators, 174–175, 784

1014

Namespace statement

49_571982 bindex.qxd 9/1/05 7:49 PM Page 1014

outlines, DrawPath method for, 538–539
outlining in code editor, 53–55
overloading

functions, 420
methods, 418–420
operators, 181–184, 786
overloaded Graphics methods, 523
overloaded stack constructors, 503–504
subroutines, 191, 198

overriding
subroutines, 191–192
WndProc routine, 285–289

P
PageSetupDialog component, 858–859
Paint event handler

drawing events and, 558–560
making forms do all drawing in, 561
overview, 522
PaintEventArgs parameter, 558–559
transformations and, 548, 549, 554

Panel control, 265–266, 859–860
parameter declarations
ByRef, 157, 158–159, 194–196
ByVal, 157–158, 193–194, 195–196
declaring arrays ByVal and ByRef, 195–196
Optional keyword, 197–198
overloading and optional parameters, 198
overview, 157–159
parameter arrays for subroutines, 198–200
parenthesized parameters, 196–197
for subroutines, 193–200

parameter passing, 436–437
parameters clause for events, 449
parenthesized parameters for subroutines, 196–197
parsing methods for data types, 137, 779
Partial keyword

in class declarations, 422–423
code regions and, 110

Path class, 733–734, 990–995
PathGradientBrush class, 572, 580–585
patterns for Like operator, 172, 783
Pen class
Alignment property, 566–567
Brush class versus, 563
CompoundArray property, 567–568
constructors (table), 564
CustomEndCap property, 567–568
CustomStartCap property, 567–568
drawing lines one pixel wide, 563–564
overview, 521, 563
properties and methods (table), 564–565, 933–934
transformations, 569–571

percent sign (%) preceding custom format specifiers, 946
performance

anti-aliasing and, 546
Choose versus Select Case and, 215
connection objects and, 319
data types and, 131
heap versus stack and, 434

If Then Else versus Select Case and, 209–210
normal arrays versus Array objects, 479–481
Option Explicit compiler option and, 152–153
pixel manipulation and, 630
structures versus classes and, 434

PerformanceCounter component, 860
PictureBox control

creating drawings, 861
keeping drawings visible, 861–862
overview, 271, 860–862
SizeMode property values (table), 860–861

pixel-by-pixel operations
BitmapBytesRGB24 class for, 627–630
GetPixel method for, 625–626, 630
SetPixel method for, 625–626, 630
“unsafe” pixel manipulation, 627–630

pointer (Toolbox), 804
polymorphism, 417–418
popping items onto and off of stacks, 502–503
Ports object (My.Computer)

property and method, 968
SerialPort class, 968–970

position properties of controls, 89–90
precedence of operators, 174–175, 784
Print method, 636, 637, 654
PrintDialog component

overview, 862–865
PrintDocument component and, 638, 865
PrinterSettings object properties for (table),

864–865
properties (table), 863

PrintDocument component
basic process, 635
BeginPrint event handler, 641
calling Print method, 636
EndPrint event handler, 643
events, 636–637
overview, 271, 272, 866
Print method, 637, 654
PrintDialog component and, 638, 865
printing shapes with, 636–640
printing text with, 641–646
PrintPage event handler, 642, 647, 652
PrintPreviewControl control and, 637
PrintPreviewDialog component and, 633, 638
QueryPageSettings event handler, 642
simple printing application, 638–640

PrinterSettings object
PrintDialog component and, 863
properties (table), 864–865

printing. See also PrintDocument component
basic process, 635, 636–640
centering printouts, 647–649
complexity of, 635–636
fitting pictures to the page, 649–651
gutter for, 640–641
overview, 635, 654
PageSetupDialog component for, 858–859
PrintDialog component for, 638, 862–865
PrintPreviewControl control for, 271, 633,

866–868

1015

printing

In
de

x

49_571982 bindex.qxd 9/1/05 7:49 PM Page 1015

printing (continued)
PrintPreviewDialog component for, 271, 633,

638, 868–869
simple printing application, 638–640
simplifying drawing and, 651–654
text, 640–646
tools for, 804
with Visual Studio Tools for Office, 636
with word processing and text-formatting applications, 636

PrintPreviewControl control
overview, 271, 866–868
PrintDocument component and, 633
properties (table), 868

PrintPreviewDialog component
overview, 271, 868–869
PrintDocument component and, 633, 638

Private keyword
for classes, 424
for constants, 163, 164
for events, 449
for subroutines, 193
for variables, 129, 138, 150–151

procedures. See also functions; subroutines
defined, 187
property procedures, 157–159, 203–204, 788
scope of variables, 155

Process component, 869–870
Professional Crystal Reports for Visual Studio .NET (Wiley

publication), 655
program control statements. See also specific kinds

decision statements, 205–215, 789–791
defined, 205, 789
GoTo, 228–231, 793
looping statements, 216–228, 791–793

ProgressBar control, 270, 870–871
Project menu, 12–15
projects. See also code file structure

for creating custom controls, 362
custom controls in executable projects, 380–382
defined, 2, 103
excluding from builds, 22
hidden files, 103–107
overview, 2–3
referring to variables or routines, 108
for testing custom controls, 364–365

properties. See also properties, tables summarizing
for anti-aliasing, 543–545
assigning attributes for custom controls, 368–369
binding (complex strategy), 356–359
binding (simple strategy), 351–352
of child controls, 284
collection properties, 80–83, 84
of command objects, 330–331
compound properties, 77–78
declaring within classes, 446–447
defined, 75, 407
events changed by (Form class), 918–919
events versus, 448
implementing for custom controls, 366–367
inheritance from Control class, 84–85
My.Computer.Registry namespace, 683
position and size properties, 89–90

read-only properties, 84
resetting in forms, 285
restricted properties, 78–80
setting at design time, 76–83
setting at run time, 83–84
specialized editors for, 78, 79–80

Properties Page
Compile tab, 16–18
displaying, 11–12, 15
Option Compare, 18
Option Explicit, 16, 18, 776
Option Strict, 17–18, 776
overview, 16, 17

properties, tables summarizing
Application class, 701, 953–954
ArrayList class, 486–487
Clock object (My.Computer), 964
connection objects, 319
control and component properties, 763–766
Control class, 763–766
CurrencyManager object, 352–353
DataColumn object, 341–342
DataRelation object, 344
DataRow object, 339
DataRowView object, 350–351
DataSet component, 334
DataTable object, 337
DataView object, 349–350
dictionary properties, 494
DirectoryInfo class, 727–729, 989–990
DriveInfo class, 727, 988–989
Err object, 256
Exception class, 242
FileInfo class, 729–730, 991–992
FileSystem class (System.IO), 983–985
FileSystem object (My.Computer), 734–735,

965–966, 995
FileSystemWatcher class, 731, 992
FontDialog component, 824–825
ForeignKeyConstraint, 346
Form class, 905–911
Graphics class, 540–542, 932–933
GraphicsPath class, 589, 935
Image class, 616–617, 936–937
Info object (My.Application), 959–960
Info object (My.Computer), 966–967
Keyboard object (My.Computer), 967
LinearGradientBrush class, 575–577
LinkLabel control, 830
ListBox control, 832
ListView control, 837
MaskedTextBox control, 844
MenuStrip control, 846
MonthCalendar control, 848–849
Mouse object (My.Computer), 967
My.Application, 957–962
My.Computer.FileSystem object, 734–735,

965–966, 995
My.Computer.FileSystem.

SpecialDirectoriesProxy object,
737, 997–998

My.Computer.Registry namespace, 683

1016

printing (continued)

49_571982 bindex.qxd 9/1/05 7:49 PM Page 1016

My.Settings namespace, 688
My.User namespace, 970
NameValueCollection class, 492
NumericUpDown control, 854
OleDbConnection class, 319
OpenFileDialog component, 856–857
PageSetupDialog component, 859
Path class, 733, 994
PathGradientBrush class, 580–582
Pen class, 564–565, 933–934
PrintDialog component, 863
PrinterSettings object, 864–865
PrintPreviewControl control, 868
queue properties, 505
RadioButton control, 872
Registry class (My.Computer), 684, 971–972
RegistryKey class, 684, 971–972
RichTextBox control, 873–875
Screen object (My.Computer), 972
Screen object (My.User), 970
SerialPort class, 968–969
SplitContainer control, 880
SqlConnection class, 319
stack properties, 503
Stream class, 708, 976
StringFormat class, 596–597, 936
System.Environment object, 679–680
TabControl control, 883–885
TableLayoutPanel control, 887–888
TextBox control, 889–890
TextureBrush class, 572–573
TextWriter class, 979
ToolStrip control, 893
ToolTip component, 894–895
TrackBar control, 896
TreeNode objects, 900–901
TreeView control, 898–899
UniqueConstraint, 347
WebBrowser control, 902

Properties window
compound properties and, 77–78
overview, 4
restricted properties and, 78–80
setting control properties, 76

Property Pages command (View menu), 11–12
property procedures

declaring, 160, 203, 788
defined, 159, 203
overview, 203–204
parameter declarations, 157–159
read-only, 160, 788
read/write, 788
uses for, 159–160
write-only, 160, 788

PropertyGet procedures, 788
PropertyGrid control, 268–269, 871
Protected Friend keyword

for classes, 424
for constants, 163, 164
for events, 449
for subroutines, 193
for variables, 138

Protected keyword
for classes, 423
for constants, 163
for events, 448
for subroutines, 192
for variables, 138

Public keyword
for classes, 423
for constants, 163, 164
for events, 448
for subroutines, 192
for variables, 129, 138, 150

Publish Wizard, 20

Q
queues

circular arrays in, 505
defined, 502
FIFO behavior, 502
properties and methods (table), 505
using, 506–507

QuickWatch dialog, 25

R
RadioButton control, 267, 871–872
RaiseEvent keyword, 450
RaiseEvent routine, 452–453
raising events

custom events, 452–453
defined, 90
RaiseEvent keyword for, 450
syntax, 923

random-file access, 720–722
ReadOnly keyword

constants and, 164
for variables, 142–143, 150

read-only property procedures, 788
read-only strongly typed collections, 491
ReadOnlyCollectionBase class, 491
read/write property procedures, 788
Record TemporaryMacro command (Tools menu), 38
refinement, 412, 413
reflection

defined, 751
for learning about other applications, 753–755
listing program’s properties, types, and values, 751–753
updates, 755

Regex object, 743–745
Region statement, organizing code using, 109–110
Registry

accessing, 682
defined, 681
My.Computer.Registry namespace for, 683–685
subtrees (table), 681
uninstalling programs and, 683
unsupported keys, 681
Visual Basic methods for, 682–683, 685

Registry class (My.Computer)
properties and methods (table), 684, 971–972
working with Registry using, 683, 684–685

1017

Registry class (My.Computer)

In
de

x

49_571982 bindex.qxd 9/1/05 7:49 PM Page 1017

Registry object (My.Computer), 970–971
RegistryKey class, 971–972
regression testing tools, 234
regular expressions, 742–745
Relation editor, 312
Release configurations, Debug configurations versus, 21
RemoveHandler statement, 93–94, 452–453
ReportDocument object, 672–673
reporting

building a report, 656–666
Crystal Reports for Visual Studio 2005 for, 655–666
CrystalReportViewer control for, 666–667,

671–673
customizing reports, 667–671
manipulating output programmatically, 672–673
overview, 655, 673
ReportDocument object for, 672–673
.rpt extension for reports, 655
using external reports, 671–672
viewing reports, 656, 666–667

ReportSource property (CrystalReport
Viewer control), 671

ReportViewer control, 872
ResetTransform method, 647, 649
Resize event handler, 560–561
resize events, sequence for, 772–773
resolving namespaces, 470–473
ResourceManager class, 694, 698
resources. See also configuring applications

application settings versus, 104
ComponentResourceManager class for, 698–700
creating application resources, 689–692
defined, 104
embedded, 694–695
hidden files for, 104, 105
localization, 696–697
resource files overview, 689
ResourceManager class and, 694, 698
satellite, 695–696
strongly typed embedded, 695
unmanaged, handling, 442–446
using application resources, 692–694

Resources.Designer.vb file, 692, 693
Resources.resx file, 104, 105, 688
restricted properties of controls, 78–80
restricting scope of variables, 156–157
return values

functions’ setting of, 202–203
needed for PropertyGet procedures, 788

RichTextBox control
methods (table), 875–876
overview, 267–268, 873–877
properties (table), 873–875

right-click menus
Customize dialog, 42–43
Toolbox, 50–51

root namespace, 467
rotating text, 600–601
routines. See functions; subroutines
RowSortingListView derived control

building, 370
hiding parent features, 373–374

implementing custom sort orders, 370–371
shadowing parent features, 372–373

.rpt extension for reports, 655
Run TemporaryMacro command (Tools menu), 38
run time

code editor at, 54
control properties at, 83–84
controls versus components at, 67, 68
creating controls at, 73–75
managing custom controls for, 369
manipulating ListView control items, 837–839
methods invoked at, 90
retrieving environment variables, 679
setting event handlers at, 93–94

RunWorkerAsync method, 805

S
satellite resources, 695–696
SaveFileDialog component, 877–878
SaveSetting method, 682
saving

bitmaps, 619–620
connection string, 308–310
graphics states, restoring and, 556–558
temporary macros, 38

ScaleTransform method, 650
Schema Editor, 311–312
scope of classes (unit scope), 446–447
scope of variables

block scope, 154–155
defined, 129, 154
module scope, 155–156
namespace scope, 156
procedure scope, 155
restricting, 156–157

Screen object
My.Computer, 972–973
My.User, 970

scroll bars
in ColorScroller composite control, 374–375
HScrollBar control for, 267, 828
for Panel control, 860
VScrollBar control for, 267, 902

SDI (single-document interface) applications,
289, 292, 295

Select Case statement
Choose statement versus, 214–215
comma-separated expressions, 211–212
If Then Else statement versus, 209–210
Is keyword, 210–211, 790
To keyword, 210, 790
overview, 208–210, 790
syntax, 208–209

selecting
controls, deciding which to use, 264–272
controls from Toolbox, 72–73
making selections, controls for, 266–267

separated validation, 97–98
sequences of events, 772–773
sequential-file access, 720

1018

Registry object (My.Computer)

49_571982 bindex.qxd 9/1/05 7:49 PM Page 1018

SerialPort class
events (table), 970
methods (table), 969–970
properties (table), 968–969

SerialPort component, 878
ServiceController component, 879
SetPixel method, 625–626, 630
SetTabStops method, 601–602
Settings.settings file, 104, 105
Shadows keyword

for classes, 424–425
for derived controls, 372–374
for events, 449
for subroutines, 192
for variables, 139–140, 150

Shared keyword
constants and, 164
for methods, 456–458
for subroutines, 192
for variables, 139–140, 150, 455–456

ShowUpDown property (DateTimePicker control),
814–815

side effects of functions, 208
SimpleSmiley custom control, 376–377
single-document interface (SDI) applications, 289, 292, 295
single-line If Then statement
Else clause, 206, 789, 790
Else If clause, 789
overview, 205–206, 789–790

size properties of controls, 89–90
SizeMode property values (PictureBox control),

860–861
SmothingMode property (Graphics class), 543
snippets. See code snippets
SolidBrush class, 572
Solution Explorer

database application in, 311, 312
external reports in, 671
Imported Namespaces list, 464–465
overview, 4
Unused References list, 465

Solution Properties Page dialog, 18, 19
solutions, 2–3
SortedList class, 500–501
Sorting property (ListView control), 839–841
special characters. See characters; operators
speed. See performance
splash screens, 279–281
SplitContainer control

events, 881
overview, 266, 879–881
properties (table), 880

SqlConnection class, 319, 322
stack (memory), 434
stacks (data structures)

defined, 502
LIFO behavior, 502
memory management, 503–504
overloaded constructors, 503–504
popping items onto and off of, 502–503
properties and methods (table), 503

StackTrace objects, 243–246
Standard Report Creation Wizard

Chart page, 664
connection wizard, 659–660
creating a new data source, 657–659
Fields page, 660–661
Group Sorting page, 662–663
Grouping page, 662
Link page, 660–661
opening, 657
Record Selection page, 664, 665
Report Style page, 664–665
Summaries page, 662, 663

statements. See also specific statements
control statements, 789–793
decision statements, 205–215, 789–791
looping statements, 216–228, 791–793
in subroutine declarations, 201–202

Static keyword
constants and, 164
for variables, 138

StatusStrip control, 270, 881–882
Stephens, Rod (Visual Basic Graphics Programming), 762
Stream class, 708–709, 976–977
StreamReader class, 715–716, 980
streams. See also specific classes

classes (table), 708, 975–976
console streams, 980
custom stream classes, 716
defined, 707
overview, 707

StreamWriter class, 715–716, 980
string formats. See format specifiers
StringBuilder class, concatenation using, 176–178
StringCollection class, 488
StringDictionary class, 500
StringFormat class
Alignment property, 595, 642
FormatFlags property, 597–601, 642
GetTabStops method, 601–602
LineAlignment property, 595
positioning text using, 595–597
printing and, 642
properties and methods (table), 596–597, 936
SetTabStops method, 601–602
Trimming property, 602–605

StringReader class, 714–715, 980
StringWriter class, 714–715, 980
strongly typed classes

collections, 488–491
dictionaries, 497–500
generic classes as, 511
read-only strongly typed collections, 491

strongly typed embedded resources, 695
structured error handling

classic error handling versus, 254–256
custom exceptions for, 248–249
Exception objects for, 241–243
StackTrace objects for, 243–246
throwing exceptions, 246–248
Try block for, 239–241, 795

1019

structured error handling

In
de

x

49_571982 bindex.qxd 9/1/05 7:49 PM Page 1019

structures
boxing and unboxing by, 437
classes versus, 431, 432–437, 458, 922
constructors, 440–441, 922
declaring, 431, 922
inheritance not possible for, 431
instantiation, 440–441
interface implementation, 431–432
memory requirements, 433–434
name collisions and, 459
namespaces versus, 469–470
object assignment by, 435–436
parameter passing by, 436–437
performance and, 434
stack and, 434
syntax, 431, 922
in System.Drawing namespace (table), 525, 927–928
as value types, 432–433

subroutines. See also constructors
accessibility clause, 192–193
attribute_list clause, 188–190
declaring, 187–202, 787
declaring arrays ByVal and ByRef, 195–196
defined, 187
delegates, 165–166
executing in Immediate window, 33
implementing interfaces, 200–201
inheritance_mode clause, 181–182
optional parameters, 197–198
overloading, 191, 198
overriding, 191–192
parameter arrays, 198–200
parameter declarations, 157–159, 193–200
parenthesized parameters, 196–197
scope of variables, 155
statements section, 201–202
subroutine_name clause, 193
syntax, 187

System namespace, 740–742
System Registry. See Registry
system tray, displaying icons in, 852–854
System.Drawing namespace

classes (table), 524, 927–928
overview, 523, 525
structures (table), 525, 927–928

System.Drawing.Drawing2D namespace, 525–526,
928–929

System.Drawing.Imaging namespace, 528, 929
System.Drawing.Printing namespace, 532, 930
System.Drawing.Text namespace

classes (table), 529, 930
displaying text with and without anti-aliasing, 531
enumerations (table), 530
listing system fonts, 529–530
overview, 529

System.Environment object, 679–681
System.IO namespace
Directory class, 723–724, 985–986
DirectoryInfo class, 727–729, 989–990
DriveInfo class, 726–727, 988–989
File class, 724–726, 986–988

FileInfo class, 729–730, 991–992
FileSystem class, 983–985
FileSystemInfo class, 731
FileSystemWatcher class, 731–733, 992–993
Path class, 733–734, 994–995

System.Security namespace, 747–751
System.Xml namespace, 746–747

T
tab stops, 601–602
TabControl control
ImageList component for, 80–82
overview, 266, 882–886
properties (tables), 883–885

TableLayoutPanel control
FlowLayoutPanel control versus, 821, 889
methods (table), 888
overview, 265, 886–889
properties (table), 887–888

TARGET constant, 113
testing custom controls

test project for, 364–365
UserControl Test Container for, 363–364
using from Toolbox, 365–366

text
determining where parts will be drawn, 606–609
displaying with and without anti-aliasing, 531
drawing, 593–595
font metrics, 609–612
formatting, 595–605
listing system fonts, 529–530
measuring width and height for fonts, 605–607
overview, 593, 613
positioning, 595–597
printing, 640–646
rotating at any angle, 600–601
tab stops, 601–602
trimming, 602–605
vertical, 598–599

TextBox control
methods (table), 890–891
overview, 267–268, 889–891
properties (table), 889–890

TextReader class, 713, 979
TextRenderingHint property (Graphics class),

543–544
TextureBrush class, 572, 572–575
TextWriter class, 713–714, 979
third-party controls, 272–273
Threads window, 29
3D Computer Graphics (Watt, Allan H.), 762
Throw statement, 795
throwing events. See raising events
throwing exceptions, 246–248, 795
Timer component, 271, 891
times

custom format specifiers, 944–946
DateTimePicker control for, 814–816
standard format specifiers, 943–944, 945, 946

TimeSpan data type operations, 179–180, 785

1020

structures

49_571982 bindex.qxd 9/1/05 7:49 PM Page 1020

toolbars. See also custom toolbars
adding macros to, 41
overview, 4, 48
rearranging, 48
removing commands, 41
showing or hiding, 48

Toolbox. See also components; controls; specific tools
components listed by purpose, 803–804
double-clicking on controls, 70
dragging controls from, 70–71
overview, 4, 49–51
pointer, 804
right-click menu for, 50–51
setting icons for custom controls, 363
standard components (table), 802–803
using custom controls, 365–366
Windows forms controls in, 259–264

Tools menu
commands, 37–38
Customize command, 40
Macros submenu, 38–40
overview, 36

Tools.Alias command, 33
ToolStrip control, 270–271, 891–893
ToolStripContainer control, 893–894
ToolTip component, 269, 894–895
tooltips in code editor, 55–56, 58
ToString method, 943–946
TRACE constant, 113, 116
TrackBar control

for initiating action, 271
for making selections, 267
overview, 896
properties (table), 896

transaction objects
further information, 325–326
program demonstrating, 323–325
transaction defined, 322

transformations (graphical), 546
advanced, 551–556
basics, 546–551
combining, 547, 551
defined, 546
Graphics class methods for, 547, 551
mapping world coordinates to device coordinates, 553
matrices for, 546–547
order of applying, 549, 551
Pen class transformations, 569–571
for positioning drawings, 554–556
Prepend parameter for, 547–548
rotation, 548–549
rotation with translation, 549–551
saving and restoring graphics states, 556–558
scaling diamond around its center, 551–553

TranslateTransform method, 647
transparency properties for forms
Opacity, 275–277, 279
TransparencyKey, 277–279

TransparencyKey property (Form object),
277–279

TreeNode objects
methods (table), 901–902
overview, 897
properties (table), 900–901

TreeView control
methods (table), 899
overview, 896–902
properties (table), 898–899
TreeNode object methods (table), 901–902
TreeNode object properties (table), 900–901
TreeNode objects, 897

Trimming property (StringFormat class), 602–605
Try block
Catch statement, 239, 240–241
for structured error handling, 239–241, 795
syntax, 239, 795

TypeOf operator, 171
types. See data types
typographic code elements

line continuation, 126
line joining, 126–127
line labels, 127
normal comments, 121
overview, 120–121
XML comments, 122–125

U
UniqueConstraint, 345, 346–347
unit scope of classes, 446–447
unmanaged resources
Dispose method for, 444–446
Finalize method for, 442–444

unplanned conditions. See also error handling
bugs versus, 233–234
catching, 235–238
defined, 234
Y2K problem, 233

UserControl class
for custom controls, 374, 380
customizing in executable projects, 381
inherited in executable projects, 381

UserControl Test Container, 363–364

V
validating data. See also validation events
Assert method for, 235
compiler constants for, 235
functions for, 237–238
need for, 234
regression testing tools and, 234
regular expressions for, 743–744
testing for unexpected conditions, 236–237

validation events
CausesValidation property for, 95, 97
deferred validation, 98–100
overview, 95
separated validation, 97–98
Validated events, 95, 97

1021

validation events

In
de

x

49_571982 bindex.qxd 9/1/05 7:49 PM Page 1021

validation events (continued)
ValidateFiveDigits examples, 96–97, 98–100
Validating event handlers, 95–100
Validating events, 95, 97

variable declarations
accessibility clause, 138–139, 150
for arrays, using parentheses, 476
attribute_list clause, 138
bounds_list clause, 146–147
Dim keyword, 143
for enumerated types, 161, 776
initialization_expression clause, 148–150
multiple declarations in single statement, 150–151
name clause, 145–146
naming conventions, 166–167
New keyword, 147–148
Option Explicit and, 16, 151–153, 776
Option Strict and, 153, 776
overview, 137–138, 168
parameter declarations, 157–159
ReadOnly keyword, 142–143
Shadows keyword, 140–142
Shared keyword, 139–140, 150, 455–456
standard declaration, 775–776
syntax, 137
WithEvents keyword, 74, 92–93, 143–145

variables. See also data types; variable declarations
accessibility, 129, 138–139, 150–151
debugging and, 18
delegates, 165–166
environment variables, 677–681
factors determining behavior of, 129–130
lifetime, 129
naming conventions, 166–167
Option Strict and conversion of, 17
read-only, 160
scope, 129, 154–157
write-only, 160

VBC_VER constant, 113
vertical text, 598–599
View menu, 10–12
View property (ListView control), 833–834
Visible property of controls, 379–380
Visual Basic Graphics Programming (Stephens, Rod), 762
Visual Studio Tools for Office (VSTO) by Microsoft, 636
VScrollBar control

for initiating action, 271
for making selections, 267
overview, 902

VSTO (Visual Studio Tools for Office) by Microsoft, 636

W
WaitForChanged method, 732
Watch window, 25, 26
Watt, Allan H. (3D Computer Graphics), 762
wavy underlines in code editor, 58–59

WebBrowser control, 902–903
When Breakpoint Is Hit dialog, 31–32
While End statement
Do While statement and, 227, 793
enumerators, 223–224
iterators, 224–225
overview, 227, 792

While loops
Continue statement, 228
Do Loop, 225–227, 792
enumerators, 223–224
Exit statement, 227–228
iterators, 224–225
overview, 216
While End, 227, 792–793

Window menu, 45–47
WindowProc (WndProc) routine, overriding, 285–289
Windows Control Library template, 362
Windows forms controls. See also controls

choosing, 264–272
container controls, 265–266
for displaying data, 268–269
for displaying dialogs, 271–272
for displaying graphics, 271
for entering data, 267–268
importance of, 259
for initiating action, 270–271
for making selections, 266–267
overview, 273–274
for providing feedback, 269–270
for supporting other controls, 272
table summarizing, 259–264
third-party controls, 272–273

windows, rearranging, 48–49
Windows submenu (Debug menu), 26–30
Windows XP Control Panel, 677–678
WithEvents variables

catching events and, 74, 450
declaring, 143–145
event handlers, 92–93

wizards, forms as, 303–304
WndProc routine, overriding, 285–289
Word (Microsoft), printing from, 636
write-only property procedures, 788

X
XML (Extensible Markup Language)

comments, 122–125
overview, 745
System.Xml namespace for, 746–747

Y
Y2K problem, 233

1022

validation events (continued)

49_571982 bindex.qxd 9/1/05 7:49 PM Page 1022

