Assembly
Language: The
True Language

Of Programmers

There are many high-level, structured languages for programming today's PCs. Two popular examples are
C* and Pascal. However, assembly language still has its place in today's programming world. Since it
mimics the operations of the CPU at the machine level, assembly language lets you get right to the "heart"
of your PC.

In fact, there are some tasks that you can do only by using assembly language. While it's true that the Pascal
language is capable enough to handle interrupts, it can't be used to pass keyboard input to DOS, for
example. Since Pascal has no native way to do this, you must still insert an assembler module routine to
perform the function. Likewise, you can't easily remove a high-level resident program from memory. Once
again, you have to write the routine in assembly language to do this.

Formany applications, programming code muststill be ascompact as possible. For example, in programming
resident programs, each kilobyte of RAM below the 640K boundary is vital. Programs written in high-level
languages usually require a runtime library which may add several additional kilobytes to the size.
Assembly language programs don't need these bulky library routines.

However, the most important advantage of assembly language is speed. Although high-level languages
can be optimized for speed of execution, even the best optimization cannot replace the experience of a
programmer. Here's a simple example. Let's say that you want to initialize two variables in Pascal to a zero
value. The compiler will generate the following assembly code:

Xor ax,ax

mov varl,ax

XOr ax,ax
mov var2,ax

Here, the Pascal compiler optimized the execution speed by using the XOR instruction to zero the ax register
(the fastest way to do this) and storing this value asvarl . However, due to compiler's limitations, the AX
register was again zeroed before the second assignment although this was redundant.

For truly time-critical tasks such as sprite movement and high-speed graphics, the only choice may be to
use assembly language.

There are two basic ways to do this:
1. Use an internal assembler such as the one built into Borland Pascal and its asm directive.
2. Use a stand-alone assembler such as Turbo Assembler or Microsoft Assembler.

Each way has its own advantages and disadvantages but using the stand-alone assembler is usually the
better choice.

Assembly Language: The True Language Of Programmers |::J

The stand-alone assembler is designed from the ground up for writing full assembly language programs
- not as an add-on to a high-level language. A stand-alone assembler has a complete programming
environment with many convenient features. For example, it has directives such as "db 20 dup" that makes
programming easier. Only a limited number of directives are available from built-in assemblers. Stand-
alone assemblers also offer the advantage of macros which speed up assembly language programming
tasks.

We've chosen to use a stand-alone assembler in this book wherever possible. Of course there are exceptions
such as if the assembly language routine module has to access a procedure’s local variables as in Borland's
GetSprite and PutSprite procedures.

Multiplication And Division In Assembly Language

Today's 486 DX4es and Pentiums are fast. These speed demons can perform a multiplication operation in
only six clock cycles. This is a far cry from the 100+ cycles that were required using the ancient 8086
processors or about 20 cycles using yesterday's 286es.

However, if you really want to impress people with fast multiplication, you can use the shift instructions.
The number of bits by which you're shifting corresponds to the exponent of the multiplicand to base 2; to
multiply by 16, you would shift 4 bits since 16 equals 2 to the 4th power. The fastest method of multiplying
the AXregister by 8 is the instruction SHL AX,3 which shifts each bit to a position eight times higher in value.

Conversely, you can perform division by shifting the contents to the right. For example, SHR AX,3 divides
the contents of the AX register by 8.

In the early days of computing, numerical analysts suggested other ways to speed up computations. One
common technique was to use factoring. For example, multiplication by 320 can be factored like this:

1. Multiplication of the value by 256 (shift by 8 bits)
2. Multiplication of a copy of the value by 64 (shift by 6 bits)
3. Addition of the two results from above

Mathematicians call this factoring according to the distributive law.

Fixed Point Arithmetic

The preceding examples assume that the values you're working with are integers. But for many applications,
it's not always appropriate or possible to use integers.

In programming graphics, for example, to draw a line on the screen you need to know the slope of the line.
Practically speaking, the slope is seldom an integral number. Normally, in such cases, you would use real
(Pascal) or float (C) values which are based on floating point representation. Floating point numbers allow
a variable number of decimal places. The decimal point can be placed almost anywhere - which gives rise
to the term floating point.

PC

I M Assembly Language: The True Language Of Programmers

Compared to integers, arithmetic using floating point numbers is very slow. Some PCs have math
coprocessors that can perform arithmetic directly. However, if the PC doesn't have a coprocessor then the
floating point computations must be performed by software. This accounts for the higher computing times
for floating point arithmetic.

Working with floating point number in assembly language isn't very easy. So you can use a high-level
language for floating point operations or you can write your own routines. Using high-level language
operations is not always easy in Pascal, for example, because the four basic arithmetic operations are not
declared as Public. Since both of these alternatives options require a considerable amount of effort, let's look
at another alternative.

Many application require only a limited amount of computational precision. In other words, they may not
really need eleven significant decimal places. For applications where the values have a narrow range, you
may be able to use fixed point numbers.

Fixed point numbers consist of two parts:
1. One part specifies the integer portion of the number
2. The other part specifies the decimal (fraction) part of the number

When using fixed point number, you must first set (or fix) the number of decimal places. Let's see how a
fixed point number can change by varying the number of decimal places. The fixed portion and decimal
portion of 17 and 1 respectively.

By changing the number of decimal places, the value of the fixed point number is changed:

Number of decimal places 1 2 5 4

Value of fixed point number 17.1 17.01 17.001 17.0001

So it's important that there be a clear understanding of how many fixed places the fractional portion will
represent.

Now for a quick look at how the mathematical signs are used for fixed point numbers. In fixed point
notation, the value -100.3 can be divided into two parts: -100 and -3 (using one decimal place). Adding these
two together yields the actual rational number. In this example, adding -100 and -0.3, produces a result of
-100.3, which achieves our objective.

The most important advantage of working with these numbers is obvious: They consist of two simple
integer numbers which are paired in a very simple way. During addition, any overflow of the fractional
portion is added to the integer portion. Using this scheme, even a lowly powered 8086 processor can work
efficiently and quickly without a coprocessor.

Realizing that the CPU is not set up to handle fixed point operations automatically, we'll have to program
a way to perform the arithmetic operations. We'll see one way to do this in the next section. The method is
so flexible that you can even perform more complicated operations, such as root determination by
approximation, where you'll really notice the speed advantage of fixed point arithmetic.

Assembly Language: The True Language Of Programmers |:3

The four fundamental arithmetic operations

Because they're so close to integer numbers, developing basic arithmetic operations for the fixed point
numbers is no big deal. The math instructions are already built into the processor so the remaining
consideration is deciding how to work with the paired numbers.

The program in this chapter shows one way of packaging a math library for fixed point numbers. This
program implements the four basic arithmetic operations in Pascal. By rewriting the routines in assembly
language, you can make the routines fly even faster, but the Pascal example here demonstrates the method.

Addition

The easiest operation is addition. To add two fixed point numbers, you simply add the integer portions and
the fractional portions separately.

Here's the only complicating factor. If the two fractional portions produce a value greater than one, then
you have to handle the "overflow". For example, an overflow occurs for fixed point numbers with two
decimal places when the two fractional values sum to a value of 100 or higher. In this case, the overflow is
handled by adding one to the integer portion and subtracting 100 from the fractional portion. The reverse
is true with negative numbers. In this case, you subtract one from the integer portion and add 100 to the
fractional portion.

Subtraction

Subtraction is similar to addition, except the two separate portions are subtracted from one another.
Overflow is handled in the same way.

Multiplication

A more elaborate method is used for multiplication. First, each factor is converted to a whole number. Next
the two factors are multiplied. Then the product is reconverted back to a fixed point value. During the
reconversion, the product is adjusted by dividing by the number of decimals since the factors were
increased when they were first converted into whole numbers.

Division

Division is performed by a method that parallels multiplication. As in multiplication, you convert the fixed
point dividend and the divisor into whole numbers, thereby temporarily eliminating the decimals. Again
after the division, the quotient is adjusted by dividing the

number of decimals. You can find

A
4
The program BASARITH.PAS, listed below, illustrates this on theiﬁ,‘i?,’;,’,,ro’f;’?ﬁ,?o,\,,

technique:

Type Fixed=Record {structure of a fixed point number}
BeforeDec,
AfterDec:Integer
End;

Var Varl, {sample variables}
Var2:Fixed;

PC

I M Assembly Language: The True Language Of Programmers

Const AfterDec_Max=100; {2 places after decimal point}
AfterDec_Places=2;

Function Strg(FNumber:Fixed):String;
{converts a fixed point number to a string}

Var AfterDec_Str, {string for forming the fractional part}
BeforeDec_Str:String; {string for forming the integral part}
i:Word;

Begin

If FNumber.AfterDec < 0 Then {output fractional part without sign}
FNumber.AfterDec:=-FNumber.AfterDec;
Str(FNumber.AfterDec:AfterDec_Places,AfterDec_Str);
{generate decimal string}
For i:=0 to AfterDec_Places do {and replace spaces with 0s}

Str(FNumber.BeforeDec,BeforeDec_Str); {generate integral string}
Strg:=BeforeDec_Str+','+AfterDec_Str; {combine strings}
End;

Procedure Convert(RNumber:Real;Var FNumber:Fixed);

{converts Real RNumber to fixed point number FNumber}

Begin
FNumber.BeforeDec:=Trunc(RNumber);
{define integral part}
FNumber.AfterDec:=Trunc(Round(Frac(RNumber)*AfterDec_Max));
{define fractional part and store as whole number}

End;

Procedure Adjust(Var FNumber:Fixed);
{puts passed fixed point number back in legal format}
Begin

If FNumber.AfterDec > AfterDec_Max Then Begin
Dec(FNumber.AfterDec,AfterDec_Max); {if fractional part overflows to positive}
Inc(FNumber.BeforeDec); {reset and decrement integral part}

End;

If FNumber.AfterDec < -AfterDec_Max Then Begin
Inc(FNumber.AfterDec,AfterDec_Max); {if fractional part overflows to positive}
Dec(FNumber.BeforeDec); {reset and increment integral part}

End;

End;

Procedure Add(Var Sum:Fixed;FNumberl,FNumber2:Fixed);
{Adds FNumberl and FNumber2 and places result in sum}
Var Result:Fixed;
Begin
Result.AfterDec:=FNumberl.AfterDec+FNumber2.AfterDec;
{add fractional part}
Result.BeforeDec:=FNumberl.BeforeDec+FNumber2.BeforeDec;
{add integral part}
Adjust(Result);
{Put result back in correct format}
Sum:=Result;
End;
Procedure Sub(Var Difference:Fixed;FNumberl,FNumber2:Fixed);
{Subtracts FNumberl from FNumber2 and places result in difference}
Var Result:Fixed;
Begin
Result.AfterDec:=FNumberl.AfterDec-FNumber2.AfterDec;
{subtract fractional part}
Result.BeforeDec:=FNumberl.BeforeDec-FNumber2.BeforeDec;
{subtract integral part}
Adjust(Result);

Assembly Language: The True Language Of Programmers |::J

{put result back in correct format}
Difference:=Result;
End;

Procedure Mul(Var Product:Fixed;FNumberl,FNumber2:Fixed);
{multiplies FNumberl and FNumber2 and places result in product}
Var Result:Longlnt;
Begin
Result:=Varl.BeforeDec*AfterDec_Max + Varl.AfterDec;
{form first factor}
Result:=Result * (Var2.BeforeDec*AfterDec_Max + Var2.AfterDec);
{form second factor}
Result:=Result div AfterDec_Max;
Product.BeforeDec:=Result div AfterDec_Max;
{extract integral and fractional parts}
Product.AfterDec:=Result mod AfterDec_Max;
End;

Procedure Divi(Var Quotient:Fixed;FNumberl,FNumber2:Fixed);
{divides FNumberl by FNumber2 and places result in quotient}
Var Result:Longlnt; {intermediate result}
Begin
Result:=FNumberl.BeforeDec*AfterDec_Max + FNumberl.AfterDec;
{form counter}
Result:=Result * AfterDec_Max div (FNumber2.BeforeDec*AfterDec_Max+FNumber2.AfterDec);
{divide by denominator, provide more places beforehand}
Quotient.BeforeDec:=Result div AfterDec_Max;
{extract integral and fractional parts}
Quotient.AfterDec:=Result mod AfterDec_Max;
End;

Begin
WriteLn;
Convert(-10.2,Varl); {load two demo numbers}
Convert(25.3,Var2);
{some calculations for demonstration purposes:}
Write(Strg(Varl),™,Strg(Var2),'= ');
Mul(Varl,Varl,Var2);
WriteLn(Strg(Varl));
Write(Strg(Varl),-',Strg(Var2),'= ");
Sub(Varl,Varl,Var2);
WriteLn(Strg(Varl));
Write(Strg(Varl),'/',Strg(Var2),'= ');
Divi(Varl,Varl,Var2);
WriteLn(Strg(Varl));

Write(Strg(Varl),'+',Strg(Var2),'= ');
Add(Varl,Varl,Var2);
WriteLn(Strg(Varl));

End.

Addition, subtraction, multiplication and division are implemented in the procedures Add, Sub, Mul and
Divi respectively. The main program tests each of the operations.

Procedure Adjust makes the decimal adjustments after addition and subtraction. Procedure Convert
converts a floating point number to a fixed point numberandStrg generates a string out of this fixed point
number so it can be displayed on the screen.

— =~
D (e

| 3 “de(

Assembly Language: The True Language Of Programmers

Why fixed point numbers? A sample application

The program above demonstrates the simplicity of fixed point numbers. The following example, however,
demonstrates there are also practical applications for fixed point numbers.

In this example, we develop a very fast way to calculate the slope of a line. This method is very fast and rivals
the Bresenham algorithm.

The procedure used here is based on the simple mathematical definition of a straight line: y=mx+b. The
slope, called m, is very important. It indicates the steepness by which a straight line ascends on a segment
with a length of 1.

However, because this value is seldom a whole number, you can make excellent use of fixed point
arithmetic. The sample procedure Line can draw lines with a slope between 0 and 1; for other slopes, you
have to add reflections (see Chapter 7).

This program uses a procedure called PutPixel . Although we'll discuss PutPixel in more detail in
Chapter 3, for now we'll just note that this procedure sets a pixel at the coordinates (x,y) in mode 13h with
the color Col .

You'll find this line algorithm converted to assembly language A You can find
on the companion CD-ROM. The assembly language version is k] LINEECT.PAS
called LINEFCT.PAS (the routine uses the Pascal built-in ,)I on the companion CD-ROM
assembler).

Uses Crt;

Var x:Word;

Procedure PutPixel(x,y,col:word);assembler;
{sets pixel (x/y) to color col (Mode 13h)}
asm

mov ax,0a000h {load segment}
mov es,ax
mov ax,320 {Offset = Y*320 + X}
mul y
add ax,x
mov di,ax {load offset}
mov al,byte ptr col {load color}
mov es:[di],al {and set pixel}
End;

Procedure Line(x1,y1,x2,y2,col:Word);assembler;
asm
{register used:
bx/cx: Fractional/integer portion of of y-coordinate
si : fractional portion of increase}

mov si,x1 {load x with initial value}

mov X,Si

sub si,x2 {and form x-difference (in si)}

mov ax,yl {load y (saved in bx) with initial value}

mov bx,ax

sub ax,y2 {and form y-difference (in ax)}

mov cx,100 {expand y-difference for computing accuracy}

Assembly Language: The True Language Of Programmers |::J

imul cx

idiv si {and divide by x-diff (increase)}

mov si,ax {save increase in si}

XOr €X,cX {fractional portion of y-coordinate to 0}
@lp:

push x {x and integer portion of y to PutPixel}

push bx

push col

call PutPixel

add cx,si {increment y-fractional portion}

cmp ¢x,100 {fractional portion overflow}

jb @no_overflow {no, then continue}

sub cx,100 {otherwise decrement fractional portion}

inc bx {and increment integer portion}

@no_overflow:

inc X {increment x also}
mov ax,x
cmp ax,x2 {end reached ?}
jb @Ip {no, then next pass}
end;
Begin
asm mov ax,0013h; int 10h end;{enable Mode 13h}
Line(10,10,100,50,1); {draw line}
ReadLn;
Textmode(3);
End.

The main program initializes graphics mode 13h through the BIOS and then draws a line from the
coordinates (10,10) to (100,50) in color 1. The Line procedure takes advantage of the fact this algorithm is
restricted to slopes smaller than one.

This is why no integer portion is required and the fractional part of the slope fits completely in a register
(SI here). The y-coordinate, which must also be handled as a decimal number, is also placed in registers. The
integer portion is placed in BX and the fractional portion is placed in CX.

The main program then loads the x-coordinate with its initial value (x1) and determines the length of the
line in x direction (x1-x2), then repeating the process with y. Next the slope is determined by multiplying
the y difference by 100 (two decimal places) to determine the fractional portion, then dividing by the x
difference and storing this value in SI.

Within the loop: a dot is drawn at the current coordinates and the position of the next dot is determined.
To do this, the program increments the fractional portion of the y-coordinate by the fractional portion of the
slope.

If an overflow occurs (i.e. if the sum is greater than 100), the integer portion is incremented by one and the
fractional portion is de-incremented by 100. Next the x-coordinate is incremented by 1. The procedure is
repeated until the x2 value is reached.

— =~
D (e

| 3 “de(

Assembly Language: The True Language Of Programmers

Custom Mathematical Functions

If you use floating point numbers, you can use a language such as Pascal with its many built-in functions.
These include sine, cosine, root and many others which make it easier, but not faster, to program
mathematical problems. In fact, these math functions are among the slowest in a programming language
unless you have a math coprocessor.

Integer numbers are sufficient for many practical programming tasks if the range of values is suitable. But
a sine from -1 to 1 doesn't make much sense with integer values. On the other hand, the Pascal internal
functions are quite slow. In fact, when an integer number is used, it is first converted into real number and
then operated on using the standard, slow Real procedures. The result is that Pascal integer arithmetic is
even slower than their floating point equivalents. To overcome this limitation, there's only one alternative:
Write your own functions.

There are two basic methods for programming a function:
1. Pre-build a table with the result values.

2. Determine the result values by approximation.

Tables

You're probably familiar with tables from your high school math days. You determine the function value
by looking up the corresponding argument in the table.

For use in programs, the same principle applies. At the start of the program, you create the desired function
table. The table is then available for fast lookup.

. . - S :
The following simple example generates a table for determining v You can find
the sine function values. We'll use this same table later. The 4 ih TOOLS-PAC*?D ROM
TOOLS.PAS unit contains a general procedure for calculating '°? 0on L1 LOMpPe—
tables called (Sin_Gen):

procedure sin_gen(var table:Array of word;period,amplitude,offset:word);
{precalculates a sine table the length of one period.
Itis it in the array "table". The height is required
in the variable "amplitude" and the location of the
initial point is required in variable "offset"}

Var i:Word;

Begin

for i:=0 to period-1 do
table[i]:=round(sin(i*2*pi/period)*amplitude)+offset;
End;

First, the array name for the table is passed to this procedure. Next the length of the period of the sine
functions is passed. The length corresponds to the number of table entries since exactly one period is always
calculated. The amplitude specifies the highest value. With an amplitude of 30, for example, the table would
contain values from -30 to +30. The last value is the offset, which specifies the shift of the sine function in
y-direction. In our example above, an offset of 10 would build a table with values from -20 to 40. Now the
program iterates from the first to the last entry of the table and calculates the corresponding values using
the regular sine function of Pascal.

Assembly Language: The True Language Of Programmers |::J

To test the sine table, our next program draws circles. We'll use text mode to keep the program simple. The

SINTEST.PAS program draws 26 overlapping circles two times.
The circles are first drawn using the standard sine and cosine
functions. Then the circles are drawn a second time using the
tables. The math coprocessor is switched off so we can evaluate
the results of the table lookup method. Run the program and

you'll notice the difference in speed.

{$N-} {Coprocessor off}
Uses Crt,Tools;
Var phi, {Angle}
x,y:Word; {Coordinates}
Character:Byte; {Used character}
Sine:Array[1..360] of Word; {receives the sine table}
Procedure Sine_Real; {draws a circle 26 times}
Begin

For Character:=Ord('A") to Ord('Z")do {26 passes}
For phi:=1 to 360 do Begin
x:=Trunc(Round(Sin(phi/180*pi)*20+40)); {calculate x-coordinate}
y:=Trunc(Round(Cos(phi/180*pi)*10+12)); {calculate y-coordinate}

mem[$b800:y*160+x*2]:=Character; {characters on the screen}
End;
End;
Procedure Sine_new; {draws a circle 26 times}
Begin

For Character:=Ord('A") to Ord('Z")do {26 passes}
For phi:=1 to 360 do Begin
x:=Sine[phi]+40; {calculate x-coordinate}
If phi<=270 Then {calculate y-coordinate}
y:=Sine[phi+90] div 2 + 12 Else {Cosine as shifted sine}
y:=Sine[phi-270] div 2 + 12;

mem[$b800:y*160+x*2]:=Character; {characters on the screen}
End;
End;
Begin
Sin_Gen(Sine,360,20,0); {prepare sine table}
ClrScr; {clear screen}
Sine_real; {draw circles}
ClrScr; {clear screen}
Sine_new;
End.

4 You can find
0 SINTEST.PAS
o on the companion CD-ROM

The main program first builds the sine table. Next, the program calls the two procedures for drawing the
circles. The first procedure is Sine_real . It calculates the coordinates at the current angle using the built-
in sine and cosine functions. Both functions require the angle in radian measure, therefore /180 x pi.

For the radius, the program sets 20 in x-direction and 10 in y-direction. This places the circle in the middle
of the image (+40, +12). Finally, the program displays the character using direct video memory access.

The second procedure is Sine_new . It takes values for x and y from the table. The cosine is formed by a
90 degree phase displaced sine but has to watch out for the end of the table. This procedure is several times

faster, which you'll notice when you start the program.

10

— =~
D (e

| 3 “de(

Assembly Language: The True Language Of Programmers

Approximation

Tables are perfect for functions if the range of values can be predetermined in advance, such as the sine.
However, this isn't always possible for functions like the root, which may take on an infinite range of values.
To handle a wider range of values, you can reduce the resolution of the table but this in turn lowers the
computing accuracy.

Alternatively, you can compute the value of a function by approximation. A typical math book presents the
formula for the root function as follows:

Xn+1=1/2(Xn+a/Xn)

If you use the number from whose root you want to find as the radicand, and a random initial value for Xn
(for example, 1), you get a value that approximates the desired result. Repeat the process using this number
again as Xn to get an even more precise value. You can continue until you're satisfied with the accuracy of
the result. This is the case for whole numbers when the current result deviates from the previous result by
0 or 1. A difference of 1 is permissible, otherwise the calculation might never end. For example, the
calculation will never end when the result always jumps between two adjacent values due to rounding.

This algorithm, by the way, is self-correcting. This is especially important for calculations done "by hand":
If aresultis false, and it is used in the next step as the initial value for Xn, the algorithm uses the false value
for the approximation. Although this extends the arithmetic operation, you'll still get the correct solution.

This example is in the ROOT.ASM file. We did not store this procedure in a unit because we'll need it later
asanear procedure. A far procedure, such as a unit would generate, would be too slow to call. The assembly
language text contains two procedures: One procedure is Root and contains the actual calculation. This
procedure is register-oriented, which means that the parameters are passed from the DX:AX register. The
3-D application will branch directly to this procedure later.

This file also contains a "frame" function (Rootfct). This lets
you access the root directly from Pascal when time is not so
critical. This"frame" function (Rootfct)is passedasaparameter
to the radicand and returns the root value as a function result
after Root is called.

You can find
ROOT.ASM
on the companion CD-ROM

%4
‘I

.286 ;enable 286 commands at least
e equ db 66h ;operand size prefix (32 bit commands)
w equ word ptr

code segment public
assume cs:code
public root
public rootfct
;radicand value in dx:ax

root proc pascal ;result in ax (function)
e ;computer with 32 bits
Xor si,si ;clear intermediate result (in esi)
db 66h,0fh,0ach,0d3h,10h ;shrd ebx,edx,16d - dx to ebx (upper 16 bits)
mov bx,ax ;ax to ebx (down) - dx:ax now in ebx
e
xor dx,dx ;clear edx
e
mov cx,bx ;store initial value in ecx

e

11

Assembly Language:

The True Language Of Programmers

I \)69‘9‘0\)

mov ax,bx ;load eax also
iterat:
e
idiv bx ;divide by Xn
e
xor dx,dx ;remainder unimportant
e
add ax,bx ;add Xn
e
shr ax,1 ;divide by 2
e
sub si,ax ;difference to previous result
e
cmp si,1 ;less than equal to 1
jbe finished ;then finished
e
mov Si,ax ;store result as previous
e
mov bx,ax ;record as Xn
e
mov ax,cx ;reload initial value for division
jmp iterat ;and go to beginning of loop
finished:
ret ;result now in eax
root endp

;translates procedure to Pascal function
;write parameters to register

rootfct proc pascal a:dword
mov ax,word ptr a
mov dx,word ptr a+2
call root ;and extract root
ret
rootfct endp
code ends
end

Notice the "e" listed in several lines of theRoot procedure. At each occurrence of e, the value 66h is inserted
in the code. It represents the Operand-Size-Prefix of the 386, which extends the instruction following it to
32 bits. 32 bit instructions result in a large increase in speed because the Longlint results no longer need to
be split into two registers. Unfortunately, Pascal compilers still cannot process these instructions directly.
This is true even from a stand-alone assembler. So, the only option is to change each instruction to 32 bit
"manually" as we've done above.

First, the 386 instruction shrd shifts the contents of the register to the upper EBX half and then loads the
lower half with AX. ECX serves as storage for the radicand a, also reused later. The loop performs the steps
described in the formula: After dividing the radicand by the last approximate value (in EBX) it's added to
the quotient. This completes the calculations within the parenthesis. Next, the value is divided by 2 which
is compared to the result of the previous one. The iteration ends

if the results matches (maximum deviation of 1). Otherwise, the \\‘

new value Xn is loaded (in the BX register) and the next iteration

is performed. Finally, the root in the AX register can be stored by
a Pascal function.

You can find
ROOTTEST.PAS
~%~ on the companion CD-ROM

We'll use another speed comparison as an example:

12

D (e

I e Assembly Language: The True Language Of Programmers
{$n-} {coprocessor off}
Function Rootfct(Radicand:Longlnt):Integer;external;
{$| Root}
{Enter the path of the Assembler module Root.obj here !}
var i:word; {loop counter}
n:Integer; {result of integer calculation}
r:Real; {result of real calculation}
Procedure Root_new; {calculates root by integer approximation}
Begin
For i:=1 to 10000 do {run 10000 times,}
n:=Rootfct(87654321); {to obtain speed comparison}
End;
Procedure Root_real; {calculates root via Pascal function}
Begin
For i:=1 to 10000 do {run 10000 times,}
r:=Sqrt(87654321); {to get speed comparison}
End;
Begin
writeLn;
WriteLn('Root calculation via Pascal function begins');
Root_Real;

WriteLn('result: *,r:0:0);
WriteLn('Root calculation via integer function begins');
Root_new;
WriteLn('result: ',n);
End.

This program, called ROOTTEST.PAS, calculates the root of 87654321. It repeats this 10000 times in two
different ways. After startup, even a 486 (with disabled math coprocessor, compiler switch $n-) will require
a few seconds to compute the results. On the other hand, the second part of the program (custom
calculation) is processed in fractions of a second.

High Speed Tuning: Optimizing Comparisons

Next to arithmetic operations, comparisons are the most time consuming tasks that a processor performs.
That's why you should use them only when necessary and then optimize them as much as you can.

OR instead of CMP

The logical operations of the processor offer one simple way to increase speed. For example, the TEST
instruction basically uses AND. So, you can use this instruction to check for specific bit combinations. If
you're comparing with 0, you can speed things up even more by using OR.

For example, if register AL contains 0, then the instruction OR AL,A sets the Zero flag, otherwise it returns
a cleared Zero flag. You can then use either JZ or JNZ to branch.

Since this instruction sets all the flags to values that correspond to the contents of the register, you can also
check a number's sign, for example: The JS instruction branches to the specified address when the sign is
negative.

13

Assembly Language: The True Language Of Programmers |:3

String comparisons

There are many instances when string comparisons are important. One example is in programming a TSR
program that must determine whether it is already resident in memory. To understand the comparison, the
effect of the JCXZ instruction is more important than anything else. This instruction jumps to the specified
address when the CX register contains 0. Programming a string comparison with the repeat command
REPE CMPSB is quite easy:

First, load the pointers to the two strings into the ES:DI and DS:SI register pairs. Next load the length into
register CX. Finally, execute the REPE CMPSB instruction, which repeatedly compares the registers until
the strings show a difference (when the Zero-Flag is cleared the REPE completes) or until the end of the
string is reached (and CX=0). The JCXZ instruction now picks up this small difference. CX is not 0 with
variable length strings so the program doesn't branch. Only with same length strings does CX reach 0 and
the program branches.

Variables In Assembly Language

In assembly language, you should always try to keep as many values as possible in the registers since the
processor can access these values faster than others. Don't be afraid to use registers for special tasks (Sl, DI,
BP) or use them as normal variable storage. However, even with the most clever use of the register set, you
still won't have enough registers. In such cases, you must save these values in memory as you're forced to
rely on normal variables.

Accessing Pascal variables

It's easy to access a Pascal variable from assembly language. While you can use more complicated constructs
such as mov AX,[offset variable], it's easier to use mov AX,variable. To perform a type conversion at the
same time (e.g., pointer offset to 16 bit register), you have to add a Word ptr or Byte ptr: mov AX,word ptr
Pointer + 2.

Accessing arrays and records

Although you can address arrays directly from the assembly language, you have to perform the indexing
yourself. Most importantly, determine the size of each elements in the array; individual elements have a
length of 2 bytes for Word entries or a length of 4 bytes for Doubleword entries. It's also possible to have
other offsets, for example, with an Array of Record. The 386 can handle these offsets; it can address variables
in the form mov AX,[2*ecx]. However, in Pascal (only 286 code!), this is quite difficult to achieve because
each such instruction must be stored as a complete sequence of bytes. That's why it's better to determine
the offset through multiplication using the shl SI,1 instruction.

With most assemblers, you can also specify the offset of the array in the normal form before the index: mov
AX,word ptr Arr[SI], the assembler converts this instruction to: mov AX,word ptr [Sl+offset Arr]. You no
longer need to specify records by using constant offsets. Now, you can access the records directly from
Pascal-ASM, as you would from Pascal:

mov AX,word ptr rec.a.

14

— =~
D (e

| 3 “de(

Assembly Language: The True Language Of Programmers

TASM and MASM also have a variable similar to records. This variable is called astructure. A structure is
identical to a Pascal record, allowing you to access it as if from Pascal:
data segment
rec_typ struc
adw?
b db ?
rec_typ ends

extrn rec:rec_typ

Code segment variables

Unfortunately, programmers always seem to run out of registers which is why they're excited about each
additional register they gain. The BP register is available and as accessible as any other register except for
one small catch: BP is used to address local variables of the procedure. So, you either have to do without
local variables or store them elsewhere when you use the BP register. Global variables are also usually
inaccessible, especially in graphic procedures, because the DS register no longer points to the data segment,
but instead, points to something else such as sprite data. Your only option in this case is to use code segment
variables.

These variables are located in the current code segment with the program code and are addressed at
machine language level by the segment override prefix. However, since the assembler takes over at
programming level, you probably won't notice any peculiarities. The drawback is that you can't access this
routine from other procedure or modules. You can simply create the variables in the code segment from
TASM and MASM instead of the data segment. The assembler then takes care of correct addressing
automatically.

On the other hand, Pascal introduces a complicating factor. Normally, using Pascal you can't fill the code
segment with data from outside of the procedures or functions. However, you can use a little trick: At the
beginning of the procedure, you can insert a short routine such as the one below which set the values of the
variables. Here's what that looks like:

Procedure Test;assembler;
asm
jmp @los

@Varl: dw 0
@Var2:db 0

@los:
{Rest of procedure}
End;

Remember to add a word ptr or byte ptr to access these variables, because Pascal considers @Varl and
@Var2to be labels and not variables.

Circular arrays

Arrays aren't always processed from front to back. They're often processed in a circular fashion: from front
to back and then from the front again. Using the sine table an example again, you may need to find the sine
for an angle of 700 degrees. The easiest method for solving this problem is to check the range of arguments

15

Assembly Language: The True Language Of Programmers |::J

and bring that argument back into the correct range when the end of the table is exceeded. In this example,
360 degrees is subtracted from the original 700 degrees and the resulting 340 is used as new argument.

You can optimize the array form by redesigning the array so the number of entries corresponds to a power
of 2, i.e., 32, 64, 128, etc. For these cases, you can determine the index into the array by simple bit masking
using the AND instruction. For example, if an array has 64 entries (0-63), each index is ANDed with 63,
causing the upper two bits of an eight bit argument to be hidden. Only the lower six bits remain significant.
To design such an array, there must be the right number of elements. For example, you can specify a period
of 64 when generating the sine.

Bit mask rotation

Bit masking is used frequently in system programming. In bit masking, a value is written to a specific
register, for example to a VGA card where each bit has a specific task, such as switching on a pixel in the
appropriate bit plane. Each plane is selected in order: Planes 0, 1, 2 and 3 and then plane 0 again, by setting
bits 0, 1, 2, 3 and then 0 again. In this example, the goal is to process all four bit planes in order and then get
back to the original bit plane. How can be get back to bit plane 0 after bit plane 3?

You can select the desired bit plane by using a register. For example, loading a register with the value 01h
sets bit 0; this selects bit plane 0. Rotating to the left one bit at a time sets bit 1 to select bit plane 1, bit 2 for
bit plane 2, and bit 3 for bit plane 3.

Since you can't rotate a half-byte (a 4 bit nibble) directly, you can use a little trick. Instead of loading the
register for selecting the bit plane with 01h, we use the value 11h which places identical values in both the
upper and lower nibbles of the register. Rotate in the same manner but use only the lower nibble for masking
and you'll get the desired effect. After four rotations, the contents of the register is 88h. Rotate left again and
you get the original 11h (bit 7 after bit 0 and bit 3 after bit 4) so you're back where you want to be.

Masking a specific number of bits

Sometimes only a specific number of bits need to be selected from a word or byte. We'll see an example of
this in "The GIF Image Format" section of Chapter 3 when we talk about the GIF Loader.

One way of isolating these significant bits is by masking the values. Load a register with 01h, shift this
register to the left by the number of bits to be kept and reduce this value by 1. The result is a mask in which
the desired bit positions contain 1 and all others contain 0.

Here's the simple formula:

Mask := (1 shl Number) - 1.

For example, to select bit 6, you would use a mask of 63 (1 SHL 6 -1 = 63), with bits 0-5 set and bits 6 and
7 cleared. Now all you have to do is AND the byte to be masked with this value and you've retained the bits
you need.

The SHR and SHL instructions on the 386 and above have a curious feature. It's only possible to shift a
maximum of 31 bits, regardless of the register width that is used. For example, to shift AX by 34 bits, (the
same as clearing them since AX is only 16 bits wide), you would execute SHL AX,34d, but in reality, there
would only be a shift of 2 bits.

16

PC

I M Assembly Language: The True Language Of Programmers

This isn't normally important. However, it did frustrate us once for several minutes because we assumed
that using a value greater than 31 bits for shifting would clear the register.

Mysterious Interrupts

Although interrupts and interrupt programming can provide versatility to your programming, they can
also be a mystery for many new users. This may be due to the number of times the system crashes when new
programmers start to experiment with interrupts. However, with a little basic knowledge and a few
examples which we'll provide, you can quickly learn how to work confidently with interrupts. You may
even be comforted to know that crashes happen even to the most experienced programmers.

There are two types of interrupts:

1. Software interrupts
These are triggered by the INT instruction and can be compared to simple subroutines.

2. Hardware interrupts
These are sent to the CPU from external devices through the two interrupt controllers. For example,
a keystroke triggers an interrupt that tells the processor to run a program called the interrupt handler
which then accepts and processes the character typed at the keyboard.

Changing vectors

A programmer can easily add his or her own program to handle these interrupts. For example, you can write
your own program to handle the keyboard interrupt that also outputs a "click" from the loudspeaker each
time a key is pressed. How do you do this?

First, the background...DOS defines various interrupts. The keyboard interrupt is an example. Each type
of interrupt is identified by a number - the interrupt number. And for each type of interrupt, there is a
corresponding program routine that runs and handles the processing associated with that interrupt.

The program's main memory address is called a vector. In low memory, there is a large vector table
containing the addresses of all the interrupt handlers.

You can determine the address of an interrupt handler by using DOS functions 35h. Pass the interrupt
number in the AL register and the vector is returned in register pair ES:BX.

To change a vector, you can use DOS function 25h. Pass the interrupt number in the AL register and the
address of the new vector in the DS:DX register pair.

For example, to determine the vector for interrupt 9 which handles the keyboard interrupt, you would do
the following:

mov ax,3509h ;Function and interrupt number
int 21h ;Execute Dos function

The vector is returned in es:bx. The following instructions are used to set a new interrupt handler:

(@ Password: Abacus

17

Assembly Language: The True Language Of Programmers |::J

Ids dx,Vector ;Get vector (as pointer)
mov ax,2509h ;Function and interrupt number
int 21h ;Execute Dos function

If you're changing an interrupt vector to point to one of your own routines, you should save the original
vector. You may need to call the original handler after your processing or, in the case of a TSR, when
removing it from memory.

Calling the old handler and exiting

In the example of the keyboard click, it doesn't make much sense to only click when a key is pressed; you'll
probably also want to output a character to the screen. To do this easily, you can call the original handler
before or after making the click - that is unless you want to write a custom keyboard driver.

By saving the original interrupt vector, you can then jump to this destination using a far call. But before
doing so, you must simulate an interrupt call. The only special requirement of an interrupt call compared
to an ordinary far call is saving the processor flag, which is easily duplicated using the pushf instruction
The following is how the complete call should appear:

pushf
call dword ptr [OldVector]

The original vector was saved in the OldVector pointer.

Use the IRET instruction to exit an interrupt. However, remember to first restore the original state of the
processor register. After all, the interrupt may have been triggered in the middle of a routine that depends
on specific registers.

Disabling interrupts

The CLI instruction is used to disable interrupts. This instruction can be used to "lock" the processor from
further interrupts. When a program has issued the CLI instruction, no further interrupts are accepted by
the processor until the STI instruction reenables them.

Sometimes, however, you may want to disable only specific interrupts and leave the others enabled. To do
this, you have to reprogram the interrupt controllers. These controllers use a different counting method than
the vectors: Hardware interrupts are numbered 0-7 (interrupt controller 1) and 8-15 (interrupt controller 2).
In this case, we talk about IRQ (interrupt request) 0-15, while the label "Interrupt” refers to the number of
vectors.

Controller 1 presents IRQ 0-7 to the CPU as interrupts 8-0fh.
Controller 2 presents IRQ 8-15 to the CPU as interrupts 70h-77h.

The two controllers are linked (cascaded) to each other using IRQ 2, that is, if controller 1 gets this interrupt
request, it passes it to controller 2.

The following shows the layout of the controllers:

18

D (e

| 3 “de(

Assembly Language: The True Language Of Programmers

0 | Timer 8 Real time clock

1 Keyboard 9 VGA (often inactive), Network
2 Cascaded with Controller 2 A |-

3 Com 2, Com 4 B |-

4 |Com1, Com3 c |-

5 LPT 2 D | Coprocessor

6 Diskette E | Hard drive

7 LPT 1 F -

Because the interrupts are in hierarchical order, IRQs with lower numbers have a higher priority and are
given preference over IRQs with higher numbers. Although you can change this order by reprogramming
the controllers, we recommend leaving the order as is because both the BIOS and DOS depend on this
structure.

The controllers have IMRs (interrupt mask registers) which can be used to hide or mask specific interrupts.
The IMR of the first controller is located at port address 21h, while the IMR of the second controller is located
at port 0alh. For both ports, a corresponding set bit indicates the interrupt is disabled.

For example, to disable the real time clock, use the following instructions:

in al,0alh ;Load IMR 2
or al,01h ;Set bit 0
out Oalh,al ;and write back

Both controllers have a second port address at 20h or 0a0Oh, from which the instructions are given. The most
important is the Eol (End of Interrupt) command (numbered 20h). This instruction indicates the end of the
interrupt handler and frees up the corresponding controller for the next interrupt. If you always jump to
the original vector at the conclusion of your custom interrupt handler, the Eol instruction takes care of this
for you. However, if you write a new custom interrupt handler, it's up to you to see to it that at the end of
the handler, the Eol command (20h) is written to either port 20h or port a0h:

mov al,20h
out 20h,al

Reentering DOS

An interrupt handler can last a few clock cycles (keyboard click) or several seconds (e.g., Print-Screen, Int
5), depending on the application. It's important, especially in the latter case, to prevent this handler from
processing a second identical interrupt. With Print-Screen, for example, this might result in two copies of
the printout or even a system crash. The cause is the new second interruption accessing variables which the
handler is already using.

19

Assembly Language: The True Language Of Programmers |:3

The easiest way to prevent this is to use a flag variable to indicate that the handler is already started. When
there is renewed activity, you can simply check the flag variable to avoid reentrance.

A more complicated case of reentrance concerns larger TSR for example, which enable a complete program
at the press of a key. The problem in this case is with DOS, which doesn't allow you to enable several DOS
functions simultaneously. If an interrupt interrupts a DOS function and then calls other DOS functions (e.g.,
for screen display), the call destroys the DOS stack, so the computer crashes after processing the handler
and returning to the interrupted DOS function.

It isn't easy to catch this. First, you have to check the InDos-Flag. You can determine its memory location
prior to installation of the handler using the undocumented DOS function 34h, which returns a far pointer
in registers ES:BX. The only time the computer can branch to a handler with DOS functions is when this flag
contains the value of 0 at the time the handler is called.

You should also install a handler for interrupt 28h, which is constantly being called while COMMAND.COM
waits for user input at the command line. In this case, the InDos-flag contains the value 1, because
COMMAND.COM itself counts as a DOS function.

Naturally, you can save yourself the trouble of these complicated measures if you don't call any DOS
functions in the handler. This is not a problem for most TSRs.

Intercepting CRTL-C and reset

Most commercial programs are written to be "bulletproof" - it's supposed to be impossible to exit these
programs through a "back door". If you manage to exit the program through a back door, you risk losing
data by leaving files still open. After all, it doesn't look very professional to allow a user to abort the program
by pressing + or + (AR (el).

What is the safest way to intercept these BIOS functions?

DOS has a somewhat safe, although not always reliable, method available for (Ctl) +(C) or (Ctrl) + (Break): When
you press one of these combinations, DOS calls interrupt 23h, which then causes a program crash. You can
change its vector to your own routine, which simply returns to the caller. The disadvantage of this method
is that it doesn't always work, especially with(Ctl) + (Break). Given the right circumstances, it could even lead
to a system crash.

Here's a method that is much safer which also intercepts a reset + (Al) (Del)): First, a separate keyboard
interrupt handler checks to see whether one of the critical key combinations has been pressed before calling
the original handler. If one of these combinations has been pressed, the handler terminates. Acceptable key
are passed on to the original handler, which then continues by passing them through to the main program.

Thistechniqueisshowninthe NO_RST.ASM program. Assemble >

this into an EXE file with TASM or MASM:) you can find

2%/ on the companion CD-ROM

20

PC

I M Assembly Language: The True Language Of Programmers

data segment public
start_message: db ‘reset no longer possible’,0dh,0ah,'$'

buffer: db 40d ;length of input buffer
db 40 dup (0) ;buffer

old_int9 dd 0 ;old interrupt handler

data ends

code segment public
assume cs:code,ds:data

handler9 proc near ;new interrupt 9 handler
push ax ;store used register
push bx
push ds
push es
mov ax,data ;load ds
mov ds,ax
in al,60h ;read characters from keyboard in al
xor bx,bx ;es to segment O
mov es,bx

mov bl,byte ptr es:[417h] ;load keyboard status in bl

cmp al,83d ;scan code of Del key ?
jne no_reset ;no, then no reset
and bl,0ch ;mask Ctrl and Alt
cmp bl,0ch ;both pressed ?
jne no_reset ;:no, then no reset
block: ;reset or break, so block
mov al,20h ;send Eol to interrupt controller
out 20h,al
jmp finished ;and exit interrupt
no_reset: ;no reset, now check Break
cmp al,224d ;extended key ?
je poss_Break ;yes -> Break possibly triggered
cmp al,46d ;'C' key ?
jne legal ;no -> legal key
poss_Break:
test bl,4 ;test keyboard status for Ctrl
jne block ;pressed, then block
legal: ;legal key -> call old handler
pushf
call dword ptr [old_int9] ;call original handler
finished:
pop es
pop ds ;get back register
pop bx
pop ax
iret

handler9 endp

start proc near

mov ax,data ;load ds

mov ds,ax

mov dx,offset start_message ;load dx with offset of message
mov ah,09h ;output message

21

Assembly Language: The True Language Of Programmers i~

int 21h

mov ax,3509h ;read old interrupt vector
int 21h

mov word ptr old_int9,bx ;and store

mov word ptr old_int9 + 2, es

push ds ;store ds

mov ax,cs ;load with cs

mov ds,ax

mov dx,offset handler9 ;load offset of handler also
mov ax,2509h ;set vector

int 21h

pop ds

;instead of the DOS call, you can also call your main program here

mov ah,0ah ;input character string
lea dx,buffer ;as sample main program
int 21h

push ds

Ids dx,old_int9 ;set old vector again
mov ax,2509h

int 21h

pop ds

mov ax,4c00h ;end program
int 21h
start endp

code ends
end start

The main program (Start) displays a short message, determines the original vector for keyboard interrupt
9 and sets the new vector to the procedure Handler9 . Next, the program calls the DOS character input as
a substitute for the program segment that is being protected (e.g., the demo routines). The DOS character
input receives a 40 character string. Finally, the original handler is restored and the program ends.

Now when a key is pressed the handler itself is called. It first saves all registers used so the interrupted
program doesn't notice any of the handler's activities. Then the pressed key's scan code is determined
(placed in AL) from the data port of the keyboard controller and the status of the(Ct) and keys is read
out (placed in BL) through the keyboard status variable.

The keyboard status variable is located at address 0:417h. The following table shows its layout:

Meaning i Meaning

Caps Lock Num Lock
Scroll Lock Alt Ctrl

Shift left Shift right

First, the program checks whether the (Del) key was pressed (pointer to Reset) and then checks whether(Ct1)
and (Bit 2 & 3 in BL) are set. If the answer to both questions is yes, the program continues at the label

22

PC

I M Assembly Language: The True Language Of Programmers

Block . At this point, the program simply sends an Eol signal to interrupt controller 1 and jumps to the end
of the handler.

If there was no reset, the program checks for(Cti) + and + (C) starting with the label No_reset .
If neither (C) (scan code 46) nor an enhanced key (scan code 224) has been pressed, we can assume that an
acceptable key has been pressed, and the program calls the original handler at the labellegal and then
terminates. If either or (C) has been pressed, the program checks for the (Ct1) key. If this key is set, the
program ignores the reset, otherwise, it is an acceptable key.

To use this routine, all you have to do is call your own main procedure instead of the DOS character input.

Tips On Programming Loops

There are several ways to optimize machine language programs even in simple areas such as programming
loops. This begins with the typical construct of a loop called aloop label. It seems that CPU developers have
forgotten this instruction in recent years. For a 386, a construct such as dec CX, jne label is 10% faster, while
the same construct on a 486 is about 40% faster. This construct is faster although one additional byte had
to be fetched from slow RAM in the last instruction sequence. So the Loop instruction should be used only
if decrementing CX doesn't affect the flags, for example, with complicated string comparisons that cannot
be resolved with REP CMPSB.

The direction flag with string instructions

A frequent source of errors while using string instructions (lodsb, cmpsb, etc.), which are basically loops,
is the direction flag, which specifies the direction in which the string is processed. This flag is usually
cleared. However, if you somehow set this flag in your program to process a string from back to front,
always remember to clear it again.

Nesting
There's always a trade off between speed and the number of registers used in nested loops. Use as many
registers as possible for loop counters before using memory variables. Clever choice of loop limits can

increase speed execution. For example, by counting backwards, you can determine the end of a loop by
checking the zero flag when a register reaches zero.

16/32 bit accesses

To minimize the number of memory accesses, use 16-bit or 32-bit instructions. Starting with the 386, even
a one byte access by the CPU is executed as a double word. You'll benefit since it takes even take longer to
move a single byte than it does to move a single double word.

Some tasks will still require 8-bit instructions. VGA cards, for example, don't like it when you access video
memory wider than 8 bits in plane-based mode (such as mode X, which we'll explain later), because the
internal plane registers (latches) are only 8 bits wide.

23

Assembly Language: The True Language Of Programmers |::J

Practical 386 Instructions

In addition to the 386's basic features (Virtual Mode, Paging, 32-Bit-Register), several other very useful
instructions are available. Since some of these instructions combine several 286 instructions, they can
increase processing speed tremendously in critical areas. Take advantage of these instructions, even in Real
Mode.

The MOVSX and MOVZX instructions

First, are the MOVSX and MOVZX instructions. Both can move an 8 bit register directly to a word register
and a 16-bit register to a 32-bit register, which usually requires two instructions to accomplish. The letters
"S"and "Z" in these instructions represent "signed" and "zero" and apply to the upper half of the destination
register. All bits in the destination register are filled with either 0 or 1 with MOVSX, depending on the signs
of the source register, so the original signs are preserved. MOVZX, on the other hand, clears the upper half
of the destination register.

For example, if BL contains -1 (ffh), the two instructions will produce the following results:

movzx ax,bl ; ax now contains 255 (00ffh)
movsx ax,bl ; ax now contains -1 (ffffh)

Different SET commands

It's also possible to optimize comparisons on a 386. The 386 can handle the 30 SETxx instructions, which are
a combination of CMP, conditional jump and MOV. Each conditional jump has a counterpart in a set
instruction (SETz, SETnz, SETSs, etc.). If the condition applies, the associated byte operand is set to 1,
otherwise it's set to O:

dec cx ;Decrease (loop) counter
sete al ;use al as flag

In this example, which could have been taken from a loop, AL is normally (CX > 0) set to 0. AL isn't set to
1 until the end, when CX becomes 0. In this way, even Pascal Boolean variables can be set directly in
accordance with an assembly condition (SETxx byte ptr Variable).

Fast multiplication and division: SHRD and SHRL instructions

The 386 can perform arithmetic operations directly in 32 bit registers (in particular, multiplication and
division operations), which is much faster than the conventional method using DX:AX. How do you get
numbers in DX:AX format into an extended register (e.g., EAX)?

Unfortunately, you cannot directly address the upper halves of these register. Once again, however, the 386
has specific instructions for this purpose which do more than load registers: SHLD and SHRL, the enhanced
Shift instructions.

In addition to the number of bits to be shifted, these instructions expect two operands instead of one. First,
the instruction shifts the first (destination) operand by the corresponding number of bits; but instead of
filling the vacated bits at the low order (shift left) or the high order (shift right) with 0, they are filled from
the rotated second (source) operand. However, this operand itself is not changed.

24

— =~
D (e

| 3 “de(

Assembly Language: The True Language Of Programmers

For example, if AX contains 3 (0000 0000 0000 0011b) and BX contains 23 (0000 0000 0001 0111b), the
instruction SHRD BX,AX,3 first rotates BX to the right by three (=2). However, at the same time the high
order is filled with the bits from AX, so the result in the destination operand amounts to (BX) 0110 0000 0000
0010b = 6002h = 24578.

As we said, these instructions are used most frequently for loading 32 bit registers (EBX here) from two 16
bit registers (DX:AX in our example). This is done first when SHRD loads the upper half: SHRD
EBX,EDX,16d. This instruction moves DX "from the top" into the EBX register. Then, the lower half is loaded
with the desired value, while the upper half, which has already been set, remains unchanged: MOV BX,AX.
By the way, this method is also used in the Root procedure we described in this chapter.

Enhanced multiplication with IMUL

You can also use the new multiplication instructions. Starting with the 386, you can multiply practically any
register by any value: IMUL DX,3 which multiplies DX by 3. You can also use IMUL AX,DX,3 to multiply
DX by 3 and place the result in AX. Unlike the earlier forms of IMUL, you can save a lot of extra coding by
using these new instructions.

Using 386 instructions in Pascal programs

All 386 instructions have one common problem: Borland Pascal is currently unable to process them either
in an internal assembler or through linked external programs (if an object code is linked by the $L-Directive,
the processor specification used there must match the one set in Pascal).

So your only option is to trick the compiler by linking the inline assembler. You do this by calling the Turbo
debugger and entering the desired command there in its final form. The debugger then shows the hex code
for this instruction. Write down this code and insert it in the program after a db directive, for example:

db 66h,0fh,0ach,0d3h,10h ;shrd ebx,edx,16d

However, changes such as this are no longer easy. You either have to check the inner structure (for instance,
in this example, converting the 16d (10h) operand into 8 by overwriting the last instruction byte with 8
wouldn't be a problem), or you have to reassemble the appropriate instruction by hand using Turbo
Debugger.

Perhaps the best alternative is to wait and hope Borland soon realizes the 386 has become a standard, and
as such, deserves to be supported.

25

Assembly
Language In
Practice

In this chapter we'll describe a practical application of assembly language programming. We'll use
examples to show you what you can do with your PC by programming in assembly language. Here we'll
show you how to program the parallel and serial interfaces, your PC speakers (for samples too!) as well as
TSRs.

The Parallel Port

For most users, only the screen and the keyboard are more important than the parallel port. The reason the
parallel port is so important is that it connects your PC to your printer. Since the BIOS provides excellent
support for the parallel port, you usually
don't have to rewrite the BIOS routines.

1 -Strobe 2-9 Data bits 0 - 7

10 -Acknowledge 11 -Busy
However, the parallel port can do much

12 Paper out 13 Select out more for you. For example, you can use it to
transfer data to other computers, or by using
a few electronic components, you can even
16 -Printer Reset 17 Select in use it as a sound card. The parallel port has

18-25 Ground _ a 25 pin su_b—D_connector. The table on the
left shows its pin layout.

Programming the parallel interface

14 -Autofeed 15 -Error

Every parallel port has three registers which are located at adjacent addresses. The base address determines
the port addresses. The base address is usually 378h for the first parallel port and 278h for the second
parallel port. However, these values can vary between computers. For example, a Hercules card with an
integrated parallel port fits in as the first interface at port 3BCh. If you don't know which port to use, the
word entries for LPT1, LPT2, etc., which specify the base address, are found starting at the address of
0:0408h.

The data register is located at the base address. The data to be output to the port is written to this write-only
register. For each 1 bit written to this port, the corresponding data line is set to High and for each 0, the data
line is set to Low.

The status register is located at the next address. You determine the printer's status from this register. The
corresponding control lines of the printer cable are written to this read-only register (only BUSY appears
inverted in the register).

27

. D —
Assembly Language In Practice]

7 -Busy (0 = Printer cannot currently accept data)

6 Ack (0 = Printer has read characters)
PE, Paper empty (1 = no more paper)
4 SLCT (0 = Printer is off-line)
3 Error (O = an error occurred)
2-0 Reserved

1 Shift left

A Busy flag indicates the printer is busy and cannot accept any more data. For example, the printer buffer
may be full. Acknowledge (ACK) is always set to 0 when the printer has accepted the character from the
data lines and the next character can be written. PE and Error represent error states to be passed on to the
user, so they can be handled. SLCT reflects the current status of the on-line switch of the printer. The printer
cannot accept any data if it is off-line.

The parallel port has one additional register called the control register which further affects the printer's
operation. You can read and write to this register. The following table shows the layout of the control
register:

7-5 Reserved
4 IRQ enable (1 = IRQ active)
3 SLCT (0 Switch printer off-line)
2 Reset (0 Reset printer)
1 Auto LF (1 = Printer completes a line feed after CR)

0 Strobe (0 = Data present/on line)

Theoretically, by setting bit 4 it would be possible to enable IRQ 5 or 7, which is triggered when the
acknowledge signal is raised by the printer. However, to avoid complications with sound cards, this feature
is usually disabled. The parallel interface usually operates using thePolling method (the processor waits for
a flag to change).

With the SLCT line you can switch some printers to off-line status from the computer. Use the Auto-LF line
to control the automatic line feed character (once again, not with all models). All printers use the Reset and
Strobe lines. The Strobe line lets the receiver know that a byte is on the data lines.

28

— =~
D (e

| 3 “de(

Assembly Language In Practice

Printer control

Outputting a character to the parallel port is simple: Wait until the busy bit is set (busy line inactive), write
the character to the data port, give a strobe signal (set and

immediately clear line) and wait for an acknowledge signal. To A Yo
demonstrate this, the following program does precisely this 4 PAR TEST.PAS
with all the characters of a sample string. This program is called ,,), on the companion CD-ROM

PAR_TEST.PAS:
Const Base=$378; {base address of parallel port}

Procedure PutChar_Par(z:Char);
{outputs a character to parallel port (base address in “Base”)}
Begin
While Port[Base+1] and 128 = 0 Do;
{wait for end of Busy}
Port[Base]:=Ord(z); {place character on port}

Port[Base+2]:=Port[Base+2] or 1;
{send strobe}
Port[Base+2]:=Port[Base+2] and not 1;

While Port[Base+1] and 64 = 1 do;
{wait for Ack}
End;

Procedure PutString_Par(s:String);
{outputs string to parallel port, uses PutChar_Par)}

Var i:Integer; {character counter}
Begin
For i:=1 to Length(s) do {each character}
PutChar_Par(s[i]); {send to parallel port}
End;
Begin

PutString_Par(‘Hello, Abacus Printer Test'#13#10);
PutString_Par(‘abcdefghijkimnopgrstuvwxyz0123456789'#13#10);
End.

Other Applications

Although the main reason you use the parallel port is to connect a printer to your computer, there's a very
good reason it's not called a "printer port". The port has 8 output lines, 5 input lines and 4 1/0 channels (in
the control register). The 1/0 channels can serve as either inputs or outputs, depending on the command.

For example, one frequent application is networking two computers using a parallel null modem cable and
the INTERLNK.EXE driver of DOS 6.x. This driver uses a 4 bit transmission protocol. The protocol uses data
registers DO to D3 for output, and uses the ERROR, SLCT, PE and ACK lines as input. The function of the
Strobe line ("announcing" data) takes on D4 as the output and Busy as the input. The following table shows
how the cable is connected.

(@ Password: ~Assembly

29

I 1 ’I_D\ V ()\‘\\’\d
Assembly Language In Practice I ey

Pin 2 3 4 5 6 15 13 12 11 10 11

With pin 15 13 12 10 11 2 3 4 6 5 6

Other programs such as LapLink can communicate with this cable. While you can chose to write your own
programs for data transfer, there are many shareware and commercial software programs available.

Another option, although no longer popular, is to use the parallel port as a sound card replacement. After
all, the parallel port has an 8 bit digital output. The data just needs to be converted to analog signals.

You can build a simple digital-to-analog conversion, but it's easier to buy a sound card. If you have enough
courage, you can build a sound card for much less money with a pair of resistors:

DA converter built with resistors

The resistors guarantee that D7, the maximum value data line, contributes the most to the analog output
signal and that the voltage is reduced by the resistors with declining bit significance (D7-D0).

Plug this adapter (similar to the Covox device of the mid-1980s) into the parallel port and connect it to an
amplifier. It can be operated by almost any mod player: Sound data uses a specific number of bytes per
second (up to 44,000), which duplicates the frequency of the analog vibration. Fortunately, the PC uses an
unsigned format so the data can be output directly to the parallel port (data port, for LPT1 usually at port
address 378h). You don't need to worry about the other two registers, since they only control communication
with printers and the like. The data lines reproduce the exact contents of the data port.

If you pay attention to the sampling rate and output the data at this speed (e.g., sampling rate 22 KHz or
22,000 bytes per second to the port), you'll hear the beep at the output. This simply indicates the processor
is extremely busy, for port accesses last "forever". So we don't recommend extensive graphic operations at
the same time you play back audio data. If you need to do this, it's better to buy a sound card.

30

Graphic
Know-how From
Underground

In this chapter we'll talk about the most important technical terms in PC graphics programming. Although
we cannot explain all the terms in this chapter, the information will provide you with a general overview
of the terms used in PC graphics programming.

Terms You Need To Know

Pixel

Pixel is an abbreviation for picture element. It represents the smallest element on a video display screen.
Your monitor screen is divided into thousands of tiny dots. A pixel is one or more dots that are treated as
a unit.

A pixel can be one dot on a monochrome screen, three dots (red, green and blue) on color screens, or clusters
of these dots.

You can change the color of each pixel individually in graphics mode.
Palette

All VGA 256-color modes use a palette. This is unlike TrueColor (16.7 million colors) and HiColor (65,536
colors), in which each pixel is assigned specific values of the three primary colors: Red, green and blue.

A pixel is represented by a pointer to a palette entry in palette modes. The palette then provides the three
primary color values for each of the 256 colors. All pixels of the same color have identical values.

The advantage of this method is that it saves significant memory. Instead of 18 bit color codes, only 8 bits
are used per pixel in video memory. This advantage is lost, however, in graphic modes with higher color
depth. The palette would become so large 16 or even 24 bits per pixel would be required.

A further advantage of palette-based modes is their usefulness for certain graphic effects. All colors
containing Color 1 for example can instantly be converted to a different hue, just by changing its palette
entry (3 bytes). This provides a simple method for fading images in and out - you don't need to raise or lower
the brightness of each pixel. Instead, you simply increment the 256 palette entries from 0 to their maximum
value (or vice versa). We'll talk more about this and other palette-based effects in Chapter 5.

Sprite

A sprite is basically a small image which can be positioned freely on the screen, but can also be made
transparent so it can move across a background. Some home computers have a special chip for this purpose
which relieves the CPU of the tasks for producing these effects.

31

. D=
Graphic Know-how From Underground I oo

Sprites are used commonly in video games where they move freely across the screen and pass by or through
or even collide with each other.

Cathode rays

Luminous pixels of specific color and brightness are produced by a ray of accelerated electrons striking the
rear of the screen. The image is constructed line by line from left to right (as seen from the front) and from
top to bottom.

Retrace

Movement of the cathode ray as the screen image is being constructed. There are both vertical and
horizontal retraces. A horizontal retrace occurs following construction of a screen line, and denotes the
rapid movement of the ray to the beginning of the next line. A vertical retrace occurs when the ray has
reached the bottom of the screen and returns to the top (first) line.

Basically, modifications to screen content, including changes to specific VGA registers, should occur only
during a retrace. By doing this, the changes won't conflict with image construction, which would lead to
flickering in the affected area.

It makes no difference whether you wait for a horizontal or a vertical retrace. However, when performing
extensive changes or register manipulations, you may want to make the changes during a vertical retrace
since it lasts much longer (approximately 200 times longer).

To wait for a vertical retrace, use the procedure WaitRetrace (in the ModeXLib.asm module, although
itisgenerally valid for all graphic and text modes). When a vertical retrace is in progress, bit 3 of Input Status
Register 1 (port address 3dah) is set. This procedure relies on this signal.

It's not enough to see if a vertical retrace is in progress. Instead WaitRetrace . In this case WaitRetrace
would end immediately and the screen modification would be performed, but there might not be enough
time. Therefore, WaitRetrace waits for the beginning of a vertical retrace. A loop called@waitl first waits
for any retrace in progressto finish, i.e., for the cathode ray to reappear on the screen, before using the second
loop @wait2 to wait for the next retrace.

WaitRetrace proc pascal far
mov dx,3dah ;Input Status Register 1
@waitl:
inal,dx ;Bit3 =0 if ray is constructing image
test al,8h
jnz @waitl
@wait2:
inal,dx ;Bit3 =1 if retracing
test al,8h
jz @wait2
ret ;Ray is now at the very bottom of the screen
Endp

Double-scan

Halving the y-resolution from 400 to 200 by double-displaying each line. This is used for emulating the 200-
line modes not supported by VGA.

Speed is the essential element of graphic programming. Graphic programmers have always had to face the
problems of insufficient speed. Fortunately, processors and graphic cards are becoming faster so today you

32

::J) (‘O\)(\d

Zeo Graphic Know-how From Underground

never have a speed problem with CGA graphics, as was common only a few years ago. However, today's
standard of graphic quality requires several programming tricks.

One important trick is programming graphic chips directly which provides a great speed advantage over
BIOS routines. This works for many reasons, one of which is removing many "validity checks."

However, by doing this it's possible to set a point at coordinates (5000,7000), with, of course, some rather
bizarre effects.

If validity checks must be included for any reason, for example with interactive users (with a mouse), the
checks should be performed outside of the display procedures (PutPixel , etc.), to avoid invoking them
with "valid" pixels as well.

Basis In BIOS Mode 13h

In developing VGA, IBM invented a practical method of addressing video memory in 256-color mode:
Chaining bitplanes in a linear address space. Soon after, BIOS programmers used this technique for video
mode 13h.

Memory organization

Video memory begins at segment a000. The organization of video memory is very simple: Each pixel is
assigned one byte which contains a color, or more accurately, a pointer to an entry in the color palette.
Addressing follows the path of the cathode ray during image construction - a pixel at coordinates (0,0) is
located at offset 0; pixel (0,1) is located at offset 320, etc., until pixel (319,199) is reached at offset 63999.

Thus the address of a pixel at coordinates (x,y) is determined by the following formula:

Offset = Y*320 + X » You can find

)
We're now ready to program a simple star-scroller which sets on the CO%;’:’Z}Z’?‘ED_ROM
pixels according to a certain pattern and then erases them: ¢

Uses Crt;
Var Stars:Array[0..500] of Record
X,y,Plane:Integer;
End;
st_no:Word;

Procedure PutPixel(x,y,col:word);assembler;
{sets pixel (x/y) to color col (Mode 13h)}

asm
mov ax,0a000h {load segment}
mov es,ax
mov ax,320 {Offset = Y*320 + X}
muly
add ax,x
mov di,ax {load offset}
mov al,byte ptr col {load color}
mov es:[di],al {and set pixel}

End;

33

. D=
Graphic Know-how From Underground I Ao

U

Begin
Randomize; {initialize random numbers}
asm mov ax,13h; int 10h End; {set Mode 13h}
Repeat {executed once per display}

For St_no:=0 to 500 do Begin{calculate new position for each star}
With stars[st_no] do Begin

PutPixel(x,y,0); {clear old pixel}

Dec(x,Plane shr 5 + 1); {continue moving}

if X <= 0 Then Begin {left ?}
x:=319; {then reinitialize}
y:=Random(200);
Plane:=Random(256);

End;
PutPixel(x,y,Plane shr 4 + 16); {set new pixel}
End;
End;
Until KeyPressed,; {run until key pressed}
TextMode(3);
End.

The inner loop is most significant in this example. In the inner loop, the previous star is first erased from
the screen. Then the star is moved according to its speed (calculated fromPlane). When the star moves past
the left edge (x <= 0), it's repositioned to the right edge with new random values for its y-coordinate and
speed.

Finally, the pixel is set at the new position, also calculated from Plane, i.e., the slower stars are further in
the background and appear darker. The program uses the standard default palette used by all VGA cards
at startup. It contains a series of gray values between 16 (black) and 31 (white).

Internal structure of Mode 13h

The linear memory structure which makes programming Mode 13h so easy is actually simulated for the
CPU. VGA converts the linear address internally back to a planar address. The two lower address lines (Bits
0 and 1 of the offset) are used to select the read/write plane. When bits 0 and 1 have been set to 0, the
remaining six bits (2-7) are used as physical addresses within the plane.

A similar process (odd/even addressing) is also used by all text modes. In this process, the lowest address
line is used for selecting between plane 0 and 1, so from the CPU's point of view, the character and attribute
bytes are directly next to each other. Internally, however, the character is stored in Plane 0 and the attribute
in plane 1. Planes 2 and 3 are for character set storage.

The GIF Image Format

GIF is the most widely used format for graphic images. GIF was developed in 1987 by CompusServe for fast,
economical exchange of images between computers.

GIF has several important advantages compared to other formats such as PCX. GIF, unlike other graphic
formats, is not tied to a particular graphic mode because its data format is usable by all graphic systems.
GIF supports image resolutions to 16,000 x 16,000 pixels with a palette of 256 colors out of 16.7 million. Also,
any number of images with the same global or local color palette can be stored in one file (an option which
is seldom used).

34

D
i Yo

anee!

Graphic Know-how From Underground

GIF has an even more important advantage, however. GIF allows excellent compression of images coupled
with high decompression speeds. It uses the modified LZW compression process which is also the basis
for other compression programs.

This is the reason why we use GIF graphic images. The demos which we've included on the companion
CD-ROM will load your images quickly without excessive memory requirements.

The standard format

GIF uses a block structure not as elaborate as TIFF format but which allows for easy handling of information
about resolution and number of colors. The following table describes the basic structure:

Offset Length Contents

0 3 Format ID "GIF"

3 3 Version ID, currently "87a" or "89a"
6 7 Logical Screen Descriptor Block
0dh n Global Color Map (optional), in 256-color modes

VGA-compatible palette (n=768 bytes)

30dh n Extension Block (optional)
30dh 10 Image Descriptor Block
317h n Local Color Map (optional), in 256-color modes

VGA-compatible palette (n=768 bytes)

317h n Raster Data Block (graphic data LZW-compressed)

? 1 Terminator ID (89h)

The offset values assume that a Global Color Map exists but that Extension Blocks and Local Color Maps
do not. Instead of the Terminator ID, you can add any number of Image Descriptor Blocks with the
accompanying palette and raster data. End-of-file occurs only with the terminator. It's not often that
multiple images are stored in a single file. To make our example less complicated, we won't attempt to
design a full-featured GIF viewer but simply a quick load image routine that works with a single image.

Following the 6-byte long Format ID GIF87a or GIF89a is the Logical Screen Descriptor Block (LSDB). It
defines the logical screen and therefore the global resolution and color data. The following table shows the
structure of this block:

(@ Password: VGA

35

;
) (\/\
I o

anee!

Graphic Know-how From Underground

Offset Length Contents

0 2 Screen width
2 2 Screen height
4 1 Resolution flag:

Bit 7 1= Global Color Map exists

Bits 6-4 : Color-depth in bits (minus one)

Bit 3 : Reserved (0)

Bits 2-0 : Number of bits per pixel (minus one)
5 1 Background color (color-number in palette)

6 1 Pixel Aspect Ratio:

Bit 7 : Global palette sort sequence

Bits 6-0 : Pixel Aspect Ratio

This block includes the global palette (Global Color Map), which for each of the 256 colors contains a three-
byte entry with values for the primary colors red, green and blue. Note that 8 bits are available for each color
component for a total of 2% (16.7 million) possible colors. For a VGA display each individual value must first
be shifted two bits to the right before being sent to the VGA-DAC, since VGA uses only the lower 6 bits of
each component.

Another unusual characteristic, which generally makes no difference on a PC, is the palette sort sequence.
Both global and local palettes can be stored in VGA sequence (this is the normal situation). This means color
0 is first defined by red, blue and green, then color 1, etc. Another option, which is seldom used, is to sort
the palette according to color frequency. Therefore, the red components of colors 0 to 255 are stored first
followed by all green components and ending with blue.

To this point, all data is considered global and applies to all the images within the GIF file. Next are the image
specific data for each individual image.

First is the Extension Block which can contain any type of data. Often, a paint program or a scan program
will insert copyright information in the Extension Block. For our sample GIF loader, we'll ignore this data
and just jump over it. An extension block starts with the character "I" (ASCII 21h) and ends with a null value
(ASCII OH).

Next the local image is described in the Image Descriptor Block. It has the following structure:

36

D
i Yo

anee!

Graphic Know-how From Underground

Offset Length Contents

0 1 """ (2ch) Image Separator Header

1 2 x-coordinate of top left corner of logical screen
3 2 y-coordinate of top left corner of logical screen
5 2 Image width in pixels

7 2 Image height in pixels

9 1 Flag byte:

Bit 7: 1= Local Color Map exists
Bit 6 : 1= Image is interlaced

Bit 5 : Local palette sort sequence
Bits 3-4 : Reserved (0)

Bits 0-2: Bits per pixel (minus one)

The Flag byte is important here. It indicates whether the Image Descriptor Block also has a local palette
which takes precedence over the global one. Separate entries can also exist for sort sequence and number
of pixels. Bit 6 indicates whether the image is interlaced, as in an interlaced monitor. First, all even image
lines; (0, 2, 4 etc.) are written. These are followed by the odd lines. This feature was designed to provide a
rough overview of image content when loading at slow transmission speeds (such as downloading from
a CompusServe mailbox or loading from a diskette).

Directly following this block is the local palette (if one exists). The entries are the same as for the global
palette. The Raster Data Blocks follow the local palette. They contain the actual image data in LZW format.
The data itself, like the image description, is also stored in block format, whereby the length byte consists
of only 8 bits, thus limiting block size to a maximum of 256 bytes (including the length byte).

LZW compression process

The number of bits which represent a pixel once again appears in the first Raster Block which directly
precedes the length byte. This value is used by the LZW process to compress the images.

The most important advantage of using LZW is the file size of the image is reduced.

Unlike other compression schemes such as RLE (Run Length Encoding) used in the PCX format, LZW can
handle both adjacent identical bytes and sequences of bytes that are not adjacent. To do this, an "extended
alphabet" is used. Instead of the usual 8 bits, this alphabet uses additional encoding bits. For example, by
using 9 bits per character, a file can contain codes 256-511 in addition to the usual codes 0-255. These are
used to represent character strings.

The meaning of the extended alphabet is constructed dynamically during compression and decompression.

37

= A
=) -
I o

anee!

Graphic Know-how From Underground

Here's how it works. Characters are read from the source file or video memory until a character string is
encountered which is no longer found in the alphabet. This happens in the beginning after only two
characters: The first character will be in the alphabet (an ordinary character from 0 to 255), while the string
formed from the first two characters does not yet exist.

When the compressor reaches this point it writes this character string into the alphabet, so the next time the
string occurs it can compress it by replacing it with this code. The code of the longest character string still
contained in the alphabet is then written to the destination file and the character string initialized with the
last character read. Characters are again added until the string is no longer found in the alphabet.

Now the question is how many bits you should use for the alphabet. If you use too few the alphabet will
soon overflow and reinitializing it greatly reduces the compression rate. However, taking too many bits
immediately wastes space because the upper bits will never be needed. The solution is the modified LZW
process, which uses a variable byte width. You begin with nine bits, which allows an alphabet with 512
entries. If this limit is exceeded another bit is simply added on.

On the other hand it makes no sense to keep extending indefinitely. This wastes bits unnecessarily, although
the majority of character strings already in the alphabet will never be used again. Therefore, when reaching
a width greater than 12 bits, a clear-code is eventually sent. This clear-code completely clears the alphabet
and resets the width back to nine bits. Compression then basically starts from the beginning.

The effectiveness of this algorithm depends strongly on the length of the file to be compressed. You'll need
large amounts of data to access the alphabet repeatedly and be able to store long character strings in a small
number of bits. This algorithm is therefore best suited for images of several kilobytes in size.

What is even more important for our purposes is the decompression algorithm. It takes the compressed data
and transforms them back into recognizable images. Before you can understand the packing process,
however, you must first understand the compressor.

Interestingly, the LZW process does not require storing the alphabet. The alphabet is regenerated from the
packed data during decompression. The program uses the fact the only character strings coded in the
compressed data are those that already occurred and therefore exist in the alphabet.

The following describes how the decompressor proceeds. Each compressed character read is first checked
to see whether it's actually a real, uncompressed byte. This would be indicated by a value less than 256.
These characters can be written directly to the destination file (or video memory). When encountering an
extended code, however, the corresponding character string is retrieved from the alphabet and then
written. Of course, the alphabet must be constructed at the same time by combining the last decompressed
character string (or uncompressed character) with the first character of the just decoded character string and
entering it into the alphabet.

This corresponds exactly to the compression process but "in reverse". So, the alphabets formed during
compression and decompression correspond exactly at any point in time. An exception to the "any point"
is when a character occurs whose code is not yet in the alphabet. When compressing a character string of
the form AbcAbcA, if the character string Abc already exists in the alphabet, the compressor writes this
entry's code to the destination file and forms the new alphabet entry AbcA, which appears again
immediately afterward and is therefore also used by writing it to the destination file.

The decompressor at this point still does not recognize the character string however; how would it know
the next character will be an A, since itis not writing to the destination file. You should be able to notice when

38

D
i Yo

anee!

Graphic Know-how From Underground

this situation occurs because it arises only with character strings as described above. If a code appears that
is not yet in the alphabet, the last decoded character string plus its first character is simply written to the
video memory and the new character string recorded in the alphabet.

An alphabet could require a great amount of memory, which was a problem in the past. The algorithm was
therefore again improved. Although it may seem more complicated, it actually simplifies your work even
more. As we have seen in both compressing and decompressing each new alphabet entry is formed from
an already existing character string plus a new character. What is being stored is simply the code of the old
character string and the code of the new character. We, therefore, need just two more entries: Prefix and
Tail

GlF-loader optimized to 320 x 200

GIF is clearly a universal format. It supports multiple resolutions, color-depths and is completely system-
independent. A good GIF-viewer must recognize and support all variations of this format. Unfortunately,
this feature doesn't work very well at high speeds. Since many shareware GIF-viewers are available, writing
another one is not the goal of this chapter. Instead, we'll develop a loader optimized to specific formats,
which will compensate for its lack of versatility with a high degree of speed.

The most popular format for demos and entertainment scenes is 320 x 200 with 256 colors. This graphic
mode is our main objective. As we'll see later, expanding to other 256-color modes is no great problem
However, 16 colors is not included because the unpacker would then need to be rewritten completely (4-
bit color-depth instead of 8-bit).

» You can find
As an example we will use the routine LoadGIF from unit GIF. 4 GIF.PAS
You'll see this routine often in other programs which we discuss ~%~ on the companion CD-ROM
in this book:
unit gif; {Header for gif.asm}
Interface
uses modexlib; {because of SetPal}
var
vram_pos, {current position in VGA-RAM}
rest, errorno:word; {remaining bytes in RAM and error}
gifname:String; {Name, including #0}

Procedure LoadGif(GName:String);
{Loads Gif file "GName.gif" into vscreen}
Procedure LoadGif_Pos(GName:String;Posit:Word);
{Loads Gif file at screen offset Posit}

Implementation
Procedure ReadGif;external; {custom Gif loader, complete in Assembler}
{$l gif}
Procedure LoadGif;
{Loads Gif file "GName.gif" into vscreen}
Begin
If pos('.',gname) = 0 then {add ".gif" extension if necessary}
gname:=gname+".gif’;
Gifname:=GName+#0;; {generate ASCIIZ string}
vram_pos:=0; {start in VGA-Ram at Offset 0}
ReadGif; {and load image}
If Errorno <> 0 Then {terminate if error}
Halt(Errorno);

39

Graphic Know-how From Underground

:-JJ < P ‘0\)(\(3
\“\de‘g

SetPal; {set loaded palette}
End;

Procedure LoadGif_pos;
{Loads Gif file at screen offset Posit}
Begin
If pos('.',gname) = 0 then {add ".gif" extension if necessary}
gname:=gname-+".gif';

Gifname:=GName+#0; {generate ASCIIZ string}
vram_pos:=posit; {start in VGA-Ram at passed offset}
ReadGif; {and load image}
If Errorno <> 0 Then {terminate if error}
Halt(Errorno);
SetPal; {set loaded palette}
End;
Begin
errorno:=0; {normally no error}
GetMem(VScreen,64000); {allocate virtual screen}
End.

The two procedures in this unit are LoadGIF and LoadGIF_Pos . They set the framework for calling the
next assembly language portion and thereby simplify the load process.LoadGIF is the normal procedure.
It simply loads an image into the virtual screen (vscreen) and pages any overflow (images larger than 320
x 200) into video memory starting with Offset 0. You can also pass the offset inLoadGIF_Pos where paging

begins.

Both procedures add the extension .GIF to the filename if necessary. They also add the terminating 0 to the
string required by DOS. A simple error procedure is also implemented (it prevents a system crash in this
form) by stopping the entire program if ReadGIF passes an error number other than 0. Unlike a
full-featured GIF-viewer, this demo assumes the files reside in the current directory. Finally, SetPal is

called, which sets the loaded image palette.

You can find the actual load procedure ReadGIF in the file
GIF.ASM. True assembly language code lets you achieve

maximum speed.

.286
clr=256 ;code for "clear alphabet"
eof=257 ;code for "end of file"

w equ word ptr
b equ byte ptr

data segment public

extrn gifname:dataptr ;name of Gif file, incl. ".gif" + db O
extrn vscreen:dword ;pointer to destination memory area
extrn palette:dataptr ;destination palette

extrn vram_pos:word ;position within video RAM

extrn rest:word ;rest, still has to be copied

extrn errorno:word; ;flag for error

handle dwO0 ;DOS handle for Gif file

buf db 768 dup (0) ;read data buffer

bufind dwO ;pointer within this buffer

abStack db 1281 dup (0) ;stack for decoding a byte
ab_prfx dw 4096 dup (0) ;alphabet, prefix portion
ab_tail dw 4096 dup (0) ;alphabet, tail portion

free dw 0 ;next free position in alphabet

40

> You can find

4 GIFASM

=%’ on the companion CD-ROM

D
i Yo

e Graphic Know-how From Underground
widthl dwO ;number of bits in a byte
max dw 0 ;maximum alphabet length for current width
stackp dwO ;pointer within alphabet stack
resthits dw 0 ;number of bits remaining to be read
restbyte dw O ;number of bytes still in buffer
specialcase dw 0 ;buffer for special case
cur_code dwO ;code just processed
old_code dw O ;previous code
readbyt dw 0 ;byte just read
lbyte dw O ;last physical byte read
data ends
extrn p13_2_modex:far ;needed for overflow

code segment public
assume cs:.code,ds:data

public readgif
GifRead proc pascal n:word
;reads n physical bytes from file

mov ax,03f00h ;function 3fh of Interrupt 21h: read
mov bx,handle ;load handle

mov cx,n ;load number of bytes to read

lea dx,buf ;pointer to destination buffer

int 21h ;execute interrupt

ret

gifread endp

GifOpen proc pascal
;opens the Gif file for read access

mov ax,03d00h ;function 3dh: open

lea dx,gifname + 1 ;pointer to name (skip length byte)
int 21h ;execute

mov handle,ax ;save handle

ret

gifopen endp

GifClose proc pascal
;closes Gif file

mov ax,03e00h ;function 3eh: close
mov bx,handle ;load handle

int 21h ;execute

ret

gifclose endp

GifSeek proc pascal Ofs:dword
;positioning within the file
mov ax,04200h ;function 42h,
mov bx,w handle ;subfunction 0: seek relative to start of file
mov cx,word ptr Ofs + 2 ;load offset
mov dx,word ptr Ofs
int 21h ;execute
ret
Endp
ShiftPal proc pascal
;aligns 24-bit palette format to 18-bit VGA format

mov ax,ds ;source and destination arrays in the data segment
mov es,ax
mov si,offset buf ;read from data buffer
lea di,palette ;write to palette
mov cx,768d ;copy 786 bytes
@I1:

41

Graphic Know-how From Underground » oS

anee!
lodsb ;get bytes
shr al,2 ;convert
stosh ;and write
loop @I1
ret
Endp

FillBuf proc pascal
;reads a block from the file in buf

call gifread pascal,1 ;read one byte
mov al,b buf[0] ;load length after al
xor ah,ah
mov w restbyte,ax ;and store in restbyte
call gifread pascal, ax ;read bytes
ret
Endp

GetPhysByte proc pascal
;gets a physical byte from the buffer

push bx ;caller needs bx

cmp w restbyte,0 ;no more data in buffer ?

ja @restthere

pusha ;then refill buffer

call fillbuf

popa

mov w bufind,0 ;and reset pointer
@restthere: ;data in buffer

mov bx,w buflnd ;load buffer pointer

mov al,b buffbx] ;get byte

inc w bufind ;move pointer

pop bx sfinished

ret
Endp

GetLogByte proc pascal
;gets a logical byte from the buffer, uses GetPhysByte

push si ;caller needs si
mov ax,w widthl ;get byte widthl
mov si,ax ;and store
mov dx,w restbits ;shift Ibyte 8 remaining bits to the right
mov cx,8
sub cx,dx ;obtain difference
mov ax,w |IByte
shr axcl ;and shift
mov w cur_code,ax ;store code
sub si,dx ;remaining bits already obtained -> subtract
@nextbyte:
call getphysbyte ;get new byte
xor ah,ah
mov w |byte,ax ;store in Ibyte for next logical byte
dec w restbyte ;mark byte as obtained
mov bx,1 ;mask remaining bits in obtained byte
movV CX,Si ;add number of bits
shl bx,cl ;shift 1 by number
dec bx ;and decrement
and ax,bx ;mask byte
mov cx,dx ;shift to correct position
shl ax,cl ;(by remaining bytes to the left)
add w cur_code,ax ;and add to result
sbb dx,w widthl ;decrement remaining bits

42

D
i Yo

e Graphic Know-how From Underground
add dx,8 ;by amount exceeding 8 bits
jns @positive
add dx,8
@positive:
sub si,8 ;up to 8 bits obtained -> subtract
jle @finished ;<= 0 -> finished, end
add dx,w widthl ;otherwise increment remaining bits by missing bits
sub dx,8
jmp @nextbyte ;and continue
@finished:
mov w restbits,dx ;store remaining bits for next call
mov ax,w cur_code ;and load ax
pop si
ret
Endp

ReadGif proc pascal

;loads a Gif image called gifname in vscreen, overflow is paged out to screen
push ds ;store ds

call GifOpen ;open file
jnc ok ;error ?
mov errorno,1 ;then issue message and end
pop ds
ret
ok:
call gifseek pascal, 0,13d ;skip first 13 bytes
push 768d ;load 768 bytes of palette
call gifread
call shiftpal ;and convert to "palette”
call gifread pascal,1 ;skip one byte
@extloop: ;skip extension blocks
cmp w buf[0],21h ;another Extension-Block existing ?
jne @noext :no, then continue
call gifread pascal,2 ;read first two bytes
mov al,b buff1] ;data block length
inc al ;increment by one
xor ah,ah
call gifread pascal, ax ;and skip
jmp @extloop
@noext:
call gifread pascal, 10d ;read remainder of IDB
test b buf[8],128 ;local palette ?
je @noloc ;no, then continue
push 768 ;otherwise read
call gifread
call shiftpal ;and set
@noloc:
les di,dword ptr vscreen ;load destination address
mov w lbyte,0 ;last read byte 0
mov w free,258 first free entry 258
mov w width1,9 ;byte width1 9 bits
mov w max,511 ;SO maximum entry is 511
mov w stackp,0 ;stack pointer to beginning
mov w restbits,0 ;N0 remaining bits
mov w restbyte,0 ;or remaining bytes to obtain
@mainloop: ;run for each logical byte
call getlogbyte ;get logical byte

43

Graphic Know-how From Underground

anee!

oue

cmp ax,eof ;end of file ID
jne @no_abort
jmp @abort ;yes, then end
@no_abort:
cmp ax,clr ;clr-code ?
jne @no_clear
jmp @clear ;yes, then clear alphabet
@no_clear:
mov w readbyt,ax ;store current byte
cmp ax,w free ;code already in alphabet (<free)
jb @code_in_ab ;yes, then output
mov ax,w old_code ;no, then special case, i.e., give last string
mov w cur_code,ax ;for processing
mov bx,w stackp
mov cx,w specialcase ;and add first character (always concrete)
mov w abstack[bx],cx ;enter onto stack
inc w stackp ;move stack pointer forward
@code_in_ab: ;code exists in alphabet:
cmp ax,clr ;< clr code ?
jb @concrete ;then concrete character
@fillstack_loop: ;otherwise decode
mov bx,w cur_code ;current code as pointer in alphabet
shl bx,1 ;word-array (1)
push bx
mov ax,w ab_tail[bx] ;get tail (concrete)
mov bx,w stackp ;push onto stack
shl bx,1 ;likewise word-array
mov w abstack[bx],ax ;enter
inc w stackp
pop bx
mov ax,w ab_prfx[bx] ;get prefix
mov w cur_code,ax ;give as current code for decoding
cmp ax,clr ;> clr-Code
ja @fillstack_loop ;then continue decoding
@concrete: ;now just the concrete values onto the stack
mov bx,w stackp ;push last code onto stack
shl bx,1 ;word-array
mov w abstack[bx],ax
mov w specialcase,ax ;also keep for special case
inc w stackp ;move pointer forward
mov bx,w stackp ;prepare to read stack
dec bx ;move pointer backward and
shl bx,1 ;align with word-array
@readstack_loop: ;process stack
mov ax,w abstack[bx] ;get character from stack
stosb ;and write to destination memory
cmp di,0 ;segment overflow ?
jne @noovll
call p13_2_modex pascal,vram_pos,16384d
add vram_pos,16384d ;the page section to video RAM
les di,dword ptr vscreen ;next position in VGA-RAM and reset destination pointer
@noovll:
dec bx ;stack pointer to next element
dec bx
jns @readstack_loop ;finished processing ? no, then continue
mov w stackp,0 ;set stack pointer variable to 0
mov bx,w free ;now enter in alphabet
shl bx,1 ;go to position “free”
mov ax,w old_code ;write last code in prefix

mov w ab_prfx[bx],ax

44

2 (-
- @e@wﬁ Graphic Know-how From Underground

mov ax,w cur_code ;current code in tail
mov w ab_tail[bx],ax
mov ax,w readbyt ;store byte read as last code
mov w old_code,ax
inc w free ;to next position in alphabet
mov ax,w free
cmp ax,w max ;maximum reached ?
ja @no_mainloop
jmp @mainloop :no, then continue
@no_mainloop:
cmp b width1,12 ;has width1 reached 12 bits ?
jb @no_mainloop2
jmp @mainloop ;yes, then continue
@no_mainloop2:
inc w widthl ;otherwise increment
mov cl,b widthl ;calculate new maximum value
mov ax,1 ;shift 1 by new width1 to the left
shl ax,cl
dec ax ;and decrement
mov W max,ax ;enter
jmp @mainloop ;and go back to main loop
@clear: ;reset alphabet:
mov w width1,9 ;width1 back to original value
mov w max,511 ;reset maximum to 511
mov w free,258 first free position at 258
call getlogbyte ;get next byte
mov w specialcase,ax ;record as special case
mov w old_code,ax ;and also as last byte read
stosb ;this value directly to memory, because
concrete
cmp di,0 ;segment overflow ?
jne @noovi2
call p13_2_modex pascal,vram_pos,16384d
add vram_pos,16384d ;then page to video RAM
les di,dword ptr vscreen ;move VGA-RAM pointer forward and reset start
address
@noovl2:
jmp @mainloop ;90 back to main loop
@abort: ;terminate through eof-code
call gifclose ;close file
mov rest,di ;store number of bytes still to be copied
pop ds ;end
ret
Endp
code ends
end

GIFOpen, GIFRead, GIFSeek and GIFClose in this module serve as file handling routines. They open
the file, read data (n Bytes), set the file pointer to position Ofs and close the file.

One procedure not directly involved with loading is ShiftPal . It reads the palette from the data buffer
where it was loaded previously by GIFRead. It then transfers it to the array "Palette " so it can be set
directly. This is also where the format alignment occurs by using right-shifting to generate the 6-bit values
of VGA format from the 8-bit values of GIF format.

45

D=
| < e‘g‘o\“\
U

Graphic Know-how From Underground

The next level of the GIF-loader consists of the procedure GetPhysByte . The task of this procedure is to
obtain exactly one byte from the file. Of course, you could also accomplish this directly through GIFRead,
but even with caches, individual disk accesses always take longer than intermediate buffering through a
program.

GetPhysByte first checks whether additional data exists in the buffer, whose fill status is indicated by
RestByte .The program either reads the next byte or the buffer must be refilled with new data byFillBuf
FillBuf reads the current block length followed by the corresponding number of bytes from the file.

There is one problem you might encounter with this compression method. The data obtained must be
processed again - a single byte is no longer eight bits in width. Depending on the current status of the
alphabet, a byte consists of a minimum of nine bits. Therefore, the program must take the continuous bit-
stream (transmitted by GetPhysByte in 8-bit blocks, i.e., physical bytes) and filter out the current number
of bits. This task is carried out by GetLogByte .

The variables LByte and Restbits are responsible for the stream of data. The variable LByte contains
the last physical byte transmitted by GetPhysByte . This byte must still be converted to Restbits bits.
To do this, LByte is shifted by eight Restbits to the right and this value stored in cur_code .

The next step is obtaining a new byte, whose required (lower) bits are now masked out and added to. For
bytes consisting of ten or more bits another physical byte may be needed; in this case the program returns
to label @nextbyte and processes this byte as well.

The most important procedure in this module (and the only one declared as public) is ReadGIF. The
following are passed globally to this procedure:

» GlFname
Contains the complete filename with terminal 0.

» vscreen
Contains a pointer to the virtual screen which must be previously allocated (done in Unit-Start).

After opening the file (with error checking), the program skips the first 13 bytes. The data contained there
(ID and Logical Screen Descriptor) are not relevant here since we're assuming a 320 x 200 format. Other
formats are not checked (due to speed considerations) and will produce garbage on the screen. Our main
priority here is speed.

Another assumption is the existence of a global palette which is then loaded and aligned through
ShiftPal . Next the ID of the next block is read, skipping over any Extension Blocks. The Image Descriptor
Block (IDB) follows the Extension Blocks. The program reads 10 bytes - 9 bytes from the IDB plus the first
byte of the Raster Data Block. Next if a local palette exists (Bit 7 of the IDB Flag Register), it's now loaded
and set.

The label @nolok initiates the actual decoding of raster data. The procedure first initiates several variables.
The variablefree contains the first unused position in the alphabet,width contains the current byte width,
max the highest used position in the alphabet. The main loop (@mainloop) then begins, which is executed
for each byte.

46

- Q o Graphic Know-how From Underground

Each byte read is first compared to the variables eof (end-of-file) and clr (clear-alphabet). The character
eof indicates the file is completely loaded. The characterclr indicates that an alphabet overflow occurred
during compression. This overflow requires clearing and re-initialization of the alphabet. To synchronize
the packing and unpacking, at this point you also need to reset the alphabet when decompressing.

Next the program checks to see if this code already exists in the alphabet. If not, we have a special case as
described above, which is handled as follows. The last string (compressed inOld_Code) is combined with
the previously stored second-to-last character and pushed onto the stack (@bstack). This stack is later
processed in the reverse order and written to main memory.

After dealing with this special case (or if no special case occurred) the program continues atcode_in_ab
This routine checks whether the value is less than clr , i.e., within the "normal” alphabet range (0..255). If
so, it's a real code and is pushed onto the stack at the label @concrete . Otherwise it must first be decoded.

This is where we use the stack. The decompressor uses the compressed alphabet, which has a recursive
structure. The postfix (tail) is always real. A new character is added here during compression. The prefix,
on the other hand, is often compressed and must be decompressed through an alphabet entry. This alphabet
entry itself consists of a compressed and an uncompressed portion. This routine continues until an alphabet
entry has two real portions. Until then, all postfixes (tails) are pushed onto the stack since they have not yet
been used. They can now be written to the destination.

The above procedure is executed in the loop labelled @fillstack_loop . Push the tail of the current code
onto the stack and (if compressed) decompress the prefix until it too is actual, then exit the loop.

At @concrete the last prefix is pushed onto the stack, the stack is saved for a possible special case and
finally emptied in the loop readstack_loop

At this point (after stosb) the program deals with images larger than 320 x 200. The only problem with these
images is their size - they no longer fit into the virtual screen segment, i.e., they're paged out to video
memory. The pointer is moved here for further paging, if necessary, so the remainder of the image can be
written to the correct position.

The program begins the actual decompression process with the label @noovll . The loop continues until
the entire stack has been emptied, after which the alphabet must still be updated. This is done by entering
the last value as the prefix and the current code as the tail. Next, the alphabet pointer free) is updated.
If the pointer goes past the alphabet limit, the alphabet is expanded and a new maximum value (max) is set.
The procedure then continues as usual.

On the other hand, no further expansion occurs if the width has already reached twelve bits. Instead, the
routine returns to the main loop. The packer should return clr which is processed at @Clear :

Thealphabetvariables are reset to their initial values and the next character (guaranteed to be uncompressed)
is written directly. This is also where any overflow must be handled through paging.

Finally, the procedure must close the file and store the "fill status” of the virtual screen. The calling program
now only needs to copy the remainder from the virtual screen to the screen:

p13_2_ModeX (vram_pos, rest div 4);
For the special case 320 x 200 you can also just insert constants:

p13_2_ModeX (0, 16000);

(@Password: Underground

47

;
) (\/\
I o

anee!

Graphic Know-how From Underground

In Mode 13h, on the other hand, the Pascal Move command is used due to the simple memory structure:

Move(VScreen”,Ptr($a000,0)",64000);

This is exactly what procedure Show_Pic13 of the ModeXLib unit does.

PCX Is Quick And Simple

In addition to GIF, there are many other formats with a variety of capabilities and compression methods.
The PCX format was originally developed by ZSoft for its paint program and in the meantime has attained
widespread use.

The PCX format doesn't feature either high compression rates or convertibility between different computer
systems. The most important feature of PCX is its simplicity. Frame data is very simply laid out, and its
compression algorithm (RLE) is equally uncomplicated.

Since its invention PCX has gone through several versions, each with quite different capabilities. Here we
will be using Version 3.0 only, which fully supports 256-color images. Regardless of version, all PCX files
have a 128-byte header which contains image data such as size and position. This header in Version 3.0
requires 70 bytes. The rest is disregarded and is usually filled with zeros.

Structure of PCX files

The structure of the header is very simple:

Offset Length Contents Offset Length Contents
0 1 Format ID Oah 14 2 Vertical resolution in dpi (usually
image height)
1 1 Version (5 for Version 3.0) 16 48 Palette (16-color, normally
disregarded at 256 colors)
2 1 RLE compression used (1) or not (0) 64 1 Reserved
3 1 Bits per pixel 65 1 Number of planes (1 plane at 256
colors)
4 4 Coordinates of top left corner (x,y as 66 2 Bytes per image line, rounded up to
words) even number
8 4 Coordinates of bottom right corner 68 2 Palette type (1=color or b/w,
(x,y) 2=grayscale)
12 2 Horizontal resolution in dpi (usually 70 58 Reserved (usually 0)
image width)

A compression flag follows the Format ID and version number. A 0 means that no compression was used,
which in some cases actually produces a smaller file (more on this later). A 1 indicates that RLE compression
was used.

48

- Q o Graphic Know-how From Underground

The image section coordinates and the resolution follow the color-depth (8 bits at 256 colors). We're using
the term "resolution” loosely since some programs use this area to store (as well as request) image width
and height. We can trace the palette back to the days of 16-color images and is irrelevant at 256 colors.
Howvever, to be safe, you should store the first 16 colors of the palette here.

The number of bit-planes (1 at 256 colors) appears at offset 65. This is followed by the number of bytes per
image line (must be rounded up to an even number). The word at offset 68 indicates whether the palette
consists of color- or gray values (1 is for both color and black-and-white). The fill-bytes are next.

The actual palette data for 256-color images are located at the end of the file and are identified by Och. So,
there are 769 bytes added on after the graphic data.

The graphic data directly following the header are either uncompressed or compressed by the RLE process.
RLE compression combines identical adjacent bytes into 2-byte combinations. Single bytes are written
directly to the file, while repetitions are identified by setting the upper two bits of the byte. Here we have
a length byte directly followed by a data byte. The data byte when decompressing is written to video
memory according to the number of times indicated by the length byte.

Of course, now there is no way to process single bytes whose upper two bits have been set. These bytes must
therefore be stored as byte-repetitions of length 1. Since two bytes are then occupied in the compressed file,
it's quite possible for the amount of data to expand rather than contract. So if an image has few single-color
regions, which is usually the case with 256-color images, the compressed file may easily become larger than
the uncompressed file.

The main advantage of this compression method is its high processing speed. Decoding of simple byte-
repetitions is significantly faster and easier than using the LZW codes of the GIF format, which must always
be searched out from the alphabet first.

Our objective in this chapter is to create a universal screen-grabber (copies screen contents to a file) for both
320 x 200 x 256 formats, which can also process such features as split-screen. This time we are emphasizing
clarity over maximum speed - the compressor for example is written in Pascal. We'll illustrate the principles
of how to process (i.e., store) PCX images.

One application of our program for example, is taking a demo you have programmed and generating screen
shots from certain sections, which can then be shown as a
sequence with the name of the programmer, graphic designer ' vou can find

and musician. g GRABBER.PAS

You'll find the complete source code of this program in the file /), on the compabllCReS el

GRABBER.PAS:

{$G+}

{$m 1024,0,0} {requires little stack and no heap}

Uses ModeXLib,Crt,Dos;

Var OldInt9:Pointer; {pointer to old keyboard handler}
active:Boolean; {set, if hard copy already in motion}
no:Word; {Number of picture, for assigning filenames}
installed:Boolean; {already installed ?}

Mode, {current VGA-Mode: 13h, ffh (Mode X)}
{or 0 (neither of the two}
Split_at, {Split-Line (graphic line}

49

Graphic Know-how From Underground

anee!

oue

LSA, {Linear Starting Address}
Skip:Word; {Number of bytes to skip}

Procedure GetMode;
{sets current graphic mode 13h or Mode X (No. 255)}
{and frame data (Split-Line, Start address)}

Begin
Mode:=$13; {Mode 13h Standard}
asm {set Bios-Mode}
mov ax,0f00h {Function: Video-Info}
int 10h
cmp al,13h {Bios-Mode 13h set ?}
je @Bios_ok
mov mode,0 {if no -> neither Mode 13h nor X active}
@bios_ok:
End;
If Mode=0 Then Exit; {wrong mode -> abort}
Port[$3c4]:=4; {read out TS-Register 4 (Memory Mode)}
If Port[$3c5] and 8 = 0 Then {Chain 4 (Bit 3) inactive ?}
Mode:=$ff; {then Mode X}
Port[$3d4]:=$0d; {Linear Starting Address Low (CRTC 0dh)}
LSA:=Port[$3d5]; {read out}
Port[$3d4]:=$0c; {Linear Starting Address High (CRTC 0Och)}
LSA:=LSA or Port[$3d5] shl 8; {read out and enter}
Port[$3d4]:=$18; {Line Compare CRTC 18h}
Split_at:=Port[$3d5]; {read out}
Port[$3d4]:=7; {Overflow Low}
Split_at:=Split_at or {mask out Bit 4 and move to Bit 8}
(Port[$3d5] and 16) shl 4;
Port[$3d4]:=9; {Maximum Row Address}
Split_at:=Split_at or {mask out Bit 6 and move to Bit 9}

(Port[$3d5] and 64) shl 3;
Split_at:=Split_at shr 1; {convert to screen lines}

Port[$3d4]:=$13; {Row Offset (CRTC Register 13h)}

Skip:=Port[$3d5]; {read out}

Skip:=Skip*2-80 {read difference to "normal" line spacing}
End;

Procedure PCXShift;assembler;
{prepares current palette for PCX (shift 2 to the left)}

asm
mov si,offset palette {pointer to palette in ds:si}
mov cx,768 {process 768 bytes}

@lp:
lodsb {get value}
shl al,2 {shift}
mov ds:[si-1],al {write back to old position}
loop @Ip {and complete loop}

End;

Var pex:File; {PCX file to disk}

Procedure Hardcopy(Startaddr,splt:Word;s : string);
{copies graphic 320x200 (Mode 13 0. X) as PCX to file s}
{current screen start (Linear Starting Address) in Startaddr}
{Split line in splt}

Var Buf:Array[0..57] of Byte; {receives data before saving}

50

D
i Yo

anee!

Graphic Know-how From Underground

Aux_Ofs:Word;
const
Headerl:Array[0..15] of Byte {PCX header, first part}
=($0a,5,1,8, 0,0, 0,0, $3f,1, 199,0,$40,1,200,0);
Header2:Array[0..5] of Byte {PCX header, first part}
=(0,1,$40,1,0,0);

plane:Byte=0; {current plane no.}
var count:Byte; {number of equivalent characters}
value, {value just fetched}
lastbyt:Byte; {previous value}
i:word; {byte counter}
begin
asm {read out palette}
xor al,al {start with color 0}
mov dx,3c7h {use Pixel Read Address }
out dx,al {to inform DAC of this}
push ds {pointer es:di to palette}
pop es
mov di,offset palette
mov cx,768 {read out 768 bytes}
mov dx,3c9h {Pixel Color Value}
rep insb {and read}
cmp mode,13h {Mode X ?}
je @Linear {then:}
mov dx,03ceh {set write and read mode to 0}
mov ax,4005h {using GDC-Register 5 (GDC Mode)}
out dx,ax
@Linear:
End;
Assign(pcx,s); {open file for writing}

Rewrite(pcx,1);

BlockWrite(pcx,Header1,16); {write Header part 1}
PCXShift; {prepare palette}
BlockWrite(pcx,palette,48); {enter first 16 colors}
BlockWrite(pcx,Header2,6); {write Header part 1}

FillChar(buf,58,0); {write 58 nulls (fill header)}
BlockWrite(pcx,buf,58);

plane:=0; {start with Plane 0}

count:=1; {initialize number with 1}

If splt<200 Then

If Mode = $ff Then
splt:=splt*80 Else {calculate Split-Offset}
splt:=splt*320 Else {varies depending on mode}
Splt:=$ffff;
If Mode=$13 Then {LSA refers to the plane model !}
Startaddr:=Startaddr*4;
for i:=0 to 64000 do Begin {process each pixel}
If i shr 2 < splt Then
aux_ofs:=(i div 320) * skip {set auxiliary offset taking }
{line width into consideration}
Else
aux_ofs:=((i shr 2 - splt) div 320) * skip;
{with splitting reference to VGA-Start}

asm {read out pixel}
mov ax,0a000h {load segment}
mov es,ax

51

Graphic Know-how From Underground

anee!

oue

mov Si,i

cmp mode,13h

je @Linearl

shr si,2
@Linearl:

cmp si,splt

jb @continue

sub si,splt

sub si,startaddr
@continue:

add si,startaddr

add si,aux_ofs

cmp mode,13h
je @Linear2
mov dx,03ceh
mov ah,plane
inc plane
mov al,4
and ah,03h
out dx,ax
@Linear2:
mov al,es:[si]
mov value,al
End;

If i<>0 Then Begin

{load offset}
{Mode 13h ?}

{no, then calculate offset}

{Split-Line reached ?}
{no, then continue}

{otherwise, apply everything else}
{to screen start}

{add start address}
{add auxiliary offset}

{Mode 13h ?}
{no, then Mode X read method}
{using GDC-Register 4 (Read Plane Select)}
{select current plane}
{and continue shifting}

{read out byte}
{and save in value variable}

{no compression with first byte}

If (Value = lastbyt) Then Begin{same bytes ?}

Inc(Count);

If (Count=64) or

{then increment counter}
{counter too high already ?}

(i mod 320 =0) Then Begin {or beginning of line ?}
buf[0]:=$c0 or (count-1); {then buffer}

buf[1]:=lastbyt;

count:=1;

{write counter status and value}
{reinitialize counter}

BlockWrite(pcx,buf,2); {and to disk}

End;
End Else

If (Count > 1) or

{different bytes :}
{several of the same ?}

(lastbyt and $c0 <> 0) Then {value too large for direct writing ?}

Begin

buf[0]:=$c0 or count; {then write number and value to file}

buf[1]:=lastbyt;

lastbyt:=Value; {current value for further compression}
Count:=1; {save and reinitialize}
BlockWrite(pcx,buf,2);

End Else Begin
buf[0]:=lastbyt;
lastbyt:=Value;

{single, legal byte:}
{direct writing}
{save current value for later}

BlockWrite(pcx,buf,1);

End;

End Else lastbyt:=value; {with first byte save only}

End;
buf[0]:=$0c;

{insert ID palette}

blockwrite(pex,buf[0],1); {and write}
blockwrite(pcx,palette,256*3);{and add palette}

Close(pcx);
End;

Procedure Action;

{close file}

{called upon activation of the hot-key}

Var nrs:String;

52

{string for assigning name}

D
i Yo

e Graphic Know-how From Underground
Begin
if not active Then Begin {only if not already active}
active:=true; {note as active}
str(no,nrs); {convert number to string and increment}
Inc(no);
GetMode; {get graphic mode etc.}

If Mode <> 0 Then
HardCopy(LSA,Split_at,'hard+nrs+'.pcx’);
{run hard copy}
active:=false; {release renewed activation}
End;
End;

Procedure Handler9;interrupt;assembler;
{new interrupt handler for keyboard IRQ}

asm
pushf
call [oldint9] {call old IRQ 1 - handler}
cli {no further interrupts}
in al,60h {read scan code}
cmp al,34d {G?}
jne @finished {no -> end handler}
XOr ax,ax {load 0 segment}
mov es,ax
mov al,es:[417h] {read keyboard status}
test al,8 {Bit 8 (Alt key) set ?}
je @finished {no -> end handler}
call action {run hard copy}
@finished:
sti {allow interrupts again}
End;

Procedure identification;assembler;
{Dummy-Procedure, contains Copyright message for installation |D}
{NOT EXECUTABLE CODE !}
asm
db 'Screen-Grabber, (c) Data Becker 1995/Abacus 1995';
End;

Procedure Check_Inst;assembler;
{Checks whether Grabber is already installed}

asm
mov installed,1 {Assumption: already installed}
push ds {ds still needed !}
les di,oldint9 {load pointer to old handler}
mov di,offset identification {Procedure identification in same segment}
mov ax,cs {set ds:si to identification of this program}
mov ds,ax
mov si,offset identification
mov ¢x,20 {compare 20 characters}
repe cmpsb
pop ds {restore ds}
jcxz @installed {equal, then already installed}
mov installed,0 {not installed: note}
@installed:
End;
Begin
no:=0; {first filename: hard0.pcx}
GetIntVec(9,01dInt9); {get old interrupt vector}

53

:-JJ < P ‘0\)(\()
\“\de‘g

Graphic Know-how From Underground

Check_Inst; {check whether already installed}
If not installed Then Begin {if no:}
SetIntVec(9,@Handler9); {install new handler}
WriteLn(‘Grabber installed');
WriteLn('(c) Data Becker 1995/Abacus 1995");
WriteLn(‘Activation with <alt> g');
Keep(0); {output message and exit resident}
End;
WriteLn('Grabber already installed');
{if already installed, message and exit}
End.

The main program is typical of all TSRs, although features such as deinstallation were omitted due to the
limitations of Pascal. If the program is not already installed, a message is displayed and the program is
loaded. Otherwise the user is informed that a copy already exists in memory and the program terminates
normally. The installation check occurs in a procedure 1D which compares the loaded program with the
current keyboard handler.

The handler, which is latched onto the keyboard-interrupt (IRQ 1, i.e., Interrupt 9), now has the job of
transmitting all keypresses to the old handler so the system will function normally. It also starts the Grabber
with the + (G) hotkey key combination. It does this by comparing each scan code with the (G) key. If a
match is found, it checks the BIOS keyboard flag at address 00417h to see if the(Al) key has also been pressed.
If both are true, it calls procedure Action

Action first checks whether the hotkey was pressed again while saving an image, which would lead to
complications. Next, the filename is assigned using consecutive numbers in case several screenshots are
made.

Before the actual procedure Hardcopy is called, the program must determine the current graphic mode
since the Grabber is designed specifically for 320 x 200 pixels. This task is performed by the procedure
GetMode.

First, GetMode checks the BIOS mode, which in both cases is 13h. Any other value and Hardcopy cannot
run. The procedure then ends with a mode of 0. Next, the Chain 4-bit of TS-Register 4 is used to differentiate
between Mode 13h and Mode X.

Since Grabber must produce the most realistic image possible with the various effects as well, a number of
CRTC-registers must still be read. The first is the Linear Starting Address, which is used for scrolling. The
second is the Line-Compare register for the split-line (this register is divided among three CRTC-registers
which are recombined at this point).

Finally, the Row Offset is used at higher virtual resolutions (640 x 400). Through Row Offset the distance
between two lines (Skip) is calculated. This value equals 0 at normal 320 x 200 resolutions and 80 at a virtual
resolution of 640 x 400.

Next, Action calls procedure Hardcopy . It receives the just obtained CRTC values with the filename as
parameters.Hardcopy reads the current palette from the DAC and enables Read Mode 0 if Mode X is active.
The palette is brought to an 8-bit format through the procedure PCXShift , which follows the reverse path
from reading GIF files (each value is shifted two bits to the left).

The completed header is now written to the file with the first 16 palette entries and filled to 128 bytes. Next,
several variables are calculated. Split is given as a line and must still be converted to an offset since the

54

::J) (‘O\)(\d

Zeo Graphic Know-how From Underground

copy loop is based on offset. The start-address in Mode 13h must be multiplied by 4, considering the special
(Chain4-) structure of this mode.

In the main loop, the first item calculated is another offset (aux_ofs), which is used for over-wide images
(when scrolling in all directions, for example). If the current offset is still less than the split-line, the program
simply multiplies the number of lines processed by the space per line. After split-line, the split-line itself
must also be considered to obtain a reference to the memory-start.

The ASM block is next. It reads a byte from video memory. First es:si is loaded with a pointer to the current
pixel. The offset is divided by 4 in Mode X as we mentioned.

If the split-line has already been passed, the memory-start reference is reset by eliminating the effect of the
changed start-address (through subtraction) and calculating the distance to the split-line (also through
subtraction). In Mode X the current plane is set as well. Next, the pixel in the variable Value is read and
compressed as follows.

The first byte only needs to be loaded so it can be processed as the last byte the next time through. Each
subsequent byte is then compared to the previous one. The countercount is incremented if a match occurs.

A special case arises when the counter goes past the maximum (63) that can be stored in a length-byte. In
this case the counter is "emptied" into the file and the count restarts. Another special case involves the end-
of-line. Originally, PCX was purely line-based which meant that character repetitions could not go past the
end-of-line. You may have to consider this handicap in the compression especially if you're using an older
paint program.

When a character differs from its predecessor, the following Else branch executes. First, the program checks
whether this was a repetition (count > 1) or whether the character is using the upper two bits. In both cases
a compressed character must be written with a count-byte (equal to 1 in the second case) and a data-byte.

Lastbyt isthen setto the current value, so compression occurs the next time through the loop. On the other
hand if Count = 1 and the last byte is valid (upper bits empty) the Else branch of this If structure executes,
which writes the byte directly to the file uncompressed and likewise sets Lastbyt to the current value.

After the entire image has been written to the file in this way, the palette (with ID Och) is added on and the
file closed. The handler is then terminated.

Remember, we mentioned that although this program is not fast, speed isn't the highest priority for a screen
grabber. What is important is that we have shown the structure of a PCX file. This time our example showed
writing a file rather than reading a file.

Once the program is called, it stays resident in memory and waits for the hotkey. Only a system reset will
remove the program from memory. TSR programs with a deinstallation feature are normally most effective
when written in Assembler, however, we were able to avoid repeat installation even in Pascal as seen in the
procedure Check_Inst

55

=)=
I o

et

Graphic Know-how From Underground

VGA To The Last Bit

Later we'll talk about different graphic effects which rely mostly on simple register manipulations. These

registers offer unlimited potential for affecting the VGA display. Many registers in the past remained

unused, with apparently no purpose or function. However,

by using a little imagination, you can use almost every :

register to create interesting effects - you just need to start |:—j ;ﬂgzge‘?vtiltjﬁenﬁgﬂc?gugsﬁge%

experimenting. VOFE to damage someone's
monitor permanently.

Before you can understand these effects, we'll want to talk . .
. . . Therefore, we repeat: Use caution...if your
about all the VGA registers in detail. monitor _whistles loudly switch it off

i . immediately...fast action may save the
In theory you can experiment with the values. However, you monitor from permanent damage. It normally
should be careful with the timing registers (CRTC-Registers ~ takes several seconds before the monitor is

X . . d d. If t h i ts,
0-7) since prolonged operation with extreme values (the rj&“;’,’}?{ﬁend {‘;‘;piﬁgsuocne E)f(%z%rpegns t\ﬁg

monitor will whistle like crazy) can damage the monitor. ON/OFF switch at all times just in case.

With most other registers, the worst that can happen is a
system crash. The registers can be divided into two major groups:

» Discrete registers
These are addressed using separate port addresses.

» Indexed registers
The term indexed simply means these registers have no port address of their own. Instead they are
acomponent of one of the VGA chips, and are selected using a fixed port address and processed using
another port address.

Miscellaneous Output Register

Read: Port 3cch, Write: 3c2h

Bit Meaning Access
7 Vertical retrace polarity RW
6 Horizontal polarity (with Bit 7 vert. resolution) RwW
5 Page-select for odd/even addressing RW
4 Reserved
3,2 Clock select (horiz. resolution) RW
1 Enable RAM, 1=RAM access using CPU enabled RW
0 1/0 address, 1=monochrome (3bxh), O=color (3dxh) RW
Explanation
Bits 7,6

The polarity of the two retrace signals determines the vertical physical resolution: 00b is reserved, 01b
means 350 lines, 10b 400 lines (also 320 x 200, see CRTC-Register 9), 11b 480 lines.

56

D
| { (Q‘O\“\d

e Graphic Know-how From Underground

Bit 5

Specifies Bit 0 in odd/even mode, that is, in each plane either all even addresses (Bit 5 = 0) or all odd
addresses (Bit 5 = 1) are occupied, see TS-Register 4.

Bits 3,2

Determines horizontal resolution using pixel frequency: 00b means 640 horizontal pixels, 01b 720 pixels,
02b 800 pixels, 11b is reserved.

Bit 1
Regulates the CPU's access to VGA-RAM (0= access disabled)
Bit 0

This bit indicates the port address of CRTC (3 x 4h/3 x 5h), Input Status Register 1 (3 x ah). A 1 in this bit
means replace the x with d; a 0 means replace it with b.

Input Status Register 0

Read: Port 3c2h

Bit Meaning Access
7 CRT-interrupt RO
6-0 Manufacturer-specific, usually feature code etc. RO
Explanation

Bit 7

Indicates a vertical retrace, provided the retrace-interrupt has been activated (usually deactivated through
hardware DIP switches). Is cleared using CRTC-Register 4.

Input Status Register 1

Port 3dah (color) or 3bah (monochrome)

depending on Bit 0 Miscellaneous Output Register

Bit Meaning Access
7,6 Reserved (Sometimes inverted Bit 3)
5,4 Test bits, depending on graphic card RO
3 Vertical retrace RO
2,1 Reserved
0 Display enable complement RO

57

:-JJ < P ‘0\)(\()
\“\de‘g

Graphic Know-how From Underground

Explanation
Bit 3

A value of 1 indicates a vertical retrace is in progress. This bit synchronizes image construction so image
construction and modification are not performed at the same time, which leads to flickering (see the
definition for Retrace earlier in this chapter).

Bit 0

Enable-signal for inverted display. A 1 indicates a horizontal or vertical retrace is in progress. By using this
bit you can determine the current screen line being displayed. This bit changes from 1 to 0 after a vertical
retrace (Bit 3) which indicates the start of a new line.

Other registers are available, depending on the manufacturer, that reflect the capabilities of a specific card
(e.g., Feature Connector). Since these are very specific registers, they're not suited to general programming.

Cathode Ray Tube Controller (CRTC)

Another complex part of the VGA is the Cathode Ray Tube Controller (CRTC). It's responsible for
generating the video signal and is programmable. The cathode ray has a very wide range of motion.
Therefore, a protection bit (CRTC-Register 11) protects these registers from accidental overwriting. The
CRTC also controls several other registers, such as Linear Starting Address, which are unrelated to ray
timing. It's up to you on how you want to manipulate these registers.

There are two port addresses for accessing these registers:
» Port 3d4h is the index register

» Port 3d5h is the data register (on monochrome displays - Bit 0 of Miscellaneous Output Register =0
- the addresses are 3b4h/3b5h).

A specific CRTC register is accessed by writing its number to the index register and then reading or writing
to the data register. Once you have set the index, you can access the register as often as you like because the
index remains valid.

A single write access can be accomplished quickly by outputting a word to the index port. The low-byte
contains the register number and the high-byte the register value on the index port.

CRTC-Register 0: Horizontal Total

Bit Meaning Access
7-0 Number of characters per scan-line (-5 in VGA) RW
Explanation
Bits 7-0

This register gives the total line length in character-units (Character Times Units). One character-unit
represents either 8 pixels (TS-Register 1, Bit 0 = 1, for example in 320 x 200 modes) or 9 pixels (TS-Register

58

D
i Yo

anee!

Graphic Know-how From Underground

1, Bit 0 =0, for example in Text Mode 3). The actual value for this register still be decreased by 5 (2 in EGA
modes).

CRTC-Register 1: Horizontal Display End

Bit Meaning Access
7-0 End of display-enable signal in characters RW
Explanation
Bits 7-0

This register usually indicates the number of visible characters (8 or 9 pixels, see Register 0).

CRTC-Register 2: Horizontal Blank Start

Bit Meaning Access
7-0 Start of horiz. blanking period RW
Explanation
Bits 7-0

Specifies where the CRTC deactivates the cathode ray during line construction. The blanking period
comprises the retrace period and sets the frame to black at the left and right margins.

CRTC-Register 3: Horizontal Blank End

Bit Meaning Access
7 Test bit (normal operation : 1) RW
6-5 Display-enable skew (delay) RW
4-0 Horizontal blank end (Bits 4-0) RW
Explanation
Bits 6-5

Indicates the number of characters the CRTC "previews" in memory (the display-enable signal is delayed
accordingly), so the next character is available in time, normally 0 in VGA

Bits 4-0

Stores the lower 5 bits of the 6-bit end of blank period. Bit 5 of this value is found in CRTC-Register 5 Bit
7

59

= A
=) -
I o

anee!

Graphic Know-how From Underground

CRTC-Register 4: Horizontal Sync Start

Bit Meaning Access
7-0 Starting position of horizontal retrace RW
Explanation
Bits 7-0

Specifies the position (in characters), where the horizontal retrace should begin.

CRTC-Register 5: Horizontal Sync End

Bit Meaning Access
7 Bit 5 of Horizontal Blank End (Register 3) RW
6-5 Horizontal sync skew (delay) RW
4-0 End of horizontal retrace RW
Explanation
Bits 6-5

Specifies the delay after a horizontal retrace (see Register 3). Bits 6-5 are usually 0 in VGA.
Bits 4-0

Defines the end of the horizontal retrace, relative to the start. The retrace ends when the internal character
counter in the lower 5 bits matches this register.

CRTC-Register 6: Vertical Total

Bit Meaning Access
7-0 Total number of screen lines per image -2 (Bits 7-0) RW
Explanation
Bits 7-0

Specifies the total image height in screen lines (minus 2, minus 1 in EGA). The total height is a 10-bit value
(11 bits in Super-VGA). Bits 9-8 are found in the overflow register (Register 7).

60

Ze ° Graphic Know-how From Underground

CRTC-Register 7: Overflow

Bit Meaning Access
7 Vertical sync start - Bit 9 RW
6 Vertical display enable end - Bit 9 RW
5 Vertical total - Bit 9 RW
4 Line compare (split-screen) - Bit 8 RW
3 Vertical blank start - Bit 8 RW
2 Vertical sync start - Bit 8 RW
1 Vertical display enable end - Bit 8 RW
0 Vertical total - Bit 8 RW

Explanation

Bits 7-0:

Contains Bits 8 and 9 of most vertical registers, which do not fit in the actual registers.

CRTC-Register 8: Initial Row Address

Meaning Access
7 Reserved
6-5 Byte panning RW
4-0 Initial row address RW
Explanation
Bits 6-5

Shifts the screen contents up to 3 bytes (four pixels in Mode X!) to the left. For greater flexibility, however,
use the Linear Starting Address (Register 0ch/0dh).

Bits 4-0

Specifies the screen line with which the CRTC should begin after a vertical retrace. Normally this would
be Line 0. Increasing the value makes the CRTC start on a lower line, i.e., it shifts the screen contents upward.
Since the register works the same in text mode, you can use it to implement a vertical smooth-scrolling (see
Chapter 5).

Another application involves 320 x 200 mode. Say you would like to slow down the vertical scroll but still
maintain 70 shifts per second. To prevent jittering, proceed as follows:

First, increment the start-address every other time through. This reduces the speed, while fine-scrolling is
achieved by oscillating this register between 0 and 1. This way you will be scrolling by one screen line
(equals one-half line in 320 x 200 mode) each time.

61

= A
=) -
I o

anee!

Graphic Know-how From Underground

CRTC-Register 9: Maximum Row Address

Meaning Access
7 Double scan (line-doubling) RW
6 Line compare (split-screen, Register 18h) Bit 9 RW
5 Vertical blank start Bit 9 RW
4-0 Number of screen lines per character line -1 RW
Explanation
Bit 7

Setting this bit to 1 cuts the vertical clock rate in half so each line is displayed twice. This was designed for
generating 200-line modes at physical resolutions of 400 lines. Most BIOSes, however, accomplish this by
setting Bit 0 (see above).

Bits 4-0

Specifies the character height in text mode, minus 1 (15 in VGA-Mode 3, 9 x 16 pixels per character). Can
also be used in graphic mode to decrease vertical resolution (multiple-display of each line if Bits 4-0 > 0).
For more information see Chapter 5.

CRTC-Register Oah: Cursor start-line

Bit Meaning Access
7-6 Reserved
5 Cursor on (0) / cursor off (1) RW
4-0 Start-line RW
Explanation
Bits 4-0

Specifies the screen line within character where cursor display begins.

CRTC-Register Obh: Cursor End - Line

Meaning Access
7 Reserved
6-5 Cursor skew RW
4-0 End-line RW

62

D ((o

| SRaer

Graphic Know-how From Underground

Explanation
Bits 6-5

You can insert a delay when displaying the cursor as well so it will appear at the outermost left and right
margins, usually 0 in VGA

Bits 4-0

Specifies the screen line within character where cursor display ends.

CRTC-Register Och: Linear Starting Address High

Bit Meaning Access
7-0 Linear starting address Bits 15-8 RW
Explanation
Bits 7-0

Specifies Bits 15-8 of the 16-bit start-address. The start-address gives the offset in video memory where the
CRTC starts reading the image data. Changing the value lets you scroll horizontally and vertically across
the screen (see Chapter 5).

In text mode, however, scrolling proceeds by characters. The fine-adjustment occurs through Register ATC
13h (Horizontal Pixel Panning) and CRTC 8 (Initial Row Address). For more information see Chapter 5.
Note the true address must be divided by 2 in odd/even mode and by 4 in Chain-4 mode (e.g., 13h), before
writing it to this register.

CRTC-Register 0dh: Linear Starting Address Low

Bit Meaning Access
7-0 Linear Starting Address Bits 7-0 RW
Explanation
Bits 7-0

Specifies the low-order word of the screen start-address (see Register 0dh).

CRTC-Register 0eh: Cursor Address High

Bit Meaning Access
7-0 Cursor position as offset (Bits 15-8) RW
Explanation
Bits 7-0

Specifies the cursor position in video memory.

63

= A
=) -
I o

anee!

Graphic Know-how From Underground

CRTC-Register 0fh: Cursor Address Low

Bit Meaning Access
7-0 Cursor position as offset (Bits 7-0) RW
Explanation
Bits 7-0

Specifies the low-word of cursor address (see Register Oeh).

CRTC-Register 10h: Vertical Sync Start

Bit Meaning Access
7-0 Screen line where vertical retrace begins RW
Explanation
Bits 7-0

Specifies Bits 7-0 of the 10-bit screen line where vertical retrace begins. Bits 9 and 8 are in the overflow
register.

CRTC-Register 11h: Vertical Sync End

Meaning Access
7 Protection bit RW
6 Reserved
5 Vertical retrace interrupt on (0) RW
4 Reset vertical retrace interrupt (0) RW
3-0 Screen line where vertical retrace ends RW
Explanation

Bit 7

When set, the protection bit protects CRTC-Registers 0-7 from write accesses. The sole exception is Bit 4 of
the overflow register (Register 7). This bit is set by virtually every BIOS and must therefore be cleared for
any timing manipulations.

Bit 5

If this bit is cleared and the previous interrupt reset by clearing Bit 4, the CRTC initiates an IRQ 2 at the next
vertical retrace. Unfortunately, very few VGA cards generate this interrupt because they either do not have
the capability or the manufacturer has configured their DIP switches (for compatibility reasons) not to
initiate interrupts.

64

D
| { (Q‘O\“\d

e Graphic Know-how From Underground

Bit 4
After each interrupt this bit must be cleared, otherwise no new interrupt can occur (see Bit 5).
Bits 3-0

The vertical retrace end is also set relative to its start because only 4 bits are used in the comparison. When
the lower four bits of the internal line counter match this value, the current retrace ends.

CRTC-Register 12h: Vertical Display End

Bit Meaning Access
7-0 Last displayed screen line (Bits 7-0) RW
Explanation
Bits 7-0

After the line number given here, the CRTC disables the screen ray. Bits 9-8 of this value are in the overflow
register.

CRTC-Register 13h: Row Offset

Bit Meaning Access
7-0 Offset between two screen lines RW
Explanation
Bits 7-0

Specifies the distance between two lines in memory, i.e., their length. The unit involved here depends on
which type of memory addressing is active. In doubleword mode, blocks of eight bytes are counted. For
example, in Mode 13h a register value of 40 corresponds to an actual width of 40 x 8 = 320 bytes. In word-
addressing, the unit is 4 bytes (for example in Text-Mode 3, a register value of 40 means 40*4 = 160 bytes).
In byte-mode the unit is 2 bytes (for example Mode X, with the same register value of 40, 40*2 = 80 bytes).
With this register you can also do horizontal scrolling by entering a value of 80 for example. In this case the
lines will begin double-spaced and there will be invisible regions of video memory "next" to the visible part.
Now if you shift the screen-start by a few bytes, you can scroll horizontally over the virtual screen (see
Chapter 5).

CRTC-Register 14h: Underline Location

Meaning Access
7 Reserved
6 Doubleword addressing RW
5 Linear address count by 4 RW
4-0 Line where underlining begins RW

65

= A
=) -
I o

anee!

Graphic Know-how From Underground

Explanation

Bit 6

Enables doubleword mode when set to 1. The current address in this mode is rotated two bits to the left
before being sent to video memory for a read access. This way, the Offsets 0, 4, 8, etc., are first read in
memory, followed by Offsets 1, 5, 9, etc. In Mode 13h, for example, doubleword mode is active.

Bit 5

When accessing video memory with this bit set, the character timing is divided by 4; usually used together
with doubleword mode.

Bits 4-0

In monochrome modes, these bits determine the screen line where the ATC performs the underlining.
Lowering this value lets you strike through or place a line over the characters; if the register exceeds the
character height, underlining is disabled.

CRTC-Register 15h: Vertical Blank Start

Bit Meaning Access
7-0 Vertical Blank Start Bits 7-0 RW
Explanation
Bits 7-0

Specifies the vertical position where the CRTC should deactivate the cathode ray. During this blank period,
the vertical retrace is then performed. Bits 9 and 8 of this register are found in the overflow register.

CRTC-Register 16h: Vertical Blank End

Bit Meaning Access
7-0 Screen line where vertical blanking ends RW
Explanation
Bits 7-0

This register is also relative to the blanking-start because only eight bits are used. The blanking ends when
the lower eight bits of the internal line counter matches this register.

66

Ze ° Graphic Know-how From Underground

CRTC-Register 17h: CRTC Mode

Bit Meaning Access
7 Hold control RW
6 Word mode (0) / byte mode (1) RW
5 Alternative setting for Address-Bit 0 RW
4 Reserved
3 Linear address count by 2 RW
2 Line counter count by 2 RW
1 Alternative setting for Address-Bit 14 RW
0 Alternative setting for Address-Bit 13 RW
Explanation
Bit 7

A value of 0 stops the entire horizontal and vertical timing.
Bit 6

A 0 indicates word mode is active and a 1 indicates byte mode is active. Bit 6 of Register 14h is irrelevant
if it is set (doubleword mode).

Bit 5

When this bit is cleared, Bit 13 instead of Bit 15 is carried over in word mode to Bit 0 (rotated). This prevents
word-mode overflow on EGA cards with only 64K.

Bit 3

Setting this bit halves the clock rate of the CRTC on video memory. This functions similarly to Bit 5 of
Register 14h.

Bit 2

When this bit is set to 1, the line counter is incremented only every other line. This doubles the total vertical
timing.

Bits 1,0

When cleared these two bits cause a reprogramming of Address Line 14 or 13: Bit 0 in this case is mapped
onto Bit 13 and Bit 1 onto Bit 14 (only if Bit 1 of this register = 0). The result is that odd addresses are read
8K after the even ones; the two lower bits therefore determine a block. This is used to emulate the 6845

Controller, which uses this method to address video memory. In CGA Bit 0 is set to 0, in Hercules emulation
Bit 1 as well.

67

= A
=) -
I o

anee!

Graphic Know-how From Underground

CRTC-Register 18h: Line Compare (Split Screen)

Bit Meaning Access
7-0 Line Compare Bits 7-0 RW
Explanation
Bits 7-0

Specifies the physical screen line where the CRTC again begins obtaining its data from the video memory-
start. This allows you to implement a split-screen. The top half displays the area of memory defined by the
linear starting address and the bottom half displays the memory-start (see Chapter 5). Bit 8 of this register
is found in the overflow register and Bit 9 in the Maximum Row Address register.

Timing sequencer (TS)

The main task of the timing sequencer is memory management. Accesses to the timing sequencer itself are
routed on certain planes according to the current configuration. These accesses are combined with the
current character set. The TS is also internally responsible for refreshing the video memory.

Like the CRTC, the TS is also addressed using an index register (at Port 3c4h) and a data register (Port 3c5h).
Here also you can set a register through a simple word-out.

TS-Register 0: Synchronous Reset

Meaning Access
7-2 Reserved
1 Synchronous reset RW
0 Asynchronous reset RW
Explanation
Bit 1

Clearing this bit forces the TS to perform a synchronous reset, i.e., it resets all registers and then switches
itself off until Bits 0 and 1 are set again. Meanwhile, RAM-refresh is deactivated so the reset can finish as
quickly as possible to avoid data loss.

This reset should always be performed when TS-registers are going to be changed.
Bit 0

Clearing this bit initiates an asynchronous reset, which is the same as a synchronous reset, except the Font
Select Register is not cleared, i.e., it retains the current character set.

68

2 (7 =
» @e@““d Graphic Know-how From Underground

TS-Register 1: TS Mode

Bit Meaning Access
7-6 Reserved RW
5 Screen off RW
4 Shift 4 RW
3 Dot clocks / 2 RW
2 Video load / 2 RW
1 Reserved
0 TS state RW
Explanation
Bit 5

When this bit is set the TS disables the screen, enabling faster RAM access by the CPU.
Bit 4

A set bit means the latches are loaded with a quarter of the timing pulse.

Bit 3

In some 320 x 200 modes this bit is set to reduce horizontal resolution from 640 to 320.
Bit 2

A set bit means the ATC latches are loaded with half the timing pulse.

Bit 0

Status 0 sets character width to nine pixels, Status 1 to eight pixels. This value is primarily used for
calculating horizontal timing, whose registers are all based on character-units.

TS-Register 2: Write Plane Mask

Meaning Access
7-4 Reserved RW
3 Write-access on Plane 3 RW
2 Write-access on Plane 2 RW
1 Write-access on Plane 1 RW
0 Write-access on Plane 0 RW

69

= A
=) -
I o

anee!

Graphic Know-how From Underground

Explanation
Bits 3-0

You can include (1) or exclude (0) certain planes through this register during write-accesses.

TS-Register 3: Font Select

Meaning Access
7-6 Reserved RW
5 Font B Bit 2 RwW
4 Font A Bit 2 RW
3-2 Font B Bits 0 and 1 RW
1-0 Font A Bits 0 and 1 RW
Explanation
Bits 5-0

Indicates the status of the character set in memory, according to the following code:

Bits Offset

000 0

001 16K
010 32K
011 48K
100 8K
101 24K
110 40K
111 56K

Font A determines the appearance of characters whose attribute-byte, Bit 3, is not set. When this bit is set
Font B becomes active.

70

2 (7 =
» @e‘q‘““d Graphic Know-how From Underground

GDC-Register 0: Set / Reset

Bit Meaning Access
7-4 Reserved
3 Set / reset value for Plane 3 RW
2 Set / reset value for Plane 2 RW
1 Set / reset value for Plane 1 RW
0 Set / reset value for Plane 0 RW
Explanation

Bit 3

Enables Chain-4 mode (1). It uses Address Lines 0 and 1 to select the plane, in both CPU read- as well as
write accesses. This mode has application in Mode 13h - by deactivating it and switching the CRTC to byte
mode, you will be in Mode X (see Chapter 4).

Bit 2

When this bit is cleared, odd/even mode is active. This functions similar to Chain4 mode: Bit 0 of the address
line is used to select even and odd planes. In text mode this means for example, that the ASCII codes for
characters are stored in Planes 0 and 2, while the attribute bytes are in Planes 1 and 3. It should always
correspond to Bit 4 of GDC-Register 5 (inverted bit)

Bit 1

Indicates memory configuration: 0 for 64K video memory, 1 for 256K. Only when this bit is set can you use
Bit 2 of the character set selection.

Graphics Data Controller (GDC)

This chip controls CPU memory access on a slightly higher level than the TS. It manipulates the graphics
data so it can be displayed in the proper graphics mode. The GDC contains the four latches not directly
accessible from outside. Each of these latches receives one byte from each plane during a CPU access.
During a read-access, one plane (depending on GDC-Register 4) is sent to the CPU. During a write access,
the latches are linked with this byte (depending on Register 3) and written back to the planes. Like the CRTC,
the GDC is addressed using an index port (Address 3ceh) and a data port (Address 3cfh).

71

= A
=) -
I o

anee!

Graphic Know-how From Underground

GDC-Register 1: Enable Set / Reset

Bit Meaning Access
7-4 Reserved
3 Set / reset function on (1) for Plane 3 RW
2 Set / reset function on (1) for Plane 2 RW
1 Set / reset function on (1) for Plane 1 RW
0 Set / reset function on (1) for Plane 0 RW
Explanation
Bits 3-0

Specifies the set/reset values for individual planes, if their set/reset functions are enabled (see Register 1).

GDC-Register 2: Color Compare

Bit Meaning Access
7-4 Reserved
3 Color compare value for Plane 3 RW
2 Color compare value for Plane 2 RW
1 Color compare value for Plane 1 RW
0 Color compare value for Plane 0 RW
Explanation
Bits 3-0

A set bit indicates the set/reset function is activated for this plane. The corresponding latch is not linked
with the CPU-byte in this case but rather with 0 (if the corresponding bit in Register 0 = 0) or 0ffh (bit = 1).
This function is not available in Write Mode 1.

GDC-Register 2: Color Compare

Bit Meaning Access
7-4 Reserved
3 Color compare value for Plane 3 RW
2 Color compare value for Plane 2 RW
1 Color compare value for Plane 1 RW
0 Color compare value for Plane 0 RW

72

L_J) (‘O\)(\d

Zeo Graphic Know-how From Underground

Explanation
Bits 3-0
These bits play a role in Read Mode 1. See Register 5, Bit 3 (read mode).

GDC-Register 3: Function Select

Meaning Access
7-5 Reserved
4-3 Function select RW
2-0 Rotation counter RW
Explanation
Bits 4-3

Indicate the type of link that occurs between the CPU-byte and the four latches:

0:Move (overwrite)

1:AND

2:0R

3:XOR

Explanation
These linkages are ignored in Write Mode 1 where a direct write is always performed.
Bits 2-0

Indicate how many bits a CPU-byte should be rotated to the right before being linked to the latches.

GDC-Register 4: Read Plane Select

Bit Meaning Access
7-2 Reserved RW
1-0 Plane select RW
Explanation
Bits 1-0

Specifies the plane addressed by a CPU read access as a 2-bit integer.

73

:-JJ < P ‘0\)(\()
\“\de‘g

Graphic Know-how From Underground

GDC-Register 5: GDC Mode

Bit Meaning Access
7 Reserved

6 256-color mode RW
5 Shift RW
4 Odd / even Mode RW
3 Read mode RW
2 Reserved RW

1-0 Write mode RW

Explanation

Bit 6

Enables 256-color mode, which has a completely different plane-distribution and must therefore be
activated explicitly.

Bit 5
Set in CGA-Mode 320 x 200, to generate four colors
Bit 4

Enables odd/even mode from the standpoint of the GDC (1). Should always correspond with Bit 2 of
TS-Register 4 (inverted bit), see above for description.

Bit 3
Indicates the active read mode:

» Mode 0:
The GDC reads the four latches and sends the contents of the latch selected in Register 4 to the CPU.

» Mode 1:
The GDC reads the four latches and compares each of their bits with the Color Compare Register (if
not excluded using Register 7 - Color Care). It first compares the combination from Bits 0 of the four
latches, then from Bits 1, etc. The corresponding bit is set in the byte sent to the CPU when a complete
match occurs.

Bits 1-0
Indicates the current write mode:

» Mode 0:
The CPU-byte is linked with all four latches and, depending on Register 2, is written to certain planes.
Only those bits are linked which were permitted by Register 8. When the set/reset function (see

74

- Q o Graphic Know-how From Underground

anee!

Register 1) is active for a particular plane, the set/reset value is used instead of the CPU-byte. This
mode is especially suited for manipulating individual bits.

» Mode 1:
In this mode the latch contents are written directly to the planes selected by TS-Register 2; the CPU-
byte is irrelevant. This mode is good for fast copying of large screen areas.

» Mode 2:
This mode expands each of the lower four CPU bits to a byte (0 becomes 0 and 1 becomes 0ffh), and
links them with the corresponding latches as in Write Mode 0.

» Mode 3:
Each CPU-bit not masked using Register 8 is linked with a bit from the Set/Reset Register and written
to the plane corresponding to this bit. Thus Bit 0 is first linked to Bit 0 of the Set/Reset Register
corresponding to Function Select Register 3, and written to Plane 0 as Bit 0. Then Bit 0 is linked with
Set/Reset Bit 1 and written to Plane 1. The same occurs for all selected bits in the CPU-byte.

GDC-Register 6: Miscellaneous

Meaning Access
7-4 Reserved
3-2 Memory map RW I
1 Odd/even mode RW I
0 Graphic mode RW I
Explanation
Bits 3-2

Indicate the video memory range:

0: 0a0000h-0bffffh

1: 0a0000h-0affffh

2: 0b0000h-0b7fffh

3: 0b8000h-0bffffh

Explanation

Bit 1

A 1 means that odd/even mode is active.
Bit 0

A 1 means a graphic mode is active, otherwise a text mode is active.

75

= A
=) -
I o

anee!

Graphic Know-how From Underground

GDC-Register 7: Color Care

Bit Meaning Access
7-4 Reserved
3 Color compare active for Plane 3 RW
2 Color compare active for Plane 2 RW
1 Color compare active for Plane 1 RW
0 Color compare active for Plane 0 RW
Explanation
Bits 3-0

When a bit is set, its corresponding plane is included in a color-compare in Read Mode 1 (see Register 5);
a 0 excludes it.

GDC-Register 8: Bit Mask

Bit Meaning Access
7-0 Mask for CPU-byte RW
Explanation
Bits 7-0

A set bit means the corresponding CPU-bit is linked to the latches; a cleared bit means the latch contents
are transferred unchanged.

Attribute Controller (ATC)

The task of the ATC is color management. It's the second highest authority in a VGA card. Using this
controller is somewhat more complicated than the others since only one port is available for write access.
An index/data flip-flop occurs at 3cOh, i.e., this port alternates with each write access between index modes
and data modes.

You can set the initial status of this register explicitly to index mode through a read access on Input Status
Register 1 (Port 3dah in color mode, 3bah in monochrome mode). A write access is then performed. First,
the index is written to 3cOh. This is followed on the same port by the data byte which is followed again by
the next index.

The read access is somewhat different. After the index has been written, the data byte can be read using Port
3clh. Here a read access on 3cOh would return the index.

76

D
i Yo

anee!

Graphic Know-how From Underground

Another unusual feature is the structure of the Index/Data Register at Port 3cOh. Bits 4-0 as usual give the
index. However, Bit 5 has a broader meaning:

ATC-Register: Index/Data

Port 3cOh
Meaning Access
7-6 Reserved RW
5 Palette-RAM access RW
4-0 ATC index RW
Explanation
Bit5

A value of 0 enables CPU-access to the palette-RAM (Registers 0-f), yet disconnects the ATC so the image
is set to the frame color. You should always reset this bit to 1 after any changes.

Bits 4-0

Give the index on an internal ATC register. This value is then written using Port 3cOh, and read using Port
3cth.

ATC-Registers 0-f: Palette RAM

Bit Meaning Access
7-0 DAC color RW
Explanation
Bit 7

These registers are used to supply all EGA color values with the actual colors. The red, green and blue values
in EGA have been stored here directly. However, the Digital to Analog Converter (DAC) in VGA acts as an
interface. The DAC's first 16 palette entries simulate the same color scheme. Here, for example, you can set
text colors to new DAC values.

77

= A
=) -
I o

anee!

Graphic Know-how From Underground

ATC-Register 10h: Mode Control

Bit Meaning Access
7 Source for Color Circuits 4 and 5 RW
6 PelClock / 2 RW
5 Enable pixel panning RW
4 Reserved

3 Blinking on RwW
2 Line graphics enabled RW
1 Monochrome- (1) / color (0) attributes RW
0 Graphic (1)/ text (0) RW

Explanation

Bit 7

In graphic modes with 16 or fewer colors this bit determines the source for Color Circuits 4 and 5. A 1 means
these bits are taken from Bits 0 and 1 of Register 14 (Color Select). A 0 will load the lines with palette register
values. When using the Color Select method you can shift the DAC palette area in blocks of 16. This also
applies of course to EGA mode and CGA mode.

Bit 6

A 1 halves the speed at which pixel data are sent to the DAC. This finds application in 320 x 200 x 256 mode,
since here only half the horizontal resolution is used.

Bit 5
A 1 prevents pixel panning below the split-line, a 0 causes panning over the entire screen.
Bit 3

A cleared bit enables use of all 16 ATC palette colors. A 1 enables blinking. When this bit is set, the top and
bottom halves of the palette in the Intensity Plane alternate continuously. This happens in both text mode
and graphic mode so only eight colors are available. The advantage is the palette can be freely constructed,
enabling almost any type of blinking effect.

Bit 2

A 1 doubles the eighth column of characters in 9-pixel text modes (e.g. Mode 3) with ASCII codes between
0cOh and 0dfh. This allows line characters to be connected without gaps. With a 0 in this bit, the ninth column
is cleared or acquired from the Intensity Plane (Plane 3).

Bit 1

A 1 switches to monochrome attributes (blinking, underline), a 0 to color attributes.

78

D
| { (Q‘O\“\d

e Graphic Know-how From Underground

Bit 0

A 1 switches the ATC to graphic mode, a 0 to text mode.

ATC-Register: Index/Data

Port 3cOh
Meaning Access
7-6 Reserved RW
5 Palette-RAM access RW
4-0 ATC index RW
Explanation
Bits 7-0

Determine the color number used in the overscan area. This is also where EGA cards with a 6-bit RGB value
entered. Color mixing with VGA occurs using the DAC.

ATC-Register 12h: Color Plane Enable

Bit Meaning Access
7-6 Reserved RW
5-4 Reserved, often test bit configuration RW

3-0 Enable plane

Explanation
Bits 3-0

Enable (1) and disable (0) the corresponding plane, excluding from the display specific color components
(16-color models) or specific pixels (256-color models).

ATC-Register 13h: Horizontal Pixel Panning

Bit Meaning Access
7-4 Reserved RW
3-0 Horizontal pixel panning RW
Explanation
Bits 3-0

Specifies the number of pixels by which the entire image (text- or graphic mode) is shifted to the left. The
actual values, however, are somewhat different. The value 8 In 9-pixel modes indicates that no shift will take
place. Values from 0-7 create shifts of 1-8 pixels. This makes little sense in graphic modes since you might

79

:-JJ < _ 0\)(\d

S de‘ of

Graphic Know-how From Underground

as well work with the start-address. In text mode however this will allow very smooth scrolling (see Chapter
5).

ATC-Register 14h: Color Select

Bit Meaning Access
7-4 Reserved
3-2 Color Circuit 7-6 RW
1-0 Color Circuit 5-4 RW
Explanation
Bits 3-2

In graphic modes with fewer than 256 colors, these bits give the upper two bits of each color value sent to
the DAC. By reprogramming this register you can move the 16 EGA colors to Palette Offsets 0, 64, 128 and
192.

Bits 1-0

If Bit 7 is set in Mode Control Register 10h, in graphic modes with fewer than 256 colors these two bits set
Color-Bits 5 and 4. In combination with Bits 3-2, EGA colors can then be moved to any color offset divisible
by 16.

Digital to Analog Converter (DAC)

The DAC represents the highest-level authority for color generation. The DAC is where 8-bit colors, either
originating directly from RAM (256-color modes) or generated from 4-bits by the ATC, are converted to
analog signals using the external palette. The signals, separated by red, green and blue, are then sent to the
monitor.

The "external palette" refers to the fact this RAM originally existed outside the actual chipset. Meanwhile,
this chip has also been integrated. Therefore, the DAC uses an external palette encompassing 256 color
values, each of which consists of three bytes (one for red, green and blue). Only the lower six bits of each
byte are used, however. Therefore, there are 2 = 262,144 hues available for each color.

Before you can read or set a palette, you must first specify the start-color from which you plan to read or
write. Then through a series of In or Out instructions, consecutively read or write the red, green and blue
components of each individual color. All values can be written directly one after the other because the DAC
automatically increments the pointer. In this context, we advise against the "compatible” method of
controlling the palette through the BIOS. It's not significantly more compatible and the execution time is
over ten times longer.

The DAC provides access to this palette through the following five registers:

80

For Graphic Know-how From Underground

DAC-Register

Pixel Mask RW
Port 3c6h
Explanation

This register normally contains the value 0ffh. It denotes a mask, with whose help certain colors can be
mapped onto others. During image generation each time the DAC wants to read a palette entry, an AND
operation first occurs between this register and the color number.

DAC-Register

Pixel Write Address RW
Port 3c8h 3c6h
Explanation

Prior to a write access this register specifies which color you wish to change. You can then set the palette
or only parts of it using Port 3c9h (Pixel Color Value).

DAC-Register

Pixel Read Address WO
Port 3c7h 3c6h
Explanation

Prior to a read access this register specifies which color you wish to read. You can then read the color values
using Port 3c9h (Pixel Color Value).

DAC-Register

Pixel Color Value RW
Port 3c9h DAC-Register
Explanation

This is the port where the DAC makes color values available for a read or write, after being initiated using
Pixel Read Address or Pixel Write Address.

DAC-Register

DAC State RO

Port 3c7h DAC-Register

The lower two bits of this register specify the DAC status - a 0 means the DAC is making data available for
a read. An 11b indicates the DAC is ready for a write access.

81

:-JJ < P ‘0\)(\()
\“\de‘g

Graphic Know-how From Underground

Super-VGA cards contain several additional registers including discrete registers and expanded controller
registers. They sometimes come with entire auxiliary controllers, for example to take over the task of
memory management. Since these registers are not standardized, we cannot provide a general description

here.

As we have seen however, a wide variety of effects is possible even with standard registers. Experiment
with the registers and see if you can create new ones.

82

Mode X: The
"Secret" To Great
Graphics

Although graphics Mode 13h is easy to use, it has a few disadvantages. Unfortunately, these disadvantages
make it difficult to program many sophisticated effects. Although hardware has undergone great
technological advances over the last few years, current processors and bus architectures are still unable to
paint large screen areas within a single retrace.

Mode X Offers Superior Graphic Power

Image quality usually suffers when the screen cannot be constructed within a retrace. We can prove this
with a simple example. A sprite is moving horizontally across the screen. If the electron beam travels over
this area while a change is in progress, the top half will contain the new image, while the bottom half will
still contain the previous, unchanged image.

There will be flickering and the sprite will appear split and distorted. Therefore, if changes during image
construction and other time consuming activity during retraces are avoided, only one option remains. The
video pages must be preconstructed "invisibly" and activated during the vertical retrace. For this, we need
a minimum of two video pages: One is displayed while the other is being built.

These pages can simply be stored adjacent to each other in video memory and selected using Registers Och
and 0dh (Linear Starting Address). The problem in Mode 13h, however, is the total image size is already
close to 64K (exactly 64,000 bytes). A single video page occupies the entire video memory (0a0000h-0affffh)
within main memory. This makes it impossible for the CPU to detect the second page. Modifications are
possible only through VGA segment-selectors. However, each manufacturer programs them differently.
In fact, an IBM VGA card offers no way to do this. The solution to this problem is Mode X.

Another disadvantage of Mode 13h is access speed. A moving image usually has a static background. It
must be recopied to the current page with each image construction. Even with fast doubleword-access in
Mode 13h using a VESA local bus, it takes approximately 10% longer to copy a full video page than in Mode
X. The time with other bus systems can be even greater. In addition, if you're still using word access to
provide support for 286es for example, the slow speed of copying becomes unacceptable.

Mode X on the other hand, as we'll show in the following sections, copies four pixels at a time using
byte-access. It also uses Read-Mode 0 and Write-Mode 1, which require no time-consuming internal
address conversions and send no data to the CPU. This explains the speed advantage of Mode X over 32-bit
accesses made by the CPU.

83

D) [
Mode X: The "Secret" To Great Graphics i e‘gw“““

Initialization

What properties should Mode X have? The most important _ In the meantime the name
property of Mode X is disabling the Chain-4 mechanism, P "Mode X" has become
which enables access to individual planes. In addition, VOFE official, so it always

Odd/Even Mode (plane-selection using lowermost offset denotes the same storage
(p 9 model. Thus higher resolutions such as 320 x

bit) must be disabled by clearing Bit 3 (Enable Chaind) in 400 are possibie on all VGAs. Even 320 x 480
TS-Register 4 (Memory Mode) and setting Bit 2 (Odd/Even can be displayed on most VGAs, but here a

Mode): video page requires more than 128K, and the
' advantage of different video pages becomes
port[$3c4]:=4; irrelevant.

port[$3c5]:=port[$3c5] (and (not 8)) or 4;

Depending on the graphic card (compatibility), you must also change memory access to byte-addressing.
First, clear doubleword-addressing from Bit 6 in CRTC-Register 14h (Underline Row Address), then set Bit
6 in CRTC-Register 17h (CRTC-Mode):

port[$3d4]:=$14;

port[$3d5]:=port[$3d5] and (not 64);

port[$3d4]:=$17;
port[$3d5]:=port[$3d5] or 64;

Next, clear the video memory because the areas not used by Mode 13h (which now become visible) may still
contain "garbage" from other video modes. Use Register 2 of the Timing Sequencer Write Plane Mask for
this. To clear the video memory, enable all planes within this register so 32,000 word accesses or 16,000
dword accesses are enough to clear all four video pages.

Structure

As we mentioned, all plane-based graphic modes have four bytes "hidden" behind each memory address,
one for each plane. The four bytes appear to lie one behind the other at each address, hence the term "plane”
(level).

@ Plane 3 [

[o]1]2] Plane 2 [
@ Plane 1 [
[0][2]2] Plane 0

Same offset in VGA memory but different point

Plane representation

84

T
L ((o

| \)de‘

Mode X: The "Secret" To Great Graphics

The planes are virtually independent storage areas which are separately addressable but are used together
to display an image on the screen. In other words, data from all four planes is read simultaneously.

Aside from this however, there are major differences between 16-color modes and Mode X. Since sixteen
colors can be represented by four bits, they can also be represented by the four planes. Namely, Bit 0 of a
pixel is stored in the corresponding bit of Plane 0, Bit 1 in Plane 1, etc. It's different in Mode X, however, since
four bits are no longer enough to address one pixel. Each pixel occupies one byte of a particular plane in
Mode X.

The planes are filled byte by byte, i.e., Pixel 0 is located at Offset 0 in Plane 0, Pixel 1 at Offset 0 in Plane 1.
Plane 0 is next used for Pixel 4 (this time at Offset 1).

[Pixel 0] [Pixel 1] [Pixel2] [Pixel3] [Pixel4] eee

[800] [801] [802] [803] [810] e

Pixel: |Offset, Plane

Plane structure

For addressing in Mode X, you must first calculate the offset for the pixel. Take the pixel number (calculated
the same as in Mode 13h: 320 y + x) and divide by 4 (shift two to the right). You can also incorporate this
division directly into the offset calculation by multiplying the y-coordinate by 80 (320 / 4) and dividing the
x-coordinate by 4. The remainder (pixel number +3) determines which plane will be used. The following
is how the formula notation might read:

Plane := X mod 4 {gives the remainder}
Offset := Y*80 + X div 4

This procedure corresponds with the one normally used by Mode 13h with one difference. The offset is
derived by shifting the pixel number two bits to the right and not by masking. There are, therefore, no gaps
between the pixels in memory. This way four pages can fit into a 256K video memory.

It's important to note the differences between read/write accesses when selecting the plane in Mode X. The
plane number is written to Register 4 (Read Plane Select) of the GDC when reading. However, it's possible
to address several planes at once when writing (as we have seen when clearing the screen). To do this, amask
is set in TS-Register 2 (Write Plane Mask), which must first be generated from the plane number. It looks
like the following in pseudocode:

Mask:=1 shl Plane-Number;
Therefore, the mask from Plane 2 is 1 shl 2 = 4 = 0100.

One more item regarding byte-wise addressing by the CPU. It's very tempting to use 32-bit accesses on the
graphic data or, at the very least , 16-bit (theoretically possible even on an XT).

Anyone who tries this, however, will soon find out differently. A completely distorted image will appear
on the screen. This can be explained by how the CPU accesses memory. When the CPU copies a word (or

85

[_f D
Mode X: The "Secret" To Great Graphics i~ e‘gm“““

uet

doubleword) using movsw, it doesn't separate this operation into individual byte-movements. Instead, it
reads the word completely and writes it back completely.

VGA, however, can accept only four bytes in its four latches, which actually function as intermediate
storage. Therefore, after the read access, only the four high-bytes of the word will be present there. In the
subsequent write access, the four high-bytes as well as the four low-bytes are set to the same value (the one
corresponding to the latch). The result on the screen is that two (four with 32-bit accesses) adjacent blocks
of four will always have the same contents. A normal image display is therefore impossible.

Higher Resolutions In Mode X

Mode X has the important advantage of working with four video pages. It also maintains the same
resolution as Mode 13h. There are certain applications, however, that require a higher resolution. Of course,
Super-VGA resolutions are available (although handled differently by each card) through VESA drivers.
The larger problem arises when you want to use multiple video pages in the higher resolution. Actually,
there are few VGA cards still available with less than 1 Meg of memory, so even 800 x 600 mode could
theoretically be handled by two pages of video memory. Video page management similar to the Linear-
Starting-Address Register is notanticipated under VESA. Direct programming again brings up compatibility
problems unavoidable with Super-VGA.

In our search for a higher resolution mode which also supports the page concept, we see that Mode X
supports four entire video pages, but that in many cases only two are needed. Doubling the resolution to
320 x 400 is therefore no problem. Why 320 x 400 and not 640 x 200? This has to do with the actual structure
of 200-line modes on a VGA card. Namely, VGA cannot explicitly address 200 lines (Miscellaneous-Output
Register, Bits 6-7 allow only 350, 400, 480 and sometimes 768 lines as values for vertical resolution).

The fact that 200-line modes are still possible is due to a feature called double-scan. This simply means that
at a physical vertical resolution of 400 lines, each line is displayed twice, i.e., doubled in the y-direction. This
results in a halving of the vertical resolution. Here, neither the horizontal nor the vertical timing need to be
changed because physically 400 lines are still displayed for each 320 pixels.

Disabling this mechanism is very easy. You only need to clear five bits in Register 9 of the CRTC (Maximum
Row Address), Bit 7 and Bits 0-3. Depending on the VGA-BIOS, doubling will occur using Bit 7 (Double Scan
Enable), which is the bit actually designed for this purpose, or Bits 0-3 which show the number of scan-lines
per character-line in text mode. This value minus 1 is then written to the register. This register value in
graphics mode indicates how many additional copies of the line will be displayed. By increasing the value
you can keep lowering the vertical resolution down to 320 x 25 or even 320 x 12.5 with Bit 7. Although this
makes no sense, it does demonstrate the purpose of this register.

To get back the original 400 lines, simply clear the above mentioned bits in the register in pseudocode:

CRTCI9] := CRTC[9] and 01110000b

The actual Assembler code for this line is found in the procedure » The procedure Enter400
Enter400 in the MODEXLIB.ASM module: 7] is part of the
MODEXLIB.ASM file

4 on the companion CD-ROM

86

T f\,
D ((o

| \)de‘

Mode X: The "Secret" To Great Graphics

Enter400 proc pascal far ;switches from mode X (200 rows)
mov dx,3d4h ;to extended 400 row mode
mov al,9 ;CRTC register 9 (maximum row address)
out dx,al ;select
inc dx ;read out value 2
in al,dx
and al,01110000b ;clear bits 7 and 3:0
out dx,al ;and write back

ret
Enter400 endp

As we mentioned, no timing changes are necessary. Also, rewriting the Mode X routines is unnecessary
since the structure remains the same. When switching to 400 lines, the 200 lines of normal Mode X are
"pushed together" at the top. This clears the view for the lower 200 lines which immediately follow in VGA
memory.

There is now a larger range of values in all routines for coordinates. These values are freely selectable (for
speed, validity checks are omitted). The only change involves the video pages: Instead of four 64000-byte
pages, now only two 128000-byte pages are available.

This affects switching in this case because the start-address (vpage) is no longer switched between 0 and
16000 but between 0 and 32000. Also, there is no longer a "reserve page" available for a background image
because almost the entire 256K is used (in the end, 256K - 256000 bytes = 6K are still available and can be
used for small (very small) sprite backgrounds).

Backgrounds in this mode must therefore be copied into VGA from main memory (using p13_2_ModeX,
see the "Expanding The GIF Loader For Mode X" section in this chapter).

Incidentally, you must also consider this mode's unusual page ratio of 320:400 when drawing a background.
The page ratio generates very flat, wide rectangles. Circles are are actually very flat ellipses. Since, as far
as we know, no paint program supports the 320 x 400 resolution, it's best to draw your images in a "square"
resolution such as 640 x 480 and later convert them to 320 x 400.

In addition to 320 x 400, it's possible to generate graphic modes with even higher resolutions. Therefore, you
can have such odd resolutions as 512 x 400 or 320 x 480. Despite their highly complicated initialization,
which requires a complete reprogramming of the timing registers, these modes have no significant
advantage over Super-VGA modes because they greatly exceed the maximum memory use for page-
programming.

Although one page can be displayed on any standard VGA, two pages will exceed the upper address limit
(256 bytes). You'll face incompatibility problems of Super-VGA cards at higher addresses so you should use
a Super VGA mode from the start and have at least a reasonable page ratio.

Using Mode X

It's sometimes necessary, even in Mode X, to address individual pixels and change their color. However,
for applications that rely almost exclusively on single-pixel modifications (for example the star-scroller), we
recommend using Mode 13h, provided you can do without the four video pages. Mode 13h makes it easier
to address individual pixels and it's also faster. This is because breakdown of offsets into memory offset and
plane number occurs internally on the VGA and does not have to be performed by the CPU.

87

D) R
Mode X: The "Secret" To Great Graphics i e‘gm“““

This also saves you from outputting the plane number on the port-addresses of the TS and GDC, which on
some motherboards can be very slow. Some chipsets on fast computers (386 and above) include several wait
states when accessing the ports to give the hardware enough time for the data transfer with today's
hardware. This is, however, really not necessary.

Setting pixels
- » The procedure listed here

You can use the following procedure when you need to change] is part of the
a few pixels. It can also be used in the Mode 13h star-scroller if - /4 STARX.PAS file

you initialize Mode X instead of Mode 13h. on the compaTlOT NN

Procedure PutPixel(x,y,col:word);assembler;
{sets pixel (x/y) to color col (Mode X)}

asm
mov ax,0a000h {load segment}
mov es,ax
movV CX,X {define Write Plane}
and cx,3 {as x mov 4}
mov ax,1
shl ax,cl {set appropriate bit}
mov ah,al
mov dx,03c4h {Timing Sequencer}
mov al,2 {Register 2 - Write Plane Mask}
out dx,ax
mov ax,80 {Offset = Y*80 + X div 4}
muly
mov di,ax
mov ax,x
shr ax,2
add di,ax {load offset}
mov al,byte ptr col {load color}
mov es:[di],al {and set pixel}
End;

By masking out the lower two bits of the x-coordinate you determine the plane. This plane must still be
converted to the format of the Write Plane Mask Register by setting the bit corresponding to the plane
number. You then calculate the offset (shifted 2 bits to the right compared to Mode 13h) and set the color.

Switching pages

The main advantage of Mode X is definitely its ability to use several video pages. In most cases you would
be continually switching between video pages 0 and 1. A new image, with repositioned sprites for example,
is drawn on the invisible page and then brought to the screen. The process then continues with the role of
the pages reversed.

BIOS Function 5 is used to page in text mode. Unfortunately, this is of little use in Mode X. Even so, the task
is quite simple. As we mentioned, the four video pages are arranged linearly in memory, one following the
other: Page 0 occupies Offsets 0-15999, page 1 Offsets 16000-31999, etc. All you need now is a way to
determine where the CRTC begins the image display. This function is performed by CRTC-Registers Och
and 0dh (Linear Starting Address). Register Och contains the high-byte and Register 0dh the low-byte of the
starting address.

88

= e@o\“‘d Mode X: The "Secret" To Great Graphics

Ut

You can usually set the start-address with the procedure SetStart in MODEXLIB.ASM, where the
address to be set is passed as a parameter. This procedure splits the given address into high bytes and low
bytes and writes it to the registers mentioned above.

The procedure Switch is somewhat more sophisticated. It uses the global variablevpage to store the start-
address of the invisible page. This procedure also takes care of page management. Therefore, you can
always construct your image at the page specified by vpage , which is currently invisible. Calling Switch
then makes this page visible, while vpage points to the new invisible page.

As we mentioned, registers Och and 0dh contain the screen-start offset and not a page number. So, you can
also enter intermediate values. We'll talk about this in more detail in Chapter 5.

Expanding The GIF Loader For Mode X

We've mentioned the GIF format is the preferred graphic format for demos. Therefore, we'll also need a way
to load and display GIF images in Mode X. This is not a problem since the loader is designed to unpack
images in main memory from where they are simply copied in Mode 13h to video memory using the Pascal
Move command. Only this last step, copying, must be rewritten to conform to the altered memory
organization of Mode X.

We use procedure pl13_2_ modeX in the MODEXLIB.ASM module for this purpose. It copies an image of
size pic_size*4 from main memory (pointer in VVScreen) to Mode X at the starting addressstart . For
example, to copy a 320 x 200 image (just loaded by LoadGIF) to video page 2, enter the call as follows:

p13_2_modex(2*16000,64000 div 4);

The difficulty with such a copy procedure is in dividing the image among the various planes. The simplest,
but by far the slowest, option is moving pixel by pixel, i.e.,

loading a source pixel, selecting the destination plane and then \s‘The proceduretp.’l‘.’;’EZ_modex
writing the byte. A more efficient option, however, is first IS part or the
copying all plane 0 pixels (Iocfated at Offse_ts 0, 4, 8 ... of the on tf%ocDogv)f()glnBiﬁvsc%(IgOM
source image), then plane 1 pixels, etc. This saves you from

continually changing the Timing Sequencer:

p13_2_modex proc pascal far start,pic_size:word

mov dx,03ceh ;set write mode 0
mov ax,4005h ;via GDC register 5 (GDC mode)
out dx,ax
mov b plane_|,1 ;store plane mask
push ds
Ids si,dword ptr ds:vscreen ;load source address
mov w plane_pos,si ;and store
mov ax,0a000h ;set destination address
mov es,ax
mov di,start
mov cx,pic_size ;get number
@Ipplane:
mov al,02h ;TS register 2 (write plane mask)
mov ah,b plane_| ;mask corresponding plane
mov dx,3c4h
out dx,ax
@lp1:

(@ Password: Mode X

89

D) R
Mode X: The "Secret" To Great Graphics i e‘gm“““

movsb ;copy byte
add si,3 ;position at next source byte
loop @Ip1
mov di,start ;get destination address again
inc w plane_pos ;source address to new start
mov si,w plane_pos
mov cX,pic_size ;get size
shl b plane_l,1 ;mask next plane
cmp b plane_l,10h ;all 4 planes copied ?
jne @Ilpplane
pop ds
ret

Endp

The variable plane_| , which contains the current plane mask, is first initialized to 1 so it can address Plane

0. The source data pointer is loaded into ds:si and its offset stored inplane_pos . The plane-loop @Ipplane
begins after loading the destination address into es:di and the image length into cx. It selects the correct
plane with the help of the current mask (Timing Sequencer, Register 2 - Write Plane Mask). The inner loop
@Ilpl copies one byte and moves 3 bytes forward in the source image (movsb already incremented si by
1), so it can read the next byte for the same plane.

When this loop is finished running, one plane is already at the correct location. To copy the next plane, the
destination pointer is reset to the beginning and the destination address incremented by 1. So, when
copying plane 1, for example, offsets 1, 5, 9, etc., will be read. Cx is reloaded and the new plane masked by
rotating 1 to the left. The terminating condition is the masking of the nonexistent fifth plane, in other words
when all four planes have been copied.

On the Mode X screen there now appears a video page from main memory, stored in Mode 13h format. You
can copy it from this point to any page with a fast copying mode, for example to erase an old image and
restore the old background.

This method of plane-wise copying is also used for displaying sprites which we'll describe in Chapter 6.
However, since special requirements apply here, a completely different procedure is used.

A Simple Text Scroller

Anyone who has worked with computers such as the Commodore 64 or Atari ST may remember early
versions of scrollers - programs that make text "walk" across the screen. Here, we'll demonstrate a simple
scroller using Mode X.

Scroller in Mode X

Basically a scroller moves a text from right to left across the screen, past the "eye" of the observer. You could
program something like this in just a few minutes in text mode. Take a character string and a pointer
indicating the current position of the left screen edge within the string. Then, write 80 characters 70 times
per second starting from this current position, perhaps onto a particular screen line. Then increment the
pointer by one position. This moves the window (currently visible text section) through the string in the
direction of reading. You now have your scroller.

90

T ﬁ\,
L ((o

| \)de‘

Mode X: The "Secret" To Great Graphics

Programming a scroller in graphic mode is somewhat more complicated. Although the principle is the
same, the programmer has no BIOS routines available for character output in Mode X or very limited BIOS
routines available in Mode 13h. Everything is therefore the programmer's responsibility (which actually
can be an advantage for display speed).

Another important difference from a text-mode scroller is duplicating the forward motion of the screen
contents. You can display a new character string at the new starting position in text mode. However, the
speed factor is much more critical in graphic mode, so you no longer have the luxury of assembling each
character from the font information.

There is a much simpler way to do this, however. With this basic scroller form, the text only moves and no
longer changes once it's on the screen. You can therefore simply copy it graphically one position further by
shifting columns 4-319 four pixels to the left and adding the new "text" in the "empty" columns 316-319.
These four-pixel steps make effective use of the advantages of Mode X, and provide a simple way to copy
four-byte blocks in Write-Mode 1.

To shift a number not exactly divisible by four (three for example), you would have to copy contents from
plane to plane, which is possible only by accessing individual pixels. Copying from one offset to another
without switching planes however can be used on four pixels at a time, significantly increasing the speed.

Font for scroller text

All you need to do now is display a four-pixel wide strip of new text at the right edge of the screen. Where
does the data to be displayed (the font) come from? A simple solution of course is to use the VGA-ROM font,
but this provides neither color nor elaborate graphic designs. Designing your own font is not for everyone
but is essential for visual presentations.

Some programmers write their own editor for this purpose which includes features of a paint program and
the ability to generate fonts. However, the effort required to do this usually outweighs its usefulness. Why
spend time writing an editor when the demo for which you are creating the font can be finished in half the
time? Also, public domain or shareware paint programs are capable of drawing basic objects such as lines,
circles, section-copying, etc.

In fact, public domain, shareware or commercial paint programs are the better alternative for another
reason. Saving a complete alphabet in a single image also saves valuable hard drive space since the image
can be saved in compact GIF format.

How you design the characters themselves is up to you. If you're artistically inclined you can always create
a new font. Another option is to modify or edit an existing font. Remember, the characters must meet the
requirements for further processing when you're finished. The routine that appends the new columns is
based on blocks of four so the characters must be arranged similarly. Both the x-coordinate and the character
width must be divisible by four while also allowing for varying character widths. This also lets you use
proportional fonts.

After you've properly arranged all the characters, comes the hard part: Entering all the character positions.
The character output procedure uses these positions to access the font by reading their location in video
memory and their width from the table.

To create the table, just take paper and pencil, with a paint program that continuously displays the cursor
position. Be careful however, because some paint programs start counting coordinates at 1, so the upper left

91

D) R
Mode X: The "Secret" To Great Graphics i e‘gw“““

corner of the screen has coordinates (1,1). Although perhaps convenient for the program's developers, it
conforms neither to mathematical reality nor to the conventions of your computer. The coordinates must
always conform to a 0-based system. You can always subtract 1 if necessary (this applies also when
positioning in blocks of four). Based on the coordinates of the upper left corner, the offset in video memory
is calculated according to our previously derived formula:

Offset:= Y*80 + X div 4

You must enter this value into the table for each letter. The plane is always 0 because that was the
requirement for using the fast write mode. To determine the width, first measure the letter in pixels (either
in your head or with the length function in the paint program) and round it up to the next integer multiple
of four. This will give you the width in blocks of four, which is essential to the process. Enter this value into
the table as well.

Once you're finished with the table, you must still transfer it to the program. The ASCII sequence should
be retained to keep the programming as simple as possible. For example you could make a table from ASCI|I
code 32 (space) to 96 (accent grave ') and assign a width of zero to unused characters (i.e., ASCII character
64 - @).

Of course you could also include the lower case letters (97-122) or the entire ASCII set if you like, because

you can have a small graphic for each character. Normally however, uppercase letters, numbers, and a few
special characters are enough.

The previous program uses a small demo font which we've included on the companion CD-ROM.

92

Split-screen And
Other Hot Effects

The term "graphic effect" has assumed an entirely new meaning in the last few years. We used to consider
asimple static image created with a paint program as a "graphic effect”. Today graphics and graphic effects
now include animation, moving sprites or other types of visual movement. These graphics effect are usually
processed by the CPU. However, we'll talk about effects which can be handled independently by the VGA,;
whereby the CPU only gives the command to initiate the process

Basics

All the effects we'll talk about in this chapter can also be generated in some way using the CPU. However,
this involves shifting large amounts of data within video RAM. It's very slow to move data this way. DMA
can accelerate these movements only slightly (direct CPU access may actually be faster on most computers).
In any case, accessing video memory usually ends up with a bottleneck at the data bus.

Fast access to video memory is limited on the earlier ISA-bus since even the fastest CPU's are constrained
by the 8 MHz bus speed needed for ‘downward' compatibility. Also, if an extra Hercules card is installed,
it switches the 16-bit VGA card down to 8 bits which again doubles the access time.

Even current bus systems that use a 16-bit or even 32-bit data bus at a speed of 33 MHz can still create a
"traffic jam" for the data. This is because strict protocols must be maintained, several wait states are often
added and some VGAs are unable to keep up and add wait states of their own.

So, there must be another way to bring the type of effects to the screen that we see in countless demos. These
demos display dazzling effects and yet still manage to play sound and perform the calculations for three-
dimensional objects. All this is possible if we use the built-in capabilities of the graphic card.

PC graphic cards do not yet have programmable controllers, processors, etc., designed specifically for
graphic effects (like the Amiga), where the CPU performs
only control and supervisory tasks. VGA cards do, however,
have many registers and combinations of register contents
that if you look closely, you'll discover possibilities never
considered by early designers of VGA.

) A One area which could lead

f') to dangerous situations is if

o you change CRTC
Registers 0-7.

These registers usually affect horizontal
timing and can "blow out" a monitor or

However, there's no substitute for actually experimenting graphic card when used incorrectly.

Disordered timing can cause the electron

with the register contents. Providing you don't change the
timing registers of the CRTC, your experiments cannot
damage or destroy any hardware. The worst that could
happen is the image or effect is distorted or doesn't appear.

beam to move wildly across the screen or
use frequencies which are too high. This can
soon overheat the monitor's deflecting coils.
Inexpensive monitors can
destroyed this way.

actually be

93

Split-screen And Other Hot Effects i Ge(gm““d

unt

If this happens, press the key to return to the Turbo Pascal editor.

To avoid the risk of damaging your monitor don't play with these registers. We've never seen any
worthwhile effects produced with them anyway...reprogramming the timing generally leads to images so
distorted as to be useless.

This should not stop you from experimenting with other registers, however. As we'll talk about in the next
section, the registers offer possibilities far beyond their original design.

How Split Screen Works

One common display technique is to divide the screen into two separate areas, for example, a scrolling area
in the top half and a fixed status bar on the bottom. You can, of course, assign this task to the CPU. However,
if execution speed is critical you should determine what hardware programming options are available, and
perhaps assign the job to the VGA.

The VGA has aregister called Line-Compare (also called the Split-Screen Register) which we can use to split
the screen. Although less functional than comparable PC registers, it's still adequate for most applications.
The Line-Compare Register specifies the line number that splits the screen into an upper, movable half and
a lower, static half. The line number must be doubled in 200-line modes.

How this register works is quite simple. As the image is being drawn, the VGA keeps track of the current
line number. This line number is always the physical line number - so even in 200-line modes such as Mode
13h and Mode X, this value ranges from 0 to 400 due to the line-doubling.

Unfortunately, this line number is located in a register is not accessible through port addresses, but which
is used internally for comparison with the Line-Compare Register (CRTC, Index 18h). When the line
number reaches the value contained in this register, the address counter is set to 0, that is, the display begins
at this line using data from Offset 0 of the video memory.

Scan Line 0

Variable area

Split line given in Line Compare

Fixed area

Frame

Split-screen construction

(@ Password: ~Graphics

94

=Y
D (e

| 3 “de(

Split-screen And Other Hot Effects

Since the line number does not fit into 8 bits (none of the VGA modes have fewer than 350 lines, even 200-
line modes are generated by 400 physical lines), the Line-Compare Register is divided among three different
registers (four on Super-VGA cards). There is no more room for additional registers so all "overflow" bits
of these registers are combined into two new registers (three in Super-VGA).

The first of these registers is the Overflow-Register. As its name implies, it takes up the overflow from the
vertical timing registers. In addition to other items, this register contains Bit 8 of the Line-Compare Register
in Bit 4. Incidentally, Bit 4 is the only bit in this register not protected by the protection bit of Register 11h.

Line-Compare Bit 9, although not yet needed at these resolutions, is located in the Maximum Row Address
Register (the second overflow register) at Bit 6. So, if you want

to set Line Compare, you need to use bit-shifting and masking \S‘ The_PfOCi:dL;ft% Split
to specify the line number among these three registers. This task [pelr QI T2
is accomplished by the procedure Split located in MEREXTIE A il

on the companion CD-ROM
MODEXLIB.ASM:

Split proc pascal far row:byte ;screen splitting in "row" row
mov bl,row
xor bh,bh
shl bx,1 ;*2 because of row duplication
mov cx,bx
mov dx,3d4h ;CRTC
mov al,07h ;register 7 (overflow low)
out dx,al
inc dx
in al,dx
and al,11101111b ;load bit 4 with bit 8 of the row
shr cx,4
and cl,16
or al,cl
out dx,al ;and set
dec dx
mov al,09h ;register 9 (maximum row address)
out dx,al
inc dx
in al,dx
and al,10111111b ;load bit 6 with bit 9 of the row
shr bl,3
and bl,64
or al,bl
out dx,al ;and set
dec dx
mov al,18h ;register 18h (line compare/split screen)
mov ah,row ;set remaining 8 bits
shl ah,1
out dx,ax
ret

Endp

First, the procedure doubles the given value. Therefore, despite Double-Scan (line-doubling) in 200-line
mode, it uses the y-coordinates which ranges from 0 to 199. After selecting the overflow register (CRTC,
Register 7), Bit 4 is cleared so Bit 8 of the line number can be specified by masking and right-shifting by 4
bits. The same method is used to copy Bit 9 of the line number to Bit 6 of the Maximum Row Address Register
(CRTC, Register 9). Finally, the remaining 8 bits of the line number are written to Register 18h (Line
Compare or Split Screen) and the procedure is ended.

95

Split-screen And Other Hot Effects i Ge(gm““d

unt

When using the Linear Starting Address Registers Och and 0dh to move the starting screen location to a
higher address, such as the beginning of Page 2, the top half of the screen will display this area, while the
bottom half (below the line specified in the Line-Compare Register) will display the contents at start of the
video RAM.

You can now adjust the upper area using the Linear Starting Address and scroll in all directions (see the
"Scrolling In Four Directions" section in this chapter) while the bottom area displays the same contents.

While this is somewhat limited compared to the split-screen options available on "game computers", many
interesting effects are still possible.

In addition to the obvious effect of dividing the screen into two areas, you can also create other effects as
well. For example, you can change the screen so the dividing line alternates between movable and fixed
portions. Since the dividing line can be placed anywhere, you can use a loop to reposition it continuously.
The entire bottom of the screen also moves when you change the Line-Compare Register. This is because
the line always begins with Memory-Offset 0. Subtracting 2 (Double-Scan) moves the entire lower partial
screen up by one graphic line, so a new line becomes visible at the bottom.

In this way, you can push an image up from the bottom over a background image, say, for example, as a
transition to a new scene in a demo. All you need to do is load the background image onto Page 1 (with
LoadGIF and P13_2_ ModeX) and the "top" image onto Page 0. Then turn on split-screen, first at Line 400
so the top image stays invisible and only the background is visible.

Now begin moving the split-line up (decrement the Line-Compare Register by 2), the contents of Page 0 will
slide up from the bottom over the background image until it hits the top of the screen (Line Compare 0). You
can then switch to Page 0 and disable the split-screen. It's important that you program these in this order.
Otherwise, you might see a brief flash of the old background because disabling the split-screen brings the
current page to the screen, which at this point should already be Page 0.

Of course going the opposite way (i.e., pulling an image down from the top, like a card game, so the image
underneath comes into view) is also possible. This is a good effect for a slide show presentation
(preprogrammed images displayed at fixed time intervals).

If you want to do this, you must store the foreground on Page 0 and the background on Page 1. First, activate
the split-screen, switch to Page 1 and increment the value of the Line-Compare Register in a loop so the split-
line moves downward. The contents of Page 1 (currently the active page) will then appear above this line
as the background.

Like most other effects, incrementing or decrementing the Line-Compare Register should be synchronized
with the vertical retrace to prevent jittering and flickering. Simply add the command WaitRetrace into
the loop. This also serves as a necessary delay; the CPU would otherwise finish the entire process in a
fraction of a second. Only 70 images per second are displayed with the synchronization (repeat-frequency
of Mode 13h and Mode X), so the process now takes 2.8 seconds (200 lines/70 lines per second).

In experimenting with these effects you'll quickly notice a false color display in one of the two images. This
display is due to the 256-color limit in palette-based graphic modes. As you load one image, you set the
palette of this image. Then the palette of the second image you load overwrites the first because only 256
colors can be displayed at one time. The only way out of this situation is to use one palette for both images.

96

— =~
D (e

| 3 “de(

Split-screen And Other Hot Effects

When drawing your own images, make certain to use the same palette for both (palettes can normally be
loaded and saved separately). With finished images (scanned or from graphic collections), the two different
palettes must be combined into one. Several graphic conversion programs have a function for this purpose,
but image quality often deteriorates in the process which results in incorrect colors and incorrectly set
pixels.

A better alternative is to reduce both images separately to 128 colors. Of courseg, if you have two images with
one more complex than the other, you could reduce one to 192 and the other to 64 colors. What is important
is to make the sum equal to 256. By using a graphic converter, you can then build a complete palette without
dithering. You can now load the two images into the demo, regardless of order, since the palettes are now
identical.

It's also possible (and useful) in this effect to compute the Line-Compare Register in units of one. This makes
single scan-lines, i.e., half graphic-lines, the smallest unit and doubles the shift time. Because motion is
involved, the user's eye won't notice the half-lines anyway.

In a simple split-screen, however, it might be distracting for a half graphic-line to appear in the middle of
the screen. In this case, you'll need to use odd numbers because the display of the second partial image
begins on the line immediately following the one given in the Line-Compare Register. Since this must be
an even number, the value in the register must be odd.

We'll illustrate the procedure Split with a small demo program. It takes two pages (single-color for
clarity), pushes them over each other and separates them again. The program first fills the two video pages
and activates Page 1 (Start-Address 16000). The loops increment and decrement the Line-Compare Register,
creating the desired motion, and synchronizing the entire process with the retrace.

You may wonder why we used the Exit command in the A vou can find
keyboard inquiry since itdoesn'tfit the structured programming 4 SPLIT.PAS
model of Pascal. The reason is to prevent unnecessary work, on the companion CD-ROM

otherwise, you would need cumbersome flag variables as
terminating conditions for the loops.

Uses Crt,Gif,ModeXLib;
Var i:Word;
begin
Init_ModeX;
LoadGif(‘uwp’);
p13_2_ModeX(16000,16000);
LoadGif(‘enter320");
p13_2_modex(0,16000);
SetStart(16000);
Repeat
For i:=200 downto 0 do Begin
WaitRetrace;
Split(i);
If KeyPressed Then Exit;
End;
For i:=0 to 200 do Begin
WaitRetrace;
Split(i);
If KeyPressed Then Exit;
End;
Until KeyPressed;
End.

97

Split-screen And Other Hot Effects i~ e@ox\“‘*

Furthermore, split-screen works in all graphic as well as text modes, but makes sense only when more than
one video page can be displayed. In Mode 13h for example there is not enough memory for two independent
screen sections. In this case the identical contents would appear, just distributed differently within the
windows. Therefore, although split-screens are possible in one-page graphic modes, all statements made
refer to Mode X.

Scrolling In Four Directions

Until now we have been using the Linear Starting Address Register of the | oseto
CRTC (Register No. 0ch/0dh) for switching video pages. This was done by
calculating the offset of the page (Page Number x 16000) and writing it to
the register. You could as easily write an intermediate value here as well, Start of video RAM
thereby freely shifting the start of the display area in RAM.

- Linear Starting Address

Now the electron beam builds a new image beginning at the point specified Visible section
in the Linear Starting Address Register instead of obtaining the image data
from the start of video RAM. This way you can shift the physical screen (the
area that appears on the monitor) like a window over the entire VGA RAM,
so any desired section of a 256K image can be displayed.

Freely movable

When you shift the beginning of the screen within RAM, the window
moves in the same direction. This causes the graphic to move in the opposite
direction on your monitor. Increasing the Linear Starting Address by 80
shifts the image contents up one line (320 pixels/4 planes = 80 bytes long).

The contents of Line 0 are now outside the window and Line 200 moves up
from the bottom. The visible lines are now 1-200. You can implement a
vertical scrolling of the entire screen contents with minimum calculation by
incrementing the register in units of 80 bytes each . The illustration on the
right is an example of a video-RAM configuration with four vertical pages.

End of memory

The following example easily accomplishes this task:

Uses Crt,Gif,ModeXLib;

Vary, {Current value of Linear Starting Address}
y_dir:word; {Gives scroll direction}
Begin
Init_ModeX; {Enable Mode X}

LoadGif(‘upfold’); {Load first image into Pages 0 and 2}
p13_2_ModeX(0,16000);

p13_2_ModeX(32000,16000);

LoadGif(‘'corner’); {Load second image into Pages 1 and 3}
p13_2_ModeX(16000,16000);

p13_2_ModeX(48000,16000);

y:=80; {Begin with Line 1}
y_dir:=80; {Direction of motion +80 bytes per pass}
Repeat

Inc(y,y_dir); {Motion}

WaitRetrace; {Wait for retrace}

SetStart(y); {and write new start to register}

if (y >= 600*80) {Border reached -> reverse direction}
or (y <= 80) Then y_dir:=-y_dir;

98

— =~
D (e

Split-screen And Other Hot Effects

| \“‘de(
Until KeyPressed; {Run until key is pressed}
End.
After loading the two partial images into the four video pages a

You can find
SPLIT2.PAS

. : A
(you can, of course, use different images) the program sets the 4
2, on the companion CD-ROM

y-counter to 80, the starting addressofLine 1.Y_dir determines
the scrolling direction. A positive value for the register value in
Linear Starting Address increases (scroll up). A negative value will decreases (scroll down).

The starting address (y) is continually incremented (or decremented if Y_Dir is negative) within the main
loop. The scrolling direction reverses when the borders are reached.

A scrolling text which appears on more than four video pages, for example in a header or window is more
complicated. As the scrolling progresses, you must load the next video page from the hard drive and copy
it to the section just read which has disappeared from the screen.

In addition to vertical scrolling, you may also find the need for horizontal scrolling. Imagine a logo four
video pages in size, visible only in sections, moving back and forth "underneath” the screen.

The solution appears very simple. We previously modified the Linear Starting Address Register by 80 each
time, why not go by units of one? In this case, however, whatever was scrolled out at the left would be added
again at the right. This is because the lines are still directly one behind the other in memory.

For example, if you shift the screen-start by one byte (shift left 40 pixels), the CRTC displays Bytes 1 to 80
(instead of the usual 0-79) on the first screen line. Byte 80, however, actually belongs to the second line of
the image so each byte that you scroll out at the left border will appear one line higher at the right border.

The solution to this problem is to enlarge the screen to a virtual width of 640 pixels. The display has only
320 pixels, but additional pixels will appear "next" to the monitor on the right. The four video pages will
no longer lie one on top of the other, as in vertical scrolling, but will form a square. Pixels scrolled past the
left edge will go to the extreme right (x-coordinates 636-639) of the invisible area and new pixels will scroll
in from the invisible to the visible area.

In other words, we can also now move the window (which is actually what the Mode X screen represents)
horizontally. Thanks to the horizontally adjacent video pages, we now have enough room to do this.

How do we generate this special mode? VGA has a register for this purpose, too. In fact, we can use Register
13h of the CRTC, Row Offset for other purposes as well. It indicates how far the internal data pointer (Linear
Counter) moves up when the electron beam reaches the right border. This distance corresponds to the
interval between lines within video memory and thereby gives us their length.

Row-Offset normally contains the value 40, which corresponds to a width of 80 bytes, in both Mode 13h and
Mode X. This register counts by words, i.e., an 80-byte width equals 40 words. Although the lines in Mode
13h are 320 bytes long, the computational basis (largest unit addressable by the CPU) is also quadrupled
from one byte to a doubleword, whereby the programmed value again becomes 320 / 8 = 40.

Of course, you can also write larger values to this register. For example, the value 80 means the lines have
an interval, or length, of 160 bytes (equals 640 pixels). The 80-byte gaps which are created between
individual 80-byte lines are padded with the invisible half-lines to the right.

The following illustration shows the video RAM configuration after activating 160-byte mode.

99

©

: \'\d@(@‘o\md
O

Split-screen And Other Hot Effects

Offset O

Linear Starting Address

Visible section
Freely movable
320 x 200 pixels

Start of video RAM

Line length 160 bytes = 640 pixels
Height 400 pixels

End of memory

Visible window in video-RAM area

We use the procedure Double in the ModeXLib module to enable this line-doubling:

double proc pascal far

mov dx,3d4h ;CRTC register 13h (row offset)

mov ax,5013h ;set to 80 (double width1)

out dx,ax ;and write

ret

double endp

The only result here is that CRTC-Register 13h is loaded with the s,“‘ The ’?Qo,fgg‘gftﬁé)”b/e
value_ 50h = 80d, which doubles the line length to 160 as MODEXLIB.ASM file
described above. \A

on the companion CD-ROM
Using the GIF loader for large images

You may also want to load GIF images in this extended mode. Basically, you can use the normal loader
because it functions independently of the screen format. In other words, the loader unpacks the compressed
data in the order read: In main memory first and then to the video memory. To load an image in 640-pixel
mode, it simply must exist as a 640 pixel wide image. Otherwise, every other line will be stored in the right
half of the screen (not our goal).

You can also load extremely large images the same way. These images, such as the header, can be loaded
in a single step by generating an image of size 320 x 800 and then loading it, for example. If you check the
image size, you will notice that these images are larger than 64K and therefore cannot be stored in the
variable VScreen” . Turbo Pascal does no allow fields larger than 64K segment size.

Here are a few suggestions to help you overcome this problem:

1. Partitioning the image from the start into 64K portions. This results in an image size of 640 x 100 at
double-width. This solution is neither practical nor efficient.

2. Divide the image among several pointers as you are loading it, so when one segment overflows you
switch to the next variable. The programming involved here is quite complex, however.

100

L_J) (‘O\)(\d

| 3 “de(Q

Split-screen And Other Hot Effects

3. Bypass the Turbo Pascal memory management completely and allocate the memory through DOS.
In this case, when you have a segment overflow, all you need to do is increment the corresponding
segment register by 1000h.

Solutions #2 and #3 have the same problem: Where will you get the necessary memory? A two-page image
already requires 128K, while 64K is just barely manageable.

The best solution is found in the procedure ReadGIF in ModeXLib. Immediately following the two stosb
instructions, which write the newly decoded pixel, the procedure tests for an overflow. When an overflow
has occurred, the image built-up to that point is simply copied to video RAM. Since large video pages make
sense only in Mode X anyway, the procedure calls upp13_2_ModeX, which copiesVScreen tovideo RAM
at the position defined by VRAM_Posand resets the destination pointer to 0. The variableVRAM_posis then
moved to the end of the copied area in video RAM, so a possible second overflow will be added here.

Atthe end, the procedureReadGIF assigns the current fill-status of VScreen (located in di) to the variable
Rest . VScreen returns the number of copied bytes because Pascal always places allocated variables at
even segment addresses. This way, by using Rest as the number of bytes to be copied, the main program
can again call p13_2_ ModeX to copy the rest into video RAM.

This process may not be the optimum algorithm but it does have two important advantages:

1. The procedure ReadGIF is 100% compatible with the old one. So, an image size doesn't have to be
determined by passing a parameter or reading the GIF header. Theoretically, any image format is
possible (even Super-VGA resolutions are no problem).

2. The procedure saves a great deal of memory because only one segment in memory is occupied. This
segment can be removed from the heap after loading and created again when the next image is
loaded.

Now that you have loaded a large image into video RAM, we'll start the actual scrolling. You'll need the
Linear Starting Address Register again. Since it can now be modified by any desired value, vertical,
horizontal and even diagonal scrolling are possible. The procedure is almost identical for vertical scrolling
as that described in the previous section. The Linear Starting Address Register is incremented or
decremented by one line length each time. You only need to consider the changed line length since vertical
scrolling requires 160 byte steps.

Horizontal scrolling is done by increasing or decreasing the register by units of one, whereby one byte
always represents four pixels. Scrolling is, therefore, possible only in four-pixel increments (for another
option, see Pixel-Panning Register 13h of the Attribute Controller.

Diagonal scrolling simply combines these two directions. For <)

example, to scroll four pixels up and to the left, increase the \‘ You can find

Linear Starting Address by 641 (160 bytes per line x 4 lines + 1 ot fgr@%#jhpég-ROM
byte). This program demonstrates the capabilities of this register: €

o

Uses Crt,Gif,ModeXLib;

Var X, {current offset in x-direction}
x_dir, {specifies scroll direction for x}
, {current offset for y-direction}
y_dir:word; {specifies scroll direction for y}
Begin
Init_ModeX; {enable Mode X}

101

©

: \'\dem‘o\md
O

Split-screen And Other Hot Effects

double; {160 byte mode on (640*400 pixels total}
LoadGif('640400'); {load image}
p13_2_ModeX(vram_pos,rest div 4); {rest of image in video RAM}
x:=1; {X-beginning with column 1}
x_dir:=1; {x-direction 1 byte per pass}
y:=160; {y-beginning with line 1}
y_dir:=160; {y-direction +160 bytes per pass}
Repeat
Inc(x,x_dir); {x-movement}
Inc(y,y_dir); {y-movement}
WaitRetrace; {wait for retrace}
SetStart(y+x); {and write new start in register}
if (x >= 80) {x-border reached -> turn x-direction around}
or (x <= 1) Then x_dir:=-x_dir;
if (y >= 200*160) {y-border reached -> turn y-direction around}
or (y <= 160) Then y_dir:=-y_dir;
Until KeyPressed,; {run until key is pressed}
TextMode(3);
End.

In addition to the familiar position and direction variables for the y-direction, similar variables are also
needed for the x-direction. These are calledx and x_dir and have the same purpose as their y-counterparts:
x indicates the current position in the x-direction.

Note an increase or decrease of 1 represents a shift of four pixels because of the four parallel planes x_dir
describes the x-scrolling direction. A 1 shifts the image contents four pixels to the left for each pass through
the loop and a -1 shifts four pixels to the right.

After initialization, the program switches on 160-byte VGA mode by calling the double routine. This creates
avirtual doubling of the screen to enable horizontal scrolling. The image is then loaded withLoadGIF . Note
that a portion of the oversized image (640 x 400 pixels = 256,000 bytes) is copied to video RAM during the
actual load process (you could also say it is paged out due to insufficient memory).

Since this paging occurs only with an overflow past the 64K limit, the procedure call to p13_2_ModeX
copies the rest to video RAM, starting at the position after the last byte copied (vram_pos), and using the
length variable Rest , whose value is entered by LoadGIF . The number of bytes must now be divided by
four since p13_2_ModeX works with main memory data - because of the four planes, a length of 1 means
that four bytes are copied and the contents of the variable Rest are given as real bytes (corresponding to
the number of pixels).

As we mentioned, the x-direction is initialized to 1 so scrolling initially proceeds to the left. The position
is likewise set to 1 so it starts at Column 1 (prior to entering the loop the screen still starts at Column 0, Line
0). The doubling of both values to 160 occurs in the y-direction variables which accounts for the doubled
line length of 160 bytes.

Very little changes in the loop itself. To create movement in the x-direction anotherinc command is used.
In addition, the starting screen location is set to the sum of the x-offset and y-offset, so both directions are
established (see above). Furthermore, a reversal in x-direction must occur upon reaching the right or left
border, so combined with a similar reversal in the y-direction, the scroll area always stays within the
rectangular virtual screen defined in video RAM.

102

» @e@“’““d Split-screen And Other Hot Effects

Combining It All: Split-screen With Scrolling

Split screen and multidirectional scrolling can already generate

~ .
some interesting effects. However, you can have a tremendous \‘ SE‘I)?LII_ Cg’;;’_’}i\ c
visual impact by combining them as you'll see in the following on the comp_anion' CD-ROM

example (SCRL_SPT.PAS):

uses crt,Gif,ModeXLib;

Var x, {current offset in x-direction}
x_dir, {specifies scroll direction for x}
Y, {current offset for y-direction}
y_dir:word,; {specifies scroll direction for y}
split_line:word; {current position of Split-Line}
split_dir:word; {specifies direction of movement for Split-Line}
Begin
Init_ModeX; {enable Mode X}
double; {enable 160 byte mode}
Screen_Off; {screen off}

LoadGif_Pos('640400',160*50);{load big picture at position (0/50)}
p13_2_ModeX(vram_pos,rest div 4); {copy rest to VGA-RAM}

LoadGif('corner’); {load small picture at position (0/0)}
p13_2_ModeX(0,160*50); {and copy to screen}
Screen_On; {screen on}
split_line:=150; {set Split at line 150 first}
split_dir:=1; {move Split-Line down first}
x:=1; {x-start with column 1}
x_dir:=1; {x-direction 1 byte per pass}
y:=160; {y-start with row 1}
y_dir:=160; {y-direction+160 bytes per pass}
Repeat
Inc(x,x_dir); {x-movement}
Inc(y,y_dir); {y-movement}
Inc(Split_line,Split_dir); {move Split Line}
WaitRetrace; {wait for Retrace}

SetStart(50*160+y+x); {and write new start in register,}
{skipping the first 50 lines}

Split(Split_line); {split screen at Split Line}

if (x >= 80) {x-border reached -> turn x-direction around}

or (x <= 1) Then x_dir:=-x_dir;

if (y >= 200*160) {y-border reached -> turn y-direction around}

or (y <= 160) Then y_dir:=-y_dir;
if (split_line >=200) {split reached border -> change direction}
or (split_line <= 150) then split_dir:=-split_dir
Until KeyPressed; {run until key pressed}
TextMode(3);
End

We're no longer splitting the screen into two static regions at a fixed line. Instead the line itself is also
moving. The variables Split_line and Split_dir serve to describe this motion, based on the same
principle as in the corresponding x- and y-variables. Split_line contains the line at which the screen is
divided while Split_dir contains either a 1 for movement in the positive y-direction (down) or a -1 for
moving the split-line upward.

103

o))
Split-screen And Other Hot Effects i~ ce(g‘ov““

unt

After switching on Mode X and activating 160-byte lines, the screen is disabled for loading the image.
Although the speed advantage is barely measurable, the overall visual effect of the demo improves if the
monitor remains disabled as the image is being constructed. You can remove these commands when you
need to view the load process, say, for debugging purposes. However, in the final version of a demo, the
image construction should remain invisible while it's loading.

The large image, which will later scroll in all four directions, is now loaded at Position 160*50 (50 lines past
RAM-start) by the procedure LoadGIF_Pos , while a smaller image is placed at RAM-start by the normal
LoadGIF procedure. LoadGIF_Pos works like LoadGIF , but receives the offset to which the (large-
image) overflow is copied as an additional parameter.

This 50-line shift accounts for the split-screen's mode of operation. Since at the split-line the linear counter
issetto 0, the contents at RAM-start, i.e., the small image are displayed below this line. Later, when scrolling
the program simply uses the start-address of the large image as the point of origin.

Next, the image is again enabled. The split-line is set to an initial value of 150 which is internally converted
to scan lines (corresponds to graphic lines). Now, thanks to the split, the lower quarter-screen comes "alive".
Since Split_Dir contains a value of 1, the lower part of the screen in the loop moves toward the bottom.

When the split-line reaches a value of 200, which corresponds to a complete "removed" of the lower section,
the direction of motion reverses itself likewise at the top border (150), so as the upper screen is scrolling,
the bottom also moves vertically.

In this version the SetStart command, which provides the scrolling, has been expanded by adding the
constant 50*160. This assures the first 50 lines of video RAM never appear on the screen while scrolling.
These lines contain the lower area of the split-screen, while the large image begins 50 lines later.

Door Closed: Squeezing An Image

Another application for the split-screen/scrolling combination is squeezing two halves of an image
together. This effect is often used at the opening of many demos.

Here the upper half, which moves from the top to the middle, is controlled through the Linear Starting
Address; in other words, it's scrolled vertically (in this case downward). Note that Video Page 1 is either
empty or filled with a certain color, since half of it is visible at the beginning.

The bottom half is controlled by the splitting process.
Decrementing the line number pushes the start of the split- » The procedure Squeeze

screen up toward the middle. ‘ Mogéj)?[;g;tg% e

on the companion CD-ROM

Procedure Squeeze from MODEXLIB.ASM accomplishes both b
of these tasks:

squeeze proc pascal far ;squeezes screen together
mov si,200*80 ;initial value for start address
mov di,199 ;initial value for split row

sqlp: ;main loop
call waitretrace ;wait for retrace
call split pascal, di ;set lower half by splitting

call setstart pascal, si ;set upper half by scrolling

104

L_J) (‘O\)(\d

I Ao Split-screen And Other Hot Effects
sub si,80 ;one row further, so go down
dec di ;split one row down, so
cmp di,99d ;move lower half up
jae sqlp Jfinished ?

ret
squeeze endp

Registers Sl and DI are used in this procedure. You may wonder why we're not using other registers. Here,
speed is not the most important factor. After all, the CPU has very little to do because all the work is handled
by the VGA. Therefore, it's sometimes more efficient to use register variables which can save storage space
and processing time.

Sl contains the value of the Linear Starting Address Register and so is responsible for moving the upper
partial screen. DI determines the split-line, which controls the position of the lower half. These registers are
assigned initial values which generate a completely separated image.

After the usual wait for a vertical retrace, the loop updates the current status with the help of the
corresponding register. The movement takes place in the statements decrementing the register by 80
(Linear Starting Address, 1 line) or by 1 (Split-Line), whereby the upper part scrolls down and the split-line
moves up. The image is therefore squeezed together. The terminating condition is when the split-line
moves past the half-screen.

We'll use a small example called SQUEEZE.EXE. It simply loads an image and, as its name suggests,
squeezes it together. The wait for the key points out something you should remember when creating
an image: Notice the opening screen reverses the upper and lower screens. When press(Enter), the upper and
lower screens are squeezed in the correct position.

The beginning contents of video RAM are displayed at the bottom half of the monitor. Scrolling moves data
from the second half of the first video page to the top half of the a)
monitor. To do this, you simply have to do reverse the image by \‘ You can find

cutting and copying both halves. The program should now be on the go()r#;gl:;lﬁi?DS-ROM
self-explanatory: Z

@)

uses Crt,ModeXLib,Gif;

Begin
Init_ModeX; {switching on Mode X}
LoadGif(‘'squeeze’); {loading of image}
p13_2_ModeX(vram_pos,rest div 4);
ReadLn; {waiting for Enter}
Squeeze; {squeezing of image}
ReadLn;
TextMode(3);

End.

Smooth Scrolling In Text Mode

Scrolling in text mode actually works the same as in graphic mode. The visible portion of video RAM is
shifted using the starting address (Linear Starting Address). The one noticeable difference is scrolling is
very jittery because shifting always occurs by entire characters in text mode whereas you can shift by
individual pixels in graphic mode . This is due to the structure of video RAM in text mode. Data for

105

Split-screen And Other Hot Effects i e\'g‘o‘md

individual pixels no longer exists here, so the Linear Starting Address also refers to whole characters and
enables only very coarse scrolling.

To prevent this, we can use a few new VGA registers: The horizontal and vertical panning registers. In
panning, we're shifting the image contents by one pixel, which these registers allow in text mode as well.

For smooth scrolling in text mode, simply shift the image contents by panning in the desired direction. Once
you have moved ahead by one character, set the corresponding panning register back to its initial value and
modify the Linear Starting Address Register. This is necessary because the maximum panning distance is
one character width or one character height. Panning therefore is only a fine control, while coarse scrolling
is achieved through the Linear Starting Address.

Vertical panning is generated by CRTC-Register 8 (Initial Row Address), where Bits 4-0 indicate the graphic
line where display of the first scan line begins. Incrementing this value by 1 makes Line 1 begin inside the
character set the screen contents therefore move one line up.

Horizontal panning on the other hand, is the responsibility
of the Attribute Controller. Here Register 13h (Horizontal
Pixel Panning) provides for smooth motion in the x- |0 Panning by one pixel
direction. The table on the right shows the somewhat
unusual value assignments for this register:

Function

1to7 Panning by 2 to 8 pixels

8 No panning

The necessary format conversion is done by a simple
calculation (without requiring difficult IF-structures):

You can find
register-value := (panning-value - 1) mod 9 ‘ SCROLLT.PAS

. ,, on the companion CD-ROM
The complete demonstration program SCROLLT.PAS: €

Uses ModeXLib,Crt;

Var x, {Xx-position in pixels}
x_dir, {x-direction}
Y, {y-position in pixels}
y_dir:Word; {y-direction}

Procedure Wait_In_Display;assembler;
{Counterpart to Wait_In_Retrace, waits for display via cathode ray}
asm
mov dx,3dah {Input Status 1}
@wait2:
in al,dx
test al,8h
jnz @wait2 {Display on ? -> then finished}
End;
Procedure Wait_In_Retrace;assembler;
{waits for retrace, also resets the ATC flip-flop by read access to Input Status 1}
asm
mov dx,3dah {Input Status 1}
@waitl:
in al,dx
test al,8h
jz @waitl {Retrace active ? -> then finished}
End;

106

— =~
D (e

| 3 “de(

Split-screen And Other Hot Effects

Procedure FillScreen;
{Fills video RAM with test image 160*50 characters in size}
var i:word;
Begin
For i:=0 to 160*50 do Begin {character loop}
If i mod 10 <> 0 Then {write column counter ?}
mem[$b800:i shl 1]:= {no, then -}
Ord(’-') Else
mem[$b800:i shl 1]:= {yes, then column number in tens}
((i mod 160) div 10) mod 10 + Ord('0);
If i mod 160 = 0 Then {column 0 ? -> write row counter}
mem[$b800:i shl 1]:=(i div 160) mod 10 + Ord('0’);
End;
End;
Procedure V_Pan(n:Byte);assembler;
{performs vertical panning}
asm
mov dx,3d4h
mov al,8
mov ah,n
out dx,ax
End;
Procedure H_Pan(n:Byte);assembler;
{performs horizontal panning}

{set panning width}

{CRTC Register 8 (Initial Row Adress)}

asm
mov dx,3cOh {ATC Index/Data Port}
mov al,13h or 32d {Register 13h (Horizontal Pixel Panning)}
out dx,al {select; Bit 5 (Palette RAM Address Source)}
mov al,n {set, in order not to switch off screen}
or al,32d {write panning value}
out dx,al
End;
Begin
TextMode(3); {set BIOS mode 3 (80*25 characters, Color)}
FillScreen; {build test picture}
portw[$3d4]:=$5013; {double virtual screen width(160 character)}
x:=0; {initialize coordinates and directions}
x_dir:=1;
y:=0;
y_dir:=1;
Repeat
Inc(x,x_dir); {movement in x and y-directions}
Inc(y,y_dir);

If (x<=0) or (x>=80*9)
Then x_dir:=-x_dir;
if (y<=0) or (y>=25*16)
Theny_diri=-y_dir;
Wait_in_Display; {wait until display running}
SetStart((y div 16 *160) {set start address (rough scrolling}
+ x div 9);
Wait_in_Retrace;
V_Pan(y mod 16);
H_Pan((x-1) mod 9);
Until KeyPressed,;
TextMode(3);
End.

{turn around at borders}

{wait until retrace active}
{vertical panning (fine scrolling)}
{horizontal panning (fine scrolling)}
{wait for key}
{and set normal video mode}

107

o))
Split-screen And Other Hot Effects i~ ce(g‘ov““

unt

After setting text mode and drawing a test image, the program switches over to double-virtual-width by
setting Row-Offset Register 13h of the CRTC to the value 320 bytes/4 bytes = 80 (4 due to doubleword-
access). The motion itself corresponds exactly - with somewhat different values - to the same procedure in
graphic mode.

Onespecial feature isdividingWaitRetrace intotwo parts:Wait_in_Display andWait_in_Retrace
This is because the registers used here are linked to different timing circuits. Linear Starting Address is
loaded by VGA directly after entering into the retrace, so a switch during the retrace will usually show no
effect in the next image. This was previously unimportant because the entire operation was simply delayed
by one retrace. Now we also have the panning registers, whose effects become immediate after being
changed.

The starting address is, therefore, set during image construction, because it has no function at this point
anyway, and is guaranteed to be set correctly for constructing the next image. The panning registers
however are set during the retrace because their effects are immediate and must therefore take place in the
invisible area of the screen.

The procedure Wait_in_Retrace hasasecond purpose. Accessestothe ATC are somewhat unconventional:
This port alternates between index and data register with each write-access to Port-Address 3cOh. When the
program starts the current status of this register is unknown. However, reading Input-Status Register 1, as
happens in this procedure, switches Port 3cOh to the index function and thereby gives it a defined status.

Since writing to the ATC (Attribute Controller) occurs almost immediately after the wait for the retrace, you
can assume the index mode is active. The only possibility of this port switching over unnoticed is if a TSR
"stumbles in" through an interrupt. This is highly unlikely however, and can be prevented anyway by a
simple CLI instruction.

It's very important when writing to the ATC-index to always set Bit 5 at the same time. This bit controls
access to the internal palette of the ATC. When Bit 5 is cleared the CPU obtains full access and the ATC
disables itself; leading in the best case (if you reset the bit quickly enough) to flickering, but in the normal
case to a complete system crash, where only a reboot will help.

Of course, this scrolling can also be combined with a split-screen. The procedure is exactly the same as in
graphic mode. The split-screen is fully mode-independent, because you are directly programming the
physical scan-line where the split occurs.

A Different Kind Of Monitor: Flowing Images

We've mentioned the double-scan mode of VGA several times. Depending on the BIOS, this double-line
mode (which displays 200 graphic lines at a physical resolution of 400 lines) is implemented using either
Bit 7 (Double-Scan-Enable) of CRTC-Register 9 (Maximum Row Address) or by entering 1 instead of 0 in
Bits 4-0. These bits in text mode contain the number of screen lines per character line minus 1 (equal to 15
in VGA text modes), i.e., the number of screen lines in which the same information is repeatedly retrieved
from video RAM.

Of course, these screen lines in text mode are still not identical because a different line of the character set
is used each time. In graphic mode, however, there is no character set so the same data is actually displayed
many times. A value of 1 in these bits also creates a line-doubling, whereby a copy is generated of each line.

108

— =~
D (e

| 3 “de(

Split-screen And Other Hot Effects

Even more copies are generated if you enter higher values. The pixels are expanded in the y-direction, and
the vertical resolution cut in half.

This effect is used in FLOW.PAS. First, it places a demo image on the screen and stretches it out through
continuous incrementing of Bits 4-0. Of course, the other bits in

this register cannot be touched the old contents are therefore > You can find

stored in 0ld9 and an OR operation performed on the current 4 FLOW.PAS

contents when writing to the register. The entire process is on the companion CD-ROM
synchronized with the vertical retrace as usual.

Uses Crt,Gif,ModeXLib;
Procedure Flow;
var i,

Old9:Byte;
Begin
Port[$3d4]:=9; {select CRTC Register 9 (Maximum Row Address)}
Old9:=Port[$3d5] and $80; {save old contents, }
for i:=2 to 31 do begin {saves on constant read out}
WaitRetrace; {synchronization}
Port[$3d5]:=old9 or i; {write value}
End;
End;
Begin
asm mov ax,13h; int 10h End; {Mode 13h on (or different graphic mode)}
LoadGif('upfold'); {load wallpaper}
Move(vscreen”,Ptr($a000,0)",64000); {and to screen}
ReadLn;
Flow; {read out}
ReadLn;
TextMode(3); {restore VGA to original state}
End.

Theoretically, this procedure is also possible in text mode but would lead to nonviewable images. This is
because no character set data exists for these new lines although the VGA still doubles, triples etc., the
memory contents like in graphic mode. Therefore, since only garbage appears as images in text mode, this
effect is limited to graphic mode.

When selecting a suitable image, at least 13 lines must be black or some other solid color at the top.
Otherwise, the image won't flow down, it will just be stretched out. At a vertical resolution of 400 lines and
a maximum value of 31 in the Maximum Row Address Register, each line will be displayed 32 times,
producing 400 / 32 = 12.5 visible lines. These must all be the same color for the entire image to be one color
later.

Let's Add More Color Please: Copper Bars Without Copying

Until now we have essentially created our effects by simply reprogramming certain VGA registers. The
CPU executes only control functions, such as updating the screen start-address during scrolling.

We'll talk about a new role for the CPU in this section. In addition to control, we'll add some range checking
tasks. We won't, however, use the CPU to copy memory areas. This means the CPU will continuously
monitor the VGA, and at certain screen lines perform modifications to the VGA registers. We can now

109

oy i
Split-screen And Other Hot Effects I @m@““d

produce an effect called copper bars which has been a popular effect since the days of the old Commodore
64.

Copper bars are vertical bars of a specific color. They continuously move up and down in the y-direction.
They not only move up-and-down but also in front of one another while moving up-and-down. Meanwhile
other graphic effects, like text-scrollers, can be running at the same time and appear in front of the copper
bars.

You can probably figure out how copper bars work simply by their appearance. Video RAM contains
absolutely no data at those areas being displayed. It's filled with zeros, for example, so no bars can go out
from this point. For each new screen line, however, you define what color this zero actually represents: It
might represent a light red color one time, while at another time it might represent a bright yellow.

Incidentally, you can also display more than 256 colors on the screen in this manner. Theoretically, each
screen line can contain 256 colors and these can be different for each line. In practice, however, the range
of colorsis very limited because it's not possible within a retrace to set an entire palette. The number of colors
will vary depending on the processing speed of the computer. In the example in this section only Color 0
is continuously reprogrammed, which already gives us 127 new colors. Reprogramming just a few more
colors expands this range even further.

By continuously changing the color as the screen lines are displayed, you can produce vertical structures
such as bars. Colors other than 0 are not affected by this, so text can still be scrolling in the foreground using
Colors 1-16 for example. The places in the text containing a zero are transparent so the copper bars become
visible in the background.

This way, you don't have to worry as the text scrolls through the background. Otherwise, you would have
to keep saving the background contents and rewriting the text. You can simply copy blocks of data to video
RAM, which in the transparent sections contain 0. The main advantage here is that you can use the fast Write
Mode 1 for copying.

This process is comparable to the one used by a Genlock card. This specialized video card overlays a TV
image wherever the video signal displays a certain color (usually blue). Here also, mixing occurs at a very
low level and not in the slow video RAM.

How then do we generate the multicolored lines? Home computers usually have a screen-line interrupt.
You can program the video controller to execute an interrupt upon reaching a particular screen line; the
color can then be quickly reset in response to this event.

Although some VGA cards also have a vertical-retrace interrupt (often deactivated through dip-switches),
the situation is far worse with the horizontal retrace. We're not aware of any graphic card which supports
this interrupt. You only choice is to continuously monitor the VGA status counting the lines as you go and
then change the color at the desired line.

To do this, you first need to create an initial status by waiting for a vertical retrace. The next time the Display-
Enable circuit is activated (read from Input-Status Register, Bit 0 - Display Enable Complement), you are
guaranteed to be on Line 0 of the screen. You can count with the current line through a permanent inquiry
on this bit.

Since displaying a single line takes much less time than displaying the entire image, you cannot allow any
interrupts during the wait (they often last much too long).

110

— =~
D (e

| 3 “de(

Split-screen And Other Hot Effects

Disabling the interrupts however causes a serious problem. Time becomes critical if you also plan to use
sound during the wait for the horizontal retrace...you must prevent the sound card from requesting new
data.

Even this limitation is not as significant compared to the computing time needed to copy data into video
RAM. For example, if only the top half of the screen is reserved for screen lines (i.e., copper bars) instead
of the entire screen, then there will be enough time remaining for scrolling and sound generation in the
bottom half, too.

When it comes to timing, the order of commands is also important. In the short time it takes for the actual
retrace (approximately 6 microseconds) it's practically impossible to do the calculations for all the bars.
These must therefore be done earlier, while during the retrace itself the only other thing that happens is to
set the color.

The following example program is called COPPER.EXE. It A vou can find
consists of a Pascal section (COPPER.PAS) and an Assembler /] COPPER.EXE
section (COPPER.ASM) to show how to build these pieces into /) on the companion CD-ROM
a program. :
Uses Crt,ModeXLib;
var yl, {y-location Copper 1}
y1_dir, {y-direction Copper 1}
Mask:Word; {overlay mask, for overlaying the copper}

Procedure MakeCopper(y_posl,y_pos2,overlay_mask:word);external;

{$l copper}
begin
TextMode(3); {Copper functions in EVERY video mode ! }
y1:=Port[$3da]; {switch ATC to Index-Mode}
Port[$3c0]:=$11 or 32; {select Register 11h}
Port[$3c0]:=255; {frame color 255}
y1:=0; {Start at upper screen border}
yl_dir:=2; {first movement down}
Mask:=$00ff; {first Copper 1 (red) in foreground}
Repeat
Inc(yl,y1_dir); {Copper-movement}
If (y1<=0) or (y1>=150) {at border : }
then Begin
y1 dir:=-y1_dir; {reverse direction}
Mask:=Swap(Mask); {each time a different copper in foreground}
End;

Write(This isdemo text?);
MakeCopper(y1,150-y1,Mask); {Draw copper}
Until KeyPressed;
End.

The program first enables Mode 3 (although any text mode or graphic mode will work). Screen line counting
is independent of the VGA mode. You only need to consider the various vertical resolutions of different
modes where different values for y-position expand or contract the bars in the y-direction. Here, also we're
using physical resolution, which in 200-line modes (such as Mode 13h) consist of a full 400 lines (Double
Scan).

Next, the border color is set to 255 using ATC-Register 11h because the copper uses Color 0 to display the
bars. Simply leave the border color at 0 if you also want to display the bars in the screen border. However,

111

o))
Split-screen And Other Hot Effects i~ ce(g‘o\\“‘*

unt

a value other than zero not only allows for clear separation of image from copper, it also extends the
duration of the horizontal retrace. This is especially true on slower computers, making the flickering at the
left border disappear.

The loop, following the familiar pattern, moves and displays the copper in the y-direction. The call to
WaitRetrace , however, is hidden in the procedure MakeCopper . This is done to guarantee immediate
proximity to the retrace and the line counting. Text is also output for demonstration purposes and shows
how easy it is to change the screen independently of the background. Also demonstrated is the fact that
when the scanning ray is outside the range of the coppers, enough computing time remains for other tasks.

The procedure MakeCopper is in the COPPER.ASM module. When the call is made, the program passes
the y-positions of both coppers (red and green) with a priority mask which controls their overlapping. The
low-byte is responsible for Copper 1 and the high-byte for Copper 2. A value of 0 means the corresponding
copper is running in the background. A value of 0ffh pages it to the foreground. An overlay occurs when
both have a value of 0 and the two colors are mixed. A mask value of 0ffffh, however, erases both coppers
at the point of overlap.

When the maximum position is reached in our example, the
mask switches, which creates a circular motion. The red copper . ')
fades into the background as it moves up and appears in the
foreground as it moves down. The COPPER.ASM module
mostly consists of the procedure MakeCopper .

You can find
COPPER.ASM
on the companion CD-ROM

@ v

extrn waitretrace:far
data segment public
maxrow dw (?)
data ends
code segment public
public makecopper
assume cs:code,ds:data
MakeCopper proc pascal y_posl,y_pos2,overlay_mask:word
; draws 2 copper beams at positions y_pos1 (red) and y_pos2 (green)
; overlay_mask: 0ff0Oh : Copper 2 in foreground
; 000ffh : copper 1 in foreground
00000h : penetration of both coppers

height equ 88 ;total height per copper
mov ax,y_posl ;define maximum y-coordinate
cmp ax,y_pos2
ja ax_high
mov ax,y_pos2
ax_high:
add ax,height ;add height
MOV maxrow,ax ;maximum row to be taken into consideration
XOr CX,CX ;start row counter with 0
call waitretrace ;wait for retrace for synchronization
next_line:
inc cx ;increment row counter
mov bx,cx ;calculate color 1
sub bx,y_pos1 ;in addition, get position relative to copper start
cmp bx,height/2 -1 ;2nd half ?
jle copperl_up
sub bx,height -1 ;then bx:=127-bx
neg bx
copperl_up:
or bx,bx

112

PC

s}
: SR ou

Split-screen And Other Hot Effects

jns copperl_ok
xor bl,bl
copperl_ok:
mov ax,cx
sub ax,y_pos2
cmp ax,height/2 -1
jle copper2_up
sub ax,height -1

;positive, then color

;calculate color 2
;calculate position relatively
;2nd half

;then ax;=127-ax

neg ax
copper2_up:
or ax,ax ;positive, then color
jns copper2_ok
xor al,al
copper2_ok:
mov bh,al ;bl now has color copper 1 / bh copper 2
mov ax,bx ;calculate overlay
and ax,overlay_mask ;mask out copper 1 or 2
or alal ;copper 1 priority
je copperl_back
xor bh,bh ;then clear copper 2
copperl_back:
or ah,ah ;copper 2 priority
je copper2_back
xor bl,bl ;then clear copper 1
copper2_back:
xor al,al ;select color 0 in DAC
mov dx,3c8h
out dx,al
or bl,bl ;if copper 1 black -> leave as is
jebl_0
add bl,(128-height) / 2 ;otherwise lighten to achieve maximum
bl_0: ;brightness
or bh,bh ;the same for copper 2
jebh_0
add bh,(128-height) / 2
bh_0:
;now wait for horizontal retrace and enable copper
cli ;clear interrupts, because it is VERY time-critical
mov dx,3dah ;select Input Status Register 1
in_retrace:
in al,dx ;wait for display
testal,1
jne in_retrace
in_display:
in al,dx ;wait for (horizontal) retrace
testal,1
je in_display
mov al,bl ;load color 1
mov dx,3c9h ;and set
out dx,al ;set red percentage for copper 1
mov al,bh
out dx,al ;set green percentage for copper 2
xor al,al
out dx,al
cmp CX,maxrow ;last row generated ?
jne next_line
mov dx,3dah ;yes ->end
wait_hret: ;before switching off, wait for retrace
in al,dx ;otherwise flickering in last row
test al,1
je wait_hret

113

©

: \'\dem‘o\md
O

Split-screen And Other Hot Effects

xor al,al ;select color 0 in DAC
mov dx,3c8h
out dx,al
inc dx ;set all to 0: black
out dx,al
out dx,al
out dx,al
sti
ret
makecopper endp
code ends
end

First, the program determines the larger of the two y-coordinates. This establishes the first screen line
beyond which a copper is never displayed. Upon reaching this position you can exit the procedure and use
the computer time for other tasks. The procedure then sets the line counter to 0 and waits for the vertical
retrace. This also begins at line 0 of the monitor.

The loop next_line uses the y-positions to calculate the scan-line relative to the topmost copper-line,
which indicates the color. When the electron beam reaches the second half, you must again decrement the
color to guarantee symmetry. A negative color-value is generated outside the copper regardless of whether
the ray is above or below the center of the copper. This value is later intercepted and reset to 0 (black).

As a result of this calculation, BL contains the color-value of Copper 1 and BH contains the color value of
Copper 2. When the two coppers overlap, the program must convert these values according to the overlay
mask. This is accomplished here in only two steps without tedious CMPs. An AND operation is performed
on the color and the current mask so only the copper masked with 0ffh is significant. The copper masked
with 0 automatically goes to the background. If both are masked with 0, no overlay occurs and the two
coppers are mixed. Provided that it appears at the current position (has a color other than 0), the bar masked
with 0ffh overlays the other bar by resetting its color component to 0.

At this point DAC Color Register 0 is selected so time is saved during the actual switching of the color. It's
highly unlikely that a TSR would affect the program now. A color-value is also added for the case when the
copper fails to occupy the maximum height of 128 lines (specified in the variable height. The dark
components are cut out here instead of the middle components. The copper is set to maximum brightness
by summing the components.

Now, as you've probably assumed by the CLI instruction, the time critical part begins. The procedure waits
for entry into a horizontal retrace. As with its vertical counterpart, it waits for Display Enable followed by
a retrace which is just beginning. This guarantees that even on slower computers, where the electron beam
is already within the next retrace, the switch never takes place during display time.

Next, Color 0 must be set using the Pixel Color Value Register of the DAC. Here, Copper 1 determines the
red component and Copper 2 determines the green component. Meanwhile, blue remains at 0 in both. The
loop now starts from the beginning, unless the last line (determined by the variable maxrow) has already
been drawn. In this case, another retrace is awaited and Color 0 set to black for the remainder of the screen.
The wait for the retrace is necessary, otherwise the switch would occur during display of the last line which
would then fail to fully appear. You can now re-enable the interrupts and end the procedure.

114

L_J) (‘O\)(\d

| 3 “de(Q

Split-screen And Other Hot Effects

Shake On The Screen: The Wobbler

In addition to copper bars, the horizontal retrace can be used for many other effects. For example, instead
of changing the color, what if you changed the horizontal position within each line? Such an effect, based
on a sine table, will overlay the entire screen with a wave motion. Thanks to direct programming of the
CRTC registers, you can even do this effect in text mode.

The horizontal location of a screen line is best controlled through CRTC-Register 4. This register, as its name
Horizontal-Sync Start implies, determines the position where the horizontal retrace begins. Since the end
of the synchronization is determined relative to the start, modifying this register shifts the "location" of the
retrace on the screen but not its length (you should avoid modifying its length if possible). Some monitors
cannot handle too short a retrace and will respond by completely distorting the image.

The strategy behind the Wobbler again consists of waiting for a specific screen line. It then feeds Register
4 with new values in each following line. These values are obtained from a sine table, generated using
procedure Sin_Gen in the unit Tools (see the "Tables" information in the "Custom Mathematical
Functions" section in Chapter 2. Of course, other functions will also work but the sine waves are the most
similar to water waves.

We must consider timing very carefully for this effect. Here, unlike the copper bars, the registers should be
modified while the electron beam displays the image. Assigning color with the coppers had no effect during
the retrace but does during the display period. So we made the switches during the retrace. With
WOBBLER.PAS, on the other hand, the position of the retrace is very important during the retrace itself
(Blank Time), while the register has no effect during the display of the actual image data. So this time the
changes must occur during the Display Enable period. To do this, simply reverse the order of the two wait-
loops.

WOBBLER.PAS is also fully independent of image content because we're working directly with the timing
at the lowest level. You only need to consider the various register defaults in each mode when generating
the sine table. The value is normally 85 in Text Mode 3 and 84 in Mode 13h and Mode X. Otherwise, the fixed
areas of the screen will shift to the left or right because these are determined by the zero-point of the sine
table.

Second, the value of this register can vary only within a certain range. For example if you use 87 as the zero-
point by mistake and add an amplitude of 4 to it, the result will appear outside the acceptable range and
no effect will occur. The sine at this point will be flattened out.

We should also mention, like all registers affecting horizontal timing, the Horizontal-Sync-Start Register is
protected through Bit 7 of CRTC-Register 11h (Vertical Sync End). So, you must first clear this bit by calling
CRTC_unprotect (Unit ModeXLib). s CRTC UnProtectand

»
CRTC_Protect t of
You should then call CRTC_protect atthe end of the program ‘ MODTEX’L",,S_‘;\S"",(,? ,’,’,?th

since the default value for the protection bitis 1. Both procedures Y, companion CD-ROM
are very simple and require no further explanation:

115

Split-screen And Other Hot Effects

©

: \'\dem‘o\md
O

Procedure CRTC_UnProtect;

Begin
Port[$3d4]:=$11; {Register 11h of CRTC (Vertical Sync End)}
Port[$3d5]:=Port[$3d5] and not $80 {clear Bit 7 (Protection Bit)}
End;
Procedure CRTC_Protect;
Begin
Port[$3d4]:=$11; {Register 11h of CRTC (Vertical Sync End)}
Port[$3d5]:=Port[$3d5] or $80 {set Bit 7 (Protection Bit)}
End;
The program WOBBLER.EXE consists of the main program A You can find
WOBBLER.PAS. The Assembler portion WOBBLER.ASM is @) WOBBLER.PAS
linked into WOBBLER.PAS: 7

ﬁ on the companion CD-ROM

©)

Uses Crt,Gif, ModeXLib,Tools;

const y=246; {height and position are defined here}
height=90; {can also be variables}
Var Sine:Array[0..63] of Word; {Sine table, will be filled later}
i:Word; {temporary counter}
Procedure Make_Wob(wob_pos,wob_height,wob_offset:word);external;
{$| wobbler}
begin
TextMode(3); {Wobbler functions in ANY video mode! }
Draw_Ansi(‘db6.ans’); {load Ansi file}
Sin_Gen(Sine,64,4,83); {precalculate sine}
CRTC_Unprotect; {enable horizontal timing}
ReadKey; {wait}
i:=0;
Repeat
inc(i); {generate movement}

Make_Wob(y,height,i); {draw wobble}
Until KeyPressed;

CRTC_Protect; {protect CRTC again}
End.

This program creates a test image in Text Mode 3, generates the sine table and then unprotects CRTC-
Registers 0-7 (CRTC_unprotect) to enable access to Register 4. The loop, initiated by a keypress, continually

increments the variable i, which gives the current offset within the sine table in the procedure call to
Make_Wob This creates the wavelike motion.

. > g
Finally, the protection bit of the CRTC is reset and the protection \‘ Wéoé’BCLE;:L’Rf’/’Z\‘f’S v
mechanism reactivated. The actual procedure Make_Wob is S

— on the companion CD-ROM
located in the module WOBBLER.ASM: P

5

Y
extrn WaitRetrace:far

data segment public
extrn sine:dataptr ;sine table
data ends
code segment public
assume cs:code,ds:data
public make_wob

make_wob proc pascal wob_pos,wob_height,wob_offset:word

XOr €X,CX ;row counter to 0
call waitretrace ;synchronization with cathode ray
next_line:

116

» @e@“’““d Split-screen And Other Hot Effects

inc cx ;increment row counter

mov bx,cx ;define position within the wobbler

sub bx,wob_pos

mov si,bx ;:note for end

add bx,wob_offset ;offset for movement

and bx,63 ;allow only values from 0..63 (array size)

shl bx,1 ,array access to words

mov bx,sine[bx] ;get value in bx

cli ;clear interrupts, because it's VERY time critical

mov dx,3dah ;select input status register 1
in_display:

in al,dx ;wait for (horizontal) retrace

test al,1

je in_display
in_retrace:

in al,dx ;wait for display

test al,1

jne in_retrace

cmp cx,wob_pos ;reached desired line ?
jb next_line ;no -> set default value
mov dx,3d4h ;CRTC register 4 (horizontal sync start)
mov al,4 ;select
mov ah,bl ;get sine value
out dx,ax ;and enter
cmp si,wob_height ;end reached ?
jb next_line
mov dx,3dah
waitl:
in al,dx ;wait for (horizontal) retrace
test al,1
jne waitl
mov dx,3d4h ;set sync start back to normal
mov ax,5504h
out dx,ax
sti ;allow interrupts again

ret
make_wob endp

code ends
end

The procedure uses the following parameters: The vertical position, height in screen lines and the offset for
the first line which then affects all the other lines. Incrementing this value by 1 moves the sine wave up one
line on the screen and changing it continuously produces a type of wave motion.

This procedure waits for the number of screen lines specified inwob_pos . Prior to the two wait-loops for
horizontal synchronization, the vertical position is calculated to save time later.

To access the sine table, the specified table offset is added. The result must fall within the table; therefore,
an AND operation is performed using the value 63 (see the "Variables In Assembly Language" section in
Chapter 1). Next comes the table lookup. The table consists of word entries (the reason for shl bx,1). The table
value is temporarily stored in BX.

117

Split-screen And Other Hot Effects i @e@o\\“‘*

The program now waits for the beginning of the display period and not a retrace, which is precisely what
we want to avoid. If the start-line has not yet been reached the line is incremented (jb next_line), otherwise
an access occurs and CRTC-Register 4 is loaded with a new (sine) value.

The value in register SI was saved earlier. It still contains the vertical position and is compared to wob
height .You mustalso wait here before resetting the register to its original value, so as not to interfere with
display of the last line. Note that you are waiting for the beginning of a line display.

Real-time Animation Made Easy: Palette Effects

The palette offers an excellent way to change the entire screen easily. All pixels of a particular color-value
can be changed to a new color in a single step.

Fade-out effect

The simplest effect that we can create this way is called a fade-out. Similar to what happens in a film, the
brightness of the image is reduced from normal to zero in a relatively short time. The palette makes a fade-
out very easy to accomplish. All colors are decreased by 1 within a loop and the newly calculated palette
is set. You then wait for the next retrace and again decrease by

1 until the entire screen is black. » The procedure fade_out

4 is part of the
> MODEXLIB.ASM file
The procedgre fade_out from the module MODEXLIB.ASM /; on the companion CD-ROM
performs this task:

fade_out proc pascal far ;fades out image, video-mode independent
local greatest:word ;contains maximum possible color value
mov greatest,63
mov ax,ds ;load destination segment
mov es,ax
main_loop: ;main loop, run once per image
lea si,palette ;source and destination offset to palette
mov di,si
mov cx,768 ;modify 768 bytes
Ip:
lodsb ;get value
dec al ;decrement
jns set ;if not yet negative -> set
xor al,al ;otherwise 0
set:
stosb ;write destination value in "palette”
dec cx ;loop counter
jne Ip
call waitretrace ;synchronize to retrace
call setpal ;set calculated palette
dec greatest ;decrement outer loop
jne main_loop ;still not finished ? then continue

ret
fade_out endp

Here, the variable max provides the terminating condition. This variable is actually only a counting
variable, counting backwards from 63 to 0, but you can also consider it as the current maximum image
brightness possible. Since this value starts out at 63 (maximum brightness of a red, green or blue

118

L_J) (‘O\)(\d

| 3 “de(Q

Split-screen And Other Hot Effects

component), max is initialized to 63. As the colors are decremented, this maximum brightness also
decreases until it reaches 0 and the entire image is certain to be black.

After loading the source and destination pointers in the main loop, the procedure returns the secondary
loop, which decrements the entire palette by 1. Each individual value is loaded, decremented by 1 and
written back, with 0 as the limit.

Once initialized in this way the palette is set by SetPal , synchronized of course with the vertical retrace.
It's also possible to set the palette at the same time as calculating it - just initialize the DAC for write-access
(port[$3c8]:=0) and rewrite the data each time to Port $3c9. There is, however, one serious disadvantage:
Calculating the new values takes a relatively long time; even longer than a retrace on slower computers.

The result is flickering at the top of the screen, which you can prevent by setting the palette all at once with
SetPal (repoutsb),a much faster process. The main loop how runs until greatest is 0 and the screen reaches
its darkest level.

> You can find
This palette effect also works in text mode (in the program ’ FADE_OUT.PAS
FADE_OUT.PAS) 4 on the companion CD-ROM

uses crt,modexlib,Tools;
var i:word;
Begin
GetPal; {load “Palette” with current DAC-palette}
Draw_Ansi(‘color.ans’); {load picture}
Setpal;
ReadLn;
Fade_out; {fade out picture}
ReadLn;
TextMode(3); {normal picture again}
End.

To work with the palette you must first load it from the DAC registers into the corresponding variable.
Normally in graphic mode, however, the palette is already stored in the variablePalette because the GIF
loader already placed it there. The call to Fade_Out is then just a formality.

This shows a major advantage of direct DAC programming over using the BIOS: Accessing the palette using
the BIOS is impossible in text mode and too slow in graphic mode. The only option left in this case is direct
register manipulation.

Fade-in effects

The opposite of fade-out is, naturally, fade-in. A fade-in begins with a black image and the brightness
increases to the desired palette.

The principle is the same as with fade-out. During each pass through the loop - synchronized with the
vertical retrace - you increment the color-values by 1 or more, until the target value (from the image's
original palette) is reached. Naturally you can't use 0 as the terminating condition, instead you must keep
comparing with the target value.

The following example program is called FADE-IN.PAS and is
primarily for demonstration purposes. We'll talk about a fade-
in which uses a more general (and much more powerful)
procedure in the next section.

» You can find
4 FADE IN.PAS
< on the companion CD-ROM

119

©

: \'\d@(@‘o\md
O

Split-screen And Other Hot Effects

uses crt,ModeXLib,Tools;
var i,j:word;

destpal:Array[0..767] of Byte;
Procedure Fade_in(DPal:Array of Byte);

Begin
For j:=0 to 63 do Begin {64 passes, in order to fade completely}
For i:=0 to 767 do {calculate 768 color values}
If Palette[i] < DPal[i] {current value still smaller that destination
value ?}
Then Inc(Palette[i]); {then increase}
WaitRetrace; {synchronization}
SetPal; {set calculated palette}
End;
End;
begin
ClrScr; {clear screen}
GetPal; {load “Palette” with current DAC-palette}

Move(Palette,Destpal,768); {save palette}
FillChar(Palette,768,0); {delete old palette}

SetPal; {and set}
Draw_Ansi(‘color.ans’); {load wallpaper}
ReadLn;
fade_in(Destpal); {fade to destination pal (original palette)}
ReadLn;
TextMode(3); {establish normal state}
End.

The main element of this program is the procedurefade_in . It receives the target palette as a parameter.
The image will have this palette when the fade is completed. The current palette is assumed to be black.

The main loop of this procedure runs 64 times, when the brightest of whites will be fully visible. The loop
calculates the new palette each time through and sends it to the VGA. The calculation is very simple: Each
individual color-value is checked to see whether it is still below the target value. If so, the value is
incremented, otherwise it stays at the target value (which cannot be exceeded).

The main program in FADE IN.PAS simply constructs a test image which is then faded in. Before this,
however, it reads the current DAC palette (the future target palette) and stores it inDestpal . The palette
itself can then be switched to black, the starting point for the fade-in.

Fading to the target palette from any source

Until now we have faded from a palette to black or vice versa. What's missing is fading from one palette
to another. At first this doesn't seem to make much sense, resulting only in a step-wise distortion of image
colors. However, this process can produce a very interesting effect (including its use in overlays which we'll
discuss later).

For instance, what if at the very end of a demo you took the last image and slowly reduced it to black-and-
white? You could then display text with the credits for example.

Now we'll use the new procedure. We'll still need to fade to the black-and-white palette. The first problem
here is how is a black-and-white palette generated? Although we could use a BIOS function for this, it's too
slow and inflexible. Fortunately, however, we can easily copy its method.

120

— =~
D (e

| 3 “de(

Split-screen And Other Hot Effects

A color consisting of red, green and blue components is recalculated to black-and-white by adding the three
components and assigning this value to all three colors in the new palette. Mixing all three colors in equally
always produces a shade between black and white.

So how do we combine the colors? Simply letting all three colors flow in equal proportions won't give a
satisfactory result. This is because the human eye doesn't perceive all colors as equally bright. For example
a blue dot of maximum brightness appears darker than a green one.

The optimal ratio, which provides the most natural-looking

display, is 30% of the red component, 59% of the green \\‘ The pr,gcsg#rgf%ike—bw
component and 11% of the blue component. This simple MODEXLIB.ASM file
calculation is performed by the procedure Make_bw from the 7 on the companion CD-ROM
MODEXLIB.ASM module:

Procedure Make_bw; {Reduces a palette to black-and-white}
Var i, sum:Word; {Valuation: 30% red, 59% green, 11% blue}
Begin

For i:=0 to 255 do Begin
Sum:=Round(WorkPal[i*3]*0.3 + WorkPal[i*3+1]*0.59 + WorkPal[i*3+2]*0.11);
FillChar(WorkPal[i*3],3,Sum); {Enter values}
End;
End;

For each individual color, the loop first calculates the sum. It then uses FillChar to write it to all three
components. The program simply uses the Pascal floating- <)

point calculation To form the sum because speed is not the main 4 p) You can find

object. The rest is simple percentage calculation. The fade on e ?t;\nD”lEgr;l;oohPé‘Ds-ROM
procedure is illustrated in the FADE_TO.PAS example:)/ i

uses crt,ModeXLib,Tools;
var i:word;
origpal,
destinationpal:Array[0..767] of Byte;
begin
ClrScr;
GetPal; {load “Palette” with current DAC-palette}
Move(Palette,OrigPal,768); {save palette}
Move(Palette,Destinationpal,768); {set Destination-Palette}

Draw_Ansi(‘color.ans’); {load Ansi-picture}
Make_bw(DestinationPal); {DestinationPal to black/white}
readkey;
fade_to(DestinationPal,1); {fade to black/white palette}
ReadKey;
fade_to(OrigPal,1); {fade to original palette}
ReadLn;
TextMode(3); {normal state}

End.

This procedure uses a colored text screen which fades to black when a key is pressed and faces to color again
when another key is pressed.

To do this, GetPal is used to load the current text mode palette. This palette is then stored inOrigPal for

later use and in DestinationPal for the black-and-white calculation.
Once the screen is initialized, a call to Make_bw recalculates DestinationPal to black-and-white. At
this point nothing changes on the screen because only the array DestinationPal is being modified. The

121

Split-screen And Other Hot Effects i~ @e@w““d

actual call to fade_to occurs after a key is pressed. Passed to this procedure is the target palette, or end
result. The only requirement is that the current palette displayed by the VGA is the same as the one in the
variable Palette

Procedure fade_pal uses another parameter as the step size to be used for fading. This determines the
speed of the entire process. As each image is built, each color

value is incremented/decremented by the amount given. The 7Y
larger the value the faster the image fades.

The procedure fade_to
is part of the
& MODEXLIB.ASM file
7% on the companion CD-ROM

Procedure fade_to itself is found in the MODEXLIB.ASM
module of the ModeXLib unit:

fade_to proc pascal far destinationpal:dword, lengthl:word, step:byte
;fades “palette” to “destinationpal”, passed by Pascal as array of byte !
local greatest:word

mov ax,63 ;calculate number of passes
div step ;necessary to reach 63
xor ah,ah

mov greatest,ax

next_frame:

les di,destinationpal

;set number of loop passes

;get offset holen, Pascal passes arrays far !

lea si,palette ;get offset of “palette”
mov cx,768 ;process 768 bytes
continue:
mov al,[si] ;get value from current palette
mov ah,[di] ;get value from destinationpal
mov bl,ah
sub bl,al ;difference to destination value
cmp bl,step ;more than one step over ?
jgup ;-> decrement
neg bl ;difference
cmp bl,step ;greater than negative step
jg down
mov al,ah ;destination reached, finally set
write:
dec cx ;decrement color loop
je finished :0 2 -> finished
mov [si],al ;write value in palette
inc si ;select next value
inc di
jmp continue ;and continue
down:
sub al,step :decrement
jmp write
up:
add al,step ;increment
jmp write
finished: ;palette calculated
call waitretrace ;synchronization
call setpal ;set palette

dec greatest
jne next_frame
ret

fade_to endp

122

;all 63 passes finished ?
;:no -> continue

L_J) ((o\k“d

| 3 “de(Q

Split-screen And Other Hot Effects

Next es:di is loaded with the palette pointer passed by Pascal. Only the offset is important here since the
palette lies in the data segment anyway; however, it cannot hurt to also load the ES register (or perhaps mov
di,destpal + 2 looks better to you).

The loop continue , which runs 768 times (256 colors * 3 components), loads AL with the current value of
the just-processed color and AH with the target value to be reached. Now only the fade direction needs to
be determined - up for increasing brightness or down for decreasing brightness. A simple comparison,
however, is not enough.

Imagine thissituation: The initial value is 0, the target value is 15 and the step size is 2. After 7 passes through
the loop the current value is 14, which is too low and therefore must be incremented. It then becomes 16,
which is too high and so is set back to 14. The palette entry continuously oscillates fluctuates around a
particular value and never arrives at the target. This is disastrous, especially at fast fade rates and large step
sizes where the oscillations are correspondingly large as well.

The solution is to test whether the current value has approached the target value by less than one step size.
To do this the procedure simply forms the difference (in Register BL.: if positively greater (JG, Jump if
Greater) than the step size, the value is still far above its target value and must be decremented. On the other
hand if the difference is less than (the amount is greater) a negative step size, the value must be incremented
(NEG BL can be used to compare with a positive step size). When neither condition exists, the target value
has been reached and the two values can be set equal to each other to eliminate the final small difference.

It makes no difference if you subtract the step size from the current value at Labeldown , add the step size
to the current value at Label up or set both values equal to each other. Either way the path leads towrite
which enters the new value into the palette and moves the pointer forward. When all 768 values have been
processed, the program branches from the inner loop to Labelfinished . Here, after synchronization, the
new palette is set and if greatest is still not 0, the next palette calculated (next_frame, following new image
(frame) construction).

Film techniques: Fading from one image to the next

When fading between images it's much more effective to fade-out the first image and then fade-in the next
image (unless you're intentionally making abrupt changes for effect). The procedures we've talked about
so far can already do this. However, you must create a gradual transition from one image to the next for
truly professional results.

As you can imagine, there are many "morphing" programs designed for this purpose. However, morphing
programs deal with fixed images where the morph process calculates the desired changes. This requires
enormous resources which occupy a great deal of room on both the hard drive and in memory.
Furthermore, they must be copied (slowly and tediously) into video RAM. This method is an alternative
to the real-time fade ins..

Fading in palette images (the graphic modes discussed are all palette-based) is basically a simple palette-
fade. It uses the procedure fade_to we talked about in the previous section. Only with complicated
metamorphoses, which combine image sections while moving at the same time, would you need to use
morphing software.

Basically then you just fade one palette to another. However since the images lie one on top of the other and
a change of image data (as in morphing) is out of the question due to speed considerations, the same image

123

Split-screen And Other Hot Effects i~ @e@ox\““

data must represent different images depending on the palette. First, the source palette is active so the data
represents the source image. At the conclusion, the target palette is active and the same image data now
represents the target image. The intermediate steps are executed by the procedure fade_to

This method raises two questions:

1. How do you manipulate image data so it will represent (depending on the palette) both the original,
or source, image as well as the target image?

2. How do you create a palette that generates different images from the same data?

Let's look at question 1 first. With this type of fade, we're working with a fundamentally different problem
than before. Until now, either the target color (fade-out) or the initial color (fade-in) was identical for all
pixels, specifically black. Now any color can be faded to any other color. Some red pixels will be green in
the target image, but some will later be blue.

Anyone familiar with the field of random combinational logic in mathematics recognizes what this means
for the number of colors. The number of possibilities resulting from a particular number of colors combined
with an equal number of different colors amounts to the number of colors squared. Each combination must
be included in the fading and therefore requires an entry in the palette. To convert a two-color image to
another two-color image, 4 palette entries are needed (Color 0 to Color 0, staying the same, Color 0 to Color
1,1to 0and 1 to 1). So, with only two four-color images, 16 entries are already required.

Since VGA has only one palette consisting of 256 colors, the largest number of colors you can have without
changing image data is 16. For multiple flicker-free fades, however, this number (as we'll explain later) is
further reduced to 15.

Based on these combination possibilities, we can now derive a method for mixing the images. Because each
combination must be represented, we use N blocks of N entries each, where N represents the number of
colors per image. The block number corresponds to the target color, while the index within the block
corresponds to the source color. A different way is also possible but that would unnecessarily complicate
the reset (explained below). To determine the color number simply use the following formula:

color number := target color * number of colors + source color

You may already be familiar with this principle. The same method is used to convert a hexadecimal byte
to a decimal number: Upper nibble (higher-order position)*16 + lower nibble. With 16 colors this would
increase the speed tremendously: Simply load the target color in the upper nibble and the source color in
the lower nibble to obtain the color value you need. The only problem with this is that instead of 16 colors
we can only use a maximum of 15, so we must stay with the difficult multiplication. Fortunately, the part
of the program handling the multiplication is not time-critical and creates at most a barely noticeable delay
prior to the actual fade.

The following illustration shows the block setup for two four-color images fading into each other:

124

Split-screen And Other Hot Effects

Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color
value | value | value | value | value | value | value | value | value | value | value | value | value | value | value | value
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Source |Source [Source |Source |Source | Source| Source | Source| Source |Source | Source | Source | Source | Source | Source [Source
color | color | color | color | color | color | color | color | color | color | color | color | color | color | color | color
0 2 3 0 1 2 3

1 2 3 0 1 2 3 0 1
Line color O Line color 1 Line color 2 Line color 3
Block O Block 1 Block 2 Block 3

Color palette for fading

This illustration answers the second, still outstanding, question about palette organization. The block
structure corresponds exactly to the palette structure. The source palette (of size 1 block) is copied the same
number of times as the number of colors - creating exactly identical source blocks - while the target palette
is expanded to its full size. This is done by individually multiplying each color so all the blocks in this palette
are homogeneous.

Note this effect does not require multiple video pages or copying precalculated pages to the screen.
Manipulation can take place directly on the screen.

You should be aware however the visible image doesn't change during the modifications (palette-
generation and mixing). Otherwise, the image would flicker. Since the image cannot change there are two
points to consider: First, the active palette can be changed only in areas where colors are not currently on
the screen. Second, when changing the image data the palette must already be initialized so the modified
pixels can again assume their original colors. So, if a red pixel, for example of Color 3, is to be set to Color
23, you must make certain that Color 23 already contains red, so nothing changes on the screen.

Next is the order of procedure calls to be maintained when fading:
1. Initialize palettes, changing only inactive colors
2. Mix image data, no change yet visible
3. Fade palettes into each other.

The requirement that only inactive palette areas can be changed results in adding an extra color block. This
block initially contains the source colors, used by the source image. Since a four-color source image
normally uses Colors 0 to 3, the new block will also be at this location. To generate the source palette (in this
case copy the block four times), the block is taken as the initial palette and multiplied. The block itself does
not change, so at this point nothing happens on the screen.

This block, which is known as the Reset-Block, has another important task to accomplish. Once the fade has
executed, the visible image now has a much larger palette than either of the original images, specifically the
number of colors squared. You'll have a problem if you want to fade-to yet another image because the
maximum number of colors is 15. Fortunately, the target blocks are homogeneous which means all the
colors in each block have the same contents and can therefore be replaced. There are only four different
colors in our example, after all, on the monitor.

To reduce these many colors to a fadeable palette, you would again use the Reset-Block, which should
already contain the source palette. This is also why it's called the Reset-Block. The greatly expanded image
data is reduced, or reset, to this block. After the fade the Reset Block contains the actual target palette, so
only the image data needs to be recalculated.

125

Split-screen And Other Hot Effects i~ @e@w““d

This calculation is very simple because only the expansion needs to be reversed to go back to the actual
target color. To obtain the block number and therefore also the target color, simply divide by the number
of colors. As with all such operations, you must still subtract the Reset-Block.

The Reset-Block is also the reason the number of colors must be limited to 15. In addition to the palette
entries required for fading (N2, n represents the number of related colors), a Reset-Block is also needed,
which again must contain n colors. In the end, fading two images requires n*n+n or (n+1)*n palette entries.
With 16 colors this would amount to 16*17 = 272 palette values, which unfortunately VGA does not provide.
Therefore 15 color images are the most that can be faded into each other, requiring 15*16=240 colors.

It often makes sense to restrict the colors even further to free unused colors at the upper palette end. You
can then use these colors for static image sections, such as a fixed logo underneath which texts are faded
into each other. Only colors from the very top of the palette can be used for the static image because the lower
ones are already used for fading.

In mixing the two images, the new palette entry is calculated according to the above formula and rewritten
to VGA-RAM. Remember, in practice only another block number is written the index within the block
(corresponding to the source color) does not change. Since at this point all the blocks have the same contents,
nothing changes on the screen.

At the end, the current palette (which originates from copying the source palette), is faded to the expanded
target palette, so all blocks are homogeneous and contain the target color. The target image then becomes
visible. Only the fading itself makes the changes visible, so this is the only time-critical phase. The procedure
we are using,fade_to , is very speedy however. For each image construction only the palette registers are
reloaded,; this is much faster than changing the image data itself.

\\ .
We're including the following as an introductory fade o 7 | FAYSIL:ng\}g'gAS

application. The program, called FADE_OVE.PAS, uses the ,/): on the companion CD-ROM
FADE.PAS unit which we will describe below.

uses Crt,ModeXLib,gif,fade;

Var picl_pal, {palettes of both pictures}
pic2_pal:Array[0..767] of Byte;
picl, {contains 1st picture}
pic2:Pointer; {2nd picture, equals vscreen}
Begin
Init_Mode13; {Mode 13h on}
Screen_off; {screen off during loading}
LoadGif('chess"); {load first picture}
GetMem(pic1,64000); {get memory for 1st picture}

Move(vscreen”,pic1”,64000); {save in picl}
Move(Palette,picl_pal,768); {and save the palette}

Show_Pic13; {this picture on screen}
LoadGif(‘box’); {load next in vscreen” }
pic2:=vscreen; {pic2 used as a pointer to it}

Move(Palette,pic2_pal,768); {save its palette}
Move(picl_pal,Palette,768); {enable palette of picture 1}

SetPal; {and set}
Screen_on; {switch screen back on now}
ReadLn; {wait}

Fadel(pic2,pic2_pal,0,0,200);

{and then fade in picture 2)}
fade_ResetPic(0,200); {prepare renewed fading}
ReadLn;

126

» @e@“’““d Split-screen And Other Hot Effects

Fadel(pic1,picl_pal,0,0,200);
{and fade in picture 1}
ReadLn;
TextMode(3);
End.

This program fades two completely different GIF images into each other. It requires two variables. Variable
picl contains a pointer to the image data of the first image in main memory (this pointer must first be
allocated). Variable pic2 points to the second image - here an allocated block of proper size already exists
in main memory (vscreen). For clarity, however, we'll continue referring to the pointer pic2

The two individual palettes are stored in the variables picl_pal and pic2_pal

After turning on Mode 13h the program disables the screen because the palette changes during loading. A
professional looking demo might display a blank screen during the loading process.

The first image is loaded and moved to address picl (previously allocated); its palette is stored in
picl_pal

The second image is loaded after the first image has been copied to VGA RAM. This image is found in
vscreen for the remainder of the program. However, we'll use its equivalent, the pointer pic2 , which
at this point must still be allocated. Once the second palette has also been stored in a variable, the program
activates the first palette (copies it toPalette) and sends it to the VGA (setpal). The screen can now be
turned on again.

The fading itself occurs in the procedure Fade. It receives the following parameters:
» The target image's address
» Its palette
» The y-coordinate within the target image
» The y-coordinate to which the target image should be copied
» The height of the target image

The last three values have no direct function so far in this program because they describe the copying of a
complete image. The first two parameters contain values for the second image (the image being faded to).

After fading, the image is reset to enable another fade. We also pass a y-coordinate within VGA-RAM here
and a height although they still perform no function. The program then fades back to the original image and
ends.

The central command of this program is the call to the procedure *\‘ You can find

Fadel . This procedure, found in the unit Fade, combines all the FADE_OVE.PAS

tasks necessary for fading. "’* on the' compail R

Unit fade;

{used to fade a picture (part) that has just been displayed into a new one}
Interface

Uses ModeXLib;

Var Colors:Word,; {Number of colors per single frame}

Procedure fade_ResetPic(y,Height:Word);

127

Split-screen And Other Hot Effects

©

: \'\dem‘o\md
O

Procedure Fadel(Pic:Pointer;Pal:Array of Byte; Start,y,Height:Word);

Implementation
Var i,j:Word; {temporary counter}
Destination_Pal:Array[0..768] of Byte; {temporary destination palette}

Procedure fade_set(Source:Pointer;Start,y,Height:Word);external;

{"mixes" source with VGA-Ram}

{use source beginning at Start line and VGA-Ram beginning at y line at height of Height}
Procedure fade_ResetPic(y,Height:Word);external;

{prepares faded picture for another fade}

{reduction of "Colors"2" to "Colors" colors}

{here again y=line in VGA-Ram, Height=Height of area to be edited}

{$l fade}

Procedure fade_CopyPal;
{multiply palette on Colors"2 (multiply non-homogenous Block 0)}
Begin
For i:=1 to Colors do
Move(Palette[0],Palette[i*3*Colors],Colors*3);
End;

Procedure fade_spread(Var Pal:Array of Byte);
{spread palette to Colors"2 (multiply each color separately)}
{the homogenous blocks are formed here from the colors 0..Colors-1}
Begin

For i:= 0 to Colors-1 do {edit each color separately}

For j:=0 to Colors -1 do {write Colors once each time}

Move(Pal[i*3],Pal[(i+1)*3*Colors+j*3],3);
End;

Procedure Fadel(Pic:Pointer;Pal:Array of Byte; Start,y,Height:Word);
{Fades from current visible picture to Pic (with Palette Pal). During
this process, in the "Start" row, the program begins copying "Height"
rows to the y-coordinate y of the current picture.}

Begin
WaitRetrace; {synchronization}
fade_CopyPal; {multiply block in current palette}
SetPal; {reset this palette}

Move(Palette,Destination_Pal,768); {keep original palette parts}
Move(pal,Destination_Pal,Colors*3); {load destination palette}
fade_spread(Destination_pal); {spread destination palette blocks}
fade_set(pic,start,y,height); {mix in new picture}

fade_to(Destination_pal,1); {and fade}
End;
Begin

Colors:=15; {only default value '}
End.

The only global variable in this unitisColors , which gives the number of colors in each individual image.

When fading two 15 color images into each other this value equals 15 (the default value).

The entire fade process is controlled by the procedure Fadel. To eliminate flickering, it first waits for a
retrace. The procedure then takes the source palette, which is actually the current palette (in the variable
Palette), and copies it to initialize it for fading. This palette is then set (no change occurs on the screen

because only inactive palette entries are being changed).

The target palette is assembled by the two Move statements which follow. The current palette is taken as
the source palette so static image sections, which use entries at the very end of the palette, are also

128

D (e

| 3 “de(

Split-screen And Other Hot Effects

represented in the target palette. The palette passed in the variablepal then goes into the lower area (Colors
entries of 3 bytes each). This lower area is expanded and initialized for fading by fade_spread

The actual image data is mixed infade_set , so depending on the palette the data will represent either the
source or the target image. Finally, the actual fade to the target palette takes place, using the familiar
fade_to procedure, and the target image slowly appears on the screen.

The unit contains two internal Pascal procedures fade_CopyPal and fade_spread . Since speed is not
important here, we've kept these procedures in Pascal for greater clarity. fade_CopyPal initializes the
source palette (contained in Palette) by copying the Reset-Block (Colors 0 to Colors -1)Colors times. The
loop simply copies Colors *3 bytes to the block positions Colors times.

fade_spread s slightly more complicated. Each color must be expanded to one block. The program
accomplishes this through two nested loops. The outer loop (counter i) expands each color (from 0 to Colors
-1) to the necessary width. The j loop is inside this loop. It generates Colors copies of each color, lying
directly one behind the other within the block. Now the block corresponding to a particular color is filled
with this exact color. The Move statement is responsible for the filling, whereby the active color (at palette
position i*3) is copied to each position (j*3) within the current

block ((i+1)*3*Colors). A vou can find

Besidesthese Pascal procedures, the unitalso usestwo Assembler ‘on the CO’;/‘IAL%%/'ISI?AC?D-ROM
procedures from the module FADE.ASM: fade_set and pr
fade_ResetPic

data segment public
extrn colors:word
data ends
code segment public
assume cs:code,ds:data
public fade_set,fade_ResetPic
coldb 0 ;code segment pendant to colors

fade_set proc pascal near source:dword, start:word, y:word, height:word

mov ax,colors ;colors entered in code segment variable col
mov col,al
push ds
mov ax,word ptr source + 2 ;source pointer to ds:si
mov ds,ax
mov si,word ptr source
mov ax,320 ;start address within the source image
mul start
add si,ax
mov ax,0a000h ;destination pointer 0a000:0 to es:di
mov es,ax
mov ax,320 ;start address within the destination image
muly
mov di,ax
mov ax,320 ;convert height to number bytes
imul height
movV Cx,ax
Ip: ;main loop
lodsb ;destination value in al
mul col ;calculate new color value
add al,es:[di] ;add current value
add al,col
stosb ;and write back

129

©

: \'\dem‘o\md
O

Split-screen And Other Hot Effects

dec cx ;all pixels copied ?
jne Ip
pop ds
ret
fade_set endp

fade_ResetPic proc pascal far y:word, height:word

mov ax,0a000h ;VGA address 0a000:0 to es:di
mov es,ax
mov ax,320 ;take row y into consideration
mul y
mov di,ax
mov ax,320 ;calculate number bytes to be processed
mul height
mov cx,ax
res_|p:
mov al,es:[di] ;get value
xor ah,ah ;clear ah during division !
div byte ptr colors ;calculate block number
dec al ;remove reset block
stosb ;write back
dec cx ;all pixels finished ?
jne res_lIp ;no, then continue

ret
fade_ResetPic endp
code ends
end

These procedures also refer to the global variable Colors , which is listed here in the data segment. In the
meantime because of changes made to ds,fade_set can no longer access this variable and must therefore
use the code-segment variable col

Todothisfade_set first copiesthe contents of Colors toCol , whereby ds is now free to accept the target
pointer (segment component). Si then receives the offset of the target image (image data). Here you must
consider the starting coordinate, which gives the line from which the target image is read. This offset is
calculated by multiplying by 320 and is then added to si.

Next the pointer es:di receives the VGA address, where the segment is simply the VGA-RAM start-segment.
As with the target image, the offset is calculated by multiplying the y-coordinate by 320.

Finally, cx also receives a value, which is the height multiplied by 320. The procedure then enters the main
loop Ip.

Here the procedure reads the target value from the target image (ds:si). This value corresponds to the block
number. It must, therefore, be multiplied by the number of colors. As an offset within the block, the source
image color is read from video RAM and added on.

After writing this value back, the loop ends by decrementing cx and performing the required branch.

The second procedure in the assembler portion is fade_ResetPic . It reduces the visible image back to
Colors colors once the fade is complete. Using the block number, which corresponds to the target color,
the colors are reduced to the Reset-Block (color numbers 0 to Colors -1).

Here again, a pointer to VGA-RAM at the corresponding y-coordinate is stored in es:di, and based on the
height cx receives the number of passes through the loop.

130

— =~
D (e

| 3 “de(

Split-screen And Other Hot Effects

The main loop in this procedure isres_Ip . It reads a value from video RAM, calculates its block number
by dividing by the number of colors and rewrites the value. Again it must consider the Reset-Block, which
keeps block numbers in the range 1 to Colors . They must, however, return to their actual color values
in the range 0 to Colors -1. The loop then closes and the procedure ends.

In our example a full 15-color image was faded into another 15-color image, involving (almost) the entire
color palette. Reducing the number of colors to 14 for example, gives you colors at the upper end of the
palette which are unaffected by the fading. You can then use these colors to display static image sections
which remain unchanged during the fading.

This is one way of displaying credits for a demo. A small image

(say, a screen shot) is faded in for each demo section. Then text \; FX[%%C?';;{IEAS
g;rt:eencredlts are faded into each other in the bottom half of the =7 on the companion CD-ROM

You can see this process in the program FADE_TXT.PAS:

Uses Crt,Gif,ModeXLib,Fade;

Var
Text_Pal:Array[0..767] of Byte;
i:word;
Begin

Init_Mode13; {use Mode 13h}

Screen_Off; {screen off during loading}

LoadGif('vflog210'); {load static part}

Move(Palette[210*3], {its palette part (colors 210..255)}

Text_Pal[210*3],46*3); {enter}

Show_Picl3; {copy static picture to VGA}

LoadGif('texts'); {load picture with texts}

Move(Palette, Text_Pal,14*3); {its palette part (colors 0..13)}

{enter}

Move(Text_Pal,Palette,768); {set finished palette}

SetPal;

Move(vscreen”, {first text can be copied}
Ptr($a000,160*320)",19*320);{directly to screen}

Screen_On; {picture now finished -> switch on}

Colors:=14; {pictures with 14 colors in this program !}

For i:=1 to 6 do Begin {fade to the next 6 texts, one after the other}
Delay(500); {time to read}
Fadel(vscreen, {fade next picture to old location (y=160)}

text_pal,i*20,160,19);
Fade_ResetPic(160,19); {and "reset"}
If KeyPressed Then Exit; {anyone who has had enough can cancel here}
End;
ReadIn;
TextMode(3);
End.

This program first loads the static portion onto the screen, and writes its contribution to the total palette into
the variable Text_Pal . The image with the texts is then loaded into vscreen and its palette section copied
to Text_Pal , after which the palette is loaded and set.

The program next copies the first text portion directly to video RAM, because a fade is not yet required. Once
the image is switched back on, the main loop begins. For each of the remaining six texts the following occurs:
First, the program waits for half a second to give the viewer time to read. The text is then faded in, this time
using the coordinates in the call to Fadel. The program copies from the target image starting at Line i*20,

131

Split-screen And Other Hot Effects i Ge(gm““d

unt

because in this example the texts begin at y-coordinates 0,20,40, etc. They're all 19 pixels high and are faded
in at screen line 160.

The same coordinates are again used in the call to Fade ResetPic . At the end comes a (not very
structured) wait for a keypress, enabling the user to exit.

When developing your own images for this effect, the correct palette distribution is important. For images
being faded the maximum number of colors is 15 images with more colors need to be reduced. In all cases
these colors must lie in the lowest area of the palette (0..Colors -1).

The following formula gives the number of colors for the static image:
static colors = 256 - dynamic colors * (dynamic colors+1)

The static colors must always lie at the upper end of the palette, because only this area remains unchanged
during fading.

Therefore when fading 15-color images back and forth, at the end of the palette there are 256-15*16 = 16
colors left over for static images (Colors 240 to 255). In a 13-color fade there are 256-13*14 = 74 colors (Colors
182 to 255).

The faster alternative: Animation through palette rotation

So far in this chapter we've talked about using simple palette modifications to change large areas of the
screen in asingle step. We can extend this advantage of palette-based graphic modes to animations. Images
in a true animation not only fade-in and fade-out but actually move across the screen.

How is this possible? As a simple example, let's take a red pixel and move it ten pixels from left to right. To
do this, just draw ten pixels next to each other, each with a different (adjacent in the palette) color, in this
example Colors 0 to 9. Now if you set Color 0 to red and the other nine colors to black, only the first of the
ten pixels will be visible. Now shift the palette up by one, so Color 1 is red and Colors 0 and 2 through 9 are
black. The second pixel becomes visible and the first disappears.

Continue to shift the palette and the pixel will travel across the screen from left to right, without a single
byte changing in video RAM (once the ten pixels are initialized). When the red entry arrives at the upper
end (Color 9), you can set it back to Color 0 and thereby creating a cyclic animation where the pixel
continually moves from left to right and jumps again to the left. You can also reverse the motion at the end
so the pixel moves back and forth.

This method obviously makes little sense for a single pixel. Instead of two bytes being changed in video
RAM (clear old pixel, set new one), you're already resetting ten color-values using relatively slow accesses
to a port. A much more efficient method with large and/or complicated images is palette rotation. We
recommend using palette rotation with either a high number of pixels or complex mathematical descriptions
of motion are involved.

You must format larger areas before they can be moved. These areas cannot consist of just one palette color,
instead the colors must flow in the direction of motion. You are, in effect, moving line by line. The following
illustration shows how this is done:

132

L_J) (‘O\)(\d

| 3 “de(Q

Split-screen And Other Hot Effects

red
Color 0 rad Color 0
I'cuu
Color 1 Color 1 hlhiio
vue
Color 2 hhia Color 2
19119 L
Color 3 Color 3 rad
red
Color 0 red Color 0

Color configuration for motion

We're scrolling up through blocks 2 pixels in height. The principle is exactly the same for larger blocks and
more complex structures. The sample image contains two-and-a-half blocks, alternately colored red and
blue. The number of blocks makes no difference; you can expand the image up and down as far as you like
but the order of colors must be maintained. Fractions of blocks are also possible.

The structure of the overall image is periodic, in other words, it repeats itself after two blocks. Therefore two
blocks are filled using a constant color progression from Colors 0 to 3. In the palette, Colors 0 and 1 are set
to red and Colors 2 and 3 to blue. These initializations are best made in a paint-program, so all our program
needs to worry about is the motion itself.

You generate this motion by shifting the (partial) palette one position downward over the range 0 to 3. Color
0 receives the color from Color 1, Color 1 the one from Color 2, Color 2 the one from Color 3 and Color 3
the one from Color 0, therefore creating a rotation. As you can see in the illustration, the red and blue areas
are shifted up by one line, exactly as we intended.

This method of scrolling doesn't make too much sense either, since you can just as easily do the same thing
by changing the screen-start address (Linear Starting Address). The simple block structure of our example
becomes interesting only when you add effects. For example, if you construct a chessboard out of these
blocks and use a paint program to rotate it backward slightly, palette rotation will give you a backward
scrolling or forward scrolling plane. Programming this conventionally through pixel manipulation
requires far too much calculation. So leave the calculating to the paint program, and all your program needs
to do is move a few bytes in memory and set the palette.

A further advantage is that objects can be placed freely in front of the scrolling-plane. Normally you would
have to copy the objects there with each image construction, using a (relatively slow) sprite routine. With
this technique the objects can be static within the image.

When creating such images, in all cases, you must have a palette-based paint program. Unfortunately, most
of today's Windows paint programs are based on TrueColor, which makes it impossible to tell what palette
color a pixel will later assume. For coherent color progressions, you need direct control over the palette.

We created the PALROT.GIF sample image in Deluxe Paint I Enhanced. This program handles perspectives
and direct palette manipulations. First, a black-and-white chessboard was drawn. We then filled all white
blocks with Colors 16 to 31 (color progression red to blue) and all black blocks with Colors 32 to 47. You can

133

o))
Split-screen And Other Hot Effects i~ ce(g‘o\\“‘*

unt

now freely manipulate this chessboard. Its graphic presentation has no affect on the palette rotation; in our
example we have angled it backward so it represents a plane.

Notice the logo above the chessboard. It occupies unused areas at the upper end of the palette. Above the
chessboard and to the right you see a slightly different application of palette rotation often used in
adventure scenes called a fountain. The fountain uses Colors 48 to 63, with a progression from black to blue.
When placed in front of a black background, this color combination creates the impression of flowing water.

The last effect in this image is a red "radar screen”. This is generated with a circular color progression from
Color 64 to 88. This color progression consists of 25 concentric circles which have adjacent color-values.
Only Colors 64 and 80 are set to red in the palette. The remaining colors are set to black. When these two
red color-rings are rotated, they move across the rings with Colors 64 through 80, and generate expanding
concentric circles.

For basic control of effects, Deluxe Paint has a function called Rotate color, which (very slowly) carries out
a rotation. But how do you generate this effect in your own programs? Here we present the procedure
Pal_Rot , from MODEXLIB.ASM module, which receives the

area to be rotated as a parameter. In the normal case, the area in » The procedure Pal_Rot
question shifts downward by one position (toward lower color is part of the
MODEXLIB.ASM file

numbers), and the lowest color moves back to the top. However,
if the first limit passed is larger than the second, the procedure
rotates upward:

‘“ on the companion CD-ROM

Pal_Rot proc pascal far Start,End1:Word
;rotates palette part by 1 from start to end1
;if start < end1 : rotation down
;if start > end1 : rotation up

mov ax,ds ;es to data segment
mov es,ax
lea si,palette ;set palette offset
mov di,si ;also to di
mov ax,3 ;convert "start" to palette offset *
mul start
add si,ax ;and add to si
mov ax,3 ;same for destination
mul end1
add di,ax ;add to di
mov bx,|[si] ;store bytes of start color
mov dl,[si+2]
mov cx,di ;difference between start and end is number
sub cx,si ;bytes to be copied
mov di,si ;start color as destination offset
add si,3 ;one color above as source offset
;ready for forward copying
cld ;default: forward copy
or CX,CX ;if cx negative (start > endl)
jns forward
std ;then backwards copy
neg cx ;correct cx
sub si,4 ;si to 2nd byte of penultimate color
add di,2 ;di to 2nd byte of last color
add cx,2 ;copy 2 bytes more,
forward: ;S0 that position is correct after copy loop

134

— =~
D (e

Split-screen And Other Hot Effects

| \“‘de(
rep movsh ;copy colors
mov [di],bx ;bytes of old start color
mov [di+2],dl ;write as last color
cld ;clear direction-flag again
ret
Pal_Rot Endp

Once the passed color-value is converted to byte-offsets, the starting color needs to be stored because the
remaining colors will shift toward it and overwrite it.

The number of bytes to be shifted equals the difference between the two offsets, which is calculated below.
To initialize the shift itself, di is set to the initial offset since the shift proceeds in that direction. Assuming
a forward shift, si is set to the following color, which in the first step is copied to the staring color.

If Start is greater than End (number of bytes to be copied is negative), the copying proceeds upwards
and certain registers need to be adjusted. First, the Direction-flag is set because with overlapping source and
destination areas, a memory shift from bottom to top means the program must copy backwards. Otherwise,
the copied values would overwrite the uncopied ones, giving you at best a very ineffective algorithm for
filling a memory area.

Also, since cx is negative, you need to reverse its sign. Next si and di must be properly aligned, because si
at this point is on the color-value immediately following the palette area (it was moved there previously
with add si,3, which is correct for forward copying). Now si must be set to the last byte of the second-to-
last color (the last byte because rep movsb copies backward). Also, di must point to the last (second) byte
of the last color so this color and the ones below it from top to bottom are filled.

Due to this positioning, when the copying ends di does not point to the lowest color. You can fix this by
inserting a copy-direction inquiry after the loop and adjusting di accordingly, but it's easier to just copy two
more bytes and after the copy-loop, replace them with the stored start-color bytes. This loop and the
replacement of the copy-loop are again identical for both directions, and therefore follow directly after the
label forward . Finally, the Direction-flag is cleared to avoid

confusion in other procedures from incorrect string-directions. S You can find

4 PALROT.PAS

The companion CD-ROM includes the sample program ,,), on the companion CD-ROM
PALROT.PAS, which uses the image PALROT.GIF:

Uses Crt,ModeXLib,Gif;

Var slow_flag:Boolean; {for controlling the slow progressions}
Begin

Init_Mode13; {Mode 13h on}

LoadGif('palrot'); {load and display image}

Show_Pic13;

Repeat

Pal_Rot(16,47); {move "chess board"}

If slow_flag Then Begin {with every other progression:}
Pal_Rot(63,48); {move "fountain"}
Pal_Rot(88,64); {move "radar"}

End;

slow_flag:=not slow_flag; {alternating "fountain" and "radar"}
{enable and lock}
WaitRetrace; {synchronization}

135

Split-screen And Other Hot Effects i~ @e@w““d

SetPal; {set rotated palette}
Until KeyPressed; {until keypress}
TextMode(3);

End.

This program loads the image onto the Mode 13h screen and in a loop, rotates through the palette areas of
each effect in the corresponding direction. To experiment with these directions, switch the values passed
to Pal_ Rot .

While the chessboard scrolls at full speed, this is too fast for the fountain and radar screen; the palette
sections for these are rotated only every other pass through the loop. This is controlled by the Boolean
variable slow_flag which alternates between TRUE and FALSE).

Blazing Monitors: FIRE!

Watching a "blazing" fire on your screen may not seem so special today as it would have been a few years
ago. These flames, however, are based on painted images played consecutively one after the other. We'll
also talk about another option often used in demos which directly imitates the structure of the flames.

There are two important points to consider here: A fire continually moves upward. Also, fire starts out

white at the bottom and fades more towards red as it nears the » The procedure Show._Screen
top. The program FLAMES.PAS illustrates the procedure. Two 4 is part of the
buffers are required to reproduce the video RAM (or its lower FLAMES.PAS file

half) in fast system RAM. 5 on the companion CD-ROM

The procedures Show_Screen , Prep_Pal and the main program are very easy to understand:

Procedure Show_Screen; {copies finished screen to VGA}
Var temp:Pointer; {for exchanging pointers}
Begin
asm
push ds
Ids si,Dest_Frame {finished picture as source}
mov ax,0a000h {VGA as destination}
mov es,ax
mov di,320*100 {starting at line 100}
mov cx,320*100/4 {copy 100 lines as Dwords}
db 66h {Operand Size Prefix (32 Bit)}
rep movsw {copy}
pop ds
End;
temp:=Dest_Frame; {exchange pointers to source and destination pictures}

Dest_Frame:=Src_Frame;
Src_Frame:=temp;
End;

Procedure Prep_Pal; {prepare palette for flames}
Var i:Word;
Begin

FillChar(Palette,80*3,0); {foundation: all black}

For i:=0 to 7 do Begin

Palette[i*3+2]:=i*2; {color 0-7: increase blue}
Palette[(i+8)*3+2]:=16-i*2; {color 0-7: decreasing blue}
End;
For i:=8 to 31 do {color 8 -31: increase red}

136

PC

s}
: SR ou

Split-screen And Other Hot Effects

Palette[i*3]:=(i-8)*63 div 23;

For i:=32 to 55 do Begin {color 32-55: increase green, red constant}
Palette[i*3]:=63;

Palette[i*3+1]:=(i-32)*63 div 23;

End;

For i:=56 to 79 do Begin
Palette[i*3]:=63;
Palette[i*3+1]:=63;
Palette[i*3+2]:=(i-56)*63 div 23;

End;

FillChar(Palette[80*3],176*3,63); {rest white}

{color 56-79: increase blue, red and blue const.}

SetPal; {set finished palette}
End;
begin
Randomize; {determine Random Seed}

GetMem(Src_Frame,320*100);
FillChar(Src_Frame”,320*100,0);
GetMem(Dest_Frame,320*100);
FillChar(Dest_Frame”,320*100,0);

{get memory for source picture and delete}

{get memory for destination picture and delete}

Init_Mode13; {set Mode 13h}
Prep_Pal; {prepare palette}
Repeat

Scroll_Up; {flames up}

New_Line; {add new line at bottom}

Show_Screen;
Until KeyPressed;
TextMode(3);

end.

{show finished screen}

The main program allocates and clears both buffers, turns on Mode 13h and initializes the palette for flames.

The result is shown in the following graphic:

Value
64 Red Yellow White
48|
Red Green Blue
32|
1677 Blue
0O 816 32 64 Color number

Color palette for flames

Pixels with lower color numbers will later represent the cooler zones within the flames. These appear at the
left in the diagram above. As you read from right to left, i.e., from higher to lower temperatures, note the

following:

137

Split-screen And Other Hot Effects i~ e@ox\“‘*

Initially, all color components are at maximum (= white). Starting at Color 80 the blue component gradually
disappears, so the appearance is somewhat more yellow. At Color 56 the green component is also
diminished, so only red remains. Once this color (starting at number 32) also fades out, the result normally
would be black. In this case, however, we add a small glimmer of blue (Colors 16 to 0), standing above the
red flames. To get rid of this you can simply delete the first loop from the procedure.

The main loop consists of three commands: Scroll_Up , New_Line and Show_Screen . After the new
screen has been initialized in the buffer Dest_Frame , Show_Screen moves it to the screen through a
simple (DWord) loop. The two buffer pointers are then switched
so the finished screen is used as the source the next time
through.

» The procedure Scroll_Up
. 4 is part of the
FLAMES.PAS file

) '/"(on the companion CD-ROM
Scroll_Up and New_Line are the central procedures.

Procedure Scroll_Up;assembler;
{scrolls the picture one line up and interpolates}
asm
push ds
les di,Dest_Frame {load pointer to destination picture}
Ids si,Src_Frame {pointer to source picture}
add si,320 {in source picture on line 1}
mov cx,320*98 {scroll 99 lines}
xor bl,bl {required as dummy for High-Byte}
@Ilp1l:
XOr ax,ax
xor bx,bx
mov al,[si-321] {get first point}
mov bl,[si-320] {add next point}
add ax,bx
mov bl,[si-319] {add next point}
add ax,bx
mov bl,[si-1] {etc...}
add ax,bx
mov bl,[si+1]
add ax,bx
mov bl,[si+319]
add ax,bx
mov bl,[si+320]
adc ax,bx
mov bl,[si+321]
adc ax,bx
shr ax,3

or ax,ax {already 0 ?}

je @null

dec al {if no, then decrease}
@null:

stosb {value to destination}

inc si {next point}

dec cx {other points ?}

jne @lp1

pop ds
End;

Procedure New_Line; {rebuilds the bottom lines}
Var i,x:Word;
Begin
For x:=0 to 319 do Begin {fill bottom 3 lines with random values}
Dest_Frame”[97,x]:=Random(15)+64;

138

— =~
D (e

| 3 “de(

Split-screen And Other Hot Effects

Dest_Frame”[98,x]:=Random(15)+64;
Dest_Frame”[99,x]:=Random(15)+64;

End;
For i:=0 to Random(45) do Begin {insert random number Hotspots}
x:=Random(320); {to random coordinates}
asm
les di,Dest_Frame {address destination picture}
add di,98*320 {edit line 98 (second from bottom)}
add di,x {add x-coordinate}
mov al,0ffh {brightest color}
mov es:[di-321],al {generate large Hotspot (9 points)}

mov es:[di-320],al
mov es:[di-319],al
mov es:[di-1],al
mov es:[di],al

mov es:[di+1],al
mov es:[di+319],al
mov es:[di+320],al
mov es:[di+321],al

End;
End;
End;

Scroll_Up moves the sea of flames one position up and interpolating at the same time. In other words,
each new pixel is calculated from the average of its immediate surroundings. This is how the flames become
blurry and faded.

In loop @Ip1, the procedure takes the eight adjacent pixels for each source pixel, sums them up and divides
by 8. This average is decremented by 1 so the flames won't flare up too high and then written to the
destination buffer.

New_Line is responsible for adding new lines at the bottom screen border (the "embers" of the fire). The
first loop fills the bottom three lines with random values from 64 to 79. The second loop adds "hot spots",
very hot zones with flames shooting out. To do this, blocks of nine pixels are set to 255 so as you scroll
upward, they cool off very slowly and appear as glowing zones rising to the top.

The Secret Of Comanche: Voxel Spacing

A popular component of many demo programs and even a few games isvoxel spacing. Using this effect, the
observer moves over an imaginary landscape with hills and valleys.

Although this is a very general description, many methods exist for displaying this effect. In fact, there is
likely to be as many algorithms as programmers who have already tried this effect. The procedure we show
here has no complex three-dimensional images, and relies instead on simple two-dimensional relationships.

Basically, the program takes a map and tips it on its side so the observer views it at an angle from above.
Altitude can now be represented by vertical lines of varying lengths.

The map, which depicts the high and low points of the landscape, is a simple 320 x 200 image with transitions
as smooth as possible. Color 0 represents the lowest point and Color 255 the highest.

139

Split-screen And Other Hot Effects i~ e@ox\“‘*

In practice, two-dimensional projections depend on a fairly basic principle. As we know, objects farther
away appear smaller than objects closer to us. So when viewing a landscape through a frame (i.e., your
computer monitor) you'll find that more distant objects can fit in the frame than closer objects because the
distant objects are smaller. What you see will always be similar to the following illustration.

Example of a landscape drawn with voxel spacing

The rectangular frame shows the entire existing landscape from a bird's eye view. A trapezoid displays its
visible portion. All you need to do now is display this trapezoid on a rectangular screen section. This
rectangle must stretch the front horizontally so objects in this area appear larger. Any coordinates refer to
a projection on the lower screen-half of Mode X.

The trapezoidal projection is formed by steadily decreasing the number of pixels that fit onto one line. So,
the ratio of landscape size to screen-pixel size is continually decremented. The initial value isa 1:1 diagram,
with 80 pixels to a line (this resolution is used for speed). As the image is drawn the ratio becomes smaller
and smaller, until perhaps a 1:2 diagram is reached and only 40 pixels fit on the frontmost line.

In line-by-line display you must also remember the distance between lines always becomes smaller as you
move backward. Therefore, you should continually increase the line spacing when drawing from top to
bottom.

The only thing missing now is the altitude information for the image. As we mentioned, this involves taking
the color for each pixel and arranging a corresponding number of pixels one on top of the other. The greater
the color-value, the higher the pixel grows into a vertical line. This vertical structure also eliminates gaps
arising from the ever increasing line-spacing toward the front.

To make the scenery more realistic, you'll need to add bodies of water. Simply take all colors below a certain
value and set them to this value. This creates surfaces without a vertical structure.

The easiest way to generate the landscape is to use a fractal generator that can generate plasma-clouds.
FRACTINT is used for this purpose. Simply generate a plasma-field of resolution 320 x 200 and then load
the palette LANDSCAP.MAP (by pressing (C) (1)). The completed image can be saved with s

The program VOXEL.PASredrawsthesceneinaloop in response > o]

to mouse-movement (control is through mouse):) VOXEL.PAS
o on the companion CD-ROM

140

— =~
D (e

| 3 “de(

Split-screen And Other Hot Effects

{$G+}
Uses Crt,Gif,ModeXLib;
Var x,y:Integer; {Coordinates of the trapezoid}

Procedure Draw_Voxel;external;

{$| voxel.obj}
Begin
asm mov ax,0; int 33h End; {reset mouse driver}
Init_ModeX; {enable Mode X}
LoadGif(‘landsc3’); {load landscape}
x:=195; {define start coordinate}
y:=130;
Repeat
CIrX($0f); {clear screen}
Draw_Voxel; {draw landscape}
Switch; {activate completed video page}
WaitRetrace; {wait for retrace}
asm
mov ax,000bh {Function Obh: read relative coordinates}
int 33h
sar cx,2 {Division by 2}
sar dx,2
add x,cx
add y,dx
End;
If X < 0 Then x:=0; If x > 130 Then x:=130;
If y <0 Then y:=0; If y > 130 Then y:=130;
Until KeyPressed; {until key}
TextMode(3);
End.

The central procedure is Draw_Voxel , found in Assembler module VOXEL.ASM:

data segment
extrn vscreen:dword
extrn x,y: word
extrn vpage:word
data ends

;pointer to landscape data
;coordinates of trapezoid
;current video page

code segment
assume cs:.code,ds:data

;variables with fractional part (lower 8 bits):

offst dd 0 ;current offset

step dd O ;pixel size

row_start dd O ;beginning of current row
row_step dd 0 ;distance from next row

r_count dw O ;counter for depth
shrink dw O ;correction on lower screen border
row dd O ;current screen row number

vpage_cs dw 0 ;video page in the code segment
.386
public Draw_Voxel
Draw_Voxel proc pascal
;shows landscape on current video page
;reads data from vscreen starting from position (x/y)
mov ax,vpage ;note number of video page
mov vpage_cs,ax

141

©

Split-screen And Other Hot Effects

: \'\dem‘o\md
O

push ds

mov ax,0a000h ;load destination segment
mov es,ax

mov ax,320 ;calculate offset in landscape
imul y

add ax,x

|ds si,vscreen ;take data from vscreen

add si,ax ;add offset

shl esi,8 ;convert to fixed point number
mov offst,esi ;initial values for pixel ...

mov row_start,esi ... and row

mov step,100h first scaling factor 1

mov row,100*256 ;begin in screen row 100
mov row_step,14040h ;distance of rows 320,25
mov shrink,0 first no correction

mov r_count,160 ;number of rows to calculate

The first part initializes several important variables. We should mention Offst and row_start in
particular. Both form a fixed-point value in Bits 8-31 and following the decimal point in Bits 0-7), which
gives the offset of the current pixel or current line. After each pixel, Offst isincremented by Step , moving
you one step further in the landscape; for example if Step equals 080h (= 0.5), a new pixel is read from the
landscape every two steps.

row_start androw_step aresimilar:row_step contains 14040, or 320.25 in decimal notation. After each
line this setsrow_start to the beginning of the next line and at the same time takes care of the narrowing
toward the front, by starting the next line a little farther to the right.

next_y:
mov eax,row ;get current (screen) row number
mov ebx,eax ;store
shr eax,8 ;convert to whole number
add eax,50 ;50 pixels down
imul eax,80 ;convert to offset
mov di,ax ;store as destination pointer
cmp di,199*80 ;screen border exceeded ?
jb normal
mov di,199*80 ;yes, then position on last row
mov eax,row ;difference to bottom screen border
shr eax,8
sub eax,149
mov shrink,ax ;and note as correction
normal:
add di,vpage_cs ;add current video page
imul ebx,16500 ;multiply row number by 1,007
shr ebx,14 ;calculate * 16500 / 16384
mov row,ebx ;and store

Here the program calculates an offset before each line. The variable row contains the current line on the
screen, which is converted to an offset. This line number should not be confused withrow_Offst |, which
represents the position within the landscape. row represents the position on the screen. Even if the
calculated offset lies below the screen, drawing must still occur because the vertical lines of this pixel can
still project into the screen. The program handles this special case by again placing the destination pointer
di in the screen and shrinking the height of the bar (by the number of lines given in shrink).

Now the increasing space between screen lines comes into play. The current y-coordinate of the screen is
found in the variable row , which is multiplied here by a factor of 1.007, so the lines continue to spread out
as they move forward.

142

— =~
D (e

I A Split-screen And Other Hot Effects
mov bp,80 ;number of pixels per row
next_x:
mov esi,offst ;load current pixel offset
shr esi,8 ;convert to whole number
XOr eax,eax
mov al,[si] ;load dot from landscape
mov cx,ax ;store
cmp ¢x,99 ;color (=height) < 100
ja fill_bar
mov ax,99 ;then set to 99
fill_bar:
shl ax,5 ;vanishing point projection: height * 32
xor dx,dx
push bp
mov bp,r_count ;divides by the distance
add bp,50
idiv bp
pop bp

sub ax,shrink ;perform correction
jbe continue ;if <=0, don't even draw

For each pixel, the color at the current offset is read and the water level set to a minimum value of 99. The
counter z_count , which gives the distance of each line from the observer, is used to calculate the flight
perspective. This process will be discussed in Chapter 7. Finally, the height (stored in al) is decremented
by the value shrink , so the bottom screen border can be processed.

push di
next_fill:

mov es:[di],cl

sub di,80

dec al

jne next_fill

pop di

weiter:
inc di
mov esi,step
add esi,offst
mov offst,esi

dec bp
jne next_x

mov esi,row_step
add esi,row_start
mov row_start,esi
mov offst,esi

dec step
dec z_count
jne next_y
pop ds
ret
Draw_Voxel endp

code ends
end

:Enter color
;Address next higher line
;Decrement counter
;:Continue ?

;Address next byte on screen
;Get step size
;Add up
;and rewrite

;Next pixel

:Move line-start

;Also reload pixel-offset

;Decrement scaling factor
;Line counter continues

143

Chapter 5

Split-screen And Other Hot Effects | e‘gw““d
The loop next_Fill now draws the vertical bar of the given size. The program then calculates the offset

of the next pixel and, if a new line is beginning, its offset as well. In addition, the step size Step is decremented
after each line to create the expansion in the foreground.

Enlarging Graphics: The Magnifying Glass Effect

In this section we'll talk about an effect that is similar to what happens in nature when light is refracted. In
MAGN.PAS use the mouse to move the cursor, shaped as a magnifying glass or "glass ball”, across a GIF
image. The portion of the image immediately below the cursor is distorted, as you can see in the following
illustration:

Example of using the glass ball cursor over a GIF image

You can achieve several effects by simple reprogramming the VGA register, which saves a tremendous
amount of CPU time. However, VGA cannot help us with calculated images such as that under the glass
ball cursor. Instead, the CPU has to control all the plotting/Zimaging work. However, as long as you don't
overdo it with the size of the image area to be manipulated, you can manage with this (the glass ball cursor
will have a diameter of 49 pixels).

When the CPU calculates the data of the image to be displayed, make certain each point really does get
processed so gaps do not appear by recalculating: You run through each point of the destination image and
calculate the source point with which it corresponds. To do this, you have to reverse the mathematical
allocation.

Also, you have to use double-buffering to prevent flickering when the CPU is building the image. Double
buffering is a technique where data in one buffer is being processed while the next set of data is read into
the second buffer. If you don't use double buffering, you'll come into conflict with the physical refresh from
the cathode ray when you make changes to the image data.

144

— =~
D (e

| 3 “de(

Split-screen And Other Hot Effects

Many algorithms can describe the desired distortion. However, the physical correctness of the refraction
isn't as important as obtaining the fastest possible execution speed. Therefore, we'll use a simple
mathematical statement:

We'll use a unitcircle (origin in (0/0), radius 1) as the shape of the magnifying glass. The radii of the original
and projected magnifying glass points are in quadratic ratio to each other; as a result, the area around the
center point becomes greatly lengthened while the outer area becomes compressed. Now all we have to do
is resolve this ratio to the root coordinates (rg: original, even coordinates, rl: distorted magnifying glass
coordinates).

Make certain the coordinates are in the interval [-1;1] by subtracting the radius of the magnifying glass
beforehand and then divide by this value. At a width of 48, 12 becomes:

Xl = (12-24)/24 = -0,5)
You do the opposite with the result: Multiply it by the radius and then add it.

MAGN.PAS shows this effect. The algorithm is located in the . .
assembly routine MAGN.ASM. GIF.ASM includes a GIF loader ”‘ mxg%’ggg

for the format 320*200*256. Although the GIF loader has on the companfon CD-ROM
limitations (i.e., reading other formats and that it cannot even

read other color depths), it is very fast.

o

After allocating memory for the buffer and the background (Buffer and BackGnd), graphic mode 13h is
set and the mouse driver is initialized. The image is loaded and stored in the background array. Next, use
the circle equation:

X2+y2=r2

to make certain the magnifying glass changes to a circular shape. It calculates where the drawing begins
and ends for each row (arrays Circle_Start "and Circle_End). The following loop takes the current
coordinates from the mouse driver and checks them. Next, the background is copied to the buffer to clear
the magnifying glass from the previous refresh and draw the new magnifying glass by calling MAGN.ASM.
After copying to video RAM, the loop closes with a keyboard inquiry.

Assembly procedure MAGN.ASM displays the magnifying <

glass. The coordinates of the magnifying glass are passed to this “‘ Wzgﬁ/”/;gg’
procedure is passed as parameters zx and zy : e ; g
on the companion CD-ROM

First, the procedure copies the circle array to the code segment

because the DS register (and the data segment) won't be available later. The outer loop begins after
calculating the destination address (Pascal array Buffer) to the desired coordinates (zx /zy) and loading
the source address (the background BackGnd). This loop increments the y-coordinate from 0 to 49.

By using this coordinate, the current offset is taken from array Circle_Start , added to Destination-
Offset . A tthe same time it's used as the initialization value for the x-counter. Also, the end coordinate
of the row is loaded and stored temporarily in cur_End .

Now the x-loop implements the inferred calculation: The y-coordinate (y_count) is reduced by 24 and
divided by 24. Meanwhile, the result is shifted to the left by 8 bits to allow for decimal places. The value must
range from -1 to 1 which includes the (hexadecimal) numbers ffOOh - 0100h (e.g., in this case 0.5 would be

145

oy i
Split-screen And Other Hot Effects I @m@““d

080h). The result is temporarily stored in edx. Then the x-coordinate is converted in the same way and stored
in ecx.

Now the radicand of the root is calculated by squaring both coordinates separately and then adding them.
Function root is in charge of extracting the root, and performs an approximation in accordance with the
formula

xn+1=0,5*(xn+a/xn)
In this formula a is the radicand.

The result becomes the desired width again by multiplying it times 24 and then stored in edi. Now the root
is multiplied by y and then by x, which completes the formula (Note: the results have to be shifted to the
right by 16 bits to compensate for the squared 8 bit shift from before). Each of the destination coordinates
(zx /zy) are added and the origin is shifted back to the upper left corner. The offset is calculated from these
two values and stored in esi.

Now di is also loaded and the pixel can be copied with movsb. Both loops are closed; after each row the
destination offset is switched by one row (320 bytes).

Assemble MAGN.ASM and GIF.ASM and compile MAGN.PAS. Now move the magnifying glass across
the screen with the mouse and see what happens.

Now it's your turn...it's really not too difficult to write your own small effect.

146

Sprites: Rapid
Action On The
Screen

Sprites are most commonly used in video and action games. A sprite might appear as directional pointers
in games or as action figures. Anything on the screen which moves differently than the background picture
can be called a sprite. A sprite is defined as an independent graphic object which is controlled by its own
bit plane. Sprites move freely across the screen and can move or collide or even pass through each other.

Now that you have a general idea of what a sprite is, we'll see how you can program sprites.

The Basic Ideas Behind Sprites

To create your own sprites, you must first carefully consider their internal make-up. Actually, sprites are
simply graphic cut-outs that are positioned anywhere over a background picture. These sprites can be small
or large depending on the required computer effect.

Sprites must meet at least one more requirement: They need to be transparent in places so the background
can be seen through the sprite. This transparency is necessary for the "holes" inside the sprite as well as for
areas around the sprite's edges. Every sprite that is not a true rectangle needs transparent edges. Certain
forms such as circular forms or other irregular forms cannot be used due to speed considerations. Therefore,
only rectangular areas are usually used because the edges are filled. Otherwise, filled up rectangles will
always appear independent of their form.

Early computers such as the Commodore 64 or the Atari ST usually handled sprites quite easily with very
little programming...you only needed to specify the position of the sprite. The task is more complicated
when using a PC because the sprite is part of the VGA screen memory. Although this requires more
programming, it has many more advantages compared to the earlier home computers. The programmer
controls the layout completely and the size of the sprite is adjustable. Other advantages include scaling or
rotating sprites.

The following lists the three basic operational procedures you'll need to follow when presenting sprites:
1. Erase the sprite by copying the background picture onto the current screen page.
2. Movement and presentation of the sprite.
3. Switch to the completed page.

Before a sprite can be displayed at a new position, the previous one must first be erased from the screen.
You might attempt to copy the background, draw the sprite and then rewrite the background. However,
since this method requires an enormous amount of time and effort, it only makes sense when using one or
two sprites.

147

I‘:y (0\)(\6

Sprites: Rapid Action On The Screen I ey

First, itis only practical to make a single copy of the background in video memory where there is reasonably
fast access. However, the limited amount of video memory will eventually be exhausted. Second, the time
and effort required far exceeds the cost of copying a screen page. Finally, we're using areas in the middle
of the screen that can only be copied line by line. A simple REP MOVSB of the entire area is not possible.

A complete background page is copied and positioned in video memory with a fast copy loop placing it on
the current displayed page.

You have complete freedom in moving a sprite. You can move it across the screen in a line or in circles. A
sprite can move as a sine wave or follow the rhythm of music. It's your decision on how, where and when
you want the sprite to move.

Before continuing, we want to introduce two screen pages. As we mentioned, it's nearly impossible to
perform extensive picture manipulations within a vertical retrace but it's the only way to avoid flickering
and "tearing" the sprites. Besides, in the procedure mentioned above, there are no sprites on the screen for
a brief period (between steps 1 and 2). We know this to be true because all the sprites flicker.

You need to add a second screen page here to prepare this invisible page while the visible one remains
untouched. You only switch on the new screen page after finishing all the changes and while the previously
visible one is then redrawn.

Two basic concepts can be used for the presentation:

You can leave the sprite data in the graphic memory, for example leave it on Page 2 and always copy it to
the current page from there. However, this has two disadvantages. The fast Write-Mode 1 is based on
complete blocks of four (one byte from all four planes), so it's not possible to copy a sprite, for example, from
x-coordinate 5 (plane 1) to 6 (plane 2).

Data can be quickly copied within the plane. The only way to avoid this problem is to place every sprite in
the memory four times, once in the x-position 0, once in the x-position 1, etc., which greatly limits the
number of available sprites.

The second disadvantage of this concept concerns the unmasking of the transparent points. This is only
possible by using separate masks that are contained in the main storage unit but which must first be created.
We'll talk about a better alternative in the next section.

Reading And W riting Sprites

A better alternative is for the sprite data to remain in the CPU and moved point-by-point to the screen. You
can overcome the relatively limited speed by optimizing your routine as much as possible.

This starts when you format the sprite data in the CPU. The graphic data is divided in the four planes for
positioning a sprite. Points with addresses divisible by 4 are allocated to plane 0. Addresses with a
remainder of 1 are allocated to plane 1, etc. The easiest way to bring data to the screen is to place the points
in the "normal” series and to constantly shift the write plane.

We saw in the procedure p13_2_ModeX this is not exactly the fastest solution. This procedure yields to
another method which is applied to the sprites: First, copy all the data from one plane, then switch and copy
the next plane.

148

— =~
D (e

| 3 “de(

Sprites: Rapid Action On The Screen

The outcome results in the sprite format: The data does not remain here in Mode-13h format (contiguous
pixels), but in one of the Mode X related series. First, the complete data from the first plane arrives. This is
followed by the data from the second plane, which is followed by the data from the third plane, etc. When
writing the sprite, you can access this data without additional time and effort; the starting address simply
needs to be loaded in the Sl-register. Then copy the first plane and, immediately thereafter, the next plane
is available. Adjusting the Sl-register is unnecessary.

The data contain the color values and can be copied without any difficulty to the screen memory. Only Color
0 has special significance. It represents the background and the sprite is transparent in these positions.

A problem occurs when calculating the width of the sprite because it isn't the same in every plane. Imagine
a five pixel wide sprite that should be written at x-position 0. In this case, two bytes must be copied in plane
0 (pixel 0 and 4), while the others contain only one byte.

The algorithms we discuss are for the general case, although not dependent on the x-coordinate of the final
position. If the sprite is copied, for example, in the x-position 1, the 2 byte wide block physically finds itself
in plane 1. Because the copy loop begins with this plane, considering the sprite data, this is always a matter
of plane 0, which, moreover, is two bytes wide. In other words, with only the sprite width, you can create
an array with the width of the individual planes, which the number variable provides in the copy loop. The
first plane of the sprite data always two bytes wide, the others are one byte, regardless of their current
position.

You need to consider the initial plane's purpose is to communicate with the VGA.

Beyond All Borders: Clipping

In most programs, a sprite is made to move towards and eventually disappear at the edge of the screen. If
you do not adjust for this, you'll get undesirable results by copying the data for the entire sprite to video
memory. If the sprite is to disappear from the right or bottom edge of the screen, part of the sprite will be
copied to the next line or screen page. Since this will not produce the desired result, you have to design an
algorithm which performs clipping or cutting off the "invisible" data.

One method for clipping is to verify that each sprite point falls within the range of the visible screen before
drawing it. Unfortunately, this is also the slowest method. A better way is to change the margin
specifications before copying the data to video memory. In doing this, you should try to perform the
clipping outside of the copy loop. Doing calculations this way reduces the amount of time to write the sprite
data to video memory.

Clipping is quite simple. The width, height or both of the sprite are adjusted to exclude parts that are outside
the visible area. For sprites that disappear from the left or top edge of the screen, you must determine the
first visible point of the sprite by calculating which point is to be drawn at x-coordinate=0 (left edge) or
y-coordinate=0 (top edge).

149

Sprites: Rapid Action On The Screen

=N/
1 -
| (Qf oo

' =%

oo
The Unit Sprites > You can find
’ SPRITES.PAS

All these special features can be found in the procedures
GetSprite and PutSprite in the Unit Sprites:

{$G+}

Unit Sprites;

Interface

Type SpriteTyp=Record
Addr:Pointer;

{structure of a sprite data block}
{pointer to graphic data}

dtx,dty:Word; {width and height in pixels}

pX,py, {current position, optional *}

sx,sy:Integer; {current speed, optional *}
End;

{*: optional means that the sprite routines GetSprite and PutSprite
don't use these specifications, the variables serve only the purpose
of making control easier on the part of the main program}
Procedure GetSprite(Ofs,dtx,dty:Word;var zSprite:SpriteTyp);

{read a sprite from vscreen-Offset ofs, with dtx width and dty height,
zsprite is the sprite record in which the sprite is to be saved}
Procedure PutSprite(pg_ofs,x,y:Integer;qgsprite:spritetyp);

{copies sprite from RAM (position and size taken from gsprite)

to video RAM page pg at position (x/y)}

Implementation
Uses ModeXLib;
Var i:Word;

Procedure GetSprite;

Var ppp:Array[0..3] of Byte; {table with number of pixels to copy}

{per plane}
Skip:word; {number of bytes to skip}
Plane_Count:Word; {counter of copied planes}
Begin

GetMem(zsprite.addr,dtx*dty); {allocate RAM}
zsprite.dtx:=dtx; {note width and height in sprite record}
zsprite.dty:=dty;
i:=dtx shr 2;
ppp[0]:=i;ppp[1]:=i;
ppp[2]:=i;ppp[3]:=i;
For i:=1 to dtx and 3 do
Inc(pppl(i-1) and 3]);
Plane_Count:=4;

{number of smooth blocks of 4}
{equals minimum number of bytes to copy}

{note "excess" pixels in ppp}
{add pixels beginning with Startplane}
{copy 4 planes}

asm
push ds
mov di,word ptr zsprite {first load pointer to data block}
les di,[di] {load pointer to graphic data in es:di}
lea bx,ppp {bx points to ppp array}
Ids si,vscreen {load pointer to image}
add Ofs,si {offset of actual sprite data in addition}
@Icopy_plane: {will be run once per plane}
mov si,ofs {load si with start address of sprite data}
mov dx,dty {load y-counter with row number}
xor ah,ah {clear ah}
mov al,ss:[bx] {load al with current ppp entry}
shl ax,2 {blocks of 4 get moved}
sub ax,320 {obtain difference to 320}
neg ax {make 320-ax out of ax-320}
mov skip,ax {store value in skip}
@Icopy_y: {run once per row}

150

7 on the companion CD-ROM

— =~
D (e

| 3 “de(

Sprites: Rapid Action On The Screen

mov cl,ss:[bx] {load width from ppp-array}
@Icopy_x: {runs once per pixel}
movsb {copy byte}
add si,3 {to next pixel of this plane}
dec cl {copy all the pixels of this row}
jne @Icopy_x
add si,skip {after that, at beginning of next row}
dec dx {copy all rows}
jne @Icopy_y
inc bx {position at next ppp entry}
inc ofs {position at new plane start}
dec plane_count {copy all planes}
jne @Icopy_plane
pop ds
End;
End;

Procedure PutSprite;

var plane_count, {counter of copied planes}
planemask:Byte; {masked Write-Plane in TS-Register 2}
Skip, {number of bytes to skip}
ofs, {current offset in video RAM}
plane, {number of current plane}
Width, {width of bytes to be copied in a row,}
dty:Word; {height}
source:Pointer; {pointer to graphic data, if ds modified}
clip_lt, clip_rt:integer; {number of excess PIXELS left and right}
clipact_lIt, {with current plane active number}
clipact_rt, {excess BYTES}
clip_dn,clip_up:Word; {number of excess ROWS above and below}

ppp:Array[0..3] of Byte; {number of pixels per plane}
cpp:Array[0..3] of Byte; {excess BYTES per plane}

Begin
if (x > 319) or {Display unnecessary, }
(x+qgsprite.dtx < 0) or {because it's not even in the picture ?}
(y >199) or
(y+gsprite.dty < 0) then exit;
clip_rt:=0; {no clipping normally}
clip_It:=0; {-> all clipping variables to 0}
clip_dn:=0;
clip_up:=0;
clipact_rt:=0;
clipact_|t:=0;

with gsprite do begin
if y+dty > 200 then begin {first clipping case: down}
clip_dn:=(y+dty-200); {note excess rows}

dty:=200-y; {and reduce sprite height}
End;
if y<0 then begin {second clipping case: up}
clip_up:=-y; {note excess rows}
dty:=dty+y; {and reduce sprite height}
y:=0; {Start-y is 0, because upper screen border}
End;
if x+dtx > 320 then begin {third clipping case: right}
clip_rt:=x+dtx-320; {note excess pixels}
dtx:=320-x; {reduce width}
End;
if x<0 then begin {fourth clipping case: left}
clip_lt:=-x; {note excess pixels}
plane:=4-(clip_It mod 4); {calculate new start plane for column 0}
plane:=plane and 3; {reduce this to 0..3}

151

Sprites: Rapid Action On The Screen =~ e‘gw““d

ofs:=pg_ofs+80*y+((x+1) div 4) - 1; {set Ofs to correct block of 4}

x:=0; {begin display in column}
End Else Begin {no clipping to the right ?}
plane:=x mod 4; {then conventional calculation of plane}
ofs:=pg_ofs+80*y+(x div 4); {and offset}
End;
End;
Source:=qgsprite.addr; {pointer graphic data}
dty:=qgsprite.dty; {and save height in local variables}
Width:=0; {preinitialize width and skip}
Skip:=0;
i:=qsprite.dtx shr 2; {number smooth blocks of 4}
ppp[0]:=i;ppp[1]:=i; {equals minimum number of bytes to be copied}

ppp[2]:=i;ppp[3]:=i;

For i:=1 to gsprite.dtx and 3 do{note "excess" pixels in ppp}
Inc(ppp[(plane+i - 1) and 3]);{add pixels beginning with StartPlane}

i:=(clip_lt+clip_rt) shr 2;

cpp[0]:=i;cpp[1]:=i; {Clipping default : all pages 0}
cpp(2]:=i;cpp[3]:=i;
For i:=1 to clip_rt and 3 do {if right cl ipping, enter corresponding number}
Inc(cppli-1]); {in planes}
For i:=1 to clip_It and 3 do ({if left clipping, enter corresponding
number}
Inc(cpp[4-i]); {in planes}
asm
mov dx,3ceh {GDC Register 5 (GDC Mode)}
mov ax,4005h {set to Write Mode 0}
out dx,ax
push ds {save ds}
mov ax,0a000h {load destination segment (VGA)}
mov es,ax
Ids si,source {source (pointer to graphic data) to ds:si}
mov cx,plane {create start plane mask}
mov ax,1 {move bit Bit O left by plane}
shl ax,cl
mov planemask,al {save mask}
shl al,4 {enter in upper nibble also}
or planemask,al
mov plane_count,4 {4 planes to copy}
@lplane: {will run once per plane}
mov cl,byte ptr plane {load current plane}
mov di,cx {in di}
mov cl,byte ptr ppp[di] {load cx with matching ppp number}
mov byte ptr Width,cl {recalculate skip each time}
mov ax,80 {obtain difference 80 width}
sub al,cl
mov byte ptr skip,al {and write in skip}
mov al,byte ptr cpp[di] {load plane specific clipping width}
cmp clip_It,0 {if left no clipping, continue with right}
je @right
mov clipact_lt,ax {save in clip_act_lIt}
sub Width,ax {reduce width of bytes to be copied}
jmp @clip_rdy {no clipping right}
@right: {if left no clipping}
mov clipact_rt,ax {clipping for all planes, in clip_act}
@clip_rdy:
mov ax,Width {calculate total width in bytes}

add ax,clipact_rt
add ax,clipact_|t

mul clip_up {multiply by number of rows of upper clipping}
add si,ax {these bytes are not displayed}
mov cx,Width {load cx with width}

152

L_J) (‘O\)(\d

| 3 “de(Q

Sprites: Rapid Action On The Screen

or cl,cl {width 0, then plane finished}
je @plane_finished
mov di,ofs {destination offset in video RAM to di}
mov ah,planemask {reduce plane mask to bit [0..3]}
and ah,0fh
mov al,02h {and via TS - Register 2 (Write Plane Mask)}
mov dx,3c4h {set}
out dx,ax
mov bx,dty {initialize y-counter}
@Icopy_y: {y-loop, run once per row}
add si,clipact_lt {add source pointer for left clipping}
add di,clipact_|It {destination pointer also}
@Icopy: {x-loop, run once per pixel}
lodsb {get byte}
or al,al {if 0, then skip}
je @Value0
stosb {else set}
@entry:
loop @Icopy {and continue loop}
add si,clipact_rt {after complete row right clipping}
dec bx {continue y-counter}
je @plane_finished {y-counter = 0, then next plane}
add di,skip {else skip to beginning of next row}
mov cx,Width {reinitialize x-counter,}
jmp @Icopy_y {jump back to y-loop}
@value0: {sprite color 0}
inc di {skip to destination byte}
jmp @entry {and back to loop }
@plane_finished: {y-loop ends here}
mov ax,Width {calculate total width in bytes}

add ax,clipact_rt
add ax,clipact_|t

mul clip_dn {multiply times number of rows of lower clipping}
add si,ax {these bytes won't be displayed}
rol planemask,1 {select next plane}
mov cl,planemask {plane 0 selected ?}
and cx,1 {(Bit 1 set), then}
add ofs,cx {increase destination offset by 1 (cx Bit 1 !)}
inc plane {increment plane number (Index in ppp)}
and plane,3 {reduce to 0 to 3}
dec plane_count {4 planes already copied ?, then end}
jne @Iplane
pop ds {restore ds, and see you later}

End;{asm}

End;

Begin

End.

In addition to the two procedures, this unit also contains the definition of SpriteTyp . It holds several
important attributes of each sprite. It contains a pointer to the actual graphic data in main memory @ddr);
the sprite's width (dtx) and the sprite's height (dty). Procedure GetSprite initializes these variables
before they’re used by PutSprite . Make certain that they're not overwritten by other procedures.

Depending on the application, record SpriteTyp can be expanded. Since the straight line movement of
a sprite is the most frequent application, four components are defined to handle future applications; these
components aren’t used by the procedures in this unit:

153

—
I (‘
= (¢ 0\)(\6

Sprites: Rapid Action On The Screen I e

» pxand py are the current position of the sprite
» sxand sy are the speed (step size)

Again, these procedures do not use components px, py, sx and sy. Remember, they’re available if you
want to use them.

A sprite must first be created. In other words, you have to first define a sprite. We’ll use the GIF format in
these examples because it’s so universal.

After loading a picture containing a sprite, it is transferred to memory. TheGetSprite procedure is used
to do this.

We'll assume the sprites are located in the video memory and that the coordinates are expressed as offsets.
In other words, the coordinates are passed to procedure GetSprite as offset parameters. This is quite
simple to do. Since the pictures are stored in video memory in 13h Mode, the conversion is as follows:

Offset := y-coordinate * 320 + x-coordinate

Using this offset relative to video memory,GetSprite uses two other parametersdtx anddty to "cut"the
sprite from the GIF image and copy it to memory.

The routine which copies the sprite to memory is written in assembly language. It consists of three nested
loops. The source (vscreen+Ofs) and target (zsprite.addr) are loaded in es:di and ds:si; register bx
points to array ppp.

The outer loop (@Icopy_plane) executes once per plane. During each iteration, register si is set with the
new staring value, register dx with the sprite height and variable skip with distance between points.

Within loop @Icopy_y , executes once per sprite row. After a row is copied, skip is added to register si
which takes us to the next sprite row. Register dx specifies how many times the loop is executed, depending
on sprite’s height in rows.

Procedure PutSprite is similar. It uses four parameters - the offset of the screen page, the x-coordinate
and y-coordinate for the upper left corner of the sprite and record SpriteTyp

In some instances, clipping is simply handled. The easiest case is for a sprite which isn’t visible on the screen.
In this case, the procedure is interrupted by an Exit command and the program continues normally.

If the sprite is partially visible, PutSprite has to perform additional calculations to handle the clipped
portion of the sprite.

For a sprite which has to be clipped at the bottom of the screen (y + dty > 200), then the height of the
sprite is reduced to fit on the screen. Since the sprite is examined four times (once for each plane), you must
make sure that the pointer is reset to the beginning of the next plane.

Clipping at the top border is also simple. Again, the number of lines to be skipped is stored inclip_up and
the height is truncated.

Clipping at the right border is slightly more complicated. Here, you have to consider the arrangement of
the color planes. The routine makes sure that the image is clipped correctly for each plane. The number of
pixels is stored in clip_rt and the width is truncated.

154

L_J) (‘O\)(\d

| 3 “de(Q

Sprites: Rapid Action On The Screen

Clipping at the left border is different. Here, too, the number of pixels is recorded, this time inclip_lIt
However, the width is left unchanged. Instead, the sprite copy routine adjusts for the narrower width. In
addition, the routine performs additional calculations to determine the starting plane. For example, assume
that our sprite extends three pixels off the left edge. The starting plane for this sprite would normally be
column -3.

Of course, this is not possible; the first visible column is (-3 + 4 = 1) column 1. The offset must also be
recalculated since it points to a place in the previous line when it has a negative x-value. The x-coordinate
is setto 0.

The adjusted plane and offset values apply only to clipping along the left border; in other instances the
values are calculated as before in Mode X.

Array ppp is initialized for the different plane widths.
Array cpp is similarly initialized. Later, cpp will hold the clipped image from the left or right borders.
The clipping width (clip_It + clip_rt) divided by 4 gives us the number of even blocks.

The assembly language section sets up for Write Mode 0 in order to address individual points. After the
source and target pointers are loaded, a mask is defined to select the current plane.

Variableplane_count ensures thatthe loop @Iplane is performed four times. Within the loop, arrayppp
specifies how many pixels are to be copied. The step size is set into variable skip .

Array cpp is used to save the clipped image. For sprites that are clipped on the right border, variable
clipact_rt is loaded with this width from cpp. Correspondingly, variable clipact_lIt is used for
sprites that are clipped on the left border.

Now we’re ready to perform the first clip. The total width of the line including the pixels to be clipped on
the left and right sides is multiplied by the number of lines to be clipped at the top border. This value is
placed into the si register.

In simplest terms, the loop starting at@Icopy simply moves the

~ .
individual bytes from the source address to the target address. \" S;%%_C‘;’:’S;’_’gq =
The majority of the code is used to handle the different planes. ’ ; on the compEznion' CD-ROM

The program SPRT_TST.PAS includes the applications for these
routines:

Uses Crt,Gif,ModeXLib,Sprites;
Const Sprite_Number=3; {number of sprites used in the program}
Var Sprite:Array[1..Sprite_Number] of SpriteTyp;

{data records of sprites}

i:Word; {counter}
Begin
Init_ModeX; {enable Mode X}
LoadGif('sprites'’); {load image with the three sprites}
GetSprite(62 +114*320,58,48,Sprite[1]); {coordinates (62/114), width
58+48}

GetSprite(133+114*320,58,48,Sprite[2]); {(133/114), 58*48}

GetSprite(203+114*320,58,48,Sprite[3]); {(203/114), 58*48}
{load the three sprites}

LoadGif('wallpape'); {load wallpaper}

p13_2_ModeX(48000,16000); {and copy to background page}

155

Sprites: Rapid Action On The Screen » “demm““d

With Sprite[1] do Begin {coordinates and speeds}
px:=160;py:=100; {of all three spites to (random values)}
sx:=1;sy:=2;

End;

With Sprite[2] do Begin
px:=0;py:=0;
sx:=1;sy:=-1;

End;

With Sprite[3] do Begin
px:=250;py:=150;
sx:=-2;sy:=-1;

End;

Repeat
CopyScreen(vpage,48000); {wallpaper to current page}
For i:=1 to Sprite_Number do{run for all 3 sprites}

With Sprite[i] do Begin

Inc(px,sx); Inc(py,sy); {movement}

If (px < -dtx div 2) {at left or right border ? -> turn around}
or (px > 320-dtx div 2) Then sx:=-sx;

If (py < -dty div 2) {at top or bottom border ? -> turn around}
or (py > 200-dty div 2) Then sy:=-sy;

PutSprite(vpage,px,py,Spriteli]);

{draw sprite}

End;
switch; {switch to calculated page}
WaitRetrace; {only after next retrace can screen}
Until KeyPressed,; {be changed again}
ReadLn;
TextMode(3);
End.

After loading a sprite, it's placed (set) in arbitrary positions and at arbitrary speeds. The repeat loop
highlights the basic principle of the sprite presentation: Erase the background (CopyScreen), move the
sprites, display the sprites. The WaitRetrace command is placed behind the Switch command because
switching to a new page causes in a delay in retrace. We're using a different logic here than we used before.
First, the command to switch over is sent to the VGA. Then wait for the retrace to be certain that the screen
will be changed at that instant. Now you will be able to prepare the next page.

Unfortunately, slower computers can become overtaxed with the three sprites from this demo program. If
this occurs, simply set the number lower.

Use Scrolling For Realistic Movement

To create the illusion of depth and add a three-dimensional appearance, a sprite must be reduced in size
as it "moves" towards the back of the screen. One way to do this is to define an individual sprite for each
intermediary step and redraw it to the appropriate size. In terms of execution speed, this is the fastest
method; but it also requires the most memory.

For some situations, you may want to use a single sprite and automate the resizing tasks. While there are
general algorithms that can do this, its a very tedious process; it involves remapping each point of the sprite
to a new position.

Instead, there's another method which makes the sprite appear to scroll quickly. The technique is quite
simple. Rather than redraw the entire sprite, only a percentage of the sprite lines are redrawn during each

156

— =~
D (e

| 3 “de(

Sprites: Rapid Action On The Screen

iteration. For example, if the percentage is 50%, then every
second line of the sprite is skipped as it is drawn on the screen.

Procedure SCAL_TST.PAS demonstrates the technique:

{$G+}
Uses Crt,Sprites,ModeXLib,Gif,Tools;

Procedure PutScalSprt(pg_ofs,x,y,scale_y:Integer;gsprite:spritetyp);

var planecount, {counter of copied planes}
planemask:Byte; {masks Write-Plane in TS-Register 2}
Skip, {number of bytes to skip}
ofs, {current offset in video RAM}
plane, {Number of current plane}
Width, {width of bytes to be copied in a line,}
dty:Word; {height}
source:Pointer; {pointer to graphic data, if ds modified}

ppp:Array[0..3] of Byte; {number of pixels per plane}

rel_y, {fractional portion of rel. y-position}
add_y:Word; {fractional value of the addend}
direction:Integer; {direction of movement (+/- 80)}
i:Word; {local loop counter}
Begin
if (x + gsprite.dtx > 319) {Clipping ? then cancel}
or (x<0)

or (y + gsprite.dty*scale_y div 100 > 199) or (y < 0) then exit;
add_y:=100-abs(scale_y); {calculate addend}
if scale_y < 0 then direction:=-80 else direction:=80;

{define direction}

Source:=qsprite.adr; {Pointer graphic data}

dty:=qgsprite.dty; {load local Height variable}

plane:=x mod 4; {calculate start plane}

ofs:=pg_ofs+80*y+(x div 4); {and offset}

Width:=0; {preinitialize Width and Skip}

Skip:=0;

i:=gsprite.dtx shr 2; {number of smooth blocks of 4}

ppp[0]:=i;ppp[1]:=i; {equals the minimum number of bytes to be
copied}

ppp[2]:=i;ppp[3]:=i;
For i:=1 to gsprite.dtx and 3 do{note "excess" pixels in ppp}
Inc(ppp[(plane+i - 1) and 3]);{add pixels beginning with Startplane}
asm

push ds {save ds}
mov ax,0a000h {load destination segment (VGA)}
mov es,ax
Ids si,source {source (pointer to graphic data) to ds:si}
mov cx,plane {Create start plane mask}
mov ax,1 {move Bit O left by plane}
shl ax,cl
mov planemask,al {save mask}
shl al,4 {enter in upper nibble also}
or planemask,al
mov planecount,4 {4 planes to copy}
@lplane: {will run once per plane}
mov cl,byte ptr plane {load current plane}
mov di,cx {in di}
mov cl,byte ptr ppp[di] {load cx with matching ppp number }
mov byte ptr Width,cl {recalculate skip each time}
mov ax,direction {obtain difference direction width}
sub ax,cx

4

You can find
4 SCAL_TST.PAS
% on the companion CD-ROM

157

Sprites: Rapid Action On The Screen

—
I (‘
= (¢ 0\)(\6

| \)de‘g

mov skip,ax {and write in skip}
mov rel_y,0 {start again with y=0,0}
mov cx,Width {load cx with Width}
or cl,cl {Width 0, then Plane finished}
je @plane_finished
mov di,ofs {destination offset in video RAM to di}
mov ah,planemask {reduce plane mask to bit [0..3]}
and ah,0fh
mov al,02h {and through TS - Register 2 (Write Plane Mask)}
mov dx,3cdh {set}
out dx,ax
mov bx,dty {initialize y-counter}
@Icopy_y: {y-loop, run once per row}
@Icopy_x: {x-loop, run once per pixel}
lodsb {get byte}
or alal {if 0, then skip}
je @ValueO
stosb {else set}
@entry:
loop @Icopy_x {and loop continues}
mov ax,rel_y {addend to fractional portion}
add ax,add_y
cmp ax,100 {integer place incremented ?}
jb @noaddovfl {no, then continue}
sub ax,100 {else reset decimal place}
sub di,direction {and in next/previous line}
@noaddovfl:
mov rel_y,ax {and rewrite in fractional portion}
dec bx {continue y-counter}
je @plane_finished {y-counter = 0, then next plane}
add di,skip {else skip to next line beginning}
mov cx,Width {reinitialize x-counter,}
jmp @Icopy_y {jump back to y-loop}
@value0: {sprite color 0}
inc di {skip destination byte}
jmp @entry {and back to loop}
@plane_finished: {y-loop ends here}
rol planemask, 1 {mask next plane}
mov cl,planemask {plane 0 selected ?}
and cx,1 {(Bit 1 set), then}
add ofs,cx {increase destination offset by 1 (Bit 1 !)}
inc plane {increment plane number (Index in ppp)}
and plane,3 {reduce to 0 to 3}
dec planecount {4 planes copied already ?, then end}
jne @Iplane
pop ds {restore ds, and see you later}
End;{asm}
End;

Var Logo:SpriteTyp;
Sine:Array[0..99] of Word;
Height:Integer;

i:Word;
Begin
Init_ModeX; {enable Mode X}
LoadGif('sprites'); {load image with logo}

GetSprite(88+ 6*320,150,82,Logo); {initialize logo}

158

(@ Password: = Sprites

— =~
D (e

| 3 “de(

Sprites: Rapid Action On The Screen

LoadGif(‘wallpape’); {load wallpaper}
p13_2_ModeX(48000,16000); {and copy to background page}
Sin_Gen(Sine,100,100,0); {precalculate sine}

1:=0; {index in sine to 0}
repeat
Inc(i); {increment index}

Height:=Integer(Sine[i mod 100]); {get height from sine}

CopyScreen(vpage,48000); {clear background}

PutScalSprt(vpage,85,100-Height *84 div 200,Height,Logo);
{copy scaled sprite to current page}

Switch; {switch to this page}
WaitRetrace; {and wait for retrace}
Until KeyPressed;
ReadLn;
TextMode(3); {normal text mode on}
End.

In this program we demonstrate how to rotate a logo in front of a transparent background. The height is
periodically changed (the y-coordinate in a circular motion appears as a sine oscillation from the page).
Every sprite is displayed using PutSprite or scaled with PutScalSprt

The procedure PutScalSprt is merely a demo and is therefore not placed in its own unit. Besides, for
speed of execution, it doesn't perform any clipping. Its parameter is shared with the familiar data using
scale_y ,the percentage of the original height the scaled sprite is to show. Here, a negative value indicates
a mirroring of the x-axis.

159

& ~d The Thil’d

= (ro! Dimension:
= 3-D Graphics
Programming

Each of the effects we have demonstrated so far have one thing in common: They function only in two
dimensions. To produce pictures with snap, you might consider the third dimension. The challenge is to
produce a three-dimensional presentation on a two dimensional monitor. Additionally, the monitor can
only display believable depth information if we use a few tricks, such as vanishing point perspective and
point of light shadings.

These tricks require an understanding of mathematics, especially geometry. Transformations, illustrations,
brightness gradations, etc., are very complex calculations when you consider the number required for a
presentation. These calculations must be adapted to programming logarithms to enable fast drawings in
many cases. Therefore, the language used for these procedures is assembly, since a high-level language may
produce code which executes too slowly.

Throughout this chapter, we will use a small main program to introduce the practical applications and
methods. These programs are all based on the same assembly modules (3DASM.ASM, POLY.ASM,
BRES.ASM, TEXTURE.INC), which contain independent presentation functions (transformations, etc.) as
well as special sections (point of light shading), which are activated through global variables. Using global
variables for direction may not seem like a good idea at first. However, it will save both computing time
and code.

Mathematics For Graphics Enthusiasts

If you're already familiar with analytical geometry, you can probably skip this section. However, if you'd
like a quick refresher, we'll explain geometric concepts like vector, determinants and intersecting product
(sum). These terms are important if you want to produce three-dimensional presentations.

The vector

What the number is to algebra, the vector is to geometry. A simple analogy for a vector is an arrow that
points in a particular direction and which has a particular length. Besides, a vector can be moved arbitrarily
in space and it's defined relatively. A vector is defined as a line designated by its end points (x-y or x-y-z
coordinates). A circle consists of many small vectors.

In this definition, there is no indication of where, or at which specific location in space, a vector is found.
The opposite is the case with location vectors. These vectors always start at the coordinate system's origin

161

Chapter 7

=) ((0\“\6

The Third Dimension: 3-D Graphics Programming I oo

(0/0) and specify an exact point. In the vector manner of writing, the x, y and z vector components are
written on top of one another:

Mathematical depiction of a vector

Calculating (computing) with vectors

As we mentioned, a vector describes both direction and length. The length, which is often required, can be
determined very easily from the components if you use the three dimensional Pythagorean theorem:

In a way, we add vectors because the sums of their components are totaled. In a geometric definition, this
addition means placing the two vectors so one is on top of the other.

Subtraction is performed similarly. Here the components are subtracted. Mathematically, the second vector
is added to the first one.

Vector subtraction

There are three types of multiplication:
Scaling (S-multiplication)

One is called scaling (S-multiplication). Here, only one vector is multiplied by the number, so only its length
changes. An S-multiplication with a negative number reverses the direction.

162

Chapter 7

7720
)
| 8 oo

et

The Third Dimension: 3-D Graphics Programming

Vector multiplication

Scalar multiplication

The second is scalar multiplication. It multiplies two vectors with each other, whereby the product of the
two is a number (a scalar). The following illustration shows the two definitions for this:

1 @b =ab cosa
o Angle between the vectors

2. N a;\ (b,
ab=\a,|| b,|= a, b,+a, b,+a, b,

as)\ b;

For example:

1\/3
<2><5>= 1 3+2 543 (-1)=10
3/\-1

Scalar multiplication

The angle of the vectors can be calculated as:

a b
ab

coso

= a, b,+a, b,+a; b,
ab

Angle between two vectors

Vector or intersecting product

The third type of multiplication isvector or intersecting product. Once again, two vectors are multiplied with
each other and the product is a vector. This vector stands vertically on top of both of the multiplied vectors,
which is why the intersecting product only has meaning in a three dimensional space. It's defined in the
following illustration:

163

The Third Dimension: 3-D Graphics Programming I oo

a,\ (b, a, by - a, b,
éE:(az)(bz>:<a3bl- albg)
a,) \ by a b, - a b,

- 1 3 2(-1) - 3 5 -17
example: <2> <5) = < 3 3 -1 (-1)) = <10
3) -1 15 -2 3 -1

Vector intersecting product

Presenting 3-D Figures In 2-D

The goal of this section is to describe the calculations needed to display 3-D effects on a flat 2-D screen. There
are many ways to do this, from the simplest parallel projection to complex ray tracing algorithms. However,
due to the huge amount of calculations required to render the objects, complex ray tracing algorithms are
used less frequently. These calculations can require several minutes of computing time just to produce a
single picture.

The easiest way to convert the depth information the monitor cannot display is simply to ignore it. In so
doing, the two dimensional coordinates of the corner points for each surface are given three dimensional
definitions from the x- and y- coordinates. Parallel lines in the three dimensional space with this method
appear as parallel lines on the screen — hence the name parallel projection.

Picture .
Object

The radiation theory

In this illustration we see the three dimensional world as it exists behind the screen. All rays emitted from
an object are ultimately seen by our eyes, so their origin lies in the picture. Every coordinate for the object
(here is an example of the y-coordinate for the top and bottom corners) is projected into a two dimensional
screen coordinate (here y'). We can explain this using the radiation theory. It establishes a clear relationship
between y, y', a (eye-screen distance) and z (object depth).

You can see that increasing depth (z) with this algorithm reduces the angle between the rays as well as the
picture on the screen. Therefore, the desired vanishing point perspective is achieved. This vanishing point
(the point where all the parallel lines join in the distance) can always be found in this method on the z-axis.
It cannot be placed arbitrarily.

164

@ (ﬁ\,
| ((O
uﬂde

ound

The Third Dimension: 3-D Graphics Programming

Reshaping Objects: Transformations

You can create a more realistic picture by adding movement. A rotating cube with a picture on each side
is more visually exciting than a static picture of the same cube created by a paint program.

Movement basically consists of two components (although some programmers would also include scaling):
» Translation
» Rotation

A translation is simply shifting in a certain direction, for example, motion through a long corridor.
Mathematically, the translation is built upon vector addition: The shifting is determined by a vector,
specifically the translation vector. This vector is simply added to all location vectors (point coordinates) of
the object to be shifted.

Motion by the viewer is achieved in the same manner, but the viewpoint is reversed. If you wish to move
yourself, as the viewer, around a unit in the z direction, you simply shift the entire 3-D environment around
the unit in the negative z direction.

Rotation is slightly more complicated, especially if you want to use matrices in the calculation. Matrices
combine all the necessary computation steps for transformations, translations, rotations and scaling into
one. Each component has its own matrix. The advantage here is that you can put together additional
matrices and save on computing time (if it is initially clear which transformations are to be performed in
which series). However, since that is rarely the case, we are suggesting the rotation matrices only to give
you a better alternative.

When considering rotation, you must determine around which of the three axes you will rotate.

For rotations around the x-axis, the following algorithm applies:

X'= X
y'= y*cos(a)-z*sin(a)
z'= y*sin(a)+z*cos(a)

The corresponding matrix would appear as follows:

1 0 0
0 cos(a) -sin(a)
0 sin(a) cos(a)

For rotations around the y-axis, the following algorithm applies:
X'= x*cos(a)+z*sin(a)

y=y

z'= -x*sin(a)+z*cos(a)

The corresponding matrix would appear as follows:

165

The Third Dimension: 3-D Graphics Programming | u“e(qm“““
cos(a) 0 sin(a)
0 1 0
-sin(a) 0 cos(a)

These formulas examine only the rotation around the coordinate axes. By combining many rotations, an axis
can be formed from the original extended straight lines. If you wish to bypass the limits of the original
straight lines, you must combine the rotation with a translation.

In doing so, the world is pushed so the point around which the rotation occurs is located at its original
position. After the rotation, they are then pushed back, for which the translation vector must be rotated in
advance.

With continual rotation around many axes, the coordinates from the previous rotation must understandably
be set as source coordinates in the ones that follow. Always using the actual world coordinates for your
source will give unusual results that have little in common with the actual world to be presented.

Because of its many sine and cosine calculations, you can predetermine the values used in the rotation and
store them in a table. Using a program language such as Pascal to perform these calculations in real time
would probably produce a jerky, non-fluid movement.

These transformations are not commutative, i.e., their order is not arbitrary. For example, if you rotated the
point lying on the x-axis (1/0/0) 90 degrees around the x-axis, then around the same angle at the z-axis, the
result would be on the y-axis. By changing the order, it would then be on the z-axis. Therefore, you should
establish a unified rotation order first around the x-, then the y- and finally around the z-axes.

Even with mixed transformations, their order must be maintained. With a translation that has rotation
following it, another point emerges that is different from that which emerges in the opposite series order,
which is why you should commit to a particular order. In this case, the most practical translation series is
rotation, because translation values are based on the known world coordinates and not on their rotating
illustrations.

In summary, the following is the recommended order:
1. Translation
2. Rotation (x, y, then z)

3. Projection onto the screen

Wiry Figures: Wireframe Modeling

The easiest way to get three dimensional objects onto the screen is to use wireframe models. A wireframe
model represents all surfaces of a 3-D object as an outlined object. This includes the opposite sides and all
internal components that you usually cannot see. It's a less complex method for representing 3-D images.

A wireframe model is useful because three dimensional lines appear as straight lines and not as curves with
both parallel projections and the vanishing point perspective. Therefore, you can limit yourself to corner

166

D
| \)de‘g‘o

The Third Dimension: 3-D Graphics Programming

point transformations and you will not need to push, rotate and illustrate every point to the edge. If you then
combine these calculated corner points, you have a realistic picture of the figure as a wireframe model.

The most important section of this model is the line drawing algorithms. The speed of display depends on
these line algorithms since the transformations themselves require hardly any computational time. The
fastest way to draw a line is with the Bresenham algorithm, which we'll use in this chapter.

You can find complete mathematical derivation of this algorithm in many books so we won't delve into its

principles.

The algorithm is limited to angles between 0 and 45 degrees. As the line is being drawn, the algorithm
decides whether each point should be placed exactly to the right of the previous point or directly above it.
The decision as to which of the two points will be next is similar to the fixed decimal procedure discussed.
Avariable (Dist , stored in BP) is dependent on the last step (right or directly above), either raised toAdd_1

(inSl)orto Add_2 (in DI) and dependent on whether Dist

The angle limitations can be removed; to handle angles between
45 and 90 degrees, you can switch x and y. Negative angles are
handled by reversing this direction. The exact procedure is
listed as follows:

.286

b equ byte ptr

w equ word ptr

data segment
extrn vpage:word

data ends

;current video page

putpixel macro ;puts pixel at ax/bx

pusha

xchg ax,bx ;exchange x and y
push ax ;store y for later
mov cx,bx ;get x

and cx,3 ;mask plane

mov ax,1 ;and set corresp. bit
shl ax,cl

mov ah,2 ;TS register 2

xchg ah,al

mov dx,3c4h

out dx,ax

pop ¢cx gety

mov ax,80d ;calculate row offset
mul cx

shr bx,2 ;add column offset
add bx,ax

add bx,vpage
mov b es:[bx],3
popa

endm

;write to current page
;and set color

code segment public
assume cs:code,ds:data
public bline
bline proc near
;draws line from ax/bx to cx/dx
push bp
push ax ;store x0 and

(@ Password: Dimension

is positive or negative.

» The following procedure

: t of th
©F g,

o @

on the companion CD-ROM

167

The Third Dimension: 3-D Graphics Programming

\'\d
SRy o

push bx
mov bx,4340h
sub cx,ax
jns deltax_ok
neg cx
mov bl,48h
deltax_ok:
mov bp,sp
sub dx,ss:[bp]
jns deltay_ok
neg dx
mov bh,4bh
deltay_ok:
mov si,dx
or si,cx
jne ok
add sp,6
ret
ok:

mov w cs:dist_pos,bx

cmp cx,dx

jge deltax_great

xchg cx,dx

mov bl,90h

jmp constants
deltax_great:

mov bh,90h
constants:

mov w cs:dist_neg,bx

shl dx,1

mov di,dx

sub dx,cx

mov bp,dx

mov si,bp

sub si,cx

mov ax,0a000h

mov es,ax

pop bx

pop ax
loop_p:

putpixel

or bp,bp

jns dist_pos
dist_neg:

inc ax

inc bx

add bp,di

loop loop_p

jmp finished
dist_pos:

inc ax

inc bx

add bp,si

loop loop_p
finished:

pop bp

ret
bline endp
code ends
end

168

5%
;prepare self modification
;calculate deltax
;negative ?
;yes, then reverse deltax sign
;and decrement ax instead of incrementing ax

;addressing of y1 on the stack
;calculate deltay
;negative ?
;yes, then reverse deltay sign
;and decrement bx instead of incrementing bx

;deltay and

;deltax =072

;then ax, bx and bp from stack and end

;write dec/inc ax/bx to destination
;deltax >= deltay ?

;no, then exchange deltax and deltay
;and increment ax noppen

;otherwise increment bx noppen

;write dec/inc ax/bx to destination

;define add_2

;store in di

;define start-dist

;and store in bp

;define add_1
;and store in si

;load VGA segment

;retrieve stored values for x0 and yO

;set pixel
;dist positive ?

;increment x (if necessary, self modification)
;increment y (if necessary, self modification)
;update dist
;next pixel
finished

;increment x (if necessary, self modification)

;increment y (if necessary, self modification)
;update dist
;next pixel

PO

y -
I Ged o

The Third Dimension: 3-D Graphics Programming

This procedure draws a line in Mode X from the point at coordinates (ax/bx) to point (cx/dx). The current

page (offset in vpage) is considered.

The step into the third dimension next takes us to unit
VAR_3D.PAS, which contains the most important global
variables. The meaning of those global variables will become
apparent in the following sections:

Unit Var_3d;

Interface

Uses Tools;

Const Txt_Number=5; {number of used textures}
Txt_Size: {size specifications of textures}

Array[0..Txt_Number-1] of Word=
($0a0a,$0a0a,$0a0a,$0a0a,$0a0a);

Var vz:Word; {shifting into the screen}
rotx, {angle of rotation}
roty,
rotz:word,; {3 degree steps}
sf_sort:Boolean; {sort surfaces ?}
Fill:Boolean; {true: Fill / false:Lines}

sf_shift:Boolean;
Texture:Boolean;
lightsrc:Boolean; {use light source ?}
Glass:Boolean; {glass surface ?}
Txt_Data:Array[0..Txt_Number-1] of Pointer;
{location of textures in memory}
Txt_Offs:Array[0..Txt_Number-1] of Word;
{offset within the texture picture}
{pointer to texture picture}

{suppress surface shift ?}
{use textures ?}

Txt_Pic:Pointer;

Sine:Array[0..149] of Word;
{sine table for rotations}
Implementation
Begin
Sin_Gen(Sine,120,16384,0);
Move(Sine[0],Sine[120],60);
End.

You can find

4 VAR_3D.PAS

~/ on the companion CD-ROM

This unit is used by all our 3-D programs. It initializes the sine tables used for the rotations. Subsequently,
the first quarter (30 entries = 60 byte) of this table is appended to the end. This has the advantage that both

its sine (zero in sine[0]) and its cosine values (zero in sine[30])
can be inferred.

The Bresenhamalgorithmisused inthe3D_WIRE.PAS program,

which direct the assembly module to clear the global variable

filling, to draw wireframe models:

Uses Crt,ModeXLib,var_3d;
Const
worldlen=8*3; {Point-Array}
Worldconst:Array[0..worldlen-1] of Integer =
(-200,-200,-200,
-200,-200,200,
-200,200,-200,
-200,200,200,
200,-200,-200,

» You can find

4 3D_WIRE.PAS

= on the companion CD-ROM

169

The Third Dimension: 3-D Graphics Programming 7 oS

200,-200,200,

200,200,-200,

200,200,200);

surfclen=38; {Surface-Array}
surfcconst:Array[0..surfclen-1] of Word=
(0,4,0,2,6,4,

0/4,0,1,3,.2,

0,4, 4,6,7,5,

04,1573,

0,4, 2,3,7,6,

0,4, 0,4,5,1,0,0);

Var

i,j;\Word;
procedure drawworld;external; {Draws the world on current video page}
{$| 3dasm.obj}

{$| poly.obj}
{$l bres.obj}
{$l root.obj}
Begin
vz:=1000; {solid is located at 1000 units depth}
vpage:=0; {start with page 0}
init_modex; {enable ModeX}
rotx:=0; {initial values for rotation}
roty:=0;
rotz:=0;
Fill:=false; {SurfaceFill off}
sf_sort:=false; {SurfaceSort off}
sf_shift:=false; {SurfaceShift suppression off}
Glass:=false; {glass surfaces off}
repeat
clrx($0f); {clear screen}
DrawWorld; {draw world}
switch; {switch to finished picture}
WaitRetrace; {wait for next retrace}
Inc(rotx); {continue rotating ... }
If rotx=120 Then rotx:=0;
Inc(rotz);
If rotz=120 Then rotz:=0;
inc(roty);
if roty=120 Then roty:=0;
Until KeyPressed; { ... until key}
TextMode(3);
End.

You'll find the definitions for the world and the surfaces at the start of this program and in the following
programs. The world includes only the coordinates for the corners, which are simply listed in the X, y, z
series order for every given point. A relationship between these points is first established by defining the
surface. The characteristics of each surface are established in this array.

The first word for every surface definition includes the top surface structure. We will talk more about top
surface structure in later sections but it's simply listed here as 0. This is followed by the number of the corner

points of this surface and the numbers of the corner points themselves, whereby their numbering starts with
0.

170

= e‘gw““d The Third Dimension: 3-D Graphics Programming

Ut

The first square consists of the corner points 0,2,6,4, which corresponds to the coordinates (-200/-200/-200),
(-200,200,-200), (200,200,-200). (200,-200,-200). The definition of the top surface is complete by specifying
two consecutive zero words, otherwise it will not be recognized by the procedure.

In the main program, the global depth vz of the object is then set (placed). Reduce this value to zoom closer.
Thevariablesrotx ,roty androtz indicate the object's rotation angle in steps of 3 degrees; i.e., arotation
of 15 degrees is established with a value of 5.

The choice of graphic mode is assigned to Mode X. This mode has a few disadvantages relating to the speed
at which it can address individual pixel but its most important advantage is its two screen pages. This is
important with the textures, because here the painting of the screen takes longer than a retrace period.

The global directional variables are then set. In this instance, the surface (filling), the sorting (fl_sort),
the hiding of the reverse side (fl_backs) and the glass top surfaces (glass) are turned off.

The loop that follows is the same for all the programs and follows this pattern if no key is pressed:
1. The screen is cleared every time.
2. The world is drawn.
3. It's switched over to the new screen page.
4

It's rotated further.

The main function of this program takes over the module » You can find
3DASM.ASM, which is written in assembly language for faster 4 3DASM.ASM
execution. Instead of listing the source code in individual “G~ on the companion CD-ROM

sections, we've listed the entire source code at one time:

.286
w equ word ptr
b equ byte ptr

surfclen equ 200 ;maximum length of surface defined
Pointlen equ 4*100 ;length of point array
num_ar equ 30 ;maximum number of areas
num_cor equ 10 ;maximum number of corners
data segment ;external variables from Pascal segment
extrn vz:word ;total depth
extrn rotx:Word ;angle of rotation

extrn roty:Word

extrn rotz:word

extrn worldconst:dataptr ~ ;array with points

extrn surfcconst:dataptr ;array with surface definitions

extrn lightsrc:word ;flag for light source shading
extrn sf_sort:word ;flag for surface sorting
extrn sf_shift:word ;flag for surface shift suppression
extrn Texture:Byte ;flag for textures
extrn Fill:Byte ;flag for fill / wireframe model

crotx dw 0 ;X, y and z angle as offset to

croty dw 0 ;specific sine value

crotz dw 0

rotx_x dw O 1X,Y,Z to x-rot

rotx_y dw 0

rotx_z dw 0

roty_x dw 0 ;to y-rot

roty_y dw O

171

The Third Dimension: 3-D Graphics Programming

roty_z dw 0
rotz_x dw 0
rotz_y dw O
rotz_z dw 0
startpoly dw 0

;to z-rot, final

;start of definition of current area

Point dw Pointlen dup (0);receives calculated coordinates

Pointptr dw 0

;pointer in Point-Array

Point3d dw Pointlen dup (0) ;receives completed 3D-coordinates (texture)
mean dw num_ar*2 dup (0) ;list of mean z-values

meanptr dw 0

n dw 0,0,0,0,0,0

n_amnt dwO

extrn sine:dataptr

data ends

extrn drawpol:near

extrn fillpol:near

extrn root:near

getdelta macro
mov ax,poly3d[0]
mov delta2[0],ax
sub ax,poly3d[8]
mov deltal[0],ax
mov ax,poly3d[2]
mov delta2[2],ax
sub ax,poly3d[10d]
mov deltal[2],ax
mov ax,poly3d[4]
mov delta2[4],ax
sub ax,poly3d[12d]
mov deltal[4],ax
mov bp,polyn
dec bp
shl bp,3
mov ax,poly3d[bp]
sub delta2[0],ax

mov ax,poly3d[bp+2]

sub delta2[2],ax

mov ax,poly3d[bp+4]

sub delta2[4],ax
endm

;pointer in Mean-Array
;normal vector 32 Bit
;amount of normal vector

;draws area as wireframe model
fills area
;calculates root of ax
;calculates the two surface vectors
;X: original corner
;store temporarily in delta2
;obtain difference to first point
;and deltal finished
;y: original corner
;store temporarily in delta2
;obtain difference to first point
;and deltal finished
;Z: original corner
;store temporarily in delta2
;obtain difference to first point
;and deltal finished
;select last point

;8 bytes at a time
;get x
;obtain difference
gety
;obtain difference
;get z
;obtain difference

setcoord macro source,offst ;sets calculated screencoord

.386
mov ax,source
cwd
shld dx,ax,7
shl ax,7
idiv cx
add ax,offst
mov bx,Pointptr
mov Point[bx],ax
add Pointptr,2
endm
z2cx macro tabofs
mov cx,tabofs + 4
add cx,vz
mov bx,meanptr
add mean[bx],cx
endm

;project coordinate

;middle of screen is 0/0/0
;note in Point-Array

;add array pointer
;moves z-coordinate to cx

;add z-translation
;note in Mean-Array

xrot macro zcoord,qcoord ;rotates qcoord by x, stores in zcoord

.386

172

@ ((a 0\){\d

I ey The Third Dimension: 3-D Graphics Programming
mov bp,crotx ;get angle
mov bx,[qcoord]
shl bx,3 ;X8, to align to point entries
mov Pointptr,bx
sub bx,[gcoord] ;insg. x6, to align to world entries

sub bx,[gcoord]
add bx,offset worldconst ;set to world

mov ax,[bx] ;get x
mov zcoord,ax ;and set unchanged
mov ax,[bx+2] gety
imul w ds:[bp+60d] ;*¥cos rotx
shrd ax,dx,14d
mov cx,ax ;store in cx
mov ax,[bx+4] ;get z
imul w ds:[bp] ;*-sin rotx
shrd ax,dx,14d
sub cx,ax
mov zcoord+2,cx ;y value finished and set
mov ax,[bx+2] gety
imul w ds:[bp] ;¥sin rotx
shrd ax,dx,14d
mov cx,ax ;store in cx
mov ax,[bx+4] getz
imul w ds:[bp+60d] ;*cos rotx
shrd ax,dx,14d
add cx,ax
mov zcoord+4,cx
endm
yrot macro zcoord,qcoord ;rotates qcoord by vy, stores in zcoord
mov bp,croty ;get angle
mov ax,qcoord+2 ;gety
mov zcoord+2,ax ;and set unchanged
mov ax,qcoord ;get x
imul w ds:[bp+60d] ;*cos roty
shrd ax,dx,14d
mov cx,ax ;store in cx
mov ax,qcoord+4 ;getz
imul w ds:[bp] ;*sin roty
shrd ax,dx,14d
add cx,ax
mov zcoord,cx ;x value finished and set
mov ax,qcoord ;get x
imul w ds:[bp] ;*-sin roty
shrd ax,dx,14d
mov cx,ax ;store in cx
mov ax,qcoord+4 ;getz
imul w ds:[bp+60d] ;*cos roty
shrd ax,dx,14d
sub ax,cx
mov zcoord+4,ax
endm
zrot macro zcoord,gcoord ;rotates qcoord by z, saves in zcoord
mov bx,Pointptr ;prepare entry in 3D-Point-Array
mov bp,crotz ;get angle
mov ax,qcoord+4 ;getz
mov zcoord+4,ax ;and set unchanged
mov Point3d[bx+4],ax ;also note in 3D-Array
mov ax,qcoord ;get x
imul w ds:[bp+60d] ;*cos rotz

shrd ax,dx,14d

173

Bl

The Third Dimension: 3-D Graphics Programming | mde@ﬁ“““
mov cx,ax ;store in cx
mov ax,qcoord+2 gety
imul w ds:[bp] ;*-sin rotz
shrd ax,dx,14d
sub cx,ax
mov zcoord,cx ;X value finished and set
mov Point3d[bx],cx
mov ax,qcoord ;get x
imul w ds:[bp] ;*sin rotz
shrd ax,dx,14d
mov cx,ax ;store in cx
mov ax,gcoord+2 ;gety
imul w ds:[bp+60d] ;*cos rotz
shrd ax,dx,14d
add cx,ax

mov zcoord+2,cx
mov Point3d[bx+2],cx
endm

get_normal macro ;calculates normal vector of an area
mov ax,deltal[2] ;a2*b3
imul delta2[4]
shrd ax,dx,4
mov n[0],ax
mov ax,deltal[4] ;a3*b2
imul delta2[2]
shrd ax,dx,4
sub n[0],ax
mov ax,deltal[4] ;a3*bl
imul delta2[0]
shrd ax,dx,4
mov n[2],ax
mov ax,deltal[0] ;al*b3
imul delta2[4]
shrd ax,dx,4
sub n[2],ax
mov ax,deltal[0] ;al*b2
imul delta2[2]
shrd ax,dx,4
mov n[4],ax
mov ax,deltal[2]
imul delta2[0]
shrd ax,dx,4
sub n[4],ax ;cross product (=normal vector) finished
mov ax,n[0] X172
imul ax
mov bx,ax
mov cx,dx
mov ax,n[2] X272
imul ax
add bx,ax
adc cx,dx
mov ax,n[4] X312
imul ax
add ax,bx
adc dx,cx ;sum in dx:ax
push si
call root ;root in ax
pop si
mov n_amnt,ax ;amount of normal vector finished
endm

174

@ (f -
| (\)de‘g‘

ound

The Third Dimension

: 3-D Graphics Programming

light macro
mov ax,n[0]
imul 1[0]
mov bx,ax
mov cx,dx
mov ax,n[2]
imul I[2]
add bx,ax
adc cx,dx
mov ax,n[4]
imul 1[4]
add ax,bx
adc dx,cx
idiv |_amnt
mov bx,n_amnt
cwd
shld dx,ax,5
shl ax,5d
mov bp,startpoly
idiv bx
inc ax
or ax,ax
js turned_toward
XOr ax,ax
turned_toward:
sub b polycol,al
endm
code segment

;determines brightness of an area

;light vector * normal vector
;form sum in cx:bx

;scalar product finished in dx:ax

;divide by |_amnt
;and by n_amnt

;values from -32 bis +32
;prepare addressing of surface color

;division by denominator

;if cos a positive -> turned away from the light

;thus, no light

;c0s<0 -> add to primary color

assume cs:code,ds:data

public drawworld
public linecount
public polycol
public polyn
public poly2d
public poly3d
linecount dw 0
polycol dw 3
polyn dw 0

poly2d dw num_cor*4 dup (0)
poly3d dw num_cor*4 dup (0)

public Txt_No
Txt_No dw 0

public deltal,delta2

dw 0,0,0

dw 0,0,0

I dw 11d,11d,11d

deltal
delta2

|_amnt dw 19d

drawworld proc pascal

push ds

push es

push bp

lea si,surfcconst
mov meanptr,0
mov ax,ds:[rotx]
shl ax,1

add ax,offset sine

mov crotx,ax
mov ax,ds:[roty]
shl ax,1

add ax,offset sine

mov croty,ax

;current surface color

;number of existing corners

;corners of polygon to be drawn
;3D corners

;current texture number
;plane vectors

;light vector
;amount of light vector

;draws three-dimensional world

;surfaces are addressed by si
;start in Mean-Array with 0
;get angle,
;convert as memory offset

;and store in help variables
;exactly the same for y

175

The Third Dimension: 3-D Graphics Programming

mov ax,ds:[rotz]
shl ax,1

add ax,offset sine
mov crotz,ax

npoly:
mov startpoly,si
add si,2
mov cx,[si]
mov linecount,cx
inc cx
mov w polyn,cx
add si,2

nline:
Xrot rotx_x,si
yrot roty_x,rotx_x
zrot rotz_x,roty_x
z2cx rotz_x
setcoord rotz_x,160

setcoord rotz_y,100

add si,2

dec linecount
je polyok
jmp nline

polyok:
mov bx,meanptr
mov ax,mean[bx]
mov cx,polyn
dec cx
cwd
div cx
mov mean[bx],ax
mov ax,startpoly
mov mean[bx+2],ax
add meanptr,4
cmp w [si+2],0
je finished
jmp npoly
finished:

cmp b sf_sort,0
je no_quicksort

;and z

;polygon loop
;store for later use
;skip color
;get number of corners
;load counter

;due to closed area

;enter in Point-Array
;move to actual coordinates

;rotate coordinates by x
byy
;and by z
;get z start
;write coordinates

;next corner point
;advance line counter

;all drawn -> terminate

;otherwise next line

;calculate mean value:
;get sum

;and divide by number of corners

;write back
;write "number” of area also

;continue
;polygons all finished ?

;sort surfaces ?

call quicksort pascal,0,bx ;sort field from O to current position

no_quicksort:
mov mean[bx+4],0
mov ax,cs
mov es,ax
xor bx,bx

npoly_draw:
lea di,poly2d
mov bp,mean[bx+2]
mov ax,ds:[bp]
mov polycol,ax
mov texture,0
cmp ah,0ffth
jne no_texture
mov texture,1
mov b txt_no,al

176

;set termination
;set destination segment

;start with first surface
;destination:Poly-Array
;get pointer to color and points of surface

;get color and set

;Assumption: no texture
;texture ?

;yes, then set
;note number

PO

(s}
I oo™ The Third Dimension: 3-D Graphics Programming
no_texture:
mov b lightsrc,0 ;/Assumption: no shading
cmp ah,0feh ;shading ?

jne no_lightsource

mov b lightsrc,1 ;yes, then set

no_lightsource:

add bp,2 ;position on number

mov cx,ds:[bp] ;get number of corners

mov polyn,cx ;write in Poly-Array
npoint:

add bp,2

mov si,ds:[bp] ;get pointer to actual point

shl si,3 ;3 word entry !

add si,offset Point ;and x/y from Point-Array to Poly-Coord.
mov ax,[si+Point3d-Point] ;3d-get x

mov es:[di+poly3d-poly2d],ax ;set 3d-x

mov ax,[si+Point3d-Point+2] ;3d-gety

mov es:[di+poly3d-poly2d+2],ax;set 3d-y

mov ax,[si+Point3d-Point+4] ;3d-get z

mov es:[di+poly3d-poly2d+4],ax;set 3d-z

movsw ;set 2D-coordinates
movsw

add di,4 ;next Poly2d entry

dec cx ;all corners ?

jne npoint

mov bp,polyn ;copy first corner to last
shl bp,3 ;position on first point

neg bp

mov ax,es:[di+bp]
mov es:[di],ax

mov ax,es:[di+bp+2]
mov es:[di+2],ax
add di,poly3d-poly2d
mov ax,es:[di+bp]
mov es:[di],ax

mov ax,es:[di+bp+2]
mov es:[di+2],ax
mov ax,es:[di+bp+4]
mov es:[di+4],ax
cmp fill,1

jne lines

getdelta

cmp b lightsrc,0

jne shade

jmp no_light

;and copy

;the same for 3d-coordinates
;and copy

fill surface ?

;yes, then calculate Deltal and 2
;light source ?

shade:
push bx
get_normal
light
pop bx

\yes,

;then normal vector
;and calculate light

no_light:
inc polyn
call fillpol

;increment number of corners
;draw surface

next:
add bx,4
cmp mean([bx],0

;locate next surface
slast ?

177

The Third Dimension: 3-D Graphics Programming i~ e(qm““"

o

je _npoly_draw ;no, then continue
jmp npoly_draw

lines:
push bx
call drawpol ;draw polygon
pop bx
jmp next

_npoly_draw:
pop bp sfinished
pop es
pop ds
ret
drawworld endp
public quicksort
quicksort proc pascal down,up:word
;sorts Mean-Array according to Quicksort algorithm

local key:word
local left:word

push bx
mov bx,down ;find middle
add bx,up
shr bx,1
and bx,not 3 ;posit on blocks of 4
mov dx,mean[bx] ;get key
mov key,dx
mov ax,down ;initialize right and left with base values
mov si,ax
mov left,ax
mov ax,up
mov di,ax
mov dx,key
left_nearer:
cmp mean(si],dx ;greater than key -> continue searching
jbe left_on
add si,4 ;posit on next one
jmp left_nearer ;and check it
left_on:
cmp mean[di],dx ;less than key -> continue searching
jae right_on
sub di,4 ;posit on next one
jmp left_on ;and check it
right_on:
cmp si,di ;left <= right ?
jg end_schl ;no -> subarea sorted

mov eax,dword ptr mean([si] ;exchange mean values and positions
xchg eax,dword ptr mean[di]
mov dword ptr mean[si],eax

add si,4 ;continue moving pointer
sub di,4
end_schl:
cmp si,di ;left > right, then continue
jle left_nearer
mov left,si ;store left, due to recursion
cmp down,di ;down < right -> sort left subarea

jge right_finished
call quicksort pascal,down,di ;continue sorting recursive halves

178

D
| \)de‘g‘o

The Third Dimension: 3-D Graphics Programming

right_finished:
mov si,left ;up > left -> sort right subarea
cmp up,si
jle left_finished
call quicksort pascal,si,up ;continue sorting recursive halves
left_finished:
pop bx
ret
quicksort endp
code ends
end

You've probably guessed the procedure drawworld is important simply by its length. Here, the complete
three dimensional world is drawn, depending on the current transformation values. Parameters are not
given since these are completely handled by global variables.

The current rotation angle (rotx , roty , rotz) is immediately converted to the offset relative to the data
segment(crotx ,croty ,crotz)sodirectaccessisavailable later withoutrequiringany furthercalculations.
Within the loop npoly which is performed for every polygon, the Sl-register is used for addressing within
the surface array (surfcconst).

Then, the color information is skipped and the numbers of corners for this polygon are read directly from
the array. This value is saved in LineCount , which indicates the number of corners that still need to be
calculated. The procedure next enters into the point loop, nline , which rotates the individual points one
after another and projects them onto the screen coordinates. The rotations (macros xrot , yrot , zrot)
respectively transmit the results to the one that follows, so the original coordinates are rotated one after
another around the x-, y- and z-axes.

The structures of the three rotation macros is very similar. Since bp contains the angle in the offset form, the
corresponding sine value can be easily read by indexing with bp from the chart. The cosine is correspondingly
addressed by adding 60 (byte, i.e., 30 entries) to bp.

The number of the actual corner points is multiplied by 8 to access the three dimensional point array (with
8 byte long entries). This index is saved in variable PointsPtr

Now on to the macros. For an x rotation, the x-coordinate remains unchanged. The y-and z-coordinates are
changed as follows:

y'=y*cos_ - z*sin_
and
Z'=y*sin_ + z*cos_.

The other two macros are similar for the y- and z-coordinates. Macroz2cx loads the rotated z coordinates
into the cx register.

Now the coordinates for the corner points are ready to be projected onto the screen. This is performed by
macro SetCoord . It projects the coordinates listed in the source (one timerotz_x andonetimerotz_y)
and simultaneously moves the completed image to the middle of the screen where the offset (the second
parameter) is added.

The nline loop is closed by advancing to the next corner point (increasing Sl) and reducing the line
counter.

179

The Third Dimension: 3-D Graphics Programming i~ 6@0““"

o

When all the corner points have been calculated, the middle section of the polygon is calculated at label
polyok .Thewireframe model at the end of thenpoly loop with the cmp instruction gets interesting. When
the number of corners equals zero, the loop is ended and jumps to the label complete

In later models, a surface sorter is introduced at this position. However, it's skipped here due to the setting
of variable fl_Sort . Here, the termination is set in array mean by using a trailing zero. Each polygon is
individually drawn in the npoly_draw loop . Array Poly2 is used to transfer the coordinates to routine
DrawPoly .

The polygon identification is retrieved from array mean every time, as is the color information retrieved
fromtheSurfcConst field and saved in polycol . Thetwo instruction blocks that follow are for activating
the texture and light source routines, which, in this case, are not yet required. The reading of the number
of corners proceeds from the array mean with the label no_light source . It's then saved in variable
polyn . Thenpoint loop follows and is performed for every corner point. It then reads the number of corner
points and addresses the two dimensional corner coordinates in the points array using the loop. Both of the
movsw commands then copy the coordinates from this array into the Poly2D field, where the DI counter
has been increased. The loop then ends.

Now the first corner must be copied to the last one to maintain a closed line. The following trick is used for
this: Multiply the number of corners (polyn) by 8 (number of bytes per corner) to determine the total length
of the array Poly2D in byte. This length is then subtracted by sorting out from the current position (hence
neg bp) and the word is copied in here.

Since this program uses wireframe models, lines branch out from the label, which proceduredrawpol calls
from the module POLY.ASM and, in this manner, draws the polygon to the screen as a wireframe model.
Afterwards, the next polygon in array mean is addressed at label next and jumps to the beginning of the

loop npoly_Draw . » The drawpol procedure

. . N . t of th
The polygon is drawn in the POLY.ASM module, in this case by 4 pofyf’jg,ﬁ mo%ule
the procedure drawpol on the companion CD-ROM

4\?\

public drawpol
;draws wireframe model of surface in poly2d
drawpol proc near

push es

pusha

Xor si,si ;index to first entry

mov bp,polyn ;get number of corners
@nline:

mov ax,poly2d[si] ;get coordinates from table

mov bx,poly2d[si+2]
mov cx,poly2d[si+8]
mov dx,poly2d[si+10d]
push bp
push si
call bline ;draw line
pop si
pop bp
add si,8 ;next line
dec bp ;decrement number
jne @nline
popa
pop es
ret
drawpol endp

180

T ﬁ\,
L ((o

| \)de‘

The Third Dimension: 3-D Graphics Programming

We are obviously using the simpler presentation procedure here. Starting and ending coordinates are read
for every point from the arrayPoly2D and the procedurebline iscalled. si serves as anindex in the array
and bp is used for purposes other than originally intended, i.e., as a counter for the number of lines to be
drawn.

Get A Perspective: Glass Figures

The objects in the previous section consist primarily of only sides. Therefore, they don't resemble real
objects. The next step, then, is to add surfaces to these objects. In doing this, you'll encounter one of the
biggest problems in 3-D: Hidden surfaces.

If you simply erase all the surfaces that are behind each other, as they are defined, often surfaces will appear
which are normally invisible. We'll talk about hiding these surfaces from a different angle in this section.

Instead of adapting the illustrations to reality, we will first adapt reality to the illustration. We'll start with
a glass figure where all side surfaces are always visible. Nevertheless, the sides can be in color. In fact, they
must be in color so we can create a picture.

If only two surfaces lie back to back, their colors are superimposed on one other and a somewhat darker
blended color results (two surfaces filter out more light than one surface).

In principle, every possible surface combination must be considered, i.e., if surface A is superimposed over
surface B at any angle, a blended color for the two surfaces must exist. The only way to allow for this is to
reserve a bit in the color information for each surface. So, only surfaces that cannot be superimposed under
any circumstances can use the same bit because blending is not possible.

When preparing the surface, the old color is not transferred, but both values are joined using OR, producing
a new color value. For example, if surface A has the color 2 (bit 1 is set) and surface B has the color 16 (bit
4), this combination results in the color 18 (bit 1 and 4 set).

Naturally, the palettes for these special structures must be included. The pure colors must be maintained
and every bit combination is provided with a blended color from the respective bit. The named color 18 must
be, in this case, a blend of colors 2 and 16.

The palette must then be prepared at the beginning of the program. You will use the existing VGA
arithmetic unit when filling the polygons. This can be switched (or operated) using GDC register 3 in the
OR mode. It joins the incoming CPU data with the OR values located in the latches before they are written
to screen memory. Before write access can occur, the latches must be loaded with the values from the screen
memory, in which read access is given at the same memory position.

The following program, 3D_GLASS.PAS, is also based on the —
3DASM.ASM model. Unlike the previous section, different You can fin
g

; . 3D_GLASS.PAS
variables have been set: on the companion CD-ROM

S

ol

(@ Password: Glass

181

The Third Dimension: 3-D Graphics Programming

\'\d
SRy o

Uses Crt,ModeXLib,var_3d;

Const
worldlen=8*3; {Point-Array}
Worldconst:Array[0..worldlen-1] of Integer =
(-200,-200,-200,

-200,-200,200,

-200,200,-200,

-200,200,200,

200,-200,-200,

200,-200,200,

200,200,-200,

200,200,200);

surfclen=38; {Surface-Array}

surfcconst:Array[0..surfclen-1] of Word=

(01,4, 0,2,6,4,

02,4,0,1,3,2,
04,4, 4,6,7,5,
08,4, 1,5,7,3,
16,4, 2,3,7,6,
32,4,0,4,51,0,0);
Var
i,j;\Word;
Procedure Glass_Pal;
{prepares the palette for glass solids}
Begin
FillChar(Palette[3],765,63); {first all colors white}
For i:=1 to 255 do Begin {define 255 mixed colors}

If i and 1 = 1 Then Dec(Palette[i*3],16);

If i and 2 = 2 Then Dec(Palette[i*3+1],16);

If i and 4 = 4 Then Dec(Palette[i*3+2],16);

If i and 8 = 8 Then Begin
Dec(Palette[i*3],16);
Dec(Palette[i*3+1],16);

End;

If i and 16 = 16 Then Begin
Dec(Palette[i*3],16);
Dec(Palette[i*3+2],16);

End;

If i and 32 = 32 Then Begin
Dec(Palette[i*3+1],16);
Dec(Palette[i*3+2],16);

End;
End;
SetPal;
End;

procedure drawworld;external; {draws the world on current video page}
{$| 3dasm.obj}

{$| poly.obj}

{$l bres.obj}

{$! root.obj}

Begin
vz:=1000; {solid is located at 1000 units depth}
vpage:=0; {start with page 0}
init_modex; {enable ModeX}
Glass_Pal;
rotx:=0; {initial values for rotation}
roty:=0;
rotz:=0;
Fill:=true; {SurfaceFill on}

182

T f\,
D ((o

| \)de‘

The Third Dimension: 3-D Graphics Programming

sf_sort:=false; {SurfaceSort off}
sf_shift:=false; {SurfaceShift suppression off}
Glass:=true; {glass surfaces on}
repeat
clrx($0f); {clear screen}
DrawWorld; {draw world}
switch; {switch to finished picture}
WaitRetrace; {wait for next retrace}
Inc(rotx); {continue rotating ... }
If rotx=120 Then rotx:=0;
Inc(rotz);
If rotz=120 Then rotz:=0;
inc(roty);
if roty=120 Then roty:=0;
Until KeyPressed; { ... until key}
TextMode(3);
End.
The surface filling algorithm is turned on by setting the variable Filling . Otherwise, Glass would be

set to TRUE, whereby the GDC would be switched to the OR mode. ProcedureGlass_Pal iscalled before
the main program (discussed in the previous section). It prepares the palette for the glass figures.

For every color in which bit 0 is set, the red portion is reduced to 16. All blended colors are created in this
manner when the color 1 is involved. The same is true with other 5 bit experiences, which filter out other
colors respectively.

The remaining POLY.ASM modules are considered at this point. After the polygon fill algorithm, a colorful
surface is created with the coordinates found in Poly2D .

There are two basic categories of fill algorithms:

» General filling
This arbitrarily fills pre-drawn surfaces and is often used in paint programs

» Coordinate filling
This uses coordinates to fill defined polygons. This algorithm is the fastest for our purposes.

The method described here is based on drawing of lines. This is the reason why, starting with the point
having the lowest y-coordinate, the left and right edges of the polygon are keyed until the point with the
largest y-coordinate is reached. As this happens, the border lines of the polygon are calculated but not
drawn. If you advance a line in this fashion on both sides, a horizontal line can be drawn between the points
calculated on the left and right points. You can take advantage there by being able to draw horizontal lines
in Mode X at a very high rate of speed.

A filling routine must constantly calculate lines on the left as well as on the right margins of the polygon.
If aline has been completely "drawn," the next one that has the last corner point as its starting point is started.

Procedure FillPol shows how this theoretical statement can

.) . > :
be put into practice. Besides the procedure DrawPol , the \‘ Ygéf&’;g’;\g
complete code for the POLY.ASM module is used by the fill on the compariion CD-ROM
algorithm:

183

The Third Dimension: 3-D Graphics Programming

.286
w equ word ptr
b equ byte ptr

include texture.inc ;implement texture macros
setnewlinel macro ;use only ax and bx here !
local dylpos,dxIpos,dxigreat,macro_finished

mov bx,4043h ;code for inc ax (in bh) and inc bx (in bl)

mov bp,left

mov ax,poly2d[bp+8] ;store destination coordinates

mov xl1,ax

mov ax,poly2d[bp+10d]

mov yl1,ax

mov ax,poly2d[bp] ;left x/y start in glob. var

mov xl0,ax

sub ax,xI1 ;make delta x

inc xI1 ;for the condition of truncation

neg ax ;x11-x10

jns dxlpos ;dxl negative ?

neg ax ;then obtain amount

mov bh,48h ;code for dec ax (dec xI0)

sub xI1,2 ;extension of destination coordinate to negative
dxlpos:

mov dxl,ax ;and store glob.

mov incflagl,ax ;store in increment flag

mov ax,poly2d[bp+2]

mov yl0,ax

sub ax,yl1 ;obtain |delta y|

incyll ;for the condition of trunctation

neg ax

jns dylpos ;negative ?

neg ax ;then obtain amount

mov bl,4bh ;code for dec bx (dec yl1)

sub yl1,2 ;extension of destination coordinate to negative
dylpos:

mov dyl,ax ;and store glob.

cmp dxl,ax ;dx < dy

jae dxIgreat

neg incflagl ;then sign change for increment flag
dxlgreat:

mov cs:byte ptr incxl,bh ;perform self modification
mov cs:byte ptr incyl,bl

cmp texture,1 ;textures required ?
jne macro_finished ;no, then skip
txt_makevarl ;otherwise calculate texture variables
macro_finished:
mov ax,x|0 ;use register as control variable
mov bx,yl0
mov si,incflagl
endm
setnewliner macro ;use only cx and dx here !
local dyrpos,dxrpos,dxrgreat,macro_finished
mov cx,4142h ;code for inc cx (in ch) and inc dx (in cl)
mov bp,right
mov dx,poly2d[bp] ;get destination coordinates
mov xrl,dx
mov dx,poly2d[bp+2]
mov yrl,dx
mov dx,poly2d[bp+8] ;right x/y in glob. var
mov xr0,dx
sub dx,xrl ;make |delta x|
inc xrl ;for the condition of truncation

184

PO

(s}
I oo™ The Third Dimension: 3-D Graphics Programming

neg dx

jns dxrpos ;negative ?

neg dx ;then obtain amount

mov ch,49h ;code for dec cx

sub xrl,2 ;extension of destination coordinate to negative
dxrpos:

mov dxr,dx ;store in glob. var

mov incflagr,dx

mov dx,poly2d[bp+10d] ;make |delta y|

mov yr0,dx

sub dx,yrl

inc yrl ;for the condition of truncation

neg dx

jns dyrpos ;negative ?

neg dx ;then obtain amount

mov cl,4ah ;code for dec dx

subyrl,2 ;extension of destination coordinate to negative
dyrpos:

mov dyr,dx ;and store in glob. var

cmp dxr,dx dx <dy ?

jae dxrgreat

neg incflagr ;then sign change for increment flag
dxrgreat:

mov cs:byte ptr incxr,ch ;self modification
mov cs:byte ptr incyr,cl
cmp texture,1

jne macro_finished

txt_makevarr

;textures needed ?
;no, then skip
;otherwise calculate texture variables

macro_finished:
mov cx,xr0
mov dx,yr0
mov di,incflagr

endm

data segment public
extrn vpage:word
extrn sf_shift
extrn glass:byte;

;texture variables:
extrn texture:byte
extrn txt_data:dataptr
extrn txt_offs:dataptr
extrn txt_size:dataptr

;load register

;current video page
;flag for surface shift suppression
;flag for glass surfaces

;texture needed ?
;array with pointer to graphic data

;array with offsets within the texture image
;array with size specifications

d x ddo ;relative x-coordinate

d_yddo ;relative y-coordinate

D ddo ;main determinant

columnl dd O ;components of the main determinant
dd o

column2 dd 0
dd o

upper_row dw O
lower_row dw O

;which coordinates were used ?

xI_3d dd 0
yl_3d dd 0
zI_3d dd 0
xr_3d dd 0
yr_3d dd 0
zr_3ddd 0

;control values for 3d-coordinates when filling

inc_xldd 0 ;values for addition to control values

185

The Third Dimension: 3-D Graphics Programming

\'\d
SRy o

inc_yl dd 0
inc_zl dd 0
inc_xr dd 0
inc_yr dd 0
inc_zr dd 0

;variables for fill algorithm

high_point dw O ;kept in dx during search
high.y dwO ;kept in bx during search
left dw 0 ;point of left side

right dwO ;point of right side

xI0 dw O ;control values for left start and end points

ylOo dw O

xI1 dw O

yll dw O

xr0 dw 0 ;control values for right
yr0 dw O

xrl dw O

yrl dw O

dxl dw 0 ;delta X /'Y for both pages
dyl dw O

dxr dw O

dyr dw O

incflagl dw O ;flags, when y has to be incremented

incflagr dw O
data ends

code segment public
assume cs:code,ds:data

extrn polycol:word ;surface color

extrn polyn:word ;number of corners

extrn poly2d:word ;array with 2D-coordinates
extrn poly3d:word ;array with 3D-coordinates
extrn deltal,delta2:word ;plane vectors

extrn bline:near ;draws line

lambdal dd 0 ;affine coordinates
lambda2 dd 0

inc_lambdal dd O ;steps

inc_lambda2 dd O

plane dw 0002h ;current plane to set

x0 dw 0 ;coordinates for line

y0 dw O

x1 dw 0

zzdw O ;points still to be drawn

extrn txt_no:word ;number of texture to be drawn

public drawpol
;draws wireframe model of surface in poly2d
drawpol proc near

push es

pusha

Xor si,si ;index to first entry

mov bp,polyn ;get number of corners
@nline:

mov ax,poly2d[si] ;get coordinates from table

mov bx,poly2d[si+2]
mov cx,poly2d[si+8]

186

@ ((a 0\){\d

| \)de‘ of

The Third Dimension: 3-D Graphics Programming

mov dx,poly2d[si+10d]

push bp

push si

call bline

pop si

pop bp

add si,8

dec bp

jne @nline

popa

pop es

ret
drawpol endp

hline proc near

pusha

push es

mov x0,ax
mov y0,bx
mov x1,cx
sub cx,ax

jne zzok

inc cx

zzok:
mov zz,cx
cmp glass,1
jne Solid1
push ax
mov dx,3ceh
mov ax,1003h
out dx,ax
pop ax

Solid1:
mov dx,3c4h
mov di,0a000h
mov es,di
mov di,ax
shr di,2
add di,vpage
mov bx,y0
imul bx,80d
add di,bx
cmp zz,4
jl no_middle
and ax,11b
je middle
no_middle:
mov bx,0f02h
mov cx,zz
cmp ¢x,20h
jae no_shift
mov bx,0102h
shl bh,cl
dec bh
and bh,0fh
no_shift:
movV cx,ax
and cl,3
shl bh,cl
mov ax,bx

;draw line

;next line
;decrement number

;draws horiz. line ax/bx -> cx/bx

;store coordinates for later

;calculate number of pixels to be drawn

;glass surface ?
;yes, then GDC mode: OR

;register 3: function select

;timing sequencer port

;select VGA segment
;calculate offset
;(x div 4) + y*80
;add current page

;now in di
;<draw 4 points -> no blocks of 4
;two lower bits are important
;if O set blocks of 4 immediately
;if no_shift, then use this mask
;set number of pixels in mask

;beginning with 20h the 386 shifts back in !

;prepare mask
;number of pixels=number of bits to set

;shift correctly depending on start plane

;and mask finished

187

The Third Dimension: 3-D Graphics Programming

sub zz,4
add zz,cx
start:
out dx,ax
mov al,b polycol
mov ah,es:[di]
stosb
middle:
cmp zz,4
jl close
mov ax,0f02h
out dx,ax
mov cx,zz
shr cx,2
mov al,b polycol
cmp glass,1
jne solid

@lp:
mov ah,es:[di]
stosb
dec cx
jne @Ip
jmp close

solid:
rep stosb

close:
mov cx,x1
and cx,3h
dec zz
js hline_finished
mov ax,0102h
shl ah,cl
dec ah
out dx,ax
mov al,b polycol
mov ah,es:[di]
stosb
hline_finished:
mov dx,3ceh
mov ax,0003h
out dx,ax
pop es
popa
ret
hline endp

txt_hline

public fillpol

fillpol proc near
push bp
pusha

cmp texture,1
jne fill

txt_maindet

Fill:

188

;decrement pixels to be drawn

;set calculated write mask
;get color
;load latches, only for glass solids
;set

;if no more blocks of 4 -> conclusion
;select all planes
;(zz div 4) set blocks of 4

;glass solid ?

;load latches, only glass solids
;and write back

;draw middle part

;set remaining pixels

;if nothing more there -> end
;create mask

;get color

;load latches, only for glass solids

;and draw pixels

;GDC mode back to MOVE

;macro contains procedure "hline_texture"

fills polygon in mode X

;textures being used ?

;no, then simply fill

;otherwise calculate main determinant

@ ((a 0\){\d

I ey The Third Dimension: 3-D Graphics Programming
Xor si,si ;search for highest point, select first entry
mov cx,polyn ;number of corners
sub cx,2
mov bx,0ffffh ;very high value, in any case lower

npoint:
mov ax,poly2d[si+2] gety
cmp ax,bx ;if previous minimum lower
ja no_min
mov bx,ax ;record new minimum
mov dx,si
no_min:
add si,8
dec cx ;next corner, if not Offffh
jns npoint
mov high_point,dx ;record in glob var
mov high_y,bx ;high point search concluded
or dx,dx left=07
jne dec_valid
mov bx,polyn ;yes: right to the other end
sub bx,2
shl bx,3
jmp Ir_finished ;position
dec_valid:
mov bx,dx ;otherwise
sub bx,8
Ir_finished:
mov left,dx ;record one beforehand in glob var
mov right,bx

; ax/bx : start coordinates left (xI0/yl0)
; cx/dx : start coordinates right (xr0/yr0)
;si :overflow flag left

;di :overflow flag right

;bp : pointer to current point

setnewlinel ;load line variables
setnewliner
loopl:
cmp ax,xI1
je new_linel ;if end reached -> set new line
cmp bx,yl1
je new_linel ;otherwise continue drawing
or si,si ;increment flag <= 0
ig flaglgreat
incyl: ;this place is being patched !
inc bx ;continue y
add si,dxl ;continue setting inc flag
txt_incl ;continue 3d coordinates also
cmp bx,yll ;destination reached ?
je new_linel ;then new line
jmp left_increased ;y has been increased left -> now right
flaglgreat:
sub si,dyl ;decrement inc flag
incxl: ;this place being patched !
inc ax ;continue x
jmp loopl
finished__:
jmp finished
new_linel:
mov bx,left ;prepare increase
cmp bx,right
je finished___ ;same, then finished

189

The Third Dimension: 3-D Graphics Programming

\'\d
SRy o

add bx,8 ;continue left
mov ax,polyn ;is left at the end of the list ?
shl ax,3
sub ax,8 ;end defined
cmp bx,ax ;compare
jb left_set
xor bx,bx ;if yes, then set to 0
left_set:
mov left,bx
setnewlinel ;reload variables
jmp loopl
finished_:
jmp finished
left_increased:

loopr:
cmp cx,xrl
je new_liner ;if end reached -> set new line
cmp dx,yrl
je new_liner ;otherwise continue drawing

or di,di ;increment flag <= 0
jg flagrgreat
incyr: ;this place being patched !
inc dx ;continue y
add di,dxr ;continue setting inc flag
txt_incr
cmp dx,yrl ;destination reached ?
je new_liner ;then new line
jmp right_increased ;y was increased right -> now draw line
flagrgreat:
sub di,dyr ;decrement inc flag
incxr:
inc cx ;this place being patched !
jmp loopr

new_liner:
mov dx,right ;prepare decrease
cmp dx,left
je finished_ ;if same, then finished
sub dx,8 ;if previously at 0->set at other end
jns right_set
mov dx,polyn
sub dx,2
shl dx,3 ;positioned at end
right_set:
mov right,dx
setnewliner ;reload variables
jmp loopr
right_increased:
push ax
push cx
cmp cx,ax ;correct sequence ?
jae direct_ok ;then ok, otherwise:
cmp w sf_shift,0 ;suppress surface shift ?
je draw ;no, then draw anyway
pop cx
pop ax
jmp finished ;polygon will not be drawn
draw:
xchg ax,cx ;coordinates in correct sequence
direct_ok:

190

= e‘gw““d The Third Dimension: 3-D Graphics Programming

Ut

cmp texture,1 ;use textures ?
jne norm_fill ;no, then normal fill
call hline_texture ;:draw horizontal texture line
pop cx
pop ax
jmp loopl ;and continue
norm_fill:
call hline ;draw horizontal line
pop cx
pop ax
jmp loopl ;and continue
finished:
popa
pop bp
ret
fillpol endp
code ends
end

Next, the high point (the one with the lowest y-coordinate) is determined in the loopnpoint . BX contains
the previous minimum and Sl contains this point's number. Then, variables left or right are loaded
They indicate which line will be worked on the left or on the right. If, for example, left indicates point 1, a
line is drawn on the left polygon margin from point 1 to point 2. On the right margin, the variable is defined
opposite. A variable point number of 3 means a line will be drawn from point 4 to point 3.

Now left is set to the determined high point and right is set in the coordinate table one point ahead
(or at the end of the definition if left points to point 0). Now both macros, setnewlinel and
setnewliner , are called. These specify the required variables for the left and right lines.

Similar to the Bresenham algorithm, delta x and delta y are calculated. Their values are calculated with
negative signs and the corresponding position in the code is modified so it can be drawn in reverse direction.
This is an effective and fast method to control the execution of a loop while avoiding variables.

Incflag isincluded during the display loop if the y-coordinate is to increase. It's then reversed with delta
x and, if there is an increase greater than 1 (delta x < deltay), in the sign. Incflag , as well as the current
coordinate, are held in the register for faster presentation speed. The AX/BX for the coordinates and Sl for
Incflag are located on the left side. The corresponding CX/DX and DI are located on the right side.

The actual line drawing algorithm uses a slope defined by delta x and delta y. Incflag (inSlorDl)is
reduced at delta y with each movement in the x direction and increased at delta x with a movement in the
y direction. By recognizing theIncflag sign change, we can decide in which direction the next step must
go. A positive flag indicates a step in the x-direction and a negative flag indicates a step in the y-direction.

For instance, if delta x = 100 and deltay =50, theIncflag s initially loaded with 100. The first movement
occurs to the right (Incflag = 100); then delta y is subtracted (Incflag = 50) so the second movement is
also the right and delta y is again subtracted. The next movement is down since (ncflag <= 0).
Afterwards, Incflag is raised to delta x so it again equals 100. Two steps to the right and one step down
is performed repetitively corresponding to a slop of 0.5.

These calculations are performed in loops loopl and loopr on the left or right sides. They are then
checked to seeif the target point has been reached. Therefore, the target pointis pushed in the SetNewLineX

macro by one point in the x- and in the y-direction. So, this position must only be checked if one of the two
coordinates is identical with the expanded target point. In this case, the original target point was bypassed.

191

2 (e

The Third Dimension: 3-D Graphics Programming I oo

When aline has reached its target, the next one must be taken from the list and the respective variables must
be set. This occurs at labels new_linel ~ or new_liner . Variablesleft andright are examined to see
if they are identical, in which case the polygon is completely drawn and the procedure can be exited at
finished

Otherwise, we advance by 8 bytes on the left side of the counter (left) and moved correspondingly back a
position on the right side (right). Accordingly, the margins must also be considered, i.e., after the last point
it must be positioned on the first point and vice versa.

After the counter has been loaded, the line variables are reset.setnewlinel and setnewline2 are called
to jump back into the loop.

As we mentioned, the line is drawn after increasing both sides of the y-coordinate. This occurs at label
right_increased . Essentially, only the procedure hline is called, which draws a line from point ax/bx
to point cx/bx. Subsequently, it jumps back into loop left

This procedure then saves the variables that are still required and calculates the length of the distance. If
the glass surfaces are lengthened, as happens in this program, the GDC is needed at this point to execute
an OR operation between the old latch-content and the new data.

The easiest way to draw a horizontal line is to set all the points following one another to the desired color.
This isn't efficient in Mode X where addressing each individual point is very tedious. Instead, you should
attempt, wherever possible, to set four points at that address.

At label Solid1 |, the target address of the first byte is then calculated. The first, incomplete block is drawn
atlabelno_middle .Thisiseither skipped if the total number of points to draw is smaller than 4 or is needed
if the start plane (determined by AND of the x-coordinate with 11b) is not equal to 0. To draw this block,
the number of the pixel that needs to be set is first masked in bh. Now, all the pixel from this block are masked
and the actual required number of bits is set. This mask is now pushed to the correct position relative to the
start plane and sent to the timing sequencer after decreasing zz .

Now a read access is performed at the desired offset. This is not sent from the contents of the screen memory
to the CPU, but to load the latches so the write access that follows can match the new color with the correct
data.

If there are fewer than four pixels to set, then branch to labelend . Otherwise, all the planes must be turned
on and the corresponding number of blocks set to the correct color. This placement is performed with an
invisible figure using a REP STOSB instruction. Unfortunately, it's slightly more complicated with glass
figures. Here, a loop needs to be inserted since a read access must follow each byte.

The end now sets all the pixels from the last block up to the target coordinate. In this manner, a mask is
formed, set, and the color written all corresponding to the target plane. With the labelhline_complete ,
only the write mode of the GDC is again directed to replace and the procedure is exited.

192

@ ((a 0\){\d

| \)de‘ of

The Third Dimension: 3-D Graphics Programming

Hidden Lines

Glass figures have their own appeal, but they are seldom suitable for depicting real figures. Since most
figures are not transparent, even computer illustrations must be careful not to show invisible back surfaces.

The problem with concealing back surfaces is one of the most complex ideas in three-dimensional
presentations. It's not just a matter of drawing only certain surfaces rather than other surfaces. To some
extent, surfaces overlap each other requiring that both be drawn -- but in the correct order. We will talk
about both concealment and sorting in this section.

There are many ways to hide invisible surfaces. Invisible surfaces usually form an angle between the
surfaces and the line of vision (line extending from the eye to the corresponding surface). This angle
determines whether the viewer is looking at the front or the back of the surface. The surface must be
concealed if the viewer is looking at the back of the surface.

Although the method we will describe is based on a similar idea, it assumes that all surfaces are defined
in a counterclockwise sense (mathematically positive). Therefore, the surface is independent of its position
in space. If it turns itself around so the viewer sees its back surface, it appears mirror reversed and is drawn
"forwards".

Now, it is easily checked with hline when the horizontal lines are drawn, if their ending point
(corresponding to the definition of the surface algorithm) is to

the right of the starting point. If this is not the case, you'll be » The Pmceguﬁh’:"”m/
looking at its back surface, which must be hidden. The program # I;?Dﬁ/rA%M f?/e
checks for this in the procedure Fillpol of the POLY.ASM ’ on the compénion CD-ROM

module at label right_increased

right_increased:

push ax

push cx

cmp cx,ax ;correct sequence ?

jae direct_ok ;then ok, otherwise:

cmp w sf_shift,0 ;suppress surface shift ?

je draw ;no, then draw anyway

pop cx

pop ax

jmp finished ;polygon will not be drawn
draw:

xchg ax,cx ;coordinates in correct sequence
direct_ok:

The AX and CX registers contain the x-coordinates of the starting and ending points. With a mathematically
positive defined surface, CX must be larger than AX. If this is the case, it is drawn directly (label
direct_ok), otherwise, the filling is ended (if fl_backs = TRUE, otherwise the position is ignored and
drawn anyway after exchanging the coordinates).

This method is adequate for convex figures and figures without "depth" (i.e., cubes) but what about concave
figures such as a U-shaped object? Invisible surfaces are sorted out, but the series order is still not correct,
leaving some of the surfaces completely visible, while others remain hidden.

If you now sort the surfaces, so the first surface to be drawn is the one with the largest z-coordinate, i.e., the
one that is farthest back, and then always work towards the front, the newer surfaces that are in front cover
the recently drawn world. Since this method is also used in painting, this is called a "painter's algorithm".

193

The Third Dimension: 3-D Graphics Programming

2 (e

| S Raer Q

How do you go about sorting surfaces? Surface corners usually have entirely different z-coordinates.
Complex (therefore, slow) algorithms attempt to make the calculations and to find connections between the

corners, which makes a clear assignment possible.

Therefore, the mean value for the depth information is given for each surface and used as sorting criteria.
This method can be imprecise. Especially with surfaces having a large range in the z direction, you
experience very attractive and, above all, very fast results when combined with the concealment of the

surface backs.

The most recently mentioned array mean picks up this middle
value and saves the corresponding registers for the surfaces.
That is why completed z-values are added to the current array
position in the macro z2cx . The mean value is then formed in
the label polyok , where this total is divided from the number
of corners:

polyok:

mov bx,meanptr ;calculate mean value:

mov ax,mean[bx] ;get sum

mov cx,polyn

dec cx

cwd

div cx ;and divide by number of corners
mov mean[bx],ax ;write back

If the variable fl_sort is set to TRUE, the procedure
quicksort ,whichsortsthearraymean,iscalled after calculating
all the surfaces. The depth information (in thelower half of a
doublewords) serves as a sorting criterion. The surface
identification is sorted with it.

public quicksort
quicksort proc pascal down,up:word
;sorts Mean-Array according to Quicksort algorithm

local key:word

local left:word
push bx
mov bx,down
add bx,up
shr bx,1
and bx,not 3
mov dx,mean[bx]
mov key,dx
mov ax,down
mov si,ax
mov left,ax
mov ax,up
mov di,ax

;find middle

;posit on blocks of 4
;get key

;initialize right and left with base values

mov dx,key
left_nearer:

cmp mean(si],dx

jbe left_on

add si,4

jmp left_nearer
left_on:

;greater than key -> continue searching

;posit on next one
;and check it

194

» The procedure polyok

4 is part of the
POLY.ASM file
¢ on the companion CD-ROM

» The procedure quicksort

is part of the
3DASM.ASM file
Y¥~ on the companion CD-ROM

PO

' 3
I oo™ The Third Dimension: 3-D Graphics Programming
cmp mean[di],dx ;less than key -> continue searching
jae right_on
sub di,4 ;posit on next one
jmp left_on ;and check it
right_on:
cmp si,di ;left <= right ?
jg end_schl ;no -> subarea sorted

mov eax,dword ptr mean[si] ;exchange mean values and positions
xchg eax,dword ptr mean[di]
mov dword ptr mean([si],eax

add si,4 ;continue moving pointer
sub di,4
end_schl:
cmp si,di ;left > right, then continue
jle left_nearer
mov left,si ;store left, due to recursion
cmp down,di ;down < right -> sort left subarea

jge right_finished

call quicksort pascal,down,di ;continue sorting recursive halves
right_finished:

mov si,left ;up > left -> sort right subarea

cmp up,si

jle left_finished

call quicksort pascal,si,up ;continue sorting recursive halves
left_finished:

pop bx

ret
quicksort endp

The Quicksort algorithm then divides the array into two halves. It continues to exchange elements until only
values larger than that in the middle element are in the left half and smaller values on the right half. This
part of the array is then sorted recursively in the same manner.

Unlike the 3D_GLASS.PAS program, 3D_SOLID.PAS does not generate a palette. This is why other colors
are also defined for the surfaces. 3D_SOLID.PAS also uses the global variables differently. For example,
glass is set to FALSE because glass surfaces are not desired here; besides, both the variables fl_backs
and fl_sort are set to TRUE for the handling of the hidden surfaces. Otherwise, both programs are
identical.

Throwing Shadows: Light Source Shading

Now, we have control over solid, visible figures that can move around anywhere in the space. However,
illumination is one important aspect that we have overlooked. We can present the three dimensional worlds
much more impressively by introducing a light source.

Today's PC's do not yet have the ability to perform for real time ray tracing. These types of pictures require
a few minutes to generate. So, we use a faster method that does not consider every ray of light but produces
very beautiful effects by using simpler methods.

If you move away from a continuous yet distant light source, all the rays of light appear to be parallel on
the surface of the object. This is why you can perform ray tracing calculations using a single light vector
instead of calculating each point on the surface individually. This "homogenous" illumination makes it
possible to estimate the light covering each surface.

195

The Third Dimension: 3-D Graphics Programming i~ e(gm“““

o

The following model demonstrates how the illumination on a surface is calculated. The "flatter" the light
that strikes the surface, the darker is the illumination. The illumination is at its maximum when the light
is perpendicular to the surface. This is because an equally large mass of energy is distributed over a larger
surface of flat angles and is, therefore, not as dense:

=sinB

=R-90

~la R o

=sin (B - 90) = -cosR

Relationship of the angle to the brightness

The relationship d/f is proportional to the illumination of the surface (as shown above). This relationship
is the same as the negative cosine of the angle between the light vector and the normal vector for the surface.
The normal vector is a vector that stands perpendicular to the surface. It's easily determined using the
intersecting product of two vectors that lie in the plane. Because the cosine of the angle is needed here, and
not the angle itself, simplifies the calculation greatly since the angle determination (through the scalar
product) indicates the cosine of the angle.

The procedure for determining the illumination is as follows:

» Find two vectors appearing on the surface. The easiest would be two margin vectors (from the first
to the second and to the last point).

» Form normal vector (intersecting product of the surface vectors).
» Through the scalar product, angle between (form constant light vector and normal vector).
» Add the result to the color.

The result of the angle calculation is negative in the example. If the surface is turned away from the light
(B < 90 degrees), the result will be positive. Only the basic a)

surface color can be used because it lies in the shadow and, “‘ 3EOLZ fé"’,’_}ﬁ’,’aﬁ =
therefore, only receives diffused light. The 3D_LIGHT.PAS ,\ on the cor?lpanior; CD-ROM
program demonstrates the capabilities of the shading routine: 2

Uses Crt,ModeXLib,Gif,var_3d;

Const
worldlen=8*3; {Point-Array}
Worldconst:Array[0..worldlen-1] of Integer =
(-200,-200,-200,
-200,-200,200,
-200,200,-200,
-200,200,200,

196

B ((a 0\){\d

| \)de‘ of

The Third Dimension: 3-D Graphics Programming

200,-200,-200,
200,-200,200,
200,200,-200,
200,200,200);
surfclen=38; {Surface-Array}
surfcconst:Array[0..surfclen-1] of Word=
($fee0,4, 0,2,6,4,
$fec0,4, 0,1,3,2,
$fec0,4, 4,6,7,5,
$fee0,4, 1,5,7,3,
$fec0,4, 2,3,7,6,
$fec0,4, 0,4,5,1,0,0);
{ $fe = use light source, primary color in the low-byte}
Var
i,j;Word;
Procedure Shad_Pal; {prepare palette for shading}
Begin
For j:=192 to 223 do Begin {prepare colors 192 - 223 and 224 - 255}
i:=trunc((j/32)*43); {determine brightness}
Fillchar(Palette[j*3],3,i+20); {colors 192-223 to gray tones}

Palette[(j+32)*3]:=i+20; {colors 224-255 to red tones}
Palette[(j+32)*3+1]:=0;
Palette[(j+32)*3+2]:=0;
End;
Setpal; {set this palette}
End;
procedure drawworld;external; {draws the world on current video page}
{$| 3dasm.obj}

{$| poly.obj}

{$l bres.obj}

{$l root.obj}

Begin
vz:=1000; {solid is located at 1000 unit depth}
vpage:=0; {start with page 0}
LoadGif('logor.gif'); {load wallpaper}
init_modex; {enable ModeX}
Shad_Pal; {calculate shading palette}
rotx:=0; {initial values for rotation}
roty:=0;
rotz:=0;
Fill:=true; {SurfaceFill on}
sf_sort:=true; {SurfaceSort on}
sf_shift:=true; {SurfaceShift suppression on}
Glass:=false; {glass surfaces off}

p13_2_modex(16000*2,16000); {wallpaper to VGA page 2}
repeat
CopyScreen(vpage,16000*2); {wallpaper to current page}

DrawWorld; {draw world}
switch; {switch to finished picture}
WaitRetrace; {wait for next retrace}
Inc(rotx); {continue rotating ... }
If rotx=120 Then rotx:=0;
Inc(rotz);
If rotz=120 Then rotz:=0;
inc(roty);
if roty=120 Then roty:=0;
Until KeyPressed,; { ... until key}
TextMode(3);
End.

197

The Third Dimension: 3-D Graphics Programming i~ 6@0““"

o

The palette is prepared before the shading can be established. Colors 192 to 223 and 224 to 255 are filled with
two color displays. The first one contains the colors ranging from gray to white. The second one contains
the colors ranging from dark red to red. Now the cosine can simply be added to the basic color when filling
so the correct degree of shading is maintained.

The basic color is classified in the low byte of the color information (0COh and OEOh). The high byte is tested
against this with the first directional value. The light source shading for this surface is turned on with OFEh.
This is why it's now possible to mix shaded surfaces (directional byte OFEh) with fixed value surfaces
(directional byte < OFEh) or with textures later.

An additional change to the 3D_SOLID program involves the background picture. A picture is loaded at
the beginning, which is then calculated by a raytracer and contains a similar light vector as the rotating
object, which reinforces the impression of a light source. Instead of erasing the screen before creating every
picture, the background picture is simply copied each time to the corresponding page.

In procedure drawworld (in 3BDASM.ASM), the directional byte is deciphered right at the beginning and
the global variables Lightsrc and Texture are set, in this case it only refers to Lightsrc

Additionally, arrays Points3D and Poly3D are factored. The first array receives three dimensional
coordinates which were completely rotated and calculated in the macrozrot . These are then carried over
toloopnpoint inarrayPoly3D and ultimately formed into a closed line, in which the first corner is copied
onto the last one. This process completely corresponds to the

one executed for the two dimensional coordinates. » The getdelta macro
is part of the
If the surface is now filled, the macro getdelta is called. It S 3DASM.ASM file
determines both surface vectors: on the companion CB-ROM
getdelta macro ;calculates the two surface vectors

mov ax,poly3d[0] ;x: original corner

mov delta2[0],ax ;store temporarily in delta2

sub ax,poly3d[8] ;obtain difference to first point

mov deltal[0],ax ;and deltal finished

mov ax,poly3d[2] ;y: original corner

mov delta2[2],ax ;store temporarily in delta2

sub ax,poly3d[10d] ;obtain difference to first point

mov deltal[2],ax ;and deltal finished

mov ax,poly3d[4] ;z: original corner

mov delta2[4],ax ;store temporarily in delta2

sub ax,poly3d[12d] ;obtain difference to first point

mov deltal[4],ax ;and deltal finished

mov bp,polyn ;select last point

dec bp

shl bp,3 ;8 bytes at a time

mov ax,poly3d[bp] ;get x

sub delta2[0],ax ;obtain difference

mov ax,poly3d[bp+2] gety

sub delta2[2],ax ;obtain difference

mov ax,poly3d[bp+4] ;getz

sub delta2[4],ax ;obtain difference

endm

deltal is loaded here with the difference between the first and second polygon points and delta2 is
loaded with the difference between the first and last points. If no illogical surfaces are defined, both vectors
will always be independently linear (not parallel) and, therefore, available.

198

= e‘gw““d The Third Dimension: 3-D Graphics Programming

Ut

Otherwise, the program is stopped with a Division by Zero error.

If glo_bal variable lightsrc is TRUE here, both get_nprmal » The get_normal macro
and light macros are called. The first one determines the is part of the
normal surface vector from the two surface vectors, deltal and f 3DASM.ASM file
delta2 . The second macro determines the lightness of the "%~ on the companion CD-ROM
surface from the angle.

get_normal macro ;calculates normal vector of an area
mov ax,deltal[2] ;a2*b3
imul delta2[4]
shrd ax,dx,4
mov n[0],ax
mov ax,deltal[4] ;a3*b2
imul delta2[2]
shrd ax,dx,4
sub n[0],ax
mov ax,deltal[4] ;a3*bl
imul delta2[0]
shrd ax,dx,4
mov n[2],ax
mov ax,deltal[0] ;al*b3
imul delta2[4]
shrd ax,dx,4
sub n[2],ax
mov ax,deltal[0] ;al*b2
imul delta2[2]
shrd ax,dx,4
mov n[4],ax
mov ax,deltal[2]
imul delta2[0]
shrd ax,dx,4
sub n[4],ax ;cross product (=normal vector) finished
mov ax,n[0] X172
imul ax
mov bx,ax
mov cx,dx
mov ax,n[2] X212
imul ax
add bx,ax
adc cx,dx
mov ax,n[4] X312
imul ax
add ax,bx
adc dx,cx ;sum in dx:ax
push si
call root ;root in ax
pop si
mov n_amnt,ax ;amount of normal vector finished
endm

The first part of this macro calculates the normal vector itself. Then, every individual vector component
from the difference of two products is formed. This must follow the definition of the intersecting product
and is stored in array n. The_secon_d part next calculates the n The light macro

amount of the normal vector in which all the components are 4 is part of the

squared and then added. This sum is reduced and the result is 3DASM.ASM file

saved in n_amt . The last step executes the light ~macro: 7% on the companion CD-ROM

199

The Third Dimension: 3-D Graphics Programming I oo
light macro ;determines brightness of an area
mov ax,n[0]
imul 1[0] ;light vector * normal vector
mov bx,ax ;form sum in cx:bx
mov cx,dx
mov ax,n[2]
imul I[2]
add bx,ax
adc cx,dx
mov ax,n[4]
imul 1[4]
add ax,bx ;scalar product finished in dx:ax
adc dx,cx
idiv |_amnt ;divide by |_amnt
mov bx,n_amnt ;and by n_amnt
cwd
shld dx,ax,5 ;values from -32 bis +32
shl ax,5d
mov bp,startpoly ;prepare addressing of surface color
idiv bx ;division by denominator
inc ax
or ax,ax
js turned_toward ;if cos a positive -> turned away from the light
XOr ax,ax ;thus, no light
turned_toward:
sub b polycol,al ;c0s<0 -> add to primary color
endm

After the scalar product is formed between the normal vector and the (constant) light vector (in 1), the
amount of the (equally constant) light vector is divided by the amount of the normal vector and the angle
between both of the vectors is determined. The result of this calculation would normally be between plus
and minus one. However, since whole numbers are used here, the interim result is multiplied by 32 before
the second division so a value range of -32 to +32 is reached.

If the result is positive, AX is set to zero and the basic color is retained. If the result is negative, this value
is subtracted from the basic color and, as a result, the amount is added. The completely calculated lightness
factor is then located in variable PolyCol , which is used as a filling color by FillPol

Impressive Top Surfaces: Textures

Our final 3-D topic is textures. By using textures, you can add a "structure” to the previously static and
monotone surfaces. These textures are bitmap graphics that are projected onto the surfaces and moved in
different directions with each rotation.

The bitmaps, when used, appear glued to the surfaces and can simulate a particular surface, such as wood
or metal. This technique is used in role playing games such as Ultima Underworld where the walls are
sometimes made out of stone, wood or other materials.

If you have a definite programming concept, you can compose a surface from many small surfaces. These
small surfaces, in turn, correspond to a point from a bitmap. This technigue may not be the fastest because
itdoes not often function regularly. If such a surface should be somewhat enlarged or turned, you will notice
glitches immediately because a few of the points overlap, which then become missing.

200

D
| \)de‘ of

ound

The Third Dimension: 3-D Graphics Programming

The only practical solution to this problem is to reverse the process so the surface is presented as indicated
so every point is set. This point is projected back every time to the original surface to establish its location
(position) within this surface. Based on the position, the point color can then be read from the texture
bitmap.

Since it's impossible to close from the two dimensional screen coordinates to the three dimensional position
of the point, the 3D coordinates are counted from the beginning when filling, so you know the coordinates
for every point and, therefore, its position within the surface.

The 3D_TEXTU.PAS program demonstrates the texture

routines. The difference between this program and the previous You can find
program is its different color values in the world definition and ‘on thei‘%ﬁTEa)/;/jlc-J%?‘L\)?ROM
procedure Prep_Textures , which is called immediately: 9 f P

Uses Crt,ModeXLib,Gif,var_3d;
Const
worldlen=8*3; {Point-Array}
Worldconst:Array[0..worldlen-1] of Integer =
(-200,-200,-200,
-200,-200,200,
-200,200,-200,
-200,200,200,
200,-200,-200,
200,-200,200,
200,200,-200,
200,200,200);
surfclen=38; {Surface-Array}
surfcconst:Array[0..surfclen-1] of Word=
($ff00,4, 0,2,6,4,
$ff01,4, 0,1,3,2,
$ff02,4, 4,6,7,5,
$ff00,4, 1,5,7,3,
$ff03,4, 2,3,7,6,
$ff04,4, 0,4,5,1,0,0);
{ $ff = use textures, number in the low-byte}
Var
i,j;\Word;
Procedure Prep_Textures;
{load texture variables}
Begin
LoadGif(‘Texture'); {load texture image}
GetMem(Txt_Pic,64000); {get memory for this}
Move(VScreen®, Txt_Pic”,64000);{and copy to memory}
For i:=0 to Txt_Number-1 do Begin
Txt_Datali]:=Txt_Pic; {load pointer to data}
Txt_Offs[i]:=i*64; {determine offset}
End;
End;

procedure drawworld;external; {draws the world on current video page}
{$| 3dasm.obj}

{$| poly.obj}

{$l bres.obj}

{$l root.obj}

Begin
vz:=1000; {solid is located at 1000 unit depth}
vpage:=0; {start with page 0}
init_modex; {enable ModeX}

201

The Third Dimension: 3-D Graphics Programming i s

Prep_Textures;

LoadGif('logo.gif"); {load wallpaper}
rotx:=0; {initial values for rotation}
roty:=0;
rotz:=0;
Fill:=true; {SurfaceFill on}
sf_sort:=true; {SurfaceSort on}
sf_shift:=true; {SurfaceShift suppression on}
Glass:=false; {glass surfaces off}
p13_2_modex(16000*2,16000); {Wallpaper to VGA page 2}
repeat
CopyScreen(vpage,16000*2); {wallpaper to current page}
DrawWorld; {draw world}
switch; {switch to finished picture}
WaitRetrace; {wait for next retrace}
Inc(rotx); {continue rotating ... }
If rotx=120 Then rotx:=0;
Inc(rotz);
If rotz=120 Then rotz:=0;
inc(roty);
if roty=120 Then roty:=0;
Until KeyPressed; { ... until key}
TextMode(3);
End.

The value OFFh serves as the directional byte for all the surfaces. It activates the texture with the number
listed in the low byte for the respective surfaces. Procedure Prep_Textures then loads the GIF picture
with the necessary textures and moves it to another file area (TxtPic®). Atthis point, the arraysTxt_Data
and Txt_Offs are used. Txt_Data displays a counter with the position of the texture screen for every
texture, making it possible to load many independent screens with textures. Txt_Offs contains the offset
for the respective texture within this screen.

In this case, Txt_Data contains a counter for all the textures in Txt_Pic* and Txt_Offs a multiple of
64, i.e., five textures in a row with a width of 64 Pixel.

The size of the textures is determined by the constant array Txt_Size . For every texture listed here, the
y-size is established with the high byte and the x-size with the low byte. A particular standard needs to be
observed when calculating these sizes: The textures each has the dimension of 256 SHR (n-8) Pixel. The
value of 10 (0Ah) indicates, for instance, a size of 256 SHR 2 = 64 Pixel (in the x- or y- direction).

Some of the program sections that we have already discussed, such as forming the surface vectorsDeltal
and Delta2 , can also be used with the textures. However, most of the required algorithms are found as
macros in the include file TEXTURE.INC, which functions as a complement to POLY.ASM.

The global variable Texture is set to TRUE with texture surfaces. The primary determinants are formed
immediately from the start of the procedure FillPol in the macro Txt_Maindet . With their help, the
relative coordinate of the point within the surface is determined later. It's also important to know that every
point is a key in the following equation:

x1=lambdal * al + lambda2 * b1

x2=lambdal * a2 + lambda2 * b2
x3=lambdal * a3 + lambda2 * b3,

Then x1-x3 are the coordinates for the point, al-a3 the components of the first surface vector Deltal)and
b1-b3 the components of the second (Delta2).lambdal andlambda2 give the refined coordinates relative

202

D
| \)de‘g‘o

The Third Dimension: 3-D Graphics Programming

to both of the surface vectors and can be used to gain direct access to the texture. To calculatelambdal and
lambda2 , you need two of the equations. The third is then completed in every case because the point lies

in the plane.

If, for example, you take the first of the two equations, the solution is easy to find using the determinants:

The primary determinant equals D=al*b2 - a2*bl, the first
adjacent determinant D1=x1*b2 - x2*b1 and the second adjacent
determinant D2=al* x2 - a2*x1. The two unknowns are then
identified as lambdal =D1/D and lambda2 =D2/D. The main
determinant is now the same for the entire surface so it can be

directly calculated here:

txt_maindet macro
Xor si,si
mov di,2
next:
mov ax,w deltal[si]
imul w delta2[di]
mov bx,ax
mov cx,dx
mov ax,w delta2[si]
imul w deltal[di]
sub bx,ax
sbb cx,dx
mov w D,bx
mov w D+2,cx
or bx,cx
jne D_finished
add si,2
add di,2
cmp di,4
jbe next
xor di,di
jmp next
D_finished:
movsx eax,deltal[si]
mov column1[0],eax
movsx eax,deltal[di]
mov columnl[4],eax
movsx eax,delta2[si]
mov column2[0],eax
movsx eax,delta2[di]
mov column2[4],eax
shl si,1
shl di,1
movV upper_row,si
mov lower_row,di
endm

;calculate main determinate

first attempt: rows 0 and 1

;calculate main determinant

;store intermediate result

;store difference

;main determinant =0 ?
;then new components
;still within existing rows ?

;no, then start again from above

;store used columnn values

;note used columns

» The macros listed on

4 pages 203-209 are from
2 TEXTURE.INC

on the companion CD-ROM

However, you are likely to notice another problem: Under certain circumstances, selecting the first of the
two equations may not be what you expect or want. This indicates the main determinant equals 0. In this

case, you simply need to use another combination.

This occurs in front of the label D_complete . It's simply positioned on the next row within the surface
vectors (initially 0/2, then 2/4, then 4/0) and another attempt is initiated. Afterwards, the main determinant
issaved in thecolumnl andcolumn2 arrays and the numbers for the rows that were used intop_row and

bottom_row ; this data will be needed later.

203

The Third Dimension: 3-D Graphics Programming P

As we mentioned, the filling algorithm must constantly keep pace with whatever coordinate the current
pointis located. Three dimensional lines are calculated parallel to touching the polygon edges, which define
the polygon in its entirety. The initialization of the attached three dimensional lines must be imbedded in
macros SetNewLineL and SetNewLineR . This occurs in macros txt_makefarl and txt_makevarr

txt_makevarl macro :reloads the 3d variables of the left side
.386

movsx ebx,dyl ;number steps

inc ebx

push ecx

push edx

movsx eax,poly3d[bp] ;get 3d-x

shl eax,8 ;lower 8 bits are "fractional" part

mov xI_3d,eax ;and write

movsx ecx,poly3d[bp+8] ;obtain difference

shl ecx,8

sub eax,ecx

neg eax

cdq

idiv ebx ;define step

mov inc_xl,eax

movsx eax,poly3d[bp+2] ;get 3d-y
shl eax,8
mov yl_3d,eax
movsx ecx,poly3d[bp+10d] ;obtain difference
shl ecx,8
sub eax,ecx
neg eax
cdq
idiv ebx ;define step
mov inc_yl,eax
movsx eax,poly3d[bp+4] ;get 3d-z
shl eax,8
mov z|_3d,eax
movsx ecx,poly3d[bp+12d] ;obtain difference
shl ecx,8
sub eax,ecx
neg eax
cdq
idiv ebx ;define step
mov inc_zl,eax
pop edx
pop ecx
endm

The three-dimensional coordinates for the corner points of the recently worked surfaces are located in the
array Poly3D . Register bp shows the position of the current coordinates in the Poly2D array (we are still
in setnewlinel or setnewliner). Since this array is constructed synchronously, the 3-D coordinates
are addressed using BP. The macro then loads the variables xI_3D , yl_3D , etc., with the start values of
the first corner point and calculates the difference to the second corner point, i.e., the line lengths, in x-, y-
and z-direction.

The principle for these lines is that the drawing depends on every change to the y-coordinate also advancing
the steps on the line. From now on, the differences must still be divided by the number of steps (i.e., the
"height" of the two dimensional line indyl or dyr). Several values are pushed to the left by 8 bit in the
process so they are sufficiently precise. If the three dimensional line is, for example, seven units long (let's

204

= e‘gw““d The Third Dimension: 3-D Graphics Programming

Ut

say, in the z-direction) and the number of steps equals four, the value 1.75 must be added every time, which
can only be possible if you reserve the bottom most byte for the after comma section (in this case, it would
be inc_zl = 01COh).

Now the variables must be recounted with every step into the next screen line. That is why shortly after the
labels incyl or incyr |, the macros Txt_incl and txt_incr must be combined:

txt_incl macro sincrement left
push eax
mov eax,inc_xI ;add 3d x-coordinate
add xI_3d,eax
mov eax,inc_yl ;add 3d y-coordinate
add yl_3d,eax
mov eax,inc_z| ;add 3d z-coordinate
add zl_3d,eax
pop eax

endm

txt_incr macro ;increment right
push eax
mov eax,inc_xr ;add 3d x-coordinate
add xr_3d,eax
mov eax,inc_yr ;add 3d y-coordinate
add yr_3d,eax
mov eax,inc_zr ;add 3d z-coordinate
add zr_3d,eax
pop eax

endm

These macros simply do what their names suggest: They increment the respective variables. Inc_x| is
added toxl_3D ,inc_yl toyl 3D ,etc. In doing so, the variables block ofxl_3D -yl_3D -zl 3D always
contain the current 3-D coordinates for the left start point of the horizontal filling line. The same is true for
the right side and the end point of the filling line.

The listing becomes interesting in the hline_texture procedure. It's located in the macrotxt_hline so it
can be placed in an include file. This procedure is called with texture surfaces instead of hline and does
basically the same thing: It draws a horizontal line between the coordinates specified in ax/bx and cx/bx.
The only difference between it and hline is the color is not the same for every point. The color is instead
determined by the texture.

After saving the coordinates, the adjacent determinants for the left and for the right side are calculated with
lambdal andlambda2 . The left side transmits the start values since the drawing begins on this page. The
right side transmits the end value, which flow into variables inc_lambdal and inc_lambda2

txt_hline macro
hline_texture proc near ;replaces "hline" procedure with textures
.386
push es
pusha
mov x0,ax ;save coordinates for later
mov y0,bx
mov x1,cx
sub cx,ax ;calculate number of pixels to be drawn
jne zzok2
inc cx
zzok2:
mov zz,cx

205

The Third Dimension: 3-D Graphics Programming i~ 6@0““"

o

mov bp,upper_row
mov bx,lower_row

mov eax,xr_3d[bx] ;determine relative x-coordinate
movsx ecx,poly3d[2]

shl ecx,8 ;put in “fixed point" format

sub eax,ecx

mov d_y,eax

movsx ecx,w column2[0]

imul ecx ;multiply by Delta2 x

mov esi,eax ;place result in temporary storage
mov eax,xr_3d[bp] ;determine relative y-coordinate
movsx ecx,poly3d[0]

shl ecx,8 ;put in “fixed point" format

sub eax,ecx

mov d_x,eax

movsx ecx,w column2[4]

imul ecx ;multiply by Delta2 y

sub eax,esi ;obtain difference (D1)

cdq ;prepare division

idiv dword ptr D ;divide by main determinant

shl eax,8

neg eax

mov inc_lambdal,eax ;store for subtraction

mov eax,d_x ;get relative x-coordinate

movsx ecx,w columnl[4]

imul ecx ;multiply by Deltal y

mov esi,eax ;place result in temporary storage
mov eax,d_y ;get relative y-coordinate

movsx ecx,w Column1[0]

imul ecx ;multiply by Deltal x

sub eax,esi ;obtain difference (D2)

cdq ;prepare division

idiv dword ptr D ;divide by main determinant

shl eax,8

neg eax

mov inc_lambda2,eax ;store for subtraction

With the variables top_row and bottom_row , the necessary coordinates (depending on the main
determinants used) are then selected by the right side and the difference is calculated to the beginning of
the surface (point 0); with multiplying the corresponding section of the main determinant (incolumnl and
column2) and the subsequent subtraction of both products, the adjacent determinant is established and
divided by the main determinant, the result is stored temporarily in inc_lambdal and inc_lambda2
The left lambda values are then determined in the same manner:

mov eax,x|_3d[bx] ;determine relative x-coordinate
movsx ecx,poly3d[2]

shl ecx,8 ;put in “fixed point" format

sub eax,ecx

mov d_y,eax

movsx ecx,w column2[0]

imul ecx ;multiply by Delta2 x

mov esi,eax ;place result in temporary storage
mov eax,x|_3d[bp] ;determine relative y-coordinate
movsx ecx,poly3d[0]

shl ecx,8 ;put in “fixed point" format

sub eax,ecx

206

D
| \)de‘ of

ound

The Third Dimension: 3-D Graphics Programming

mov d_x,eax

movsx ecx,w column2[4]

imul ecx ;multiply by Delta2 y

sub eax,esi ;obtain difference (D1)

cdq ;prepare division

idiv dword ptr D ;divide by main determinant
shl eax,8

neg eax

mov lambdal,eax
sub inc_lambdal,eax

mov eax,d_x

;Lambdal determined

;get relative x-coordinate

movsx ecx,w columni[4]

imul ecx ;multiply by Deltal y
mov esi,eax ;place result in temporary storage
mov eax,d_y ;get relative y-coordinate

movsx ecx,w column1[0]

imul ecx ;multiply by Deltal x

sub eax,esi ;obtain difference (D2)

cdq ;prepare division

idiv dword ptr D ;divide by main determinant
neg eax

shl eax,8

mov lambda2,eax

;Lambda2 determined

sub inc_lambda2,eax

The results of these Lambda calculations are stored in the variables
account for the difference. Afterwards, both Inc-values are divided by

inc_lambdal andinc_lambda2
the length of the horizontal lines, i.e., the number of steps:

lambdal and lambda2 and

MOVSX eCX,zZz

mov eax,inc_lambdal

cdg
idiv ecx

cdq
idiv ecx

In this manner, it is enough to add inc_lambdal

;calculate Lambda-Schrittweiten
;get total length

;and divide by number steps
mov inc_lambdal,eax
mov eax,inc_lambda2

;get total length

;and divide by number steps
mov inc_lambda2,eax

to lambdal and Inc_lambda2

step so we can have the current lambdal and Isambda2 available.

Next, we'll prepare to address the points in the screen memory:

mov ax,80d
mov bx,y0

mul bx

mov bx,x0

shr bx,2

add ax,bx

add ax,vpage
mov di,ax

mov ax,0a000h
mov es,ax

mov cx,x0

and cx,3

mov ax,1

shl ax,cl

mov b plane+1,al

;determine offset

;(x div 4) + y*80

;load VGA segment

;mask start plane

;set corresponding bit

to lambda2 at every

207

The Third Dimension: 3-D Graphics Programming i~ 6@0““"

o

shl al,4 ;and extend to high nibble
or b plane+1,al

After calculating the offset for the first point, the start-plane is determined and filed in the high-byte of
variable plane ; the low-byte contains constant 2, so the entire word must be sent to the timing sequencer
in order for the current plane to be selected. The plane is prepared on the rotation, in that the high- as well
as the low-nibble contain the plane mask (plane 3 becomes 88h, after one rotation, then 11h, i.e., plane 0).

mov bp,txt_no ;get number of current texture
shl bp,1 ;two bytes per entry
mov bx,txt_size[bp] ;get current size specification

mov b cs:size_patch+3,bl ;and patch in code
mov b cs:size_patch+7,bh

mov ax,word ptr txt_offs[bp] ;get offset of this texture

push ds

shl bp,1 ;4 byte entries

Ids si,dword ptr txt_data[bp];get pointer to actual data
add si,ax

mov w cs:ofs_patch+2,si ;and patch in code

mov dx,3c4h ;timing sequencer

mov ebp,lambdal ;register instead of variables

mov esi,lambda2

With the number of the current texture (intxt_no), the texture size is then loaded and patched in the code.
In so doing, the operand of two of the SAR instructions are addressed, so the Lambda'’s values area can be
limited.

The offset is also read from the corresponding array and patched with the txt_data-counter offset
section into the code.

The loop to draw the points can now be held relatively short. This is extremely important when considering
the speed:

Ip: ;runs for each pixel
add ebp,inc_lambdal ;continue Lambdal and 2
add esi,inc_lambda2

mov ax,plane ;get plane
out dx,ax ;and select
mov eax,ebp ;determine offset within the texture graphic
mov ebx,esi
size_patch:
sar eax,11d ;set size, being modified
sar ebx,11d
imul eax,320d
add ebx,eax
ofs_patch:
mov al,ds:[bx+1111h] ;get color from texture, being modified
mov es:[di],al ;enter color
dec cx ;decrement number pixels
je hit_finished ;all pixels finished ?
rol b plane+1,1 ;next plane
cmp b plane+1,11h ;plane overflow from 3to 0 ?
jne Ip :no, then continue
inc di ;otherwise increment offset

208

T ﬁ\,
L ((o

| \)de‘

The Third Dimension: 3-D Graphics Programming

jmp Ip ;and continue
hlt_finished:

pop ds

popa

pop es

ret
hline_texture endp
endm

The EBP register contains lambdal and lambda2 within the loop. Both values must then be increased to
their increments. Afterwards, the current plane is selected and the offset within the texture is determined
with edp and esi. Both lambda values are then pushed to the right because of their sizes so the desired value
area can be uncovered.

The deciding event occurs in the label ofs_patch . Here, the color is retrieved from the texture. In this, the
offset that was patched in the code is added to the calculated value and the texture is selected at this point.
The color is written into the screen memory and the loop is closed by further rotating the plane mask; if an
overrun occurs from plane 3 to plane 0, the target address is raised by 1, for the next offset to be addressed.

209

Modern Copy
Protection

Most software developers believe many more copies of their programs are being used than the number of
programs that have been sold. This is, of course, due to the widespread use of illegal or pirated copies. Most
experts agree those illegal or pirated copies of software cost developers many millions of dollars annually
in sales and royalties. This is why some software developers use various schemes to protect their programs
from illegal copying and distribution.

The most common form of software protection is password protection. It's both the oldest form and the
easiest to implement. Passwords are available in many forms. For example, you might have the option of
protecting your computer by means of a ROM password which is requested on system startup. When using
a network computer, you probably have a password on the network to grant or deny you access to the
system. If you are a modem user, you are certainly familiar with the passwords for various BBSes and
information services such as CompusServe.

We'll talk about the available passwords in the next section and which are the most appropriate for you.

Protecting Your Programs: Passwords

You have several ways to protect your program. First, you must consider the purpose or reason for using
a password query. We group the reasons for using a password query into three main areas:

The password as permission to access

The password serves to acknowledge that a legitimate user is using the program. This is the type of
password you will find, for example, protecting your user account on CompusServe, on networks or even
in ATM machines used by banks or corporations. Because only a few employees need access to the financial
data, these records and files are often protected with a password.

The password as registration

This type of password is often used in shareware programs. When you register the shareware program, you
are sent a password that you use to upgrade your shareware program to a complete and more powerful
version. This method is used frequently for applications.

(@ Password: Protection

211

Modern Copy Protection i emw“““

et

The password as copy protection

This type of password is often used for games and entertainment software. The software developer uses this
method if there is a likelihood the game or program will be copied. The password query doesn't usually
appear as the program is loading or at the start of the program. Instead, the password query appears after
one or more levels are completed or, more likely, when the user reloads a saved game or session.

Some earlier methods, such as changing a few sectors on a separate, yet required, startup diskette, are
seldomused today because registered or otherwise "legitimate" users found these methods to be inconvenient.
Also, these methods are no longer quite up to date with today's larger hard drives.

A few extremely expensive programs use adongle (also called a hardware key). A dongle is asmall hardware
device containing a password or checksum which plugs into either a parallel or serial port. Some specially
designed dongles even include complete program routines.

We won't talk about hardware-oriented password queries such as dongles in this chapter. Instead, we'll talk
only about software solutions.

There is one basic principle which applies to all three password types we mentioned above: The better the
password is hidden, and the better it is encrypted, the more secure your program will be. So, you should
carefully consider where you want to store your password. Choose, if possible, an external file and not the
.EXE file. If you work with several files, save the password in one of the larger files. Under no circumstances
should the password be at the beginning or the end of a file...this is the first place an intruder would look
and where it is easiest to find. Even when you're working with a single file, save the password in the middle
of a file where it is the most difficult to locate.

If possible, don'tsave the actual comparison string, butan encoded version of the string. Use asupplementary
checksum for additional security.

Most password queries work according to the following pattern:
1. Build screen
2. Read user password
3. Compare with user password and respond accordingly

This scheme works quite well and is easy to program. However, if you want to protect one of your own
programs with a password, you should use a different technique. Dividing the individual steps will make
the code less transparent.

First, build the screen and then perform the other tasks: Initialize variables, draw graphics, test checksums,
etc. Read the user password only when these steps are complete. The operating speed of the PC and the
keyboard buffer will prevent user entries from being lost. After you have read in the password, we
recommend that you do not immediately compare the password. Instead, perform some of the other tasks
we mentioned. Then load the correct password from the file and compare it.

The main goal is to frustrate any would-be hackers. When you incorporate the password query into a
procedure, it becomes difficult to find on the screen. Then the jump resulting after a comparison is then
turned quickly into a random jump by the would-be hackers. There's no guarantee, of course, that using this

212

PO

y -
I Ged o

Modern Copy Protection

method will result in an absolutely secure system but you will have made break-in considerably more

difficult because the query is harder to locate.

Depending on the type of password you need, you will have to build encrypting and decrypting routines
and the necessary loading and saving routines into your program. Let's first take a look at the second type.
In this case there is only the password. It is created by the programmer of the program and built into one
of the files. A routine is in the program itself with which the password is queried, read and compared.

You'll find a program for generating a coded password in PASSWGEN.PAS. In this program, the desired
password is read in, the respective letters being added to a key to be entered. Finally, the complement of

the letters is formed by means of an XOR with 255. The key is
first saved (1 char), then the password (256 char) and, finally, the
checksum (1 word) which prevents manipulation of the
password file. The program generates the file PASSWORD.DAT
containing the password, which should be inserted into a
different file.

program GENERATE_PASSWORDFILE;

The program encrypts an entered password and saves it
in the file PASSWORD.DAT.
Author: Boris Bertelsons
(c)'95 Data Becker GmbH
(c)'95 ABACUS Software, Inc
}

Uses Crt;

var password : string;
pwf : file;
check : word;
key : char;

function Encrypt(pasw : string;add : char) : string;
var li : integer;
begin
for li := 1 to 255 do begin;
pasw(li] := char(255 xor (ord(paswf(li]) + ord(add)));
end;
Encrypt := Pasw;
end;

function Gen_checksum(pasw : string) : word;
var sum : word;
li : integer;
begin
sum :=0;
for li := 1 to ord(pasw[0]) do begin;
sum := sum + ord(pasw(li]);
end;
Gen_checksum := sum;
end;

function Decrypt(pasw : string;add : char) : string;
var li : integer;
begin
for li := 1 to 255 do begin;
pasw]li] := char((255 xor ord(paswf(li])) - ord(add));

& You can find
) ! PASSWGEN.PAS
2% on the companion CD-ROM

213

Modern Copy Protection

end;
decrypt := Pasw;
end;

function Checksum_Ok(pasw : string; Key: char; sum : word) : boolean;
var tsum : word;
li : integer;
h: char;
begin
tsum = 0;
for li := 1 to ord(pasw[0]) do begin
tsum := tsum + ord(pasw(li]);
end;
if sum = tsum then
Checksum_Ok := true
else
Checksum_Ok := false;
end;

begin
clrscr;
writeln('Please enter the password to be encrypted !');
write('Password: ');
readin(password);
writeln('Please enter the key (any randomly selected ASCII character));
write('Key: ');
readin(key);
writeIn("Writing information to file ...");
writeln;
check := Gen_checksum(password);
password := encrypt(password, key);
assign(pwf, PASSWORD.DAT");
rewrite(pwf,1);
blockwrite(pwf,key,1);
blockwrite(pwf,password,256);
blockwrite(pwf,check,?2);
close(pwf);

reset(pwf,1);
blockread(pwf,key,1);
blockread(pwf,password,256);
blockread(pwf,check,?2);
close(pwf);

writeln('Rereading Information for verification ...");
writeln('Encrypted : ‘,password);
writeln('Key: ' key);

Password := decrypt(password,key);
writeln('Verify :',password);
If Checksum_Ok(password,key,check) then
writeln('Checksum O.K.")
else
writeIn(WARNING! Checksum not correct !');

repeat until keypressed; readkey;
end.

Before you can use the password in your programs, you must first SEARCH the file where you stored the
password. Then, load the key, the password and the checksum (make certain to load in that order) as you
implemented it in the program printed above.

214

PO
| e

ours
ot

Modern Copy Protection

Use the Decrypt procedure to decrypt the password. Use Checksum_Ok to check whether the password

was modified.

If you need the first type of password, you will have to give the user the chance to select a proper password
and enter it. This procedure is comparable to the one we just described. You store an empty password with
it in the file, which the user can then overwrite. It's very important the password is difficult to locate and

thatitisnotdisplayed duringentry. Thisisanecessary protection
against other users who "just happen" to be watching your

screen as you enter the password.

You'll see a password query in action in the following program.

The default password is ABACUS.
program PASSWORD_TYPEL;
Uses Crt, Design;

var password : string;
passwordcheck : boolean;

procedure Secret_readin(var s : string);
var ¢ : char;
li : integer;
begin
repeat
¢ := readkey;
if ¢ <> #8 then begin;
s:i=s+g;
gotoxy(24,12);
for li := 1 to length(s) do write(**’);
end else begin;
s := copy(s,1,length(s)-1);
gotoxy(24,12);
for li := 1 to length(s) do write(**’);
write(* °);
gotoxy(wherex-1,wherey);
end;
until c = #13;
end;

procedure Change_password;
begin
save_screen;
window(10,8,60,7," Change password ‘,black,7);
writexy(13,10,'Please enter your new password’);
writexy(13,12,'Password: ‘);
password :=";
secret_readIn(password);
restore_screen;
textcolor(7);
textbackground(black);
end;

Function Gen_checksum(pasw : string) : word;
var sum : word;
li : integer;
begin
sum := 0;
for li := 1 to ord(pasw[0]) do begin

You can find
PASSWD1.PAS
on the companion CD-ROM

215

Modern Copy Protection

sum := sum + ord(paswf(li]);
end;
Gen_checksum := sum;
end;

function Encrypt(pasw : string;add : char) : string;
var li : integer;
begin
for li := 1 to 255 do begin
pasw(li] := char(255 xor (ord(pasw(li]) + ord(add)));
end;
encrypt ;= pasw;
end;

procedure Save_password;
var pwf : file;
key : char;
check : word;
begin
check := gen_checksum(password);
password := encrypt(password,key);
assign(pwf,'password.dat’);
rewrite(pwf,1);
blockwrite(pwf,key,1);
blockwrite(pwf,password,256);
blockwrite(pwf,check,?2);
close(pwf);
end;

procedure QueryPassword;

begin
save_screen;
window(10,8,60,7,'Query Password’,black,7);
writexy(13,10,'Please enter your password’);
writexy(13,12,’Password: ‘);

secret_readIn(password);

restore_screen;

textcolor(7);

textbackground(black);
end;

function Decrypt(pasw : string;add : char) : string;
var li : integer;
begin
for li := 1 to 255 do begin
pasw(li] := char((255 xor ord(pasw([li])) - ord(add));
end;
decrypt := pasw;
end;

function Checksum_Ok(pasw : string; Key: char; sum : word) : boolean;
var tsum : word;
li : integer;
h: char;
begin
tsum := 0;
for li := 1 to ord(pasw[0]) do begin;
tsum := tsum + ord(pasw(li]);
end;
if sum = tsum then
Checksum_Ok := true

216

B ((a 0\){\d

I ey Modern Copy Protection
else
Checksum_Ok := false;
end;

procedure CheckPassword;
var pwf : file;
key : char;
check : word;
should_pass : string;
begin
assign(pwf,’password.dat’);
reset(pwf,1);
blockread(pwf,key,1);
blockread(pwf,should_pass,256);
blockread(pwf,check,2);
close(pwf);
should_pass := decrypt(should_pass,key);
if Checksum_OKk(should_pass,key,check) and (should_pass = password) then
PasswordCheck := true
else
PasswordCheck := false;
end;

procedure RespondPassword;
begin
save_screen;
window(10,8,40,7,” black,7);
If PasswordCheck then begin
writexy(13,11,’Password correct - Access granted’);
end else begin
writexy(13,11,’Password WRONG ! - No access !');
end;
repeat until keypressed; readkey;
restore_screen;
textcolor(7);
textbackground(black);
end;

procedure Menu;
var choice : byte;
begin
repeat
clrscr;
writexy(10,1,'Example program for password type 1 (c) “95 by ABACUS);
writexy(20,4,’'M E N U’);
writexy(20,5, ~~~~~~~);
writexy(15,6,’1) Change Password’);
writexy(15,8,'2) Query Password’);
writexy(15,10,’3) End’);
writexy(15,13,"Your Choice:);
readin(choice);
if choice = 1 then begin
Change_password;
Save_password;
end;
if choice = 2 then begin
QueryPassword;
CheckPassword;
RespondPassword;
end;
until choice = 3;
end;

217

Modern Copy Protection

Illj) ((= ‘Ouﬂd

Sroe! 9

begin
M