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INTRODUCTION

This manual contains solutions to the problems presented at the end of the chapters in the
Fourth Edition of FUNDAMENTALS OF FLUID MECHANICS. It is our intention that
the material in this manual be used as an aid in the teaching of the course. We feel quite
strongly that problem solving is an essential ingredient in the process of understanding
the variety of interesting concepts involved in fluid mechanics. This solutions manual is
structured to enhance the learning process.

Approximately 1220 problems are solved in a complete, detailed fashion with (in most
cases) one problem per page. The problem statements and figures are included with the
problem solutions to provide an easier and clearer understanding of the solution
procedure. Except where a greater accuracy is warranted, all intermediate calculations
and answers are given to three significant figures.

Unless otherwise indicated in the problem statement, values of fluid properties used in
the solutions are those given in the tables on the inside of the front cover of the text.
Other fluid properties and necessary conversion factors are found in the tables of Chapter
1 or in the appendices.

Some of the problems [those designed with an (*)] are intended to be solved with the aid
of a programmable calculator or a computer. The solutions for each of these problems
are presented in essentially the same format as for the non-computer problems. Where
appropriate a graph of the results is also included. Further details concerning the
computer and their solutions can be found in the following section entitled Computer
Problems.

In most chapters there are several problems [those designated with a ()] that are “open-
ended” problems and require critical thinking in that to work them one must make
various assumptions and provide necessary data. There is not a unique answer to these
problems. Since there are various ways that one may approach many of these problems
and since specific values of data need to be assumed, looked up, or approximated, we
have not included solutions to these problems in the manual. Providing solutions, we
feel, would be counter to the rational for having these problems—we want students to
realize that in the real world problems are not necessarily uniquely formulated to a have a
specific answer.

One of the new features of the Fourth Edition of FUNDAMENTALS OF FLUID
MECHANICS is the inclusion of new problems which refer to the fluid video
segments contained in the E-book CD. These problems are clearly identified in the
problem statement. Although it is not necessary to use the CD to solve these “video-
related” problems, it is hoped that the use of the CD will help students relate the analysis
and solution of the problem to actual fluid mechanics phenomena.




Another new feature of the Fourth Edition is the inclusion of laboratory-related
problems. In most chapters the last few problems are based on actual data from simple
laboratory experiments. These problems are clearly identified by the “click here” words
in the problem statement. This allows the user of the E-book CD to link to the complete
problem statement and the EXCEL data for the problem. Copies of the problem
statement, the original data, the EXCEL spread sheet calculations, and the resulting
graphs are given in this solution manual.

Considerable effort has been put forth to develop appropriate problems and to present
their solutions in a manner that we feel is helpful to both instructors and students. Any
comments or suggestions as to how we can improve this material are most welcome.

COMPUTER PROBLEMS

As noted, problems designated with an (*) in the text are intended to be solved with the
aid of a programmable calculator or computer. These problems typically involve
solutions requiring repetitive calculations, iterative procedures, curve fitting, numerical
integration, etc. Knowledge of advanced numerical techniques is not required. Solutions
to all computer problems are included in the solutions manual. Although programs for
many of these problems are written in the BASIC programming language, there are
obviously several other math-solver or spreadsheet programs that can be used.

A number of the solutions require the use of the same program, such as a program for
curve fitting, or a numerical integration program, and these “standard” programs are
included. For those requiring use of one of the standard programs, there is a statement in
the problem solution which simply indicates the standard program used to solve the
problem. A list of these standard programs, with their file names, follow. The actual
programs are given in the appendix. Most of the standard programs are, of course,
readily available in other math-solver or spreadsheet programs, and the student can
simply use the programs with which they are most familiar.

Standard Programs—File Names and Use

Curve Fitting

EXPFIT.BAS Determines the least squares fit for a function of the form
y=ae®*

LINREG1.BAS Determines the least squares fit for a function of the form
y=bx

LINREG2.BAS Determines the least squares fit for a function of the form
y=a+bx

POLREG.BAS Determines the least squares fit for a function of the form
y=d,+d x+dx?+d x>+

POWERI1.BAS Determines the least squares fit for a function of the form
y=axb




SIMPSON.BAS

TRAPEZOIL.BAS

COLEBROO.BAS

CUBIC.BAS
FAN_RAY.BAS

ISENTROP.BAS

SHOCK.BAS

Numerical Integration

Calculates the value of a definite integral over an odd num-
ber of equally spaced points using Simpson’s rule

Calculates the value of a definite integral using the
Trapezoidal Rule

Miscellaneous

Determines the friction factor for laminar or turbulent pipe
flow with the Reynolds number and relative roughness
specified (for turbulent flow the Colebrook formula, Eq.
8.35, is used)

Determines the real roots of a cubic equation

Calculates Fanno or Rayleigh flow parameters for an ideal
gas with constant specific heat ratio (k>1) for entered
Mach number

Calculates one-dimensional isentropic flow parameters for
an ideal gas with constant specific heat ration (k>1) for
entered Mach number

Calculates normal-shock flow parameters for an ideal gas
with constant specific heat ratio (k>1) for entered upstream
Mach number (Ma )
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L1

Determine the dimensions, in both the FLT system and

the MLT system, for (a) the product of mass times velocity,
(b) the product of force times volume, and (c¢) kinetic energy
divided by area.

(&) mass x veloc,ty = (M) (LT-’) = MLT
Since F=MLT

(&)

(c)

mass x velocity

I-

Force x volume

il

Kinetic enerqgy

A Veasa

. 4

/

=(FL™'T z)/LTqﬂ = __/;_Z‘

3

Fb

————

(MmeT2)(13) = mL¥77%

£L

- -/
12 —'_.—'E_£-_

= (ML T‘zjl — MT"Z

Lz.

[~




/2

1.2 Verify the dimensions, in both the FLT
and MLT systems, of the following quantities which
appear in Table 1.1: (a) angular velocity. (b) en-
ergy, (¢) moment of inertia (area), (d) power,
and (e) pressure.

=/

—_—
=
=

arqgu fap (//:S/O/dtef)7€/l £
t/ime

(G) angular velocity =

[-b) fnfl’jﬁ ~ 64/45/747 01[ éoa/y 'r/D do work
Since work = Force x distantce g
¢hergy = FL
or with 2 pppT7%
energy = /MLT"Z)/L) = MLATT?

(<) mement of /herﬁtz@reac) = second rmomen? o/ q,va

= (L*)(L*) = __L_:

(d) power = rate of do/ng work = E_L = M:_/
7- ——————
= LT AT S M
Force _, F Eay= -2

€) pressure = = 7z FL

area

S (MLTIL) S M T
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1.3 Verify the dimensions, in both the FLT system and the
MLT system, of the following quantities which appear in Table
1.1: (a) acceleration, (b) stress, (¢) moment of a force, (d) vol-
ume, and (e) work.

() ac(e/fl’a:ll:/‘&ﬂ ~ velouty = L _LT_Z

+i'me 72 —_—
(L) Stress = force f;j = FL*
area L

Since F=MmLT}
-2
stress= LT = mMLITTR

LZ-

(C) rement of « force = Hforce x distance = FL

LTIl = LT

(d) veolume = (/6/797"/7) T2 L7

7[0rce X distance = FL

= (ML T L = mr27 >

(e) work

I




i 14 If P is a force and x a length, what are

the dimensions (in the FLT system) of (a) dP/
dx, (b) &*P/dx*, and (c) [P dx?

() 2L 2 £ = py-7
dX L m—
(b) &°F o F = g3
dx-” [_3 —_—

/5

1.5 If p is a pressure, V a velocity, and p a fluid density,
what are the dimensions (in the MLT system) of (a) p/p, (b)
pVp, and (c) p/pV*?

oMUt 2 -2
(a) -;— = 73 = LT

2, 7% __ -
(6) pVp= bor'r-2) (L) (M) = ML T

- . N L~l7~-z )0 T®
(¢) —— = = M L T d/menS/m/ﬂss
V2 (ML-—B)(ZT-')Z (——.___—__—_—:_ )

-4
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1.6 If V is a velocity, £a length, and v a fluid

property having dimensions of L?*T"', which of
the following combinations are dimensionless: (a)
Vv, (b) VI/v, (c) Vv, (d) V/B?

(a) \//("V = (LT—)(L){ZQ'T” = 197-..1 /f?a?‘ d/b?ens:bnffss)

(b) % = (L' )(L) st yaTd
/4 (L’L?‘—f)

( dimension /esS)

() vy = (17 /sz“’)ﬁ- LT (ot :/ﬁnms.«bn/ess)

—1
() /T\;_. = ZCLLTT(F)F?) = 7% (ot dimensionless)

/-7 1.7 Dimensionless combinations of quan-

tities (commonly called dimensionless parame-
ters) play an important role in fluid mechanics.
Make up five possible dimensionless parameters
by using combinations of some of the quantities
listed in Table 1.1.

Some possible examples
&.c(e/em-#mn x Fime - /1'_ 7'"'2)/7') La S
velocity = it

frfguencg x Fime = (7--!)[7') = e

Z 2
ﬁft’/aci-fy) . (1_7‘") A i
/g,’yy th x acceleration )L )
force x Fime . [F)[/_’) - (FUT i BRSPS

romentum . (M LT (F72 )T

densi{y X Ve/aciqug x /enfﬂr 5 (M/.Hg)/LT_})/L)
dynamic Vis coﬁifj . ML T

_____: MOLOTO

/=5
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1.2 The force, P, that is exerted on a spher-
ical particle moving slowly through a liquid is
given by the equation
P = 3nuDV

where 4 is a fluid property (viscosity) having di-
mensions of FL™?T, D is the particle diameter,
and V is the particle velocity. What are the di-
mensions of the constant, 3z? Would you classify
this equation as a general homogeneous equa-
tion?

P= 3muDV
(7] 2 BrllFerdLL T
[F]= [sm] [F]

g 3T s d/mensmn/fss, gnd The -éjumllbn'

(5 a 7€ner0/ }’mmoﬁeneaus egaaﬁbn. )’e_s,
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According to information found in an old hydraulics
book, the energy loss per unit weight of fluid flowing through
a nozzle connected to a hose can be estimated by the formula

h = (0.04 to 0.09(D/d)*V?*/2g

where £ is the energy loss per unit weight, D the hose diameter,
d the nozzle tip diameter, V the fluid velocity in the hose, and
g the acceleration of gravity. Do you think this equation is valid
in any system of units? Explain.

£ = (0.04 4 0.09) /-5)"‘2‘:/;

[EE]: [oon e oos] [ 21T (][
[17=[0.04 4 0.05] [L]

Since each term 1w The ezaa,z(/o'h must have The
Same a'/bvens/a)v.s/ The Constant +evm (0.04 4 0. 09) must
be dimensionless. 77/145/ The fgdzzf/éy /s & Geneval

hem o geneous efuation That is Valid 1 any systerm
07£ units, Yes,

72
L

/./0

110 The pressure difference, Ap, across a
" partial blockage in an artery (called a stenosis) is

cosity (FL=°T), p the blood density (ML-?), D
the artery diameter, A, the area of the unob-
structed artery. and A, the area of the stenosis.
Determine the dimensions of the constants K,

approximated by the equation
Vv 2
v=KY +k 1) p\2

Ay _

where V is the blood velocity, u the blood vis-

and K. Would this equation be valid in any sys-
tem of units?
Ao _

Ap=ky/%‘l/+ /(“[Au IT/OVZ.L 202 2
CRHIE GO Rk
[re7) = [ D]+ [k [Fe]

Since each +erm must have the same a//'rnfns/onsJ

K, and K, are dimensionless. Thus, the equation
/S a 7enem/ hormpjeﬂeaas €gaa4-[nn That would be
valicl ‘1n any Consistent system of units. Yes.

-7
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| ¢l Assume that the speed of sound, c, in a fluid depends
on an elastic modulus, E,,, with dimensions FL ~2, and the fluid
density, p, in the form ¢ = (E,)“(p)". If this is to be a dimen-

. sionally homogeneous equation, what are the values for a and

b? Is your result consistent with the standard formula for the
speed of sound? (See Eq. 1.19.)

C = (Ey)a(f’)b

- . - ~¥_-2
Since ¢= LT E,FFLTY pP=FLTT

[#1: [ [ 25

For a dimensionally homogeneous -ejazubo'n each term
in The eguation must have The same dimensions. Thus,
the vight hand side of £3. (1) must have The dimensions
of LT~ Thereore,
aA+b=0 (‘l‘o e/iminate F)
2b=-1 (%o satisty Conc)i tion on 7)

Za+4b=-1 (%4 ﬁ?ﬁz_;'?éy ondtion on L)
I{' —é//aws That d,z—!z— agnd é:—;/:

So That .= VE_7

L.
This resul+ Is Consistent with The standand formala For The
Speed of sound. Yes.

—

-9
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112 A formula for estimating the volume rate of flow, Q,
over the spillway of a dam is

0 =CV2gB(H + VY25

where C is a constant, g the acceleration of gravity, B the
spillway width, H the depth of water passing over the spillway,
and V the velocity of water just upstream of the dam. Would
this equation be valid in any system of units? Explain.

@ = CVZ;B(H"'.?;) Lszj/’L
[orr]2 (IR er) "] (e )

(3772 [c] 0] [Pk ] (10 + 5 )™
[L3T"]i[{ﬁ][[.3'r"]

Since each term 11 The e ualion must have The
Same clymensions The Constan? C VI rmust be
dirmension less. Thus, The eguation 1s a geneval
bwﬂoﬁeﬂeam égua.zé/on Thet would be vald i»
any Censistent Set of unrs . Ye_s

/=9




e 1.14  Make use of Table 1.3 to express the

following quantities in SI units: (a) 10.2 in./min,
(b) 4.81 slugs, (¢) 3.021b, (d) 73.1ft/s?, (e) 0.0234
1b-s/ft2.

(@) /0,2 1% = (/02,,7,,7)/25’7‘“/0 ) Z,Zm)

-3
= 43z x/o” = 432 2™

(b) 48] S/u75= ('%2/ s/ujs)//%ﬁ‘?x/a S-’%%): 70, 2 »é%

(¢) Boa b = (30216 )( 4 4xe 2L)= 1344

(0{) 73.] =% 5,_- (75’/ [{) (309‘5")‘/0 /__4524—_’;.): 22 3 _/_”7_2-

77 s
52—
1b-s /b5 M5
&) o0.023% 85 < (00234 22 (4788000 R )
FE* ( £+ ) s
_ N-s |

I=]0



/15 1.15 Make use of Table 1.4 to express the

following quantities in BG units: (a) 14.2 km,
(b) 8.14 N/m’, (¢) 1.61 kg/m?, (d) 0. 0320 N-m/s,

(e) 5.67 mm/hr.

(a) /42 #m = //%ZX/OBM) (5’,25’/—’5—{): 446 110" #1
/b

) Sw Xy < (804 M) (6 366x167 F ) 58016 Pk
£,
_5 sk ]
) /b %# o (61 2) (Laronio” FE) 5120007 shss
/Q 3
55 =
(C/) 0 ¥ N,,," -1 7[*‘[6
. 0320 < s (0. 0320 —~ ) (7, 376410 = )
M
- S
= 23Lx10" LS

€) 567 T = (567 x10” %)(“5”#) ;Z:;.)

-
= 5,/7 x/b f_.,

/=11
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1.16  Make use of Appendix A to express the

following quantities in SI units: (a) 160 acre, (b)
742 Btu, (c) 240 miles, (d) 79.1 hp, (e) 60.3 °F.

-2
¢ FE* m>
(&) /60 acre = (/éaac_ye) (5‘ 356 X 10 a-;-e)' 7290%10 —#-;—1)
= 64T /0% m?

( 3 J\s 783x10°T

() 742 BTV = (742 .6’7‘(/) (/.05‘5,(/0 ~\= 783x)0

BTU
. 3
(€) 240 md = (’76‘0/’74> (léoq’x/o .): 334,;(/05,,,,
e

@) 79./] hp = (77’/ bp ) (7.45'7»002 E"%): s0x106" W

1

e) T,
K

z;’: (t0.3-32) = 15.7 C

I

/57 °C + 273 = 2189 K

/=12
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1.17 Clouds can weigh thousands of pounds due to their
liquid water content. Often this content is measured in grams
per cubic meter (g/m’). Assume that a cumulus cloud occupies
a volume of one cubic kilometer, and its liquid water content
is 0.2 g/m’. (a) What is the volume of this cloud in cubic
miles? (b) How much does the water in the cloud weigh in
pounds?

(@) V5 lume = /[/zm)3 = 10" m?

Since [m = 3281 [t

J
V5 lume - //01’”’3) (3281 %)
(52280103 ££N3

M,

0.240 nnc.'g

——

() 9 = b’x ‘Volumc

|

N

y=pg= (0.2 %3)[/0-3%3)(%/%):/' %mf/—m-s

2 =(1.961 )(10'3—/;)-\;'3 )(/07,,,,3) = [.Fbz X105 N

(1967 xI0°N ) (2.248 xm"T‘vb— ) = 4l x10° [b

/=13
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1.18  For Table 1.3 verify the conversion re-

lationships for: (a) area, (b) density, (c) velocity,
and (d) specific weight. Use the basic conversion
relationships: 1 ft = 0.3048 m; 11b = 4.4482 N;
and 1 slug = 14.594 kg.

2

(a) | f+*- (/ £t )[/030#9) }-— O, 09290 »

Fin
Thusj mu/%/'/@ 752{'2 by G 290 E-1 4o convert

2

fo m

£¢3 / ) ( Sluy (0 304(!)3/”4

43
= 5/5. 4 T 3

Thus, multiply slugs/ F£3 by S5 /5% E+2 to convert
to ‘éﬁ //m3

cc) |/ fgé.- (/ 7%)(0.3079%): 0 3048 2

774145) MM///P/g fz‘/s Ag S O%8 E-| 4 convert
Zzo 4”/5.

3
[d) /7@3 (/ /sz (44 482 /V [(D/Bf‘:;)‘? 1

— /57./;%/3
Thus, multiply 16/A° by 1511 £t2 Fo convert
+o N fon 3

/=14
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277 --I 1.19  For Table 1.4 verify the conversion re-

lationships for: (a) acceleration, (b) density,
(c) pressure, and (d) volume flowrate. Use the
basic conversion relationships: 1 m = 3.2808 ft;
1 N = 0.22481 Ib; and 1 kg = 0.068521 slug.

‘a [/ ) (3.2508 "f) 3200 2

T/ms) mu/f'i/)/g m [s* /:5 3.28] to cConvert
to H:/.s’-

% .Sfu S ‘/m
b ?- 0. 54 9 ‘ .
(5) / (‘ ( ob¥52) T ) (3 Z?a&’) t

slugs
743

T/’)usj mu/\Liplg %j//mz' bg [ 940 E=3 to convert
to sluas/tt3.

y LNT _Lm™
@ | (] 2 ) (a2 )[(azm) P

_ -2 b
= 2,089 XD i

= . T40 x107>

Thus mu!£zp N//m 2,089 E-1 to convert
Lo Ib/#*
(d) | 4:3 (/ 5[(52503) # ]: 35 3] %3

T})uS) mu/éip/g 0’"3/5 by 3 53] E‘H 4o convert
to  F£%s.

/-75
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1.20 Water flows from a large drainage pipe at a rate of
1200 gal/min. What is this volume rate of flow in (a) m?/s, (b)
liters/min, and (c) ft*/s?

(o) o3
flowrate = (/20" Q—-O/ ) (¢ 309 x10° 5 )

min —977—

min

= 757 )(/0—2 _/gij

(b) Since | liter = /0_3,,,43)

f/owmz‘e-’ (757 x/o"z_/sﬁj ) /03//'/{;*5) éﬁ)

/PMB m)}rn
= ysyo L
-2 i3
() Llowrate = (757x16 2 ) (3531 x10 )
,m3
£ B
= 267 5

/<16




vy 1.2} A tank of oil has a mass of 30 slugs.

(a) Determine its weight in pounds and in new-
tons at the earth’s surface. (b) What would be its
mass (in slugs) and its weight (in pounds) if lo-
cated on the moon’s surface where the gravita-
tional attraction is approximately one-sixth that
at the earth’s surface?

ca) weight = omass x g
:(30 s/ugs)(Ezz'H“) _7éé./é
= (30 slugs ) (14 57 [?2/ L R

(6) omass = 30 slugs (mass does not depend on
gra vitational attraction )

we/'yf)-éz (‘:30 s/uqs\) (32'2 %) = /6l 16
b

/A2

1.22 A certain object weighs 300 N at the earth’s surface.

Determine the mass of the object (in kilograms) and its weight
(in newtons) when located on a planet with an acceleration of
gravity equal to 4.0 ft/s?.

weight
Mmass = 2

—

300 N  _ 30.104?
78 = -

For 4 < %0 #z%"

u/e/yﬁzL (30&46;)(40 )(030‘/5’4;‘)
= 373 N

/-1
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1.23  An important dimensionless parameter
in certain types of fluid flow problems is the Froude
number defined as V/Vg(, where V is a velocity,
g the acceleration of gravity, and { a length. De-
termine the value of the Froude number for V =
10 ft/s, g = 32.2 ft/s?, and [ = 2 ft. Recalculate

Ln B6G units

the Froude number using SI units for V, g, and
(. Explain the significance of the results of these
calculations.

£t
~v_ . /oF _ /25
N (PR RTEry
Ln SI wunits :
_((n £E 305 2T
V=(lo £ )(a.?ow%)- 3.0 %
= 981 A
= (244) (63048 —Fi:): 0.610 m
T/ms, .
V__ _305F ey

[

The valve of a d/'mension/ess /Damme'éer /S

/ndependent of The

unit 57.5/'€m.
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1.24  The specific weight of a certain liquid is
&5.3 Ib/ft’. Determine its density and specific

gravity.
1%
o= L o B2 m o zes sl
¢ 322 # £’
S5/ugs

5(7 = /d = i Sk — /.37

/p @ %oc / 774 J/Nfs - —_—

4o R

/25

1.23 A hydrometer is used to measure the specific gravity
of liquids. (See Video V2.6.) For a certain liquid a hydrometer
reading indicates a specific gravity of 1.15. What is the liquid’s
density and specific weight? Express your answer in SI units.

0

SGg =
{ZD@#.(
(5= L
Jopp 2%
m3

2= (1.15)( 1600 %?3) = 150 ”%3

_ k3 m 4N
y=pg = (1150 /—;3)(?.8}3—; = 1132

I-19
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.26  An open, rigid-walled, cylindrical tank contains 4 ft?
of water at 40 °F. Over a 24-hour period of time the water
temperature varies from 40 °F to 90 °F. Make use of the data
in Appendix B to determine how much the volume of water will
change. For a tank diameter of 2 ft, would the corresponding
change in water depth be very noticeable? Explain.

mass 07£ WA,-ét’r = -Vx/o
Wheve V- 1s Tne volume and P The denstty. Jince The
Mmass mast vemain constant qs The Ltemperature e hanges

Yt g ™ 0l 2
- sl
From Iable B.| éag%‘f: /. 947 __75:2_%5

— Slugs
Fio @ ey = P12
Theretore From L g.(7) o
’ = (412 )19 ’%J)

3
” P o018 +1
: Ly

771145/ The 1ncvease i1 volume 5

Y prol — Y oo0= O 0156 £

The change 15 witer depth, A4 4 {jm/ +o

A 0. 0 &L 43 -3 .
40 = e . = 59240 4=0.0710in
T~ eft)”
QL

This small change 1 clepth would net be very
Noticeable. No.

Mote! A slightly dftereat value br AL L1l be obtanes
1£f specific weight of water Is used (eTher Than density .
This 15 due +o The fack That fhere is some ancerfaiity
In~ The our™ Siomifican] figure of These Fuwo values, and
Fheo Solution @3 sensitive 4 This uncevfain?y. .

/-20
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1.28 A liquid when poured into a graduated
cylinder is found to weigh @ N when occupying a

~ volume of 500 m! (milliliters). Determine its spe-

cific weight, density, and specific gravity.

G ht gN
weigh _ 6.0 :éﬁ’_

volume ~ (o.5000) (107 °22%) e
(e:5004) (15" 22)
/6 3N
v - <10 T3 _ a3 xiod %8
P = 9 7.8 2% m3
S
3 A
Y 63 x10 =&
s = —— = = /.63
P @ #°C p° % —
Hy 0 g

[-2]
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1,29 The information on a can of pop indicates that the can

. contains 355 mL. The mass of a full can of pop is 0.369 kg
while an empty can weighs 0.153 N. Determine the specific
weight, density, and specific gravity of the pop and compare
your results with the corresponding values for water at 20 °C.
Express your results in SI units.

Weight of Fluiél /)
Vo lume ok Fluid

fotal weight = massx g = /J.Béf%g)/%/f-’:) - v724
weight of cn= O /53N ) y
Volume of Fluid = /355)(/0’31)//0'3—2—"— )-—- F55 XD m

Thas, From Z:“j. (1)
a’: FeZN — 0'/5{)\_{.:: 97 70 —/:-;Va
F55X 10 m’

—

J

i .
6:—
4
—ﬁ = 776 _’;’é = 0 .99¢

[o@4°c 1000 24

For A/m.zer £ 20°C fsee Tadle B. 2 1, /4/:/)(»://;/ B) |
= ?78 —-A—/ ‘ = éé ’ =

5 s” 705 A, 7782 & . Sh=09782
/J- Cﬂ/n/owvséff a/ These Values Jr Watey wiTh Those
for The pop Shows That The pecitii weight,

6/(/75/‘7’7/ Gud QDec/}Qc' ‘7/%1//‘7? o~ ﬂe /bo/o are a//
J/lj/lf /7 Jowery Than The Cpr/esﬁona’/}zj Valyes For water.

[-22



/. 30% . L .
1.30* The variation in the density of water, p,

with temperature, 7, in the range 20°C = T =
60 °C, is given in the following table.

Density (kg/m?) | 998.2 | 997.1[ 995.7 | 994.1 | 992.2 | 90.2 [ 985.1
Temperature °C) | 20 1 25 | 30 [ 35 [ 40 | 45 [ s0

Use these data to determine an empirical equa-
tion of the form p = ¢, + ¢,T + ¢ T* which can
be used to predict the density over the range
indicated. Compare the predicted values with
the data given. What is the density of water at
42,1 °C?

Io solve This problem yse POLREL.

KK K oK 3K K K 3K i ok K K 3 kK K 3K K 3K Sk oK K ok K 3K ok sk ok 3k sk ok K ok K ok K ok kK KK KK sk oK ok ok oK K ok ko

** This program determines the least squares fit **
** for any order polynomial of the form: * %
*% v = d0 + dl*x + d2*x"2 + d3*x"3 + ... * ok
3K 3k sk ok 3 3K oK oK 3K ok ok ok K ok ok oK 3k 3 3K 3K oK 3K 3k oK 3K ok bk sk ok ok ok o ok oK oK 3K 3K ok ok stk ok ok Ok K K oK K

Enter number of terms in the polynomial: 23
Enter number of data points: 7

Enter data points (X , Y)
? 20,998.2
? 25,997,
30,995,
35,994,

J e ) ) D
iy
(@]
O
Xe}
NI

45,990.
50,988.

RPNMORFRE ST

The coefficients of the polynomial are:
dz -4 . 0953E-03
di -5.3332E-02
ao +1.0009E+03

X Y Y(predicted)
+2.0000E+01 +9.9820E+02 +9.9825E+02
+2.5000E+01 +9.9710E+02 +9.9706E+02
+3.0000E+01 +9.9570E+02 +9.9566E+02
+3.5000E+01 +9.9410E+02 +9.9407E+02
+4,0000E+01 +9.9220E+02 +9.9226E+02
+4.5000E+01 +9.9020E+02 +9.9026FE+02
+5.0000E+01 +9.8810E+02 +9.8805E+02

Thus
hus, = /00 — 0.05333 T — 0.00%095% T;

Note Thet /(,orea//c'#ee/) & 1n good agrement Th p /y:.}m),

At T=42./°C

2 7&}
L= 100/ - 0.05333 (4z.1°C) = 0. 004095 (#2./ °c) = 99/ 5 —

/=23




/.32

1.32  The density of oxygen contained in a tank is 2.0 kg/m?
when the temperature is 25 °C. Determine the gage pressure of
the gas if the atmospheric pressure is 97 kPa.

p=pRT = (a o 22 ) (257.8 == ,45 = [{zs’crma)/]

= /55 B8 (aés)
P lgage)= By - P, = /56LR-114R = 52 LA

/.33

1.33 Some experiments are being conducted in a laboratory
in which the air temperature is 27 °C, and the atmosphenc

pressure is 14.3 psia. Determme the densny of the air. Express
your answers in slugs/ft® and in kg/m®,

7‘9=p/?'T'
Temperature = 27°C = [13(n) #3221 °F = §0.4 °F

+ //43 = 7_)[/4/4 )
ol VFs %0)R ]

-
—

slugs
F£3

2 &3 %
p= (0. 00222 Sl“”)(j— IS4 XD 3 ).— [ 14 -;fa

Slugs
13

= 0.00222

I~ 24
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1.34 A closed tank having a volume of 2 ft? is filled with
0.30 Ib of a gas. A pressure gage attached to the tank reads 12
psi when the gas temperature is 80 °F. There is some question
as to whether the gas in the tank is oxygen or helium. Which
do you think it is? Explain how you arrived at your answer.

| ) _ weight  _ __ﬂ_‘f_é_
Densiby  of gas 1n tunk F = g x volume (322ﬁ>(2.75é3)
278

-3
- .S/u¢.$
Kbl x 1D :

S/ince /0: —/ﬁ wi7h p= (/21-/‘7“.7)f$/é,

RT
(a‘émo.s/hm'c pressarve  assumed fo be % /%7/:/'4)

anc witn T = [FOF +4ko) R it Allows thit

lb in2
- (.247 I‘ﬂ’,_)(/‘/'lf"zb) _ 7,/2 j/qf_g [/)
£ (540°R) £
Prom Table 17 JQ=/5-.5—4‘X/93 For ox4gen
Gucad L= /,.2‘)‘ZX/09‘ £ b For ﬁe/mm,
J/Hﬁ"’ﬂ
Thus, +rom Eg.(1) £ The gas s oxygen
- 7./2 5/(( S = %52/(/0-35/“?;
o [559X03  H3 3
and 14/ AC//H}‘VJ -
7. /2 = 45,73 X2 -‘—/éi;‘

= l2vzxip

A Compgrisor  of These talues Witk The actual  dens/ty
of  the q4s 14 The kank indicites That Tre

9as  rAust be OXygen.

/- 25
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1.3 A tire having a volume of 3 ft* contains
air at a gage pressure of 26 psi and a temperature
of 70 °F. Determine the density of the air and the
weight of the air contained in the tire.

b _ () (e

- = <3 slugs
L= rT = & 4y x/0 Sluds
(716 114 {: o o 47

( T (70 +460)A

weight = £é* volume :/6.46‘ )(/53 ﬂ-ﬁ%s) (?ZZ _?::) (?#3)

= 0 622 b

/- 26
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1.37 A rigid tank contains air at a pressure of 90 psia and
a temperature of 60 °F. By how much will the pressure increase
as the temperature is increased to 110 °F?

= PRT (&g.1.8)

Por a ri9:4 closed Jank The atr rnass and
Volurne ave Constant so /0: Constant. Tht{s/

From £g. 1 § (witn R constant)

- (1)
T T2

L here ﬁ: ?0/954',&) 7" =é0’F+17%0 = ..S'Z&okl

and T, = //0°F+460 = STOR. From Eg.(0

5 76°R

e =) i) 300

1-27




#1.38 Develop a computer program for calculating the
density of an ideal gas when the gas pressure in pascals (abs),
the temperature in degrees Celsius, and the gas constant in
J/kg - K are specified.

For an ideal gas
?::/OET
So 77)61{' //=
pe
Wheve f' Ls absolute pressuve
I's absolute +emperatdre . Th

/5 /n °C  Then
T = °C + 273. /5

A spreadshee [ EX(EL) Program for C’d/zu/a,{-mj e Follows .

) R The gas wnsianfl and T
us, 1F The tempe rature

This program calculates the density of an ideal gas |
when the absolute pressure in Pascals, the temperature
in degrees C, and the gas constant in J/kg-K are specified.

To use, replace current values with desired values of
temperature, pressure, and gas constant.
A B C D
Pressure, | Temperature,| Gas constant,!| Density,
Pa °C Jikg-K kg/m®
1.01E+05 15 286.9 1.23 Row 10 |
X |
Formula:
=A10/((B10+273.15)*C10)
| | |

Example. (4lealate p for p= 200k Pa., temptratyre =
20°C, ana R=287 J/«b; K,

A B C D
Pressure, | Temperature,| Gas constant, | Density,
Pa °C Jikg-K kg/m®
2.00E+05 20 287 238 Row 10

/=23
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*1.39 Repeat Problem 1.38 for the case in which the
pressure is given in psi (gage), the temperature in degrees
Fahrenheit, and the gas constant in ft-1b/slug-°R.

For an tclea/ gas
$=PRT
- £
F‘ /QT
where p U5 absolute pressdre, and T 15 absolute temperature.
Thus, /7‘ temperature In °F, and pressure i psi, Then 2

= £+ 45947 ana p=[ PO, (psca) | 1947
A sprmd.sheei (EXCEL program for caleulating P Follows .

S0 Thet

This program calculates the density of an ideal gas
when the gage pressure in psi, the atmospheric
pressure in psia, the temperature in degrees F, and
the gas constant in ft:Ib/slug deg R are specified.

To use, replace current values with desired values of
gage pressure, atmospheric pressure, temperature,
and gas constant.

A B C D E
Pressure, | Temperature,| Gas constant, | Atm. Pressure, | Density, g
psi °F f# Ib/slug-°F psia slugs/ft® '
0 59 1716 14.7 0.00238 | Row 12
Formula: 1
=((A12+D12)*144)/((C12)*(B12+459.67))
| ! |

Examp/el Cq/a«laz‘c /0 74}’ ?=90P5(:) éfmfvrafﬂmz/ﬂﬂ?;
Bbm = 197 psia, anu R= |71 Flb [slug: R

A | B C D E ]
Pressure, Temperature,| Gas constant, | Atm. Pressure, | Density,
psi °F ft Ib/slug °F psia slugs/ft’ |
40 100 1716 14.7 0.00820 | Row 12 !7,,,,,_.‘.__,» |

1-29
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|.40 Make use of the data in Appendix B to determine the

dynamic viscosity of mercury at 75 °F. Express your answer in
BG units.

T,= 2 (7-32)= Z (7 -32) = 23.9°C

From Fig B/ in 4 ppendix B :

=3NS
/(( (mercury ot IS5 °F (,23,705)) ~ L5x/0 —/r-;-z
2 (b3

V- (15X15 %/n-{) (3.0?9 10" Fg ) 3.0x10

¢

-5 /bes
2

m=

/=30
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1.41  One type of capillary-tube viscometer is shown in
Video V1.3 and in Fig. P14l . For this device the liquid to Glass
be tested is drawn into the tube to a level above the top s“egﬁt:gee"'"g

etched line. The time is then obtained for the liquid to drain
to the bottom etched line. The kinematic v1scosxty, v,in m¥s
is then obtained from the equation v = KR*t where K is a
constant, R is the radius of the capillary tube in mm, and ¢
is the drain time in seconds. When glycerin at 20°C is used
as a calibration fluid in a particular viscometer the drain time '
is 1,430 s. When a liquid having a density of 970 kg/m? is Ca&'t',':'y
tested in the same viscometer the drain time is 900 s, What

is the dynamic viscosity of this liquid?

Etched lines

V= KR™ m FIGURE P1.4!
For alycesn @ 20°C V= /19x10 ‘m%
xS = (kR 430 5)
L e 8.32x107 m*/s®
For unknown /IZUI.J with = 900s
(5. 32400 m*/s*) (00 5)
749 x)0"F m™/s

Since /M /”7/
- (970 /é;/ )(74?)(/0 ', )

0.727 R2 M3
m-5

i

—

u

/=31
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142 The viscosity of a soft drink was determined by using
a capillary tube viscometer similar to that shown in Fig. P1.41
and Video V1.3, For this device the kinematic viscosity, v, is
directly proportional to the time, 1, that it takes for a given
amount of liquid to flow through a small capillary tube. That
is, v = Kt. The following data were obtained from regular pop
and diet pop. The corresponding measured specific gravities
are also given. Based on these data, by what percent is the
absolute viscosity, u, of regular pop greater than that of diet

pop?

Regular pop Diet pop
1(s) 377.8 300.3
SG 1.044 1.003

% greater = //"5 _/{d"‘* X 0D = /ure_q |

Mot Mot

S/hfe -V:/I/o) -V:ki} and /D:Ks-é)/oyzapqoc
it follows That
FVﬂ)rea

(vjpdet

- |x 100

0/o grester =

= /{-x 36))’?.9
CLx S&)dret

X loo

- (377.85)(/.04“#) — (| x 100
(300.35)(l.003)

= ;g/,o"/a

X oo

/—32
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1.43  The time, ¢, it takes to pour a liquid from a con-  equation for the pouring time in seconds was r = 1 + 9 X
tainer depends on several factors, including the kinematic  10% + 8 X 10°? with » in m¥%s. (a) Is this a general ho-
viscosity, v, of the liquid. (See Video ¥1.1.) In some labo- mogeneous equation? Explain. (b) Compare the time it
ratory tests various oils having the same density but differ- would take to pour 100 ml of SAE 30 oil from a 150 ml
ent viscosities were poured at a fixed tipping rate from small  beaker at 0°C to the corresponding time at a temperature of 1
150 ml beakers. The time required to pour 100 ml of the =~ 60°C. Make use of Fig. B.2 in Appendix B for viscosity
oil was measured, and it was found that an approximate data.

(@) = |+ Gxi0V ¢+ S$x]0°p? (1)

(172007 fraot][£] « ] [£]

Since each +erm in the egumé/bn ryst have The same
dimensins he tonstants ﬁ.ppedr/hj 111 The eguatién
Must have dimensions L€,

(1207 Gl @] o)<

T)?L/.Sj ﬂ//'774 A Change I» Units 771(’ Vﬂ/t/e 07[ The
Constants would chmge and 7THis IS not a  Geneval

homogeneous Lguatws. No .

(L) From Table 8.2 /n Appendix B :
(For SAEZD 0il @ O°C) V= 2.3x /0 °mm*s
(for SAEH o] @G0°C) V= #0X 107 m/s
Thus, +rem £8.01)
3(7.3x09)°
@ ©0°C 4= /£ q,y/o’(z,g,(/o'g)—/- Sxb°(2.3x /0
= 3/ls

2
@ ©o°C += |+ ?xm’(%ox/o'i)r 3)(/03(6‘.0;(/05)

[, O4% 5

)-33
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1.44  The viscosity of a certain fluid is 5 X
10~ poise. Determine its viscosity in both SI and

BG units.
From Appondic A 167 25 = | pui
rem Appends e 0 —— perse, Thus,

/a: (5)4/0—*/00/‘5e)’(/0-/ A/”j"s,_)= 5x/

p"% Ms

m*

Polse

ana  From Table X

~ -5 ALs -2 fbs -7
M= (5 x 10 _/;7_1) (2,08’%410 Nﬁ"s )_ /0.4 x (o
mr

/45

1.45  The kinematic viscosity of oxygen at 20 °C
and a pressure of 150 kPa (abs) is 0.104 stokes.
Determine the dynamic viscosity of oxygen at this
temperature and pressure.

pxvp
Vi

b 150X

£= T 7 . =
(Jﬁggk)[ﬁoca‘ﬂs)g_l
L= O /oy stokes = O.)o% —ems—z
- 4
= (0104 =) (s0 "_Z_"_m_;)(/,ﬁ =)
= o?,pgx/adg A4 = 205 x5V

mrSs

/-3¢
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*1.46 Fluids for which the shearing stress, 7, is not linearly
related to the rate of shearing strain, y, are designated as non-
Newtonian fluids. Such fluids are commonplace and can exhibit
unusual behavior as shown in Video ¥1.4, Some experimental

data obtained for a particular non-Newtonian fluid at 80 °F are
shown below.

(/i) | O | 211 | 7.82 | 185 | 317 |
ye 1ol so | 100 1150 [ 200 |

Plot these data and fit a second-order polynomial to the data using
a suitable graphing program. What is the apparent viscosity of
this fluid when the rate of shearing strain is 70 s~'? Is this
apparent viscosity larger or smaller than that for water at the
same temperature?

Rate of  Shearing
shearing stress,

strairg 1/s Ib/sqgt -; 40 - , 1=0.00 87° +0.00357 §
50 2.1 f 30 /
100 7.82 E 20 /
- T :
. £ . 4‘/
& 0 50 100 150 200 250

Rate of shearing strain, 1/s

From the graph } = 0.0008 b"z-/- 0.0035 where

T 15 1he shearing .Sfress In Uv/—Pt" and ¥ /s The rate
of sheqring strain In s~

atl _
Hopporense = S5 = (2)(0.0008)¥ + 0.0035
At ¥ = 705~ s

- Ib. s
=o.l6 B2

=5 b,
F;’ﬂﬂl /aé/e 5/ " A‘pp(ﬂdlx B /l‘# @3)00/" /77/)(/0 __pt—-sr_’

and sSmce watev is a /Vewl-amen Aluid This Value s
Independent of & - Thus, The 4nknown non-nNew tonan

#/uw/ has a much /ﬁr’ﬂr value .




/. 47 1.47 Water flows near a flat surface and some measure-

ments of the water velocity, u, parallel to the surface, at different
heights, y, above the surface are obtained. At the surface y = 0.
After an analysis of the data, the lab technician reports that the
velocity distribution in the range 0 < y < 0.1 ft is given by
the equation

u =081+ 92y + 4.1 X 10%?

with u in f/s when y is in ft. (a) Do you think that this equation
would be valid in any system of units? Explain. (b) Do you
think this equation is correct? Explain, You may want to look
at Video 1.2 to help you arrive at your answer.

Ca) u:os'/—f-‘iz_tj-f-#/:(/oj
[2.T'17=' [.8]]+ [3.2][L] + E‘.lx/o:) [L3J

Each term 10 The egaa,éwn must  have The same a’/menswns
Thus, The trastant 06’/ rust Aave d/mm.smns of LT,

72 dimenssons of T~ ) Ana 4.1 X 16> dimensions oF L~ T
Sihce The Constants 17 The e;uatna have dimensins THelr
vajues will change witn a change (n units. No.

(b) Egquation Cannot be torrect since at Y= =0 U048l s

a  nen-ere value which would violate tne no-slip”
Condition . Net Correct.

/=36b
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1.48 Calculate the Reynolds numbers for the flow of water
and for air through a 4-mm-diameter tube, if the mean velocity
is 3 m/s and the temperature is 30 °C in both cases (see Example
1.4). Assume the air is at standard atmospheric pressure.

/:ﬂk water at 30°C (7(/"0/7) Table B,2 :4-ppe,,d,',( B>

L= 9957 ’%3 A= 1975 w00 L
P = PV D _ (7457 L) (3 Z) (0,004 m) p
= JOOO
e 7 ?75‘x/0"' NS —_—
m -
For acr at Sotc ([rom 724/.»; B.4 in /erpem/}x B):
= ’ég - -5 M5
f YA =, /u_ | &L X 10 ==,
v D //bs 3 = 0, 004 m
Re = /)—-———‘ ( )( 5 ) ( ): 752
e /'XA x10 " M
mql

/=37




/049 1.49  For air at standard atmospheric pressure

the values of the constants that appear in the
Sutherland equation (Eq. 1.10) are C = 1.458 X
10-¢ kg/(m-s-K'*) and S = 110.4 K. Use these
values to predict the viscosity of air at 10 °C and
90 °C and compare with values given in Table B.4
in Appendix B.

3 ’ 3
- CT7T=% _ //,45.;’,-:/0 ‘_Lgi_.,‘-,) T%
MF T+S e S
T + lio4 K
For T=/0°C = [0°C +a735 = 283.15K,
3,

i
(1. 459 x10 ) (283,15K) 5

= = L765% 07 N3
RE3, 15 K + [0,k m
. 7. = 76 x10 " M3
rom lable 3.4)/( b x =2
For 7T = 70°C = 90°C + 27315 = 343, /E'K)
_ 7
(1459 x10") 303 156) 7> s
/’“ = 2./3x10 N5
363 15Kk + 1oy T T

5

From Table 8. ‘a‘/ /c = .14 % J0

Nes
m 2%

=38
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150* Use the values of viscosity of air given
in Table B.4 at temperatures of 0, 20, 40, 60, 80,
and 100 °C to determine the constants C and §
which appear in the Sutherland equation (Eq.
1.10). Compare vour results with the values given
in Problem 1.49. (Hint: Rewrite the equation in

the form
T3? 1 S
— — + pa—
7 (C> r+e

and plot T*/u versus T. From the slope and in-
tercept of this curve C and S can be obtained.)

fzzu.flo;q /.10 Can be wriften in The érM

3/
T _/(1ly+,. S
-/:,_—‘(C>’*' c (/)

and w1 Py The data From Table BY :

3 3
T(x) T () plwstmr) T [ gfos)]

° A73.05 170 %07 2.640x1°
20 A43.5 L8205 2.758x 18
Yo 313,15 /87 X zo's_— . ?éﬁx/oﬁ;

60 333, /5 197 X/o"_ 3.087x10 ,
8o 35375 2.07 X J0~° 2 206x10
/00 37315 2.1 74 /0'5 3. 322 xX10

A P/°£ of T%/“ Vs. T 15 shown below:
3.57()08 g e e o e

— JE EUREEN SDUNEDU ENNGS EEDNE SUNDNNI SN SN SR -

34

T % 20x10°+

j's—xlog ' B R S R el EEEt it SRl Rt Eititl Sl Eaisss St eI Eoes
4o 280 320 3é0 Yoo

(cont)

/-39
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Since The duta plot as an approximate straight line,
£9.U1) an be represmted by an eguition of The

form
y=éx+4

where Y T:%Zu y X~ T, b ~ ’/C, and a4~ S/C.
To obtain a and b use LINPEGI .

Kk ok kK 3k kK 3K K ok 3K sk sk S 3K oK sk Ok sk ok ok sk ok sk sk ok sk sk ok sk ok ok Kk 3K K OK KK 3K oK K SOk Sk ok ok ok ok
** This program determines the least squares fit **

*¥* for a function of the form v = a + b * x * ok
sk ok 3k 5K sk oK ok K 3K K 5K 3K sk sk 3K K oK 3K K 5K ok oK oK K oK 3K ok ok oK K ok oK 3K 5K 3K oK oK ok 5K K ok ok K oK K Ok K K K

Number of points: 6

.640ES8
.758E8
.963E8
.0B7ES8
.206E8
.322E8

-

2
]
)
w
e el el = S
WWWNN N

Mmoo oo

- » - 2+ .

= +7.4L1E+07
= +6,9€69E+05

G w

X Y Y(predicted)
+2.7315E+02 +2.6400E+08 +2.6476E+08
+2.9315E+02 +2.7580E+08 +2.7869E+08
+3.1315E+02 +2.9630E+08 +2.9263E+08
+3.3315E+02 +3.0870E+08 +3.0657E+08
+3.5315E+02 +3.2060E+08 +3.2051E+0¢
+3.7315E+402 +3.3220E+08 +3.34LLE+08

Thus,

-—CI-::.A= d.qé?)(/os-

A /

o at  C= I43 %0 by ffmes. k)
and 7

§ ta = T 44/ X 10

C
and Therefore

S= /07 K

These vajues %v C and S are In go0d afreemmf
Wi Values given in  Problem | 49 .

/—=%0




/5

1.51 The viscosity of a fluid plays a very important role in
determining how a fluid flows. (See Video V1.1.) The value of
the viscosity depends not only on the specific fluid but also on
the fluid temperature. Some experiments show that when a
liquid, under the action of a constant driving pressure, is forced
with a low velocity, V, through a small horizontal tube, the
velocity is given by the equation V = K/u. In this equation K
is a constant for a given tube and pressure, and u is the dynamic
viscosity. For a particular liquid of interest, the viscosity is given
by Andrade’s equation (Eq. 1.11) with D = 5§ X 1077 Ib - s/ft?
and B = 4000 °R. By what percentage will the velocity increase
as the liquid temperature is increased from 40 °F to 100 °F?
Assume all other factors remain constant.

- K (n
v‘fb°~ /ulfob
\V, o= K c2)

‘% increase in Y =

Vies* — Vig_’ X100 = Y_‘f_?? -—I}XIDO
\/q.oo \/q.o"
and -ﬂrom E%.(l] & (2)
°/,, Incvease in V= (_<__/_/'(_!f£' -—\]x[oo = 2_‘.*9.‘ —1 [ %100 (3)
K[/M%' 106°
Fem Andvades ézua:hbn o0
/u%’ = 57(10-76 (Hor+460)

Yooo

and = G0 (eFtHe)
/u 100

Thus , From Eq.(3) 4 Yoo
’ 5x16 @ Se

o/ Incyease in V = - =5
b trere sxi5'e 55

13L%

X oo

i

/=41
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1.52* Use the value of the viscosity of water
given in Table B.2 at temperatures of 0, 20, 40,
60, 80, and 100 °C to determine the constants D
and B which appear in Andrade’s equation (Eq.
1.11). Calculate the value of the viscosity at S0 °C
and compare with the value given in Table B.2.
(Hint: Rewrite the equation in the form

Inu = (B)-1—+ In D
T
and plot In x4 versus 1/7. From the slope and
intercept of this curve B and D can be obtained.
If a nonlinear curve fitting program is available

the constants can be obtained directly from Eq.
1.11 without rewriting the equation.)

3 gue dion 11l cqn be written 1n The form
/n/u :.'/B)';—/- 7‘//7—0 {/)
and w1t The debs Frewm Table B.2

T(c) Tk)  1/Tt)  p(0sim?) Iy p

o 273,15 3,06/ 107 [.787 x10™" ~¢.327
Lo 293,15 34/ 210~ /.0021/0'3 ~{.90¢
Yo — 3135 3193 %107 (525 Xp~t =334
60 333/5 3 002 x/o'3 3 465‘1/0-“ —-7.¢470
90 353,15 28322002 I swTx0 =799y

/00 373.)5 2.680 ,(/a‘; 2.3/8,(/0“'* - 8174

A ,D/oi‘ of /n/u vs. /T 15 shown below:

/n/«

- 70
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/Coﬂ'zf)

Since The deta plot as an a/a,ora,\'/;ne te shaght line,
57.0) Can be useA ﬁ>n¢mm%i These duta .

To obtun B ann D use EXPFIT.

S 3K 3% ok K oK ok ok ok oK 3K 3K K 3 oK K K 5K 3% 3K 5K 3 oK ok Sk oK ok 5k ok ok K oK ok oK oK ok ok ok ok oK K ok K 3K ok 3K K K K K %
*% This program determines the least squares fit *x*

** for a function of the form vy = a *¥ e 7 b*x * X
st K sk oK oK R K ok ok oK oK K oK ok oK K K K 3K K sk ok 3K oK oK sk Sk K 3K 3K 3K K K K KKK K KKK K K KKK OK K K

Number of points: 6
Input X, Y

? 3.661E-3,1.787E-3
.411E-3,1.002E-3
.193E-3,6.529E-4
.002E-3,4.66bE-4
.B32E-3,3.547E-4
.680E-3,2.818E-4

~J
Do Wwww

+1.767E-06
+1.870E+03

mon

T

X Y Y(predicted)
+3.6610E-03 +1.7870E-03 +1.6629E-03
+3.4110E-03 +1.0020E-03 +1.0418E-03
+3.1930E-03 +6.5290E-04 +6.9298E-04
+3.0020E-03 +4.6650E-04 +4.8482E-04
+2.8320E-03 +3.5470E-04 +3.5277E-04
+2.6800E-03 +2.8180E-04 +2.6548E-04

Thus, . ,
D=a = /767 x)0 N5/ m

and 3
B:é:‘ /0270)(/0 K

So ﬁ’lf /870

-4
M= 1787 Kl e
At 5p°C (323.5k),
/870

¢ - —%
/ﬂ = /747 X /o e 323,75 = 5,76 x)0 /V,S//ml

From Table B.l) /ﬂ = 4. 6%8)(/0-“/1/,5/4”2.

/-43




/.53

1.53  Crude oil having a viscosity of 9.52 X 10™* Ib-s/ft?
is contained between parallel plates. The bottom plate is fixed
and upper plate moves when a force P is applied (see Fig. 1.3).
If the distance between the two plates is 0.1 in., what value of
P is required to translate the plate with a velocity of 3 ft/s? The
effective area of the upper plate is 200 in.?

- U= 35
$/ 44420827 ///////;//n}——»/.)

——— T v v N
L

[

/D= 7 « p/at‘t cm%
Z“'/u ° ‘/‘

49
£ YL £t
ws 3L 2 = 0476 |
P= (7.52x/07" 2%, )/ = )/J‘” W ferin | T 2270 &
5 £t

/2

Q

l

1-44
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1.54 As shown in Video V1.2, the “no slip” condition
means that a fluid “sticks” to a solid surface. This is true for
both fixed and moving surfaces. Let two layers of fluid be
dragged along by the motion of an upper plate as shown in Fig.
P1.54. The bottom plate is stationary. The top fluid puts a shear
stress on the upper plate, and the lower fluid puts a shear stress
on the botton plate. Determine the ratio of these two shear
stresses. Fluid 1

Fluid 2 [

be-2 s+
W FIGURE P1.54

For fluid 1

d 3% - 2% N
T = gu - _’Y_—:_ s ’) = 20—,
[ /"I dy top Surhace (6-4 m )( 0.02m m
I:"Dr —“u:d L m N
N.S Z 5 - 2> —
’(":/L& %) ::(O.Z ’,;;z—)( 0.0ZM)— Dm"
z Lo'{‘bm Sur’(‘nCG
Thus . N
L-EpP Sm"pltf _ 20 -/V_;l" - ‘
1T o X p—
¢ boHom surdace © m™

/- 45
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1.55 There are many fluids that exhibit non-Newtonian
behavior (see for example Video V1.4). For a given fluid the
distinction between Newtonian and non-Newtonian behavior is
usually based on measurements of shear stress and rate of
shearing strain. Assume that the viscosity of blood is to be
determined by measurements of shear stress, 7, and rate of
shearing strain, dw/dy, obtained from a small blood sample
tested in a suitable viscometer. Based on the data given below
determine if the blood is a Newtonian or non-Newtonian fluid.
Explain how you arrived at your answer.

T(Nfm?) 004 0.06]0.12 [0.18]0.30]0.52 | 1.12] 2.10
dwdy =) 122514501 11251 22,51 45.01 90.0 | 225 | 450

For a Newboman Fluid 7he ratio of 7 # duldy 1s a
Constant. Foy The data 9/‘/},-,4.‘

?.
dlu/c/y
The ratio 15 not a4 Constent but decreases as the rate of shearing

Strain increqses. Thus This Fluid (4leod ) is a pon- Nedtoman + (uid.
A plot of The deta & Shown below. For a Nebonien +luid The
Curve would be a 5'[#’///}//15 /ine with 4 slope of /| to /.

&% '5/’”’) 0.01780.0133 |0. 0107 | 0.0080| 0.0067 | 0.0058 |0.0050 |0.00%]

A R OEEE LRSI I D EEEEI R R R RR R RREES ETEN BRI LR 3 IR RS2 SIS T

I3

R T I IR EIREE BN i - Y - % B8 ol It SRR ot T
AU DODOS TN IDIRY PRORE PRON NS BN NSRS N N D It =7 -"1"

<
L]
7
.

stress, N/m?

5})€ar

|

!v |
N ' P
il : ! P
9" 7

R B A 4 5 b

[ SS——

1) 10.0 1€0.0

" ’ . / ('/
Kute oF 5/7€ar/ﬂj Jtrazn/ C//(/JyJ S

=46
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1.56 A 40-1b, 0.8-ft-diameter, 1-ft-tall cylindrical tank
slides slowly down a ramp with a constant speed of 0.1 fUs as
shown in Fig. P1.56. The uniform-thickness oil layer on the
ramp has a viscosity of 0.2 1b - s/ft’. Determine the angle, 6,

of the ramp.

SE =0
W sine = TA (r fN =L
=

Slhcz

T = /u, % ) W here U' i35 the velocity of +ank
and b s Thickness of oil layer

£
_ [b-s 0.l ¢ b

T= (02 F)( B‘oo_zii‘) = 10
From Eq.0)

(o 18 5mp = (10 L)) (0.84¢)°
and sinB = 0.1251
so et

g0 =71122°

/=47
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.67 A piston having a diameter of 5.48 in. and a length of
9.50 in. slides downward with a velocity V through a vertical
pipe. The downward motion is resisted by an oil film between
the piston and the pipe wall. The film thickness is 0.002 in., and
the cylinder weighs 0.5 Ib. Estimate V if the oil viscosity is
0.016 1b-s/ft>. Assume the velocity distribution in the gap is

linear.
vertical =0 T4 a) b
Thus, 4 I )
% = /I:_A /tA i \4 b
Wheve A= 1mDA ‘
{ \
dnd N (Veloc;-l'g) _ /». % I& D —»

L= /(4 C film Thcd:ncss)—

Se 'Tka."‘.
1t follows That 205 (o.50) (o. 002@)

12

DL M (S48 64 )( 250 ¢ ) o0 b2 )

= 0.00459

—ea
——

u\]"d}

/-4%%
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1.58 A Newtonian fluid having a specific gravity of 0.92 v y
and a kinematic viscosity of 4 X 107* m¥s flows past a _
fixed surface. Due to the no-slip condition, the velocity at

the fixed surface is zero (as shown in Video V1.2), and the »

velocity profile near the surface is shown in Fig. P158. De-  x«_3y _ l( 1]3

termine the magnitude and direction of the shearing stress Uu-2é 218 - 5

developed on the plate. Express your answer in terms of U
and &, with U and & expressed in units of meters.per sec-
ond and meters, respectively.

Fiih g

m FIGURE P1.53

du
Z- Surfoce = /M a_g ) =0

(5=o)
du_ (E -3
d5 24 2 4

= &.552;? /V/ﬂl ﬁcﬂ'vy o left on /0/4.7%_

/-49
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|.59 When a viscous fluid flows past a thin sharp-edged v

plate, a thin layer adjacent to the plate surface develops in which ” >
the velocity, u, changes rapidly from zero to the approach ve- > > Boundary layer
locity, U, in a small distance, 8. This layer is called a boundary ~u=U
layer. The thickness of this layer increases with the distance x Y T ]z_
along the plate as shown in Fig. P1.59. Assume thatu = U y/d - o S

=" ’f: S Su=Usg
and 8 = 3.5 Vvx/U where v is the kinematic viscosity of the - —= ®

fluid. Determine an expression for the force (drag) that would ~ Plate !
be developed on one side of the plate of length / and width 5. Width =5 | {

Express your answer in terms of /, b, v, and p, where p is the
fluid density.

D}"d_q &zfATw— dA U;)erc dH = b dx

So  That
f A dx (/)

Sir du - Y
Ince ,)., /u (dg) ) and 2.:‘; s

ey J'-.- 34 {/ZU!_ ; Jt Follows ‘/r‘om Eg,[/)

4, 1% 5, o4,
/8 /{{,D',X 4 dx :/{"D’L X-/za'
s 35V "% 35ﬂ’/2 X
0

dnd W it V'—'/;':;'

B = 0,57 bp VLU

X

I

Thus,

[
<
=

o—

NG

S~

~
N~—

/=50
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1.60*% Standard air flows past a flat surface and
velocity measurements near the surface indicate
the following distribution:

y (ft) 10.005]0.01]0.02]0.04| 0.06| 0.08

u(ters) 1074 11.5113.0316.37110.21 1 14.43

- The coordinate y is measured normal to the sur-
face and u is the velocity parallel to the surface.

(a) Assume the velocity distribution is of the form
u=Cy+ Gy*

and use a standard curve-fitting technique to de-

termine the constants C, and C,. (b) Make use

of the results of part (a) to determine the mag-

nitude of the shearing stress at the wall (y = 0)
and at y = 0.05 ft.

(a) Use nonlinear regression progrum, such as SAS-NLIN,
o obtarn cCoefficionts C , and Co. THiS pregram produces
Jeast s quares estimates of The parameters of a nenlinear

Model. For The data g ven,
/

- -2 -—

C= /153 57 an (e 4350 £t s
(6) Since, du
T=p 5y

it Aolbws That
2"'"/“ ((/ ’ 3(2. jz)

Thus, ot The wall (y=o)

J

- \ -5 /b
’[=/ (= (3exi’ 2 V(1554 ) = s9220”° 2,
At Y= 0.05
/ 2
T3 a5 %) 3 d v 3 (4350 )fe.0s 2¢) }
-5 b
= L% xi0 L
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Fixed

outer
cylinder

1.6/  Theviscosity of liquids can be measured
through the use of a rotating cylinder viscometer
of the type illustrated in Fig. P1.6 1. In this device

Liquid

the outer cylinder is fixed and the inner cylinder
is rotated with an angular velocity, w. The torque
5 required to develop w is measured and the vis-

" cosity is calculated from these two measurements.
Develop an equation relating 4, o, 5, {, R, and
R.. Neglect end effects and assume the velocity
distribution in the gap is linear.

~Rotating
inner
L cylinder

~

TEOOEC@OTRRRHRhhRhureSsy
TR

N

7 L e
Rr—»l
Ry

FIGURE P1.61

]

N
\

v
\“

Torgu(’/ d 7: due +o shearing stress
on Imrer Cy/mc/er 15 671/4/1‘0

d =R~ TdA
where gH 2@- d8) 4L, Thus,

4T = R4 T de

and fwgue Végﬂ/'r‘n/ to rotate top view
inner cq/mc/er is (/e,\, cylinder /fngﬁﬂ)

Te R z“/:;

= ,,ZIT/?L-I,Q T
For a linear velocity distribution 1n Fhe gap
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1.62  The space between two 6-in. long concentric cylinders
is filled with glycerin (viscosity = 8.5 X 1072 Ib-s/ft?). The
inner cylinder has a radius of 3 in. and the gap width between
cylinders is 0.1 in. Determine the torque and the power required
to rotate the inner cylinder at 180 rev/min. The outer cylinder
is fixed. Assume the velocity distribution in the gap to be linear.

From Froblem 66, 5
. TR AW

E,-K:
and w; w = rev Va Q_f{) L‘f’.’.@): o rad
nd wiTh ﬂso e )(07 ool ios <

Then

'3 3 A & /'3.£é'-: 6T V_'d__d)
7: vy /27c2'>/12 ’Ct)/g x40 'th)/ ol -‘-‘0.?9”)‘ 7[ZL/£

ol )
YA

S/;")(@ POkfe}’: wa l-’{ 74//04(./5 That

power = (0.994 fi-lp) (67 22) = 178 Z2E

/-53




[ &3 163 One type of rotating cylinder viscometer, called a

Stormer viscometer, uses a falling weight, ‘W, to cause the cyl-
inder to rotate with an angular velocity, w, as illustrated in Fig.
P1.63. For this device the viscosity, u, of the liquid is related
to W and w through the equation W = Kuw, where K is a
constant that depends only on the geometry (including the liquid
depth) of the viscometer. The value of K is usually determined
by using a calibration liquid (a liquid of known viscosity).

(a) Some data for a particular Stormer viscometer, obtained
using glycerin at 20 °C as a calibration liquid, are given
below. Plot values of the weight as ordinates and values
of the angular velocity as abscissae. Draw the best curve

through the plotted points and determine K for the vis- Fixed outer
cometer. cylinder
wap | 022 | oes | 110 | 154 | 220
VALY TIIIII7 77777 Y

wev/s) | 053 | 159 | 279 | 38 | 549

(b) A liquid of unknown viscosity is placed in the same
viscometer used in part (a), and the data given below
are obtained. Determine the viscosity of this liquid.

wapy | oo4 | o1 | 022 | 033 | o044
wev/s) | 072 | 189 | 373 | 544 [ 7.2

FIGURE P1.63

(@) j/ﬂ(e w /6/(-(4) The .5/0/06 07[ 'fhe W Us. W euarve
/s W)

Shepe = Kp =
So  That ) J/o,oe (/é s
k = /f( (/b .S)
Pov The y/yc'er/h data ( see plot on next Paje) Fhe slope
(busead on a4 least Squares it of The deta)
5/0,06 [j‘/yc'er/h) = 3578 Iﬁéi
Jince /ﬂ (:f/ycer/h) = 3/3x10 zjc_l;% Then
/b5
0.398 = _ /217’_—2
Z3ai s il
&2—

(1)

K =

(6) For the unknown fluid data (see plst on next page) The
Slope (bused o a /least sguares it of 7he data ) /s

.5/opc (unknown Fluy) = ©. 060/ %‘j

(Con ié)

/-5



/63 ] (Cort)

7'/7;;5) Hrom Eg.(1) o5

e -3 Jb.s
J/o,be O. o060/ “rey = 473 x/0 :
f - fmd 3 —
/&( A/ﬂ[ﬂﬂw/l f/d/&/ ) = K /2 - ;ff/ g,

W Iy

/-5%5
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1.64* The following torque-angular velocity
data were obtained with a rotating cylinder vis-
cometer of the type described in Problem 1.61.

Torque (ft-Ib) | 13.1]26.0]39.5]52.7|64.9 | 78.6
Angular | I l
velocity (rad/s) | 1.01 2.01 3.0l 401 5.0l 6.0

For this viscometer R, = 2.50in., R, = 2.45in.,
and { = 5.00 in. Make use of these data and a
standard curve-fitting program to determine the
viscosity of the liquid contained in the viscometer.

he /vrgue, ?7; /s velated +v the anju/ar velocity , &, Trough
The egaaélén ; , 3

f/p J____,” k / /L 7, (7)
(see solutwn Ho Poblem 16 ). Thus, for 4 fixed geometry
and &  quen Viscesity, £9.0) [s of The form

y=bx ((9~T and x~w)
Wheve b Is a Constant .Zgz(a/ 4o
Y- 2TEAM
Ry — R
7o obtun b use The deate 7/.um w1 th LINREG .

3K 3k K KR % K K 3K KO 3K 5K oK K 5K K 5K 5K 5K K K 3K K K 3K K oK 5K K K 5K 5K ok K oK oK oK K K K oK oK ok oK ok Kk kK F:

**¥ This program determines the least squares fit **

** for a function of the form vy = b ¥ x *of
S5 K o oK K K K oK ok oK ok sk ok ok ok sk ok oK oK oK oK ok st K ok ok sk ok ok o sk ok oK oK oK 3K oK K K ok K o ok o ok ok ok ok ok ok

(2)

Number of points: 6
Input X,

? 1.0.13.
.0,26.
.0,39.
.0,52.
.0,64.
.0,78.

i)
?
:
s
’i
:
?
H
7]
{

o]
.

WO
N OO

b = +1.308E+01 #¢:lbs

X Y Y(predicted)
+1.0000E+00 +1.3100E+01 +1.3082E+01
+2.0000E+00 +2.6000E+01 +2.6165E+01
+3.0000E+00 +3.9500E+01 +3.9247E+01
+4,0000E+00 +5.2700E+01 +5.2330E+01
+5.0000E+00 +6.4900E+01 +6.5412E+01
+6.0000E+00 +7.8600E+01 +7.8495E+01

/Con,t)

/-5




Le47] (can't)

Th us, From EZ {2)

/L: (é) (ﬁo - E,_' 3
zr RA
and witn The dete given,

(73 08 Fohes )(2.50= 245 1, )
- /2
= JH45 LS

/2

2 /&}‘3_5—'#)3/5'”#) it

/=57
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1.65 A 12-in.-diameter circular plate is placed over a fixed
bottom plate with a 0.1-in. gap between the two plates filled
with glycerin as shown in Fig. P1.65. Determine the torque
required to rotate the circular plate slowly at 2 rpm. Assume
that the velocity distribution in the gap is linear and that the
shear stress on the edge of the rotating plate is negligible.

Rotating plate

0.1in. gap

ﬁ Torque /

# FIGURE P1.65

Torque,d T | due #o shearing stresses

on P/a‘f‘e /s eiua/ +#o 0y
dv
4= r LdA &
Wwheve dA = 2wrdr. Thus, .
d T = ¥ T 2rrdr
an4 OZJ: o R/_,_ 2. C/}" -57"!55(: aa#l;'? on bo#am o'fp)n-k
(4]
. ‘ —> V= tw
5//’)(6 /Z":/&(. g“.';( y, and 74}’ a Té y T
[imear Velocrsy distrilution [s«-ﬂjwe) DR A
T:/‘ ra -C—-“—A = y— = _.Y_.CL)
s dy § 3

Thus R ¥ velocty distrbutio
, o 3 ) Z_Z’Z‘_,w g ution
T= [* =g (£

ahd w:"f’h 7‘}18 a/:azla. 7/#};4 y é_,q. m
. hadl __/_nih) = )
7_ 27 (0.03/3 /iti )(2;?;:)/!” v/l 6os //2
./
2 ££) (%)

= 0.0772 £t/
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{.(7] A rigid-walled cubical container is completely filled
with water at 40 °F and sealed. The water is then heated
to 100 °F. Determine the pressure that develops in the container
when the water reaches this higher temperature. Assume that
the volume of the container remains constant and the value of
the bulk modulus of the water remains constant and equal to

300,000 psi.

Since The watder mass Femains ton szt

VAR, (¥ 7 A+ )

00°
UA(V( Y i volume and LV is Change sy volume 1F water

weve Unconstrained durins hedting. Thus,

Ay - [%’ — |
v 700°

h
From Table B.l 1n Appendix B, /;l AL ‘5’/!:‘;’3’ and /20;-/,727?_‘:%‘

So That Shags
AV LTR R2 = 0.00675

v L7272

From 4?7 kA . Jp
Ey,= 7 a#
_V

bp  That The change

i Felfows it d¥ZAY  and Ap = o
/

/n pressure }/egu/}fed Fo Compress e water buck *
or/'7//34/ Volume 1's

— (300,000 pt )(— 0.00675)

= 2.03 )(/03 PS‘:

/-59
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1.62 In a test to determine the bulk modulus

of a liquid it was found that as the absolute pres-
sure was changed from 15 to 3000 psi the volume
decreased from 10.240 to 10.138 in.® Determine
the bulk modulus for this liquid.

= — _C_l—ﬁ (E . /l};)
£, :- 2 7
S/”Ce

c//a o~ AF s 3000 —15 = 2985 psc
and .3
Ay 2 A¥ = [0.2%0 - /0,/38 = O./]02 in.

/b
-~ 2 G985 i, .

( &, 102 N7 )
(0. 240 in2

/.67
1.7  Calculate the speed of sound in m/s for
(a) gasoline, (b) mercury, and (c) seawater.
P
) 9 N
(a) ;';}' 7450///7€" c = /3x10 omr /, 38 %/m
- 4 s
680 %2,
m
1wy !
(b) [or mercury | ¢ = LEEXID o —— Bm
/36 X /D” s

-
X £m

(¢) For seawater: ¢=9d3¥X/10 5= _ £
/03 x 03R4
77 3

/=60



170 1.70 Air is enclosed by a rigid cylinder con-

taining a piston. A pressure gage attached to the
cylinder indicates an initial reading of 25 psi. De-
termine the reading on the gage when the piston
has compressed the air to one-third its original
volume. Assume the compression process to be
isothermal and the local atmospheric pressure to
be 14.7 psi.

For isotThermal Corn pression, %:wﬂsfdﬂf S0 7Thet

-+ - Tx Where <~ tnital state anAd

e /F F v~ Final state .
Thus, 2
= /% p.
A
y . mMass nitdl ol
Since = =, ) /g?‘ = /;/I::;/ :j/ :::: 7 / for Constant rmass)

and Theretore

2 - (3)[(a5 + 18.7) psilets)) = 119 psi cass)

f(j—"je) =0/7- /5{7)/:::.‘ = /oY pse /gaye)

or
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.71 Often the assumption is made that the flow of a certain
fluid can be considered as incompressible flow if the density of
the fluid changes by less than 2%. If air is flowing through a
tube such that the air pressure at one section is 9.0 psi and at a
downstream section it is 8.6 psi at the same temperature, do you
think that this flow could be considered an imcompressible
flow? Support your answer with the necessary calculations. As-
sume standard atmospheric pressure.

F;r lﬁ‘oT/rerma/ chonqe 1 alenshlj
b &
TS

So ﬁla.{ /2. f’z_

-
- —

i :

The percent change 1 arit densites betwten sechons (1) §€2) 43
of change = /'/A x loo

!

:[/_ .f.‘?-)xwo = (/—_;")x/oo

1

TAMS/ } (34_*/*7),‘5-‘-‘4
%“‘””W‘ [ = (Gorran)poca

X |oo

= [ b9%

Since 1LG% < Z o) The {ow could be Consideved meopmpressible.

YC.S .

P
————

l-62
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1.72 Oxygen at 30 °C and 300 kPa absolute pressure ex-
pands isothermally to an absolute pressure of 120 kPa. Deter-
mine the final density of the gas.

For iJsothermal expansion /:oé = constant so That

ﬁ‘ - wWhere L~ initial state and

LY F~ Linal state.
Thus,
. *
Z: 7
Also
e AL swen’ oy ks
. =
RT . ’
¢ /075% Xék )[Z?o (f.173)/i7 m 3
Se That
/20 AR £ _ 43
{z/;;p_,é_PZ)/g.g/;;&s)-/'sz /m 3

/=63
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1.73 Natural gas at 70 °F and standard atmospheric pres-
sure of 14.7 psi is compressed isentropically to a new absolute
pressure of 70 psi. Determine the final density and temperature

of the gas.

-+ = So 77747‘

—

For /sentropre Com/)ress/on , Constant

£

RS

.__4_% ) Where L~ inibal state and
o* 2 \-
. £ F~ Fingl state .
7/,
hus, /é _ /0'/2
+ ﬁ L
/
or &
Ge (B4
7
Also vy (107 26 ) (194 22 )
xR P .7”"&3),:// > =129 x/o'}‘_/uf
¢ 3,094 x 10> £4: 6 . o o
_ / 5,”3_,,2) [ (76%+%:0) k]
So fﬁdi 7%7
/:2 = 70 Pﬂ'.&é‘)] /,2‘[;(/0-3 _{/ﬁfs) = 42§ X/D-.3S/”5
147 psc (obs) 73 23
and =
T = 7‘76-/: — /70 }{f"; \)(ﬁ’“/ %’- )
F AR -3 ?
F Y25 slugs | (5 097.x 1p° £ %
/ x/0 e )/50?7)( 0 Sl 2
= 765 °R
er
T= T65R - Ypp = 305 °F

/=4
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1.7%  Compare the isentropic bulk modulus of
air at 101 kPa (abs) with that of water at the same

pressure.

For air /Eg,/,/; ))
Ey = 'éfb = //:‘7‘0)//0/«!/93/’2_) = L4/ x/o;,g'

For water '(7’05& /4)
E, = 215 x0T R
TAuJ]

Ey /w:z,-éer) _ 2./5 X /09/04
E, (du—) /41X 10°F

= /,5‘,,2x/olf

/=65
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175 * Devel_i;ﬁ a computer program for cal-

culating the final gage pressure of gas when the
initial gage pressure, initial and final volumes,
atmospheric pressure. and the type of process
(isothermal or isentropic) are specified. Use BG
units. Check your program against the results ob-
tained for Problem 1.70.

for com preSS/bn or e)cpan.s/o'n)

*
— - Constant

where 4=/ for is50Thermal process, and #= Specific hat vato
For lsentropc process. Thus,

Ao B
R oA
where (n inital stite | £~ ///»}4/57‘7&} so Thit
Y 2k
77% /-/7‘-') ﬁ. (/)
" Volume
hen  fp, Ve
7

W heve %-/ l{c , are The initial and Fnel Vo/umes/ vespectively .
Thus, *¥om Eq (1)

*
- [ Ve
?é rézz‘m B Z) [fj'f' ﬁzf,m) (2)

Wheve The Suéscm,bé J vefers to gage pressure . Ezuaﬁwh (2
Can be wyiten as

L %
7755; i (—5;) /@*ﬁ&m) A

A Cam,ouéﬂ’ /Drofrqm 14}" Cﬂ/a{/q#m'j f’cj

L‘/m (3)

follows

[Con’Z)

[-CC




(25* | (con't)

100 cls

110 print 1ok sk oK 3K 3k sk koK K oK K K K K K K K oK oK 3k oK K K K ok K K K S K skOK K K 3K KRR K K R KKK KOROK KKk Kok ok kockk !

120 print "** This program calculates the final gage pressure of
130 print "** an ideal gas when the initial gage pressure in psi,
140 print "** the initial volume, the final volume, the

150 print "** atmospheric pressure in psi, and the type of

160 print "** process (isothermal or isentropic) are specified

* ok M
T Al
Sk ok M
Kk
KRN

170 print "REKEK KKKk ok kokok ok ok ok ok ok ok ok ok oK K ok ok ok oK o K oK oK K KKK KK KKK KKK KKK KK KK oK

180 print

190 input "Enter initial gage pressure in psi, Pi = ",p

200 input "Enter initial volume, Vi = ",vi

210 input "Enter final volume, Vf = ",vf

220 input "Enter atmospheric pressure in psi, Patm = ",patm

230 pabsi=p+patm

240 print:print "Enter type of process"”

250 print "0 : Isothermal"

260 print "1 : Isentropic”

270 input pt

280 print

290 k=1

300 if pt=1 then input "Enter specific heat ratio, k = ",k
310 pabsf=pabsi*(vi/vf) "k

320 pf=pabsf-patm

330 print

340 print using "The final gage pressure of the gas

is Pf = +#.###4°°"" psi";pf

Run pregram using data Zrom  Problem 170

3K ok oK 3k oK 3K K K ok 5K K 3K 5K 3K oK 3K %K 5K K K ok K KK 5K K 3 5K ok K 5k 5k 5K oK K 5K 3k K oK %k 5K ok 5K oK ok K oK ok 5K K K ok ok K koK ok

** This program calculates the final gage pressure of *%
** an ideal gas when the initial gage pressure in psi, **

*% the initial volume, the final volume, the * %
** atmospheric pressure in psi, and the type of * X
¥* process (isothermal or isentropic) are specified * %

S 3 ok ok 3K K Ok Kk 3K K %K K oK 5K K K K K 5K 5K K K K 5K K K ok ok K K oK oK ok KK o ok K KOk ok sk K sk ok ok ok ok ok oK Kk ok ok ok

Enter initial gage pressure in psi, Pi =25
Enter initial volume, Vi = 1

Enter final volume, Vf = 0.3333

Enter atmospheric pressure in psi, Patm = 14.7

Enter type of process
0 : Isothermal

1 : Isentropic

7?0

The final gage pressure of the gas is Pf = +|,04% [ E+02 psi

/- 67
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1.76 An important dimensionless parameter concerned
with very high speed flow is the Mach number, defined as V/c,
where V is the speed of the object such as an airplane or
projectile, and c is the speed of sound in the fluid surrounding
the object. For a projectile traveling at 800 mph through air at
50 °F and standard atmospheric pressure, what is the value of
the Mach number?

Mach number = —

C
From 7}.“& 53 In Appendix B
£
= [lIob =
Cm‘r @ 50°F s

Thu
: 300 mph) (5780 )(

| hy
3k00s

)

]

ach numbey
M ‘ [1Oob 53.4"

¥

I

—————
P ——

'

/I-68
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.77 Jet airliners typically fly at altitudes between approx-
imately 0 to 40,000 ft. Make use of the data in Appendix C to
show on a graph how the speed of sound varies over this range.

c= |JERT (5. hz0)

Lv A=/% ana R=17/6 -1t

Slug R
C= %90 TR

From Table C| 15 Appendix C  at an altitude of O £
T= 5900+ %0 = S5/9°R  sSo Thet

C= 490 )579% = 1174 _f_“

Symilav calculatons an be made +or Hher altiFudes
and The resulting graph is spown below.

Altitude, t  Temp.’F Temp.°R ¢, ft/s
0 59 519 1116
5000 41.17 501.17 1097
10000 23.36 483.36 1077
15000 5.55 465.55 1057
20000 -12.26 447.74 1037
25000 -30.05 429.95 1016
30000 -47.83 412.17 995
35000 -65.61 394.39 973
40000 -69.7 390.3 968

1120

1100 <
0 \
£1080 \\
-21060

S

o]

1040

N

(@] \
g0 _ S
o . \
Q1000 7
(7] \
980 ' r\_‘

1

0 5000 10000' 15000 20000 25000 30000 35000 40000
Altitude, ft

960

/=61
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1.78  When a fluid flows through a sharp bend, low pres-
sures may develop in localized regions of the bend. Estimate
the minimum absolute pressure (in psi) that can develop without '
causing cavitation if the fluid is water at 160 °F.

Cavitation may occar when the local pressure egwl/s the
vapor pressure. fop water at 160 °F (Hom Table B, /;’A?Pfﬁﬁ{/l’B)

7%, = 474 psi (abs)

fhas/ minimum pressare = 474 PSc'(ﬂéé)

79

1.79 Estimate the minimum absolute pressure (in pascals)
that can be developed at the inlet of a pump to avoid cavitation
if the fluid is carbon tetrachloride at 20 °C.

Cavitation may eccur when The suction pressuve
at 1he pump inlet egud/.s 7he vapor pressurve.

;;I’ Caybon tetrachlonde at 20°C 115, = /13 AR (abs) .
Thas, minimum pressdre = /13 kP (abs)
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1.30  When water at 90 °C flows through a converging sec-
tion of pipe, the pressure is reduced in the direction of flow.
Estimate the minimum absolute pressure that can develop with-
out causing cavitation. Express your answer in both BG and SI

units.

(Cavitetion tmay occur 15 The con verging section of Pipe  When
The Pressure equals The vapoy pressure . From Table 8.2 1 Appendl B
Sor water at 70°C 7?, 70.] AR (abs). Thus,

I Inimum pressuve = 70.] 4R (abs) ,, SI units.

n

Ln 86 units 2y » _/"_ﬂ)
/ninimum  pPressure = /70./x10 ;n—z)(/ 450 X 14 W
M"
= /p,2 Psia

/.81

1.8! A partially filled closed tank contains ethyl
alcohol at 68 °F. If the air above the alcohol is
evacuated what is the minimum absolute pressure
that develops in the evacuated space?

Minimam pressare = vapor pressuve = O.§5 psclabs)

/.82

1.82  Estimate the excess pressure inside a rain drop having
a diameter of 3 mm.

p= E/e—o— | (£ 1.2)
-2 N
:,?/7344x/o &) _ 7795

/=71
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(.83 A 12-mm diameter jet of water discharges vertically
into the atmosphere. Due to surface tension the pressure inside
the jet will be slightly higher than the surrounding atmospheric
pressure. Determine this difference in pressure.

For equilibrium (see Foure ),

‘;;/ZRI[): O‘KZ Jf)
So That

- o
fﬁ

-2
. T34 XD ;,;N

./ZZx/D.'j/m

12.2 R

WEAN.

Nk

A

N
/

Y

+2R§]

P excess pressure

Surdace Ftusion fovees 280

/=22,
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1.84  As shown in Video V1.5, surface tension forces
can be strong enough to allow a double-edge steel razor
blade to “float” on water, but a single-edge blade will sink.

Assume that the surface tension forces act at an angle 6 rel- 3“’73;_39 tension
ative to the water surface as shown in Fig. P184. (a) The orce
mass of the double-edge blade is 0.64 X 10'3kg, and the Blade

total length of its sides is 206 mm. Determine the value of
6 required to maintain cquilibrium between the blade weight
and the resultant surface tension force. (b) The mass of the ® FIGURE P1.34
single-edge blade is 2.61 X 107*kg, and the total length of

its sides is 154 mm. Explain why this blade sinks. Support

your answer with the necessary calculations.

@ ZE,. N C
W = Tsinb w

wheve Q) = /mbld X9 and T= 0 x length of sides.
ade

o (0.by X]0‘3ahé>(q.gl/7h/sz>=ﬁ3l+ ;()o'z%WO.ZDLm)s'mQ
sing = O.4%I5
6 =245°

(b) For Single- edge blade
?‘)zwbladgx }

(2.0 x103 hg) (4.4 e )
= 0.0256 N

d
ar T sint = /U—)( Jeng‘lh o-Fé/aJe) Sin &

(7-5’4;{/0'2 N/,m) (0.15%m) sin B
= 0.0113 sinp
Tn order for blade +o "Llpat” QW < Tsmo.

Sihce maximum Value for s1ne s I T+ follows
+at W >Tsme and 5)n3/¢—ed3e blade will sink.

[-73
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(a)

1.83 To measure the water depth in a large open tank with
opaque walls, an open vertical glass tube is attached to the side
of the tank. The height of the water column in the tube is then
used as a measure of the depth of water in the tank. (a) For
a true water depth in the tank of 3 ft, make use of Eq. 1.22 (with
6 = 0°) to determine the percent error due to capillarity as the
diameter of the glass tube is changed. Assume a water
temperature of 80 °F. Show your results on a graph of percent
error versus tube diameter, D, in the range 0.1 in. < D < 1.01in.
(b) If you want the error to be less than 1%, what is the smallest
tube diameter allowed?

The excess height, h, caused be e syrface tension i
= Z0Cese (Fq. l.22)
o . XR ’
For 6= 0° witw D=28
h= 22

<= ()
O
From Table B.[ in A-,Dpendlx 8 ﬁr Water at SO°F
U= %9 1062 IbJft and ¥ = 62.22 1b/H>
Thus, from £g.(1)
(491 x10° ) "
hift) = % 491X _ 39X (z)
e\ DGhn) n.
| (b2.22 H:’) Tz_l?"f'/;t D(in)
Sinee °f error = l}%t“ X 160 [w"h‘ 'j—';i—'f'rue clepth
= 3 )
(F 'FDHOWS j(‘rom E% (2) That
-3
°l erroy = M X100
3 D(in.)
= O.l2L ( 3)
Dlin.)

A p/Df of ‘% evror versus tube clameter ;s
Shown on The nért [oage.

(C’on’i)

/=74
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Diameter
of tube, in.
0.1
0.15
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
1

(b)

% Error

1.26
0.84
0.63
0.42
0.32
0.25
0.21
0.18
0.16
0.14
0.13

AN

% Error

1.50

1.00

0.50

0.00

h'§

\g-

L 4

L 4

0.2

04 0.6 0.8
Tube diameter, in.

1.2

Values obtained
from Eq. (3)

For /°/o errer #om EZ.(J)

] =

D

—

O./26
DCin.)

O./26 In.

/=75
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1.86 Under the right conditions, it is possible, due to surface
tension, to have metal objects float on water. (See Video V1.5.)
Consider placin§ a short length of a small diameter steel (sp.
wt. = 490 Ib/f’) rod on a surface of water. What is the
maximum diameter that the rod can have before it will sink?
Assume that the surface tension forces act vertically upward.
Note: A standard paper clip has a diameter of 0.036 in. Partially
unfold a paper clip and see if you can get it to float on water.
Do the results of this experiment support your analysis?

L L
In srder 4or rod 4o Float (see figure)
1t Follows thait
204 =W 2(%’;)@’)12 8 beel T e
. . = n
Thus | for The limiting case 5
DZ - 274 30
max (27‘7-) L Ve T 8steel
I,
so Tt =3 lp \| ‘%
$ (5 03xI6 & ﬂ -
Dmax = el IR TR TR e

= (490 22,) |

0.0LIY In.

Since a  standard steel paper clip has a
diameter of 0.034 /'n.) Which 15 less Tran

0.0414% 1., 1t should Floak. A symple experimmt
will vVerify This. Z_c’_s_

=76
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1.87  Anopen, clean glass tube, having a diameter of 3 mm,
is inserted vertically into a dish of mercury at 20 °C. How far
will the column of mercury in the tube be depressed?

Ao 2Tes6 (£g122)

For 91130:
’A: 2 [%LLX/O'/—/,A;/;) Cos /30°
//5'3)(/03%,)(0.00/5”»)

-3
= — 300 x| m

Thusj ¢olumn will be depressed 3.00 mmm

/. &8

1.88  Anopen2-mm-diameter tube is inserted
into a pan of ethyl alcohol and a similar 4-mm-
diameter tube is inserted into a pan of water. In
which tube will the height of the rise of the fluid
column due to capillary action be the greatest?
Assume the angle of contact is the same for both
tubes.

A0 COs &
= Eo./22)
4. 2T (55

Thus,

% (alcohol ) _ O (alewhol) X (water) {4,,",,.. >
% /Wdé(’r} - U’anéfrj k(ﬂ/[pﬁp/) L m m

. (228415 %)(2?0)(/034—3/3)/4”“4")
(7.34x16> 2 ) (774 x10°2,) (2w )

= 0787

Height of rise of water column is jrea{esi.

/I~77
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1.89* The capillary rise in a tube depends on

the cleanliness of both the fluid and the tube. -

Typically, values of 4 are less than those predicted
by Eq. 1.22 using values of ¢ and & for clean fluids
and tubes. Some measurements of the height, A,
a water column rises in a vertical open tube of
diameter, d, are given below. The water was tap
water at a temperature of 60 °F and no particular
effort was made to clean the glass tube. Fita curve

From Ez 12

_g - 20 ws®

&

)

to these data and estimate the value of the prod-
uct o cos @. If it is assumed that ¢ has the value
given in Table 1.5 what is the value of 67 If it is
assumed that 6 is equal to 0° what is the value of
a?

d(in) |03 [0.25 [0.20 [0.15 ]0.10 ]0.05
K (in.) 10.13310.16510.19810.2731 0.421 1 0.796

#7?59/:,{) )

with d=2R. Thus) Eg.01) s of The form

2)

’f:‘ b d'
Where :
. 4ocosé r. 1
b= — and d 3

The Cms/-mi‘/b) can be obtained éy a linear least
Szuares Lt of e Givoen deta (4 and ’/c/)

1 /d (£+7')

4 (ft)

Yo

48

bo
Fo
120
40

6.0/108
0.0/375

O.0/650
0. 02275
O.03508
0. 06633
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(con? )

To obtan b use LINFEG I .

'4-"#"4—‘%‘"‘1#'¥‘¥’¥*$'¥*#‘#$###$*‘#—"4—'*‘4"4:"#'#'—#'###*#‘#‘*“""#""—%:'#"4"#'#—"4"#"%"#?;
** This program determines the least squares fit **

**% for a function of the form vy = b * x * %k
sk sk ok ok 3k oK 5K sk sk sk oK oK 5K 3K k3K oK 3K 3K 3K 3K 3K 3K 3K 5K 3K ok ok K 5K oK oK K K sk oK 3k KOk K K KK oK K ok FOK ok ok K

Number of points: 6

Input X, Y

? 40,0.01108

? 48,0.01375

? 60,0.01650

? 80,0.02275

7 120,0.03508
240,0.06633

b = +2.799E-04 #4°

X Y Y (predicted)
+4.0000E+01 +1.1080E-02 +1.1195E-02
+4.8000E+01 +1.3750E-02 +1.3434E-02
+6.0000E+01 +1.6500E-02 +1.6792E-02
+8.0000E+01 +2.2750E-02 +2.2390E-02
+1.2000E+02 +3.5080E-02 +3.3584E-02
+2.4000E+02 +6.6330E-02 +6.7169E-02

Thus, v

3
= (2.799x10 i )(62# ,;,_L;) )
m =

O~

T Coso =

37 x5

—

¢

If o= 503w BI, Then

-3 M

Cos 6 < T
T83X10°° L=
2 £t

and

©=J297°

If ©=0" Then Cos® = 1.0 and

%37x10> 2

/O

3/
= %37 xlo g

/~79
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190  Fluid Characterization by Use of a Stormer Viscometer

Objective: As discussed in Section 1.6, some fluids can be classified as Newtonian flu-
ids; others are non-Newtonian. The purpose of this experiment is to determine the shearing
stress versus rate of strain characteristics of various liquids and, thus, to classify them as
Newtonian or non-Newtonian fluids.

Equipment: Stormer viscometer containing a stationary outer cylinder and a rotating,
concentric inner cylinder (see Fig. P1.90); stop watch; drive weights for the viscometer; three
different liquids (silicone oil, Latex paint, and corn syrup).

Experimental Procedure: Fill the gap between the inner and outer cylinders with one of
the three fluids to be tested. Select an appropriate drive weight (of mass m) and attach it to the
end of the cord that wraps around the drum to which the inner cylinder is fastened. Release
the brake mechanism to allow the inner cylinder to start to rotate. (The outer cylinder remains
stationary.) After the cylinder has reached its steady-state angular velocity, measure the amount
of time, ¢, that it takes the inner cylinder to rotate N revolutions. Repeat the measurements us-
ing various drive weights. Repeat the entire procedure for the other fluids to be tested.

Calculations: For each of the three fluids tested, convert the mass, m, of the drive weight
to its weight, W = mg, where g is the acceleration of gravity. Also determine the angular ve-
locity of the inner cylinder, w = N/t.

Graph: For each fluid tested, plot the drive weight, W, as ordinates and angular velocity,
w, as abscissas. Draw a best fit curve through the data.

Results: Note that for the flow geometry of this experiment, the weight, W, is propor-
tional to the shearing stress, 7, on the inner cylinder. This is true because with constant an-
gular velocity, the torque produced by the viscous shear stress on the cylinder is equal to the
torque produced by the weight (weight times the appropriate moment arm). Also, the angu-
lar velocity, w, is proportional to the rate of strain, du/dy. This is true because the velocity
gradient in the fluid is proportional to the inner cylinder surface speed (which is proportional
to its angular velocity) divided by the width of the gap between the cylinders. Based on your
graphs, classify each of the three fluids as to whether they are Newtonian, shear thickening,
or shear thinning (see Fig. 1.5).

Data: To proceed, print this page for reference when you work the problem and click here
to bring up an EXCEL page with the data for this problem.

Rotating inner cylinder

Outer cylinder

Drive weight

@ FIGURE P1.60

(Can%)

/- &0
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(con t )

Solution for Problem 1.90: Fluid Characterization by Use of a Stormer Viscometer

m, kg

N, revs

Silicone QOil Data

0.02
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

4
12
24
20
24
30
20
25
40

Corn Syrup Data

0.05 1
0.10 2
0.20 4
0.40 8
Latex Paint Data
0.02 2
0.03 2
0.04 5
0.05 10
0.06 10
0.07 10
0.08 10
0.09 10
0.10 20

t, s

59.3
66.0
64.2
35.0
31.7
31.0
17.4
18.8
26.0

28.2
27.5
27.2
257

32.7
20.2
32.2
47.3
37.2
20.8
246
201
34.0

o, revls

0.07
0.18
0.37
0.57
0.76
0.97
1.16
1.33
1.54

0.04
0.07
0.15
0.31

0.06
0.10
0.16
0.21
0.27
0.34
0.41
0.50
0.59

W, N

0.20
0.49
0.98
1.47
1.96
2.45
2.94
3.43
3.92

0.49
0.98
1.96
3.92

0.20
0.29
0.39
0.49
0.59
0.69
0.78
0.88
0.98

From the graphs:

Silicone oil is Newtonian
Corn Syrup is Newtonian
Latex paint is shear thinning

o = N/t

W =mg
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Problem 1.90
Weight, W, vs Angular Velocity,
for
Silicone Qil

0.50 1.00 1.50

o, revis

2.00

0.40

Problem 1.90
Weight, W, vs Angular Velocity, o
for
Corn Syrup
4.50
4.00 — ——
3.50 —
3.00 -
z 250 S - S
2 2,00 S
1.50 1_2.'.8ﬁ°);, -
1.00
0.50
0.00 . . . i
0.00 0.10 0.20 0.30
w, revis

1.20

Problem 1.90

Weight, W, vs Angular Velocity, o
for

Latex Paint

1.00

0.80
Z 060

0.40

W = 1.466 o°""

0.20 4
0.00

0.00

0.20

t T

0.40 0.60 0.80

o revis

/

§Z




1.91 Capillary Tube Viscometer

Objective: The flowrate of a viscous fluid through a small diameter (capillary) tube is a
function of the viscosity of the fluid. For the flow geometry shown in Fig. P1.91, the kine-
matic viscosity, v, is inversely proportional to the flowrate, Q. That is, v = K/Q, where K is
the calibration constant for the particular device. The purpose of this experiment is to deter-
mine the value of K and to use it to determine the kinematic viscosity of water as a function
of temperature.

Equipment: Constant temperature water tank, capillary tube, thermometer, stop watch,
graduated cylinder.

Experimental Procedure: Adjust the water temperature to 15.6°C and determine the
flowrate through the capillary tube by measuring the time, ¢, it takes to collect a volume, V,
of water in a small graduated cylinder. Repeat the measurements for various water temper-
atures, 7. Be sure that the water depth, 4, in the tank is the same for each trial. Since the
flowrate is a function of the depth (as well as viscosity), the value of K obtained will be valid
for only that value of A.

Calculations: For each temperature tested, determine the flowrate, Q = V/t. Use the data
for the 15.6°C water to determine the calibration constant, K, for this device. That is, K = »Q,
where the kinematic viscosity for 15.6°C water is given in Table 1.5 and Q is the measured
flowrate at this temperature. Use this value of K and your other data to determine the vis-
cosity of water as a function of temperature.

Graph: Plot the experimentally determined kinematic viscosity, v, as ordinates and tem-
perature, 7, as abscissas.

Results:  On the same graph, plot the standard viscosity-temperature data obtained from
Table B.2.

Data: To proceed, print this page for reference when you work the problem and click Aere
to bring up an EXCEL page with the data for this problem.

Capillary tube

Graduated cylinder

# FIGURE P1.91
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( con't )

Solution for Problem 1.91: Capillary Tube Viscometer

V.m ts T,degC Q, ml/s v, m*2/s
9.2 19.8 15.6 0.465 1.12E-06
9.7 15.8 26.3 0.614 8.49E-07
9.2 16.8 21.3 0.548 9.51E-07
9.1 21.3 12.3 0.427 1.22E-06
9.2 13.1 34.3 0.702 7.42E-07
9.4 10.1 50.4 0.931 5.60E-07
9.1 8.9 58.1 1.022 5.10E-07

v =K/Q K, m"2 ml/s"2

K=v

v (at 15.6 deg C), m"2/s
5.21E-07 1.12E-06

Q = 1.12E-6 m*2/s * 0.465 ml/s = 5.21E-7 m"2 ml/s"2

From Table B.2

T,deg C

10
20
30
40
50
60

v, m"2/s

1.31E-06
1.00E-06
8.01E-07
6.58E-07
5.63E-07
4.75E-07

Problem 1.91
Viscosity, v, vs Temperature, T

1.5E-06
1.0E-06 -
Y
(5]
<
£
> :
5.0E-07 :
0.0E+00 , ; ‘
0 20 40 60
T,degC

80

1 ¢ Experimental |
| ——From Table B.2| |

/-84




2.1 The water level in an open standpipe is 80 ft above the
ground. What is the static pressure at a fire hydrant that is con-
nected to the standpipe and located at ground level? Express
your answer in psi.

-f = X/K -+ g
Since 7he shndpipe 15 cpen £=0, ana Thereore

, % [ Y = .
'13" [éz‘* A3 )(3” Fi’)/m,_ ) 347 pso

2.2

2.2 Blood pressure is usually given as a ratio of the
maximum pressure (systolic pressure) to the minimum
pressure (diastolic pressure). As shown in Video V2.1, such
pressures are commonly measured with a mercury mano-
meter. A typical value for this ratio for a human would be
120/70, where the pressures are in mm Hg. (a) What would
these pressures be in pascals? (b) If your car tire was
inflated to 120 mm Hg, would it be sufficient for normal
driving?

p=h
(@) Fop /20 mm ,Uj Loops (/azxm”/m—’—"; )/0, 220m)= 16.0£ R

For 70 mm 'H} . 73: (/_?3 X/D'g,;f—-;)/ﬁ. 070/)91)’—' ?J’/'é@.

, 3 3N =t lbfin*
(b) For 120 mmMa: p- ﬂé.axm/ml)//#fo)(/o /V/,m’-)

- A, 32 flsé

Since  a 'ﬁ‘yplka/ Fire pressdre /s 50-55-7056 /20 m sm Hg
/s et sufficient  Sor formal Jr/i/mj.

2-1




2.3

23 What pressure, expressed in pascals, will
a skin diver be subjected to at a depth of 40 m
in seawater?

= 4 +~f
4t The 5ar/nce ﬂ =o so That

3
1’= (/0./;4 /03;"-/[3 )(l,tom.) = Yo4xp ;3'/1 = Yy bR

2.4

2.4  The two open tanks shown in Fig. P2.4 have the same
bottom area, A, but different shapes. When the depth, 4, of a
liquid in the two tanks is the same, the pressure on the bottom
of the two tanks will be the same in accordance with Eq. 2.7.
However, the weight of the liquid in each of the tanks is dif-
ferent. How do you account for this apparent paradox?

weiiht of J1guél su pporfed
[b‘g /'m://'rreZ alls pper
h \ lJ
/
Area = A Area = A

For e dank wilh The i1helined walls, The pressure on The
bo/*vm is Gue 1 The Me}jlf o f The /I;.IIIZ/ /n The Column

C//f"fc/’/} above The bokom 4s shown by The dashed lines 1

The figure. This is The same Weignt 45 That for The Tank
with The shrdight sides. Thus, tne pressure on Tne bokom
of The +wo Hunks 15 The same. The add,hers! leight
/ﬁ"ﬂle tunk Wity the inclines toalls 15 5u/5pori‘€£/ by the
tncliveda wnlls, 45 ;]lustrated 14 The figure.
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2.5 Bourdon gages (see Video V2.2 and Fig. 2.13) are
commonly used to measure pressure. When such a gage is
attached to the closed water tank of Fig. P2.5 the gage reads
5 psi. What is the absolute air pressure in the tank? Assume
standard atmospheric pressure of 14.7 psi.

p=0rht R

— [/2 —
@a;e 72 ) %o - 72/}—
Lo (5 w7k )

(1 £ )24 22,)

44 In.?
#tz.

ﬁ,,; = /7.3 y LI

Air

12 in.

Bourdon gage

m FIGURE P2.5

2.6 Bathyscaphes are capable of submerging to great depths

in the ocean. What is the pressure at a depth of 5 km, assum-
ing that seawater has a constant specific weight of 10.1 kN/m*?

Express your answer in pascals and psi.

p=yh +4
At The surtace f =0  s0 That

(A
$= (/p./xm?;fg)fs‘x/ﬂm) =%50.5 x /o ;”'-‘-’z = 50.5 M~

Also,
. /b
-4 b
P = (5'&5 X/D‘——'A:_)//. 450 X0 _In>
”m N

mr

) = /7320 pse

2-3




2.7

2.7 For the great depths that may be en-
countered in the ocean the compressibility of sea-
water may become an important consideration.
(a) Assume that the bulk modulus for seawater
is constant and derive a relationship between
pressure and depth which takes into account the
change in fluid density with depth. (b) Make use

(a)

==Y e
Thus, dp . _ 4 dz
o - g

of part (a) to determine the pressure at a depth
of 6 km assuming seawater has a bulk modulus
of 2.3 x 10° Pa, and a density of 1030 kg/m?® at
the surface. Compare this result with that ob-
tained by assuming a constant density of 1030
kg/m?.

(Eg, 2.4)

(1)

If P 5 a function of P, we must determne /’-‘-7C(/’) be fore

Inteqrating Eg.U). Since,

E df (Eg, 113)
7hen fy 4409p
_ 4df
dp = E, y:
+ ’ g
S 777&
° L.
f;: 'EV zeﬂ A
p
Thb{f, f = /0 e—gy wherc /ozlao 4# F:o
° N P=f i‘z‘lsur)éce
From EZ,[)) . T |’f,,
o A £,
db
£ - —01 dZ £ Z,
) fo €& % LLWL
or "_f 2
e Yap T L3 2
£ %
Seo Tha ¢

$ = —Evén (/— @_g)

Where J’ff-' zo_z.,j The
depth below surfoce

(cont?




2. 7 (coni)
(b) From ,om'z‘&))
_ Ahgh
P=-£ Lo // _‘g';' )
so That at Az é"é'm
pe ~(23x00" % )00 || - (103xi0" 2% )(r.00 2L Yfoxwm)
/”11
2.3 x107 2,
= ( TN
= G./# Xx]0 —a = ClLY MFPa
(c) For Con.séanf density
3
pehz pah = (10320’ 2) 0012 oxsim)
= 604 Mk~
L.8

2.8 Blood pressure is commonly measured with a cuff
placed around the arm, with the cuff pressure (which is a mea-
sure of the arterial blood pressure) indicated with a mercury
manometer (see Video 2.1). A typical value for the maximum
value of blood pressure (systolic pressure) is 120 mm Hg. Why
wouldn’t it be simpler, and cheaper, to use water in the manome-
ter rather than mercury? Explain and support your answer with
the necessary calculations.

p= 4

For 120 smm Hs = Yh
= (/33;{/03;’:33)(0./2 Om)

% obtan Pus Pressure Wit a watey Column

3N
./ﬁ S /6.0 X10 ap* = b3 m (av 5 3544)
Ho ¢ $0x10° L4,

Thus, I water weve used n The manometec the
vequired column Hheighls would be too high and
i practical . Wo.




2.9

2.9 Two hemispherical shells are bolted together as shown
in Fig. P2.9 . The resulting spherical container, which weighs
400 b, is filled with mercury and supported by a cable as shown.
The container is vented at the top. If eight bolts are symmetri-
cally located around the circumference, what is the vertical

force that each bolt must carry?

Sphere diameter = 3 ft

® FIGURE P2.9

I

F; ~ Jorce i one bolt
P~ pressure at mid-plane
A~ area at mid-plane

W ~ we@};i of meredry In bottem half
Wy Cof shell F |

W, ~ we/'flzi of hottom hal¥ of shell

J Mg

For €ZU/'/1‘érl‘um/
Z F;/em‘/ca/ =0
Thus,

875 = #/Q T W#_; + W.S
D 2
= 5 (2)F0Y) + 55T« 4 (1o 1)

= (3471 L)L) s00) o &) () o) o

;:L = /9/0 |,

and

2-6
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2.10  Develop an expression for the pressure
variation in a liquid in which the specific weight
increases with depth, h, as y = Kh + y,, where
K is a constant and y, is the specific weight at the
free surface.

d
g —¥ ( Es 24)

77’):45)

-
-

dp = Ydh
S A
Br  ¥= k4 + &,
fazf=/(/f£+%)d%

76=/_<£.£L+3’£

anel

o

—
l‘l
'll
_*3.(_?\6_
o¢

7 /7l 77/

a=7




o/ *

107
110
112
114
115

The depth, h = 0, corresponds to a free surface
at atmospheric pressure. Determine, through nu-
merical integration of Eq. 2.4, the corresponding

variation in pressure, and show the results on a

( cont )

2.11* Ina certain liquid at rest, measurements 60
of the specific weight at various depths show the 70
following variation: 80
90
h (ft) y (Ib/ft3) : 100

0 70 |

10 76 i

20 84 f

30 91 |

40 97
50 102 i

Let z-= 7@-1{ [.Sec /Ij'ure) so That
dz=-dh and Therefore

dP ==ydz = rdh

Thus)

A
dp =

£
Fdé

o 0
o p- [{;M

Where f: /s The pressure at depTh ’K‘c'- Elueé/m (1)

o

/7

plot of pressure (in psf) versus depth (in feet).

(¢)

con be Integrated pum Pr/’a://7 wsing  The A//ij program.

(Note: The numerice/ Integration  Con also  be accomplished
7hroush V()Dé’m‘ﬂ/ wse of 7he program 7 RAPEZO] )

(C’o/)/t )
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(ton? )

;i;nt 115K 5K 3K 35K 3K 3K 3K K 3K 3K K 3K ok 3K 3K 5K oK oK oK K oK oK oK ok K stk ok oK oK 3K K K K K KK K K KKK Sk K M
print "** This program integrates Eq. 2.4 numerically **"
print "** using the trapezoidal rule to obtain the KM
print "** pressure at different depths Rkt
DT ATt THOKORKOK KK o oK ok oK o ok oK ok oK oK oK oK oK oK K oK oK 3K oK oK oK oK oK 3K K KK oK K KK K K K K K oK K K K ok 1
print

dim p(11),gamma(1l)

n=11

dh=10

p(1)=0

for i=1 to n

read gamma(i)

next i

data 70,76,84,91,97,102,107,110,112,114,115

for 1=2 to n

s={gamma(l)+gammal(i))/2

iml=i-1

for i=2 to iml

g=s+gammal i)

next 3

pli)=dh*s

next i

H

'"Print the results

print

print " h (ft) Pressure (psf)"

for i=1 to n

print using "###.# #H4H#.#"; (i-1)*dh,p (1)

next i

The +abulated yesults ave qg1ven below  alons with The
Covvesponding plot of pressure vs. depih.

¥ 3K SR KK K KoK KK o St ok ok oK 5K ok ok ok ok sk ok ok ok i sk sk ok o ok ok ok S ok oK ok oK oK o 3K KOk ok K ok sk oF
** This program integrates Eq. 2.4 numerically **

#F using the trapezoidal rule to obtain the * ok
*¥* pressure at different depths ok
Sk ok K 3K ok sk ook oK ok ok oK ok ok K ok ok ok oK ok K oK oKk ok 3k ok K oK Ok Kk ok kK oK % ok ok K ok %k ok ok
®10*
1.2
h (ft) Pressure (psf)
0.0 0.0 .
10.0 730.0 ’
20.0 1530.0 _
30.0 2405.0 %0
40.0 3345.0 :
50.0 4340.0 o,
60.0 5385.0 £
70.0 6470.0 :
80.0 7580.0 £
90.0 8710.0
100.0 985%5.0 0
0. - \ — e —
[+ 20 40 60 a0

Depth, h (ft)

100
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2.2 The basic elements of a hydraulic press are shown in
Fig. P2.12. The plunger has an area of 1in.%, and a force, F),
can be applied to the plunger through a lever mechanism having

a mechanical advantage of 8 to 1. If the large piston has an area —

of 150 in.2, what load, F,, can be raised by a force of 30 lb i S—
applied to the lever? Neglect the hydrostatic pressure variation.

— j—

Plunger

Hydraulic fluid %’C— F

K torce of 30 lb applied 4o The lever vesults i
G ,D/bm7€r /wr(e) J=g oF K= [?)/30) = 240 Jb .

l)
S/nce /Z-'I'_—./PAI Gnd £, = PAQ‘ where p s The
pressure and A, anad A, dre the 4reas of The
}D/(J}ﬂjfr 4ncl P/s/vn/ /’Ps,becilue/g_ Since p 15 constant
ﬁrouy}waf The Chambpr

F. A
A Az
So 771444 P
F = Az F = ﬂ.’.”;)[zt/o /A)z 36000 |4
A‘I /In.t

2.13

2:].3 A 0.3-m-diameter pipe is connected to a 0.02-m-
dlarpeter pipe and both are rigidly held in place. Both pipes are
hpnzont_al with pistons at each end. If the space between the
pistons is filled with water, what force will have to be applied
to the larger piston to balance a force of 80 N applied to the
smaller piston? Neglect friction.

YYrNgy
7 MI/LI__
— — R

2
|
i
>
n
NONNNN
\
~N
N
~
~N
N

~
Fa=p Az L
Thus,

fr. A

A 2
o)

, (0.3m)"
F":—A—— Fi = _?'___m—,—‘? (ga,V) = /31000/‘/

(0,02/»4)2

Q=10
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2.15 What would be the barometric pressure
reading, in mm Hg, at an elevation of 4 km in
the U.S. standard atmosphere? (Refer to Table
C.2 in Appendix C.)

At an elevation of #4m ) ﬁ: 6.l4b X0
Table C.2 1h Appendix C ). Since
b= YA

¥ N
% L - b e XID 0

- ——— -

& 1334 )3 A
m 3

&%
2 Lrom
/m

= 0.1,%4”,, >

Yo 4 mm

2.16

2.1¢ An absolute pressure of 7 psia corre-
sponds to what gage pressure for standard at-
mospheric pressure of 14.7 psia?

f(aés): f{inje) + ﬁ[aém)

Thus,
plaage) = Plabs) - platm)

= Tpsea— 1%Tpsd =

- 7.7 ps¢

-1




2.17*%

*2.17 A Bourdon gage (see Fig. 2.13 and Video V2.2) is

often used to measure pressure. One way to calibrate this type

of gage is to use the arangement shown in Fig. P2.17a. The

container is filled with a liquid and a weight, ‘W, placed on one Bourdon Gage
side with the gage on the other side. The weight acting on the
liquid through a 0.4-in.-diameter opening creates a pressure that
is transmitted to the gage. This arrangement, with a series of
weights, can be used to determine what a change in the dial
movement, 6, in Fig. P2.17b, corresponds to in terms of a
change in pressure. For a particular gage, some data are given
below. Based on a plot of these data, determine the relationship ® (@
between 6 and the pressure, p, where p is measured in psi? W FIGURE P2.17

waby | 0] 1.04 | 200 | 323 | 405 | 524 | 631
T(deg) [0 ] 20 | 40 | 60 | 80 | 100 | 120 |

)
p . W

Area _1”;.' (0.4 /;,_>2

<

(wheve P 15 n psi)
Froem Graph

W =o0.0522 &
Se That 19‘001 Pz.[/)

P (psc)
7.9¢

;D(/DSL') = O.f‘/é 2]

= 0.0522 8¢

and

Theta, deg. W, Ib

0 0.00 ~
20 1.04 8.00 W=00522©
40 2.00 o 6.00 v 3
60 3.23 2 w00 A
80 4.05 2 % o
100 5.24 2 2.00 -~
120 6.31 0.00
0 50 100 150
Theta, degrees

(/)

2-/2




2718 | 2.8

For an atmospheric pressure of 101 kPa

(abs) determine the heights of the fluid columns
in barometers containing one of the following lig-
uids: (a) mercury, (b) water. and (c) ethyl alco-
hol. Calculate the heights including the effect of
vapor pressure, and compare the results with
those obtained neglecting vapor pressure. Do
these results support the widespread use of mer-
cury for barometers? Why?

(_th/ur/my Va.for fres;we.) (W/ﬂmué Valoar IDre.ssur‘e)
platm) = YA + P, b labm) = &h
where e’ ~ vapor pressure
Platm)
Thus, / = Pldm )~ Py 4 = —y
r
3
3w -l N N
[o] x16° L= - L bXIb — jol X110 —a
(a) For mercury . J£ = m* . m ,,Q = ”_: -
/33 X/0 ;—n"—’; 1330”2
= 0,759 m = 0,759 m
Jol X 10°L = 72410 X -
0 - = /I — -2
) kor weter! /f 2 m* m /- 101 % 1D "
g 30x10° X 9.%0x)p> 2
m3 /W!3
= IDr’ m = ID,3 m
3
<) For 67%5/ 10/;(/03;,/:—/5_ —'.6779(/03;)%/,_ /ﬁ‘ Jo! X Id —n/%/-l
alcoho] ! { = S = —
7.7% x10°> X 774 x10° 2
”m m
= ,2. 3 ”mn = /3,0 m

Yes. For mercu

CO/UMI‘) /5

r
’s neq//'qié/ge )

barameders The effect of vapor pressure
and The rega/red height of The mercury

reasonable .

a=~I3




.19 2.19

Aneroid barometers can be used to mea-

sure changes in altitude. If a barometer reads 30.1
in. Hg at one elevation, what has been the change
in altitude in meters when the barometer reading
is 28.3 in. Hg? Assume a standard atmosphere,
and that Eq. 2.12 is applicable over the range of

altitudes of interest. 2
R
tp (1-F)" ( £g. 212)
2
. 2 | Rs
At z=% ¢=ﬁ=ﬂ(,_%)
R
- (% Pﬁ: - | "
*. Ta.
.Sl‘m‘//ar/gl Ar Z--'-'-z':)
4\ 522
—_— = | = — (2)
(%) =
jué-/r'dc.l' Ez,lZ) Fom Fg,(/) o 0é2f'at)7/
R RA
z-2 = L= (ﬁ)—f__ (fg,ys' (7)
S L Pa
For Ta= 288K, (= 000650 % p = 101 4R
= m = J
? 74 b’/-—s——z_ p) R 25’7@-——:-7% ) a/’d
K
RS - /15”7#'76)/‘9'00"5””—:') = 0,190
3 .81 21
Sz
with Y b’,‘: ’2/ = (133 x}o3;nf."'3 ) 30.1 /31.)(;}.5‘90)(10—2-’?5) =/01

an ot - 3NV . - -2 - -
" b=b 4= (133000737 ) 283 )( 2500 005" 22 ) - 956 AP

then  Frem Eq.(3)
0,190
2.7 288 I€ (loz B Pa o140 (45&&&)
2517 ook |\ 101 A Fa — \ ol kFa

= 543 m




2.20 2.20

Pikes Peak near Denver, Colorado has
an elevation of 14,110 ft. (a) Determine the pres-
sure at this elevation, based on Eq. 2.12. (b) If
the air is assumed to have a constant specific
weight of 0.07647 Ib/ft*, what would the pressure
be at this altitude? (c) If the air is assumed to
have a constant temperature of 59 °F what would
the pressure be at this elevation? For all three
cases assume standard atmospheric conditions at
sea level (see Table 2.1).

2 )% (
(&) P=F [{— /—"’;_:) Eg. 2.42)

) -, 2R fa
bor P = Al 2&,_ , AB=000357 7 2=3217¢ 5,
Ta= 519.67°R , R= 1716 L ) and

/u/,
25 = ES = = 5 2¢2
7hen 5,152
oR
. b (6.00357 % ) 14110 #¢)
P (2114, Hu) [ — T

- 240 —!F—:’- (abs)

i

(b) ¥ 7‘;_—3%

= 262 2, - (061647 £ )/m/mﬁ)

Il

) b (abs)
o 2z (a

—Lﬁ'— —9 2,
c) 7:___.7: 62‘. (CZ 10)
__[/32./74%)[/%“0#) ‘)

= (o?//é,zl{>€ (1716 %‘R)(g/gm%)l

|

-

2-15




2.2 22| Equation 2.12 provides the relationship

 between pressure and elevation in the atmo-
sphere for those regions in which the temperature
varies linearly with elevation. Derive this equa-
tion and verify the value of the pressure given in
Table C.2 in Appendix C for an elevation of 5

. A 2,
df . g dz

/77 T %) F (Es. 21)

#, Z
Leﬁ 'ﬁ"-‘ﬁ‘ /pr 5/:'0/ é_"’f 14/ 522-2'/ Gn el T=7;_—/:>‘i"
Th P

us, o P Z Jz
ys R T —#Z

7 B
Z
er £~__Z _._L — ]z
’éwﬁ_~ F[ﬂf’"(’“ﬂz)o
3
RA

b (1- %)

and -/'ukmq /ogamﬁqm of both sides of E’gua.fmn o1 elds

P= £ (/ — ——-)i [£g. 2.12)

[& (Ta=3%) ~du Ta]

Lhs

|

For %= 58m witn 3_=/0/.33/£,Pa. ) T, = 288. 15K e 78’0752)
- L. = J
b= Cooeso R= asy <L

MU
7.807

£\
(0. 0065 )(5x10°m ]( 37; )6.0065%)
= . > [ — et
p= e W’)[

N
= 5.%0 X 10 ot

4
(Bom Table L2 i Appendrec £, $= 5Ho5x10 22'/1— —>

2-16



2,22

2.22  As shown in Fig. 2.6 for the U.S. stan-
dard atmosphere, the troposphere extends to an
altitude of 11 km where the pressure is 22.6 kPa
(abs). In the next layer, called the stratosphere,
the temperature remains constant at —56.5 °C.
Determine the pressure and density in this layer
at an altitude of 15 km. Assume g = 9.77 m/s?
in your calculations. Compare your results with
those given in Table C.2 in Appendix C.

For i1so7hermal conditions,

- g (2.-2))
t-te “F (Eg. 210)
let 2= likm p=22(4hF | R=287 25 /< ) 4= 771 2%,

and 70‘_— —565° + 273,15 = J/é.és‘k

Thus) 3 ;
_ (771’." )//fxmm- 11x16 m )

b (aaadn) e L G725

= 12,1 AP@

’4/5"/ b /2./»4/03,,"/5'1_ _ o a5 RE ty
£ k7 (287 ;Z, )(216.65°k) dadh
ky K

(/:;pm Table C.2 in /w[ppem/z'zc C ) /f; = 13,1l 4 Pa  and
- £
VRV

3
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2.23*

2.23*  Under normal conditions the tempera- Elevation (ft) Temperature (°F)
ture of the atmosphere decreases with increasing 5000 50.1 (base)
elevation. In some situations, however, a tem- 5500 55.2
perature inversion may exist so that the air tem- 6000 60.3
perature increases with elevation. A series of 6400 62.6
temperature probes on a mountain give the ele- 7100 67.0
vation-temperature data shown in the table be- 7400 68.4
low. If the barometric pressure at the base of the 8200 70.0
mountain is 12.1 psia, determine by means of 8600 69.5
numerical iptegration the pressure at the top of 9200 68.0
the mountain. | 9900 67.1 (top)
F&vny E?Z. 2-7/

N

zZ,
£ g dz
’e _i = —‘-——v/ —
n 4% R / /

[}

Wity The kmpem/qm data given 7he ;nleyr:/ i Eg.2.9 can
be evolusten Numerically using TRAPEZOI.

1 ok o K ok sk o o oK KK K K K Sk Kk oK oK ok K sk oK oK ok 3K ok oK oK ok ok s oK ok K ROk KK R K KK K KoKk KoK
** This program performs numerical integration *Xk

*¥* over a set of points using the Trapezoidal Rule *%*
3 4ok oK KK 3K oK 3K oK K 5K 3K oK 3K 5K 3K 3K 3K 3K 5K K 5K 3K 3k 5K 3K 3K 3k 5K ok 3K K ok K ok 3k oK ok 3K ok X ok 3K ok K K kK Kk X

Enter number of data points: 10 ;
Enter data points (X , Y) . "~ —
? 5000.,1.962E-3 Wote: Y 3
7 5500,1.942E-3

? 6000,1.923E-3

? 6400,1.915E-3

? 7100,1.899E-3

? 7400,1.894E-3

? 8200,1.888E-3

? 8600,1.890E-3

? 9200,1.895E-3

? 9900,1.898E-3

The approximate value of the integral is: +9.3452E+00

ThuS, F900 £¢
/ - FE
(7)d2 = 735 %
Sooo £t

So  Thet (Lul'y'}l 9= 322 ”Q%Sz and K=17/¢ [é'/é/J/uf.oA>

£+ - £
1, ;_:g S (22F )35 ) 4 1rss (o
I 1716 #16/slug R Ccont )
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( cont )

14 follows from Eg.(/J wiTh 75/ = /2.1 psia Tt

‘ — O0./754%
'f;: (/z./ psm) E = /0.2 psia

Wo/e : Since The '/fmp(m;‘ure (/4///4‘)‘10'/1 /s not very /4rqe )
11 would be expected That The assumplon of a onstunt

ﬁ’m/oemﬁ/re would give good resalts. TE The ﬁmﬂmﬁ;m
ts assymed Fo be coustant oFf  The base tompevature
(50:/ °F)/ 73 =/0./ psia w/{zé/r ts only shahtly
diAferent  from The result 9ivew above . )

2-/9
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2.24 A U-tube manometer is connected to a closed tank
containing air and water as shown in Fig. P2.2 ¥. At the closed
end of the manometer the air pressure is 16 psia. Determine the
reading on the pressure gage for a differential reading of 4 ft
on the manometer. Express your answer in psi (gage). Assume
standard atmospheric pressure, and neglect the weight of the air
columns in the manometer.

P Gy (4R)+ 3, (2F)

777415)

Ib
in*

—

(i

+ [ b2 %3)(

Hoge

g

b72 ﬁz_ = [(972 —/—:t'-)

Z‘EH— Closed valve

te— Air pressure = 16 psia

0

ft

Air

2 ft
Gage fluid :?
(y=90 Ib/ft3) Pressure
gage
m FIGURE P2.2%

—
_—

Fage

7 l_‘/f}}//w ﬁj) # (90 ﬁs)@ff)

z £4)
/ 4*

144 1n,*

) 141 g
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1 2.25

2.25 A closed cylindrical tank filled with water has a hem-
ispherical dome and is connected to an inverted piping system
as shown in Fig. P2.25. The liquid in the top part of the piping
system has a specific gravity of 0.8, and the remaining parts of
the system are filled with water. If the pressure gage reading at
A is 60 kPa, determine: (a) the pressure in pipe B, and (b) the
pressure head, in millimeters of mercury, at the top of the dome
(point C).

Pa=
60 kPa

(x) )[.:?/M) +

fd + (S'é)[();d
b= Go4R + (0.8)( 78156 Y

= /03 LR

(b) '7‘?6: ‘f) (3,,.;)

Iy

_ N
= 3p. 0 XID peotd .
- P B0l XD e
b'k_, /33:(/03-—"—’-

2'0230/»1(/0’"""" =

Hemispherical dome
/SG =0.8
4'm
3m
Water
2m

Water

(zm) = 5
(s,m)+ any- >(ZM

)[am)

= ﬂ' 230/)11

230 mm

2-2|




2.26

Manometer fluid

2.26 For the stationary fluid shown in Fig. P2.26, the pres-
sure at point B is 20 kPa greater than at point A. Determine the
specific weight of the manometer fluid.

® FIGURE P2.26

let : Yon = sSpecific weignt of manometer flurel

. - %9 L]

Xy /.ra)//zzpey.(-)(g) = //.2){/ooom,)(?8/5,>
= [/, o0 ”3

=p g - ﬂ.;oo V(3.8 = 1% 70
/’DB—PA- T =0 (ZM)"' o (an) + }FB (2 )
ZDXID3_.. == (I, 80»-— >{m)+b’m (2m) + (H,'looﬂ%,)('zd

N
Y= 71)00 3

m
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ol
227 A U-tube mercury manometer is connected to a closed Air
pressurized tank as illustrated in Fig. P2.27. If the air pressure

is 2 psi, determine the differential reading, A. The specific (—————

weight of the air is negligible.

Water

1
| 1

Mercury (SG = 13.6) —r

For * Gt = 8, (h+48t) = £,

Spo (440 (lzyfes) (4 /) _ ey

Oy = %y 0 (1500024 )- 6282,

) =

\S]
—
=

™
T =

N
-
-

*.,




2.28

. . . Water
2.28 A suction cup is used to support a plate of weight W

as shown in Fig. P2.28. For the conditions shown, determine

1.61t SG=8

Suction cup
Plate

SRR Rk o ftdiameter AR
B FIGURE P2.238

L 1

For egu:lnbrlam of forces on plate i
W= 5 A ()

Where A, is area of cup dnd P (s a negative pressure.
From manometer .quai-m'm:

R0, (Lo f) 1+ (sa)(y, ) (0.44) =0
B ¥, , [Liet - @) (oup)]
3 Q,z‘qﬁ;[l.ﬂt = (48]
- i)
- = cr?. ? _th-
Thus, From Eg.(1)

= (948 2.)(m) (o.58) " = T84 1L




2.29

2.29 A piston having a cross-sectional area of 3 ft? and neg-
ligible weight is located in a cylinder containing oil (SG = 0.9)

Cylinder T

as shown in Fig. P2.29. The cylinder is connected to a pres-

surized tank containing water and oil. A force, P, holds the pis-

ton in place. (a) Determine the required value of the force, P. T
(b) Determine the pressure head, expressed in feet of water, act- 21t
ing on the tank bottom. +

Air pressure = 5 psi

4-in.diamter

Tank bottom
B FIGURE P2.29

(a) For -QZut;lfbrl.um
191 A\ = P (1)
where 7 Ls  pressuve aC'Elhg on P'5‘I'°”- A raanometer
€%u¢d~mn gives
UIDI T3, (54t) - z,'; (2 f1)~ /Eu'r
So That
b= B (5« N (2 )
= 5 V(i) - G002y, ) EH)« (o Deavs) (4
557 Y,
Thus, frem Eg.01)
p. (551 £)(3#) = Lewo |b
(L) 41“%: £+ Y, G4) + ¥, (LFD)

1

(5 &) g2 )+ (L2 I AN DIGIAITY

— l—-b—
“30 _)CEJ_VP s E_Pl_vt -H.-
obhomt = o+ _ (8.]
PI’?)S“VC he«d = bo brom - 62.'{'_\—& —_—
b/H-z_o ,Pt's

2-25
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2.31  The mercury manometer of Fig. P2.3
indicates a differential reading of 0.30 m when
the pressure in pipe A is 30 mm Hg vacuum.
Determine the pressure in pipe B.

" FIGURE P2.3)

/PB t );;/ (0.)5'/»11-0.300») - XA: {0:3/»1) -XHzO (o~'5m) =/PA

Where 'a z - a’#é (6,030 m)

Th
“ -P%: —X; (o 030 m ) = m/ [0'1"5’"’) +%; /0'3”") +a;*20 (0'/5‘4”)

- (133 = L Y )/0.0304) - /3%‘4”)/06%“) +(133—- )/45’,..)+
780 ){ow

= 334 4R

A-d6




2,32

2.32 For the inclined-tube manometer of Fig. P2.32 the

pressure in pipe A is 0.6 psi. The fluid in both pipes A and B

is water, and the gage fluid in the manometer has a specific

gravity of 2.6. What is the pressure in pipe B corresponding to

the differential reading shown? ;r—
in.
¥

FIGURE P2.32

ty * 8, (B -G B n)sinzer — Y, (ER) = £
( where b‘;; /s The  Specific weisht of The gage Fluid )

<::> 0.5 ps

Z.33 Compartments A and B of the tank shown in Fig.

P2.33 are closed and filled with air and a liquid with a specific Ai T
gravity equal to 0.6. Determine the manometer reading, 4, if the " ,T
ba.rometric pressure is 14.7 psia and the pressure gage reads 0.5 f_
psi. The effect of the weight of the air is negligible. RN
Water_|
A B (SG = 0.

% - 'Pm'r + @L[b/ff)
a:i,o" &l

/
= /0-5 7‘,1:.;

Thus, 9 .
By = B — gl fe) sinso”
- Ib
= (0.6 /—{-:L)[/wﬁ;_) NS [,-fft)[a.;)zﬂﬁ R
= 3230/ yyinr s = 0.224 Pse
2.33

Open
e

-

0.1ft

4

Mercury (SG = 13.6)

ﬁa:} — )’#zoﬂ)) + )g‘./ (/1) + 9’#3 (6.1 /) =0

)2 ) + G3.)lbry 25) (0.1 £2)

b2.4lb 5 - (0.0)(b24 Lk,

= (.25 #
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A. 34

234  Small differences in gas pressures are
commonly measured with a micromanometer of
the type illustrated in Fig. P2.3Y. This device con-
sists of two large reservoirs each having a cross-
sectional area, A,, which are filled with a liquid
having a specific weight, y,, and connected by a
U-tube of cross-sectional area, A,, containing a
liquid of specific weight, y,. When a differential
gas pressure, p, — p,, is applied a differential
reading, h, develops. It is desired to have this
reading sufficiently large (so that it can be easily
read) for small pressure differentials. Determine
the relationship between 4 and p, — p, when the
area ratio A,/A, is small, and show that the dif-
ferential reading, 4, can be magnified by making
the difference in specific weights, y, — 7,, small. 4, fg_
Assume that initially (with p, = p,) the fluid levels :

in the two reservoirs are equal. .. L -
1 tal I Ly
/level — il e T N\I__T "_.ug.—::'.' '

/;7/.7"/3/ /fu?/ -

for a4 Fharcl
1 g "
L AT 22207

Z(/A(n a f/:‘#frmba'/pressure) ﬁ-ﬂ) is applied we assyme Thet level i1n left
veservojr dreps by a  distance, An, and right fevel rises by Ah. Thus,
THE thqrometer egmzéim becomes

75;+x,(7€,+£-44;) —x 4 -5 (£ +4h)=+4
7’7..@: X7_,£_3,«£-1— X,(ZA{.) ()

Since The liguids rn The manemeter are Incompressi ble,

A4 A = A4 r  2dh - A
KA DA e 2

and I # %‘i';. /s smal)l Then 24h << and Jast term in Eg.0))
Can be hneglected. Thus,

‘ﬁ“‘f’zr (.33,")/)£

or % i ﬁ —p,
_ n-¥ ,

and large velues of h can be obtained Fov Small pressure

diffeventials jf o=, 5 Swmall,

or

2-ag



2.35

2,35 The cyclindrical tank with hemispherical ends shown
in Fig. P2.35 contains a volatile liquid and its vapor. The lig-
uid density is 800 kg/m®, and its vapor density is negligible.

The pressure in the vapor is 120 kPa (abs), and the atmospheric ;
pressure is 101 kPa (abs). Determine: (a) the gage pressure read- 1m ¢
ing on the pressure gage; and (b) the height, h, of the mercury 33
manometer. \

Mercury

M FIGURE P2.35

(a) Let b;.: spwt, of héufd = @’00 %3>(7.31%z>’ 7850&

m3
and
13“’,‘,, (5a5e) = 120 kP (abs) = I0] RR: (abs)= 19 4R
Thus,

ngAsc= ~‘jbvcx;:wr T X}» <lM)
= 1qxW’ ;’;‘f— + (7850ﬁ3>(‘w3
= 20, 94R

(b b (gage) + ¥ (1) - Y, (4) =0

\'a]mr

l9x10° Ty (7450 n—-’;’,)(lm)-(nassxlf%a)(ﬂ:o

"ﬁ‘z O.202 mm




2.36 SG:O.90\

]
2.36 Determine the elevation difference, Ah, between the ‘ﬁ
water levels in the two open tanks shown in Fig. P2.36. N (1)
\V4 -
o g _Ah
Im
‘\[ el
Water

75J - b:#zo% N [56)6’,60 (0'4””) bj»tz
S/nce 7’.‘1://92_:.0

A»[L: O. 4m -— [aq)/&‘hm) = 0 040 m

(- .0m) + ¥, (Rh)= P

2~ 3 7
Oil density
v =1.20 slugs/ft’— [+ T ~—1-in. diameter
23717  Water, oil, and salt water fill a tube as shown in Fig. ~— 2-in. diameter ‘32
P2.37. Determine the pressure at point | (inside the closed tube). | | Salt water,
. (1) SG=1.20
2$ft
| X ) 18
Water 4 ft
* - (56) -t S (3F6) + 4., (34) + 5 [ZH =0
watep
Shags
= (120 )(é Z, Lf )[3»‘& ( .20 g )(32 1% )(?H:) (éz#lbs)[zfé)
b
= — /6| =2
F4*
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.38 Ot gy

2.38  An air-filled, hemispherical shell is at- -—
tached to the ocean floor at a depth of 10 m as,
shown in Fig. P2.38. A mercury barometer lo- 735 mm
cated inside the shell reads 765 mm Hg, and a
mercury U-tube manometer designed to give the
outside water pressure indicates a differential
reading of 735 mm Hg as illustrated. Based on
these data what is the atmospheric pressure at the
ocean surface?

10m

Mercury

FIGURE P2.38

let: 7%_ ~ absolute aii pressure inside shell = Afl; (0.765m )

/iém"’ Sul’/ace afmm.sphemc ,orfssw‘e
bgw_ n specitic weaght of seawnter

7770/5 maviemeter egu,é/fm con be written as

72% * agw (1om) + % (. 360m) — 3;}; (0‘7354”) = £
Jo That

72£M= ﬁ' B a;w- (/O'Bé m) ¥ 3:#; (0735 m )

(133 %4;)/0.765};”) - (10,1 %)//D' 36m) + (133 f—%)(mmu)

i

|

749 4R

-3/




2.37 *

2.39* Both ends of the U-tube mercury ma-
nometer of Fig. P237 are initially open to the
atmosphere and under standard atmospheric
pressure. When the valve at the top of the right
leg is open the level of mercury below the valve
is h,. After the valve is closed, air pressure is

applied to the left leg. Determine the relationship
between the differential reading on the manom-
eter and the applied gage pressure, p,. Show on
a plot how the differential reading varies with p,
for h, = 25, 50, 75, and 100 mm over the range
0 = p, = 300 kPa. Assume that the temperature
of the trapped air remains constant.

FIGURE P2.31

W/'ﬂ The valve ¢ losed and & pressare//}, a//o//'ed/

7;- a;; s = £
ovr
sh- B -~ »
i

wheve b and £ are gage pressures . for 150 Thermal
Com/we.sszéa of trapped air

P = constint
So Tt for ctomstart air mass

YR

Where V- 15 air volume , P is absolute pressuve, and ¢ and 1
veter to Initral and final sfes }’f.(ﬁfc;‘u/e/g Thus,

é_f (f) a_f,,,, ) c2)

/Eor a fm/pn/ " Vl‘j/li /"j/ "17;:: {i.ﬂ)ym ,//,,éc) so That
£g.(2) can be writfen 4s N

’ﬁf/m[ ] _h_l (3)

Substitute E; (3) m+a £g.1) 4o oé#m

[1’3 " ik (/ ] ( con't ) o
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437* (Con't)

E'Zzuzémn (%) Can be expressed m Me  form

[A%)L_ /1%4— /ﬁl__—-ra’e’*”")-ﬂh-l- /i_l =0
W

H,
and The roots of This Zaac/m#:c egaaﬁzwr ave

s (4 + ﬁv-,,w) V{% P ket 2hde

To  evaluate A;Q The neﬁ%wc .517;1 1S used spce Ldh=0 for 7%-'0.

A Program for com/m/m Ah as a function of B, Fer varius

4y llows (with B, = 08P and ()% 133N/ ).
100 cl=

110 primt "HRKEKK KK KA KKK KK A KKK KKK KKK KK KA KA KK KA KK KK KKK KKK KKK !

120 print "** This program calculates the lower root of a *x 1

130 print "** guadratic equation to give Dh (in m) for a LE A

140 print "** range of gage pressure, Pg (in kPa), and for **"

145 print "** a set of different initial heights, hi (in m) **"

150 print "HKKKK KKKk oK ok Kok ok KK KKK KKK KKK KK KKK KKK KKK KK KK KKK Kok ok Kok ok 1

160 print

162 dim dh(5)

164 patm=101

166 ghg=133

170 print " Pg Dh(hi=0.000) Dh(hi=0.025) Dh(hi=0.050) Dh(hi=0.075)

Dh(hi=0.100)

180 for pg=0 to 300 step 30

190 for i=0 to 5

195 hi=(i-1)*0.025

200 a=hi+(pg+patm)/(2*ghg)

210 dh(i)=a-(a~2-2*pg*xhi/ghg)”.5

220 next i

230 print using "####.% 4. HHHEE 44 HHHEH HHHE. 484 4. Bt
44, H48#8":pg,dh(1),dh(2),dh(3),dh(4),dh(5)

240 next pg

( cont )
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237%]  (con't)

Tabulated data and a ,o/oz' of The dita ape Shown below.

T Ok OK K K KK K KK K Ok kK K Sk kK 5K K K 3K K K 3K 3K 5K ok 3K ok K 3K 3K ok sk K oK ok 3k XK oK % 3 3 5K oK s Xk

** This program calculates the lower root of a %k
** quadrztic equation to give Dh (in m) for a * %
** range of gage pressure, Pg (in kPa). and for *x

** a set of different initial heights, hi (in m) **
34K K K K 3K 3K oK ok oK oK ok ok ok ok 5K ok oK o 3K K ok sk ok ok sk ok ok ok oK oK oK 3K K K 3K 3K K oK oK ok oK 3K 3k 3k % K % K %

Pg Dh(hi=0.000) Dh(hi=0.025) Dh(hi=0.050) Dh(hi=0.075) Dh(hi=0.100)
0.0 0.00000 0.00000 -0.00000 0.00000 0.00000
30.0 0.00000 0.01101 0.02120 0.03064 0.03938
60.0 0.00000 0.01816 0.03538 0.05170 0.06716
50.0 0.00000 0.02313 0.04539 0.06681 0.08739
120.0 0.00000 0.02678 0.05280 0.07807 0.1025¢
150.0 0.00000 0.02956 0.05847 0.08673 0.11433
180.0 0.00000 0.03175 0.06295 0.09359 0.12365
210.0 0.00000 0.03353 0.06657 0.099513 0.13119
240.0 0.00000 0.03499 0.06956 0.10370 0.13741
270.0 0.00000 0.03621 0.07205 0.10753 0.14262
300.0 0.00000 0.03725 0.07418 0.11078 0.14704
0.20
| — O hi=0.000 m
_—0 hi=0.025 m
[ — A hi=0.050 m
} —— Q¢ —— hi=0.075 m
0.15 —+t —— hi=0.400 m

(m)

Dh

.08

Height,
(=]

-0.05 . i N L N N R ] A R N
o] 100 200 300

Gage Pressure, Pg (kPa)
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244

6-m-diameter full tank as shown in Fig. P2.40. Determine the
density of the unknown liquid in the tank.

A 0.02-m-diameter manometer tube is connected to a

Specific weight
= 25.0 kN/m®

FIGURE P2.40

let §= sp wt of unknown Fluid and
= (1.10)(5. 80 x103) = Jo.8 X 102 NJm?.

Thus,
By (1m) = (253™2 ) (ume) =, (3m) =

Y= 189X ID /_;‘-3

anel 3 N
18.9 X110 —

["2‘3:: m? .—.l‘f.ao&f’

¢ R po
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2.41 A 6-in.-diameter piston is located within a cylinder
which is connected to a 3-in.-diameter inclined-tube manometer n ()
as shown in Fig. P2.41. The fluid in the cylinde: and the ma-
nometer is oil (specific weight = 59 1b/ft*). When a weight ‘W Piston
is placed on the top of the cylinder the fluid level in the ma-
nometer tube rises from point (1) to (2). How heavy is the
weight? Assume that the change in position of the piston is
negligible.
m FIGURE P2.4|
Witn piston alone (et pressure on fuce of prston = 757‘: y and
manemeter eguttion becomes
L) o -
*,b? — a:/./ ‘fl sin 30° = o (1)
1
W'th weight added  pressure 7; Jncreases o A where
I ‘
+ = 75 o+ —\A/—- (/4 ~ areéa vf/uS'/'Un)
N o Ap P
and manemeter € 4 uation becomes
] 6 . o ~
o = i (% * 35 #) sin 30" =0 )

Subtract Eg 1) from £Eg.L1) o obtain
75'_7?" = U, (FAt)sm 30t =o

7
o % = a;;j 7?_#) sin 30°
So 77107" W, / /é
/b
= (59 2, )(7% #)(0.5)
FLE#)
ancd

w = 2.90 /b

-3¢
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242 The manometer fluid in the manometer of Fig. P2.42
has a specific gravity of 3.46. Pipes A and B both contain water.
If the pressure in pipe A is decreased by 1.3 psi and the pressure
in pipe B increases by 0.9 psi, determine the new differential T Wate'a.:’l
reading of the manometer.

M=1+2a

!L Gage fluid |

(SG = 3.46)

m FIGURE P2.42

For The inital contrguration .
ﬁ)-r-&;/za/a'l)r—if/z)-a/;w(/):'ﬁs /)

wheve all leng7hs are In ££. When 2 decreases to a' and

@ /nereases o f The Neights of The Fluid columns change
as Shown on —ﬁgure For The +nal contigurato !

7[9/9 /o? -a) + J;/ (2+34) - 5’ (1+a) = /,b (2)
Jubtmet Eg(2) —me Eg. (1) 4o obtain

-4 ot =G, (22) + 4, ,2) = B4
(to-t') = (% -#;)
2 (- 3f)
Sinee @-a’: 13 pse @-,sﬁ': -0.9 psc, and %p 3469, ,

pq-—)//w ) (/3,6)//44&

a = —
= /.03 £t
92(424‘—-‘1)(/—3%) 3

or

Gna  There fore
Ah=3Aftvraa = 2 +2(/03 F) = Yot




A 43

2.43 Determine the ratio of areas, A,/A,, of
the two manometer legs of Fig. P2.43if a change
in pressure in pipe B of 0.5 psi gives a corre-
sponding change of 1 in. in the level of the mer-
cury in the right leg. The pressure in pipe A does
not change.

FIGURE P243

For Tre initial contiguration [ see figure) :
a+a;o /»f‘ +Ah£)—3’#a {Ahd)—a;.” (1%)-" ‘% (1)

<
When ﬁa /ncreases The vight Column falls o  distance JG, and
the Jeft Column rises a ://s/-ame, b. Since The volume of The

l1guid must rwmasn constart A b = A a or Az %
;T 2 A, b

For The #Hnal (onﬁ}umz‘/éu) wiTh pre<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>