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Tsunami dynamics

INTRODUCTION

The approach of a tsunami wave toward shore can be an awesome sight to those who
have witnessed it and survived. Figure 2.1 represents an artist’s impression of a
tsunami wave approaching the coast of Unimak Island, Alaska, early on April 1,
1946. Similar artists’ impressions of breaking tsunami will be presented throughout
this text. The impressions are accurate. Whereas ordinary storm waves or swells
break and dissipate most of their energy in a surf zone, tsunami break at, or surge
over, the shoreline. Hence, they lose little energy as they approach a coast and can run
up to heights an order of magnitude greater than storm waves. Much of this behavior
relates to the fact that tsunami are very long waves—kilometers in length. As shown
in Figure 2.1, this behavior also relates to the unusual shape of tsunami wave crests as
they approach shore. This chapter describes these unique features of tsunami.

TSUNAMI CHARACTERISTICS
(Wiegel, 1964; Bolt et al., 1975; Shepard, 1977; lida and Iwasaki, 1983; Myles, 1985;
von Baeyer, 1999; Ward, 2002)

The terminology used in this text for tsunami waves is shown schematically in Figure
2.2. Much of this terminology is the same as that used for ordinary wind waves.
Tsunami have a wavelength, a period, and a deep-water or open-ocean height. They
can undergo shoaling, refraction, and diffraction. Most tsunami generated by large
earthquakes travel in wave trains containing several large waves that in deep water
are less than 0.4 m in height. Figure 2.3 plots typical tidal gauge records or marigrams
of tsunami at various locations in the Pacific Ocean. These records are taken close to
shore and show that tsunami wave heights increase substantially into shallow water.
Tsunami wave characteristics are highly variable. In some cases, the waves in a
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Figure 2.1. An artist’s impression of the tsunami of April 1, 1946 approaching the five story—
high Scotch Cap lighthouse, Unimak Island, Alaska. The lighthouse, which was 28 m high,
stood on top of a bluff 10 m above sea level. It was completely destroyed (see Figure 2.9). The
wave ran over a cliff 32 m high behind the lighthouse. Painting is by Danell Millsap, commis-
sioned by the United States National Weather Service. See color section.

tsunami wave train consist of an initial peak that then tapers off in height exponen-
tially over four to six hours. In other cases, the tsunami wave train consists of a
maximum wave peak well back in the wave sequence. The time it takes for a pair of
wave crests to pass by a point is termed the wave period. This is a crucial parameter in
defining the nature of any wave. Tsunami typically have periods of 100s-2,000s
(1.6 min—33 min), referred to as the tsunami window. Waves with this period travel
at speeds of 600kmh™'-900kmh™" (166 ms~'-250ms~") in the deepest part of the
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Figure 2.2. Various terms used in the text to express the wave height of a tsunami.
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Figure 2.3. Plots or marigrams of tsunami wave trains at various tidal gauges in the Pacific
region. Based on Wiegel (1970).

ocean, 100kmh™'-300kmh™" (28 ms™'-83ms™") across the continental shelf, and
36kmh™' (10ms™") at shore. The upper limit is the speed of a commercial jet
airplane. Because of the finite depth of the ocean and the mechanics of wave gen-
eration by earthquakes, a tsunami’s wavelength—the distance between successive
wave crests—Ilies between 10 km and 500 km. These long wavelengths make tsunami
profoundly different from swell or storm waves.
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The simplest form of ocean waves is sinusoidal in shape and oscillatory (Figure
2.4). Water particles under oscillatory waves transcribe closed orbits. Hence there is
no mass transport of water shoreward with the passage of the wave. Oscillatory waves
are described for convenience by three parameters: their height or elevation above the
free water surface, their wavelength, and water depth (Figure 2.3). These parameters
can be related to each other by three ratios as follows:

H:L, H:d, L:d (2.1)
where H = crest-to-trough wave height (m)

L = wavelength (m)
d = water depth (m)

" . Direction of propagation
Sinusoidal wave 5

mean

sea level

Stokes wave

N-waves
Simple —_—

Double —_—

Figure 2.4. Idealized forms characterizing the cross-section of a tsunami wave. Based on Geist
(1997b). Note that the vertical dimension is greatly exaggerated.
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In deep water, the most significant factor is the ratio H : L, or wave steepness. In
shallow water it is the ratio H : d, or relative height. Sinusoidal waves fit within a
class of waves called cnoidal waves: ¢ for cosine, n for an integer to label the sequence
of waves, and oidal to show that they are sinusoidal in shape. The shape of a wave or
its peakiness can be characterized by a numerical parameter. For sinusoidal waves
this parameter is zero. While tsunami in the open ocean are approximately sinusoidal
in shape, they become more peaked as they cross the continental shelf. In this case,
the numerical parameter describing shape increases and non-linear terms become
important. The wave peak sharpens while the trough flattens. These non-linear,
tepee-shaped waves are characterized mathematically by Stokes wave theory. In
Stokes theory, motion in two dimensions is described by the sum of two sinusoidal
components (Figure 2.4). Water particles in a Stokes wave do not follow closed
orbits, and there is mass movement of water throughout the water column as the
wave passes by a point. As a tsunami wave approaches shore, the separation between
the wave crests becomes so large that the trough disappears and only one peak
remains. The numerical parameter characterizing shape approaches 1 and the tsu-
nami wave becomes a solitary wave (Figure 2.4). Solitary waves are translatory in
that water moves with the crest. All of the waveform also lies above mean sea level.
Finally, it has been noted that a trough that is nearly as deep as the crest is high
precedes many exceptional tsunami waves. This gives the incoming wave a wall effect.
The Great Wave of Kanagawa shown on the frontispiece of this book is of this type.
These waves are not solitary because they have a component below mean sea level.
Such waveforms are better characterized by N-waves. This chapter uses features of
each of these wave types: sinusoidal, Stokes, solitary, and N-waves to characterize
tsunami.

TSUNAMI WAVE THEORY
(Wiegel, 1964, 1970; Okal, 1988; Satake, 1995; Pelinovsky, 1996; Trenhaile, 1997;
Komar, 1998)

The form of a sinusoidal wave is analogous to a sine curve (Figure 2.4), and its
features can be characterized mathematically by linear, trigonometric functions
known as Airy wave theory. This theory can represent local tsunami propagation
in water depths greater than 50 m, although in many cases linearity is only violated
near the shore, where wave breaking is supposed to occur. In this theory, the three
ratios presented in Equation (2.1) are much less than 1. This implies that wave height
relative to wavelength is very low—a feature characterizing tsunami in the open
ocean. The formulae describing sinusoidal waves vary depending upon the wave
being in deep or shallow water. Shallow water begins when the depth of water is
less than half the wavelength. As oceans are never more than 5 km deep, the majority
of tsunami travel as shallow-water waves. In this case, the trigonometric functions
characterizing sinusoidal waves disappear and the velocity of the wave becomes a



32  Tsunami dynamics

simple function of depth as follows:
C = (gd)* (22)

where C = wave speed (ms™ ")
g = gravitational acceleration (9.81 ms!)

The wavelength of a tsunami is also a simple function of wave speed, C, and period,
T, as follows:

L=CT (2.3)

Equation (2.3) holds for linear, sinusoidal waves and is not appropriate for calculat-
ing the wavelength of a tsunami as it moves into shallow water. Linear theory can be
used as a first approximation to calculate changes in tsunami wave height as the wave
moves across an ocean and undergoes wave shoaling and refraction. The following
formulae apply:

H = K,K,H, (2.4)
K, = (b,bi')*? (2.5)
K, = (d,d; )™ (2.6)

where = crest-to-trough wave height at the source point (m)

= refraction coefficient (dimensionless)

= shoaling coefficient (dimensionless) (Green’s Law)

= distance between wave orthogonals at a source point water (m)
= distance between wave orthogonals at any shoreward point (m)
water depth at a source point (m)

. = water depth at any shoreward point (m)

LRSS ART
|

Note that there is a plethora of definitions of wave height in the tsunami
literature. These include wave height at the source region, wave height above mean
water level, wave height at shore, and wave run-up height above present sea level. The
distinctions between these expressions are presented in Figure 2.2. The expression for
shoaling—Equation (2.6)—is known as Green’s Law. Because tsunami are shallow-
water waves, they feel/ the ocean bottom at any depth and their crests undergo
refraction or bending around higher seabed topography. The degree of refraction
can be measured by constructing a set of equally spaced lines perpendicular to the
wave crest. These lines are called wave orthogonals or rays (Figure 2.5). As the wave
crest bends around topography, the distance, b, between any two lines will change.
Refraction is measured by the ratio b, : b;. Simple geometry indicates that the ratio
b, : b; is equivalent to the ratio cos «, : cos «;, where « is the angle that the tsunami
wave crest makes to the bottom contours as the wave travels shoreward (Figure 2.5).
Once this angle is known, it is possible to determine the angle at any other location
using Snell’s Law as follows:

sin a,C,, ' = sin oy, C;! (2.7)
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where «, = the angle a wave crest makes to the bottom contours at a source
point (degrees)
«; = the angle a wave crest makes to the bottom contours at any shore-
ward point (degrees)
C, = wave speed at a source point (ms~!)
C; = wave speed at any shoreward point (ms™')

This relationship is straightforward close to shore, but for a tsunami wave crest
traveling from a distant source—such as occurs often in the Pacific Ocean—the wave
path or ray must also be corrected for geometrical spreading on a spherical surface.
Equation (2.4) can be rewritten to incorporate this spreading as follows:

H = KKK, H, (2.8)

where K, = (sin A)70?

K, = coefficient of geometrical spreading on a sphere (dimensionless)
A = angle of spreading on a sphere relative to a wave’s direction of

travel

In a large ocean, bathymetric obstacles such as island chains, rises, and seamounts
can refract a tsunami wave such that its energy is concentrated or focused upon a
distant shoreline. These are known as teleseismic tsunami because the effect of the
tsunami is translated long distances across an ocean. Japan is particularly prone to
tsunami originating from the west coast of the Americas, despite this coastline laying

Depth contour

Direction of

Shoreline wave travel

Figure 2.5. Refraction of a tsunami wave crest as it approaches shore.
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half a hemisphere away. On the other hand, bottom topography can spread tsunami
wave crests, dispersing wave energy over a larger area. This process is called defocus-
ing. Tahiti, but not necessarily other parts of French Polynesia, is protected from
large tsunami generated around the Pacific Rim because of this latter process.

The measurement of wave height depends upon the location in the ocean where
height is measured and the theory that is used to characterize the tsunami wave. For
example, solitary wave theory may not be realistic because many observations of
tsunami approaching shore note that water is drawn down before the wave crest
arrives. This characteristic is due to non-linear effects that produce a trough in front
of the wave. Solitons or N-waves mimic these features. Wind-generated waves are
limited in Stokes wave theory by depth. A Stokes wave will break when the height-to-
water depth ratio exceeds 0.78. Tsunami in 75% of cases do not break, but surge onto
shore at speeds of 5ms~'-8ms~'. However, non-linear effects can produce wavelets
on the wave crest or in some cases result in the tsunami overriding the shoreline as a
bore. Both of these phenomena were observed along coasts during the Indian Ocean
Tsunami of 2004. In contrast to storm waves, a tsunami wave is more likely to break
on a steeper coast. The popular media often portray this latter aspect as a plunging
tsunami wave breaking over the coast. While tsunami crests may have the same
energy as storm waves, the two types of waves differ in that storm waves break in
a surf zone and dissipate most of their energy before reaching shore. On the other
hand, tsunami reach shore usually without breaking and bring tremendous power to
bear on the coastline (Figure 2.6).
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<« Figure 2.6. Sequential photographs of the March 9, 1957 tsunami overriding the backshore
at Laie Point on the Island of Oahu, Hawaii. An earthquake in the Aleutian Islands 3,600 km
away, with a surface magnitude of 8.3, generated the tsunami. Photograph Credit: Henry
Helbush. Source: United States Geological Survey, Catalogue of Disasters # B57C09-002.
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Resonance
(Wiegel, 1964, 1970)

Tsunami, having long periods of 100s-2,000s, can also be excited or amplified in
height within harbors and bays if their period approximates some harmonic of the
natural frequency of the basin. The term tsunami in Japanese literally means ““harbor
wave’” because of this phenomenon. Here tsunami can oscillate back and forth for
24 hours or more. The oscillations are termed seiches, a German word used to
describe long, atmospherically induced waves in Swiss alpine lakes. Seiches are
independent of the forcing mechanism and are related simply to the 3-dimensional
form of the bay or harbor as follows:

Closed basin: T, = 2L;(gd) 03 (2.9)
Open basin: T, = 4L,(gd) ** (2.10)
where L, = length of a basin or harbor (m)

T, = wave period of seiching in a bay, basin, or harbor(s)

Equation (2.9) is appropriate for enclosed basins and is known as Merian’s Formula.
In this case, the forcing mechanism need have no link to the open ocean. As an
example, an Olympic-sized swimming pool measuring 50 m long and 2 m deep would
have a natural resonance period of 22.6s. Any vibration with a periodicity of 5.6,
11.3s, and 22.6s could induce water motion back and forth along the length of the
pool. If sustained, the oscillations or seiching would increase in amplitude and water
could spill out of the pool. Seismic waves from earthquakes can provide the energy
for seiching in swimming pools, and the Northridge earthquake of January 17, 1994
was very effective at emptying pools in Los Angeles. Seiching was also induced in
bays in Texas and the Great Lakes of North America about 30 minutes after the
Great Alaskan Earthquake of 1964. Volcano-induced, atmospheric pressure waves
can generate seiching as well. The eruption of Krakatau in 1883 produced a 0.5 m
high seiche in Lake Taupo in the middle of the North Island of New Zealand via this
process. Whether or not either of these phenomena technically is a tsunami is a moot
point.

Resonance can also occur in any semi-enclosed body of water with the forcing
mechanism being a sudden change in barometric pressure, semi- or diurnal tides, and
tsunami. In these cases the wave period of the forcing mechanism determines whether
the semi-enclosed body of water will undergo excitation. The effects can be quite
dramatic. For example, the Bay of Fundy, on the east coast of Canada, has a
resonance period that is within 6 minutes of the diurnal tidal period of 12.42 hours.
One-meter high tides in the open ocean are amplified to 14 m within the bay, while
atmospheric pressure disturbances during storms moving up the coast can generate
storm surges equal to another 16 m. Tsunami have the same potential. The predom-
inant wave period of the tsunami that hit Hawaii on April 1, 1946 was 15 minutes.
The tsunami was most devastating around Hilo Bay, which has a critical resonant
length of about 30 minutes. While most tsunami usually approach a coastline parallel
to shore, those in Hilo Bay often run obliquely alongshore because of resonance and
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edge-wave formation. Damage in Hilo due to tsunami has always been a combination
of the tsunami and a tsunami-generated seiche. The above treatment of resonance is
cursory. Harbor widths can also affect seiching and it is possible to generate sub-
harmonics of the main resonant period that can complicate tsunami behavior in any
harbor or bay. These aspects are beyond the scope of this text.

Shallow-water, long-wave theory
(Mader, 1974, 1988; Murty, 1977, 1984; Titov and Gonzalez, 1997)

The preceding theories model either small-amplitude or long waves. They cannot do
both at same time. Tsunami behave as small-amplitude, long waves. Their height-to-
length ratio may be higher than 1:100,000. If tsunami are modeled simply as long
waves, they become too steep as they shoal toward shore and break too early. This is
called the long-wave paradox. About 75% of tsunami do not break during run-up.
Because their relative height is so low, tsunami are also very shallow waves. Under
these conditions, tsunami characteristics can be modeled more realistically by using
incompressible, shallow-water long-wave equations in which depth is small compared
with the tsunami’s wavelength. In their simplest form, vertical velocity components
under the wave are assumed negligible.

Shallow-water, long-wave equations are solved using non-linear, finite-difference
techniques. A grid is placed over a study area, and height and velocity values are
calculated over time across the grid using depths interpolated at either the center or
corners of the grid. A simple grid is shown in Figure 2.7. Problems of grid inter-
polation immediately become obvious. The ocean’s depths are not measured on a
regular grid, and depths must be interpolated from survey lines that crisscross an
ocean. The density of these survey lines is not constant, but increases shoreward.
Error in interpolation always exists using these survey values. For example, in Figure
2.7 on the cell marked B, the elevation in the bottom right-hand corner is clearly close
to 10m. However, in the top right-hand corner, the depth value is less obvious.
Interpolation at this latter point can be performed objectively using spline or poly-
nomial fitting techniques, but a degree of error will always exist. In deep water, depths
vary little and the effect of changing bathymetry upon a tsunami is minimal. How-
ever, in shallower water, increases in topographic variability affect behavior more.
Once a long wave crosses the shelf, its behavior is influenced by both longshore and
onshore variations in topography. As a rule of thumb, there should be 30 grid points
covering the wavelength of a tsunami wave. For a tsunami with a wave period of
5 minutes, this criterion requires grid sizes of 50 m, 100 m, and 500 m where the depth
of water exceeds 2.5m, 10 m, and 250 m, respectively. Accurate depth information is
more important than the width of the grid in modeling tsunami behavior precisely in
the nearshore zone. Calculations can also be performed using triangular grid cells.
The size of the triangles decreases toward shore. More advanced modeling techniques
can accommodate variable grid sizes. In recent years, with the demise of the Cold
War, this type of detailed bathymetry has become available in the open ocean;
however, inshore bathymetry is not as accessible because it usually comes under
the domain of individual countries.
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Figure 2.7. Simple representation of gridded bathymetry. Interpolation of depth values occurs
at the center of grid cells—as in this figure—or at the grid intersects. Computer simulations of
actual tsunami use grids of much higher resolution than presented here.

One of the most common computer programs solving shallow-water long-wave
equations is the SWAN code, developed by Charles Mader in the mid-1970s. In this
procedure, a tsunami wave is not traced iteratively into shore; rather, changes in
water level are calculated simultaneously across the whole depth grid iteratively over
time. The technique is ideal for determining the amount of reflection of tsunami wave
energy from a slope or the behavior of a tsunami wave in an enclosed bay or harbor.
It is also possible to add any wave generated by aftershocks to the calculations.
Finally, the method mimics the withdrawal and subsequent flooding of a coast over
time as a tsunami wave approaches shore. The stability of solutions is a crucial
function of the time increment used in the calculations. The modeling becomes
unstable at time increments of less than 4 seconds. For a 10-minute period tsunami
wave, crossing a shelf 100 km wide, the shallow-water long-wave equations can only
be solved using supercomputers. An example of shallow-water, long-wave techniques
is shown in Figure 2.8 for the June 10, 1996 Andreanov earthquake originating from
the Aleutian Islands in the North Pacific Ocean. Only the first three or four waves in
the train are shown, and nowhere does wave height exceed 50 cm. An extensive array
of tide gauges and buoys showed that heights and arrival times were well simulated
in this model. Accurate solutions for tsunami wave trains can now be performed
within hours of the occurrence of any major earthquake, using similar simulations.
Real-time modeling is not yet possible.
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Figure 2.8. Computer simulation of the tsunami wave train generated by the 10 June 1996
Andreanov earthquake on the tip of the Alaskan Peninsula. The simulation uses shallow-water,
long-wave equations (Titov and Gonzalez, 1997). For presentation purposes, the complex
reflected wave crests behind the main wave front have been removed. Wave height nowhere
exceeds fifty centimeters.

The shallow-water long-wave equations work well in the open ocean, on con-
tinent slopes, around islands, and in harbors. On a steep continental slope greater
than 4°, the techniques show that a tsunami wave will be amplified by a factor of 3 to
4 times. Because they incorporate both flooding and frictional dissipation, the equa-
tions overcome problems with linear theory where the wave breaks too far from
shore. They also show that, because of reflection, the second and third waves in a
tsunami wave train can be amplified as the first wave in the train interacts with shelf
topography. The shallow-water long-wave equations do have limitations. If they do
not include vertical velocity components, they cannot describe wave motion resulting
from the formation of cavities in the ocean surface (asteroid impacts); replicate wave
profiles generated by sea floor displacement, underwater landslides, or tsunami
traveling over submerged barriers; or simulate the behavior of short-wavelength
tsunami. They still suffer in some cases from the long-wave paradox and break
too early. In these cases, incompressible, shallow-water long-wave equations must
be used that include the vertical components of motion. This increases the total
computation time; however, more complicated situations can be modeled more
accurately. For example, the effect of tsunami crossing reefs or underwater barriers
can be simulated. Effectively, an underwater barrier does not become significant in
attenuating the tsunami wave height until the barrier height is more than 50% the
water depth. Even where the height of this barrier is 90% of the water depth, half of
the tsunami wave height can be transmitted across it. Modeling using the full shallow-
water, long-wave equations shows that submerged offshore reefs do not necessarily
protect a coast from the effects of tsunami. This is important because it indicates that
a barrier such as the Great Barrier Reef of Australia may not protect the mainland
coast from tsunami.
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RUN-UP AND INUNDATION

Run-up
(Wiegel, 1964, 1970; Yeh, 1991; Camfield, 1994; Yeh et al., 1994; Briggs et al., 1995;
Geist, 1977b)

Tsunami are known for their dramatic run-up heights, which commonly are greater
than the height of the tsunami approaching shore by a factor of 2 or more times. For
example, in the Pacific Ocean region, 41 tsunami have generated wave run-up heights
in excess of 6 m since 1900, while five events since 1600 have produced run-up heights
between 51 m and 115mm. The March 26, 1947 earthquake offshore from Gisborne,
New Zealand, generated a 10 m high run-up. Such high run-ups are usually localized;
however, this value was maintained along a 13 km stretch of coast. The Alaskan
tsunami of April 1, 1946 overtopped cliffs on Unimak Island and wiped out a radio
mast standing 35 m above sea level (Figure 2.9). The eruption of Krakatau in 1883
generated a wave that reached elevations up to 40 m high along the surrounding

’ Loy S 204 Lh SR

Figure 2.9. The remains of the Scotch Cap lighthouse, Unimak Island, Alaska, following the
April 1, 1946 tsunami. A Coast Guard station, situated at the top of the cliff 32 m above sea
level, was also destroyed. Five men in the lighthouse at the time perished. Source.: United States
Department of Commerce, National Geophysical Data Center.
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coastline. By far the largest run-up height recorded was that produced on July 9, 1958
by an earthquake-triggered landslide in Lituya Bay, Alaska. Water swept 524 m
above sea level up the slope on the opposite side of the bay, and a 30 m to 50 m
high tsunami propagated down the bay. In Japan, run-up heights as high as 38.2m
have been measured. The 1896 earthquake offshore from the Sanriku coast sent a
wave this high crashing into the towns of Yoshihama and Kamaishi.

Tsunami differ from wind-generated waves in that significant water motion
occurs throughout the whole water column. While this may not be important on
the shelf, it causes the tsunami to take on the shape of a solitary wave in shallow
water. A solitary wave maintains its form in shallow water, and, because the kinetic
energy of the tsunami is evenly distributed throughout the water column, little energy
is dissipated, especially on steep coasts. The maximum run-up height of a solitary
wave can be approximated using the following formula:

H,ynax = 2.83(cot B)* H ! (2.11)

where H,,,, = maximum run-up height of a tsunami above sea level (m)
H, = wave height at shore or the toe of a beach (m)
0 = slope of the seabed (degrees)

The run-ups derived from Equation (2.11) are higher than those predicted using
sinusoidal waves. If a leading trough precedes the tsunami, then its form is best
characterized by an N-wave (Figure 2.4). These waves are more likely to be generated
close to shore because the critical distance over which a tsunami wave develops is not
long enough relative to the tsunami’s wavelength to generate a wave with a leading
crest. This critical distance may be as great as 100 km from shore—a value that
encompasses many near-coastal tsunamigenic earthquakes. N-waves, as shown in
Figure 2.4, can take on two forms: simple and double. The double wave is preceded
by a smaller wave. The tsunami generated by the Indian Ocean Tsunami along
the south Sri Lankan coast was a double N-wave. Run-ups for N-waves can be
approximated by the following formulae:

Simple N-wave H,., = 3.86(cot B)O'SH}'ZS (2.12)
Double N-wave H,p, = 4.55(cot ﬂ)O'SH,l‘25 (2.13)

The two equations are similar in form to Equation (2.11) for solitary waves. How-
ever, they result in run-ups that are 36% and 62% higher. In some cases, N-waves
may account for the large run-ups produced by small earthquakes. For example, an
earthquake (M, magnitude of 7.3) struck the island of Pentecost, Vanuatu, on
November 26, 1999. Normally, an event of this magnitude would generate only a
minor tsunami, if one at all. Instead, run-up reached 5 m above sea level. The tsunami
was characterized by a distinct leading depression.

The run-up height of a tsunami also depends upon the configuration of the shore,
diffraction, standing wave resonance, the generation of edge waves that run at right
angles to the shoreline, the trapping of incident wave energy by refraction of reflected
waves from the coast, and the formation of Mach-Stem waves. Mach—-Stem waves
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are not a well-recognized feature in coastal dynamics. They have their origin in the
study of flow dynamics along the edge of airplane wings, where energy tends to
accumulate at the boundary between the wing and air flowing past it. In the coastal
zone, Mach—Stem waves develop wherever the angle between the wave crest and a
cliff face is greater than 70°. The portion of the wave nearest the cliff continues to
grow in amplitude even if the cliff line curves back from the ocean. The Mach—Stem
wave process is insensitive to irregularities in the cliff face. It can increase ocean swell
by a factor of 4 times. The process often accounts for fishermen being swept off rock
platforms during rough seas. The process explains how cliffs 30 m or more in height
can be overtopped by a shoaling tsunami wave that produces run-up reaching only
one-third as high elsewhere along the coast. Mach—Stem waves play a significant role
in the generation of high-speed vortices responsible for bedrock sculpturing by large
tsunami—a process that will be described in the following chapter.

All these processes, except Mach—Stem waves, are sensitive to changes in shore-
line geometry. This variability accounts for the wide variation in tsunami wave
heights over short distances. Within some embayments, it takes several waves to
build up peak tsunami wave heights. Figure 2.10 maps the run-up heights around
Hawaii for the Alaskan tsunami of April 1, 1946. The northern coastline facing the
tsunami received the highest run-up. However, there was also a tendency for waves to
wrap around the islands and reach higher run-ups at supposedly protected sites,
especially on the islands of Kauai and Hawaii. Because of refraction effects, almost
every promontory also experienced large run-ups, often more than 5m high. Steep
coastlines were hardest hit because the tsunami waves could approach shore with

Direction of tsunami
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Spot height (m) — 16.4
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Figure 2.10. Run-up heights around the Hawaiian Islands for the Alaskan tsunami of April 1,
1946. Based on Shepard (1977).
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Figure 2.11. The American warship Wateree in the foreground and the Peruvian warship
America in the background. Both ships were carried inland 3 km by a 21 m high tsunami wave
during the Arica, South American event of August 13, 1868. Retreat of the sea from the coast
preceded the wave, bottoming both boats. The Wateree, being flat hulled, bottomed upright and
then surfed the crest of the tsunami wave. The America, being keel-shaped, was rolled repeatedly
by the tsunami. Photograph courtesy of the United States Geological Survey. Source:
Catalogue of Disasters # A68H08-002.

minimal energy dissipation. For all of these reasons, run-up heights were spatially
very variable. In some places—for example, on the north shore of Molokai—heights
exceeded 10 m, while several kilometers away they did not exceed 2.5 m.

Tsunami interaction with inshore topography also explains why larger waves
often appear later in a tsunami wave train. For example, during the 1868 tsunami off
Arica, South America, the USS Wateree and the Peruvian ship America escaped the
first two waves, but were picked up by a third wave 21 m high. The wave moved the
two ships 5km up the coast and 3 km inland, overtopping sand dunes (Figure 2.11).
The ships came to rest at the foot of the coastal range, where run-up had surged to a
height 14m above sea level. Similarly, during the April 1, 1946 tsunami that deva-
stated Hilo, Hawaii (the same tsunami that destroyed the Scotch Cap lighthouse
shown in Figures 2.1 and 2.9), many people were killed by the third wave, which was
much higher than the preceding two.

Shallow-water long-wave equations can accurately simulate run-up. Figure 2.12
presents the results for a tsunami originally 3 m high with a period of 900 seconds
traveling across a shelf of 12m depth onto a beach of 1% slope. Under these con-
ditions, linear theory would have the wave breaking several kilometers from shore.
However, the shallow-water long-wave equations indicate that the wave surges onto
the beach with a wave front that is 3.5 m high. This is similar to many descriptions of
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Figure 2.12. Run-up of a tsunami wave onto a beach modeled using shallow-water, long-wave
equations. The model used a grid spacing of 10 and 0.5s time increments. The original
sinusoidal wave had a height of 3m and a period of 900s. Run-up peaked at 6 m above mean
sea level and penetrated 600 m inland on a 1% slope. Based on Mader (1990).

tsunami approaching shallow coasts, especially the one that approached the coast of
Thailand during the Indian Ocean Tsunami event. While flooding can occur long
distances inland, the velocity of the wave front can slow dramatically. During the
Oaxaca, Mexico, Tsunami of October 9, 1995, people were able to outrun the wave as
it progressed inland. A tsunami’s backwash can be just as fast as, if not faster than, its
run-up. The modeled wave shown in Figure 2.12 took 300 seconds to reach its most
shoreward point, but just over 100 seconds to retreat from the coast. Tsunami
backwash is potentially just as dangerous as run-up. Unfortunately, little work
has been done on tsunami backwash.

The sheltered locations on the lee side of islands appear particularly vulnerable to
tsunami run-up. Solitary waves propagate ecasily along steep shores, forming a
trapped edge wave. Laboratory models show that the maximum run-up height of
this trapped wave is greatest toward the rear of an island. More important, the run-up
velocity here can be up to three times faster than at the front. For example, the
December 12, 1992 tsunami along the north coast of Flores Island, Indonesia,
devastated two villages in the lee of Babi, a small coastal island lying 5 km offshore.
Run-up having maximum heights of 5.6 m—7.1 m completely destroyed two villages
and killed 2,200 people. Similarly, during the July 12, 1993 tsunami in the Sea of
Japan, the town of Hamatsumae, lying behind the island of Okusihir, was destroyed
by a 30 m high tsunami run-up that killed 330 people.

Finally, tsunami run-up can also take on complex forms. Video images of
tsunami waves approaching shore show that some decay into one or more bores.
A bore is a special waveform in which the mass of water propagates shoreward with
the wave. The leading edge of the wave is often turbulent. Waves in very shallow
water can also break down into multiple bores or solitons. Soliton formation can be
witnessed on many beaches where wind-generated waves cross a shallow shoal,
particularly at low tide. Such waves are paradoxical because bores should dissipate
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their energy rapidly through turbulence and frictional attenuation, especially on dry
land. However, tsunami bores are particularly damaging as they cross a shoreline.
Detailed analysis indicates that the bore pushes a small wedge-shaped body of water
shoreward as it approaches the shoreline. This transfers momentum to the wedge,
increasing water velocity and turbulence by a factor of 2. While there is a rapid
decrease in velocity inland, material in the zone of turbulence can be subject to impact
forces greater than those produced by ordinary waves. Often objects can travel so fast
that they become water-borne missiles. This process can also transport a large
amount of beach sediment inland. Tsunami that degenerate into bores are thus
particularly effective in sweeping debris inland.

Inland penetration
(Hills and Mader, 1997)

As a rough rule of thumb, the cross-sectional area of coastline flooded by a tsunami is
equal to the cross-sectional area of water under the wave crest close to shore. This
effect is illustrated by Figure 2.13. The bigger the tsunami, or the longer its wave
period, the greater the volume of water carried onshore and the greater the extent of
flooding. The maximum distance that run-up can penetrate inland on a flat coast can
be calculated using the following formula:

Xmax = (Hr)l'%n_zk (214)

where  x,, = limit of landward incursion (m)
n = Manning’s n
k = a constant

Very smooth terrain such as mud flats or pastures has a Manning’s n of 0.015. Areas
covered in buildings have a value of 0.03, and densely treed landscapes have a value of

Volume of inundation =  Volume under the tsunami wave

~f—

Al y Cross-sectional area _  Cross-sectional area under

of coast inundated the tsunami wave

Figure 2.13. Schematic diagram showing that the cross-sectional area of coastline flooded, and
volume of inundation by a tsunami is equal to the cross-sectional area and volume of water
under the tsunami wave crest. The landscape represented in this diagram will be described in
Chapter 4.
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Figure 2.14. Tsunami height vs. landward limit of flooding on a flat coastal plain of varying
roughness. Roughness is represented by Manning’s n, where n equals 0.015 for very smooth
topography, 0.03 for developed land, and 0.07 for a densely treed landscape. Based on Hills and
Mader (1997).

0.07. The constant in Equation (2.14) has been evaluated for many tsunami and has a
value of 0.06. The equation assumes that the run-up height equals the maximum
depth of the tsunami at shore. Using this value, the maximum distance that tsunami
can flood inland is plotted in Figure 2.14 for different run-up heights, for the three
values of Manning’s n mentioned. For developed land on flat coastal plains, a
tsunami with a height of 10 m at shore can penetrate 1.4km inland. Exceptional
tsunami with heights at shore of 40 m—50 m can race 9 km—12 km inland. Only large
earthquakes, submarine landslides, and asteroid impacts with the ocean can generate
these latter wave heights. For crops or pasture, the same waves could theoretically
rush inland four times farther—distances of 5.8 km for a 10 m high wave at shore and
36 km—49 km for the 40 m to 50 m high tsunami. The Indian Ocean Tsunami at Banda
Aceh, Indonesia in 2004 with a height of 10 m at shore reached these predicted limits,
traveling 5 km inland. Equation (2.14) also indicates that the effect of a tsunami can
be minimized on flat coastal plains by planting dense stands of trees. For example, a
10 m high tsunami can only penetrate 260 m inland across a forested coastal plain,
while extreme waves 40 m—50 m in height could not travel more than 2.3 km inland
across the same terrain.

Depth and velocity at shore
(Blong, 1984; Camfield, 1994; Yeh et al., 1994; Nott, 1997)

Equation (2.2) indicates that the velocity of a tsunami wave is solely a function of
water depth. Once a tsunami wave reaches dry land, then wave height equates with
water depth and the following equations apply:

H,=d (2.15)
v, = 2(gH,)" (2.16)
where v, = velocity of run-up (m s7h

d = the depth of water flow over land (m)
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This equation yields velocities of 8ms™'-9ms™' for a 2 m high tsunami wave at
shore. Slope and bed roughness can be incorporated into the calculation as follows:

v, = HY[tan(5,)]**n ! (2.17)
where 0,, = slope of the water surface (degrees)

While the inclination of the water surface can be a difficult parameter to estimate,
it can be determined after an event by measuring water lines on buildings and trees,
and debris left stranded in vegetation. Generally, the inclination of the water surface
ranges between 0.001 and 0.0025, increasing with slope. In Japan, it has been shown
that for a Manning’s n of 0.023, velocities under a tsunami wave can range between
1.3ms ! and 5.6ms ! using Equation (2.17). In Hilo, Hawaii, the 8 m high tsunami
of 1946 mentioned earlier could have obtained velocities between 5.9ms™' and
9.3ms '—far faster than people could run. Where tsunami behave as solitary waves
and encircle steep islands, velocities in the lee of the island have been found to be
three times higher than those calculated using this equation.

The velocities defined by Equations (2.16) and (2.17) have the potential to move
sediment and erode bedrock, producing geomorphic features in the coastal landscape
that uniquely define the present of both present-day and past tsunami events. These
signatures will be described in detail in the following chapter.



