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Chapter 1

Setting the Stage

1.1 Euclidean Spaces and Vectors

1.
� ������� �	��

����������
�����������
���������� �

,
� ������� ����������
 �	��
����!���

,
�#"$�%���&�������'

���������(


�������)��
��*",+-�.��/
, 0 ��1	243�365�7$����/�8	��"$��� �9�:��1	243�365�7$���;� ��8	���<��=	>?8	@ .

2.
� �BAC��� � �D�E�FA��G��"H�E�BAC�I�-�J� �K� � A��L�%"M�N
O� ��� �

. Taking the plus sign gives (a); adding these
identities with the plus and minus signs gives (b).

3.
� �IPG
C"�"�"L
Q�SR&� � �
T RU)V P � � U � � 
W�<T PYX[Z]\ U X R �^Z_"�� U . The Pythagorean theorem follows immediately.

4. With ` �Eab�c�d� ef�Qa�gh� � as in the proof, equality holds precisely when the minimum value of ` �Eab� is 0,
that is, when

ef��a�g
for some

acikj
. Thus equality holds in Cauchy’s inequality precisely when

e
andg

are linearly dependent.

5. The triangle inequality is an equality precisely when
el"�gN�O� e'��� gh�

, that is, when the angle from
e

to
g

is 0, or when
e

is a positive scalar multiple of
g

or vice versa.

6.
� e'���m�n�oep�%gI�^
 gh��qr� es�%g*��

� gh�

, so
� e'�L�t� g*��q�� eu�%gh�

. Likewise,
� gh�M�t� e'�vq�� ep�wgh�

.

7. (a) If
es"�gN��+

then
epx�g

, so
� e#ykgh�M�m� eG��� gh�

; hence if also
eky#gN�
z

then
ep��z

or
gN�
z

.

(b) If
ef"M{k��g%"	{

and
eNyN{k��g|yN{

then
�oef� gI��"	{F��+

and
�oe}�WgI�;yN{k�~z

, so by (a), eitheres�%g%��z
or
{���z

; the latter possibility is excluded.

(c) We always have
eFy#ep��z

. If
e

and
g

are proportional, then
eky#g%��z

too. If not, then
e#y#g

is a
nonzero vector perpendicular to

e
, so
eky��oeky#g:�(���z

.

8. This follows from the definitions by a simple calculation.

1.2 Subsets of Euclidean Space

1. (a)–(d): See the answers in the back of the text.

(e) �I���b� �
� and ��� � � � �k�F� �E���b+9�*�[����q �fq
�L� .
(f) � ���b� � �k�;� �o+��b+9�4� , � � � �E�?�Y�[�*�v� � 
 � � q��L� , and �_� is the union of the unit circle and the line
segment � ���	�b+L�Iy � +v� .
(g) � ���b� �
� and ��� � � � � +��,�)�Iy � +��,�)� .

1



2 Chapter 1. Setting the Stage

2. If
��i �I���b� , there is a ball � � � ���$�Y�'� contained in � . � is open, so every point of � is an interior

point of � and hence of � , so in fact ����� ���4� and
�

is an interior point of � ���4� . Thus � ���b� is open by
Proposition 1.4a. Next, � and �_� are the complements of

� ��� � ���4� and �I���b�I� � ��� � ���4� , respectively, so
they are closed by Proposition 1.4b.

3. We use Proposition 1.4a. If
��i � P �B� � , some ball centered at

�
is contained in either � P or � � and

hence in � P � � � , so
�

is an interior point of � P � � � . If
��i � P	� � � , there are balls � P and � � centered

at
�

and contained in � P and � � , respectively; the smaller of these balls is contained in � P � � � , so again�
is an interior point of � P
� � � .

4. The complements of � P �k� � and � P � � � are � �P � � �� and � �P �k� �� , respectively, which are both open
by Exercise 3 and Proposition 1.4b.

5. This follows from the remarks preceding Proposition 1.4:
j��

is the disjoint union of � ���4� , �_� , and� ��� � ���b� , whereas � � �I���b�^�#��� and � � � � ��� � ���4�^�}�_� .

6. One example (in
j P

) is � U � � +��'�c��
��
P �

, for which ��� P � U � � +��,��� .
7.
j��

and
�

.

8. The sets in Exercise 1a and 1f are both examples.

9. If
� �#�%eG�����

then
� �K���m�n�E�k�%e��^
We'�vq���

� e'�

. Thus, if ����� ���L�be�� then ����� ����

� e'� ��z�� .

1.3 Limits and Continuity

1. (a) ` �o+��Y�[�<�.� for
��� +

and ` �o+��Y�[�<�.��� for
��� +

.

(b) ` �E�'�b+9�<�C�������! 
as
�"� +

.

(c) ` �Ea)�YaY�:� ��8$#La&%'�! 
as
a(� +

.

2. (a) Since
� �H�S�vq P� �E� � 
Q� � � , we have

� ` �E�'�Y�&����q
P
% �E� � 
Q� � ��� + as

�?�Y�)� +
.

(b) Since
� �L� % �w� % ��q|�&�E� % 
W� % �

, we have
� ` �E�'�Y�&���&q|�[� �I�*� + as

�?�Y�)� +
.

3. ` �E�?�Y�[�+�J� as
��� +

, so take ` �o+��Y�[�<�C� .
4. ` �E�?�-,&� and ` �.,��Y�[� are continuous for

,B���+
since ` is continuous except at

�o+��b+9�
. Moreover, ` �E�?�b+9���

` �o+��Y�&����+ for all
�'�Y�

, also continuous.

5. The two formulas for ` agree along the curves
�f� +

and
�}��� �

,
�t��.+

, so ` is continuous except at
the origin. It is discontinuous there since ` �o+��b+9�<��+ but ` �E�'�

P� � � �<� P� �� + as
��� +

.

6. Since
� ` �E�^����q�� �:� for all

�
, we have ` �E�^��� +-� ` �o+9� as

�"� +
. Suppose

,B��C+
. If
,

is irrational, then
` �.,����/,F���+ , but there are points

�
arbitrarily close to

,
with ` �E�_�:��+ . If

,
is rational, then ` �.,&�:��+ ,

but there are points
�

arbitrarily close to
,

with
� ` �E�_�����

P� � ,_� . In both cases ` is discontinuous at
,

.

7. Clearly
� ` �E�^���&q � �I� for all

�
, so ` is continuous at 0. If

,w���+
is rational, then ` �.,������+ , but there are

points
�

arbitrarily close to
,

with ` �E�_�:��+ ; hence ` is discontinuous at
,
. If

,
is irrational and 0 is the

distance from
,

to the nearest rational number with denominator
q21

, then
� ` �E�_���3�
��8$1 for

� ���4,_��� 0 ;
hence ` is continuous at

,
. (There are only finitely many rational numbers with denominator

q51
in any

bounded interval.)
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8. Given
ewiwj �

and � ��+ , let
� � � � � �����oe��Y� . Then

�
is open, and hence so is � � � � �����E�'��i � � .

We have
eti � , so there exists 0 ��+ such that � � 0 �be�� ��� . But this says that

� ���E�'�h���v�oe����+� �
whenever

� �s�Fe'� � 0 , so
�

is continuous at
e

. One can replace “open” by “closed” in the hypothesis by
the reasoning of the second paragraph of the proof of Theorem 1.13.

9. The fact that since
�

is a one-to-one correspondence between the points of
�

and the points of � has
the following consequences that we shall use: (i) If � � � ,

�v� � �	� �l� �.� �v� � � . (ii) If �!�
� ,
� �%���v�E�'�hi � �(��� �

P � � � .
Suppose

g i
��� �_� � , and let � � + be small enough so that � � � �bgI� ��� . Since
�

is continuous,� � P � � � � �bg:�Y� is a neighborhood of
� � P �og:�

by Theorem 1.13 and the remarks following it. Hence it
contains points in � and points not in � , and therefore � � � �bg:� contains points in

�v� � � and points not in��� � � . It follows that
gWi � ����� � �Y� .

Conversely, suppose
gWi � ����� � �Y� , and let

e ��� � P �og:�
; let � � + be small enough so that � � � �be�� � � .

Since
� � P

is continuous,
��� � � � �be��Y��� ��� �

P � � P � � � � �be��Y� is a neighborhood of
g

by Theorem 1.13 again.
Hence it contains points in

��� � � and points not in
��� � � , and so � � � �be�� contains points in � and points

not in � . It follows that
e#i �_� and hence

gQi��v� ��� � .

1.4 Sequences

1. (a) Divide top and bottom by
� 1

to get
��R�� � ��
�1 � P�c
�1 � P�� � �

� �
� .

(b)
��7���� 1[8$1S�&q
��8$1 � +

.

(c) Diverges since
�_R

is
+
,
P� � � , and

� P� � � for infinitely many
1

each.

2.
� ��R!�%�[���.�,/�8&� 1u��=[��� � whenever

1"�|=c
��,/ � �
P
.

3.
��R��.�*" �� "

�
� "�"�"

1 � �
1 � �1 � + .

4. If
��R � ,

and
��R ���

, then
�E��R��Y��RL� � �.,����6�

. By continuity of addition and multiplication (Theorem
1.10) and the sequential characterization of continuity (Theorem 1.15), the result follows.

5. If
�v�E�'�+���

as
� � e

, for any � � + there exists 0 � + such that
� �v�E�'�������3� � whenever

+ ��� �K�(e'� � 0 .
If
�?R � e

, there exists � such that
� �'R �We'� � 0 whenever

1�� � , and hence
� ���E�'RM�K�����
� � . On

the other hand, if
�v�E�'�s����

as
��� e

, there exists � ��+ such that for every 0 ��+ there is an
�

with+)��� �k��e'� � 0 but
� �v�E�'�I� �Y� � � . Let

�?R
be such a point for 0 �.��8$1 . Then

�'R � e
but
���E�?R	�!��!�

.

6. If
�SRui � ,

�SRF��re
, and

�SR � e
, then the sequence � �?R�� must assume infinitely many distinct values,

and for � � + , all but finitely many of them are in � � � �be�� ; thus
e

is an accumulation point of � .
Conversely, if

e
is an accumulation point of � , for each positive integer

1
the ball � �oeS�,��8$1[� contains

points of � other than
e

; let
�GR

be one.

7. If
e

is an accumulation point of � , then
ewi � by Theorem 1.14 and Exercise 6. If

e|8i � and
e

is not
an accumulation point of � , there is a neighborhood of

e
that contains only finitely many points of � . If

� is less than the minimum distance from
e

to any of these points (which do not coincide with
e

sinceeQ8i � ), � � � �be�� is a neighborhood of
e

that is disjoint from � , and hence
eQ8i � .
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1.5 Completeness

1. (a) � � ��� �	�?����8�� ��� � ����8M� �v�?��� , so the inf and sup are
���

and
�
.

(b) The supremum is the 0th element of the sequence; the infimum is the limit of the odd-numbered
subsequence.

(c) � � � >?8��&�  � , so the inf and sup are
>?8��

and
 

.

2. One example is
�_R!��7�� �S� 1�>?8	���

(Exercise 1c in � 1.4).

3. If
,%� +�� , P , � , � �����Kir�o+��,��� , let

��R#� +�� , P , � ����� ,�R , considered as a fraction with denominator
��+ R

.
Then � ��R9� is a subsequence of the given sequence that converges to

,
. For

,}�.+
, take

�GRl�~��8$1
; for,s�.�

, take
��R�� � 1l� ���Y8$1

.

4. (a) If � ���W��R��
	 , then
	S�
	 �

and hence
	^��+

or 1.

(b) The limit is zero if
� ,_� �
�

, 1 if
, �
Al�

, and nonexistent (or infinite) if
� ,^���
�

.

5. We have
�?P�� � �)�C�

. If
��R ���

, then
��R�� P � � ��
Q��R � � �c
 ���
�

. By induction,
�_R �t�

for all1
. This being the case,

�^R�� P � � ��
 ��R � � ��R*
 ��R-� � �L��R)� � ��R;",��R ����R
. Thus the sequence

� ��R�� is increasing and bounded above by 2, so it converges to a limit
	
. We have

	�� � ��

	
, hence	 � �
	[
 �

, and hence
	S���

or
	?�.���

. The latter alternative is impossible since
�'R � +

for all
1

.

6. (a) Let
��R

be the
1

th term of the Fibonacci sequence, so
�MR ����R�� P 8$��R

. Since
��R�� � ����R�� P 
W��R , we

obtain
�$R�� P � �h
�����8 ��R���� ����R;
����Y8 ��R

by dividing through by
�_R�� P

. Replacing
1

by
1�
��

we get��R�� � � ����R�� P 
����Y8 ��R�� P , and substituting in
�LR�� P � ����R*
����Y8 ��R

gives
�$R�� � � � � ��Rc
C���Y8�����R�
���� .

(b) The function ` �E�_�<�m� �L�<
k���Y8��E��
#���h���?� �E��
k��� �
P

is an increasing function of
�

, and ` ���I�<��� .
Hence, if

�$R ���
then

�$R�� � � ` ����R	�4� ` ���G�!��� , and if
�$R����

then
��R�� � � ` ����RL�4� ` ���I�!��� .

Since
��P�� �"���

and
� � � � ��� , it follows that

�LR ���
for

1
odd and

�$R ���
for

1
even. Next,��R�� � � ��R�� ` ����RL�?� ��R!�m���I
 ��R*� � �R �Y8����$RK
t��� , which by the hint is positive for

1
odd and negative

for
1

even.

(c) By (b), � � � U � P�� is an increasing sequence and � � � U � is a decreasing sequence, bounded above and
below, respectively, by

�
. Their limits

	�P
and
	 � both satisfy ` ��	 U �<�
	 U , and hence both are equal to

�
.

7. If � �?R��M� converges to
e

, and � �C+ , then � � � �be�� contains
�GR��

for all sufficiently large


. Conversely, if

every ball about
e

contains infinitely many
�IR

, we can pick
�?R��ci � ���	�be�� , and then for


��
�v�4�v���&�������
,

we can pick
1 U �21 U � P so that

�SR���i � � 
 �
P �be��

; then
�?R��'� e

.

8. If � is bounded and infinite, let � �GR�� be a sequence of distinct points of � . By Theorem 1.19, this set
has a convergent subsequence, and by Exercise 6 in � 1.4 its limit

e
is an accumulation point of � . (At

most one
�?R

can be equal to
e

; throw it out if necessary.)

9. If there are infinitely many
1

for which
�SR ��,�� � , then

7���� � ��R-� 1 �"!N� ��,�� � for all
!

and hence� ��� 7#���h��R$��,^� � . If there are only finitely many
1

for which
�SR ��,H
 � , then

7#��� � ��R � 1%�"!N�-q�,H
 �
for
!

sufficiently large, and hence � ���|7����h�^R�q�,<
 � . Since � is arbitrary, we have
,fq � ���|7������^R-q�,

and hence
,l� � ��� 7��&���_R .

10. We define a subsequence � �^R��M� recursively. We take
1HP � �

, and for

�� �

, we choose
1 U � 1 U � P

so that
��R�� �~7#��� � ��RN��1'� 1 U � P�
r�L���
����8 
v� . Then, with (*) as in the definition of � ��� 7���� , we

have ( R���+ � � P �C����8 
��'�t��R�� � ( R���+ � � P . It follows that � ���Q�_R���� � ��� (*) � � ���|7�������R . Similarly for� ��������, .
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11. If
��R���� ,

, then for any � �~+ we have
,p� � �O�_R � ,l
 � for infinitely many

1
. It follows that� ��� 7#���h��R$��,�� � and � ��������,���R-q�,(
 � ; since � can be arbitrarily small, the same is true with � ��+ .

12. With ( ) and
� ) as in the definition of � ��� 7���� and � ��� � ��, , the assertion that

� �SR�� ,_��q � for
1 � �

is equivalent to the assertion that ( ) q/,�
 � and
� ) �/,l� � for

! � � . If this holds, then
, � � q� ��������,���R#q � ��� 7#���h��R#q ,-
 � for every � , and hence � ����� ��,��_R � ,N� � ��� 7����h��R . Conversely, if

the latter condition holds, then for any � ��+ there exists
�

such that
, � � q�� ) q (*) q , 
 � for! � �

, and so
� ��R;� ,_�vq � for

1 � �
; hence � ���Q��R��/, .

1.6 Compactness

1. (a) One example is � ��j , ` �E�_�:����� .
(b) One example is � �Cj , ` �E�_�<��� � .

2. (a) One example is � �m�o+��,��� , ` �E�_�:� ��8$� .
(b) � bounded

��� � compact
��� ` � � � compact

��� ` � � � �t` � � � bounded.

3. If � is compact and � is an infinite subset of � , let
�KP,�Y� � ������� be a sequence of distinct points of � .

This sequence has a convergent subsequence whose limit
�

lies in � , and
�

is an accumulation point of
� (Exercise 6, � 1.4). Conversely, suppose � is not compact. If � is not closed, there is a sequence
� �SR�� in � that converges to a point

�:i � � , and if � is not bounded, there is a sequence � �IR�� in � with� �SR[� �  
. In either case, the set � �<P,�Y� � ������� � is an infinite subset of � with no accumulation point in

� . (In the first case, the only accumulation point is
�
; in the second case, there is no accumulation point

at all.)

4. If not, there is a sequence � �'R9� in � such that ` �E�?RL� �
��8$1 . Some subsequence � �'R��	� has a limit
�Gi � ;

but then ` � � �:� � ��� ` �E�SR��$�:��+ , contrary to assumption.

5. By Bolzano-Weierstrass: For
1%�
�

, pick
�IR-i � R . Then

�?R-i � P for all
1

, so some subsequence � �GR����
converges to a point

�hi � P . But since
� U i � R for


 � 1
,
�

is actually in � R for all
1

, i.e.,
�hi
	 � R .

By Heine-Borel: Let � be an open ball containing � P , and let
� U � ���c� U . If the sets

� R
covered � P ,

there would be a finite subcover; that is, � P � ��� P � R�� � � . But this is false since �l� � �
� � �

��
�
.

Thus the sets
� R

do not cover � , that is,
	 � R�� �#� � � R ��
� .

6. (a) If
��i � � � , there is a sequence � �GR9� in � that converges to

�
, i.e.,

� �c���GR[�*� +
; thus 
 � � � � ����+ .

(b) Suppose
�

is compact, � is closed, but 
 � � � � �c�.+ . Then there exist
�:R i �

,
�SRfi � such that� �SR�� �SR�� � +

. Since
�

is compact, by passing to a subsequence we may assume that
�<R)� �ti �

.
But then also

�?R �J�
, so
��i � � � , contradicting

� � � �
� .

(c) One example is
� � � �E�?�Y�[�h�M�fq +v� , � � � �E�'�Y�&�*�M� ������� .

1.7 Connectedness

1. (a) The two branches (
� � +

and
� � +

).

(b) One point in the set and the rest of the set.

(c) The intersections with the half-spaces
� � +

and
� � +

.
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2. If
e^�bg

are points in the unit sphere � , the plane through
e

,
g

, and the origin (that is, the linear span ofe
and
g

) intersects � in a circle, and either of the two arcs between
e

and
g

provides a continuous path
in � from

e
to
g

. (If
g��O�ce

, any great circle through
e

will do.) This argument works in any number
of dimensions.

3. If ` is neither strictly increasing nor strictly decreasing, one can find points
�?�Y����� i��

such that (i)� � �/���
, and (ii) either ` �E�^� q ` �E�[� and ` �E�&� � ` ����� , or ` �E�_� � ` �E�[� and ` �E�[� q ` ����� ; we

assume the former alternative. If ` �E�^�(� ` �E�[� or ` �E�[�(� ` ���v� , then ` is not one-to-one. Otherwise,
the intervals

� ` �E�_� � ` �E�[�Y� and
� ` ����� � ` �E�[�Y� are nonempty, and one is contained in the other. Assuming

` is continuous, the intermediate value theorem implies that ` �Y�E�?�Y�[�Y���.� ` �E�^� � ` �E�&�Y� and ` �Y�E�������Y���� ` ����� � ` �E�[�Y� , so there are points in
�E�'�Y�&�

and
�E�������

at which ` takes the same value, and again ` is not
one-to-one.

4. Suppose � P �#� � is disconnected, so � P �k� � � � � � where neither
�

nor � intersects the closure of
the other one. Then � P�� � � P � � � � � � P � � � is a disconnection of � P unless either � P � � or � P � �
is empty, i.e., � P � � or � P � � . Likewise, we must have � � � � or � � � � . It cannot be that � P and
� � are both contained in

�
(resp. � ), for then � (resp.

�
) would be empty; so � P � � and � � ��� or

vice versa. Either alternative contradicts the assumption that � P � � � ��
� .

� P�� � � is connected when �
�.�

by Theorem 1.25, but not when �
�
�

. For example, take � P to be the
unit sphere (Exercise 2) and � � to be a line through the origin; the intersection consists of two points.

5. Suppose � � � � � where
�

and � are open and disjoint. If
� i �

, there is a ball centered at
�

that
is contained in

�
and hence is disjoint from � ; hence

��8i � . Likewise � � � � � , so
� � � is a

disconnection of � .

Conversely, suppose � is open and � � � � � is a disconnection. If
��i �

, there is a ball centered
at
�

that is contained in � (since � is open) and a ball centered at
�

that does not intersect � (since� � � � � ). The smaller of these two is a ball centered at
�

that is contained in
�

. Thus every point
of
�

is an interior point of
�

, so
�

is open; likewise, � is open.

6. If � � � � � where
�

and � are closed and disjoint, it is immediate that
� � � is a disconnection of

� . Conversely, if � is closed and
� � � is a disconnection of � , suppose

eFi �
. Since � is closed, we

have
e#i � ; since � � � �
� , we have

e 8i � . Hence
e#i �

, so
�

is closed. Likewise, � is closed.

7. If � � � P �F� � is a disconnection of � , define ` �E�'�c� + for
�ti � P and ` �E�'�;� � for

�ti � � . Each
point of � P has a neighborhood

�
that does not intersect � � , so that ` is constant on � � � ; likewise

with � P and � � switched. It follows that ` is continuous on � .

Conversely, if ` maps � continuously onto � +��,�L� , let � Pp� ` �
P � � +v�L� and � � � ` �

P � � �L�L� . If
�mi

� � � P , then ` �E�'����+ since ` is continuous, so
��8i � � . Thus � P � � � ��� , and likewise with � P and

� � switched, so � P �#� � is a disconnection of � .

8. Suppose � � � � � is a disconnection of � . Then
� � � � � � � � � � � is a disconnection of � unless

� � � or � � � is empty. The latter alternatives are impossible: If � � � � � , say, then �/� � ; but
since

�
does not intersect the closure of � , we would have

� � � � ��� � � � ��� , contrary to the
definition of disconnection.

9. Pick
�%i � . If 	

�E�'����+
we are done. Otherwise, either 	

�E�'� � +
or 	
�E�'� � +

, in which case 	
���*�'���|+

or 	
���*�'�'��+

respectively; either way, the intermediate value theorem implies that 	
�E�G�*��+

for some� i � .
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10. ` ���	�4���K�.��� and ` � �&�,��������= , so there is a point
�E�?�Y�[�hi � such that ` �E�?�Y�[�<��+ , i.e.,

�f���
.

11. (a) The graph
�u��7�� �S�o>?8$�^�

,
+)�|�Bq|�

, is arcwise connected almost by definition (it’s an arc!), and �
is its closure. (Check that every point in � � has a neighborhood that does not intersect � , and that every
neighborhood of every point on the vertical line segment � +v�fy � ���	�,�)� contains points of the graph�u�C7�� �S�o>?8$�_�

.) So � is connected by Exercise 8.

(b) Suppose
�|� � +��,�)��� � is continuous and satisfies

�v�o+9�k� � �v�b+9�
and
�������#� �o+��,���

. The first
component ` P of

�
is continuous, so by the intermediate value theroem, for each

1
there exists

a�R i � +��,�)�
so that ` P��Ea�R	�<� ��8	� 1 and hence

���Ea�RM�<� ����8	� 1��b+9�
(= the only point in � with

�
-coordinate

��8	� 1
). As

a
goes from

aYR
to
a U (

k�� 1

,) ` P must assume all values between
��8	� 1

and
��8	� 


, and hence ` � must assume
all values between

���
and
�

(again because there is only one point in � with a given
�

-coordinate in
this range, and the

�
-coordinates of these points range from

���
to
�
). By passing to a subsequence, by

Bolzano-Weierstrass we may assume that
a R � a��

. Every neighborhood of
a��

contains points at which
` � assumes any given value between

� �
and
�
, so ` � cannot be continuous at

a �
, contrary to assumption.

1.8 Uniform Continuity

1. Given � � + , if
� �k�w������� � 8�� �

P����
then

� ���E�'�I� �v�E�G���3� � .
2. (a) ���� �.,�
WaY�

� � P 
 a � �	�� a
� � P 
 a , so

�.,�
��6� � � , � � � �
.

(b) For any
�?�Y�

we have
� �:� � q��b� ���}�S�Y
|� �S��� � q�� �l�}�S� � 
 � �S� �

, and likewise with
�

and
�

switched;
hence 



� �I� � �t� �^� � 


q�� �p�w�S� �

.

3. Given � ��+ , we can choose 0 P,� 0 � �
+ so that
� ���E�'��� ���E�G��� � P� � whenever

�:�Y�|i � and
� �N���h� �

0 P and
� �G�E�'�!���I�E�G���4� P� � whenever

�:�Y� i � and
� � ����� � 0 � . Let 0 � � � �S� 0 P,� 0 � � . Then�n���h

�_�6�E�'�<�|����
��^�6�E�G���Hq�� ���E�'�:� ���E�G���$

� �I�E�'�:���I�E�G���3� � whenever

�:�Y�Qi � and
� �#�w�h��� 0 .

4. Suppose
�

is uniformly continuous and � �GR�� is Cauchy. Given � � + , there exists 0 �J+ so that� ���E�'�(�����E�I��� � � whenever
� � �C��� � 0 , and there exists � such that

� � U ���SRv� � 0 whenever
M� 1 � � . It follows that
� ���E� U �h� �v�E�SR	��� � � whenever


M� 1 � � , so � �v�E�?RM�4� is Cauchy. For the
counterexample, take

�^R!� ��8$1
and ` �E�_�:�.��8$� or ` �E�_���C365�7$�o>?8$�_� .

5. If
�v� � � is unbounded, we can find a sequence � �IR�� in � such that

� ���E�?RM��� �  
. If also � is bounded,

by passing to a subsequence we may assume that � �IR9� converges to some limit (which may not be in
� ). Then

� � U �u�SR�� will be as small as we please provided



and
1

are sufficiently large, but for any



we
can find

1�� 

such that

� ���E�'R�������� �v�E� U ���,
�� and hence
� ���E� U �G� �v�E�SR	������� . Thus

�
is not uniformly

continuous on � .



Chapter 2

Differential Calculus

2.1 Differentiability in One Variable

1. Suppose
,����Qi �

and
, � �

. If `�� � + on
�.,����6�

, then ` �.,�� � ` � ��� by the mean value theorem.
Otherwise, let

�'P,�������,�Y��R
be the points of

�.,H�����
at which ` � vanishes, in increasing order. Then ` � ���I�

` �.,���� ��` � ����� ` �E��RM� �	
 ��` �E��RL�_� ` �E��R � P �L
W"�"�"6
 ��` �E� P �^� ` �.,�� � . Each of the differences on the right
is positive by the mean value theorem.

2. We have ` � �o+9�!� � ��� ��� � ` �E�_�Y8$� � � ��� ��� ���(7�� �^����8$�_����+ since
� �;7�� �S����8$�_���Gq � �I�

. For
�
���+

we
have ` � �E�^�<���L�(7�� �S����8$�_���k365�7L����8$�^� ; the first term on the right approaches 0 as

��� +
, but the second

term has no limit.

3. 	 � �o+9��� ` � �o+9��

P� � P� , and for

� ���+
, 	 � �E�_�<�
�L�;7�� �S����8$�^���u365�7	����8$�_�9


P� . In particular, 	 � ����8	� 1�>?�K�� P� , so every interval about 0 contains small subintervals on which 	 � � + .
4.
� � �o+9��� � ��� ��� � � �E�^�Y8$�}��+ since

� � �E�_���[q � �
for all

�
.

5. For
� �O+

, ��` �.,�
 � ��� ` �.,&� �E8 � � `�� ���,� for some
�#ir�.,H� ,l
 � �

. As
� � +

,
� � +

also, and so
` � ���,�+���

.

6. These formulas are obtained by applying l’Hôpital’s rule 2 or 3 times. The general result is that
� ���
	 � ��� � 	 ` �.,��Y8 � ��� ` � ��
b�.,&� , where

� 	
is the operator defined by

� 	 ` �.,&� � ` �., 
 � �c� ` �.,�� .
(Explicitly,

� � 	 ` �.,&�:� T �U)V � ������� � � U�� � U�� ` �.,�
 
 � � .)
7. � 5�� � ���K
�,9�^� �

� � ��� � ��8$�_� � 5��^���K
�,��_� . By l’Hôpital, the latter quantity tends to
, �

as
��� +

.

8.
����" �^� � � � T ` U 	 U � � � T � `��U 	 U 
 ` U 	��U ����� � " �s
 �c" � � . The calculation for cross products is similar.

9. (a) � ��� ��� � � �
P�� ����8$� � � � � ��� � �

� � � � 8 � � ��+
by Corollary 2.12.

(b) This is the case �
�.�

of (a).

(c) For
1 � �

, `�� �E�^�Q� ������8$� � � � �
P�� ���

. Assume ` �
R 
 �E�_�W���u����8$�^� � � P�� ���

; then ` �
R�� P 
 �E�_�W�

� ������8$� � ��� � ����8$�_�)� � ��8$� �L���u����8$�^� � �$�
P�� � �

. The first term in brackets is a polynomial of degree
� � 1 � ���b


� ��� 1 
��
in
��8$�

, and the second term is a polynomial of degree
� 1�
 �

in
��8$�

.

(d) The case
1N�d�

is (b). Assuming by inductive hypothesis that ` �
R � P 
b�o+9����+

, we have ` �
R 
b�o+9�!�

� ��� ��� � ` �
R � P 
 �E�_�Y8$�

. By (c), ` �
R � P 
 �E�_�Y8$�%���s����8$�^� � � P�� ���

where
�

is a polynomial; hence the limit
as
�"� +

is 0 by (a).

8
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10.
�

is well defined since the two formulas agree at
� � �

; it is continuous on
�o+��4���

by inspection and
continuous at

+
and
�

by definition of ` � �o+9� and ` � ����� . By the intermediate value theorem, for any �
between `�� �o+9� and `�� ����� there exists � i��o+��4��� such that

� � � ��� � , and by the mean value theorem,� � � ��� ` � ����� for some
��i��o+�� � � (if � q�� ) or

��i%� � � �	�'��� (if � �
� ).

2.2 Differentiability in Several Variables

1. (a) See the answer in the back of the text.

(b)
� ` �E�'�Y�&�:�m� � � % � �

� � �?���L� � % � � � � �
;
� ` ���	�,�������.� �&����� ; � � � ����� % ��� 
 ` ���	�,�����<� � � "��!
 % � "��-� ���� .

(c)
� ` �E�'�Y�&� � �����M�6�k�r���&�?�M�6�%�r�,���Y8��
	$�N
��L�&� � ; � ` ���	�,�����f� � #v�,����� ; � � � ����� % ��� 
 ` ���	�,�����f�� � " #�� % � "���� �

.

2. (a) See the answer in the back of the text.

(b) 
�` �E�?�Y���������m�E�:
 � � � �
P

 �<
s�L� � 
 �?
u� �H�E�:
 � � � �

P

 � ; 
 ` ���	�,�	�b+9��� 
 �<
s� 
 � ; ` ��� � �	�,� � �v�,��+�� ���	�

` ���	�,�	�b+9����+�� �K
 �&�o+�� ������+��
	 .
3. 
�� �

�L�H��� � � �
�;
�� 
 � 


�L� � � P�� � �
�&���!
���� 
 ��


� � � � � �
���(
C��� � 
 � , so 
�� � � ��� % ��P 
 � ��+ 
 � 
�� �� 
 ��
 =	+ 
 � .

(a)
+-�
��+[��� +����'
�� �� ��� � +*#��?
 =	+ 
 � ��� 
 �l� � ��� � �;
W�$�E8	=	+ � � +��M@ .

(b) The coefficient of 
 � is largest.

4.
� � � � 
 �L� � � � 
 ����� �C� � � � ���L� �

P � � � 
�� �L� � � � 
 =L� � P � � � �����L� � � � 
W�L��� P � � � ��� � .

5. � � � �.�*� � 8��E�H� �w��
W�L�_� � and � � � ���L� � 8��E��� �w��
 �L�_� � ; the result follows.

6. Since � Zb�b� �K� �
P �<� �*�HZY� �K� ���

, we have 
 ` U �O� �K� �
P

 � U � T �Z V P �HZE� U � �K� ��� 
 �HZ and hence

�
U
� U 
�` U � �

U
� U � �K� � P 
 � U � � Z

�
U
�HZE� �U � �K� ��� 
 �HZ

� �
U
� U � �K� � P 
 � U � � Z �HZ4� �K� �

P

 ��Z^��+��

7. (a)
� ` �E�?�Y�[����q

P� � �I� , so ` �E�?�Y�[��� + as
�E�'�Y�&�(� �o+��b+9�

.

(b) With � � �o365�7 0 �b7�� � 0 � , ���&` �o+��b+9��� � ����� � � ` �Ea�365�7 0 ��a�7�� � 0 �Y8$a<��365�7 � 0 7�� � 0 .
(c) Taking 0 �m+ or 0 �

P� > we see that � P � �o+��b+9�!� � � � �o+��b+9�(� + . If ` were differentiable it would
follow that ���&` �o+��b+9���C+ for all � ; but this is false.

8. Assume �
���

for simplicity; the general case follows by an elaboration of the argument as in the proof
of Theorem 2.19. Suppose

� � P ` �vq � and
� � � ` �vq � on � . Given

eki � , let
��� +

be small enough so
that � ���L�be�� �t� . If

� �h�����
, by the mean value theorem we have

� ` �oe-
��G�I� ` �oe����vq�� ` �., P 
 � P ��, � 
 � � �I� ` �., P �	, � 
 � � ���,
�� ` �., P ��, � 
 � � �I� ` �., P �-, � ���q �s�b� � PL��

� � � ��� �
which implies the continuity of ` at

e
.
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2.3 The Chain Rule

1. See the answers in the back of the text.

2. (a) and (c) See the answer in the back of the text.

(b) � � � ��� � ���
�
` P?
 �L� ` � 8��E� � 
C��� , � � � �.�;� � � ���

�
` P'
 �L� � ` � 8 � � % 

� .

3. (a)
� � � � ��� � � � � � @���@�� ` � � �L�l
 �L�[�<��+ .

(b)
� � � � 
�� � � � � � �C� � �(
 ` �E�v� �

P �S�B�v� � P `�� �E�v� �
P � �9
�� � �-
 `�� �E��� �

P � �[�F�H� �F� ` �E�v� �
P �<�t���

.

(c)
� � � � 
Q� � � � �C� � ` P'
Q� � ` � � � � ��� .

4. � � 8 � � U ��� U `�� ���9�Y8 � , so
T � � � 8 � � U � � �.� T � �U � `�� ���9� � 8 � � � `�� ����� � .

5. Both formulas for the tangent plane at
�.,������ ` �.,������Y� amount to

�s� ` �.,�������� � �E�B��,��:
 � �E� ���6�
where � � � � ` �.,������ and � � � � ` �.,H����� .

6. These are all similar; we just do (d). If
� �E�?�Y�����������H� � � � � 5������_�l��� , we have � � � �C� � � , � � � �C� � � ,

and � � � ���L�H� �-�t���-�t��� �
P
, so

��� �����v�,���	�4���*����� �&�,��#v� 	M�
. Hence the tangent plane is given by� �H�E�s
 ���I� #&�E� 
����S
 	���� �����<��+

, or
	 ���
�M� 
�#L��
 �	+

.

7. We have
���E�_��� � �E�?�Y�?�������L�Y�_�

, so
� � �E�_��� � P � 
 � � � 
�"�"�"Y
 � � � , these derivatives being evaluated

at
�E�'�Y�?�������$�Y�_�

.

2.4 The Mean Value Theorem

1. (a) The conclusion is that the directional derivative � �&` vanishes at some point on the line segment,
where � � �ogw� e��Y8&� g�� e'� . (Apply Rolle’s theorem to the function

���Eab�c� ` �Ea�gk

���(��ab��e�� on the
interval � +��,�)� .)
(b) The conclusion is that there is a point

e#i � such that
� ` �oe��I��z . (Suppose ` � � on ��� . If `�� �

on � then
� `�� z on � . Otherwise, either the maximum or the minimum of ` on � [which exist since

� is compact] is achieved at a point
e#i � , and then

� ` �oe��:��z .)
2. (a) If � is convex, we can apply Theorem 2.39 to get ` �ogI�:� ` �oe��:� � P ` �o{��6� ��PK� ,[P �<��+ .

(b) An example with �
���

: let � be the square
�����	�,����y%�����	�,���

with the segment � +��,��� on the
�

-axis
removed. Define ` on � by ` �E�?�Y�[�<�
+ if

�}q|+
, ` �E�'�Y�&��� �*� � if

���|+
and
� �t+

, and ` �E�&�<��� � if�"� +
and
� � +

. Then � � `�� + on � , but ` ���*�'�Y�&�(�� ` �E�'�Y�&� for
�"� +

.

2.5 Functional Relations and Implicit Functions: A First Look

1. (a) See the answer in the back of the text.

(b) Differentiation in
�

gives
�M�l
�� � ��
 � � � � � � �l��+ , or � � �-�.� �M�_8�� � �;
 � � � � . Likewise, differen-

tiation in
�

gives � � ���.�;@L�&8�� � �!
 �$� � � .
2. (a) Elimination of

�
gives

� � 
"�M�k�r� � �W�L�
, so
�k� ���!A � ���h���L�s
 �

and hence
�f�m�L�}� #!A� � � � � �L� 
 �

. Therefore 
 �&8 
 �}��A �E�'�����Y8 � � � ���L�s
 � , and 
 ��8 
 �}����A �H�E�'�����Y8 � � � �%�L� 
 � .
(b) Differentiating the original equations in

�
gives

� � ���L� �#�L�v� � and
� � ���:
 �M� � . Thus

�L� �#�L�v� � ���
 �M� � , so
� � � �E�p� ���Y8��E�-
 ��� and

� � ����

�H�E� � ���Y8��E� 
 ��� .
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3. Differentiating the equations gives
=L� % � � 
r�E� � � 
|� � � � �

� � 
 � � a � 
C� �Ma��O+ and
�L�v� � 
 � � � � � �~�La ,

which are linear equations in
� � and

� � to be solved simultaneously.

4. If
�E�'�Y�&�

are IVs, � �C� � 
p�L� � ��� � � ���L� . If
�E�'�����

are IVs, � �C� � 
u�&�E� ��� � ��� � � ���L��
p@L� � � .
5. For

� � � 8 � � ��� � , just use � �
> � � � . For
� � � 8 � � ��� � ,

�
is implicitly a function of

�
and � ; the equation

� ���	> �[����
 � � yields � �98 � � � ���98�� � ��
 � � , so � � 8 � � ��> � � 
p�	> �[� � �98 � � � � ��> � � �l�	> � � � 8�� � ��
� �
. For

� � � 8 ��� ��� � , � and
�

are implicitly functions of � and
�
; differentiating the given equations in

� gives � � 8 ��� ��> � � � � � 8 �_� � and
�(���	> �[� � � 8 �_� � , whence � � 8 �_� � �98	� . For

� �_� 8 � � ��� � , � and�
are implicitly functions of � and

�
; differentiating the given equations in � gives

� �.> � � � � � 8 � � �
and �_� 8 � � ���	> �[� � � 8 � � � , whence ��� 8 � � ����8 � .

6. � �^8 � � is the derivative when
�

is considered as a function of
�

and
�
; by (2.44) it equals

� � � � 8 � � � .
Likewise � �[8 � � �.� � � � 8 � � � and � ��8 � �k�.� � � � 8 � � � . The product of these quantities is

���
.

7. Taking � and
�

as independent variables means that � and
�

are determined as functions of � and
�

,
say

� � ��� � � � � � �.���(� � � � � � (*)

and the equation ����� � � �
	 � 
 � �D+ then becomes � P � � � � � �t
 � �D+ . Now take
�

and�
as the independent variables. Differentiating (*) with respect to

�
gives ���
� � � � P �I�6� ��� � � and�N� � � P��*�6� ��� � � , so � P#�O� ���
� 8 ��� � and � P�� � ��8 ��� � . Differentiating (*) with respect to

�
gives

+t� � � P �h�6� � 	 � ��
 � � � , so � � � � � � � P �h�6� � 	 � �#� � � 	 � 8 � � � . Substituting these into
� P �B� � � � �%
 ����+ gives ���
� 
 � �
	 � 
 � ��� � ��+ .

2.6 Higher-Order Partial Derivatives

1. These are routine exercises in elementary calculus. Half of the calculations were performed in Exercise
1, � 2.2.

2. From Example 4, � � � �o365�7 0 � ` � 
 �o7�� � 0 � ` � and hence � ��� � �-�o7�� � 0 � ` � 
 �o365�7 0 �6� ��` � 8 ��0 �*
�o365�7 0 � ` �-
 �o7�� � 0 �6� ��` �L8 ��0 � ; furthermore, ��` � 8 �H0 � � ���:7�� � 0 � ` � � 
 ���:365�7 0 � ` � � and ��` �L8 ��0 �� ���:7�� � 0 � ` � �K

���I365�7 0 � ` � � .
3. (a) � � � ��� ` PG
��o7�� ���L�[� ` � 
 �M� � ` � . Hence � �� � ��� � � ` PG

�o7�� �c�L�[� � � ` � 
"�M� � � � ` � 
��,�L� � ` � . The

derivatives � � ` U are just like � � � but with an extra subscript



on the ` ’s: � � ` PK��� ` PYP_
|�o7�� �c�L�[� ` P � 
�M� � ` P � , etc. Now it’s just a matter of collecting terms. Similarly, � � � � � � � � � ` P�
.�o7�� �;�L�&� � � ` � 
�&�o365�7��L�[� ` � 
�� �I365�7��L�[� � � ` � , etc. (The
�L�(365�7��L�

multiplying ` P � in the answer in the book should be@L�;365�7_�L�
.)

(b) � � � � ��� � � ���
�
` P 
 �L� �M�E� %&
 ��� �

P�� � ` � . Hence � � � � � �.�;� � � ���
� � � � ��� � ` PYP 
p�L�I�E� � 
k��� �

P
` P � �9�� � � ��� � ` P!
m�L� � �E� % 
 ��� �

P�� � � � � ��� � ` P � 
O�L�I�E� � 
 ��� �
P
` � � � . Similarly, � �� � � ��� � � ���

�
� � ` P!
/ � � ��� � ` P 
m�L���	�E� %�
 ��� �

P�� � � � ` � 
 � � � �L� ���E� %�
 ��� �
P�� � � ` � , which works out to be

/ � � � ��� � ` PYP ��,�L� � � � ��� � �E� % 
 ��� � P�� � ` P � 
 �M� � �E� % 
 ��� �
P
` � � 
 / � � ���

�
` P'
�� �L� � 
 � �M� � �6�E� % 
 ��� ���

� � ` � .
4. We have � � � � � �E� 
 	 �E�[�Y� ; hence � � �p� � � � �E�f
 	 �E�&�Y� 	 � �E�&� and � � � � � � � �E�p
 	 �E�[�Y� ; also � �p�
� � �E�l
 	 �E�&�Y� 	 � �E�&� . The result follows.

5.
T U � R � U ��R � U � R ` �E�'� and

,_�.,��|��� ` �E�'� are both equal to
� 
 � 8 
 a � � ` �Ea��'��� � V P .
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6. ��� � ��� ` � 
��La ` � , so ����� � � ` � 
 ��� � ` � � 
 �Ma � ` � � . Also � ���D���La ` � 

��� ` � , so � � ��� ��� ` � 
�Ma � ` � � 
 ��� � ` � � . The result follows.

7. � � �G� � � ��`�� � �E�p� �)ab�S
 	 � � �E�l
 � ab� �_� � � � � � .
8. We have � �98 � �}�C�^8 � , so

� � �.�*� � ��� 	 ���)a:� �9�G�w��� � � 	 � ���)a:� �9� , and hence

� � � �.� 	 ���)a:� �9�� � 
 �L� � 	 ��� a:� �9�� � 
 � � 	 � ��� a:� �9�� % � 	 � ���)aI� �9��M� 
 �L� � 	 � ���)a:� �9�� % 
 � � 	 � � ���)a:� �9�� � �
� � �

and
� � � are the same, with

�
replaced by

�
and

�
. Since

� � 
Q� � 
 � � � � �
, adding these gives

� � 	 ���)aI� ���� � 
 � 	 ��� a<� ���� � 
 	 � ���)a:� �9�� � � � 	 � ���)a:� �9�� � 
 � 	 � ��� a:� �9�� � 
 	 � � ���)a:� ���� � 	 � � ��� aI� �9��
� � � � � � ���

9.
� U �C� U � � P ` � ���9� , so

� U�U �/� � P ` � �����H� � �U � ��� ` � ���9��
k� �U � � � ` � � ���9� . Adding these up gives �
�3� P ` � ���9�H�� � P ` � ���9�^
 ` � � ���9� since

T � �U � � � .
10. In one variable, the assertion is that

� ` 	 � �
R 
 � T RU)V � � RU � ` � U 
 	 �

R � U 

, which is proved just like the

binomial theorem. (Induction on
1

, using the fact that
� RU � 
 � RU � P � � � R�� PU � .) The � -variable result

follows by applying the one-variable result in each variable separately; the facts that � ���#

	�� �
� U �
� U 
�	 U for all



and ��� � � P � "�"�" � � � make everything turn out right. (This could be phrased as

an induction on � .)

11. This follows by applying the one-dimensional binomial theorem in each variable as in the preceding
problem.

2.7 Taylor’s Theorem

1. (a) ` �E�^�:�C� � � ���#�E���
P
� � � 
F"�"�")� �^�

P
� �
� 
F"�"�"

, and 	
�E�_�<� � ���[
p��
F"�"�"6�9�}�)� � ���_�s�L� � 
F"�"�")���}�)� � ��E� 
�"�"�")�6� �M��%�
�"�"�")�<� �M� � 
t"�"�"

.

(b) ` �E�^�Y8 	 �E�_�K� �
P
� �
� 
C"�"�")�Y8�� �M� � 
t"�"�"6�:� � P� 
C"�"�")�Y8�� �!
�"�"�")�+�

P� % .
2. (a) ` � �E�^�K��� �

P
, ` � � �E�_���O�*��� � , and ` � � 
b�E�^�K���L� ��� , so

��P�� � � � ��� � � P� � � 
 P� � � ; also
� ` � % 
4�E�_������	��@L� �	% �vq|/M@

for
� � �|�9��q P� , so

����/M@�8�� � � � .
(b) ` � �E�_�h�

P� � � P�� � , ` � � �E�_�h�~�
P
% �����

� �
, and ` � � 
4�E�^��� � � ��� ��� � , so

��P�� � � � �h�~�h
 P� � � P� � � 
 PP � � � ;
also
� ` � % 
 �E�^���9�m�L�

P �P � � � �
� � ��q P �P � � �

� �
for
� �f� �9�vq P� , so

��� P �P � � �
� � 8�� � ��=("$� � �

� �
.

(c) ` � �E�^���O� �E�s
 ��� � � , ` � � �E�_�����&�E�u
 ��� ��� , and ` � � 
4�E�^�K�m��@&�E�u
 ��� �	% , so
� P�� � � � ��� P% �

PP � � 
P
� % � � �

P� � � � � ; also
� ` � % 
 �E�^�����m� � �H�E�s
 ��� �

� ��q|� �H� � � =�� � �
for
� � � �9�&q P� , so

���.� � � =�� � �
.

3. By Lagrange’s formula,
��7�� �*� �%�f� P� � ������� � � � % �E�_���Hq.� �:�

� 8	= � since
��7�� � � � 
 �E�_���v����7�� �h�I�Hq��

, and� P� >?� � 8	= � �~+�� +�		/�	 . In general, we have
� � � � � ) � PL�E�^���^� � � � � � ) �E�_���Gqd� �I� � )

� P 8�� � !d
r��� � . This is
less than

+�� +&�
for
� �I�&q P� > provided

! �|�
; so the 5th order polynomial suffices.
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4. For ` �Eab�:��� �
�

the remainder
� � � R��Eab�

is bounded by
a R�� P 8�� 1*
 ��� � for

ahi � +��,�)� , so
� �
P� � � � R��E� � � 
 �:��q

�
P� � � R�� � 
 �^8�� 1 
���� � � ��8�� 1 
���� � � � 1u
|��� . This is less than

+�� +M+M+�=
for

1 �r@
, so to three decimal

places �
P� � � ��� 
 �#� T

�� ������� R �
P� � � R 
 �_8$1 � � T

�� ������� R 8$1 � � � 1-
����<��+��
	�� 	 .
5. (a)

�;7�� �S�E�l
Q�[�<�C� � �E�l
Q�[�I�
P
� �E�l
W�&�&��
C"�"�"b�_�C� � 
Q�����

P
� ��%c�

P� � � �l� P� � � � � � P� ��� ��
C"�"�" .
(b)
� � � 365�7��E� � 
�� � �<� � �9
����^


P� �E�H�[� � 
 "�"�"�� � �&�
P� �E� � 
�� � � � 
 "�"�"Y��� �9
��H�I� P� �E��%�
�� � � � 
�� %���
 "�"�" .

(c)

� � � � �
�K
Q���*�N� �����K
��E� ���L�[�S
 �� �E�f���L�&� � 
 �@ �E� ���L�[� � 
 �� � �E� ���L�[� % 
C"�"�"�� y

y��]�K

�E���w� � �S
��E�l�w� � � � 
��E�l�w� � � � 

�E�l�N� � � % 
C"�"�"��
� � �K
Q� ���L��
 �� � � ���L��� 
 �L� � 
 �@ � � �w� � ��
 �L��� � � � � � � 
 �� � � % � �� � � ��
Q� � � �
� � � �H� � 


�
� � % 
�"�"�"��fy��]��
Q�l�w� � 
Q� � ���L� � ��
W� � 
Q� % ���L� � � � 
Q� % 
C"�"�"��

����
Q�p�w�l� �� � � �w�H��
Q� � �
=
@ � � �

�
� � � ��
Q��� � �

�
� � � 


�,�
� � � % �

�
@ � � �

� �� � � � � �
�
� �H� � 


�
� � % 
�"�"�" �

6. Setting
�f���h
 �

,
�s�.�I
 1

, we have ` �E�?�Y�[�:���h
 � �B365�7H> 1!
 � �h
 � � � 5��_���:
 1[�:����
 � �Q�����P� �o> 1[� � 
C"�"�")�?
�� ��
 � �6� 1 � P� 1 � 
 P� 1 � 
C"�"�"6�<���c
 � 
 � 1 

P� �o> � � ��� 1 � � P� � 1 � 
�1 � 
t"�"�" .

7. With
� � �-
 �

,
� � �u
 1

,
��� � 
 	

, we have ` �E�'�Y��������� ���-
 � � � � �u
 1[��
 ���-
 	 �w��;
"� 1-
�1�
"	H
|� � � 
|� � 1�
 � � 1
, with no remainder. (The remainder is also known to vanish since

all 4th order derivatives of ` vanish.)

8. A
� 1 � ���

-fold application of l’Hôpital gives

� � �	 � � `
�.,�
 � �I� �
	 � R�� � �

� R � � ���	 � � `
� R � P 
b�.,�
 � �I� ` �

R � P 
4�.,&�G� ` �
R 
4�.,�� �

�
� � ���	 � � `

� R � P 
 �.,�
 � �I� ` �
R � P 
 �.,&�

� � ` �
R 
 �.,��<��+

by definition of ` �
R 
b�.,&�

.

9. We have ` �.,-
 � �;� ` �.,&�G
 ` �
R 
 �.,&� � R 8$1 � 
 ��	 � Rv� � � , and by Corollary 2.60, for

�
sufficiently small

we have
� ��	 � Rv� � ���Kq P� � ` � R 
 �.,�� � R ��8$1 � Thus for

1
even, if ` �

R 
4�.,�� � +
we have ` �.,l
 � �h� ` �.,&� �P� ` �

R 
 �.,&� � R 8$1 � �|+ for small
�

, and likewise if ` �
R 
 �.,&��� +

we have ` �.,�
 � �I� ` �.,&���|+ for small
�

.
For

1
odd, the same reasoning shows that ` �.,�
 � �:� ` �.,�� changes sign along with

� R
at
� ��+

.

10. By (2.70) we have
� ��
 � R�� �I���&q�1 T�� ��� V R �b� � � ��8 � � � � P� �����NaY� R � P �!a � � ��� � 
 a . Since each component of�

is less than
� �h�

in absolute value, we have
� � � �Iq � �h� R

for
� � �'� 1 . Hence

� ��
 � Rv� �I���Iq � � � ��� R�� �
where

� � � � 1 T�� ��� V R � � � P � P� ���c�Nab� R � P a � 
 a .
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2.8 Critical Points

1. We employ the notation � ,
�

,
	

as in Theorem 2.82.

(a) ` � � �L� and ` �}�D�,�L�^�E�s

���6�E� �
��� , so the critical points are
�o+��b+9�

,
�o+��,�;���

, and
�o+��,���

. Also
� � � , ��� + , 	�� �M@L� � 

� �M�}�t� � , so these points are respectively a saddle, a minimum, and a
minimum.

(b) ` � � �M�G�E� � �k��� and ` � ���&�E� � �p��� , so the critical points are
�o+�� A � ���

,
� Al�	� � ���

, and
� Al�	�,� � �9�

.
Also � ���,�L� � � � , � �r+ , 	N�.@L� , so

�o+�� � ���
and
� A �	�,� � ���

are saddles,
�o+��,� � ���

is a maximum,
and
� Al�	�)� �9�

are minima.

(c) ` � � �L� � �W�L�#��� � and ` � �O�L�_���(� �_� . If ` � �.+ then either
�#� +

or
�N� �

. In the first case,
` � �r+ ��� �F��+ or

�F� �� ; in the second case, ` � �r+ ��� �f�rA � . So the critical points are
�o+��b+9�

,� �� �b+9� , and
���	� Al���

. Also, � �r@L�}� � , � �~���L� , and
	N�r�&���;� �_�

, so
���	� A ���

and
�o+��b+9�

are saddles
and
� �� �b+9� is a minimum.

(d) ` � ���H� � � ���Q�L�}�Q�L�&� and ` �-��� � �_� �l� �L�}�W�L�&� . If either
�N�r+

or
�f��+

then ` � � ` �-�r+ ;
otherwise, ` � � ` �!��+ only when

�L� 
%�L�u���L� 
%�L�u� �
, that is,

�f��� � % �
. Thus the critical points

are
� % � � % � �

and all points on the
�

and
�

axes. Note that ` ��+ on the lines
�f��+

,
�s��+

, and
��
w� �
�

;
elsewhere, ` � + when

��
}� �|�
and ` � + when

�c
#� �|�
. Thus the points

�.,��b+9�
and
�o+��-,&�

are local
(nonstrict) minima when

, ���
, local (nonstrict) maxima when

, ���
, and saddle points when

,}� �
.

Also, ` � % � � % � � �t+ , and
� % � � % � �

is inside the triangle bounded by the lines on which ` ��+ , so it must be
a maximum. (One could also check this by Theorem 2.82.)

(e) ` � ���L�G� ���W�L� � �Q� � � �$� � � �
� �

and ` � �m�L�^���!� �L� � ��� � � �$� � � �
� �

. Thus ` � �m+ � � �%�O+
or
�L� � 

� � �J�

. In the first case, ` �%� �L�^�����t� � � � +f��� �t� + or
�C�JAl�

. In the second
case, ` � � ���L�%� +s��� �w� + and hence

�L� � � �
, or
�W� Al�

. Thus the critical points are
�o+��b+9�

,�o+�� Al���
, and

� A �	�b+9�
.
�o+��b+9�

is obviously the global minimum. A straightforward but tedious application
of Theorem 2.82 shows that

� Al�	�b+9�
are maxima and

�o+�� Al���
are saddles. (See also the solution to

Exercise 1h below.)

(f) ` � �.��,9� � � 
N� and ` ���.� � � � � 
N� . If ` � ��+ then
� �/,�� � �

; substituting this into ` ����+ gives�B���., � 8 ��� P�� �
and
� �~� � � 8 ,�� P�� �

. At this critical point, � �r� ��8 , ,
�����

, and
	B�r�$,�8 �

, so the point
is a minimum if

��8 , � +
and a maximum if

��8 ,�� +
.

(g) ` � � �&�E� � ����� , ` � � ���&�E� � � ��� , and ` � � � � , so the critical points are those where
�Q�dAl�

,�O� A�� �
, and

�r� +
. The Hessian matrix is diagonal with diagonal entries

@L�
,
��@L�

,
�
. Thus���	�,�;� �&�b+9�

is a minimum,
�����	�6� �v�b+9�

is a maximum, and
A ���	�6� �9�

are saddles.

(h) With � � � � ��� �
� � � � � we have ` � ���L�G� �-���L� � � �L� � � � � � � , ` � ���L�^� ���Q�L� � � �L� � � � � � � ,

and ` � � � �H���-�t�L� � �|�L� � � � � � � . If ` � � + , then either
�C� +

or
�L� � 
�� � 
�� � � �

. In the
first case the equations ` � � ` � � + give

�C�D+
or
�L� � 
 � � �J�

, and
� � +

or
�L� � 
 � � � �

;
the solutions are

�|� �Q� +
;
� � +

,
�Q� Al�

;
� �DAl�

,
�Q� +

. In the second case, the equations
` �!� ` � ��+ give

� � �l��+
and hence

�f��Al�
. So the critical points are

�o+��b+��b+9�
,
� Al�	�b+��b+9�

,
�o+�� Al�	�b+9�

,
and
�o+��b+�� Al���

. One can analyze them without the tedium of computing all the second derivatives as
follows. Since ` �E�'���~+ for

�~��dz
,
�o+��b+��b+9�

is obviously the global minimum. Since ` �E�'� � + as� �! 
, ` must have a global maximum; by examining the values at the critical points one sees that the

maximum is at
� Al�	�b+��b+9�

. Now consider ` �E�'� for
�

near
�o+�� Al�	�b+9�

. Since
a � � �

has a maximum at
a<�.�

,
` �o+��Y���b+9�K���L� � �$�

� �
has a maximum at

� ��Al�
. On the other hand, ` �E�'� Al�	�b+9���m� �L� � 
B��� �$� ��� �

P �
� � P � � �L� � 
 ���6���h�F� � 
 "�"�")� �_��� �

P � �h
%� � 
 "�"�"6�
has a local minimum at

�}�C+
. Thus

�o+�� Al�	�b+9�
is a

saddle, and likewise so is
�o+��b+�� Al���

.
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(i) Note that ` � + precisely on the planes
��� +

,
�Q� +

,
��� +

, and
�#
C�s
���� �

that include
the faces of the tetrahedron with vertices at

z
,
���

,
���

, and
���

. Since
� � ` P ` � � � z on the set where

` P�� ` � ��+ , all points on the lines where these planes intersect are degenerate critical points, and none
of them are maxima or minima since ` changes sign whenever one crosses one of these planes. Since
` � ��� �H� �����L� ����� ��� , ` � ��� �H� � ��� ���L� � ��� , and ` � �
�H�^� � �%� �%�l� � ��� , one sees that the
only other critical point is where

�L�l
��!
 �-����
Q�L��
 ������
��!
W� ���
�
, i.e.,

���	�,�	�,���
. This point

is inside the tetrahedron, ` ��+ there, and ` �m+ on the faces of the tetrahedron; hence this point is a
local maximum.

2. We have ` � � � �$, , ` � �F� � , and ` � �F� � � , so the origin is a minimum if
�*,�� � � �

and
,�� � � +

,
a maximum if

�*,�� ��� �
and

,�� �tqJ+
, and a saddle if

�*, � � � �
. (If

�*, �Q� � �
, then ` �E�?�Y�[�F�A �b� ,^� P�� � ��A�� ��� P�� � �&� �

[any combination of the two signs can occur], so the origin is still an extremum.)

3. The origin is a global minimum for ` P and a saddle point for ` � . For ` � it is a “shoulder point” as in the
right-hand graph of Figure 2.5 (but upside down).

4. (a) The 2nd-order Taylor polynomial of ` at the origin is
� �

, so the origin is a degenerate critical point.

(b) For
�l���+

we have ` �.,�a ��� ab�:��� � a � + higher order, and ` �.,9a)�b+9�<���$,�%�a % ; these all have local minima
at the origin. However, ` is negative in the region between the two parabolas

� �
� �
and
� �r�L� �

and
positive in the regions inside both or outside both. The origin is on the boundary of all these regions, so
` has neither a maximum or a minimum there.

5. The second directional derivative of ` in the direction � at
e

is


 �

 a�� `

�oe 
Qa � � 



 � V �
� 


 a
� � U � U ` �oe-
Qa � � 



 � V �

� �
U � R � U �

R � U � R ` �oe��:���W�oe�� � " � �

2.9 Extreme Value Problems

1. ` � � �M� 
 � and ` � ���L� , so the only critical point is
��� P� �b+9� , and ` ���

P� �b+9�<�.� P� . On the unit circle,
` �o365�7 0 �b7�� � 0 �K���I365�7 � 0 
 7�� � � 0 
 �I365�7 0 �~����
 365�7 0 � � , whose maximum and minimum are

�
and+

(at 0 ��+ and 0 ��> ). So the maximum is
�

and the minimum is
� P� .

2. ` � � @L� and ` �C� � �M�k
.� , so the only critical point is
�o+�� P� � , and ` �o+��

P� �w� P� . On the unit
circle, ` �o365�7 0 �b7�� � 0 �*�O���W=I7�� � � 0 
t�I7�� � 0 , so

� 
 8 
90 � ` �o365�7 0 �b7�� � 0 �*� ����+:365�7 0 7�� � 0 
t�I365�7 0 ��I365�7 0 ���c��=I7�� � 0 ����+ when
365�7 0 ��+ or

7�� � 0 �
P�
. In the first case,

7�� � 0 ��Al� , so ` ��+ or
� �

. In
the second case, ` �

P ��
. So the minimum is

� �
and the maximum is

P ��
.

3. ` � � �L� � ��� and ` �p� �L�p� � , so the critical points are at
� Al��8�� �v�?���

, which are both outside the
triangle. The sides of the triangle are segments in the lines

�F�O+
,
�F�~�-�W�L�

, and
�B���(
C�L�

. We
have ` �E�'�b+9��� � �;��� , whose critical points are at

�%�OA ��89� �
, and ` � Al��� �&�b+9���	����8	��� �

. Also,
` �E�?�4�?���L�^�<�C� ��
 �M� � �l=L� , whose only critical point in the interval

+uq �Fq
�
is at
�f� �Y� ����� ���Y8	�

,
where ` �~� �	+*# �Q@M��� ���L�Y8	��	 . Next, ` �E�?�4�(
 �L�_�h�
� � 

�M� � 
 �L� , whose only critical point in the
interval

� �uq��Wqr+
is at
��� � � 	-� ���Y8	�

, where ` � � �	+l������� 	M�Y8	��	 . Finally, ` � + at all three
vertices. Comparing all these values, we see that the minimum is

� �	+*#��#@M�[� ���$�Y8	��	 � ��� � ��	$#
and the

maximum is
��8	� � � ��+�� � # �9/

.
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4. ` � �
@L�f� #L� 
 � and ` ��� ��#L�f� #L� 
��,@ ; setting these simultaneously equal to 0 gives
�#�
�s�O�

,
and ` ���	�,���}�J/ . Next one analyzes ` on the four sides: (i) ` �o+��Y�[�f� � �M� � 
O�,@L� ; critical point
at
�Q� �

, and ` �o+��4����� �,@ . (ii) ` �E�'�b+9�l� �L� � 
��L� ; critical point at
�t� � P� , not in the range of

interest. (iii) ` � �&�Y�[�s� =M@s���,@L�#�"�M� � ; critical point at
� �J���

, not in the range of interest. (iv)
` �E�?�4���;� �L� � �Q�M�L�p
��,� ; critical point at

�w� PYP� ; ` �
PYP
� �4���c� � �

�
� . Finally one checks the corners:

` �o+��b+9�*��+ , ` �o+��4���h���,� , ` � �&�b+9�h�r=M@ , and ` � �&�4���*����� # . The minimum is
� � �� and the maximum

is 56.

5. Clearly
� ` �E�'�Y�&��� ���n�E�?�Y�[��� � , so ` has a minimum on

j �
by Theorem 2.83a. We have ` � �~��� �	� � �� ��� � �[�h
.�L�

and ` � � ��� �M� � � � �%� �)�[��
r�L� . Setting these equal to 0 simultaneously gives�}� � ��8����S
 � � 
 � � � and
�s� � ��8����S
 � � 
 � � � . Substituting these values into ` �E�'�Y�&� and simplifying

gives ` � � � 8����K
�� � 
 � � � .
6. Clearly ` �E�'�Y�&��� + except when

�}�C�s��+
, so ` �o+��b+9����+ is the absolute minimum. ` has an absolute

maximum by Theorem 2.83b, namely ` �o+�� A ���<��� � �
P
. (See Exercise 1e in � 2.8 for the analysis of the

critical points.)

7. As in Exercise 1e in � 2.8, one finds that the critical points are
� A �	�b+9�

and
�o+�� Al���

, and ` � A �	�b+9�<��� �
P

and ` �o+�� Al���K�O��� � �
P
. Since ` assumes both positive and negative values and vanishes at infinity, by

Theorem 2.83b it has both an absolute maximum and an absolute minimum, which must occur at critical
points; hence the maximum is

� � P
and the minimum is

�;� � � P
.

8. If
�E�?�Y�[�

is in the first quadrant but outside the “triangle” bounded by the lines
�f� ��8	� �

and
�s�.��8�� �

and the hyperbola
�H�k� �

, then ` �E�?�Y�[� � � ; hence ` has a minimum but no maximum by Theorem
2.83a. The only critical point is at

�f� � /�8���� P�� �
,
� � ���,@�8	��� P�� �

(see Exercise 1f in � 2.8), and the value
of ` there is

���,��� P�� �
; this has to be the minimum.

9. Lagrange’s method works easily here: one has to solve
�L�k�����[�

,
�M�p�����&�

, and
@ �s����� �

subject to
the constraint

� � 
 � � 
 � � �~�
. The first equation implies that

�F�~�
or
�N�r+

. If
�k���

, the second
and third equations imply that

� � �w� +
and hence

�|�dA �
. If
� � +

, the second equation forces�N�.�
or
�}� +

. If
�B� �

, then
�p�.+

, so
�}�OAl�

; if
�#�r+

, then
�f�mAl�

. So the constrained critical
points are

A ���	�b+��b+9�
,
A �o+��,�	�b+9�

, and
A �o+��b+��,���

. Clearly the first pair gives the minimum of
�

and the
last pair gives the maximum of

�
.

10. With ` �.,H�����<� T �E� U � ,9� U � ��� � , we have ` 	 �.��� T � U �E� U � ,9� U � ���<��� � , T � �U 
 � 1 ��� T � U � U �
and ` �

�.�;� T �E� U �",�� U �����<��� 1 � , ��
 �?� ��� . Solving this pair of linear equations for
,

and
�

yields
the asserted result.

11. By Lagrange’s method, we solve
���������	,���� � ������� �4� � � ������� � ��� �

subject to
�.,&8$�_�'

� ��8$�&�'


���,8 ���l� �
. With �

� �����
, the first set of equations gives

� � � � , ,
� � �

�
�
,
�w� � � � , and the

constraint equation then gives � � � � ,;
 � �G
 � � , and hence
�-
w�;
 �-� � � ,;
 � �?
 � ��� �

. (This
is a minimum because

�l
Q��
 �4�  
as
�E�?�Y�������(�  

on the constraint surface.)

12. We wish to minimize
�p
|��
 �

subject to the constraint
��� �#� � (and

�?�Y����� �.+
). By Lagrange’s

method, we solve
�����&� �s���[� �s���[�H�

subject to the constraint
�H� �s� � ; the solution is obviously� � �%� �B� �

P�� �
, so
� 
t�l
 �N� � �

P�� �
. There is no maximum;

�E�'�Y�����v� � � � � �L� � �
P �

satisfies�H� ��� � no matter how large
�

is.
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13. Parametrizing the first line by
�v� �L�(� ���(� �9� ���b+9�

and the second one by
�G�Eab�!� �Ea)�Ya)�YaY�

, we wish to
minimize

��� �9�YaY�<�O� ��� �	�?� �I�EaY��� � �m���K� �*�FaY� � 
C� �*�FaY� � 
�a � ����� � 
 �La � �w���*�N�La_
|�
. We have� � � ���;��� and

� �I��@LaG� �
. so the critical point is

�(� P� , a<�
P
� . The point on the first line closest to

the second one is
��� P� �<� � P� � P� �b+9� (and the minimum distance is

� ��8	@
).

14. We wish to minimize � ���H� � subject to the constraint
�H� 
 �L� ��
|�L� �u� � . Solving the constraint

equation for
�

gives � �d�H�^� � � ���&�Y8�� �L�k
��L�[� . After a little calculation we find � � � �L� � � � �� � �C�L���&�Y8�� �L�w
r�L�&� �
and � � � �L� � � � �t� � ���L�H�[�Y8�� �L�N
��L�&� � . Setting these equal to 0 gives� � 
 �L��� � � ��� � 
 �L��� , so that

�}�C� � � � 8	� ; hence
�l� P� � � 8	� and � �

P� � � � 8	�9� � .
15. We wish to minimize

� � 
w� � 
 � �
subject to the constraints

��
 ��� �
and
�L�l�#�s��@

. By Lagrange’s
method, we solve

�L� � �F
m�
� ,
�L�O� �

� , and
� �r� �

to obtain
�L� � � �k��@L�

; solving this
simultaneously with the constraint equations gives

�}� �l���
,
�s��+

.

16. (a) Lagrange’s method gives the equations
� � �E� � ��� � �������[� , �;� � �E� � ��� � �<�
���&� , �;�L�_�E� � ��� � �:��

� � ,
�L�I�E� � � � � �!� � � � . Eliminating

�
and � (and assuming

� � �W� � ��~+ , which is OK since the
maximum is clearly positive) we obtain � 8$�W� � � 8$� or

�^8 � � �*�[8 � (whichever avoids division by
zero); either way, the critical points are those

�E�?�Y��� � � � � such that
� � � � � is proportional to

���*���Y�_�
. By

the constraints, the constant of proportionality is
A �68 ,

, and
�E� � �w� � � � � � ��8 ,&� � �E� � 
Q� � � � �/, � � � .

(b) Using the parametrization,
�E� � �l� � � � �/, � � � �o365�7 0 7�� � � � 7�� � 0 365�7 �G� � � , � � � 7�� � � � 0 � �I� , whose

maximum is obviously
, � � �

.

17. The distance from
��P

to
�

is
��PH7 � 3 0 P , and the distance from

�
to
� � is

�*� � 7 � 3 0 � (remember that� � � + ). Thus the total travel time from
�hP

to
� � is

�E��P 8 � P)�v7 � 3 0 Pc���E� � 8 � � �v7 � 3 0 � . The constraint
is that the

�
-distances have to add up right:

��P��b1 � 0 P��C� � �b1 � 0 � � � � � ���?P$� . Thus, Lagrange’s
method gives the equations

�E�HP48 � P)�v7 � 3 0 P��b1 � 0 P�� �[��P[7 � 3 � 0 P and
�E� � 8 � � �v7 � 3 0 � �b1 � 0 � � �[� � 7 � 3 � 0 � ,

whence
7�� � 0 P 8 � P�� �p��7�� � 0 � 8 � � .

18. Let
� U be the product of the

� Z
’s with the



th term omitted. Lagrange’s method gives the equations� U � � for all



, from which it follows that the

� U ’s are all equal. Thus the maximum value of
�IPS"�"�"b� �

occurs at
�?P�� "�"�"���� � � �,8 � , and that value is

���,8
�
� �

. In other words,
�E�'PS"�"�"4� � � P�� � is at most

�,8
�

when
�?P?
|"�"�"$
%� � � � , that is,

�E�'PS"�"�"b� � � P�� � q��E�?PS
t"�"�"�
 � � �Y8 � , with equality only when the
� U ’s

are all equal.

19. Let � P���������� � � be an orthonormal eigenbasis for � , with eigenvalues
�GP���������� � � . If

�t� T a U � U , we
have

� �K� � � T a �U and � �N"	�t� T � U a �U ; thus we wish to maximize and minimize
T � U a �U subject to

the constraint
T a �U �.� . By an easy extension of the argument in Exercise 9, Lagrange’s method shows

that the critical points are the unit eigenvectors of � . (Things are a little messier if the eigenvalues are
not all distinct.) If

�
is a unit eigenvector with eigenvalue

� U , then � �F"$�Q� � U , so the maximum and
minimum are the largest and smallest of the

� U ’s.

2.10 Vector-Valued Functions and Their Derivatives

1. � �v�E�?�Y����������� � � � � � � � #L� �L��� ��L� � @L���l� � �*�
	 .
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2. � �v�E�?�Y�[�<���� � �
�L� �L�
�L� ��@L�

��
.

3. (a) � ��� � � � �<���� � � ��=
� � � ��� � ���
� �;� � 8�����
 � � �

��
, � ���o+��b+9������ + �;=+ �

� +
��

.

(b) � ���	� �^�6���	�4����� �� + ��=+ �
� +

�� � � �� � 	 � �� ���,= ���	+� �
� �

��
.

4. (a) � ���E�?�Y�������K� � � �&�E� � ��� �#365�7 �
� � � � � � � � ����+ � � � � � � 	 .

(b) � � �
� �L�6�o+��b+��b+9��� � � �� � 	 � � ��� � �
� � ����+ 	 � � # @ �����

� # ��+ � �9� 	 .

5.
���oe�
��G�G� �v�oe��<� � � for all

e
and

�
, so � � � ���oe�� for all

e
.

6. This is immediate from the definitions.

7.
� � T R ` R 	 R , so � U � � T R � � U ` R	� 	 Rc
 T R � � U 	 R	� ` R ; this is the



th component of

� � �L��� � 

� � �^��� � .
8. By (2.86),

� � � � � ��� � � � � P ` � � ` � � ` � % ` �
�

� �
� � � � �
� � � � � �� +
+ �

����� �
which gives the desired result.

9. (a) The unit sphere � is compact, and
�

is continuous on it, so
�

achieves a maximum
�

on � at some
point

e#i � .

(b) Obviously
� � zG�H� + � � � z'� . If

�r�� z
, let

�p� � �K�
and � �.�'8 � . Then

� � �K�H� �[� � � �^q � � �� � �K�
, with equality if

� ��e
. Thus

�
is the smallest constant such that

� � �K�'q � � �K� for all
�

, i.e.,� ��� � � .
10. (a) If

��i}j��
, we have

� � �K�[q � ! �s1�� U �n� � �'� U �M� � ! �s1�� U � T R � U R,��R���q � ! �s1�� U T R � � U Rv��� �K� ,
so
� � �;q � ! �s1�� U T R � � U Rv� .

(b) If � U P;� � and � U R��r+ for
1 � �

, the bound for
� � � in (a) is

� !
. Also, � � � �E�?P��Y�SP,�������$�Y�SP)�

for any
�

; in particular, if
� � ���	�b+��������$�b+9�

, then
� �K��� �

and
� � �K�;� �n���	�,�	�������L�,�����;� � ! , so� � � � � ! .



Chapter 3

The Implicit Function Theorem and its
Applications

3.1 The Implicit Function Theorem

1. With
� �E�?�Y�������K�C� � � �M�<
p�L� � � � �

we have
� � ���L�*� � , � �!� �M�<� � , � � � �*� , so

��� � �v�,���	�4������o+��,� 	��,���
. Hence the equation

� � �
can be solved locally for

�
or
�

but not
�

. Explicitly,
�t�

�E� � � �M��
��L� � � ���Y8$�
and
�s� ���;� � ����
�#&���c�w����

�M�_�b�Y8��

; but
�f����A � =����L�v��
 � �

, and the
square root vanishes at

�E�������K� �����	�4���
, so there are two values of

�
for some nearby values of

�
and

�

and none for others.

2. With
� �E�'�Y�&���C� � 
N�L���*
N�L� �

we have
� � ���L�(
N�L� and

� �����L�(
N@L�
, so at least one of

� � and
� �

is nonzero when
�E�?�Y�[�-��O�o+��b+9�

, which is the case when
� �E�?�Y�[��� �4�t+

. If
�(��+

then
� � � � � ��+

and the set where
� � �

is a single point, and if
���m+

then the set where
� � �

is empty. (Clearly
� �E�?�Y�[���m�E�l
Q�[� � 
 �L� � � +

when
�E�?�Y�[�!�� �o+��b+9�

.)

3. With � ���E� � 
Q� � 
 � � � �
P�� �

and
� �E�'�Y�������h� � � 365�7 � , we have

� � ���[8 � and
� � ��� ��8 � 
W7�� � � ,

so
� ���o+��,�	�b+9�K�.�

and
� � �o+��,�	�b+9�h�C+ . Hence the equation can be solved for

�
but not

�
.

4. The
�

and
�

intercepts of the graph are at
���	�b+9�

and
�o+��,� � P�� �$�

; the tangent line is vertical at the former
point. Writing

�k� ` �E�^���d�E�#� �
P � �9� P�� �

, we see that the graph is asymptotic to the curve
�F�.� P�� �

as
� � 
  

and asymptotic to the curve
�}�~� � � P � � 
 � �

as
� � �  

; hence ` maps
j

onto
j

. Also,� 
 8 
 �_�6�E��� �
P � �v�:�.�_
 � P � � ���

, so ` is one-to-one (in fact, strictly increasing). Hence ` �
P �Mj/�Jj

exists.

5. With � �E�'�Y�&��� � � � �E�'�Y�&� �Y�[� , we have � ��� � P$� � �E�?�Y�[� �Y�&� � � �E�?�Y�[��
 � � � � �E�?�Y�[� �Y�&� , so � �v�o+��b+9�K�
� � �o+��b+9� � � P��o+��b+9�?
��)�K���+ when

� � �o+��b+9����C+ and
� P$�o+��b+9����.���

.

6. With
� � � � �K��� �E�?�Y�������<�m�E�H�[
��L� �H���L� �&���H� ��
(�G�*�&� , we have � �t� � �l��� � �l
 � � �L� ���L�� �;
�� � � � � �H� 	 .

At
���	�,�	�,���

, then, we have � � � � ��� � ���� + � 	 ; � � � � � �Y8 � �E�?�Y�[� � ��@ , � � � � � �Y8 � �E�?���v� � + ,
� � � � � �Y8 � �E�����v���
� . So the equations can be solved for

�
and
�

or for
�

and
�
.

19



20 Chapter 3. The Implicit Function Theorem and its Applications

7. With
���&� � ����� �E�'�Y��� � � � �K� � � ��
#� � �p��� � �_
}� � �u�^� , we have � �t��� � ��� � � � �

� � � � � � � 	 . At

�o+��,�	�,�	�,�����
, then, we have � ��� � � � � � � +� � � � � 	 . The determinants of all the

�uyN�
submatrices

of this matrix are nonzero, so the equations can be solved for any pair of variables.

8. With
� � a 	 � � �H� � 
Q� � � 
Q� � �

� �)� �!
 �L� � � � � � � 	 , we have
� � ���Yab�
� � � � � �

��� � � � � � �L� �� � � ����� � � � �;� � � � 
 �L� 	 , which

equals
���

when all variables are set equal to 1. Hence the equations can be solved for � and � .

9. With � ��� � 
f� � 
 � � , � �C�H�<
 a � , and � �C� �G
 a �<
 �
�
, we have

� � � � � � � �
� �E�?�Y�������

��� � � �� �L� �L� � �
� � a
� a �

��
,

which equals
#

at
�E�?�Y�����&�Yab��� �����	�,�;�v�,�	�b+9�

. So the equations can be solved for
�?�Y�����

.

3.2 Curves in the Plane

1. (a) � is a smooth curve (an ellipse);
� � �Dz

only at
�o+��b+9�W8i � ;

�|� ` �E�^� near any point except� A�� ���b+9�
;
�f� ` �E�&� near any point except

�o+�� Al���
(b) � is the union of two smooth curves (a hyperbola);

� � �rz
only at

�o+��b+9� 8i � ;
� � ` �E�^� near any

point except
� A-� �v�b+9�

;
�f� ` �E�[� near any point.

(c) � is a smooth curve (one branch of a hyperbola);
� �

never vanishes;
�s� ` �E�^� except near

�4� ���b+9�
;�}� ` �E�&� globally.

(d) � is the union of the three lines
�%� +

,
�F� +

, and
�s
|�k� �

;
� � �mz

at the three points where
these lines intersect; elsewhere,

� � ` �E�_� near all points of the lines
�s��+

and
�;
k�u�.�

and
�}� ` �E�[�

near all points of the lines
�}��+

and
�l
W� �.�

.

(e) � is the union of � �o+��b+9�4� and the parabola
�}�r� � 
��

;
��� � z

at
�o+��b+9�

but not on the parabola;�u� ` �E�_� on the parabola;
�f� ` �E�[� near any point of the parabola except

�o+��,���
.

(f) � is the parabola
� � � �

;
� � �o+��b+9�l� z

but � is still a smooth curve there;
� � ` �E�_� globally;�}� ` �E�&� near any point except

�o+��b+9�
.

(g) � is the discrete set � �o+��G� � � 

P� ��>?�h� � i��(� ; ��� ��z at each point of � .

2. (a)
� �E���'
f�����<�	�G�E���$� P �Y�
� � P �(��m�o+��b+9�

except at
�E�?�Y�[�<� �o+��b+9�-8i � � , so � is locally a smooth curve.

� � is also connected; see part (b).

(b) If
�W� �

, � � is a straight line. If
�W� �

, � � is the unit circle. If
�5�d�

is odd, � � is the graph of�B� ���!� � � � P�� �
, a curve that is asymptotic to the line

�N� �*�
as
� � A  

but has a “bump” in the
middle where it goes through the first quadrant between

�o+��,���
and
���	�b+9�

. If
� �t�

is even, � � is a simple
closed curve intermediate between the unit circle and the square with vertices at

�f��Al�
,
�s�
Al�

.

(c) If
�

is even, the top and bottom halves of � � are graphs of
�s��A ���*�%���9� P�� �

, a continuous function
on � ���	�,�)� that is differentiable except at the endpoints; likewise with

�
and
�

switched. If
�

is odd, � �
is the graph of

�F� ���(� ����� P�� �
, a continuous function that is differentiable except at

��� �
; likewise

with
�

and
�

switched.

3. (a) � is the parabola
�f�m�E��� ��� � � �

.

(b) � is the half-line
�s�C�l
 �

,
� �
���

; the endpoint
�����	�,���

is
�v�o+9�

, and
� � �o+9�K��+ .
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(c) � is the line
�s�C�l
 �

;
� � �o+9�<��+ but � is still smooth at

�v�o+9��� �����	�,���
.

(d) � is the astroid
� � � � 
w� � � � �.�

, a simple closed curve with cusps at
A ���	�b+9�

and
A �o+��,���

, which are
the points

���Eab�
where

� � �Eab�<��z (
a<� P� � > , �

i �
).

(e) � is a limaçon; a reasonable sketch can be obtained by drawing a smooth curve from
� �v�b+9�

to
�o+��L� �9�

to
��� �	�b+9�

to
�o+��b+9�

to
�����	�b+9�

to
�o+��,�(� �9�

to
� �v�b+9�

(corresponding to
a��

�
>?8	�

for �
��+����������4@

). It is
a smooth curve except at

��� �	�b+9�
, where it has a self-intersection;

� � �Eab� never vanishes.

4. (a) The left-hand and right-hand derivatives of
�

at
�!��+

are both 0.

(b) Since
7�� � � a�
�365�7 � a � �

, as
a

traverses the intervals � +��
P� >�� , �

P� >I�b>�� , � >I� �� >�� , and � �� >I�4�	>�� , ���Eab�
traces out the line segments from

���	�b+9�
to
�o+��,���

to
�����	�b+9�

to
�o+��,�����

to
���	�b+9�

. Since
� 
 8 
 ab�����o365�7�aY�:�A��I365�7�av7����Ka

and
� 
 8 
 aY�����o7����cab� � A��I7�� �hav365�7Ha , � � �Eab�f� + when

af� P� � > for �
i �

; the points��� P� � >?� are the corners of the square.

5. (a) One sees that
� � ���-�t�_�p� � � ���(

�_�

on � by substituting in
��� �Ea � �r���Y8��Ea � 
m���

and
�t�

a6�Ea � �F���Y8��Ea � 
w���
and simplifying. Conversely, if

�E�?�Y�[�
satisfies this equation, then

�E�'�Y�&�<�����Eab�
wherea��t�&8$�

(
a:��Al�

if
�E�'�Y�&�<�m�o+��b+9�

), because
�f� �E� � �f� � �Y8��E� � 
F� � �:� �Y�E�&8$�^� � �w���Y8��Y�E�&8$�^� � 
Q���:�

�Ea � �|���Y8��Ea � 
����
and
� �m�E�&8$�^� �}�Ca��

.

(b) For
� a,�

very large,
�E�?�Y�[� � ���	�Yab�

, so � is asymptotic to
�}�.�

. As
a

goes from
�  

to
���

to
�

to
 

,���Eab�
goes from

���	�,�  �
to
�o+��b+9�

, makes a loop through
�����	�b+9�

and back to
�o+��b+9�

, and goes from
�o+��b+9�

to
���	�  |�

.

(c) We have
�o+��b+9�h� �v� Al���

. The curves described by
���Eab�

for
a

near
���

or
�

are both smooth; they are
tangent to the lines with slope

Al�
at the origin. One can see this from the nonparametric representation

too: if
�

is small, then
��AQ� �.�

, so the equation
� � ���c�w�_���C� � ���K
Q�^�

gives
� � �t� �

, or
� �
A(�

.

6. (a) This is obvious:
� � ��+ if and only if either

� P���+
or
� � ��+ .

(b)
� � � � � P � � � 
 � � � � P��
z when

� P�� � � ��+ .

3.3 Surfaces and Curves in Space

1. (a) � is the plane
� 
Q� ���

; � � � and � �

�
everywhere independent.

(b) � is the cone
�E�^8 ,�� � 
��E�[8 �6� � � � �

; � �

�!��z
at the origin (the vertex of the cone).

(c) � is the one-sheeted hyperboloid
� � 
Q� � � � � �.�

; � � � and � �

�
everywhere independent.

(d) � is the paraboloid
�-��� � 
Q� �

; � �

�(�
z
when � ��+ , but the surface is nonsingular.

2. (a) With
��� � � � �<� � � � � � � � �N� � �

P� � � � 
 � � �Y� we have
���	�,���v�,�������v���	�,���

, � � �v���	�,����� ���	�,�	�,��� , and
� �

�����	�,���c� �����	�,���v�,���
. The cross product of the latter vectors is

� �&�,���v�,�����
, so the tangent plane is�H�E� �|���I���&�E� 
 ���I���&���-� ���<��+

or
�L�p�w�l� ���
�

.

(b) With
��� � � � �*�~�Y� � 
 � � �

P �?� � � � � � � ��� , we have
���	�,���v�,����� �v���	�b+9�

, � � �v���	�b+9�c�~�����	�,���	�4��� ,
and � �

�����	�b+9�;� �����	�,���	�b+9�
. The cross product of the latter vectors is

� �v�,���v�b+9�
, so the tangent plane

is
�&�E�f� ���I� �&�E��
 ������+

or
�p�%� ���

.

3. (a) Using polar coordinates in the
�H�

-plane,
��� � � � ��� � � 365�7 � � � 7���� � � ` � � �Y� .

(b) Using polar coordinates in the
� �

-plane,
��� � � � ��� � � � ` � � �v365�7 0 � ` � � �v7�� � 0 � .
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(c)
���E�?�Y�[���D�E�'�Y���,� � �K
W�L����
Q�����

and
�I� � � � � �D�o7������ � 365�7L� � 8M� ��� �H7�� ��� � 7�� � � �?�#365�7�� � � are

two of the possibilities.

(d)
�v� � � � �K� � �I365�7 � � � ���I7�� � � � .

4. (a) The cross product of the normal vectors
���	�,���v�,���

and
� �v�,���	�,�����

is
�&���	�,�	�,���

, and one point in the
intersection is

���	� P� � �� � (set
�}�.�

and solve for
�

and
�
), so

���Eab�<� ���	� P� � �� �^
Qa����	�,�	�,��� works.

(b) The cross product of the normal vectors
���	�4�v�b+9�

and
�o+��,�	�,�����

is
����@v�4�v�,���

, and one point in the
intersection is

� �v�b+��,� �� � (set
� ��+

and solve for
�

and
�
), so

���Eab�<� � �v�b+��,� �� �^
Wa6����@v�4�v�,��� works.

5. (a) Substituting
���.�?�p�

in the equation of the sphere gives
�L� � � �L��
#� � ��+

or
�E��� P� � � 
 P� � � � P% .

Parametrize this ellipse in the usual way:
�f� P� 
 P� 365�7[a , � �

P
� � 7�� ��a ; then

�l�.�*�w�f� P� � P� 365�7&a .
(b)
� P� �,� P� � �

P� � corresponds to
a �D� P� > ; we have

�E�'�Y������� � �Eab� � ���
P� 7�� �ha)� P� � 365�7[a)�

P� 7�� ��ab� , which

equals
� P� �b+��,� P� � at

a:�.� P� > ; so
���Eab�<� � P� �,� P� � �

P� �S
Qa�� P� �b+��,� P� � works.

6. Perhaps the best way to nail this is to perform a rotation around the
�

-axis to make the plane horizontal.
Namely, let

��� � ��
�, �
and

� �
� 	 �

�
� � � ,
� , � 	 � � � 	 � �� � �l
�, ���,9� 
 � 	 �

(The matrix is orthogonal since its columns are orthonormal, so this transformation preserves shapes.)
In these coordinates the plane is � �.��8 � and the cone is

�., � 
 � � � � � � � , � � � 
 � � � � or
� � � � 
C�����

, � � � � � �*, � � � ���_��, � � � � . Thus the intersection is the curve
� � � � 
N���_��, � � � � � �*, � 8 ���m������, � �Y8 � �

in the plane � �m��8 � with coordinates
�E��� � � . This is clearly a circle if

,u�
+
, an ellipse if

+ �.� ,^�3�r�
,

a parabola if
� ,_�(� �

, and a hyperbola if
� ,^�4� �

. Parametrizations may be obtained in the form�F� � 7�� �ha , � � � 365�7Ha'
 	 in the elliptic case and
�F� � 7�� ����a , � � �-365�7��caG
�	 in the hyperbolic

case (for suitable � � ��� 	 ), and
�s�Ca

, � �
A
P
� � a � in the parabolic case.

7. The statement is as follows, and the proof is as outlined in the text on p. 130. (a) Let
�

and � be
real-valued functions of class

� P
on an open set in

j �
, and let � � � ��� � �E�'��� � �E�'���
+v� . If

eFi �
and

� � �oe��
and

� � �oe�� are linearly independent, there is a neighborhood � of
e

in
j �

such that � � �
is the graph of a

� P
function from some interval in

j
into
j �

(
�E�������u� �G�E�^�

, or similarly with the
variables permuted). (b) Let

�p�G�.,����6� � j��
be of class

� P
. If
� � �Ea����l��mz , there is an open interval

�

containing
a �

such that the set � ���Eab����ahi �&� is the graph of a
� P

function as in part (a).

3.4 Transformations and Coordinate Systems

1. (a)
�

constant: circles centered at the origin.
�

constant: half-lines starting at the origin. (See answer in
back of text for the inverse and Jacobian.)

(b)
� � � � � � � . � constant: the lines � � �

(
� � +

).
�

constant: the curves � � �,8 � � (
� � +

).� � P � � � � �<� � � � � � � � � .
(c)
� � � � � � + . The range of

�
is the parabola � �

P
% � � , and each line

�B� �
or
�}� �

maps onto this
parabola.

2. (a)
�f� � P� � � ��� � � , � �.�

P
� � � � � � � (i.e.,

�*� P � � P� � ).
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(b) Substituting the formulas for
�

and
�

into the equations for the lines gives � � � � , � � � , and= � � � � ��� ; the image is the triangle bounded by these lines.

(c)
�o+��b+9�u� ���o+��b+9�

,
�����	�4��� � ��� �� � % � � , and

� �v�,��� � �v�o+��,�����
; the region is the triangle with these

vertices.

3. (a) If
7����K�N� ,

and
365�7[�F� �

, we have
� � 8 ,&� � �C� � 8 ��� � ��� . If

365�7 �*�f� � and
7�� ����� � �

, we have� � 8 � � � 
�� � 8 �G� � �.� .
(b)
� � � � � �
� �E�'�Y�&�

� � � � � 365�7H�;365�7���� 7�� �h�;7��������
�#7�� �h�(7�� ����� 365�7H�;365�7���� 	 �J365�7 � �;365�7�� � �f

7���� � �(7�� ��� � ���J365�7 � �G����


7�� ��� � �[��

7�� � � �;7������ � � � 365�7 � �}

7�� ��� � �
, which vanishes when

365�7H��� 7�� �����|� +
, i.e., when�u�C+

and
�f� �

�

 P� ��> ; for these values, � ��Al� and � ��+ .

(c) The foci of the hyperbola
� � 8 ,&� � ��� � 8 ��� � � � are at

� A �L�b+9�
where

� � � , � 
 � �
; with

,����
as in

(a) we have
��� �

. When
� ,^� ��� �M�

, the foci of the ellipse
� � 8 � � � 
�� � 8 �G� � � � are at

� A 	G�b+9�
where	 � � � � � � � ; with � � � as in (a) we have

	}�.�
.

4. (a) The lines
�l�}�s��+

and
�l�}�u�.�

meet the hyperbolas
�H�s�.�

and
�H�s� �

in the first quadrant and
again in the third quadrant.

(b) � �(��� � � �� � 	 ,
� �C�l
W�

.

(c) The lines
� �w�

= constant are tangent to the hyperbolas
���

= constant along the line
�s�.�*�

.

(d) We have
�#�C�h
 � , so � � �E�c
 � � � or

� � 
 � �(� � ��+ ; hence
�u� P� ��� � � � � � 

� � � , where the

minus sign is necessary to make
� � ���

when
� � � � �K� � =v�,��@�� , and then

�#�t�&
 � �
P� � � � � � �<
 � � � .

With � �.��8 � � �:

� � , we have � �#� P� � ��� � � ��� ������ � � ��� � 	 .

(e) � ��� �v�,����� � �I� =v�,��@��h� � � � �
��� � 	 � �;� ����;� ��� 	 � � � ++ � 	 .

5. Let
� � � � � � ���E�'�Y�&� � �E�[8$� � �Y�H�[� . Then � �w� � �;�L�&8$� � ��8$� �� � 	 and

� � � � �w� ���L�&8$� � . Also
�u� � � � , so

�f� � 8$�u� � 8 � � � , whence
�f� � � 8 � �

P�� �
and
�s� � � � � � � � � �

P�� �
.

6. (a)
�k� �

: the sphere of radius
�

about
+
.
��� �

: the (half) cone
�B� �o365 ���,� � ���<
Q���

(the positive
or negative

�
-axis if

�B�D+
or
�B�D>

, the plane
�W�D+

if
�B� P� > ). 0 � �

: the vertical half-plane
corresponding to the ray 0 � � (polar coordinates) in the

���
-plane.

(b) � � � �� 7�� � �-365�7 0 �:365�7*�-365�7 0 ���:7�� � �-7�� � 07�� � �-7�� � 0 �:365�7*�-7�� � 0 �:7�� � �-365�7 0365�7 � � �I7�� � � +
��

, so one easily computes that

� � � � �(� � � 7�� � ���o365�7 � � 
 7�� � � �I�6�o365�7 � 0 
W7�� � � 0 �I� � � 7�� � � .

(c)
� � ���+

and
� � ���+

or
>

; in other words,
�E� �	�Y� ���(�� �o+��b+9�

.

7. With � �E�:�Y�G�h�m�E�:� �-�E�:�Y�G�Y� , we have ��� � � � +
��� � ��� � 	 and hence

� � � ��� ��� � � ��� � . If the

latter determinant is nonzero at
�oe^�bg:�

, where
� �oe^�bg:�*�rz

, then � is locally invertible there. Because
of the form of � , � �

P
has the form � �

P � � �	�G�!� � � ���I� � �	�G�Y� where
� ��j�� �_R � j R

is
� P

. For
�

near
e

, let
�v�E�'��� �G�E�:�4z��

. Then � �E�:�����E�'�Y�h�m�E�:�4z�� , that is,
� �E�:�����E�'�Y����z

, so
�

solves the implicit
function problem. Uniqueness follows from the uniqueness of � �

P
.
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3.5 Functional Dependence

1. (a) � ��� �� � � ���
� ��� �
�L� �L� �%� � ���L��
 � �

��
has rank 2 everywhere (the first two rows are independent; the

third is
�l
 �L�

times the first plus
�l
 � �

times the second).
� � P% � ` 
 	 � � 


P
% � ` � 	 � � .

(b) � �(� �� �L� �L� � �
� � �
+ � ���

��
is nonsingular except on the plane

��
 �-���L�
.

(c) � � � �� � P�� � 365�7&� P� ��� P�� � 7����K� +
���L��365�7H�;7����K� 365�7 � � � � +

+ + �
��

is defined for
� ��+

and has rank 2 there (the second

row is
�;�L� P�� � 7�� �h�

times the first). 	
�.� ` � .

(d) � ��� �� � � �
�&�E�H��
 ��� � �&�E��� 
 ��� � �&�E�H� 
 �v�
�*� �*� ���

��
has rank 1 everywhere (the second and third rows

are
�&�E����
 ���

and
���

times the first).
� ����� ` and 	

� ` � .
(e) � �(� �� � � P �*� � P �

� � P �*� � P � �
� � P ���L��� � � �L� � P �w�H� � � +

��
has rank 2 on the set

�'�Y���|+
where

�
is defined (the

first two rows are independent; the third is
�E� � � �L� � �Y8	�L�H�

times their sum).
� ��� ��� ��� 
 � � 
 � � � ��� ��� 
 � �

.

(f) � �(���� � ��� �
�L� ���L� +
� + �

��
is nonsingular except on the plane

�f��+
.

2. (a) THEOREM. Let
�N� � ` � 	 � be a

� P
map from a connected open set

� � j � into
j �

. Suppose
that � �v�E�'� has rank

�
at every

��i �
. Then every

� � i �
has a neighborhood � such that ` and

	 are functionally dependent on � and
�v�
�
�

is a smooth curve in
j �

. PROOF: Let � � ` �E�'�Y�&� and
� � 	

�E�?�Y�[�
. Since � ���E� � � has rank 1, it has at least one nonzero entry, which we may take to be

� � ` �E� � � . By the implicit function theorem, the equation � � ` �E�?�Y�[� can be solved near
� �O� �

and
� � � � � ` �E� � � to yield

�
as a function of � and

�
. Then � � 	 �E�?�Y�[� becomes a function of � and�

too. Implicit differentiation of the equations � � ` �E�'�Y�&� and � � 	 �E�?�Y�[� with respect to
�

(taking
� as the other independent variable) gives

+k� � � � ` �6� � �$�_�I
r� � � ` � and � � � � � � � 	 �6� � �L�_�I
r� � � 	 � .
Solving the first of these for � �,� and substituting in the second gives � � � �O� � � ` � �

P
� � � � ���
+ , so �

is a (smooth) function of � alone, say � � ��� � � . Hence 	
�E�'�Y�&��� �K� ` �E�'�Y�&�Y� , and the range of

�
near� �

is the smooth curve � � ��� � � .
(b) THEOREM. Let

�!� � ` � 	 � � � be a
� P

map from a connected open set
� � j � into

j �
. Suppose that� �v�E�'� has rank

�
at every

��i �
. Then every

� �
in
�

has a neighborhood � such that ` , 	 , and
�

are
functionally dependent on � and

�v�
�
�

is a smooth curve in
j��

. PROOF: The proof is similar to part (a),
so we just sketch it. Let � � ` �E�?�Y�[� , � � 	 �E�'�Y�&� , � � � �E�?�Y�[� . We may assume � � ` �E� � ����r+ . Then
we can solve the equation � � ` �E�'�Y�&� for

�
as a function of � and

�
, making � and � into functions

of � and
�

. One calculates that � � � � � � � ` � �
P
��� � ` � 	 �Y8 � �E�?�Y�[� � and � � � �m� � � ` � �

P
��� � ` � � �Y8 � �E�?�Y�[� � ,

which both vanish since � � has rank 1. Thus � � �K� � � and � � �(� � � (which describes a smooth
curve), and 	

���K� ` � and
� ���(� ` � .



Chapter 4

Integral Calculus

4.1 Integration on the Line

1. The sup and inf of ` on any nontrivial interval are 1 and 0, respectively. It follows that for any partition�
of any interval � ,����b� we have � �G` � �K� , and

� �I` ��+ , so
� �	 � ` �:����� , and

� �	 � ` �:��+ .
2. If

� �m+
, for any interval

�
we have

7���������� ` ��� �_7�������� ` � and
����, � ��� ` ��� � � ��, � � ` � ; it follows that

� � ��� ` �<� � � � � ` � and
� � ��� ` �<� � � � � ` � for any partition

�
of � ,����4� and hence that � �	 � ` � � � �	 ` . If� � +

, the orders are reversed (
7���� � ��� ` �<� � ����, � � ` � , etc.) but the final result is the same.

3. We use Lemma 4.5. Given � � + , let
�

be a partition of � ,H���4� such that � �:` � � �:` � � . Let
� �

be the partition obtained by adding the subdivision points
�

and 
 to
�

(if they are not already there).
By Lemma 4.3, � ��� ` � � ��� ` � � . Let

�
be the partition of � �L� 
 � obtained from

� � by omitting the
subintervals belonging to � ,�� � � or � 
 ���4� ; then ���I` � � �I` � � . By Lemma 4.5, ` is integrable on � �$� 
 � .

4. If ` q 	 then
� �I` q � � 	 and � �:` q � � 	 for any partition

�
of � ,����4� ; it follows that �	�	 ` q ���	 	 .

5. Given an interval
� �D� ,H���4� , let

�
and

!
be the sup and inf of ` on

�
, and let

�
and

	
be the sup

and inf of
� ` � on

�
. If ` � + on

�
then

� � �
and

	s� !
, and if ` q + on

�
then

� � � !
and

	s� � �
; in either case,

��� 	s� � � !
. If ` changes sign on

�
, then

� � �s1��?� � �$� ! ���
and

	 �
+
, so

�W�
	*q � � � 
r� ! �H� � � !
. It follows that for any partition

�
of � ,����4� we have

� � � ` � � � � � ` �vq � �:` � � �I` , and it follows from Lemma 4.5 that
� ` � is integrable. Moreover

A ` q�� ` � ,
so
A �	�	 ` q ���	 � ` � , hence

� ���	 ` �vq �	�	 � ` � .
6. Let

	c� � � �W� � . Given � �m+ , the interval
� �

of length
P� � centered at

	
contains

� � for � sufficiently
large, say �

�
� . For


 � �	�������$�
� , let

� U be the interval of length � 8	� � centered at
� U . Then every� U is contained in � �� � U , and the sum of the lengths of the

� U ’s is � .
7. If � � ` �E� �,� ��+ and ` is continuous at

� �
, there is an interval � �L� 
 � ��� ,H���4� containing

� �
such that

` �E�_� �
P� � for

�Ni � �L� 
 � . By Theorem 4.9c, � �	 ` � � �	 ` 
 � �� ` 
 � �� ` � � �� ` �
P� � � 
 � �,� � + .

8. (a) If
�~� � � � ���������Y�
	&� , let

� � � � � � 8 �$�������$�Y��	&8 �$� ; then
���)� � � is a one-to-one correspondence

between partitions of � ,H���4� and partitions of � ,&8 �L���68 � � . The sup and inf of ` �E�^� on � � U � P��Y� U � are equal
to the sup and inf of ` ���)�_� on � � U � P48 �L�Y� U 8 � � , and the length of the former interval is

�
times the length

of the latter. It follows that � �I` � � � � �]` ���G" � and
� �I` � � � � �o` ���'" � ; the result follows.
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(b) and (c) are similar; one considers
� � � � �*�
	H�������,�,�*� � � or

� � � � � � 
 �L�������$�Y��	!
 �$� .
9. 	 and

�
are uniformly continuous on � ,H���4� , and � � 	 � � ,H���4�E��y � � � ,H���4�E� is a compact set in the plane, so

` is uniformly continuous on it. Thus, given � � + , we can choose � � + such that
� ` � � � � ��� ` � � � � ��� �����

� 8	�&� �h� ,&� whenever
� � � � � and

� � � � � � � are points in � with
� � � � � ��� � and

� � � � � � � � , and we can
choose 0 � �|+ small enough so that

�
	
�E�^�:�

	
�E� � ���	� � and

� � �E�^�I� � �E� � ���3� � whenever
�?�Y� � i � ,����4�

and
� ����� � �4� 0 � . Next, let

���E�_�N� ` � 	 �E�_� � � �E�_�Y� . By Proposition 4.16 we can choose 0 � +
small enough so that 0 q 0 � and � �	 ���E�_� 
 �B� � � � � P� � for any partition

�d� � � U �
	�

of � ,����4� with�s1��?�E� U �w� U � P � � 0 . Since
�

is continuous, its infimum on � � U � P��Y� U � is achieved at some point � U , so� � �N� T �K� � U �6�E� U �w� U � P � . Then for any
� �U �Y� � �U i � � U � P��Y� U � we have






� �	 ` � 	 �E�_� � � �E�_�Y� 
 �#� � ` � 	 �E� �U � � � �E� � �U �Y�6�E� U �N� U � P � 



q 





� �P ���E�_� 
 �}� � �K� � U �6�E� U �w� U � P4� 





 � � ��� � U �G� ` � 	 �E� �U � � � �E� � �U �Y���n�E� U �%� U � P4�

q �� 
 � ��&� �h� ,&� �E� U �w� U � P4�<� � �

4.2 Integration in Higher Dimensions

1. (a) If � � ��� P � ) where
T � � � ) � � � , the same is true of

�
.

(b) Given � � + , choose a finite collection of rectangles
� U ) (


l�.�	��������� 1
and
! �.�	������� � U ) such that

� U � � �
�
) V P � U ) and

T ) � � � U ) � � � 8$1 for each


. Then �

R P � U � � U � ) � U ) and
T U � ) � � � U ) � �

� .
2. (a) Given a partition

� � � � U �
	�

of � ,H���4� , let
! U and

� U be the inf and sup of ` on � � U � P6�Y� U � . Then
the graph of ` is contained in �

	 P � U where
� U � � � U � P��Y� U �<y � ! U � � U � , and the sum of the areas of

these rectangles is � �I` �
� �I` . This can be made arbitrarily small (Lemma 4.5), so the graph has zero
content.

(b) The boundary of � is the union of the graph of ` and three line segments, all of which have zero
content, so � is measurable. Let

� � �s1���� 	 �
�	� ` . Given a partition

�r� � � U � of � ,H���4� , let
��� � � U�
 ��R9�

be a partition of � ,H���4�Gy � +�� � � with the same
� U ’s, such that each

! U and
� U (as in part (a)) is among

the
��R

’s. Then the upper and lower approximations to the area of � corresponding to this partition are
just � �I` and

� �I` ; as these can be made arbitrarily close to � �	 ` , it follows that � �	 ` is the area of � .

3. Given � � + , choose a partition
�

of a rectangle containing � such that � � � �c� � �
� � � P� � . Let�-P,��������� �
� be the subrectangles of the partition

�
that are contained in � (so

� �
� � is the sum of
their areas). For each

!
, let

�� ) be the rectangle with the same center as
� ) and side lengths

� �*� 0
times as big, where 0 � � 8	� � � � � ; then � � �� ) �"� ���-� 0 � � � � ) � , and

�� ) � �I���b� . Let
�

be the
partition obtained by adding all the

�
(resp.

�
) coordinates of the sides of the

�� ) ’s into the collection
of
� U ’s (resp.

��R
’s) in

�
. Then the

�� ) ’s are among the subrectangles of the partition
�

, so
�
�
� ��� ��� �T � � �� ) �������&� 0 � � �
� �"�����&�u� � 8	� � � � �Y�Y�6� � � � �L� P� � ��� � � � �L� � . It follows that � � �I���4� � � � � � � ,

and the reverse inequality is obvious.

4. This really follows from Exercise 3 and the observation that if
�

is a rectangle whose interior includes
� , then the outer area of � plus the inner area of

� ��� equals the area of
�

, and likewise with � replaced
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by � . The inner area of
� �!� is the same as the inner area of its interior

� ���b�'� � , which is the same
as the inner area of

� � � since the boundary of
�

has zero content; it follows that � � � �s� � � � � .
Alternatively, one can redo the argument of Exercise 3 by considering a partition of

�
and shrinking the

rectangles that do not meet � slightly to produce rectangles that do not meet � .

5. Given any partition of a rectangle whose interior contains � , the subrectangles of the partition fall into
three classes: (i) those contained in � ���4� , (ii) those that intersect �_� , and (iii) those that do not intersect
� . (Any rectangle

�
that intersects both �<���4� and

� � � � also intersects ��� ; otherwise
�4� �<���4� and

�4��� � � �
would be a disconnection of

�
.) The sum of the areas of the rectangles in class (i) (resp. class (ii), classes

(i) and (ii)) approximates � � � ���b� � (resp. � � �_� � , � � � � ). It follows that � � � ���b� �S
 � � ��� ��� � � � � , and
hence by Exercises 3 and 4 that � � � �?
 � � �_� �<� � � � � .

6. (a)
�

is a union of open rectangles, so it is open (any point is an interior point).

(b) Let
� � be the approximation to

�
obtained by stopping at the � th stage, with the rectangles of length� �	�

.
� � is the union of 1 rectangle of area

P
% , two rectangles of area

PP � , . . . ,
� � � P

rectangles of area
� �	�

.
The sum of these areas is

P� ���'� � �	�H� , and there is some overlap, so � � � � � �
P� ; in fact � � � � ��q � �

P�
with

�
independent of � . If

�
is any partition of the unit square, the union of the (closed) subrectangles

of
�

that are contained in
�

is a compact set, and the open rectangles out of which
�

is built are an
open cover of it, so by Heine-Borel there is a finite subcover; in other words, all these subrectangles are
contained in

� � for some � . It follows that
� �
��� q � � P� , so � � � ���

P� .
(c)
�

contains every
�E�?�Y�[�hi �

such that
+)� ���
�

and
�

has a terminating base-2 decimal expansion;
the set of all such

�E�?�Y�[�
is dense. Hence � � � �<� � � � �<�.� by Exercise 4.

(d) We have � � � �:� � � � �:� � � � �<�.�c�|����+ and � � � �<� � � � �I� � � � � �
�*�
P� � P� .

7. Suppose
��� ��� � +

. With
� �E�^��� � �	 ` �Eab� 
 a , �	�	 ` �E�^���K�E�^� 
 �|� � �E�_�����E�_��� �	 � �	�	 � �E�^��� � �E�^� 
 �|�� ���	 � �E�^��� � �E�^� 
 � since
� �.,&� � ��� ���p�D+

. Since
� � �d+ , we can apply the mean value theorem

to get
� �	�	 � �E�^��� � �E�^� 
 �C�D� � ���,� ���	 � � �E�_� 
 �t� � ���������.,&� � ���.,&� � �	 ` �E�^� 
 � , the claimed result

for the case
��� ���u� +

. Moreover, for any constant
�

, � �	 ` �E�^� � ���E�_��
 �(� 
 ��� �K�.,&� � �	 ` �E�^� 
 �#
� ���	 ` �E�^� 
 �k� � ���.,&�?
 �!� � �	 ` �E�_� 
 � 
 � �	�� ` �E�_� 
 � . Finally, if
��� �6�����+

, we apply this result with���E�_�
replaced by

���E�_�I� ��� ���
and

�
���K� ���
to get the desired conclusion.

4.3 Multiple Integrals and Iterated Integrals

1. (a) � � � �E��
 �L� � � 
�� � �
P
� P � �

P � � �� �E��
 �L� � � 
 � 
 � � �
P
� P � � � �c�w���#
 �% ����� � � � � � 
 � �

� �
P
� ���c�%� � � �

� � 
 �% �E� � �� � � 

P� � � � � P� P � % � .

(b) � � � �E� � � � �&� 
 � � � �� � �
�� � �E� � � � �[� 
 � 
 �f� � �� �

P
� � �*�%� � �9� �

�� � 
 �p� � �� � �� � �����L� �
� � � P� ����
� ��� � � 
 �u� � �� � % � % � �

��� � � P� P � � 
 � � � �
� � � �� � � �� � � =�� � �9� .

2. � � �
P � �� �

P� @L�H�^���p��� ���[� 
 � 
 � � �
P� � �L�G���f�
�^� � � �r�L��� � �

P � �� 
 � � �
P� �I���p���_�&� 
 � �

�
P� � � �w� ��
 �% ��%c�

P� � � � P� � P� � .
3. (a) and (b): See answers in back of text.
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(c) The parabolas intersect at
�����v�4/��

and
���	�,���

, and they are given by
�f�
A � � and

�}�.����A � ��+��w�
.

Thus � � � ` 
 � � �
P
��� � � �	% � � � �� � ` �E�'�Y�&� 
 � 
 �}� �

P� � �
�

� � � ` �E�?�Y�[� 
 � 
 �[
 � �P � � �
� � P � � �� � � ` �E�'�Y�&� 
 � 
 �_


�
P �
� � � �

� � P � � �� � � � P � � � ` �E�'�Y�&� 
 � 
 � .
4. (a) and (b): See answers in back of text.

(c) � � � �� � ���� ` �E�'�Y�&� 
 � 
 � .
5. (a) � �P �

�P � � � � 
 � 
 �u� � �P
P� �E� � � � � � � �[� 
 �u� �

P
% � � �

� � P� � � � � P% � � � � � � P �
�
� � �*� � �� � � .

(b) �
P� �
P
� � 365�7$�E� � 
 ��� 
 � 
 �#� �

P� �
� �� 365�7��E� � 
 ��� 
 � 
 �f� �

P� � � 365�7��E� � 
 ��� 
 �p�
P
� 7�� �S�E� � 
|�����

P� �P
� �o7�� �c�!��7�� ����� .
(c) � �P �

PP�� � � � �
�

 � 
 �f� �

PP�� � � �P���� � � �
�

 � 
 � � �

PP�� � � � � � � �L� 
 �u� �
P� � � � � �,�9� PP�� � � P� � � � � .

6. The region of integration is bounded above by
��� �F
~�

, below by
��� �L� �

, and on the left by

the
�

-axis. Reversing the order of integration gives �
P� �
� � � �� ` �E�&� 
 � 
 �p
 � �P �

� � � �� � P ` �E�[� 
 � 
 �t�
�
P� ` �E�[� � �&8	� 
 � 
 � �P ` �E�&�6� � �&8	���%��
���� 
 � .

7. Reversing the order of integration gives
� �E�^��� � �� � �� 	 �Eab� 
 � 
 a<� � �� �E�f�wab� 	 �Eab� 
 a .

8. See answer in back of text.

9. (a) The region of integration is bounded below by the region in the first quadrant of the
�H�

-plane under
the parabola

�f�.�c�%� �
and above by the plane

���C�
.

(b) and (c): See answers in back of text.

10. The volume is �
	� � � � P � � � � 	 
 
� �M��� � � 	 � �

�
� 
 � 
 �C� �

	� P� � �M����� � 	 � � 
 �C� P� , � � . The
�

-moment is

�
	� � � � P � � � � 	 
 
� �)�G����� � 	 � �

�
� 
 � 
 �}� �

	� P� � � �I���K� � 	 � � 
 �#� P� % , � � � , so the
�

-coordinate of the center
of mass is

P
% , . By symmetry, the

�
and

�
coordinates are

P
% � and

P
% � .

11. The mass is � �� � �� � �� � � 
 � 
 � 
 � � � �� 
 � � �� � 
 � � �� � 
 � � #
. The

�
-moment is

� �� � �� � �� �H� � 
 � 
 � 
 �p� # ; the
�

-moment is � �� � �� � �� � � � 
 � 
 � 
 � � � �� , and likewise the
�
-moment

is
� �� . So the center of mass is

���	� % � � % � � .
12.
� � ��� �t�p�|�

when
���4�|� �t�

, so the net charge is � �� P � �� � � �
P

� � ��� � � 
 � 
 � 
 �F�C� � �� P � �E�f�|��� � ��E� � ����� � � 
 �f�
� � �� P ���*� %K
�	$� � � �L�p� #�� 
 �#� �
P � ��

.

13. (a) ` is not integrable on � because it is unbounded ( ` �E�?�4�L�^���d� �L�_� � � �  
as
� � +

). However,
for fixed

� �
, ` �E�?�Y� � � is continuous on � +��,�)� except at the three points

+
,
� �

, and
�

and is bounded in
absolute value by

� � ��
; hence it is integrable on � +��,�)� . Likewise ` �E� � �Y�&� is integrable on � +��,�)� .

(b) �
P� �
P� ` �E�'�Y�&� 
 � 
 �m� �

P� � �
�� � � � 
 � � �

P� � � � 
 �H� 
 �O� �
P� � � �
P �O�����-
r� � P � � 
 �O� � , and

�
P� �
P� ` �E�?�Y�[� 
 � 
 �#� �

P� � � � �� ��� � 
 � 
 �
P
� � � � 
 �9� 
 �}� �

P� � �*� �
P 
�������
Q� � P � � 
 �k�.� � .

4.4 Change of Variables for Multiple Integrals

1. � � � ���� �
P ���
	�� �� � 
 � 
90 � � ����

P� ���K
W365�7 0 � � 
90 � �� > .
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2. The volume is � �
� �� � � � �

P� �
P� � 
 � 
 � 
�0 �O> �

P� �[���!� �9� 
 � ��> �
P� � � � P� � � �

P� � P� > . The
�

-moment is

� �
� �� � � � �

P� �
P� � � 365�7 0 
 � 
 � 
�0 � � 7�� � 0 � �

� �� � � � �
P
� � �(�

P
% �$% �
P� � P� . The

�
-moment vanishes by symmetry.

The
�
-moment is � �

� �� � � � �
P� �
P� � � 
 � 
 � 
90 ��> �

P� P� ���[� � � � � 
 � ��> �
P� � � � P% � %)�

P� � P% > . Thus
�f� ��8L>

,�u�C+
, and

�l� �% .
3. The top and bottom hemispheres are given by

� �DA � �-� � �
, so � � � ���� �

P� � � � � � � � 
 � 
�0 �� % � ><� � � � � � � � � � P� � % � ><� #���� � � � � .
4. The equation of the cylinder is

� � 
r� � � �L�
, or

��� �I365�7 0 (
� P� > q 0 q

P� > ). Hence � �
� �
� �

� � � � �
�
	�� �� � ��� �9� � 
 � 
90 � � �

� �� � � � � �<365�7 � 0 � � � 365�7 � 0 � 
90 � � � 0 
#7����c� 0 � �� �o7�� � 0 �
P
� 7�� � � 0 � � �

� �� � � � ��	>#� � �
� .

5. In cylindrical coordinates with the origin at the center of the base, the mass is � ���� � �� �
	� � � � 
 � 
 � 
�0 ��M� �	>?�6� P� � � �6� P� � � ��� P� �6> � � � � .

6. In cylindrical coordinates, � � � ���� � � �� � � ��� �M���s��� � 
 � 
90 �
�	> � �
P
� � �S� � � � � � � �

P� � � � � �� � �
� > . Al-

ternatively, in spherical coordinates, the plane
� � �

is given by
� � 7 � 3 � , so � �

� ���� � �
� �� � ���� ��� � � 7�� � � 
 � 
 � 
90 � �� > � �

� �� � #��p7 � 3 � �I�v7�� � � 
 �w� � � > � ��#I365�7 � � P� 7 � 3 � �^� � � �� � �
� > .

7.
� � � ���� � �� � �� �	����� �9� � � 7���� � 
 � 
 � 
90 � �M� �	>?�6� ���6�

P
� � �h�

P
% � %��<�

P
� > � � % .

8. By symmetry the coordinates of the centroid are all equal, so it suffices to calculate
�
. The

�
-moment

is � �
� �� � �

� �� ���:365�7 �G� � � 7���� � 
 � 
 � 
90 � �
P� >?� �
P� 7�� � � �^� �

� �� �
P
% �$%)�
P� � PP � > , and the volume is

P
� � % � >?�c�P

� > , so
��� �� .

9. Let � �C�!�p�L� , � ���L�c
f� ; then � � � � � �Y8 � �E�'�Y�&�h� 	
, and

�#� P� � � 
#� � � , �s�
P
� ���;� � 
 � � . The given

parallelogram
�

in the
�H�

-plane becomes the rectangle
�

in the � � -plane given by
+sq � q
��+ , +sq � q�,=

. So the area of
�

is
P
� ����+9�6���,=�� ; the

�
-moment is � � � � 
 � 
 �k�

P
% � �
P �� �
P �� � � 
|� � � 
�� 
�� � � P � �% � ,

and the
�

-moment is � � � � 
 � 
 �}�
P
% � �
P �� �
P �� ����� � 
 � � 
�� 
�� ���
� � � �% � , so

�F� ���P % and
� ��� �P % .

(Shortcut: The centroids of
�

and
�

are their geometric centers, which correspond under the map�E�?�Y�[�(� � � � � � . The center of
�

is clearly
� =v� P �� � , so the center of

�
is
� ���P % �,�

�P % � .)
10. Let � � ��
m� and � � �W��� ; then � � � � � �Y8 � �E�'�Y�&�t� ��� , so � � � �E��
m�&� % �E� ���[� �

�

�� �P� �

P
� P � �P � % � �

�

�� 
�� �

P� �
P� �
� � P� P � �

P
% � �	% � � P � %� P .

11. Let � �C�K
 �L� , � �C�c� �L�G
 � , � �
� � � ; then � � � � � � � �Y8 � �E�?�Y�������*�.� �v� � , and the given ellipsoid
in
�H� �

-space becomes the unit ball in � ��� -space. Thus the volume of the ellipsoid is
����8���� �9�6� ��>?8	���K�

>?8	��� �
.

12. We have
�r� � � 8 � and

��� � � � , so
� �E�'�Y�&�
� � � � � �

� � � � �� � � ��8 � � � � � 8 � �� � 8 � � � 8 � 	 �
�
� � . Thus the

area is � %P � %P ����8	� � � 
�� 
�� � � �
P� � 5�� � � % P � �� � 5�� � , the

�
-moment is � %P � %P � � 8 � ����8	� � � 
�� 
�� �P� � �� � �

� � � % P � �;� � �
P�� � � % P � �� , and the

�
-moment is � %P � %P � � � ����8	� � � 
�� 
�� �

P� � �� � �
� � � % P � � �

P�� � � % P � P %� .
Thus

�}� P %
� � 	�� % and

�s� ���
� � 	�� % .
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13.
� � � ��� � � � � � � �� � � � � � �.���&�E� � 
!� � � , so � � � �E� � 
!� � � 
�� �

P� � � � � � � � ��� � 
 � � P� � �P � %P 
�� 
�� ��
.

14. We have
� �E�?�Y�[�
� � � � � �

� � � � � �*� � � �
� � 	 � � . Also,

�s
 � � � and
�_8$�f� � �

P �t�
, so � ��� 
 � and

� ���[8��E� 
 �&� ; hence the
�

and
�

axes correspond to � ��+ and � �m� . Therefore � � � �E�s
Q�&� �
P

 � �

�
P� � %P � �

P " � 
�� 
�� ��� .
15. In double polar coordinates, the unit sphere in

j %
is given by

� � 
�� � � � �
, and the volume element is� � 
 � 
 � 
�0 
 � . Thus the volume of the ball is � ���� � ���� � �� � � � � � � �� � � 
 � 
 � 
90 
 �w� � �	>?� � � ��

P� � � � �� � � � 
 �����	> � �
P� � � � � � P% � % � �� �

P� > � � % .

4.5 Functions Defined by Integrals

1. (a) ` is obviously
� P

as a function of
�

for each
�

, and ` �o+��Y�[� � + . For fixed
���� +

, one studies the
behavior of ` �E�?�Y�[� as

�)� +9

as in Exercise 9, � 2.1. First one verifies (by l’Hôpital) that ` �E�?�Y�[�Y8$�

R �
+

as
� � +9


for every
1

and (by induction) that �
R� ` �E�?�Y�[�K� �'R��E�?�Y� �

P � �$� � � ���
for
���C+

where
�IR

is
a polynomial. By induction again, it follows that for all

1 � +
, �
R� ` �E�?�Y�[�Y8$�)� + as

�)� +9

, and hence

that �
R�� P� ` �E�?�b+9� exists and equals zero.

(b)
� �E�^��� �

P� ` �E�?�Y�[� 
 �p�C� � � � � � � � � �
��� � P� �C� � � � �

, so
� � �E�^�<� ���;���L� � � � � � � and

� � �o+9��� � . But

� � ` �E�'�Y�&�:�m� �L� � ���L� %$� ��� � � � � �
���

for
� � +

, so � � ` �o+��Y�[� � + .
2. (a)

� � �E�_�<� �
P� � � 8�����
 � � � � 
 �u� � �P ��8����v
s� � � 
�� �t� �

P
� 5������v
s� � ��� � P �C� �

P
� 5����Y���v
 ���_�Y8�����
 �^�Y� .

(b)
� � �E�^�<�C��� � 365�7L�E�

� � " �L�G� � � �P ��7�� �^�E�H� � � 
 �u���L� �
P 365�7$�E� � �)� � �L�^� � P � ���� 7�� � � 
�� �
�L� �

P 365�7&� � 

� �L�_� � P �o365�7H� � �%365�7[�_�

.

(c)
� � �E�^�<� � �L�^� �

P � � � � "$�c
 � � �P � �
�

 � �C� �

P � � � � 
 � � �
P � � � � � �� V P �t� � P � � � � � � � � �9� .

3.
� � �E�_�w� �E�Q���_� � � � � 	 �E�_�c
 � �� �E�Q���}
~��� � � �

�
	
�E�[� 
 �O� � �E�_�c
 � �� � � �

�
	
�E�[� 
 � , so

� � � �E�^�w�� � �E�_�?
 � � � � 	 �E�^�S
 � �� � � �
�
	
�E�&� 
 �p� � � �E�_�?
 	 �E�_�'
 � � � �E�^�G� � �E�^� � .

4.
� � �E�_���

P� 7�� �*�&�E�N� �_� 	 �E�^��
 � �� 365�7��&�E�B� �[� 	 �E�[� 
 � � � �� 365�7��&�E�F� �[� 	 �E�[� 
 � , and so
� � � �E�_���365�7��&�E�f�w�_�

	
�E�_�:� � � �� 7�� �c�&�E�f�w�&� 	 �E�&� 
 �p� 	 �E�_�:� � � �E�^� .

5.
� � �E�_�<� ` �E�?� ���E�_�Y��� � �E�_�:� ` �E�?���!�E�_�Y� � � �E�^�S
 �

� � � 

� � � 
 � � ` �E�?�Y�[� 
 � .

6. For �
� �

we have
� `
� � � � � �E�^�s� � � � �
��� � � �

P
� �E�N� �_� � �

P
` �E�_�<
 � �� � � �����6�E�w� �[� � � � ` �E�[� 
 ���(�

� � � ����� � � �
P
� �� �E�f�N�&� � � � ` �E�[� 
 �s� `

� � � P � �E�_� . For �
�.�

, `
� P
� �E�^�:� � �� ` �E�&� 
 � , so

� `
� P
� � � � ` .

7. (a) � � � � �
P� a ��� � � �

P� �$� � � � � 
 � � % � ` �E�[� 
 ��
 a �
P�� � �

P� �$� � � � � 
 � � % � � �E�#� �[� � 8��Ma � � ` �E�[� 
 � . On the other

hand, � � � � a �
P�� � �

P� �$� � � � � 
 � � % � � � �E�F�W�[�Y8	�La � 
 � , so � �� � � a �
P�� � �

P� � � � � � � 
 � � % � � �Y�E�N�W�&�Y8	�Lab� � �����8	�LaY� � ` �E�[� 
 �f� � � � .

(b) For short, let � � �E�f�w�[� � 
Wa � . Then � � � �Ca �
P� ������� � � � �&�E� �w�[� ` �E�[� 
 � , so

� �� � �Ca
� P
� � � ��� �H�E� �N�[� � ` �E�&� 
 ��
Wa

� P
� ��� ��� � � � � ` �E�[� 
 �

� #La � P� �E� �w�&� � � ��� ` �E�&� 
 �l� �La
� P
� � � � ` �E�&� 
 �*�
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On the other hand, � � � � �
P� � �
P
` �E�[� 
 � 
 �La � �

P� ������� � � � ` �E�&� 
 � , so

� �� � �Ca
� P
� ������� � � � �La 
 � � �Ma

� P
� � � � ` �E�[� 
 �l���La �

� P
� ���;��� � ��� � �Lab� ` �E�&� 
 �

� #La � � P� � ��� ` �E�&� 
 ����@La
� P
� � � � ` �E�&� 
 �*�

Thus, in � �� � 
 � �� � , the terms involving � ��� add up to
#La �
P� � � � ` �E�[� 
 � , and the terms involving � � �

add up to the negative of this quantity.

8. We show that for each
� i �

, � P � �E�'� exists and is given by (4.48), and hence is continuous by
Corollary 4.53a. Let

� U �~� � U �b+��������L�b+9� where
� U � + and each

� U is small enough so that the points�f
 � U are all in a ball contained in
�

. By the mean value theorem,
� ` �E�}
�� U �&�I�<� ` �E�:�[�G����8&� � U ���� � P ` �E�%
�a�� U �[�I���!q �

, and ��` �E�%
 � U �&�G�;� ` �E�:�[�G� �E8 � U � � � � ` �E�:�Y�G� for each
�

as

 �  

.
Hence, by the bounded convergence theorem, the integrals of these difference quotients, which are
� � �E�f
 � U �:� � �E�'� �E8 � U , converge to � "�"�" � � � � � ` �E�:�Y�G� 
 �v� , which is therefore � P � �E�'� .

4.6 Improper Integrals

1. (a) Converges by comparison to
����� � �

.

(b) Diverges by comparison to
� � P

.

(c) Converges by comparison to
� � �

(for example), using the fact that
� � � � �

and
� � � � � �$� � �

for
large

�
.

(d) The integrand is bounded in absolute value by
�E� � �}���k��� � P

, which is comparable to
�
� �

for large�
; hence converges absolutely.

(e) Diverges by comparision to
� � P

. (
�b1 �'�o+9�<��+

and
�b1 � � �o+9�<� � , so

�b1 �?� � � � � for small � .)

2. (a) Converges since
�_8 � �*�w� � �.��8 � �&�����w�_�

for
�

near 1.

(b) Diverges by comparision to
�E�f� P� >?� � P since

7�� ��� ���
and
365�7[�F��7�� �S� P� >k���_� � P� >k�%� for

�
near

P� > .

(c) The integrand equals � � �_���^� � �*�%�[� �
P
, which is roughly

��8	� � �c�%�
for
�

near 1; hence converges.

(d) Converges since
��8$� P�� � �E� � 
W�_� P�� �;�.��8$� ��� �9�E�l
���� �C� � ��� �

for
�

near 0.

(e) For
�

near 0,
�c�%365�7[� � P� � � and

7�� � � �L� � � �L�_� �
, so the integrand is

�.��8v�,@L�
; hence diverges.

3. (a) The integrand is comparable to
����� � %

near 0 and less than
�*� �

near infinity; hence converges.

(b) The integrand is
�C� � P�� �

near 0 and
� ���c�w�^� � �

near 1; hence �
P�� �� converges but �

PP�� � diverges.

(c) For
�

near 0,
� � �t� �
�

, so
� �^8�� � � �t��� �
� � P�� �

and �
P� converges. For

�
large, the integrand is

less than
� � � � �

; hence � �P converges.

(d) The integrand is
�.����8$�

for
�

near 0; hence �
P�� ��

diverges. ( �
PP�� � , � �P and � �� all converge, though.)

(e)
� � � P���� 7�� ��� � P ��q � � P����

for
�

near 0 and
�
� P���� 7�� �h� � P �d� ��� ���

for
�

near infinity; hence con-
verges.

(f) For
��� +

,
� � 8�� � � 
u� � ����� �

, so �
�
� � converges; but for

��� +
,
� � 8�� � � 
u� � � �.�

, so � �� diverges.
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4. (a) This follows from Corollary 2.12 ( � ��� ��� �
� � 5��K�_8$��� � � �<��+ , so

� � 5����^� � � � � � � for large
�

).

(b) � �� � �
P � � 5��K�_� � � 
 �}� � �� 	�� � � � � 
�� converges if and only if

� �
�
.

5. (a) As in the preceding exercise,
� � 5�� � 5��<�_� � ����� � 5����^� � � for

�
large.

(b) � �� �E� � 5����_� �
P � � 5�� � 5����^� � � 
 �f� � �� 	�� � 	�� � � � � 
�� converges if and only if

� �
�
.

6. (a) �
R� ` �E�_� 
 � �O� �

P 
t� � � 
�"�"�"9
C� P � R � �!�W� P � R
, so since ` �r+ , for

1�q � q 1�
��
we have�c��� P � R q �	�� ` �E�^� 
 �Fq��c��� �

R
. It follows that � �� ` �E�_� 
 �f�.� .

(b) One possibility: ` �E�_�:�
�
R

for
�Ni � 1�� 1�
 � � �

R �
(
1u�.�	�4�v�4�v�������

) and ` �E�_�<��+ elsewhere.

7. Let
� �
7���� � ���E�_�c�9� �2,H� (which exists since

�
is bounded). Given � �t+ , there exists

� �
such that���E� � � � � � � . Since

�
is increasing, we have

� � � �����E�_�(q � and hence
� ���E�_��� � � � � for

all
� � � �

. It follows that � � � ��� �
���E�_��� �

.

8. Granted the hint, we have � �P ���
P ��7�� �h�I� 
 � � � � �P � �

P

 �N�  . One way to carry out the hint is as

follows. On the one hand, � � �
� P 
 �� � � � P ��7�� �h�I� 
 � � � � �

� P 
 �� � � � � 
�����>�� �
P ��7�� �h�:� 
 �#����8�� � 
�����> . On

the other hand, � � �
� P 
 �� � ��� P 
 � � � � �

� P 
 �� � � � >�� �
P

 �B�~��8 � . Since

�
�
8��
�


��� �.�

for all �
� �

, we
can take

�*� ��8L>
.

9. Integrating by parts, ���	 ` �E�_� 	 �E�_� 
 �.� � �E�^� 	 �E�_��� �	 � �	�	 � �E�^� 	 � �E�_� 
 � . As
� �  

,
� � ���

remains
bounded and 	

� ��� � +
, so
� � ��� 	 � ����� + . On the other hand, since 	 � qC+ , � � �E�_� 	�� �E�_���Hq �p� 	 � �E�_���v�� �

	 � �E�^� , and
� � �	 	 � �E�_� 
 �W� 	 �.,&�K� � ��� � � � 	

� �����
	
�.,&�

. Hence � �	 � �E�^� 	 � �E�_� 
 � is absolutely
convergent.

10. The antiderivative of
��8$�G�E�u
 ���

is
P� � 5��!� �^8��E� 
 ����� , so

� � � �
� P
� P 
 ��G�E�s
 ��� � � ������ � � �� � � � 5�� 



 �� 
 � 



 �

� �
� P

 � � 5�� 





�
�l
 � 





� P���
� � ������ � � �� � � 5�� �� � 
 �

� � 5��;�K
 � 5��
�
� � � 5�� �

� 
 � 	� � �� � 5����c
 � ������ � � � 5�� � 
 �� � 
 �
�r� �� � 5��K� �

11. We have
���E�_�K� ���o+9�S
 � � �o+9� � 


P� � � � �o+9� � � 
��s�E�_� where
� �s�E�^����q �!� �

for
� �I�&q
�

, so

� � � �
� P
� P
���E�_�
� � 
 �}� ���o+9�'" � � � �

� P
� P 

�
� � 
"� � �o+9�'" � � � �

� P
� P 

�
��� 


� � � �o+9�� " � � � �
� P
� P 

�
� 


� P
� P
�s�E�_�
� � 
 � �

The last integral is proper, and the first and third P.V. integrals exist (and are zero), but
� � � � �

P
� P � � � 
 �}� 

; hence the original P.V. integral exists if and only if the coefficient
� � �o+9� of this term vanishes.

4.7 Improper Multiple Integrals

1. Spherical coordinates turn � � � � � � \^P � �K� � � 
 �6� into
��> �

P� � � � � � 
 � , which converges precisely when
� �

�
. Likewise, the integral over

� �K� � �
becomes

��> � �P � � �
� � 
 � , which converges precisely when

� �|�
.
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2. (a) In spherical coordinates, the integral is
��> � �� � � 
 ��8����(
 � � � , which diverges since the integrand

tends to 1 at infinity.

(b) In polar coordinates, the integral is � �� � �
� �� � 
90 
 �98�����
 � � � � �.�

P
% ><���K
 � � � �

P � �� �
P
% > .

(c) In spherical coordinates, the integral is � ���� � �� �
P� �:365�7 � �-7�� � � 
 � 
 � 
90 �r�	> �

P
� 365�7 � �S� � � �

P� � � � P� ��	>?8	�
.

(d) � � ��� � � �$� � � �
� � 
�� � � �� � �$� � � 
 � � �� �

� � � � 
 � � � �
P� �$� � � � �� � >k�

P� � > .

(e) In polar coordinates, the integral is � ���� �
P� � � P 365�7 � 0 
 � 
�0 ; the

�
-integral diverges.

3. By the extreme value theorem, � is bounded, say
�
�
�Sq �

. For a given
�

, let
�

be big enough so that
�
�E�<�*�I����+

for
� ����� �

. Then the integral defining
���E�_�

is dominated by
� �!8���>?� � � � � � � \ � � �h� � P 
 � �w�� � �� � 
 ���5 .

4. (a) Since the first quadrant of the unit disc is contained in the square � , using polar coordinates we have
� � � � ` � 
�� � � �

� �� �
P� � � P ��365�7 � 0 ��7�� � � 0 � 
 � 
90 ; the

�
-integral diverges. (This could also be done by a

calculation like that in part (b) below, using the fact that � � � � ` � 
�� ��� �
P� � �� ` �E�'�Y�&� 
 � 
 � .)

(b) We have ` �E�?�Y�[� � �E� � 

� � � �
P �C�L� � �E� � 
�� � � � �

, so for a fixed
� � +

the substitution
���

� �b1 � � turns the indefinite integral � ` �E�?�Y�[� 
 � into
� � P � ��� �|�I365�7 � � � 
�� � �*���

P
� 365�7�� � 
�� ��*� � P 7�� � � 365�7 � �.�c�_8��E� � 
 � � � . Hence �

P� ` �E�?�Y�[� 
 �#�.����8����K
 � � � and so �
P� �
P� ` �E�?�Y�[� 
 � 
 �u�� P% > . Since ` �E�?�Y�[�<�r� ` �E���Y�_� , it follows that �

P� �
P� ` �E�?�Y�[� 
 � 
 �#�

P
% > .



Chapter 5

Line and Surface Integrals; Vector Analysis

5.1 Arc Length and Line Integrals

1. (a) � ���� � � � �EaY��� 
 aK� � ���� � , � �o7�� � � aS
W365�7 � ab�^
�� � 
 a<� � ���� � , � 
�� � 
 a����	> � , � 
�� � .
(b) � �� � � � �Eab��� 
 a�� � �� � �Ea��*� ������
 �Ma�� 
 a<� � �� �Ea � 
���� 
 a��

P %� .

(c) � �P � � � �EaY��� 
 a<� � �P � a � �<
 �(
 �Ma�� 
 a�� � �P �Ea �
P 
 �Lab� 
 a��.��
 � � � �;� � � .

(d) � �� � � � �Eab��� 
 a�� � �� � �M@;
 �M@La?
 �M@La?
 �M@La�� 
 a:�
@ � �� ���K
Qab� 
 a���� � .
2. (a) With the center at the origin and the major axis on the

�
axis, the ellipse is described parametrically

by
�f� ��365�7Ha

,
�u�/,K7�� ��a

, and the whole length
�

is 4 times the length in the first quadrant. Hence
�Q�

� � �
� �� � �)�^7�� � � a^
�,��^365�7b�_a 
 a<� � � �

� �� � ,v�*�|�.,v�*� �)���v7�� � � a 
 a:�
�*, � � 1[� where
1 � �.�[� � ��8 ,�� �

.

(b) The base of the cylinder is the circle
� � 
��E�s�|��� � �O�

in the
�H�

-plane; the semicircle where both
coordinates are positive is given by

�%� 365�7Ha
,
�k� �*
|7�� �ha

,
� P� > q�a!q P� > . On the sphere we then

have
�-� � � �w� � �%� � � � �����I7�� �ha

. Hence the arc length is

�Q� � � � �
� � � �

7�� � � a^
W365�7 � a^
 365�7 �_a
� �����I7�� �hab� 
 a<�

� � � �
� � � �

�K
 365�7 ��a
� �����I7�� �hab� 
 a �

Let
�-� P� � P� >k��aY� , so

ah� P� >k�Q��� . Then � �
� �� � � � "�"�" 
 ac�.� � �

� �� "�"�" 
 � ; � �Q�I7�� �*a*�.� �Q�I365�7�������<7�� � � �
, and

365�7 � a � 7�� � � ��� � �<7�� � � �'365�7 � �
, so

� � � � �
� �� � �K
W365�7 � � 
 � �

� � �
� �� � ���%7���� � � 
 �!��� �

� � � � � �
P�� � �

.

3. The element of arc length is 
 ��� � �K
W7�� ��� � � 
 �F��365�7��c� 
 � . Thus the arc length or “mass” of the
curve is �

P
� P 365�7���� 
 � � �I7�� �����

, and the
�

-moment is � � 
 � � �
P
� P 365�7�� � � 
 � �P� �

P
� P ����
�365�7����L�^� 
 �.�

P� � � 
�7�� ���*��� . Thus
�C� � �l
�7�� ���*���Y8��<7�� �����

, and
�r� +

by symme-
try.

4. 
 �%� � � � �Eab��� 
 a � � �<7�� � � aS
 �<365�7 � a^
 �Ma � 
 ap� � � �K
Qa � 
 a , so ��� � � 
 �w� � ���� a � �K
Qa � 
 ap�P
� � ���K
 ��> � �&�

� � �|�)�
.

5. (a) Parametrize
�

by
�G�Eab�!�d�Ea)�Ya �Yab�

,
+Bqra�q �

; then
� � �G�Eab�Y�!� �Ea � �Ya � �Ya � �

and
� � �Eab�;� ���	�,�	�,��� , so

� � � " 
 �B� �
P� �La � 
 a<�.� .

34
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(b) Parametrize
�

by
�I�Eab�����Ea)�Ya � �Ya � �

,
+pqCacqr�

; then
� � �G�Eab�Y�h�O�Ea � �Ya � �Ya % �

and
� � �Eab�K�����	�4�La �4�La � � ,

so ��� � " 
 �F� �
P� �Ea � 
 �La&��
 �La ��� 
 a<�

P
� 

P� 
 � � � � �� P .

(c) Parametrize
�

by
�I�EaY�c�~�o7����ha �b365�7�aY�

,
+fq�a;q��	>

(remember that
�

is oriented clockwise!); then� � �I�EaY�Y� � �o7�� �haW� 365�7&a)�H7����haw
 365�7[aY�
and

� � �Eab� � �o365�7�a �,�k7�� ��aY�
, so ��� � " 
 � �

� ���� ���k7�� � � aI�%365�7 � ab� 
 a��.���	> .

(d) Parametrize the parabolic portion of
�

by
�I�EaY�(� �Ea �Ya � �

,
���#q�a�q.�

, and the straight portion by�G�Eab���m���*a �����
,
�;�lq a�qt�

. Then ��� ��" 
 �F� � �� � �Ea&%	�Ya � �^"$���	�4�LaY� 
 a_
 � �� � � �Ma � �,���,@La&�L��"L�����	�b+9� 
 aK�
� �� � �Ea&%K
W�La � � �Ma � � 
 a����&� � �� 


P � � %
�
� � �� �<� � � � �% � .

6. (a) � � �E� �$�
�

 �W
 7�� �*>_� 
 �&�.� �

P� �E� � � ��� 
 �o7�� �*>_�_���L�^� 
 � � � � P� � � ��� � � ��8L>?� �;365�7_>_��
� ��8L> � �v7�� �*>_� � P� � P� ���c� � � P �^

� ��8L>?� .
(b) � � �E� 
 �(
 � 
 �*
F�H� 
 ���<� � ���� ���#7�� � � a�
Fa�365�7�a�
B7����Ka�365�7[ab� 
 a<� � P% 365�7H�La�� P� 
Fa�7�� ��a�
B365�7[a�
P� 7�� � � a � ���� �.�c> .

(c) On the segment from (0,0) to (1,0) we have
�k� +

and 
 �F�m+ ; on the segment from (1,0) to (1,1)
we have

�}�.�
and 
 �}��+ , and on the segment from (1,1) to (0,0) we have

� �C�
and 
 �u� 
 � . Hence

the integral is �
P� + 
 � 
 �

P� ���;��� 
 � 
 �
�P �E� � � �L�_� 
 �k�.�;�c
 �� �.� % � .

7. (a) Parametrize
�

by
�.� �G�Eab�

,
,�q a#q �

. Then we have 

 ���
� 
 � 



� 

 � �
	 �-� �G�Eab�Y��� � � �EaY��� 
 a 

 q� �	 � � � �I�EaY�Y����� � � �Eab��� 
 aK� ��� � �-� 
 � .

(b) With
�

as in part (a), we have 

 ���
�C" 
 � 



� 

 � �
	 � �-� �G�Eab�Y��"�� � �Eab� 
 a 

 q � � � �-� �G�Eab�Y��"�� � �Eab��� 
 alq��� � �-� �G�Eab�Y����� � � �EaY��� 
 aK� ��� � �-� 
 � , where the next-to-last step uses Cauchy’s inequality.

8. As noted in the text, if
�

is a partition of � ,����4� and
� � is the partition obtained from

�
by adding in

the point
�

if it is not already there, then
� � � � � � � � � � � � , so in computing

�(� � �l� 7���� � � � � � �
it is enough to consider partitions

�
that contain

�
. If

� � � a �L���������Ya �
�

is such a partition with�!��a 	
, let

��Pc� � a � ���������Ya 	[� and
� � � � a 	H�������,�Ya �

�
; then

��P
and

� � are partitions of � ,�� � � and � �$���4� ,
respectively. Conversely, if

��P
and

� � are partitions of � ,H� � � and � �L���4� , we can concatenate them to
obtain the partition

�
of � ,����4� . In these cases we clearly have

� � � � �<� � � � � ��P)�v
 � � � � � � � . It follows
that

� � � � ��q �(� ��P)�v
 �(� � � � , and taking the supremum over all
�

gives
�(� � ��q �(� �!P)��
 �(� � � � . On

the other hand, given � � + , choose
� P

and
� � so that

� � � � � U � � �;� � U �?� � for

l�.�	�4�

; then
�(� � � �� � � � ��� � � � � ��P)�S
 � � � � � � � � �(� ��P4�?
 �;� � � �I� � � . Since � is arbitrary,

�;� �-� � �(� �(P �S
 �;� � � � ,
and we are done.

9. By the mean value theorem, the displayed expression equals
�
	 � �Ea �U � � 
 � � �Ea � �U � � �Ea U �Qa U � P � for some

points
a �U �Ya � �U i � a U � P��Ya U � . By Exercise 9, � 4.1, the sum of these quantities from


f� �
to

f� �

, which

is
� � � � � , can be made as close to �	�	 � 	 � �Eab����
 � � �EaY��� 
 aF� ���	 � � � �EaY��� 
 a as we wish by taking

�
sufficiently fine. It follows that this integral equals

�;� �-�
.

5.2 Green’s Theorem

1. (a) Let � be the unit disc; then � � � " 
 �N�m� � ��� � 
 � 
 �p�m���	> (the minus sign is there because the
circle has the wrong orientation).

(b) � � �E� � 
 �p� �L� 
 �[��� �
P� � �� ���;�����L�[� 
 � 
 �#� �

P� �����L� �w� � � 
 �}�.� % � .
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(c) ��� � �E� � 
 ��+	�H�[
(� � � 
 �_
 � =L� � 
�=L�H�[� 
 ���_� � �� � �� � ����+	�^
�=L�[�)� ����+	�_
��L�[� � 
 � 
 �}� � �� 
 � � �� �L� 
 �s��!"$@��.�,� �
(d) � � � �L� �6��365�7H� � �K��@L� � ��365�7&� � � � � � �L� � 7����h� � � , so the integrand of the double integral in Green’s
theorem vanishes.

2. Directly, by using the polar angle 0 as the parameter for both circles: � ���� �M�I365�7 � 0 7�� � � 0 
�0 �
� ���� �I365�7 � 0 7�� � � 0 
�0 �

P �� � ���� 7�� � � � 0 
90 �
P �� > . By using Green’s theorem: � � � �E� � 
t� � � 
 � 
 ���

� ���� � �P �$� 
 � 
�0 ���	>f"
P �
% �

P �� > .

3. If � is the region inside
�

, ��� � � � 
 �}
.� �L�F�W� � � 
 �9�c� � � � �&�����W� � �W� � � 
 � 
 � . The integrand is
positive inside the unit disc and negative outside, so the integral is maximized by taking � to be the unit
disc and

�
to be the unit circle.

4. Take the arch given by
+sq ahq|�	>

: the region under it is bounded on the bottom by the segment � +��4�	>��
of the

�
-axis (where 
 �F�O+ ) and on top by the cycloid (traversed from right to left). Thus the area is

��� � � 
 �s� �
�
��� � � �EaI�N7�� �hab�v7�� �ha 
 a or

� ��� � � 
 �}� � ���� � � ���*�w365�7HaY� � 
 a ; both integrals are equal to�	> � �
.

5. The oriented boundary of � consists of two vertical line segments, a segment of the
�

-axis, and the
curve

� � ` �E�_� , traversed from right to left. The vertical segments contribute nothing to
� ��� � � 
 �

since 
 �#��+ on them, and the segment of the
�

-axis contributes nothing since
� ��+

on it. The integral
over the curve is

� �
	
� `
�E�_� 
 �f� � �	 ` �E�^� 
 � .

6. We have ` � � 	 8 � � ��� � "�� where
�C� ` � 	 , and � U � U � � U � `^� U 	 �<� `^� �U 	 
�� � U ` �6� � U 	 � . The result

therefore follows from Corollary 5.17.

7. (a) The image of
�

under the map
� � � ��� is a connected subset of

j
, by Theorem 1.26. It does not

contain 0, hence must be contained in either
�o+��  �

or
���  ��b+9�

; otherwise it would be disconnected.

(b,c) Let
��� �

	
� � �

, � � � � � � � , so
�
�

	
� � � � � , �|� � � � � � � , and 
 � � � � � 
�� 
 � �

� 
�� . Thus
� � � � � � 
 �f� � � 	 	 � � � � 
�� 
 � �

� 
�� � , where ��� is given the positive orientation with respect to �
and � � is given the orientation induced from the one on ��� by the change of variable

�E�?�Y�[��� � � � � � .
This may or may not be the positive orientation of � � with respect to

�
, so in applying Green’s theorem

to the integral over � � there will be an ambiguity of sign. The result is � � A � � 	 ��� � � 	v� �

� �(�
� �

�
	v� � � � � 
�� 
�� �
A � � 	 � � � 	v� �

� � � � 	v� � � � 
�� 
�� �
A � � 	 � � � ��� 
 � . The easiest way to determine
which sign is right is to observe that the area � is positive; hence the sign must be



if
� � � ��� � +

and
�

if
� � � ��� � +

.

5.3 Surface Area and Surface Integrals

1. � � � � � � � � � X 	 � � �K
Q� � 
Q� � 
 � 
 �s� � ���� �
	� � ��
 � � � 
 � 
90 � �� > � ���h
 , � � � � � �|�)� .

2. � � � � � � � � � X 	 � � �K
 �M� � 
 �M� � 
 � 
 �u� � ���� �
	� � ��
 � � � � 
 � 
90 � P� > � ���K
 �*, � �&� � � � �)� .

3. With � ���<� 0 �(� �Y� �h
�,�365�7 �I�v365�7 0 �?� ��
2,�365�7 �I�v7�� � 0 �	,K7���� �G� , we have � � � �d� ,�7�� � �-7�� � 0 �^�,K7�� � �-7�� � 0 �G
 ,�365�7 � � and � � � �.� � �S
 ,K365�7 �G�v7�� � 0 �M
 � �S
 ,K365�7 �I�v365�7 0 � , so
� � � � �IyB� � � � �<�� ,_� �W
 ,�365�7 0 �v365�7 �-365�7 0 �p
 ,_� � 
 ,K365�7 �G�v365�7 �-7�� � 0 �
� ,�� � 
 ,�365�7 �I�v7�� � � �

and hence
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�n� � � � ��y�� � � � ��� � � , � � ��
 ,�365�7 �I� � �o365�7 � � 365�7 � 0 

365�7 � �-7�� � � 0 

7�� � � �I�u� , � � ��
 ,K365�7 �G� �
.

Since
+)�2, � �

,
�I
 ,K365�7 �

is always positive, so finally � � � ���� � ���� ,�� �:
 ,�365�7 �I� 
 � 
90 � ��> � , � .
4. The integral can be set up in two ways, as in Example 1 (p. 232). First way: The upper half of the

surface is
�l� � ��8 ,�� � , � �w� � �w� �

, so the area is

� � �
� � � � � X 	 � ��
 �)�, � "

����
Q���
, � �w� � �w� � 
 � 
 � � ��>

� 	
�

, % 
�� �)�*� ,v��� �	�
, � �., � � � � � � 
 � �

The substitution
�B� � ,v�*� �M�

simplifies this to
� ��>?8 ,&� �

	� � � � ,v�<
��.,v�*� �)��� ��� 
 � , and the substi-

tution � � �	8 ,
turns this into

��> , �
P� � �)�<
��.,��*� � ��� � � 
�� . Second way: Use modified spherical

coordinates to parametrize the ellipsoid. With
� � ,�7�� � �-365�7 0 , � � ,�7�� � �-7�� � 0 , and

�%� ��365�7 �
,

the formula (5.20) for area yields the integral
�	> , � �� 7���� � � � �_7���� � � 
�,��^365�7 � � 
 � , and the sub-

stitution � � 365�7 � turns this into
�	> , �

P
� P � � �<
��.,v�*� �)��� � � 
�� . This is the same as the integral

obtained in the first way since �
P
� P � � �

P� for even functions. Finally, one uses a trig substitution

( � � � � �b1 �cab�Y8 � ,v�h� �)� if
,5�
�

, � � � ��7�� �caY�Y8 � �)�*� ,�� if
� � ,

) or a table of integrals to eval-
uate the integral as

�	> , � 
��	> , � � �(8�� � , � � � � �
, where

� � � 5��_�Y�.,p
 � , � � � � �Y8 ��� if
, � �

and� � 1	243�7�� �S� � � � � , � 8 ���
if
, � �

. (Both expressions for the area have the limiting value
��> , �

as� � ,
.)

5. Clearly
� � � � +

by symmetry. The
�
-moment, in spherical coordinates, is � � � � 
�� �

�	> � �
� �� 365�7*�-7�� � � 
 �w��>�7�� � � �h� �

� �� ��>
, and the area is

�	>
; hence

��� P� .
6. � ���� � �

� �� � �<7���� � �G�6� �<7�� � �I� 
 � 
90 ���M�	> �
P
� 365�7-� �B�%365�7*�S� �

� �� � � �� > .

7. By symmetry, the integrals of
� �

,
� �

, and
� �

over the unit sphere are equal, so the integral of� � 
Q� � ��� � �
vanishes. The integral is also easily computed in spherical coordinates: it is�	> � �� �o7�� � � �B���I365�7 � �I�v7���� � 
 �w���	> � �� ���c�%�I365�7 � �G�v7�� � � 
 �%�
�	> � 365�7 �B�%365�7-� � � � � ��+ .

8. (a)
� 
�� � ���c� �$�l� �H
 �?� 
 � 
 � , so � � � �f" � 
 � � �

P� � �� ���*� � � � �l�H�[� 
 � 
 �#� �
P� ��� �� � � �s�L�^� 
 �#�� �

�
� �;� � P �

� .

(b) Since lines through the center of a sphere are perpendicular to the sphere, the unit normal to the unit
sphere � at a point

�Ci � is simply the vector
� �O� �_
|� �c
 ���

. Hence � � � �C" � 
�� � � � � � � 
 � ,
which vanishes since

� �
is an odd function. Alternatively, in spherical coordinates one finds

� 
 � ��o7�� � �-365�7 0 �v
 7�� � �-7�� � 0 ��
W365�7 � �?�v7���� � 
90 
 � , so � � � � "�� 
�� � � �� � ���� 7�� � % �-365�7 � 0 
�0 
 �w��+ .
(c) The triangle lies in the plane

�p
|�-
 �}���
; taking

�'�Y�
as parameters, we have

� 
�� � � ��
 �c
�?� 
 � 
 � , so � � � ��" � 
�� � � �� � � � �� �E�H��
��c�#�l�#�[� 
 � 
 �}� � �� �
P� �E� � ���6� ���k�_� � 
|� �c�F�_� � � 
 �#�P� � �� �E� �*� �L� � 
 ��� 
 �}��� .

(d) The normal is horizontal on the vertical side of the cylinder, so
� " � � +

there. On the top
(
��� �

) we have
� � ��� �

,
� � �

; on the bottom (
��� ,

), we have
� � � , �

,
� � � �

. Hence
� � � � "�� 
�� ��><� � � � , � � .
(e) � � � P
� � � where � P and � � are the portions of the sphere

��� � ���N���*�w���
and the paraboloid���C� � 
 � �

with
� � 
Q� � q
�

, oriented with the normal pointing up and down, respectively. As in (b),
the normal at a point

�
on the sphere is

�'8 � �
, so
� " �w�O� �K� � 8 � �-� � �

. Also, the element of area in
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spherical coordinates is
� � 7���� � 
 � 
90 � �I7�� � � 
 � 
90 , so � � � � � " � 
 � � � � "L�	> � �

� %� �I7���� � 
 � �><� � ��� � � ���
. On the paraboloid, with

�'�Y�
as parameters, we have

� 
�� �O� �L� �H
 �L� �(� �?� (remember
that the

�
-component must be negative), so � � � � �N" � 
 � � � � � � � � � X^P � �L� � 
N�L� � �%�E� � 
F� � �Y� 
 � 
 �}��	> �

P� � � 
 �-�
P� > . Hence � � � � "�� 
�� ��><� �

��� � � �� � .

5.4 Vector Derivatives

1. These are all simple computations.

2. These are simple computations too. For (c), with
�p� � �K�

and 	
���9��� � 	

, one has
� � ` �E�'�c� 	 � � �����'
�

�
� ��� � � P

	 � ���9�<�/,_�.,-� ��� �
	 � � 
��

�
� ���&, � 	 � � �/,_�.,!


�
����� � 	 � �

.

3. The first two formulas are most easily obtained just by writing out the indicated products and taking the
indicated derivatives. The last one follows from the first one by using (5.29).

4. (Also 5, 6, 7.) These are straightforward calculations, but the verifications of (5.25), (5.27), and (5.33)
require a little masochism. It is less frustrating to start with the complicated expressions (on the right in
(5.25) and (5.27), on the left in (5.33)) and work toward the simpler expressions on the other side.

8.
�
y � is skew-symmetric in

�
and � .

9. This follows immediately from (5.29) and (5.30).

5.5 The Divergence Theorem

1. (a)
��� � �t���L� , and the integral of

�L�
over the unit ball vanishes by symmetry since

�L�
is odd.

(b)
� � � �C��� , so polar coordinates yield

� �
P� � ���� � � ��� �	�v� � � � � 
�0 
 � ��@	> � �

P
� � �_� � � �&�

� � � P% �$%)�
P� �

> � �
��� � � �� � .

(c)
��� � ���.�&�E�u
 �-
 ��� , and the integrals of

�
,
�

, and
�

over the cube are equal by symmetry, so we
get
@ �
	� � 	� � 	� � 
 � 
 � 
 ���
�$, % .

(d)
� � � �
� ,�� � 
�� � � 
 � � � , and the volume of the ellipsoid is

% � > , � � (reduce it to the volume of the
unit sphere by the change of variable � �~�^8 , , � ���[8 � , � � ��8 � ), so the integral is

�., � � 
�� � � 
� � � � % � > , � �c� ��><� � � � � 
�, � � � 
�, � � � �Y8	�$, � � .
(e)
��� � �t�
� � , so the integral is � ��� � �P � � 
 � 
 � �/, � � � � � P ��� � .

2. Directly:
�|" �Q� �E� � 
 � � 
 � � � � 8 ,}� , �

on � (see the remark at the beginning of the exercises), so
the integral is

, �
times the area of � , i.e.,

��> , �
. By the divergence theorem:

��� � ���
=&�E� � 
Q� � 
 � � � ,
so the integral is

= � �� � ���� �
	� � � " � � 7�� � � 
 � 
�0 
 �w�
��> , � .

3.
��� � �t��� , so

P
� � ��� � � "�� 
�� �

P
� � � � � � � � � 
 � � � � � � 
 � � volume of

�
.

4. Let
��� ` 	 � ; then

�|" � � ` 	 � � and
��� � ��� � � � ` 	 �*� `^� � 	 
 	v� � ` , so the result follows from the

divergence theorem.

5. (a) � � � � � ��` 8 � � � 
 � � � � � � � ` " � 
�� � � � � � ��� � � � ` � 
 � � � � � � � � ` 
 � .

(b) By (5.28) we have
��� � � ` � ` �:�m� � ` � � 
 ` � � ` ; apply the divergence theorem to

�C� ` � ` .
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6. (a) � � 	 � �*�G�E� � 
Q� � 
 � � � ���
� � �.�*�_8&� �K� �

, and likewise for
�

and
�
, so

� 	 �E�'�<�.�*�'8&� �K� � .
(b) See Exercise 2c in � 5.4.

(c) If � is the sphere of radius
,

about
z

, on � we have
�Q���'8&� �K�

, so
� 	 " � �~�-� �K� � 8&� �K� %-�~��,	� � ;

hence � � � � � 	 8 � � � 
�� �.� , � � " ��> , � �.� ��> .

(d) 	 is not of class
� P

on the region inside the sphere, so the divergence theorem doesn’t apply.

(e) Choose � so small that the ball � � � � �Q�_� �K�[q � � is contained in the interior of
�

. Then
� � 	 ��+

on
� � � � , so by the divergence theorem and part (c),

+W� � � � ������� � � 	 
 � � � � � � � � 	 8 � � � 
�� �
� � � ��� � � 	 8 � � � 
�� � � � � � � � 	 8 � � � 
 � 
 ��> .

7. (a) Since
� � ` � � � 	 �m+ on

�
, by (5.39) we have

+ � � ��� � � ` � 	 � 	 � ` �<" � 
 � . � � is the union
of the sphere

� �K�H� �
(with the outward normal) and the sphere

� �K��� � (with the inward normal). On� �K��� �
we have 	

� ��� P
and � 	 8 � � � � � � � (as in Exercise 6c), so by Exercise 5a, � � � � � V � � ` � 	 �

	 � ` �H" � 
 � �.��� � � � � � � � V � ` 
 � ��� � P � � � � � � X � � � ` 
 � � ��� � � � � � � V � ` 
�� , which is
� ��>

times the
mean value of ` on the sphere

� �K��� �
. Likewise, the integral over

� �K��� � (with the inward normal) is��>
times the mean value of ` on this sphere. The sum is zero, so the mean values are equal.

(b) Since ` is continuous, ` � z�� is the limit of the mean value of ` on the sphere
� �K��� � as � � + .

5.6 Some Applications to Physics

1. To evaluate the potential � �E�'�(� � � � ��� V � � ��� �K� � P 
�� (we take the density � to be 1) at a particular
point

�
, the key to proceeding efficiently is to rotate the coordinates so that

�
is on the positive

�
-axis

(or, equivalently, to observe that � �E�'� is spherically symmetric so that it suffices to take
�

on the positive�
-axis). For

�N� �o+��b+������
and
� �h��� �

we have
� �B�%�K��� � � � P 
 � �� 
�� � � � ��� � � � � � ��� � � � 
 � � ,

so in spherical coodinates we have

� �E�'�<�.�
� �

�
� ���
�

� � 7�� � � 
90 
 �� � � � � � �:365�7 �}
 � � � �
�	> �
�
� � � ��� �*�<365�7 �f
 � � 





�

�
�.� �	>� � � �c
 ���	�t� ��� ��� � �

For
+Nq �%q �

this is
� ��> �

; for
� � �

it is
� ��> � � 8 �F� � ��> � � 8&� �K�

. The latter is the potential for a
mass

��> � �
located at the origin. The corresponding field

� � � �E�'� is
z

for
� �K�
� �

and
� ��> � � �'8&� �K� �

for
� �K�����

.

2. Think of the ball as the union of thin spherical shells of radius
�

(
+ �/��� �

) and thickness 
 � . For a
given

�
, the shells with

� � � �K�
contribute nothing to the field, and the shells with

� � � �K�
contribute� ��> � � �'8&� �K� �

. Integrating from
+

to
� � �^� �l�$� �K���

gives the field as
� % � >_� for

� �K��� �
and
� % � > � � �'8&� �K� �

for
� �K� ���

, as claimed. (The potential can also be found by integrating in
�
; it is

�� ><�b� �K� � �Q� � � � for� �K��� �
and
� % � > � �,8&� �K� for

� �K� � �
.)

3. (a) We take �
�.�

. The field is

� � � �
� �

� �[
Q� �&
���� � �_� �
�E���:
W�v��
����-� �_����� � � � 
 �#�

� �
� �

� �&
Q� ��
Wa �
�E����
W�v�<
Qa��,� � � � 
 a �Ea<� � � �_� �
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The
�

and
�

components of the integrand decay like
� a,� ���

as
� a,���  

, while the
�

component de-
cays like

a � �
, so the integral converges. The

�
-component vanishes since its integrand is odd. Since

� �� �
�., � 
�a � � ��� � � 
 � � � ab8 , � � ,v��
 a�� � � � � � ��8 , � (via the substitution

ak� , �b1 � 0 ), we obtain� ���&�E� �[
Q� �$�Y8��E� � 
Q� � �
.

(b) � �E�'� should be � �� �
�E� � 
 � � 
�� �f� �v� � � � P�� � 
 � , but the integrand decays like

� �I� � P
as
� �I���  

,
so the integral diverges.

(c) Since � 5���� � ,v��
Qa��:
WaY� is an antiderivative of
��8 � ,v�<
Qa��

,

� � �E�'�<�
� � � �
� � �


 a� ����
W�v�<
Qa�� � � 5��
� � ����
Q�v�<
����!
�� ����
 �(
 �
� � � 
Q� � 
����-� � � � 
 � � ��� �

Multiplying top and bottom of the fraction by
� ����
Q���:

��� � � ���h� �!
��

turns this into

� 5��
� �Y� ����
Q���:

���(
�� ���<
 �!
�� �6�Y� ����
W�v�<
����-� � ���h� �(
�� �

����
 ��� �
� � 5��

� � � � � 
Q� � 

���(
�� � � 
 �!
�� �6� � � � 
W� � 
����-� � � � � �(
�� �
� � � 
 � � 5�� ��� � 5����E� � 
Q� � � �

As
� �  

, the first term approaches � 5�� � , so subtracting off the
� � 5�� � yields � 5�� ��� � 5��_�E� � 
W� � � ,

whose gradient is
���&�E� �[
Q� �L�Y8��E� � 
 � � �

. (Of course the � 5�� � can be discarded too.)

4. The argument is essentially the same as the proof of Theorem 5.46, using the facts that
� � 5����B�C�G8&� �h� �

and
� � � 5��!� �����m+ for

� ��Oz
(Exercise 2d, � 5.4). The two-dimensional analogue of Green’s formula

(5.39) is easily obtained from Exercise 6, � 5.2, and it yields the following analogue of (5.47):

� � � �E�'�<� � ���� � � � � � � V � �Y� � 5���� ����� � �
�E�}
Q�G�I� �

�E� 
Q�I� �
� ��� � � "�� 
 ���

where
�

is the unit inward normal to the circle, namely,
��� �*�G8 � . The estimate (5.48) for the first

term on the right becomes







� �
�
� V � � � 5���� ����� � �

�E�f
Q�G�I" � 
 � 





q �u� � 5�� � � �	> � � + as � � +��

and from the second term, since
� ����� � on the circle, one obtains

� � � �E�'�<� � ���� � � �� � � � � V � � �E� 
Q�G� 
 �����	> � �E�'� �
5.7 Stokes’s Theorem

1.
3��&2 � ��" � 
�� � � �'� ��
 �?�K"[��� �(
 �?� 
 � 
 � � � 
 � 
 � , so the integral is twice the area of the disc� � 
Q� � q
�

, i.e.,
�	>

.

2.
3��&2 � ��" � 
�� � ��� ��� �?� " � �L
 �?� 
 � 
 �f� ��� 
 � 
 � . The curve

�
lies over the curve in the

�H�
-plane given

by
� � 
%� � 
|�.,��k�&� � � , �

, or
�L� � 8 , � 
 �H�E� � P� ,&� � 8 , � �.� , an ellipse with semiaxes

,&89� �
and

,&8	�
.

The integral is
���

times the area of the region inside the ellipse, i.e.,
���;����><�.,�8 � ���6�.,&8	�����.��> , � 8 � �

.
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3. The equation of a nonvertical plane parallel to the
�

-axis has the form
�l��� ��
 �

. Thus
3��&2 � �N" � 
�� ����*� ��
�� �<
W� �?�?"���� � �<
 �?� 
 � 
 �u� ��� � �(
W��� 
 � 
 � . The integral of this over the disc
� � 
�� � � , �

is twice the area of the disc, i.e.,
�	> , �

(the integral of
� �

vanishes by symmetry).

4. ��� is the circle of radius
,

about the origin in the
�H�

-plane. First method: �_� is also the boundary of
the disc � of radius

,
in the

�H�
-plane, so � � � 3��&2 � �t" � 
�� � � � � 3��[2 � ��" � 
�� � � ��� ��� � 
 � 
 �%�+

, by symmetry. Second method: parametrize �_� by
� � ,K365�7 0 , � � ,K7���� 0 , �~� + . Then

� � � 3��&2 � � "�� 
�� � � � � � " 
 �B� � ���� ���#7���� � 0 
W365�7 � 0 � 
�0 ��+ .
5. Like Exercise 4, this can be done two ways. �_� is the ellipse

�E� � 8����9
 �E� � 8	/��<�.�
in the

���
-plane. If �

is the region inside this ellipse, we have � � � 3��&2 � �w" � 
 � � � ��� 3��&2 � �w"�� 
�� ��+ since
3��&2 � �w" �B��+ .

Alternatively, parametrize ��� by
�f�
�I365�7 0 , �s���I7�� � 0 , ����+ ; then � � � 3��&2 � �F" � 
�� � � � � �B" 
 �F�

� ���� ��+:365�7 0 7���� 0 
90 ��+ .
6. (a) This is a simple calculation.

(b) Parametrize
�

by
�Q� ,K365�7 0 , �%� ,K7�� � 0 , �F� �

; then
�O� ��� �o7�� � 0 � ��
.�o365�7 0 � �L�Y8 , and 
 �t�,����-�o7�� � 0 � ��
��o365�7 0 � �$� 
�0 , so ��� � " 
 �B� � ���� 
90 ���	> .

(c)
�

is not of class
� P

on any surface bounded by
�

(such a surface must intersect the
�
-axis), so

Stokes’s theorem doesn’t apply.

7. Let � � be the annulus in between the circles
� �

and
�;P

in the
� �

-plane, oriented so that
� � �

. Then
� � ��� ��" 
 � � � � � ��" 
 �m�DA � ����� 3��&2 � ��" � 
�� , the sign being



if
���J�

and
�

if
�2� �

. But3��&2 � � " �B��� , and the area of � � is
>�� � � � �9�

. It follows that � ��� � " 
 �B��=�
 �	><��� � � ��� .
8. Use (5.26) and (5.30):

3��&2 � � ` � 	 �<� ` 3��&2 � � � 	 �$
 � ` y � 	 � � ` y � 	 . Now apply Stokes’s theorem.

5.8 Integrating Vector Derivatives

1. (a) ` �E�?�Y�[�*� � � �L�H��
 � � � 
 �%�r� � �-

P
� � �h
 ���E�[� ; � � ` �E�'�Y�&�*�.� � 
 � � �E�[�c�r� � � � � , so

���E�&�c�
� P� � � 
 � .

(b) � ��� �L� � 
 =L� % �&�:�
@L��
 =L� % ���=L� % ��@L� � � � �E�
� � @L�H�[�

.

(c) ` �E�?�Y�[�:� � � � � � � 7����h�!�B�L�;
w=�� 
 �k��� � � 7�� �����F�L���;
w=L� 
 ���E�&� ; � � ` �E�?�Y�[�:��� � � 365�7[���F�L��
� � �E�[�<��� � � 365�7&�l���L� , so
���E�&�<� �

.

(d) ` �E�'�Y�����v�}� � �E� �}�|�h7�� �h���&� 
 �.�J��� �s
�365�7[��� 
 �K�E������� ; � � ` �E�'�Y�������}� � �f�C�;7�� �h���p

� � ���E�������K�C� ���c�(7�� �h�H��
 �<365�7[� � , so

���E�������K��7�� ��� �v
 �(�����
; � �,` �E�?�Y�������<�C����
!�K365�7H� ��
 � � ���v�<��H��
Q�h365�7[� �

, so
�!������� �

.

(e) � � �E� � ���<� ���s��.��� � � �E� �%�&� .
(f) ` �E�'�Y�������K� � �L�H� 
 �k��� � ��
'�K�E������� ; � � ` �E�'�Y�������K��� � 
 � � ���E�������K��� � 
 � 5�� � , so

���E�������K�
� � 5�� �;
 �!�����

; � �,` �E�?�Y�������<� �E�[8 ���S
 � � �����<� �E� 
 ���Y8 � , so
�(���v����� � 5�� �;
 � .

(g) ` �E�?�Y�����&� � �C� � �E� � � 
m� � � � 
 � �
P� � � � � 
m��� � � 
����E�����&� � � ; � � ` �E�'�Y�������t� � � � 


� � ���E�����&� � �l�~� � � 
C� � � � � � �
� � � , so

�K�E�����&� � �-�
P� � � � � �
� � � � � 
��!���&� � � ; � �,` �E�?�Y�����&� � �-��H� � 
t� � � �
� �

� � � 
 � � �(���&� � � �~��� � 
t� � �s� � �
� � � � � 7���� � � , so

�(���[� � ���~365�7 � � 
 � � � � ;
���I` �E�?�Y�����&� � �K�C� � � 
Q�H� � � �<7�� � � � 
 � � � � �<�C�H� �(
 � � � � �K7�� � � � , so � � � ��� � .
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2. (a)
��� � � ���L� � 
����c���L� � �S
W+-�r�s���+ .

(b) Take
� � � P �^
 � � � , so

3��&2 � � �D� � � � � 
 ��� � P�
.� � � � � � � � � P)� � . Then
� ��� � � � ���l
 � ,

so
� � � �*��� �l� P� � � 

�K�E�'�Y�&� , and � � � P �m� � , so

� P � P� � � � 
 �(�E�?�Y�[�
. Hence, � � � � � � � � P���*� �;
 � � �K�E�'�Y�&�:� � � �(�E�'�Y�&�<� �*� � �w� . One solution is

���E�'�Y�&�K�.� P� � � and
�(�E�'�Y�&�K��+

.

(c) Proceeding as in (b), we have
� � � � � ��� � � ��� � � � @L� , so

� � �~�c� � �� �$� ���
� � 
 aS
t@L� ��
'���E�'�Y�&� ,

and � � � PQ� =L�k
 � � , so
� PQ� =L� �f
 � � 
 �!�E�?�Y�[�

. Hence, � � � � � � � � PW� � � �� � � � �
� � 
 ac
�L� � � �� a � �$� � �

� � 
 a_
�@ �c
 � � ���E�?�Y�[�'�B= �!� � � �(�E�'�Y�&�K� �!� � � � � � � � . This does not look hopeful, but

by integration by parts,
�L� � � �� a � �$� � �

� � 
 a<�.� � �$� � � � � 
 � �� � � � �
� � 
 a , so we can take

�N��� ��+
.

3. By the procedure outlined before Theorem 5.64 we can find ` such that
� � ` � ��� ��� . Then

��� � � � � � ` �I� ��� ��� � � � ` ��+ , so by Theorem 5.63 there exists � such that
3��&2 � � � � � � ` .

4. (a) If
+ � � � �

, let � � � be the annulus between
� �

and
� � . Then � � � �." 
 � � � ��� �." 
 �d�

����� � � � P � � � � � � P)� 
 � ��+ by Green’s theorem. Thus � � ����� � " 
 � is independent of
�
.

(b) Let � ��+ be the minimum distance from points in the compact set
�

to the origin, and let
�l� P� � .

Then the curve
�

and the circle
� �

together bound a region
�

, so by Green’s theorem again,
+t�

� � � � P � � � � � � P)� 
�� � � � � " 
 �#� � � � � " 
 �B� � � � " 
 �k� � .

(c) From Example 1 and part (b), for any closed curve in � (oriented counterclockwise) we have � � � �S"

 �B�
�	> and hence � � � �t� � � 8	�	>?� � � �'" 
 �B��+ . By Proposition 5.60,

� �t� � 8	�	>?� � � is a gradient.



Chapter 6

Infinite Series

6.1 Definitions and Examples

1. (a) This is a geometric series with initial term
�&�E�I
}���

and ratio
�&�E�I
}��� �

; it converges for
�[� �I
f�9� � �
�

,
i.e.,
���*��� � P�� � � � ������
 � � P�� �

, to the sum
�&�E� 
C���Y8 � �(���&�E�s
C��� �6� .

(b) This is a geometric series with initial term
��+	� � �

and ratio
�L� � �

; it converges for
�[� �I� � � � �

, i.e.,� ���;� �
or
� �C� �

, to the sum
��+	�
� � 8��������L��� � �<�.��+98��E� � �����

.

(c) This is a geometric series with intial term 1 and ratio
�����Q�^�Y8����;
|�_�

. The ratio is less than 1 in
absolute value if and only if

�
is closer to 1 than to

� �
, i.e.,

� � +
. The sum is

��8 � ���}�������_�Y8����&
u�_� �:����K
Q�^�Y8	�L�
.

(d) This is a geometric series with intial term � 5��K� and ratio � 5���� ; it converges for
� � 5��K�I��� � , i.e.,� � P � � �
�

, to the sum � 5��<�^8������ � 5��<�_� .
2. (a) The � th term is

P� 
 � �	� , which does not tend to 0; the series diverges.

(b) This is a telescoping series; the sum of the first � terms is
�*�|�

�

���� � P

, so the full sum is 1.

(c) This is a telescoping series; the sum of the first � terms is
�
�

���� �

, so the series diverges.

(d) The odd-numbered terms do not tend to zero; the series diverges.

3. If ` �E�^��� � 5�������
Q�^� , then ` �
R�� P 
 �E�_�K�m������� R 1 � 8����h
Q�_�

R�� P
, so Lagrange’s formula reads

� � � R��E�_�K�
������� R � R�� P 8�� 1k
~���6����
 �,� R�� P

where
�

is between 0 and
�

. For
� � +

we have
��
 � � �

, so� � � � Rv�E�^���Iq.� R�� P 8�� 1 
r���
, and for

�tq �
this vanishes as

1 �  
. (For

� P� �.�2�m+ we still have� �I� � P� � �!
 � , so
� � � � Rv�E�^���;qJ��8�� 1}
������ +

.) The integral formula (2.56) gives
� � � R��E�_�f�

������� R � R�� P �
P� ���h�NaY� �_���:
 a��_� � R � P 
 a , and the mean value theorem for integrals then gives

� � � R��E�^�<�
������� R � R�� P ���9���H� � ���	
����^� �	� � P

for some
�}i � +��,�)� . Now, for

��� � � � +
, we have

+sq
�9���}q
�	
����
and
�K
���� �r��
 �

, so
� � � � Rv�E�^����� � �I� � � P ����
����_� � P � �������H�Y8����h
����_� � �#q � �I� �

� P 8����h
W�_�
, which

vanishes as
1 �  

.

4. (a) Note that if
� ���+

then all
, � are nonzero. Let

�:R�� , P , � "�"�" ,vR ; then
,vR�� �GR	8 �GR � P � �;8 �.� �

as
1)�  

.

(b) Assume all
, � are positive. With

�IR
as in (a), if

� � P , � � � , then
T R P � 5���, � � � 5�� �GR)� � 5�� � .

Conversely, if
T � 5�� , � � � , then

�GR�� � � �G� T R P , � �(� � �
.

43
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6.2 Series with Nonnegative Terms

1.
, ��� � ���

� �
; converges by comparison to

T
�
��� � �

.

2. Practically any test you can think of will work on this one! (Ratio test, root test, integral test using
Corollary 2.12, comparison to geometric series

T � �	�
, . . . )

3.
, � � � � �

� �
; diverges by comparison to

T
�
� � � �

.

4. Converges by ratio test:
, � � P48 , � � � � 
 ���Y8�� � 
���� � � + .

5. Diverges by root test:
, P�� �� � � �

�

����&��8�� �

�

���� �

�

�
� �
�! 

.

6. Converges by ratio test:
, � � P48 , � � � � � 
W��� � 8	�&� � � 
����6� � � 
 ���+�

P
� .

7. Diverges by ratio test:
, � � P 8 , � � � � 
����Y8v��+ �! 

.

8. Diverges by comparison to
T
�
� P

, using (2.13).

9. Converges by ratio test:
, � � P 8 , � � � � � 
W���Y8�� � � 
 =��+� �� .

10. Converges by ratio test:
, � � P 8 , � �m� � 
���� � 8�� � � 
����6� � � 
W���(�

P
% .

11. Diverges by ratio test:
, � � P 8 , � ��� � � 8�� � 
���� � � � ��8 ���r� . (See Exercise 7 in � 2.1, with

�#�
�
� P

.
The root test is a little easier if you know Stirling’s formula.)

12. Converges by root test:
, P�� �� � � � 8�� � 
���� � ��� ��8 � . (See Exercise 7 in � 2.1, with

�f�
�
� P

.)

13. By l’Hôpital’s rule or Taylor’s theorem, �
� � � �t365�7$����8 � � � �

P� ; series converges by comparison toT
�
� �

.

14. By rationalizing the numerator,
, � �.��8�� � � 
��M
 � � � � � 
 � � ��8	� � ; series diverges by comparison

to
T
�
� P

.

15.
7���� � � 8�� � � 
 ��� � � � 8�� � � 
 ��� � ��8 � ; series diverges by comparison to

T
�
� P

.

16. Converges by the extended root test (part (a) of Theorem 6.14):
, P�� �� �

�
� � � � >c
F��� ��� �9�E8	= q � �

� ���o>c

���Y8	=)� � /

for large � .

17. Converges by Raabe’s test:
, � � P 8 , � � � � � 
 ���Y8�� � � 
 ��� , so ��� �����., � � P)8 , � � �_��� � 8�� � � 
 ���+� �� .

18. Diverges by Raabe’s test:
, � � P 8 , � � � � � 
 ���Y8�� � � 
 ��� , so ��� �*�t�., � � P)8 , � � �_� � 8�� � � 
 ���+�

P� .
19. If

T , � converges, then
, � � + , so

, � q � for large � . For such � we have
, � � � , � for

��� �
, soT , � � converges by comparison to

T , � .

20. Use the integral test: ��
 �_8$�I� � 5����^� �#� � � 5����_�
P � �98����!� �_�

for
�
�� �

and � 
 �_8$� � 5��K� � � 5�� � 5��<� ,
and
� � 5��K�_�

P � �
remains bounded as

�"�! 
precisely when

� �
�
.

21. Use the integral test: ��
 �_8$�I� � 5����^�6� � 5�� � 5��<�_� � � � � 5�� � 5����_�
P � �98���� � �_�

for
� �� �

and
� 
 �^8$�G� � 5����_�6� � 5�� � 5��K�_�w� � 5�� � 5�� � 5��K� by the substitution � � � 5�� � 5��<� , so as in the preceding
problem, the series converges if and only if

� ���
.



6.3. Absolute and Conditional Convergence 45

22. From Theorem 6.7,
T P ����� � P� ��8

� � 5�� � � �
P �����
� 
 �_8$� � 5���� � T

P �����
� ��8

� � 5�� � . The integral is

� 5�� � 5���� 


P � ���
� � � 5�� ��+G
 � 5�� � 5��;��+K� � 5�� � 5��h� � ��� # #M/ , and

��8v��+$% � � 5�������+$%
� �

is negligible, so
��� # #M/)�

T P � ���� ��8
� � 5�� � � ��� # #M/p
 ����8	� � 5��h��� � = � @��M� . Also from Theorem 6.7,

T � P � ��� ��8 � � � 5�� � � � �
� �P � ��� 
 �_8$�I� � 5��K�^� � �D� � � 5��K�_� �

P


 � P � ���

�D��8���+ � 5��!��+ � +�� �M� . (The error in adding or removing the
initial term in the sum is negligible.)

23. The derivative of
�_8��E� � 
%��� �

is
���?�f�L� � �Y8��E� � 
���� �

, which is nonpositive for
� �
��8�� �

. By Theorem
6.7,
T �� � 8�� � � 
p��� � � � �� � 
 �_8��E� � 
p��� � � T �% � 8�� � � 
p��� � . The integral is

����8	�&�E� � 
p��� 

 ��
� � +�=

,
so
� +�= � T �� � 8�� � � 
���� � ��� +�=;
 ��8�� � � 

��� � � � +*# . Adding on the first two terms, namely .25 and

.08, gives
� � #��CT � P � 8�� � � 
���� � � � �[� .

24.
� � � T � P ��8$1!� � �P 
 �_8$� � + as in Theorem 6.7. Also,

� � � P^� � � �.��8�� � 
Q����� � 5���� � 
Q����
 � 5�� � ���8��
�

����I� � �

� P
� 
 �_8$� �
��8�� � 
����I� � �

� P
� 
 �_8�� � 
�������+ , so � � � � is decreasing.

25. Let
�k� ����
 ���Y8	�

. If
� � �

then
� � �

, and
, P�� �� � �

for all but finitely many � ; it follows from

Theorem 6.14a that
T , � converges. If

� �m�
then

, P�� �� �m�
for infinitely many � and so

, � �O� for
infinitely many � ; it follows that

T , � diverges.

6.3 Absolute and Conditional Convergence

1. For (a) and (b), just use the fact that
��365�7

�S0 ��qm� and
��7�� �

�S0 ��qO� for all � to get a comparison with
the convergent series

T � �I� �
and
T
�
� �

. For (c), use the ratio test.

2. To get a rearrangement whose sum is

  

, add up the positive terms until the sum exceeds 1; then put
in one negative term; then add more positive terms until the sum exceeds 2; then put in another negative
term, etc. Since the original series converges, only finitely many negative terms can be less than

���
.

After they are all used up, once the sum exceeds � 
�� it never drops below � , so it tends to

  

as
more terms are added.

3. For the series
+�
 P� 
%+;� P% 
w+�


P
� 
 "�"�" , the

� � !~� ���
th and

� � !F�
th partial sums both coincide with

the
!

th partial sum of
P� ����� P� 
 P� ��"�"�")� ; hence they converge to

P� � 5���� . When this series is added to�[� P� 
 P� �s"�"�"v� � 5���� , the odd-numbered (positive) terms of the latter series survive unchanged, and for
all
1 � +

, the
� � 1(
 ���

th terms of the two series cancel and the
� � 1[�

th terms add up to give the negative
terms

� P� , �
P
% , �
P
� , . . . . After omitting the resulting zero terms one obtains the stated rearranged series,

whose sum is therefore
�� � 5���� .

4. Let
�$R(� T R� , � and

a�R!� T R� � � . Then
aYR(���$R

if
1

is odd, and
aYR(���$R<�",vR�� P �",�R

if
1

is even. Since,�R � +
, � � � ��R!� � ���Wa�R .

5. (a) Suppose
T � , � � �  . After throwing out finitely many terms we may assume

� , � �^q P� for all � ,
in which case

� � 5��_����
5, � ����� �
	 for all � . By Taylor’s theorem, � 5�������
 , � ��� , � 
 �s�., � � where� �s�., � ����q �p� , � � � q �u� , � � , so
T � 5�������
 , � � is the sum of the two absolutely convergent series

T , �
and
T �s�., � � . Conversely, suppose

T � � � ���  where
� � � � 5�������
�, � � . We have

, � � � � � � � , and
Taylor’s theorem again gives

, � ��� � 
 �[� � � � where
� �[� � � ����q �p� � � � � q �u� � � � , so

T , � is the sum of
the two absolutely convergent series

T � � and
T �&� � � � .
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(b)
T , � is convergent by the alternating series test, but not absolutely convergent since

T
�
� P�� � �  

.
By Taylor’s theorem, � 5������c
2, � �(� , � �

P� , �� 
 �s�., � � where
� �s�., � ���?q �p� , � � �l� � � ���

� �
.
T , �

converges as above;
T �s�., � � is absolutely convergent; but

T P� , �� � T ��8	� � diverges.

6.4 More Convergence Tests

1. By the ratio test, the series converges absolutely for
� �p
 �[� � �

, i.e.,
�;����� �m���

, and diverges for� �p
|�[� �O�
. At
�w� ���

or
�w� ���

the series becomes
T ������� �&8��

�
� 

���

or
T ��8��

�
� 

���

, both of
which are absolutely convergent by comparison to

T ��8
�
�
.

2. By the ratio test or the root test, the series converges absolutely for
� �L�#�t�9� � �

, i.e.,
+"��� � �

, and
diverges for

� �L�f�C�9� � �
. At
�N�.+

or
�w� �

the series becomes
T ��� ��� �

�
�

or
T
�
�
, both of which

diverge since �
�l�� +

.

3. By the ratio test, the series converges absolutely for all
�

:
� , � � P 8 , � ����� � 8�� � � 
 ���+� + as �

�! 
.

4. By the ratio test, the series converges absolutely for
� �_8	=[� � �

, i.e.,
��=�� � � =

, and diverges for� �_8	=[�(�d�
. At

� �d=
the series is

T �M=
�
8��
�

.��� �

, which diverges by comparison with
T ��8

� . At�}� ��=
it is
T �M=

�
������� � 8��

�

���� �

, which converges (conditionally) by the alternating series test.

5. The series converges absolutely for
� �B�"��� � �

, i.e.,
� �~� � @

, and diverges for
� �B�"��� � �

, by
the ratio test. (In detail:

� , � � P)8 , � �?�J� �F�
���n� � �}� ��� � 5��^� � 
����Y8�� � �
� P � ��� � 5��^� � 
 ��� . We have� � � �����Y8�� � � � P �����F� ���l���p"&� �	� �Y8�� �f�
�p"�� �	� ��� P� , and � � 5��_� � 
r���Y8 � 5��^� � 
 ��� ���.� �� 5�� � � � 
#���Y8�� � 
 ��� �E8 � 5��_� � 
%����� +98  ��+ .) At

�f���
the series is

T � �[8�� � �h� ��� � 5���� � 
k��� , which
diverges by comparison to (for example)

T ��8
� . At

�f��@
the series is

T ������� �v� �[8�� � �K�s��� � 5���� � 
f��� ,
which converges (conditionally) by the alternating series test.

6. By the ratio test or the root test, the series converges absolutely or diverges according as
�n�E�K�s���Y8��E�:
f�����

is
���

or
�
�

, i.e.,
� � +

or
� �|+

. At
�}��+

the series is
T ������� ��8 � � , which converges (conditionally)

by the alternating series test.

7. By the ratio test, the series converges absolutely for
� P� �k� �[��� � , i.e.,

� �O�5� #
, and diverges for� P� �f���[�3��� . The numerator of the coefficient of

� P� � � ��� � is clearly bigger than the denominator, so
at
�}� �

or
�}� #

the terms of the series do not tend to zero and the series diverges.

8. By the ratio test, the series converges absolutely for
� �f
r�9� � �

, i.e.,
��� �.� � +

, and diverges for� �:
#�9�3�
�
. At both

�f�.�;�
and
�}��+

the series is
T ������� �[8�� �

�

u���

, which converges (conditionally)
by the alternating series test.

9. We have
� , � � P 8 , � �^� � � � 
������ �I��8�� � � 
t=�� � �� � �I� , so by the ratio test, the series converges abso-

lutely for
� �I� � �� and diverges for

� �:� � �� . At
�C� �� , we have

, � � P 8 , � � � @ � 
�/��Y8�� @ � 
.��+9� ,
and ��� ���
� @ � 
�/��Y8�� @ � 
r��+9� �;� � 8�� @ � 
r��+9�4�

P
� , so the series diverges by Raabe’s test. How-

ever, by the proof of Raabe’s test, the � th term is comparable to �
� P�� �

, and the terms decrease since� @
�

s/��Y8�� @

�

}��+9� �
�

. Hence, at
�}�r� �� , where there is an extra factor of

������� �
, the series converges

conditionally by the alternating series test.

10. By Taylor’s theorem, � 5�� � � 
 ����8 � � �p� ����8 � �*
 � � where
� � � ��q �

�
� �

. The series
T ������� �[8

�
converges conditionally, while

T ��� ��� � � � converges absolutely; hence the original series converges
conditionally.
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11. Let
, � � � �

� P
� � 5����E�w
�	M� 
 �_8$� . Then

, � � � �
� P
� 
 �^8 � � ��8 � , so the series is not absolutely

convergent. On the other hand, � 5����E�f
 	M�Y8$�
is decreasing for

�5�m+
, and hence so is

, � , and
, � �

� 5���� � 
 	M�Y8
�
� +

, so
T ������� � , � converges by the alternating series test.

12. �
P�� ��� �u���+

, so the series diverges.

13. By Taylor’s theorem, �
7�� �
�
� P � � 
 � � where

� � � �Wq �
�
� �

, and hence � 5���� � 7�� � � �
P �m�

� 5�������
 � � �}� � � 
 � � where
� � � �(q � � � � � � � q � � � � �	% . Hence the series converges absolutely

by comparison to
T
�
� �

.

14. By Taylor’s theorem, � 5��_���h
 � �
P �c�

�
� P � P� � � � 
�� � where

� � � �^q � � ��� , so � 5��_�Y� � 
����Y8 � � � �
� � 5�������
 � �

P ���.�c�|� �
�
� � P 


�
� � . Hence,

� � 
��
�
	 � � � ��� �?�*� ��

�


�
� � 	 ��� � � � �?� ��

�


�
� � 	 ��� �S�c� ��

�


�
� � 
 � � 	 �

where
� � � �vq � � � �-� � � � �

P 

�
� � � � q � � � � � � . Finally,

�;� � � 
��
�
	 � � �

�
�
� �
�
� � � � � � �

T ������� � � P �$8	�
� is conditionally convergent, and

T ������� � ���
�
� � 

� � � is absolutely convergent by

comparison to
T
�
� �

, so the original series is conditionally convergent.

15. The power series
T �� ������� �v� � ��8�� � � 
 ��� � for

��� P 7�� �h�
is an alternating series (for any

�
, since

the powers of
�

are all even), and the absolute value of the ratio of the
�
�

m���

th term to the � th is� � 8�� �
�

 ���6� �

�

|���

. For
� �I��q�>

this is less than 1 when �
� �

, so the terms decrease after the first
one. Hence the error is smaller than the first neglected term, namely

� � 8	/ � q > � 8	/ � � � �M@�� .
16. Let

�-� � ����� � . First Method: We have
T , � � � � T , � � � � ���6�G
 � T , � . Since

� � ��� decreases
to 0 and the partial sums of

T , � converge to the full sum, Dirichlet’s test gives the convergence ofT , � � � � � ��� . Second Method: Let � � � , � 

"�"�"M
�, � and
� �� � � � � � � � P . Then by Lemma 6.23,T R� , � � � � � R �)R�
 T

R P � � � P�� �� . We have � R � R)� � T , � � � , and the series
T � � � P � �� is absolutely

convergent since
T � � � � P � �� �vq � T � � �� �9� � T ��� � �� �<� �s� � � � ��� .

17. The convergence of
T
�
� �$, � follows from Dirichlet’s test. (Take

, � � �
� �

in Theorem 6.25, then
relabel

� � as
, � .) Absolute convergence is guaranteed for

� �
�
, since

, � � + and hence
� , � �vq � .

18. The series converges absolutely by comparison to the geometric series
T � �:� �

when
� �:� �
�

(for any 0 ).
When

�}�.�
it converges for 0 ���� 1�> by Corollary 6.27. When

�f� ���
it converges for 0 �� � � 1c
Q����>

by Corollary 6.27, since
��� ��� � 365�7

�S0 ��365�7 � � 0 ��>?� .

6.5 Double Series; Products of Series

1. (a)
���c�w�^� � P �����w�_� � P � � T �� � � �6� T �� � ) �:� T �U V � � T ) � � V&U ��� � U � T �U)V � � 
!
���� � U .

(b)
���Q� �^� � P ���Q�d�^� � � � � T �� ���&�6� T �� � ! 
 ��� � ) � � T �U)V � � T ) � � V&U � ! 
 ���Y� � U �T P� � 
!
����6� 
�
 ��� � U since

T ) � � V&U � !�
����<�.��
 �c
C"�"�"	
�� 
�
������
P� � 
(
����6� 
!
 ��� .
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2. ` �E�_� ` �E�[�:� � T �� � � 8 � � �6� T �� � ) 8�! � ��� T �U)V � T ) � � V&U � � � ) 8 � � ! � . But by the binomial theorem,T ) � � V&U � � � ) 8 � � ! � � T U � V � � � � U �	� 8 � � � 
h� � � � � �E�*
}�&� U 8 
 � , so ` �E�_� ` �E�[�:� T �U V � �E�c
f�[� U 8 
 � �
` �E�l
Q�[� .

3. If ` �E�_�~� ���B���M�_� � P�� �
, then ` � ��
b�E�^��� ��� P� �6��� �� ��"�"�"L��� � 


P� �6��� ��� �^���B���M�^� �	� � � P�� � 
O���" ��"�"�"M� �
�
�}����� � ���_� �M�^� �	� � � P�� � 


. Moreover,
��" ��"�"�"L� �

�
�}���<� � �

�
� � 8	�'"��*"�"�"�� � � �<� � � � � � 8	� � � � . It

follows that the coefficient of
� �

in the Taylor series is
� �
�
� � 8�� � � � � , so that series converges for

� �:��� P%
by the ratio test. The product of this series with itself is the series

T � U � U where� U � T ) � � V&U � � � � � � � !F� � 8�� � � ! � � � � T U � V � � � � � � � � 
f�t� � � � 8 � � � � 
f� � � � � � . On the other hand, the
sum of the latter series is

���<� �M�_� � P
, whose Taylor series is the geometric series

T �U)V � � �M�^� U . Equating
coefficients of

� U
in these two series gives the asserted formula

� U � � U . (The justification for the last
step is contained in Theorem 2.77:

�n���*� �M�_� � P � T R� � U � U ���m� �:� R�� P � T �R�� P � U � U �
R � P ��q �u� �:� R�� P

for� �I��q P� , say, so
T R� � U � U is the

1
th Taylor polynomial of

���c� �M�^� � P
. See also Corollary 7.22.)

4.
T �� ������� � � � 
���� �

P�� �
is convergent by the alternating series test, but not absolutely convergent. The

Cauchy product of the series with itself is
T �U V � ������� U � U where

� U � T U � V � � � � 

���6� 
 � � 
���� � �
P�� �

.

By the hint,
� U �tT U � V � � P� 
!
C��� � P � � 
!
����Y8�� P� 
!
C������ + as


 �! 
; hence

T ��� ��� U � U diverges.

5. Let � � T �) � � V � , ) � , which we think of as the limit of the square partial sums
���R

, and for each
!

, let
� ) � T �� V � , ) � . The claim is that � � T �� � ) , whether these quantities are finite or not.

Case I:
T � ) �5 . Clearly

���
�
q T �) V � � ) , so � q T � ) . On the other hand, given � �|+ , we can

find
�

such that
T �� � ) � T �� � ) � � . We can then find � such that

T �� V � , ) � � � ) � � � � 
}��� �
P

for
! �r+���������� �

. Let � � �s1��S� � � � � ; then
���
�
� T �) V � T �� V � , ) � � T �� � ) �W� � . It follows

that � � T � ) and hence � � T � ) .

Case II: � ) �/ for each
!

, but
T � ) �  . Given

� �t+
, we can find

�
such that

T �� � ) � � .
We can then find � such that

T �� V � , ) � � � ) � � � 
#��� �
P

for
! ��+��������$� �

. Let � �
�s1��?� � � � � ;
then

� �
�
� T �) V � T �� V � , ) � � ���|� . It follows that � �  .

Case III: � ) �  for some
! � ! �

. Given
� �m+

, we can find � such that
T �� , ) � � � �

. Let
� �
�s1��?� ! � � � � ; then

� �
�
� �

. It follows that � �  .

6. Since
T �) � � V � � , ) � �'�  

, it is approximated by its square partial sums, so given � � + we haveT
����� � ) � ��
 � �

� , ) � ��� � for � sufficiently large. This is a double series (it’s obtained fromT �) � � V � � , ) � � by replacing
, ) � by 0 when

�s1��S� !w�
�
�fq � ), so by Exercise 5, it can be summed

as an iterated series first in � , then in
!

. Summing over only those
!

such that
! q � givesT �) V � T �� V �

� P � , ) � ��� � , that is, the sum of the tail ends of the series
T �� V � � , ) � � over

! �
+��������$� � is less than � . With notation as in Exercise 5, this implies that

� ���
�
� T �) V � � ) � � � . But also� � � ����

�vq T
����� � ) � ��
 � �

� , ) � �3� � , so
� � � T �) V � � ) �3�|� � . It follows that � � T �) V � � ) .

7.
��	R � T RU)V P T ) � � V&U � ! 
 � � � � � T

RU)V P 
l" 
 � � � T RU V P 
 P � � . This has a finite limit as
1 �  

if
and only if

� �t�
.

8. The only nonzero terms in
T �) V � , ) � are


l�
at
! �

� and
���

at
! �

�

��

, so
T �) V � , ) � ��+ for

all � . On the other hand, the only nonzero terms in
T �� V � , ) � are


l�
at �
� !

and
���

at �
� ! � �

,
and the latter term is missing when

! ��+
. Hence the sum is 0 for

! ��+
and 1 for

! ��+
. It follows

that the sum of the first iterated series is 0, whereas the sum of the second one is 1.



Chapter 7

Functions Defined by Series and Integrals

7.1 Sequences and Series of Functions

1. (a) � ��� ` Rv�E�^�<��+ if
+sq � ���

, � ��� ` R������K�.� . We have
� ` Rv�E�_�S�k+H��q������ 0 �

R � +
for
�Fi � +��,��� 0 � ,

so the convergence is uniform there.

(b) � ��� ` R��o+9����+ , � ��� ` R��E�^���m� if
+ �|�Bq��

. We have
� ` Rv�E�_�:�|�9�9� ��� 0

P�� R � +
for
�Ni � 0 �,�)� , so

the convergence is uniform there.

(c) � ��� ` R��E�^���
+ if
�wi � +��b>�� �;�

P� >G� , � ��� ` Rv�
P� >?��� � . We have

� ` R��E�_�I�%+H�[q|7����
R � P� >#� 0 � � + for�Bi � +��

P� >}� 0 � or
�Bi �

P� >u
 0 �,�)� , so the convergence is uniform there.

(d)
� ` Rv�E�^����q21 �

P
for all

�
, so ` R � + uniformly on

j
.

(e) � ��� ` R��E�^�(��+ for all
� i � +��  � , but the maximum of ` R on this interval is

�*� P
(at
� � 1 � P

), so
the convergence is not uniform. However,

� ` R��E�_�h� +H��q 1 0 � �
R��

for
� � 0 provided

1'� 0 �
P
, and� ��� R � �

1 0 �$�
R�� ��+

; hence the convergence is uniform on � 0 �  � .
(f) � ��� ` R��E�_�;� + for all

�Qi � +��  � , but the maximum of ` R on this interval is
� � P

(at
�%� 1

), so the
convergence is not uniform. However,

� ` Rv�E�_�<� +H��q ��8$1 for
��q �

, so the convergence is uniform on
� +����4� for any

�
.

(g) � � � ` R��E�^�<��+ for
�W��r�

since ` R��E�_��� �
R

for
� �
�

and ` R��E�^� � ���
R

for
� ���

, and � ��� ` R������<�
P� .

For any 0 �m+ we have
� ` Rv�E�_��� +H�<qd����� 0 �

R
for
��i � +��,��� 0 � and

� ` R��E�_��� +H�Iq ����
 0 � �
R

for�Bi � ��
 0 �  |� , so the convergence is uniform on these intervals.

2. (a) The series is a geometric series, convergent for
� ��+

to the sum
��8����;� � � �9�

. The convergence is
absolute and uniform on � 0 �  � for any 0 ��+ , by the M-test with

� � � �$�	� � . The sum is continuous
on
�o+��  |�

.

(b) The series is absolutely and uniformly convergent on � ���	�,�)� by the M-test with
� � �.��8 � � ( �

�|+
);

it diverges elsewhere since the � th term
�� +

. The sum is continuous on � ���	�,�)� .
(c) The series is absolutely and uniformly convergent on � ���!
 0 �_� � 0 � for any 0 ��+ by the M-test
with

� � � P� � ���*�
P� 0 � � (

T � � converges by the ratio test). It diverges for
� �I���|�

since the � th term�� +
. The sum is continuous on

�����v�4���
.

(d) The series is absolutely and uniformly convergent on
j

by the M-test with
� � �O��8 � � ; the sum is

everywhere continuous.

(e) The series is absolutely and uniformly convergent on
j

by the M-test with
� � �~��8 � � ; the sum is

everywhere continuous.

49
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(f) The series is absoutely and uniformly convergent on � ��
 0 �  � for any 0 �O+ by the M-test with� � � � �
P � �

, and it diverges for
�Bq
�

(Theorem 6.9). The sum is continuous on
���	�  �

.

3. Let
�

be the maximum value of
�
	
�E�_���

on � +��,�)� . Given � ��+ , choose 0 �O+ so that
�
	
�E�^���+� � for�!� 0 q�� q � . Then if

1
is large enough so that

���!� 0 �
R � � 8 � we have

� ` R��E�_���?q � �
R � � for� q �;� 0 and

� ` Rv�E�^���Sq � 	 �E�^���
� � for
��� �(� 0 . That is,

� ` Rv�E�_���
� � for all
� i � +��,�)� when

1
is

sufficiently large, so ` R'� + uniformly on � +��,�)� .
4. Given 0 �r+ , let

�	P�� � ���*
 0 �,��� 0 � , and for
1 � �

let
�,Rp� � 1 �C�*
 0 � 1u� 0 � . For a given

1
, let� � ���s1�� ��� � � � � � � � � � � P . Then

� � �  for all � , and
� � 8 � � � � � as �

�  
, so
T � � �  .

The M-test therefore gives the uniform convergence of the series for
�Fi ��R

or
�c�Fi ��R

.

5. The series fails to converge absolutely by comparison to
T ��8

� . However,
��8��E� � 


�
�

decreases to 0
as �

�  
for each

�
, so by the alternating series test, the series converges for each

�
, and the absolute

difference between the
1

th partial sum and the full sum is at most
��8��E� � 
51l
����-q���8�� 1 
����

. The
latter quantity is independent of

�
and tends to zero as

1)�  
, so the convergence is uniform.

6. (a) Since
T � � converges we have

� � � �Sq � , so for
� i � � ,H�-,9� (

, �~�
) we have

� � � � � 8�������� � ���?q� , ��8����c� ,��
. Hence

T � � ���&8����c�w� ��� converges absolutely and uniformly on � � ,��-,�� by the M-test.

(b) By the hint,
T � � � � 8������Q� � �!� T � � 8������Q� � ��� T � � . The first series on the right converges

absolutely and uniformly for
� �:� � � � �

by the M-text, since
� � � 8����l�t���&���(q �(8�� � �#�.���

, andT ��8�� � �l�|���
converges by comparison to

T ��8 � �
. The second one is independent of

�
, so it does not

affect uniform convergence, but it decides the issue of absolute convergence.

7. If ` R � ` uniformly on � ) , we have
� ` Rv�E�_��� ` �E�^���&q � )R for

�Bi � ) , where
� )R � + as

1 �! 
. But

then
� ` R��E�^�I� ` �E�_���vq'�s1��?� � PR �������,� � �R � for

�Bi ��� P � ) , and
�s1��S� � PR ��������� � �R ��� + as

1 �! 
.

8. By Theorem 7.7, the point is to show that �$` R9� is uniformly Cauchy on � ,H���4� . But it is uniformly
Cauchy on

�.,������
, so given � ��+ there exists � such that

� ` U �E�^�:� ` R��E�_����� � for
�%iQ�.,������

whenever
M� 1 � � . Since ` U and ` R are continuous on � ,����4� , we can take the limit as
� � ,����

to conclude that� ` U �E�^�I� ` Rv�E�^����q � for
�Bi � ,����b� whenever


M� 1 � � , and hence �$` RM� is uniformly Cauchy on � ,����4� .
9. Since ` � ` R is continuous, the set � R in the hint is closed and hence compact. Moreover, since ` R

increases to ` , we have � P � � � ��"�"�" . By Exercise 5 in � 1.6, if each � R is nonempty then so is
	 � P � R .

But if
�

is in the latter set we have ` �E�^�:� ` R��E�^� � � for all
1

, which is false since � ��� ` Rv�E�_�*� ` �E�_� .
Hence some � � (and hence every � R with

1�� � ) is empty, i.e.,
� ` �E�_��� ` R9�E�^���3� � for all

�Fi � when1 � � . Thus ` R'� ` uniformly on � .

7.2 Integrals and Derivatives of Sequences and Series

1. The series defining ` converges absolutely and uniformly on
j

by the M-test with
� � � � � � . Hence

` is continuous, and termwise integration is permissible: � �
� �� ` �E�_� 
 �Q� T � P � � � � �

� �� 7�� �
�
� 
 �Q�T � P � � � ��� 365�7 � �H� �

� ��
. Now,

365�7 P� � > is 0 when � is odd and
������� � � �

when � is even; hence the � th
term of the last series is �

���
when � is odd,

�
�
���

when �
���v�4@v�,��+��������

, and
+

when �
� �&� #v�,�,�v�������

.

2. The series defining ` converges absolutely and uniformly on � +��  � by the M-test with
� � � �

� �
.

Hence ` is continuous there, and �
P� ` �E�^� 
 �F� T � P �

P� �E�s
 � � � � 
 �F� T � P � � �
P �t�

�


��� � P �

. This
is a telescoping series; the � th partial sum is

�c�t�
�

���� � P

, so the full sum is 1.
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3. (a) Just observe that � ���uR � �
1	243 �b1 �'1v�

is
P� > if

� � +
,
� P� > if

� � +
, and

+
if
�f��+

.

(b) We have ` �R �E�_�*� 1	243 �b1 � 1v�u
�1v�^8����c
�1 � � � � . If
�t��r+

the second term tends to zero like
��8$1

as1 �  
, and if

�|�d+
it vanishes to begin with. Hence � ���pR � � `��R

�E�^�
is
P� > ,
+
, or
� P� > for

�/�~+
,��� +

, or
� � +

respectively. The convergence cannot be uniform near
��� +

because the limit is
discontinuous.

4. In each case it is a matter of using the M-test to establish the uniform convergence of the derived series
on compact subsets of the interval of convergence. In what follows we write down the derived series
and the constants

� � in the
�

-test.

(a)
� T

�
� �	� �

;
� � � � � �

� �
for
� � 0 .

(b)
T
�
��� � P 8��

�
� 


�

����

;
� � � ���c� 0 � � �

P
for
� �:��q
�c� 0 .

(c)
T
�
� ��� � P 8	� � � �

;
� � � � � ���c�

P� 0 � � �
P

for
� �:�vq|��� 0 .

(d)
� T �o7�� �

�
�^�Y8
�
�
;
� � � ��8 � � .

(e)
T �����L�_�Y8��E� � 


�
� � �

;
� � ��� � 8 � % for

� �:��q � .

(f)
� T

�
� � � 5�� � ;

� � � � �
P � � � 5�� � for

� �:�����K
 0 .
5. Using the observation that

�L�^8��E� � �
�
� �w� �E� �

�
� � P 
 �E�w


�
� � P

, we see that the derived se-
ries of ` is

� T � P � �E�B� � � � � 
.�E�f
 � � � � � . This series converges uniformly on compact subsets ofj �!� Al�	� A��v�������]� by the same argument as in Exercise 4, � 7.1 (basically, a comparison to
T
�
� �

), so
the termwise differentiation is justified.

6. (a) For
� � 0 � + , +sq21 ` � 1v�^��q � 1^� 1v�^� �

P � � q � 0 � P � � 1 � � � + as
1 �  

.

(b) With
�s� 1v�

, �
P� 1 ` � 1v�^� 
 �#� �

R� ` �E�[� 
 � � � �� ` �E�[� 
 �u�/, .

(c) Given � �m+ , pick 0 �m+ so that
�
	
�E�^�h�

	
�o+9����� � 8	�$, when

+wq �tq 0 . Then �
P� ` R��E�_� 	 �E�^� 
 �

is the sum of 	
�o+9� �

P� ` R��E�_� 
 � , �
�� ` Rv�E�_� � 	 �E�^��� 	 �o+9� � 
 � , and �

P
� ` R��E�^� � 	 �E�_��� 	 �o+9� � 
 � . By part (b),

the first term is within � 8	� of
,
	
�o+9�

provided
1

is suffuciently large. The absolute value of the second
term is at most

� � 8	�$,�� �
�� ` R��E�^� 
 �Oq � 8	� . Finally, since integrable functions are bounded we have�

	
�E�_�<�

	
�o+9���&q �

, so the third term is no bigger than
� �
P
� ` R��E�_� 
 � , which is less than � 8	� for large

1
by part (a). In short,

� �
P� ` R��E�^� 	 �E�_� 
 �#� , 	 �o+9���3� � for

1
sufficiently large, and we are done.

7.3 Power Series

1. (a)
� , � � Pb� � � P 8 , � � � �9�~� , � � P)8 , � ��� �I� � �!� �I�

, so by the ratio test,
T , � � � converges when

�(� �I���r�
and diverges when

�!� �I� �
�
.

(b)
� , � � �_� P�� � � �(� �:�

, so by the root test,
T , � � � converges when

�!� �I� � �
and diverges when�(� �:���
�

.

2. If
� , � ��q � , then

� , � ���^� P�� �}q � P�� �^� �I� . If
� �:���r�

then
� P�� �_� �:�3���

for large � , so
T , � � � converges

by the root test (Theorem 6.14a).

3.
T �� , � �

R �
converges when

� � R � � �
and diverges when

� � R � � �
, so the radius of convergence is� P�� R

.



52 Chapter 7. Functions Defined by Series and Integrals

4. Let
��8 � � � ��� 7���� � , � �

P�� �
. If
� �I�	� �

, let
����� �t
�� �I���Y8	�

. Then
� , � � � � P�� � � � �I��8 � �r� for large � ,

so
T , � ��� converges by the root test (Theorem 6.14a). If

� �I�
� �
, then

� , � ���_� P�� � �~� for infinitely
many � , so

, � � � �� + and
T , � � � diverges.

5. (a)
� � � � � T �� ���*a � � � 8 � � for

a�i}j
. By Theorem 7.18, � �� � �

� � 
 a<� T �� ������� � � � �
� P 8

� � � � � 
 ��� for�Bi#j
.

(b)
365�7&a � � T �� ������� � �Ea � � � � 8�� � � � � for

a i j
. By Theorem 7.18, � �� 365�7[a � 
 a �

T �� ������� �v��% �
� P 8�� �

�
� � � � � 
���� for

�Bi}j
.

(c)
a � P � 5������M
l�Lab�<� T � P ������� � �

P � ��a � � P 8
� for

��� �|�La*q
�
(Exercise 3 in � 6.1), with the understand-

ing that
a � P � 5������c
��Lab��� � V � � � . By Theorem 7.18, � �� a �

P
� 5��_���c
��LaY� 
 a�� T � P ������� � �

P � �L�_� � 8
�
�

for
� �:��� P� . However, the integral on the left is continuous for

� �I�vq P� (it is improper but convergent at�}� � P� ), and the series on the right converges absolutely and uniformly for
� �L�I�&q
�

by comparison toT
�
� �

. Thus the equality persists for
� �I�M� P� .

6. Each of the series for the three integrals in question, namely,
T �� ��� ��� � 8 � � � � � 
 ��� ,T �� ������� �[8�� � � � � � � � 
���� , and

T � P ��� ��� � �
P 8
�
�
, is an alternating series whose terms decrease mono-

tonically to zero in absolute value, so the full sum lies in between any two successive partial sums. One
simply computes the partial sums (with a calculator or otherwise) until the desired accuracy is attained.

(a)
�
	��9@�		� ������� T �� ������� �[8 � � � � � 
r����� �

P� � � � � 
 a�� T �� ������� �[8 � � � � � 
r��� � �
	��9@ #M� ����� , so the
answer to three decimal places is .747.

(b)
� /	+ �9=M� �����[� �H�f����8	� � =���
F����8�� � /��M�f���$8	@ � �,�9� � �

P� 365�7&a � 
 a �
��� ����8	� � =��$
k����8�� � /��;� � /	+ �9@M� ����� ,
so the answer to three decimal places is .905.

(c) This series, alas, converges much more slowly. One has to go to the 123rd partial sum to be sure
that the answer to three decimal places is .822 and not .823. I used Maple to find that the 123rd partial
sum is

� #M�M� �9/M/ # �����
and the 124th partial sum is

� #M�M� �9� � 	 �����
; the full sum is in between. (It is actually> � 8v�,�-� � #M�M� �9@�	L+ �����

.)

7. If ` �E�_�!� ` ���*�^� then
T , � � � � T ��� ��� � , � � � , so by Corollary 7.22,

, � � ������� � , � for all � and
hence

, � � + for � odd. Likewise, if ` �E�^� � � ` ���*�^� then
, � � ��� ��� � � P , � for all � and hence, � ��+ for � even.

8. (a) The absolute value of the ratio of the
�
�

r���

th term to the � th term is
� � 8��H�

�

r���6�

�

/1 
r���

,
which vanishes as �

�! 
for all

�
; hence the series converges for all

�
.

(b)



 �

��
� V �

������� �9� � � � � R
�	� � �_R � � � � 
�1[� �

� ��
� V �

������� �v� � � � � R � P
�	� � �_R � P � � � � 
�1l� ��� �

��� R � R � P �E�^� �

(c)



 �

��
� V �

������� ��� � �
� � � �_R � � � � 
�1[� �

� ��
� V P

������� �v� � � � P
� � � �_R � P � � � ��� � � � 
�1[� �

� ��
) V �

��� ��� ) � � ) � P� � ) �_R�� P ! � � !�
�1 
���� �
�

� � R�� P �E�_�� R . (For the second equality,
! �

�
� �

.)

(d)
� � � � � 
 � � � � 1 � � � ��

� V �
������� �

� � � � 
�1[� �
� � �
�

 1[�6� �

�

 1w�O���(
 � �

�

 1[��� 1 � ��� � ��� � � �_R �

��
� V P

������� �
�
�
� ��� � � � 
�1l� ��� �

� � � �_R
� � � �_R � � � ��

) V �
������� ) � P! � � !�
�1[� �

� � ) �_R�� �� � ) �_R � �c� � � R��E�_�
. (In the third equal-

ity,
! �

�
� �

.)
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9. The series converges for all
�

by the ratio test. Let
� � � � �}"H�f"H=f"�@�"�"�"$� � � �m���6� � � � � �

P
; then� 
 � 8 
 � � ��� � � � � � � � � PY� � � � � , so ` � � �E�_� � � 
 � 8 
 � � � T �� � � � � � � � T � P � � � Pb� � � � �
P 


�C� T �� � ) � ) �C� ` �E�^� .
10. (a)

T � P � � � 8�� � 
D��� � � �I� 
 8 
 �_� T �� � � 8�� � 
 ��� � � �G� 
 8 
 �_� � � � P T �� � � � P 8�� � 
D��� � � ��G� 
 8 
 �_� � ��� P � � � �B��� � ��� � �u��� P � � � �B��� . Alternatively, since �
� �
�

%���[�F�

,
T � P � ���v8�� � 
%��� � �T �� � � 8 � � � T �� � � 8�� � 
���� � ��� ���N� �

P � � ��� ���
.

(b)
T �� ��� ��� � � � �

� P 8�� �
�

 ��� "�� �

�

 ��� � � � �� T �� ������� � a � � 
 ab8�� � � 
 ��� � �

� �� a � � T � P ��� ��� ) �
P a � ) 
 aY8�� � !F� � � � �� a � � ���c�%365�7HaY� 
 a .

(c)
T �� ����8�� � 
 ��� � � � � � � P T �� � �

� P 8��
�

 ��� �

� � � � � P � �� T �� a&� 
 ab8�� � 
 ��� � �� � P � �� a �
P � � � � ��� 
 a (see part (a)).

(d)
T �� ������� �_� � � 
m��� � � �&8�� � � � � � � 
 8 
 �_� T �� ������� ��� � �

� P 8�� �
�
� � � � 
 8 
 �^�6�E�;365�7��_� �D365�7[�w��;7����h�

.

11. (a) Integrate by parts: � �� 1	243 �b1 ��a 
 a:�Ca�1	243 �b1 ��a�� � � � � �� a 
 ab8��Ea � 
����<�C�;1	2 3 �b1 �c�p� P� � 5����E� � 
���� .
(b) From Example 2 and Abel’s theorem, we have

1	243 �b1 �c��� T �� ������� �9� � � � P 8�� � � 
m��� for
�mi

� ���	�,�)� , the series converging uniformly on that interval. (The convergence at
Al�

comes from the
alternating series test, and Abel’s theorem then gives the uniformity on � ���	�,�)� and the validity of the
expansion at

�|�dAl�
, since

1	2 3 �b1 �
is continuous.) It then follows from Theorem 7.13a that ` �E�^���T �� ������� � � � �

� � 8�� �
�

����6� �

�

 ���

for
�Fi � ���	�,�)� .

(c) Setting
�}�m�

in (b) and using (a) gives
P
% >}�

P� � 5���� � ` �����<� T �� ������� � 8�� � � 
����6� � � 
 ��� , and
the observation that � � � � 
����6� � � 
 ��� � �

P �m� �
�

���� � P �|� �

�

 ��� � P

then yields the desired result.

7.4 The Complex Exponential and Trig Functions

1. (a)
7�� ����� ��� P� � � Z �u� � � Z ���p���97�� �*� and

365�7���� ��� P� � � Z �l
 � � Z �9�p� 365�7&� by (7.30) and (7.32).
Alternatively, one can examine the power series expansions.

(b) First method: express the sinh and cosh of
�

and � in terms of
��� � and

��� � , multiply out the right
sides of the asserted formulas, and simplify. Second method: set

�-��� �
and � ��� � , and use (7.34) and

part (a).

(c)
7�� ���S�E�-
	� �[�<��7�� �����;365�7��
� �(
 365�7��*�(7�� ����� �u��7�� �����;365�7H�(
	��365�7��c�(7�� �h�

, and
365�7��'�E�-
�� �[�:�

365�7��c�(365�7���� � 
W7�� �����;7�������� �u��365�7��*�(365�7[��
��97�� ���h�;7�� ���
.

2. If
�*� ,'

���

with
,H���(i}j

,
� 
 8 
 �_� � �

	 � Z
� 
 � � � 
 8 
 �_� �

	 � �o365�7 � �K
���7�� � � �_� �^�/, � 	 � �o365�7 �4�K

�97�� � � �_�L

� � � 	 �H���k7�� � � �l
���365�7 � �_�<�m�.,�
�� �6� � 	 ���o365�7 � �l
��97�� � � �_�<� � � � � .

3. � �
	 � 365�7 � � 
 � 
�� � � 	 � 7�� � � � 
 �}� � � � 	 � Z � 
 � 
 � . By Exercise 2, this is

� � 	 � Z � 
 �,�
���� �
� 	 �H�o365�7 � �l
��97�� � � �_�

,!
���� " ,-�	� �,-�	� � �
� 	 �&�.,�365�7 �4� 
���7�� � � �_�^
�� � 	 �H�.,K7���� � �p� ��365�7 � �^�

,v��
 � � �

The asserted formulas follow by taking real and imaginary parts. (Of course some constants of integra-
tion are being suppressed here.)
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7.5 Functions Defined by Improper Integrals

1. For all
�Qi �

we have � ��
� ` �E�'�YaY��� 
 a q � �� 	

�EaY� 
 a �  , so the integral converges absolutely. Like-
wise,

� � �� ` �E�'�YaY� 
 a��&q � �� 	
�Eab� 
 a � + as 
 �! 

, so the convergence is uniform.

2. Let 	
�E�^� � � �� � � `

�E�'�YaY� 
 a , and pick a point
,
i �

. By Theorem 7.39 (with ` replaced by � � ` ),
� �	 	 �E�[� 
 �N� � �� � �	 � � ` �E���Yab� 
 � 
 a;� � �� ` �E�?�Yab� 
 aK� � �� ` �.,��Yab� 
 a . The last integral is a constant,
so by the fundamental theorem of calculus, 	

�E�^��� � 
 8 
 �_� � �� `
�E�?�Yab� 
 a .

3. � �� � � � � 
 a � �*� � P � � � � 

 ��
� � � P

. Formally differentiating � �� � � � � 
 a � times gives������� � � �� a � �$� �
�

 a . The latter integral is uniformly convergent on � 0 �  � for any 0 �d+ , by Theo-

rem 7.38 with 	
�EaY�}�Da � � � � �

, so the differentiation is justified. On the other hand,
� 
 8 
 �_� ��� �

P �
������� �

� � � �	� �
P
; the result follows.

4. � �� �Ea � 
|�_� �
P

 a!�����

P�� � 1	243 �b1 �'�Eab8$� P�� � � 

 �� � P� >_��� P�� � . Formally differentiating � �� �Ea � 
|�_� �
P

 a

�
���

times gives
������� � � P �

�
����� � � �� �Ea � 
t�_� �	� 
 a . The latter integral is uniformly convergent on

� 0 �  |� for any 0 � + by Theorem 7.38 with 	
�Eab�<� �Ea � 
 0 � �	� , so the differentiation is justified. On the

other hand,
� 
 8 
 �_� � �

P � � P�� � � ��� P� �6��� �� ��"�"�"	��� � � ���� � � � � � � � P 
 � � . Hence� �� 
 a�Ea���
W�_� � �
>
� "
�*"���"�"�"L� �

�
� ���

� � � P � � �|��� �
� � P � � � 
 � � � > � "

�h"$��"�"�"	� �
�
�����

�("��*"�"�"	� �
�
����� � �

P � � ��
 � � �

5. � �� � �
P � � � � � � � �

	 � � 
 ��� � � �� � �	 �$� � � 
 a 
 � . Since � �� �$� � � 
 a is uniformly convergent on any

compact interval in
�o+��  �

(see Exercise 3), we can reverse the order of integration to get
� ���	 � � P 
 �}�� 5����.,&8 ��� .

6. � �� � �
P � � � � � � �$�

	 � �v365�7�� 
 �f�.� � �� � �	 �$� � � 365�7&� 
 a 
 � . The integral � �� � � � � 365�7[� 
 � is uniformly
convergent for

ahi � 0 �  � for any 0 � + by Theorem 7.38 with 	
�E�^�<��� � � �

, so we can reverse the order

of integration to get
� ���	 � �� � � � �:365�7H� 
 � 
 ac��� ���	 a 
 aY8��Ea � 

���*��� P� � 5����Ea � 
���� 

 �	 . (For the first

equality, use the result of Exercise 3, � 7.4, or integrate by parts twice.)

7. � �� � � �	� � P ��� ��365�7	,9�^� 
 �~� � �� �
	� � � �:7�� �ha�� 
 a 
 � . The integral � �� � � �<7�� ��a�� 
 � is uniformly

convergent for
ahi � +��  � by Theorem 7.38 with 	

�E�^����� � �
, so we can reverse the order of integration

to get �
	� � �� � � �:7����ha � 
 � 
 a�� �

	� a 
 ab8��Ea � 
������ P� � 5����., � 
���� . (For the first equality, use the result
of Exercise 3, � 7.4, or integrate by parts twice.)

8. If
��� +

, set
�C� �Ha

; then 
 ab8$a%� 
 �	8 � , so � �� 7����h�Ha 
 ab8$aw� � �� 7���� � 
 �L8 �C�
P� > . It follows

that � �� 7����h�Ha 
 ab8$aN� �
P� > for

� � +
since the sine function is odd, and of course the integrand

vanishes if
�.�J+

. The convergence cannot be uniform on
�

if
+�i �

by Theorem 7.39, since the
resulting function is discontinuous at 0. However, the convergence is uniform for

� � 0 or
��q � 0

( 0 � + ). To see this, use integration by parts as in Example 3, � 4.6, or Example 3, � 7.5: we have
� ��
7�� �h��a 
 aY8$au� ���k365�7[�Hab�Y8$�Ha 

 ��

� � ��
365�7[��a 
 aY8$��a � , and for

� �I� � 0 this is bounded in absolute
value by 0 �

P
� � �
P 
 � �� 
 ab8$a � ���
��8 0 � , which vanishes as

� �! 
.

9. Let
� �E�_��� � �� 7�� � � �Ha 
 ab8$a � for

� � +
. Since

7�� � � �Hahq � � �S�Y�E��aY� � �,���
, for
+sq �Fq �

the integrand is
less than

� � �^� � � �Ya � � �
, whose integral is finite. Hence the convergence is uniform on � +�� �(� for any

�
,

and so
�

is continuous on � +��  |� . Next, formally
� � �E�^�*� � �� �I7�� �h��av365�7H�Ha 
 ab8$ah� � �� 7�� �*�L�Hab8$a 
 a .

By Exercise 8, the differentiation is justified and
� � �E�^�h�

P� > for
� �t+

. Hence
� �E�^�h� P� >_�s
 � , and��� � �o+9�<��+

.
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10. (a) The integral over � �	�  � converges by comparison to � �P � � � 
 � , and the integral over � +��,�)� is
proper since � ��� ��� � �o365�7 � � � 365�7�,��_�Y8$� � �

P� �., � � � � � . One way to obtain the uniformity easily is to
use the identity

365�7 � � �B365�7 ,9�}���I7�� � P� �.,;
 ��� �;7���� P� �.,�� ��� � and the estimate
��7���� � �vq � ���S�b� � � �,���

to get
��365�7 � �-�k365�7 ,9�:��8$� � q � � �S� P� � , � � � � � �[��� � � , which for

,H���
in a bounded set is less than a fixed

integrable function
� � �S� �!�Y�
� � �

.

(b)
���.,H�����<�.� � �� �	�	 ��� P 7�� �ha � 
 a 
 � . By Exercise 8, this is

� �	�	 � �� � � P 7����Ka�� 
 � 
 a<� � ���	 P� > 
 a<�P� ><�.,�� ��� .
(c) Since

���.,����6�
is continuous in

,
and
�

by part (a), the formula
���.,������}� P� ><�.,#� ��� persists for,H��� ��+

. Also, clearly
���.,H�����

is even in both
,

and
�
, so

���.,�������� ���b� ,_� �$� �M���(� P� ><�b� ,_�9�
� �	��� for any,H���
.

11. (a) The differentiated integral is
� � �� a �$�

� �_7�� ����a 
 a , which converges absolutely and uniformly on
j

by Theorem 7.38 with 	
�Eab�;� a � � � �

. Hence, by integration by parts,
� � �E�_�;� � � �� a � �

� �_7����h�Ha 
 a��P� � � � ��7����h�Ha 

 ��
� P� � � �� � � � ��365�7[�Ha 
 a��r�

P� � � �E�_� .
(b) Solving the differential equation from (a),

� � 8 � � �
P� � , so � 5��(� � �E�^���_�d�

P
% � � 
 � 5��!� �p� , hence

� �E�_��� � � � � � � %
, and

�
� � �o+9��� � �� �$� � � 
 a<�
P� � > (Proposition 4.66).

12. As in Exercise 11, � � �E�^�;� � �� a � �
� ��365�7[��a 
 a(�d�

P� � � � ��365�7[��a 

 ��
� P� � � �� � � � �_7�� �h�Ha 
 a;�

P� ���!�� � �E�^�Y� . Write this equation as � � �E�_�:

P� � � �E�_�-�

P� and multiply through by the integrating factor� ��� � %
to get

� � ��� � % � � � �
P� � ��� � % . It follows that

� ��� � % � �E�_�K� � �� �
� � � % 
 a^
 � , and

�
� � �o+9����+ .
13. Let 	

�E�'�YaY�-� �����
� � � � ���Y8$a �
and

� �E�_�-� � �� 	
�E�?�Yab� 
 a . 	 �E�'�YaY� is continuous on the region

� ��+
,a$�O+

if we define 	
�E�'�b+9� �~�

. Hence �
P� 	 �E�'�YaY� 
 a is continuous in

�
, and so is � �P 	 �E�?�Yab� 
 a since

the convergence is uniform (
�
	
�E�?�Yab���Iqra � �

). Thus
� �E�^�

is continuous for
� � +

. We have
� � �E�_�!�

� �� � � � � � 
 a for
�2�.+

, the differentiation being justified since the latter integral converges uniformly

for
� � 0 �C+ . Hence, by the substitution

����a � �
and Proposition 4.66,

� � �E�^�K� � �� �$� � � 
 �	8 � �k�P� � >?8$� . Thus
� �E�^�<� � >_�l
 �

for
� � +

, and
��� � ��� ��� � � �E�_�<� � �o+9����+ .

14. (a) The integrand is at most
� � � �

for all
�

, so the integral converges uniformly to a continuous function
of
�

. Formal differentiation of the integral yields
���L� � �� �$� � � � � � � � � � 
 
 ab8$a � ; this integral is still con-

vergent for
�.�� +

because the factor
� � ��� � � �

kills the factor
��8$a �

near
a�� +

, and the convergence is
uniform for

� �:��� 0 �t+ . Hence
� � �E�_��� �;�L� � �� � � � � � � � � � � � 
 
 aY8$a � for

� ���+
. If
� �t+

, let � ���^8$a ,
so 
�� �.�*� 
 ab8$a � , and

� � �E�_�<�
� �
�
�
� � � � � � � � 
 � � � 
�� � ��� � �E�_� . If

� � +
, the substitution � �.�*�_8$a

likewise yields
� � �E�^�<��� � �E�^� .

(b) The differential equations for
�

give
� �E�^�*� �

�
��� � �

for
A(� ��+

. Since
�

is continuous at 0, we
have

�
�
� � �o+9��� � �� � � � � 
 a<�

P� � > by Proposition 4.66, so
� �E�_��� P� � > � � �

� � �
.

(c) By the substitution � � � ��a , � �� � � � � � � ��� � � � 
 
 au� � �� � � � � � � � � � � � 
 
�� 8 � ��� � � � ���	�Y8 � ���P� � >?8 � � � � � � � .
15. (a) Formal differentiation of the integral � times yields

������� � � �� � � � � ��� ` �E�_� 
 � . The convergence of
the latter integral, for any � , is uniform for

� ���G
 0 ( 0 � + ) since
� � � � �	� � ` �E�^����q�, � �

� �H���:
%�_� � � �
,

so the differentiation is justified.

(b) Integrate by parts: � �� � � � � ` � �E�^� 
 �#���$� � � ` �E�_� 

 ��

 � �� � �$� � � ` �E�^� 
 �#�.� ` �o+9�_
���� ��` � � �L� ; the

assumed estimate on ` guarantees that
� � � � ` �E�^��� + as

���  
.
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7.6 The Gamma Function

1.
� � � � P
� >�� � � � � � � 


P� �<�
� � � � P �I"4��"�"�"$� � ������"
P� " �� "�"�"L� � �

P� �<����"��*"�"�"$� � � �k����",�I"4��"�"�"L� � � �%���:�� �
�
� ��� � � � � � � � .

2. Let � � � 5�������8$ab� , so
a�� � � �

, 
 a�� � � � � 
�� , and � goes from
 

to 0 as
a

goes from 0 to 1. Thus
�
P� � � 5�������8$ab� �

	 � P a � � P 
 a<� � �� �
	 � P � � � � 
�� ��� � 	 � �.,�� by (7.51).

3. (a) By (7.52), � �� � % � � ��� 
 �}�
P� � �

� � �:� P� " �� " P� � >k� �� � > .

(b) By (7.51), � �� � ��� � � � 
 �f��� ���
� �
�
� �� �<��� ��� � � P� � >k� P� � >?8	��	 .

(c) Let � ��� % , 
�� �
�M� � 
 � ; then � �� � � � � �
�


 �}�
P
% � �� � �

� � � � � 
�� � P% � � �� �<� P% " � � " P� � >k� �P � � > .

4. (a) The substitution � �.�*�%a in (7.53) turns � �E�'�Y�&� into � �E���Y�_� .
(b) � �E�?�,����� �

P� a � � P 
 a<�C� �
P a � 


P� �C� � P .

(c)
a �&���*�BaY� � � P 
�a � � P ���*�Bab� � �Ca � � P ���h�Fab� � � P � a_
������Bab� �_�Ca � �

P �����Bab� � � P
; the result follows by

integrating from 0 to 1.

(d) The substitution
a:� ��8�� � 
���� turns (7.53) into � �E�?�Y�[�<� � �� ���K
 � � � � �

�
�
� � P 
�� .

5. Let � � � � ; then 
 �.�!� �
P
� �
+ � � P 
�� , so �

P� � 	 ���l�t� � � � 
 �m� � � P � P� � � � 	 � P 
 � �	� � P ���l� � � � 
�� �� � P � �Y�.,�
����Y8 �$����
C��� ; use Theorem 7.55.

6. We have �
� �L�_�<� � �L�h�u���6� �L�h�-���

�
� �L�������

, �
�E�^�<� �E�h�u���

�
�E�h�u���

, and �
�E�<
 P� �:� �E��� P� � � �E�h�

P� � .
Hence, given that �

� �L�^�<��> � P�� � � � � � P
�
�E�_�
�
�E� 
 P� � , we have

�
� �L�f�����<� > �

P�� � � � � � P �E� � ���
�
�E�f� ���G"9�E�f� P� � � �E� �

P� �� �L�f� ���6� �L�}����� ��> � P�� � � � � � � P 
.� P
�
�E�f� ���

�
�E�}� P� � �

so the duplication formula is valid for
� ���

. Thus, if the formula is valid for
� �
�

� it is also valid for� ���
�
� �

, and by induction, it is therefore valid for all
�

.

7. � �
� �� 7�� � R � 
 �#�

P� � �
P� � 1 
���� � P� ��� P� � �

P� � 1 
����Y� � �
P� �Y8 � �

P� 1�
���� . If
1

is even, this is

�
� "
P� " �� "v� P� 1l� P� � � >f" � >�c"���"�"�"L� P� 1[�

� �*"$��"�"�"$� 1 �|�����"��*"�"�" 1 " > � �

If
1

is odd, it is �
� "
�*"���"�"�"	� P� 1 � P� �'" � >P� " �� "�"�"L� P� 1[� � >

� �!"��*"�"�"L� 1s� ����h"$��"�"�" 1 �

(There is one more factor in the denominator than in the numerator, which absorbs the extra factor of 2.
If
1s� �

, we simply have �
�����
�
� P� �Y8	� � � �� �<�.� .)

8. Since � �
� �� 7�� � � � � P � 
 � � � �

� �� 7�� � � � � 
 � � � �
� �� 7�� � � � � P � 
 � , by Exercise 7 we have

�("��*"�"�"L� �
�
�

�*"���"�"�"	� �
�

���� �

�h"L��"�"�"L� �
�
� ���

�!"��*"�"�"	� �
�
� " > � �

�("��*"�"�"L� �
�
� ���

�h"$��"�"�"L� �
�
�|��� �



7.7. Stirling’s Formula 57

Multiplying through by
� "��*"�"�"$� �

�
�Y8v�s"H��"�"�"L� �

�
� ���

gives
� � � P� > � � �

�

~����� � 8	� � . Since� � � � � � P$� � � � �Y8�� � � � ����� � � � � P , the sequence � � � � is increasing, and we have just seen that it is

bounded above by
P� > , so it converges to a limit

�|q P� > . The sequence � � � � 
F����� � 8	� � � also converges
to
�

, but its terms are
� P� > , so

�'� P� > . In short,
�Q� P� > .

9. (a) For � ��+ , � 
 8 
 �^� � � � P ��` � �E�_�h� � � � 

��� � P � �E�f���_� � ` �E�^�S
 � � �� �E�}�%ab� � � P ` �EaY� 
 a �?� � � ��` � �E�_�
since �

� � 
����F� � � � � � . Actually there is more to be said when � � �
, since then the integral

defining
� � ��` � �E�^� is improper: the integrand blows up at

a-� �
. But

� 
 8 
 �^� � � � �� �E�F� ab� � ` �EaY� 
 a-�
�
�
` �E�<� � �)
 � � � � �� �E�<�(aY� � � P ` �Eab� 
 a . For

�
in a finite interval, say � +�� �!� , we have

� ` �E�^���vq � �5 
, so� �

�
` �E�<� � ���vq � �

�
and 

 � �

� � �� �E�<�(ab� � � P ` �Eab� 
 a$� � � �� �E�<�(aY� � � P ` �Eab� 
 a 

 q � � � �� � � �E�<�;ab� � � P 
 a<�� �
�

. Hence
� 
 8 
 �^� � � � �� �E�k�Qab� � ` �EaY� 
 a'� � � �� �E�#�Qab�

� � P ` �EaY� 
 a uniformly for
� i � +�� �!� , so the

differentiation in the limit as � � + is justified.

(b)
� � � ��� ��` � � �E�_�}� � � � � � � � �G� � � P � �� � �� �E�%�Cab� � � P �Ea�� �L� � � P ` � �L� 
 � 
 a . Reversing the order of in-

tegration (OK even if � � � � �
since the integral is absolutely convergent) turns � �� �

�� "�"�" 
 � 
 a into
� �� � �� "�"�" 
 a 
 � . Now, in the inner integral, make the substitution � � �Ea��
�	�Y8��E�k���L� , so that � goes
from 0 to 1 when

a
goes from

�
to
�

. Then
a�� �;�m�E��� �L� � ,

���la:� �E��� �	�6���_� � � , and 
 a�� �E�;� �L� 
�� ,
so

� � � ��� ��` � � �E�_�<� �
�
� � � � � �G�

� �
�

� P
� �

� � P ���c� � � � � P �E� � �	� � ��� � P ` � �	� 
 a 
 �
� � � � � �G�
�
� � � � � �G�

� �
� �E� � �	�

� ��� � P ` � �	� 
 �!� �
�
� � 
��G�

� �
� �E� � �L�

� ��� � P ` � �L� 
 �(� � � ��� ��` � �E�_� �
10. (a) The series is � � � �� �Y8 � �

P
� � � T �� � � � 
 % � �Y8 � � � 


�
� � . The � th term is asymptotic to �

� P�� �
, so the

series diverges.

(b) The series is
P
% � �

�
% �&T �� � � � 
r���Y8 � � � 
 �% � . The � th term is asymptotic to �

� ��� %
, so the series

converges.

11. The series is
> � � � � T �� � � � � 


P� �Y8 � � � 
m��� � � . The � th term is asymptotic to �
� � � �

, so the series
converges if and only if

� �|�
. For Raabe’s test, we have

�
� �*� , � � P, � � � � � �c� � � � 
���

�

 � 	 � � � � � �*� �S��� �

�
�

 � 	 � � �

Since
���<
�aY� � �.�<
��Ha

for
a

small, this is approximately �
�_8�� �

�

Q���

for � large, and the limit is
�_8	�

.
Hence Raabe’s test gives convergence for

� �|�
and divergence for

� �|�
but is indecisive for

�}���
.

12. �
�.,h


�
�Y8
�
���S


�
� �

�
	 � � and �

� �^

�
�Y8
� � � � � �^
 � �Y8 � � � 
W��� � � � �

P
for � large, so the � th term

is asymptotic to �
	 �
� � � �
P
. Hence the series converges if and only if

,K
 �S� �?�N� �����
, i.e.,

,K
 � � �
.

7.7 Stirling’s Formula

1. Since the second derivative of � 5��_���I
�ab� is
� ���I
�ab� � �

, Lagrange’s form of the remainder immediately
gives � 5��_���(
Cab� � a�
 �s�Eab� where

� P� a � q �s�EaY�fq + for
a � +

. Thus,
,f���.,s


�
� P� � � 5������!
�.,�8

�
�Y�h�O� �.,l� P� �6�.,&8 � �<�t�., 
 � �

P� ���s�.,&8 � � , and for
+pq ,#qr�

this is, in absolute value, at most��8	�
�

��
�

 P� �Y8	� � � �.��8 � 
���8�� � � q|=�8�� � .
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2.
� �
�
� � 8�� � � � � � � � � � � � � � �

� � P�� � 
 � � � � � �	>?8
�
� � � P � � � � � �	>?��� � � �.��8 � > � , where � means that the ratio

approaches 1 as �
�! 

.

3. Note that
��"��*"�"�")�

�
��� � ���I"4��"�"�"

�
�:��� �

� � , and
�I"4��"�"�"	� �

�
�%���<� � �

�
� � 8	��"��*"�"�"�� � � � � � � � 8	� � � � .

Thus the numerator and denominator of Wallis’s fraction are � � � � � � � and � � � � � � � � � � � 

���Y8 � � � � � � � , so
the whole fraction is

� � � � � � %
� � � � � � � � � � � 
����

� � � � � %
� % �
� � � �	% � "

� �
�
� % � � P �$�	% �
� � � � � � � �

" ��&� �
�

���� �

which tends to
� %*" ��� � " P% as �

�  
. Thus

P
% � � �

P� > , or
�Q� � �	>

.



Chapter 8

Fourier Series

8.1 Periodic Functions and Fourier Series

1. ` is odd, so
, � �r+ and

� � � ����8L>?� � �� � ` � 0 �v7�� � �S0 
90 � � ��8L>?� � �� 7���� �S0 
�0 �~� � ��8 � >?�v365�7 �S0 


� � �� ��8

�
>?� � �h�Q������� ��� . This is 0 if � is even and

��8
�
>

if � is odd, say �
��� !��Q�

; thus the Fourier series
is
� ��8L>?� T � P � 7�� �S� � ! � ��� 0 �E8�� � !d� ��� .

2. By the double angle formula,
7���� � 0 �

P� ���c�%365�7�� 0 � , and the thing on the right is a Fourier series!

3. ` is even, so
� � ��+ , , �(��� ��8L>?� � �� 7�� � 0 
�0 � ��8L> , and for �

�C+
,
, � ������8L>?� � �� � ` � 0 �v365�7 �S0 
90 �� ��8L>?� � �� 7�� � 0 365�7 �S0 
90 � ����8L>?� � �� � 7����S� � 
F��� 0 �l7�� �S� � � ��� 0 � 
90 � ����8L>?� � � � 
F��� �

P �}�
�
�f��� � P � � ���������� � � P �h� ��� � ���
��� ��� � �

P �E8��
�
� ������>

. This is 0 if � is odd and
� ��8��

�
� ������>

if � is even, say
�
��� !

; thus the Fourier series is
P� , � 
 T � P , � 365�7 �S0 � � ��8L>?�<�|� ��8L>?� T � P �o365�7�� ! 0 �Y8�� � ! � � ��� .

4. ` is even, so
� � �O+ and

, � � � ��8L>?� � �� 0 � 365�7 �S0 
90 . The constant term is
P� , � � ����8L>?� � �� 0 � 
90 �> � 8	�

. For �
� +

, integration by parts gives � 0 � 365�7 �S0 
90 � � ��8 � � � 0 365�7 �S0 
 � � 0 � 8 � �M�p� ��8 � ��� ��7�� � �S0 ,
so
, � � � ��8L>?�6� ��8 � � ��><������� �u� �H��� ��� �&8 � � .

5. Here it is easier to use the exponential form of the series:
� � � ����8	�	>?� � �� � � �

� �$� Z � � 
90 �� � � � � Z ��
 � � � � � 8	�	><� �*�	� � �:� ������� � � � � � � �$� � � �E8	�	><� �*�	� � �<�m������� ���o7������ �)>?�Y8L><� �*�	� � � .
6. ` is odd, so

, � � +
and

� � � � ��8L>?� � �� 0 �o>~� 0 �v7�� � �S0 
90 . Integration by parts gives
� 0 �o> � 0 �v7�� � �S0 
90 � ����8 � � 0 �o> � 0 �v365�7 �S0 
 ����8 � � �6�o> ��� 0 �v7�� � �S0 �O� ��8 � � �v365�7 �S0 , so

� � �� ��8L>?�6� ��8
�
�L� � �(�t������� ��� . This is 0 when � is even and

#�8L>
�
�

when � is odd, say �
��� ! �|�

; hence
the Fourier series is

� #�8L>?� T � P � � !d� ��� ���^7�� �S� � ! �|��� 0 .
7. ` is even, so

� � � + . The constant term
P� , � is the mean value of ` on � �c>I�b>�� , which is 0 by con-

struction of ` . For �
� +

,
, � � � ��8L> ,&� �

	� 365�7 �S0 
�0 � � ��8L><�o>k� ,�� � � �	 365�7 �S0 
�0 � � ��8L> , � �v7�� � � ,&

� ��8L><�o>k� ,&� � ��7�� � � , � � ��8 ,_�o>k� ,&� � ��7�� � � , .

8. ` is even, so
� � � + . The constant term

P� , � is the mean value of ` on � �c>I�b>�� , namely
��8	�	>

. For
�
� +

,
, � � � ��8L> , � � �

	� �.,N� 0 �v365�7 �S0 
�0 � � � ��8L> , �
�
�6�.,B� 0 �v7�� � �S0 �O� ��8L> , � � � �v365�7 �S0 � 	� ��&�����%365�7

�
,��Y8L> , �

�
�
.

9. First method: Suppose
� 1s�t����� q , � 1 �

. Then �
	 � �	 � �

R �	 
 �
	 � �R � (the integrand is ` �E�_� 
 � in

all integrals). By periodicity of ` , the second integral on the right equals �
	� R � P 
 � , so adding it to the

59
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first integral gives �
R �� R � P 
 � . Another application of periodicity shows that this is equal to � �� . Second

method: Let 	
�.,&�*� �

	 � �	 ` �E�_� 
 � . 	 �.,&� is a continuous function of
,
, and except at the finitely many

points where ` is discontinuous we have 	 � �.,&�<� ` �.,c
 ���^� ` �.,��:��+ . It follows that 	 is constant, so
	
�.,&���

	
�o+9�

.

8.2 Convergence of Fourier Series

1. Let ` be the sawtooth wave of Example 1.

(a) The function depicted is
P� ` �o>}� � 0 �:� T � P � ������� �

� P 8
�
��7�� �S�

�
>}� �

�S0 �:� T � P ����8 � �v7������ �S0 .
(b) The function depicted is

�(
�����8L>?� ` � � 0 �t>?�p� �!
m� ��8L>?� T � P � ������� �
� P 8

�
��7�� �S� �

�S0 � � >?�p��c� T � P � ��8L> � �v7�� ��� �S0 .
2. The function ` � 0 � here is the function of Exercise 4, � 8.1, shifted to the right by

P
% > . Hence ` � 0 ����o> � 8	���?
 � T � P � ������� � 8 � � ��365�7 � � 0 �

P
% >?� , and

365�7
�
� 0 �

P
% >?�<��365�7

P
% � >�365�7 �S0 
W7�� �

P
% � >!7���� �S0 .

3. (a) ` � 0 � �
P� ���%
 	

� 0 �Y� where 	 is the square wave of Exercise 1, � 8.1; hence ` � 0 � �P� 
�� ��8L>?� T � P � � !d� ��� �
P 7�� �S� � ! � ��� 0 .

(b) ` � 0 ���
P� �b��7���� 0 �_
~7�� � 0 � for

� 0 � � > , so by Exercise 3, � 8.1, we have ` � 0 �
� ����8L>?�)�
� ��8L>?� T � P �o365�7�� ! 0 �Y8�� � ! � � ���?


P� 7�� � 0 .
(c) ` � 0 �h� � �o>B� ,&�Y8	�	>�� � 	 � 0 �:
��o>k� ,�� �

P �G� ����8	�	>?�I
 � �o>B� ,&�Y8	�	>�� 	 � 0 � where 	 is the function of
Exercise 7, � 8.1, so ` � 0 �I� ����8	�	>?�G
�����8L>?� T � P � �o7�� � � ,&�Y8 � ,9��365�7 �S0 .
(d) ` � 0 � �

P� � � � � �$� � � for
� 0 � � >

, so by Exercise 5, � 8.1, with
� � �

, ` � 0 � �
� �o7�� ���*>?�Y8	�	>�� T � � � �

������� �[8����_� �
�
� � � �
Z � � � � � Z � � �_� � �o7������*>?�Y8L>�� T � � � �

������� �[8����_� �
�
� � �97����

�S0 . The
sum of the � th and

���
�
�
th terms is

������� � � ���D� �
�
� � P � ���d
 �

�
� � P � �97�� �

�S0 �
������� � � P � � � 8�����
 � � � ��7�� � �S0 .

4. (a) Setting 0 �.+ gives
� ��8L>?�<��� ��8L>?� T � P ��8�� � ! � �|�����r+ or

T � P ��8�� � ! � �|���c�
P� , a result also

obtainable from the observation that
� � ! � � ��� � P � P� � � � !C�p��� �

P �f� � !W
k��� � P �
, so that the series tele-

scopes. Setting 0 � P� > gives
� � � ��8L>?�~� � ��8L>?� T ������� ) 8�� � ! � � ���

, orT � P ������� )
� P 8�� � ! � � ���<� �o>k�����Y8��

.

(b) Setting 0 � > gives
> � � �o> � 8	���c
 � T � P ��8 � � or

T � P ��8 � � � > � 8	@ ; setting 0 � + gives+-� �o> � 8	���S

� T � P ������� �&8 � � or
T � P ������� �

� P 8
�
� �C> � 8v�,�

.

(c) Setting 0 �D+ gives
�w� � �o7�� ���*> ���Y8L>�� T � � �

������� �[8�� �����
�
�
. The �

� +
term is

��8 �
, and for

�
�~+

the sum of the � th and
���
�
�
th terms is

� �	������� � 8�� � � 

�
� �

; thus
�#� � �o7�� ���*> ���Y8L>�� � ����8 ���K
� � T � P ������� �[8�� � � 
 � � � � , or

T � P ������� �[8�� � � 
 � � �#� �o> ��3�7b3 �(> ���.���Y8	� � � . Setting 0 � > gives
� �o7�� ���*> ���Y8L>�� T � � �

��8�� �;���
�
�!� P� � � � � 
 � � � � �(��365�7���> � . (The function represented by the series

is discontinuous at 0 � > , so the sum of the series is the average of the left and right hand limits!)
Again the �

� +
term is

��8 �
, and for �

�r+
the sum of the � th and

���
�
�
th terms is

� ��8�� � � 

�
� �

, so����8 ���?
 T � P � ��8�� � � 
 � � �:��> 365 ����> � and hence
T � P ��8�� � � 
 � � �:� �o> ��365 ���(> ��� ���Y8	� � � .

(d) Setting 0 �
P� > gives

P
% > � � � #�8L>?� T � P ������� )

� P 8�� � !��f���&�
or
T � P ������� )

� P 8�� � !C�f���&����> ��8	�M�
.

5. Given 0 i j and � � + , choose 0 �J+ small enough so that
� ` � 0 
 �I�(� ` � 0 
 ��� � � 8	� when+���� � 0 and

� ` � 0 
 �I�h� ` � 0 �;���(� � 8	� when
� 0 � � � + . Let

� �d7#��� �
�
� � � � � �

� ` � 0 ��� . By
(8.23), there exists

� �
such that

+ q � �M���I�sq � 8	@	> � for
� i � �c>I�,� 0 � �W� 0 �b>�� when

� � � � � �
.
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Assume now that
� � � � � �

. We have
� � �� ` � 0 
 �I��� �M���I� 
 ����q � � � 8	@	> � �6�o>�� 0 � �

P
� � , and

likewise
� � �

�

� � ` � 0 
 �I��� �9���I� 
 �h� �
P
� � . Moreover, �

�� � �����G� 
 ��� � �� � �����I� 
 �W� � �� � �M���I� 
 �r�P� � � �� � �M���I� 
 � , and this last integral is between 0 and � 8	@ � . Now, we have

� �

��` � 0 
"�I��� � ���G� 
 �B�
�
� ` � 0 
��:�

� �

�N��` � 0 
"�G�'� ` � 0 
 � � � � ���G� 
 �}
 ` � 0 
�� � �
�

� � � ���G� 
 �N�
�
� � �

The first term on the right is at most
� � 8	��� �

�� � �M���I� 
 � �
P
� � in absolute value, and the second term is

at most
� � � 8	@ � �<�

P
� � . Similarly,

� �
�
� � ` � 0 
 �I��� �����G� 
 �p�

P� ` � 0 �(��� �
P
� � . Adding up these results,

abbreviating ` � 0 
'�G��� �����I� 
 � as
���L�

we have






� �

� �
���L�:� �� ��` � 0 
��^
 ` � 0 �(� � 





q 




� � �
� �
���L� 





 





� �
� �
���L�:� �� ` � 0 �;� 






 




� �

� ���L�I�
�
� ` � 0 
�� 






 




� �

�

���L� 



� �@ 
 �� 
 �� 
 �@ � �
for
� � �����
�

, as desired.

6. Since ` is uniformly continuous, given � �
+ we can choose 0 �
+ small enough so that
� ` � 0 
 �G���

` � 0 ����� � 8	� for any 0 when
� ���	� 0 . The argument of the preceding exercise (slightly simplified, since

` � 0 
��:� ` � 0 �;�I� ` � 0 � ) shows that
� � � ` � 0 �'� ` � 0 ��� � � for all 0 when

� � �����
�
.

8.3 Derivatives, Integrals, and Uniform Convergence

1.
, �� � > �

P
� �� � `�� � 0 �v365�7 �S0 
�0 � > �

P
` � 0 �v365�7 �S0 



� � � � > �
P
� �� � ` � 0 �6��� � 7�� � �S0 � 
�0 � + 
 � � � , and� �� ��> �

P
� �� � ` � � 0 �v7�� � �S0 
�0 ��> �

P
` � 0 �v7���� �S0 



� � � �%> �
P
� �� � ` � 0 �6� � 365�7 �S0 � 
90 ��+�� � , � .

2. (a) 	
� 0 � is

� �h
r�.,-
 0 �Y8��.,s�Q>?� for
��> q 0 ��� , ,

, � P 0 for
� 0 �^q , , and

�;��� 0 � ,&�Y8��o>B��,&� for,�� 0 q > . The graph is the broken line joining the points
���c>I�b+9�

,
��� ,��,�����

,
�.,��,���

, and
�o>I�b+9�

.

(b) Termwise integration of the series in Exercise 7, � 8.1 gives � ��8 ,��o>F� ,�� � T � P �o7�� � � ,K7�� � �S0 �Y8 � � .
3. (a) From Exercise 4, � 8.1, we have

� 0 � �t> � � �,�<T � P � ������� � 8 � � ��365�7 �S0 (
� 0 ��qd> ), and termwise

integration yields 0 �G�}> � 0 �.�,�<T � P � ��� ��� �&8 � � ��7�� � �S0 . ( 0 �'�}> � 0 is odd, so its mean value on � �c>I�b>��
is 0.)

(b) Integration of the result of (a) and multiplication by 4 gives 0 %�� �	> � 0 � � � �S
� # T � P � ������� �
� P 8

�
% ��365�7

�S0 , where
� � �m����8	�	>?� � �� � � 0 % �u�	> � 0 � � 
90 � ����8L>?�6�

P� > � � �� >
� �<�.� �P � > %

.

(c) Setting 0 ��> in (b) gives
�c> %��.� �P � > %c� � # T � P ����8 � %$� , or

T � P ����8 � %$�<��> %,8	/	+ .
4. The function ` � 0 �I�m��7�� � 0 � is continuous and piecewise smooth, and its derivative is

�v� 0 �v365�7 0 where
�

is the square wave (Exercise 1, � 8.1). So by Corollary 8.27, we have
��� 0 �v365�7 0 �

� #�8L>?� T � P � � 7�� �c� �S0 �Y8�� � � � �s��� , and in particular the latter series converges to
365�7 0 for

+)� 0 � > . On
the other hand, termwise integration of the series for

��7���� 0 � from 0 to 0 gives, for
+)� 0 � > ,

�&� 365�7 0 �� ��8L>?� 0 �Q� ��8L>?� T � P �o7����c� �S0 �Y8 � � � � � �%��� , or
365�7 0 �.�<�Q� ��8L>?� 0 
 � ��8L>?� T � P �o7�� �c� �S0 �Y8 � � � � � �%��� .

Now, since
�
�
8�� �
�
� � ���h������8

�
� �
�
� �|���Y�G

����8

�
�
, the equality of the two series for

365�7 0 amounts
to the assertion that

P� >N� 0 � T � P �o7�� �c� �S0 �Y8 � for
+ � 0 �m> , and one verifies this by substituting>#��� 0 for 0 in Example 1, � 8.2.
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5. ` � 0 � is not continuous (it has jumps at the odd multiples of
>

), so Theorem 8.26 does not apply.
(For those who like distributions: The derivative of ` � 0 � is really ` � 0 ��� � �I7�� ���*>?� 0 � � 0 � , where
0 � is the periodic delta-function with singularities at the odd multiples of

>
. The Fourier series of

0 � is
����8	�	>?�&T � � �

������� � � Z � �
, so the correct conclusion is not

� � � � � � � but rather
�
�
� � � � � �������� �^�o7�� ���*>?�Y8L>

, which is true by Exercise 5, � 8.1.)

6. (a) The series
T ���V � �

R � � � ��� 
 8�����

�
���

converges if and only if
1.qD@

, so the given series can be
differentiated 6 times.

(b) The series
T �� �

R 8	� �
converges for all

1
, so the given series can be differentiated any number of

times.

(c) The given series converges uniformly (M-test with
� � �d� �	� ), so its sum is continuous, but the

differentiated series
� T 7�� �*� � 0 does not converge at most points (the terms do not tend to zero as

�
�! 

).

8.4 Fourier Series on Intervals

1. (a) The even periodic extension of ` is the constant function
�
, which is its own Fourier series. The odd

periodic extension is the square wave (Exercise 1, � 8.1).

(b) The even periodic extension of ` is
��7���� 0 � (Exercise 3, � 8.1). The odd periodic extension is

7���� 0 ,
which is its own Fourier series.

(c) The even periodic extension of ` is the function of Exercise 4, � 8.1. The odd periodic extension
is given by ` � 0 ��� 0 � 0 � for

� 0 ����> , so ` � 0 ��� > 0 � 0 �o>N��� 0 ��� ; the Fourier series of the latter two
functions are given by Example 1 and Exercise 6, � 8.1.

(d) Let 	 be the triangle wave of Example 2, � 8.1. Then the even periodic extension of ` is
P� 	 � � 0 � ,

and the odd periodic extension is 	
� 0 


P� >?��� P� > . The Fourier series of these are, respectively,�o>?8����h�
� ��8L>?� T � P �o365�7$� � ! � ��� 0 �Y8�� � !D����� � and
� ��8L>?� T � P ��� ��� )

� P �o7����S� � ! ����� 0 �Y8�� � !D����� �
(since

365�7L� � !d� ���6� 0 

P� >?�<� ��� ��� ) 7����_� � ! � ��� 0 ).

2. (a) The odd 2-periodic extension of ` is
�v�o>_�_�

where
�

is the square wave of Exercise 1, � 8.1; its Fourier
series is

� ��8L>?�[T � P �o7�� �S� � ! � ����>_�_�Y8�� � ! � ��� .
(b) The even 4-periodic extension of ` is a square wave, namely,

�v� P% >_�*

P� >?� where

�
is the function of

Exercise 1, � 8.1; since
7�� �S� � ! � ���6� P% >_� 


P� >?� � ��� ��� ) � P 365�7�� � ! � ��� P% >_� �
������� ) � P 365�7$� P� !d� P% ��>_� , its Fourier series is

� ��8L>?� T � P ������� )
� P �o365�7L� P� ! � P% ��>_�_�Y8�� � ! � ��� .

(c) The odd
� 	

-periodic extension of ` is given by ` �E�_�w� �I��	*��� �I��� on � � 	���	]� , that is, ` �E�_�����	 8L>?� �
	
�o>_�_8 	 �

where 	 is the function of Exercise 6, � 8.1; its Fourier series is� # 	 � 8L> ���&T � P �o7�� �S� � ! � ����>_�_8 	 �Y8�� � ! �|���&� .
(d) The 1-periodic extension of ` is

� P�� �
	
� �	>_��� >?�

where 	 is the function of Exercise 5, � 8.1, with
�*�

��8	�	>
. Its Fourier series is � � �

P�� � 7�� ��� P� �Y8L>�� T � � �
��� ��� � � Z � � ��� � � � 
 8��Y� �	>?� � P � �

�
� �

� ���|��� T � � �
� ��� Z � �98����;���	> �

�
�
.

3. We have
, � � ����8 	 � � ���� ` �E�_�v365�7$� � >_�^8	� 	 � 
 � and similarly for

� � . Replace ` �E�^� by ` � � 	��}�_� , then set�}�
� 	&� � and use the facts that
365�7L�

�
><� � 	&� � �Y8	� 	 �K� ������� �h365�7$� � > � 8	� 	 � and

7�� �S�
�
><� � 	H� � �Y8	� 	 ���������� � � P 7�� �^�

�
> � 8	� 	 � to deduce that

, � �d��� ��� � , � and
� � � ������� � � P � � , whence

, � �O+ for � odd
and
� � ��+ for � even.
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4. Extend ` as suggested in the hint and expand it in a Fourier sine series on � +��4� 	]� : ` �E�_� �T � P � � 7����S� � >_�_8	� 	 � where
� � � ����8 	 � � ���� ` �E�^�v7�� �S� � >_�^8	� 	 � 
 � . Then for � even,

� � � + by Ex-
ercise 3; and for � odd, ` �E�_�v7����S� � >_�_8	� 	 � is symmetric about

��� 	
(as observed in the solution of

Exercise 3), so its integral over � +��4� 	]� is twice its integral over � +���	 � . Setting �
� � ! ���

thus yields
` �E�_�<� T � P � ) 7�� �^� !d�

P� ��>_�_8 	 where
� ) �m� ��8 	 � � �� ` �E�^�6�o7�� �S� ! �

P� ��>_�^8 	 � 
 � .

8.5 Applications to Differential Equations

1. (a) The Fourier cosine series for ` �E�_� � �
on � +��,��+M+L� is=	+u��� ��+M+98L> � �&T � P �o365�7$� � !J�
����>_�_8v��+M+9�Y8�� � ! ����� � , so the solution (8.35) of the heat equation is

� �E�'�YaY�K��=	+��|� ��+M+98L> � � T � P � � ���
� � � PYP 
 � � ) � P 
 � � � � �o365�7L� � !d� ����>_�_8v��+M+9�Y8�� � ! � ��� � .

(b) When
a:�
@	+

, the error in discarding the terms after
! �
�

is








��+M+
>^� ��

�
� � ��� � � ��� 
 � � ) � P 
 � � � 365�7$� � ! � ���6�o>_�_8v��+M+9�� � !d�|����� 






q ��+M+>^� � � ��� � � ��� 
 � � � � �� �
�

� � ! � �����
� ��+M+> � � �

P
� � ��� ��� �,�M��� � � / # �

To within this error, � �E�'�4@	+9����=	+���� ��+M+98L> � � � � � �
� � ��� � �_365�7$�o>_�^8v��+M+9�4
 P

�
� � ��� � � ��� 
 � � �^365�7L� �	>_�_8v��+M+9� � �

=	+l��� ��	 � /�	M�v365�7��o>_�^8v��+M+9����� � � =����v365�7	� �	>_�^8v��+M+9�
, which is about 10 when

���m+
, 12 when

��� ��+
,

and 40 when
�}� ��+

.

(c) For
a � �M@	+M+

,
� � �E�?�Yab����=	+H�;q � ��+M+98L> � � � � ���

� � PYP 
 � � � ��� � � 
 T � P ��8�� � ! �r��� � �J=	+ � � ��� � � � 
 � � �
� � +M+���	

. Almost good enough, but not quite! A slightly less crude estimate works:
� � �E�'�YaY�c�|=	+H��q� ��+M+98L> � � � � � ��� � � � 
 � � 
 � � � ��� � � � 
 � � T �� ��8�� � !%����� � �_�m� ��+M+98L> � � � � � ��� � � � 
 � � 
 � � � � �

� � % 
 � � �Y�o> � 8$#��)����� � �� #��
.

2. One follows the separation-of variables procedure as on p. 382 to find solutions of the form�$� R � � � � P 365�7 � � 0 
 � � 7�� � � �-0 � . The periodicity condition then forces
� � � � , so the resulting

analog of (8.35) is � � 0 �Yab�-� T �� � �	� �
R � �., � 365�7 �S0 
�� � 7�� � �S0 � . To satisfy the initial condition one

takes
T �� �., � 365�7 �S0 
�� � 7�� � �S0 � to be the Fourier series of ` � 0 � . (The result looks a little neater in

exponential form: � � 0 �YaY��� T � � �
� � �$�	��� R � � Z � � where ` � 0 �I� T � � �

� � � Z � � .)
3. If � �E�'�YaY��� T � P � � �EaY�v7����?� � >_�_8 	 � is to satisfy � � � � 1 � �� � 
 � where � �E�'�YaY�K� T � P � � �Eab�v7�� �S� � >_�^8 	 � ,

we must have
� �� �EaY�w� ��1^� � >?8 	 � � � � �Eab�c

� � �EaY� , assuming that termwise differentiation of the se-

ries is justified. To solve this ordinary differential equation, multiply through by the integrating fac-
tor
� R � � � � � 
 � �

to obtain
� 
 8 
 aY� � � � �EaY� �

R � � � � � 
 � � � � � R � � � � � 
 � � � � �Eab� , whence
� � �EaY� � R � � � � � 
 � � � � � �o+9��


�
�� � R � � � � � 
 � � � � � �L� 
 � . For this to work, the following conditions are (more than) sufficient: (1) ` is

of class
� P

on � +���	 � , and ` �o+9� � ` ��	 �l� + . (2) � �E�'�YaY� is
� �

as a function of
��i � +���	]� for each

a
,

� �o+��Yab�u� � ��	��Yab�s� + , and � �E�?�Yab� , � � � �E�?�Yab� , and � �� � �E�'�YaY� are jointly continuous as functions of��i � +���	 � and
a ��+

. The boundary conditions on ` and � guarantee that their odd periodic extensions
are still at least

� P
, and that of � �� � is at least piecewise continuous. It follows that the Fourier sine co-

efficients of ` (namely,
� � �o+9� ) are absolutely summable, and those of � (namely,

� � �Eab� ) are continuous
in
a

and satisfy
� � � �Eab����q � � � � for

a
in any finite interval � +�� � � . We then have

� � � �EaY����q � � R � � � � � 
 � � � � � � �o+9���,
 � � � � �
�
� � �

R � � � � � 
 � � 
 � � q � � R � � � � � 
 � � � � � �o+9����
 �
1^�o>?8 	 ���

� %
�
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This is enough to guarantee the absolute and uniform convergence of the series defining � �E�?�Yab� for�Bi � +���	 � and
a�i � +�� � � , as well as the absolute and uniform convergence of the series defining � � � �E�?�Yab�

and � �� � �E�?�Yab� for
�Fi � +���	]� and

a�i � � � � � ( � � + ), so that all formal calculations are justified.

4. (a) The odd periodic extension of the initial displacement � �E�'�b+9� is
!
	
�o>_�_8 	 �

where 	 is as in Exercise
2, � 8.3, with

,#�.> ��8 	
, so its Fourier sine series can be read off from the answer to that exercise. The

series for � �E�?�Yab� can then be read off from (8.37).

(b) When
�!�~�o+�� ����	

we have
� 	 � 8L> � �	��	S� ���h�r�	+M+98	� ��> � ��� # � �

, and �
� � 7�� �S�Y��� ���

�
>?� ��� /M=��

, .147,� � +�@M=
,
� � +�=M/

, 0 when �
� �	�4�v�4�v���&�4=

, so the first five coefficients (up to the overall factor of
!

) are
.803, .124,

� � +�=M=
,
� � +�=	+

, 0. When
�F� �o+�� ����	

we have
� 	 � 8L> � �	��	<� ��� �D�	+M+98	/	> � �J� � �M=M�

, and
�
� � 7�� �S�Y��� ���

�
>?� � � �	+�/

, .147, .090, .059, .040 when �
�d�	�4�v�4�v���&�4=

, so the first five coefficients are
(
!

times) .696, .331, .203, .133, .090. (Note: The
� �

norm of the initial displacement � ��" �b+9� is
!W� 	 8	�

,
independent of

�
, so the total energy of these waves is independent of

�
and a direct comparision of the

coefficients is appropriate.)

5. For � �E�?�Yab� � ���E�^� �(�Eab� to be a solution of the modified wave equation, we must have
���E�_� � � � �Eab�<
� 0 ���E�^� � � �Eab�N� � � � � � �E�_� �!�EaY� , or � � � � �Eab�*
.� 0 �!�EaY� �E8 � � �(�Eab�B� � � � �E�_�Y8 ���E�_�%� � � , a constant. As

on page 385, the boundary conditions force � � � � >?8 	 � � and
���E�_�}�J7�� �^�

�
>_�_8 	 �

. Then
� � � �EaY��
� 0 � � �Eab�K
~� � > �,8 	 � � �(�Eab�#� + . The roots of

� � 
r� 0 �k
~� � > �,8 	 � � � + are
�.� � 0 A � � � where

� � �m� � � > �,8 	 ���c� 0 � , so
�(�Eab��� � � � � � � � 365�7 � � aS
 � � 7�� � � � ab� . Taking linear combinations of these

solutions for �
�.�	�4�v�4�v�������

gives the desired result analogous to (8.37). (This is assuming 0 � > �,8 	 . If
not, the solutions for �

q 0 	 8L> � have pure exponential decay with no oscillation.)

6. (a) If � P solves the problem for 	
Pw�

	 � � + and � � solves the problem for ` PN� ` � � + , then
� � � P'
 � � solves the problem in the general case.

(b) First we note that
7�� ��� �M���.���[�W� 7�� ��� � �u365�7 � �)�%��365�7 � � �u7�� ��� � �

(Exercise 1b, � 7.4), so365�7�� �)�s��3�7b3 � � �u7������ �M���-� �&�,
s365 ��� � �p7�� ��� �)�
; hence any linear combination of

7�� ��� �)�
and
365�7�� �)�

is also a linear combination of
7�� ��� �)�

and
7������ �M���s�l�&�

(and vice versa). Now, for � �E�'�Y�&��� ���E�_� �(�E�[�
to satisfy Laplace’s equation, we need

� � � �E�[�Y8 �(�E�[���.� � � � �E�_�Y8 ���E�^��� � , and the boundary conditions
become

�K�o+9��� �K��	 ��� +
. As in the text, this forces � � � � >?8 	 � � and

���E�^�-� 7�� �S�
�
>_�_8 	 �

. Hence� � � �E�&� � �
�
>?8 	 � � �(�E�[�

, so (by the preceding remark)
�(�E�[� �

� P� 7������^� � ><�������[�Y8 	 �c

� �� 7������^� � >_�&8 	 � . Taking linear combinations, we arrive at the general so-
lution � �E�?�Y�[��� T � P 7����_� � >_�^8 	 � � �

P
� 7������^� � ><��� �W�&�Y8 	 �I
�� �� 7�� ���_� � >_�[8 	 � � . We then have � �E�'�b+9���T � P �

P
� 7������S� � > ��8 	 �v7�� �S� � >_�^8 	 � , which must be the Fourier sine series of ` P,�E�^� , and � �E�'� ���
�T � P � �� 7������S� � > ��8 	 �v7�� �S� � >_�^8 	 � , which must be the Fourier series of ` � �E�^� .

7. (a) For � ���$� 0 �<� �����9� �(� 0 � to satisfy the polar Laplace equation, we need
� � � � � ���9� �!� 0 �9
�� � � ���9� �(� 0 ��
������� � � � � 0 �F� + , or � � � � � � �����*
 � � � ����� �E8 �����9�w� � � � � � 0 �Y8 �(� 0 �B� � , a constant. This differential

equation for
�

, together with the periodicity requirement, yields � � � � and
�!� 0 �:� � � �

Z � � 
 � �	� � � Z � �
( �
��+��,�	�4�v�������

). The general solution of the differential equation for
�

is then a linear combination of� �
and

� �	�
(or
�

and � 5��+� if �
�O+

). But
� �	�

and � 5��+� blow up at the origin and must be discarded.
Hence we obtain the general solution � ���$� 0 � � T � � �

� � � � � � � Z � � , and the requirement that � ���	� 0 � �
` � 0 � means that the

� � ’s are the Fourier coefficients of ` ; thus � ���L� 0 �<� � � ` � 0 � .
(b) This follows immediately from part (a), (8.20), (8.22), and the observation that the Poisson kernel� �

is an even function, so that one can replace
�

by
� �

in the integral.
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8.6 The Infinite-Dimensional Geometry of Fourier Series

1. Use the identities
365�7

�
�;365�7&!}� � P� � 365�7$� ! 
 �

� ��
D365�7L� ! �
�
� �H�

and
7�� �
�
�;7���� !}� �P� � 365�7$� !J� � � �w�C365�7�� ! 
 � � �[� , or

365�7
�
�;365�7 !}��� P% � � Z � � 
 �$� Z � � �6� � Z ) � 
 � � Z ) � � , etc., to see

that � �� 365�7 � �(365�7&!}� 
 � and � �� 7�� � � �(7�� � !}� 
 � are 0 when
! ��

� and
>?8	�

when
! �

�
�r+

(of
course � �� 365�7 � � � 
 �}��> when �

��+
). The norm of

365�7
�
�

or
7����
�
�

is
� >?8	�

for �
�|+

; the norm of�;��365�7�+	�
is
� >

.

2. If ` i � � �o+��b>?� , let
�` be its odd

�	>
-periodic extension and let

T � P � � 7�� � �S0 be the Fourier series of
�` , whose restriction to � +��b>�� is the Fourier sine series of ` . Then � �� � ` � 0 �h��T � P � � 7�� � �S0 � � 
90 �P� � �� � � �` � 0 �G� T � P � � 7���� �S0 � � 
�0 � + as �

�! 
. Likewise for the cosine series.

3.
� ` � � ` P��s� �

P� �E�#
 ,&� 
 ���
P� 
 , and

� ` � � ` � �s� �
P� �E� � 
 �4�#
 �,� 
 �
�

P
� 


P� �c
 � , so to make
� ` � � ` P��<��� ` � � ` � �<��+ we need

, �.� P� and
���.� P� �

P� � . Then
� ` P6� ` � �<� �

P� �E��� P� �6�E� � 
 � ��� P� �S�P
� � 
 �#� �

P� � � �^
W� �'�
P� � � � �%� �_
 P� � �(


P
% �_


P
� � 
 �#�

P
% 

P
� � �'�

P� ��� P� � ��
 P� �v

P
% ��


P
� �

PP � � ��
Q��� ,
so we must have

�c�.���
and hence

��� P� .

4. � �� � � �
�
� �E�^�Y8M� �$� � �

�
) �E�_�Y8M� �$� 
 ��� � �� �

�
� �E�_� � �) �E�_� 
 �r� 0 ) � since the integrand is even; likewise,

� �� � � � �� �E�^�Y8 � �$� � � �) �E�_�Y8 � �$� 
 �f� 0 ) � . Finally, � �� � �
�
� �E�_� � �) �E�^� 
 �#�C+ since the integrand is odd.

5.
� � � ��� ) ��� � � � � � 


�
�� 	 � � 
 � � � � ���)�s
 
 � � ) ���)� 
 
 � � 
 �#� ���	 � � � � � � ) � � � 
�� � 0 ) � ( � � � �s
 
 ).

6.
� � � ��� ) ��� �

P� � � �E� � � � ) �E� � �Y�L� 
 �#� �
P� � � � � � � ) � � � 
�� � 0 ) � ( � ��� � ).

7. Suppose, to begin with, that ` is continuous on � ,����4� except for a jump at
�Wid�.,������

. To simplify
notation, we assume

,�� +�� � � �
. For � large enough so that

,��
� P� and
P
� � � , define ` � �E�_� to be

` �E�_� if
, q �Fq�� P� or

P
� q �Fq � , and ` � �E�_��� ` ���

P
� �^
 � � ��` �

P
� �?� ` ���

P
� � � �E� 


P
� � if

� P� � � �
P
� .

Then ` � is continuous on � ,H���4� . Moreover, if
� ` �E�_���Hq � for all

�%i � ,����4� , the same is true of
� ` � �E�_��� ,

since the values of ` � on � �
P
� �
P
� � lie in between ` ���

P
� � and ` �

P
� � ; so

� ` � �E�^��� ` �E�^���Gqm� � . Hence

���	 � ` � �E�^��� ` �E�_��� � 
 � � �
P�� �� P�� � � ` � �E�_��� ` �E�^��� � 
 ��q # � � 8 � � + as �

�  
. In the general case

of discontinuities at
�	P,��������� �6RNi � ,����4� , one likewise defines ` � �E�^� to be ` �E�_� except on the intervals��� U � P� � � U 


P
� � , on which ` � interpolates linearly between ` ��� U �

P
� � and ` ��� U 


P
� � , and one finds

that � �	 � ` � �E�_�:� ` �E�_��� � 
 �Fq2# 1 � � 8 � � + as �
�  

.

8. We have
� , � � � � � � � 
 � �	� � � � � � � � � 
�� � �	� � � 
t��� � ��� � � �	� � and

� � � � � � � � ��� � � � �	� ��� � �d� � � � � 
� � �	� � � � ��� � ��� � � �	� � , so
� , � � � 
N� � � � � ���&�b� � � � � 
N� � �	� � � � . (When �

��+
we have

, � �
� � �
and
� � ��+

,
and this formula becomes

� , � � � �
��� � � � �
.) Hence

P� >�� , � � � 
 > T � P �b� , � � � 

� � � � � �K���	> T � � �
� � � � � �

� �� � � ` � 0 ��� � 
90 .
9. (a) From Exercise 4, � 8.1,

�	> % 8	/�
��,@ T � P ��8 � % �m����8L>?� � �� � 0 % 
90 �
�	> % 8	= , or
T � P ��8 � % ��> % 8	/	+ .

(b) From Exercise 6, � 8.1,
� #�8L>?� � T � P ��8�� � � �|��� � �O����8L>?� � �� � 0 � �o>F�C� 0 ��� � 
�0 ��� ��8L>?� � �� �o> � 0 � ��	> 0 ��
 0 %,� 
90 ��> %�8v�,= , or
T � P ��8�� � � �|��� ����> ��8	/M@	+ .

(c) From Exercise 3b, � 8.3,
�&�
	L> % 8v�,=�� � 
 � � #�� � T � P ��8 � � � ����8L>?� � �� � � 0 % � �	> � 0 � � � 
�0 �� ��8L>?� � �� � 0 � � ��> � 0 �<
 ��> % 0 %,� 
90 ��������> � 8	���,= , or

T � P ��8 � � ��> � 8	/ �9=	+ .
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(d) From Exercise 7, � 8.1, for
+)��, � >

we have � ��8 , � �o>:��,�� � � T � P �o7�� � � ,�� � 8 � � � � ��8L>?� � �
	� , � � 
90 


� �	 �o>k� ,�� � � 
�0 �_�O� ��8L>?� � ,	� P 

�o>#� ,&� � P �_����8 ,��o>F� ,&� , or
T � P �o7�� � � ,&� � 8 � � � ,_�o>#� ,&�Y8	� . This

formula is still valid when
,l��+

or
, ��>

(both sides vanish then), and the sum is clearly
>

-periodic as
a function of

,
.

10. First way:
� ` � `�� �!� � �� � ` � 0 � `�� � 0 � 
�0 �

P� � �� � � ` � � � � 0 � 
90 �
P� ` � 0 � � 



�
� � �~+ since ` ���c>?�!� ` �o>?� .

Second way: If � � � � are the Fourier coefficients of ` , then the Fourier coefficients of ` � are � � � � � � , and� �	� � � �� � ` � 0 � �
Z � � 
90 � � �� � ` � 0 � � � Z � � 
�0 � � � . Hence, by (8.46),

� ` � ` � ���
�	> T � � �
� � ����� � � � �<����	> T � P � � �b� � � � � �t� � �	� � � �<��+ .


