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NOTE: Users of Advanced Calculus should be aware of the web site
www. mat h. washi ngt on. edu/ “f ol | and/ Horepage/ i ndex. ht m

where a list of corrections to the book can be found. In particular, some errors in the exercises and in
the answers in the back of the book were discovered in the course of preparing this solution manual. The
solutions given here pertain to the corrected exercises.






Chapter 1

Setting the Stage

1.1 Euclidean Spaces and Vectors

1.

x| =3+ (12 + ()7 + 2 =2V3 Iyl = V(=22 + 2 + 12 = 3, x -y = 3(=2) + (- 1)2+
(-1)14+1.0= -9, 0 = arccos(—9/3 - 2¢/3) = arccos(—+/3 /2) = 57/6.

x+tyl?=(x+y) - (x+y) = |x|> £2x -y + |y|> Taking the plus sign gives (a); adding these
identities with the plus and minus signs gives (b).

[y + - %2 = 38 %1% + 2301 << Xi - ;. The Pythagorean theorem follows immediately.

With f(t) = |a — tb|? as in the proof, equality holds precisely when the minimum value of £ (¢) is 0,
that is, when a = tb for some ¢ € R. Thus equality holds in Cauchy’s inequality precisely when a and
b are linearly dependent.

The triangle inequality is an equality precisely when a - b = |a| |b]|, that is, when the angle from a to b
is 0, or when a is a positive scalar multiple of b or vice versa.

|a| =|(a — b) + b| < |a— b| + |b|, so |a] — |b| < |a — b|. Likewise, |b| — |a] < |a — b|.

(@) Ifa-b=0thena L b,so|a x b| = |a| |b|; hence ifalsoa x b=0thena=0o0rb =0.
(b)lIfa-c=b-candaxc=bxcthen(a—b)-c=0and (a—b) xc = 0,so by (a), either
a — b = 0 or ¢ = 0; the latter possibility is excluded.

(c) We always have a x a = 0. If a and b are proportional, then a x b = 0 too. If not, thena x bis a
nonzero vector perpendicular to a, soa x (a x b) # 0.

This follows from the definitions by a simple calculation.

1.2 Subsets of Euclidean Space

1.

(a)—(d): See the answers in the back of the text.

(e) S =gand S =S = SU{(y,0): -1 <y < 1}.

) gint S\ {(0,0)}, S = {(z,y) : z? + 9% < 1}, and 9SS is the union of the unit circle and the line
segment [—1,0] x {0}.

(@) S™ = @and 9S = § = [0,1] x [0, 1].
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Chapter 1. Setting the Stage

If x € St there is a ball B = B(r,x) contained in S. B is open, so every point of B is an interior
point of B and hence of S, so in fact B C ™™ and x is an interior point of S, Thus S™ is open by
Proposition 1.4a. Next, S and 85 are the complements of (S¢)in® and S™ U (S¢)™™, respectively, so
they are closed by Proposition 1.4b.

We use Proposition 1.4a. If x € S; U Sy, some ball centered at x is contained in either S; or Sy and
hence in S1 U Sy, S0 x is an interior point of S1 U S,. If x € S1N .S, there are balls B; and B, centered
at x and contained in Sy and S, respectively; the smaller of these balls is contained in S; N Sy, so again
x is an interior point of S1 N Ss.

The complements of S; U Sy and S; N Sy are ST N S5 and S U S5, respectively, which are both open
by Exercise 3 and Proposition 1.4b.

This follows from the remarks preceding Proposition 1.4: R™ is the disjoint union of S, 95, and
(S¢)int, whereas S = S U 9S and S¢ = (S¢)int U 9S.

One example (in R") is S; = [0, 1 — 571], for which J° S; = [0, 1).
R™ and @.
The sets in Exercise 1a and 1f are both examples.

If |x —a| < rthen |x| = |(x —a)+a| <r+|al. Thus, if S C B(r,a) then S C B(r + |a|, 0).

1.3 Limitsand Continuity

1.

(@ f(0,y) =1fory > 0and f(0,y) = —1fory <O0.
(b) f(z,0) =272 = ccasz — 0.
(€) f(t,t) =1/8t* = ccast — 0.

. (a) Since |zy| < (2 + y?), we have |f(z,y)| < (z® +y?) = Oasz,y — 0.

(b) Since [3z% — y*| < 3(z* + y*), we have | f(z,y)| < 3|z| — Oasz,y — 0.
f(z,y) = yasz — 0, so take f(0,y) = y.

f(z,a) and f(a,y) are continuous for a # 0 since f is continuous except at (0, 0). Moreover, f(z,0) =
f(0,y) = 0 forall z, y, also continuous.

The two formulas for f agree along the curves y = 0 and y = z2, = # 0, so f is continuous except at

the origin. It is discontinuous there since f(0,0) = 0 but f(z, 32%) = 3 /4 0asz — 0.

. Since |f(z)| < |z| for all z, we have f(z) — 0 = f(0) asz — 0. Suppose a # 0. If a is irrational, then

f(a) = a # 0, but there are points = arbitrarily close to a with f(z) = 0. If a is rational, then f(a) = 0,
but there are points z arbitrarily close to a with | f(z)| > 3|al. In both cases f is discontinuous at a.

Clearly |f(z)| < |z| for all z, so f is continuous at 0. If a # 0 is rational, then f(a) # 0, but there are
points z arbitrarily close to a with f(z) = 0; hence f is discontinuous at a. If a is irrational and ¢ is the
distance from a to the nearest rational number with denominator < &, then | f(z)| < 1/k for |[z—a| < §;
hence f is continuous at a. (There are only finitely many rational numbers with denominator < % in any
bounded interval.)
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8. Givena € R" and e > 0, let U = B(e,f(a)). Then U is open, and hence sois V = {x : f(x) € U}.
We have a € V, so there exists > 0 such that B(d,a) C V. But this says that |f(x) — f(a)| < €
whenever |x — a| < 4, so f is continuous at a. One can replace “open” by “closed” in the hypothesis by
the reasoning of the second paragraph of the proof of Theorem 1.13.

9. The fact that since f is a one-to-one correspondence between the points of U and the points of V' has

the following consequences that we shall use: (i) If A C U, f(U\ A) = V \f(4). (i) IfB C V,
{x:f(x) € B} = f1(B).
Suppose b € f(0S), and let ¢ > 0 be small enough so that B(e¢,b) C V. Since f is continuous,
£ 1(B(e, b)) is a neighborhood of £ !(b) by Theorem 1.13 and the remarks following it. Hence it
contains points in .S and points not in .S, and therefore B(e, b) contains points in £(.5) and points not in
£(S). It follows that b € 9(f(.9)).

Conversely, suppose b € 9(f(S)), and let a = f ~1(b); let ¢ > 0 be small enough so that B(e,a) C U.
Since £~ is continuous, f(B(e,a)) = (f~!)~!(B(e,a)) is a neighborhood of b by Theorem 1.13 again.
Hence it contains points in £(S) and points not in £(.S), and so B(e, a) contains points in S and points
notin S. It follows that a € 0S and hence b € £(95).

1.4 Sequences
A/ -1
1. (a) Divide top and bottom by /% to get zj, = % - ?

(b) |sink/k| < 1/k — 0.
(c) Diverges since zy, is 0, %\/?: and —%\/?_, for infinitely many & each.

2. |z — 3] =19/|k — 5| < e whenever k > 5 + 19¢~".

12 k-1 1

3. -1.2.2... -~ _ =

TREIET TR Tk

4. If zx, — a and y; — b, then (zx,yx) — (a,b). By continuity of addition and multiplication (Theorem
1.10) and the sequential characterization of continuity (Theorem 1.15), the result follows.

— 0.

5. Iff(x) — lasx — a, forany e > 0 there exists 0 > 0 such that |f(x) —1| < ewhenever0 < |x—a| < d.
If x; — a, there exists K such that |x; — a|] < § whenever k¥ > K, and hence |f(x;) — 1| < e. On
the other hand, if f(x) 4 las x — a, there exists e > 0 such that for every § > 0 there is an x with
0 < |x —a|] < é but |f(x) —1| > e. Let xy be such a point for § = 1/k. Then x;, — a but f(x;) 4 L

6. If x, € S, x; # a, and x;, — a, then the sequence {x; } must assume infinitely many distinct values,
and for ¢ > 0, all but finitely many of them are in B(e,a); thus a is an accumulation point of S.
Conversely, if a is an accumulation point of S, for each positive integer & the ball B(a, 1/k) contains
points of S other than a; let x;, be one.

7. If ais an accumulation point of S, then a € S by Theorem 1.14 and Exercise 6. If a ¢ S and a is not
an accumulation point of .S, there is a neighborhood of a that contains only finitely many points of S. If
€ is less than the minimum distance from a to any of these points (which do not coincide with a since
a ¢ S), B(e, a) is a neighborhood of a that is disjoint from S, and hence a ¢ S.
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1.5 Completeness

1.

10.

(@ S = (-1, =1/v/2) U (1/+/2, 1), so the inf and sup are —1 and 1.
(b) The supremum is the Oth element of the sequence; the infimum is the limit of the odd-numbered
subsequence.

(c) S = [r/4,00), so the inf and sup are 7 /4 and oco.
One example is z, = sin(kw/3) (Exercise 1c in §1.4).
If @ = 0.a1a2a3... € (0,1), let zx = 0.a1a2...ag, considered as a fraction with denominator 10%.

Then {z} is a subsequence of the given sequence that converges to a. For a = 0, take =, = 1/k; for
a=1,take z = (k — 1)/k.

(@) If limz), = I, then { = {? and hence [ = 0 or 1.
(b) The limit is zero if |a| < 1, 1 if a = %1, and nonexistent (or infinite) if |a| > 1.

We have 1 = /2 < 2. If 2, < 2, then Trr1 = V2 + z < /24 2 = 2. By induction, z; < 2 for all
k. This being the case, zx11 = V2 + 2 > /o + 2 = /22 > \/Tk - T = . Thus the sequence
{zx} is increasing and bounded above by 2, so it converges to a limit . We have | = /2 + [, hence
12 =1+ 2,and hence I = 2 or I = —1. The latter alternative is impossible since z; > 0 for all %.

(a) Let zx be the kth term of the Fibonacci sequence, SO 7y, = z11/xk. SinCe Ty 1o = Tp11 + Tg, WE
obtain rx41 = 1+ (1/r,) = (1, + 1) /7y by dividing through by z;.1. Replacing k by & + 1 we get
Tk42 = (Tk4+1 + 1) /741, and substituting in g1 = (rx + 1) /7% QiveS g0 = (2r + 1) /(1 + 1).
(b) The function f(z) = (2z+1)/(z+1) = 2—(z+1) ! isan increasing function of z, and f(¢) = ¢.
Hence, if rp, < pthen ryio = f(ry) < fle) = @, and if rp, > p then rpio = f(re) > flp) = ¢.
Sincer; =1 < pandry = 2 > ¢, it follows that r, < ¢ for k& odd and r, > ¢ for k even. Next,
Te2 — 1k = f(rk) —ri = (1+ 7% — r2)/(rx + 1), which by the hint is positive for k£ odd and negative
for k even.

(c) By (b), {roj—1} is an increasing sequence and {r9;} is a decreasing sequence, bounded above and
below, respectively, by ¢. Their limits {; and I, both satisfy f(I;) = ;, and hence both are equal to ¢.

If {xx, } converges to a, and e > 0, then B(e, a) contains xy, for all sufficiently large j. Conversely, if
every ball about a contains infinitely many x, we can pick x,, € B(1,a), and then for j = 2,3,4,...,
we can pick k; > k;_1 so that x; € B(j~1,a); then Xp; — a.

If S is bounded and infinite, let {x,} be a sequence of distinct points of S. By Theorem 1.19, this set
has a convergent subsequence, and by Exercise 6 in §1.4 its limit a is an accumulation point of S. (At
most one x;, can be equal to a; throw it out if necessary.)

If there are infinitely many & for which =5 > a — ¢, then sup{zy : & > m} > a — e for all m and hence
limsup zy, > a—e. If there are only finitely many & for which z; > a+e, then sup{zy : k > m} < a+e
for m sufficiently large, and hence lim sup zx < a+¢. Since ¢ is arbitrary, we have a < limsupz; < a
and hence a = lim sup zy.

We define a subsequence {xy; } recursively. We take k1 = 1, and for j > 1, we choose k; > k; 1
so that zy, > sup{zy : k > kj—1 + 1} — (1/4). Then, with Yy, as in the definition of lim sup, we
have Yy, _,+1 — (1/7) < zx; < Yg,_,+1. It follows that lim zy; = lim Yy, = lim sup . Similarly for
lim inf,



1.6. Compactness 5

11.

12.

If z; — a, then for any € > 0 we have a — € < z < a + € for infinitely many k. It follows that
limsupz, > a — e and liminf z; < a + ¢; since e can be arbitrarily small, the same is true with e = 0.

With Y;,, and y,, as in the definition of lim sup and lim inf, the assertion that |z, — a| < efork > K
is equivalent to the assertion that Y,,, < a + e and y,,, > a — e for m > K. If this holds, then a — ¢ <
liminfz, < limsupzi < a + € for every ¢, and hence liminfz;, = a = limsup z;. Conversely, if
the latter condition holds, then for any ¢ > 0 there exists M such thata — e < y,, <Y, < a + € for
m > M, and so |z — a| < e for k > M; hence limzy, = a.

1.6 Compactness

1.

(@) One example is S = R, f(z) = €*.
(b) One example is S = R, f(z) = z2.

(a) One example is S = (0,1), f(z) = 1/x.
(b) S bounded = S compact = f(.S) compact => £(S) C f(S) bounded.

If S is compact and V' is an infinite subset of S, let x1,x3,... be a sequence of distinct points of V.
This sequence has a convergent subsequence whose limit 1 lies in S, and 1 is an accumulation point of
V (Exercise 6, §1.4). Conversely, suppose S is not compact. If S is not closed, there is a sequence
{xx} in S that converges to a point 1 € S¢, and if S is not bounded, there is a sequence {xy} in S with
|xx| — oo. In either case, the set {x1,x2,...} is an infinite subset of S with no accumulation point in
S. (In the first case, the only accumulation point is L; in the second case, there is no accumulation point
atall.)

If not, there is a sequence {xy} in S such that f(x;) < 1/k. Some subsequence {xy; } hasalimitl € S;
but then f(1) = lim f(x,) = 0, contrary to assumption.

By Bolzano-Weierstrass: For k > 1, pick x5, € Sk. Then x; € S; for all k, so some subsequence {x; }
converges to a point 1 € Sy. But since x; € Sy for j > k, Lis actually in S, for all &, i.e., 1 € [ Sg.
By Heine-Borel: Let B be an open ball containing S1, and let U; = B\ S;. If the sets U}, covered Sy,
there would be a finite subcover; that is, S; C Uf Uy = Uk. But this is false since S\ Ux = Sk # @.
Thus the sets Uy, do not cover S, thatis, (S = S\ JUx # 2.

. (a) If x € UNV, there is a sequence {y}} in V that converges to x, i.e., [x—yx| — 0; thus d(U, V') = 0.

(b) Suppose U is compact, V is closed, but d(U, V') = 0. Then there exist x; € U, yx € V such that
|xx — yx| — 0. Since U is compact, by passing to a subsequence we may assume that x;, — x € U.
But then also y;, — x,s0x € V = V, contradicting U NV = @.

(c) OneexampleisU = {(z,y) : y <0}, V = {(z,y) : y > €*}.

1.7 Connectedness

1.

(a) The two branches (z > 0 and z < 0).
(b) One point in the set and the rest of the set.
(c) The intersections with the half-spaces x > 0 and = < 0.
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. If a, b are points in the unit sphere S, the plane through a, b, and the origin (that is, the linear span of
a and b) intersects S in a circle, and either of the two arcs between a and b provides a continuous path
in S fromatob. (If b = —a, any great circle through a will do.) This argument works in any number
of dimensions.

. If f is neither strictly increasing nor strictly decreasing, one can find points x,y,z € I such that (i)
z <y < z and (i) either f(z) < f(y) and f(y) > f(2), or f(z) > f(y) and f(y) < f(2); we
assume the former alternative. If f(z) = f(y) or f(y) = f(z), then f is not one-to-one. Otherwise,
the intervals (f(z), f(y)) and (f(z), f(y)) are nonempty, and one is contained in the other. Assuming
f is continuous, the intermediate value theorem implies that f((z,v)) D (f(z), f(y)) and f((y,2)) D
(f(2), f(y)), so there are points in (z,y) and (y, z) at which f takes the same value, and again f is not
one-to-one.

. Suppose S1 U S is disconnected, so S1 U Sy = U U V where neither U nor V' intersects the closure of
the other one. Then S; = (S1NU) U (S1 NV) is a disconnection of Sy unless either S; NV or S NU
isempty, i.e., S1 C U or §1 C V. Likewise, we must have Sy C U or S C V. It cannot be that .S; and
Sy are both contained in U (resp. V'), for then V' (resp. U) would be empty; so S; C U and So C V or
vice versa. Either alternative contradicts the assumption that S; N .Se # @.

S1N Sy is connected when n = 1 by Theorem 1.25, but not when n > 1. For example, take S to be the
unit sphere (Exercise 2) and S5 to be a line through the origin; the intersection consists of two points.

. Suppose S = U UV where U and V are open and disjoint. If x € U, there is a ball centered at x that
is contained in U and hence is disjoint from V'; hence x ¢ V. Likewise VNU = @,s0UUV isa
disconnection of S.

Conversely, suppose S is open and S = U U V is a disconnection. If x € U, there is a ball centered
at x that is contained in S (since S is open) and a ball centered at x that does not intersect V' (since
U NV = @). The smaller of these two is a ball centered at x that is contained in U. Thus every point
of U is an interior point of U, so U is open; likewise, V' is open.

. If S =UUV where U and V are closed and disjoint, it is immediate that U U V is a disconnection of
S. Conversely, if S is closed and U U V is a disconnection of S, suppose a € U. Since S is closed, we
have a € S;since VNU = @, we have a ¢ V.Hencea € U, soU is closed. Likewise, V is closed.

. If S = 51 USs is a disconnection of S, define f(x) = 0 forx € S; and f(x) = 1 for x € S,. Each
point of S; has a neighborhood U that does not intersect Sy, so that f is constant on S N U; likewise
with S7 and Sy switched. It follows that f is continuous on S.

Conversely, if f maps S continuously onto {0,1}, let §; = f~1({0}) and So = F1({1}). If x €
S NSy, then f(x) = 0since £ is continuous, so x ¢ Sy. Thus S1 N So = @, and likewise with S; and
So switched, so S7 U Ss is a disconnection of S.

. Suppose S = U UV is a disconnection of S. Then (SN U) U (SN V) is a disconnection of S unless
SNUorSNV isempty. The latter alternatives are impossible: If SN U = @, say, then S C V; but
since U does not intersect the closure of V, we wouldhave U = U NS Cc UNV = @, contrary to the
definition of disconnection.

. Pickx € S. If g(x) = 0 we are done. Otherwise, either g(x) > 0 or g(x) < 0, in which case g(—x) < 0
or g(—x) > 0 respectively; either way, the intermediate value theorem implies that g(y) = 0 for some
yeS.
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10. f(1,3) = —2and f(4,—1) = 5, so there is a point (z,y) € S such that f(z,y) =0, i.e., x = y.

11. (a) The graph y = sin(7w/z), 0 < = < 2, is arcwise connected almost by definition (it’s an arc!), and S

is its closure. (Check that every point in S¢ has a neighborhood that does not intersect S, and that every
neighborhood of every point on the vertical line segment {0} x [—1,1] contains points of the graph
y = sin(m/z).) So S is connected by Exercise 8.

(b) Suppose f : [0,1] — S is continuous and satisfies £(0) = (2,0) and £(1) = (0,1). The first
component f; of f is continuous, so by the intermediate value theroem, for each k there exists ¢, € [0, 1]
so that f1(¢x) = 1/2k and hence f(tx) = (1/2k, 0) (= the only point in S with z-coordinate 1/2k). As ¢
goes from ¢ to ¢; (j # k,) f must assume all values between 1/2k and 1/23, and hence f, must assume
all values between —1 and 1 (again because there is only one point in S with a given z-coordinate in
this range, and the y-coordinates of these points range from —1 to 1). By passing to a subsequence, by
Bolzano-Weierstrass we may assume that ¢, — to. Every neighborhood of ¢y contains points at which
fo assumes any given value between —1 and 1, so f, cannot be continuous at ¢, contrary to assumption.

1.8 Uniform Continuity

1.

2.

Givene > 0, if [x —y| < (6/0)1/)‘ then |f(x) — f(y)| < e.

@ [J(a+t)*tdt <[22 1dt, 50 (a+ b —a* < b,

(b) For any z,y we have |z|* < (|z —y|+ |y])* < |z —y|* + |y|*, and likewise with = and y switched;
hence | |z* — [y|*| < |z -y

Given € > 0, we can choose 81,6, > 0 s0 that [f(x) — f(y)| < 3¢ whenever x,y € Sand [x — y| <
&1 and |g(x) — g(y)| < 3e whenever x,y € S and [x —y| < do. Let§ = min(dy,8). Then
I(f+g)(x) — (f+8)(¥)| < If(x) —£(y)| + [g(x) — g(y)| < e whenever x,y € Sand [x — y| < é.

Suppose f is uniformly continuous and {xy} is Cauchy. Given ¢ > 0, there exists 6 > 0 so that
|f(x) — f(y)| < e whenever |x —y| < 4, and there exists K such that |x; — x;| < ¢ whenever
J.k > K. It follows that |f(x;) — f(x;)| < e whenever j,k > K, so {f(x;)} is Cauchy. For the
counterexample, take =, = 1/k and f(z) = 1/z or f(z) = cos(n/x).

If £(S) is unbounded, we can find a sequence {xy} in S such that |f(x)| — oco. If also S is bounded,
by passing to a subsequence we may assume that {x;} converges to some limit (which may not be in
S). Then |x; —xy| will be as small as we please provided j and k are sufficiently large, but for any j we
can find £ > j such that |f(x;)| > |f(x;)| + 1 and hence |f(z;) — f(xx)| > 1. Thus f is not uniformly
continuous on S.



Chapter 2

Differential Calculus

2.1 Differentiability in One Variable

1.

Suppose a,b € I and a < b. If f' > 0on (a,b), then f(a) < f(b) by the mean value theorem.
Otherwise, let z1, ...,z be the points of (a,b) at which f’ vanishes, in increasing order. Then f(b) —
f(a) = [f(b) = f(zr)] + [f (@) — f(zR—1] +--- + [f(z1) — f(a)]. Each of the differences on the right
is positive by the mean value theorem.

We have f'(0) = limy_0 f(z)/z = limg_ozsin(1/z) = 0 since |zsin(1/z)| < |z|. For z # 0 we
have f'(z) = 2z sin(1/z) — cos(1/z); the first term on the right approaches 0 as z — 0, but the second
term has no limit.

g'(0) = f'(0)+ 4 = 5,and for z # 0, ¢’ (z) = 2z sin(1/z) — cos(1/z) + 5. In particular, ¢'(1/2km) =
—%, so every interval about 0 contains small subintervals on which ¢’ < 0.

R'(0) = limy_,o h(x)/z = 0 since |h(z)| < x2 for all z.

For h > 0, [f(a+ h) — f(a)]/h = f'(c) for some ¢ € (a, a + h). Ash — 0, ¢ — 0 also, and so
f'(c) = L.

. These formulas are obtained by applying I’Hopital’s rule 2 or 3 times. The general result is that

limp,_y0 AR f(a)/h™ = f™(a), where Ay, is the operator defined by A,f(a) = f(a + k) — f(a).
(Explicitly, A7 f(a) = 3274 (=1)" () f(a + jh).)

log[(1 + az)®*] = (b/z) log(1 + ax). By I’Hopital, the latter quantity tends to ab as = — 0.
(f-8) = (2 fig5) = 2(fjg; + fig;) = - g+ f-g'. The calculation for cross products is similar.

. (@) limg_y0 €7 1/%" /g™ = lim,_, o y™/2/e¥ = 0 by Corollary 2.12.

(b) This is the case n = 1 of (a).

@ Fork = 1, f'(z) = (=2/z3)e /%", Assume f*®)(z) = P(1/z)e"1/*"; then f+1)(z) =
[(—1/22)P'(1/2)—(2/23)P(1/z)]e */*". The first term in brackets is a polynomial of degree (3% — 1)+
2 =3k +1in1/z, and the second term is a polynomial of degree 3k + 3 in 1/z.

(d) The case k = 1 is (b). Assuming by inductive hypothesis that f~1(0) = 0, we have f*)(0) =
limg_o f*~V(z)/z. By (¢), f*V(z)/z = Q(1/z)e~1/=" where Q is a polynomial; hence the limit
asz — 0is 0 by (a).
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10. A is well defined since the two formulas agree at = 1; it is continuous on (0,2) by inspection and

continuous at 0 and 2 by definition of f/(0) and f/(1). By the intermediate value theorem, for any v
between f’(0) and f’(1) there exists u € (0,2) such that h(u) = v, and by the mean value theorem,
h(u) = f'(c) for some ¢ € (0,u) (ifu <1)orce (u—1, 1) (ifu > 1).

2.2 Differentiability in Several Variables

1.

(a) See the answer in the back of the text.
(b) Vf(z,y) = (4e'™ V", —29ye'™ V), VF(1,-2) = (4,4); Oassa5)/(1,~2) = 2 -4+ 2 -4 =%,

(36) Vf(f,y) = (-1ly — 14, 11z — 12)/(Tz + 3y)*; Vf(1,-2) = (8,~1); J(a5,4/5f(1,~2) =
3.g-4.1=4

. (a) See the answer in the back of the text.

(b) df (z,y,2) = (x+22)"Vdz+3y? dy+2z(z+2%) "1 dz; df (1,1,0) = dz+3dy; f(1.1,1.2,—0.1) —
£(1,1,0) ~ 0.1 + 3(0.2) = 0.7.

9u3/2 3524172 2,3/2
dw=""Y 2y + 2V 2 Y 2y 5
z+1 2(z+1) (z+1)

(a) 0 = 40(.03) + B(—.08) + 50dz => dz = [—1.2 + 3] /50 = .036.
(b) The coefficient of dz is largest.

dz, 50 dw|(5 41y = 40dz + B dy + 50 dz.

T0pu + 2yOyu + O,u = ze?* — 2y~ + (2ze®* + by~ 'eP?) = 3ze?* + 3y~'e = 3u.

. Opu = —y?/(zy — y + 2z)? and Oyu = 222 /(zy — y + 2x)?; the result follows.

Since 9;(|x|™!) = —=z;|x| 73, we have df; = |x|7' dz; — Y-, ziz|x| 3 dz; and hence
Z zjdfj = Z zi|x| "t dzj — Z Z xix§|x|_3 dz;
J J i g
— z:xj|x|_1 d:L‘j — Z,’Ci|x|_1 dzr; = 0.
J i

@) |£ (2, )| < 3lo], 50 f(z,y) = 0as (z,9) — (0,0).

(b) With u = (cos 8,sin®), 8, f(0,0) = lim;_,q f(tcos b, tsinf)/t = cos®Osinb.

(c) Taking# = 0 or 6 = %7r we see that 01u(0,0) = d,u(0,0) = 0. If f were differentiable it would
follow that 9,, (0, 0) = 0 for all u; but this is false.

Assume n = 2 for simplicity; the general case follows by an elaboration of the argument as in the proof
of Theorem 2.19. Suppose |01 f| < C and |02f| < Con S. Givena € S, let » > 0 be small enough so
that B(r,a) C S. If |h| < r, by the mean value theorem we have

|f(a+h)— f(a)| < [f(a1 + h1, ag + h2) — f(a1, ag + ha)| + | f(a1, az + h2) — f(a1,a2)|
< C(|h1] + |hel),

which implies the continuity of f at a.
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2.3 TheChain Rule

1.
2.

See the answers in the back of the text.

(a) and (c) See the answer in the back of the text.
(b) Opw = €3 f1 + 2z fo /(% + 1), Oyw = —3e" Y f1 + 23 f3//y* + 4.

. (@) 20,u — 30yu = (6 — 6) f'(3z + 2y) = 0.

(b) z8yu +ydyu —u = zly + f(yz™") —ya ™ f'(yz™ )] +ylz + f(ya™")] — 2y — 2 f(yz™") = zy.
() z0zu + yOyu = w2 f1 + yzfo = 20,u.

Ou/0z; = z;f'(r)/r, 50 3(0u/0z5)* = (L 27) f'(r)?/r? = f'(r)*.

Both formulas for the tangent plane at (a, b, f(a,b)) amount to z — f(a,b) = A(z — a) + B(y — b)
where A = 0, f(a,b) and B = 9, f(a,b).

These are all similar; we just do (d). If F(z,y,z) = zyz?—log(z—1), we have 0, F = yz?, 0, F = z2?,
and 0,F = 2zyz — (z — 1) 1,50 VF(-2,-1,2) = (—4,—8,7). Hence the tangent plane is given by
—4(x+2)—8(y+1)+7(z—2) =0,0r 7z = 4z + 8y + 30.

We have ¢(z) = F(z,z,...,z),50 ¢'(z) = 01 F + 0o F + - - - + O, F, these derivatives being evaluated
at (z,z,...,x).

2.4 TheMean Value Theorem

1.

(a) The conclusion is that the directional derivative 9, f vanishes at some point on the line segment,
where u = (b — a)/|b — a|. (Apply Rolle’s theorem to the function ¢(¢) = f(tb + (1 — t)a) on the
interval [0, 1].)

(b) The conclusion is that there is a point a € .S such that V f(a) = 0. (Suppose f =con dS. If f =¢
on S then Vf = 0 on S. Otherwise, either the maximum or the minimum of f on S [which exist since
S is compact] is achieved at a point a € S, and then V f(a) = 0.)

(a) If S is convex, we can apply Theorem 2.39 to get f(b) — f(a) = 91 f(c)(b1 —a1) = 0.

(b) An example with n = 2: let S be the square (—1,1) x (—1,1) with the segment [0, 1) on the y-axis
removed. Define f on S by f(z,y) =0ify <0, f(z,y) = —y?ify > 0and z < 0, and f(y) = 52 if
y>0andz > 0. Thend,f =0on S, but f(—z,y) # f(z,y) fory > 0.

2.5 Functional Relations and I mplicit Functions: A First L ook

1.

2.

(a) See the answer in the back of the text.
(b) Differentiation in z gives 4z + (2z + e™#)0z2z = 0, or O,z = —4z/(2z + e~ #). Likewise, differen-
tiation in y gives 9yz = —6y/(2z + e ).

(a) Elimination of z gives y? + 4y = 22 — 22,50y = -2+ v/z2 — 2z + 4 and hence z = 2z — 8 +
4v/z? — 2z + 4. Therefore dy/dz = £(z—1)/vVz? — 2z + 4,and dz/dz = 2+4(z—1)/Vz? — 2z + 4.
(b) Differentiating the original equations in z gives z' = 2z — 2yy’ and 2’ = 2+ 4y/. Thus 2z — 2yy’ =
2+4y,s0y =(x—1)/(y+2)and 2’ =2+ 4(z —1)/(y + 2).
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3. Differentiating the equations gives 5y*y’ + (y'z + y2')e¥? + 2/t2 + 2zt = 0 and 2yy’ + 4232 = 2,
which are linear equations in i’ and 2’ to be solved simultaneously.

4, If (z,y) are IVs, u = 22 +3y? = u, = 2z. If (z,2) are IVs, u = 22 +3(22)? = u, = 20 +6222.

5. For (OV/Oh)|, just use V' = wr2h. For (8V/Oh)|s, r is implicitly a function of » and S; the equation
S = 2mr(r+h) yields Or/0h = —r/(2r+h), s0 OV/0h = nr?+2xr(0r/0h)h = 7r? —27r2h/(2r+
h). For (0V/dS)|., V and h are implicitly functions of S and r; differentiating the given equations in
S gives 0V /3S = nr?(0h/0S) and 1 = 27r(0h/3S), whence OV /3S = r /2. For (85/8V)|,, S and
h are implicitly functions of V" and r; differentiating the given equations in V' gives 1 = 7r2(6h/0V)
and 9S/0V = 2xnr(0h/0V'), whence 9S/0V = 2/r.

6. Oz /0y is the derivative when z is considered as a function of y and z; by (2.44) it equals —0, F/0,F'.
Likewise 0y/0z = —0,F /0, F and 0z/0x = —0,F /0, F. The product of these quantities is —1.

7. Taking V and T as independent variables means that £ and P are determined as functions of V and T,
say
E=oV,T), P=yV,T), *)

and the equation oy E — TOrP + P = 0 then becomes 0, — T2y + P = 0. Now take P and
T as the independent variables. Differentiating (*) with respect to P gives 0pE = (01¢)(0pV) and
1 = (019)(0pV), so 1o = OpE/0pV and 01y = 1/0pV. Differentiating (*) with respect to T'
gives 0 = (019)(0rV) + Oatp, SO Oop = —(019)(0rV) = —0rV/0pV. Substituting these into
O1p — Ty + P =0gives OpE + TorV + PopV = 0.

2.6 Higher-Order Partial Derivatives

1. These are routine exercises in elementary calculus. Half of the calculations were performed in Exercise
1,82.2.

2. From Example 4, u, = (cos®)f, + (sin6)f, and hence u,py = —(sin)f; + (cos0)(0fz/00) +
(cos0) fy + (sin@)(0f,/08); furthermore, 0f;/00 = —(rsinf)fes + (rcosb)fyy and 0f, /00 =
—(rsin@) fgy + (7 cos 0) fyy.

3. (@) Opw = 2f1 + (sin 3y) fo + 423 f3. Hence 82w = 20, f1 + (sin3y)0, fo + 430, f3 + 1222 f3. The

derivatives 0, f; are just like ,w but with an extra subscript j on the f’s: 0, f1 = 2f11 + (sin3y) fi2 +
423 f13, etc. Now it’s just a matter of collecting terms. Similarly, 9,0,w = 28, f1 + (sin3y)d, f2 +
3(cos 3y) f2 + (3 cos 3y)dy fo, etc. (The 3z cos 3y multiplying f12 in the answer in the book should be
6z cos 3y.)
(b) Oyw = —3e 7 f +2y3(y4+4)_1/2f3. Hence 0,0,w = —3e*3 (23 f11 + 22 (22 +1) "L f10) —
3T + 23 (yt + 4)7V2(e* ¥ f1g + 2x(2? + 1)1 fog). Similarly, 02w = —3e*~0, f1 +
9e* 3 1 + 2u3(y* + 4)7120, f3 + 9,[20° (y* + 4)~/2]f3, which works out to be 9e2 Y fy; —
1233 (y* + 4) 712 fi3 + 495 (y* +4) 7 faz + 9e77% f1 + (28 + 24y%) (y* + 4) 732 fa.

4. We have u, = F'(z + g(y)); hence ugy = F"(z + g(y))g'(y) and uzy = F"(z + g(y)); also uy =
F'(z + g(y))g'(y). The result follows.

5. 32,;x %Tk0;0k f (x) and a(a — 1) f (x) are both equal to (d*/dt?) f (tx) =1
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6. us = 2sf; + 2tfy, SO ugs = 2f; + 45% frp + 4t2fyy. Also uy = —=2tfy + 25fy, SO uy = —2f; +
412 frz + 45% fyy. The result follows.

7. uy = A[f"(z — ct) + ¢"(z + ct)] = Cugy.
8. We have 0r/dz = x/r,s0 Fy, = —zr 3g(ct — r) — xr2¢'(ct — ), and hence

. glct —r) N 3z2g(ct —r) N w2g'(ct —r)  g'(ct—7) N 22%g' (ct — ) N z2g"(ct — r).

3 5 e r2 4 3

F,, and F,, are the same, with = replaced by y and z. Since z? + y? + 22 = r2, adding these gives

3g(ct — 1) n 3g(ct — 1) n g'llct—r) 3g'(ct—r) 2¢'(ct—r)  g'(t—1) g"(ct—1)

rd rd 72 72 72 r r
= C_QFtt .

9. Fj=zyr ' f'(r),s0 Fj; =r~'f'(r) — a:?r_?’f'(r) -I—:v?r_Qf"(r). Adding these up gives nr =1 f'(r) —
r ! (r) 4+ f"(r) since Y 2% = 2.

10. In one variable, the assertion is that (fg)®*) = Z ( ) fWglk=3), which is proved just like the

binomial theorem. (Induction on k, using the fact that (J) + (Jfl) = (**1).) The n-variable result
follows by applying the one-variable result in each variable separately; the facts thata =B+ v —

a; = fB; +j forall jand o! = aq!--- ;! make everything turn out right. (This could be phrased as
an induction on n.)

11. This follows by applying the one-dimensional binomial theorem in each variable as in the preceding
problem.

2.7 Taylor’'sTheorem

L@ £(2) = 22— (@ b o) = 324, and g(e) = (Lot ) (1202 4--) 17 =
(3;+...)(43;4+...) — 45 ...,

() f(z)/g(z) = (2% +---)/(ad + - )= (E+-)/A+-) = &

2. @) f'(z) =37% f"(z) = —2z~2,and f®)(z) = 2273, 50 P 3(h) = h — sh? + Lh%; also |[f*)(z)| =
| — 6274 <96 for |z — 1| < 3,50 C = 96/4! = 4.
(b) f’(x) 1o~ Y2 f"(z) = —127%2 and f®)(z) = 3275/2,50 P13(h) = 1 + 1h — L2 + Lh3;
also [f®(z )| =|-8Bz772 < 1527/2 for|z —1/ < ] soC 13972 /41 = 5. 277/2,

©) f'(z) = (:c+3) () = 2(z +3)7%,and &) (z) = —6(:c+3)*4 so Pig(h) =1 — &h+

ah? — gsh®;also [ (z)| = |24(z + 3) 7% < 24(3.5)7° for [z — 1| < 4,50 C = (3.5)°.

3. By Lagrange’s formula, |sinz — = — 2% = |Ro4(z)| < |2[°/5! since |sin®) (z)| = [sinz| < 1, and
(3)5/5! ~ 0.0797. In general, we have |Ro 2 1(z)| = |Ro2m(z)| < |2[*F1/(2m + 1)!. This is
less than 0.01 for |z| < %w provided m > 3; so the 5th order polynomial suffices.
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4. For f(t) = et the remainder Ro () is bounded by t¥+1/(k +1)! for ¢ € [0,1], 50 | fol Ro x(7?) dz| <

10.

fol x2k+2 dx/(k +1)! = 1/(k + 1)!(2k + 3). This is less than 0.0005 for & > 6, so to three decimal
places [ e dz = Y0(—1)F [if a2 dx/k! = Y 5(—1)F /k!(2k + 1) = 0.747.

.(a):vsin(:c+y):x[(w+y)—%($+y)3+ ] = z? -l-:vy—ga:‘l—%x?’y §m2y2— Leyd 4+ ...
(b) €™ cos(z®+y?) = [L+ay+g(zy)*+- - |[1—5(2”+y*)*+- -] = 1oy —5(z* +a”y’ +y*) +- .
(©

e % [ 1 1 1
Eha— — )+~ (7 —29)% 4+ =(z — 293+ —(z — 29)* + -
><[1+(y—w2)+(y—w2)2+(y—w2)3+(y—w2)4+---]
= 1-|—:v—2y+1:v2—2:vy-|—2y + ;v — 2y + 2zy? —%y +ix4—1x3y+x2y2
2 6 3 24 3
4 2
—gzy3+§y4+--- x [1+y—a?+y? — 22+ +2" =322 +y* +- -]
1 5 1 1 13 1
:1—|—z—y—§$2—zy+y2—gac3—§m2y+a:y —gy —i—ﬂx‘l 6m3y
L Lo Ly
— -y — -x
30V~ 3 3y
Settingz =3+ h,y =1+ k,we have f(z,y) =3+ h—cosmk+ (3+h)log(l+k)=3+h—(1—

Tk 4 )+ BHh)(k— SR+ LR34 ) =2+ h+3k+ $(n? — 3)k2 — LhkE+ K3 +

Withz = 1+h, y =2+k 2z =1+1, wehave f(z,y,2) = (1 +h)22+k) +(1+1) =
3 + 4k + k + 1 + 2h? + 2hk + hk, with no remainder. (The remainder is also known to vanish since
all 4th order derivatives of f vanish.)

. A (k — 1)-fold application of I’Hdpital gives

f( +h) ak(h)

lim

h—0 hE h—0 h
(k—1) _ £(k-1)
=i TIPSO g g) =
—0 h

by definition of f*)(a).

We have f(a + h) = f(a) + f*)(a)h*/k! + R, x(h), and by Corollary 2.60, for h sufficiently small
we have |R, ()| < 1|f®)(a)h¥|/k! Thus for & even, if f*)(a) > 0 we have f(a + h) — f(a) >
Sf®) @)k /k! > 0 for small h, and likewise if f(*)(a) < 0 we have f(a + h) — f(a) < 0 for small h.
For k odd, the same reasoning shows that f(a + h) — f(a) changes sign along with h* at h = 0.

By (2.70) we have |Rq . (h)| < kY 4y (Ih]/al) ;1 — t)*=1Ct*n]* dt. Since each component of
h is less than |h| in absolute value, we have h%| < \h|’C for |a| = k. Hence |R, k(h)| < C'|h|F+A
where C' = Ck 3y o1~ L — o)k dt.
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2.8 Critical Points

1. We employ the notation «, 3, -y as in Theorem 2.82.
(@ fe = 2z and f, = 12y(y + 2)(y — 1), so the critical points are (0,0), (0,—2), and (0,1). Also
a=206=0v= 36y2 + 24y — 24, so these points are respectively a saddle, a minimum, and a
minimum.
(b) fo = 4z(z? —1) and f, = 3(y? —2), so the critical points are (0, £+/2), (£1,+/2), and (£1, —v/2).
Also o = 1222 — 4, B = 0, v = 6y, s0 (0,v/2) and (£1, —/2) are saddles, (0, —+/2) is a maximum,
and (+1,+/2) are minima.
(€) fz = 322 — 2z —y? and f, = 2y(1 — z). If f, = 0 then either y = 0 or z = 1. In the first case,
fr=0=2zx=00rx = %; in the second case, f, = 0 = y = £1. So the critical points are (0, 0),
(2,0), and (1,£1). Also, & = 6z — 2, 3 = —2y, and v = 2(1 — z), so (1,=£1) and (0,0) are saddles
and (%,0) is a minimum.
(d) f» = zy*(4 — 3z — 2y) and f, = z?y(4 — 2z — 3y). If either z = 0 or y = O then f, = f, = 0;
otherwise, f; = fy, = 0 only when 3z + 2y = 2z + 3y = 4, thatis, z = y = %. Thus the critical points
are (%, %) and all points on the = and y axes. Note that f = O onthe linesz =0,y = 0,and z + y = 2;
elsewhere, f < Owhenz+y > 2and f < 0 when z+y < 2. Thus the points (a,0) and (0, a) are local
(nonstrict) minima when a < 2, local (nonstrict) maxima when a > 2, and saddle points when a = 2.
Also, f(3,%) > 0,and (%, 3) is inside the triangle bounded by the lines on which f = 0, so it must be
a maximum. (One could also check this by Theorem 2.82.)
) fo = 22(2 — 222 — 312)675”2*?12 and f, = 2y(1 — 222 — y2)e’“2792. Thus f =0 < z =0
or 2z2 + y? = 2. In the first case, f, = 2y(1 —y?) = 0 =y = 0 or y = +1. In the second
case, fy = —2y = 0 =y = 0 and hence 222 = 2, or z = 41. Thus the critical points are (0, 0),
(0,+£1), and (£1,0). (0,0) is obviously the global minimum. A straightforward but tedious application
of Theorem 2.82 shows that (+1,0) are maxima and (0,=+1) are saddles. (See also the solution to
Exercise 1h below.)
(f) fo = —az™2+yand f, = —by~2+z. If f, = 0then y = az~2; substituting this into f, = 0 gives
x = (a®/b)'/3 and y = (b%/a)/3. At this critical point, « = 2b/a, 8 = 1, and v = 2a/b, so the point
is a minimum if b/a > 0 and a maximum if b/a < 0.
Q) fz = 3(z? = 1), f, = =3(y* — 3), and f, = 2z, so the critical points are those where z = =+1,
y = ++/3, and z = 0. The Hessian matrix is diagonal with diagonal entries 6z, —6y, 2. Thus
(1,—/3,0) is a minimum, (—1,/3,0) is a maximum, and £(1, +/3) are saddles.

2

(h) With E = e =% ~*" we have f, = 27(3 — 322 — 2y2 — 2Y)E, f, = 2y(2 — 32% — 2y — 2?)E,
and f, = 2z(1 — 3z%2 — 2y?2 — 22)E. If f, = 0, then either z = 0 or 3z? + y? + 22 = 3. In the
first case the equations f, = f, = 0givey = 0 or2y? + 22 = 2, and z = 0 or 2y% + 22 = 1;
the solutionsare y = z = 0; y = 0, z = +1; y = +1, z = 0. In the second case, the equations
fy = f.=0givey = z = 0and hence z = £1. So the critical points are (0, 0, 0), (+1,0,0), (0,%1,0),
and (0,0,£1). One can analyze them without the tedium of computing all the second derivatives as
follows. Since f(x) > 0 for x # 0, (0,0,0) is obviously the global minimum. Since f(x) — 0 as
x — oo, f must have a global maximum; by examining the values at the critical points one sees that the
maximum is at (+1,0,0). Now consider f(x) for x near (0, +1,0). Since te~* has a maximumat ¢ = 1,
£(0,y,0) = 2y2e~¥" has amaximum at y = 1. On the other hand, f(z, +1,0) = (322 +2)e %" "1 =
e (322 +2)(1 —x®+---)] = e (24 2% +---) has a local minimum at z = 0. Thus (0, +1,0) isa
saddle, and likewise so is (0,0, £1).
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(i) Note that f = 0 precisely on the planes z = 0,y = 0, z = 0, and z + y + z = 4 that include
the faces of the tetrahedron with vertices at 0, 4i, 4j, and 4k. Since V(f1f2) = 0 on the set where
f1 = fo = 0, all points on the lines where these planes intersect are degenerate critical points, and none
of them are maxima or minima since f changes sign whenever one crosses one of these planes. Since
fe=yz(d-22—y—2), fy=22(4 —z—2y —z),and f, = zy(4 — z — y — 2z), one sees that the
only other critical point iswhere 2z +y+z =2+ 2y +2z = x4+ y + 2z = 4, i.e, (1,1,1). This point
is inside the tetrahedron, f > 0 there, and f = 0 on the faces of the tetrahedron; hence this point is a
local maximum.

2. We have fzz = 2a, fzy = b, and fyy, = 2c, so the origin is a minimum if 4ac > b2 and a,c > 0,
a maximum if 4ac > b% and a,c < 0, and a saddle if 4ac < b%. (If 4ac = b%, then f(z,y) =
+(|a|'/?x + |¢|'/?y)? [any combination of the two signs can occur], so the origin is still an extremum.)

3. The origin is a global minimum for f; and a saddle point for f5. For f5 it is a “shoulder point” as in the
right-hand graph of Figure 2.5 (but upside down).

4. (a) The 2nd-order Taylor polynomial of f at the origin is 42, so the origin is a degenerate critical point.

(b) For b # 0 we have f(at, bt) = b2 + higher order, and f(at,0) = 2a*t*; these all have local minima
at the origin. However, f is negative in the region between the two parabolas y = z2 and y = 222 and
positive in the regions inside both or outside both. The origin is on the boundary of all these regions, so
f has neither a maximum or a minimum there.

5. The second directional derivative of f in the direction u at a is

2
%f(a + tu) = ZUjukajakf(a) = H(a)u-u.

t=0 gk

d
= Z u;0j f(a+tu)

t=0

2.9 Extreme Value Problems

1. f, =4z +2and f, = 2y, so the only critical point is (—3,0), and f(—3,0) = —3. On the unit circle,
f(cos8,sin@) = 2cos? @ + sin? @ + 2cos § = (1 + cos #)2, whose maximum and minimum are 4 and
0 (at @ = 0 and 8 = 7). So the maximum is 4 and the minimum is —%.

2. fp = 6z and f, = —4y + 2, so the only critical point is (0, 1), and f(0,3) = 3. On the unit
circle, f(cos#,sinf) = 3 — 5sin? 6 + 2sin#, so (d/df) f(cosf,sin@) = —10cosfsinf + 2cosd =
2cos 0(1 — 5sinf) = 0 when cos§ = 0 or sin@ = £. In the first case, sin = +1,s0 f = 0 or —4. In
the second case, f = 15—6 So the minimum is —4 and the maximum is %

3. fo =322 —1and fy = 2y — 2, so the critical points are at (il/\/ﬁ, 1), which are both outside the
triangle. The sides of the triangle are segments in the linesy = 0,y = 2 — 2z, and y = 2 + 2z. We
have f(z,0) = z® — z, whose critical points are at z = +1/+/3, and f(£1/3,0) = F2/3/3. Also,
f(z,2—2z) = 23 +42%— 5z, whose only critical point in the interval 0 < z < lisatz = (1/31—4)/3,
where f = (308 — 62v/31)/27. Next, f(z,2 + 2z) = z* + 4% + 3z, whose only critical point in the
interval —1 < z < Olisatz = (v/7 — 4)/3, where f = (20 — 14+/7)/27. Finally, f = 0 at all three
vertices. Comparing all these values, we see that the minimum is (308 — 62+/31) /27 ~ —1.378 and the
maximum is 2/3v/3 ~ 0.3849.
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fe =6x —8y+2and f, = —8z — 8y + 16; setting these simultaneously equal to 0 gives z = y = 1,
and f(1,1) = 9. Next one analyzes f on the four sides: (i) f(0,y) = —4y? + 16y; critical point
aty = 2, and £(0,2) = 16. (i) f(x,0) = 32 + 2a; critical point at z = —1, not in the range of
interest. (iii) f(4,y) = 56 — 16y — 4y?; critical point at y = —2, not in the range of interest. (iv)
f(z,3) = 3z% — 22z + 12; critical point at z = L f(&,3) = —82. Finally one checks the corners:
£(0,0) =0, £(0,3) =12, f(4,0) = 56, and f(4,3) = —28. The minimum is —2 and the maximum
is 56.

Clearly |f(z,y)| > |(z,y)|?, so f has a minimum on R? by Theorem 2.83a. We have f, = —2b(A —
br —cy) + 2z and f, = —2c(A — bz — cy) + 2y. Setting these equal to 0 simultaneously gives
z=Ab/(1+b?+c?)andy = Ac/(1+b? + ¢2). Substituting these values into f(z,y) and simplifying
gives f = A2/(1 + b% + ¢2).

Clearly f(z,y) > 0exceptwhen z =y = 0, 50 f(0,0) = 0 is the absolute minimum. f has an absolute
maximum by Theorem 2.83b, namely £(0,41) = 2e~!. (See Exercise 1e in §2.8 for the analysis of the
critical points.)

As in Exercise 1e in §2.8, one finds that the critical points are (+1,0) and (0, 1), and f(41,0) = e~ *
and £(0,+£1) = —2e L. Since f assumes both positive and negative values and vanishes at infinity, by
Theorem 2.83b it has both an absolute maximum and an absolute minimum, which must occur at critical
points; hence the maximum is e~ and the minimum is —2e~".

If (z,y) is in the first quadrant but outside the “triangle” bounded by the lines z = 1/3C and y = 1/4C
and the hyperbola zy = C, then f(z,y) > C; hence f has a minimum but no maximum by Theorem
2.83a. The only critical point is at = = (9/4)'/3, y = (16/3)"/3 (see Exercise 1f in §2.8), and the value
of f there is (12)'/3; this has to be the minimum.

Lagrange’s method works easily here: one has to solve 2z = 2\z, 4y = 2y, and 6z = 2Az subject to
the constraint z? + y2 + 22 = 1. The first equation implies that A = 1 or z = 0. If A = 1, the second
and third equations imply that y = z = 0 and hence x = +1. If z = 0, the second equation forces
A=20ry=0.1fA=2thenz =0,s0y = £1; if y = 0, then z = +1. So the constrained critical
points are £+(1,0,0), +(0,1,0), and £(0,0, 1). Clearly the first pair gives the minimum of 1 and the
last pair gives the maximum of 3.

With f(a,b) = 3 (y; —az; —b)?, we have f, = -2 z,(y; —az; —b) =2[a ) m? +0kT — ) z;y;]
and fp = =23 (y; — ax; — b) = 2k[aT + b —7]. Solving this pair of linear equations for a and b yields
the asserted result.

By Lagrange’s method, we solve 1 = —2Xaz 2 = —2X\by 2 = —2\cz 2 subject to (a/z) + (b/y) +
(¢/z) = 1. With u = —2), the first set of equations gives z = \/pa, y = v/ub, z = \/uc, and the
constraint equation then gives /i = v/a + Vb ++/c, and hence z +y + z = (v/a + Vb + v/c)?. (This
is @ minimum because z + y + z — oo as (z,y, z) — oo on the constraint surface.)

We wish to minimize z + y + z subject to the constraint zyz = V (and z,y, z > 0). By Lagrange’s
method, we solve 1 = Ayz = Azz = Azy subject to the constraint zyz = V; the solution is obviously
t=y=2z=VY3 s0z+y+z=3V/3 There is no maximum; (z,y,z) = (V,c,c!) satisfies
zyz = V no matter how large c is.
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13.

14.

15.

16.

17.

18.

19.

Parametrizing the first line by f(s) = (1 — s,s,0) and the second one by g(t) = (¢,t,t), we wish to
minimize ¢(s,t) = |f(s) —g(#)|> = (1 —s— )2 + (s —t)? + 12 = 25 + 3t? — 25 — 2t + 1. We have
ps =4s — 2 and ¢, = 6t — 2. so the critical point is s = , ¢ = £. The point on the first line closest to
the second one is f(1) = (4, 3, 0) (and the minimum distance is 1/1/6).

We wish to minimize V' = xyz subject to the constraint zy + 2zz + 2yz = A. Solving the constraint
equation for z gives V = zy(A — zy)/(2x + 2y). After a little calculation we find V, = 2y%(4 —
7?2 — 2zy)/(2z + 2y)? and V,, = 22%(A — y? — 2zy) /(27 + 2y)?. Setting these equal to O gives
22 +2zy = A = y? + 2zy,so that z = y = \/A/3; hence z = %\/A/B andV = %( A/3)3.

We wish to minimize 22 + y2 + 22 subject to the constraints z + z = 4 and 3z — y = 6. By Lagrange’s
method, we solve 22z = X\ + 3u, 2y = —pu, and 2z = A to obtain 2x = 2z — 6y; solving this
simultaneously with the constraint equations gives x = z = 2,y = 0.

(a) Lagrange’s method gives the equations 2v(zv—yu) = 2z, —2u(zv—yu) = 2Ay, —2y(zv—yu) =
2pu, 2z(zv — yu) = 2pv. Eliminating A and p (and assuming zv — yu # 0, which is OK since the
maximum is clearly positive) we obtain v/xz = —u/y or z/v = —y/u (whichever avoids division by
zero); either way, the critical points are those (z, y, u, v) such that (u,v) is proportional to (—y, z). By
the constraints, the constant of proportionality is +b/a, and (zv — yu)? = (b/a)?(x? + y?)? = a?b?.

(b) Using the parametrization, (zv —yu)? = a?b?(cos 6 sin ¢ —sin § cos ¢)? = a?b? sin® (6 — ), whose
maximum is obviously a?b?.

The distance from P; to Q) is y; sec 61, and the distance from @Q to Py is —yo sec @y (remember that
y2 < 0). Thus the total travel time from P; to P» is (y1/v1) sec 1 — (y2/v2) secfy. The constraint
is that the z-distances have to add up right: y;tané; — yotanfy = |zo — z1|. Thus, Lagrange’s
method gives the equations (y; /v1) sec 8 tan 67 = \y; sec? 61 and (yo /v2) sec B tan Oy = Ayo sec? s,
whence sin 6, /v; = A = sinfy/vs.

Let P; be the product of the z;’s with the jth term omitted. Lagrange’s method gives the equations
P; = Xforall j, from which it follows that the = ;’s are all equal. Thus the maximum value of z; -- -z,
occurs at z; = --- = z, = ¢/n, and that value is (¢/n)™. In other words, (z; - - - z,)'/™ is at most ¢/n
when zy + - -+ 4z, = ¢, thatis, (z1 -+ 2,)"/™ < (21 + - - - + ) /n, With equality only when the z;’s
are all equal.

Let eq,..., e, be an orthonormal eigenbasis for A, with eigenvalues Aq,...,A,. If x = ) t;e;, we
have |x|* = Y #3 and Ax - x = )7 A;t3; thus we wish to maximize and minimize 7 A;t3 subject to
the constraint t? = 1. By an easy extension of the argument in Exercise 9, Lagrange’s method shows
that the critical points are the unit eigenvectors of A. (Things are a little messier if the eigenvalues are
not all distinct.) If x is a unit eigenvector with eigenvalue ) ;, then Ax - x = A;, so the maximum and
minimum are the largest and smallest of the A;’s.

2.10 Vector-Valued Functionsand Their Derivatives

1.

2 2
z¢ xz° — 8y 2xyz
Df(x,y,7) = (ﬁ,{y 6oy —» )
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1 2
Df(z,y)= |3y 3z |.
2z —6y
2u -3 0 -5
(@) Df(u,v) = | 2ve e , Df(0,00=10 1 ].
2 —2v/(1+?) 2 0

0 -5 —15 —20
1 2
(b) D(fog)(1,2) = [0 1 =3 4|

2 2(y—1) —cosz
(a) Df(:l?, Y, Z) = (3 4623/—52 _10e2y—5z> :

(b) D(g o £)(0,0,0) = (; i) (g _42 __110> - (188 160 :ié)

. f(a+h) —f(a) = Ahforall aand h, so A = Df(a) for all a.

This is immediate from the definitions.

h =34 fkgk: S0 0jh =", (0 fr) 9k + D1 (0j9x) fx; this is the jth component of (Df)*g + (Dg)*f.

By (2.86),
Oix  Osx
Oy Os
(O ) = (@f af af af) | V|
0 1

which gives the desired result.

. (a) The unit sphere S is compact, and ¢ is continuous on it, so ¢ achieves a maximum M on S at some

pointa € S.

(b) Obviously |[A0| = 0 = M|0|. If x # 0, let r = |x| and u = x/r. Then |Ax| = r|Au| < M =
M x|, with equality if x = a. Thus M is the smallest constant such that |[Ax| < M|x| for all x, i.e.,
M = || A]l

(a) Ifx € R", we have | Ax| < \/mmax; |(Ax);| = /mmax; | >, Ajrzi| < v/mmax; Y, |Ajxl x|,
so [|A]| < v/mmax; 3 [Ajil-

(b) If Ajy = 1and A;;, = 0 for k > 1, the bound for ||A|| in (a) is y/m. Also, Ax = (z1,21,...,21)
for any x; in particular, if x = (1,0,...,0), then |x| = 1 and |Ax| = [(1,1,...,1)] = 4/m, SO

IA] > v/m.



Chapter 3

The Implicit Function Theorem and its
Applications

3.1 Thelmplicit Function Theorem

1.

With F(z,y, z) = 2> —4z+2y? —yzwe have F, = 22—4, F, = 4y—2, F, = —y,s0 VF(2,-1,3) =
(0,—7,1). Hence the equation F' = 1 can be solved locally for y or z but not z. Explicitly, z =
(2 —4z+2y? — 1) /yand y = (2 — /22 + 8(1 — 22 + 47)) /4; but z = 2 £+ /5 — 2y2 + yz, and the
square root vanishes at (y, z) = (—1, 3), so there are two values of = for some nearby values of y and z
and none for others.

. With F(z,y) = 2% + 2zy + 3y® we have F,, = 2z + 2y and F, = 2z + 6y, s0 at least one of F; and F,

is nonzero when (z,y) # (0,0), which is the case when F(z,y) = ¢ > 0. Ifc=0then F, = F, = 0
and the set where F' = c is a single point, and if ¢ < 0 then the set where F' = c is empty. (Clearly
F(z,y) = (z +y)* + 2y> > 0 when (z,y) # (0,0).)

. With u = (22 + y? + 22%)Y/2 and F(z,y,7) = u — cos z, we have F, = y/u and F, = 2z/u + sin z,

so F,(0,1,0) = 1 and F,(0,1,0) = 0. Hence the equation can be solved for y but not z.

The z and y intercepts of the graph are at (1,0) and (0, —e'/3); the tangent line is vertical at the former
point. Writing y = f(z) = (z — e'~%)'/3, we see that the graph is asymptotic to the curve y = z'/3
as ¢ — oo and asymptotic to the curve y = —e('=%)/3 as  — —oo; hence f maps R onto R. Also,
(d/dz)(z—e'=%) = 1+e'~% > 1, s0 f is one-to-one (in fact, strictly increasing). Hence f~! : R — R
exists.

With G(z,y) = F(F(z,y),y), we have Gy = F1(F(z, ),y)Fz(:v y) + Fo(F(z,y),y), 50 Gy(0,0) =
F5(0,0)[F1(0,0) + 1] # 0 when F5(0,0) # 0 and Fl(O 0) # —

With (u,v) = F(z,y, 2) = (zy+2yz—3zz, zyz+z—y), we have DF = (

At (1,1,1), then, we have DF = (_22 ?) _11>; o(u,v)/0(z,y) = —6, O(u,v)/0(z,z) = 0,

d(u,v)/d(y, z) = 3. So the equations can be solved for z and y or for y and z.

y—3z 42z 2y—3x
yz+1 zz—1 Ty '

19
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_ 2
. With (z,w) = F(z,y,u,v) = (u®+zv—1y, v3+yu—1r), we have DF = ( v 1 3u 3:2). At

-1 u y v
-1 -1 3 0
-1 1 1 3
of this matrix are nonzero, so the equations can be solved for any pair of variables.

2 2
o (s\ [ zy +zzu+yv O(s,t) Tz 2yv .
With (t) N (u3yz + 2zv — u2112)' we have o(u,v) det 3u?z — 2uv? —2ulv+2z)’ which

equals —2 when all variables are set equal to 1. Hence the equations can be solved for » and v.

(0,1,1,—1), then, we have DF = . The determinants of all the 2 x 2 submatrices

8(u, v, w) 22 2y 2z
Withu = 22+ 9?4+ 2%, v = zy+tz,and w = zz+ty+ef, wehave ———~ =det | y = t |,

0(x,y,2) J
which equals 8 at (z,y, z,t) = (—1,—2,1,0). So the equations can be solved for z, y, z.

3.2 CurvesinthePlane

1.

(@) S is a smooth curve (an ellipse); VF = 0 only at (0,0) ¢ S; y = f(z) near any point except
(£4/3,0); = = f(y) near any point except (0, 1)

(b) S is the union of two smooth curves (a hyperbola); VF = 0 only at (0,0) ¢ S; y = f(x) near any
point except (++/3,0); z = f(y) near any point.

(c) S is a smooth curve (one branch of a hyperbola); V F never vanishes; y = f(z) except near (1/3, 0);
z = f(y) globally.

(d) S is the union of the three lines z = 0,y = 0, and z + y = 1; VF = 0 at the three points where
these lines intersect; elsewhere, y = f(z) near all points of the linesy =0and z+y = 1and z = f(y)
near all points of the linesz =0and z +y = 1.

(e) S is the union of {(0,0)} and the parabola y = z? + 1; VF = 0 at (0,0) but not on the parabola;
y = f(x) on the parabola; z = f(y) near any point of the parabola except (0, 1).

(f) S is the parabola y = z2; VF(0,0) = 0 but S is still a smooth curve there; y = f(z) globally;
x = f(y) near any point except (0, 0).

(9) S is the discrete set {(0, (2n + 3)7) : n € Z}; VF = 0 at each point of S.

() V(2P +yP) = p(zP~1,yP~1) # (0,0) except at (z,y) = (0,0) ¢ S,, so S is locally a smooth curve.
Sy is also connected; see part (b).

(b) If p =1, S, is a straight line. If p = 2, .S, is the unit circle. If p > 1 is odd, S, is the graph of
y=(1- a:”)l/l’, a curve that is asymptotic to the line y = —z as ¢ — +oo but has a “bump” in the
middle where it goes through the first quadrant between (0,1) and (1,0). If p > 2 iseven, S, is asimple
closed curve intermediate between the unit circle and the square with vertices at x = +1, y = +1.

(c) If p is even, the top and bottom halves of S, are graphs of y = (1 — :cp)l/p, a continuous function
on [—1, 1] that is differentiable except at the endpoints; likewise with = and y switched. If p is odd, S),
is the graph of y = (1 — a:i”)l/P, a continuous function that is differentiable except at z = 1; likewise
with z and y switched.

. (a) Sis the parabola z = (y — 1)%2 — 1.

(b) S is the half-line y = = + 2, z > —1; the endpoint (—1,1) is £(0), and f'(0) = 0.
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(c) Sisthe line y = z + 2; £'(0) = 0 but S is still smooth at £(0) = (-1, 1).

(d) S is the astroid 2/3 4 y2/3 = 1, a simple closed curve with cusps at +(1,0) and (0, 1), which are
the points f(t) where f'(t) = 0 (t = inm, n € Z).

(e) S is a limagon; a reasonable sketch can be obtained by drawing a smooth curve from (2,0) to (0, v/3)
to (—1,0) to (0,0) to (—1,0) to (0, —/3) to (2,0) (corresponding to ¢t = n7/3 forn = 0,...,6). Itis
a smooth curve except at (—1,0), where it has a self-intersection; £'(¢) never vanishes.

4. (a) The left-hand and right-hand derivatives of ¢ at s = 0 are both 0.
(b) Since sin?¢ + cos®¢ = 1, as ¢ traverses the intervals [0, 37, [, 7], [, 3x], and [3, 2], £(¢)
traces out the line segments from (1,0) to (0,1) to (—1,0) to (0, —1) to (1, 0). Since (d/dt)p(cost) =
+2costsint and (d/dt)p(sint) = +2sintcost, f'(t) = 0 when ¢t = inx for n € Z; the points
f($n) are the corners of the square.

5. (a) One sees that y%(1 — z) = 2?(1 + z) on S by substituting in z = (#2 — 1)/(t? + 1) and y =
t(t? —1)/(¢? +1) and simplifying. Conversely, if (z,y) satisfies this equation, then (z,y) = f(¢) where
t=y/z (t=£Lif (z,y) = (0,0)), because z = (y* — %)/ (y* +2%) = ((y/=)* - )/ ((y/=)* + 1) =
(2 —1)/(t? +1)and y = (y/z)r = tz.

(b) For |t| very large, (z,y) = (1,t), so S is asymptotic to z = 1. As ¢ goes from —oc to —1 to 1 to oo,
f(t) goes from (1, —o0) to (0, 0), makes a loop through (—1, 0) and back to (0,0), and goes from (0, 0)
to (1, 00).

(c) We have (0,0) = f(+£1). The curves described by £(¢) for ¢ near —1 or 1 are both smooth; they are
tangent to the lines with slope +1 at the origin. One can see this from the nonparametric representation
too: if  is small, then 1 & = ~ 1, so the equation y2?(1 — z) = z?(1 + z) gives y? ~ z2, or y ~ +x.

6. (a) This is obvious: F3 = 0 if and only if either F; = 0 or F, = 0.
(b) VF3 = FiVFy, + FoVF, =0when F; = F5, = 0.

3.3 Surfacesand Curvesin Space

1. (a) S isthe plane z + y = z; 9,f and 9,f everywhere independent.
(b) S is the cone (z/a)? + (y/b)? = 2%; 8,f = 0 at the origin (the vertex of the cone).
(c) S is the one-sheeted hyperboloid =2 + y? — 22 = 1; d,f and 9, f everywhere independent.
(d) S is the paraboloid z = z2 + y?; 9,f = 0 when « = 0, but the surface is nonsingular.

2. (a) With f(u,v) = (e*™, u — 3v, 5(u? +v?)) we have (1,-2,1) = £(1,1), 9,£(1,1) = (1,1,1), and
0yf(1,1) = (—1,-3,1). The cross product of the latter vectors is (4, —2, —2), so the tangent plane is
4z—-1)—-2(y+2)—2(—1)=00r2z —y —z=3.

(b) With f(u,v) = ((u+v)~!, —u —e?, u3), we have (1,-2,1) = £(1,0), 9,f(1,0) = (-1,-1,3),
and 9,f(1,0) = (—1,—1,0). The cross product of the latter vectors is (3, —3,0), so the tangent plane
is3(x—1)—3(y+2)=00rz—y=3.

3. (a) Using polar coordinates in the zy-plane, f(u,v) = (ucosv, usinv, f(u)).

(b) Using polar coordinates in the yz-plane, f(u,v) = (u, f(v)cos 8, f(v)sin®).
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() f(z,y) = (z,y,—/1+ 222 + 42) and g(u,v) = (sinhu cos(v/v/2), sinhusinv, — coshu) are

two of the possibilities.
d) f(u,v) = (3cosu, v, 3sinu).

(a) The cross product of the normal vectors (1, —2,1) and (2, —1, —1) is 3(1, 1, 1), and one point in the

intersection is (1, £, 8) (set z = 1 and solve for y and z), so £(t) = (1, £, 3) + ¢(1,1, 1) works.

(b) The cross product of the normal vectors (1,2,0) and (0,1, —3) is (—6,3,1), and one point in the
intersection is (3,0, —%) (set y = 0 and solve for z and z), so f(¢) = (3,0, —%) + t(—6,3,1) works.

(a) Substituting z = 1 — z in the equation of the sphere gives 222 -2z +y? =00r (z—3)2+ 5y = 1
Parametrize this ellipse in the usual way: z = 3 + % cost, y = \/5 sint;thenz =1 —2 = — § cost

(b) (5’_ﬁ’ 1) corresponds to ¢t = —1m; we have (z,y,z)'(t) = (—3sint, \/_(:ost L sint), which

equals (3,0, —3) att = —5m; S0 £(t) = (3,75, 3) + (5,0, —5) works.

Perhaps the best way to nail this is to perform a rotation around the y-axis to make the plane horizontal.
Namely, let ¢ = +/1 + a2 and

wy 1/1 a\(z\ _ 1[z+az
(v) T ¢ (—a 1) (z) T (—am—l—z) ’
(The matrix is orthogonal since its columns are orthonormal, so this transformation preserves shapes.)
In these coordinates the plane is v = 1/c and the cone is (au +v)? = (u — av)? + c2y? or ?y% + (1 —
a®)u? —4auv = (1—a?)v?. Thus the intersection is the curve c?y? + (1 —a?)u? —dau/c = (1 —a?)/c?
in the plane v = 1/c with coordinates (y,u). This is clearly a circle if a = 0, an ellipse if 0 < |a| < 1,
a parabola if |a| = 1, and a hyperbola if [a| > 1. Parametrizations may be obtained in the form
y = asint, u = Bcost + «y in the elliptic case and y = asinht, u = B cosht + «y in the hyperbolic

case (for suitable o, 8,v), and y = t, u = :tﬁt2 in the parabolic case.

The statement is as follows, and the proof is as outlined in the text on p. 130. (a) Let ¥ and G be
real-valued functions of class C'* on an open setin R?, and let S = {x: F(x) = G(x) =0}. Ifac S
and VF(a) and VG(a) are linearly independent, there is a neighborhood N of a in R? such that S N N
is the graph of a C'* function from some interval in R into R? ((y,z) = g(z), or similarly with the

variables permuted). (b) Let f : (a,b) — R3 be of class C*. If f'(tg) # 0, there is an open interval T
containing to such that the set {£(t) : ¢ € I'} is the graph of a C'! function as in part (a).

3.4 Transformationsand Coordinate Systems

1.

2.

(a) = constant: circles centered at the origin. y constant: half-lines starting at the origin. (See answer in
back of text for the inverse and Jacobian.)

(b) det Df = 2. x constant: the lines u = ¢ (¢ > 0). y constant: the curves u = c/v? (c > 0).
£~ (u,v) = (Vau, vy/u).

(c) det Df = 0. The range of f is the parabola v = %vZ, and each line x = ¢ or y = ¢ maps onto this
parabola.

@z= —%(u —20),y = —%(2u —v)(ie,f 1= —%f).
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(b) Substituting the formulas for x and y into the equations for the lines gives v = —u, v = u, and
5v — 4u = 3; the image is the triangle bounded by these lines.

(©) (0,0) = £(0,0), (-1,2) = £(5,3), and (2,1) = £(0,—1); the region is the triangle with these
vertices.

3. (a) If sinz = a and cos z = b, we have (u/a)? — (v/b)? = 1. If coshy = o and sinhy = 3, we have
(u/@)® + (v/B)* = 1.
(b) O(u,v) _ ( coszcoshy sinzsinhy
o(z,y) —sinzsinhy coszcoshy
sinh? ) + sin? zsinh? y = cos? z 4 sinh? y, which vanishes when cos z = sinhy = 0, i.e., when
y=0and z = (n + §)m; for these values, u = &1 and v = 0.
(c) The foci of the hyperbola (u/a)? — (v/b)? = 1 are at (+c,0) where ¢ = a? + b%; with a,b as in
(@) we have ¢ = 1. When |a| > |b], the foci of the ellipse (u/a)? + (v/B)? = 1 are at (£, 0) where
v? = o? — B?; with o, B as in (a) we have v = 1.

2

) = cos® zcosh?y + sin® zsinh?y = COSZJI(l +

2

4. (a) The lines z —y = 0 and z — y = 1 meet the hyperbolas zy = 1 and zy = 4 in the first quadrant and
again in the third quadrant.

1 -1
(b) Df = (y - >,J—x+y.
(c) The lines z — y = constant are tangent to the hyperbolas zy = constant along the line y = —x.
(d)Wehave z = y+u,s0v = (y+u)yory? +uy —v =0; hence y = %(—u —vVu? + 4v), where the
minus sign is necessary to make y = —3 when (u, v) = (5, —6), and then z = y+u = & (u—vu2 + 4v).
With w = 1/v/u? + 4v, we have Dg = % ( L —uw _Zw).

—1—uw —2w
(e) Df(2, —3)Dg(5,—6) = (_13 _21> (:§ :D - ((1) (1))

_ 3 2
5. Let (u,v) = f(z,y) = (y/2?,zy). Then Df = ( 2?2/3; 1/;5 ) and det Df = —3y/z%. Also

y =ux?,$0x = v/y = v/ux?, whence z = (v/u)'/3 and y = uz? = (uv?)'/3.

6. (@) r = c¢: the sphere of radius c about 0. ¢ = ¢: the (half) cone z = (cot ¢)+/z? + y? (the positive
or negative z-axis if c = 0 or ¢ = =, the plane z = 0 if ¢ = %7r). 6 = c: the vertical half-plane
corresponding to the ray 8 = ¢ (polar coordinates) in the zy-plane.

sinpcosf rcospcosf —rsinpsinb
(b) Df = sinpsinf rcospsind rsinpcosf |, so one easily computes that
cos @ —rsingp 0

det Df = r2 sin ¢(cos? ¢ + sin? ) (cos? @ + sin? §) = r? sin .
(€) ro # 0 and g # 0 or 7; in other words, (xg, o) # (0,0).

I 0
DyF DyF
latter determinant is nonzero at (a, b), where F(a,b) = 0, then G is locally invertible there. Because
of the form of G, G~! has the form G!(u,v) = (u,g(u,v)) where g : R*** — RF is C*. For x
near a, let f(x) = g(x,0). Then G(x, f(x)) = (x,0), that is, F(x, f(x)) = 0, so f solves the implicit
function problem. Uniqueness follows from the uniqueness of G 1.

7. With G(x,y) = (x,F(x,y)), we have DG = ( ) and hence det DG = det Dy F. If the
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3.5 Functional Dependence

-1
1. (8) Df = 1 has rank 2 everywhere (the first two rows are independent; the
2:1: 2y 2z —2y 42z
third is 2 + 2y times the first plus = + 2z times the second). h = 1(f + ¢)? + (f — 9)%.

2$ 2y 2z
(b) Df = is nonsingular except on the plane y + z = 2z.

2cosx —y_1/2 sinz 0
(c) Df = —2y coszsinz cos’z —1 0] isdefined for y > 0 and has rank 2 there (the second
0 1

row is —2y1/2 sin z times the first). g = — f2.

T 1
(d) Df = ( zy+2)y 2(zy+2)z 2(zy + z)) has rank 1 everywhere (the second and third rows
- -1
are 2(zy + 2) and —1 times the first). h =2 — f and g = f2.
-1

z ! -y 1
(e) Df = z~! —y ! —1 | has rank 2 on the set z,y > 0 where f is defined (the
yt—2yz7? 2071 —zy™2 0

first two rows are independent; the third is (22 — 2y?) /2zy times their sum). h = el/19)/2 4 2¢=(/+9)/2,

1 -1 1
(f) Df = (2:1: —2y 0) is nonsingular except on the plane z = 0.
1 0 1

2. (a) THEOREM. Letf = (f,g) be a C! map from a connected open set U C R? into R?. Suppose
that Df(x) hasrank 1 at every x € U. Then every xo € U has a neighborhood N such that f and
g are functionally dependent on N and f(V) is a smooth curve in R2. PROOF: Letu = f(z,y) and
v = g(z,y). Since Df(xq) has rank 1, it has at least one nonzero entry, which we may take to be
0. f(x0). By the implicit function theorem, the equation u = f(z,y) can be solved near x = x( and
u = ug = f(xg) to yield z as a function of » and y. Then v = g(z,y) becomes a function of » and
y too. Implicit differentiation of the equations v = f(z,y) and v = g(z,y) with respect to y (taking
u as the other independent variable) gives 0 = (0, f)(9yx) + (0, f) and Oyv = (029)(Oyx) + (Oyg).
Solving the first of these for 9,z and substituting in the second gives d,v = (0, f) " det Df = 0, s0 v
is a (smooth) function of « alone, say v = ¢(u). Hence g(z,y) = ¢(f(z,y)), and the range of f near
xo is the smooth curve v = p(u).

(b) THEOREM. Letf = (f, g, h) bea C' map froma connected open set U C R? into R®. Suppose that
Df(x) hasrank 1 at every x € U. Then every x in U has a neighborhood N such that f, g, and h are
functionally dependent on N and f(V) isa smooth curvein R3. PRooF: The proof is similar to part (a),
so we just sketch it. Let u = f(z,y), v = g(z,y), w = h(z,y). We may assume 9, f(xg) # 0. Then
we can solve the equation v = f(z,y) for = as a function of « and y, making » and w into functions
of w and y. One calculates that 8,v = (8, f) ~1[0(f,9)/0(z,y)] and dyw = (05 f)~[O(f, h)/O(z,y)],
which both vanish since Df has rank 1. Thus v = ¢(u) and w = (u) (which describes a smooth

curve), and g = ¢(f) and h = 9(f).



Chapter 4

Integral Calculus

4.1 Integration ontheline

1. The sup and inf of f on any nontrivial interval are 1 and 0, respectively. It follows that for any partition
P of any interval [a, b] we have Spf =b—aand spf =0, S0 TZ(f) =b—aand I%(f) = 0.

2. If ¢ > 0, for any interval I we have sup;(cf) = csup;(f) and inf;(cf) = cinf;(f); it follows that
Sp(cf) =cSp(f) and sp(cf) = csp(f) for any partition P of [a, b] and hence that f; cf = cfabf. If
¢ < 0, the orders are reversed (sup;(cf) = cinfr(f), etc.) but the final result is the same.

3. We use Lemma 4.5. Given ¢ > 0, let P be a partition of [a, b] such that Spf — spf < e. Let P’
be the partition obtained by adding the subdivision points ¢ and d to P (if they are not already there).
By Lemma 4.3, Sp/f — sprf < e. Let @ be the partition of [c, d] obtained from P’ by omitting the
subintervals belonging to [a, c] or [d, b]; then S f — sqof < e. By Lemma 4.5, f is integrable on [c, d].

4. If f < gthenspf < spgand Spf < Spg for any partition P of [a, b]; it follows that ];f < f:g

5. Given an interval I C [a,b], let M and m be the sup and inf of f on I, and let L and [ be the sup
and inf of [flonI. If f > 0onIthen L = Mand! = m,andif f < O0OonIthenL = —m
and [ = —M; in either case, L — [ = M — m. If f changes sign on I, then L = max(M,|m|)
and! >0,50L — 1 < L < M+ |m| = M — m. It follows that for any partition P of [a, b] we have
Selfl—splf| < Spf—spf,and it follows from Lemma 4.5 that | f| is integrable. Moreover +f < |f|,

so£ [P f < [P|fl hence | [2fI < [21f].

6. Let! = limxz,. Given e > 0, the interval I of length %e centered at / contains x,, for n sufficiently
large, say n > N. For j = 1,..., N, let I, be the interval of length ¢/2N centered at ;. Then every
x; is contained in Uév I;, and the sum of the lengths of the I;’s is e.

7. If A= f(zo) > 0 and f is continuous at z, there is an interval [c,d] C [a, b] containing z, such that
f(z) > LAforz € [c,d]. By Theorem 4.9¢, [P f= [Cf+ [T+ [T f> [ f>LAd~¢) >0

8. () If P ={xo,...,zs}, let P" = {xo/c,...,z1/c}; then P «<— P'is a one-to-one correspondence
between partitions of [a, b] and partitions of [a/c, b/c]. The sup and inf of f(z) on [z;_1,z;] are equal
to the sup and inf of f(cz) on [z;_1/c,z;/c], and the length of the former interval is c times the length
of the latter. It follows that Spf = ¢Sp/ f(c-) and spf = espr f(c-); the result follows.

25
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(b) and (c) are similar; one considers P! = {—zy,...,—zo} or P' = {zo +¢,...,x5 + c}.

g and h are uniformly continuous on [a, b], and K = g([a, b]) x h([a, b]) is a compact set in the plane, so
f isuniformly continuous on it. Thus, given e > 0, we can choose n > 0such that | f (u,v)— f(u',v")| <
€/2(b — a) whenever (u,v) and (u',v") are points in K with |u — u'| < pand |[v —v'| < 7, and we can
choose §y > 0 small enough so that |g(z) — g(z')| < n and |h(z) — h(z")| < n whenever z,z" € [a, b]
and |z — z'| < &y. Next, let p(z) = f(g(z),h(z)). By Proposition 4.16 we can choose § > 0
small enough so that 6 < ¢y and f: p(z) dz — spp < e for any partition P = {z;}§ of [a,b] with
max(z; — ;1) < d. Since ¢ is continuous, its infimum on [z;_1,x;] is achieved at some point &, so
spp =Y. ¢ 5])( — xj—1). Then for any =%, z7 € [z;-1, ;] we have

() dz =Y flg(a}), h(@)))(; — zj-1)

/ d$—Z‘P£] — 1)
Si‘l‘Zm (xj—zj_1) =€

IA

+ 3 (&) = Flg(a)), h(z)))|(zj — zj-1)

4.2 Integration in Higher Dimensions

1.

@) If Z ¢ UM R,, where 3" A(R,,) < e, the same is true of U.

(b) Given e > 0, choose a finite collection of rectangles R, (j = 1,...,kandm = 1,... M;) such that
Zj C UTA,;IJZI ij and Zm A(ij) < G/k for each j. Then Ullc Zj C Uj,m ij and Zj,m A(ij) <
€.

. (a) Given a partition P = {z;}7 of [a,b], let m; and M, be the inf and sup of f on [z;_1,z;]. Then

the graph of f is contained in (J] R; where R; = [z;_1,2;] x [m;, M;], and the sum of the areas of
these rectangles is Spf — spf. This can be made arbitrarily small (Lemma 4.5), so the graph has zero
content.

(b) The boundary of S is the union of the graph of f and three line segments, all of which have zero
content, so S is measurable. Let M = max(, 3 f. Givena partition P = {z;} of [a,b], let Q = {z;; yx }
be a partition of [a, b] x [0, M] with the same z;’s, such that each m; and M (as in part (a)) is among
the y’s. Then the upper and lower approximations to the area of S corresponding to this partition are
just Spf and spf; as these can be made arbitrarily close to f: f, it follows that fabf is the area of S.

Given € > 0, choose a partition P of a rectangle containing S such that A(S) — spxs < %e. Let
Ry, ..., Ry be the subrectangles of the partition P that are contained in .S (so spxgs is the sum of
their areas). For each m, let R,y be the rectangle with the same center as R,,, and side lengths /1 — ¢
times as big, where § < €/2A(S); then A(R,) > (1 — 8)A(Ry), and Ry, C S, Let Q be the
partition obtained by adding all the z (resp. y) coordinates of the sides of the ﬁ{m’s into the collection
of z;’s (resp. yi’s) in P. Then the R,’s are among the subrectangles of the partition @, S0 sQx gint >
EA(ﬁm) > (1-9)spxs > (1—(e/24(S)))(A(S)—%e) > A(S)—e. It follows that A(S™™) > A(S),
and the reverse inequality is obvious.

This really follows from Exercise 3 and the observation that if R is a rectangle whose interior includes
S, then the outer area of S plus the inner area of R\ S equals the area of R, and likewise with S replaced



4.3. Multiple Integrals and Iterated Integrals 27

by S. The inner area of R\ S is the same as the inner area of its interior R \ 'S, which is the same
as the inner area of R\ S since the boundary of R has zero content; it follows that A(S) = A(S).
Alternatively, one can redo the argument of Exercise 3 by considering a partition of R and shrinking the
rectangles that do not meet S slightly to produce rectangles that do not meet S.

5. Given any partition of a rectangle whose interior contains S, the subrectangles of the partition fall into
three classes: (i) those contained in S, (ii) those that intersect 8,5, and (iii) those that do not intersect
S. (Any rectangle R that intersects both St and (S)¢ also intersects 8S; otherwise RN.S™ and RN(S)¢
would be a disconnection of R.) The sum of the areas of the rectangles in class (i) (resp. class (ii), classes
(i) and (ii)) approximates A(S™*) (resp. A(0S), A(S)). It follows that A(S™™*) + A(9S) = A(S), and
hence by Exercises 3 and 4 that A(S) + A(9S) = A(S).

6. (a) U is a union of open rectangles, so it is open (any point is an interior point).

(b) Let U,, be the approximation to U obtained by stopping at the nth stage, with the rectangles of length
4~ U, is the union of 1 rectangle of area i, two rectangles of area % ..., 2" L rectangles of area 4.
The sum of these areas is (1 —2™), and there is some overlap, so A(U,) < 3;infact A[U,) < c < 3
with ¢ independent of n. If P is any partition of the unit square, the union of the (closed) subrectangles
of P that are contained in U is a compact set, and the open rectangles out of which U is built are an
open cover of it, so by Heine-Borel there is a finite subcover in other Words, all these subrectangles are
contained in U, for some n. It follows that spxy < ¢ < 3,50 A(U) <

(c) U contains every (z,y) € Rsuchthat0 < y < 1 and z has a termlnatlng base-2 decimal expansion;
the set of all such (z,y) is dense. Hence A(U) = A(R) = 1 by Exercise 4.

(d) We have A(V) = A(R) — A(U) =1—1=0and A(V) = A(R) — A(U) >1— 5 = 3.

7. Suppose<p()_0 With F(z) = [ f(t) dt, f f(@)p(r)dr = F(z fF x)dr =
—f F(z dx since F(a) (b ) = 0. Slnce ¢ > 0, we can apply the mean value theorem
to get — f F o'(z)dz = — )f o'(z)dz = F(c)<p a) [ f(z) dz, the claimed result

for the case (p(b) = 0. Moreover, for any constant C, f f(z ( )+ Cldz = ¢(a) [} f(z)dz +

Cf;f(x) dz = [p(a) + C] [ f(= da:-l—Cfc f(z)dx. Flnally, if o(b) # 0, we apply this result with
o(z) replaced by ¢(z) — ¢(b) and C' = p(b) to get the desired conclusion.

4.3 MultiplelIntegralsand Iterated Integrals
L@ [fsl@+3%)dA = [1 [V (@ + 3P dyde = [1[evT—22 + 3(1 - 2?)?ds =
[5(1 —2%)¥? + §(z — 3% + 5a®))L, = 5.

(b)ffsm —VY)dA = fo f2y$ _\f)df”dy—fo $3_$\/_2ydy—f0 3/2_%96+
5/2)dy:[24 595/2 21y +7y7/2]0—35(5 V2).

fl zf:? 6zy( 1 -z — y) dydr = f01[3:1:(1 — z)y? — 229%)) Cdr = fol z(l — z)3dz =
[2 — 234 254 5m = —0.

3. (a) and (b): See answers in back of text.
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10.

11.

12.

13.
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(c) The parabolas intersect at (—3, 9) and (1,1), and they aregivenbyz = £,/yandz = -2 £ /10 —

ThusffsfdA—f f6 do—a? ,y)dydw—fo f [ @y dmdy+f1 f 2+°10 Y (=, y)dydaH—

f_QQj\/% 7y) dy dz.

(a) and (b): See answers in back of text.

© fo"* [2 f (@ y) dz dy.

@ J7 [P ye™ drdy = [} 5(ye® — e’y)dy = [fye® — e — je*y’]} = §eb — e,

(b) fol f\lﬁ cos(y® + 1) dy dz = fol f0y2 cos(y® + 1) dy dz = fol y? cos(y® + 1) dy = £sin(y> + 1)|§ =
1
3
(c) f12 ftl/x ye™ dy dz = f11/2 f12/y ye™ dx dy = f11/2(62y —e)dy = [3e* — ey]}/2 =1 —e.

(sin2 —sin1).

. The region of integration is bounded above by y = z + 1, below by y = 22, and on the left by

the y -axis. Reversing the order of integration gives fol o v/2 fly)dzdy + ff fy"_g{/Q fly)dzdy =
Y)\VYy/2dy + fl Y(Wy/2-y+1

Reversing the order of integration gives h(z fo [Fg(t)dydt = [ (z —t)g(t) dt.
See answer in back of text.

(a) The region of integration is bounded below by the region in the first quadrant of the zy-plane under
the parabola z = 1 — y? and above by the plane z = y.

(b) and (c): See answers in back of text.

The volume is f“ fé’ @) 1 - Ydydz = [ $be(l — £)2dz = Labe. The z-moment is
Jo =@l p(1 — 2 _ 9y dy dx = fO“ %bcw(l — )2 da: = 24a2bc so the z-coordinate of the center
of mass is a By symmetry the ¢ and z coordinates are b and 7C

The mass is fo fo fo yzdrdydz = fo dz fo ydy fo zdz = 8. The z-moment is
fo 2 [2 zyzdz dy dz = 8; the y-moment is [ [ [2 42z dzx dy dz = 22, and likewise the z-moment
is 2. So the center of mass is (1, 3, 3).

22 —3 <z —1when —1 < z < 2, s0 the net charge |sf fo [ 32zdzdydm —2f (x —1)2 —
(z? — 3)?] dacsz_1 —zt +72? — 22— 8) dz = — 128,
() f is not integrable on S because it is unbounded (f(z,2z) = (22) 2 — oo as z — 0). However,

for fixed yo, f(z,y0) is continuous on [0, 1] except at the three points 0, yo, and 1 and is bounded in
absolute value by yO‘Q; hence it is integrable on [0, 1]. Likewise f(zg,y) is integrable on [0, 1].

®) Jy fo zy)dedy = [J[ffy~>de — [j2?dzldy = [jly™ — (-1 +y )y = 1, and
Jo Iy @y dyds = [J[- [§ =2 dy + [, y~2dyldz = [j[-z7" + (-1 +27")]dz = 1.

4.4 Changeof Variablesfor Multiple Integrals

f 1+Cose rdrdf = fZW 1(1 4 cos0)?df

3
57'('.
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10.

11.

12.

The volume is f”/2 [y [l rdzdrdd = 7rf0 r(1 —r)dr = w[3r? — 13§ = tm. The z-moment is

f”ﬁz [y [l cosOdzdrdf = [sin 6]/ /2[37" — 1r*]} = &. The y-moment vanishes by symmetry.

The z-moment is fw/z fo f zrdzdrdf == 01 s(1—r?)rdr = n[ir?—1r*){ = Ir. ThusT = 1/,
=0,andz = 3.

The top and bottom hemispheres are given by z = +v4 —r2,s0 V = 02” fol 2V4 —r2rdrdf =
—4m(4 — 1232} = 2x(8 — 3%/2).

The equation of the cylinder is 22 + y? = 2z, or r = 2cosf (—3m < 6 < ). Hence V =
f,:r/; 200509 —r)rdr df = fﬂ/Q 4 cos® 0 — 3 cos® 0) df = [20 +sin 20 — 3(sin 6 — £ sin® 9)]"/73/2:
2 —

In cylindrical coordinates with the origin at the center of the base, the mass is f02” fOR foh czrdzdrdf =
c(2m) (3 R?)(5h%) = LerR?K2.

In cylindrical coordinates, V = [ fo (VA= r2—1)rdrdf = 2n[- L (4—r2)32 = Lp2]¥3 — 37 Al

ternatively, in spherical coordinates, the plane z = 1 is give n by » = sec<p, so V =
OZW Oﬁ/3 fsiwr2 sinpdr dp df = %n fow/3(8—sec3 @) sinpdp = % [— 8(:os<p— = sec (p]ﬂ/?’ %7‘(’.
M= f Iy fo r)r?sinpdr dp df = c(27)(2)(3R® — ;R*) = }mcR*.

By symmetry the coordinates of the centroid are all equal, so it suffices to calculate z. The z-moment
is ”/2 ”/2(7' cos )r?sinpdr dp df = (3m)[5 sin <p]7r/2[1 r#]§ = 7&m, and the volume is (37) =
1 z =3
5T so zZ=3.

Letu = z—3y, v = 2z +y; then O(u,v)/d(z,y) =7, and z = %(u-l—?)v), y = 1(—2u+wv). The given
parallelogram P in the zy-plane becomes the rectangle R in the uv-plane grven by 0<u<10,0<v <

15. So the area of P is 1(10)(15); the - moment is [[pzdedy = & [1° [1°(u+ 3v) dudv = 3125

49
and the y-moment is [[,ydzdy = & [i° [i/°(—2u +v)dudv = — = 341,5, s0T=Bandy=—2.
(Shortcut: The centroids of P and R are therr geometric centers, which correspond under the map

(z,y) — (u,v). The center of R s clearly (5, 1), so the center of P is (22, —-2.).)

Let w = z+yand v = z — y; then d(u,v)/d(z,y) = —2, so ffs($ + y)4(gv _ y)_sdA _
%f_ll f13 utvP dudv = %[éuﬂl - Z111)—4]3 _ 8i

Letu = z+2y,v = z—2y+2,w = /3 z; then d(u, v, w)/d(x,y, z) = —4+/3, and the given ellipsoid
in zyz-space becomes the unit ball in uvw-space. Thus the volume of the ellipsoid is (1/4+/3) (47 /3) =

7/3v/3.

x = Jufv = y/uv O(,y) - Vifuv —y/ufv? _ 1
We have Vu/v and y %0 o) = det (m m) 5o Thus the

area is f14f14(1/2v dudv = 3[Slogv]} = 3log4, the z-moment is f14f14\/ Jv(1/2v)dudv =
S/} [—2071/2] = I, and the y-moment is fl fl wv (1/2v) dudv = 3[2u*/?]1[201/2]1 = &L,
Thus z = and g = 22g

D

4
9log4 9log4-’
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13. det DG = det (5, 5,) = —2(z>+y?),50 [[5(z2+y?) dA = L [[,|det DG|dA = L [} [} dudv =
3.

14. Wehavea(gc’y):det 1=v —u =u Also,z4+y=uandz/y = v ' —1,50u = z + y and
0(u,v) v u

v = y/(z + y); hence the = and y axes correspond to v = 0 and v = 1. Therefore ([ (z +y) 'dA =
fo Lyt ududy = 3.

15. In double polar coordinates, the unit sphere in R* is given by r2 + s2 = R?, and the volume element is

rs dr ds df de. Thus the volume of the ball is [>" [>™ [F fO T rsdrdsdddyp = (2m)? [FL(R2—
$%)sds = 2n?[L R2s% — 1Yl = In?R1.

4.5 Functions Defi ned by Integrals

1. (a) f is obviously C'! as a function of z for each ¥, and f(0,) = 0. For fixed z # 0, one studies the
behavior of f(z,y) asy — 0+ as in Exercise 9, §2.1. First one verifies (by I’Hopital) that f(z,y)/y* —
0 as y — 0+ for every k and (by induction) that 8§f(m,y) = Py(x, y—l)e—’”z/y for y > 0 where Py is
a polynomial. By induction again, it follows that for all £ > 0, B{ff(z,y)/y — 0 asy — 0+, and hence
that 8’“+1f(:v 0) exists and equals zero.

(b) F(z fO dy = z3[z~2e~"" 1Y)} = ze=*", 50 F'(z) = (1 — 22%)e*" and F'(0) = 1. But
O f(z, ) (3z 23: Yy ~2e=%"/v for y > 0, 50 9, £(0,7) = 0.

2. (@) F'(z fo ev/(1+ze¥)dy = [{1/(1+zu)du = z ' log(l4+zu)|$ =z tlog((1+exz)/(1+1)).
(b) F'(:c) = 272 cos(z® -23:—f1 ysin(zy?) dy = 227! cos(z®)—(2z) ! ff sinudu = 227! cos x5+
(2z)~!(cos x> — cos z).

() F'(z) = (3ac)_le3w2 34 [ e dy = z71ed 4 [z Te™]32, = z71(2e37” — %),

3. W(z) = (z = z)e” *g(z) + Jo(z —y+ e Yg(y)dy = h(z) + [; e* Yg(y)dy, so h"(z) =
W (z) + e~ m) + fo “'” yg( )dy = h(z) + g(z) + [W (z) — h(z)].

4. W (z) = Lsin2(z — z) g(z) + [; cos2(z —y) g(y)dy = [ cos2(z — y) g(y) dy, and so b" (z) =
cos2(z — ) g(z) — 2 [ sin2(z — y) g(y) dy = g(z) — 4h(z).

5. F'(z) = f(=z,¢(2))¢' (z) — f(z,9(x))d' +f¢(w)<9 fz,y)dy

6. For n > 1 we have (f[ N(z) =[(n - (z—-2z)" f(z —I— fo n—1)(z —y)" 2f(y)dy] =
[(n =207 [§ (@ — )" f(y) dy = f(2). Forn =1, flU(z) = [ f(y) dy, s0 (f1)' = /.

7. (@) O = —3t73/2 fl —@9)?/4 £ () dy 4 /2 fol e (@-v) /4t[($ — y)2/4t%)f (y) dy. On the other
hand, d,u = t /2 [} e~ @9/ (& — y)/2t] dy, s0 F2u = t /2 [} e~ @0/ M]((z — y)/20)% —
(1/2t)]f(y) dy = Byu.

(b) For short, let w = (z — y)? + t2. Then §,v = tfol(—l)w_QZ(:v —y)f(y) dy, so

1 1
o=t [ 2 4a— o )y +t [ (D 2s) dy
1 1
— st /0 (2 — 9)Pw S f(y) dy — 2t /0 w2 (y) dy.
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On the other hand, 8w = [ w™ ' f(y) dy + 2¢2 [} (=1)w 2f(y) dy, s0
1 1 1
92 — ¢ / (~1)w~22t dy — 4t / w2f (y) dy — 242 / (—2)w3(26)f (1) dy
0 0 0
1 1
=56 [ w b rw)dy -6t [ w iy
0 0

Thus, in 92v + 92v, the terms involving w3 add up to 8t fol w™2f(y) dy, and the terms involving w2
add up to the negative of this quantity.

8. We show that for each x € T, 01 F(x) exists and is given by (4.48), and hence is continuous by
Corollary 4.53a. Let h; = (h;,0,...,0) where h; — 0 and each &; is small enough so that the points
x + h; are all in a ball contained in T'. By the mean value theorem, |f(x + h;, y) — f(x, y)|/|hj| =
|01f(x + th;,y)] < C,and [f(x+ h;,y) — f(x,y)]/h;j — O, f(x,y) for each y as j — oo.
Hence, by the bounded convergence theorem, the integrals of these difference quotients, which are
[F(x 4+ hj;) — F(x)]/h;, converge to [---[< 8, f(x,y) d"y, which is therefore 9, F(x).

4.6 |mproper Integrals

1. (a) Converges by comparison to z—3/2.
(b) Diverges by comparison to 1.

(c) Converges by comparison to e~* (for example), using the fact that 22 < e® and e < 722 for
large x.

(d) The integrand is bounded in absolute value by (z? —z — 2) !, which is comparable to z 2 for large
x; hence converges absolutely.
(e) Diverges by comparision to z . (tan(0) = 0 and tan’(0) = 1, so tan(u) ~ u for small u.)

2. (a) Converges since z/v1 — 2?2 =~ 1/4/2(1 — z) for = near 1.
(b) Diverges by comparision to (z — $m)~! since sinz ~ 1 and cosz = sin(37 — z) ~ s — z for z
near 1.
(c) The integrand equals [(3—x)+/1 — z]~*, which is roughly 1/24/1 — z for z near 1; hence converges.
(d) Converges since 1/z'/2(z? + z)'/3 = 1/25/5(x 4 1) ~ x5/ for z near 0.
(e) Forznear 0,1 — cosz ~ %x2 and sin® 2z ~ (2z)3, so the integrand is ~ 1/16x; hence diverges.

3. (a) The integrand is comparable to z~3/4 near 0 and less than e~ near infinity; hence converges.

(b) The integrand is ~ z~1/3 near 0 and ~ (1 — z) 2 near 1; hence f01/2 converges but f11/2 diverges.

(c)Forznear 0, e® — 1~ z,50 /z/(e* — 1) = Y2 and fol converges. For z large, the integrand is
less than e~%/2; hence J1° converges.

(d) The integrand is &~ —1/x for z near 0; hence f01/2 diverges. (f11/2' ff and [, all converge, though.)
(e) |z~/®sinz~!| < z~'/5 for z near 0 and z~'/5sinz—" ~ 2z~%/5 for z near infinity; hence con-
verges.

(f) Forz < 0, e%/(e*+22) < €%, s0 f_ooo converges; but for z > 0, e*/(e® +2?) ~ 1, 50 [, diverges.
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(@) This foIIows from Corollary 2.12 (lim,_, (log z/z/P) = 0, so (log z) ™ > =~ for large z).
(b) [;°z (logz) P dz = f13§2 u~P du converges if and only if p > 1.

(@) As in the preceding exercise, (loglogz)™ > (logz)~¢ for z large.
(b) f°(zlogz)~! (loglog z) P dz = fliZlog?, u~P du converges if and only if p > 1.

@ [ fle)ds =27 +272 4 .. 4217k =1 = 21—’C sosince f > 0, for k < b < k + 1 we have
1217k < ¥ f(z)dz <1 —27F. Itfollows that [° f(z)dz = 1.

(b) One possibility: f(z) = 2% for z € [k, k + 272¥] (k = 1,2,3, ...)and f(z) = 0 elsewhere.

Let M = sup{y(z) : £ > a} (which exists since ¢ is bounded). Given e > 0, there exists z such that

o(xog) > M — €. Since ¢ is increasing, we have M — e < ¢(z) < M and hence |¢(z) — M| < € for
all z > x. It follows that lim,_, o ¢(z) = M.

Granted the hint, we have [z !|sinz|dz > ¢ [{° 2~ dz = co. One way to carry out the hint is as
follows. On the one hand, f (nt1) ™ sinz|dz > [ n+1)”[(n-|— 1)7] 7| sinz|dz = 2/(n + 1)7. On

the other hand, fm’:“)“ —ldz < fn:+1)7r[n7r] Ydz = 1/n. Since 2n/(n + 1) > 1 foralln > 1, we
cantake ¢ = 1/m.

Integrating by parts, f f(z)g(z)dz = f F(z)g'(z)dz. Asb — oo, F(b) remains
bounded and g(b) — 0, so F( )g(b) — 0. On the other hand, smce g <0, |F(z ) "(z)] < Clg'(z)] =
—Cyg'(x), and — [ ¢(z) dz = g(a) — limy_, g(b) = g(a). Hence [ F(z)g'(x) dz is absolutely
convergent.

The antiderivative of 1/z(z + 2) is 3 log |z/(z + 2)], s0

L dx 1 z —¢ z !
PV. — = lim — 1 _ 1
/_1:c(x+2) e—l>I(I)}k2([Og‘x+2]_1+|:0g‘x+2]e)

1 1
= lim—(log ¢ —log1l+log - —log € )

e—0+ 2 —e+ 2 3 €+ 2
1 e+2 1
= ——1 lim 1 =—=1 .
31083+ i o8 =g =~ g3

We have p(z) = ¢(0) + ¢'(0)z + 5¢"(0)z? + R(z) where |R(z)| < Cz? for |z| < 1, s0

1 1 II
o(z) & / dr o / /
P.V. = -PV. — - P. — - P. .
v/_1 %) da = (0) V/_1$3+<p(0) v S+ftry $3

The last integral is proper, and the first and third P.V. integrals exist (and are zero), but P.V. f_ll r2dx =
oo; hence the original P.V. integral exists if and only if the coefficient ¢’ (0) of this term vanishes.

4.7 Improper Multiple Integrals

1.

Spherical coordinates turn fff\x|<1 |x| P d3x into 47 f01 r~P*+2 dr, which converges precisely when p <
3. Likewise, the integral over |x| > 1 becomes 4« [ r~?*2dr, which converges precisely when
p> 3.



4.7. Improper Multiple Integrals 33

2. (a) In spherical coordinates, the integral is 47 f0°° r2dr/(1 + r2), which diverges since the integrand
tends to 1 at infinity.

(b) In polar coordinates, the integral is ”/2 rdfdr/(1+72)? = -ig(1+r2) e =1ix
0 Hee = g7
10

(c) In spherical coordinates, the integral is f N fO T COS <ps1n<pdrdgad9 = 2m[% cos® ¢ [% 8 =
27 /3.
(d) ffw>0$e Y dA = fo e~ d:vf eV dy = [—ge_m 1oV = &4/7.

(e) In polar coordinates, the integral is —1cos? O dr df; the r-integral diverges.
0

3. By the extreme value theorem, p is bounded, say |p| < C. For a given x, let R be big enough so that
p(x—y) = 0for |y| > R. Then the integral defining ¢(z) is dominated by (C/4) fff\y\<R ly| "t d¥y =

CfOerr < oQ.

4. (a) Since the first quadrant of the unit disc is contained in the square .S, using polar coordinates we have

M5 |f1dA > f”/z 3 77" cos® @ — sin® 8| dr df; the r-integral diverges. (This could also be done by a
calculation like that in part (b) below, using the fact that [f | f|dA = 2f0 Iy f(z,y) dydz.)
(b) We have f(z,y) = (22 + y?)~! — 2y2(2? + y?)~2, so for a fixed y > 0 the substitution z =
ytanw turns the indefinite integral [ f(z,y)dz into y ! [(1 — 2cos? u) du = —y*lfcos 2udu =
—y lsinucosu = —z/(x? + y?). Hencefo z,y)dz = —1/(1 + 3> )andsofo fo z,y)drdy =
—%ﬂ. Since f(z,y) = —f(y, z), it follows that fo fo (z,y)dydr = i .



Chapter 5

Line and Surface Integrals, Vector Analysis

5.1 ArcLengthandLinelntegrals

1@ [2" g ()] dt = [0 \/a®(sin® t + cos?t) + b2 dt = [2" \/aZ + B2 dt = 2w/ + B2
(b)fo |g )| dt = fo \/t2——+4t2dt:f0 (2 +1)dt = 1
© [flg' @) dt = [EVE2+a+adt = [((t +2)dt =1+ €2 —1 =2
(d) f7 |g'(t) dt = [ /36 + 36t + 36t + 3612 dt = 6 [, (1+ ) dt = 24.

2. (a) With the center at the origin and the major axis on the y axis, the ellipse is described parametrically
by x = bcost, y = asint, and the whole length L is 4 times the length in the first quadrant. Hence L =

4 [T /b2 sin’t + a2 cos? tdt = 4 [T/? \/a? — (a? — b?) sin” ¢ dt = 4aE(k) where k2 = 1— (b/a)?,
(b) The base of the cylinder is the circle z2 + (y — 1)2 = 1 in the zy- plane the semicircle where both
coordinates are positive is given by £ = cost, y = 1 + sint, ——7r <t< 27r On the sphere we then

have z = v/4 — 22 — y2 = /2 — 2sint. Hence the arc length is

/ sin®t + cos?t + ————— cos’ ¢ dt = / cos? ¢ dt
- (2 — 2sint) /2 (2 — 2sint)

Lets = (3w —t),s0t = 3m — 2s. Thenfw/2 dt—2f7r/2 -+ds; 2 —2sint =2 — 2cos2s =
4sin®s, and cos’t = sin?2s = 4sin?scos?s, so L = f”/Q\/l—i—costds =

7r/2 V2 —sin? sds = 232 E(271/2).

3. The element of arc length is ds = v/1 + sinh? z dz = cosh z dz. Thus the arc length or “mass” of the
curve is [ coshzdzr = 2sinhl, and the y-moment is [yds = [ cosh’zds =
L[ + cosh2z)dz = %(2 + sinh?2). Thus j = (2 + sinh2)/4sinh1, and Z = 0 by symme-
try.

4. ds = |g/(t)|dt = VAsin®t +4dcos?t+ 4t2dt = 21+ £2dt, S0 [ /zds = [T V1 + 2 dt =
L[(1 +4x2)3/2 — 1],

5. (a) Parametrize C by g(t) = (t,t,t), 0 < t < 1; then F(g(t)) = (t2,¢2,#?) and g'(t) = (1,1,1), so
JoF-dx= [} 3t?dt =1.

34
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(b) Parametrize C by g(t) = (t,2,t3), 0 < t < 1 then F(g(t)) = (t°,#2,¢*) and g'(¢) = (1, 2t, 3t?),
o [,F-dx= [ (" +2+30)dt=1+1+3=2

(c) Parametrize C by g(t) = (sint,cost), 0 g t <27 (remember that C' is oriented clockwise!); then
F(g(t)) = (sint — cost,sint + cost) and g'(t) = (cost,—sint), so [ F - dx =
OQW(— sin?t — cos?t) dt = —

(d) Parametrize the parabolic portion of C by g 2 (t,t?), -2 <t < 2 and the straight portion by

g(t) = (—t,4), -2 <t < 2. Then [, F-dx = [*,(t* t7 (1 2t) dt + [°, (412, —16t3) - (—1,0) dt =
2 32 1024 2 985
Joo (8 + 268 — 4?) dt = 2(32 + 1024 — 32) = 906

6. @) [,(ze Ydr + sinmzdy) = fol(gtxfi162 + (sinmz)2z)dr = [ — e ® — (2/m)zcosTT +
(2/7?%) sinﬁx](l) =1(1—e )+ (2/n).

() [o(yde+zdy+zydz) = fo%(_ sin?t+tcost+sintcost) dt = [Lcos2t — 1 +¢sint+cost+
1
2
(c) On the segment from (0,0) to (1,0) we have y = 0 and dy = 0; on the segment from (1,0) to (1,1)
we have z = 1 and dz = 0, and on the segment from (1,1) to (O, 0) we have y = z and dy = dz. Hence

the integral is fo 0dz + fo 2) dy + f1 1? —2z)do=-2+%=-1%

) 27T__
sin t]o = —.

7. (a) Parametrize C by x = g(t),a <t < b Then we have | [,Fds| = \f;F(g(t))|g’(t)|dt|
J) B(&(1)| &' ®)]dt = [, |F|ds.

(b) With g as in part (a), we have | [ F - dx| = ‘fab(F(g(t)) gt dt] < [,|F(g(t)) - g'(t)]dt <
Jo |F(g(®))|Ig'(t)| dt = [, |F|ds, where the next-to-last step uses Cauchy’s inequality.

IA

8. As noted in the text, if P is a partition of [a,b] and P’ is the partition obtained from P by adding in
the point c if it is not already there, then Lp/(C) > Lp(C), so in computing L(C) = supp Lp(C)
it is enough to consider partitions P that contain ¢. If P = {to,...,tx} is such a partition with
c=ty, let P, = {tg,...,t;} and Po» = {t;,...,tx}; then P, and P, are partitions of [a, c| and [c, b],
respectively. Conversely, if P; and P, are partitions of [a,c] and [c, b], we can concatenate them to
obtain the partition P of [a, b]. In these cases we clearly have Lp(C) = Lp,(C1) + Lp,(C>). It follows
that Lp(C) < L(C1) + L(Cy), and taking the supremum over all P gives L(C) < L(Cy) + L(Cs). On
the other hand, given e > 0, choose Py and P so that Lp, (Cj) > L(Cj) — e for j = 1,2; then L(C) >
Lp(C) = Lp,(C1) + Lp,(Cy) > L(Cy) + L(C3) — 2e¢. Since e is arbitrary, L(C) > L(C1) + L(C>),
and we are done.

9. By the mean value theorem, the displayed expression equals \/ '(t5)? + h'(t])? (t; — tj—1) for some
points ¢7,t7 € [tj—1,t;]. By Exercise 9, §4.1, the sum of these quantities from j = 1 to j = J, which

is LP(C) can be made as close to f V()2 +H ()2 dt = f |g'(t)| dt as we wish by taking P
sufficiently fine. It follows that this integral equals L(C)

5.2 Green’sTheorem

1. (a) Let D be the unit disc; then [, F -dx = — [[, 2dz dy = —2x (the minus sign is there because the
circle has the wrong orientation).

(b) [o(y? dz — 2z dy) = fo ING y)dydr = fo -2z —2%)dr = —

[SHI
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(©) Jol(z*+10zy+y?) dz—+(5a?+bay) dy] = fo fo (10z+5y)—(10z+2y)] dz dy = f02 dx f02 3ydy =
2:6=12.

(d) 8z (223y cos y?) = 622y cosy? = 8,(3z? siny?), so the integrand of the double integral in Green’s
theorem vanishes.

Directly, by using the polar angle 6 as the parameter for both circles: f02” 32 cos? 0sin® 9 df—

02”2cos20sin20d0 =3 02” sin? 20df = 7. By using Green’s theorem: [[(y? + z%) dz dy =

2r 2.3 _ 15 15
0 flr de9—27r-T—27r

If S is the region inside C, [,[y* dz + (3z — 2®)dy] = [[43(1 — 2* — y?) dzdy. The integrand is
positive inside the unit disc and negative outside, so the integral is maximized by taking S to be the unit
disc and C to be the unit circle.

Take the arch given by 0 < ¢ < 2x: the region under it is bounded on the bottom by the segment [0, 2]
of the z-axis (where dy = 0) and on top by the cycloid (traversed from right to left). Thus the area is
Josxdy = f207r R?(t —sint) sintdt or — [y yds = 02” R?(1 — cos t)? dt; both integrals are equal to
37 R2.

The oriented boundary of S consists of two vertical line segments, a segment of the x-axis, and the
curve y = f(z), traversed from right to left. The vertical segments contribute nothing to — [,y dz
since dx = 0 on them, and the segment of the z-axis contributes nothing since y = 0 on it. The integral
over the curve is — [* f(z) dz = [° f(z

We have f(0g/0n) = F-nwhere F = fVg, and 0;F; = 0;(f0;g) = faf-g +(0;f)(0;g). The result
therefore follows from Corollary 5.17.

(a) The image of U under the map det DG is a connected subset of R, by Theorem 1.26. It does not
contain 0, hence must be contained in either (0, co) or (—oo, 0); otherwise it would be disconnected.

(b,c) Letg = (g,h), u = (u,v), S0 z = g(u,v), y = h(u,v), and dy = Iyhdu + dyhdv. Thus
A= fas rdy = faT 9(Oyh du + 0,h dv), where 95 is given the positive orientation with respect to S
and OT is given the orientation induced from the one on 95 by the change of variable (z,y) — (u,v).
This may or may not be the positive orientation of 9T with respect to T, so in applying Green’s theorem
to the integral over 9T there will be an ambiguity of sign. The result is A = =+ [[[0.(90,h) —
Oy (gOuh)] dudv = % [[,.(8490,h—0yg8yh) dudv = £ [[. det DG dA. The easiest way to determine
which sign is right is to observe that the area A is positive; hence the sign must be + if det DG > 0
and — ifdet DG < 0.

5.3 Surface Area and Surface Integrals

1.

2.

3.

A:ffw2+y25a2 \/1+y2+w2dwdy— fo V1412 rdrdO—— [(1 +a2)3/2—1].

A:ff$2+y2<a2 V1+4a? + 4y dedy = |, fo 1—I—4r2rdrd0—— [(1—I—4a2)3/2—1].

With G(p,0) = ((b+ acos ¢) cos B, (b + acosp)sinf, asiny), we have 0,G = —asinpsinfi —
asinpsinfj + acos gk and 9yG = —(b+ acos @) sinfi + (b+ acos @) cos ), 50 (0,G) x (0yG) =
—a(b + acosf)cospcoshi + a(b + acosp)cosypsinfj — a(b + acosp)singk and hence
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[(8,G) x (0sG)|> = a®(b + acosp)?(cos? pcos? O + cos? <psin 0 + sin? ) = a?(b + acos ).
Since 0 < a < b, b+ a cos ¢ is always positive, so finally A = f f a(b+ acos ) dpdf = 4n2ab.

4. The integral can be set up in two ways, as in Example 1 (p. 232). First way: The upper half of the

surface is z = (b/a)+/a? — 2% — y?, so the area is

b2 2 44 (b2 — a2)r2
2// \/l-l-—2 SC-I—y dxdy—47r/ \/a a rdr.
T2 +y2<a? a

The substitution s = v/a® — r2 simplifies this to (4r/a) [ \/b?a® + (a® — b%)s?ds, and the substi-
tution w = s/a turns this into 47a fol /b2 + (a2 — b2)u? du. Second way: Use modified spherical
coordinates to parametrize the ellipsoid. With z = asinpcosf, y = asinpsind, and z = bcos o,
the formula (5.20) for area yields the integral 27a [ sin /b2 sin” ¢ + a2 cos? ¢ dyp, and the sub-
stitution u = cos ¢ turns this into 27a f_ll /0% + (a% — b2)u? du. This is the same as the integral
obtained in the first way since f_ll = 2f01 for even functions. Finally, one uses a trig substitution
(u = (btant)/vVa®? —b? ifa > b, u = (bsint)/Vb* —a? if b > a) or a table of integrals to eval-
uate the integral as 2ra? + 27ab?C/+/|a? — b%|, where C' = log((a + Va2 — b2)/b) if a > b and
C = arcsin(vb? — a2/b) if a < b. (Both expressions for the area have the limiting value 4ma? as
b—a.)

5. Clearly T = 7 = 0 by symmetry. The z-moment, in spherical coordinates, is [[4zdA =

27 foﬂ/Q cos @ sin ¢ dp = 7 sin? g0|g/2 =, and the area is 2r; hence z = 1.

/3 _ 20

”/3(45111 @) (4sin ) dp df = 327[3 cos® ¢ — cos ¢](/° = L.

o
7. By symmetry, the integrals of z2, y2, and z2 over the unit sphere are equal, so the integral of
z? +y? — 222 vanishes. The integral is also easily computed in spherical coordinates: it is
2m [ (sin? ¢ — 2 cos? p) sin pdp = 2m [ (1 — 3cos? ) sinpdyp = 2| cos ¢ — cos® <p]g =0.

8. (a)ndA (— yl—mj—l—k)dydm 0 [[{F-ndA = fo fo —z%y —acy)dyd:c—fo —222—21)dz =

___1__?

(b) Since lines through the center of a sphere are perpendicular to the sphere, the unit normal to the unit
sphere S at a point x € .S is simply the vector x = zi + yj + zk. Hence [[(F-ndA = [[ 2% dA,
which vanishes since 23 is an odd function. Alternatively, in spherical coordinates one finds ndA =
(sin ¢ cos 0i + sin @ sin 0 + cos k) sinp df dp, so [[(F -ndA = [ OQW sin ¢ cos® 0 df dp = 0.

(c) The triangle lies in the plane 3: + y + z = 2; taking z,y as parameters we have ndA = (i+j+

k)dyd:v SoffSF ndA = fo zy+2—z— y)dydx—fo Gz-1)2-2)2+2-2)%)ds =
2f0 — 322 +4)dz = 2.

(d) The normal is horizontal on the vertical side of the cylinder, so F - n = 0 there. On the top
(z = b) we have z2 = b%, n = k; on the bottom (z = a), we have 22 = a?, n = —k. Hence

[[sF-ndA ==n(b* —a?).

(e) S = S; NSy where S; and S, are the portions of the sphere z = /2 — z2 — y2 and the paraboloid
z = z% 4+ y? with 2 4+ y? < 1, oriented with the normal pointing up and down, respectively. As in (b),
the normal at a point x on the sphere is x/+/2, s0 F - n = |x|2/+/2 = /2. Also, the element of area in
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spherical coordinates is r? sinp dp df = 2sinpdpdf, so [[g F-ndA =2 2z fo”/4 2sinpdp =
7(2%/% — 4). On the paraboloid, with z, y as parameters, we have ndA = (2zi + 2yj — k) (remember
that the z-component must be negative), so [fg F-ndA = [f, (222 + 2% — (22 +y?)) dy dx =

27rf01 r3dr = %7‘[’. Hence ffSF -ndA = 7T(25/2 — %)

2+y2§1

5.4 \Vector Derivatives

These are all simple computations.

These are simple computations too. For (c), with » = |x| and g(r) = %, one has V2f(x) = ¢"(r) +
(n—1)r tg(r) =ala—1)r* 2+ (n—1)ar*? =ala+n — 2)r*2.

. The first two formulas are most easily obtained just by writing out the indicated products and taking the

indicated derivatives. The last one follows from the first one by using (5.29).

(Also 5, 6, 7.) These are straightforward calculations, but the verifications of (5.25), (5.27), and (5.33)
require a little masochism. It is less frustrating to start with the complicated expressions (on the right in
(5.25) and (5.27), on the left in (5.33)) and work toward the simpler expressions on the other side.

F x G is skew-symmetric in F and G.

This follows immediately from (5.29) and (5.30).

5.5 TheDivergence Theorem

1.

2.

(a) div F = 2z, and the integral of 2z over the unit ball vanishes by symmetry since 2z is odd.

(b) div F = 3, so polar coordinates yield 3 [, [Z"(v2 — r2—r2)r d§ dp = 6n[—%(2—72)3/2— 174} =
m[25/2 — 1.

(c) divF = 2(z + y + 2), and the integrals of z, y, and z over the cube are equal by symmetry, so we
get 6 foa foa an zdx dy dz = 3a*.

(d) divF = a2 + b=2 + ¢~2, and the volume of the ellipsoid is 3mabc (reduce it to the volume of the
unit sphere by the change of variable u = z/a, v = y/b, w = z/c), so the integral is (a2 + b2 +
0_2)%7mbc = 4n(b?c? + a*c? + a®b?) /3abc.

(e) divF = 2z, so the integral is [, [ 22dzdA = a[2?]} = 3A.

Directly: F-n = (22 + 4% + 22)2/a = a® on S (see the remark at the beginning of the exercises), so

the integral is a® times the area of S, i.e., 4wa®. By the divergence theorem: div F = 5(x2 + 32 + 22),

so the integral is 5 f;7 [2" [ 12 - r2sinp dr df dp = 4md®.

divF =3,50 1 [[,z F-ndA =2 [[[,divFdV = [[[,dV = volume of R.

LetF = fgi;then F - n = fgn, and divF = 9,(fg) = fO.g + g0, f, so the result follows from the
divergence theorem.

@) [[5(0f /0n) dA = [[or VS -ndA = [[[pdiv(Vf)dV = [[[;V>fdV.
(b) By (5.28) we have div(fVf) = |Vf|2 + fV2f; apply the divergence theoremto F = fV f.
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6. () Ozg = —x(2? + 9% + 2%)73/2 = —z/|x|3, and likewise for y and z, so Vg(x) = —x/|x|%.
(b) See Exercise 2c in §5.4.
(c) If S is the sphere of radius a about 0, on S we have n = x/|x|, s0 Vg - n = —|x|?/|x|* = —a "2,
hence [[4(8g/0n)dA = —a™? - 4wa® = —4m.
(d) g is not of class C'* on the region inside the sphere, so the divergence theorem doesn’t apply.
(e) Choose € so small that the ball B, = {x : |x| < ¢} is contained in the interior of R. Then Vg =0
on R\ B¢, so by the divergence theorem and part (c), 0 = fffR\BE V2gdV = [[,,(8g/0n)dA —
ffaBe(ag/ﬁn) dA = ffaR(ag/an) dA + 4.

7. (a) Since V2f = V2g = 0 on R, by (5.39) we have 0 = [[,,(fVg — gV f) - ndA. 8R is the union
of the sphere |x| = r (with the outward normal) and the sphere |x| = € (with the inward normal). On
|x| = r we have g = ! and 8g/0n = —r 2 (as in Exercise 6c), so by Exercise 5a, fle\=r(fvg —
gVf) ndA=—r—2 Jix=r £ A~ r1 MM < V2fdV = —r~2 Jixi=r f dA, which is —4r times the
mean value of f on the sphere |x| = r. Likewise, the integral over |x| = € (with the inward normal) is
47 times the mean value of f on this sphere. The sum is zero, so the mean values are equal.

(b) Since f is continuous, f(0) is the limit of the mean value of f on the sphere |x| = ease — 0.

5.6 Some Applicationsto Physics

1. To evaluate the potential u(x) = — f|p _,p— x|~ dA (we take the density p to be 1) at a particular
point x, the key to proceeding efficient‘y is to rotate the coordinates so that x is on the positive z-axis
(or, equivalently, to observe that u(x) is spherically symmetric so that it suffices to take x on the positive
z-axis). For x = (0,0, z) and |p| = 7 we have |p — x| = \/p? + p2 + (p3 — 2)2 = /12 — 2zp3 + 22,
so in spherical coodinates we have

u(x):_/ﬂr/ﬂﬂ' 'rQSiIl(PdeSO :—zﬂ\/’l"Q—QZ’I"COS(p—l-zQ
o Jo 4/r2—2zrcosy+ 22 z 0

™

2T
=~ (ir+2l — Ir - 2)).

For 0 < z < rthisis —4xr; for z > ritis —4mr?/z = —4nr?/|x|. The latter is the potential for a
mass 47rr? located at the origin. The corresponding field —Vu(x) is 0 for |x| < r and —4mr2x/|x|3
for |x| > .

2. Think of the ball as the union of thin spherical shells of radius r (0 < r < R) and thickness dr. For a
given x, the shells with ~ > |x| contribute nothing to the field, and the shells with » < |x| contribute
—4mr?x/|x[3. Integrating from 0 to min(R, |x|) gives the field as — 3rx for x| < Rand —3mR3x/|x|®
for |x| > R, as claimed. (The potential can also be found by integrating in r; it is §7r(|x|2 — 3R?) for
x| < Rand —3wR3/|x| for [x| > R.)

3. (a) We take p = 1. The field is

E_/Oo zi+yi+(z —pk i _/Oo zi+yi+tk
T @A )T e @2 2

dt (t=2z—p).



40

Chapter 5. Line and Surface Integrals, Vector Analysis

The z and y components of the integrand decay like |¢|=2 as |¢|] — oo, while the z component de-
cays like =2, so the integral converges. The z-component vanishes since its integrand is odd. Since
[ (@ + )32 dp = [t/a®Va® + 2] = 2/a’ (via the substitution ¢ = atan6), we obtain
E = 2(zi + yj) /(22 + v?).

(b) u(x) should be [ (z% + y2 + (p — 2)2)~/2 dp, but the integrand decays like [p| ! as [p| — oo,
so the integral diverges.

(c) Since log(v/a? + 12 + t) is an antiderivative of 1/v/a2 + 2,

V+y?+(z+R?2+2+R

z+R dt
uR(x):/ 2 2 2:10g 2 2 2
+R Jr2+y2+t Vi2+y2+(z—-R)2+2—-R

Multiplying top and bottom of the fraction by /22 + 32 + (2 — R)? — z + R turns this into

1og[(\/xQ+y2+(Z+R)2+z+R)(‘/x2+92+(Z—R)2—z+R)
$2+y2

+ 2log R — log(z? + ).

B (V2 +y2+ (z+R?>+ 2+ R) (/22 +y>+ (2 — R)2— 2+ R)
=log 2

As R — oo, the first term approaches log 4, so subtracting off the 21log R yields log4 — log(z2 + 4?),
whose gradient is —2(zi + yj)/(z? + y?). (Of course the log 4 can be discarded too.)

. The argument is essentially the same as the proof of Theorem 5.46, using the facts thatV log y = y/|y|?

and V21log|y| = 0 for y # 0 (Exercise 2d, §5.4). The two-dimensional analogue of Green’s formula
(5.39) is easily obtained from Exercise 6, §5.2, and it yields the following analogue of (5.47):

2 (o 1 _px+y)y]
Vu(x) = lgl(l) e [(log ly)Vo(x +y) e nds,
where n is the unit inward normal to the circle, namely, n = —y/e. The estimate (5.48) for the first

term on the right becomes

< C|loge|2me - 0ase — 0,

/ _ (log|y[)Vo(x +y) - nds

and from the second term, since |y| = ¢ on the circle, one obtains

1
V2u(x) = 113)% - Y p(x +y)ds = 2mp(x).
y|=e

5.7 Stokes'sTheorem

1.

2.

curlF -ndA = (i—j+ k) - (—j + k)dzdy = 2dzdy, so the integral is twice the area of the disc
2+ y2 <1,ie., 2m.

curl F-ndA = (—=j—k)-(j+k) dz dy = —2dz dy. The curve C lies over the curve in the zy-plane given
by z2 +y% + (a — y)? = a?, or 222 /a® 4+ 4(y — 1a)?/a® = 1, an ellipse with semiaxes a/v/2 and a/2.
The integral is —2 times the area of the region inside the ellipse, i.e., (—2)7(a/v/2)(a/2) = —7a®/V/2.
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3. The equation of a nonvertical plane parallel to the z-axis has the form z = by +¢. Thus curl F - ndA =
(—zi+yj + 2k) - (—bj + k) dr dy = (—by + 2) dz dy. The integral of this over the disc z2 + y? = a®
is twice the area of the disc, i.e., 2ma? (the integral of by vanishes by symmetry).

4. 98§ is the circle of radius a about the origin in the zy-plane. First method: 0S is also the boundary of
the disc D of radius a in the zy-plane, so [ curlF - ndA = [[, curlF - kdA = [[,zy?dedy =
0, by symmetry. Second method: parametrize 0S by £ = acosf, y = asinf, z = 0. Then
[[gcurlF-ndA = [, F-dx = [7"(~sin?6 + cos®§) df = 0.

5. Like Exercise 4, this can be done two ways. 8. is the ellipse (22/4) + (y2/9) = 1 in the zy-plane. If D
is the region inside this ellipse, we have [[ curlF-ndA = ([}, curl F-kdA = 0 since curl F -k = 0.
Alternatively, parametrize 9S by = = 2cos 6,y = 3sinf, z = 0; then [[gcurl F-ndA = [, F-dx =
fOQW 10 cos A sinf db = 0.

6. (a) This is a simple calculation.
(b) Parametrize C by z = acosf, y = asinf, z = ¢; then F = (—(sinf)i + (cos #)j)/a and dx =
a(—(sin®)i+ (cos 0)j) df,so [ F-dx = fOQW do = 2.
(c) F is not of class C'! on any surface bounded by C (such a surface must intersect the z-axis), so
Stokes’s theorem doesn’t apply.

7. Let A, be the annulus in between the circles C, and C; in the xz-plane, oriented so that n = j. Then
flc, F-dx— [, F-dx = £ [[, curlF - ndA, the sign being + if » > 1 and — if r < 1. But
curl F - n = 3, and the area of A, is «r|r? — 1. It follows that ch F-dx =5+ 3r(r? - 1).

8. Use (5.26) and (5.30): curl(fVyg) = fcurl(Vg)+Vf x Vg = VfxVg. Now apply Stokes’s theorem.

5.8 Integrating Vector Derivatives

1 @) f(z,y) = [Qzy + 2?) dz = 2%y + 32° + o(y); 0y f(z,y) = 22 + ¢'(y) = 2% — y?, 50 p(y) =
—3y3+C.
(b) 8, (3y? + 5z'y) = 6y + 5zt # 5zt — 6y = 0, (z® — 6zy).

(©) f(z,y) = [(2e*Tsiny — 3y +5) dz = e** siny — 3zy + 5z + ¢(y); 9y f (z,y) = e*T cosy — 3z +
©'(y) = €2 cosy — 3z, 50 p(y) = C.

(d) f(z,y,2) = [(yz — ysinzy)dz = zyz + coszy + ¢(y, 2); Oyf(®,y,2) = zz — zsinzy +
Oyp(y,z) = zz—xsinzy+zcosyz, S0 ¢(y, z) = sinyz+y(2); 0, f(z,y, z) = zy+ycosyz+y'(z) =
xy + ycosyz, S0 Y(z) = C.

(€) 0:(y —2) = =1 # 1 =0,(z — y).

() f(z,y,2) = [2zydz = 2%y + ¢(y, 2); Oy f(z,y,2) = 2° + Byp(y, 2) = 2* +log 2, 50 p(y, z) =
ylogz +(2); 0. f(z,y,2) = (y/2) +¢'(2) = (y +2) /2,50 9(2) = 2log 2 + C.

@) flz,y,2,w) = [(zw? + yzw)dz = %x2w2 + zyzw + o(y,z,w); Oyf(z,y,2) = zzw +
Oyp(y, z,w) = czw + yz? — 2e1% 50 p(y, z,w) = %y2z2 — W2 4 (z,w); 0,f(x,y,2,w) =
zyw + y2z — e + 0,4(2,w) = zyw + y?z — e — wsinzw, 0 Y(z,w) = cos zw + x(w);

Owf(z,y, z,w) = 22w + Yz — zsin zw + x'(w) = 2yz + 2w — zsin 2w, 0 x(w) = C.
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(@) divG =322+ (1-32%)+0=1+#0.

(b) Take F = Fii + Fyj, s0 curlF = —0,F» + 0, F1 + (8wF2 - ayFl)k Then —9,F, = Ty + 2,
S0 Fy = —zyz — %zQ + ¢(z,y), and 9, F1 = xz,50 Fy = %ng + 9Y(z,y). Hence, 0, F5 — Oy F1 =
—yz + Opp(z,y) — Oy9p(z,y) = —yz — z. One solution is ¢(z,y) = —%xQ and ¢(z,y) = 0.

(c) Proceeding as in (b), we have —8,F, = ze %" — 62,50 Fy = —z Iy e T dt + 6z + o(z,y),
and 0,Fy = 5y + 2z, 50 Fi = Syz + 22 + 9(z,y). Hence, ,F — 8,F1 = — [Fe " dt +
222 [ 22" dt + 62 + Opp(x,y) — 5z — Oyh(z,y) = 2 — ze~**#"_This does not look hopeful, but

by integration by parts, 222 [ t?e~ %% dt = —ze *%* + [7 ¢~ dt, s0 we can take ¢ = 9 = 0,

By the procedure outlined before Theorem 5.64 we can find f such that V2f = divH. Then
div(H — Vf) = divH — V2 = 0, so by Theorem 5.63 there exists G such that curlG = H — V.

@If0 < r < s, let A.¢ be the annulus between C, and Cs. Then fc, F.dx - fcs F.dx =
fAM (01 Fy — 09 F1) dA = 0 by Green’s theorem. Thus « = fc, F - dx is independent of r.

(b) Let € > 0 be the minimum distance from points in the compact set C to the origin, and let r = %e.
Then the curve C and the circle C, together bound a region R, so by Green’s theorem again, 0 =
fR(81F2 —82F1)dA = fCF-dX—fCTF-dX = fCF-dx—a.

(c) From Example 1 and part (b), for any closed curve in S (oriented counterclockwise) we have fc Fo-
dx = 2m and hence [,(F — (a/27)Fy) - dx = 0. By Proposition 5.60, F — («/27)Fy is a gradient.
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| nfi nite Series

6.1 Defi nitions and Examples

1. (a) This is a geometric series with initial term 2(z+1) and ratio 2(z+1)3; it converges for 2|z+1[3 < 1,
ie,—1-2""3 <z < —1423 tothesum 2(z 4+ 1)/[1 — 2(z + 1)3].
(b) This is a geometric series with initial term 10z =2 and ratio 2z~2; it converges for 2|z|~2 < 1, i.e.,
z < —v2o0rz > /2, tothe sum 10z72/(1 — 2272) = 10/(2? — 2).

(c) This is a geometric series with intial term 1 and ratio (1 — z)/(1 + z). The ratio is less than 1 in
absolute value if and only if z is closer to 1 thanto —1,i.e., z > 0. Thesumis1/[1—(1—z)/(14+x)] =
(14 z)/2z.

(d) This is a geometric series with intial term log z and ratio log z; it converges for |logz| < 1, i.e.,
e ! <z <e, tothesumlogz/(1 — logx).

2. (a) The nth term is % + 27, which does not tend to 0; the series diverges.
(b) This is a telescoping series; the sum of the first n terms is 1 — (n + 1) 1, so the full sum is 1.
(c) This is a telescoping series; the sum of the first n terms is v/n + 1 — 1, so the series diverges.
(d) The odd-numbered terms do not tend to zero; the series diverges.

3. If f(z) = log(1 + ), then f*+D(z) = (=1)kk!/(1 + z)**1, so Lagrange’s formula reads Rg x(z) =
(—1)kzk+1/(k + 1)(1 + ¢)¥*! where ¢ is between 0 and z. For z > 0 we have 1 + ¢ > 1, so
|Ro(z)| < z¥+1/(k + 1), and for z < 1 this vanishes as k — co. (For —3 < z < 0 we still have
lz] < 1 < 1+c¢ 50 |Rok(z)| < 1/(k+1) — 0.) The integral formula (2.56) gives Ry (z) =
(—1)kzk+L [1(1 —)"(1 + tz) %' dt, and the mean value theorem for integrals then gives Ry k() =
(=1)kzkt1(1—7)*(1472)~"! forsome 7 € [0, 1]. Now, for -1 < x < 0,wehave 0 < 1—7 < 147z
and 1+ 7z > 1+ z, 50 |Ro k()| = =" (1 + 72) 7 [(1 = 7)/(1 + 72)]" < |z|*T' /(1 + z), which
vanishes as k — oo.

4. (a) Note that if P # 0 then all a,, are nonzero. Let P, = ajas-- - ax; thenay = P, /Py,_1 — P/P =1
as k — oo.

(b) Assume all a,, are positive. With Py as in (a), if [[{° a, = P, then Z’f log a,, = log P, — log P.
Conversely, if S~ loga, = S, then P, = exp(Y.¥ a,) — 5.

43
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6.2 Serieswith Nonnegative Terms

1.
2.

10.
11.

12.
13.

14.

15.

16.

17.
18.
19.

20.

21.

an ~ n~3/2; converges by comparison to 3" n3/2,

Practically any test you can think of will work on this one! (Ratio test, root test, integral test using
Corollary 2.12, comparison to geometric series > 27", ...)

an ~ n~2/3; diverges by comparison to 3" n~%/3.

Converges by ratio test: a1 1/a, = (n+2)/(n +1)2 = 0.

Diverges by root test: a/™ = (2n +1)%/(3n + 1)? ~ 8n — oo.
Converges by ratio test: any1/a, = (2n + 3)?/3(2n + 1)(2n +2) — 1.
Diverges by ratio test: a,11/a, = (n +1)/10 — oo.

Diverges by comparison to 3> n~1, using (2.13).

Converges by ratio test: a,11/an = (2n +3)/(3n + 5) — 2.

Converges by ratio test: an41/an, = (n+1)?/(2n+1)(2n +2) — 1.

Diverges by ratio test: a11/an, = 3[n/(n + 1)]* — 3/e > 1. (See Exercise 7 in §2.1, with z = n~".
The root test is a little easier if you know Stirling’s formula.)

Converges by root test: al/™ = [n/(n + 1)]* — 1/e. (See Exercise 7 in §2.1, with z = n"1.)

By I’Hdpital’s rule or Taylor’s theorem, n?[1 — cos(1/n)] — %; series converges by comparison to

Yon 2,

By rationalizing the numerator, a,, = 1/(v/n + 1++/n)v/n + 2 ~ 1/2n; series diverges by comparison
to Y n L.

sin[n/(n? + 3)] ~ n/(n? + 3) ~ 1/n; series diverges by comparison to - n~1.

Converges by the extended root test (part (a) of Theorem 6.14): a,l/ " =M r4(=1)"/5 < 0¥ (7 +
1)/5 < .9 for large n.

Converges by Raabe’s test: a,,11/a, = (2n+1)/(2n +4), 50 n[l — (an+1/a,)] = 3n/(2n+4) — 3.
Diverges by Raabe’s test: ant1/a, = (2n+2)/(2n + 3), 50 n[l — (an+1/az)] = n/(2n +3) — 3.

If 3 a,, converges, then a,, — 0, s0 a,, < 1 for large n. For such n we have a}, < a, forp > 1, so
S~ ah, converges by comparison to 3" a,,.

Use the integral test: [ dz/z(logz)? = (logz)'?/(1 — p) for p # 1 and [dz/zlogz = loglogz,
and (log =)' ~P remains bounded as z — oo precisely when p > 1.

Use the integral test: [dz/z(logz)(loglogz)? = (loglogz)!™?/(1 — p) for p # 1 and
[ dz/z(log z)(loglog z) = logloglogz by the substitution v = loglogz, so as in the preceding
problem, the series converges if and only if p > 1.
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22.

23.

24.

25.

From Theclzem 6.7, "2 1/nlogn > f21040 dz/zlogz > Y1 1/nlogn. The integral is
loglogz|,” = log40+loglog 10 —loglog2 ~ 4.889, and 1/10*° log(10*°) is negligible, s0 4.889 <

0% 1 /nlogn < 4.889 + (1/210g2) ~ 5.611. Also from Theorem 6.7, Y55 1/n(logn)?
[iga0 dz/x(log z)*> = —(logz) ™" | 1,0 = 1/401og 10 = 0.11. (The error in adding or removing the
initial term in the sum is negligible.)

The derivative of z/(z% +1)? is (1 — 3z2) /(2 + 1)3, which is nonpositive for z > 1/+/3. By Theorem
6.7, 5 n/(n*+1)? > [ zdx/(z*+1)* > 3" n/(n*+1). The integral is —1/2($2+1)|§o = .05,
50.05 < >°2°n/(n? +1)% < .05+ 3/(3% + 1)? = .08. Adding on the first two terms, namely .25 and
.08, gives .38 < >-7°n/(n? +1)% < .41.

cn =1 1/k— [[*dz/z > 0asin Theorem 6.7. Also, ¢ 1 — ¢, = 1/(n+1) —log(n+1) +logn =
1/(n+1) — [da/z <1/(n+1) — [ de/(n+1) = 0,50 {c,} is decreasing.

n n

Letr = (1+L)/2. IfL < 1thenr < 1, and a/™ < ¢ for all but finitely many =; it follows from

Theorem 6.14a that ) a,, converges. If L > 1 then a}/" > 1 for infinitely many » and so a,, > 1 for
infinitely many n; it follows that > a,, diverges.

6.3 Absolute and Conditional Convergence

1.

For (a) and (b), just use the fact that | cosnf| < 1 and |sinné| < 1 for all n to get a comparison with
the convergent series >~ |z|™ and >~ n 2. For (c), use the ratio test.

To get a rearrangement whose sum is +oc, add up the positive terms until the sum exceeds 1; then put
in one negative term; then add more positive terms until the sum exceeds 2; then put in another negative
term, etc. Since the original series converges, only finitely many negative terms can be less than —1.
After they are all used up, once the sum exceeds K + 1 it never drops below K, so it tends to 4+oc as
more terms are added.

For the series 0+ 3 +0— 2 +0+ £ +---, the (2m — 1)th and (2m)th partial sums both coincide with
the mth partial sum of (1 — 3 + % —---); hence they converge to 1 log 2. When this series is added to
1-— % + % —--- = log 2, the odd-numbered (positive) terms of the latter series survive unchanged, and for
all £ > 0, the (2k + 2)th terms of the two series cancel and the (4k)th terms add up to give the negative
terms — % — % — % .... After omitting the resulting zero terms one obtains the stated rearranged series,
whose sum is therefore 2 log 2.

Letsy = Y.k a, and t, = S b,. Thent), = s, if kis odd, and ¢ = s — ax 1 — ay, if k is even. Since
ar — 0, lim s = lim #,.

(a) Suppose 3" |a,| < oo. After throwing out finitely many terms we may assume |a,| < 5 for all =,
in which case |log(1 + ap)| < .7 for all n. By Taylor’s theorem, log(1 + a,) = an + R(ay) Where
|R(an)| < Clan|? < Clay], s0 3 log(1 + ay,) is the sum of the two absolutely convergent series 3" a,,
and 3" R(a,,). Conversely, suppose " |b,| < co where b, = log(1 + a,). We have a,, = e’ — 1, and
Taylor’s theorem again gives a,, = by, + 7(b,) where |r(b,)| < C|b,|?> < C|by|, 50 3" ay, is the sum of
the two absolutely convergent series > b, and >_ 7(by,).
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(b) >_ ay, is convergent by the alternating series test, but not absolutely convergent since n 2 = .
By Taylor’s theorem, log(1 + a,) = a, — 1a2 + R(a,) Where |R(a,)| < Cla, > = Cn=3/2. Y a,
converges as above; Y R(a,,) is absolutely convergent; but 3~ 2a2 = 3" 1/2n diverges.

6.4 More Convergence Tests

1.

10.

By the ratio test, the series converges absolutely for |z + 2| < 1, i.e., =3 < z < —1, and diverges for
|z +2| > 1. Atz = =3 or z = —1 the series becomes Y (—1)"/(n? + 1) or 3 1/(n? + 1), both of
which are absolutely convergent by comparison to >~ 1/n2.

By the ratio test or the root test, the series converges absolutely for |2z — 1] < 1,i.e.,0 < z < 1, and
diverges for |2z — 1| > 1. Atz = 0 or z = 1 the series becomes Y~ (—1)"n3 or Y n3, both of which
diverge since n3 4 0.

By the ratio test, the series converges absolutely for all z: |a,1/an| = 22/(2n + 3) — 0 asn — oo.

By the ratio test, the series converges absolutely for |z/5] < 1, i.e., =5 < z < 5, and diverges for
|z/5| > 1. At z = 5 the series is >_ 25n/(n + 1)2, which diverges by comparison with >~ 1/n. At
= —bitis Y 25n(—1)"/(n + 1)%, which converges (conditionally) by the alternating series test.

. The series converges absolutely for |z — 4| < 2, i.e., 2 < z < 6, and diverges for |z — 4| > 2, by

the ratio test. (In detail: |an11/an| = |z — 4/(2" — 3) log(n + 3)/(2"! — 3)log(n + 4). We have
(20 —3)/(2"*1 —3) = (1-3-27")/(2-3-27") — 1, and [log(n + 3)/log(n +4)] — 1 =
log[(n+3)/(n+4)]/log(n+4) — 0/co = 0.) Atz = 2 the seriesis ) 2™ /(2" — 3) log(n + 3), which
diverges by comparison to (for example) Y 1/n. Atz = 6 the seriesis ) (—1)"2" /(2" —3) log(n+3),
which converges (conditionally) by the alternating series test.

By the ratio test or the root test, the series converges absolutely or diverges according as |(z—1)/(z+1)]
is<lor>1,ie,z>00rz <0.Atz = 0theseriesis Y (—1)"/+/n, which converges (conditionally)
by the alternating series test.

By the ratio test, the series converges absolutely for |%x —3| < 1,ie,4 < z < 8, and diverges for
|%x — 3| > 1. The numerator of the coefficient of (%z — 3)™ is clearly bigger than the denominator, so
at z = 4 or z = 8 the terms of the series do not tend to zero and the series diverges.

By the ratio test, the series converges absolutely for |z + 1| < 1, i.e.,, =2 < z < 0, and diverges for
|z+1] > 1. Atboth z = —2and z = 0 the seriesis Y (—1)"/(3n+2), which converges (conditionally)
by the alternating series test.

. We have |ap41/an| = (2n + 3)|z|/(3n + 5) — 2|z, so by the ratio test, the series converges abso-

lutely for |z| < 2 and diverges for |z| > 3. Atz = 3, we have any1/an = (6n + 9)/(6n + 10),
and n[l — (6n + 9)/(6n + 10)] = n/(6n + 10) — £, so the series diverges by Raabe’s test. How-
ever, by the proof of Raabe’s test, the nth term is comparable to n /6, and the terms decrease since
(6n+9)/(6n+10) < 1. Hence, atz = —3, where there is an extra factor of (—1)", the series converges
conditionally by the alternating series test.

By Taylor’s theorem, log[1 + (1/n)] = (1/n) + r, where |r,| < Cn~2. The series > (—1)"/n
converges conditionally, while > (—1)"r, converges absolutely; hence the original series converges
conditionally.
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11. Leta, = ["'log(z + 7)dz/x. Then a, > [""'dz/n = 1/n, so the series is not absolutely

n

convergent. On the other hand, log(z + 7)/x is decreasing for z > 0, and hence so is a,, and a,, <
log(n 4+ 7)/n — 0, s0 > (—1)"ay, converges by the alternating series test.

12. n/™ — 1 # 0, so the series diverges.

13. By Taylor’s theorem, nsinn=' = 1 + r, where |r,|] < Cn~2, and hence log(nsinn~!) =
log(1 + 7)) = 7 + Ry, Where |R,| < C'ry]? < C"n=%. Hence the series converges absolutely
by comparison to 3" n~2.

14. By Taylor’s theorem, log(1 + n~1) = n=! — 2n=2 + 1, where |r,| < Cn=3, so log((n + 1)/n)" =
nlog(l+n~1) =1— (2n)~! + nr,. Hence,

1\" 1 1 1
nt =exp|l——+nr, | =eexp| —+nr, | =e{l——+nr,+ R, |,
n 2n 2n 2n

where |R,,| < C'[—(2n) ! + nr,)2 < C"n 2. Finally,

1 n
e—(n+ > —i—enrn—eRn.

n T 2n

Y (~1)"~1e/2n is conditionally convergent, and Y (—1)"e(nr, + R,) is absolutely convergent by
comparison to > n~2, so the original series is conditionally convergent.

15. The power series > o°(—1)"z?"/(2n + 1)! for z—'sinz is an alternating series (for any z, since
the powers of x are all even), and the absolute value of the ratio of the (n + 1)th term to the nth is
z2/(2n + 2)(2n + 3). For |z| < = this is less than 1 when n > 1, so the terms decrease after the first
one. Hence the error is smaller than the first neglected term, namely z8/9! < 7% /9! ~ .261.

16. Let b = limb,. First Method: We have Y a,b, = > an(b, — b) + b>_ ay. Since b, — b decreases
to 0 and the partial sums of )" a,, converge to the full sum, Dirichlet’s test gives the convergence of
> an(b, — b). Second Method: Let A, = ag + - -+ + ay, and b, = b, — b,_1. Then by Lemma 6.23,
z’g anb, = Arbg + Z’f Ap—_1bl,. We have Axbr — (3 an)b, and the series > A,,_1b/, is absolutely
convergent since Y |A,_1b,| < C |6 | = CS3(=b.,) = C(bo — b).

17. The convergence of > n~Pa, follows from Dirichlet’s test. (Take a,, = n™P in Theorem 6.25, then
relabel b, as a,.) Absolute convergence is guaranteed for p > 1, since a,, — 0 and hence |a,| < C.

18. The series converges absolutely by comparison to the geometric series > |z|™ when |z| < 1 (for any ).
When z = 1 it converges for 6 # 2kn by Corollary 6.27. When z = —1 it converges for 8 # (2k + 1)«
by Corollary 6.27, since (—1)"™ cos nf = cosn(6 — ).

6.5 Double Series; Products of Series

L @1-2)(1-2)"" = ") (X 2™) = Z;io(zm-m:' l)al = Zj:o(j + 1)zl

0 1 -2)7'1 -2)? = (XF2")(E5(m + 1)a™) = X20(Xminy(m + 1))2? =
S EG DG +2adsince Y, im+ 1) =1+2+ -+ (G+1) =50+ 1) +2).

<
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f@)f(y) =g a™/n) (3257 y™/ml) = 32220 > min=y T"y™ /ntm!. But by the binomial theorem,
Sy Y™ ntmt =Y g xmyi T nl(f —n)! = (z+y)T /5% 50 f(2) fly) = D2 o(z+y) /il =
flz+y)

If f(z) = (1 —42)7/% then f™(z) = (—=1)(=3) - (~=n + H(A"1 — 42) (/2 =
1-3---(2n—1)27(1 —4z)~"~ (/2 Moreover, 1-3--- (2n—1) = (2n)!/2-4--- (2n) = (2n)!/2"n!. It
follows that the coefficient of z™ in the Taylor series is (2n)!/(n!)?, so that series converges for |z| <
by the ratio test. The product of this series with itself is the series ) cjz? where
¢ = D min—;(2n)! (2m)!/(n!'m!)? = 3;:0(277,)!(23' — 2n)!/[n!(5 — n)!]%. On the other hand, the
sum of the latter series is (1 — 4z) =1, whose Taylor series is the geometric series Z;‘;O(zlx)j. Equating
coefficients of z7 in these two series gives the asserted formula c; = 47. (The justification for the last
step is contained in Theorem 2.77: |(1 — 4z) =" — 08 ¢jz?| = |x[F+!| 309% | ¢jad =51 < C|z[F+1 for
|z| < 1, say, so Y ¢ cjz7 is the kth Taylor polynomial of (1 — 4z)~". See also Corollary 7.22.)

(=)™ (n+ 1)~1/2 is convergent by the alternating series test, but not absolutely convergent. The
Cauchy product of the series with itself is 35°(—1)7c; where ¢; = 323 _o[(n + 1)(j —n + 1)] /2.

By the hint, ¢; > Z oBi D) =G +1)/(35+1) A 0asj — oo; hence Y- (—1)7¢; diverges.

Let S = > 7 ,—o @mn, Which we think of as the limit of the square partial sums st and for each m, let
Sm = Z;"_O Gmn. The claimisthat S = ZO Sm, Whether these quantities are finite or not.

Casel: )" S, < oco. Clearly s%[ < Z%I:O Sm, 508 <Y .S,,. On the other hand, given e > 0, we can
find M such that 307 S, > S75° S, —e. We can then find N such that >N > Sy —e(M 4-1) 71
form =0,...,M. Let K = max(M, N); then s > S"M_ S™V a0 > 370° S — 2¢. It follows
that S > 3" S, and hence S = " Sy,.

Casell: S,, < oo for each m, but > S,,, = oo. Given C > 0, we can find M such that Zé‘/f Sm > C.
We can then find N such that 3-_ aynn > Sy — (M +1)~ form = 0,..., M. Let K = max(M, N);
then s% > M (SN 4 > C — 1. It follows that S = oc.

Case lll: S, = oo for some m = mg. Given C' > 0, we can find N such that Zév Qmen > C. Let
K = max(mg, N); then s& > C. It follows that S = oo.

. Since Z;’,‘;nzo |amn| < oo, it is approximated by its square partial sums, so given e > 0 we have

Ymax(mn)>K |@mn| < € for K sufficiently large. This is a double series (it’s obtained from
ano,n:o |amn| Dy replacing a,,, by 0 when max(m,n) < K), so by Exercise 5, it can be summed
as an iterated series first in n, then in m. Summing over only those m such that m < K gives
S, Y ome k41 lamn| < € that is, the sum of the tail ends of the series >°7° ( |amn| Over m =
0,..., K is less than e. With notation as in Exercise 5, this implies that |5§]( — Zﬁzo Sm| < e. Butalso
1S = S7| < X max(mm)> K |amnl < €508 = 3250 Sl < 2e. It follows that S = 3o, Sy

st = Y i (m+n) P = S5 G j7P = S35 1P, This has a finite limit as & — oo if
and only if p > 2.

The only nonzero terms in E 0@mn are +latm =mnand —latm =n+1, s0 Z 0 @mn = 0 for
all n. On the other hand, the onIy nonzero terms in >->° o amy, are +1 at n = m and —1; at n=m-—1,
and the latter term is missing when m = 0. Hence the sum is 0 for m > 0 and 1 for m = 0. It follows
that the sum of the first iterated series is 0, whereas the sum of the second one is 1.



Chapter 7

Functions Defi ned by Seriesand Integrals

7.1 Sequences and Series of Functions

1. (a) lim fix(z) = 0if 0 < z < 1, lim fx(1) = 1. We have |fx(z) — 0| < (1 —d)¥ = 0forz € [0,1 — 4],
so the convergence is uniform there.
(b) lim £(0) = 0, lim fx(z) = 1if 0 < = < 1. We have |fx(z) — 1| = 1 — §1/% — 0 for z € [4,1], so
the convergence is uniform there.
(¢) lim fx(z) = 0ifz € [0,7] \ {37}, lim fx(37) = 1. We have |fx(z) — 0| < sin®(37 — &) — 0 for
z €[0,27 — 8] orz € [ + 6, 1], so the convergence is uniform there.
(d) |fx(z)| < k=" for all z, so f, — 0 uniformly on R.
(e) lim fx(x) = 0 for all z € [0, 00), but the maximum of f;, on this interval is e ! (at z = k1), so
the convergence is not uniform. However, |fx(z) — 0] < kde=* for z > § provided & > 6~1, and
limy,_, o0 k6e %9 = 0; hence the convergence is uniform on [4, co).
(f) lim fx(x) = 0 for all z € [0, 0c), but the maximum of f, on this interval is e~! (at z = ), so the
convergence is not uniform. However, |fx(z) — 0| < b/k for z < b, so the convergence is uniform on
[0, b] for any b.
(9) lim fi,(z) = Ofor z # 1since f(z) < ¥ forz < 1and fi(z) < z7*forz > 1,and lim f(1) = 3.
For any 6 > 0 we have |f(z) — 0| < (1 —6)* forz € [0,1 — §] and |fx(z) — O] < (1 + &)~* for
z € [1 4 6, 00), so the convergence is uniform on these intervals.

2. (a) The series is a geometric series, convergent for z > 0 to the sum 1/(1 — e~*). The convergence is
absolute and uniform on [§, o) for any § > 0, by the M-test with M,, = e~™. The sum is continuous
on (0, 00).

(b) The series is absolutely and uniformly convergent on [—1, 1] by the M-test with M,, = 1/n2 (n > 0);
it diverges elsewhere since the nth term -4 0. The sum is continuous on [—1, 1].

(c) The series is absolutely and uniformly convergent on [—2 + 4, 2 — ] for any 6 > 0 by the M-test
with M,, = %n( — %6)” (> M, converges by the ratio test). It diverges for |z| > 2 since the nth term
# 0. The sum is continuous on (-2, 2).

(d) The series is absolutely and uniformly convergent on R by the M-test with M,, = 1/n3; the sum is
everywhere continuous.

(e) The series is absolutely and uniformly convergent on R by the M-test with M,, = 1/n?; the sum is
everywhere continuous.
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(f) The series is absoutely and uniformly convergent on [1 + §,00) for any § > 0 by the M-test with
M, =n~'79, and it diverges for z < 1 (Theorem 6.9). The sum is continuous on (1, co).

Let M be the maximum value of |g(z)| on [0,1]. Given e > 0, choose § > 0 so that |g(z)| < e for
1—4d <z < 1. Then if k is large enough so that (1 — §)* < e/M we have |fx(z)| < Mz* < ¢ for
z < 1—4¢and|fp(r) < |g(z)] < eforz >1—4. Thatis, |frx(z)| < eforall z € [0,1] when k is
sufficiently large, so fr — 0 uniformly on [0, 1].

Givend > 0,letly = [-1+4+ 6,1 —¢],and for k > 2 let I), = [k — 1 + 4, k — d]. For a given k, let
M, = maxgey, |z — n?|~'. Then M,, < oo forall n, and M,,/n~2 — 1asn — 00,50 > M,, < oo.
The M-test therefore gives the uniform convergence of the series for x € I, or —x € I},.

. The series fails to converge absolutely by comparison to Y 1/n. However, 1/(x? + n) decreases to 0

as n — oo for each z, so by the alternating series test, the series converges for each z, and the absolute
difference between the kth partial sum and the full sum is at most 1/(z2 + k + 1) < 1/(k + 1). The
latter quantity is independent of x and tends to zero as k — oo, so the convergence is uniform.

(a) Since ) ¢, converges we have |c,| < C, so for z € [—a,a] (@ < 1) we have |c,z"/(1 — z™)| <
Ca™/(1 — a). Hence Y c,z™ /(1 — ™) converges absolutely and uniformly on [—a, a] by the M-test.
(b) By the hint, > c,2™/(1 — 2™) = Y ¢, /(1 — ™) — 3" ¢,. The first series on the right converges
absolutely and uniformly for |z| > b > 1 by the M-text, since |c,/(1 — z™)| < C/(d" — 1), and
>>1/(b™ — 1) converges by comparison to Y 1/b™. The second one is independent of z, so it does not
affect uniform convergence, but it decides the issue of absolute convergence.

If fr, — f uniformly on S;,, we have | fi(z) — f(z)| < CF* for z € Sp,, Where C7* — 0 as k — oo. But
then | fi.(z) — f(x)| < max(C},...,CM) forz € UM S,,, and max(C},...,CM) = 0as k — oo.

By Theorem 7.7, the point is to show that { fx} is uniformly Cauchy on [a,b]. But it is uniformly
Cauchy on (a,b), so given € > 0 there exists K such that | f;(z) — fx(z)| < € for z € (a,b) whenever
J,k > K. Since f; and f}, are continuous on [a, b], we can take the limit as z — a, b to conclude that
|fi(z) — fr(z)| < efor z € [a, b] whenever j,k > K, and hence { f} is uniformly Cauchy on [a, b].

Since f — fy is continuous, the set Sy in the hint is closed and hence compact. Moreover, since fy
increases to f, we have S; D Sy D ---. By Exercise 5in §1.6, if each Sy, is nonempty then so is (7 Sk.
But if z is in the latter set we have f(z) — frx(x) > € for all k, which is false since lim fx(z) = f(x).
Hence some Sk (and hence every Sy with & > K) is empty, i.e., |f(z) — fx(z)| < eforall z € S when
k> K. Thus fr — f uniformly on S.

7.2 Integralsand Derivatives of Sequences and Series

1.

The series defining f converges absolutely and uniformly on R by the M-test with M,, = n—2. Hence
f is continuous, and termwise integration is permissible: f0”/2 flz)dz = Y 3°n2 f0“/2 sinnz dr =
$2%[—n=3 cos na]7/%. Now, cos Inm is 0 when n is odd and (—1)™/2 when n is even; hence the nth
term of the last series is n =2 when n is odd, 2n =2 when n = 2,6, 10, ..., and 0 when n = 4, 8,12, .. ..

. The series defining f converges absolutely and uniformly on [0, c0) by the M-test with M,, = n 2.

Hence f is continuous there, and [ f(z)dz = 5 [ (z +n)~2dz = ¥.°[n~! — (n + 1)~1]. This
is a telescoping series; the nth partial sumis 1 — (n + 1) 1, so the full sum is 1.
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3. (a) Just observe that limy_,, arctan kz is %7!’ ifx >0, —%7‘( ifx<0,and0ifz=0.

(b) We have f;(z) = arctankz + kz/(1 + k?z?). If z # 0 the second term tends to zero like 1/k as
k — oo, and if z = 0 it vanishes to begin with. Hence limj_,o, ff(z) is &7, 0, or —ix for z > 0,
xz = 0, or z < 0 respectively. The convergence cannot be uniform near z = 0 because the limit is
discontinuous.

4. In each case it is a matter of using the M-test to establish the uniform convergence of the derived series
on compact subsets of the interval of convergence. In what follows we write down the derived series
and the constants M,, in the M -test.

(@ —> ne™™ M, = ne= % for z > 6.

(0) S nz" '/ (n? 4+ n+1); M, = (1 —68)" ! for |z| < 1—4.
(©) Son?zn1/2n 3 M, = n2(1 — 36)"! for [z] <2 — 4.
(d) — Y (sinnz)/n?; M, = 1/n?.

) S(—2z)/(z? + n?)?;, M,, = 2K /n* for |z| < K.

(f) =S n"logn; M,, = n~'"¢logn for |z| > 1+ 4.

5. Using the observation that 2z/(z? — n?) = (z — n)~! + (z + n)~!, we see that the derived se-
ries of fis — > °[(x — n)™2 + (x + n)~2]. This series converges uniformly on compact subsets of
R\ {#1,+2,...} by the same argument as in Exercise 4, §7.1 (basically, a comparison to > n~2), so
the termwise differentiation is justified.

6. () Forz > 6> 0,0 < kf(kz) < Ch(kz)~1=¢ < C5~'=k=¢ — 0 as k — oo.
(b) With y = k=, fol kf(kz)dx = fok fw)dy — [5° fy)dy = a.
(c) Given e > 0, pick & > 0 so that |g(z) — g(0)| < ¢/3a when 0 < z < 4. Then [, fx(z)g(z)dz

is the sum of g(0) [, fx(z) dz, [} fu(@)lg(x) — 9(0)]dw, and [; fi(@)[g(x) — g(0)] dz. By part (b),
the first term is within €/3 of ag(0) provided & is suffuciently large. The absolute value of the second
term is at most (e/3a) f(f fr(z)dx < €/3. Finally, since integrable functions are bounded we have
lg(z) — ¢(0)| < C, so the third term is no bigger than C' f; fr(x) dz, which is less than ¢/3 for large k

by part (a). In short, | fol fr(z)g(z) dz — ag(0)| < e for k sufficiently large, and we are done.

7.3 Power Series

1. @) |ant12™ anz™| = |ans1/an| |z| — L|z|, so by the ratio test, 3 a,z" converges when L|z| < 1
and diverges when L|z| > 1.

(b) |anz™|/® — L|z|, so by the root test, 3" a,z" converges when L|z| < 1 and diverges when
Liz| > 1.

2. If la,| < C, then |a,z™|Y/™ < CY/™|z|. If || < 1then C'/"|z| < 1 for large 7, s0 3" @, 2" converges
by the root test (Theorem 6.14a).

3. 3°5° anzk™ converges when |z¥| < R and diverges when |z*| > R, so the radius of convergence is
RYE,
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Let 1/R = limsup |a,|'/™. If |z| < R, letr = (R + |z|)/2. Then |a,z™|'/™ < |z|/r < 1 for large n,
s0 3" a,z™ converges by the root test (Theorem 6.14a). If |z| > R, then |a,z"|'/" > 1 for infinitely
many n, S0 a,z™ 4 0and Y a,z™ diverges.

(@) e = 3°5°(—%)"/n! for t € R. By Theorem 7.18, [ e dt = 3°5°(—1)"a?"+! /n!(2n + 1) for
z€R

(b) cost?* = Y F(-1)"(#*)?/(2n)! for t € R By Theorem 7.18, [fcost®’dt =
Yoo (=)t /(2n)(4n + 1) forz € R

(€)ttlog(1+2t) = Y 5°(—1)"127¢n 1 /p for —1 < 2¢ < 1 (Exercise 3in §6.1), with the understand-
ing that ¢~ 1log( + 2t)|4=0 = 2. By Theorem 7.18, [;"¢~*log(1 +2t) dt = 3P (-1)""1(2z)" /n?
for |z| < . However, the integral on the left is continuous for |z| < 1 3 (it is improper but convergent at
r=— ) and the series on the right converges absolutely and uniformly for |2z| < 1 by comparison to
Zn_2. Thus the equality persists for |z| = 5

Each of the series for the three integrals in question, namely, » 3°(-1)"/n!(2n + 1),
Y 2(=1)"/(2n)!(4n + 1), and D-°(=1)"~1/n?, is an alternating series whose terms decrease mono-
tonically to zero in absolute value, so the full sum lies in between any two successive partial sums. One
simply computes the partial sums (with a calculator or otherwise) until the desired accuracy is attained.

(@) .74672... = Y3 (~1)"/n!(2n + 1) < 1 e P dt < So(—=1)"/nl(2n + 1) = .74683..., so the
answer to three decimal places is .747.
(b) .90452... = 1—(1/2!5)+(1/419)—(1/6!13) < fol cost? dt < 1—(1/2!5)+(1/4!9) = .90462. ..,

so the answer to three decimal places is .905.

(c) This series, alas, converges much more slowly. One has to go to the 123rd partial sum to be sure
that the answer to three decimal places is .822 and not .823. | used Maple to find that the 123rd partial
sum is .8224998 . . . and the 124th partial sum is .8224347 . . _; the full sum is in between. (It is actually
72 /12 = .8224670....)

If f(z) = f(—=z) then } a,2™ = Y (—1)"a,z™, so by Corollary 7.22, a,, = (—1)"a,, for all n and
hence a,, = 0 for n odd. Likewise, if f(z) = —f(—=z) then a,, = (—1)"*'a, for all n and hence
a, = 0 for n even.

() The absolute value of the ratio of the (n + 1)th term to the nth term is z2/4(n + 1)(n + k + 1),
which vanishes as n — oo for all z; hence the series converges for all .

o ( 1)n 2n+2k 0 (—1)”$2n+2k_1

( ) .. TLZ 22n+knl(n + k) = nzo 22n+k_1n!(n Tk— 1)' = kak_l(.’L').

o (—l)n 2n 00 (_1)n$2n—1 & (_1)mx2m—|—1

(c ) Z 22"+kn'(n + k) 2:: 22n+k=1(p — 1)(n + k)! - mz_:o 22mtktlml(m + k + 1)!

Jk“( ) . (For the second equality, m = n — 1.)

IL'

) ) o0 (_1)7’1. 9 2n+k
@ ol = 3 g On B+ k= 1)+ o k)~ [7]7 -
o o

(=" g2tk (“D)mH g, i

5 T = ) i B T 7 Jr(z). (In the third equal-
el m=0

ity m=n-—1)
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9.

10.

11.

The series converges for all z by the ratio test. Letc, = [2-3-5-6---(3n — 1)(3n)]™!; then

(@/dz?)e,z® = cp12®72 s0 f'(z) = (d/dpt) Y P = Y123
=12y 0 cmaz™ = zf ().
@ S e /(o + D! = aldfde) S0+ ) = aldfda) [z S5 o+ 1)) =

z(d/dz)[z7'(e® —1)] = e — 37" (e® —1). Alternatively, sincen = (n+1) —1, > na™/(n+1)! =
>0 2 nl =32 (n+ 1) = e —z7 (e — 1),

0) TECYen + 1) - e+ 2l = FEFCIMEd/e + 2 =
Jot 2T (=)™ 2™ dt/(2m)! = [t %(1 — cost) dt.
© >5’z"/(n + 1)2n! = z7! ZSO:E”“/(TL + 1)2n! = z7! foz Yothdt/(n + 1) =

z b [Jt (el — 1) dt (see part (a)).
(d) 3207 (=1)™(2n + 1)z**/(2n)! = (d/dz) 355°(~1)"z**!/(2n)! = (d/dz)(zcosz) = cosz —

rsinz.

(a) Integrate by parts: [’ arctan ¢ dt = t arctant[§ — fowtdt/(t2 +1) =zarctanz — 5 log(x +1).

(b) From Example 2 and Abel’s theorem, we have arctanz = Y 0°(—1)" x2"+1/(2n +1) forz €
[—1,1], the series converging uniformly on that interval. (The convergence at £1 comes from the
alternating series test, and Abel’s theorem then gives the uniformity on [—1, 1] and the validity of the
expansion at z = =1, since arctan is continuous.) It then follows from Theorem 7.13a that f(z) =
Yoo (=122 /(2n + 1) (2n + 2) for z € [—1 1]

(c) Setting = = 1 in (b) and using (a) gives 1r — 1 log2 = f(1) =>7(-1"/(2n +1)(2n + 2), and
the observation that [(2n + 1)(2n + 2)] 1 = (2n + 1)~ — (2n + 2) ! then yields the desired result.

7.4 The Complex Exponential and Trig Functions

1.

(@) sinhiz = %(e“C — e7™) = jsinz and coshiz = %(e“ + e7™) = cosz by (7.30) and (7.32).

Alternatively, one can examine the power series expansions.

(b) First method: express the sinh and cosh of z and w in terms of e*# and e, multiply out the right
sides of the asserted formulas, and simplify. Second method: set z = iz and w = 4y, and use (7.34) and
part (a).

() sinh(z + iy) = sinhz cosh iy + cosh z sinh iy = sinhz cos y + i cosh z siny, and cosh(z + iy) =
cosh x cosh iy + sinh z sinh iy = cosh z cos y + i sinh z siny.

If c = a+ibwitha,b € R, (d/dz)e(sT®® = (d/dz)e (cos bx +i sin bz)] = ae®® (cos bz +i sin bx) +
be™ % (—sinbx + icosbz) = (a + ib)e*(cos bx + isinbzx) = ce™

[ e cosbrdr+i [ e sinbrdr = [ elatid)z gr By Exercise 2, this is

elatid)e  ¢a%(cosby 4 isinbr) a —ib _ e*(acos br + bsinbz) + ie® (asin bz — bcos bx)

at+ib a+ib ‘a—ib a? + b2

The asserted formulas follow by taking real and imaginary parts. (Of course some constants of integra-
tion are being suppressed here.)
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7.5 Functions Defi ned by Improper Integrals

1.

Forall z € I we have f |f z,t)| dt < f t) dt < oo, so the integral converges absolutely. Like-
wise, | fd (z,t)dt| < [[°g(t)dt - 0asd —> 00, S0 the convergence is uniform.
Let g f Oz f(z,t) dt, and pick a point a« € I. By Theorem 7.39 (with f replaced by 9, f),

[ gy dy = [*[F 8mf y,t)dydt = [ f(z,t)dt — [° f(a,t)dt. The last integral is a constant,
so by the fundamental theorem of calculus, g(z) = (d/dz) [° f(z,1) dt.

e ™dt = —zte™™|° = z~!. Formally differentiating [°e *'dt n times gives
(=)™ f t"e~ "t dt. The latter integral is uniformly convergent on [4, 00) for any 6 > 0, by Theo-
rem 7.38 with g(t) = t"e %, so the differentiation is justified. On the other hand, (d/dz)"z~! =
(—=1)"n!z—™~1; the result follows.

Joo (2 + 2)7 dt = =/ arctan(t/x'/?)|" = $mz~!/2. Formally differentiating [;°(¢* + z)~" dt
n — 1 times gives (—1)"~!(n — 1)! [7°(t? 4+ )" dt. The latter integral is uniformly convergent on
[6, 00) for any 6 > 0 by Theorem 7.38 with g(t) = (¢? + §) ™", so the differentiation is justified. On the

other hand, (d/dz)"z71/2 = (=3)(=3) -+ (- 2%3)z~(~1/2, Hence

/°° dt 7w 1-3---(2n=3) oy _ T 1-3---(2n=3) (1 on)p

o @+z)r 2 2 I(p—1) 2 2-4---(2n—2) '

. bz _ gaz) gy = — [® [Pe=otdrdr. Since [* et dt is uniformly convergent on any
O 0 a 0

compact interval in (0, o) (see Exercise 3), we can reverse the order of integration to get — f;’ z  dx =
log(a/b).

J e —e %) coszdz = — [;° fb % cosz dt dz. Theintegral [;° e ™ cos z da is uniformly
convergent for ¢ € [4, 00) forany § > 0 by Theorem 7.38 with g(z) = e—‘Sm S0 we can reverse the order
of integration to get — [ [ e % coszdzdt = — [ tdt/(t? + 1) = —L log(t? + 1)|Z. (For the first
equality, use the result of Exercise 3, §7.4, or integrate by parts twice.)

Jo e a1 — cosaz)dx = [;° [ e "sintwdtdz. The integral [;° e *sintz dx is uniformly
convergent for ¢ € [0, 00) by Theorem 7 38 with g(z) = e~ %, so we can reverse the order of integration
toget [ [ e Tsintwdrdt = [ tdt/(t*> + 1) = 3 log(a® + 1). (For the first equality, use the result
of Exercise 3, §7.4, or integrate by parts twice.)

If z > 0, set s = axt; then dt/t = ds/s, so [°sinztdt/t = [°sinsds/s = L. It follows
that f0°° sinztdt/t = —%n for x < 0 since the sine function is odd, and of course the integrand
vanishes if x = 0. The convergence cannot be uniform on I if 0 € I by Theorem 7.39, since the
resulting function is discontinuous at 0. However, the convergence is uniform forz > jorz < —¢
(6 > 0). To see this, use integration by parts as in Example 3, §4.6, or Example 3, §7.5: we have
I sinxtdt/t = (—cosat)/zt|,” — [;° cosztdt/zt?, and for |z| > & this is bounded in absolute
value by 6~ [b~1 + [° dt/t?] = 2/5b which vanishes as b — oo.

Let F(z) = [, sin® zt dt/t? for z > 0. Since sin? 2t < min((«t)?, 1), for 0 < z < C the integrand is
less than min(C?,t~2), whose integral is finite. Hence the convergence is uniform on [0, C] for any C,
and so F is continuous on [0, oo). Next, formally F'(z fo 2sinztcosztdt/t = [ sin2xt/tdL.
By Exercise 8, the differentiation is justified and F'(z ) smforz > 0. Hence F(z) = 37z + ¢, and
c=F(0)=0.
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10.

11.

12.

13.

14.

15.

(a) The integral over [1,00) converges by comparison to f1°° z~2dz, and the integral over [0,1] is
proper since lim,_,(cos bz — cos am)/x = 1(a® — b?). One way to obtain the uniformity easily is to
use the identity cos bz — cos az = 2sin §(a + b)z sin 3(a — b)z and the estimate | sinu| < min(|u|, 1)
to get | cos bz — cos az|/z? < min(5|a? —b%|, z~2), which for a, b in a bounded set is less than a fixed

integrable function min(C, z~2).

(b) I(a,b) = — [s° [* ™' sintz dt da. By Exercise 8, thisis — [ [z ' sintedzdt = — [ indt =
sm(a— b)

(c) Since I(a,b) is continuous in a and b by part (a), the formula I(a,b) =
a,b > 0. Also, clearly I(a,b) is even in both a and b, so I(a,b) = I(]al,|b|)
a,b.

(a — b) persists for

1
i’lT
= 37(|a| — |b]) for any

(a) The differentiated integral is — fooo te~t” sin zt dt, which converges absolutely and uniformly on R
by Theorem 7.38 with g(t) = . Hence, by integration by parts, F'(z) = — fo te™t" sinzt dt =

%e_tz sinxt‘go — gz [ e cosxtdt = —1zF(z).
b) Solving the differential equation from (a), F'/F = —1z, so log|F(z)| = —Lz% + log|C]|, hence
2 4

F(z) = Ce=®"/* and C = F(0) = 0°° ~t" dt = L/ (Proposition 4.66).

As in Exercise 11, G'(z) = [ te™" cosatdt = —%e*tz coszt|” — 3z [P e sinztdt = L(1 -
zG(z)). Write this equatlon as G'(z) + 3zG(z) = 3 and multiply through by the integrating factor
e’ /4 1o get (e2*/4@)" = Le”’/4. It follows that e*”/4 G( )= [T/t dt+ C,and C = G(0) =

Let g(z,t) = (1 — e~ )/t2 and F(x) = [;° g(x,t)dt. g(z,t) is continuous on the region = > 0,

t > 0 if we define g(z,0) = z. Hence fo g(z,t) dt is continuous in z, and so is [ g(z,t) dt since
the convergence is uniform (|g(=x,t)| < ¢~2). Thus F(z) is continuous for z > 0. We have F'(z) =
f0°° e~ @ dt¢ for z > 0, the differentiation being justified since the latter integral converges uniformly
forz > 6 > 0. Hence by the substitution s = ¢/z and Proposition 4.66, F'(z) = [;° " ds/ /T =
$3/m/z. Thus F(z) = /mz + C forz > 0,and C = lim,_,o F(z) = F(0) = o.

(a) The integrand is at most e~ for all z, so the integral converges uniformly to a continuous function
of z. Formal differentiation of the mtegral yields —2z f et (=?/1) dt/t?; this integral is still con-
vergent for x # 0 because the factor e~ /¥ Kills the factor 1 /t% near t = 0, and the convergence is
uniform for |z > & > 0. Hence F'( ) —2z f°° —=@/) gt /12 forz £ 0. If z > 0, let u = z /¢,
S0 du = —z dt/t?, and F'(z) = 2f (@*/u?)=v? gy, = —2F (z). If 2 < 0, the substitution u = —z/1
likewise yields F'(z) = 2F( )

(b) The differential equations for F give F(x) = C1eT2® for £z > 0. Since F is continuous at 0, we
have Cy = = [ e ¥ dt = 1/ by Proposition 4.66, so F(z) = 1/7e~24l,

(c) By the substltutlon u = pt, [Ce W) gt = [©ev-0iP) qu/ /5 = F(\/pg)/ /P =
\/ [pe2VPa,
(a) Formal differentiation of the integral = times yields (—1)" [;* e~ **z" f (z) dz. The convergence of

the latter integral, for any n, is uniform for s > b+ 6 (6 > 0) since |e*®z" f(z)| < ae™%*(1 + z)N*7,
so the differentiation is justified.

(b) Integrate by parts: [ e 5% f'(z)dz = e **f(z |0 + [ se 5 f(z) dz = — f(0) + sL[f](s); the
assumed estimate on f guarantees that e™** f(z) — 0 as ¢ — oo.
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7.6 The Gamma Function

22n—1
1. TP(n)P(n-ﬁ-%) 22-11.2.--(n-1)-3-3---(n—3)=2-4---(2n—2)-1-3--- (2n—1) =
™
(2n — I =T(2n).
2. Letu = log(1/t),s0t = e, dt = —e " du, and u goes from oo to 0 as ¢ goes from 0 to 1. Thus

Jolog(1/1)]* =1 dt = [°ut""e " du = b°T'(a) by (7.51).

3. (@) By (7.52), [;° = =’ dx:ll"(é)—%.%.% ™= 3m.
(b) By (7.51), [y e732\/zdz = 373/21'(3) = 373/2L \/m = L/ /2.
(c) Letu = z*, du = 42® dz; then [° 2° e dx = %fooo 3/2 _“du:if‘(g): %%%\/77: %\/77

4. (a) The substitution w = 1 — ¢ in (7.53) turns B(z,y) into B(y, ).

(b) B(z,1) = [} t*~ dt =2~ 11%| =~
@t =)y L+t Y1 —t)¥ = =711 — )Yt + (1 — ¢)] = = 1(1 — ¢)¥~1; the result follows by
integrating from 0 to 1.

(d) The substitution ¢ = 1/(u + 1) turns (7.53) into B(z,y) = [;°(1 +u) % Yu¥ ! du.

5. Let uw = 0 then dz = b~tub™ ' ~ldu, so f o1 — g dz = b~ 1f [(a+1)/bl-1(1 — w)edu =
b 'B((a +1)/b, c +1); use Theorem 7.55.

6. Wehave I'(2z) = (22—1)(2z—2)I'(2z-2),I'(z) = (z—1)['(z—1),and T(z+ 3) = (z—3)T(z—3).
Hence, given that I'(2z) = 7~1/2222~1'(2)T'(z + 3), we have

7T*1/2225”*1(m - (z—-1)(z — %)F(x — %)
(2 —1)(22 — 2)

I'(2z —2) = = 7~ 1/292@=D-1p (g — 1)T(z — ),

so the duplication formula is valid for  — 1. Thus, if the formula is valid for z > —n it is also valid for
z > —n — 1, and by induction, it is therefore valid for all z.

7. [P sink pde = LB(L(k+1),1) = 1L (k+ 1)T(3)/T(5k + 1). If k is even, this is
153 GE—pVa-vm _1:3--(k—1) =
2 1-2--- (k) 2-4--k 2
If kis odd, it is
1 1.2...(% _%).\/7?_2.4...(],3_1)
2 %%(%k)ﬁ B 1-3---k

(There is one more factor in the denominator than in the numerator, which absorbs the extra factor of 2.
If k = 1, we simply have T(1)T'(3)/2T(3) = 1.)

8. since [/*sin®™! zdz < [T/*sin® g dz < [T/*sin?"~! z dz, by Exercise 7 we have

2.4..-(2n) 1-3.--2n—1) © 2-4.--(2n—2)
13- (2nt+1) - 24.--(2n) 213 -@n-1)
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10.

11.

12.

Multiplying through by 2 - 4---(2n)/1 - 3---(2n — 1) gives ¢, < &7 < (2n + 1)c,/2n. Since
cn = cn—1(4n?)/(4n? — 1) > ¢, 1, the sequence {c,} is increasing, and we have just seen that it is
bounded above by S, so it converges to a limit L < 2. The sequence {(2n+1)c,/2n} also converges

to L, but its terms are > 2, so L > 1. Inshort, L = L.

(@) Fora > 0, (d/dz)Ios1[f](z) = T(a+ 1) (z — )2 f(z) + ozfom(x — 1)o7 f(t) dt] = L[f](x)
since I'(a + 1) = al'(«). Actually there is more to be said when a < 1, since then the integral
defining I, [f](z ) is improper: the integrand blows up at ¢ = z. But (d/dz) [y “(z — ¢)*f(t) dt =
e flz—e)+a [ (z—t)* 1 f(t)dt. Forzinafinite interval, say [0, C], we have |f(z)] < M < 0,50
|e* f(z—e)| < Me*and ‘a o (z—t)* L f(t) di—a [ (x—t)* "1 f(2) dt| < Mo (z—t)*tdt =
Me®. Hence (d/dz) [;~“(z — t)*f(t) dt = « [} (z — t)* f(¢) dt uniformly for z € [0, C], so the
differentiation in the Iimit as e — 0 is justified.

(b) L[Is[f)(z) = [[(« L[ [H(@ — t)* 1 (t — s)P 1 f(s) dsdt. Reversing the order of in-
tegration (OK even if a,ﬁ < 1 since the integral is absolutely convergent) turns foz fot -+-dsdt into
Jo Ji -+ dtds. Now, in the inner integral, make the substitution uw = (¢ — s)/(x — s), so that u goes
from 0to 1 when ¢ goes from sto z. Thent—s = (z—s)u, z—t = (z—s)(1 —u),and dt = (z —s) du,
S0

LB = s | / M1 =) = 5 () dids
_M Tz — s)“ B—1 s S:; zx_sa B—1 s)ds — -
" T w)/o‘ ) ds = g [ @ = (6) ds = ).

(a) The series is [['(2)/T(3)] ° T'(n + 3)/T(n + 3). The nth term is asymptotic to n~'/3, so the
series diverges.

(b) The series is 1T(3) Y°0°T'(n + 1)/T'(n + 2). The nth term is asymptotic to n /%, so the series
converges.

The series is 77/23°°[T(n + 5)/T'(n + 1)]P. The nth term is asymptotic to n=?/2, so the series
converges if and only if p > 2. For Raabe’s test, we have

-] - ()] [- (- 55) ]

Since (1 + ¢)? ~ 1 + pt for ¢ small, this is approximately np/(2n + 2) for n large, and the limit is p/2.
Hence Raabe’s test gives convergence for p > 2 and divergence for p < 2 but is indecisive for p = 2.

T'(a+n)/T(c+n) =n*and T(b+n)/n! = T(b+n)/T(n+1) ~ n®! for n large, so the nth term
is asymptotic to n*+to=¢=1, Hence the series converges ifand only ifa+b—c—1 < —1,i.e,a+b < c.

7.7 Stirling's Formula

1.

Since the second derivative of log(1 + t) is —(1 +¢) 2, Lagrange’s form of the remainder immediately
gives log(1 + ¢) = ¢t + R(t) where =3t < R(t) < 0fort > 0. Thus, a — (a +n — 3)log(1 +
(a/n)) = (a - (a/n) —(a+n— —) (a/n), and for 0 < a < 1 this is, in absolute value, at most
1/2n+ (n+3)/2n? = 1/n + 1/4n? < 5/4n.
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2. (2n)!/(n!)222" ~ (2n)2nt(1/2) =20, /o1 Jn2ntle=2n(27)22" = 1/1/7n, where ~ means that the ratio
approaches 1 as n — oo.

3. Notethat2-4---2n =2"(1-2---n) =2"nl,and 1-3--- (2n—1) = (2n)!/2-4---2n = (2n)!/2"n!.
Thus the numerator and denominator of Wallis’s fraction are [2"n!]2 and [(2n)!]?(2n + 1)/[2"n!]?, so
the whole fraction is

[2"n!]* [nl]* (2n)4ntle—4n . n

[(2n)2@2n+1)  n* et [(20)2 22n+1)

which tends to L* - L=2 - ; asn — oco. Thus $L? = L7, or L = /2.



Chapter 8

Fourier Series

8.1 Periodic Functionsand Fourier Series

1. fisodd, s0oa, = 0and b, = (1/x) [7_f(0)sinnddf = (2/x) [; sinnfdf = —(2/n~) cos n0|g =
(2/nm)[1 — (=1)"]. Thisis 0 if n is even and 4/nx if n is odd, say n = 2m — 1; thus the Fourier series
is (4/m) Y- [sin(2m — 1)0]/(2m — 1).

2. By the double angle formula, sin? @ = 3(1 — cos 26), and the thing on the right is a Fourier series!

3. fiseven,sob, =0, a9 = (2/m) [, sinfdf = 4/m,and for n > 0, an, = (1/7) ["_f(6) cosnbdd =
(2/x) [ sin@cosnbdd = (1/x) [ [sin(n+1)0—sin(n—1)0]d0 = (1/x)[(n+1)"t —(n—1)"H][1-
(=D 1 = =2[1 — (=1)" 1]/(n? — 1)x. Thisis 0 if n is odd and —4/(n? — 1)7 if n is even, say
n = 2m; thus the Fourier series is Jag + Y_1° an cosn = (2/7) — (4/7) 35°(cos 2mb) /(4m? — 1).

4. fiseven, so b, = 0and a, = (2/m) [ 6% cosnddf. The constant term is 3aq = (1/7) [, 6>d6 =
72 /3. Forn > 0, integration by parts gives [ 62 cos nf d = (2/n?)6 cos n0+[(6%/n) —(2/n3)] sin nb,
80 a, = (2/7)(2/n2)w(—1)" = 4(—1)" /n2.

5. Here it is easier to use the exponential form of the series: ¢, = (1/27) [ eYe=infdh =

[e(b—m)"]fﬂ/%(b —in) = (=1)"[e’™ — 7] /27 (b — in) = (—1)"(sinhbx) /7 (b — in).

6. f is odd, s0 a, = 0 and b, = (2/7) [, 6(m — O)sinnbdh. Integration by parts gives
[O0(m — 0)sinnfdd = (1/n)0(r — 0) cosnb + (1/n?)(r — 20)sinnd — (2/n3) cosnb, s0 b, =
(2/7)(2/n3)[1 — (=1)"]. This is 0 when n is even and 8/wn? when n is odd, say n = 2m — 1; hence
the Fourier series is (8/7) .5°(2m — 1) 3 sin(2m — 1).

7. fiseven, so b, = 0. The constant term %ao is the mean value of f on [—m, ], which is 0 by con-

struction of f. Forn > 0, a, = (2/ma) [ cosnfdf — [2/n(m — a)] [ cosnddf = (2/man) sin na+
[2/7(m — a)n]sinna = [2/a(r — a)n]sinna.

8. fiseven, so b, = 0. The constant term 1aq is the mean value of f on [—m, ], namely 1/2x. For
n > 0, ap = (2/ma?) [;(a — 0) cosnfdf = [(2/ma’n)(a — 0)sinnd — (2/wa’*n?) cosn&]g =
2(1 — cos na)/ma’n?.

9. First method: Suppose (k — 1)P < a < kP. Then fa‘”P = fakp—kf,flfp (the integrand is f(z) dz in

all integrals). By periodicity of f, the second integral on the right equals f((;c—l)P’ so adding it to the
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first integral gives f(l;];)P- Another application of periodicity shows that this is equal to fOP. Second

method: Let g(a) = fa‘“LP f(z)dz. g(a) is a continuous function of a, and except at the finitely many
points where f is discontinuous we have g'(a) = f(a + P) — f(a) = 0. It follows that ¢ is constant, so

g(a) = 9(0).

8.2 Convergence of Fourier Series

1.

. (@ f(0)

Let f be the sawtooth wave of Example 1.

(a) The function depicted is  f(m — 20) = S20°[(—1)"! /n]sin(nm — 2n6) = >°(1/n) sin 2n6.

(b) The function depicted is 1 + (1/7)f(20 — m) = 1 + (2/7) S °[(—1)" 1 /n]sin(2nf — n7) =
1—=>27°(2/mn) sin 2nb.

The function f(@) here is the function of Exercise 4, §8.1, shifted to the right by iw. Hence f(0) =
(72/3) + 43°0°[(—=1)"/n?] cos n( — 1), and cos n( — L) = cos {n cos nd + sin tnsinnd.

1+ g(6 )) where g is the square wave of Exercise 1, §8.1; hence f(0) =
2m —1)~!sin(2m — 1)0.

(b) £(6) (|sind| + sma) for |9| < m, so by Exercise 3, §8.1, we have f(f) = (1/7)—
(2/m) 35°(cos 2mB) /(4m? — 1) + 5 sin .

(©) £(8) = [(r — a)/27][g(0) + (m —a)~'] = (1/27) + [(7 — a)/27]g(6) where g is the function of
Exercise 7, §8.1, s0 f(0) = (1/2m) + (1/m) >.7°[(sinna)/na) cos nb.

d) ) = (e —e ¥ for |§| < m so by Exercise 5 §8.1, with b = 1, f(8) =
[(sinh7)/27] 32 [(=1)"/(1—in)][e™ —e~™] = [(sinh ) /7] 3%, [(—1)" /(1 —in)]isinnd. The
sum of the nth and (—n)th terms is (—=1)*[(1 — in)™' — (1 + in)"llisinnd =
(—1)""1[2n/(1 + n?)] sin nd.

1
2
(

Ly 2/ Y
oy
(c

(a) Setting & = 0 gives (2/7) — (4/7m) 327°1/(4m? — 1) = 0 or Y7°1/(4m? — 1) = 3, a result also
obtainable from the observation that (4m? —1)~! = 1[(2m—1)~1 — (2m+1)~1], so that the series tele-
scopes. Setting 0 = im gives 1 = (2/m) — (4/m)>X(-1)™/(4m?® - 1), or
2(=1m(Am? — 1) = (7 —2) /4.

(b) Setting 6 = 7 gives 72 = (72/3) +4>.7°1/n? or >°1/n? = =?/6; setting 6 = 0 gives
0= (72/3) + 43 7°(-1)"/n? or Y 3°(~1)"+1 /n? = n%/12.

(c) Setting @ = 0 gives 1 = [(sinhwb)/7] Y > (—1)"/(b — in). The n = 0 term is 1/b, and for
n > 0 the sum of the nth and (—n)th terms is 2b(—1)"/(b? + n?); thus 1 = [(sinh 7b)/7][(1/b) +
2635 (=1)" /(62 + n?)], or S7°(=1)"/(b? + n?) = (wbeschwb — 1)/2b%. Setting & =  gives
[(sinh ) /7] Y- 1/(b — in) = 3(e™ + e~™) = coshwb. (The function represented by the series
is discontinuous at & = m, so the sum of the series is the average of the left and right hand limits!)
Again the n = 0 term is 1/b, and for n > 0 the sum of the nth and (—n)th terms is 2b/(b2 + n?), so
(1/b) +3°7°2b/(b? + n?) = wcothwb and hence > ° 1/(b? + n?) = (wbcoth b — 1) /207

(d) Setting & = 17 gives 172 = (8/7) 1 7°(—1)™ ! /(2m—1)3 or 3 3°(—1)™+! /(2m—1)3 = 73 /32.

. Given § € R and e > 0, choose § > 0 small enough so that |f(6 + ¢) — f(0+)] < €/3 when

0 <@ <dand|f(0+¢)— f(O-)] <e/3when =6 < ¢ < 0. Let M = supge[_r .1 |f(0)|. By
(8.23), there exists ¢ such that 0 < P.(¢) < ¢/6nM for ¢ € [—m,—0] U [6, 7] when rp < r < 1.
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Assume now that 7o < r < 1. We have | [ (6 + (p) ( )dy| < M(e/67rM)(7r —§) < %€, and

Iikewise |f*‘5f (0 + )P (p) dyp| < e. Moreover, fO p)de = [ Pr(p)de — [§ P(p)dp =
— J5" Pr(y) dy, and this last integral is between 0 and e/6M Now, we have

4 4 4
/0 10+ 9P dp = 3104 = [ 10+9) - 100IRD do+70+) | [ Ptordo- 3]

The first term on the rlght is at most ( e/3 fo @) dp = 66 in absolute value, and the second term is
at most M (e/6M) = Le. Similarly, |f f 9+<p) (@) dp — 3 f(0—)| < 3e. Adding up these results,
abbreviating f (6 + ¢) P (¢) dy as (x) we have
[
§

[ = guen+so-i] <| [l +| [ -y +

L e
6 33" 6 °©

d 1
- jr00)]+

for rg < r < 1, as desired.

6. Since f is uniformly continuous, given e > 0 we can choose § > 0 small enough so that |f (6 + ¢) —
f(8)| < €/3 for any 6 when || < §. The argument of the preceding exercise (slightly simplified, since
f(6+) = f(0—) = f(6)) shows that | A, f(8) — f(0)| < e forall @ when ry < r < 1.

8.3 Derivatives, I ntegrals, and Uniform Convergence

L oap, == [T f'(0)cosnfdd = n' f(0) cosnb|” — =t [T f(0)(—nsinnh)df = 0 + nb,, and
b,=n"'["_f'(0)sinnfdd =" f(0) sinn9|:r — 7t [T f(0)(ncosnb)dd = 0 — na™.

2. (@) g(@)is—1+ (a+8)/(a—7)for —m <0< —a,a"0for 0| <a,and 1 — (6 —a)/(7 — a) for
a < 6 < m. The graph is the broken line joining the points (—,0), (—a, —1), (a,1), and (7, 0).
(b) Termwise integration of the series in Exercise 7, §8.1 gives [2/a(m — a)] 3_{°(sin nasinnd)/n?

3. (a) From Exercise 4, §8.1, we have 360 — 72 = 123 "°[(—=1)"/n?] cosnf (6] < =), and termwise
integration yields 03 — 720 = 12 Y °[(—1)"/n3] sinnf. (6> — 720 is odd, so its mean value on [—, 7]
is0.)

(b) Integration of the result of (a) and multiplication by 4 gives 0* — 27262 = Cy+
48 3°3°[(—=1)"*! /n*] cos n@, where Co = (1/2m) [T (0 —27%0%) d6 = (1/7)(gn° — 2n°) = — Lt
(c) Setting @ = m in (b) gives —7* = — L7t — 48 3°0°(1/n*), or 3-7°(1/n*) = 7*/90.

4. The function (@) = |sin 6| is continuous and piecewise smooth, and its derivative is s(6) cos 8 where s
is the square wave (Exercise 1, §8.1). So by Corollary 8.27, we have s(f)cosf =
(8/) S°1°(n sin2n8)/(4n?—1), and in particular the latter series converges to cos 6 for0 < § < . On
the other hand, termwise integration of the series for | sin 6| from 0 to 6 gives, for0 < 8 < 7, 1—cosf =
(2/m)0 — (2/7) Y 5°(sin2nb) /n(4n? — 1), or cos § = 1 — (2/m)8 + (2/7) Y_3°(sin 2nb) /n(4n? — 1).
Now, since 4n/(4n? — 1) = (1/n(4n? — 1)) + (1/n), the equality of the two series for cos # amounts
to the assertion that 27 — 6 = }"7°(sin2n8)/n for 0 < 6 < m, and one verifies this by substituting
7w — 26 for 6 in Example 1, §8.2.
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f(@) is not continuous (it has jumps at the odd multiples of «), so Theorem 8.26 does not apply.
(For those who like distributions: The derivative of f(0) is really f(6) — (2sinhx)d,(6), where
o, is the periodic delta-function with singularities at the odd multiples of w. The Fourier series of
br is (1/2m) 3% (—1)"e™?, so the correct conclusion is not ¢,, = inc, but rather inc, = ¢, —
(—1)™(sinh ) /7, which is true by Exercise 5, §8.1.)

() The series 3, o (¢/5) /(1 4 n®) converges if and only if k < 6, so the given series can be
differentiated 6 times.

(b) The series >¢° n* /2" converges for all k, so the given series can be differentiated any number of
times.

(c) The given series converges uniformly (M-test with A,, = 27"), so its sum is continuous, but the
differentiated series — > sin 2" does not converge at most points (the terms do not tend to zero as
n — 00).

8.4 Fourier Serieson Intervals

1.

(a) The even periodic extension of f is the constant function 1, which is its own Fourier series. The odd
periodic extension is the square wave (Exercise 1, §8.1).

(b) The even periodic extension of f is |sin 8| (Exercise 3, §8.1). The odd periodic extension is sin 6,
which is its own Fourier series.

(c) The even periodic extension of f is the function of Exercise 4, §8.1. The odd periodic extension
is given by f() = 0|6] for |6] < m, so f(8) = w0 — O(w — |6]); the Fourier series of the latter two
functions are given by Example 1 and Exercise 6, §8.1.

(d) Let g be the triangle wave of Example 2, §8.1. Then the even periodic extension of f is %g(20),
and the odd periodic extension is g(6 + %w) — %w. The Fourier series of these are, respectively,
(m/4) — (2/m) Y5°(cos(4m — 2)8)/(2m — 1)? and (4/7) Y 5°(—1)™ (sin(2m — 1)0)/(2m — 1)?

(since cos(2m — 1)(0 + 27) = (—1)™sin(2m — 1)6).

(a) The odd 2-periodic extension of f is s(wz) where s is the square wave of Exercise 1, §8.1; its Fourier
series is (4/7) > 1" (sin(2m — 1)wz)/(2m — 1).

(b) The even 4-periodic extension of f is a square wave, namely, s( im + %w) where s is the function of
Exercise 1, §8.1; since sin(2m — 1)(3mz + im) = (-1)™Hlcos@m — 1)irz =
(=1)™*+! cos(3mn — 1)mz, its Fourier series is (4/m) > 7°(—1)™ ! (cos(3m — $)7z)/(2m — 1).

(c) The odd 2I-periodic extension of f is given by f(z) = z(l — |z|) on [-[,I], that is, f(z) =
(1/m)?g(nz/l) where g is the function of Exercise 6, §8.1; its Fourier series is
(812 /73) S (sin(2m — )7z /1) /(2m — 1)3.

(d) The 1-periodic extension of f is e'/2g(2ma — ) where g is the function of Exercise 5, §8.1, with b =
1/27. Its Fourier series is [(e!/2sinhi)/7] 3% (~1)"eCm=m) /((2m)"L — in) =
(e —1)32% eminz /(1 — 2min).

—Q

. We have a,, = (1/1) 02l f(z) cos(nmz/2l) dz and similarly for b,,. Replace f(z) by f(2] — ), then set

x = 21 — u and use the facts that cos(nm (2 — u)/2l) = (—1)" cos(nmu/2l) and sin(nm (2l —u)/2l) =
(=1)"*+! sin(nmu/21) to deduce that a,, = (—1)"a, and b, = (—1)"*'b,, whence a,, = 0 for n odd
and b,, = 0 for n even.



8.5. Applications to Differential Equations 63

4. Extend f as suggested in the hint and expand it in a Fourier sine series on [0,2l]: f(z) =

17 by sin(nmz/20) where b, = (1/1) fo )sin(nmz/2l) dz. Then for n even, b, = 0 by Ex-
ercise 3; and for n odd, f(z) sm(mrx/Zl) is symmetrlc about z = [ (as observed in the solution of
Exercise 3), so its integral over [0, 2{] is twice its integral over [0,{]. Setting n = 2m — 1 thus yields

F(x) = X2 B sin(m — )ma/l where B,, = (2/1) [3 f(z)(sin(m — Y)mz/l) d.

8.5 Applicationsto Differential Equations

1. (@) The  Fourier  cosine  series for  f(x) = z on  [0,100] is
50 — (400/7%) >-9°(cos(2m — 1)7x/100)/(2m — 1)2, so the solution (8.35) of the heat equation is
u(z, t) = 50 — (400/72) S3° e~ (000L)2m—1)2Tt (co5(2m, — 1)mz/100)/(2m — 1)2.

(b) When ¢ = 60, the error in discarding the terms after m = 2 is

400 - o (-0066)(2m—1)% 7> cos(2m — 1)(mz/100) < 2N 400 (.0066)5% 7> i
2 5 (2m — 1)2 - 72 3 2m—1
400 _

N 1.628(123) ~ .98.
To within this error, u(z, 60) = 50— (400/72)[e=-00667" cos(mrz/100)+ %e_('()%ﬁ)g”z cos(37z/100)] =~
50 — (37.97) cos(mwz/100) — (2.51) cos(3wz/100), which is about 10 when z = 0, 12 when z = 10,
and 40 when z = 40.
(c) For t > 3600, |u(x,t) — 50| < (400/m2)e~ (001 (3600) $3© 1 /(9 — 1)2 = 50e(:396)7”
1.0037. Almost good enough, but not quite! A slightly less crude estimate works: |u( t) — 50|
(400/m2) e~ (39007 1¢=9(396)7" 525 1/ (9n—1)2] = (400/n2) e~ (3907 ¢~ (35607 (2 /8) 1))
.81.

QINQ

2. One follows the separation-of variables procedure as on p. 382 to find solutions of the form
e ket (Cy cos /B + Casiny/af). The periodicity condition then forces /o = n, so the resulting
analog of (8.35) is u(6,t) = > ;" e ™ ’“t(an cos nf + b, sinnd). To satisfy the initial condition one
takes Y o°(an cosné + b, sinnb) to be the Fourier series of f(6). (The result looks a little neater in
exponential form: (0, ) = 3% cpe K0 where £(0) = 3% cpein?.)

3. Ifu(z,t) = 3.0 by (t) sin(nmz/l) isto satisfy Oyu = k02u+G where G(z,t) = 3.7° B, (t) sin(nrz/l),
we must have b}, (t) = —k(nw/1)?bn(t) + Bn(t), assuming that termwise differentiation of the se-
ries is justified. To solve this ordinary differential equation, multiply through by the integrating fac-
tor eb("7/D’t to obtain (d/dt)[b, (t)ek®T/D*] = ek(nm/D*tg (1) whence by (t)eFm™/D%t = p, (0) +
Jy ekn/V?s g (5) ds. For this to work, the following conditions are (more than) sufficient: (1) f is
of class C* on [0,1], and f(0) = f(I) = 0. (2) G(z,t) is C? as a function of z € [0,1] for each ¢,
G(0,t) = G(I,t) = 0, and G(z,t), 0;G(x,t), and 2G(x,t) are jointly continuous as functions of
z € [0,1] and ¢ > 0. The boundary conditions on f and G guarantee that their odd periodic extensions
are still at least C'1, and that of 8§G is at least piecewise continuous. It follows that the Fourier sine co-
efficients of f (namely, b,,(0)) are absolutely summable, and those of G (namely, 3,,(¢)) are continuous
in ¢ and satisfy |3, (t)| < Cn=2 for ¢ in any finite interval [0, 7]. We then have

C

t
< o—k(nm /)%t 2/ —k(nm/)%s g | < o—kinT /1)t _
b (1) < e |6, (0)] + Cn ; e ds| <e |6, (0)] + (/120
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This is enough to guarantee the absolute and uniform convergence of the series defining u(x,t) for
z € [0,1] and ¢ € [0, T, as well as the absolute and uniform convergence of the series defining d;u(z, t)
and 02u(z,t) for z € [0,1] and ¢ € [¢, T] (e > 0), so that all formal calculations are justified.

. (a) The odd periodic extension of the initial displacement u(z, 0) is mg(wz/l) where g is as in Exercise

2, §8.3, with @ = wb/I, so its Fourier sine series can be read off from the answer to that exercise. The
series for u(z, t) can then be read off from (8.37).

(b) When b = (0.4)1 we have 21?/72b(l — b) = 200/2472 = .844, and n~ 2 sin((.4)n7) ~ .951, .147,
—.065, —.059, 0 when n = 1,2, 3,4, 5, so the first five coefficients (up to the overall factor of m) are
803, .124, —.055, —.050, 0. When b = (0.1)] we have 212 /72b(I — b) = 200/97% ~ 2.252, and
n~2sin((.1)nm) =~ .309, .147, .090, .059, .040 when n = 1,2, 3,4, 5, so the first five coefficients are
(m times) .696, .331, .203, .133, .090. (Note: The L2 norm of the initial displacement u(-, 0) is m+/1/3,
independent of b, so the total energy of these waves is independent of b and a direct comparision of the
coefficients is appropriate.)

For u(z,t) = ¢(z)(t) to be a solution of the modified wave equation, we must have ¢(z)y" (t) +
20p(z)' (t) = 2" (z)p(t), or [W"(t) + 26¢(t)]/c?ep(t) = ¢"(z)/p(z) = —a, a constant. As
on page 385, the boundary conditions force « = (nn/l)? and p(x) = sin(nmwz/l). Then 1" (t) +
209 (t) + (nme/l)?9(t) = 0. The roots of A2 + 26X\ + (nwe/l)?> = 0 are A = —§ % iw, where
wn = +/(nmc/l)2 — 62,50 9 (t) = e (b, cos wpt + By, sinwyt). Taking linear combinations of these
solutions forn = 1,2,3, ... gives the desired result analogous to (8.37). (This is assuming § < wc/l. If
not, the solutions for n < é1/mc have pure exponential decay with no oscillation.)

(a) If up solves the problem for g; = go = 0 and wuy solves the problem for f; = f, = 0, then
u = u1 + ug solves the problem in the general case.

(b) First we note that sinhc¢(L — y) = sinhcLcoshey — coshcLsinhcey (Exercise 1b, §7.4), so
cosh cy = csch cL sinh ¢(L —y)+ coth ¢L sinh cy; hence any linear combination of sinh ¢y and cosh cy
is also a linear combination of sinh cy and sinh ¢(L —y) (and vice versa). Now, for u(z,y) = ¢(z)1(y)
to satisfy Laplace’s equation, we need ¥ (y) /v (y) = —¢"(z)/¢(z) = «, and the boundary conditions
become ¢(0) = ¢(I) = 0. As in the text, this forces a = (n7/l)? and ¢(z) = sin(nmz/l). Hence
" (y) = (nm /1) 29 (y), so (by the preceding remark)  (y) =
bl sinh(nm(L — y)/l) + b2 sinh(nmy/l). Taking linear combinations, we arrive at the general so-
lution u(z,y) = Y °sin(nmz/l)[b} sinh(nw(L — y)/l) + b2 sinh(nmy/l)]. We then have u(z,0) =
>0 bk sinh(nwL/l) sin(nmz /1), which must be the Fourier sine series of fi(z), and u(z,L) =
329 b2 sinh(nwL/l) sin(nmz /1), which must be the Fourier series of fo(z).

() For u(r, 8) = o(r)v(8) to satisfy the polar Laplace equation, we need r2¢" (r)1(0) +r¢' () (0) +
o(r)y"(0) = 0, or [r2¢"(r) + r¢'(r)]/p(r) = —"(0)/¥(#) = «, a constant. This differential
equation for 4, together with the periodicity requirement, yields o = n% and 1(0) = c,e™ + ¢ e~
(n =0,1,2,...). The general solution of the differential equation for ¢ is then a linear combination of
r™and r~™ (or 1 and logr if n = 0). But »—™ and log r blow up at the origin and must be discarded.
Hence we obtain the general solution u(r,0) = >~ _c,r™e™?, and the requirement that u(1,6) =
£(0) means that the ¢,,’s are the Fourier coefficients of f; thus u(r,8) = A, f(0).

(b) This follows immediately from part (a), (8.20), (8.22), and the observation that the Poisson kernel
P, is an even function, so that one can replace ¢ by —¢ in the integral.
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1. Use the identities cosnzcosmz = 3[cos(m + n)z + cos(m — n)z] and sinnzsinmz =

lcos(m — n)z — cos(m + n)z], or cosnzcosmz = 1(eF + e ) (M 4 ¢ MT), etc., to see
that [ cos nz cosma dz and [ sinna sinma dz are 0 when m # n and 7/2 when m = n > 0 (of
course [, cos? nz dz = m when n = 0). The norm of cos nz or sinnz is /7 /2 for n > 0; the norm of

1 = cos 0z is /7.

2. If f € L2(0,7), let fbe its odd 2m-periodic extension and let Y 7 by, sinnf be the Fourier series of
f whose restriction to [0, ] is the Fourier sine series of f. Then [T |f(8) — SV b,sinn6|?df =
3 f Zl b, sinnf|?df — 0 as N — oo. Likewise for the cosine series.

3. (fo, f1) = fol(x+a)dx = %-i—aand (fo, f2) = fol (x2 + bz + c)dz = %+ %b+c, so to make
<f0,f1) (fo,fQ)_Oweneeda——l and c = —% — 1b. Then (f1, fo) = [y (& — 3)(@® + bz — 3b—
Ddr= [jz®+ (-2~ b+ e+ o+ de =1 +10-3) -2+ +1b+1 = Lb+1),

so we must have b = —1 and hence c= %

4. [L o (@) /V2[eh () /V2) de = [} ot (2)ih(x) dz = Gy since the integrand is even; likewise,

IElen (@) /vV2)lpm(x) /V2] dz = . Finally, [, o1t (2)om (2) dz = 0 since the integrand is odd.

5. (¥n,%m) f(: ;1))//5 on(cx + d)pm(cx +d) cdr = f On (1) om (1) du = Oy (u = cz + d).

6. (%¥n,%m) = fol on(z )(Pm(x2)2~77 dr = fo On (1) Pm (1) du = S, (u = z?).

7. Suppose, to begin with, that f is continuous on [a,b] except for a jump at ¢ € (a,b). To simplify
notation, we assume a < 0 = ¢ < b. For n large enough so that a < —2 and 1 < b, define f,(z) to be
fl@)ifa<z<—Ltorl<z<pand fu(z) =F(-2)+2[fE) - f(-Dz+L)if-L <z < i

n n

Then f, is continuous on [a, b] Moreover, if |f(z)| < M for all z € [a, b], the same is true of | f,,(z)],

since the values of f, on [—1, 1] lie in between f(—21) and f(1); so |f(z) — f(z)| < 2M. Hence
fa |fn(x) — f(z)]?dz = f_l{;bnifn( ) — f(z)]?dz < 8M?%/n — 0asn — oo. In the general case
of discontinuities at c1,...,cx € [a,b], one likewise defines f,(x) to be f(z) except on the intervals

(c;j — L, ¢j + 1), onwhich £, interpolates linearly between f(c; — 1) and f(c; + 1), and one finds

that fab |fn(z) — f(z)|?dz < 8kM?/n — 0asn — oo.

8. We have |a,|? = |en + c—n|? = |en|? + |c-n|? + 2Re(cnep) and |b,|2 = |i(cn — c-n)|? = |cn]® +
le—n|? —2Re(cnt-n), SO |an|?+|bn|? = 2(Jcn|? + |c—n|?). (When n = 0 we have ag = 2co and by = 0,
and this formula becomes |ao|? = 4|co|?.) Hence 3m|ag|? + m Y7 (|an|? + [bn|?) = 20 32 [en|® =

JZ. 15 (0) de.

9. (a) From Exercise 4, §8.1, 27 /9 + 16 Y7 1/n* = (1/7) [T _0*d6 = 2x* /5, or 3-7° 1/n* = x*/90.
(b) From Exercise 6, §8.1, (8/m)2 Y1°1/(2n — 1)8 = (1/x) ["_6*(x — |0])?d6 = (2/~) [, (x?6? —
2703 + 6%) df = n* /15, 0r 3°5°1/(2n — 1)8 = 7%/960.

(c) From Exercise 3b, §8.3, 2(7x*/15)% + (48)237°1/n® = (1/m) [" (6* — 2726%)2d0 =
(2/m) [y (0% — 4w265 + 4n*0*) dO = 21478 /315, or Y20° 1/n® = =8 /9450.



66

10.

Chapter 8. Fourier Series

(d) From Exercise 7, §8.1, for 0 < a < w we have [4/a?(7—a)?] Y7°(sinna)?/n? = (2/7)[ [, a2 d6+
[T (r—a) 2df] = (2/m)[a  + (x —a) 1] = 2/a(r — a), or >{°(sinna)?/n? = a(r — a)/2. This
formula is still valid when a = 0 or a = 7 (both sides vanish then), and the sum is clearly 7-periodic as
a function of a.

First way: (f, f') = [T, f(0)f'(0)d0 = 5 [T, (f*)'(0)d0 = 3f(0)*|" = Osince f(—m) = f(m).
Second way: If {c, } are the Fourier coefficients of f, then the Fourier coefficients of f’ are {inc,}, and
cen=J"_f(0)em?do = [T f(6)e~" df = Cy,. Hence, by (8.46), (f, f') = 2w -2 cn(—ine,) =
—2m 327 in(len|? = Je—n|?) = 0.



