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Foreword

This book is an outgrowth of the twelfth Summer Mathematical Institute of
the American Mathematical Society, which was devoted to Algebraic Groups
and Discontinuous Subgroups. The Institute was held at the University of
Colorado in Boulder from July 5 to August 6, 1965, and was financed by the
National Science Foundation and the Office of Naval Research. The present
volume consists of the Institute lecture notes, in part slightly revised, and of a
few papers written somewhat later.

From the beginning, it was understood that a comprehensive exposition of
the arithmetic aspects of algebraic groups should be a central aim of the Institute.
In order to survey effectively the topics chosen for discussion, some important
parts of the theory of Lie groups and algebraic groups had to be omitted, and the
program was concentrated around five major themes: linear algebraic groups and
arithmetic groups, adéles and arithmetic properties of algebraic groups, auto-
morphic functions and spectral decomposition of L2-spaces of coset spaces,
holomorphic automorphic functions on bounded symmetric domains and moduli
problems, vector valued cohomology and deformation of discrete subgroups.
The lectures fulfilled diverse needs, and accordingly the papers in this book are
intended to serve various purposes: to supply background material, to present
the current status of a topic, to describe some basic methods, to give an exposition
of more or less known material for which there is no convenient reference, and
to present new results. It is hoped that this collection of papers will facilitate
access to the subject and foster further progress.

A. Borel
G. D. Mostow
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I. ALGEBRAIC GROUPS, ARITHMETIC GROUPS



Linear Algebraic Groups

BY

ARMAND BOREL

This is a review of some of the notions and facts pertaining to linear algebraic
groups. From §2 on, the word linear will usually be dropped, since more general
algebraic groups will not be considered here.

1. The notion of linear algebraic group. According to one’s taste about natura-
lity and algebraic geometry, it is possible to give several definitions of linear
algebraic groups. The first one is not intrinsic at all but suffices for what follows.

1.1. Algebraic matrix group. Let Q be an algebraically closed field. We shall
denote by M(n, Q) the group of all n x n matrices with entries in Q and by
GL(n, Q) the group of all n x n invertible matrices. GL(n, Q) is an affine subvariety
of Q"**1 through the identification

g = (8i)— (811> 8120 "+ » &> (det &)™ 1),

The set M(n, Q) carries a topology—the Zariski topology—the closed sets being
the algebraic subsets of M(n, Q) = Q™. The ring GL(n, Q) is an open subset of
M(n, Q) and carries the induced topology.

A subgroup of G of GL(n,Q) is called an algebraic matrix group if G is a
closed subset of GL(n, Q), i.e., if there exist polynomials p,€ Q[ X, X5, -, Xl
(€ J) such that

G = {g = (8;)€ GL(n, Q)p,(g:) = O, (€ J)}.

The coordinate ring Q[G] of G, i.e., the ring of all regular functions on G, is the
Q-algebra generated by the coefficients g;; and (det g)~ . It is the quotient ring
Q[X;, Z]/I, where I is the ideal of polynomials in the n* + 1 letters X;;, Z
vanishing on G, considered as a subset of Q"**!, via the above imbedding of
GL(n,Q) in Q"**1.

When B is a subring of Q, we shall denote by GL(n, B) the set of n x n matrices
g with entries in B, such that detg is a unit in B, and by G the intersection
G n GL(n, B).

Let k be a subfield of Q. The algebraic matrix group G is defined over k or is
a k-group if the ideal I of polynomials annihilated by G has a set of generators
in k[X,;,Z} If I, denotes the ideal of all polynomials with coefficients in k
vanishing on G, the quotient ring k[X;, Z}/I, = k[G] is the coordinate ring of G
over k.

ReEmARK. If the field k is not perfect, it is not enough to assume that G is
k-closed (i.e., that G is defined by a set of equations with coefficients in k) to

3



4 ARMAND BOREL

conclude that G is defined over k; one can only infer that G is defined over a
purely inseparable extension k' of k.

The following variant of the definition eliminates the choice of a basis.

1.2. Algebraic groups of automorphisms of a vector space. Let V be an n-dimen-
sional vector space over Q, and GL(V) the group of all automorphisms of V.
Every base of V defines an isomorphism of GL(V) with GL(n, Q). A subgroup G
of GL(V) is called an algebraic group of automorphisms of V if any such iso-
morphism maps G onto an algebraic matrix group.

Let k be a subfield of Q. Assume that V has a k-structure, i.e., that we are given
a vector subspace V, over k of V such that V = ¥, ® ,Q The subgroup of G of
GL(V)is then defined over k if there exists a basis of ¥} such that the corresponding
isomorphism f§: GL(V) — GL(n, Q) maps G onto a k-group in the previous sense.

1.3. Affine algebraic group. Let G be an affine algebraic set. It is an affine
algebraic group if there are given morphisms

1:G x G- G, a, b) = ab,
p:G -G, p@)=a"l,
of affine sets, with the usual properties. G is an affine algebraic group defined
over k if G, u and p are defined over k. One can prove that every affine algebraic
group defined over k is isomorphic to an algebraic matrix group defined over k.

1.4. Functorial definition of affine algebraic groups. Sometimes one would like
not to emphasize a particular algebraically closed extension of the field k. For
instance in the case of adéle groups, an algebraically closed field containing
every p-adic completion of a number field k is a cumbersome object. Let G be a
k-group in the sense of §1.1. Then for any k-algebra A, we may consider the set G
of elements of GL(n, A) whose coefficients annihilate the polynomials in I,.
It is a group, which may be identified to the group Hom,(k[G], A) of k-homo-
morphisms of k[G] into A. Furthermore, to any homomorphism p:4 — B of
k-algebras corresponds canonically a homomorphism G, — Gz. Thus we may
say that a k-group is a functor from k-algebras to groups, which is representable
by a k-algebra k[G] of finite type, such that kK ® k[G] has no nilpotent element, k
being an algebraic closure of k. (The last requirement stands for the condition
that I, ®Q is the ideal of all polynomials vanishing on G, it would be left out
in a more general context.) This definition was introduced by Cartier as a short
cut to the notion of (absolutely reduced) ““affine scheme of groups over k.”” The
functors corresponding to the general linear group and the special linear group,
will be denoted GL,, and SL,, and (GL,), by GL,(A4) or GL(n, A).

Usually the more down to earth point of view of algebraic matrix groups will
be sufficient.

1.5. Connected component of the identity. An algebraic set is reducible if it is the
union of two proper closed subsets; it is nonconnected if it is the union of two
proper disjoint closed subsets. An algebraic group is irreducible if and only if
it is connected. To avoid confusion with the irreducibility of a linear group,
we shall usually speak of connected algebraic groups. The connected component
of the identity of G will be denoted by G°. The index of G° in G is finite.
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If Q = C, every affine algebraic group G can be viewed as a complex Lie
group; then G is connected as an algebraic group, if and only if G is connected
as a Lie group. When G is defined over R, Gy is a closed subgroup of GL(n, R)
and hence a real Lie group. It is not true that for a connected algebraic R-group,
the Lie group Gy is also connected, but in any case it has only finitely many
connected components. The connected component of the identity for the usual
topology will be denoted G%.

Let G be connected. Then Q[G] is an integral domain. Its field of fractions
Q(G) is the field of rational functions on G. The quotient field of k[G] is a sub-
field of Q(G), consisting of those rational functions which are defined over k.

1.6. The Lie algebra of an algebraic group. A group variety is nonsingular,
so that the tangent space at every point is well defined. The tangent space g at e
can be identified with the set of Q-derivations of Q[G] which commute with
right translations. g, endowed with the Lie algebra structure defined by the usual
vector space structure and bracket operations on derivations, is the Lie algebra of
g Of course, G and G° have the same Lie algebra. If G is connected, g could
alternatively be defined as the Lie algebra of Q-derivations of the field (G),
which commute with right translations (and the definition would then be valid
for any algebraic group linear or not). If G is defined over k, we have g = g, ®,Q,
where g;-is the set of derivations which leave k[G] stable. If the characteristic
p of kis #0, then g and g, are restricted Lie algebras, in the sense of Jacobson.
However the connection between an algebraic group and its Lie algebra in
characteristic p # 0 is weaker than for a Lie group; for instance, there does not
correspond a subgroup to every restricted Lie subalgebra of g, and it may happen
that several algebraic subgroups have the same Lie algebra.

The group G operates on itself by inner automorphisms. The differential of
Intg:x—g-x-g7 ! (x,geG) at e is denoted Ad,g. The map g— Adg is a
k-morphism (in the sense of 2.1) of G into GL(g), called the adjoint representation
of G.

1.7. Algebraic transformation group. If G is an algebraic group and V is an
algebraic set, G operates morphically on V (or G is an algebraic transformation
group) when there is given a morphism 7: G x V — V with the usual properties
of transformation groups. It operates k-morphically if G, V and 7 are defined
over k.

An elementary, but basic, property of algebraic transformation groups is the
existence of at least one closed orbit (e.g. an orbit of smallest possible dimension

[1, §16)).

2. Homomorphism, characters, subgroups and quotient groups of algebraic
groups.

2.1. Homomorphisms of algebraic groups. Let p, G, G’ be algebraic groups and
p: Gg = Gg be a map. It is a morphism of algebraic groups if:

(1) p is a group homomorphism from G, to Gy;
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(2) the transposed map p° of p is a homomorphism of Q[G’] into Q[G] (if
feQ[G'],fis a map from Gg to Q and p°(f) = f  p). In case G and G’ are defined
over k, the map p is a k-morphism if moreover p° maps k[G'] into k[G] The
differential dp at the identity element of the morphism p:G — G’ defines a
homomorphism dp:g — g’ of the corresponding Lie algebras.

A rational representation of G is a morphism p: G - GL,,. Let G be considered
as a matrix group so that Q[G] = Q[g,, -, &m, (detg)~ '] Each coefficient
of the matrix p(g), g € G, is then a polynomial in g,;, g15,***» & (det g) ™.

2.2. Characters. A character of G is a rational representation of degree 1;
¥:G - GL,. The set of characters of G is a commutative group, denoted by
X(G) or G. The group G is finitely generated; it is free if G is connected [8]. If one
wants to write the composition-law in G multiplicatively, the value at ge G of
x € G should be noted yx(g). But since one is accustomed to add roots of Lie
algebras, it is also natural to write the composition in G additively. The value of
¥ at g will then be denoted by g% To see the similarity between roots and charac-
ters take Q = C; if X g, the Lie algebra of G, (e¥)* = ¢**®), where dy is the
differential of dy at e; dy is a linear form over g. In the sequel, we shall often not
make any notational distinction between a character and its differential at e.

2.3. Subgroups, quotients [4, 7). Let G be an algebraic group defined over k,
H a closed subgroup of G; it is a k-subgroup of G if it is defined over k as an alge-
braic group. H is in particular k-closed. The converse need not be true. The homo-
geneous space G/H can be given in a natural way a structure of quasi-projective
algebraic set defined over k. (A quasi-projective algebraic set is an algebraic set
isomorphic to an open subset of a projective set.) The projection n: G — G/H is
a k-morphism of algebraic sets which is “separable” (dn is surjective everywhere)
such that every morphism ¢: G — V, constant along the cosets of H, can be
factored through n. Moreover, G acts on G/H as an algebraic group of transforma-
tion; if H is a normal k-subgroup of G, then G/H is an algebraic group defined
over k.

Assume that in G there exist a subgroup H and a normal subgroup N such that

(1) G is the semidirect product of H and N as abstract group,

(2) the map u: H x N — G, with u(h,n) = hn, is an isomorphism of algebraic
varieties.

Then G is called the semidirect product of the algebraic groups H and N.

In characteristic zero the condition (2) follows from (1). In characteristic p > 0,
it is equivalent with the transversality of the Lie algebras of H and N or with the
regularity of du at the origin, but does not follow from (1).

2.4. Jordan decomposition of an element of an algebraic group [1, 4] Let

geGL(n,Q),

g can be written uniquely as the product g = g;-g,, where g is a semisimple
matrix (ie., g, can be made diagonal) and g, is a unipotent matrix (i.e., the only
eigenvalue of g, is 1, or equivalently g, — I is nilpotent) and g,-g, = g, &s-
If G is an algebraic matrix group and g € G, one proves that g, and g, belong also
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to G and that the decomposition of g in a semisimple and an unipotent part does
not depend on the representation of G as a matrix group. More generally, if
¢:G — G’ is a morphism of algebraic groups and ge G, then ¢(g) = [¥g)];
and ¢(g,) = [¢(g)].. If ge Gy, g, and g, are rational over a purely inseparable
extension of k. '

3. Algebraic tori [1, 3, 4]. An algebraic group G is an algebraic torus if G is
isomorphic to a product of d copies of GL, (where d = dim G).

If Q = C, an algebraic torus is isomorphic to (C*), and so is not an ordinary
torus. However, the algebraic tori have many properties analogous to those of
usual tori in compact real Lie groups. Since in what follows the tori in the topo-
logical sense will occur rarely, the adjective “algebraic™ will be dropped.

3.1. THEOREM. For a connected algebraic group G the following conditions are
equivalent :

(1) G is a torus;

(2) G consists only of semisimple elements;

(3) G, considered as matrix group, can be made diagonal.

Property (3) means that there always exists a basis of Q" such that G is represented
by diagonal matrices with respect to that basis. Each diagonal element of the
matrix, considered as a function on G, is then a character.

Let T be a torus of dimension d. Every element xe T can be represented by
(x4, -+, Xg), with x; € Q*. A character y of T can then be written

x(x) = x7'x3 -+ - xg*
with n;€ Z hence Tz Z°.

3.2. THEOREM. Let T be a torus defined over k. The following conditions are
equivalent :

(1) All characters of T are defined over k: T = T,.

(2) T has a diagonal realization over k.

(3) For every representation p: T — GL,,, defined over k, the group p(T) is
diagonalizable over k.

DEeFINITION. If T satisfies these three equivalent conditions, T is called a split
k-torus, and is said to split over k.

If T splits over k, so does every subtorus and quotient of T There always
exists a finite separable Galois-extension k'/k such that T splits over k. The
Galois-group operates on T. This action determines completely the k-structure
of T. The subgroup 7, is the set of characters left fixed by the Galois group.

DEFINITION. A torus T is called anisotropic over k if T, = {1}. The anisotropic
tori are very close to the usual compact tori. Let k = R. If dim T = 1, there are
two possibilities; either T splits over k, and then T =~ R*, or T is anisotropic
over k; then T is isomorphic over k with SO,, and Ty = SO(2, R) is the circle
group. In the general case Ty is compact if and only if T is anisotropic over R
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(this is also true if R is replaced by a p-adic field). In this case, Ty is a topological
torus (product of circle groups).

3.3. THEOREM. Let T be a k-torus. There exist two uniquely defined k-subtori
T, and T,, such that

(1) T, splits over k,

(2) T, is anisotropic over k,

3) Ty~ T, is finiteand T = Ty T,.

This decomposition is compatible with morphisms of algebraic groups. (Property
3 will be abbreviated by saying that T is the almost direct product of T; and T,.)
If S is a k-subtorus of T, then there exists a k-subtorus S’ such that T is almost
direct product of S and §".
ExAMPLE. If k=R, T =T, T, ---- T, where every T, is one dimensional.
The product is an almost direct product.

4. Solvable, nilpotent and unipotent groups.

4.1. DeriNiTION. The algebraic group G is unipotent if every element of G is
unipotent.

ExaMPLE. If dim G = 1 and G is connected unipotent then G is isomorphic to
the additive group of the field;

G"“G—{ GL,| —(1 x)}
~G, = € = .
4 218 0 1

A connected and unipotent matrix group is conjugate to a group of upper-
triangular matrices with ones in the diagonal. Hence it is nilpotent; more pre-
cisely there exists a central series

G=GODG13"'DGEDG.~+ID"'DG"={e}

such that G,/G;,, = G,. Conversely, if there exists a normal series ending with
{e} such that G;/G;,, ~ G,, where G; is an algebraic subgreup of G, then G is
unipotent.

In characteristic 0, a unipotent algebraic group is connected, and the exponen-
tial is a bijective polynomial mapping from the Lie algebra g to G; the inverse
map is the logarithm. In characteristic p > 0, this is no more true; in that case,
G is a p-group.

DEFINITION. G is a solvable (resp. nilpotent) algebraic group, if it is solvable
(resp. nilpotent) as an abstract group.

42. We now state some basic properties of a connected solvable group G.

(1) (Theorem of Lie-Kolchin): If G is represented as a matrix group, it is
conjugate (over Q) to a group of triangular matrices [1}

(2) If G operates on a complete algebraic variety (in particular on a projective
variety) then G has a fixed point [1]

(3) The set of unipotent elements in G is a normal connected subgroup U.
If G is defined over k, it has a maximal torus defined over k; G is the semidirect
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product, as algebraic group, of T and U ; any two maximal tori defined over k are
conjugate by an element of G, (Rosenlicht, Annali di Mat. (iv), 61 (1963), 97-120;
see also [3, §11]).

(4) G has a compositicn series

G=GoDGlD'--DGi5Gi+1D---:Gn={e}

where the G; are algebraic subgroups of G such that G;/G;,, is isomorphic with
G,orGL,.

(5) The group G is nilpotent if and only if it is the direct product of a maximal
torus T and of a unipotent subgroup U. In this case T (resp. U) consists of all
semisimple (resp. unipotent) elements of G.

Properties (1) and (2) are closely connected. In fact (2) implies (1): take the
manifold of full flags (see §5.3) of the ambient vector space V¥, on which G acts
in a natural way. Let F be a flag fixed by G; if one chooses a basis of V adapted
to F, then G is triangular. On the other hand, for projective varieties, (2) follows
immediately from (1). Property (4) is an immediate consequence of (1). In (3),
one has to take care that, in contradistinction to the existence of a maximal
torus defined over k, the normal subgroup U need not be defined over k, although
it is k-closed [8].

4.3. DerFINITION. Let G be a connected solvable group defined over k. G splits
over k if there exists a composition series

G=GOD(;1:’"'DG.':G|'+1:"'DGm={e}

consisting of connected k-subgroups of G such that G;/G;, , is isomorphic over
k with G, or GL,.

In particular, every torus T of G splits then over k. Conversely, when k is
perfect, if the maximal tori of G which are defined over k split over k, then so does
G.

Let G be a connected solvable k-group which splits over k, and V a k-variety
on which G operates k-morphically. Then: (a) if V is complete and ¥, is not empty,
G has a fixed point in ¥ [8]; (b) if G is transitive on V, the set V; is not empty [7]

5. Radical. Parabolic subgroups. Reductive groups.

5.1. DeFINITIONS. Let G be an algebraic group. The radical R(G) of G is the
greatest connected normal subgroup of G; the unipotent radical R(G) is the
greatest connected unipotent normal subgroup of G. The group G is semisimple
(resp. reductive) if R(G) = {e} (resp. R,(G) = {e}).

The definitions of R(G) and R,(G) make sense, because if H, H' are connected
normal and solvable (resp. unipotent) subgroups, then so is H - H'. Both radicals
are k-closed if G is a k-group. Clearly, R(G) = R(G®) and R,(G) = R,(G").

The quotient G/R(G) is semisimple, and G/R(G) is reductive. In characteristic
zero, the unipotent radical has a complement; more precisely: Let G be defined
over k. There exists a maximal reductive k-subgroup H of G such that

G = H-R/(G),
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the product being a semidirect product of algebraic groups. If H' is a reductive
subgroup of G defined over k, then H' is conjugate over k to a subgroup of H.
In characteristic p > 0, this theorem is false (not just for questions of insepara-
bility): according to Chevalley, there does not always exist a complement to the
unipotent radical, moreover there are easy counter-examples to the conjugacy

property [3].

5.2. THEOREM. Let G be an algebraic group. The following conditions are
equivalent :

(1) G° is reductive,

(2) G° = S- G, where S is a central torus and G’ is semisimple,

(3) G° has a locally faithful fully reducible rational representation,

(4) If moreover the characteristic of Q is 0, all rational representations of G are
fully reducible.

If G is a k-group, and k = R, these conditions are also equivalent to the
existence of a matrix realization of G such that G is “self-adjoint”

(ge Gg="2€ Gp).

In property (2) G' is the commutator subgroup %(G) of G; it contains every
semisimple subgroup of G. The group G is separably isogenous to S x G’ and
every torus T of G is separably isogenous to (T n S) x (T n G).

5.3. THEOREM [1] Let G be a connected algebraic group.

(1) All maximal tori of G are conjugate. Every semisimple element is contained in a
torus. The centralizer of any subtorus is connected.

(2) All maximal connected solvable subgroups are conjugate. Every element of G
belongs to one such group.

(3) If P is a closed subgroup of G, then G/P is a projective variety if and only if
P contains a maximal connected solvable subgroup.

The rank of G is the common dimension of the maximal tori, (notation rk(G)).

A closed subgroup P of G is called parabolic, if G/P is a projective variety.
Following a rather usual practice, the speaker will sometimes allow himself
to abbreviate “maximal connected closed solvable subgroup” by ‘“Borel sub-
group.”

ExXAMPLE. G = GL,. A flag in a vector space V is a properly increasing sequence
of subspaces 0 # V, < --- < V, = V,,, = V. The sequence (d,)

d, = dimV,i=1,---1)

describes the type of the flag. If d; = i and ¢t = dim V — 1, we speak of a full
flag.
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A parabolic subgroup of G L,is the stability group of a flag F in Q". G/P is
the manifold of flags of the same type as F, and is well known to be a projective
variety. A Borel subgroup is the stability group of a full flag. In a suitable basis,
it is the group of all upper triangular matrices.

5.4. With respect to rationality question one can state that if G is a connected
algebraic group defined over k, then

(1) G has a maximal torus defined over k (Grothendieck [5], see also [2]).
The centralizer of any k-subtorus is defined over k ([5], [3, §10]).

(2) If k is infinite and G is reductive, G, is Zariski dense in G (Grothendieck
[5], see also [2]). '

(3) If k is infinite and perfect, G, is Zariski dense in G (Rosenlicht [8]).

Rosenlicht has constructed an example of a one dimensional unipotent group
defined over a field k of characteristic 2 such that G is not isomorphic to G,
over k and G, is not dense in G [8] An analogous example exists for every positive
characteristic (Cartier).

6. Structure theorems for reductive groups. The results stated below are proved
in [3] Over perfect fields, some of them are established in [6], [9].

6.1. Root systems. Let V be a finite dimensional real vector space endowed
with a positive nondegenerate scalar product. A subset ® of V is a root system
when

(1) @ consists of a finite number of nonzero vectors that generate ¥, and is
symmetric (® = —®).

(2) for every ae®, s (@) = @, where s, denotes reflection with respect to the
hyperplane perpendicular to a.

(3) if a, fe D, then 2(a, B)/(x, ®) € Z. The group generated by the symmetrics
s, (x € @) is called the Weyl group of @ (notation W(®)). It is finite. The integers
2(ot, B)/(ox, ) are called the Cartan integers of ®. Condition (3) means that for
every o and 8 of ®, (s,(f) — f) is an integral multiple of «, since

$B) = B — 2a(a, B)/(t, ).

For the theory of reductive groups we shall have to enlarge slightly the notion
of root system: if M is a subspace of V, we say that ®@ is a root system in (N, M)
if it generates a subspace P supplementary to M, and is a root system in P.
The Weyl group W(®) is then understood to act trivially on M.

A root system @ in V is the direct sum of ® < V'and ®" < V", if V=V ' @ V"
and ® = @ U ®”". The root system is called irreducible if it is not the direct sum
of two subsystems.

6.2. Properties of root systems.

(1) Every root system is direct sum of irreducible root systems.

(2) Ifaand ixe®, then 1 = +1, +4, or +2.

The root system @ is called reduced when for every a e ®, the only multiples
of a belonging to ® are +a To every root system ®, there belongs two natural
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reduced systems by removing for every a € ® the longer (or the shorter) multiple
of a:

@, = {xe Dlja¢ D},
®, = {0e ®|2a ¢ O}

(3) The only reduced irreducible root systems are the usual ones:
A, m2z1), B, n22), C, n23), D, (nz4),
Gz’ F4’ EG: E7, Ea-

(4) For each dimension n, there exists one irreducible nonreduced system,
denoted by BC,, (see below).
ExAmpLES. B,: Take R" with the standard metric and basis {x, - -, x,}.

B,={x(x; £x) (i<jand xx;, (A =ZiZn)}

W(B,) = {se€ GL(n, R)|s a product of a permutation matrix
with a symmetry with respect to a coordinate subspace}

C,={+t(xitx) (<jand +2x; (1Zi<n)},
w(C,) = W(B,),
BC, = {+(x; + x) (i <j), £x; and +2x; 1=gisn)
W(BC,) = W(B,).

DEFINITION. A hyperplane of V is called singular if it is orthogonal to a root
ae®. A Weyl-chamber C° is a connected component of the complement of the
union of the singular hyperplanes.

To a Weyl-chamber, is associated an ordering of the roots defined by:

a > 0, if (o, v) > O for every v in C°.

The root a is simple (relative to the given ordering) if it is not the sum of two
positive roots. The set of simple roots is denoted by A. A is connected if it cannot
be written as the union of A" U A” where A’ is orthogonal to A”.

(5) The Weyl group acts simply transitively on the Weyl-chambers (i.e., there
is exactly one element of the Weyl group mapping a given Weyl-chamber on to
another one).

(6) Every root of @ is the sum of simple roots with integral coefficients of the
same sign.

(7) The root system ® is irreducible if and only if A is connected.

6.3. Roots of a reductive group, with reference to a torus. Let G be a reductive
group, and S a torus of G. It operates on the Lie-algebra g of G by the adjoint
representation. Since S consists of semisimple elements, Ad, S is diagonalizable

g = ¢f ®L,g®
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where
a® = {XeglAds(x) =s*- X} (xe8;a#0)

The set ®(G, S) of roots of G relative to the torus S is the set of nontrivial char-
acters of S appearing in the above decomposition of the adjoint representation.
If T> S, every root of G relative to T that is not trivial on S defines a root
relative to S. If Tis maximal ®(G, T) = ®(G) is the set of roots of G in the usual
sense.

6.4. Anisotropic reductive groups. A connected reductive group G defined over
k is called anisotropic over k, if it has no k-split torus S # {e}.

ExAMPLES. (1) Let F be a nondegenerate quadratic form on a k-vector space
V with coefficients in k. Let G = O(F) be the orthogonal group of F. The group
G is anisotropic over k if and only if F does not represent 0 over k, ie., if ¥
has no nonzero isotropic vector.

PROOF. Assume v is an isotropic vector. Then there exists a hyperbolic plane
through v and in a suitable basis the quadratic form becomes

F(xI’ ot 'axu) = X1X3 + F'(X3, ot ',xn)-
If 1€ Q*, the set of transformations
x'l = Axla x'l = l-l 'x2! x; = xi (l g 3)

is a torus of G split over k. Conversely if there exists a torus S of G which splits
over k, diagonalize S. There is a vector ve ¥, — {0} and a nontrivial character
x €8, such that s(v) = s*v. Since s* # +1 for some s, and F(v) = F(s(v)), one has
F(v) = 0 and v is isotropic.

(2) If k = R or is a p-adic field, G is anisotropic over k if and only if G, is
compact. If k is an arbitrary field of characteristic 0, G is anisotropic over k if
and only if G, has no unipotent element # e and G, = {1}.

6.5. Properties of reductive k-groups. Let G be a connected reductive group
defined over k.

(1) The maximal k-split tori of G are conjugate over k (i.e., by elements of G,).
If S is such a maximal k-split torus, the dimension of S is called the k-rank of
G (notation: rk,(G)). Z(S) is the connected component of N(S). The finite group
N(S)/Z(S) is called the Weyl group of G relative to k (notation: ,W(G)). Every
coset of N(S)/Z(S) is represented by an element rational over k: N(S) = N(S)Z(S).

(2) The elements of ®(G, S), where S is a maximal k-split torus are called the
k-roots, or roots relative to k. We write ,® or ,®(G) for ®(G, S). This is a root
system in (S® R, M) where M is the vector space over R generated by the
characters which are trivial on S N 2(G). The Weyl group of G relative to k and
the Weyl group of ,® are isomorphic:

W(®) = W(G).

If G is simple over k, @ is irreducible.
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(3) The minimal parabolic k-subgroups P of G are conjugate over k. Further-
more there exists a k-split torus S such that

P = Z(S)-R,(P)

where the semidirect product is algebraic and everything is defined over k. If P
and P’ are minimal parabolic k-subgroups containing a maximal k-split torus §,
then P n P’ contains the centralizer of S. The minimal parabolic k-subgroups
containing Z(S) are in (1, 1) correspondence with the Weyl chambers: P cor-
responds to the Weyl chamber C if the Lie algebra of R(P) is ), _ g, where
the ordering of the roots is associated to the Weyl-chamber C. The Weyl group
«W(G) permutes in a simply transitive way the minimal parabolic k-subgroups
containing Z(S). The unipotent radical of a minimal parabolic k-subgroup is a
maximal unipotent k-subgroup, at least for a field of characteristic 0.

(4) Bruhat decomposition of G,. Put V = R,(P), where P is a minimal para-

bolic k-subgroup. Then

G, = U, NS Uy,
and different elements of N(S), define different double cosets; more generally if
n, n e N(S): UnU = Un'U <> n = n’. Choose for every we W a representative
n, € N(S),; then the above equality can be written as

Gk = U Uk'nw'Pk’

werW

the union being disjoint.

One can phrase this decomposition in a more precise way. If we fix we W,
then there exist two k-subgroups U, and U, of U, such that U = U,, x Uy, as
an algebraic variety and such that the map of U,, x P onto Un,P sending (x, y)
onto xn,y is a biregular map defined over k. This decomposition gives rise to a
cellular decomposition of G,/P,. Let n be the projection of G onto G/P. Then

(G/P) = G/P, = ler (U, 0
If k is algebraically closed, U, as a unipotent group is isomorphic to an affine
space. So one gets a cellular decomposition of G/P.

(5) Standard parabolic k-subgroups (with respect to a choice of S and P). Let
@ be the root system of G relative to k defined by the torus S. The choice of the
minimal parabolic k-subgroup P determines a Weyl chamber of ,® and so a set
of positive roots. Let ,A be the set of simple k-roots for this ordering. If ® is a
subsét of ,A, denote by Sg the identity component of M, g ker a. Sg is a k-split
torus, the dimension of which is dim Sg = rk,(G) — card ®. The standard para-
bolic k-subgroup defined by @ is then the subgroup ,Pe generated by Z(Sg)
and U. That subgroup can be written as the semidirect product Z(Sg). Ug,
where Ug = R,(Pg). The Lie algebra of Ug is ) g,, the sum going over all positive
roots that are not linear combination of elements in ©.

(6) Every parabolic k-subgroup is conjugate over k to one and only one
standard parabolic k-subgroup. In particular, if two parabolic k-subgroups are
conjugate over Q, they are already conjugate over k.
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(7) Let Wy be the subgroup of the Weyl group ,W generated by the reflections
s, for € ®. Then if ® and ®' are two subsets of A,

«Po.\Gi/kPe k = W\ W/ We..
6.6. ExaMpLES. (1) G = GL(n),
st 0

S = group of diagonal matrices = s*2

0 shn

where A;€8 is such that s* = s;. S is obviously a split torus and is maximal.
A minimal parabolic k-subgroup P is given by the upper triangular matrices,
which is in this case a Borel subgroup. The unipotent radical U of P is given by
the group of upper triangular matrices with ones in the diagonal. If e;; is the
matrix having all components zero except that with index (i,j) equal to 1,
Adg s(e;j) = (s*/s%)e;;. So the positive roots are 4; — 4; (i <j) since the Lie
algebra of U is generated by e;; (i < j). The simple roots are (1; — 45,4, — 43, -,
Jn—1 — 4,). The Weyl group is generated by s,, where a is a positive root ; since for
a = A; — 4,5, permutes the i and j axis, \W = &,, the group of permutations
of the basis elements. The parabolic subgroups are the stability groups of flags.

(2) G “splits over k” (i.e., G has a maximal torus which splits over k). Example
(1) enters in this category. The k-roots are just the usual roots. A minimal para-
bolic k-subgroup is a maximal connected solvable subgroup. If k is algebraically
closed G always splits over k and this gives just the usual properties of semi-
simple or reductive linear groups.

(3) G is the orthogonal group SO(F) of a nondegenerate quadratic form F on
a vector space V; (where, to be safe, one takes char k # 2). In a suitable basis

F(xl’ T xn) = X3Xp + XpXpoy + 00 F XqgXn—q+1 + Fo(an, Ty xn—q)
where F, does not represent zero rationally. The index of F, the dimension of
the maximal isotropic subspaces in ¥, is equal to g. A maximal k-split torus S
is given by the set of following diagonal matrices:

st
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Let SO(F,) denote the proper orthogonal group of the quadratic form Fy,
imbedded in SO(F) by acting trivially on x;,"**,X;, X,—g4+1,--.,X,. Then
Z(S) = S x SO(F,). The minimal parabolic k-subgroups are the stability groups
of the full isotropic flags. For the above choice of S, and ordering of the co-
ordinates, the standard full isotropic flag is

[el] < [81,82] c e [el""9eq]'

The corresponding minimal parabolic k-subgroup takes then the form

Ao A, A
P = 0 B A3
0 0 4,

where A, and A, are upper triangular g x q matrices, B € SO(F,), with additional
relations that insure that P = SO(F). The unipotent radical U of P is the set of
matrices in P, where B = I, Ay, A, are unipotent, and

Ay = At Q- A3+'4,-J-4,=0,
tA4'J'A2 + ’A3'Q'A3 + ‘Az'J'A4 = 0,

where Q is the matrix of the quadratic form F,, J is the g x g matrix with one’s
in the nonprincipal diagonal and zeros elsewhere, and ¢ is the transposition
with respect to the same diagonal, ("M = J'MJ). To determine the positive
roots, one has to let S operate on U. To compute the root spaces it is easier to
diagonalize Q: g;; = d; - §;;. Three cases are to be considered.

i<j=<4q; 4 —A;is a root; the corresponding root space is generated by
— €,_j+1,n—i+1; the multiplicity of the root is 1.

i<q<j<n—q;4is aroot with multiplicity n — 2q; the corresponding
root space is generated by

el'j

e;—d; '€ s g@g+1=j<n-—g)

i<j=gq; 4+ 4; is a root with multiplicity one; the corresponding root

space is generated by e; ,_ ;. — €j,_;+;. The simple roots are

)'1 _'12) j'2 - 13,"',1“_1 - J’q’

and 4, if n # 2¢, A,_, + A, if n = 2q. The Weyl group consists of all products of
permutation matrices with symmetries with respect to a coordinate subspace
(of any dimension if n # 2q of even dimension if n = 2q). The group SO(F) splits
if and only if g = [n/2] If it does not split, there exist roots with multiplicity > 1.
The parabolic k-subgroups are the stability subgroups of rational isotropic
flags. The parabolic k-subgroups are conjugate over k if and only if there exists
an element of G, mapping one flag onto the other; by Witt’s theorem this is
possible if and only if the two flags have the same type.
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(4) When one starts with a hermitian form, the same considerations apply,
except that one gets a root system of type BC,.

(5) For real Lie groups, this theory is closely connected with the Iwasawa
and Cartan decompositions. If g is the real Lie algebra of Gg, G being a con-
nected algebraic reductive group, then g =t + p, where g is the Lie algebra of a
maximal compact subgroup of Gg. Then G = K -(expp). Let a be a maximal
commutative subalgebra of 1. Then A4 = exp a is the topological connected com-
ponent of the groups of real points in a torus S which is maximal among R-split
tori. (On the Riemannian symmetric space Gg/K, it represents a maximal totally
geodesic flat subspace.)

N(A)g = N(S)g = [K n N(4)] - 4,
and
Z(S)r = (KN ZA)-4;

the group K n Z(A) is usually denoted by M. The Weyl group gW(G,S) is
isomorphic to (K n N(A))/M, i.e., to the Weyl group of the symmetric space’ G/K
as introduced by E. Cartan. Similarly z® may be identified to the set of roots of
the symmetric pair (G, K). Let n be the Lie subalgebra generated by the root
spaces corresponding to positive roots n=73" _ 1, aex®G,S), for some
ordering Let N = expn. Then G = K- A4 - N is an Iwasawa decomposition and
M - A -N is the group of real points of a minimal parabolic R-group. Assume Gg
simple and G/K to be a bounded symmetric domain. Then there are two possi-
bilities for the root system z®:

Gg/K is a tube domain <> 4@ is of type C,,
Gg/K is not a tube domain <> z®@ is of type BC,.

7. Representations in characteristic zero [3]. We assume here the ground field
to be of characteristic zero, and G to be semisimple, connected. Let P = Z(S)- U
be a minimal parabolic k-group, where U = R,(P), and S is a maximal k-split
torus. We put on X(S) an ordering such that u is the sum of the positive k-root
spaces.

Assume first k to be algebraically closed. Let p: G — GL(V) be an irreducible
representation. It is well known that there is one and only one line D, = V which
is stable under P. The character defined by the 1-dimensional representation of
P in V is the highest weight 1, of p. The orbit G(D,) = 4, is a closed homo-
geneous cone (minus the origin). The stability group of D,, is a standard parabolic
group P, o P. The stability groups of the lines in €, are conjugate to P,, and
these lines are the only ones to be stable under some parabolic subgroup of G.
Every highest weight 4, is a sum 1, = Z ¢, A(c, = 0,c,€ Z) of the funda-
mental highest weights A (and conversely 1f G is s1mp]y connected), where A,
is defined by 2(A,, B) - (B, B)™! = 8,4 (2, B A).

We want to indicate here a “relativization” of these facts for a nonnecessarily
algebraically closed k.
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Let T be a maximal torus of G, defined over k, containing S. We choose an
ordering on X(T) compatible with the given one on X(S) (i.e, if « > 0, and
r(a) # 0, then r(x) > O where r: X(T) —» X(S) is the restriction homomorphism.
The k-weights of p are the restrictions to S of the weights of p with respect to T;
the highest k-weight u, is the restriction of 4,. It follows from standard facts
that every k-weight u is of the form

b=, — Y MW  (x€A),
with
mp)e Z,  myu) 2 0.
Let

O() = {ue Alm,(u) # 0}.

Then © < ,A is a ©(u), for some k-weight g, if and only if @(u) U u, is connected.

Let us say that p is strongly rational over k if it is defined over k and if the cone
G(D,) has a rational point over k. This is the case if and only if the above co-
efficients <, satisfy the following conditions:

c,=0ifr(@) =0, c, = cgif r@) = r(f) (o, B A).

The highest weight of a strongly rational representation is a sum, with positive
integral coefficients, of fundamental highest weights M (B € ,A) where

Mg= Y rA)
aeA,r(z)=p

(and conversely if G is simply connected). The My(f € ,A) satisfy relations of the
form (Myy) = dg - 64, with dg > 0. They will be called the fundamental highest
k-weights.

Assume k = C. Let p be strongly rational over k. Put on the representation
space a Hilbert structure. Let ve D, — 0. Then the function ¢:G — R* defined
by ’

¢ (@) = |ote) -0l
satisfies

¢ -p) = d@lp*| (g€G, peP,)

If in particular k = Q, such functions appear in the discussion of fundamental
sets and of Eisenstein series for arithmetic groups.
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Reduction Theory for Arithmetic Groups

BY

ARMAND BOREL

This lecture is devoted to the statement of results concerning fundamental
sets for arithmetic groups. The notation of [3] is used.

1.1. Arithmetic groups. We recall that two subgroups 4, B of a group C are
commensurable if 4 N B has finite index in A and in B.

DEFINITION. Let G be an algebraic Q-group. A subgroup I' of G, is called an
arithmetic group (or an arithmetic subgroup of G) if there exists a faithful rational
representation p:G — GL, defined over Q such that p(I') is commensurable with
p(G)n GL(n, Z). (The same condition is then automatically fulfilled for every
faithful Q-representation of G.)

The arithmetic group I is a discrete subgroup of Gg. It will act on Gg by right
translations. If X = K\Gg, where K is a maximal compact subgroup of Gg,
then I' operates also on X as a properly discontinuous group of translations.

One could apparently generalize the definition of arithmetic groups by starting
from a number field k, an algebraic group G defined over k, a faithful k-representa-
tion p:G — GL, and taking as arithmetic group a subgroup of G, commensur-
able with G, = GL,(n, 0,)n p(G), where o, is the ring of integers of k. But this
class of arithmetic groups is the same as the one which was first defined. Indeed
if G' = Ry,oG is obtained from G by restriction of the ground field from k to Q
(see [8]), using a basis of o, over Z, it is easy to see that Gz = G,,. On the other
hand I' will usually not be discrete in Gg. ‘

1.2. THEOREM. Let p: G — G’ be a surjective Q-morphism of algebraic groups.
If T is an arithmetic subgroup of G, then p(I') is an arithmetic subgroup of G'.

This is proved for isogenies in [4, §6], for general @-morphisms in [2]. Two
simple consequences are:

(1) Let G = H - N be a semidirect product defined over Q. Then I'; - T', is an
arithmetic subgroup of G if I'; is arithmetic in H and I', in N.

(2) Let G be the almost direct product of two normal Q-subgroups G, and G,
(Le., G is Q-isogeneous to G, x G,). If I' is an arithmetic subgroup of G, then
I'; = T N G, is arithmetic in G; and I, - I'; is commensurable with I".

DEFINITION. Let I' be an arithmetic group in G. The subgroup

C([) = {geGglg-T-g ' commensurable with I'},
is called the commensurability subgroup of I. One has always that Go = C(I').
20
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If Gg is compact, I is finite, every conjugate of I" is commensurable to I', and so
C() = Gp.

1.3. THEOREM [2). Let N be the greatest normal Q-subgroup of a semisimple
algebraic Q-group G, such that Ng is compact. If n is the projection of G onto
G’ = G/N, then C(T') = n~!(Gg) N Gp.

For instance, if G is Q-simple, with center reduced to {e}, then C(I') = Gg.
However, if G¢ has a nontrivial center, this need not be so, as is already seen in
the case where

G=SL, T =S5L,,.

1.4. Fundamental sets for arithmetic groups. Let G be an algebraic Q-group
and I' an arithmetic subgroup of G.

DEFINITION. A subset Q of Gy is called a fundamental set for I if:

(FO) KQ = Q, where K is some maximal compact subgroup of Gg;

(F1) Q- T = Gpg;

(F2) for any g in C(T'), the set of translates Qy, y e ', that meet Q - g is finite.

One could replace (F2) by the weaker condition:

(F2) {yeTIQNnQ-y # &} is finite.
But the stronger condition ensures that when one has a fundamental set Q for
I" one can construct a fundamental set Q' for a commensurable subgroup I'" by
taking Q = U, r.r Q& The condition (F2) then goes over to I'. This would
apparently not be the case with the weaker condition (F2').

Due to condition (F0), the projection Q' = n(Q) of a fundamental set Q in
Gg into X = K\Gy satisfies the conditions

(F1)x Q=X

and (F2). A subset of X verifying (F1), and (F2) will be called a fundamental
set for I' in X. Thus Q is a fundamental set for I" in G if and only Q' = n(Q)
is one in X, and then Q = n~1(Q).

If G is unipotent, then Ggx/T" is compact. Since G is the semidirect product
G = H - R(G) of a reductive Q-group and of its unipotent radical, it follows from
(1.2) that the discussion of fundamental sets is easily reduced to the case of
reductive groups, or of semisimple groups and tori.

When Gg/T is compact, there is often no need to have more information about
the shape of a fundamental set. The purpose of the reduction theory outlined
here is (a) to give a criterion for compactness, (b) in the noncompact case, to
describe fundamental sets in which the complement of big compact subsets is a
union of subsets which have properties similar to those of the cusps of funda-
mental domains for fuchsian groups.

1.5. THEOREM [4,7]). Let G be a Q-group. Gg/T" is compact if and only if
2 = 0 and every unipotent element of Gy belongs to R(G).
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Let in particular G be reductive. Then Gg/I" is compact if and only if G is
anisotropic over Q.

ExaMpLES. (1) SO(F) where F is an anisotropic quadratic form with rational
coefficients.

(2) Let G’ be the multiplicative group of a finite extension field k of Q.
G = R,,oG’ is an algebraic group defined over Q. It contains a Q-subgroup N
consisting of all elements of k of norm 1. The group N is anisotropic and so N/T,
where I’ is an arithmetic subgroup of N, is compact. This is equivalent with the
main part of Dirichlet’s unit theorem.

1.6. Siegel domains. Siegel domains are defined in the cases where Gg/T" is
not compact. The reductive group G contains then a nontrivial maximal Q-split
torus S. Let P be a minimal parabolic subgroup containing S. The group P is
different from G and P = Z(S)- U = M-S - U, wnere U is the unipotent radical
of P, M N S is finite, M is reductive and anisotropic over Q (in particular every
Q-character of P or Z(S) is trivial on M). Denote by o® the sets of roots of G
with respect to S. The choice of P orders this set; let oA be the set of simple roots
of g® with respect to this ordering. For every t e R*, define in 4 = S§ the subset

A, = {a€ Ala® £ t for every a € gA}.

Since every positive root is a positive linear combination of simple roots, there
exists a C > 0 such that also a* < C for every positive root « in o®. A funda-
mental property of A4, is expressed by the following:

1.7. LemMa. If w is a compact set in (M - U)g, then the set
{awa™ 'lae A,}
is relatively compact.

PROOF. w is contained in a product w, - w, where w; is compact in M and w,
is compact in U. Since M centralizes S, awa™! < w,aw,a~! and it is enough to
prove the lemma for w compact in U. Since U is unipotent over a field of charac-
teristic zero, the logarithm is a bijection of U onto its Lie algebra u. If ue U,
logu=7y _ c,-X,andlogla-u-a~ )=},  a*-c, X, Buta®for a > O stays
bounded in A4,. So log(a-u-a~"') stays bounded as ae 4, and u € w. The expo-
nential being continuous, this proves the lemma.

1.8. Siegel domains. We keep the same notation as above. Let K be a maximal
compact subgroup of Gg such that the Lie algebra of K is orthogonal to that of
Sg. Let w be a compact neighborhood of e in (M- U)g = Mg Ug. The subset
S =K-A,-w is called a Siegel domain for G. If n:G - X = K\Gpg, then
(&) = @ =0 - S (where o is the coset K) is called a Siegel domain in X. The
set (K N P)- A,-wis a Siegel domain in Pg. Since Gy is generated by K and Pg,
one has then @ =0- S =04, -w.

EXAMPLES. (1) G = SL(2,R), T = SL(2,Z), and X = SO(2, R\SL(2, R) is the
upper half plane. To be in agreement with the rest of this lecture, we let G act
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on X on the right by putting b
a
z.g=(@z+c)b-z+d!, (g=( d)eSL(Z,R)).
c

el -l el )

The positive root corresponding to this choice of U is a(a) = a~2. The fixed point
of K is i. Let w be the set of elements in U for which |c| £ C. Then €' is the
rectangular domain:

& =i-A-w={zeX,|Rez| £ C,Imz 2 ¢t"'}.

Let

It contains the classical fundamental domain |z| 2 1, Rez £ 4 if C 2§ and
=%

(2) G = GL(n,R), K = O(n,R), S (resp. U, resp. P) group of diagonal (resp.
unipotent upper triangular, resp. upper triangular) matrices. Then X is the space
of positive nondegenerate quadratic forms in n variables. 4, is the set of diagonal
matrices with positive entries a; verifying a;/a;,, < t. The natural projection of

G onto X = K\G is the map g+ ‘g- g. The image of the Siegel domain K- 4,- w
in X is then the set of matrices

‘u-a-u (uew;ae A,).
It is well known to be a fundamental set if t* = %, and if w contains all matrices
u = (u;;) € U such that [u;| < @ # j).
1.9. LEMMA. A4 Siegel domain has finite Haar measure.
PROOF. We have
Gr=K-Pg=K-A-(M-U)y.

The second decomposition is not unique but determined up to an element of the
compact group K n M. By standard facts on Haar measures, we have:

f dg = J ¢ dg
S K-A-(M-U)p

=c-J~ dk-J a* dadv
K Aew

where ¢ is the characteristic function of &, dv is the Haar measure of M- U and
x = det Ad,a. We have y =) c,a and c, > 0. The only integral one has to
evaluate to prove the finiteness is that extended over A,; up to a constant factor,
it is a product over a € gA of integrals of the form

t
J exp(c,x) dx,

which are finite since ¢, > 0.
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1.10. THEOREM. Let G be a connected semisimple algebraic group defined over
Q, and T an arithmetic subgroup of G.

(1) There exists a finite subset C of Gg and a Siegel domain S such that Q = SC
is a fundamental set in Gy for I'. The set C contains then at least one representative
for every double coset I\Gg/Py. (In particular the number of such double cosets is

finite.)

(2) Conversely if C is a finite subset of Gg containing a representative for every
double coset of I\Go/Py, then there exists a Siegel domain S such that Q = &- C
is a fundamental set in Gg for T.

It follows immediately from the lemma and the theorem that Gg/T" has finite
invariant volume.

1.11. THEOREM. Let G be an algebraic group defined over Q, T an arithmetic
subgroup of Gg. Then Gg/T" has finite volume if and only if G} has no characters
defined over Q. (Gg = {0}.)

Writing G° = H-Z- U, where U is the unipotent radical and Z the central
torus of a maximal reductive subgroup, the condition states that Z is anisotropic
over Q.

Theorem 1.11 is proved in [4] and Theorem 1.10 is announced in [1]. For
proofs which are different from those of [1, 4], see [6].

In Q, the complement of a compact set is the union of sets of the form KA4,-w-¢
(ce Gg, r > O, r sufficiently small). These are to be viewed as the analogues of the
“‘cusps’ for fuchsian groups. The minimum number of cusps is then the number
of elements in I'\Gy/P, or, equivalently, the number of conjugacy classes of
minimal parabolic @-subgroups under I'.

ExampLEs. If F is a quadratic form defined over Q and G = SO(F), Py is the
stability group of a full isotropic flag. Then the minimal number of cusps for a
fundamental set Q is the number of transitivity classes of full isotropic flags
under I'. The same is true for Sp(n). Since Sp(n, Z) is transitive on the full isotropic
flags, the minimum number of cusps for the modular group is 1, as is well
known by Siegel’s construction of a fundamental domain in this case. More
generally, [2, Lemma 1], we have Gy = Gz Py if G splits over Q, and G; is the
group of integral points for the canonical Z-structure on G introduced by
Chevalley, and described in [5]) In this case, there is only one cusp.

1.12. Minimum principles connected with fundamental domains.

EXAMPLE. 1. Let X = {ZeM(n,C)'Z = Z,Im Z > 0} be the Siegel upper half
plane, © a Siegel domain which is a fundamental domain for the modular group
I'. Consider for fixed Z e X the function f(Zy) = det(Im Z-y)~! defined on TI.
It is well known that this function has a minimum on Z ‘T and that this mini-
mum is taken in a pointof Z-I'n &.
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2. Let G = GL(n), and S a suitable big Siegel domain in Gg. It is known from
the Hermite or the Minkowski reduction theory that, if || x| denotes the length
of the vector xe R", then for every ge R, the function f(y) = |gy(e,)| from
GL(n, Z) to R* attains a minimum in &.

Such minimum principles hold for evéry semisimple algebraic group defined
over Q. Let P be a minimal parabolic Q-subgroup of G; gA the set of simple
roots of G relative to this choice of a minimal parabolic subgroup. Take in P
a set of fundamental weights A, such that (A,, B) = d,8,4, (% B € pA), and d, > 0.

1.13. THEOREM. Let y€ P with y = Y c,A, (c, = 0) and f a function from Gg
to R* satisfying f(x, p) = f(x)|p*| (p € Pg). Take for C a set of representatives of
the double cosets of I'\Gg/Pg. Then there exists a Siegel domain S in Gg such that
for any x € Gg the function f,(c, y) = f(x - ¢ - y) attains a minimuminC-T nx~!. S;
in other words, there exist cq€ C, yo € I' such that xcyy, € S and f(xcqyo) < f(xcy)
(ceG,yel)

The Minkowski reduction theory in GL, makes use of n — 1 successive minima.
This approach was generalized to adéle groups of arbitrary semisimple groups
in [6] The number of successive minima is equal to rkg(G), and the functions
which are minimized are associated to fundamental strongly Q-rational repre-
sentations, in the sense of [3, §7]. There is an analogue of this for Gg and T,
which also generalizes §1.13, where, given an integer r in (1 < r < rkyG), one
takes successive minima of r functions. The two cases just mentioned then
correspond to r = 1, r = rkyG. The formulation of this result is however more
complicated than in the adéle case, because fundamental sets for I' in Gx have in
general more than one cusp. Details will be given in a future publication of the
speaker.
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Rationality Properties of Linear Algebraic Groups

ARMAND BOREL AND T. A. SPRINGER

In this lecture, G is a connected linear algebraic group, g its Lie algebra, k a
field of definition for G and p the characteristic of k. Our purpose is to sketch, for
infinite k, a proof of

THEOREM A. (i) G contains a maximal torus and a Cartan subgroup defined over k.
(1) Let G be reductive. Then G is unirational over k. In particular, if k is infinite,
G, is Zariski dense in G.

(G unirational over k means that there exists a k-morphism of a k-open subset
of an affine space into G, whose image contains a nonempty open subset of G.)

This theorem is due to Rosenlicht [6] over perfect fields, to Grothendieck [5]
in the general case. In contrast with [S5], we shall give a proof which does not use
schemes ; however, it is in part based on similar ideas. We presuppose the theory
of algebraic groups over an algebraically closed field [1], [4].

Notation. The Lie algebra of an algebraic group H, M, - - - is denoted by the cor-
responding German letter. Ad refers to the adjoint representation of G in g,
and ad to the representation of g into itself defined by ad X(Y) = [X, Y] As is
well known, ad is the differential of Ad. 94 stands for g- A-g" ' (g€ G, 4 < G).
For X e g, we let Z5(X) = {ge G,Ad g(X) = X} and z4(X) = {Ye g, [Y, X] = 0}.
Clearly, Z;(X) is a closed subgroup, whose Lie algebra is contained in zg(X).
If no confusion can arise, we drop the subscript G.

Let p # 0. We denote by [p]: X — X' the pth power operation in g. It is defined
over k: if g = gg,, then X! = X? In particular, if [X, Y] = 0, then

(X + Y)[p] = xIPl + Yo

If ¢ = p° is a power of p, we write [q] for [p}. The pth power operation commutes
with differentials of morphisms.

1.-Jordan decomposition in g. The centralizer of a semisimple element.
1.1. DEFINITION. An element X € g is semisimple (resp. nilpotent) if it belongs
to the Lie algebra of a sub-torus (resp. unipotent subgroup) of G.

1.2. LEMMA. Let G = T U be solvable, with one-dimensional unipotent radical U,
where Tis a maximal torus of G. Let X € t. Then there are two possibilities:

1) [X,u] =0, Z(X)=G.

(2) [X,u] # 0, Z(X) = T; the map u— Adu(X) — X is an isomorphism of U
onto the additive algebraic group Add(u) of u. Every element X + Z (Z€ u) is
semisimple.

26
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Let n: G - G’ = G/U be the canonical projection. Then dn maps t isomor-
phically onto ¢’, and G’ is commutative. Therefore, Ad g(X) — X e u (g€ G).

Assume [X, u] = 0, and identify G to a matrix group. If Z(X) # G, there exists
ue U such that Ad u(X) = X + U (U eu — 0). But then Ad u(X) is on the one
hand a semisimple matrix (being tangent to a torus), and on the other hand is
the sum of a semisimple and a nonzero nilpotent matrix, commuting with each
other, a contradiction.

Let now [X, u] # 0. Since ad is the differential of Ad, this implies that Z(X) # G.
Since Z(X) o T, it follows, for dimensional reasons, that Z(X)° = T. However,
in a connected solvable group, the centralizer and the normalizer of a torus are
connected, and coincide [1]. Since [t, u] # 0, Tis not central, hence Norm(T) = T
and Z(X) =T Let Yeu — 0. Then Ad u(X) — X = c(u)- Y. Obviously c is a
morphism of U into the additive group of u, injective since Z(X) = T, hence bijec-
tive. Thus every element X + Z (Z € u) is conjugate to X, hence is semisimple.
The relation [X, u] # 0 implies that the differential of ¢ is an isomorphism,
therefore c is birational, biregular. '

1.3. PROPOSITION. Every X € g can be written uniquely as X = X, + X, with
X, semisimple, X, nilpotent, [X,,X,]=0. For any morphism =n:G - GL,,
dn(X) = dn(X,) + dn(X,) is the Jordan decomposition of dn(X).

Let X = X, + X, be one decomposition of X with X, semisimple, X, nilpotent
and [X,, X,] = 0. Then dn(X,) (resp. dn(X,)) is tangent to a torus (resp. a uni-
potent group), hence is a semisimple (resp. nilpotent) matrix, whence the second
assertion. Using a matrix realization of G, this implies the uniqueness of this
decomposition. There remains to show its existence. We assume first G to be
solvable, and proceed by induction on dim G. Let U = R,(G) be the unipotent
radical of G. There exists a connected one-dimensional subgroup N of the center
of U which is normal in G. Let n: G - G’ = G/N be the canonical projection.
Let X € g. By induction assumption,

dn(X)= A"+ B’ (4, B' € g; A’ semisimple, B’ nilpotent, [4’, B'] = 0).

Since R (G’) = n(R,(G)), and every torus of G’ is the image of a torus of G, this
yields

X=A+B (A semisimple, B nilpotent, dn(A) = A’, dn(B) = B').

Let T be a maximal torus whose Lie algebra contains A. Since every rational
representation of T is fully reducible, we may write u = r @ n, with r stable under
Ad T Writing

B =B, + B, (B,er,B,en),
we have then
{4, B,] =0, [4,B,] = Cen, [B,, B,] =0.
If C = 0, we are done, so assume C # 0. By Lemma 1.2, applied to T- N, the
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sum 4 + B, is semisimple, hence the decomposition X = X, + X, with X; = 4
+ B,, X, = B, has the required properties.

This proves Proposition 1.3 for solvable groups. The general case follows by
using the following Lemma [5, XIV, Théoréme 4.11]:

1.4. LEMMA. Let B be a Borel subgroup of G. Then g =U . Ad g(b).

The proof is similar to that given in [3, VI] for the corresponding statement
in G; it uses the two following facts, which follow from properties of reductive
groups: B is the normalizer of b in G, and there exists an element X € b which
is not contained in any conjugate of b distinct from b.

1.5. PROPOSITION. Let X € g be semisimple. Then z(X) is the Lie algebra of Z(X).

Since z(X) contains the Lie algebra of Z(X), it is enough to show that dim z(X)
< dim Z(X).

(a) G solvable. We let U,N,n:G —» G’ = G/N be as in the previous proof,
and let T be a maximal torus whose Lie algebra contains X. Let X' = dn(X).
The Lie algebra g is the direct sum of n and of a subspace r stable under Ad T,
whence immediately,

dim z(X) = z(X) A n + dim z(X").

By Lemma 12, dimz(X)nn =dimZ(X)n N; by induction dim Zg;(X’)
= dim z(X"). It suffices therefore to show that n(Z(X)) = Z4;.(X).

Let g’ € Z;(X"). There exists g € G such that n(g) = g', hence such that Ad g(X)
= X + Y (Yen). There is something to prove only if Y # 0. Since Ad g(X) is
semisimple, and Y is nilpotent, we must have [X, Y] # 0 by the uniqueness of the
Jordan decomposition. By Lemma 1.2, there exists then ne N such that Ad n(X)
=X — Y We have then Adn-g(X)= X,and n(n-g) = ¢'.

(b) G not solvable. Let T be a maximal torus whose Lie algebra contains X.
It follows from known facts about reductive groups that G has two Borel sub-
groups B, B', normalized by T, which generate G, such that g=b + b,bnb’
=1t + u (u Lie algebra of U = R,(G)) (see [3, §2]). Let ¢,¢’ be supplementary
subspaces of t + u in b and b’ respectively, stable under Ad T The Lie algebra
z(X) is the direct sum of its intersections with ¢, ¢’ and t + u, say p, q, r. By (a)
p + r and q + r belong to the Lie algebra of Z(X), hence dim Z(X) = dim z(X).

ReMARK. Using induction and the relation n(Z(X)) = Z4;(X') proved above,
one sees easily that Z(X) is connected if G is solvable. Examples show that this
need not be the case when G is semisimple.

1.6. PROPOSITION. Let X € g be semisimple. Then Ad G(X) is closed.

Identify G with a matrix group. Let L be the set of Ye g which annihilate the
minimal polynomial of X, and such that ad Y has the same characteristic poly-
nomial as ad X. This is an algebraic subset of g, stable under Ad G. Let Ye L.
Its minimal polynomial divides that of X, hence has only simple factors, and Y isa
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semisimple matrix. By Proposition 1.3, it is a semisimple element of g, in the
sense of Definition 1.1, consequently, (Proposition 1.5), dim Z(Y) is equal to the
multiplicity of the eigenvalue zero of ad Y. By the definition of L, and Proposition
1.5, this implies dim Z(Y) = dim Z(X). As a consequence, the orbits of G in L
are all of the same dimension, hence are closed [1, §16].

1.7. COROLLARY. Assume that every semisimple element of g is central in g.
Then the set of all semisimple elements of g is a subspace s defined over k, which is
the Lie algebra of every maximal torus of G.

Let T be a maximal torus of G. Then t = 5. Let X € g be semisimple. By the
conjugacy of maximal tori in G, there exists ge G such that Ad g(X) = t. By
assumption [X, g] = 0, hence (Proposition 1.5), Z(X) = G and Adg(X) = X.
Thus s < t. There remains to see that s is defined over k, in other words, that it is
generated over k by elements of g,. This is obvious in char. 0 (or in fact over a
perfect field, since in this case the Jordan decomposition is over the groundfield),
so we assume p # 0. There exists a power g of p such that X9 = 0, whenever
X is nilpotent. For arbitrary X we have X9 = (X, + X,)9 = x4 4 xla
= X9 c t (notation of §1.3). Thus [q]: X — X9 maps g into t. On the other
hand, t can be diagonalized, hence the restriction of [g] to t is bijective. Thus,
Im[gq] = t. But [g] is a morphism of g, viewed as an algebraic set, into itself,
obviously defined over k. Therefore, Im[q] is also defined over k.

2. Inseparable isogenies. The main tools which will allow us to get hold of fields
of definition in char. p # 0 are the criterion of multiplicity one of intersection
theory, and the following result of Barsotti and Serre ([7, Théoréme 1], [3, §7]).

2.1. PROPOSITION. Let m be an ideal of g which is stable under the pth power
operation and under Ad G. Then there exists one and, up to k-isomorphism, only
one k-group G’ with the following properties: (i) there exists a purely inseparable
k-isogeny m: G — G’ such that ker dn = m; (i) every purely inseparable k-isogeny
0: G — G" such that ker d0 > m can be k-factored through m.

We also write G/m for G'. Note that, since n is purely inseparable, 7 is a
bijective morphism of G onto G'.

2.2. PROPOSITION. Let G be not nilpotent, and assume that every semisimple
element of g is central. Let T be a maximal torus of G. Then there exists a k-group
G', such that not all semisimple elements of o' are central, and a purely inseparable
k-isogeny n: G — G', whose differential dn had t as kernel. The Lie algebra g’ is
the direct sum of dn(g) and of the Lie algebra of any maximal torus.

Let ® = @(G, T) be the set of roots of G with respect to T(nontrivial characters
of Tin g, under the adjoint representation). Since G is not nilpotent, T is not
central, and @ is not empty. (To see this, use the fact that G is generated by two
solvable subgroups containing 7, and the “lemme de dévissage” of [4], Exp. 9,
Lemme 2.)
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g is the direct sum of the Lie algebra of Z(T) and of the root spaces
g, = {XeglAdt(X)=*- X, (te T)} (ac®)
Let da be the differential of a: T— GL,. It is a linear form on t, and we have

[Y,X]=daY)-X (Yet Xeg,)

It is easily seen that the differential of a character x of Tis zero if and only if x is
divisible by p, in the character group X(T) of T Let ¢ be the smallest positive
integer such that ® ¢ p°*!- X(T). The elements of t are central in g if and only
if ¢ = 1. We prove Proposition 2.2 by induction on c.

By Corollary 1.7, t is the set of all semisimple elements of g and is defined over k.
By Proposition 1.5, every X et is centralized by G. Since t is the Lie algebra of
an algebraic group, it is stable under pth power operation therefore (Proposition
2.1), there exists a purely inseparable isogeny n,: G — G, = G/t.

It follows from Proposition 1.3 that dm,(g) consists of nilpotent elements;
therefore if T" is a maximal torus of G, then t' N dr,(g) = 0, hence, for dimensional
reasons, g’ = t' @ dn,(g) (direct sum of vector spaces). This applies in particular
to the Lie algebra t, of T, = n(T), which implies readily that ‘z, maps ®(G,, T)
onto ®(G, T). On the other hand, it follows from dn(t) = 0 that 'z, maps X(T')
into p- X(T). Thus, if d is the smallest positive integer such that

®G,, ) ¢ p**' - X(Ty),

we have d < c. If d = 0, then t' is not central, and we take G' = G,. If d = 1,
we apply the induction assumption and get n’': G, — G’, with ker dn’ = t,, satisfy-
ing our conditions for G,. Then = = 7’ o, : G — G’ has all the required proper-
ties.

3. Proof of Theorem A.

3.1. Regular elements. Let nil X be the multiplicity of the eigenvalue zero of
ad X (X € g), and let n(g) = minynil(X). An element X is regular if nil(X) = n(g),
singular otherwise. Clearly nil X = nil X (notation of §1.3), hence X is regular
if and only if X is so. If p # 0, then X and X'” are simultaneously regular or
singular.

Let k be infinite. Then there exists a semisimple regular element Yeg,. In
fact, the set S of singular elements is a proper algebraic subset (the set of zeros
of the last nonidentically vanishing coefficient of the Killing equation), hence
we may find X € g, which is regular. Let X = X, + X, be its Jordan decomposi-
tion. If p = 0, take Y = Y;; if not, there exists a power g of p such that X4 = 0,
Then put Y = X,

In the sequel, k is infinite. .

3.2. Proof of Theorem A (i). A Cartan subgroup is the centralizer of a maximal
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torus [1], and the centralizer of a k-torus is defined over k [2, §10] It suffices
therefore to prove the existence of a maximal torus defined over k. We use
induction on dim G.

Let first G be nilpotent, then G = T x U (Tunique maximal torus, U unipotent
radical). If k is perfect, T is defined over k. If not, we let g be a power of p such
that U? = {e}. Then G? = T? = T, hence g— g? is a morphism of G onto T,
clearly defined over k, and T is defined over k. (This argument, phrased slightly
differently, is due to Rosenlicht [6].) Let now G be not nilpotent. We let n : G— G’
be the identity if not all of the semisimple elements of g are central, and be as in
Proposition 2.2 otherwise.

By §3.1, there exists a semisimple regular element Ye g,. By construction of
G’, we have n(g’) # dim G, hence z(Y) # g'. -

We let G operate on g’ by Ad - . Clearly, G(Y) = Ad G'(Y), hence G(Y) is
closed (Proposition 1.6). Let Z4(Y) be the isotropy group of Y. Then n(Z(Y))
= Zg(Y), hence (Proposition 1.5), dim Z4(Y) = dimg — n(g)) and Z4(Y)° is a
proper closed subgroup of G. We want to prove that it is defined over k. This is
clear in char. O (or if k is perfect) so let p # 0. Let f be the map g— Ad n(g)(Y) of
G onto G(Y). It is defined over k. We claim that it is separable. To show this,
it suffices to prove that df,: X+— Y + [dn(X), Y] maps g onto the tangent space
to G(Y) at Y. By 1.5, this tangent space is equal to Y + [g’, Y], so that our assertion
is clear if = is the identity. If # # Id, we are in the situation of Proposition 2.2.
Then dn(g) is an ideal of ', obviously stable under Ad G’, which is a supple-
mentary subspace of the Lie algebra of any maximal torus of G'. Since Y is
contained in such an algebra, we see that [Y, g'] = [V, dn(g)], whence our assertion.
It follows that the graph I" of f in G x G(Y), and G x {Y}, cut each other
transversally. By the criterion of multiplicity one [8, VI, §2, Theorem 6] the
cycle, sum of the irreducible components of I' N (G x {Y}) = Z4(Y), each with
coefficient one, is rational over k, hence (Z4(Y))° is defined over k [8, Pro-
position 1, p. 208]. By induction assumption Z(Y)° has a maximal torus T defined
over k. But Z(Y) contains at least one maximal torus of G, hence T is a maximal
torus of G.

3.3. Proof of Theorem A (ii). Let now G be reductive. The result is known if
G is a torus [6], so we again use induction on dim G. The group Z4(Y)° considered
above is reductive; in fact, it contains a maximal torus 7T, and it is clear that
DZ Y)P°, T)is a symmetric subset of (G, T) (see [2, §2.3, Remark]). We want to
prove that the groups Zg(Y)°, where Y varies over the regular semisimple
elements Ye g, generate G. Let H be the group they generate and H' = n(H);
assume H' # G. There exists then a regular element X € g; not in . We have
then z(X,) ¢ b, hence z(X'9) = z(X,) ¢ b for every power q of p. We can therefore
find a regular semisimple element Ye g, such that nil z(Y) ¢ §’. Since z(Y) is
the Lie algebra of Z(Y) = n(Z4(Y)) by Proposition 1.5, it follows that Z4(Y)° ¢ H,
contradicting the definition of H. Thus H = G. There exist consequently finitely
many connected reductive proper k-subgroups H; (i = 1,---,t), such that the
product mapping (hy,"**,h)— hy-----h, of H; x --- x H, into G is a surjective
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k-morphism of the underlying algebraic varieties. By induction assumption, each
H; is unirational over k, hence so is G.

REMARKS. (1) Let X be a regular element in g. Its nilspace n(X), i.e. the set of
Y in g which are annihilated by some power of ad Y, is by definition in [5] a Cartan
subalgebra of g. We have n(X) = n(X,) = z(X,), and, by Proposition 1.5, z(X,)
is the Lie algebra of Z(X). It follows that the subgroups of type (C) of [5] are the
centralizers in G of the regular semisimple elements of g.

(2) In the same context, one can also prove that a reductive k-group splits
over a finite separable extension of the groundfield, that the variety of Cartan
subgroups of G is rational over k [5], give alternate proofs of some structure
theorems of Rosenlicht’s about unipotent groups acted upon by tori, and of the
conjugacy over k of maximal k-tori in a solvable k-group. Details will be given
elsewhere.
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Classification of Algebraic Semisimple Groups

J. TITS

This is mostly an exposition of known results. However, part of the final
classification, given at the end in the form of tables, a few propositions in §§2 and
3, and various improvements in the statements of other results may be new. The
bibliographical references following each title serve a double purpose, historical
and technical: they refer either to papers where, to the best knowledge of the
author, the stated results have been announced first, or to places where proofs
(or further information) are supplied. In general, proofs are given or sketched here,
only when they are not available in the literature. A detailed justification of the
classification tables would require much space and will not be found in this paper
(the author hopes to write it down at some other occasion); however, using the
indications given here or in the cited literature, the reader should not have much
difficulty in reconstructing the arguments, except perhaps for some rather tricky
existence proofs. At this point it should be mentioned that discussions with M.
Kneser have been of considerable help in the final setting up of these tables;
without him, several ugly question marks would still spoil them.

1. Algebraically closed fields, Dynkin diagrams.

1.1. Dynkin diagrams ([3], [5], [7], [11], [13], [29], [47])).

1.1.1. Notations. All semisimple groups considered in this paper are assumed
to be connected. The following notations are used throughout the §1: K is an
algebraically closed field, G a semisimple algebraic group defined over K, T a
maximal torus of G, N its normalizer, X = X*(T) the character group of T,
Z c X the set of all roots (of G relative to T). In X ® R we choose a scalar
product ( , ) invariant under the Weyl group W = N/T (which operates on X
in the obvious way) and an ordering, A is the set of all simple roots (with respect
to that ordering), — p is the dominant (i.e. maximal) root and we set A’ = A U {u}.
If G is almost simple (i.e. has no proper infinite normal subgroup), u depends only
on A, that is, is the minimal root for any ordering for which A is the set of simple
roots. (When G is not almost simple, there is little interest in considering u and A'.)
For every root a € Z, we denote by a*: X ® R — R the linear form defined by

a*(x) = 2(a, x)/(e, a).
One has a*(X) = Z.
1.1.2. Ordinary Dynkin diagram. For every pair a, 8 of distinct elements of A’,
33
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we have one of the following sets of relations, possibly after interchanging & and §:

(1) a*(B) = pX=x) = 0,

(i) a*(f) = f*x) = -1,

(i) a*(f) = —1, p*(@) = -2,

(1v) a*(B) = —1, f*o) = —3.
To build the Dynkin diagram of G, one represents the elements of A by points
(the vertices of the diagram) and one joins the points representing a and f as
follows, according as to which one of the above sets of conditions is fulfilled :

(i) «a B
(i) o p—————p
T — =V
SRS

(In the last case, it is often suitable to use a quadruple segment instead of a
triple one, for reasons which will appear in §1.3.2; here we shall however use the
above notation, which is the most common.)-

1.1.3. Affine (= extended) Dynkin diagram. Assume first that G is almost simple.
The construction described above for the Dynkin diagram, when applied to the
set A’ instead of the set A, gives rise to a new diagram, called the affine (or ex-
tended) Dynkin diagram of G. If G is not almost simple, we define its affine Pynkin
diagram as the disjoint union of those of its almost simple normal subgreups.
Since the affine Dynkin diagram is a function of the root system X, which is
determined up to isometry by the (ordinary) Dynkin diagram, it will be meaning-
ful to talk about the affine diagram associated with (or extension of) a given
Dynkin diagram.

The main purpose of §1 is to indicate how important data relative to a group G
can be read on its Dynkin diagrams.

1.2. Classification up to isogeny ([T}, [11]).

1.2.1. Isogenies. An isogeny is a surjective homomorphism with-finite kernel.
H & and H are groups defined over K, an isogeny ¢:H — G is said to be central
if for every K-algebra A, the kernel of the homomorphism ¢ ,: H, - G, is central
in H,. (We denote by G, and H , the groups of points of G and H with coefficients
im A; for the meaning of these notions, see [6].) Every separable isogeny of a
connected group G is central. We shall say that two groups G, G’ are (strictly)
isogenous if there is a group H and two (central) isogenies H - G and H —» G'.
This relation is transitive.

1.2.2. The main theorem.

THEOREM 1. The field K being given, a semisimple group G is characterized up to-
strict isogeny by its Dynkin diagram. It is almost simple if and only if the diagram
is connected. Any semisimple group G is strictly isogenous to a direct product of
simple groups whose Dynkin diagrams are the connected components of the diagram
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of G. The complete list of Dynkin diagrams of almost simple groups is given in
Table 1; each diagram of that table determines a strict isogeny class of almost
simple groups over any given field K.

Table I gives simultaneously the ordinary and the affine Dynkin diagrams of
each group: the strokes which join the vertex u to the other vertices (and which
therefore complement the ordinary diagram to give the affine one) are drawn in
broken lines.

We mention further that the only almost simple groups which are isogenous
without being strictly isogenous are the groups of types B, and C,, for the same
n = 3, over a field of characteristic 2.

Notice that Theorem 1 gives us the right to talk about *“the Dynkin diagram
of a strict isogeny class.”

1.3. Weyl groups ([5), [7], [29], [34], [47)).

1.3.1. Let V = X (T) ® R be the dual of X ® R. There is an obvious action
of the Weyl group W = N/T on V; we shall occasionally identify W with its
canonical image in GL(V). For every root a (which we view as a linear form on
V)and every integer i € Z, we denote by r, ; the reflection with respect to the hyper-
plane o~ !(i), defined by means of some euclidean metric invariant under W (which
metric one chooses is irrelevant). Finally, we set r, = r,,.

1.3.2. Generators and relations. The Weyl group contains all the r,(x € Z), and
is generated by the r, (x € A). As an ‘‘abstract” group, it is defined by the relations

(rarﬂ)m'p = 1’

where a, £ run through A, m,, = 1 and m,s = 2 (resp. 3, 4, 6) when a # f and the
pair a, B satisfies the set of relations (i) (resp. (ii), (iii), (iv)) in §1.1.2. ‘

1.3.3. Affine Weyl group. Let G be almost simple. The group generated by all
r.; is called the affine Weyl group of G. Set r, = r, if a€ A, and r), = r, ;. Then,
the affine Weyl group is generated by the r, (x € A’) and is defined, as an abstract
group, by the relations

e = 1,

where the m,; are defined as above.

1.4. Coefficients of the dominant root; dimension ([3], [5], [14], [24], [33)).

1.4.1. The group G is again assumed to be almost simple. Set —pu =) c,a
and ¢, = 1 so that

Y ca=0,

acA’

and, for every fe A,

(1) Y @) =

aeA’

In this formula, it suffices of course to extend the summation to the set C, of all
elements a of A’ which are connected to g in the affine Dynkin diagram. When
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all roots of G have equal length, (1) becomes

2 2= c,
aeCg

The formulae (1) and (2) give an effective way to compute rapidly the c,. For
instance, in the case of E,, one finds successively, when numbering the simple
rootsasin Table I, cg = 2c, = 2,¢3 = 2¢6 — ¢, = 3,¢;, = 2¢y,¢3 = 2¢; — ¢; = 3¢y,
thus ¢, = 1, ¢, = 2, and similarly, ¢cs = 1 and ¢, = 2.

142 Ifr = #Ais the rank of G and ¢ = Zae ACas the dimension of G is given
by the formula

dimG =r-(c + 2).

For instance, dmEg =6-(1 +2+3+2+ 1+ 2+ 2)=178.

1.5. Classification up to isomorphism; automorphism group and center ([3), [S],
(7], [12], [14], [29)).

1.5.1. Opposition involution. There exists a unique involutory permutation i
of the simple roots such that the mapping @ — —i(a) extends to an operation of
the Weyl! group. This permutation i, called the opposition involution, induces an
automorphism of the Dynkin diagram 9. It can be determined by the following
rule: i leaves invariant each connected component of 2 and induces a nontrivial
automorphism on a given component %2, if and only if 2, is of type A,, D,,.,
or E,. (Notice that the diagrams of these types have a single nontrivial auto-
morphism.) Whenever 2 is connected and possesses a nontrivial automorphism, i
is that automorphism, except in the case of D,,. Once one knows that, for the
type D,,, the parity of m plays an essential role, there are two easy ways to remem-
ber *“which is which™: since A; = D5, the type D,,,, must behave like the types
A, that is, i cannot be the identity; on the other hand, since i is ‘“‘characteristic,”
that is, invariant by the automorphism group of 2, it follows from the symmetry
of order 3 of the diagram D, that i must be the identity for this type, and therefore
also for all types D,,.

1.5.2. The cocenter C*. To each strict isogeny class ¥ of semisimple groups,
we shall associate a certain finite commutative group C* = C*(%), which will
turn out to be the dual of the center of the simply connected group in ¥ (see
§§1.5.4 and 1.5.5), and whose knowledge permits an immediate classification up to
isomorphism of the groups in ¢ (§1.5.4). Here, we give a “‘natural” definition of C*
in terms of roots and weights. In §1.5.3, it will be seen how C* can be deduced
from the Dynkin diagrams of 4.

In the space V* = X @ R (1.1.1), let X be the group generated by I and let X
be the group of all v* € V'* such that a*(v*) e Z for all xe T (§1.1.1). (X is called
the weight group of the root system.) The group C* is then defined as the quotient
X/X. Its Pontrjagin dual, which we shall denote by C = C(%) is canonically
isomorphic (and will be identified) with the quotient X */X « Where

X(cV=X,T)®R)
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is generated by the o*, with a € X, and X, consists of all ve V such that a(v)e Z
for all xe X.

1.5.3. Automorphism groups of Dynkin diagrams. As before, 2 denotes the
Dynkin diagram of G and 2’ its associate affine diagram. Every automorphism
of 9 extends uniquely to an automorphism 2’; therefore, we can identify the
group Aut(2) of automorphisms of 2 with a subgroup of Aut(2’). There is a
natural, effective action, which we want to describe, of the group C defined
in §1.5.2 on 2'. For every xe X, the affine Weyl group W’ contains a unique
element whose product with the translation v— v + x leaves invariant the
“fundamental chamber” {ve V|a(v) >0 for all xeX and u(v) < 1}, that is,
permutes the fixed hyperplanes of the reflexions r, with a € A’ (§1.3.3). Through the
permutation of A’ thus defined, we obtain an action of x on 2'. It can be shown
that the translations belonging to W' are exactly the translations by elements
of X,, and that W’ operates trivially on the quotient X,/X, . From this, it follows
immediately that the mapping X, — Aut 2’ which has just been defined is a
homomorphism whose kernel is X,, and induces therefore a monomorphism
C - Aut(2').

We now indicate a few properties of the group C, considered as a subgroup
of Aut(2'). Notice that, since 9’ characterises X (up to isometry) which, in turn,
determines C, we are allowed to talk about ‘“‘the group C of an affine Dynkin
diagram 2", a group which we denote by C(2').

(1) If the diagram 2’ is the disjoint union of a set of subdiagrams 2;, the
group C(2') is the direct product of the groups C(2;), where C(2;) is made to
operate trivially on 9; whenever j # i.

(2) The group C is a normal subgroup of Aut(2’), one has Aut(2) n C = {1}
and Aut(2’) = Aut(2)- C. In other words, Aut(2’) is the semidirect product of
Aut(2) and C. In particular, there is a natural action of Aut(2) on C.

(3) Every element c € C is transformed in its inverse by the opposition involu-
tion i (that is, ici"! = ¢~ ).

4) If @' is connected, the set of all vertices o such that c, = 1, with the notation
of §1.4.1, is invariant under Aut(2'), and the group C is simply transitive on it.

The subgroup C of Aut(2’) is completely characterized by (1), (3), and either
one of the properties (2) and (4). More interesting perhaps, from a mnemo-
nic point of view, is the fact (1) and (2) alone, together with the fact that C is
commutative, characterize C except when 2 has a component of type D; in this
case, it must be remembered that

C(D;,) = (Z/2Z) x (Z/2Z),  C(D3n+,) = Z/AZ.

1.5.4. Classification up to isomorphism; simply connected and adjoint groups.
To each group G of the strict isogeny class %, we can associate the subgroup
C'(G) = X (T)/X, of C, or equivalently the subgroup C*(G) = X*/X* of C*;
we set C(G) = X,/X (T) = C/C'(G). The classification up to isomorphism of the
groups in % is now given by the

PrOPOSITION 1. Two groups G, G' € % are isomorphic iff the groups C'(G) and
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C'(G') are conjugate in Aut(2’). There exists a central isogeny G — G’ iff C'(G)
is conjugate in Au(Y’) to a subgroup of C'(G’). Every subgroup of C = C(9) is the
group C'(G) of some group Ge%.

Notice that the characteristic of the ground field plays no role here.

It follows from the proposition above that ¢ contains a “‘biggest group” G
(such that C(G) = C) and a “‘smallest group” G (such that C(G) = {1}). For any G
in ¢, the groups G and G (together with central isogenies G — G and G — G) are
respectively called the simply connected or universal covering of G, and the adjoint
group of G.

The second statement of the proposition can be made more precise. Any
central isogeny G — G’ induces in a natural way an injection C'(G) — C'(G').
For a given G, the central isogenies ¢: G — G’ are thus exactly classified, up to
equivalence, by the subgroups of C(G) (two isogenies ¢': G — G’ and ¢": G > G”
are called equivalent if there exists an isomorphism f:G — G” such that
¢” = fo¢’). The isogeny ¢ is separable (resp. purely inseparable) iff the index
[C(G): C(G")] is prime to the characteristic p of the ground field (resp. is a power
of p).

1.5.5. Center. The center Z(G) of G is canonically isomorphic with the group
Hom(C*(G), K*), where K* is the multiplicative group of K. If one adopts a
“classical”, nonschematical point of view (that is, if one overlooks the nilpotent
elements in the structural sheave of G), Z(G) is therefore isomorphic with the
quotient of C(G) by its p-primary component, where p is the characteristic of K.

1.5.6. Automorphism group. The group Aut(G) of all K-automorphisms of G is
the semidirect product of the group Int(G) of all inner automorphisms and a
finite group A, canonically isomorphic with the normalizer of C(G) in Aut(9).
In particular, if G is simply connected or adjoint, 4 = Aut(2).

1.6. Parabolic subgroups ([4), [7], [37], [39]). There is a natural one-to-one
correspondence between the conjugacy classes of parabolic subgroups of G,
and the subsets of the set A of all simple roots. To a subset ® < A is associated
the conjugacy class containing the parabolic subgroup generated by T and by the
groups U,(x€ A) and U_,(x€ ®), where U, denotes the ‘“‘one-parameter root
group” corresponding to the root a. In particular, the conjugacy class associated
to the empty set is the class of all Borel subgroups, and the conjugacy class
associated with A is {G}.

2. Non algebraically closed field. Index and anisotropic kernels.

2.1. Introduction; notations ([2], [4]). We now go over to the case where the
ground field k is arbitrary. Our main aim is the proof of a theorem which is a
sort of analogue for the algebraic semisimple groups (and to a certain extent a
generalization) of Witt’s theorem characterizing a quadratic form by means of
its index and anisotropic kernel.

The following notations will be used all through §§2 and 3; k is a field,
K the separable closure of k, I' = Gal(K/k) the Galois group, G a semisimple



CLASSIFICATION OF ALGEBRAIC SEMISIMPLE GROUPS 39

group defined over k (which splits over K by Grothendieck’s theorem), S a
maximal k-split torus of G, T a maximal torus containing S and defined over k.
Compatible orders are chosen in the character groups X*(S) and X*(T). Finally,
we denote by A the system of simple roots of G with respect to T, A, the sub-
system of those roots which vanish on S and ;A the system of simple relative
(k-)roots (i.e. the set of restrictions to S of the elements of A).

2.2. Anisotropic kernels ((4), [27], [38], [40], [43]). Let Z(S) be the centralizer
of S, let 2%(S) be its derived group and let Z, be the maximal anisotropic
subtorus of the center of Z(S). Then, the groups 2%(S) and 2%(S)- Z,, which
are, up to k-isomorphisms, independent of the choice of S, are respectively called
the semisimple anisotropic kernel and the (reductive) anisotropic kernel of G.
Notice that A, is the set of simple roots of 2Z(S) (with respect to the maximal
torus TN 2Z(S) and to a suitable ordering of its character group), and that the
product 22(S)- Z, is almost direct (i.e. is a direct product up to isogeny). If
2%(S) = {1}, which means that Z(S) = T, the group G is said to be quasi-split.

2.3. Index ([4], [26], [27], [38], [40], [42]). We first define an action, called the
*-action, of I" on A. The elements of A are in canonical 1-1 correspondence with
the conjugacy classes of maximal parabolic subgroups of G (§1.6); since G is
split over K, these conjugacy classes are ““defined over K and therefore permuted
by I'. Through the above correspondence, I' acts on A; the permutation of A
corresponding to ¢ € I" will be denoted by o*. It can also be defined as follows:
since K is separably closed, T is split over K, therefore all its characters are
defined over K and T operates naturally on X*(T); then, o(A) is the system of
simple root for a certain ordering of X*(T), there exists a well-defined element
w of the Weyl group for which w(e(A)) = A, and we set 6* = w o6. When the
*-action of I' on A is trivial (resp. not trivial), the group G is said of inner (resp.
outer) type, and called an inner (resp. outer) form of G (the same group, con-
sidered as defined over K).

We call (k-) index of the group G the data consisting of A (together with the
Dynkin diagram of G), A, and the *-action of I' on A. The following diagrammatic
representation of the index will be used: the Dynkin diagram of G is drawn in
such a way that vertices belonging to the same orbit of I" are close to each other
and the orbits—called distinguished orbits—whose elements do not belong to A,
are circled (for an example, see §2.5.5, or Table II). Strictly speaking, this represen-
tation gives only the orbits of I' in A and not its full action; however, in most
““practical cases”, this amounts to the same, once the group {ol¢* = id} (or,
equivalently, the fixed field of this group) is known.

Notice that the index of the semisimple anisotropic kernel of G can be deduced
from the index of G by simply removing the vertices of the Dynkin diagram of G
which do not belong to A, (together with the strokes ending in such vertices).
When G is quasi-split, all orbits of I in A are distinguished (i.e. Ay = ).

2.4. An example; orthogonal groups. The following example shows the relation
between the above notions of anisotropic kernel and index, and the corresponding
notions for quadratic forms. Let G = ,SO(f) be the special orthogonal group
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of a nondegenerate quadratic form f in 2n + 1 variables and let r be the index
of fand f; be its anisotropic kernel (a form in n — 2r variables). Then, the index
of G is

r vertices n — r vertices

and its anisotropic kernel is ,SO( f). (For the case of an even number of variables,
and other examples, see Table I1.)

2.5. How to deduce the relative root system from the index ([4], [40]).

2.5.1. Two elements of A which do not belong to A, have the same restriction
to S if and only if they belong to the same orbit of I'. More precisely, S is the
connected component of the subgroup of T defined by the following system of
equations (where te T):

at) =1 for all a € A,,
) = (a*(B))(2) for all fe A and all €T

It follows that the elements of ,A are in canonical 1-1 correspondence with the
orbits of I" in A-A,; the orbit corresponding to y € ,A will be denoted by 0,.

The above equations show that the torus S is known once the index of G is
given; so therefore the relative root system and the relative Weyl group. To
determine them explicitly is an easy exercise of which we state the results right
away.

2.5.2. Relative root system. We introduce in X*(T) ® R a scalar product ( , ),
invariant under the Weyl group, and identify X*(S) ® R with the subspace of
X*(T) ® R orthogonal to all characters vanishing on S. Let c,4, with o, fe A
(resp. (A), be the coefficients of the inverse of the matrix whose coefficients are
the scalar products of pairs of elements of A (resp. ,A). Then, for all y, d € A,

one has
Cys = Z Z Cap-
ac @, PeOs

)]

To describe the relative root system completely, there remains to determine,
for each simple root y € ,A, the largest integer n(= 1 or 2) such that ny is a relative
root. This is done as follows. Let 2 be the subdiagram of the Dynkin diagram
of G. whose vertices are the elements of Ay LU @,, and let 2’ be any connected
component of 2 whose vertices do not all belong to A,. Then, n is the sum of
the coefficients of the roots belonging to @,, in the expression as linear combina-
tion of simple roots of the dominant root of the root system corresponding to
the Dynkin diagram &’ (cf. §1.4.1; for an example, see §2.5.5).

2.5.3. Relative Weyl group. Let vy, 6 € ,A be two relative simple roots, and let
m,; be the order of the product r.,r; of the reflexions with respect to y and é
(so that the relative Weyl group is defined, as an abstract group, by the relations

rg = (ryry™* = 1).
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The orders m,; are given by the formulae
cos(n/m,s) = (v, 6)*/(, ¥)(8, 9).

However, one can also determine m,; without computing first the (y, 8)’s, which,
by the method of §2.5.2, may be rather long. Let f; (resp. f,; f;; f,s) be the number
of roots of the root system whose Dynkin diagram is the subdiagram of the
diagram of G having as vertices the elements of A, (resp. Ag U 0,; Ay U O,;
Ao L O, U O). Then,

2(f76 - ﬂ))

" -2

2.5.4. Parabolic subgroups. Let 2 be a conjugacy class of parabolic subgroups
of G and let A’ = A be the associated set of simple roots (§1.6). Then, 2 contains
a parabolic subgroup defined over k if and only if A’ contains A, and is invariant
under the *-action of I" (§2.3). The class 2 is said to be defined over k whenever
A’ is invariant under I'; in that case, 2 has a natural structure of projective
algebraic variety defined over k, whose (possibly nonexistent) rational points are
the parabolic subgroups in 2 which are defined over k.

2.5.5. An example. Let the index of G be

The simple roots of E¢ being numbered as in Table I, the orbits of I' in A — A,
are {1, 5} and {6}. Let us denote by y and & the corresponding relative roots.
We have

2 -1 0 0 0 o\! 4 5 6 4 23
-1 2 -1 0 0 O 510 12 8 4 6
0 -1 2 -1 0 -1 6 12 18 12 6 9
00—12—10=%48121056
0 0 0 -1 2 0 2 4 6 543
0 0 -1 0 o0 2 3 6 9 636
Therefore
((m) (%6))=3.(4+2+4+2 3+3)-1=%( 1 —1).
(6,7) (5,9) 3+3 6 -1 2

The diagram whose set of vertices is Ay U 0, (resp. Ag U 0;) is of type As
(resp. D,); the sum of the coefficients of the roots 1,5 (resp. the coefficient of
the root 6) in the dominant root of the corresponding root system is 2 (resp. 1),
therefore 2y is a root (resp. 26 is not a root) and the relative root system is of

type BC,.
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The diagrams whose sets of vertices are Ag, Ag U 0,, Ay U O, Ay L O, U O,
are respectively of type A,, As, D, and E¢. We have therefore, with the notations
of §2.5.3,

fo=12, f,=30, f3=24, f,;=72,
and
_2:(2-12) _
m,s = W =4,

which is coherent with the preceding conclusions.

Among the 2% conjugacy classes of parabolic subgroups of G, 2* are defined
over k and 2? contain a parabolic subgroup defined over k.

2.6. Isogeny.

2.6.1. Simply connected covering and adjoint group.

PROPOSITION 2. We recall that G is a semisimple group defined over k. There
exists a sequence

G—>G—>G,

where G is simply connected and defined over k, G is adjoint and defined over k
and #, 7 are two central k-isogenies. The groups G, G and the isogenies & and &
are unique up to k-isomorphism.

PrOOF. The theory of split groups ([4, §2], [9]) shows that there exists a sequence

NN
unique up to k-isomorphism, where the three groups are split over k, G’ (resp. G')
is simply connected (resp. adjoint), G’ is K-isomorphic with G, and #', 7’ are
central k-isogenies. Furthermore, the isogenies # and 7’ induce monomorphisms
é: Autg(G') - Autg(G) and ¢: Aut{G) > Aut(G’) (where Auty means “the
group of K-automorphisms™). The group G can be identified with G’ twisted
by a cocycle a of I' with values in Auty(G’). Twisting G’ and G’ respectively by
@*(@) and @*(a) we obtain the desired groups G and G. The unicity—that is, the
fact that G and G are necessarily obtained in that way—follows immediately from
the unicity of the sequence G' » G’ —» G’ and the injectivity of ¢ and @, since G
and G are split over K by Grothendieck’s theorem ([4, §2.14), [9]) (a posteriori,
the proposition shows that G and G split over every splitting field of G).

2.6.2. Definitions. The groups G and G of the preceding proposition will be
called respectively the simply connected covering and the adjoint group of G.

Two groups will be said (strictly) isogenous over k or k-isogenous if all the
groups and (central) isogenies which occur in the definition of §1.2.1 are defined
over k.

2.6.3. PROPOSITION 3. If two semisimple groups defined over k are strictly k-
isogenous, their indices are isomorphic and their anisotropic kernels and anisotropic
semisimple kernels are strictly k-isogenous.



CLASSIFICATION OF ALGEBRAIC SEMISIMPLE GROUPS 43

ProoF. It follows from the definition of the strict isogeny and from Proposi-
tion 2 that the simply connected coverings of the two groups are k-isomorphic.
Therefore we may assume, without loss of generality, that the two groups in
question are G and its simply connected covering G. Besides the general conven-
tions of §2.1, we keep the notations of the proof of Proposition 2, and we
denote by T a maximal k-split torus of G, and by T its image in G'. Since all
maximal K-tori of G are conjugate over K, we can assume, without loss of
generality, that the cocycle a has value in the normalizer of T' in Autg(G’), and
that T twisted by a coincides with T. But then, $*(a) has values in the normalizer
of T in Aut,(G’), and the torus T’ twisted by ¢*(a) is a maximal k-torus Tof G,
whose projection in G is T. Let S be the maximal k-split subtorus of T: Since
# is an isogeny, #(S) = S. The torus § is a maximal split torus of G, otherwise,
it would be contained in a bigger split torus §, and #(S,) would be a split torus
containing properly S. The proposition is now an immediate consequence of
the fact that the roots of G with respect to S are the image by #* of the roots of
G with respect to S, and that #(Z()) = Z(9). '

2.6.4. REMARK. There may exist k-isogenous groups with different k-ranks,
and a fortiori different indices. Example: if k is a field of characteristic 2 and
if Q is a nondegenerate quadratic form in three variables, with defect 1, which
does not represent O (the existence of such a form implies that k is not perfect)
the groups SL, and O,(Q) are k-isogenous and their relative ranks are respectively
1 and 0. (The proofs of these statements are essentially found in [4, §4.26],
although the explicit example given there is incorrect, since the quadratic form
0 which is written down obviously represents 0.)

2.7. A Witt-type theorem for the semisimple groups ([27], [38], [40]).

2.7.1. THEOREM 2. A semisimple group G defined over k is determined up to
k-isomorphism by its K-isomorphism class, its index and its semisimple anisotropic
kernel. More precisely, let G' be another group defined over k, let G, and Gy be
the semisimple anisotropic kernels of G and G', and assume that there exists an
isomorphism . of the index of G on the index of G' which is induced by a K-iso-
morphism of G on G’, and whose restriction to the index of G, (cf. last paragraph
of §2.3) is induced by a k-isomorphism of G, on Gy. Then, ¢ is also induced by a
k-isomorphism of G on G'.

PROOF. Let S’ be a maximal k-split torus of G'. We identify G, (resp. Go) with
2Z(S) (resp. 2Z(S")) and we set Ty = T G, (for the meaning of S, T, see §2.1).
The hypothesis of the theorem means that there exists a K-isomorphism ¢: G —» G’
and a k-isomorphism : G, — Gy such that ¢(S) = §, that ¢ is compatible with
the *-actions of I' on the sets of simple roots (§2.3), and that qS|Go and y differ
only by an inner automorphism of Gy. Since the tori ¢(T,) and Y(T;) are both
split over K, there is no loss of generality in assuming, after combining ¢ with
an inner automorphism by an element of Gy x, that ¢ and ¢ coincide on T,
[4, §4.21 and §5.3]). We set Ty = ¢(T,) and T’ = ¢(T), and denote by y the
isomorphism X*(T) —» X*(T’) induced by ¢ ~!.
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Since S’ and T, are defined over k, so is T' = Z(S’- T}). From the assumption
made, that ¢ is compatible with the *-actions of T, it follows that, for every
o €T, the homomorphism ¢~ '¢~ '¢o: X*(T) - X*(T) is induced by an element
w of the Weyl group. Since the restrictions of ¢ to T, and S are defined over k,
w induces the identity on T, and S, and therefore is the identity (because
Z(Ty-S) = T). Thus, ¢o = 6¢, which means that the restriction of ¢ to Tis
defined over k.

The one-parameter group corresponding to a root a (of G relative to T) will
be denoted by U,. For every simple relative root y € ,A, let Z, (resp. Z,,) be the
set of all absolute roots whose restrictions to S is y (resp. 2y), and let U, (resp. U,,)
be the subgroup of G generated by the U, with ae X, U Z,, (resp. a € Z,,). The
group V, = U,/U,, is defined over k and has a natural structure of vector space
defined over k [4, §3.17]. The torus T acts on V, (through its action on U, by
inner automorphisms), this representation of T in V, is defined over k and its
weights are the elements of Z,. Similarly, V', = ¢(U,))/¢(U,,) is a vector space
defined over k on which T’ acts, the weights of this action being the elements of
x(Z,). It is now easy to show—we leave it to the reader—that there exists a
vector space isomorphism t,: V, —» V., defined over k which is compatible with
the actions of Tand T’ and the isomorphism ¢|r: T— T'. For each ye A we
choose such a 1,. i

For every simple root a € A, let ¢,: U, = U,(, be the K-isomorphism defined
as follows. If a e Ay, ¢, is the restriction of ¥ to U,, and if the restriction of a
to S is y, ¢, is the unique homomorphism which makes the diagram

Ua Z Ul(a)
! l

Ty ’
hW—1Y

commutative (the vertical arrows are the natural projections; they are injective).
It follows from the proof of Theorem 2.13 in [4], that there exists a unique
K-isomorphism ¢: G — G’ whose restrictions to the U,’s and T coincide respec-
tively with @, and ¢|;. We claim that ¢ is in fact a k-isomorphism. To prove
this, it suffices to show that ¢y: Gx — Gy is compatible with the action of T.
But it follows immediately from the way ¢, has been obtained and from the fact
that |7 is defined over k, that the restriction of ¢y to the U, «’s and to Ty are
compatible with the action of T'. In other words, if ¢ € I', the homomorphisms
éx and ¢~ '$go coincide on U, x and Tx. Since 6~ '¢,a is the restriction to Gy
of a K-isomorphism G — G, it follows from the unicity of ¢ that 6 ‘¢z = Py,
which finishes the proof.

2.7.2. REMARKS. (a) The group G is already determined, up to k-isomorphism,
by its K-isomorphism class, its index and its semisimple anisotropic kernel,
given up to k-isogeny. More precisely, it would suffice, in the statement of the
theorem, to assume that the restriction of « to the index of the semisimple
anisotropic kernel of G is induced by a k-isogeny. Indeed, this isogeny is then
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automatically an isomorphism, as a result of the fact that . is induced by an
isomorphism of G.

(b) The group G is determined up to strict k-isogeny by its strict K-isogeny
class, its index and the k-isogeny class of its semisimple anisotropic kernel.
This is an immediate consequence of the preceding theorem and the Proposi-
tions 2 and 3.

(c) The reader will have no difficulty to state for the reductive groups a theorem
analogous to Theorem 2.

(d) There is a trivial but sometimes useful generalization of the Theorem 2,
which we want to mention. Let S’ be any k-split torus in G, let A’ be the set of
simple roots of G with respect to some maximal torus T’ containing S’ and some
ordering of X*(T’) compatible with an ordering of X*(S’), and let A be the set
of simple roots vanishing on §’. Exactly as in §2.3, we can define the *-action
of I' on A'. Let us call partial index (relative to S’) the data consisting of A’
(together with the Dynkin diagram), A, and the *-action of I on A’. Then, in
the statement of §2.7.1, one can replace the index and the semisimple anisotropic
kernel respectively by the partial index relative to some k-split torus S’ and the
“corresponding semisimple kernel” 22/(S’) (which is still defined over k, but is
no longer anisotropic in general).

3. Classification. According to the Theorem 2, the problem of classifying the
semisimple algebraic groups over a given field k can be decomposed into two
steps which can roughly be formulated as follows:

(1) Find all admissible indices of semisimple groups over k;

(2) For a given index, find all possible semisimple anisotropic kernels.

These two questions will be discussed here. However, we shall not consider
the problem of classifying all anisotropic groups over k, which theoretically falls
under (2) and is usually by far the most difficult part of the classification problem.

3.1. Preliminary reductions.

3.1.1. Reduction to the simply connected (or to the adjoint) case. Let there be
given a simply connected group G defined over k, a group G’ defined over K
and a central K-isogeny n': G — G'. Under which condition does G’ admit a
k-structure such that n' becomes a k-isogeny? More correctly, under which
condition does there exist a group G, defined over k, and an isomorphism
f:G' - G such that fon' is a k-isogeny? The answer is easy to formulate in
terms of the index of G: Following §1.5, we can associate to G a finite group
C(G) = C and the isogeny ' is then characterized up to equivalence by a sub-
group C' of C (the kernel of the homomorphism C — C(G’) induced by =’).
Through its *-action on the Dynkin diagram of G, the Galois group operates
on C, by §1.5.3 (2). Then:

The group G exists if and only if C' is invariant by T'. In that case, G is unique
up to isomorphism (more precisely, given two solutions f:G' - G and f,:G' - G,
of the above problem, there exists a k-isomorphism ¢: G — G, such that f; = ¢ o f).
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The proof of this assertion, which goes along the line of §2.6.1, is quite easy
and will not be developed here.

Notice that the condition imposed on C’ is automatically satisfied when G’
is an adjoint group (C' = C). The classification of adjoint groups over k is
therefore completely equivalent with the classification of simply connected groups.

3.1.2. Reduction to the absolutely simple case. Let k' be a field such that
kck < K, let A= Gal(K/k'), let H be a semisimple group defined over k'
which splits over K, and let G = R, ,(H) be the group obtained from H by
restriction of the scalar fieid from k' to k. (We shall not give here the definition
of the functor R,.,, which can be found in [4]; let us just indicate that it is the
algebro-geometrical analogue of the process of going over from a complex
manifold to the underlying real manifold, and that the dimension of G is that
of H multiplied by [k’: k]).

The k-index of G can be deduced as follows from the k'-index of H :& denoting
the Dynkin diagram of H, let & be the disjoint union of [k’:k] copies of & indexed
by the elements of I'/A; identify the copy indexed by A/A with & itself; let I’
operate on 2 in such a way that I permutes the copies of & in agreement with
the natural action of I on I'/A, and so that the restriction of the action of I' on
2 to A and & coincides with the *-action of A on &; finally, distinguish in 2
the vertices of & which are distinguished in the k’-index of H and all their
transformed elements of I'.

If H, denotes the semisimple anisotropic kernel of H (over k'), the semisimple
anisotropic kernel of G is R, (Ho).

The reduction announced in the title of this section is now achieved by the
following proposition.

Every semisimple simply connected group defined over k is in a unique way a
direct product of almost k-simple simply connected groups (a group is almost
k-simple if it has no infinite normal subgroup defined over k). If G is almost k-simple
and simply connected, there exists a field k' and an (absolutely) almost simple
simply connected group H defined over k', such that G = , R,.,(H).

In that proposition, “simply connected” may be everywhere replaced by
“adjoint,” in which case, the “almost” can be dropped.

3.2. Some necessary conditions (independent of the ground field) for the admis-
sibility of indices ([4], [38], [40]).

3.2.1. Self-opposition. The index of a group G is invariant under the opposition
involution i (that is, i commutes with the *-action of I, and leaves invariant A,).

3.2.2. An induction process. If, from the index of a group G, one removes a
distinguished orbit @ (together with all strokes which have at least one endpoint
in O), the result is again an admissible index. (It is the index of the group 2% (S’)
where S’ is the connected component of the intersection of the kernels of all
relative simple roots which do not correspond to @.) This, together with §3.2.1,
provides an inductive process to exclude many indices from admissibility.

ExaMPLE. Consider an index whose underlying Dynkin diagram 9 is of type
A, and such that the *-action of I" on this diagram is trivial. The vertices of 2
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being given the natural ordering from 1 to n (see Table I), leta, <a, <--- <a,
be the distinguished vertices. Then, one has q; = i-(n + 1)/(r + 1). The proof
goes by induction on r. When r = 1, the statement follows from §3.2.1. Assume
now that r > 1. The assertion above for @ = {a,} implies, by virtue of the
induction hypothesis, that a; = i- a,/r. Similarly, for 0 = {a,_,}, we have

a—a._,=n+1-a,.

These two relations imply the statement.

3.2.3. Other admissibility conditions for indices may be deduced from the
formulae in §§2.5.2 and 2.5.3, which must lead to actual root systems and Weyl
groups. For instance, the numbers m,; of §2.5.3 must be integers, equal to 2, 3,
4 or 6, and the integer n of §2.5.2 must be < 2. This last condition excludes such

indices as

0 T

—

3.3. Further admissibility conditions, for various special ground fields.

3.3.1. Finite fields ([20], [31], [33], [43]). If the ground field k is finite A, =&; in
other words every orbit of I' in A is distinguished. This holds, more generally,
whenever the cohomological dimension of k is 1.

3.3.2. Real numbers ([17)], [18], [26], [40]). Let k = R and K = C. Then, if G
is anisotropic, the unique nonneutral element of I' operates on the Dynkin
diagram by the opposition involution.

3.3.3. p-adics ([23], [45]). Let k be the field of p-adic numbers (for some p).
Then, a group G which is anisotropic and absolutely almost simple is of inner
type 4, (§2.3).

Notice that the two preceding statements give admissibility criterions (over the
reals and the p-adics) for arbitrary diagrams, since the removal of all distinguished
vertices from an admissible diagram must give rise to an admissible ““anisotropic
diagram” (in the p-adic case, one must occasionally also make use of the reduction
of §3.1.2).

ExampLE. The index

or

- + 4 4
¥ * 1

cannot occur over the reals (whereas it does over the p-adics) and the index
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v

cannot occur over the p-adics (whereas it does over the reals).

3.3.4. Number fields ([1], [19]). By means of the ‘““Hasse principle,” one can
also use §§3.3.2 and 3.3.3 to exclude certain indices in the case of number fields.

All admissibility conditions stated in §3.3 are necessary conditions. Only in
the first case (finite fields) are they also sufficient ([20], [31], [33], [43]). A com-
plete list of all effectively admissible indices over the various types of fields
considered here is given in Table II.

3.4. Necessary and sufficient conditions on the anisotropic kernel ([30], [31], [38)).

3.4.1. Statement of the problem; notations. The problem we want to study is the
following:

Given an index #, consisting of a Dynkin diagram 9, an action of I' = Gal(K/k)
on 9 and a set A,, invariant by T, of vertices of 2 (the nondistinguished vertices),
and given a group A, defined and anisotropic over k, whose index £, is (modulo a
preassigned identification) the subindex of S having A, as set of vertices, then under
which condition does there exist a group G, defined over k, with index £, whose
semisimple anisotropic kernel is strictly isogenous to A, the isogeny being com-
patible with the given injection £, — S

(Concerning the fact that we want A4 to be the kernel only up to strict isogeny,
see §§2.7.2(b) and 3.1.1.) There is no loss of generality in assuming—which we
shall do—that the group A is simply connected.

We call 2, the underlying Dynkin diagram of £, (that is, the subdiagram of 2
whose set of vertices is Ay), G! a semisimple adjoint k-split group whose Dynkin
diagram is 2 (after preassigned identification), G? a semisimple adjoint k-quasi-
split group whose diagram is 2 and such that the *-action of I" on 2 is the one
given by .#, T a maximal k-split torus of G and T? a maximal k-torus of G?
containing a maximal k-split torus T% We choose orderings in the character
groups X*(T?) and X*(T9), the ordering in X*(T9 being compatible with an
ordering in X*(T%). The simple roots with respect to these orderings are in
canonical 1-1 correspondence with the vertices of 2, and will usually be repre-
sented by the same letters. We denote by S? (resp. §9) the connected component
of the subgroup of T (resp. T9) defined by the equations (1) of §2.5.1.

In view of the various identifications which have been made, both the groups
Gd = 22(S8% and G} = 2Z(5% have 9, as Dynkin diagrams. In particular,
they are strictly isogenous to A. Furthermore, the *-operation of I on 9, is
the same for the two groups G} and A. From all this, it follows that the group
A can be viewed, either as the simply connected covering G4 of G? twisted
by a 1-cocycle ¥ of I with values in Auty(G%), or as G} twisted by a 1-cocycle
19 of T" with values in Intx(G%) = G} x ; here, Auty (resp. Inty) denotes the group
of K-automorphisms (resp. the group of inner K-automorphisms), and G} is
the adjoint group of Gj§.
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3.4.2. Cohomological formulation of the condition. An operation of I on the
Dynkin diagram & being given, to each element of I is associated a coset of
Aut(G%) modulo Int(G% (§1.5.6); we shall say that a 1-cocycle of I' in a subgroup
of Aut,(G?) is compatible with the action of I on 2 if it sends each element of I’
in the corresponding coset. If H denotes an algebraic group defined over k, two
1-cocycle 7, v" of I' with values in Aut(H) will be called innerly cohomologous,
if there is an element c of Intg(H) such that '(y) = ¢~ - 17(y)- y(c) for every yeT.

PROPOSITION 4. Let By be the centralizer of S¢ in Autg(G®). Then, each one of the
Jollowing two conditions is necessary and sufficient for the existence of the group
G (§3.4.1).

(i) The cocycle t° is innerly cohomologous with a cocycle of the form ¢*(t), where
1€ Z'(T', By) is a cocycle of T, with values in Bg, compatible with the given action of
T on 2, and where ¢p*:Z\(T', By) » Z\(T, Aut(G%)) denotes the mapping of 1-cocycle
sets induced by the homomorphism By — Auty(G?), composed of the restriction
homomorphism By — Aut,(G3) and the natural injection Auty(G3) — Aut(G3).

(ii) The cohomology class of the cocycle t® belongs to the image of the homo-
morphism H'(T, Z(5%x) - H'(T', G} x) induced by the natural projection

Z(8)x - Gﬁ.x

(here, Z stands for ‘“‘centralizer in G*’; notice that G} is the quotient of Z(S%) by
its center).

Proor. If the condition (i) is satisfied, the group G twisted by the cocycle 7 has
all the properties required from G. Conversely, suppose that G exists. By §2.6.1
we can assume, without loss of generality, that G is an adjoint group. Let S be a
maximal k-split torus of G. From the assumptions made on G and the definition
of 8% it follows that there exists a K-isomorphism ¢: G —» G compatible with
the given identification of the Dynkin diagrams of G* and G, and such that
&(S) = S%. Then, the cocycle 7 defined by (y) = ¥(@) c¢~! has the properties
required in the condition (i).

The proof for condition (ii) is similar.

3.4.3. Linear representations: terminology, notations. In the next proposition,
we want to interpret the condition (i) of §3.4.2 as an existence condition for certain
linear representations of 4 defined over k.

Let {p;: A > GL(V)|ie I} be a finite set of linear representations of A defined
over K, and let there be given a permutation action of I' on this set, or, what
amounts to the same, on the set of indices I. Then, we shall say that the rep-
resentation @p;, together with the given action of I, is I'-equivalent to a rep-
resentation p:A4 — GL(V) defined over k, if there exists a K-isomorphism
V: @V, > Vsuch that p is the composed homomorphism 4 — GL(®V;) - GL(V)
(where the first arrow is @p; and the second one is induced by ¥), and such that,
for all yeT and all ie I, y(y(V))) = Y(V,)- If the action of " on I is trivial, this
simply means that each p; is equivalent to a representation defined over k.

We choose once and for all a K-isomorphism ¢: 4 — G%. Given a linear
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representation p: G4 — GL(V) of G2, we shall denote by the same symbol p this
representation lifted to G4 (that is, composed with the canonical isogeny G4 — G32),
and also the representation p «¢ of A. A representation of A obtained in that
fashion will be said to factorize through G3; if p: G4 — GL(V) is an isomorphism
of G on a subgroup of GL(V), we shall say that p: A - GL(V) factorizes through
a faithful representation of G4 (at this point, it should perhaps be recalled that
G? is the isogenous image of A4 which is imbedded in the adjoint group G°).

Let A stand here for the set of all simple roots of G%, and let Q be the set of all
integral linear combinations w of elements of A such that f*(w) = 0 for all § € A,.
For every @ € Q, the restriction of w to T4 = T¢ n G, is the dominant weight of
a certain irreducible representation of G§ defined over k. This representation,
and the corresponding representations of G4 and A, will be denoted by p,,. It is
customary to characterize an equivalence class of irreducible representations of a
split group by a set of nonnegative integers attached to the simple roots, namely
the “normal coordinates” of the dominant weight (see for instance [4, §12.2]).
For the representation p,,, these numbers are f*(w). Particularly important is the
case where we A’ = (A — Ag) U {—u} (where —u is the dominant root of G%;
these integers are then immediately read on the affine Dynkin diagram 2'.

The action of ' on A given by .# induces an action of I' on Q; it is this action
which the following proposition refers to

3.4.4. Representation-theoretical formulation of the condition.

PROPOSITION 5. Let Q' be a finite subset of Q invariant by I'. Then, a necessary
condition for the existence of the group G is that the sum of the representations
Pl e Q'), together with the given action of I' on Q, be I'-equivalent with a rep-
resentation of A defined over k. If Q' = A — A,, this condition is also sufficient.

COROLLARY 1. A necessary condition for the existence of G is that the re-
presentation p ., (where — p denotes the dominant root of G% be equivalent with a
representation defined over k.

We shall only briefly sketch the
ProOF OF PROPOSITION 5. The following notations will be used: ¥V, is the
vector space over k in which the representation p,: G (or G%, or A) » GL(V,)
is given,
V=@V, p = Dap,:G§ - GL(V),

[ is the image of I by the homomorphism I » Aut(2) given by .#, B is the cen-
tralizer of $¢ in the algebraic group Aut(G%), and B is the inverse image of " by the
natural homomorphism B — Aut(2) (§1.5.6). The group B is (over K) the semi-
direct product of B® = Z(S% (centralizer in G%) and a finite group canonically

! The author has been told—but has not verified—that the theory of linear representations developed
in [7] in the algebraically closed case works equally well for split groups over arbitrary fields. If the
reader is not willing to accept this fact, he may feel safer in assuming, from now on, that char k = 0;
however, this restriction is undoubtedly much too strong since all results obtained here may already
be established—by somewhat more complicated arguments—in the framework of the classical
representation theory, provided the characteristic of k is “‘not too small” (# 2, 3 and possibly 5).
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isomorphic with I"; we choose, once and for all, such a semidirect decomposition
of B and identify the finite group in question with [ itself.

We now extend p to a representation p: B - GL(V) such that j(y)(V,) = Vw)
for every y € I" (notice that, as a subgroup of Aut(2), I" operates on A, and there-
fore also on ). This is done as follows: First extend p to a representation

p°: B° - GL(V)

by imposing that, for every element t of the center of B?, 5°(t) leaves invariant
each V, and induces on ¥V, the scalar multiplication by w(t) (this expression
has a meaning since t € T%); then, choose in each V,, an eigenvector v, belonging
to the dominant weight; finally, notice that, in view of the unicity of the rep-
resentation with a given dominant weight and because of Schur’s lemma, 5°
extends uniquely to a representation j of B such that p(y)(v,) = v, for all ye "
and all we Q.

Now, assume that the group G exists. Then, there exists a 1-cocycle T € Z'(T, By)
satisfying the condition (i) of §3.4.2. The compatibility of T with the action of I'
on 2 implies that € ZY(T", By). But we have defined an action of B on the object
(G3, V, p) (Bx operates on G by the lifting of restrictions of inner automorphisms,
and on V through p). We can therefore twist that object by t, and we obtain that
way the representation of 4 (more precisely, of a group k-isomorphic with A)
whose existence we had to establish.

Conversely, suppose that Q' = A — A,, and that the condition stated is
satisfied. This condition means that there exists a representation p': A - GL(V")
of A defined over k, having certain properties which we do not repeat here. The
two objects (4, V', p’) and (G4, V, p) are K-isomorphic; therefore, the first one is
isomorphic with the second one twisted by a cocycle v’ of I' with values in
Aut(G8, V, p). But it is easy to see that, in the special case considered here (that is,
the case where Q' = A — A,), the group B° is canonically isomorphic (through
the natural action of B® on G3 and the representation 5°) with the group of all
automorphisms of the object (G%, V,,, p,(w € Q). As a consequence, the action
considered above of By on (G3, V, p) defines an injection of By in Aut (G2, V, p).
Furthermore, the conditions imposed on the representation p’ imply that the
cocycle 7 has values in the image of By by this injection; lifting it to By, we obtain
a cocycle 7€ Z\(T', B)) satisfying the condition (i) of §3.4.2, and the group G
exists by Proposition 4.

3.4.5. The case of inner forms. When the action of I" on 2 given by . is trivial,
the Propositions 4 and 5 can be given a much simpler and (for the second one)
more general form. Notice that in that case, there is no difference between G?
and GY, and that we can set t* = 19, which is now a 1-cocycle with values in G§ x
(where the bar means, as before, ““adjoint group”).

PROPOSITION 6. Assume that T operates trivially on 9. Then, the group G exists
if and only if the cohomology class of 1 in H(T', G} ) belongs to the image of the
homomorphism H(T', G§ x) - H'(T', G§ x) induced by the canonical projection.

PROOF. Setting S; = S9/(S? n G%) (where the intersection must be understood
in the set theoretical sense), we have a short exact sequence
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{1} > Gox = Z(S% - S, x — {1}.

(Notice that there is a purely inseparable extension S, = Z(5%)/G%, which is not
always an isomorphism.) Since S, is a k-split torus, we have, by Hilbert Theorem
90, HY(I', S, x) = {0}. Now, it follows from the cohomology sequence associated
with the above exact sequence that the homomorphism

H'\(T, G§,0) — H'(T, Z(S%5)

induced by the inclusion is surjective. Our proposition is then an immediate
consequence of the second part of Proposition 4.

PROPOSITION 7. Assume that T operates trivially on 9. Let p be any irreducible
linear representation of A defined over K which factorizes through G4; then, a
necessary condition for the existence of the group G is that p be equivalent with a
representation of A defined over k. Let {p;} be a set of irreducible linear rep-
resentations of A defined over K whose direct sum factorizes through a faithful
representation of G4 (§3.4.3); then, a necessary and sufficient condition for the
existence of G is that each p; be equivalent with a representation of A defined over k.

PrOOF. We may assume that p considered as a representation of G, is defined
over k. Let V be the vector space over k in which this representation is made.
If the group G exists, the Proposition 6 shows that we can find a 1-cocycle
1€ ZY(T, G3 x) whose image in Z(T, G x) is cohomologous with t*. Twisting the
object (G4, V, p) (on which G x operates in the obvious way) by this cocycle z,
we obtain the representation of 4 searched for.

We now pass to the proof of the second part of the proposition, and first make
an assumption similar to the one above, namely that the p;: G& - GL(V)) are
representations defined over k. Let H be the connected component of the (alge-
braic) group of automorphisms of the object (G§, {V;}, {p;}). Assume that each
pi, considered as a representation of A, is equivalent with a representation
pi: A = GL{V}) defined over k. Then, the object (4, {V;}, {p;}) is isomorphic with
the object (G2, {V;}, {p;}) twisted by a certain 1-cocycle in Z'(T', Hy) whose image
in G4 ¢ (by the obvious homomorphism H — G%) is cohomologous to #*; in
particular, the cohomology class of t? belongs to the image of the homomorphism
HYT', Hy) - HY(T, G§ x). On the other hand, if @p; is a faithful representation
of G4, there is a natural injection G4 — H (the group G% operates on G9 by lifting
of inner automorphisms, and on V; through p;) and H is an almost direct product
(i.e. a direct product up to central isogeny) of G and a k-split torus. Then,
exactly by the same argument as in the proof of Proposition 6, one shows that the
homomorphism H(T', G§ x) - H'(T', Hy) is surjective. Therefore, the cohomology
class of t* belongs to the image of the homomorphism HY(T, G§ x) - H'(T', G4 %),
and it follows from the preceding proposition that G exists.

3.46. REMARK. In §3.4, we have always assumed that the group A was aniso-
tropic; however, everything which has been said generalizes immediately to the
(slightly) more general situation described in §2.7.2 (d).
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TABLE I: Dynkin Diagrams
EXPLANATIONS

See §§1.1 and 1.2.2. The vertex representing the minimal root is called u;
the vertices of the ordinary diagram are numbered in order to enable references.
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TaBLE II: Indices
EXPLANATIONS

In this table, we enumerate all possible indices of absolutely simple groups
(for the definition of the index and the diagrammatical representation, see §2.3;
for the nonabsolutely simple case, see §3.1.2); all the indices which are listed can
effectively occur over suitably chosen fields.

The letters n, r, d, a, m all denote nonnegative integers; n and r are respectively
the absolute rank and the relative rank of the considered group, in other words,
they are respectively equal to the total number of vertices and to the number of
distinguished orbits of the diagram; in particular, they verify the relation
0 < r £ n;all other conditions imposed on n, r, d are stated explicitly in each case.

The numbers attached to braces always indicate the total number of vertices
in the part of the diagram spanned by the braces in question.

In the case of the classical types, the indices cannot be drawn completely,
because of the indeterminacy of the rank n; as they are represented, the pictures
should be self-explanatory; however, to exclude any possibility of misinter-
pretation, we give separately, in those cases, the list of distinguished orbits, where
we use the numbering of vertices fixed by Table 1.

In order to make easier, later references to this table, we propose a notation for
the various indices. In the symbol ?X}, ,, n and r are respectively the absolute and
the relative rank, g denotes (as already in [43]) the order of the quotient of the
Galois group I which operates effectively on the Dynkin diagram (in case the
diagram has no nontrivial automorphism, g is necessarily = 1, and we omit it in
the symbol) and ¢ is a further invariant : in the case of classical types, t is the degree
of a certain division algebra which occurs in the definition of the considered form,
and in the case of exceptional types we have chosen as characteristic number ¢
the dimension of the anisotropic kernel; in order to emphasize the difference
between these two cases, we put t between parentheses when it stands for the
degree of a division algebra. (N.B. Here, by degree of a central division algebra,
we mean the square root of its dimension.) In the case of real forms of exceptional
groups, the correspondence between our present notation X}, , and the notation
X i) introduced in [37] (where i was the Cartan “index”’) is given by the relation
i=r—1t

F means “finite fields,” R “the field of real numbers,” p “‘p-adic fields”” and
n “number fields”; in the part of the table which deals with the exceptional
types, *“+” means “exists,”” and ““—,” “‘does not exist.” When we say that a form
exists over—say—number fields, it means that there exist number fields where
the form occurs. Everything which we say about finite fields except the non-
existence of ®DJ ,, extends to an arbitrary field of cohomological dimension 1.

In the classical case, we give an “‘explicit” description of the groups having
the various indices. Actually, we describe only one representative of each strict
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isogeny class; furthermore, the groups we describe are in fact abstract groups,

but they are all, in a natural and rather obvious way, the groups of rational

points of the algebraic groups we have in mind. The notations SL, Sp - - - are those

of Dieudonné [10], except that we write SU and SO instead of U* and O*. For

further information concerning the classification in the classical case, see [46]

(which has been extensively used to set up that part of the present table) and [25].
[x] means *‘the largest integer < x.”

TYPE ' A4,
(lA(d)) p—f oot p—P—jees —@ s cee 0o .—@_......_e__‘...._.'
d—1 d-1 d-1 d—1

Conditions: d-(r + 1)=n+ 1,d > 1.

Distinguished vertices: d,2d,---,rd

Description: Special linear group SL, , ,(D), where D is a central division algebra
of degree d over k.

Special fields: Over F,d =1; over R, d =1 or 2; over p and n, d may be
arbitrary.

TYPE %4,

G4 D
S 1 A O I e
Y = ——

2d-1) 2d-1) 2d - 1)

=

\/
n— 2rd

(When n + 1 = 2rd, the right end becomes :>0 )
Conditions: din + 1,d 2 1,2rd Sn+ 1.
Distinguished orbits: (d,n + 1 — d),(2d,n + 1 — 2d),---,(rd,n + 1 — rd).
Description: Special unitary group SUy, ; 1),4(D, h), where D is a central division

algebra of degree d over a quadratic extension k' of k with an involution of the

second kind ¢ such that k = {x € k'|x* = x}, and h is a nondegenerate hermitian

form of index r relative to o.

Special fields: Over F,d = 1andr = [(n + 1)/2]); over R,d = 1; over p,d = 1

and n = 2r — 1, 2r or 2r + 1; over n, there is no special restriction on d and r.

TYPE B,
&) SO e A
V \/

r h-—r
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Conditions:

Distinguished vertices: 1,2,---,r.

Description: Special orthogonal group SO,,.,(k, gq), where q is a quadratic
form of index r, and defect 1 in case char k = 2.

Special fields: Over F,r = n; over p,r = nor n — 1; over R and n, there is no
special restriction on r.

C
) TYPE C,
USRI SIS . R | NP ,.-—Q—....,__Q__......__m
\——v——/ b—v_/ \_V__J - —
d-1 d-1 i1 n~rd

(When n = rd, the right end becomes l-—[i'm ).

Conditions: d = 2°]2n,d 2 1;ifd = 1,n=r.

Distinguished vertices: d,2d,-- -, rd.

Description: Special unitary group SU,, (D, h), where D is a division algebra
of degree d over k, and h is a nondegenerate antihermitian sesquilinear form of
index r relative to an involution ¢ of the first kind such that D’ (the space of
symmetric elements) has dimension 3d(d + 1). When d = 1, the group becomes
simply Sp,.(k). An equivalent description, when d > 1 and chark # 2, is:
SU,,4(D, h), where D is as above, and h is a nondegenerate hermitian form of
index r relative to an involution o of the first kind such that dim D° = 4d(d — 1).

Special fields: Over F,d = 1;over Rand n,d = 1(and r = n) ord = 2; over p,
d=1(andr=n)ord=2and n=2ror2r— 1.

TYPE !D,
(‘D)
'—'""—‘@'—*"".—'—@'—1""""‘-'—Q'—'""—'Q'—I“"—'<
d-1 d-1 i-1 Ty~

n—rd
(When n — rd < 2, the right end has one of the following forms:

'“({ifn=r,d=l; "'ﬁifn:Zr,d:Z;
-~£ifn=rd,d;3; ...<ifn=rd+2;

the case n = rd + 1 cannot occur.)
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Conditions: d = 2°2n,d =2 1,rd En,n # rd + 1.

Distinguished vertices: d, 2d, - - -, rd.

Description: 1f char k # 2, special unitary group SU,,,(D, h), where D is a
central division algebra of degree 2 over k, and h is a nondegenerate hermitian
form of discriminant 1 and index r, relative to an involution & of the first kind
such that D° (the space of symmetric elements) has dimension }d(d + 1). An
equivalent description is, when d > 1:SU,,4(D, h) where D is as above, and h is a
nondegenerate antihermitian form of discriminant 1 and index r, relative to an
involution o of the first kind such that dim D° = 1d(d — 1).

If char k = 2, “special orthogonal group” SO,, (D, h), where D is as above, and
h is a nondegenerate and nondefective ‘‘quadratic form™ of discriminant 1 and
index r, relative to an involution of the first kind of D (with a suitable extension
of the notion of quadratic form, introduced in the quaternion case by E. A. M.
Seip-Hornix [28]).

Special fields: Over F,d=1and n=r; over R d=1and n—r = 2m, or
d=2andn=2r;overpd=1andr=norn—2 ord=2and n=2ror
2r+3;overm,d=1andn—r=2mord=2and n— 2r =2mor 3.

TYPE 2D,
e
._‘..o'—-e—.---.._e_..-- R s e ._-&‘...’-_C
H,_.J _\,_J —\,_l [ — V S
d-1 d-1 .- d-1 n—-rd

(When n = rd + 1, which implies d = 1 or 2, the right end becomes respectively

Conditions: d = 2°|2n,d 2 1,rd < n — 1.

Distinguished orbits: d,2d,---,rd; the last one is replaced by (n — 1, n) when
n=rd + 1.

Description: The same as for ' D%, except that all forms in question have now
discriminant # 1.

Special fields: Over F,d = 1andn=r + 1;overR,d = landn — r =2m + 1,
ord=2andn=2r+1;overp,d=1andn=r+ l,ord=2andn=2r + 1
or2r + 2;over n,d = 1 or 2, and there is no special condition on r.
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TYPES 3D, AND 6D,

Index

>E{

fe

=1

TYPE 'Ej

Index

[

e

N

Special fields
F R p n

Special fields

F R p n
- - - 4+
- + - +
- - + +

+ + o+ 4+

REMARK. 'EZ% is the form which can be realized as collineation group of a
Cayley plane ([15], [32], [35]); 'E$S, is the form which is constructed by means of
an associative division algebra of degree 3 ([38], [44]).
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TYPE 2E¢

Symbol Index Special fields
F R p n

'y —C_ -+ -+
wy o—C__ ., - - - +
2g329, .—C:D - - - %
2ELS, (B—C::O - 4+ -+
wY —C___ - - -+

L

2EZ, e—aq [ ) + + + +

v 1

REMARKS. 2E$S is the real form of E¢ which gives rise to a bounded sym-
metric domain. In the list given at the end of [42], the index 2E2® has been
erroneously omitted.

TYPE E;
Symbol Index Special fields

I F R p n
i — - - + - +
2 ] — - - - -
ESS, I — — - - -
E5%Y  — © + I — - - - -
EsszeA.I.@———+
B3y o—e— l ® - + - +
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REMARK. E3% is the form which is constructed by means of a division Cayley
algebra ([16], [36], [41]); over the reals, it is also the form which gives rise to a
bounded symmetric domain.

TYPE Eg
Symbol Index Special fields
F R p n
Eéf‘o"ﬁw‘¥tlﬂ:—+—+

+

" E} &+

T
4

txy
z2
T
—
)
[
|
|
[

E§§®—@-—®—+—I—4—®—+—+
E3.s®——®—e—$—i—®——@++++

ReMARK. EZ°, is the form which is constructed by means of a Cayley division
algebra ([16], [44)).

TYPE F,

Symbol Index Special fields
F R p n

Fh ——CXJ—— - + - +

B, 0——— - + - 4
Fo &—A L B—D + + + +
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REMARK. A group of type F, is always the automorphism group of an excep-
tional simple Jordan algebra J ([8], [15], [22]); the three diagrams above cor-
respond respectively to the cases where J does not have nonzero nilpotent ele-
ments, has such elements but does not have two nonproportional orthogonal
ones, and finally has nonproportional orthogonal nilpotent elements.

TYPE G,
Symbol Index Special fields
F R p n
oy B== -+ -+
. P—.
G, = + + + +

REMARK. A group of type G, is always the automorphism group of a Cayley
algebra ([21], [31]); the two diagrams above correspond respectively to the cases
where this algebra is a division algebra, and is split.
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p-adic Groups

FRANCOIS BRUHAT

1. Bounded subgroups. If G is a real connected Lie group, then the following
two statements are well known:

(1) Any compact subgroup of G is contained in a maximal compact subgroup
of G.

(2) Two maximal compact subgroups are conjugate by an inner automorphism.

Now let P be the quotient field of a complete discrete valuation ring @. Let
p be the maximal ideal of @, and let = be a generator of p, and K be the residue
field of O by p, ie, p = On, K = O/p. P is locally compact for the topology
induced by the valuation if and only if K is a finite field.

Let G be a linear algebraic group defined over P, realized in GL(V) where V
is a vector space defined over P. Let G, be the group of P-rational points of G.
Gp can be considered as a subset of GL(n, P), and also a subset of the ambient
space P™ of GL(n, P). With the topology induced by P™, G, is a topological
group. If P is locally compact, then G, is locally compact.

Let K be a subgroup of Gp, then the following three statements are equivalent :

(i) There exists a locally faithful matricial rational representation p of G defined
over P s.t. the coordinates of the elements of p(K) are bounded,

(i) For any matricial rational representation, the coordinates of the elements of
p(K) are bounded.

(iii) For any rational linear representation p of G in a vector space V over P,
there exists a lattice Lin V s.t. p(k)L = Lfor any k in K.

If K satisfies one of the above conditions, K is called a bounded subgroup
of Gp.

The condition (iii) implies that any bounded subgroup is contained in an
open and bounded subgroup. On the other hand, the open and bounded sub-
groups of G are related with the structure of G as group scheme over the ring 0 :
let P[G] the affine algebra of G. The product in G gives a structure of coalgebra
on P[G], ie., a linear map d: P[G] — P[G] ®p P[G] which is defined by the
condition :

d(f) =X fi® fi<flxy) = Lfix)fi0).

Now, an O-structure for G is an O-subalgebra of finite type /[G] such that
P[G] = P«/[G] and d(/[G)) = H[G] ®, [G].

ExaMPLE. Let G = GL(V), let L a lattice in Vj, (g;;) the matrix of ge G with
respect to some basis of L. Then the algebra &#/[GL] = 0O[g;;, (det(g;;))" '] is an
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O-structure for GL(V). More generally, if G is a subgroup defined over P of
GL(V), the image of &/[GL(V)] in P[G] is an @-structure for G. It can be shown
that any @-structure may be obtained in this way.

If o is an O-structure on G, then for any (@-algebra B (commutative, with
unit) the set Gz = Hom ((«, B) is a group. In particular, G, can be considered as
a subset of Gp = Hom (%, P) = Homp(P[G], P), and is a bounded and open
subgroup of Gp.

We can also “reduce mod p””: the algebra o//po/ over the residual field K
is the affine algebra of a group scheme over K (which is not necessarily connected,
nor reduced). If .o/ /p.«/ is the affine algebra of a connected algebraic group defined
over K, we shall say that the reduction mod p of o is “good.” In this case, the
canonical map : G, — G is surjective.

2. Existence and classification of maximal bounded subgroups. If G is an
additive group of affine line G,, then G has no maximal bounded subgroup,
because (G,)p = UOn~". More generally it can be proved that if G is not reduc-
tive and if the characteristic of P is zero, then Gp has no maximal compact sub-
groups. (If the characteristic of P is positive, there may exist a unipotent group
defined over P without P-rational point, except e, so the above statement is no
longer true.) In any way the interesting cases are that of reductive or semi-
simple groups. Then we have an existence theorem:

THEOREM (LANGLANDS).! If P is a locally compact field, and G is a reductive
group, then any compact subgroup of Gp is contained in a maximal compact sub-

group of Gp.

Proor. We may assume G = GL(V), and irreducible. It suffices to show there
is no infinite sequence of open compact subgroups K, st. K, S K,+1 & .
Take a lattice L in V}, and let X, = {xe L|kx € L for any k€ K,}. It is obvious
that X, is K -invariant and X, ¢ nL. Let ¥, = X, n (L — =L). Since X, is a
closed subset of L, Y, is compact nonempty. Let Y be the intersection of all Y,,
then Y is nonempty. Let X be the intersection of all X,, then X has a nonzero
vector of Vp, and is invariant under any K,,. Let W be the P-vector space generated
by X. The Zariski closure CI(UK,) of UK, is open for the P-topology, and closed
under Zariski topology, so CI(UK,) = Gp, W is a nontrivial invariant subspace
and X is a lattice in V,. Now UK, fixes X invariant, and consequently compact.
Therefore, there is no infinite sequence

Kn;KnSKn+l ;'”in GP'

For classical groups (at least in the strict sense and if the characteristic of the
residual field K is not 2), one knows the complete classification of conjugacy
classes of maximal bounded subgroups.

! During this Institute, Tamagawa has indicated to me another method of proof, which is valid
also for the nonlocally compact case and gives the existence of maximal bounded subgroups.
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ExAMPLE 1. Gp = SL(n, D), D = a division algebra of center P. A maximal
bounded subgroup is the stabilizer of a lattice in D" and any two maximal
bounded subgroup of G, are conjugate under GL(n, D), but the number of con-
jugacy classes of bounded subgroups under inner automorphisms is equal to
n = rkpy(G) + 1. :

EXAMPLE 2. Gp = PGL(n, P). Let K be a maximal bounded subgroup of Gg,
and K the inverse image of K in GL(n, P). It can be shown that there exists a
divisor d of n and a sequence of d lattices Lo > L; o -+ o Ly = nLy in P,
with dimg(L,/L;.,) = n/d, such that K is exactly the set of those elements of
GL(n, P) which keep globally invariant the infinite sequence formed by the
lattices ©*L; (0 < i < d, k € Z). (The proof is given in [4] with the assumption that
the characteristic p of K does not divide n. But it is possible to give a more direct
proof, which is valid in any case.) One sees that the number of classes of maximal
bounded subgroups in PGL, is equal to the number of divisors of n. The n classes
of maximal bounded subgroups of SL, give exactly one class for the isogenous
group PGL,, but other classes appear. '

ExAMPLE 3. G = SO(Q), Q is a quadratic form over a vector space V over P
(char P # 2). Let K be a bounded subgroup of Gp, then K fixes a lattice L in
Vp; K < End(L). Q induces an involution * in End (V). Since g* = g~ ! for
g€Gp, K < End L n (End L)* N Gp. If K is maximal bounded, then

K = End L (End L)* N Gp.

Now consider the set S of all the orders of End (Vp) which can be written as
Q N Q* by some maximal order Q of End (V). Let ® be the symmetric bilinear
form attached to Q, ei = 1-- - n) be a basis of a lattice L ; then (End L) n (End L)*
is maximal in S if and only if any elementary divisor of the matrix (®(e;, €))) is
either 1 or 7 (up to a constant factor). The number of conjugacy classes of such
lattices is finite. Since any maximal bounded subgroup K is contained in a
maximal element of S, the number of conjugacy classes of maximal bounded
subgroups of Gp is finite.

Let L, be a lattice in Vp, generated by a “Witt basis”, i.c. a basis e, - -, e,
of V; satisfying the following conditions:

(@) ey,---,e, (Tesp.e,_,+1,"**,e,) generate over P a maximal isotropic sub-
space V; (resp. V3) of Vp;

(b) Dle;, €54 1-) =dfor1 Si,j=r;

(¢) €41 -*,e,—, generate over P the orthogonal V, of V; + V; (which is a
maximal anisotropic subspace of V) and generate over the unique maximal
O-integral lattice of V,.

Now let L, be the lattice generated by ne,,- - -, me,, €544, -+, €, With0 S s S 1.
Then the orders Q, = End L, n (End L,)* are maximal elements of S and if
char K # 2, any maximal element of S is conjugate to some Q, by an element of
Gp.

Then (at least if char K # 2), there is exactly r + 1 classes of maximal bounded
subgroups, represented by the subgroups K, = Q,nGpfor0 < s =r.
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Similar results hold for the other types of classical groups (symplectic, unitary,
etc.) [6].

3. Iwasawa and Cartan decompositions.
G = connected semisimple group over P,
A = maximal P-split torus,
N = normalizer of 4 in G,
Z = centralizer of 4 in G,
U = unipotent radical of a minimal parabolic subgroup I' of G over P,
associated to 4,
I'=2ZU, W= Ny/Z,,
Y = the group of P-rational characters of Z,
Zy= {zeZpllx(z)l,, = 1forany ye Y}, D = Z,/Z,.
Let 6 be the canonical map Z, — D. Then D is isomorphic to Z" where r is the
P-rank of G, and D/6(A4p) is of finite index. W acts on D, Ap. Let

Af = {ae A,||a(a)|p = 1 for any positive a € X(A)},
D" ={de D' there exists a positive integer n with nd € &4;)}.

CoNJECTURE I. There exists a maximal bounded subgroup K of Gp satisfying

the following conditions:
(i) KoZyNpc KZ,

(ii) Gp = KZpUp (Iwasawa Decomposition),

(iii) Gp = KZpK (Cartan Decomposition), more precisely there is a one to one
correspondence between K\Gp/K and D*.

(iv) (@) If 8(z)e D* then KzK n KzUp = Kz;

(b) there exists an order on D s.t. if z, z* € Zp, 8(z*)e D* and

Kz*K n KzUp #9,

then (z) = 6(z*).

This Conjecture I is true for classical groups (at least in the strict sense: uni-
modular group of a division algebra or groups of matrices of determinant 1
keeping invariant on e-hermitian form), for split groups (of any isogeny type),
and for quasi-split groups (at least with an unramified splitting field).

RemARrK. The condition (iv) is often a consequence of the others, as soon as K
is given as the stabilizer of a lattice L in the space V of a representation p of G,
defined over P, with some properties like :

(a) L is a direct sum of sublattices L(1 < i £ m); each vector subspace V; = PL;
is stable by Z(A),. Let z, z' € Z(A)p and z;, z; be their restrictions to V;. If for all i
z; and z; have the same invariant factors (with respect to L;), then z' € zZ(A),.
Moreover, if 8(z) e D™, then the invariant factors of z; are less than those of z;, ;.

(b) If u € Gp, then p(u) is unipotent, upper triangular for the block decomposi-
tion, ie, (p(u) — Id) V)<= Vi + — + V,_;for1 i< m

On the other hand, it is possible that (iv) is too strong and has to be replaced
by a weaker condition (cf. [8]). )
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EXAMPLE 1.

D = division quaternion over P,

@ = the ring of integers of D,

p = # 0 = the maximal ideal of 0,

V» = n-dimensional vector space over D,

® = hermitian form on Vj,

G = SU(V, ®) = special unitary group of (V, ®).

For a (-lattice L in V,, the norm n(L) of L is the smallest ideal g of D s.t.
®(x, y) e g and there exists an element ¢ in g satisfying ®(x, x) = ¢ + & for any
x,yin L. .

Now let L be a maximal lattice of norm @. Then L has a canonical Witt
basis e, - - - e, satisfying the similar conditions as in §2, Example 3. With respect
to this base one can take:

a, 0
a,,
Ap = 1 a‘EP.,
.a’_l
0 a;!
Ay 0
A,
ZP = AiGD'
a7t
0 A7?

G’ = the special unitary group corresponding to the anisotropic part of (V, ®).

K = stabilizer of L.

U = G N (upper triangular matrices with diagonal 1).

If g € Gp, g(L) is a maximal lattice of some norm. We can prove the existence
of a basis ¢; of L s.t. L = €0, g(L) = Y e/#" and get the decomposition (iii).
Condition (iv) can be proved in the same way as in [2].

D = Z,/Zy, = Z' is realized as

diag(ﬁ"' TR A VR N V... E—vl)’
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8(Ap) = diag(*' ... #%*, 1...), D* is the subset of D satisfyingv, Sv, S-S v,.
Letg = k,d*ky, = du, k,, ke K,d* eD*,ue Up,d = diag(®*'--.)eD.

bt 0 1 L b ot
du = = 0 *l.
0 '/ \O 1 0

But the elementary divisors of g are the same as those of d,, so v; < u;. By
induction we can show the condition (iv), where the order is the lexico-graphic
order.
EXAMPLE 2. _
G = semisimple with split torus over P (Chevalley type).
g = Lie algebra of G.
X,, H, = Chevalley base of g.
L = O-module generated by X,, H,.
K = stabilizer of L.
Then (i) ~ (iv) are satisfied [3], [7].
ReEMARK 1. There exist maximal bounded subgroups for which (ii), (iii) and (iv)
are not true (even if P is locally compact).
REMARK 2. There may exist several classes of maximal bounded subgroups
satisfying (I), even not isomorphic.

4. Tits system in a simply connected group. Let us assume K is finite and let o/
an O-structure on G, which has a good reduction with G semisimple over K, of
same type as G. Then G is split or quasi-split with unramified splitting field, the
O-structure & is given as §3. Example 2, and the Conjecture 1 is true for K = G,.
But in other cases, we may have an @-structure ./, which does not have a good
reduction, and, nevertheless, the Conjecture I is still true for X = G,. Moreover,
this o/ has the following properties, which we state as a conjecture, because we
are not able to prove them in the general case:

ConiecTURE II. If G is a connected semisimple simply connected group defined
over P, there exists an (-structure o/ on G such that:

(i) G, satisfies the conditions of the Conjecture L.

(i) The @-structure determined by &/ on the maximal split torus 4 is the
canonical one (i.e., given by the algebra generated by the characters) and so has
a good reduction on a torus A, split over K.

(iii) There exists a connected reductive algebraic group G~ defined over K,
containing A as a maximal K-split torus, and a morphism of group scheme
from the reduced group scheme G to G~, inducing the identity on A, such that,
if p is the associated map from G, to G, the inverse image B = p~!(By) of the
set of rational points of a minimal parabolic subgroup B of G= containing A4,
constitutes with the subgroup N = N(A)p a Tits system (or a (B.N. pair)) in Gp.
The Weyl group W= N/B N of this Tits system is an affine Weyl group,
extension of the P-Weyl group of G by Z".
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This conjecture has been firstly proved by N. Iwahori and H. Matsumoto in
the split case [7] (for the O-structure of §3 Example 2) then by H. Hijikata for
quasi-split case [S] and classical cases [6].

REMARK. A triple of groups (G, B, N) is called a “Tits system” if it satisfies the
following : '

(0) Gis generated by Band N, B n N is a normal subgroup of N, W= N/BnN
is called the Weyl group of the Tits system.

(1) Wis generated by involutive elements re I, r? = 1,

(2) rBr~! #£ Bfor any rel,

(3) rBw < BrwB U BwB for any re I and any we W.

If (G, B, N) is a Tits system, then:

(1) w — BwB gives a bijective map from Wto B\G/B.

(2) For any subset J of I, let W, be the group generated by r (r€J), then
G; = BW,B is a group. G, = N4(G,). G, is conjugate to G if and only if K = J.
Any subgroup of G containing B has the form of G,.

As a consequence if the Conjecture II is true, G, has at least r + 1 classes of
maximal bounded subgroups where r = rky(G). Actually Whas r + 1 generators
I ={wy,---w,, wg}, and a maximal bounded subgroup K; (i =0, 1,-- - r) is given
by K; = BW,_,,B.

CoNJECTURE (II) (iv). Any maximal bounded subgroup of G, contains a con-
jugate of B.

REMARK. (iv) is known for classical groups modulo some exception in the case
of characteristic of K = 2. [6].

Added in November 1965. During the conference, considerable progress was
made towards an affirmative solution of the conjectures above. It also appeared
that the properties thus established have interesting applications; for instance,
they provide a simplified approach to Kneser’s theorem on H' of simply con-
nected groups over the p-adics. A joint paper on this subject is in preparation,
by F. Bruhat and J. Tits.

These results were exposed orally by J. Tits at the conference. The precise
form on which they are given in the mimeographed notes of his talk must
however be somewhat modified; in particular, it is not true that minimal k-
parahoric subgroups of a group G—as defined in these notes—are conjugate
by elements of G,. In fact, the notion of k-parahoric subgroup given there does
not appear to be ‘“the good one” when G does not split over an unramified
extension of k.

On the other hand, the methods sketched there turn out to give further results.
For instance, it can be shown that the Conjecture (II) (iv) above is essentially a
consequence of the other parts of that conjecture and, in particular, is true in
the split case.
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Generalized Tits System (Bruhat Decomposition)

on p-Adic Semisimple Groups

NAGAYOSHI IWAHORI

1. Generalized Tits system. In order to describe the situation where the
algebraic group G is not simply connected (cf. Bruhat’s talk; also see [3], [8]),
we have to generalize the notion of Tits system (or BN-pair, see Tits [13]) as
follows.

Let G be a group and B, N subgroups of G. The triple (G, B, N) is called a
generalized Tits system if the following conditions (i) ~ (vi) are all satisfied.

(i) H= Bn N is a normal subgroup of N.

(ii) The factor group N/H is a semidirect product of a subgroup Q and a normal
subgroup W:N/H = Q- W.

(ii)) There exists a system of generators of W consisting of involutive elements
w; (i € I) with the following properties (iii; ) and (iii; ). [We assume that w; # 1
and that w; # w; (for i # j). We also identify the index set I with the generator
system {w;;iel}].

(iii; @) For any ¢ in QW and for any w; in I,

oBw; = Bow;B U BoB.
(For any element ¢ and t in QW, 6Bt is defined as the set 6Bt where ¢ and % are
elements of N projecting to o, t respectively. Obviously ¢Br is thus well defined.
Similarly BoB is defined.)

(iii; B) w;Bw; ! #* B for all w; in I.

(iv) Any element p in Q normalizes I: plp~' = I.

(v) pBp~! = Bfor all pin Q; Bp # B for any pe Q — {1}.

(vi) G is generated by B and N.

W is called the Weyl group of (G, B, N); QW = N/H is called the generalized Weyl
group of (G, B, N).

Let now (G, B, N) be a generalized Tits system. Then, Tits [13] (cf. also Iwahori
and Matsumoto [8, §2]), one can prove the following main properties of the
generalized Tits system (G, B, N).

ae=U »caw BoB (disjoint union)

(b) The normalizer N(B) of B in G is given by

N(B) = U BpB = BQB = BQ = QB.
peQ
Furthermore, N(B)/B is isomorphic with Q.
71
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(c) For any subgroup H of G containing B, there exist a unique subgroup Qy
of Q and a unique subset J, of I such that H = B(QuW(Jy))B; where W(Jy)
means the subgroup of W generated by Jy. Moreover, Jy is normalized by
every element p in Qp:pJyp~' = Jy. The pair (Qy, Jy) is called associated
with the subgroup H.

(d) Conversely, let (¥, J) be a pair of a subgroup Q' of Q and a subset J of I
such that J is normalized by every element of Q'. (Such a pair will be called an
admissible pair.) Then there exists a unique subgroup H such that G o H o B
and that Q' = Qy, J = Jy. Thus the mapping H — (Q, Jy) is a bijection from
the set of all subgroups between G and B onto the set of all admissible pairs.

(¢) Let L be the normalizer in G of a subgroup H containing B. Let (Qg, Jg),
(Q,,J,) be the admissible pairs associated to H, L respectively. Then,

Jo=Jn QL ={peQ;pQup~" = Qu,pJyp~" = Ju}.

(f) Let H; (i = 1,2) be subgroups of G containing B and (;, J;) (i = 1, 2) the
admissible pairs associated to H,, H, respectively. Then the following conditions
()y) are equivalent :

(@) H, and H, are conjugate in G,
(B) H, and H, are conjugate by an element in N(B),
() pQip~ ! = Q, and pJ,p~ ! = J, for some p in Q.

(8) Go = BWB is a normal subgroup of G and (G, B, N,) is a Tits system with
W as its Weyl group, where Ny = N n G,. Moreover G/G, = Q.

(h) For any element g in G, the automorphism of G, defined by x — gxg~!
preserves the Tits system (G, B, No) up to the conjugacy in Gy, ie., there exists
an element g, in G, such that gBg~! = goBgo !, 8Nog ™! = goNogo '

According to a remark of Tits, (g) and (h), provide the following alternative
description of generalized Tits systems, which make them appear as sort of
nonconnected analogues of the usual ones.

To begin with, let us recall the notion of saturation for a Tits system. In general,
a generalized Tits system (G, B, N) is called saturated if

BnAN= ( nBn~'.

neN
Note that any generalized Tits system (G, B, N) can be modified into a saturated
one (G, B, N*) without changing the factor group N/B n N. In fact, N* is given
as N* = N- H* where H* =N,_ynBn~'. Conversely, starting from a saturated
system (G, B, N*) one gets other systems by replacing N* by any subgroup N
such that N- H* = N*. ‘

Suppose now that G, is a normal subgroup of a group G and let (G, By, No)
be a saturated Tits system on G,. We assume that, for any element g in G, the
automorphism x — gxg~! of G, preserves the Tits system (Go, By, No) up to
the conjugacy in G, (cf. (h) above). Then we get a saturated, generalized Tits
system (G, B, N) on G, where N = I'Ny, I' = Ng(B) N Ng(Ny), B = B,. (Ng(X)
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means the normalizer of X in G.) Furthermore, N/B n N is isomorphic to the
semidirect product Q- W, where W is the Weyl group of (G, By, Ng) and
Q = Ng4(B)/B. This procedure exhausts all saturated generalized Tits systems.

2. Existence of a generalized Tits system on p-adic semisimple algebraic
groups. (Supplements to Bruhat’s talk.) Let k be a local field, i.e., a field with
nontrivial, nonarchimedean, discrete valuation. We denote by O (resp. p, resp. @)
the ring of integers (resp. the unique maximal ideal in O, resp. a generator of
the ideal p). We also denote by k the residue class field O/p.

Now let G be a connected, semisimple algebraic group of Chevalley type over
the local field k. Let A be a maximal k-split torus of G and ® the root system of
(G, A). We denote by P, (resp. by P) the Z-module generated by all roots (resp.
by all weights). Note that P, and P are lattices of the vector space {(®)p spanned
by ® over R. We recall also that an element 4 in {(®)g is in P if and only if
2(2, a)/(o, &) is in Z for all a in ®, where ( , ) is a suitable inner product in (®)g
(cf. Borel’s talk p. 13). In particular, one has P > P, and P/P, is a finite abelian
group.

Now it is known that there is associated canonically a sublattice I" such that
P o T 5 P, and that 4, =~ Hom(T', k*) (cf. [3]). We denote by h (x) the element
in A, which corresponds to y in Hom(I, k*). Also for each root a, there is
associated a rational homomorphism x,: G, = G defined over k, where G, is
the additive group of the universal domain. (Note that G is simply connected
(resp. the adjoint group, i.e., centerless) if and only if the associated lattice I’
coincides with P (resp. with P,).)

Now let N be the normalizer of A in G. We shall now construct a generalized
Tits system (G,, B, N,) on G, by taking a certain subgroup B. Let Gg be the
Chevalley lattice in the Lie algebra &, of G over k (cf. Bruhat’s talk and also
Cartier’s talk). We denote by Gg the stabilizer of the Chevalley lattice ®g in G, :

Go = {g€G;; Ad(g)Bp = By}
Then one can show [8] that G, is generated by the following elements in G,:
X,(t) (teO;aed) and

h(x)  (xe Hom(I, O%),

where O* means the group of invertible elements in ©. Thus it is seen that the
homomorphism ¢ of Gy defined by the reduction mod p maps Gy onto the
Chevalley group G, over k associated to the lattice I'. Thus one gets a *“‘good
reduction” (cf. Bruhat’s talk).

Now let us fix a linear ordering in ®. Then this determines a Borel subgroup
B, of G,.. Put

B = ¢ '(B,)).

As in the case where G is simply connected, the subgroup B thus defined is unique
up to the conjugacy by elements in G, (see Bruhat’s talk). Now one can show [8]
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that our subgroup B is generated by the following elements in G, :
x(t) (tep,aed,)
x4(t) ted,ped.)
h(x) (x € Hom(I", O%)).
Note that one gets Ag = N, n B, and Ag is generated by the elements h(x),

x € Hom(I", O%).
Our main purpose here is the following:

THEOREM. (G,, B, N,) is a generalized Tits system on G,.

For the proof of this theorem together with other properties of B, see [8].
Let us describe here the structure of the factor group N,/B n N, = N,/Ag. To
begin with, we recall the notion of the affine Weyl group W(®) associated to the
root system ®. We denote by w,, (x€ ®, ve Z) the reflection mapping of the
Euclidean space (@) with respect to the hyperplane {x € (®)g; (a, x) = v}, i.e.,

We X)) = x — (x, @) - a* + va¥,

where a* = 2u/(«, o). We denote by W(®) the group generated by the reflections
W,, (0€®,ve Z), and call it the affine Weyl group associated to ®. Note that
the Weyl group W(®) is the subgroup of W(®) generated by the reflections
W, (x€ @), and that W(®) is the semidirect product of W(®) and the normal
subgroup D consisting of the translations of the following form: x — x + 4,
where d is in the lattice 't = {d e (®)g; (d,y)€ Z for all yeI'}. Thus W) =
W(®)-D, D = T'* =~ Hom(T, Z).

Now one gets [8] N,/Ap = Q- W(®) (semidirect product) where Q is a finite
abelian group isomorphic with P/I". The set I of generating involutive elements
of W(®) appearing in the structure of the generalized Tits system (G,, B, N,) is
given as follows [8]: let ® = @, u.-- U ®, be the decomposition of the root
system ® into irreducible components ®;. Let A; = {a¢,---,a{’} be the set of
all simple roots in ®; (relative to the given ordering) and «f’ the highest root in ®;.
Then I is given by

I= {Wagn.o ISisSnlsSjsh) wy,(1=Sisn)
V‘;e refer to [8, §1] as for the more detailed description of the groups Q- W(®),

(D).

We note that the analogue of the above theorem is also true for a reductive
algebraic group G defined over a local field k which has a k-split maximal torus.

ExampLE. Let G = GL,. Then G, = GL(n, k) and Gy = GL(n, O). With respect
to the usual ordering of roots, we get

O p k* 0

O O* 0 k*
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Moreover we have N, = A, - S,, where S, is the subgroup of G, consisting of all
permutation matrices. (Hence S, may be regarded as the symmetric group of
degree n.) Put

! 0

0 F13
Then A4, = Ag - D (direct product) with Ag = A4; N B, and one gets N, = Ag(DS,)

(semidirect product). Thus one gets [4] a generalized Tits system (G, B, N,)
with the following factor group:

N/BAN,=Q-W,

where Q = N(B)/B =~ Z and W is generated by involutive elements wy,---,w,
in DS, given by

0 0 n\
Ii_, 0 1
01 .
w; = 1gign-1), w,=| O " 0
1 0 .
0 (A 1
n! 0 0

Note that N(B) = {w}B is a semidirect product where w is an element in DS,
given by

Furthermore we have ow;0™ ! = w;,; (1 L i S n; Wy = wy).

3. A characterization of the subgroup B (cf. §2) for locally compact ground
fields. In this section we assume that k is a locally compact field with the (finite)
residue class field k of characteristic p.

Let G be a semisimple algebraic group defined over k. One sees then that for
any open compact subgroup K of G,, the normalizer N(K) of K in G, is also
open and compact. Using this fact, one can prove the following theorem:

THEOREM (SYLOW). Let G be a semisimple algebraic group defined over k. Then
G, has a maximal pro-p-subgroup S. Furthermore, any pro-p-subgroup of G, is
contained in a conjugate of S.
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We recall the terminologies used above: pro-finite group means the projective
limit of finite groups; pro-p-group means the projective limit of finite p-groups.

Thus any two maximal pro-p-subgroup of G, are conjugate. A maximal pro-p-
subgroup of G, is called a Sylow subgroup of G,.

COROLLARY. Eet B be the normalizer in G, of a Sylow subgroup S of G,. Then,
distinct subgroups of G, containing B are never mutually conjugate in G, and each
of them equals its own normalizer in G,.

Now for simply connected, semisimple groups of Chevalley type, we have the
following

PROPOSITION (MATSUMOTO). Let G be a connected, simply connected, semisimple
group of Chevalley type over k. Then our subgroup 3 of G, introduced in §2 is
the normalizer of a Sylow subgroup of G,.

This proposition gives in a certain sense a ‘‘p-analytic” characterization of
our BN-pair structure in G,.

4. Applications.

4.1. Maximal compact subgroups. Let G be a connected, semisimple algebraic
group of Chevalley type over a local field k. Then, since we have a generalized
Tits system (G,, B, N,) on G, (cf. §2), we can determine the conjugacy classes of
subgroups of G, containing a conjugate of B. Thus, in particular, when k is
locally compact, we can determine the conjugacy classes of maximal compact
subgroups of G, . As an example, we shall give a table of the number s of conjugacy
classes of the maximal compact subgroups of G, containing B, when G is the
adjoint group of simple groups [8].

Type of G s

A, the number of (positive) divisors of I + 1
B, and C, I+1

D,(I=2m+1) l

D, (I = 2m) 1+2

Eg 5

E, 8

Eg 9

F, 5

G, 3

Also, if G is simply connected and simple, then s = | + 1, when [ is the rank
of G [8].

We note that these values of s are shown to be the number of conjugacy classes
of maximal compact subgroups of G, by Hijikata [5], when G is of classical type.
Thus it is an interesting question to prove (or disprove) this fact in general.
Or one may formulate in the following way:
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CONJECTURE 1. Let G be a connected, semisimple algebraic group of Chevalley
type over a locally compact field k. Then, every maximal compact subgroup K of
G, contains a conjugate of B (the subgroup introduced in §2).

In other words, B has a fixed point on the homogeneous space G,/K. In this
respect, the following conjecture concerning the structure of the homogeneous
space G,;/B seems to be interesting,

Let G¢ be a connected, simply connected, complex semisimple Lie group
(which is an algebraic linear group as is well known). Let k be the formal power
series field C((¢)) of one variable over C and O be the ring of integral power
series in k:

0= { Y a,-t";ao,al,---,eC}.
i=0

Then p = t-O. Thus we can consider our subgroup B (in §2) in G,. One has
G, =U,o» BoB. Hence G,/B is a disjoint union of the sets BsB/B. Now -it is
easy to show that BoB/B has the structure of a complex affine cell of dimension
Mo), where A(o) is the word-length of & relative to the generators given in §2 of
the affine Weyl group W (cf. [8]). The subset Go/B of G,/B is easily identified
with the generalized flag manifold G¢/B¢, where B¢ is a Borel subgroup of G,
because G¢ = G, and G¢cn B = B¢. Under this setting, let us state the following

CONJECTURE 2. There exists a structure of a topological space of G,/B with the
Sollowing properties:

(i) G4/B is an infinite dimensional CW-complex.

(i) Gi/B = U,cw (BaB/B) is a cellular decomposition of G,/B. Each cell BaB/B
is homeomorphic to R**,

(ili) The Poincaré series P(G,/B, t) of G,/B is equal to the product of the Poincaré
polynomial P(G¢/Bg,t) of G¢/B¢ with Poincaré series P(Q(G¢), t) of the loop space
on G¢. Note that these Poincaré series are given by Bott as follows, using the
exponents my,--- ,m, of G¢:

1
P(Ge/Be,t) =TT (0 + 2 +t* + - + £2™) =} 122,
i=1

oeW

1
P((G), 1) = l:[1 -t

Or, more strongly,

(iii) G,/B is homeomorphic to the product space G¢/Bc x G¢). (Or G,/B
has the same homotopy type as the above product space.)

(iv) (Tits) G,/B is the inductive limit of projective varieties of finite dimension.
(A more precise statement of this conjecture has been given by Tits in his talk.)

4.2. Elementary divisor theorem. Let © be a Dedekind domain with the
quotient field k. Then each prime ideal p of O defines a nontrivial, discrete,
nonarchimedian valuation x — |x|, of the quotient field k of . The localization
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of O relative to p is denoted by O,, i.e., O, is the ring of integers of k relative to
the valuation x — |x|,. Then O is the intersection of all localizations O, of ©.
Now let G be a connected, semisimple algebraic group of Chevalley type
over k. Then, fixing a Chevalley lattice in the Lie algebra ®,, one has the sub-
groups Go, Go, of G,. Let A4 be the associated maximal k-split torus. Then by the
structure of generalized Tits system on G, with respect to the valuation x — |x|,,
one sees that [8] G, = Gp A,Gop, for all prime ideal p in O. Thus a natural
question arises: can one replace Go by Gp = N,Go , Le., does one get

Gk = GQA,‘GD?

Now, this is not true in general. A counter example is obtained by Y. lhara
for the case G = SL,, k = Q(,/(—5)), © = “the principal order in k.’ On the
other hand, this fact is known to be valid together with some uniqueness property
when D is a principal ideal domain and G is of classical type. (It is called the
elementary divisor theorem.) In this respect, it is seen that a similar theorem is
true for any semisimple groups of Chevalley type.

Thus, let k be the quotient field of a principal ideal domain O. Let G be a
connected, semisimple algebraic group of Chevalley type over k. Let I' be the
lattice between the weight-lattice P and the root lattice P, associated to G (cf. §2).
We denote y — h(x) the isomorphism from Hom(T, k*) onto A4,, where 4 is a
k-split maximal torus of A. Fixing a Chevalley lattice associated to A, the sub-
group Gy is defined. Now, fixing an ordering in the root system @ of (G, 4), one
gets the notion of a dominant element in A,; ie., an element h(x)e A, with
x € Hom(T', k*) is called dominant if y(®,) = O. We denote by A; the set of all
dominant elements in A4,. Then, A; is a semigroup in A,. 4, contains a sub-
group Ag = {h(y); (') = O*}. Under these settings, we get the following elemen-
tary divisor theorem.

THEOREM (MATSUMOTO). G, = GoA; Go. Moreover, the space Gg\G,/Gg of
double cosets of G,mod Gg is bijective with A;|Ag by the natural mapping
a‘AD—’GD'a'GD.

5. Hecke rings associated to a generalized Tits system. (Cf. Shimura’s talk.)
Let us recall the notion of the Hecke ring 5#(G, B) associated to a pair of a
group G and a subgroup B of G such that B is commensurable with any of its
conjugates, i.., [B: BnoBo™ '] < o for all ¢ in G. Let # = #(G, B) be the
free Z-module spanned by the double cosets S, = BoB (o € G). Then a multi-
plication is defined in # as follows:

Sast = Zm‘;,,Sp,
(4

where m%, _ is the number of cosets of the form Bx contained in (Ba~!Bp) (B1B).
It is seen that m . is independent of the choice of the representatives a, 7, p in
the double coset; moreover, given g, t, the number of the double cosets BpB
satisfying m? . # O is finite. Furthermore, it is shown that (G, B) becomes an

a
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associative algebra with the unit element over Z (see e.g. [7]). K being any field
(or commutative ring), (G, B) ®z K is denoted by #x(G, B) and is called the
Hecke algebra of the pair (G, B) over K.

Now let us assume that (G, B, N) be a generalized Tits system on G with the
factor group QW = N/B n N and standard involutive generators I = {w,} of W.
For any g € W, we denote by (o) the length of a reduced expression of ¢ in terms
of I. Consider the normal subgroup G, = BWB of G and the induced Tits system
(Go, By, Ny) on G, where B, = B, Ny = N n G,. Then, as is seen easily, B is
commensurable with any conjugate in G if and only if B, is commensurable with
any conjugate in G,. Moreover, when this is the case, #(G, B) is obtained from
H(G,, By) as follows: we note that Q acts on the ring #(G,, B,) as a group of
automorphisms as follows: for peQ and for ce W, By,oB, = By(pap~*)B,,
or putting S, = B,0B,, we express this automorphism by S, = p(S,) = S,,,-1.
Now introduce a new multiplication in the tensor product Z[Q] ® z (G, Bo)
as follows (Z[Q] means the group ring of Q over Z):

(P ®5S,) (0 ®S,) = pp ®(p) (SIS
for any p, p’'€ Q and o, 6’ € W. Then one obtains a new ring structure on
Z[Q] ®z H#(Go, By).

The ring thus obtained is denoted by Z[Q] & z5#(G,, B,), and is called the twisted
tensor product of Z[Q]}, #(G,, By)- Now we get

PROPOSITION. #(G, B) = Z[Q] ® 7 #(G,, Bo).

Thus the question about the structure of the Hecke ring (G, B) for a genera-
lized Tits system (G, B, N) is reduced to the case where (G, B, N) is a usual Tits
system; and in this case, the question was settled by [10] as follows.

Let (G, B, N) be a Tits system with the Weyl group W, and let I = {w;} the
standard involutive generators of W. Suppose that B is commensurable with
w;Bw; ! for any w; € I. Then B is commensurable with any of its conjugates in G.
Furthermore, for a reduced expression ¢ = w;, ---w;_(r = A(g)) of o € W, one has

S, =8;8; (where §; = §,,).
Thus the first half of the following theorem is obtained.

THEOREM [10]. The set {S;;iel} generates the ring #(G,B). A system of
defining relations for this generator {S;} is given as follows:

S2=qi-1+(q;—1)-S; (foralliel),
(8:8)™ = (8;S)™, if the order of ww; is 2m;; < o,
(S:8,)™S; = (S;8)™S;, if the order of ww; is 2m;; + 1 < o0.

where q; is the number of cosets of the form Bx contained in Bw;B.
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EXAMPLE 1. Let k be a local field such that k = O/p is finite. Let G be a simply
connected, semisimple algebraic group of Chevalley type over k. Then the Tits
system (G,, B, N,) in §2 satisfies the assumption made above relative to the
commensurability of B with its conjugates. More precisely, for 6 € W, BsB
contains ¢q*® cosets of the form Bx, where q is the cardinality of the residue
class field . In particular, all ¢;’s in the above theorem are equal to q in this
case. Furthermore, the order of any w,w; is always finite. [Especially, if G is SL,,
then it is seen (this is due to Oscar Goldman) that #¢(G,, B) = Q[W), where W
is the affine Weyl group of SL,. (Note that W is isomorphic with the free product
of two copies of Z, (= cyclic group of order 2).)

In this case, Gg is also commensurable with any of its conjugate in G,. More-
over, one can show that the Hecke ring s#(G,, Gg) is commutative and is iso-
morphic with the polynomial ring in [/ variables over Z (I being the rank of G)
(see [1], [11], [12]). We note the following formula for the number of cosets of
the form Gg - x in Gg - h(x) - Go (With h(x) € A;). We may assume that y(1) = n‘-?
for some de D = P+ = {xe (®)p;(x, P) = Z}. Then the number # desired is
given by

#=g@ Y g4,

aeW)
where (regarding D < W as in §2),
&(d) = Min A(dw)
weW

= Z I(d’ a) - 1| + z I(d7 a)l:
aed . ;(a,d)> 0 ae®,;(a,d)<0
and W] is the following subset of W. Let W, be the subgroup of W defined by
W; = {oe W;o(d) = d}. Then W, is generated by the w, , with (a;,d)=0
(ay, - -+, a; being the simple roots). Now W} is defined by
Wi = {ce W; Awa) 2 A(o) for any we W,}.
(See Kostant [9}].)

We note also that, if k is the quotient field of a principal ideal domain O, the
Hecke ring #(G,, Gg) of a simply connected, semisimple algebraic group G of
Chevalley type over k is isomorphic with the tensor product of the Hecke rings
H(Gy, Go,):

H(Gy, Go) = ®, #(Gy, Goy)-

ExAMPLE 2. Let G be a finite group and (G, B, N) be a Tits system on G with
the Weyl group W. Then one has

THEOREM (T118). Let k be an algebraically closed field whose characteristic does
not divide the orders of G, W. Then # (G, B) = k[W].

See the appendix for the proof.
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Appendix: Proof After Tits of (G, B) =~ k[W] for a
Finite Tits System

1. Rings obtained by a specialization. Let 4 be an associative algebra over a
commutative ring O. Let ¢ be a homomorphism of O into a commutative ring
©O’. Then one has an O-module structure on O’ by a- 8 = ¢(x) (xe O, B D).
Thus one may consider the tensor product

A¢ = A®DD’,

which has an obvious algebra-structure over ©'. Note that if ¢ is surjective, then
the homomorphism ¢*: A — 4, defined by ¢*(a) = a ® 1 is also surjective and
Ker(¢*) = Ker(¢). Thus

Ay = A/A-Ker().

In particular, if 4 is a free O-module of finite rank with a basis {u,}, then 4,
is also a free O'-module with a basis {¢*(u;)}. The structure constants {C},}
of A relative to {u,} are mapped by ¢ into the structure constants {¢(C},)} of
A, relative to {¢*(u,)}. Hence, A, A’ being the discriminants of 4, A, respectively,
one has ¢(A) = A".

For the special case where O is a polynomial ring k[t,,¢,, - ¢,] over a field
k and ¢ is the specialization O — k over k defined by ¢(t;) = a;, we denote A4,
also by A(a;) for brevity.

PROPOSITION 1. Let O = kft,, - - -,t,] be the polynomial ring over an algebraically
closed field k. Suppose that A is an associative algebra over O such that

(i) A is a free O-module of finite rank, and

(i) the discriminant A(t,,---,t,) of A (relative to a basis of A) is not zero. Then
for any ()€ k", (B:) € k" such that A(x;) # 0, A(B;) # O, one has A(x;) = A(B;) as
k-algebra.

For the proof, we note that A(x;) is separable, semisimple and refer to Ger-
stenhaber [14]. Also we note that an elementary proof is possible for this
particular case. In fact, Q being the algebraic closure of the quotient field of O,
one gets the following isomorphism as Q-algebra

A®pQ = Alw) ®r Q.

2. An algebra associated with a Coxeter group. By Proposition 1 above, in
order to prove J,(G, B) = k[W], it is enough to show the existence of an algebra
A over some polynomial ring O = k[t,,---,t,] with above conditions and the
existence of two points (o;) € k', (B;) € k" such that

A(ai) # 0’ A(ﬂ,) # 0’ A(ai) = ‘#k(G, B)a A(ﬁn) = k[ W]°

Now such an algebra was constructed by Tits as follows.
Let W be an Coxeter group with a fundamental generating involution R = {r},
i.e,, the defining relations for R are obtained by (rs)** = 1 (n,, being the order of
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rs for all r and s in R; n,, = 1). Denote by l(w) the length of we W relative to
R. Then

LEMMA 1. Ifr, s € R and w € W satisfy l(rws) = I(w), l(rw) = l(ws), thens = w™ 'rw.

Now let k be any commutative ring. Let C be the set of conjugacy classes
represented by elements in R, and let {u.,v.;ce C} be indeterminates over k.
We write also u,, v, for u,, v, for r in c. Denote by O the polynomial ring

klu.,v,;ceC].

PROPOSITION 1. Let V be the free O-module spanned by W. Then there exists a
K-bilinear, associative multiplication * in V such that

rEw = rw if I(rw) > I(w),
= urw + W, if lrw) < l(w).
Moreover, such a multiplication is unique.
ProOOF. Uniqueness is obvious. Let us prove the existence. Define
P,,A,€Endg(V) (reR)

as follows:
P(w)=rw if l(rw) > I(w),

= urw + i?,w, if lrw) < I(w),
A(w) = wr if l(rw) > I(w),
= u,wr + ov,w, if l(rw) < I(w).

Then, using Lemma 1, one can check P,A; = AP, for any r, s € R. Let R (resp. £)
be the O-subalgebras of Endg(V) generated by {P,;re R} (resp. by {4,;r€R}).
It is seen that the mappings p*: R - V, 1*: € - V defined by p*(¢) = ¢(1)
(¢ e R), 1*(Y) = Y(1) (Y € 8) are both bijective.

In fact, for any reduced expression w = r, -- - r,, one has

p*py, - py,) = W.

Thus p* is surjective. Same is true for A*. Injectivity of p* is seen as follows from
the commutativity of P,, A, above: let p*(¢) = 0. Then ¢(1) = 0. Hence

0 = y(¢(1)) = dp(¥(1))

for all Y € L. Hence ¢ = 0 by the surjectivity of A*.
Now define the product v+v'(v, v’ € V) by

vsv’ = p*{p*"1(0)- p* 1))
= {0* ).
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Then one sees that * defines an algebra structure on V such that r*w = P/(w),
which completes the proof.

Now let us return to the given Tits structure (G, B, W). We assume that k is
an algebraically closed field whose characteristic does not divide the orders of
G, W. Using above notations, one sees that the D-algebra 4 = (V, *) associated
to the Coxeter group W (cf. [10]) has the following properties :

(1) The discriminant A(u,, v, ; c € C) of A (note that this is a polynomial in the
u., v,) is not zero.

(2) By the specialization u, —» o, v, — B, (ce C;a,, B.€ k), A gives rise to an
algebra A(x,, ) over k. In particular, by the theorem above one obtains

A(q., q.-1) = # (G, B) where g, is the number of B-cosets in BrB, where rec,
A(1,0) = k[W].

Note that #,(G, B) and k[W] are both semisimple algebras over k (cf. [7)).
Thus, by our assumption on the characteristic of k, we get A(a;) # 0, A(B;) # O for
(%) = (gc> gc-1) (B;) = (1, 0). This completes the proof.
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On Rational Points on Projective Varieties Defined
Over a Complete Valuation Field!

BY

TSUNEO TAMAGAWA

1. Let k be a field with a nonarchimedian valuation | |, k"*! denote the vector
space over k of all (n + 1)-tuples of elements of k and P} denote the projective
space of all one-dimensional subspaces of k"*!. The one-dimensional subspace
spanned by xek"*! will be denoted by {x). The norm of x = (xq,- -, X,) is
defined by |x| = Max(|xo|, - - -, [x,]). Let f(Xo,---, X,) be a homogeneous poly-
nomial of degree d in k. Then the value || x| ~¢| f(x)| is uniquely determined by the
point P = {(x)€ Py, so we denote it by |f(P). If f(x) = 0, we simply write
f(P) = 0. The norm || f || of a polynomial f(Xo," -, X,) = Y. Cio """ inX§ = Xy is
defined by || f|| = Max(lcio - - - ial). Obviously we have |f(P)| < || f| for all Pe P;.
A set of homogeneous polynomials f;, - - -, fy in k will be called a zero set if we
have .

M(f1,*+ fy) = Infpepp Max((£y(P)l, - -, LW(P)]) = O.

Let Q be a universal domain containing k. Namely Q is an algebraically closed

field containing k such that there exist infinitely many elements in Q which are

algebraically independent over k. We denote the projective space Py by P
We will prove the following theorems :

THEOREM 1. Assume that k is complete and perfect. If a set {f,---, fx} of
homogeneous polynomials f,,---, fy in k is a zero set, then there exists a point
Py € P such that f,(Po) = 0, - -, fy(Po) = 0.

THEOREM 2. Assume that k is complete and perfect. Let V — P" be a variety
defined over k, and V, denote the set of all k-rational points on V. Let ¢ be a rational
function on V defined over k. If ¢ is defined at all points of V,, then |p(P)| is bounded
on V.

An immediate consequence of Theorem 2 is the following:

THEOREM 3. Assume that k is complete and perfect. Let G be a reductive algebraic
group defined over k such that there is no subtorus of G which splits over k. Then
the group G, of all k-rational elements of G is bounded.

! This work is partly supported by NSF Contract No. 4428.
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If k is locally compact, then the space P} is compact with respect to its natural
topology. Hence we have quick proofs of Theorem 1 and Theorem 2 by using the
compactness of P} and continuity of | f(P)| or |¢(P)|. In this case, the field k is not
necessarily perfect.

2. Let {f},---, fy} be a set of homogeneous polynomials in k. Then the set
A(fi,-+-, fy) of all Pe P" with fi(P)=0,---, f(P) =0 is a k-closed subset of
P". Conversely if A is a k-closed set in P", the ideal W(A4) of k[X,, X,,---, X,]
generated by all homogeneous polynomials f with f(P) =0 for all Pe A is
homogeneous and has a finite base { f},-- -, fy} consisting of homogeneous poly-
nomials. If A = B, u--- U B, is the decomposition of a k-closed set 4 into the
k-irreducible components By, - - -, B, of A, then the dimension of A4 is defined to
be the maximum of dim B, - - -, dim B;.

LEMMA 1. Let {fy, -, fuu} and {g,," ", gy} be sets of homogeneous polynomials
in k. If we have A(fy,---, fu) < A(gy,---,8n) and {fy,- -, fu} is a zero set, then
{81, 8n} is a zero set.

Proor. From Nullstellensatz of Hilbert, we have

gi(X)p = ZHU'(X)L(X), i= 1,"',N,
where p is a positive integer and H;; are homogeneous polynomials in k such
that deg H;; + deg f; = p deg g;. Then for P € P; we have
|2:(P)| * < Max (|Hy || /(PD.

Our assertion is easily proved from this inequality.
A k-closed set A = P" will be called a Z-set if a homogeneous base {f;,---, fy}
of A(A) is a zero set. We have the following lemma.

LEMMA 2. If {fy, ", v} is a zero set, then A(fy, -, fy) is a Z-set. If A is a
Z-set, then all k-closed sets containing A are Z-sets. If A and B are k-closed sets
such that A L B is a Z-set, then either A or B is a Z-set.

PROOF. The first two assertions are immediate consequences of Lemma 1.

Put A = A(f,, ", fu) and B = B(g,, -~ gy). If {f;, ", fyu} and {g,,"" *, gy} are
not zero sets, then for every point P € P;, we have

Max (| f{P)||g;(P)|;1 S i< M,1 < j S N)2 M(f,, -, f)M(@y,--,88) > 0.

Hence the set {fig;;1 < i < M,1< j < N} is not a zero set. This set defines the
k-closed set AU B,so A LU B is not a Z-set.

COROLLARY. If a k-closed set A is a Z-set, then one of k-irreducible components
of Ais a Z-set.

Now the following theorem is obviously equivalent with Theorem 1. The
theorem is also true without the perfectness assumption.
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THEOREM 4. Assume that k is complete and perfect. If A = P" is a Z-set, then
A, = A N P} is not empty.

We have to note something about the empty set &. Since U(F) = k[X, -+ X,],
A(H) is obviously not a Z-set. If {f;,---, fy} is a set of homogeneous poly-
nomials in k such that there is no point Pe P" with fi(P)=0,---, fM(P) =0,
then {f,,---, fy} is not a zero set. For if f; € k for some i, then our assertion is
obvious. If fi¢k, 1 £ i <N, then 0 =(0,---,0) is the only common zero of
Sfiooo o /nin Q"1 so we have

XIP=ZHU.,}3 O<sizsn,
j

with homogeneous polynomials H,;. Then {X§,---, X2} is not a zero set, so
{f1.--+, fx) is not a zero set.

3. Now we assume that k is perfect. Let A be a k-irreducible closed set in P".
The set of all xe Q"*! with (x> € A together with 0 is denoted by A. A is a k-
irreducible closed set in Q"*!. A generic point (xq, X;, -, X,) of A will be called
a homogeneous generic point of 4. Let r denote the dimension of 4. Then the
dimension of (xq, xy, -+, x,) over k is r + 1. Since k is perfect, k(xq,-- -, x,) is a
separably generated extension of k. The set 4 will be called a k-irreducible set
in a general position if the following conditions are satisfied :

(1) k(x09 s Xy 1) = k(xO: ] xn)’

(2) x,4+1,-- ", x, are integral over k[x,, - - -, x,],

(3) X,+, is separably algebraic over k(xq, - - -, X,).

LEMMA 3. There exist (n + 1) x (n + 1) matrix U = (u;;) in k, 0 £ i,j < n,
such that det(u;;) # O and the projective transformation T defined by

OHOT =<{x-U)

transforms A in a general position.

PrOOF. From normalization lemma, we can find (n + 1)(r + 1) elements u;;,
0<i=<nO0<j<rsuchthaty; =) u;x;, 0< j < r, are algebraically indepen-
dent over k and x,, -, x, are integral and separable over k[y,, - -, y,]. Now we
can find ug, 4y, -, U, 4+ SO that y, ., = Z u;, + 1X; generates the field k(xo, - - -, x,)
over k(yo,- -, y,), and the matrix (u;;), 0 < j <r + 1, is of rank r + 1. Now we
can add n — r — 1 columns to (u;;) so that the matrix (4;;), 0 < i, j < n is non-
singular. Such construction is possible because k is perfect and infinite (O. Zariski
and P. Samuel [2, Chapter V, Theorem 8, p. 266]). )

The set A is a Z-set if and only if AT is a Z-set. Now we assume that Aisin a
general position. Let G(Xo, X,,---, X,, X)), r+ 1< j <n, be an irreducible
polynomial in k such that |G|l = 1 and G(xo, x;,""",X,,x;) = 0. We have a
polynomial G; for each r + 1 £ j < n. Put G(X) = G, ,,(X), and

H(X) = 3G(X)/0X, .
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Since x, ., is separably algebraic over k(x,,- - -, X,), the polynomial H(X) is not
equal to 0. If d; is the degree of G(X), then G{X) contains a term cX' 4. Hence
the ideal generated by X,,---, X, and A(4) contains X%, ---, X4 Hence if
{fi»---, fn} is a base of A(A4), then {X,,---,X,, f1,---, [y} is not a zero set.
Also we see that the specialization (xg,- -, x,) = (0,---,0) over k is uniquely
extended to the specialization (xq,---,x,) — (0,---,0). Hence the rational
mapping n, of P" onto P'*! defined by {(ap,---,a,)) = {(ap,-*",a,4+,)) is
defined at every point of A. Assume that A4 is a Z-set. Since {Xo, ", X,, f1,"* ", fv}
is not a zero set, we have M(X,,---, X,, fi,---, fy) =¢c> 0. Hence if 0 < ¢ < c,
for every Pe P}, P = {(aq," ", a,)), with |[fi(P)| <e& ---,|#(P) <& we have
Max(|a), - - -, |aa])| @] ~* S c. Hence =, is defined at P with

|fiP) <&, |fmP) < &

Now =, is a birational morphism of A onto a k-irreducible set A’ = %, (A) of
P’. The set A’ is defined by the polynomial G(X,-- -, X, ,). Let P’ be a point on A’
such that H(P’) # 0. Such P’ is a simple point of an absolutely irreducible com-
ponent V' of A’, and does not lie on any other component of 4. Since x, ; 5, -+, X,
are integral over Kk[xq,---, x,], there exist only a finite number of points in
n; '(P')n A, and they lie on an absolutely irreducible component V of A.
Obviously =, induces a birational morphism of V onto V'. Since P’ is a simple
point on ¥’ and n, !(P’) n V is a finite, nonempty set, n,” !(P’) consists of only one
point P, and the restriction of n, ! to V' is defined at P’ (“Zariski’s Main
Theorem,” cf. A. Weil [1, Chapter VI, Theorem 13, p. 164]). Hence P is a simple
point of V, and k(P’) = k(P). So if P’ is rational over k, then P is also rational
over k.

4. Now we assume that k is complete, and {f,,---, fy, H} is not a zero set.
Put p = M(f,,---, fx, H). Since |G| =1, we have |H| <1 and O <pu 1.
We choose ¢ so that 0 < ¢ < Min(3u2, cu). We have a = (ao, - - -, a,) such that
lall =1, | fi(a) < &---,|/w(a)| < ¢ and |G(a)| < &. Then we have H(a) = u and
Max(lao)," ", la,+1) 2 c. Put F(T)= G(ao,"**,a,,T). Then F(a,,,)=
G(ao,"**,4a,+,) and (dF/dT)(a,+,) = H(a).

We have the following series: -
bo = a,41, by = by — F(bo)F'(bo)_ l, b, =b, - F(bl)F'(bl)—l, Tt
Then we have
|F(by)| = |GF")(bo)(F(bo)F'(bo)™ )| < &n™2 < 35,

[F'(b))] = |F'bo)| 2
IF®)] < 50
FOIZ u

Hence there exists a limit lim, _, , bv = a,, ,,and F(a;,,) = G(aq, -, a,,a,,+{) = 0,
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H(ag," -, a,,a,,,) # 0. Now we see that at least one of ay, : - -, a, is not equal to 0.
If ag=---=a,=0, then |a,,,| 2 ¢ and |a,.,| 2 C, a contradiction. Hence
= {(aq, -, a,, a,,,)> satisfies all our conditions.

LEMMA 4. Assume that k is perfect and complete. Let A be a k-irreducible closed
set in a general position (xo, X1, -, X,) @ homogeneous generic point of A over k,
G(Xo, -+, X,+1) an irreducible polynomial in k with G(xo,---,%,,,) =0 and
H(Xq, ", X,,,) denote the polynomial 0G/0X, . ,. Let S denote the k-closed set of
all P with HP) = 0. If A is a Z-set but A S is not a Z-set, then An Py = A,
is not empty. In this case, A is absolutely irreducible.

PrOOF. Let {f},---, fy} be a homogeneous base of A(4). By assumption, we
see that {f},---, fy} is a zero set but {f;,---, fy, H} is not a zero set. Hence we
have a simple point P'€ n(A) n P,*! and a simple point =, '(P') n A which is
rational over k. Now A is k-irreducible, so if P lies on a component of A, then P
lies on every component of A. Hence A contains only one component, so A4 is
absolutely irreducible (and defined over k since k is perfect).

5. ProofF oF THEOREM 4. We use the induction with respect to the dimension
of A.2 Assume that dim A = 0. We may assume that A is k-irreducible and in a
general position. Then Lemma 4 shows that A = 4, = {P}. Now we assume our
assertion is true for all Z-set of dimension less than r. Let A be a Z-set of dimen-
sion r. We may assume that A4 is k-irreducible and in a general position. Using
the same notations in Lemma 4, we see that if A n S is not a Z-set, then A4, is not
empty. If A~ S is a Z-set, then S is a hypersurface and dim(A N S) =r — 1
Hence we have (A n S), # .

ProoF oF THEOREM 2. Let Q be a generic point of ¥ over k. For every Pe V,,
there exist a pair of homogeneous polynomials F(X), G(X)ek[Xq,---, X,]
such that G(P) # 0 and ¢(Q) = F(Q)/G(Q). The set of all P'e V with G(P') # 0
is a k-open subset of V, and ¥, is covered by a finite number of such open sets.
Hence we have a finite number of pairs (F,, G,),-- -, (F,, Gy) of homogeneous
polynomials in k such that deg F; = deg G;, ¢(Q) = F{Q)/G{Q) and for every
PeV, there exists i, 1 £ i £ S, such that ¢(P) = F(P)/G(P). Let {fy,---, fa}
be a homogeneous base of the ideal A(V). Then there is no P € P} with

[iP)=0,---, fu(P) =0,

G,(P)=0,---,G{(P)=0. Hence from Theorem 1, we see that {fl,-u,fN,Gl,---,G,}
is not a zero set. Put p = M(f}, -, fy, Gy, -+, Gg) > 0. For every P € V, we have
|G{P)| Z u for some i, hence

|6(P)| = |FUP)||G{P)| " < ||Fillu™" <Max(|Fy,---, ||[Fse"

PrOOF OF THEOREM 3. Since G has no k-split subtorus and is reductive, there
exists a morphism f of G into a projective variety V defined over k such that f

2 The idea of using the induction over dim A was suggested by M. Kneser in a conversation with
the author.
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is defined over k, f is birational and biregular at every point PeG, f(G) is a
k-open subset of V and f(G,) = V. If u is a rational function on G which is holo-
morphic at every point of G, then ¢ = u o f ~! is a rational function on V which is
defined at every point P € V,. From Theorem 2, |¢| is bounded on ¥, so |u(g)|
is bounded on G,. Since matrix coefficients of G are holomorphic functions on G,
G, is bounded.
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Groups Over Z

BY

BERTRAM KOSTANT

1. Preliminaries.

1.1. Let C be a commutative ring with 1. Let A be a coalgebra over C with
diagonal map d: 4 —» A ®c A (it is assumed A has a counit ¢ : A - C) and let R
be an algebra over C with multiplication m: R ®¢ R — R (it is assumed R has
a unit p : C — R). Then one knows that Hom¢(4, R) has the structure of an algebra
over C with unit where if f,ge Homg(4, R) the product f *ge Homc(4, R) is
defined by

fxg=mo(f@g)-d

That is, one has a commutative diagram

A2 4a®4

frel | S®¢g
R—"—RQ®R

In particular if we put R = C the dual A’ = Hom(4, C) has the structure of
an algebra.

Now assume that 4 is a Hopf algebra (A4 is an algebra and coalgebra such that
d and ¢ are homomorphisms and &p is the identity on C).

By an antipode on A we mean an element (necessarily unique if it exists)
s € Hom¢(4, A) such that I *s = s I = ¢ where I is the identity on 4 and * is
as above with 4 taken for R. From now on Hopf algebra means Hopf algebra
with antipode.

1.2. Now assume A4 is a Hopf algebra over C and R is any commutative

C-algebra. Then if
Gr = {f € Hom¢(A4, R)| f is an algebra homomorphism}

one sees immediately that Gy is a group under * where
fYa) = f(sa) for any f e Gg, ae A.

Thus one has a functor R — Gy from all commutative algebras over R into
groups and the functor is represented by A.

Now if C is the set of integers Z then we may drop the word algebra so that
R — Gy is a functor from all commutative rings R to groups.
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ExampLE. If A = Z[X,;,1/D], i,j, = 1,2,---,n, where the X;; are indeter-
minates and D = det(X;), then 4 is a Hopf algebra over Z where

dXU = in,‘@X"j,
k

so that dD = D ® D. Also ¢(X;;) = 0 and s(X;;) = (—1)'*/ cofactor X ;/D. Here
G = Gl(n, R) for any commutative ring R.

In the example above if one replaces A by its quotient with respect to the ideal
generated by D — 1 then one obtains G = Sl(n, R) for any commutative ring R.

More generally for any semisimple Lie group G we will define a Hopf algebra
Z(G) over Z with the following properties:

(1) Z(G) is a finitely generated commutative integral domain;

(2) for any field k

k(G) = Z(G) ®z k

is an affine algebra defining a semisimple algebraic group over k which is ‘split
over k, and is of the same type as G;

(3) Q(G) defines G over Q, where Q is the field of rational numbers.

1.3. From now on C = Z. Let B be a Hopf algebra over Z. An ideal I < B
will be said to be of finite type if B/I is a finitely generated free Z-module. If I
and I’ are of finite type then the kernel I A I’ of the composed map

B—"»B@B—»B/I®B/I'

is again clearly of finite type defining an operation on the set of all such ideals.
A family F of ideals of finite type will be said to be admissible if

(1) Nyer I = (0);

(2) s(I)e F for all Ie F;

(3) F is closed under A.

Now given such a family put

Ap = {feHom(B, Z)|f|I = 0 for some I € F}.

It is immediate then that A has the structure of a Hopf algebra over Z. The
multiplication in A is defined as the transpose of the diagonal map in B. (It
exists since F is closed under A.) The diagonal map in Ay is defined as the
transpose of the multiplication in B. (It exists since each f € A vanishes on an
ideal of finite type in B.) The antipode is simply the transpose of the antipode
in B. (It exists since F is closed under s.)

1.4. Now let G be a complex semisimple Lie group and let g be its Lie algebra.
Let U be the universal enveloping algebra of g so that U is a Hopf algebra over C

where
dx=x®1+1®x
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for any xeg. Also ¢ is given by &(x) = 0 for any xe g and s is the anti-auto-
morphism of U defined by s(x) = —x for any x e g.

We will now define a Hopf algebra B over Z where B < U. The family of
ideals F will be defined by G and one puts

Z(G) = 4,.

2. The definition and structure of B. Let h be a Cartan subalgebra of g and
let A be the corresponding set of roots.

Chevalley has shown (see [1]) the existence of a set of root vectors e,, @ € A,
such that if ¢, ¥, ¢ + Y € A then

[eqs eyl = treg.y

where re Z , (the set of nonnegative integers) is the minimum integer such that
(ad e_y)e, = 0 and if h, = [e4, e_4] then

d(hy) = 2.

We fix the e, as above and put g; equal to the Z span of all the e, and hy for
¢ € A. We recall some facts from [1] which, in fact, are easy to check. Let A,
be a system of positive roots and let IT = (x,,---, ;) be the corresponding set
of simple roots. Put h; = h,, i = 1,2,---,1, for simplicity. Then one has

PROPOSITION 1. The elements h,,---, h; together with all ey, ¢ € A form a free
Z-basis of gz

REMARK 1. Proposition 1 is of course only really a statement about the Z-span
of the h, and the statement is of course well known.

Now it is clear that gz is a Lie algebra over Z. Somewhat less obvious is the
following fact of [1]):

PROPOSITION 2. g is stable under (ad e,)"/n! for any ¢ A and ne Z ..

REMARK 2. If h, e and f'is a basis of the Lie algebra of SI(2,C) where [h, e] = 2e,
[h.f1= —2fand (e,f) = h then Proposition 2 in essence reduces to the follow-
ing fact: If v,,---, v, is a basis of an irreducible SI(2, C) module consisting of
h-eigenvectors such that

e v; =+ Jvj4y

then the Z-span of the v; is stable under ¢™/m! and f"/n! for all n,me Z ,.

We now define B to be the algebra generated over Z by all elements ej/n!e U
for all pe A and neZ,.

2.2. To prove that B is a Hopf algebra over Z with suitable properties we
shall need some multiplication relations in U.
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If h, e € g where [h, e] = Ae for some scalar A then one easily establishes
(2.1.1) plh)e™ = e™p(h + im)
for any me Z, and polynomial p e C[X].

Now if ue U is arbitrary and me Z , put
uu—1)---w—m+1)

Cum = m!

Somewhat less trivial than (2.1.1) is the following useful relation among the
generators of the Lie algebra of SI(2, C).

LEMMA 1. Let h,e, feg where [h,e] = 2e, [h,f]1= —2f and [e, f] = h. Then
Jor any n,me Z , one has

emfn k fn J em—j
mini = B i

where k is the minimum of n and m.

ProOF. One first of all proves directly from the bracket relation that

fn fn fm— 1
en! n'e + = 1)!(h m+ 1)
Lemma 1 is then just an exercise using (2.1.1), the relation above, and induction
on m.
2.3. A sequence of C-linear independent elements to ¥”e U, n =0,1,2,---,
where u® = 1, is called a sequence of divided powers in case

m
au™ = Z u? ® u®=»
i=0

for all n. It is clear of course that the Z-space of the u™ is a coalgebra over Z.
ExaMPLE. If xe g and u™ = x"/n! then clearly 4™ is a sequence of divided
powers. Another example is obtained by putting u™ = C, ,.
Now assume more generally that for each fixed i = 1,2,---,k one is given
elements u® e U,n = 0,1, 2,-- -, forming a sequence of dmded powers and that if

uy = u(lm)u(znz) . uaﬂk)

where N = (n,,---,m)e Z%, the uy over all N € Z% are C-linearly independent.
Let V be the Z-span of all uy. It is then clear that V is a coalgebra over Z and
if D = Homy(V, Z) then D, as in §1.1, has the structure of a commutative algebra.
But the point is that the algebra structure on D is particularly easy to describe.

Let a;e D,i = 1,2,---,k, be such that y (uy) = O for all N except 7,(u")) = 1.
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We leave it as an exercise to prove

PROPOSITION 3. For any N = (n,---,n)e Z% let yy = y}*---yix Then one
has yy(up) = O unless M = N and yy(uy) = 1 so that D is the ring of formal power
series

D= Z[[yh B Yk]]

2.4. Now introduce the partial ordering in A where ¢ < ¥ in case ¥ — ¢ can
be written as a sum of positive roots. Then simply order A, so that A, =
(61, b2, -+, ¢,) where ¢; < ¢, implies i < J.

Let n be the complex nilpotent Lie algebra spanned by all e, where ¢pe A,
and let U(n) € U be the universal enveloping algebra of n. In each r-tuple
M = (m,,---,m,) where m;e Z, put
_ % . %

ey =
m! m,!

so that the elements e, form a Birkhoff-Witt basis of U(n).
Now let E be the Z-algebra in U(n) generated over Z by ej/n! for all g€ A
and neZ,.

LEMMA 2. The elements ey, over all M e Z',, for a free Z-basis of E.

PRrOOF. Let E, be the Z-span of all ey, for M € Z",. Since the ¢, are independent
over C they certainly form a free Z-basis of E, and E, < E. Since E, contains
the generators of E, to prove E; = E we have only to show that E; is closed
under multiplication.

We first observe that for any 1 < j < r there exists s;€ Hom(g, C) such that
(1) s; vanishes on all root vectors e, (2) s;(h, ) =1and (3) s; takes values in Z
on gz. Indeed this is clear from Proposition 1 since any root, e.g., ¢; can be
embedded in a system of simple roots. '

Now consider the adjoint representation of n on g. Extending to U(n) one
has that g is a U(n) module. If F = Homd(Um),C) and 1 = j <r let fie F be
defined by ’

fiw) = sju-e_y)

for any ue Un). If M; = (my,---, m,) is defined by m; = 0 for i # j and m; = 1,
then clearly fi(ey) = 1, that is, fi(e, ) = 1. On the other hand if one orders Z',
lexicographically it is immediate that ffey) = 0 for all M > M;.

But now by Proposition 2 f; must take values in Z on E. Now since U(n) is
a coalgebra F is an algebra over C. For any N = (ny,---,n,) put fy = fi'*---
f7e F. But now since E is the algebra generated over Z by all ej/n! it follows
that dE is in the Z-span of all elements in U(n) ® ¢ U(n) of the form u ® v where
u,v € E. Consequently fy also takes valuesin Z on E forany NeZ",. But E, c E
and by Proposition 3 one has fy(ey) = 1 and fy(ey) = O for all M > N.
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Now assume E, is not an algebra. Then there exists N, M such that eye) ¢ E;.
That is, since the ep, P Z", are a C-basis of U(n) and one writes

eney = Zcper

there exists cp such that c,¢ Z. Let L be minimal with this property. But then
Ji(ener) ¢ Z. This however contradicts the fact that f; takes integral values on E.

REMARK 3. We note here that Lemma 2 may be strengthened in that the same
conclusion is true when we use any ordering in A .. Indeed if fy, is defined in the
same way as e, except with respect to a different ordering in A, and

M= 3 m

for M = (m,,---,m,) then by the Birkhoff-Witt theorem there exists M'e Z",
such that |M'| = |M| and

em — fur = X Cnen

where the sum is over N such that |[N| < |M]|. But the cy lie in Z by Lemma 2.
The result then follows by induction on |M]|.

2.5. If X is an indeterminate one knows that Cy , for all ne Z, form a free
Z-basis of the Z-ring R of all polynomials p in C[X] such that p(n)e Z for all
neZ. Since Cy_,,,€ R for any me Z and is of degree n it is clear that the poly-
nomial Cy_,,, is an integral combination of Cx,for 0 < j < n.

Now for any K = (k,,---,k,)€ Z', let hxy = C, ,, - - - Cp,x, It is then clear that
the hy over all Ke Z', is a C-basis of the universal enveloping algebra U(h)
of h. On the other hand from above and §2.3 it is also clear that the Z-span H
of all hy is a Hopf algebra over Z. Also from above, H contains C,,_,, for any
keZ, and m;e Z.

We have defined e, € U(n) for any M e Z",. Now similarly define

In= e"—'m/"l!‘ o e’l'.p,/nr!

for any Ne Z",.
Recall that B is the Z-algebra generated over Z by all &/n! for pe A, neZ,.

THEOREM 1. The elements
Snhkem
for all N,MeZ', and K € Z', form a free Z-basis of B.

Proor. For convenience put n = 2r + [ and for any Pe Z", write P = (N, K, M)
and put by = fyhge,. By the Birkhoff-Witt theorem it is clear that the b, form
a C-basis of U. Let U, be the Z-span of all b,. We first show that U, < B. For
this it is clearly enough to show that if h = h;,1 < i < landkeZ, thenC,,€B.
Put e = ¢, and f = e_,, so that h,e and f satisfy the conditions of Lemma 1.
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Assume inductively that C,;eB for all j < k. Then by Lemma 1 one has
(e*/kD)(f*/k!) = C,, plus terms all involving e?/p!, f%/q! and Cp-m,j Where
p,qeZ,, meZ and j < k. By induction therefore C,, € B so that U; < B.

With the same definition of h,e,f as above we now show that U, is stable
under right multiplication by e"/n!, f"/n! and C, , for any ne Z ... For the case
of e"/n! the result is immediate by Lemma 2. For C,, the result follows from
(2.1.1) since ¢(h)e Z for all roots of ¢ €A so that eyC,, = Cy_ ey for some
meZ.

Finally we want to show bpf"/n! = fyhgey f"/n! lies in Uy for all P. Since
the argument above shows that U, is stable under left multiplication by fy
and hy it is enough to show that e, f"/n!e Uz for all M. But by Remark 3 we
can change the order of the roots in A, without changing E. Order the roots
in A, so that ¢, = «; and let S be the set of all M € Z", where m, = 0. We must
therefore show

ey— —eU
Mm! n! z

forall MeS, m, neZ,. But by Lemma 1, (¢"/m!)(f"/n!) can be rewritten as an
integral sum of elements of the form '
fio @

i_! C'.,ij!‘.

Hence we have only to show e, f"/n!e U, where M€ S.

But now one knows that the set (¢, ", d,-;, —o;) forms a new system of
positive roots (obtained from A, by the reflection corresponding to «;,). Hence
Lemma 2 and particularly Remark 3 apply to this new system. Thus ey, f"/n!
can be written as an integral sum of elements of the form (f7/j!)ey where again
N e S. But these all lie in Uz. Thus Uy is stable under right multiplication by
e"[n!, f*/n! and C,,. By symmetry the same is true for left multiplication.

Now consider the adjoint representation of g on U. This extends to U so that
U is a U-module and if U’ is the finite dimensional subspace spanned by all
products of g with itself at most j times then one knows that U/ is a U-submodule.
It is also clear that if Uy = Uz ~ U/ then Uj is a Z-form of U, with a free
Z-basis consisting of all b, where |P| < .

But if x € g and u € U then ad x(u) = xu — ux. Hence

e n e e

ad(n!)“ Pt ey TR T
Thus U% is stable under ad(e"/n!) and similarly ad(f"/n!) for all n. It follows
therefore if 7; (recall e = e,) is the representation of SL(2,C) on U defined by
adh, ade and ad f and we let o; = m(e,, — e,;) where ¢;, i = 1,2, are the
matrix units in M,(C) then U} and hence U, is stable under o;. If X is the group
generated by the g; for all i then Uy is stable under X and one knows there is a
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homomorphism ¢ — & of X onto the Weyl group W such that ge, = +e,, for
all o € X. Since every root is W-conjugate to a simple root it follows therefore
that U is stable under right multiplication by €}/n! for all ¢ €A and neZ,.
This implies Uz = B.

2.6. If we regard U(p) as the algebra of all polynomials on the dual space
b’ to b, then for any fel) one has that

k) = Crnyme Crnarms” "~ C pnyom,

Thus if L < k' is the group of all integral linear forms on | then hy(f)€e Z for
all MeZ'.. In fact, using the standard basis of L it follows easily that H is
exactly the set of all pe U(h) which take integral values on L. Furthermore
(since the same is true for R and Z; see §2.5) given any finite subset F < L
and A€ F there exists pe H such that p(4) = 1 and p(u) = O for ue F and u # 4.

Now assume that V is an arbitrary finite dimensional U-module. Let A(V) = L
be the set of weights of V and for each ue A(V) let V* be the corresponding
weight space.

A Z-form V3 of V(V = V; ®2C) is called admissible if it is stable under B.

COROLLARY 1 TO THEOREM 1. There exists an admissible Z-form Uz in V.
Moreover if Vy is any admissible Z-form in V and Vi = Vzn V* for ue A(V)
then

Vo= @ V4.
ueA()

ProoF. To prove the existence of an admissible Z-form it is enough to assume
V is U-irreducible. Let v be a highest weight vector and put V; = B-v. Since
Ju-v # 0 for only a finite number of M it is clear that V; is finitely generated
over Z, stable under B and generates V over C. Furthermore V5 is a direct sum
of the V4 = Vzn V* for ue A(V). To prove V; is a Z-form of V we have only
to show that if c¢,,---, ¢, C are independent over Z and v,,---, v, € Vg are
such that )" c;v; = 0 then one already has v; = 0 for all i. Indeed if, say, v, # 0,
there exists p e E (see §2.4) of weight A — u (where 4 is the highest weight of V)
such that p-v, # 0. But for all i, p-v;, = myp for some m;e Z since p-v; is of
the form g;v where q; € H by Theorem 1. Hence

0= p(z c,-v,) =( c,-m,-)v

contradicting the fact that the c¢; are Z-independent since we have m; # 0.
Thus Vz is a Z-form of V.

Now assume V; is any Z-form of V. For each ue A(V) let p, € H be such that
p.(w) =1 and p,(y) = 0 for all ye A(V),y # p. But then Y, p, operates as the
identity on V and if we V; and w, = p,-w then w = ) ,w, and w,e V4. This
proves the direct sum decomposition stated in the corollary.

It follows from its definition but clearer from Theorem 1 that B is a Hopf
algebra over Z.
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THEOREM 2. If J = U is any ideal of finite codimension in U then ] = Bn U
is an ideal of finite type in B.

PrROOF. Put V = U/I so that by left multiplication V is a finite dimensional
U-module. Since an admissible Z-form exists B is represented by m x m matrices
with coefficients in Z where m = dim V. This implies J is an ideal of finite type
in B.

Now let A index all equivalence classes of finite dimensional modules for G.
Regard these as modules for U and let J, = U, for a € A, be the corresponding
kernels. If I, = J,n B then it follows easily from Theorem 2 that the I,,a€ A,
form an admissible family F of ideals of finite type in B. One puts Z(G) = A,
(see §1.4) defining the Hopf algebra Z(G).

If Vis any one of these modules and V; is an admissible Z-form in V with
Z basis v; and w; is the dual basis then one always has f;; € Z(G) where

ﬁ,{“) =u-v, Wj>

for u € B. The fact that Z(G) is finitely generated is a consequence of the following
theorem of Chevalley.

THEOREM 3. If G is faithfully represented in V then Z(G) is exactly the algebra
generated over Z by the f;;.

REMARK 4. The definition given here for Z(G) provides the following normal
form for Z(G). Let b, be the basis of B given in Theorem 1 (see proof). Let
S = Homg(B, Z) and let y;€S,i = 1,2, -, n, be orthogonal to all bp except the
basis e,, h; of gz and the y; define a dual basis to this basis of gz in the order
indicated by Theorem 1. Then (by §2.3) if yp = y}*--- 9/ where P = (p,,- -+ p,)
one has yp(bg) = dpp. Furthermore Z(G) = S and S is the ring of formal power
series

S= z[[)’l Tt ’Yn]]

REFERENCE
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Subgroups of Finite Index in Certain Arithmetic Groups

BY

H. MATSUMOTO

Introduction. Let k be an algebraic number field and o the ring of integers of k.
Let G be a connected algebraic group defined over k and G, its subgroup of
integral points. For every ideal q # (0) of o, the full congruence subgroup
G,(q) modulo q is obviously of finite index in G,.

The purpose of this talk is to discuss a converse to this for certain groups. We
have the following theorem:

THEOREM. Let G be a connected simply connected simple group of rank = 2
and split over Q. Then every subgroup of finite index of Gz contains Gz(q) for
some ideal q # (0) of Z.

This means that the set of all full congruence subgroups of G is cofinal in the
set of all arithmetic subgroups of G. This is of much interest especially when G is
a symplectic group. As is well known, the analogous statement is false for SL,.

The theorem was given for SL, (n = 3) and Sp,, (n = 2), independently, in
[2] [6), [7]. Mennicke (yet unpublished) has proved it for all simple groups, but
his original proof involves a case-by-case discussion. His arguments are essentially
as follows: he reduces the problem first to the cases where G = SL,, Sp,,, and
then, by means of clever matrix computations, to some arithmetic properties of
Z, which are verified in virtue of Dirichlet’s theorem on arithmetic progressions.

In this talk, we shall show how the problem can be reduced to cases of lower
rank, making use of the theory of semisimple group schemes over Z due to
Chevalley [5], discussed by Cartier and Kostant [3] at this Institute.

REMARK. It seems likely that the theorem is in fact true if Q and Z are replaced
by a number field k and its ring of integers o. In fact, for a given k, the reduction
theorem whose proof is sketched below shows that if the theorem is true for
G =SL,,, Sp,,, then it is true for any G which is simple, simply connected,
and splits over k. Moreover, Mennicke has shown that the theorem is true for
G =SL;,, Sp,,., if o verifies the following condition, which we state for a
commutative ring 4: for x, y € 4, let us denote by n(x, y) the smallest positive
integer n such that y" is congruent mod x to a unit of A. If x, y are coprime in A,
then the g.c.d. of the numbers n(x + ty, y) (¢ € A) is equal to one.

1. Groups over Z. Let us recall briefly some definitions and results in [3].
Let G be a connected semisimple algebraic group of automorphisms of a
vector space U over C and H a maximal torus of G. Let g, b be the Lie algebras

99
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of G, H respectively, ® the system of roots of G relative to H and A a system of
simple roots in ®. We take, as in Cartier’s lecture, a Chevalley lattice gz of g
and an admissible lattice Uz of U, gz = g " End(Uz) = bz + Z“o Zx,, g, = Cx,,
and we define a Hopf algebra Z[G] over Z of G. Q[G] = Z[G] ®z Q induces a
Q-structure of G.

If X is a connected subgroup of G defined over Q, the inclusion map .: X—»G
induces a Hopf algebra homomorphism 7:C[G] — C[X], and Z[X] will denote
the subalgebra 7(Z[G]) over Z of C[X]. For the semisimple subgroups X of G
considered later, this Z[X] will be exactly the Hopf algebra associated with X
viewed as a semisimple group.

Now let p be an irreducible rational representation of G in V and Vz an
admissible lattice of V with respect to gz and ;. We have Vz = ), Vzn V4 where
A runs through the weights of p with respect to H and V*is the weight space of 4.
Let us take a basis of Vg, {vy, s, ..., V), compatible with the above decom-
position and such that v, € V' with 4, the highest weight of p relative to A.
When we express p in terms of this basis, p(g)v; = Z:-"=1 t;{(8)v;, we have t;; € Z[G]
and the action of G on V induces a ring homomorphism j of Z[V] into Z[G]
® Z[V]

Let us introduce some subgroups of G. Let P be the stabilizer in G of V*, N*
the unipotential radical of P, S the maximal reductive subgroup of P containing
H and G’ the derived group of S. Denote by n*, s, g’ the Lie algebras of N*, S, G’
respectively. We can write n* = 2“0(",)9,, s=bh+ zﬁom g,,and g =g'Nnh
+ Y ecors 8a- Let m be the subalgebra of g generated by g;,, €A N ®(n*), and
putn~ =3 o . 8-.andbh =mnb Let N~ and H' be the connected sub-
groups of G whose Lie algebras are respectively n~ and k. We have S = H'G’
with H' n G’ finite. These subgroups of G are all defined over Q.

Now the map ¢: N~ x N* x S —» G defined by ¢(n~,n*,s) =n"n"s is an
isomorphism of algebraic varieties of N~ x N* x S onto an affine open set Q
inG. If H n G = {e}, the map y: H x G’ — S defined by y(h',g") = h'g’ is also
an isomorphism of algebraic varieties. Furthermore, we have the following

ProposiTioN 1. (i) C[Q] = C[G][t1,"'] with t,, € Z[G] and t,4(e) = 1. ¢ induces
a ring isomorphism ¢ of Z[G][t;,'] to Z[N"] ® Z[N*] ® Z[S].

(i) If H n G’ = {e}, then y induces a ring isomorphism  of Z[S] to Z[H']
® Z[G'].

This proposition follows from a theorem in [5] and in [3]. We note that if G
is simply connected one always has H' n G’ = {e}.

2. Reformulation of the problem. Let o be a commutative ring with unity. The
set of ring homomorphisms of Z[G] into o, G, = Hom(Z[G], 0), has a group
structure induced by the Hopf algebra structure of Z[G]. With a connected
subgroup X of G defined over Q, we associated the homomorphism ©:Z[G]
— Z[X], and thereby we obtain an injection of X, = Hom(Z[X] o) into G,:
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thus X, is a subgroup of G,. In particular, for a root subgroup N* = exp g,, € ®,
we have a subgroup N2 of G,.

The elements in the union of N2, a € @, are called elementary unipotents of G,
(with respect to gz and by). .

o is fixed once for all and we putI' = G,. For every ideal q of o, we get a reduc-
tion homomorphism of I' into G,, = Hom(Z[G], o/q), whose kernel is denoted
by I',. One can see later that this reduction map is surjective, for example, if
G is simply connected and if o/q is semilocal.

Now let us define some subgroups of I'. Let E be the subgroup of I' generated
by the elementary unipotents in I, and, for every ideal q of o, let E_ be the smallest
normal subgroup of E containing the elementary unipotents in I,.

We see easily that the theorem in the Introduction is a consequence of the
following

THEOREM 1. If G is simply connected and simple of rank 22 and if o = Z, we
have, with the above notations, I', = E, for every ideal q of o. .

In fact, we know that the statements of these theorems are equivalent and that
this fact remains valid when o is the ring of integers of an algebraic number field

(cf. [1].

3. A reduction lemma. In this section we shall always assume the following:
(A1) G is simply connected and simple.
(A2) o is a commutative ring with unity such that, for every ideal q not con-
tained in the radical of o, o/q is semilocal.
Under these assumptions, we shall show, for I' = Hom(Z[G], o), how one can
reduce to cases of lower rank the question whether I'y and E, are equal.
For this purpose we need a representation of G satisfying certain conditions.
Let us consider the following condition on an irreducible representation p of G:
(Pdm) Every nonzero weight of p (with respect to H) is transformed into the
highest weight of p by an element of the Weyl group of G (with respect to H).
We recall a proposition in [4, exposé 20]:

PROPOSITION 2. If p is a nontrivial irreducible representation of G satisfying
(Pdm), then every nonzero weight of p is of multiplicity 1 and the multiplicity of
the weight zero is the number of simple roots appearing among the nonzero weights.

We know (loc. cit.) that there exist at least min {rk(G), [C]} fundamental repre-
sentations of G satisfying (Pdm), where rk(G) is the rank of G and [C] the order
of the center C of G.

We shall fix a fundamental representation of G satisfying (Pdm) and the
following supplementary condition (Deg): p is of degree greater than 2 and its
highest weight 4, is not sum of any two simple roots.

One can see easily that (Deg) is automatically fulfilled by any nontrivial
irreducible representation of G satisfying (Pdm) unless G is isomorphic to SL,,
SL, or Sp, Thus, if G is of rank = 2, there exists at least one fundamental
representation of G satisfying (Pdm) and (Deg).
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We shall now apply the results of §1 to such a fundamental representation p
of G in V. First, we take an admissible lattice Vz of V and modify it so as to
coincide with ¥, + V3, where V$ is the largest lattice of the zero-weight space
V0 such that ¥, + V3 remains an admissible lattice of V' (cf. Proposition 2).
As in §1, we have subgroups N~, H', N*, G’ of G, defined with respect to p.
We have H' n G’ = {e}, Z[H'] = Z[t,,|H, (¢t,,JH)""], and, since G is simply
connected, so is G'. Therefore, Proposition 1 gives us the ring isomorphism

®=(I'®1®y)$:ZIGlt'] - ZINT]1® ZIN"] ® Z[H'] ® Z[G')
Z[G] is the Hopf algebra associated with G’ viewed as a semisimple group and
I = G, = Hom(Z[G’], o) is a subgroup of I. We have I'; = I', n T". For the
unipotent subgroups N*, we see easily that Ny nT', c E,.

The dual action p: Z[V] » Z[G] ® Z[V] defines an action of I" on V,, where
V, = Hom(Z[V ], 0) = V; ® zo. In virtue of Proposition 2, we can see in what
manner I" and E act on V, in terms of our basis {v,,v,,---,v,}:I acts on V,,
grosso modo, in as simple a manner as SL,, does naturally on V, (n = 3). So
using arguments similar to those in [1] and [2], we can show the following

LEMMA 1. Let v be an element of V, such that v = v, mod qV,. Then there exists
a ge E, such that p(gy — v, € Z;;zq”j'

This allows us to obtain our reduction lemma : namely,

THEOREM 2. The notations and assumptions being as above, we have I'y = E I,
for every ideal q of o.

SKETCH OF PROOF. Let g be an element of I',. By Léemma 1, there is a g, € E
such that g,g maps t,, to 1. Hence g,g belongs to Hom(Z[G][t; '], o) and there-
fore, by means of @, it can be written in the form g,g = n"n*h'g’ where n” e N,
n*eNJ, heH, and g’ eI",. We see easily then that i’ = e and that n™,n* are
in Iy, hence in E,. This implies that g is in E.I7,.

We note some consequences of this theorem (cf. [1], [6]).

COROLLARY 1. Assume 1k(G) 2 2. Then E, is a normal subgroup of I and we
have [I',T",] < E,.

COROLLARY 2. (i) If o is semilocal, T, is equal to E, for every ideal q of o.
(i1) If o is euclidean, I' is equal to E.

Now if G’ has a simple factor of rank 2 2, we can apply Theorem 2 to I,
to obtain I';, = E I"", where I'” comes from a subgroup G” of rank rk(G) — 2.
Actually, we can always take p in such a way that G’ is simple; therefore we have
I,=ETl,=--=ETIY"Y where | = rk(G) and '~ " is isomorphic to SL,.

Finally if G is of type G,, we see easily that G has a subgroup G* containing
G'H and isomorphic to SL;. We have therefore I'y = E.I', = EI'}.

Thus, the problem of knowing whether the equality I'y = E, holds is reduced
to cases of lower ranks and, under certain circumstances, to the cases of SL,,

SL, and Sp,.
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These remarks, together with the results for SL; and Sp, in [2], [6] and (71,
complete the proof of Theorem 1.
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The Problem of the Maximality of Arithmetic Groups

BY

NELO D. ALLAN

1. Imtroduction. Our purpose is to give a survey of the known results on the
maximality of arithmetic groups. The problem of finding extensions of an arith-
metic group was first treated by Hurwitz who found an extension of S1,(D), ©
being the ring of integers of a number field k. Later on, about 1938, Hecke
proved that Sl,(Z) is maximal in SI,(R). In 1955 Maass proved that the Hurwitz
group is the only maximal arithmetic group containing the Hilbert-Blumental
group, up to a central extension. In 1957 Gutnik solved the problem of the
maximality of G, for all paramodular groups G. Recently Greenberg solved
the problem of the maximality of Fuchsian groups, and Ramanathan and
Christian generalized Maass results to the case of the Hilbert-Siegel modular
group; also Ramanathan proved, in several cases, that an arithmetic group is
contained in only finitely many maximal arithmetic groups. This result has been
generalized by Borel, who also generalizes the results of Hecke and Gutnik;
there is also a generalization of these results in another direction, obtained by
myself. We understand that H. C. Wang has also results concerning the max-
imality of discrete subgroups of some Lie groups. We would like to mention that
with the help of the strong approximation theorem, we can lift the results of
Hijikata, Bruhat-Satake, and Iwahori-Matsumoto, from the local case to the
global case, to prove the maximality of Gy in G,.

2. General problems. Let G be a connected, semisimple linear algebraic group
defined over an algebraic number filed k; say G < S1,(C). We say that a subgroup
A of G is arithmetic if A is commensurable to Gg, i.e., A ~ Gg. We shall assume
that any arithmetic group is Zariski dense in G ; this is true if G has no connected
normal subgroup N, defined over k, such that (R o(N))g is compact.

Given an arithmetic group A, the first problem that arises is “how many”
maximal groups are there that contain A. The solution of this problem was first
given by Ramanathan for some classical groups, and later on by Borel, in general ;
there are only finitely many maximal arithmetic groups containing A.! We shall
sketch the proof of this result, because of its simplicity.

! More recently H. C. Wang proved that if G is a semisimple real Lie group without compact
factors, then any discrete subgroup of G with fundamental domain of finite measure is contained in
only finitely many maximal discrete subgroups of G.
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Let L = A(A, D) be the enveloping algebra of A, i.e., the O-order generated by
the elements of A in M,(k). The Zariski density of A implies the existence of
A, A’ € © such that

(1) AM(D) € XL = My©).

We shall prove first the following lemma:

LemMA (BOREL). If G is centerless and G is irreducible as a matrix group, then
any arithmetic group is contained in G,.

Proor. First we can find A, = Gg such that A = N(Ay), where N(A) is the
normalizer of A, in G. The Zariski density of A, is equivalent to the existence
of n? independent elements, over k, in Ay, say M,, -+, M,€A, and with the
help of these elements we can define a representation ¥ of G in M,(C) by assigning
to every g € G the matrix W(g) = («;{(g)) where a;;is defined by g~ ' Mg = Y o;;M;.
Since G is centerless, ¥ is faithful, hence it is an isomorphism over k, and con-
sequently W(G,) = (¥(G)),. Now our assertion follows from the fact that W(A)
< ¥(N(Ay)) = (¥(G)).

With a slight modification of this argument we obtain the following results:

(a) Under the same hypothesis as in lemma, the commensurability group of
Ais G,.

(b) In general (G not necessarily centerless), Ny(A) ~ A, for all A = G,, where
N(A) = NA)n G,.

Now we are in the position to prove our assertion. We first observe that the
property of being a maximal arithmetic group remains unchanged under an
isogeny; hence we may assume that G is centerless. Since the enveloping algebra
of an arithmetic group contained in G, is an O-order in the algebra M,(k), and
every such order is contained in only finitely many maximal orders, it follows
that A is contained in only finitely many maximal arithmetic groups, and these
groups are among the groups obtained by intersecting the maximal orders con-
taining L, with G.

If G is not centerless, we have the following result: if A is maximal in G,, then
there exists a unique maximal arithmetic group containing A, namely the nor-
malizer N(A) of A in G. Moreover N(A)/A is an abelian group such that the order
of each one of its elements divides n.

This result is obtained from the following lemma, which also tell us the “shape”
of any element in N(A).

LEMMA. Let Q be an algebraically closed field, G be a matrix subgroup of
S1(Q), and k be the quotient field of a Dedekind domain O contained in Q. Let A
be a subgroup of G, such that for any A’ ~ A the formula (1) is satisfied for some
A, X €D, and N(A) = A. Then every g € N(A) can be written as (g;;) and gi;€ k for
alli,j=1,---,n. Moreover the ideal (g}, can be written as W;;/D where W;; and
D are ideals in O such that the ideal class of W;; is independent of i and j, g;; # O,
and D divides A"~ . In particular g = g'/a, with g’ € M,(k) and ac k.
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If we denote by # the subgroup of N(A) consisting of those g where a can be
taken as a unit of O, then we have a natural injection of /A into U, = U/UN O,
where U is the group of all nth roots of all units of O. If we assume that 4 is
divisible only by principal primes, and if we denote by D(n, A) the group D/D"
where D is the free abelian group generated by all prime divisors of 4, then there
exists an injection of N(A)/% into the direct product of the subgroup IC(n, k) of
the ideal class group of k, consisting of those ideal classes whose order divides n
by the group D(n, A). This injection is the mapping which associates to every
g € G the pair (ideal class of U;;, class of © in D(n, 4)).

3. Relation with the local theory. We shall investigate the relation between
global and local maximality. First we observe that a maximal arithmetic group
contained in G, is the intersection of maximal compact subgroups of G, . For,
if A is maximal in G,, then for every finite spot P, the p-adic closure (A)® of A
is contained in only finitely many maximal compact subgroups of G, ; we
choose one among them and call it A o> NOW the intersection of all A‘ for P finite,
intersected with G,, gives A. We observe that if ¢ does not divide 4, then
A, = Gg,;: alsc the intersection with G, of maximal compact -adic groups may
not be a maximal arithmetic group.

One would like to find conditions under which local maximality at all finite
spots, implies global maximality, because the local problem is easier to handle;
in particular we want to find conditions on the representation of G such that Gg
is maximal in G, if and only if Gy is maximal in G, for all finite . This is true,
for instance, if G is simply connected, because here we can use the approximation
theorem. We observe that to prove the ‘“‘only if” part, we need the trivial con-
dition (Gp)® = Gy for all B, which is a consequence of the strong approximation
theorem, and is also verified in most of the examples listed in the next section.

As an application, we consider an admissible lattice for a simply connected
Chevalley type group over k, then Gg is maximal in G, because the local max-
imality condition holds here (Borel-Matsumoto-Iwahori). More generally we
consider a maximal k-torus T and a set of simple roots ay, - - -, a, with respect to
T ; we choose a Chevalley basis {X,, H,} for the Lie Algebra g of G. If

r

0o = Z mo;,
i=1

r

is the maximal root of G, then for every root a = Z.'=1 q;o;, we can define the
Bruhat exponents ux) as being 1, 0, or —1, according as whether gq; = m;,
0 < q; < m, or q; < 0, respectively. Now we choose numbers n, in © such that
at every prime P the lattice generated by n¥®@X,, H,} is the Bruhat lattice in g;
consequently the groups Gy of units of ¢ in this lattice are maximal in G, because
Gy, is maximal in G, for all B. It is conjectured that this result holds for any
split group over k. Also it is conjectured that any maximal arithmetic group
contained in G, is conjugate to one of such groups, provided that the class number
of k is one. This is a generalization of the Example 3 of the next section.
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4. Known results on the maximality of Gg.

(1) General results. If L is an admissible lattice for G, a Chevalley type group
over k, then Gg is maximal in G, provided that the class number of k is one.
G is maximal in Gg (Borel-Matsumoto).

(2) G = SI,(C). In this case Gg is maximal in G, for any k, and #/Gg ~ U,,
N(Gp)/% ~ IC(n, k). In the case of Gg = SI,(O), we can describe N(Gp) as
follows : If g € G1,(D) and det(g) = ¢ is a unit of O, then g/,/(e), hence #/Gg ~ U,.
If € is an ideal class in IC(2, k), €2 = 1, and if B, and B, are two distinct primes
in €, then P? = (w,), P3 = (w,), with w,, w, € O; hence we can find a,be D,
such that aw, — bw, = 1. Therefore the matrix

_ (aJ(wl) bJ(wz))
\/(Wz) \/(Wl)

lies in N(Gy) provided the choice of the wy, w, € O is such that \/(w,)- \/(w;)€ D,
because we can easily verify that g = (g;;), with (g3) = U}, where ;; are non-
principal ideals in O lying in € for all i,j = 1,2.

(3) G = Sp(F), where 0 s
'F = —F, F = _s ol

and é is diagonal {1,d,, - --,d,},0€ M,(9), and d, divide d;,, foralli=1,---,p— 1.
Gy is maximal in G, if and only if d, is square free, in this case %/Gg ~ U, and
N(Gp)/% ~ IC(2,k) x T where T = {e} if p is odd, and T = D(2,d,.,/d,) if
p = 2s is even and d, is divisible only by principal primes. To get the ideal
classes and units in N(Gg) we just embed N(S1,(D)) in N(Gp) in a natural way.
These results generalize the results of Gutnik (k = Q) and the results of Ramana-
than—Christian (6 = identity).

(4) G = SU(F) = the Special Unitary Group of F. In this case k is an imaginary
quadratic extension of a real number field k, and F is the same matrix as in (3)
but now d e M,(O,) where Do is the ring of integers of k,. We have that Gy is
maximal in G, if for every prime P dividing d,, neither P divides d,,, nor PP
divides d,. The converse is true if d, is only divisible by principal primes. The
image of QI/G,D is contained in the subgroup U’ of U, consisting of the classes of

“all e where J/(¢) - /(8) € ko also this image contains the group

(Uo)2 = Up/Upgn Dy

where U, is the group of all square roots of units of O,. If d, is only divisible by
invariant primes and it is square free, then N(Gg)/# ~ IC(n, k) x T, where

= {e} or D(2,d,,/d;) according as whether p is odd, or p is even, p = 2s.
Here IC(n, k)’ denotes the subgroup of IC(n, k) consisting of all classes € such
that ¥" = ¥% = 1, and there exists Pe €, P" = (w), and ww = 1", for some
Ae D,

(5) G = SO(S) = the Special Orthogonal Group of S, where S e M,(D), is the
matrix (s;),i,j = 1,2,3 with s;; =55, = E,, the p by p identity, s;; =V,
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V = ‘Ve M,/(D) is positive definite, det(V) is a unit, and s;; = 0, otherwise; also
n = 2p + rand p > 1. We shall assume that 2 is square free in k. In this case we
may always assume, by replacing V by 'f Vf, f € Gl,(D), if necessary, that V = (v)),
V-1 = (w,), and either 2 divides all v and all w;;, or 2 divides all v, and all w),
with the exception of i = r and j = r — 1 or else r. In the first case Gg is always
maximal in G,. In the second case the same is true provided that for any prime P
dividing 2, P? does not divide w,, and P2 does not divide v,_,,_, or else v,,.
Under these conditions, every element of N(Gg) is a matrix with algebraic integral
entries only. In particular, if n is odd, then Gg is maximal in G, because in this
case G is centerless. If V is the r by r identity matrix, then Gg is maximal in G,
if 4 does not divide r, and Gy is not maximal in G, if r = 4.

(6) G = SU(S), where S is taken as in (5), but here we assume that V is hermitian
positive, and k is an imaginary quadratic extension of a real number field k.
If r is even and there exists an element of © with trace one, then Gg is maximal
in G,, and every matrix in N(Gg) has only algebraic integral entries. If r is odd
and J denotes the ideal tr, ), (D), then if 7 is prime in k, we always may assume
that .7 divides v; and w;; with exception of v,, and w,,, and in this case the same
result, as above, is true.

(7) G = Group of units of a quaternion form. Let D be an involutorial quaternion
algebra of first kind over a real number field k and let D* = D ®, R. Let O be a
maximal order in D and H € M,(O) be a quaternion hermitian or skew hermitian
matrix. Let G = SUH) = {ge M,(D *)|g*Hg = H} where * denotes the exten-
sion of the involution of D to M, (D *). Again if A is any subgroup of Gp, A ~ G,
then we can find a number 4, ' € O such that

AM,0) c XL M,0)

where L = A(A, D) is the D-order of A in M,( D), provided that G is noncompact.
We also have that, if A is maximal in Gp, then there exists a unique maximal
arithmetic group containing A and this group is N(A). N(A)/A is finite abelian
and everyone of its elements has order dividing 2. Every g € N(A) can be written
as g'\/a, with g'e M (D) and aek. If we denote by % the subgroup of N(A)
consisting of those elements g where a can be taken as a unit of O then /A ~ U,.
Also there exists a number 4, € O depending only on 1 and O such that, if 4, is
only divisible by principal primes, then N(A)/% is isomorphic to a subgroup of
IC(2, k) x D(2, 1,). We fix now a basis of D over k consisting of 1, w;, w,, w,w, € O
such that w? = a, w2 = b, a,be D, and w,w, + wo,w, = 0. Then we can take
Ay = 2abl. In particular, if a,b # +1 and 2ab is only divisible by principal
primes, and H is the matrix F considered in (3) with é being the identity matrix,
then G, is maximal in Gp, %/Go ~ U, and N(Go)/# ~ I1C(2,k) x T where T
is a subgroup of D(2, 2ab) with order at least 4. If H is the matrix S considered in
(5). Then G, is maximal in Gp, provided that there exists in O an element with
trace one; %/Gg is isomorphic to a subgroup of U, and N(G)/% is isomorphic
to a subgroup of IC(2, k) x D(2, 2ab).
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5. Applications to bounded domains. We would like to point out how to find
maximal discontinuous groups acting in some bounded domains. If G is a con-
nected semisimple linear group defined over k such that G/K is a bounded domain
where K is a maximal compact subgroup of G, then Gg acts discontinuously in
the product, 2, of s = [k: Q] copies of irreducible bounded domains. In general
N(Gy) is too big in the sense that it cannot be embedded in the identity com-
ponent, T(2)°, of the group of isometries of 2. In the case where G is either of
orthogonal type or of symplectic type then the biggest subgroup of N(Gg) which
can be embedded in T(2)° consists of the elements where g = g’-\/a with a
being a totally positive number. We shall denote it by N(Gp)*. Then there exists
a unique maximal (in T(2)°) discontinuous group containing G, and this group
is the direct product of N(Gg)* by the center of T(2)°.
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1. Valuations. Let k be an algebraic number field. Denote the r;, real em-
beddings of k into C by {0y, 0, - -, 0,,} and the 2r, = n — r, nonreal embeddings
bY {6,410 42, *+0p 40y Opyb 157+ » Oy, p, ). For each real o we define a (real)
valuation of k by:

[tlpoe = l0°]  foraek;
if o is nonreal, we define
|olpe.e = |o°)* = a®a®.
The r; + r, archimedean valuations thus obtained are denoted

ool a5 banes ol baien
Pw,1? ’ Paw,ry ? Pa,ry +1 ’ Pwo.ry +r;

Each of these defines in k a metric with respect to which k is a topological field ;
the completion of k with respect to | |,_, is denoted by k,_, and is topologically
isomorphic to the field of real numbers for i = 1,---,r;, and to the field of
complex numbers fori =r;, + 1,---,r, + r5.

For each (integral) prime ideal p in the ring of algebraic integers @ of k, we
define a nonarchimedean valuation | |, by:

lofp = (N,)~o%*  foraek

where N, is the norm of p and ord,(e) is the power to which the prime ideal p
occurs in the factorization of the principal ideal («). Each such valuation defines a
metric in k whose completion is denoted by k,; the latter is a locally compact,
totally-disconnected topological field. The compact, open subring @, of k, defined
by

0, = {BEkv“ﬂ'v =1
is called the ring of integers in k,; its unit group U, is defined by

U, = {Bek,|18, = 1)

and is compact.
These valuations satisfy the following Product Formula:

[Tlde =1  forall xek*

1 4

where the product is taken over all the valuations defined above.

113



114 TSUNEO TAMAGAWA

We call these valuations “primes”; the archimedean ones are referred to as
“infinite primes.”

2. Definition of adéle ring. Let S be a finite set of primes containing all the
infinite ones. We put the product topology in the Cartesian product

4= (1o (1%

and get a locally compact ring (addition and multiplication component-wise).
For S = §’ there is a natural injection ¢:Ag — Ag with ¢ of (As) open in Ag..
Thus in

AL 1i;n Ag

there is a unique topology such that each Ag is open. A, is a locally compact
topological ring.

3. Adélized variety. Let V be an affine variety contained in Q" and defined
over k and let B be the (prime) ideal of V in k[ Xy, - - -, X,]. The set of points
V, = {(ay,as---,a,) € A}|F(a,, - -, a,) = O for all F e P}

is called the adélized variety of V over k.
Alternately, we can define V, as the limit of V,_ where

Vy, = (L]S Vo_) x (!]s V,‘,).

For the case of an abstract variety we proceed as follows. Let V,,---, V, be
affine varieties. Let V be a set and f; an injection f;:V; > V for i=1,2,---,n
Suppose:

(1) v=U1"

(2) The mapping T;; taking f; '(p) to f; '(p) is a birational mapping defined for
all pe (V) f(V).

Then {(fy, V1),---,(fu, V,)} is called an abstract variety (usually just denoted
V) and is said to be defined over k in case the {¥;} and {T;;} are defined over k.

Assume V is defined over k and set

.= U A0

for finite p,

IlC;

f (LA
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V,, and V, are now defined by:
Vi, = (n Va,) x (r[ V.,),
pES pes
and .
Vy=1limV,,.
N

It can be shown that this definition is independent of the affine covering
{(f1s V1), (fa» V,)} for V' ; more precisely, if F is a morphism of V = J -, f(V)
to W= UJ-,g{(W) and V,W, and F are defined over k, then F maps V,, into
W, for almost all p—thus, if F is an isomorphism, V, is isomorphic to W,.

EXAMPLE. Let V = Q" — {0}. Define ¥, = Q"*! by

Vi = {(al’ Y " l/al)}

for i=1,2,---,n Let n:Q"*!' > Q" map (x,"**,Xp+1) to (x4, x,). Then
V={n, V), ",(n,, V,)} is an abstract variety defined over the prime field.
(V)e, is the subset of kj

(Vi)a, = {(a,, as---,a, l/ai) (1) a; € U, n}.

(2)aj60, j=1925°'°’

Moreover,
Vo, = {(as, az,- - -, a,)|at least one g; is a unii},

Vi, = {(a;, a5, - -, a,)|at least one g, is nonzero}.

For xen_"’ ki we write T (x) = (a,, ay,- -, a,) with a;e k,. V, is the set of
all xe[] kp such that:

(1) for each p, at least one a; is # 0,

(2) for almost all p, all a; are integers and at least one is a unit.

4. Adélized group. For a linear algebraic group G defined over k, the group
operations can be extended to G,,, which is thereby a locally compact group.

ExAMPLES. (1) Let G be the additive group k*. Then G,, = A,.

(2) If G is the multiplicative group k* =~ Gl,, then G, is the group of units of
the adele ring; i.e., G4, is the group of elements a = (a,) € ]-[’ k, such that:

(i) a, # O for all p,

(ii) a, € U, for almost all p.
(k%, is the “idele group™ of Chevalley.)

(3) G = Sl(n, k). Gy, is the set of all xe ]'[’ Sl(n, k;) such that n(x)e Sln, 0;)
for almost all p.

4) G = Gl(n, k). G4, is the set of all xe ]—[’ Gl(n, k,) such that n(x)e Gl(n, ®,)
for almost all p; ie,

(1) det(m,(x)) # O for all p,
(ii) det (n,(x))€ U, for almost all p,
(iii) m,(x)e Gl(n, 0,) for almost all p.
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NoTE. Given a morphism ¢ : G — G’ we can extend to a morphism ¢, G4, = Gy,
(where G, G', and ¢ are defined over k). It is not always true that ¢ 4, is superlative
when ¢ is-—nor is it true that ¢ ,,(G,,) must be open in G/, ; however, ¢,,(G,,)
is closed in G, .

Let G be a connected algebraic group defined over k with algebraic subgroup H
also defined over k. The morphism IT:G — G/H = S extends to a morphism
M, :G,4 — S, In some cases I, is surjective and we can identify S,, with
G, /H 4, ; eg. if there exists a rational cross-section ¢ defined over k on an open
set (¢:S — G and II - ¢ = identity on S) then this is the case.

5. Certain homogeneous spaces. There is a natural injection of k into A,;
viz., o — (o, o, - - - ). In this way, k is identified with a discrete subgroup of A4, and
A/k is compact. More generally, we identify k" with the diagonal in A4} and for
any affine variety V defined over k then V; is discrete in V, .

NoteE. If Vis not an affine variety, this is not necessarily so. However, if G is an
algebraic group, G, is a discrete subgroup of G4, because G is embedded in an
affine space, the homogeneous space G,/G;.

Assume G connected and let X,(G) be the group of (rational) characters of G
defined over k. For each X € X,(G) and g€ G,, we have an idéle g*. We define:

lg| <" wx(®) = T1 g2,
P

(where g, = m,(g)). The mapping yx sends G,, into the multiplicative group of
positive real numbers, R. Now, X, (G) is a free abelian group on a finite number of
generators, say {X,---, X,}. Set G}, = N 7=, ker yx,. By the product formula,
we see that G}, > G,.

THEOREM (BOREL—HARISH-CHANDRA). G}, /G, has finite invariant volume
(hence G, is unimodular); moreover, if G, has no unipotent elements, G} /G, is
compact.

6. Restriction of the ground field.

DErFINITION. Let K/k be a separable extension of (finite) degree d and let
X = {0y, 0, -, 0,} be the distinct isomorphisms of K (over k) into the algebraic
closure k. Let V be a variety defined over K. Let W be a variety defined over k
and P: W — V¥V a morphism defined over K (which automatically induces a
morphism P%: W — V° defined over K% for each i = 1,2, - -, d) for which the
morphism

P x ... x PPYW—o Vo x Vo2 x ... x Vo

is biregular. Then we say that the pair (W, P) is the restriction of V to k and
we write (W, P) = Rgu(V).
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REMARK. (1) For any other (W', P’) satisfying these conditions, there exists a
morphism ¢ defined over k such that the following diagram commutes:

w B xPo, pen i ... x Vo4

\ %x---x?ca
w

In particular, the restriction is unique.

(2) For any variety defined over K and K/k separable of degree d < oo, the
restriction exists. )

(3) If Rg,(V) = W, there is a 1-1 correspondence between the points of W, and
those of Vx.

EXAMPLE. Let V = G, be the additive group of Q. Let {a;,a,,---,a,} be any
basis for K/k. Set W=Q? = G, x --- x G,, taken d times, and P: W — V the
morphism defined by Puy, u;, ---,u,) = Y, au;.

Let k' be an extension of k. For g;,0;€ Z, we say

o; rd o;
if there exists an isomorphism ¢ over k' such that ¢; = 0,0 (note that the auto-

morphisms operate on the right here). In this way, I is partitioned into the
disjoint union of subsets X = U Z;. For each i, choose a o;€ Z,. Then

Ria(V) = [] Rie, -xep (V).
In case k' is k,, we can use this to identify W, with V.
7. Measure on V. Let V be a nonsingular variety of dimension n defined over
k; and let w be an algebraic n-form defined over k such that
(1) @ # 0 everywhere on V.

(2) @ is holomorphic on V; ie. choosing local uniformizing parameters
{x4, X3, -, x,} at a point ve V we have

= @ (x)dx; Adxy A--- Adx,

with ¢,(x) holomorphic in a neighborhood of v.
Let k be an algebraic number field. Fix a point v € Vi, and local uniformizing
parameters {x,,---, x,} with x(v) = 0. Then we can write

o=@, (x)dx; Adx, \--- Ndx,.
Since v is a simple point, the formal expansion
¢u(x) = Z Cvr"v,.xvl. ttt x:"

converges in some p-adic neighborhood U of v which can (via {x,,---,x,}) be
identified with the set of points U, c k defined by:

.= {(C,,Cy,---,Cp); Ciek, and |C, < &}.
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A measure is defined on U as follows:
(1) normalize the Haar-measure dx, on k, by the condition that

J dx, = 1,
0,

P

(2) taking the product measure |¢,(x)|,|dx, - - - dx,|, on k, we have a measure
on U,

(3) we transfer this measure back to U.
It can be shown that on the overlap of U and W, two such measures coincide
and hence we get a well-defined measure ||, on ¥ .

THEOREM. For almost all p,

j lo|, = (™% x (number of points on the reduced variety V,)
Vo

P

where q = N

P

Let G be an algebraic group defined over k and w a left-invariant form. On
G,, we have a measure |w|, as constructed above. For each finite prime p we

define
by = j o).
G

L3

If G is semisimple, the product [] u,, p finite, converges absolutely. Then we can
define the product measure on the open subset

IT G, X IT Gy,

pfinite pinfinite

of G,,, and this in turn determines a measure G,, . By suitable choice of con-
vergence factors 4, it can be arranged in many other cases that l—[, (ApH,) con-
verges absolutely. (This will be taken up in Ono’s lectures to follow.) We point
out that the measure on G, does not depend on w, because of the product
formula:

Icwlv = lclnlwlv and

l—[ |Clw =L

14

DEFINITION. Let G be a semisimple algebraic group over k. The Tamagawa
number 7(G) is defined by

1(G) = |p|~4im6/2 J o] < oo,

G4, /Gx



ADELES 119

where D is the discriminant of k; i.e.,

a‘;‘ e a:l 2

aqi e a:z
D = absolute value of det .

a:n a:n

for a minimal basis of k over Q.
REMARK.

Sl(n) = 1; «(Sp(2n)) = 1; «(0*(n, §)) = 2

where S is a symmetric n x n matrix and O* means the proper orthogonal
group of the associated quadratic form.

8. Connection between Siegel’s theory and 1(O*(n, S)) = 2. Let Sbeann x n
positive definite symmetric integral matrix. For every prime number p, let 4,.(S)
be the number of solutions of the congruence

'XSX =S  (modp’).

Then for sufficiently large positive integer v, §p~ /2"~ D4 (S) is independent
of v, and the value will be denoted by a,(S). If p+ 2 det S, we have

a,,(S) = % ~(1/2)n(n— “A,(S).

For the infinite prime p, we define a.(S) as follows. Let # be a compact neigh-
borhood of S, and U be the set of all X with ‘XSX € #. Then U is also a compact
set in the affine space of all n x n real matrices. We define a,(S) by the limits

fudx
fudS’

To explain Siegel’s theorem, we have to introduce the notion of genus. Two
integral symmetric matrices S, and S, are called locally equivalent if for every
prime (finite or infinite) p, there exists a matrix X, in Q, which is integral and
unimodular if p is finite, such that S, = ‘XS, X,. The local equivalency defines
the notion of genus. S, and S, are called strongly equivalent if there exists an
integral unimodular matrix X of determinant +1 such that S, = ‘XS, X. This
equivalency defines the notion of the class. The genus of S consists of a finite
number of classes. Let Sy,---,S, be a set of representatives of those classes.
For each S,, the order of the group of all proper unimodular matrices X with
XS X = S, will be denoted by E(s;). Then Siegel’s theorem asserts that

[T 24(8) (iz':l l/E(S,-)) =2
p =

Now we try to interpret this result to our language. Let G be the algebraic group
of the n x n matrices with ‘XSX =S and detS = 1. Let x;;,1 <i,j <n be

4im
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coordinate functions of X = (x;;) in the n-dimensional affine space M(n) of all
n x n matrices, and t;;, 1 Si < j < n be coordinate functions of the in(n + 1)-
dimensional affine space of all n x n symmetric matrices. Put ‘XSX = T. Then
t;; are polynomials of x;;, so we have a 4n(n — 1) form @ such that

/\ dx,'j = A dtu/\('D.
ij=1 isj
Now we have the injection map . of G into M(n), so that (@) = w is a in(n — 1)-
form on G. It is easy to see that

J ||, = ¢,(S)  p = finite
and

J |cu|uo = o,(9).
Go,,
Hence we have

[ b=
HGOPX GQm p

Now the group U = ]_[Gap x Gg_ is an open subgroup of G,, and we have the
double coset decomposition

GA = UalGQ |V UazGQ (URRRR ) Ua‘GQ.
Hence the volume of G,/G, is equal to

[Te,(8) Y 1/ord(a; *Ua;n Gy).

Now we study the meaning of ord(a;” ' Ua;G,). For every a € G ,, we have ‘aSa = §S.
Now there exists a rational matrix 4 such that a = u4A~" where u = (u,) belongs
to GL(n), and all u, are unimodular. Then by the definition, ‘ASA belongs to
the same genus of S. The class of ‘ASA4 is uniquely determined by the double
coset UaG,y, and E('ASA) is equal to the order of a~'Uan G,. Hence we have

(G) = volume (G ,/Gg) = [] a,(S) ¥ 1/E(S)).

To prove that 7(G) = 2, we use the induction with respect to n. For n = 3 and 4,
we can easily calculate t(G) because in these cases, G is of type A; or 4; x A,,
and (G) is obtained by comparing with 7(G) where G is the simply connected
covering of G. For n > 5, we refer to Siegel-Weil’s theorem. If S indefinite, we
need some modification. Namely, in this case, U is not compact, and the order of
the group U(S) of all proper unimodular matrices X with ‘XSX = § is also
infinite. However, U(S) operates on U from the left side, and we can construct
a fundamental domain & of good shape. Now we define p(S) by

im Volume (¥) _
#-o Volume (U)

p(S).
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Siegel’s theorem in this case is as follows:

[1o/(S)(Tp(S)) = 2.

4

oS) = j oo
G L /US)

the interpretation of this formula to our language is also easy.

If we observe the fact that
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On Tamagawa Numbers

TAKASHI ONO

We want to determine the Tamagawa number of semisimple groups modulo
Weil’s conjecture on simply connected groups. We begin with an Appendix to
Tamagawa’s talk [S].

1. Number of rational points. Let k be an algebraic number field, G be a
connected linear algebraic group defined over k. We denote by G*® the algebraic
group defined over the residue field k® = o/p obtained from G by the reduction
modulo p. Let @ be a left invariant highest differential form on G defined over k.
On each local group G, = G,,, o induces a Haar measure w, and we have

I w, = q—dimG[Gm)] d;f Vn(G)
Gop

for almost all p, where ¢ = Np. We say that G has the property (C) if l_[; vp(G)
is absolutely convergent, where I—[, means the product over almost all p. Since
k is of characteristic zero G is decomposed as G = UTS where U = R(G)
(unipotent radical), UT = R(G) (radical), TS = A reductive, T = the identity
component of the center of 4, S = the derived group of A, G = U4 is semidirect
product with U normal and A4 is isogenous to T x S. Since such a decomposition
commutes with the reduction modulo p, for almost all p, we have v,(G) =
vo(U)v,(T)v,(S) for almost all p. Thus the problem of finding the convergence
factors is reduced to the cases in which G is unipotent, a torus or semisimple:

(1) If G = U is unipotent, then G is a semidirect product of G,’s and so
v,(G) = 1. Hence all unipotent groups have the property (C) and no convergence
factors are necessary.

(2) If G = T'is a torus, let K be a finite Galois splitting field for T over k with
the Galois group ® = G(K/k). Then T = (T) is a Z-free ®-module of rank
d = dim T. Let p be a finite prime of k, unramified relative to K/k. Let B be a
prime of K over p and oy be the Frobenius substitution of P. If &;,1 < i< d, is
a Z-basis for T, we have an integral representation o — M(c) of & defined by

¢ ¢1
= M(o)

& Ca
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Then, [T{?),] = det(ql; — M(og)) and hence
vo(T) = det(I; — g7 ' M(og)) = L,(1, xr, K/k)™*

where y is the character of the representation ¢ — M(o). Thus T has the property
(C) if and only if T = {e} or equivalently if and only if T = {0}.

(3) If G =S is semisimple, let S, denote a maximal compact subgroup of
the complex Lie group S. By Hopf, we have

d 1
Y b =]+ %Y
v=0 i=1°

where b, (resp. I) is the Betti number (resp. rank) of S.. From Chevalley and
Steinberg’s result we see that

1 1
Il -y 4" l_[l(q“‘ +1)
i=1 i=
(N = the number of positive roots of S) and so

1 i
IIl_-ll I=g"") =vd) = I_]l (I +4q™%).

Since b, = b, = 0, we have a; = 2 for all i, hence the property (C) holds and no
convergence factors are necessary for semisimple groups.

-The above argument shows that a connected algebraic group G has the
property (C) if and only if G = U - § or equivalently if and only if G = {0}.

2. Definition of 7(G) for unimodular groups. A connected algebraic group G is
called unimodular if the form w in §1 is also right invariant. We have the following
chains of containment :

unimodular
reductive
unipotent torus  semisimple
G, G, simply connected.

Hence, in defining 7(G) for a unimodular group G defined over k, it would be
quite natural to require that ¢(G) = 1 if G is G,, G,, or simply connected: it turns
out that 1(G,) = 1 is essentially equivalent to the definition of A, the discriminant
of k, and 1(G,) =1 is equivalent to the well-known class number relation
hg = Res,_{)(s) for k. On the other hand,

7 (simply connected) = 1

is the Weil’s conjecture which is known to be true for a large part of classical
groups (Weil, Tamagawa), for some exceptional groups (Demazure, Mars) and
for Chevalley groups (Langlands), but is not yet completely solved.
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We now define 1(G). Let G, be the adele group. Put G} = {xe G, [|£,x)| =1
for all £ € (G),}. Then G,/G, is isomorphic to the vector group R, r = rank (G),.
As a measure on G,/G) we take the usual measure of R’, which we denote by
d(G,/G)). Since G, is discrete in G,, we define dG, to be the canonical discrete
measure. We could then define the Tamagawa number, 7(G), as the measure one
has to give to the measure finite space G4/G, in order that

dG, = d(G,/G}) d(G4/G,) dG,,

where dG , is some canonical measure on G, to be determined. Motivated by the
classical class number relation for the case G,, mentioned above, we shall define
dG, as follows. We take a finite Galois extension K/k so that G = (G)x. As in
the case of tori, G becomes a Z-free ®(K/k)-module and we denote by yg the
character of the corresponding integral representation of ®(K/k). It is to be
noticed that yg = yr when G = U-T-S in the sense of §1, because G ®; Q
~ T ®z Q as representation spaces of G(K/k). As a measure on G, we take

dG, = pg A, -4im2 I/‘[ o, [T Ly(1, xe)w,

v/ P
where pg = lim,_, (s — 1)'L(s, xg)- (Notice that L(s, ;) has a pole of order r at
s = 1 where r = rank (G), = multiplicity of the trivial character in xg.) Since
L(1, x6)v5(G) = L1, x7)vo(T)v,(S)vy(U) = v,(S) for 