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Chapter 1

Picard-Vessiot Theory

1.1 Differential Rings and Fields

When one studies polynomial equations, one is naturally led to the notions of
rings and fields. For studying differential equations, the natural analogues are
differential rings and differential fields, which we now define. All the rings,
considered in this chapter, are supposed to be commutative, to have a unit
element and to contain Q, the rational numbers. We let C denote the field of
complex numbers.

Definition 1.1 A derivation on a ring R is a map 0 : R — R having the
properties that for all a,b € R,

d(a+b) = 9J(a)+9(b) and
O(ab) = 9(a)b+ ad(b) .

A ring R equipped with a derivation is called o differential ring and a field
equipped with a derivation is called a differential field. We say a differential
ring S D R is a differential extension of the differential ring R or a differential
ring over R if the derivation of S restricts on R to the derivation of R.

Very often, we will denote the derivation of a differential ring by a — a'.

Examples 1.2 The following are differential rings.
1. Any ring R with trivial derivation 0 = 0.

2. Let R be a differential ring with derivation a — a'. One defines the
ring of differential polynomials in y1,...,yn over R, denoted by R{y1,...,yn},
in the following way. For each i = 1,...,n, let 4", j € N be an infi-
nite set of distinct indeterminates. For convenience we will write y; for y(o)

y; for ygl)

(3

i 0

and y! for y(z). We define R{yi,...,yn} be the polynomial ring

i

3
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Ry, v, 07 Y2, Y5, U5 oo Yn, Yy Uiy .. .]. We extend the derivation of R to

a derivation on R{yi,...,yn} by setting (yz(j))’ _ yz(j-i—l)_ O

Continuing with Example 1.2.2, let S be a differential ring over R and let
Uy, ..., U, € 5. The map ¢ : yz@ — uz(»]) defines a differential homomorphism
from R{yi,...,yn} to S, that is ¢ is a homomorphism such that ¢(v') = (¢(v))’
for all v € R{y1,...,yn}. This formalizes the notion of evaluating differential
polynomials at values u;. We will write P(uq,...,u,) for the image of P under
¢. When n = 1 we shall usually denote the ring of differential polynomials as
R{y}. For P € R{y}, we say that P has order n if n is the smallest integer such
that P belongs to the polynomial ring R[y,v',...,y™].

Examples 1.3 The following are differential fields. Let C' denote a field.
1. C(z), with derivation f — f' = g—{,.

2. The field of formal Laurent series C((z)) with derivation f — f' = %.

3. The field of convergent Laurent series C({z}) with derivation f — f' = %.
4. The field of all meromorphic functions on any open connected subset of the
extended complex plane C U {oo}, with derivation f — f' = g—é.

5. C(z,€e*) with derivation f — f' = g—{,. O

The following defines a very important property of elements of a differential
ring.

Definition 1.4 Let R be a differential ring. An element ¢ € R is called a
constant if ¢’ = 0.

In Exercise 1.5.1, the reader is asked to show that the set of constants in a
ring forms a ring and in a field forms a field. The ring of constants in Exam-
ples 1.2.1 and 1.2.2 is R. In Examples 1.3.1 and 1.3.2, the field of constants is
C. In the other examples the field of constants is C. For the last example this
follows from the inbedding of C(z,e*) in the field of the meromorphic functions
on C.

The following exercises give many properties of these concepts.

Exercises 1.5 1. Constructions with rings and derivations

Let R be any differential ring. The derivation is denoted by r — 9(r) .

(a) Let t,n € R and suppose that n is invertible. Prove the formula

8(%) — 8(t)nn—2t8(n) )

(b) Let I C R be an ideal. Prove that d induces a derivation on R/I if and only
it o(I) C 1.

(c) Let the ideal I C R be generated by {a;}jes. Prove that o(I) C I if
O(aj) € I forall j € J.

(d) Let S C R be a multiplicative subset, i.e., 0 ¢ S and for any two elements
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s1,82 € S one has s;s2 € S. We recall that the localization of R with respect to
S is the ring RS, defined as the set of equivalence classes of pairs (r,s) with
r € R, s € S. The equivalence relation is given by (r1,s1) ~ (72, s2) if there is
an s3 € S with s3(ri1s2 —ras;) = 0. The symbol Z denotes the equivalence class
of the pair (r,s). Prove that there exists a unique derivation & on RS™! such
that the canonical map R — RS~! commutes with 8. Hint: Use that tr = 0
implies t29(r) = 0.

(e) Counsider the polynomial ring R[X1,...,X,] and a multiplicative subset

S C R[Xy,...,X,). Let ai,...,a, € R[X1,...,X,]S™! be given. Prove that
there exists a unique derivation 8 on R[X1, ..., X,]S™! such that the canonical
map R — R[X1,...,X,]S™! commutes with 8 and 9(X;) = a; for all i.

(We note that the assumption Q C R is not used in this exercise).

2. Constants

Let R be any differential ring. The derivation is denoted by r — 9(r) .

(a) Prove that the set of constants C' of R is a subring containing 1.

(b) Prove that C is a field if R is a field.

Now assume that R is a field and that K D R is a differential extension field of
R.

(c) Show that if ¢ € K and c is algebraic over the constants C' of R, then
9(c) = 0. Hint: If p(X) is the minimal polynomial of ¢ over R then d(p(c)) =
(") (e) + (Op/0X)(c)d(c) where p' is the polynomial gotten from p by differen-
tiating all the coefficients of p.

(d) Show that if ¢ € K, d(¢) = 0 and c¢ is algebraic over R, then ¢ is algebraic
over the field of constants of R. Hint: If p is the minimal polynomial of ¢ over
R, show that p’ = 0 where p' is defined as in part (c) above.

3. Derivations on field extensions

Let F be a field (of characteristic 0) and let d be a derivation on F. Prove the
following statements.

(a) Let FF C F(X) be a transcendental extension of F. Choose an a € F(X).
There is a unique derivation 8 of F(X), extending 8, such that d(X) = a. Hint:
Use Exercise 1.5(1e).

(b) Let F be an algebraic extension of F. Show that any two derivations of F
that agree on F' must agree on F. Hint: Use Exercise 1.5(2c).

(c) Let F' C F be a finite extension, then 8 has a unique extension to a derivation
of F. Hint: F = F[X]/(p(X)), where p is an irreducible polynomial in F[X].
The polynomial 0p/dX is relatively prime to p so there exists an h € F[X] such
that h - dp/0X = 1 mod p. Extend the derivation 0 on F' to F[X] by letting
0X = —h-p' where p' is obtained from p by applying 8 to each coefficient of p.
Use Exercises 1.5(1b) and (3b).

(d) Show that O extends uniquely to the algebraic closure F' of F.

4. Lie algebras of derivations
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A Lie algebra is a vector space V over C equipped with amap [, |: VXV =V
which satisfies the rules:

(i) The map (v, w) — [v,w] is linear in each factor.

(i) [[w,v],w] + [[v,w],u] + [[w, u],v] = 0 for all u,v,w € V. (Jacobi identity)
(iii) [u,u] =0 for all u € V.

One can derive the anti-symmetry [u,v] = —[v, u] by

0=[u+v,u+v]=[u,u] + [u,v] + [v,u] + [v,v] = [u,v] + [v, u].

The standard example of a Lie algebra over C' is M, (C), the vector space of
all n x n-matrices over C, with [4,B] := AB — BA. Another example is the
Lie algebra, denoted by sl,, which is the subspace of M, (C) consisting of the
matrices with trace 0. The brackets are again defined by [A, B] = AB — BA.
The notions of “homomorphism of Lie algebras”, “Lie subalgebra” are obvious.
We will say more on Lie algebras when they occur in connection with the other
themes of this text.

a) Let F be any field and let C C F be a subfield. Let Der(F/C') denote the set
of all derivations 0 of F' such that 0 is the zero map on C. Prove that Der(F/C)
is a vector space over F. Prove that for any two elements 0;,0» € Der(F/C),
the map 0,0, — 020; is again in Der(F/C). Conclude that Der(F/C) is a Lie
algebra over C.

(b) Suppose now that the field C' has characteristic 0 and that F/C' is a finitely
generated field extension. One can show that there is an intermediate field M =
C(z1,...,24) with M/C purely transcendental and F'/M finite. Prove, with the
help of Exercise 1.5.3, that the dimension of the F-vector space Der(F/C) is
equal to d. O

1.2 Linear Differential Equations

Let k be a differential field with field of constants C.

A matriz differential equation over k is an equation of the form Y’ = AY,
where A is an n X n-matrix with coefficients in K and where Y is a vector
of length m. The derivative Y’ of a vector Y is defined by componentwise
derivation. Likewise, the derivative of a matrix A = (a; ;) is defined by A’ =

(al,).

Lemma 1.6 Consider the matriz equation Y' = AY over k and let vy, ...,v, €
k™ satisfy v} = Av;. If the vectors v1,...,v, € V are linearly dependent over k
then they are linearly dependent over C'.

Proof. The lemma is proved by induction on r. The case r = 1 is trivial. The
induction step is proved as follows. Let r > 1 and let the vy,...,v, be linearly
dependent over k. We may suppose that any proper subset of {vy,...,v.} is
linearly independent over k. Then there is a unique relation vy = >\, a;v;
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with all a; € k. Now

0=v] — Av; = Zagvi + Zai(v; — Av;) = Za;vi.
=2 =2 =2
Thus all ¢} =0 and all a; € C. O

Lemma 1.7 Consider the matriz equation Y’ = AY over k. The solution space
V oof Y = AY in k is defined as {v € k™| v' = Av}. Then V is a vector space
over C' of dimension < n.

Proof. It is clear that V is a vector space over C. The lemma follows from
Lemma 1.6 since any n + 1 vectors in V are linearly dependent over k. O

Suppose that the solution space V C k™ of Y’ = AY has dimension n over
C and that an explicit basis of V' is known. This situation can be translated in
terms of matrices as follows: Let vy, ..., v, denote a basis of V. Let B € GL, (k)
be the matrix with columns vy,...,v,. Then B’ = AB. This brings us to the

Definition 1.8 Let R be a differential ring, containing the differential field k
and having C as its set of constants. Let A be an n x n matriz with coefficients
in k. An invertible matriz B € GL(n, R) is called a fundamental matrix for the
equation Y' = AY if B' = AB holds.

Suppose that B,B € GL(n, R) are both fundamental matrices. Define M
by B = BM. Then
AB=B'=B'M + BM' = ABM + BM' and thus M' = 0.
We conclude that M € GL,(C). In other words, the set of all fundamental

matrices (inside GL(n, R)) for Y’ = AY is equal to B - GL,(C).

A scalar differential equation over the field k is an equation of the form

L(y) =0

where b € k and L is a monic linear homogeneous element of k{y}, that is
L(y) = y™ +a, 1y™ Y +--- + a1y’ + aoy where the a; € k. A solution of
such an equation in a differential ring R, k C R, is an element z € R such that
2 4 an_lz("_l) +---4+ai1z’ +apz = b. The equation is called homogeneous of
order n if b = 0. Otherwise the equation is called inhomogeneous of order n.

There is a standard way of producing a matrix differential equation Y’ =
ApY from a homogeneous scalar linear differential equation L(y) = y™ +
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A1y 4+ - 4+ a1y’ + apy = 0. We define

0 1 0 0o ... 0
0 0 1 0o ... 0
AL = : : : Do :
0 0 0 0o ... 1
—Qp —ap cen v e —Qp—1

and call this matrix the companion matriz of L. One can show that for any ring
RO kthemapy —Y = (y,v/,...,y" )7 is an isomorphism of the solution
space of L(y) = 0 onto the solution space of Y’ = AY".

Conversely, let k contain a nonconstant and let Y’ = AY be a matrix dif-
ferential equation over k. A matrix equation V' = AV is called equivalent to
Y’ = AY if there is a B € GL,(k) such that the substitution Y = BV, which
leads to V' = (B~'AB—B~'B')V, has the property that A = B~'AB—B~'B'.
We will show in Section 2.3 that any matrix differential equation is equivalent
to a matrix equation derived from a scalar equation (as well as discuss the sig-
nificance of the notion of equivalence). In what follows we will use both scalar
and matrix equations.

One can show a result similar to Lemma 1.7 for homogeneous scalar equa-
tions.

Lemma 1.9 Consider the n'* order homogeneous scalar equation L(y) = 0
over k. The solution space V' of L(y) =0 in k is defined as {v € k| L(v) = 0}.
Then V is a vector space over C of dimension < n.

Proof. Let yi,...y,t1 be solutions of L(y) = 0, We then have that ¥} =
(y1,91,--- ,ygn_l))T, oy Y1 = (Unt 1 Yngts - - ,yfﬁr_ll))T are solutions of Y' =
ApY. Lemma 1.7 implies that the Y; are linearly dependent over C' and so the

same is true for the y;. a

In analogy to matrix equations we say that a set of n solutions {yi,...,yn}
of L(y) = 0, linearly independent over the constants, is a fundamental set of
solutions of L(y) = 0. One easily sees that if {y1,...,yn} and {g1,...,9n}
are fundamental sets of solutions, then there exist a B € GL,(C) such that

(yla"'ayn) :B(gh:gn) .

This lemma allows us to characterize elements that are linearly dependent
over constants. For this we make the following

Definition 1.10 Let R be a differential field and let y,,...,y, € R. The wron-
skian matrix of y1,...,yn is the n X n matric
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Y1 Y2 Yn

Y Ys oo Yn

W(yh"')yn): . . .
-1 -1 -1
TS SR T

We define the wronskian of yi,...,y, to be det(W (y1,...,yn)) and denote
it by wr(yr, ..., Yn).

Lemma 1.11 Elements y1,-..,yn € k are linearly dependent over C if and
only if wr(yi,...,yn) = 0.

Proof. If 2?21 c;y; = 0,for some ¢; € C not all zero, then differentiating this

relation n — 1 times shows that wr(yy,...,yn) = 0.
Now assume that wr(y,...,y,) = 0. Proceeding by induction on n, we may
assume that wr(ys,...,y,) # 0. Therefore, there is a vector (ag,...,a,-2,1) €

k™ such that (ag, - ..,an—2, )W (y1,...,y,) = 0. Expanding this identity shows
that each y; is a solution of L(y) = y™ D 4+ ap_oy™ 2 + ... + apy = 0.
Lemma 1.9 implies that the y; are linearly dependent over C. |

Corollary 1.12 Let k; C ko be differential fields with fields of constants C; C
Cs. The elements yy,...,y, € k1 are linearly independent over Cy if and only
if they are linearly independent over Cs.

Proof. The elements y1,...,y, € k1 are linearly dependent over Cj if and only
if wr(y1,-..,yn) = 0. Another aplication of Lemma 1.11 implies that the same
equivalence holds over C}. O

We now come to our first problem. Suppose that the solution space of
Y’ = AY over K is too small, i.e., its dimension is strictly less than n or equiv-
alently there is no fundamental matrix in GL, (k). How can we produce enough
solutions in a larger differential ring or differential field? This is the subject
of the Section 1.3, Picard-Vessiot extensions. A second, related problem, is to
make the solutions as explicit as possible.

The situation is somewhat analogous to the case of an ordinary polynomial
equation P(X) = 0 over a field K. Suppose that P is separable polynomial of
degree n. Then one can construct a splitting field L D K which contains pre-
cisely n solutions {ai,...,a,}. Explicit information on the «; can be obtained
from the action of the Galois group on {aq,...,an}.

Exercises 1.13 1. Homogeneous versus inhomogeneous equations
Let k be a differential field and L(y) = b an nt* order inhomogeneous linear



10 CHAPTER 1. PICARD-VESSIOT THEORY

differential equation over k. Let

(a) Show that any solution in k of L(y) = b is a solution of Ly (y) = 0.

(b) Show that for any solution v of Ly (y) = 0 there is a constant ¢ such that v
is a solution of L(y) = cb.

This construction allows one to reduce questions concerning n'” order inhomo-
geneous equations to n + 1% order homogeneous equations.

2. Some order one equations over C'((2))

Let C be an algebraically closed field of characteristic 0. The differential field
K = C((2)) is defined by " = d%. Let a € K, a # 0.

(a) When does y' = a have a solution in K7

(b) When does y' = a have a solution in K, the algebraic closure of K? We
note that every finite algebraic extension of K has the form C((z'/")).

(c) When does y' = ay have a non-zero solution in K?

(d) When does y' = ay have a non-zero solution in K?

3. Some order one equations over C(2)
C denotes an algebraically closed field of characteristic 0. Let K = C(z) be the
differential field with derivation ' = d%. Let a € K and let

[z

_ Cij
- ;j—1 (z — i)/ Tp(z)
be the partial fraction decomposition of a with ¢;; € C, N a nonnegative integer,
the n; positive integers and p a polynomial. Prove the following statements.
(a) ¥’ = a has a solution in K if and only if each ¢;; is zero.
(b) y' = ay has a solution y € K,y # 0 if and only if each ¢;; is an integer, each
cij=0for j >1and p=0.
(c) ¥' = ay has a solution y # 0 which is algebraic over K if and only if each
ci1 is a rational number, each ¢;; =0 for j > 1 and p = 0.
For those familiar with differentials, these conditions may be restated: vy’ = a
has a solution in K if and only if the residue of adz at every point z = ¢ with
¢ € C is zero; y' = ay has a solution y € K, y # 0 if and only a dz has at most
poles of order 1 on C'U{oo} and its residues are integers; y’ = ay has a solution
y # 0 which is algebraic over K if and only if a dz has at most poles of order 1

at C'U {oo} and its residues are rational numbers.

4. Regular matriz equations over C((z))

C[[z]] will denote the ring of all formal power series with coefficients in the field
C. We note that C((z)) is the field of fractions of C[[z]] (c.f., Exercise 1.3.2).
(a) Prove that a matrix differential equation Y’ = AY with A € M, (C[[2]]) has
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a unique fundamental matrix B of the form 1+ )
identity matrix and all B,, € M,,(C).

(b) A matrix equation Y' = AY over C((z)) is called regular if the equation is
equivalent to an equation v’ = Av with A € M,,(C[[2]]). Prove that an equation
Y' = AY is regular if and only if there is a fundamental matrix with coefficients

in C((2))-

n>0 Brz" with 1 being the

5. Wronskians

Let k be a differential field, Y’ = AY a matrix differential equation over k and
L(y) = y™ 4+ a1y Y 4+ ... 4+ agy = 0 a homogeneous scalar differential
equation over k.

(a) If Z is a fundamental matrix for Y’ = AY’, show that (det Z)' = trA(det Z),
where tr denotes the trace.

(b) Let {y1,-..,yn} C k be a fundamental set of solutions of L(y) = 0. Show
that w = wr(yy,...,yn) satisfies w' = —ap_qw. Hint: Apply part (a) to
Y’ = ApY where Ay is the companion matrix of L.

6. A Result of Ritt

Let k be a differential field with field of constants C' and assume k # C. Let P
be a nonzero element of k{y,...,yn}. The aim of this exercise is to show that
there exist uy,...,u, € k such that P(uy,...,u,) #0.

(a) Show that it suffices to prove this result for differential polynomials P(y) of
one variable.

(b) Let v be a nonconstant in k. Show that for any m > 1, wr(1,v,v2%,...,0™) #
0.

(c) Let v be a nonconstant in k and let A = W(1,v,v%,...,v™), where W(...)
is the wronskian matrix. Let zg,...z, be indeterminates and show that the
map defined by ®((y,y',...y")7T) = A(zo, 21,. .., 2%m)T yields an isomorphism
between the polynomial ring k[y, ', ...y™] and k[zo, 21, . . . zm]. Conclude that
it P € k{y} has order m, then there exist constants co,...c, € C such that
®(P)(co,.--,cm) #0.

(d) Show that ®(P)(co,...,cm) = P(u) where u = cg +c1v + v + ... + o™,
(e) Show that the condition that &k contain a nonconstant is necessary.

This result appears in [180], p. 35 and [122], Theorem 2, p. 96.

7. Equations over algebraic extensions

Let k be a differential field, K an algebraic extension of k with [K : k] = m
and let uq,...,u, be a k-basis of K. Let Y’ = AY be a differential equation
of order n over K. Show that there exists a differential equation Z' = BZ of
order nm over k such that if Z = (21.1,...,21.m,22.1,--»22.m,- - » Zn,m) L i &
solution of Z' = BZ, then for y; = 3= zi juj, Y = (y1,.-.,yn)" is a solution of
Y'=AY. O
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1.3 Picard-Vessiot Extensions

Throughout the rest of the Chapter 1, k will denote a differential field with
Q C k and with an algebraically closed field of constants C. We shall freely
use the notation and results concerning varieties and linear algebraic groups
contained in Appendix A.

Let R be a differential ring with derivation . A differential ideal I in R is an
ideal satisfying f' € I for all f € I. If R is a differential ring over a differential
field k and I is a differential ideal of R, I # R, then the factor ring R/I is
again a differential ring over k (see Exercise 1.2.1). A simple differential ring is
a differential ring whose only differential ideals are (0) and R.

Definition 1.14 A Picard-Vessiot ring over k for the equation Y' = AY , with
A € M, (k), is a differential ring over k satisfying:

1. R is a simple differential ring.

2. There exists a fundamental matriz B for Y' = AY with coefficients in R,
i-e., the matriz B € GL,(R) satisfies B' = AB.

3. R is generated as a ring by k, the entries of a fundamental matriz B and
the inverse of the determinant of B.

Lemma 1.15 Let R be a simple differential ring over k.

1. R has no zero divisors.

2. Suppose that R is finitely generated over k, then the field of fractions of R
has C as set of constants.

Proof. 1. We will first show that any non-nilpotent element a € R,a #
0 is non-zero divisor. Consider the ideal I = {b € R | there existsan >
1 with a™b = 0}. This is a differential ideal not containing 1. Thus I = (0)
and a is not a zero divisor.

Let a € R,a # 0 be nilpotent. We will show that a’ is also nilpotent. Let n > 1
be minimal with a” = 0. Differentiation yields a’'na™®~! = 0. Since na"~! # 0
we have that a' is a zero divisor and thus o' is nilpotent.

Finally the ideal .J consisting of all nilpotent elements is a differential ideal and
thus equal to (0).

2. Let L be the field of fractions of R. Suppose that a € L,a # 0 has derivative
a’ = 0. We have to prove that a € C. The non-zero ideal {b € R|ba € R} is a
differential ideal and thus equal to R. Hence a € R. We suppose that a ¢ C.

We then have that for every ¢ € C, the non-zero ideal (a — ¢)R is a differential
ideal. This implies that a —c is an invertible element of R for every ¢ € C. Since
part 1. of this lemma implies that R is an integral domain, Lemma A.4 implies
that a is algebraic over k. Since a is a constant, Exercise 1.5.2(d) implies that
a is algebraic over C' and therefore in C. |
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We note that instead of using Lemma A.4, Lemma 1.15.2 follows from the
fact that the image of a regular function on a variety contains an open subset
of its closure (see the discussion following Exercises A.9). Using the notation of
the proof, we may consider a as a regular function from X (k) to A} (k) where
X = (max(R), R). The image of a is therefore either finite or cofinite. Since C
is an infinite set that is not in the image of a, we conclude that the image of a
is finite. Therefore there exists a polynomial P € k[Y] such that P(a) = 0 on
X(C) and so P(a) = 0 as an element of R. One now proceeds as in the proof
to conclude that a € C.

Example 1.16 y' = a with a € k.

One can verify that the Picard-Vessiot ring for the matrix equation (g;)’ =

99) (#1) is generated by a solution of y' = a. We shall refer to this Picard-
Vessiot ring as the Picard-Vessiot ring of the equation y' = a. If k contains a
solution b of the scalar equation then (}?) is a fundamental matrix and R = k

is a Picard-Vessiot ring for the equation.

We suppose now that the scalar equation has no solution in k. Define the
differential ring R = k[Y] with the derivation ’ extending ' on k and Y' = a (see
Exercise 1.5(1)). Then R contains an obvious solution of the scalar equation

and () is a fundamental matrix for the matrix equation.

The minimality of the ring R = k[Y] is obvious. We want to show that R
has only trivial differential ideals. Let I be a proper ideal of k[Y]. Then I is
generated by some FF =YY" +--- fiY + fo with n > 0. The derivative of F' is
F'=(na+ f,_,)Y" ' +.... If I is a differential ideal then F’ € I and thus
F' = 0. In particular, na + f]_; = 0 and %I = a. This contradicts our
assumption. We conclude that R = k[Y] is a Picard-Vessiot ring for y' =a. O

Example 1.17 y' = ay with a € k*.

Define the differential ring R = k[T, T~!] with the derivation ’ extending ’ on k
and T' = aT'. Then R contains a non-zero solution of ¥ = ay. The minimality
of R is clear and the ring R would be the answer to our problem if R has only
trivial differential ideals. For the investigation of this we have to consider two
cases:

(a) Suppose that k contains no solution (# 0) of y' = nay for all n € Z, n # 0.
Let I # 0 be a differential ideal. Then I is generated by some F = T™ +
A 1 T™ 14 - +ag, with m > 0 and ag # 0. The derivative F' = maT™+((m—
Daay,—1+al, | )T™ 1 +---+af of F belongs to I. This implies F' = maF. For
m > 0 one obtains the contradiction aj = maag. Thus m =0 and I = R. We
conclude that R = k[T, T~!] is a Picard-Vessiot ring for the equation y' = ay.

(b) Suppose that n > 0 is minimal with y' = nay has a solution yo € k*. Then
R = k[T, T~!] has a non-trivial differential ideal (F) with F' = T™ —y,. Indeed,
F' = naT™ — nayo = naF. The differential ring k[T, T ']/(T™ — yo) over k will
be written as k[t,t~'], where ¢ is the image of T. One has t" = yy and ' = at.
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Every element of k[t,t '] can uniquely be written as E?:_Ol a;tt.

We claim that k[t,¢7!] is a Picard-Vessiot ring for ' = ay. The minimality of
k[t,t~'] is obvious. We have to prove that k[t,#~!] has only trivial differential
ideals.

Let I C k[t,t7'], I # 0 be a differential ideal. Let 0 < d < n be minimal
such that I contains a nonzero F' of the form E?:o a;t'. Suppose that d > 0.
We may assume that a; = 1. The minimality of d implies ag # 0. Consider
F' = dat®+ ((d—1)aag—1 +al;_, )t~ ++- - +a. The element F’' — daF belongs
to I and is 0, since d is minimal. Then aj = daagy contradicts our assumption.
Thus d = 0 and I = k[t,t71]. 0

Proposition 1.18 Let the equation Y' = AY over k be given.

1. There exists a Picard-Vessiot ring for the equation.

2. Any two Picard-Vessiot rings for the equation are isomorphic.

3. The field of constants of the quotient field of a Picard-Vessiot ring is again
C.

Proof. 1. Let (X; ;) denote an n x n-matrix of indeterminates and let det de-
note the determinant of (X; ;). Consider the differential ring Ry = k[X; j, 7=
with the derivation, extending the one of k, given by (X} ;) = A(X; ;). Exer-
cise 1.5(1) shows the existence and unicity of such a derivation. Let I C Ry be a
maximal differential ideal. Then R = Ry/I is easily seen to be a Picard-Vessiot
ring for the equation.

2. Let Rj, Ry denote two Picard-Vessiot rings for the equation. Let B, Bs
denote the two fundamental matrices. Consider the differential ring Ry ®j R»
with derivation given by (r; ® r2)' = 7] @ ro + r1 @ 7} (see Section A.1.2 for
basic facts concerning tensor products). Choose a maximal differential ideal
I C Ry ®; Ry and define R3 := (Ry ®, Ra)/I. There are obvious morphisms
of differential rings ¢; : R; — Rs, i = 1,2. Since R; is simple, the morphism
¢; : Ri = ¢;(R;) is an isomorphism. The image of ¢; is generated over k by
the coefficients of ¢;(B;) and ¢;(det B; '). The matrices ¢; (B;) and ¢»(B3) are
fundamental matrices over the ring R3. Since the set of constants of Rz is C'
one has ¢1(B1) = ¢2(B2)M, where M is an invertible matrix with coefficients
in C. This implies that ¢; (R1) = ¢2(R2) and so Ry and R, are isomorphic.

3. follows from Lemma 1.15. O

We note that the maximal differential ideal I of Ry in the above proof is in
general not a maximal ideal of Ry. (See the Examples 1.16 and 1.17).

Definition 1.19 A Picard-Vessiot field for the equation Y' = AY over k is the
field of fractions of a Picard-Vessiot ring for this equation.

In the literature the Picard-Vessiot field of a differential equation Y’ = AY
is sometimes defined to be a differential extension K of k that is generated
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over k by the coefficients of a fundamental matrix of this equation and whose
constant subfield coincides with the constant subfield of k. The equivalence of
this definition with the above definition will be given in Proposition 1.26.

Exercises 1.20 1. Finite Galois extensions are Picard-Vessiot extensions

Let k be a differential field with derivation ' and with algebraically closed field
of constants C'. Let K be a finite Galois extension of k¥ with Galois group G.
Exercise 1.5(3) implies that there is a unique extension of ' to K. The aim of
this exercise is to show that K is a Picard-Vessiot extension of k.

(a) Show that for any ¢ € G and v € K, o(v') = (o(v))’. Hint: Show that
v o7 ((o(v))") defines a derivation on K that agrees with ' on k.

(b) We may write K = k(wy,...wy,) where G permutes the w;. This implies
that the C-span V' of the w; is invariant under the action of G. Let vy,...,v,
be a C-basis of V.

(i) Show that for each o € G, there is a matrix 4, € GL,(C) such that
o(W)=WA, where W = W (vy,...,v,) (c.f., Definition 1.10).

ii) Show that wr(vy,...,v,) # 0 and so W is invertible. Hint: By Exer-
cise 1.5(2), the constant subfield of K is C C k

(iii) Show that the entries of the matrix B = W'W ! are left fixed by the
elements of G and that W is a fundamental matrix for the matrix differential
equation Y’ = BY, B € M, (k). Conclude that K is the Picard-Vessiot ring for
this equation.

2. Picard-Vessiot extensions for scalar differential equations

Let L(y) = 0 be a homogeneous scalar differential equation over k. We define
the Picard-Vessiot extension ring or field for this equation to be the Picard-
Vessiot extension ring or field associated to the matrix equation Y’ = ALY,
where Ay, is the companion matrix.

(a) Show that a Picard-Vessiot ring for this equation is a simple differential ring
over k containing a fundamental set of solutions of L(y) = 0 such that no proper
differential subring contains a fundamental set of solutions of L(y) = 0.

(b) Using the comment following Definition 1.19, show that a Picard-Vessiot
field for this equation is a differential field over k containing a fundamental set
of solutions of L(y) = 0, whose field of constants is the same as that of k such
that no subfield contains a fundamental set of solutions of L(y) = 0. i

1.4 The Galois Group and the Galois Corre-
spondence

We are now ready for the
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Definition 1.21 The differential Galois group of an equation Y' = AY over
k is defined as the group Aut(R/K)of differential k-algebra automorphisms of
a Picard-Vessiot ring R for the equation. More precisely, Aut(R/k) consists of
the k-algebra automorphisms o of R satisfying o(f') = o(f)" for all f € R.

Although this group is defined abstractly, it can be represented as a group
of matrices with constant coefficients.

Lemma 1.22 Let Y' = AY be a matriz differential equation over k. Let R be a
Picard-Vessiot ring for the equation, L its field of fractions, B € GL(n, R) a fun-
damental matriz and Aut(R/k) the differential Galois group. Write Aut(L/k)
for the group of the k-automorphisms of L satisfying o(f') = o(f)' for all f € L.

1. For any o € Aut(L/k) one has o(B) = BC(0) with C(o) € GL,(C).
2. Aut(R/k) coincides with Aut(L/k).

3. The map Aut(R/k) — GL,(C), given by o — C(0), induces an isomor-
phism of Aut(R/k) with a subgroup of GLy(C).

Proof. Since o € Aut(L/k) commutes with differentiation, o(B) is again a
fundamental matrix and thus B~'o(B) € GL,(C). (See the discussion following
Lemma 1.8). This proves 1. From 1. it follows that any o € Aut(L/k) leaves
R invariant and 2. follows easily. If this constant matrix C(¢) is the identity,
then o is the identity, since R is generated by the entries of B and —+=. Now

detB *
3. follows. O

We shall now show that Aut(L/k) has the structure of a linear algebraic
group. We will need the following lemma. To simplify notation we shall use ﬁ
to denote the inverse of the determinant of a matrix given by the context. For
example, MY} ;, ﬁ] = M[Y;;, W] and k[X; ;, ﬁ] = k[X;;, W]
Lemma 1.23 Let M be any differential field with algebraically closed field of
constants C. Let Y; j be a set of n® indeterminates and extend the derivation '
on M to a derivation on M[Y; j, 3] by setting Y/; = 0. The map I — (I) =
IMY; ;, ﬁ] from the set of ideals of C[Y ;, ﬁ] to the set of the differential
ideals of M[Y; ;, ﬁ] 15 a bijection. The inverse map is given by J — J N
C[Yiﬁ': ﬁ]

Proof. If F = {fa}aca is a basis of M over C, then F is a module basis of
MIY; j, =] over C[Y; ;, =]. Therefore, for any ideal I of C[Y; ;, 1], one has

et
that (I) N C[Y; =1

1
2J M]
We now prove that any differential ideal J of M[Y; ;, ﬁ] is generated by [ :=
JNCY;;, 2]. Let {es}sen be a basis of C[Y;;, =] over C. Any element
f € J can be uniquely written as a finite sum ) _;mgeg with the mg € M. By
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induction on the length, I(f), of f we will show that f € (I). When I(f) =0, 1,
the result is clear. Assume [(f) > 1. We may suppose that mg, = 1 for some
B1 € B and mg, € M\C for some B € B. One then has that f' = > ;mpes

has a length smaller than [(f) and so belongs to (I). Similarly (mgzlf)’ € (I).
Therefore (m[;zl)’ f= (m[;z1 f) = mgzl f' € (I). Since C is the field of constants
of M, one has (m[;;)’ # 0 and so f € (I). O

Proposition 1.24 Let L D k be a Picard-Vessiot field with differential Galois
group Aut(L/k). Then

1. Aut(L/k) is the group of C-points G(C) C GL,(C) of a linear algebraic
group G over C.

2. Let H be a subgroup of Aut(L/k) satisfying LH = k. Then the Zariski
closure H of H is Aut(L/k).

3. The field LAYL/R) of Aut(L/k)-invariant elements of the Picard-Vessiot
field L is equal to k.

4. The Lie algebra g(C) of G(C) coincides with the Lie algebra of the deriva-
tions of L/k that commute with the derivation on L.

Proof. 1. We shall show that there is a radical ideal I C S = C[Y; ;, =] such
that G = (max(S/I),S/I) is a linear algebraic group and such that Aut(R/k)
corresponds to G(C).

Let L be the Picard-Vessiot extension for the matrix equation Y’ = AY, A €
M,, (k). L is the field of fractions of R := k[X; ;, 7-]/¢, where ¢ is a maximal
differential ideal and the derivation on R is defined by (X; ;) = A(X; ;). Let
r;; be the image of X; ; in R so (r; ;) is a fundamental matrix for the matrix
equation. Consider the following rings:

1
D CY;

1
L[X i —
]C [ 17]7det]

k[Xij, Tot [Xij, Q]

= Llis, det]
where the indeterminates Y; ; are defined by (X; ;) = (r;,;)(Y;;). Note that
V/; = 0. Corollary A.17 implies that the ideal ¢L[Y;;, q&] C L[X;;, 1] =
L[Y; j, =] is a radical ideal. Lemma 1.23 implies that ¢L[Yj ;, 1] is generated
by I = qL[Y; ;, 71N C[Yij, 2. Clearly I is a radical ideal of S = C[Y; j, 3]
We shall show that G = (max(S/I),S/I) C GL, is a linear algebraic group,
inheriting its structure from GL,,. In particular, we shall show that G(C) is a
subgroup of GL,(C) and that ¢ — C(o) defines an isomorphism of Aut(R/k)
onto G(C).

Aut(R/k) can be identified with the set of (¢; ;) € GL,(C) such that the map
(Xi,;) = (Xij)(ci,j) leaves the ideal ¢ invariant. One can easily show that the
following statements are equivalent.
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() (ciy) € Aut(R/k)

(i) the map k[X;;, 3] — L defined by (X; ;) — (ri;)(ci,;) maps
all elements of g to zero.

(iii) the map L[X;;, -] — L defined by (X; ;) ~ (r;;)(c;,;) maps
all elements of ¢L[Y; ;, =] to zero.

(iv) Considering ¢L[Y;;, =] as an ideal of L[Y;;, =], the map
L[Yij, 7] — L defined by (Yi;) — (c;;) sends all elements of
qL[Y; j, 35] to zero.

Since the ideal ¢L[Y; ;, 1] is generated by I, the last statement above is equiv-
alent to (c; ;) being a zero of the ideal I, i.e., (¢; ;) € G(C). Since Aut(R/k) is a
group, the set G(C) is a subgroup of GL,(C). Therefore G is a linear algebraic

group (see Example A.34(5)).

2. Assuming that H # Aut(L/k), we shall derive a contradiction. We shall
use the notation of part (1) above. If H # Aut(L/k), then there exists an ele-
ment P € C[Yjj, 7] such that P ¢ I and P(h) =0 for all h € H. Lemma 1.23
implies that P & (I) = qL[Y;;, =] Let T = {Q € L[X;;,—] | Q ¢

(I) and Q((r;;)(hij;)) = Oforallh = (h;;) € H}. Since
LIX;j, =] = L[Yij, 1] D C[Yij, ;] we have that T' # {0}. Any element

of L[X; j, ] may be written as 3, faQq where f, € L and Qq € k[X;;, -]
Select 0 # Q@ = fa,Qay + ..+ fa,,@a,, € T with the f,, all nonzero and
m minimal. We may assume that f,, = 1. For each h € H, let Q" =

h Qo+ -+ ! Qa,.. One sees that Q" € T. Since @ — Q" is shorter
than @ and satisfies (Q — Q")((ri;)(hi;)) = 0 for all h = (h; ;) € H we must
have that Q — Q" € (I). If Q — Q" # 0 then there exists an [ € L such that
Q — 1(Q — Q") is shorter than Q. One sees that Q — I(Q — Q") € T yielding
a contradiction unless @ — Q" = 0. Therefore Q = Q" for all h € H and so
the f., € k. We conclude that Q € k[X; ;, -~]. Since Q(r;;) = 0 we have that
Q € q, a contradiction.

3. Let a=2% € L\k with b,c€ Randlet d=b®c—c®b € R®; R. From
Exercise A.15, one has that d # 0. Lemma A.16 implies that the ring R®; R has
no nilpotent elements since the characteristic of k is zero. Let J be a maximal
differential ideal in the differential ring (R ®j R)[3], where the derivation is
given by (11 ® r2)’ = r] ® r2 + r1 @ r}. Consider the two obvious morphisms
¢i : R = N := (R®, R)[4]/J. The images of the ¢; are generated (over k)
by fundamental matrices of the same matrix differential equation. Therefore
both images are equal to a certain subring S C N and the maps ¢; : R = S
are isomorphisms. This induces an element ¢ € G with ¢; = ¢o0. The image
of d in N is equal to ¢1(b)p2(c) — ¢1(c)p2(b). Since the image of d in N is
nonzero, one finds @1 (b)@a(c) # ¢1(c)p2(b). Therefore ¢ ((ob)c) # ¢2((oc)d)
and so (ob)c # (oc)b. This implies o(2) # 2.

4. For any C-algebra Q (as always  is commutative and has a unit element)
one defines the differential rings k®¢ 2, R®¢cQ and L Q¢ with the derivation
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given by (f®a)' = f'®@afor f €k, R, or L and a € Q. The ring of constants
of the three differential rings is 2. The group Aut(L ® Q/k ® Q) is defined
in the obvious way, namely as the group of differential k¥ ® 2-automorphisms
of L ® Q. For M € GL(n,Q) one defines the k£ ® Q-automorphism ops of
k(X j, 4] ® Q, given by the formula (o3 X; ;) = (X;;)M. One observes that
oy induces a k ® Q-linear automorphism of R ® € if and only if o), leaves the
ideal ¢k[X; ;, ﬁ] ®c Q) invariant. From the above description of GG one sees that
this is equivalent to M € G(§2). Therefore, G(?) = Aut(L ® Q/k @ Q).

In Section A.2.2, we showed that the Lie algebra of Aut(R/k) = G(C) may be
identified with TG = {D € M,(C) | 1+ €D € G(Q)} where Q@ = Cle], €2 = 0.
Let D be the Lie algebra of k-derivations of L commuting with ’, the derivation of
L. Given D € TG, we define a k-derivation dp on k[X; ;, ] via Op((X; ;) =
(X;,;)D. This clearly commutes with the derivation ' on k[X; ;, 7] extending
the derivation on k and satisfying (X; ;) = A(X; ;). To show that this defines
a derivation on R and L, we must show that dp(P) € ¢ for all P € g. Since
D € TG, we have that P(X (1 + €D)) € ¢ for P(X) € ¢ where X = (X, ;).
Since P(X(1 + €D)) = P(X + eXD) = P(X) + €3, .,(0P/0X,;)(XD);; =
P(X)+ edpP(X). Therefore Op(P) € g.

Now let 9 € D. Since 9 commutes with ', there exists a matrix D € GL,(C)
such that 8((r;,;7)) = (r;,;)D. Lifting d to a derivation d on k[X; j, 7]. One sees
that O preserves the ideal ¢. A calculation then shows that 1+ eD € G(Cle]).
O

We note that Proposition 1.24.2 can be given a more conceptual proof in
terms of torsors. We shall return to this point in Section 1.5.

The proof of the above proposition is not constructive; although it tells us
that the Galois group is a linear algebraic group it does not give us a way to cal-
culate this group. Nonetheless the following proposition yields some restrictions
on this group.

Proposition 1.25 Let H C GL,, be a linear algebraic group over C' with Lie
algebra h C M,,. Suppose that the matriz equation Y' = AY over k satisfies
A € b(k). Then the differential Galois group of the equation is contained in (a
conjugate of ) H(C).

Proof. As in Lemma 1.22, we consider the differential ring Ry = k[X; j, 7]
with (Xj ;) = A(X;;). Let P C C[X;;, -] be the ideal defining H and let
@ = PRy. We shall show that @ is a differential ideal in Ry. Assume that
this has been done and let S be a maximal differential ideal containing ). The
ring R = Ry/S is a Picard-Vessiot ring for the equation. Letting z; ; be the
image of X, ; in this ring, we have that Z = (z; ;) is a fundamental matrix for
the equation with the further property that Z € H(R). For any o € Aut(R/k)
there is a matrix C(0) € GL,(C) such that o(Z) = ZC(0o). Since o(Z) must
also be in H(R) we have that C(o) € H(C).



20 CHAPTER 1. PICARD-VESSIOT THEORY

We now show that () is a differential ideal. Let p € P and let p’ denote the
derivative of p in Ry. Note that @) is generated by P and is again a radical ideal
(see Corollary A.17). Therefore to show that p’ € @Q it is enough to show that
p'(h) = 0 for all h € H(k). Since A € b, we have that 1+ eA € H(k[e]) where
€2 = 0 (see Section A.2.2). Therefore for any h € H(k) we have h + eAh €
H (kle]) and so 0 = p(h + eAh) = p(h) + €2 8)8(—{_"1_(Ah)i,j. This implies that

Do %(Ah)id = 0. Since the coefficients of p are constants, the chain rule
implies that p' = 3, ; %Xz{,j =i %(AX)M. Therefore p'(h) = 0 for
all h € H(k) and so p' € Q. O

We can also use Lemma 1.23 to show the equivalence of the two definitions
of Picard-Vessiot field mentioned in Section 1.3 (see Definition 1.19).

Proposition 1.26 Let Y' = AY be a matriz differential equation over k and
let L D k be an extension of differential fields. The field L is a Picard-Vessiot
field for this equation if and only if the following conditions are satisfied.

1. The field of constants of L is C,
2. There exists a fundamental matriz B € GLy (L) for the equation, and

3. L is generated over k by the entries of B.

Proof. Lemma 1.22 implies that conditions 1., 2. and 3. are necessary.

Suppose L satisfies the three conditions. As in Lemma 1.22, we consider the
differential ring Ry = k[X; j, 7] with (Xj ;) = A(X; ;). Consider the differen-
tial rings Ry C L ® Ry = L[X ;, ﬁ] Define a set of n? new variables Y; ; by
(Xi,j) =B-(Y;;). Then L ®; Ry = L[Y; , 7] and Y/; =0 for all i, j. We can
identify L ®; Ry with L ¢ Ry where Ry := C[Y; ;, ﬁ] Let P be a maximal
differential ideal of Ry. We have that P generates an ideal in L ®j Ro which is
denoted by (P). Since L® Ro/(P) = L ® (Ro/P) # 0, the ideal (P) is a proper
differential ideal. Define the ideal P C R; by P = (P) N R;. By Lemma 1.23
the ideal (P) is generated by P. If M is a maximal ideal of R; containing P
then Ry /M = C. The corresponding homomorphism of C-algebras Ry — C
extends to a differential homomorphism of L-algebras L ®c Ry — L. Its kernel
contains (P) C L ®; Ry = L ®¢ Ry. Thus we have found a k-linear differential
homomorphism ¢ : Ry — L with P C ker(¢). The kernel of ¢ is a differential
ideal and so P = ker(v). The subring ¢/(Ry) C L is isomorphic to Ry/P and is
therefore a Picard-Vessiot ring. The matrix (¢(X; ;)) is a fundamental matrix
in GL, (L) and must have the form B - (¢; ;) with (¢; ;) € GL,(C), because the
field of constants of L is C. Since L is generated over k by the coefficients of B
one has that L is the field of fractions of ¢(Rp). Therefore L is a Picard-Vessiot
field for the equation. a

We shall use the results of this section to prove
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Proposition 1.27 (The Galois Correspondence) Let L D k be the Picard-
Vessiot field of the equation Y' = AY over k. Let G := Aut(L/k) be the
differential Galois group of the equation. Consider the two sets S := the closed
subgroups of G and L:= the differential fields M withk C M C L. Leta: S — L
and B : L — S be maps defined by:

a(H) = LY = the subfield of L consisting of the H-invariant elements.

B(M) = Aut(L/M) = the automorphisms of L/M commuting with
the derivation on L.

Then

1. The two maps o and B are inverses of each other.

2. The subgroup H € S is a normal subgroup of G if and only if M = L is
left invariant by all elements of G. In this case Aut(M/k) is isomorphic
to G/H. Moreover M is a Picard-Vessiot field for some linear differential
equation over k.

3. Let G° denote the identity component of G. Then L O k is a finite
Galois extension with Galois group G/G° and is the algebraic closure of k
in L.

Proof. We note that S(M) = Aut(L/M) is in fact the differential Galois group
of the equation Y’ = AY over M. Thus (M) is a closed subgroup of G and
belongs to S.

1. For M € £ one has aff(M) = LA"(L/M) By Applying Proposition 1.24.3
to the Picard-Vessiot extension L/M for Y' = AY over M, one sees that the last
field is equal to M. For H € S the inclusion H C Hy := Aut(L/L*) = pa(H)
is obvious. Applying Proposition 1.24.2 with G replaced by H; and k replaced
by L¥ = LH1. We conclude that H = H;.

2. Assume that M = L is left invariant by all elements of G. One can then
define a map G — Aut(M/k) by restricting any o € G to M. The kernel of
this map is H, so H is normal in G. Furthermore, this map defines an injective
homomorphism of the group G/H into Aut(M/k). To show that this map is
surjective, one needs to show that any differential automorphism of M over k
extends to a differential automorphism of L over k. Consider, more generally,
M € L and a k-homomorphism of differential fields ¢ : M — L. The Picard-
Vessiot field for Y’ = AY over M is L. The Picard-Vessiot field for y' = ¢(A)y
(note that ¢(A) = A) over (M) is also L. The unicity of the Picard-Vessiot
field yields a k-isomorphism of differential fields ¢ : L — L, extending 1.

Now assume that there is an element 7 € G such that 7(M) # M. The
Galois group of L over 7(M) is THT~!. Since 7(M) # M, part (1) of the
proposition implies that 7TH7~' # H. Therefore H is not normal in G.

It is more difficult to see that M is a Picard-Vessiot field for some linear
differential equation over K and we postpone the proof of this fact to the next
section (see Corollary 1.35).
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3. G/G° is a finite group. The property that (L9")%/° = k together with
the Galois theory of algebraic extensions (c.f., [130], VII, §1, Artin’s Theorem),
implies that L& D k is a Galois extension with Galois group G/G°. If u is
algebraic over k, then the orbit of w under the action of G is finite. Therefore,
the group Aut(L/k(u)) is an algebraic subgroup of G of finite index. This
implies that G° C Aut(L/k(u)) and so k(u) C L. O

Exercises 1.28 1. The Galois group of y' = a, a € k

Show that the Galois group of this equation is either (C, +) or the trivial group.
Hint: As in Example 1.16, we may identify this equation with the matrix dif-
ferential equation (g;)’ = (0 ¢) (Z;) The Galois group will then be a subgroup

of{(éf) | ceC}.

2.The Galois group of y' = ay, a € k*

Show that the Galois group of this equation is either (C*, x) or a finite cyclic
group. Hint: Consider the possible Picard-Vessiot extensions given in Exam-
ple 1.17.

3. The Galois group of y" = c*y, c € C*

Show that the differential ring C'(2)[Y,Y '] given by Y’ = ¢Y is a Picard-Vessiot
ring for this equation over C'(z), z' = 1. Calculate the differential Galois group
of this equation.

4. The generic Picard-Vessiot extension and its Galois group

Let k£ be a differential field with algebraically closed field of constants C, let
R = k{y1,...,yn} be the ring of differential polynomials with coefficients in &
and let F' be the quotient field of R.

(a) Show that the constant subfield of F is C.

(b) Let L(Y') € F{Y} be the linear differential polynomial defined by

wr(Y,y1,...,y
L) = o)
wr(Yi, -5 Yn)

= Y 4q, YOO 4 4aY

Show that
(wr(yl, s 7yn))l

wr(yi, .., Yn)

(c) Let E be the smallest differential subfield of F' containing k and the elements
a;, t = 0,...,n — 1. Show that for any A = (¢;;) € GL,(C), the map ¢4 :
F — F defined by (¢da(y1),-..,04(yn)) = (Y1,-..,yn)A is a k-differential auto-
morphism of F leaving all elements of E fixed. Hint: wr(¢a(y1),...,04(yn)) =
det(A)wr(yt,...,Yn)-

(d) Using Exercise 1.20.2(b), show that F' is a Picard-Vessiot extension of E
with Galois group GL,(C).

ap—1 =
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5. Unimodular Galois groups

(a) Let Y' = AY be an n x n matrix differential equation over k, let L be its
Picard-Vessiot field over k and let G be its Galois group. Let Z be a fundamental
matrix for Y' = AY with coefficients in L. Show that G C SL,(C) if and only
if det(Z) € k. Conclude that G C SL,, if and only if 2z’ = (trA)z has a nonzero
solution in k. Hint: Use Exercise 1.13.5.

(b) Let L(y) = y™ 4+ a, 19 Y 4+ ... + apy = 0 be a homogeneous scalar
linear differential equation over K. Show that the Galois group of L(y) = 0 is
a subgroup of SL,,(C) if and only if 2’ = —a,—12 has a nonzero solution in k.
(c) Let L(y) = y™ 4+ ap_1y™ Y 4+ ...+ aoy = 0 be a homogeneous scalar linear
differential equation over K. Setting z = /™ /-1y show that z satisfies a
homogeneous scalar linear differential equation of the form 20 4G, 52(n2) 4
...+ aoy = 0 and that this latter equation has a unimodular Galois group. O

Counsider the differential field C'(z) with C' algebraically closed and of char-
acteristic 0 and derivation d%. We consider a scalar differential equation of the
form y" = ry. The Picard-Vessiot field will be denoted by L and the differential
Galois group will be denoted by G. The following exercise will show how one
can determine in many cases the Galois group of such an equation. A fuller

treatment is given in [127] and [204, 205, 206].

It is known [127] that if G is an algebraic subgroup of SL(2, C') (determined
up to conjugation) then there is a small list of possibilities for G C SL(2,C) (up
to conjugation):

(i) Reducible subgroups G, i.e., there exists a G-invariant line. In
other terms, the subgroups of {( b JaeC*beCY.

0 a?

(ii) Irreducible and imprimitive groups G, i.e., there is no G-invariant
line but there is a pair of lines permuted by G. In other terms G is an
irreducible subgroup of the infinite dihedral group D, consisting of
all A € SL(2,C) such that A permutes the two lines C(1,0),C(0,1)
in C2.

(iii) Three finite primitive groups: the tetrahedral, the octahedral
and the icosahedral group.

(iv) SI(2,C)

Exercises 1.29 1. The equation y"' = ry

(a) Using Exercise 1.28.5, show that the Galois group of y" = ry is a subgroup
(b) Associated to the equation y"' = ry there is the non-linear Riccati equation
u’' +u? = r. Let L be the Picard-Vessiot extension of k corresponding to this
equation and let V' C L denote the vector space of solutions of " = ry. Then
V is a two-dimensional vector space over C. The group G acts on V. Show that
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u € L is a solution of the Riccati equation v’ 4+ u? = r if and only if u = % for
some y € V, y #0.

(c) Show that G is reducible if and only if the Riccati equation has a solution
in C(2).

(d) Show that if G is irreducible and imprimitive, then the Riccati equation has
a solution u which is algebraic over C'(z) of degree 2. Hint: There are two lines

Cy1,Cy2 C V such that G permutes {Cy;,Cy2}. Put uy = Z—i, Uy = Z—é Show
that w1 + us and uyusz belong to C(z).

2. The equation y" = (Z272 + z)y

(a) The field extension C(t) D C(z) is defined by t*> = z. Verify that u; =
—12z71 4+t € C(t) is a solution of the Riccati equation. Find a second solution
uz € C(t) of the Riccati equation.

(b) Prove that the differential ring R = C'(t)[y1,y; "], defined by 3| = uyyi, is
a Picard-Vessiot ring for the equation. Hint: Verify that R is a simple differen-
tial ring. Prove that R is generated over C(z) by the entries of a fundamental
matrix for the equation.

(c) Determine the differential Galois group G of the equation.

(d) Verify that the Lie algebra of G is equal to the Lie algebra of the K-linear
derivations D : R — R that commute with ' .

(e) What can one say about the solutions of the equation?

3. The equation y"' = ry with r € C[z]\ C.

(a) Show that the Galois group of this equation is connected. Hint: Standard
existence theorems imply that there exist two linearly independent entire so-
lutions of y"” = ry. Therefore any element of the Picard-Vessiot extension K
associated with this equation is mermorphic on the plane. Show that if u € K
is algebraic over C'(z), then u is meromorphic on the Rieman Sphere and so in
C(z). Deduce that G = G°.

(b) Suppose that r € C[z] has odd degree. Prove that the Riccati equation has
no solution w € C(z). Hint: Expand u at z = oo and show that this gives a
contradiction.

(c) Suppose again that r € C[z] has odd degree. Prove that G = SL»(C) and
give an explicit description of the Picard-Vessiot ring.

(d) Consider the equation y” = (22 4+ 1)y. Find a solution u € C(2) of the Ric-
cati equation. Construct the Picard-Vessiot ring and calculate the differential
Galois group. Hint: Consider first the equation y' = uy. A solution y; # 0 is
also a solution of y} = (22 + 1)y;. Find a second solution y» by “variation of
constants”. a
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1.5 Picard-Vessiot Rings and Torsors

We again consider the matrix differential equation Y’ = AY over the differential
field k. The Picard-Vessiot ring for this equation has the form R = k[X; ;, ﬁ]/q,
where ¢ is a maximal differential ideal. We recall that k[X; ;, -] is the coor-
dinate ring of the group GL, over k. Let Z be the affine variety associated
with the ring k[X;;, &]/¢. This is an irreducible and reduced Zariski-closed
subset of GL, (k). Let L denote the field of fractions of k[X;;, 7:]/q. We have
shown in the previous section that the Galois group Aut(L/k) = Aut(R/k) of
this equation may be identified with G(C), that is the C-points of some linear
algebraic group G over C. We recall how G was defined. Consider the following
rings

1 1 1 1
kXigs 3] © LlXig, g = LlYigs 3501 2 Vi, 1
where the relation between the variables X; ; and the variables Y; ; is given by
(Xi,;) = (ri,j)(Yi;). The rqp € L are the images of X, in k[X;;, &]/q C L.
In Proposition 1.24 we showed that the ideal I = ¢L[X;j, =] N C[Y;;, 7=
defines G. This observation is the key to showing the following

Theorem 1.30 Z is a G-torsor over k.

Proof. The group G(C) C GL,(C) is precisely the set of matrices (¢; ;) such
that the map (X; ;) — (X;;)(c;,;) leaves the ideal ¢ stable. In particular, for
(CiJ') € G(C), (ZiJ) (];7) we have that (ZiJ)(CiJ') € Z(]EJ) We will first
show that this map defines a morphism from G} x Z — Z. The map is clearly
defined over k so we need only show that for any (¢ ;) € G(k), (Z;) € Z(k)
we have that (Z;;)(G;;) € Z(k). Assume that this is not true and let (¢; ;) €
G(k), (zi;) € Z(k) we have that (%;;)(¢i;) € Z(k). Let f be an element
of ¢ such that f((z;;)(¢;)) # 0. Let {as} be a basis of k considered as a
vector space over C' and let f((z;,;)(Ci;)) = >_,. asfa,(Cij;) where the C;;
are indeterminates. The hypotheses and the Hilbert Nullstellensatz imply that
some fq, is not in the ideal defining G. Therefore, there exist (c; ;) € G(C)
such that f(c; ;) # 0. This contradicts the fact that f((Z;;)(ci;)) =0

Therefore the map (G, xx Z)(k) — Z(k) defined by (g,z) — zg defines a
morphism G}, X Z — Z. At the ring level, this isomorphism corresponds to a
homomorphism of rings

1 1
k[Xh]:a]/q_)k[X Jad t]/q®c C[ J:d t]/I

1

~ k[X; ]/q o (k®@c CYij, oo t]/I

57 det
where the map is induced by (X; ;) — (r;;(Y;;). We have to show that the
morphism f : Gy Xy Z — Z X, Z, given by (g, z) — (zg, z) is an isomorphism of
algebraic varieties over k. In terms of rings, we have to show that the k-algebra
homomorphism f* : O(Z) ®; O(Z) = O(G) ®c O(Z), where O(Z) and O(G)



26 CHAPTER 1. PICARD-VESSIOT THEORY

are the coordinate rings of Z and G, is an isomorphism. It suffices to find a field
extension F' of k such that 1p ®j, f* is an isomorphism. Thus we want to show
that for some field extension F' D k, the induced morphism of varieties over F',
namely Gp Xp Zr — Zp, makes Zp into a trivial G-torsor over F'. For F' we
will take a Picard-Vessiot field L.

The fact that I = qL[X;;, 11N C[Yi;, 7] implies that L ®y (k[X;;, 71/0) =
L®c (ClYi, 21/1) = L®c O(G), where O(G) is the coordinate ring of G. In
other words, we found an isomorphism h : Zj, = GG1,. We still have to verify that
Z1, as G torsor over L is, via h, isomorphic to the trivial torsor G xc G, — Gr..
To do this it is enough to verify that the following diagram is commutative. The
coordinate ring O(G) of the group appears in several places. To keep track of
the variables, we will write O(G) as C[T; ;, ﬁ]/f where I is the ideal I with
the variables Y; ; replaced by Tj ;.

(Xi.j)H(_Xiyj)(Ti.j)

Loy k[Xij, 361/4 L[Xij, g}/ aL[Xi 5, 3] ®c O(G)

(Xi,j)H(Ti,j)(Yi,j)l l(Xi,j)H(’l"i,j)(Yi,j)

(Vi) (Yii)(Ts,5)
L®c C[Y;,jv ﬁ]/I — L[)/Z',ja ﬁ]/(l)] ®c O(G)

O
Corollary 1.31 Let R be a Picard-Vessiot ring for the equation Y' = AY over

k. Let Z be the affine variety associated with R and let G denote the differential
Galois group. Then

1. There is a finite extension k of k such that Z; = G- Let O(G) denote
the coordinate ring of G over C then k ®; R ~ k ®c O(G).

2. Z is smooth and connected.

3. The transcendence degree of L]k is equal to the dimension of the group G.

Proof. 1. Let k be the algebraic closure of k and let B € Z(k). The coefficients
of B lie in a finite extension k of k. Therefore the torsor Z; is trivial.

2. We know already that Z is connected. Smoothness follows from 1.

3. The transcendence degree is the dimension of Z and, according to 1., equal
to the dimension of G. |

Exercise 1.32 Algebraically independent solutions of differential equations. Let
r(z) € C|z] be a polynomial of odd degree and y;,y» a fundamental set of so-
lutions of y"" — ry = 0. Show that y;,y2,y] and y4 are algebraically dependent
over C'(z) while y1,y2,y; are algebraically independent over C(z). O
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Theorem allows us to identify the set of elements in the quotient field of a
Picard-Vessiot ring that satisfy a linear differential equation. This is contained
in the following Corollary (see [27], [141], [199]).

Corollary 1.33 Let R be a Picard-Vessiot ring for the equation Y' = AY over
k with constant field C' and Galois group G and let K be the quotient field of R.
For z € K, the following are equivalent:

1. z€ R.
2. The orbit of z under the action of G spans a finite dimensional C-space.

3. There exists a homogeneous linear differential equation such that L(z) = 0.

Proof. Let R = k[y1,1,---,Ynn, 7] Where (y;;) is a fundamental solution
matrix of Y/ = AY. For any 0 € G, o(yi;) = (vi,;)[0] where [0] € GL,(C).
Therefore the orbit of each y;; under the action of the Galois group lies in a

finite dimensional C-vector space. Furthermore, a(ﬁ) e ﬁ m so the same
is true for ﬁ. The property of having the G-orbit lie in a finite dimensional

C-vector space is preserved under sums and products. Therefore 1. implies 2.

Now assume that 2. holds and let & be as in Corollary 1.31. We denote the total
ring of fractions of O(G) by Qt(O(G)). The total ring of fractions of k ®; R
and k ©c O(G) are k @, K and k ®c Qt(O(G)). These are again isomorphic.
Therefore it suffices to prove that if the G-orbit of z € Qt(O(G)) lies in a finite
dimensional C-vector space W, then z € O(G). If not then, by Exercise A.11,
there is a point p € G(C') such that z is not defined at p. Since G acts transitively
on G, for every point ¢ € GG, there is an element of W which is not defined at q.
The fact that W is finite dimensional implies that all elements of W are defined
on some open subset of G and this yields a contradiction. Therefore, 1. follows.

Weshall now show that 2. is equivalent to 3. If z satisfies a linear homogeneous
scalar differential equation over k, then every element in its G-orbit satisfies the
same differential equation. Since the solution space of such an equation in L is
a finite dimensional C-vector space, 3. follows. Now assume that 2. holds and
let 41,...,Ym is a basis of a G-invariant C-vector space containing z. Let

L _wr(yayla"'vym)
(y) = :
wr(Yiy - Ym)

For any o € G, let L7 (y) be the result of applying o to each coefficient of L(y).
We then have

orn _wr(y, oy, ..., 0ym) _ wr(y,yi,-.-,ym)det([o])
t ( )_ ’U)T'(Uyl,...,aym) B wr(yly"'vym) det([a] L( )

so L?(y) has coefficients in k. Since L(z) = 0 we have that 3. holds. i
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Exercise 1.34 Solutions of differential equations and their reciprocals. Let k
be a differential field with algebraically closed field of constants. Let L; and
L be differential operators with coefficients in k& such that for some differential
extension K of k with the same subfield of constants there exist elements y1,y2 €
K with Liy; = Loy = 0 and y1y2 = 1. The goal of this exercise is to show that
this implies that yi/y1 = —yb/y= is algebraic over k. It is sufficient to assume
that k is algebraically closed and show, under this additional hypothesis, that

yi/y1 € k.

1. We may assume that y; and y» lie in a Picard-Vessiot extension ring R of
k. The assumptions imply that the Galois group G is connected and that, by
Corollary 1.31, R ~ k ®¢ [G] = k[G]. Show that for any ¢ € G, there exists
an element a, € k such that o(y1) = a,y;. Hint: A result of Rosenlicht [182]
(see also [139], [199]) states: If G is a connected linear algebraic group over an
algebraically closed field k and f is a reqular function on G mapping G to k*,
then f is a k-multiple of a character. Let y; = ax for some character y. Show

that o(y1) = x(0)y1-

2. Show that for o € G, a, € C. Hint: Let L(y) = y® +b_1y¢1 + ...
be the monic equation of smallest order over k with L(y;) = 0. Compare the

coefficients of y =) in L(y;) and o (L(y1)) =y + (l% + b))y 4
3. Conclude that L € k.

4. Show that although sin z satisfies a linear differnetial equation over C(z),
L does not. Hint: If =1- would satisfy a linear differential equation, then

sin
222 would be algebraic over C(z) but an algebraic function cannot be periodic.
This result was first proved in [93]. See also [199] and [210]. O

The fact that a Picard-Vessiot extension L/k is the field of rational functions
on a G-torsor where GG is the Galois group of L over k allows us to reprove
Proposition 1.24.2 from a more conceptual point of view. Let R C L be a
Picard-Vessiot ring and k a finite extension of k such that k ®; R ~ k ®c O(Q)
where O(G) is the coordinate ring of the Galois group G of R over C. Let H
be a proper Zariski closed subgroup of G. We shall show that L¥ # k. Once
again we let Qt(O(G)) denote the total ring of fractions of O(G). This ring is
the ring of rational functions on G and the total ring of fractions of k ®; R and
k®cO(G) are k@ L and k®¢ Qt(O(QR)) which are again isomorphic. Taking H-
invariants leads to an isomorphism between k®y, L7 and k®@c Qt(O(G)). The
ring Qt(O(G))# consists of H-invariant rational functions on G. It is known
that for H # G, the ring Qt(O(G))" contains a nonconstant element (i.e. an
element not in C) (see [108], §12). Therefore k @¢ Qt(O(G))¥ # k, so LY # k.

We now use Theorem 1.30 to give a proof that a normal subgroup corre-
sponds to a subfield that is also a Picard-Vessiot extension, thereby finishing
the proof of Proposition 1.27.
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Corollary 1.35 Let L D k be the Picard-Vessiot field of the equation Y' = AY
over k. Let G := Aut(L/k) be the differential Galois group of the equation and
let H C G be a closed normal subgroup. Then M = L is a Picard-Vessiot field
for some linear differential equation over k.

Proof. This proof depends on the following three facts from the theory of
affine groups. Let G be an affine group and H a normal closed subgroup.

1. The G-orbit of any element f € O(G) spans a finite dimensional C-vector
space.

2. The group G/H has a structure of an affine group and its coordinate ring
O(G/H) is isomorphic to the ring of invariants O(G)*.

3. The two rings Qt(O(G))” and Qt(O(G)™) are naturally isomorphic.

These facts can be found in [108], §11, 12, and [28]. Let L be the quotient
field of the Picard-Vessiot ring R. Let k be a finite Galois extension of k with
(ordinary) Galois group U such that the torsor corresponding to R becomes
trivial over k. This means that k ®; R ~ k ®c O(G), where O(G) is the
coordinate ring of G. Note that U acts on k ®j R by acting on the left factor
as the Galois group and on the right factor as the identity. The group G acts
on k®r R~ k®c O(G) by acing trivially on the left factor and acting on R via
the Galois action (or equivalently, on O(G) via the natural action of G on its
coordinate ring). Using the above facts, we have that k © R¥ ~ k®c O(G/H)
and that k ®; L7 is equal to k ®c Qt(O(G)M). Since O(G/H) is a finitely
generated C-algebra, there exist 71,...,r, € RY that generate k ®; R as a
k-algebra. Taking invariants under U, one finds that R is a finitely generated
k-algebra whose field of fractions is L¥. We may furthermore assume that that
RH is generated by a basis y1, ..., ¥y, of a finite dimensional C-vector space that
is G/H-invariant. One then sees that the equation

P(Y) — ’U)T'(Y, Yty 7yn)
wr(yt, .-, Yn)

has coefficients that are left invariant by G/H and so lie in k. Since the constants
of L¥ are C and L¥ is generated by a fundamental set of solutions of a linear
differential equation, Proposition 1.26 implies that L is a Picard-Vessiot field.
O

The following corollary is a partial converse of Proposition 1.25.

Corollary 1.36 Let R be a Picard-Vessiot ring for the equation Y' = AY over
k with Galois group G and let Z be the associated torsor. Let g be the Lie
algebra of G and let H D G be a linear algebraic group with Lie algebra .
Suppose that A € Y. If Z is trivial then there exists a B € H(k) such that
the equivalent equation V' = AV where Y = BV and A = B"'AB — BB’
satisfies A € g(k).
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Proof. Since A € h, we have seen in the proof of Proposition 1.25 that we may
assume that the Picard-Vessiot ring for the equation can be taken to be R =
k(X ;, ﬁ] /q, where the maximal differential ideal ¢ contains the differential
ideal which defines Hy,. In particular, Z(R) C H(R) and (Y; ;) € H(R) where
(Y7,;) is the image of (X; ;) in R. Since Z is trivial, there exists B € Z(k). One
then has that V = B7'Y € G(R). The element V'V ! is invariant under the
Galois group and so has entries in k. We will now show that V'V—1 = A € g(k).

We must therefore show that 1+€V’V ! € G(kle]). To do this it will be enough
to show that (1+eV'V=1V = V+eV' € G(kle])- Let p be an element of the ideal
defining G over C. A calculation shows that p(V + €V') = p(V) + ¢e(p(V)) =0
since p(V) = 0. O

We note that assumption that Z is trivial is automatically satisfied in two
important cases. The first is the case when G is a connected group and k is a
C-field. Theorem A.53 implies in this case that all G-torsors are trivial. The
second case is when G is a connected solvable group. Our comments following
Lemma A.51 imply that, independent of k, all G-torsors are trivial in this case
as well.

Exercises 1.37 1. Picard-Vessiot extensions with Galois group (G,)".

Show that if K is a Picard-Vessiot extension of k with Galois group (G,)", then
there exist t1,...,t, € K with t; € k such that K = k(t1,...,t,). Hint: By the
above remarks K = k®; O((G,)") = k(t1,- .., t,) where for each o € (G,)"(C),
there exist ¢; € C such that o(t;) = t; + ¢;.

2. Picard-Vessiot extensions with Galois group (G,)".

Show that if K is a Picard-Vessiot extension of k with Galois group (G,,)", then
there exist nonzero t1,...,t, € K with ¢}/t; € k such that K = k(t1,...,t).
Hint: By the above remarks K = k®y O((G,)") = k(t1, . .., t,) where for each
o € (Gn)"(C), there exist ¢; € C such that o(t;) = ¢;t;.

3. Picard-Vessiot extensions whose Galois groups have solvable identity compo-
nent.

Let K be a Picard-Vessiot extension of & whose Galois group has solvable iden-
tity component. Show that there exists a tower of fields ¥k C K; C .-+ C
K, = K such that K; is an algebraic extension of k£ and for each i =2,...,n,
K; = K;_(t;) where either ¢} € K;_; or t}/t; € K;_1. Hint: Let G° be the
identity component of the Galois group and let K; be the fixed field of G°. Note
that a connected solvable group contains a tower of subgroups (e) = Gy C G C
... C Gy = G° where each G;_1 is normal in G; and G;/G;_; is isomorphic to
G, or Gy,. This follows from Theorem 19.3 of [108] and the corresponding fact
for tori (which is obvious) and unipotent groups (which follows from Chapter
17, Exercise 7 of [108]) Use the Galois correspondence and the two previous
exercises to construct the desired tower of fields. |
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1.6 Liouvillian Extensions

In this section we show how one can formalize the notion of solving a linear
differential equation in “finite terms”, that is solving in terms of algebraic com-
binations and iterations of exponentials and integrals, and give a Galois theoretic
characterization of this property.

In classical Galois theory, one formalizes the notion of solving a polynomial
equation in terms of radicals by using towers of fields. A similar approach will
be taken here.

Definition 1.38 Let k C K be differential fields. We say that K is a liouvillian
extension of k if there exists a tower of fields k = Ko C K1 C ... C K, = K
such that K; = K;_1(t;) fori=1, ...,n, where either

1. t, € K;_1, that is t; is an integral (of an element of K;_1), or

2. t; #0 and t}/t; € K;_1, that is t; is an exponential (of an integral of an
element of K; 1), or

3. t; is algebraic over K; 1.

We say that an element of an extension field of k is liouvillian over k if it
belongs to a liouvillian extension of k. If K is a liowvillian extension of k and
each of the t; is an integral (resp. exponential), we say that K is an extension
by integrals (resp. extension by exponentials) of k.

The main result of this section is

Theorem 1.39 Let K be a Picard-Vessiot extension of k. The field K lies in
a liowvillian extension of k if and only if the identity component of its Galois
group s solvable.

We shall prove each implication of this Theorem separately.

Proposition 1.40 Let K be a Picard-Vessiot extension of k. and assume that
the identity component of its Galois group is solvable. Then K is a liouvillian
extension of k.

In fact a stronger statement follows from Exercise 1.37.3 but we present here
a more elementary proof (not depending on the theory of torsors) of this weaker
statement.

Proof. Let K be the Picard-Vessiot extension corresponding to the equation
Y’ = AY, let G° be the identity component of the Galois group and let F' be
the fixed field of G°. The Lie-Kolchin Theorem (Theorem A.46) implies that
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there exists a fundamental matrix Z € GL,(K) such that, with respect to this
matrix, the elements of G° are in triangular form. Let (z1,...,2,) be a row of
this matrix. We then have that for each o € G° there exist ¢; ; € C' such that

i
o(z) =Y cijzi
i=1

We shall show that this implies that F'(zy,...,z2,) is a liouvillian extension of F'.
We will prove the following statement by induction on n (c.f., [114], Theorem
3.12):

Let K be a Picard-Vessiot extension of F' with Galois group G
and let v1,...,v, € K be elements so that for any o € G, o(v;) =
7, ¢ijvi. Then F(vy,...,vy) is a liouvillian extension of F.

If v1 = 0 the induction hypothesis yields the result. Therefore, we may
assume that v; # 0. We then have that v] /vy is left fixed by all elements of
G and so must lie in F', that is v; is the exponential over F. If we divide the
above equations by v; and differentiate we have

J
Uj\r Ui s
AV (=
U(vl) ;:2: w(vl)

The induction hypothesis implies that the field F((v2/v1)',..., (vy/v1)") is a
liouvillian extension of F. Since F(v1,...,v,) is a liouvillian extension of
F((va/v1)', ..., (vy/v1)"), we achieve the desired result. m|

Exercise 1.41 Using Exercise A.44, modify the above proof to show that if G°
is a torus, then K can be embedded in an extension by exponentials. (This can
also be deduced from Exercise 1.37.) |

In general, one can detect from the Galois group if a linear differential equa-
tion can be solved in terms of only integrals or only exponentials or only al-
gebraics or in any combination of these. We refer to Kolchin’s original paper
[121] or [122] for a discussion of this. Finally, using the fact that a connected
solvalbe group can be written as a semidirect product of a unipotent group U
and a torus T one can show: If the identity component of the Galois group of
a Picard-Vessiot extension K of k is solvable, then there is a chain of subfields
k=KyCK;, C:-CK,=K such that K; = K;_(t;) where

1. ty is algebraic over k,

2. fori =2,....n—m, m = dimU, t; is transcendental over K;_, and
t;/ti € K;_1,

3. fori=n—m+1,...,n,t; is transcendental over K;_1 and t; € K;_4.
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We refer to [141], Proposition 6.7, for a proof of this result.

We now turn to showing that if a Picard-Vessiot extension lies in a liouvillian
extension, then the identity component of its Galois group is solvable. We
shall need two ancillary results. The first implies that we can assume that the
liouvillian extension has no new constants.

Lemma 1.42 Let k be a differential field with algebraically closed constants
C,let 0 # Q € k{Z,...,Zn}, and let I C k{Z1,...,Zn} be a differen-
tial ideal. If I has a zero (m,...,Mm) in a liouvillian extension of k with
QMiy...ynm) # 0, then I has a zero (1,...,7Mm) in a liowvillian extension
of k with Q(71,- .- ,Mm) # 0 with no new constants.

Proof. Let k(ni,...,nm) C K = k(t1,...,t,) where K is a liouvillian exten-
sion of k and the t; are as in Definition 1.38. The field K is the quotient field
of a ring of the form k{Y3,...,Y,}/J where J is a prime differential ideal. For
each 4,7 = 1,...,m, there exist differential polynomials A;, B; € k{Y1,...,Y;.}
such that n; = A;(t1,...,t.)/Bi(t1,...,t.). Furthermore, there exist differen-

tial polynomials C;, D; € k{Y1,...,Y.} such that for each ¢ = 1, ..., r, either
t; = Ci(tl, e ,tifl)/Di(tl, e ,tifl) or t;/ti = Ci(tl, e ,tifl)/Di(tl, e ,tifl)
or D;(t1,...,t;—1)t; satisfies a monic polynomial over k[t,...,t;—1]. Let N be

an integer sufficiently large so that

~ o A (Yh,...,Y,) An(Y1,....Y)
Yi,...,Y,) = B;(Yy,....,Y,))N RS RS A i
Q( b ’ ) (};[1 ( ! )) Q(Bl(YI))Y;“) Bm(Y1>" )Y;“))
is a polynomial. Let
T(Yi,...,Yy) = O, Y[ B, . Y)Y [ Dii, -, 13)
i=1 i=1

Note that no power of T lies in J. Therefore, the ideal (J) generated by .J in
E{Y1,...,Y,, %} does not contain 1. Let M be a maximal differential ideal in
E{Y1,...,Y,, %} containing (J). By Lemma 1.15, the field of fractions K of
R=Fk{Y1,...,Y;, £}/M contains no new constants. The field K is a liouvillian
extension of k. Letting 7; = A;(Y1,...,Y;)/Bi(Y1,...,Y,), where Y; denotes
the image of Y; in R, we see that (7,...,7m,) satisfies the conclusion of the
lemma. a

Corollary 1.43 Let Y' = AY be a linear differential equation with coefficients
ink. If Y = AY has a nonzero solution (resp. a fundamental set of solutions)
in a liowvillian extension of k, then it has a nonzero solution (resp. a funda-
mental set of solutions) in a liouvillian extension of k with no new constants.
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In particular, if a Picard-Vessiot extension of k can be embedded in a liouvillian
extension of k, then it can be embedded in a liowvillian extension of k having no
new constants.

We note that in the above result one can replace the phrase liouvillian ex-
tension with extension by integrals or extension by exponentials and the result
remains valid.

The next well known result (c.f., [114, 141]) contains the main Galois theoretic
tool we need to complete the proof of the theorem.

Lemma 1.44 Let M be a differential extension field of k containing no new
constants and let K C M be a Picard-Vessiot extension of k. For any subfield
F C M with k C F, the compositum FK is a Picard-Vessiot extension of F.
The Galois group Aut(FK/F) is isomorphic to the subgroup Aut(K/K NF) of
Aut(K/k).

Proof. Note that F'K is generated over F' by the entries of a fundamental
matrix Y of a linear differential equation; the same fundamental matrix whose
entries generate K. Since FK contains no new constants, it is a Picard-Vessiot
extension of F. Any differential automorphism of FFK over F will send K
to itself and leave k fixed. Therefore, restricting such an automorphism to F'
yields a homomorphism ¥ from Aut(FK/K) to Aut(K/k). If ¢ € Awt(FK/K)
restricts to the identity map on K, then ¢ leaves the entries of Y fixed and
so must be the identity on FK. Therefore ¥ is injective. One sees that VU is
a morphism and so yields an isomorphism of Aut(FK/K) onto an algebraic
subgroup of Aut(K/k). The fixed field of the image of ¥ is precisely K N F' and
so U(Aut(FK/K)) = Aut(K/KNF). |

Proposition 1.45 Let K be a Picard-Vessiot extension of k and assume that
K is contained in a liowvillian extension of k. Then the identity component of
the Galois group of K is solvable.

Proof. Corollary 1.43 implies that there exists a liouvillian extension M =
k(t1,...,tm) of k having no new constants and containing K. We shall show
that the Galois group of K is solvable using induction on m. By Lemma 1.44,
K(t1) is a Picard-Vessiot extension of k(t;) whose Galois group is isomorphic to
Aut(K/K N k(t;)). By induction, the identity component of the Galois group
Aut(K (t1)/k(t1)) is solvable and so the identity component of Aut(K/KNk(t1))
is solvable. We now deal with the three possibilities for ¢;. If ¢; is algebraic over
k, then Aut(K/KNk(t1)) is of finite index in Aut(K/k). Corollary A.38 implies
that the identity component of Aut(K/k) is solvable. If ¢; is transcendental
and is either an integral of an element of k£ or an exponential of an integral
of an element of k, then Exercise 1.28 implies that k(1) is a Picard-Vessiot
extension of k with Galois group either G, or G,. By considering the Galois
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correspondence in these cases, we see that any differential field between k(t1)
and k is either k or an extension of k by an integral or an extension by an
exponential. In particular, the field K N k(¢;) is a Picard-Vessiot extension of
k with abelian Galois group. This implies that the group Aut(K/K N k(t1))
is normal in Aut(K/k) and has an abelian quotient. Another application of
Corollary A.38 yields the conclusion. a

Theorem 1.39 describes the Galois groups of linear differential equations, all
of whose solutions are liouvillian. It will be useful to discuss the case when only
some of the solutions are liouvillian. To do this we need the following

Lemma 1.46 Let k C K be differential fields.

1. Let y € K be liowvillian over k. For any differential automorphism o
of K over k, o(y) is again liowvillian over k. In particular, the set of
elements of K liowvillian over k forms a differential field invariant under
Aut(K/E).

2. Let L(y) = 0 be a scalar differential equation with coefficients in k. If
L(y) = 0 has a nonzero solution liowvillian over k, then the operator L
has a right factor Ly of order at least one with coefficients in k such that
all solutions of L1 (y) = 0 are liouvillian over k.

Proof. 1. Let M = k(t1,-..,ty) be aliouvillian extension containing y and let
My = KM = K(t1,-..,tn). One can extend o step-by-step to an isomorphism
of K(t1,...,ty) onto a field K(s1,...,sm) with o(t;) = s;. Since o will map
k(t1,...,tm) onto k(s1,...,Snm), we see that this latter field is also a liouvillian
extension of k.

2. We may assume that L(y) = 0 has a nonzero solution in a liouvillian extension
N of k having no new constants. If E C F' are differential fields and z1,...,z, €
F, we will denote by k < z1,...,2, > the smallest differential field containing
E and z1,...,2, . Let M = N < y1,...,y, > be a Picard-Vessiot extension
of N for the equation L(y) = 0. We then have that K = k < y1,...,yn > is
a Picard-Vessiot extension of k that contains a nonzero solution of L(y) = 0
liouvillian over k. Let V' be the vector space of liouvillian solutions of L(y) = 0
in K and let uy,...,u, be a C-basis of V. Part 1 of this lemma implies that
V is left invariant by the Galois group of K over k and so the equation f/(y) =
wr(y,uy,...,u.)/wr(uy,...,u,) has coefficients in k. a

Proposition 1.47 Let L(y) = 0 be scalar differential equation with coefficients
ink. If L(y) = 0 has a nonzero liowvillian solution, then L(y) = 0 has a solution
z # 0 such that z' [z is algebraic over k.

Proof. Lemma 1.46.2 implies that we may assume that all solutions of L(y) =
0 are liouvillian over k. Proposition 1.45 implies that the identity component
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of the Galois group G of L(y) = 0 over k is solvable and so, by the Lie-Kolchin
Theorem, there exists an element z € V such that the line C - z is left invariant
by G°. This implies that 2’/z is left invariant by G° and so is algebraic over
k. |

Exercise 1.48 Show that the equation y"’ + zy = 0 has no nonzero solutions

liouvillian over C(z). Hint: As in Exercise 1.29(3), show that the Galois group
of this equation is connected. If exp([ u) is a solution of y" + zy = 0 then
u satisfies u" + 3uu’ + u3 + z = 0. By expanding at co, show that this latter
equation has no nonzero solution in C(z). i



Chapter 2

Differential Operators and
Differential Modules

In linear algebra one can reformulate questions concerning systems of linear
equations in a basis-free way in terms of vector spaces and linear maps. Fur-
thermore, if V is a vector space over a field £ and A is a linear map on V,
the one can consider V' as a module over the polynonmial ring k[X], where the
action of f(X) on v € V is given by f(A)v. In this chapter, we will examine
a basis free way of treating linear differential equations Y’ = AY’, the analogy
of the above concept for differential equations and the relationship to scalar
differential equations.

2.1 The Ring k[0] of Differential Operators

When studying scalar linear differential equations L(y) = y™ +a, yn D 4
...+ agy, it is useful to examine the algebraic properties of the associated
operator L = 0" 4+ a,_10™ ' + ... + ag. To do this we introduce the following

Definition 2.1 Let k be a differential field. The ring of linear differential op-
erators with coefficients in k is the ring k[0] of noncommutative polynomials in
the variable O with coefficients in k where 0 satisfies a = ad +a’ for all a € k.

Note that each element L of k[0] can be written uniquely as L = a,0™ +
an 10" + ...+ ap, a, # 0. The integer n is called the order of L and
denoted by ord(L). The ring k[0] bears many similarities to a commutative
ring of polynomials in one indeterminate. For example, the usual proofs in the
commutative case can be easily modified to yield the following results

Lemma 2.2 Let Ly, Ly € k[0]. There exist Q;, Qr, Ry, R, € k[0] with ord(Ry),

37
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ord(R,) < ord(Lz) such that

L, = L@+ R
Ly = @QrLx+ R,

Corollary 2.3 For any left ideal I C k[O] there exists an Ly € k[0] such that
I = K[0\Ly. Similarly for any right ideal J C k[O] there exists an Ly € k[0] such
that J = Lk[).

From these results one can define the Least Common Left Multiple,
LCLM(Ly, Ls), of Ly, Ly € k[0] as the unique monic generator of k[0] Ly Nk[0] L2
and the Greatest Common Left Divisor, GCLD(Ly, Ly), of Ly, Lo € k[0] as the
unique monic generator of k[0]L; + k[0]Ly . The Least Common Right Multiple
of Ly,Ly € k[0], LCRM(Ly, Ly) and the Greatest Common Right Divisor of
Ly, Ls € k[0], GCRD(Ly, L3) can be defined similarly. We note that a modified
version of the Euclidean Algorithm can be used to find the GCLD(L4, Ly) and
the GCRD(Ll, LQ)

Exercises 2.4 The ring k[0]

1. Show that for any nonzero operators Li, L. € k[0], with ord(L,) = nq,
ord(Ls) = ns we have that ord(Ly Ly — LoL;) < ny 4+ n2. Show that k[0] has no
two-sided ideals other than (0) and k[0].

2. Let A € My (k[0]). Using elementary row and column operations show that
there exist U,V € M, (k[0]) such that U has a left inverse, V' has a right in-
verse and UAV is a diagonal matrix. Conclude that if Y = (y1,...y,)7 is a
column of indeterminates and B € k™, then the system of equations AY = B
is equivalent to a system of equations Li(z1) = ¢i1,...,Ln(2n) = ¢, where
(z1,...2,)T = V7Y and (cq,...c,)T = VB.

3. Let Ly, Ly € k[0] with ord(L1) = ny, ord(La) = ny. Let K be a differential
extension of k¥ having the same constants C' as k and let Solng (L;) denote the
C-space of solutions of L;(y) = 0 in K. Assume that dim(Solnc(Lz2)) = ns.
Show

(a) If any solution in K of La(y) = 0 is a solution of L;(y) = 0, then there
exists a @ € k[0] such that Ly = QL.. (Hint: Write Ly = QL> + R with
ord(R) < my and show dim¢ (Solng (R) > na.)

(b) If L; divides Ly on the right, then Solng(L;) C Solng(L2) and
dim¢e(Soln(Ly)) = ny. (Hint: Write Lo = QL;. The operator L; defines a
C-linear map from Solng (L2) to Solng (Q). Compare dimensions). i

2.2 Differential Modules

Definition 2.5 A differential module M (over k) is a finite dimensional k-
vector space which is also a left module for the ring k[0].
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Let M be a differential module and let eq, ..., e, is a k-basis of M. We may
write

!

66,’ = —E aj i€j
J
(u; —

where A = (a;;) € Homp(M, M). If u = Y, ue; € M, then Ou = >, (uj
>_jaijuj)e;. Therefore, once a basis of M has been selected and the identifica-
tion M ~ k™ has been made, we have that u € k™ satisfies u' = Aw if and only
if Ou = 0. Conversely, we have

Definition 2.6 Given A € Hom(k™, k™) we define the differential module M4
associated with Y’ = AY  wvia the formula

66,’ = —E aj i€j
J

where e, ..., ey, is the standard basis of k™.

Exercise 2.7 Let M4 be the differential module associated with the differen-
tial equation Y/ = AY. We define the trivial differential module of dimension n,
(k™, o) to be the differential module defined by de; = 0 for each e; in the stan-
dard basis of k™. Show that M 4 is isomorphic to the trivial differential module
of dimension n if and only if there exists a fundamental matrix Z € GL, (k) for
Y = AY. |

One can extend the usual concepts concerning vector spaces to differential
modules . A differential module N is a differential submodule of M if it is a
left submodule for the ring k[0]. Given a differential module M and a sub-
differential module A one can similarly define a quotient differential module . If
M and M5 are two differential modules one can form the direct sum M ® Mo
and the tensor product M; ® Ms. The action of d on My & M, is given by
O(udv) = (Ouddv) and on M; ®Ms by d(u®v) = duv+u®dv. A morphism
¢ : M1y — M- is a k-linear map ¢ : My — My such that ¢od = do¢p. The set
of differential module homomorphism from M; to My forms a C-vector space
that we denote by Homyg) (M1, Mz). If {e1,...,e,} is a basis of M, (resp.
{fi,---, fm} is a basis of M>) and V' = A;Y (resp. Y’ = A,Y) is the equation
associated with M; (resp. Ms) then U € Homy (M7, Ms) defines a morphism
if and only if U' = AU — U A,. In particular, if M; = M5 and U defines an
isomorphism, we then have that

A = U WU +U AU .

Therefore, two linear differential equations are equivalent (in the sense defined
in Chapter 1.2) if and only if their associated differential modules are isomorphic.
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If My, M5 are differential modules , then one can define a differential module
structure on Homy (M, My) via the equation (0¢)(u) = d(¢(u)) — ¢(0u) One
sees that ¢ € Homy(M1, Ms) defines a differential module morphism if and
only if d¢ = 0. When M, = k with differential module structure defined by
01 = 0, we say that Homy (M, M) is the dual differential module M.

Exercises 2.8 Differential modules
1. Show that the direct sum and tensor product of differential modules as
defined above are differential modules .

2. Verify that U € Homy (M7, M) defines a morphism if and only if U’ =
AU —UA,.

3. If M 4 is the differential module associated with Y’ = AY’, show that M*
is isomorphic to Mp where B = —AT. The equation Y' = —ATY is refered
to as the adjoint equation. If Y € GL, (k) satisifes Y’ = AY the Z = (Y 1T
satisfies Z' = —ATZ.

4. Show that Homy (M, My) is isomorphic, as a differential module to
./\/lf ® Ms.

5. Let <, >: M* ® M — k be the pairing < f,m >— f(m). Prove that
< fym >'=<0f,u>+ < f,0u >. This identity is referred to as the Lagrange
identity. O

A differential module M is completely determined once one knows its struc-
ture as a k-vector space and how 0 € k[0] acts on M. In the literature (e.g., [91])
one sees the following definition. A connection is a finite dimensional k-space
M with an operator V : M — M satisfying

Viu+v) = V(u)+ V(v)

V(fu) = flu+fV(u)
for all u,v € M and f € k. Clearly a differential module M gives rise to
the connection (M, d). Conversely given a connection (M, V) one can define
a differential module structure on M via du = V(u) for all u € M. We shall

not use the term connection in this context but reserve it for a more geometric
object (see Sections 6.1 and 6.2).

Given an operator L = 0" + a,,_10" ! + ... + ap, one can associate with it
asystem Y' = ALY (as in Section 1.2) where

0 1 0 0o ... 0
0 0 1 0o ... 0
AL = : : : oL :
0 0 0 0o ... 1
—Qp —ap ceh v e —Qp—1

We denote the associated differential module M and call this the differential
module associated with the operator L. We have the following
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Lemma 2.9 1. The differential modules My and (k[0]/k[O]L)* are isomor-
phic.

2. For Ly, Ly € k[0] the differential modules My, and My, are isomorphic
if and only if ord(L;) = ord(Ls) and there exist R, S € k[0] with ord(R) <
ord(Ls), ord(S) < ord(L1) such that GCRD(R, L) =1 and L1 R = SLs

Proof. 1. A calculation shows that the matrix of d with respect to the stan-
dard basis of M, is the negative transpose of the matrix of the action of d on
k[0]/k[O]L with respect to the basis {1,9,...,0" 1}.

2. Using 1., we see that My, and My, are isomorphic if and only if the
differential modules k[0]/k[0]L1 and k[0]/k[0]L2 are isomorphic. Assume that
this is the case and let ¢ : k[0]/k[0]L1 — k[0]/k[0]L2 be an isomorphism. Let L
be the image of L € k[0] in k[0]/k[0]L1 or k[0]/k[0]L2 (it will be clear from the
context which we mean). We then have that there exists an element R € k[0]
such that ord(R) < ord(Ly) and ¢(I) = R. Since L; - R = 0 we have that
there exists an S € k[0] such that L1R = SL,. Comparing orders, we see
that ord(S) < ord(L;). Since ¢ is surjective, there exists L € k[J] such that
1 = LR and therefore that there exists T' € k[0] such that 1 = LR + T L. This
implies that GCRD(R, L») = 1. Conversely, assume that S and T exist satis-
fying the above conditions. We then have that the map ¢ defined by ¢(1) = R
gives a morphism from k[0]/k[0]L; to k[0]/k[0]L>. By hypothesis, there exist
L,T € k[0] such that 1 = LR + T'Ly. Therefore ¢ is surjective. Comparing
dimensions, shows that ¢ is also injective and so must be an isomorphism. O

Two operators satisfying the equivalent conditions of Lemma 2.9.2 are said
to be equivalent or of the same type. This concept appears in the 19** Century

literature (for references to this literature as well as more recent references, see
[203]).

For L; and L are in k[0], the following proposition gives several different charac-
terizations of the space of differential module homomorphisms
Homys)(Mr,, ML,).

Proposition 2.10 Let Ly, Ly € k[0] and let Homys)(k[0]/k[0]L1, k[0]/k[O]L2)
denote the C-space of differential module homomorphisms from k[0]/k[O]L; to
k[O]/k[O]La. Let

E(Ll,LQ) = {R € k[@] | ord(R) < OI'd(LQ)
and there exists S € k[0] such that L1 R = SL,}

1. The two C-spaces Homys)(k[0]/k[O]L1,k[0]/k[O]L2) and E(Ly,Ls) are
isomorphic.

2. Let My, and My, be the differential modules associated with Ly and
Ly and let Homyg (M, , My,) be the differential module of k-linear maps
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between these. Let H = {¢ € Homy(My,, Mr,) |0(¢p) = 0}. Then
H = Homyo) (k[0]/K[O] L1, k[D]/K[D]L2).

3. Let K be a Picard-Vessiot extension of k containing the Picard-Vessiot ex-
tensions associated with L1(y) =0 and La(y) = 0 and let G be the Galois
group of K. Let Vi and Vs be the solution spaces of Liy) =0 and La(y) =
0 in K. Then the C-space of G-morphisms Homeg(V2, V1) is isomor-
phic to £(Ly,Ly). Therefore dime Homys) (k[0]/k[O]L1, k[0]/k[O]L2) <
ord(L;)ord(Ls).

Proof. 1. For ¢ € Homy g (k[0]/k[O]L1, k[0]/k[O]L2), let R = ¢(I). The
map & : ¢ = R defines a homomorphism in Homys) (k[0]/k[0]L1, k[0]/k[0] L)
. Since k[0]/Kk[O]L; is generated as a differential module by 1, we have that if
R 0 then ¢ = 0. Furthermore for any R € k[0]/k[0] L2 the map T — R defines
a morphism from k[0]/k[0]L; to k[0]/k[0]Ls. Therefore ® is an isomorphism.

2. If ¢ € H then for all u € k[0]/k[0]L1,0(¢(u) = #(Ou). This is the
additional condition needed to guarantee that a k-homomorphism is a k[0]-
morphism.

3. For R € £(Ly, Ls), the equation L1 R = SLs shows that ¢ : v — R(v)
is a G-homomorphism of V5 to V;. Therefore the map ® : R — ¢ is a C-
homomorphism of £(L;, L2) to Homg(Va, V). If R(v) =0 for all v € V3, then R
must be identially zero because it is an operator of order less than the dimension
of V1. Therefore ® is injective. Let ¢ € Homg(V>, V1) and let 2y, ..., 2, be a ba-
sis of V5. The entries of the matrix A = Wr(¢(z1),...,0(zn))Wr(z1, ..., 2n) 7"
are left invariant by G and therefore lie in k. If rq,...,r,—1 are the entries of
the first row of A then R =79 +...4+7r,_10" b is an element of k[0] such that
L; R(v) vanishes for all v € V5. Therefore, Exercise 2.4.3(b) implies that there
exists an S € k[0] such that Ly R = SLy. This implies that R € £(L;, L2) and
so @ is surjective as well. O

When L; = Lo = L it is useful to have the following (c.f., [105, 203])

Definition 2.11 We denote E(L,L) as E(L) and refer to this as the (right)
Eigenring of L

For Ry, Ry € £(L), we define Ry o Ry to be the residue of Ry Ry after division
(on the right) by L. This defines the ring structure on £(L). The following
lemma will be the basis for a method to factor linear operators (c.f., Section
4.2)

Lemma 2.12 If L is irreducible, then dimg E(L) = 1.

Proof. Let K be the Picard-Vessiot extension associated with L(y) = 0 and
let G be its Galois group. Lemma 2.42 implies that L is irreducible if and only
if the solution space V of L(y) = 0 in k is an irreducible G-module. Schur’s
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Lemma implies that Homg(V, V') has dimension 1. Proposition 2.10.3 implies
dime E(L) = 1. O

Exercise 2.13 The Figenring

1. The aim of this exercise is to show that dimc £(L) can be 1 but that L may
not be irreducible. Let k = C(z2),2' =aandlet L = 8>+ (1/2)0— (1+(1/2)) =
(04 (14 (1/2)))(@ — 1). The functions exp(z) and exp(z) [(exp(—=z)/z) form
a basis for the solution space. Show that the Galois group is the full group of
upper triangular matrices in SL, (C'). and so the constant matrices are the only
matrices that commute with this group. Conclude that dime £(L) = 1 but that
L factors.

2. Show that dime £(L) > 1 if and only if L has a nontrivial right factor
that is equivalent to a left factor. O

We end this section with a discussion of the “solution space” of a differential
module. To do this we shall need a universal differential extension field of a field
k. This is defined formally (and made explicit in certain cases) in Section 3.2
but for our purposes it is enough to require this to be a field F D k with the
same field of constants of k such that any matrix differential equation Y’ = AY
over k has a solution in GL,(F). Such a field can be constructed as a direct
limit of all Picard-Vessiot extensions of k and we shall fix one and denote it by
F. We note that Kolchin [122] uses the term universal extension to denote a
field containing solutions of ALL differential equations but our restricted notion
is suficient for our purposes.

Definition 2.14 Let M be a differential module over k with algebraically closed
constants C' and F a universal differential extension of k. The covariant solution
space of M is the C-vector space ker(9, F ® M). The contravariant solution
space is the C-vector space Homys (M, F).

One easily sees that if M; and M are differential modules and ¢ : M; —
Mo is a k[0]-homomorphism, then there are obvious C-vestor space homomor-
phisms ¢, : ker(9,F ® M;) — ker(9,F ® Ms) and ¢* : Homys(Ma, F) —
Homk[g] (M1, .7:)

Lemma 2.15 Let M be a differential modules with basis e1, -+ ,e, and let
de; = — 3, ajqej and A = (a;;).
1. ker(0, F@ M) ~{y e F" | ¢y = Ay}.
2. There are C-vector space isomorphisms
Homys) (M, F) ~ Homgp(F @7 M,F) ~ Home(ker(d, F ® M),C)
3. Let e € M and let L € k[0] be its minimal monic aninilator. Let W =

{y € F | Ly) = 0}. The map Homyp(M,F) - W C F given by
o — ¢(e) is surjective.



44 CHAPTER 2. DIFFERENTIAL OPERATORS AND MODULES

Proof. 1. This follows from the discussion preceding Definition 2.6.

2. Any ¢ € Homyg)(M, F) extends to an element in Homz(g)(F @7 M, F) via
d(f®@m) = f®@(m) and this yields the first isomorphism. If ¢ is an element of
Hom g5 (F @7 M, F) and y € ker(d, F @ M), C), then d(é(y)) = #(0(y)) =0
so ¢(y) € C. Therefore ¢ € Home (ker(9, F ® M), C). This yields the second
isomorphism.

3. If w € W, the equation ¢(e) = w defines a k[0]-homomorphism of k[0]e to
F. Therefore, to prove 3. it suffices to show that the restriction map ® : ¢ —
d|r[ae maps Homy g (M, F) onto Homys (k[0]e, F). Standard facts from the
theory of vector spaces show that the restriction map ¢ = 9|er(5, Fk[0]e) MaPS
Hom¢ (ker(9, F ® M), C') onto Hom¢ (ker(d, F ® k[O]e), C). The fact that ® is
surjective follows from this and the fact that restriction map commutes with
the isomorphisms of 2. a

2.3 Cyclic Vectors

We shall now show that if k& contains a nonconstant element, then any differential
module is isomorphic to one of the form M/, for some L € k[J]. In particular,
this will show that any system Y’ = AY is equivalent to one of the form Y’ =
ALY for some L € k[0] (c.f., Section 1.2). We begin by giving the following

Definition 2.16 Let M be a differential module . An element m € M is a
cyclic vector if {m,0m, ..., 0" tm} forms a k-basis of M.

Exercise 2.17 Let m be a cyclic vector for the differential module M and
let L € k[0] be the operator of smallest order such that Lm = 0. Show that
M ~ k[0]/k[O]L. O

Proposition 2.18 Let k be a differential field containing a nonconstant. Then
any differential module contains a cyclic vector.

Remark 2.19 We note that the assumption that k£ contain a nonconstant is
necessary. If k were a field of constants then equivalence of the systems Y’ = AY
and Y' = BY corresponds to conjugacy of the matrices A and B. It is well
known that there are matrices whose corresponding linear maps do not have
cyclic vectors.

We shall give two proofs of this result. The first is due to Kovacic [128] (with
some similarities to Cope [54, 55]). The second is due to Katz [116].

We begin Kovacic’s proof by giving a refined version of the theorem of Ritt
given in Exercise 1.13.6. We say that an element F' € k{yi,...,y,} has order
m if m is the smallest integer such that F belongs to the polynomial ring



CYCLIC VECTORS 45

Elyr,vi,--- ,ygm), ey Yna Yy ,yfzm)]. The degree of F' is then defined to be

the degree of F' as a polynomial in this ring.

Lemma 2.20 Let F be a nonzero element of the ring of differential polynomials
E{y1,...,yn}. Suppose that ord(F) =r — 1 and deg(F) = s. If q1,...,n. € k
are linearly independent over C, then there exist integers, ¢; j, 0 < ¢;; <'s, (1 <
i < n,1 <j <), such that F(ay,...,a,) # 0 where a; = cam + ... +
CirNr- In particular, if k contains a nonconstant z, then there exist integers,
¢ij, 0<¢j <s, (1<i<n,1<j<r), suchthat F(ai,...,a,) # 0 where
G; = Ci1 + CinZ 4+ ...+ 2L

Proof. Let C;j, (1 <i<n,1<j<r) beindeterminates over k (in the usual,

not differential, sense). Since the yl(j -b

may define a (non-differential) homomorphism 1 : k:[y(j_l)] — k[Cy5],(1<i <

i

n,1 < j <r), by the formula ¢(y§j71)) =30 C’itnt(jfl). Let G = ¢(F).

are algebraically independent over k we

Since the 7; are linearly independent over C, their Wronskian determinant
det(nl(]_l)) is not zero. Therefore ¢ is an isomorphism and deg(G) = s. We
shall now use induction on nr to prove the conclusion. If nr = 1, then G is an
ordinary polynomial in one variable of degree s. Since such a polynomial has at
most s roots, there exists an integer ¢, 0 < ¢ < s such that G(c¢) # 0.

Now assume that nr > 1. Select a variable Cy, that appears in GG, and think
of G as a polynomial in C, with coefficients that are polynomials in the other
variables. By induction, there exist 0 < ¢;; < s with (i,7) # (u,v), that do not
annihilate the leading coefficient of G. Substituting these into G, we get a poly-
nomial in one variable C\,, and we can find a remaining c,, to make G(c) # 0.
Let a; = caum + ... + ¢ipmp. Since F(ay, ..., a,) = G(c) # 0 we have proven the
first statement of the lemma. The second statement follows from the fact that if
{1,...,2" 71} are linearly dependent over the constants then z is algebraic over
the constant subfield and z must be a constant. |

Lemma 2.21 Let M be o differential module with k-basis {e1,...,e,} and let
M,.--,Nn € k be linearly independent over C, the constants of k. Then there
exist integers 0 < ¢;; < n, 1 <i,5 < n, such that m = Z?Zl a;e; 18 a cyclic
vector of M, where a; = Z?Zl Ciyj; - In particular, if k contains a nonconstant
z, we may take a; = Y i_ ¢ 207"

Proof. Let ey,...,e, be a basis of M and let y1,...,y, be differential inde-
terminates over k. We denote by K = k < y1,...,y, > the quotient field of
the ring of differential polynomials k{y.,...,y,}. This is a left module for k[0]
with 01 = 0, i.e. du = v’ for all u € K. We then have that ' = K ®, M is a
left module over K[J].

Consider the vector f = y1 ® e1 + ...+ yn ® e,. We shall show that f is
a cyclic vector for ' and then that there exist a; € k as above so that this
condition is preserved with respect to M when we substitute a; for y;.
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Fori=1,...,n, write 9 ' f = Di1 ®er+ ...+ Din @ ey, where p; ; € K.

We claim that Dij = y( b4 gi,j where g¢; ; is a hnear differential polynomial
in k{y1,...,yn} of order strictly less than 4 — 1.

This will follow by induction on ¢. For ¢ = 1,p1; = y; so ¢;; = 0. Let
A = (ai,;) be the matrix defined by de; = > a; je;. We then have

n

29(f) = 0@V = o> W' +ai) ®er)

= Y +d)0e+ O T tan)® D ane;

t=1 t=1 j=1
= Zyt1)+qh +Z fh +ta Jat,;j) @ €;) .

Let P = det(p; ;). This differential polynomial has order at most n — 1 and de-
gree at most n. The matrix (p; ;) has a single entry that involves y%nil), namely
(n—1)

Dn,n- Therefore the coefficient of y, in P is the minor det(p; ;)i<i j<n—1.
Using induction, one concludes that the coefficient of y1y - - -yé"il) in Pis 1

and so P has order n — 1 and degree n,

By the previous lemma there exist integers 0 < ¢;; <n, (1<i<n,1<j<
n), such that P(ay,...,a,) # 0 where a; = ¢;;m + ...+ ¢;n,.. This proves both
that m is a cyclic vector for A" and that aje; + ...+ ane, is a cyclic vector for
M. The final statement follows from the final statement of the previous lemma.
O

We note_ that to find a cyclic vector from a basis of M one then needs to
try (n + 1)"" possibilities. The proof due to Katz shows that one can try fewer
cases. Katz’s proof depends on the following lemma.

Lemma 2.22 Let k be a differential field with constants C' and assume that k
contains an element z such that z’ = 1. Let M be a differential module with
k-basis {eo,...,en_1}. There exists a set S C C with at most n(n —1) elements
such that if a ¢ S the element

me= 5 = S (Norees )

s a cyclic vector.

Proof. One first computes the derivatives of m,. To do this define ¢(i, j) € M
inductively via:

I (=1)P(0)or(ej—p) ifj<n—1
dmﬁ:{ b0 (=P ()O(ejp) i <n
0 ifj>n
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c(i+1,7) = 0(c(i, j)) + c(i,j + 1).
We then have that

n—1 (Z _ a)]
me = Z ]' 0(07])
j=0
and so by induction on ¢, that
n—1 ;
; z—a) ..
dim) =3 L j)
=

Furthermore an induction on ¢ + j shows that for ¢ + 7 < n — 1 we have

. (2)orceuss

p=0
and, in particular,
c(i,0) = e;
fori=0,1,...,n — 1. Let t be an indeterminate and set
=
eit) = ﬁC(w) - (2.1)
7=0

We then have that e;(z —a) = 9*(m,) and e;(0) = e;, for all i. Equation 2.1 im-
plies that we may write (eo(t),...,en1(t))T = C(t)(eo,-..,en_1)T for some
n x n matrix C(t) whose entries are polynomials in k[t] of degree at most
n — 1. Note that C(0) = Id, so det C(t) is not identically zero. Since det C(t)
is a polynomial of degree at most n(n — 1), there are at most n(n — 1) ele-
ments a such that C'(z — a) is not invertible. For a not among these values,

we have that (mg,,d(m,),...,0" *(m,))T = (eo(2 — a),...,en_1(z —a))T =
C(z —a)(eg,...,en—1)T, where C(z — a) is invertible. Therefore for a outside a
set of size at most n(n — 1), m, is a cyclic vector. O

One can deduce Proposition 2.18 from the above lemma. If £ is a differential
field with derivation 0 containing a nonconstant element z, we can define a new

derivation 0 = %8. We then have that 8(z) = 1. There is an obvious

correspondence between differential modules for the fields (k,d) and (k,d) and
an element that is a cyclic vector with respect to one of these will be a cyclic
vector with respect to the other.

One can motivate the above proof with the following heuristics (c.f., [24]).
Let k = C(z) and assume that, with respect to the basis {eq,...,en—1} the
differential module is associated with the differential equation Y’ = AY with
A € M,(C[z]). One can formally solve the equation Y’ = AY in the ring of for-
mal power series C[[z]] and find a matrix U € GL,(C[[z]]) such that U" = AU.
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Letting Y = UZ a calculation shows that Z satisfies Z' = 0. The matrix U
defines a change of basis from {ey, ..., e,_1} to a new basis {eo, ..., €,_1} where
O¢; = 0. One easily sees that the vector Z?;[)l (2%/i")e; is a cyclic vector. The
elements ¢; are formal power series combinations of the e;. The lemma above
makes precise the idea that truncation of these series at an appropriate point
will yield & such that 377 (2%/i!)e; is still a cyclic vector.

Another consequence of Proposition 2.18 is:

Proposition 2.23 Assume that k contains a nonconstant. Any system Y' =
AY is equivalent to a system of the formY' = ALY where A is the companion
matriz of a scalar equation L € k[0].

Proof. Let M4 be the differential module associated with Y/ = AY. We
apply Proposition 2.18 to the dual differential module M} and conclude that
there exists a vector m € M3 such that m,d(m),...,0" " (m) is a basis of M?*.
With respect to this basis, 0 has the form

0O 0 O —ag

1 0 0 —aq

0 1 0 —a2

0 0 ce 1 —Qp—-1
Therefore M** ~ M, is associated with the equation Y' = —BTY where
—BT = Ay, for the operator L = 0™ + a,—10"~' + ...+ ag. O

Exercise 2.24 The Formal Adjoint Let L = 0™ + E?;()l a;0". We define the
formal adjoint of L or simply, the adjoint of L to be the operator L* = (—0)" +
Eygol(_a)lai-

1. Show that the dual of k[0]/k[0]L is isomorphic to k[0]/k[0]L*. Hint:
(Lemma 1.5.3, [115]) Let e; = 0%,i = 0,...,n — 1. The element ey = 1 is a
cyclic vector of (k[0]/k[O]L,0). Let e} be the dual vectors. Use the formulas
0= (ef,ej) = (Oef,ej) + (ef,De;) to show that

(—6 + an,1)62_1 = e’):L—Q
(=0)e; +ajep,_y = ey 1<i<n-—2
(=0)eg + age,, , = 0.
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Use these to show that

(=0 +an-1)e,_1 = e, 5
(=0(=0+an—1)+an2)e,_1 = e, 3
(=0(=0(=0+ an-1) + an_2) +an_slen_; = en_4
(=0(-+- (=0(=0 + an—1) + an—2) +an—3) +---)+agple;_;, = 0

These equations show that e, is a cyclic vector for the dual of k[0]/k[0]L and
that its smallest annihilating operator is L*.

2. Let u and v be differential indeterminates. Show that vL(u) — uL*(v) =
(P(u,v)) where P is bilinear and homogeneous in {u,u’,...,u(*"D}
and {v,v’,...,v(""D}. Hint: Let U and V be differential indeterminates. Show
that VU — (=1)/UV) = (UU-DY —UU-2V' 4 .+ (=1)U-Dyvu-ny.
Let U = v and V = a;v and sum the resulting expressions from j = 0 to n.

3. Show that L** = L and (L;L2)* = L3L;. Hint: To show that L** = L,
add the expressions vL(u) — uL*(v) = (P(u,v))" and uL*(v) — vL**(u) =
(P (v,u)) to get v(L(u) — L**(u)) = (P(u,v) + Pi(v,u))’. This implies that
(P(u,v) + Pi(v,u)) = 0so L = L**. To prove (LiLs)* = L3L%, replace
v by Lo(v) in uLi(v) — vLi(u) = (Pi(u,v)) and u by Li(u) in uLs(v) —
vLi(u) = (Py(u,v))". Adding, one has uLLy(v) — vLiL} (v) = (P (u, L2(v)) +
Py(Li(u),v))". Using the relation wLiLy(v) — v(LiLo)*(u) = (Ps(u,v))" and
proceeding as before yields the result. |

2.4 Cyclic Vectors and Constructions

In this section, we consider the behavior of cyclic vectors under some of the
constructions of linear algebra: tensor, alternating and symmetric products.
Throughout this section k will be a differential field with algebraically closed
constants C', M a differential module, F a universal differential field and
ker(0,F ® M) and Homy g (M, F) the covariant and contravariant solution
spaces (see Definition 2.14). We shall make repeated use of the isomorphisms

Homyg (M, F) ~ Homgy(F @ M,F) ~ Homc(ker(d,F ® M),C) (2.2)

proved in Lemma, 2.15.

Tensor Products. In general, if e; is a cyclic vector of the differential module
My and ey is a cyclic vector for Ms, e; ® es need not be a cyclic vector of
Mi ® My (see Example 2.27). Our goal is to describe the minimal monic
annihilator of the tensor product of cyclic vectors and its solution space.
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Lemma 2.25 Let My and My be differential modules over k. The map
b1 ® P2 = P1 @ Pa(my @ ma) = d(my)d2(m2)
defines an isomorphism

Homys (M1, F) @ Homyg (M2, F) =~ Homys (M ® Mz, F)

Proof. This follows from equation 2.2 and the fact that
ker(9, F ® (M1 ® Ms)) ~ ker(9, F ® M1) ® ker(9, F ® M>)
and so
Hom¢ (ker(9, F&(M10M>))) ~ Home (ker(9, FoM;))@Home (ker(9, FOMs))
O

Corollary 2.26 Let e; and e be cyclic vectors for My and My with minimal
annihilating operators Ly and Ly. Le W C F be the C-span of {fif2 | L1(f1) =
0, L2(f2) = 0}. Then the map ¢ — ¢(e1®ez) defines a surjection of Homya (M@
Mo, F) onto W and W is the solution space of the minimal annihilating oper-
ator of e; ® es.

Proof. This follows from the previous theorem and Lemma 2.15.3. |

One can calculate the minimal annihilating operator of e = e; ® e in the
following manner. Let M; and M, have dimensions n; and ns respectively.
Differentiate e niny times:

e = e ®ex
Oe Oe1 ® es + e; ® Oey

On the right hand side of these equations, use the relations Li(e;) = 0 and
L(ez) = 0 and their derivatives to replace occurences of d'e;, i > n; with k-
linear combinations of 8%e;, i < n;. This yeilds a system of nins + 1 equations
in the nyny expressions 8%e; ® &es, 0 < i < ny, 0 < j < ny. The smallest m
for which there exists a linear dependence among the first m of these equations
yeilds the desired minimal operator.

Example 2.27 Let M; = k[0]/k[0]0% and My = k[0]/k[0]0%. Let let e; =
1€ My,ea=1€ My and e = e; ® es. To compute the minimal annihilating
operator of e in M; ® My we consider the system:

e = e1®e2
Ode = Oe; ®ey+ e ® ey
0’c = 20e; ® Oex + 31 ® 0%ey
e = 30e1 ® 0%es

de = 0
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Therefore the minimal annihilating operator is 0*. Note that e; ® ey is not a
cyclic vector of M1 ® Ms. O

Definition 2.28 Let Ly and Lo be two differential operators. The minimal
monic annihilating operator of 1 ® 1 in k[0]/k[0]L1 ® k[0]/k[O]L- is the tensor
product Ly ® Lo of Ly and Ls.

In Example 2.27, we have shown that 0% ® 8% = 9*. Similar definitions and
results hold for M; ® --- ® M.

Symmetric Powers. The d" symmetric power Sym?M of a module M is
defined to be a certain quotient of a tensor product (see [130]). We shall write

the image of m ® ms ®- - -®@my in this quotient as mims ---mgand m®---®@m

as m?.

Lemma 2.29 Let M be a differential module over k. The map

Grg2 -+ a > Pra - Pa(mima -+ ma) := d(ma)da(m2) - - - da(ma)
defines an isomorphism

Symd(Homk[a](M,}')) ~ Homk[a](SymdM,}')

Proof. This follows from the fact that
Homc (ker(d, F ® Sym?M)) ~ Sym?(Home (ker(d, F @ M))

and equation 2.2. O

We can deduce the following corollary in the same manner as for tensor
products.

Corollary 2.30 Let e be a cyclic vector for M with minimal annihilating op-
erators L. Le W C F be the C-span of {fif>--+ fa | L(fi) = 0}. Then the map
¢ — ¢(e?) defines a surjection of Homy) (Sym? M, F) onto W and W is the
solution space of the minimal monic annihilating operator of e?.

One calculates the minimal annihilating operator of e? in a manner similar
to that described for tensor products. Let e; = 0%e and let M have dimension

. L d—1 .
n. Differentiating el < n;_ 1 > times, we get
i@ =
Aed) = del e,

82(63) = d(d - 1)637163 + d637162
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Making the substitutions as before and finding the smallest linear dependence
yields the desired equation.

Example 2.31 Let L = 9% and M = k[9]/k[0]L. In Sym*M, let e3 = 12. We
have

2

e = el
dey) = 2epe
0*(e2) = 2e 4+ 2epes
83(6%) = dejey
o) = de3
0°(e3) 0

Therefore the minimal annihilating equation is &> = 0 and €3 cannot be a cyclic
vector since the dimension of Sym*M is 6. a

The phenomenon exhibited in the last example cannot occur when the minimal
annihilating operator L is of order 2 or less (see Proposition 4.38).

Definition 2.32 Let L be a differential operator. The minimal annihilating
operator of 1¢ in Sym®(k[0]/k[O]L) is the d*" symmetric power Sym?(L) of L.

In Example 2.31, we showed that Sym?(9%) = 9°.

Exterior Powers. We now turn to exterior powers of differential modules.
The general aproach is the same as the two previous constructions. We denote
by 84 the permutation group of d elements.

Lemma 2.33 Let M be a differential module over k. The map

LA Npa = LA ANda(my A Amyg)
= > sgn(m) 1 (Ma(1)) p2(Mn(z) - - Ga(Man(a)) -

TESy

defines an isomorphism

/\ngomk[a] (M, F) ~ Homyy (/\z/\/l,f) .

Proof. The proof follows in the same manner as Lemmas 2.25 and 2.29. O
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Note that for e € M, ¢; ..., ¢qs € Homys) (M, F) and y; := ¢;(e), we have

Y1 Yd
. i yiooe Y
DL N daleNOeN---ANO“) = det . .
FCI
= wr(yl,...,yd)

One therefore has the following

Corollary 2.34 Let e be a cyclic vector for M with minimal annihilating op-
erators L. Le W C F be the C-span of {wr(y1,...,ya) | L(y;) = 0}. Then
the map ¢ — ¢p(e ADde A ... A0 ') defines a surjection of Homya) (A" M, F)
onto W and W is the solution space of the minimal annihilating operator of
eNdeN...\NO e

Definition 2.35 Let L be a differential operator. The minimal monic annihi-
lating operator of eAOe ... N0 te, e = 1 in AU (Kk[D]/k[O]L) is the d'" exterior
power AY(L) of L. .

The calculation of the dt" exterior power of L is similar to the calculations in
the previous two constructions. Let v = eAdeA--- A9 'e. Differentiate v (7})
times and use L to replace occurences of 87, j > n with linear combinations of
de’, i < n. This yields a system of (Z) + 1 equations

v = Z aiy PeN---Nde (2.3)

JZ(jl)"')jd)
0<jii<---<jas<n-1

in the (') quantities 8/'eA---Ad7e with a; s € k. These equations are linearly
dependent and a linear relation among the first ¢ of these (with ¢ as small as
possible) yields the exterior power.

We illustrate this with one example. (A more detailed analysis and simplification
of the process to calculate the associated equations is given in [44], [46].)

Example 2.36 Let L = 8% 4+ a20° + 410 + ao, a; € k and M = k[0]/k[D]L.
Letting e = 1, we have that A2M has a basis {0 A 07 |1 <i < j <2} We
have

v = eAOde
v = end’e
v = eA(—ax0%e—a10e —ge) + de A d%e

Therefore (02 4+ a20 + a1)v = de A 8%e and so 9(0? + a20 + a1)v = de A
(—az0?%e — a;0e — age). This implies that the minimal annihilating operator of
vis (0 + a2)(8* + a20 + a1) — ap. O



o4 CHAPTER 2. DIFFERENTIAL OPERATORS AND MODULES

It is no accident that the order of the (n —1)% exterior power of an operator
of order n is also n. The following exercise outlines a justification.

Exercise 2.37 Ezterior powers and adjoint operators

Let L = 0" + ap—10™ Y + ...+ ap with a; € k. Let K be a Picard-Vessiot
extension of k associated with L and let {yi,...,yn} be a fundamental set of
solutions of L(y) = 0. The set {uy,...,u,} where u; = wr(ys,...,Ji,.--,Yn}
spans the solution space of A"~ (L). The aim of this exercise is to show that
the set {u1,...,u,} is linearly independent and so A"~!(L) always has order n.
We furthermore show that the operators A"~*(L) and L* (the adjoint of L, see
Exercise 2.24) are related in a special way (c.f., [186] §167-171).

1. Show that v; = u;/wr(ys,...,y,) satisfies L*(v;) = 0. Hint: Let Ay, be
the companion matrix of L and W = Wr(y1,...,yn). Since W' = A W, we
have that U = (W17 satisfies U' = —ATU. Let (fo, ..., fa—1)T be a column
of U. Note that f,—1 = v; for some i. One has (c.f., Exercise 2.24),

_frll_l + anflfnfl = fn72
—fit+aifaocr = fisr 1<i<n-—2
—fo+aofar = 0.
and so
_frlzfl + anflfnfl - fn72
(_1)2 7’;_1 - anflfrll_l + an72fnfl - fn73
(1" £+ (1) Yanot fam) ™ D + A aofact = 0

This last equation implies that 0 = L*(f,) = L*(v;).

2. Show that wr(vy,...,v,) # 0. Therefore the map z — z/wr(y1,...,Yn)
is an isomorphism of the solution space of A"~!(L) onto the solution space
of L* and, in particular, the order of A"~'(L) is always n. Hint: Standard
facts about determinants imply that Y. v;y/ =0 for j =0,1,...,n — 2 and
> viygn_l) = 1. Use these equations and their derivatives to show that
WT(’UI)'")Un)Wr(yla"')yn):1' o

Exercise 2.38 Show that if L = 8%, then A?(0%) = 0°. Therefore the d**
exterior power of an operator of order n can have order less than (7). Hint:
Show that the solution space of A%2(8%) is the space of polynomials of degree at

most 4. O

We note that in the classical literature (c.f., [186], §167), the d*" exterior power
of an operator is refered to as the (n — d)** associated operator.
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In Chapter 4, we shall need a generalization of A%(L). Let Z = (iy,...,iq), 0 <
i1 <...<ig<n—1. Lete=1in k[0]/k[0]L. We define the d" exterior power
of L with respect to I, denoted by /\%(L) to be the minimal annihilating operator
of 3eA---Ade in AY(Kk[D]/k[O]L). One sees as above that the solution space
of AL(L) is generated by {wz(y1,...,ya) | L(y;) = 0} where wz(y1,...,yq) is
the determinant of the d x d matrix formed from the rows i; + 1,...iq + 1 of
the n x d matrix

Y1 Y2 . Ya
Y1 Ys oo Yg
—1 —1 —1

This operator is calculated by differentiating the element v = d%1e A --- A Olde
as above. We will need the following lemma

Lemma 2.39 Let k and L be as above and assume that A%(L) has order v =
(Z) For any T as above, there exist bz, ...,br,—1 € k such that

v—1
wI(yl: v 7yd) = Z bI,jwr(yly . 7yd)(l)
=0

for any solutions y1,...,yq of L(y) = 0.

Proof. If A(L) has order v, then this implies that the system of equations
(2.3) has rank v. Furthermore, dle A --- A dée appears as one of the terms
in this system. Therefore we can solve for dte A --- A dide as a linear function
E;’:_Ol bz,i0w of v =eAdeA--- A0 Le and its derivatives up to order v — 1.
This gives the desired equation. a

We close this section by noting the MAPLE V contains commands in its
DEtools package to calculate tensor products, symmetric powers and exterior
powers of operators.

2.5 Differential Modules and Galois Groups

In this section we shall give a dictionary relating properties of differential mod-
ules M, linear operators L, linear differential equations Y’ = AY and differential
Galois groups. We begin by defining the Galois group of a differential module.
Throughout this section k£ will denote a differential field with algebraically closed
subfield of constants C.

Lemma 2.40 Let K be a Picard-Vessiot field extension of k with Galois group
G. Let Ay, Ay € Homy (K™, k™) and assume GLy, (K) contains fundamental ma-
trices for Y' = A1Y and Y' = A5Y. Then My, is isomorphic to Ma, if and
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only if the solution spaces of Y' = A1Y and Y' = A5Y in K" are isomor-
phic as G—modules. In this case, any Picard-Vessiot extension associated with
Y' = A\Y is also a Picard-Vessiot extension associated with Y' = A>Y and so
the Galois groups of these two equations are the same.

Proof. Let V; be the solution space of Y/ = A;Y and let Z; be a fundamental
matrix with coeflicients in K of Y’ = A;Y. If the differential modules M 4, and
M4, are isomorphic, then there exists a matrix U with coefficients in & such
that Z; = UZs. Since the columns of each Z; form a basis of V;, one sees that
the matrix U defines a G-isomorphism from V; to V5.

Conversely, if V3 and V5 are isomorphic G-modules then then there exist
fundamental matrices Z; and Zs of Y/ = A1Y and Y/ = A,Y respectively such
that for each g € G, there is a matrix [g] € GL,(C) such that g(Z1) = Zi[g]
and g(Z2) = Z»[g]. Therefore the matrix U = Z;Z, ! is left fixed by G and so
must lie in GL, (k). The matrix U then defines an isomorphism between M 4,
and My,. O

Note that given V' = A4;Y and Y’ = A,Y, there always exists a Picard-
Vessiot, extension K of k such that GL,(K) contains fundamental matrices of
these two equations. For example one can take the Picard-Vessiot extension
corresponding to the equation

A1 O

! _ 1

oo (0 )y
We can now give the

Definition 2.41 Let M be a differential module and let A € Homy, (K™, k™) be
a matriz such that M is isomorphic to M 4. The Picard-Vessiot extension of k
associated to M is the Picard-Vessiot extension K of k associated to Y' = AY .
The differential Galois group of M is the differential Galois group of K over k.

We note that a matrix A as in the above definition is determined once one selects
a basis of M. Furthermore, Lemma 2.40 implies that this is a valid definition.

We will now interpret various notions concerning differential modules in
terms of systems, operators and Galois groups. A key fact will be the following

Lemma 2.42 Let K be a Picard-Vessiot extension of k with Galois group G
and let V. C K be a finite dimensional C-vector space. The space V is the
solution space of a scalar linear equation L(y) = 0 with coefficients in k if and
only if V is left invariant by G.

Proof. If V is the solution space of L(y) = 0 then it is left invariant by G since
elements of this group must take solutions of L(y) = 0 to solutions of this equa-
tion. Conversely, let V' be a G-invariant C-space and let vq,...v, be a basis.
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Let L(y) = w(y,v1,...,vn)/w(vy,...,v,) where w(...) is the wronskian deter-
minant. For o € G, we have that o(w(y,v1,...,v,)) = w(y,o(v1),...,0(vy)) =
w(y,vy,...,v,)det(4,) and o(w(vy,...,v,)) =w(o(v1),...,0(v,)) =w(vy,...,
vp) det(A,) where A, is the matrix of o with respect to the given basis. There-
fore the coefficients of L are left fixed by all elements of G and so must lie in k.
O

One can now deduce the following:

Lemma 2.43 Let L € k[0] and let K be the Picard-Vessiot extension of k
associated with L(y) = 0. There is a bijective correspondence between monic
right factors of L in k[0] and G-invariant subspaces of V, the solution space of
L(y) =0 in K. Furthermore, there is a bijective correspondence between monic

right factors of L in k[0] and differential submodules of k[0]/k[O]L.

Proof. The first statement follows from Lemma 2.42. To prove the second
statement, let M be a differential submodule of k[0]/k[0]L and let N be its
preimage under the projection 7 : k[0] — k[0]/k[O]L. One sees N is a left ideal
in k[0] and so has a monic generator L. Writing L = QL + R with the order
of R less than the order of Ly, we have R = L—QLx € N so R = 0. Therefore
Ly divides L on the right. Furthermore the correspondence N — Ly is seen
to be a bijection. O

An operator L € k[J] is said to be reducible over k if it can be written as
L = L, Ly where ord(L;),ord(Ls) < ord(L). An equation Y' = AY, A € M, (k)
is said to be reducible over k if any of the equivalent conditions in the following
proposition hold. An operator or equation that is not reducible is said to be
irreducible.

Proposition 2.44 Let Y' = AY be a linear differential equation with coeffi-
cients in k, let K be the corresponding Picard-Vessiot extension and let G be
its Galois group. Let L € k[0] and assume that My, is isomorphic to M4 a a
differential module . The following are equivalent:

1. The differential module M 4 contains a proper, nonzero submodule.

2. Y' =AY is equivalent to an equation Y' = BY, B € M, (k) where B has

the form
_ B, 0
B = <32 Bg).

3. The differential module k[0]/k[O]L contains a proper, nonzero submodule.
4. The operator L is reducible over k.

5. The solution space V of Y = AY in K™ is a reducible G-module.
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Proof. The equivalence of 1. and 3. follows from the fact that k[0]/k[0]L is
isomorphic to the dual of My4. Since K contains the full solution space of
Y’ = AY it will contain the full solution space of any equation equivalent to
this equation. Furthermore, these spaces will be G-isomorphic. Therefore the
solution space W of Y/ = A Y, where Ay, is the companion matrix of L(y) = 0,
is G-isomorphic to the solution space V of Y’ = AY. Since W is G-isomorphic
to the solution space of L(y) = 0, the equivalence of 3., 4. and 5. follows from
Lemmas 2.40 and 2.43. The equivalence of 1. and 2. follows from the definitions
and expressing d in appropriate bases. |

One can decompose an operator L € k[0] as the product of irreducible
operators but such a decomposition need not be unique. For example, if &k =
C(z), 22=1,0°=0-0=(0+ Zia) - (0 — Z}ra) for any @ € C. Nonetheless,
the Jordan-Holder Theorem yields a weaker form of uniqueness. We say a tower
of differential modules My D My D ... D M, = {0} is a composition series
if successive quotients M;/ M,y are simple, that is, have no proper nonzero
submodules. Two composition series My D Mz D ... D M, = {0} and
Ni DNy, D ... D N; = {0} are said to be equivalent if r = s and, after a
possible permutation of indices i — i’ we have that M;/ M1 =~ M [M41.

Proposition 2.45 1. For any differential module all composition series are
equivalent.

2. For any L € k[D] of positive order, we may write L = L, --- L, where
the L; are irreducible and of positive order. If L = Ly--- L is another such
factorization the r = s and, after a permutaion of indices i — i’ we have that
L; and L; are equivalent.

Proof. 1. The usual proof of the Jordan-Holder Theorem [130] can be adapted
to yield this result.

2. A factorization of L yields a composition series k[0]/k[0]|L D k[0]L,/k[O]L D
... D k[O]Ly---Ly_1/k[OIL D k[O|L1Ls--- L, 1L, /k[0]L = {0} where succes-
sive quotiens are isomorphic to k[0]/k[0]L;. Part 1. and Lemma 2.9 now yield
the result. i

Exercise 2.13 shows that there are reducible operators L for which dim¢e £(L) =

1 and so that there are operators for which the dimension of the eigenring does
not characterize the property of irreducibility. Nonetheless, there is an impor-
tant class of operators, the completely reducible operators L, that we define
below, having the property that L is irreducible if and only if dims E(L) =
1. In Section 2.1, we defined the notion of the least common left multiple
LCLM(Ly, Ls) of two operators L1, L>. One can clearly generalize this and
define the least common left multiple LCLM (L4, ..., Ly,) of any finite set of
operators to be the monic operator of least order such that the L; divide this
operator on the right. One sees that if L is any operator that is divisible on the
right by all the L; then LOLM (L, ..., Ly,) divides L on the right.
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Definition 2.46 Let k be a differential field and L € k[0]. We say that L
is completely reducible if L is a nonzero k-multiple of the least common left
multiple of a set of irreducible operators

Exercise 2.47 Completely reducible operators

1. Let k = C be a field of constants and let L linear operator in C[9]. We may
write L = p(9) = [[pi(0)™ where the p; are distinct irreducible polynomials
and n; > 0. Show that L is completely reducible if and only if all the n; < 1.

(2) Show that the operator L = 8% + (1/2)0 € C(z)[9] is not completely re-
ducible. Hint: The operator is reducible since L = (9 + (1/2))(9) and 0 is the
only first order right factor. |

In Proposition 2.49, we give several equivalent formulations of the notion of
complete reducibility. We first need the following.

Lemma 2.48 Letk be a differential field with constant field C and L, Ly, ..., Ly, €
k[0]. Let K be a Picard-Vessiot extension of k containing a full set of solutions
of each L(y) = 0,L1(y) =0,..., Ly (y) =0. The operator L is a k-multiple of
the least common left multiple of Ly, ..., Ly, if and only if the solution spaces
Vi of Liy(y) = 0 in K span the solution space of L(y) = 0.

Proof. Let W be the C-vector space spanned by the V; and let G be the Galois
group of K over k. Clearly W is G-invariant, so Lemma 2.42 implies that W is
the solution space of a monic L € k[8]. Since V; C W, each L; divides L on the
right and one easily sees that L = LCLM (Ly, ..., L,,). Therefore, L = aL for
some nonzero a € k if and only if V =W. a

Let G be a linear algebraic group. Given a G-module W and a G-submodule
W1 we say that Wi has a complementary submodule if there is a G-submodule
Ws of W such that W = W, @ Ws. A finite dimensional G-module V is said to
be completely reducible if every G-submodule has a complementary submodule.
This is equivalent to V being a direct sum of irreducible submodules. The
unipotent radical of G is defined to be the largest normal unipotent subgroup
of G (see [108] for definitions of these notions). The group G is said to be
reductive if G,, is trivial. When G is defined over an algebraically closed field
of characteristic zero, it is known that G is reductive if and only if it has a
faithful completely reducible G-module (c.f., the Appendix of [25]). In this case,
all G-modules will be completely reducible. The next proposition gives several
equivalent conditions for an operator to be completely reducible.

Proposition 2.49 Let Y' = AY be a linear differential equation with coeffi-
cients in k, let K be the corresponding Picard-Vessiot extension and let G be its
Galois group. Let L € k[0] and assume that My, is isomorphic to M. The
following are equivalent:
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1. The differential module M 4 is the direct sum of irreducible submodules.

2. Y' = AY is equivalent to an equation Y' = BY where B has the form

B; 0 0
0 B 0

B = )
0 O By

where each equation Y' = B;Y is irreducible over k.

3. The differential module k[0]/k[O|L is the direct sum of irreducible submod-
ules.

4. L is completely reducible.
5. The solution space V of Y' = AY in K is a completely reducible G-module.

6. G is a reductive group.

Proof. The equivalence of 1. and 2. follows from the definitions. A differential
module is the direct sum of irreducible submodules if and only if the same is
true of its dual. Therefore 1. and 3. are equivalent. We now show that 3. is
equivalent to 4. .

Assume 3. holds and write k[0]/k[0]L = M1 @ --- & M; where each M, is
irreducible. Let T be the coset of 1 in k[0]/k[0]L. We may write 1 = vy +...+v;
where each v; € M;. Let L; € k[0] be the monic operator of smallest order
such that L;(v;) = 0. Since each M; is irreducible, each L; is irreducible.
Furthermore, 0 = L(1) = L(v1) + ... + L(v) so each L(v;) = 0. Therefore each
L; divides L on the right. If each L; divides an operator Ly on the right, then
Lo(1) = Lo(v1) + ...+ Lo(vt) =0 +...+0 = 0. Therefore, L divides Ly on the
right and so L is the least common left multiple of th L;.

Assume 4. holds and let L be the least common multiple of the distinct monic
irreducible operators Ly, ..., L;. One easily sees that this implies that the map
¢ : k[0] = k[O]/k[O)Ly & ... ® k[0]/k[D|L; defined by L+ (L + k[d]L1,...,L +
k[O]L:) is a surjective homomorphism. Since the L; are distinct, the sum of
their orders equals the order of L. Therefore the k-dimensions of k[0]/k[0]L
and k[0]/k[O|L1 @ ... ® k[0]/k[0]L: are the same and so these modules are
isomorphic.

We now show the equivalence of 4. and 5. Assume that 4. is true and let L =
LCLM(Ly,...,Ly) be a minimal representation of L as a least common left
multiple of irreducible operators. By minimality, we have that L; does not divide
LCLM(Ly,...,Li,...,Ly). For each i, we may write L = L;L;. By Ex-
ercise 2.4.3, L; has a full set of solutions in K. Furthermore, since each
L; is irreducible, each V; is an irreducible G—module. From the condition

that L; does not divide LCLM (L, ..., L;,...,Ly) on the right, we have that
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VinVi+...4+Vi+...+V, = {0}. Lemma 2.48 implies that V' is the direct
sum of the V;. Therefore V is a completely reducible G—module.

Assume 5. is true and write V = V; & ... ® V,, where the V; are irreducible
G—modules. By Lemma 2.42, each V; is the solution space of an irreducible
operator L; and by Lemma 2.48, we have that 1. is true.

The equivalence of 5. and 6. follows from the discussion preceding the lemma.
O

One can easily describe £(L) when L is completely reducible. Given any ring
R, any completely reducible R—module M may be written in the form M =
M Y”) @@ Mg"”) where the M; are non-isomorphic irreducible R —modules,
each repeated n;—times in the direct sum. It is a well known extension of
Schur’s Lemma (c.f., [130], Chapter XVII, Section 1, Proposition 1.2) that
Endgr (M) is isomorphic to Mat,, (Endg(M1)) @ ... ® Mat,, (Endgr(M.,)),
where Mat,, (Endr (M;)) is the ring of n; xn; matrices with entries in Endg (M;).
If L is a completely reducible operator, we can apply this result to the C[G]-
module V', where V is the solution space of L in the associated Picard-Vessiot
extension of k and C[G] is the group algebra of G. Note that since C is alge-
braically closed we have (by Schur’s Lemma) that any Ende(q)(V;) is isomorphic
to C. Therefore, using the isomorphisms of Lemma 2.10, we have the following:

Lemma 2.50 Let L be a completely reducible linear operator and let L =
LCLM(Ly,...,L;) be a minimal representation of L as a least common left
multiple of irreducible operators L; of order n;. Then E(L) is isomorphic to
Mat,, (C)® ... ® Mat,, (C). L is irreducible if and only if E(L) is isomorphic
to C.

We now have the following, which shows that for completely reducible op-
erators, reduciblity is equivalent to the eigenring having dimension larger than
one.

Corollary 2.51 A completely reducible operator L is reducible if and only if
dimcE(L) > 1.
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Chapter 3

Formal Local Theory

In this chapter we will classify and describe the Galois groups of linear differen-
tial equations over the field of formal Laurent series K = C((t)) (where possibly
t =z—cort=1/z). Unless otherwise stated the term differential module will
refer in this chapter to differential modules over K.

3.1 Formal Classification of Differential Equa-
tions

This classification can be given in various ways:

1. A factorization of L € K[d] into linear factors (over the algebraic closure
of K).

2. Finding a canonical form in each equivalence class of matrix differential
equations v’ = Awv.

3. Description of the isomorphism classes of left K [0] modules of finite di-
mension over K.

4. Description of a fundamental matrix F' for a matrix differential equation
in canonical form.

5. Description of a structure on the solution space V' of the differential equa-
tion.

The problem is somewhat analoguous to the classification (or Jordan normal
form) of linear maps A acting on a vector space V of finite dimension over the
field of real numbers R. Let us recall how this is done. The eigenvalues of A
are in general complex and therefore we need to make of V' the complex vector

63
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space W = C® V. Let ay,...,as; denote the distinct eigenvalues of A. The
generalised eigenspace for the eigenvalue «; is defined by;

W(a;) :={w e W | (A - a;)"w = 0 for sufficiently large m}

One finds a decomposition W = @W («;) of W into A-invariant subspaces. For
each subspace W (a;) the operator B; := A — «; is nilpotent and one can de-
compose W (a;) as a direct sum of subspaces W (a;). Each such a subspace has
a basis ey, ..., e, such that B;(e;) = es, ..., Bi(e,—1) = e, Bi(e;) = 0. Writing
down the matrix of A with respect to this decompositions and these bases one
finds the familiar Jordan normal form for this matrix. The given fact that A is
a linear map on a real vector space implies now that for every complex «; its
conjugate is some «; and the “block-decompositions” of W(e;) and W(a;) are
the same.

To classify differential equations over K we will need to first work over the alge-
braic closure of K. In the next section we shall show that every finite algebraic
extension of K of degre m over K is of the form K,, := K( ) with v™ =t¢. In
the sequel we will often write v = ¢!/, The main result of this chapter is:

Theorem 3.1 1) For every monic (skew) polynomial
L=0%+a0%" + ..+ a4_10+aq € K[

there is some integer m > 1 and an element u € IA(m such that L has a factor-
ization of the form L = L2(0 — u).

(2) After replacing K by a ﬁnite ﬁeld extension IA( the differential equation in
matriz form v’ = Av (where ' = t 7) is equivalent to a differential equation
u' = Bu where the matriz B has a ”decomposztzon into square blocks B; , with
i=1,..,s and 1 < a <m; of the form

bi 0 . 0
1 b 0 . 0
0 1 b O 0
0 0 1 b

Further b; € C[t='/™] and for i # j one has b; —b; & Q.

(8) Let M denote a left I/(\'[E)] module of finite dimension. There is a finite field
extension K,, of K and there are distinct elements qy,...,q; € t~ /™ C[t=1/™]
such that K, ®p M decomposes as a direct sum ©i_, M;. For each i there is a

vector space W; of finite dimension over C and a linear map C; : W; — W; such
that M; = Ky, @ c Wi and the operator 6 := t0 on M; is given by the formula

S(fow) = (¢:f@w)+ (f @w) + (f ® Ci(w))
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In the sequel we prefer to work with § = ¢ in stead of 8. Of course K [0] =
K [0] holds. Further we will go back and forth between the skew polynomial
L and the left I?[(S] module M = I?[é]/[?[é]L By induction on the degree it
suffices to find some factorization of L or equivalently some decomposition of M.
Further we note that the formulations (2) and (3) in the theorem are equivalent
by using the ordinary Jordan normal forms of the maps C; of part (3). We shall

treat questions of uniqueness and descent to K later in the chapter.

Exercise 3.2 Solutions of differential equations over K
Let E be a differential extension of K containing:

1. all fields K,
2. for any m and any b € I?;‘n, a nonzero solution of y' = by,

3. a solution of y' = 1.

Show, assuming Theorem 3.1, that E contains a fundamental matrix for any
equation Y’ = AY with A € M, (K). O

We shall prove Theorem 3.1 using differential analogues of Hensel’s Lemma.
We will start by recalling how the classical form of Hensel’s Lemma allows one
to prove that fields of the form K, are the only finite algebraic extensions of K.

We begin by noting that the field K,, = K(t'/") = C((t'/")) is itself the field of
formal power series over C in the variable t'/™. This field extension has degree
n over K and is a Galois extension of K. The Galois automorphisms o are
given by the formula o(t'/") = (t'/" with ¢ € {€>™**/"| 0 < k < n}. The Galois
group is isomorphic to Z/nZ. We note that K n C K m if n divides m. Therefore
it makes sense to speak of the union K= UnIA(n and our statement concerning

algebraic extensions of K implies that K is the algebraic closure of K.

We will also need the valuation v on K. This is defined as a map
v:K—ZU {0}

with v(0) = oo and v(f) = m if f = Y., a;t’ and a, # 0. We note that
v(fg) = v(f) +v(g) and v(f + g) > min(v(f),v(g)). This valuation is extended
to each field K, as a map v : K,, — (1/n)ZU{oo} in the obvious way: v(f) = A
if f = Eu>>\;nuez a,t? and ay # 0. Finally v is extended to a valuation

v: K = QU {oo}. Further we will write O, = C[t!/"]] = {f € K| v(f) > 0}
and O := {f € I?| v(f) > 0}. It is easily seen that O,, and O are subrings with

as fields of quotients I?n and K. The element 7 := t/™ € Oy, has the property
that 70,, is the unique maximal ideal of O,, and that O, /70, = C. On K,
one can also introduce a metric as follows d(f,g) = e~?(/=9). With respect to
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this metric K, » is complete. In the sequel we will talk about limits with respect
to this metric. Most of the statements that we made about the algebraic and
topological structure of K are rather obvious. The only difficult statement is
that every finite extension of K is some field K. This will follow from:

Proposition 3.3 Every polynomial T +a:T¢ '+ ...+ aq_1T+aq € I?[T] has
a root in some K.

Proof. Define A :=min{2“J| 1 < < d} and make the substitution T = t " E,
where F is a new indeterminate. The new monic polynomial that arises has the
form

P=E'+bE+..+bi1E+by

with by,...bg € Ky, where m is the denominator of X. Now minv(b;) = 0. We
have that P € O,,[E] and we write P € C[E] for the reduction of P modulo
7 :=t'/™ (i.e. reducing all the coefficients of P modulo 7). Note that the fact
that minv(b;) = 0 implies that P has at least two nonzero terms. Note that
v(b;) = 0 precisely for those i with @ = X. Therefore if v(b1) = 0, we have
that A is an integer and m = 1. The key for finding decompositions of P is now
the following lemma.

Lemma 3.4 (Classical Hensel’s Lemma) If P = F\ Fy with Fy,F» € C[E]
monic polynomials with g.c.d.(Fy,Fy) = 1 then there is a unique decomposition
P = P, P, of P into monic polynomials such that P; = F; fori=1,2.

Proof. Suppose that we have already found monic polynomials Q1 (k), Q2(k)
such that Q,(k) = F; (for i = 1,2) and P = Q;(k)Q2(k) modulo 7*. Then
define Q;(k + 1) = Q;(k) + m* R; where R; € C[E] are the unique polynomials
with degree R; < degree F; and
pP— k k
BBy + Ry = L= QRIQE) i
™

One easily sees that P = Q1 (k + 1)Q2(k + 1) modulo 7%+, Define now

P; =limy Qi (k) (the limit is taken here for every coefficient separately). It is
easily seen that P;, P, have the required properties. O

Example 3.5 Let P = 4> —2t — 1. We then have P = 4% — 1= (y — 1)(y + 1).
We let Q1(0) =y — 1 and Q2(0) = y + 1 and define Q1(1) = Qo(0) + tR; and
Q2(1) = Q=2(0) + tR2. We then have P — Q1(1)Q2(1) = =2ty — t(y + 1)Ry —
t(ly — )Ry + t2R1Ry. Solving —2y = (y + 1)R; — t(y — 1)Ry mod t, we get
Ry = Ry = —1. Therefore Q1(1) =y —1—t and Q2(1) =y + 1 —¢. At this
point we have @Q1(1)Q2(1) = P so the procedure stops. O

Continuation of the proof of Proposition 3.3: We use induction on the
degree d. If P has at least two different roots in C then induction finishes the
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proof. If not then P = (E — ¢p)? for some ¢y € C. As we have noted, P has at
least two nonzero terms so we have that co # 0. This furthermore implies that
P has d + 1 nonzero terms and so m = 1 and ) is an integer. One then writes
P = (E' — co)d + e (E — Co)d_1 + ...+ ed_l(E — Co) + eq
with all v(e;) > 0. Put A\; =min {@ 1 < < d} and make the substitution
E = ¢y + t"E*. Tt is then possible that an application of Lemma 3.4 yields
a factorization and we will be done by induction. If not, we can conclude
as above that A; is an integer. We then make a further substitution £ =
co + c1tM + P2 E** with 0 < A\; < Ay and continue. If we get a factorization
at any stage using Lemma 3.4, then induction finishes the proof. If not, we will
have generated an infinite expression f := Y 7 ¢, t* with 0 < A\j < Xy < ..
a sequence of integers such that P = (E — f)¢. This finishes the proof of
Proposition 3.3. O

Example 3.6 Let P = E? — 2tE + t*> — t3. We have that P = E? and (using
the above notation) that e; = —2t and ey = t2 — ¢t>. Furthermore, \; =
min{{,2} = 1. We then let E = tE*, so Q = t?E*? — 2tE* + * — 3. Let
Q1 = E*2—2F*+1—t. We see that Q; = E*2 —2E*+1 = (E* —1)2. We write
Q1 = (B* —1)> —t and so Xy = min{%2,1} = 1/2. We let E* = 1+ ¢t!/2E**
and so Q; = (t'/2E**)? —t = tE**> — t. Letting Q» = E**? — 1, we have that
E** = +£1. The process stops at this point and we have that the two roots of @@
are 1+ t(1 +¢/?). O

3.1.1 Regular Singular Equations

We will now develop versions of Hensel’s Lemma for differential
modules/equations that will help us prove Theorem 3.1. We start by intro-

ducing some terminology. Let M be a finite dimensional vector space over K.
Let, as before, O := {f € K| v(f) > 0}.

Definition 3.7 A lattice is a subset N of M of the form N = Oe; + ... + Oeq
where e, ...,eq is a K-basis of M.

The lattice is itself an O-module. One can prove that any finitely generated
O-module N (i.e. there are elements fi, ..., fm, with N =Of; +...+Of,,) of M
which contains a basis of M is a lattice. For a lattice N we introduce the space
N = N/nN where 7 = t. This is a vector space over C with dimension d. The
image of n € N in N will be denoted by m. Properties that we will often use
are:

Exercises 3.8 1) fi,...,fm € N are generators of N over O if and only if

fi,-, fn are generators of the vector space N over C. Hint: Nakayama’s
Lemma
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2) fi,..., f« € N is a free basis of N over O if and only if fi,.-., f. is a basis of
the vector space N over C. O

Although lattices are ubiquitous, only special differential modules have 4-
invariant lattices.

Definition 3.9 A differential module M is said to be a regular singular module
if there exists a 6-invariant lattice N in M. A differential equation Y' = AY,
A an n X n matriz with coefficients in K, is said to be regular singular if the
associated module is regular singular. If M is not reqular singular then we say
it is irregular singular.

Examples 3.10 1) Let L = 6?4+ ;6" 4+ ... + ag_1 + aq and suppose that
all v(a;) > 0. The module M = D/DL has as a basis e, d(e), ..., 47 (e) over K
and Le = 0. Consider the lattice N := Oe+ Od(e) + ... + 05?1 (e). This lattice
is invariant under 6. We call such an operator a reqular singular operator .

2) The differential module associated with an equation of the form 0Y = AY
where A € M,(CJ[t]]) is a regular singular module. In particular, any equation
of the form 0Y = AY where A € M,(C) is a regular singular module. In
Exercise 3.14, we will outline a proof that all regular singular modules are
associated with such an equation. |

Lemma 3.11 If My and My are regular singular modules, then My @& Ms, My ®
M and M7 are regular singular modules. Furthermore, any D submodule and
quotient module of a regular singular module is reqular singular.

Proof. Let N; and N5 be §-invariant lattices in M7 and Ms. A calculation N1 @
N3, N1 ® Ny and Ny are d-invariant lattices in the corresponding D modules. If
M is a regular singular module with d-invariant lattice N and M’ is a submodule
of M, then NN M’ is a d-invariant lattice of M'. Using duals and applying this
result, we obtain a similar result for quotients. |

Exercise 3.12 Cyclic vectors for reqular singular modules. Let M be a regular
singular differential module of dimension d. Show that M contains a cyclic
vector v having a minimal annihilator 6% + a;0%~! + ...+ a4 with a; € O and
therefore that any regular singular module can be associated with a regular
singular operator. Hint: In the proof of Lemma 2.22, show that one can select
a constant ¢ such that the matrix C'(z — ¢) is invertible in O. O

Let M be a regular singular module and let NV be a d-invariant lattice. We have
that 7N is invariant under § and hence ¢ induces a C linear map § on N. Let
c1,...,cs denote the distinct eigenvalues of § and let N = N(c;) @ ... ® N(c,)
denotes the decomposition of N into generalized eigenspaces. One can choose
elements e; ; € N with 1 <4 <sand 1 <j <m,; such that {&; ;| 1 <j <m;}



3.1. FORMAL CLASSIFICATION OF DIFFERENTIAL EQUATIONS 69

forms a basis of N(c;) for every i. Then we know that {e; ;} is a free basis of
the O-module N. We define now another d-invariant lattice INV; generated over
O by the set {te1,1,...,t€1,m,€2,1, -, €s,m, }- The linear map 6 on N; has now
as eigenvalues {¢; + 1,¢s,...,¢s }. We come now to the following conclusion:

Lemma 3.13 If M is a regular singular differential module, then there exists
a d-invariant lattice N in M such that the eigenvalues ¢y, ...cs of 6 on N have
the property: If c; — cj € Z then c; = c;.

Exercise 3.14 Matriz equations for reqular singular modules

In this exercise, we shall outline a proof of the fact that a regular singular
module has a basis with respect to which the associated equation is §Y = AgY
with Ay € M,,(C) and the distinct eigenvalues of Ag do not differ by integers.

a) Let U,V € M,,(C) and assume that U and V have no eigenvalues in common.
Show that the map X — UX — XV is an isomorphism on M, (C). Hint: It
is enough to show that the map is injective. If UX — XV = 0 then for any
P e Cly], PU)X — XP(V) = 0. If Py is the characteristic polynomial of U,
then the assumptions imply that Py (V) is invertible.

b) With respect to the basis of a §-invariant lattice, we can assume the associated
equation is of the form 0Y = AY with A € CJ[t]]. Let A = Ao + A1t +

. ,A; € M,(C). Furthermore, by Lemma 3.13, we may assume that the
distinct eigenvalues of Ay do not differ by integers. Construct a matrix P =
I+Pit+...,P;, € M,(C) such that PAy = AP —§P. Hint: Comparing powers
of t, one sees that

AoP; — Pi(Ag +iI) = —(Ai + Ai 1 PL + ... A1 Pi_1) .

Solving these equations recursively yields a change of basis matrix giving the
desired basis. |

Exercise 3.15 Solutions of regular singular equations

Let E be a differential extension of K containing a solution of ' = 1 and such
that for any ¢ € C, E contains a nonzero solution of y’ = cy. Show that any
differential equation Y' = AY, A € M, (CJ[[t]]) has a fundamental matrix with
entries in E. In particular, show that any linear differential equation L(y) = 0
with L € I?[(S] has a solution of the form z%¢ with a € C and a nonzero ¢ € K
and a fundamental set of solutions of the form y; = 2% 37" ¢; j(log 2)’ where
¢ij € IA(, z¢ is a solution of ¥’ = cy and log z is a solution of y’ = 1. Hint: Any
such equation is equivalent to an equation of the form Y' = AyY, Ay € M, (C),
which we can furthermore assume is in Jordan form. For the first part, let a be
an eigenvalue of the constant matrix. a

Exercise 3.16 Cyclic vectors of regular singular modules (continued)
Let M be a regular singular module and let e be a cyclic vector of M. Show that
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the minimal monic annihilator L € D of e is regular singular. Hint: Proceed by
induction on the order of L. Note that by Exercise 3.15, we can write L = Ly Lo,
where Ly = 6 — 1), ¢ € k[[2]]. Lemma 3.11 implies that L, is the annihilator of
a cyclic vector of a regular singular module (a quotient of M). |

Exercise 3.17 Factors of reqular singular operators
Show that if L is a monic regular singular operator and L = L; Ly where L
and Lo are monic, then both L; and L» are regular. O

We now prove:

Proposition 3.18 (Hensel’s Lemma for regular singular modules) Let
N denote a d-invariant lattice of the left D module M of finite dimension over
K. Let a direct sum decomposition of N into é-invariant subspaces Fi, Fs be
given such that for any eigenvalue ¢ of 6 on Fy and any eigenvalue d of & on Fy
one has ¢ —d € Z. Then there exists a unique decomposition N = Ny & Na of
N into §-invariant O-modules such that N; = F; for i = 1,2. In particular M
admits a direct sum decomposition as a left D-module.

Proof. For each n we shall construct C subspaces Fy(n), Fo(n) of N/a"*1N
such that

1. N/7" "IN = Fi(n) ® Fy(n),
2. The F;j(n) are invariant under § and multiplication by =,

3. The map N/7"T'!N — N/7"N maps F;(n) onto F;(n — 1).

Once we have shown this, the spaces N; constructed by taking the limits of the
F;(n) give the desired direct sum decomposition of N.

Let S; and Sy be the set of eigenvalues of 0 acting on F; and F, respectively.
Since 7N is invaraint under ¢, the map § induces a C linear map on N/7" 1N,
We will again denote this map by §. We will first show that the eigenvalues of
§ on N/a"'N lie in (S; + Z) U (S2 + Z). Since each V(n) = a"N/a" "IN is
invariant under the action of §, it is enough to show this claim for each V' (n).
If 7™v,v € V(0) is an eigenvalue of §, then

(™) = nr™v + 79 (v) = er™v

for some ¢ € C. Therefore ¢ € (S; +Z)U (S2 +Z). We therefore define Fy (n) to
be the sum of the generalized eigenspaces of d corresponding to eigenvalues in
S14Z and F>(n) to be the sum of the generalized eigenspaces of § corresponding
to eigenvalues in Sy + Z. By the assumptions of the lemma and what we have
just shown, N/7""IN = Fi(n) @ Fx(n). Items 2. and 3. above are easily
checked.

The uniqueness follows from the fact that the image of each N; in 7" N/7"*1N
is the image of F; under the map F; — 7™ F;. O
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We are now in a position to prove Theorem 3.1.3 under the additional as-

sumption that the module M is regular singular. Lemma 3.13 and Proposition
3.18 imply that M can be decomposed as a direct sum of modules M; such that
M; admits a é-invariant lattice N; such that ¢ has only one eigenvalue ¢; on N;.
The next step will be to decompose each M; into indecomposable pieces.
Let from now on let M denote a regular singular module with a d-invariant
lattice such that ¢ has only one eigenvalue ¢ on N. By changing ¢ into § — ¢ one
may suppose that ¢ = 0. Therefore ¢ is a nilpotent linear map on N and there
is a "block decomposition” of N as a direct sum of §- invariant subspaces N (i)
with i = 1,...,a such that each N (i) has a basis {fi 1, ..., fis; } with

0fi1 = fi2y s 0fisic1 = fisi»0fis; =0

One tries to lift this decomposition to N. Suppose that one has found elements
e;; such that & ; = f;; and such that é(e; ;) = e; ;41 modulo 7* for all 4, j
and where e; ; = 0 for j > s;. One then needs to determine elements é; ; =
eij + ma;; with a; ; € N such that the same congruences hold now modulo
7kt A calcuation shows that the a;; are determined by congruences of the
form

(5 + k)am = MN# + Q541 modulo 7
Since § + k is invertible modulo = when k& > 0, these congruences can be re-
cursively solved. Taking the limit of this sequence of liftings of f; ; one finds
elements Ei,j such that Eiﬁ' = fi,j with (5(Ei7j) = E’i7j+1 for all ’L,] and where
again F;; = 0 for j > s;. We will leave the construction of the a;; to the
reader. This finishes the study of the regular singular case.

Remark 3.19 We will return to the study of regular singular equations in
Chapters 5 and 6.

3.1.2 Irregular Singular Equations

We now turn to the general case. Let e denote a cyclic element of a left D
module M of finite dimension and let the minimal equation of e be Le = 0
where

L=6+a6" '+ - +a;10+a, €D

We may assume that A :=min {@ 1 < i < d} is negative since we have
already dealt with the regular singular case. Now we imitate the method of
Proposition 3.3 and write § = t~*E. The skew polynomial L is then transformed
into a skew polynomial

P:=E 4+ b0, E" 4. 4+ by \E+Dby

with min v(b;) = 0 and so P € C[[t'/™]][E] where m is the denominator of \.
Consider the lattice N = Oppe + O E(€) + ... + Oy B4 Y(e) in K,y ® M where
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O := CJ[[t'/™]]. The lattice N is E-invariant. Let 7 denote t'/™. Also 7N
is E-invariant and E induces a C-linear map, called E, on the d-dimensional
vector space N = N/nN. As in the regular singular case there is a lemma
about lifting E-invariant subspaces to E-invariant submodules of N. We will

formulate this for the ground field K , although a similar statement holds over
K,.

Proposition 3.20 (Hensel’s Lemma for irregular singular modules)
Let M denote a left D module of finite dimension; let E = t*§ with a € Z and
a > 0; let N denote an E-invariant lattice and let N :== N/t N where © = t.
Let o direct sum decomposition be given N = Fy @ F, where F\,F are E-
invariant subspaces such that E|F, and E|Fy have no common eigenvalue. Then
there are unique E-invariant O-submodules N1, Ny of N with N = N1 $ N» and

Nz:Ft fOT’L.ZI,Q.

Proof. The proof is similar to the proof of Proposition 3.18. Let S; and Ss
be the set of eigenvalues of E acting on F; and F respectively. Since 7N is
invaraint under E, the map E induces a C linear map on N/7"*1N. We will
again denote this map by E. A calculation similar to that given in the proof of
Proposition 3.18 shows that the eigenvalues of E on N/7"1 N are again S;US,.
We therefore define Fj(n) to be the sum of the generalized eigenspaces of E
corresponding to eigenvalues in S; and F»(n) to be the sum of the generalized
eigenspaces of E corresponding to eigenvalues in Sy. By the assumptions of the
lemma and what we have just shown, N/7"*1N = Fj(n)® Fy(n). Taking limits
as before yields the N;. |

We are now ready to prove Theorem 3.1 in its full generality. If we can
apply Proposition 3.20 to get a decomposition of K,, ® M, then the proof can
be finished using induction. If no decomposition occurs then the characteristic
polynomial of E has the form (T — ¢)? for some ¢ € C and, as in the proof
of Proposition 3.3 m = 1. Make now the substitution § = ct* + t*E** with
a suitable choice for p > A. If for the operator E** still no decomposition
occurs then p is an integer and one continues. Either one will be able to apply
Proposition 3.20 or one will generate a sequence of integers Ay < Ay < ....
These integers must eventually become positive, at which point the operator
D =6-31_, c;t!/™ acts on K,,, ® M so that this module is regular singular. In
this case we are in a situation that we have already studied. The process that
we have described yields a decomposition of K,, ® M as a direct sum ®M; such
that for each i there is some ¢; € t~'/™C[t~ /"] with § — ¢; acts in a regular
singular way on M;. The statement (2.6) now proves part 3. of the theorem.
After choosing a basis of each space W; such that C; has Jordan normal form
one finds statement 2. of the theorem. Finally, for every M there exists an
integer m > 1 such that K,,, ® M has a submodule of dimension 1. This proves
1. of the theorem.
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Remarks 3.21 1. Concerning part 1. of the Theorem one can say that the
module D/DL has, after a finite field extension, at least one (and possibly
many) 1-dimensional submodules. Hence there are elements u algebraic over K

such that L decomposes as L = Ly(0 — w). Any such u can be seen as u = %
where y is a solution of Ly = 0. The element u satisfies itself a non linear
equation of order d — 1. This equation is called the Riccati equation of L
and has the form

Pi+ag 1Py 1+..+a1Pp+agFPy =0

where the P; are defined by induction as follows: Py = 1; P, = P, + uP;_4.
One has P, = u, P, =u' +u?, P; =u" + 3uu’ + u® et cetera.
2. The proof given above of Theorem 3.1 does not readily yield an efficient

method for factoring an operator L over K. In Section 3.3 we shall present a
proof that gives a more efficient method.

3. In part (2) and (3) of Theorem 3.1 an extra condition is needed to assure
that the given decomposition actually comes of something over K and not of an
equation or a module which can only be defined over a some proper extension of
K. Another point is to know some unicity of the decompositions. Let us already
state that the qq, ..., g5 in (3) are unique. We see these elements as ”eigenvalues”
of the operator 6 on M. We will return to those questions after the introduction,
in the next section, of a universal Picard-Vessiot ring UnivRz D K.

4. We write D,, = K,[6] and D = E[&] A left D modules M of finite dimension
over ? is called irreducible if M has no proper submodules. From the theorem
one can deduce that any such irreducible M must have dimension 1 over E and
so M = Ke for some element e. Then d(e) = Fe for some F € K. A change of e
into ge with g € E and g # 0 changes F' into f = F + %. Hence we can choose

the basis of M such that f € U,C[t~'/"]. Let us call M(f) the module Re with
§(e) = feand f € U,C[t~*/"]. Then M(f,) = M(f>) if and only fi — f» € Q.

5. Another statement which follows from the theorem is that every irreducible
element of D is a skew polynomial of degree 1.

3.2 The Universal Picard-Vessiot Ring of K =
C((z))

The aim is to construct a differential extension UnivRp of K , such that the
differential ring UnivR 3 has the following properties:

1. UnivRj is a simple differential ring, i.e., the only differential ideals of
UnivR  are 0 and UnivR .
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2. Every matrix differential equation ¢y’ = Ay over K has a fundamental
matrix F' € GL,(UnivR ).

3. UnivR is minimal in the sense that UnivR 3 is generated over K by all
the entries of F' and m of the fundamental matrices F of all matrix

differential equations y’' = Ay over K.

One can prove that for any differential field, with an algebraically closed
field C' of constants of characteristic 0, such a ring exists and is unique up to
isomorphism (see Chapter 10. The ring UnivR can be constructed as the di-
rect limit of all Picard-Vessiot rings of matrix differential equations. Moreover
UnivR is a domain and its field of fractions has again C' as field of constants.
The situation is rather similar to the existence and uniqueness of an algebraic
closure of a field. Let us call UnivR the wniversal Picard-Vessiot ring of the
differential field. The interesting feature is that UnivRz can be constructed

explicitly for the differential field K = C((2)).

Intuitive idea for the construction of the universal Picard-
Vessiot ring UnivR

As before we will use the derivation § = Za%' Since UnivRz must contain the

entries of fundamental matrices for linear differential equations over K , UnivR
must contain solutions to all equations of the form g’ = %y for m € Z. Any ma-
trix differential equation (of size n) over the field K (/™) can be rewritten as
a matrix differential equation (of size nm) over K (see Exercise 1.13(7)). Thus
every order one equation ¢y’ = ay with a in the algebraic closure of K must have
a solution y € UnivR}(. Furthermore, UnivR  must contain a solution of the
equation ' = 1. From the formal classification (see Exercise 3.2), we conclude
that no more is needed for the existence of a fundamental matrix for any matrix
equation y' = Ay over K (and over the algebraic closure of K).

To insure that we construct UnivRg correctly we will need to understand the
relations among solutions of the various y' = ay. Therefore, we need to clas-

sify the order one equations y’ = ay over the algebraic closure K of K. Two
equations ' = ay and y' = by are equivalent if and only if b = a + fT for some
fe K, f#0. The set Log := {f71| fekK, f+ 0} is easily seen to consist

of the elements of ? of the form ¢+ ), cnz™™ with ¢ € Q, ¢, € C and

n>0
m € Zsg. The quotient group E/Log classifies the order one homogeneous
equations over E One chooses a Q-vector space M C C such that M & Q = C.
Put Q = Uyy>12 /™C[z=/™]. Then M @ Q C K maps bijectively to E/Log,
and classifies the order one homogeneous equations over K. For each element
in ?/Log, the ring UnivR 5 must contain an invertible element which is the
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solution of the corresponding order one homogeneous equation. We separate
the equations corresponding to M and to Q. The ring UnivR z must then have

the form I?[{z“}aeM, {e(q)}4e0,!], with the following rules:

1. the only relations between the symbols are 20 = 1, 201 = 2920 ¢(0) =
L, e(q1 + a2) = e(q1)e(qe)-

2. the differentiation in UnivR is given by (2%)" = az?, e(q)" = qe(q), ' = 1.

One may object to the Q-vector space M C C, since it is not constructive.
Indeed, the following equivalent definition of UnivRp is more natural. Let

UnivRp = K[{z"}acc, {e(q)}q4e0, 1], with the following rules:

1. the only relations between the symbols are 2070 = 292, 2¢ = 20 € K for

a€Z,e(q+q)=-e(q)e(g), e(0) = 1.

2. the differentiation in UnivR 3 is given by (27)" = az

We prefer the first description since it involves fewer relations. The intuitive
interpretation of the symbols is:

1. 2% is the function e®1°8(%)
2. [ is the function log(z) and

3. e(g) is the function exp([ ¢%).

In a sector S at z = 0, S # S!, this interpretation makes sense.

Formal construction of the universal Picard-Vessiot ring
UniVRf(.

Define the ring R = ?[{Z“}aeM, {E(q)}4e0, L] as the polynomial ring over K
in the infinite collection of variables {Z®}oen U {E(q)}qe@ U {L}. Define the
differentiation ' on R by: "is z-£ on K, (Z*) =aZ® E(q)' = qE(q) and L' = 1.
Let I C R denote the ideal generated by the elements

Z° -1, 2%~ Z°Z", E(0) — 1, E(q1 + ¢2) — E(q1)E(g2).

It is easily seen that I is a differential ideal and I # UnivR . Put UnivRp :=
R/I. Then UnivR z coincides with the intuitive description that we made above.
By construction, UnivR; has the properties 2. and 3. defining a universal
Picard-Vessiot ring. We want to prove that UnivR also satisfies property 1.
and has some more pleasant features:
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Proposition 3.22 1. UnivRy has no differential ideals, different from 0 and
UHiVRf(.

2. UnivRj is a domain.

3. The field of fractions UnivF z of UnivRp has C as field of constants.

Proof. Consider elements my,...,ms € M and qq,...,q € Q, linearly inde-
pendent over Q. Consider the differential subring

Ro=K[2™,27™, .2 2™ e(qr),e(—q), - - e(gr), e(—ar), ]

of UnivRp. The ring UnivRp is the union of differential subrings of the
type R. It suffices to prove that R has only trivial differential ideals, that
R is a domain and that the field of constants of the field of fractions of R
is C. One observes that R is the localisation of the “free” polynomial ring

IA([zml,. 2™, e(qr),- .-, e(q),l] with respect to the element 21 .22 ... 2= .

e(q1) - e(gz) ---e(q:). Thus R has no zero divisors. Let J # 0 be a differential
ideal in R. We have to show that J = R.

This is a combinatorial exercise. Let (only for this proof) a “monomial m” be
a term z2%(q) with a € Zmy + -+ + Zms and q € Zq, + -+ - + Zgs. Let M be

the set of all monomials. We note that m' = a(m)m holds with a(m) € K .
Any f € R can be written as Zme./\/l,n>0 fmnml™. The derivative of f is then
Y (o +a(m) fon)ml™ + 37 N fm.nml™ 1. Let us first prove that a differential
ideal Jy # 0 of the smaller ring

RO = I?[Zmlaz_mla ey staz_msae(ql)a e(_ql)a .. ,C(Qt),e(_(h)]

is necessarily equal to Rj.

Choose f € Jo, f # 0 with f = Zi\il fim(i) and N > 1 minimal. After
multiplying f with an invertible element of the ring Ro, we may suppose that
fi =1 and m(1) = 1. If N happens to be 1, then the proof ends. For N > 1,
the derivative f’ lies in Jy and must be zero according to the minimality of N.

—%k
Then fx € K satisfies fyy + a(m(N))fny = 0. Since fj/fn has a rational
constant term and no terms of negative degree, this is in contradiction with the
construction of M & Q. Thus Ry has only trivial differential ideals.

We continue with a differential ideal J C R, J # 0. Choose ng > 0 minimal
such that J contains an expression which has degree ny with respect to the
variable [. If ng = 0, then J N Ry is a non zero differential ideal of Ry and the
proof ends. Suppose that ng > 0. Let Jo C Ry denote the set of coefficients of
[ of all elements in J which have degree < ng with respect to the variable [.
Then .Jp is seen to be a differential ideal of Ry and thus Jo = Ry. Therefore
J contains an element of the form f = "™ + hl"™ 1 4 ... with h € Ry. The
derivative f’ must be zero, according to the minimality of ng. Thus ng+h' = 0.

Write h = ), -\ hmm, with coefficients h,, € K. Then ng +h' =0 implies
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that ng + h{ = 0 for some hg € K. This is again a contradiction.
Consider the collection of equations

Yy = mlyl:-"ay; =msys, fi=afi, - fe =aft, g =0.

This can be seen as a matrix differential equation of size s +¢ + 2. We have
in fact proven above that the ring R is the Picard-Vessiot ring for this matrix

equation over K. Tt follows from the Picard-Vessiot theory that R is a domain
and that its field of fractions has C as set of constants. O

Exercise 3.23 Modify the intuitive reasoning for the construction of UnivR
to give a proof of the uniqueness of UnivR ;. a

Remarks 3.24 1. A matrix differential y' = Ay over K = C((z)), or over

its algebraic closure K will be called canonical if the matrix A is a direct sum
of square blocks A; and each block A; has the form ¢; + C;, where the ¢; are
distinct elements of @ and C; is a constant matrix. One can refine this block
decomposition by replacing each block ¢; + C; by blocks g; + C; ;, where the
constant matrices C; ; are the blocks of the usual Jordan decomposition of the
C;.

The matrices C; and C; ; are not completely unique since one may translate the
eigenvalues of C; and C;; over rational numbers. If one insists on using only
eigenvalues in the Q-vector space M C C, then the matrices C; and C;; are
unique up to conjugation by constant matrices.

2. Let y' = Ay be a differential equation over K = C((z)) or over its algebraic

closure K. Then there exists a H € GL(n, K ) with transforms this equation to
the canonical form y' = A°y. This means that that A° = H~'AH — H-'H'.
For the canonical equation 3’ = A%y one has a “symbolic” fundamental matrix,
fund(A°) with coefficients in UnivR z, which uses only the symbols 2%, e(q),!.
The fundamental matrix for the original equation is then H -fund(A€). A funda-
mental matrix of a similar form appears in the work of Turrittin [217, 218] where
the symbols are replaced by the multivalued functions 2%, exp( [ q%) log(z), and

the fundamental matrix has the form H 2Le?, where H is an invertible matrix

with coefficients in K, where L is a constant matrix (i.e. with coefficients in C),
where 2" means e'°6(*)L where Q is a diagonal matrix with entries in Q and
such that the matrices L and () commute.

We note that Turrittin’s formulation is a priori somewhat vague. One prob-
lem is that a product fexp([ q%), with f € K and qg € Q is not given a

meaning. The multivalued functions may also present problems. The form of
the fundamental matrix is not unique. Finally, one does not distinguish between

canonical forms over K and over K. The above presentation formalizes Turrit-
tin’s work and also allows us to classify differential equations over K by giving
a structure on the solution space of the equations. We shall do this in the next
section.
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A structure on the solution space V.

The field K has many K -automorphisms. One of them is v given by the
formula vy(z*) = >z for all rational numbers A (and extended to Laurent
series in the obvious way). This v and its further action on various spaces and
rings is called the formal monodromy . One can show that the Galois group of

K over K is equal to Z, the inverse limit of the familly {Z/mZ} (]130], Ch. VIII
§11, Ex. 20), and that v is a topological generator of this compact group. The
latter statement follows from the easily verified fact that the set of ~-invariant

elements of K is precisely K.

The v as defined above also acts on Q, seen as a subset of K. We define the
formal monodromy + of the universal Picard-Vessiot ring UnivR 5 by:

1. v acts on K as explained above.
2. yz® = e?™%2% for a € C.

3. ve(q) = e(yq) for g € Q.
4. vl =1+ 2mi.

It is not hard to see that  is a well defined differential automorphism of UnivR 3
(and also of its field of fractions UnivF ). We introduce still other differen-
tial automorphisms of UnivRz over K. Let Hom(Q, C*) denote the group of
the homomorphisms of Q to the (multiplicative) group C*. In other words,
Hom(Q, C*) is the group of the characters of Q. Let an element A in this group
be given. Then one defines an differential automorphism oy, of r by

on(l) =1, on(2") = 2°, one(q) = h(g)e(q) fora € C, g € Q

The group of all oy, is called by J.-P. Ramis [152, 153] the ezponential torus
and we will denote this group by 7. It is a large commutative group. vy does
not commute with the elements of 7. Indeed, one has the following relation:
~vop = oy where h' is defined by h'(q) = h(vq) for all ¢ € Q.

Proposition 3.25 Let, as before, UnivF  denote the field of fractions of UnivR .
Suppose that f € UnivF ; is invariant under v and T. Then f € K.

Proof. The element f belongs to the field of fractions of a free polynomial sub-
ring P := I/(\'[zml, o2 e(qr), ... e(q), 1] of UnivR , where the my,...,m, €
M and the qq,...,q: € Q are linearly independent over Q. Write f = % with
f1, f2 € P and with g.c.d. 1. One can normalize f> such that it contains a term
(zma)Pr... (zms)ns e(qy)br - - e(qy)b 1™ with coefficient 1. For h € Hom(Q, C*)
one has o,(f1) = ¢(h) f1 and o, (f2) = ¢(h) f2, with a priori e(h) € K. Due to
the normalization of f2, we have that ¢(h) = h(biq1 + -+ - btqt). One concludes
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that fi and f> cannot contain the variables e(q1),...,e(q). Thus f lies in the

field of fractions of IA([zml, ..., 2™ 1]. Applying v to f = % we find at once
that [ is not present in f; and f>. A similar reasoning as above shows that in
fact f € K. |

We consider a differential equation over K and want to associate with it a
solution space with additional structure. For convenience, we suppose that this
differential equation is given as a scalar equation Ly = 0 of order d over K.
The set of all solutions V(L) in the universal Picard-Vessiot ring UnivR 5 is
a vector space over C of dimension d. The ring UnivR; has a decomposition
as UnivRg = @©,eoR,, where R, := I?[{z“},l]e(q). Put V(L), :== V(L) N R,.
Since the action of L on UnivRj leaves each R, invariant, one has V(L) =
®4e0V (L), This is a direct sum of vector spaces over C, and of course V (L),
can only be nonzero for finitely many elements ¢ € Q. The formal monodromy
7 acts on UnivR z and leaves V(L) invariant. Thus we find an induced action
v, on V(L). From v(e(q)) = e(vq) it follows that v,V (L)g = V(L)~q-

Definition 3.26 An element q € Q is called an eigenvalue of L if V(L), # 0.

Exercise 3.27 Eigenvalues I

Let L; and Lo be equivalent operators with coefficients in K. Show that the
eigenvalues of L; and Ly are the same. O

The previous exercise implies that we can make the following definition

Definition 3.28 The eigenvalues of a differential equation or module are the
eigenvalues of any linear operator associated with these objects.

Exercise 3.29 Figenvalues 11 R
Let M be a differential module over K. Show that the eigenvalues of of M are
all 0 if and only if the module is regular singular. a

We introduce now a category Gry, whose objects are the triples (V,{V;},vv)
satisfying:

1. V is a finite dimensional vector space over C.

2. {V,}4eo is a family of subspaces such that V = @V

3. v is a C-linear automorphism of V' such that vy (V) = V,,4 for all ¢ € Q.

A morphism f: (V,{Vg},w) = (W, {W,},yw) is a C-linear map f:V — W
such that f(V,) C W, (for all q) and ywf = v f. One can define tensor
products, duals (and more generally all constructions of linear algebra) for the
objects in the category Gr;.
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The above construction associates to a scalar equation L over K anob ject of this
category Gri. We will do this now more generally. Let N be a differential module
over K of dimension n. Then one considers the tensor product UnivRz @z N
and defines V/(V) := ker(9, UnivR z ® V). This is a vector space of dimension
n over K , again seen as the solution space for the differential module. Letting
V(N)q := ker(9, R; ®z N), we then again have V(N) = ®V(V),. The action
of v on UnivR induces an action yy on V() and the formula yvV(N), =
V(N),q holds. This construction leads to the following statement:

Proposition 3.30 The category of the differential modules Diff 5 over K is
equivalent with the category Gry. The equivalence acts C-linearly on Hom'’s
and commutes with all constructions of linear algebra, in particular with tensor
products.

Sketch of Proof. Let Trip denote the functor from the first category to the
second. It is rather clear that Trip commutes with tensor products et cetera.
The two things that one has to prove are:

1. Every object of Gr; is isomorphic to Trip(NV) for some differential module
over K.

2. The C-linear map Hom(N;, No) — Hom(Trip(N;), Trip(Ns)) is an iso-
morphism.

Proof of 1.: One considers UnivRp ®c V' with the following structures: 0
is defined to be 9 is 0 on V and ' on UnivRg; the v-action by vy(r ® v) =
(y(")®(yv (v)) and oy, for b € Hom(Q, C*), by o4 (r®v) = (on(r))@(h(g)v) for
r € UnivR; and v € V. Define N as the set of elements of UnivR z ® oV which
are invariant under v and all ;. Then one can show that N is a differential
module over K and that Trip(IV) is isomorphic to the given object (V, {V;},vv).
The essential step in the proof is the formula {r € UnivRz| r € Ro, ¥(r) =

r}= K, where Ry = E[{z“}, ].

Proof of 2.: One uses Hom(Ny, N2) = Hom(1, Ny ® N3), where 1 denotes the
1-dimensional trivial module Ke with de = 0 and where * stands for the dual.
Then 2. reduces to proving that the map ker(9, N) — {v € V]v € Vg, yw(v) =
v}, where (V,{V,},7v) = Trip(IV), is a bijection. This easily follows from

~

{r € UnivRg |r € Ro, 7(r) =71} = K. a

Remark 3.31 Consider a differential module N over K with Trip(N) =
(V,{V4},7w). The space V' := ker(9,UnivR ® N) is invariant under any
element o, of the exponential torus T'. The action of o, on V is explicitly given
by the formula o}, is multiplication by h(g) on the subspaces V; of V. The image
of T in GL(V) is called the exponential torus of N or Trip(N). It is actually an
algebraic torus in GL(V).
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Corollary 3.32 Let the differential module N define the triple (V,{V,},vv) in
Gry. Then the differential Galois group of N is, seen as an algebraic subgroup
of GL(V), generated by the exponential torus and the formal monodromy.

Proof. The Picard-Vessiot field L D K of N is the subfield of UnivF  gener-
ated over K by all the coordinates of a basis of V' C UnivRp ® z N with respect

to a basis of N over K. The exponential torus and the formal monodromy are
seen as elements in GL(V'). At the same time, they act as differential automor-
phisms of L and belong therefore to the differential Galois group of N. We have
already proven that an element of UnivF 5, which is invariant under the expo-

nential torus and the formal monodromy belongs to K. The same holds then
for the subfield L C UnivF . By Picard-Vessiot theory, the differential Galois
group is the smallest algebraic subgroup of GL(V') containing the exponential
torus and the formal monodromy. |

Example 3.33 The Airy equation y"” = zy has a singular point at co. One
could write everything in the local variable ¢ = % at oco. However we prefer to
keep the variable z. The solution space V at oo has a direct sum decomposition
V = V,s/2 ® V__3/2 in spaces of dimension 1 (we shall show this in Section3.3,
Example 3.47.2). The formal monodromy = interchanges the two spaces Vs,2
and V_,s/2. If vy generates V,s/z2, v2 = y(v1) generates V_,s/2. Since the Galois

group of the equation is a subgroup of SL2(C), the matrix of v with respect to

{v1,v2} is ( (1) _01 > The exponential torus has the form {( (t) t91
C*}. The differential Galois group of the Airy equation over the field C((z71))
is then the infinite Dihedral group Do, C SL(2, C). m|

|t €

Split and quasi-split equations over C({z})

We now turn to equations with meromorphic coefficients. We let K.,,, be
the field of convergent Laurent series in z and K ony,m be the field of convergent
Laurent series in z'/™.

Definition 3.34 A differential equation y' = Ay over C({z}) will be called split
if it is the direct sum of equations y' = (q; + Ci)y with q¢; € 2~ *C[z7!] and C;
constant matrices. The equation is called quasi-split if it is split over C({z'/™})
for some m > 1.

We translate the notions in terms of differential modules. A differential module
M over the field K.,n, of convergent Laurent series is split if M is a direct
sum @, E(q;) ® N;, where q1,...,qs € 27'C[z7"], where E(g) denotes the
one-dimensional module K onyeq Over Keony with Oe, = ge, and where the N;
are regular singular differential modules over K ,,,. The differential module
M over K.o,pn, is called quasi-split if for some m > 1 the differential module
Keonv, m ® M is split over Keony, m-
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One has that the Picard-Vessiot extension of C({z}) corresponding to a quasi-
split equation can be taken to lie in the subfield of UnivFy generated over
C({z}) by the elements [, {2} _c,{e(q)}qeo. The argument of Corollary 3.32
implies the following

Proposition 3.35 The differential Galois groups of a quais-split differential
equation y' = Ay over C({z}) and C((z)) are the same. This group is the
smallest linear algebraic group containing the exponential torus and the formal
monodromy.

For equations that are not quasi-split, the Galois group over C({z}) will, in
general, be larger. We will give a complete description of the Galois group in
Chapter 8. The starting point in this description is the following:

Proposition 3.36 Every differential equation y' = Ay with coefficients in K
is, over the field K, equivalent with a unique (up to isomorphism over K.ony)
quasi-split equation over Kcony. The translation of this statement in terms of
differential modules over K is:

For every differential module M over I/(\', there is a unique N C M, such that:

1. N is a quasi-split differential module over the field K opny.

2. The natural K -linear map K QK N — M 1is an isomorphism.

To prove this proposition, we need the following result that will allow us to
strengthen the results of Exercise 3.14.

Lemma 3.37 Let A € M,,(K.onv) and assume that the equation Y' = AY is
equivalent over K to an equation with constant coefficients. Then Y' = AY is
equivalent over K ,n, to an equation with constant coeficients.

Proof. By assumption, there is a matrix B € GLn(I/(\') such that B~'AB —
B~ !'B' is a constant matrix. By truncating B after a suitably high power, we
may assume that A is equivalent (over Kony) to a matrix in M, (C{z}), and so,
from the start assume that A € M,,(C{z}). Following the argument of Lemma
3.13, we may assume that A = Ay + A1z + ... where the distinct eigenvalues
of Ag do not differ by integers.. As in Exercise 3.14, we wish to construct a
matrix P=I1+ Pyz+ ... ,P; € M,,(C) such that the power series defining P
is convergent in a neighborhod of the origin and PAy = AP — P'. Comparing
powers of z, one sees that

AoP; — Pi(Ag +iI) = —(Ai + Ai 1P+ ... A1 P,y) .

Exercise 3.14.a implies that these equations have a unique solution. Let Ly
denote the linear map X — Ao X — XAy — (n+1)X. Using the norm || (a;;) ||=
max |a; ;|, one sees that || L}, ||= O(%). Using this bound, one can show that
the series defining P converges. |
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Proof of Proposition 3.36. We give a proof using differential modules and
return later to matrices. The first case that we study is that of a differential
module M over K which has only 0 as eigenvalue. In other words, M is regular
singular over K. As we have seen before, M has a basis eq, ..., e, over K such
that the matrix C of 9, with respect to this basis, has coefﬁcients in C. Us-
ing the argument before Lemma 3.13, we may even suppose that the (distinct)
eigenvalues A;, i = 1,...,r (with multiplicities ki,...,k,) of this constant ma-
trix satisfy 0 < Re()\;) < 1. It is clear that N := K.oppe1 + - - - + Keonvem has
the properties 1. and 2. We now want to prove that N is unique.

A small calculation shows that the set of solutions m € M of the equation
(6 — N\ ) im = 0 is a C-linear subspace W; of Ce; + --- + Ce,,. Moreover
Ce; +---+ Ce,, is the direct sum of the W;. For a complex number p such that
= A € Z for all i, one calculates that the set of the m € M with (6 — u)*m =0
(any k > 1) is just 0. Consider now another N C M having the properties
1. and 2. Then N is regular singular over K y,, and we know, from Lemma
3.37 that there is a basis fi,..., fi, of N over K ony, such that the matrix
D of 9, with respect to this basis, is constant and all its eigenvalues u satisfy
0 < Re(p) < 1. From the calculation above it follows that the eigenvalues of
D are also eigenvalues for C' (and also the converse). We conclude now that
Cfi+--+Cf, =Ce + -+ Cep. In particular, N = N.

The next case that we consider is a differential module M over K , such that
all its eigenvalues belong to 2 'C[z~!]. Again we want to show the existence
and the uniqueness of a N C M with properties 1. and 2., such that N is
split. M decomposes (uniquely) over K as a direct sum of modules having
only one eigenvalue. It is easily seen that it suffices to prove the proposition
for the case of only one eigenvalue g. One considers the one dimensional mod-
ule F(q) := K ®k.,,, E(q). Thus F(q) = Ke; and 0e; = ge;. The module
F(—q) ® M has again only one eigenvalue and this eigenvalue is 0. This is the
regular singular case that we have treated above.

Finally, we take a general differential module M over K. Take m > 1 such that
all its eigenvalues belong to K, = K[z 1/m] Then the module K,, ® M has
a unique subset N, which is a split differential module over K, conv, m and such

that the natural map Km QK N - Km ®K M is an 1som0rphlsm Let o

be a generator of the Galois group of K,, over K Then o acts on K,, © M by
the formula o(f ® m) = o(f) ® m. Clearly o(N) has the same property as N.
The uniqueness implies that o(N) = N. Thus ¢ acts on N. This action is semi-
linear, i.e., o(f7i) = o(f)o (). Let N denote the set of the o-invariant elements
of N. Then it is easily seen that the natural maps K.ony, m ®k,,,, N =+ N and
K ®Kepny N = M are isomorphisms. Thus we have found an NV with properties
1. and 2. The uniqueness of IV follows from its construction.

We return now to the matrix formulation of the proposition. For a matrix equa-
tion y' = Ay over K (with module M over K), such that the eigenvalues are in
zflc[z’l], it is clear that the module N over K., has a matrix representation
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y' = By which is a direct sum of equations y' = (¢; + C;)y with ¢; € 27 1C[z7}]
and constant matrices C;. In the case that y' = Ay has eigenvalues which are
not in 2~ 'C[z7!], one can again take a basis of the module N and consider the
matrix equation y' = By obtained in this way. O

Remarks 3.38 1. It is more difficult to give this matrix B, defined in the
final paragraph of the above proof, explicitly. This problem is somewhat anal-
ogous to the formulation of the real Jordan decomposition of real matrices.
We will give an example. Consider a two dimensional equation y' = Ay with
eigenvalues qi,q2 which are not in 27!C[z7!]. Then the eigenvalues are in

2z~1/2C[z~'/?] and they are conjugate. The module N over K.on, 2, of the
proof of the proposition, has a basis e;, ez such that de; = gie;. Let o be a
generator of K2 over K. Then one easily sees that oe; = e; and ges = e;. The

elements f; = e; +es and fo = 27'/?(e; — e5) form a basis of N over Ko, and
—1

the matrix of @ with respect to this basis is equal to < 2 )\Z_ 172 ), where

q1 = A+ Z_I/Q,U> q2 = A— Z_1/2,u> A)/J‘ € Z_lc[z_l]'

The issue of finding B explicitly is also addressed in [137] where a version of
Proposition 3.36 is also proven. Proposition 3.36 appears in [12].

2. For the study of the asymptotic theory of differential equations, we will use
Proposition 3.36 as follows. Let a matrix differential equation y' = Ay over
K .onv be > given. Then there exists a quasi- spht equation y' = By over K.ony
and an F' € GL(n,C((z))) such that F~'AF — F~'F' = B. The equation
y' = By is unique up to equivalence over K ony. For a fixed choice of B the
formal transformation F' is almost unique. Any other choice for the formal
transformation has the form FC with C € GL(n C) such that C~!BC = B.
The asymptotic theory is concerned with lifting F to an invertible meromorphic
matrix F' on certain sectors at z = 0, such that F~'AF — F~'F’ = B holds.
The above matrix C is irrelevant for the asymptotic liftings F'.

3.3 Newton Polygons

Let k denote a field of characteristic 0 and let D := k((z))[d] denote the skew
ring of differential operators over k((z)), where ¢ := 29,. Note that §z = 26 + 2.
For a finite field extension K D k((z)) we will write Dk for the skew ring K[d].
For every f € K one has §f — f0 = f', where f — f' is the unique extension of
zd% to K.

The Newton polygon N (L) of an operator

L= Zaiéi = Zai,jzjéi € k((2))[0] with a,, # 0
i=0 i\
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is a convex subset of R* which contains useful combinatorial information of L.
The slopes k1 < --- < k, of the line segments forming the boundray of the
Newton polygon are important in many discussions concerning L and will be
crucial when we discuss the notion of multisummation. In this section we will
use Newton polygons for the formal decomposition of L, following the work of
B. Malgrange [145] and J-P. Ramis [173]. We begin by recalling some facts
concerning polyhedral subsets of R?, [72].

A subset of R? that is the intersection of a finite number of closed half-planes is
said to be a polyhedral set. We will only consider connected polyhedral sets with
nonempty interior. The boundary of such a set is the union of a finite number
of (possibly infinite) closed line segments called edges. The endpoints of the
edges are called vertices or extreme points. The vertices and edges of such a set
are collectively refered to as the faces of the set. Given two subset N and M of
R? we define the (Minkowski) sum of these sets to be M + N = {m +n | m €
M, n € N}. Any face of the sum of two polyhedral sets M and N is the sum of
faces of M and N respectively. In particular, any vertex of M + N is the sum
of vertices of M and N.

On R? one defines a partial order, namely (z,,y1) > (x2,y2) is defined as
y1 > yo and 1 < x3. We now can make the following

Definition 3.39 The elements of K[0] of the form z™d™ will be called mono-
mials. The Newton polygon N (L) of L # 0 is the convex hull of the set

{(z,y) € R?| there is a monomial z™" in L with (x,y) > (n,m)}

N(L) has finitely many extremal points {(n1,m1), ..., (Nr+1, Myrp1)} with 0 <
ny < ng < --- < npy; = n. The positive slopes of L are k; < --- < k,. with
ki = rﬁ%nm It is useful to sometimes one introduces the notation k, 1 = oco.
If ny > 0 then one adds a slope kg = 0 and in this case we put ng = 0.
The interesting part of the boundary of N(L) is the graph of the function

f:[0,n] = R, given by
L. f(no) = f(n1) =m1.
2. f(n;) = m; for all i.
3. fis (affine) linear on each segment [n;,n;11].
The slopes are the slopes of this graph. The length of the slope k; is n;11 — n;.

We reserve the term special polygon for a convex set which is the Newton polygon
of some differential operator.

Let b(L) or b(N(L)) denote the graph of f. The boundary part B(L) of L is
defined as B(L) = >, myep(r) nmz™0". Write L = B(L) + R(L). We say
that Ly > Lo if b(L;) lies in the interior of N(Ly). Clearly R(L) > B(L) and
R(L) > L. We note that the product of two monomials M; := 2™16™ My :=
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2™2¢"2 is not a monomial. In fact the product is 2™172(§4+m3)" "2, However
B(M; M) = zmitmzgmtnz  Thig is essential for the following result.

Lemma 3.40 1. N(LlLQ) = N(Ll) + N(LQ)

2. The set of slopes of Ly Lo is the union of the sets of slopes of L1 and Lo.

3. The length of a slope of LiLs is the sum of the lengths of the same slope for
L1 and LQ.

Proof. 1. Write L; = 5" a;j276° and Ly = 3 b; j2/8*. From the above it fol-
lows that L1 Ly = L3+ R with L3 := E(il,jl)eb(Ll),(iz,jz)Eb(Lz) Qi jy bi27j22’]1+]25“+l2
and one has R > Lz. This shows at once that N(Ly1Ls) C N(Ly) + N(Ls).

The boundary part of L3 can be written as

Z (Z an17m1bn2,m2)282631

(s1,52)€b(L1L2)

where the second sum is taken over all (ny,m1) € b(L1), (n2, m2) € b(L2) with
(n1,m1) + (na2, ma) = (s1,s2). One can easily verify the following statement:

If an element (sy,s2) can be written in more than one way as a
sum of an element in b(L;) and an element of b(Ls), than L; and Lo
have a slope in common. Furthermore, in this case (s1, s2) will lie in
the interior of an edge of N(L;) + N(L2) and so is not an extremal
point of N(Ly) + N(Ls).

From this statement we see that if (s1, s2) is a vertex of N(Ly)+ N(Ls) then the
coefficient of 2°2¢°2 in L3 does not vanish. Therefore N (L1)+N (L2) C N(LiL>).
This proves the first part of the lemma.

The two other parts follow easily from the above facts concerning the faces of
N(Ly) + N(Ls). O

Example 3.41 The operator L = 26%> + § — 1 factors as L = L;L, where
Ly =6 —1and Ly = 26 + 1. Figure 3.1 show the corresponding Newton
polygons. |

Exercises 3.42 Newton polygons and regular singular points

1. Show that 0 is a regular singular point of an operator L if and only if the
corresponding Newton polygon has only one slope and this slope is 0.

2. Show that if 0 is a regular singular point of an operator L, then it is a regular
singular point of any factor of L. a

The next statement is a sort of converse of the lemma.
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1 2 1 2

N(L) N(Ly)
Figure 3.1: Newton Polygons for Example 3.41

Theorem 3.43 Suppose that the Newton polygon of a monic differential op-
erator L can be written as a sum of two special polygons Py, P, that have no
slope in common. Then there are unique monic differential operators Ly, Lo
such that P; is the Newton polygon of L; and L = LyLs. Moreover D/DL 22
D/DL, & D/DLs.

Proof. For the Newton polygon N(L) of L we use the notations above. We
start by proving three special cases.

(1) Suppose that ny > 0 and that P; has only one slope and that this slope is
0. In particular, this implies that P, has no slope equal to zero. We would then
like to find the factorization L = Ly L. Every element M € D is given a devel-
opement M =3, __ z'M(i)(6) where the M(i)(d) € k[é] are polynomials of
bounded degree. Let L =", 2¥L(k). The L1 = Y_,.,2"L1 (i) that we want
to find satisfies: L;(0) is monic of degree n; and the L;(¢) have degree < n; for
i # 0. Furthermore, if we write Ly = Y., 2'L,(i), we will have that Ly (m) is
constant since P, has no slope equal to zero. The equality Ly L, = L and the
formula 2=/ L, (i)(8)27 = L1(i)(6 + j) induces the following formula:

Yo Y L0+ NLG)6) = Y ZFLk)()

k>m ibj=k,i>0,j>m k>m
iFrom L (0)(0 +m)La(m)(d) = L(m)(0) and L;(0) monic and L2(m) constant,
one finds L;(0) and La(m). For k = m + 1 one finds an equality

Li(0)(d + m + 1)La(m + 1)(6) + L1 (1)(0 + m)La(m)(0) = L(m + 1)(9)

This equality is in fact the division of L(m + 1)(8) by L1(0)(d + m + 1) with
remainder L (1)(d+m)L2(m)(0) of degree less than n; = the degree of L (0)(d+
m +1). Hence L{(1) and Ly(m + 1) are uniquely determined. Every new value
of k determines two new terms L;(...) and Lo(...). This proves the existence
and uniqueness in this special case.

(2) Suppose now that ny = 0 and that P; has only one slope k£ which is the
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minimal slope of L. Write k = g with a,b € Z;a,b > 0 and g.c.d.(a,b) = 1.
We allow ourselves the field extension k((z)) C k((t)) with t* = z. Write
A = 5. After multiplying L with a power of ¢ we may suppose that L €
k((t))[A] is monic. Note that the Newton polygon of L now has minimal slope
0 and that this slope has length ny. Every M € k((t))[A] can be written
as M =Y, o _ . t'M(i) where the M (i) € k[A] are polynomials of bounded
degree. We want to find Ly, L, € k((t))[A] with Ly Ly, = L; L;(0) is monic
of degree no — n; = mo; Li(i) has degree less than no for ¢ > 0. Using that
At =tA + 1¢+1 one finds for every index k an equation of the form

Z Ly(i)L2(j) + “lower terms” = L(k)
i+j=k

Here “lower terms” means terms coming from a product L; (i) L2(j) with i+j <
k. The form of the exhibited formula uses strongly the fact that b > 0. It
is clear now that there is a unique solution for the decomposition L = Lq L.
Then we normalize L, Ly, Ly again to be monic elements of k((t))[0]. Consider
the automorphism 7 of k((t))[0] which is the identity on k((z))[d] and satifies
7(t) = (t where ( is a primitive a—th root of unity. Since the decomposition is
unique, one finds 7L; = L; for ¢ = 1,2. This implies that the L; are in k((z))[d].
This finishes the proof of the theorem in this special case.

(3) The bijective map ¢ : k((2))[6] — k((2))[d], given by ¢(> a;6%) = > (—d)ia;
is an anti-isomorphism, i.e. ¢ is k((z))-linear and ¢(L1La) = ¢(L2)¢p(L1). Using
this ¢ and (1),(2) one finds another new case of the theorem, namely: Suppose
that N(L) = P, + P, where P» has only one slope and this slope is the minimal
slope (> 0) of L. Then there is a unique decomposition L = L;L, with the
properties stated in theorem.

(4) Existence in the general case. The smallest slope & > 0 of L belongs either
to Py or P,. Suppose that it belongs to P; (the other case is similar). According
to (1) and (2) we can write L = AB with A, B monic and such that A has only
k as slope and B does not have k as slope. By induction on the degree we may
suppose that B has a decomposition B = By Bs with N(Bs) = P, and By, By
monic. Then L; := AB; and L» := B is the required decomposition of L.

(5) The unicity. Suppose that we find two decompositions L = Li Ly = LyLs
satisfying the properties of the theorem. Suppose that the smallest slope k > 0
of L occurs in P,. Write L, = AB and L, = AB where A and A have as
unique slope the minimal slope of L and where B, B have no slope k. Then
L = ABL; = ABLs and the unicity proved in (1) and (2) implies that 4 = A
and BLy = BEQ. Induction on the degree implies that B = B and Ly = EQ.
This finishes the proof of the first part of the theorem.

(6) There is an exact sequence of D-modules
0— D/DL, %8 D/DL I D/DLy — 0

corresponding to the decomposition L = Ly Lo. It suffices to show that 7 splits.
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There is also a decomposition L = .Z/Q.Z/l with N(E,) = P;. This gives another
exact sequence

0— D/DL, % D/DL 3 D/DL; -0
It suffices to show that

b :D/Dis B D/DL ™ D/DL,

is an isomorphism. Since the two spaces have the same dimension, it suffices to
show that ¢ is injective. Let A € D have degree less than d = the degree of
Ly and Lo. Suppose that ALq lies in DLs. So AL, = BLs. We note that L;
and Ly have no slopes in common. This means that N(A) must contain N (Ls).
This implies that the degree of A is at least d. This contradicts our hypothesis.
O

Examples 3.44 1. We consider the operator L(y) = 262 + 6 + 1 of Example
3.41. One sees from Figure 3.1 that the Newton polygon of this operator is
the sum of two special polygons P;, having a unique slope 0, and P», having a
unique slope 1. Using the notation of part (1) of the proof Theorem 3.43, we
have that n; =1 and m = 0. We let

where L1 (0) is monic of degree 1, the Ly (7) have degree 0 for 7 > 0 and L»(0) = 1.
Comparing the coefficients of z° in L = L; L, we have that

L1(0)L2(0) = L1(0) =6 — 1 .
Comparing coefficients of z! we have that
L1(0)(3 + 1) La(1)(8) + L1 (1)(8) L2(0)(8) = 6L2(1)(8) + La(1) = &6* .

This implies that L»(1) = § and L;1(1) = 0. One can show by induction that
L, (i) = Ly(i) = 0 for 4 > 2. This yields the factorization given in Example 3.41.

2. We consider the operator
L=+ (5+-)+—=—-=
z z

The Newton polygon of this operator can be written as the sum of two special
polygons P; and P, (see Figure 3.2).

The polygon P; has minimal slope 1 so, using the notation of part (2) of the
proof Theorem 3.43, we have that a = b =1 and t = z. Letting A = 2§ we have

that 1 11 1 1 2
p=ny it bl o2
z +(23+22 z) +z3 z
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N(L) Py P,
Figure 3.2: Newton Polygons for Example 3.44.2.

Dividing by z to make this operator monic, we now consider the operator

1 1
L:A2+(;+1—2)A+;—2

whose Newton polygon is given in Figure 3.3.

Figure 3.3: Newton Polygon for L

We write L = L1 Ls> where

Ly = Li(0)+ 2Ly (1) + 2°Ly(2) + . ..
L2 = 271L2(—1) + L2(0) + ZL2(].) + ...

where L1 (0) has degree 1 (i.e., L1(0) = rA +s), L1 (i) is constant for ¢ > 0 and
L —1) =1. Composing and equating coefficients of powers of z we get

rA + s = A+1 coefficients of 271
—r+ (A +1)Ly(0) + L1 (1) = A+ A -2 coefficients of 2°
(A +1)Lay(1) + L1 (1) L2(0) + L1(2) = -A coefficients of 2!

These imply that r = s = 1, L2(0) = A,L1(1) = —1 and L»(1) = L;(2) = 0.
One can show by induction that L»(i) = La(i + 1) = 0 for ¢ > 1. This gives a
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factorization L = (A + 1 — 2)(A + 2z~ 1). We therefore have that L =

= z 2(A2+(%+1—2)A+%—2)
2A+T-2)(A+27Y
226+ 1—2)(26+27h)
226+ 1—2)2(6+27%)
2225+ 2)(6 +272)
= (04+2zH(0+27%

z
z
z
z

This gives a factorization of L. a

Theorem 3.43 allows us to factor linear operators whose Newton polygons
have at least two slopes. We now turn to operators with only one positive slope
k. Write as before k = % with g.c.d(a,b) = 1 and a,b € Z;a,b > 0. We
make the field extension k((¢)) D k((2)) with t* = 2 and we write A = t4.
After normalization we may assume that L is monic with respect to A. Write
L = Yoo t'L(i)(A) where the L(i) are polynomials in A such that L(0) is
monic of degree n and the L(i) have degree less than n for ¢ # 0. In the sequel
we will also write D for the algebra K[§] where K is any finite field extension
of k((z)). The following result is a restatement of Hensel’s Lemma for irregular
differential operators.

Proposition 3.45 Suppose (using the above notation) that L € Kk[[t]][A] is
monic of degree n. Suppose that L(0) € k[A] factors into relative prime monic
polynomials L(0) = PQ. Then there is a unique factorization L = AB with
A, B monic and A(0) = P, B(0) = Q. Moreover D/LD =2 D/DA® D/DB.

Proof. Write A=73",., ttA(i); B = 20 t/B(j). Then

= Z t"( Z A(i)B(j) + “lower terms” ) = Z t"™L(m)

m>0 i+j=m m>0

Again “lower terms” means some expression involving A(%) and B(j) with i+j <
m. Clearly one can solve this set of equations, using that A(0) and B(0) are
relatively prime, step by step in a unique way. This proves the first part of the
proposition. The second part is proved as in Theorem 3.43. O

Remark 3.46 The hypothesis that £ > 0 is crucial in Proposition 3.45. If
k = 0, then the point zero is a regular singular point and the exhibited equation
in the proof of Proposition 3.45 becomes

AB = Z Z A (6 + j)B(4)(0) + “lower terms” ) = Z 2™L(m)

m>0 i+j=m m>0
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In order to proceed, one needs to assume that A(0)(A + j) and B(0)(A) are
relatively prime for j = 0,1,2,.... With this assumption, one can state a result
similar to the Hensel Lemma for regular singular points given in the previous
secion.

L whose Newton

Examples 3.47 1. Consider the operator L = 62 — 36+ 2
polygon is given in Figure 3.4.

z

Figure 3.4: Newton Polygon for Example 3.47.1

Using the above notation, we have that t? = z and A = t5. Rewriting L in
terms of ¢t and A, we have L = t%L where
2 Lo
L = A _QtA+Z(2t -1)
= L(0) +tL(1) +t*L(2)

1 1

= (A% —2) +¢(-2A) +£3(5)
4 2

Since A — 2 = (A + 1)(A — 1) we can apply Proposition 3.45. Let L; =

A+ 2+ tLi(1) +#2L1(2) + ... and Ly = A — L +¢tLo(1) + £2La(2) + .. ..

Comparing the powers of ¢t in L = Ly Ly we have

Li(1)(A = 3) + Ly(1)(A + & = —2A  coefficients of t°
Ly(2)(A —3) + Li(2)(A — 3) + Li(1)Lo(1) + £Lo(1) = 1 coefficients of ¢

Therefore Ly(1) = L2(1) = =1 and L{(2) = L2(2) = 0. One sees that this
implies that L, (i) =

~ 1
1 1 1
= SA+5-n@A-5-1
1 1 1
= S5+ 5 -0 —1-5)

1 1 1
= (O-5+5)0-1-5)
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2. We consider the Airy equation y" — zy = 0 mentioned in Example 3.33. We

wish to consider the behavior at infinity so we make the change of vairable ¢ = %

and write the resulting equation in terms of § = t%. This yields the equation
~ 1

L=5-6-

which has Newton polygon given in Figure 3.5.

Figure 3.5: Newton Polygons for Example 3.47.2

The unique slope is £ so we let 7 = #!/2 and A = 7°5. Rewriting L in terms
of 7 and A we have that L = 77 A% — 1773A — 776, Dividing by 7 ¢ yields
the equation

1
L=A—-_-7rA-1
2
Since L(0) = A? — 1 we may write L = L; Ly where Ly = (A —1)+ 7L (1) +...
and Ly = (A + 1) + 7Ly(1) 4+ .... Composing these operators and comparing
coefficients of powers of 7 shows that Li(1) = Li(2) = Lo(1) = L»(2) = 0.

Therefore

L = 7% A -1+ NDA+1+7°(.)
= (6§ —7734..)(8+ 7% + nonnegative powers of 7 )

The form of the last factor shows that the Airy equation has a solution in R_s/=.
Reversing the roles of A + 1 and A — 1 shows that it also has a solution in
R_ _3/2. This verifies the claim made in Exercise 3.33. |

In order to factor a general L as far as possible, one uses the algebraic closure
k of k and fractional powers of z. Suppose that L has only one slope and that
this slope is positive. If Proposition 3.45 does not give a factorization then L(0)
must have the form (A + ¢)" for some ¢ € k'~ (note that ¢ # 0 since L(0) must
have at least two terms). This implies that the original Newton polygon must
have a point of the form (1,m) on its boundary, that is on the line bx — ay = 0.
Therefore, a = 1 and A = 2°§ in this case. One makes a change of variables
d ++ 6 +c2~". One then sees that the Newton polgon N’ of the new equation is
contained in the Newton polygon N of the old equation. The bottom edge of N’
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contains just one point of N and this is the point (n, bn) which must be a vertex
of N'. Therefore, the slopes of N’ are strictly less than b. If no factorization,
due to Theorem 3.43 or Proposition 3.45 occurs then L has again only one slope
and this slope is an integer b’ with 0 < b’ < b. For b’ = 0 one stops the process.
For b' > 0 one repeats the method above. The factorization of L stops if each
factor L satisfies:

There is an element q € t1£'[t 1], where k' is a finite extension
of k and t™ = z for some m > 1, such that L has only slope zero
with respect to & —¢. This can be restated as L € k'[[t]][(d — ¢)] and
L is monic in (6§ — q).

Example 3.48 Consider the operator

444z — 522 — 823 — 324 + 226
+ 1

442z — 22 —32°
+ 1)

L =4
z2 z

whose Newton polygon is given in Figure 3.6.

-a

_,2_q.3 _E.2_@.3_0,4,5.6 9.2 C9a_9.2105.4
N((52+4+2zz’§ 3z (5+ 4+42—-52 Z84z 3z +2z) N((5/)2+2 2—3z (5'-}-1 2z 322 +2z)

z

Figure 3.6: Newton Polygons for Example 3.48

Since this has only one slope and this is 2, we let A = 225. Rewriting
the equation in terms of A and dividing by a suitable power of z to make
the resulting operator monic we have that L(0) = (A + 2)2. There we let
d' = § + 2272 and have

—z— 322 +1—22—322+224

L=(8)V?+ 2 5

22

whose Newton polygon is given in Figure 3.6. Rewriting this operator in terms
of A" = 20" and making the resulting operator monic, one has that L(0) =
(A’ 4+ 1)2, Therefore we continue and let 8" = §’ + z~1. One then has

L=(6"?2—(32+1)0" +22°.

This operator is regular and can be factored as L = (6" — (2z + 1))(6"” — 2).

Therefore 5 ) 5 )
L:((5+2—22+;—(2Z+1))(5+2—22+;—Z)
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O

We can use the above fact to restate and refine the structure theorem of
modules over K. Recall that an monic operator L € k'((t))[0], where k' is a
finite extension of k& and t" = z for some m > 1, is called regular singular if
actually L € £'[[t]][0]. Put D = &'((¢))[d]. In Definition 3.9, we define the notion
of a regular singular differential module. For our purposes here, it is enough to
think of this as a finite dimensional left differential module having cyclic vector
e such that the minimal monic L € D with Le = 0 is regular singular. In other
terms M = D/DL for a regular singular L. We recall (see Exercise 3.14) that
for a regular singular M over k((z))[d] there exists a basis {ey, ..., } of M over
k((z)) such that the matrix of § with respect to {ey,...e,} is constant. In other
words, the corresponding matrix equation is dy = Ay with A a matrix with co-
efficients in k. For the field £ = C one can form the matrix >4, This matrix
(or its equivalence class) is called the topological monodromy of the equation.
One can show that two equations dy = A;y with constant matrices A; are iso-
morphic if and only if e?7*41 is a conjugate of e>™*42 (Theorem 5.1).

For an arbitrary algebraically closed field k of characteristic zero, one can for-
mulate this as follows. Choose a set R of representatives of k/Z. Any regular
singular module has a basis such that the resulting matrix equation dy = Ay
satisfies: A has coefficients in £ and the eigenvalues of A are in R. Two equa-
tions dy = A;y with the A; normalized as above are equivalent if and only if
they are conjugate.

For ¢ € t7'k'[t7!] we write E(q) for the D-module generated over k'((t)) by
one element v such that dv = quv. Let M be a regular singular module with
cyclic vector e and minimal monic equation Le = 0 where L = 3 a;6*. Then
M ® E(q) has the cyclic vector e®@v. The minimal monic equation for this cyclic
vector is 3" a;(06 — ¢)*. Furthermore, for any operator of the form L = 3~ a;87,
the D-module D/DL is of the form M ® E(q). In particular, this is true for
each L described in the exhibited paragraph preceding Exercise 3.48. We can
now state

Theorem 3.49 Let L € k((2))[0] be a monic differential operator. There ezist
a finite field extension k' of k, an integer m > 1, elements q1,...,qs € t ' k'[t 1]
with t™ = z and L1, ...,Ls € k'((t))[0] such that:

1. Ifi # j then q; # q;.
2. L; € K'[[t]][0 — ¢;] and is monic in & — ¢;.
3. L=1L..Ls.
Moreover with the notation D = k'((t))[6] one has that
D/DL = &M; ® E(qi)

where the M; are reqular singular D-modules.
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Proof. The above methods allow one to factor L and give a factorization L =
R;...R, that yields a direct sum decomposition D/DL = @D /DR;. According
to the above discussion, each factor has the form N, ® E(q) with N, regular
singular. The ¢’s need not be distinct. Let {qi,...,¢s} denote the distinct ¢’s
occuring. Put M; = ®4— N,. This proves the second part of the theorem.

To prove the first part of the theorem, we let e be a cyclic vector of D/DL
annihilated by L and let e = e; + ... + e; with each e; € M; ® E(g;). One
sees that each e; is a cyclic vector of M; ® E(qg;) and that L(e;) = 0. If L,
is the minimal monic annihilator of ez, then Ls; must divide L on the right.
Furthermore, since (M; ® E(q;)) ® E(—gs) is regular, Exercise 3.16 implies that
L¢(d + ¢:) is a regular operator and so is in k'[[t]]. Therfore Ly € k[[t]][0 — gs].
An induction on s finishes the proof of the first part of the theorem. a

Remarks 3.50 1. We have seen in Theorem 3.36 that the module A/ = D/DL
determines uniquely the direct sum decomposition Theorem 3.49 part (2). In
particular the ¢; and the dimensions d; of the M; (as vector spaces over k'((t)) )
are determined by M. From this information one can reconstruct the Newton
polygon of L.

Indeed, L; has one slope, namely —v(g;) with length d; = the order of L;. Since
N(L) = N(Ly) + ... + N(Ls) one finds the following;:

Aisaslope of N(L) if and only if A = —v(g;) for some i. Moreover
the length of the slope A is equal to EA:_U((N) d;.

In particular, the Newton polygon of M does not depend on the choice of a
cyclic vector.

2. We also note that the methods described in this section yield an algorithm
to calculate the ¢; of Proposition 3.36. Moreover, these methods produce a set
of at most n such ¢;. More efficient algorithms are presented in the works of
Barkatou et al. [14, 15, 16, 18, 19], Chen [49], Della Dora et al. [64], Hilali et
al. [97, 98, 99, 100] van Hoeij [107], Pfliigel [164, 165] and Tournier [212].

Exercise 3.51 Show the following result, due to Levelt [132]:

Let M be a left module over k((z))[d] which has finite dimension over k((z)).
There exists a finite field extension K D k((z)) such that the Dg-module K ®@ M
has a 1-dimensional submodule, i.e. N = Ke and de = fe with f € K.

Hint: Using Theorem 3.49 one reduces the general case to the case of a regular
singular module. The latter case gives a matrix equation dy = Ay with a
constant matrix A. After a finite extension of the field of constants one may
suppose that A has an eigenvector. This eigenvector induces a 1-dimensional
submodule of a suitable K ® M. a

We end the chapter by noting that the formal classification of general linear
differential equations has a long history going back to the nineteenth century
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with the works of Fuchs [77, 78] (see also [83, 84]) and Fabry [73], who wrote
down a fundamental set of local solutions of regular singular equations and
general linear equations, respectively. In the early twentieth century, Cope
[54, 55] also considered these issues. Besides the works of Malgrange, Ramis
and Turrittin already mentioned, this problem has been considered by Babbitt
and Varadarajan [7], Balser et al. [12], Levelt [132], Robba [181] and Wasow
[226]. The papers of Babitt-Varadarajan and Varadarajan [8, 223, 222] give a
more detailed exposition of the recent history of the problem.
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Chapter 4

Algorithmic Considerations

In Chapter 3, we discussed how one can find formal local solutions of a linear
differential equation. In this chapter, we consider the problem of finding so-
lutions of a more global nature and solutions that can be expressed in terms
of special functions. Throughout the chapter, we shall restrict ourselves, un-
less otherwise noted, to equations with coefficients in C(z) where C' is a field
of characteristic zero and 2z’ = 1. We furthermore will assume that there are
algorithms to perform the field operations in C' as well as algorithims to factor
polynomials over C'(z) (see [76], [172] for a formalization of this concept). We
indicate generalizations to equations with coefficients in other fields at the end
of the chapter.

4.1 Rational and Exponential Solutions

Rational Solutions

Let
L = 0"4+an10""'+.. . 4+ap (4.1)

be a linear differential operator with coeflicients in C(z) and 0 = %. In this
section we shall show how to find solutions y of Ly = 0 with either y € C(z) or
y'/y € C(z), where C' is the algebraic closure of C.

We begin by describing an algorithm to find V, the C-vector space of solu-
tions of Ly = 0 in C(z). Consider first the simpler problem of finding solutions
a€Qofp(z) =ana=2z"+...+a9 =0, p(z) € Z[z]. One way to proceed is to
note that factors of the denominator of @ must divide a,, and the factors of the
numerator must divide ag (assuming that a has relatively prime numerator and
denominator). One could then try all possibilities. For differential equations
Ly = apy™ + ... 4+ agy = 0 with a; € C(z), 2’ = 1 one can attempt a similar

99
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approach to find solutions in C'(z). We shall see that any irreducible factor q of
the denominator of a solution y € C(z) must divide a,,, but the largest power
q™ of ¢ dividing the denominator of y may be greater than the largest power of
g dividing a,,. For example, y = 2™ is a solution of zy’ — my = 0. Nonetheless,
we shall see below that one can bound m. One then reduces the problem to
finding polynomial solutions of a linear differential equation. Propositions 4.1
and 4.3 give the formalities of this approach.

Given any irreducible polynomial ¢ € C[z] and any f € C[z] we may write
f = %q" where (a,q) = (b,q) = 1 and n € Z. The integer n is called the order of
f at q. The assignment f — n yields a discrete valuation and the field C'(z) can
be completed with respect to this valuation to yield a field k, ([130], Ch.XII).
The field &, is isomorphic to (C[z]/q)((t)), ¢t an indeterminate). The derivation
on C(z) can be extended to a continuous derivation on k,. In k, we may write
any element f as

fud™ + frrrg™t

where each f; € C[z] satisfies deg, f; < deg, gq. This is called the g-adic expan-
ston of f. One sees by induction that

f(]) = qun_j + ...

where uj =n(n—1)...(n—j+1)f,-(¢')7 mod g. Since f,, and ¢’ are relatively
prime to ¢, we see that u; # 0. There is another valuation on C(z) given by
f =7 n=deg,b—deg, a. The integer n is called the order of f at infinity.
One can complete C'(z) with respect to this valuation as well and this yields the
field ko = C((z71)), called the completion at infinity . Elements of this field
may be written as

f=foz"+ fac12™ b

where the f; are constants and this is called the expansion at infinity of f. The
derivation extends to this field as well and we have that f() = n(n —1)...
(n —i+1)f2" "+ ... . We begin by describing the C-space of solutions of
Ly =0in C(z).

Proposition 4.1 Let L = 0" + a,_10"" ' + ... + ap be a linear differential
operator with coefficients in C(z). One can find, in a finite number of steps, a
C-basis of V', the space of solutions in C(z) of Ly = 0.

Proof. For convenience of notation, we let a,, = 1. Let y be a putative solution
of Ly = 0 and let ¢ be an irreducible element of C[z]. We let

Y = Yaq" +...
a; = ai’aiqai + ...

be the g-adic expansions of y and the a;. If @ < 0 then using the remark
immediately preceding this proposition, one sees that that the term containing
the smallest power of ¢ cannot cancel unless some a; < 0 as well. Therefore
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the only irreducible factors of the denominator of y that can occur are those
irreducible polynomials that occur in the denominators of the a;. We will now
bound «. In order for cancelation to occur we must have, for some subset
Sc{0,1,...,n},

Z aimiofa—1)...(a—i+1)y.(¢') =0 mod q .
i€eS

Dividing by ¥, yields the equation

Zai,aia(a —1)...(a—i+1)(¢) =0mod q .

€S
Since a; o, and ¢' are relatively prime to g, this latter equation yields a nonzero
polynomial that o must satisfy. Finding a bound for the integer solutions of
all such polynomials yields a bound a* for the power of ¢ appearing in the
denominator of y. Let y =Y/ qla L qr * where the q; are the distinct irreducible
factors of the denominators of the a; and the a] are the bounds just calculated.
Substituting this into Ly = 0 and clearing denominators yields an equation of

the form }
LOY)= A, Y™ 4 A, YD 4 4 AV =0
where the A; are polynomials. We now look for polynomial solutions of this

equation. If Y = y2% +...+yo and each A; = a; 5,27 +. .., then the coefficient
of the highest power of z in L(Y") = 0 will be

D aigBB-1)...(8—i+1)ys

i€s
for some S C {0,...,n}. Bounding the integer solutions of all such polynomials
will yield a bound on the possible degree of Y. Replacing Y by yz2° + ...+ yo

and equating powers of z yields a system of linear equations for the y;. A basis
for the solution space of this system will yield a basis of the vector space of

polynomial solutions of E(Y) = 0 and dividing by qf‘I ...qff: yields a basis of
V. m|

Exercises 4.2 Polynomial and rational solutions
1. Find a basis of the space of polynomial solutions of

mo_ 22 +4z 22+4 2
22+22—2y z2+22—2y 224222

y=20

2. Find a basis of the space of rational solutions of

4 2

n "
+——y +
Y (z + l)y

2 u=0
(z+ 1) Y

3. Let L be as in Proposition 4.1 and f € C(z). Modify the method given in
Proposition 4.1 to show how one can decide if Ly = f has a solution in C(z)

and find one if it does. O
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We shall now show that the C-vector space V of solutions of Ly = 0 in C(2)
has a C-basis of elements in C(z). This follows from the general result

Proposition 4.3 Let K be a differential field of characteristic zero with subfield
of constants C and let C be the algebraic closure of C. Let L = 0" 4a,,_,0" ' +
.. .+ag be a linear differential operator with coefficients in K. Then the C-vector
space V of solutions of Ly = 0 in CK has a basis in K. Furthermore, if V is
the C-span of solutions of Ly = 0 in K, then dimav =dim¢ V.

Proof. Let vy,...,v, be a C-basis of V. There exists a ¢ € C such that
K(vi,...,vm) C K(c). Let [K(c) : K] =t. for each i, 1 < i < m, there exist
Vi € K such that v; = E;:o vm'cj. Since 0 = L(UZ) = E;‘:o L(’l}id')cj, we
have that the v;; span V and therefore, V has a basis in K. Corollary 1.12
implies that any C-basis of V remains linearly independent over C'. Therefore

dimzV = dime V. O

Exercise 4.4 Inhomogeneous equations Let L be as in Proposition 4.3 and
f € K. Show that Ly = f has a solution in CK if and only if it has a solution
in K. Hint: Any element f € CK lies in a finite extension E of K with
[E : K] = m. Show that %TrE/Kf, where Trp/ is the trace, gives the desired
solution in K. O

Remarks 4.5 1. A C-structure on a vector space W over C is a C-subspace
Wy of W such that W = C ®c Wy. The previous proposition implies that
V = C ®c V and so gives a C-structure on V. In [95], the authors show how
one can put a C-structure on the entire solution space contained in a Picard-
Vessiot extension of C(z) associated with a linear differential equation with
coefficients in C'(z). This is used to understand the smallest subfield of C/(z)
needed when one is searching for a solution of the Riccati equation (c.f., Defi-
nition 4.6) in C(z). We note that Proposition 4.3 also appears in [43] and [95].

2. The algorithm in the proof of Proposition 4.1 can be improved in several
ways. For example, there are more efficient algorithms to find polynomial so-
lutions of linear differential equations. These and related matters are discussed
in [1], [2], [3], [43].

3. In many situations one is given a system Y’ = AY of differential equations
where A is an n X n matrix with coefficients in C(z) and asked to determine
a basis for all solutions in (C(z))". In theory, by finding a cyclic vector, one
can reduce this problem to finding all solutions of an associated scalar equation
Ly = 0 in C(z) but finding this associated equation can be costly. An algo-
rithm to find rational solutions of the system Y’ = AY directly has been given

by Barkatou [17]. i

Exponential Solutions
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We now turn to the problem of finding exponential solutions. Let K be a Picard-
Vessiot extension of C(z) containing a full set of solutions of Equation 4.1. We
wish to find all solutions y € K of Equation 4.1 such that y'/y = u € C(z). We
say that such a y is an exponential solution of Ly = 0 and will sometimes write
y = e/ " (we use this as a formal notatinal device only. Although, in many
cases one can give an interpretation in terms of analytic functions we rarely
do so). We begin by reviewing some facts concerning the Riccati equation (c.f.,
Remarks 3.21). If u is a formal variable and y = el * then formal differentiation
yields y() = Pi(u,u', ... u(=1)e/ " where the P; are polynomials with integer
coefficients satisfying Py = 1 and P; = P!_, + uP;_;. Furthermore, y = e/
satisfies Ly = 0 if and only if u satisfies

Rw) = Py(u,...,u™ V) + Ay 1Py q(u,...,u™ D)+ ... +A4=0 (4.2)

Definition 4.6 Fquation (4.2) is called the Riccati equation associated with
Ly =0.

We note that a similar definiton defines the Ricatti equation for L € k[0] for
any differential ring k.

Exercise 4.7 Riccati Equations. Let k be a differential field, u a differential
indeterminate and k{u} the ring of differential polynomials. Let L € k[0],

1. Show that right division in k{u}[3] yields 8" = L; o (0 — u) 4 P;(u) for some
L; € k{u}[0] and so L = Lo (0 — u) + R(u).

2. Show that v € k is a solution of R(u) = 0 if and only if L = Lo (0 — u).

3. Let K be the Picard-Vessiot extension of k associated with L. Show that
u € K is a solution of the Ricatti equation if and only if there is a y € K such
that Ly = 0 and 3'/y = u. O

The following gives the group theoretic interpretation of exponentials and
exponential solutions of a linear differential equation. Recall that a character
of an algebraic group G is a regular homomorphism x : G — C*.

Lemma 4.8 Let k be a differential field of characteristic zero with algebraically
closed field of constants C' and let L be a differential operator of order n with
coefficients in k. Let K be the associated Picard-Vessiot extension of k, G its
Galois group and V' the solutions space of Ly = 0 in K.

1. An element y € K — {0} is an exponential over k if and only if there is a
character x : G — C of G such that o(y) = x(o)y for all o € G.

2. Let Vi, ={v eV |o(y) = x(o)y for all o € G}. If u € K is a solution of
the Ricatti equation then for some character x there is a y € V), such that
y'/y = u.
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3. The associated Riccati equation has an infinite number of distinct solutions
in k if and only if, for some x, dimc V), > 2. Furthermore, if the Riccati
equation has more than n distinct solutions in k, then it will have an
infinite number of solutions in k.

Proof. 1. If y'/y = u € k then a calculation shows that (o(y)/y)" = 0 for
any o € G. Therefore, for any o € G, there is a ¢, € C such that o(y) = ¢, y.
Clearly, o + ¢, is a character. Conversely, if o(y) = x(o)y for all o € G, then
y' [y is left fixed by G and so must be in k.

2. Let u be a solution of the Riccati equation. Exercise 4.7 implies that L =
Lo (8 —u). Therefore the operator & — u maps V to to the solution space of L.
The order of this latter operator is less than the order of L so thereisay €V
such that y' —uy = 0. From 1. we know that y € V, for some character x.

3. We will first show that the Riccati equation has a finite number of solutions if
and only if, for any character x of G, dim¢ V,, < 1. Any exponential solution of
Ly = 0 must lie in some V. If dim¢ V), = 1 and y1,y2 € V., then yi /y1 = y5/yo.
Since the sum of the V, is direct, we see that there can be at most n solutions
of the Riccati equation. Now assume that for some x, dimc V), > 2. Let y1,y2
be linearly independent elements of V.. One can then verify that the elements

{ (y1t+Ay2)’

v }rec are in k and are all distinct. O

The following gives an algorithm to find all exponential solutions of Ly = 0
where L € C(x)[0].

Proposition 4.9 Let L = 0" 4+ a,_10" ' 4+ ... + ap be a linear differential
operator with coefficients in C(z) and let R(u) = 0 be its associated Riccati
equation. Let K be the Picard-Vessiot extension of C(x) associated with L.

1. One can decide, in a finite number of steps, if R(u) = 0 has a solution in
C(z) and if so find one.

2. One can find, in o finite number of steps, elements {u;}i=1,.. s € C(x)
such that
(a) Foreachi, 1 <i <'s, u; satisfies R(u;) = 0 and there ezists a y; € K
such that y./y; = ;.
(b) For any y € K such that Ly = 0 and y'/y € C(x) there is an i such
that y = py; where p is a polynomial solution of L(O — u;)y = 0.
In particular, one can find an integer N such that any exponential
solution of Ly = 0 is of the form (E;-V:O cjz?)y; for some i and some
choice of cj € C.

Proof. 1. Let u be a putative solution of R(u) = 0 and let

u=p(2) + Z i (Zc_aé)j

acC j=1
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be the partial fraction decomposition of u. If y € K satisfies y'/y = u then
considering y = el as a function on the complex plane, we see that y has an
essential singularity at @ and so a must be a singular point of L. The New-
ton polygon method presented in Chapter 3.3 implies that we can find a finite
number of possibilities for the possible terms of the form Z?;z (ch—oj)J that can
occur in the expansion of y'/y for a solution y at each singular point (see Re-
marks 3.50. In Exercise 4.10 we outline how the Newton polygon techniques
can be specialized and simplified to give this result directly.) A similar anal-
ysis at infinity shows that one can find a finite number of possibilities for the
polynomial part p(z). Making a choice at each singular point and at infinity,
we replace @ by & — @ in L and define a new operator L(8) = L(d — &) where

i=p()+ )

a€ES j=2

where S is the set of singular points and the expression above reflects the choices
we made at each of these. Informaly, we have Ly = e~/ %L{yel ®). We now
seek to decide if Lj = 0 has a solution of the form § = e/ ? where

Ca,l
(D D
aeC

Note that the form of v implies that § = [],.z(z — a)°>! and so, at any point
a € C, § has an expansion of the form § = (2 — a)? (352, diz*), where do # 0.
Expand the coefficients of L in powers of z — a and replace § by this latter
expression. The coefficient of the lowest power of z — a will be of the form
doI(c) where I is a polynomial of degree at most n having coefficients in C.
This polynomial is known as the indicial polynomial at . Therefore there are at
most n possibilities for the exponent c,,1. Furthermore, one sees that if & is not a
singular point the only possibilities for ¢, ; are 0,1, ...,n—1. Therefore, we may
write § = q(z) [[,cs(z — @)®!, where ¢(z) is a polynomial and there are only
a finite number of choices for the term ¢ = ], g(z — ). For each of these
choices, we let L(d) = L(8 —0) (ie., L = [Taes(z— Q) L, [Tacs(z —a)s=1).
It now suffices to decide if ﬁgj = 0 has a polynomial solution and this can be
done using Proposition 4.1.

2. We note that we have shown above that any solution u of the Riccati equation
is of the form @+ 0+ p’/p where the @ and ¥ come from a finite set of elements in
C(z) determined as above and p is a polynomial solution of L(0—u—o)y = 0. For
each choice of w+ 0, one uses Proposition 4.1 to decide if such a p exists and if so,
find one. We are therefore able to find a finite set of elements {u;}i=1,. s € C(z)
satisfying the Riccati equation such that for any other solution v of the Riccati
equation there exists a u; and a polynomial ¢ € C[z] such that v = u; + ¢'/q.
Exercise 4.7 implies that there are elements y; € K such that y}/y; = u; and
Proposition 4.1 (applied to L(9) = L(8 — u;)) implies that we can bound the
degrees of the possible q. |
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Exercise 4.10 Rational solutions of the Riccati equation

In Proposition 4.9 we make use of Newton polygon considerations to find the
rational solutions of the Riccati equation. In general, these techniques give us
more information than is needed (e.g., expansions in fractional powers of z). In
this excercise we specialize the Newton polygon method to the present situation
(c.f., [201]).

1. Let « € C and let u € C(2).

(i) Let u = u,/(z — a)” + higher order terms, where y > 1, u, # 0 € C.
Using the relation P;11 = P} + uP;, show that:

(a) If v > 1, then Pi(u,u’,...,ul* D) = (u,)"/(z — @)® + higher order
terms. ]

(b) if ¥ = 1, then Pj(u,u’,..., ul"1) = H;;E(ul —7)/(z — @)’ + higher
order terms.

(ii) Let u = u,2” + lower powers of z, where u, # 0 € C. Show that:

(a) If v > 0, then P;(u,u’,...,ul"=") = ul 2" + lower order terms.

(b) If v = 0, then P;(u,u’,...,u""") = u} + lower order terms

2. Let L be as in Equation 4.1 and let R(u) = 0 be the associated Riccati
equation. Let u = u. /(2 — a)7 + lower order terms, where v > 1, u, # 0 € C.
Show that if each a; = a;.4, /(2 — @) + higher order terms, then the leading
term of a; P; is (i, ulY)/(z —@)?t?. Deduce that if R(u) = 0 there is a subset
S € {0,...,n} such that v;+iy = v;+jv and that Y, ¢ a; ,u?Y = 0. Therefore
the possible v are determined up to a finite set of possibilities by equations of
the form v = v; —v;/(i — j) and that u, is determined by >, ¢ aimug =0.
Note that  is an integer < max-y; for all i.

3. For each choice of v and u, one can alter the original L and consider the
new operator L(9) = L(d — (:—L),) (ie., L = e Ju/z=a) Lol us/(z=a)7),
We repeat the calculations of (b) for this new operator assuming that u =
us/(z—a)’+... where § < . Continuing, we may assume that L has coefficients
in C(z) and that we are searching for a solution of the Riccati equation of the
form u = Y u,/(z — @) + p where u,,a € C and p € Cz].

4. If a € C is a zero of a denominator of a;, i.e., a singular point of L, then
u, satisifes an equation of the form ), ¢ a; ,, H;;E (uo — J) = 0 for some set
S c {0,...,n} (the indicial polynomial) and so these u, may be determined
up to a finite set of possibilities. If a is not a singular point, the u, must
be in the set {0,...,n}. Therefore we can modify L as before and assume
that uw = P'/P + p where P,p € C[z] and P has no roots in common with a
denominator of any a;.

5. Using 1(ii) and calculations similar to those in 2., we can find the polynomial
p up to some finite set of possibilities. Again, we modify the operator L and
can assume that w = P'/P. Now use Proposition 4.1 to find the polynomial
solutions of the modified linear differential equation. a
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Note that the proof of Proposition 4.9 (or the above exercise) implies that
a solution u of the Riccati equation must be of the form

P! R

FHQ+g (4.3)

S
|

where P,Q, R, S € C[z], the zeroes of S are singular points and the zeroes of
P are nonsingular points. We can therefore select S to be a product of the
irreducible factors of the denominators of the a; and so have it lie in C[z]. The
next examples show that, in general, one cannot assume that P,Q, R € C|[z].

Examples 4.11 1. The functions \/(z —+/-1), \/(z ++/—1) form a basis of
the solution space of

Lo, 1
2117 4(z24+1)

L2y:y”— y=0.

One then sees that the the only rational solutions of the associated Riccati
equation are

1 z—/-1 1 _z+V-1
{2(2-{—\/—_1) 22242720 —-1) 2z2+2}

This shows that R may not be in C[z].

2. The functions (z ++v/—1)eV~'%, (z++/—1)e~V~'* form a basis of the solution
space of

2
yl/__yl+y:0_
z

One then sees that the only rational solutions of the associated Riccati equation
are

1 1
— VL, =1
{z—l-\/—l z—+/-1 }
This shows that P and  may not be in C[z]. i

The algorithm in Proposition 4.9 goes back to Beke [22] (see also [186],
§177). There are two aspects that contribute to the computational complexity
of the above algorithm. The first is combinatorial. At each singular point one
selects a candidate for terms of degree less than or equal to —1. If one uses
the Newton polygon method described in Cahpter 3, one generates at most
n distinct candidates, where n is the order of the differential operator (see
Remarks 3.50). If there are m singular points then one may need to try n™
possibilities and test n™ transformed differential equations to see if they have
polynomial solutions. The second is the apparent need to work in algebraic
extensions of C of large degree over C.
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In [106], van Hoeij gives methods to deal with the combinatorial explosion
in this algorithm (as well as a similar problem encountered when one tries to
factor linear operators). One can proceed as follows (c.f., [42], [164]). Let a be
a fixed singular point. We may write a rational solution of the Riccati equation
as

u = ey~ fa (4.4)
where e, = J:‘#"M + ...+ Zai—; and fo = boy + b1 (2 —a) +.... One can
calculate (at most) n possibilities for e,. We shall refer to e, as a principal part
at o. One then considers the new differential equation L(d) = L(d — e,). The
term f, will be of the form y'/y for some power series solution y of Ly =0. One
can use the classical Frobenius algorithm to calculate (to arbitrary precision) a
basis y1, ...,y of these power series solutions. Since f, is a rational function,

t (ciy1+...4ceye)’
(cryr+--+ceye)

is a solution of the Riccati equation.

one must decide if there are any constants ¢y, ..., ¢ such tha is

(ciy1+...4ceye)’

rational and such that e, + CTTESRET)

This can be done as follows.

One first calculates a bound N (see the next paragraph) on the degrees of
the numerators and denominators of possible rational solutions of the Riccati
equation. One then uses the first 2N + 1 terms of the power series expansions

+...+ ! ; . F +...+ !
of % to find a Padé approxvimant f, [21] of % and then

one substitutes e, + fa into the Riccati equation and determines if there are any
¢; that make this equation vanish. More concretely, given IV, we may assume
that the value of c1y1 + ...+ ¢ty at z = a is 1 and write

(iyn + .-+ )
(i + ..o+ ceyr)

= do(cr,...,c) +di(er,. .., d)(z —a) +

2N 2N+1

..t dan(er,. .. e)(z — @) mod z

where the d;(ci, ..., d2n are poynomials in the ¢; that can be calculated using
the power series expandions of the ;. One now must decide if there exist h;, g;
such that

N
+ ...
foz — N+ = do(cl,...,Ct)+d1(cla"'7dt)(z_a)+

2N 2N+1

oo+ don(er, .., 0)(z — @) mod z

Multiplying both sides of the above equation by gn(z — a)N + ... + go and
comparing the first 2N + 1 powers of z — « yields a system S of polynomial
equations in the ¢;, g;, h; that are linear in the g; and h; but nonlinear in the
¢;. Substituting v = e, + fa into the Riccati equation R(u) = 0, clearing
denominators and equating powers of z — a yields another system of nonlinear
polynomial equations S. One can then use Grobner basis methods to decide if
there are ¢; such that the system S US is solvable.

We now show how one can calculate a bound N on the degrees of the nu-
merator and denominator of a rational solution of the Riccati equation. At each
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singular point a € C one can calculate the possible principal parts. In particu-
lar, this allows one to find the possible integers n, and so bound the degrees of
R and S in Equation 4.3. At co, one can also calculate possible principal parts
oo = 2= 4+ L= where t = 1. This allows one to bound the degree of
@ in Equation 4.3. Note that the constant aj o = deg P — > a1,. Therefore
once we have bounded (or determined) all the residues a1 o and a1, we can
bound (or determine) the possible degrees of P in Equation 4.3. Therefore we
can find the desired bound N. Note that although we have had to calculate mn
principal parts, we have avoided the necessity of testing exponentially many
combinations.

Both the algorithm in Proposition 4.9 and the above algorithm are presented
in a way that has one work in (possibly large) extensions of C. Several ways
to minimize this are given in [42],[43], and [106]. The examples above show
that extensions of C' cannot be avoided. For an even simpler example, let p(z)
be an irreducible polynomial over Q(z). The solutions of p(d)y = 0 are of the
form e** where « is a root of p(z) = 0. Therefore each solution of the Riccati
equation is defined over an extension of Q of degree equal to the order of p(9).
Proposition 4.12 says that this is the worst that can happen.

Proposition 4.12 Let L be a linear differential operator of order n with coef-
ficients in C(2) and let R(u) = 0 be the associated Riccati equation.

1. If there are only a finite number of solutions of R(u) = 0 in C(z) then
each of them lies in a field of the form Cy(z) where [Co : C] < n.

2. If R(u) = 0 has an infinite number of solutions in C(z) then there is a
solution in a field of the form Cy(z) where [Cp : C] < 3.

Proof. We will let £ = C(2) and use the notation of Lemma 4.8.
1. Let us assume that the Riccati equation has only a finite number of solutions.
In this case, Lemma 4.8 implies that there are at most n of these. The group
Aut(C/C) acts on C(z) and permutes these solutions. Therefore the orbit of
any solution of the Riccati equation has size at most n and so is defined over a
field of degree at most n over C.
2. For each Vy, we adefine U, C C(2) by Uy, = {y'/y |y € V;,—{0}}. The U, are
disjoint and there are at most n nonempty U, . Furthermore, Lemma 4.8 implies
that any U, consists of a single element if and only if dim V), = 1. Therefore
there can be at most n/2 U, having more than one element. For uy,u, € UU,,
there exist a U, such that ui,us € U, if and only if u1 —us = f'/f for some
f € C(z). This implies that the group Aut(C/C) permutes the U,. Lemma
4.8 implies that if the Riccati equation has an infinite number of solutions in
C(z) then some U, has more than one element. The orbit of such a U, under
the action of Aut(C/C) can therefore have size at most n/2 and therefore its
stabilizer G5, C Aut(C'/C) has index at most n/2. Fix such a U, and let Cy be
the fixed field of G so [Cy : C] < n/2. We shall show that there is an element
up € Uy N Co(z) and so satisfy the conclusion of 2. above.
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Let u be any element of U, and let C; be a finite Galois extension of Cy con-
taining the coefficients of u. The Galois group G of C; over Cj is a subgroup
of G, and so o(u) € U, for any 7 € G. Therefore 7(u) —u = f'/f for some

fr € C(2). We may write f'/f, = Enlﬁ—’ where p; is an irreducible monic
polynomial in C(z). From the uniqueness of the partial fraction decomposi-
tion of 7(u) — u we have that each p; € Cy[z]. Therefore we may assume that
fr =1Ipi" € Ci(z). Note that this defines f; uniquely. Furthermore, note that
freWy ={f € Ci(z)|u+f'/f €U, }and that W, is a Ci-vector space. We
claim that there exists a g € W, such that for all o € G, f, = g/og. Assuming
this, we let ug = u + g'/g. We then have, for any o € G, that

oup =ocu+og' /og=u+fl/fs+0g Jog=u+g'/g=uo .
Therefore ug € U, N Cy(x).

We now prove the claim that there exists a g € W, such that for all ¢ € G,
fo = g/og. The proof is a slight modification of the proof of the cohomological
version of Hilbert’s Theorem 90 (c.f., Theorem 10.1, Ch.VI,§10 [130]). We
denote by h™ the image of any h € Ci(z) under the action of 7 € G. We
note that for any o, 7 € G

fafg = fa'r

because (ocu—u)+o(ru—u) = oru—u. For each 7 € G, f,7 is a homomorphism
from Cf to Ci(x)*. Therefore the linear independence of characters (Theorem
4.1, Ch.VL§4, [130]) implies that there exists a # € C such that

9= f7(6) £0.

TEG
One has that og = ¥ f707(8) = 5 for [ 07(6) = f7'g 50 fo = gfog. O

The above proposition appears in [95] and its proof applies to equations with
coefficients in C'((z)) as well. In this case the Riccati equation will always have a
solution in a field whose degree over C'((z)) is at most the order of L. In this later
case, the result also follows from a careful analysis of the Newton polygon or
similar process (c.f., [64], [106], [132], [212]). Despite Proposition 4.12, we know
of no algorithm that, except in the case n = 2 (due to M. Berkenbosch [23]),
will compute a rational solution of the Riccati equation that guarantess that all
calculations are done in a field Cy(z) with [Cp : C] < n.

We end this section by noting that an algorithm for computing exponential
solutions of linear differential systems is given in [164].

4.2 Factoring Linear Operators

In the previous section, we showed how for any operator L with coefficients in
C(z), one could find all solutions y of Ly = 0 with u = y'/y € C(z), that is,
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we showed how to find all monic first order right factors 0 — u of the operator
L. In this section we shall show how to find all right factors of L of any order.
The algorithm we first present goes back to Beke [22], who showed how this
problem can be reduced to finding first order factors of the exterior powers of
the original operator. Recall (Definition 2.35) that the d* exterior power A%(L)
of an operator L is the monic operator whose solution space is spanned by the
elements {wr(yi,...,yq4) | Ly; =0, i = 1,...,y4}. In Section 2.4, we showed
how one can calculate this operator and gave several of its properties. In this
section we also defined the operators A%(L) for any Z = (iy,...,iq), 0 < i1 <
... < ig <n — 1. This is the monic operator whose solution space is spanned
by {wz(y1,-..,ya) | L(y;) = 0} where wz(y1,...,yq) is the determinant of the
d X d matrix formed from the rows i; + 1,...i4 + 1 of the n x d matrix

Y1 Y2 . Ya
Y1 Ys - Yg
—1 —1 —1

4.2.1 Beke’s Algorithm
We now give the algorithm of Beke to factor differential operators.

Proposition 4.13 Let L be a monic differential operator of order n with coef-
ficients in C(z) and m an integer with 1 < m < n. One can find, in a finite
number of steps, the set of all monic operators L of order m with coefficients in
C(2) such that L divides L on the right.

Proof. Let L be a putative right divisor of L. Exercise 2.4(3) implies that
the solutions space of L is a subspace of the solution space of L so there are
solutions ¥, ..., Yy, of Ly = 0 such that

Ly = y"™ 4 b, 1y™ D+ +by (4.5)
Y Y1 - Um
Y R AR
- Y1 ym (4.6)
Y1 cee Ym
! !
det Y1 e Ym.
ygm—l) o yﬁm—l)
From  this latter equation, one sees that b, 1 =
(wr(yry .- Ym)) Jwr(Y1,y ..y Ym) SO by—1 is the logarithmic derivative of an

th

exponential solution of the m!* exterior power A™(L) of L. Proposition 4.9
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implies that one can find wuq,...,us such that for any nonzero solutions z; of
2! =iz, by—1/z; € C(z) for some i. Furthermore, each b;, j =m —1,...,0,
is equal to a solution of some A*(L) divided by wr(yi,...,ym). In particular,
b; is a rational solution of AJ*(L)(0 — u;)y = 0. One can effectively find a basis
Zj1,---,%jn; of the rational solutions of this latter equation and write

bj = ¢jazj1 + .+ CiniZjn; (4.7)

for some constants c;;. Therefore to find the possible coefficients of L one fixes
an integer ¢, 1 < i < s, and, for the corresponding u;, calculates the z; ;. One
then uses the expressions in equations 4.7 as coefficients of an operator of order
m and formally divides L on the right by this expression. Setting the remainder
equal to zero gives algebraic conditions on the constants {c;;} and defines a
constructible set. These sets parameterize the possible right factors of order m
of L and one can use standard techniques (e.g., Grobner bases) to decide if any
of these are consistent and, if so, to find such a right factor. a

In the form described in Proposition 4.13, Beke’s algorithm is not very effi-
cient. One searches first for b,,_1, the coefficient of y(™~1) in a possible factor
of order m. This coefficient will be the logarithmic derivative of an exponen-
tial solution z of A™(L)y = 0 where z is of the form wr(yi,...,ym) for some
independent solutions y1,...,ym of Ly = 0. Not all exponential solutions of
A™(L)y = 0 need be of this form bt the algorithm does not try to distinguish
among these. Furthermore, one searches for possibilities for the other coeffi-
cients by looking for rational solutions of other auxillary operators. In the end
one is then asked to consider a possibly large set of polynomial equations in
many unknowns. These quetions were addressed by Tsarev in [215]. To de-
scribe this work, we will need the following proposition. Note that if V is a
G-module for some group G, then G acts on A™V as well and this action is

given by o(yi, A= Ayi,,) =0Wi,) N No(yi,,)-

Proposition 4.14 Let L be a linear differential operator with coefficients in
a differential field k and let K be the associated Picard-Vessiot extension with
Galois group G. Let V' be the solution space of Ly = 0 in K and let AN™V be
the mt" alternating power of V

1. If {y1,...,yn} is basis of V, then the map defined by y;, A--- ANy;, —
Wr(Yiys -5 Yin), for all 1 < iy < ... < iy < n defines a G-morphism
from A™V onto the solution space of N™(L)y = 0. Therefore, if the order
of N™(L) is (:1), A"V is isomorphic to the solution space of N™(L)y = 0.

2. V contains a G-invariant subspace of dimension m if and only if there
exist linearly independent elements vy,...,v, € V such that vi A... Avy,
spans a G-invariant line in A™V.

3. If N™(L) has order (:1), then L has a right factor of order m if and only
if A™(L) has an exponential solution w so that w = wr(z1,...2m) for
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linearly independent solutions z1,...,zm of L. If this is the case, then L
has a right factor of the form L = 0™ + (w' /w)d™ 1 +... .

Proof. The first statement follows from a computation that shows that the
respective group actions are the same. To prove the second statement note that
if vy A...Avy, spans a G-invariant line of AV, then W = {w € V | wAv; A...A
vm = 0} is a G-invariant subspace of V. Conversely if {wy,...,w,,} is the basis
of a G-invariant subspace of V' then wy; A ... A w,, spans a G-invariant line in
A™V . The final statement follows from statements 1. and 2. and Lemma 2.43.
O

We will also need the following fact concerning determinants. Let M be an

m X n matrix, m < n, of rank m with columns denoted by e;,...,e,. Given
a linear combination D = 37, _  _; pi,, i, det(ei,-..,e;,) of subdetermi-
nants, one can ask when is D = det(f, ..., fi), for some f; in the span of the

e;. A necessary and sufficient condition is given by the Plicker relations

m+1

— E t,. . . . . . —
Pily---yimflvjly---vjmi»l - (_1) Pivyim—1,§ePi1 e fe—1 Gt rdimer — 0,
t=1

for all sets of distinct indices i1,...,im—1 and ji ... Jm+1 (c.f., [92], [102]).

We now describe Tsarev’s work. we again use the notation y = el * to denote
any nonzero element y such that y' = uy. We begin by assuming that A™ (L) has
order v = (). Assume that we have determined an element v € C(z) such that
el v is a solution of A™ (L)y = 0. Using Proposition 4.9, one can furthermore
determine u1, . ..,u; € C(z) such that any exponential solution w of A™(L)y = 0
with w/e/? € C(z) is of the form w = (dyu; + ... + dyu,)el V. Note that at
a nonsingular point of A™(L), any solution is completely determined by the
first v terms of its power series. Let zy be a nonsingular point of both L and
A™(L). Furthermore, let y;,...,y, be a basis of the solution space of Ly = 0
determined by yl(] )(zo) = 0;,j. One can calculate power series expansions of
such solutions to arbitrarily high powers of z — zy5. Therefore, equating the
first v coefficients in the power series expansions, we can determine linear forms
Div,..im (d1,-..,dy) in the variables di,...,d; with coeffcients in C such that
(diug + ...+ dtut)ef” = PiyinWrYiy, -, Yi,, ). One then determines if
there are values of d1, . . ., d; such that the p;, __; (di,...,d;) satisfy the Pliicker
relations. Assume that there are such values di, . . ., d; satisfying these relations
and let w = (Jlul + ...+ citut)ef”. Since we are assuming that the order of
A™(L) is v, we can use Lemma 2.39 and find the other coeflicients of a linear
operator that, by construction, must be a right factor of L.

Before turning to the case when A™(L) has order less than v, we consider
the following example.

Example 4.15 We shall apply the Beke algorithm with the modifications of
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Tsarev to find all the factors of order 2 of
L=0"-0°

over the field Q(z). Note that 0 is a nonsingular point of this equation and that
a basis for the solution space of this equation is given by {y1 = 1,42 = z,y3 =
22 ys =e* =142+ 22/2+...}. We shall now calculate the second associated
operator of this operator. We will use the notation

Y(i) Y(i)

We then have that

Uo,1 100000 "

Y01 010000 -

0.1 001100 u“

“(o,l) = 0010 20 0,3 (4.8)
ug 0010 32 3172

ul?) 0010 45 L3

0,1 U3

(V9 001059 ’

0,1

One then sees that
A*(L) = 8% — 30° + 30* — &°

Note that this equation has order < ;1 > = 6. Any exponential solution of

A?(L)y = 0 s either of the form d; +dyz +d32? or of the form (dy +d2z +d32?)e?
for some constants dy, dy, ds. We will deal with each case separately. Using the
notation w; ; = wr(y;,y;), we have

_ _ 2 _ Uz _ z _ 2 z
wipg =1 w13 =22 we3 =2, w4 =€, wrs=(z—1)e*, wgas = (2°—2z)e" .

We first consider the case of an exponential solution of A%(L)y = 0 of the form
dy + dyz + d3z*. Considering the first 6 terms in the power series expansion of
di+dyz+ds2? = > pijw; j we see that pi 4 = p24 = ps 4 = 0. There is a unique
Pliicker relation in this case and it is p 2p3.4 — P1,3D2,4 + P1,4P2,3 = 0. This puts
no constraints on the constants di, d», d3, so any choice of these (assuming not
all are 0) will yield a second order factor of L. Note that any second order factor
will be of the form

Ly =08%— UO,I(ZI:ZQ)Ia_‘_ U1,2(Z1,22)Y
U0,1(21,22) uO,l(Zl,ZQ)

From Equation 4.8, we have that
u1,2(21,22) = w0 (21,22)" — Tuo (21, 22)" + 10U0,1(21,Z2)(w) —4ug 1 (21, 22)(0) .

Therefore, we get a family of second order factors of the form
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d2 —+ 2d32’ 2d2

Ly =0"— .
di + daz + dg2? di + daz + dg2?

We now consider the case of an exponential solution of A,y = 0 of the form
(di + daz + d32%)e*. Again considering the first 6 terms in the power series
expansion of (di +daz +d32%)e* = 5 p; jw; ; we see that p1 o =p13 =p23 =0
and that the Pliicker relation puts no constraints on the constants di,ds,ds.
Therefore we get a family of equations of the form

d2 + 2d32’ + d1 + dQZ + d32’2
d1 + dzZ + d3Z2

do + 2d3z

Ly=09"—
2 ( d1+d22+d322

)0 +

We now turn to the case when A™(L) has order less than v. We shall show
that one can find polynomials py, ..., p,_1 of degree at most m + (::L) — 2 such
that the map y — Ty = poy + Py’ + ... + 1y Y is an isomorphism of
the solution space of L onto the solution space of an operator L having the
property that the order of A™ (L) is precisely (). One then uses the algorithm
described above to find a factor Li of order m of L. If such a factor exists,
then the operators L and LyT have a common solution space of dimension m.
Therefore GCRD(L,L,T) is a factor of L of order m. The following lemmas
allow us to find L.

Lemma 4.16 Let K be a differential field with constants C'. Let yq,...,y, € K
be linearly independent over C' and let By, ..., By—1 be differential indetermi-
nates. The map ¢ : K{By,...,By_1} = K{By,...,Bp_1} defined by ¢(B;) =
E?:_OI yl(])Bj is a differential isomorphism.

Proof. Since the B; are differential indeterminates the map given above clearly

defines a differential homomorphism. For each t > 0, let R, :=
K[BO,...,Bn_l,...,B(()t),...,B;tll] and let R_; = K. Note that for any ¢,

¢(B£t)) = (Z;:ol yl(j)Bj)(t) = Z;‘:’Ol yz(j)Bj(.t) + b;+ for some b;; € R¢_1. Since
the Y; are linearly independent over C, the n x n matrix (yy )) is invertible. One
can therefore show by induction on ¢ that ¢ induces a bijection from R; to R;.

This shows that ¢ is an isomorphism. O

Lemma 4.17 Let k be a differential field containing an element x with x' =1
and constant field C' and let L € D have order n. For each m,1 <m <n —1,
there exist polynomials po, . ..,pn—1 in Clz] of degree at most m + (::L) — 2 such
that the transformation y — poy + Py’ + ... + pn_1y™ Y is an isomorphism
of the solution space of L onto the solution space of an operator L having the
property that the order of /\m(IN/) 1s precisely (;‘1) Furthermore, the coefficients
of the p; may be chosen to be integers between 0 and m(:;)
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Proof. Let K be the Picard-Vessiot extension of k corresponding to L and let
{y1,-..,Yn} be a basis for the solution space of L in K. Let By,...,B,_1 be
differential indeterminates. For each m-tuple I = (i1, ... i), 1 <i; < ... <
im < nlet Wy =wr(By,,...,B;,). The term B;, B;, ---Bg:fl) occurs in Wy
but in no Wy with J # I. Therefore the elements {Wr | I = (i1,...,im), 1 <

i1 < ...< iy <n} are linearly independent over C. Letting B; = 2?2—01 y(j)Bj

Lemma 4.16 implies that the elements {W;(B;,,...,Bi, ) | I = (i1,...,im), 1 <
i1 < ... < 4» < n} are also linearly independent over C. Let W be the
wronskian determinant of the Wy (B;,,...,B;,, ). The differential polynomial
Wisof orderm —1+ (") —1=m+ () — 2 and degree m(") in the B;. The
result now follows from Lemma 2.20. a

Other improvements to the Beke algorithm have been given by several au-
thors [42], [44], [46], [188]. In [86], Grigoriev also gives simplifications of the
Beke algorithm as well as a detailed complexity analysis. An algorithm for de-
termining the reducibility of a differential system is given in [85]. A method to
enumerate all factors of a differential operator is given in [216].

In [106], van Hoeij gives methods to factor differential operators that are
not based on Beke’s algorithm. In this paper, he uses algorithms that find
local factorizations (i.e., factors with coefficients in C'((2))) and uses this local
information to factor operators over C(z). This local-to-global approach works
very well in practise and has been implemented in MAPLE V.5.

4.2.2 Eigenrings and Factorizations

Another method, not based on Beke’s algorithm, is given in [203]. This method
uses the eigenring (c.f., Definition 2.11). It does not always factor reducible
operators but does often yield factors quickly. We will show that the method
does factor all reducible completely reducible operators (c.f., Definition 2.46).

Recall that if L is a differential operator of order n with coefficients in
a differential field K, then the eigenring £(L) is defined to be the set {R €
K[9] | ord(R) < ord(L) and there exists an S € K[| such that LR = SL}.
Exercise 2.10.4 and Exercise 2.10.5 imply that dimec (L) < n? and that
dime (L) > 2 implies that L factors. We shall show how this can be used
to factor operators when K = C(z).

We begin by showing that an operator R lies in £(L) if and only if the
coefficients of R satisfy a system of linear differential equations. To see this let
An_1,...Ap be differential indeterminates and let R = 4,_,0" ' + ... + Ao.
If we formally divide LR on the right by L, we will get a remainder R =
A,_10" '+ ...+ Ay where the A; are linear homogeneous expressions in the A;
and their derivatives. Let A(A,—1,...,Ap) be the system of linear differential
equations gotten by setting the A; equal to zero. We shall refer to these as the
eigenequations. The space £(L) may therefore be identified with the C-vector
space of solutions of A(A,—_1,...,4p) in K.
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Example 4.18 Let K = C(z) and L = 0. An operator R = A30° + 420° +
A0+ Ap is in E(L) if and only if 9*R is divisible on the right by 8%, that is, if
and only if the coefficients of 83,92,3, and 8° in O*R are zero. This yields the
following system

AFY =0

446 4 40— g

640 44409 4 AT — g

44 + 647 4445 ATV = 0
By inspection, one sees that (As, As, A1, Ap) is a solution of this system in

(C(2))* if and only if each A; is a polynomial of degree at most 3. Therefore,
dim £(L) = 16. O

In [203] general methods are given for determining dimg £(L) when K =
C(z). For example, using Exercise 2.4.2, one can find operators Li,..., L, such
that there is an effective correspondence between the solutions of Li(Z;) =
0,...,Ln(Z,) = 0 and the solutions of A. One can then use the methods of
Section 4.1 to find solutions of this former system in C(z). Other techniques for
finding £(L) are discussed in [13] and [105].

Once one has an element of £(L) of order greater than or equal to 1 one
can obtain a factorization of L. To do this, let R € £(L), ord(R) > 1. We
then have LR is divisible on the right by L. Therefore, if z is a solution of
Ly = 0, we then have that R(z) is again a solution of Ly = 0. This implies
that the map z — R(z) is a linear map of the solution space of Ly = 0 into
itself. If ¢ is an eigenvalue of this map, then (R — ¢)y = 0 for some solution
of Ly = 0, ie,, (R—c¢)y = 0 and Ly = 0 have a common solution. Since
0 < ord(R — ¢) < n, the greatest common right divisor GCRD(R — ¢, L) will
be a nontrivial factor of L. Therefore, given R € £(L) of order at least 1, the
condition GCRD(R — ¢, L) # 1 defines a nonempty set of at most n constants
and for each of these GCRD(R — ¢, L) will be a nontrivial factor of L.

Example 4.19 We continue with the equation of Example 4.18. Let R =
20 — 4 € £(L). We then have that GCRD(9*,20 — 4 — ¢) # 1 if and only if
c¢=—1,—-2,-3, or —4. One can see this using the euclidean algorithm or more
simply (in this case) by noting that GCRD(0*, 20 — 4 — ¢) # 1 if and only if
20 — 4 — ¢ divides 0* On the right and this happens if and only if y = z**¢ is a
solution of &%y = 0. O

The following proposition shows that for reducible completely reducible op-
erators, the above method always will yeild a factor.

Proposition 4.20 A completely reducible operator L is reducible if and only if
dimcVy > 1 where V4 is space of solutions in k of A. This happens if and only
if A has a solution @ = (ap—1,...,a0) € k"™ with a; # 0 for some i > 0.
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Proof. The first part of the corollary follows from the fact that £(L) is iso-
morphic to the solution space of A in k and Proposition 2.51. Recall that
Endg(V) (where V is the solution space of Ly = 0) always contains the endo-
morphisms induced by constant multiplication. Such an endomorphism corre-
sponds to an element R = 00" ' 4+ ...00 4+ a € Ep(L), a € C and so is given
by (0,...,0,a) € V4. Therefore dimcV4 > 1 if and only if this space contains
elements not of this form. For such an element, we must have either a; # 0 for
some i > loray & C. If v=1(0,...,0,a0) € V4 then the map w — aow is
an endomorphism of V. This implies that for some ¢ € C, there is a w € V so
that (ap — ¢)w = 0. This implies that ap = ¢. Therefore if dim V4 > 0, then A
contains an element of the prescribed form. The converse is clear. O

One can proceed by induction (since a factor of a completely reducible op-
erator is completely reducible) to find a factorization of a completely reducible
operator into irreducible factors. We will see in the next section that completely
reducible operators arise naturally. A test for complete reducibility of operators
over C(z) is given in [203] and this is extended to algebraic extensions of C(z)
in [53].

We end this section with an exercise giving a version of the Eisenstein irre-
ducibility criterion that can be applied to differential operators.

Exercise 4.21 Factorization over C(z) versus factorization over C[z].

(1) Show that 282 + 220 — z = (0 + z)(2z0 — 1). Note that each of the first order
factors has coeffcients with no common factors while z divides the coeffcients
of the product. Therefore a naive version of Gauss’s Lemma is false for linear
operators over the ring C|z].

(2) Let L = 0 + 20 — 1. Show that L factors over C(z) but that L cannot be
written as the product of first order operators with coeffcients in C[z]. Hint:
Show that z is the only exponential solution of Ly = 0.

Despite these examples, Kovacic [126] gives the following Eisenstein-like cri-
terion for the irreducibility of a differential operator: Let R be a differential
integral domain with quotient field F' and let P be a prime differential ideal in
R. Assume that the local ring Rp is principal. Let L = Ei:o ;0! be a differen-
tial operator with coefficients in R such that ¢; € P fori=1,...,l,¢co € P and
c; € P2, Then L is irreducible over F.

(3) Use the above criterion to show that if L = 8% + p, where p € C(2) is of
odd degree, then L is irreducible over C(z). Hint: Let deg.p = 2k + 1 and
define a new derivation &' on C(z) via 8’z = 27%9. Show that R = C[z7!] is
a differential ring and that P = (z7!) is a prime differential ideal with respect
to &'. L is irreducible over C(z) if and only if L' = 2~ FU[L = 219" +
kz—(k+2)9" 4 2=(Ck+Dp is irreducible over the quotient field of R. Apply the
criterion. O



4.3. LIOUVILLIAN SOLUTIONS 119
4.3 Liouvillian Solutions

In Section 1.6, Proposition 1.47, we showed that if a linear differential equation
Ly = 0 with coefficients in a differential field k£ has a nonzero solution liouvillian
over k, then it has a solution z # 0 such that z'/z is algebraic over k. In this
section we will show how one can decide if this is the case and if so find such
a z. We begin by developing some group theoretical facts that imply that if
Ly = 0 has a nonzero liouvillian solution, then it will have a solution z # 0 such
that u = 2'/z is algebraic over k of degree bounded, a priori, in terms of the
order of L. We then show that the coefficients of a minimal polynomial of u can
be calculated by finding exponential solutions of certain symmetric powers of
L. We will also discuss special algorithms to find liouvillian solutions of second
and third order operators.

4.3.1 Group Theory

In this section, k will be a differential field with algebraically closed field of
constants C'. To motivate the next result we recall that, in Section 1.6, we show
that a Picard-Vessiot extension K of a differential field k lies in a liouvillian
extension of k if and only if the identity component of its Galois group is solvable.
If K is the Picard-Vessiot extension of k corresponding to a differential equation
Y’ = AY of order n, then this result combined with the Lie-Kolchin Theorem
(Theorem A.46) implies that if K lies in a liouvillian extension of k then the
Galois group has a subgroup of finite index that leaves a line in the solution
space of Y/ = AY invariant. In the algorithms presented in this section, we
will need a more refined version of this, namely that there exists a computable
function I(n) such that if K lies in a liouvillian extension of k then the Galois
group has a subgroup of index at most I(n) that leaves a line in the solution
space of Y/ = AY invariant. This will imply that Ly = 0 has a nonzero solution
z such that z’/z is algebraic over k of degree at most I(n). The group theory
that we need is based on the following theorem of Jordan ([110], [111]; see also
the exposition of Jordan’s ideas given by Dieudonné [65]). It is interesting to
note that Jordan proved this result in order to study algebraic solutions of linear
differential equations.

Theorem 4.22 Let C' be an algebraically closed field of characteristic zero.
There exists an integer valued function J(n), dependning only on n, such that
every finite subgroup of GL,,(C) contains an abelian normal subgroup of index
at most J(n).

Various authors have given bounds for J(n). Blichtfeldt [31] showed that
J(n) < nl(6" 1)T(+D+1 where 7(2) denoted the number of primes less than

or equal to z (see [67] for a modern presentation). One also finds the following
values of J(n) in [31]: J(2) = 12, J(3) = 360, and J(4) = 25920. Schur
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[187] showed that J(n) < (v/8n + 1)2"" — (v/8n — 1)>*" (see [58] for a modern
exposition). Other proofs can be found in [66] and [230].

Our main group theoretic tool is Proposition 4.24. We will need the following
definition. Its usefulness will become apparent in Proposition 4.25

Definition 4.23 A group G C GL,(C) is said to be 1-reducible if it leaves a
line in C™ invariant.

Recall that we say that a group acts irreducibly on a vector space C™ if the
only subspaces left invariant are {0} and C™.

Proposition 4.24 Let C be an algebraically closed field of characteristic zero.
If G ¢ GL,(C) acts irreducibly on C™ and has a a 1-reducible subgroup of finite
index, the G has a I-reducible subgroup of index at most max,,{r.J(%)}.

Proof. Since in any group G a subgroup of finite index contains a subgroup
that is normal in G and again of finite index, we may assume that G contains
a normal 1-reducible subgroup H.

Recall, that a multiplicative character y of a group is a homomorphism of
that group to C* (c.f., [130], Ch. VI, §4). For each character of H we define
the x-weight space V; to be {v € V | o(v) = x(o)v for all 0 € H}. Note that
any sum +V, of weight spaces must be direct. In particular there can be only
a finite number of weight spaces. Let {Vi,...,V,.} be the weight spaces of H.
We shall deal with two cases: r =1 and r > 1.

If r =1, then Vi = C™ and H is a subgroups of the group of constant
matrices Cp,. Let ® : GL,(C) — GL,(C)/Cy and ¥ : SL,(C) — GL,(C)/C,
be the homomorphisms sending a matrix to its coset. Note that both ® and ¥
are both surjective and that the kernel of W is finite. If we restrict ® to G, its
kernel contains H and so its image will be finite. Therefore, ¥~1(®(G)) will
be a finite subgroup of SL,(C). Theorem 4.22 now implies that there exists
an abelian normal subgroup H of ¥~'(®(G)) of index < J(n). Since C, is
the center of GL,(C), H' = & '(¥(H)) NG is an abelian subgroup of G of
index < J(n). Since H' is abelian, its elements can be simultaneously put in
triangular form and so H' is 1-reducible.

Now assume r > 1. Since H is normal, G will permute the {V;,...,V,}.
The orbit of V; under this action will span an invariant subspace of V' and so
the sum of the elements in this orbit must be all of V. Therefore, each V; will
have dimension 7. Let H; be the stabilizer of V. We have that H; C H; and
we can consider H; as a subfroup of GL(V}). By induction on the dimension,
H, will have a 1-reducible subgroup H' of index at most J(%). The index of
H'"in G is rJ(%). Considering all possible values of r that divide n, yields the

conclusion of the proposition. |

To use the above Proposition we will now show
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Proposition 4.25 Let L be a differential operator of order n with coefficients
in k and let K be the corresponding Picard-Vessiot extension. If Ly = 0 has
a solution z € K such that u = 2'/z is algebraic over k of degree m, then the
Galois group G of L has a I-reducible subgroup of index m. Conversely, if G
has a 1-reducible subgroup H of index m, then Ly = 0 has a solution z € K
such that uw = 2’ [z is the root of a polynomial of degree m with coefficients in k.
Furthermore if m is the minimal index of a 1-reducible subgroup then u will have
degree precisely m and no logarithmic derivative of a solution will be algebraic
over k of smaller degree.

Proof. Assume that z is a solution of Ly = 0 with u = z'/z algebraic over k
of degree m. Let H be the subgroup of G that leaves the elements of k(u) fixed.
For any 0 € H we have that

(@) o(2)z — 2'o(2)

- 22 (59
= 0

Therefore o(z) = ¢,z for some ¢, € C. This implies that z spans an H-invariant
line and so H is 1-reductive of index [k(u) : k] = m.

Now assume that G has a 1-reducible subgroup H of index m. Let z span

an H-invariant line. In this case, u = 2'/z is fixed by H. If 04, ..., 0., are coset
representatives of G/H, then the coefficients of P(U) = [\, (U — ”08 ) are
left fixed by G and so P(U) € k[U]. O

We can now combine the two previous propositions.

Proposition 4.26 Let Ly = 0 be scalar differential equation of order n with
coefficients in k. If Ly = 0 has a nonzero solution liouvillian over k, then
Ly =0 has a solution z # 0 such that 2' [z is algebraic over k of degree at most
I(n) = max)<m<n(max, |, {rJ(2)}).

Proof. Proposition 1.46 implies that we can assume that all the solutions of
Ly = 0 are liouvillian over over k and, by taking an irreducible factor of L
we may further assume that L is irreducible over k. Corollary 2.43 implies
that the Galois group G of Ly = 0 acts irreducibly on the solution space of
Ly = 0. Furthermore, Proposition 1.45 and the Lie-Kolchin Theorem imply
that the Galois group of G of Ly = 0 has a 1-reductive subgroup of finite index.
Therefore Proposition 4.24 implies that G has a l-reductive subgroup H of
index < I(n). Propositon 4.25 now implies the penultimate conclusion of the
Proposition. The final statement follows from the previous two. a

Weaker versions of Propositions 4.24 and 4.26 originally appeared in [197].
Proposition 4.24 can also be deduced from results of Platonov and Malcev (see
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[228], Theorem 3.6, p.45 and Corollary 10.11, p.142). The present versions of
Propositions 4.24 and 4.26 appear in [47]. In this paper, [219], and [220] other
results concerning sharper bounds on the existence of 1-reducible subgroups for
certain classes of groups can be found.

4.3.2 General Algorithms

In this section, we will present a simple (yet not very efficient) algorithm to
decide if a linear differential equation over C'(z) has a nonzero liouvillian solution
and produce such a solution if it exists. We then present a modification that
refines this algorithm in the same spirit that Tsarev’s refinements modify the
Beke algorithm. At the end of the section we will discuss other refinements.

We begin by reviewing some facts about symmetric powers Symd(L) of an
operator L. In Section 2.4, we showed that the solution space of this operator is
spanned by {y1-...-yq | Ly; = 0}. Furthermore, we showed that Sym(L) can be
calculated in the following manner: Let L have order n and let e = 1 be a cyclic
vector of k[0]/k[0]L with minimal annihilating operator L. One differentiates

e, u= ("Zi;l) times. This yields a system of p + 1 equations:

ajed:z:aj,[c‘f[ j=0,...,pu (4.9)

where the sum is over all I = (ig,i1,...,%n—1) With 4o + i1 + ... + i1 = d
and £ = e’ (fe)’ --- (9" 'e)»-1. The smallest ¢ such that the first ¢ of the
forms on the right hand side of these equations are linearly dependent over
C(z) yields a relation dte? 4+ by 10" te? + ... + bpe? = 0 and so Sym*(L) =
Ot +b; 101 + ...+ by. The following example will be used several times in
this chapter.

Example 4.27 Let L = 0% — %6 — z and m = 2. We shall calculate the
equations (4.9) and Sym?(L). Following the above proceedure, we have

e? 1 0 0 )
de? 0 2 0 €
52¢2 = 9 1 9 6662 (4.10)
932 3 8:3"1/2 3 (Oe)
22 z

The3 above matrix B of coefficients has rank 3. A calculatigon shows that
(0,—2=L, —2 '1)B = 0. Therefore, Sym®(L) = 9° — £0% — 22L0. O

22 I 2z

We will also need other auxillary operators. These will be formed using

Definition 4.28 Let k be a differential field and L € k[0]. The derivative of L
denoted by Der(L), is defined to be the minimal monic annihilating operator of

d € k[9]/k[D]L.
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As in Section 2.4, one can show that the solution space of Der(L) is {y' | Ly = 0}.

Example 4.29 Let L = 9% — 320 — z and let e = 9 € k[0]/k[0]L. To calculate
Der(L) we form the following system:

e = 0
de = —0+
e = 5 0+z
1 3
0% = (z-— E)a +3

Therfore Der(L) = 8> — 20 + (& — 2z). We shall also need in Example 4.31
that Sym?(Der(L)) = 8° — 16 42" 105 4 45210, 0

Proposition 4.30 Let L be a linear differential operator of order n with coef-
ficients in k = C(2). One can decide, in a finite number of steps, if Ly = 0 has
a nonzero solution liouvillian over k and, if so, find the minimal polynomial of
an element u algebraic over k so that any y with y'/y = u, we have Ly = 0.

Proof. We shall present an algorithm having its roots in [150] and given ex-
plicitly in [197]. We shall refer to this as Algorithm I.

Algorithm I. Proposition 4.26 implies that if Ly = 0 has a nonzero liouvillian
solution then it has a solution z such that u = 2’/z is algebraic of order at most
I(n). The algorithm proceeds by searching for the minimal polynomial of such
a u. Let m be a positive integer less than or equal to n and let

P(u) = u™ 4 bpu™ .. 4 b

be a putative minimal polynomial of the logarithmic derivative u of a nonzero
solution of Ly = 0. Note that u satisfies the Riccati equation R(u) = 0 asso-
ciated with L. Since the (algebraic) Galois group of P(u) acts transitively on
the roots of P(u), all solutions of P(u) = 0 also satisfy the Riccati equation
and therefore each of these roots is the logarithmic derivative of a solution of
Ly =0. Let u; = 2[/2z;, i =1,...,m be the roots of P(u) = 0 where the z; are
solutions of Ly = 0. Since the coefficients of P(u) are the elementary symmetric
function of the u;, we have that, foreachi=1,...,m — 1,

m ZI e ZI .
<.>bm_i -y e (4.11)
i Ro(1) """ Ra(i)
occ Perm(m)
! !
_ Y oe Perm(m) ?c(1) " %o(i)%o(i+1) " Fo(m) (4.12)

21" Zm

where Perm(m) is the group of permutations on m elements. Note that b,,,_1 =

(z1--2m)" /(21 - zm) and so is the logarithmic derivative of a solution of the

mt" symmetric power Sym” (L) of L. Furthermore, for each i = 2,...,m, the
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element (2) - - 2 )b is a solution of L; := Sym™ (L) ® Sym‘(Der(L)). In
particular, for each i = 2,...,m, b,,_; is a rational solution of L;(Q + by,—1).
Note that this latter statement holds trivially for i = 1 as well.

Proposition 4.9 applied to the operator Sym™ (L) implies that one can find
v1,-..,vs such that for any exponential solution y of Sym™(L)y = 0 there
exists a j such that some y/y; € C(z) for any solution of y; = vjyj. Therefore
for some j, we have that

bm—i is a rational solution of L;(d + v;)

for i = 1,...,m. Fix a value of j. Let z;1,...,2;p; be a basis of the rational
solutions of L;(0 + vj). Let

bm—i = cinzi1 + ...+ CiniZin; (4.13)

where the ¢, s are indeterminate constants. To see if there exist constants ¢, s
such that the resulting polynomial is the minimal polynomial of a solution of
the Riccati equation one proceeds as follows. The set of these constants for
which the resulting P(u) is irreducible over C'(z) forms a constructible set Z.
Let us assume that 7 is nonempty. Assuming the c, s take values in C, one has
that u' = P;(u) where P; is a polynomial of degree at most m — 1 in u that can
be calculated using the equality P(u) = 0. Similar expressions uY) = P;(u) can
be calculated for all derivatives of u. Replacing u(? in R(u) with the P;(u) and
then reducing modulo P(u) yields an espression that must vanish if P(u) = 0
is the minimal polynomial of a solution of the Riccati equation. This yields
algebraic conditions on the constants {c;;} and defines a constructible set and
standard techniques (e.g., Grobner bases) can be used to decide if any of these
are consistent. Repeating this for all j yields all possible minimal polynomials
of algebraic solutions of degree m of the Riccati equation. |

Example 4.31 Consider the operator L = 9% — %6 — 2. We shall show that
this operator has a solution y with y'/y algebraic of degree two over C(z). Let
P(u) = u2+byu-+bg be the putative minimal polynomial of an algebraic solution

L . 2
of the Riccati equation. In Example 4.27, we showed that Sym?*(L) = 8% -2 9%~

42;_ L. The only exponential soultion of this equation is y = 1 so we must have

that by = 0. To find by we consider Sym®(Der(L)) = 0° — 2262 — 4’”1—;108+ 4510

T
(see Example 4.29). This has a one-dimensional space of rational solutions and

this is spanned by z. Therefore P(u) = u? — cx for some constant c. The

associated Riccati equation is R(u) = u' + u® — 3-u — z. From P(u) = 0, we
have that u' = 5Zu, so c is determined by $Zu + cx — %u —x = 0. Therfore
¢ =1 and P(u) = u®> — z. This implies that L has a solution space with basis
{ef \/5’ effﬁ}_ O

Similar criticisms can be made concerning the algorithm given in Proposition
4.30 as were made concerning the algorithm of Proposition 4.13. In the above
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algorithm, one searches first for b,, 1, the coefficient of y™ ! in a possible mini-
mal polynomial of an algebraic solution of the Riccati equation. This coefficient
will be the logarithmic derivative of an exponential solution of Sym™ (L)y = 0
of the form y; - - -y, and not all exponential solutions of this equation need be
of this form. Furthermore, one needs to use other operators to calculate the
remaining b; and then solve a (possibly large) system of polynomial equations.
We will now address these issues.

The following proposition can be viewed as an analogue of Proposition 4.14
in the present context. We shall identify Sym™ (V') with a certain quotient of
the m-fold tensor product V ® ... ® V (see [130], CH. XVI, §8 for informa-
tion concerning the symmetric power Sym™ (V) of a vector space V) and we
shall identify v; ® ... ® v, with its image in that quotient. We remark that
if V' has dimension n, then Sym™ (V) is isomorphic to the space of homoge-
neous polynomials in n variables of degree m. Note that if V' is a G-module
for some group G, then G acts on Sym™ (V') as well and this action is given by

oY ® - OYi,) =0(yi) ® ... ®0(yi,)-

Proposition 4.32 Let L be a linear differential operator with coefficients in
a differential field k and let K be the associated Picard-Vessiot extension with
Galois group G. Let V be the solution space of Ly = 0 in K and let Sym™ (V')
be the mt" symmetric power of V

1. If {y1,-..,yn} is basis of V, then the map defined by y;, @ --- Q@ y;,, —
Yig * e Yin, Jor all 1 < iy < ... < iy < n defines a G-morphism from
Sym™ (V') onto the solution space of Sym™(L). Therefore, if the order
of Sym™ (L) is ("Tff;l), Sym™ (V') is isomorphic to the solution space of
Sym,,(L).

2. G has a I-reducible subgroup of index at most m if and only if there exist
nonzero elements vy,...,v; € V, t < m such that v1 ® ... ® v; spans a
G-invariant line in Sym' (V).

3. If R(u) = 0 has an algebraic solution of degree m over k then Sym™ (L)y =
0 has an exponential solution w of the form w = vy - ... - vy, for some
nonzero solutions v; of Ly = 0. Conversely, assume Sym™ (L) has order
(”Z’f;l) and Sym™(L)y = 0 has an exponential solution w of the form
W =1 ... Uy for some nonzero solutions v; of Ly = 0. Then the Riccati
equation R(u) = 0 associated with L has an algebraic solution of degree at

most m over k.

Proof. The first statement once again follows from a calculation of the G-
action on the respective spaces.

To prove the second statement, let us assume that G has a 1-reducible sub-
group H of index at most m. and let v be an element of V that spans an
H-invariant line. We then have that the element u = v /v is left fixed by H.
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Let uy,...,us, t < m be the orbit of u under the action of G. Note that each
u; = v}/v; for some v; € V. We therefore have that for any o € G and any 1,
o(vi)/o(vi) = v} /v; for some j. Therefore o(v;) = ¢, v; for some ¢, ; € C, the
constant subfield of k. In particular, v; ® ... ® v; spans a G-invariant line in
Sym*(V'). Now assume that w = v; ®...®wv; span a G-invariant line in Sym* (V).
Identifying Sym’(V) with homogeneous forms in n variables of degree t, we see
that w corresponds to a homogeneous form that can be written as the product
of linear forms corresponding to the v;. Since the polynomial ring in n variables
is a unique factorization domain, we see that each v; must be sent to a constant
multiple of some v; by any element of G. Therefore the lines spanned by the
v; are permuted by G. If H is the stabilizer of v; in GG, then H is a 1-reducible
subgroup of index at most t.

To prove the final statement, assume R(u) = 0 has an algebraic solution of
degree m over k. If P(u) = u™ +bp—1u™ 1 +...+bp is the minimal polynomial
of u over k, then each root of P(u) is the logarithmic derivative of a solution of
Ly = 0. Therefore, for some solutions vy, ...v,, of Ly =0,

v} v!
b1 = —(L+...+-2)
U1 Um
_ _(vl...vm)l
V1 Um

Since by,,—1 € k, we have that Sym™(L)y = 0 has a solution of the required
form. Now assume that w is an exponential solution of Sym™ (L)y = 0 of the
form w = vy -. .. v, for some nonzero solutions v; of Ly = 0. Since the solution
space of Sym™ (L)y = 0 is isomorphic to Sym™ (V'), one can apply 2. to conclude
that G has a 1-reducible subgroup of index at most m and so, by Proposition
4.25, the Riccati equation R(u) = 0 associated with L has an algebraic solution
of degree at most m over k. |

The above proposition suggests that it is important to be able to decide if an
element of a symmetric power is of the form y; ® ... ® y,,,. Recall that one can
identify the set of homogeneous polynomails of degree m in n variables over a
field C' with Sym™ (C™). The set of such homogeneous polynomials that factor
(over the algebraic closure of C') into the product of linear forms is a closed
subvariety of Sym™ (C™) whose defining equations, the Brill equations ([81], pp.
120,140; [39], p. 181). We note that when n = 2, any homogeneous polynomial
F(z,y) of any degree m factor into the product of linear forms. This is because
one can write F(z,y) = ymF(f, 1) and any polynomial in one variable factors
completely over an algebriacally closed field.

Before we proceed to give the modifications to the algorithm presented in
Proposition 4.30 we need more technical result. We know that there is a system
similar to equations (4.9) such that for any solutions yi,...,ys of Ly = 0 this
system expresses each (y; ---y4)®, i = 0,...,u linearly in terms of products
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of the y; and their derivatives up to order n — 1. One could derive these in a
similar manner but we shall show that, via a simple transformation, one can
derive these directly from equations (4.9).

We will first introduce some notation. First of all it is convenient to rewrite
equations (4.9). Consider the differential polynomial Ly = 3™ + a,_y" 1) +
...+ agy in the ring of differential polynomial k{y}. If we identify y with its
image in k{y}/[L(y)] (where [L(y)] is the differential ideal generated by L(y))
we may write equations (4.9) as

Z(l) = Z CljJYI ] = 0, B V) (414)

where Z = y? and the sum is over all T = (ig,i1,...,0n_1) With i + i3 +
vt iy =dand YT = gio(y')i ... (y(*=D)in-1 Let Y7,...,Yy be differential
indeterminates and let I = (ig,...i,—1) be an n-tuple of nonnegative integers
with 49 4 iz + ... + in—1 = d. We denote by Y! the monomial
(n—2) (n—1) (n—1)
Vivs-... 'YioYilo+1 il0+2 ce Yy i o Yiod i ot Vi i,

For example if n = 4,d = 5 and I = (1,2,0,2), then Y = VY, VJY,"YJ". If
o is a permutation of {1,..., d}, we shall denote by V! the monomial resulting
from applying o to the subscripts of I. We shall denote by P’ the expression

1
523’5

oce Perm(a)

where Perm(d) is the group of permutations on d elements. For example, if
n=2,d=3andI=(1,2), then P/ = 2(V1Y;Y{ + V1YJV] + V3Y/Y]). Finally,
we use the notation Z for the element Y; - ... Yy = P(@0:-:0)  The following
lemma shows that the elements Z/) and P! satisfy the the relations (4.14) after
one makes the substitution Z() — Z() and V! — PI.

Lemma 4.33 Let k{Y1,...,Y,} be the ring of differential polynomials inn vari-
ables, L a differential operator with coefficients in k and P =
[L(Y1),...,L(Yq)] the differential ideal in k{Y1,...,Y,} generated by the L(Y;).
If R = kE{Y1,...,Y,,}/P, then the images of the elements Z\) and Y' in R
satisfy the system of equations

20 =Y ap P! (4.15)
I

for j = 0,...,u where the sum is over all n-tuples I = (ig,i1,...,0n—1) with
io+i1+...+i,—1 =d and as; are as in equations (4.14).

Proof. Let V and W denote the k-vector spaces of homogeneous polynomials
of degree d in k{Y} and k{Y1,...,Y,} respectively. Note that V and W are
closed under taking derivatives. A calculation shows that the map ¢ : Y/ — PT
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induces an injective additive map that commutes with derivation. Furthermore,
using L(Y) = 0 to replace each Y for ¢ > n with a k-linear combination of
Y,Y’,...,Y(™ Y in any element of V and then applying ¢ yields the same result
as applying ¢ and then using L(Y;) = 0 to replace each Yi(t) for t > n with a
k-linear combination of Y;,Y/, ..., Yi(nfl) in the resulting element of W. |

Example 4.34 We show how this Proposition applies to Example 4.27. In this
example, n = 2 and d = 2. Therefore, we consider the monomials P(2:0) =
V1Ye, POY = LY, + 11YY), P02 =Y1/Y]. Equations (4.10) become

V1Y, 1 0 0
Y
Y, Ys) 0 2 0 152
S R LY, +17Ys) | (4.16)
(V1Y5) : g
(Y1Y5)" 3 8z3—21/2 3 112

O

We shall use the following corollary of Lemma 4.33. This is analogous to
Lemma 2.39.

Lemma 4.35 Let k and L be as above and assume that Sym?(L) has order
w= (d;’_‘f). For any I = (ig,-..,in—1), with ig + ... +in—1 = d, there exist

bro,...,br,u—1 € k such that for any solutions y1,...,yq of L(y) =0 we have
pn—1
Pl(ylv B 7yd) = ZbI,j(yla- . -7yd)(]) .
7=0

Proof. If Sym?(L) has order v, then this implies that the system of equations
(4.14) has rank p. This implies that one can solve for each of the u terms P!
in terms of Y7 -+ - Yy and its derivatives up to order p — 1. O

Algorithm 2: We fix an integer m < I(n) and will test to see if there is a poly-
nomial of P of degree m with coefficients in k, all of whose roots are logarithmic
derivatives of solutions of Ly = 0. Let K be the associated Picard-Vessiot ex-

tension. We begin by assuming that Sym™(L) has order (™" ') and test to

see if there is an element y € K with y'/y € C(z) such that y is a solution of
Sym™(L)y = 0 (we will deal with the case where Sym™ has smaller order later
in this section). If P is a polynomial as above, then the coefficient of the term of
degree m — 1 must be the logarithmic derivative of a product of m solutions of
Ly = 0. Therefore, if no such y exists, then there will be no P with the desired
properties. Now assume that we have found an element v € C(z) such that el
is a solution of Sym™(L)y = 0. Proposition 4.9 implies that one can determine
u1,---,ur € C(2) such that any exponential solution w of Sym™(L)y = 0 with
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w/el v € C(z) is of the form w = (dyuy + ... + d,u,)el . Note that at a non-
singular point of Sym™ (L), any solution is completely determined by the first
(m:fl_l) terms of its power series. Let zg be a nonsingular point of both L and
Sym™(L). Furthermore,let y1,...,y, be a basis of the solution space of Ly =0
determined by yl(])(zo) = §;;. One can calculate power series expansions of
such solutions to arbitrarily high powers of z — zg. Therefore, equating the first
(m:fl_ 1) coefficients in the power series expansions, we can determine linear
forms p;, ..., (d1,...,dt) in the variables dy,...,d; with coeffcients in C' such
that (dius +...+deug)e/ ¥ =3, o o i pi iyt - yhr. One then deter-
mines if there are values of dy,...,d; such that the p;, . ;. (di,...,d:) satisfy
the Brill equations. Assume that there are such values dl, ceny dy satisfying these
relations and let w = (Jlul +.. .+d~rur)ef”. Furthermore let w = 2 -...-2,, for
solutions z; of Ly = 0 and let P(u) = [~ (u— z—l) = U™ —bp_1u™ 4.+ Do
Note that the b; satisfy the equations (4.11) and (4.12). In particular, using the
notation of Proposition 4.33, we have that, for I = (i,m —,0,...,0),

ilm — i) PL(z1,. .., 2m)

m! w

bm i =

Since we are assuming that the order of Sym™ (L) is maximal, Lemma 4.35 im-
plies that each P! can be expressed as a C(z)-linear combination of

w,w', .., wh T = (”Tff;l) Therefore the coefficients of P can be expressed
as quotients of linear forms in w,w’, ..., w™~Y and so will be in C(z). There-

fore for each value of dy, . .., d; such that the p;, ;. (di,...,d;) satisfy the Brill
equations, we have a polynomial, all of whose roots will be logarithmic deriva-
tives of a solution of Ly = 0. Conversely, if such a polynomial exists, then the
coefficient of the term of degree m — 1 is the logarithnic derivative of a solution
of Sym™(L)y = 0 and so will eventually be found as we consider all exponential
solutions of Sym™(L)y = 0.

n+m—1

Before we turn to the case where Sym™ (L) has order less than ("1™

shall give an example of the above method.

), we

Example 4.36 We consider the equation Ly = y" — %y’ — zy. In Example
4.27, we showed that Sym?(L)y = y"' — %y” — 42:—2_13/ Note that this equation
has order (*$?7") = 3 and has an exponential solution w = 1 (in fact this is the
only exponential solution). As noted above, when L has order 2, any solution of
Sym?(L)y = 0 will be the product of two solutions of Ly = 0 so we may write
1 = 2125 for solutions zi,ze of Ly = 0. Therefore we will be able to produce
a polynomial of degree 2 whose roots are logarithmic derivatives of solutions of
Ly = 0. In Example 4.34, we calculated the system

V1Y, 1 0 0
Yy,
Yy _ 0 2 0 1
myv)r | T o[z b2 || 20 EY)
(Y1Y5)" 3 8z3—21/2 3 112
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From this system we have that

Y, 1 0 0 1Y,
;MY +VYs) | = 0 3 0 (11Y2)! (4.17)
Yy —Z 3 3 (1112)"
Since 1 = 2125 we have from this system that z{zs+ 2125 = 0 and 2125 = —z.
The polynomial we desire will therefore be
Py = pr-Aantang, s
Z122 Z122
= U?—z
Therefore Ly = 0 has solutions el V7 e ES O

We now consider the case where Sym™(L) has order less than (™" "). As

with the similar situation that occured in the modification of Beke’s Aﬂgorithm,
one finds an equivalent operator whose m** symmetric power has the full order.
The following lemma allows us to do this.

Lemma 4.37 Let k be a differential field containing an element x with ' = 1
and constant field C and let L € k[0] have order n. Let m be a positive integer
and let y = (m:fl_l) There exist polynomials po,...,pn—1 in Clz] of degree
at most uym such that the transformation y — poy + ... + Pn1y ™D is an
isomorphism of the solution space of L onto the solution space of an operator L
having the property that Sym™ (L) has order p. Furthermore the coefficients of

the p; may be chosen to be integers between 0 and p.

Proof. Let K be the Picard-Vessiot extension of k associated with L and let
{y1,-..,yn} be a basis of the solution space of L in K. Let By,...,Bp_1 be
differential indeterminates. Let {M;(By, ..., Bn—1)} be the set of monomials of
degree m. These are clearly linearly independent over C'. Lemma 4.16 implies
that the set {]\ij = M;(Boy1 +... +Bn,1y§n71), .., Boyn+... +Bn,1y%n71))}
is also linearly independent over C. Therefore the wronskian determinant w =
wr(Mj, ..., M,) does not vanish. Since w is a differential polynomial of order
u and degree myu in the B;, Lemma 2.20 implies the conclusion of this lemma.
O

Let us assume that one has found an equivalent operator L such that Sym™ (L)

has order (™!} and furthermore assume that we have found a polynomial P

all of whose roots are logarithmic derivatives of solutions of Ly = 0. Factoring
P if need be we may assume that P is irreducible. We now show how to find a
similar equation for L.

Let Sy = co(2)y + ... + cn,1~(z)y(”’1) define the isomorphism between the so-
lution space of Ly = 0 and Ly = 0. If we let S be the operator ¢p(z) + ...+
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cn1(2)0" L, then S and L must be relatively prime. Using the euclidean al-
gorithm, we can find operators A and B such that AS + BL = 1. This implies
that the operator A defines the inverse isomorphism from the solution space of
L to the solution space of L. Therefore, if @ is a root of P(@) =0 and §' = ay,
then w = A(§) is a solution of Ly = 0. Furthermore A(§) = Q(@)§ for some
polynomial Q, so that w'/w = Q(&)'/Q(@) + @. One can find a polynomial
Q(@) such that Q(@'/Q (@) = Q(@) and then find the minimal polynomial P of
u + Q(u) over C(z) (the polynomial Resultanty (X — (Y + Q(Y), P(Y)) will be
a power of this minimal polynomial). This polynomial has the property that
any of its roots will be the logarithmic derivative of a solution of Ly = 0.

The problem that occurs when the mt* symmetric power has less than max-
imal order is avoided using the techniques of in [103] and [104]. In these papers,
the authors show how to construct matrix differential equations whose solu-
tion spaces are isomorphic to the symmetric powers of the solution space of
Ly = 0. Using this, they are then able to construct, independent of the order of
Sym™ (L), polynomials all of whose roots are logarithmic derivatives of solutions
of Ly = 0 when such polynomials exist.

The algorithm presented in Proposition 4.30 is based on [197], where an algo-
rithm to find all liouvillian solutions of a linear differential equation is presented.
Many of the ideas in [197] already appear in [150]. In [219] and [220], Ulmer
refines the group theoretic techniques to significantly improve the bounds in all
cases and also develops conditions to further narrow down the set of possible
degrees of algebraic logarithmic derivatives of solutions that can occur. The
modifications appearing in Algorithm 2, appear in [207] and [208]. We also note
that the case of inhomogeneous equations is discussed in [60] and the situation
where the coefficients of the equation lie in more general fields (e.g., liouvil-
lian extensions of C(z)) is discussed in [41] and [201] In the next sections we
shall discuss how these algorithms can be simplified for second and third order
equations.

The question of deciding if a linear differential equation has only algebraic
solutions (or even one nonzero algebraic solution) has a long history. In 1872,
Schwarz [189] gave a list of those parameters for which the hypergeometric equa-
tion has only algebraic solutions (for higher hypergeometric functions this was
done by Beukers and Heckman [26]). An algorithm (with some mistakes) to
find the minimal polynomial of an element u algebraic over C(z) with exp( [ u)
satisfying a given second order linear differential equation was found by Pepin
[163] in 1881. Using invariant theory, Fuchs [79], [80] was able to find the min-
imal polynomial of an algebraic solution of a second order linear differential
equation assuming that the Galois group is the finite imprimitive group of order
24, 48 or 120 (this method is generalized in [205]). In [118], [119], Klein shows
that any second order linear differential equation with only algebraic solutions
comes from some hypergeometric equation via a rational change in the inde-
pendent variable z := r(z). This approach was turned into an algorithm by
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Baldassarri and Dwork [9]. Jordan [110] considered the problem of deciding if
a linear differential equation of order n has only algebraic solutions. As already
mentioned, he showed that a finite subgroup of GL, has an abelian normal
subgroup of index bounded by a computable function J(n) of n. This implies
that such an equation has a solution whose logarithmic derivative is algebraic
of degree at most J(n). Jordan’s approach was made algorithmic in [196] (see
also [36] and [162] for similar but incomplete algorithms due to Boulanger and
Painlevé). It should be noted that the algorithms of Boulanger, Klein, Painlevé,
and Pépin, are all incomplete in at least one regard. Each of these algorithms,
at one point or another, is confronted with the following problem: Given an
element u, algebraic over C(z), decide if exp([ u) is also algebraic over C(z).
Boulanger refers to this as Abel’s Problem ([36], p. 93) and none of these au-
thors gives an algorithm to answer this question. In 1970, Risch [179] showed
that this problem could be solved if one could decide if a given divisor on a
given algebraic curve is of finite order. Risch showed how one could solve this
latter problem by reducing the jacobian variety of the curve modulo two distinct
primes and bounding the torsion of the resulting finite groups. For other work
concerning Abel’s Problem, see [9], [40] [59], [213], [224], [225]. The introduc-
tion to [150], the articles [83], [209] and the book [84] give historical accounts
of work concerning algebraic solutions of linear differential equations.

One can also ask if one can solve linear differential equations in terms of
other functions. The general problem of solving a linear differential equation in
terms of lower order linear differential equations is given in [198] and [200].

4.3.3 Second Order Equations

Prior to [197], Kovacic [127] presented an algorithm to decide if a second order
linear differential equation. In this section we shall describe this algorithm in
the context of the methods presented above.

The following proposition shows that second order linear differential equations
have properties which allow one to simplify Algorithm 2 above.

Proposition 4.38 Let L be a linear differential operator with coefficients in a
differential field k having an algebraically closed fiels of constants C' and let K
be the associated Picard-Vessiot extension.

1. Any solution of Sym™(L)y = 0 in K is the product of m solutions of
Ly =0.

2. The m™ symmetric power Sym™ (L) of L has order (™;°7") =m +1
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Proof. 1. Let y1,y> € K be linearly independent solutions of Ly = 0. Any
solution w of Sym™ (L)y = 0 is of the form w = 3 ¢;yiyy* " for some constants
¢;, not all zero. Since any homogenous form in two variables over an algebraically
closed field can be written as the product of linear forms, we have that 0 =
S ity =TI, (riyi + s;y2) for some r;,s; € C, not all zero.

2. If Sym™ (L) has order less that m + 1, then there exist constants ¢;, not
all zero, such that for two linearly independent solutions y;,y> € K of Ly = 0,
we have " c;yiys ™" = 0. As noted in 1. we have that 0 = S ciylyy ™" =
[T, (riys + siy2) for some r;,s; € C, not all zero. This implies that some
riy1 + s;y2 = 0, contradicting the fact that y; and y» are linearly independent.
O

In particular the above result together with Proposition 4.32.3, implies that
to decide if Ly = 0 has a solution whose logarithmic derivative is algebraic
of degree at most m, one need only decide if Sym’(L)y = 0 has a nonzero
exponential solution u; for some ¢ < m. If such a solution exists, then Algorithm
2 shows that the coefficients a minimal polynomial of a solution of the Riccati
equation can be calculated in terms of u; and its derivatives.

Second order linear differential equations have several additional features
that allow one to simplify Algorithm 2. The first property concerns calculating
the mt" symmetric power of a second order differential operator.

Lemma 4.39 ([45]) Let k be a differential field and Ly = y" +ay’ + by. Define
operators L;, 0 < i < m by the recursion

Ly =1
L1 = 8
Li+1 = 8Lz + ’LCLLZ + z(m -1+ l)bLl_l

Then L+, = Sym™ (L)

Proof. One shows by induction that if Ly = 0, the L;(y™) =m(m — 1) ...
(m —i+1)y™ *(y")". =

The next result shows that a recursion also allows one to calculate the coeffi-
cients of an irreducible polynomial of degree m, all of whose roots are solutions
of the associated Riccati equation, once one knows the coefficient of the term of
degree m — 1.

Lemma 4.40 ([127], [221]) Let k be a differential field and L = y" — ry with
r€k. Let

n—1
n a; i
P(U) = —u + E Fll)'w
i=0 ’
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be an irreducible polynomial whose roots satisfy the Riccati equation R(u) =
uw' +u? —r = 0 associated to L. Then the a; satisfy

ai—1 = —a;,—ap—1a; — (n—1i)(i+ 1)ra;41 (4.18)

fori=mn,...,0 where ap = -1 and a_; =0

Proof. The idea of the proof is to formally differentiate the relation A(u) =0
and then reduce modulo A. The resulting expression is a polynomial of degree
at most n — 1 that must be zero. Equating the coefficients of powers of u to
zero will give the recursion.
Let
OA(u)
ou

where A’(u) is the polynomial resulting from differentiating the coefficients of
A. One sees that the degree of B is at most n — 1 and that for any root w of
A(u), B(w) = (A(w))" + (nw + ap—1)A(w) = 0. Therefore B(u) is identically

zero. The coefficient of u* in B is

(r—u?®) + A'(u) + (nu+an,_1)A

0 = (i+1)(n—ai;1—i)!r_(i_l)(n—kl—i)! R
O T i
1

= [(TL — ’L)(’L + 1)rai+1 +a;—1 + G/; + an_lai]

(n —1)!

This is the desired formula. O

Remarks 4.41 1. The underlying fact that gives rise to the preceding two
lemmas is that, for second order equations, the first m equations of equations
4.15 are lower triangular.

2. In [221], the authors show that the above recursion holds without the
assumption that P(u) is irreducible. They use this fact to give further im-
provements on Kovacic’s algorithm. We will only use the above lemma in our
presentation. a

Exercise 4.42 Let k = C(z) and let

3—4z

Ly=9y" + TR

1. Show that Ly = 0 has no exponential solution over C(z).
2. Use Lemma 4.39 to show that

(-3+42) , 2z-3

2 "
Ly =y" —
Sym*(L)y =y PR Ry
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and that this equation has y = 2% asan exponential solution. Therefore, Ly =0
has a solution whose logarithmic derivative is algebraic of degree 2.
3. Use Lemma 4.40 to show that

1 1 1
Plu)=u?— —ud — — —
(u) = u 2zu+ 1622 4z

is the minimal polynomial of an algebraic solution of the associated Riccati equa-

tion. O

We can refine Algorithm 2 further by using more detailed information con-
cerning the algebraic subgroups of SL2(C). To be able to use this information
we note that given a linear differential equation Ly = y” + ay’ + by, then
z = ye'/2 ] @ satisfies a linear differential equation of the form 2" — rz = 0 and
so has unimodular Galois group (see Exercise 1.28(5)). This latter equation has
a liouvillian solution if and only if the former equation does. Therefore we shall
assume that we are considering equations of this latter form.

The folowoing results give a classification of algebraic subgroups of SLy(C)
sufficient for our purposes ([114], p.31; [127], p.7).

Theorem 4.43 Let G be an algebraic subgroup of SLo(C). Then one of the
following four cases can occur:

1. G is triangulizable.

2. G is conjugate to a subgroup of

p={(5 %) eccexa)of(5 01 ) lecoiero)

3. G is finite and cases 1. and 2. do not hold
4. G =8Ly(C).

The finite subgroups are described in the following result ([127], p. 27):

Theorem 4.44 Let G be a finite subgroup of SL2(C). Then either

1. G is conjugate to a subgroup of

p={(5 %) eccexa)of(5 %) lecorero)

or G contains the scalar matriz —1 and

2. the order of G is 24 (the “tetrahedral” case) and G/H is isomorphic to
A4, the alternating group on 4 letters, or.
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3. the order of G is 48 (the “octahedral” case), and G/H is isomorphic to
S4, the symmetric group on letters, or

4. the order of G is 120 (the “icosohedral” case) and G/H is isomorphic to
Ay, the alternating group on 5 letters.

Furthermore, in each of the last three cases, G is unique up to conjugation.

In the literature, the groups of cases 2., 3., and 4. are referred to as AELZ , SfL2,
and A" | respectively (c.f., [204] [205], [206]). In [127], Kovacic gives matrix
generators for a group of the prescribed form for each of the last three cases. Us-
ing these generators, one can determine 1-reducible subgroups of minimal index
in each of these cases (note that a 1-reducible subgroup of SLs(C) is trianguliz-
able and, since it is finite, it must be diagonalizable and therefore abelian). In
the tetrahedral case the index of such a group is 4, in the octahedral case it is
6 and in the icosahedral case it is 12. From these facts, we can show

Theorem 4.45 Let k be a differential field with algebraically closed field of
constants K and let Ly = y" + ry with r € k. Precisely 4 cases can occur.

1. Ly =0 has a solution y such that y' [y € k.

2. Ly =0 has a solution y such that y'/y is algebraic of degree 2 over k and
1. does not hold.

3. Ly = 0 has a solution y such that y'/y is algebraic of degree 4,6, or 12
over k and 1. and 2. do not hold.

4. Ly =0 has no liovvillian solutions.

Proof. We will use the classification of subgroups of SLs(C') given in Theorem
4.43. If the first case of Theorem 4.43 occurs, then the Galois group is 1-
reducible and so Proposition 4.25 implies 1. in the present theorem. If 1.
does not hold and Case 2 of Theorem 4.43 does hold, then the Galois group is a
nondiagonalizable subgroup of Df. The minimal index of a 1-reducible subgroup
is therefore 2 and so Proposition 4.25 implies 2. of the present theorem. If 1.
and 2. do not hold and Case 3 of Theorem 4.43 holds then the Galois group
is finite and tetrahedral, octahedral or icosohedral. In these cases the minimal
index of a 1-reducible subgroup is 4,6 or 12. This yields statement 3. If none
of the preceeding cases hold then the Galois group is SLy(C) and the equation
has no liouvillian solutions. a

We can now present a rough version of the Kovacic Algorithm . Let
Ly = y" — ry with r € C(z). If this has a nonzero liouvillian solution then the
associated Riccati equation R(u) = u' 4+ u? — r has an algebraic solution. We
now describe how to decide if R(u) = 0 has an algebraic solution and find the
minimum polynomial of such a solution if it does. Successively do the following
forn=1,2,4,6,12:
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1. Calculate the n'® symmetric power Sym™ (L) of L using the recurrence of
Lemma 4.39.

2. Decide if Sym™(L)y = 0 has an exponential solution over C(z).

(a) If it does not, select the next unused value of n and return to 1. or, if
all n have been used, deduce that Ly = 0 has no nonzero liouvillian
solutions.

(b) If it does have an exponential solution w, let b,_1 = w'/w and use
the recurrence of Lemma 4.40 to determine the other coefficients
of a polynomial of order n. This polynomial will be the minimal
polynomial of an algebraic solution of the Riccati equation.

Note that Example 4.42 illustrates this proceedure.

To justify this algorithm, note that Theorem 4.45 implies that if R(u) = 0
has an algebraic solution, it will have one of degree 1,2,4,6, or 12 over C(z).
Propositions 4.38 and 4.32 imply that if w is a nonzero exponential solution of
Sym"(L)y = 0, then, in our description of Algorithm 1, we showed that w'/w
will be the coefficient of a term of degree n — 1 of a polynomial all of whose
roots are solutions of the Riccati equation. If n is the smallest integer such that
Sym"(L)y = 0 has such a solution, then this polynomial must be irreducible
and the formulas of Lemma 4.40 will yield the other coefficients.

Remarks 4.46 1. The algorithm that Kovacic presents in [127] (also see [170])
is more detailed (and effective). He does not calculate the symmetric powers but
shows how one can determine directly an exponential solution of the prescribed
symmetric powers. This is done by calculating local solutions of the second
order equation at each singular point, that is, solutions in the fields C((z — ¢))
or C((z71)). This allows one to determine directly the possible principal parts
at singular points of solutions of symmetric powers. Kovacic then develops
techniques to determine if these principal parts can be glued together to give
exponential solutions. The question of determining the local formal Galois group
(ie., over C((z —¢)) or C((z71))) is considered in [170] where explicit simpler
algorithms are also given to determine the global Galois groups of second order
equations with one and two singular points.

2. Various improvements and modifications have been given for the Ko-
vacic Algorithm since its original publication. Duval and Loday-Richaud [68]
have given a more uniform treatment of the considerations concerning singular
points and have also applied the algorithm to decide which parameters in the
hypergeometric equations (as well as several other classes of second order equa-
tions) lead to liouvillian solutions. In [221], Ulmer and Weil show that except
in the reducible case, one can decide if there is a liouvillian solution (and find
one) by looking for solutions of appropriate symmetric powers that lie in C(z).
This eliminates some of the nonlinear considerations of Kovacic’s algorithm.
If the equation has coefficients in Cy(z) where Cy is not algebraically closed,
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it is important to know in advance how large an algebraic extension of Cy is
required. In [95] and [231] sharp results are given for Kovacic’s algorithm as
well as a general framework for higher order equations. In [220], sharp results
are given concerning what constant fields are needed for equations of all prime
orders. An algorithm to determine the Galois groups of second and third order
equations and decide if they have liouvillian solutions (but not necessarily find
these solutions) is given in [204] and [205]. This will be discussed in the next
section.

3. We note that Kovacic’s algorithm finds a solution of the form exp( [ u)
where u is algebraic over C'(z) when the equation has liouvillian solutions. When
the equation has only algebraic solutions, the algorithm does not find the min-
imal polynomials of such solutions, even when the Galois group is tetrahedral,
octahedral or icosohedral. For these groups this task was begun in [79] and [80]
and completed and generalized to third order equations in [204] and [205].

4. Applications of Kovacic’s Algorithm to questions concerning the integra-
bility of hamiltonian systems are given in [159] (see also the references given in
this book). O

4.3.4 Third Order Equations

For third order differential equations, the nice properties of second order equa-
tions stated in Lemma 4.38 and the recursion of Lemma 4.40 need no longer
hold. For example, if L = 03, the second symmetric power of L has a solution
space equal to the space of all polynomials of degree at most 4. Therefore,

Sym?(L)y = 8° and its order is 5 < (33'3;1) = 10. Furthermore, one can find

an operator L, equivalent to L whose second symmetric power is of order 10.
For this operator the solution space of Sym?(L)y = 0 is a space of polynomials
in 2z and so all solutions will have logarithmic derivative that is in C(z). Yet,
since this operator has the maximal order, its solutions spcae will be isomorphic
to the space of polnomials of degree 2 in three variables and so contain elements
that cannot be written as a product of linear forms. Therefore, Sym2(£)y =0
has exponential solutions that cannot be written as products of solutions of
Ly = 0. Nonetheless, information about the subgroups of GL3(C) can be used
to assertain information about the Galois groups of third order operators. In
this section we will briefly describe how this is done.

The motivation for this approach comes from the realization that the category
of differential modules over a differential field k, with algebraically closed con-
stants, forms a neutral Tannakian category (see Example C.24 in Appendix C).
In particular, let M be a differential module over k and let {M} be the full
subcategory generated by M, that is the category of differential modules con-
structed from M by taking direct sums, submodules, quotients, and duals. The
main theorem of neutral Tannakian categories (Theorem C.23) implies that this
category is naturally isomorphic to the category Repry of finite dimensional
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G-modules, where G is the Galois group associated with M. The group G is
completely determined by the structure of Repry and, in particular, the sub-
module structure of all the modules in Repr,. Therefore, the Galois group G is
determined by the (differential) submodule structure of the elements of {M}.
If we start with a scalar differential equation Ly = 0 and consider the differen-
tial module associated with it, the preceding discussion leads one to hope that
one can determine the Galois group of Ly = 0 by considering the factorization
properties of equations constructed from L (e.g., symmetric powers, associated
equations, duals). For many groups G one can determine if G is the Galois
group of an equation Ly = 0 by considering the factorization properties of a
finite number of equations derived from Ly. This idea was applied to second
and third order equations in [204],[205],[206],with improvements in [221] and
[103]. Similar results for fourth order equations appear in [96].

Before we give a brief description of these results, we state the following well
known (and useful) definitions from group theory.

Definition 4.47 Let G be a subgroup of GL(V).

1. G acts irreducibly on V' if the only G-invariant subspaces of V are V and
{0}

2. Assume G acts irreducibly on V. The group G is said to be imprimitive
if, for k > 1, there exist subspaces Vy,...,V} such that V = ®¥_ Vi and,
for each g € G, the mapping V; — g(V;) is a permutation of the set
V,..., i}

3. If G acts irreducibly and is not imprimitive, it is said to be primitive.

Let G be an algebraic subgroup of SLy. The group G is irreducible if and only
if it is not conjugate to a subgroup of the group of upper triangular matrices. It
is imprimitive if and only if it is conjugate to an irreducible subgroup of D (see
Theorem 4.43). Furthermore, it is primitive if and only if it is either finite or all
of SLs. In general, if G C SL,, is a primitive linear algebraic group, then either
@G is finite or G is semisimple (see [204]). The following two results show how
the above philosophy can be used to determine the Galois group of a second
order linear differential equation. They are proven by calculating the invariant
subspaces of the appropriate symmetric powers of the solutions space of Ly = 0
for the various groups under consideration.

Proposition 4.48 ([204]) Let Ly = 0 be a second order homogeneous linear
differential equation with coefficients in k and unimodular differential Galois
group.

1. L is reducible if and only if Ly = 0 has a solution y # 0 such that y' [y € k.
In this case G(L) C SL(2,C) is reducible.
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2. Assume L is irreducible. Then G(L) is imprimitive if and only if Sym? (L)
s reducible. In this case Sym2(L)y = 0 has a solution y # 0 such that
y*> € k. and G(L) 2 C* x Z/2Z or the dihedral group Ds,,.

3. Assume G(L) is primitive. Then Sym(L) is reducible if and only if G(L)
is a finite group.

4. G(L) = SL(2,C) if none of the above hold.
The following proposition refines case 3. of the above.

Proposition 4.49 (/204]) Let Ly = 0 be a second order homogeneous linear
differential equation with coefficients in k and unimodular differential Galois
group. Assume G(L) is primitive.

1. Sym®(L) factors over k if and only if G(L) = A;sz. In this case, Sym®(L)y
Li(L>) where Ly and Lo have order 2.

2. Assuming Sym®(L) irreducible, then Sym®*(L) factors over k if and only
if G(L) = ;%2 In this case, Sym*(L) = Ly (Ly) where Ly and Ly have
orders 3 and 2.

3. Assuming Sym*(L) irreducible, then Sym®(L) factors over k if and only
if G(L) = AS%2. In this case, Sym®(L) = Ly(Ly) where Ly and Ly have
orders 4 and 3.

4. G(L) = SL(2,C) if and only if Sym®(L) is irreducible over k.

We note that once one knows that the Galois group is primitive, then it
must be a reducible group and the algorithms for factoring completely reducible
operators may be used (see Section 4.2.2).

The above ideas may be applied to third order equations as well. Here the
list of subgroups is much larger and we refer to [204] for the exact results. the
following does give the flavor of these results.

Proposition 4.50 (/204]) Let Ly = 0 be an irreducible third order linear differ-
ential equation with coefficients in a differential field k with algebraically closed
field of constants whose differential Galois G(L) group is unimodular. Ly = 0
has a liouvillian solution if and only if

1. Sym*(L) has order less than 15 or factors, and
2. one of the following holds:

(a) Sym®(L) has order 6 and is irreducible, or
(b) Sym?®(L) has a factor of order 4.
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Exercise 4.51 The aim of this exercise it to show that there are groups G that
cannot be distinguished from their subgroups by considering the decompositions
of a finite number of G-modules into irreducible factors. Let G = G,,, and let
V be a G-module. Exercise A.44 implies that there exists distinct characters
X1,---, Xt and subspaces V; = {v € V | g(v) = xi(g)v for all ¢ € G} such
that V.= V13 @ ... @ V;. Show that there is a subgroup H of G such that
the characters remain distinct when restricted to H. Therefore, the number of
distinct irreducible factors of V' and the numbers of times each occurs in a direct
sum decomposition is the same for G and for H. O
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Chapter 5

Monodromy, the
Riemann-Hilbert Problem
and the Differential Galois

Group

5.1 Monodromy of a Differential Equation

Let U be an open connected subset of the complex sphere P! = C U {oo}
and let Y = AY be a differential equation on U, with A an n x n-matrix
with coefficients which are meromorphic functions on U. We assume that the
equation is regular at every point p € U. Thus, for any point p € U, the equation
has n independent solutions ¥y, ..., y, consisting of vectors with coordinates in
C({z —p}). It is known ([101], Ch. 9; [167], p. 5) that these solutions converge
in a disk of radius p where p is the distance from p to the complement of U.
These solutions span an n-dimensional vector space denoted by V,,. If we let F),
be a matrix whose colums are the n independent solutions yi, . ..,y, then Fj is
a fundamental matrix with entries in C({z — p}). One can normalize F, such
that Fj,(p) is the identity matrix. The question we are interested in is:

Does there exists on all of U, a solution space for the equation
having dimension n?

The main tool for answering this question is analytical continuation which
in turn relies on the notion of the fundamental group ([4], Ch. 8; [101], Ch.
9). These can be described as follows. Let ¢ € U and let A be a path from
p to ¢ lying in U (one defines a path from p to ¢ in U as a continuous map
A:]0,1] = U with A(0) = p and A(1) = q). For each each point A(t) on this

143
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path, there is an open set Oy C U and fundamental solution matrix Fl )
whose entries converge in Oy ). By compactness of [0, 1], we can cover the path
with a finite number of these open sets, {Oxu,)}, to =0 <t <--- <ty = 1.
The maps induced by sending the columns of F)(; to the columns of Fjy(;i)
induce C-linear bijections Vi) — Vi(t,,)- The resulting C-linear bijection
Vp — Vg can be seen to depend only on the homotopy class of A (we note that
two paths Ag and A; in U from p to g are homotopic if there exists a continuous
H :[0,1]x[0,1] = U such that H(t,0) = \o(t), H(t,1) = A1 (t) and H(0,s) = p,
H(1,s) = q). The C-linear bijection V, — V; is called the analytic continuation
along .

For the special case that A(0) = A(1) = p we find an isomorphism which is
denoted by M(A) : V, = V,,. The collection of all closed paths, starting and
ending in p, divided out by homotopy, is called the fundamental group and
denoted by 7 (U, p) . The group structure on 71 (U, p) is given by “composing”
paths. The resulting group homomorphism M : m; (U,p) — GL(V}) is called
the monodromy map. The image of M in GL(V}) is called the monodromy
group. The open connected set U is called simply connected if 7, (U,p) = {1}.
If U is simply connected then one sees that analytical continuation yields n
independent solutions of the differential equation on U. Any open disk, C and
also P! are simply connected.

The fundamental group of U := {z € C| 0 < |z| < a} (for a € (0,0]) is
generated by the circle around 0, say through b € R with 0 < b < a and in
positive direction. Let us write A for this generator. There are no relations
and thus the fundamental group is isomorphic with the group Z. The element
M(A) € GL(V4) is called the local monodromy. As a first example, consider the
differential equation y" = £y. The solution space V}; has basis 2 (for the usual
determination of this function). Further M())z¢ = €2>7“2¢ and e*>™* € GL; is
the local monodromy.

5.1.1 Local Theory of Regular Singular Equations

We will consider the general case of a differential equation Y’ = AY where the
coefficients of A are meromorphic functions in some neighbourhood of z = 0.
In other words, the coefficients are in the field of the convergent Laurent series
C({z})- Recall (Section 1.2) that two equations - — A4 and -£ — B are equivalent
if there is a F € GL(n, C({z})) with F~' (&L — A)F = (&£ — B). We come now
to an important definition: d% — A is called regular singular if the equation
is equivalent to a d% — B such that the entries of B have poles at z = 0 of
order at most 1. Otherwise stated, the entries of zB are analytic functions in
a neighborhood of z = 0. Thus a regular singular differential equation can be
represented by an equivalent equation § — A with ¢ := zd% and the entries of
A are analytic functions in a neighbourhood of z = 0. We have introduced this
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concept in Definition 3.9, where we defined a regular singular module to be a
differential module with a d-invariant lattice. When applied to a differential
module asssociated to a differential equation § — A, this is equivalent to the
definition above. The following theorem gives a complete overview of the regular
singular equations at z = 0.

Theorem 5.1 Let § — A be reqular singular at z = 0.

1. 6 — A is equivalent over the field of meromorphic germs at z =0 to d —C,
where C' is a constant matriz. More precisely, there is a unique constant
matriz C such that all its eigenvalues \ satisfy 0 < Re()\) <1 and § — A
equivalent to § — C.

2. The local monodromy of the equations § — A and § — C with C' as in
1. are conjugate (even without the assumption on the real parts of the
eigenvalues). The local monodromy of § — C has matriz e*™C.

3. 8 — A is equivalent to a reqular singular § — A, if and only if the local
monodromies are conjugate.

Proof. Let C[[z]] denote the ring of all formal power series. Its field of fractions
is denoted by C((z)) or K. Let C{z} C C[[z]] denote the ring of all convergent
power series and let K = C({z}) be the field of fractions of C{z}. Thus K is
the field of all convergent Laurent series. In Exercise 3.14, it is shown that § — A
is equivalent over K to § — C where C is in statement 1. Lemma 3.37 states
that this equivalence can be taken over K. This implies that, with respect to
any bases of the solution spaces, the local monodromies of the two equations
are conjugate. At the point 1 € C, the matrix e©'8(*) ig a fundamental solu-
tion matrix for § — C. Since analytic continuation around the generator of the
fundamental group maps log(z) to log(z) + 2xi, the conclusion of 2. follows.

If § — A is equivalent to a regular singular § — A, then clearly their local mon-
odromies are conjugate. To prove the reverse implication, assume that, with
respect to suitable bases of the solution spaces, the local monodromy of § — Cy
is the same as the local monodromy of & — Cy, where C,Cy are constant ma-
trices. This implies that €271 = ¢2™C2 At the point 1 the matrix e©s108(2)
is the fundamental matrix for 6 — C; for j = 1,2. Let B = e~ C1lo8(2) gC2log(2)
Analytic continuation around the generator of the fundamental group leaves B
fixed, so the entries of this matrix are analytic functions in a punctured neigh-
borhood of the origin. Furthermore one sees that the absolute value of any such
entry is bounded by |z|"V for a suitable NV in such a neighborhood. Therefore
the entries of B have singularities at z = 0 that are at worst poles and so lie
in K. Therefore § — C is equivalent to 6 — Cs. over K. Conclusion 3. follows
from this observation. |

Corollary 5.2 Let § — A be regular singular at z = 0. The differential Galois
group G of this equation over the differential field C({z}) is isomorphic to the
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Zariski closure in GL(n, C) of the group generated by the monodromy matriz.
Moreover the differential Galois group of 6 — A over C((z)) coincides with G.

Proof. Theorem 5.1 implies that he equation § — A is equivalent, over K, to
an equation § — C, where C is a constant matrix. We may assume that C is
in Jordan normal form and so the associated Picard-Vessiot extension is of the
form F = K(2™,...,2%,logz) where a4,...,a, are the eigenvalues of C. Any
element f of F' is meromorphic on any sector at z = 0 of opening less than 27. If
analytic continuation around z = 0 leaves such an element fixed, it must be be
analytic in a punctured neighborhood of z = 0. Furhtermore, |f| is bounded by
|z|V for a suitable N in such a neighborhood and therefore must be meromorphic
at the origin as well. Therefore, f € K. The Galois correspondence implies that
the Zariski closure of the monodromy matrix must be the Galois group.

Let UnivR be the universal differential ring constructed in Section 3.2 and let
UnivF be its field of fractions. One can embedd F' into UnivF. The action of
the formal monodromy on F' coincides with the action of analytic continuation.
Therefore, we may assume that the monodromy martix is in the Galois group
of § — A over C((z)). Since this latter Galois group may be identified with a
subgroup of the Galois group of § — A over K, we have that the two groups
coincide. |

Exercise 5.3 Local Galois groups at a reqular singular point

The aim of this exercise is to show that the Galois group over K of a regular
singular equation at z = 0 is of the form GJ}, x G¢, x Cy where n is a nonnegative
integer, e = 0,1 and Cj is a cyclic group of order d. To do this it will be enough
to show that a linear algebraic group H C GL,,(k), k algebraically closed of
characteristic zero is of this type if and only if it is the Zariski closure of a cyclic

group.

1. Let H C GL,, be the Zariski closure of a cyclic group generated by g. Using
the Jordan decomposition of g, we may write g = gsg, where g, is diagonalizable,
gu is unipotent (i.e. id — g, is nilpotent) and gsg, = gugs. It is furthermore
known that g, g9s € H ([108], Ch. 15).

(a) Show that H is abelian and that H ~ H, x H, where H, is the Zariski
closure of the group generated by gs and H,, is the Zariski closure of the group
generated by g,.

(b) The smallest algebraic group containing a unipotent matrix (not equal to
the identity) is isomorphic to G, ([108], Ch. 15) so H,, = G, or {I}.

(c) Show that H is diagonalizable and use Lemma A.45 to deduce that H; is
isomorphic to a group of the form GJ}, x Cjy.

2. Let H be isomorphic to G}, x G x Cy. Show that H has a Zariski dense
cyclic subgroup. Hint: If py, ..., p, are distinct primes, the group generated by
(p1,- .. ,pn) lies in no proper algebraic subgroup of GI.,.

3. Construct examples showing that any group of the above type is the Galois
group over K of a regular singular equation. |
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The ideas in the proof of Theorem 5.1 can be used to characterize regular
singular points in terms of growth of analytic solutions near a singular point.
An open sector S(a,b,p) is the set of the complex numbers z # 0 satisfying
arg(z) € (a,b) and |z| < p(arg(z)). We say that a function g(z) analytic in an
open sector S = S(a,b, p) is of moderate growth on S if there exists an integer
N and real number ¢ > 0 such that |g(z)| < ¢[z| on S.

We say that a differential equation § — A, A € GL,(K) has solutions of
moderate growth at z = 0 if on any open sector S = S(a, b, p) with |a — b| < 27
and sufficiently small p there is a fundamental solution matrix Ys whose entries
y; ; are of moderate growth on S. Note that if A is constant then it has solutions
of moderate growth.

Theorem 5.4 Let § — A be a differential equation with A € GL,,(K). A nec-
essary and sufficient condition that § — A have solutions of moderate growth at
z =0 is that § — A be regular singular at z = 0.

Proof. If § — A is regular singular at z = 0, then it is equivalent over K to an
equation with constant matrix and so has solutions of regular growth at z = 0.
Conversely, assume that § — A has solutions of moderate growth at z = 0. Let
e?™C be the monodromy matrix. We will show that § — A is equivalent to § — C.
Let Y be a fundamental solution matrix of § — A in some open sector containing
1 and let B = Ye ©'8(*)_ Analytic continuation around z = 0 will leave B
invariant and so its entries will be analytic in punctured neighborhood of z = 0.
The moderate growth condition implies that the entries of B will furthermore
be meromorphic at z = 0 and so B € GL,(K). m|

As a corollary of this result, we can deduce what is classically known as
Fuchs’ Criterion.

Corollary 5.5 Let L = 6" 4+ a,_10" ' +...+ap with a; € K. The coefficients
a; are analytic at 0 if and only if for any sector S = S(a,b, p) with |a — b| < 27
and p sufficiently small, L(y) = 0 has a fundamental set of solutions analytic
and of moderate growth on S. In particular, if A;, denotes the companion matrix
of L, the a; are analytic at z = 0 if and only if § — AL is regqular singular at
z=0.

Proof. If all the a; are analytic at 0 then § — Ar, is regular singular at z = 0.
Theorem 5.4 implies the conclusion.

Conversely, if for any sector S = S(a,b, p) with |a — b| < 27 and p sufficiently
small, L(y) = 0 has a fundamental set of solutions analytic and of moderate
growth on S, then 6 — Ap, is regular singular. This implies that the differential
module D/DL is a regular singular differential module (c.f., Definition 3.9).
Exercise 3.16 implies that the coefficients of L are analytic. One can also deduce
this from the fact that for a regular singular differential module, the Newton
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polygon of the monic annihilator of any cyclic vector has only slope 0 (Theorem
3.49 and Remarks 3.50). m|

Exercise 5.6 Show that L = 6" +a,_10"" " +...4ag with a; analytic at z = 0
if and only if L = 2"(d/d2)" + 2" *bp_1(d/dz)"* + ... + 2'b;(d/dz)" + ... + by
where the b; are analytic at 0 O

5.1.2 Regular Singular Equations on P!

A differential equation diz — A, where the matrix A has entries in the field
C(2) has an obvious interpretation as an equation on the complex sphere P! =
CU{x}. A point p € P! is singular for d% — A if the equation cannot be made
regular at p with a local meromorphic transformation. A singular point is called
regular singular if a local transformation at p produces an equivalent equation
with a matrix having poles of at most order 1. The equation d% — A is called
reqular singular if every singular point is in fact regular singular. In the sequel
we will work with regular singular equations and S will denote its (finite) set of
singular points.

. . . d k A;
An example of a regular singular equation is 7= — >2;"; =, where the A; are

constant matrices and ay,...,a; are distinct complex numbers.

Exercise 5.7 Calculate that oo is a regular singular point for the equation d% —
> Zé;, . Prove that Y A; = 0 implies that oo is a regular (i.e., not a singular)
point for this equation. Calculate in the “generic” case the local monodromy
matrices of the equation. Why is this condition “generic” necessary? o

Let S = {sy,...,s;,00}, then the equation -+ — Zk 4i is called a Fuch-

dz =1 z—s
sian differential equation for S if each of the points in S is singular. In general,
a regular singular differential equation d% — A with the above S as its set of

d k A;

singular points cannot be transformed into the form 7= — 37" ; =i One can

find transformations of d% — A which work well for each of the singular points,
but in general there is no global transformation which works for all singular
points at the same time and does not introduce poles outside the set S.

We consider the open set U = P!\ S and choose a point p € U. Let S =
{s1,...,sr} and consider closed paths A,..., A\, beginning and ending at p,
and each A; forms of a small “loop” around s;. If the choice of the loops is correct
(i.e. each loop contains a unique and distinct s; and all are oriented in the same
direction) then the fundamental group m (U, p) is generated by the Ai,..., Ag
and the only relation between the generators is A\; o --- 0o Ay = 1. In particular,
the fundamental group is isomorphic to the free noncommutative group on k—1
generators. The monodromy map of the equation is the homomorphism M :
m1(U,p) = GL(V,) and the monodromy group is the image in GL(V},) of this
map.
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Theorem 5.8 The differential Galois group of the regular singular equation
d% — A over C(z), is the Zariski closure of the monodromy group C GL(V}).

Proof. For any point ¢ € U one considers, as before, the space V, of the local
solutions of diz — A at q. The coordinates of the vectors in V, generate over
the field C(z) a subring R, C C({z — ¢q}), which is (by Picard-Vessiot theory)
a Picard-Vessiot ring for d% — A. For a path A from p to ¢, the analytical
continuation induces a C-bijection from V), to V, and also a C(z)-algebra iso-
morphism R, — R,. This isomorphism commutes with differentiation. For
any closed path A through p, one finds a differential automorphism of R, which
corresponds with M(X) € GL(V,). In particular, M(A) is an element of the
differential Galois group of diz — A over C(z). The monodromy group is then a
subgroup of the differential Galois group.

The field of fractions of R, is a Picard-Vessiot field, on which the mondromy
group acts. From the Galois correspondence in the differential case, the state-
ment of the theorem follows from the assertion:

If f in the field of fractions of R, is invariant under the mon-
odromy group, then f € C(z).

The meromorphic function f is, a priori, defined in a neighbourhood of p.
But it has an analytical continuation to every point g of P\ S. Moreover, by
assumption this analytical continuation does not depend on the choice of the
path from p to ¢. We conclude that f is a meromorphic function on P\ S. Since
the differential equation is, at worst, regular singular at each s; and infinity, it
has solutions of moderate growth at each singular point. The function f is
a rational function of the coordinates of solutions at each singular point and
so around a point s; € S, the absolute value of the function f is bounded by
|z — 5|V, with N € Z (and z — s; the local coordinate at s;). Thus f is a
meromorphic function on all of P! and therefore belongs to C(z). ad

Exercise 5.9 Prove that the differential Galois group G of § — C, with C
a constant matrix, over the field C(z) is equal to the Zariski closure of the
subgroup of GL(n, C) generated by €>™C. Therefore the only possible Galois
groups over C(z) are those given in Exercise 5.3. Give examples where G is
isomorphic to G}, G}, x G, and G}, x G, x Cy, where Cj is the cyclic group
of order d. i

Example 5.10 The hypergeometric differential equation.

In Chapter 6 (c.f., Remarks 6.23.4, Example 6.31 and Lemma 6.11) we will show
that any order two regular singular differential equation on P! with singular
locus in {0, 1, 00} is equivalent to a scalar differential equation of the form:

Az + B 'y Cz>+Dz+E
z(z — l)y 22(z — 1)?

y'+ y =0.
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Classical transformations ([167], Ch. 21) can be used to further transform this
equation to the scalar hypergeometric differential equation:

y,,+(a+b+1)z—c, ab

2(z —1) y+z(z—1)y:0'

One can write this in matrix form and calculate at the points 0, 1, co the locally
equivalent equations of Theorem 5.1:

zv' = < 0 (c) ) v at 0 (eigenvalues 0, ¢)

(z -1 = < c?b a+bgc+1 >vat 1 (eigenvalues 0,a + b — c+ 1).

tv' = < _(;b _al_ b ) vat oo, witht =2z and’' = % (eigenvalues —a, —b).

This calculation is only valid if the eigenvalues for the three matrices do not
differ by a non zero integer. This is equivalent to assuming that none of the
numbers ¢, b,a,a+ b — c is an integer. In the contrary case, one has to do some
more calculations. The hypergeometric series

(@)n(b)n
F(a,b,c;2) = —— 2"
nzzjo nl(c)n

where the symbol (), means z(z +1)---(x +n — 1) for n > 0 and (z)o = 1,
is well defined for ¢ # 0,—1,—-2,.... We will exclude those values for ¢. One
easily computes that F'(a,b, c; z) converges for |z| < 1 and that it is a solution of
the hypergeometric differential equation. Using the hypergeometric series one
can “in principle” compute the monodromy group and the differential Galois
group of the equation (the calculation of the monodromy group was originally
carried out by Riemann ([178]; see also [222] and [167]). One takes p = 1/2.
The fundamental group is generated by the two circles (in positive direction)
through the point 1/2 and around 0 and 1. At the point 1/2 we take a basis of
the solution space: u; = F(a,b,c;2) and us = 2'=°F(a—c+1,b—c+1,2—¢; 2).
0

The circle around 0 gives a monodromy matrix ( 0 e—2mic The circle

around 1 produces a rather complicated monodromy matrix ( gl’l glﬂ >
2,1 2,2

with: in(ra) sin(rb)
_ 1 _ 9jpmilc—a-psin(ma) sin(m
Bip=1-2 sin(mc)
r2—-cl(1-c)
F1—a)l(1-b0I(l+a—c)l(1+b—c)
i(c—a—b) F(C)F(C — 1)

I'(c—a)'(c—b)[(a)'(b)
ri(e—a—b) SIN(T (¢ — @) sin(x(c — b))

sin(me) '

B172 — _2,”2'671'1'(07117!7)

3271 = —2mie”

B272 =1 + 2ie
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We refer for the calculation of the B; ; to ([71], [167], [222]). O

Exercise 5.11 Consider the case a = b = 1/2 and ¢ = 1. Calculate that
the two monodromy matrices are ([1) ?) and (_1201). (We note that, since ¢ = 1
and a + b — ¢+ 1 = 1, one cannot quite use the preceeding formulas. A new
calculation in this special case is needed). Determine the monodromy group
and the differential Galois group of the hypergeometric differential equation for

the parameter values a =b=1/2 and ¢ = 1. O

Other formulas for generators of the monodromy group can be found in [120].
A systematic study of the monodromy groups for the generalized hypergeometric
equations , F,,_; can be found in [26].

5.2 A Solution of the Inverse Problem

The inverse problem for ordinary Galois theory asks what the possible Galois
groups are for a given field. The most important problem is to find all possible
finite groups which are Galois groups of a Galois extension of Q. The inverse
problem for a differential field K, with algebraically closed field of constants C,
is the analogous question:

Which linear algebraic groups over C are the differential Galois
groups of linear differential equations over K ?

As we will show the answer for C(z) is:

Theorem 5.12 For any linear algebraic group G over C, there is a differential
equation - — A over C(z) with differential Galois group G.

This answer was first given by Carol and Marvin Tretkoff [214]. The simple
proof is based upon two ingredients:

1. Every linear algebraic group G C GL(n,C) has a Zariski dense, finitely
generated subgroup H.

2. Let a finite set S C P! be given and a homomorphism M : m(U,p) —
GL(n,C), where U = P!\ S and p € U. Then there is a regular singular
differential equation - — A over C(z) with singular locus S, such that
the monodromy map M : 71 (U, p) — GL(V},) is, with respect to a suitable
basis of V},, equal to the homomorphism M.

Proof. Assuming the two ingredients above, the proof goes as follows. Take
elements gi1,...,9r € G such that the subgroup generated by the gi,..., gk
is Zariski dense in G. Consider the singular set S = {1,2,3,...,k,00} and let
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U = P!\ S. Then the fundamental group 71 (U, 0) is the free group generated by

A1,..., Ak, where )\; is a loop starting and ending in 0, around the point ¢. The
homomorphism M — G C GL(n,C) is defined by M(\;) = g; for i = 1,...k.
The regular singular differential equation d% — A with monodromy map equal
to M, has differential Galois group G, according to Theorem 5.8. O

We now turn to the two ingredients of the proof. We will prove the first in
this section and give an outline of the proof of the second in the next section.
A fuller treatment of this second ingedient is give in the next chapter.

Lemma 5.13 FEvery linear algebraic group G has a Zariski dense, finitely gen-
erated subgroup.

Proof. Let G° denote the connected component of the identity. Since G° is a
normal subgroup of finite index, it suffices to prove the lemma for G°. In other
words, we may suppose that G C GL(n, C) is connected and G # {id}. We will
now use induction with respect to the dimension of G.

First of all we want to show that G has an element g of infinite order and
therefore contains a connected subgroup < g >° of positive dimension. Taking
advantage of the fact that C is the complex numbers, we argue as follows:

The group G can be considered as a complex submanifold of GL,, and, in the
usual (not Zariski) topology, is connected and has positive dimension ([160]).
Consider the analytic map f: G — C" defined by f(g) = (fn=1(9),---, fo(g))
where X"+ f,_1(g) X" +.. .4 fo(g) is the characterisitic polynomial of g. If f is
constant then all elements of G would have characterisitic polynomial (X —1)",
the characterisitc polynomial of the identity. The only matrix of finite order
having this characterisitc polynomial is the identity so G must contain elements
of inifinite order. Therefore we can assume that f is not constant and so some f;
is nonconstant. Since G is a complex manifold of positive dimension and f; is an
open map, the image of f; contains an open subset of C. If all elements of G were
of finite order, then the roots of the associated characteristic polynomials would
be roots of unity. This would imply that the image of f; would be countable, a
contradiction.

A more algebraic proof can be given using the fact that if all elements of G have
finite order then they are all diagonalizable. A connected linear algebraic group
of positive dimension all of whose elements are diagonalizable is isomorphic to
a product of copies of G, ([108], Ex. 21.4.2) and such groups (in characteristic
zero) obviously contain elements of infinite order.

We now finish the proof of the theorem. If the dimension of G is 1, then there
exists an element g € G of infinite order. The subgroup generated by g is clearly
Zariski dense in G.

Suppose now that the dimension of G is greater than 1. Let H C G be a
maximal proper connected subgroup. If H happens to be a normal subgroup
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then G/H is known to be a linear algebraic group. By induction we can take
elements a; . ..,a, € G such that their images in G/H generate a Zariski dense
subgroup of G/H. Take elements b1, ...,b,, € H which generate a Zariski dense
subgroup of H. Then the collection {ay,...,an,b1,...,by} generates a Zariski
dense subgroup of G.

If H is not a normal subgroup then there is a g € G with gHg ' # H. Consider
a finite set of elements ay,...,a, € H which generate a Zariski dense subgroup
of H. Let L denote the subgroup of G generated by ay,...,a,,g. The Zariski
closure L of L contains both H and gHg™'. So does L’ and L° # H. The
maximality of H implies that " = G and therefore also L = G. O

Remark 5.14 There has been much work on the inverse problem in differential
Galois theory. Ramis has described how his characterization of the local Galois
group can be used to solve the inverse problem over C({z}) and C(z) ([175],
[176]). In [157], it is shown that any connected linear algebraic group is a
differential Galois group over a differential field k of characteristic zero with
algebraically closed field of constants C' and whose transcendence degree over
C is finite and nonzero (see also [158]). This completed a program begun by
Kovacic who proved a similar restul for solvable connected groups ([124], [125]).
A more complete history of the problem can be found in [157]. A description
and recasting of the results of [157] and [175] can be found in [169]. A method
for effectively constructing linear differential equations with given finite group
is presented in [171]

5.3 The Riemann-Hilbert Problem

Let S C P! be finite. Suppose for convenience that S = {s1,...,sx,00}. Put
U = P!\ S, choose a point p € U and let M : m(U,p) - GL(n,C) be a
homomorphism. The Riemann-Hilbert problem (= Hilbert’s 215 problem) asks

whether there is a Fuchsian differential equation diz — Zle Z’i‘; -, with constant
matrices A;, such that the monodromy map M : = (U,p) — GL(V},) coincides

with the given M for a suitable basis of V.

For many special cases, one knows that this problem has a positive answer
(see [5], [20]):

1. Let A1,...,Ax be generators of m (U, p), each enclosing just one of the s;
(c.f., Section 5.1.2). If one of the M ();) is diagonalizable, then the answer
is positive (Plemelj [166]).

2. If all the M()\;) are sufficiently close to the identity matrix, then the
solution is positive (Lappo-Danilevskii [131]).

3. When n = 2, the answer is positive (Dekkers [61]).
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4. If the representation M is irreducible, the answer is positive (Kostov [123]
and Bolibruch [5, 34]).

The first counter example to the Riemann-Hilbert problem was given by
A A. Bolibruch ([5],[33]) This counter example is for n = 3 and S consisting
of 4 points. In addition, Bolibruch [33] has characterized when the solution is
positive for n = 3.

We will present proofs of the statements 2., 3. and 4. in Chapter 6 but in this
section we shall consider a weaker version of this problem. The weaker version
only asks for a regular singular differential equation with singular locus S and
M equal to the monodromy map M. Here the answer is always positive. The
modern version of the proof uses machinery that we will develop in Chapter 6
but for now we will indicate the main ideas of the proof.

Theorem 5.15 For any homomorphism M : w1 (U,p) — GL(n,C), there is a
reqular singular differential equation with singular locus S and with monodromy
map equal to M.

Proof. As a didactic start we consider the case S = {0,00}. Then U = C*
and we choose p = 1. The fundamental group is isomorphic to Z. A generator
for this group is the circle in positive direction through 1 and around 0. The
homomorphism M is then given by a single matrix B € GL(n,C), the image
of the generator. Choose a constant matrix A with e>™4 = B. Then the
differential equation § — A is a solution to the problem.

Suppose now #S > 2. We now introduce the concept of a local system L on
U. This is a sheaf of C-vector spaces on U such that L is locally isomorphic to
the constant sheaf C™. Take any point ¢ € U and a path A from p to ¢. Using
that L is locally isomorphic to the constant sheaf C™, one finds by following the
path A a C-linear bijection L, — L,. This is completely similar to analytical
continuation and can be seen to depend only on the homotpy class of the path.
If p = g, this results in a group homomorphism @z, : 7 (U, p) — GL(L,). With
some algebraic topology (for instance universal covering of U) one shows that
for any homomorphism @ : 7 (U,p) - GL(L,) there is a local system L such
that ®; = ®. In paricular, there is a local system L such that &7 = M.

The next step is to consider the sheaf H := L ®¢ Oy, where Oy denotes the
sheaf of analytic functions on U. On this sheaf one introduces a differentiation
"by I® f) =1l® f'. Now we are already somewhat close to the solution of
the weak Riemann-Hilbert problem. Namely, it is known that the sheaf H is
isomorphic with the sheaf OF. In particular, H(U) is a free O(U)-module and
has some basis e, ...,e, over O(U). The differentiation with respect to this
basis has a matrix A with entries in O(U). Then we obtain the differential
equation d% + A on U, which has M as monodromy map. We note that L is,
by construction, the sheaf of the solutions of d% +AonU.

We want a bit more, namely that the entries of A are in C(z). To do this
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we will extend the sheaf H to a sheaf on all of S. This is accomplished by
glueing to H with its differentiation, for each point s € S, another sheaf with
differentiation which lives above a small neighbourhood of s. To make this
explicit, we suppose that s = 0. The restriction of H with its differentiation
on the pointed disk D* := {z# € C| 0 < |z] < €} C U can be seen to have
a basis fi,..., fn over O(V), such that the matrix of the differentiation with
respect to this basis is z71C, where C is a constant matrix. On the complete
disk D := {z € C| |z| < €} we consider the sheaf OF, with differentiation given
by the matrix z—'C. The restriction of the latter differential equation to D* is
isomorphic to the restriction of H to D*. Thus one can glue the two sheaves,
respecting the differentiations. After doing all the gluing at the points of S we
obtain a differential equation d% — B, where the entries of B are meromorphic
functions on all of P! and thus belong to C(z). By construction, S is the singular
set of the equation and the monodromy map of d% — B is the prescribed one.
Furthermore, at any singular point s the equation is equivalent to an equation
having at most a pole of order 1. |

Remarks 5.16 In Chapter 6 we will describe a more sophisticated formulation
of a regular, or a regular singular differential equation on any open subset U of
P! (including the case U = P'). We give a preview of this formulation here.

A vector bundle M of rank n on U is a sheaf of Oy-modules which is locally iso-
morphic to the sheaf Of;. One considers also UnivF, the sheaf of the holomorphic
differential forms on U. A regular connection on M is a morphism of sheaves
V : M — UnivF ® M, which is C-linear and satisfies the rule: V(fm) =
df ® m + fV(m) for any sections f of Oy and m of M above any open subset
of U.

Let S C U be a finite (or discrete) subset of U. Then UnivF(S) denotes the
sheaf of the meromorphic differential forms on U, which have poles of order at
most 1 at the set S. A regular singular connection on M, with singular locus in
S, is a morphism of sheaves V : M — UnivF(S) ® M, having the same proper-
ties as above.

In the case of a finite subset S of U = P!, one calls a regular singular connection
on M Fuchsian if moreover the vector bundle M is trivial, i.e., isomorphic to the
direct sum of n copies of the structure sheaf O. There is a 1-1 correspondence
between analytic and algebraic vector bundles on P! (by the so called GAGA
theorem). That means that the analytic point of view for connections coincides
with the algebraic point of view.

In the sketch of the proof of Theorem 5.15, we have in fact made the follow-
ing steps. First a construction of a regular connection V on an analytic vector
bundle M above U := P!\ S, which has the prescribed monodromy. Then for
each point s € S, we have glued to the connection (M,V) a regular singular
connection (Ms, V) living on a neighbourhood of s. The gluing is a regular
singular analytic connection (N, V) on P! having the prescribed monodromy.
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Finally, this analytic connection is identified with an algebraic one. Taking the
rational sections of the latter (or the meromorphic sections of N) one obtains
the regular singular differential equation £ — A with A € M(n xn, C(2)), which
has the prescribed singular locus and monodromy.



Chapter 6

Differential Equations on
the Complex Sphere and
the Riemann-Hilbert
Problem

Let a differential field K with a derivation f — f’ be given. A differential module
over K has been defined as a K-vector space M of finite dimension together
with a map 0 : M — M satisfying the rules: 0(my +ms) = (m1) + d(m2) and
A(fm) = f'm+ fO(m). In this definition one refers to the chosen derivation of
K. We want to introduce the more general concept of connection, which avoids
this choice. The advantage is that one can perform constructions, especially
for the Riemann-Hilbert problem, without reference to local parameters. To
be more explicit, consider the field K = C(z) of the rational functions on the
complex sphere P = C U {oco}. The derivations that we have used are % and
tV % where ¢ is a local parameter on the complex sphere (say ¢ is z — a or
1/z or an even more complicated expression). The definition of connection
(in its various forms) requires other concepts such as (universal) differentials,
analytic and algebraic vector bundles, and local systems. We will introduce
those concepts and discuss the properties that interest us here.

6.1 Differentials and Connections

All the rings that we will consider are supposed to be commutative, to have a
unit element and to contain the field Q. Let £ C A be two rings.

Definition 6.1 A differential for A/k is a map D : A — M, where M is an

157
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A-module such that D is additive, D is zero on k and D(ab) = aD(b) + bD(a).

There exists a universal differential, denoted by d = dap, : A — Q4. This
object is supposed to have the property: for every differential D : A — M,
there exists a unique A-linear map [ : Q4 — M such that D = [ ody;.
This property is easily seen to determine d/; — 4,4 up to isomorphism. The
construction of the universal differential is similar to other general constructions
such as the tensor product and we refer to ([130], Ch. XIX §3) for the details.

Examples 6.2
1. Let k be a field and A = k(z) a transcendental field extension. Then the
universal differential d : A — 4/, can easily be seen to be: {4/, the one

dimensional vector space over A with basis dz and d is given by d(f) = Z—édz.

2. More generally let k& C A be a field extension such that A is an algebraic

extension of a purely transcendental extension k(zi,...,2,) D k. Then Qg4
is a vector space over A with basis dzy,...,dz,. The universal differential d
is given by d(f) = Z?Zl %dzj. The derivations % are defined as follows.
J 2
On the field k(zy,...,2,) the derivarions % are defined as usual. Since the
J
extension k(z1,...,2,) C A is algebraic and separable, each derivation a%-

uniquely extends to a derivation 4 — A.

It is clear that what we have defined above is a differential. Now we will show
that d : A — Adz1 @ - - ® Adz, is the universal differential. Let a differential
D : A — M be given. We have to show that there exists a unique A-linear map
1:Qa/, — M such that D =1l od. Clearly | must satisfy [(dz;) = D(z;) for all

j=1,...,n and thus [ is unique. Consider now the derivation E := D — [ od.
We have to show that £ = 0. By construction E(z;) = 0 for all j. Thus E is
also 0 on k(z1,...,2,). Since any derivation of k(z1,...,zy,) extends uniquely

to A, we find that £ = 0.

3. We consider now the case, k is a field and A = k((2)). One would like to
define the universal differential as d : A — Adz with d(f) = %dz. This is a
perfectly natural differential. Unfortunately, it does not have the universality
property. The reason for this is that A/k is a transcendental extension of infinite
transcendence degree. In particular there exists a non zero derivation D : A —
A, which is 0 on the subfield k(z). Still we prefer the differential above which
we will denote by d: A — QQ Ik It can be characterized among all differentials
by the more subtle property:

For every differential D : A — M, such that D(k[[z]]) C M lies
in a finitely generated k[[z]]-submodule of M, there exists a unique
A-linear map [ : Qi/k — M with D =[od.

For completeness, we will give a proof of this. The [, that we need to produce,
must satisfy [(dz) = D(z). Let [ be the A-linear map defined by this condition
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and consider the derivation E := D —lod. Then E(z) = 0 and also E(k[[2]]) lies
in a finitely generated k[[z]]-submodule N of M. Consider an element h € k[[2]]
and write it as b = ho + h1z + -+ + h, 12"t + 2"g with g € k[[z]]. Then
E(h) = 2"E(g). As a consequence E(h) € Np>12"N. From local algebra ([130],
Ch.X§5) one knows that this intersection is 0. Thus E is 0 on k[[z]] and as a
consequence also zero on A. One observes from the above that the differential
does not depend on the choice of the local parameter z.

4. The next example is k = C and A = C({z}). The differential d : A — Adz,
with d(f) = % dz, is again natural. It will be denoted by d : A — Q/, /- This
differential is not universal, but can be characterized by the more subtle property
stated above. One concludes again that the differential does not depend on the
choice of the local parameter z in the field A.

5. Let k = C and A be the ring of the holomorphic functions on the open unit
disk (or any open subset of C). The obvious differential d : A — Adz, given
by d(f) = %dz, will be denoted by Qﬁl/k. Again it does not have the universal
property, but satisfies a more subtle property analogous to 3. In particular, this
differential does not depend on the choice of the variable z. O

In the sequel we will simply write d : A — Q for the differential which is
suitable for our choice of the rings & C A. We note that Hom4(Q2, A), the set
of the A-linear maps from 2 to A, can be identified with derivations A — A
which are trivial on k. This identification is given by [ — [ o d. In the case
that © = Q,4/, (the universal derivation) one finds an identification with all
derivations A — A which are trivial on k. In the examples 6.2.3 - 6.2.5, one
finds all derivations of the type hd% (with h € A).

Definition 6.3 A connection for A/k is a map V: M — Q ®4 M, where:

1. M is a (finitely generated) module over A.

2. V is k-linear and satisfies V(fm) = df @ m + fV(m) for f € A and
m e M.

Let | € Hom(2, A) and D =1 od. One then defines Vp : M — M as

V:M-QoM" S Ae M =M.

Thus Vp : M — M is a differential module with respect to the differential ring
A with derivation f — D(f).

Examples 6.4
1. k is a field and A = k(2). A connection V : M — Q ® M gives rise to
the differential module 8 : M — M with & = V 4 of k(z)/k with respect to

the derivation d%. On the other hand, a given differential module 0 : M — M
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(w.r.t. £) can be made into a connection V by the formula V(m) := dz®d(m).
We conclude that there is only a notational difference between connections for
k(z)/k and differential modules over k(z)/k.

2. Let k be a field and A = k((2)). As before Q will be Adz and d : A — Q is
the map d(f) = g—édz. Let M be a vector space over A of dimension n. A k[[z]]-
lattice A C M is a k[[z]]-submodule of M of the form k[[z]le; + --- + k[[2]]en,
where ej,...e, is a basis of of M. Let (M,V) be a connection for A/k. The
connection is called regular if there is a lattice A such that d(A) C dz ® A. The
connection is called regular singular if there is a lattice A such that d(A) C
dz @z 1A

Suppose now (for convenience) that k is algebraically closed. Let (M, V) be a
connection for k(z)/k. For each point p of kU {oo} we consider the completion

k/(;)p of k(z) with respect to this point. This completion is either k((z — a)) or

k((z7')). The connection (M, V) induces a connection for k/(;)p/k on M, =

—

k(z),®M. One calls (M, V) regular singular if each of the J\/Zp is regular singular.

3. kis a field and A = k(21,...,2,). A connection V : M — Q& M gives,
for every j = 1,...,n, to a differential module V » : M — M with respect

Zj
to the derivation %. In other words a connection is a linear system of partial
7

differential equations (one equation for each variable).

4. In parts 3.-5. of Examples 6.2 a connection together with a choice of the
derivation is again the same thing as a differential module with respect to this
derivation. a

6.2 Vector Bundles and Connections

We consider a connected Riemann surface X. The sheaf of holomorphic func-
tions on X will be called Ox. A wvector bundle M of rank m on X can be
defined as a sheaf of O x-modules on X, such that M is locally isomorphic with
the sheaf of Ox-modules O%. The vector bundle M is called free if M is glob-
ally (i.e., on all of X) isomorphic to O%. With vector bundles one can perform
the operations of linear algebra: direct sums, tensor products, Hom’s, kernels et
cetera. Vector bundles of rank one are also called line bundles. We will write
H°(X, M), or sometimes H°(M), for the vector space of the global sections of
M on X. It is known ([190], §50) that for a vector bundle M on X, H°(M) is a
projective Ox (X) -module (a module is projective if it is the direct summand
of a free module). Note that M is free if and only if HY(M) is a free Ox (X)
-module of rank m.

The line bundle Qx of the holomorphic differentials will be important for us.
This sheaf can be defined as follows. For open U C X and an isomorphism
t:U — {c € C||c| < 1}, the restriction of Qx to U is Oxdt. Furthermore,
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there is a canonical morphism of sheaves d : Ox — Qx, which is defined on the
above U by d(f) = %dt. (see also Examples 6.2.5 and Examples 6.4).

In the literature the term “vector bundle of rank m” refers sometimes to a closely
related but somewhat different object. For the sake of completeness we will ex-
plain this. For the other object we will use the term geometric vector bundle of
rank m on a Riemann surface X. This is a complex analytic variety V together
with a morphism of analytic varieties = : V' — X. The additional data are: for
each x € X, the fibre 7! (z) has the structure of an m-dimensional complex vec-
tor space. Further, X has an open covering {U;} and for each i an isomorphism
fi : 77 1(U;) = C™ x U; of analytic varieties such that: pryo f; is the restriction
of m to 7~ 1(U;) and for each point # € U; the map 7~ *(z) - C™ x {z} — C™,
induced by f;, is an isomorphism of complex linear vector spaces.

The link between the two concepts can be given as follows. Let 7 : V — X be
a geometric vector bundle. Define the sheaf M on X by letting M (U) consist
of the maps s : U — 7~ 'U satisfying 7 o s is the identity on U. The additional
structure on V' — X induces a structure of Ox (U)-module on M (U). The “lo-
cal triviality” of V' — X has as consequence that M is locally isomorphic to the
sheaf O%. On the other hand one can start with a vector bundle M on X and
construct, the corresponding geometric vector bundle V' — X.

Definition 6.5 A regular connection on a Riemann surface X is a vector bun-
dle M on X together with a morphism of sheaves of groups V : M — Qx ® M,
which statisfies for every open U and for any f € Ox(U), m € M(U) the
“Leibniz rule” V(fm) =df @ m + fV(m).

For an open U, which admits an isomorphism ¢ : U — {c € C| |¢| < 1}
one can identify Qx (U) with Ox (U)dt and M (U) with O (U). Then V(U) :
M(U) = Ox (U)dt ® M(U) is a connection in the sense of the definition given
in section 1. One can rephrase this by saying that a regular connection on X is
the “sheafification” of the earlier notion of connection for rings and modules.

Examples 6.6 FExamples, related objects and results.

1. Regular connections on a non compact Riemann surface.

According to ([74]Theorem 30.4)) every vector bundle M on a connected, non
compact Riemann surface is free. Let X be an open connected subset of P
and suppose for notational convenience that co ¢ X. We can translate now the
notion of regular connection (M, V) on X in more elementary terms. The vector
bundle M will be identified with O'¢; the sheaf of holomorphic differentials is
identified with Oxdz; further V is determined by V(X) and by V(X )d% In this
way we find a matrix differential operator d% + A, where the coordinates of A are

holomorphic functions on X. This matrix differential operator is “equivalent”
with (M, V).

2. Local systems on X.
X will be a topological space which is connected and locally arcwise connected.
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A (complex) local system (of dimension n) on X is a sheaf L of complex vector
spaces which is locally isomorphic to the constant sheaf C™. This means that X
has a covering by open sets U such that the restriction of L to U is isomorphic
to the constant sheaf C™ on U. For the space [0, 1] any local system is trivial,
meaning a constant sheaf C" (one need only show that n linearly independent
sections above a neighborhood of 0 can be extended to the whole space). Let
A:[0,1] = X be apathin X, i.e., a continuous function. Let L be a local system
on X. Then A*L is a local system on [0,1]. The triviality of this local system
yields an isomorphism (A*L)o — (A*L);. The two stalks (A*L)o and (A*L);
are canonically identified with Ly) and Ly(). Thus we find an isomorphism
Lyoy — L) induced by A. Let b be a base point for X and let 7 denote
the fundamental group of X with respect to this base point. Fix again a local
system L on X and let V denote the stalk Ly. Then for any closed path A
through b we find an isomorphism of V. In this way we have associated to L a
representation py, : 1 — GL(V) of the fundamental group.

We make this somewhat more systematic. Let LocalSystems(X) denote the

category of the local systems on X and let Repr,, denote the category of the

finite dimensional complex representations of ;. Then we have defined a functor

LocalSystems(X) — Repr,,, which has many nice properties. We claim that
The functor LocalSystems(X) — Repr,, is an equivalence of cate-
gories.

We will only sketch the (straightforward) proof. Let v : U — X denote the
universal covering. On U every local system is trivial, i.e., isomorphic to a
constant sheaf C™. This follows from U being simply connected (one defines n
independent sections above any path connecting a base point to an arbitrary
point, shows that this is independent of the path and so defines n independent
global sections). Take a local system L on X and let V = L;. Then the
local system u*L is isomorphic to the constant sheaf V' on U. The fundamental
group m is identified with the group of automorphisms of the universal covering
w:U — X. In particular, for any A € m; one has Aou = v and A* ou*L = u* L.
This gives again the representation m; — GL(V').

One can also define a functor in the other direction. Let p: 11 — GL(V) be a
representation. This can be seen as an action on V' considered as constant local
system on U. In particular for any m-invariant open set B C U we have an
action of m; on V(B). Define the local system L on X by specifying L(A), for
any open A C X, in the following way: L(A) = V(u"t4)™ (i.e., the elements
of V(u~!A) invariant under the action of 71). It can be verified that the two
functors produce an equivalence between the two categories.

3. Regular connections, local systems and monodromy.

We suppose that X is a connected noncompact Riemann surface. Let Reg(X)
denote the category of the regular connections on X. For an object (M, V) of
Reg(X) one can consider the sheaf L given by L(A4) = {m € M(A4)| V(m) =
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0} for any open subset A. The set L(A) is certainly a vector space. Since
the connection is “locally trivial” it follows that L is locally isomorphic to the
constant sheaf C™. Thus we found a functor from the category Reg(X) to the
category LocalSystems(X). We claim that

The functor Reg(X) — LocalSystems(X) an equivalence.

The essential step is to produce a suitable functor in the other direction. Let
a local system L be given. Then the sheaf N := L ®c Ox is a sheaf of Ox-
modules. Locally, i.e., above some open A C X, the sheaf L is isomorphic to the
constant sheaf Ce; @ -+ & Ce,. Thus the restriction of N to A is isomorphic
to Oxey @ - - Oxe,. This proves that N is a vector bundle. One defines V
on the restriction of N to A by the formula V(}" fje;) =Y dfj®e; € Qx @ N.
These local definitions glue obviously to a global V on N. This defines a functor
in the other direction. From this construction it is clear that the two functors
are each other’s “inverses”.

We note that the composition Reg(X) — LocalSystems(X) — Repr,, is in fact
the functor which associates to each regular connection its monodromy repre-
sentation. From the above it follows that this composition is also an equivalence
of categories.

4. The vector bundles on the complex sphere P

These vector bundles have been classified (by G. Birkhoff [29], A. Grothendieck
[87] et al; see [161]). For a vector bundle M (or any sheaf) on P we will
write H°(M) or H°(P, M) for its set of global sections. For any integer n one
defines the line bundle Op(n) in the following way: Put Uy = P\ {oo} and
U = P\ {0}. Then the restrictions of Op(n) to Uy and Uy are free and
generated by e and e. The two generators satisfy (by definition) the relation
2"ey = eoo on Ug N Uy

The main result is that every vector bundle M on the complex sphere is iso-
morphic to a direct sum Op(a1) ® --- ® Op(a,,). One may assume that a; >
az > -+ > any. Although this direct sum decomposition is not unique, one can
show that the integers a; are unique. One calls the sequence a; > --- > a, the
type of the vector bundle. We formulate some elementary properties, which are
easily verified:

(a) Op(0) = Op and Op(n) ® Op(m) = Op(n + m).
(b) Op(n) has only 0 as global section if n < 0.

(c) For n > 0 the global sections of Op(n) can be written as feg, where f runs
in the space of polynomials of degree < n.

The unicity of the a; above follows now from the calculation of the dimensions
of the complex vector spaces H°(Op(n) @ M). We note that the above M is
free if and only if all a; are zero. Other elementary properties are:
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(d) Qp is isomorphic to Op(—2).

(e) Let D = 3 n;[s;] be a divisor on P, i.e., a formal finite sum of points of
P with integers as coefficients. One defines the sheaf £(D) on P by £(D)(U)
consists of the meromorphic functions f on U such that the divisor of f on U
is > the restriction of —D to U. The sheaf £(D) is easily seen to be a line
bundle and is in fact isomorphic to Op(n), where n = )" n; (i.e., the degree of
the divisor D).

(f) Let M be any vector bundle on P and D a divisor. Then M (D) is defined
as L(D) ® M. In particular, Qp(D) is a sheaf of differential forms on P with
prescribed zeros and poles by D. This sheaf is isomorphic to Op(—2 + deg D).
In the special case that the divisor is S = s1 4+ -+ sy, (i-e., a number of distinct
points with “multiplicity 1”), the sheaf Qp(S) consists of the differential forms
which have poles of order at most one at the points sq,...,s,. The sheaf is
isomorphic to Op(—2 4+ m) and for m > 2 the dimension of its vector space of
global sections is m — 1. Suppose that the points s1, ..., s, are all different from
oo. Then HO(Q(S)) consists of the elements Y i~ —~-dz with ay,...,a; € C

j=1 z—s;
and > a; = 0.

5. The GAGA principle for vector bundles on P.

One can see P as the Riemann surface associated to the projective line P! := PlC
over C. Also in the algebraic context one can define line bundles, vector bun-
dles, connections et cetera. The “GAGA” principle gives an equivalence be-
tween (“algebraic”) vector bundles (or more generally coherent sheaves) on P!
and (“analytic”) vector bundles (or analytic coherent sheaves) on P. We will
describe some of the details and refer to [191] for proofs (see also [94] for more
information concerning the the notions of line bundles, vector bundes, etc. in
the algebraic context).

We begin by describing the algebraic structure on projective space P! [94]. The
open sets of P, for the Zariski topology, are the empty set and the cofinite sets.
The sheaf of regular functions on P will be denoted by O. Thus for a finite
set S we have that O(P!\ S) consists of the rational functions which have their
poles in S. Let M be a vector bundle on P! of rank m. Then for any finite non
empty set S the restriction of M to P!\ S is a free bundle (because O(P!\ S)
is a principal ideal domain and since HO(M|p1\5) is projective it must be free).
In particular, M (P! \ S) is a free module of rank m over O(P! \ S). We want
to associate to M a vector bundle M*" on P.

One defines M by M**(P) = M(P!) and for an open set U C P, which has
empty intersection with a finite set S # 0, one defines M **(U) = Op (U)®0(p1\s)
M(P'\ S). It is not difficult to show that the latter definition is independent
of the choice of S # 0. Further it can be shown that M®" is a vector bundle
on P. The construction M ~ M®" extends to coherent sheaves on P! and is
“functorial”.

In the other direction, we want to associate to a vector bundle N on P a vector
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bundle N9 on P. One defines N9 as follows. N%9(P!) = N(P) and for any
non empty finite set S one defines N9 (P1\ S) = Uy>1 H*(N (k- S)). (We note
that k- S is considered as a divisor on P). If one accepts the description of the
vector bundles on P, then it is easily seen that N9 is indeed a vector bundle
on P'. The construction N — N9 extends to (analytic) coherent sheaves and
is “functorial”.

The two functors ** and 9 provide an equivalence between the vector bundles
(or analytic coherent sheaves) on P and the vector bundles (or coherent sheaves)
on P

The GAGA principle holds for projective complex varieties and in particular for
the correpondence between non-singular, irreducible, projective curves over C
and compact Riemann surfaces.

Exercise 6.7 Op(n)*9

Let S = {p1,...,pm} be a finite set not including the point at infinity and let
fs = [1it (2 — p;). Show that for U = P'\ S, Op(n)™9(U) consists of all
rational functions of the form g/f* where & > 0 and degg < n + k. Describe
Op(n)*9(U) where U = P!\ S and S contains the point at infinity. We denote
the sheaf Op(n)®9 by O(n). ]

We come now to the definition of a regular singular connection. Let X be a
connected Riemann surface, S a finite subset of X.

Definition 6.8 A regular singular connection on X with singular locus in S
is a pair (M,V) with M a vector bundle on X and V : M — Q(S)®@ M a
morphism of sheaves of groups that statisfies for every open U and for any
feOx(U), me M(U) the “Leibniz rule” V(fm) = df @ m + fV(m).

Here S is seen as a divisor on X and Q(S) is the sheaf of differential forms on X
having poles of at most order 1 at the points of S. The difference with the earlier
defined regular connections is clearly that we allow poles of order 1 at the points
of S. We can make this explicit in the local situation: X = {¢ € C| |¢|] < 1},
S = {0} and M = O%. Then on X the map V4 : Ox(X)™ = 2 'Ox(X)™
identifies with a matrix differential operator d% + A, where the coefficients of
A are meromorphic functions on X having a pole of order at most 1 at z = 0.
One observes that the notion of regular singular connection is rather close to
the definition is regular singular point of a matrix differential equation. One
could also introduce irregular connections by replacing S by a divisor ) n;[s;]
with integers n; > 1.

Examples 6.9 Regular singular connections and results.

1. The GAGA principal for regular singular connections on P.

For the sheaf of holomorphic differential on P! we will use the notation
and for the analogous (analytic) sheaf on P we will write Q*". Let an “al-
gebraic” regular singular connection on P! with singular locus in S be given,
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thisisa V: M — Q(S) ® M, with M a vector bundle and V with the obvi-
ous properties. We want to associate a regular singular connection (A", V)
on P with singular locus in S (see examples 6.6.3). The only thing to ver-
ify is that the new V is unique and well defined. Let U be an open set of
P which has empty intersection with the finite set T # (). We have to verify
that V : M*™(U) — Q*(S)(U) ® M**(U) is unique and well defined. One
has Man(U) = OP(U) Xo(PI\T) .ZW(P1 \T) and Q(S)an(U) Rop(U) M‘m(U) is
canonically isomorphic to Q(S)*"(U) ®o(p1\7y M(P*\T). Consider an element
f@m with f € Op(U) and m € M(P*\T). Then the only possible definition for
V(f®m)is df ®m+ fV(m). This expression lies in Q(S)**(U) ®op vy M*"(U)
since df € Q**(U) and V(m) € Q(S)(P*\T)® M(P*\T).

On the other hand, let (V,V) be a regular singular connection with singular
locus in S on P. We have to show that N9 inherits a regular singular con-
nection with singular locus in S. Let T be a finite non empty subset of P.
One considers N(k - T'), where k- T is seen as a divisor. It is not difficult to
see that V on N induces a V : N(k-T) — Q(S)* @ N((k+1)-T). By con-
struction N9 (P \ T) = Ug>oH°(N(k - T)). Thus we find an induced map
V:N4(PI\T) = QS)(P\T)® N'9(P*\ T). This ends the verification of
the GAGA principle.

We introduce now three categories: RegSing(P,S), RegSing(P!,S) and
RegSing(C(z),S). The first two categories have as objects the regular sin-
gular connections with singular locus in S for P (i.e., analytic) and for P! (i.e.,
algebraic). The third category has as objects the connections for C(z)/C (i.e.,
differential equations Y’ = AY, A an n x n matrix with coefficients in C(z), see
Examples 6.2) which have at most regular singularities in the points of S (See
Examples 6.4.2). We omit the obvious definition of morphism in the three cat-
egories. We have just shown that the first two categories are equivalent. There
is a functor from the second category to the third one. This functor is given as
follows. Let V : M — Q(S) ® M be a connection on P! (regular singular with
singular locus in S). The fibre M,, of M at the generic point 7 is defined as the
direct limit of all M (U), where U runs over the collection of the co-finite subsets
of P'. One finds a map V, : M, = Q(S), ® M,,. The expression M, is a finite
dimensional vector space over C(z) and Q(S), identifies with Q¢(.)/c. Thus
V, is a connection for C(z)/C. Moreover V, has at most regular singularities
at the points of S. We shall refer to (M,, V) as the generic fibre of (M, V).
We will show (Lemma 6.18) that the functor V + V, from RegSing(P',S)
to RegSing(C(z), S) is surjective on objects. However this functor is not an
equivalence. In particular, non isomorphic Vi, V, can have isomorphic generic
fibres. We will be more explicit about this in Lemma 6.18.

2. Regular singular connections on free vector bundles on P.

We consider X =P, S = {s1,...,sy,} with m > 2 and all s; distinct from oo.
We want to describe the regular singular connections (M, V) with M a free vec-
tor bundle and with singular locus in S. From M = Og it follows that the vector
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space of the global sections of M has dimension n. Let ey, ..., e, be a basis. The
global sections of Q(S) ® M are then the expressions E?Zl >k Za_’“’sjk dz) ® ej,

where for each j we have ), a; ; = 0. The morphism V is determined by the
images V(e;) of the global sections of M because M is also generated locally at
every point by the {e;}. Furthermore we may replace V(e;) by Vd%(ej). This
leads to the differential operator in matrix form d% + >y Zf—’;c,
Aj are constant square matrices of size n and satisfy Y, Ay = 0. A matrix
differential operator of this form will be called Fuchsian differential equation

with singular locus in S .

where the

For S = {s1,...,8m_1,00} one finds in a similar way an associated matrix dif-
ferential equation d% + EZL:? Zf—’;‘k (in this case there is no condition on the
sum of the matrices Ag). We note that the notion of a Fuchsian system with
singular locus in S is, since it is defined by means of a connection, invariant

under automorphisms of the complex sphere.

3. A construction with regular singular connections.

Let (M, V) be a regular singular connection with singular locus in S. For a point
s € S we will define a new vector bundle M (—s) C M. Let ¢ be a local parame-
ter at the point s. Then for U not containing s one defines M (—s)(U) = M (U).
If U is a small enough neighborhood of s then M (—s)(U) = tM(U) ¢ M(U).
One can also define a vector bundle M (s). This bundle can be made explicit by
M(s)(U)= M(U) if s ¢ U and M(s)(U) =t 1M (U) for a small enough neigh-
bourhood U of s. We claim that the vector bundles M (—s) and M(s) inherit
from M a regular singular connection. For an open U which does not contain
s, one has M (s)(U) = M(—s)(U) = M(U) and we define the V’s for M (s) and
M (—s) to coincide with the one for M. For a small enough neighbourhood U
of s one defines the new V’s by V(t~'m) = -2 @ t='m + t='V(m) (for M (s)
and m a section of M) and V(tm) = % @ tm + tV(m) (for M(—s)). This is
well defined since 4 is a section of (S). The V’s on M(—s) C M C M(s) are
restrictions of each other.

More generally, one can consider any divisor D with support in S, i.e., D =
> mj[s;] for some integers m;. A regular singular connection on M induces a
“canonical” regular singular connection on M (D).

Exercise 6.10 Let (M,V) be a regular singular connection and let D be a
divisor with support in S. Show that the induced regular singular connection
on M(D) has teh same generic fibre as (M, V) (see exercise 6.9.1).

4. The historically earlier notion of Fuchsian linear operator L of degree n and
with singular locus in S is defined in a rather different way. For the case S =
{s1,.,8m—1,00} this reads as follows. Let L = 0" +a;0" '+ -+ ap,_10+an,
where 9 = diz and the a; € C(z). One requires further that the only poles
of the rational functions a; are in S and that each singularity in S is “regular

singular”. The latter condition is that the associated matrix differential equation
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can locally at the points of S be transformed into a matrix differential equation
with a pole of at most order 1. We will prove that:

Lemma 6.11 L is a Fuchsian scalar differential equation with singular locus
in S if and only if the a; have the form =T bj 07 with b; polynomials

$1)7 (2= Sm—

of degrees < j(m — 1) — j.

Proof. We first examine the order of each a;, say at z = s;. For nota-
tional convenience we suppose that s; = 0. We consider M = 2L = z"9" +
za 2" O ... 4 27 1a,, 120+ 2™a,, which can be written as 87 +¢; 6" +
--- 4+ ¢, for certain ¢; € C(z). From the last expression one easily finds the
Newton polygon at the point z = 0. The operator (or the corresponding matrix
differential equation) is regular singular at z = 0 if and only if the Newton
polygon has only slope 0. The last condition is equivalent to ordy(c;) > 0 for all
j. From the obvious formula z™90™ = (§ —m)(0 —m +1)---(d — 1)4 it follows
that the condition on the ¢; is equivalent to ordy(a;) > —j for all j. A similar
calculation at z = oo finishes the proof. a

We note that a scalar operator L, as in the statement, need not be singular
at all the points of S. At some of the points of S the equation may have n inde-
pendent local solutions. In that case the point is sometimes called an apparent
singularity. For example, the operator 6% — 22272 is Fuchsian with singular locus

in {v/2,-v2,00}. The point at infinity turns out to be regular.

The automorphisms ¢ of the complex sphere have the form ¢(z) = % with

(“*) € PSL(2,C). We extend this automorphism ¢ of C(z) to the automor-
phism, again denoted by ¢, of C(2)[0] by ¢(9) = m@. Suppose that (the
monic) L € C(z)[d] is a Fuchsian operator with singular locus in S. Then one
can show that ¢(L) = fM with f € C(z)* and M a monic Fuchsian operator
with singular locus in ¢(S). Thus the notion of Fuchsian scalar operator is also

“invariant” under automorphisms of P. O

6.3 Fuchsian equations

The comparison between scalar Fuchsian equations and Fuchsian equations in
matrix form is far from trivial. The next two sections deal with two results
which are also present in [5]. In a later section we will return to this theme.

6.3.1 From scalar Fuchsian to matrix Fuchsian

C will denote an algebraically closed field of characteristic 0. Let an n*® order
monic Fuchsian operator L € C(2)[0] (where = L) with singular locus in S
be given. We want to show that there is a Fuchsian matrix equation of order
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n with singular locus in S, having a cyclic vector e, such that the minimal
monic operator M € C(z)[0] with Me = 0 coincides with L. This statement
seems to be “classical”. However, the only proof that we know of is the one
of ([5], Theorem 7.2.1). We present here a proof which is algebraic and even
algorithmic.

If S consists of one point then we may, after an automorphism of P!, suppose
that S = {oo}. The Fuchsian operator L can only be 0™ and the statement is
trivial. If S consists of two elements then we may suppose that S = {0, c0}. Let
us use the operator 6 = z9. Then 2L can be rewritten as operator in § and it
has the form 6" + 16" +- - +a, with all a; € C. Let V be an n-dimensional
vector space over C' with basis ej,...,e,. Define the linear map B on V by
B(e;)) = ej4q fori =1,...,n — 1 and Be,, = —an,€, — ap_1€p—_1 — -+ — a1€1.
Then the matrix equation 6 + B (or the matrix equation 0 + %) is Fuchsian
and the minimal monic operator M with Me; = 0 is equal to L. For a singular
locus S with cardinality > 2 we may suppose that S is equal to 0, sq, ..., S, 00.

Theorem 6.12 Let L € C(2)[0] be a monic Fuchsian operator with singular
locus in S = {0, s1,...,8k,00}. There are constant matrices

*

By = .ox and

By, ..., By upper triangular, i.e., of the form . ,

such that the first basis vector ey is cyclic for the Fuchsian matriz equation
o+ % +Ef:1 % and L is the monic operator of smallest degree with Le; = 0.
Proof. Write D = (2 —s1)---(2 — s;) and F = zD. Consider the differential
operator A = Fd%. One can rewrite F™L as a differential operator in A. It
will have the form L := A" + A; A" ...+ A, ;A + A,, where the A; are
polynomials with degrees < k.i. Conversely, an operator of the form L in A can
be transformed into a Fuchsian operator in 0 with singular locus in S. Likewise,
we multiply the matrix operator of the statement on the left hand side by F
and find a matrix operator of the form

Bll ZB271 - ZBn71
p D B, .
A=F—+ D
dz 2Bp n-1

D By,
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We note that the polynomials B;; have degree < k and the polynomials B; ;
with ¢ > 7 have degree < k — 1. Let ej,es,...,€e, denote the standard basis,
used in this presentation of the matrix differential operator A. For notational
convenience, we write ep+1 = 0. For the computation of the minimal monic
element L, € C(2)[A] with Lpe; = 0 we will use the notation: M; = (A —
B;; — (i —1)zD'). One defines a sequence of monic operators L; € C[z][A] as
follows: Lo =1, L1 = My = (A —By,1), Ly = MyL; — FBy 1Ly and recursively
by
Li=M;L; 1 —FBj; 1Li 5 —FDB;; sL; 3—

-+ —FD"3B; 5L, — FD""*B;, Ly.

One sees that the L; are constructed such that L;e; = DieiH. In particular,
e is a cyclic element for the matrix differential operator and L, is the minimal
monic operator in C(z)[A] with L,e; = 0. Since L, actually lies in C[z][A]
and the coefficients of L,, w.r.t. A satisfy the correct bound on the degrees, it
follows that L,, gives rise to a Fuchsian scalar operator with the singular locus

in S.

In order to prove that we can produce, by varying the coefficients of the matrices
By, Bi,..., By, any given element T := A" + A]A" L ...+ A, A+ A, €
C[z][A] with the degree of each A; less than or equal to k.i, we have to analyse
the formula for L,, a bit further. We start by giving some explicit formulas:
L1 = M1 and L2 = M2M1 — FB2’1 and

L = MgMyMy — (M3F By, + FBs 2M;) — FDBs
Ly = MyMsMyM, — (MyMsF By + MyFBs s M, + FBy3MyM,)
—(MyFDBs, + FDBysM;) — FD*By s + FBy3F B, ;.

By induction one derives the following formula for L,:

n—1
My - - MaMy — Z My - MiyoFBiy1 My --- M

i=1

n—2
- Z My - Miy3FDBiys ;M --- M
i=1

n—3
- Z My M 4FD*Biys i M;_y -+~ My
i=1

. ~ M,FD"3B,_11 — FD" B, 1 + overflow terms.

The terms in this formula are polynomials of degrees n,n —2,n—3,...,1,0 in
A. By an “overflow term ” we mean a product of, say n — [ of the M;’s and
involving two or more terms B, , with z —y <1 — 2.

We will solve the equation L, = T stepwise by solving modulo F, modulo
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FD, ..., modulo FD"'. At the j** step we will determine the polynomi-
als Bjii—14, 1 <1 < n—j+ 1. ie., the polynomials on the jth diagonal.
After the last step, one actually has the equality L, = T since the coeffi-
cients of L, — T are polynomials of degree < k.n and the degree of FD" ! is
14 kn. We note further that the left ideal I in C[z][A] generated by the element
a:=2"(z—s51)" - (2 — sg)™ (for any ng,...,n) is in fact a two sided ideal
and thus we can work modulo I in the usual manner. We note further that Af;
almost commutes with @ in the sense that M;a = a(M; + F%) and F% € Clz].

The first equation that we want to solve is L, = T modulo F. This is the
same as My ---M; =T modulo F and again the same as M, --- My =T mod-
ulo each of the two sided ideals (z),(z — s1),...,(z — sx) in C[z][A]. This
is again equivalent to the polynomials [] (A — B;;(0)) and, for each s €
{s1,...,sk}, the [, (A — B;;(s) — sD'(s)) are prescribed as elements of
C[A]. For each 4, this means that there are only finitely many possibilities for
B;1,(0),B;i(s1),...,Bii(sx) and for each choice of these elements B;; can be
(uniquely) determined by interpolation. Therefore, there are finitely many possi-
bilities for the polynomials By 1, ..., By . In particular, for any s € {s1,...,s¢}
one is allowed to permute the numbers B, ,(s) + (n — 1)sD'(s), ..., Ba2(s) +
sD'(s),B1,1(s). After a suitable permutation for each s € {si,...,si}, the
following “technical assumption” is satisfied: For i > j, the difference
Bii(s)+ (i —1)sD'(s) Bj;(s)+ (j —1)sD'(s)

sD'(s) sD'(s)

is not a strictly positive integer. For example, we could permute the B; ; so that
Re(B;,i(s)) < Re(Bj,j(s)) for i > j.

In the second step, we have to consider the equation L,, = T modulo F'D. This
can also be written as: produce polynomials B;;1 ; of degrees < k — 1 such that
the linear combination

n—1
(F)_l(z Mn SN Mi+2FBi+1,iMi—1 e Ml)
i=1

is modulo D a prescribed element Cp,_ o A" 2 + C,_sA" 3 + ...+ C1A+Cp €
C[z][A] with the degrees of the C; bounded by k.i for all i. Again we can
split this problem into an equivalence modulo (z — s) for s € {s1,...,s1}. A
sufficient condition for solving this problem (again using interpolation) is that
for any such s the polynomials F~1M,, - - M; ;2 FM; ; --- M; modulo (z —s) in
C[A] (for i = 1,...,n — 1) are linearly independent. This will follow from our
“technical assumption”, as we will verify.

Write M} for F~'M;F and write M} (s), M;(s) € C[A] for M} and M; modulo
(z — s). The zero of M;(s) is B;(s) + (i — 1)sD'(s) — sD'(s) and the zero of
M;(s) is B;;(s) + (i — 1)sD'(s). We calculate step by step the linear space V
generated by the n—1 polynomials of degree n—2. The collection of polynomials
contains M*(s)--- M;(s)Mj(s) and M}(s) - M;(s)My(s). Since Mj(s) and
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M (s) have no common zero, we conclude that V' contains M}(s) --- MS(s)Pi,
where P; is any polynomial of degree < 1. Further M} (s) - -- MZ(s)Ma2(s)M1(s)
belongs to the collection. Since Ma(s)M(s) and M (s) have no common zero we
conclude that V' contains all polynomials of the form M (s) - - MZ(s)Ps, where
P> is any polynomial of degree < 2. By induction one finds that V' consists of
all polynomials of degree < n — 2. Thus we can solve L,, =T modulo F'D in a
unique way (after the choice made in the first step). This ends the second step.
The further steps, i.e., solving L,, = T modulo F D/ for j = 2,...,n are carried
out in a similar way. In each step we find a unique solution. |

6.3.2 A Criterion for a Scalar Fuchsian Equation

In this section and Section 6.5, we shall consider regular singular connections
(M, V) with singular locus S whose generic fibres (M,,, V,) are irreducible con-
nections for C(z)/C. We shall refer to such connections as irreducible regular
singular connections . The connection (M, V,) furthermore gives rise to a dif-
ferential module. In the next proposition, we give a criterion for this module to
have a cyclic vector with minimal monic annihilating operator that is Fuchsian
with singular locus S.

Proposition 6.13 Let V : M — Q(S) @ M be an irreducible regular singular
connection of rank n on P! with singular locus in S. Put k = #S — 2. Suppose
that the type of M is b,b—k,b—2k,...,b—(n—1)k. Then there is an equivalent
scalar Fuchsian equation of order n having singular locus S.

Proof. For any s € S, M and M (—b[s]) have the same generic fibre. There-
fore, after replacing M by M(—b[s]) for some s € S, we may assume b = 0. If
k =0, then M is a free vector bundle. We may assume that S = {0,00}. As
in Example 6.9.2, we see that this leads to a differential equation of the form
d% - é where A € M,,(C). Since the connection is irreducible, the associated
differential module M is also irreducible. This implies that A can have no in-

variant subspaces and so n = 1. The operator d% — 2, a € Cis clearly Fuchsian.

We now suppose that £ > 0 and S = {0,000, 51,...,st}. As before, we write
L(D) for the line bundle of the functions f with divisor > —D. We may identify
M with the subbundle of Oe; & --- & Oe,, given as

Oey @ L(—k[oo])ex ® L(—2k[o0])es @ -+ & L(—(n — 1)k[oo])en.

Clearly e; is a basis of H°(M). We will show that the minimal monic differential

operator L € C(z)[0] satisfying Le; = 0 has order n and is Fuchsian. Actually,
we will consider the differential operator A = z(z — 51) -+ (z — s) & and show

that the minimal monic operator N € C(z)[A] such that Ne; = 0 has degree
n and its coefficients are polynomials with degrees bounded by k -i. (See the
proof of Theorem 6.12).
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There is an obvious isomorphism €Q(S) — L(k - [0¢]), which sends % to (z —
s1)---(z — sg). Define A : M — L(k - [00]) ® M as the composition of V :
M — Q(S) ® M and the isomorphism Q(S) ® M — L(k - [oo]) @ M. One can
extend A to a map A : L(ik - [0]) ® M — L((i + 1)k - [¢]) ® M. One has
A(fm)=2(z—s1) - (2 — sk)g—ém + fA(m) for a function f and a section m

of M.

We observe that A(e;) is a global section of L(k - [o0]) ® M and has therefore
the form ae; + bes with a a polynomial of degree < k and b a constant. The
constant b is non zero, since the connection is irreducible. One changes the
original e, e2, ... by replacing es by aei + bes and keeping the other e;’s. After
this change A(e;) = e2. Similarly Aes is a global section of £(2k-[oo]) ® M and
has therefore the form ce; +des+ees with ¢, d, e polynomials of degrees < 2k, k, 0.
The constant e is not zero since the connection is irreducible. One changes the
element e3 into ce; + des + ee3 and keeps the other e;’s. After this change, one
has Aes = e3. Continuing in this way one finds a new elements ey, es,..., e,
such that M is the subbundle of Oe; & -+ & Oe,, given as before, and such
that A(e;) = e;41 for i = 1,...,n — 1. The final A(e,) is a global section of
L(nk-[oc]) ® M and can therefore be written as ane; + an—1e2+ - - -+ aye, with
a; a polynomial of degree < ki. Then N := A" —a; A" ' —--. —a, 1A —a,
is the monic polynomial of minimal degree with Ne; = 0. O

The converse of the Proposition 6.13 is also correct:

Proposition 6.14 Let L be a scalar Fuchsian equation with singular locus S.
Then there is an equivalent connection (M, V) with singular locus S and of type
0,—-k,—2k,...,—(n —1)k.

Proof. We may suppose S = {0,s1,...,5,,00} and we may replace L by a
monic operator M € C[2][A], M = A" —a; A" ! — - —a, 1A — a, with a;
polynomials of degrees < ki. For the vector bundle M one takes the subbundle
of Oe; & --- ® Oe, given as

Oer @ L(—Fk - [00])es @ L(—2k - [00])es @ -~ B L(—(n — 1) - [00])en.

One defines A : M — L(k - [00]) @ M by A(e;) =e;4q1 fori=1,...,n—1 and
A(en) = aper + ap—1€3 + -+ + a1e,. The definition of V on M follows from
this and the type of M is 0, —k,...,—(n — 1)k as required. |

6.4 The Riemann-Hilbert Problem in Weak Form

We fix a finite subset S on the complex sphere P and a base point b ¢ S for
the fundamental group m; of P\ S. An object M of RegSing(C(z), S) (see part
1. of 6.9) is a connection V : M — Q ® M, where M is a finite dimensional
vector space over C(z), such that the singularities of the connection are regular
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singular and lie in S. Let V' denote the local solution space of (M, V) at the point
b. The monodromy of the connection is a homomorphism m — GL(V'). Let
Repr,, denote the category of the finite dimensional complex representations of
m1. Then we have attached to (M, V) an object of Repr, . This extends in fact
to a functor M : RegSing(C(z),S) — Repr,,. A solution of the “weak form”
of the Riemann-Hilbert problem is given in the following (see Appendix C for
facts concerning Tannakian categories).

Theorem 6.15 The functor M : RegSing(C(z), S) — Repr,, is an equivalence
of categories. This functor respects all “constructions of linear algebra” and is,
in particular, an equivalence of Tannakian categories.

Proof. It is easy to see that M respects all constructions of linear algebra. We
will first show that for two objects My, M> the C-linear map Hom(M;, M) —
Hom(M (M), M(Ms)) is an isomorphism. In proving this, it suffices to take
M; = 1, i.e., the trivial connection of dimension 1. Then Hom(1, M) consists
of the elements my € Ms with V(mz) = 0. The elements of Hom(1, M(M>))
are the vectors v in the solution space of M at b, which are invariant under the
monodromy of M>. Such an element v extends to all of P\ S. Since the con-
nection has regular singularities v is bounded at each point s in S by a power of
the absolute value of a local parameter at s. Thus v extends in a meromorphic
way to all of P and is therefore an element of M, satisfying V(v) = 0. This
proves that the map under consideration is bijective.

The final and more difficult part of the proof consists of producing for a
given representation p : m; — GL(n, C) an object (M, V) of RegSing(C(z), S)
such that its monodromy representation is isomorphic to p. From Example 6.6.3
the existence of a regular connection (N,V) on P\ S with monodromy repre-
sentation p follows. The next step that one has to do, is to extend N and V to
a regular singular connection on P. This is done by a local calculation.

Consider a point s € S. For notational covenience we suppose that s = 0.
Put Y* := {# € C| 0 < |2| < €}. Let V be the solution space of (N,V) at
the point €/2. The circle through €/2 around 0 induces a monodromy map
B € GL(V). We choose now a linear map A : V — V such that ¢*™*4 = B and
define the regular singular connection (N, V) on Y := {z € C| |z| < €} by the
formulas: Ny = Oy @ V and V4(f ®v) =df ® v+ 271 ® A(v). The restriction
of (Ns, V) to Y* = Y \ {0} has local monodromy e?**4. From part (3) of 6.6
it follows that the restriction of the connections (Ns, V) and (N, V) to Y* are
isomorphic. We choose an isomorphism and use this to glue the connections
(N, V) and (Ns, V) to a regular singular connection on (P \ S)U {s}. This can
be done for every point s € S and we arrive at a regular singular connection
(M,V) on P with singular locus in S and with the prescribed monodromy
representation p. From part 1. of Example 6.9 we know that (M,V) comes
from an algebraic regular singular connection on P! with singular locus in S.
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The generic fibre of this algebraic connection is the object of RegSing(C(z), S)
which has the required monodromy representation p. O

We note that the contents of the theorem is “analytic”. Moreover the proof of
the existence of a regular connection for (C(z),S) with prescribed monodromy
depends on the GAGA principal and is not constructive. Further one observes
that the regular singular connection for (P,S) is not unique, since we have
chosen matrices A with e?™*4 = B and we have chosen local isomorphisms for
the gluing. The Riemann-Hilbert problem in “strong form” requires a regular
singular connection for (P,S) (or for (P!, S)) such that the vector bundle in
question is free. Given a weak solution for the Riemann-Hilbert problem, the
investigation concerning the existence of a strong solution is then a purely al-
gebraic problem.

In [5], [33], and [35], Bolibruch has constructed counterexamples to the strong
Riemann-Hilbert problem. He also gave a positive solution for the strong prob-
lem in the case that the representation is irreducible [5], [34] (see also the work
of Kostov [123]). We will give an algebraic version of this proof in the next
section.

6.5 Irreducible Connections

Let C' denote an algebraically closed field of characteristic 0 and let (M, V)
denote a regular singular connection for C'(z)/C with singular locus in S C P1,
where P! is the projective line over C. In this section we will show that,
under the assumption that (M, V) is irreducible, there exists a regular singular
connection (M, V) on P!, such that:

(a) The generic fibre of (M, V) is (M, V).
(b) The singular locus of (M, V) is contained in S.
(c) The vector bundle M is free.

Combining this result with Theorem 6.15 one obtains a solution of the Riemann-
Hilbert problem in the strong sense for irreducible representations of the funda-
mental group of P\ S. The proof that we give here relies on unpublished notes
of O. Gabber and is refered to in the Bourbaki talk of A. Beauville [20]. We
thank O. Gabber for making these notes available to us.

We have to do some preparations and to introduce some notations. The sheaf
of regular functions on P! is denoted by O. By O(n) we denote the line bundle
of degree n on P! (see Exercise 6.7). For any point p € P!, one considers the
stalk O, of O at p. This is a discrete valuation ring lying in C'(z). Its completion

is denoted by 6p and the field of fractions of 5p will be denoted by C/'iz\) - This
field is the completion of C(z) with respect to the valuation ring O,. A lattice
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in a finite dimensional vector space V' over C/-’(z\) p 1s a free ap—submodule of V
with rank equal to the dimension of V. In the proof of the following lemma we
will show how to construct an algebraic vector bundle on P'. We will show that
our construction yields such an object by using facts about coherent sheaves
and refer to [94] for the relevant facts.

Lemma 6.16 Let M denote a vector space over C(z) with a basis e1,...ep.
Let U be a non trivial open subset of P' and for each p ¢ U let A, be a lattice

—

of C(z), ® M. Then there exists a unique vector bundle M on P! such that:

(a) For every open V C P! one has M(V) C M.

(b) M(U) is equal to O(U)ey + -+ O(U)e, C M.

(c) For every p € U, the completion My, := Op @ M, coincides with
A,p.

Proof. Forpe P'\U weput S, := apel +-- 4 6pen. For every p € P\ U,
let A, be a given integer. Consider first the special case where each A, = tﬁ" Sp,
where t, denotes local coordinate at p. Put N = Oe; 4 --- + Oe, and let A be
the divisor Y A,[p] (the sum extended over the p € P!\ U). Then clearly the
vector bundle N(—A) = £(—A) ® N solves the problem.

In the general case, there are integers A,, B, such that t;‘”Sp C A C tf”Sp

holds. Let B be the divisor > Bp[p]. Then N(—A) C N(—B) are both vector

bundles on P'. Consider the surjective morphism of coherent sheaves N (—B) 4

N(—B)/N(—A). The second sheaf has support in P1\U and can be written as a
skyscraper sheaf @ptf" »/ tﬁ" Sy (see Example B.2(7) and [94]). This skyscraper
sheaf has the coherent subsheaf T' := - Ap/t;"’Sp. Define now M as the
preimage under g of T'. From the exact sequence 0 - N(—A) - M - T — 0
one easily deduces that M has the required properties (see [94], Ch. IL5 for the
relevant facts about coherent sheaves). An alternative way of describing M is
that the set M(V), for any open V' # @, consists of the elements m € M such
that for p € U NV one has m € Ope; + ---+ Opey, and for p e V, p € U one

—

has m € A, C C(z), ® M. This shows the unicity of M. O

Let M be a vector bundle on P!. According to Grothendieck’s classification
(and the GAGA principal), M is equal to a direct sum O(a;) ® --- ® O(ay)
with integers a; > --- > a,. This decompostion is not unique. However there
is a canonical filtration by subbundles F! € F? C .... One defines F! :=
O(a1)®---®O(as, ), where s; is the last integer with as, = a;. The subbundle
is unique, since O(—a;) ® F! is the subbundle of O(—a;) ® M generated by
the global sections H(P',0(—a;) ® M). In case not all a; are equal to a;
one defines s, to be the last integer with as, = as,41. The term F?, defined
as the direct sum O(ay) @ -+ ® O(as, ), is again uniquely defined since it is the
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subbundle generated by the global sections of O(—as,) ® M. The other possible
F' C M are defined in a similar way. We will also need the notion of the defect
of M, which we define as Y (a; — a;). In later parts of the proof we want to
change a given vector bundle by changing the data of Lemma 6.16. The goal
is to obtain a vector bundle with defect zero, i.e., a1 = as = --- = a,. In the
next lemma the effect of a small local change on the type of the vector bundle
is given.

Lemma 6.17 Let M, U, A,, M be as in Lemma 6.16. Let the type of M be
given by the integers a; > --- > a, and let F1 C F? C ... denote the canonical
filtration of M. We consider a py € P*\U with local parameter t and a non zero
vector v € V := Ay, [tA,,. Define a new lattice A,, := apt_lﬁ + Ap,, where
0 € Ay, has image v € V. Let M denote the vector bundle on P' given by
Lemma 6.16 using the same data as M with the exception that A,, is replaced
by Ap,.

The vector space V has an induced filtration F*(V) C F?(V) C .... Leti be
the first integer such that v € F'(V) and let j be the smallest integer such that
O(a;) is present in F*\ Fi='. Then the type of M is obtained from the type of
M by replacing aj by a; + 1.

Proof. Choose a direct sum decomposition M = O(a;) & --- ® O(ay,). Then
Fi=l = O(a1) ® --- ® O(aj—1) and F' = O(a1) @ --- & O(ay,), where a; >
-->ajo1 > a; =--- = ap (and ag > agq1 if £ < n). For & we may choose
an element in F;O which does not lie in Flfo’l. After changing the direct sum

decompostion of F* we can arrange that o € O(a;),,. Then M is obtained from
M by performing only a change to the direct summand O(a;) of M. In this
change the line bundle O(a;) is replaced by L(po) ® O(a;). The latter bundle
is isomorphic to O(a; + 1). O

We focus now on a regular singular connection (M,V) for C(z)/C with
singular locus in S. For every point p € P! we choose a local parameter ¢,. The

induced connection on ]\/Zp = C/'(;)I)@M has the form V : ]\/Zp — C/'(;)pdtp®l\7p.
For p € S, there exists a basis eg,...,e, of ]\//.Tp over C/'(-z\)p with V(e;) = 0 for
all j. From this it follows that A, := Ope; + --- + Ope,, is the unique lattice
such that V : A, = Opdt, ® Ay,. For p € S there is a basis e, ..., ey, of M, over
C/’(?)p such that the vector space V.= Cey @ --- @ Ce, satisfies V(V') C % V.
Then A, := 6,, ®V C ]\//.Tp is a lattice satisfying V(A,) C % ® Ap,. We observe

that there are many lattices in ]\//.Tp having the same property. We want now to
extend Lemma 6.16 and Lemma 6.17 to the case of connections.

Lemma 6.18 1. Let (M,V) be a regular singular connection for C(z)/C with
singular locus in S. For every s € S we choose a local parameter ts. For every
s € S let As C M be a lattice which satisfies V(As) C Cits ® As. Then there
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is a unique regular singular connection (M, V) on P with singular locus in S
such that:

(a) For every open V C P, one has M(V) C M.
(b) The generic fibre of (M, V) is (M, V).
(¢) My := 05 ® My coincides with As for all s € S.

2. Let (M,V) be any connection with singular locus in S and generic fibre
isomorphic to (M,V). After identification of the generic fibre of M with M,
the /\//\ls are lattices Ay for ]\//.75 satisfying V(Ag) C dtts ®As. Thus (M, V) is the
unique connection of part 1. ’

Proof. We start with a basis ey, . . ., e, for the C(z)-vector space M and choose
anon empty open U C P!\ {oo} such that V(e;) € dz@0(U)e; +- -+ O(U)ey.
For a point p € U and p ¢ S we define the lattice A, to be the unique lattice
with V(A,) C di, ® A, (where t, is again a local parameter). Lemma 6.16
produces a unique M with these data. The verification that the obvious V on
M has the property V : M — Q(S) ® M can be done locally for every point p.
In fact, it suffices to prove that V maps ]\//.71, into dt, ® ]\//.Tp for p € S and into
Uiﬁ ® ]\/Zp for p € S. The data which define M satisfy these properties. Part 2.
of the lemma is an obvious consequence of part 1. O

Lemma 6.19 We will use the notations of Lemma 6.18 and Lemma 6.17.

Choose an s € S. The map V : Ay — ”it ® A; induces a C-linear map

0s : As/tsAs — dtt ® Ag/tsAs = Ag[tsAs, which does not depend on the choice

of ts. Let v € Ag/tsAs be an eigenvector for ds. Define Ay and M as in
Lemma 6.17. Then:

(a) V maps A, into Uit ® As,.

(b) The connection on M extends uniquely to M.

(c) Let Ay have an O,-basis €1,---,en such that V(e;) = Uit ® > a;je; with

a;; € tfés for i # j. Suppose that the above v is equal to the image of ey in
As/tsAs. Then A, has the Os-basis fi, fo, ..oy fn with fr =t ey and f; = e; for
1 # k. Define the matriz (b; ;) by V(f;) = dt—t: Q@Y bijfj. Then by =apy —1
and by = ayy for | # k. Further b;; € tN 10, fori # j.

Proof. (a) Choose a representative o € A; of v. Then V(?) € % ® (ab+tsAs)
for some a € C. Thus V(t;!) € Ui—t: ® (—t;'9 + at;'9 + Ag). This shows that
Ay = 6st;117 + A, has the property V(A,) C ”it ® A,. (b) follows from (a) and
Lemma 6.18. A straighforward calculation shows (c). O

Lemma 6.20 Let (N, V) be a regular singular connection for C'((z))/C and let
N > 0 be an integer. There exists an C[[z]]-lattice A with basis ey, ..., e, such
that V(e;) = 2 @ Y a; je; with all a;; € C[[2]] and a;j € 2NC[[z]] for i # j.
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Proof. Write § for the map VZ% : N = N. According to the formal classi-
fication of regular singular differential equations it follows that N has a basis
fi, ..., fn such that §(f;) = > ¢; ; f; for a matrix (¢; ;) with coefficients in C. If
this matrix happens to be diagonizable, then one can choose a basis ey, ..., e,
such that V(e;) = d—zz ® c;e; with all ¢; € C. In the general case the Jordan
normal form has one or several block’s of dimension > 1. It suffices to consider
the case of one Jordan block, i.e., §(f1) = c¢f1, 0(f2) = cfe + f1,...,0(fn) =

cfn 4 fn_1. One defines e; = fi, es =tV fo, es = t*N f5,.... One calculates
that d(e1) = ce1, d(es) = (c+ N)ex + tNey, 6(e3) = (¢ +2N)es + tNes,. ...
Thus the basis ey, ..., e, has the required properties. O

Proposition 6.21 Let (M, V) be an irreducible regular singular connection on
P! with singular locus in S. Let a; > as > --- > a, denote the type of M.
Then aj—1 — aj < (=2 + #S) for all j > 1. In particular, the defect of M is
<) (224 #S).

Proof. M is written as a direct sum of the line bundles O(a;) & -+ ® O(ay)-
Suppose that a;_1 > a; and put F = O(a1) @ --- ® O(a;j—1). Then F is one of
the canonical subbundles of M. One considers the morphism

L:FCM3QS)oM—S)® M/F

The morphism L is non zero since (M, V) is irreducible. Further L is an O-linear
map and can therefore be considered as a nonzero global section of the vector
bundle F* ® Q(S) ® M/F. This vector bundle has a direct sum decomposition
isomorphic to 37, ;5 ; O(=ax) ® O(=2 + #5) ® O(ay). Since L # 0, we must
have that some —ay —2+#S+aq; > 0. This is equivalent to aj_1 —a; < —2+#S.
O

Theorem 6.22 Let (M,V) be an irreducible regular singular connection over

C(z) with singular locus contained in S. There exists a reqular singular connec-
tion (M, V) on P, such that:

(a) The generic fibre of (M, V) is (M, V).
(b) The singular locus of (M, V) is contained in S.
(¢) The vector bundle M is free.

Proof. Suppose that we have found an (M, V) which has defect 0 and satisfies
(a) and (b). The type of M is then a3 = --- = a,. Then M(—ay[s]) (for any
s € S) is free and still satisfies (a) and (b).

Let N be an integer > @(—2 + #5). We start with a regular singular
connection (M, V) with singular locus in S such that:

(i) Tts generic fibre is (M, V).
(ii) For some s € S the Os-module M has a basis ey, ..., e, such
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that V(e;) = % ® Y a;je; with all a;; € 65 and a;; € t{f@s for
i # .

The existence follows from Lemma 6.20 and Lemma 6.18. We note that Lemma 6.21
implies that N will be greater than the defect of (M, V). In the next steps we
modify M. Suppose that M has a defect > 0, then the canonical filtration
F' C F? C ... of M has at least two terms. Let i be defined by F'~' # M
and F* = M. The images of e,...,e, in V := M,/t; M, form a basis of
eigenvectors for the map J; (see Lemma 6.19 for the notation). Suppose that
the image of e;, does not lie in F*~!(V). We apply Lemma 6.19 and find a new
regular singular connection M (1) which has, according to Lemma 6.17, a stricly

—

smaller defect. For M(1), the matrix of §, with respect to the fi,..., f, has
again property (ii), but now with N replaced by N — 1. Thus we can repeat
this step to produce connections M (2) et cetera, until the defect of some M (%)
is 0. O

Remarks 6.23 1. The proof of Theorem 6.22 fails for reducible regular
singular connections (M, V) over C(z)/C, since there is no bound for the defect
of the corresponding vector bundles M. This prevents us from making an a
priori choice of the number N used in the proof.

2. The proof of Theorem 6.22 works also under the assumption that for singular

—

point the differential module C(z), ® M is “semi-simple”. By this we mean that

there is a basis ey, ..., e, of C(z), ® M over C(z), such that V(e;) = ”its ® a;e;
for certain elements a; € O,. In this case, condition (i) in the proof holds for
any N > 1 and in particular for any N greater than the defect D of the vector

bundle. The proof then proceeds to produce connections of decreasing defect

—

and halts after D steps. For the case C' = C, the connection C(z),® M is semi-
simple if and only if the local monodromy map at the point s is semi-simple.
This gives a modern proof of the result of Plemelj [166].

3. Let the regular singular connection (M, V) with singularities in S be given.
Take any point p ¢ S and consider S" = S U {p}. Since the local monodromy
at p is trivial, one can follow the above remark 2. and conclude that there is
a regular singular connection (M, V) with singular locus in S’ such that M is
free.

4. The Riemann-Hilbert problem has a strong solution for a connection of
dimension two, as noted by Dekkers [61]. Indeed, we have only to consider a
reducible regular singular connection (M, V). After replacing M by the tensor
product N ® M, where N is a 1-dimensional regular singular connection with
singular locus in S, we may suppose that M contains a vector e; # 0 with
V(e1) = 0. A second vector es can be chosen such that V(ez) = wa®es+ws®eq,
where wy € H°(PY,Q(S)) and with ws some meromorphic differential form.
It suffices to find an h € C(z) such that fo = ey + hey satisfies V(fz) =
Wy @ fo + @3 ® ey with @3 € HO(P, Q(8S)).
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One calculates &3 = —hwsy + dh + ws. For each point p € P! we are given that
the connection is regular singular (or regular) and that implies the existence of

— ——

an hy € C(z), such that the corresponding @3 lies in (2(S),,. One may replace
this hp by its “principle part [hp],” at the point p. Take now h € C(z) which
has for each point p the principle part [h,],. Then for this b the expression @3
lies in H°(P, Q(S)).

6.6 Counting Fuchsian Equations

One might hope that an even stronger result holds, namely that an irreducible
regular singular connection M over C(z) with singular locus in S can be rep-
resented by a scalar Fuchsian equation with singular locus in S. By counting
dimensions of moduli spaces we will show that, in general, any monic scalar
“equation” L € C(z)[0] representing M, has singularities outside S. Those new
singular points for L are called apparent.

Definition 6.24 An apparent singularity p for any L = 0"+a;0" '+ - -+a, €
C(z)[0], is a pole of some a; and such that L has n independent solutions in

C((z = p).

Exercise 6.25 1. Show that, at an apparent singularity of L, there must be n
distinct local exponents. Hint: To any basis fi, ..., f, of the solution space of L
at p, with ord, f; < ord,fiy1 associate the n-tuple (ord,fi,...,ord,f,). Show
that there are only a finite number of n-tuples that can arrise in this way and
that a maximal one (in the lexicographic order) has distinct entries.

2. Let fi,...,fn € C((z — p)) denote n independent solutions of L. Show
that the Wronskian of fi,..., f,, which is an element of C((z — p))*, has order
ar+-- - a, — @ Hint: We may assume that each f; = ™1+ higher order
terms where the m; are the distinct exponents. Show that the term of lowest
order in wr(f1,... fn) is wr(z™, ... ™). O

Definition 6.26 Let p be an apparent singularity of L € C(2)[0] and let a; <
-+ < ay, be the local exponents of L at the point p. One defines the weight of
the apparent singularity to be

n(n—l)‘

weight(L,p) =aqy +--- + ay, — 5

In the sequel we will only consider apparent singularities such that 0 < a; <
-+« < ap. Under this assumption, weight(L, p) = 0 holds if and only if no a; has
a pole at p (in other words p is not a singularity at all).

Lemma 6.27 Let V be a vector space of dimension n over C' and let C((t))@V
be equipped with the trivial connection V(f @ v) = df ® v for all f € C((t))
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and v € V. Consider a cyclic vector e € C[[t]] ® V and the minimal monic
L € C((t))[0] with Le = 0. The weight of L is equal to the dimension over C of
(C[H] @ V)/(C[lt]]e + C[[t]|0e + - - - + C[[t]]0" "e). This number is also equal
to the order of the element e AOe A --- A 0" e € C[[t]] @ AmV = C[[t]].

Proof. The element e can be written as ) -, v,,t™ with all v,, € V. One
then has de = Y, < v,mt™ . Since e is a cyclic vector, its coefficients v,
generate the vector space V. Let us call m a “jump” if v,,, does not belong to
the subspace of V' generated by the vy with & < m. Let a1 < -+ < a,, denote
the jumps.

A straightforward caculation (as in Exercise 6.25.1) shows that the order of
eNden---ANO" e e Of[t]] @ A"V = C[[t]] is a1 + - - + ap, — 201 A similar
calculation shows that this number is also the dimension of the vector space

(C[t @ V)/(C[tlle+ C[[t]]oe + - - - + C[[t]]0" *e). It suffices to show that a; <
--- < ar, are the local exponents of L. We note that Le =3 - v, L(t™) = 0.
Take any linear map ¢ : V' — C. Then L(y) = 0 where y = Y <, ¢(v,,)t" €
C[[t]]. By varying ¢ one obtains solutions y € C[[t]] of L(y) = 0 with orders
ar < - < ap,. O

We consider now an irreducible regular singular connection M over C(z) whose
dimension is n and singular locus in S = {sq, s1,..., Sk,00}. There is a Fuchs
system 0 = diz + E?:o Zf—;j representing the connection. We denote the stan-
dard basis by e, ..., e,. Furthermore, let R := C|[z, &] with F = (2—s¢) - -+ (2 —
si). The free R-module Re; + --- + Re,, C M is invariant under the action of
0.

Lemma 6.28 Let v € M, v #0 and let L be the minimal monic operator with
Lv =0. Then L is Fuchsian if and only if v € Rey + - - - + Re,, and the elements
v,0v,...,0" v form a basis of the R-module Re; + --- + Re,,.

Proof. Suppose that v satisfies the properties of the lemma. Then 0"v is an
R-linear combination of v,0v,...,0" 'v. Thus L has only singularities in S.
Since M is regular singular it follows (as in the proof of Lemma 6.11) that L is
a Fuchsian operator.

On the other hand, suppose that L is Fuchsian. Then N := Rv+ ROv + --- +
RO™ v is a R-submodule of M, containing a basis of M over C(z) and invariant
under 9. There is only one such object (as one concludes from Lemma 6.18)
and thus N = Re; + - -- + Re,. O

Proposition 6.29 Let0 #v € Rey+---+Re, C M and L with Lv = 0 be as in
Lemma 6.28. Consider the operator A = F-9. Define the polynomial P € C|z],
which has no zeros in {so,...,sr}, by the formula v A Av A--- A A" 1y =
(z—s0)™---(z—sg)"™P-e1 A---ANepn. Then the degree of P is equal to the
sum of the weights of the apparent singularities of L (outside S ).
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Proof. The dimension of the space (Re;+- - -+ Re,,)/(Rv+ROv+- - -+ RO" 1v)
is equal to the degree of P. This dimension is the sum of the dimensions, taken
over the apparent singular points p, of

(C[[z — pller + - - + C[lz — pllen)/(C[[z — pllv + - - - + C[[z — p]]0™ tv).

Now the statement follows from Lemma 6.27. O

Proposition 6.30 We use the notations above. There is a choice for the vector
v such that for the monic operator L with Lv = 0 the sum of the weights of the
apparent singular points is < Wk +1—n.

Proof. Choose numbers dy,...,d; € {0,1,...,n—1} such that dy+---+d}, =
n — 1 and choose for each j = 0,...,k a subspace V; C Ce; + ---Ce, of
codimension d; and invariant under A;. For example, one may select dy =
n—1,d = ... =d; = 0, Vo to be spanned by an eigenvector of A4y and
Vi=...=V,=0Ce; +...+ Ce,. For v we take a non zero vector in the
intersection Vo N V4 N --- N V; and consider the polynomial Q(z) defined by
VAAUA---AA" Ly = Q(z)e A+ - Aey. The degree of this polynomial is easily
seen to be < bk We give now a local calculation at the point z = s; which
shows that the polynomial ) has a zero of order > d; at s;. Let ¢ denote a
local parameter at s;. We may replace the operator A by ¢ := t% +A;+0(1),
where O(t) denotes terms divisible by ¢. Then 6™v = AT + O(t). For m >

n —d; one has that A7'v is a linear combination of v, 4;v, ..., A;.“drlv. Thus
vAdUA - A" L is divisible by ¢4,

We conclude that @ is divisible by (2 — so)% - -- (2 — s1,)%*. We can now apply
Proposition 6.29 with a polynomial P of degree < @k +1—n. |

Example 6.31 The irreducible Fuchsian system O = d% + % + 2’4_11, where
Ao, Ay are constant 2 X 2-matrices and S = {0,1,00}.

We will make the proof of Proposition 6.30 explicit and show that there exists
a scalar Fuchsian equation for this system without apparent singularities. Let
e1,e2 denote the standard basis. Let R denote the ring C|[z, ﬁ] The free
R-module Re; + Re» is invariant under the action of 9.

We take for v # 0 a constant vector, i.e., in C'e; +C'es, which is an eigenvector for
the matrix Ag. Consider the determinant vAQv = vA (% + f%‘l’) = LuAd.
From the irreducibility of the equation it follows that v is not an eigenvector for
Aj. Thus the determinant has the form “7e; A ez with ¢ € C* and v, 9v form

a basis for Re; + Res. This proves the claim. O

We will count “moduli”, i.e., the number of parameters in certain families of
differential equations. We start by considering the family of Fuchsian operators
L of degree n with regular singularities in the set S = {so,..., sk, 00}. Let A
denote the operator (z —sq) -+ (z — s;) <. Then L can be rewritten as a monic
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operator in A, namely L = A"+ C; A" 1 4+ .-+ C,,_1 A+ C,,. The coefficients
are polynomials with degC; < j -k (see Lemma 6.11). This family has clearly
Wk + n parameters.

Our next goal is to count the number of parameters of the family F (of
the isomorphism classes) of the “generic” regular singular connections M over
C(z) of dimension n with singular locus in S = {so, ..., sk, 00}. Of course the
terms “family, generic, parameters” are somewhat vague. The term “generic”
should at least imply that M is irreducible and thus can be represented by
a Fuchs system 0 + > Z’:‘—’SJ The matrices Ay, ..., Ar with coefficients in C
are chosen generically. In particular, for every point s € S there is a basis

el,...,ep of J/M\s = C/'(?)S ® M such that the action of s = V,; 4 takes the

dts
form dse; = Aj(s)e; and Ai(s) — Aj(s) € Z for ¢ # j. This property implies
that for each point s € S there are only countably many lattices possible which
give rise to a vector bundle with a connection (see Lemma 6.18). Further the
lattices can be chosen such that the corresponding vector bundle with connec-
tion is free (see Remarks 6.23). Thus we may as well count the number of
parameters of generic Fuchs systems of dimension n and with singular locus in
S. Let V be a vector space over C of dimension n. Then we have to choose
k + 1 linear maps A; : V. — V, up to simultaneous conjugation with elements
of GL(V'). This leads to the formula kn?+1 for the number of parameters for F.

We can now draw the conclusion.

Corollary 6.32 A general Fuchsian system of rank n with k+2 singular points
cannot be represented by a scalar Fuchs equation if n?k +1 > @k +n.
In other words, the only cases for which scalar Fuchsian equations (without
apparent singularities) exist are given by kn < 2.

Remarks 6.33 Counting moduli and the number of apparent singularities.

1. Now we want to count the number of moduli for monic scalar operators L
of degree n with k + 2 regular singularities, i.e., S, and [ apparent singular
points aq, . ..,a; of weight 1 for which we do not fix the position. Let A de-
note the operator (z — s9) -+ (z — s)(z — a1) -+ (z — a;) & and represent L as
L=A"+CiA" 1 + ...+ C, 1A + C,, with the C;’s polynomials of degrees
< j(k +1). At each of the apparent singular points we fix the exponents to
be 0,1,...,n — 2,n. This produces | equations. The condition that there are
no logarithmic terms at any of the apparent singular point is given by @l
equations (see [167], Ch. 8 §18). Assuming that the equations are independent
and that they define a non empty algebraic variety, one finds that this algebraic
variety has dimension @k +n + 1. We note that it seems difficult to verify

these assumption and we have not done this in general.

2. Assuming that the algebraic variety in 1. has dimension M’f +n+1, we
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will show that the bound @k + 1 —n of Proposition 6.30 is sharp for a gen-

eral regular singular connection M of dimension n over C'(z) with singular locus
S ={so,...,Sk,o0}. Indeed, let A be the sharp bound. Take ! = A in (a) above

and one finds the number of moduli @k +n + A. This must be equal to

n

n?k+1, the number of moduli for the family F above. Thus A = @k—k 1—-n.

3. Now assume that the bound @k + 1 — n of Proposition 6.30 is sharp.

Then, as in 2., a comparison of dimensions of moduli spaces yields that the
formula in 3. for the number of moduli is correct.

4. The counting of parameters that we have done, if correct, clarifies an obser-
vation made by N. Katz in the introduction of his book ([117], p. 5-7).
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Chapter 7

Exact Asymptotics

7.1 Introduction and Notations

Singularities of linear complex differential equations is a subject with a long his-
tory. New methods, often of an algebraic nature, have kept the subject young
and growing. In this chapter we treat the asymptotic theory of divergent solu-
tions and the more refined theory of multisummation of those solutions. The the-
ory of multisummation has been developed by many authors, such as W. Balser,
B.L.J. Braaksma, J. Ecalle, W.B. Jurkat, D. Lutz, M. Loday-Richaud, B. Mal-
grange, J. Martinet, J.-P. Ramis, and Y. Sibuya. Excellent bibliographies can
be found in [135] and [138]. Our aim is to give a complete proof of the multi-
summation theorem, based on what is called “the Main Asymptotic Existence
Theorem” and some sheaf cohomology. In particular, the involved analytic
theory of Laplace and Borel transforms has been avoided. However, the link
between the cohomology groups and the Laplace and Borel method is made
transparent in examples. This way of presenting the theory is close to the paper
[148].

The problem can be presented as follows. Let C({z}) denote the field of the
convergent Laurent series (in the variable z) and C((z)) the field of all formal
Laurent series. The elements of C({z}) have an interpretation as meromorphic
functions on a disk {z € C| |z| < r}, for small enough r > 0, and having at
most a pole at 0. Put § := zd%. Let A be an n X n-matrix with entries in
C({z}). The differential equation that concerns us is (6 — A)v = w, where
v, w are vectors with coordinates in either C({z}) or C((z)), and where ¢ acts
coordinatewise on vectors. The differential equation is (irregular) singular at
z = 0 if some entry of A has a pole at 0 and such that this remains the case
after any C({z})-linear change of coordinates. For such a differential equation
one encounters the following situation:

187
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There is a formal (or divergent) solution 0 of (§ — A)0 = w with w convergent,
i.e., 0 has coordinates in C((z)) and w has coordinates in C({z}).

We have written here ¢ to indicate that the solution is in general formal
and not convergent. The standard example of this situation is the expression
b =3,5on! 2", which is a solution of Euler’s equation (6§ —(z~*—1))0 = —z~ 1.
The problem is to give U a meaning. A naive way to deal with this situation is
to replace 0 by a well chosen truncation of the Laurent series involved. Our goal
is to associate with © a meromorphic function defined in a suitable domain and
having ¢ as its “asymptotic expansion”. We begin by giving a formal definition
of this notion and some refinements.

Let p be a continuous function on the open interval (a,b) with values in the
positive real numbers R, or in Rso U {+00}. An open sector S(a,b, p) is the
set of the complex numbers z # 0 satisfying arg(z) € (a,b) and |z| < p(arg(z)).
The a,b are in fact elements of the circle S! := R/27Z. The positive (counter-
clockwise) orientation of the circle determines the sector. In some situations it
is better to introduce a function * with e = z and to view a sector as a subset
of the t-plane given by the relations Re(t) € (a,b) and e 1) < p(Re(t)). We
will also have occasion to use closed sectors given by relations arg(z) € [a,b]
and 0 < |z| < ¢, with ¢ € Ryo.

Definition 7.1 A holomorphic function f on S(a,b,p) is said to have the for-
mal Laurent series Zn>n0 cn 2™ as asymptotic expansion if for every N > 0 and
every closed sector W in S(a,b, p) there exists a constant C(N,W) such that

|f(z) — Z cn2"| < C(N,W)|2|N for all z € W
no<n<N-1

One writes J(f) for the formal Laurent series ), -, cnz". Let A(S(a,b,p))
denote the set of holomorphic functions on this sector which have an asymptotic

expansion. For an open interval (a,b) on the circle S', one defines A(a,b) as
the direct limit of the A(S(a,b,p)) for all p.

In more detail, this means that the elements of A(a, b) are equivalence classes
of pairs (f,S(a,b,p)) with f € A(S(a,b,p)). The equivalence relation is given
by (f1,S(a,b,p1)) ~ (f2,S(a,b, p2)) if there is a pair (fs,S(a,b, p3)) such that
S(a,b,p3) C S(a,b,p1) N S(a,b,p2) and f3 = fi = f> holds on S(a,b,ps). For
any open U C S!, an element f of A(U) is defined by a by covering by open
intervals U = U;(a;,b;) and a set of elements f; € A(a;,b;) with the property
that the restrictions of any f; and f; to (as;,b;) N (a;,b;) coincide. One easily
verifies that this definition makes A into a sheaf on S'. Let A° denote the
subsheaf of A consisting of the elements with asymptotic expansion 0. We let
Aq, AY, ... denote the stalks of the sheaves A, A%, ... at a point d € S*.

Exercises 7.2 1. Prove that A(S') = C({z}).
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2. Show that A(S(a,b, p)) is a differential C-algebra, that is a C-algebra closed
under the operation of taking derivatives. Hint: (c.f., [148]) The proofs that
A(S(a,b,p)) is closed under multiplication and sum are straighforward. To
verify that this algebra is closed under differentiation, it suffices to show the
following: Let g be a function analytic in a sector W. If for any closed subsectors
W' C W one has that there exists a constant C' such that for all z € W', |g(2)| <
C|z|™*L, then for any closed subsectors W' C W one has that there exists a
constant C' such that for all z € W',|g'(2)| < C'|z|™. To prove this, let W' C
W' be closed sectors and let ¢ be a positive integer so that for all z € W’ the
closed ball {w | |w—z| < |z|d} lies entirely in W". The Cauchy Integral Formula
states that, for all z € W'

00 =5 | e

where 7 is the circle of radius |z|d centered at z. One then has that for all
zeW'

maxs |g|

n 1+6 n+1
|gl(2’)| S W SC”|Z| +1¥

< ! n
Er

Apply this to g = f — Y. j_, arz". Note that the asymptotic expansion of f’ is
the term-by-term derivative of the asymptotic expansion of f. a

The following result shows that every formal Laurent series is the asymptotic
expansion of some function.

Theorem 7.3 (Borel-Ritt) For every open interval (a,b) # S, the map J :
A(a,b) = C((2)) is surjective.

Proof. We will prove this for the sector S given by |arg(z)] < = and 0 <
|2] < 4o00. Let 4/z be the branch of the square root function that satisfies
|arg /z| < /2 for z € S. We first note that for any real number b, the function
B(z) = 1 — e~¥ V7 satisfies |8(z)] < \/—b‘?‘ since Re(—%) < 0foral z € S.
Furthermore §(z) has asymptotic expansion 0 on S.

Let Y a,z™ be a formal Laurent series. By subtracting a finite sum of terms
we may assume that this series has no negative terms. Let b,, be a sequence such
that the series Y a,b, R™ converges for all real R > 0. For example, we may let
bp = 0 and b, = 0 if a,, = 0 and b, = 1/n!|a,| if a, # 0. Let W be a closed
sector defined by arg(z) € [a,b] and 0 < |2| < Rin S. Let f,(2) =1 — e tn/V?
and f(2) = 3 anfn(2)2™. Since |anfn(2)2"| < |an|bn|z|?~1/?, the function f(z)
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is analytic on W. To see that f(z) € A(S), note that, for z € S
n ) n ) n—1 ) o'} )
|f(2) — Zaizl| < | Z aifi(2)z" — Z aiz'| + | Z aiBi(z)z"]
=0 =0 =0 i=n+1

o0
Crlel™ + 121" Y Jaslb R

i=1

IN

IN

Clz["

The Main Asymptotic Existence Theorem states the following:

Given is a formal solution 0 of an equation (0 — A)0 = w (with A and w con-
vergent) and a direction d € S*. Then there exists an interval (a,b) containing
d and a v € (A(a,b))” such that J(v) =0 and (0 — A)v = w.

In the next section we will present an elementary proof of the Main Asymp-
totic Existence Theorem. We will call a v, having the properties of this theo-
rem, an asymptotic lift of v. The difference of two asymptotic lifts is a solution
g € A%a,b) of (6§ — A)g = 0. In general, non trivial solutions g exists. In order
to obtain a unique asymptotic lift v on certain sectors one has to refine the
asymptotic theory by introducing Gevrey functions and Gevrey series.

Definition 7.4 Let k be a positive real number and let S be an open sector. A
function f € A(S), with asymptotic expansion J(f) = 3, -, cn2", is said to
be a Gevrey function of order k if the following holds: For every closed subsector
W of S there are constants A > 0 and ¢ > 0 such that for all N > 1 and all
z € W and |z| < ¢ one has

@ Y e < AT DY

no<n<N-—1

We note that this is stronger than saying that f has asymptotic expansion J(f)
on S, since on any closed subsector one prescribes the form of the constants
C(N,W). Further we note that one may replace in this defintion the (maybe
mysterious) term ['(1 + %) by (N!)'/k. The set of all Gevrey functions on S of
order k is denoted by A1(S). One sees, as in Exercise 7.2, that this set is in
fact an algebra over C and is invariant under differentiation. Moreover, A;
can be seen as a subsheaf of A on S!. We denote by A(l)/k(S) the subset of

A1/1(S), consisting of the functions with asymptotic expansion 0. Again A /k

can be seen as a subsheaf of A,/ on St. The following useful lemma gives an
alternative description of the sections of the sheaf A(I) k-
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Lemma 7.5 Let f be holomorphic on an open sector S. Then f belongs to
AY (S) if and only if for every closed subsector W there are positive constants
k

A, B such that |f(2)| < A exp( —B|z|™*) holds for z € W.

Proof. We will use Stirling’s formula:
L(1+s)=v2r s*"/2e7*(1 + o(s')) for s € R and s — oo.
If f belongs to A9 (S) then there is a constant C' depending on W such that,
k
for all n > 1 and z € W, one has |f(z)| < C"T(1+ 3)|2|". In other words
n
k

For a fixed |z| the right hand side has, as a function of the integer n, almost
minimal value if n is equal to the ineger part of ﬁ Substituting this value for

log |f(2)| < %(—1 +log |Cz|*¥) + (= +1/2) log% + a constant.

n one finds that log|f(z)| < —B|z| * + a constant. This implies the required
inequality.

For the other implication of the lemma, it suffices to show that for given k£ and
B there is a positive D such that

r~"exp(—Br~F)

T(L+ o) < D™ holds for all r and n > 1.
F

Using Stirling’s formula, the logarithm of the left hand side can be estimated
by
%(1 +log % —log %) - I/QIOg% — Br % + a constant.

For a fixed n and variable r the maximal value of this expression is obtained for
r=F = B71%_ Substitution of this value gives

%log B~ - 1/210g% + a constant.
This expression is bounded by a constant multiple of n. |

The notion of Gevrey function of order k does not have the properties, that
we will require, for £ < 1/2. In the sequel we suppose that k£ > 1/2. In the event
of a smaller k one may replace z by a suitable root zm in order to obtain a new
k' = mk > 1/2. We note further that the k’s that interest us are slopes of the
Newton polygon of the differential equation § — A. Those k’s are in fact rational
and, after taking a suitable root of z, one may restrict to positive integers k.

Exercise 7.6 Let f € A;/;,(S) with J(f) =3
the ¢y satisfy the inequalities

cpz™. Prove that for N > 1

n>no

N
len| < AND(1 + ?), for a suitable constant A and all N >1
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Hint: Substract the two inequalities |f(z) — S0 " ¢,2"| < ANT(1 + D)2V

n=no

and |f(2) = Yoo, cnz"| < AVFIT(L 4 )|z N+1 o

n=noqo
Exercise 7.6 leads to the notion of Gevrey series of order k.

Definition 7.7 f =} ., c,2" € C((2)) is called a Gevrey series of order k
if there is a constant A >0 such that for all n > 0 one has |c,| < A"T'(1+ %).
The set of all such series is denoted by C((z))% The subset of the power series
satisfying the above condition on the coefficients is denoted by C[[z]]%

As in the definition of Gevrey functions of order k, one can replace the
1
condition |c,| < A"T'(1 + %) with |¢,| < A"T'(n!)*.

Lemma 7.8 1. C[[z]]1 is a differential ring with a unique mazimal ideal,
namely the ideal (z).

2. C((2)) 1 is the field of fractions of C[[z]]

1
k

3. If k <1 then C[[2]]1 D C[[2]]1.

Proof. 1. The set A = C[[z]]1 is clearly closed under addition. To see that
it is closed under multiplication, let f = > a;2% and g = 3_ b;z¢ be elements of
this set and assume |ay| < AN (N)Y* and |by| < BN (ND)Y* for all N > 1. We
then have fg = 3 ¢i2' where |en| = | SN aiby—i| < SN, AIBN=i(il) /R (N —
i)'/ < (AB)N(N +1)(N)'/* < CN(N!)'/* for an appropriate C. The ring A
is closed under taking derivatives because if |ay| < AN(N!)/*, then |[Nay| <
NAN(NWYYE < CN((N — 1))Y/* for an appropriate C.

To prove the statement concerning the ideal (z), it suffices to show that any
element f = > a;z% not in the ideal (2) is invertible in Cl[z]]1. Since ag # 0
such an element is clearly invertible in C[[z]]. Let g = _ b;z* be the inverse of
f. We have that by = 1/ap and for N > 1, by = —(1/ap)(a1by—1+ ...+ anbp).
One then shows by induction that |bx| < CV(N!)'/* for an appropriate C.

2. and 3. are clear. O

In a later section we will prove the following important properties of Gevrey
functions.

L If b —a] < % the map J : A%(a,b) = C((2))
injective. (Consequently A(l)/k(a, b) #0).

1 is surjective but not

2. If |b —a| > % the map J : A%(a,b) = C((2))

surjective. (Consequently A(l)/k(a, b) = 0).

1 is injective but not

We note that the above statements are false for k& < 1/2, since A(S') =
C({z}). This is the reason to suppose k > 1/2.
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Definition 7.9 Let § € C((2)). Then g is called k-summable in the direction
d if there is an f € A%(d— S,d+ 5) with J(f) =9 and a > 7. We note that
f is unique. One says that j € C((2))"/* k-summable if there are only finitely
many directions d such that y is not k-summable in the direction d.

We can now formulate the results of the multisummation theory. A special
case is the k-summation theorem (c.f., [174], Thm 3.28, p. 80):

Suppose that the differential equation (0—A) has only one positive
slope k (and k > 1/2) and consider a solution 0 of (6—A)0 = w (with
A and w convergent). Then (each coordinate of) ¥ is k-summable.

We draw some conclusions from this statement. The first one is that the (in
general) divergent solution ¢ is not very divergent. Indeed, its coordinates lie in
C((2))1/k- Let d be a direction for which ¢ is k-summable. Then the element
v € (Ayp(d—§,d+ §))" with image J(v) = 0 € C((2))" is unique. Moreover
g := (0—A)v is a vector with coordinates again in A,/ (d—5,d+ %), with a > T
and with J(g) = w. From the injectivity of J : Ay /p(d—§,d+5) = C((2))1/#,
one concludes that ¢ = w and that v satisfies the differential equation (§—A)v =
w. Thus v is the unique asymptotic lift, produced by the k-summation theorem.
One calls v the k-sum of v in the direction d.

One possible formulation of the multisummation theorem is:

Suppose that ky < ky < -+ < k, (with ky > 1/2) are the positive
slopes of the equation (6 — A) and let © be a formal solution of the
equation (6 — A)0 = w (with w convergent). There are finitely many
“bad” directions, called the singular directions of § — A. If d is not a
singular direction, then 0 can be written as a sum U1 + U3 + -+ + 0y
where each ©; is k;-summable in the direction d and moreover (6 —
A)v; is convergent.

We draw again some conclusions. First of all o € (C((2))1/x,)". Let d be a
direction which is not singular. Then each ©; is k;-summable in the direction d
and w; := (§— A)¥; is convergent. There are unique elements v; with coordinates
in Ay p, (d— %, d+ %), with a; > £~ and image 0; under J. Then (6 — A)v; has
coordinates in Ay, (d— 5, d+ F) and its asymptotic expansion is w;, which is
convergent. Since A(l’/ki (d—5,d+ %) =0, it follows that (§ —A)v; = w;. Then
the sum v = ), v; has coordinates in A(d — %, d + %) and satisfies J(v) = 0.
Moreover (§ — A)v = w. One calls v the multisum of 0 in the direction d. Note
though that v depends on the decomposition of ¢ as a sum 0y + 09 + - - + Uy..

The multisummation theory also carries the name ezxact asymptotics because
it refines the Main Asymptotic Existence Theorem by producing a uniquely
defined asymptotic lift for all but finitely many directions. Since the multisum
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is uniquely defined, one expects an “explicit formula” for it. Indeed, the usual
way to prove the multisummation theorem is based on a sequence of Borel and
Laplace transforms and analytic continuations, which gives in a certain sense
an “explicit formula” for the multisum . We will explain, in later sections, some
details of this and of the related Stokes phenomenon.

7.2 The Main Asymptotic Existence Theorem

We recall the statement of this theorem.

Theorem 7.10 (Main Asymptotic Existence Theorem) Let o be a for-
mal solution of (6 — A)0 = w, where A is an n X n-matriz and w is a vector
of length n, both with coordinates in C({z}). Let d € S' be a direction. Then
there is an open interval (a,b) containing d and a v € (A(a,b))™ with J(v) =0
and (0 — A)v = w.

Remarks 7.11 1. Complete proofs of this theorem, originally due to Hukuhara
and Turrittin, are given in [226] and [143] and [147]. Extensions of this theorem
have been developed by J.-P. Ramis and Y. Sibuya [177].

2. Theorem 7.10 is an almost immediate consequence of the first part of
Theorem 7.12 below. Indeed, by the Borel-Ritt theorem, we can choose a v €
(Aq)™ with J(3) = 6. Then g = w — (6 — A)o € (AY)™ and, by the first part of
Theorem 7.12, one can solve the equation (§ — A)f = g with some f € (A9)".
Recall that Ag, AY, ... denote the stalks of the sheaves A, A%, ... at a point
deSh

3. In this section we will give a complete and elementary proof of Theorem
7.10, inspired by ([147], Appendice 1). First we study in detail the special case
n = 1, i.e., inhomogeneous equations of order 1. The step from inhomogeneous
equations of order 1 to “quasi-split” equations is rather straightforward. Finally,
with a small calculation concerning norms on a linear space of analytic functions,
the general case is proved.

Theorem 7.12 Let A be an n x n-matriz with entries in C({z}) and let d € S*
be a direction. The operator (§—A) acts surjectively on (A%)™ and on ((A(l)/k)d)"
for any k > 0.

It suffices to consider in the sequel the direction 0. We will first be concerned
with the equation (§ — ¢)f = g, with ¢ € 27'C[z7!] and g € A. The goal is
to find a solution f € AJ. The general solution of the equation can be written,
symbolically, as e(q)(z) [ e(—q)(t)g(t)L + ae(q)(z) where e(q) = el 1% The
problem is to find the correct value of the constant a € C. Moreover, we will
need more precise information on this solution f. For this purpose we consider
closed sectors ¥ = X(c¢,d) = {z € C| 0 < |z| < c and |arg(z)| < d} for ¢,d > 0.
Let F = F(X) denote the set of complex valued functions f on ¥, such that:
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1. f is continuous on X.
2. f is holomorphic on the interior of X.

3. For every integer N > 1, there exists a constant Cny such that |f(z)| <
Cn/|z|Y holds for all z € X.
On F one considers a sequence of norms || ||y defined by ||f||x = sup,cx |J;(f,) .
We note that every element of A9 can be represented by an element in F for
a suitable choice of ¢,d. On the other hand, any element of F determines an
element of A3. In other words, A3 is the direct limit of the spaces F(X).

Lemma 7.13 Letq = qz '+q 127"+ +qz7t € 271C[z Y], with ¢, # 0,
be given.

1. Suppose Re(q;) < 0. For small enough c,d > 0 there is a linear operator
K : F = F with F = F(X(c,d)), such that (6 — q)K is the identity on
F and K is a contraction for every || ||n with N > 2, i.e., ||K(g)||nv <
enllglln with ey <1 and all g € F.

2. Suppose Re(q)) = 0. Then statement 1. remains valid.

3. Suppose Re(q;) > 0 and let N > 0 be an integer. For small enough c¢,d > 0
there is a linear operator K : F — F such that (6 — q)K is the identity on
F and K is a contraction for || ||n-

Corollary 7.14 Let q be as in Lemma 7.13.

1. (6 — q) acts surjectively on AY.

2. (6 — q) acts surjectively on (A(l)/k)g.

Proof. 1. The existence of K in Lemma 7.13 proves that (§ — ¢) is surjective
on AJ. We note that this result remains valid if ¢ is a finite sum of terms gsz—*
with s € R>0.

2. Lemma 7.5 easily yields that (A7, )o is the union of Afe(Bz~"), taken

over all B € Rsg. It suffices to show that (§ — ¢) is surjective on each of
the spaces ASe(Bz~F). The observation e(Bz=%)~1(§ — q)e(Bz7*) = (6 — q —
kBz*), reduces the latter to the first part of this corollary. |

dt
t

The Proof of Lemma 7.13
(1) The function e(q), defined by e(q)(z) = e/ 9% is a solution of the ho-
dt

mogeneous equation (§ — g)e(q) = 0. The expression [ ¢(t)% is chosen to be
Lt 4 Ell—;llzfl“ 4+ -+ L2l For z = re’® € I, the logarithm of the

absolute value of e(q)(z) is equal to

Y —Re_(;]l) cos(lp) + Im_(lqz)

sin(l¢) )+
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e(q— Im(q—
e % cos((l — 1)¢) + % sin((I —1)¢) ) +
The coefficient of r— is positive for ¢ = 0. One can take d > 0 small enough
such that the coefficient of r~! is positive for all |¢| < d and 0 < ¢ < 1 small
enough such that the function |e(q)(se’?)| is for any fixed |¢| < d a decreasing
function of s € (0,¢]. With these preparations we define the operator K by
K(g)(z) = e(q)(2) foz e(—q)(t)g(t)%. The integral makes sense, since e(—q)(t)
tends to zero for t € ¥ and ¢ — 0. Clearly (§ —¢)Kg = g and we are left with a
computation of || K (g)||n. One can write K (g)(2) = e(q)(2) fol e(—q)(s2)g(s2) L

and by the above choices one has |e(—q)(sz)| < |e(—¢)(z)] for all s € [0, 1]. This
produces the estimate fol ||g||NsN|z|N% lgll~ | N2V, Thus K : F — F and K

is a contraction for || ||x with N > 2.

2. Let ¢ = ip with p € R, p # 0. We consider the case p < 0. The situation
p > 0 is treated in a similar way. For log |e(—q)(se!?)| one has the formula

s~ ?sin(ld)) )+
s (B (1 = 1)) + P20 in (1 - 1)9) ) 4+

-1 -1
We can now choose small enough ¢,d > 0 such that

(a) The function s — |e(—q)(se'?)| is increasing for s € [0, c].
(b) The function ¢ +— |e(—q)(se'?)| is for any any fixed s, with 0 < s < ¢, a
decreasing function of ¢ € [—d, d].

For every point z € ¥ we take a path from 0 to z = re’®°, consisting of two
pieces. The first is the line segment {sre’?|0 < s < 1} and the second one is the
circle segment {rei¢|¢0 < ¢ < d} The operator K is defined by letting K (g)(z)
be the integral e( fo )% along this path. It is clear that the
integral is well deﬁned and that (6 — q)K(g) = g. We have now to make an
estimate for ||K(g)||n. The first part of the path can be estimated by

o d
1 [ eaoregtorey ) <

i boyds 1
le(@)(2)] le(=q)(re™)] ||9||N7"N/ s — < =M llgll
0 S

The second part can be estimated by

le(a)(2)] | ( q)(re'®)g(re'®)idg| </ lgllnr™dé < 2d|z|™]lgl| -

Thus ||K(g)||n < (% +2d)||g||n and for N > 2 and d small enough we find that
K is a contraction with respect to || ||

3. First we take d small enough such that the coefficient of 7~ in the expression
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for log |e(q)(rei?)| is strictly negative for |¢| < d. Furthermore one can take
¢ > 0 small enough such that for any fixed ¢ with |¢| < d, the function r —
le(q)(re'?)| is increasing on [0, c].

The operator K is defined by letting K (g)(z) be the integral e(q)(2) [ e(—q)(t)g(t)%

along any path in ¥ from ¢ to z. It is clear that (§ — ¢)K(g) = g. For z € &
with |z| < ¢/2 and any integer M > 1, one can estimate |K(g)(z)| by

dt

@) [ -0+ ) [ Ze(—q)(t)ﬂ,

and this is bounded by |e(q)(2)e(q)(22) 7Y [|gllarc™ + |z

the limit of W(z)fz(% for |z| — 01is 0, one finds that there is some constant
Cy with ||[K(9)|lmr < Carllgllar- In particular K(g) € F. For the fixed integer
N > 1 we have to be more precise and show that for small enough ¢,d > 0 there

is an estimate ||K(g)||n < Cn||gl|n with Cny < 1 (and for all g € F).
Set f(z) = %fcz e(—q)(t)g(t) L. We then want to show that |f(z)| <

. Since

t
C(c,d)||gl|w for z € X, where C(c, d) is a constant which is < 1 for small enough

c,d > 0.

Let z = re. We split |f(2)| into two pieces. The first one is
e ret? i e re i¢
|% fzce e(—q)(t)g(t )dt| and the second is |M f;e e(—q)(t)g(t)%|.
For the estimate of the first integral we introduce the functlon E( ) | (q) (tei?)]
and the first integral is bounded by h(r)||g||x, where h(r )TN AL,
We want to show that for small enough ¢ > 0, one has h( ) S 1/2 for all T w1th
O<r<e.

For the boundary point r = ¢ one has h(c) = 0. For the other boundary
point r = 0 we will show that the limit of h(r) for r — 0 is zero. Take any
a > 1 and consider 0 < r with ar < ¢. Then h(r) = b;(;) [TTE@) N E 4
% f:r E(t)~*N 4 Since E(t) is an increasing function of ¢ we can estimate
h(r) by ghe [ 0N G 4 BOZQOT 7N 4 and thus by @7t 4 EORENIT o
The limit of 20207 for - — 0 s 0. Since @ > 1 was arbitrary, this implies
that the limit of h(r) for r — 0 is 0. The maximum value of h(r) is therefore
obtained for rog € (0,¢). The function h(r) satisfies the differential equation
rh'(r) = ("g(gf)ﬂ) — N)h(r) — 1. The expression log E(t) is equal to ¢;t—! +
et~ 4+ ... with ¢ < 0 and ¢ depending on ¢. Thus h(rg) = o ,1+___7N

< 1/3. The second

and this is, for small enough ¢, bounded by
part is bounded by ||g||nF (¢0), where

-1
—cic =N

Fldo) = ea)(ce™)] | / %)) dg).

The function F' is continous and F(0) = 0. Therefore we can take d > 0 small
enough such that F(¢) < 1/3 for all ¢ with |¢| < d. Thus the second part is
bounded by 1/3[|gl|x and |[K(g)llxv < 2/3[lglln- O
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We now recall the following definition (c.f., Definition 3.34)

Definition 7.15 A differential operator (6 — A), with A an n X n-matriz with
coefficients in C({z}) is called split if it is equivalent, by a transformation in
GL(n,C({z}) ), with a direct sum of operators of the form 6 — q + C, where
q € 27'C[z71] and C is a constant matriz. The operator (§ — A) is called
quasi-split if it becomes split after replacing z by a suitable m'™ root of z.

Corollary 7.16 Let (6 — A) be a quasi-split linear differential operator of order
n and let d € S' be a direction. Then (§ — A) acts surjectively on (A%Y)™ and on
((Atl)/k)d)” for all k > 0.

Proof. For the proof we may suppose that the operator is split and even that
it has the form § — ¢+ C where C' is a constant matrix. Let T be a fundamental
matrix for the equation dy = Cy. The equation (§ — g + C)f = ¢ can be
rewritten as (0 — ¢)T'f = T'g. The transformation T' induces a bijection on the
spaces (AY)™ and ((A? /)a)"- Thus we are reduced to proving that the operator
(6 — q) acts surjectively on A9 and (A(l)/k)d. For d = 0 this follows at once from
Corollary 7.14. a

The proof of Theorem 7.12 for the general case (and the direction 0) follows
from the next lemma.

Lemma 7.17 Let B be a n x n-matriz with entries in Ag. Suppose that S =
J(B) has entries in C[z~'] and that § — S is a quasi-split equation. Then there
exists an n x n. matriz T with coefficients in AY such that (1+T)"*(§ — B)(1 +
T)=6-S.

Indeed, consider (0 — A) and a formal transformation F € GL(n,C((2)) )
such that F~1(§ — A)F = (6 — S), where S has entries in C[z7!] and (§ — 5)
is quasi-split. The existence of F' and S is guaranteed by the classification of
differential equations over C((z)), c.f., Propostion 3.36. Let F € GL(n,Ao)
satisfy J(F) = F. Define the n x n-matrix B, with entries in Ay, by (§ — B) =
F~(§ — A)F. Since F acts as a bijection on the spaces (A9)" and ((A?)0)"™,
it suffices to consider the operator (§ — B) instead of (6 — A). By construction
J(B) = S and we can apply the above lemma. Also (1 + T') acts as a bijec-
tion on the spaces (A9)™ and ((A[l)/k)o)”. Thus Lemma 7.17 and Corollary 7.16
complete the proof of Theorem 7.12.

The Proof of Lemma 7.17

Using the arguments of the proof of Corollary 7.16, we may already suppose that
S is a diagonal matrix diag(qy, . . ., ¢,) with the diagonal entries ¢; € 2 *C[271].
We note that T itself is supposed to be a solution of the equation 6(T) — ST +
TS = B— S + (B — S)T, having entries in AJ. The differential operator
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L:Tw— 6(T)— ST + TS acting on the space of the n x n-matrices is, on the
usual standard basis for matrices, also in diagonal form with diagonal entries
qi — q; € Z_IC[Z_I].

Take a suitable closed sector ¥ = X(c¢,d) and consider the space M consist-
ing of the matrix functions z — M (z) satisfying:

(a) M(z) is continuous on ¥ and holomorphic on the interior of X.
(b) For every integer N > 1 there is a constant C'y such that |M(2)| < Cn|z|V
holds on ¥. Here |M(z)| denotes the ly-norm on matrices, given by |M(z)| :=

(1M 5(2)2)1 /2.

We note that for two matrices M;(z) and Ma(z) one has |M;(z)Ma(z)| <
|Mi(2)] |Ma2(z)]. The space M has a sequence of norms || ||n, defined by
|M||n := sup.ex |J|V£|(f,)‘. Using Lemma 7.13 and the diagonal form of L, one
finds that the operator L acts surjectively on M. Let us now fix an integer
Ny > 1. For small enough ¢,d > 0, Lemma 7.13 furthermore states there is a

linear operator K acting on M, which has the properties:

(1) LK is the identity and
(2) K is a contraction for || ||n,, i-e., [|[K(M)||n, < enpl|M||n, with en, < 1
and all M e M

Define now a sequence of elements Ty, € M by Tp = K(B — S) and T} =
K((B — S)Ty—1) for £k > 1. Since ||B — S||y < 1 for all integers N > 1,
one can deduce from (2) that Y, T, converges uniformly on ¥ to a matrix
function T which is continuous on ¥, holomorphic on the interior of ¥ and
satisfies |T'(z)| < D|z|™° for a certain constant D > 0 and all z € X. Then
L(T) = L(K(B-S)+K((B-S)Ty)+---) = (B—S)+(B—S)T. Thus we have
found a certain solution T for the equation 6(T)—ST+TS = (B—S)+(B—-95)T.
We want to show that the element T belongs to M.

The element (B — S)(1+ T) belongs to M and thus L( K((B—-S)(1+1T))) =
(B —S)(1+ T). Therefore T := T — K((B — S)(1 4+ T)) satisfies L(T) = 0
and moreover T is continuous on ¥, holomorphic at the interior of ¥ and
|T(2)] < Dnlz|No holds for z € ¥ and some constant Dy,. From the di-
agonal form of L one deduces that the kernel of L consists of the matrices
diag(e(—q1),-..,e(—qn)) - C - diag(e(q1), . -.,e(gn)) with C" a constant matrix.
The entries of T are therefore of the form ce(g; — ¢;) with ¢ € C and satisfy
inequalities < D|z|N° for some constant D and our choice of Ny > 1. Thus the
non-zero entries of T' are in AJ. Tt follows that T € M (again for ¢,d > 0 small
enough) and thus T' € M. O
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7.3 The Inhomogeneous Equation of Order One

Let ¢ € C[2~!] have degree k in the variable 2.

the inhomogeneous equation

(6 —q)f =g with g € C({z}) and f € C((2)).

In this section we consider

According to Theorem 7.10, there is for every direction d € S! an asymptotic
lift of f in A(a,b), with d € (a,b) and |b — a| “small enough”. The aim of this
section is to study the obstruction for the existence of an asymptotic lift on
large intervals (or sectors). As happens quite often, the obstruction from local
existence to global existence is measured by a some cohomology group. In the
present situation, we will show that the obstruction is the first cohomology
group of the sheaf ker(§ — ¢, A%). We refer to Appendix B for the definitions
and concepts from sheaf theory that we shall need.

Let U be a non-empty open subset of S! (including the case U = S!). There is a
covering of U by “small” intervals S;, such that there exists for i an f; € A(S;)
with asymptotic expansion f and (6 — ¢)f; = g. The difference f; — f; belongs
to ker(d — ¢,.A%)(S; NS;). Hence the collection {g;;} := {fi — f;} is a 1-cocycle
for the sheaf ker(d — ¢, A°), since g;,j + gj,x + gk,i = 0 holds on the intersection
S; N'S; N Sk. The image of this 1-cocycle in H' (U, ker(§ — ¢, A°)) is easily
seen to depend only on f . Moreover, this image is zero if and only if f has
an asymptotic lift on U. The practical point of this formalism is that we can
actually calculate the cohomology group H'(U, ker(§ — ¢, A%)), say for U = S*
or U an open interval.

Write ¢ = qo + 1271 + -+ + qez—* with g # 0 and let e(q) := exp( qolog z +
Lzt 4 L 27k) be a “symbolic solution” of (§ — g)e(g) = 0. On a sector
S # S! one can give e(q) a meaning by choosing the function log z. For k = 0
one observes that ker(§ — ¢, A°) is zero. This implies that any formal solution
fof 0—q)f =g e C({z}) has an asymptotic lift in A(S') = C({z}). In other

words f is in fact a convergent Laurent series.

From now on we will suppose that £ > 0. We will introduce some terminology.

Definition 7.18 Let ¢ = qo + 1z ' +--- + qez~" with q¢ #0 and k > 0 and
let e(q) := exp( qolog z+ Lz7t 4 + L27F) 4 Stokes direction d € S! for
q is a direction such that Re(£-27%) = 0 for z = |z|e’?. A Stokes pair is a pair
{d1,d>} of Stokes directions such that |dy —d\| = T, i.e., di,dy are consecutive
Stokes directions. The Stokes pair {dy,ds>} is called positive if Re(z—’“kz_k) >0
for z with arg(z) € (di,ds). The Stokes pair is called negative if Re(4:27%) < 0
for z with arg(z) € (di,ds).

This terminology reflects the behaviour of |e(q)(z)| for small |z|. For d € (d;,d>),
where {d;,d>} is a positive Stokes pair, the function 7 +— |e(q)(re?)| explodes
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for r € Rsg, r = 0. If {dy,d>} is a negative Stokes pair, then the function
r — |e(q)(re'?)| tends rapidly to zero for r € Rsg, 7 — 0. The asymptotic
behaviour of |e(q)(re'?)| changes at the Stokes directions. The above notions
can be extended to a ¢, which is a finite sum of terms c;2~%, with s € R>q and

¢ € C. However in that case it is better to consider the directions d as elements
of R.

The sheaf ker(§ — ¢, A%) is a sheaf of vector spaces over C. For any interval
(a,b) where {a,b} is a negative Stokes pair, the restriction of ker(§ — ¢, A%) to
(a,b) is the constant sheaf with stalk C. For a direction d which does not lie in
such an interval the stalk of ker(§ — ¢, A%) is zero. One can see ker(d — ¢, A°)
as a subsheaf of ker(§ — ¢, ©) where O denotes the sheaf on S!' (of germs) of
holomorphic functions. If gg € Z then ker(d — g, O) is isomorphic to the constant
sheaf C on S!. If ¢y ¢ Z, then the restriction of ker(6 — ¢, O) to any proper
open subset of S! is isomorphic to the constant sheaf. Thus ker(§ — ¢, .A%) can
always be identified with the subsheaf F of the constant sheaf C determined by
its stalks Fy: equal to C if d lies in an open interval (a, b) with {a, b} a negative
Stokes pair, and 0 otherwise.

More generally, consider a proper open subset O C S! with complement F' and
let i : F — S' denote the inclusion. Let V be an abelian group (in our case this
will always be a finite dimensional vector space over C). Let V also denote the
constant sheaf on S with stalk V. Then there is a natural surjective morphism
of abelian sheaves V' — i,i*V. The stalk (i.i*V)4 is zero for d € O and for
d ¢ O, the natural map (V)q — (i+i*V)q is a bijection. Write Vp := i,i*V and
define the sheaf V to be the kernel of V' — Vi = i,i*V. Then one can identify
ker(6 — q, A%) with Cp, where O is the union of the k open intervals (a;,b;)
such that {a;, b;} are all the negative Stokes pairs. Clearly Co is the direct sum
of the sheaves C(,, 5,)- We are therefore interested in calculating H'(U, Cy),
with I an open interval and U either an open interval or S'. Consider the exact
sequence of sheaves
0—-V;—»V—>Vp—0onS"

For the sheaf Vi one knows that H(U,Vy) = H (U N F,V) for all i > 0. Thus
H°(U,VFr) = V¢, where e is the number of connected components of U N F,
and H{(U,Vg) = 0 for all i > 1 (c.f., the comments following Theorem B.27).
Consider any open subset U C S!. The long exact sequence of cohomology
reads

0— H°(U,V;) = H°(U,V) = H(U,Vp) = H' (U, V7) = H' (U,V) = 0

Lemma 7.19 Let the notation be as above with V = C. If U = S' and for
U = (a,b) and the closure of I contained in U, then H'(U,Cy) = C. In all
other cases H'(U,Cr) = 0.

Proof. Let U = S!. We have that H°(S*,Cy) =0, H°(S!,C) = H°(S!,Cp) =
C (by the remarks preceeding the lemma) and H!(S!,C) = C (by Example
B.22). Therefore the long exact sequence implies that H'(S!,C;) = C.
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Let U = (a,b) and assume that the closure of I is contained in U. We then
have that U N F has two components so H*(U,Cp) = H/(UNF,C) 2 C & C.
Furthermore, H°(U, C;) = 0 and H°(U, C) = C. Therefore H' (U,C;) = C.

The remaining cases are treated similarly. |
The following lemma easily follows from the preceeding lemma.

Lemma 7.20 Let U C S' be either an open interval (a,b) or S'. Then
HY(U,ker(d — q,A%)) = 0 if and only if U does not contain a negative Stokes
pair. More generally, the dimension of H*(U,ker(6 — q,A%)) is equal to the
number of negative Stokes pairs contained in U. In particular, the dimension of
H (S, ker(§ — ¢, A%)) is k.

This lemma can be easily generalized to characterize H' (U, ker(§ — B, .A°))
where 6 — B is a quasi-split equation. We shall only need a weak form of this
which we state below. We refer to Definition 3.28 for the definition of the
eigenvalue of a differential equation.

Corollary 7.21 Let U C S! be an open interval (a,b) and § — B a quasi-split
differential operator. Then H'(U,ker(d — B, A%)) = 0 if and only if U does not
contain a negative Stokes pair of some eigenvalue of § — B.

Proof. We may suppose that the operator is split and it is the sum of operators
of the form ¢ — ¢ + C where C' is a constant matrix. Therefore it is enough to
prove this result when the operator is of this form. Let T be a fundamental
matrix for the equation dy = Cy. The map y — Ty gives an isomorphism
of sheaves ker(§ — ¢,.A°) and ker(d — ¢ + C, A°). The result now follows from
Lemma 7.20. O

The map § — ¢ is bijective on C((z)). This follows easily from
(6 —q)2" = —qrz"* + - -+ for every integer n. Thus the obstruction for lifting
the unique formal solution f of (§ — q)f = g depends only on g € C({z}).
This produces the C-linear map 3 : C({z}) — H'(S! ker(§ — ¢, A%)), which
associates to every g € C({z}) the obstruction 3(g), for lifting f to an element
of A(S!). From A(S!) = C({z}) it follows that the kernel of 3 is the image of
0 —qon C({z}).

Corollary 7.22 After a transformation (6 —§) = z="(d—q)z", we may suppose
that 0 < Re(qo) < 1. The elements {B3(z%)] i = 0,...,k — 1} form a basis of
HY(SY ker(§ — q,A%). In particular, B is surjective and one has an ezact
sequence

0= C({z}) 5" C({z}) B H' (S, ker(5 — ¢,.A%)) — 0.



7.3. THE INHOMOGENEOUS EQUATION OF ORDER ONE 203

Proof. According to Lemma 7.20 it suffices to show that the elements are
independent. In other words, we have to show that the existence of ay € C({z})
with (6—q)y = ap+ayz+- - -+ay_12°~! implies that all a; = 0. The equation has
only two singular points, namely 0 and co. Thus y has an analytic continuation
to all of C with at most a pole at 0. The singularity at oo is regular singular.
Thus y has bounded growth at oo, i.e., |y(2)| < C|z|" for |z| >> 0 and with
certain constants C, N and so y is in fact a rational function with at most poles
at 0 and co. Then y € C[z,27!]. Suppose that y # 0, then one can write
y = Y2, yiz't with ng < ny and yn, # 0 # yn,. The expression (J — q)y €
Clz, 27" is seen to be —qrynez" " + (11 — G0)Yn, 2™ + 20, _k<icn, *7'- This
cannot be a polynomial in z of degree < k — 1. This proves the first part of the
corollary. The rest is an easy consequence. O

We would like to show that the solution f of (6 — q)f = g is k-summable.
The next lemma gives an elementary proof of f € C((2))1 /-

Lemma 7.23 The formal solution f of (6 — q)f = g lies in C((2))1/x. More
generally, 6 — q is bijective on C((2))1/x-

Proof. We give here an elementary proof depending on simple estimates.
Write f = > cpz™ and g = ), gn2". For the coefficients of f one finds a
recurrence relation

qk—1 ¢ do—n 1

Cpntk—1 — " — —Cpt1 — Cn — —Gn-
qk qk qk

Cn+k = —

There exists a constant B > 0 with |g,| < B™ for n > 0. We must find an
estimate of the form |c,| < A"T'(1 4 %) for all n > 0 and some A > 0. We try

to prove by induction that % < 1, for a suitable A > 0 and all n > 0.
k
[en 4kl

The induction step should follow from the bound for AT I given by

the recurrence relation. This bound is the expression

+[(1 4 nk=l) «[(1+ H2)

a1 Lok Tt o o neky

AD(1 + 2k) Ak=1T(1 4 2R
(x+n)0(1+ %) *B™

AFD(1 4 2k 0 AntkD(1 4 by’

where the *’s denote fixed constants. From I'(1 4+ ZEE) = 2EED(1 + 2) one
easily deduces that a positive A can be found such that this expression is < 1
for all n > 0. The surjectivity of § — g follows by replacing the estimate B™ for
lgn| by B"T'(1 + %). The injectivity follows from the fact that § — g is bijective
on C((2))1/% (see the discussion following Corollary 7.21). i

For a direction d such that {d — 5,d + 3¢} is not a negative Stokes pair,

Lemma, 7.20 produces an asymptotic lift in A(d— §,d + §), for some a > T, of
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the formal solution f of (6 — q)f = g. This lift is easily seen to be unique. If we
can show that this lift is in fact a section of the subsheaf A, ;,, then the proof

that f is k-summable would be complete. In the next section we will develop
the necessary theory for the sheaf A, ;.

7.4 The Sheaves A, .AO,Al/k;A(l)/k

We start by examining the sheaves A and A°.

Proposition 7.24 Consider the exact sequence of sheaves on S':
0— A" = A— C((2)) =0,

where C((2)) denotes the constant sheaf on S* with stalk C((2)).

1. For every open U # S! the cohomology group H(U, . ) is zero for the
sheaves A%, A and C((z)).

2. The natural map H'(S', A°) — H'(S', A) is the zero map. As a conse-
quence, one has that

~ ~

H'(S', A) = H'(S',C((2)) ) = C((2)),
and there is an exact sequence

0 — C({z}) = C((z)) — H'(S', A% — 0.

Proof. We note that the circle has topological dimension one and for any
abelian sheaf F' and any open U one has H (U, F) = 0 for i > 2 (see Theo-
rem B.28). We want to show that for any open U C S! (including the case
U =S'), the map H'(U, A°) — H'(U, A) is the zero map. Assume that this is
true and consider the long exact sequence of cohomology:

0— H°(U, A%) - H°(U, A) —» H°(U,C((2))) = H' (U, A°)
— H' (U, A) = H'(U,C((2))) = 0

If U # S, then the Borel-Ritt Theorem implies that the map H°(U, A) —
H°(U,C((2))) is surjective so the map H°(U,C((z))) — H' (U, A°) is the zero
map. Combining this with the fact that H'(U, A°) — H(U, A) is the zero
map, we have that H*(U, A°) = 0 and H'(U, A) = H'(U,C((z))) = 0. Since
each component of U is contractible (and so simply connected), Theorem B.27
implies that H'(U,C((z))) = 0 and 1. follows. If U = S! then H°(U, A) =
C((z)) and H°(U,C((2))) = H'(U,C((2))) = C((2)) (c.f., Exercise B.22). Since
HY(U, A% — HY(U, A) is the zero map, 2. follows from the long exact sequence
as well.
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/K

We start by considering the most simple covering: U = (a1,b1) U (az, bs)
with (a1,b1) N (az,b2) = (az,b), i.e., inequalities a1 < as < by < by for the
directions on S and U # S'. A l-cocycle for A° and this covering is given
by a single element f € A°(as,b;). Take a small positive e such that (a;,b; —

€) U (az + €,b2) = U and consider the integral 2#“ fv %dc, where the path v
consists of three pieces 7; for i = 1,2,3. The path ~; is the line segment from 0
to rei(@2¢/2) ~, is the circle segment from rei(@2¢/2) to rei(b1=¢/2) and ~4 is the
line segment from re’(®»=¢/2) to 0. The r > 0 is adapted to the size of the sector
where f lives. We conclude that for z with |z| < r and arg(z) € (a2 + €,b1 —¢€)
this integral is equal to f(z). The path is divided into two pieces 74, which is
~1 and the first half of 75 and the remaing part v_. The integral over the two
pieces will be called fi(z) and —f_(z). We will show that fi € A(a2 + €,b2)
and f_ € A(a1,b; —€). From this it follows that our 1-cocycle for A° has image

0in HY(U, A).

By symmetry, it suffices to prove the statement for fi. This function lives

in fact on the open sector V := S'\ {as + ¢/2} (and say |z| < r). The func-

tion % can be developed as power series in z, namely anof(g“)g“_l_"z".

We consider the formal power series F' = ano(ﬁ f7+ F(O¢TmdC) 2™ and

want to prove that f, has asymptotic expansion F' on the open sector V.

_ 1=/ON | /O
From 1—{5/( - 1-z/¢ + 1—2z/¢

N
Y 0<n<N o f7+ f(OC1"d¢ 2™ is the integral 5 e %dﬁ. For any
closed subsector W of V one has inf,cw |1 —2/(]| is strictly positive. By assump-
tion, there are constants Cny1 such that |f(¢)] < Cni1|¢|VF? for all N > 0.
One concludes that the last integral is bounded by Dx/|z|" for some constant

Dy.

The next case that we consider is a covering (ay,b;), (az,bs) of St. The
intersection (a1,b1) N (a2, bs) is supposed to have two components (a2, b;) and
(a1,b2). Let the 1-cocycle be given by f € A%(as,b;) and 0 € A%(ay, bs). Define
f+ € A(az + €,by) and f_ € A(a1,by — €) as in the first case. Then fy — f_
coincides with f on (as + €,b; — €) and is zero on (ay, bs).

one concludes that the difference of f; and

The following case is a “finite special covering” of U, which is either an
open interval or S'. We will define this by giving a sequence of directions
dy <dy <---<d,in U and intervals (d; — €,d;+1 + €) with small ¢ > 0. In
the case U = S!, the interval (d,, — €,d; + €) is also present. A 1-cocycle £ is
given by a sequence of functions f; € A%(d; — €,d; + €). One writes £ as a sum
of 1-cocycles ¢ which have only one non zero f;. It suffices to show that such
a ( is a trivial 1-cocycle for the sheaf A. This follows from the first two cases,
since one can see ( also a a 1-cocycle for a covering of U by two open intervals.

Every covering of S! and every finite covering of an open interval U can be
refined to a finite special covering. We are left with studying infinite coverings
of an open interval U =: (a,b). Any infinite covering can be refined to what we
will call a “special infinite covering” of U. The latter is defined by a sequence



206 CHAPTER 7. EXACT ASYMPTOTICS

d,, n € Z of points in U, such that d; < d;; for all i. Moreover U[d;,d;+1] = U.
The covering of U by the closed intervals is replaced by a covering with open
intervals (d; ,d;, ), where d; < d; < dj and |d] — d; | very small. A cocycle
¢ is again given by elements f; € A°(d; ,d]). Using the argument above, one
can write f; = g; — h; with g; and h; sections of the sheaf A above, say, the
intervals (a,(d; + d;7)/2) and ((d; + d;)/2,b). Define, first formally, F; :=
>_j>i9; — 2_j<; hj as function on the interval ((d; + d;)/2, (di .y + diy1)/2).
Then clearly F; — F;_; = g; — h; = f; on ((d; +d;)/2,(d} + d;)/2). There is
still one thing to prove, namely that the infinite sums appearing in F; converge
to a section of A on the given interval. This can be done using estimates on
the integrals defining the g; and h; given above. We will skip the proof of this
statement. O

Remarks 7.25 1. The calculation of the cohomology of ker(d — ¢, A°) and
ker(6 — A, A%) was initiated by Deligne and Malgrange and further developed
by Loday-Richaud, Malgrange, Ramis and Sibuya (c.f. [8], [138], [148]).

2. The first statement of Proposition 7.24.2 is sometimes referred to as the
Cauchy-Heine Theorem (c.f. [148], Theorem 1.3.2.1.i and ii)

Lemma 7.26 (The Borel-Ritt Theorem for C((2)).,;) Suppose that k >
1/2. Then the map J : Ay /i(a,b) — C((2))1x is surjective if |b—a| < T.

Proof. After replacing z by e*?z!/* for a suitable d we have to prove that the
map J : Ay (—m,m) = C((z));1 is surjective. It suffices to show that an element
f= Y sy Canl2™ with |c,| < (2r)™" for some positive r is in the image of J.
One could refine Proposition 7.3 to prove this. A more systematic procedure
is the following. For any half line v, of the form {se’?|s > 0} and |d| < 7 one
has n! = fv ("exp(—()d(. Thus for z # 0 and arg(z) € (—m, ) one has nlz" =

fooo C”emp(—%)d(%), where the path of integration is the positive real line. This
integral is written as a sum of two parts F(n,r)(z) = for Cexp(—£)d($) and

R(n,r)(z) = [ C”emp(—%)d(%). The claim is that F(z) := > <, cpF(n,r)(2)
converges locally uniformly on {z € C| z # 0}, belongs to A;(—m,7) and

satisfies J(F) = f.
The integral [J (3,51 cnC™exp(—$)d($), taken over the closed interval

[0,7] C R, exists for all z # 0 since an>1 ¢n (™ has radius of convergence
2r. Interchanging ) and [ proves the first statement on F. To prove the
other two statements we have to give for every closed subsector of {z € C| 0 <
|z| and arg(z) € (—m, )} an estimate of the form E := |F(z)—zg:_11 ennlz™| <
ANN!|z|N for some positive A4, all N > 1 and all z in the closed sector.

Now E < Eg:_ll len]|R(n,r)(2)] + |f0T(ZnZN ch”)ewp(—%)d(%L The last

term of this expression can be estimated by r—~ for % |e:rp(—§) | %, because one

has the inequality |}, sy ¢nC?| < r=N¢N for ¢ < 7. Thus the last term can
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be estimated by r~ [ CN|e:rp(—§)|%. The next estimate is |R(n,r)(z)]
froo C"|ea:p(—%)|d|—§|. Further ¢ < r"~N¢N for r < (. Thus |R(n,r)(2)|
A CN|ea:p(—%)|%. Now r & + Zg;ll lea|r™™N < 2r N and we can

estimate F by 2r—N [ CN|ea:p(—%)|%. For z = |z|e? one has |exp(—<)| =

<
<

e:rp(—% cosf). The integral is easily computed to be %N!. This gives
the required estimate for E. O

For k > 1/2, the function exp(—z~*) belongs to A?/k(—%, 37). The next
lemma states that this is an extremal situation. For sectors with larger “open-
ing” the sheaf A9 Jk has only the zero section. This important fact, Watson’s

Lemma, provides the uniqueness for k-summation in a given direction.
Lemma 7.27 (Watson’s Lemma) A(l)/k(a,b) =0if|b—al>7%.

Proof. After replacing z by z'/¥¢i@ for a suitable d the statement reduces to
Af(—a,a) = 0 for &« > . We will prove the following slightly stronger state-
ment (c.f., Lemma 7.5):

Let S denote the open sector given by the inequalities |arg(z)| < § and 0 <

|z| < r. Suppose that f is holomorphic on S and that there are positive con-
stants A, B such that |f(2)| < A exp(—B|z|™) holds for all z € S. Then f = 0.

We start by choosing M > B and € > 0 and defining 8 by 0 < 8 < % such
that cos 3 = £ and § > 0 by (14 6)8 < Z and cos((1 +6)3) = 55. Define the
function F(z), depending on M and €, by F(2) := f(2) exp(—ez~ 170 + Mz~1).
Let S denote the closed sector given by the inequalities |arg(z)] < 8 and 0 <
|z| < r/2.

The limit of F(z) for z — 0 and z € S is 0 and thus F(z) is bounded on S.
According to the maximum principle, the maximum of |F'(z)| is assumed at the
boundary of S. For 0 < |z| < /2 and arg(z) = 3 one can bound |F(z)]| by

< A exp(—B|z| 1) exp(—e|z] 10 cos((1 + 6)B) + M|z| L cos(B)) < A.
For the boundary 0 < |z| < r/2 and arg(z) = —/f one finds the same esti-
mate. For z with |arg(z)| < 8 and |z| = /2, one finds the estimate |F'(z)| <
A exp((M — B)(r/2)~"). We conclude that for any z € S the inequality
|F(2)] < A exp((M — B)(r/2)~!) holds. Thus we find for z € S the inequality
[f(2)] < Aexp((M — B)(r/2)™") leap(=Mz )| Jexp(+ez' 7).

Since € > 0 is arbitrary, we conclude that also

[f(2)] < Aeap(=B(r/2)7") lesp(M((r/2)™" = 271))]
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holds for all z € S. For a fixed z with |arg(z)| < % and small enough |2| > 0
such that Re((r/2)~! — 2z7!) < 0, this inequality holds for all sufficiently large
M. Since |exp(M((r/2)~" — 271)| tends to 0 for M — oo, we conclude that

flz)=0. O
Proposition 7.28 1. The following sequence of sheaves on S' is exact.
0— A[l)/k = A = C((2))1x — 0
2. For every open U C S', including U = S*, the canonical map
HY(U, .Atl)/k) — HY(U, Ay ) is the zero map.

3. H' (U, Ay i) is zero for U # S' and equal to C((2));, for U = S'.

4. Hl((a,b),A(l)/k) =0 for|b—al <T.

5. For (a,b) with |b —a| > ¥, the following sequence is exact.

0= Ay/(a,b) = C((2)1x = H'((a,b), A ) = 0
6. The following sequence is exact.

0— C({z}) = C((2)1/x — H1(51>A[1)/k) -0
7. There is a canonical isomorphism C((2))1/x — HO(Sl,A/A(l)/k).

Proof. 1. follows from Lemma 7.26. The proof of part 2. of Proposition 7.24
extends to a proof of part 2. of the present proposition. One only has to verify
that the functions fi and f_ are now sections of the sheaf A, ;. Furthermore
3.,4.,5., and 6. are immediate consequences of 1., 2., the known cohomology
of the constant sheaf C((z))1/;, Lemma 7.27 and the long exact sequence of
cohomology. We identify the constant sheaf C((2))1/x, with A; 4/ A} /- Thus
there is an exact sequence of sheaves

0= C((2)jx = A/AY ), = Al Ay = 0
Taking sections above S! we find an exact sequence
0= C((2))1ye — HO(S', AJAD ) — HO(S', A As ) (7.1)
The exact sequence
0= Ay =+ A= A/A1 )y =0
induces the long exact sequence of cohomology above S!:
0= C({z}) = C({z}) = HO(S', A/ Ay ) = C((2))1x = C((2)) - -

This implies H°(S*, A/ A, ;) = 0 and so, from the sequence (7.1), we conclude
7. O

Remark 7.29 Proposition 7.28.2 is the Ramis-Sibuya Theorem (see [148], The-
orem 2.1.4.2 and Corolaries 2.1.4.3 and 2.1.4.4).
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~

7.5 The Equation (§ — q)f = g Revisited

Some of the result of Section 7.3 can be established using the methods of Section
74.

Exercise 7.30 Give an alternative proof of the surjectivity of g : C({z}) —
H (S, ker(§ — ¢, A%)) (see Corollary 7.22) by using Proposition 7.24. Hint:
An element & € H(S! ker(§ — ¢, A%)) induces an element of H!(S!, A°). By
Proposition 7.24.2, this element is zero in H'(S!, A) so for some covering {S;}
of S', there exist f; € H°(S;, A) such that f; — f; = & ;, where & ; is a
representative of £ on S; N S;. Show that the (6 — ¢) f; glue together to give an
element g € HO(S!, A) = C({z}) and that the f; are lifts of some f € C((z))
such that (§ — ¢)f = g. O

Exercise 7.31 Give an alternative proof of of the fact that (§ — q)f =g €
C({z}) implies f € C((2))1/x (see Lemma 7.23) by using the last statement of
Proposition 7.28. Hint: g maps to an element 3(g) € H*(S!, ker(d — g, A%)).

A

Observe that ker((d — q), A°) = ker(6 — ¢, A7,;). Thus f can be seen as an
element of H°(S', A/ A ;). ]

Proposition 7.32 The element f € C((z)) satisfying (0—q)f = g € C({z]}) is
k-summable. More precisely, f is k-summable in the direction d if {d—,d+5;
is not a negative Stokes pair.

Proof. We know by Lemma 7.23, or by Exercise 7.31, that f € C((2))1/k-

Take a direction d. By Proposition 7.28 there is an h € (A /;)q with J(h) = f.
Clearly (0 —q)h—g =go € (A(l’/k)d. By Theorem 7.12 there is an hg € (Atl)/k)d
with (§ — ¢q)ho = go and thus (6 — ¢)(h — hg) = g. In other words, the formal
solution f lifts for small enough sectors S to a solution in A, /k(S) of the same
equation. This yields a 1-cocycle in the sheaf ker(d — ¢, A7 ;) = ker(d — ¢, A°).
This 1-cocycle is trivial for an open interval (d — g7 —€,d + 5 + €) (for some
positive €) when {d — g, d+ 5} is not a negative Stokes pair (see Lemma 7.20).
O

Definition 7.5.1 Consider ¢ = g2 "+ qu_127 ¥+ -+ 27t € 271C[z 7]
with g # 0. A direction d will be called singular for q (or for the operator 6 —q)
if qre™ ' is a positive real number.

One immediately sees that d is a singular direction for § — ¢ if and only if {d —

35> 4+ 3} is a negative Stokes pair. Thus one can reformulate propostion 7.32

by saying that f is k-summable in the direction d if d is not a singular direction.
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7.6 The Laplace and Borel Transforms

The formal Borel transformation By, of order k is the operator C[[z]] = C[[(]]
defined by the formula

n>0 n>0

The Laplace transform Ly, 4 of order k in the direction d is defined by the formula

(Lr,af)(z /f Qexp(— )d( )k,

The path of integration is the half line through 0 with direction d. The function
f is supposed to be defined and continuous on this half line and have a suitable
behaviour at 0 and oo in order to make this integral convergent for z in some
sector at 0, that is, |f({)] < AeBlI" for positive constants A, B. We note
that we have slightly deviated from the usual formulas for the formal Borel

transformation and the Laplace transformation (although these agree with the
definitions in [10]).

A straighforward calculation shows that the operator Ly, 40 By, has the prop-
erty Ly 4o l’;’k(z”) = z" for any n > 0 and more generally L 4 © l’;’kf = f for
any f € C{z}. Suppose now that f € C[lz]]i/k- Then (Bef)(C) is by defi-
nition a convergent power series at ¢ = 0. One can try to apply Lj 4 to this
function in order to obtain an asymptotic lift of f to some sector. The fol-
lowing theorem makes this precise. We define a function, analytic in a sector
{¢ € C|0<|¢] <ocoand |arg({) —d| < €}, to have exponential growth of order
< k at oo if there are constants A, B such that |h(¢)| < A exp( B|(|*) holds for
large |¢| and |arg(¢) — d| < e.

Theorem 7.33 Let f € Cllz]]li/x and let d be a direction. Then the following
are equivalent:

1. f is k-summable in the direction d.

2. The convergent power series l’;’kf has an analytic continuation h in a full
sector {¢ € C| 0 < |¢| < oo and |arg(¢) — d| < €}. In addition, this
analytic continuation has exponential growth of order < k at oo on this
sector.

Proof. We give here a sketch of the proof and refer to ([10], Ch. 3.1) for the
missing details concerning the estimates that we will need. We may suppose
k=1and d=0. Write f = ), ,cn2". We will start by proving that 2.
implies 1. Let d be a direction with [d| < e. The integral

£(2) = (L1.ah)(2 /h eap(= (g)
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converges for z # 0 with |2| small enough and |arg(z) — d| < 5. Moreover this
integral is analytic and does not depend on the choice of d. Thus f is an analytic
function on a sector (=% — 6,5 +e€). Write h(() = EN ! %(¢"+ hn(¢). Then

f(z) = vaol cizt + (L£1,4hn)(2). One can show (but we W111 not give details)
that there exists a constant A > 0, independent of N, such that the estimate
|(L1,ahn)(2)] < ANN![z|N holds. In other words, f lies in Ay (=% — €, % +¢€)

and has asymptotic expansion f .

Suppose now that 1. holds and let f € A;(—
expansion f . Then we will consider the integral

5 — €, 5 + €) have asymptotic

h(C) = (B f)(C / F()z eap($) d= !

over the contour A, which consists of the three parts {se’(~"2" | 0<s<r}
{refd] — It <d < Tt} and {se!+" )| r > 5 > 0}.

For ¢ with 0 < |[{] < oo and |arg({)| < €/4 this integral converges and is
an analytic function of (. It is easily verified that h has exponential growth of
order < 1. The integral transform B; is called the Borel transform of order 1. It
is easily seen that for f = 2" the Borel transform B, (f) is equal to . We write
now f =N ezt + fy. Then |fa(2)] < ANN!|z|N holds for some constant
A > 0, independent of N. Then h(({) = ZN ! %P+ Bi(fn)(¢). One can prove
(but we will not give details) an estimate of the form 1B1(fn)(Q)] < AN|¢CN| for
small enough |¢|. Using this one can identify the above h for ¢ with || small
and |arg(¢)| < /4 with the function B f. In other words, B f has an analytic
continuation, in a full sector {¢ € C| 0 < |¢|] < oo and |arg({)| < €/4}, which
has exponential growth of order < 1. |

Remarks 7.34 1. In general one can define the Borel transform of order k in
the direction d in the following way. Let d be a direction and let S be a sector
of them for {z | |2| < R, |arg(z) —d| < p} where p > 5. Let f be analytic in
S and bounded at 0. We then define the Borel transform of f of order & in the
direction d to be

(B f)(C /f 2)keap( S

where X is a suitable wedge shaped path in S and w lies in the interior of this
path (see [10], Ch. 2.3 for the details). The function By f can be shown to be
analytic in the sector {z | |2| < oo, |arg(z) —d| < p — 5;}. Furhtermore,

applying B to each term of a formal power series f =Y cp2" yields B f .

2. The analytic way to prove the k-summation theorem for a solution ¢ of an
equation (6—A)0 = w, which has only k£ > 0 as positive slope, consists of a rather
involved proof that By satisfies part 2. of Theorem 7.33. The equivalence with
1. yields then the k-summability of ©. In our treatment of the k-summation
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theorem (and the multisummation theorem later on) the basic ingredient is the
cohomology of the sheaf ker(§ — A, (A°)") and the Main Asymptotic Existence
Theorem.

We illustrate this theorem with an example of the type (§ — ¢)0 = w, which is
chosen such that B9 can actually be calculated. This example also produces for
the image of ¢ in the cohomology group H' (U, ker(§ — ¢, A°)) of Lemma 7.20,
an explicit 1-cocycle by the Laplace and Borel method.

Example 7.35 The equation (§ — kz~% + k)o = w with w € C[z,z71].

Write © € C((z)) as Y v,2™. Then for n >> 0 one finds the relation vy, =
"T““vn Thus for n >> 0 one has v, = a;T'(1 + %), where the constant a;
only depends on n modulo k. In other words the posssiblities for v are p +
E 0 a; Yoo D(1 + 2EE) 26+ with p € Clz,27!] and ap, ...,ax—1 € C.

It suffices to consider © with p = 0, and thus

k—1 .
(G —kz ™+ ko= —akT(1+ %)z*kﬂ'.

i=0

k—1
The formal Borel transform Bjd is equal to f := fet@ctdaemiC = pe

T—cF
radius of convergence of fis 1 (if ¢ # 0). For any directiogl d, not in the
set {2’” l7=0,. — 1}, the function f has a suitable analytic continuation
on the half line d Con51der a direction d with 0 < d < 2,:. The integral
v(z) == (Lraf)(z) = [, F(Qexp(— C)’”) d(%)k is easily seen to be an analytic

function of z for z # 0 and arg(z) € (—%,%). Thus v is analytic for z # 0

and arg(z) € (d — 5,d + 5). Moreover v does not depend on d, as long as

d € (0,%F). Thus we conclude that v is a holomorphic function on the sector,
: 2

defined by the relation arg(z) € (-3, 3 + 35)-

Exercise 7.36 Prove that the above v lies in A1/k(—%,27” + 35) and has

asymptotic expansion ¢. Hint: Subtract from f({) a trunctation of its Tay-

lor series at ( = 0. O

Let w be the Laplace transform Ly qf for d € (—2%,0). Then by the Cauchy
Residue Formula one has that

(v~ w)(z) = ~2mi Resmr (F(Qeap(~(2)) d()¥)

P
=2mi (ap + a1 + -+ + ag—1)h,
in which the function h := z *exp(—27*) is a solution of (§ — kz=* + k)h =

0. More generally consider a direction d; := 2%7 and let d;-" and d; denote
directions of the form d; + € for small € > 0. Let v;+ and v;- denote the Laplace

integrals Ck,dﬁ f and Ek’dr f. Then one has the formula

(vj+ —vj-)(2) = 2mi (ap + ar( + -+ + ap—1CFNYh with ¢ = ™4/,
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We compare this with Section 7.3. The directions 2%7 are the singular directions
for § — k=% + k. The negative Stokes pairs are the pairs {27 — = 2% 4 T3

The Laplace-Borel method produces the asymptotic lifts of ¢ on the maximal
intervals, i.e. the maximal intervals not containing a negative Stokes pair. Con-
sider, as in Section 7.3, the map 3 : C({z}) — H'(S! ker(d — k2= + k, A°)),
which associates to each w € C({z}) the image in H'(S!, ker(§ —kz~* +k, A%))
of the unique formal solution © of (§ — kz=* + k)0 = w. For w of the form
Ef;ol b;z~*+% the above residues give the explicit 1-cocycle for 3(w).

Exercise 7.37 Extend the above example and the formulas to the case of a
formal solution © of (§ — kz=* + k) = w with w = Y w,2" € C({z}). In
particular, give an explicit formula for the 1-cocycle f(w) and find the conditions
on the coefficients w, of w which are necessary and sufficient for ¢ to lie in

C({z})- O

7.7 The k-Summation Theorem

This theorem can be formulated as follows. The notion of eigenvalue of a dif-
ferential equation is defined in Definition 3.28.

Theorem 7.38 Consider a formal solution 0 of the inhomogeneous matriz
equation (6 — A)o = w, where w and A have coordinates in C({z}) and such
that the only positive slope of § — A is k. Then ¥ is k-summable (i.e., every
coordinate of O is k-summable). Let q1,...,qs denote the distinct eigenvalues of
6 — A. Then v is k-summable in the direction d if d is not singular for any of
the qi,...,qs.

We note that the ¢; are in fact polynomials in z—/™ for some integer m > 1.
The set of singular directions of a single ¢; may not be well defined. The
set {qi,...,qs} is invariant under the action on C[z~/™], given by 2~ /™
e~2mi/mz=1/m Thys the set of the singular directions of all ¢; is well defined.
We start the proof of Theorem 7.38 with a lemma.

Lemma 7.39 Let v be a formal solution of (6 — A)0 = w, where A and w have
coordinates in C({z}) and let k > 0 be the smallest positive slope of 6 — A. For
every direction d there is an asymptotic lift vqg of O with coordinates in (A;/i)a-

Proof. We will follow to a great extend the proof of Proposition 7.32. There
exists a quasi-split equation (6 — B) which is formally equivalent to (§ — A),
ie, F~1(6 — A)F = (6 — B) and F' € GL(n,C((z))). The equation (§ — B)
is a direct sum of (§ — ¢; — C;), where ¢1,...,qs are the distinct eigenvalues
and the C; are constant matrices. After replacing z by a root z'/™, we are in
the situation that k& > 0 is an integer. Furthermore, we can use the method of
Corollary 7.16 to reduce to the case where all the C; are 0. The assumption
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that k is the smallest positive slope is equivalent to: if ¢; is # 0 then the
degree of ¢; in 27! is > k. Let d be a direction. By Theorem 7.10, there
is an Fy; € GL(n, A4) with J(F;) = F and F;'(6 — A)F; = (6 — B). Since
ker(6 — g;, AY) = ker(6 — ¢, (A?/k)d), the kernel ker(6 — B, ((A°%)4)") lies in
((A(l)/k)d)". Since Fy acts bijectively on ((A[l)/k)d)", one also has that the kernel
of § — A on ((A”)q)" lies in ((A7,,)a)". The element  has an asymptotic lift in
((A)4)™, which is determined modulo the kernel of (§ — A) and thus defines a
unique element of ((A/A(l’/k)d)”. By gluing one finds a global section, i.e., over
S!, of the corresponding sheaf. The last statement of Proposition 7.28 implies
that the coordinates of © are in C((2))1/x. For a direction d one can first lift
0 to an element of ((A;/)¢)" and then, using Theorem 7.12, we conclude that
there is a lift vg € ((A1/x)q)" satisfying the equation (6 — A)vg = w. m|

The obstruction to lifting © to a solution of the equation with coordinates in
((A1/k)(a,b))™ is given by a 1-cocycle with image in the group H'((a,b), ker(d —
A, (A /)") ). The theorem will now follow from the known cohomology of the
sheaf Kp := ker(§ — B,(A(l)/k)”) ) (see Lemma 7.20), and the construction
in the next lemma of an isomorphism between restrictions of the two sheaves
K4 :=ker(d — A, (A‘l)/k)”) ) and Kp to suitable open intervals (a, b).

Lemma 7.40 Suppose that d is not a singular direction for any of the q;, then
for some positive € the restrictions of the sheaves KC 4 and Kpg to the open interval
(d— 35 — €, d + 3 +¢€) are isomorphic.

Proof. We may suppose that the g; are polynomials in z=!. As before § — A
is formally equivalent to § — B, which is a direct sum of § — ¢; + C; and we
may suppose that the C; are 0. Let f be any direction. The formal F with
F~1(6 — A)F = (6 — B) satisfies the differential equation 6(F) = AF — FB.
By Theorem 7.10, F lifts to an F; € GL(n, Ay) with Ff_l(é —A)Fy = (6 — B).
This produces locally at the direction f an isomorphism (4a)y = (Kp)s. The
asymptotic lift Fy is not unique. Two asymptotic lifts differ by a G € GL(n, Ay)
with J(G) = 1 and G~1(§ — B)G = (§ — B). We have to investigate Kp and
the action of G on Kpg in detail.

We note that Kp is the direct sum of Kp(i) := ker(d — ¢;, (A(l)/k)"i) over
all non zero ¢;. The action of G on (Kp)y has the form 1+ 37, 1; ;, where 1
denotes the identity and /; ; € Homc(Kg(i),Kp(j))s. Foranyp=pz~'+--- €
27 1C[z71] with p; # 0, we will call the direction f flat if Re(pe~**) > 0. With
this terminology one has: I; ; can only be non zero if the direction f is flat for
¢; —¢; (and f is of course also a flat direction for ¢; and g;).

Let us call S the sheaf of all the automorphisms of g, defined by the
above conditions. The obstruction for constructing an isomorphism between
the restrictions of X4 and Kp to (a,b) is an element of the cohomology set
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H'((a,b),S). We will show that this cohomology set is trivial, i.e., it is just
one element, for (a,b) = (d — 57 — €,d + 5 + €) with small € > 0 and d not a
singular direction. Although S is a sheaf of non abelian groups, it is very close

to sheaves of abelian groups.

For any direction f, define ¢; <y g; if f is a flat direction for ¢; — g;.

Lemma 7.41 Let S be as above.

1. For any f € S', every element of the stalk Sy is unipotent

2. There ezists a finite sequence of subsheaves subsheaves S(r) of S, given by
1431, 5, belongs to S(r)y if I, j, # 0 implies that there are sq,..., s,
with qj, <y ds, <g -+ <f s, <f jo-

Proof. 1. Let G = I+ N € Sy where N = (I; ;). As noted above, if I; ; # 0
then ¢; < ¢;. For any r > 0 let N" = (I; ;). One shows by induction that if
li j,r # 0, then there exist s1,...,sy,—1 such that ¢; <y g5, <f -+ <f ¢s,_, <y gj-
Therefore N™ = 0 for sufficiently large r.

2. We define a sequence of subsheaves S(r) of S, given by 1 + > 1, j,
belongs to S(r)s if 1, ;, # 0 implies that there are s1,...,s, with ¢;, <;
gsi <5+ <y gs. <s qj,- The quotients sheaves S/S(1),...,S(#)/S(i +1),...
are easily seen to be abelian sheaves. We now use the notation introduced in
Section 7.3 before Lemma 7.19. Each quotient is a direct sum of sheaves Hp,
where H := Homc (Kp(j1), Kp(j2)) and H is the open interval consisting of the
directions g which are flat for ¢;, — g;, (and for certain pairs ji # j2). O

Thus the proof Lemma 7.40 is reduced to proving that each sheaf H gy has a
trivial H! on the proposed open intervals. The sheaves Kg(j) are direct sums of
sheaves Cy, with I an open interval of length 7. If I, J be both open intervals
of length 7 and let H be another open interval (I,.J, H are determined by g;, g;
and ¢; — ¢;), then it suffices to show that the sheaf 7 := Homc(Cr, Cy)m has
a trivial H! on the proposed intervals (d — 55 — 6d+ 5p +e).

First we will determine the sheaf Homc(Cyp, C). Let us recall the definition
of the sheaf Homc¢ (F, G) for two sheaves of complex vector spaces F' and G on,
say, the circle S'. The sheaf Homc(F,G) is defined as the sheaf associated to
the presheaf P given requiring P(U) to consist of the C-linear homomorphisms
h between the restrictions F|y and G|y. The element h consist of a family of
C-linear maps hy : F(V) = G(V), for all open V' C U, satisfying for all pairs of
open sets W C V C U the relation resg yv,wohy = hworespy,w. Here res, . «
denote the restrictions of the sheaves F' and G with respect to the sets W C V.
A straightforward use of this definition leads to a C-linear homomorphism of
the sheaves ¢ : C — Homc(Cy,C). Let I denote the closure of I. A small
calculation shows that the stalk of the second sheaf at a point outside I is 0
and the stalk at any point in I is isomorphic to C. Moreover, for any d, ¢4 is
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surjective. One concludes that Homg(Cy, C) is isomorphic to C;. We recall
the exact sequence
0—=>C;—=>C—Cgi\y—0.

We then have that Homc(Cy, Cy) is the subsheaf of Homc(Cy, C), consisting

of the h such that the composition Cjy oo Cs1\ is the zero map. Thus
Homg(Cr, Cy) can be identified with (Cy) ;7. The sheaf 7 can therefore be
identified with (Cy) ;g7

Let g;, ¢ and g; —qg; have leading terms a, b and ¢ with respect to the variable
27! and let the degree of ¢; —gq;j in 27! be I. The intervals I, .J, H are connected
components of the set of directions f such that Re(ae™*), Re(be™**) and
Re(ce ') are positive. We must consider two cases.

Suppose first that I # J. Then one sees that JNHNI = HNI and moreover
the complement of this set in I has only one component. In this case the sheaf
T has trivial H! for any open subset of S'.

Now suppose that I = J. The complement of JN H N 1T in I can have two
components, namely the two endpoints of the closed interval I. In this case the
H?' of the sheaf T on T is not trivial. However, the midpoint of I is a singular
direction. Thus only one of the two endpoints can belong to the open interval

(d— & —€,d+ - +€) and the H' of T on this interval is trivial. O

we now deduce the following corollary. Note that we are continuing to assume
that thereis only one positivie slope.

Corollary 7.42 The sheaves K4 and Kp are isomorphic on S*.

Proof. Let (a,b) be a (maximal) interval, not containing a negative Stokes pair
for any of the ¢g;. The proof of Lemma 7.40 shows in fact that the restrictions of
K4 and Kp to (a,b) are isomorphic. The sheaf Kp has a direct sum decomposi-
tion ®;_, Kp; with Kp ; := C7/, where the a; > 1 are integers and the intervals
I; are distinct and have length 7. We may suppose that I; = (d; — 5, d; + 37)
and that d; < ds < --- < dgy < d;(+27) holds on the circle St. The intervals
Jiv = (ds — g5, di +35), J2 == (dy — ., d2 + 5 ), . - . are maximal with respect to
the condition that they do not contain a negative Stokes pair. Choose isomor-
phisms o; : Kg|s, = Kals, for i =1,2. Then oy 5 := 02_101 is an isomorphism
of Kg|l;. We note that H°(I;,Kp) = H°(I;,Kp,1) = C* and ;2 induces
an automorphism of C** and of Kp ;. The latter can be extended to an au-
tomorphism of K on S'. After changing o, with this automorphism one may
assume that oy » acts as the identity on C®'. This implies that the restrictions
of o1 and o2 to the sheaf Kp; coincide on J; N .J>. Thus we find a morphism
of sheaves Kp 1|70, — Kalsus,. Since the support of Kp; lies in J; U Jy
we have a morphism 7 : Kp; — K4. In a similar way one constructs mor-
phisms 7; : Kp,; = Ka. The sum &7; is a morphism 7 : Kg — K4. This is an
isomorphism since it is an isomorphism for every stalk. |
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k-summability for a scalar differential equation

In this subsection we will reformulate Theorem 7.38 for a scalar differential
equation, i.e., an equation Lf = g with a differential operator L € C({z})[d% ,
g € C({z}) and f € C((2)).

Instead of L, we will use the operator A = 2z4L 2% An operator L of order
n can be written as Y., a; A" with a,, = 1 and all a; € C({z}). In the sequel
we will suppose that the only slope present in L is £ > 0 and that & is an integer.
In other words, all the eigenvalues ¢; of L (or of the associated matrix equation
§ — A) are in 27'C[27'] and have degree k in z7'. A small calculation shows
that those conditions are equivalent to L having the form

L= ZaiAi with a, =1, a; € C{z} and ap(0) # 0.
i=0

Define the initial polynomial of L with respect to A to be P(T) = >_1_, a;(0)T".
One easily calculates that the eigenvalues of L are of the form cz=* + - .. where
¢ is a zero of the initial polynomial. Then Theorem 7.38 has the following
corollary.

Corollary 7.43 (The k-Summation Theorem for Scalar Differential
Equations) Consider the equation Lf = g with L as above, g € C({z}) and
f € C((z). Then f is k-summable. More precisely:

1. A direction d is singular if and only if d is the argument of some ( satis-
fying P(C*) = 0. The negative Stokes pairs are the pairs {d — Z-,d + 7}
with d a singular direction.

2. f is k-summable in the direction d if d is not singular.

3. Suppose that the open interval (a,b) does not contain a negative Stokes pair
and that |b — a| > %, then there is a unique f € Ai(a,b) with J(f) = f.
Moreover Lf = g.

Example 7.44 The method of Borel and Laplace applied to Lf =g.

For the special case L = P(A) (i.e., all a; € C), we will give here an independent
proof of corollary 7.43, using the formal Borel transformation and the Laplace
transformation. This works rather well because one obtains an explicit and
easy formula for By, f- The general case can be seen as a “perturbation” of this
special case. However the proof for the general case, using the method of Borel
and Laplace, is rather involved. The main problem is to show that By, f satisfies
part 2. of Theorem 7.33 .

The formal Borel transform By, is only defined for formal power series.
After subtracting from f a suitable first part of its Laurent series, we may
suppose that f € C[[z]] and ¢ € C{z}. Put ¢ = Bp(f). A small cal-
culation yields Br(Af)(¢) = ¢*¢(¢). The equation Lf = g is equivalent to
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P(C*)(¢) = (Brg)(¢) and has the unique solution ¢(¢) = %. The function

9 = Y ,>09n2" is convergent at 0, and thus |g,| < CR" for suitable positive
C, R. The absolute value of Byg(¢) = F(f’—l%)C" can be bounded by

k—1

”|<|" (R|¢|)mk+ ‘ K
gcn%:or( ZZ Ti4mTl )<OZR|C|exp(R 1¢[F).

i=0 m>0 i=0

Thus l’;’kg is an entire function on C and has an exponential growth of order
< k, i.e., is bounded by < A exp(B|(|¥) for suitable positive A, B.

The power series ¢ is clearly convergent and so f € C[[z]]1. Consider a di-
rection d with d ¢ S := {arg((1), ..., arg(Car) }, where {(1, ..., Car } are the roots of
P(¢*) = 0. Let a, b be consecutive elements of S with d € (a,b). The function ¢
has, in the direction d, an analytic continuation with exponential growth of order
< k. It follows that the integral f(z) := (Lr,a9)(2) = [, o({)exp(— C)’”) d(%)’”
converges for arg(z) € (d — 55, d + 33) and small enough |z|. One can vary d in
the interval (a,b), without changing the function f. Thus f is defined on the
open sector I := (a— g5, b+35). It is not difficult to show that f € Ay (I) with

J(f) = f. Indeed, let ¢(¢) = Y50 i and write ¢ = Y1 o' ei¢* + R (C)CN.
Put f = > >0 fiz'. Then Ek,d(zﬁio ci¢t) = Zﬁiol fiz* and one has to verify
the required estimate for |Cr,a(Rn(¢)¢N)(2)|. Interchanging A and [, easily
leads to Lf = g. This proves the k-summability of f and the properties 1., 2.
and 3.

More detailed information can be obtained by using the factorization P(T') =
[1;_, (T'—c;)™, with ¢; the distinct roots of P(T'). Then L has a similar factoriza-
tion and one finds that the eigenvalues of L are ¢; = kc;z~* —k, with multiplicity

ni, fori = 1,...,5. Write P(T)~! = 3", (;ET)),L Then ¢(¢) = % decom-

poses as Y ¢;, where ¢;(¢) = W(Bkg)(ﬁ). Consider a singular direction

d, which is the argument of a (; with (¥ = ¢;. Let d*,d~ denote directions
with d= < d < d* and d* — d~ small. Then £y 4+¢ and Ly 4- ¢ exist and the
difference Ly, g+ ¢ — Ly, 4- ¢ is equal to

Ai(¢H)Brg(€)
(C - C,)

As in Example 7.35, this formula gives an explicit 1-cocycle for the image of f
in H'(S!, ker(L, A%)). m|

—(2mi) Res¢=c, ( d¢k) 2 *exp(—cizF).

7.8 The Multisummation Theorem

Definition 7.45 k will denote a sequence of positive numbers ky < ky < --- <
k, with ky > 1/2. Let © € C((z)) and let d be a direction. Then ¥ is called
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k-summable, or multisummable w.r.t. k in the direction d if there is a sequence
of elements vy, v1,...,v,. and a positive € such that:

1. vy € HO(Sl,A/A?/kl) and has image 0 under the isomorphism of Propo-
sition 7.28.7.

2. v; € H((d — o —6d+ 5 +€)’A/A(1)/ki+1) fori=1,...,r —1 and
vr € H((d — 5 — €,d + 5= +¢€), A).

3. Fori=0,...,r—1, the images of v; and v;y; in
HO((d - g —6dt e+ 6)’A/A[1)/ki+1) coincide.

The k-sum of 0 in the direction d is the sequence (vy,...,v,).

One calls © multisummable or k-summable if 0 is k-summable in all but finitely
many directions.

This definition is extended in an obvious way to elements of C((2))".

Remarks concerning the Definition 7.46 1. Condition 1. is of course the
same thing as stating that © € C((2))1/4, -

2. For any positive k, one sees the sheaf A/Atl) /K S A sheaf of “k-precise
quasi-functions”. Indeed, a section f of this sheaf above an open interval (a,b)
can be represented by a covering of (a,b) by intervals (a;, b;) and elements f; €
A(as, b;) such that f; — f; is in general not zero but lies in A[l)/k((ai, b;)N(aj,b;)).

3. The idea of the definition is that @, seen as an element of H°(S*, A/A?/kl),
is lifted successively to the elements vi,vs, ..., living each time on a smaller
interval and being more precise. Finally the last one v, is really a function on
the corresponding interval.

4. The size of the intervals with bisector d is chosen in a critical way. Indeed,
for 1/2 < k <1, one can consider the natural map

R: HO((a,b),A/A(f/,) - HO((a,b),A/A?/k).

The kernel of R is H((a,b), A7,/ A] ). According to the Theorem 7.47, the
kernel is 0 if |b —a| > 7. For |b —a| < % the map is surjective according to
Lemma 7.48. In particular, the elements vy, ..., v, are uniquely determined by

v and the direction d.

In general one can show, using Theorem 7.47 below, that the multisum is
unique, if it exists. We have unfortunately not found a direct proof in the
literature. The proofs given in [149] use integral transformations of the Laplace
and Borel type. However, a slight modification of the definition of the multisum
for a formal solution of a linear differential equation yields uniqueness without
any reference to Theorem 7.47 (see Theorem 7.50 and Remark 7.57)
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Theorem 7.47 (A relative form of Watson’s Lemma) Let 0 < k < and
b—a| > %. Then H°((a,b), A}/ A} )) =

Lemma 7.48 Suppose 1/2 < k <1 and |b—a| < 7. Then the canonical map
R: HO((aab)aA/A(l)/l) - HO((aab)aA/'A[l)/k)

1§ surjective.

Proof. The map H°((a,b),A) — H°((a,b), A/A?,,) is surjective, since by
Proposition 7.28 the group H'((a,b), A?/k) is zero. This map factors as

HO((a,), A) — H((a,b), A/ A3 ;) 5 HO((a,b), A/ A1)

Thus R is surjective. O

Exercise 7.49 Let k = k1 < -+ < k, with 1/2 < k;. Suppose that ¢ is the
sum of elements Fy + - -+ + F,., where each F; € C((z)) is k;-summable. Prove
that ¢ is k-summable. Hint: Prove the following statements

(a) If r = 1, then k;-summable is the same thing as k-summable.

(b) If F and G are k-summable then so is F' + G.

(c) Let k' be obtained from k by leaving out k;. If F' is k'-summable then F is
also k-summable. O

Theorem 7.50 (The Multisummation Theorem) Let ¢ be a formal solu-
tion of the equation (0 — A)0 = w. Letk = k) < ko < --- < k, with 1/2 < k;
denote the positive slopes of the differential operator 6—A. Then v is k-summable
in any direction d which is not singular direction for any of the eigenvalues of
6 — A. In particular ¥ is k-summable.

Proof. The formal equivalence F—1(6 — A)F = (6 — B), where (6§ — B) is an
equation that is equivalent to a quasi-split differential equation for a (Propo-
sition 3. 36) One proves as in Lemma 7.39 that ker(§ — A, (A%)") is equal
to ker(d — (Al/k )™). If follows that © has coordinates in C((2))1/k,- De-

fine for i = 1,...,r the sheaves V; = ker(d — A, ("41/14: )") and the sheaves W; =

ker(d — B, (Al/k )™). For notational convenience we define V,4; and W41 to be
Zero. Take a direction d, which is not a singular direction for any of the eigenval-
ues of § — A. The method of the proof of Lemma 7.40 yields that the restrictions
of the sheaves V; /V2 and Wy /W, to (d— 3 — 6 d+ 5o +e€) are isomorphic. More
generally the proof of Lemma 7.40 can be modified to show that the restrictions
of the sheaves V;/V;i1 and Wi/Wiy1 to (d— 3f- —€,d+ 5f- +¢€), are isomorphic.
From Lemma 7.20 and Corollary 7.21 one concludes that, the sheaves Wi /Wit

have a trivial H' and also H® on the interval (d — 53~ — €,d + - +¢€) (note

that the sheaf ker(§ — B, (A°)n) decomposes as a direct sum of 51mllar sheaves
where only one level (or one g;) is present). The same holds then for the sheaves
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Vi/Vig1.

Now vy € HO(Sl,(A/A?/kl)”) is simply the statement that o € C((2))], -
The element vy € HO((d — 5f- — €,d + 55— + €), (A/ A7, )") is supposed to
satisfy: (0 — A)v; = w modulo A(l)/kz and vy and v; have the same image in
H((d— o —6d+ - +e), (A/A?/kl)”). The obstruction for the existence of
vy is an element of the group H'((d — 5= — €,d + 5= +€),V1/Vz). Since this
group is 0, the element v; exists. Suppose that ©; has the same properties. Then
01 — v is a section of the sheaf V; /V5 on the interval (d — ﬁ —e,d+ ﬁ +e).
Since we also have that the H? of V1 /V» on this interval is 0, we find ©; = v;.

The existence and uniqueness of v; with (§ — A)v; = w modulo A[l)/,wrl and v;
and v;—; have the same image in H°((d — 5}~ — €, d + 53~ +¢), (A/A(l)/ki)”), fol-
lows from H! and H® of V;/V; 1 being for the open interval under consideration.
Thus ¢ is k-summable in the direction d. O

Corollary 7.51 We use the notation of theorem 7.50 and its proof.

For every i the sheaves V;/Viy1 and W;/W;y1 are isomorphic on S*. In partic-
ular, the spaces H'(S', ker(d — A, (A°)")) and H'(S!, ker(§ — B, (A°)™)) have
the same dimension. Let (6 — B) be the direct sum of (6 — q; — C;) where C;
is a n; X ng-matriz and the degree of q; in 2z~ is k;. Then the dimension of
H*(S*, ker(d — A, (A")™)) is equal to Y, kin;.

Proof. The first statement has the same proof as Corollary 7.42. The dimen-
sion of the cohomology group H' of the sheaf ker(§ — A, (A°)") is easily seen
to be the sum of the dimensions of the H'! for the sheaves V;/V;11. A similar
statement holds for § — B and thus the equality of the dimensions follows. From
the direct sum decomposition of § — B one easily derives the formula for the
dimension. Indeed, if the k; are integers then Lemma 7.20 implies the formula.
In general case, the k; are rational numbers. One takes an integer m > 1 such
that all mk; are integers and considers the map ,, : S* — S!, given by z — 2™.
The H' on S! of F := ker(§ — B, (A”)") is equal to H'(S!, 7}, F)“, where G
is the cyclic group with generator z — €™/ 2 acting on S'. From this the
general case follows. a

We now define an number that measures the difference between formal
and convergent solutions of § — A. Although we define this in terms of co-
homology we will show in Corollary 7.54 that this number is just dim ker(é —
A,C((2))"/C({z})™). This number and its properties are also described in
[143].

Definition 7.52 The dimension of H'(S', ker(d — A, (A°)")) is called the ir-
regularity of § — A.

We note that the irregularity of § — A depends only on the formal normal
form § — B of 6 — A. Furthermore, Corollary 7.51 implies the following
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Corollary 7.53 The irreqularity of 6 — A is zero if and only if 6 — A is reqular
singular.

Corollary 7.54 Let the matriz A have coordinates in C({z}). Then 6 — A
has a finite dimensional kernel and cokernel for its action on both C((z))™ and
(C({z}))™. Define the Euler characteristics (or indices)

x(6 — A,C((z))) = dim ker(d — A, C((2))"™) — dim coker(§ — A, C((2))")

x(0 — A, C({z})) = dim ker(§ — A, C({z})") — dim coker(é — A, C({z})"™)
Then the irreqularity of 6 — A is equal to x(6 — A, C((2))) —x(0 — A, C({z})) =
dim ker(é — A, C((2))"/C({z})™).

Proof. Using Proposition 7.24.2, one sees that the exact sequence of sheaves
0+ A" = A—C((2) =0
induces an exact sequence
0 — C({z}) = C((z)) —» H'(S', A% =0

and we can identify the group H'(S!, A%) with Q := C((2))/C({z}).
According to Theorem 7.12 the map (6 — A) : (A°)" — (A°)" is surjective and
one finds an exact sequence of sheaves

0 — ker(§ — A, (A%)") = (A%)" = (A" =0
Taking cohomology on S! one finds the exact sequence
0 — HY(S!, ker(5 — A, (A%)™) = Q" °=* 9" — 0. (7.2)
Let § — A act on the exact sequence
0= (CHzh)" = (C((z))" = Q™" — 0.

Let 6 — A map each term in the exact sequence to itself. The sequence (7.2)
implies that coker(d — A, Q™) = 0. The Snake Lemma ([130], Lemma 9.1, Ch.
III §10) applied to the last equivalence yields

0 — ker(d — A, (C({z})") — ker(6 — A,(C((2)))") = ker(6 — A4,Q™) (7.3)
— coker(d — A, C({z})") — coker(d — A,C((2)))") = 0

The two kernels in this exact sequence have a finite dimension. We shall show
below that the cokernel of § — A on C((z))™ has finite dimension. Thus the
other cokernel has also finite dimension and the formula for the irregularity of
& — A follows.

To see that the cokernel of 6 — A on C((z))" has finite dimension, note
that 6 — A is formally equivalent to a quasi-split § — B. We claim that it is



7.8. THE MULTISUMMATION THEOREM 223

enough to prove this claim for equations of the form § — ¢ + C' where ¢ =
gnvz N+ .. 4+ @z7Y gy # 0 and C is a matrix of constants. Since § — B is
quasi-split, if we establish the claim, then § — A will have finite dimensional
cokernel of C((z'/™)) for some m > 1. If v € C((2))N is in the image of
C((2'/™)) under 6 — Z then it must be in the image of C((z)) under this map.
Therefore the claim would prove that § — A would have finite cokernel.

To prove the claim first assume that N > 0. Then for any v € C" and any
m, (6 —q+ C)z™v = qnz™ Nv + higher order terms, so § — A has 0 cokernel.
If N =0 (i.e. ¢ =0) then (6§ — ¢+ C)z"™v = (mI + C)z™v. Since for sufficiently
large m, mI + C is invertible, we have that § — A has 0 cokernel on z™CJ[[z]]"
and therefore finite cokernel of C((z))™. O

Remark 7.55 Corollaries 7.52 and 7.54 imply that if § — A is regular singular
and w € C({z})™) then any solution v € C((z)))") of (§—A)v = w is convergent.

Exercise 7.56 Consider a scalar differential operator L = Y, a;6' € C({z})[4]
with a, = 1. Let § — A be the associated matrix differential operator. Prove
that L as an operator on C((z)) and C({z}) has the same Euler characteristic
as the operator 6 — A on C((z))™ and C({z})™. Prove that the irregularity of
L, defined as the irregularity of § — A, is equal to —ming<;<, v(a;). Here v is
the additive valuation on C({z}) (or on C((z)) ) defined by v(0) = +o00 and
v(b) =mifb=3" -, byz" with b,, # 0. Hint: Note that —ming<;<, v(a;)
is the difference in the y-coordinates of the first and last corner of the Newton
polygon of L. Now use Corollary 7.51 and Remark 3.50.1. |

Remarks 7.57 1. Let ¢ be a formal solution of the differential equation (6 —
A)v = w and d a non-singular direction. Assuming Theorem 7.47 one finds that
(6 — A)v; = w modulo A[l)/kiﬂ. On the other hand, the proof of Theorem 7.50
yields a unique sequence vi,...,v, satisfying the additional conditions (§ —
A)v; = w modulo A? kis,- We conclude that the additional assumption that
v is a formal solution of a differential equation makes the use of Theorem 7.47
superfluous. This is also noted in [152].

2. The result of Exercise 7.56 appears in [143] where a different proof is
presented. A more general version (and other references) appears in [138].

Proposition 7.58 Consider a formal solution O of the equation (§ — A)0 = w.
Let k = k1 < -+ < k, with 1/2 < ki denote the slopes of § — A and let the
direction d be not singular for § — A. Then there are F,..., F,. € C((z)) such
that 0 = Fy + - - -+ F,., each F; is k;-summable in the direction d and (6 — A)F;
convergent for each i.

Proof. For convenience we consider only the case r = 2. It will be clear how
to extend the proof to the case r > 2.

Let V; for i = 1,2 denote, as in the proof of Theorem 7.50, the sheaf

ker(0—A, (A7 ;,)"). Let I denote the interval (d— 57~ —e¢, d+ 57~ +e) for suitable
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positive €. Since d is not a singular direction, one has that H'(I,V;/V2) = 0.
The obstruction for having an asymptotic lift of ¥ on the sector I is an element
& € HY(I,Vy). From H°(I,V;/Vs) = 0 and H'(I,V1/Vs) = 0 one concludes
that the map H'(I,V,) — H'(I,Vy) is an isomorphism. Let & € H'(I,Vs)
map to & . The element & can be given by a 1-cocycle with respect to a finite
covering of I, since H*(.J,V,) = 0 if the length of the interval J is < 7o+ Clearly,
the covering and the 1-cocycle can be completed to a 1-cocycle for Vs on S'. In
this way one finds a &3 € H'(S!, V) which maps to &.

One considers V, as a subsheaf of (A(l)/k2)n_ According to Proposition 7.28,
there is an element F, € C((z))’f/,62 which maps to &. Furthermore (6 — A)F,
maps to (6 — A)¢s = 0. Thus wy := (6 — A)F}, is convergent. The obstruction
for having an asymptotic lift of F» to any interval J is an element of H'(J, V)
(in fact the image of £3). Since d is not a singular direction, this obstruction
is 0 for an interval (d — 577 — €,d + 57> + €) for small enough positive e. This
means that F5 is ky-summable in the direction d.

Define Fy := 0 — Fy and w; := w — we. Then (6 — A)F; = w;. One can
lift F, locally, to a solution in (A;/x,)" of the equation. The obstruction for a
“global” asymptotic lift on the sector I is an element of H'(I,V;), namely the
difference of & and the image of {3. By construction, this difference is 0 and it
follows that F is ki-summable in the direction d. O

The next lemma is rather useful. We will give a proof using Laplace and
Borel transforms (c.f., [10], page 30).

Lemma 7.59 Let 1/2 < ki < ka and suppose that the formal power series f s
ky-summable and lies in C[[2]]1/,. Then f € C{z}.

Proof. It suffices to show that fis k1-summable for every direction d, since the
unique kj-sums in the various directions glue to an element of HO(Sl,Al/kl),
which is equal to C({z}). In what follows we suppose for convenience that
k1 = 1 and we consider the direction 0 and an interval (a,b) with a < 0 < b
and such that f is 1-summable in every direction d € (a,b), d # 0. We now
consider the formal Borel transform ¢ := By f . If we can show that this defines
an analytic function in a full sector containing d = 0 and having exponential
growth of order < 1, then Theorem 7.33 implies that f is 1-summable in the
direction d = 0.

One sees that g := By f: is an entire function of exponential growth < k with

% =1- é Indeed, let f = EnZO cpz™. There are positive constants Ap, Ay

such that |c,| < A; A% (n!)*/*2 holds for all n > 0. The coefficients 2 of g satisfy
1

the inequalities || < A; A¥(n!)™' "% and this implies the exponential growth

at oo of g of order < k. Moreover, according to Theorem 7.33, the function g

has exponential growth of order < 1 for any direction d € (a,b), d # 0. The
Phragmén-Lindelof Theorem ([32], Ch. 33) implies that g has also exponential
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growth at oo of order < 1 in the direction 0. In fact one can prove this claim
directly and in order to be complete, we include the proof.

Consider the closed sector S at oo, given by the inequalities R < |¢] < o0
and |arg(¢)| < a with a fixed small & > 0. On the boundaries arg(¢) = ta
the inequality |g(¢)| < A exp( B|(|) is given. Consider now the function h(¢) =
g(Qexp( M(¢ — eCFto), With 0 and € positive and small and we take M < 0
and such that M < —COS . The presence of the term exp(—e(**?) guarantees
that h(¢) tends to zero for ¢ €S, |¢| = oo. Thus h is bounded on S and its
maximum is obtained on the boundary of S. For ¢ € S with arg({) = « one
estimates |h(¢)| by

< A exp(BI(|)exp(M cos(a)|(] — ecos((k + d)a)|¢])| < A.

For ¢ € S with |(| = R one can estimate |h(¢)| by max{|g({)| | |¢| = R and ¢ €
S}. Thus there is a constant C' > 0, not depending on our choices for M,e, J,
with |h(¢)| < C forall ¢ € S. The inequality |g(¢)| < Clexp(—M{()| lexp(e¢t+?)]
holds for fixed ¢ € S and all € > 0. Thus |g(¢)| < Clexp(—M ()| holds on S and
g has exponential growth in the direction 0 of order < 1. O

Example 7.60 The equation (§ — A)0 = w with A = < (]11 ; > with q1,qs €
2
2 YCl27Y] of degrees ki < ko in the variable 2z~

We start with some observations.

e The equation § — A is formally, but not analytically, equivalent with

0 — < q01 qO > Indeed, the formal equivalence is given by the matrix
2

1 0
f1

Corollary 7.22, the unique solution f is divergent.

>, where f is a solution of (§ + ¢ — ¢2)f = 1. According to

e The irregularity of § — A is k1 + k2 and § — A acts bijectively on C((z))2.
According to Corollary 7.54, the cokernel of §— A acting upon C({z})? has
dimension k; + k2. Using Corollary 7.22, one concludes that the cokernel

of § — A on C({z})? is represented by the elements < ﬁ > with f1, f2

polynomials in z of degrees < k1 and < k.

e As in the proof of Theorem 7.50, we consider the sheaves V; :=
ker(6 A, (A%)?) = ker(d — A, (Al/k )?) and the subsheaf Vs := ker(§ —
A, (A7 );,)?) of Vi. The sheaf V» is isomorphic to ker(d — g2, A7), by

the map f — ( ). The sheaf V; /V, is isomorphic to ker(§ — ¢, Atl)/kl).

We want to show two results:

In general, the exact sequence 0 — Vo — Vi — Vi /Vo — 0 does
not split.
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In general, the decomposition of Proposition 7.58 depends on the
chosen direction d.

Indeed, we will consider the above family of examples with ¢; = z~! and

g> = 22 and show that the exact sequence does not split and prove that the
formal solution ¢ of (§ — A)v = ([1)) cannot globally, i.e., on all of S!, be written
as a sum F; + F5 with k;-summable F; for i =1, 2.

It is further easily seen that the computations in this special case extend to
the general case of the above family of examples.

From now on we suppose q; = z ! and ¢» = z 2. Let e(q) denote the
standard solution of (§ — q)e(q) =0, i.e. ¢ € 27'C[z 1] and e(q) = exp([ ¢*£)
with again [ ¢% € 27'C[z71]. The interval where e(q,) is flat is I; :== (=3, %)
and the two intervals where g is flat are I, := (=%, %) and Iy := (3%, 3T). The
sheaf V1 /Vs is isomorphic to Cj, and the sheaf Vs is isomorphic to Cr, ® Cy,.
The exact sequence

0—)V2—>V1—)V1/V2—>0

of course splits locally. Two local splittings in a direction d differ by a morphism
of (V1/Va2)a — (V2)4. The obstruction to global splitting is therefore an element
of H*(S!,Homg(V1/Va,Vs)). The sheaf appearing in this cohomology group
is, according to the proof of Lemma 7.40, isomorphic to (le)lz. Since I is
contained in I, the above cohomology group is isomorphic to C. This is the
reason why we do not expect the sequence to be split. Of course we have to
make a computation in order to show that the obstruction is actually non trivial.
It suffices to show that H°(I;,V;) = 0. Indeed, suppose that the exact sequence
of sheaves splits above I;. Then

0— HO(Il,VQ) — HO(Il,Vl) e d HO(Il,Vl/VQ) -0

would be exact and thus H°(I;,V;) = C.

A non zero element of H°(I;,V;) is a non zero multiple of (e(;l)) where

f would be flat on I; and satisfies (0 — ¢2)f = e(q1). This equation has a
unique flat solution Fy on the sector (—%, %) and a unique flat solution F> on
the sector (=%, 7). According to the proof of Lemma 7.13, those two solutions
are given by integrals Fy(z) = e(q2)(2) [y, e(—g2 + ¢1)(t)%. The first path \;
from 0 to 2z consists of two pieces {re?:| 0 < r < |z|} (for any ¢; such that
T<¢1<%)and {|z|ei¢| ¢ from ¢ to arg(z)}. The second path A consists of
the two pieces {re’®2| 0 <r <|z|} (for any ¢, such that —F < ¢» < —7F) and
{|z|€*| ¢ from ¢o to arg(z)}. We want to prove that Fy # F, because that
implies that the equation (6 — g2)f = e(q1) does not have a flat solution on Iy

and so H°(I;,V;) = 0.

The difference e(—g¢2)(F> — F1) is a constant, i.e., independent of z, and
therefore equal to the integral fAR e(—gq2 + Q1)(t)% for R > 0, where Ar is a
path consisting of three pieces {re™"%| 0 <r < R}, {Re"’| — % < ¢ < 2} and
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{re’i| R > r > 0}. After parametrization of Ag one computes that the integral
is equal to

R z —2i —i
) —v3 . 1 V2. dr [ e 2 i
21/0 e Sln(2r2 B 2r) r +Z[£ exp( 2R R ) do-

4

The second integral has limit i for R — oo. The first integral has also a limit
for R — 0o, namely 2ia with

/°° e L V2dr
a:= e sin(— — —)—
0

2r2 2r ' r

Numerical integration gives a = —0.2869... and thus the total integral is not 0.

We consider now the equation (§ — A)0 = ([1)) and suppose that o = 07 +

0o with a k;-summable 0; for i = 1,2. Then (6 — A)?; is kj-summable and
belongs moreover to C((2))1/k,. According to Lemma 7.59, wy := (6 — A)?; is
convergent. Then also ws := (§ — A)0s is convergent. Since 0o is ka-summable
it follows that ws is modulo the image of (§ — A) on C({z})? an element of the
form (2) with h a polynomial of degree < 1. After changing 05 by a convergent
vector, we may suppose that (6 — A)v, = (2) Thus (0 — A)v, = (fh) Thus
we have found a ki-summable F' with (6 — A)F = (,16) with k a polynomial of
degree < 1.

By definition, Fis k1-summable in all but finitely many directions. There is
some € > 0 such that F is k;-summable in all directions in (—¢,0) U (0, €). Using
the ﬁ1:st interval one finds an fi € (A1 x,)?(—€ — %, %) with asymptotic expan-
sion F. Then (§ — A)fi is ki-summable with convergent asymptotic expansion

(;) on the same interval. Thus, by Lemma 7.27, one has (§ — 4)f; = (). Sim-

ilarly there is an fo € (Ai/k, )?(—%, 5 + €) with asymptotic expansion F' and
(6—A)f = (,16) The difference f; — f5 lies in H°(I;,V;) and is therefore 0. Thus
there is an element f3 € (Ay/k,)?(—€ — 5,5 + €) with asymptotic expansion a
and with (§—A) f; = (;). The first coordinate g of f; lies in A, /4, (—e— 3, T +¢)
and satisfies the equation (§ — ¢;)g = 1. The formal solution % of (6 —¢;)a =1
has also a unique asymptotic lift § on the sector S*\ {0}. The difference g — g is
zero on the two sectors (0, 5 +€) and (—e — 5, 0), since the sheaf ker(d — ¢, A")
has only the zero section on the two sectors. Thus g and g glue to a convergent
solution of (0 — ¢1)h = 1 and h = 4 is convergent. However, by Corollary 7.22,
one knows that @ is divergent. This ends the proof of our two claims.

We make some further comments on this example. From HY(I;,V;) = 0 it
follows that also H'(I;,V;) = 0. This has the rather curious consequence that
any formal solution of (6 — A)0 = w has a unique asymptotic lift above the
sector I;. This asymptotic lift is in general not a k-sum in a direction.

We note that a small change of ¢; and ¢ does not effect the above calculation
in the example. Similarly, one sees that ¢; and g» of other degrees k1 < ko (in
the variable z71) will produce in general the same phenomenon as above. Only
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rather special relations between the coefficients of ¢; and ¢, will produce a sheaf
V; which is isomorphic to the direct sum of V5 and Vi /Vs.

For other illustrative examples, we refer to [134] and [136]. O

Remarks 7.61 Multisummation and the Borel and Laplace transforms.

The translation of k-summability in terms of Borel and Laplace transforms,
given in Theorem 7.33, has an analogue for multisummation. We will not use
this formulation of multisummability, but present the highly complicated result
for the information of the reader. More information can be found in [10], [11].
Given are f € C[[z]], a direction d and k = k; < --- < k, with k; > 1/2. Then
f is k-summable in the direction d if the formula

Ly, a(kr)Bg, - L a(k)Br; - o+~ a(K2)Bp, Ly, a(k1) By, f is meaningful.

We will explain what is meant by this.

e The k; are defined by ki = + —. For notational convenience we write

k +1
k41 = oo and hence k, = k. Moreover A(l)/krﬂ is by definition 0.

e The first By, is by definition the formal Borel transform By, of order
k1. The first condition is that By, f is convergent, in other words f €

Cllzllu/k. -

e The Bg; are “extended” Borel transforms of order k; in the direction d for
j =2,...,r. They can be seen as maps from A/Atl)/kj( 2k —€,d+5%- 5k +e)
to A(d —€,d + ¢).

e The L;; are “extended” Laplace transforms of order k; in the direction d.
They map the elements in A(d — €, d + €), having an analytic continuation
with exponential growth of order < ky;, to elements of A/Al/k +1(d —

st — 6 d+ 5 e

e The symbol a(k)¢ is not a map. It means that one supposes the holo-
morphic function ¢ to have an analytic continuation in a suitable full
sector containing the direction d. Moreover this analytic continuation is
supposed to have exponentional growth of order < k.

The Borel transform of order kin direction d, apphed to a function h, is defined

by the formula (Bh)(¢) = 5 [, h(z)z"eap ( )¥) dz~*. The path oflntegratlon
A consists of the three parts {ae’d1| 0 <a<r} {4 d > s > dy} and
{ae’®|r >a >0}, whered+ & < di <d+Z +eand d— & —e < dp <d— £

and with e, r positive and small

The expression “extended” means that the integral transforms £, and Bi,
originally defined for functions, are extended to the case of “k-precise quasi-
functions”, i.e., sections of the sheaf AJAY Ik
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The multisum (fi,...,f,) itself is defined by f; = Ly, ---Bklf for j =
1,...,r.

Exercise 7.62 Consider the matrix differential operator § — A of size n. Let
ky < --- < k., with 1/2 < k;, denote the slopes of § — A. As in Theorem 7.50
one defines for i = 1,...,r the sheaves V; = ker(d — A, (A(l)/ki )™). For notational
convenience we put V.11 = 0. Prove that there is a canonical isomorphism

¢ : {v € C((2))"| (§ — A)v is convergent }/{p € C({z})"} — H'(S*, V).
Further show that ¢ induces isomorphisms
{ve C((z))?/ki| (6 — A)o is convergent }/{v € C({z})"} — H*(S',V)),
and also isomorphisms between
{0 € C((2)1r.| (6 = A)d is convergent } /{0 € C((2))T)y,,, }

and HI(SI,VZ'/VZ'_H). O
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Chapter 8

Stokes Phenomenon and
Differential (Galois Groups

8.1 Introduction

We will first sketch the contents of this chapter. Let 6 — A be a matrix differ-
ential equation over C({z}). Then there is a unique (up to isomorphism over
C({z})) quasi-split equation § — B, which is isomorphic, over C((z)), to § — A
(c.f., Proposition 3.36). This means that there is a F' € GL(n,C((z)) ) such
that F—1(6 — A)F =6 — B. In the following § — A, § — B and F' are fixed and
the eigenvalues of § — A and § — B are denoted by q1,...,qs.

The aim is to find the differential Galois group of § — A4 in terms of § — B and
F. Since § — B is a quasi-split equation, we have seen in Proposition 3.35 that
the differential Galois over C({z}) and C((z)) coincide. The latter group is
known. From the formal matrix F' one deduces by means of multisummation
a collection of Stokes matrices (also called Stokes multipliers) for the singular
directions for the set of elements {g; — ¢;}. Those Stokes matrices are shown to
be elements in the differential Galois group of 6 — A. Finally it will be shown
that the differential Galois group is generated, as a linear algebraic group, by
the Stokes matrices and the differential Galois group of 6 — B. This result is
originally due to J. Martinet and J.-P. Ramis.

There are only few examples where one can actually calculate the Stokes ma-
trices. However, the above theorem of Martinet and Ramis gains in importance
from the following three additions:

1. The Stokes matrix associated to a singular directions (for the collection
{¢ — ¢;}) has a special form. More precisely, let V denote the space of
solutions of § — A in the universal differential extension of C((z)) (see
Section 3.2), let V = @&?_, V,, be its canonical decomposition with respect
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to eigenvalues of § — A and let v € GL(V) denote the formal monodromy.
Then the Stokes matrix St; for the singular direction d € R, considered
as an element of GL(V') has the form id + > A; ;, where A;; denotes a
linear map of the form

projection
—

linear inclusion
V Ve = Vo, =V,
and where the sum is taken over all pairs 4, j, such that d is a singular
direction for g; — ¢;. Further v~ 1Stqy = Styyor holds.

2. Let d; < --- < d; denote the singular directions (for the collection {g; —
¢;}), then the product yo Stg, - - - Stq, is conjugate to the topological mon-
odromy, that is the change of basis resulting from analytic continuation
around the singular points, of 6 — A, considered as an element of GL(V').

3. Suppose that § — B is fixed, i.e., V, the decomposition ®;_,V;, and v are
fixed. Given any collection of automorphisms {Cy} satisfying the condi-
tions in 1., there is a differential equation § — A and a formal equivalence
F~1(§ — A)F = § — B (unique up to isomorphism over C({z})) which has
the collection {Cy4} as Stokes matrices.

In this chapter, we will give the rather subtle proof of 1. and the easy proof
of 2. In Chapter 9 (Corollary 9.8), we will also provide a proof of 3. with the help
of Tannakian categories. We note that 3. has rather important consequences,
namely Ramis’s solution for the inverse problem of differential Galois groups
over the field C({z}).

The expression “the Stokes phenomenon” needs some explication. In Chapter
7 we have seen that any formal solution v of an analytic differential equation
(6 — A)o = w can be lifted to a solution v € A(a,b)" for suitably small sectors
(a,b). The fact that the various lifts do not glue to a lift on S!, is called the
Stokes phenomenon. One can formulate this differently. Let again v € A(a, b)™
be an asymptotic lift of . Then the analytical continuation of v in another
sector is still a solution of the differential equation but will in general not have
v as asymptotic expansion. G.G. Stokes made this observation in his study of
the Airy equation y” = zy, which has the point co as an irregular singularity.

8.2 The Additive Stokes Phenomenon

We recall the result from the Multisummation Theorem, Theorem 7.50. Let
0 — A be given, with positive slopes k = k; < -+ < k, (and 1/2 < k) and with
eigenvalues qi,...,qs- The collection of singular directions dy < -+ < d;,, <
dy (+27) of § — A is the union of the singular directions for each ¢;. Consider
a formal solution v of (§ — A)0 = w (with w convergent). For a direction d
which is not singular for § — A, the Multisummation Theorem provides a unique
asymptotic lift, denoted by Sq(0), which lives in A(d — 57~ — €,d + 55— + €)"
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for small enough positive €. Suppose that d; < d < d;y1, with for notational
convenience dpy41 = di(+27). The uniqueness of the multisum Sq(?), implies
that there is a unique asymptotic lift above the sector (d; — e div1 + ﬁ),
which coincides with S4(0) for any d € (d;, d;+1).

For a singular direction d, say d = d;, the multisum Sy(¢) does not exist.
However for directions d~,d", with d~ < d < d¥ and |d* — d~| small enough,
the multisums Sy+ (0) and Sy- (0) do exist. They are independent of the choices
for d*,d™ and can be analytically continued to the sectors (d; — s di1 + ﬁ)
and (d;—1 — 55—, di + 55-). The difference Sy- (0) — Sg+(0) is certainly a section
of the sheaf ker(d — A, (A%)") above the sector (d; — 5%, d; + 57-), and in fact
a rather special one. The fact that this difference is in general not 0, is again
the “Stokes phenomenon”, but now in a more precise form.

Definition 8.1 For a singular direction d and multisums Sq-(0), Sg+ () as
defined above, we will write sty(0) for Sy (0) — Sg+ (D).

We will make this definintion more precise. We fix a formal equivalence be-
tween 6 — A and § — B, where § — B is quasi-split. This formal equivalence
is given by an F' € GL(n,C((z)) ) satisfying F~1(6§ — A)F = 6 — B. Let us
write K4 and Kp for the sheaves ker(§ — A, (A%)") and ker(d — B, (A%)"). Let
W denote the solution space of § — B (with coordinates in the universal ring
UnivR) and with its canonical decomposition W = ®W,,. The operator 6 — B
is a direct sum of operators § — ¢; + C; (after taking a root of z) and W, is the
solution space of § — ¢; + C;. For each singular direction d of g;, we consider
the interval J = (d — sigy &+ %), where k(g;) is the degree of ¢; in the
variable z71. From Chapter 7 it is clear that Kp is (more or less canonically)
isomorphic to the sheaf &; y(W,,); on S'. Let V denote the solution space of
0 — A (with coordinates in the universal ring) with its decomposition ®&V;,. The
formal equivalence, given by F', produces an isomorphism between W and V
respecting the two decompositions and the formal monodromy. Locally on S',
the two sheaves Kp and K4 are isomorphic. Thus K 4 is locally isomorphic to
the sheaf ®; 7 (V).

Let us first consider the special case where d — A has only one positive slope k. In
that case it is proven in Chapter 7 that the sheaves Kp and K 4 are isomorphic,
however not in a canonical way. Thus K 4 is isomorphic to ®; 7(Vg,)s, but not in

a canonical way. We will rewrite the latter expression. Write Jy, ..., J,, for the
distinct open intervals involved. They have the form (d — 5, d + 5;), where d is

a singular direction for one of the g;. We note that d can be a singular direction
for several ¢;’s. Now the sheaf K4 is isomorphic to @;”Zl(Dj) J;» With D; some
vector space. This decomposition is canonical, as one easily verifies. But the
identification of the vector space D; with @;V;,, the direct sum taken over the
¢ such that the middle of J; is a singular direction for g;, is not canonical.

Now we consider the general case. The sheaf K4 is given a filtration by sub-
sheaves K4 = Ka1 D Ka2 D -+ D Ka,, where K4 ; := ker(d — A, (Atl)/,ci)").
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For notational convenience we write Ka,r+1 = 0. The quotient sheaf K4 ;/K a,i+1
can be identified with ker(§ — (A(l)/k /Al/k M) fori=1,...r — 1. Again
for notational convenience we write k,;1 = oo and Ai) Jhnsr = 0. For the sheaf
T := ®;,4(V,,)s we introduce also a filtration T =Ty D To D --- D T, with
T; = @i,7(Vy, )5, where the direct sum is taken over all 4 such that the degree of g;
in the variable z=' is > k;. For convenience we put T,4+1 = 0. Then it is shown in
Chapter 7 that there are (non canonical) isomorphisms K4 ;/Ka 41 = T;/Tit1
fori =1,...,r. Using those isomorphisms, one can translate sections and coho-
mology classes of K 4 in terms of the sheaf T'. In particular, for any open interval
I C S! of length < 7., the sheaves K4 and T are isomorphic and H(I,K4)

can be identified with H°(I,T) = &; yH°(I,(V,,)s). As we know HO(I,(Vy,)s)

i

is zero, unless I C J. In the latter case H(I, (Vy,)s) = V.

We return now to the “additive Stokes phenomenon” for the equation (6 —A)0 =
w. For a singular direction d we have considered std(A) = S4-(0) — Sg+ (D) as
element of H((d — 5f~,d + 57-),Ka) = H((d — 5, d + 5%-),T). The follow-
ing proposition gives a prec1se meaning to the earlier assertlon that stq(0) is a

rather special section of the sheaf T'.

Proposition 8.2 The element sty(0), considered as section of T above
(d - oA+ ﬁ), belongs to ®icy,Vy,, where Iy is the set of indices i such
that d is a singular direction for g;.

Proof. We consider first the case that § — A has only one positive slope k (and
k> 1/2). Then stq(0) € H°((d — £,d + 2%),T). The only direct summands of
T = ®;,7(Vy,)s which give a non zero contrlbution to this group HY are the pairs
(4,J) with J = (d — 55, d+ 5;). For such a direct summand the contribution to
the group HY is canonical 1som0rphic to V. This ends the proof in this special
case. The proof for the general case, i.e., r > 1, is for r > 2 quite similar to the

case r = 2. For r = 2 we will provide the details.

Let the direction d be non singular. The multisum in the direction d is in
fact a pair (vy,v2) with v; a section of (A/Al/k )" satisfying (6 — A)vy = w
(as sections of the sheaf (A/A° Jks )*). This section is defined on an interval
(d—3 k —€,d+ 22 +€). The unicity of vy proves that v; is in fact defined on an
open (e— 47—, f+5;-), where e < f are the consecutive singular directions for the
slope k1 with e < d < f. The element v, is a section of the sheaf (A" satisfying
(6 — A)vy = w. This section is defined above the interval (d — 2k —€,d+ 57~ 2k +e).
As above v, is in fact defined on the interval (e* — o T ) where e* < f*
are the consecutive singular directions for the slope k2 such that et <d< f*.
Moreover v; and v, have the same image as section of the sheaf (A/A? Jks "

above (e — 2k1’f+2k1) (e* —m,f*+m)

Let d now be a singular direction. We apply the above for the two directions d™

and d~ and write (v;,v]") and (v; v, ) for the two pairs. Then st4(d) = vy, —v5

is a section of K41 above the interval I := (d — ﬁ,d + ﬁ) Using the
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isomorphism of K4 = K4,1 with T' = T} above this interval we can identify
stq(0) with an element of H°(I,T}). One considers the exact sequence

0— H°(I,Ty) — H°(I,Ty) — H°(I, T, /Ts) — 0

The element v; — vf‘ lives in the sheaf C4,1/Ka,2 = T1/T> above the interval
J = (d— g5, d+ 357 ). Further the images of stq(0) and v, —vf in H(I, T\ /T>)
are the same. The group H°(J,T1/T:) can be identified with the direct sum
&V, taken over all ¢; with slope k; and d singular for ¢;. In the same way,
H°(I,Ty) can be identified with the direct sum ©V,,, taken over all ¢; with slope
ko and d as singular direction. Thus we conclude that st4(9) lies in the direct
sum DV, , taken over all g; such that d is a singular direction for g;. O

Corollary 8.3 The additive Stokes phenomenon yields isomorphisms between
the following C-vector spaces:

(a) {0 € C((2))"| (6 — A)v is convergent} /{0 € C({z})"}.

(b) H'(S!, ker(6 — A, (A")™)).

(C) Dd singular Picly, ti .

Proof. Consider the (infinite dimensional) vector space M consisting of the
0 € C((2))™ such that w := (§—A)v is convergent. According to Chapter 7 every
0 has asymptotics lift vg, on small enough sectors S, satisfying (6 — A)vs = w.
The differences vs — vg determine a 1-cocycle for the sheaf ker(d — A, (A%)").
The kernel of the resulting linear surjective map M — H'(S!, ker(6— A, (A%)"))

is C({z})™.

One also considers the linear map M — @ singular Picr, Vy,, Which maps any
0 € M to the element

{Std(ﬁ)}d singular € Da singular Dicry ti-

From the definition of sty it easily follows that the kernel of this map is again
C({z})™. Finally one sees that the spaces @4 singular Picr, Vy; and H* (S, ker(§—
A, (A")™)) have the same dimension. O

Remark 8.4 1. Corollary 8.3 produces an isomorphism
1/1 :Pa singular @ield ti — Hl(slv ker(6 - A> (AO)n))

In the case where there is only one positive slope k& (and k& > 1/2), we will
make this isomorphism explicit. One considers the singular directions d; <
oo < dy, < dyy1 = di(+27) and the covering of S* by the intervals S; :=
(dj—1 —€,dj +¢€), for j =2,...,m+1 (and € > 0 small enough such that the
intersection of any three distinct intervals is empty). For each j, the group
@iera, Vg, is equal to HO((dj — 55, d; + 3),ker(d — A, (A°)")) and maps to
HO(S;NSj+1,ker(d— A, (A%)™)). This results in a linear map of @y singutar Pic1,
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V,: to the first Cech cohomology group of the sheaf ker(6 — A4, (A°)™)) for the
covering {S;} of the circle. It is not difficult to verify that the corresponding
linear map

Da singular @ield ti — Hl (Sl,ker((s - A: (AO)n))
coincides with .

For the general case, i.e., r > 1, one can construct a special covering of the circle
and a linear map from @ singular Picr, Vy; to the first Cech cohomology of the
sheaf ker(§ — A, (A%)") with respect to this covering, which represents ).

2. The equivalence of (a) and (b) is due to Malgrange and (c) is due to Deligne
(c.f., [133], Théoreme 9.10 and [138], Proposition 7.1).

Lemma 8.5 Consider, as before, a formal solution © of the equation
(6 — A)o = w. Let the direction d be non singular and let v be the multisum of
v in this direction. The coordinates of U and v are denoted by v1,...,0, and
V1,...,Un. The two differential rings C({z})[v1,...,vn] and C({z})[01,...,0n)
are defined as subrings of A(S) and C((2)), where S is a suitable sector around
d. The canonical map J : A(S) — C((z)) induces an isomorphism of the dif-
ferential Ting

¢: C({zP)[v1,...,vn] = C{z})[01,...,0n]

Proof. It is clear that the morphism of differential rings is surjective, since
each v; is mapped to ¥;. In showing the injectivity of the morphism, we con-
sider first the easy case where § — A has only one positive slope k (and k& > 1/2).
The sector S has then the form (d — 5 —€,d + 5 + €) and in particular its
length is > 7. The injectivity of .J : A; /4 (S) — C((z)) proves the injectivity of
@.

Now we consider the case of two positive slopes k; < ko (and k1 > 1/2). The
situation of more than two slopes is similar. Each v; is a multisum and corre-
sponds with a pair (v;(1),v;(2)), where v;(1) is a section of the sheaf A/A(l)/k2
above a sector Sy := (d — 5= — €,d + 53— + €). Further v;(2) is a section of
the sheaf A above an interval of the form Sy := (d — 53z — €, d + 5 +€).
Moreover v;(1) and v;(2) have the same image in A/A?/k2(52). The v; of the
lemma is in fact the element v;(2). Any f € C({z})[v1,...,vy,] is also multi-
summable, since it is a linear combination of monomials in the vy, ..., v, with
coefficients in C({z}). This f is represented by a pair (f(1), f(2)) as above with
f = f(2). Suppose that the image of f under J is 0, then f(1) = 0 because
J A/A‘f/kz(sl) — C((z)) is injective. Thus f(2) € A‘f/kz(sz;) =0. O

8.3 Construction of the Stokes Matrices

In the literature, several definitions of Stokes matrices or Stokes multipliers can
be found. Some of these definitions seem to depend on choices of bases. Other
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definitions do not result in matrices that can be interpreted as elements of the
differential Galois group of the equation. In this section, we try to give a defini-
tion, rather close to the ones in [8, 135, 153, 222], which avoids those problems.
The advantage in working with differential modules over the field C({z}) is
that the constructions are clearly independent of choices of bases. However, for
the readability of the exposition, we have chosen to continue with differential
equations in matrix form. As in the earlier part of this chapter, we consider a
matrix differential equation 6 — A with A an n x n matrix with entries in C({z}).
The solution space V of this equation is defined as ker(§ — A, UnivR"), where
UnivR is the universal differential ring C((z))[{e(q)},{2%},]. The space V has
a decomposition @V, , where ¢, ..., gs are the eigenvalues of the operator d — A.
Further the formal monodromy v acts upon V. The idea is the following. For a
direction d € R, which is not singular with respect to the set {g; — ¢;}, one uses
multisummation in the direction d in order to define a map ¥4 from V to a solu-
tion space for § — A with entries which are meromorphic functions on a certain
sector around d. For a singular direction d, one considers as before directions
dt,d” with d~ < d < d* and |d* —d~| small. The difference ¢} 94— € GL(V)
of the two maps will be the Stokes multiplier St,.

As in the introduction we fix a quasi-split differential equation 6 — B and a for-
mal equivalence F~1(§ — A)F = § — B. By definition there is a splitting (after
taking some m'"-root of z) of § — B as a direct sum of equations § — ¢; — C;
where each C; is a constant matrix. We note that the matrices C; are not
completely unique. They can be normalized by requiring that the eigenvalues
X satisfy 0 < Re()\) < 1. Also F'is in general not unique once one has chosen
6 — B. Indeed, any other solution G of G=1(§ — A)G = 6 — B can be seen
to have the form G = FC with C € GL(n,C) such that C~'BC = B. The
equation § — B has a fundamental matrix E with coordinates in the subring

C({z})[{e(@)}, {2}, 1] of the universal ring C((2))[{e(q)}, {z"},1].

Our first concern is to give E an interpretation Es as an invertible matrix of
meromorphic functions on a sector S. There is however a difficulty. The ma-
trix E has entries involving the symbols [, 2%, e(q). And I, for instance, should
have the interpretation as the logarithm of z. To do this correctly, one has to
work with sectors T lying on the “Riemann surface of the logarithm of 2”. This
means that one considers the map C — C*, given by ¢ — e, A sector is then
a subset of C, say of the form {t € C| Re(t) € (a,b) and Im(t) > ¢}. The
drawback of this formally correct way of stating the constructions and proofs
is a rather heavy notation. In the sequel, we will use sectors 7" of length < 27
on the Riemann surface of logz and identify T with its projection S on the
circle S'. We keep track of the original sector by specifying for some point of
S its original d € R lying on T. We will use the complex variable z instead
of the above t. Thus we have an interpretation for Es or Ey as an invertible
meromorphic matrix, living above a sector S, actually on the Riemann surface,
but with the notation of complex variable z.

Let M(S) denote the field of the (germs of) meromorphic functions living on
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the sector S. We note that M can be seen to be a sheaf on S'. Then E;, is
an invertible matrix with coeflicients in M(S) and is a fundamental matrix for
0—B.

For a suitable sector S we want also to “lift” the matrix F' to invertible matrix
of meromorphic functions on this sector. We note that F' is a solution of the
differential equation L(M) := §(M) — AM + MB = 0. The differential oper-
ator L acts on n x n-matrices, instead of vectors and thus has order n?. The
expression d(M) means that zd% is applied to all the entries of M. Using F
itself, one sees that L is formally equivalent to the quasi-split operator (again
acting upon matrices) L : M + §(M) — BM + MB. Indeed, F~'L(FM) is
easily calculated to be L(M). The operator L is quasi-split because § — B is
quasi-split. Further the eigenvalues of L are the {¢; —¢;}. Thus L has the same
eigenvalues as L and the singular directions for L are the singular directions for
the collection {¢; — ¢;}. For a small enough sector S, there is an asymptotic
lift Fg of F above S. This means that the entries of Fg lie in A(S) and have
the entries of F' as asymptotic expansions. Moreover L(Fs) = 0. Since F is
invertible, we have that F is invertible and F5 ' (6 — A)Fs = 6 — B. However, as
we know, the lift Fg is in general not unique. A remedy for this non uniqueness
is the multisummation process. Let d be a direction which is not singular for
the equation L (i.e., non singular for the collection {g; — ¢;}). Then we consider
the multisum Sd(ﬁ ) in the direction d, which means that the multisummation
operator Sy is applied to every entry of F'. The multisum Sd(F') can be seen as
an invertible meromorphic matrix on a certain sector S containing the direction
d. Now Sd(F')Ed is an invertible meromorphic matrix above the sector S and is
a fundamental matrix for 6 — A. In the sequel we will use the two differential
equations d — A and § — B simultaneously. Formally, this is done by considering

the new matrix differential equation § — (64 1[3))'

Proposition 8.6 Let d € R be a non singular direction for the collection {q; —
gj} and let S be the sector around d defined by the multisummation in the
direction d for the differential equation L.

1. The C({z})-subalgebra Ry of the wuniversal ring UnivR,
i.e., C((2))[{e(q)}, {22}, 1], generated by the entries of E and ' and the
inverses of the determinants of E and F, is a Picard- Vessiot ring for the
combination of the two equations 6 — A and § — B.

2. The C({z})-subalgebra Rx2(S) of the field of meromorphic functions M(S),
generated by the entries of E4 and Sd(ﬁ') and the inverses of the deter-
minants of Eq and Sd(ﬁ'), is a Picard-Vessiot ring for the combination of
the two equations 6 — A and § — B.

3. There is a unique isomorphism of differential rings ¢q : Ro — Ra(S)
such that ¢q, extended to matrices in the obvious way, has the properties
¢a(E) = Eq and ¢a(F) = Sa(F).
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4. Let Ry be the C({z})-subalgebra of R., generated by the entries of FE
and let Ry (S) be the C({z})-subalgebra of Ry(S), generated by the entries
of S4(F)Ey. Then Ry and Ry(S) are Picard-Vessiot rings for 6 — A.
Moreover the isomorphism ¢q induces an isomorphism g4 : Ry — R(S),

which does not depend on the choices for § — B and F.

Proof. 1. and 2. R» is a subring of UnivR. The field of fractions of UnivR
has as field of constants C. Thus the same holds for the field of fractions of
R,. Further Rs is generated by the entries of the two fundamental matrices and
the inverses of their determinants. By the Picard-Vessiot Theory (Proposition
1.26), one concludes that R is a Picard-Vessiot ring for the combination of the
two equations. The same argument works for the ring R»(S).

3. Picard-Vessiot theory tells us that an isomorphism between the differential
rings Ry and R»(S) exists. The rather subtle point is to show that an isomor-
phism ¢4 exists, which maps F to E; and F to Sd(ﬁ'). The uniqueness of
¢4 is clear, since the above condition on ¢, determines the ¢4-images of the
generators of Ry. We start by observing that R, is the tensor product over
C({z}) of the two subalgebras Ry, := C({z})] entries of F, ﬁ] and R =
C({z})| entries of E, 127] of UnivR. Indeed, the map Ry 1 ® Ry — C((2)) ®
Ry - is injective. Moreover, the obvious map C((z)) ® Ry 2 — UnivR is injec-
tive, by the very definition of UnivR. We conclude that the natural map Ry ; ®
Ry > — UnivR is injective. The image of this map is clearly Rs. Now we con-

sider the two C({z})-subalgebras Ry 1(S) := C({z})[ entries of Sy(F), m]

and R»5(S) := C({z})[ entries of Ed’WlEd] of M(S). The canonical map
J : R21(S) — Rs;1 is an isomorphism, according to Lemma 8.5. The ring
Rs 2 is a localisation of a polynomial ring over the field C({z}) and this implies
that there is a unique isomorphism Ry 2 — R22(S), which, when extended to
matrices, sends the matrix E to Ez. Combining this, one finds isomorphisms

Ry — R271 & R272 — RQJ(S) ® R272(S).

Since R21(S) and Ry2(S) are C({z})-subalgebras of M(S), there is also a
canonical morphism Ry 1(S) ® R22(S) — M(S). The image of this map is
clearly R(S). Thus we found a C({z})-linear morphism of differential rings

ba : Ry — R(S), such that ¢g(F) = Sy(F) and ¢q(E) = E4. Since Ry has only
trivial differential ideals, ¢4 is an isomorphism.

4. Asin 1. and 2., one proves that R; and R;(S) are Picard-Vessiot rings for
0 — A. Then clearly ¢4 must map R; bijectively to R;(S). Finally we have
to see that 14, the restriction of ¢4 to Ry, does not depend on the choices for
8 — B and F. Let § — B* be another choice for the quasi-split equation. Then
§ — B* = G 1(§ — B)G for some G € GL(n,C({z})). The special form of B
and B* leaves not many possibilities for GG, but we will not use this fact. Then
(FG) (6 — A)(FG) = (6 — B*). All the rings, considered in the proof of 3.,
remain unchanged by this change of the pair (B, F) into (B*, FG). The new
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fundamental matrices are F'G and G *E and their lifts are Sq(FG) = Sy(F)G
and (G1E)y = G 'E,;. The map ¢4, extended to matrices, maps again FG to
S4(FG) and G™'E to (G'E)4. Thus the ¢4 for the pair (B*, FG) coincides
with the one for the pair (B, F‘) The same holds then for ¢4. The other change
of pairs that we can make is (B, F'C) with C € GL(n, C) such that CB = BC.
In a similar way one shows that ¢4 and ¥4 do not depend on this change. O

Remark 8.7 The subtle point of the proof.

The crucial isomorphism ¢4 : Ry — Ra(S) of part 3. of Proposition 8.6, means
that every polynomial relation between the entries of the matrices F and E over
the field C({z}) is also a polynomial relation for the corresponding entries of the
matrices Sy(F) and E4 over C({z}). We have used multisummation to prove
this. In general, it is not true that the same statement holds if the multisum
Sq(F) is replaced by another asymptotic lift Fig of ' above the sector S (c.f.,
[135].

Let d € R be a singular direction for the differential equation L. One consid-
ers directions d*,d~ with d~ < d < d* and |[dt — d~ | small. Multisummation
in the directions d* and d—, yields according to Proposition 8.6, isomorphisms
g+ Ry — R1(ST) and ¢4 : Ry — R1(S™) for suitable sectors ST, S~ given
by the mutisummation process. The intersection S := St N S~ is a sector
around the direction d. Let Ry(S) C M(S) denote the Picard-Vessiot ring for
d — A inside the differential field M(S). The restriction maps M(ST) — M(S)
and M(S™) — M(S) induce canonical isomorphisms res™ : R;(S*) — R;(S)
and res™ : R1(S7) = R1(S5).

Definition 8.8 The Stokes map Stq for the direction d, is defined as
(restepgr) " tres ihg-.

In other words St; is defined by the formula ¢4+ o Sty = An o ¢4, in which
An denotes the analytical continuation from the sector S~ to the sector S+.
Clearly, Sty is a differential automorphism of the Picard-Vessiot ring R;. In
particular Stq induces an element of GL(V'). This element is also denoted by
Stq and will be called the Stokes multiplier or the Stokes matriz. The translation
of Sty in matrices can be stated as follows. The symbolic fundamental matrix
FE of § — A is lifted to actual fundamental matrices S+ (F)E4 and S;- (F)Eyq,
with meromorphic functions as entries. On the intersection S of the sectors

A~ A~

ST and S, one has S+ (F)E4C = Sy- (F)Ejq, for some constant matrix C' €
GL(n,C). The columns of F'E are a basis for V. The columns of S+ (F))E4 and
Sq- (F)Ed are the lifts of this basis of V' to the sectors ST and S—, obtained by
multisummation. The relation between the two lifts is given by C'. Thus C is

the matrix of Sty with respect to the basis of V defined by the columns of FE.

From this description of Stg4, one sees that if § — A; and § — A are equivalent
equations over K, then, for each direction d, the Stokes maps (as linear maps of
V') coincide. This allows us to define the Stokes maps associated to a differential
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module M over K to be the Stokes maps for any associated equation. This allows
us to make the following definition.

Definition 8.9 Let M be a differential module over K. We define Tup(M) to
be the tuple (V,{Vy},,{Stqa}) where (V,{V,},v) = Trip(M) is as in Proposi-
tion 3.30 and {Stq} are the collection of Stokes maps in GL(V).

In Chapter 9, we will see that Tup defines a functor that allows us to give a
meromorphic classification of differential modules over K.

Theorem 8.10 (J. Martinet and J.-P. Ramis)
The differential Galois group G C GL(V') of the equation § — A is generated, as
linear algebraic group, by:

1. The formal differential Galois group, i.e., the differential Galois group
over the field C((z)) and

2. The Stokes matrices, i.e., the collection {Sts}, where d runs in the set of
singular directions for the {q; — q;}.

Moreover the formal differential Galois group is generated, as a linear algebraic
group, by the exponential torus and the formal monodromy.

Proof. In Section 3.2, we showed that the formal differential Galois group
is generated, as a linear algebraic group, by the formal monodromy and the
exponential torus (see Proposition 3.35). Let R; C R denote the Picard-Vessiot
ring of § — A over C({z}). Its field of fractions K; C K is the Picard-Vessiot
field of 6 — A over C({z}). We have to show that an element f € K;, which
is invariant under the formal monodromy, the exponential torus and the Stokes
multipliers belongs to C({z}). Proposition 3.25 states that the invariance under
the first two items implies that f € C((z)). More precisely, from the proof of
part 3. of Proposition 8.6 one deduces that f lies in the field of fractions of
C({z})| entries of F, ﬁ] For any direction d, which is not singular for the
collection {g; — ¢;}, there is a well defined asymptotic lift on a corresponding
sector. Let us write Sy(f) for this lift. For a singular direction d, the two
lifts Sy+ (f) and Sy— (f) coincide on the sector ST NS~ since Sty(f) = f. In
other words the asymptotic lifts of f € C((2)) on the sectors at zero glue to an
asymptotic lift on the full circle and therefore f € C({z}). O

Remark 8.11 We note that a non quasi-split equation  — A nay have the same
differential Galois group over C((z)) and C({z}). This occures when the Stokes

matrices already lie in the differential Galois group over C((z)).

Proposition 8.12 We use the previous notations.

1. 7—1Std7 = Stgion-
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2. Let dy < --- < d¢ denote the singular directions (for the collection {q; —
¢;}), then the product yStq, ---Sta, is conjugate to the topological mon-
odromy of § — A, considered as an element of GL(V).

Proof. 1. We recall the isomorphism ¢4 : Re — R»(S), constructed in Propo-
sition 8.7. From the construction of ¢4 one sees that ¢gi2, = ¢gq 0y, where v
is the formal monodromy acting on R; and V. For the induced isomorphism
q : Ry — Ry(S) one also has ¥g42. = ¥4 0. Then (omitting the symbol An
for analitical continuation), one has Stgqor = 1/1(7d::-27r)’1/}(d+2ﬂ')+’ which is equal

to v~ Stgy.

2. The topological monodromy of 6 — A is defined as follows. Fix a point p
close to the origin. The solution space Sol, of the equation, locally at p, is a
vector space over C of dimension n. One takes a circle T' in positive direction
around 0, starting and ending in p. Analytical continuation of the solutions at
p along T produces an invertible map in GL(Sol,). This map is the topological
monodromy. After identification of the solution space V' with Sol,, one obtains
a topological monodromy map lying in GL(V). This map is only well defined
up to conjugation. If one follows the circle and keeps track of the Stokes multi-
pliers, then one obtains clearly a formula of the type stated in the proposition.
By the definition of St4 one has at°© Stq, = Anovp a5 where An means analyt-

ical continuation from the sector S~ to ST. Using this formula for all singular
directions one finds that

wdjoStdt---Stdl :Anol/ld;.

Moreover 1/Jd;{— = Ydy+2m)- = 1/Jd1— o~ and An is the analytical continuation
along a complete circle. This yields v o Stg, -+ Stg, = 1/1;_1 oAnov o which
1

proves the statement. O

Theorem 8.13 We use the previous notations. The Stokes multiplier Sty has
the form id + ) A; j, where A; ; denotes a linear map of the form

projection linear inclusion
ViV, =V, =V,

and where the sum is taken over all pairs i, j, such that d is a singular direction
for gi — q;.

Proof. The statement of the theorem is quite similar to that of Proposition 8.2.
In fact the theorem can be deduced from that proposition. However, we give
a more readable proof, using fundamental matrices for § — A and § — B. The
symbolic fundamental matrices for the two equations are FE and E. Again
for the readability of the proof we will assume that F is a diagonal matrix
with entries e(q1),...,e(g,), with distinct elements qy,...,¢, € 2 *C[z71].
Thus B is the diagonal matrix with entries ¢i,...,q,. The Stokes multiplier
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A

Stq is represented by the matrix C' satisfying Sg+ (F)EqC = Sy- (ﬁ)Ed. Thus
E,CE;Y = Sy (F)71S4-(F). Let C = (Ci;), then the matrix E,CE," is
equal to M := (e(q; — ¢;)aCi,j).

Suppose now, to start with, that each ¢; — ¢; (with i # j) has degree k in 2.

The k-Summation Theorem, Theorem 7.38, implies that Sg+ (F)*lsd_ (ﬁ) -1
has enrtries in A?/k(d — 35>@+ 57). The sector has length 7 and we conclude
that e(g; — ¢;)aci,; = 0 unless d is a singular direction for ¢; — ¢;. This proves

the theorem in this special case.

Suppose now that the degrees with respect to z~* in the collection {g;—q;| i # j}
are k; < --- < ks. From the definition of multisummation (and also Propo-
sition 7.58) it follows that the images of the entries of M — id in the sheaf
“4[1)/1@1 /.A(l’/k2 exist on the interval (d — 57—, d+ 5;-). Thus for ¢; — g; of degree ki
one has that ¢; ; = 0, unless d is a singular direction for ¢; — ;. In the next stage
one considers the pairs (g;,q;) such that ¢; — ¢; has degree k». Again by the
definition of multisummation one has that ¢; je(g; — ¢;j)q must produce a section
of ,él(l)/k2 /“4(1)/1@3 above the sector (d — 37—, d+ 37-). This has as consequence that
ci,j =0, unless d is a singular direction for ¢; — ¢;. Induction ends the proof.

In the general case F can, after taking some m™ -root of z, be written as a block
matrix, where each block corresponds to a single e(q) and involves some 2%’s
and [. The reasoning above remains valid in this general case. a

Remark 8.14 In Definition 8.9, we associated with any differential module M
over K a tuple Tup(M) = (V,{V,},7,{Sta}). This defininiton, Proposition
8.12, and Theorem 8.13 imply that this tuple has the following propoerties:

(a) (V,{V4},7) as an object of Gry.
(b) For every d € R the element Sty € GL(V') has the form id+ ) A; ;, where

. projection linear inclusion
A; ; denotes a linear map of the form V= =" V| Vq V,

and where the sum is taken over all pairs 7,5 such that d is a singular
direction for ¢; — g;.

(c) One has that y='Styy = Sty 442, for all d € R.

In Section 9, we will define acategory Gry of such onjects and show that Tup
defines an equivalence of categories between the category Diff i of differential
modules over K and Grs.

Example 8.15 The Airy equation.

The Airy equation y” = zy has a singular point at z = co. The translation
of the theory developed for the singular point z = 0 to the point z = oo
is straightforward. The symbolic solution space V at oo can be identified
with the solutions of the scalar equation in the universal ring at oo, namely
C((7")[{e(q)},{2},1]. The set where the ¢’s belong to is Up,>12'/™C[z!/™]



244 CHAPTER 8. STOKES PHENOMENON AND GALOIS GROUPS

and 2% and [ are again symbols for the functions z® and log(z). The two ¢’s of
the equation are ¢; := 2%/2 and ¢u := —2%/2. Thus V is the direct sum of two
1-dimensional spaces V' = V,s/2 & V__s/2. The formal monodromy ~ permutes
the two 1-dimensional spaces. The differential Galois group of the equation lies
in SL(2, C), since the coefficient of y in the equation is zero. Therefore, one can
give Vs> and V__s/» bases such that the matrix of v with respect to this basis

of V reads < (1) _01 ) The exponential torus, as subgroup of SL(V') has on

the same basis the form {< é tE)l > | t € C*}. According to Theorem 8.10,
the formal differential Galois group is the infinite Dihedral group Do, C SL(2)
(c.f., Exercise 3.33).

The singular directions for {1 — g2,q2 — q1} are d = 0, 2%, 2T modulo 27Z. The
topological monodromy is trivial, since there are two independent entire solu-

tions for y” = zy. Using Theorem 8.13, we see that the formal monodromy is

not trivial. The three Stokes matrices Stg, Stz% , St%r have the form ( (1) I ),

1 0
Their product is v~ according to Proposition 8.12, and this is only possible if
each one is # id. Theorem 8.10 (and the discussion before Exercise 1.29) implies
that the differential Galois group of the Airy equation over C(z) is SL(2). O

( i 0 ) and < L ){ > with respect to the decomposition V=V, 5,2 B V_,3/2.

1

Exercise 8.16 Consider the equation y"” = ry with r € CJ[z] a polynomial of
odd degree. Let V' denote the symbolic solution space at z = co. Calculate the
q’s, v, the formal differential Galois group, the singular directions, the Stokes
matrices and the differential Galois group. a

Example 8.17 The asymptotic behaviour of the following differential equation
has been studied by W. Jurkat, D.A. Lutz and A. Peyerimhoff [112, 113] and
J. Martinet and J.P. Ramis in [151].

A O 0 a
— -1 1
b+A:=06+z2 (0 )\2>+<b 0).
We will apply the theory of this chapter to the equation. Let
B = z"! < >E)1 ;) ) We claim that there is a unique ¢ of the form 1 +
2

$12 + @222 + - -+ (where the ¢; are 2 x 2-matrices) with ¢ 1(§ + A)¢p = 6 + B.
This can be proven by solving the equation

A0 0 a A0
_ (-1 1 _ -1 1
=6 (5 )+ (0 8 oo (4 )
and the corresponding sequence of equations for the ¢, stepwise by “brute
force”. Explicit formulas for the entries of the ¢, can be derived but they
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are rather complicated. One observes that the expressions for these entries

contain truncations of the product formula for the function %ﬁb\/a_b) One

defines a transformation ¢ by replacing truncations in the entries oaf all the ¢y,
by the corresponding infinite products. The difference between the two formal
transformations ¢ and v is a convergent transformation. In particular, one can
explicitly calculate the Stokes matrices in this way, but we will find another way
to compute them.

The two eigenvalues of § + A are ¢t = —X\iz~! and go = —X22~'. There

are two singular directions for {g1 — ¢2,92 — ¢1}, differing by 7. On the given
basis for § + A and § + B, the two Stokes matrices have, according to The-
orem 8.13, the form ( Lo > and < 1o
0 1 T2 1

1+ 12 I
T2 1
ical monodromy. The topological monodromy can be easily calculated at the

point z = oco. For general a,b it has the matrix exp( 2mi ( _Ob —Oa >) The

). The formal monodromy of

6 — A is the identity and thus > is conjugate to the topolog-

trace of the monodromy matrix e2Vab 4 ¢=27iVab ig equal to the other trace
2 4+ z1x5. Therefore zyx5 = —(2sin(rvab))?. We consider z; = z1(a,b) and
x2 = x2(a,b) as functions of (a,b), and we want to find an explicit formula
for the map (a,b) — (z1(a,b),z2(a,b)). A first observation is that conjugation

0 (1) ) leads to (Aa, \"1b) —

(Az1(a,b), \"*z5(a,b)). This means that zl(;’b) and “(;’b) depend only on ab.
Thus (z1,2z2) = (a(ab)a, 3(ab)b) for certain functions « and .

of all ingredients with the constant matrix <

The final information that we need comes from transposing the equation and
thus interchanging a and b. Let F' denote the formal fundamental matrix of the
equation. A comparison of two asymptotic lifts of F produces the values =1,z
as function of a,b. Put G(z) = (F*)~'(—z), where * means the transposed
matrix. Then ( is a fundamental matrix for the equation

d A1 0 0 -b
2 & 1
? dz+< 0 A >+Z<—a 0 )
The two Stokes matrices for G are obtained from the ones for F' by taking
inverses, transposition and interchanging their order. This yields the formula

(z1(=b, —a), x2(—b, —a)) = (—z2(a,b), —x1(a,b)). One concludes that a(ab) =

B(ab) = 252V The formula that we find is then

(o)) = ZSR(TVAD)

Vab

We note that we have proven this formula under the mild restrictions that ab # 0

and the difference of the eigenvalues of the matrix < 2 8 ) is not an integer
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# 0. It can be verified that the formula holds for all a, b.

The map 7 : (a,b) — %\/g/a_b) - (a,b) is easily seen to be a surjective map
from C? to itself. This demonstrates in this example the third statement made
in the introduction about Stokes matrices. This example will also play a role in

Chapter 11 where moduli of singular differential equations are studied. O

Remark 8.18 One can calculate the Stokes matrices of linear differential equa-
tions when one has explicit fomulae for the solutions of these equations. Exam-
ples of this are given in [69], [155] and [156]



Chapter 9

Stokes Matrices and
Meromorphic Classification

9.1 Introduction

We will denote the differential fields C({z}) and C((z)) by K and K. The
classification of differential modules over K , given in Chapter 3.2, associates
with a differential module M a triple Trip(M) = (V,{V;},7). More precisely,
a Tannakian category Gr; was defined, which has as objects the above triples.
The functor Trip : Diff , — Gr; from the category of the differential modules
over K to the category of triples was shown to be an equivalence of Tannakian
categories.

In Chapter 8, this is extended by associating to a differential module M over
K a tuple Tup(M) = (V,{V,},v,{Sta}). We will introduce a Tannakian cat-
egory Gra, whose objects are the above tuples. The main goal of this chapter
is to show that Tup : Diffx — Gry is an equivalence of Tannakian categories.
In other words, the tuples provide the classification of the differential modules
over K, i.e., the meromorphic classification. There are natural functors of Tan-
nakian categories Diff g — Diff ., given by M K @k M, and the forgetful
functor Gra — Gry, given by (V,{V,},7, {Sta}) — (V,{V,},7). The following
commutative diagram of functors and categories clarifies and summarizes the
main features of the “Stokes theory”.

Diff}( Ti>p GI“Q
i -

. Tri
Dlﬁ'f( E>p Gr1

The description of the differential Galois group of a differential module over
K (see Chapter 3.2) and of a differential module over K (see Chapter 8, The-

247
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orem 8.10) are easy consequences of this Tannakian description. The main
difficulty is to prove that every object (V,{V,},~, {Sta}) of Grs is isomorphic to
Tup(M) for some differential module M over K. In terms of matrix differential
equations this amounts to the following:

There is a quasi-split differential operator § — B which has the
triple (V,{V,}, ). One wants to produce a matrix differential opera-
tor §— A over K and a ' € GL(n, K) such that F~*(—B)F = §—B
and such that the Stokes maps associated to § — A are the prescribed
{Stq}. (See also the introduction of Chapter 8).

An important tool for the proof is the Stokes sheaf ST'S associated to § — B.
This is a sheaf on the circle of directions S!, given by: STS(a,b) consists of
the invertible holomorphic matrices T, living on the sector (a,b), having the
identity matrix as asymptotic expansion and satisfying T'(§ — B) = (6 — B)T.
The Stokes sheaf is a sheaf of, in general noncommutative, groups. A theorem
of Malgrange and Sibuya states that the cohomology set H*(S*, ST'S) classifies
the equivalence classes of the above pairs (0 — A, ﬁ) The final step in the proof
is a theorem of M. Loday-Richaud, which gives a natural bijection between the
set of all Stokes maps {Stq} (with (V,{V;},v) fixed) and the cohomology set
HY(SL, STS).

We finish this chapter by giving the cohomology set H!(S!,STS) a natural
structure of an affine algebraic variety and by showing that this variety is iso-
morphic with the affine space Ag , where N is the irregularity of the differential
operator M — §(M) — BM + M B, acting upon matrices.

9.2 The Category Gry

The objects of Gra are tuples (V,{V;},yv,{Stv.q}) with:

(a) (V,{V,},7v) as an object of Gr.
(b) For every d € R the element Sty,q € GL(V) has the form id + " A; ;,

. projection linear inclugion
where A; ; denotes a linear map of the form V' = "=V, =" V. "=

V', and where the sum is taken over all pairs i, such that d is a singular
direction for ¢; — g;.

(c) Onme requires that 7‘71Stv7d7V = Sty q42. for all d € R.

Remarks 9.1 We analyse the data {Sty4}. Let ¢1,...,¢q, denote the set of
g € Q, such that V,, # 0. If d is not a singular direction for any of the ¢; — g;,
then Sty.4 = id. Using requirement (c), it suffices to consider the d € R such
that 0 < d < 27 and d is a singular direction for some ¢; — ¢;. Each A4;; is
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given by a matrix with dim V;, -dim V5, entries. Thus the data {Stv 4} (for fixed
(V,{V,},7v)) can be described by a point in an affine space AY. One defines
the degree degq of an element ¢ € Q to be X if ¢ = cz~*+ lower order terms
(and of course ¢ # 0). By counting the number of singular directions in [0, 27)
one arrives at the formula N =37, . deg(¢; — ¢;) - dim Vy, - dim V.

Let M denote the quasi-split differential module over K which has the formal
triple (V,{V4},7v). Then one easily calculates that the (quasi-split) differential
module Hom(M, M) has irregularity N. Or in terms of matrices: let 6 — B
be the quasi-split matrix differential operator with formal triple (V,{V;},vv).
Then the the differential operator, acting on matrices, T' + 6(T) — BT + T B,
has irregularity V.

We continue the description of the Tannakian category Gry. A morphism
f:V=(V {Vq},’)/v,{stv7d}) - W = (W,{Wq},’yw,{StWA}) is a C-linear
map f : V — W which preserves all data, ie., f(V,) C W,, ywo f =
fovyy, Stwao f = foStyq The set of all morphisms between two ob-
jects is obviously a linear space over C. The tensor product of V and W is the
ordinary tensor product X :=V ®cW with thedata X, =% - . _ V,®
Wey vx = 7w ®@ yw, Stx,a = Sty ® Stw,e. The internal Hom(V, W)
is the linear space X := Homc(V,W) with the additional structure: X, =
qu,q27 —q14+qa=q Hom(VIIUqu): 7X(h) = Tw ©° ho 7‘;1) StX,d(h) = StWJi o
h o Styq (where h denotes any element of X). The unit element 1 is a 1-
dimensional vector space V with V = V4, vy = id, Styq = id. The dual
V™ is defined as Hom(V,1). The fibre functor Gros — Vectc, is given by
(VoAVe}, v, {Stv,a}) — V (where Vectc denotes the category of the finite
dimensional vector spaces over C). It is easy to verify that the above data
define a neutral Tannakian category. The following lemma is an exercise (c.f.,
Appendix C).

Lemma 9.2 Let V. = (V,{V,},vv,{Stv.a}) be an object of Gra and let {{V}}
denote the Tannakian subcategory gemerated by V , i.e., the full subcategory of
Gry generated by allV @--- @V QV*®---@V*. Then {{V}} is again a neutral
Tannakian category. Let G be the smallest algebraic subgroup of GL(V') which
contains vy, the erponential torus and the Sty q. Then the restriction of the
above fibre functor to {{V'}} yields an identification of this Tannakian category
with Reprg, i.e., the category of the (algebraic) representations of G on finite
dimensional vector spaces over C.

Lemma 9.3 Tup is a well defined functor between the Tannakian categories
Diffx and Gre. The functor Tup is fully faithful.

Proof. The first statement follows from Remark 9.1, the unicity of the multi-
summation (for non singular directions) and the definitions of the Stokes maps.
The second statement means that the C-linear map

Hompig, (M1, M>) — Homgy, (Tup(Mi), Tup(M2))
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is a bijection. It suffices to prove this statement with M; = 1 (this is the 1-
dimensional trivial differential module over K) and M, = M (any differential
module over K). Indeed, Homp;g, (M7, M>) is isomorphic to Homp;g, (1, M7 ®
Ms).

In considering this situation, one sees that Homp;g, (M1, M2) is equal to {m €
M| o(m) = 0}. Let Tup(M) = (V,{V,},vv,{Stv.a}). One has that
Homgy, (Tup(M;), Tup(Myz)) is the set S consisting of the elements v € V' be-
longing to Vp and invariant under vy and all Sty 4. The map {m € M| §(m) =
0} — S is clearly injective. An element v € S has its coordinates in K', since
it lies in V4 and is invariant under the formal monodromy 7y . The multisums
of v in the non singular directions glue around z = 0 since v is invariant under
all the Stokes maps Sty 4. It follows that the coordinates of v lie in K and thus
v € M and §(v) = 0. O

Remark 9.4 Let M be a differential module over K and write V := Tup(M).
Let {{M}} denote the Tannakian subcategory of Diff x generated by M. Ac-
cording to Lemma 9.3 the Tannakian categories {{M }} and {{V/}} are isomor-
phic. From Lemma 9.2 one draws the conclusion that the differential Galois
group of M is the smallest algebraic subgroup of GL(V') containing the for-
mal monodromy, the exponential torus and the Stokes maps. Thus the above
provides a Tannakian proof of Theorem 8.10 of Chapter 8 .

9.3 The Cohomology Set H!(S! STS)

We start by recalling the definition and some properties of the cohomology set
HY(X,G), where X is any topological space and G a sheaf of (not necessarily
commutative) groups on X (see [8], [75] and [89] for a fuller discussion). For
notational convenience we write G(#) = {1}. Let i = {U; }icr denote a covering
of X by open sets U;. A 1-cocycle for G and U is an element g = {g; ;}i jer €
[IG(U; N Uj) satistying the conditions: g;; = 1, g; jg;; = 1 and gi jg; kgk,i = 1
holds on U; N U; N Uy, for all 4, 7, k.

We note that the last condition is empty if U; N U; N U, = (. Moreover the
second condition follows from the first and the third condition by considering
i,j,k with & = . In some situations it is convenient to fix a total order on
I and to define a 1-cocycle g to be an element of [[,_; G(U; N U;) satisfying
9i.i95.k = 9ik o0 U; NU; N Uy, whenever i < j < k and U; NU; N Uy # 0.

Two 1-cocyles g and h are called equivalent if there are elements I; € G(U;) such
that 1;9; ; ]-_1 = h; ; holds for all 7, j. The set of equivalence classes of 1-cocycles
(for G and U) is denoted by H'(i,G). This set has a distinguished point,
namely the (equivalence class of the) trivial 1-cocycle g with all g; ; = 1. For a
covering V which is finer than i/, there is a natural map H*(U,G) — H'(V,G).
This map does not depend on the way V is seen as a refinement of /. Moreover
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the map H'(U,G) — H'(V,G) turns out to be injective. The cohomology
set H'(X, Q) is defined as the direct limit (in this case this is a union) of all
H'(U,G). The distinguished point of H' (X, G) will be denoted by 1. The map
H'(U,G) - HY(X,Q) is bijective if H'(U;,G) = 1 for each U; € Y. This
is Leray’s theorem for the case of sheaves of (not necessarily abelian) groups.
These properties are stated and proved in [74] for the case of sheaves of abelian
groups (see also Appendix B). One easily sees that the proofs extend to the
case of sheaves of (not necessarily abelian) groups.

We apply this cohomology for the topological space S' and various sheaves of
matrices. The first two examples are the sheaves GL(n,.A) and its subsheaf
GL(n, A)° consisting of the matrices which have the identity as asymptotic
expansion. We now present the results of Malgrange and Sibuya (c.f., [8], [135],
[144], [146], [151], [195)).

Theorem 9.5 B. Malgrange and Y. Sibuya
The natural map H'(S*, GL(n,A)°) - H'(S', GL(n, A)) has image {1}.

Proof. We only give a sketch of the proof. For detailed proof, we refer to [8].

As in the proof of Proposition 7.24, one considers the most simple covering
U = (a1,b1) U (az,b2) with (ay,b;) N (az,b2) = (az,b1), i.e., inequalities a; <
ay < by < by for the directions on S! and U # S!. A 1-cocycle for this covering
and the sheaf GL(n,.4)? is just an element M € GL(n,A)°(as,b;). We will
indicate a proof that the image of this 1-cocycle in H' (U, GL(n, A)) is equal to
1. More precisely, we will show that for small enough € > 0 there are invertible
matrices My, My with coefficients in A(a1,b; — €) and A(as + €,b2) such that
M = Mi;M,. Let us call this the “multiplicative statement”. This statement
easily generalizes to a proof that the image of H'(S!,GL(n,.4)%) in the set
H'(S',GL(n,.A)) is the element 1. The “additive statement for matrices” is the
following. Given an n x n-matrix M with coefficients in A°(as, b;), then there
are matrices M;, i = 1,2 with coefficients in A(a;, b;) such that M = My + M.
This latter statement follows at once from Proposition 7.24.

The step from this additive statement to the multiplicative statement can be
performed in a similar manner as the proof of the classical Cartan’s lemma,
(see [90] p. 192-201). A quick (and slightly wrong) description of this method
is as follows. Write M as 1+ C where C has its entries in A°(as,b1). Then
C = A, + By, where A;, B; are small and have their entries in A(a;,b;) and
Al(as, bs). Since Ay, By are small, I + A; and I + B, and we can define a matrix
C1 by the equation (14+A4;)(1+C1)(14+B;1) = (1+C). Then C; has again entries
in A%as,b1) and Cy is “smaller than” C. The next step is a similar formula
(14 A2)(1 4+ Cy)(1 + Bz) = 1+ C>. By induction one constructs A,, B,Cy,
with equalties (1 + 4,)(1 + Cp)(1 + By) = 1+ Cp—;. Finally the products
(1+A,)---(14+ A4;) and (1+ By)---(1 + By,) converge to invertible matrices
M; and M, with entries A(ay,b;) and A(az, by) such that M = M; M,. We now
make this more precise.
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As in the proof of Proposition 7.24, we consider a closed path 7; consisting of
three parts: the line segment from 0 to (r 4 €)e’(@2+(1-1/2)¢) the circle segment
from (r + €)el(@2H(1=1/2)9) to (r 4 €)eib1=(1=1/2)¢) and the line segment from
(r 4 €)et1=(1=1/2)9) t5 (0. This path is divided into halves 7" and ;. As
above we are given an element M = 1 + C' where the matrix C' has entries
in A%(az,b;). We define the decomposition C' = A; + B; by letting A; be the
integral = fﬁ %d( and Bj be the integral with the same integrand and with

2mi

path 77 . We will see below how to select » small enough to ensure that A; and
B are small and so 1 + A; and 1+ B; are invertible. The matrix C; is defined
by the equality (1 + A;)(1 4+ C1)(1 + By) =1+ C. Clearly the entries of C; are
sections of the sheaf A° and live on a slightly smaller interval. In the next step
one has to replace the path ; by a path v, which is slightly smaller. One obtains
the path 72 by replacing r+e€ by r+¢€/2, replacing as+(1—1/2)e by as+(1—1/4)e
and finally replacing by — (1 — 1/2)e by b — (1 — 1/4)e. The decomposition
C1 = Ay + B, is given by integrating Cglfi) d¢ over the two halves 5 and v, of
2. The matrix C5 is defined by the equality (14 A2)(1+C>2)(1+ Bs) =1+ C}.
By induction one defines sequences of paths v and matrices Ay, By, Ck. Now
we indicate the estimates which lead to showing that the limit of the products
(I1+A4,)---(1+A) and (1 + By)--- (14 B,) converge to invertible matrices
M; and M, with entries A(a1,b; — €) and A(az + €,b2). The required equality
MMy = M follows from the construction.

For a complex matrix M = (m;;), we use the norm |M| := (3 [m; ;]>)'/2. We
recall the useful Lemma 5, page 196 of [90]:

There exists an absolute constant P such that for any matrices A
and B with |A|,|B| < 1/2 and C defined by the equality (1+ A)(1+
C)(1+ B) = (1+ A+ B) one has |C| < P|A| - |B|.

Adapted to our situation this yields |Cy(z)| < P|Ar(2)| - |Bk(z)]. One chooses
r small enough so that one can apply the above inequalties and the supremum
of |[Ar(2)|, |Br(z), |Cr(z)| on the sets, given by the inequalties 0 < |z| < r and
arguments in [as + €,b), (a1,b; — €] and [as + €,b; — €], are bounded by p* for
some p, 0 < p < 1. For the estimates leading to this one has in particular to
calculate the infimum of |1 — §| for ¢ on the path of integration and z in the
bounded domain under consideration. Details can be copied and adapted from
the proof in [90] (for one complex variable and sectors replacing the compact sets
K,K',K"). Then the expressions (14+ A4,,)---(1+ A;) and (1+ By)---(1+By)
converge uniformly to invertible matrices M; and Ms. The entries of these
matrices are holomorphic on the two sets given by 0 < |z| < r and arguments
in (az + €,b2) and (a1,b; — €) respectively. To see that the entries of the two
matrices are sections of the sheaf A4 one has to adapt the estimates given in the
proof of Proposition 7.24. |

Remark 9.6 Theorem 9.5 remains valid when GL,, is replaced by any con-
nected linear algebraic group GG. The proof is then modified by replacing the
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expression M = 1+ C by M = exp(C) with C in the Lie algebra of G. One
then makes the decomposition C'= A; — B + 1 in the lie algebra and considers
exp(Ay) - M - exp(—B;) = M; and so on by induction.

Let {U;} be a covering of S! consisting of proper open subsets. Any F' €
GL(n, K) can be lifted to some element F; € GL(n,A)(U;) with asymptotic
expansion F. This produces a l-cocycle FiFj_1 for the sheaf GL(n,.4)° and

an element ¢ € H'(S',GL(n,A)°). One sees at once that F' and F'G, with
G € GL(n, K), produce the same element ¢ in the cohomology set. This leads
to the following result.

Corollary 9.7 (B. Malgrange and Y. Sibuya.)
The natural map GL(n, K)\GL(n,K) — H'(S',GL(n, A)°) is a bijection.

Proof. Let a l-cocycle g = {g;;} for the sheaf GL(n,.A)°? and the covering
{Ui} be given. By Theorem 9.5, there are elements F; € GL(n, A)(U;) with
Gij = FiFj_l. The asymptotic expansion of all the F; is the same F' € GL(n, K).
Thus g is equivalent to a 1-cocycle produced by F and the map is surjective.
Suppose now that F' and F'G' produce equivalent 1-cocycles. Liftings of F' and
G on the sector U; are denoted by F; and G;. We are given that Fiijl =
Li(F,GiG7'F; ') L' holds for certain elements L; € GL(n, A)°(U;). Then
Fi_lLiFiGi is also a lift of G on the sector U;. From Fi_lLiFiGi = Fj_leFjGj
for al i, j it follows that the lifts glue around z = 0 and thus Ge GL(n,K). We
conclude that the map is injective. |

We return now to the situation explained in the introduction: A quasi-
split differential operator in matrix form § — B, the associated Stokes sheaf
STS which is the subsheaf of GL(n,A)" consisting of the sections satisfying
T(6 — B) = (6 — B)T, and the pairs (6 — A, F) satisfying F~*(6 — A)F =6 — B
with F' € GL(n, K) and A has entries in K.

Two pairs (6 — Ay, F1) and (6 — Ay, E3) are called equivalent or cohomologous
if there is a G € GL(n, K) such that G(§ — A])G ! = § — A, and F, =
F1G. Consider a pair (0 — A, ﬁ) By the Main Asymptotic Existence Theorem
(Theorem 7.10), there is an open covering {U;} and lifts F; of F above U; such
that F;, '(§ — A)F; = § — B. The elements F; ' F; are sections of ST'S above
U;NU;. In fact {F; *F;} is a 1-cocycle for ST'S and its image in H'(S!, ST'S)
depends only on the equivalence class of the pair (§ — A, ﬁ)

Corollary 9.8 (B. Malgrange and Y. Sibuya.)
The map described above is a bijection between the set of equivalence classes of
pairs (§ — A, F) and H'(S*,STS).

Proof. If the pairs (6 — Ai,ﬁi) for i = 1,2 define the same element in the
cohomology set, then they also define the same element in the cohomology set
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H(S!,GL(n, A)°). According to Corollary 9.7 one has F, = F\G for some
G € GL(n, K) and it follows that the pairs are equivalent. Therefore the map
is injective.

Consider a 1-cocycle £ = {¢; ;} for the cohomology set H'(S!, ST'S). According
to Corollary 9.7 there is an F' € GL(n, K) and there are lifts F; of F' on the
Ui such that & ; = F; 'F;. From & ;(0 — B) = (§ — B)&;; it follows that
Fj(0 — B)F; ' = F;(6 — B)F; '. Thus the F;(6 — B)F; ' glue around z = 0 to
a 6 — A with entries in K. Moreover F~1(6 — A)F =6 — B and the F; are lifts
of F. This proves that the map is also surjective. O

Remark 9.9 Corollary 9.8 and its proof are valid for any differential operator
6 — B over K, i.e., the property “quasi-split” of 6 — B is not used in the proof.

9.4 Explicit 1-cocycles for H'(S!, STS)

This section is a variation on [135]. We will first state the main result. Let
d — B be quasi-split and let ST'S denote the associated Stokes sheaf on S'.
The sheaf of the meromorphic solutions of (6 — B)y = 0 can be seen as a
locally constant sheaf of n-dimensional vector spaces on the circle St. It is more
convenient to consider the universal covering pr : R — R/27Z = S' of the
circle and the sheaf pr*ST'S on R. Let W denote the solution space of § — B
with its decomposition Wy, @& --- @ W,,. Then W and the W,, can be seen as
constant sheaves on R. Moreover pr*ST'S can be identified with a subsheaf of
the constant sheaf GL(W) on R. In more detail, pr*STS(a,b) consists of the

linear maps of the form id + ) A; ;, where A;; denotes a linear map of the

rojection li inclugi .
type W POy, RS W, MOS" W and where the sum is taken over all

pairs i, j such that the function e/ (% %) has asymptotic expansion 0 on (a, b).
For each singular direction d we consider the subgroup pr*STS} of the stalk
pr*STS, consisting of the elements of the form id+ ) A; ;, where A4; ; denotes

a linear map of the type W projegtion Wy, fingar W, inclugion prrnd where the
sum is taken over all pairs i, j such that d is singular for ¢; — g;.

For a sector S C S' one choses a connected component S’ of pr=!(S) and one can
identify ST'S(S) with pr*ST'S(S’). Similarly one can identify the stalk ST'Sy
for d € S' with pr*STSy where d' is a point with pr(d’') = d. In particular,
for a singular direction d € S! the subgroup ST'S% of the stalk ST'Sy is well
defined. Let dy < --- < dy—1 < do(+27) = d,;, denote the singular directions
for all ¢; — ¢; (with the obvious periodic notation). Consider the covering B =
{Bi}i=0,...m—1, Bi = (di—1 — €,d; + €) with small enough ¢ > 0. The set of
1-cocycles for the covering is clearly [[,_, ., ST'S(B; N Bj+1) and contains
[Tico, . .m—1STS;,. This allows us to define a map h : [[,_y ,,_, STSy —
HY(B,STS) — H*(S',STS). The main result is
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Theorem 9.10 (M. Loday-Richaud [135])
The canonical map

h: [ STS; — H'(B,STS)— H'(S',STS) is a bijection.

i=0,...,m—1

Theorem 9.11 The functor Tup : Diff x — Gry is an equivalence of Tannakian
categories.

Proof. We will deduce this from Theorem 9.10. In fact only the statement
that h is injective will be needed, since the surjectivity of A will follow from
Corollary 9.8 and the construction of the Stokes matrices.

Let us first give a quick proof of the surjectivity of the map h. According to
Corollary 9.8 any element ¢ of the cohomology set H'(S!,STS) can be rep-
resented by a pair (§ — A,ﬁ'). For a direction d which is not singular for the
collection ¢; — g¢;, there is a multisum Sd(ﬁ). For d € (d;—1,d;) this multisum
is independent of d and produces a multisum F; of F above the interval B;.
The element F, 'F;, = Si- (F)*lsd? (F) € STS(B; N B;,,) lies in the sub-
group ST'Sj. of STS(B; N Bit1). Thus {Fi_lFiH} can be seen as an element
of Hi:07___7m_1 STSj. and has by construction image § under h. In other words

we have found a map h: H'(S!, STS) — [] ST'S;, with ho h is the identity.

Now we start the proof of Theorem 9.11. Using the previous notations, it suf-
fices to produce a pair (6 — A,F‘) with ﬁ_l(é - A)ﬁ = 0 — B and prescribed
Stokes maps at the singular directions dy, ..., d,—1. We recall that the Stokes
maps Stg, are given in matrix form by S+ (F)E,4,Stq, = Sy- (F)E,,, where E,
is a fundamental matrix for 6 — B and S, ( ) denotes multisummation. Therefore
we have to produce a pair (§— A, F') with prescribed S+ (F)_lSd; (F) e STSy..

Assuming that h is injective, one has that h is the inverse of h and the statement
is clear. a

Before we give the proof of Theorem 9.10, we introduce some terminology.
One defines the level or the degree of some g; —g; to be Aif ¢; —¢q; = xz~ M Fterms
of lower order and with * # 0. If d is a singular direction for g; — ¢; then one
attaches to d the level A. We recall that the differential operator L, acting upon
matrices, associated with our problem has the form L(M) = 6(M)—BM + M B.
The eigenvalues of L are the ¢; — ¢; and the singular directions of L are the
singular directions for the {¢; — ¢;}. A singular direction d for L can be a
singular direction for more than one g; — ¢;. In particular a singular direction
can have several levels.

Remark 9.12 On Theorem 9.10
1. Suppose that (a, b) is not contained in any interval (d— 3, d+ 55 ), where d is
a singular direction with level k, then ST'S(a,b) = 1. Further H!((a,b), STS) =
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{1} if (@, b) does not contain [d — 5, d + 3], where d is a singular direction with
level k. This follows easily from the similar properties of kernel of the above
operator L acting upon M (n x n, A°) (see Corollary 7.21). The link between

STS and L is given by STS(a,b) = 1 + ker(L, M (n x n, A°(a,b))).

2. The injectivity of h is not easily deduced from the material that we have
at this point. We will give a combinatorial proof of Theorem 9.10 like the one
given in [135] which only uses the structure of the sheaf ST'S and is independent
of the nonconstructive result of Malgrange and Sibuya, i.e., Corollary 9.8. The
ingredients for this proof are the various levels in the sheaf ST'S and a method
to change B into coverings adapted to those levels.

The given proof of Theorem 9.10 does not appeal to any result on multisumma-
tion. In [135], Theorem 9.10 is used to prove that an element ' € GL,, (K) such
that F~1(6 — A)F = § — B for a meromorphic A can be written in an essentially
unique way as a product of k,-summable factors, where the k, are the levels of
the associated {g; — g;}. So, yields, in particular, the multisummability of such
an F.

3. In this setting, the proof will also be valid if one replaces W, W, by R ®c
W,R ®c Wy, for any C-algebra R (commutative and with a unit element).
In accordance the sheaf ST'S is replaced by the sheaf STSg which has sec-
tions similar to the sheaf ST'S, but where A;; is build from R-linear maps
R®c W, - RecW,.

9.4.1 One Level k

The assumption is that the collection {¢; —¢;} has only one level k, i.e., for i # j
one has that ¢; — ¢; = *z~ F+terms of lower order and * # 0. Our first concern
is to construct a covering of S! adapted to this situation. The covering B of
Theorem 9.10 is such that there are no triple intersections. This is convenient
for the purpose of writing 1-cocycles. The inconvenience is that there are many
equivalent 1-cocycles. One replaces the covering B by a covering which does
have triple intersections but few possibilities for equivalent 1-cocycles. We will
do this in a systematic way.

Definition 9.13 An m-periodic covering of R is defined as a covering by dis-
tinct sets U; = (a;, b;), i € Z satisfying:

1. a; < ajt1, b; < bi+1 and b; — a; < 2w for all .
2. Qipm = a; + 2w and by, = b; + 27 for all i.
The images U; of the U; under the map pr : R — R/21Z = S, form a covering

of St which we will call a cyclic covering. For convenience we will only consider
m > 2.
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Lemma 9.14 Let G be any sheaf of groups on S' and let U = {U;}izo,....m—1
be a cyclic covering of S*. Let C denote the set of 1-cocycles for G and U. Then
the map r : C — H?;Bl GU;NUit), given by {g;;} — {gii+1}, is a bijection.

Proof. One replaces S! by its covering R, G by the sheaf pr*G and C by the
pr*C, the set of 1-cocycles for pr*G and {U;}. Suppose that we have shown
that the natural map r* : pr*C — [[, pr*G(U; N Usy1) is bijective. Then this
bijection induces a bijection between the m-period elements of pr*C and the
m-period elements of [], pr*G(U; NU;41). As a consequence 7 is bijective.

Let elements g¢; i+1 € pr*G(U; N Us;41) be given. It suffices to show that these
data extend in a unique way to a l-cocycle for pr*G. One observes that for
i<j—lonehasU;NU; = (U;NUir1)N---N (Uj—1 NU;). Now one defines
9ij = Gi,i+1 - gj—1,j- Therule g; jg;r = gix, (for i < j < k) is rather obvious.
Thus {g;,; } is a 1-cocycle and clearly the unique one extending the data {g; i+1}-
O

Proof of Theorem 9.10 The cyclic covering that we take here is U = {U;}
with U; := (di_1 - %,dz + %) By Remark ?? one has STS(Ul) =1, STS(UZPI
Uit1) = STS;, and H'(U;, STS) = {1}. Thus H'(U,STS) — H'(S',STS) is
an isomorphism. The map from the 1-cocycles for U to H* (U, STS) is bijective.
By Lemma 9.14 the set of 1-cocycles is Hi:[),...,mfl STSj,. Finally, the covering
B of the theorem refines the covering ¢ and thus the theorem follows. O

In the proof of the induction step for the case of more levels, we will use the
following result.

Lemma 9.15 The elements {,n € [],_ 0,. L ST'Sj, are seen as I-cocycles
for the covermg B. Suppose that there are elements F; € STS(B;) such that
& = Fyn; F. l+1 holds for all i. Then £ =n and all F; = 1.

Proof. We have just shown that £ = 7. In proving that all F; = 1 we will work
on R with the sheaf pr*ST'S and the m-periodic covering. The first observation
is that if F;, = 1 holds for some iy then also F;,+; =1 and F;,_; = 1. Thus all
F; = 1. In the sequel we will suppose that all F; # 1 and derive a contradiction.

The section Fj has a maximal interval of definition of the form: (d,(;)— 35, ds()+
37 ), because of the special nature of the sheaf ST'S. If a(i) < B(i) it would
follow that F; = 1, since the interval has then length > . Thus 3(i) < a(i).

The equality F; = fiFini_l implies that F; also exists above the interval
(di — 5, di + 25) N (dagir1) — 25 dagrn) + %) Therefore dg(;) + 5 > min(d; +
Qkadﬁ i+1) + 7l' ) Thus mln( B(l + 1)) S B(l)

From Fz+1 fi_ F;¢&; it follows that Fj14 is also defined above the interval (d; —
ﬂ,d + ) (da(i) —%,dg(i)-l-%). Thus da(i+1)_% < max(di—ﬁ,da(i)—%).
Therefore a(i +1) < max(i, a(i)).
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We continue with the inequalities min(i, (i + 1)) < S(i). By m-periodicity,
e.g., B(i + m) = B(i) + 2w, we conclude that for some iy one has S(ip + 1) >
B(i0). Hence ip < B(ip). The inequality min(ip — 1, 8(ig)) < B(ip — 1) implies
io — 1 < B(ip — 1). Therefore i < B(7) holds for all i < ig and by m-periodicity
this inequalty holds for all ¢ € Z. We then also have that i < a(i) holds for all
i, since B(i) < a(i). From a(i+ 1) < max(i,a(i)) one concludes a(i + 1) < a(i)
for all 4. Then also a(i + m) < «a(i). But this contradicts a(i +m) = a(i) + 27.
O

9.4.2 Two Levels k; < ky

A choice of the covering U. As always one assumes that 1/2 < k;. Let
U = {U;} be the cyclic covering of S! derived from the m-periodic covering
{(di-1 — 5; —e(i—1),di + 57 +€(i)) }, where €(i) = 0 if d; has k> as level and
€(i) is positive and small if the only level of d; is k;.

One sees that U; does not contain [d — 2, d + ] for any singular point d which

has a level ky. Further U; can be contained in some (d — o @+ 55-) with d
singular with level k;. However U; cannot be contained in some (d— 3t A+ ﬁ)

with d singular with a level k;. From Remark 7?7 and the nonabaelian version
of Theorem B.26, it follows that H'(U,STS) — H'(S',STS) is a bijection.

A decomposition of the sheaf ST'S. For k € {ki1, k2} one defines the subsheaf
of groups STS(k) of STS by STS(k) contains only sections of the type id +
>~ A; ; where the level of ¢; — ¢; is k. Let i1 < 42 < i3 be such that ¢;, —¢;, and
gi, — qi; have level k, then ¢;, — g;, has level < k. This shows that STS(k;) is
a subsheaf of groups. Further ST'S(k2) consists of the sections T of GL(n,.A)°
(satisfying T'(6 — B) = (6 — B)T') and such that T'—1 has coordinates in A, .
This implies that ST'S(k2) is a subsheaf of groups and moreover ST'S(k2)(a, b) is
a normal subgroup of ST'S(a,b). The subgroup ST'S(k1)(a,b) maps bijectively
to STS(a,b)/STS(ks)(a,b). We conclude that

Lemma 9.16 ST S(a,b) is a semi-direct product of the normal subgroup
STS(k2)(a,b) and the subgroup STS(k1)(a,b).

Proof of the surjectivity of h.

By Lemma 9.14 themap h : [T,y ,._, STS; — H'(B,STS) - H*(S',STS)
factors over H(U,STS) and moreover H*(U,STS) — H'(S',STS) is a bi-
jection. Therefore it suffices to prove that the map Hi:07___7m_1 STSy. —
H'(U,STS) is bijective. Consider a I-cocycle ¢ = {&} for U and STS. Each
& can (uniquely) be written as &;(k2)&; (k1) with & (ke), & (k1) sections of the
sheaves ST'S(k2) and STS(k1). The collection {&;(k1)} can be considered as a
1-cocycle for ST'S(k1) and the covering /. This 1-cocycle does, in general, not
satisfy &;(k1) € STS(k1)j;,. We will replace {;(k1)} by an equivalent 1-cocycle
which has this property.



EXPLICIT 1-COCYCLES FOR H'(S',STS) 259

For the sheaf ST'S(k;) we consider the singular directions eg < e; < -+ < e5_1.
These are the elements in {dp,...,d,,—1} which have a level k;. Furthermore
we consider the cyclic covering V of S!, corresponding with the s-periodic cov-
ering {(ei—1 — 3, € + 53-)} of R. The covering U/ is finer than V. For each
U; we choose the inclusion U; C Vj, where ej_1 < di—1 < ej. Let n = {n;} be
a 1-cocycle for STS (k1) and V, satisfying n; € ST'S(k1);, and which has the
same image in H'(S!,STS(k1)) as the 1-cocycle {&;(k1)}. The 1-cocycle n is
transported to a 1-cocycle 7 for ST'S(k;1) and U. One sees that 7; € ST'S(k1)},
holds for all i. Furthermore there are elements F; € STS(k1)(U;) such that
Fi&i (k) F, z+1 = 7; for all ¢.

Consider now the 1- cocycle {Fi& ;11}, which is equivalent to £. One has
Fi&FL = Fi&i(k2)Fy Y. Now Fi&i(ko)Fy ' lies in STS(k2)(U; N Uiy1). The
only possible singular direction d with a level ko such that U; N U;1q C (d —
kg d+ %) 18 d = d;. Hence Fi&;(ko)F; F'e STS(ks)y,- We conclude that

Fi& F; 1 € ST'S;, and thus the surjectivity has been proven. |

Proof of the injectivity of h.

Since the covering B of the theorem refines U, we need to show that
[lico. 1 STS;, — HY(U,STS) is injective. As before, an element & = {&;}
of the Toft hand side is decomposed as & = &;(k2)&;(k1), where &i(k2) and & (k1)
are elements of the groups ST'S(ks)}. and ST'S(k1)j,. For another element 7 in
the set on the left hand side we use a similar notation. Suppose that ¢ and n are
equivalent. Then there are elements F; € STS(U;) = STS(k)(U;) such that
Ei(ks)&i (k1) = Fnl(kg)nl(kl)F 1= F~ni(k2)F*1F ni(k1)Fi,. It follows that
&i(ks) = Fimi(k2)Fi} and (ki) = Fym; (ki) Fi,) . From the latter equalities and
Lemma 9.15 we conclude that & (k1) = n;(k1) and all F; = 1. m|

Remark 9.17 In [135], Theorem 9.10 is proved directly from the Main Asymp-
totic Existence Theorem without appeal to results on multisummation. In
that paper this result is used to prove that an element F e GL, (K ) with

O B)F B for some quasi-split B can be written as the product of k-
sumrnable factors, where the k; are the levels of the associated {¢; — ¢;} and so
yields the multisummability of such an F'. These results were achieved before
the publication of [149].

9.4.3 The General Case

In the general case with levels k1 < k2 < -+ < ks (and 1/2 < kq) the sheaf
ST'S is a semi-direct product of the sheaf of normal subgroups ST'S(ks), which
contains only sections with level ks, and the sheaf of subgroups ST S(< ks—1),
which contains only levels < k;_;. The cyclic covering U, is associated with the
m-periodic covering of R given by U; = (di—1 — 55— — €(i — 1), d; + 5 + €(i)),
where €(i) = 0 if d; contains a level k, and otherwise €(i) > 0 and small enough.
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The surjectivity of the map h (with the covering B replaced by i) is proved as
follows. Decompose a general 1-cocycle £ = {&} as & = & (ks)&i(< ks—1). By
induction there are elements F; € STS(< k )(Ul) such that all ; := F;&(<
ks—1)F [} lie in STS(< ky—1)j,. Then Fi&F | = Fi&i(ks)F; 'n;. If a singular
direction d, which has a level ks, satisfies U; N U;yq C (d — 7 d + 55-) then

d = d;. This implies F;¢;(ks)F; ' € STS(k s)y, and ends the proof.

The injectivity of h is also proved by induction with respect to the number of
levels involved. The reasoning is rather involved and we will make the case of
three levels k; < k2 < k3 explicit. The arguments for more than three levels are
similar.

The sheaf ST'S has subsheaves of normal subgroups STS(ks) and ST S(> ks)
(using only sections with level k3 or with levels k2 and k3). There is a subsheaf
of groups ST'S(k1) consisting of the sections which only use level k;. The sheaf
STS(> ko) has a subsheaf of groups STS(k2) of the sections which only use
level k2. Further ST'S is a semi-direct product of ST'S(> k2) and ST S(k1).
Also STS(> k) is a semi-direct product of STS(k3) and STS(kz). Finally
every section F' of ST'S can uniquely be written as a product F'(ks)F (k2)F (k)
of sections for the sheaves ST S(k;).

One considers two elements &, € [[,_, ., 1 STS;, and sections F; of the
sheaf STS(U;) = STS(< ko)(U;) such that & = Fm,FJ_l1 holds. Then
&i(k3)Ei(ko)&i(ky) = Fmi(kg)ni(kg)ni(kl)F;ll Working modulo the normal sub-
groups ST'S(ks) one finds &;(k2)&; (k1) = Fyni(ke)ni (k1) F. l+1 This is a situation
with two levels and we have proved that then §l(k2) =n;(ks), &i(k1) = ni(ky).
From the equalities & (k2)&; (k1) = Fi&i(k2)&i(k1)F, l+1’ we want to deduce that
all F; = 1. The latter statement would end the proof.

Working modulo the normal subgroups ST'S(k2) and using Lemma 9.15 one
obtains that all F; are sections of ST'S(k2). The above equalities hold for the
covering U corresponding to the intervals (d;—1 — 7> —€(i — 1), d; + 57 +€(i)).
Since the singular directions d which have only level ks play no role here one
may change U into the cyclic covering corresponding with the periodic covering
(ei-1 — 537 — €(i — 1),e; + 55 + €(i)), where the e; are the singular directions
having a level in {k1, k2}. The above equalitities remain the same. Now one has
to adapt the proof of Lemma 9.15 for this situation. If some F;, happens to be
1, then all F; = 1. One considers the possibility that F; # 1 for all i. Then F;
has a maximal interval of definition of the form (ey(;) — kg2 €60) T ﬁ) Using
the above equalities one arrives at a contradiction.

9.5 H!(S',STS) as an Algebraic Variety

The idea is to convert this cohomology set into a covariant functor F from the
category of the C-algebras (always commutative and with a unit element) to
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the category of sets. For a C-algebra R one considers the free R-module Wg :=
R®c W and the sheaf of groups ST Sk on S', defined by its pull back pr*ST Sr

on R, which is given by pr*STSg(a,b) are the R-linear automorphisms of Wg

of the form id+ 3 A; ;, where A; ; denotes a linear map of the type Wg **5""

(Wir tingar (Wi)r inclugion yr and where the sum is taken over all pairs i, J
such that e/ (@4 % has asymptotic expansion 0 on (a,b). In a similar way one
defines the subgroup (ST'Sg) of the stalk (ST'Sg)qs. The functor is given by
F(R) = HY(S',STSR). Theorem 9.10 and its proof remain valid in this new
situation and provides a functorial isomorphism []; 010, (STSR); = F(R). It
follows that this functor is representable (see Definition C.19) and is represented
by the affine space Ag , which describes all the possible Stokes matrices.

In [8], the following local moduli problem is studied:

Fix a quasi-split differential operator 6 — B and consider pairs
(6 — A, F) where A has entries in K, F' € GL(n,K) and F~'(J —
A)F =0 — B.

Corollary 9.8 states that the set E of equivalence classes of pairs can be identified
with the cohomology set H*(S',STS). We just proved that this cohomology
set has a natural structure as the affine space. Also in [8] the cohomology set is
given the structure of an algebraic variety over C. It can be seen that the two
structures coincide.

The bijection E — H'(S!,STS) induces an algebraic structure on E of the
same type. However E with this structure is not a fine moduli space for the
local moduli problem (see [168]). We will return to the problem of families of
differential equations and moduli spaces of differential equations.
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Chapter 10

Universal Picard-Vessiot
Rings and Universal (Galois
Groups

10.1 Introduction

Let K denote any differential field such that its field of constants C' = {a €
K| o' = 0} is algebraically closed, has characteristic 0 and is different from
K. The neutral Tannakian category Diff i of differential modules over K is
equivalent to the category Repry of all finite dimensional representations (over
C) of some affine group scheme H over C (see Appendices C.2 and C.3 for the
definition and properties). Let C be a full subcategory of Diff x which is closed
under all operations of linear algebra, i.e., kernels, cokernels, direct sums, tensor
products. Then C is also a neutral Tannakian category and equivalent to Repr,
for some affine group scheme G.

Consider a differential module M over K and let C denote the full subcate-
gory of Diffg, whose objects are direct sums of subquotients of all
M® --9M®M*®---® M*. This category is equivalent to Reprs, where G
is the differential Galois group of M. In this special case there is also a Picard-
Vessiot ring Rj; and G consists of the K-linear automorphisms of Rj; which
commute with the differentiation on M.

This special case generalizes to arbitrary C as above. We define a universal
Picard-Vessiot ring UnivR for C as follows:

1. UnivR is a K-algebra and there is given a differentiation r — r' which
extends the differentiation on K.

2. The only differential ideals of UnivR are {0} and UnivR.

263
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3. For every differential equation y' = Ay belonging to C there is a funda-
mental matrix F' with coefficients in UnivR.

4. R is generated, as K-algebra, by the entries of the fundamental matrices
F and det(F)~! for all equations in C.

It can be shown that UnivR exists and is unique up to K-linear differential
isomorphism. Moreover UnivR has no zero divisors and the constant field of
its field of fractions is again C'. We shall call this quotient field the universial
Picard-Vessiot field and denote it by UnivF. Further one easily sees that UnivR
is the direct limit liin Ry, taken over all differential modules M in C. Finally,

the affine group scheme G such that C is equivalent with Repr, can be seen to
be the group of the K-linear automorphisms of UnivR which commute with the
differentiation of UnivR. We will call UnivG the universal differential Galois
group of C. The way the group UnivG of automorphism of UnivR is considered
as affine group scheme over C' will now be made more explicit.

For every commutative C-algebra A one considers the A ®¢ K-algebra
A ®¢ UnivR. The differentiation of UnivR extends to a unique A-linear dif-
ferentation on A ®c UnivR. Now one introduces a functor F from the category
of the commutative C-algebras to the category of all groups by defining F(A)
to be the group of the A ®¢ K-linear automorphisms of A ®¢ UnivR which
commute with the differentiation of A ® - UnivR. It can be seen that this func-
tor is representable and according to Appendix C.2, F defines an affine group
scheme. The group UnivG above is this affine group scheme.

The theme of this chapter is to present examples of differential fields K and sub-
categories C (with the above conditions) of Diff x such that both the universal
Picard-Vessiot ring and the differential Galois group of C are explicit. One may
compare this with the following problem for ordinary Galois theory: Produce
examples of a field F' and a collection C of finite Galois extensions of F such
that the compositum F of all fields in C and the (infinite) Galois group of F|F
are both explicit. For example, If F = Q and C is the collection of all abelian
extensions of Q, then the Galois group of F /F is the limit of the groups of units
U(Z/nZ) in Z/nZ. Other known examples are:

(a) F is a local field and F is the separable algebraic closure of F.
(b) F'is a global field and C is the collection of all abelian extensions of F.

See, for example, [48] and [193].

10.2 Regular Singular Differential Equations

The differential field will be K = C((z)), the field of the formal Laurent series.
The category C will be the full subcategory of Diff z whose objects are the

regular singular differential modules over K. We recall from Section 3.1.1 that
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a differential module M is regular singular if there is a Cl[z]]-lattice A C M
which is invariant under the operator z - dyr. It has been shown that a regular
singular differential module has a basis such that the corresponding matrix
differential equation has the form d%y = %y with B a constant matrix. The
symbols UnivR,¢gsing and UnivGy.egsing denote the universal Picard-Vessiot ring
and the universal differential Galois group of C.

Proposition 10.1 1. C is equivalent to the neutral Tannakian category Repry
and UnivGyegsing 15 isomorphic to the algebraic hull of Z.

2. The universal Picard-Vessiot ring UnivR cgsing 45 equal to I/(\'[{z“}aec, 2.
3. UnivGyegsing = Spec(B) and the Hopf algebra B is given by:

(a) B equals C[{s(a)}.cc,t] where the only relations between the gener-
ators {s(a)}ecc, t are s(a+b) = s(a) - s(b) for all a,b € C.

(b) The comultiplication A on B is given by the formulas: A(s(a)) =
s(a) @ s(a) and A(t) =t 1)+ (1at).

Proof. We note that the I/(\'—algebra UnivRyegsing := I/(\'[{za}aec,l] is defined
by the relations: z%t? = z@. szfor all a,b € C and for any a € Z the symbol
z% is equal to z® as element of K. The differentiation in UnivR,cgsing is given
by 2% =az*"! and ££¢ = z~'. From the fact that every regular singular dif-
ferential module can be represented by a matrix differential equation y' = %y,
with B a constant matrix, one easily deduces that UnivR,cgsing is indeed the
universal Picard-Vessiot ring of C. This proves 2. The formal monodromy ~y
is defined as the K-linear automorphism of UnivR;¢gsing given by the formulas
v(2%) = €2™z% and v¢ = £ + 2mi. Clearly v € UnivGyegsing-

The solution space Vis of a regular singular differential module M is the space
Vi = ker(Oar, UnivR cgsing ® g M). The action of v on Ryegsing induces a
C-linear action 7y on Vjs. One associates to M above the pair (Vys, var). The
latter is an object of Repry. It is easily verified that one obtains in this way
an equivalence C — Repry of Tannakian categories. According to part C of the
appendix, UnivGy.egsing is isomorphic to the algebraic hull of Z.

For the last part of the proposition one considers a commutative C-algebra
A and one has to investigate the group F(A) of the A ®c K-automorphisms
o of A ®c UnivRyegsing which commute with the differentiation on A ®c
UnivRyegsing- For any a € C one has 0z* = h(a) - 2* with h(a) € A*. Further h
is seen to be a group homomorphism h : C/Z — A*. Thereis a ¢ € A such that
ol = ¢ 4 c. On the other hand, any choice of a homomorphism h and a ¢ € A
define a unique o € F(A). Therefore one can identify F(A) with Homc(B, A),
the set of the C-algebra homomorphisms from B to A. This set has a group
structure induced by A. Tt is obvious that the group structures on F(A) and
Home(B, A) coincide. m|
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10.3 Formal Differential Equations

Again K = C((2)). For convenience one considers the differentiation & := Zi

on K. Differential equations (or differential modules) over K are called formal
differential equations.

Theorem 10.2 Consider the neutral Tannakian category Diff ;.

1. The universal Picard-Vessiot ring is UnivR formal 1= I?[{z“}aec,é, {e(q) }4e0],
(see Section 3.2).

2. The differential Galois group UnivGyorma of Diffz has the following
structure:
There is a split exact sequence of affine group schemes

1 = Hom(Q, C*) = UnivG formar = UnivGregsing — 1.

The affine group scheme Hom(Q, C*) is called the exponential torus. The
formal monodromy v € Ryegsing acts on Q in an obvious way. This in-
duces an action of v on the exponential torus. The latter coincides with
the action by conjugation of v on the exponential torus. The action, by
conjugation, of UnivGy.egsing 0n the exponential torus is deduced from the
fact that UnivGycgsing 15 the algebraic hull of the group (y) = Z.

Proof. The first part has been proved in Section 3.2. The morphism
UnivGformar = UnivGyegsing is derived from the inclusion UnivRyegsing C
UnivR ormai- One associates to the automorphism o € UnivG f,ppmqr its restric-
tion to UnivR,egsing. Any automorphism 7 € UnivGyegsing of UnivR,egsing is
extended to the automorphism o of Rformar by putting oe(q) = e(q) for all
g € Q. This provides the morphism UnivGyegsing — UnivG formqr- An element
o in the kernel of UnivG ¢ormar = UnivGiegsing acts on UnivR gormer by fixing
each 2% and ¢ and by ce(q) = h(q) - e(¢) where h : @ — C* is a homomor-
phism. This yields the identification of this kernel with the affine group scheme
Hom(Q, C*). Finally, the algebraic closure of K is contained in UnivR,egsing
and in particular v acts on the algebraic closure of K by sending each z* (with
X € Q) to €22}, There is an induced action on Q, considered as a subset of
the algebraic closure of K. A straightforward calculation proves the rest of the
theorem. O

10.4 Meromorphic Differential Equations

The differential field is K = C({z}), the field of the convergent Laurent series

~

over C. On both fields K and K = C((z)) we will use the differentiation

0= zd%. In this section we will treat the most interesting example and describe
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the universal Picard-Vessiot ring UnivR,,,, and the universal differential Galois
group UnivGe,,, for the category Diff ¢ of all differential modules over K.
Differential modules over K, or their associated matrix differential equations
over K, are called meromorphic differential equations. In this section we present
a complete proof of the description of UnivG,,,, given in the inspiring paper
[153].

Our first claim that there is a more or less explicit expression for the universal
Picard-Vessiot ring UnivRone of Diff ffr. For this purpose we define a K-algebra
D with K C D C K as follows: f € K belongs to D if and only if f satisfies some
linear scalar differential equation f +a,_; f*=1 +...4a; f) +a9f = 0 with
all coefficients a; € K. This condition on f can be restated as follows: f belongs
to D if and only the K-linear subspace of K generated by all the derivatives
of f is finite dimensional. It follows easily that D is an algebra over K stable
under differentiation. The following example shows that D is not a field.

Example 10.3 The differential equation y® = 23y (here we have used the
ordinary differentiation dz) has a solution f = Zn>2 anz" € K given by a; =1
and a,41 = n(n — 1)a, for n > 2. Clearly f is a divergent power series and
by definition f € D. Suppose that also f ' € D. Then also u := fTI lies in D

and there is a finite dimensional K-vector space W with K C W C k which
is invariant under differentiation and contains u. We note that u’ 4+ u? = 273
and consequently u? € W. Suppose that u™ € W. Then (u")’ = nu" v’ =
nu""(—u?+273) € W and thus u"*! € W. Since all the powers of u belong to
W the element u must be algebraic over K. It is known that K is algebraically

closed in K and thus v € K. The element u can be written as % +bo+brz+---

and since f' = uf one finds f = 22 - exp(bpz + by Z; -+-). The latter is a
convergent power series and we have obtained a contradiction. We note that D
can be seen as the linear differential closure of K into K. It seems difficult to
make the K-algebra D really explicit. (See Exercise 1.34 for a general approach
to functions f such f and 1/f both satisfy linear differential equations). O

Lemma 10.4 The universal Picard-Vessiot ring for the category of all mero-
morphic differential equations is Reony := D[{2"}ecc, {, {€(q) }qe0]-

Proof. The algebra UnivRormar contains UnivReony and UnivReony is gen-
erated, as a K-algebra, by the entries of F' and det(F)! of all fundamental
matrices F' of meromorphic equations. The entries of a fundamental matrix are
expressions in 2% ¢, e(q) and formal Laurent series. The formal Laurent series
that occur satisfy some linear scalar differential equation over K. From this the
lemma follows. a

The universal differential Galois group for Diff i is denoted by UnivG.y,y.
The inclusion UnivRcony C UnivR formar induces an injective morphism of affine
group schemes UnivG formai — UnivGeony. One can also define a morphism
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UnivGeony = UnivG fo,rmar of affine group schemes. In order to do this correctly
we replace UnivGeony and UnivG formar by their functors Geony and Gyormar from
the category of the commutative C-algebras to the category of groups. Let A be
a commutative C-algebra. One defines Geony(A) = Grormai(A) by sending any
automorphism o € Geony(A) t0 T € Grormai(A) defined by the formula 7(g) =
o(g) for g = 2,£,e(q). The group homomorphism Grormai(A) = Geonv(A) is
defined by sending 7 to its restriction o on the subring A ®c Reony of A ®c
Ryormai- The functor N is defined by letting NV'(A) be the kernel of the surjective
group homomorphism Geony(A) = Grormar(A4). In other words, N'(A) consists
of the automorphisms o € G.ony(A) satisfying o(g) = g for g = 2%, 4,e(q). It
can be seen that A is representable and thus defines an affine group scheme N.
Thus we have shown:

Lemma 10.5 There is a split exact sequence of affine group schemes

1= N = Geonv = Grormal —+ 1.

The above lemma reduces the description of the structure of Geony to a
description of IV and the action of Gfopmaer 0n N. In the sequel we will study
the structure of the Lie algebra Lie(N) of N. We are working with affine group
schemes (G, which are not linear algebraic groups, and consequently have to be
somewhat careful about their Lie algebras Lie(G).

Definition 10.6 A pro-Lie algebra L over C is the projective limit lim L; of
+—

finite-dimensional Lie algebras.

Clearly L has the structure of Lie algebra. We have to introduce a topology on
L in order to find the “correct” finite dimensional representations of L. This
can be done as follows. An ideal I C L will be called closed if I contains
Njerker (L — Lj) for some finite set of indices F'.

Definition 10.7 A representation of a pro-Lie algebra L on a finite dimensional
vector space W over C will be a homomorphism of complex Lie algebras L —
End(W) such that its kernel is a closed ideal.

For an affine group scheme G, which is the projective limit lim G of lin-
—
ear algebraic groups G, one defines Lie(G) as the pro-Lie algebra lim Lie(Gj).
+—

Suppose that G is connected, then we claim that any finite dimensional complex
representation of G yields a finite dimensional representation of Lie(G). Indeed,
this statement is known for linear algebraic groups over C. Thus Lie(G;) and
G; have the same finite dimensional complex representations. Since every finite
dimensional complex representation of G or of the pro-Lie algebra Lie(G) fac-
tors over some G; or some Lie(G), the claim follows.

Now we return to the pro-Lie algebra Lie(N). The identification of the affine
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group scheme N with a group of automorphisms of R.,,, leads to the iden-
tification of Lie(N) with the complex Lie algebra of the K-linear derivations
D : Reony = Reonv, commuting with the differentiation on R.,,, and satisfying
D(g) =0 for g = 2%,¢,e(q). A derivation D € Lie(N) is therefore determined
by its restriction to D C Reony- One can show that an ideal I in Lie(N) is
closed if and only if there are finitely many elements fi,...fs € D such that
15{D € Lie(N)| D(f1) = -+ = D(f) = 0}.

We search now for elements in N and Lie(N). For any direction d € R and any
meromorphic differential module M one has defined in Section 8.3 an element
Sty acting on the solution space Vs of M. In fact Sty is a K-linear automor-
phism of the Picard-Vessiot ring Rjs of M, commuting with the differentiation
on Rps. The functoriality of the multisummation implies that St; depends
functorially on M and induces an automorphism of the direct limit R,y of
all Picard-Vessiot rings Rjs. By construction Sty leaves 2%, ¢, e(q) invariant and
therefore Sty lies in V. The action of Sty on any solution space Vjs is unipotent.
The Picard-Vessiot ring Ry is as a K-algebra generated by the coordinates of
the solution space Viy = ker(9, Ry ® M) in Ryy. It follows that every finite
subset of Ry lies in a finite dimensional K-vector space, invariant under Stg4
and such that the action of St; is unipotent. The same holds for the action of
Sty on Reony- We refer to this property by saying: Stg acts locally unipotent
on Reony-

The above property of St; implies that Ay := log Sty is a well defined K-
linear map Reony — Reony- Clearly Ay is a derivation on Reypy, belongs to
Lie(N) and is locally nilpotent. The algebra R.,,, has a direct sum decompo-
sition Reony = PgeaRconv, ¢ Where Reony, ¢ := D[{#%}acc; fle(q). This allows
us to decompose Ay : D — Reony as direct sum qugAd,q by the formula
Ad(f) = 2 c0 Aa,(f) and where Agy(f) € Reonw, ¢ for each ¢ € Q. We note
that Ag, = 0 if d is not a singular direction for ¢. The map Ay, : D = Reono
has a unique extension to an element in Lie(N).

Definition 10.8 The elements {Ay ,| d singular direction for ¢} are called alien
derivations.

The group Gformal C Geonv acts on Lie(IN) by conjugation. For a homomor-
phism A : @ — C* one writes 7, for the element of this group is defined by the
properties that 73, leaves 2%, and ¢ invariant and 7e(q) = h(q) - e(q). Let v de-
note, as before, the formal monodromy. According to the structure of Gzormai
described in Chapter 3, it suffices to know the action by conjugation of the 7,
and vy on Lie(N). For the elements Ag, one has the explicit formulas:

(a) 7Ad,q771 = Ad—27r,’y(q)-
(b) ThAd’th_l = h(q) . Ad’q.

Counsider the set S := {Ag4] d € R, ¢ € Q,d singular for ¢}. We would like
to state that S generates the Lie algebra Lie(N) and that these elements are
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independent. This is close to being correct. The fact that the Ay, act locally
nilpotent on R.,,, however complicates the final statement. In order to be more
precise we have to go through some general constructions with Lie algebras.

A Construction with Free Lie Algebras

We recall some classical constructions, see [109], Ch. V.4. Let S be any set. Let
W denote a vector space over C with basis S. By W®™ we denote the m-fold
tensor product W ®c¢ --- ®c W (note that this is not the symmetric tensor
product). Then F{S}:=Co® P W™ is the free associative algebra on the
set S. It comes equipped with a map i : S — F{S}. The universal property of
(i, F{S}) reads:

For any associative C-algebra B and any map ¢ : S — B there is a
unique C-algebra homomorphism ¢’ : F{S} — B with ¢' 0i = ¢.

The algebra F{S} is also a Lie algebra with respect to the Lie brackets [ , ]
defined by [A, B] = AB — BA. The free Lie algebra on the set S is denoted by
Lie{S} and is defined as the Lie subalgebra of F{S} generated by W C F{S}.
This Lie algebra is equipped with an obvious map ¢ : S — Lie{S} and the pair
(i,Lie{S}) has the following universal property:

For any complex Lie algebra L and any map ¢ : S — L there is
a unique homomorphism ¢' : Lie{S} — L of complex Lie algebras
such that ¢' oi = ¢.

Further for any associative complex algebra B and any homomorphism v :
Lie{S} — B of complex Lie algebras (where B is given its canonical structure
as complex Lie algebra) there a unique homomorphism ¢’ : F{S} — B of
complex algebras such that the restriction of ¢’ to Lie{S} coincides with .

Consider now a finite dimensional complex vector space W and an action of
Lie{S} on W. This amounts to a homomorphism of complex Lie algebras ) :
Lie{S} — End(W) or to a C-algebra homomorphism ¢' : F{S} — End(W).
Here we are only interested in those ¢ such that:

(1) ¢(s) = ¢'(s) is nilpotent for all s € S.
(2) there are only finitely many s € S with 1(s) # 0.

For any 1 satisfying (1) and (2) one considers the ideal kery in the Lie algebra
Lie{S} and its quotient Lie algebra Lie{S}/ker ¢). One defines now a sort of

completion Lie{S} of Lie{S} as the projective limit of the Lie{S}/ker ¢, taken
over all ¢ satisfying (1) and (2).

Lemma 10.9 Let W be a finite dimensional complex vector space and let
Ny, ..., Ns denote nilpotent elements of End(W). Then the Lie algebra L gener-
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ated by N1, ..., Ny is algebraic, i.e., it is the Lie algebra of a connected algebraic
subgroup of GL(W).

Proof. Let N € End(W) be a nilpotent map and suppose N # 0. Then the
map t € Gy c — exp(tN) € GL(W) is a morphism of algebraic groups. Its
image is an algebraic subgroup H of GL(W), isomorphic to G,,c. The Lie
algebra of H is equal to CN.

Let Gi,...,Gs be the algebraic subgroups of GL(W), each one isomorphic
to Gg,c, with Lie algebras CNy,...,CN,. The algebraic group G' generated
by Gi,...,Gs is equal to Hy - Hy - --- - Hy, for some m and some choice for
Hy,...,Hp, € {Gy,...,Gs} ([108], Proposition 7.5). Then G is connected and
from this representation one concludes that the Lie algebra of G is the Lie
algebra generated by Vi, ..., N;. O

We apply the lemma to the Lie algebra L, := Lie{S}/ker 9, considered above.
By definition this is a Lie algebra in End(W) generated by finitely many nilpo-
tent elements. Let Gy, denote the connected algebraic group with Lie(Gy) = Ly.
The connected linear algebraic groups Gy form a projective system. We will

denote the corresponding projective limit by M. The pro-Lie algebra LE{\S} is
clearly the pro-Lie algebra of M.

In the sequel S will be the collection of all alien derivations S = {Ag4| d €
R, ¢ € Q, d is singular for g}. The action of Gormar On the set of the alien

derivations induces an action on Lie{S} and an action on the affine group scheme
M. The affine variety M x G ¢ormai is made into an affine group scheme by the
formula (m1, g1) - (2, g2) = (m1 - g1magy ", g1go) for the composition. The pre-
cise interpretation of this formula is obtained by replacing M and Gformar by
their corresponding functors M and Gformai and define for every commutative
C-algebra A the group structure on M(A) X Gtormai(A) by the above formula,
where gimag; ! stands for the known action of G formal 0N M. The result is an
affine group scheme which is a semi-direct product M X G formar- We can now
formulate the description of J. Martinet and J.-P. Ramis for the structure of
G conv and Lie(N), namely

Theorem 10.10 The affine group scheme M X G ¢ormar s canonically isomor-
phic to Geony- In particular N is isomorphic to M and therefore N is con-
nected. Let S denote again the set of all alien derivations {Agq4| d € R, ¢ €
Q, d is singular for q}. Then there exists an isomorphism of complex pro-Lie

algebra 1 : Lie{S} — Lie(IV) which respects the G formal-action on both pro-Lie
algebras.

Proof. By definition, the Tannakian categories Diff x and Reprg_  are equiv-
alent. According to Section 9.2 the Tannakian categories Diff g and Gr, are also
equivalent. Now we consider the Tannakian category Repry;.q;,,,...,- An ob-
ject of this category is a finite dimensional complex vector space W provided
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with an action of M % G formai- The action of Gropmar on W gives W the struc-
ture of an object of Gry, namely a direct sum decomposition W = $,coW,
and the action of the formal monodromy vy on W has image yw € GL(W) sat-
isfying the required properties. The additional action of M on W translates

into an action of its pro-Lie algebra IE-{F} on W. According to the defini-
tion of this pro-Lie algebra the latter translates into a set of nilpotent elements
{Aw.a,q} C End(W), where A4 , denotes the action of Ay, on W. By defini-
tion there are only finitely many non-zero Aw 4, and every Ayy 4 4 is nilpotent.
Using the structure of the semi-direct product M X Gforma and in particular

the action of G forma On Lie{S} one finds the properties:

() YW AWd0 7 = Aw,d—2r(q) and
(b) Aw,q,4 is a C-linear map which maps each summand W, of W
to Wq+ql .

Define now Aw,q := @qc0Aw,a,q. This is easily seen to be a nilpotent map. De-
fine Stwq = exp(Awyq). Then it is obvious that the resulting tuple
(W, {Wy},vw,{Stw,a}) is an object of Gra. The converse, i.e., every object
of Gry induces a representation of M X G ¢ormai, is also true. The conclusion
is that the Tannakian categories Repry;,q,, .., and Gry are equivalent. Then
the Tannakian categories Repry/yq,, ..., and Reprg_ —are equivalent and the
affine group schemes M X Gformar and Geony are isomorphic. If one follows
the equivalences between the above Tannakian categories then one obtains an
isomorphism ¢ of affine group schemes M X Gformar =+ Geony Which induces
the identity from Gformar t0 Geono/N = Gformar. Therefore ¢ induces an
isomorphism M — N and the rest of the theorem is then obvious. O

Remark 10.11 Let W be a finite dimensional complex representation of G.opns .
Then the image of N C G ony in GL(W) contains all St; operating on W. As
in the above proof, W can be seen as an object of the category Grs. One can
build examples such that the smallest algebraic subgroup of GL(WW) containing
all Sty is not a normal subgroup of the differential Galois group, i.e., the image
of Geony = GL(W). The above theorem implies that the smallest normal alge-
braic subgroup of GL(WW) containing all the St4 is the image of N — GL(W).D



Chapter 11

Moduli for Singular
Differential Equations

11.1 Introduction

The aim of this chapter is to produce a fine moduli space for irregular singu-
lar differential equations over C({z}) with a prescribed formal structure over
C((z)). In Section 9.5, it is remarked that this local moduli problem, studied in
[8], leads to a set E of meromorphic equivalence classes, which can be given the
structure of an affine algebraic variety. In fact E is for this structure isomorphic
to AX for some integer N > 1. However, it can be shown that there does not ex-
ist a universal family of equations parametrized by E (see [168]). This situation
is somewhat similar to the construction of moduli spaces for algebraic curves of
a given genus g > 1. In order to obtain a fine moduli space one has to consider
curves of genus g with additional finite data, namely a suitable level structure.
The corresponding moduli functor is then representable and is represented by a
fine moduli space (see Proposition 11.3).

In our context, we apply a result of Birkhoff (see Lemma 11.1) which states
that any differential module M over C({z}) is isomorphic to C({z}) ®c(.) N,
where N is a differential module over C(z) having singular points at 0 and oo.
Moreover the singular point co can be chosen to be a regular singularity. In con-
sidering differential modules N over C(z) with the above type of singularities,
the topology of the field C plays no role anymore. This makes it possible to
define a moduli functor F from the category of C-algebras (i.e., the commuta-
tive rings with unit element and containing the field C) to the category of sets.
The additional data attached to a differential module (in analogy to the level
structure for curves of a given genus) are a prescribed free vector bundle and an
fixed isomorphism with a formal differential module over C((z)). The functor F
turns out to be representable by an affine algebraic variety Ag . There is a well

273



274 CHAPTER 10. MODULI FOR SINGULAR EQUATIONS

defined map from this fine moduli space to E (which is also isomorphic to AY).
This map is analytic, has an open image and its fibres are in general discrete
infinite subsets of Ag . This means that the “level” data that we have added
to a differential equation, is not finite. The “level” that we have introduced
can be interpreted as prescribing a conjugacy class of a logarithm of the local
topological monodromy matrix of the differential equation.

In Section 11.2 we introduce the formal data and the moduli functor for the
problem. A special case of this moduli functor, where the calculations are very
explicit and relatively easy, is presented in Section 11.3. The variation of the
differential Galois group on the moduli space is studied.

The construction of the moduli space for a general irregular singularity is some-
what technical in nature. First, in Section 11.4 the “unramified case” is studied
in detail. The more complicated “ramified case” is reduced in Section 11.5 to
the former one. Finally some explicit examples are given and the comparison
with the “local moduli problem” of [8] is made explicit in examples.

We note that the method presented here can be modified to study fine moduli
spaces for differential equations on P!(C) with a number of prescribed singular
points and with prescribed formal type at those points.

Lemma 11.1 (G. Birkhoff) Let M be a differential module over C({z}). There
is an algebraic vector bundle M on P(C) and a connection V : M — Q(a[0] +
[00]) ® M, such that the differential modules C({z}) ® Mo and M are iso-
morphic over C({z}) (where My is the stalk at the origin). If the topological
local monodromy of M is semi-simple then M can be chosen to be a free vector
bundle.

Proof. The differential module M can be represented by a matrix differential
equation ' = Ay such that the entries of the matrix A are meromorphic func-
tions on some neighbourhood of 0 having only poles at 0 of order > —a, for
some integer a > 0. Thus M extends to a connection on some neighbourhood
Uy = {z € C| |z| < €} of 0, having a certain singularity at 0. This connec-
tion can be written as Vi : My — Q(a[0]) ® My, where M; is an analytic
vector bundle on U; with rank equal to the dimension of M over C({z}). The
restriction of this connection to Uy := U; \ {0} has no singularity and is there-
fore determined by its topological monodromy 7. More precisely, let V' denote
the local solution space of the connection V; at the point €¢/2 € U;. Then
T :V — V is the map obtained by analytical continuation of solutions along
the circle {e!? - €¢/2|0 < ¢ < 27}. Put Uy = P'(C) \ {0} and consider the
connection Vy : My — Q([o0]) ® My above Us given by the data:

(a) M2 = O ®c V, where O is the sheaf of holomorphic functions
on Us.
(b) V2 is determined by the requirement that for v € V one has
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Va(v) = £ @ L(v), where L : V — V is a linear map satisfying
627riL =T.

The restrictions of the connections (M;, V;), for i = 1,2, to U} = Uy N U, are
isomorphic. After choosing an isomorphism one glues to two connections to a
connection (M, V) on P!(C). This connection has clearly the required prop-
erties. We recall that the GAGA principle (see Example 6.6.5), that (M, V)
is the analytification of an algebraic vector bundle provided with an algebraic
connection.

In case T is semi-simple then one can take for L also a diagonal matrix. The
eigenvalues of L can be shifted over integers. This suffices to produces a con-
nection such that the vector bundle M is free. (See Remark 6.23.2). O

11.2 The Moduli Functor

Let C be an algebraically closed field of characteristic 0. The data on P(C)
for the moduli problem are:

(i) a vector space V of dimension m over C;
(ii) a formal connection Vo on Ny := C[[z]] ® V of the form Vj :
Ny = C[[2]]z"*dz ® Ny with k > 2.

We note that k£ < 1 corresponds to a regular singular differential equation and
these equations are not interesting for our moduli problem. The objects over
C, that we consider are tuples (M, V, ¢) consisting of:

(a) a free vector bundle M on P!(C) of rank m provided with a
connection V : M — Q(k[0] + [o0]) ® M;

(b) an isomorphism ¢ : C[[z]] ® Mo — Ny such that (id® ¢) oV =
Vo o ¢ (where My is the stalk of M at 0).

Two objects over C, (M,V,¢) and (M',V' ¢') are called isomorphic if
there exists an isomorphism f : M — M’ of the free vector bundles which is
compatible with the connections and the prescribed isomorphisms ¢ and ¢’. For
the moduli functor F from the category of the C-algebras (always commutative
and with a unit element) to the category of sets, that we are in the process of
defining, we prescribe that F(C) is the set of equivalence classes of objects over
C'. In the following remarks we will make F(C) more explicit and provide the
complete definition of the functor F.

Remarks 11.2 1. Let W denote the vector space H°(P!(C), M). Then V is
determined by its restriction to W. This restriction is a linear map L : W —
HO(PY(C),Q(k[0] + [00])) ® W. Further ¢ : C[[2]] ® Mo = C[[z]] @ W — Ny =
C[[z]]®V is determined by its restriction to W. The latter is given by a sequence



276 CHAPTER 10. MODULI FOR SINGULAR EQUATIONS

of linear maps ¢, : W — V, for n > 0, such that ¢(w) = >, < #n(w)2z™ holds
for w € W. The conditions in part (b) are equivalent to the conditions that
¢o is an isomorphism and certain relations hold between the linear map L and
the sequence of linear maps {¢,}. These relations can be made explicit if Vj is
given explicitly (see section 11.3 for an example). In other words, (a) and (b)
are equivalent to giving a vector space W of dimension m and a set of linear
maps L, {¢,} having certain relations.

An object equivalent to the given (M, V,¢) is, in terms of vector spaces and
linear maps, given by a vector space V' and an isomorphism V' — V compatible
with the other data. If we use the map ¢g to identify W and V', then we have
taken a representative in each equivalence class and the elements of F(C) can
be described by pairs (V, ¢) with:

(&) V: M — Q(k[0] + [00]) ® M is a connection on the free vector
bundle M := OPl(C) QV.

(b’) ¢ is an isomorphism C[[z]] ® Mg — Ny such that (id® ¢)oV =
Vo o ¢ and such that ¢ modulo (z) is the identity from V to itself.

2. Let R be any C-algebra. The elements of F(R) are given by:

(a’) A connection V : M — Q(k[0] + [00]) ® M on the free vector
bundle M := Op1(g) @ V.

(b’) An isomorphism ¢ : R[[z]] ® Mo — R[[z]] ® Ny such that (id ®
@) oV = Vg o ¢ and such that ¢ modulo (z) is the identity from
R ®V to itself.

As in the first remark, one can translate an object into a set of R-linear maps
L:R®V — H°(PYR),Qk[0] +[x])®V and ¢, : R®V — R®V forn >0,
such that ¢(v) = >, 0 @n(v)2"” for v € R® V. The conditions are that ¢y is
the identity and the relations which translate (id ® ¢) o V = Vj o ¢.

We will show that the translation of F(R) in terms of maps implies that F
is representable by some affine scheme Spec(A) over C' (see Definitions C.9 and
C.19) .

Proposition 11.3 The functor F described above is representable.

Proof. Indeed, fix a basis of V' and consider the basis {z7%dz| s = 1,...,k}
of H°(P1(C),Q(k[0] + [00])). The connection V or, what amounts to the same
data, the linear map L can be decomposed as L(v) = 25:1 2z °dz ® Ls(v)
where Ly, ..., L are linear maps form V to itself. The entries of the matrices
of Ly, ..., Ly and the ¢, for n > 1 (with respect to the given basis of V') are first
seen as a collection of variables {X;}icr. The condition (id ® ¢) o V = Vg o ¢
induces a set of polynomials {F}};cs in the ring C[{X;}ics] and generate some
ideal S. The C-algebra A := C[{X;}icr]/S has the property that Spec(A)
represents JF. O
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Spec(A) is sometimes referred to as a fine moduli space. According to the
definition of representable functor, there is a bijection a4 : Homg(4,4) —
F(A). Let & = aalida) € F(A). This £ is called the universal family above
Spec(A). Again, according to Definition ??, for any n € F(R) there exists
a unique k-algebra homomorphism ¢ : A — R such that ¢¥(£) = 7. One
can make £ more explicit by writing it as a pair (Zle 27%dz ® L, ) where
the Ly : V. — A ®c V are C-linear, where ¢ € GL(A[[z]] ® V) such that
¢ = id mod(z) and ¢(ZI§:1 27%dz ® Lg)p~! = V, viewed as a linear map from
V to C[[z]]z~*d2®V. Then 1(€) is obtained by applying ¢ to the coordinates of
Lq,...,L; and ¢. The aim of this chapter is to make A explicit and in particular
to show that A = C[Y1,...,Yn] for a certain integer N > 1.

11.3 An Example

11.3.1 Construction of the Moduli Space
The data for the moduli functor F are:

A vector space V of dimension m over C' and a linearmap D : V — V
having distinct eigenvalues Aq,...,An. The formal connection at
z =01is given by Vo : N — 272dz @ Ny, where Ny = C[[z]]® V and
Vo(v) = 27 2dz ® D(v) for v € V.

The moduli problem, stated over C for convenience, asks for a description of the
pairs (V, ¢) satisfying:

(a) V is a connection M — Q(2-[0]+1-[0c]) ® M on the free vector
bundle M = Opl(o) QV.

(b) ¢ is an isomorphism between the formal differential modules
Cl[z]] ® Mgy and Ny over C[[z]].

Theorem 11.4 The moduli functor F is represented by the affine space A,
Spec(C[{T;,; }ix;]). For notational convenience we put T; ; = 0. The universal
family of differential modules is given in matriz form by the operator

A1
2‘2—+ . +Z-(Ti’j).
Am

Proof. The connection on M is given by a map V from V to H°(P(C),Q(2-
[0]4+1-[o0])) ® V. After replacing the V by V.2 2 one finds a map Clzl@V —

Clz) ® V of the form m — z>Lm + Ag(m) + zA;(m) with Ag,A; : V = V

m(m—1) __
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linear maps (extended to C[z]-linear maps on C[z] ® V). In the above one has
only used (a). Condition (b) needs only to be stated for elements in V' and it

can be written as (224 + D)o ¢ = ¢ o (22L + Ay + 2A;). This translates into

Zn¢nz”+1 + ZDd)nz” = Z P A2+ Z OnApz™ and ¢g =1
Comparing the coefficients of the above formula one finds the relations

D = Ao, Dor = A1 + ¢1do, (0= 1)1+ Doy = dn141 + ¢ o
for n > 2. Or in more convenient form D = Ay and

D¢r — 1D = Ay, Do — ¢nD = ¢p141 — (n — 1)1 for n > 2.

The map D determines a decomposition of V' as a direct sum of m lines V;. We
will call a map B : V. = V diagonal if BV; C V; for all j and anti-diagonal
if BV; C @®;%;V; for all j. Every map B is a unique direct sum By + B, of a
diagonal map and an anti-diagonal map. We start now with the first equality
D¢y — ¢ D = A; and conclude that A; is anti-diagonal. In the following we
will show that for any choice of an anti-diagonal A; there is a unique collection
{¢,} such that all the equalities are satisfied.

The first equation D¢; — ¢1 D determines uniquely the anti-diagonal part of
¢1. The second equation D¢s — ¢poD = ¢p1 A1 — ¢1 can only be solved if the
right hand side is anti-diagonal. This determines uniquely the diagonal part of
¢1. The second equation determines the anti-diagonal part of ¢ and the third
equation determines the diagonal part of ¢o. Et cetera.

It is obvious that the above calculation remains valid if one replaces C' by any C-
algebra R and prescribes A; as an anti-diagonal element of Homg(R®V, R®V).
We conclude that there is a fine moduli space A™™~1) = Spec(C[{T;;}izi])
for the moduli problem considered above. The universal object is thus given
by Ao = D and A; is the anti-diagonal matrix with entries T} ; outside the
diagonal. Further ¢g = id and the coordinates of the ¢,, are certain expressions
in the ring C[{Tl7]}1¢]] O

Exercise 11.5 Compute the moduli space and the universal family for the
functor F given by the same data as in Theorem 11.4, but with D replaced by
any semi-simple (i.e., diagonalizible) linear map from V to itself. Hint¢: Consider
the decomposition V.=V, & --- @V, of V according to the distinct eigenvalues
M,.--,As of D. A linear map L on V will be called diagonal if L(V;) C V;
for all i. The map L is called anti-diagonal if L(V;) C @;2;V; holds for all i.
Show that the universal family can be given by 225% + D+ zA; where A; is the
“generic” anti-diagonal map. a

11.3.2 Comparison with the Meromorphic Classification

We consider the case C' = C of the example of the last subsection in order to
compare the moduli space with the analytic classification of Chapter 9. Let



AN EXAMPLE 279

K = C({z}) and K = C((2)). As before, an m-dimensional C-vector space V
and a linear D : V — V with distinct eigevalues A1,..., A, are given. Then
No := C[[z]] ® V and Vg : Ny = 272dz ®@ Ny satisfies Vo(v) = 272dz @ D(v)
for all v € V. Let N denote the differential module K ® Ny over K.

We recall that the analytic classification describes the collection of isomorphism
classes E of pairs (M, ) such that M is a differential module over K := C({z})
and v : K®M — N is an isomorphism of differential modules. In Chapter 9 it
is shown that this set of isomorphism classes E is described by the cohomology
set H'(S',STS), where S is the circle of directions at z = 0 and STS the
Stokes sheaf. The explicit choice of 1-cocycles for this cohomology set leads
to an isomorphism H'(S',ST'S) — C™™ 1 The interpretation of this iso-
morphism is that one associates to each (isomorphism class) (M, ) the Stokes
matrices for all singular directions of N.

The moduli space Ag(mfl) of Theorem 11.4 (identified with the point set
C™(m=1)) has an obvious map to H*(S',STS). This map associates to any
(M, V,¢) the differential module M := K ® M, and the isomorphism v :
K ® M — N induced by ¢ : C[[z]] ® Mo = Np. In other words, any C-valued
point of the moduli space corresponds to a differential operator of the form

A1
A2
z2°— + . +z- (ti,j), with ¢; ; € C and t;; = 0.

Am

The map associates to this differential operator its collection of Stokes matrices
(i.e., this explicit 1-cocycle) and the latter is again a point in Ccmim=1)_ We will
show later on that this map « : Ag(m_l) — E=H'Y(S",STS)=C™m™ 1 isa
complex analytic map.

The image of « and the fibres of a are of interest. We will briefly discuss these
issues. Let a point (M,1)) of H'(S',STS) be given. Let My denote the C{z}-
lattice in M such that C[[z]] ® M, is mapped by the isomorphism ¢ to No C N.
We denote the restriction of ¢ to Cl[[z]] ® My by ¢. The differential module
My over C{z} extends to some neighbourhood of z = 0 and has a topological
monodromy. According to Birkhoff’s Lemma 11.4 one chooses a logarithm of
the topological monodromy around the point z = 0 and by gluing, one obtains a
vector bundle M on P!(C) having all the required data except for the possibil-
ity that M is not free. At the point 0 one cannot change this vector bundle. At
oo one is allowed any change. In case the topological monodromy is semi-simple
one can make the bundle free. Thus the point (M, 1)) lies in the image of a. In
the general case this may not be possible.

It is easily calculated that the Jacobian determinant of the map a at the point
0e Ag(m_l) is non zero. In particular the image of « contains points (M, )
such that the topological monodromy has m distinct eigenvalues. The formula
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(see Proposition 8.12) which expresses the topological monodromy in Stokes
matrices and the formal monodromy implies that the subset of E where the
topological monodromy has m distinct eigenvalues is Zariski open (and non-
empty) in E = C™(™m~1)_ The image of a contains this Zariski open subset.

The surjectivity of the map « is also related to Birkhoff’s Problem of repre-
senting a singular differential module over K by a matrix differential equation
involving only polynomials in 2! of a degree restricted by the “irregularity” of
the equation at z = 0.

We consider now the fibre over a point (M, 1)) in E such that the topological
monodromy has m distinct eigenvalues p1, ..., . In the above construction
of an object (M, V, ¢) € Ancl(mfl) the only freedom is the choice of a logarithm
of the topological monodromy. This amounts to making a choice of complex
numbers ci, ..., ¢y, such that €™ = y; j = 1,...,m such that the cor-
responding vector bundle M is free. Let ¢q,...,¢, be a good choice. Then
€1 +n1,...,Cm + Ny is also a good choice if all n; € Z and Y n; = 0. Thus

the fibre a=!(M,%)) is countable and discrete in Ancl(mfl) since « is analytic.
In other cases, e.g., the topological monodromy is semi-simple and has multiple
eigenvalues, the fibre will be a discrete union of varieties of positive dimension.

We now illustrate the above with an explicit formula for a in case m = 2.

The universal family is given by the operator in matrix form

d A O 0 a
2 @ 1
Zdz+< 0 /\2>+Z<b 0)'
The A, X2 € C are fixed and distinct. The a, b are variable and (a,b) € C? is
a point of the moduli space. In Example 8.17 we showed that the equation has

two Stokes matrices of the form ( (1) 3311 > and < xl (1) ) Moreover (x1,z2)
2

is a point of E = C2. Furthermore the calculation in this example shows

Proposition 11.6 The map a: AL — E = H'(S',STS) = C? has the form

(a,b) = (z1,22) = f(ab) - (a,b) with f(t) := mmi\%ﬂ)

We give now some details about the map a. A list of its fibres is:

1. a71(0,0) = {(a,b)| ab is the square of an integer}.
2. If 1 # 0, then o~ (z1,0) = {(Z~,0)}.

2mi?
3. If 2y #0, then o (0, 22) = {(0,5%)}.

4. If 1wy # 0, then a=(z1,22) = {\(z1,22)| where % V:”EZ) = 1}

The set of \’s satisfying this condition is infinite and discrete.
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In particular « is surjective. For the topological monodromy matrix
1 P .
( +;31x2 3311 ) one can distinguish the following cases:
2

1. (z1,22) = (0,0) and the monodromy is the identity.
2. 1 #0, o = 0 and the monodromy is unipotent.
3. 1 =0, x5 # 0 and the monodromy is unipotent.

4. z1xs = —4 and the monodromy has only the eigenvalue —1 and is different
form —id.

5. w129 # 0,—4 and the monodromy has two distinct eigenvalues.

Let S C C? denote the set of points where the map « is smooth, i.e., is locally
an isomorphism. The points of S are the points where the Jacobian determinant
—f(ab)(f(ab) + 2abf'(ab)) of a is non zero. The points where this determinant
is 0 are:

1. f(ab) = 0. This is equivalent to ab # 0 is the square of an integer.

2. f(ab) # 0 and f(ab) 4+ 2abf’(ab) = 0. This is equivalent to the condition
that 4ab is the square of an odd integer.

A point (a,b) where the map « is not smooth corresponds, according to the
above calculation, to a point where the eigenvalues of the “candidate” for the

monodromy matrix < 2 8 > has eigenvalues which differ by an integer # 0.

Let S C C? denote the set where the map « is smooth, i.e, the Jacobian
determinant is # 0. The above calculations show that a(S) = {(z1, z2)| z122 #
—4}. Then a(S) is the Zariski open subset of E = C?, where the monodromy has
two distinct eigenvalues. The fibre of a point (z1,z2) € a(S) can be identified
with the set of conjugacy classes of the 2 x 2-matrices L with trace 0 and
with exp(27iL) being the topological monodromy of the differential equation
corresponding to (1, z2).

Another interesting aspect of the example is that the dependence of the dif-
ferential Galois group on the parameters a,b can be given. According to a the-
orem of J. Martinet and J.-P. Ramis (see Theorem 8.10) the differential Galois
group is the algebraic subgroup of GL(2) generated by the formal monodromy,
the exponential torus and the Stokes matrices. From this one deduces that the
differential equation has a 1-dimensional submodule if and only if ab = 0 or
ab # 0 and sin(7v/ab) = 0. In the first case the differential Galois group is one
of the two standard Borel subgroups of GL(2) if a # 0 or b # 0. The second
case is equivalent to ab = d? for some integer d > 1. The two Stokes matrices

A0 ) and the

are 1, the equation is over C({z}) equivalent with zzd% + ( 0
2
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differential Galois group is the standard torus in GL(2) (assuming A; and A, are
linearly independent over the rationals). We return now to the moduli space and
the universal family of Theorem 11.4 and investigate the existence of invariant
line bundles as a first step in the study of the variation of the differential Galois
group on the moduli space.

11.3.3 Invariant Line Bundles

We consider the moduli problem of Exercise 11.5. Let V be a vector space
of dimension m and D : V — V a semi-simple linear map. The (distinct)
eigenvalues of D are A,...,As; and V; is the eigenspace corresponding to the
eigenvalue A;. The dimension of V; is denoted by m;. The data for the moduli
functor F is the formal differential module Ny = CJ[z]] ® V with connection
Vo : No — C[[z]]272 ® Ny given by Vo(v) = 272dz ® D(v) for all v € V. The
moduli space for this functor is AY with N =3, . mym;.

Let (M, V, @) be an object over C corresponding to a (closed) point of this
moduli space AY. This object is represented by a differential operator of the
form 22(% + D + zA; where A; is an anti-diagonal matrix. The generic fibre
M,, is a differential module over C(z). We want to investigate the possibility
of a 1l-dimensional submodule L of M,. Any L corresponds uniquely to a
line bundle £ C M such that M/L is a vector bundle of rank m — 1 and
VL — Q(2[0] + [00]) @ L. Let the degree of £ be —d < 0. Then L(d - [00]) C
M(d - []) is free and generated by an element e = vy +v12 + -+ - + vgz? with
all v; € V. = H°(PY(C), M) and vg # 0. The invariance of £ under V can
be formulated as (zzdiz + D + Ayz)e = (to + t12)e, for certain tg,t; € C. The
condition that M /L is again a vector bundle implies that vy # 0. The equation
is equivalent to a sequence of linear equations:

(D — to)v() =0

(D — to)Ul = (—Al + tl)UO
(D — to)’l}i = (—Al — (l — 1) +t1)'Ui—1 fori=2,...,d
0= (—A1 —d+ tl)Ud.

The first equation implies that tg is an eigenvalue \; of D and vy € V;, vg #
0. The second equation can only have a solution if ¢; = 0. Moreover the
components of v; in V; for j # i are uniquely determined by wvg. The third
equation determines the component of v; in V; and the components of vy in V;
for j # i. Et cetera. The last equation determines vy completely in terms of
vp and the map A;. The last equation can be read as a set of homogeneous
linear equations for the vector vy € V;. The coordinates of these equations are
polynomial expressions in the entries of A;. The conclusion is:
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Lemma 11.7 The condition that there exists an invariant line bundle L of
degree —s with s < d determines a Zariski closed subset of the moduli space
AX,

As above we assume here that A\; # X\y. We consider first the case d = 0. The
line bundle £ is generated by some element v € V, v # 0 and the condition is
(D + Ay12)v = (to + t12)v. Clearly to is one of the two eigenvectors of D and a
or b is 0.

Consider now d > 1 and ab # 0. Let e = vg + - - - + v42® with vy # 0 # vy satisfy
(2> L+ D+2z-Ay)e = (to +t12)e. We make the choice tp = A1 and vy is the first
basis vector. As before t; = 0. A somewhat lengthy calculation shows that the
existence of e above is equivalent with the equation ab = d?. If one starts with
the second eigenvalue A\, and the second eigenvector, then the same equation
ab = d? is found. We note that the results found here agree completely with
the calculations in Section 11.3.2. |

11.3.4 The Differential Galois Group

We continue the moduli problem of Exercise 11.5 and Section 11.3.3 and keep
the same notations. Our aim is to investigate the variation of the differential
Galois group on the moduli space AN. The first goal is to define a natural
action of the differential Galois group of an object (M, V, @) on the space V =
H°(P(C), M). For this we introduce symbols fi, ..., fs having the properties
sz%fi = X;fi, where \1,...,\s are the distinct eigenvalues of D. The ring
S = C[[2)|lf1, fi s+, fsr £ 1]/T where I is the ideal generated by the set of all
polynomials f"** --- fi™ — 1 with m; integers such that miA; +...+msA; = 0.
The differentiation z2L on S is defined by 22Lz = 22 and 2L f; = \;f;.
In this way S is a differential ring. For any M := (M,V,¢), the solution
space Sol(M) can be identified with the kernel of the operator 22 + D + A,z
on S ®cre),, Mo =5 ®cV (note that our assumption on the formal normal
form of the equation implies that there is no formal monodromy and so the
equation has a full set of solutions in S ®c V). This space has dimension m
over C. The ring homomorphism C[[z]][f1, f; ',- .-, fs, fi'] = C, given by
2+ 0, fi,...,fs v 1, induces a bijection Sol(M) — V. The smallest ring
R with C[z];) C R C S, which contains all the coordinates of the elements
of Sol(M) with respect to V has the property: R is a differential ring for
the operator zzd% and the field of fractions of R is the Picard-Vessiot field of
M., over C(z). The differential Galois group Gal(M), acting upon this field of
fractions, leaves R invariant. Thus Gal(M) acts on Sol(M) and on V according
to our chosen identification Sol(M) — V. We note that the formal Galois group
at z = 0, which is a subgroup of Gy, -, is a subgroup of Gal(M). We can now
formulate our result.
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Proposition 11.9 For any algebraic subgroup G C GL(V'), the set of the M :=
(M,V,¢) € AN with Gal(M) C G, is a countable union of Zariski-closed
subsets.

Proof. By Chevalley’s theorem, there is a vector space W over C' obtained
from V by a construction of linear algebra and a line L C W, such that G
consists of the elements g € GL(V) with gL C L. This construction of linear
algebra can be extended to a construction of an object (A, V, 1) from (M, V, ¢)
corresponding to new formal data at z = 0 (of the same type that we have
been considering here) and regular singularity at z = oo. The invariance of
L under the differential Galois group is equivalent to the existence of a line
bundle £ C N, invariant under V, such that A//L is again a vector bundle and
Lo/zLo = L C No/2No = W. If we bound the degree —s of £ by s < d then the
existence of £ defines an algebraic subset of the corresponding moduli space, by
Lemma 11.7. The proposition now follows. a

Remarks 11.10 1. The ocurrence of countable unions of algebraic subsets of
the moduli space Ag corresponding to the existence of an invariant line bundle
or a condition Gal(M) C G, where G C GL(V) is a fixed algebraic subgroup, is
due to our choice of not prescribing the regular singularity at co. Indeed, let us
add to the moduli functor a regular singular module Ny, := C[[z7!]] ® V with
some Vo, and an isomorphism C[[z 1] ® Mo — Ny of differential modules.
We will show that there is a bound B, depending on the moduli problem, such
that the existence of an invariant line bundle implies that its degree —d satisfies
d< B.

To prove this assertion, let £ be an invariant line bundle of degree —d. There is
given an inclusion C[[z7!]]® Lo C Nuo, which induces an inclusion £, /(271) C
Noo/(271). The operator V, 4 hason Lo /(") an eigenvalue i, which is one of
the at most m eigenvalues of the corresponding operator on Noo/(z71). Let e =
vo+v12+- - +vg2e, with vy # 0 # vg be the generator of HO(P(C), £(d-[x])).
As before we have an equation (2L + D + A;z)e = (to +t12)e. From vg # 0 it
follows that t; = 0. This implies that V_ 4 on L(d-[0])oo/(271) has eigenvalue
0. According to the shift that we have made at z = oo this eigenvalue is also
d+ p.

We conclude that after prescribing the regular singularity at z = oo, the set
corresponding to the condition Gal(M) C G is an algebraic subspace of the
moduli space.

2. The question of how the Galois group varies in a family of differential equa-
tions is also considered in [202]. In this paper one fixes integers m and n and
considers the set Ly, ,, of linear diffferential operators of the form

L=% 3, ai,jzj)(d%)i

i=0 j=0
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of order n with coefficients in C[z] of degree at most m. Such an operator
may be identified with the vector (a;;) and so Ly ,, may be identified with
CmHD(HY) et S be a finite subset of C' U Q = Uy,>1 2~/ C[2~/™] and let
L, (S) be the set of operators in Ly, ,, having exponents and eigenvalues (c.f.,
Definition 3.26) in S at each singular point. Note that we do not fix the singular
points. In [202], it is shown that for many linear algebraic groups G (e.g., G
finite, G connected, G° unipotent) the set of operators in Ly, ,,,(S) with Galois
group G is a constructible subset of C("+1(+1) = Ap example is also given to
show that this is not necessarily true for all groups.

11.4 Unramified Irregular Singularities

A connection (N,V) over K := C((z)) is called unramified if its canonical form
does not use roots of z. For our formulation of this canonical form we will use
the operator d = V_a on N. For g € z “1C[z71] we write E(q) = Ke for the
1-dimensional connectlon with de = ge. Further we fix a set of representatives
for C/Z. Any regular singular connection over K can (uniquely) be written as
K ®c V where V is a finite dimensional vector space over C' and with 4 given
on V as a linear map [ : V' — V such that all its eigenvalues are in the set of
representatives of C/Z (see Theorem 3.1). The canonical form for an unramified
connection (N, V) over K is given by:

(a) distinct elements qi,...,qs € 2 1C[z71].
(b) finite dimensional C-vector spaces V; and linear maps[; : V; — V;
fori =1,...,s with eigenvalues in the set of representatives of C'/Z.

The unramified connection with these data is N := &;_ 1Kel ®c V; with the
action of § = Vzd%, given by d(e; ® v;) = gie; @ v; + €; ® [;(v;). We note that
this presentation is unique. We write Ny := ®;_, C[[#]]e; ®¢ V; and define k; to
be the degree of the ¢; in the variable 2=, Put k = max k;. Write V := ®V;.
One identifies Ny with C[[z]] ® V by e; ® v; — v; for all i and v; € V;. The
connection on Ny is denoted by V.

The moduli problem that we consider is given by the connection (Ng, Vo)
at z = 0 and a non specified regular singularity at z = oo. More precisely we
consider (equivalence classes of) tuples (M, V, @) with:

(a) M is a free vector bundle of rank m on P'(C) and

V:iM—= Q((k+1)-[0] + [cc]) ® M is a connection.

(b) ¢ : C[[z]] ® Mo — Np is an isomorphism, compatible with the
connections.

Theorem 11.11 The functor associated to the above moduli problem is repre-
sented by the affine space AN, where N = > iz; deg.-1(g; — g;) - dim V; - dim V.
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The proof of this theorem is rather involved. We start by writing the functor
F from the category of C-algebras to the category of sets in a more convenient
form. Let dp denote the differential (VO)zdi N =C[2]] @V =» C((2)) ® V.

For any C-algebra R, &y induces a differential R[[2]] @ V — R[[z]][z '] @ V,
which will also be denoted by dg.

For any C-algebra R, one defines G(R) as the group of the R][[z]]-linear auto-
morphisms g of R[[z]] ®¢ V such that g is the identity modulo z. One can make
this more explicit by considering the restriction of ¢ to R® V. This map is sup-
posed to have the form g(w) = Y, ~, gn(w)z", where each g, : R®V — RV
is R-linear. Moreover gg is required to be the identity. The extension of any
g € G(R) to an automorphism of R[[z]][z~!] ® V is also denoted by g.

We now define another functor G by letting G(R) be the set of tuples (g, d) with
g € G(R) such that the restriction of the differential gdpg ™! : R[[z]] @ V —
R[[2]][z '] ® V maps V into R[z~'] ® V. This restriction is denoted by é.

Lemma 11.12 The functors F and G from the category of C-algebras to the
category of sets are isomorphic.

Proof. Let R be a C-algebra. An element of F(R) is the equivalence class
of some (M,V,¢). A representative for this equivalence class is chosen by
taking for M the trivial vector bundle Op:1(g) ® V' and requiring that ¢ modulo
(z) is the identity. Thus ¢ is an R[[z]]-linear automorphism of R[[z]] ® V and
the identity modulo (z). Further, Vzd% is equal to ¢ 'dy¢. By assumption,
V:RoV — H(P'Y(C),Q((k+1)-[0] + [00])) ®c (R ® V). This implies that
the image of V' under V_ 4 lies in R[z7']® V and therefore (¢ 1,6) € G(R)
where § = ¢ 1dp¢. In this way one obtains a map F(R) — G(R) and in fact a
morphism of functors F — G. It is easily seen that the map F(R) — G(R) is
bijective for every R. a

Now we proceed by proving that the functor G is representable.
Lemma 11.13 Let (g,6) € G(R). Then g is uniquely determined by 0.

Proof. Suppose that (g1,6), (92,6) € G(R). Then there exists h € G(R) (i.e.,
h is an R[[z]]-linear automorphism h of R[[z]] ® V which is the identity modulo
(z)) such that hdg = dph. It suffices to show that h = 1.

We introduce some notations. R((z)) will denote R[[2]][z7!]. A “linear map”
will mean linear with respect to the ring R((2)). For a linear map L : R((z)) ®
V = R((2))®V one writes L = (Lj;) where the Lj; : R((2))®V; = R((2))®V;
are again linear maps. For a linear map Lj;; one writes L;-i for the linear map
with matrix (w.r.t. bases of V; and V}) obtained by applying ' = zd% to all
the coefficients of the matrix of Lj;. Further 24 : R((2)) ® V = R((2)) ® V
denotes the obvious derivation, i.e., this derivation is 0 on V. Then clearly
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L;-i = zdiz oLj;—Lj;o0 zd%. Write the prescribed &g as zd% + L where L = (Lj;)
is linear. According to the definition of No one has Lj; = 0 if i # j and
L;; = ¢; +1;. Write, as above, h = (hj;). Then doh — hdp = 0 implies that

h;’i + hjili - ljhji + (qi - Qj)hji =0 for all i, j.

Suppose that hj; # 0 for some ¢ # j. Let n be maximal such that h;; = 0
modulo (2™). One finds the contradiction (¢; — ¢;)h;; = 0 modulo (2™). So
hjiZOfOI‘Z'#j.

For i = j one finds hj; + hyl; — lihy; = 0. Write hy; = >, <o hii(n)z" where
hii(n) : R®V; - R®V; are R-linear maps. Then nh;;(n)+hy;(n)l;—l;hii(n) =0
for all n > 0. The assumption on the eigenvalues of [; implies that a non zero
difference of eigenvalues cannot be an integer. This implies that the maps
End(R®V;) = End(R®V;), given by A — nA + Al; —1; A, are bijective for all
n > 0. Hence h;;(n) = 0 for n > 0. Since h is the identity modulo z we also
have that all h;;(0) are the identity. Hence h = 1. O

We introduce now the concept of principal parts. The principal part Pr(f) of
[ =>rnz" € R((2)) is defined as Pr(f) := >, .ornz". Let L: R((2)) @V —
R((2)) ® V be R((z))-linear. Choose a basis {v1,...,v,} of V and consider
the matrix of L with respect to this basis given by Lv; = 3 a;v;. Then
the principal part Pr(L) of L is the R((z))-linear map defined by Pr(L)v; =
> Pr(ayi)vj. It is easily seen that the definition of Pr(L) does not depend on
the choice of this basis. Any derivation & of R((z)) ® V has the form 2L + L
where L is an R((z))-linear map. The principal part Pr(d) of  is defined as
z4 + Pr(L).

Lemma 11.14 To every g € G(R) one associates the derivation Pr(gdog™').
Let H(R) denote the subset of G(R) consisting of the elements h such that
Pr(héoh™t) = 6y. Then:

1. H(R) is a subgroup of G(R). Let d;; denote the degree of q; — q; with
respect to the variable 2=%. Then g € G(R) belongs to H(R) if and only
if g —1 maps each V; into ®5_, 24 T R[[z]] @ V.

2. Pr(g100g7") = Pr(g26095 ") if and only if s H(R) = g.H(R).

3. For every differential module (R((z)) ® V, ) such that Pr(d) = d¢ there is
a unique h € H(R) with héoh™! = 4.

Proof. 1. For ¢ € G(R) one defines (a “remainder”) Rem(gdog~') by the
formula gdog~' = Pr(gdog~') + Rem(gdpg~!). Hence Rem(gdog~?') is linear
and maps V into zR[[z]] ® V. For any ¢1,92 € G(R) we also have that
giRem(g280g5 ")gy ! maps V into zR[[2]]®V and so Pr(g; (Rem(g2dog5 ') g ") =
0. Hence Pr((g1g2)00(g192) ") = Pr(g1Pr(g2009, *)g; ). This formula easily
implies that H(R) is a subgroup of G(R).
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Let ¢ € G(R) and write ¢ — 1 := (L;,;), where L;; is a R[[z]]-linear map
R[[z]]®V; = R[[2]] ® V;. The condition g € H(R) is equivalent to the condition
that gdp—dog maps V into zR[[2]]®@V. The last condition means that (for all i, j)
the map L; ;0o —doL;,; maps V; into zR[[z]]®V;. This is seen to be equivalent to
(¢j — q;)L; ; maps Vj into zR[[z]] ® V; or equivalently L; ;V; C 24T R[[z]|@ V;.

2. Pr(gi60g7") = Pr(g2dog; ') is equivalent to the condition that gidog; " —
920095 " maps R[[2]] ® V into zR[[2]] ® V. The latter is equivalent to the
condition that g, 'g1009; ‘g2 — do maps R[[2]] ® V into zR[[2]] ® V. This is
again the same as Pr(g, 'g1609; "g2) = do. The last statement translates into
g1 H(R) = g2 H(R).

3. Suppose now that Pr(6) = dp. Then we try to solve hdph™' = § with
h € H(R). From the step by step construction that we will give, the unique-
ness of h will also follow. We remark that the uniqueness is also a consequence
of Lemma 11.13. The problem is equivalent to solving hégh™' — 6y = M for
any R[[z]]-linear map M : R[[z]] ® V — zR[[?]] ® V. This is again equiv-
alent to solving héy — doh = Mh modulo zV for all N > 1. For N = 1,
a solution is h = 1. Let a solution hy_; modulo zN~1 be given. Then
hn_160—00hn-1 = Mhy_1+2N"1S with S : R[[z]]®V — R[[2]]®V. Consider
a candidate hy = hy_1+2zV 1T for a solution modulo zV with T given in block
form (T},;) by maps T}, : R[[2]] ® V; — 2% R[[2]] ® V;. Then we have to solve
Tég — 0oT — (N — 1)T = —S modulo z. The linear map T'dp — doT — (N — 1)T
has block form (—(z£)(T};) +Tj,il; — i Tjs — (N — 1)Tji + (¢; — ¢:)Tj,:)- Let the
constant map L; ; be equivalent to z~%T} ; modulo z and let ¢; ; be the leading
coefficient of g; — ¢; (for j # 4). Then for ¢ # j the block for the pair j,i is
modulo z congruent to ¢;;L; ;. The block for the pair ¢,¢ is modulo z equivalent
to L;l; — l;L; ; — (N — 1)L; ;. Since the non-zero differences of the eigenvalues
of l; are not in Z, the map A € End(V;) — (Al; — ;A — (N — 1)A) € End(V;)
is bijective. We conclude from this that the required T exists. This shows that
there is an element h € H(R) with hdgh™! = 4. ]

Corollary 11.15 1. The functors R — G(R)/H(R) and G are isomorphic.
2. The functor F is representable by the affine space Ag, where
N=>,;deg.—1(q; — ¢;) - dim V; - dim V.

Proof. 1.Define the map ag : G(R)/H(R) = G(R) by by g — (g, Pr(g9dog 1)),
where § = gh with h € H(R) the unique element with hdph™! =
§ := g7 Pr(gdog~t)g = do — R(gdpg™'). By Lemma 11.14, ap is a bijection.
Moreover ar depends functorially on R.

2. The coset G(R)/H(R) has as set of representatives the g’s of the form
g = 1+ L with L = (Lj;), where L;; = 0 and L;;, for ¢ # j, is an R-
linear map ROV, > Rz2@V; ® R2>QV; &--- & Rz%i ® V;. Thus the functor
R~ G(R)/H(R) is represented by the affine space ®;.;Hom(V;, V;)%i. m|
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We note that Theorem 11.4 and Exercise 11.5 are special cases of Corol-
lary 11.15.

11.5 The Ramified Case

Let (N, V) be a connection over K = C'((z)). We defined: N - Nbyd =V

For any integer e > 1 we write K, = C((t)) with ¢¢ = z. The ramification index
of IV is defined as the smallest integer e > 1 such that M := K,®N is unramified
as defined in Section 11.4. The idea of the construction of the moduli space for
the ramified case given by N (or rather given by some lattice No C N) is the
following. One considers for the unramified case M over C'((t)) a suitable lattice
My on which the Galois group of C((t))/C((z)) operates. For the ramified case
one chooses for the lattice Ny the invariants of the lattice My under the action
of the Galois group. Then one has two moduli functors, namely F for Ny
and F for My. The second functor is, according to Section 11.4, representable
by some AY. Moreover, the Galois group of C((t))/C((2)) acts on F and its
moduli space. A canonical isomorphism F(R) — F(R)™’, where "’ means
the invariants under this Galois group and R is any C-algebra, shows that F is
representable by the (AY )™V, The latter space turns out to be isomorphic with
AM for some integer M > 1. Although the functors F and F are essentially
independent of the chosen lattices, a rather delicate choice of the lattices is
needed in order to make this proof work.

d .
24z

We will now describe how one makes this choice of lattices and give a fuller
description of the functors.

The decomposition M = ®f_, E(q;) ® M;, with distinct q1,...,qs € t *C[t 1],
E(q;) = K.e; with de; = g;e; and M; regular singular, is unique. We fix a set of
representatives of C'/ (%Z) Then each M; can uniquely be written as K, ®cV;,
where V; is a finite dimensonal vector space over C' and such that §(V;) C V; and
the eigenvalues of the restriction of 4 to V; lie in this set of representatives. The
uniqueness follows from the description of V; as the direct sum of the generalized
eigenspaces of 0 on M; taken over all the eigenvalues belonging to the chosen
set of representatives.

Fix a generator o of the Galois group of KG/K by o(t) = (t and ¢ a primitive
e*™-root of unity. Then ¢ acts on M in the obvious way and commutes with the
6 on M. Further o(fm) = o(f)o(m) for f € K., m € M. Thus o preserves
the above decomposition. In particular, if o(g;) = ¢; then o(E(q;) ® M;) =
E(g;j) ® M;. We make the convention that o is the bijection from E(g;) to E(g;)
which maps e; to e;. Using this convention one defines the map L;; : M; — M;
by o(e; ®m;) = e; ® L; j(m;). It is easily seen that L; ; commutes with the §’s
and L; ;(fm;) = o(f)L;:(m;). From the description of V; and Vj; it follows that
Lji(Vi) = Vj.



290 CHAPTER 10. MODULI FOR SINGULAR EQUATIONS

We note that L;; need not be the identity if g; = ¢;. The reason for this is that
C/(Z) and C/(+Z) do not have the same set of representatives. In particular,
a regular singular differential module N over K and a set of representatives
of C/(Z) determines an isomorphism N & K @ W. The extended module
M = K, ® N is isomorphic to K, ® W, but the eigenvalues of § on W may differ
by elements in %Z. Thus for the isomorphism M = K.oV corresponding to a

set of representatives of C'/(1Z) one may have that V # W.

We can summarize the above as follows: The extended differential module M :=
K. ® N is given by the following data:

(a) Distinct elements qi,...,qs € t71C[t™1].

(b) Finite dimensional vector spaces Vi, ...,V and linear maps [; :
Vi — V; such that the eigenvalues of [; lie in a set of representatives
of C/ (%Z)

(c) o permutes the set {qi,...,¢s} and for every pair ¢, j with og; =
g;, there is given a C-linear bijection o;; : V; = Vj such that o;; o
li = lj 00ji-

The data define a lattice My = @C[[t]]le; ® V; in the differential module
M, with de; ® v; = gie; ® v; + e; ® I;(v;) such that 6fm = fém + 1/e - t%m.
Further the data define an automorphism on Mj, also denoted by o, which has
the properties: o(fm) = o(f)o(m) andif o(¢;) = g;, then o(e;®v;) = e;®0;,;v;.

We consider now the lattice No = Mg, i.e., the elements invariant under the
action of o, in the differential module N over K. We will call this the standard
ramified case.

Again we consider the moduli problem for connections (A, V,) on P'(C);
N a free vector bundle; the connection (N, V) with the two singular points 0, oo;
the point co regular singular; ¢ : C[[z]] ® Ny = Ny an isomorphism compatible
with the two connections. This defines the functor F on the category of the
C-algebras, that we want to represent by an affine space over C.

Let X — P!(C) denote the covering of P!(C)) given by t¢* = 2. We con-
sider above X the moduli problem (of the unramified case): tuples (M, V,¢)
with a free vector bundle M; a connection (M,V) with singularities at 0
and oo; the singularity at oo is regular singular; further an isomorphism ¢ :
C[[t]] ® Mo — My. This defines a functor F on the category of the C-algebras.
The important observation is that o acts canonically on F (R). Indeed, an
element (M,V,$) € F is given by R-linear maps V : H(X ® R,M) —
HY(X,Q(k-[0] +[¢])) ® H*(X ® R,M) and ¢ : H°(X ® R, M) — R[[t]] ® My
having some compatibility relation. One defines (M, V,¢) = (M,V,0 0 ).
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Lemma 11.16 There is a functorial isomorphism F(R) — F(R)°.

Proof. We mean by F(R)? the set of o-invariant elements. For convenience
we will identify e; ® V; with V;. Put V = @V}, then My = C[[t]] ® V. The map
o on V has eigenvalues 1,¢,...,(¢"". Let V = ®¢Z; V(i) be the decomposition
in eigenspaces. Put W :=V(0) @t V(1) &t 2V (2) b --- @ tV(e—1). Then
one has No = C[[z]] @ W.

The functor F is “normalized” by identifying N with Op1(ry ® W and by re-
quiring that g is the identity. The same normalization will be made for F.
We start now by defining the map F(R) — F(R)?. For notational conve-
nience we will omit the C-algebra R in the notations. An element on the left
hand side is given by V : W — HY(Q(k[0] + [00])) ® W and a sequence of
linear maps 9, : W — W with ¢y = id, satisfying some compatibility con-
dition. The isomorphism ¢ : C[[z]] ® W — Ny extends to a C[[t]]-linear map
Clit]]leW — C[[tl]l®cqz No C M. Call this map also 1. Then 1) maps W iden-
tically into the subset W C Ny C M. The latter W has been written as a direct
sum B¢ t°~*V (i). On the left hand side one can embed C[[t]]@W into C[[t]]@V
(with V' as above) and extend 1) uniquely to an isomorphism ¢ : C[[t]|®V — M,
such that @ is the identity. The V : W — HO(P(C), Q(k[0] + [00])) @ W ex-
tends in a unique way to a V: V — H?(X,Qx (e -k - [0] + [00])) ® V such that
the compatibility relations hold. Moreover, one observes that the element in
F(R) that we have defined is invariant under o.

On the other hand, starting with a o-invariant element of F(R) one has a o-
equivariant isomorphism ¢ : C[[t]] ® V. — My with ¢o = id. After taking
invariants one obtains an isomorphism ¢ : C[[z]] @ W — Ny, with 19 = id. The
given V induces a V : W — HO(P'(C), Q(k[0] + [])) ® W. In total, one has
defined an element of F(R). The two maps that we have described depend in a
functorial way on R and are each others inverses. |

Corollary 11.17 There is a fine moduli space for the standard ramified case.
This space is the affine space Ag, with N equal to Zi# deg,-1(gi —¢;)-dim V;-
dim V;.

Proof. We keep the above notations. The functor F is represented by the
affine space ®;,;Hom(V;, V)% where d; ; is the degree of ¢; — ¢; with respect
to the variable ¢ 1. On this space o acts in a linear way. The standard ramified
case is represented by the o-invariant elements. From the description of the
o-action on @V; and the last lemma the statement follows. O

Example 11.18 Take e = 2, t> = z and M; the C[[t]]-module generated by
e1,ez. The derivation &y is given by dpe; = t 'e; and dpes = —t ley. Let o
be the generator of the Galois group of C((t))/C((z)). We let o act on My by
interchanging e; and e». Thus ¢ commutes with do. Then Ny = MJ is the
C[[z]]-module generated by fi; = e; + ea, fo =t(e; —ez). The action of §p with
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respect to this basis is equal to zd% + Ez7! + B, where E, B are the matrices

<(1) 8>and<8 1}2)'

The universal object for the unramified case is given in matrix form by

o d 1 1 0 0 a

The action of ¢ on the universal object permutes a and b. Thus the universal
o-invariant object is

d (1 0 0 a

This ¢ has with respect to the basis fi, fo the matrix form

_ d 1 0 0 a 1
Pt <1 0)*(0 1/2—a>

For a = 0 one has of course the standard module in the ramified case. The above
differential operator is the universal family above the moduli space, which is A},.
O

11.6 The Meromorphic Classification

Let C be the field of complex numbers C. We consider a moduli functor F
associated to a formal differential module (Ng, V) as in Section 11.4 or 11.5. Its
fine moduli space is denoted by Ag . The meromorphic classification, attached
to K = C((z)), is described by the cohomology set H'(S*, ST'S) or equivalently
by the set of Stokes matrices. One identifies, as before, H*(S', ST'S) with CVV.

Theorem 11.19 The canonical map o : AN — H(S',STS) = CV is complex
analytic. The image of o contains the Zariski open subset of CN consisting of
the points & for which the topological monodromy has m distinct eigenvalues.
The fibre of a point ¢ € CV, such that its topological monodromy has m distinct
eigenvalues, is a discrete infinite subset of AYN.

Proof. The map « is defined as in Subsection 11.3.2 and associates to a C-
valued point of AY, represented by (M, V, ), the pair (M,v), where M :=
C({z}) ® H°(P'(C), M) with the connection induced by V and where 1) is
the isomorphism C((z)) ® M — C((z)) ® Ny induced by ¢. Write U for the
algebra of regular functions on AN and write (gy,d,) € G(U) for the universal
element. Then dg = zd% + Ap and 6§, = zdiz + A, where the matrices Ag and A
have coordinates in C[z7!] and U[z7!]. Further g, is a formal solution of the
differential equation zd%(gu)—kAgu —guAo = 0. Let d be a non-singular direction
of this differential equation. Multisummation yields a unique lift Sy(g,) of g,
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valid in a fixed sector S around d. Suppose that one knows that Ss(g,) is an
analytic function on Sx AY. Consider now a singular direction d. Then Sq+(gu,)
and Sg- (gy) are both analytic functions on S x AX (where S is a suitable sector
around the direction d). Then it follows that the Stokes matrix for direction d is
an analytic function on AY. One concludes that « is an analytic map. The other
statements of the theorem follow from the arguments given in Subsection 11.3.2.
O

Thus the theorem is a consequence of the following result in the theory of
multisummation.

Proposition 11.20 (B.L.J. Braaksma) Let z denote a set of n variables. Con-
sider a matriz differential equation

z%y — Ay = h, where A and h have coefficients in C[z™", z].

Let a formal solution f which has coefficients in C[z][[z]] be given and suppose
that 2L — A is equivalent, via a g € GL(m, C[z][[2]]) such that g is the identity
modulo z, with a (standard) differential equation over C[z~] (not involving z).
Let d be a nonsingular direction for zd% — A and S the fixed sector with bisector
d, given by the multisummation process.

Then the multisum Sq(f)(z,z) in the direction d is holomorphic on S x C™.

A

Proof. It suffices to prove that Sy(f)(z,z) depends locally holomorphically on
z. This means that we must verify that Sg(f)(z,z) is holomorphic on S x {a €
C" | ||la]| < €} for the required sector and some positive e. The analytic way
to produce the multisummation Sy by formal Borel and Laplace integrals (see
Example 7.44 and Remarks 7.61) will imply the required result without too
much extra effort. Indeed, the various Borel and Laplace transforms of f are
given by integrals and these integrals depend locally holomorphically on z. In
our more algebraic setting of multisummation, we will have to show that after
each step in the construction the result depends locally holomorphically on z.
We only sketch the procedure.

The Main Asymptotic Existence Theorem (Theorem 7.10) has to be adapted
to the case of parameters z. For this one considers the scalar equation (4 —
q)f = g with ¢ € 27'C[z™"] and g = g(z, ) depending holomorphically on
. A version of the Borel-Ritt Theorem (Theorem 7.3) with parameters can be
applied to f and this reduces the problem to the special case where g is flat,
uniformly in z in some neighborhood of 0 € C". One then extends Lemma 7.13
to the case of parameters. A somewhat tedious calculation shows that the
estimates of the integrals, involved in the proof of Lemma 7.13, hold uniformly
for z in a neighborhood of 0 € C". A similar verification can be done for the
proof of Lemma 7.17. The conclusion is that Theorem 7.10 holds for the case
of parameters. We therefore have that f has asymptotic lifts f; with respect
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to some open cover {S;}ic; of S! and furthermore, that these lifts depend
holomorphically on 2. This induces a l-cocycle & = {f; — f;} for the sheaf
Ky =ker(d — A, (A(l’/k)m) and the open cover {S;} of S' and that this cocycle

depends holomorphically on z (see Lemma 7.39).

It is given that 6 — A is equivalent, by a transformation g € GL,,(C|z][[]])
with ¢ = 1 mod z, to 6 — B where B is independent of z. For convenience
we suppose that 6 — A has only one positive slope k. One can verify that
Lemma 7.40 remains valid for our case of parameters. This means that for a
sector S = (d — a,d + «) with d not a singular direction and some a > 7 the
sheaf K 4 is isomorphic to Kp ®c O, where O denotes the ring of holomorphic
functions on {a € C" | ||la|]| < €}. Both H°(S,Kg) and H'(S, Kp) are zero.
Therefore the restriction of the 1l-cocycle £ to S is the image of a (unique)
element n = {n;} in [[, K4(SNS;) (depending holomorphically on z). The new
choice of lifts {f; —n;} for the cover {S N S;} of S glue to together to from the
k-sum Sq(F) on S. Thus Sy(f) depends holomorphically on z. The general
case, involving more than one positive slope, can be handled in the same way
(and with some more effort). O
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Appendix A

Algebraic Geometry

Affine varieties are ubiquitous in Differential Galois Theory. For many results
(e.g., the definition of the differential Galois group and some of its basic prop-
erties) it is enough to assume that the varieties are defined over algebraically
closed fields and study their properties over these fields. Yet, to understand
the finer structure of Picard-Vessiot extensions it is necessary to understand
how varieties behave over fields that are not necessarily algebraically closed. In
this section we shall develop basic material concerning algebraic varieties taking
these needs into account while at the same time restricting ourselves only to the
topics we will use.

Classically, algebraic geometry is the study of solutions of systems of equations
{fa(X1,..., X)) = 0}, fo € C[Xy,...,X,] where C is the field of complex
numbers. To give the reader a taste of the contents of this appendix, we give
a brief description of the algebraic geometry of C™. Proofs of these results will
be given in this appendix in a more general context.

One says that a set S C C" is an affine variety if it precisely the set of zeros of
such a system of polynomial equations. For n = 1, the affine varieites are finite
or all of C and for n = 2, they are the whole space or unions of points and curves
(i.e., zeros of a polynomial f(X;, X5)) . The collection of affine varieties is closed
under finite intersection and arbitrary unions and so forms the closed sets of a
topology, called the Zariski topology. Given a subset S C C", one can define
an ideal I(S) = {f € C[Xy,...,Xn] | f(e1,...,¢n) = 0forall (¢1,...,¢p) €
C"} C C[Xy,...,X,]. A fundamental result (the Hilbert Basissatz) states
that any ideal of C[Xy,...,X,] is finitely generated and so any affine vari-
ety is determined by a finite set of polynomials. One can show that I(S) is
a radial ideal, that is, if f™ € I(S) for some m > 0, then f € I(S). Given
an ideal I C C[Xy,...,X,] one can define a variety Z(I) = {(c1,...,¢n) €
C" | fler,...,en) = 0forall f € I} € C". Another result of Hilbert (the
Hilbert Nullstellensatz) states for any proper ideal I C C[X7, ..., X,], the set

297
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Z(I) is not empty. This allows one to show that maps V — I(S) and I — Z(I)
define a bijective correspondence between the collection of affine varieites in C"
and the collection of radical ideals in C[X7, ..., X,].

Given a variety V', one can consider a polynomial f in C[Xq,..., X,] as a func-
tion f : V. — C. The process of restricting such polynomials to V' yields a
homomorphism from C[X;,...,X,] to C[Xy,...,X,]/I(V) and allows one to
identify C[X1,...,X,]/I(V) with the collection of polynomial functions on V.
This latter ring is called the coordinate ring of V' and denoted by C[V]. The
ring C[V] is a finitely generated C-algebra and any fintely generated C-algebra
R may be written as R = C[X7, ..., X,]/I for some ideal I. I will be the ideal
of an affine variety if it is a radical ideal or, equivalently, when R has no nilpo-
tent elements. Therefore there is a correspondence between affine varieties and
finitely generated C-algebras without nilpotnents.

More generally, if V. C C™ and W C C™ are affine varieties, amap ¢ : V — W is
said to be a regular map if it is the restriction of a ® = (®4,...,®,,) : C" —» C™,
where each ®; is a polynomial in n variables. Given an element f € C[W], one
sees that f o ¢ is an element of C[V]. In this way, the regular map ¢ induces a
C-algebra homomorphism from C[W] to C[V]. Conversely, any such C-algebra
homomorphims arises in this way. Two affine varieties V' and W are said to be
isomorphic if there are regular maps ¢ : V. — W and ¢ : W — V such that
Yo ¢ =1idy and ¢ oy = idy. Two affine varieties are isomorphic if and only if
their coordinate rings are isomorphic as C-algebras.

We say that an affine variety is irreducible if it is not the union of two proper
affine varieties and irreducible if this is not the case. One sees that an affine
variety V is irreducible if and only if I(V) is a prime ideal or, equivalently,
if and only if its coordinate ring is an integral domain. The Basissatz can be
furthermore used to show that any affine variety can be written as the finite
union of irreducible affine varieties. If one has such a decomposition where no
irreducible affine variety is contained in the union of the others, then this de-
composition is unique and we refer to the irreducible affine varieties appearing
as the components of V. This allows us to frequently restrict our attention to
irreducible affine varieties. All of the above concepts are put in a more general
context in Section A.1.1.

One peculiarity of the Zariski topology is that the Zariski topolgy of C* = Cx C
is not the product topology. For example, V(X? + X2) is not a the finite union
of sets of the form {pt} x {pt}, {pt} x C,C x {pt}, or C x C. We shall have oc-
casion to deal with products of affine varieties. For example, the Galois theory
of diffential equations leads one to consider the affine groups G' and these are
defined as affine varieties where the group law is a regular map from G xG — G
(as well as insisting that the map taking an element to its inverse is a regular
map G — G). To do this efficiently we wish to give an intrinsic definition of the
product of two varieties. In Section A.1.2, we show that for affine varieties V'
and W the tensor product C[V]®@c C[W] of C[V] and C[W] is a C-algebra that



299

has no nilpotent elements. We define the product of V' and W to be the affine
variety associated with the ring C[V]®c C[W]. If V .C C" and W C C™ then
we can identify V x W with pointset V x W C C™"™. This set is Zariski-closed
and has the above coordinate ring.

The Basissatz implies that any decreasing chain of affine varieties V 2 Vi 2
--- 2 V4 2 ... must be finite. One can show that the length of such a chain is
uniformly bounded and one can define the dimension of an affine variety V to
be the largest number d for which there is a chain of nonempty affine varieties
V2 Vi 2 -2 V4. The dimension of an affine variety is the largest dimension
of its irreducible components. For an irreducible affine variety V' this coincides
with the transcendence degree of C(V') over C where C(V') is called the function
field of V' and is the quotient field of C[V']. These concepts are further discussed
in Section A.1.3.

Let V be an irreducible of dimension d and let p € V. We may write the coor-
dinate ring C[V] as C[X1,...,X,]/(f1,- .-, ft). One can show that the matrix
(g)’?j (p)) has rank at most n —d. We say that p is a nonsingular point of V' if
the rank is exactly n — d. This will happen at a Zariski-open set of points on
V. The Implicit Function Theorem implies that in a (euclidean) neighborhood
of a nonsingular point, V' will be a complex manifold of dimension d. One can
define the tangent space of V' at a nonsingular point p = (p1,...,pn) to be the

zero set of the linear equations

-~ Of;
0X;

(p)(X;—p;)=0forj=1,...,¢t.

i=1

This formulation of the notions of nonsingular point and tangent space appear
to depend on the choice of the f; and are not intrinsic. Furthermore, one would
like to define the tangent space at nonsingular points as well. In Section A.1.4,
we give an intrinsic definition of nonsinguarity and tangent space at an arbi-
trary point of a (not necessarily irreducible) affine variety and show that these
concepts are equivalent to the above in the classical case.

A major use of the algebraic geometry that we develop will be to describe linear
algebraic groups and sets on which they act. The prototypical example of a
linear algebraic group is the group GL,,(C) of invertible n x n matrices with
entries in C. We can identify this group with an affine variety in C"*! via the
map sending A € GL,(C) to (A, (det(4))~!). The ideal in C[X11,...,Xpnn, Z]
defining this set is generated by Z det(X; ;) — 1. The entries of a product of two
matrices A and B are clearly polynomials in the entries of A and B. Cramer’s
rule implies that the entries of the inverse of a matrix A can be expressed as
polynomials in the entries of A and (det(A4))~!. In general, a linear algebraic
group is defined to be an affine variety G such that the multiplication is a reg-
ular map from G x G to G and inverse is a regular map from G to G. It can
be shown that all such groups can be considered as Zariski closed subgroups
of GLN(C) for a suitable N. In Section A.2.1, we develop the basic properties
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of linear algebraic groups ending with a proof of the Lie-Kolchin Theorem that
states that a solvable linear algebraic group G C GL,,, connected in the Zariski
topology, is conjugate to a group of upper triangular matrices. In Section A.2.2,
we show that the tangent space of a linear algebraic group at the identity has
the structure of a Lie algebra and derive some further properties.

In the final Section A.2.3, we examine the action of a linear algebraic group
on an affine variety. We say that an affine variety V is a torsor or principal
homogeneous space for a linear algebraic group G if there is a regular map
¢ : G xV — V such that for any v,w € V there is a unique g € G such that
¢(g,v) = w. In our present context, working over the algebraically closed field
C, this concept is not too interesting. Picking a point p € V one sees that the
map G — V given by g — ¢(g,p) gives an isomorphism between G and V.
A key fact in differential Galois theory is that a Picard-Vessiot extension of a
differential field k is isomorphic to the function field of a torsor for the Galois
group. The field £ need not be algebraically closed and this is a principal reason
for developing algebraic geometry over fields that are not algebraically closed.
In fact, in Section A.2.3 we show that the usual Galois theory of polynomials
can be recast in the language of torsors and we end this outline with an example
of this.

Example A.1 Consider the affine variety W = {y/—1, —/—1} C C' defined
by X? +1 = 0. The linear algebraic group G = {1,—1} C GL;(C) acts on
W by multiplication (g,w) — gw and this action makes W into a torsor for
G. Tt is easy to see that V and G are isomorphic affine varieties (for example,
f(X) = +/—1X defines an isomorphism). We say that an affine variety V c C"
is defined over k C C if I(V) C C[Xy,...,X,] has a set of generators in k. We
define the k-coordinate ring of V' to be k[V] = k[ X1, ..., X,]/(INk[ X1, ..., X,]).
It is clear that both W and G are defined over Q and QW] = Q[X]/(X?+1) ~
Q(v-1), Q[G] = Q[X]/(X? - 1) ~ Q® Q. The action of G on W is defined
by polynomials with coefficients in Q as well. On the other hand there is no
isomorphism between G and W defined by polynomials over Q.

In fact, any finite group can be realized (for example via permutation matrices)
as a linear algebraic group defined over Q and any Galois extension of Q with
Galois group G is the Q-coordinate ring of a torsor for G defined over Q as well
(see Exercise A.50). O

One could develop the theory of varieties defined over an arbitrary field
k using the theory of varieties defined over the algebraic closure k and care-
fully keeping track of the “field of definition”. In the next sections we have
chosen instead to develop the theory directly for fields that are not neceaarily
algebraiclaly closed. Although we present the following material ab initio, the
reader completely unfamiliar with most of the above ideas of algebraic geometry
would profit from looking at [57] or the introductory chapters of [94], [160] or
[194].
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A.1 Affine Varieties

A.1.1 Basic Definitions and Results

We will let & denote a field and k an algebraic closure of k. Throughout Ap-
pendiz A we shall assume, unless otherwise stated, that k has characteristic zero.
We shall occasionally comment on how the results need to be modified for fields
of nonzero characteristic. A k-algebra R is a commutative ring, having a unit
element 1, and containing k as a subring such that 1 € k. A homomorphism
¢ : A — B of k-algebras is a ring homomorphism such that ¢ is k-linear (or
what is the same, the identity on k). A k-algebra R is called finitely generated

if there are elements fi,..., f, € R such that every element in R is a (finite)
k-linear combination of the elements f{™* - -- fi*» with all m; € Z, m; > 0. The
fi,-.., fn are called generators for R over k.

Suppose that the k-algebra R is generated by fi,..., fn over k. Define the ho-
momorphism of k-algebras ¢ : k[X1,...,X,] = R by ¢(X;) = f; for all i. Then
clearly ¢ is surjective. The kernel of ¢ is an ideal I C k[X},...,X,,] and one has
k[X1,...,X,]/I = R. Conversely, any k-algebra of the form k[X,...,X,]/I is
finitely generated.

A k-algebra R is called reduced if ¥ = 0 (with » € R and n > 1) implies that
r = 0. An ideal I in a (commutative) ring R is called radical if ™ € I (with
n > 1and r € R) implies that r € I. Thus k[X;,...,X,]/I is a reduced finitely
generated k-algebra if and only if the ideal I is radical.

The principal definition in this section is

Definition A.2 An affine variety over k is a pair X := (max(A), A), where A
is a finitely generated k-algebra and max(A) is the set of all mazimal ideals of
A. This affine variety is called reduced if A is reduced.

Of course, the set max(A) is completely determined by A and it may seem
superfluous to make it part of the definition. Nonetheless, we have included it
because max(A) will be used to state many ring theoretic properties of A in a
more geometric way and so is the basic geometric counterpart of the ring A.

For an affine variety X, the set max(A) is provided with a topology, called the
Zariski topology. To define this topology it is enough to describe the closed sets.
A subset S C max(A) is called (Zariski-)closed if there are elements {f;}ic; C A
such that a maximal ideal m of A belongs to S if and only if {f;}ic;r C m. We
will use the notation S = Z({f; }icr)-

The following statements are easily verified:

(1) If {G}}jes is a family of closed sets, then NG is a closed set.
(2) The union of two (or any finite number of) closed sets is closed.
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(3) The empty set and max(A) are closed.
(4) Every finite set is closed.
(5) Any closed set S is of the form Z(J) for some ideal J C A.

Statement (5) can be refined using the Hilbert Basissatz. A commutative ring
(with 1) R is called noetherian if every ideal I C R is finitely generated, i.e.,
there are elements fi,...,fs € I such that I = (f1,...,fs) ={gfr + -+

9sfsl g1,--- .95 € R}.

Hilbert Basissatz: If R is a noetherian ring then R[z] is a
noetherian ring. In particular, this implies that k[Xy,...,X,] is
noetherian and so any finitely generated k-algebra is noetherian.

We refer to [130], Ch. IV, §4 for a proof of this result. Statement (5) above
can now be restated as: Any closed set S is of the form Z(fi,..., fm) for some
finite set {f1,..., fm} € A.

The above definitions are rather formal in nature and we will spend some
time on examples in order to convey their meaning and the geometry involved.

Example A.3 The affine line A} over k

By definition Al = (max(k[X]),k[X]). Every ideal of k[X] is principal, i.e.,
generated by a single element F' € k[X]. The ideal (F') is maximal if and only
if F is an irreducible (nonconstant) polynomial. Thus the set max(k[X]) can
be identified with the set of monic irreducible polynomials in k[X]. The closed
subsets of max(k[X]) are the finite sets, the empty set and max(k[X]) itself. The
(Zariski-) open sets are the cofinite sets and the empty subset of max(k[X]).
Suppose now that k& = k. Then every monic irreducible polynomial has the form
X — a with a € k. Thus we can identify max(k[X]) with & itself in this case.
The closed sets for the (Zariski-) topology on k are the finite sets and k itself.

Now we consider the case where k # k. Let F be a monic irreducible element
of k[X]. Since k is algebraically closed, there is a zero a € k of F. Consider
the k-algebra homomorphism ¢ : k[X] — k, given by ¢(X) = a. The kernel
of ¢ is easily seen to be this maximal ideal (F'). This ideal gives rise to a
surjective map 7 : k — max(k[X]), defined by 7(a) is the kernel of the k-algebra
homomorphism k[X] — k, which sends X to a. The map 7 is not bijective, since
a monic irreducible polynomial F' € k[X] can have more than one zero in k. Let
us introduce on k the equivalence relation ~ by a ~ b if a and b satisfy the same
monic minimal polynomial over k. Then k/ ~ is in bijective correspondence
with max(k[X]).

One can generalize Example A.3 and define the n-dimensional affine space
A} over k to be A} = (max(k[X1,...,X,]),k[X1,...,X,]). To describe the
structure of the maximal ideals we will need :
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Hilbert Nullstellensatz: For every maximal ideal m of k[ X1, ..., X,,]
the field k[ X1, ..., X,]/m has a finite dimension over k.

Although this result is well known ([130], Ch. IX, §1), we shall give a
proof when the characteristic of k is 0 since the proof uses ideas that we have
occasion to use again (c.f., Lemma 1.15). A proof of this result is also outlined
in Exercise A.25. We start with the following

Lemma A.4 Let F be a field of characteristic zero, R a finitely generated in-
tegral domain over F and x € R such that S = {c € F| & — c is invertible in R}
is infinite. Then x is algebraic over F'.

Proof. (Rosenlicht) We may write R = F[z1,...xy] for some z; € R and
x1 = x. Assume that z; is not algebraic over F' and let K be the quotient field
of R. Let x1,...,x, be a transcendence basis of K over F' and let y € R be
a primitive element of K over F(xy,...,z,). Let G € F[zy,...,z,] be chosen
so that the minimum polynomial of y over F[zy,...z,] has leading coefficient
dividing G and z1,...,2, € Flxy,...2,,y, G"!]. Since S is infinite, there exist
Cl,-.-,¢p € Ssuchthat G(cy,...,¢.) # 0. One can then define a homomorphism
of F[zy,...zr,y,G7'] to F, the algebraic closure of F, such that z; ~ ¢; for
i=1,...,r. Since R C F[z1,...2,,y,G"1], this contradicts the fact that z; —c;
is invertible in R. O

Note that the hypothesis that F' is of characteristic zero is only used when we
invoke the Primitive Element Theorem and so the prof remains valid when the
characteristic of k is p # 0 and FP = F. To prove the Hilbert Nullstellensatz,
it is enough to show that the image z; of each X; in K = k[Xy,...,X,]/m
is algebraic over k. Since z; can equal at most one element of k, there are
an infinite number of ¢ € k such that x; — ¢ is invertible. Lemma A.4 yields
the desired conclusion. A proof in the same spirit as above that holds in all
characteristics is given in [154].

Exercise A.5 Hilbert Nullstellensatz

1. Show that a set of polynomials {f,} C k[X}, ..., X,] have a common zero in
some algebraic extension of k if and only if 1 ¢ I, where I is the ideal generated
by {fa}-

2. Let aq,...,a, € k. Show that the ideal (X1 — aq,...X,, — a,) is a maximal
ideal in k[X7y,..., X,].

3. Assume that k is algebraically closed. Show that the maximal ideals of
k[X1,...,X,] are of the form (X; — aq,...X,, — a,) for some a; € k. Hint:
If m is maximal, the Hilbert Nullstellensatz says that k[Xi,...,X,]/m is an
algebraic extension of k£ and so equal to k. |

We now turn to discription of A}.
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Example A.6 The n-dimensional affine space A} over k

By definition A} = (max(k[X1,...,X,]),k[X1,...,X,]). The Hilbert Nullstel-
lensatz clarifies the structure of the maximal ideals. Let us first consider the
case where k is algebraically closed, i.e. k = k. From Exercise A.5, we can
conclude that any maximal ideal m is of the form X; — ay,..., X, — a,) for
some a; € k. Thus we can identify max(k[X1,...,X,]) with £”. We use the
terminology “affine space” since the structure of k™ as a linear vector space over
k is not included in our definition of max(k[X7,..., X,]).

In the general case, where k # k, things are somewhat more complicated. Let
m be a maximal ideal. The field K := k[X1,...,X,]/m is a finite exten-
sion of k so there is a k-linear embedding of K into k. For notational con-
venience, we will suppose that K C k. Thus we have a k-algebra homomor-
phism ¢ : k[X1,...,X,] = k with kernel m. This homomorphism is given by
#(X;) = a; (i = 1,...,n and certain elements a; € k). On the other hand,
for any point a = (ai,...,an) € k , the k-algebra homomorphism ¢, which
sends X; to a;, has as kernel a maximal ideal of k[X1,...,X,]. Thus we find a
surjective map k= — max(k[X1,...,X,]). On %" we introduce the equivalence
relation a ~ b by, if F/(a) = 0 for any F' € k[X1,...,X,] implies F'(b) = 0. Then
%"/ ~ is in bijective correspondence with max(k[X1,. .., Xn]. O

Exercise A.7 Radical ideals and closed sets

One considers two sets: R, the set of all radical ideals of k[X},...,X,] and Z,
the set of all closed subsets of max(k[X,...,X,]). For any closed subset V' we
denote by I(V) the ideal consisting of all F' € k[X1,...,X,] with F' € m for all
m € V. For any radical ideal I we consider

Z(I) := {m € max(k[X1,...,Xp])| ] Cm} .

1. Prove that the maps Z : R — Z and id : Z — R are inverses of each other.
Hint: Suppose that I is a radical ideal and that f ¢ I. To prove that there is
a maximal ideal m D I with f & m, consider the ideal J = (I,YF — 1) in the
polynomial ring k[X1,...,Xp,Y]. If 1 € J, then
1 = g(Xq,...,X,,Y) - Yf(Xy,...,X,) -1
+3 90X, X, V) ful X1, o, Xy)

with the f, € I and g,g, € k[X1,...,X,,Y]. Substituting ¥ — % and clearing
denominators implies that f € I for some positive integer n. Therefore, 1 ¢ J

and so there exists a maximal ideal m’ D J. Let m = m' N k[ Xy, ..., X,].
2. Assume that k is algebraically closed. Define a subset X' C k™ to be closed if
X is the set of common zeros of a collection of polynomials in k[ X7, ..., X,]. For

any closed X' C k™ let Z(X) be the set of polynomials vanishing on X. For any
ideal I define Z(I) to be the set of common zeros in k™ of the elements of I. Use
the Hilbert Nullstellensatz and part 1. to show that the maps Z and 7 define a
bijective correspondence between the set of radical ideals of k[X7, ..., X,,] and
the collection of closed subsets of k™. |
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For an affine variety X = (max(A4),A) one writes sometimes X for the
topological space max(A) and O(X) for A. One calls O(X) or A the ring of
reqular functions on X. Indeed, any g € A can be seen to be a function on
max(A). The value g(m) is defined as the image of g under the map A — A/m.
In case k = k, each A/m identifies with k, and so any g € A can be seen as
an ordinary function on max(A) with values in k. We shall frequently identify
g € O(X) with the map it induces from max(A) to A/m. For example, the
set {z € X | g(x) # 0} denotes the set of maximal ideals in A not containing
g. Exercise A.7 implies that the intersection of all maximal ideals is {0} so the
identification of f with the function it induces is injective. One also calls O(X)
the coordinate ring of X. A morphism X = (max(A),A) —» Y = (max(B), B)
of affine variety over k, is defined to be a pair (f, ¢) satisfying:

1. ¢ : B - Ais a k-algebra homomorphism.
2. f : max(A) — max(B) is induced by ¢ in the following manner:
for any maximal ideal m of A, f(m) = ¢~ (m).

We note that since A and B are finitely generated over k, if m is a maximal
ideal of B and ¢ : B — A is a k-algebra homomorphism, then ¢~!(m) is always
a maximal ideal of A. The Nullstellensatz implies that B/m is an algebraic
extension of k and so the induced map ¢ : A/¢~'(m) — B/m maps A/¢~'(m)
onto a finitely generated k-subalgebra of B/m. Therefore A/¢~!(m) is again a
field and so ¢~!(m) is again a maximal ideal.

In concrete terms, let A = k[X1,...,X,]/I, B = k[Y1,...,Yy]/J and let
fiyoooy fm € E[X1,...,X,] have the property that for any G(Y1,...,Yn) €
J, G(fi,...,fm) € I. Then the map ¢ : B — A given by ¢(Y;) = f; deter-
mines a k-homomorphism and yields a morphism from X to Y. Furthermore,
any such morphism arises in this way. If fi,..., fm € k[X1,...,X,] also satisfy
G(f1,---fm) =0 for all G € J and ¢ is defined by ¥(Y;) = f;, then ¢ and 1
yield the same morphism if and only if f; — f; € [ fori=1,...,m.

We note that f is a continuous map. One sometimes uses the notations f = ¢*
and ¢ = f*. The important thing to note is that only very special continuous
maps max(A) — max(B) are of the form ¢* for some k-algebra homomor-
phism ¢. Moreover, only for reduced affine varieties will the topological map
f : max(A) —» max(B) determine ¢.

Exercise A.8 Continuous maps on max(A)

Let X = (max(A4),A) and Y = (max(B), B) be reduced affine varieties over an
algebraically closed field k. Then O(X) and O(Y") can be considered as rings of
functions on the spaces max(A) and max(B). Let f : max(A) — max(B) be a
continous map.

1. Show that there is a k-algebra homomorphism ¢ : B — A with f = ¢* if and
only for every b € B the function max(A) EN max(B) 2 & belongs to A.
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2. Suppose that f satisfies the condition of (1). Show that the ¢ with f = ¢*
is unique. a

Let X = (max(A), A) be areduced affine variety. A closed reduced subvariety
Y of X is defined as a pair (max(A/I), A/I), where I is a radical ideal of A.

Exercises A.9 Subvarieties
1. Determine the Zariski closed subsets of A,lc.
2. Let V be a reduced closed subvariety of Aj}. Determine O(V).

3. Let X := (max(A), A) be a reduced affine variety and consider an f € A with
f # 0. Define (W,0(W)) by OW) = A[1/f] = A[T]/(Tf-1) and W C max(A)
is the open subset {m|f & m} with the induced topology. Prove that (W, O(W))
is a reduced affine variety and show that (W, O(W)) is isomorphic to the closed
reduced subspace (max(A[T]|/(Tf —1)), A[T]/(Tf —1)) of (max(A[T]), A[T]).

4. Let V be a reduced affine variety. Prove that there is a 1-1 relation between
the closed subsets of V' and the radical ideals of O(V).

5. Let V be a reduced affine variety. Prove that there is no infinite decreasing set
of closed subspaces. Hint: Such a sequence would correspond with an increasing
sequence of (radical) ideals. Prove that the ring O(V') is also noetherian and
deduce that an infinite increasing sequence of ideals in O(V') cannot exist.

6. Let V be a reduced affine variety and S a subset of V. The Zariski closure
of S is defined as the smallest closed subset of V' containing S. Show that the
Zariski closure exists. Show that the Zariski closure corresponds to the radical
ideal I C O(V') consisting of all regular functions vanishing on S.

7. Determine all the morphisms from A} to itself.

8. Suppose that the reduced affine varieties X and Y are given as closed subsets
of A} and A}’. Prove that every morphism f : X — Y is the restriction of a
morphism F : A} — AP* which satisfies FI(X) CY.

9. Show by example that the image of a morphism f : X — A} is in general
not a closed subset of A}. O

In connection with the last exercise we formulate a useful result about the
image f(X) C Y of a morphism of reduced affine varieties: f(X) is a finite
union of subsets of Y of the form V N W with V closed and W open. We note
that the subsets of Y described in the above statement are called constructible.
For a proof of the statement we refer to [108], p. 33.

In the sequel all affine varieties are supposed to be reduced and we will omit the
adjective “reduced”. An affine variety X is called reducible if X can be written
as the union of two proper closed subvarieties. For “not reducible” one uses the
term irreducible.



A.1. AFFINE VARIETIES 307

Lemma A.10

1. The affine variety X is irreducible if and only if O(X) has no zero divisors.
2. FEvery affine variety X can be written as a finite union X1 U --- U X, of
irreducible closed subsets.

3. If one supposes that no X; is contained in X; for j # i, then this decompo-
sition is unique up to the order of the X; and the X; are called the irreducible
components of X.

Proof. 1. Suppose that f,g € O(X) satisfy f # 0 # g and fg = 0. Put
X; ={a € X| f(a) =0} and X5 = {a € X| g(a) =0}. Then X = X; U X, and
X is reducible. The other implication can be proved in a similar way.

2. If X is reducible, then one can write X = Y U Z with the Y, Z proper
closed subsets. If both Y and Z are irreducible then we can stop. If, say, Y is
reducible then we write Y = DUFE and find X = ZU D U FE, and so on. If this
process does not stop, then we find a decreasing sequence of closed subsets, say
Fy, D F, D F;D--- of X. By Exercise A.9.5, this cannot happen. Thus X can
be written as X1 U X5 U---U X, which each X; closed and irreducible.

3. Suppose that there is no inclusion between the X;. Let Y C X be a closed
irreducible subset. Then Y = (Y NX;)U---U(Y NX;) and since Y is irreducible
one finds that Y = Y N X for some i. In other words, Y C X; for some i. This
easily implies the uniqueness of the decomposition. O

Exercise A.11 Rational functions on a variety

Let X = (max(A), A) be an affine variety. We define the ring of rational func-
tions k(X) on X to be the total quotient ring Qt(A) of A. This is the localization
of A with respect to the multiplicative set of non-zerodivisors of A (see Defi-
nition 1.5.1(d)). Note that the definition of localization specializes in this case
to: (r1,s1) ~ (r2,s2) if r1se —rosy = 0. We say that f € k(X) is defined at
m € max(Z) if there exist g, h € A such that f = g/h and h ¢ m.

1. Show that if X is irreducible, then k(X) is a field.

2. Show that for f € k(X) there exists an open dense subset U C X such that
f is defined at all points of X.

3. Let X = Ul_, X; be the decomposition of X into irreducible components. For
each ¢ we have the map g € O(X) — g¢|x; € O(X;). This induces a map k(X) —
kE(X;) sending f € k(X) to f|x,. Show that the map k(X) — k(X1) x ... k(Xy)
defined by f — (f|x,,--., flx,) is an isomorphism of k-algebras.

4. Show that, for f € k(X), f € A if and only if f is defined at m for all
m € max(A). Hint: Let I C A be the ideal generated by all h € A such that
there exists an element g € A with f = g/h. If f defined at all m € max(A4),
then I = (1). Therefore there exist g1,..., gm, 1, -, hm,t1,...,tm € A such
that 1 =" t;h; and, for each i, f = g;/h;. Show that f =3"/" tig; € A. O
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We end this section with the following concept. If S C k[X1,...,X,] is a set
of polynomials and k' D k is an extension field of k, it is intuitively clear what
is meant by a common zero of S in (k')™. We shall need to talk about common
zeros of a set of polynomials in any k-algebra R as well as some functorial
properties of this notion. We formalize this with the following

Definition A.12 Let k be a field and X an affine variety defined over k. For
any k-algebra R, we define the set of R-points of X, X(R) to be the set of
k-algebra homorphisms O(X) — R.

Examples A.13 R-points

1. Let £k = Q and let X be the affine variety corresponding to the ring
Q[X]/(X? 4+ 1). In this case X(Q) and X(R) are both empty while X (C)
has two elements.

2. Assume that k is algebraically closed. The Hilbert Nullstellensatz implies
that X (k) corresponds to the set of maximal ideals of O(X). (c.f., Example A.6)
O

One can show that every k-algebra homomorphism R; — R, induces the
obvious map X(R;) — X(Rs). Furthermore, if F is a morphism from X to
Y, then F induces a map from X (R) to Y(R). In particular, an element f of
O(X) can be considered as a morphism from X to A} and so gives a map fr
from X (R) to A}(R) = R. In fact, one can show that the map R — X (R) is a
covariant functor from k-algebras to sets. This is an example of a representable
functor (see Definition C.19).

Exercises A.14 k-points
Let & be the algebraic closure of k and let X and Y be affine varieties over k.

1. Use the Hilbert Nullstellensatz to show that for any f € O(X), f = 0 if
and only if f is identically zero on X (k). Hint: Let O(X) = k[Xy,..., X,]/q,
q a radical ideal. Use Exercise A.7.1 to show that if f ¢ ¢ then there exists a

maximal ideal m D ¢ with f ¢ m. O(X)/m is algebraic over k and so embeds
in k.

2. Let f: X —Y,g:X — Y be morphisms. Show that f = ¢ if and only if

f=gon X(k).
3. Show that max O(X) is finite if and only if X (k) is finite.

4. Assume that X is irreducible. Show that |maxO(X)| < oo if and only if
| max O(X)| = 1. Conclude that if | max O(X)| < oo, then O(X) is a field. Hint:
For each nonzero maximal ideal m of O(X), let 0 # fm € m. Then g =[] fm

is zero on X (k) so g = 0 contradicting O(X) being a domain. Therefore O(X)
has no nonzero maximal ideals. i
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A.1.2 Products of Affine Varieties over k

For the construction of products of affine varieties we need another technical
tool, namely tensor products over a field k. We begin with a review of their
important properties.

Let V, W and Z be vector spaces over a field k. A bilinear map f : VW — Z is
amap (v,w) — f(v,w) € Z, which has the properties f(v; +vs,w) = f(vy,w)+
F(v3,0), £ (0,01 +w2) = £(0,w1)+ F (03, w) and £, w) = (v, \w) = Af (v, w)
for all A € k. The tensor product V ®; W is a new vector space over k together
with a bilinear map v : V. x W — V ®; W such that for any bilinear map
f:V xW — Z there exists a unique linear map F : V ®; W — Z such that
f = Fou (see [130], Ch. 16 for a proof that tensor products exist and are unique
as well as for a more complete discussion of the subject). For v € V,w € W we
denote u(v,w) by v ® w and, when this will not lead to confusion, we denote
V @ W by V@ W. The bilinearity of u then translates as the following three
rules:

(v +v)@w = (v1Qw)+ (v2 @ w)
v (w; +wy) = (vRwp)+ (v ws)
Avew) = (Wew = ve (Aw) for all A € K.

If {v;}ier is a basis of V and{w,},es is a basis of W, then one can show that
{vi ® w; }ier,jes is a basis of V @ W.

Exercises A.15 Elementary properties of tensor products

1. Use the universal property of the map u to show that if {v;,...v,} are
linear independent elements of V' then Y v; ® w; = 0 implies that each w; = 0.
Hint: foreachi =1,...,nlet f; : V. x W — W be a bilinear map such that
fvi,w) =w and f(vj,w) =01if j #4 for all w € W.

2. Show that if vy,ve € V\{0} and wy,wy € W\{0} then v; @ w; = v2 @ wo
implies that there exist an element a € k such that v; = avy and w; = %wg. In
particular if v # 0 and w # 0 the v ® w # 0.

3. Show that if {v;};cr is a basis of V' and{w;};ecs is a basis of W, then
{vi ® w;}ier,jes is a basis of V @ W.

4. Let Vi C V5 and W be vector space over k. Prove that there is a canonical
isomorphism (Vo @ W)/ (Vi @ W) = (Vi /V2) @ W. O

Let R; and R, be commutative k-algebras with a unit element. One can
define a multiplication on the tensor product Ry ®j Ro by the formula (r; ®
r9)(F1 @ T2) = (r171) ® (r272) (one uses the universal property of u to show
that this is well defined and gives Ry ® R» the structure of a k-algebra). In the
special case Ry = k[X1,...,X,] and Ry = k[Y1,..., Y] it is easily verified that
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R; ® R, is in fact the polynomial ring k[ X4, ..., X,,Y1,...,Y,]. More gener-
ally, let Ry, R» be finitely generated K-algebras. Represent Ry and Ry as Ry =
E[X1,...,Xn]/(f1,.-., fs) and Re = k[Y1,...,Y,]/ (91, ..., gt). Using the Exer-
cise A.154 one can show that Ry ® Ry is isomorphic to
k[Xl,...,Xn,}/i,...,Ym]/(fl,...fs,gl,...,gt).

We wish to study how reduced algebras behave under tensor products. Sup-
pose that k has characteristic p > 0 and let a € k be an element such that b? = a
has no solution in k. If we let Ry = Ry = k[X]/(XP? — a), then Ry and Ry are
fields. The tensor product Ry ® R» is isomorphic to k[X,Y]/(X? —a,Y? — a).
The element t = X —Y modulo (X? —a,Y? — a) has the property ¢t = 0. Thus
Ry ®j, R contains nilpotent elements! This is an unpleasant characteristic p-
phenomenon which we want to avoid. A field k of characteristic p > 0 is called
perfect if every element is a pth power. In other words, the map a — a? is a
bijection on k. One can show that an irreducible polynomial over such a field
has no repeated roots and so all algebraic extensions of k are separable. The
following technical lemma tells us that the above example is more or less the
only case where nilpotents can occur in a tensor product of k-algebras without
nilpotents.

Lemma A.16 Let Ry, Ry be k-algebras having no nilpotent elements. Suppose
that either the characteristic of k is zero or that the characteristic of k is p > 0
and k is perfect. Then Ry ®j Ro has no nilpotent elements.

Proof. Suppose that a € R; ® Ry satisfies a # 0 and a®> = 0. From this
we want to derive a contradiction. It is easily verified that for inclusions of k-
algebras Ry C S; and Ry C Ss, one has an inclusion Ry ® Ry — S; ® S3. Thus
we may suppose that R; and Ry are finitely generated over k. Take a k-basis
{e;} of Ry. The element a can be written as a finite sum ), a; ® e; with all
a; € Ry. Let a; # 0. Because a; is not nilpotent, there is a maximal ideal m of
R, which does not contain a;j. The residue class field L := R;/m is according
to Hilbert’s theorem a finite extension of k. Since the image of a in L ® R, is
not zero, we may assume that R; is a finite field extension of k. Likewise we
may suppose that R, is a finite field extension of k. According to the Primitive
Element Theorem [130], one can write Ry = k[X]/(F) where F' is an irreducible
and separable polynomial. Then Ry ® Ry = L[X]/(F). The latter ring has no
nilpotents since F' is a separable polynomial. O

Corollary A.17 Let k be a field as in Lemma A.16 and let q be a prime ideal
in k[X1,...,Xy,]. If K is an extension of k, then ¢K[X1,...,X,] is a radical
ideal in K[X1q,...,Xp].

Proof. From Exercise A.15.4, one sees that K[Xy,...,X,]/¢K[X1,...,X,]
is isomorphic to k[X1,...,X,]/q ®¢ K. This latter ring has no nilpotents by
Lemma A.16, so ¢K[X,...,X,] is radical. |
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We note that one cannot strenghten Corollary A.17 to say that if p is a prime
ideal in k[X1,...,X,] then pK[Xy,...,X,] is a prime ideal in K[X;,...,X,].
For example, X2 + 1 generates a prime ideal in Q[X] but it generates a non-
prime radical ideal in C[X].

We will assume that the characteristic of k is zero or that the characteristic
of kis p > 0 and k is perfect. As we have seen there is a bijective translation
between reduced affine varieties over £ and finitely generated reduced k-algebras.
For two reduced affine varieties X; and X5 we want to define a product X x X,
which should again have the structure of a reduced affine variety over k. Of
course the product A} x Aj* should be AZ'H”. For reduced affine varieties
V. C A}, W C A}’ the product should be V' x W, seen as reduced affine
subvariety of AZ*m. This is true, but there is the problem that V' and W can
be embedded as reduced subvarieties of the affine varieties AJ*™™ in many ways
and that we have to prove that the definition of the product is independent of
the embeddings. This is where the tensor product comes in.

Definition A.18 Let Xy, X5 be reduced affine varieties over k. The prod-
uct Xy Xy Xo is the reduced affine variety corresponding to the tensor product
O(X1) ®r O(X32).

We will sometimes use the notation X; x X5 instead of X; x; Xs when
the field k is clear from the context. We have verified that O(X;) ®; O(X2)
is a finitely generated reduced k-algebra. Thus the definition makes sense.
If X; and X, are presented as reduced subvarieties V' of A} and W of A}"
then the rings O(X1) and O(X3) are presented as k[Y1,...,Y,]/(f1,... fs) and
k[Zi,...,Zn)/(91,---,9t) The tensor product can be presented as
k[Yl,...,Yn,Zl,...,Zm]/(fl,...,fs,gl,...,gt). The ideal (fl,...fs,gl,...,gt)
is a radical ideal, since the tensor product has no nilpotent elements. The zero
set of this ideal is easily seen to be V' x W. When k is algebraically closed, then
one can identify this zero set with the cartesian product of the set of points of
V' and the set of points of .

It will be necessary to “lift” a variety defined over a field k to a larger field
K D k and this can also be done using tensor products. If V = (max(A), A) is
an affine variety defined over k, we define Vi to be the variety (max(A ®p
K),A ®; K). Note that the k-algebra A ®; K has the structure of a K-
algebra where a — 1 ® a defines an embedding of K into A ®; K. If we
present the ring A as k[X,..., X,]/q then Exercise A.15 implies that the ring
Awop K =K[Xy,...,X,]/qK[X1,..., X,

In general, if k is not algebraically closed, then the product of irreducible
varieties is not necessarily irreducible (see Exercise A.20.3). When k is alge-
braically closed this phenomenon cannot happen.
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Lemma A.19 Let k be an algebraically closed field and let X,Y be irreducible
affine varieties over k. Then X XY is irreducible.

Proof. Since k is algebraically closed, it is enough to show that X x Y (k)
is not the union of two proper, closed subsets. Let X x Y = V; UV, where
V1, Vs, are closed sets. For any = € X(k), the set {z} x Y(k) is closed and
irreducible over k. Therefore {z} x Y (k) C Vi or {z} x Y (k) C V2. Let
Xi={z e X [{z} xY (k) CV;}. We claim that X is closed. To see this, note
that for each y € Y (k), the set W, of x € X (k) such that z x y € V7 is closed
and X1 = Nyecy ) Wy. Similarly, X; is closed. Therefore X = X; or X = Xp
and therefore either X xY =V; or X xY = 154. O

Exercises A.20 Products
1. Show that AT x AT ~ A}*™,

2. Show that the Zariski topology on A? is not the same as the product topology
on A} x Aj.

3. Let k be a field of characteristic zero or a perfect field of characteristic p > 0,
and let K be an algebraic extension of k£ with [K : k] = n. Show that the ring
K ®;, K is isomorphic to the sum of n copies of K. a

Let k be the algebraic closure of k. The following Lemma will give a criterion
for an affine variety V over k to be of the form W5 for some affine variety W
over k, that is a criterion for V to be defined over k. We shall assume that V
is a subvariety of Az, that is, its coordinate ring is of the form k[X1,...X,]/q

for some ideal ¢ C k[X1,... X,] We can then identify the points V (k) with a
subset of k. The Galois group Aut(k/k) acts on k& coordinate wise.

Lemma A.21 Let k be the algebraic closure of k. An affine variety V' over k
is of the form Wy for some affine variety W over k if and only if V (k) is stable
under the action of Aut(k/k).

Proof. If V =Wy, then V (k) is precisely the set of common zeros of an ideal
q C k[X1,...,X,]. This implies that V (k) is stable under the above action.

Conversely, assume that V (k) is stable under the action of Aut(k/k) and let
O(V) = k[X1,...,X,]/q for some ideal ¢ € k[Xi,...,X,]. The action of
Aut(k/k) on k extends to an action on k[Xi,...X,]. The Nullstellensatz
implies that ¢ is stable under this action. We claim that ¢ is generated by
qNk[X1,...,X,]. Let S be the k vector space generated by ¢ N k[X1,..., X,].
We will show that S = ¢. Assume not. Let {a;}ics be a k-basis of k[X7,..., X,)]
such that for some J C I, {a;}ics is a k-basis of ¢ N k[X1,...,X,]. Note that
{a;}ier is also a k-basis of k[X1,..., X,]. Let f = Yien G+ 2y Cii € q
and among all such elements select one such that the set of nonzero ¢;, i € I'\.J
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is as small as possible. We may assume that one of these nonzero ¢; is 1. For
any o € Aut(k/k), minimality implies that f —o(f) € S and therefore that for
any i € I\J, ¢; € k. Therefore ZieI\J cioy = f— ;e i € qNk[Xy, ..., X,)]
and so f € S. |

Exercise A.22 k-morphisms defined over k

Let V and W be varieties over k.

1. Let f € O(V) ®; k. The group Aut(k/k) acts on O(V) @y, k via o(h ® g) =
h ® o(g). Show that f € O(V) C O(V) ®; k if and only if o(f) = f for all
o € Aut(k/k).

2. We say that a morphism f : Vi — Wy is defined over k if f*: O(W) @ k—
O(V) ®; k is of the form g* ® 1 where g is a morphism from V to W. Show

that f is defined over k if and only if f*(o(v)) = o(f*(v)), for all v € V (k) and
o € Aut(k/k). O

Remark A.23 Since we are using the action of the Galois group in Lemma A.21
and Exercise A.22 we need to assume that either k is a perfect field (i.e., k¥ = k)
or replace k with the separable closure k°°P when the characteristic is nonzero.

A.1.3 Dimension of an Affine Variety

The dimension of an affine variety X is defined as the maximal number d for
which there exists a sequence Xog 2 X1 2 --- 2 Xy of closed irreducible (non
empty) subsets of X. It is, a priori, not clear that d exists (i.e., is finite). It is
clear however that the dimension of X is the maximum of the dimensions of its
irreducible components. Easy examples are:

Examples A.24 1. If X is finite, then its dimension is 0.
2. The dimension of A} is 1.

3. The dimension of A} is > n since one has the sequence of closed irreducible
subsets {0} C A} C A7 C---C A O

The dimension of A} should of course be n, but it is not so easy to prove this.
One ingredient of the proof is formulated in the next exercises.

Exercises A.25 1. Integral elements

If A C B are rings, we say that an element b € B is integral over A if it is the
root of a polynomial X" + a,_1 X" ' + ... + ap with coefficients a; € A and
n > 1, ([130], Ch. VII, §1) .

(a) Show that if b € B is integral over A then b belongs to a subring B’ D A of
B that is finitely generated as an A-module.

(b) Show that if b belongs to a subring B’ D A of B that is finitely generated as
an A-module, then b is integral over A. Hint: Let by, ..., b, be generators of B’
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as an A-module. There exist a;; € A such that bb; = E?:1 a; jb;. Therefore,
the determinant

b—alyl 1,2 Q1,n
2,1 b— @22 ... a2,n
d = det
(n,1 (n,2 oo b—an,

most be zero. This gives the desired polynomial.

(c¢) The ring B is said to be integral over A if each of its elements is integral
over A. Show that if B is integral over A and C is integral over B the C is
integral over A.

(d) Let B be integral over A and assume that B has no zero divisors. Show
that A is a field if and only if B is a field.

2. Noether Normalization Theorem
In this exercise, we propose a proof of

Suppose that the field k is infinite and let R = k[z1,...,zy] be a
finitely generated k-algebra. Then for some 0 < m < n, there exist
elements y1,...,yn € R, algebraically independent over k such that
R is integral over k[y1,...,Ym]-

Let R = k[X,...,X,]/I for some ideal I in the polynomial ring k[X7, ..., X,].
(a) We say that f € k[Xy,...,X,,] is in “Weierstrass form with respect to X,,”,
if f=a.X:+ac 1 X+ +a1 X, + ap with all a; € k[X;,...,X,,_1] and
a. € k*. Prove that for any element g € k[Xy,..., X,,]\k[X1,..., X,,_1] there
exists an invertible linear transformation of the form X; — X; + a;X,, with
a; € k such that after this transformation the element f is in Weierstrass form
with respect to X,,. Give a proof of the Noether normalization for the ring
(b) Let f €I, f & k[X1,...,Xn—1]. Produce a linear change of the variables

Xi,...,X, as in (a) such that after this change of variables , f is in Weierstrass
form with respect to X,,. Let z; = x; + a;z,, and show that R is integral over
S = k[z1,...,2n—1]. Use induction on n to show that there exist y1,...,ym €

S, algebraically independent over k such that S is integral over k[yi,...,Ym].
Conclude that R is integral over k[y1, ..., Ym]-

Remark: The Noether Normalization Theorem is valid for finite fields as well.
If d is an integer greater than any exponent appearing in the polynomial f in
(a), then the transformation X; — X; + ng will transform f into a polynomial
in Weierstrass form and one can proceed as above.

(3) Hilbert’s Nullstellensatz

Deduce this result from the Noether Normalization Theorem. Hint: Let m be
a maximal ideal in k[X7y,...,X,] and let R = k[X,..., X,]/m. Assume R is
integral over S = k[y1,...,Ym| wWith y1,...,yn algebraically independent over
k and m > 1. By 1.d above, S is a field, yielding a contradiction. Therefore, R
is integral over k and so algebraic over k. |
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Let X be an affine variety. We say that an injective k-algebra morphism
E[X1,...,X4] = O(X) is a Noether normalization if O(X) is integral over the
image of k[X1,..., X4].

Proposition A.26
1. Let X be an affine variety and let k[X1,...,X4] — O(X) be a Noether
normalization. Then the dimension of X is d.

2. Let X be an irreducible affine variety. Then its dimension is equal to the
transcendence degree of the fraction field of O(X) over k.

Proof. 1. We need again some results from ring theory, which carry the names
“going up” and “lying over” theorems (c.f., [6], Corollary 5.9 and Theorem 5.11,

r [108]). We refer to the literature for proofs. They can be formulated as
follows:

Given are R; C Rs, two finitely generated k-algebras, such that
R, is integral over R1 Then for every strictly increasing chain of
prime ideals p,C--Cp, of Ry the sequence of prime ideals (p N
Ry) C- (p ﬁRl) is strlcly 1ncreas1ng Moreover, for any strlctly
increasing sequence of prime ideals ¢ 4, - Cg, in R1 there is a
(strictly) increasing sequence of prime 1deals P, c.C p, of Ry
with P NR, = 4, for all 7.

This statement implies that R; and Rs have the same maximum length for in-
creasing sequences of prime ideals. In the situation of Noether normalization
k[X1,...,X4] C O(X) where X is an affine variety, this implies that the dimen-
sions of X and A¢ are equal.

Finally we will prove by induction that the dimension of A} is <n. Let V' C A}
be a proper closed irreducible subset. Apply the Noether Normalization Theo-
rem to the ring O(V) = k[Xy,...,X,]/I with I # 0. This yields dimV <n -1
and thus dim A} <n.

2. Let k[X1,...,X4] = O(X) be a Noether normalization. Then the frac-
tion field of O(X) is a finite extension of the fraction field k(Xy,...,Xq) of
kE[X1,...,X4]. Thus the transcendence degree of the fraction field of O(X) is
d. By 1., d is also the dimension of X. a

A.1.4 Tangent Spaces, Smooth Points and Singular Points

We will again assume that the characteristic of k is either 0 or that k is a perfect
field of positive characteristic. Let W be a reduced affine variety over k. For
every f € O(W), f # 0 the open subset U = {w € W| f(w) # 0} of W is
again a reduced affine variety. The coordinate ring of U is O(W)[1/ f]. Let us
call U a special affine subset of W. The special affine subsets form a basis for
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the Zariski topology, i.e., every open subset of W is a (finite) union of special
affine subsets. Consider a point P € W, that is, an element of max(O(W)).
The dimension of W at P is defined to be the minimum of the dimensions of
the special affine neighborhoods of P. The local ring Ow,p of the point P on W
is defined as the ring of functions f, defined and regular in a neighborhood of
P. More precisely, the elements of Ow, p are pairs (f,U), with U a special affine
neighborhood of P and f € O(U). Two pairs (f1,U;) and (fz, Uz) are identified
if there is a pair (fs3,Us) with Us C Uy N Uy and f3 is the restriction of both f;
and fo. Since P is a maximal ideal, the set S = O(W) \ m is a multiplicative
set. Using the definitions of Example 1.5.1(d) one sees that Ow,p is in fact the
localisation S~tO(W) of O(W) with respect to S. Some relevant properties of
Ow,p are formulated in the next exercise.

Exercise A.27 Local ring of a point. Show the following
1. Ow,p is a noetherian ring.

2. Ow,p has a unique maximal ideal, namely Mp := {f € Ow,p| f(P) = 0},
that is, Ow,p is a local ring. The residue field k¥’ := Ow,p/Mp is a finite
extension of k. We note that k' D k is also separable because k is supposed to
be perfect if its characteristic is positive.

3. Let Mp = (f1,..., fs) and let M3 denote the ideal generated by all products
fifj- Then Mp/M% is a vector space over k' of dimension < s.

(d) Suppose that the above s is minimally chosen. Prove that s is equal to the
dimension of Mp/M%. Hint: Use Nakayama’s lemma: Let A be a local ring with
mazimal ideal m, E a finitely generated A-module and F C E a submodule such
that E=F +mE. Then E = F. ([180], Ch. X, §4). |

The tangent space Tw,.p of W at P is defined to be (Mp/M3)*, i.e., the
dual of the vector space Mp/M#%. The point P is called nonsingular or regular
if the dimension of the vector space Ty, p coincides with the dimension of W at
P. The point P is called smooth (over k) if P is regular and the field extension
k C Ow,p/Mp is separable.

Remark A.28 Under our assumption that k has either characteristic O or that
k is perfect in positive characteristic, any finite extension of k is separable and
so the notions smooth (over k) and non-singular coincide. For non perfect fields
in positive characteristic a point can be non-singular, but not smooth over k.

Under our assumptions, a point which is not smooth is called singular. We give
some examples:
Examples A.29 Let k be algebraically closed.

1. We will identify A} with k. For P = (ai,...,a,) € k™ one finds that
Mp = (X; —a1,..., X, —ap) and Mp/M% has dimension n. Therefore every
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point of k™ is smooth.

2. Let W C k® be the reduced affine variety given by the equation X? +
X2 + X7 (and suppose that the characteristic of k is not 2). Then O(W) =
k[ X1, Xo, X3]/(X?4+X3+X2) = k[z1, z2, z3]. Consider the point P = (0,0,0) €
W. The dimension of W at P is two. The ideal Mp = (x1,x2,73) and the
dimension of Mp/M#% is three. Therefore P is a singular point. i

Exercise A.30 Let K be algebraically closed and let W C k2 be the affine
reduced curve given by the equation Y2 + XY + X3 = 0. Calculate the tangent
space at each of its points. Show that (0,0) is the unique singular point. Draw
a picture of a neighborhood of that point. a

We shall need the following two results. Their proofs may be found in [108],
Theorem 5.2.

Let W be a reduced affine variety.
(a) For every point P € W the dimension of Tw,p is > the dimension
of W at P.
(b) There are smooth points.

We formulate now the Jacobian criterion for smoothness:

Proposition A.31 Let W C A} be a reduced affine variety and let W have di-
mension d at P = 0 € W. The coordinate ring O(W) has the form
kE[X1,...,Xn]/(f1,---, fm). The Jacobian matrix is given by (gg’:] );zll?z Let
Ay, ..., Ag denote the set of all the determinants of the square submatrices of
size (n —d) x (n —d) (called the minors of sizen —d). Then P is smooth if and

only if A;(0) # 0 for some i.

Proof. The ideal Mp has the form (X1,...,X,)/(f1,.-., fm) and Mp/M3
equals (X1,...,X,)/(X?, X1Xs,...,X2,L(f1),..., L(fm)), where for any

f e (X1,...,X,) we write L(f) for the linear part of f in its expansion as
polynomial in the variables Xi,...,X,. From the above results we know that
the dimension of Mp /M123 is at least d. The stated condition on the minors of
the Jacobian matrix translates into: the rank of the vector space generated by
L(f1),...,L(fm) is > n — d. Thus the condition on the minors is equivalent to
stating that the dimension of Mp/M% is < d. i

The Jacobian criterion implies that the set of smooth points of a reduced
affine variety W is open (and not empty by the above results). In the sequel we
will use a handy formulation for the tangent space Ty, p. Let R be a k-algebra.
Recall that W(R) is the set of K-algebra maps O(W) — R and that every
k-algebra homomorphism R; — R» induces an obvious map W (R;) — W(R3).
For the ring R we make a special choice, namely R = k[e] = k-1 + k- € and with
multiplication given by € = 0. The k-algebra homomorhism k[e] — k induces
a map W (k[e]) —» W (k). We will call the following lemma the epsilon trick.
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Lemma A.32 Let P € W (k) be given. There is a natural bijection between the
set {q € W (k[e])| ¢ maps to P} and Tw,p.

Proof. To be more precise, the ¢’s that we consider are the k-algebra homo-
morphisms Ow,p — k[e] such that Ow,p 5N kle] = k is P. Clearly ¢ maps Mp
to k-e and thus M3 is mapped to zero. The k-algebra Ow,p/M3% can be written
as k& (Mp/M%). The map ¢ : k& (Mp/M3) — k[e], induced by ¢, has the
form g(c+v) = c+1y(v)e, with c € k, v € (Mp/M3%) and I, : (Mp/M3) — k a
k-linear map. In this way ¢ is mapped to an element in [, € Tw p. It is easily
seen that the map ¢ — [; gives the required bijection. |

A.2 Linear Algebraic Groups

A.2.1 Basic Definitions and Results

We begin with the abstract definition. Throughout this section C' will denote
an algebraically closed field of characteristic zero and all affine varieties, unless
otherwise stated, will be defined over C'. Therfore, for any affine variety, we will
therefore not have to distinguish bewteen max(O(W)) and W (C).

Definition A.33 A linear algebraic group G over C is given by the following
data:

(a) A reduced affine variety G over C.

(b) A morphism m : G x G — G of affine varieties.
(c) A point e € G.

(d) A morphism of affine varieties i : G — G.

subject to the conditions that : G as a set is a group with respect to the com-
position m, the point e is the unit element and i is the map which sends every
element to its inverse.

Let O(G) denote the coordinate ring of G. The morphisms m : G x G — G
and ¢ : G — @ correspond to C-algebra homomorphisms m* : O(G) — O(G)®c
O(G) and i* : O(G) — O(G). Note that e € max(O(G)) = G(C) corresponds
to a C-algebra homomorphism e* : O(G) — C.

Examples A.34 Linear algebraic groups

1. The additive group G, (or better, G,(C)) over C. This is in fact the affine
line A}, over C' with coordinate ring C[z]. The composition m is the usual
addition. Thus m* maps z tox ® 1 + 1 ® z and i*(z) = —z.

2. The multiplicative group Gy, (or better, G,,(C)) over C. This is as affine
variety Al \ {0} with coordinate ring C[z,z~']. The composition is the usual
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multiplication. Thus m* sends z to z ® x and i*(z) = z~ L.

3. A torus T of dimension n. This is the direct product (as a group and
as an affine variety) of n copies of G, (C). The coordinate ring is O(T) =
Clzy,2z, %, ..., zn, 2z '], The C-algebra homomorphisms m* and i* are given by
m*(z;) = x; ® x; and i*(x;) = 27" (foralli=1,...,n).

4. The group GL,, of the invertible n x n-matrices over C'. The coordinate ring is
Clzi,;, %], where z; ; are n? indeterminates and d denotes the determinant of the
matrix of indeterminates (z; ;). From the usual formula for the multiplication
of matrices one sees that m* must have the form m*(z; ;) = > ,_; Tix @ T, ;.
Using Cramer’s rule, one can find an explicit expression for i*(z; ;). We do
not write this expression down but conclude from its existence that ¢ is really a
morphism of affine varieties.

5. Let G C GL,(C) be a subgroup, which is at the same time a Zariski
closed subset. Let I be the ideal of G. Then the coordinate ring O(G) of
G is Clz; j, %]/I. It can be seen that the maps m* and i* have the property
m*(I) C (Clw;;, 3] ® I) + (I ® Clz;;,5]) and i*(I) C I. Therefore m* and i*
induce C-algebra homomorphisms O(G) — O(G) ® O(G) and O(G) — O(G).
Thus G is a linear algebraic group. In general, if G is a linear algebraic group
over C' and H C G(C) is a subgroup of the form V(I) for some ideal I C O(G)
then H is a linear algebraic group whose coordinate ring is O(G)/I.

6. Every finite group G can be seen as a linear algebraic group. The coordinate
ring O(G) is simply the ring of all functions on G with values in C'. The map
m* : O(G) = O(G) ® O(G) = O(G x Q) is defined by specifying that m*(f) is
the function on G x G given by m*(f)(a,b) = f(ab). Further i*(f)(a) = f(a™1).
O

Exercise A.35 Show that the linear algebraic groups G,(C), G, (C),T, de-
fined above, can be seen as Zariski closed subgroups of a suitable GL,(C). O

Exercise A.36 Hopf Algebras
1. Let A = O(G). Show that the maps m*,i* and e* satisfy the following
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commutative diagrams:

Aop Ao, A "4 Ag A

Coassociative ida Xm*T Tm* (A1)
Ao A iy A
A P A A
Counit ida Xp*T Nida Tm* (A.2)
ARA  m A
A TE 4,4
Coinverse ida xi*T N Tm* (A.3)
AkA  me A

where p* : A — A is defined by p* = e* oincl and incl is the inclusion k& «— A.

A (C-algebra A with maps m*,i* and e* satisfying these conditions is called a
Hopf algebra.

2. Let A be a finitely generated C-algebra without nilpotents that is a Hopf
algebra as well. Show that A is the coordinate ring of a linear algebraic group.
(Since we are assuming that C' has characteristic zero, the assumption of no
nilpotents is not actually needed by a nontrivial result of Cartier, c.f., [227], Ch.
11.4). m|

A morphism f: Gy — G2 of linear algebraic groups is a morphism of affine
varieties which respects the group structures.

In fact, every linear algebraic group G is isomorphic to a Zariski closed subgroup
of some GL,,(C) ([108], Theorem 11.2). One can see this property as an analogue
of the statement: “Every finite group is isomorphic with a subgroup of some

577
n -

The next proposition gathers together some general facts about linear algebraic
groups, subgroups and morphisms.

Proposition A.37 Let G be a linear algebraic group.

1. The irreducible components of G are disjoint. If G° C G is the irreducible
component of G which contains the point 1 € G, then G° is a normal open
subgroup of G of finite index.

2. If H is a subgroup of G, then the Zariski closure H of H is a Zariski
closed subgroup of G.

3. Every point of G is smooth.
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4. If S is a Zariski connected subset of G containing 1, then the subgroup of
G generated by S is also connected.

5. The commutator subgroup (i.e., the group generated by all commutators
glgzgflggl, 91,92 € G) of a connected linear algebraic group is connected.

6. Let f : Gy — G2 be a morphism of linear algebraic groups. Then f(G1) is
again o linear algebraic group.

Proof. 1. Let Gy,...,G; be the irreducible components of G. Each of these
components contains a point not contained in any other component. For any
fixed element h € G, let Ly : G — G be left translation by h, given by g — hg.
The map Ly, is a morphism of affine varieties and, given any g;, g2 € G there is
a unique h € G such that Ly(g1) = g». From this it follows that any element
of GG is contained in a unique component of G. Therefore G contains a unique
component G° containing 1. Since the components of G are disjoint, one sees
that each of these is both open and closed in G. For every h € (G, the above
isomorphism Lj permutes the irreducible components. For every h € G° one
has that L,(G°) N G° # 0. Therefore Ly(G°) = G°. The map i : G — G,
i.e., i(g) = g~ ! for all g € G, is also an automorphism of GG and permutes the
irreducible components of G. It follows that i(G°) = G°. We conclude that
G° is an open and closed subgroup of G. For any a € G, one considers the
automorphism of G, given by g — aga~!. This automorphism permutes the
irreducible components of G. In particular aG°a~! = G°. This shows that G°
is a normal subgroup. The other irreducible components of G are the left (or
right) cosets of G°. Thus G° has finite index in G.

2. We claim that H is a group. Indeed, inversion on G is an isomorphism and
so H " =HT = H. Moreover, left multiplication L, on G by an element
x is an isomorphism. Thus for # € H one has L,(H) = L,(H) = H. Thus
L,(H) C H. Further, let z € H and let R, denote the morphism given by right
multiplicaion. We then have H C H and as a consequence R,(H) C H. Thus

H is a group.

3. The results of Section A.1.4 imply that the group G contains a smooth point
p. Since, for every h € G, the map Ly : G — @ is an isomorphism of affine
varieties, the image point Lj(p) = hp is smooth. Thus every point of G is
smooth.

4. Note that the set SU S~! is a connected set, so we assume that S contains
the inverse of each of its elements. Since multiplication is continuous, the sets
Sy = {s152 | 1,82 € S} C S5 = {s15283 | 51, 82,83 € S} C ... are all connected.
Therefore their union is also connected and this is just the group generated by
S.

5. Note that (1) above implies that the notions of connected and irreducible are
the same for linear algebraic groups over C. Since G is irreducible, Lemma A.19
implies that G x G is connected. The map G x G — G defined by (g1, g2)
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919291 ! 95 Lis continuous. Therefore the set of commutators is connected and
so generates a connected group.

6. Let H := f(G1). We have seen that H is a group as well. Let U C H be an
open dense subset. Then we claim that U - U = H. Indeed, take € H. The
set zU ! is also an open dense subset of H and must meet U. This shows that
xul_l = wus holds for certain elements ui,us € U. Finally we use that H is a
constructible subset (see the discussion following Exercises A.9). The definition
of constructible implies that H contains an open dense subset U of H. Since H
is a group and U - U = H we have that H = H. |

We will need the following technical corollary (c.f., [114], Lemma 4.9) in
Section 1.6.

Corollary A.38 Let G be an algebraic group and H an algebraic subgroup.
Assume that either H has finite index in G or that H is normal and G/H
is abelian. If the identity component H° of H is solvable then the identity
component G° of G is solvable.

Proof. If H has finite index in G then H° = G° so the conclusion is obvious.
Now assume that H is normal and that G/H is abelian. In this case, H contains
the commutator subgroup of G and so also contains the commutator subgroup
K of G°. By Proposition A.37 this latter commutator subgroup is connected
and so is contained in H°. Since H° is solvable, we have that K is solvable.
Since G°/K is abelian, we have that G° is solvable. a

Exercises A.39 1. Characters of groups

A character of a linear algebraic group G is a morphism of linear algebraic groups
X : G = Gy, c. By definition x is determined by a C-algebra homomorphism
X* 1 O(Gy,) = Clz,z7 '] — O(G). Further x* is determined by an element
x*(z) = a € O(G).

(a) Show that the conditions on a (for x to be a character) are a is invertible
in O(G) and m*(a) = a ® a.

(b) Show that G, ¢ has only the trivial character, i.e., x(b) = 1 for all b € G, ¢.
(c) Let T be a torus with O(T) = Clz1,z; ", ..., zp, z; '] and m*(z;) = z; @ x;
for all i = 1,...,n. Show that the every character x of T is given by x*(z) =
"™ -2 with all m; € Z. In this way the group of all characters of T' can
be identified with the group Z".

(d) What are the characters of GL, (C)? Hint: SL,(C) equals its commutator
subgroup.

2. Kernels of homomorphisms
Let f : G; — G2 be a morphism of linear algebraic groups. Prove that the
kernel of f is again a linear algebraic group.

3. Centers of Groups
Show that the center of a linear algebraic group is Zariski-closed. O
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Remarks A.40 If one thinks of linear algebraic groups as groups with some
extra structure, then it is natural to ask what the structure of G/H is for G a
linear algebraic group and H a Zariski closed subgroup of G. The answers are:

(a) G/ H has the structure of a variety over C, but in general not
an affine variety (in fact G/H is a quasi-projective variety).

(b) If H is a normal (and Zariski closed) subgroup of G then
G/H is again a linear algebraic group and O(G/H) = O(G)H  i.e.,
the regular functions on G/H are the H-invariant regular functions
on G.

Both (a) and (b) have long and complicated proofs for which we refer to [108],
Chapters 11.5 and 12.

Exercises A.41 Subgroups

1. Let A € GL,(C) be a diagonal matrix with diagonal entries A,...,A,.
Then < A > denotes the subgroup of GL,,(C) generated by A. In general this
subgroup is not Zariski closed. Let G := < A > denote the Zariski closure of
< A >. The proof of Proposition A.37 tells us that G is again a group. Prove
that G consists of the diagonal matrices diag(ds, .. ., d,) given by the equations:
If (my,...,my) € Z™ satisfies AT" -+ - A" =1, then d{"* - -d" = 1.

2. Let A € GL(C) be the matrix ({ 2) (with @ # 0). Determine the algebraic

group < A > for all possibilities of a and b.

3. For two matrices A, B € SLy(C) we denote by < A, B > the subgroup gener-
ated by A and B. Further < A,B > denotes the Zariski closure of
< A,B >. Use the classification of the algebraic subgroups of SLy to show
that every algebraic subgroup of SLs has the form < A, B > for suitable A and
B (see the remarks before Exercises 1.29). O

Definition A.42 A representation of a linear algebraic group G (also called a
em G-module) is a C-morphism p : G — GL(V), where V is a finite dimensional
vector space over C'. The representation is called faithful if p is injective.

We have remarked above that any linear algebraic group is isomorphic to
a closed subgroup of some GL,(C). In other words a faithful representation
always exists.

Exercise A.43 Representations
Let G be a linear algebraic group and V a finite dimensional vector space. Let
7:G xV = V be a morphism, denoted by 7(g,v) = gv such that

(i) g1-(g2-v) =(g192) -v for g € Gyv eV

(ii) erv=vforallveV.
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Show that any representation yields such a 7 and that any such 7 defines
a representation. Hint: For convenience we use a basis {v;} of V over k.
We note that the data for p is equivalent to a k-algebra homomorphism p* :
k[{X;;}, 7] = A and thus to an invertible matrix (p*(X;,;)) with coefficients
in A (having certain properties). One associates to p the k-linear map 7 given
by Tv; = > p*(X;;) ® v;. On the other hand one associates to a given 7 with
TV; = Eai,j ® vj the P with p*(Xi’j) = Qj,j. a

Exercise A.44 Representations of G, and (Gp,)"

1. For any representation p : G,, — GL(V) there is a basis v1,...,v, of V
such that p(z) is a diagonal matrix w.r.t. this basis and such that the diagonal
entries are integral powers of x € G,,(C). Hint: Any commutative group of
matrices can be conjugated to a group of upper triangular matrices. An upper
triangular matrix of finite order is diagonal. The elements of finite order are
dense in G,,. Finally, use Exercise A.39.3

2. Generalize this to show that for any representation p : (G,,)" — GL(V)
there is a basis vy,...,v, of V such that p(z) is a diagonal matrix w.r.t. this
basis. a

We close this section with a proof of the Lie-Kolchin Theorem. Before we
do this we need to characterize Zariski closed subgroups of a torus. This is done
in the second part of the following lemma.

Lemma A.45 Let G be a proper Zariski closed subgroup of T C GL,,. Then

1. there exists a nonempty subset S C Z" such that I(G) C
Clzr,zy b, .. xn,x; '] is generated by {xV' x> - axln — 1| (vi,...,v) €
S}, and

2. G is isomorphic to a direct product G, x H where 0 <r < n and H is
the direct product of n — r cyclic groups of finite order.

3. The points of finite order are dense in G.

Proof. (c.f. [183]) 1. Let
F(zy,...,2,) = chly,,,,ynmfl---m;" € Clzr, 2yt zn, 2] (A4)

€ C\{0} and (v1,...,v,) € Z". We say that F is G-

Un
vn are equal.

where each c,, .. .,
homogeneous if for any (aq,...a,) € G all the terms a{* ---a

We claim that any F(z) € Clzy,z7 ", ... 2y, z, "] vanishing on G is the sum of G-
homogeneous elements of C[z, a:l_l, ...Tp,z, ], each of which also vanishes on
G. If F(z) is not homogeneous then there exist elements a = (ay,...,a,) € G
such that a linear combination of F(x) and F(ax) is nonzero, contains only
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terms appearing in F' and has fewer nonzero terms than F. Note that F'(ax)
also vanishes on G. Making two judicious choices of a, we see that F' can be
written as the sum of two polynomials, each vanishing on G and each having
fewer terms than F'. Therefore induction on the number of nonzero terms of F'
yields the claim.

Let F € Clz1,27",...2,,2,'] as in equation (A.4) be G-homogeneous and
vanish on G. Dividing by a monomial if necessary we may assume that one of the
terms appearing in G is 1. Since F(1,...,1) = 0 we have that > ¢, . ., =0.
Furthermore, G-homogeneity implies that ay* --- ,a% =1 for all (ay,...,a,) €
G and all terms #}* ---z¥~ in F. Therefore,

n
vy 1%
E Cvr,un T 0 X"
j— E V1 12
- CV17"'7Vn (ml T mn’n - 1)

The totality of all such z}* - - -zl — 1 generate I(G).

n

F(x)

2. The set of (vy,...,v,) such that {* - 2% — 1 vanishes on G forms an
additive subgroup S of Z™. The theory of finitely generated modules over a
principal ideal domain (Theorem 7.8 in Ch. III, §7 of [130]) implies that there
exists a free set of generators {a; = (a14,..-@n;)}i=1,..n for Z" and integers
dy,...,d, > 0suchthat S is generated by {d;a;}i=1,... n. Themap (z1,...2,) —
(", gt ot ™) is an automorphism of T and sends G onto

the subgroup defined by the equations {x?i —1=0}i=1,.n-

3. Using 2., we see it is enough to show tha the points of finite order are dense
in G,,, and this is obvious. O

Theorem A.46 (Lie-Kolchin) Let G be a solvable connected subgroup of GL,,.
Then G is conjugate to a subgroup of upper triangular matrices.

Proof. We follow the proof given in [183]. Recall that a group is solvable
if the descending chain of commutator subgroups ends in the trivial group.
Lemma A.37(6) implies that each of the elements of this chain is connected.
Since this chain is left invariant by conjugation by elements of GG, each element
in the chain is normal in G. Furthermore, the penultimate element is commuta-
tive. Therefore, either G is commutative or its commutator subgroup contains
a connected commutative subgroup H # {1}. We identify GL, with GL(V)
where V' is an n-dimensional vector space over C' and proceed by induction on
n.

If G is commutative, then it is well known that G is conjugate to a subgroup
of upper triangular matrices (even without the assumption of connectivity). If
V has a nontrivial G-invariant subspace W then the images of G in GL(W)
and GL(V/W) are connected and solvable and we can proceed by induction
using appropriate bases of W and V/W to construct a basis of V' in which G
is uppertriangular. Therefore, we can assume that G is not commutative and
leaves no nontrivial proper subspace of V' invariant.
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Since H is commutative, there exists a v € V that is a joint eigenvector of
the elements of H, that is, there is a character x on H such that hv = x(h)v
for all h € H. For any g € G, hgv = g(g~'hgv) = x(g~'hg)gv so gv is again a
joint eigenvector of H. Therefore the space spanned by joint eigenvectors of H
is G-invariant. Our assumptions imply that V' has a basis of joint eigenvectors
of H and so we may assume that the elements of H are diagonal. The Zariski
closure H of H is again diagonal and since H is normal in G, we have that H
is also normal in G. The group H is a torus and so, by Lemma A.45(2), we see
that the set of points of any given finite order N is finite. The group G acts on
H by conjugation, leaving these sets invariant. Since G is connected, it must
leave each element of order IV fixed. Therefore G commutes with the points of
finite order in H. Lemma A.45 again implies that the points of finite order are
dense in H and so that H is in the center of G.

Let x be a character of H such that V), = {v € V' | hv = x(h)v for all h € H}
has a nonzero element. As noted above, such a character exists. For any g € G,
a calculation similar to that in the preceding paragraph shows that gV, = V,.
Therefore, we must have V,, = V and H must consist of constant matrices.
Since H is a subgroup of the commutator subgroup of G, we have that the
determinant of any element of H is 1. Therefore H is a finite group and so must
be trivial since it is connected. This contradiction proves the theorem. O

We note that the Lie-Kolchin Theorem is not true if we do not assume that G
is connected. To see this, let G C GL, be any finite, noncommutative, solvable
group. If G were a subgroup of the group of upper triangular matrices, then
since each element of G has finite order, each element must be diagonal. This
would imply that G is commutative.

A.2.2 The Lie Algebra of a Linear Algebraic Group

The Lie algebra g of a linear algebraic group G is defined as the tangent space
Tg1 of G at 1 € G. It is clear that G and G° have the same tangent space
and that its dimension is equal to the dimension of G, which we denote by
r. The Lie algebra structure on g has still to be defined. For convenience we
suppose that G is given as a closed subgroup of some GL,,(C). We apply the
“epsilon trick” of Lemma A.32 first to GL,(C) itself. The tangent space g
of G at the point 1 is then identified with the matrices A € M, (C) such that
14+€A € G(Cle]). We first note that the smoothness of the point 1 € G allows us
to use Proposition A.31 and the Formal Implicit Function Theorem to produce
a formal power series F(z1,...,2,) = 1+ A1z + ... A, 2.+ higher order terms
with the 4; € M, (C) and such that F' € G(C[[#1,- .., 2/]]) and such that the A;
are linearly independent over C. Substituting z; = €, z; = 0 for j # ¢ allows us
to conclude that each A; € g. For any A = ¢1 41 + ... + ¢-A,, the substitution
zi = ¢t fori =1,...r gives an element f = I + At +... in the power series ring
CI[t]] with f € G(C][t]]) (see Exercise A.48, for another way of finding such an

£)-
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In order to show that g is in fact a Lie subalgebra of M, (C), we extend
the epsilon trick and consider the ring C[a] with a® = 0. From the previous
discussion, one can lift 1+€eA € G(C[e]) to a point 1+ At+A1t>+. .. € G(C[[t]]).
Mapping t to a € Cla], yields an element 1 + aA + a?A; € G(C[a]). Thus for
A, B € g we find two points a = 1 + @A +a?A;, b=1+aB+a’B; € G(Cla)).
The commutator aba 1b~! is equal to 1 + a?(AB — BA). A calculation shows
that this implies that 1+ ¢(AB — BA) € G(C[e]). Thus [A,B] = AB—BA € g.
An important feature is the action of G on g, which is called the adjoint action
Ad of G on g. The definition is quite simple, for ¢ € G and A € g one defines
Ad(g)A = gAg~!. The only thing that one has to verify is gAg~' € g. This
follows from the formula g(1+e€A4)g™! = 1+¢e(gAg~!) which is valid in G(C[e]).

We note that the Lie algebra M,,(C') has many Lie subalgebras, a minority of
them are the Lie algebras of algebraic subgroups of GL, (C). The ones that do
come from algebraic subgroups are called algebraic Lie subalgebras of My (C).

Exercises A.47 Lie algebras

1. Let T denote the group of the diagonal matrices in GL,,(C). The Lie algebra
of T is denoted by t. Prove that the Lie algebra t is “commutative”, i.e.,
[a,b] =0 for all a,b € t. determine with the help of Lemma A.45 the algebraic
Lie subalgebras of t.

2. Consider A = (§ Z) € GL2(C) and the linear algebraic group < A > C
GL»(C). Calculate the Lie algebra of this group (for all possible cases). Hint:

See Exercise A.41. O

Exercise A.48 Lie algebras and exponentials
Let G C GL,(C) be a linear algebraic group with Lie algebra g C M, (C). For
any A € M,,(C), define

A%, A3,
exp(tA) =1+ At + it + at +... e M,(C[[t])

where ¢ is an indeterminate. The aim of this exercise is to show that A € g(C)
if and only if ezp(tA) € G(C[[t]]), c.f. Théoréme 7, Ch II.12, [50].

1. Show that if exp(tA) € G(CJ[t]]), then A € g. Hint: Consider the homomor-
phism ¢ : C[[t]] = C|e] given by t + e.

2. Let I be the ideal defining G in C[X11,..., Xn.n, ﬁ] and let P € I. Show
that if A € g(C) then %(AX)M- € I, where X = (X, ;). Hint: Since
1+€A € G(C[e]), we have P(X(14€A)) € I-Cl[e]. Furthermore, P(X +eXA) =
P(X) + €3 555 (AX)i .

3. Assume A € g(C). Let J C C[[t]] be the ideal generated by {P(exp(tA)) | P €
A}. Show that J is left invariant by % and that J C tC[[#]]. Hint: Use 2. for
the first part and note that P(1) =0 for all P € T for the second part.
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4. Let J be as in part 3. Show that J = (0) and therefore that exp(tA) €
G(C[[t])). Hint: If not, J = (t™) for some integer m > 0. By 3., we have that
m > 1 and that t™~! € J. O

A.2.3 Torsors

Let G be a linear algebraic group over the algebraically closed field C' of char-
acteristic 0. Recall from Section A.1.2 that if £ D C, Gy is defined to be the
variety associated to the ring O(G) ®c¢ k.

Definition A.49 A G-torsor Z over a field k D C is an affine variety over k
with a G-action, i.e., a morphism Gy Xy Z — Z denoted by (g,z) — zg, such
that:

1. For all x € Z(k), g1,92 € G(k), we have z1 = z; z(g192) = (291)g2.-

2. The morphism Gy Xy Z — Z Xy Z, given by (g,2) — (zg,%), is an iso-
morphism.

The last condition can be restated as: for any v,w € Z(k) there exists a

unique g € G(k) such that v = wg. A torsor is often refered to as a principal
homogeneous space over G.

Exercise A.50 Galois extensions and torsors of finite groups

Let k be a field of characteristic zero and let G be a finite group of order n. We
consider GG as an affine algebraic group as in Example A.34.6. Note that the
k-points of the variety G' correspond to the elements of the group G. Let Z be
a G-torsor over k and assume that Z is irreducible.

1. Show that Z(k) is finite and so K = O(Z) is a field. Hint: Use Exer-
cise A.14(4).

2. For each g € G, the map z — zg is an isomorphism of Z to itself and so gives
a k-automorphism o, of O(Z). Show that g — o, is an injective homomorphism
of G to Aut(K/k). Hint: If o0, = id, then g = id on Z(k).

3. Show that K is a Galois extension of k with Galois group G. Hint: Let
[K : k] = m. Comparing dimensions, show that m = n. Since n = |G| <
|Aut(K/k)| < n, Galois theory gives the conclusion.

4. Conversely, let K be a Galois extension of k with Galois group G. For g € G
let 0, € Aut(K/k) be the corresponding automorphism. Consider the map
K ®p K = O(G) ®; K given by

fol = > x,®0,(f)
geG

19h = Y xy®h
9€EG
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where x, € O(G) is the function that is 1 on g and 0 on the rest of G. Show
that this is an isomorphism. Conclude that K = O(X) for some connected
G-torsor. Hint: Since the two spaces have the same k-dimension, it suffices to
show that the map is injective. Let u = ), fi ® h; be an element that maps
to zero. Using properties of the tensor product and noting that [K : k] = n,
we can assume that the f; are linearly independent over k. Th image of u is
> gea Xg © (3o 04(fi)hi). Therefore, for each g € G, 32, 04(fi)hi = 0. Since
det(o4(fi)) # 0 (c.f., [130], Ch. VI, §5, Cor. 5.4), each h; = 0. i

The trivial G-torsor over k is defined by Z = G}, := G®c k and G X, G, = G,
is the multiplication map (g,z) — z - g. Two torsors Z;, Z over k are defined
to be isomorphic over k if there exist a k-isomorphism f : Z; — Z5 such that
f(zg) = f(z)g for all z € Z;, g € G. Any G-torsor over k, isomorphic to the
trivial one, is called trivial.

Suppose that Z has a k-rational point b, i.e., b € Z(k). The map Gy, — Z, given
by g — bg, is an isomorphism. It follows that Z is a trivial G-torsor over k.
Thus the torsor Z is trivial if and only if Z has a k-rational point. In particular,
if k is algebraically closed, every G-torsor is trivial.

Let Z be any G-torsor over k. Choose a point b € Z(k), where k is the algebraic
closure of k. Then Z(k) = bG(k). For any o € Aut(k/k), the Galois group
of k over k, one has o(b) = be(o) with ¢(0) € G(k). The map o — c(o) from
Aut(k/k) to G(k) satisfies the relation

C(O’l) -01 (0(0'2)) = 0(0102).

Amapec: Au_t(%/k:) — G(k) with this property is called a 1-cocycle for Aut(k/k)
acting on G(k). Two 1-cocycles ¢y, ¢y are called equivalent if there is an element
a € G(k) such that

cz(0) =a' ¢ (o) - o(a) for all o € Aut(k/E).

The set of all equivalence classes of 1-cocycles is, by definition, the cohomology
set H'(Aut(k/k),G(k)). This set has a special point 1, namely the image of the
trivial 1-cocycle.

Take another point b € Z(k). This defines a l-cocycle ¢. Write b = ba
with @ € G(k). Then one finds that é(o) = a=' - ¢(o) - o(a) for all o €
Aut(k/k). Thus ¢ is equivalent to ¢ and the torsor Z defines a unique ele-

ment cz of H' (Aut(%/k)_, G(k)). For the next Lemma we shall need the fact
that H'(Aut(k/k), GL,(k)) = {1} ([130], Ch. VIL, Ex. 31; [192], p. 159).

Lemma A.51 The map Z — cz induces a bijection between the set of isomor-
phism classes of G-torsors over k and H'(Aut(k/k),G(k)).

Proof. The map Z — cz is injective. Indeed, let Z; and Z, be torsors,

by € Zi(k) and by € Zy(k) two points defining equivalent 1-cocycles. After
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changing the point b, we may suppose that the two 1-cocycles are identical.
One defines f : Z,(k) — Z»(k) by f(brg) = bag for all g € G(k). f defines an
isomorphism (Z1); — (Z2);. By construction f is invariant under the action of
Aut(k/k). Therefore Exercise A.22 implies that f is induced by an isomorphism
f: Z1 — Zy of G-torsors.

Let an element of H'(Aut(k/k),G(k)) be represented by a l-cocycle c. The
group G is an algebraic subgroup of GL,(C). Since H'(Aut(k/k),GLy(k)) =
{1}, there is a B € GL, (k) with ¢(¢) = B~'o(B) for all o € Aut(k/k). The
subset BG(k) € GL, (k) is Zariski closed and defines an algebraic variety Z C
GL, (k). For o € Aut(k/k) one has o(BG(k)) = o(B)G(k) = Be(o)G(k) =

BG(k). Thus Lemma A.21 implies that Z is defined over k. It is clear that Z

is a G-torsor over k. Further B € Z(k) defines the 1-cocycle ¢. This shows the
map Z — cz is also surjective. |

We have already noted that H'(Aut(k/k),GL,(k)) = {1} for any field k.
Hilbert’s Theorem 90 implies that H'(Aut(k/k),Gm(k)) = {1} and
H'(Aut(k/k),Ga(k)) = {1}, [130]. Ch. VI, §10. Furthermore, the triviallity of
H* for these latter two groups can be used to show that H'(Aut(k/k),G(k)) =
{1} when G is a connected solvable group, [192]. We will discuss another situ-
ation when H'(Aut(k/k),G(k)) = {1}. For this we need the following

Definition A.52 A field F is called o C-field if every homogeneous polynomial
f € F[X1,...,X,] of degree less than n has a non-trivial zero in F™.

It is known that the fields C'(2), C((z)), C({z}) are C;-fields if C is alge-
braically closed, [129]. The field C(z,e?), with C' algebraically closed, is not a
C’l—ﬁeld.

Theorem A.53 (T.A. Springer, [192] p. 150)
Let G be a connected linear algebraic group over the field k of characteristic 0.
Suppose that k is a Cy-field. Then H'(Aut(k/k),G(k)) = {1}.



Appendix B

Sheaves and Cohomology

B.1 Sheaves: Definition and Examples

The language of sheaves and their cohomology is a tool to understand and for-
mulate the differences between local properties and global ones. We will apply
this language especially for the asymptotics properties of formal solutions of
differential equations. Other applications that concern us are the formulation
and constructions for the Riemann-Hilbert problem and moduli of singularities
of linear differential equations.

The aim of this text is to present the ideas and to develop a small amount
of technical material; just enough for the applications we have in mind. Proofs
will sometimes be rather sketchy or not presented at all. The advantages and
the disadvantages of this presentation are obvious. For more information we
refer to [74, 90, 94].

The topological spaces that we will use are very simple ones, say subsets of
R"™ or C" and sometimes algebraic varieties provided with the Zariski topology.
We will avoid “pathological” spaces.

Definition B.1 Let X be a topological space. A sheaf F on X is given by

1. For every open set A C X a set F(A).

2. For every pair of open sets A C B a map p§ : F(B) — F(A)
and these data should satisfy a list of properties:

1. p4 is the identity on F(A).

2. For open sets A C B C C one has p§ = p%p§.

331
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3. Assume one is given an open set A, an open cover {A;}icr of A and
elements a; € F(A;) for every i € I such that for every pair i,j the
following holds

A; A .
pAiﬂAJ'al - pAiﬂA]‘a']'

Then there is a unique element a € F(A) with pﬁia = a; for everyi € I.

If F satisfies all above properties, with the possible exception of the last
one, then F' is called a presheaf. We illustrate the concept “sheaf” with some
examples and postopone a fuller discussion of presheaves to Section B.1.3 .

Examples B.2 1. X is any topological space. One defines F' by:

(i) For open A C X, F(A) is the set of the continuous maps form 4 to R.

(ii) For any pair of open sets A C B C X the map p% is the restriction map,
i.e., pB f is the restriction of the continuous map f: B — R to a map from A
to R.

2. X =R"™ and F is given by:
(i) For open A C R™, F(A) is the set of the C*°-functions from A to R.
(ii) For every pair of open sets A C B, the map p% is again the restriction map.

3. X = C and Oy, the sheaf of holomorphic functions is given by:

(i) For open A C X, Ox(A) consists of the holomorphic functions f: A — C.
(ii) p%, for open sets A C B, is again the restriction map.

We recall that a function f is holomorphic on A, if for every point a € A
there is a convergent power series Y ., an(z —a)™ which is equal to f on some
neighborhood of a.

4. X = C and M, the sheaf of meromorphic functions, is given by:

(i) For open A C C, M(A) is the set of the meromorphic functions on A.

(ii) p% is again the restriction map.

We recall that a “function” f on A is meromorphic if for every point a € A
there is a convergent Laurent series ) .y a,(z —a)™ which is equal to f on a
neighborhood of a. Another equivalent definition would be that for every point
a € A, there is a disk around @ in A and holomorphic functions C, D on this
disk, D not identical zero, such that the fraction % is equal to f on this disk.
We remark that D may have zeros and thus f has poles. The set of poles of f
is a discrete subset of A.

5. X is any topological space and D is a nonempty set. The constant sheaf
on X with values in D is the sheaf F' given by: F(A) consists of the functions
f : A — D such that there exists for every point a € A has a neighborhood U
with f constant on U. (In other words f(U) is one point of D). p& is again the
restriction map. The elements of F(A) are sometimes called the locally constant
functions on A with values in D.

6. Direct sum Let Fiand Fy be two sheaves on a topological space X. Show
that the presheaf U — F; (U) x F5(U) defines a sheaf, called the direct sum of
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F1 and FQ.

O

Exercise B.3 X is a topological space, D a nonempty set and F is the constant
sheaf on X with values in D.

(a) Suppose that the open set A is connected. Prove that F(A) consists of the
constant functions of A with values in D.

(b) Suppose that the open set A is the disjoint union of open connected subsets
Ai, i€ l. (The A; are called the connected components of A). Prove that F(A)
consists of the functions f : A — D which are constant on each A;. a

Remark: For most sheaves it is clear what the maps p are. In the sequel we will
omit the notation p and replace p§ f by f|a, or even omit the p& completely.

B.1.1 Germs and Stalks

F denotes a sheaf (or presheaf) on a topological space X. Let = be a point of
X. We consider pairs (U, f) with f € F(U) and U a neighborhood of z. Two
pairs (U1, f1), (Uz, f2) are called equivalent if there is a third pair (Us, f3) with
Us C Uy NUy and f3 = fi|lys = f2|u,- The equivalence class [U, f] of a pair
(U, f) is called a germ of F at x. The collection of all germs of F' at z is called
the stalk of F' at x and is denoted by F.

Examples B.4 1. The sheaf of the real C*°-functions on R will be denoted by
C*°. The stalk C§° of this sheaf at 0, is a rather complicated object. It is in fact
a ring , because one can add and multiply C'*°-functions. One can associate to
a germ [U, f] its Taylor series at 0, i.e., >, <, f(:!(o) x™. This Taylor series is a
formal power series. The collection of all formal power series (in the variable z
and with coefficients in R) is usually denoted by R][[z]]. The map C5° — R][[z]],
which associates to each germ its Taylor series is a homomorphism of rings. A
non trivial result is that this map is actually surjective (c.f., Theorem 7.3). The
kernel of the map is an ideal, the ideal of the flat germs at 0. A germ [U, f] is
called flat at 0if ™ (0) = 0 for all n > 0.

2. The sheaf of the holomorphic functions on C will be denoted by O¢ or simply
O. One associates to every germ [U, f] of O at 0 the power series ), -, %z".
This power series (in the complex variable 2z and with coefficients in C) is
convergent (either by definition or as a consequence of a different definition of
holomorphic function). The collection of all convergent power series (in the
variable z and with complex coefficients) is denoted by C{z}. We have now an

isomorphism Oy — C{z}.

3. The ring C{z} is a rather simple one. The invertible elements are the power
series > oo cn2™ with ¢y # 0. Every element f # 0 can uniquely be written
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as z"E with n > 0 and E a unit. One defines the order of f = z"FE at 0 as
the above n and one writes this in formula as ordy(f) = n. This is completed
by defining ordy(0) = +o00. The ring C{z} has no zero divisors. Its field of
fractions is written as C({z}) . The elements of this field can be written as
expressions y_ . c,2" (a € Z and the ¢, € C such that there are constants
C,R > 0 with |¢,| < CR™ for all n > a). The elements of C({z}) are called
convergent Laurent series . Every convergent Laurent series f = > f,2™ # 0
has uniquely the form 2™FE with m € Z and E a unit of C{z}. One defines
ordy(f) = m. In this way we have constructed a map

ordy : C({z}) = Z U {0}

with the properties

1. ordo(fg) = ordo(f) + ordo(g).
2. ordy(f) = oo if and only if f = 0.
3. ordo(f + g) > min(ordy(f), ordo(g)).

Every convergent Laurent series can be seen as the germ of a meromorphic
function at 0. Let M denote again the sheaf of the meromorphic functions
on C. We conclude that the stalk My is isomorphic to the field C({z}). For
any other point u € C one make similar identifications O, = C{z — u} and

My = C({z —u}).

4. Skyscraper sheaves

Let X be a topological space where points are closed, p € X and G an abelian
group. We define a sheaf i,(G) by setting i,(G)(U) = Gif p € U and i,(G)(U) =
0if p ¢ U. The stalk at point ¢ is G if ¢ = p and 0 otherwise. This sheaf is called
a skyscraper sheaf (at p). If p1,...,p, are distinct points the sheaf ®i,(G) is
called the skyscraper sheaf (at p1,...pp) |

B.1.2 Sheaves of Groups and Rings

A sheaf F on a topological space X is called a sheaf of groups if every F(A) is
a group and every map p% is a homomorphism of groups. In a similar way one
defines sheaves of abelian groups, sheaves of commutative rings, vector spaces
et cetera. If D is a group, then the constant sheaf on X with values in D is
obviously a sheaf of groups. Usually, this sheaf is denoted by Dx, or also by
D itself. The sheaves C°°, 0, M are sheaves of commutative rings. The sheaf
GL,(O) on C is given by A — GL,(0O)(A), which consists of the invertible
n x n-matrices with coefficients in O(A), or otherwise stated GL,(0)(A) =
GL,(0O(A)). Tt is a sheaf of groups on C. For n = 1 it is a sheaf of commutative
groups and for n > 1 it is a sheaf of noncommutative groups. The restriction of
a sheaf ' on X to an open subset U is written as F|y. Its definition is more or
less obvious, namely F|y(A) = F(A) for every open subset A C U.
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Definition B.5 A morphism f : F' — G between two sheaves of groups, rings
et cetera, is defined by

1. For every open A a map f(A): F(A) —» G(A).

2. f commutes with the restriction maps, i.e., for open A C B the formula
P2 F(B) = f(A)p" holds.

3. Every f(A) is a homomorphism of groups, rings et cetera.

We make a small excursion in order to demonstrate that sheaves can be used
to define global objects. A ringed space is a pair (X,Ox) with X a topologi-
cal space and Ox a sheaf of unitary commutative rings on X. A morphism of
ringed spaces is a pair (f,g) : (X,0x) — (Y,0y) with f : X — Y a contin-
uous map and g a family {g(A)} 4 open in v Of homomorphisms of unitary rings
g(A) : Oy (A) = Ox(f~*A), compatible with restrictons. The latter means: For
open AiCcAyCcY and h e Oy(AQ) one has g(Al)(h|A1) = (g(AQ)(h))|f—1(A1).

Using this terminology one can define various “global objects”. We give two
examples:

Examples B.6 1. A C*- variety of dimension n is a ringed space (M, F)
such that M a Hausdorff topological space and has an open cover {M;} with
the property that, for each i, the ringed space (M;, F;) (where F; = F|p,) is
isomorphic to the ringed space (B,,C*). The latter is defined by B, being
the open ball with radius 1 in R™ and C* being the sheaf of the C'°°-functions
on B,. The “global object” is (M, F') and the “local object” is (B, C*). Our
definition of C'*°-variety M can be rephrased by saying that M is obtained by
gluing copies of B,,. The sheaf F' on M prescribes the way one has to glue.

2. A Riemann surface is a ringed space (X,Ox) such that X is a connected
Hausdorff space and (X, Ox) is locally isomorphic to (D,Op). Here “(D,0Op)”
means: D = {z € C| |z| < 1} and Op is the sheaf of the holomorphic functions
on D. Further “(X,Ox) locally isomorphic to (D,0Op)” means that X has an
open cover {X;} such that each (X;, Ox|x;) is isomorphic to (D, Op), as ringed
spaces. O

B.1.3 From Presheaf to Sheaf

Let F' be a presheaf on some topological space X. The purpose is to construct
a sheaf F' on X, which is as close to F' as possible. The precise formulation of
this is:

1. F'is a sheaf.

2. There is a given a morphism 7 : F' — F' of presheaves.
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3. For any morphism of presheaves f : F' = G, with G actually a sheaf, there
is a unique morphism of sheaves f : F' — G such that for = f.

We note that this definition is formulated in such a way that, once F and T exist
they are unique up to (canonical) isomorphism. One calls F the sheaf associated
to the presheaf F'. The construction is somewhat formal and uses the stalks F,
of the presheaf F'. Define, for any open A C X the set F(A) as the subset of

[I.ca Fe, given by:

An element (ag)zea belongs to F(A) if for every point y € A
there is an open neighborhood U of y and an element f € F(U)
such that for any u € U the element a, € F, coincides with the
image of f in the stalk Fy,.

The morphism 7 : F — F is given by maps 7(A) : F(A) — F(A) for all A
(and should be compatible with the restirction maps). The definition of 7(A4) is
rather straighforward, namely f € F(A) is mapped to (az)eca € F(A) where
each a, € F, is the image of f in the stalk F).

The verification that ' and 7 as defined above, have the required properties is
easy and uninteresting. We note that F' and F' have the same stalks at every
point of X.

We will give an example to show the use of “the associated sheaf”. Let B be
a sheaf of abelian groups on X and let A be an abelian subsheaf of B. This
means that A(U) is a subgroup of B(U) for each open set U and that for any
pair of open sets U C V the restriction map B(V') — B(U) maps A(V) to A(U).
Our purpose is to define a quotient sheaf of abelian groups B/A on X. Naively,
this should be the sheaf which associates to any open U the group B(U)/A(U).
However, this defines only a presheaf P on X . The quotient sheaf B/A is defined
as the sheaf associated to the presheaf P. We note that the stalk (B/A), is
isomorphic to B, /A,. This follows from the assertion, that the presheaf and its
associated sheaf have the same stalks.

Example B.7 Let O denote the sheaf of the holomorphic functions on C. Let
Z be the constant sheaf on C. One can see Z as an abelian subsheaf of O.
Let O/Z denote the quotient sheaf. Then, for general open U C C, the map
O(U)/Z(U) — (O/Z)(U) is not surjective. Indeed, take U = C* C C and
consider the cover of U by U; = C\ R>g and U, = C\ R<p. One each of the
two sets there is a determination of the logarithm. Thus fi(z) = 5 log(z) on
Uy and f(z) = 5= log(z) are well defined elements of O(U1) and O(Us). The
fi, f> do not glue to an element of O(U). However their images g; in O(U;)/Z,
for j = 1,2, and a fortiori their images h; in (O/Z)(U;) do glue to an element
h € (O/Z)(U). This element h is not the image of some element in O(U). This
proves the statement. Compare also with Example B.16 and example B.18. O

Let A and B again be abelian sheaves on X and let f : A — B be a
morphism. Then one would like to define a kernel of f as a sheaf of abelian
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groups on X. The naive approach would be kerf(U) := ker(f(U) : A(U) —
B(U)). This defines an abelian subsheaf of A. In this case one does not have
to make the step from presheaf to sheaf. Moreover, the stalk (kerf), is equal
to the kernel of A, — B,.

B.1.4 Moving Sheaves

Let f: X — Y be a continuous map between topological spaces. We want to
use f to move sheaves on X to sheaves on Y and visa versa. The definitions
are:

Definition B.8 Direct Image. Let F' be a sheaf on X. The direct image of G,
f«F is the sheaf on'Y , defined by the formula f.F(V) = F(f~'V) for any open
VcCy.

It is an exercise to show that the formula really defines a sheaf on Y. It is in
general difficult to express the stalk (f.F), in terms of F and f~'(y).

Example B.9 Let Z be the constant sheaf on R—{0} and let f : R—{0} = R
be the inclusion map. One then has that the stalk of f, X at 0 is Z ® Z since
fiZ(—€,€) = Z((—€,0) U (0,¢)) = Z ® Z for any € > 0. O

Let G be a sheaf on Y, then we would like to define a sheaf f*G on X by
the formula f*G(U) = G(fU) for any open set U C X. This is however not
possible because fU is in general not an open set. So we have to make a more
careful definition. Let us start by defining a presheaf P on X. For any open set
U C X, let P(U) be the direct limit of G(V'), taken over all open V D fU. As
the definition of direct limit occurs a little later in this text, we will say this more
explicitly. One considers pairs (V, g) with V' O fU, V open and g € G(V). Two
pairs (Vi,¢1) and (14, ¢g2) are called equivalent if there is a third pair (V3, g3)
with V3 C ViNVa and g3 = ¢g1|v, = g2|v,- The equivalence classes of pairs (V, g)
could be called germs of G for the set fU. Thus we define P(U) as the set of
germs of G for the set fU. It turns out that P is in general a presheaf and not
a sheaf. Thus we end up with the definition:

Definition B.10 The inverse image of G, f*G is the sheaf associated to the
presheaf P.

One rather obvious property of f*G is that the stalk (f*G), is equal to the
stalk Gf(,). The sheaf f*G is called the inverse image of G.

A rather special situation is: X is a closed subset of Y. Formally one writes
i: X — Y for the inclusion map. Let F' be an abelian sheaf on X. The sheaf
i.F" is easily seen to have the stalks (i,F), = 0if y ¢ X and (i,F), = F, for
x € X. One calls ¢, F the extension with 0 of F to Y. For a sheaf G on Y,
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the sheaf i*G on X is called the restriction of G to X. The stalk (i*G), is
equal to G,. One can extend i*G with 0 to Y, i.e., i,i*G. There is a natural
homomorphism of abelian sheaves G — i,i*G on the space Y. We will return
to this situation later on.

Exercise B.11 1. Let X be a topological space whose points are closed. Let
G be the constant sheaf on {p} with group G. Show that the skyscraper sheaf
ip(G) is the same as i.(G).

2. Let X be a closed subset of Y, F' a sheaf of abelian groups on X and U an
open subset of Y. Show that ¢,i*F(U) = F(UN X) if U N X is nonempty and
is 0 otherwise. |

B.1.5 Complexes and Exact Sequences

We begin by giving some definitions concerning abelian groups:

Definition B.12 1. Let f : A — B be a homomorphism of abelian groups. We
define the kernel of f, ker(f) = {a € A| f(a) = 0}, the image of f.
im(f) = {f(a)| a € A} and the cokernel of f, coker(f) = B/im(f).

2. A sequence of abelian groups and homomorphisms
= R AR NS AT I

is called a (co)complex if for every j one has f/fi=! = 0 (Under the
assumption that both fi and f7~' are present. The 0 indicates the 0-map
from AI=1 to AITL).

3. A sequence of abelian groups and homomorphisms
= R AR NS AT I

is called exact if for every j (f7 and fi~1 are supposed to be present) one
has im(fi=1) = ker(f7).

This last notion needs some explanation and some examples. We remark first
that an exact sequence is also a complex, because im(f’=1) = ker(f7) implies

it =,

Examples B.13 1. 0 —» A 1 B is exact if and only if f is injective. Here
the 0 indicates the abelian group 0. The first arrow is not given a name because
there is only one homomorphisme 0 — A, namely the 0-map. The exactness of
the sequence translates into: “the image of the 0-map, i.e., 0 C A, is the kernel
of f”. In other words: ker(f) =0, or f is injective.
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2. AL B 50 is exact if and only if f is surjective. The last arrow is not
given a name because there is only one homomorphism from B to 0, namely the
0-map. The exactness translates into: “the kernel of the 0-map, this is B itself,
is equal to the image of f”. Equivalently, im(f) = B, or f is surjective.

30 AL B0 s exact if and only if f is an isomorphism.

4.0 AL B% 0 50is exact if and only if f is injective is and C is
via g, isomorphic to the cokernel of f. Indeed, “f is injective, g is surjective
and ker(g) = im(f)” is the translation of exactness. From ker(g) = im(f) one
deduces, using an well known isomorphy theorem, an isomorphism B/im(A4) —
C. A sequence as above is called a short exact sequence. O

Exercises B.14 Complezxes
1. Construct maps for the arrows in the following exact sequence

0-Z—-C—C*—=0.

We note that the operation in an abelian group is usually denoted with a +.
The above sequence is an exception to that, because C* = C\ {0} is considered
as a group for the multiplication.

2. Construct maps for the arrows in the following exact sequence
0—Z>—>Z* - Z/5Z — 0.
3. Give a complex which is not exact.

4. Let F be a presheaf of abelian groups on a topological space X. For every
open A C X and open cover {4;};cr and (in order to simplify) a chosen total
order on the index set I, one considers the sequence of abelian groups and
homomorphisms

0— F(A) 5 [ F(4) 4 [[Fain 4,
i 1<j
where
L e(f) == (f
2. d°((fi)i) = (f:

Ai)iGI-

aina; — filaina;)i<y-

(a) Prove that the above sequence is a complex.
(b) Prove that F' is a sheaf if and only if the above sequence (for all choices of
A and {A;}ier) is exact. O

Let a complex of (abelian groups)

N N LS
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be given. By definition d’d’~! = 0 holds for all j such that & and d’~! are
present. This condition is equivalent with im(d’~') C ker(d’) for all j. The
complex is an exact sequence if and only if im(d’~!) = ker(d’) for all j. One
can “measure” the non exactness of a complex by a calculation of the abelian
groups ker(d’)/im(d’~'). This leads to the definition:

Definition B.15 The j* cohomology group H’ of a complex is the group
ker(d?)/im(d’~1).

Examples B.16 1. Consider the complex
0 1
0 A" %5 At 4 42 0,

with
A° =7, A' =Z/8Z, A> =Z7Z/2Z en

d’(n) = 4n mod 8, d*(n mod 8) = n mod 2.

The other maps in the comples are 0. One sees that
H°~7, H' =2 7/2Z, H* = 0.

2. Consider the complex

0= 0X) 5 0x)* =0,

in which X is an open subset of C, O(X),O(X)* are the groups of the holo-
morphic and the invertable holomorphic functions on X. This means O(X)* =
{f € O(X)] f has no zeros on X} and the group operation on O(X)* is multi-
plication. The map d° is given by d°(f) = €27/,

H? consists of the holomorphic functions f € O(X) with values in Z. Those
functions are precisely the locally constant functions with values in Z and thus
H° = Z(X). (and = Z if X is connected).

The term H'! measures whether the invertible functions, i.e., f € O(X)*, are
the exponentials of holomorphic functions. This depends on X. We consider
some cases:

(a) X is an open disk, say {z € C| |2|] < 1}. Choose f € O(X)*. We are
looking for a g € O(X) with 2™ = f. This g satisfies the differential equa-
tion ¢’ = 27{if‘ 27{” lies in O(X) and is equal to a power series
Y n>0 @n2™ with radius of convergence > 1. One can take for g the expression

b+ 50 nep2™ . The radius of convergence is again > 1 and thus g € O(X).

The constant b is chosen such that e?™® = f(0). The function e?™% f~! has
derivative 0 and is equal to 1 in the point z = 0. Therefore > f~! is equal to
1on X and f = 2™,

The function
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(b) Let X be an anulus, say X = {z € C| 1 < |z| <12} with 0 <7 < ry < 00.
We admit that every element f € O(X) can be represented as a convergent
Laurent series ), ., a,2" (with the condition on the absolute values of the a,
expressed by > _, |a,|r™ converges for every real r with ri <1 <rs). We are
looking for a g with €27 = f. Such a g has to satisfy the differential equation
g = 27]:;'f‘ Write % =Y, ,2". Then g exists if and only if a_; = 0. The
term a_; is not always 0, e.g., for f = 2¥ one hasa_| = % We conclude that
H' # 0. Assuming a result from classical complex function theory, namely that

[ f’;fz);iz is an integer (see [32]), one can easily show that H' = Z. 0

B.2 Cohomology of Sheaves

B.2.1 The Idea and the Formalism

In this section X is a topological space and F' is a sheaf of abelian groups on X.
The stalk F,, for z € X, is in an obvious way also an abelian group. A morphism
of abelian sheaves f : FF — G induces for every £ € X a homomorphism of
groups f; : F, = G,. We will use this to give a definition of exact sequence of
sheaves.

Definition B.17 A sequence of abelian sheaves and morphisms
Lt I i pi

on X is called exact if for every point x € X the induced sequence of abelian
groups

i

i—1 ot i Iy it
R ey pi s pi

18 exact.

We remark that the literature often uses another equivalent definition of exact
sequence of abelian sheaves.

For a given exact sequence of sheaves, as above, and for an open set A C X one
finds a complex

i) T Y Ry TS piay

The important observation is that this complex is in general not exact!

Examples B.18 1. X = C and Z, O, O* are the sheaves on X of the constant
functions with values in Z, the holomorphic functions and the invertible holo-
morphic functions (with multiplication). The exact sequence of abelian sheaves
on X

0-Z—-0—-0"=0

is given by:
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Z — O is the inclusion map f € Z(A) — f € O(4) (i-e., alocally
constant function with values in Z is considered as a holomorphic
function.

O — O* is defined by f € O(A) — e2if € O(A)*.

In proving that the sequence is exact we have to show for every point © € X
the exactness of the sequence of stalks. For convenience we take x = 0. The
sequence of stalks is

0—>7Z— C{z} - C{z}" = 0.

An element f € C{z}* has the form f = ao(1 + a1z + azz® + --+) with ag # 0.
Choose by with e?™%° = qg and define g as g = by + QLM log(1+ayz+asz?+---).

In this we use for log the formula log(1 +u) =, ., (712:_1

It is clear that g € C{z}. It is also easy to see that any solution h of e?™" = f
nas the form g+n with n € Z. Thus we have proved that the sequence of stalks
is exact.

un

Consider an anulus A = {z € C| r1 < |z| < r2} with 0 <71 <ry < co0. Then
0—Z(A) - O(A) - O(A)"
is exact, but the last map is not surjective as we have seen in Example B.16.

2. The circle S! can be seen as a 1-dimensional C*°-variety. We consider three
sheaves on it:

e R, the constant sheaf with values in R.
e (> the sheaf of the C*°-functions.

e (), the sheaf of the C*°-1-forms. The sections of Q(A) are expressions
> fidg; (finite sums, f;,9; € C°(A)) obeying the rules d(g1 + ¢2) =
dgr + dgz, d(g192) = g1dg2 + g2dg1.

Let A be chosen such that there exists a C* isomorphism ¢ : A — (0,1). Then
Q(A) = C*°(A)dt, in other words every 1-form is equal to fdt for a unique
f € C*®(A). This brings us to an exact sequence

0-R—-C*®—>Q—0,

in which the first non trivial arrow is the inclusion and the second non trivial
arrow is the map f — df = f'dt.

We will quickly verify that the sequence is exact. Let a 1-form w be given
in a neighborhood A of a point. As above we will use the function ¢. Then
w = fdt and f can be written as g o t, where g is a C*-function on (0,1).
Let G be a primitive function of the function g. Then G ot € C*(A) and
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d(Got) = (got)dt = fdt. The functions G and G ot are unique up to a
constant. This proves the exactness. The sequence

0— R — C™(S") — Q(sh

is also exact, as one easily sees. The map C*(S!) — Q(S!) is however not
surjective. An easy way to see this is obtained by identifying S! with R/Z.
The C*-functions on S! are then the 1-perodic functions on R. The 1-forms
on S' are the 1-periodic 1-forms on R. Such a l-periodic 1-form is equal to
h(t)dt where h is a C*°-function on R having the property h(¢t + 1) = h(t). Let
w = h(t)dt be given. We are looking for a C*°-function f(t) with f'(t) = h(t)
and f(t + 1) = f(t). The first condition yields f(¢) = c+ fot h(s)ds with ¢ any
constant. The second condition is satisfied if and only if fol h(s)ds = 0. In
general the latter does not hold. We conclude that the map is not surjective.

In fact the above reasoning proves that the cokernel of the map is isomorphic
with R. O

We give now the formalism of cohomology of sheaves. Let F be an abelian
sheaf on a topological space X. Then there is a sequence of abelian groups,
denoted as H'(X,F), i = 0,1,2,.... Those groups are called the cohomology
groups of the sheaf F' on X. This collection depends in a “functorial way”
on F', which means that for a morphism of abelian sheaves f : FF — G a
collection homomorphisms H(f) : H{(X,F) — H'X,G) is given. All this
should satisfy the rules: Hi(id) = id, H(f o g) = H'(f) o H(g). Further
the term H°(X, F) is, by definition, equal to F/(X) and the term H°(f) is, by
definition, equal to f(X) : F(X) — G(X). A definition of the higher H(X, F) is
rather complicated and will be given later. We continue first with the formalism.

The most important property of the cohomology groups is: For every short exact
sequence of (abelian) sheaves

0—>F, > F - F;3—0
there is a long exact sequence of cohomology groups
0— H'(X,F,) —» H'(X,F,) — H°(X, F3)

_)Hl(XaFl) _>H1(X)F2) _)Hl(X7F3)
- H2(X7F1) — HQ(X)F2) — H2(X7F3)

— H"(X,F) » H"(X,F,) - H"(X, F3)

This long exact sequence of cohomology depends “functorially” on the short
exact sequence of sheaves. This means that a morphism between two short
exact sequences of sheaves induces a morphism between the two long exact
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sequences of cohomology. Further the latter is compatible with composition of
morphisms and the identity induces the identity. We finally remark that for an
open subset A C X the groups H!(A, F) (et cetera) are defined by taking the
restrictions to A. In particular H(A, F) = HY(A, F|a).

The definition of cohomology groups is not only complicated, it also gives no
easy way to calculate the groups. We demonstrate the value of the cohomology
groups by some results.

Examples B.19 1. Consider again the exact sequence
0-Z—-0—-0"-0

on X = C. It can be shown that for every open open subset A C C one has
HY(A,0) = 0 and H'(A,0*) = 0 for all i > 1 (c.f., B.26). The long exact
sequence of cohomology implies then H?(A,Z) = 0 for i > 2 and the interesting
part of this sequence is

0— Z(A) = O(A) - O*(A) - H'(A,Z) = 0.

The cohomology group H'(A,Z) “measures” the non surjectivity of the map
O(A) — O*(A). One can show that for a connected open subset with g holes
the group H'(A,Z) is isomorphic to Z9. For A = C one has g = 0 and
H'(A,Z) = 0. For a ring domain A one has g =1 and H'(A,Z) = Z. This is
in conformity with the explicit calculations of example B.18.

2. Consider the exact sequence of sheaves

0O—-R—-C*®—=0-=0

on S'. One can show that the cohomology group H*? with ¢ > 1 is zero for every
sheaf on S!. Moreover the two sheaves C™ and (Q satisfy H' is zero. The long
exact sequence of cohomology is now rather short, namely

0—R—C™(S') — QS - HY(SH,R) = 0.

Moreover one can show that H!(S!, A) = A for every constant sheaf of abelian
A groups on S (c.f., Example B.22 and B.26). This confirms our earlier explicit
calculation. a

B.2.2 Construction of the Cohomology Groups

Given are a sheaf (of abelian groups) F on a topological space X and an open
cover U = {U, }ies of X. We choose a total prdering on the index set I, in order
to symplify the definition somewhat. The Cech complex for these data is:

0= COWU,F) S u,r) S ccu ) S ed.

given by
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1. We write Ui, i, ,...,i,, for the intersection U;, NU;, N---NU;,.
2. COU, F) = [T, F(U).

3. C*U,F) =T, <i, F(Uig.ir)-

io<i1

4. And in general: C"(U,F) =[] F(Us,....i.)-

10 <i1 < - <in

5. d°((fi)i) = (fj — fi)i<j- We have omitted in the formula the symbols for
the restictions maps.

6. A ((fij)i<j) = (fi,j—fix+fjk)ici<k. Again we have omitted the symbols
for the restriction maps.

7. And in general: d"((fi,,....in)) = (Aio,...in11)io<--<ini1» Where

) ) — E _1)i f. ) ) )
Ato7---7zn+1 = (=1) flO:--wlj—l7lj+17---7ln+1'

0<j<n+1

Or in words, the alternating sum (i.e., provided with a sign) of the terms
f«, where x is obtained from the sequence ig,...,i,4+1 by omitting one
item.

A simple calculation shows that d™ o d® ! = 0 for all n > 1. Thus the above
sequence is a (co)-complex.

Remark B.20 The usual alternating Cech complex 0 = C°(U, F) — C'(U, F) —
... is defined by

C"UF) = {(fiorin) € [ FWigrin) | Frtio)onin) = S180(T) fio....i
for all permutations m € S,,11 and f4,,...;, =0
if is = iy for some s # t} .

After choosing a total order on I, one identifies C™(U, F) with C*(U, F). In
particular, the Cech cohomology groups defined by means of 0 — C°(U, F) —
C*(U,F) — ... do not depend on the total order on I.

Definition B.21 The Cech cohomology groups of this complex are again de-
fined as ker(d™)/im(d"™1). The notation for the n'™ cohomology group is
H™(U,F).

For n = 0 one adopts the convention that d_; = 0 and thus H°(U, F) = ker(d°).
According to Exercise B.14 this group equal to F(X).

Consider now n = 1. The ker(d') consists of the elements (f; ;) satisfying the
relation:

fil,iz - fi07i2 +fio,i1 =0
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This relation is called the 1-cocycle relation. The elements satisfying this rule
are called I-cocycles. Thus ker(d') is the group of the 1-cocycles. The elements
of im(d®) are called 1-coboundaries. The first cohomology group is therefore the
quotient of the group of the 1-cocycles by the subgroup of the 1-coboundaries.
We illustrate this with a simple example:

Example B.22 Let X be the circle S' and F be the constant sheaf with group
A on S'. The open cover {Uy,Us} of X is given by U; = S'\ {p;}, where p1, ps
are two distinct points of S'. The Cech complex is

0— F(Ul) X F(U2) — F(Ulyz) — 0.

Since Uj 2 has two connected components and the U; are connected, this complex
identifies with

0 AxAB Ax Ao,

with d°((a1,as)) = az — a;. One easily sees that the cohomology groups
H™(U, F) of this complex are A4, A4,0,0,... forn=0,1,2,3,.... |

Exercises B.23 Cohomology groups for a cover
1. X =10,1], F is the constant sheaf with group A and U = {U, U, Us} with
U, =[0,1/2), Uy = (1/4,3/4), Us = (1/2,1]. Calculate the groups H" (U, F).

2. X = S2= the two dimensional sphere, F' is the constant sheaf on X with
group A and U = {U;,Us,Us, Uy} is given by:

Choose a “north pole” N and a “south pole” Z on S?. Choose two distinct half
circles L1, L» from N to Z. Define U; = S? \ L; for i = 1,2. Further Us is a
small disk around N and Uy is a small disk around Z. Calculate the groups
H"(U,F). ]

This gives some impression about the meaning of the group H (U, F) for a
sheaf F' on a topological space X with an open cover &. The Cech cohomology
groups depend heavily on the chosen open cover / and we want in fact, for a
fixed sheaf F, to consider all the open covers at the same time. We need for
this again another construction.

Let = {Ui}ier and V = {Vj}jcs be two open covers of X. One calls V
finer than U (or a refinement of U) if there is a map ¢ : J — I such that for
every j € J there is an inclusion V; C Uy(j). From a given ¢ one deduces a
homomorhism of the complex C*(U, F') to the complex C*(V, F). This induces
morphisms

m(U,V,n): H*(U,F) — H*(V, F)

for every n > 0. The morphisms do not depend on the choice of ¢. For the
definition of the groups H"(X, F') we need still another notion, namely the direct
limit:
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Definition B.24 1. Let (H,<) be a partially ordered set such that for every
two elements hy,hy € H there is a third hs € H with hy < hg and hy < hgs.
Assume furthermore that for each h € H, we are given an abelian group By, and
for every pair hy < ha a homomorphism m(hy, he) : By, — Bp,. Furthermore,
assume that m(hy, he) verify the rules: m(h, h) = id and m(hs, hg)om(hy, he) =
m(hi, hs) if b1 < hy < hs. The above data are called a direct system of abelian
groups

2. The direct limit of this system will be denoted by B := liLn By, and is defined as

follows: Let Upc g By, be the disjoint union and let ~ be the equivalence relation:
d~eifdé¢€ By, e € By, and there is an hs with hy < hs, ha < hs and
m(hi,h3)d = m(ha, hs)e. We define B to be the set of of equivalence classes
B = (UnerBn)/ ~-

We have already seen an example of a direct limit. Indeed, for a sheaf F
and a point € X, the stalk F, is the direct limit of the F(U), where U runs
in the set of the open neighborhoods of z. That is, F, = 1i_r>n FU).

Finally, the collection {H"(,F)} forms a direct system of abelian groups.
Every one of these groups is indexed by a & and the index set consists of the
collection of all open covers of X. The partial ordering on the index set is given
by U <V if V is finer is than &/. We define now

H"(X,F) =lim H"(U, F).
—

For good spaces, for example paracompact, hausdorff spaces, the groups H” (X, F)
describe the “correct” cohomology and we write them as H™(X, F). We recall
the definition and some properties of paracompact spaces.

Definition B.25 A topological space X 1is called paracompact if every open
cover of X can be refined to a cover {U;}icr by open sets which is locally finite,
i.e., for every point x € X there is an open neighborhood V' such that VNU; # 0
holds for finitely many i € I.

Some properties of paracompact spaces are:

1. A paracompact hausdorff space is normal, that is,for any two closed sub-
sets X1, Xs of X with X; N X5 = 0 there exist open sets U; D X; and
U, D X, such that U; N U = 0.

2. A closed subset of a paracompact space is also paracompact.
3. A metric space is paracompact.

4. A compact space is paracompact.

One can show that for paracompact, hausdorff spaces X, H*(X, F) satisfy the
formalism of cohomology.
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It will be clear to the reader that we have skipped a large body of proofs.
Moreover the definition of cohomology is too complicated to allow a direct com-
putation of the groups H"(X, F)).

The following theorem of Leray ([90], p. 189) gives some possibilities for
explicit calculations.

Theorem B.26 Let X be a paracompact, hausdorff space. Suppose that the
open cover U = {U;};er has the property that for all ig,...,i,m € I and every
n > 0 the group H*(Uy, .. i, ,F) is 0. Then the natural map H"(U,F) —
H"(X,F) is an isomorphism for every n > 0.

This means that in some cases, one needs only to calculate the cohomology
groups with respect to a fixed open cover.

B.2.3 More Results and Examples

A topological space X is called path connected if any two points of X can be
connected by a path. A path connected space X is called simply connected if any
two paths f,g from a € X to b € X are homotopic. The latter notion is defined
by the existence of a continuous H : [0,1] x [0,1] — X such that : H(0,t) = a
for all ¢; H(1,t) = b for all t; H(s,0) = f(s) for all s; H(s,1) = g(s) for all
s. The map H is called a homotopy from f to g. Naively, H is a continuous
deformation of the path f to the path g, which leaves the end points fixed.

Further useful results are (c.f., [82], Ch. 5.12, [37], Ch. IL.15):

Theorem B.27 Let X be an open simply connected subspace of R"™ and A a
constant sheaf of abelian groups on X. Then H"(X,A) =0 for all i > 0.

We note that this result remains true for intervals on R of the form [a, ], [a, b)
and (a, b] since any open cover can be refined to an open cover by intervals such
that each interval intersects only its neighbors.

Theorem B.28 Let X be a “good” topological space of topological dimension n
and F any abelian sheaf on X. Then H'(X,F) =0 for i > n.

A possible definition of “topological dimension” would be: dimX < n if every
open cover of X can be refined to an open cover for which the intersection of
any n + 2 members is empty. From this definition, the theorem follows at once.
It is not difficult to prove that the topological dimension of any subset of R" is
< n. It is a bit more complicated to show that the topological dimension of R"
is precisely n.

Exercises B.29 Using the formalism of cohomology and the above results,
calculate the groups H*(X, A) for a constant abelian sheaf A and the space X
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given as:

(a) S
(b) S
(c) a ring domain.

(d) R2 \ Dy U Dy, where Dy, D, are two disjoint closed disks.
(e) C
(f)

a topologlcal torus. a
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Appendix C

Tannakian Categories

In this section we examine the question: when is a category the category of
representations of a group G and how do we recover G from such a category?
When @ is a compact Lie group, Tannaka showed that G can be recovered from
its category of finite dimensional representations and Krein characterized those
categories that are equivalent to the category of finite dimensional representa-
tions of such a group (see [38] and [140]). In this section, we shall first discuss
this question when G is a finite (or profinite) group. The question here is an-
swered via the theory of Galois categories (introduced in [88]). We will then
consider the situation when G is an affine (or proaffine) algebraic group. In this
case, the theory of Tannakian categories furnishes an answer. Original sources
for the theory of Tannakian categories are [184], [62] and [63] (see also [38]).
The very definition of Tannakian category is rather long and its terminology
has undergone some changes. In the following we will both expand and abbre-
viate a part of the paper [63] and our terminology is more or less that of [63].
For the basic definitions from category theory we refer to [130], Ch.I §11.

C.1 GGalois Categories

We wish to characterize those categories that are equivalent to the category
of finite sets on which a fixed profinite group acts. We begin by giving the
definition of a profinite group (c.f., [229]).

Definition C.1 (1)Let (I,<) be a partially ordered set such that for every two
elements i1,i> € I there exists an iz € I with i1 < i3 and i> < i3. Assume
furthermore that for each i € I, we are given a finite group G; and for every
pair iy < ia a homomorphism m(is,i1) : Gi, — G;,. Furthermore, assume that
m(iz,i1) verify the rules: m(i,i) = id and m(iz,i1) o m(is,is) = m(is,i1) if
i1 < iy <1i3. The above data are called an inverse system of abelian groups

351
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The projective limit of this system will be denoted by lim B; and is defined as
—

follows: Let G = [[G; be the product of the family. Let each G; have the
discrete topology and let G have the product topology. Then ligl B; is the subset

of G consisting of those elements (g;), g; € G; such that for all i and j > i, one
has m(4,1)(g;) = g;- We consider lim B; a topological group with the induced
+—

topology. Such a group is called a profinite group

Example C.2 Let p be a prime number, I = {0,1,2,...} and let G,, =
Z/p"tZ. For i > j let m(j,i) : Z/p"'Z — Z/p'*t'Z be the canonical ho-
momorphism. The projective limit is called the p-adic integers Z,,. a

Remarks C.3 1. The projective limit is also known as the inverse limit.

2. There are several characterizations of profinite groups (c.f., [229] p.19).
For example, a topological group is profinite if and only if it is compact and
totally disconnected. Also, a topological group is profinite if and only if it is
isomorphic (as a topological group) to a closed subgroup of a product of finite
groups.

The theory of Galois categories concerns characterizing those categories
equivalent to the category of finite sets on which a finite (or profinite) goup
acts.

Definition C.4 Let G be a finite group. The category Permg is defined as
follows. An object (F, p) is a finite set F' with a G-action on it. More explicitly,
a homomorphism of groups p : G — Perm(F) is given, where Perm(F) denotes
the group of all permutations of F. A morphism m : (Fi,p1) — (Fs,p2) is a
map m : Fy — Fy with mo p1 = pa om. One calls (F,p) also a finite G-set
and the action of G on F will also be denoted by g- f := p(g)(f) for g € G and
feF.

We extend this definition to the case when G is a profinite group. An object
of Permg is now a pair (F,p), with F a finite set and p : G — Perm(F) a
homomorphism such that the kernel is an open subgroup of G. Morphisms are
defined as above.

We want to recognize when a category is equivalent to Permg for some group
G. In order to do so, we have to investigate the structure of Permg. For two
finite G sets X1, X2 one can form the disjoint union X; [[ X», provided with
the obvious G-action. This is in fact the categorical sum of X; and Xo, which
means:

1. There are given morphisms a; : X; = X1 [[ X2 for i =1, 2.

2. For any pair of morphism b; : X; — Y, there is a unique morphism
c¢: X1 [[ X2 = Y such that b; =coa; fori =1,2.
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Let Fsets denote the category of the finite sets. There is an obvious functor
w : Permg — Fsets given by w((F,p)) = F. This functor is called a forgetful
functor since it forgets the G-action on F. An automorphism o of w is defined
by giving, for each element X of Permg, an element o(X) € Perm(w (X)) such
that: For every morphism f : X — Y one has (V) o w(f) = w(f) o o(X).
One says that the automorphism o respects [ if the action of o(X; [[ X2) on
w(X1 [ X2) = w(X1) [Jw(X>) is the sum of the actions of o(X;) on the sets
w(X;). The key to the characterization of G from the category Permg is the
following simple lemma.

Lemma C.5 Let Aut]—[(w) denote the group of the automorphisms of w which
respect |[. The natural map G — Autl—[(w) is an isomorphism of profinite
groups.

Proof. The definition of G’ := Autll(w) yields a map G' — [y Perm(X)
(the product taken over all isomorphism classes of objects X) which identifies
G' with a closed subgroup of [ Perm(X). Thus G’ is also a profinite group.
Fix any element g € G and consider o, defined by o4,(X)e = g¢ - e for every
object X and point e € X. Thus g — o, is a homomorphism from G to
G'. This homomorphism is clearly injective. We want to show that it is also
surjective. Consider o € G' and for every open normal subgroup N C G the
G-set Xy = G/N. There is an element gy € G such that o(Xny)N = gy N.
Multiplication on the right aN — aNg by an element g € G is a morphism of the
G-set Xy and commutes therefore with o(Xy). Then o(X)gN = o(X)Ng =
(c(X)N)g = gnNg = gngN. Thus o(Xy) coincides with the action of gy
on Xpy. For two open normal subgroups N; C N,, the map gN; — gN- is a
morphism Xy, — Xp,. It follows that gn, N2 = gn, V2. Thus o determines an
element in the projective limit lim. G /N, taken over all open normal subgroups
N of G. This projective limit is equal to G and so o determines an element
g € G. The action of o(X) and g coincide for all X of the form G/N with N
an open normal subgroup. The same holds then for X of the form G/H where
H is an open subgroup. Finally, every G-set is the disjoint union of orbits, each
orbit is isomorphic to some G/H with H an open subgroup. Since o respects
disjoint unions, i.e., ][, one finds that ¢(X) and g coincide for every G-set X.
O

The next step is to produce a set of requirements on a category C which will
imply that C is equivalent to Perm¢g for a suitable profinite group G. There
is, of course, no unique answer here. We will give the answer of [88], where a
Galois category C is defined by the following rules:

(G1) There is a final object 1, i.e., for every object X, the set Mor(X, 1) consists
of one element. Moreover all fibre products X; x x, X» exist.

(G2) Finite sums exist as well as the quotient of any object of C by a finite
group of automorphisms.
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(G3) Every morphism f : X — Y can be written as a composition X iy

Y' By with f1 a strict epimorphism and f; a monomorphism that is an
isomorphism onto a direct summand.

(G4) There exists a covariant functor w : C — Fsets (called the fibre functor)
that commutes with fibre products and transforms right units into right
units.

(G5) w commutes with finite direct sums, transforms strict epimorphisms to
strict epimorphisms and commutes with forming the quotient by a finite
group of automorphisms.

(G6) Let m be a morphism in C. Then m is an isomorphism if w(m) is bijective.

One easily checks that any category Permg and the forgetful functor w satisfy
the above rules.

One defines an automorphism o of w exactly the same way as in the case
of the category of G-sets and uses the same definition for the notion that o
preserves [ . As before, we denote by AutH(w) the group of the automorphisms
of w which respect [[. This definition allows us to identify G = Aut!!(w) with
a closed subgroup of [], Perm(w(X)) and so makes G into a profinite group.

Proposition C.6 Let C be a Galois category and let G denote the profinite
group Autu(w). Then C is equivalent to the category Permg.

Proof. We only sketch part of the rather long proof. For a complete proof we
refer to ([88], p. 119-126). By definition, G acts on each w(X). Thus we find
a functor 7 : C — Permg, which associates with each object the finite G-set
w(X). Now one has to prove two things:

(a) Mor(X,Y) — Mor(7(X),7(Y)) is a bijection.

(b) For every finite G-set F' there is an object X such that F is isomorphic to
the G-set w(X).

As an exercise we will show that the map in (a) is injective. Let two elements
f1, f= in the first set of (a) satisfy w(f1) = w(f2). Define g; : X - Z := X XY as
g := idx X f;. The fibre product X x z X is defined by the two morphisms g1, g>
and consider the morphism X xz X 7y x. By (G4), the functor w commutes
with the constructions and w(pr;) is an isomorphism since w(f1) = w(f2). From
(G6) it follows that pry is an isomorphism. This implies f; = fs. m|

Examples C.7 1. Let k be a field. Let kP denote a separable algebraic closure
of k. The category C will be the dual of the category of the finite dimensional
separable k-algebras. Thus the objects are the separable k-algebras of finite
dimension and a morphism R; — R is a k-algebra homomorphism Ry — R;.
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In this category the sum R [] Re of two k-algebras is the direct product Ry X Rs.
The fibre functor w associates with R the set of the maximal ideals of R®y k%¢P.
The profinite group G = Autu(w) is isomorphic to the Galois group of k*¢P /k.

2. Finite (topological) covers of a connected, locally simply connected, topo-
logical space X. The objects of this category are the finite topological covers
Y — X. A morphism m between two covers u; : Y; — X is a continuous map
m: Y, = Y, with us om = u;. Fix a point z € X. A fibre functor w is
then defined by: w associates with a finite cover f : Y — X the fibre f~!(z).
This category is isomorphic to Permg where G is the profinite completion of
the fundamental group 7 (X, z).

3. Etale covers of an algebraic variety [88].

C.2 Affine Group Schemes

In Section C.1, we studied categories of finte sets on which a finite group acts.
This led us naturally to profinte groups and we were able to characterize those
categories that are isomorphic to the category of finite sets on which a profinte
group acts. In the next section we wish to study categories of finite dimensional
representations of a linear algebraic group. In order to do this we will need to
consider groups that are inverse limits of linear algebraic groups. Although one
could proceed in an ad hoc manner working with such groups, the natural (and
usual) way to proceed is to introduce the notion of an affine group scheme. We
shall first define what is meant by this term and then show that affine group
schemes over a field k correspond to commutative Hopf algebras over k. In
addition, we shall show that in this case an affine group scheme is an inverse
limit of linear algebraic groups. In the application to differential Galois theory
(see Chapter 10), affine groups schemes arise naturally as representable functors.
We shall define this latter notion below and show how these objects can be used
to define affine group schemes.

In Section A.1.1, we defined an affine variety over a field k£ to be a pair X :=
(max(A), A) where A is a finitely generated k-algebra and max(X) is the set of
maximal ideals of A. As we have noted, the set max(A) is completely determined
by A and so seems superfluous. Nonetheless, it gives a more geometric way of
stating various ring theoretic properties. Key to this is the fact that a ring
homomorphism ¢ : B — A induces a map f : max(A) — max(B) where for any
m € max(A), f(m) = ¢~ (m). The fact that ¢~!(m) is maximal follows from
the Nullstellensatz and depends heavily on the fact that A is a finitely generated
k-algebra.

Example C.8 Let B be an integral domain that is not a field and let A be its
quotient field. Consider the inclusion ¢ : B < A. The ideal m = (0) is maximal
in A but f(m) is not maximal in B. m|
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If we take prime ideals instead of maximal ideals, the above does not occur; the
inverse image of a prime ideal is prime. Therefore, for arbitrary k-algebras, a
natural geometric object would be the set of prime ideals.

Definition C.9 Let k be a field and A be a commutative k-algebra.

1. The set of prime ideals of A is called the spectrum of A and is denoted by
Spec(A).

2. An affine scheme X over k is a pair X := (Spec(4), A).

Remark C.10 For any commutative ring A with 1, one can define Spec(A)
to be the set of prime ideals in A. Using this one can give the more general
definition of an affine scheme to be a pair (Spec(A4), A) (see [70, 94, 194] for this
as well as the missing details of the results sketched below). In what follows,
we will restrict ourselves to k-algebras A and affine schemes over k. This will
suffice for our purposes.

Examples C.11 Affine Schemes

1. If X = (max(A), A) is an affine variety, we can define the affine scheme
associated to X to be (Spec(A),A). If A = k[z,y], where k is algebraically
closed, then the elements of Spec(A) are (0), the maximal ideals (x — a,y — b)
for a,b € k and the ideals (p(z,y)), where p(z,y) is an irreducible polynomial
in k[z,y]. Geometrically, these correspond to the whole space k?, points and
irreducible curves.

2. If k C K are fields and K is not a finite algebraic extension of k, then
(Spec(K), K) is an affine scheme that does not correspond to an affine variety.

3. Let n be a positive integer and let A = k[z]/(z™ — 1). We define the affine
scheme p,, (k) = (Spec(A4), A). Note that if the characteristic of k is p # 0 and
n = pm, then A has nilpotent elements. O

In a similar way to affine varieties, one can define a topology on Spec(A)
called the Zariski topology . A subset S C Spec(A) is called (Zariski-)closed
if there are elements {f;}icr C A such that a prime ideal p € S if and only
if {fi}ier C p. For any subset {fi}icr C A, we define V({fi}icr) = {p €
Spec(A) | {fi}ier C p}. For any f € A, we define X; to be the open set
Spec(A) =V (f). The set of such open sets forms a basis for the Zariski topology.
We can furthermore define on Spec(A) a sheaf of rings, called the structure sheaf.
Since we shall not need this sheaf we only note that for any f € A, let A be the
localization of A at the multiplicative set {f"},k _N (see Example 1.5.1(d)) and
for an arbitrary open set U C Spec(A), O(U) is defined as a suitable inverse
limit of Ay for Xy C U.

A morphism of affine schemes defined over k ® : X = (Spec(4),4) —» Y =
(Spec(B), B) is a pair ® = (f, @) satisfying
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1. ¢ : B = Ais a k-algebra homomorphism.
2. f :Spec(A) — Spec(B) is induced by ¢ in the following manner:
for any prime ideal p of A, f(p) = ng_l(Q)

In particular, a morphism is determined by the homomorphism on the k-algebras.
One can characterize those maps of structure sheaves that come from morphisms
of schemes and we refer the reader to [70, 94, 194] for the details.

We define the product of affine schemes over k in a manner similar to prod-
ucts of affine varieties. Let X = (Spec(A), A) and Y = (Spec(B), B) be affine
schemes over k. The product of X and Y is the affine scheme X x, Y =
(Spec(A ® B), A ®, B).

Using morphisms and products, one can now define what is meant by an affine
group scheme over k. Recall (Definition A.33) that a linear algebraic group is a
reduced affine variety G together with morphisms m : GXG —- G andi : G — G
and a point e of G such that the set G is a group with respect to m, e is the
identity and 4 is the map taking an element to its inverse. All of these state-
ments can be reworded in terms of morphisms. For example, selecting a point
e is the same as designating a morphism of affine varieties (maz(k), k) — G.
Associativity can be expressed by saying that the maps

GxGxG=GxG)xG™"4axa 3 a

and '
GxGxG=Gx(GxG) "S"GxG3 G

coincide. The other axioms can be similarly stated and are found in the defini-
tion below.

Definition C.12 Let G = (Spec(A), A) be an affine scheme over k. We say
that G is an affine group scheme over k if there exist morphisms m : X x X —
X,i1:X — X and e : (Spec(k),k) — X, such that the following diagrams
commute.

GXkGXkG m&c GXkG

Associative ideml lm (C.1)
G x G w G
G Y GxG
Unit ide Xpl \ide m (C.2)
Gxy G m G
¢ % GxG
Inverse ide le NP lm (C.3)
Gx,G G
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where p : G — G is defined by p = eok and k : G — (Spec(k), k) is the
morphism induced by the algebra inclusion k — A.

As we have noted, morphisms of affine schemes over k are determined by
k-homomorphisms of the associatred rings. Therefore the morphisms m,i,e
defining an affine group scheme G = (Spec(A), A) over k are determined by
k-algebra homomorphisms A : A - A®, A, 1: A — A, e : A — k satisfying
conditions dual to (C.1), (C.2), and (C.3). These conditions are used to define
a commutative Hopf algebra.

Definition C.13 A commutative Hopf algebra is a k-algebra A equipped with
k-algebra homomorphisms A : A — A ® A (the comultiplication), 1 : A — A
(the antipode or coinverse) and € : A — k (the counit) making the following
diagrams commute:

A AR A Aida A A
Coassociative idAxAT A (C4)
AL A

*XidA

A PESA Axi A

Counit idAXp*T R ida TA (C.5)
AorA A A
A E 4w A
Coinverse idAxJ " TA (C.6)
AoyA A A

where p* : A = A is defined by p* = e oincl and incl is the inclusion k — A.

When specifying an affine groups scheme G = (Spec(A), A) over k, it will
suffice to give the commultiplication, coinverse and counit on the ring.

Examples C.14 Affine Group Schemes

1. Let A = k[z1, 22, ...] be the polynomial ring in an infinite number of indeter-
minates z;. Let A(x;) = 2; @ 14+ 1® x4, o(x;) = —x; and e(x;) = 0. This defines
an affine group scheme. Note that A is the direct limit of finitely generated
Hopf algebras A,, = k[z1,...,z,] and that each of these is the coordinate ring
of a linear algebraic group G”. Therefore the affine group scheme (Spec(A4), A)
is the inverse limit of affine group schemes coming from linear algebraic groups.
We shall show below that this is the case in general.

2. Let A = k[z]/(2™ — 1) and let u, (k) = (Spec(A4), A). The homomorphisms
defined by A(z) =z ® =z, 1(xr) = 2" ! and e(x) = 1 define a commutative Hopf
algebra. Note that when the characteristic of k is p # 0 and n = p, A is not
reduced. This is a phenomenon that can only happen in nonzero characteristic
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since a result of Cartier ([227], Ch. 11.4) implies that in characteristic zero, a
commutative Hopf algebra over k has no nilpotent elements. O

We will define properties of affine group schemes in terms of the associated
ring A. An important concept for linear algebraic groups is that of a repre-
sentation (Definition A.42). We give the analogous definition for affine group
schemes here.

Definition C.15 A pair (V,7) is called a representation of G = (Spec(A4), A)
(also called a G-module) is k-vector space V and a k-linear map 7 :V — AV
such that

(i) T:V > A®, V is k-linear.
(i) (e®id)oT:V 5> ARV - k®V =V is the identity.
(i5i) The maps (A ®idy)oT and (ida ® A)oT fromV to AQ A®V coincide.

A morphism f : (Vi,71) = (V2,72) between representations is a k-linear map
satisfying o0 f = foTy.

In Exercise A.43, one shows that if G is a linear algebraic group and V is
finite dimensional, this definition is equivalent to giving a group homomorphism
p: G — GL(V). The set Mor((V1,p1), (Vz2,p2)) of all homomorphisms between
two representations is a vector space over k. The trivial representation, i.e.,
a one-dimensional vector space over k on which all elements of G act as the
identity, is denoted by 1.

Definition C.16 The category of all finite dimensional representations of G is
denoted by Reprg.

Although the definition of affine group scheme does not require that the
ring A be finitely generated, we will see below that this ring is the direct limit
of coordinate rings of linear algebraic groups. One could then define an affine
group scheme to be the projective limit of linear algebraic groups. The theory of
Galois categories forces us to consider projective limits of finite groups and in a
similar way, the theory of Tannakian categories forces us to consider projective
limits of linear algebraic groups.

Lemma C.17 Let 7 : V — A®V be any representation of G and let S C
V' be a finite set. Then there exists a finite dimensional W C V with S C
W and 7(W) C A® W. In particular, V is the union of finite dimensional
representations.

Proof. Choose a basis {a;} of A over k and for each v € S, let 7(v) = > a;Qv;
where all but finitely many v; are zero. Let W be the subspace of V' generated
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by v and all v;. We may write A(a;) = ) 0;j,ka; ® ar. We then have that
Yo1(v) ®@a; = (T ®id)T(v;) = ((d ® A)T(v) = > v; ® 6;,5,,0; @ ap. Comparing
coefficients of the ay we have that 7(v;) = v; ® d; j ra;. Therfore each v € S
lies in a finite dimensional representation (W, 7) and the same is true for S. O

Corollary C.18 Let G = (Spec(A), A) be a group scheme over k. Then A is
the union of finitely generated subalgebras B which are invariant under A, e and
t. Each such B defines a linear algebraic group Gp over k. Furthermore G is
the projective limit of the Gp.

Proof. The map A : A - A ® A makes A into a representation of G. Let
S C A be a finite set and let V' C A be the finite dimensional vector space of
Lemma C.17 with S C V and A(V) C A® V. Take a basis {v;} of V and define
elements a; j € A by A(v;) = > a;j®v;. Then B := k[v;, a; 5, 1(v;),t(a; ;)] C A
can be seen to be invariant under A and ¢. Thus B defines a linear algebraic
group Gp. Now A is the direct limit of subalgebras B, finitely generated over
k and invariant under A, e and &. |

We now turn to the issue of the “points” of an affine group scheme. In
general, an affine group scheme over a general field k (or even a linear algebraic
group over k) is not determined by its group of k-rational points H (k). We now
define an object which is equivalent to a group scheme.

Let G be an affine group scheme over k. One associates to G a functor, called
F@G, from the category of the k-algebras to the category of groups (as usual, by
a k-algebra we will mean a commutative algebra over k having a unit element).
For a k-algebra R we put FG(R) = G(R) the set of k-algebra homomorphisms

A — R. For two elements ¢,1 € G(R) one defines the product ¢ - ¢ as the

k-algebra homomorphism A 3 ® A SR ®R pred R, where the last map is

just the product in R, i.e., prod(r; ® ro) = r1r2. One can show that the obvious
map from Mor(G1,Gs), the set of morphisms of affine group schemes over k&, to
Mor(FG,, FG5), the set of morphisms between the two functors FG; and F G,
is a bijection.

The functors from the category of k-algebras to the category of groups that
are of the form F'G are of a rather special form. They are what is known as

representable. To define this we need the notion of a morphism of functors, c.f.
[130], Ch. I, §11.

Definition C.19 A functor F from the category of k-algebras to the category of
sets is representable if there exists a k-algebra A and, for every k-algebra R, a
bijection ag : Homy (A, R) — F(R) such that for any k-algebra homomorphism
h: Ry — Rs one has F(h)(agr,(f)) = agr,(ho f) for all f € Homy(A, Ry).

Another way of stating this definition is that the functors R — F(R) and
R +— Homg(A, R) are isomorphic (or naturally equivalent). Given a repre-
sentable functor F' from the category of k-algebras to the category of groups,
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we claim that the k-algebra A has a naturally defined comultiplication, counit
and antipode. To prove this claim one needs the Yoneda Lemma: Let E and
F be set valued functors represented by k-algebras A and B. Then morphisms
E — F correspond to k-algebra homomorphisms B — A. For example, to
define the comultiplication on A one notes that A ® A represents the functor
FxF:Rw~ F(R)x F(R). The multiplication map on groups H x H — H
defines a morphism from F x F' to F' and so, by the Yoneda Lemma gives a
k-algebra homomorphism A : A -+ A® A. For further details, see [227], Ch. 1.3,
1.4. One sees furthermore that for an affine group scheme G, F'G is isomorphic
to the functor represented by A.

Examples C.20 Representable functors

1. Let H be an abelian group, written additively. We associate with H the
functor defined by F(R) = Hom(H, R*) where R* = the group of units of R.
The group algebra of H over k can be written as A = @®pegkt, where the
multiplication is given by to = 1 and tp, - th, = th,+h,. The functor F is
clearly represented by A. Thus A must be an affine group scheme. In particular
A: A — A® A must exist. One easily shows that the formula for A must
be A(ty) = tp, ® tp, for all h € H. For the group H = Z one observes that
A = k[t1,t7'] and G = Gy, . If H is the cyclic group of order n, then the
corresponding G is equal to u,, = (Spec(k[T]/(T™ — 1)), k[T]/(T™ — 1)). In
general, for a finitely generated H the group A is the coordinate ring of a
commutative linear algebraic group and moreover an extension of a torus by
a finite group. For H = Q, or more generally a vector space over Q, the
affine group scheme G is rather large and no longer a linear algebraic group.
In the classification of differential modules over C((z)) an affine group scheme
occurs, namely the exponential torus. We recall that one considers a complex
vector space Q = Upy>12~/™C[z~/™]. The complex valued points of the
exponential torus were defined as Hom(Q, C*). Let G be the affine group scheme
corresponding to Q, then the above group is G(C).

2. Let H be any group. Let C denote the category of the representations of
H on finite dimensional vector spaces over k. We will see in the sequel that C is
a “neutral Tannakian category over k”, which means that C is in a natural way
equivalent to Repry for some affine group scheme G. In other terms, this affine
group scheme has the same set of “algebraic” representations as the ordinary
representations of H on finite dimensional k-vector spaces. The group H can
be seen as a sort of “algebraic hull” of H. Even for a simple group like Z
this algebraic hull is rather large and difficult to describe. Again this situation
occurs naturally in the classification of differential equations over, say, C(z) (see
Chapters 10 and 11). m|
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C.3 Tannakian Categories

One wants to recognize when a category is equivalent to Repr, for some affine
group scheme G over k. We start by recovering G from the category Repr.
We will now formulate and prove Tannaka’s Theorem. In [211], Theorem 2.5.3,
this theorem is formulated and proved for a linear algebraic group over an
algebraically closed field. We will give an exposition of the general situation.

The main ingredients are the tensor product and the fibre functor w : Repry —
Vecty. The last category is that of the finite dimensional vector spaces over k.
The functor w is again the forgetful functor that associates to the representation
(V, p) the finite dimensional k-vector space V' (and forgets p). In analogy with
Galois categories, we will show that we can recover an affine group scheme
from the group of automorphisms of the fibre functor (with respect to tensor
products). If we naively follow this analogy, we would define an automorphism
of w to be a functorial choice o(X) € GL(w(X)) for each object X € Repr such
that o(X; ® X2) = 0(X;1) ® 0(X2). This approach is a little too naive. Instead
we will define G’ := Aut®(w) to be a functor from the category of k-algebras
to the category of groups and then show that this functor is isomorphic to the
functor FG.

Let R be a k-algebra. An element o of G'(R) is given by a collection of elements
{o(X)}x, where X runs over the collection of all objects in Repr. Each o(X)
is an R-linear automorphism of R ®; w(X) such that the following hold:

(i) o(1) is the identity on R ® w(1) = R.

(ii) For every morphism f : X — Y one has an R-linear map idg ® w(f) :
Row(X) = R®w(Y). Then (idgp @ w(f))oo(X) =0(Y) o (idg @ w(f)).

(iii) The R-linear automorphism o(X ® Y) on RQw(X ®Y) = R®; w(X) ®,
wV) = (R w(X))®r (R®w(Y)) is obtained as the tensor product of
the two R-linear maps o(X) and o(Y).

It is easy to see that G'(R) is a group and that R — G'(R) is a functor from
k-algebras to groups.

Theorem C.21 (Tannaka’s Theorem) Let G be an affine group scheme over k
and let w : Repry — Vecty be the forgetful functor. There is an isomorphism
of functors FG — Aut®(w).

Proof. We write, as above, G' for the functor Aut®(w). First we have to
define, for any k-algebra R, a map £ € G(R) — o¢ € G'(R). The element ¢ is
a k-homomorphism A — R. Let X = (V,7) be a representation of G. Then
one defines o¢(X) as the extension to an R-linear map R®V — R® V of the

k-linearmap V 5 A®V SRy R®YV. The verification that this definition leads
to a morphism of functors FG — G’ is straightforward. We have to show that
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FG(R) — G'(R) is bijective for every R.

Take some element o € G'(R). Let (V, ) be any G-module. Lemma C.17 writes
V' as the union of finite dimensional subspaces W with 7(W) C A ® W. The
R-linear automorphism o(W) of RQW glue to an R-linear automorphism o (V)
of R® V. Thus we have extended o to the wider category of all G-modules.
This extension has again the properties (i), (ii) and (iii). Now consider the
G-module (A,7) with 7 = A. We want to find an element £ € G(R), i.e., a
k-algebra homomorphism & : A — R, such that ¢ = o¢. The restriction of

0¢(A,7) to A C R® A was defined by A A A0 A R A If we follow

this map with R® A ‘RO R @ k = R then the result is & : A — R. Since we

require that o¢ (A, 7) = 0(A, ) the k-algebra homomorphism

ACROA S Re A" Rok=R

must be chosen as . In order to see that o = o one may replace o by o¢ lg

A
and prove that the latter is 1. In other words, we may suppose that R® A a(—ﬁT)

R A"  Rok = Ris equal to R® A "2 R k = R and we have to prove
that o = 1.

One also has to consider the G-module (A ® A, p) with 4 = A ® ids. Let
{a;} be a k-basis of A, then the G-module (A ® A, ) is the direct sum of the
G-modules A ® a;. Each of those modules is isomorphic to (A, 7) and therefore
c(A® A p)=0c(A,7) ®ida.

The law for the comultiplication shows that A : A - A ® A is a morphism
between the G-modules (A4,7) and (A ® A, p). Now we must relate the various
arrows in the following diagrams to the morphisms they represent.

R® A 747 R® A

i -

RodnAd 5" Reaga M5 pe 4

Let us write Ag : R® A - R® A® A for the R-linear extension of A. The
two “downarrows” in the diagram are Ag. The diagram is commutative since
A: (A7) = (A® A, p) is a morphism of G-modules.

We want to show that the upper path from R® A, in the upper left hand corner,
to R® A, in the lower right hand corner, produces the map o(A,7) and that
the lower path produces the identity on R ® A. This would prove o(A4, 1) = id.

The rule A 3 A® A 44 4 = id, for affine group scheme A implies that
(idp ® € ® ida) o Ag is the identity on R ® A. This proves the statement on

the first path. We recall that our assumption on o is R ® A J(ﬁiT) R A e
R®k = R is equal to the map idg ® €. Further 0(A ® A,u) = 0(A,7) ® ida.
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The composition of the two arrows in the lower row is therefore idg ® € ® idy4.

Therule A 3 A® A 944 A = id, implies now that the other path yields the
identity map on R ® A.

We conclude that o(A, 7) = id. Consider a G-module (V, u) of some dimension
d < oo. We have to show that o(V,u) = id. Consider any k-linear map

u:V — k and the composed map ¢ : V 55 AoV MAPY 4 @k = A. One
easily verifies that ¢ is a morphism between the G-modules (V, ) and (A, ).
By taking a basis of d elements of the dual of V', one obtaines an embedding of
the G-module (V, u) in the G-module (A,7) @ --- @ (A, 7). From o(A,7) = id
one concludes that o(V, u) = id. Thus o = 1. This shows that the functor gives
a bijection FG(R) — G'(R) O

The next step is to consider a category C with a “fibre functor” w : C — Vecty,
and to produce a reasonable set of properties of C and w which ensure that C
is equivalent to Repr, for a suitable affine group scheme G over k. In this
equivalence we require that w is compatible with the forgetful functor Repry —
Vecty. In particular, the G in this statement must be the affine group scheme
over k which represents the functor Aut®(w) from the category of the k-algebras
to the category of groups. This leads to the following definition, copied from
[63], Definition 2.19, of a neutral Tannakian category C over k:

(1) The category C has a tensor product, i.e., for every pair of objects X,Y a
new object X ®Y . The tensor product X ®Y depends functorially on both
X and Y. The tensor product is associative and commutative and there
is a unit object, denoted by 1. The latter means that X ® 1 is isomorphic
to X for every object X. In the above statements one has to keep track
of the isomorphisms, everything must be functorial and one requires a lot
of commutative diagrams in order to avoid “fake tensor products”.

(2) C has internal Hom’s. This means the following. Let X,Y denote two ob-
jects of C. The internal Hom, denoted by Hom(X,Y"), is a new object such
that the two functors 7' — Hom(T' ® X,Y) and T — Hom(T,Hom(X,Y))
are isomorphic. Let us denote Hom(X,1) by X*. One requires that
the canonical morphism X — (X*)* is an isomorphism. Moreover one
requires that the canonical morphism Hom(X;,Y;) ® Hom(Xs,Ys) —
Hom(X; ® X5,V ®Y3) is an isomorphism.

(3) Cisan abelian category (c.f., [130], Ch.IIL,§3). We do not want to recall the
definition of an abelian category but note that the statement is equivalent
to: C is isomorphic to a category of left modules over some ring A which
is closed under taking kernels, cokernels and finite direct sums.

(4) An isomorphism between End(1) and k is given.

(5) There is a fibre functor w : C — Vecty, which means that w is k-linear,
faithful, exact and commutes with tensor products. We note that (3) and
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(4) imply that each Hom(X,Y) is a vector space over k. The k-linearity
of w means that the map Hom(X,Y) — Hom(w(X),w(Y)) is k-linear.
Faithful is defined by: w(X) = 0 implies X = 0. Exact means that w
transforms exact sequences into exact sequences.

Remark C.22 One sees that Repry, is a neutral Tannakian category. The
definition of a Tannakian category is a little weaker than that of a neutral
Tannakian category. The fibre functor in (5) is replaced by a fibre functor
C — Vectg where (say) K is a field extension of k. The problem studied
by Saavedra and finally solved by Deligne in [62] was to find a classification of
Tannakian categories analogous to Theorem C.23 below. We note that the above
condition (2) seems to be replaced in [62] be an apparently weaker condition,
namely the existence of a functor X — X* having suitable properties.

Theorem C.23 A neutral Tannakian category C over k with fibre functor w :

C — Vecty, is canonically isomorphic to Repr, where G represents the functor
Aut®(w).

Proof. We will only explain the beginning of the proof. We write GG for the
functor Aut®(w). Our first concern is to show that G is an affine group scheme.
Let {X;}ier denote the collection of all (isomorphism classes of) objects of C.
We give I some total order. For each X; the functor R — GLg(R ® w(Xj;))
is the functor associated with the linear algebraic group GL(w(X;)). Let us
write B; for the affine algebra of GL(w(X;)). For any finite subset F' = {i; <
-+ <in} C I one considers the functor R — H?Zl GLg(R ® w(X;;)) which is
associated with the linear algebraic group H?zl GL(w(X;,;)). The affine algebra
Bp of this group is B;, ® - -+ ® B;, . For inclusions of finite subsets F; C F5 of
one has obvious inclusions of k-algebras Bp, C Br,. We define B as the direct
limit of the B, where F' runs over the collection of the finite subsets of I. It is
rather obvious that B defines an affine group scheme H over k and that H(R) =
[[;c; GLr(R®w(X;)) for every k-algebras R. By definition, G(R) is a subgroup
of the group H(R). This subgroup is defined by a relation for each morphism f :
X; = X, and by a relation for each isomorphism X; ® X; = X;,. Each condition
imposed on 0 = {0(X;)}ier € G(R) can be written as a set of polynomial
equations with coefficients in k for the entries of the matrices o(X;) (w.r.t. k-
bases for the spaces w(X;)). The totality of all those equations generates an
ideal J C B. Put A := B/.J then G(R) = Hom(A4, R) C Hom(B, R). In other
words, G is the affine group scheme associated with A. For a fixed object X of C
and each k-algebra R one has (by construction) an action of G(R) on RQw(X).
This makes each w(X) into a G-module. The assignment X +— w(X) with its
G-action, is easily seen to define a functor 7 : C — Repry. The latter should be
the equivalence between the two categories. One has to prove:

(a) Hom(X,Y) — Homg(w(X),w(Y)) is a bijection.

(b) For every G-module V of finite dimension over k, there is an object X
such that the G-module w(X) is isomorphic to V.
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The injectivity in (a) follows at once from w being exact and faithful. We will
not go into the technical details of the remaining part of the proof. Complete
proofs are in [63] and [62]. Another sketch of the proof can be found in [38], pp.
344-348. O

Example C.24 Differential modules.

K denotes a differential field with a field of constants C. Let Diff ¢ denote the
category of the differential modules over K. It is evident that this category has
all the properties of a neutral Tannakian category over C' with the possible ex-
ception of a fibre functor w : Diff x — Vectc. There is however a “fibre functor”
7 : Diff x — Vectg which is the forgetful functor and associates to a differen-
tial module (M, 0) the K-vector space M. In the case that C is algebraically
closed and has characteristic 0, this suffices to show that a fibre functor with
values in Vecte exists. This is proved in the work of Deligne [62]. The proof
is remarkably complicated. From the existence of this fibre functor Deligne is
able to deduce the Picard-Vessiot theory.

On the other hand, if one assumes the Picard-Vessiot theory, then one can build
a universal Picard-Vessiot extension UnivF D K, which is obtained as the di-
rect limit of the Picard-Vessiot extensions of all differential modules (M, 9) over
K. Let G denote the group of the differential automorphisms of UnivF/K.
By restricting the action of G to ordinary Picard-Vessiot fields L with K C
L C UnivF, one finds that G is the projective limit of linear algebraic groups
over C. In other words, GG is an affine group scheme over C. The equiva-
lence Diffx — Repry is made explicit by associating to a differential mod-
ule (M, 0) over K the finite dimensional C-vector space ker(9, UnivF @ M)
equipped with the induced action of GG. Indeed, G acts on UnivF and therefore
on UnivF ® M. This action commutes with the @ on UnivF @ M and thus G
acts on ker(0, UnivF ® i M). For a general differential field K, this equivalence
is useful for understanding the structure of differential modules and the relation
with the solution spaces of such modules. In a few cases the universal Picard-
Vessiot field UnivF and the group G are known explicitely. An important case
is the differential field K = C((z)) with differentiation 4. See Section 10 for a
discussion of this and other fields.

Example C.25 Connections.

1. Let X be a connected Riemann surface. A connection (M,V) on X is a
vector bundle M on X provided with a morphism V : M — Qx ® M having
the usual properties (see Section 6.2). Let Conny denote the category of all
connections on X. Choose a point x € X with local parameter ¢. Define
the functor w : Connx — Vectc by w(M,V) = M,/tM,. The only non-
trivial part of the verification that C is a neutral Tannakian category over C, is
showing that C is an abelian category. We note that in the category of all vector
bundles on X cokernels need not exist. However for a morphism f : (M,V;) —
(N,V2) of connections, the image f(M) C N is locally a direct summand,
due to the regularity of the connection. Connx is equivalent with Repr, for
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a suitable affine group scheme G over C. Let 7 denote the fundamental group
m(X,z) and let C denoted the category of the representations of « on finite
dimensional complex vector spaces. As in Sections 5.3 and 6.4, the weak form
of the Riemann-Hilbert theorem is valid. This theorem can be formulated as:

The monodromy representation induces an equivalence of categories M :
Connxy — C.

The conclusion is that the affine group scheme G is the “algebraic hull” of
the group 7, as defined in example C.20.

2. Let X be again a connected Riemann surface and let S be a finite subset of
X. A regular singular connection (M, V) for (X, S) consists of a vector bundle
and a connection V : M — Qx(S) ® M with the usual rules (see Definition 6.8).
wx (S) is the sheaf of differential forms with poles at S of order < 1. If S is
not empty, then the category of the regular singular connections is not abelian
since cokernels do not always exist.

3. C denotes an algebraically closed field of characteristic 0. Let X be an
irreducible, smooth curve over C'. The category AlgConn x of all connections on
X is again a neutral Tannakian category over C. In general (even if C is the field
of complex numbers), it seems that there is no description of the corresponding
affine group scheme. The first explicit example C = C and X = Pg \ {0} is
rather interesting. We will discuss the results in this special case.

Let K denote the differential field C({z}). One defines a functor o : AlgConny —
Diff g by (M,V) = K ®c.-11 H°(X, M). It is rather clear that « is a morphism
of neutral Tannakian categories. We start by proving that Hom(M;y, M) —
Hom(a(M),a(Ms)) is bijective. It suffices (use internal Hom) to prove this
for M; = 1 and M, = M is any object. One can identify Hom(1, M) with
ker(D,H°(X, M)) and Hom(1,a(M)) with ker(D, K ® H°(X, M)). The injec-
tivity of the map under consideration is clear. Let f € ker(D, K ® H°(X, M)).
Then f is a meromorphic solution of the differential equation in some neigh-
bourhood of 0. This solution has a well defined extension to a meromorphic
solution F on all of Pg, since the differential equation is regular outside 0 and
X is simply connected. Thus F' is a rational solution with at most a singularity
at 0. Therefore F' € ker(D, H°(X, M)) and has image f.

The next question is whether each object of Diff ¢ is isomorphic to some
a(M). Apparently this is not the case since the topological monodromy of
any «(M) is trivial. This is the only constraint. Indeed, suppose that N is
a differential module over K which has trivial topological monodromy. We
apply Birkhoff’s method (see Lemma 11.1). N extends to a connection on
{z € C| |z| < €} for some positive epsilon and with a singularity at z = 0.
The restriction of the connection is trivial on {z € C| 0 < |z| < €}, since the
topological monodromy is trivial. This trivial connection extends to a trivial
connection on {z € P| 0 < |z]}. By gluing we find a complex analytic con-
nection, with a singularity at z = 0, on all of P&. By GAGA this produces an
“algebraic” connection on Pg. The restriction (M, V) of the latter to X satis-
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fies a(M,V) = N. Summarizing, we have shown that AlgConny is equivalent
to the full subcategory of Diff ¢ whose objects are the differential modules with
trivial topological monodromy.

The work of J.-P. Ramis on the differential Galois theory for differential mod-
ules over K = C({z}) can be interpreted as a description of the affine group
scheme G corresponding to the neutral Tannakian category Diff . This is fully
discussed in Section 11.6. The topological monodromy can be interpreted as
an element of G (or better G(C)). The affine group scheme corresponding to
AlgConny is the quotient of G by the closed normal subgroup generated by the
topological monodromy.



Appendix D

Partial Differential
Equations

The Picard-Vessiot theory of ordinary linear differential equations generalizes
to certain systems of linear partial differential equations. In the first section of
this appendix we characterize these systems in terms of k[0, ..., d,]-modules,
systems of homogeneous linear differential polynomials, integrable systems of
matrix equations and integrable connections. In the succeeding two sections we
discuss to what extend the algebraic and analytic theory described in this book
generalize to systems of linear partial differential equations.

D.1 The Ring of Partial Differential Operators

A A-ring R is a commutative ring with unit equipped with a set A = {94,...,0,}
of commuting derivations. A A-ideal I C R is an ideal of R such that &;I C I
foralli =1,...,7. A A-field k is a field which is a A-ring. If R is a A-ring,
the set {¢c € R | 0;(¢) =0for all i =1,...,r} is called the constants of R. This
can be seen to be a ring and, if R is a field, then this set will be a field as well.
Throughout this chapter we will assume that for any A-ring, Q C R and that
its ring of constants is an algebraically closed field.

Examples D.1 A-fields

1. Let C be an algebraically closed field and ¢4, .. .,t, indeterminates. The field
C(t1,...,t,) with derivations 8;,i = 1,...,r defined by 9;(c) =0 for all ¢ € C
and 0;(t;) = 1if ¢ = j and 0 otherwise is a A-field.

2. The fraction field C'((t1, . .., t,)) of the ring of formal power series C[[t1, ..., t,]]
is a A-field with the derivations defined as above.

369
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3. For C = C, the complex numbers, the fraction field C({t,...,t.}) of the
ring of convergent power series C{{t1,...,¢.}} with A defined as above is again
a A-field. ad

Definition D.2 Let k be a A-field. The ring of (partial) differential operators
k[O, ..., 0r] with coefficients in k is the noncommutative polynomial ring in the
variables 0; where the 0; satisfy 0;0; = 0;0; for all i,j and 0;a = ad; + 0i(a)
for all a € k.

When r = 1, we shall refer to this ring as the ring of ordinary differential
operators and this is precisely the ring studied in Chapter 2. In the ordinary
case, any left ideal in this ring is generated by a single element. This is no
longer true for k[0y,...,0,] when r > 1. For example, the left ideal generated
by 01,02 in k[01,0>] cannot be generated by a single element.

As in the ordinary case, it is natural to study modules for the ring k[0, ..., 0,].

Definition D.3 A k[0, ...,0,]-module M is a finite dimensional k-vector space
that is a left module for the ring k[0, ..., 0.

In the ordinary case, if I C k[3], I # (0), then the quotient k[0]/I is finite
dimensional k-vector space. This is not necessarily true in the partial case.
For example the left ideal generated by &y in k[d;,02] does not give a finite
dimensional quotient. We therefore define

Definition D.4 The rank of a left ideal I C k[O4,...,0r] is the dimension of
the k-vector space k[O1,...,0;]/1. We say that the ideal I is zero-dimensional
if its rank is finite.

The following is an analogue of Propiosition 2.18 which allows us to deduce the
equivalence of k[0, . . ., 0,]-modules and zero dimensionla left ideals of [0y, . . ., 0;].

Lemma D.5 Ifk is a A-field containing a nonconstant, then for any k[0, ..., 0,]-
module M there is a zero-dimensional left ideal I C k[b,...,0;] such that
M ~E[0y,...,0.]/I as k[0, ..., 0Op]-modules.

Proof. We may assume that k& contains an element z such that 0;(z) # 0.
Let e1,...,e, be a k-basis of M. The proofs of Lemmas 2.21 or 2.22 show
that there exist elements vy,...,v, € k such that the elements w = vie; +
oot vpen, 01 (w), ..., 00t (w) are linearly independent over k. Therefore the
map ¢ : k[O1,...,0,] = M defined by ¢ : 1 — w is a surjective k[0, ..., 0]
homomorphism. This implies that k[0, ..., 0,]/ ker ¢ and M are isomorphic as
k[0, ..., 0r]-modules. O

Remarks D.6 1. Given a finite set of elements Li,...,Ls € k[0,...,0,],
Grobner bases techniques allow one to decide if the left ideal I C k[0, ..., 0]
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generated by these elements has finite rank and, if so, to calculate this rank (see
[51], [52], [185]).

2. Given a A-field k, one can form the ring of differential polynomials
kE{y1,...,yn} in n variables over k as follows. Let ® be the free commutative
multiplicative semigroup generated by the elements of A and let
{Gyi}0€®7ie{17___7n} be a set of indeterminates. One defines k{y1,...,yn} to
be the ring k[ﬂyi]%@’ie{lywn}. This ring has a structure of a A-ring defined
by 0;(fy;) = 0;0y;. We denote the set of homogeneous linear elements of
E{y1,...,yn} by k{y1,...,yn}1. Kolchin defines ([122], Ch. IV.5) a A-ideal
I to be linear if I is generated (as a A-ideal) by a set A C k{y1,...,yn}t1. He
further shows that if this is the case then

INk{ys,...,yn}t1 = the k-span of {6L}, @ ;cp - (D.1)

The codimension of I N k{y1,...,yn}1 in k{y1,...,yn}1 is called the linear
dimension of I (which need not be finite). Let U/ be a univeral field over k with
constants C, that is a A-field that contains a copy of every finitely generated
differential extension field of k. Kolchin shows ([122], Ch. IV.5, Corollary 1) that
the mapping that sends any finite dimensional C-subspace V of U™ to the A-ideal
I(V) of elements of k{y1,...,yn} that vanish on V is a bijective mapping onto
the set of linear A-ideals of finite linear dimension. Furthermore if dim¢ V =m
then I(V) has linear dimension m. Therefore one can say that the linear A-
ideals of finite linear dimension correspond to systems of homogeneous linear
partial differential equations whose solution spaces are finite dimensional.

Let us now consider the case of n = 1, that is the A-ring k{y}. The map
6 — By induces a k-linear bijection ¢ between k[0;,...,0,] and k{y},. If I is
a left ideal of k[0, ..., 0,], then ¢ (I) will generate a linear A-ideal J in k{y}.
Equation D.1 implies that this yields a bijection between the sets of such ideals.
Furthermore, I has finite rank m if and only if .J has finite linear dimension m.
Therefore, the left ideals I in k[0, ..., 0y] of finite rank correspond to systems
of homogeneous linear differential equations in one indeterminate having finite
dimensional solution spaces in U.

3. One can also study the ring of differential operators with coefficients in a ring.
For example, the ring D = C[z1,. .., 2,01, ...,0;] where z;2; = z;2; and 0;0; =
0;0; for all i, j, and O;z; = x;d; if ¢ # j and O;x; = x;0; + 1 is refered to as the
Weyl algebra and leads to the study of D-modules. We refer to [30] and[56] and
the references therein for an exposition of this subject as well as [51], [52], [142],
and [185] for additional information concerning questions of effectivity. Given a
left ideal J in D, one can consider the ideal I = Jk[01,...,0;]. The holonomic
rank of J (see the above references for a definition of this quantity) is the same
as the rank of I (see Chapter 1.4 of [185]).

We now make the connection between k[0, ..., d,]-modules and systems of
equations of the form
8iU:AiU, i:1,...,r (DQ)
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where u € k™ and each A; is an m x m matrix with entries in k.

Let M be a k[0y,...,0,]-module and let ey, ..., e, be a k-basis of M. For each
£=1,...r, may write

846,» = —Za]"“{ej' (D3)
J

where Ay = (a;,;,¢) is an m x m matrix with entries in k. If u = ) use; € M,
then Ogu = 3, (9e(us) — 32 aijeuj)e; (note that Ou denotes the action of 0
on M while 9;(u) denotes the application of the derivation to an element of the
field). Therefore, once a basis of M has been selected and the identification
M =~ k™ has been made, we have that the action of 0; on k™ is given by
u > 0;(u) — A;u, where 0;(u) denotes the vector obtained by applying 0; to each
entry of . In particular, for u € k", u is mapped to zero by the action of 9; if and
only if u satisfies 9;(u) = A;u. Since M is a k[Dy, . .., Or]-module, the actions of
0; and 0; commute for any ¢,j and so (9; — A;)(0; — Aj) = (05 — 4;)(0; — 4;).
Since

(81 — AZ)(aj — A]) = 818] — 81(14]) — AJ& — Alaj + AiAj,
we have
6Z(A]) + AlA] = 8](141) + A]Al for all ¢,7. (D4)

These latter equations are called the integrability conditions for the operators
0; — A;.

Definition D.7 Fori =1,...,r, let A; be an m X m matriz with coefficients
in k. We say that the system of linear equations {O;u = A;u} is an integrable
system if any pair of matrices A;, A; satisfy the integrability conditions (D.4).

We have shown in the discussion preceding the above definition that selecting
a k-basis for a k[01,. .., 0,]-module leads to an integrable system. Conversely,
given an integrable system, one can define a k[0, ..., d,]-module structure on
k™ via Equations (D.3), where the e; are the standard basis of k™. The inte-
grability conditions insure that the actions of any 0; and d; commute.

We end this section with a description of the terminology of integrable connec-
tions. In the ordinary case, we have encountered this in Section 6.1 and this
setting most readily generalizes to give a coordinate-free way of discussing linear
differential equations on manifolds.

In Section 6.1 we defined a universal differential but noted that for many appli-
cations this object is too large and restricted ourselves to smaller modules. All
of these fit into the following definition:

Definition D.8 Let C' C k be fields of characteristic zero with C algebraically
closed. A special differential (M,d) is a k-vector space M together with a map
d:k — M such that
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1. M is generated by d(k).
The map d is C-linear and d(fg) = fd(g) + gd(f) for all f,g € k.
The kernel of d is C.

R

For any two k-linear l1,ly : M — k there is a k-linear l3 : M — k such
that [l1d, l2d] = l3d, where [ , | denotes the commutator.

Examples D.9 1. k is an algebraic extension of a purely transcendental exten-
sion C(ty,...,t,) of C and M is the universal differential Q- (see Section 6.1).

In this case M is a k-vector spaceof dimension r with basis dti,...,dt, and
d:k— M is given by d(f) = 01 (f)dt1 + ...+ 0-(f)dt, where 0; is the unique
extension of the derivation % on c(ty,...,tp).

2. k is an algebraic extension of C((t1,...,t,)), where this latter field is defined
as in Examples D.1.2. Here one can take M to be the k-vector space of dimen-
sion r with basis dtq,...,dt, and d is defined as above. Note that M is not the
universal differential since there are derivation on C((t1,...,t,)) which are not
k-linear combinations of the 0;.

3. One can replace in 2. the field C' with C, the complex numbers, and
C((t1,...,tr)) with C({t1,...,t,}), the quotient field of the ring of convergent
power series (see Examples D.1.3) and construct M in a similar manner. i

Definition D.10 Let V denote a finite dimensional vector space over k. A
connection V on V' is a map V :— M ®¢ V' satisfying:

1. V is a C-linear.
2. V(A) =dA) @v+A® V(v) for all X € k and v € M.

A connection is integrable if for any two k-linear maps l1,ls : M — K one has

[V(lld),V(l2d)] = V([lld, lgd]) -

We note that when r = 1 in the Examples D.9, all connections are integrable.
We now show that the concept of an integrable connection is equivalent to an
integrable system of linear partial differential equations.

Let (M,d) be a special differential for k. There exist elements ¢1,...,t. € k
such that dty,...,dt, form a basis of M. Let 0; denote the derivation given
by 0; = l;d where [; is the linear map defined by l;(dt;) = 1if ¢ = j and 0
otherwise. The 9; commute and C is the field of constants of k. Let e1,...,em
be a k-basis of V' and define k-linear maps A; with matrix A4; by

Ve, = Zdti ® (—Aje,) -

i=1



374 APPENDIX D. PARTIAL DIFFERENTIAL EQUATIONS

Then V (3, fa€a) equals

D dti @ (3 0i(fa)ea — A} faca)

Note that the condition “V = 0” translates to
fi
fa ,
(0; — 4;) . =0forall:.
fm
Note that the integrability of V is equivalent to
[V(0;),V(0;)] =0 for all i,j .

This means that the operators 9; — A; : k™ — k™ commute and define an
integrable system of linear partial differential equations (or equivalently a 0-
module structure on k™).

D.2 Algebraic Theory

D.3 Analytic Theory
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