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PREFACE

Linear algebra is a fantastic subject. On the one hand it is clean and beautiful. If
you have three vectors in 12-dimensional space, you can almost see them. A com-
bination like the first plus the second minus twice the third is harder to visualize,
but may still be possible. I don’t know if anyone can see all such combinations,
but somehow (in this course) you begin to do it. Certainly the combinations of
those three vectors will not fill the whole 12-dimensional space. (I'm afraid the
course has already begun; usually you get to read the preface for free!) What
those combinations do fill out is something important—and not just to pure
mathematicians.

That is the other side of linear algebra. It is needed and used. Ten years ago it
was taught too abstractly, and the crucial importance of the subject was missed.
Such a situation could not continue. Linear algebra has become as basic and as
applicable as calculus, and fortunately it is easier. The curriculum had to change,
and this is now widely accepted as an essential sophomore or junior course—a
requirement for engineering and science, and a central part of mathematics.

The goal of this book is to show both sides— the beauty of linear algebra, and
its value. The effort is not all concentrated on theorems and proofs, although the
mathematics is there. The emphasis is less on rigor, and much more on under-
standing. I try to explain rather than to deduce. In the book, and also in class,
ideas come with examples. Once you work with subspaces, you understand them.
The ability to reason mathematically will develop, if it is given enough to do. And
the essential ideas of linear algebra are not too hard.

[ would like to say clearly that this is a book about mathematics. It is not so
totally watered down that all the purpose is drained out. I do not believe that
students or instructors want an empty course; three hours a week can achieve
something worthwhile, provided the textbook helps. T hope and believe that you
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will see, behind the informal and personal style of this book, that it is written to
teach real mathematics. There will be scctions you omit, and there might be ex-
planations you don’t need,t but you cannot miss the underlying force of this sub-
ject. It moves simply and naturally from a line or a plane to the n-dimensional
space R". That step is mathematics at its best, and every student can take it.

One question is hard to postpone: How should the course start? Most students
come to the first class already knowing something about linear equations. Still T
believe that we must begin with n equations in n unknowns, Ax = b, and with the
simplest and most useful method of solution- ~Gaussian elimination (not deter-
minants!). Tt is a perfect introduction to matrix multiplication. And fortunately,
even though the method is so straightforward, there are insights that are central
to its understanding and new to almost every student. One is to recognize. as
elimination goes from the original matrix A to an upper triangular U, that A is
being factored into two triangular matrices: A = LU. That observation is not deep,
and it is easy to verify, but it is tremendously important in practice. For me this
is one indicator of a serious course, a dividing line from a presentation that deals
only with row operations or A4~ .

Another question is to find the right speed. If matrix calculations are familiar,
then Chapter I must not be too slow. It is Chapter 2 that demands more work, and
that means work of a different kind—not the crunching of numbers which a com-
puter can do, but an understanding of Ax = b which starts with elimination and
goes deeper. The class has to know that the gears have changed: ideas are coming.
Instead of individual vectors, we need vector spaces. I am convinced that the four
fundamental subspaces —the column space of 4, its row space, and the nullspaces
of A and AT —are the most effective way to illustrate linear dependence and in-
dependence, and to understand “basis” and “dimension” and “rank.” Those are
developed gradually but steadily, and they generate examples in a completely
natural way. They are also the key to Ax = b.

May I take one example, to show how an idea can be seen in different ways? It
is the fundamental step of multiplying A times x, a matrix times a vector. At one
level Ax is just numbers. At the next level it is a combination of the columns of
4. At a third level it is a vector in the column space. (We are seeing a space of
vectors, containing all combinations and not only this one.) To an algebraist. 4
represents a linear transformation and Ax is the result of applying it to x. All
four are important, and the book must make the connections.

Chapters 1-5 are really the heart of a course in linear algebra. They contain a
large number of applications to physics, engineering, probability and statistics,
economics, and biology. Those are not tacked on at the end; they arc part of the
mathematics. Networks and graphs are a terrific source of rectangular matrices.
essential in cngineering and computer science and also perfect examples for
teaching. What mathematics can do, and what linear algebra does so well, is to
see patterns that are partly hidden in the applications. This is a book that allows

+ My favorite proof comes in a book by Ring Lardner: = ‘Shut up.’ he explained.”
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pure mathematicians to teach applied mathematics. 1 believe the faculty can do the
moving, and teach what students need. The effort is absolutely rewarding.

[f you know earlier editions of the book, you will see changes. Section 1.1 is famil-
iar but not 1.2. Certainly the spirit has not changed; this course is alive because
its subject is. By teaching it constantly, I found a whole series of improvements-—
in the organization and the exercises (hundreds are new, over a very wide range),
and also in the content. Most of these improvements will be visible only in the
day-by-day effort of teaching and learning this subject—when the right explana-
tion or the right exercise makes the difference. 1 mention two changes that are
visible in the table of contents: Linear transformations are integrated into the text,
and there is a new (and optional) section on the Fast Fourier Transform. That is
perhaps the outstanding algorithm in modern mathematics, and it has revolution-
ized digital processing. It is nothing more than a fast way of multiplying by a cer-
tain matrix! You may only know (as I did) that the idea exists and is important.
It is a pleasure to discover how it fits into linear algebra (and introduces complex
numbers).

This is a first course in linear algebra. The theory is motivated, and reinforced,
by genuine applications. At the same time, the goal is understanding— and the
subject is well established. After Chapter 2 reaches beyond elimination and A4~ !
to the idea of a vector space, Chapter 3 concentrates on orthogonality. Geomet-
rically, that is understood before the first lecture. Algebraically, the steps are fa-
miliar but crucial—to know when vectors are perpendicular, or which subspaces
are orthogonal, or how to project onto a subspace, or how to construct an ortho-
normal basis. Do not underestimate that chapter. Then Chapter 4 presents deter-
minants, the key link between Ax = b and Ax = Ax. They give a test for invertibility
which picks out the eigenvalues. That introduces the last big step in the course.

Chapter 5 puts diagonalization ahead of the Jordan form. The eigenvalues and
eigenvectors take us directly from a matrix 4 to its powers 4% They solve equa-
tions that evolve in time—dynamic problems, in contrast to the static problem
Ax = b. They also carry information which is not obvious from the matrix itself—a
Markov matrix has 4, = 1, an orthogonal matrix has all || = 1, and a symmetric
matrix has real eigenvalues. If your course reaches the beginning of Chapter 6,
the connections between eigenvalues and pivots and determinants of symmetric
matrices tie the whole subject together. (The last section of each chapter is optional.)
Then Chapter 7 gives more concentrated attention to numerical linear algebra,
which has become the foundation of scientific computing. And 1 believe that even
a brief look at Chapter 8 allows a worthwhile but relaxed introduction to lincar
programming—my class is happy because it comes at the end, without examination.

I would like to mention the Manual for Instructors, and another book. The
manual contains solutions to all exercises (including the Review Exercises at the
ends of Chapters 1-5), and also a collection of ideas and suggestions about applied
linear algebra. 1 hope instructors will request a copy from the publisher (HBJ
College Department, 7555 Caldwell Avenue, Chicago IL 60648). I also hope that
readers of this book will go forward to the next one. That is called Introduction
to Applied Mathematics, and it combines linear algebra with differential equa-
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tions into a text for modern applied mathematics and engineering mathematics. It
includes Fourier analysis, complex variables, partial differential equations, nu-
merical methods, and optimization—but the starting point is linear algebra. It is
published by Wellesley-Cambridge Press (Box 157, Wellesley MA 02181) and the
response has been tremendous—many departments have wanted a renewal of that
course, to teach what is most needed.

This book, like that next one, aims to recognize what the computer can do (with-
out being dominated by it). Solving a problem no longer means writing down an
infinite series, or finding a formula like Cramer’s rule, but constructing an effec-
tive algorithm. That needs good ideas: mathematics survives! The algebra stays
clear and simple and stable. For elimination, the operation count in Chapter 1
has also a second purpose-—to reinforce a detailed grasp of the n by n case, by
actually counting the steps. But I do not do everything in class. The text should
supplement as well as summarize the lectures.

In short, a book is needed that will permit the applications to be taught suc-
cessfully, in combination with the underlying mathematics. That is the book 1
have tried to write.

In closing, this is a special opportunity for me to say thank you. [ am extremely
grateful to readers who have liked the book, and have scen what it stands for.
Many have written with ideas and encouragement, and I mention only five names:
Dan Drucker, Vince Giambalvo, Steve Kleiman, Beresford Parlett, and Jim
Simmonds. Behind them is an army of friends and critics that [ am proud to have.
This third edition has been made better by what they have taught—to students
and to the author. It was a very great pleasure to work with Sophia Koulouras,
who typed the manuscript, and Michael Michaud, who designed the book and
the cover. And above all, my gratitude goes to my wife and children and parents.
The book is theirs too, and so is the spirit behind it—which in the end is everything.
May I rededicate this book to my mother and father, who gave so much to it:
Thank you both.

GILBERT STRANG
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MATRICES AND
GAUSSIAN ELIMINATION

INTRODUCTION W 1.1

The central problem of linear algebra is the solution of linear equations. The most
important case, and the simplest, is when the number of unknowns equals the
number of equations. Therefore we begin with this basic problem: n equations in
n unknowns.

There are two well-established ways to solve linear equations. One is the method
of elimination, in which multiples of the first equation are subtracted from the
other equations—so as to remove the first unknown from those equations. This
leaves a smaller system, of n — 1 equations in n — 1 unknowns. The process is
repeated until there is only one equation and one unknown, which can be solved
immediately. Then it is not hard to go backward, and find the other unknowns in
reverse order; we shall work out an example in a moment. A second and more
sophisticated way introduces the idea of determinants. There is an exact formula
called Cramer’s rule, which gives the solution (the correct values of the unknowns)
as a ratio of two n by n determinants. From the examples in a textbook it is not
obvious which way is better (n = 3 or n = 4 is about the upper limit on the patience
of a reasonable human being).

In fact, the more sophisticated formula involving determinants is a disaster in
practice, and elimination is the algorithm that is constantly used to solve large
systems of equations. Our first goal is to understand this algorithm. It is generally
called Gaussian elimination.

The idea is deceptively simple, and in some form it may already be familiar to
the reader. But there are four aspects that lie deeper than the simple mechanics
of elimination. Together with the algorithm itself, we want to explain them in this
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chapter. They are:

(1) The geometry of linear equations. It is not easy to visualize a 10-dimen-
sional plane in 11-dimensional space. It is harder to sce eleven of those planes
intersecting at a single point in that space—but somehow it is almost possible.
With three planes in three dimensions it can certainly be done. Then linear algebra
moves the problem into four dimensions, or eleven dimensions, where the intuition
has to imagine the geometry (and gets it right).

(2) The interpretation of elimination as a factorization of the coefficient ma-
trix. We shall introduce matrix notation for the system of n equations, writing the
unknowns as a vector x and the equations in the matrix shorthand Ax = b. Then
elimination amounts to factoring A into a product LU, of a lower triangular matrix
L and an upper triangular matrix U.

First we have to introduce matrices and vectors in a systematic way, as well as
the rules for their multiplication. We also define the transpose AT and the inverse
A™! of a matrix A.

(3) In most cases elimination goes forward without difficulties. In some excep-
tional cases it will break down—either because the equations were written in the
wrong order, which is easily fixed by exchanging them, or else because the equa-
tions fail to have a unique solution. In the latter case there may be no solution,
or infinitely many. We want to understand how, at the time of breakdown, the
elimination process identifies each of these possibilities.

(4) Tt is essential to have a rough count of the number of operations required
to solve a system by elimination. The expense in computing often determines the
accuracy in the model. The computer can do millions of operations, but not very
many trillions. And already after a million steps, roundoff error can be significant.
(Some problems are sensitive; others are not.) Without trying for full detail, we
want to see what systems arise in practice and how they are actually solved.

The final result of this chapter will be an elimination algorithm which is about
as efficient as possible. It is essentially the algorithm that is in constant use in a
tremendous variety of applications. And at the same time, understanding it in
terms of matrices—the coefficient matrix, the matrices that carry out an climina-
tion step or an exchange of rows, and the final triangular factors L and U—is an
essential foundation for the theory.
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THE GEOMETRY OF LINEAR EQUATIONS W 1.2

The way to understand this subject is by example. We begin with two extremely
humble equations, recognizing that you could solve them without a course in
linear algebra. Nevertheless I hope you will give Gauss a chance:

2x —y =1
x+y=>

There are two ways to look at that system, and our main point is to see them both.

The first approach concentrates on the separate equations, in other words on
the rows. That is the most familiar, and in two dimensions we can do it quickly.
The equation 2x — y = 1 is represented by a straight line in the x-y plane. The
line goes through the points x =1, y=1 and x =4, y =0 (and also through
(0, —1) and (2, 3) and all intermediate points). The second equation x + y =5
produces a second line (Fig. 1.1a). Tts slope is dy/dx = —1 and it crosses the first
line at the solution. The point of intersection is the only point on both lines, and
therefore it is the only solution to both equations. It has the coordinates x = 2
and y = 3—which will soon be found by a systematic elimination.

The second approach is not so familiar. It looks at the columns of the linear
system. The two separate equations are really one vector equation

2 A 1 1
X y = .
T 7 s
The problem is to find the combination of the column vectors on the left side which

produces the vector on the right side. Those two-dimensional vectors are repre-
sented by the bold lines in Fig. 1.1b. The unknowns are the numbers x and y which

>

A (1,5
L~
N\

=23 - AN

_ 2 (column 1)
~ 43 (column 2)

)

(5.0 -1 D 2,0

y
o

1
0,-1) /‘z’ 0

/ x+y=5

2x—y=1
(2) (b)

Fig. 1.1. The geometry by rows and by columns.
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multiply the column vectors. The whole idea can be seen in that figure, where 2
times column 1 is added to 3 times column 2. Geometrically this produces a famous
parallelogram. Algebraically it produces the correct vector [L]. on the right side of
our equations. The column picture confirms that the solution is x=2, y=3.

More time could be spent on that example, but I would rather move forward to
n = 3. Three equations are still manageable, and they have much more variety. As
a specific example, consider

2u+ v+ w= 5
4u — 6v = -2 (1)
—2u+To+2w= 9.

Again we can study the rows or the columns, and we start with the rows. Each
equation describes a plane in three dimensions. The first plane is 2u + v+ w =5,
and it is sketched in Fig. 1.2. It contains the points (3, 0, 0) and (0, 5, 0) and (0, 0, 5).
It is determined by those three points, or by any three of its points—provided
they do not lie on a line. We mention in passing that the plane 2u + v+ w = 10
is parallel to this one. The corresponding points are (5,0, 0) and (0, 10, 0) and
(0, 0, 10), twice as far away from the origin—-which is the center point u = 0,v = 0,
w = 0. Changing the right hand side moves the plane parallel to itself, and the
plane 2u + v + w = 0 goes through the origin.t

The second plane is 4u — 6v = —2. It is drawn vertically, because w can take
any value. The coefficient of w happens to be zero, but this remains a plane in

=

\

plane 2u+v +w=>3

4
-

plane 4u — 6v =-2

(1, 1, 2) = point of intersection
with third plane

o,
—

»
line of intersection

u

Fig. 1.2. The row picture: intersecting planes.

+ If the first two equations were 2u + v +w=>5and 2u + v + w = 10, the planes would
not intersect and there would be no solution.
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3-space. (If the equation were 4u = 3, or even the extreme case u = 0, it would
still describe a plane.) The figure shows the intersection of the second plane with
the first. That intersection is a line. In three dimensions a line requires two equations;,
in n dimensions it will require n — 1.

Finally the third plane intersects this line in a point. The plane (not drawn)
represents the third equation —2u + 7v + 2w = 9, and it crosses the line at u = 1,
v =1, w = 2. That point solves the linear system.

How does this picture extend into # dimensions? We will have n equations, and
they contain n unknowns. The first equation still determines a “plane.” It is no
longer an ordinary two-dimensional plane in 3-space; somehow it has “dimension
n — 1.” It must be extremely thin and flat within n-dimensional space, although it
would look solid to us. If time is the fourth dimension, then the plane ¢ = 0 cuts
through 4-dimensional space and produces the 3-dimensional universe we live in
(or rather, the universe as it was at t = 0). Another plane is z = 0, which is also
3-dimensional; it is the ordinary x-y plane taken over all time. Those three-dimen-
sional planes will intersect! What they have in common is the ordinary x-y plane
att = 0. We are down to two dimensions, and the next plane leaves a line. Finally
a fourth plane leaves a single point. It is the point at the intersection of 4 planes
in 4 dimensions, and it solves the 4 underlying equations.

I will be in trouble if that example from relativity goes any further. The point
is that linear algebra can operate with any number of equations. The first one pro-
duces an n — 1-dimensional plane in n dimensions. The second equation deter-
mines another plane, and they intersect (we hope) in a smaller set of “dimension
n — 2.” Assuming all goes well, every new plane (every new equation) reduces the
dimension by one. At the end, when all »n planes are accounted for, the intersection
has dimension zero. It is a point, it lies on all the planes, and its coordinates
satisfy all n equations. It is the solution! That picture is intuitive—the geometry
will need support from the algebra—but it is basically correct.

Column Vectors

We turn to the columns. This time the vector equation (the same equation as (1))
is

2 1 1 5
ul 4|+v{—-6|+w|0|=|-2]| (2)
-2 7 2 9

Those are three-dimensional column vectors. The vector b on the right side has
components 5, —2,9, and these components allow us to draw the vector. The
vector b is identified with the point whose coordinates are 5, —2, 9. Every point in
three-dimensional space is matched to a vector, and vice versa. That was the idea
of Descartes, who turned geometry into algebra by working with the coordinates
of the point. We can write the vector in a column, or we can list its components
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0
0
i 5
=2 | =linear combination
9
1
=210
2
() (b)

Fig. 1.3. The column picture: linear combination of columns equals b.

ash = (5, —2,9), or we can represent it geometrically by an arrow from the origin.T
Throughout the book we use parentheses and commas when the components are
listed horizontally, and square brackets (with no commas) when a column vector
is printed vertically.

What really matters is addition of vectors and multiplication by a scalar (a number).
In Fig. 1.3a you see a vector addition, which is carried out component by
component:

5 0] [o 5
+|=2|+lo|=]-2
0 o] |9 9

In the right figure there is a multiplication by 2 (and if it had been —2 the vector
would have gone in the reverse direction):

1 2 1 -2
21o|=]0], -2lol=]| o}
2 4 2 —4

t Some authors prefer to say that the arrow is really the vector, but I think it doesn’t
matter; you can choose the arrow, or the point, or the three numbers. (They all start with
the same origin (0, 0, 0).) In six dimensions it is probably easiest to choose the six numbers.
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Also in the right figure is one of the central ideas of linear algebra. 1t uses both
of the basic operations; vectors are multiplied by numbers and then added. The result
is called a linear combination, and in this case the linear combination is

2 1 i 5
4|+ —6f+2[o]=]-2
~2 7 2 9

You recognize the significance of that special combination; it solves equation (2).
The equation asked for multipliers u, v, w which produce the right side b. Those
numbers are u = 1, v = 1, w = 2. They give the correct linear combination of the
column vectors, and they also gave the point (1, 1, 2) in the row picture (where
the three planes intersect).

Multiplication and addition are carried out on each component separately.
Therefore linear combinations are possible provided the vectors have the same
number of components. Note that all vectors in the figure were three-dimensional,
even though some of their components were zero.

Do not forget the goal. It is to look beyond two or three dimensions into n
dimensions. With n equations in n unknowns, there were n planes in the row
picture. There are n vectors in the column picture, plus a vector b on the right
side. The equations ask for a linear combination of the n vectors that equals b.
In this example we found one such combination (there are no others) but for cer-
tain equations that will be impossible. Paradoxically, the way to understand the
good case is to study the bad one. Therefore we look at the geometry exactly when
it breaks down, in what is called the singular case.

First we summarize:

Row picture: Intersection of n planes

Column picture: The right side b is a combination of the column vectors

Solution to equations: Intersection point of planes = coefficients in the combina-
tion of columns

The Singular Case

Suppose we are again in three dimensions, and the three planes in the row pic-
ture do not intersect. What can go wrong? One possibility, already noted, is that
two planes may be parallel. Two of the equations, for example 2u + v + w = 5 and
4u + 2v + 2w = 11, may be inconsistent—and there is no solution (Fig. 1.4a shows
an end view). In the two-dimensional problem, with lines instead of planes, this is
the only possibility for breakdown. That problem is singular if the lines are paraliel,
and it is nonsingular if they meet. But three planes in three dimensions can be in
trouble without being paraliel.

The new difficulty is shown in Fig. 1.4b. All three planes are perpendicular to
the page; from the end view they form a triangle. Every pair of planes intersects,
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two parallel no intersection line of intersection all parallel
(@) (b) (c) (d)

Fig. 1.4. Singular cases: no solution or an infinity of solutions.

but no point is common to all three.t This is more typical than parallel planes,
and it corresponds to a singular system like

u+ov+ w=2
2u +3w=35 (3)
Ju+v+4w=06

The first two left hand sides add up to the third. On the right side that fails. Equa-
tion 1 plus equation 2 minus equation 3 is the impossible statement 0 = 1. Thus
the equations are inconsistent, as Gaussian elimination will systematically discover.

There is another singular system, close to this one, with an infinity of solutions
instead of none. If the 6 in the last equation becomes 7, then the three equations
combine to give 0 = 0. It looks OK, because the third equation is the sum of the
first two. In that case the three planes have a whole line in common (Fig. 1.4c).
The effect of changing the right sides is to move the planes parallel to themselves,
and for the right hand side b = (2, 5, 7) the figure is suddenly different. The lowest
plane moves up to meet the others, and there is a line of solutions. The problem
is still singular, but now it suffers from too many solutions instead of too few.

Of course there is the extreme case of three parallel planes. For most right sides
there is no solution (Fig. 1.4d). For special right sides (like b = (0,0, 0)!) there is
a whole plane of solutions—because all three planes become the same.

What happens to the column picture when the system is singular? It has to go
wrong; the question is how. There are still three columns on the left side of the
equations, and we try to combine them to produce b:

1 1 1
ul2V+0[0j+w|3|=0h 4)
3 1 4

For b = (2, 5, 7) this was possible; for b = (2, 5, 6) it was not. The reason is that
those three columns lie in a plane. Therefore all their linear combinations are also
in the plane (which goes through the origin). If the vector b is not in that plane,

t The third plane is not parallel to the other planes, but it is parallel to their line of
intersection.
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columns columns
ina ina
b not in plane planc plane
°
(a) no solution (b) infinity of solutions

Fig. 1.5. Singular cases: b outside or inside the plane of the columns.

then no solution is possible. That is by far the most likely event; a singular system
generally has no solution. But there is also the chance that b does li¢ in the plane
of the columns, in which case there are too many solutions. In that case the three
columns can be combined in infinitely many ways to produce b. That gives the
column picture 1.5b which corresponds to the row picture 1.4c.

Those are true statements, but they have not been justified. How do we know
that the three columns lie in the same plane? One answer is to find a combination
of the columns that adds to zero. After some calculation, it is u =3, v = —1,
w = —2. Three times column 1 equals column 2 plus twice column 3. Column 1
is in the plane of the others, and only two columns are independent. When a
vector like b = (2, 5, 7) is also in that plane—it is column 1 plus column 3—the
system can be solved. However many other combinations are also possible. The
same vector b is also 4 (column 1) — (column 2) — (column 3), by adding to the
first solution the combination (3, —1, —2) that gave zero. Because we can add
any multiple of (3, —1, —2), there is a whole line of solutions—as we know from
the row picture.

That is numerically convincing, but it is not the real reason we expected
the columns to lic in a plane. The truth is that we knew the columns would
combine to give zero, because the rows did. That is a fact of mathematics, not of
computation—and it remains true in dimension n. If the n planes have no point in
common, then the n columns lie in the same plane. If the row picture breaks down,
so does the column picture. That is a fundamental conclusion of linear algebra,
and it brings out the difference between Chapter 1 and Chapter 2. This chapter
studies the most important problem--the nonsingular case—where there is one
solution and it has to be found. The next chapter studies the general case, where
there may be many solutions or none. In both cases we cannot continue without
a decent notation (matrix notation) and a decent algorithm (elimination). After the
exercises, we start with the algorithm.

EXERCISES

1.21  For the equations x + y = 4, 2x — 2y = 4, draw the row picture (two intersecting
lines) and the column picture (combination of two columns equal to the column
vector (4, 4) on the right side).
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1.2.2

1.23

1.24

1.25

1.2.6

1.27

1.2.8

1 Matrices and Gaussian Elimination

Solve the nonsingular triangular system
u+v+w=b
v+w=b,
w = bj.

Show that your solution gives a combination of the columns that equals the column
on the right.

Describe the intersection of the three planes u + v +w +2z =0 andu+w+z=4
and u + w = 2 (all in 4-dimensional space). Is it a line or a point or an empty set?
What is the intersection if the fourth plane u = —1 is included?

Sketch the three lines

x+2y=2
x— y=2
y=1

Can the three equations be solved simultaneously? What happens to the figure if all
right hand sides are zero? Is there any nonzero choice of right hand sides which allows
the three lines to intersect at the same point and the three equations to have a
solution?

Find two points on the line of intersection of the three planes t = 0 and z = 0 and
x+y+z+t=1in four-dimensional space.

When b = (2, 5, 7), find a solution (i, v, w) to equation (4) other than the solutions
(1,0, 1) and (4, —1, = 1) mentioned in the text.

Give two more right hand sides in addition to b = (2, 5, 7) for which equation (4) can
be solved. Give two more right hand sides in addition to b = (2, 5, 6) for which it
cannot be solved.

Explain why the system

u+v+ w=
u+20+3w=1
v+ 2w=0

is singular, by finding a combination of the three equations that adds up to 0 = 1.
What value should replace the last zero on the right side, to allow the equations to
have solutions—and what is one of the solutions?

The column picture for the previous exercise is

1 1 1
ul t{+e]2l+w[3]|=b
0 1 2

Show that the three columns on the left lie in the same plane, by expressing the third
column as a combination of the first two. What are all the solutions (u, v, w) if b is the
zero vector (0, 0, 0)?
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1.2.10

1.2.11

1212

1.213

Under what condition on y,, y,, y; do the points 0,1, (1, y5), (2, ¥;) lic on a
straight line?

The equations

ax +2y=0
2x+ay=0

are certain to have the solution x = y = 0. For which values of g is there a whole
line of solutions?

Sketch the plane x + y + z = 1, or the part of the plane that is in the positive octant
whete x > 0, y > 0, z > 0. Do the same for x + ¥ + z = 2 in the same figure. What
vector is perpendicular to those planes?

Starting with the line x + 4y = 7, find the equation for the parallel line through
x =0, y=0. Find the equation of another line that meets the first at x = 3, y=1
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1.3 B AN EXAMPLE OF GAUSSIAN ELIMINATION

The way to understand this subject is by example. We begin in three dimensions
with the system

du+ v+ w= 5
4y — 6bv = -2 n
2u+To+2w= 9.

The problem is to find the unknown values of u, v, and w, and we shall apply
Gaussian elimination. (Gauss is recognized as the greatest of all mathematicians,
but certainly not because of this invention, which probably took him ten minutes.
Ironically, however, it is the most frequently used of all the ideas that bear his
name.) The method starts by subtracting multiples of the first equation from the
others, so as to eliminate u from the last two equations. This requires that we

(a) subtract 2 times the first equation from the second;
(b) subtract —1 times the first equation from the third.

The result is an equivalent system of equations

2u+ v+ w= 5
—8v —2w=—12 (2)
8+ 3w= 14

The coefficient 2, which muitiplied the first unknown u in the first equation, is
known as the first pivot. Elimination is constantly dividing the pivot into the num-
bers underneath it, to find out the right multipliers.

At the second stage of elimination, we ignore the first equation. The other two
equations involve only the two unknowns v and w, and elimination can be applied
to them. The pivot for this stage is —38, and a multiple of this second equation will
be subtracted from the remaining equations (in this case there is only the third one
remaining) so as to eliminate v. We add the second equation to the third or, in
other words, we

(c) subtract —1 times the second equation from the third.

The elimination process is now complete, at least in the “forward” direction. It
leaves the simplified system

2u+ v+ w= 5
— 8 —2w= —12 (3)
w = 2.

There is an obvious order in which to solve this system. The last equation gives
w = 2. Substituting into the second equation, we find v = 1. Then the first equa-
tion gives u = 1. This process is called back-substitution.
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To repeat: Forward elimination produced the pivots 2, —8, 1. It subtracted
multiples of each row from the rows beneath. It reached the “triangular” system
(3). Then this system was solved in reverse order, from bottom to top, by sub-
stituting each newly computed value into the equation above.

Remark One good way to write down the forward elimination steps is to include
the right hand side as an extra column. There is no need to copy u and v and
wand = at every step, so we are left with the bare minimum:

2 1 1 5 2 1 1 5 2 1 1 5
4 —06 0 -2|-|0 -8 -2 —12|-|0 -8 -2 —12
—2 7 2 9 0 8 3 14 0 0 1 2

At the end is the triangular system, ready for back-substitution. You may prefer
this arrangement, which guarantees that operations on the left side of the equations
are also done on the right side—because both sides are there together.

In a larger problem, forward elimination takes most of the effort. It is governed
by the left sides of the equations, where back-substitution depends also on the
right sides. At the first stage, we use multiples of the first equation to produce
zeros below the first pivot. Then the second column is cleared out below the
second pivot. Finally, equation n contains only the last unknown x,,, multiplied by
the last pivot. The forward step is finished when the system is triangular. Back-
substitution yields the complete solution in the opposite order—beginning with
the last unknown, then solving for the next to last, and eventually for the first.

By definition, pivots cannot be zero. We need to divide by them.

The Breakdown of Elimination

We want to ask two questions. They may seem a little premature—after all,
we have barely got the algorithm working—but their answers shed light on the
method itself. The first question is: Under what circumstances could the process
break down? Something must go wrong in the singular case, and something might
go wrong in the nonsingular case. The question is not geometric but algebraic.

The answer is: If the algorithm produces n pivots, then there is only one solu-
tion to the equations. The system is nonsingular, and it is solved by forward
elimination and back-substitution. But if a zero appears in a pivot position, elimi-
nation has to stop—either temporarily or permanently. The system might or might
not be singular.

If the first coefficient is zero, in the upper left corner, the elimination of u
from the other equations will be impossible. The same is true at every inter-
mediate stage. Notice that a zero can appear in a pivot position, even if the orig-
inal coefficient in that place was not zero. Roughly speaking, we do not know
whether a zero will appear until we try, by actually going through the elimination
process.
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In many cases this problem can be cured, and elimination can proceed. Such
a system still counts as nonsingular; it is only the algorithm that needs repair.
In other cases a breakdown is unavoidable. Those incurable systems are singular,
they have no solution or else infinitely many, and a full set of pivots cannot be
found.

NONSINGULAR EXAMPLE (cured by exchanging equations 2 and 3)

u+ v+ w=__ u+ v+ w=__- ut+ v+ w=_—
u+20+5w=__ —> w=_. —> 2044w = __
du + 60+ 8w=__ 20+ 4w =___ 3w =__

The system is now triangular, and back-substitution will solve it.

SINGULAR EXAMPLE (incurable)

u+ v+ w=__ u+v+ w=__
du+20+5w=__ — 3w = __
4y +4v+8w=__ 4w =

Now there is no exchange of equations that can avoid zero in the second pivot
position. The equations themselves may be solvable or unsolvable. If the last two
equations are 3w =6 and 4w = 7, there is no solution. If those two equations
happen to be consistent—as in 3w = 6 and 4w = 8—then this singular case has
an infinity of solutions. We know that w = 2, but the first equation cannot decide
both u and v.

Section 1.5 will discuss row exchanges when the system is not singular. Then
the exchanges produce a full set of pivots. Chapter 2 admits the singular case,
and limps forward with elimination. The 3w can still eliminate the 4w, and we
will call 3 the second pivot. (There won’t be a third pivot.) For the present we
trust all n pivot entries to be nonzero, without changing the order of the equa-
tions. That is the best case, with which we continue.

The Cost of Elimination

Our other question is very practical. How many separate arithmetical operations
does elimination require, for n equations in n unknowns? If n is large, a computer
is going to take our place in carrying out the elimination (you may have a pro-
gram available, or you could use the codes in Appendix C). Since all the steps
are known, we should be able to predict the number of operations a computer
will take. For the moment, ignore the right-hand sides of the equations, and count
only the operations on the left. These operations are of two kinds. One is a divi-
sion by the pivot, to find out what multiple (say [) of the pivot equation is to be
subtracted. Then when we actually do this subtraction, we continually meet a
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“multiply-subtract” combination; the terms in the pivot equation are multiplied
by I, and then subtracted from the equation beneath it.

Suppose we call each division, and each multiplication-subtraction, a single
operation. At the beginning, when the first equation has length n, it takes n
operations for every zero we achieve in the first column—one to find the multiple
I, and the others to find the new entries along the row. There are n — 1 rows
underneath the first one, so the first stage of elimination needs mn—1)=n%—n
operations. (Another approach to n? — n is this: All n? entries need to be changed,
except the n in the first row.) Now notice that later stages are faster because the
equations are becoming progressively shorter. When the elimination is down to k
equations, only k* — k operations are needed to clear out the column below the
pivot—by the same reasoning that applied to the first stage, when k equaled n.
Altogether, the total number of operations on the left side of the equations is the
sum of k* — k over all values of k from 1 to n:

TEN +.”+n):n(n-1-1)(2n+1)_n(n-i-1):n3;n.

6 2 3
Those are standard formulas for the sum of the first n numbers and the sum of
the first n squares. Substituting n = 1 and n =2 and n = 100 into the formula
3(n® — n), forward elimination can take no steps or two steps or about a third of
a million steps (which means 41 seconds with a good code on a PC). What is im-

portant is the conclusion:
If n is at all large, a good estimate for the number of operations is n3.

If the size of a system is doubled, and few of the coefficients are zero, then the
cost goes up by a factor of eight.

Back-substitution is considerably faster. The last unknown is found in only one
operation (a division by the last pivot). The second to last unknown requires two
operations, and so on. Then the total for back-substitution is

nn+ 1) n?
+n 5 3

! We will see that another n?/2 steps prepare the right side for back-substitution,
: 50 the right side is responsible for n* operations—much less than the n3/3 on the left.

A few years ago, almost every mathematician would have guessed that these
numbers were essentially optimal, in other words that a general system of order
n could not be solved with much fewer than n3/3 multiplications. (There were
even theorems to demonstrate it, but they did not allow for all possible methods.)
Astonishingly, that guess has been proved wrong, and there now exists a method
that requires only Cn'¥" multiplications! It depends on a simple fact: Two com-
binations of two vectors in two-dimensional space would seem to take 8 multipli-
cations, but they can be done in 7. That lowered the exponent from log,8, which
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is 3, to log,7 =~ 2.8. This discovery produced tremendous activity to find the small-
est possible power of n. The exponent finally fell (at the IBM Research Center)
below 2.5, where it remains as 1 write.+ Fortunately for elimination, the constant
C is so large and the coding is so awkward that the new method is largely (or en-
tirely) of theoretical interest. The newest problem is the cost with many processors
in parallel, and that is not yet known.

EXERCISES

131  Apply elimination and back-substitution to solve
2u — 3v =3
du—5v+ w=7
2u— v—3w=3
What are the pivots? List the three operations in which a multiple of one row is
subtracted from another.
1.3.2 For the system
u+ v+ w=2
u+3v+3w=0
u+ 3+ 5Sw=2,
what is the triangular system after forward climination, and what is the solution?
133 Solve the system and find the pivots when
2u— v =0
—u+2v— W =0
— v+2w— z=0
— w4+2z=35

You may catry the right side as a fifth column (and omit writing u, v, W, 2 until the
solution at the end).

13.4 Apply elimination to the system
u+ v+w=—-2

3u+3w—w= 06

u— v+w=—1L

+ With help from Zurich it just went below 2 376. The lower bound seems most likely to
be 2, since no number in between looks special. That is just a personal opinion.
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When a zero arises in the pivot position, exchange that equation for the one below
it and proceed. What coefficient of v in the third equation, in place of the present
— 1, would make it impossible to proceed—and force elimination to break down?

1.3.5  Solve by elimination the system of two equations
x— y=0
3x + 6y = 18.

Draw a graph representing each equation as a straight line in the x-y plane; the lines
intersect at the solution. Also, add one more line—the graph of the new second
equation which arises after elimination.

13.6  Find three values of a for which elimination breaks down, temporarily or perma-
nently, in

au+ v=1

4u + av = 2.

Breakdown at the first step can be fixed by exchanging rows—but not breakdown at
the last step.

1.3.7  (a) If the first two rows of A are the same, when will elimination discover that A is
singular? Do a 3 by 3 example, allowing row exchanges.
(b) Ifthe first two columns of A are the same, when will elimination discover that A is
singular?

1.3.8 How many multiplication-subtractions would it take to solve a system of order
n = 600? How many seconds, on a PC that can do 8000 a second or a VAX that
can do 80,000 or a CRAY X-MP/2 that can do 12 million? (Those are in double
precision—I think the CRAY is cheapest, if you can afford it.)

1.3.9  True or false: {(a) If the third equation starts with a zero coefficient (it begins
with Ou) then no multiple of equation 1 will be subtracted from equation 3.
(b) If the third equation has zero as its second coefficient (it contains Oc) then no
multiple of equation 2 will be subtracted from equation 3.
(¢) If the third equation contains Ou and Ov, then no multiple of equation 1 or
equation 2 will be subtracted from equation 3.

1.3.10 (very optional) Normally the multiplication of two complex numbers
(a + ib)(c + id) = (ac — bd) + i(bc + ad)

involves the four separate multiplications ac, bd, bc, ad. Ignoring i, can you compute
the quantities ac — bd and bc + ad with only three multiplications? (You may do
additions, such as forming a + b before multiplying, without any penalty. We note
however that addition takes six clock cycles on a CRAY X-MP/48, and multiplica-
tion is only one more.)

1.3.11  Use elimination to solve

u+ v+ w= 6 u+ v+ w= 7
u+2v+2w=11 and u+2v+2w=10
| 2u+30—4dw= 3 u+3—4dw= 3
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1.3.12

1.3.13
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The final exercises give experience in setting up linear equations. Suppose that

(a) of those who start a year in California, 80 percent stay in and 20 percent move
out;

(b) of those who start a year outside California, 90 percent stay out and 10 percent
move in.

If we know the situation at the beginning, say 200 million outside and 30 million
in, then it is easy to find the numbers u and v that are outside and inside at the end:

9(200,000,000) + .2(30,000,000) = u
11(200,000,000) + .8(30,000,000) = v

The real problem is to go backwards, and compute the start from the finish.

If u = 200 million and v = 30 million at the end, set up (without solving) the equa-
tions to find u and v at the beginning.

If u and o at the end are the same as u and v at the beginning, what equations do
you get? What is the ratio of u to v in this “steady state™?
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MATRIX NOTATION AND MATRIX MULTIPLICATION W 1.4

So far, with our 3 by 3 example, we have been able to write out all the equations

in full. We could even list the elimination steps, which subtract a multiple of one

equation from another and reach a triangular form. For a large system, this way

of keeping track of elimination would be hopeless; a much more concise record

is needed. We shall now introduce matrix notation to describe the original system,

and matrix multiplication to describe the operations that make it simpler.
Notice that in our example

2u+ v+ w= 5
4u — 6v = — (1)
—2u+Tv+2w= 9

three different types of quantities appear. On the right side is the column vector b.
On the left side are the unknowns u, v, w. And also on the left side there are nine
coefficients (one of which happens to be zero). It is natural to represent the three
unknowns by a vector:

u 1
the unknown is x =| v |; the solution is x = | 1
w 2

As for the nine coefficients, which fall into three rows and three columns, the right
format is a three by three matrix. Tt is called the coefficient matrix:

2 1 i
A=| 4 -6 0
-2 7 2

A is a square matrix, because the number of equations agrees with the number of
unknowns. More generally, if there are n equations in n unknowns, we have a
square coefficient matrix of order n. Still more generally, we might have m equa-
tions and n unknowns. In this case the matrix is rectangular, with m rows and n
columns. In other words, it will be an “m by n matrix.”

Matrices are added to each other, or multiplied by numerical constants, exactly
as vectors are-—one component at a time. In fact we may regard vectors as special
cases of matrices; they are matrices with only one column. As with vectors, two
matrices can be added only if they have the same shape:

2
3
0

B O -
+
|
(")
—_

It
—_ O W
N = W
[\
O W N
~ O -
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(=T NN
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Multiplication of a Matrix and a Vector

Now we put this notation to use. We propose to rewrite the system (1) of three
equations in three unknowns in the simplified matrix form Ax = b. Written out
in full, this form is

2 1 1|u 5
4 -6 0 =| =21
-2 7 21w 9

The right side b is clear enough; it is the column vector of “inhomogeneous terms.”
The left side consists of the vector x, premultiplied by the matrix A. This multipli-
cation will be defined exactly so as to reproduce the original system. Therefore the
first component of the product Ax must come from “multiplying” the first row of
A into the column vector x:

u
2 1 1]|v =[2u+ v+ w] (2)

w

This equals the first component of b; 2u + v + w =5 is the first equation in our
system. The second component of the product Ax is determined by the second
row of A—it is 4u — 6v—and the third component comes from the third row.
Thus the matrix equation Ax = b is precisely equivalent to the three simultaneous
equations with which we started.

The operation in Eq. (2) is fundamental to all matrix multiplications. It starts
with a row vector and a column vector of matching lengths, and it produces a single
number. This single quantity is called the inner product of the two vectors. In other
words, the product of a 1 by n matrix, which is a row vector, and an n by 1 ma-
trix, alias a column vector, is a 1 by 1 matrix:

1
1 1|tl=pe- 1+ 1+1-2]=[5]
2

That confirms that the proposed solution x = (1, 1, 2) does satisfy the first equation.

If we look at the whole computation, multiplying a matrix by a vector, there are
two ways to do it. One is to continue a row at a time. Each row of the matrix
combines with the vector to give a component of the product. There are three inner
products when there are three rows: for example

1 1 6]]2 1:241-54+6-0 7
by rows Ax=1|3 0 3||5|= 3-240-5+3-0}=]61|
1t 1 4]0 1-2+1-5+4-0 7

That is how it is usually explained, but the second way is equally important. In
fact it is more important. It does the multiplication a column at a time. The product
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Ax is found all at once, and it is @ combination of the three columns of A:

1 1 6 7
by columns Ax=2(3|+5|0|+0|3|=]6]. 3)
1 1 4 7

The answer is twice column 1 plus 5 times column 2. It corresponds to the “column
picture” of a linear system Ax = b. If the right side b has components 7, 6, 7, then
the solution x has components 2, 5, 0. Of course the row picture agrees with that
(and we eventually have to do the same multiplications).

The column rule will be used over and over throughout the book, and we repeat
it for emphasis:

1A The product Ax can be found by using whole columns as in (3). Therefore Ax
is @ combination of the columns of A. The coefficients which multiply the columns
are the components of x.

If we try to write down the general rule in n dimensions, we need a notation
for the individual entries in A. It is easy to learn. The entry in the ith row and
jth column is always denoted by a;;. The first subscript gives the row number,
and the second subscript indicates the column. (In the matrix above, a,, was 3
and a3 was 6.) If 4 is an m by n matrix, then the index i goes from 1 to m—there
are m rows—and the index j goes from 1 to n. Altogether the matrix has mn entries,
forming a rectangular array, and a,,, is in the lower right corner.

One subscript is enough for a vector. The jth component of x is denoted by X
(The multiplication above had x, = 2, x, = 5, x; = 0.) Normally x is written as
a column vector—like an n by 1 matrix—but sometimes it is printed on a line,
as in x = (2, 5, 0). The parentheses and commas emphasize that it is not a 1 by 3
matrix. It is a column vector, and it is just temporarily lying down.

To describe the product Ax, we use the summation symbol “sigma:”

| n . » )
' Y a;x; is the ith component of Axﬂ‘
Jet |

This sum takes us along the ith row of A, forming its inner product with x. It
gives the index j each value from 1 to n and adds up the results—the sum is
a;1 Xy + a;%, + - + a;,x,. We see again that the length of the rows (the number
of columns in A) must match the length of x. An m by n matrix multiplies an
n-dimensional vector (and produces an m-dimensional vector). Summations are
simpler to work with than writing everything out in full, but they are not as good
as matrix notation itself. T

T Einstein introduced “tensor notation,” in which a repeated index automatically means

summation. He wrote a;;x;, or even a{xj, without the X.
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The Matrix Form of One Elimination Step

So far we have a convenient shorthand Ax = b for the original system of equa-
tions. What about the operations that are carried out during elimination? In our
example, the first step subtracted 2 times the first equation from the second. On
the right side of the equation, this means that 2 times the first component of b
was subtracted from the second component. We claim that this same result is
achieved if we multiply b by the following matrix:

1 00
E=|-2 1 0].
0 0 1

This is verified just by obeying the rule for multiplying a matrix and a vector:

1 00 5 5
Eb=|-2 1 0| |-2]|= —121.
0 0 1 9 9

The first and third components, 5 and 9, stayed the same (because of the special
form for the first and third rows of E). The new second component is the correct
value — 12; it appeared after the first elimination step.

It is easy to describe the matrices like E, which carry out the separate elimination
steps. We also notice the “identity matrix,” which does nothing at all.

1B The matrix that leaves every vector unchanged is the identity matrix I, with
1’s on the diagonal and 0’s everywhere else. The matrix that subtracts a multiple
| of row j from row i is the elementary matrix E;;, with 1’s on the diagonal and
the number — I in row i, column j. '

1 00 1 00
EXAMPLE I={0 1 0 and E,=| 0 1 O}.
0 0 1 0 1

If you multiply any vector b by the identity matrix you get b again. Itis the matrix
analogue of multiplying a number by 1: Ib = b. If you multiply instead by Es,
you get E3;b = (by, b,, by — Iby). That is a typical operation on the right side of
the equations, and the important thing is what happens on the left side.

To maintain equality, we must apply the same operation to both sides of Ax = b.
In other words, we must also multiply the vector Ax by the matrix E. Our original
matrix E subtracts 2 times the first component from the second, leaving the first
and third components unchanged. After this step the new and simpler system
(equivalent to the old) is just E(Ax) = Eb. 1t is simpler because of the zero that
was created below the first pivot. It is equivalent because we can recover the
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original system (by adding 2 times the first equation back to the second). So the
two systems have exactly the same solution x.

Matrix Multiplication

Now we come to the most important question: How do we multiply two matrices?
There is already a partial clue from Gaussian elimination: We know the original
coefficient matrix 4, we know what it becomes after an elimination step, and now
we know the matrix E which carries out that step. Therefore, we hope that

1 00 2 11 2 1 1
E=[—-2 1 0} times A= 4 —6 0| gives EA= 0 -8 =2
0 0 1 -2 7 2 -2 7 2

The first and third rows of A appear unchanged in EA, while twice the first row has
been subtracted from the second. Thus the matrix multiplication is consistent with
the row operations of elimination. We can write the result either as E(Ax) = Eb,
applying E to both sides of our equation, or as (EA)x = Eb. The matrix EA is
constructed exactly so that these equations agree. In other words, the parentheses
are superfluous, and we can just write EAx = Eb.t

There is also another requirement on matrix multiplication. We know how to
multiply Ax, a matrix and a vector, and the new definition should remain consis-
tent with that one. When a matrix B contains only a single column x, the matrix—
matrix product AB should be identical with the matrix—vector product Ax. It is
even better if this goes further: When the matrix B contains several columns, say
X1, X3, X3, we hope that the columns of AB are just Ax,, Ax,, Ax;. Then matrix
multiplication is completely straightforward; B contains several columns side by
side, and we can take each one separately. This rule works for the matrices multi-
plied above. The first column of EA equals E times the first column of A,

1 00 2 2
-2 10 4= 01,
0 0 1]]|-2 —2

and the same is true for the other columns.

Notice that our first requirement had to do with rows, whereas the second was
concerned with columns. A third approach is to describe each individual entry in
AB and hope for the best. In fact, there is only one possible rule, and I am not
sure who discovered it. It makes everything work. It does not allow us to multiply
every pair of matrices; if they are square, as in our example, then they must be of

t This is the whole point of an “associative law” like 2 x (3 x 4) = (2 x 3) x 4, which
seems so obvious that it is hard to imagine it could be false. But the same could be said of
the “commutative law” 2 x 3 = 3 x 2-—and for matrices that law really is false.
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the same size. If they are rectangular, then they must not have the same shape;
the number of columns in A has to equal the number of rows in B. Then A can
be multiplied into each column of B. In other words, if 4 is m by n, and B is n
by p, then multiplication is possible, and the product AB will be m by p.

We now describe how to find the entry in row i and column j of AB.

1C The i, jentry of AB is the inner product of the ith row of 4 and the jth column
of B. For the example in Fig. 1.6,

(AB)3; = a31by2 + a35b;55 + a33b35 + a34bys. (4)
3 by 4 matrix 4 by 2 matrix 3 by 2 matrix
dyp 4yp
dz1 _Gry -

Fig. 1.6. An illustration of matrix multiplication.

Note. We write AB when the matrices have nothing special to do with Gaussian
elimination. Our earlier example was EA, because of the “elementary” matrix E;
later it will be PA, or LU, or even LDU. In every case we use the same general
rule for matrix multiplication.

2 3|1 2 0| |17 1 0
4 0|5 -1 0f [ 4 8 0Ff
The entry 17 is (2)(1) + (3)(5), the inner product of the first row and first column.

The entry 8 is (4)(2) + (0)(— 1), from the second row and second column. The third
column is zero in B, so it is zero in AB.

1 olls )= 3]

The matrix on the left produced a row exchange in the matrix on the right.

EXAMPLE 1

EXAMPLE 2




1.4 Matrix Notation and Matrix Multiplication 25

EXAMPLE 3 The identity matrix leaves every vector unchanged, and it also leaves
every matrix unchanged:

IA=A4 and Bl = B.

EXAMPLE 4

AB_IOab_ a b
12 3(le d| |2a+3c 2b+3d|

By columns, this illustrates the property we hoped for. B consists of two columns
side by side, and 4 multiplies each of them separately. Therefore each column of
AB is a combination of the columns of A. Just as in a matrix-vector multiplication,
the columns of A are multiplied by the individual numbers (or letters) in B. The
first column of AB is “a” times column 1 plus “c” times column 2.

Now we ask about the rows of AB. The multiplication can also be done a row
at a time. The second row of the answer uses the numbers 2 and 3 from the second
row of A. Those numbers multiply the rows of B, to give 2[a b] + 3[c d].
Similarly the first row of the answer uses the numbers 1 and 0, to give 1[a b] +
O[c d]. Exactly as in elimination, where all this started, each row of 4B is a
combination of the rows of B.

We summarize these three different ways to look at matrix multiplication.

1D (i) Each entry of AB is the product of a row and a column:
(AB);; = row i of A times column j of B
(i) Each column of 4B is the product of a matrix and a column:
column j of AB = A times column j of B
(iii) Each row of 4B is the product of a row and a matrix:

row i of AB = row i of A times B.

This observation is useful in verifying one of the key properties of matrix multi-
plication. Suppose we are given three matrices 4, B, and C, possibly rectangular,
and suppose their shapes permit them to be multiplied in that order: The number
of columns in 4 and B match, respectively, the number of rows in B and C. Then
the property is this:

1E Matrix multiplication is associative: (4B)C = A(BC).
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If C happens to be just a vector (a matrix with only one column) this is the require-
ment (EA)x = E(Ax) mentioned earlier. It is the whole basis for the laws of matrix
multiplication. And if C has several columns, we have only to think of them placed
side by side, and apply the same rule several times. Thus parentheses are not
needed when we have a product of several matrices. This can also be verified by
comparing each entry of (4B)C and A(BC) (Ex. 1.4.20); but you will see why matrix
notation is preferred.

We want to get on with the connection between matrix multiplication and
Gaussian elimination, but there are two more properties to mention first—one
property that matrix multiplication has, and another which it does not have. The
property that it does possess is:

1F Matrix operations are distributive:
AB + C) = AB + AC and (B+ C)D = BD + CD.

Of course the shapes of these matrices must be property matched—B and C
have the same shape, so they can be added, and A and D are the right size for
premultiplication and postmultiplication. The proof of this law is too boring for
words.

The property that fails to hold is a little more interesting:

1G Matrix multiplication is not commutative: Usually FE # EF.

EXAMPLE 5 Suppose E is the matrix introduced earlier, to subtract twice the first
equation from the second—and suppose F is the matrix for the next step, to add
row 1 to row 3:

1 00 1 0 0
E=|-2 10 and F=|0 1 0.
0 0 1 1 0 1
These two matrices do commute:
1 0 0
EF= (-2 1 0|=FE.
1 0 1

That product does both steps—in either order, or both at once, because in this
special case the order doesn’t matter.

EXAMPLE 6 Suppose E is the same but G is the matrix for the final step—it adds
row 2 to row 3. Now the order makes a difference. In one case, where we apply
E and then G, the second equation is altered before it affects the third. That is the
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order actually met in elimination. The first equation affects the second which affects
the third. If E comes after G, then the third equation feels no effect from the first.
You will see a zero in the (3, 1) entry of EG, where there is a —2 in GE:

1 00 1 00 1 00 1 00
GE=]0 1 Of}|-2 1 O|=]-2 1 0 but EG=|-2 1 0].
011 0 0 1 -2 1 1 0 1 1

Thus EG # GE. A random example would almost certainly have shown the same
thing—most matrices don’t commute—but here the matrices have meaning. There
was a reason for EF = FE, and a reason for EG # GE. It is worth taking one
more step, to see what happens with all three elimination matrices at once:

| 1 00 1 00
| GFE={-2 1 0 and EFG=|-2 1 0].
| -1 1 1 111

The product GFE is in the true order of elimination. It is the matrix that takes
the original A to the upper triangular U. We will see it again in the next section.
The other matrix EFG is nicer, because in that order the numbers —2 from E,
1 from F, and 1 from G were not disturbed. They went straight into the product.
Unfortunately it is the wrong order for elimination. But fortunately it is the right
order for reversing the elimination steps—which also comes in the next section.
Notice that the product of lower triangular matrices is again lower triangular.

EXERCISES

141  Compute the products

4 0 1}l3 1 00 5 5 ol

0 1l 0|4 and |O 1 O] |—2]| and |:1 3:l [J

4 0 1|5 0 0 1 3 )
Draw a pair of perpendicular axes and mark off the vectors to the points x = 2,
y=1and x =0, y = 3. Add the two vectors by completing the parallelogram.

1.4.2 Working a column at a time, compute the products

41 1 2 3]j0 4 3|,
51 [3} and |4 5 6|/ 1| and |6 6 [f}
6 1 7 8 940 8§ 9|

1.43 Find two inner products and a matrix product:

1 3 !
] [1 -2 71| -2| and [t =2 7]|5| and | —2|[3 5 1].

i 7 1 7

i The first gives the length of the vector (squared).
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1.4.9

1.4.10
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If an m by n matrix A multiplies an n-dimensional vector x, how many separate
multiplications are involved? What if 4 multiplies an n by p matrix B?

Compute the product

3 -6 0112
Ax =10 2 =211t
1 -1 —1]|1

For this matrix 4, find a solution vector x to the system Ax = 0, with zeros on the
right side of all three equations. Can you {ind more than one solution?

Write down the 3 by 2 matrices A and B which have entries a;; =1 +j and
bij =(- I)Hj-

Express the inner product of the row vector y = vy v2 o y,] and the column
vector x in summation notation.

Give 3 by 3 examples (not just 4 = 0) of

(a) a diagonal matrix: a;; = 0if i #J,

(b) a symmetric matrix: a;; = a; for all i and j;

(c) an upper triangular matrix: a; =0 ifi>J;

(d) a skew-symmetric matrix: d4; = —d;i for all i and j.

Do the following subroutines multiply Ax by rows or columns?

PO 101 =1,N DO 103 = 1N
DO 10J = 1N DO 101 = 1,N
10 BO) = B + ALY * X() 10 B = B + AL * X(J)

The results are mathematically equivalent, assuming that initially all B(I) = 0, but
the structure of FORTRAN makes the second code slightly more efficient (Appendix
C). It is much more efficient on a vector machine like the CRAY, since the inner
loop can change many B(I) at once-—where the first code makes many changes to
a single B(I) and does not vectorize.

1f the entries of A are a;j, use subscript notation to write down
(1) the first pivot

(2) the multiplier I, of row 1 to be subtracted from row i

(3) the new entry that replaces a;; after that subtraction

(4) the second pivot.

True or false; give a specific counterexample when false.

(a) 1If the first and third columns of B are the same, so are the first and third col-
umns of AB.

(b) If the first and third rows of B are the same, so are the first and third rows of
AB.

(c) 1f the first and third rows of A are the same, SO ar¢ the first and third rows of
AB.

(d) (AB) = A*B




1.4.12

1.4.13

1.4.14

1.4.15

1.4.16

‘ 1417

1.4.18

1.4.19

1.4.20

1.4.21

1.4 Matrix Notation and Matrix Multiplication 29

The first row of AB is a linear combination of all the rows of B. What are the coeffi-
cients in this combination, and what is the first row of AB, if

A_z 1 4 5
o —1 1 B

The product of two lower triangular matrices is again lower triangular (all its entries
above the main diagonal are zero). Confirm this with a 3 by 3 example, and then
explain how it follows from the laws of matrix multiplication.

?

—_ O .

1
1
0

By trial and error find examples of 2 by 2 matrices such that
(a) 4% = —1I, A having only real entries;

(b) B? =0, although B # 0;

(c) CD = —DC, not allowing the case CD = 0;

(d) EF =0, although no entries of E or F are zero.

Describe the rows of EA and the columns of AEf E=[} ]}
Check the associative law (EF)G = E(FG) for the matrices in the text.

Suppose A commutes with every 2 by 2 matrix (4B = BA), and in particular

a b . 10 0 1
A= commutes with B, = and B, = .
c d 0 0 0 0

Show that a = d and b = ¢ = 0. If AB = BA for all matrices B, then A is a multiple
of the identity.

Let x be the column vector with components 1,0, . .., 0. Show that the rule (4B)x =
A(Bx) forces the first column of AB to equal A times the first column of B.

Which of the following matrices are guaranteed to equal (4 + B)??
(B+A)?, A>+24B+B?, A(A+B)+B(A+ B), (A+B)(B+A), A*+ AB+ BA+ B~
In summation notation, the i, j entry of AB is

(A B)ij = Z aikbkj'
x

If A and B are n by n matrices with all entries equal to 1, find (4B),;.
The same notation turns the associative law (4B)C = A(BC) into

)3 (; a,—kbk]) ey = ; ay (; bkjcj,>.

J

Compute both sides if C is also n by n, with every ¢; = 2.

There is a fourth way of looking at matrix multiplication, as columns times rows.
If the columns of 4 are ¢y, ..., ¢, and the rows of B are the row vectors ry, ..., r,,
then ¢,r, is a matrix and

AB=ciri +cory + -+ ¢ty

(a) Give a 2 by 2 example of this rule for matrix multiplication.
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(b) Explain why the right side gives the correct value Yoy agh,; for the entry
(AB),;.

The matrices that “rotate” the x-y plane are
cos ) —sinf
AO) = .
) [Sin 0 cos 0:|
(a) Verify A(0)A(0,) = A(0, + 6,) from the identities for cos(f; + 0,) and

sin(0, + 0,).
(b) What is A(0) times A(—0)?
For the matrices

T I P c-an=[} 7}

find all the powers 42, A% (which is A* times A), . .. and B2, B3 ...and C2, C%, ...

(ST ST

(TSNS
No— R
[CYSNI

More general than multiplication by columns is block multiplication. If matrices are
separated into blocks (submatrices) and their shapes make block multiplication pos-
sible, then it is allowed:

X
X X | X X X {X
l:X X‘X X] X X
X X | X X X | X or e or
X Xi1X X X X
X x|x X X|X -
X X

(a) Replace those x’s by numbers and confirm that block multiplication succeeds.
(b) Give two more examples (with x7s) if A is 3 by 4 and Bis 4 by 2. Vertical cuts
in A must be matched by horizontal cuts in B.
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TRIANGULAR FACTORS AND ROW EXCHANGES B 1.5

We want to look again at elimination, to see what it means in terms of matrices.
The starting point was the system Ax = b:

| 2 1 1 u 5
Ax=| 4 —-6 0l||lv|=]|-2|=0 (1)
~2 7 2||w 9

Then there were three elimination steps:

(i) Subtract 2 times the first equation from the second;
(i) Subtract —1 times the first equation from the third;
(i) Subtract —1 times the second equation from the third.

The result was an equivalent but simpler system, with a new coefficient matrix U:

2 1 1]l u 5
Ux=0 -8 =-2]|v|=|-12|=c (2)
0 0 1w 2

This matrix U is upper triangular—all entries below the diagonal are zero.
The right side, which is a new vector ¢, was derived from the original vector b
by the same steps that took A4 into U. Thus, forward elimination amounted to:

Start with 4 and b
Apply steps (i), (ii), (iii) in that order
End with U and c.

The last stage is the solution of Ux = ¢ by back-substitution, but for the moment
we are not concerned with that. We concentrate on the relation of 4 to U.

The matrices E for step (i), F for step (ii), and G for step (iii) were introduced
in the previous section. They are called elementary matrices, and it is easy to see
how they work. To subtract a multiple [ of equation j from equation i, put the
number —/ into the (i, j) position. Otherwise keep the identity matrix, with 1’s on
the diagonal and 0’s elsewhere. Then matrix multiplication executes the step.

The result of all three steps is GFEA = U. Note that E is the first to multiply
A, then F, then G. We could multiply GFE together to find the single matrix
that takes 4 to U (and also takes b to ¢). Omitting the zeros it is

1 1 1 1
GFE = 1 | -2 1 =|-2 1 . 3)
1 1|1 1 1 -1 1 1
This is good, but the most important question is exactly the opposite: How would
we get from U back to A? How can we undo the steps of Gaussian elimination?

A single step, say step (i), is not hard to undo. Instead of subtracting, we add
twice the first row to the second. (Not twice the second row to the first!) The result
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of doing both the subtraction and the addition is to bring back the identity matrix:

1 00 1 00 1 00
21 0[|-2 1 0|=|0 1 0} 4)
0 0 1 0 0 1 0 0 1

One operation cancels the other. In matrix terms, one matrix is the inverse of
the other. If the elementary matrix E has the number —I in the (i,j) position,
then its inverse has +1 in that position.t That matrix is denoted by E~'. Thus
E~! times E is the identity matrix; that is equation (4).

We can invert each step of elimination, by using E~'and F~!' and G™'. The
final problem is to undo the whole process at once, and see what matrix takes
U back to A. Notice that since step (iii) was last in going from A to U, its matrix
G must be the first to be inverted in the reverse direction. Inverses come in the
opposite order, so the second reverse step is F~! and the last is E~ s

E-'F1G'U = A. (5)

You can mentally substitute GFEA for U, to see how the inverses knock out the
original steps.

Now we recognize the matrix that takes U back to A. It has to be E"'F'G™1,
and it is the key to elimination. It is the link between the A we start with and
the U we reach. It is called L, because it is lower triangular. But it also has a
special property that can be seen only by multiplying it out:

1 1 1 1
2 1 1 1 = 2 1 = L. (6)
1] |-1 1 —1 1 -1 -1 1

Certainly L is lower triangular, with U’s on the main diagonal and 0’s above. The
special thing is that the entries below the diagonal are exactly the multipliers =2,
—1, and — 1. Normally we expect, when matrices are multiplied, that there is no
direct way to read off the answer. Here the matrices come in just the right order
so that their product can be written down immediately. If the computer stores each
multiplier /;;—the number that multiplies the pivot row when it is subtracted
from row i, and produces a zero in the i, j position—then these multipliers give
a complete record of climination. They fit right into the matrix L that takes U
back to A.

1H (Triangular factorization A = LU): If no row exchanges are required. the
original matrix A4 can be written as a product A = LU. The matrix L is lower
triangular, with 1’s on the diagonal and the multipliers ;; (taken from elimination)

below the diagonal. U is the upper triangular matrix which appears after forward
climination and before back-substitution; its diagonal entries are the pivots.

+ Most matrices are not so easy to invert! We present inverses more systematically in the
next section, but I think it’s not bad to see the simplest case here.
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EXAMPLE 1

1 2 1 2 . 1 0
A=|:3 4} goes to U:[O _2} with L—[3 I:I.

EXAMPLE 2 (which needs a row exchange)

0 2
A= [3 4] cannot be factored into A4 = LU

EXAMPLE 3 (with all pivots and multipliers equal to 1)

1 1 1 1 0 O[1 1 1
A=(1 2 2|=(1 1 0|0 1 1|=LU
1 2 3 I 1t 1§{0 0 1

There are subtractions from A4 to U, and additions from U to A.

EXAMPLE 4 (when U is the identity and L is the same as A)

1 0 0
A=|L, 1 0|
131 l32 1
The elimination steps are (i) E subtracts /,; times row 1 from row 2 (ii) F sub-
tracts [, times row 1 from row 3 (iii) G subtracts /5, times row 2 from row 3.

The result is the identity matrix: in this example U = I. In the reverse direction,
if our rule is correct, the inverses should bring back A4:

E~ " applied to (F ! applied to (G~ ! applied to I)) = A.
1 1 1
L, 1 times 1 times 1 times I = A.
1 L, 1 Iy, 1

The order is right to avoid interactions between the matrices. Note that paren-
theses were not necessary because of the associative law.

A = LU: The n by n case

That factorization A = LU is so important that we ought to say more. It used
| to be missing in linear algebra courses, especially if they concentrated on the
| abstract side. Or maybe it was thought to be too hard—but you have got it. If

the last Example 4 is pushed one step further, to allow any U instead of the par-
| ticular case U = I, it becomes possible to see how the rule works in general. Then
| we need to say how this LU factorization is used in practice.
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The rule is that the matrix L, applied to U, brings back A:

1 0 Ol[rowlofU
l,, 1 Of|lrow2ofU|= A. (N
iy 1y, 1]{row3 of U

The proof is to apply the steps of elimination. On the right side they will take A
to U. We show that they do the same to the left side; they wipe out L. Since
both sides of (7) lead to the same U, and the steps to get there are all reversible,
those two sides are equal and (7) is correct.

1,,. The second operation subtracts I3, times row 1 from row 3. The third sub-
\ tracts l5, times the new row 2 (which is 0, 1, 0) from row 3. The order is right,

\ The first step subtracts [,; times (1,0, 0) from the second row, which removes

and we now have the identity matrix. The associative law allows us to carry
) along the matrix U in all those multiplications. At the end, when L has been
‘ changed to I, only U is left. This confirms that both sides of (7) end up equal
| to U-—so they must be equal now.

This factorization A = LU is so crucial, and so beautiful, that the exercises suggest
a second approach. We are writing down 3 by 3 matrices, but you can see how the
arguments apply to larger matrices. A third proof reaches A = LU by induction,
reducing every n by n problem to the next lower order n — 1. My textbook Intro-
duction to Applied Mathematics shows how elimination peels off a simple matrix
at every step, and the sum of those matrices is exactly 4 = LU. Here we give one
more example and then put A = LU to use.

EXAMPLE (A = LU, with zeros in the empty spaces)

1 -1 1 -
—1 — _ _
i 2 -1 - 1 -1 |
1 2 -1 ~1 1 1 -1
12 —1 1 1

That shows how a matrix with three nonzero diagonals has factors with two non-
zero diagonals. This example comes from an important problem in differential
equations (Section 1.7).

One Linear System = Two Triangular Systems

There is a serious practical point about A = LU. It is more than just a record of
elimination steps; it also gives the right matrices to complete the solution of Ax = b.
In fact A could be thrown away, when L and U are known. We go from b to ¢ by
forward elimination (that uses L) and we g0 from ¢ to x by back-substitution (that
uses U). We can and should do without A, when its factors have been found.




1.5 Triangular Factors and Row Exchanges 35

In matrix terms, elimination splits Ax = b into two triangular systems:
first Lc=b andthen Ux=c. (8)

This is identical to Ax = b. Multiply the second equation by L to give LUx = Lc,
which is Ax = b. Each triangular system is quickly solved. That is exactly what
elimination does, and a good code does it in that order:

" 1. Factor (from A find L and U) o
\i Solve (from L and U and b find x) |

The separation of these steps means that a whole series of right hand sides can
be processed. The subroutine solve obeys equation (8). It solves the two triangular
systems in n?/2 steps each. The solution for any new right side b’ can be found
in only n? operations. That is far below the n3/3 steps needed to factor A on the
left hand side.

EXAMPLE (the previous example with a right side b)

X{— X, =1
— 2x, — =1
Ax=b X1t X 3 splits into two systems
— X+ 2x3— Xx,=1
— X3+ 2x,=1
¢, =1 1
—c g 1 . 2
Le=b Gt which gives ¢ =
—¢cy + 05 =1 3
—cy e, =1 |4
X, — X, =1 [10
X; — =2 9
Ux=c X2 3 which gives x =
X3 — Xy = 7
x, =4 L 4

For these special “band matrices” the operation count drops down to 2n. You see
how Lc = b is solved forward; it is precisely what happens during elimination. Then
Ux = c is solved by back-substitution—as always.

Remark 1 The LU form is “unsymmetric” in one respect: U has the pivots along
its main diagonal, where L always has 1’s. This is easy to correct. We divide out

of U a diagonal matrix D made up entirely of the pivots dy, d,, ..., d,.
d, U oug,/dy ug3/dy
U— d, 1 Uy3/d, 9
d 1
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In the last example all pivots were d; = 1. In that case D is the identity matrix
and this present remark has no importance. But that was very exceptional, and
normally LDU is different from LU.

The triangular factorization is often written A = LD U, where L and U have 1’s
on the diagonal and D is the diagonal matrix of pivots.

It is conventional, although completely confusing, to go on denoting this new upper
triangular matrix by the same letter U. Whenever you see LDU, it is understood
that U has 1’s on the diagonal—in other words that each row was divided by the
pivot. Then L and U are treated evenly. An example is

T Y| L [ s

That has the 1’s on the diagonals of L and U, and the pivots 1 and —2 in D.

Remark 2 We may have given the impression, in describing each step of the
elimination process, that there was no freedom to do the calculations in a different
order. That is wrong. There is some freedom, and there is a “Crout algorithm”
which arranges the calculations in a slightly different way. But there is certainly
not complete freedom since row operations in a random order could easily destroy
at one step the zeros that were created at a previous step. And also, there is no
freedom in the final L, D, and U. That is our main point:

‘1 IfA=L,D,U,and 4 = L,D,U,, where the L's are lower triangular with unit
diagonal, the U’s are upper triangular with unit diagonal, and the D’s are diagonal
matrices with no zeros on the diagonal, then L, =L,, D, =D,, Uy =U,. The
'LDU factorization and the LU factorization are uniquely determined by 4.

The proof is a good exercise with inverse matrices, in the next section.

Row Exchanges and Permutation Matrices

We now have to face a problem that has so far been avoided: the number we
expect to use as a pivot might be zero. This could occur in the middle of a calcula-
tion, or it can happen at the very beginning (in case a,; = 0). A simple example is

BHIHE!

The difficulty is clear; no multiple of the first equation will remove the coefficient 3.
The remedy is equally clear. Exchange\the two equations, moving the entry 3
up into the pivot. In this simple case the matrix would then be upper triangular

RS AT SRR SR
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already, and the system

3u+4v=b,
2v=bh,

can be solved immediately by back-substitution.
To express this in matrix terms, we need to find the permutation matrix that
produces the row exchange. Tt is
P 0 1
oo

and multiplying by P does exchange the rows:

e[ 2L

P has the same effect on b, exchanging b, and b,; the new system is PAx = Pb.
The unknowns u and v are not reversed in a row exchange.
Now we go to a more difficult case. Suppose A is a 3 by 3 matrix of the form
0 a b
A=]0 0 ¢
d e f
A zero in the pivot location raises two possibilities: The trouble may be easy to
fix, or it may be serious. This is decided by looking below the zero. If there is a
nonzero entry lower down in the same column, then a row exchange is carried
out; the nonzero entry becomes the needed pivot, and elimination can get going
again.t In our case everything depends on the number d. If d = 0, the problem is
incurable and the matrix is singular. There is no hope for a unique solution. If
d is not zero, an exchange of rows 1 and 3 will move d into the pivot, and stage 1
is complete. However the next pivot position also contains a zero. The number a
is now below it (the e above it is useless), and if a is not zero then another row
exchange is called for. The first permutation P, and this second permutation P,,
are produced by the matrices

0 0 1 1 00
Pi;=10 1 0 and P,;=10 0 1]
1 00 010

They can be found by a neat trick: apply the permutation to the identity matrix.
For example P,;I = P,; must be the identity matrix with rows | and 3 reversed.

+ In practice, we also consider a row exchange when the original pivot is near zero—even
if it is not exactly zero. Choosing a larger pivot reduces the roundoff error.
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One more point: There is a permutation matrix that will do both of the row
exchanges at once. It is the product of the two separate permutations (with P,
acting first!):

1 0 0|[0 0 1 00 1
P,sPis=|0 0 1|0 1 o|=|1 0 0|=P.
01 0]/t oo|] |010

If we had known what to do, we could have multiplied our matrix by P in the
first place. Then elimination would have no difficulty with PA; it was only that
the original order was unfortunate. With the rows in the right order,
d f
PA=|0 b | is already triangular.
0 &

S Q@ ®

The fact that it is triangular is an accident; usually there is elimination left to
do. But the main point is this: If elimination can be completed with the help of
row exchanges, then we can imagine that those exchanges are done ahead of time.
That produces PA, and this matrix will not need row exchanges. Elimination works
with whole rows, and now they are in an order that produces nonzeros in the pivot
positions. In other words, PA allows the standard factorization into L times U.
The theory of Gaussian elimination can be summarized as follows:

1J In the nonsingular case, there is a permutation matrix P that reorders the rows
of A to avoid zeros in the pivot positions. In this case

(1) Ax = b has a unique solution
(2) itis found by elimination with row exchanges
(3) with the rows reordered in advance, PA can be factored into LU.

Note that a permutation matrix P has the same rows as the identity, in some
order. In fact P =1 is the simplest and most common permutation matrix (it
exchanges nothing). The product of two permutation matrices is another permu-
tation. And they need not commute: P,; times P,5, multiplied in the opposite
order from the example above, would have given a different P.

Remark You have to be careful with L. Suppose elimination subtracts row 1

from row 2, creating l,; = 1. Then suppose it exchanges rows 2 and 3. If that
exchange is done in advance, the multiplier will change to I3, =1 in PA = LU.}

t Algebraists tell me that P should go between L and U, keeping [,; = 1, but it’s too late.

g e e
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1 1
EXAMPLE A =11 3

l
=

1 1 1 1 1 11
1 -10 0 2/-10 3 6
5 0 3 6 0 0 2

L .

o0

With the rows exchanged, we recover LU—but now I3, =1 and [,, = 2:

1 0 0] 1 00
P={0 0 1 and L=}2 1 0 and PA=LU.
010 1 0 1

To summarize: A good code for Gaussian elimination keeps a record of L and
U and P. Those matrices carry the information that originally came in A—and
they carry it in a more usable form. They allow the solution of Ax = b from two
triangular systems. They are the practical equivalent of the calculation we do
next—to find the inverse matrix and the solution x = A~ 'b.

EXERCISES

1.51  When is an upper triangular matrix nonsingular?

152  What multiple of row 2 of A will elimination subtract from row 3?

1 0 ol[5 7 8
A=12 1 0llo 2 3|
1 4 1]lo 0 6

What will be the pivots? Will a row exchange be required?
1.53  Multiply the matrix L = E"'F~'G ™! in equation (6) by GFE in equation (3):

1 00 1 00
2 1 0 times | =2 1 0.
-1 =1 1 -1 1 1

Multiply also in the opposite order. Why are the answers what they are?
1.54  Apply elimination to produce the factors L and U for
5 311 111
A=|: ] and A= (1 3 1| and A= |1 4 4}.
11 3 1 4 8

155 Factor A into LU, and write down the upper triangular system Ux = ¢ which
appears after elimination, for

2 3 3| |u 2
Ax=10 5 7] |v|=12].
6 9 8 5

W
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1.5.6

157

1.5.8

1.5.9

1.5.10

1.5.11

U——————

1 Matrices and Gaussian Elimination

Find E? and E® and E™ ' if

Find the products FGH and HGF if (with upper triangular zeros omitted)

, G= , H=

o o o =

1

0 1
0 2
0 0

o O =

1
0
0

o O =

1 1 1
0 1 01 21

(Second proof of A = LU) The third row of U comes from the third row of A by
subtracting multiples of rows 1 and 2 (of U
row 3 of U = row 3 of A4 — l3,(row 1 of U) — I5y(row 2 of U).

(a) Why are rows of U subtracted off and not rows of A? Answer: Because by the
time a pivot row is vsed, . ..

(b) The equation above is the same as
row 3 of A = I, (row 1 of U) + I,(row 2 of U) + 1(row 3 of U).

Which rule for matrix multiplication (shaded in iD) makes this exactly row 3of L
times U?

The other rows of LU agree similarly with the rows of A.

(a) Under what conditions is A nonsingular, if A is the product

10 0] [d 1 -1 0
A=|-1 t 0 d, o 1 —1|?
0o -1 1 dllo o 1

(b) Solve the system Ax = b starting with Le = b:

1 0 0)[q 0
1 1 ollel=lo}=0b
0 -1 1]]e 1

(a) Why does it take approximately n%j2 multiplication-subtraction steps to solve
each of Lc = b and Ux = ¢?

(b) How many steps does elimination use in solving 10 systems with the same 60
by 60 coefficient matrix A?

1 0 0l[2 4 4)|u 2
Solve LUx=1{t 1 O 01 2| |v}=]|0
1o 1j{o o 1) {w] 12

without multiplying LU to find 4.
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1.5.12

1.5.13

1.5.14

1.5.15

1.5.16

1.5.17

1.5.18

1.5.19

How could you factor A4 into a product UL, upper triangular times lower triangular?
Would they be the same factors as in A = LU?

Solve by elimination, exchanging rows when necessary:

u+4dv+2w= -2 v+w=0
—2u —8v 4+ 3w= 32 and u-+v =
v+ w= 1 ut+ov+w=1

Which permutation matrices are required?

Write down all six of the 3 by 3 permutation matrices, including P = I. Identify
their inverses, which are also permutation matrices—they satisfy PP~! = I and are
on the same list.

Find the PA = LDU factorizations (and check them) for
01 1 1 2 1
A=1|1 0 1 and A=1(2 4 2.
2 3 4 11 1
Find a nonsingular 4 by 4 matrix that requires three row exchanges to reach the end
of elimination. If possible, let the example be a permutation matrix.
In the LPU order that algebraists prefer, elimination exchanges rows only at the end:

11 1 11 10 ot 1 1
A= I 3|-(0 0 2|=PU=|0 0 1|]|0 3 6].
5 8 0 3 6 0 1 0f{0 0 2

What is L is this case? Unlike PA = LU and the example after 1J, the multipliers stay

in place (I,; is 1 and [y, is 2).

Decide whether the following systems are singular or nonsingular, and whether they
have no solution, one solution, or infinitely many solutions:

v—w=2 v—-w=0 v+ w=
u—v =2 and u—v =0 and u+vo =1
u —w=2 u —w=0 u +w=1

Which values of a, b, ¢ lead to row exchanges, and which make the matrices

and A:C2.
6 4

singular?

v 00 N
wv oW O
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1.6 M INVERSES AND TRANSPOSES

The inverse of an n by n matrix is another n by n matrix. If the first matrix is 4,
its inverse is written A~ ' (and pronounced “A inverse”). The fundamental property
is simple: If you multiply by A and then multiply by A™', you are back where you
started:

if Ax=bh then A 'b=x

Thus A~ 'Ax = x. The matrix A times the matrix A~ ! is the identity matrix. But
not all matrices have inverses. The problem comes when Ax is zero, but x is non-
zero. The inverse would have to get back from Ax to x. No matrix can multiply
the zero vector and produce a nonzero vector—in this case 4~ " will not exist.
Our goals are to define the inverse and compute it and use it, in the cases when
it exists—and then to understand which matrices have inverses.

1K The matrix A is invertible if there exists a matrix B such that BA =1 and
AB = I. There is at most onc such B, called the inverse of A and denoted by 4™ :

A 'd=1 and A4 =1 n

Note I There could not be two different inverses, because if BA = I and AC =1
then we have

B = B(AC) = (BA)C = C.

If there is a left-inverse and a right-inverse (B multiplies from the left and C from
the right) then they are the same.

Note 2 The inverse of A-1is A itself. It satisfies equation (n!

Note 3 A 1 by 1 matrix is invertible when it is not zero: if 4 = [a] then A™" = |
[1/a]. The inverse of a 2 by 2 matrix can be written down once and for all (provided

ad — bc is not zero):
a b7t 1 d —b
c d T ad —be | —c al

Note4 A diagonal matrix is invertible when none of its diagonal entries are zero:

d 1/d,
it A= then A~'= . .
d, 1/d,
Note 5 The 2 by 2 matrix A4 = [} 11 is not invertible. The columns of B times

A are certain to be the same, and they cannot be the two columns of I—which
are different. (You will see other and better reasons why this A is not invertible).

94 Aun?ﬂ-bﬁrf-‘mmm»aimimmkitma;@u‘-x:m,t:mq:mnm-)mmmzmuw;:M!!ﬂeﬁ?ﬁ‘{mwﬁmﬂﬁmw s R
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When two matrices are involved, not much can be done about the inverse of
A + B. The sum might or might not be invertible, independent of the separate
invertibility of 4 and B. Instead, it is the inverse of their product AB which is the
key formula in matrix computations. For ordinary numbers the situation is the
same: (a + b)~! is hard to simplify, while 1/ab splits into 1/a times 1/b. But for
matrices the order of multiplication must be correct—if ABx = y then Bx = A~ 'y
and x = B"'47 'y, which shows how the inverses come in reverse order.

1L A product AB of invertible matrices has an inverse. It is found by multiplying
the individual inverses in reverse order:

(AB)"! =B 1471, 2)

Proof To show that B~*A ! is the inverse of AB, we multiply them and use the
associative law to remove parentheses:

L (ABB™'A™Y)Y=ABB 'A ' =AIA ' = AA ' =1
! (B"'A™Y)(4AB)=B 'A"'AB=B 'IB=B 'B=1
| A similar rule holds with three or more matrices:

(ABCYy"*=C B 1471,

We saw the change of order earlier, when the elementary matrices E, F, G in
elimination were inverted to come back from U to A. In the forward direction,
GFEA was U. In the backward direction, L = E"'F~1G~! was the product of the
inverses. Since G was last to be applied to 4, G™! comes first.

A matrix equation like GFEA = U can be multiplied through by G~ ! (on the
left) or A~ (on the right) or U ™! (on either side). If we needed A1, it would be
U~ 'GFE. Please check that, it’s easy to get wrong.

The Calculation of A~

Consider the equation A4~ = I. If it is taken a column at a time, that equation
determines the columns of A~'. The first column of 4~ ! is multiplied by A4,
to yield the first column of the identity: Ax; = e,. Similarly Ax, = e, and Ax; = e;;
the e’s are the columns of I. In a 3 by 3 example, 4 times 4~ ! is

2 1 1 1 00
4 —6 Of[x; x, x3|=|e; e e3|=|0 1 0]. (3)
-2 7 2 0 0 1

Thus we have three systems of equations (or n systems) and they all have the same
coefficient matrix 4. The right sides are different, but it is possible to carry out
elimination on all systems simultaneously. This is called the Gauss-Jordan method.
Instead of stopping at U and switching to back-substitution, it continues by sub-
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tracting multiples of a row from the rows above. It produces zeros above the
diagonal as well as below, and when it reaches the identity matrix we have found
AL

The example keeps all three columns e, €3, €3, and operates on rows of length six:

EXAMPLE OF THE GAUSS-JORDAN METHOD TOFIND A™'

2 1 1 1 0 0]
[A e e e]l=| 4 —6 0 0 1 0
2 7 2 0 0 1]
T2 1 11 0 0]
-1 0 —8 -2 =2 1 0
Lo s 3 10 1]
2 1t 11 0 0
~{ 0 -8 -2 =2 1 o{=[U L'}
L o o 1 —I 1 ]

This completes the forward elimination. In the last matrix, the first three columns
give the familiar upper triangular U. The other three columns, which are the three
right-hand sides after they have been prepared for back-substitution, are the same
as L~ 1. (This is the effect of applying the elementary operations to the identity
matrix: L~ ! = GFE.) The first half of climination has gone from A to U, and now
the second half will go from U to I. Creating zeros above the pivots in the last
matrix, we reach 47"

2 1 0 2 -1 1]
[v L']-»| 0 -8 0 -4 3 2
o o0 1 -1 1 1]
2 0 0 4§ % -8
- 0 -8 0 -4 3 2
o o0 1 —1 1 1]
10 0 B —f% o
0 T T B S e R L
0 0 1 -1 1 1]

At the last step, we divided through by the pivots. The coefficient matrix in the left
half became the identity. Since A went to I, the same operations on the right half
must have carried I into A~ '. Therefore we have computed the inverse.

A note for the future: You can see the determinant — 16 appearing in the de-
nominators of 4~ 1. It is the product of the pivots (2)(—8)(1), and it enters at the
end when the rows are divided by the pivots.
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In spite of this tremendous success in computing 4~ !, [ do not recommend it.
I admit that the inverse solves A4x = b in one step instead of two:

x=A ' insteadof Lc=b and Ux=c.

We could go further and write ¢ = L™ 'band x = U "¢ = U~ !L™'b. But note that
we did not explicitly form, and in actual computation should not form, these matrices
L~' and U~'. It would be a waste of time, since it would still take the same
n?/2 operations to multiply ¢ by U ! or b by L™ '. A similar remark applies to A~ 1;
the multiplication A~ 'h would still take n® steps. It is the solution that we want,
and not all the entries in the inverse.

Remark 1 Purely out of curiosity, we might count the number of operations re-
quired to find A~ 1. The normal count for each new right-hand side is n?, half in the
forward direction and half in back-substitution. With n different right-hand sides
this makes n>, and after including the n3/3 operations on A itself, the total would
be 4n3/3.

This result is a little too high, however, because of the special form of the right
sides e;. In forward elimination, changes occur only below the 1 in the jth place.
This part has only n — j components, so the count for ¢; is effectively changed to
(n — j)?/2. Summing over all j, the total for forward elimination is n*/6. This is to
be combined with the usual n3/3 operations that are applied to 4, and the n(n?/2)
back-substitution steps that finally produce the x,—whether done separately, or
simultaneously in the Gauss-Jordan method. The final operation count for com-

puting A™" is
n3_+_n3+ n? s
—+ —+n|l—=)=n
6 3 2

This count is remarkably low. In fact, since matrix multiplication already takes n*
steps, it requires as many operations to compute A2 as it does to compute 4~ *. That
fact seems almost unbelievable (and computing 43 requires twice as many, as far
as we can see). Nevertheless, if 471 is not needed, it should not be computed.

Remark 2 In the Gauss-Jordan calculation we went all the way forward to U, be-
fore starting backward to produce zeros above the diagonal. That is like Gaussian
elimination, but other orders are possible. We could have used the second pivot
when we were there earlier, to create a zero above it as well as below it. This is not
smart. At that time the second row is virtually full, whereas near the end it has zeros
from the upward row operations that have already taken place.

Invertible = Nonsingular

Ultimately we want to know which matrices are invertible and which are not.
This is so important a question that it has several answers. In fact, each of the
first five chapters will give a different (but equivalent) test for invertibility. Some-
times the tests extend to rectangular matrices and one-sided inverses: Chapter 2
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requires independent rows or independent columns, and Chapter 3 inverts AAT or
AT A. The other chapters allow only square matrices, and look for nonzero deter-
minants or nonzero eigenvalues or nonzero pivots. This last test is the one we
meet through Gaussian elimination. We want to show (in a few more theoretical
paragraphs) that it succeeds.

Suppose a matrix has a full set of n pivots—by definition it is nonsingular. (We
mention again that pivots are nonzero.) The equation AA™! =1 gives n separate
systems Ax; = ¢; for the columns of A%, and they can be solved—by elimination
or by Gauss-Jordan. Row exchanges may be necessary, but the columns of A~ Lare
. uniquely determined.

o Strictly speaking, we have to show that the matrix 4~ ! with those columns is

‘ also a left-inverse. Solving AA~! = I has at the same time solved 4~'A4 = I, but

why? That is not a trivial question. One argument looks ahead to the next chapter:
a 1-sided inverse of a square matrix is automatically a 2-sided inverse. But we can
do without Chapter 2, by a simple observation: Every Gauss-Jordan step is a multi-
plication on the left by an elementary matrix. We are allowing three types of
elementary matrices:

1) E,;, to subtract a multiple ! of row j from row i
2) Py, to exchange rows i and j
3) D (or D7), to divide all rows by their pivots.

| The Gauss-Jordan process is really a giant sequence of matrix multiplications:

(D_l"'E"‘P"'E)AZI. 4)

That matrix in parentheses, to the left of A, is evidently a left-inverse! It exists,
it must equal the right-inverse by Note 1, and thus every nonsingular matrix is
invertible.

The converse is also true: Every invertible matrix is nonsingular. 1f A is inverti-
ble, it has n pivots. In an extreme case that is clear: If A4 has an inverse, it cannot
have a whole column of zeros. (The inverse could never multiply a column of zeros
to produce a column of the identity.) In a less extreme case, suppose elimination
starts on an invertible matrix A but breaks down at

d x x x X
0 dy, x x X
A=0 0 0 x X 5
0 0 0 x x
0 0 0 x x

This matrix cannot have an inverse, no matter what the x's are. One proof is to
use column operations (for the first time?) to make the whole third column zero.
Subtracting the right multiple of column 2, and then of column 1, we reach a
matrix that is certainly not invertible. Therefore the original A was not invertible,

oo T ———————————— e A
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and we have a contradiction. When we start with an invertible matrix, elimination
cannot break down.
Elimination gives a reliable test for the existence of 4~ !: There must be n pivots.

A square matrix is invertible if and only if it is nonsingular.

Chapter 2 will use row operations on A’, to reach a row of zeros and the same
conclusion. For some right sides, the system A’x = b has no solution. For an in-
vertible matrix, there is always the unique solution x = 4~ !b.

Transposes

We need one more matrix, and fortunately it is much simpler than the inverse.
It is called the transpose of A, and is denoted by A™. Its columns are taken directly
from the rows of A—the ith row of A becomes the ith column of A™—so it can be
constructed without any calculations:

20

2 1 4
If Az[ ]then AT=11 0
4

0 0 3 ’
3
At the same time the columns of 4 become the rows of AT. If 4 is an m by n

matrix, then A" is n by m. The final effect is to flip the matrix across its main
'\ diagonal, and the entry in row i, column j of AT comes from row j, column i of A:

[ (A7) = A ] (5)

The transpose of a lower triangular matrix is upper triangular. The transpose of
AT brings us back to A.

Now suppose there are two matrices A and B. If we add them and then transpose,
the result is the same as first transposing and then adding: (4 + B)T is the same
as A" + B". But it is not so clear what is the transpose of a product AB or an
inverse A~ 1, and those are the essential formulas of this section:

1M (i) The transpose of AB is (AB)T = BTA".
(i) The transposeof A 'is(4 Bl = (4T} |

Notice how the formula for (4B)" resembles the one for (4B)~!. In both cases we
reverse the order, giving B"A™ and B~'4~!. The proof for the inverse was easy,
but this one requires an unnatural patience with matrix multiplication. The first
row of (AB)" is the first column of 4B, which means that the columns of A are
weighted by the first column of B. Staying with rows, this amounts to the rows
of AT weighted by the first row of BT. That is exactly the first row of BTAT.

The other rows of (4AB)" and BTAT also agree.
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1 0f[3 3 3 3 3 3
AB = =
[1 1}[2 2 2} [5 5 5]

2

| 3 5
2 0 117 3 5.
2 35
To establish the formula for (41", start from 44~ ! = I and A~ '4 = I and take

transposes. On one side, I" = I. On the other side, we know from part (i) the
transpose of a product:

(A"YAT=] and ATA Y =1. (6)

EXAMPLE

W W

BTAT:

(98]

This makes (4~ !)T the inverse of AT, proving (ii).

With these rules established, we can introduce a special class of matrices, prob-
ably the most important class of all. A symmetric matrix is a matrix which equals
its own transpose. A" = A. The matrix is necessarily square, and each entry on
one side of the diagonal equals its “mirror image” on the other side: ¢;; = a;;. Two

simple examples are
A= -k and D = i
12 8 o 5]

A symmetric matrix need not be invertible; it could even be a matrix of zeros.
Nevertheless, if A~ exists it is also symmetric. From formula (ii) above, the trans-
pose of A~ ! always equals (4") ™ !; for a symmetric matrix this is just A~ '. There-
fore, in this case A~ ! equals its own transpose; it is symmetric whenever A is.

Symmetric matrices appear in every subject whose laws are fair. “Each action
has an equal and opposite reaction,” and the entry which gives the action of i
onto j is matched by the action of j onto i. We will see this symmetry in the next
section, for differential equations. Here we stick to Gaussian elimination, and look
to see what are the consequences of symmetry. Essentially, it cuts the work in half.
The calculations above the diagonal duplicate the calculations below, and the
upper triangular U is completely determined by the lower triangular L:

1N If 4 is symmetric, and if it can be factored into A = LDU without row ex-
changes to destroy the symmetry, then the upper triangular U is the transpose of
the lower triangular L. The factorization becomes A = LDL".

For proof, take the transpose of 4 = LDU; the transposes come in reverse order
to give AT = UTDTL". Since A4 is symmetric it equals AT, so we now have two
factorizations of A4 into lower triangular times diagonal times upper triangular.
(LT is upper triangular with ones on the diagonal, exactly like U). According to

11, such a factorization is unique. Therefore LT must be identical to U, which
completes the proof.

B s T
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EXAMPLE (with symmetric 4, and LT = U)

ER R ER [P | T

After every stage of elimination, the matrix in the lower right corner remains
symmetric—as it is after the first stage:

! a b ¢
a b ¢ b? be
0 d—— e—2%
b d e|— a a
N B
a a

The work of elimination is cut essentially in half by symmetry, from n3/3 to n®/6.
There is no need to store entries from both sides of the diagonal, or to store both
L and U.

EXERCISES

! 1.6.1  Find the inverses (no special system required) of

y 0 2 4 2 0 4= cos —sind
‘ U3 ool TP |4 2p P |sing cosél|
1.6.2 (a) Find the inverses of the permutation matrices
; 0 0 1 0 0 1
i P=[{0 1 0 and P=|1 0 0f.
1 00 010
(b) Explain why for permutations P! is always the same as PT, by using showing
that the 1’s are in the right places to give PPT = I.

1.6.3 From AB = C find a formula for A~ '. Do the same from PA = LU.

164 (a) If A is invertible and AB = AC, prove quickly that B = C.
(b) IfA=[5 ¢], find an example with AB = AC but B # C.

1.6.5 If the inverse of 42 is B, show that the inverse of 4 is AB. (Thus A is invertible
whenever A2 is invertible.)

1.6.6 Use the Gauss-Jordan method to invert

100 2 -1 0 0 0 1
Ay=1 1 1], A,=|-1 2 =1, a4,=|lo 1 1|
0 0 1 0 -1 2 111




1.6.8

1.6.9

1.6.10

1.6.11

1.6.12

1.6.13

1.6.14

1.6.15

1.6.16

1 Matrices and Gaussian Elimination

Find three 2 by 2 matrices, other than 4 = I and A = — I, that are their own in-
verses: A% = 1.

Show that [§ 1] has no inverse by trying to solve

B[R

When elimination fails for a singular matrix like

S O 0
NeREEN BV e N

1
3
0
0

S O O e

show that A cannot be invertible. The third row of 4™, multiplying A, should give
the third row of 4~ !4 = I. Why is this impossible?

Find the inverses (in any legal way) of

0 0 0 1 1 0 0 0 a b 0 0
00 20 —3 1 00 ¢c d 0 0
A, = , Ay = , Ay = .
1o 300 z 0 -2 10 *lo 0 a b
4 0 0 O 0 0 —3 1 0 0 ¢ d
Give examples of 4 and B such that
(i) A + B is not invertible although A and B are invertible
(i) A + B is invertible although A and B are not invertible
(i) all of 4, B, and A + B are invertible.
In the last case use A~ (4 + B)B™' = B™! + A" to show that B~ + A~ ' is also

invertible—and find a formula for its inverse.

Which properties of a matrix A are preserved by its inverse (assuming A~ exists)?
(1) A is triangular (2) A is symmetric (3) A is tridiagonal (4) all entries are whole
numbers (5) all entries are fractions (including whole numbers like 3.

If A=[3]and B =[3], compute A"B, B4, AB", and BA™.

(Important) Prove that even for rectangular matrices, AA" and ATA are always
symmetric. Show by example that they may not be equal, even for square matrices.

Show that for any square matrix B, A = B + B' is always symmetric and K =
B — BT is always skew-symmetric—which means that K™ = —K. Find these ma-
trices when B = [} 3], and write B as the sum of a symmetric matrix and a skew-
symmetric matrix.

(a) How many entries can be chosen independently, in a symmetric matrix of
order n?

(b) How many entries can be chosen independently, in a skew-symmetric matrix
of order n?
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1.6.17

1.6.18

1.6.19

1.6.20

1.6.21

1.6.22

1.6.23

(@) If A= LDU, with I’s on the diagonals of L and U, what is the corresponding
factorization of A™? Note that 4 and AT (square matrices with no row exchanges)
share the same pivots.

(b) What triangular systems will give the solution to ATy = b?

IfA=1L,D,U, and A = L,D,U,, prove that L, = L,, D, = D,,and U, = U,. If
A is invertible, the factorization is unique.

(@) Derive the equation L{ 'L,D, = D,U,U; " and explain why one side is lower
triangular and the other side is upper triangular.

(b) Compare the main diagonals in that equation, and then compare the off-
diagonals.

Under what conditions on its entries is A invertible, if

«

a b ¢ b 0O

A=1|d ¢ 0 or A= d 0

f 00 0 e

If the 3 by 3 matrix 4 has row 1 + row 2 = row 3, show that it is impossible to
solve Ax =[1 2 4] Can A be invertible?

Compute the symmetric LDLT factorization of

1 3 5

a b
A=1|3 12 18 and A= .
b d
5 18 30
Find the inverse of
1 0 00
1.0 0
A=|*

A

1 1 1 1

2 2 2

If A and B are square matrices, show that I — AB is invertible if I — BA is invertible.
Start from B(I — AB) = (I — BA)B.
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1.7 B SPECIAL MATRICES AND APPLICATIONS

In this section we have two goals. The first is to explain one way in which large
systems of linear equations can arise in practice. So far this book has not mentioned
any applications, and the truth is that to describe a large and completely realistic
problem in structural engineering or economics would lead us far aficld. But there
is one natural and important application that does not require a lot of preparation.

The other goal is to illustrate, by this same application, the special properties
that coefficient matrices frequently have. It is unusual to meet large matrices that
look as if they were constructed at random. Almost always there is a pattern,
visible even at first sight—frequently a pattern of symmetry, and of very many
zero entries. In the latter case, since a sparse matrix contains far fewer than n?
pieces of information, the computations ought to work out much more simply
than for a full matrix. We shall look particularly at band matrices, whose nonzero
entries are concentrated near the main diagonal, to see how this property is reflected
in the elimination process. In fact we look at one special band matrix.

The matrix itself can be seen in equation (6). The next paragraphs explain the
application.

Our example comes from changing a continuous problem into a discrete one.
The continuous problem will have infinitely many unknowns (it asks for u(x) at
every x), and it cannot be solved exactly on a computer. Therefore it has to be
approximated by a discrete problem-—the more unknowns we keep, the better
will be the accuracy and the greater the expense. As a simple but still very typical
continuous problem, our choice falls on the differential equation

o
dx?

This is a linear equation for the unknown function u, with inhomogeneous term
f. There is some arbitrariness left in the problem, because any combination C + Dx
could be added to any solution. The sum would constitute another solution, since
the second derivative of C + Dx contributes nothing. Therefore the uncertainty
left by these two arbitrary constants C and D will be removed by adding a “boundary
condition” at each end of the interval:

w0) =0, u(l)=0. )

= fx), 0<x<1. (1)

The result is a two-point boundary-value problem, describing not a transient but
a steady-state phenomenon—the temperature distribution in a rod, for example,
with ends fixed at 0° and with a heat source f(x).

Remember that our goal is to produce a problem that is discrete, or finite-
dimensional—in other words, a problem in linear algebra. For that reason we
cannot accept more than a finite amount of information about f, say its values
at the equally spaced points x = h, x = 2h, ..., x = nh. And what we compute
will be approximate values u, . . ., u, for the true solution u at these same points.
Attheends x = 0and x = 1 = (n + 1)k, we are already given the correct boundary
values uy =0, u, =0.
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The first question is, How do we replace the derivative d2u/dx?? Since every
derivative is a limit of difference quotients, it can be approximated by stopping at
a finite stepsize, and not permitting 4 (or Ax) to approach zero. For du/dx there are
several alternatives:

dl _ulx + h) — u(x) u(x) — u(x — hy or u(x + h) — u(x — h)
| dx h or h 2h

.3

The last, because it is symmetric about x, is actually the most accurate. For the
second derivative there is just one combination that uses only the values at x and
) x+ h

d*u_u(x + h) — 2u(x) + u(x — h) @
dx* "~ h? '

It also has the merit of being symmetric about x. To repeat, the right side approaches
the true value of d*u/dx* as h — 0, but we have to stop at a positive h.

At a typical meshpoint x = jh, the differential equation —d?u/dx? = f(x) is now
replaced by this discrete analogue (4); after multiplying through by h?,

—Uj iy + 2u; — u;_ g = h3f(jh). (5)

There are n equations of exactly this form, one for every value j = 1,..., n. The
! first and last equations include the expressions u, and u, . ,, which are not un-
| knowns—their values are the boundary conditions, and they are shifted to the
right side of the equation and contribute to the inhomogeneous terms (or at least
they might, if they were not known to equal zero). It is easy to understand (5) as
a steady-state equation, in which the flows (u; — u;, ;) coming from the right and
(u; — u; 1) coming from the left are balanced by the loss of h%f(jh) at the center.

The structure of the n equations (5) can be better visualized in matrix form
Au = b. We shall choose h =%, orn=5:

2 1 Uy S(h)

—1 2 —1 u, f(2h)
—1 2 —1 us | = h?| f(3h) |. (6)

—1 2 —11|u, f(4h)

—1 2 || us f(5h)

From now on, we will work with equation (6), and it is not essential to look back
at the source of the problem. What matters is that we have coefficient matrices
whose order n can be very large, but which are obviously very far from random.
The matrix 4 possesses many special properties, and three of those properties are
fundamental:

(1)  The matrix is tridiagonal. All its nonzero entries lie on the main diagonal
and the two adjacent diagonals. Outside this band there is nothing: a; =0 if

i —j| > 1. These zeros will bring a tremendous simplification to Gaussian
elimination.
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(2) The matrix is symmetric. Each entry a;; equals its mirror image a;;, so that
AT — A. Therefore the upper triangular U will be the transpose of the lower tri-
angular L, and the final factorization will be 4 = LDL'. This symmetry of A4
reflects the symmetry of the original differential equation. If there had been an
odd derivative like d3u/dx? or du/dx, A would not have been symmetric.

(3) The matrix is positive definite. This is an extra property to be verified as
the pivots are computed; it says that the pivots are positive. Chapter 6 will give
several equivalent definitions of positive-definiteness, most of them having nothing
to do with elimination, but symmetry with positive pivots does have one immedi-
ate consequence: Row exchanges are unnecessary both in theory and in practice.
This is in contrast to the matrix A" at the end of this section, which is not positive
definite. Without a row exchange it is totally vulnerable to roundoff.

We return to the central fact, that A is tridiagonal. What effect does this have
on elimination? To start, suppose we carry out the first stage of the elimination
process and produce zeros below the first pivot:

2 -1 2 —1
12 -1 0o 3 —1
12 -1 So—1t 2
1 2 -1 1 2 -1
-1 2 —1 2

Compared with a general 5 by 5 matrix, there were two major simplifications:

(a) There was only one nonzero entry below the pivot.

(b) This one operation was carried out on a very short row. After the multiple
l,, = —% was determined, only a single multiplication-subtraction was required.

Thus the first step was very much simplified by the zeros in the first row and
column. Furthermore, the tridiagonal pattern is preserved during elimination (in the
absence of row exchanges!).

(c) The second stage of climination, as well as every succeeding stage, also
admits the simplifications (a) and (b).

We can summarize the final result in several ways. The most revealing is to
look at the LDU factorization of A:

b
I
N —
|
Wi —

Bl —
Bl

1
_%1 6

The observations (a)-—(c) can be expressed as follows: The L and U factors of a
tridiagonal matrix are bidiagonal. These factors have more or less the same structure
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. - -

w

=LU

—

Fig. 1.7 A band matrix and its factors.

of zeros as A itself. Note too that L and U are transposes of one another, as was
expected from the symmetry, and that the pivots d; are all positive.t The pivots are
obviously converging to a limiting value of + 1, as n gets large. Such matrices make
a computer very happy.

These simplifications lead to a complete change in the usual operation count.
At each elimination stage only two operations are needed, and there are n such
stages. Therefore in place of n3/3 operations we need only 2n; the computation is
quicker by orders of magnitude. And the same is true of back-substitution; instead
of n?/2 operations we again need only 2n. Thus the number of operations for a
tridiagonal system is proportional to n, not to a higher power of n. Tridiagonal
systems Ax = b can be solved almost instantaneously.

Suppose, more generally, that 4 is a band matrix; its entries are all zero except
within the band |i — j| < w (Fig. 1.7). The “half bandwidth” is w = 1 for a diagonal
matrix, w = 2 for a tridiagonal matrix, and w = n for a full matrix. The first stage
of elimination requires w(w — 1) operations, and after this stage we still have band-
width w. Since there are about n stages, elimination on a band matrix must require
about w?n operations.

The operation count is proportional to n, and now we see that it is proportional
also to the square of w. As w approaches n, the matrix becomes full, and the count
again is roughly n’. A more exact count depends on the fact that in the lower right
corner the bandwidth is no longer w; there is not room for that many bands. The
precise number of divisions and multiplication-subtractions that produce L, D,
and U (without assuming a symmetric A) is P = iw(w — 1)(3n — 2w + 1). For a
full matrix, which has w = n, we recover P = in(n — 1)(n + 1)."" To summarize:
A band matrix A4 has triangular factors L and U that lie within the same band, and
both elimination and back-substitution are very fast.

This is our last operation count, but we must emphasize the main point. For
a finite difference matrix like A4, the inverse is a full matrix. Therefore, in solving
Ax = b, we are actually much worse off knowing A~*' than knowing L and U.

T The product of the pivots is the determinant of A: det A = 6.
11 We are happy to confirm that this P is a whole number; since n — 1, n, and n + 1 are
consecutive integers, one of them must be divisible by 3.
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Multiplying A~ by b takes n? steps, whereas 4n are sufficient to solve Lc = b
and then Ux = ¢ — the forward elimination and back-substitution that produce
x=U"1le=U"L"1p=A4"1.

We hope this example has served two purposes: to reinforce the reader’s under-
standing of the elimination sequence (which we now assume to be perfectly under-
stood!) and to provide a genuine example of the kind of large linear system that
is actually met in practice. In the next chapter we turn to the “theoretical” struc-
ture of a linear system Ax = b—the existence and the uniqueness of x.

Roundoff Error

In theory the nonsingular case is completed. Row exchanges may be necessary
to achieve a full set of pivots; then back-substitution solves Ax = b. In practice,
other row exchanges may be equally necessary—or the computed solution can
easily become worthless. We will devote two pages (entirely optional in class) to
making elimination more stable—why it is needed and how it is done.

Remember that for a system of moderate size, say 100 by 100, elimination in-
volves a third of a million operations. With each operation we must expect a
roundoff error. Normally, we keep a fixed number of significant digits (say three,
for an extremely weak computer). Then adding two numbers of different sizes gives

.345 + .00123 — 346

and the last digits in the smaller number are completely lost. The question is,
how do all these individual roundoff errors contribute to the final error in the
solution?

This is not an easy problem. It was attacked by John von Neumann, who was
the leading mathematician at the time when computers suddenly made a million
operations possible. In fact the combination of Gauss and von Neumann gives
the simple elimination algorithm a remarkably distinguished history, although
even von Neumann got a very complicated estimate of the roundoff error; it was
Wilkinson who found the right way to answer the question, and his books are
now classics.

Two simple examples, borrowed from the texts by Noble and by Forsythe and
Moler, will illustrate three important points about roundoff error. The examples are

Lol . [.0001 1.
4= [1. 1.0001] and 4 _[ 1. 1]'
The first point is:

10 Some matrices are extremely sensitive to small changes, and others are not.
The matrix A4 is ill-conditioned (that is, sensitive); A’ is well-conditioned.

T A
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Qualitatively, 4 is nearly singular while 4’ is not. If we change the last entry of
A to a,, = 1, it is singular and the two columns become the same. Consider two
very close right-hand sides for Ax = b:

u+ =2 d u+ v=2
n
u+ 1.0001v = 2 u + 1.0001v = 2.0001.

The solution to the first is u = 2, v = 0; the solution to the second is u = v = 1.

A change in the fifth digit of b was amplified to a change in the first digit of the

solution. No numerical method can avoid this sensitivity to small perturbations. The

ill-conditioning can be shifted from one place to another, but it cannot be removed.

The true solution is very sensitive, and the computed solution cannot be less so.
The second point is:

1P Even a well-conditioned matrix can be ruined by a poor algorithm.

We regret to say that for the matrix A’, a straightforward Gaussian elimination is
among the poor algorithms. Suppose .0001 is accepted as the first pivot, and 10,000
times the first row is subtracted from the second. The lower right entry becomes
—9999, but roundoff to three places gives —10,000. Every trace has disappeared
of the entry 1 which was originally there.

Consider the specific example

0001lu +v=1
u+ov=2.

After elimination the second equation should read
—9999v = —9998, or v =.99990.

Roundoff will produce — 10,0000 = — 10,000, or v = 1. So far the destruction of
the second equation is not reflected in a poor solution; v is correct to three figures.

As back-substitution continues, however, the first equation with the correct v
should be

.0001u + .9999 = 1, or u=1.
Instead, accepting the value v = 1 that is wrong only in the fourth place, we have
0001u +1 =1, or u=0.

The computed u is completely mistaken. Even though A’ is well-conditioned, a
straightforward elimination is violently unstable. The factors L, D, and U, whether
exact or approximate, are completely out of scale with the original matrix:

ra 1 07][.0001 0 1 10,000
~ 110,000 1 0 —9999 (|0 1|




58 1 Matrices and Gaussian Elimination

The small pivot .0001 brought instability, and the remedy is clear—exchange
rows. This is our third point:

1Q Just as a zero in the pivot position forced a theoretical change in elimination,
so a small pivot forces a practical change. Unless it has special assurances to the
contrary, a computer must compare each pivot with all the other possible pivots
in the same column. Choosing the largest of these candidates, and exchanging the
corresponding rows so as to make this largest value the pivot, is called partial
pivoting.

In the matrix A4’, the possible pivot .0001 would be compared with the entry below
it, which equals 1, and a row exchange would take place immediately. In matrix
terms, this is just multiplication by a permutation matrix as before. The new matrix
A" = PA’ has the factorization

A,,_11_1010 11
10001 1| [.0001 1[lO0 9999 ||0 1

The two pivots are now 1 and .9999, and they are perfectly in scale; previously
they were .0001 and —9999.

Partial pivoting is distinguished from the still more conservative strategy of
complete pivoting, which looks not only in the kth column but also in all later
columns for the largest possible pivot. With complete pivoting, not only a row
but also a column exchange is needed to move this largest value into the pivot.
(In other words, there is a renumbering of the unknowns, or a postmultiplication
by a permutation matrix.) The difficulty with being so conservative is the ex-
pense; searching through all the remaining columns is time-consuming, and partial
pivoting is quite adequate.

We have finally arrived at the fundamental algorithm of numerical linear algebra:
elimination with partial pivoting. Some further refinements, such as watching to
see whether a whole row or column needs to be rescaled, are still possible. But
essentially the reader now knows what a computer does with a system of linear
equations. Compared with the “theoretical” description— find A~ and multiply
A~ 'b—our description has consumed a lot of the reader’s time (and patience). I
wish there were an easier way to explain how x is actually found, but I do not
think there is.

EXERCISES
171 Modify the example in the text by changing from a,; = 2 to a,, = 1, and find the
LDU factorization of this new tridiagonal matrix.
1.7.2  Write down the 3 by 3 finite-difference matrix (h = }) for

d?u

—Wﬁ-u:x, u(0) = u(1) = 0.
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1.7.3

1.7.5

1.7.6

1.7.7

1.7.8

17.9

1.7.10

Find the 5 by 5 matrix A that approximates

d? d d
o, Hg=

=—(H=0
dx dx dx() ’

replacing the boundary conditions by u, = u, and us = us. Check that your matrix,
applied to the constant vector (1, 1, 1, 1, 1), yields zero; A is singular. Analogously,
show that if u(x) is a solution of the continuous problem, then so is u(x) + 1. The
two boundary conditions do not remove the uncertainty in the term C + Dx, and
the solution is not unique.

With i = § and f(x) = 4n? sin 2rx, the difference equation (5) is
2 —1 07 [u 1
n
R Y )
0 -1 2] |uy —1

Solve for uy, u,, u; and find their error in comparison with the true solution u =
sin 2mx at x =4, x = §, and x = 2.

What 5 by 5 system replaces (6) if the boundary conditions are changed to u(0) = 1,
u(l) = 0?

(recommended) Compute the inverse of the 3 by 3 Hilbert matrix

A=

Wi poj— -
P = o
Ul S E N

in two ways using the ordinary Gauss-Jordan elimination sequence: (i) by exact
computation, and (if) by rounding off cach number to three figures. Note: This is a
case where pivoting does not help; 4 is ill-conditioned and incurable.

For the same matrix, compare the right sides of Ax = b when the solutions are
x=(1,1,1) and x = (0, 6, —3.6).

Solve Ax =h =(1,0,...,0)for the 10 by 10 Hilbert matrix with ag=1/(i+j—1),
using any computer code for linear equations. Then make a small change in an
entry of 4 or b, and compare the solutions.

Compare the pivots in direct elimination to those with partial pivoting for

4 001 0
11 toool

(This is actually an example that needs rescaling before elimination.)

Explain why with partial pivoting all the multipliers l;;in L satisfy |I,] < 1. Deduce
that if the original entries of A4 satisfy la;;| < 1, then after producing zeros in the
first column all entries are bounded by 2; after k stages they are bounded by 2*.
Can you construct a 3 by 3 example with all la;] < 1 and |I;;] < 1 whose last pivot
is 47
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REVIEW EXERCISES: Chapter 1

{a) Write down the 3 by 3 matrices with entries
a;=i—]j and b;;=-.

(b) Compute the products AB and BA and 4>,

1 0 1 2
A= and B = ,
2 1 0 1

compute AB and BA and A~ ! and B " and (4B)” ..

For the matrices

Find examples of 2 by 2 matrices with a,, = % for which
(a) A*=1 by A '=A4" (c) A*=A.

Solve by elimination and back-substitution:

u +w=4 v+w=0
u+v =3 and u +w=0
ut+tv+w=56 u+v =6

Factor the preceding matrices into A = LU or PA = LU.

(a) There are sixteen 2 by 2 matrices whose entries are 1’s and 0’s. How many are
invertible?

(b) (Much harder!) If you put 1's and 0’s at random into the entries of a 10 by 10
matrix, is it more likely to be invertible or singular?

There are sixteen 2 by 2 matrices whose entries are 1's and —1's. How many are
invertible?

How are the rows of EA related to the rows of A, if

1 00 111 0 0 1
E=[{0 2 0| or E= or E=;0 1 0}?
0 0 0
4 0 1 00
Write down a 2 by 2 system with infinitely many solutions.
Find inverses if they exist, by inspection or by Gauss-Jordan:
1 0 1 21 0 1 1 =2
A=|1 1 0| and 4=|1 2 1| and A= 1 =2 1
0 11 01 2 -2 1 1

If E is 2 by 2 and it adds the first equation to the second, what are E? and E® and
8E?

True or false, with reason if true or counterexample if false:

(1) If A is invertible and its rows are in reverse order in B, then B is invertible.
(2) If A and B are symmetric then AB is symmetric.

(3) 1If 4 and B are invertible then BA is invertible.
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|
; (4) Every nonsingular matrix can be factored into the product A = LU of a lower
triangular L and an upper triangular U.

113 Solve Ax = b by solving the triangular systems Lc = b and Ux = ¢:

I 0 0|2 2 4 0
A=LU=|4 1 0]|0 1 3| b=|0]
L0 1/{0 0 1 1

What part of A~ have you found, with this particular b?

114 If possible, find 3 by 3 matrices B such that

(a) BA =2Aforevery A

(b) BA =2Bforevery A

(c) BA has the first and last rows of 4 reversed

(d) BA has the first and last columns of A4 reversed.

1.15 Find the value for ¢ in the following n by n inverse:

ita=" " then A '=

1.16 For which values of k does

kx+ y=1
x+ky=1

have no solution, one solution, or infinitely many solutions?

117 Find the symmetric factorization A = LDLT of

1 2 0
a b
A=}2 6 4 and AII:b :|
¢
0 4 11

1.18 Suppose A is the 4 by 4 identity matrix except for a vector v in column 2:

I v, 00
0 v, 00
A= .
0 v; 1 O
0 v, 0 1

(a) Factor A4 into LU, assuming v, # 0.
(b) Find 47!, which has the same form as A.

1.19 Solve by elimination, or show that there is no solution:

u+ v+ w=0 u+ v+ w=0
u+2v+3w=0 and u+ v+3w=0
3u+Su+Tw=1 3u+ 50+ Tw=1.
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1.20

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29
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The n by n permutation matrices are an important example of a “group.” If you
multiply them you stay inside the group; they have inverses in the group; the identity
is in the group; and the law P,(P,P;) = (P,P,)P; is true—because it is true for all
matrices.

(a) How many members belong to the groups of 4 by 4 and n by n permutation
matrices?

(b) Find a power k so that all 3 by 3 permutation matrices satisfy P* = I.

Describe the rows of DA and the columns of AD if D =[3 2]

(a) If A is invertible what is the inverse of 4™?
(b) 1If A is also symmetric what is the transpose of 4~ 1?
(c) Illustrate both formulas when 4 = [ 1]

By experiment with n =2 and n = 3 find

HAEH AR

Starting with a first plane u + 2v — w = 6, find the equation for

(a) the parallel plane through the origin

(b) a second plane that also contains the points (6, 0, 0) and (2, 2, 0)
(c) a third plane that meets the first and second in the point (4, 1, 0).

What multiple of row 2 is subtracted from row 3 in forward elimination of

1 0 O]t 2 0
A=(2 1 00 1 5]|?
0 5 1|10 0 1

How do you know (without multiplying those factors) that A4 is invertible, symmetric,
and tridiagonal? What are its pivots?

(a) What vector x will make Ax = column 1 + 2(column 3), for a 3 by 3 matrix A4?
(b) Construct a matrix which has column 1 + 2(column 3) = 0. Check that 4 is
singular (fewer than 3 pivots) and explain why that must happen.

True or false, with reason if true and counterexample if false:

() IfL,U, = L,U, (upper triangular U’s with nonzero diagonal, lower triangular
L’s with unit diagonal) then L, = L, and U, = U,. The LU factorization is unique.
(2) A2+ A=1Ithend '=4+1L

(3) If all diagonal entries of 4 are zero, then A is singular.

By experiment or the Gauss-Jordan method compute

t ool [t ool " [t 0o 0]
{1 of, (¢ 1 o , |l 1
m 0 1 m 0 1 0 m 1

Write down the 2 by 2 matrices which

(a) reverse the direction of every vector

(b) project every vector onto the x,-axis

{c) turn every vector counterclockwise through 90°
(d) reflect every vector through the 45° line x; = x,.
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VECTOR SPACES AND
LINEAR EQUATIONS

VECTOR SPACES AND SUBSPACES B 2.1

Elimination can simplify, one entry at a time, the linear system Ax = b. Fortunately
it also simplifies the theory. The basic questions of existence and uniqueness—Is
there one solution, or no solution, or an infinity of solutions?—are much easier
to answer after elimination. We need to devote one more section to those questions;
then that circle of ideas will be compilete. But the mechanics of elimination produces
only one kind of understanding of a linear system, and our chief object is to achieve
a different and deeper understanding. This chapter may be more difficult than the
first one. It goes to the heart of linear algebra.

First we need the concept of a vector space. To introduce that idea we start
immediately with the most important spaces. They are denoted by R, R%, R?, .. .;
there is one for every positive integer. The space R” consists of all column vectors
with n components. (The components are real numbers.) The space R? is represented
by the usual x-y plane; the two components of the vector become the x and y
coordinates of the corresponding point. R® is equally familiar, with the three
components giving a point in three-dimensional space. The one-dimensional space
R! is a line. The valuable thing for linear algebra is that the extension to n
dimensions is so straightforward; for a vector in seven-dimensional space R” we
just need to know the seven components, even if the geometry is hard to visualize.

Within these spaces, and within all vector spaces, two operations are possible:

We can add any two vectors, and we can multiply vectors by scalars.

For the spaces R” these operations are done a component at a time. If x is the
vector in R* with components 1, 0, 0, 3, then 2x is the vector with components
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2,0,0,6. A whole series of properties could be verified—the commutative law
X+ y=y+x, or the existence of a “zero vector” satisfying 0 + x = x, or the
existence of a vector “—x” satisfying —x 4+ x = 0. Out of all such properties, eight
(including those three) are fundamental; the full list is given in Exercise 2.1.5.
Formally, a real vector space is a set of “vectors” together with rules for vector
addition and multiplication by real numbers. The addition and multiplication
must produce vectors that are within the space, and they must satisfy the eight
conditions.

Normally our vectors belong to one of the spaces R”; they are ordinary column
vectors. The formal definition, however, allows us to think of other things as
vectors—provided that addition and scalar multiplication are all right. We give
three examples:

(1)  The infinite-dimensional space R”. Its vectors have infinitely many com-
ponents, as in x = (1,2, 1,2, 1,...), but the laws of addition and multiplication
stay unchanged.

(i) The space of 3 by 2 matrices. In this case the “vectors”™ are matrices! We
can add two matrices, and 4 + B = B + A, and there is a zero matrix, and so on.
This space is almost the same as R® (The six components are arranged in a
rectangle instead of a column.) Any choice of m and n would give, as a similar
example, the vector space of all m by n matrices.

(i) The space of functions f(x). Here we admit all functions f that are defined
on a fixed interval, say 0 < x < 1. The space includes f(x) = x?, g(x) = sin x, their
sum (f + g)(x) = x> + sin x, and all multiples like 3x? and —sin x. The vectors
are functions, and again the dimension is infinite—in fact, it is a larger infinity
than for R™.

Other examples are given in the exercises, but the vector spaces we need most
are somewhere else—they are inside the standard spaces R”. We want to describe
them and explain why they are important. Geometrically, think of the usual
three-dimensional R® and choose any plane through the origin. That plane is a
vector space in its own right. If we multiply a vector in the plane by 3, or —3,
or any other scalar, we get a vector which lies in the same plane. If we add two
vectors in the plane, their sum stays in the plane. This plane illustrates one of the
most fundamental ideas in the theory of linear algebra; it is a subspace of the
original space R*.

DEFINITION A subspace of a vector space is a nonempty subset that satisfies two
requirements:

(i) If we add any vectors x and y in the subspace, their sum x + y is in the
subspace.

(i) If we multiply any vector x in the subspace by any scalar ¢, the multiple
cx is still in the subspace.

In other words, a subspace is a subset which is “closed” under addition and scalar
multiplication. Those operations follow the rules of the host space, without taking
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us outside the subspace. There is no need to verify the eight required properties,
because they are satisfied in the larger space and will automatically be satisfied in
every subspace. Notice in particular that the zero vector will belong to every subspace.
That comes from rule (ii): Choose the scalar to be ¢ = Q.

The most extreme possibility for a subspace is to contain only one vector, the
zero vector. It is a “zero-dimensional space,” containing only the point at the
origin. Rules (i) and (ii) are satisfied, since addition and scalar multiplication are
entirely permissible; the sum O + 01is in this one-point space, and so are all multiples
0. This is the smallest possible vector space: the empty set is not allowed. At the
other extreme, the largest subspace is the whole of the original space—we can
allow every vector into the subspace. If the original space is R?, then the possible
subspaces are easy to describe: R? itself, any plane through the origin, any line
through the origin, or the origin (the zero vector) alone.

The distinction between a subset and a subspace is made clear by examples; we
give some now and more later. In each case, the question to be answered is whether
or not requirements (i) and (ii) are satisfied: Can you add vectors, and can you
multiply by scalars, without leaving the space?

EXAMPLE 1 Consider all vectors whose components are positive or zero. If the
original space is the x-y plane RZ then this subset is the first quadrant: the
coordinates satisfy x > 0 and y > 0. It is not a subspace, even though it contains
zero and addition does leave us within the subset. Rule (ii) is violated, since if the
scalar is — 1 and the vector is [1 1], the multiple cx = [—1 —1] is in the third
quadrant instead of the first.

If we include the third quadrant along with the first, then scalar multiplication
is all right; every multiple ¢x will stay in this subset, and rule (i) is satisfied.
However, rule (i) is now violated, since the addition of [1 2] and [—-2 —1]
gives a vector [—1 1] which is not in either quadrant. The smallest subspace
containing the first quadrant is the whole space R>.

EXAMPLE 2 If we start from the vector space of 3 by 3 matrices, then one possible
subspace is the set of lower triangular matrices. Another is the set of symmetric
matrices. In both cases, the sums 4 + B and the multiples ¢4 inherit the properties
of 4 and B. They are lower triangular if 4 and B are lower triangular, and they
are symmetric if 4 and B are symmetric. Of course, the zero matrix is in both
subspaces.

We now come to the key examples of subspaces. They are tied directly to a
matrix A4, and they give information about the system Ax = b. In some cases they
contain vectors with m components, like the columns of A; then they are subspaces
of R™. In other cases the vectors have n components, like the rows of 4 (or like

x 1tself); those are subspaces of R". We illustrate by a system of three equations
in two unknowns:

10
5 4 [“]_ b, |. (1
2 4Lt b,
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If there were more unknowns than equations, we might expect to find plenty of
solutions (although that is not always so). In the present case there are more
equations than unknowns—and we must expect that usually there will be no
solution. A system with m > n will be solvable only for certain right-hand sides,
in fact, for a very “thin” subset of all possible three-dimensional vectors b. We
want to find that subset of b’s.

One way of describing this subset is so simple that it is easy to overlook.

2A The system Ax = b is solvable if and only if the vector b can be expressed as
a combination of the columns of A.

This description involves nothing more than a restatement of the system Ax = b,
writing it in the following way:

1 0 b,
ul 5|+vl4|=]|0by| ()
2 4 b,

These are the same three equations in two unknowns. But now the problem is
seen to be this: Find numbers u and v that multiply the first and second columns
to produce the vector b. The system is solvable exactly when such coefficients exist,
and the vector (u, v) is the solution x.

Thus, the subset of attainable right-hand sides b is the set of all combinations
of the columns of A. One possible right side is the first column itself; the weights
are u = 1 and v = 0. Another possibility is the second column: u =0 and v = 1.
A third is the right side b = 0; the weights are u =0,v=0 (and with that trivial
choice, the vector b = 0 will be attainable no matter what the matrix is).

Now we have to consider all combinations of the two columns, and we describe
the result geometrically: Ax = b can be solved if and only if b lies in the plane that
is spanned by the two column vectors (Fig. 2.1). This is the thin set of attainable
b. If b lies off the plane, then it is not a combination of the two columns. In that
case Ax = b has no solution.

What is important is that this plane is not just a subset of R3; it is a subspace.
It is called the column space of A. The column space of a matrix consists of all
combinations of the columns. 1t is denoted by Z(A). The equation Ax = b can be
solved if and only if b lies in the column space of A. For an m by n matrix this
will be a subspace of R™, since the columns have m components, and the require-
ments (i) and (ii) for a subspace are easy to check:

(i) Suppose b and b’ lie in the column space, so that Ax =b for some x and
Ax' = b’ for some x’; x and x’ just give the combinations which produce b and b".
Then A(x + x)=b + b, s0 that b + b’ is also a combination of the columns. If b
is column 1 minus column 2, and b’ is twice column 2, then b + b’ is column 1
plus column 2. The attainable vectors are closed under addition, and the first re-
quirement for a subspace is met.
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perpendicular
to plane

column space

Fig. 2.1. The column space, a plane in three-dimensional space.

(i) If b is in the column space, so is any multiple ¢h. If some combination of
columns produces b (say Ax = b), then multiplying every coeflicient in the combi-
nation by ¢ will produce c¢b. In other words, A(cx) = ¢b.

Geometrically, the general case is like Fig. 2.1—except that the dimensions may
be very different. We need not have a two-dimensional plane within three-
dimensional space. Similarly, the perpendicular to the column space, which we
drew in Fig. 2.1, may not always be a line. At one extreme, the smallest possible
column space comes from the zero matrix 4 = 0. The only vector in its column
space (the only combination of the columns) is b = 0, and no other choice of b
allows us to solve Ox = b. At the other extreme, suppose A is the 5 by 5 identity
matrix. Then the column space is the whole of R?; the five columns of the identity
matrix can combine to produce any five-dimensional vector h. This is not at all
special to the identity matrix. Any 5 by 5 matrix which is nonsingular will have the
whole of R> as its column space. For such a matrix we can solve Ax = b by Gaussian
elimination; there are five pivots. Thercfore every b is in the column space of a
nonsingular matrix.

You can see how Chapter 1 is contained in this chapter. There we studied the
most straightforward (and most common) case, an n by n matrix whose column
space is R”. Now we allow also singular matrices, and rectangular matrices of any
shape; the column space is somewhere between the zero space and the whole space.
Together with its perpendicular space, it gives one of our two approaches to
understanding Ax = b.

The Nullspace of A4

The second approach to Ax = b is “dual” to the first. We are concerned not
only with which right sides b are attainable, but also with the set of solutions x
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that attain them. The right side b = 0 always allows the particular solution x = 0,
but there may be infinitely many other solutions. (There always are, if there are
more unknowns than equations, n > m.) The set of solutions to Ax = 0 is itself a
vector space—the nullspace of A.

The nullspace of a matrix consists of all vectors x such that Ax = 0. It is denoted
by .1{A). It is a subspace of R” just as the column space was a subspace of R”.

Requirement (i) holds: If Ax = 0 and Ax’ = 0 then A(x + x) = 0. Requirement (ii)
also holds: If Ax = 0 then A(cx) = 0. Both requirements fail if the right side is not
zero. Only the solutions to a homogeneous equation (b = 0) form a subspace. The
nullspace is easy to find for the example given above:

1 0 0
u
5 4 [ } _|o]
v
2 4 0
The first equation gives u = 0, and the second equation then forces v = 0. In this
case the nullspace contains only the zero vector; the only combination to produce

zero on the right-hand side is u = v = 0.
The situation is changed when a third column is a combination of the first two:

1 0 1
B=|5 4 9|
2 46

The column space of B is the same as that of A. The new column lies in the plane
of Fig. 2.1; it is just the sum of the two column vectors we started with. But the
nullspace of this new matrix B contains the vector with components 1, 1, —1, and
it contains any multiple of that vector:

1 0 1 0

549 c|l=[0]|

2 4 6||—c 0
The nullspace of B is the line containing all points x = ¢, y = ¢, z = —c¢, where ¢
ranges from — oo to oo. (The line goes through the origin, as any subspace must.)
This one-dimensional nullspace has a perpendicular space (a plane), which is di-
rectly related to the rows of the matrix, and is of special importance.

To summarize: We want to be able, for any system Ax = b, to find all attainable

right-hand sides b and all solutions to Ax = 0. The vectors b are in the column
space and the vectors x are in the nullspace. This means that we shall compute

the dimensions of those subspaces and a convenient set of vectors to generate
them. We hope to end up by understanding all four of the subspaces that are
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intimately related to each other and to A— the column space of A, the nullspace
of A, and their two perpendicular spaces.

EXERCISES

211 Show that requirements (i) and (ii) for a vector space are genuinely independent by
constructing;
(a) a subset of two-dimensional space closed under vector addition and even sub-
traction, but not under scalar multiplication;
(b) a subset of two-dimensional space (other than two opposite quadrants) closed
under scalar multiplication but not under vector addition.

2.1.2 Which of the following subsets of R? are actually subspaces?
‘ {a) The plane of vectors with first component b, = 0.
(b) The plane of vectors b with b, = 1,
’ (c) The vectors b with b, b, = 0 (this is the union of two subspaces, the plane b, = 0
and the plane b, = 0).
(d) The solitary vector b = (0, 0, 0).
(¢} All combinations of two given vectors x = (1, 1,0) and y = (2, 0, 1).
(f) The vectors (by, b,, by) that satisfy by — b, + 3b, = 0.

213 Describe the column space and the nullspace of the matrices

1 -1
A= and B = 000 .
0 0 0 0 0

2.1.4 What is the smallest subspace of 3 by 3 matrices which contains all symmetric matrices
and all lower triangular matrices? What is the largest subspace which is contained in
both of those subspaces?

215 In the definition of a vector space, addition and scalar multiplication are required
to satisfy the following rules:

| ‘Fl. X+y=y+x
| xX+(y+z)=Kx+y+:z

There is a unique “zero vector” such that x + 0 = x for all x

4. Foreach x there is a unique vector —x such that x + (—x) =0
5. Ix=x

W N

T x4y =cx+cy

f R

{a) Suppose addition in R* adds an extra one to each component, so that (3, 1)+
(5, 0) equals (9, 2) instead of (8, 1). With scalar multiplication unchanged, which rules
are broken?

(b) Show that the set of all positive real numbers, with x + y and ¢x redefined to
equal the usual xy and x°, respectively, is a vector space. What is the “zero vector?”

216 Let P be the plane in 3-space with equation x + 2y + z = 6. What is the equation
of the plane P, through the origin parallel to P? Are P and P, subspaces of R3?
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21.7  Which of the following are subspaces of R*?

(a) All sequences like (1,0, 1,0, ...) which include infinitely many zeros.
(b) All sequences (xy, X,, . ..) with x; = 0 from some point onward.

{(c) All decreasing sequences: x;., < x; for each j.

(d) All convergent sequences: the x; have a limit as j — oo.

(e) All arithmetic progressions: x;,; — x; is the same for all j.

(f) All geometric progressions (x,, kx,, k*x,, . ..) allowing all k and x,.

2.1.8 Which descriptions are correct? The solutions x of

X,
111 0
Ax = X, | =
1 0 2 0
X3

form a plane, line, point, subspace, nullspace of A, column space of A.

2.1.9 Show that the set of nonsingular 2 by 2 matrices is not a vector space. Show also that
the set of singular 2 by 2 matrices is not a vector space.
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THE SOLUTION OF r1 EQUATIONS IN 7 UNKNOWNS W 2.2

The elimination process is by now very familiar for square matrices, and one exam-
ple will be enough to illustrate the new possibilities when the matrix is rectangu-
lar. The elimination itself goes forward without major changes, but when it comes
to reading off the solution by back-substitution, there are some differences.

Perhaps, even before the example, we should illustrate the possibilities by looking
at the scalar equation ax = b. This is a “system” of only one equation in one
unknown. It might be 3x = 4 or Ox = 0 or Ox = 4, and those three examples dis-
play the three alternatives:

(i) If a # 0, then for any b there exists a solution x = b/a, and this solution
is unique. This is the nonsingular case (of a 1 by 1 invertible matrix a).
(i) If a=0 and b =0, there are infinitely many solutions; any x satisfies
Ox = 0. This is the underdetermined case; a solution exists, but it is not unique.
(iii) Ifa = 0 and b # 0, there is no solution to Ox = b. This is the inconsistent
case.

For square matrices all these alternatives may occur. We will replace “a # 0" by
“A is invertible,” but it still means that 4~' makes sense. With a rectangular
matrix possibility (i) disappears; we cannot have existence and also uniqueness,
one solution x for every b. There may be infinitely many solutions for every b;
or infinitely many for some b and no solution for others; or one solution for some
b and none for others.

We start with a 3 by 4 matrix, ignoring at first the right side b:

1 3 3 2
A= 2 6 9 5
-1 =3 3 0

The pivot a;; = 1 is nonzero, and the usual elementary operations will produce
zeros in the first column below this pivot:

1 3 3 2
A—-[10 0 3 1
0 0 6 2

The candidate for the second pivot has become zero, and therefore we look below
it for a nonzero entry—intending to carry out a row exchange. In this case the
entry below it is also zero. If the original matrix were square, this would signal
that the matrix was singular. With a rectangular matrix, we must expect trouble
anyway, and there is no reason to terminate the elimination. All we can do is to
go on to the next column, where the pivot entry is nonzero. Subtracting twice the
second row from the third, we arrive at

1 3 3 2
U=|10 0 3 1].
0 0 00
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Strictly speaking, we then proceed to the fourth column; there we meet another
zero in the pivot position, and nothing can be done. The forward stage of elimination
is complete.

The final form U is again upper triangular, but the pivotst are not necessarily
on the main diagonal. The important thing is that the nonzero entries are confined
to a “staircase pattern,” or echelon form, which is indicated in a 5 by 9 case by
Fig. 2.2. The pivots are circled, whereas the other starred entries may or may not be
Zero.

o ol® %
%
*
*
*
*

Fig. 2.2. The nonzero entries of a typical echelon matrix U.

We can summarize in words what the figure illustrates:

(i) The nonzero rows come first—otherwise there would have been row ex-
changes—and the pivots are the first nonzero entries in those rows.
(i) Below each pivot is a column of zeros, obtained by elimination.
(iii) Each pivot lies to the right of the pivot in the row above; this produces
the staircase pattern.

Since we started with 4 and ended with U, the reader is certain to ask: Are
these matrices connected by a lower triangular L as before? Is 4 = LU? There is
no reason why not, since the elimination steps have not changed; each step still
subtracts a multiple of one row from a row beneath it. The inverse of each step
is also accomplished just as before, by adding back the multiple that was subtracted.
These inverses still come in an order that permits us to record them directly in L:

- o O

1 0
L= 2 1
-1 2

The reader can verify that A = LU, and should note that L is not rectangular but
square. It is a matrix of the same order m = 3 as the number of rows in 4 and U.

The only operation not required by our example, but needed in general, is an
exchange of rows. As in Chapter 1, this would introduce a permutation matrix P

+ Remember that pivots are nonzero. During elimination we may find a zero in the pivot
position, but this is only temporary; by exchanging rows or by giving up on a column and
going to the next, we end up with a string of (nonzero) pivots and zeros beneath them.
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and it can carry out row exchanges before elimination begins. Since we keep going
to the next column when no pivots are available in a given column, there is no
need to assume that A is nonsingular. Here is the main theorem:

2B To any m by n matrix A4 there correspond a permutation matrix P, a lower
triangular matrix L with unit diagonal, and an m by n echelon matrix U, such that
PA=11

Our goal is now to read off the solutions (if any) to Ax = b.

Suppose we start with the homogeneous case, b = 0. Then, since the row opera-
tions will have no effect on the zeros on the right side of the equation, 4x = 0
is simply reduced to Ux = 0:

u

133 2" 0
Ux=003lby:0.
000 ofl" 0

y

The unknowns u, v, w, and y go into two groups. One group is made up of the basic
variables, those that correspond to columns with pivots. The first and third columns
contain the pivots, so u and w are the basic variables. The other group is made up of
the free variables, corresponding to columns without pivots; these are the second
and fourth columns, so that v and y are free variables.

To find the most general solution to Ux = 0 (or equivalently, to Ax = 0) we may
assign arbitrary values to the free variables. Suppose we call these values simply v
and y. The basic variables are then completely determined, and can be computed
in terms of the free variables by back-substitution. Proceeding upward,

3w+ y=0 yields w= —1y
u+3v+3w+2y=0 yields u= —3v—y.

There is a “double infinity” of solutions to the system, with two free and indepen-
dent parameters v and y. The general solution is a combination

30—y -3 —1
v 1 0
p A =v +y . (1)
—%y 0 ~4
y 0 !

Please look again at the last form of the solution to Ax = 0. The vector (—3, 1, 0, 0)
gives the solution when the free variables have the values v = 1, y = 0. The last
vector is the solution when v = 0 and y = 1. All solutions are linear combinations
of these two. Therefore a good way to find all solutions to Ax = 0 is

1. After elimination reaches Ux = 0, identify the basic and free variables.
2. Give one free variable the value one, set the other free variables to zero, and
solve Ux = 0 for the basic variables.
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3. Every free variable produces its own solution by step 2, and the combina-
tions of those solutions form the nullspace—the space of all solutions to
Ax = 0.

Geometrically, the picture is this: Within the four-dimensional space of all pos-
sible vectors x, the solutions to Ax =0 form a two-dimensional subspace—the
nullspace of A. In the example it is generated by the two vectors (—3, 1,0, 0) and
(—1,0, —%, 1). The combinations of these two vectors form a set that is closed
under addition and scalar multiplication; these operations simply lead to more
solutions to Ax = 0, and all these combinations comprise the nullspace.

This is the place to recognize one extremely important theorem. Suppose we start
with a matrix that has more columns than rows, n > m. Then, since there can be
at most m pivots (there are not rows enough to hold any more), there must be at
least n — m free variables. There will be even more free variables if some rows of
U happen to reduce to zero; but no matter what, at least one of the variables must
be free. This variable can be assigned an arbitrary value, leading to the following
conclusion:

2¢ Ifa homogeneous system Ax = 0 has more unknowns than equations (n > m),
it has a nontrivial solution: There is a solution x other than the trivial solution x = 0.

There must actually be infinitely many solutions, since any multiple cx will also
satisfy A(cx) = 0. The nullspace contains the line through x. And if there are ad-
ditional free variables, the nullspace becomes more than just a line in n-dimensional
space. The nullspace is a subspace of the same “dimension” as the number of free
variables.

This central idea—the dimension of a subspace—is made precise in the next
section. It is a count of the degrees of freedom.

The inhomogeneous case, b # 0, is quite different. We return to the original
example Ax = b, and apply to both sides of the equation the operations that led
from A to U. The result is an upper triangular system Ux = c:

1 3 3 2 . b,

00 3 1 = by — 2by (2)
w

00 00 by — 2b, + 5b,
-y

The vector ¢ on the right side, which appeared after the elimination steps, is just
L~ 'b as in the previous chapter.

It is not clear that these equations have a solution. The third equation is very
much in doubt. Its left side is zero, and the equations are inconsistent unless
by —2b, + 5b, = 0. In other words, the set of attainable vectors b is not the whole
of three-dimensional space. Even though there are more unknowns than equations,

A A
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there may be no solution. We know, from Section 2.1, another way of considering
the same question: Ax = b can be solved if and only if b lies in the column space
of A. This subspace is spanned by the four columns of 4 (not of U!):

1 3 3 2
24, 6], 91, 51.
—1 -3 3 0

Even though there are four vectors, their combinations only fill out a plane in
three-dimensional space. The second column is three times the first, and the fourth
column equals the first plus some fraction of the third. (Note that these dependent
columns, the second and fourth, are exactly the ones without pivots.) The column
space can now be described in two completely different ways. On the one hand. it is
the plane generated by columns 1 and 3; the other columns lie in that plane, and
contribute nothing new. Equivalently, it is the plane composed of all points
(by, b,, by) that satisfy by — 2b, + 5b, = 0; this is the constraint that must bc im-
posed if the system is to be solvable. Every column satisfies this constraint, so it is
forced on b. Geometrically, we shall see that the vector (5, —2, 1) is perpendicular
to each column.

If b lies in this plane, and thus belongs to the column space, then the solutions
of Ax = b are easy to find. The last equation in the system amounts only to 0 = 0.
To the free variables v and y, we may assign arbitrary values as before. Then the
basic variables are still determined by back-substitution. We take a specific ex-
ample, in which the components of b are chosen as 1, 5, 5 (we were careful to
make by — 2b, + 5b; = 0). The system Ax = b becomes

1 -3 3 ol|"
y
Elimination converts this into
13 3 2" 1
v
0 0 3 1 =13]1.
w
0 0 0O 0
y

The last equation is 0 = 0, as expected, and the others give

3w+ y=3 or w= 1—1y
u+3v+3w+2y=1 or u=—2-—30—y.




76 2 Vector Spaces and Linear Equations

Again there is a double infinity of solutions. Looking at all four components
together, the general solution can be written as

u -2 -3 -1
v 0 1 0

Bl ot = : + v 0 +y 1 (3)
y 0 0 1

This is exactly like the solution to Ax = 0 in equation (1), except there is one new
term. It is (—2, 0, 1, 0), which is a particular solution to Ax = b. It solves the equa-
tion, and then the last two terms yield more solutions (because they satisfy Ax = 0).
Every solutionto Ax = b is the sum of one particular solution and a solution to Ax = 0:

—

| xgeneral = ’particu]ar + Xhomogeneous

The homogeneous part comes from the nullspace. The particular solution in (3)
comes from solving the equation with all free variables set to zero. That is the only
new part, since the nullspace is already computed. When you multiply the equation
in the box by 4, you get AXgeneras = b + 0.

Geometrically, the general solutions again fill a two-dimensional surface— but
it is not a subspace. It does not contain the origin. It is parallel to the nullspace
we had before, but it is shifted by the particular solution. Thus the computations
include one new step:

1. Reduce Ax = b to Ux = c.

2. Set all free variables to zero and find a particular solution.

3. Set the right side to zero and give each free variable, in turn, the value one.
With the other free variables at zero, find a homogeneous solution (a vector
x in the nullspace).

Previously step 2 was absent. When the equation was Ax = 0, the particular
solution was the zero vector! It fits the pattern, but Xparticutar = O Was not printed
in equation (1). Now it is added to the homogeneous solutions, as in (3).

Elimination reveals the number of pivots and the number of free variables. If
there are r pivots, there are r basic variables and n — r free variables. That number
r will be given a name — it is the rank of the matrix — and the whole elimination
process can be summarized:

2D Suppose elimination reduces Ax = b to Ux = c. Let there be r pivots; the last
m — rrows of U are zero. Then there is a solution only if the last m — r components
of ¢ are also zero. If r = m, there is always a solution.

The general solution is the sum of a particular solution (with all free variables
zero) and a homogeneous solution (with the n — r free variables as independent
parameters). If r = n, there are no free variables and the nullspace contains only
U

The number r is called the rank of the matrix A.

DA R
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Note the two extreme cases, when the rank is as large as possible:

(1) 1If r = n, there are no free variables in x.
(2) 1If r = m, there are no zero rows in U.

With r = n the nullspace contains only x = 0. The only solution is X, eyt - With
r = m there are no constraints on b, the column space is all of R™, and for every
right-hand side the equation can be solved.

An optional remark In many texts the elimination process does not stop at U,
but continues until the matrix is in a still simpler “row-reduced echelon form.”
The difference is that all pivots are normalized to + 1, by dividing each row by a
constant, and zeros are produced not only below but also above every pivot. For
the matrix A in the text, this form would be

130 1
00 1 1
0000

If A is square and nonsingular we reach the identity matrix. It is an instance of
Gauss-Jordan elimination, instead of the ordinary Gaussian reduction to 4 = LU.
Just as Gauss-Jordan is slower in practical calculations with square matrices, and
any band structure of the matrix is lost in 4™ ?, this special echelon form requires
too many operations to be the first choice on a computer. It does, however, have
some theoretical importance as a “canonical form” for A: Regardless of the choice
of elementary operations, including row exchanges and row divisions, the final
row-reduced echelon form of A4 is always the same.

EXERCISES

221 How many possible patterns can you find (like the one in Fig. 2.2) for 2 by 3 echelon
matrices? Entries to the right of the pivots are irrelevant.

2.2.2  Construct the smallest system you can with more unknowns than equations, but no
solution.

223 Compute an LU factorization for
1 2 01
A=[(0 1 1 0f.
1 2 0 1

Determine a set of basic variables and a set of free variables, and find the general
solution to Ax = 0. Write it in a form similar to (1). What is the rank of 4?

2.24 For the matrix

01 40
A= ,
[ozso}
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2.2.5

2,27

2,28

229

2.2.10

determine the echelon form U, the basic variables, the free variables, and the general
solution to Ax = 0. Then apply elimination to Ax = b, with components b, and b,
on the right side; find the conditions for Ax = b to be consistent (that is, to have a
solution) and find the general solution in the same form as Equation (3). What is
the rank of A?

Carry out the same steps, with by, b,, b, b, on the right side, for the transposed
matrix

S K = O
S 0 ND

Write the general solution to
2 2 Y
2 4 5|77 |4
w

as the sum of a particular solution to Ax = b and the general solution to Ax = 0,
as in (3).

Describe the set of attainable right sides b for
1 0 b,
u
0 1 I: } =| b, |,
v
23 b
by finding the constraints on b that turn the third equation into 0 = 0 (after climina-
tion). What is the rank? How many free variables, and how many solutions?
Find the value of ¢ which makes it possible to solve
u+ v4+2w=2

2u+3v— w=35
Ju+4v+ w=c.

Under what conditions on b, and b, (if any) does Ax = b have a solution, if

120 3 b,
A= b= ?
[2 4 0 7:" [b;'
Find two vectors x in the nullspace of 4, and the general solution to Ax = b.

(a) Find all solutions to
1 2 3 4 0
Ux={0 0 1 2 =10].
0 00O 0
4

(b) If the right side is changed from (0, 0, 0) to (a, b, 0), what are the solutions?

e sk IR R
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Suppose the only solution to Ax = 0 (m equations in n unknowns) is x = 0. What
is the rank of A?

Find a 2 by 3 system Ax = b whose general solution is

Find a 3 by 3 system with the same general solution as above, and with no solution
when b, + b, # b;.

Write down a 2 by 2 system Ax = b in which there are many solutions X;omogencous
but no solution X, ey, Therefore the system has no solution.
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2.3 B LINEAR INDEPENDENCE, BASIS, AND DIMENSION

By themselves, the numbers m and n give an incomplete picture of the true size
of a linear system. The matrix in our example had three rows and four columns,
but the third row was only a combination of the first two. After elimination it
became a zero row. It had no real effect on the homogeneous problem Ax = 0.
The four columns also failed to be independent, and the column space degenerated
into a two-dimensional plane; the second and fourth columns were simple com-
binations of the first and third.

The important number which is beginning to emerge is the rank r. The rank
was introduced in a purely computational way, as the number of pivots in the
elimination process—or equivalently, as the number of nonzero rows in the final
matrix U. This definition is so mechanical that it could be given to a computer.
But it would be wrong to leave it there because the rank has a simple and intuitive
meaning: The rank counts the number of genuinely independent rows in the matrix A.
We want to give this quantity, and others like it, a definition that is mathematical
rather than computational.

The goal of this section is to explain and use four ideas:

1. Linear independence or dependence
2. Spanning a subspace

3. Basis for a subspace

4. Dimension of a subspace.

The first step is to define linear independence. Given a set of vectors vy, .. ., v,
we look at their combinations ¢,v; + ¢,v, + - + ¢;v,. The trivial combination,
with all weights ¢; = 0, obviously produces the zero vector: Ov; + - - - 4 Ov, = 0.
The question is whether this is the only way to produce zero. If so, the vectors are
independent. If any other combination gives zero, they are dependent.

2E If only the trivial combination gives zero, so that
€0+ +con=0 onlyhappenswhen ¢, =¢,= ' =¢ =0,

then the vectors vy, ..., v, are linearly independent. Otherwise they are linearly
dependent, and one of them is a linear combination of the others.

Linear dependence is easy to visualize in three-dimensional space, when all vec-
tors go out from the origin. Two vectors are dependent if they lie on the same line.
Three vectors are dependent if they lie in the same plane. A random choice of three
vectors, without any special accident, should produce linear independence. On the
other hand, four vectors are always linearly dependent in R3.

EXAMPLE 1 If one of the vectors, say vy, is already the zero vector, then the set is
certain to be linearly dependent. We may choose ¢; = 3 and all other ¢; = 0; this
is a nontrivial combination that produces zero.

s
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EXAMPLE 2 The columns of the matrix

are linearly dependent, since the second column is three times the first. The com-
bination of columns with weights —3, 1, 0, 0 gives a column of zeros.

The rows are also linearly dependent; row 3 is two times row 2 minus five times
row 1. (This is the same as the combination of b, b,, b;, which had to vanish on
the right side in order for Ax = b to be consistent. Unless by — 2b, + 5b, = 0, the
third equation would not become 0 = 0))

EXAMPLE 3 The columns of the triangular matrix

3 4 2
A=]10 1 5
0 0 2

are linearly independent. This is automatic whenever the diagonal entries are non-
zero. To see why, we look for a combination of the columns that makes zero:

3 4 2 0
O+ 1 |+ey]5]=|0].
0 0 2 0

We have to show that ¢, c,, c; are all forced to be zero. The last equation gives
¢3 = 0. Then the next equation gives ¢, = 0, and substituting into the first equation
forces ¢; = 0. The only combination to produce the zero vector is the trivial com-
bination, and the vectors are linearly independent.

Written in matrix notation, this example looked at

34 2][e, 0
01 5|[e,|=]0]
00 2||c, 0

We showed that the nullspace contained only the zero vector ¢, = ¢, = ¢, = 0. That is
exactly the same as saying that the columns are linearly independent.

A similar reasoning applies to the rows of 4, which are also independent. Sup-
pose we had

c1(3,4,2) + ¢,(0, 1, 5) + ¢5(0,0, 2) = (0, 0, 0).

From the first components we find 3¢; = 0 or ¢; = 0. Then the second components
give ¢, = 0, and finally ¢; = 0.
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The same idea can be extended to any echelon matrix U; the nonzero rows must
be independent. Furthermore, if we pick out the columns that contain the pivots,
they also are linearly independent. In our earlier example, with

1 3 3 2
U=[(0 0 3 1],
0 000

columns 1 and 3 are independent. No set of three columns is independent, and
certainly not all four. It is true that columns 1 and 4 are also independent, but if
that last 1 was changed to 0 they would be dependent. It is the columns with pivots
that are guaranteed to be independent. The general rule is this:

2F The r nonzero rows of an echelon matrix U are linearly independent, and so
are the r columns that contain pivots.

EXAMPLE 4 The columns of the n by » identity matrix

1 0 - 0
0 1 0
I =
0
0 0 0 1

are linearly independent. These particular vectors have the special notation e, . . .,
e,; they represent unit vectors in the coordinate directions. In R* they are

i 0 0 0
0 i 0 0
“Zlol “2Tlolr 271 “T|o
0 0 0 I

Most sets of four vectors in R* are linearly independent, but this set is the easiest
and safest.

To check any set of vectors vy, .. ., v, for linear independence, form the matrix
A whose n columns are the given vectors. Then solve the system Ac = 0; the vectors
are dependent if there is a solution other than ¢ = 0. If there are no free variables
(the rank is n) then there is no nullspace except ¢ = 0; the vectors are independent.
If the rank is less than n, at least one variable is free to be chosen nonzero and
the columns are linearly dependent.

One case is of special importance. Let the vectors have m components, so that
A is an m by n matrix. Suppose now that n > m. Then it will be impossible for
the columns to be independent! There cannot be n pivots, since there are not
enough rows to hold them. The rank must be less than n, and a homogeneous
system Ac = 0 with more unknowns than equations always has solutions ¢ # 0.

2G A set of n vectors in R” must be linearly dependent if n > m.
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The reader will recognize this as a disguised form of 2C.

EXAMPLE 5 Consider the three columns of

. 1 2 1
13 2
There cannot be three independent vectors in R?, and to find the combination of
the columns producing zero we solve Ac = 0:

AU 1 2 1
> = .
0 1 1

If we give the value 1 to the free variable c5, then back-substitution in Uc = 0 gives
¢, = —1, ¢y = 1. With these three weights, the first column minus the second plus
the third equals zero.

Spanning a Subspace

The next step in discussing vector spaces is to define what it means for a set of
vectors to span the space. We used this term at the beginning of the chapter, when
we spoke of the plane that was spanned by the two columns of the matrix, and
called this plane the column space. The general definition is simply this:

2H If a vector space V consists of all linear combinations of the particular vectors
Wy, ..., w;, then these vectors span the space. In other words, every vector v in V
can be expressed as some combination of the w’s:

v=cw; +- - +cw for some coefficients ;.

It is permitted that more than one set of coefficients ¢; could give the same vector
v. The coefficients need not be unique because the spanning set might be excessively
large—it could even include the zero vector.

EXAMPLE 6 The vectors w; =(1,0,0), w, = (0, 1,0), and w; = (—2, 0, 0) span a
plane (the x-y plane) within three-dimensional space. So would the first two vectors
alone, whereas w, and w; span only a line.

EXAMPLE 7 The column space of a matrix is exactly the space that is spanned by the
columns. The definition is made to order. Taking all combinations of the columns is
the same as taking the space they span. Multiplying 4 by x gives a combination of
the columns; it is a vector Ax in the column space.

If the columns are the coordinate vectors ey, e,, . . ., e,, coming from the identity
matrix, then they span R". Every vector b = (b, b,,..., b,) is a combination of
those columns. In this example the weights are the components b, themselves:
b=be; + -+ b,e, Butitis not only the columns of the identity matrix that
span R"!
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To decide if b is a combination of the columns, we try to solve Ax = b. To decide
if the columns are independent, we solve Ax = 0. Spanning involves the column
space, and independence involves the nullspace. One should be large enough; the '
other should contain only the zero vector. For the coordinate vectors ey, ..., e,
both tests are easily passed: They span R" and they are linearly independent.
Roughly speaking, no vectors in that set are wasted. This leads to the idea of a basis.

21 A basis for a vector space is a set of vectors having two properties at once:

(1) It is linearly independent.
(2) It spans the space.

This combination of properties is absolutely fundamental to linear algebra. It
means that every vector in the space is a combination of the basis vectors, because
they span. It also means that the combination is unique: If v = a,vy + - + QU
and also v = b,v, + - + by, then subtraction gives 0 = Y (a; — b;)v;. Now inde-
pendence plays its part; every coefficient a; — b, must be zero. Therefore a; = b;,
and there is one and only one way to write v as a combination of the basis vectors.

We had better say at once that the coordinate vectors ey, ..., e, are not the
only basis for R”. Some things in linear algebra are unique, but not this. A vector
space has infinitely many different bases. Whenever a square matrix is invertible,
its columns are independent—and they are a basis for R". The two columns of any

nonsingular matrix like
. 1 1
2 3

are a basis for R2. Every two-dimensional vectoris a combination of those columns,
and they are independent.

EXAMPLE 8 Consider the usual x-y plane (Fig. 2.3), which is just R?. The vector v,
by itself is linearly independent, but fails to span R2. The three vectors vy, v,, 3
certainly span R2, but are not independent. Any two of these vectors, say v, and v,,
have both properties—they span, and they are independent, so they form a basis.
Notice again that a vector space does not have a unique basis.

EXAMPLE 9 Consider the 3 by 4 echelon matrix U:

3

o

Il
S O =

w W

2
1]
0

o O

0

The four columns span the column space, as always, but they are not independent.
There are many possibilities for a basis, but we propose a specific choice: The
columns that contain pivots (in this case the first and third, which correspond

oM
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Fig. 2.3. A spanning set and a basis in R?.

to the basic variables) are a basis for the column space. We noted in 2F that these
columns are independent, and it is easy to see that they span the space. In fact,
the column space of U is just the x-y plane within R3. It is not the same as the
column space of A.

To summarize: The columns of a matrix span its column space. If they are in-
dependent, they are a basis for the column space—whether the matrix is square
or rectangular. If we are speaking about the whole space R”, and asking the col-
umns to be a basis for that space, then the matrix must be square and invertible.

Dimension of a Vector Space

In spite of the fact that there is no unique choice of basis, and infinitely many
| different possibilities would do equally well, there is something common to all of
these choices. It is a property that is intrinsic to the space itself:

2J Any two bases for a vector space V contain the same number of vectors. This
number, which is shared by all bases and expresses the number of “degrees of free-
dom” of the space, is called the dimension of Vi

We have to prove this fact: All possible bases contain the same number of vec-
tors. First we ask the reader to look at the examples, and notice their dimension.

T You must notice that the word “dimensional” is used in two different ways. We speak
about a four-dimensional vector, meaning a vector with four components—in other words,
a member of R*. Now we have defined a four-dimensional subspace; an example is the set
of vectors in R® whose first and last components are zero. The members of this four-
dimensional subspace are six-dimensional vectors like (0, 5, 1, 3, 4, 0).
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The x-y plane in Fig. 2.3 has two vectors in every basis; its dimension is 2. In
three dimensions we need three vectors, along the x-y-z axes or in three other
(linearly independent!) directions. The dimension of the space R" is n. The column
space of U in Example 9 had dimension 2; it was a “two-dimensional subspace
of R3.” The zero matrix is rather exceptional, because its column space contains
only the zero vector. By convention, the empty set is a basis for that space, and its
dimension is zero.
The statement 2J, on which the idea of dimension depends, is equivalent to

2K Suppose that vy,...,v, and w,, ..., w, are both bases for the same vector
space V. Then m = n. ' '

Proof Suppose one set is smaller than the other, say m < n; we want to arrive
at a contradiction. Since the v’s form a basis, they must span the space, and every
w; can be written as a combination of the v’s:

m

Wi =0, + F Gl = Y G

In matrix terms this is W = V A, if the w’s are the columns of W and the v’s are the
columns of V. We have no way to know the coefficients g;;, but we do know the
important thing: 4 is m by n, with m < n. By 2C there must be a nontrivial solution
to Ac = 0. Multiplying by V gives VAc =0, or Wc¢ =0, which means that the
vectors w; combined with the coefficients c¢; add to zero. Evidently, the vectors w;
are not linearly independent. Since this contradicts the hypothesis that they form
a basis, we must give up the possibility that m < n.

This proof was the same as the one used earlier to show that every set of m + 1
vectors in R™ must be dependent. A similar proof extends to arbitrary vector
spaces, not necessarily spaces of column vectors. In fact we can see that the general
result is this: In a subspace of dimension k, no set of more than k vectors can be
linearly independent, and no set of fewer than k vectors can span the space.

There are other “dual” theorems, of which we mention only one; it permits us to
start with a set of vectors that is either too small or too big, and to end up with
a basis:

2L Any linearly independent‘set in V can be extended to a basis, by adding
more vectors if necessary. '

_ Any spanmng set in V can be reduced to a bas1s, by discarding vectors if
necessary. . .

The point is that a basis is a maximal independent set. It cannot be made larger
without losing independence. A basis is also a minimal spanning set. 1t cannot be
made smaller and still span the space.
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One final note about the language of linear algebra. We never use the terms
“basis of a matrix™ or “rank of a space” or “dimension of a basis”; these phrases
have no meaning. It is the dimension of the column space that equals the rank of the
matrix, as we prove in the coming section.

EXERCISES

231 Decide whether or not the following vectors are linearly independent, by solving
CiUy + €05 + €303 + Cqv, = O

1 1 0
1 0 0
ol v, = 1l Uy = nE Ug =
0 0 1

-0 = O

Decide also if they span R*, by trying to solve vy + o+ cqvy =(0,0,0, 1)

23.2  Decide the dependence or independence of
(@ (1,1,2),(,2,1),(3,1,1)
(b) vy — 0,0y — 3,03 — vy, v, — v, for any vectors vy, v,, 03, Uy;
(©) (1,1,0),(1,0,0), (0, 1, 1), (x, y, z) for any numbers x, y, z.

233 Prove that if any diagonal element of

a b ¢
T=10 d e
0 0 f

is zero, the rows are linearly dependent.

234  Isittrue thatif v,, v,, vy are linearly dependent, then also the vectors Wy = vy + 0v,,
W3 = Uy + U3, W3 = U, + v, are linearly independent? (Hint: Assume some combina-
tion ¢;w; + ¢,w, + c3w; = 0, and find which ¢; are possible.)

235  Suppose the vectors to be tested for independence are placed into the rows instead
of the columns of 4. How does the elimination process decide for or against indepen-
dence? Apply this to the vectors in Ex. 2.3.1.

23.6  Describe geometrically the subspace of R? spanned by
(@ (0,0,0),(0,1,0), (0,2, 0);
(b) (0,0,1),(0,1,1),(0,2, 1)
(c) all six of these vectors. Which two form a basis?
(d) all vectors with positive components.

237  To decide whether b is in the subspace spanned by wy, ..., w,, let the vectors w be
the columns of A4 and try to solve Ax = b. What is the result for
@ wi=(110,w,=(221),w;=(0,0,2),b=(3,4,5)
(b) w;=(1,2,0,w,=(2,50),w;=(0,0,2), w, = (0,0, 0), and any b?

23.8 Describe, in words or in a sketch of the x-y plane, the column space of 4 =
[5 3] and of A% Give a basis for the column space.
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239 By locating the pivots, find a basis for the column space of

01 4 3

0 0 2 2
U=

00 0 0

0 0 00

Express each column that is not in the basis as a combination of the basic col-
umns. Find also a matrix 4 with this echelon form U, but a different column space.

2.3.10 Suppose we think of cach 2 by 2 matrix as a “vector.” Although these are not vectors
in the usual sense, we do have rules for adding matrices and multiplying by scalars,
and the set of matrices is closed under these operations. Find a basis for this vector
space. What subspace is spanned by the set of all echelon matrices U?

2311 Find two different bases for the subspace of all vectors in R? whose first two com-
ponents are equal.

2312 Find a counterexample to the following statement: If vy, v, v, v, i a basis for the
vector space R*, and if W is a subspace, then some subset of the s is a basis for W.

2.3.13 Find the dimensions of
(a) the space of all vectors in R* whose components add to zero;
(b) the nullspace of the 4 by 4 identity matrix;
(c) the space of all 4 by 4 matrices.

2344 For the matrix A=) 2 1], extend the set of rows to a basis for R’, and
(separately) reduce the set of columns to a basis for R2.

2315 Suppose V is known to have dimension k. Prove that

(i) any k independent vectors in V form a basis;
(i) any k vectors that span V form a basis.

In other words, if the number of vectors is known to be right, either of the two prop-
erties of a basis implies the other.

2316 Find the dimension of the space of 3 by 3 symmetric matrices, as well as a basis.

2317 Prove that if V and W are three-dimensional subspaces of R®, then V and W must
have a nonzero vector in common. Hint: Start with bases for the two subspaces,
making six vectors in all.

2318 True or false: (a) If the columns of A are linearly independent, then Ax = b has
exactly one solution for every b.
(b) A 5 by 7 matrix never has linearly independent columns.

2319 Suppose n vectors from R” go into the columns of A. If they are linearly independent,
what is the rank of A? If they span R™, what is the rank? If they are a basis for
R™, what then?

23.20 In the space of 2 by 2 matrices, find a basis for the subspace of matrices whose row
sums and column sums are all equal. (Extra credit: Find five linearly independent
3 by 3 matrices with this property.)




2.3.21

2.3.22

23.23

2.3 Linear Independence, Basis, and Dimension 89

If Ais a 64 by 17 matrix of rank 11, how many independent vectors satisfy Ax = (7
How many independent vectors satisfy 4%y = 07

Suppose V' is a vector space of dimension 7 and W is a subspace of dimension 4.
True or false:

(1) Every basis for W can be extended to a basis for by adding three more
vectors;

(2) Every basis for V can be reduced to a basis for W by removing three vectors.

Suppose vy, v,, . .., vy are nine vectors in R,

{a) Those vectors (are) (are not) (might be) linearly independent.

(b) They (do) (do not) (might) span R”.

(c) 1If those vectors are the columns of A. then Ax = b (has) (does not have)
(might not have) a solution.
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2.4 M THE FOUR FUNDAMENTAL SUBSPACES

The previous section dealt with definitions rather than constructions. We know
what a basis is, but not how to find one. Now, starting from an explicit description
of a subspace, we would like to compute an explicit basis.

Subspaces are generally described in one of two ways. First, we may be given
a set of vectors that span the space; this is the case for the column space, when
the columns are specified. Second, we may be given a list of constraints on the sub-
space; we are told, not which vectors are in the space, but which conditions
they must satisfy. The nullspace consists of all vectors which satisfy Ax = 0, and
each equation in this system represents a constraint. In the first description, there
may be useless columns; in the second there may be repeated constraints. In neither
casc is it possible to write down a basis by inspection, and a systematic procedure
is necessary.

The reader can guess what that procedure will be. We shall show how to find,
from the L and U (and P) which are produced by elimination, a basis for each of
the subspaces associated with A. Then, even if it makes this section fuller than
the others, we have to look at the extreme case:

When the rank is as large as possible,r =norr=morr=m=n,
the matrix has a left-inverse B or a right-inverse C or a two-sided A~ '

To organize the whole discussion, we consider each of the four fundamental sub-
spaces in turn. Two of them are familiar and two are new.

1. The column space of A, denoted by #(A).

2. The nullspace of A, denoted by .47(A).

3. The row space of A, which is the column space of A™. 1t is A(AT), and it is
spanned by the rows of A.

4. The left nullspace of A, which is the nullspace of AT. It contains all vectors
y such that 4Ty = 0, and it is written .47(A47).

The point about the last two subspaces is that they come from AT If A is an
m by n matrix, you can see which “host” spaces contain the four subspaces by
looking at the number of components:

The nullspace .4(A4) and row space A(A") are subspaces of R”
The left nullspace .4'(A") and column space #(A) are subspaces of R™.

The rows have n components and the columns have m. For a simple matrix like

1 00
[0 0 o
the column space is the line through [3]. The row space is the line through
[1 0 0]% Itisin R® The nullspace is a plane in R* and the left nullspace is a

s R R
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line in R?:
0 0 0
N'(A) contains | 1 |and | O |, A(A") contains l:]:I
0 1

Note that all vectors are column vectors. Even the rows are transposed, and the
row space of A4 is the column space of A™. Normally the simple matrix is U, after
elimination. Our problem will be to connect the spaces for U to the spaces for A.
Therefore we watch the echelon matrix at the same time as the original matrix:

1 3 3 2 1 3 3
U=|0 3 1 and A= 2 6 9 5|
0 0 0 o0 -1 -3 3

For novelty we take the four subspaces in a more interesting order.

3. The row space of A For an echelon matrix like U, the row space is clear. It
contains all combinations of the rows, as every row space does—but here the third
row contributes nothing. The first two rows are a basis for the row space. A
similar rule applies to every echelon matrix, with r pivots and r nonzero rows:
Its nonzero rows are independent, and its row space has dimension r. Fortunately,
it is equally easy to deal with the original matrix A. Its third row contributes
nothing too.

2M The row space of 4 has the same dimension r as the row space of U, and
it has the same bases, because the two row spaces are the same.

The reason is that each elementary operation leaves the row space unchanged.
The rows in U are combinations of the original rows in A. Therefore the row
space of U contains nothing new. At the same time, because every step can be
reversed, nothing is lost; the rows of 4 can be recovered from U. Row 2 of U
came from rows 1 and 2 of A. The rows of A come from rows 1 and 2 of U. It is
true that 4 and U have different rows, but the combinations of the rows are iden-
tical. It is those combinations that make up the row space.

Note that we did not start with the m rows of A4, which span the row space,
and discard m — r of them to end up with a basis. According to 2L, we could
have done so. But it might be hard to decide which rows to keep and which to dis-
card, so it was easier just to take the nonzero rows of U.

2. The nullspace of A Recall that the original purpose of elimination was to sim-
plify a system of linear equations without changing any of the solutions. The system
Ax =0 is reduced to Ux = 0, and this process is reversible. Therefore the null-
space of A is the same as the nullspace of U. Of the m constraints apparently
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imposed by the m equations Ax = 0, only r are independent. They are specified
by any r linearly independent rows of A4, or (more clearly) by the r nonzero rows
of U. If we choose the latter, it provides a definite way to find a basis for the
nullspace:

2N The nullspace .#(A) is of dimension n — r. A basis can be constructed by
reducing to Ux = 0, which has n — r free variables—corresponding to the columns
of U that do not contain pivots. Then, in turn, we give to each free variable the
value 1, to the other free variables the value O, and solve Ux =0 by back-
substitution for the remaining (basic) variables. The n — r vectors produced in
this way are a basis for 4(A).

This is exactly the way we have been solving Ux = 0, with basic variables and free
variables. The example has pivots in columns 1 and 3. Therefore its free variables
are the second and fourth, v and y, and the basis for the nullspace is

-3 —1
v=1 1 v=0 " 0
y=0 =1 o) y=1 2= -4l

0 1

It is easy to see, for this example or in general, that these vectors are independent.
Any combination ¢,x; + ¢,X, has the value ¢, as its v component, and ¢, asits y
component. The only way to have ¢;x; + ¢,X, =0 is to have ¢; = ¢, = 0. These
two vectors also span the nullspace; the general solution is a combination vx; +
yx,. Thus the n — r = 4 — 2 vectors are a basis.

The nullspace is also called the kernel of A, and its dimension n —r is the
nullity.

1. The column space of A First another point of notation; the column space is
often called the range of A (which accounts for the letter #). This is consistent
with the usual idea of the range of a function f, as the set of 1l possible values
f(x); x is in the domain and f(x) is in the range. In our case the function is
f(x) = Ax. Its domain consists of all x in R”"; its range is all possible vectors Ax.
(In other words, all b for which Ax = b can be solved.) We know that this is the
same as all combinations of the columns; the range is the column space. We plan
to keep the useful term column space, but also to adopt the shorthand notation
R(A).T

Our problem is to find a basis for the column space #(U) and also the column
space Z(A). Those spaces are different (just look at the matrices!) but their dimen-
sions are the same. That is the main point.

+ It is a sad accident that row space also starts with the same letter. In this book, r stands
for rank and £ stands for column space.
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The first and third columns of U are a basis for its column space. They are the
columns with pivots. Every other column is a combination of those two. Further-
more, the same is true of the original matrix—even though the pivots are invisible
and the columns are different. The first and third columns of 4 are a basis for
its column space. Certainly the second column is not independent; it is three times
the first. The fourth column equals (column 1) + $(column 3). Whenever certain
columns of U form a basis for the column space of U, the corresponding columns
of A form a basis for the column space of A.

The reason is this: Ax = 0 exactly when Ux = 0. The two systems are equivalent
and have the same solutions. The fourth column of U was also (column 1) +
$(column 3). Looking at matrix multiplication, Ax = 0 expresses a linear depen-
dence among the columns of A4, with coefficients given by x. That dependence is
matched by a dependence Ux = 0 among the columns of U, with exactly the same
coefficients. If a set of columns of A is independent, then so are the corresponding
columns of U, and vice versa.t

Now, to find a basis for the column space %(A), we use what is already done for
U. The r columns containing pivots are a basis for the column space of U. We will
pick those same columns of 4, as follows:

20 The dimension of the column space #(A) equals the rank r, which also equals
the dimension of the row space: The number of independent columns equals the
number of independent rows. A basis for Z(A) is formed by the r columns of A which
correspond, over in U, to the columns containing pivots.

This fact, that the row space and the column space have the same dimension
r, is one of the most important theorems in linear algebra. It is often abbreviated
as “row rank = column rank.” 1t expresses a result that, for a random 10 by 12
matrix, is not at all obvious. It also says something about square matrices: If the
rows of a square matrix are linearly independent, then so are the columns (and vice
versa). Again that does not seem self-evident, at least not to the author.

To see once more that both the row and column spaces of U have dimension
r, consider a typical situation with rank r = 3. The echelon matrix U certainly has
three independent rows:

d

* *

-

S O O *
S O O
)

w

*
d *

U=

d

0

0 *
0 0 0
0 0 0
We claim that there are also three independent columns, and no more. The columns
have only three nonzero components. Therefore if we can show that the three basic

f I think this is the most subtle argument to appear so far in the book. Fortunately, it
is not wasted: The conclusion 20 to which it leads is also the most subtle and most significant.
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columns—the first, fourth, and sixth-—are linearly independent, they must be a
basis (for the column space of U, not A!). Suppose that some combination of these
basic columns produced zero:

d, * * 0

0 d, * 0
Cq 0 + ¢y 0 + c3 d ol

0 0 0 0

Working upward in the usual way, ¢; must be zero because the pivot d # 0, then c,
must be zero because d, # 0, and finally ¢; = 0. This establishes linear indepen-
dence and completes the proof. Since Ax = 0 if and only if Ux = 0, we must find
that the first, fourth, and sixth columns of A—whatever the original matrix A was,
which we do not even know in this example—are a basis for Z(A).

We emphasize that the row space and column space both became clear after
elimination on 4. We did not have to work with AT. Certainly we could have
transposed A, exchanging its columns for its rows (and its column space for its
row space). Then we could have reduced AT to its own echelon form (which is
different from U7). That leads to the right spaces, but it is not the right idea. There
are many uses for the transpose; this is not one of them. The point is that %(A)
and #(A") share the same dimension and can be found at the same time, from U.

Now comes the fourth fundamental subspace, which has been keeping quietly
out of sight. Since the first three spaces were Z(A), A (A), and #(A"), the fourth
must be A7(47). It is the nullspace of the transpose, or the left nullspace of A—
because ATy = 0 means y'4 = 0, and the vector appears on the left side of A.

4. The left nullspace of 4 (= the nullspace of A") If 4 is an m by n matrix, then
AT is n by m. Its nullspace is a subspace of R™; the vector y has m components.
Written as yT4 = 0, those components multiply the rows of A to produce the zero
row:

A = [y, ...ym][ 4 }:[0...0].

Such a row vector yT is called a left nullvector of A.

The dimension of this nullspace .4/"(A") is easy to find. For any matrix, the num-
ber of basic variables plus the number of free variables must match the total number
of columns. For A that was r + (n — r) = n. In other words,

dimension of column space + dimension of nullspace = number of columns.

This rule applies equally to A, which has m columns and is just as good a matrix
as A. But the dimension of its column space is also r, so

r 4+ dim A°(A") = m. (1)

2P The left nullspace .4 (4") has dimension m — r.




2.4 The Four Fundamental Subspaces 95

| The vectors y are hiding somewhere in elimination, when the rows of 4 are com-
! bined to produce the m — r zero rows of U. To find y we start from PA = LU, or
l L™'PA = U. The last m — r rows of L™ 'P must be a basis for the left nullspace—
‘ because they multiply A to give the zero rows in U. To repeat: The left nullspace
contains the coefficients that make the rows of 4 combine to give zero.
| In our 3 by 4 example, the zero row was row 3 — 2(row 2) + S(row 1). It was
“ the same combination as in by — 2b, + 5b, on the right side, leading to 0 = 0 as
the final equation. Therefore the components of y are 5, —2, 1. That vector is a
} basis for the left nullspace, which has dimension m — r = 3 — 2 = 1. It is the last
| row of L™'P, and produces the zero row in U—and we can often see it without
| computing L~ '. If desperate, it is always possible just to solve ATy = 0.
[ I realize that so far the book has given no reason to care about 4°(47). It is
\ correct but not convincing if I write in italics the left nullspace is also important.
The next section does better, by finding a physical meaning for y.
Now we know the dimensions of the four spaces. We can summarize them in
a table, and it even seems fair to advertise them as the

H(A) = column space of A; dimension r
A(A) = nullspace of 4; dimension n — r
A(A™) = row space of 4; dimension r

|

; Fundamental Theorem of Linear Algebra, Part 1

l

I

’ N'(A") = left nullspace of A; dimension m — r

o e e

1 2
EXAMPLE Azl:

=n=2r=1
36}mn2,;

1. The column space contains all multiples of [}]. The second column is in
the same direction and contributes nothing new.

‘ 2. The nullspace contains all multiples of [ ~1]. The vector satisfies Ax = 0
and so do its multiples.

3. The row space contains all multiples of [3]. I write it as a column vector,
since strictly speaking it is in the column space of AT,

4. The left nullspace contains all multiples of [~}]. That vector satisfies
A"y = 0—and the rows of 4 with coefficients —3 and 1 add to zero.

In this example all four subspaces were lines! That is an accident, coming from r = 1
and n —r =1 and m — r = 1. The exercises will be more varied.

Note that if you change the last entry of 4 from 6 to 7, all the dimensions are
different. The column space and row space have dimension r = 2. The nullspace
and left nullspace contain only the vectors x = 0 and y = 0. The matrix is invertible.

Existence of Inverses

We know that if 4 has a left-inverse (BA = I) and a right-inverse (AC = I), then
the two inverses are equal: B = B(AC) = (BA)C = C. Now, from the rank of a
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matrix, it is easy to decide which matrices actually have these inverses. Roughly
speaking, an inverse exists only when the rank is as large as possible.

The rank always satisfies » < m and also r < n. An m by n matrix cannot have
more than m independent rows or n independent columns. There is not space for
more than m pivots, or more than n. We want to prove that when r = m there
is a right-inverse, and when r = n there is a left-inverse. In the first case Ax =b
always has a solution. In the second case the solution (if it exists) is unique. Only
a square matrix can have both r = m and r = n, and therefore only a square matrix
can achieve both existence and uniqueness. Only a square matrix has a two-sided
inverse.

2Q EXISTENCE: The system Ax = b has at least one solution x for every b if and
only if the columns span R™; then r = m. In this case there exists an n by m right-
inverse C such that AC = I, the identity matrix of order m. This is possible only
ihm=n

UNIQUENESS: The system Ax = b has at most one solution x for every b if
and only if the columns are linearly independent; then r = n. In this case there
exists an n by m left-inverse B such that B4 = I, the identity matrix of order n.
This is possible only if m > n.

In the first case, one possible solution is x = Cb, since then Ax = ACh = b. But
there will be other solutions if there are other right-inverses.

In the second case, if there is a solution to Ax = b, it has to be x = BAx = Bb.
But there may be no solution.t

There are simple formulas for left and right inverses, if they exist:

B=(ATA) 'AT and C=AT(AAT) L.

Certainly BA = I and AC = I. What is not so certain is that AT4 and 44" are
actually invertible. We show in Chapter 3 that A4 does have an inverse if the rank
is n, and AAT has an inverse when the rank is m. Thus the formulas make sense
exactly when the rank is as large as possible, and the one-sided inverses are found.

There is also a more basic approach. We can look, a column at a time, for a
matrix C such that

AC =1 or Alxy x, 0 x,]=[e1 es  enl

Each column of C, when multiplied by A, gives a column of the identity matrix.
To solve Ax; = e; we need the coordinate vectors e; to be in the column space.
If it contains all those vectors, the column space must be all of R™! Its dimension
(the rank) must be r = m. This is the “existence case,” when the columns span R™.

+ The number of solutions in the “uniqueness case” is 0 or 1, whereas in the “existence
case” it is 1 or co.
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EXAMPLE Consider a simple 2 by 3 matrix of rank 2:

4.0 0
A= :
[050]

Since r = m = 2, the theorem guarantees a right-inverse C:

i 0
400 10
AC = 1= :
¢ [050]0 > [0 1]
€31 €32

In fact, there are many right-inverses; the last row of C is completely arbitrary.
This is a case of existence but no uniqueness. The matrix A4 has no left-inverse
because the last column of BA is certain to be zero, and cannot agree with the
3 by 3 identity matrix.

For this example the formula C = 4T(4AT)™! gives the specific choice

40io
c=05[’0"4:
OO 25

The formula chooses the arbitrary values ¢;, and ¢5, to be zero. This is an instance
of the “pseudoinverse”—a way of deciding on a particular inverse when there is no
normal way to decide. It is developed in the first Appendix.

The transpose of A4 yields an example in the opposite direction, with infinitely

many left-inverses:
4 0
SR | D I RO
0 by, 0 0 0 1

Now it is the last column of B that is completely arbitrary. This is typical of the
“uniqueness case,” when the n columns of A are linearly independent. The rank
is ¥ = n. There are no free variables, since n — r = 0, so if there is a solution it will
be the only one. You can see when this example has a solution:

[ R N
O v O

<

=

40 b,

x
0 5 [ 1] =|[b,| issolvableif b, =0.
o o|t |p,

When b is zero, the solution (unique!) is x, = 4b,, x, = 1h,.

For a rectangular matrix, it is not possible to have both existence and unique-
ness. If m is different from n, we cannot have r = m and r = n. A square matrix
is the opposite. If m = n, we cannot have one property without the other. A square
matrix has a left-inverse if and only if it has a right-inverse. There is only one
inverse, namely B = C = A™'. Existence implies uniqueness and uniqueness implies
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existence, when the matrix is square. The condition for this invertibility is that the
rank must be as large as possible: ¥ = m = n. We can say this in another way:
For a square matrix A of order n to be nonsingular, each of the following condi-
tions is a necessary and sufficient test:

(1) The columns span R”, so Ax = b has at least one solution for every b.
(2) The columns are independent, so Ax = 0 has only the solution x = 0.

This list can be made much longer, especially if we look ahead to later chapters;
every condition in the list is equivalent to every other, and ensures that A is non-
singular.

(3) The rows of 4 span R".

(4) The rows are linearly independent.

(5) Elimination can be completed: PA = LDU, with all d; # 0.

(6) There exists a matrix A~ ' such that 44" ' =474 =1

(7) The determinant of A is not zero.

(8) Zero is not an eigenvalue of A.

(9) ATA is positive definite.

Here is a typical application. Consider all polynomials P(t) of degree n — 1.
The only such polynomial that vanishes at n given points t,,...,t, is P(t)=0.
No other polynomial of degree n — 1 can have n roots. This is a statement of
uniqueness, and it implies a statement of existence: Given any values b, ..., b,,
there exists a polynomial of degree n — | interpolating these values: P(t;) = b,,
i=1,...,n The point is that we are dealing with a square matrix; the number of

coeflicients in P(t) (which is n) matches the number of equations. In fact the equa-
tions P(t;) = b; are the same as

2 =1 -
1 oty 1 - f X b,
2 - -
1 6, 3 - 51X, _ | b2
1 tll t'% t:71 'Y" bVl

The coefficient matrix A is r by n, and is known as Vandermonde’s matrix. To
repeat the argument: Since Ax = 0 has only the solution x = 0 (in other words
P(t,) = 0 is only possible if P = 0), it follows that A is nonsingular. Thus Ax = b
always has a solution--a polynomial can be passed through any n values b; at
distinct points t;. Later we shall actually find the determinant of A; it is not zero.

Matrices of Rank One

Finally comes the easiest case, when the rank is as small as possible (except for
the zero matrix with rank zero). One of the basic themes of mathematics is, given
something complicated, to show how it can be broken into simple pieces. For
linear algebra the simple pieces are matrices of rank one, r = 1. The following

RGBSR A RSt
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example is typical:

Every row is a multiple of the first row, so the row space is one-dimensional. In
‘ fact, we can write the whole matrix in the following special way, as the product of
| a column vector and a row vector:
|
|

2 11 1R 1 1]
4 2 2 2
A= -
8 4 4 4
2 -1 —1 —1

The product of a 4 by I matrix and a 1 by 3 matrix is a 4 by 3 matrix, and this
product has rank one. Note that, at the same time, the columns are all multiples
of the same column vector; the column space shares the dimension r = | and
reduces to a line.

The same thing will happen for any other matrix of rank one:

Every matrix of rank one has the simple form A = w".

The rows are all multiples of the same vector ¢7, and the columns are all multiples
of the same vector u. The row space and column space are lines.

EXERCISES

241 True or false: If m = n, then the row space of A equals the column space.

242 Find the dimension and construct a basis for the four subspaces associated with
each of the matrices

p [0 1 4 0] and U= [0 1 4 0]
“lo 280 ™ “lo oo of
243 Find the dimension and a basis for the four fundamental subspaces for both
(1 2.0 1] [1 2 0 1]
A=(0 1 1 0 and U=10 1 1 0]
|1 2 0 1} 10 0 0 0]

24.4  Describe the four subspaces in 3-dimensional space associated with

0 1 0
A=10 0 1]
0 0 0
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245 If the product of two matrices is the zero matrix, AB = 0, show that the column
space of B is contained in the nullspace of A. (Also the row space of A4 is in the left
nullspace of B, since each row of 4 multiplies B to give a Zero row.)

246 Explain why Ax = b is solvable if and only if rank A = rank A’, where 4’ is formed
from A by adding b as an extra column. Hint: The rank is the dimension of the
cotumn space; when does adding an extra column leave the dimension unchanged?

2.47 Suppose A is an m by n matrix of rank r. Under what conditions on those numbers
does
(a) A have a two-sided inverse: AA™' = A" 'A =1
(b) Ax = b have infinitely many solutions for every b?

248 Why is there no matrix whose row space and nullspace both contain the vector
[r v 1"

249 Suppose the only solution to Ax =0 (m equations in n unknowns) is x = 0. What
is the rank and why?

2410 Find a 1 by 3 matrix whose nullspace consists of all vectors in R? such that
X, + 2x, + 4x, = 0. Find a 3 by 3 matrix with that same nullspace.

2411 If Ax = b always has at least one solution, show that the only solution to ATy =0
is y = 0. Hint: What is the rank?

2412 If Ax = O has a nonzero solution, show that A"y = f fails to be solvable for some
right sides f. Construct an example of 4 and f.

2413 Find the rank of A and write the matrix as A = ur’:

1 0 0 3 |
2 =2 & ]
A=0 0 0 O and A= . <
2 =2 .
2 0 0 6 =
2414 If a, b, and c are given with a # 0, how must d be chosen so that L '
a b N |
e[
c d ]
has rank one? With this choice of d, factor 4 into uv".
2415 Find a left-inverse and/or a right-inverse (when they exist) for
10
1 1 0 b
A= and M=|1 1] and T=|2 7|
0 1 1 0 a
0 1
2416 If the columns of A are linearly independent (A4 is m by ») then the rank is .
and the nullspace is . and the row space is_ __and there exists a

-inverse.

2447 (A paradox) Suppose we look for a right-inverse of A. Then AB =1 leads to
A" AB = AT or B = (AVA)~'A". But that satisfies BA = I; it is a lefi-inverse. What
step is not justified?

SRR A R
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If V is the subspace spanned by
1 1 1

find a matrix A4 that has V as its row space and a matrix B that has V" as its nullspace.
Find a basis for each of the four subspaces of
01 2 3 4 1 0 01[0 1 2 3 47
A=|0 1 2 4 61=|1 1 0|10 0 O 1 2|
0 001 2 0 1 1]]0 0 0 O 0O}

Write down a matrix with the required property or explain why no such matrix exists.

1 0 _

1 1

(a) Column space contains | 0 [, | 0 |, row space contains |:1:|, |:2
0 1 -

1 1
(b) Column space has basis | | |, nullspace has basis | 2
| 1

(¢) Column space = R*, row space = R3.

If A has the same four fundamental subspaces as B, does 4 = B?
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2.5 H GRAPHS AND NETWORKS

I am not entirely happy with the 3 by 4 matrix in the previous section. From a
theoretical point of view it was very satisfactory; the four subspaces were com-
putable and not trivial. All of their dimensions r, n — r, ¥, m — r WEre nonzero.
But it was invented artificially, rather than produced by a genuine application, and
therefore it did not show how fundamental those subspaces really are.

This section introduces a class of rectangular matrices with two advantages.
They are simple, and they are important. They are known as incidence matrices,
and every entry is 1, —1, or 0. What is remarkable is that the same is true of L
and U and the basis vectors for the four subspaces. Those subspaces play a central
role in network theory and graph theory. The incidence matrix comes directly
from a graph, and we begin with a specific example—after emphasizing that the
word “graph” does not refer to the graph of a function (like a parabola for y = x2).
There is a second meaning, completely different, which is closer to computer science
than to calculus—and it is easy to explain. This section is optional, but it gives a
chance to see rectangular matrices in action—and to sec how the square symmetric
matrix ATA turns up in the end.

A graph has two ingredients: a set of vertices or “nodes,” and a set of arcs or
“edges” that connect them. The graph in Fig. 2.4 has 4 nodes and 5 edges. It does
not have an edge between every pair of nodes; that is not required (and edges
from a node to itself are forbidden). It is like a road map, with cities as nodes and
roads as edges. Ours is a directed graph, because each edge has an arrow to indicate
its direction.

The edge-node incidence matrix is 5 by 4; we denote it by A. It has a row for
every edge, to indicate the two nodes connected by the edge. If the edge goes from
node j to node k, then that row has —1 in column j and +1 in column k. The
incidence matrix is printed next to the graph.

) edge 1 ‘1 -1 1 0 0
I 0 -1 1 0
edge 2 0% edges  A=|-1 0 1 0
Y 0o 0 —1 |1

3 e
edge 4 + -1 0 0 1

Fig. 2.4. A directed graph and its edge-node incidence matrix.

Row 1 shows the edge from node 1 to node 2. Row 5 comes {rom the fifth edge,
from node 1 to node 4.

Notice what happens to the columns. The third column gives information about
node 3—-it tells which edges enter and leave. Edges 2 and 3 go in, edge 4 goes
out. A is sometimes called the connectivity matrix, or the topology matrix, and it
normally has more rows than columns. When the graph has m edges and n nodes,
A is m by n. Its transpose is the “node-edge” incidence matrix.

We start with the nullspace of 4. Is there a combination of the columns that
gives zero? Normally the answer comes from elimination, but here it comes at a

MR
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glance. The columns add up to the zero column. Therefore the nullspace contains
the vector of 1’s; if x = (1,1, 1, 1) then Ax = 0. The equation Ax = b does not
have a unique solution (if it has a solution at all). Any “constant vector” x =
(c, ¢, ¢, ¢) can be added to any solution of Ax = b, and we still have a solution.

This has a meaning if we think of the components x,, x,, X3, x, as the potentials
at the nodes. The vector Ax then gives the potential differences. There are five
components of Ax (the first is x, — x;, from the +1 in the first row of A) and
they give the differences in potential across the five edges. The equation Ax = b
therefore asks: Given the differences b, . . ., bs find the actual potentials x,, . . . , x,.
But that is impossible to do! We can raise or lower all the potentials by the same
constant ¢, and the differences will not change——confirming that x = (¢, ¢, ¢, ¢) is
in the nullspace of A. In fact those are the only vectors in the nullspace, since
Ax = 0 means equal potentials across every edge. The nullspace of this incidence
matrix is 1-dimensional. Now we determine the other three subspaces.

Column space: For which differences b, ..., bs can we solve Ax = b? To find a
direct test, look back at the matrix. The sum of rows 1 and 2 is row 3. On the
right side we need b, + b, = b, or no solution is possible. Similarly the sum of
rows 3 and 4 is row 5. Therefore the right side must satisfy b, + b, = b5, in order
for elimination to arrive at 0 = 0. To repeat, if b is in the column space then

by+b,—by=0 and by +by—bs=0. (1)

Continuing the search, we also find that rows 1, 2, and 4 add to row 5. But this
is nothing new; adding the equations in (1) already produces b, + b, + b, = b..
There are two conditions on the five components, because the column space has
dimension 3 = 5 — 2. Those conditions would be found more systematically by
elimination, but here they must have a meaning on the graph.

The rule is that potential differences around a loop must add to zero. The differ-
ences around the upper loop are by, b,, and — b, (the minus sign is required by
the direction of the arrow). To circle the loop and arrive back at the same potential,
we need b, + b, — by = 0. Equivalently, the potential differences must satisfy
(x3 — x1) + (xy — x3) = (x, — x5). Similarly the requirement by + b, — b =0
comes from the lower loop. Notice that the columns of 4 satisfy these two require-
ments—they must, because Ax = b is solvable exactly when b is in the column
space. There are three independent columns and the rank is r = 3.

Left nullspace: What combinations of the rows give a zero row? That is also an-
swered by the loops! The vectors that satisfy y'4 = 0 are

yi=[t 1 -1 0 0] and i=[0 0 1 1 —1].

Each loop produces a vector y in the left nullspace. The component +1 or —1
indicates whether the edge arrow has the same direction as the loop arrow. The
combinations of y, and y, are also in the left nullspace—in fact y, + y, =
(1, 1,0, 1, —1) gives the loop around the outside of the graph.

You see that the column space and left nullspace are closely related. When the
left nullspace contains y, = (1, 1, — 1, 0, 0), the vectors in the column space satisfy
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b, + b, — by = 0. This illustrates the rule y'h = 0, soon to become part two of
the “fundamental theorem of linear algebra.” We hold back on the general case,
and identify this specific case as a law of network theory—known as Kirchhoff’s
voltage law.

2R The vectors in the left nullspace correspond to loops in the graph. The test
for b to be in the column space is Kirchhoff’s Voltage Law:

The sum of potential differences around a loop must be zero.

Row space: That leaves one more subspace to be given a meaning in terms of
the graph. The row space contains vectors in 4-dimensional space, but not all
vectors; its dimension is only r = 3. We could look to elimination to find three
independent rows, or we could look to the graph. The first three rows are dependent
(because row 1 + row 2 = row 3) but rows 1, 2,4 are independent. Rows corre-
spond to edges, and the rows are independent provided the edges contain no loops.

Rows 1, 2, 4 are a basis, but what do their combinations look like? In each row
the entries add to zero. Therefore any combination will have that same property.
If f = (f}, f>, f5, f4) is a linear combination of the rows, then

f}"’fz ‘|’f3 +f;1:0- (2)

That is the test for f to be in the row space. Looking back, there has to be a con-
nection with the vector x = (1, 1, 1, 1) in the nullspace. Those four 1’s in equa-
tion (2) cannot be a coincidence:

If f is in the row space and x is in the nullspace then fTx =0.

Again that illustrates the fundamental theorem of linear algebra (Part 2). And
again it comes from a basic law of network theory—which now is Kirchhoff’s
current law. The total flow into every node is zero. The numbers f, 5, f3, f4 are
“current sources” at the nodes. The source f; must balance —y; — y; — ys, which
is the flow leaving node 1 along edges 1, 3, 5. That is the first equation in ATy = f.
Similarly at the other three nodes—conservation of charge requires that
“flow in = flow out.” The beautiful thing is that the transpose of A is exactly the
right matrix for the current law.

The system ATy = f is solvable when f is in the column space of AT, which is
the row space of A:

28 The four equations A"y = f, from the four nodes of the graph, express
Kirchhoff’s Current Law:

The net current into every node is zero.

This law can only be satisfied if the total current entering the nodes from outside
shith+h+/0
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If /= 0 then Kirchhoff’s current law is ATy = 0. It is satisfied by any current that
goes around a loop. Thus the loops give the vectors y in the nullspace of A,

Spanning Trees and Independent Rows

It is remarkable that every entry of the nullvectors x and yis 1 or —1 or 0. The
same is true of all the factors in PA = LDU, coming from elimination. That may
not seem so amazing, since it was true of the incidence matrix that we started with.
But + 1’s should not be regarded as automatic; they may not be inherited by L and
U. If we begin with 4 =[{ 7{], then elimination will produce 2 as the second
pivot (and also as the determinant). This matrix 4 is not an incidence matrix.

For incidence matrices, every elimination step has a meaning for the graph-—and
we carry out those steps on an example:

4 g —— 2o 3
A
-1 1 0 0
oo
0 0 —1 1
10 0 —1
X :

The first step adds row 1 to row 4, to put a zero in the lower left corner. It produces
the new fourth row 0, 1, 0, — 1. That row still contains =+ 1, and the matrix is still an
incidence matrix. The new row corresponds to the dotted edge in the graph, from
4 to 2. The old edge from 4 to 1 is eliminated in favor of this new edge.

The next stage of elimination, using row 2 as pivot row, will be similar. Adding
row 2 to the new row 4 produces 0, 0, 1, — I—-which is a new edge from 4 to 3.
The dotted edge should be removed, and replaced by this new cdge (along top).
It happens to run opposite to the existing edge from 3 to 4, since the arrows on
4-2 and 2-3 combine to give 4-3.

The last climination step swallows up that new edge, and leaves zero in row 4.
Therefore U is the same as 4, except for the last row of zeros. The first three
rows of A were linearly independent.

This leads back to the general question: Which rows of an incidence matrix are
independent? The answer is;

Rows are independent if the corresponding edges are without a loop.

There is a name in graph theory for a set of edges without loops. It is called a tree.
The four edges in our square graph do not form a tree, and the four rows of 4 are
not independent. But the first three edges (in fact any three edges) in the original
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graph do form a tree. So do any two edges, or any edge by itself; a tree can be small.
But it is natural to look for the largest tree.

A tree that touches every node of the graph is a spanning tree. Its edges span the
graph, and its rows span the row space. In fact those rows are a basis for the row
space of 4; adding another row (another edge) would close a loop. A spanning tree
is as large a tree as possible. If a connected graph has n nodes, then every spanning
tree has n — 1 edges. That is the number of independent rows in A, and it is the rank
of the matrix.

There must also be n — 1 independent columns. There are n columns altogether,
but they add up to the zero column. The nullspace of 4 is a line, passing through
the nullvector x = (1, 1, ..., 1). The dimensions add to (n — 1) + 1 = n, as required
by the fundamental theorem of linear algebra.

That theorem also gives the number of independent loops—which is the dimen-
sion of the left nullspace. It is m —r, or m —n + L.{ If the graph lies in a plane,
we can look immediately at the “mesh loops™—there were two of those small loops
in Fig. 2.4, and the large loop around the outside was not independent. Even if
the graph goes outside a plane—as long as it is connected—it still has m —n + 1
independent loops. Every node of a connected graph can be reached from every
other node—there is a path of edges between them—and we summarize the prop-
erties of the incidence matrix:

Nullspace: dimension 1, contains x = (...,

Column space: dimension n — 1, any n — 1 columns are independent
Row space: dimension n — 1, independent rows from any spanning tree
Left nullspace: dimension m —n + 1, contains y’s from the loops.

Every vector f in the row space has x'f =f, + -+ f, = 0—the currents from
outside add to zero. Every vector b in the column space has yTh = 0—the potential
differences b; add to zero around all loops. Those follow from Kirchhoff’s laws,
and in a moment we introduce a third law (Ohm’s law). That law 1s a property of
the material, not a property of the incidence matrix, and it will link x to y. First we
stay with the matrix A4, for an application that seems frivolous but is not.

The Ranking of Football Teams

At the end of the season, the polls rank college football teams. It is a subjective
judgement, mostly an average of opinions, and it becomes pretty vague after the top
dozen colleges. We want to rank all teams on a more mathematical basis.

The first step is to recognize the graph. If team j played team k, there is an edge
between them. The teams are the nodes, and the games are the edges. Thus there are
a few hundred nodes and a few thousand edges—which will be given a direction by

+ That is Euler’s formula, which now has a linear algebra proof: m — n + 1 loops =

(number of nodes) — (number of edges) + (number of loops) = 1.

iR R
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an arrow from the visiting team to the home team. The figure shows part of the
Ivy League, and some serious teams, and also a college that is not famous for big
time football. Fortunately for that college (from which I am writing these words)
the graph is not connected. Mathematically speaking, we cannot prove that MIT
is not number 1 (unless it happens to play a game against somebody).

Harvard Yale Ohio State usc Texas
°
1 MIT
J Y S— » )
Princeton Purdue Michigan Notre Dame Georgia Tech

Fig. 2.5. The graph for football.

If football were perfectly consistent, we could assign a “potential” x; to every
team. Then if team v played team h, the one with higher potential would win. In
the ideal case, the difference b in the score (home team minus visiting team) would
exactly equal the difference x, — x, in their potentials. They wouldn’t even have
to play the game! In that case there would be complete agreement that the team
with highest potential was the best.

This method has two difficulties (at least). We are trying to find a number x for
every team, so that x, — x, = b, for every game. That means a few thousand cqua-
tions and only a few hundred unknowns. The equations x, — x, = b, go into a linear
system Ax = b, in which A is an incidence matrix. Every game has a row, with
+1 in column h and —1 in column v—to indicate which teams are in that game.

First difficulty: If b is not in the column space there is no solution. The scores
must fit perfectly or exact potentials cannot be found. Second difficulty: If A has
nonzero vectors in its nullspace, the potentials x are not well determined. In the
first case x does not exist; in the second case it is not unique. Probably both diffi-
culties are present.

The nullspace is easy, but it brings out an important point. It always contains the
vector of 1s, since 4 looks only at the differences x;, — x,. To determine the poten-
tials we can arbitrarily assign zero potential to Harvard. That is absolutely justi-
fied (I am speaking mathematically). But if the graph is not connected, that is not
enough. Every separate piece of the graph contributes a vector to the nullspace.
There is even the vector with xy,; = 1 and all other x; = 0. Therefore we have to
ground not only Harvard but one team in each piece. (There is nothing unfair in
assigning zero potential; if all other potentials are below zero then the grounded
team is ranked first.) The dimension of the nullspace is the number of pieces of the
graph—it equals the number of degrees of freedom in x. That freedom is removed
by fixing one of the potentials in every piece, and there will be no way to rank one
piece against another.
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The column space looks harder to describe. Which scores fit perfectly with a set
of potentials? Certainly Ax = b is unsolvable if Harvard beats Yale, Yale beats
Princeton, and Princeton beats Harvard. But more than that, the score differences
have to add to zero around a loop:

hHY + byp + bPH = 0

This is Kirchhoff’s voltage law!— the differences around loops must add to zero.
It is also a law of linear algebra —the equation Ax = b can be solved exactly when
the vector b satisfies the same linear dependencies as the rows on the left side.
Then elimination leads to 0 = 0, and solutions can be found.

In reality b is almost certainly not in the column space. Football scores are not
that consistent. The right way to obtain an actual ranking is least squares: Make
Ax as close as possible to h. That is in Chapter 3, and we mention only one other
adjustment. The winner gets a bonus of 50 or even 100 points on top of the score
difference. Otherwise winning by 1 is too close to losing by 1. This brings the
computed rankings very close to the polls.t

Note added in proof. After writing that section 1 found the following in the New
York Times:

“In its final rankings for 1985, the computer placed Miami (10-2) in the seventh
spot above Tennessce (9-1-2). A few days after publication, packages con-
taining oranges and angry letters from disgruntled Tennessee fans began ar-
riving at the Times sports department. The irritation stems from the fact that
Tennessee thumped Miami 35-7 in the Sugar Bowl. Final AP and UPI polls
ranked Tennessee fourth, with Miami significantly lower.

Yesterday morning nine cartons of oranges arrived at the loading dock.
They were sent to Bellevue Hospital with a warning that the quality and
contents of the oranges were uncertain.”

So much for that application of linear algebra.

Networks and Discrete Applied Mathematics

A graph becomes a network when numbers ¢y, . . ., ¢, are assigned to the edges.
The number ¢; can be the length of edge i, or its capacity, or its stiffness (if it
contains a spring), or its conductance (if it contains a resistor). Those numbers go
into a diagonal matrix C, which is m by m. It reflects “material properties,” in
contrast to the incidence matrix A - which gives information about the connections.
Combined, those two matrices C and A enter the fundamental equations of net-
work theory, and we want to explain those equations.

+ Dr. Leake (Notre Dame) gave a full analysis in Management Science in Sports (1976).

et e
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Our description will be in electrical terms. On edge i, the conductance is ¢; and
the resistance is 1/¢;,. Ohm’s law says that the current through the resistor is

y; = ce;, or (current) = (conductance)(voltage drop).

This is also written E = IR, voltage drop equals current times resistance. As a
vector equation on all edges at once, Ohm’s law is y = Ce.
We need Kirchhoff’s voltage law and current law to complete the framework:

KVL: The voltage drops around a loop add to zero
KCL: The currents into a node add to zero.

The voltage law allows us to assign potentials x,, ..., x, to the nodes. Then the
differences around a loop give a sum like (x, — x;) + (x5 — x;) + (x; — x3) =0,
in which everything cancels. The current law asks us to add the currents into node
j, which is represented in A by column j. It has + 1 for edges that go into the
node, and —1 for edges that go out. The multiplication ATy adds the currents
with their correct signs (consistent with the arrows on the edges). This vector ATy
of total currents into nodes is zero, if there are no external sources of current. In
that case Kirchhoff’s current law is A%y = 0.

In general we allow for a source term. If external currents f,, ..., f, are sent
into the nodes, the law becomes ATy = f.

The other equation is Ohm’s law, but we need to find e—which is the voltage
drop across the resistor. The multiplication Ax gave the potential difference be-
tween the nodes. Reversing the signs, — Ax gives the potential drop. Part of that
drop may be due to a battery in the edge, of strength b,. The rest of the drop is
across the resistor, and it is given by the difference ¢ = b — Ax. Then Ohm’s law
y=Ceis

y = C(b — Ax) or C 'y + Ax=bh. (3)

It connects x to y. We are no longer trying to solve Ax = b (which was hard to
do, because there were more equations than unknowns). There is a new term C ™ 'y.
In fact the special case when Ax = b did accidentally have a solution is also the
special case in which no current flows. In that case the football score differences or
the batteries add to zero around loops—and there is no need for current.

We emphasize the fundamental equations of equilibrium, which combine Ohm’s
law with both of Kirchhoff’s laws:

‘ Cly+Ax=5b |
Ay =T

(4)

That is a symmetric system, from which ¢ has disappeared. The unknowns are the
currents y and the potentials x. It is a linear system, and we can write it in “block
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o oll)-) .

We can even do elimination on this block form. The pivot is C ', the multiplier
is ATC, and subtraction knocks out A below the pivot. The result is

5 el

The equation to be solved for x is in the bottom row:

form” as

ATCAX= ATChf. | ©

Then back-substitution in the first equation produces y.
There is nothing mysterious about (6). Substituting y = C(b — Ax) into ATy = f,
we reach that equation. The currents y are eliminated to leave an equation for x.

Important remark Throughout those equations it is essential that one potential
is fixed in advance: x, = 0. The nth node is grounded, and the nth column of the
original incidence matrix is removed. The resulting matrix is what we mean by A;
it is m by n — 1, and its columns are independent. The square matrix ATCA, which
is the key to solving equation (6) for x, is an invertible matrix of order n — I:

n—1lbym m by m mbyn—1 n—1lbyn |

EXAMPLE Suppose a battery and a current source (and five resistors) are added
to the network discussed earlier:

—» =y mys =0 -1 0 -1 0o -1
Yo — ¥, = [has AT = 1 -1 0 0 Oland f = | I
2ty =¥ =0 0 1 1 -1 0 0

e R A
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No equation is written for node 4. At that node the current law would be
Ya + ys = 0. This follows from the other three equations, whose sum is exactly
—Va—ys=0.

The other equation is C ™'y + Ax = b. The potential x is connected to the cur-
rent y by Ohm’s law. The diagonal matrix C contains the five conductances
¢; = 1/R;. The right side accounts for the battery of strength b, = V, and the block
form has C 'y + Ax = b above ATy = f:

R, -1 1 0]y, ] [0
R, 0 -1 Ly, 0

R, —1 0 ||y, |V

| c o oAlly R, 0 0 —1||y.| o
| [AT OJH: R, =1 0 0|y, |0
-1 0 -1 0 -1 x| |o

I -1 0 0 0 | 1

O_

The system is 8 by 8, with five currents and three potentials. Elimination reduces
it to the 3 by 3 system A"CAx = ATCh — f. The matrix in that system contains
the reciprocals ¢; = 1/R; (because in elimination you divide by the pivots). This
matrix is ATCA, and it is worth looking at—with the fourth row and column,
from the grounded node, included too:

¢y +e3+cs —c, —C; —¢s (nodel)

ATCA = —¢ ¢+ e ~C5 0 (node 2)
—C; —Cy Gyt 3ty —¢, (node 3)

—Cs 0 —Cy ¢4 +¢5 (node4)

You can almost see this matrix by multiplying AT and A—the lower left corner
and the upper right corner of the 8 by 8 matrix above. The firstentryis 1 + 1 + 1,
or ¢; + c¢3 + ¢s when C is included; edges 1, 3, 5 touch node 1. The next diagonal
entry is 1 + 1 or ¢; + ¢,, from the edges touching node 2. Similarly ¢, + ¢35 + ¢4
comes from node 3. Off the diagonal the ¢'s appear with minus signs, but not the
edges to the grounded node 4. Those belong in the fourth row and column, which
are deleted when column 4 is removed from A. By grounding the last node we
reduce to a system of order n — [—and more important, to a matrix A"CA that
is invertible. The 4 by 4 matrix would have all rows and columns adding to zero,
and (1, 1, 1, 1) would be in its nullspace.

Notice that ATC A4 is symmetric. Its transpose is (ATCA)T = ATCTAT, which is
again ATCA. It also has positive pivots, but that is left for Chapter 6. It comes
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from the basic framework of applied mathematics, which is illustrated in the figure:

b——; c:b—A,\'l— =

Fig. 2.6. The framework for equilibrium: sources b and f, matrix ATCA.

For clectrical networks x contained potentials and y contained currents. In
mechanics x and y become displacements and stresses. In fluids they are pressure
and flow rate.t In statistics e is the error and the equations give the best least
squares fit to the data. The triple product of AT, C, and A combines the three
steps of the framework into the single matrix that governs equilibrium.

We end this chapter at that high point—the formulation of a fundamental
problem in applied mathematics. Often that requires more insight than the solution
of the problem. We solved linear equations in Chapter 1, as the first step in linear
algebra, but to set them up has required the deeper insight of Chapter 2. The con-
tribution of mathematics, and of people, is not computation but intelligence.

A Look Ahead

We introduced the column space as the set of vectors Ax, and the left nullspace
as the solutions to ATy = 0, because those mathematical abstractions are needed
in application. For networks Ax gives the potential differences, satisfying the
voltage law; y satisfies the current law. With unit resistors (C = I) the equilibrium
equations (4) are

Ty + Ax=b )

A'y = 0.
Linear algebra (or just direct substitution) leads to A™(b — Ax) = 0, and the com-
puter solves AT Ax = ATh. But there is one more source of insight still to be heard
from.

That final source is geometry. It goes together with algebra, but it is different
from algebra. The spatial orientation of vectors is crucial, even if calculations are
done on their separate components. In this problem the orientation is nothing
short of sensational: Ax is perpendicular to y. The voltage differences are perpen-

 These matrix equations and the corresponding differential equations are studied in our
textbook Introduction to Applied Mathematics (Wellesley—Cambridge Press, Box 157,
Wellesley MA 02181).

B .
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dicular to the currents! Their sum is b, and therefore that vector b is split into two
perpendicular pieces—its projection Ax onto the column space, and its projection
y onto the left nullspace.

That will be the contribution of Chapter 3. Tt adds geometry to the algebra of
bases and subspaces, in order to reach orthonormal bases and orthogonal sub-
spaces. It also does what algebra could not do unaided—it gives an answer to
Ax = b when b is not in the column space. The equation as it stands has no solution.
To solve it we have to remove the part of b that lies outside the column space
and makes the solution impossible. What remains is equation (7), or ATAx = A7b,
which leads—through geometry—to the best possible x.

EXERCISES

251 For the 3-node triangular graph in the figure below, write down the 3 by 3 incidence
matrix A. Find a solution to Ax = 0 and describe all other vectors in the nullspace
of A. Find a solution to A"y = 0 and describe all other vectors in the left nullspace
of A.

252  For the same 3 by 3 matrix, show directly from the columns that every vector b in
the column space will satisfy b, + b, — b, = 0. Derive the same thing from the three
rows—the equations in the system Ax = b. What does that mean about potential
differences around a loop?

253  Show directly from the rows that every vector f in the row space will satisfy
Ji + f2 + f3 = 0. Derive the same thing from the three equations ATy = f. What
does that mean when the f’s are currents into the nodes?

254 Compute the 3 by 3 matrix A"A4, and show it is symmetric but singular—what
vectors are in its nullspace? Removing the last column of A (and last row of A")
leaves the 2 by 2 matrix in the upper left corner; show that it is not singular.

255  Put the diagonal matrix C with entries ¢, ¢,, ¢, in the middle and compute ATCA.
Show again that the 2 by 2 matrix in the upper left corner is invertible.

node |

node?2 edge 2 node 3 2

256  Write down the 6 by 4 incidence matrix 4 for the second graph in the figure. The
vector (1, 1, 1, 1) is in the nullspace of A, but now there will be m—n+1=3
independent vectors that satisfy A"y = 0. Find three vectors y and connect them to
the loops in the graph.
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If that graph represents six games between four teams, and the score differences are
b, ..., bs, when is it possible to assign potentials to the teams so that the potential
differences agree exactly with the 5’s? In other words, find (from Kirchhoff or from
elimination) the conditions on b that make Ax = b solvable.

Write down the dimensions of the four fundamental subspaces for this 6 by 4
incidence matrix, and a basis for each subspace.

Compute A4 and ATCA, where the 6 by 6 diagonal matrix C hasentriescy, . . ., Cg.
What is the pattern for the main diagonal of A"CA—how can you tell from the
graph which ¢’s will appear in row j?

Draw a graph with numbered and directed edges (and numbered nodes) whose
incidence matrix is

—1 1 0 0
—1 0 1 0
A= .
0 1 0 —1
0 0 -1 1

Is this graph a tree? (Are the rows of A independent?) Show that removing the last
edge produces a spanning tree. Then the remaining rows are a basis for ?

With the last column removed from the preceding A, and with the numbers 1, 2, 2,
1 on the diagonal of C, write out the 7 by 7 system

Cly+Ax=0
ATy =f.

Eliminating y,, y,, V3, v, lcaves three equations A"CAx = —ffor x,, x,, x5. Solve
the equations when f = (1, 1, 6). With those currents entering nodes 1, 2, 3 of the
network what are the potentials at the nodes and currents on the edges?

If A is a 12 by 7 incidence matrix from a connected graph, what is its rank? How
many free variables in the solution to Ax = b? How many free variables in the
solution to A"y = f? How many edges must be removed to leave a spanning tree?

In a graph with 4 nodes and 6 edges, find all 16 spanning trees.

If E and H are square, what is the product of the block matrices
m;rows | A B||E F| n rows
myrows | C D|[| G H]| n,rows

and what will be the shapes of the blocks in the product?

If MIT beats Harvard 35-0 and Yale ties Harvard and Princeton beats Yale 7-6,
what score differences in the other 3 games (H-P, MIT-P, MIT-Y) will allow potential
differences that agree with the score differences? If the score differences arc known
for the games in a spanning tree, they are known for all games.
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(a)  What are the three current laws Ay = 0 at the ungrounded nodes above?
(b) How does the current law at the grounded node follow from those three
equations?

(c) What is the rank of AT?

{(d) Describe the solutions of ATy = 0 in terms of loops in the network.

In our method for football rankings, should the strength of the opposition be
considered—or is that already built in?

If there is an edge between every pair of nodes (a complete graph) how many edges
are there? The graph has n nodes, and edges from a node to itself are not allowed.

For a square mesh that has ten nodes on each side, verify Euler’s formula on page 106:
nodes — edges + loops = 1.
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2.6 B LINEAR TRANSFORMATIONS

At this point we know how a matrix moves subspaces around. The nullspace goes
into the zero vector, when we multiply by 4. All vectors go into the column space,
since Ax is in all cases a combination of the columns. You will soon see something
beautiful -that A takes its row space into its column space, and on those spaces
of dimension r it is 100%, invertible. That is the real action of a matrix. It is partly
hidden by nullspaces and left nullspaces, which lie at right angles and go their own
way (toward zero)—but when A is square and invertible those are insignificant.
What matters is what happens inside the space—which means inside n-dimensional
space, if A is n by n. That demands a closer look.

Suppose x is an n-dimensional vector. When A multiplies x, we can think of it
as transforming that vector into a new vector Ax. This happens at every point x
of the n-dimensional space R". The whole space is transformed, or “mapped into
itself,” by the matrix A. We give four examples of the transformations that come
from matrices:

1. A multiple of the identity matrix, 4 = cl, stretches every

4= c 0] vector by the same factor ¢. The whole space expands or
10 ¢ contracts (or somehow goes through the origin and out the
opposite side, when ¢ is negative).
B 2. A rotation matrix turns the whole space around the origin.
A= 0 - 1] This example turns all vectors through 90, transforming
R 0 (1, 0) on the x-axis to (0, 1), and sending (0, 1) on the y-axis
to (—1,0).

3. A reflection matrix transforms every vector into its image on,
the opposite side of a mirror. In this example the mirror )
is the 45° line y = x, and a point like (2, 2) is unchanged.
A point like (2, —2) is reversed to (—2,2). On a combi-

A = |:0 1:‘ nation like (2, 2) + (2, —2) = (4, 0), the matrix leaves one
10 part and reverses the other part. The result is to exchange

y and x, and produce (0, 4).

[0 e GHDAERED

stretching 90° rotation reflection projection

Fig. 2.7. Transformations of the plane by four matrices.

AR AR R
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That reflection matrix is also a permutation matrix! It is algebraically so simple,

sending (x, y) to (y, x), that the geometric picture was concealed. The fourth example
is simple in both respects:

4. A projection matrix takes the whole space onto a lower-
dimensional subspace (and therefore fails to be invertible).
e |:1 0] The example transforms each vector (x, y) in the plane to
0 0 the nearest point (x, 0) on the horizontal axis. That axis
is the column space of A, and the vertical axis (which pro-
jects onto the origin) is the nullspace.

Those examples could easily be lifted into three dimensions. There are matrices
to stretch the earth or spin it or reflect it across the plane of the equator (north
pole transforming to south pole). There is a matrix that projects everything onto
that plane (both poles to the center). Other examples are certainly possible and
necessary. But it is also important to recognize that matrices cannot do everything,
and some transformations are not possible with matrices:

(i) It is impossible to move the origin, since A0 = 0 for every matrix.
(i) If the vector x goes to X', then 2x must go to 2x'. In general cx must go
to cx', since A(cx) = c(Ax).
(iii) If the vectors x and y go to x" and y/, then their sum x + y must go to
x' + y'—since A(x + y) = Ax + Ay.

Matrix multiplication imposes those rules on the transformation of the space. The
first two rules are easy, and the second one contains the first (just take ¢ = 0). We
saw rule (iii) in action when the vector (4, 0) was reflected across the 45° line. It
was split into (2, 2) + (2, —2) and the two parts were reflected separately. The
same could be done for projections: split, project separately, and add the projec-
tions. These rules apply to any transformation that comes from a matrix. Their
importance has earned them a name: Transformations that obey rules (i)iii) are
called linear transformations.
Those conditions can be combined into a single requirement:

2T For all numbers ¢ and d and all vectors x and y, matrix multiplication satisfies
the rule of linearity:

Alex + dy) = c(Ax) + d(Ay). (1)

Every transformation that meets this requirement is a linear transformation.

Any matrix leads immediately to a linear transformation. The more interesting
question is in the opposite direction: Does every linear transformation lead to a
matrix? The object of this section is to answer that question (affirmatively, in n di-
mensions). This theory is the foundation of an approach to linear algebra—starting
with property (1) and developing its consequences—which is much more abstract
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than the main approach in this book. We preferred to begin directly with matrices,
and now we see how they represent linear transformations.

We must emphasize that a transformation need not go from R” to the same space
R”. It is absolutely permitted to transform vectors in R" to vectors in a different
space R™ That is exactly what is done by an m by n matrix! The original vector x
has n components, and the transformed vector Ax has m components. The rule of
linearity is equally satisfied by rectangular matrices, so they also produce linear
transformations.

Having gone that far, there is no reason to stop. The operations in the linearity
condition (1) are addition and scalar multiplication, but x and y need not be column
vectors in R". That space was expected, but it is not the only one. By definition,
any vector space allows the combinations ¢x + dy—the “vectors” are x and y, but
they may actually be polynomials or matrices or functions x(f) and y{t). As long
as a transformation between such spaces satisfies (1), it is linear.

We take as examples the spaces P,, in which the vectors are polynomials of
degree n. They look like p = ag + a;t + -+ + a,t", and the dimension of the vector
space is n + 1 (because with the constant term, there are n + 1 coeflicients).

EXAMPLE 1 The operation of differentiation, A = d/dt, is linear:
d -1
Al’:gi(ao+a1t+"~+,a,,t")=a1+°'-+na,,t" : (2)

Its nullspace is the one-dimensional space of constant polynomials: day/dt = 0.
Its column space is the n-dimensional space P, ; the right side of (2) is always
in that space. The sum of nullity (= 1) and rank (= n) is the dimension of the
original space P,.

EXAMPLE 2 [Integration from O to ¢ is also linear (it takes P, to P, 1)

_ | n — G n+1
Ap=[llay+- +amdi=agt 4+ S (3)

This time there is no nullspace (except for the zero vector, as always!) but inte-
gration does not produce all polynomials in P, ;. The right side of (3) has no
constant term. Probably the constant polynomials will be the left nullspace.

EXAMPLE 3 Mulriplication by a fixed polynomial like 2 + 3¢ is linear:
Ap=Q2 +30ag + -+ at")y =240+ + 3a,"t L.

Again this transforms P, to P, 4, with no nulispace except p = 0.

In these examples and in almost all examples, linearity is not difficult to verify.
It hardly even seems interesting. If it is there, it is practically impossible to miss.
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Nevertheless it is the most important property a transformation can have.t Of
course most transformations are not linear—for example to square the poly-
nomial (Ap = p?), or to add 1 (Ap = p + 1), or to keep the positive coefficients
(A(t — t?) = 1). It will be linear transformations, and only those, that lead us back
to matrices.

Transformations Represented by Matrices

| Linearity has a crucial consequence: If we know Ax for each vector in a basis,
then we know Ax for each vector in the entire space. Suppose the basis consists
of the n vectors xy, ..., x,. Every other vector x is a combination of those par-
ticular vectors (they span the space). Then linearity determines Ax:

if x=cx;+-+¢x, then Ax=c,(Ax,)+ -+ c(Ax,). 4)

The transformation A4 has no freedom left, after it has decided what to do with
the basis vectors. The rest of the transformation is determined by linearity. The
requirement (1) for two vectors x and y leads to (4) for n vectors X{y ..., X, The
transformation does have a free hand with the vectors in the basis (they are inde-
pendent). When those are settled, the whole transformation is settled.

EXAMPLE 4 Question: What linear transformation takes
2 4

1 0
X, = Iio} to Ax, =13 and x, = [l:l to Ax, =6
4 8

It must be multiplication by the matrix

2 4
A=13 6.
4 8

Starting with a different basis (1, 1) and (2, — 1), this is also the only linear trans-
formation with

6 0
1 2
A 1= 9 and A 1= 0.
12 0
Next we try a new problem—to find a matrix that represents differentiation,
and a matrix that represents integration. That can be done as soon as we decide

on a basis. For the polynomials of degree 3 (the space Py whose dimension is 4)
there is a natural choice for the four basis vectors:

pi=1 p,=t P3:t2» pa =1

1 Invertibility is perhaps in second place.
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That basis is not unique (it never is), but some choice is necessary and this is the
most convenient. We look to see what differentiation does to those four basis
vectors. Their derivatives are 0, 1, 2t, 3t%, or

Apy =0, Ap,=p;, Aps=2p,, Ap,=3ps. )

A is acting exactly like a matrix, but which matrix? Suppose we were in the usual
4-dimensional space with the usual basis—the coordinate vectors p; = (1, 0, 0, 0),
p, =(0,1,0,0), p; = (0,0, 1,0), py = (0,0,0, 1). Then the matrix corresponding to
(5) would be

o O O O
S O O
S O N O
S w o O

This is the “differentiation matrix.” Ap, is its first column, which is zero. Ap, is
the second column, which is p,. Ap; is 2p,, and Ap, is 3p;. The nullspace contains
p, (the derivative of a constant is zero). The column space contains py, p,, 3 ‘E\he
derivative of a cubic is a quadratic). The derivative of any other combination like
p=2+t—1t*—1t> is decided by linearity, and there is nothing new about
that—it is the only way to differentiate. It would be crazy to memorize the derivative
of every polynomial.
The matrix can differentiate that polynomial:

010 O 2 1

da 00 2ol 1] |=2

— = Ap —» — -1 =2t — 2.

P00 0 0 3] -1 3 =3
000 off -1 0

In short, the matrix carries all the essential information. If the basis is known, and
the matrix is known, then the linear transformation is known.

The coding of the information is simple. For transformations from a space to
itself one basis is enough. A transformation from one space to another requires a
basis for each.

2U Suppose the vectors x,,..., X, are a basis for the space V, and y,, ..., Jn
are a basis for W. Then each linear transformation A4 from V to W is represented
by a matrix. The jth column is found by applying A4 to the jth basis vector; the
result Ax; is a combination of the )’s and the coefficients in that combination
go into column j:

Ax;=a\ 91 + 03y +°  + OV (6)

For the differentiation matrix, column 1 came from the first basis vector p; = 1.
Its derivative was zero, so column 1 was zero. The last column came from (d/di)t* =
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3t%. Since 3t* = Op, + Op, + 3p, + Op,, the last column contained 0, 0, 3, 0. The
‘ rule (6) constructed the matrix.
! We do the same for integration. That goes from cubics to quartics, transforming
| V =P, into W= P,, so for W we need a basis. The natural choice is y, = 1.
V2 =16, y3 =15y, =1, ys = t*, spanning the polynomials of degree 4. The matrix
will be m by n, or 5 by 4, and it comes from applying integration to each basis
vector of V: \

t { )
foldt:r or Ax, =1y, ..., for3(1r:it4 or Ax, =ivs.

Thus the matrix that represents integration is

00 0 0
\ 10 0 0
| A, =10 L 0 0
: 00 L o0
; 00 0 1

Remark We think of differentiation and integration as inverse operations. Or
at least integration followed by differentiation leads back to the original function.
To make that happen for matrices, we need the differentiation matrix from quartics
down to cubics, which is 4 by 5:

w o o

Agiee = and Agier A

int — 1

=l el el
[ e
[l B S BN =
o

~ O O O

|

Differentiation is a left-inverse of integration. But rectangular matrices cannot
have two-sided inverses! In the opposite order, it cannot be true that A, Ay = 1.
This fails in the first column, where the 5 by 5 product has zeros. The derivative
of a constant is zero. In the other columns A, A4, is the identity and the integral

int
of the derivative of " is t".

Rotations Q, Projections P, and Reflections H

This section began with 90° rotations, and projections onto the x-axis, and
reflections through the 45° line. Their matrices were especially simple:

0 -1 1 0 0 1
= P = = .
0 [l O:|’ |:0 OJ’ |:l ()}
(rotation) (projection) (reflection)

Of course the underlying linear transformations of the x-y plane are also simple.
But it seems to me that rotations through other angles, and projections onto other
lines, and reflections in other mirrors, are almost as casy to visualize. They are




still linear transformations, provided the origin is fixed: 40 = 0. They must be
represented by matrices. Using the natural basis [§] and [7], we want to discover
what those matrices are.

1. Rotation Figure 2.8 shows rotation through an angle 0. It also shows the effect
on the two basis vectors. The first one goes to (cos 0, sin #), whose length is still
one; it lies on the “0-line.” The second basis vector (0, 1) rotates into (—sin 6, cos 0).
By rule (6) those numbers go into the columns of the matrix, and we introduce
the abbreviations ¢ and s for the cosine and sine.

NG

¢ —s| c=cos0
Qa:[ } ‘—'
S ¢c| s=sinb

Fig. 2.8. Rotation through 0: the geometry and the matrix.

This family of rotations Q, is a perfect chance to test the correspondence between
transformations and matrices:

Does the inverse of Qy equal Q _, (rotation backward through 0)? Yes.

(¢ —s ¢ S 1 0
QeQ*H:Ls c}[s (]:[0 1}'

Does the square of Q, equal Q,, (rotation through a double angle)? Yes.

02 - ¢ —s|[e —s] ¢ —s* —2s | |cos20 —sin20
M I ¢lls c| | 2es 2 ~s2| |sin26 cos 20 |

Does the product of Qy and Q,, equal Qg4 , (rotation through 0 then ¢)? Yes.

coscosp —sinlOsing
sinfcosp +coslsing

Qqu) = |:

| cos(0+ @) —sin(@ + )| _
| sin(0 + @) cos(@+ @) | Qoo

The last case contains the first two. The inverse appears when ¢ is —0, and the
square appears when ¢ is +0. All three questions were decided by trigonometric
identities (and they give a new way to remember those identities). Of course it was

AR
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no accident that all the answers were yes. Matrix multiplication was defined exactly
so that the product of the matrices corresponds to the product of the transformations.

2V Suppose A and B are linear transformations from V to W and from U to V.
Their product 4B starts with a vector u in U, goes to Bu in V, and finishes with
ABu in W. This “composition” AB is again a linear transformation (from U to W).
The matrix that represents it is the product of the individual matrices representing
A and B.

That was tested earlier for Ay;A;,,, Wwhere the composite transformation was the
identity. (And also for A;, A4, Which annihilated all constants.) For rotations it
happens that the order of multiplication does not matter—U and V and W were
all the x-y plane, and Q,Q,, is the same as Q,Q,. For a rotation and a reflection,
the order makes a difference.

Technical note: To construct the matrices we need bases for VV and W, and then
for U and V. By keeping the same basis for V, the product matrix goes correctly
from the basis in U to the basis in W. If we distinguish the transformation A from
its matrix (call that [A4]), then the product rule 2V becomes extremely concise:
[AB] = [A][B]. To repeat, the rule for multiplying matrices in Chapter 1 was
totally determined by this requirement—that it must match the product of linear
transformations.
We come back to concrete examples, with new matrices.

2. Projection Figure 2.9 shows the projection of (1, 0) onto the 0-line. The length
of the projection is ¢ = cos 6. Notice that the point of projection is not (c, s), as I
mistakenly thought; that vector has length 1 (it is the rotation). The projection of
(1,0) is ¢ times that unit vector, or (c?, cs). Similarly the projection of (0, 1) has
length s, and falls at (cs, s?). That gives the second column of the projection matrix.

4

Fig. 2.9. Projection onto the 0-line: the geometry and the matrix.
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This matrix has no inverse, because the transformation has no inverse. Points like
(—s, ¢) on the perpendicular line are projected onto the origin; that line is the
nullspace of P. At the same time, points on the #-line are projected to themselves!
In other words, projecting twice is the same as projecting once, and P? = P:

P ¢ es]P [P+ ) es(P 4] p
Ces st |es(cP 45D sHE+ s |

Of course ¢ + s = cos? 0 + sin® 0 = 1. A projection matrix equals its own square.
It is also symmetric.

3. Reflection Figure 2.10 shows the reflection of (1, 0) in the 6-line. The length
of the reflection equals the length of the original, as it did after rotation—but those
transformations are very different. Here the 68-line stays where it is. The perpen-
dicular line reverses direction; all points go straight through the mirror. Linearity
decides the rest.

AN H 2¢% — 1 2¢s
N\ \ 0 2¢cs 2¢% — 1

ANINGREN

Fig. 2.10. Reflection through the 0-line: the geometry and the matrix.

This matrix H has the remarkable property H?> = I. Two reflections bring back
the original. Thus a reflection is its own inverse, H = H ', which is clear from the
geometry but less clear from the matrix. One approach is through the relationship
of reflections to projections: H = 2P — I. This means that Hx + x = 2Px—the
image plus the original equals twice the projection. It also confirms that

H*=(QP —1)2=4P> —4P 4+ I = I,

since all projections satisfy P? = P.

Those three transformations either leave lengths unchanged (rotations and re-
flections), or reduce the length (projections). Other transformations can increase
the length; stretching and shearing are in the exercises. Each example has a matrix
to represent it—which is the main point of this section. But there is also the
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question of choosing a basis, and we emphasize that the matrix depends on the
choice of basis. For example:

|

| (i) For projections, suppose the first basis vector is on the 0-line and the second
| basis vector is perpendicular. Then the projection matrix is back to P = [} o]
‘ This matrix is constructed as always: its first column comes from the first basis
., vector (which is projected to itself), and the second column comes from the basis
‘ vector which is projected onto zero.

| (i) For reflections, that same basis gives H = [§ _9]. The second basis vector
| is reflected onto its negative, to produce this second column. The matrix H is still
i 2P — I, when the same basis is used for H and P.

‘ (i) For rotations, we could again choose unit vectors along the 0-line and its
perpendicular. But the matrix would not be changed. Those lines are still rotated
through 0, and Q = [ %] as before.

The whole question of choosing the best basis is absolutely central, and we come
back to it in Chapter 5. The goal is to make the matrix diagonal, as achieved
for P and H. To make Q diagonal requires complex vectors, since all real vectors
are rotated.

We mention here the effect on the matrix of a change of basis, while the linear
transformation stays the same. The matrix 4 (or Q or P or H) is altered to
S™'AS. Thus a single transformation is represented by different matrices (via dif-
ferent bases, accounted for by S). The theory of eigenvectors will lead to this
formula S~ 'AS, and to the best basis.

EXERCISES

the result onto the x-axis?

2.62 What matrix represents projection onto the x-axis followed by projection onto the

!

] 2.6.1  What matrix has the effect of rotating every vector through 90° and then projecting
|

‘ y-axis?

2.6.3  Does the product of 5 reflections and 8 rotations of the x-y plane produce a rotation
or a reflection?

264 The matrix A ={3 9] produces a stretching in the x-direction. Draw the circle
x* 4+ y* =1 and sketch around it the points (2x, y) that result from multiplication
by A. What shape is that curve?

26.5 Every straight line remains straight after a linear transformation. If z is halfway
between x and y, show that Az is halfway between Ax and Ay.

26.6 Thematrix A = [} ] yields a shearing transformation, which leaves the y-axis un-
changed. Sketch its effect on the x-axis, by indicating what happens to (1, 0) and
(2,0) and (=1, 0)—and how the whole axis is transformed.

2.6.7 What 3 by 3 matrices represent the transformations that

i) project every vector onto the x—y plane?
ii) reflect every vector through the x—y plane?
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2,68

2.6.9

2.6.10

2.6.11

2.6.12

2.6.13

2.6.14

2.6.15

2.6.16

2.6.17

2,6.18

2 Vector Spaces and Linear Equations

ifi) rotate the x—y plane through 90°, leaving the z-axis alone?
iv) rotate the x—y plane, then the x—z plane, then the y-z plane, all through 90°7
v) carry out the same three rotations, but through 180°?

On the space P, of cubic polynomials, what matrix represents d?/dt*? Construct
the 4 by 4 matrix from the standard basis 1, ¢, 2, t3. What is its nullspace, what
is its column space, and what do they mean in terms of polynomials?

From the cubics P, to the fourth degree polynomials P,, what matrix represents
multiplication by 2 + 3t? The columns of the 5 by 4 matrix 4 come from applying
the transformation to each basis vector x, = 1, x, = t, X3 = t%, x4 = t°.

The solutions to the linear differential equation d2u/dt> = u form a vector space
(since combinations of solutions are still solutions). Find two independent solutions,
to give a basis for that space.

With initial values u = x and du/dt = y at t = 0, what combination of basis vectors
in Ex. 2.6.10 solves the equation? This transformation from the initial values to the
solution is linear; what is its 2 by 2 matrix (using x =1,y =0and x =0, y = 1 as
basis for V, and your basis for W)?

Verify directly from ¢® + 52 = 1 that the reflection matrices satisfy H”> = I.

Suppose A is a linear transformation from the x-y plane to itself. Show that A~'
is also a linear transformation (if it exists). If 4 is represented by the matrix M,
explain why A~ ! is represented by M ™'

The product (AB)C of linear transformations starts with a vector x, produces a
vector u = Cx, and then follows the shaded rule 2V in applying AB to u. It reaches
(AB)Cx.

i) TIs the result the same as separately applying C then B then A?

ii) Is the result the same as applying BC followed by A? If so, parentheses are
unnecessary and the associative law (AB)C = A(BC) holds for linear transforma-
tions. Combined with the product rule 2V, this is the best proof of the same law
for matrices.

Prove that A2 is a linear transformation if 4 is (say from R to R?).

The space of all 2 by 2 matrices has the four basis “vectors”

oot ook Lok o7l

Consider the linear transformation of transposing every 2 by 2 matrix, and find its
matrix A with respect to this basis. Why is A2 = I?

Find the 4 by 4 matrix that represents a cyclic permutation: each vector
(X1, X3, X3, X4) is transformed to (x;, X3, X4, X1). What is the effect of A2? Show that
AP=A4"1,

Find the 4 by 3 matrix A4 that represents a right shift. each vector (x5 X5, X3)
is transformed to (0, x,, X,, x5). Find also the left shift matrix B from R* back to R®,
transforming (x,, X,, X3, X4) to (x5, X3, X,). What are the products AB and BA?
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2.6.19

2.6.20

2.6.21

In the vector space V' of all cubic polynomials P = a, 4 a,x + a,x> + a3x>, let S

be the subset of polynomials with j(‘) p(x) dx = 0. Verify that S is a subspace and
find a basis.

A nonlinear transformation is invertible if there is existence and uniqueness;
Sf{x) = b has exactly one solution for every b. The example f(x) = x? is not invertible
because x? = b has two solutions for positive b and no solution for negative b.
Which of the following transformations (from the real numbers R' to the real
numbers R') are invertible? None are linear, not even (c).

@ f=x* (b f)=e () fi)=x+11 (d) f(x)=cosx.

What is the axis of rotation, and the angle of rotation, of the transformation that
takes (x,, x,, x;) into (x,, X3, x,)?
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2.1

2.2

2.3

2.4

25

2.6

27

238

29

REVIEW EXERCISES: Chapter 2

Find a basis for the following subspaces of R*:

{a) The vectors for which x; = 2x,

(b) The vectors for which x; + x, + x3;=0and x; + x, =0

{c) The subspace spanned by (1, 1, 1, 1), (1, 2, 3, 4), and (2, 3, 4, 5).

By giving a basis, describe a two-dimensional subspace of R* that contains none of
the coordinate vectors (1, 0, 0), (0, 1, 0), (0, 0, 1).

True or false, with counterexample if false:

(i) If the vectors x,,..., x,, span a subspacc S, then dim S = m.
(i) The intersection of two subspaces of a vector space cannot be empty.
(i) If Ax = Ay, then x = y.
(tv) The row space of 4 has a unique basis that can be computed by reducing A4 to
echelon form.
(v) 1If a square matrix A has independent columns, so does A°.

What is the echelon form U of

l 2 0 2 1
A=| -1 =2 1 1 0f?
1 2 =3 =7 =2

What are the dimensions of its four fundamental subspaces?
Find the rank and the nullspace of

0 0 1 0 0 1
A=|0 0 1 and B={0 0 1
111 1 11

(e S 2R )

Find bases for the four fundamental subspaces associated with

12 00 1100
A= , B= ., C= .
[3 6} [1 2} [0 1o 1]

What is the most general solutiontou + v +w =1, u —w =27

(a) Construct a matrix whose nullspace contains the vector x = (1, 1, 2).

(b) Construct a matrix whose left nullspace contains y = (1, 5).

(¢) Construct a matrix whose column space is spanned by (1, 1, 2} and whose row
space is spanned by (1, 5).

(d) If you are given any three vectors in R® and any three vectors in R®, is there a
6 by 5 matrix whose column space is spanned by the first three and whose row space
is spanned by the second three?

In the vector space of 2 by 2 matrices,

(a) is the set of rank-one matrices a subspace?

(b) what subspace 1s spanned by the permutation matrices?

{¢) what subspace is spanned by the positive matrices (all a;; > 0)?
(d) what subspace is spanned by the invertible matrices?
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2.10

211

2,12

213

214

2.20

2.21

Invent a vector space that contains all linear transformations from R” to R”. You have
to decide on a rule for addition. What is its dimension?

(a) Find the rank of A, and give a basis for its nullspace.

S OO N
(e S =)

1
0
0
0

S O o=
S O O N
S = O =

(b) T F The first 3 rows of U are a basis for the row space of A

T F Columns 1, 3, 6 of U are a basis for the column space of A

T F The four rows of A are a basis for the row space of 4
(c} Find as many linearly independent vectors b as possible for which Ax = b has a
solution.
(d) In elimination on A, what multiple of the third row is subtracted to knock out
the fourth row?

If Ais an n by n — 1 matrix, and its rank is n — 2, what is the dimension of its
nullspace?

Use elimination to find the triangular factors in 4 = LU, if

a a a a
4 a b b b
a b ¢ ¢
a b ¢ d

Under what conditions on the numbers a, b, ¢, d are the columns linearly independent?
Do the vectors (1, 1, 3), (2, 3, 6), and (1, 4, 3) form a basis for R3?

Give examples of matrices A for which the number of solutions to Ax = b is

(i) O or 1, depending on b;
(i) o0, independent of b;
(iti) 0 or oo, depending on b;
(iv) 1, regardless of b.

In the previous exercise, how is r related to m and n in each example?
If x is a vector in R”, and x'y = 0 for every y, prove that x = 0.
If A is an n by n matrix such that 42 = 4 and rank 4 = n, prove that 4 = [.

What subspace of 3 by 3 matrices is spanned by the clementary matrices E,,, with

ijs
ones on the diagonal and at most one nonzero entry below?

How many 5 by 5 permutation matrices are there? Are they linearly independent?
Do they span the space of all 5 by 5 matrices? No need to write them all down.

What is the rank of the n by n matrix with every entry equal to one? How about the
“checkerboard matrix,” with a;; = 0 when i + j is even, a;; =1 when i + jis odd?
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2.22 (a) Ax = b has a solution under what conditions on b, if
1 20 3 b,
A=|0 0 0 O and b=1b,|?
2 4 0 1 b,
(b) Find a basis for the nullspace of A.
(¢) Find the general solution to Ax = b, when a solution exists.
(d) Find a basis for the column space of A.
(e) What is the rank of A™?
2.23 How can you construct a matrix which transforms the coordinate vectors ¢, ¢,, e
into three given vectors vy, t,, v37 When will that matrix be invertible?
224 1If ey, e,, ¢; are in the column space of a 3 by 5 matrix, does it have a left-inverse?
Does it have a right-inverse?
2.25 Suppose T is the linear transformation on R? that takes each point (u, v, w) to
(u+ v 4 w,u + v, u). Describe what T~ ! does to the point (x, y, z).
2.26 True or false: (a) FEvery subspace of R* is the nullspace of some matrix.
(b) If 4 has the same nullspace as AT, the matrix must be square.
(c) The transformation that takes x to mx + b is linear (from R! to R!).
2.27 Find bases for the four fundamental subspaces of
1 20 3 |
0 2 2 2
A, = and A, =111 4}
=10 0 0 0 2 1 [1 4]
0 0 0 4
2.28 (a) If the rows of A are linearly independent (A4 is m by n) then the rank is
and the column space 1s ... __. and the left nullspace is .
(b) If A is 8 by 10 with a 2-dimensional nullspace, show that Ax = b can be solved
for every b.
2.29 Describe the linear transformations of the x-y plane that are represented with stan-
dard basis (1, 0) and (0, 1) by the matrices
| 1 0 A = 10 Al = 0 1
o -1 T2 TP e1 o)
230 (a) If A is square, show that the nullspace of 42 contains the nullspace of A.
(b) Show also that the column space of 42 is contained in the column space of A.
2.31 When does the rank-one matrix A = uv’ have 4% = 0?
232 ( Find a basis for the space of all vectors in R® with x; + x, = x3 + X, = X5 + X,.

a)
(b) Find a matrix with that subspace as its nullspace.

(c) Find a matrix with that subspace as its column space.




2.33 Suppose the matrices in PA = LU are

01 000 0 1 -3 2
1ooofl2 -1 4 2 1
000 1[4 2 9 1 4
001 oJ{2 -1 5 -1 5

. L0002 1 4 2 1

ot ooflo 0o 1 -3 2

| L1t 1o0ffo o 0 0 2

‘ 210 1J[o 0o 0 0o o0

(a) What is the rank of 4?

(b) What is a basis for the row space of A?

() True or false: Rows 1, 2, 3 of A are linearly independent.
(d) What is a basis for the column space of 4?

() What is the dimension of the left nullspace of A?

(f) What is the general solution to Ax = 0?

i
|
|
i
§




ORTHOGONALITY

3.1 @ PERPENDICULAR VECTORS AND ORTHOGONAL SUBSPACES

We know from the last chapter what a basis is. Algebraically, it is a set of inde-
pendent vectors that span the space. Geometrically, it is a set of coordinate axes.
A vector space is defined without those axes, but every time I think of the x-y
plane or three-dimensional space or R, the axes are there. Furthermore, they are
usually perpendicular! The coordinate axes that the imagination constructs are prac-
tically always orthogonal. In choosing a basis, we tend to choose an orthogonal
basis.

If the idea of a basis is one of the foundations of linear algebra, then the special-
ization to an orthogonal basis is not far behind. We need a basis to convert geo-
metric constructions into algebraic calculations, and we need an orthogonal basis
to make those calculations simple. There is even a further specialization, which
makes the basis just about optimal: The vectors should have length one. That can
be achieved, but to do it we have to know

(1) the length of a vector
(2) the test for perpendicular vectors
(3) how to create perpendicular vectors from linearly independent vectors.

More than that, subspaces must enter the picture. They also can be perpendicular.
We will discover, so beautifully and simply that it is a delight to see, that the
fundamental subspaces are at right angles to each other. They are perpendicular in
pairs, two in R™ and two in R". That will complete the fundamental theorem of
linear algebra.
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0, 0, X3)
/ A
X=X, X)) J -
< / B=(x,x,. 1)
I ST
I
%) (0, x,. 0)
(x;, O
(x}, 0,0) A=(x), 1, 0)
(a) (b)

Fig. 3.1. The length of two- and three-dimensional vectors.

The first step is to find the length of a vector. Tt is denoted by [x]. and in two
dimensions it comes from the hypotenuse of a right triangle (Fig. 3.1a). The square
of the length was given a long time ago by Pythagoras: [x]]* = x7 + x3.

In three-dimensional space, the vector x = (x,, X, X3} is the diagonal of a box
(Fig. 3.1b) and its length comes from two applications of the Pythagoras formula.
The two-dimensional case takes care of the diagonal 04 = (xy, x3, 0) which runs
across the base, and gives 042 = x? 4 x2. This forms a right angle with the vertical
side (0, 0, x3), so we may appeal to Pythagoras again (in the plane of 04 and AB).
The hypotenuse of the triangle OA4B is the length [ x| we want, and it is given by

X2 = 04% + AB> = x2 + x2 + x2.

The generalization to a vector in n dimensions, x = {x1, ..., x,), is immediate.
The length | x| of a vector in R" is the positive square root of

‘ I@Z if Fxl4 X2 = xTxi.”; (n

Geometrically, this amounts to applying the Pythagoras formula n — 1 times,
adding one more dimension at each step. The sum of squares agrees with the

multiplication x"x—and the length of x = (1,2, —3) is \/ﬁ:

1
X'x=[1 2 =3]| 2|=14
-3

Now suppose we are given two vectors x and y (Fig. 3.2). How can we decide
whether they are perpendicular? In other words, what is the test for orthogonality?
This is a question that can be answered in the two-dimensional plane by trigonom-
etry. Here we need the generalization to R” but still we can stay in the plane
spanned by x and y. Within this plane, x is orthogonal to y provided they form
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.\'3

> Xz

X—=y

x| X
Fig. 3.2. The plane triangle with sides x, y, and x — y.

a right triangle. We go back to the Pythagoras formula as a test: x and y are
perpendicular if

[l + Iyl* = e = y[1* )
Applying the length formula (1), this becomes
foi o~ ) F il o) =l — )l e e~y
The left side cancels part of the right side, which expands into
(O + 0+ x0) = 2x0py + 0 F Xya) + 07 400+ )

Thus equality holds in (2) when the “cross-product terms” give zero: x and y are
orthogonal if

lel ++xnyn:0 ‘ (3)

Notice that this quantity is exactly the same as x'y, the product of a 1 by n
matrix (the row vector x) with an n by 1 matrix (the column vector y):

Y1
xTy =5 [xl LR xn] = xlyl e XnYn- (4)
Yn

Using the notation for summation, it is Y x;y;. (It is also y'x.) This combination
appears in every discussion of the geometry of n-dimensional space. It is sometimes
called the scalar product or dot product of the two vectors, and denoted by (x, y)
or x - y, but we prefer to call it the inner product and to keep the notation xTy:

3A The quantity x"y is the inner product of the (column) vectors x and y in R™.
It is zero if and only if x and y are orthogonal.

AL
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The ideas of length and inner product are connected by x"x = x? + -+ + x2 =
| x||?. The only vector with length zero—in other words, the only vector orthogonal
to itself-—is the zero vector. This vector x = 0 is orthogonal to every vector in R”,

EXAMPLE x = (2,2, —1) is orthogonal to y=(—1,2,2). Both have length

JA+4+1 =3

The next section studies vectors that are not orthogonal; the inner product xTy
determines the angle between them. It gives a natural definition of the cosine in
n-dimensional space; perpendicular vectors have cos 6 = 0. In this section we stay
with those right angles. The goal is still to understand the four fundamental
subspaces—and the property we are after is orthogonality.

First, there is a simple connection to linear independence: If the nonzero vectors
Uy, ..., U, are mutually orthogonal {every vector is perpendicular to every other),
then they are linearly independent.

Proof Suppose cv; + - + ¢v, = 0. To show that ¢; must be zero, take the
inner product of both sides with v;:

vi(civ + -+ ) = 10 = 0. (3)

The orthogonality of the v’s leaves only one term in (5), ¢,v]v, = 0. Because the
vectors were assumed nonzero, viv, # 0 and therefore ¢, = 0. The same is true
of every c;. Thus the only combination of the v’s producing zero is the trivial one
with all ¢; = 0, and the vectors are independent.

The most important example of mutually orthogonal vectors is the set of co-
ordinate vectors ey, ..., e, in R" Those are the columns of the identity matrix.
They form the simplest basis for R”, and they are unit vectors—each of them has
length |e;]| = 1. They point in the direction of the coordinate axes. If this system
of vectors 1s rotated, the result is a new “orthonormal basis,” that is, a new system
of mutually orthogonal unit vectors. In the plane, this rotation produces

v; = (cos 0, sin 6), v, = (—sin 0, cos 0).

That gives another example of length (vJv, = | and viv, = 1) and orthogonality
(vTv, = 0).

Orthogonal Subspaces

We come to the orthogonality of two subspaces. That requires every vector in
one subspace to be orthogonal to every vector in the other. In three-dimensional
space, subspaces are represented by lines or planes through the origin—and in
the extreme cases, by the origin alone or the whole space. The subspaces can have
dimension 0, 1, 2, or 3. The subspace {0} is orthogonal to all subspaces. A line can
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be orthogonal to another line, or it can be orthogonal to a plane, but a plane
cannot be orthogonal to a plane.t The full space R? is orthogonal only to {0}. In
n dimensions the definition is this:

3B Two subspaces V and W of the same space R" are orthogonal if every vector
v in V is orthogonal to every vector w in W: v"w = 0 for all v and w.

EXAMPLE Suppose V is the plane spanned by v; = (1,0, 0, 0) and v, = (1, 1, 0, 0),
and W is the line spanned by w = (0, 0, 4, 5). Then since w is orthogonal to both
v’s, the line W will be orthogonal to the whole plane V.

In this case, with subspaces of dimension 2 and 1 in R*, there is room for a
third subspace. It is the line L through z = (0, 0, 5, —4), perpendicular to V' and
W. Then the dimensions add to 2 + 1 + 1 = 4, and only the zero vector is perpen-
dicular to all three of V, W, and L.

Now we explain our interest in orthogonal subspaces. The important ones don’t
come by accident, and they come two at a time. In fact orthogonal subspaces are
unavoidable: They are the fundamental subspaces! There are four subspaces, and
they come in pairs.

The first pair is the nullspace and row space. Those are subspaces of R"—the
rows have n components and so does the vector in Ax = 0. We have to show,
using only the equation Ax = 0, that the rows are orthogonal to the vector x.

3C The row space is orthogonal to the nullspace (in R”) and the column space
is orthogonal to the left nullspace (in R™).

First proof Suppose x is a vector in the nullspace. Then Ax = 0, and this system
of m equations can be written out more fully as

rowl ]| % 0
AXI rowz X2 _ O . (6)
rowm - || 0

n

The main point is already in the first equation: row 1 is orthogonal to x. Their
inner product is zero; that is the equation. The second equation says the same
thing for row 2. Because of the zeros on the right side, x is orthogonal to every

+1 have to admit that the front wall and side wall of a room look like perpendicular
planes in R?. But by our definition, that is not so! There are lines v and w in the two walls
that do not meet at a right angle. In fact the line along the corner is in both walls, and it
is certainly not orthogonal to itself.
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row. Therefore it is orthogonal to every combination of the rows. Each x in the
| nullspace is orthogonal to each vector in the row space, so A (A4) L #(A").
The other orthogonal subspaces come from ATy = 0, or y'4 = 0:

ViA=[y1  Val

— B8 3700

= Bg3e—Toc0

The vector y is orthogonal to every column. The equation says so, from the zeros

on the right. Therefore y is orthogonal to every combination of the columns. It

is orthogonal to the column space, and it is a typical vector in the left nulispace:
‘ A'(AT) L Z(A). This is the same as the first half of the theorem, with A replaced
by AT.

1 Second proof We want to establish the same result by a more coordinate-free
‘ argument. The contrast between the two proofs should be useful to the reader, as
! a specific example of an “abstract” versus a “concrete” method of reasoning. I
wish I were sure which is clearer, and more permanently understood.

Suppose x is in the nullspace and v is in the row space. Then Ax = 0Oand v = A"z
for some vector z. (The vector v is a combination of the rows, since it is in the row
space.) One line will prove that they are orthogonal:

Tx =(AT2)Tx = z"Ax =70 = 0. (8)

i EXAMPLE Suppose A has rank one, so its row space and column space are lines:

; 1 3
f A=]12 6.
39
The rows are multiples of (1, 3). The nullspace contains (— 3, 1), which is orthogonal
to the rows. In fact the nullspace is just the perpendicular line in R?, satisfying

| [1 3] Bj:o and [2 6] Bj:o and [3 9] [zil:o.

j In contrast, the other pair of subspaces is in R?. The column space is the line

‘ through (1, 2, 3), and the left nullspace is a plane. It must be the perpendicular
plane y, + 2y, + 3y; = 0. That is exactly the content of y'4 = 0.

Notice that the first pair (the two lines) had dimensions 1 + 1 = 2 in the space

R2. The second pair (line and plane) had dimensions 1 + 2 = 3 in the space R>.

In general the row space and nullspace have dimensions thataddtor + (n — r) = n.
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The other pair adds to r + (m — r) = m. Something more than just orthogonality
is occurring, and I have to ask your patience about that one further point.

It is certainly the truth that the nullspace is perpendicular to the row space—but
itis not the whole truth. .#"(4) does not contain just some of the vectors orthogonal
to the row space, it contains every such vector. The nullspace was formed from all
solutions to Ax = 0.

DEFINITION Given a subspace V of R”, the space of all vectors orthogonal to Vis
called the orthogonal complement of V, and denoted by V.t

Using this terminology, the nullspace is the orthogonal complement of the row
space: A'(4) = (#(A"))*. At the same time, the opposite relation also holds: The
row space contains all vectors that are orthogonal to the nullspace. This is not so
obvious, since in solving Ax = 0 we started with the row space and found all x
that were orthogonal to it; now we are going in the opposite direction. Suppose,
however, that some vector z is orthogonal to the nullspace but is outside the row
space. Then adding z as an extra row of 4 would enlarge the row space without
changing the nullspace. But we know that there is a fixed formula r + (n — r) = n:

dim(row space) + dim(nullspace) = number of columns.

Since the last two numbers are unchanged when the new row z is added, it is
impossible for the first one to change either. We conclude that every vector or-
thogonal to the nullspace is already in the row space: Z(A") = (A(4))*.

The same reasoning applied to A" produces the dual result: The left nullspace
N'(A") and the column space #(A) are orthogonal complements. Their dimensions add
up to (m — r) + r = m. This completes the second half of the fundamental theorem
of linear algebra. The first half gave the dimensions of the four subspaces, including
the fact that row rank = column rank. Now we know that those subspaces are
perpendicular, and more than that they are orthogonal complements.

3D Fundamental Theorem of Linear Algebra, Part 2
The nullspace is the orthogonal complement of the row space in R™.
The left nullspace is the orthogonal complement of the column space in R™.

To repeat, those statements are reversible. The row space contains everything
orthogonal to the nullspace. The column space contains everything orthogonal to
the left nullspace. That is just a sentence, hidden in the middle of the book, but it

T Suggested pronunciation: “V perp.”
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decides exactly which equations can be solved! Looked at directly, Ax = b requires
b to be in the column space. Looked at indirectly, it requires b to be perpendicular
to the left nullspace.

3E The equation Ax = b is solvable if and only if b"y = 0 whenever A"y = 0.

The direct approach was “b must be a combination of the columns.” The indirect
approach is “b must be orthogonal to every vector that is orthogonal to the col-
umns.” That doesn’t sound like an improvement (to put it mildly). But if there
are many columns, and only one or two vectors are orthogonal to them, it is
much easier to check those one or two conditions by = 0. A good example is
Kirchhoff’s voltage law in Section 2.5. Testing for zero around loops is much
easier than recognizing combinations of the columns.

EXAMPLE The left sides of the following equations add to zero:

X, — X, = by 1 -1 0| x, b,
X, —Xx3=b, or 0 1 —1||x,|=|bs]|
X3 — Xy = b —1 0 1] x3 b,

They are solvable if and only if the right sides add to zero. It is easier to check
b, + b, + by = 0—which makes b orthogonal to y = (1, 1, 1) in the left nullspace—
than to check whether b is a combination of the columns. By the fundamental theo-
rem, it is the same thing.

The Matrix and the Subspaces

We emphasize that ¥ and W can be orthogonal without being complements,
when their dimensions are too small. The line V spanned by (1, 0, 0) is orthogonal
to the line W spanned by (0,0, 1), but in three dimensions V is not W+. The
orthogonal complement of Wis two-dimensional. It is a plane, and the line V'is
only part of it. If the dimensions are right, then orthogonal subspaces are neces-
sarily orthogonal complements. That was the case for the row space and nullspace,
and the proof can be applied in general:

if W=Vt then V=W-

In other words ¥+ = V! The dimensions of V and W are right, and the space is
being decomposed into two perpendicular parts (Fig. 3.3).

When the space is split into orthogonal parts, so is every vector: x = v + w. The
vector v is the projection onto the subspace V. The orthogonal component w is
the projection of x onto W. The next sections show how to find those projections;
here we want to use them. They lead to what is probably the most important figure
in the book (Fig. 3.4).
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Fig. 3.3. Orthogonal complements in R?: a plane and a line.

Figure 3.4 summarizes the fundamental theorem of linear algebra. It illustrates
the true effect of a matrix—what is happening below the surface of the multiplica-
tion Ax. One part of the theorem determined the dimensions of the subspaces. The
key was that the row space and column space share the same dimension r (the
rank). Now we also know the orientation of the four spaces. Two subspaces are
orthogonal complements in R”, and the other two in R™. The nullspace is carried
to the zero vector. Nothing is carried to the left nullspace. The real action is between
the row space and column space, and you see it by looking at a typical vector x.
It has a “row space component” and a “nullspace component,” x = x, + x,. When
multiplied by A, this is Ax = Ax, + Ax,:

the nullspace component goes to zero: Ax, =0
the row space component goes to the column space: Ax, = Ax.

m
Ax R

column
space

R(A)

left
nullspace

N(@T)

Fig. 3.4. The action of a matrix A.
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Of course everything goes to the column space—the matrix cannot do anything
else—and the figure shows how it happens.f

3F The mapping from row space to column space is actually invertible. Every
vector b in the column space comes from one and only one vector x, in the row
space.

Proof 1f b is in the column space, it is a combination Ax of the columns. In fact
it is Ax,, with x, in the row space, since the nullspace component gives Ax, = 0.
If another vector x; in the row space gives Ax, = b, then A(x, — x))=b — b = 0.
This puts x, — x; in both the nullspace and the row space, which makes it orthog-
onal to itself. Therefore it is zero, and x, = x,. Exactly one vector in the row space
is carried to b.

Every matrix transforms its row space to its column space.

On those r-dimensional spaces A is invertible; on its nullspace it is zero. That is
easy to see when A is diagonal; the submatrix holding the r nonzeros is invertible.
Now we know it is always true. Furthermore A" goes in the opposite direction,
from R™ back to R" and from Z(A) back to Z(A"). Of course the transpose is not
the inverse! AT moves the spaces correctly, but not the individual vectors. That
honor belongs to 47! if it exists—and it only exists if r = m = n. Otherwise we
are asking it to bring back a whole nullspace out of the single vector zero, which
no matrix can do.

When 47! fails to exist, you can see a natural substitute. It is called the
pseudoinverse, and denoted by A ™. It inverts 4 where that is possible: A Ax = x
for x in the row space. On the left nullspace nothing can be done: A*y = 0. Thus
A" inverts A where it is invertible, and it is computed in the Appendix. That com-
putation depends on one of the great factorizations of a matrix—the singular
value decomposition—for which we first need to know about eigenvalues.

EXERCISES

3.1.1  Find the lengths and the inner product of x = (1,4, 0,2) and y = (2, —2, 1, 3).

31.2 Give an example in R? of linearly independent vectors that are not mutually
orthogonal. Also, give an example of mutually orthogonal vectors that are not
independent.

n —r. If you understand these dimensions, and the orthogonality, do not allow Fig. 3.4 to
confuse you!
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3.1.10

3.1.11

3.1.12

According to analytic geometry, two lines in the plane are perpendicular when the
product of their slopes is — 1. Apply this to the vectors x = (xq, x,) and y = (4, ¥,),
whose slopes are x,/x; and y,/y,, to derive again the orthogonality condition
xTy = 0.

How do we know that the ith row of an invertible matrix B is orthogonal to the
jth column of B~ if i # j?

Which pairs are orthogonal among the vectors

1 1

-1
vy = ?

—1
—1

=1 5 v, =

S O b

In R? find all vectors that are orthogonal to (1, 1, 1) and (1, —1, 0). Produce from
these vectors a mutually orthogonal system of unit vectors (an orthonormal system)
in R3.

Find a vector x orthogonal to the row space, and a vector y orthogonal to the
column space, of

1 21
A=}|2 4 3]
3 6 4

If V' and W are orthogonal subspaces, show that the only vector they have in com-
mon is the zero vector: V n W = {0}.

Find the orthogonal complement of the plane spanned by the vectors (1, 1, 2) and
(1, 2, 3), by taking these to be the rows of A and solving Ax = 0. Remember that
the complement is a whole line.

Construct a homogeneous equation in three unknowns whose solutions are the
linear combinations of the vectors (1, 1, 2) and (1, 2, 3). This is the reverse of the
previous exercise, but of course the two problems are really the same.

The fundamental theorem of linear algebra is often stated in the form of Fredholm’s
alternative: For any A and b, one and only one of the following systems has a
solution:

() Ax=b 2 ATy =0,y'b 0.

In other words, either b is in the column space %(A) or there is a y in .4 (A") such
that yTh # 0. Show that it is contradictory for (1) and (2) both to have solutions.

Find a basis for the nullspace of

A_IOZ
111 o4

and verify that it is orthogonal to the row space. Given x = (3, 3, 3), split it into
a row space component x, and a nullspace component x,,.

LA
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3.1.13

3.1.14

3.1.15

3.1.16

3.1.17

3.1.18

3.1.19

3.1.20

3.1.21

3.1.22

Illustrate the action of AT by a picture corresponding to Fig. 3.4, sending #(A)
back to the row space and the left nullspace to zero.

Show that x — y is orthogonal to x + y if and only if |x|| = | y].

Find a matrix whose row space contains (1, 2, 1) and whose nullspace contains
(1, —2, 1), or prove that there is no such matrix.

Find all vectors which are perpendicular to (1,4, 4, 1) and (2,9, 8, 2).

If V is the orthogonal complement of W in R", is there a matrix with row space V
and nullspace W? Starting with a basis for V' show how such a matrix can be
constructed.

If S = {0} is the subspace of R* containing only the origin, what is S*? If S is spanned
by (0, 0, 0, 1), what is $*?

True or false: (a) If V is orthogonal to W, then V' is orthogonal to W+,
(b) If Vis orthogonal to W and W is orthogonal to Z, then V is orthogonal to Z.

Let S be a subspace of R". Explain what (§1)* = S means and why it is true.

Let P be the plane (not a subspace) in 3-space with equation x + 2y — z = 6. Find
the equation of a plane P’ parallel to P but going through the origin. Find also a
vector perpendicular to those planes. What matrix has the plane P’ as its nullspace,
and what matrix has P’ as its row space?

Let S be the subspace of R* containing all vectors with x, + x, + x5 + x, = 0. Find
a basis for the space S*, containing all vectors orthogonal to S.
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3.2 B INNER PRODUCTS AND PROJECTIONS ONTO LINES

We know that the inner product of two vectors x and y is the number xTy. So far
we have been interested only in whether that inner product is zero—in other
words, whether the two vectors are orthogonal. Now we allow also the possibility
of inner products that are not zero, and angles that are not right angles. We want
to understand the relation of the inner product to the angle and also the connec-
tion between inner products and transposes. In Chapter 1 the transpose was con-
structed by flipping over a matrix as if it were some kind of pancake. We have to
do better than that.

If we try to summarize the rest of the chapter, there is no way to avoid the fact
that the orthogonal case is by far the most important. Suppose we are given a point
b in n-dimensional space, and we want to find its distance to a given line—say
the line in the direction of the vector a. We are looking along that line for the
point p closest to b. The key is in the geometry: The line connecting b to p (the
dotted line in Fig. 3.5) is perpendicular to the vector a. This fact will allow us to
find the closest point p, and to compute its distance from b. Even though the given
vectors a and b are not orthogonal, the solution to the problem automatically
brings in orthogonality.

The situation is the same when, instead of a line in the direction of a, we are
given a plane—or more generally any subspace S of R". Again the problem is to
find the point p on that subspace that is closest to b. This point p is the projection
of b onto the subspace. When we draw a perpendicular from b to S, p is the point
where the perpendicular meets the subspace. Geometrically speaking, that is a
simple solution to a natural problem about distances between points b and sub-
spaces S. But there are two questions that need to be asked:

(1) Does this problem actually arise in practical applications?
(2) If we have a basis for the subspace, is there a formula for the projection p?

\ a=(...a)

\j
%y

X 1

Fig. 3.5. A one-dimensional projection in n-dimensional space.
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The answers are certainly yes. Our problem, described so far only in geometri-
cal terms, is exactly the problem of the least squares solution to an overdetermined
system. The vector b represents the data, given by experiments or questionnaires,
and it contains too many errors to be found in the given subspace. When we try
to write b as a combination of the basis vectors in the subspace, it cannot be
done—the equations are inconsistent, and have no solution. The least squares
method selects the point p as the best choice possible. There can be no doubt of
the importance of this application.t

The second question, to find a formula for p, is easy when the subspace is a
line. We will project one vector onto another in several different ways, in this sec-
tion and the next, and relate this projection to inner products and angles. For-
tunately, the formula for p remains fairly simple when we project onto a higher
dimensional subspace, provided we are given a basis. This is by far the most im-
portant case; it corresponds to a least squares problem with several parameters,
and it is solved in Section 3.3. Then it remains to make the formulas even simpler,
by getting back to orthogonal vectors.

Inner Products and the Schwarz Inequality

We pick up the discussion of inner products and angles. You will soon see that
it is not the angle, but the cosine of the angle, that is directly related to inner
products. Therefore we first look back to trigonometry, that is to the two-
dimensional case, in order to find that relationship. Suppose « is the angle that
the vector a makes with the x axis (Fig. 3.6). Remembering that |a|| is the length
of the vector, which is the hypotenuse in the triangle OaQ, the sine and cosine of

b:(hl,b:)

s —all
I

fall

0 0

Fig. 3.6. The cosine of the angle 0 = f§ — «.

 In economics and statistics, least squares enters regression analysis. In geodesy, the U.S.
mapping survey plans to solve the largest system ever attempted, now 2.5 million equations
in 400,000 unknowns.




146 3 Orthogonality

o are
sinazﬁ, cosazﬂ.

[al la]

The same is true for b and its corresponding angle f: the sine is b,/|b||, and

the cosine is b,/||b||. Now, since 6 is just B — o, its cosine comes from a
trigonometric identity which no one could forget:

b
cos(9=cos/3cosoc+sin[fsinoc:@i1”+h”:2’2—. (1)
i a

The numerator in this formula is exactly the inner product of b and a, and
gives the relationship we are looking for:

3G The cosine of the angle between any two vectors a and b is

Th
cosf — Lt (2

lall 2] -

Notice that the formula is dimensionally correct; if we double the length of
b, then both numerator and denominator are doubled, and the cosine is
unchanged. Reversing the sign of b, on the other hand, reverses the sign of
cos 0—and changes the angle by 180°.

Remark There is another law of trigonometry, the law of cosines, that leads
directly to the same result. It is not quite so unforgettable as the formula in (1),
but it relates the lengths of the sides of any triangle:
[b—al* = [b]* + [la|* = 2]b] |a] cos 6. (3)
When 6 is a right angle, we are back to Pythagoras. But regardless of 0, the ex-
pression |[b — al|? can be expanded as (b — a)"(h — a), and (3) becomes
b'™ —2a"b + a"a = b"b + a"a — 2| b| |a|| cos 6.

Canceling b"b and a"a on both sides of this equation, you recognize formula (2)
for the cosine. In fact this proves the cosine formula in n dimensions, since we
only have to worry about the plane triangle Oab.

Now we want to find the projection point p. This point must be some multiple
p = Xa of the given vector a—every point on the line is a multiple of a—and the
problem is to compute the coefficient x. All that we need for this computation is
the geometrical fact that the line from b to the closest point p = Xa is perpendi-
cular to the vector a:

T
b
(b—xa)La or a'(b—xa)=0, or X= S (4)
a'a
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That gives the formula for x and p:

3H The projection of b onto the line through O and a is

. g
D= Xa-— o d. ’ 5)

This allows us to redraw Fig. 3.5 with a correct formula for p.

This formula has a remarkable corollary, which is probably the most important
inequality in mathematics. It includes as a special case the fact that arithmetic
means 3(x + y) are larger than geometric means \/x‘y (It is also equivalent—see
Exercise 3.2.1—to the triangle inequality for vectors.) The result seems to come
almost accidentally from the statement that the squared distance |b — p|? in Fig.
3.7 cannot be negative:

H a' |2 (a"h)? N <@>2aTa N (b™h)(a"a) — (a"b)?

b—2 24l = pth_2
aa’ a'a a'a (aa) -

Since the last numerator is never negative, we have (b™b)(a"a) > (a"h)>—and then
we take square roots:

31 Any two vectors satisfy the Schwarz inequality

|a™6| < |a]| |b]- (6)
X,
A
b= (b, b,)
\
\\
\\ b—-p
\\ a= (al ‘1;1)
\
\ T
0 p=xa= "_Ti) a
aa N
0 2
X
Op a'b

Fig. 3.7. The projection of b onto a, with cos § = — = —
Ob  |a| |b]|
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Remark According to formula (2), the ratio between the two sides of the Schwarz
inequality is exactly |cos 8]. Since all cosines lie in the interval —1 < cos <1,
this gives another proof of (6): the Schwarz inequality is the same as |cos 0} < 1.
In some ways that is a more easily understood proof, because cosines are so
familiar. Either proof is all right in R, but notice that ours simply amounted to
doing the mechanical calculation of ||b — p||*>. This is nonnegative, and it will
stay nonnegative when we later introduce new possibilities for the lengths and
inner products. Therefore, without any appeal to trigonometry, the Schwarz in-
equality is proved.t

One final observation about |a'h| < |a|| ||b||. Equality holds if and only if b is a
multiple of a. The angle is 6 = 0° or § = 180° and the cosine is 1 or —1. In this

case b is identical with its projection p, and the distance between b and the line is |
ZET0.
EXAMPLE Project b = (1, 2, 3) onto the line through a = (1, 1, 1): |
a'h 6
X === =2
S PR
The projection is p = 2a = (2, 2, 2). The cosine is
12
cos 8 = lHPH = £
bl 14
]

The Schwarz inequality is |a"b| < ||a| |[b||, or 6 < V314, If we write 6 as \/36, that

is the same as \/ﬁ < \/ﬁ; the cosine is less than 1. Inequality holds, because b is
not parallel to a.

Projections of Rank One

The projection of b onto the line through a lies at p = a(a"h/a'a). That is our
formula p = Xa, but it is written with a slight twist: The vector a is put before
the number X = a"b/a"a. There is a reason behind that apparently trivial change.
Projection onto a line is carried out by a “projection matrix” P, and written in this
new order we can see what it is. It is the matrix that multiplies b and produces p:

L ad"
p="
!. _d'a |

(7

That is a column times a row—a square matrix- divided by the number a'a.

"+ The name of Cauchy is also attached to this inequality |a'b| < |a] |[b]

,and the Russians

even refer to it as the Cauchy-Schwarz-Buniakowsky inequality! Mathematical historians
seem to agree that Buniakowsky’s claim is genuine.
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EXAMPLE The matrix that projects onto the line through a = (L1, 1)is

ad
P=" =_1{1][1 1 -1 11
P R (A Al
3 3 3

This matrix has two properties that we will see as typical of projections:

(i) P is a symmetric matrix
(i) Tts square is itself: P2 = P,

It is also a great example for understanding the four fundamental subspaces:

The rank is r = 1
The column space consists of the line through a = (1, 1, 1)
The nullspace consists of the plane perpendicular to a.

Every column is a multiple of a, so Pb lies on the line through a. The vectors
that project to p = 0 are especially important. They are the vectors that satisfy
a'™ = 0—they are perpendicular to a and their component along the line is
zero. They lie in the perpendicular plane, which is the nullspace of the projection
matrix P.

Actually that example is too perfect. It has the nullspace orthogonal to the
column space, which is haywire. The nullspace should be orthogonal to the row
space. But because P is symmetric, its row and column spaces are the same.

Remark on scaling The projection matrix aa®/a"a is the same if a is doubled:

2 ]2 R
a=1[2| gives P=_—_|2[[2 2 2]=|+ 1 ¢
2 12 2 11 1

3 3 3

The line through a is the same, and that’s all the projection matrix cares about.
If a has unit length then the denominator is a"a = 1 and the rank-one matrix is
just P = aa®.

EXAMPLE 2 Projection onto the “f-direction” in the x-y plane. The line goes
through a = (cos 6, sin 8) and the matrix is

w6 e
o | T

¢S S

w‘kﬂm

Here c is cos 6, s is sin 6, and ¢ + 52 = ! in the denominator. This matrix P was
discovered earlier, in Section 2.6 on linear transformations. Now we can g0
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beyond the projection of the x-y plane onto a line, and compute P in any number
of dimensions. We emphasize that it produces the projection p:

To project b onto a, multiply by P: p = Pb.

The Transpose of a Matrix

Finally we go back to transposes. Up to now, AT has been defined simply by
reflecting A across its main diagonal; the rows of A become the columns of A,
and vice versa. In other words, the entry in row i and column j of A" is the (j, i)
entry of A:

(AT)ij = (A)ji-

There is a deeper significance to the transpose, which comes from its close con-
nection to inner products. In fact this connection can be used to give a new and
much more “abstract” definition of the transpose:

3J The transpose A" can be defined by the following property: The inner product
of Ax with y equals the inner product of x with A"y. Formally, this simply means
that

(Ax)"y = xTATy = x'(4"y). ®)

This definition has two purposes:

(i) It tells us how, when we measure the inner product in a different way, to
make the proper change in the transpose. This becomes significant in the case of
complex numbers; the new inner product is in Section 5.5.

(i) It gives us another way to verify the formula for the transpose of a product:

(AB)T = BTA™. &)
This is confirmed by using equation (8) twice, first for 4 and then for B:
(ABx)'y = (Bx)"(A"y) = x"(B"A"y).

The transposes turn up in reverse order on the right side, just as the inverses do
in the analogous formula (4B)~! = B~'4~'. We mention again that these two
formulas meet to give the remarkable combination (4~1)" = (4")™".

EXERCISES

321 (a) Given any two positive numbers x and y, choose the vector b equal to (\/;,

\/}), and choose a = (\/;, \/;). Apply the Schwarz inequality to compare the arith-
metic mean 3(x + y) with the geometric mean /xy.
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(b) Suppose we start with a vector from the origin to the point x, and then add a
vector of length | y| connecting x to x + y. The third side of the triangle goes from
the origin to x + y. The triangle inequality asserts that this distance cannot be greater
than the sum of the first two:

I+ yl < Il + 5]

After squaring both sides, and expanding (x + y)*(x + ), reduce this to the Schwarz
inequality.

322 Verify that the length of the projection is |p|| = ||b|| |cos 0), using formula (5).

3.23  What multiple of a = (1, 1, 1) is closest to the point b = (2, 4, 4)? Find also the point
closest to a on the line through b.

3.24  Explain why the Schwarz inequality becomes an equality in case a and b lie on the

same line through the origin, and only in that case. What if they lie on opposite
| sides of the origin?

325 In n dimensions, what angle does the vector (1, 1, . . . , 1) make with the coordinate
axes? What is the projection matrix P onto that vector?

‘ 3.26  The Schwarz inequality has a one-line proof if @ and b are normalized ahead of
‘ time to be unit vectors:

+

Tp| = bl < bl < I‘iﬂﬁ 1= bl
8 =[S ap) < X o) < 3 LTy

!
2
Which previous exercise justifies the middle step?

3.27 By choosing the right vector b in the Schwarz inequality, prove that

(ag +-- +a) <nlal+ - +ad).
When does equality hold?

3.28  The methane molecule CH, s arranged as if the carbon atom were at the center

of a regular tetrahedron with four hydrogen atoms at the vertices: If vertices are

l placed at (0,0,0), (1,1,0), (1,0,1), and (0, 1, I)—note that all six edges have

i length \/2, so the tetrahedron is regular—what is the cosine of the angle between

the rays going from the center (},4,4) to the vertices? (The bond angle itself
is about 109.5° an old friend of chemists.)

3.29  Square the matrix P = aa'/a"a, which projects onto a line, and show that P2 = P.
(Note the number a'a in the middle of the matrix aa’aa™)

3.210 Is the projection matrix P invertible? Why or why not?

3.211 (a) Find the projection matrix P, onto the line through a = [1] and also the matrix
P, that projects onto the line perpendicular to a.
| (b} Compute P, + P, and P, P, and explain.

\ 3.2.12 Find the matrix that projects every point in the plane onto the line x + 2y =0.

3.213 Prove that the “trace” of P = aa"/a"a—which is the sum of its diagonal entries—
always equals one.
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3.2.14 What matrix P projects every point in R? onto the line of intersection of the planes
x+y+t=0and x —t=0?

3.215 Show that the length of Ax equals the length of A™x if 44T = ATA.

3.2.16 Suppose P is the projection matrix onto the line through a.
(a) Why is the inner product of x with Py equal to the inner product of Px with y?
(b) Are the two angles the same? Find their cosines if a = (1, 1, —1), x = (2,0, 1),
y=(2,1,2).
{¢) Why is the inner product of Px with Py again the same? What is the angle
between those two?
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PROJECTIONS AND LEAST SQUARES APPROXIMATIONS W 3.3

Up to this point, a system Ax = b either has a solution or not. If b is not in the
column space #(A), the system is inconsistent and Gaussian elimination fails. This
is almost certain to be the case for a system of several equations in only one
unknown. For example, the simultaneous equations

2x = b,
3x=0b,
4x = b,

will be solvable only if the right-hand sides are in the ratio 2:3:4. The solution
x is certainly unique if it exists, but it will exist only if b is on the same line as
the vector

o
It
I NEICE S

In spite of their unsolvability, inconsistent equations arise in practice and have
to be solved. One possibility is to determine x from part of the system, and ignore
the rest; this is hard to justify if all m equations come from the same source. Rather
than expecting no error in some equations and large errors in the others, it is
much better to choose the x that minimizes the average error in the m equations.
There are many ways to define such an average, but the most convenient is the
sum of squares:

E? = (2x — b, + (3x — by)? + (dx — by)%.

If there is an exact solution to ax = b, the minimum error is E = 0. In the more likely
case that b is not proportional to a, the function E2 will be a parabola with its
minimum at the point where

2
‘;i = 2[(2x — by)2 + (3x — b)3 + (4x — b3)4] = 0.
X

Solving for x, the least squares solution of the system ax = b is

2b, + 3b, + 4b,

Triie

You recognize a"b in the numerator and a"a in the denominator.
The general case is the same. We “solve” ax = b by minimizing

E* = llax — b|? = (ayx — by)* + -+ + (a,x — b,)%
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The derivative of E? is zero at the point where
(a;x —bypa, +---+ (a,x—b,)a, =0

We are minimizing the distance from b to the line through a, and calculus gives
the same answer that geometry did earlier:

1
. . . ab
3K The least squares solution to a problem ax = b in one unknown is X = 5

You see that we keep coming back to the geometrical interpretation of a least
squares problem—to minimize a distance. By differentiating E* and setting its de-
rivative to zero, we have used calculus to confirm the geometry of the previous
section; the line connecting b to p must be perpendicular to a:

g
b
a'(b — xa) = a"b — % a'a =0.

As a side remark, notice the degenerate case a = 0. All multiples of a are zero,
and the line is only a point. Therefore p = 0 is the only candidate for the projection.
But the formula for X becomes a meaningless 0/0, and correctly reflects the fact
that the multiple X is left completely undetermined. All values of x give the same
error E = ||Ox — b|, so E? is a horizontal line instead of a parabola. One purpose
of the pseudoinverse in the appendix is to assign some definite value to X; in this
case it would assign X = 0, which at least seems a more “symmetric” choice than
any other number.

Least Squares Problems with Several Variables

Now we are ready for the serious step, to project b onto a subspace—rather than
just onto a line. This problem arises in the following way. Suppose we start from
Ax = b, but this time let 4 be an m by n matrix. Instead of permitting only one
unknown, with a single column vector a, the matrix now has n columns. We still
imagine that the number m of observations is larger than the number n of
unknowns, so it must be expected that Ax = b will be inconsistent. Probably there
will not exist a choice of x that perfectly fits the data b. In other words, probably
the vector b will not be a combination of the columns of A4; it will be outside the
column space.

Again the problem is to choose X so as to minimize the error, and again this
minimization will be done in the least squares sense. The error is E = | Ax — b

’

and this is exactly the distance from b to the point Ax in the column space. (Re-
member that Ax is the combination of the columns with coefficients x,, ..., x,.)
Therefore searching for the least squares solution X, which minimizes E, is the




3.3 Projections and Least Squares Approximations 155

same as locating the point p = Ax that is closer to b than any other point in the
column space.

We may use geometry or calculus to determine X. In n dimensions, we prefer
the appeal of geometry; p must be the “projection of b onto the column space.”
The error vector b — AX must be perpendicular to that space (Fig. 3.8).

column 1 = @

4y

4,
b
4y

column 2 =

Fig. 3.8. Projection onto the column space of a 3 by 2 matrix.

The calculation of X and the projection p = Ax is so fundamental that we do it
in two ways:

1. The vectors perpendicular to the column space lie in the left nullspace. Thus
the error vector b — AX must be in the nullspace of A™:

! A'h — AX)=0 or  ATAx = A"b.
2. The error vector must be perpendicular to every column of A:

aj(b— Ax)=0 ap
: or : b—Ax |[=0.
al(h — Ax)=0 ay
This is again the equation AT(b — AX) =0 or ATAx = ATh. A third way is to
take partial derivatives of E* = (Ax — b)T(Ax — b). That gives 24T Ax — 247h = 0.
And the fastest way, given an unsolvable equation Ax = b, is just to multiply
through by A". All these equivalent methods produce a square coefficient matrix
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ATA. It is symmetric (its transpose is not AA4"!) and it is the fundamental matrix
of this chapter.
The equations ATAx = A"h are known in statistics as the “normal equations’:

3L The least squares solution to an inconsistent system Ax = b of m equations
in n unknowns satisfies

Alde=A'D (1)
If the columns of A are linearly independent, then A" 4 is invertible and
X=(44) 'Ab 2
The projection of b onto the column space is therefore

p=Ax=A(AT4) 147D, G)

We choose an example in which our intuition is as good as the formulas:

1 2 4
A=|1 3|, b=1]5
0 0 6
The column space of A is easy to visualize, since both columns end with a zero.
It is the x-y plane within three-dimensional space. The projection of b = (4, 5, 6)
will be p = (4, 5, 0)—the x and y components stay the same but z = 6 will dis-
appear. That is confirmed by the formulas:

. 2
ao|t 10 s o[? 3
12 30 0_513

—
X =(ATA) 1ATh = : 5]

~
Il
o
=|
Il

(12
13
0 0

In this special case, the best we can do is to solve the first two equations of Ax = b:

X, +2x,=4
Xy +3x, =5
0x; + 0x, = 6.

Thus x; = 2 and x, = 1. The error in the third equation is bound to be 6.
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Remark 1 Suppose b is actually in the column space of A—it is a combination
b = Ax of the columns. Then the projection of b is still b:

p=A(ATA) 'ATAx = Ax = b.

The closest point p is just b itself—which is obvious.

! Remark 2 At the other extreme, suppose b is perpendicular to the column space.
It is perpendicular to every column, so A™h = 0. In this case it projects to the zero
vector:

p=A(ATA)"*ATb = A(AT4)"'0 = 0.

Remark 3 When A is square and invertible, the column space is the whole space.
Every vector projects to itself, and p equal b:

p=AATA) ' ATb = A4 Y(AT) 1A = b,

This is the only case when we can take apart (AYA)™', and write it as A~ AR,
When A4 is rectangular that is not possible.

\ Remark 4 (Projection onto a line) Suppose A has only one column, containing
the vector a. Then the matrix A" A4 is the number ¢%a and ¥ is a"b/a"a. This is the
case where we can divide by A4, instead of stopping at (474)" !, and we get back
to the earlier formula.

The Cross-Product Matrix 47 A4

| The one technical point that remains is to check the properties of ATA. It is
certainly symmetric; its transpose is (A"4)" = AA™, which is ATA again. The i, j
entry is an inner product, column i of 4 with column j of 4. That agrees with the
J, 1 entry, which is column j times column i. The key question is the invertibility
of ATA, and fortunately

A"A has the same nullspace as A.

Certainly if Ax =0 then ATAx = 0. Vectors x in the nullspace of 4 are also in
the nullspace of A" A. To go in the other direction, start by supposing that ATAx = 0
and take the inner product with x:

1 xTATAx =0, or |Ax||* =0, or Ax=0.

} Thus x is in the nullspace of 4; the two nullspaces are identical. In particular, if
A has independent columns (and only x = 0 is in its nullspace) then the same is
true for AT A:

8M If A has linearly independent columns, then A4 is square, symmetric, and
invertible.
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We show later that A"A is also positive definite (all pivots and eigenvalues are
positive).

In this case, which is by far the most common and most important, the normal
equations can be solved for X. As in the numerical example, 4 has “full column
rank.” Its n columns are independent—not so hard in m-dimensional space if
m > n, but not automatic. We assume it in what follows.

Projection Matrices

Our computations have shown that the closest point to b is p = A(ATA)"1A"h.
This formula expresses in matrix terms the construction of a perpendicular line from
b to the column space of A. The matrix in that formula is a projection matrix,
and it will be denoted by P:

P A(TA) AT

This matrix projects any vector b onto the column space of 4.1 In other words,
p = Pb is the component of b in the column space, and the error b — Pb is the
component in the orthogonal complement. (Or, as it seems natural to say, ] — P
is also a projection matrix. It projects any vector b onto the orthogonal complement,
and the projection is (I — P)b = b — Pb.) In short, we have a matrix formula for
splitting a vector into two perpendicular components. Pb is in the column space
ZA(A), and the other component (I — P)b is in the left nullspace .A47°(AT)—which is
orthogonal to the column space.

These projection matrices can be understood geometrically and algebraically.
They are a family of matrices with very special properties, to be used later as the
fundamental building blocks for all symmetric matrices. Therefore we pause for a
moment, before returning to least squares, to identify the properties of P.

3N The projection matrix P = A(A"A)” *A" has two basic properties:
(i) It equals its square: P = P,
(i) It equals its transpose: P! = P,

Conversely, any symmetric matrix with P?> = P represents a projection.

Proof 1t is easy to see why P? = P. If we start with any vector b, then Pb lies in
the subspace we are projecting onto. Therefore when we project again nothing is
changed. The vector Pb is already in the subspace, and P(Pb) is still Pb. In other
words P2 = P. Two or three or fifty projections give the same point p as the first

+ There may be a risk of confusion with permutation matrices, also denoted by P. But
the risk should be small, and we try never to let both appear on the same page.
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projection:
; P2 = A(ATA) TATA(ATA) T AT = A(ATA)" AT = P.

To prove that P is also symmetric, take its transpose. Multiply the transposes
in reverse order and use the identity (B~ )T = (B") ™! with B = A" A4, to come back
to P:

PT = (AW(ATA)"H)TAT = A((ATA)) "1 AT = A(AT4) "1 AT = P,

For the converse, we have to deduce from P?= P and P" = P that P is a
projection. Like any other matrix, P will take every vector b into its column space.
Pb is a combination of the columns. To prove it is the projection onto that space,
what we have to show is that the remaining part of b—the error vector b — Ph— is
orthogonal to the space. For any vector Pc in the space, the inner product is zero:

(b — Ph)"Pc = b™(I — P)'Pc = b(P — P?)c = 0. ()

Thus b — Pb is orthogonal to the space, and Pb is the projection onto the column
space.

EXAMPLE Suppose A4 is actually invertible. If it is 4 by 4, then its four columns are
independent and its column space is all of R*. What is the projection onto the whole
space? It is the identity matrix.

P=AA"A) 'AT = AA 1 (AY) 14T = [ (5)

The identity matrix is symmetric, and I? = I, and the error b — Ib is zero.

The point of all other examples is that what happened in (5) is not allowed. To
repeat: We cannot invert the separate parts AT and A4, when those matrices are
rectangular. It is the square matrix ATA that is invertible.

Least Squares Fitting of Data

Suppose we do a series of experiments, and expect the output b to be a linear
function of the input ¢. We look for a straight line b = C + Dt. For example:

(1) At different times we measure the distance to a satellite on its way to Mars.
In this case ¢ is the time and b is the distance. Unless the motor was left on or
gravity is strong, the satellite should move with nearly constant velocity v: b =
by + vt.

(2) We vary the load on a structure, and measure the strain it produces. In
this experiment ¢ is the load and b is the reading from the strain gauge. Unless
the load is so great that the material becomes plastic, a linear relation b = C + Dt
is normal in the theory of elasticity.

(3) The cost of producing ¢ books like this one is nearly linear, b = C + Dt,
with editing and typesetting in C and then printing and binding in D (the cost for
each additional book).
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The question is, How does one compute C and D from the results of experiments?
If the relationship is truly linear, and there is no experimental error, then there
is no problem; two measurements of b will completely determine the line b =
C + Dt. All further measurements will lie on this line. But if there is error, and
the additional points fail to land on the line, then we must be prepared to “average”
the experiments and find an optimal line. That line is not to be confused with the
line on which b was projected in the previous section! In fact, since there are two
unknowns C and D to be determined, we shall be involved with projections onto
a two-dimensional subspace. The least squares problem comes directly from the
experimental results

C+ Dty =b,
C+ Dt, =b, ©)
C + Dt,, = b,,.

This is an overdetermined system, with m equations and two unknowns. If errors
are present, it will have no solution. We emphasize that the matrix 4 has two
columns, and the unknown x has two components C and D:

1 1t b,

1 C b

) t_z [ } =2, or Ax = b. (7
o |LD :

1 t, b,

The best solution C, D is the one that minimizes
E? = |b— Ax|> = (b, = C — Dt,)> + - + (b, — C — Dt,,)".

In matrix terminology, we choose X so that p = AX is as close as possible to b.
Of all straight lines b = C + Dt, we are choosing the one that best fits the data
(Fig. 3.9). On the graph, the errors are the vertical distances b — C — Dt to the

Fig. 3.9. Straight line approximation and the corresponding projection.
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straight line (not the perpendicular distances!). It is the vertical distances that are
squared, summed, and minimized.

EXAMPLE Suppose we are given the three measurements marked on the figure at
the left:

b=1 at r= —1, b=1 at tr=1, b=3 at t=2.

Note that the values of t are not required to be equally spaced. The experimenter
may choose convenient values (even negative values) without any effect on the
mathematics. The first step is to write down the equations which would hold if a
line could go through all three points:

C— D=1 1 —1 c 1
C+ D=1 or 1 1 |:D:|: 1.
C+2D=3 1 2 3

If those equations Ax = b could be solved, there would be no errors. They can’t
be solved; the points are not on a line. Therefore they are solved by least squares:

wcan s 2251

The solution is C =3, D = % and the best line is 3 + %r.

Note the beautiful connections between the two figures. The problem is the
same but the art shows it differently. In the right figure, b is not a combination
of the columns; (1, 1, 3) is not a combination of (1, 1, 1) and (— 1, 1, 2). On the left,
the three points are not on a line. Least squares replaces b by p, and it replaces
points that are not on a line by points that are. Unable to solve Ax = b, we solve
AX = p.

Even better: The line 2 + %t has heights 3, 33, LI at the measurement times
—1,1,2. Those points do lie on a line. Therefore the vector p = (£, %, 1Y) is in
the column space. Furthermore, the line is the best line and this vector is the best
vector. It is the projection. The right figure is in three dimensions (or m dimensions
if there are m points) and the left figure is in two dimensions (or n dimensions if
there are n parameters).

i Subtracting p from b, the errors are e = (2, —$¢, 4). Those are the vertical errors
i in the left figure, and they are the components of the dotted vector in the right

_ g +
% =0. It is orthogonal to the second column (—1, 1, 2), because —2 — & + 8 =0,
It is orthogonal to the column space, and it is in the left nullspace.

Question: If the original measurements had been b = (2, —$, %), what would
have been the best line and the best x? Answer: The zero line—which is the
horizontal axis—and x = 0.
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We can quickly summarize the equations for fitting by a straight line. The first
column of A contains 1’s, and the second column contains the times t;. Therefore
AT A contains the sum of m 1’s, and the sum of the t;, and the sum of the ¢2:

30 Given the measurements by, ..., b, at distinct points ¢, . . ., t,, the straight
line C + Dr which minimizes E* comes from least squares:

C m XelicC > b
1 . il i . i ‘
s [5} e [E 63 t,?} [DJ [2 t,.bJ

Remark 1t makes no special difference to the mathematics of least squares that
we are fitting the data by straight lines. In many experiments there is no reason
to expect a linear relationship, and it would be crazy to look for one. Suppose we
are handed some radioactive material. The output b will be the reading on a
Geiger counter at various times t. We may know that we are holding a mixture
of two radioactive chemicals, and we may know their half-lives (or rates of decay),
but we do not know how much of each is in our hands. If these two unknown
amounts are C and D, then the Geiger counter readings would behave like the
sum of two exponentials (and not like a straight line):

b= Ce ™+ De ™. (8)

In practice, this law is not reflected exactly by the counter. Instead, we make
readings by, ..., b,, at times ty, ..., t,, and (8) is approximately satisfied:

Ce™# 4+ De™1 ~ b,

Ce #m 4 De HFmx b .

If there are more than two readings, m > 2, then in all likelihood we cannot solve
for C and D. But the least squares principle will give optimal values C and D.
The situation would be completely different if we knew the amounts C and D,
and were trying to discover the decay rates A and p. This is a problem in nonlinear
least squares, and it is harder. We would still form E?, the sum of the squares of
the errors, and minimize it. But setting its derivatives to zero will not give linear
equations for the optimal 4 and p. In the exercises, we stay with linear least squares.

EXERCISES

3.3.1  Find the best least squares solution X to 3x = 10,4x = 5. What error E? is minimized?
Check that the error vector (10 — 3%, 5 — 4X) is perpendicular to the column (3, 4).

3.3.2 Suppose the values b, = 1 and b, = 7 at times ¢, = 1 and ¢, = 2 are fitted by a line
b = Dt through the origin. Solve D = 1 and 2D = 7 by least squares, and sketch the
best line.
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3.3.3

3.3.4

3.3.5

3.3.7

3.3.8

1 3.3.9

3.3.10

| 3.3.11
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Solve Ax = b by least squares and find p = A% if

1 0 1
A=]0 1/, b=11].
11 0
Verify that the error b — p is perpendicular to the columns of A.
Write out E? = [Ax — b”z and set to zero its derivatives with respect to u and v,

if

10
A=[0 1
11

=

Il

[
<R
—_
-

Il
W =

Compare the resulting equations with ATAS = A", confirming that calculus as well
as geometry gives the normal equations. Find the solution ¥ and the projection
p=Ax. Why is p = b?

The following system has no solution:

1 -1 c 4
Ax = |1 0 |:}= 5(=b.
D
1 1 9

Sketch and solve a straight line fit that leads to the minimization of the quadratic
(C—=D—42 +(C—5*+(C+D—9)>% What is the projection of b onto the
column space of 4?

Find the projection of b onto the column space of A:

11 1
A=] 2 —1|, »=]2
—2 4 7

Split b into p 4 ¢, with p in the column space and ¢ perpendicular to that space.
Which of the four subspaces contains ¢?

Find the projection matrix P onto the space spanned by a; = (1,0, 1) and a, =
(1, 1, —1).

If P is the projection matrix onto a k-dimensional subspace S of the whole space
R", what is the column space of P and what is its rank?

(a) If P = PTP show that P is a projection matrix.
(b) What subspace does the matrix P = 0 project onto?

If the vectors a,, a,, and b are orthogonal, what are ATA and A"h? What is the
projection of b onto the plane of a, and «u,?

Suppose P is the projection matrix onto the subspace S and Q is the projection
onto the orthogonal complement S*. What are P + Q and PQ? Show that P — Q
is its own inverse.
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3.3.12

3.3.13

3.3.14

3.3.15

3.3.16

3.3.17

3.3.18

3.3.19

3.3.20

3.3.21

3.3.22

If V is the subspace spanned by (1, 1, 0, 1) and (0, 0, 1, 0), find
(a) a basis for the orthogonal complement V*

(b) the projection matrix P onto V

(c) the vector in V closest to the vector b= (0, 1,0, —1)in V',

Find the best straight line fit (least squares) to the measurements

b=4 at t= -2, b=3 at t=—1,
b=1 at t=0, b=0 at t =2

Then find the projection of b = (4, 3, 1, 0) onto the column space of

| ——
1 -1
1 0
1 2

The vectors a; = (1, 1, 0) and a, = (1, 1, 1) span a plane in R>. Find the projection
matrix P onto the plane, and find a nonzero vector b that is projected to zero.

If P is the projection matrix onto a line in the x-y plane, draw a figure to describe
the effect of the “reflection matrix” H = I — 2P. Explain both geometrically and
algebraically why H? = [.

Show that if u has unit length, then the rank one matrix P = uu" is a projection
matrix: It has properties (i) and (ii). By choosing u = a/||a||, P becomes the pro-
jection onto the line through a, and Pb is the point p = Xa. Rank-one projections
correspond exactly to least squares problems in one unknown.

What 2 by 2 matrix projects the x-y plane onto the —45° line x + y = 0?

We want to fit a plane y = C + Dt + Ez to the four points

y=3 at t=12z=1 y=6 at t=0,z=3
y=5 at t=2,z=1 y=0 at t=0,z=0.

(1) Find 4 equations in 3 unknowns to pass a plane through the points (if there
is such a plane).
(2) Find 3 equations in 3 unknowns for the best least squares solution.

If P = A(A"A4)"'AT is the projection onto the column space of A, what is the
projection Py onto the row space? (It is not PL!)

If Py is the projection onto the row space of A, what is the projection P, onto the
nullspace? (The two subspaces are orthogonal.)

Suppose L, is the line through the origin in the direction of a,, and L, is the line
through b in the direction of a,. To find the closest points x,a, and b + x,a, on
the two lines, write down the two equations for the x, and x, that minimize
|x1ay — x5a; — b|. Solve for x if a; = (1, 1,0), a, = (0, 1,0), b = (2, 1, 4).

Find the best line C + Drto it b =4,2, —1,0,0 at times t = —2, —1,0, 1, 2.
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3.3.23

3.3.24

3.3.25

3.3.26

Show that the best least squares fit to a set of measurements y, ..., y, by a hori-
zontal line—in other words, by a constant function y = C—is their average

Vit Vm
2,

C

In statistical terms, the choice ¥ that minimizes the error E? = (y, — y)> + - +
(.. — y)? is the mean of the sample, and the resulting E? is the variance o*.

Find the best straight line fit to the following measurements, and sketch your
solution:

y= 2 at t=—1, y= 0 at t=0,

y=-3 at t=1, y=-—5 at t=2
Suppose that instead of a straight line, we fit the data in the previous exercise by
a parabola: y = C + Dt + Et”. In the inconsistent system Ax = b that comes from

the four measurements, what are the coefficient matrix A4, the unknown vector x,
and the data vector b? You need not compute X.

A middle-aged man was stretched on a rack to lengths L =5, 6, and 7 feet under
applied forces of F = 1, 2, and 4 tons. Assuming Hooke’s law L = a + bF, find his
normal length a by least squares.
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3.4 @ ORTHOGONAL BASES, ORTHOGONAL MATRICES,
AND GRAM-SCHMIDT ORTHOGONALIZATION

In an orthogonal basis, every vector is perpendicular to every other vector. The
coordinate axes are mutually orthogonal. That is just about optimal, and the one
possible improvement is easy to make: We divide each vector by its length, to
make it a unit vector. That step changes an orthogonal basis into an orthonormal
basis. We will denote the basis vectors by g, introducing that letter to indicate
orthonormality.

3P The vectors q,, .. ., q, are orthonormal if

1. J0 wheneveri#j, giving the orthogonality
hd = 1 wheneveri=j, giving the normalization.

When orthonormal vectors go into the columns of a matrix, that matrix will be
called Q.

The most important example is the “standard basis.” For the x—y plane, the
best-known axes are not only perpendicular but horizontal and vertical; the basis
ise; = (1,0),e, = (0, 1). Q is the identity matrix. In n dimensions the standard basis
again consists of the columns of Q = I

e = X e, = s LN e, =

1 0
0 1
0 0
0 0 1
That is by no means the only orthonormal basis; we can rotate the axes without
changing the right angles at which they meet. These rotation matrices will be in-
troduced below as examples of Q. On the other hand, if we are thinking not about
R” but about one of its subspaces, the standard vectors e; might not lie in the
subspace. In that case, it is not so clear that even one orthonormal basis can be
found. But we shall show that there does always exist such a basis, and that it can
be constructed in a simple way out of any basis whatsoever. This construction,
which converts a skew set of axes into a perpendicular set, is known as
Gram-Schmidt orthogonalization.
To summarize, the three topics basic to this section are:

(1) The definition and properties of orthogonal matrices Q.

(2) The solution of Qx = b, ordinary or least squares.

(3) The Gram-Schmidt process and its interpretation as a new factorization
A = QR.
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Orthogonal Matrices

An orthogonal matrix is simply a square matrix with orthonormal columns.t
We use the letter Q for the matrix, and gy, . . ., g, for its columns. The properties
of the columns were gjg; = 0 and g;g; = 1, and this should translate into a prop-
erty of the matrix Q. In that translation, which is so simple, you will see again
why matrix notation is worth using.

3Q If the columns of Q are orthonormal then

o ' ’ I i 900
T g 1 0
0" = & 91 9 Al = | . b
Ge ‘ ’ | D 0 1
Therefore Q'Q = I and Q" = Q. For orthogonal matrices, the transpose is the

inverse.

When row i of Q" multiplies column j of Q, the result is g;gq; = 0. Those are the
zeros off the diagonal. On the diagonal where i = j, we have q]q;, = 1. That is the
| normalization to unit vectors, of length one.
| Note that QTQ = I even if Q is rectangular. But then QT is only a left-inverse.

EXAMPLE 1

Q=|:COS() ~sin9} QT=Q‘1=[ cos 6 sinO}

sin 0 cos 0 —sinf cos 0

Q rotates every vector through the angle 0, and QT rotates it back through — 6.
‘ The columns are clearly orthogonal, and they are orthonormal because sin?6 +
| cos?6 = 1. The matrix QT is just as much an orthogonal matrix as Q.

EXAMPLE 2 Any permutation matrix P is an orthogonal matrix. The columns are
| certainly unit vectors and certainly orthogonal—because the 1 appears in a different
‘ place in each column:

i 010 0 0 1
‘l if P=|0 0 1| then P !'=PT'=|1 0 0].
| 1 00 010

1 Orthonormal matrix would have been a better name, but it is too late to change. Also,
there is no accepted word for a rectangular matrix with orthonormal columns. We still
write Q, but we won’t call it an “orthogonal matrix” unless it is square.
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It is immediate that PTP = [; the transpose is the inverse. Another P, with P, =
P,, = P3; = 1, takes the x-y-z axes into the z-y-x axes—a “right-handed” system
into a “left-handed” system. So we were wrong if we suggested that every orthog-
onal Q represents a rotation. A reflection is also allowed. The matrix P =[9 ]
is not one of the rotations of Example 1; there is no value of 0 that will produce
P. Instead P reflects every point (x, y) into (y, x), its mirror image across the 45°
line. Geometrically, an orthogonal Q is the product of a rotation and a reflection.

There does remain one property that is shared by rotations and reflections, and
in fact by every orthogonal matrix. It is not shared by projections, which are not
orthogonal or even invertible. Projections reduce the length of a vector, whereas
orthogonal matrices have a property that is the most important and most charac-
teristic of all:

3R Multiplication by an orthogonal matrix Q preserves lengths:

Qx| = |x| for every vector x.

It also preserves inner products and angles, since 0x) 0y =x'00y=x"y.

The preservation of lengths comes directly from Q'Q = I
[Ox]? = |x||* because (Qx)"(Qx)= x"QTQOx = x"x.

All inner products and lengths are preserved, when the space is rotated or re-
flected. Of course the length comes from the inner product of a vector with itself.
The angles come from inner products of x with y—because cos 0 is given by
x"y/||x||||y|, and that fraction is not changed by Q.

We come now to the calculation that uses the special property QT = Q~!. In
principle, this calculation can be done for any basis. In practice, it is exceptionally
simple for an orthonormal basis—and we show later that this leads to the key
idea behind Fourier series. If we have a basis, then any vector is a combination
of the basis vectors, and the problem is to find the coefficients in that combination:

Write b as a combination b = x,q, + X5, + - + X,q,.

To compute x,; there is a neat trick. Multiply both sides of the equation by q!.
On the left side is g}b. On the right side all terms disappear (because qiq; = 0)
except the first term. We are left with

4ib = x,q1g;.

Since qiq, = 1, we have found x,. It is glb. Similarly the second coefficient is
x, = q3b; that is the only surviving term when we multiply by gX. The other terms
die of orthogonality. Each piece of b has a simple formula, and recombining the
pieces gives back b:

LAny vector b is equal to (q1b)q, + (q3b)q, + - - - + (q1b)q,, ‘ (1)

For that we need a basis, so Q is square.
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I can’t resist writing this calculation in matrix terms. We were looking for the
coeflicients in the vector equation x,q; + - - - + x,q, = b. That is identical to the
matrix equation Qx = b. (The columns of Q multiply the components of x.) Its
solution is x = Q7 'b. But since Q "' = Q"—this is where orthonormality enters—
the solution is also x = Q'h:

S qib
x=0Q"h = h|= )
qn qub

All components of x are displayed, and they are the inner products ¢b as before.
The matrix form also shows what happens when the columns are not ortho-
normal. Expressing b as a combination x,a; + -+ + x,a, is the same as solving
Ax = b. The basis vectors go into the columns of the matrix. In that case we
need A ', which takes work, but in the orthonormal case we only need Q.

Remark 1 The ratio q1b/qlq, appeared earlier, when we projected b onto a line.
There it was a line through a, and the projection was (a"b/a"a)a. Here it is a line
through ¢, and the denominator is 1, and the projection is (q1b)q,. Thus we have
a new interpretation for the formula b = X(g{b)q; in the box: Every vector b is the
sum of its one-dimensional projections onto the lines through the ¢'s.

One more thing. Since those projections are orthogonal, Pythagoras should still
be correct. The square of the hypotenuse should still be the sum of squares of
the components:

[8]2 = (aTh)* + (43b)* + - - - + (qFh).

That must be the same as ||b||* = |Q"b |, proved earlier.

Remark 2 Since Q" = Q™' we also have QQ" = I. When Q comes before QT,
multiplication takes the inner products of the rows of Q. (For Q"Q it was the
columns.) Since the result is again the identity matrix, we come to a surprising
conclusion: The rows of a square matrix are orthonormal whenever the columns
are. The rows point in completely different directions from the columns, as in the
matrix below, and 1 don’t see geometrically why they are forced to be ortho-

normal—but they are.
M3 N2 16
EXAMPLE: o=[14/3 0 —2/\6 |
IN3 =12 146

Rectangular Matrices with Orthonormal Columns

This chapter is about Ax = b, but A is not necessarily square. This section is
about Qx = b, and we now admit the same possibility— there may be more rows
than columns. We have n orthonormal vectors g;, which are the columns of Q,
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but those vectors have m > n components. In other words, Q is an m by n matrix
and we cannot expect to solve Qx = b exactly. Therefore we solve it by least squares.

If there is any justice, orthonormal columns should make the problem simple.
It worked for square matrices, and now it will work for rectangular matrices. The
key is to notice that we still have QTQ = I

qr [ ] I . 0

It is no longer true that QT is the inverse of Q, but it is still the left-inverse. For
least squares that is all we need. The normal equations came from multiplying
Ax = b by the transpose matrix, to give ATAx = A"h. Here A is Q, and the normal
equations are QTQx = Q"b. But QTQ is the identity matrix! Therefore the solution
is Q'b, whether Q is square and Qb is an exact solution, or Q is rectangular
and we have a least squares solution.

38 If Q has orthonormal columns, then the least squares problem becomes easy:
Ox =0 (rectangular system with no solution for most b)
Q'0x = 0"  (normal equation for the best X—in which QTQ = I)
T+ 0'b O350 8
D= 0% (projection of b onto columns is (¢1h)q, + - - - + (q1h)g,)
p=00"b (so the projection matrix is P = QQ7).

The last formulas are like p = Ax and P = A(ATA4)™ ' A", which give the projection
and the projection matrix for any 4. When the columns are orthonormal and A

G axis

p=Pb= quITb + qzqub:Q QTh

q, axis

Fig. 3.10. Projection onto a plane = sum of projections onto orthonormal ¢, and ¢,.
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is 0, the “cross-product matrix” 474 becomes the identity matrix QTQ = I. The
hard part of least squares disappears, when vectors are orthonormal. The projec-
tions onto the axes are uncoupled, and p is the sum of those one-dimensional
projections: p = (q1b)q, + - - - + (qab)qy.

We emphasize that those projections do not reconstruct b. In the square case
m = n, they did. In the rectangular case m > n, they don’t. They give the projec-
tion p and not the original vector b—which is all we can expect when there are
more equations than unknowns, and the ¢’s are no longer a basis. The projection
matrix is usually A(4TA4)”'A", and here it simplifies to

P=00Q'0Q)'0" or [ P=0QQ"] @)

Notice that QTQ is the n by n identity matrix, while QQT is an m by m pro-
jection P. It is the identity matrix on the columns of Q (P leaves them alone), but
it is the zero matrix on the orthogonal complement (the nullspace of Q7).

EXAMPLE 1 The following case is simple but typical. Suppose we project a point
b = (x, y, z) onto the x-y plane. Its projection is p = (x, y, 0), and this is the sum of
the separate projections onto the x and y axes:

1 0 0
q,=|0| and (¢ib)g, =|0|; g,=|1| and (g3b)g, =]y |
0

=

<o
jas)
o

The overall projection matrix is

1 0 0 x
P=gqqi +4,9:=|0 1 0|, and P|y|=
0 00 z

S = R

{ EXAMPLE 2 There is one case in which fitting a straight line leads to orthogonal
! columns. If measurements y,, y,, and y, are taken at times which average to zero,
‘, sayatt, = —3,t, = 0,and t; = 3, then the attempt to fit y = C + Dt leads to three
] equations in two unknowns:

C+ Dt =y, 1 -3 c Vi
l C+Dt, =y, or 1 0 [D}: Vs |-
‘ C+ Dty =y, 1 3 V3

The two columns are orthogonal. Therefore we can project y separately onto each
| column, and the best coefficients C and D can be found separately:

_ [1 1 13y 2 ys] D= [-3 0 3][y: y2 ysl'
12412 412 ’ (—=3)* + 0% + 37 '
Notice that C = (y, + y, + y3)/3 is especially simple; it is the mean of the data.
It gives the best fit by a horizontal line, while Dt is the best fit by a straight line
through the origin. Because the columns are orthogonal, the sum of these two separate

@l
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pieces is the best fit by any straight line whatsoever. But since the columns are not
unit vectors—they are not orthonormal—the projection formula has the length
squared in the denominator.

Orthogonal columns are so much better that it is worth changing to that case.
If the average of the observation times is not zero—it is & = (t, + - + t,,)/m—
then the time origin can be shifted by 7. Instead of y = C + Dt we work with
y =c+d(t — t). The best line is the same! As in the example we find

(L Oy yad” v+ + v,

c

P4 417 m
d— [(t1 — )ty — t_)][h "'J’m]T :Z(ti_ 0y, (5)
=0+ +(t,— 1) Y —1)?

The best ¢ is the mean, and we also get a convenient formula for d. The earlier
ATA had the off-diagonal entries Y t;, and shifting the time by 7 made these entries
zero. This shift is an example of the Gram-Schmidt process, which orthogonalizes
the situation in advance.

Orthogonal matrices are crucial to numerical linear algebra, because they intro-
duce no instability. While lengths stay the same, roundoff is under control. There-
fore the orthogonalization of vectors has become an essential technique. Probably
it comes second only to elimination. And it leads to a factorization 4 = OR that is
nearly as famous as 4 = LU.

The Gram-Schmidt Process

Suppose you are given three independent vectors a, b, c. If they are orthonormal,
life is easy. To project a vector v onto the first one, you compute (a"v)a. To project
the same vector v onto the plane of the first two, you just add (av)a + (b™v)b. To
project onto the subspace in which the axes are a, b, ¢, you add up three projec-
tions. All calculations require only the inner products av, Ty, and ¢Tv. But to
make this true, we are forced to start by saying “If they are orthonormal.” Now
we propose to find a way to make them orthonormal.

The method is simple. We are given a, b, ¢ and we want q;, ¢, q,. There is
no problem with g,; it can go in the direction of a. We divide by the length, so
that g, = a/||a|| is a unit vector. The real problem begins with g,—which has to
be orthogonal to ¢,. The idea is to start with b, and if that vector has any com-
ponent in the direction of g, (which is the direction of a), that component has to
be subtracted off:

b =b-—(qib)g,. (6)

Now b’ is orthogonal to g,. Tt is the part of b that goes in a new direction, and
not in the direction of a. In Fig. 3.11, ¥’ is perpendicular to ¢, . It sets the direction
for the vector g,. Since g, is required to be a unit vector we divide b’ by its length:

g2 = b/[[p'].
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Fig. 3.11. g4, component of b is removed; a and b are normalized.

At this point g, and g, are set. The third orthogonal direction starts with c¢. It
will not be in the plane of ¢, and g¢,, which is the plane of a and b. However
it may have a component in that plane, and that has to be subtracted off. (If the
result is ¢ = 0, this signals that a, b, ¢ were not independent in the first place.)
What is left is the component ¢’ we want, the part which is in a new direction
perpendicular to the plane:

¢ = ¢ — (9194, — (q30)q,. (7)
This is the one idea of the whole Gram-Schmidt process, to subtract from every
new vector its components in the directions that are already settled. That idea is
used over and over again.t When there is a fourth vector, we take away its com-
ponents in the directions of q,, q,, ¢5. Of course the unit vector q; was formed
from ¢ by dividing by its length: g5 = ¢'/||¢’

EXAMPLE Suppose the independent vectors are

; 1 1 2
1 a=|0|, b=|0]|, c=|1]
‘ 1 0 0

| To find q,, make the first vector into a unit vector: q, = a/\/E. To find gq,, sub-
‘ tract from the second vector its component in the first direction:

1 | 1/4/2
b'=b—(q1b)g, =|0| - —
0

0 |=
\/E 1/\/5 _
The normalized ¢, is b’ divided by the length of b, which is l/ﬁ:

12
0 .
~1/42

O

(SIS

q, =

# If Gram thought of it first, what was left for Schmidi?
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To find g3, subtract from ¢ its components along ¢, and g,:
¢ =c¢—(qi0)q; — (4304,
2 1/3/2 1/3/2 0
=|1|[-v2| 0 |=+2 0 |=|1]
o NG ~1/421 10
This is already a unit vector, so it is g5. I went to desperate lengths to cut down
the number of square roots (which are the painful part of Gram-Schmidt). The

result is a set of orthonormal vectors g, q,, g5, which go into the columns of an
orthogonal matrix Q:

12 142 0

0 1

0 .
N2 =142 0

It is clear that those columns are orthonormal.

0=|a1 4, q5|=

3T The Gram-Schmidt process starts with independent vectors a,, . . ., a, and
ends with orthonormal vectors ¢, ..., g,. At step j it subtracts from a; its com-
ponents in the directions that are already settled:

a}:aj’“(ﬂaj)fh -"._(q;*laj)qjﬁl’ 8)
Then g; is the unit vector a/

il

Remark on the calculations 1t is easier to orthogonalize the vectors, without
forcing their lengths to equal one. Then square roots enter only at the end, when
dividing by those lengths. The vectors a; are the same:

d; = a; — (projection of a; on a}) — - - - — (projection of a;on aj_,).

It is only the projection formula that looks different, by using the unnormalized o’
instead of the unit vector ¢:

projection of a; on ), = (E/I)Ta"
. ! (a) )Ta/l

The example above would have the same b’ = @}, and ¢’ = daj, without square roots:

ay = (qia;)q, = projection of a; on gq,.

1 : 1 2 1 1
b'=10 —5 0| andthen ¢ =|1|—]|0|—=2 0.
0 1 0 1 -1

The Factorization A = QR

We started with a matrix 4, whiose columns were a, b, c. We ended with a matrix
Q, whose columns are q,, q,, q;. What is the relation between those matrices?
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And what is the relation in higher dimensions, when we start with dy,...,a,and
end with g, ..., g,? The matrices 4 and Q are m by n, when the vectors are in
m-dimensional space, and there has to be a third matrix that connects them.

The idea is to write the a’s as combinations of the g’s. For example, the vector
b in Fig. 3.11 is a combination of the orthonormal vectors ¢, and ¢,, and we
know what combination it is:

b =(q1b)g, + (43b)q,.

This goes back to the boxed equation (1). Every vector in the plane is the sum of
its ¢, and ¢, components. Similarly ¢ is the sum of its ¢,, 43, 43 components:

¢ =(419)q; + (450)q, + (q%c)qs. If we express that in matrix form we have the new
Jactorization A = QR:

qia qib gjc

a b cl=laq ¢ q, a:b  qic

43¢
! Notice the zeros in the last matrix! It is triangular, because of the way Gram-
Schmidt was done. The first vectors a and g, fell on the same line. Then a, b and
41, 4, were in the same plane. The third vectors ¢ and g3 were not involved until

step 3.

The factorization is like 4 = LU, except now the first factor Q has orthonormal
| columns. The second factor is called R, because the nonzeros are to the right of
7 the diagonal (and the letter U is already taken). The off-diagonal entries of R are

the numbers g7b = 1 /ﬁ and gjc = glc = ﬁ found above. The diagonal entries
are the lengths ﬁ, l/ﬁ, 1 that we divided by. The whole factorization is

N2 N2 0)[V2 IN2 V2
0 0 1 12 2 |=0R.
N2 =142 0 [

You see the lengths of @, &', ¢’ on the diagonal of R. Off the diagonal are the mul-
tiples of g, and ¢, that were subtracted by Gram-Schmidt. The orthonormal vec-
tors themselves, which are q,, g,, g5 and are the whole object of orthogonalization,
are in the first factor Q.

Maybe QR is not as beautiful as LU (because of the square roots). Both factor-
izations are important to the theory of linear algebra, and absolutely central to
the calculations. If LU is Hertz, then QR is Avis.

The general case is exactly the same. The matrix R is n by n, and its i,j entry
is g{a;. This is zero when i is greater than j (¢; is constructed perpendicular to a ),

1 1 2
A=10 0 1]|=
100

\e)

so R is upper triangular. Its entries appear in formula (8), especially when |dj||g;
is substituted for aj
a; = (‘ﬂ“j)ql +- 4+ (%T—ﬂj)qj'—l + ”a}“qj‘ 9

The right side is exactly Q times R, written out in full.
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3U Every m by n matrix A with linearly independent columns can be factored
into 4 = QR. The columns of Q are orthonormal, and R is upper triangular and
invertible. When m = n and all matrices are square, Q becomes an orthogonal
matrix.

I must not forget the main point of orthogonalization. It simplifies the least
squares problem Ax = b. The normal equations are still correct, but AT4 is easier
to invert; it becomes

ATA = RTQ"QR = R™R.
Therefore the fundamental equation ATAx = A"h simplifies to
R™Rx = R™Q"b or Rx = Q"b. (10)

Instead of solving QRx = b, which can’t be done, we solve RX = Q'h, which can
be done very quickly—because R is triangular. The real cost is in the mn* opera-
tions of Gram-Schmidt, which are needed to find Q and R in the first place.

The same idea of orthogonality applies to functions. The sines and cosines are
orthogonal; the powers 1, x, x?, ... are not. When f is written as a combination
of sines and cosines, that is a Fourier series. Each term is a projection onto a
line—the line in function space containing multiples of cos nx or sin nx. It is so
completely parallel to the vector case, and so important, that it deserves to be
seen. And finally we have a job for Schmidt: to orthogonalize the powers of x and
produce the Legendre polynomials.

Function Spaces and Fourier Series

This is a brief and optional section, but it has a number of good intentions:

(1) to introduce the most famous infinite-dimensional vector space;

(2) to extend the ideas of length and inner product from vectors v to functions
S

(3) torecognize the Fourier series of f as a sum of one-dimensional projections;
the orthogonal “columns” which span the space are the sines and cosines;

(4) to apply Gram-Schmidt orthogonalization to the polynomials 1, x, x2, .. .;

(5) to find the best approximation to f(x) by a straight line.

We will try to follow this outline, which opens up a range of new applications
for linear algebra, in a systematic way.

1. After studying all the finite-dimensional spaces R”, it is natural to think of the
space R®. It contains all vectors v = (vy, v,, v3, ...) With an infinite sequence of
components. This space is actually too big to be very useful, when there is no con-
trol on the components v;. A much better idea is to keep the familiar definition of
length, as the square root of Pythagoras’ sum of squares, and to include only those




3.4 Orthogonal Bases, Orthogonal Matrices, and Gram-Schmidt Orthogonalization 177

vectors that have a finite length: The infinite series
[o]* = of + 03 + 03+ (11)

must converge to a finite sum. This still leaves an infinite-dimensional set of vectors,
including the vector (1, 7, 3, . . .) but excluding (1, 1, 1, .. .). The vectors with finite
length can be added together (jjv + w| < |v| + |w|) and multiplied by scalars, so
they form a vector space. It is the celebrated Hilbert space.

Hilbert space is the natural way to let the number of dimensions become infinite,
and at the same time to keep the geometry of ordinary Euclidean space. Ellipses
become infinite-dimensional ellipsoids, parabolas become paraboloids, and per-
pendicular lines are recognized in the same way as before: The vectors v and w
are orthogonal when their inner product is zero,

vTw=v,w, + v,w, + 03wy + - = 0.

This sum is guaranteed to converge, and for any two vectors it still obeys the
Schwarz inequality [v"w| < |[v] [w]. The cosine, even in Hilbert space, is never
larger than one.

There is another remarkable thing about this space: It is found under a great
many different disguises. Its “vectors” can turn into functions, and that brings us
to the second point.

2. Suppose we think of the function f(x) = sin x, on the interval 0 < x < 2x. This
i f 1s like a vector with a whole continuum of components, the values of sin x along
the whole interval. To find the length of such a vector, the usual rule of adding the
squares of the components becomes impossible. This summation is replaced, in a
natural and inevitable way, by integration:

; 1117 = 77 (0 dx = [P (sin xP dx = (12)

Our Hilbert space has become a function space. The vectors are functions, we have
: a way to measure their length, and the space contains all those functions that have
a finite length—just as in (11) above. Tt does not contain the function F(x) = 1/x,
‘ because the integral of 1/x? is infinite.

The same idea of replacing summation by integration produces the inner product
| of two functions: 1f f(x) = sin x and g(x) = cos x, then their inner product is

| (£, = [ F(xig) dx = [ sin x cos x dx = 0. (13)

; This is exactly like the vector inner product f™g. It is still related to the length by
l (f,f)=|f]* The Schwarz inequality is still satisfied: |(f, g)| < [/| |g]|. Of
course two functions like sin x and cos x—whose inner product is zero—will be
called orthogonal. They are even orthonormal, after division by their length \/;

3. The Fourier series of a function is an expansion into sines and cosines:

‘y(x)=a0+aléosx+b1srinx+azc052x+bzsin2x+'~-. i
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To compute a coefficient like b, multiply both sides by the corresponding function
sin x and integrate from 0 to 27. (The function y is given on that interval.) In other
words, take the inner product of both sides with sin x:

2 . 2 . 2 . 2 .
J:) y(x)smxdx=aofonsmxdera1 foncosxs1nxdx+b1 fo (sin x)?dx + .

On the right side, every integral is zero except one—the one in which sin x multi-
plies itself. The sines and cosines are mutually orthogonal as in (13). Therefore b, is
the left side divided by that one nonzero integral:

2n .
- fo y(x) sin x dx _ (ysinx)
L= -

J‘Z" (sin x)? dx (sin x, sin x)’
0

The Fourier coefficient @, would have cos x in place of sin x, and a, would use
cos 2x.

The point of this calculation is to see the analogy with projections. The com-
ponent of the vector b along the line spanned by a was computed much earlier:
_ bla
X=_1-

In a Fourier series, we are projecting y onto sin x. Its component p in this direction
is exactly b, sin x. (For vectors it was Xa.) The coefficient b, is the least squares
solution of the inconsistent equation b, sin x = y; in other words, it brings b, sin x
as close as possible to y. The same is true for all the terms in the series; every one
is a projection of y onto a sine or cosine. Since the sines and cosines are orthogonal,
the Fourier series gives the coordinates of the “vector” y with respect to a set of
(infinitely many) perpendicular axes.

4. There are plenty of useful functions other than sines and cosines, and they are
not always orthogonal. The simplest are the polynomials, and unfortunately there
is no interval on which even the first three coordinate axes—the functions 1, x, and
x?—are perpendicular. (The inner product of 1 and x? is always positive, because
it is the integral of x?.) Therefore the closest parabola to y(x) is not the sum of its
projections onto 1, x, and x2. There will be a coupling term, exactly like (474)™*
in the matrix case, and in fact the coupling is given by the ill-conditioned Hilbert
matrix. On the interval 0 < x < 1,

1Ly (1,x) (1,x3 J1 fx fx?
ATA=| (x,1) (x,x) (x,x) |={[x [x* [x*|=
(1) (X ()] [P X

W= M= —
Bl e po
S N R

This matrix has a large inverse, because the axes 1, x, x? are far from perpendicular.
Even for a computer, the situation becomes impossible if we add a few more axes.
It is virtually hopeless to solve ATAX = A"b for the closest polynomial of degree ten.
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More precisely, it is hopeless to solve this by Gaussian elimination; every
roundoff error would be amplified by more than 10'3. On the other hand, we can-
not just give up; approximation by polynomials has to be possible. The right idea
is to switch to orthogonal axes, and this means a Gram-Schmidt orthogonalization:
We look for combinations of 1, x, and x? that are orthogonal.

It is convenient to work with a symmetrically placed interval like —1 < x < 1,
because this makes all the odd powers of x orthogonal to all the even powers:

(l,x)zfjlxdx=0, (x,xz)zf_llx3dx=0.

Therefore the Gram-Schmidt process can begin by accepting v, = 1 and v, = x as
the first two perpendicular axes, and it only has to correct the angle between 1 and
x%. By formula (7) the third orthogonal polynomial is

LR
1 2 2 B x* dx

Ly w0 T‘ I 3
1

The polynomials constructed in this way are called the Legendre polynomials and
they are orthogonal to each other over the interval —1 < x < 1.

Check
oy ' e x> x _0
(1, x *3)—fv1(x —~3)dx = ?—g 71—-

The closest polynomial of degree ten is now computable, without disaster, by pro-
Jecting onto each of the first 10 (or 11) Legendre polynomials.

5. Suppose we want to approximate y = x> by a straight line C + Dx between
x =0 and x = 1. There are at least three ways of finding that line, and if you
compare them the whole chapter might become clear!

(1) Solve [1 x][§] = x> by least squares. The equation ATAx = ATh is
D

(LD (L)[C] [, x) 1 cl [+
[(m (x. xJ[DJ‘Lx’ 1 [5 MD}‘ }

(2) Minimize E?=[}(x* ~C~ Dx)?dx = —2C — 3D + C* + CD + D"
The derivatives with respect to C and D, after dividing by 2, bring back the normal
equations of method (1):

—$+C+iD=0 and —L+iCc+iD=0.

(3)  Apply Gram-Schmidt to replace x by x — (1, x)/(1, 1). That is x — 1, which
is orthogonal to 1. Now the one-dimensional projections give the best line:

(x°, 1)

ST T

5 1

C+ Dx = 1+

(1, 1) (x—3.x—3)
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3.4.1

3.4.2

343

3.4.4

3.45

3.4.6

3.4.7

3.4.8

3.4.9

3.4.10

EXERCISES

(a) Write down the four equations for fitting y = C + Dt to the data

y=—4att= -2, y=—3att=—1.
y=—latr=1, y=0 att=2.

Show that the columns are orthogonal.

(b) Find the optimal straight line, draw a graph, and write down the error E2,
(c) Interpret the fact that the error is zero in terms of the original system of four
equations in two unknowns: Where is the right side b with relation to the column
space, and what is its projection p?

Project b = (0, 3, 0) onto each of the orthonormal vectors a; =(3,%, —} and a, =
(—%.%, 9, and then find its projection p onto the plane of a, and as,.

Find also the projection of b = (0, 3, 0) onto a; = (3, —3, %), add up the three one-
dimensional projections, and interpret the result. Why is P = a,a} + a,a} + a,a}
equal to the identity?

If 9, and Q, are orthogonal matrices, and therefore satisfy QTQ = I, show that
0,0, is also orthogonal. If Q, is rotation through 6, and Q, is rotation through
¢, what is Q,0,7 Can you find the trigonometric identities for sin(f + ¢) and
cos(f + ¢) in the matrix multiplication Q,Q,?

If u is a unit vector, show that ¢ = I — 2uu” is an orthogonal matrix. (It is a re-
flection, also known as a Householder transformation.) Compute Q when u' =

ki -b -4

Find a third column so that the matrix

143 1414
0=|1N3 214
13 ~3//14

is orthogonal. It must be a unit vector that is orthogonal to the other columns;
how much freedom does this leave? Verify that the rows automatically become
orthonormal at the same time.

Show, by forming bTh directly, that Pythagoras’ law holds for any combination
b=xq, + "+ x,q, of orthonormal vectors: |b|>=x7 + -+ x2. In matrix
terms b = Qx, so this again proves that lengths are preserved: |Qx|? = |x[|.

Project the vector b = (1, 2) onto two vectors that are not orthogonal, a, = (1, 0)
and a, = (1, 1). Show that unlike the orthogonal case, the sum of the two one-
dimensional projections does not equal b.

If the vectors g, q,, g5 are orthonormal, what combination of ¢, and g, is closest
to gq5?

If g, and g, are orthonormal what combination is closest to the vector b? Verify
that the error vector is orthogonal to ¢, and ¢,.
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3.4.19

3.4.20
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Show that an orthogonal matrix which is also upper triangular must be diagonal.

What multiple of a, = [{] should be subtracted from a, = [¢] to make the result
orthogonal to a,? Factor [| ] into QR with orthonormal vectors in Q.

Apply the Gram-Schmidt process to

0 0 1
a=1|0/|, b=1|1], c=|1
1 1 1

and write the result in the form 4 = QR.

Suppose the given vectors are

o —_
S
[l
_ O -
o
I
— e D

Find the orthonormal vectors q,, ¢,, q;.

Find an orthonormal set gy, ¢,, g5 for which q,, ¢, span the column space of

11
A=| 2 —1
-2 4

Which fundamental subspace contains ¢;? What is the least squares solution of
Ax=bifb=[1 2 7|7

Express the Gram-Schmidt orthogonalization of

[N

1
a, =21, ay =
2 1

as A = QR. Given n vectors a;, each with m components, what are the shapes of A,
Q, and R?

With the same matrix 4, and with b={1 1 1]7, use 4 = QR to solve the least
squares problem Ax = b.

If A = QR, find a simple formula for the projection matrix P onto the column space
of A.

Show that the modified Gram-Schmidt steps

r

¢"=c—(qicg, and =" —(g3")g,

produce the same vector ¢’ as in (7). This is much more stable, to subtract off the
projections one at a time.

Find the length of the vector v = (l/ﬁ, I/VQ, 1/\/§, ...)and of the function f(x) = e*

(over the interval 0 < x < 1). What is the inner product over this interval of e* and
e *?
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3.4.22

3.4.23

3.4.24

3.4.25
3.4.26

3.4.27

3.4.28
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What is the closest function a cos x + b sin x to the function J = sin 2x on the inter-
val from —nx to n? What is the closest straight line ¢ + dx?

By setting the derivative to zero, find the value of b, that minimizes
Iy sin x — y||* = fozn (b sin x — y(x))* dx.
Compare with the Fourier coefficient by If y(x) = cos x, what is b,?

Find the Fourier coefficients a,, 4, by of the step function y(x), which equals 1
on the interval 0 < x < 7 and 0 on the remaining interval 7 < x < 2m:

_ _ (y,cos x) b _ (ysinx)
STy "7 (cosx,cosx)’ "7 (sin x, sin x)’

Find the next Legendre polynomial-—a cubic orthogonal to 1, x, and x? — § over
the interval —1 < x < 1.

What is the closest straight line to the parabola y = x2 over —1 < x < 1?
In the Gram-Schmidt formula (7), verify that ¢’ is orthogonal to ¢, and g,.

Find an orthonormal basis for the subspace spanned by a; = (1, —1,0,0), a, =
(0,1, —1,0), a3 =(0,0,1, —1).

Apply Gram-Schmidt to (1, —1,0), (0,1, —1), and (1,0, —1), to find an ortho-
normal basis on the plane x; + x, + x, = 0. What is the dimension of this subspace,
and how many nonzero vectors come out of Gram-Schmidt?
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THE FAST FOURIER TRANSFORM W 3.5

At the end of the last section we mentioned Fourier series. That was linear algebra
in infinite dimensions. The “vectors” were functions f(x); they were projected onto
the sines and cosines; that produced the Fourier coefficients. From this infinite
sequence of sines and cosines, multiplied by their Fourier coefficients, we can re-
construct f(x). That is the classical case, which Fourier dreamt about, but in actual
calculations it is the discrete Fourier transform that we compute. Fourier still
lives, but in finite dimensions.

The theory is pure linear algebra, based on orthogonality. The input is a sequence
of numbers y,, ..., y,-;, instead of a function f. The output is another sequence
of the same length—a set of n Fourier coefficients ¢y, . . ., ¢,_, instead of an infinite
sequence. The relation between y and c is linear, so it must be given by a matrix.
This is the Fourier matrix F, and the whole technology of digital signal processing
depends on it. The signal is digitized, whether it comes from speech or images or
sonar or telecommunications (or even oil exploration). It can be transformed by
the matrix F, and later it can be transformed back—to reconstruct the original
image. What is crucially important is that both transforms can be done quickly:

(1) the inverse matrix F~! must be simple
(2) the multiplications by F and F~' must be fast.

Both of those are now true. The matrix F~! has been known for years, and it
looks just like F. In fact F is symmetric and orthogonal (apart from a factor \/ﬁ),
and it has only one drawback: its entries are complex numbers. That is a small
price to pay, and we pay it below. The difficulties are minimized by the fact that
all entries of F and F~' are powers of a single number w. Instead of a full introduc-
tion to complex numbers, we go only far enough to use the remarkable equation
w" = 1—which involves sines and cosines and exponentials, and lies at the heart
of discrete Fourier analysis.

It is remarkable that F is so easy to invert. If that were all (and up to 1965 it
was all) the discrete transform would have an important place. Now there is more.
The multiplications by F and F ' can be done in an extremely fast and ingenious
way. Instead of n? separate multiplications, coming from the n? entries in the
matrix, a matrix-vector product like F~'y requires only 4n log n steps. It is the
same multiplication, but arranged in a good way. This rearrangement is called
the Fast Fourier Transform.

The section begins with w and its properties, moves on to F~ !, and ends with
the FFT—the fast transform and its applications. The great application is called
convolution, and the key to its success is the convolution rule.

Complex Roots of Unity

Real equations can have complex solutions. The equation x? + 1 = 0 led to the
invention of i (and also to —i!). That was declared to be a solution, and the case
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was closed. If someone asked about x? — i = 0, there was an answer: The square
roots of a complex number are again complex numbers. You must allow combina-
tions x + iy, with a real part x and an imaginary part y, but no further inventions
are necessary. Every polynomial of degree » has a full set of » roots (possibly com-
plex and possibly repeated). That is the fundamental theorem of algebra, and the
word “complex” allows the possibility that the imaginary part is y = 0 and the
number is actually real.

We are interested in equations like x* = 1. That should have four solutions—
there should be four “fourth roots of unity”. The two square roots of unity are 1
and —1. The fourth roots are the square roots of the square roots, 1 and —1, i
and —i. The number i will satisfy i* = 1 because it satisfies i*> = — 1. For the eighth
roots of unity we need the square roots of i, and that brings us to complex numbers
like w = (1 + i)/ﬁ. Squaring w produces (1 + 2i + i?)/2, which is the same as i—
because 1 + i* is zero. Since the square is w? = i, the eighth power is w® = i* = 1.
There has to be a system here.

The complex numbers in the Fourier matrix are extremely special. Their real
parts are cosines and their imaginary parts are sines:

| w=cos 0 +isinf. (1)

Suppose the real part is plotted on the x-axis and the imaginary part on the y-axis
(Fig. 3.12). Then the number w lies on the unit circle; its distance from the origin
is cos?6 + sin?6 = 1. It makes an angle 6 with the horizontal. The plane in that
figure is called the complex plane, and every complex number z = x + iy has a
place. The whole plane enters in Chapter 5, where complex numbers will appear
as eigenvalues (even of real matrices). Here we need only special points w, all of
them on the unit circle, in order to solve w" = 1.

imaginary axis
A
4 2 .
w” =cos 20 + i sin 20

w=cos0+17sin0

» real axis

-1

w  =cosB—1isin0

® -1

Fig. 3.12. The complex plane and the unit circle.
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How do we compute the nth power of w? Certainly its square can be found
directly:

w? = (cos @ + i sin ) = cos20 — sin6 + 2i sin 6 cos 0.

That looks bad, until it is illuminated by the double-angle formulas of trigo-
nometry. The real part cos®0 — sin? is equal to cos 26, and the imaginary part
2sin 0 cos 0 is sin 26. (Note that i is not included; the imaginary part is a real
number.) Thus w? = cos 20 + i sin 26. The square of w is still on the unit circle,
but at the double angle 26. That makes us suspect that w" lies at the angle né,
and we are right.

There is a better way to take powers of w. The combination of cosine and sine
is a complex exponential, with amplitude one and phase angle 6

[ cos 0 +isin 0 = ¢, | )
The rules for multiplying and dividing powers, like (¢2)(e) = e° or e?jed =e 1,

continue to hold when the exponents are imaginary. Therefore the powers of
w = ¢ are exactly as anticipated:

W2 — ei20’ w' = einﬂ, R e*i(). (3)

The nth power is at the angle n. When n = — 1, the reciprocal 1/w is at the angle
— 6. If we multiply cos 6 + i sin @ by cos(—6) + i sin(—6), we should get the an-
swer 1. Since cos(—0) is equal to cos 0 (the cosine is even), and sin{— 6) is equal
to —sin 0 (the sine is odd), that multiplication does give
e’ = (cos 0 + i sin H)(cos O — i sin ) = cos?0 + sin26 = 1.
Note 1 remember the day when a letter came to MIT from a prisoner in New
York, asking if Euler’s formula (2) was true. It is really astonishing, when you
think of it, that three of the key functions of mathematics should come together
in such a graceful way. Our best answer was to look at the power series
; o, {02 (i0)°

i __

e’ =1 +19+¥2! +‘3!
The real part 1 — 6%/2 + - - is the cosine. The imaginary part 0 — 03/6 + - - - is
the sine. The formula is correct, and 1 wish we had sent a more beautiful proof.

With this formula, we can solve the equation w” = 1. It becomes ¢ = 1, so

that nf must carry us around the unit circle and back to the start. The solution
is to choose 0 = 2n/n: The “primitive” nth root of unity is

. 2 .2
Fvn = e2min — cos Z 4 i sin 11 @)
| n n

-t
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2ni

Its nth power is e
root is

, which equals 1. In the cases n = 4 and n = 8, this primitive

7I+.. s R
w, = COS — 1S1In — =1
4 2 2

n .. n 1+i
Wg =COS— +18In—=

4 4 L
The fourth root is at § = 90°, and the eighth root is at # = 45°. Those are (360°)
and £(360°), but they are not the only fourth and eighth roots of unity! The other
fourth roots are the powers i? = —1,i* = —i, and i* = 1. The other eighth roots
are the powers w3, w3, ..., wh. The roots are equally spaced around the unit circle,
at intervals of 2n/n. Note again that the square of wg is w,, which will be essen-
tial in the Fast Fourier Transform. Note also that the roots add up to zero. For
wge=ithisisjust 1 +i—1—1i=0, and for wyg it is

T4+ wg+wi+- - +wi=0. (5)

One proof is to multiply the left side by wg, which leaves it unchanged. (It yields
wg + wi + -+ + wi, and w8 equals 1.) The eight points each move through 45°,
but they remain the same eight points. Since zero is the only number that is un-
changed when multiplied by wg, the sum must be zero.t

The Fourier Matrix and Its Inverse

In the continuous case, the Fourier series can reproduce f(x) over a whole in-
terval. It uses infinitely many sines and cosines (or exponentials). In the discrete
case, with only n coefficients to choose, that is too much to expect. We only ask
for equality at n points, which gives n equations. In a typical problem, with n = 4,
the equations to reproduce the four values 2, 4, 6, 8 are

o+ ¢+ + c3=2
co+ic, —cy,—ic3 =4
(6)
Co— €1+ ¢y — c3=06
Co — i€y — €y +ic3 = 8.
The input sequence is y = 2, 4, 6, 8. The output sequence is ¢,, ¢4, ¢,, ¢3. The equa-
tions look for a 4-term Fourier series that matches the inputs at four equally
spaced points on the interval from 0 to 27

2 at x=0
ix 2ix 3ix 4 at x=rn/2
Co + ce + et + e’ =
6 at x=m=x
8 at x=3n/2
tInthiscase w3 = —w, w® = —w? w’ = —w3, w® = —w* When #n is even the roots can

be paired off. But the three cube roots of 1 also add to zero, without cancelling in pairs.

S——

g

SRR
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Those are the four equations in (6). At x = 2r the series returns to the first value
Yo = 2 and continues periodically.

Note that the Fourier series is written in its complex form, as a combination
of exponentials ¢™** rather than sines and cosines. The two are equivalent when
all harmonics are included, because of the matching

@™ ek = @, cos kx + b, sin kx. (7)

It is possible to stay with real series, but when they stop after four terms it requires
special care and the formulas are not elegant. A better decision is to use the com-
plex form, and to solve equation (6) for the coefficients ¢, c,, ¢,, Cs-

That is not hard to do. If we add the four equations, there is tremendous cancel-
lation on the left side. The result is 4c, = 20, so that ¢, is the average value 5 of
the signals 2, 4, 6, 8.

There is also a way to find ¢,. Multiply the equations by 1, —i, — 1, i, and add.
Everything cancels on the left except 4c,, which equals 2 — 4i — 6 + 8i. Therefore
¢y = —1 + i (note that it is complex). There has to be a similar method for Cy
and c;.

The pattern is clearer with the equations in matrix form. The four equations
are Fc = y, and the matrix is

1

1

1 i i g
1

Those 16 entries are the same as the coefficients in (6). Instead of i° we previously
wrote i, and i® agrees with —1, and i is —i. In the present form it will be easier
to recognize F~'. Apart from a factor 4, the inverse matrix has the same form!

1 1 1 |
Foi _ (= (=2 (-
411 (=2 (=i (=)
L= (—)° (=)
A direct multiplication gives FF~! = I. For example, the second row of F times
the second column of F™'is §(1 + 1 + 1 4 1). The other diagonal entries equal
I'in the same way. Off the diagonal a typical product is 1 + i + i2 + i* = 0. (Re-

member that the fourth roots add to zero.) From the top row of ¢ = F~'y we see
again that c, is the average of the four signals, ¢, = (v, + v, + Y2+ y3)

Note For Fourier matrices it is natural to number the rows and columns from
0 ton— 1, instead of 1 to n.

The pattern found above is not limited to n = 4. For every n the matrix connect-
ing y to ¢ can be written down and inverted. It represents n equations, each one
requiring the finite series ¢, + ¢,e™ + - - - (n terms) to agree with y (af n points).
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The first agreement is at x = 0:
cot+ci+-+c-1 =)o
The next point is at x = 27/n, which introduces the crucial number w = e>™/":
Cotew+ - +c_ W=y,
The third point x = 4n/n involves e*™/" which is w*:
Co+ w4 ey WD =

The remaining points bring higher powers of w, and the full problem is

1 1 1 y 1 Co Yo

1w w2 - g ¢ V1

1 w? w* < w2 h c, |=| v, | 8)
1 Wn—l WZ(n—l) . ‘,v(n—l)Z Coet V-1

There stands the Fourier matrix F.

For n = 4 the number w was i, the fourth root of unity. In general w is e*™/*, the
primitive nth root of unity. The entry in row j and column k of F is a power of w:
gk |
Fj=wk |

The first row has j = 0, the first column has k = 0, and all their entries are w° = 1.
To find the ¢’s we have to invert F. In the 4 by 4 case the inverse matrix contained
powers of —i; in other words F~! was built from 1/i. That is the general rule,
that F~! comes from the complex number w™'. It lies at the angle —2n/n, where

w was at the angle +2n/n:

3V The n by n inverse matrix is built from the powers of w™! = 1/w:

1 1 1 : 1
1 w ! w - oy 72
F*l

Il
|
-
-
=
. |
>
=

1 w2 ] o)

In the cases n = 2 and n = 3 this means that

[ 11
= has F~'=_
1 ‘1] - 2[1 —1]

1 1 1 1 1 1
F=|1 g2m3 4ni/3 has F—lz,l, | e 2m/3 p—4mi3
8mi/3 3
1 ]

1 847[1'/3 e e—47ri/3 e*Bni/}

We need to confirm that FF~! equals the identity matrix.
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On the main diagonal that is clear. Row j of F times column j of F™! is
(I/n)(1 + 1 + - - + 1), which is 1. The harder part is off the diagonal, to show that
row j of F times column k of F~! gives zero:

ol ww ™ 4 w72k o O iy m=Dk — o f £ K (10)

The key is to notice that those terms are the powers of W = wiy *:

L+ W+ W -y W= | (11)

This number W is still one of the roots of unity: W" = w"w ™" is equal to 111 % = 1.
Since j is different from k, W is different from 1. It is one of the other roots, equally
spaced around the unit circle. Those roots all satisfy 1 + W +--- + Wr—1 =,
The argument is exactly as it was in (5) above: Multiplying by W, the left side
does not change (since W" at the right end equals 1 at the left end). The sum is
unchanged when multiplied by W, so it must be zero.

Remark  Another proof is immediate from the identity

L= Wi=(1—W)1+W+ W24+ WY, (12)

Since W" = 1, the left side is zero. But W is not 1, so the last factor must be zero.
The columns of F are orthogonal. Except for taking complex conjugates (w* — w#),
and dividing by n, the transpose of F is F~ 1.

The Fast Fourier Transform

Fourier analysis is a beautiful theory, but what makes it important is that it is
also so practical. To analyze a waveform into its frequencies is the best way to take
it apart. The reverse process brings it back. For physical and mathematical rea-
sons the exponentials are special, and we can pinpoint one central cause: If you
differentiate ¢, or integrate it, or translate x to x + h, the result is still a multiple
of ¢**. Exponentials are exactly suited to differential equations and integral equa-
tions and difference equations. Each frequency component goes its own way, and

| then they are recombined into the solution. Therefore the analysis and synthesis of
| signals—the computation of ¢ from y and y from ¢—is an absolutely central part
‘ of scientific computing.

We want to show that it can be done quickly. The key is in the relation of

F4 to F,—or rather to two copies of F,, which go into a matrix F¥:

1 1 1 1 1 1
1 i 253 . I —1

F,= L2 o# | closeto F% = 1 )
LI S A o 1 —1

F4 contains the powers of w, = i, the fourth root of 1. F% contains the powers of
w, = — 1, the square root of 1. Note especially that half the entries in F¥ are
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zero. The 2 by 2 transform, even when done twice, requires only half as much
work as a direct 4 by 4 transform. Similarly, if a 64 by 64 transform could be
replaced by two 32 by 32 transforms, the work would be cut in half (plus the cost
of reassembling the results). What makes this true, and possible in practice, is the
simple connection between w, and W3,:

(W64)2 — W32, or (elni/64)2 - e2m’/32.
The 32nd root is twice as far around the circle as the 64th root. If wo* — 1, then
(w?)*? = 1. In general the mth root is the square of the nth root, if m is half of n:

’wf:wm if m:%nJ (13)

The speed of the FFT, in the standard form presented here, depends on working
with highly composite numbers like 2'2 = 4096. There will be n? entries in the
Fourier matrix, so without the fast transform it takes (4096)> = 224 multiplications
to produce F times x. Repeated multiplications by F become expensive. By con-
trast, a fast transform can do each multiplication in only 6 - 212 steps. It is more
than 680 times faster, because it replaces one factor of 4096 by 6. In general it
replaces n* multiplications by 1nl, when n is 2. By connecting the matrix F, to
two copies of F, ,, and then to four copies of F,4, and eventually to n copies of
F, (which is trivial), the usual n? steps are reduced to inlog, n.

We need to see how y = F,c (a vector with n components) can be recovered from
two vectors that are only half as long. The first step is to divide up c itself. The
vector (co, ¢y, ..., ¢,_,) is split into two shorter pieces, by separating its even-
numbered components from its odd components:

"

€ =1(Co,CasvvnyCy_y) and ¢"=(cp,c35...,0,_)

The coefficients just go alternately into ¢’ and ¢”. Then from those vectors we
form y = F,¢ and y” = F,¢". Those are the two multiplications by the smaller
matrix F, (remember that m = in). As in the replacement of F, by F%, the work
has been cut in half. The central problem is to recover y from the half-size vectors
¥ and y”, and Cooley and Tukey noticed how it could be done:

3W The first m and the last m components of the vector y = F,c are
= kwyl j=0.. m-1
Yj+m=y]'“wf;}’j, i=0....m 1

Thus the three steps are: split ¢ into ¢’ and ¢”, transform them by F,, into )’ and
V", and reconstruct y from equation (14).

We verify in a moment that this gives the correct y. (You may prefer the flow
graph to the algebra.) It means that the calculation of F, needs only twice as
many steps as F,, plus the m extra multiplications by the m numbers wi in (14).
Furthermore, this idea can be repeated. We go from F 4,4 to Fs, to F,ss. The
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final count is 4nl, when starting with the power n = 2! and going all the way to
n = 1—where no multiplication is needed. This number in! satisfies the rule given
above: twice the count for m, plus m extra multiplications, produces the count for n:

2m(l — 1)) + m = Lnl

The cost is only slightly more than linear, and the logarithm ! reflects the multi-
plications wjy7 in (14). However 4nl is so far below n? that discrete Fourier
analysis has been completely transformed by the FFT.

Verification of formula (14) for y: Separate each component of y = Fe¢ into a part
from ¢’ (the even components ¢,) and a part from ¢” (the odd components ¢, . ).
That splits the formula for y; into two parts:

m—1 -

n—1 m—1
V= Z wikc, is identical to Z wikic,, + Z WLZkH)’CZkH-
=0 k=0

k=0 k

Each sum on the right has m = in terms. Since w? is w,, the two sums are
m—1 m—1
_ kj j kj .1t
yi= 3 whe +wl Y whicy. (15)
k=0 k=0

These sums are exactly y; and y}, coming from the half-size transforms F, ¢’ and
F,c". The first part of (14) is the same as (15). For the second part we need j + m
in place of j, and this produces a sign change:

inside the sums, wkV*™™ remains w¥ since wi" = 1* =1

outside, wi*™ = —w/ because w!" = ¥ = " = _ |,
The sign change yields the second part of (14), and the FFT formula is verified.

The idea is easily modified to allow other prime factors of n (not only powers of 2).
If n itself is a prime, a completely different algorithm is necessary.

EXAMPLE The steps from n =4 to m = 2 are

Co ¢o
_/
c c F,c
L N o [N -1y
Cy ¢y
. F,¢"
Cs Cy 2

Combined, the three steps multiply ¢ by F, to give y. Since each step is linear it
must come from a matrix, and the product of those matrices must be F,:

1 1 1| 1 1 1 1 I

I
1 |
= . (16
1 2 i+ 1 -1 1 1 1 (16)
1 i3 i 1 —i 1 =1 1

You recognize the two copies of F, in the center. At the right is the permutation
matrix that separates ¢ into ¢’ and ¢”. At the left is the matrix that multiplies by
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wi. If we started with Fg the middle matrix would contain two copies of F,.
Each of those would be split as above. Thus the FFT amounts to a giant fac-
torization of the Fourier matrix! The single matrix F with n? nonzeros is a prod-
uct of approximately | = log,n matrices, with a total of only nl nonzeros.

The Complete FFT and the Butterfly

The first step of the FFT changes multiplication by F, to two multiplications
by F,, = F,;. The even-numbered components (c,, c,, . ..) are transformed sep-
arately from (cy, 3, ...). We give a flow graph for n = 8:

C() @

(,'2 [ o % — poin[
& transform

€4 @i F

(.() [ -

('l [

n .
€3 @uimmumy 75— POIN

" transform
(5 Qi Fo
('7 @y

The key idea is to replace each F, box by a similar picture involving two F,
boxes. The new factor w, = i is the square of the old factor w = wg = e2"/8 =
1+ i)/ﬁ. The top half of the graph changes from F, to

0 n/d Yo
points '

Cy Y
C s

20 nf4 =
points .

Y e - ¥3
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Then each of those boxes for F, =[] 1] is a single butterfly:
. 1
0 S Cot ey
1
1
(,'4 Ch—C
o 0 %%
By combining the graphs you can see the whole picture. It shows the order that

the nc’s enter the FFT and the log n stages that take them through it—and it
also shows the simplicity of the logic:

000 000

100 001

010 010

110 011

001 100

101 101
j 011 110
i 111 il
}

Every stage needs 3n multiplications so the final count is in log n. There is an
amazing rule for the permutation of ¢’s before entering the FFT: Write the sub-
‘ scripts 0, . .., 7 in binary and reverse the order of their bits. The subscripts appear
! in “bit-reversed order” on the left side of the graph. Even numbers come before
odd (numbers ending in 0 come before numbers ending in 1) and this is repeated
at every stage.
A code is available at no cost through the electronic mail service netlib (instruc-
i tions in Appendix C).
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3.5.10

3.5.11

3.5.12
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EXERCISES

What are F2? and F* for the 4 by 4 Fourier matrix F?
What are the real and imaginary parts of the three cube roots of unity?

If you form a 3 by 3 submatrix of the 6 by 6 matrix F¢, keeping only the entries
in its first, third, and fifth rows and columns, what is that submatrix?

Mark all the sixth roots of 1 in the complex plane. What is the primitive root We
(find its real and imaginary part)? Which power of we Is equal to 1/w,? What is
L+w+ w2+ w?+ w4 w®

Find all solutions to the equation ¢'* = —1, and all solutions to ¢* = .
What are the square and the square root of w,,g, the primitive 128th root of 17

Solve the 4 by 4 system (6) if the right sides are y, = 2, y, = 0, V2=2,y;=0.In
other words, solve F,c = y.

Solve the same system with y = (2,0, —2,0), by knowing F; ! and computing ¢ =
Fil'y. Verify that ¢, + ¢;e™ 4 ¢,?™ + ¢, takes the values 2, 0, —2, 0 at the
points x = 0, /2, %, 3n/2.

(@) Ify=(1,1,1,1) show that ¢ = (1, 0, 0, 0) satisfies F,c = y.
(b) Now suppose y = (1,0, 0,0) and find c.

For n =2 write down y, from the first line of (14) and v, from the second line.
For n =4 use the first line to find y, and y,, and the second to find vy, and y;,
all in terms of y" and y".

Compute y = F,c by the three steps of the Fast Fourier Transform if ¢ = (1,0, 1, 0).

Compute y = Fgc by the three steps of the Fast Fourier Transform if ¢ =
(1,0,1,0, 1,0, 1, 0). Repeat the computation with ¢ = (0, 1,0, 1,0, 1, 0, 1).

For the 4 by 4 matrix write out the formulas for ¢, ¢y, ¢,, ¢y and verify that if
S is odd then ¢ is odd. The vector f is odd if Ju—j= —f; for n =4 that means
fo=0, fy= —f,, f, = 0. This is copied by ¢ and by (sin 0, sin 7/2, sin 7, sin 37/2),
and it leads to a fast sine transform.
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REVIEW AND PREVIEW H 3.6

The “first half” of linear algebra is now concluded. It concentrated on Ax = b and
it took more than its half of the semester (at least in the author’s class). It started
with square matrices, pushed ahead to rectangular matrices, and went back to the
square matrix ATA:

Chapter 1. Solution of Ax = b for invertible A (by elimination)
Chapter 2. Solution of Ax = b for any A (by the four subspaces)
Chapter 3. Least squares solution (by projection and ATAX = A"h).

I am unhappy about boiling down this subject to such a small list! You recognize
that there is a lot of mathematics in those three lines—and more to be said about
each of them. In looking back at what was done, we have the chance to make new
connections that are clearer with hindsight. They are optional and they vary in
importance—but subspaces are absolutely fundamental, and the ideas behind them
will come through when we take their sum and intersection.

The review starts as the book did, with computations. The key point is that every
solution came from a factorization of the matrix:

Chapters 1 and 22 A= LU Chapter 3: 4 =0QR
Whether square or rectangular, Ax = b is reduced to two easy steps:

first Lc=b andthen Ux=¢ x=U 'L 'b
first Qc=b andthen Rx=¢& Xx=R 10"

Three of those matrices—L, U, and R—are triangular. The odd one is Q. It has
m rows and only n columns, with the special feature that the columns are ortho-
normal. Therefore QTQ is the identity matrix. The least squares solution to Q¢ = b
is ¢ = Q'b. Geometrically ¢ comes from one-dimensional projections onto each
separate column. The final X is the same as the solution to ATAX = ATh.

Thus the system Ax = b leads us (almost involuntarily) to LU and QR. The fac-
torizations come out of the steps of the solution. We have also been close to three
other factorizations, and slipped by them in order to keep the text clear. The first
was mentioned earlier and is important in practice; it is the special form of 4 = LU,
or rather A = LDU, when A is symmetric.

Chapter 1:  Cholesky factorization for symmetric A4:
A= LDL" = (LD")(LD'?)"
Chapter 2:  Reduced factorization—m by r times r by n, for any A: A= LU

Chapter 3:  Singular value decomposition for any A:

A4=0,20!
We take those one at a time.
1. When 4 is symmetric, U is the same as L!. In that way the LDU factorization
is A = LDLT, and the right side is perfectly symmetric. Cholesky took it one step
further, and split the diagonal D by taking square roots of the pivots. (He assumed
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they were positive; that is the “positive definite” case of Chapter 6.) Then A is
down to two triangular factors (LD'/?)(LD'/?)T.

Here is a curious fact: If Cholesky had started with A4 (which has positive
pivots), his two factors would have been exactly the RT and R of Gram-Schmidt.
In other words

ATA = R™R (because A'A = R"Q"QR and Q"Q =)

3X The multipliers [;; from Gaussian elimination on A"A4 are identical to the
multipliers that orthogonalize the columns of A.

A i S e i syl B

EXAMPLE (our favorite matrix for Gram-Schmidt)

1 0 0

-1
-1 1 0 - 4 0
A= 0 : ] and A'A=]| —1 2 -1
0 -1 2
0 0 -1

Look first at ATA. Elimination adds % the first row to the second row, and then
3 of the second row to the third row. The pivots are 2, 3, 4. What does Gram-
Schmidt do to A?

If the shaded statement is correct, 4 the first column of A4 is added to the second
column. The result is a5 = (3, 3, —1,0), and it is orthogonal to the first column. i
Then add % of the new second column to the third column. The result is as = :
(3,3, 3, — 1), and it is orthogonal to the first two columns. Those are the steps of

Gram-Schmidt, and they lead to a matrix with orthogonal columns:

I

-1 4}
A =

B —~1 -4

0 0 -1

In a larger example the next column would begin with £, 4,1 1 1 That is a
pattern I had never seen before, with orthogonal columns that look good.

It remains to divide the columns by their lengths. What is special is that the
lengths squared are identical to the pivots of ATA:

PH(=17=2  @P+E+(07 =3 @+ + P+ (17 =4,

This cannot be an accident! The columns of A" = A(L")"! are orthogonal, with
squared lengths appearing in D:

if ATA=LDL" then (4)'A' =L 'ATAL")"!=D.
The final step divides by the square roots of those pivots, to normalize columns:
Q=AL")'D"Y> or A=QD'?LT=0QR.
That brings us back to Cholesky’s DY/2LT, identical to the Gram-Schmidt R.
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The triangularity of R reflects the order: Multiples of earlier columns are sub-
tracted from later columns. That is like elimination: Multiples of earlier rows are
subtracted from later rows. L records the elimination steps on A" A4, and R records
the orthogonalization steps on A.

2. The“reduced factorization”is A = LU. Like the symmetric factorization LDLT,
it is more balanced than the old 4 = LU, but in a different way. When A has
rank r, we really need only r columns in L and r rows in U. The last m — r rows
of U can be thrown away (since they were all zero). The last n — r columns of L
can also be thrown away (since they multiplied those zero rows of U, and had no
effect). We are left with L and U, and their product is still the same matrix A:

A matrix of rank r can be factored into an m by r matrix times an r by n matrix.

In case A needed row exchanges, so that PA = LU, there is a slight change: L
is formed from the first r columns of P~ 'L instead of L. In every case the r columns
of L are a basis for the column space of 4, and the r rows of U are a basis for
the row space of A.

3. The singular value decomposition is far too important to be summarized in a
paragraph, and it is the subject of Appendix A. It puts a diagonal matrix X between
two orthogonal matrices. They give orthogonal bases for the four subspaces, and
they lead to the pseudoinverse 4" and the “condition number.” The SVD has
become fundamental in scientific computing.

Vector Spaces and Subspaces

We turn from computations to algebra. That began with the idea of a vector
space, in which two operations are possible:

vector addition x + y and scalar multiplication cx.

Those operations are easy in the n-dimensional space R™—which is the outstanding
example of a vector space. They are also possible within smaller sets, like lines
and planes through the origin in R*. Subsets which are vector spaces on their own
are subspaces, and the four fundamental subspaces are the key to Ax = b:

existence of x : b must be in the column space #(A)
b must be perpendicular to the left nullspace .4(47)
uniqueness of x : the nullspace .4#7(A4) must contain only the zero vector

the row space Z(A") must be all of R”

When there is a solution for every b, the rows are independent and the rank is
r = m. When the solution is unique, the columns are independent and the rank is
r = n. For every matrix, the rank is the dimension of both the column space and
the row space. If r = m = n, then A4 is square and invertible.
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It is fair to say that these chapters pursued one fixed goal, the understanding
of Ax = b. Each new idea and definition—including vector spaces and linear inde-
pendence, basis and dimension, rank and nullspace, inner product and orthog-
onality—was introduced as it was needed for this one purpose. Now we look
again at those same ideas, to find some of the relationships that were missed.

1. The intersection of two vector spaces The key idea goes back to the definition
of a vector space and a subspace. New questions arise from considering not just
a single subspace or a single matrix A, but the interconnections between two sub-
spaces or two matrices. The first point is the most important:

8y If V and W are both subspaces of a given vector space, then so is their inter-
section V.~ W. The vectors belonging to both spaces form another subspace.

The proof is immediate. Suppose x and y belong to ¥ ~ W, in other words they
are vectors in V and also in W. Then, because V and W are vector spaces in their
own right, x + y and cx are in V and in W. The results of addition and scalar
multiplication stay within the intersection. Geometrically, the intersection of two
planes through the origin (or “hyperplanes” in R”) is again a subspace. The same
will be true of the intersection of several subspaces, or even of infinitely many.

EXAMPLE 1 The intersection of two orthogonal subspaces ¥ and W is the one-
point subspace {0}. Only the zero vector is orthogonal to itself.

EXAMPLE 2 If the sets of n by n upper and lower triangular matrices are the sub-
spaces V' and W, their intersection is the set of diagonal matrices. This is certainly
a subspace. Adding two diagonal matrices, or multiplying by a scalar, leaves us
with a diagonal matrix.

EXAMPLE 3 Suppose V is the nullspace of 4 and W is the nullspace of B. Then
V' W is the smaller nullspace of the larger matrix

Cx = 0 requires both Ax = 0 and Bx = 0, so x has to be in both nullspaces.

2. The sum of two vector spaces Usually, after discussing and illustrating the
intersection of two sets, it is natural to look at their union. With vector spaces,
however, it is not natural. The union V.U W of two subspaces will not in general
be a subspace. Consider the x axis and the y axis in the plane. Each axis by itself
is a subspace, but taken together they are not. The sum of (1, 0) and (0, 1) is not
on either axis. This will always happen unless one of the subspaces is contained
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in the other; only then is their union (which coincides with the larger one) again
a subspace.

Nevertheless, we do want to combine two subspaces, and therefore in place of
their union we turn to their sum.

DEFINITION If I/ and W are both subspaces of a given space, then so is their sum
V + W. It is made up of all possible combinations x = v + w, where v is an arbi-
trary vector in V and w is an arbitrary vector in W.

This is nothing but the space spanned by V' U W. It is the smallest vector space
that contains both ¥ and W. The sum of the x axis and the y axis is the whole
x-y plane; so is the sum of any two different lines, perpendicular or not. If V is the
x axis and W is the 45° line x = y, then any vector like (5, 3) can be split into
v+ w=(2,0)+ (3,3). Thus V + W is all of R%.

EXAMPLE 4 Suppose V and W are orthogonal complements of one another in
R". Then their sum is ¥ + W = R”". Every x is the sum of its projection v in V
and its projection w in W.

EXAMPLE 5 If V' is the space of upper triangular matrices, and W is the space
of lower triangular matrices, then V' + W is the space of all matrices. Every matrix
can be written as the sum of an upper and a lower triangular matrix—in many
ways, because the diagonals are not uniquely determined.

EXAMPLE 6 If V is the column space of a matrix 4, and W is the column space
of B, then V + W is the column space of the larger matrix D = [A B]. The di-
mension of ¥ + W may be less than the combined dimensions of ¥ and W (because
the two spaces may overlap), but it is easy to find:

dim(V + W) = rank of D. (1)

Surprisingly, the computation of V n W is much more subtle. Suppose we are
given the two bases vy, ..., v, and wy, ..., w; this time we want a basis for the
intersection of the two subspaces. Certainly it is not enough just to check whether
any of the v’s equal any of the w’s. The two spaces could even be identical, V = W,
and still the bases might be completely different.

The most efficient method is this. Form the same matrix D whose columns are
Uyy ... Ug, Wy, ..., W, and compute its nullspace .4°(D). We shall show that a basis
for this nullspace leads to a basis for ¥V n W, and that the two spaces have the
same dimension. The dimension of the nullspace is called the “nullity,” so

dim(V n W) = nullity of D. )

This leads to a formula which is important in its own right. Adding (1) and (2),
dim(V + W) + dim(V n W) = rank of D + nullity of D.



200 3 Orthogonality

From our computations with the four fundamental subspaces, we know that the
rank plus the nullity equals the number of columns. In this case D has k + [ col-
umns, and since k = dim V and [ = dim W, we are led to the following conclusion:

dim(V + W) + dim(V A W) = dim V + dim W. 3)

Not a bad formula.

EXAMPLE 7 The spaces V and W of upper and lower triangular matrices both
have dimension n(n + 1)/2. The space V + W of all matrices has dimension n?,
and the space V' n W of diagonal matrices has dimension n. As predicted by (3),
n? +n=nm+ 1)/2 + nn + 1)/2.

We now look at the proof of (3). For once in this book, the interest is less in the
actual computation than in the technique of proof. It is the only time we will use
the trick of understanding one space by matching it with another. Note first that
the nullspace of D is a subspace of R**!, whereas V n W is a subspace of R™. We
have to prove that these two spaces have the same dimension. The trick is to show
that these two subspaces are perfectly matched by the following correspondence.

Given any vector x in the nullspace of D, write the equation Dx = 0 in terms
of the columns as follows:

X101+ F X0 + Xep Wy 00+ X W =0, .4
or
XqUp + 0+ XU = =X Wy — 0 X Wi ®)

The left side of this last equation is in V, being a combination of the v, and the
right side is in W. Since the two are equal, they represent a vector y in V. n W.
This provides the correspondence between the vector x in .4(D) and the vector y
in Vn W. It is easy to check that the correspondence preserves addition and
scalar multiplication: If x corresponds to y and x’ to y’, then x + x’ corresponds to y +
y" and cx corresponds to cy. Furthermore, every yin V.~ W comes from one and only
one xin _!7(D) (Exercise 3.6.18).

This is a perfect illustration of an isomorphism between two vector spaces. The
spaces are different, but for all algebraic purposes they are exactly the same. They
match completely: Linearly independent sets correspond to linearly independent
sets, and a basis in one corresponds to a basis in the other. So their dimensions
are equal, which completes the proof of (2) and (3). This is the kind of result an
algebraist is after, to identify two different mathematical objects as being funda-
mentally the same.t It is a fact that any two spaces with the same scalars and the
same (finite) dimension are always isomorphic, but this is too general to be very

1 Another isomorphism is between the row space and column space, both of dimension r.
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| exciting. The interest comes in matching two superficially dissimilar spaces, like
} A (D) and V n W.

EXAMPLE 8 V is the x-y plane and W is the x-z plane:

1 010 )
p=lo 10 o first 2 columns: basis for V
0 0 1

| 0 last 2 columns: basis for W

The rank of D is 3, and V + W is all of R*. The nullspace contains x = (1, 0, —1, 0),

and has dimension 1. The corresponding vector y is 1(column 1) 4+ O(column 2),

pointing along the x-axis—which is the intersection ¥V n W. Formula (3) for the
| dimensions of ¥V + W and V n W becomes 3 + 1 =2 + 2.

The Fundamental Spaces for Products AB

We turn from pairs of subspaces to products of matrices. As always, it is not
the individual entries of AB that are particularly interesting; they probably have
‘ no similarity to the entries of 4 and B. Instead, it is at the level of vectors—the
rows or columns of a matrix, rather than its entries—that properties of 4 and B
may be inherited by 4B. And it is not even so much the individual rows or columns,
as the subspaces they span; these subspaces describe the whole matrix at once.
Our basic question is this: What are the relationships between the four funda-
mental subspaces associated with A, the four associated with B, and the four as-
sociated with the product AB? All these matrices may be rectangular, and there
are four principal relationships:
(i) The nullspace of AB  contains the nullspace of B
(i) The column space of AB is contained in the column space of A
(iti) The left nullspace of AB contains the left nullspace of A

(iv) The row space of AB is contained in the row space of B.
The proofs are extremely simple.

‘ (i) If Bx =0, then ABx = 0. Every x in the nullspace of B is also in .4 (AB).
(i) Each column of AB is a combination of the columns of A.
(iii) If y*A4 = 0 then y"AB = 0.
(iv) Each row of AB is a combination of the rows of B.

| By knowing this much about the subspaces associated with AB, we also know
bounds on the dimensions of three of them:

COROLLARY The rank and nullity of AB satisfy
HAB) < 1(A4) r(AB) < 1(B) dim A (AB) > dim A(B).
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There is no attempt to prove that AB has a larger nullspace than A, which cannot
be guaranteed. In fact 4 and B could be 2 by 3 and 3 by 2 matrices of zeros—
giving AB the smaller nullspace R* when A has the larger nullspace R3.

Finally, recall that a submatrix C is formed by striking out some (or none) of
the rows of A, and some (or none) of its columns. It is not hard to guess a limitation
on the rank of C.

3Z Suppose A is an m by n matrix of rank r. Then:

(i) Every submatrix C is of rank <r.
(i) At least one r by r submatrix is of rank exactly r.

Proof We shall reduce 4 to C in two stages. The first keeps the number of col-
umns intact, and removes only the rows that are not wanted in C. The row space
of this intermediate matrix B is obviously contained in the row space of 4, so that
rank(B) < rank(4) = r. At the second stage B is reduced to C by excluding the
unwanted columns. Therefore the column space of C is contained in the column
space of B, and rank(C) < rank(B) < r. This establishes (i).

To prove (ii), suppose that B is formed from r independent rows of A. Then the
row space of B is of dimension r; rank(B) = r, and the column space of B must also
have dimension r. Suppose next that C is formed from r independent columns of B.
Then the column space of C has dimension r, and rank(C) = r. This completes
the proof of (ii): Every matrix of rank r contains a nonsingular r by r submatrix.

EXAMPLE Consider once more that 3 by 4 matrix

1 3 3 2

A= 2 6 9 5 with submatrix C= [; 3]
-1 -3 3 0

Every 3 by 3 submatrix of A is singular, but C is not. Therefore the rank is 2.

This theorem does not deserve to be overemphasized. Superficially, it resembles
a theorem that is important—the one next to Fig. 3.4. There we proved that every
A is an invertible transformation from its r-dimensional row space to its r-
dimensional column space. Those spaces, and that transformation, give total in-
formation about A4; the whole matrix can be reassembled once the transformation
is known. Here it is only a question of finding an invertible submatrix C, and there
is nothing special about the one that is chosen. There may be, and in the example
there are, many other invertible submatrices of order r. The only thing we do get is
a new and equivalent definition of rank: It is the order of the largest nonsingular
submatrix.
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Weighted Least Squares

Suppose we return for a moment to the simplest kind of least squares problem,
the estimate X of a patient’s weight on the basis of two observations x = b, and
x = b,. Unless these measurements are identical, we are faced with an inconsistent
system of two equations in one unknown:

~ -]

Up to now, we have regarded the two observations as equally reliable, and looked
for the value X that minimized E? = (x — b,)? + (x — b,)%:

dE? _ b, + b,

i 0 at X = -
The optimal X is the average of the measurements, and the same conclusion comes
from the equation ATAX = A"h. In fact A"4 is a 1 by 1 matrix, and the equation
is2Xx =b, + b,.

As further review, note the projection of b onto the line through a = [{]. The
projection is p = xa, with X = a"b/a"a—and that ratio is again the average
1(b, + b,). This is the natural answer, except for the following variation which is
important in practice.

Suppose that the two observations are not trusted to the same degree. The value
x = b, may be obtained from a more accurate scale—or, in a statistical problem,
from a larger sample—than the value x = b,. Nevertheless, if the second observa-
tion contains some information, we are not willing to rely totally on x = b,.
The simplest compromise is to attach different weights w} to the two observations,
and to choose the x that minimizes the weighted sum of squares

E? = wix — b,)® + wi(x — b,y)%

If w, > w,, then more importance is attached to the first observation, and the
minimizing process tries harder to make (x — b,)* small. We can easily compute

dE?
o= 2[wi(x — by) + wilx — by)],

and setting this to zero gives the new solution Xy

wib, + wib,
xW =

(6)

wf + w%

Instead of the average of b, and b,, as we had when w, =w, =1, Xy is a
weighted average of the data. This average is closer to b, than to b,.

[t is easy to find the ordinary least squares problem that leads to Xy,. It comes
from changing Ax = b to the new system WAx = Wb. This changes the solution
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from X to xy. In our example

1 w, 0
A—[l] and W—[O Wz]'

The normal equations for the new problem have WA in place of 4 and Wb in place
of b. Otherwise nothing is new, and the matrix WTW turns up on both sides of
the weighted normal equations:

The least squares solution to WAx = Wb is determined from
ATWTWA)X, = ATWTWb.

What happens to the geometric picture, in which b was projected to Ax? That
must also change. The projection is again the point in the column space that is
closest to b. But the word “closest” has a new meaning when the length involves
W. We are working with a weighted length of x, equal to the ordinary length of
Wx. Perpendicularity no longer means y"x = 0; in the new system the test is
(Wy)'(Wx) = 0. The matrix WTW appears in the middle. In this new sense, the
projection Axy and the error b — AXy, are again perpendicular.

That last paragraph describes all inner products: They come from invertible
matrices W. They actually involve only the symmetric combination C = WTW; the
inner product of x and y is y"Cx. Note that for an orthogonal matrix W = 0,
when this combination is C = QTQ = I, the inner product is not new or different.
An orthogonal weighting matrix has no effect, since rotating the space leaves the
inner product unchanged. Every other W changes the length and inner product.

For any invertible matrix W, the following rules define a new inner product and length:
(x, V)w = (Wy)[(Wx) and Ix|w = [|Wx]. (7)

Since W is invertible, no vector is assigned length zero (except the zero vector).
All possible inner products—which depend linearly on x and y and are positive
when x = y # 0—are found in this way, from some matrix W.

In practice, the important question is the choice of W (or C). The best answer
comes from statisticians, and originally from Gauss. We may know that the average
error is zero. That is the “expected value” of the error in b—although the error
is not really expected to be zero! We may also know the average of the square of
the error; that is the variance. If the errors in the measurements b; are indepen-
dent of each other, and their variances are 67, then the right weights are w; = 1/o;.
The more we know about the measurement, which is reflected in a smaller variance,
the more heavily it is weighted.

In addition to unequal reliability, the observations may not be independent. 1f the
errors are coupled—the polls for President are not independent of those for Sena-
tor, and certainly not of those for Vice-President—then W has off-diagonal terms.
The best unbiased matrix C = W'W is the inverse of the covariance matrix—
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whose i, j entry is the expected value of (error in b;) times (error in b;). Tts main
diagonal contains the variances o7, which are the average of (error in b))%

EXAMPLE Suppose two bridge partners both guess (after the bidding) the total
number of spades they hold. For each guess, the errors —1, 0, 1 mlght have equal
probability 5. Then the expected error is zero and the variance is %

E)=3(-1+30) +3(1)=0

E(@) = 4(= 1) + 307 +3(1° = 3,
The two guesses are dependent, because they are based on the same bidding—but
not identical, because they are looking at different hands. Say the chance that they

are both too high or both too low is zero, but the chance of opposite errors is 1
1 Then E(e,e,) = 3(—1), and the inverse of the covariance matrix is

| I 2 1}
3 3 T
= =C=W'w.
[-é %] [1 2

This matrix goes into the middle of the weighted normal equations.

EXERCISES

3.6.1  Suppose S and T are subspaces of R!'3, with dim S = 7 and dim T = 8.
(a) What is the largest possible dimension of S ~ T?
(b) What is the smallest possible dimension of § n T7?
(c) What is the smallest possible dimension of § + T?
(d) What is the largest possible dimension of § + T?

3.6.2 What are the intersections of the following pairs of subspaces?
(a) The x-y plane and the y-z plane in R>.
(b) The line through (1, 1, 1) and the plane through (1, 0, 0) and (0, 1, 1).
(c) The zero vector and the whole space R?.
(d) The plane perpendicular to (1, 1, 0) and the plane perpendicular to (0, 1, 1) in
R3.
What are the sums of those pairs of subspaces?

3.6.3  Within the space of all 4 by 4 matrices, let V' be the subspace of tridiagonal matrices
and W the subspace of upper triangular matrices. Describe the subspace V + W,
whose members are the upper Hessenberg matrices, and the subspace V ~ W. Verify
formula (3).

3.6.4 1f V n W contains only the zero vector then (3) becomes dim(V + W) = dim V +
dim W. Check this when V' is the row space of 4, W is the nullspace, and A4
is m by n of rank r. What are the dimensions?

3.6.5 Give an example in R® for which ¥ n W contains only the zero vector but V is
‘ not orthogonal to W.
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3.6.6

3.6.7

3.6.8

3.6.9

3.6.10

3.6.11

3.6.12

3.6.13

3.6.14

3.6.15

3.6.16

3.6.17

If VA W={0} then V + W is called the direct sum of V and W, with the special
notation V'@ W. If V is spanned by (1, 1, 1) and (1, 0, 1), choose a subspace W so
that V@ W = R>.

Explain why any vector x in the direct sum V @ W can be written in one and only
one way as x = v + w(with v in V and w in W),

Find a basis for the sum V + W of the space V spanned by v, = (1, 1, 0, 0), v, =
(1,0, 1,0) and the space W spanned by w, = (0, 1, 0, 1), w, = (0,0, 1, 1). Find also
the dimension of V ~ W and a basis for it.

Show by example that the nullspace of AB need not contain the nullspace of A,
and the column space of AB is not necessarily contained in the column space of B.

Find the largest invertible submatrix and the rank of

1 1 0 0

bo 1 100

Ay =12 0 2 and A, = 00 1 1
304 0 0 1 1

Suppose A is m by n and B is n by m, with n < m. Prove that their product AB
is singular.

Prove from (3) that rank(4 + B) < rank(4) + rank(B).

If A'is square and invertible prove that AB has the same nullspace (and the same
row space and the same rank) as B itself. Hint: Apply relationship (i) also to the
product of A7 and AB.

Factor 4 into an m by r matrix L times an r by n matrix U:

A_0140 dal 4
=lo 2 5 o and also

I
e e
o = o
o o o

Multiplying each column of L by the corresponding row of U, and adding, gives
the product A = LU as the sum of r matrices of rank one. Construct L and U and
the two matrices of rank one that add to

1 -1 0
A=10 1 —1
1 0 -1

Prove that the intersection of three 6-dimensional subspaces of R® is not the single
point {0}. Hint: How small can the intersection of the first two subspaces be?

Find the factorization A = LDL', and then the two Cholesky factors in

A_412
112 as|

(LDY2)(LD')T, for
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3.6.18

3.6.19

3.6.20

3.6.21

3.6.22

3.6.23

3.6.24

Verify the statement that “every y in ¥ n W comes from one and only one x in
A (Dy—by describing, for a given y, how to go back to equation (5) and find x.

What happens to the weighted average X, = (wib, + w3b,)/(w? 4+ w3) if the first
weight w, approaches zero? The measurement b, is totally unreliable.

From m independent measurements b,,..., b, of your pulse rate, weighted by
Wi, ..., W,, what is the weighted average that replaces (6)? It is the best estimate
when the statistical variances are o7 = 1/w?.

W ={[§ ?]find the W-inner product of x = (2, 3)and y = (1, 1) and the W-length
of x. What line of vectors is W-perpendicular to y?

Find the weighted least squares solution X, to Ax = b:

1 0 0 2 00
A=|1 1 b=|1 W=10 1 0|
1 2 1 0 0 1

Check that the projection AXy is still perpendicular (in the W-inner product!) to
the error b — Axy,.

(a) Suppose you guess your professor’s age, making errors ¢ = —2, —1, 5 with
probabilities 3, 1, 4. Check that the expected error F(e) is zero and find the variance
E(e?).

(b) If the professor guesses too (or tries to remember), making errors — 1, 0, 1 with
probabilities §, §, §, what weights w, and w, give the reliability of your guess and
the professor’s guess?

Suppose p rows and g columns, taken together, contain all the nonzero entries of A.
Show that the rank is not greater than p + g. How large does a square block of
zeros have to be, in a corner of a 9 by 9 matrix, to guarantee that the matrix is
singular?
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3.1

3.2

33

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.1

3.12

3.13

3.14

3.15

3.16

3.18

3.19

3.20

REVIEW EXERCISES: Chapter 3

Find the length of @ = (2, —2, 1) and write down two independent vectors that are
perpendicular to a.

Find all vectors that are perpendicular to (1, 3, 1) and (2, 7, 2), by making those the
rows of A and solving Ax = 0.

What is the angle between a = (2, —2, 1) and b = (1, 2, 2)?

What is the projection p of b = (1, 2,2) onto a = (2, —2, 1)?

Find the cosine of the angle between the vectors (3, 4) and (4, 3).

Where is the projection of b = (1, 1, 1) onto the plane spanned by (1, 0, 0)and (1, 1, 0)?

The system Ax = b has a solution if and only if b is orthogonal to which of the four
fundamental subspaces?

Which straight line gives the best fit to the following data: b =0 at t =0, h = 0 at
t=1Lb=12att=3?

Construct the projection matrix P onto the space spanned by (1, 1, 1) and (0, 1, 3).

Which constant function is closest to y = x* in the least squares sense over the in-
terval 0 < x < 1?

If Q is orthogonal, is the same true of 037
Find all 3 by 3 orthogonal matrices whose entries are zeros and ones.

What multiple of ¢, should be subtracted from a,, to make the result orthogonal to
a,? Sketch a figure.

Factor

cos 0 sin @
sin 6 0

into QR, recognizing that the first column is already a unit vector.
If every entry in an orthogonal matrix is either + or —1, how big is the matrix?

Suppose the vectors q,,...,q, are orthonormal. If b=c,q, + - + ¢,q,, give a
formula for the first coefficient ¢, in terms of b and the ¢'s.

What words describe the equation 474X = A"b and the vector p = Ax = Pb and the
matrix P = A(ATA)"'4T?

If the orthonormal vectors g, = (3,3, —}) and g, = (—1, 3, %) are the columns of Q,
what are the matrices Q"Q and QQ"? Show that QQT is a projection matrix (onto the
plane of ¢, and g,).

If vy, ..., v, is an orthonormal basis for R”, show that v,0f + -+ + yuf = L.

True or false: 1f the vectors x and y are orthogonal, and P is a projection, then Px
and Py are orthogonal.
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3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.33

Try to fit a line b = C + Dt through the points h=0,t =2, and b =6, t = 2, and
show that the normal equations break down. Sketch all the optimal lines, minimizing
the sum of squares of the two errors.

What point on the plane x + y — z = 0 is closest to b = (2, 1, 0)?
Find an orthonormal basis for R? starting with the vector (1, 1, —1).

The new X-ray machines (CT scanners) examine the patient from different directions
and produce a matrix giving the densities of bone and tissue at each point. Mathe-
matically, the problem is to recover a matrix from its projections. In the 2 by 2 case,
can you recover the matrix A if you know the sum along each row and down each
column?

Can you recover a 3 by 3 matrix if you know its row sums and column sums, and also
the sums down the main diagonal and the four other parallel diagonals?

Find an orthonormal basis for the plane x — y 4+ z = 0, and find the matrix P which
projects onto the plane. What is the nullspace of P?

Let A =3 1 —17 and let ¥ be the nullspace of A.

(a) Find a basis for V and a basis for V1.

(b) Write down an orthonormal basis for V', and find the projection matrix P,
which projects vectors in R> onto ¥,

(c) Find the projection matrix P, which projects vectors in R? onto V.

Use Gram-Schmidt to construct an orthonormal pair q,, g, from a, = (4, 5, 2, 2) and
a, =(1,2,0,0). Express a, and a, as combinations of ¢, and q, and write down the
triangular R in 4 = QR.

For any 4, b, x, and y, show that

(i) if Ax=band y"4 =0, then y"b = O;
(i) if Ax =0 and A%y = b, then x"h = 0.

What theorem does this prove about the fundamental subspaces?

Is there a matrix whose row space contains (1, 1, 0) and whose nullspace contains
(0,1, 1y?

The distance from a plane a’x = ¢ in m-dimensional space to the origin is |c|/{|a].
How far is the plane x; + x, — x3 — x, = 8 from the origin and what point on it is
nearest?

In the parallelogram with corners at 0, v, w, and v + w, show that the sum of the
lengths squared of the four sides equals the sum of the lengths squared of the two
diagonals.

(a) Find an orthonormal basis for the column space of

6
6
8 |
0
8
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3.34

3.35

3.36

3.37

3.38

3.39

3.40

(b) Write A as QR, where Q has orthonormal columns and R is upper triangular.
(c) Find the least squares solution to Ax = b, if b=(—3,7,1,0, 4).

Find the intersection V n W and the sum V + W if
(a) V = nullspace of a matrix A and W = row space of A.
(b) V = symmetric 3 by 3 matrices and W = upper triangular 3 by 3 matrices.

With weighting matrix W =[? }], what is the W-inner product of (1, 0) with (0, 1)?

To solve a rectangular system Ax = b we replace A~ ' (which doesn’t exist) by
(ATA)” ! AT (which exists if 4 has independent columns). Show that this is a left-inverse
of A but not a right-inverse. On the left of A it gives the identity; on the right it gives
the projection P.

Find the straight line C + Dt that best fits the measurements b = 0, 1, 2, 5 at times
t=0,1,3,4.

Find the curve y = C + D2' which gives the best least squares fit to the measurements
y=6att=0,y=4atr=1,y=0att =2 Write down the three equations that are
solved if the curve goes through the three points, and find the best C and D.

If the columns of A4 are orthogonal to each other, what can you say about the form
of ATA? If the columns are orthonormal, what can you say then?

Under what condition on the columns of 4 (which may be rectangular) is 474
invertible?




DETERMINANTS

INTRODUCTION B 4.1

It is hard to know what to say about determinants. Seventy years ago they seemed
more interesting and more important than the matrices they came from, and Muir’s
History of Determinants filled four volumes. Mathematics keeps changing direction,
however, and determinants are now far from the center of linear algebra. After all,
a single number can tell only so much about a matrix. Still it is amazing how
much this number can do.

One viewpoint is this: The determinant provides an explicit “formula,” a concise
and definite expression in closed form, for quantities such as 4~ !. This formula will
not change the way we compute A™*, or A~ 'b; even the determinant itself is found
by elimination. In fact, elimination can be regarded as the most efficient way to
substitute the entries of an n by n matrix into the formula. What the formula does
is to show how A4~ ! depends on the n? entries of the matrix, and how it varies when
those entries vary.

We can list some of the main uses of determinants:

(1) Tt gives a test for invertibility. If the determinant of A is zero, then A is
singular. If det A +# 0, then A is invertible. The most important application, and
the reason this chapter is essential to the book, is to the family of matrices 4 — 1.
The parameter 4 is subtracted all along the main diagonal, and the problem is to
find those values of 4 (the eigenvalues) for which 4 — A[ is singular. The test is to
see if the determinant of this matrix is zero. We shall see that det(4 — AI) is a
polynomial of degree n in 4, and therefore, counting multiplicities, it has exactly
n roots. The matrix has n eigenvalues. This is a fact which follows from the deter-
minant formula, and not from a computer.
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(a3, a3, a33)

@y, apy. ay3)
» 42> o3
(@, ap.ap;)

X

Fig. 4.1. The parallelepiped formed from the rows of A.

(2) The determinant of A equals the volume of a parallelepiped P in n-
dimensional space, provided the edges of P come from the rows of 4 (Fig. 4.1.)}
This volume may seem an odd thing to want to compute. In practice, P is often
the infinitesimal volume element in a multiple integral. The simplest element is a
little cube dV = dx dy dz, as in {[{ f(x, y, z) dV. Suppose, in order to simplify the
integral, we decide to change to cylindrical coordinates r, 6, z. The relation is
x=rcos B, y=rsinf, z =z Then, just as we have to remember that a small in-
tegral dx is stretched to (dx/du)du—when u replaces x in a single integral—so
the volume element dV = dx dy dz is stretched in three dimensions. It becomes
J dr d0 dz, where the Jacobian determinant is the three-dimensional analogue of
the stretching factor dx/du:

Ox/0r 0x/00 0x/0z cos) —rsind 0
J =|(dy/or 0y/00 0Oy/éz|=|sin0 rcos 0 0.
dz/or 0z/60 0z/oz 0 0 1

The value of this determinant is J = r. It is the r in the cylindrical volume element
r dr dO dz; this element is our little parallelepiped. (It looks curved if we try to draw
it, but probably it gets straighter as the edges become infinitesimal.)

(3) The determinant gives formulas for the pivots. Theoretically, we could use
it to predict when a pivot entry will be zero, and a row exchange will be necessary.
More importantly, from the formula determinant = + (product of the pivots), it fol-
lows that regardless of the order of elimination, the product of the pivots remains
the same apart from sign. Years ago, this led to the belief that it was useless to escape

1 Or the edges could come from the columns of A, giving an entirely different paraliel-
epiped with the same volume.
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a very small pivot by exchanging rows, since eventually the small pivot would catch
up with us. But what usually happens in practice, if an abnormally small pivot is
not avoided, is that it is very soon followed by an abnormally large one. This brings
the product back to normal but it leaves the numerical solution in ruins.

(4) The determinant measures the dependence of A~ b on each element of b. If
one parameter is changed in an experiment, or one observation is corrected, the
“influence coefficient” on x = A~ 'b is a ratio of determinants.

There is one more problem about the determinant. It is difficult not only to
decide on its importance, and its proper place in the theory of linear algebra, but
also to decide on its definition. Obviously, det A will not be some extremely simple
function of n? variables; otherwise A~ ! would be much easier to find than it actually
is. The explicit formula given in Section 4.3 will require a good deal of explanation,
and its connection with the inverse is far from evident.

The simple things about the determinant are not the explicit formulas, but the
properties it possesses. This suggests the natural place to begin. The determinant
can be (and will be) defined by its three most basic properties. The problem is then
to show how, by systematically using these properties, the determinant can be
computed. This will bring us back to Gaussian elimination, and to the product of
the pivots. And the more difficult theoretical problem is to show that whatever
the order in which the properties are used, the result is always the same—the
defining properties are self-consistent.

The next section lists the defining properties of the determinant, and their
most important consequences. Then Section 4.3 gives several formulas for the
determinant—one is an explicit formula with n! terms, another is a formula “by
induction,” and the third is the one involving pivots (from which the determinant
of a large matrix is actually computed). In Section 4.4 the determinant is applied
tofind A~ ! and then to solve for x = A~ 'h; the latter is Cramer’s rule. And finally, in
an optional remark on permutations, we prove that the properties are self-
consistent—so there is no ambiguity in the definition.
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4.2 W THE PROPERTIES OF THE DETERMINANT

This will be a pretty long list. Fortunately each rule is easy to understand, and
even easier to illustrate, for a 2 by 2 example. Therefore we shall verify that the
familiar definition in the 2 by 2 case,

a b
det =
possesses every property in the list. (Notice the two accepted notations for the de-
terminant of A: cither det A4 or |4]|.) From the fourth property on, we also indicate
how it can be deduced from the previous ones; then every property is a con-

sequence of the first three. We emphasize that the rules apply to square matrices
of any size, and the first rule is tricky but crucial.

a b
c d

lzad—bc,

1. The determinant depends linearly on the first row. Suppose three matrices 4, B, C
are identical from the second row onward—and the first row of 4 is a combina-
tion of the first rows of B and C. Then the rule says: det A is the same combination
of det B and det C.

Linear combinations involve two operations—adding vectors and multiplying
by scalars. Therefore this rule can be split into two parts:

a+a b+b| la b a b
¢ d | |c d d
ta tb_ta b
c dl e d

Notice that the first part is not the false statement det(B + C) = det B + det C.
You cannot add all the rows: only one row is aliowed to change. Both sides give
the answer ad + a'd — be — b'c.

Similarly the second part is not the false statement det(tA) = t det A. The matrix
tA has a factor ¢ in every row (and eventually each one multiplies the determinant
by ). It is like the volume of a box, when all sides are stretched by 4. In n dimensions
the volume and determinant go up by 4" If only the first side is stretched, the
volume and determinant go up by 4; that is rule 1.

The next rule shows that there is nothing special about the first row.

2. The determinant changes sign when two rows are exchanged.

¢ d
a b

a b
=ch—ad=— .
| cb—ad =~ d\

It follows that the determinant depends linearly on each row separately. 1f the
factor 4 multiplies row 2, we can exchange with row 1 (changing the sign of the
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determinant), then factor out the 4 (by rule 1) and exchange rows again (changing
the sign back to where it started). So rule 1 applies to every row.

Rule 2 is important in itself; it leads to the determinant of a permutation matrix.
By a series of row exchanges, we can turn the permutation matrix into the identity
matrix. Each row exchange switches the sign of the determinant—and then we
need the determinant of the identity matrix. That is the simplest rule of all.

3. The determinant of the identity matrix is 1.

- 1 0 0
'0 1’:l and 01 0l=1 and ...
0 0 1

Rules 1 and 2 left a scaling constant undecided; rule 3 decides it. There was a “one-
dimensional space” of possible determinants, and this rule picks out one of them—
by normalizing det I to 1.

The determinant is now settled, but that fact is not at all obvious. Therefore
we gradually use these rules to find the determinant of any matrix.

4. Iftwo rows of A are equal, then det 4 = 0.

a b
a b

’:ah—bazo.

This follows from rule 2, since if the equal rows are exchanged, the determinant
is supposed to change sign. But it also has to stay the same, because the matrix
stays the same. The only number which can do that is zero, so det 4 = 0. (The
reasoning fails if 1 = — 1, which is the case in Boolean algebra. Then rule 4 should
replace rule 2 as one of the defining properties.)

5. The elementary operation of subtracting a multiple of one row from another row
leaves the determinant unchanged.

a—lc b—ld_
c d |

a b
¢ d

Rule 1 would say that there is further term —1|¢ 4|, but that term is zero by
rule 4. The usual elimination steps do not affect the determinant.

6. If A has a zero row, then det 4 = 0.

0 0
¢ d

-0
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One proof is to add some other row to the zero row. The determinant is unchanged,
by rule 5, and because the matrix will now have two identical rows, det A = 0 by
rule 4.

7. If A is triangular, then det A is the product a, a5, " " - a,, of the entries on the
main diagonal. In particular, if A has 1’s along the diagonal, det A = 1.

a b
0 d

a 0
¢ d

‘:ad,

‘=ad.

Proof Suppose the diagonal entries are nonzero. Then elimination steps can re-
move all the off-diagonal entries, without changing the determinant (by rule 5). If
A is lower triangular the steps are in the usual order, starting with the first pivot.
If A is upper triangular, then the last column is cleared out first—using multiples
of a,, from the bottom corner. Either way we reach the diagonal matrix

dyy
D=
a

nn

To find its determinant we patiently apply rule 1. Factoring out a,, and then
a,, and finally a,, leaves the identity matrix. Finally we have a use for rule 3!

detD=a,,a,, - a,detl =a,a,, " a

an-

In contrast, if a diagonal entry is zero then elimination will produce a zero row.
By rule 5 these elimination steps do not change the determinant. By rule 6 the
zero row means a zero determinant. Rule 7 is proved.

When a triangular matrix is singular (because of a zero on the main diagonal)
its determinant is zero. The next rule shows that this is the determinant of all

singular matrices.

8. If A is singular, then det A = 0. If A is invertible, then det A # 0.

b
[a d:| is singular if and only if ad — bc = 0.
¢

If A is singular, elimination leads to a matrix U with a zero row. By rules 5 and
6, det A =det U = 0. If A4 is not singular, elimination leads to an upper triangular
U with nonzeros along the main diagonal. These are the pivots d,,...,d,, and
by rule 7, det A = +det U = +d,d,---d,. Here we have our first formula for
the determinant. The plus or minus sign depends on whether the number of row
exchanges is even or odd.

The next property is the most surprising.
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9. For any two n by n matrices, the determinant of the product AB is the product
of the determinants: det AB = (det A)(det B).

ef_
g hl

a b
c d

ae + bg o + bh
ce +dg cof +dh|

A particular case of this rule gives the determinant of 4™ as 1/det A:
i

(det A)(det A" ") =det A4 ' =detI =1, sodet A ! = :
det A4

‘ In the 2 by 2 case the product rule is the same as
(ad — be)(eh — fg) = (ae + bg)(cf + dh) — (af + bh)(ce + dg).

In the n by n case we suggest two possible proofs—since this is the least obvious
rule. Both proofs assume that 4 and B are nonsingular; otherwise 4B is singular,

and the equation det 4B = (det A)(det B) is easily verified. By rule 8, it becomes
0=0.

(i) We consider the ratio d(A) = det AB/det B, and prove that it has proper-
‘ ties 1-3. Then, because these properties define the determinant, d(A4) must equal
! det A. For example, if A is the identity, then certainly d(I) = det B/det B = 1; thus
| rule 3 is satisfied by d(A). If two rows of A are exchanged, so are the same two rows
of AB, and the sign of d changes as required by rule 2. And a linear combination
appearing in the first row of 4 gives the same linear combination in the first row
| of AB. Therefore rule 1 for the determinant of AB, divided by the fixed quantity
‘ det B, leads to rule 1 for the ratio d(A). Thus d(A) coincides with the determinant.

That means det AB/det B = det A, which is our product formula.

(i) This second proof is less elegant. It starts by supposing that 4 is a diagonal
matrix D. Then det DB = (det D)(det B) follows from rule 1, by factoring out each
diagonal element d; from its row. For a general matrix A, we reduce to D by
“Gauss-Jordan” elimination steps—from 4 to U by the usual sequence, and then
from U to D by using each pivot to produce zeros above it. The determinant does
not change, except for a sign reversal when rows are exchanged. The same steps
reduce AB to DB, with precisely the same effect on the determinant. But for DB

| it is already confirmed that rule 9 is correct.

10. The transpose of A has the same determinant as A itself- det AT = det A.

a ¢

b d

ab_
c d

Again the singular case is separate; 4 is singular if and only if AT is singular, and
we have 0 = 0. If 4 is not singular, then it allows the factorization PA = L.DU, and
we apply the previous rule 9 for the determinant of a product:

det P det A = det L det D det U, (1




218 4 Determinants

Transposing PA = LDU gives A" PT = UT D' LT, and again by rule 9,
det A" det PT = det UT det D" det L. 2)

This is simpler than it looks, because L, U, L', and U7 are triangular with unit
diagonal. By rule 7, their determinants all equal one. Also, any diagonal matrix is
the same as its transpose: D = D™. This leaves only the permutation matrices.

Certainly the determinant of P is either | or —1, because it comes from the
identity matrix by a sequence of row exchanges. Observe also that PPT = |.
(Multiplying P and P", the 1 in the first row of P matches the 1 in the first column
of PT, and misses the 1's in the other columns.) Therefore det P det PT =det [ = 1,
and P and P" must have the same determinant; both equal 1 or both equal —1.

We conclude that the products (1) and (2) are the same, and det 4 = det AT. This
fact practically doubles our list of properties, because every rule which applied to
the rows can now be applied to the columns: The determinant changes sign when
two columns are exchanged, two equal columns (or a column of zeros) produce a
zero determinant, and the determinant depends linearly on each individual column.
The proof is just to transpose the matrix and work with the rows.

I think it is time to stop and call the list complete. It only remains to find a
definite formula for the determinant, and to put that formula to use.

EXERCISES

421 How are det(24), det(— A), and det(4?) related to det A, when A is n by n?

422 Show—bycarrying outeach step ona 2 by 2 example—that an exchange of rows i and
J can be produced by adding row i to row j, then subtracting the new row j from row
i, then adding the new row i to row j, and finally multiplying row i by —1. Which
rules could we then use to deduce rule 2?

423 By applying row operations to produce an upper triangular U, compute

1 2 =2 0 > 1 0 0
) 3 4 12 -1 o

det ,
o T S S T T
0o 2 5 3 0 0 -1 2

Exchange rows 3 and 4 of the second matrix and recompute the pivots and
determinant.

Note Some readers will already know a formula for 3 by 3 determinants. It has
six terms (equation (2) of the next section), three going parallel to the main diagonal
and three others going the opposite way with minus signs. It is natural to hope for
a similar formula for 4 by 4 determinants. There is a formula, but it contains 4! = 24
terms (not just eight). You cannot even be sure that a minus sign goes with the
opposite diagonal, as the next exercises show.




4.2 The Properties of the Determinant 219

424 Explain why

i 0 0 0 1 0100
‘ 0010 0010
det =+1 d det =—1
“lo 1007+ @ “lo o o0 1
1 0 00 1 0 00
l
X 425 How many exchanges does it take to get (row n, row n — 1,..., row 1) into the
! normal order (row 1,...,row n— 1, row n)? When is det P =1 and when is
‘ det P = —1, for the n by n permutation with 1’s on the opposite diagonal? The
! previous exercise had n = 4.
4.26 Find the determinants of:
(a) a rank one matrix
1
A=[4|[2 -1 2}
2
} (b) the upper triangular matrix
|
4 4 8 8
01 2 2
U= ;
0 0 2 6
| 00 0 2

—
TEE

-

the lower triangular matrix U™;
the inverse matrix U~ ';
the “reverse-triangular” matrix that results from row exchanges,

~ O O ©

0
0
1
4

NN O
=2 S e N O]

427 Show how rule 6 (det = 0 if a row is zero) comes directly from rules 1 and 2.

428 Suppose you do two row operations at once, going from

! a b a— me b—md}
| to .
| ¢ d c—la d-—1b

|

Find the determinant of the new matrix, by rule 1 or by direct calculation (and
‘ simplification).
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429

4.2.10

4.2.11

4.2.12

4.2.13

4.2.14

4.2.15

If Q is an orthogonal matrix, so that QTQ = I, prove that det Q equals +1 or —1.
What kind of parallelepiped is formed from the rows (or columns) of an orthogonal
matrix Q?

Use row operations to verify that the 3 by 3 “Vandermonde determinant” is

1 a da*
det|1 b b} =(b—a)c— a)c—b).
1 c?

The 4 by 4 case is among the review exercises.

(a) A skew-symmetric matrix satisfies K' = —K, as in
0 a b
K=|—-a 0 c|.
b —c 0

In the 3 by 3 case why is det(— K) = (—1)? det K? On the other hand det KT =
det K (always). Deduce that —det K = det K and the determinant must be zero.
(b) Write down a 4 by 4 skew-symmetric matrix with det K not zero.

True or false, with reason if true and counterexample if false:

(a) If Aand B are identical except in the upper left corner, where b;; = 2a,,, then
det B = 2 det A.

(b) The determinant is the product of the pivots.

(c) If A is invertible and B is singular, then 4 + B is invertible.

(d) Tf A is invertible and B is singular, then AB is singular.

If every row of A adds to zero prove that det 4 = 0. If every row adds to | prove
that det(4 — I) = 0. Show by example that this does not imply det 4 = 1.

Find these 4 by 4 determinants by Gaussian elimination:

1 12 13 14 1 ¢ 2

21 22 23 24 t 1ot t?
det and det

31 32 33 34 2t 1t

41 42 43 44 o 1

Find the determinants of

L[4
11 30

-1

For which values of 4 is A — AI a singular matrix?

i3 2 o [AE 2
10| -1 a4y MEV L s
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4.216 Evaluate det 4 by reducing the matrix to triangular form (rules 5 and 7).

4.2.17

1 1 3 1 1 3 1 1 3
A=1]0 4 6], B=|0 4 6j, C=(0 4 6]|.
1 5 8 0 0 1 1 59

What are the determinants of B, C, AB, A4, and C™?

Suppose that CD = —DC, and find the flaw in the following argument: Taking
determinants gives (det C)(det D) = —(det D)(det C), so either C or D must have
zero determinant. Thus CD = — DC is only possible if C or D is singular.
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4.3 @ FORMULAS FOR THE DETERMINANT
The first formula has already appeared:

4A If A is nonsingular, then 4 = P~ 'LDU, and

det A =det P ! det L det D det U
= +(product of the pivots). (1)

The sign +1 is the determinant of P~ ! (or of P), and depends on whether the
number of row exchanges is even or odd. The triangular factors have det L =
detl/ - landdeth —d, =« g

ne

In the 2 by 2 case, the standard LDU factorization is

a b] [t 0]fa  0© I bla
l:c‘ d:l_ c/a IJ I:O (ad—bc)/a:| |:0 1]'

The product of the pivots is ad — be. If the first step is a row exchange, then

PA_cd_lOC 0 1 djc
_[a b]*l:a/c 1} 0 (cb—da)/c]l:O I:I'

The product of the pivots is now —det A. .
EXAMPLE The finite difference matrix in Section 1.7 had the A = LDU
factorization
2 —1 2
—1 2 -1 3/2
—1 2 . = L 4/3 U.
—1 2 (n+ 1)/n

Its determinant is the product of its pivots:

ot (12 e

This is the way determinants are calculated, except for very special matrices. The
code in Appendix C finds det 4 from the pivots. In fact, the pivots are the result
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of condensing the information that was originally spread over all n? entries of the
matrix. From a theoretical point of view, however, concentrating all information
into the pivots has a disadvantage: It is impossible to figure out how a change in
one entry would affect the determinant. Therefore we now propose to find an
explicit expression for the determinant in terms of the n? entries.

For n = 2, we will be proving that ad — bc is correct. For n = 3, the correspond-
ing formula is again pretty well known:

ayp dyz dg, k

_ tayassazy + a,a5303, + ag36,,4;3, 2)

dyy  dyy dp3 = (
—dy110a3037 — Ayp0p1A33 — dy3dy,0s;.

d3p 43y dsz;

Our goal is to derive these formulas directly from the defining properties 1-3 of
the previous section. If we can handle n = 2 and n = 3 in a sufficiently organized
way, you will see the pattern for all matrices.

To start, each row can be broken down into vectors that go in the coordinate
directions:

la b]=[a 0]+[0 5] and [c d]=[c 0]+[0 4]

Then we apply the key property of linearity in each row separately-—first in row
1 and then in row 2:

a b _foof [ob

¢ d e d ¢ d
e o fa o o b fob .
“le oo d T le ol Tl 4 3)

For an n by n matrix, every row will be split into n coordinate directions. This
expansion has n" terms: In our case 2° = 4. Fortunately, most of them (like the
first and last terms above) will be automatically zero. Whenever two rows are in
the same coordinate direction, one will be a muitiple of the other, and

0 b
0 d

-0

There is a column of zeros, and a zero determinant. Therefore, we pay attention
only when the rows point in different directions; the nonzero terms have to come
in different columns. Suppose the first row has a nonzero entry in column o, the
second row is nonzero in column f, and finally the nth row is nonzero in column
v. The column numbers «, f,...,v are all different; they are a reordering, or
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permutation, of the numbers 1, 2,..., n. For the 3 by 3 case there are six terms:
dyp Gy Qg3 Ay ai; (%)
Ay Qyy Ap3) = ay + Ay3| + |z
d3; dzp dz3 as3 aszy ds,
Ayq a2 (%)
+ ay3| + |az, + az, . @
as; ds3 aszy

To repeat, the expansion could have 33 = 27 terms; all but these 3! = 6 are Zero,
because a column is repeated. In general, n! terms are left. (There are n choices for
the first column «, n — 1 remaining choices for f8, and finally only one choice for
the last column v—all but one column will be used by that time, when we “snake”
down the rows of the matrix). In other words, there are n! ways to permute the
numbers 1,2,...,n. We look at the sequence of column numbers to find the
associated permutations; the six terms in (4) come from the following columns:

(o, Byv) =1(1,2,3),(2,3,1),(3,1,2),(1, 3,2), (2, 1, 3), (3, 2, 1).

Those are the 3! = 6 permutations of (1, 2, 3); the first one is the identity.
The determinant of 4 is now reduced to six separate and much simpler deter-
minants. Factoring out the a;;, there is a term for every one of the six permutations:

1 1 1
det A = a,,a,5,0a;5 1 t ay,05303,

—

+ a,3a,1a3, |1

+ a,1a,5345, 1|+ ay,a,,a55 |1 + a,305,05, 1 . (5

Every term is a product of n = 3 entries a;;, with each row and column represented
once. In other words, there is a term corresponding to every path that goes down
through the matrix and uses each column once. If the columns are used in the order
(o, ..., v), then that term is the product a,, - - - a,, times the determinant of a per-
mutation matrix P,. The determinant of the whole matrix is the sum of these terms,
and that sum is the explicit formula we are after:

detd e a4, "a,)det P, 6)

For an n by n matrix, this sum is taken over all n! permutations ¢ = (a, . .., v) of
the numbers (1, . . ., n). The permutation gives the sequence of column numbers as
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we go down the rows of the matrix, and it also specifies the permutation matrix
P,: The I's appear in P, at the same places where the a’s appeared in A.

It remains to find the determinant of P,. Row exchanges transform it to the
identity matrix, and each exchange reverses the sign of the determinant:

det P, = +1 or —1 depending on whether the number of exchanges is even or odd.

1 .
w P, = 1 | has column sequence (o, 8, v) = (1, 3, 2);
| L1
|

~ .

P =1 has column sequence o = (3, 1, 2).
L 1
The first requires one exchange (the second and third rows), so that det P, = —1.

The second requires two exchanges to recover the identity (the first and second
rows, followed by the second and third), so that det P, = (—1)> = 1. These are
two of the six + signs that appear in (2).

Equation (6) is an explicit expression for the determinant, and it is easy enough
to check the 2 by 2 case: The 2! = 2 permutations are ¢ = (1, 2) and ¢ = (2, 1), and
therefore

1 0 0
det A = a, a,, det [O 1} + a,,a,, det [1 ] =d,,0,, — a1,4,, (or ad — bhc).

0

No one can claim that the explicit formula (6) is particularly simple. Nevertheless,
it is possible to see why it has properties 1-3. Property 3, the fact that det I = 1,
is of course the simplest; the products of the a;; will always be zero, except for the
special column sequence ¢ = (1, 2, . . ., n), in other words the identity permutation.
This term gives det I = 1. Property 2 will be checked in the next section, because
here we are most interested in property 1: The determinant should depend linearly

ontherowa,, a,,,...,a,, To see this dependence, look at the terms in formula
(6) involving a,,. They occur when the choice of the first column is « = 1, leaving
some permutation ¢’ = (f, . . ., v) of the remaining column numbers (2, . . ., n). We

collect all these terms together as a,,4,,, where the coeflicient of a,, is

Ayy =) (ay;" " ay,) det P, 7

o’

Similarly, the entry a,, is multiplied by some messy expression 4,,. Grouping all
the terms which start with the same a, ;, the formula (6) becomes

det A=a; A\ +a,A;, + -+ a,A,,. (8)

Thus det A depends linearly on the entries a,,. ..., a,, of the first row.
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EXAMPLE For a 3 by 3 matrix, this way of collecting terms gives
det A = a,4(a2,833 — G53035) + a15(a3303; — A31a33) + A13(a5,03, — ayya5,). (9)

The “cofdctors” A,,, A,,, A5 are written out in the three parentheses.

Expansion of det 4 in Cofactors

We want one more formula for the determinant. If this meant starting again from
scratch, it would be too much. But the formula is already discovered—it is (8), and
the only point is to identify the cofactors A,;.

We know that this number A,; depends on rows 2, ..., n; row 1 is already ac-
counted for by the factor a,;. Furthermore, a,; also accounts for the jth column,
so its cofactor A,; must depend entirely on the other columns. No row or column
can be used twice in the same term. What we are really doing is splitting the deter-
minant into the following sum:

dyp Ay Q4q3 ayq a, (!
A1 Q3 Ay = Ayy  Qy3| + Ay Az3| + a1 Ay,
dzy A3y dz3 dzp d3j asy ds3 dz; dsp

For a determinant of order n, this splitting gives n smaller determinants (called
minors) of order n — 1; you can see the 2 by 2 submatrices that appear on the right-
hand side. The submatrix M; is formed by throwing away row 1 and column j.
Each term on the right is a product of a,; and the determinant of M,;,—with
the correct plus or minus sign. These signs alternate as we go along the row, and
the cofactors are finally identified as

Ajj=(—1)"" det M.
For example, the second cofactor 4, is a,3a3, — a,,a55, which is det M, times
—1. This same technique works on square matrices of any size. A close look at
equation (7) confirms that A, is the determinant of the lower right corner M.
There is a similar expansion on any other row, say row i, which could be proved
by exchanging row i with row 1:
4B The determinant of A is a combination of row i and the cofactors of row i:
det A . a“Ail o+ a,'zAiz 4 b ainAin’ (10)
The cofactor A;; is the determinant of M;; with the correct sign:
A= (=1y* det M, (11)

M;; is formed by deleting row i and column j of 4.

These formulas express det 4 as a combination of determinants of order n — 1.
Therefore we could have defined the determinant by induction on n. For 1 by 1
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matrices, we would set det A = a;,;~—and then use (10) to define successively the
determinants of 2 by 2 matrices, 3 by 3 matrices, and so on indefinitely. We pre-
ferred to define the determinant by its properties, which are much simpler to
explain, and then to deduce the explicit formula (6) and the cofactor formula (10)
from these properties.

Tkere is one more consequence of the fact that det 4 = det AT This property
allows us to expand in cofactors of a column instead of a row. Down column s

det A=ay;A;;+ ay;A,;+ - + a,,A (12)

njinj

The proof is simply to expand det AT in the cofactors of its Jjth row, which is the
jth column of 4.

EXAMPLE Consider the 4 by 4 finite difference matrix

2 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 —1 2

A, =

The cofactor method is most useful for a row with a lot of zeros. Here row 1 pro-
duces only two terms. The cofactor of a,, comes from erasing row 1 and column
1, which leaves a 3 by 3 matrix with the same pattern:

2 —1 0
Ay=|—-1 2 —1
0 —1 2

For a,, it is column 2 that gets removed, and we need

-1 -1 0 5 1
(—=1)'*"2det| 0 2 —1|= +det|: | 2}
0 -1 2

Notice how cofactors got used again at the last step! This time the good choice
was column [ (because it only had one nonzero—which was the — 1 that produced
the plus sign). Tt left us with the 2 by 2 determinant of the same form: this is the
cofactor of the original entry a,, = — 1. Altogether row 1 has produced

det A, = 2(det A,) — det A4,.

The same idea applies to the 5 by 5 case, and 6 by 6, and n by n:
det A, = 2(det 4, ;) —det A4, _,. (13)
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Since we know det A; =2 and det 4, = 3, this recursion formula gives the de-
terminant of increasingly bigger matrices. At every step the determinant of A, is
n + 1, because that satisfies (13):

n+1=2n—m-—1).

The answer n + 1 agrees with the product of pivots at the start of this section.

4.3.1

433

4.3.4

4.3.5

EXERCISES
For the matrix
01 00
1 010
=10 1 0 1
0010

find the only nonzero term to appear in formula (6)—the only way of choosing four
entries which come from different rows and different columns, without choosing
any zeros. By deciding whether this permutation is even or odd, compute det A4.

Carry out the expansion in cofactors for the first row of the preceding matrix A,
and reduce det 4 to a 3 by 3 determinant. Do the same for that determinant (still
watching the sign (—1)'"/) and again for the resulting 2 by 2 determinant. Finally
compute det A.

True or false: (1) The determinant of S™!AS equals the determinant of A4.
(2) If det A = 0 then at least one of the cofactors must be zero.
(3) A matrix whose entries are 0’s and 1’s has determinant 1, 0, or —1.

(a) Find the LU factorization and the pivots and the determinant of the 4 by 4
matrix whose entries are a;; = smaller of i and j. (Write out the matrix.)

(b) Find the determinant if a;; = smaller of n; and n;, where n; =2, n, = 6,n; = 8,
n, = 10. Can you give a general rule for any n; < n, < ny < n,?

Let D, be the determinant of the 1, 1, —1 tridiagonal matrix (n by »)

By expanding in cofactors along row | show that D, = D,_, + D,_,. This yields
the Fibonacci sequence 1, 2, 3, 5, 8, 13, ... for the determinants.
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4.3.6

4.3.7

4.3.8

4.3.9

4.3.10

Suppose A, is the n by n tridiagonal matrix with 1's everywhere on the three
diagonals:

- 110
A =[1], A2=[1 J, A, =11 1],
0 1 1

Let D, be the determinant of 4,; we want to find it.

(a) Expand in cofactors along the first row of A, to show that D, = D,_, — D, _,.
(b) Starting from D, = 1 and D, =0 find D3, Dy, ..., Ds. By noticing how these
numbers cycle around (with what period?) find D, 5.

77 7

7

0
{(a) Evaluate by cofactors of row I: 5 1
1

el es R O]

1
5|
0 2

(b) Check by subtracting column 1 from the other columns and recomputing.

Explain why a 5 by 5 matrix with a 3 by 3 zero submatrix is sure to be singular
(regardless of the 16 nonzeros marked by x’s):

the determinant of 4 = IS zero.

OO O X =
O OO xR o=
S OO K o=
X M =x = =
®o® Ox = x

With 4 by 4 matrices show that in general
A B A B
det [0 D:l =det Adet D but det |:C D] # det A det D — det B det C.

Here 4, B, C, D are 2 by 2; give an example to establish the inequality part.

Compute the determinant of

Ay =

_— — O
—_—_ O
—_ D = -
O\—-»—-—

either by using row operations to produce zeros or by expanding in cofactors of
the first row. Find also the determinants of the smaller matrices A; and A4,, with
the same pattern of zeros on the diagonal and ones elsewhere. Can you predict
det 4,7
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4.3.11

4.3.12

4.3.13

4.3.14

How many multiplications to find an n by n determinant from

(a) the explicit formula (6)?

(b) the cofactor formula (10)?

(c) the pivot formula (1)?

In (b) relate the count for n to the count for n — 1; in (c) remember elimination.

In a 5 by 5 matrix, does a + sign or — sign go with the product a,5a,,a;3a4,ds,
down the counterdiagonal? In other words, is ¢ = (5, 4, 3, 2, 1) even or odd?

Note: The checkerboard pattern of + signs for cofactors does not give the sign
of ¢! It would give a + sign for the 3 by 3 counterdiagonal a, ya,,a;,—which is
wrong. You must decide whether the permutation is even or odd.

If A is m by n and B is n by m, show that

det 0 4 =det AB. | Hint: Postmultiply b o
eth g o |=de . int: osmulpyyBI.

Do an example with m < n and an example with m > n. Why does the second
example have det AB = 0?

Suppose the matrix A is fixed, except that a,, varies from —oc to + oo, Give ex-
amples in which det A is always zero or never zero. Then show (from the cofactor
expansion (8)) that otherwise det A = 0 for exactly one value of a,,.




4.4 Applications of Determinants 231

APPLICATIONS OF DETERMINANTS W 4.4

This section follows through on the applications described in the introduction:
inverses, solution of Ax = b, volumes, and pivots. They are among the key com-
putations in linear algebra (done by elimination), and now we have formulas for
the answers.

1. The computation of A~ '. This starts with the determinant from the cofactors
along row i. Remember that each entry is multiplied by its cofactor:
det A= a,-lAil + -+ ainAin' (1)

We can create a matrix multiplication in which that equation gives the answer
along the main diagonal:

ayy Ay o Ay || Ag Ay o Ay
dyy Gy 7 Ay || A A o Ap
ny Ay a;m An Az, A;m
det A 0 0
o
0 0 - detd

Notice that the second matrix—the “cofactor matrix”—is transposed. We had to
put A,,, ..., A, into the first column and not the first row, so they would multiply
diy, - - -, dq, and give the diagonal entry det A. The other rows of 4 and columns
of their cofactors give the same answer, det A, on the diagonal. The critical question
is: Why do we get zeros everywhere off the diagonal? If we combine the entries from
row 1 with the cofactors associated with row 2, why is

a1 Ayy + aA45, + 0+ a Ay, =07 3)

The answer is: We are really computing the determinant of a new matrix B, which
is the same as A except in row 2. The first row of A is copied into the second row
of B. Therefore B has two equal rows, and det B = 0. Equation (3) is the expansion
of det B along row 2, where B has exactly the same cofactors as A (because the
second row is thrown away to find the cofactors, and only that row is different
from A). Thus the remarkable matrix multiplication (2) is correct.

That multiplication immediately gives 4 1. On the right side of (2) we have a
multiple of the identity, det A times I:

(A)(Acof) = (det A). 4
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Acor 18 the cofactor matrix, or “adjugate matrix,” that appears in equation (2).
Remember that the cofactor from deleting row i and column j of 4 goes into row
j and column i of the cofactor matrix. Dividing by the number det A (if it is not
zero!) gives the formula for 4~ 1

4C The entries of A~ ' are the cofactors of A, transposed as in (2), divided by the
determinant to give A;/det 4:
1

4 - Ao
det 4 cof (5)

If det A = O then A is not invertible.

b
EXAMPLE 1 The cofactors ofI:a (J are Ay, =d, A, = —c,A,; = —b,A,, = a
o

a b d —b ad — bc 0
(A)(Acof) = l:(, d:| I:_C a:l = I: 0 ad — b(’jl

Dividing by ad — bc, which is det A, this is A times 4~ !:

a BTN d —b ]
c d “ad—be| —c a:l' )

Notice again the transposing in A, on the right.

EXAMPLE 2 The inverse of

Acof =
detd

S = -
S O =
l
—

The minus signs enter because cofactors include (—1)'*/.
2. The solution of Ax = b. This second application is just multiplication of b by
the matrix 47! in (5):

1
=AY =——4A,.b.
* det 4
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This is simply the product of a matrix and a vector, divided by the number
det A, but there is a famous way in which to write the answer:

4D Cramer’s rule: The jth component of x = A~ b is

diy 4 b, a,

det B . ; .
X; = i A]ﬂ’ where B, =] : : ! bk @)
Uy O b, 4,

In B;, the vector b replaces the jth column of A.

Proof Expand det B; in cofactors of the jth column (which is b). Since the co-
factors ignore that column, the result is

det B.i = b1A1j+ bZAZj + -+ b, A

n‘tnj*

This is exactly the jth component in the matrix-vector product A4.b. Dividing
by det A, the result is the jth component of x.

Thus each component of x is a ratio of two determinants, a polynomial of degree
n divided by another polynomial of degree n. This fact might have been recognized
from Gaussian elimination, but it never was.

EXAMPLE The solution of

x;+3x,=0
2x, +4x, =6
is
‘0 3‘ ’1 0‘
- 2
*1= F i‘ -T3=% m-= ‘1 g‘ -25=3
2 4 2 4

The denominators are the same, always det 4, while the right sides 0 and 6 appear
in the first column of x; and the second column of x,. For 1000 equations there
would be 1001 determinants. To my dismay I found in an old book that this was
actually recommended (and elimination was thrown aside):

“To deal with a set involving the four variables u, v, w, z, we first have to elimi-
nate one of them in each of three pairs to derive three equations in three variables
and then proceed as for the three-fold left-hand set to derive values for two of
them. The reader who does so as an exercise will begin to realize how formidably
laborious the method of elimination becomes, when we have to deal with more
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than three variables. This consideration invites us to explore the possibility of a
speedier method” (which is Cramer’s rule!!).t

For special matrices, when Cramer’s rule can be carried through, it gives full
information about the solution.

3. The volume of a parallelepiped. The connection between the determinant and
the volume is not at all obvious, but suppose first that all angles are right angles—
the edges are mutually perpendicular, and we have a rectangular box. Then the
volume is just the product of the lengths of the edges: volume = 1,1, - - - L,

We want to obtain the same formula from the determinant. Recall that the
edges of the box were the rows of A. In our right-angled case, these rows are
mutually orthogonal, and so

row 1 r r 3 0
AAT = ° )=
w W
row n 1 n 0 12

The [; are the lengths of the rows (the edges), and the zeros off the diagonal come
because the rows are orthogonal. Taking determinants, and using rules 9 and 10,

BB -+ 17 = deyAA") = (det A)(det A™) = (det A)%

The square root of this equation is the required result: The determinant equals the
volume. The sign of det 4 will indicate whether the edges form a “right-handed” set
of coordinates, as in the usual x-y-z system, or a left-handed system like y-x-z.

If the region is not rectangular, then the volume is no longer the product of
the edge lengths. In the plane (Fig. 4.2), the volume of a parallelogram equals the
base I, times the height h. The vector pb of length & is the second row b = (as1, ay5),
minus its projection p onto the first row. The key point is this: By rule 5, det A
is unchanged if a multiple of the first row is subtracted from the second row. At
the same time, the volume is correct if we switch to a rectangle of base I, and
height h. We can return the problem to the rectangular case, where it is already
proved that volume = determinant.

In n dimensions, it takes longer to make each parallelepiped into a rectangular
box, but the idea is the same. Neither the volume nor the determinant will be
changed if, systematically for rows 2, 3, ..., n, we subtract from each row its pro-
jection onto the space spanned by the preceding rows—Ieaving a “height” vector
like pb which is perpendicular to the base. The result of this Gram-Schmidt process
is a set of mutually orthogonal rows—with the same determinant and the same

T This quotation is from Mathematics for the Millions by Lancelot Hogben (1937). If he
plans to use Cramer’s rule, I call it Mathematics for the Millionaire.
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y

Fig. 4.2. Volume of a parallelogram = det 4.

volume as the original set. Since volume = determinant in the rectangular case,
the same equality must have held for the original rows.

| This completes the link between volumes and determinants, but it is worth
coming back one more time to the simplest case. We know that

| 1 0 1 0
, det[o 1:|—1, de:t[C 1]—1.

These determinants give the volumes—or areas, since we are in two dimensions—
of the “parallelepipeds” drawn in Fig. 4.3. The first is the unit square, whose area
is certainly 1. The second is a parallelogram with unit base and unit height;
independent of the “shearing” produced by the coefficient ¢, its area is also equal
to 1.

4. A formula for the pivots. The last application is to the question of zero pivots;
we can finally discover when Gaussian elimination is possible without row ex-
changes. The key observation is that the first k pivots are completely determined
by the submatrix 4, in the upper left corner of A. The remaining rows and columns
of A have no effect on this corner of the problem.

row 2=(0, 1)

row 2= (¢, 1)

area=1

row | =(1,0) row | =(1,0)

Fig. 4.3. The areas of a square and of a paralielogram.
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EXAMPLE
a b e a b e
A=|c d f|—-|0 (ad—bc)a (af —ec)lal.
g h i g h i

Certainly the first pivot depended only on the first row and column; it was d, = a.
And the second pivot has become visible after a single elimination step; it is
(ad — bc)/a, and it depends only on the entries a, b, ¢, and d. The rest of A4 does
not enter until the third pivot. Actually it is not just the pivots, but the entire upper
left corners of L, D, and U, which are determined by the upper left corner of A:

1 a 1 b/a =
A=LDU =|c/a 1 (ad — bc)/a 1 x|
* % 1 * 1

What we see in the first two rows and columns is exactly the factorization of the
submatrix A, =[¢ 5] This is a general rule if there are no row exchanges:

4 If A is factored into LDU, then the upper left corners satisfy
4 -1LDU

For every k, the submatrix A4, is going through a Gaussian elimination of its own.

The proof is either just to see that this corner can be settled first, before even
looking at the eliminations elsewhere, or to use the laws for block multiplication
of matrices. These laws are the same as the ordinary element by element rule:
LDU = A becomes

Ly Of[Dy O||U, F| _ [LDU, L,D.F

B C||0 E||0 G| | BD,U, BDF + CEG|
As long as matrices are properly partitioned—the square or rectangular subma-
trices are the right sizes for multiplication—they can be multiplied this way in
blocks.t Comparing the last matrix with A, the corner L, D, U, coincides with A,

and 4E is correct.
The formulas for the pivots follow immediately by taking determinants:

det A, =det L, det D, det U, = det D, =d d, - d,. (8)

+ This is a very useful rule, even though we have not met it since Chapter 1.
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‘ The product of the first k pivots is the determinant of A,. This is the same rule for
A, that we know already for the whole matrix 4 = A,,. Since the determinant of
A, -, will be given similarly by d,d, - --d,_,, we can isolate the pivot d, as a
ratio of determinants:

|
| det A,  dydy---d,
' det A,_, dd, -d,_,

= dk' 9)

In our example above, the second pivot was exactly this ratio (ad — bc)/a. It is the
determinant of A4, divided by the determinant of 4,. (By convention det 4, = 1,
so that the first pivot is a/1 = a.) Multiplying together all the individual pivots,
we recover

_det 4, det 4, . detA, detA4,

did, +d. = ; -
i " det A, det A, detA,_, detA,

= det A.

From (9) we can finally read off the answer to our original question: The pivot
entries are all nonzero whenever the numbers det A, are all nonzero:

4F Gaussian elimination can be carried out on A, without row exchanges or a
permutation matrix, if and only if the leading submatrices 4,, 4,. ..., 4, are all
nonsingular.

That does it for determinants, except for the optional remark promised at the
beginning of the chapter. That remark concerns the self-consistency of the defining
properties 1-3. The key is property 2, the sign reversal on row exchanges, which
led to the determinant of a permutation matrix. This was the only questionable
point in the explicit formula (6): Is it true that, independent of the particular
sequence of row exchanges linking P, to the identity, the number of exchanges is
either always even or always odd? If so, we are justified in calling the permutation
“even” or “odd,” and its determinant is well defined by rule 2 as either +1 or —1.
Starting from the permutation (3,2, 1), a single exchange of 3 and 1 would
achieve the natural order (1, 2, 3). So would an exchange of 3 and 2, then 3 and 1,
and then 2 and 1. In both sequences, the number of exchanges is odd. The assertion
is that an even number of exchanges can never produce the natural order, beginning
with (3, 2, 1).
\ Here is a proof. Look at each pair of numbers in the permutation, and let N
} count the pairs in which the larger number comes first. Certainly N = 0 for the
|
|
|

natural order (1, 2, 3), the identity permutation; and N = 3 for the order (3, 2, 1),
since all the pairs (3, 2), (3, 1), and (2, 1) are wrong. The point is to show that the
permutation is odd or even according as N is odd or even. In other words, starting
with any permutation, every exchange will alter N by an odd number. Then to
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arrive at N = 0 (the natural order) takes a number of exchanges having the same
parity—evenness or oddness—as the initial N.

If the pair being exchanged lie next to one another, obviously N changes by
+ 1 or —1, both of which are odd numbers. Once it is observed that any exchange
can be achieved by an odd number of exchanges of neighbors, the proof is complete;
an odd number of odd numbers is odd. This observation is easy to confirm by an
example; to exchange the first and fourth entries below, which happen to be 2 and
3, we use five exchanges (an odd number) of neighbors:

(21,4,3) > (1,2,4,3) > (1,4,2,3) > (1,4,3,2) > (1,3,4,2) > (3, 1, 4, 2).

In general we need / — k exchanges of neighbors to move the entry in place & to
place . Then | — k — 1 exchanges move the one originally in place ! (and now
found in place I — 1) back down to place k. Since (I — k) + (I — k — 1) is odd, the
proof is complete. The determinant not only has ali the properties found earlier,
it even exists.

EXERCISES

4.41  Find the determinant and all nine cofactors of

[ S
“n O W

Then form the cofactor matrix whose i, j entry is the cofactor Aj;. Verify that A times
Agor 18 the identity matrix times the determinant. What is 4~ 17

442 From the formula 4, /det A for the inverse, explain why A4~ ! is upper triangular if
A is upper triangular (and invertible).

443 Use the cofactor matrix to invert

2 -1 0 111
A=]-1 2 -1 and B=|1 2 2f.
0 —1 2 1 23

444 From the formula A4./det A for the inverse, explain why 4! is symmetric if A4 is
symmetric (and invertible).

445 Find x, y, and z by Cramer’s rule:

ax +by=1
cx+dy=0

R )
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4.4.6

4.4.7

4438

4.4.9

4.4.10

(a) Find the determinant when a vector x replaces column j of the identity:

1 X4

if M= X; then detM =?

(b) If Ax = b show that AM is the matrix B; in equation (7); the right side b enters
column j.

(c) Derive Cramer’s rule by taking determinants in AM = B;.

Find the Jacobian determinant J for the change from rectangular coordinates x, y,
z to spherical coordinates r, 8, ¢: x = r cos 0 cos ¢, y = r sin 0 cos ¢, z = r sin ®.

(a) Draw the triangle whose vertices are 4 =(2,2), B=(—1,3), and C = 0, 0).
By regarding it as half of a parallelogram, explain why its area equals

2 2
area(ABC) = § det l: : z:l.

(b) Suppose the third vertex is C = (1, —4) instead of (0, 0). Justify the formula

x, oy, | 22 1
area(ABC)=4det | x, y, 1|=1Ldet|—1 3 1
Xy oy 1 1 —4 1

Hint: Subtracting the last row from each of the others leaves

2 2 1 1 6 0 |6
det | —1 3 1| =det|-2 7 0| = det |: 5 7}.
1 —4 1 1 —4 1

Sketch the vertices A" = (1, 6), B = (=2, 7), C’ = (0, 0) and their relation to 4, B, C.

Explain in terms of volumes why det 34 = 3" det A for an n by n matrix A.

Block elimination gives, if the pivot block A is invertible,

I ol[4 B] [4 B
—CcA' I1l{c pl7lo p—ca B

The matrix D — CA 'B is called a Schur complement. Show that its de-
terminant times det A equals the determinant of the original block matrix on the
left. If AC = CA show that this becomes det(AD — CB).
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4.4.11

4.4.12

4.4.13

4.4.14

4.4.15

4.4.16

4.4.17

What rules for the product 4B come from block multiplication with long thin
blocks, which are columns b and ¢ and rows #?

AB = A by b, and AB=|c, ¢,
Predict in advance, and confirm by elimination, the pivot entries of
21 2 2 1 2
A=(4 5 0 and B=1[4 5 3|
2 70 270
Find all the odd permutations of the numbers {1, 2,3, 4}. These are the permuta-

tions coming from an odd number of exchanges and leading to det P, = — 1.

Suppose the permutation ¢ takes (1, 2, 3, 4, S)to(5,4,1,2,3).
{a) What does o2 do to (1, 2, 3, 4, 5)?
(b) What does ¢~ ! do to (1, 2, 3, 4, 5)?

If ¢ is an odd permutation, explain why 62 is even but ¢~ ! is odd. Give an example
with n = 3.

Prove that if you keep multiplying 4 by the same permutation matrix P, the first
row eventually comes back to its original place.

If Ais a5 by S matrix with all |a;;| < 1, then det A <?. (I do not know the best
bound, but volumes or formula (6) or pivots should give some upper bound on the
determinant.)
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Where can you put zeros into a 4 by 4 matrix, using as few as possible but enough
to guarantee that the determinant is zero?

Where can you put zeros and ones into a 4 by 4 matrix, using as few as possible but
enough to guarantee that the determinant is one?

Find the determinants of

2 -1 0 -1
—1 2 -1 0
0 -1 2 -1
—1 0 —1 2

1
1
) and
1

[F TN
—_ L —
—_ o fO e

If B=M~" AM, why is det B = det A? Show also that det 4" 'B — [.

Give a counterexample to det(4 + B) = det A + det B. For what size matrices is that
statement true?

Starting with a matrix A, multiply its first row by 3 to produce B, and then subtract
the first row of B from the second to produce C. How is det C related to det 47

Solve 3u + 2v = 7, 4u + 3v = 11 by Cramer’s rule.

If the entries of A are integers, and det A is 1 or —1, how do you know that the
entries of 47! are integers? Give a 2 by 2 example (not diagonal).

If the entries of 4 and A~ " are all integers, how do you know that both determinants
are 1 or —1? Hint: What is det A times det 417

Find all the cofactors, and the inverse, of

35 a b a b]|!
. d P .
o] e [ e [
What is the volume of the parallelepiped with four of its vertices at 0,0,0),(—1,2,2),

(2, —1,2), and (2,2, — 1)? Where are the other four vertices?

How many terms are in the expansion of a 5 by 5 determinant, and how many are
sure to be zero if a,; = 0?

If every row of A adds up to zero, and x is a column vector of ones, what is Ax?
How do you know that det 4 = 0?7

Why are there an even number of permutations of (1, 2, ..., 9), and why are exactly
half of them odd permutations?

If P, is an even permutation matrix and P, is odd, deduce from P, + P, =
P (P} + P})P, that det(P, + Py =0.

Find the determinant of 4, if a;; = i + .

If A has a positive determinant, show that it can be connected to the identity matrix
by a continuous chain of matrices all having positive determinants. Then A is changed
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into the identity without becoming singular on the way. (The straight path from A4
to I, with a chain A(t) = A + t(I — A), does go from A(0) = 4 to A(1) = I, but in be-
tween A(t) might be singular. The problem is not so easy, and solutions are welcomed
by the author.)

If A is nonsingular, show that there must be some permutation P for which PA has
no zeros on its main diagonal. It is not the P from elimination.

Explain why the point (x, y) is on the line through (2, 8) and (4, 7) if

det

oo

y
8 1(=0, or x+2y—18=0.
7

In analogy with the previous exercise, what is the equation for (x, y, z) to be on the
plane through (2, 0, 0), (0, 2, 0), and (0, 0, 4)? It involves a 4 by 4 determinant.

If the points (x, y, z), (2, 1,0), and (1, 1, 1) lic on a plane through the origin, what
determinant is zero? Are the vectors (1,0, —1), (2,1,0), (1,1, 1) dependent or
independent?

If every row of A has either a single +1, or a single —1, or one of each (and is
otherwise zero) show that det A =1 or —1 or 0.

IfC=[¢ 5land D=[% °]then CD = —DC in Exercise 1.4.14 becomes

2u ¢ b 0 u 0

b a+d 0 b vl 0
b +DC=0 o ¢ 0 a+d ¢ |{w]| o]

0 ¢ b 2d1) z 0

(a) Find the determinant of this 4 by 4 coefficient matrix 4.
(b) Show that det A = 0 in two cases: a + d = 0 or ad — hc = 0.

In all other cases, CD = — DC is only possible with D = 0.

Explain why the 4 by 4 Vandermonde determinant

I a a* o
1 b b2 B

V, = det
4 ¢ 1 ¢ 2 ¢3
1 x x2 x°

must be a cubic polynomial in x, and why that polynomial is zero at x = a, x = b,
and x = ¢, Using the cofactor of x* from Exercise 4.2.10 leads to

Ve =1(b — a)c — a)c — b)(x — a)(x — h)(x — ¢).

The circular shift permutes (1,2, ..., n)into (2, 3,..., 1). What is the corresponding
permutation matrix P, and (depending on n) what is its determinant?




EIGENVALUES AND
EIGENVECTORS

INTRODUCTION M 5.1

This chapter begins the “second half” of matrix theory. The first part was almost
completely involved with linear systems Ax = b, and the fundamental technique
was elimination. From now on row operations will play only a minor role. The
new problems will still be solved by simplifying a matrix—making it diagonal or
upper triangular-—but the basic step is no longer to subtract a multiple of one row
Jrom another. We are not interested any more in preserving the row space of a
matrix, but in preserving its eigenvalues. Those are changed by elimination.

The chapter on determinants was really a transition from the old problem
Ax = b to the new problem of eigenvalues. In both cases the determinant leads
to a “formal solution™ to Cramer’s rule for x = 4~ 'b and to the polynomial
det(4 — AI) whose roots will be the eigenvalues. (We emphasize that all matrices
are now square; the eigenvalues of a rectangular matrix make no more sense than
its determinant.) As always, the determinant can actually be used to solve the
problem, if n = 2 or 3. For large n the computation of eigenvalues is a longer and
more difficult task than solving Ax = b, and even Gauss himself did not help
much. But that can wait.

The first step is to understand what eigenvalues are and how they can be useful.
One of their applications, the one by which we want to introduce them, is to the
solution of ordinary differential equations. We shall not assume that the reader
is an expert on differential equations! If you can differentiate the usual functions
like x", sin x, and e*, you know enough. As a specific example, consider the coupled
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pair of equations

@ 4y sw v=8atr=o,

dt (1)
dw

—=2v-3w, w=5atr=0.

dt

This is an initial-value problem. The unknown is specified at time ¢ = 0, and not
at both endpoints of an interval; we are interested in a transient rather than a
steady state. The system evolves in time from the given initial values 8 and S, and
the problem is to follow this evolution.

It is easy to write the system in matrix form. Let the unknown vector be u, its
initial value be u,, and the coefficient matrix be A:

o) 8] ., [4 -5
o[} w=5} =3 23

In this notation, the system becomes a vector equation

du_

E—Au, u=uyatt=0. 2

This is the basic statement of the problem. Note that it is a first-order equation—
no higher derivatives appear—and it is linear in the unknowns. It also has constant
coefficients; the matrix A is independent of time.

How do we find the solution? If there were only one unknown instead of two,
that question would be easy to answer. We would have a scalar instead of a vector
differential equation. If it is again homogeneous with constant coefficients, it can
only be

d
%:au, u:uoattZO. (3)

The solution is the one thing you need to know:
u(t) = e*uy. “

At the initial time ¢ = 0, u equals u, because ¢ = 1. The derivative of ¢ has the
required factor a, so that du/dr = au. Thus the initial condition and the equation
are both satisfied.

Notice the behavior of u for large times. The equation is unstable if a > 0, neu-
trally stable if a = 0, or stable if a < 0; the solution approaches infinity, remains
bounded, or goes to zero. If a were a complex number, a = « + iff, then the same
tests would be applied to the real part a. The complex part produces oscillations
e = cos Pt + i sin ft; but stability is governed by the factor e*.
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So much for a single equation. We shall take a direct approach to systems, and
look for solutions with the same exponential dependence on t just found in the
scalar case. In other words, we look for solutions of the form

o(t) = e*'y
pr (5
w(t) = ez,
or in vector notation
u(t) = e*x. (6)

This is the whole key to differential equations du/dt = Au: Look for pure expo-
nential solutions. Substituting v = ¢*y and w = ¢*z into the equation we find

iety = 4oty — SeH;

Aetz = 2oy — 3eMz,

The factor e is common to every term, and can be removed. This cancellation is
the reason for assuming the same exponent 4 for both unknowns; it leaves

4y — Sz =)y )

2y — 3z = jz.
That is the basic equation; in matrix form it is Ax = ix. You can see it again if
we use the vector solution u = e*’x—a number e that grows or decays times a
fixed vector x. The substitution of u = *x into du/dt = Au gives le*'x = Ae*x, and
the cancellation produces

(8)

Now we have the fundamental equation of this chapter. It involves two un-
knowns 1 and x, and it is an algebra problem. The differential equations can be
forgotten! The number 4 (lambda) is called an eigenvalue of the matrix A, and the
vector x is the associated eigenvector. Our goal is to find the eigenvalues and
eigenvectors, and to use them.

The Solutions of Ax = A

Notice that Ax = /x is a nonlinear equation; A multiplies x. If we could discover
4, then the equation for x would be linear. In fact we could write A/x in place of
4x,T and bring this term over to the left side:

L4 —inx=0.] 9)

T The identity matrix is needed to keep matrices and vectors and scalars straight; the
equation (4 — A)x = 0 is shorter, but mixed up.
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This is the key to the problem:

The vector x is in the nullspace of A — 11
The number A is chosen so that A — Al has a nullspace.

Of course every matrix has a nullspace. It was ridiculous to suggest otherwise,
but you see the point. We want a nonzero eigenvector x. The vector x = 0 always
satisfies Ax = Ax, and it is always in the nullspace, but it is useless in solving dif-
ferential equations. The goal is to build u() out of exponentials e*'x, and we are
interested only in those particular values A for which there is a nonzero eigenvector
x. To be of any use, the nullspace of 4 — Al must contain vectors other than
zero. In short, A — Al must be singular.
For this, the determinant gives a conclusive test.

5A The number 4 is an eigenvalue of 4 if and only if
det(4 — Al) = 0. (10)

This is the characteristic equation, and each solution 4 has a corresponding eigen-
vector x:

(A—iDx=0 or Ax-ix (11)

In our example, shifting A by Al gives

d—d =
A= = :
* [2 —3ﬁz]

Note that 4 is subtracted only from the main diagonal (because it multiplies I). The
determinant of 4 — AI is

@4—-AN(-3-2)+10 or A2—1=2

This is the “characteristic polynomial” Tts roots, where the determinant is zero,
are the eigenvalues. They come from the general formula for the roots of a quad-
ratic, or from factoring into A> — 4 — 2 = (4 + 1)(4 — 2). That is zero if 1 = —1
or A = 2, as the general formula confirms:

A

—b+b?>—4 1 +/9
= +v = _2\[:10r2.

2a

There are two eigenvalues, because a quadratic has two roots. Every 2 by 2 matrix
A — AI has A? (and no higher power) in its determinant.

Each of these special values, A = —1 and 1 = 2, leads to a solution of Ax = Ax
or (A — Al)x = 0. A matrix with zero determinant is singular, so there must be
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a nonzero vector x in its nullspace.t In fact the nullspace contains a whole line
of eigenvectors; it is a subspace!

L B s =5[»] _To
A= —1: (A /111)x_[2 _2}[2]_[0}

The solution (the first eigenvector) is any multiple of

[}

The computation for 4, is done separately:

. 12 =5y 190
e |

The second eigenvector is any multiple of

=

Note on computing eigenvectors: In the 2 by 2 case, both rows of 4 — A will be
multiples of the same vector (a, b). Then the eigenvector is any multiple of (— b, a).
The rows of A — 4,1 were (2, —5) and the eigenvector was (5, 2). In the 3 by 3 case,
I often set a component of x equal to one and solve (4 — Al)x = 0 for the other
components. Of course if x is an eigenvector then so is 7x and so is — x. All vectors
in the nullspace of 4 — AI (which we call the eigenspace) will satisfy Ax = ix. In
this case the eigenspaces are the lines through x, = (1, 1) and x, = (5, 2).

Before going back to the application (the differential equation), we emphasize
the steps in solving the eigenvalue problem:

1. Compute the determinant of A — 71. With A subtracted along the diagonal,

this determinant is a polynomial of degree n.

Find the roots of this polynomial. The n roots are the eigenvalues.

3. For each eigenvalue solve the equation (A — J.0)x = 0. Since the determinant
1s zero, there are solutions other than x = 0. Those are the eigenvectors.

g

T If solving (4 — Al)x = 0 leads you to x = 0, then 4 is not an eigenvalue.
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In the differential equation, this produces the special solutions u = e*x. They are
the pure exponential solutions

1 5
u = e*x, :e"lil} and uzelz'xzzez’[z].

More than that, these two special solutions give the complete solution. They can
be multiplied by any numbers ¢, and ¢,, and they can be added together. When
two functions u; and u, satisfy the linear equation du/dtr = Au, so does their sum
u; + u,. Thus any combination

u=ce"'x, + c,e*x, (12)

is again a solution. This is superposition, and it applies to differential equations
(homogeneous and linear) just as it applied to algebraic equations Ax = 0. The
nullspace is always a subspace, and combinations of solutions are still solutions.

Now we have two free parameters ¢; and ¢,, and it is reasonable to hope that
they can be chosen to satisfy the initial condition u = u, at t = 0:

1 5|lc 8
CiXy + CXy = U or [1 2] I:Cj = I:S] (13)

The constants are ¢, = 3 and ¢, = 1, and the solution to the original equation is

u(ty = 3e‘[1:| + ez’|:§:|. (14)

Writing the two components separately, this means that
o(t) = e~ + Se?, w(t) = 3e™! + 22,

The initial conditions v, = 8 and w, = 5 are easily checked.

The message seems to be that the key to an equation is in its eigenvalues and
eigenvectors. But what the example does not show is their physical significance;
they are important in themselves, and not just part of a trick for finding u. Probably
the homeliest examplet is that of soldiers going over a bridge. Traditionally, they
stop marching and just walk across. The reason is that they might happen to
march at a frequency equal to one of the eigenvalues of the bridge, and it would
begin to oscillate. (Just as a child’s swing does; you soon notice the natural fre-
quency of a swing, and by matching it you make the swing go higher.) An engineer
tries to keep the natural frequencies of his bridge or rocket away from those of
the wind or the sloshing of fuel. And at the other extreme, a stockbroker spends

t One which I never really believed. But a bridge did crash this way in 1831.
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his life trying to get in line with the natural frequencies of the market. The eigen-
values are the most important feature of practically any dynamical system.

Summary and Examples

We stop now to summarize what has been done, and what there remains to
do. This introduction has shown how the eigenvalues and eigenvectors of 4 appear
naturally and automatically when solving du/dt = Au. Such an equation has pure
exponential solutions u = e*x; the eigenvalue gives the rate of growth or decay, and
the eigenvector x develops at this rate. The other solutions will be mixtures of
these pure solutions, and the mixture is adjusted to fit the initial conditions.

The key equation was Ax = Ax. Most vectors x will not satisfy such an equation.
A typical x changes direction when multiplied by A, so that Ax is not a multiple
of x. This means that only certain special numbers ), are eigenvalues, and only
certain special vectors x are eigenvectors. Of course, if 4 were a multiple of the
identity matrix, then no vector would change direction, and all vectors would be
cigenvectors. But in the usual case, eigenvectors are few and far between. They
are the “normal modes” of the system, and they act independently. We can watch
the behavior of each eigenvector, and then combine these normal modes to find
the solution. To say the same thing in another way, the underlying matrix can be
diagonalized. .

We plan to devote Section 5.2 to the theory of diagonalization, and the following
sections to its applications: first to difference equations and Fibonacci numbers
and Markov processes, and afterward to differential equations. In every example,
we start by computing the eigenvalues and eigenvectors; there is no shortcut to
avoid that. But then the examples go in so many directions that a quick summary
is impossible, except to emphasize that symmetric matrices are especially easy and
certain other “defective matrices” are especially hard. They lack a full set of
eigenvectors, they are not diagonalizable, and they produce a breakdown in the
technique of normal modes. Certainly they have to be discussed, but we do not
intend to allow them to take over the book.

We start with examples of particularly good matrices.

EXAMPLE 1 Everything is clear when A4 is diagonal:

30 1 0
A:[O 2}hasﬂ,1=3withx1=|io], ).2:2withx2=[]].

On each eigenvector A4 acts like a multiple of the identity: Ax; = 3x, and Ax, =
2x,. Other vectors like x = (1, 5) are mixtures x, + 5x, of the two eigenvectors
and when A multiplies x it gives

>

3
Ax = A;x; + SA,x, = |: ]

10
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This was a typical vector x—not an eigenvector—but the action of A was still
determined by its eigenvectors and eigenvalues.

EXAMPLE 2 The situation is also good for a projection:

11 1 . . 1
P:B z]hasilzlwithxlz[l} A2=0w1thx2:[_1}.

The eigenvalues of a projection are one or zero! We have 4 =1 when the vector
projects to itself, and A = 0 when it projects to the zero vector. The column space
of P is filled with eigenvectors and so is the nullspace. If those spaces have dimen-
sion r and n — r, then 4 = 1 is repeated r times and A = 0 is repeated n — r times:

has A=1,1,0,0.

[ e R
o O OO
oo o O
-_ o O O

There are still four eigenvalues, even if not distinct, when P is 4 by 4.

Notice that there is nothing exceptional about /. = 0. Like every other number,
zero might be an eigenvalue and it might not. If it is, then its eigenvectors satisfy
Ax = 0x. Thus x is in the nullspace of 4. A zero eigenvalue signals that A4 has
linearly dependent columns and rows; its determinant is zero. Invertible matrices
have all 4 # 0, whereas singular matrices include zero among their eigenvalues.

EXAMPLE 3 The eigenvalues are still obvious when A is triangular:

-4 4 5
dettA— A= 0 2—1 6 |=(1-1E—Hd=2A.
0 0 1-1

The determinant is just the product of the diagonal entries. It is zero if A = 1, or
A =3, 0r =1 the eigenvalues were already sitting along the main diagonal.

This example, in which the eigenvalues can be found by inspection, points to
one main theme of the whole chapter: To transform A into a diagonal or triangular
matrix without changing its eigenvalues. We emphasize once more that the Gaussian
factorization A = LU is not suited to this purpose. The eigenvalues of U may be
visible on the diagonal, but they are not the eigenvalues of A.

For most matrices, there is no doubt that the eigenvalue problem is computa-
tionally more difficult than 4x = b. With linear systems, a finite number of elim-
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ination steps produced the exact answer in a finite time. (Or equivalently, Cramer’s
rule gave an exact formula for the solution.) In the case of eigenvalues, no such
steps and no such formula can exist, or Galois would turn in his grave. The
characteristic polynomial of a 5 by 5 matrix is a quintic, and he proved that there
can be no algebraic formula for the roots of a fifth degree polynomial. All he will

allow is a few simple checks on the eigenvalues, after they have been computed,
and we mention two of them:

5B The sum of the n eigenvalues equals the sum of the n diagonal entries:
L+t bkl =a,+ " +a,. (15)

This sum is known as the trace of A. Furthermore, the product of the n eigenvalues
equals the determinant of A.

The projection matrix P had diagonal entries 4,1 and eigenvalues 1,0 —and
3 + % agrees with 1 4 0 as it should. So does the determinant, which is 0- 1 = 0.
We see again that a singular matrix, with zero determinant, has one or more of its
eigenvalues equal to zero.

There should be no confusion between the diagonal entries and the eigenvalues.
For a triangular matrix they are the same—but that is exceptional. Normally the

pivots and diagonal entries and eigenvalues are completely different. And for a 2
by 2 matrix, we know everything:

b
[a d} has trace a + d, determinant ad — bc
c

— A b
det [a p ):I = A* — (trace)A + determinant
c -

_ trace + [(trace)® — 4 det]'/?
e 5 )

A

Those two 4’s add up to the trace; Exercise 5.1.9 gives Y. 4; = trace for all matrices.

EXERCISES

511 Find the eigenvalues and eigenvectors of the matrix A = [} ~1]. Verify that the

trace equals the sum of the eigenvalues, and the determinant equals their
product.

51.2  With the same matrix A, solve the differential equation du/dt = Au, Uy = [2] What
are the two pure exponential solutions?
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5.1.3  Suppose we shift the preceding A by subtracting 71

—6 -1
B=A-T7I= :

What are the eigenvalues and eigenvectors of B, and how are they related to those
of A?

5.1.4  Solve du/dt = Pu when P is a projection:

du_ ith |5 )
e u wi Uy = 3| !

The column space component of u, increases exponentially while the nullspace com-
ponent stays fixed.

[ ST ST
[STESTE

5.1.5 Find the eigenvalues and eigenvectors of

3 4 2 0 0 2
A=10 1 2 and B=10 2 0
0 0 0 200 ;

Check that 4, + 4, + A5 equals the trace and 4,4,4; equals the determinant.

5.1.6  Give an example to show that the eigenvalues can be changed when a multiple of
one row is subtracted from another.

5.1.7  Suppose that 2 is an eigenvalue of A4, and x is its eigenvector: Ax = Ax.
(a) Show that this same x is an eigenvector of B = A — 71, and find the eigenvalue.
This should confirm Exercise 5.1.3.
(b) Assuming 1 # 0, show that x is also an eigenvector of A~'—and find the |
eigenvalue. "

51.8 Show that the determinant equals the product of the eigenvalues by imagining that
the characteristic polynomial is factored into

det(A — A=A, — A4y — 2 (4, — A), (15)
and making a clever choice of 4.

51.9  Show that the trace equals the sum of the eigenvalues, in two steps. First, find the
coefficient of (— 4)"~ ! on the right side of (15). Next, look for all the terms in

dyy — 4 Ay An
. a dyy — A a
. 21 22 2
det(4 — Al) = det X !
4y (%) oy — A

which involve (—4)"~'. Explain why they all come from the product down the main
diagonal, and find the coefficient of (— )"~ ! on the left side of (15). Compare.
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(a) Construct 2 by 2 matrices such that the eigenvalues of 4B are not the products
of the eigenvalues of A4 and B, and the eigenvalues of 4 + B are not the sums of
the individual eigenvalues.

(b)  Verify however that the sum of the eigenvalues of A + B equals the sum of all
the individual eigenvalues of 4 and B, and similarly for products. Why is this true?

Prove that A and 4" have the same eigenvalues, by comparing their characteristic
polynomials.

Find the eigenvalues and eigenvectors of A =[3 _%]and 4 = [t "

al

If B has eigenvalues 1, 2,3 and C has eigenvalues 4, 5, 6, and D has eigenvalues
7. 8,9, what are the eigenvalues of the 6 by 6 matrix 4 =[§ §]?

Find the rank and all four eigenvalues for both the matrix of ones and the checker-
board matrix:

and C=

—_ s =
— et e e
—_— e e
—_— e e e
—_ o = O
o = O =
_ o - O
o = O =

Which eigenvectors correspond to nonzero eigenvalues?

What are the rank and eigenvalues when A and C in the previous exercise are n by
n? Remember that the eigenvalue 4 = 0 is repeated n — r times.

If A is the 4 by 4 matrix of ones, find the eigenvalues and the determinant of 4 — |
(compare Ex. 4.3.10).

Choose the third row of the “companion matrix”
0 1 0
A=]10 0 1

so that its characteristic polynomial |4 — /1| is — 4% + 44% + 54 + 6.

Suppose the matrix A has eigenvalues 0, 1, 2 with eigenvectors v,, v,, v,. Describe
the nullspace and the column space. Solve the equation Ax = v, + v,. Show that
Ax = v, has no solution.
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5.2 @ THE DIAGONAL FORM OF A MATRIX

We start right off with the one essential computation. It is perfectly simple and
will be used in every section of this chapter.

5C Suppose the n by n matrix 4 has n linearly independent eigenvectors. Then
if these vectors are chosen to be the columns of a matrix S, it follows that S~ 148
is a diagonal matrix A, with the eigenvalues of A along its diagonal:

A

A
S!AS=A= - . (1)

We call S the “eigenvector matrix” and A the “eigenvalue matrix”—using a capital
lambda because of the small lambdas for the eigenvalues on its diagonal.

Proof Put the eigenvectors x; in the columns of S, and compute the product AS
one column at a time:

Xo| =1 A1xy Apx, -0 A

n“vn N

Then the trick is to split this last matrix into a quite different product:

AS=A|x; x,

i ) Az
AXy Ayxy 0 Ax,|=x; x, X

A

n

Regarded simply as an exercise in matrix multiplication, it is crucial to keep these
matrices in the right order. If A came before S instead of after, then 1, would
multiply the entries in the first row, whereas we want it to appear in the first
column. As it is, we have the correct product SA. Therefore

AS = SA, or ST1AS = A, or A=SAS 1. (2)

The matrix S is invertible, because its columns (the eigenvectors) were assumed
to be linearly independent.

We add four remarks before giving any examples or applications.
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Remark 1 1f the matrix A has no repeated eigenvalues—the numbers 4,,.. ., 4,

are distinct—then the n eigenvectors are automaticalily independent (see 5D below).
Therefore any matrix with distinct eigenvalues can be diagonalized.

Remark 2 The diagonalizing matrix S is not unique. In the first place, an eigen-
vector x can be multiplied by a constant, and will remain an eigenvector. Therefore
we can multiply the columns of S by any nonzero constants, and produce a new
diagonalizing S. Repeated eigenvalues leave even more freedom, and for the trivial
example A = I, any invertible S will do: S™'IS is always diagonal (and the diagonal
matrix A is just I). This reflects the fact that all vectors are eigenvectors of the
identity.

Remark 3 The equation AS = SA holds if the columns of S are the eigenvectors
of A, and not otherwise. Other matrices S will not produce a diagonal A. The reason
lies in the rules for matrix multiplication. Suppose the first column of S is y. Then
the first column of SA is 4, y. If this is to agree with the first column of AS, which
by matrix multiplication is Ay, then y must be an eigenvector: Ay = A,y. In fact,
the order of the eigenvectors in § and the eigenvalues in A is automatically the
same.

Remark 4 Not all matrices possess n linearly independent eigenvectors, and
therefore not all matrices are diagonalizable. The standard example of a “defec-

tive matrix” is
0 1
A= .
o o]

Its eigenvalues are 4, = 4, = 0, since it is triangular with zeros on the diagonal:
det(4 — Al) = det R BT
€ — Alj=d¢ = A"
0 —4

If x is an eigenvector, it must satisfy

o of<=lol o <L)

Although 4 = 0 is a double eigenvalue—its algebraic multiplicity is 2—it has only
a one-dimensional space of eigenvectors. The geometric multiplicity is 1-—there is
only one independent eigenvector—and we cannot construct S.

Here is a more direct proof that A is not diagonalizable. Since 4, = 4, =0, A
would have to be the zero matrix. But if $™'A4S = 0, then we premultiply by S
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and postmultiply by S ™!, to deduce that 4 = 0. Since A4 is not 0, the contradiction
proves that no S can achieve S™1A4S = A.

I hope that example is not misleading. The failure of diagonalization was not
a result of zero eigenvalues. The matrices

3 1 2 -1
== A —
A |:0 3:| and [1 0}
also fail to be diagonalizable, but their eigenvalues are 3, 3 and 1, 1. The prob-

lem is the shortage of eigenvectors—which are needed for S. That needs to be
emphasized:

Diagonalizability is concerned with the eigenvectors.

Invertibility is concerned with the eigenvalues.

There is no connection between diagonalizability (n independent eigenvectors) and
invertibility (no zero eigenvalues). The only indication that comes from the eigen-
values is this: Diagonalization can fail only if there are repeated eigenvalues. Even
then, it does not always fail. The matrix 4 = I has repeated eigenvalues 1, 1, ..., 1
but it is already diagonal! There is no shortage of eigenvectors in that case. The
test is to check, for an eigenvalue that is repeated p times, whether there are p
independent eigenvectors—in other words, whether 4 — Al has rank n — p.

To complete that circle of ideas, we have to show that distinct eigenvalues pre-
sent no problem.

5D If the eigenvectors x,, ..., x, correspond to different eigenvalues 4., ..., /,,
then those eigenvectors are linearly independent.

Suppose first that k = 2, and that some combination of x; and x, produces zero:
¢1x; + ¢,x, = 0. Multiplying by A, we find ¢,4,x; + ¢,4,x, = 0. Subtracting A,
times the previous equation, the vector x, disappears:

ci(Ay — A)x, = 0.

Since 4, # 4, and x,; # 0, we are forced into ¢; = 0. Similarly ¢, = 0, and the two
vectors are independent; only the trivial combination gives zero.

This same argument extends to any number of eigenvectors: We assume some
combination produces zero, multiply by 4, subtract A, times the original combina-
tion, and the vector x, disappears—Ileaving a combination of x, ..., x,_; which
produces zero. By repeating the same steps (or by saying the words mathema-
tical induction) we end up with a multiple of x,; that produces zero. This forces
¢, = 0, and ultimately every ¢; = 0. Therefore eigenvectors that come from distinct
eigenvalues are automatically independent.

A matrix with n distinct eigenvalues can be diagonalized. This is the typical case.
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Examples of Diagonalization

We go back to the main point of this section, which was S™'4S = A. The
eigenvector matrix S converts the original 4 into the eigenvalue matrix A—which
is diagonal. That can be seen for projections and rotations.

1
EXAMPLE 1 The projection 4 = i } has eigenvalue matrix A = [(1) 8] The

1
2
1
. . . 2 2
eigenvectors computed earlier go into the columns of S:

1 1 1 0
S = = SA =
I:l _l:l and AS = SA l:l 0].

That last equation can be verified at a glance. Therefore S 1A4S = A.

EXAMPLE 2 The eigenvalues themselves are not so clear for a rotation:

0 -1
K= [1 O] has det(K — Al) = A% + 1.

That matrix rotates the plane through 90°, and how can a vector be rotated and
still have its direction unchanged? Apparently it can’t—except for the zero vector
which is useless. But there must be eigenvalues, and we must be able to solve
du/dt = Ku. The characteristic polynomial A2 + 1 should still have two roots—but
those roots are not real.

You see the way out. The eigenvalues of K are imaginary numbers, i, = i and
A, = —i. The eigenvectors are also not real. Somehow, in turning through 90°,
they are multiplied by i or —i:

i —1 0 1
o[ L] e[
(K — AD)x, = [11 B IIJ B:| = [8:| and X, = [:}

The eigenvalues are distinct, even if imaginary, and the eigenvectors are inde-
pendent. They go into the columns of S:

i i 0
S:[ , 1} and S"lKS:[I J
—i i 0 —i

Remark We are faced with an inescapable fact, that complex numbers are
needed even for real matrices. If there are too few real eigenvalues, there are always
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n complex eigenvalues. (Complex includes real, when the imaginary part is zero.)
If there are too few eigenvectors in the real world R3, or in R”, we look in C3
or C". The space C" contains all column vectors with complex components, and
it has new definitions of length and inner product and orthogonality. But it is not
more difficult than R”, and in Section 5.5 we make an easy conversion to the
complex case.

Powers and Products: 4* and 4B

There is one more situation in which the calculations are easy. Suppose we have
already found the eigenvalues and eigenvectors of a matrix A. Then the eigen-

values of A* are exactly 13,...,)2 and every eigenvector of A is also an
eigenvector of A*>. We start from Ax = Ax, and multiply again by A:
A%x = Adx = AAx = A3%x. (3)

Thus A% is an eigenvalue of A2, with the same eigenvector x. If the first multi-
plication by A4 leaves the direction of x unchanged, then so does the second.

The same result comes from diagonalization. If S~ A4S = A, then squaring both
sides gives

(ST'AS)ST1AS)= A2 or  ST'A%S = A2

The matrix 4? is diagonalized by the same S, so the eigenvectors are unchanged.
The eigenvalues are squared.
This continues to hold for any power of A:

5 The eigenvalues of A* are 4%, ..., /% the kth powers of the eigenvalues of
A. Each eigenvector of A4 is still an eigenvector of 4% and if S diagonalizes A4
it also diagonalizes A*:

Ak = (S1AS)(S'AS) - - - (S"1AS) = S~1 4*S. )
Each S~ ! cancels an S, except for the first S~ ! and the last S.

If A is invertible this rule also applies to its inverse (the power k = —1). The
eigenvalues of A~"' are 1/4;. That can be seen even without diagonalizing:

1
if Ax=/Ax then x=1A"'x and —x=A 'x
yl

EXAMPLE If K is rotation through 90°, then K? is rotation through 180° and K ~*
is rotation through —90°:

0 -1 -1 0 0 1
K = g 2= 1= .
[1 0} and K [ 0 *1] and K [ﬁ] O}
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The eigenvalues are i and —i; their squares are —1 and — 1; their reciprocals
are 1/i = —i and 1/(—i) = i. We can go on to K*, which is a complete rotation
through 360°:

1 0 it 0 1 0
K* = ; 1 4= = .
[O IJ and also A [0 (—i)“J [0 1]

The power i* is 1, and a 360° rotation matrix is the identity.

Now we turn to a product of two matrices, and ask about the eigenvalues of
AB. It is very tempting to try the same reasoning, in an attempt to prove what is
not in general true. If 4 is an eigenvalue of 4 and p is an eigenvalue of B, here is
the false proof that AB has the eigenvalue pA:

ABx = Aux = pAx = ulx.

The fallacy lies in assuming that 4 and B share the same eigenvector x. In general,
they do not. We could have two matrices with zero eigenvalues, while their product
has an eigenvalue A = 1:

AB 0O 1[0 O 1 0
“lool[¥ al-Ls 3]
The eigenvectors of this A and B are completely different, which is typical. For
the same reason, the eigenvalues of 4 + B have nothing to do with 4 + .

This false proof does suggest what is true. If the eigenvector is the same for 4
and B, then the eigenvalues multiply and 4B has the eigenvalue puA. But there is

something more important. There is an easy way to recognize when A4 and B share
a full set of eigenvectors, and that is a key question in quantum mechanics:

5F If A and B are diagonalizable, they share the same eigenvector matrix S if and
only if AB = BA.

Proof 1f the same S diagonalizes both 4 = SA;S™! and B = SA,S™ !, we can
multiply in either order:

AB = SA,S7SA,S71 = SA,A,S”" and BA = SA,S"ISA,S™' = SA,A,S" .

Since A;A, = A,A, (diagonal matrices always commute) we have AB = BA.
In the opposite direction, suppose 4B = BA. Starting from Ax = Ax, we have

ABx = BAx = Bix = 1Bx.

Thus x and Bx are both eigenvectors of A4, sharing the same A (or else Bx = 0). If
we assume for convenience that the eigenvalues of 4 are distinct—the eigenspaces
are all one-dimensional—then Bx must be a multiple of x. In other words x is an
eigenvector of B as well as A. The proof with repeated eigenvalues is a little longer.
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Remark In quantum mechanics it is matrices that don’t commute—Ilike posi-
tion P and momentum Q—which suffer from Heisenberg’s uncertainty principle.
Position is symmetric, momentum is skew-symmetric, and together they satisfy
QP —PQ =1 The uncertainty principle comes directly from the Schwarz in-
equality (Qx)"(Px) < |Qx| | Px| of Section 3.2:

HxHZ = x"x = x"(QP — PQ)x < 2| Qx| | Px].

The product of |Qx|/|x| and HPxH/HxH—Whlch can represent momentum and
position errors, when the wave function is x—is at least 1. It is impossible to get ,
both errors small, because when you try to measure the position of a particle you !
change its momentum.

At the end we come back to 4 = SAS™'. That is the factorization produced by
the eigenvalues. It is particularly suited to take powers of 4, and the simplest case
A* makes the point. The LU factorization is hopeless when squared, but SAS™!
is perfect. The square is SA*S ™', the eigenvectors are unchanged, and by following
those eigenvectors we will solve difference equations and differential equations.

EXERCISES

5.21  Factor the following matrices into SAS ™ !:

L[ G [
= it} = .
1 a 00 :

522 Find the matrix A whose eigenvalues are 1 and 4, and whose eigenvectors are [3] ;
and [1], respectively. (Hint: A = SAS™ 1)

523 Find all the eigenvalues and eigenvectors of

and write down two different diagonalizing matrices S.

524 Ifa 3 by 3 upper triangular matrix has diagonal entries 1, 2, 7, how do you know
it can be diagonalized? What is A?

5.25 Which of these matrices cannot be diagonalized?

A_z—z' Aﬁzo Aizo
T2 2 272 2 S D

526 (a) If A*> =1 what are the possible eigenvalues of 4?
(b) If this A is 2 by 2, and not I or —1I, find its trace and determinant.
(c) If the first row is (3, — 1) what is the second row?
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If A=[1 3] find A'°® by diagonalizing A.

Suppose 4 = up" is a column times a row (a rank-one matrix).

(a) By multiplying A times u show that u is an eigenvector. What is 47

(b) What are the other eigenvalues (and why)?

(c) Compute trace(4) = v'u in two ways, from the sum on the diagonal and the
sum of 4’s.

Show by direct calculation that AB and BA have the same trace when

A=[a b:| and B=,:q r:l.
¢ d st

Deduce that AB — BA = I is impossible. (It only happens in infinite dimensions.)

Suppose A has eigenvalues 1, 2, 4. What is the trace of 42? What is the determinant
of (4~ HM

If the eigenvalues of A are 1, 1, 2, which of the following are certain to be true?
Give a reason if true or a counterexample if false:

(1) A is invertible

(2) A is diagonalizable

(3) A is not diagonalizable

Suppose the only eigenvectors of 4 are multiples of x = (1, 0, 0):

T F A is not invertible
T F A has a repeated eigenvalue
T F A is not diagonalizable

Diagonalize the matrix 4 = [} %] and find one of its square roots-—a matrix such
that R? = A. How many square roots will there be?

If A is diagonalizable, show that the determinant of 4 = SAS™! is the product of
the eigenvalues.

Show that every matrix is the sum of two nonsingular matrices.
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S — .

5.3 W DIFFERENCE EQUATIONS AND THE POWERS A*

Difference equations are not as well known as differential equations, but they
should be. They move forward in a finite number of finite steps, while a differential
equation takes an infinite number of infinitesimal steps-—but the two theories stay
absolutely in parallel. It is the same analogy between the discrete and the con-
tinuous that appears over and over in mathematics. Perhaps the best illustration
is one which really does not involve n-dimensional linear algebra, because money
in a bank is only a scalar.

Suppose you invest $1000 for five years at 6% interest. If it is compounded once
a year, then the principal is multiplied by 1.06, and P,,, = 1.06 P,. This is a
difference equation with a time step of one year. It relates the principal after k + 1
years to the principal the year before, and it is easy to solve: After 5 years, the
original principal Py, = 1000 has been multiplied 5 times, and

P = (1.06)°P, = (1.06)31000 = $1338. |

Now suppose the time step is reduced to a month. The new difference equation is
Pe+1 = (1 +.06/12)p,. After 5 years, or 60 months,

06)°° ,
Poo = (1 + ]2> Po = (1.005)°°1000 = $1349.

The next step is to compound the interest daily:

06 5-365
1+ 1000 = $1349.83.
(158
Finally, to keep their employees really moving, banks offer continuous compounding.
The interest is added on at every instant, and the difference equation breaks down. ]
In fact you can hope that the treasurer does not know calculus, and cannot figure !
out what he owes you. But he has two different possibilities: Either he can com-
pound the interest more and more frequently, and see that the limit is

06\
<1 + N> 1000 — ¢3°1000 = $1349.87.

Or he can switch to a differential equation—the limit of the difference equation
Pe+1 = (1 +.06 At)p,. Moving p, to the left side and dividing by the time step At,

p"ﬁiﬂ =.06p,  approaches Z—f = .06p.
The solution is p(t) = ¢°%p,, and after 5 years this again amounts to $1349.87. The
principal stays finite, even when it is compounded every instant—and the difference
is only four cents.

This example included both difference equations and differential equations, with
one approaching the other as the time step disappeared. But there are plenty of
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difference equations that stand by themselves, and our second example comes from
the famous Fibonacci sequence:

0,1,1,2,3,528, 13,....

Probably you see the pattern: Every Fibonacci number is the sum of its two
predecessors,

Fioz=Feoi + Fp. | (1)

That is the difference equation. It turns up in a most fantastic variety of applica-
tions, and deserves a book of its own. Thorns and leaves grow in a spiral pattern,
and on the hawthorn or apple or oak you find five growths for every two turns
around the stem. The pear tree has eight for every three turns, and the willow is
even more complicated, 13 growths for every five spirals. The champion seems to
be a sunflower of Daniel T. O’Connell (Scientific American, November, 1951) whose
seeds chose an almost unbelievable ratio of F,,/F,, = 144/233.+

How could we find the 1000th Fibonacci number, other than by starting with
Fy =0, F;, =1, and working all the way out to F,,4? The goal is to solve the
difference equation F,,, = F,,, + F,, and as a first step it can be reduced to a
one-step equation u,, ; = Au,. This is just like compound interest, P, ., = 1.06P,,
except that now the unknown has to be a vector and the multiplier A has to be
a matrix: if

then

F =F F 11
ez = Tt B omes Uiy =[ }uk.
Fyir=Fiiy 10

This is a standard trick for an equation of order s; s — 1 trivial equations like
F. .+, = Fi,, combine with the given equation in a one-step system. For Fibonacci,
s=2.

The equation u,,; = Au, is easy to solve. It starts from u,. After one step it
produces u; = Au,. At the second step u, is Au,, which is A2u,. Every step brings
a multiplication by A, and after k steps there are k multiplications:

The solution to u, , = Au, is u, = A u,.

T For these botanical applications, see D’Arcy Thompson’s book On Growth and Form
(Cambridge Univ. Press, 1942) or Peter Stevens’ beautiful Patterns in Nature (Little, Brown,
1974). Hundreds of other properties of the F, have been published in the Fibonacci Quarterly.
Apparently Fibonacci brought Arabic numerals into Europe, about 1200 A.D.
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The real problem is to find some quick way to compute the powers 4¥, and thereby
find the 1000th Fibonacci number. The key lies in the eigenvalues and eigenvectors:

5G If A can be diagonalized, 4 = SAS %, then

w, = A'ug = (BAS )SAS ')+ (SAS D, = SA'S lu,. )
The columns of S are the eigenvectors of 4, and by setting S~ 'u,, = ¢ the solution
becomes
At €1
wm=SAc=|x -  x e lix 4+ tedx. @)
AnfLen

The solution is a combination of the “pure solutions” A¥x,.

These formulas give two different approaches to the same solution u, = |
SA*S ™ 'u,. The first formula recognized that A* is identical with SA*S !, and we
could have stopped there. But the second approach brings out more clearly the
analogy with solving a differential equation: Instead of the pure exponential solu- vv
tions ¢*'x;, we now have the pure powers /¥x;. The normal modes are again the j
eigenvectors x;, and at each step they are amplified by the eigenvalues 4. By com- i
bining these special solutions in such a way as to match u,—that is where ¢ came
from—we recover the correct solution u, = SA*S ™ 'u,.

In any specific example like Fibonacci’s, the first step is to find the eigenvalues:

11
A:[ ] det(Ad — Al)= 12— 1 — 1,

1 0
NG

b=

1 4+ 4/5
)”1: 2\/,

The second row of A — Al is (1, — 4), so the eigenvector is (4, 1). The first Fibonacci
numbers F, =0 and F, = 1 go into u,, and

A A1 1) (A — A,
(’=S*1u0= 1 2 _ /( 1 _) )
11 0 —1/(A; — 4,)
Those are the constants in u, = ¢;A¥x, + ¢,4%x,. Since the second component of
both eigenvectors is 1, that leaves F, = ¢, 4% + ¢,/% in the second component of

Uy
po A1 [(1+5\ [1-5)
=l A=A, 5 2 2 '

This is the answer we wanted. In one way it is rather surprising, because Fibonacci’s
rule Fi,, = F,,, + F, must always produce whole numbers, and we have ended
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up with fractions and square roots. Somehow these must cancel out, and leave an
integer. In fact, since the second term [(1 — \/g)/Z]"/ﬁ is always less than 1, it must
Just move the first term to the nearest integer. Subtraction leaves only the integer
part, and

. 1
F000 = nearest integer to — <

J3
Of course this is an enormous number, and F,; will be even bigger. It is pretty
clear that the fractions are becoming completely insignificant compared to the inte-
gers; the ratio Fq01/F ;090 must be very close to the quantity (1 + ﬁ)/Z ~x 1.618,
which the Greeks called the “golden mean.”t In other words A% is becoming insig-
nificant compared to A, and the ratio F,,,/F, approaches A5*!/1k = 4,.

That is a typical example, leading to the powers of 4 = [ &] Itinvolved ﬁ
because the eigenvalues did. If we choose a different matrix whose eigenvalues are
whole numbers, we can focus on the simplicity of the computation—after the matrix
has been diagonalized:

-4 -5 1 . —1
A= 0 11 has 1, =1, x, = _1p Ay=6, x,= )
I —1][1* 0o7][2 1 2 -6 1 —6*
Af = SA*ST! = = ,
[—1 2}[0 6"“:1 1] [—2+2‘6" —1 +2~6k]

The powers 6* and 1* are visible in that last matrix A%, mixed in by the eigenvectors.
For the difference equation u,,, = Au,, we emphasize the main point. If x is
an eigenvector then

2

1+ \/3)1000

one possible solution is uy = x, u; = Ix, u, = 2°x, . ..

When the initial u, happens to equal an eigenvector, this is the solution: u, = i*x.
In general u, is not an eigenvector. But if u, is a combination of eigenvectors, the
solution u, is the same combination of these special solutions.

SH Huo=cox; + " +ex then u, ~c,Mix, + - + ¢ i'x, The role of the
¢’s is to match the initial conditions:

Cy
Uo=1|x;, = x Il: |- 8¢ and c=35 ‘u, 4)

n

We turn to important applications of difference equations—or powers of matrices.

71‘ The most é]egant rectangles have their sides in the ratio of 1.618 to 1.
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A Markov Process

There was an exercise in Chapter 1, about moving in and out of California, which
is worth another look. These were the rules:

Each year g of the people outside California move in, and + of the people inside
California move out.

This suggests a difference equation. We start with y, people outside and z, inside,
and at the end of the first year the numbers outside and inside are

Vi =9y + .2z, or I:yl] B [9 .2] [yo]

z; =.1yy + .82, z, A 8]z [

Of course this problem was produced out of thin air, but it has the two essential
properties of a Markov process: The total number of people stays fixed, and the
numbers outside and inside can never become negative.t The first property is re-
flected in the fact that each column of the matrix adds up to 1. Everybody is ac-
counted for, and nobody is gained or lost. The second property is reflected in the
fact that the matrix has no negative entries. As long as the initial y, and z, are non-
negative, the same will be true of y, and z,, y, and z,, and so on forever. The powers
A¥ are all nonnegative.

We propose first to solve this difference equation (using the formula SA*S ~!u,),
then to see whether the population eventually approaches a “steady state,” and
finally to discuss Markov processes in general. To start the computations, 4 has to
be diagonalized:

9 2
A=[? 8]’ det(A — Al) = A2 — 174+ .7,

Ar=1 and Ay =7
]| [
-3 T =27
To find 4% and the distribution after k years, we change A to A*:
Y| _ Ak Yo | _ 3 ][ 1 1 Eil yo
Z Zo -1 TN =2 2z

T Furthermore, history is completely disregarded; each new situation u, , , depends only
on the current u,, and the record of u,, ..., u,_, can be thrown away. Perhaps even our
lives are examples of Markov processes, but T hope not.

A:SASl=[

W= Wt

Wl

2
= (Yo + zo) I:;:l + (Yo — 22)(.7)* ':
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These are the terms ¢;A%x; + ¢,4%x,. The factor /% = 1 is hidden in the first term,
and it is easy to see what happens in the long run: The other factor (.7)¥ becomes
extremely small, and the solution approaches a limiting state

[yw] = (o + 2o) |:?:|
Zy 3

The total population is still y, + z,, just as it was initially, but in the limit % of
this population is outside California and 4 is inside. This is true no matter what
the initial distribution may have been! You might recognize that this steady state
is exactly the distribution that was asked for in Exercise 1.3.13. If the year starts
with 2 outside and { inside, then it ends the same way:

9 21[% 2
|:1 8][%]—[%’ or Auy, =u,.

The steady state is the eigenvector of A corresponding to A = 1. Multiplication by
‘ A, which takes us from one time step to the next, leaves u,, unchanged.
i We summarize the theory of Markov processes:

% 51 A Markov matrix is nonnegative, with each column adding to 1.

‘ (a) 4, = 1is an eigenvalue

{ (b) its eigenvector x, is nonnegative—and it is a steady state since Ax; = x,
(c) the other eigenvalues satisfy |4] < 1

| (d) if any power of A has all positive entries, these other || are below 1. The

| solution A*u, approaches a multiple of x,— which is the steady state u, .

To find the right multiple of x,, use the fact that the total population stays the

same. If California started with all 90 million people out, it ended with 60 million

out and 30 million in. It also ended that way if all 90 million were originally in.
We note that some authors work with AT, and rows that add to 1.

Remark Our description of a Markov process was completely deterministic; pop-
ulations moved in fixed proportions. But if we look at a single individual, the rules
for moving can be given a probabilistic interpretation. If the individual is outside
California, then with probability ¥5 he moves in; if he is inside, then with prob-
ability {3 he moves out. His movement becomes a random process, and the matrix

| A that governs it is called a transition matrix. We no longer know exactly where
he is, but every year the components of u, = A*u, specify the probability that he
is outside the state, and the probability that he is inside. These probabilities add
to 1—he has to be somewhere—and they are never negative. That brings us back
to the two fundamental properties of a transition matrix: Each column adds to 1,
and no entry is negative.
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The key step in the theory is to understand why 4 = 1 is always an eigenvalue, _‘
and why its eigenvector is the steady state. The first point is easy to explain: Each !
column of A — I adds up to 1 — 1 = 0. Therefore the rows of A — I add up to i
the zero row, they are linearly dependent, 4 — I is singular, and 1, = 1 is an eigen-
value. Except for very special cases,t u, will eventually approach the corresponding
eigenvector. This is suggested by the formula u, = ¢y Mx; + - + ¢,A%x,, in which
no eigenvalue can be larger than 1. (Otherwise the probabilities u, would blow up
like Fibonacci numbers.) If all other eigenvalues are strictly smaller than A =1,
then the first term in the formula will be completely dominant; the other A go to
zero, and u, - ¢ x; = u,,.

This is an example of one of the central themes of this chapter: Given informa-
tion about A4, find information about its eigenvalues. Here we found Amax = 1.

There is an obvious difference between Fibonacci numbers and Markov
processes. The numbers F, become larger and larger, while by definition any
“probability” is between 0 and 1. The Fibonacci equation is unstable, and so is
the compound interest equation P, , = 1.06P,; the principal keeps growing for-
ever. If the Markov probabilities decreased to zero, that equation would be stable;
but they do not, since at every stage they must add to 1. Therefore a Markov
process is neutrally stable.

Now suppose we are given any difference equation u, , ; = Au,, and we want
to study its behavior as k — co. Assuming A4 can be diagonalized, the solution u,
will be a combination of pure solutions,

e = SA*S™'ug = ¢ x; + - + ¢ Akx,.

The growth of u, is governed by the factors Af, and stability depends on the
eigenvalues.

50 The difference equation u, ., = Au, is

stable if all eigenvalues satisfy |1 < 1
neutrally stable if some |/,| = 1 and the other 4] <1
unstable if at least one eigenvalue has |, > 1.

In the stable case, the powers A* approach zero and so does the solution U, = A'u,.

o 1]

t If everybody outside moves in and everybody inside moves out, then the populations
are reversed every year and there is no steady state. The transition matrix is 4 — [T 57
and —1 is an eigenvalue as well as + 1—which cannot happen if all a;; > 0.

EXAMPLE The matrix

N
I
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is certainly stable; its eigenvalues are 0 and 3, lying on the main diagonal because
A is triangular. Starting from any initial vector u,, and following the rule u,, =
Au,, the solution must eventually approach zero:

A I A O

You can see how the larger eigenvalue 4 = § governs the decay; after the first step
every vector u, is half of the preceding one. The real effect of the first step is to
split u, into the two eigenvectors of A,

0] |8 N -8

1|t 0/
and to annihilate the second eigenvector (corresponding to 4 = 0). The first eigen-
vector is multiplied by 4 = § at every step.

— tal—

Positive Matrices and Applications

By developing the Markov ideas we can find a small gold mine (entirely optional)
of matrix applications in economics.

EXAMPLE 1 Leontief’s input-output matrix

This is one of the first great successes of mathematical economics. To illustrate i,
we construct a consumption matrix—in which g;; gives the amount of product j
that is needed to create one unit of product i

4 0 1 (steel)
A=[0 .1 8 (food)
ST 01 (labor)

The first question is: Can we produce y, units of steel, y, units of food, and y;
units of labor? To do so, we must start with larger amounts p,, p,, p;, because
some part is consumed by the production itself. The amount consumed is Ap, and
it leaves a net production of p — Ap.

Problem To find a vector p such that p— Ap=y, or p=(— A)~ 1y,
On the surface, we are only asking if I — A is invertible. But therc is a nonnegative

twist to the problem. Demand and production, y and p, arc nonnegative. Since p
is (I — A)~ 'y, the real question is about the matrix that multiplics y:

When is (I — A)”' a nonnegative matrix’?
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Roughly speaking, 4 cannot be too large. If production consumes too much,
nothing is left as output. The key is in the largest eigenvalue 4, of A, which must
be below I:
If 4, > 1,(I — A)~" fails to be nonnegative !
If 2, =1,(I — 4)~" fails to exist ‘

IfZ; < 1,(I — A)~'is a sum of nonnegative matrices: ‘

- =T+a+ 82+ 05| (5)

The 3 by 3 example has 4, = .9 and output exceeds input. Production can go on.

Those are easy to prove, once we know the main fact about a nonnegative ma-
trix like A: Not only is the largest eigenvalue positive, but so is the eigenvector
x;. Then (I — A)™' has the same eigenvector, with eigenvalue 1/(1 — 4)).

If 1, exceeds 1, that last number is negative. The matrix (I — A)~! will take the
positive vector x, to a negative vector x;/(1 — 4,). In that case (I — A)~! is defi-
nitely not nonnegative. If 4, = 1, then I — A4 is singular. The productive case of
a healthy economy is 4, < 1, when the powers of 4 go to zero (stability) and the
infinite series I + A + A2 + - - - converges. Multiplying this series by I — A leaves
the identity matrix—all higher powers cancel—so (I—A)"'is a sum of non-
negative matrices. We give two examples:

0 2
A= [] OJ has 4, = 2 and the economy is lost

52 1 %
A= [0 5] has 1, = 2 and we can produce anything, !

e

The matrices (I — A4)"! in those two cases are [Z}  ~?] and [2 ]

Leontief’s inspiration was to find a model which uses genuine data from the
real economy; the U.S. table for 1958 contained 83 industries, each of whom sent
in a complete “transactions table” of consumption and production. The theory
also reaches beyond (I — 4)™ !, to decide natural prices and questions of opti-
mization. Normally labor is in limited supply and ought to be minimized. And,
of course, the economy is not always linear.

EXAMPLE 2  The prices in a closed input-output model
The model is called “closed” when everything produced is also consumed. Nothing
goes outside the system. In that case the matrix 4 goes back to a Markov matrix.
The columns add up to 1. We might be talking about the value of steel and food
and labor, instead of the number of units. The vector p represents prices instead
of production levels.

Suppose p, is a vector of prices. Then Ap, multiplies prices by amounts to
give the value of each product. That is a new set of prices, which the system uses
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for the next set of values A%p,. The question is whether the prices approach equi-
librium. Are there prices such that p = Ap, and does the system take us there?

You recognize p as the (nonnegative) eigenvector of the Markov matrix A—
corresponding to 4 = 1. It is the steady state p,, and it is approached from any
starting point p,. The economy depends on this, that by repeating a transaction
over and over the price tends to equilibrium.

For completeness we give a quick explanation of the key properties of a posi-
tive matrix—not to be confused with a positive definite matrix, which is symmetric
and has all its eigenvalues positive. Here all the entries g;; are positive.

5K The largest eigenvalue 4, of a positive matrix is real and positive, and so
are the components of the eigenvector x;.

Proof Suppose A > 0. The key idea is to look at all numbers ¢ such that Ax > tx
for some nonnegative vector x (other than x = 0). We are allowing inequality in
Ax > tx in order to have many positive candidates t. For the largest value f,,,,
(which is attained), we will show that equality holds: Ax = t,,,,x.

Otherwise, if Ax > t_,,x is not an equality, multiply by A. Because A is positive
that produces a strict inequality A*x > t,,,,Ax. Therefore the positive vector y = Ax
satisfies Ay > t,..0, and f,,, could be increased. This contradiction forces the
equality Ax = t,,,,x, and we have an eigenvalue. Its eigenvector x is positive be-
cause on the left side of that equality Ax is sure to be positive.

To see that no eigenvalue can be larger than t,,,,, suppose Az = 4z. Since 4 and
z may involve negative or complex numbers, we take absolute values: |4||z| =
|A4z| < Alz| by the “triangle inequality.” This |z| is a nonnegative vector, so |A] is
one of the possible candidates . Therefore |4| cannot exceed t,,,,—Wwhich must be
the largest eigenvalue.

This is the Perron-Frobenius theorem for positive matrices, and it has one more
application in mathematical economics.

EXAMPLE 3 Von Neumann’s model of an expanding economy
We go back to the 3 by 3 matrix A that gave the consumption of steel, food, and
labor. If the outputs are s,, f1, [, then the required inputs are

4 0 11| sy
uo=|0 .1 8[| fi|=Au;.
ST )L
In economics the difference equation is backward! Instead of u; = Au, we have

u, = Au,. If A is small (as it is), then production does not consume everything—
and the economy can grow. The eigenvalues of 4~ ' will govern this growth. But

again there is a nonnegative twist, since steel, food, and labor cannot come in
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negative amounts. Von Neumann asked for the maximum rate ¢ at which the
economy can expand and still stay nonnegative, meaning that u, > tu, > 0.

Thus the problem requires u, > tAu,. It is like the Perron-Frobenius theorem,
with A on the other side. As before, equality holds when ¢ reaches tmax—Which is
the eigenvalue associated with the positive eigenvector of 4~ !. In this example
the expansion factor is 1

4 0 . 1 .
and Ax=]10 .1 8||5|=1|45|="x.
S 7 115

=
il
wn =

With steel-food-labor in the ratio 1-5-5, the economy grows as quickly as possible:
The maximum growth rate is 1/4,.

EXERCISES

531 (a) For the Fibonacci matrix 4 = [} 1], write down 42, 4%, A*, and then (using
the text) A41°°.
(b) Find B-UifB=[_] '2].

53.2  Suppose Fibonacci had started his sequence with Fy =1 and F, = 3, and then
followed the same rule F,,, = F,,, + F,. Find the new initial vector Uy, the new
coefficients ¢ = §~'u,, and the new Fibonacci numbers. Show that the ratios
F\../F, still approach the golden mean.

5.3.3 If each number is the average of the two previous numbers, Gyiz =3G ., + G,
set up the matrix 4 and diagonalize it. Starting from G, = 0 and G, =1 finda
formula for G, and compute its limit as k — co.

53.4  Bernadelli studied a beetle “which lives three years only, and propagates in its third
year.” If the first age group survives with probability !, and then the second with j
probability 4, and then the third produces six females on the way out, the matrix 1s

00 6
A=1 0 ol
040

Show that 4* = I, and follow the distribution of beetles for six years starting with
3000 beetles in each age group.

53.5 Suppose there is an epidemic in which every month half of those who are well
become sick, and a quarter of those who are sick become dead. Find the steady state
for the corresponding Markov process

. B
dk +1 1 + 0 dk
! - 301
Sier [ =10 2 2| s
1 )
Wi+ 1 0 0 5][w
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5.3.6

5.3.7

5.3.8

5.3.9

5.3.10

5.3.11

Write down the 3 by 3 transition matrix for a chemistry course that is taught in
two sections, if every week % of those in Section A and 1 of those in Section B drop
the course, and 1 of each section transfer to the other section.

Find the limiting values of y, and z, (k - o) if

Vi1 =8y + .3z Yo=0
Zre1 = 2y + Tz, zg = 5.

Also find formulas for y, and z, from A* = SA*S!.

(@) From the fact that column 1 + column 2 = 2 (column 3), so the columns are
linearly dependent, what is one of the eigenvalues of A and what is its corresponding
eigenvector?

N N
B owow

(b) Find the other eigenvalues of A.
(¢) If uy = (0, 10, 0) find the limit of A*u, as k — oo.

Suppose there are three major centers for Move-It-Yourself trucks. Every month
half of those in Boston and in Los Angeles go to Chicago, the other half stay where
they are, and the trucks in Chicago are split equally between Boston and Los
Angeles. Set up the 3 by 3 transition matrix A, and find the steady state u_, cor-
responding to the eigenvalue 2 = 1.

(a) In what range of a and b is the following equation a Markov process?

a b 1
U = Ay = l—a 1—b U, Uy = 1l

(b) Compute u, = SA*S™ 'y, for any a and b.
() Under what condition on a and b does u, approach a finite limit as k — oo,
and what is the limit? Does 4 have to be a Markov matrix?

Multinational companies in the U.S., Japan, and Europe have assets of $4 trillion.
At the start, $2 trillion are in the U.S. and $2 trillion in Europe. Each year  the
U.S. money stays home, ; goes to both Japan and Europe. For Japan and Europe,
% stays home and 1 is sent to the U.S.

(a) Find the matrix that gives

uUs uUS
J =A) ]
E year k+ 1 E year k

(b) Find the eigenvalues and eigenvectors of A.
(¢) Find the limiting distribution of the $4 trillion as the world ends.
(d) Find the distribution at year k.
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5.3.12

5.3.13

5.3.14

5.3.15

5.3.16

5.3.17

5.3.18

5.3.19

5.3.20

If A is a Markov matrix, show that the sum of the components of Ax equals the
sum of the components of x. Deduce that if Ax = Ax with 4 # 1, the components
of the eigenvector add to zero.

The solution to du/dt = Au=[§ ~§]u (eigenvalues i and —i) goes around in a
circle: u = (cos t, sin t). Suppose we approximate by forward, backward, and centered
difference equations:

(@) b,y —u, = Au,or u, = + A,

() s —ty = Aty OF ty = (T — A) ',

(©) thyoy — thy = YAty y + 1) OF Uy y = (I = 3A) 7' + 1A},

Find the eigenvalues of I + 4 and (/ — A)~! and (I — 34)"}(I + 34). For which
difference equation does the solution stay on a circle?

For the system v,,, = ofv, + w,), w,,, = «v, + w,), what values of « produce
instability?

Find the largest values q, b, ¢ for which these matrices are stable or neutrally stable:

a —.8 b 8 ¢ .8

8 20 0 27 2 ¢
Multiplying term by term, check that (I — A)(I + A + A* 4+ ---) = L. This infinite
series represents (I — A)~ !, and is nonnegative whenever A is nonnegative, provided

it has a finite sum; the condition for that is A, < 1. Add up the infinite series, and
confirm that it equals (I — A4)™ ", for the consumption matrix

0 1 1
A=10 0 1
0 0 0
For 4 =[5 2] find the powers A* (including A°) and show explicitly that their

sum agrees with (I — 4)™".

Explain by mathematics or economics why increasing any entry of the “consump-
tion matrix” A4 must increase t,,,, = 4, (and slow down the expansion).

What are the limits as k — o0 (the steady states) of

P [

Prove that every third Fibonacct number is even.
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DIFFERENTIAL EQUATIONS AND THE EXPONENTIAL ¢! W 5.4

Wherever you find a system of equations, rather than a single equation, matrix
theory has a part to play. This was true for difference equations, where the solution
u, = A*u, depended on the powers of A4. It is equally true for differential equations,
where the solution u(f) = e*u, depends on the exponential of A. To define this
exponential, and to understand it, we turn right away to an example:

du -2 1
A= _
a - [ i —2]” M

The first step is always to find the eigenvalues and eigenvectors:

oo} ol ]

Then there are several possibilities, all leading to the same answer. Probably the
best way is to write down the general solution, and match it to the initial vector
uy at t = 0. The general solution is a combination of pure exponential solutions.
These are solutions of the special form ce*x, where A is an eigenvalue of 4 and x
is its eigenvector; they satisfy the differential equation, since d/dt(ce*x) = A(ce*x).
(They were our introduction to eigenvalues, at the start of the chapter.) In this 2
by 2 example, there are two pure exponentials to be combined:

. R 1 ] -t
u(t) = cre™ixy + cex, or U= ¢ Y “ )]
1 —1 e ¢,

At time zero, when the exponentials are ¢ = 1, u, determines ¢, and c¢,:

1 1||c
Uy = C1 Xy + X, or Uy = r—1lle 1™ Sc.
"2

You recognize S, the matrix of eigenvectors. And the constants ¢ = S~ 'u, are the
same as they were for difference equations. Substituting them back into (2), the
problem is solved. In matrix form, the solution is

1 1fe 3 N
R G R

Here is the fundamental formula of this section: u = Se™S ™ tu, solves the differen-
tial equation, just as SA*S ™ 'u, solved the difference equation. The key matrices are

1 —t -
A= |: _3] and M= I:e e“J'
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There are two more things to be done with this example. One is to complete the
mathematics, by giving a direct definition of the exponential of a matrix. The other
is to give a physical interpretation of the equation and its solution. It is the kind
of differential equation that has useful applications.

First, we take up the exponential. For a diagonal matrix A it is easy; e just
has the n numbers e* on the diagonal (as in the display above). For a general
matrix A, the natural idea is to imitate the power series definition

xl 3
€:1+x+j+i+'”.
If we replace x by At and 1 by I, this sum is an n by n matrix:
A (Ar)?
(0?4

At _
e=1+4 At + 31 3

)

That is the exponential of At. The series always converges, and its sum has the
right properties:

(eAs)(eAt) — eA(s-H) (4)
(eYe " =1 5)
%(e’") = Ae™ (6)

From the last one, u = e?'u, solves the differential equation. This solution must
be the same as the form we used for computation, which was u = Se*'S~'u,,. To
prove directly that those solutions agree, remember that each power (SAS ™ !)* tele-
scopes into 4* = SA*S™! (because S~ ! cancels S). Therefore the whole exponential
is diagonalized at the same time:

SAZS™ 12 SA3S 13
2! + 3t +
(A1) (Ar)?

n T3

el =1+ SAS 't +

=S<1+Az+ +~->S1=SeA‘S‘1.

EXAMPLE The exponential of A = [ _1]is

1 1][e™ 1 1]71!
At _ S Atsfl —
SR | s (]
1 e*t + e—3t e—t_ e73t
:2|:et —e 3 ety e}t:l'
At t = 0 we get the identity matrix: ¢® = I. The infinite series e gives the answer
for all ¢, but it can be hard to compute. The form Se™'S ™! gives the same answer

when A can be diagonalized; there must be n independent cigenvectors in S. But
this form is much simpler, and it leads to a combination of n pure exponentials
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e*x—which is the best solution of all:

5L If A can be diagonalized, 4 = SAS ™, then the differential equation du/dr =
Au has the solution

W) = eMu, = 5eV8 'u,. (7)

The columns of S are the eigenvectors of A, so that

af=lx - x 5

Spelx ko b pe'y 8)

The general solution is a combination of pure exponentials, and the constants c;
that match the initial condition u, are ¢ = S~ 'u,.

This gives a complete analogy with difference equations—you could compare it
with 5G. In both cases we assumed that 4 could be diagonalized, since otherwise
it has fewer than n eigenvectors and we have not found enough special solutions.
The missing solutions do exist, but they are more complicated than pure expo-
nentials; they involve “generalized eigenvectors” and factors like te*’. Nevertheless
the formula u(f) = e*u, remains completely correct.t

The matrix e is never singular. One proof is to look at its eigenvalues; if 4 is
an eigenvalue of A, then e is the corresponding eigenvalue of e4*—and a number
like e* can never be zero. Another approach is to compute the determinant, which
is the product of the eigenvalues:

det eAt - emlelzl e e/l,,t i etrace(At).

Again, this cannot be zero. And the best way is to recognize e ' as the inverse,
from (5).

This invertibility is fundamental in ordinary differential equations, since it has
the following consequence: If n solutions are linearly independent at ¢t = 0, then
they remain linearly independent forever. If the initial vectors are v,, . . . , v,, We can
put the solutions e*'v into a matrix:

[e*'v, -+ efv,]=e[v, - v,].
The determinant of the left side is called the “Wronskian.” It never becomes zero,

because it is the product of two nonzero determinants. Both matrices on the right
are invertible.

T To compute this defective case we can use the Jordan form in Appendix B, and find ¢”".
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Remark Not all differential equations come to us as a first-order system du/dt =
Au. In fact, we may start from a single equation of higher order, like

y/// _ 3y// + 2y/ — 0

To convert to a 3 by 3 system, introduce v = y" and w = ¢’ as additional unknowns
along with y itself. Then these two equations combine with the original one to give

y=uv 0 1 0]y
vV=w or u=]0 0 1|t v |= Au.
w =3w— 20 0o -2 3w

We are back to a first-order system. The problem can therefore be solved in two
ways. In a course on differential equations, you would substitute y = e* into the
third-order equation:

(A* =322+ 20" =0 or AMA =14 —2)e* = 0.

The three pure exponential solutions are y = ¢, y = ¢', and y = ¢*. No eigen-
vectors are involved. In a linear algebra course, we proceed as usual for a first-
order system, and find the eigenvalues of A:

—i 1 0
det(A — A =| 0 1 |=-2+312-2i=0. 9)
0 -2 34

Again, the same three exponents appear: A = 0, 2 = 1, and 4 = 2. This is a general
rule, which makes the two methods consistent; the growth rates of the solutions
are intrinsic to the problem, and they stay fixed when the equations change form.
It scems to us that solving the third-order equation is quicker.

Now we turn to the physical significance of du/dr = Au, with A = [~ 1] It
is easy to explain and at the same time genuinely important. The differential
equation describes a process of diffusion, which can be visualized by dividing an
infinite pipe into four segments. The two in the middle are finite, and the two at
the ends are semi-infinite (Fig. 5.1). At time ¢ = 0, the finite segments contain con-
centrations v, and w, of some chemical solution. At the same time, and for all
times, the concentration in the two infinite segments is zero; with an infinite vol-
ume, this will be a correct picture of the average concentration in these infinite

\ \ Y
1 A A
concentrations 0 (‘ } v ( | w <J:' 0
} / /
L

Sy S, S, S,

Fig. 5.1. A model of diffusion.

e S—
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segments even after the chemical has started to diffuse. Diffusion starts at time
t =0, and is governed by the following law: At each time t, the diffusion rate be-
tween two adjacent segments equals the difference in concentrations. We are
imagining that, within each segment, the concentration remains uniform. The pro-
cess is continuous in time but discrete in space; the only unknowns are u(t) and
w(t) in the two inner segments S, and S,.

The concentration v is changing in two ways, by diffusion into the far left seg-
ment S, and by diffusion into or out of S,. The net rate of change is therefore

dv
dt

=w =10+ 0 —w)

because the concentration in S, is identically zero. Similarly,

dw
H?z(O—w)-%(v—w).

Therefore the system exactly matches our example du/dt = Au in equation (1):

v du —2v+w -2 1

u-[w:]’ dt—|:v—2w:|_|: 1 _2j|u.
The eigenvalues —1 and —3 will govern the behavior of the solution. They give
the rate at which the concentrations decay, and 4, is the more important because
only an exceptional set of starting conditions can lead to “superdecay” at the rate
e . In fact, those conditions must come from the eigenvector (1, — 1). If the ex-
periment admits only nonnegative concentrations, superdecay is impossible and
the limiting rate must be e ". The solution that decays at this rate corresponds to
the eigenvector (1, 1), and therefore the two concentrations will become nearly
equal as t — oo.

One more comment on this example: It is a discrete approximation, with only
two unknowns, to the continuous diffusion described by the partial differential
equation

ou  0%u

iyl u(0) = u(l) = 0.
That equation is approached by keeping the two infinite segments at zero con-
centration, and dividing the middle of the pipe into smaller and smaller segments,
of length 1/N. The discrete system with N unknowns is governed by

u, -2 1 U,

= C | = 4w (10)

Uy I =210 uy
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This is the finite difference matrix with the 1, —2, 1 pattern. The right side Au
approaches the second derivative d?u/dx?, after a scaling factor N> comes from
the flow problem. In the limit as N — oo, we reach the heat equation ou/ot = :
0%u/0x*. Tts solutions are still combinations of pure exponentials, but now there
are infinitely many. Instead of an eigenvector in Ax = Ax, we have an eigenfunc-
tion in d*u/dx* = Au; it is u = sin nnx. Then the solution to the heat equation is

0O
u(t) =Y c,e """ sin nnx.

n=1

The constants ¢, are determined as always by the initial conditions. The rates of
decay are the eigenvalues: 4, = —n?n% The normal modes are the eigenfunctions.
The only novelty is that they are functions and not vectors, because the problem
is continuous and not discrete.

Stability of Differential Equations

Just as for difference equations, it is the eigenvalues that decide how u(t) behaves
ast — o0. As long as 4 can be diagonalized, there will be n pure exponential solu-
tions to the differential equation, and any specific solution u(t) is some combination

u(t) = SeMS ug = ceM'x; + -+ + ¢ etix,

Stability is governed by the factors e*". If they all approach zero, then u(t) ap-
proaches zero; if they all stay bounded, then u(t) stays bounded; if one of them
blows up, then except for very special starting conditions the solution will blow
up. Furthermore, the size of ¢* depends only on the real part of A. It is only the
real parts that govern stability: If . = a + ib, then

e’ = e = ¢"(cos bt + i sin bt) and [e*] =%

This decays for a < 0, it is constant for a = 0, and it explodes for a > 0. The imag-
inary part is producing oscillations, but the amplitude comes from the real part.

5M The differential equation du/dt = Au is

stable and e*' — 0 whenever all Re 4, < 0
neutrally stable when all Re 4; < 0 and some Re 4, = 0
unstable and "' is unbounded if any eigenvalue has Re 4, > 0. |

In some texts the condition Re 4 < 0 is called asymptotic stability, because it guar-
antees decay for large times t. Our argument depended on having n pure expo-
nential solutions, but even if A is not diagonalizable (and there are terms like te?)

the result is still true: All solutions approach zero if and only if all eigenvalues
have a negative real part.
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Stability is especially easy to decide for a 2 by 2 system (which is very common
in applications). The equation is

du a b
= u’
dt c d
and we need to know when both eigenvalues of that matrix have negative real

parts. (Note again that the cigenvalues can be complex numbers.) The test for
stability is very direct:

The trace a + d must be negative.
The determinant ad — bc must be positive.

When the eigenvalues are real, those tests guarantee them to be negative. Their
product is the determinant; if it is positive, then the eigenvalues are both positive
or both negative. Their sum is the trace; if it is negative then the eigenvalues had
to be negative.

When the eigenvalues are a complex pair x + iy, the tests still succeed: the trace
is their sum 2x (which is <0) and the determinant is (x + ix —iy) = x? + y?
(which is >0). The figure shows the one stable quadrant, and it also shows the
parabolic boundary line between real and complex eigenvalues. The reason for
the parabola is in the equation for the eigenvalues:

det a— A b _ 12 _ (trace)i + (det) =0.
¢ d-1

This is a quadratic equation, so the eigenvalues are

A = [trace + /(trace)® — 4(det)]. 1

determinant
A
\ bothRe A <0 | bothRe A >0 /
\\ stable unstable //
N\ /
\\ b(é?}//
bothA <0 \\’11 =) ,Ce)l Z /" bothA >0
Stabl SR oW "
stable ~ e unstable
—» frace
}‘1 <0and 7»2 >0 : unstable

Fig. 5.2. Stability regions for a 2 by 2 matrix.
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Above the parabola, the number under the square root is negative—so 1 is not
real. On the parabola, the square root is zero and 4 is repeated. Below the parabola
it is real. Every symmetric matrix is on or below, since if b = ¢ then

(trace)® — 4(det) = (a + d)* — 4(ad — b?) = (a — d)* + 4b2 > 0.

Complex eigenvalues are possible only when b and ¢ have opposite signs and are
sufficiently large.

AN EXAMPLE FROM EACH QUADRANT:

1 0 -1 0 1 0 -1 0
oo 7o Lo 2] (o 2]
On the boundaries of the second quadrant the equation is neutrally stable. Crossing
those boundaries gives instability. On the horizontal axis one eigenvalue is zero
(because the determinant is 4,4, = 0). On the vertical axis above the origin, both
eigenvalues are pure imaginary (because the trace is zero). Those crossings are the
two fundamental ways in which stability can be lost.

The n by n case is more difficult. To find a condition that is both necessary and
sufficient for stability-—a full test for Re 2; < 0—there are two possibilities.
Onc is to go back to Routh and Hurwitz, who found a series of incqualities on
the entries a;;. [ do not think this approach is much good for a large matrix; the
computer can probably find the eigenvalues with more certainty than it can test
these inequalities. The other possibility was discovered by Lyapunov in 1897. [t
is to find a weighting matrix W so that the weighted length I Wu(t)|| is always
decreasing. If there exists such a W, then u' = Au must be stable; || Wu H will de-
crease steadily to zero, and after a few ups and downs u must get there too. The real
value of Lyapunov’s method is in the case of a nonlinearity, which may make the
equation impossible to solve but still leave a decreasing | Wu(r) | -—so that stability
can be proved without knowing a formula for u(z).

EXAMPLE 1 du/dr = [{ ~}]u sends u around a circle.

Since trace = 0 and det = 1, we have pure imaginary eigenvalues:

—s -1 .
‘ | )‘:/12—}-1:0 so A= +iand —i.
The eigenvectors are (1, —i) and (1, §), and the solution is

u(ty = cle"l:_li] + Cze"[ll].
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That is correct but not beautiful. By substituting cos t + i sin ¢t for ¢ (and cos t —
i sin t for e ") real numbers will reappear:
¢y +cy)cost +ilc; —c¢,y)sint
| et ed (€1 — ) sin ] )
—i(lcy —cy)cost +(c; +¢,)sint

At t =0, where cos t = 1, this should agree with u, = [¢]. Therefore the numbers
a and b must multiply cos ¢, and u(t) ends up as

acost—bsint cost —sint [|a
u(t) = . = . . (13)

bcost+ asint sin t cost || b
There we have something important! The last matrix is multiplying u,, so it must
be the exponential e*'. (Remember that the solution is u = e*'u,.) That matrix of

cosines and sines is our leading example of an orthogonal matrix. The columns have

length one, their inner product is zero, and we have a confirmation of the following
wonderful fact:

If A is skew-symmetric then ¢*' is an orthogonal matrix.

These are exactly the matrices for conservative systems, when no energy is lost by
damping or diffusion:

| AT= -4 and  (e!)T =e™ ¥ and e uo| = |uo]. I

That last equation expresses an essential property of orthogonal matrices. When
they multiply a vector, the length is not changed. The vector u, is just rotated, and
that describes the solution to du/dt = Au: It goes around in a circle.

In this very unusual case, e®’ can also be recognized directly from the infinite
series. Note that A = [ ~}] has A2 = —1I, and use this over and over:

(At (A1)
Moy I A
¢ Tt g

t2 [3
(1_2+.”> <_t+v6_”.> _{cost —sint
. 3 | t2+._. sint  cost
6 T 2

EXAMPLE 2 The diffusion equation du/dt = [~ _1]u was stable, with 1 = —1
and 4 = —3.

EXAMPLE 3 If we close off the infinite segments, nothing leaves the system:

du [—l 1] dv/dt = w — v
= u or

dt 1 —1 dw/dtr =v —w
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This is a continuous Markov process. Instead of moving every year, the particles i
move every instant. Their total number v + w is constant. That comes from adding k
the two equations on the right: d/dt (v + w) = 0. .

A Markov matrix has its column sums equal to 4., = 1. A continuous Markov
matrix, for differential equations, has its column sums equal to 4_,, =0. A is a
Markov matrix if and only if B = A4 — I is a continuous Markov matrix. The steady
state for both is the eigenvector for 4,,,,. [t is multiplied by 1* = 1 in difference equa-
tions and by % = 1 in differential equations, and it doesn’t move.

In the example the steady state has v = w.

A . N

EXAMPLE 4 In nuclear engineering a reactor is called critical when it is neutrally
stable; the fission balances the decay. Slower fission makes it stable, or subcritical,
and eventually it runs down. Unstable fission is a bomb.

-

Second-Order Equations

o

The laws of diffusion led to a first-order system du/dt = Au. So do a lot of
other applications, in chemistry, in biology, and elsewhere, but the most important
law of physics does not. It is Newton’s law F = ma, and the acceleration a is a |
second derivative. Inertial terms produce second-order equations (we have to solve :
d*u/d1®> = Au instead of du/dt = Au) and the goal is to understand how this change ,
to second derivatives alters the solution.t It is optional in linear algebra, but not '

in physics.
The comparison will be perfect if we keep the same A:
d*u -2 1 }
ar = [ ! -2] “ @

Two initial conditions have to be specified at t = 0 in order to get the system
started——the “displacement” u = u,, and the “velocity” du/dt = u;,. To match these
conditions, there will be 2n pure exponential solutions instead of n.

Suppose we use w rather than 4, and write these special solutions as u = ¢'x.
Substituting this exponential into the differential equation, it must satisfy

2

i (e'x) = A(e'“'x), or —w’x = Ax. (15)

The vector x must be an cigenvector of A, exactly as before. The corresponding
eigenvalue is now —w?, so the frequency w is connected to the decay rate 4 by the
law —w? = 4. Every special solution e*x of the first-order equation leads to two
special solutions ¢"'x of the second-order equation, and the two exponents are

+ Fourth derivatives are also possible, in the bending of beams, but nature seems to resist
going higher than four.
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W= J_r\/ji. This breaks down only when 4 = 0, which has just one square root;
if the eigenvector is x, the two special solutions are x and fx.

For a genuine diffusion matrix, the eigenvalues 4 are all negative and therefore
the frequencies w are all real: Pure diffusion is converted into pure oscillation. The
factors €' produce neutral stability, the solution neither grows or decays, and the
total energy stays precisely constant. It just keeps passing around the system. The
general solution to d*u/dt> = Au, if A has negative eigenvalues 4, ..., A, and if

is

w; =+ —4

J J?

u(t) = (c, €™ + dye x4+ (e + de T, (16)
As always, the constants are found from the initial conditions. This is easier to

do (at the expense of one extra formula) by switching from oscillating exponentials
to the more familiar sine and cosine:

I u(t) = (a; cos wt + by sin w;t)x; + - + (a, cos w,t + b, sin w,t)x,. ] (17)

The initial displacement is easy to keep separate: t = 0 means that sin wf = 0 and
cos wt = 1, leaving only

Uy = a1X; + " + a,x,, or Uy = Sa, or a=S""u,.

The displacement is matched by the d’s; it leads to S~ 'u, as before. Then differ-
entiating u(¢) and setting t = 0, the b’s are determined by the initial velocity:

g =bwx + - + b,w,x,.

Substituting the a’s and b’s into the formula for u(z), the equation is solved.

We want to apply these formulas to the example. Its eigenvalues were A, = — 1
and 4, = — 3, so the frequencies are w; = 1 and w, = \/§ If the system starts from
rest (the initial velocity u is zero), then the terms in b sin ot will disappear. And if
the first oscillator is given a unit displacement, uy, = a,x, + a,x, becomes

1 1 1 .
0 = a, 1 + a, IRE or a; =a, =3.

Therefore the solution is

u(t) = % cos t[ﬂ + % cos ﬁt[ﬂ

We can interpret this solution physically. There are two masses, connected to
each other and to stationary walls by three identical springs (Fig. 5.3). The first
mass is pushed to v, = 1, the second mass is held in place, and at r = 0 we let go.
Their motion u(t) becomes an average of two pure oscillations, corresponding to
the two eigenvectors. In the first mode, the masses move exactly in unison and
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0009 1 @Qﬂ_ _Q.QL@—_: 000 :{2}9&0_

@ w,=1,x, = [::l (b) @, =+/3,x, = [_ﬂ

Fig. 5.3. The slow and fast modes of oscillation.

the spring in the middle is never stretched (Fig. 5.3a). The frequency w,; = 1 is the
same as for a single spring and a single mass. In the faster mode x, = (1, —1),
with components of opposite sign and with frequency /3, the masses move in
opposite directions but with equal speeds (Fig. 5.3b). The general solution is a
combination of these two normal modes, and our particular solution is half of
each.

As time goes on, the motion is what we call “almost periodic.” If the ratio w,/w,
had been a fraction, the two masses would eventually return to v =1 and w = 0,
and then begin the whole pattern again. A combination of sin 2t and sin 3t would

have a period of 27. But since \ﬁ is irrational, the best we can say is that the
masses will come arbitrarily close to reproducing the initial situation. They also
come close, if we can wait long enough, to the opposite situation v = 0 and w = 1.
Like a billiard ball bouncing forever on a perfectly smooth table, the total energy
is fixed. Sooner or later the masses come near any state with this energy.

Again we cannot leave the problem without drawing a parallel to the continuous
case: Instead of two masses, or N masses, there is a continuum. As the discrete
masses and springs merge into a solid rod, the “second differences” given by the
matrix coefficients 1, —2, 1 turn into second derivatives. This limit is described
by the celebrated wave equation 6*u/ot* = 6*u/ox>.

EXERCISES

5.4.1 Following the first example in this section, find the eigenvalues and eigenvectors
and the exponential e?' for
-1 1
A= .
1 -1

5.4.2 For the previous matrix write down the general solution to du/dt = Au, and the
specific solution that matches u, = (3, 1). What is the steady state as t — o0? (This
is a continuous Markov process; 4 = 0 in a differential equation corresponds to
to 4 =1 in a difference equation, since ¢” = 1.)



5.4 Differential Equations and the Exponential e 287

543

5.4.4

5.4.5

5.4.6

5.4.7

5.4.8

Suppose the time direction is reversed to give the matrix — 4:

du I —1 ith 3
_ = 1 = .
7 I R S Rl

Find u(t) and show that ir blows up instead of decaying as t — oo. (Diffusion is
irreversible, and the heat equation cannot run backward.)

If P is a projection matrix show from the infinite series that

e’ ~ 1+ 1.718P.

A diagonal matrix like A = [} 9] satisfies the usual rule eA* " = ¢MeAT because
the rule holds for each diagonal entry.

{a) Explain why 40" ") = 47 yusing the formula ¢4 = SerS ™1,

{b) Show that e**® = e4¢® is nor true for matrices, from the example

y 00
lr o0
The higher order equation y” + y = 0 can be written as a first-order system by
introducing the velocity y’ as another unknown:

dl y/ y// _y -
If this is du/dt = Au what is the 2 by 2 matrix 4? Find its eigenvalues and eigen-
vectors and compute the solution which starts from y, = 2, y;, = 0.

0 —1
B= [0 0} (use series for ¢4 and %)

Convert y” = 0 to a first-order system du/dt = Au:

diy| _{¥y|_ 10 U]y
daly] o] o of|y]
This 2 by 2 matrix A4 is defective (it has only one eigenvector and cannot be

diagonalized). Compute e*' from the series [ + At + - - - and write down the solu-
tion e*'u, starting from y, = 3, y;, = 4. Check that your u = [3-] satisfies ¥ = 0.

Suppose the rabbit population r and the wolf population w are governed by

ﬂ:4r-2w
dt ’
dw
‘dTZV-‘rW.

(a) Is this system stable, neutrally stable, or unstable?
(b) If initially r = 300 and w = 200, what are the populations at time t?
(c) After a long time, what is the proportion of rabbits to wolves?
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5.4.9

5.4.10

541

5.4.12

5.4.13

5.4.14

5.4.15

5 Eigenvalues and Eigenvectors

Decide the stability of v’ = Au for the following matrices:

2 3 12
@ AZL J (o) A:& —J

1 1 -
© A:L ~J @ A:L4 AJ

Decide on the stability or instability of dv/dt = w, dw/dt = v. Ts there a solution
that decays?

From their trace and determinant, at what time ¢ do the following matrices change
between stable with real eigenvalues, stable with complex eigenvalues, and unstable?

A~—1 —1 p [0 4—¢ L] -
LN P I S D T r|

Find the eigenvalues and eigenvectors for

0 3 0
du
E*Au= -3 0 4 lu
0 —4 0

Why do you know, without computing, that e will be an orthogonal matrix and
[w(®)||* = w3 + u3 + u3 will be constant?

For the skew-symmetric equation

0 ¢ —=bl|u

(a) write out uy, uy, 3 and confirm that w\u, + ubu, + uiu; =0

(b) deduce that the length u? + u3 + u? is a constant

(c) find the eigenvalues of A.

The solution will rotate around the axis w = (q, b, ), because Au is the “cross
product” u x w—which is perpendicular to u and w.

What are the eigenvalues 4 and frequencies w for

d*u -5 4
—_—= u?
dt? 4 -5

Write down the general solution as in equation (17).

Solve the second-order equation

d*u -5 -1 . 1 , 0
221 s u with u, = 0 and uy = ol
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5.4.16

5.4.17

5.4.18

5.4.19

5.4.20

In most applications the second-order equation looks like Mu” + Ku = 0, with a
mass matrix multiplying the second derivatives. Substitute the pure exponential
u = ¢"'x and find the “generalized eigenvalue problem” that must be solved for the
frequency w and the vector x.

With a friction matrix F in the equation u” + Fu' — Au = 0, substitute a pure ex-
ponential u = e*x and find a quadratic eigenvalue problem for 1.

For equation (14) in the text, with frequencies 1 and \/5, find the motion of the second
mass if the first one is hit at t = 0; u, = [5] and u, = [{].

A matrix with trace zero can be written as

a b+c
A= .
l:b—c —a:|

Show that its eigenvalues are real exactly when a? + b* > 2.

By back-substitution or by computing eigenvectors, solve

1 21 1

du .

—=1{0 3 6|u with u,=10].
0 0 4 1

dt
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5.5 B COMPLEX MATRICES: SYMMETRIC VS. HERMITIAN
AND ORTHOGONAL VS. UNITARY

It is no longer possible to work only with real vectors and real matrices. In the
first half of this book, when the basic problem was Ax = b, it was certain that x
would be real whenever A and b were. Therefore there was no need for complex
numbers; they could have been permitted, but would have contributed nothing
new. Now we cannot avoid them. A real matrix has real coefficients in its char-
acteristic polynomial, but the eigenvalues (as in rotations) may be complex.

We shall therefore introduce the space C” of vectors with n complex components.
Addition and matrix multiplication follow the same rules as before. But the length
of a vector has to be changed. If |x||* = x{ + -+ + x7, the vector with compo-
nents (1, i) will have zero length: 12 + i? = 0. Instead its length should be \/2; the
length squared is 17 + |i|%. This change in the computation of length forces a whole
series of other changes. The inner product of two vectors, the transpose of a
matrix, the definitions of symmetric, skew-symmetric, and orthogonal matrices, all
need to be modified in the presence of complex numbers. In every case, the new
definition coincides with the old when the vectors and matrices are real.

We have listed these changes at the end of the section, and that list virtually
amounts to a dictionary for translating between the real and the complex case.
We hope it will be useful to the reader. It also includes, for each class of matrices,
the best information known about the location of their eigenvalues. We particularly
want to find out about symmetric matrices: Where are their eigenvalues, and what
is special about their eigenvectors? For practical purposes, those are the most
important questions in the theory of eigenvalues, and we call attention in advance
to the two main results:

1. A symmetric matrix has real eigenvalues.
2. Its eigenvectors can be chosen orthonormal.

Strangely, to prove that the eigenvalues are real we begin with the opposite
possibility—and that takes us to complex numbers and complex vectors and com-
plex matrices. The changes are easy and there is one extra benefit: We find some
complex matrices that also have real eigenvalues and orthonormal eigenvectors.
Those are the Hermitian matrices, and we see below how they include—and share
all the essential properties of—real symmetric matrices.

Complex Numbers and Their Conjugates

Probably the reader is already acquainted with complex numbers; but since only
the most basic facts are needed, a brief review is easy to give.t Everyone knows
that whatever i is, it satisfies the equation i = — 1. It is a pure imaginary number,
and so are its multiples ib; b is real. The sum of a real and an imaginary number

T The important ideas are the complex conjugate and the absolute value.
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imaginary axis
b4 r=la+ibl ga+ib= re'®

2
P=d’+ b

0 b
tangent of 6 = 7

a real axis

6

-h—+ b a—th=a+ib=rc

Fig. 5.4. The complex plane, with a complex number and its conjugate.

is a complex number a + ib; and it is plotted in a natural way on the complex
plane (Fig. 5.4).

The real numbers (for which b = 0) and the imaginary numbers (a = Q) are
included as special cases of complex numbers; they lie on one coordinate axis or
the other. Two complex numbers are added by

(@+ib)+(c+id)y="(a+c)+ih+d),
and multiplied using the rule that i = —1:
(a + ib)(c + id) = ac + ibc + iad + i*bd = (ac — bd) + i(bc + ad).

The complex conjugate of a + ib is the number a — ib, with the sign of the
imaginary part reversed. Geometrically, it is the mirror image on the other side of
the real axis; any real number is its own conjugate. The conjugate is denoted by
a bar, a + ib = a — ib, and it has three important properties:

(1) The conjugate of a product equals the product of the conjugates:

(a + ib)(c + id) = (ac — bd) — i(bc + ad) = (a + ib) (c + id). (1)

(2) The conjugate of a sum equals the sum of the conjugates:

@roribtrd)=(@+c)—ib+d)=(a+ib)+(c + id).

(3) Multiplying any a + ib by its own conjugate a — ib produces a real number,
which is the square of the hypotenuse in Fig. 5.4:

(a+ib)(a — ib) = a* + b2 = 2. 2)

This distance r is called the absolute value of the original a + ib (or the modulus),
and it is denoted by vertical bars: |a + ib| = r = \Ja* + b°.
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Finally, trigonometry connects the sides a and b to the hypotenuse r by
a=rcos6, b=rsinb.
By combining these equations, we move into polar coordinates:
a + ib = r(cos 0 + i sin 0) = re®. (3)

There is an important special case, when the modulus r equals one. Then the com-
plex number is just ¢ = cos 8 + isin 6, and it falls on the wunit circle in the
complex plane. As 0 varies from 0 to 27, this number €” circles around the origin

at the constant radial distance |¢’| = \/cos®0 + sin*6 = 1.

EXAMPLE x = 3 + 4i times its conjugate X is the absolute value squared:
xX=(3+4)3—-4i)=25=|x]> so r=|x =5
To divide by 3 + 4i, multiply numerator and denominator by its conjugate:

240 2+4i3—4 10-5i
3+4i 3+4i3—4i 25

In polar coordinates multiplication and division are easy:

r,e" times r,e? has absolute value r,r, and angle 6, + 0,
r, e divided by r,e? has absolute value r, /r, and angle 8, — 0,.

Lengths and Transposes in the Complex Case

We return to linear algebra, and make the conversion from real to complex.
The first step is to admit complex vectors, and that is no problem: By definition,
the space C" contains all vectors x with n complex components:

Vectors x and y are still added component by component, but scalar multiplica-
tion is now done with complex numbers. As before, the vectors vy, ..., v, are
linearly dependent if some nontrivial combination ¢,v, + - - - + ¢, produces the
zero vector; the ¢; may now be complex. The unit coordinate vectors are still in
C"; they are still independent; and they still form a basis. Therefore C" is also a
vector space of dimension n.

We have already emphasized that the definition of length has to be changed. The
square of a complex number is not necessarily positive, and ||x||> = x} + - + x7
is of no use. The new definition is completely natural: x? is replaced by its modulus
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|x;|%, and the length satisfies

LIl =[x+ + [P )

EXAMPLES x = [ﬂ and [x]|*=2 y= [221-4;] and | y||* = 25.

For real vectors there was a close connection between the length and the inner
product: |x[* = x"x. This connection we want to preserve. Therefore the inner
product must be modified to match the new definition of length, and the standard
modification is to conjugate the first vector in the inner product. This means that
x is replaced by X, and the inner product of x and y becomes

l ’ny = flyl + 0+ fnyn‘ (5)

A typical inner product in C? has x = (1 + i, 3i)) and y = (4, 2 — i)
y=(01-i4+(-3)2-i)=1-—10i
And if we take the inner product of x with itself, we are back to the length squared:
x=01+)1+)+3@)3)=2+9= x])%.

Note that y'x is different from x"y; from now on we have to watch the order of
the vectors in inner products. And there is a further novelty: If x is changed to
cx, then the inner product of x and y is multiplied not by ¢, but by ¢.

This leaves only one more change to make. It is a change in notation more than
anything else, and it condenses two symbols into one: Instead of a bar for the
conjugate and a T for the transpose, these operations are combined into the con-
Jugate transpose, and denoted by a superscript H. Thus X7 = x", and the same
notation applies to matrices: The conjugate transpose of A4 is

AT =AM, with entries (4"); = Aj. (6)

If A is an m by n matrix, then 4" is n by m. For example,

5 3
4+: " _|:2~i 4+i o]
0 0 —3i 5 0

This symbol A" gives official recognition of the fact that, with complex entries, it
is very seldom that we want only the transpose of 4. It is the conjugate transpose,
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or Hermitian transpose, which becomes appropriate in virtually every case.t The
modifications required by complex numbers are easily summarized:

5N (i) The inner product of x and y is x"y, and they are orthogonal if x"y = 0.
(i) The length of x is [x] = (x"x)'2.
(iii) (AB)" = B"A", after conjugating every entry, turns into (4B)" = B AH,

Hermitian Matrices

We spoke in earlier chapters about symmetric matrices: 4 = AT. Now, in the
presence of matrices with complex entries, this idea of symmetry has to be ex-
tended. The right generalization is not to matrices that equal their transpose, but
to matrices that equal their conjugate transpose. These are the Hermitian matrices,

and a typical example is
2 3—-3i
A= =AY, 7

[3 + 3i 5 :I @

Notice that the diagonal entries must be real; they have to be unchanged by the
process of conjugation. Each off-diagonal entry is matched with its mirror image
across the main diagonal, and 3 — 3i is the conjugate of 3 + 3i. In every case a;; =
a;. This example will illustrate the three basic properties of Hermitian matrices.

Our main goal is to establish those three properties, and it needs to be emphasized
again that they apply equally well to symmetric matrices. A real symmetric matrix
is certainly Hermitian. For real matrices there is no difference between AT and A":
the key question is whether transposing the matrix leaves it unchanged. If so, its
eigenvalues are real—as we now prove.

Property 1 If A4 = 4", then for all complex vectors x, the number x"Ax is real.

There is a contribution to x"4x from every entry of A4:

2 3-3i||u
HA =lu U
A=l L][3+3i 5 ][J

= 2uu + Svv + (3 — 3i)uv + (3 + 3i)uv.

The “diagonal terms” are real, because 2iu = 2|u|* and 5tv = 5|v|2. The off-diagonal
terms are complex conjugates of one another, so they combine to give twice the
real part of (3 — 3i)iv. Therefore the whole expression x"Ax is real.

T The matrix A" is often referred to as “4 Hermitian.” You have to listen closely to
distinguish that name from the phrase “A is Hermitian,” which means that A equals AP,




————

o

5.5 Complex Matrices: Symmetric vs. Hermitian and Orthogonal vs. Unitary 295

For a proof in general, we can compute (x"4x)". We should get the conjugate
of the 1 by 1 matrix x"4x, but we actually get the same number back again:
(xMAx)H = xHAHXHH — xH 4% So that number must be real.

Property 2 Every eigenvalue of a Hermitian matrix is real.

Proof Suppose 41is an eigenvalue, and x is a corresponding eigenvector: Ax = Ax.
Then the trick is to multiply by x": x" Ax = Jx"x. The left side is real by Property
1, and the right side x"x = ||x||? is real and positive, because x # 0. Therefore A

must be real. In our example, A =8 or A = —1:
2—41 3-3i
A— — — 2 1 o o =12
| M| ‘3+3i s_ 3 A* =74+ 10— |3 — 3j
=A—TAi—8=(A—8)(A+1). (8)

Note It seems that the proof could be made easier when A4 is real:

K
is real.

Ax =Ix gives xTAx=2x"x, so A="r
%

But that looks OK for any real matrix, and there must be a catch: The eigenvector
x might be complex. It is only when A = A" that we can be sure A and x stay
real. More than that, the eigenvectors are perpendicular: x"y = 0 in the real sym-
metric case and x"y = 0 in the complex Hermitian case.

Property 3 The eigenvectors of a real symmetric matrix or a Hermitian matrix, if
they come from different eigenvalues, are orthogonal to one another.

The proofstarts with the information given, Ax = 4, xand Ay = A,yand 4 = A™:
(41%)"y = (Ax)y = x4y = x*(4,y). ©)

The outside numbers are 4,x"y = 1,x"y, since the 1’s are real. Now we use the
assumption A, # 4,, which forces the conclusion that x"y = 0. In our example,

| =6 3-=3i|[x;| [0 B 1
(ASI)X_[3+31' -3 :||:x2:|_[0} _[1+i]

e | 3 33w [0 [
Mrhy=13 43 6}}*2_0:]’ S 0

These two eigenvectors are orthogonal:

Hy=[1 1- i][l__l l] =0.
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Of course any multiples x/a and y/f would be equally good as eigenvectors.
Suppose we pick o = | x| and f = |y|, so that x/a and y/B are unit vectors; the
eigenvectors have been normalized to have length one. Since they were already
orthogonal, they are now orthonormal. If they are chosen to be the columns of S,
then (as always, when the eigenvectors are the columns) we have S™1AS = A. The
diagonalizing matrix has orthonormal columns.

In case A4 is real and symmetric, its eigenvalues are real by Property 2. Its eigen-
vectors are orthogonal by Property 3. Those eigenvectors are also real (they solve
(A — Alx = 0 as in the nullspace of Chapter 2) and their lengths can be normalized
to 1. Therefore they go into an orthogonal matrix: ]

If A = A", the diagonalizing matrix S can be an orthogonal matrix Q.

Orthonormal columns are equivalent to QTQ = I or QT = Q~!. The usual dia- ]
gonalization S™'A4S = A becomes special—it is 0 'A4Q = A or A = QAQ ! = {
QAQ". We have reached one of the great theorems of linear algebra: i

50 A real symmetric matrix can be factored into 4 = QAQ"—with the ortho- |
normal eigenvectors in Q and the eigenvalues in A.

In geometry or mechanics, this is the principal axis theorem. It gives the right
choice of axes for an ellipse. Those axes are perpendicular, and they point along the
eigenvectors of the corresponding matrix. (Section 6.2 connects symmetric matrices
to n-dimensional ellipses.) In mechanics the eigenvectors give the principal direc-
tions, along which there is pure compression or pure tension—in other directions q
there is “shear.”

In mathematics the formula A = QAQT is known as the spectral theorem. If we
multiply columns by rows, the matrix 4 becomes a combination of one-dimensional
projections—which are the special matrices xx" of rank one: !

Ay

X1

A = Q./\QT = xl Xn

An x)
" " T
= Alxlx}- + ’{ZXZX;- + o + /‘nxnxn' (10)

Our 2 by 2 example has eigenvalues 3 and 1:

2 -1 7 —%
EXAMPLE A — =3 T 7%
-1 2 -3 2

[STE ST
Bf= M=
I
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The eigenvectors, with length scaled to one, are

S I

Then the matrices on the right side are x;xT and x,x]—columns times rows—and
they are projections onto the line through x; and the line through x,.

We empbhasize that this is the same diagonalization 4 = SAS ! as always. It has
been specialized to S =Q and §™' = Q", and then split apart to give a piece
from each eigenvector. The result is to build all symmetric matrices out of one-
dimensional projections—which are symmetric matrices of rank one.

Remark 1f a matrix is real and its eigenvalues happen to be real, then its cigen-
vectors are also real. They solve (4 — AI)x = 0 and can be computed by elimination.
But they will not be orthogonal unless A is symmetric: A = QAQT leads to AT = A.

If the matrix is real but some eigenvalues are complex, those eigenvalues come
in conjugate pairs. If a + ib is an eigenvalue of a real matrix, so is a — ib. The deter-
minant of A — I is a polynomial with real coefficients, and for such polynomials
the complex roots are paired. In the 2 by 2 case the quadratic formula contains
+(b% — dac)V2.

‘ Note Strictly speaking, the spectral theorem 4 = QAQ" has been proved only
when the eigenvalues of 4 are distinct. Then there are certainly n independent eigen-
vectors, and A can be safely diagonalized. Nevertheless it is true (see Section 5.6)
that even with repeated eigenvalues, a symmetric matrix still has a complete set of
orthonormal eigenvectors. The extreme case is the identity matrix, which has 2 = 1
repeated n times—and no shortage of eigenvectors.

To finish the complex case we need the analogue of a real orthogonal matrix—
and you can guess what happens to the requirement Q'Q = I. The transpose will
be replaced by the conjugate transpose. The condition will become UMU = [. The
new letter U reflects the new name: 4 complex matrix with orthonormal columns
is called a unitary matrix.

Unitary Matrices

May we propose an analogy? A Hermitian matrix can be compared to a real
number, and a unitary matrix can be compared to a number on the unit circle a
complex number of absolute value 1. For the eigenvalues this comparison is more
than an analogy: The A’s are real if A" = A, and they are on the unit circle if
UMU = I. The eigenvectors are orthogonal, and they can be scaled to unit length
and made orthonormal.t

t Later we compare “skew-Hermitian™ matrices with pure imaginary numbers, and
“normal” matrices with complex numbers a + ib. A matrix without orthogonal eigenvectors
belongs to none of these classes, and is outside the whole analogy.
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Those statements have been confirmed for Hermitian (including symmetric)
matrices. They are not yet proved for unitary (including orthogonal) matrices.
Therefore we go directly to the three properties of U that correspond to the earlier
Properties 1-3 of A. Remember that U has orthonormal columns:

UHU =1, or Ui =1, or A=
This leads directly to Property 1, that multiplication by U has no effect on inner

products or angles or lengths. The proof is on one line, just as it was for Q:

Property 1 (Ux)!(Uy) = x"U"Uy = x"y and (by choosing y = x) lengths are
preserved:

JUx]* = fx]*. (1)
The next property locates the eigenvalues of U; each A is on the unit circle.
Property 2 Every eigenvalue of U has absolute value || = 1.

This follows directly from Ux = Ax, by comparing the lengths of the two sides:
|Ux| = |x|| by Property 1’, and always |ix| = |4| |x||. Therefore || = 1.

Property 3' Eigenvectors corresponding to different eigenvalues are orthogonal.

The proof assumes Ux = A,x, Uy = 4,y, and takes inner products by Property 1"
xfy = (Ux)H(Uy) = (4, x)"(4,y) = Z,4,xHy.

Comparing the left to the right, either 2,4, = 1 or x"'y = 0. But Property 2'is 2,4, =
€ 142 perty 141

1, so we cannot also have A;4, = 1. Thus x"y =0 and the eigenvectors are
orthogonal.

cost —sint
EXAMPLE1 U = [ :|

sin t cost

The eigenvalues of these rotations are " and e~ ", of absolute value one. The eigen-
vectors are x = (1, —i) and y = (1, i) which are orthogonal. (Remember to take
conjugates in x"y = 1 + i = 0!) After division by /2 they are orthonormal, and
the diagonalization of U is

cost —sint]| 1 1 1]]e* 1 [1 i
sin ¢ cos t _\/5 —i i e | f2ll —i]
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Notice that the signs on i and —i were reversed when transposing. In fact the right
side is a product of three unitary matrices, and it produces the unitary matrix on
the left. The next example is, among all complex matrices, the most important one
that is unitary.

1 1 : 1

. . F 1 woo- owhl
EXAMPLE 2 The Fourier matrix U = —

1
NN

1 Wn~1 . W(n—l)2

The factor \/ﬁ shrinks the columns into unit vectors. (Every entry has absolute value
1, so each column of the original F has length \/;1.) The fact that UBU = I is the
fundamental identity of the finite Fourier transform, and we recall the main point
from Section 3.5:

: 1
row 1 of UM times column 2of Uis —(1 + w4+ w? + -4+ w" 1) =0.
n

. 1
row i of UM times columnjof Uis—(1 + W+ W2 +---+ W" 1) =0.
n

In the first case, the complex number w is an nth root of 1. It is on the unit circle,
at the angle § = 2n/n. Tt equals ™", and its powers are spaced evenly around the
circle. That spacing assures that the sum of all n powers of w—all the nth roots of
1—is zero. Algebraically the sum is (w" — 1)/(w — 1) and w" — 1 is zero.

In the second case Wis a power of w. It is w/~‘ and it is again a root of unity.
It is not the root at 1, because we are looking off the diagonal of U"U and therefore
j # i. The powers of W again add to (W" — 1)/(W — 1) = 0.

Thus U is a unitary matrix. Earlier we wrote down its inverse—which has exactly
the same form except that w is replaced by w™! = ¢~ = w. Now we recognize what
happened. Since U is unitary, its inverse is found by transposing (which changes
nothing) and conjugating (which changes w to ). The inverse of this U is U.

By property 1’ of unitary matrices, the length of a vector x is the same as the
length of Ux. The energy in state space equals the encrgy in transform space. The
energy is the sum of |x;|%, and it is also the sum of the energies in the separate “har-
monics.” A vector like x = (1, 0, . . ., 0) contains equal amounts of every frequency

component, and Ux = (1, 1,..., 1)/ﬁ also has length one.
We recall that Ux can be computed quickly by the Fast Fourier Transform.

EXAMPLE 3

0
0
0
1

oo O =
(=
S - O O
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This is an orthogonal matrix, so by Property 3’ it must have orthogonal eigen-
vectors. They are the columns of the Fourier matrix! Its eigenvalues must have
absolute value 1. They are the numbers 1, w, ..., w"~ ! (or 1, i, i2, i in this 4 by
4 case). It is a real matrix, but its eigenvalues and eigenvectors are complex.

One final note. Skew-Hermitian matrices satisfy K" = — K just as skew-sym-
metric matrices satisfy K* = — K. Their properties follow immediately from their
close link to Hermitian matrices:

If A is Hermitian then K = iA is skew-Hermitian.

The eigenvalues of K are purely imaginary instead of purely real; we muitiply by
i. The eigenvectors are not changed. The Hermitian example on the previous pages

would lead to
2i 3430
K=i4= = —KH
l [—3+3i 5i }

The diagonal entries are multiples of i (allowing zero). The eigenvalues are 8i
and —i. The eigenvectors are still orthogonal, and we still have K = UAUY—
with a unitary U instead of a real orthogonal Q, and with 8 and —i on the
diagonal of A.

This section is summarized by a table of parallels between real and complex.

Real versus Complex

R" = space of vectors with « C" = space of vectors with
n real components n complex components

length: x> = x7 + - + x7 < length: |x[2 =[x, + - - + |x,|?
transpose: Af; = A; <> Hermitian transpose: Al = A_J,
(AB)" = BTA" <> (AB = BHgH
inner product: xTy = x,y, + - - + x,y, > inner product: x*y = Xyt X
(Ax)'y = xT(4Ty) & (Ax)"y = xM(4My)
orthogonality: xTy = 0 «» orthogonality: x%y = 0
symmetric matrices: AT = A < Hermitian matrices; A" = 4
A=Q0A07 ' = QAQ" (real A) = A = UAU "' = UAUM (real A)

skew-symmetric matrices: KT = — K «» skew-Hermitian matrices: K" = — K
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orthogonal matrices: Q7Q = I or Q' = Q! «» unitary matrices: U"U =T or U" = U ™!
(0x)"(Qy) = x"y and |Qx]|| = [[x]| & (UxyY(Uy) = x"y and [|Ux| = ||x]

The columns, rows, and eigenvectors of Q and U are orthonormal, and every M =1

EXERCISES

55.1 For the complex numbers 3 + 4iand 1 — i
, (a) find their positions in the complex plane;
(b) find their sum and product;
(c) find their conjugates and their absolute values.
Do they lie inside or outside the unit circle?

55.2 What can you say about

(i) the sum of a complex number and its conjugate?
(ii) the conjugate of a number on the unit circle?
(iif) the product of two numbers on the unit circle?
(iv) the sum of two numbers on the unit circle?

5§53 Ifx=2+iand y=1+ 3i find X, x%, xy, 1/x, and x/y. Check that the absolute
value |xy| equals |x| times |y, and the absolute value |1/x| equals 1 divided by |x|-

554 Find a and b for the complex numbers a + ib at the angles 0 = 30°, 60°, 90° on the
unit circle. Verify by direct multiplication that the square of the first is the second,
and the cube of the first is the third.

555 (a) If x = re’® what are x? and x~! and X in polar coordinates? Where are the
complex numbers that have x !
(b) At: = 0the complex number ¢!~ ' "7 equals one. Sketch its path in the complex
plane as t increases from O to 27.

=x?

556 Find the lengths and the inner product of

557 Write out the matrix A" and compute C = A" A if

What is the relation between C and CH? Does it hold whenever C is constructed
from some A%A4?

558 (i) With the preceding A, use elimination to solve Ax = 0.
(i) Show that the nullspace you just computed is orthogonal to #(A4%) and not to
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5.5.10

5.5.11

5.5.12

5.5.13

5.5.14

5.5.15

5.5.16

the usual row space #(A"). The four fundamental spaces in the complex case are
A(A) and Z(A), as before, and then .47 (4" and #(A4Y).

(a) How is the determinant of AY related to the determinant of A4?
(b) Prove that the determinant of any Hermitian matrix is real.

(@) How many degrees of freedom are there in a real symmetric matrix, a real dia-
gonal matrix, and a real orthogonal matrix? (The first answer is the sum of the
other two, because 4 = QAQ")

(b) Show that 3 by 3 Hermitian matrices have 9 real degrees of freedom and unitary
matrices have 6. (Now columns of U can be multiplied by any )

7
,
{
!

Write the following matrices in the form 4,x,x% + 1,x,x of the spectral theorem:

4 o1 r_|? ¢
el e

Give a reason if true or a counterexample if false:

~
il

[

(ST ST

(1) If A is Hermitian then A + il is invertible.
(2) If Q is orthogonal then Q + !I is invertible.
(3) If A is real then 4 + iI is invertible.

Suppose A is a symmetric 3 by 3 matrix with eigenvalues 0, 1, 2.

(a) What properties can be guaranteed for the corresponding unit eigenvectors u
v, w?

(b) In terms of u, v, w describe the nullspace, left nullspace, row space, and column
space of A.

(c) Find a vector x that satisfies Ax = ¢ + w. Is x unique?

(d) Under what conditions on b does Ax = b have a solution?

(e) If u, v, w are the columns of S, what are S™! and S~ ' A4S$?

3

In the list below, which classes of matrices contain A and which contain B?

and B=-

- o O O
[ R
(= =)
O = O o
Q-
—_ = =
e T
— e
[ S )

Orthogonal, invertible, projection, permutation, Hermitian, rank one, diagonaliz-
able, Markov. Find the eigenvalues of 4 and B.

What is the dimension of the space S of all n by n real symmetric matrices? The
spectral theorem says that every symmetric matrix is a combination of n projection
matrices. Since the dimension exceeds n, how is this difference explained?

Write down one significant fact about the eigenvalues of

1. A real symmetric matrix
2. A stable matrix: all solutions to du/dt = Au approach zero
3. An orthogonal matrix
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! 5.5.17

{ 5.5.18

' 5.5.19

5.5.20
! 5.5.21

‘ 5.5.22

5.5.23

5.5.24

5.5.25

4. A Markov matrix
5. A defective matrix (nondiagonalizable)
6. A singular matrix

Show that if U and V are unitary, so is UV. Use the criterion UNU = I.

Show that the determinant of a unitary matrix satisfies [det U| = 1, but the deter-
minant is not necessarily equal to 1. Describe all 2 by 2 matrices that are unitary.

Find a third column so that

1,"\’6 "/\6
U= l//\/g 0
i//V” 3 1 ’//\/E

is unitary. How much freedom is there in this choice?

Diagonalize the 2 by 2 skew-Hermitian matrix K, whose entries are all i. Compute
eX' = SeMS ™1, and verify that €X' is unitary. What is its derivative at ¢ = 0?

Describe all 3 by 3 matrices that are simultaneously Hermitian, unitary, and diag-
onal. How many are there?

Every matrix Z can be split into a Hermitian and a skew-Hermitian part, Z = 4 + K,
just as a complex number z is split into a + ib. The real part of z is half of z + Z,
and the “real part” of Z is half of Z + Z". Find a similar formula for the “imaginary
part” K, and split these matrices into A + K:

Z=|:3+l 4+21:| and Z=|: 1 l:]
0 5 —i i

Show that the columns of the 4 by 4 Fourier matrix F are eigenvectors of the
permutation matrix P in Example 3.

For the same permutation, write out the circulant matrix C = ¢yl + ¢, P + ¢,P? +
c3P3. (Its eigenvector matrix is again the Fourier matrix.) Write out also the four
components of the matrix-vector product Cx, which is the convolution of ¢ =
(cos €1 €4, €3) and X = (Xq, X;, X5, X3).

For a circulant C = FAF ™', why is it faster to multiply by F~' then A then F (the
convolution rule) than to multiply directly by C?
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5.6 B SIMILARITY TRANSFORMATIONS

Virtually every step in this chapter has involved the combination S™'AS. The
eigenvectors of A went into the columns of S, and the combination S™'A4S was
diagonal (called A). When 4 was symmetric we wrote Q instead of S, as a reminder
that the eigenvectors could be chosen orthonormal. In the complex case, when A4
was Hermitian, we wrote U—but it was still the matrix of eigenvectors. Now, in
this last section, we look at other combinations M~ '4AM—formed in the same
way, but with any invertible M on the right and its inverse on the left. The eigen-
vector matrix may fail to exist (the defective case), or we may not know it, or we
may not want to use it.

First a new word, to describe the relation between 4 and M~ 'AM. Those
matrices are said to be similar. Going from one to the other is a similarity trans-
JSormation. 1t is the natural step to take, when dealing with differential equations
or powers of a matrix or eigenvalues—just as elimination steps were natural when
dealing with Ax = b. (Elimination multiplied 4 on the left by L ™!, but not on the
right by L.) Normally there will be a whole family of matrices M ~ ' AM, all similar
to A, and there are two key questions:

(1) What do these matrices M ~'AM have in common?
(2) With a special choice of M, what special form can be achieved by M ~*AM?

The final answer is given by the Jordan form, with which the chapter ends.

It is worth remembering how these combinations M ~'AM arise. Given a differ-
ential or difference equation for the unknown u, suppose a “change of variables”
u = Mv introduces the new unknown v. Then

d d d
¥ e Au becomes Y AMou, or @ M~ 1AMy
dt dt dt

U,+q = Au,  becomes  Mv,,, = AMv,, or wv,,, =M 'AMp,. !

The new matrix in the equation is M ™' AM. In the special case M = S the system
is uncoupled because A = S™'AS is diagonal. The normal modes evolve inde-
pendently. In the language of linear transformations, which is presented below, d
the eigenvectors are being chosen as a basis. This is the maximum simplification,
but other and less drastic simplifications are also useful. We try to make M ~'AM
easier to work with than A.

The first question was about the family of matrices M ~!AM—which includes
A itself, by choosing M to be the identity matrix. Any of these matrices can be
made to appear in the differential and difference equations, by the change u = Mu,
so they ought to have something in common and they do: Similar matrices share
the same eigenvalues.

5P If B= M 'AM, then 4 and B have the same eigenvalues. An eigenvector x
of A corresponds to an eigenvector M~ 'x of B.
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The proof is immediate, since 4 = MBM ™ !:
Ax = Ax = MBM ™ 'x = ix = B(M " 'x) = (M~ 'x).

The eigenvalue of B is still 1. The eigenvector has been multiplied by M~ 1.
We can also check that the determinants of 4 — AI and B — Al are identical,
from the product rule for determinants:

det(B — AI) = det(M ™' AM — AI) = det(M (A — iI)M)
= det M~ ' det(4 — AI) det M = det(4 — AI).

The two determinants—the characteristic polynomials of 4 and B-—are equal.
Therefore their roots—the eigenvalues of 4 and B—are the same. The following
example finds some matrices that are similar to A.

EXAMPLE A = [} 3], diagonal with eigenvalues 1 and 0

1 b 1 b
IfM= |:0 1} then B= M~'AM = [ 0]: triangular with eigenvalues 1 and 0

<

1 1
Isz[ : 1]thenB:M‘lAMz[

M= Naf=
(ST N

J: projection with eigenvalues 1 and 0

b
IfM = l:j d] then B = M ~'AM = an arbitrary matrix with eigenvalues 1 and 0.

In this case we can produce any matrix that has the correct eigenvalues. It is an
easy case, because the eigenvalues 1 and 0 are distinct. The Jordan form will worry
about repeated eigenvalues and a possible shortage of eigenvectors—all we say
now is that M~ 'AM has the same number of independent eigenvectors as A
(because the eigenvectors are multiplied by M ™1).

The first step is separate and more theoretical—to look at the linear transforma-
tions that lie behind the matrices. This takes us back to Section 2.6, in which we
thought of a rotation or a reflection or a projection in geometrical terms—as
something that happens to n-dimensional space. The transformation can happen
without linear algebra, but linear algebra turns it into matrix multiplication.

Change of Basis = Similarity Transformation

The relationship of similar matrices A and B = M ~"'AM is extremely close, if
we go back to linear transformations. Remember the key idea: Every linear trans-
Jormation is represented by a matrix. There was one further point in Section 2.6:
The matrix depends on the choice of basis. If we change the basis, we change the
matrix. Now we are ready to see whart the change of basis does to the matrix.

Similar matrices represent the same transformation with respect to different bases.
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The algebra is almost straightforward. Suppose we have a transformation T (like
rotation) and a basis vy, . . ., v,. The jth column of 4 comes from applying T to v;:

Tv; = combination of the v’s = a;;v, + - + a,; v,

If we have a new basis V,, ..., V,, then the new matrix (call it B) is constructed
in the same way: TV, = combination of the V’s =)"_, b;V;. But also each V
must be a combination of the old basis vectors: V; =) m;v;. That matrix M is
really representing the identity transformation (!) when the only thing happening
is the change of basis. Following the rules of Section 2.6, we just applied the iden-
tity transformation (which leaves V;) and wrote the result as a combination of the
v’s. The inverse matrix M~ ! also represents the identity transformation, when the
basis is changed from the v’s back to the V’s. Now the product rule gives the result
we want:

5@ The matrices 4 and B that represent the same linear transformation T with
respect to two different bases v and V are similar:

[T]V ol & [I]uioV [T]v tov [I]Vm v
B =M A M

That proof (coming from the product rule) is somewhat mysterious, and an
example is the best way to explain it. Suppose T is projection onto the line L at
angle 0. That is the linear transformation, and it is completely described without
the help of a basis. But to represent it by a matrix we do need a basis, and Fig.
5.5 offers two choices. One is the standard basis v, = (1, 0), v, = (0, 1), and the
other is a basis chosen especially for T. In fact TV; = V; (since V; is already on
the line L) and TV, = 0 (since V, is perpendicular to the line). In that basis, the
matrix is diagonal—because V; and V, are eigenvectors: ‘

10
B = [T]V toV — |:0 0}
b, /)I
0 b, or in V-coordinates M~ b,
s

X /7l /)]
A b or in V-coordinates BM ™! b

Fig. 5.5. Change of basis to make the projection matrix diagonal.
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The other thing is the change of basis matrix M. For that we express V; as a com-
bination v, cos ) 4+ v, sin 6 and put those coefficients into column 1. Similarly V,
(or IV,, the transformation is the identity) is —uv, sin 6 + v, cos 0, producing

column 2:
c =5
M:[I]vazl:s C]'

The inverse matrix M ~ ! (which is here the transpose) goes from v to V. Combined
with B and M it gives the projection matrix that was originally written down in
Section 2.6:

cs  §?

A=MBM™' = [Cz CS].

We can summarize the main point. Suppose we are given a matrix like 4. The
way to simplify it—in fact to diagonalize it—is to find its eigenvectors. They go
into the columns of M (or S) and M ~'AM is diagonal. The algebraist says the
same thing in the language of linear transformations: The way to have a diagonal
matrix representing T is to choose a basis consisting of eigenvectors. The stan-
dard basis v led to A, which was not simple; the right basis ¥ led to B, which was
diagonal.

We emphasize again that combinations like M~ 'AM do not arise in solving
Ax = b. There the basic operation was to multiply A (on the left side only!) by a
matrix that subtracts a multiple of one row from another. Such a transformation
preserved the nullspace and row space of 4; it had nothing to do with the eigen-
values. In contrast, similarity transformations leave the eigenvalues unchanged,
and in fact those eigenvalues are actually calculated by a sequence of simple sim-
ilarities. The matrix goes gradually toward a triangular form, and the eigenvalues
gradually appear on the main diagonal. (Such a sequence is described in Chapter
7, and one step is illustrated in the seventh exercise below.) This is much better
than trying to compute the polynomial det(4 — AI), whose roots should be the
eigenvalues. For a large matrix, it is numerically impossible to concentrate all
that information into the polynomial and then get it out again.

Triangular Forms with a Unitary M

Our first move beyond the usual case M = S is a little bit crazy: Instead of
allowing a more general M, we go the other way and restrict it to be unitary. The
problem is to find some reasonably simple form that M~ 'AM can achieve under
this restriction. The columns of M = U are required to be orthonormal (in the real
case we would write M = Q). Unless the cigenvectors are orthogonal, a diagonal
A is impossible; but the following “Schur’s lemma” produces a form which is very
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useful—at least to the theory.t

5R For any square matrix A, there is a unitary matrix M = U such that
U™ 'AU = T is upper triangular. The eigenvalues of 4 must be shared by the sim-
ilar matrix T, and appear along its main diagonal.

Proof Any matrix, say any 4 by 4 matrix, has at least one eigenvalue 4,; in the
worst case, it could be repeated four times. Therefore 4 has at least one eigen-
vector x. We normalize x to be a unit vector x,, and place it in the first column
of U. At this stage the other three columns are impossible to determine, so we
complete the matrix in any way which leaves it unitary, and call it U,. (The
Gram-Schmidt process guarantees that this can be done.) The product U; AU,
has at least its first column in the right form: Ax, = A,x, means that

AL x % % AL ok % %

0 % x =x _ 0 % % x
AU, =U, 0 . Wl or UiAU, = 0 % x sl

0 * % % 0 =+ % =

At the second step, we work with the 3 by 3 matrix now in the lower right corner.
This matrix has an eigenvalue 4, and a unit eigenvector x,, which can be made
into the first column of a 3 by 3 unitary matrix M,. Then

10 0 0 dy X ¥ E
0 ‘ g 10 A ok o
U, =|, M, and Uy (U AUYU, =| & L
0 0 0 x =

Finally, at the last step, an eigenvector of the 2 by 2 matrix in the lower right corner
goes into a unitary M, which is put into the corner of U, and

U3 (U3 'UT P AU, U,)U, = S
0 4; =
0O 0 0 =«

The product U = U,U,Uj is still a unitary matrix—this was checked in Exercise
5.5.17—so we have the required triangular U~ 'AU = T.

Tfhéiféét of this ch;1pter is devoted more to theory than to applications. The Jordan
form in 5U is independent of the triangular form in 5R.

?
z
:
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Because this lemma applies to all matrices, it often allows us to escape the
hypothesis that 4 is diagonalizable. We could use it to prove that the powers A*
approach zero when all |A| <1, and the exponentials e*' approach zero when
all Re /; < 0—even without the full set of eigenvectors which the theory of stability
assumed in Sections 5.3 and 5.4.

2 —1 . ; .
EXAMPLE A = : 0 has the eigenvalue 4 = 1 (twice).

One line of eigenvectors (in fact the only one) goes through (1, 1). After dividing
by \/5 this is the first column of U, and the other column is orthogonal to it:

U”AUZB;ﬁ —:;g]ﬁ _é}[:;\\g —:;ﬁ]z[(l) ﬂ

That is the triangular T, with the eigenvalues on the diagonal. For a larger matrix
the first step would have found U,;—to be followed by U,, Us, ..., all multiplied
together into U. It is not especially fun to compute T.

Diagonalizing Symmetric and Hermitian Matrices

As an application of this triangular form, we will show that any symmetric
or Hermitian matrix—whether its eigenvalues are distinct or not—has a complete
set of orthonormal eigenvectors. We need a unitary matrix such that U~ 'AU is
diagonal, and Schur’s lemma 5R has just found it. There are two steps to get from
triangular to diagonal:

1. If 4 is Hermitian then so is U~ 'AU:
(U TAUM = UMARU )M = U1 4U.
2. If a symmetric or Hermitian matrix is also triangular, it must be diagonal.

Because T = U™ 'A4U is both Hermitian and triangular, it is automatically diag-
onal. That completes the proof of a key theorem in linear algebra:

58 (Spectral theorem) Every real symmetric matrix can be diagonalized by an
orthogonal matrix, and every Hermitian matrix can be diagonalized by a unitary
matrix: : , ‘

(real case) O ‘40 = A (complex case) U AU = A

The columns of Q (or U) contain a complete set of yorthono:m‘al‘,eigenVectors. o

Remark 1 In the real symmetric case, the eigenvalues and eigenvectors are real
at every step of SR. That produces a real unitary U—in other words 0.
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Remark 2 1t is certainly reasonable, for symmetric matrices, that even with re-
peated eigenvalues there is a full set of orthogonal eigenvectors. We can think of
A as the limit of symmetric matrices with distinct eigenvalues, and as the limit
approaches the eigenvectors stay perpendicular. In contrast, the nonsymmetric

matrices
0 cos®
A(f) =
©) [O sin G:I

have eigenvectors (1, 0) and (cos 0, sin 6). As § — 0, the second cigenvector ap-
proaches the first—which is the only eigenvector of the nondiagonalizable matrix

[ ol

EXAMPLE The spectral theorem is now proved for a symmetric matrix like

010
A=[1 0 0
0 0 1
which has repeated eigenvalues: Ay = 4, =1, A3 = — 1. One choice of eigenvectors
is
0 1

These are the columns of an orthogonal matrix Q, and 4 = QAQ ™' = QAQ"
becomes

110 0O 0 0 L0
A=Y axxl =43 5 0] +/4,00 0 0|+, L 0
0 0 0 0 0 1 0 0 0

But since 4; = 4,, those first two projections (each of rank one) combine to give a
projection P, of rank two, and A4 is

010
1 0 0|=AP, +iPy=(+1)
0 0 1

O N N
< [T
<
+
—_
|
—

—_
|
[ B STE N NI

There is a whole plane of eigenvectors corresponding to 4 = 1; our x, and x, were
a more or less arbitrary choice. Therefore the separate x,x! and x,x} were
equally arbitrary, and it is only their sum—the projection P, onto the whole
plane—which is uniquely determined. Every Hermitian matrix with k different
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eigenvalues has its own “spectral decomposition” into A = 1P, + - - - + A, P, where
P; is the projection onto the eigenspace for ;. Since there is a full set of eigen-
vectors, the projections add up to the identity. And since the eigenspaces are
orthogonal, one projection followed by another must produce zero: P;P; = 0.

We are very close to answering a natural and important question, and might
as well push on the rest of the way: For which matrices is the triangular T the
same as the diagonal A? Hermitian, skew-Hermitian, and unitary matrices are in
this class; they correspond to numbers on the real axis, the pure imaginary axis,
and the unit circle. Now we want the whole class, corresponding to all complex
numbers. The matrices are called “normal.”

5T The matrix N is normal if it commutes with N™: NN“ NHN. For such
matrices, and no others, the triangular T = U~ 'NU is the dxagonal matrix A.
Normal matrices are exactly those that possess a complete set of orthonormal
eigenvectors.

Note that Hermitian (or symmetric) matrices are certainly normal: If 4 = AY,
then AA" and A" A4 both equal 4% Unitary matrices are also normal: UU® and
UMU both equal the identity. In these special cases we proved that T = A in two
steps, and the same two steps will work for any normal matrix:

(i) If N is normal, then sois T = U 'NU:
TTH = U"'NUUPNRU = U"'NNHU = U 'NBENU = UNNHUUINU = THT.
(i) A triangular T that is normal must be diagonal (Exercises 5.6.19-20).

Thus if N is normal, the triangular U *NU must be diagonal. Since it has the
same eigenvalues as N it must be A. The eigenvectors of N are the columns of U,
and they are orthonormal. That is the good case, and we turn now to the general
case—from the best possible matrices to the worst possible.

The Jordan Form

So far in this section, we have done the best we could with unitary similarities;
requiring M to be a unitary matrix U, we got M~ 'AM into a triangular form T.
Now we lift this restriction on M. Any matrix is allowed, and the goal is to make
M™YAM as nearly diagonal as possible.

The result of this supreme effort at diagonalization is the Jordan form J. If 4
has a full set of independent eigenvectors, we take M = S and arrive at J =
S™'AS = A; the Jordan form coincides with the diagonal A. This is impossible
for a defective matrix, and for every missing eigenvector the Jordan form will have
a 1 just above its main diagonal. The eigenvalues appear on the diagonal itself,
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because J is triangular. And distinct eigenvalues can always be decoupled. It is
only a repeated A that may (or may not!) require an off-diagonal entry in J.

5U If A has s independent eigenvectors, it is similar to a matrix with s blocks:
Jy
J=M '‘4M

Iy

Each Jordan block J; is a triangular matrix with only a single eigenvalue 4, and
only one eigenvector:

i |
J. =
‘ 1

A i
When the block has order m > 1, the eigenvalue 4; is repeated m times and there
are m — 1 1I’s above the diagonal. The same eigenvalue A; may appear in several ¥
blocks, if it corresponds to several independent eigenvectors. Two matrices are
similar if they share the same Jordan form J. :

Many authors have made this theorem the climax of their linear algebra course.
Frankly, I think that is a mistake. It is certainly true that not all matrices are
diagonalizable, and that the Jordan form is the most general case; but for that very §
reason its construction is both technical and extremely unstable. (A slight change
in A can put back all the missing eigenvectors, and remove the off-diagonal 1’s.)
Therefore the right place for the details is in the appendix,f and the best way to
start on the Jordan form is to look at some specific and manageable examples.

1 2 2 -1 1 0
EXAMPLE 1 T:[O 1:| and A:[l 0} and B:[l 1] all lead to
Je 1 1
=0

7’r Every aﬁthor tries to make these details easy to follow, and I believe Filippov’s proof

is the best. It is almost simple enough to reverse our decision and bring the construction
of J back from the appendix.
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These four matrices have eigenvalues 1 and 1 with only one eigenvector—so J
consists of one block. We now check that. The determinants all equal 1 and the
traces (the sums down the main diagonal) are 2. The eigenvalues satisfy 1-1 =1
and 1 + 1 = 2. For 4 and B and J, which are triangular, the eigenvalues are sitting
on the diagonal. We want to show that these matrices are similar—they all belong
to the same family—and J is the Jordan form for that family.
From T to J, the job is to change 2 to 1, and a diagonal M will do it:

o[ 00 2l 1L 4

From A to J the job is to make the matrix triangular, and then change 2 to I:

o)

1 2

0 1

UTlAU =
U[ 0 1

1 1
:IzT and then M_ITM:[ }z].

U AU was the example for Schur’s lemma (5R above);, U times M reaches J.
From B to J the job is to transpose, and a permutation does that:

]| R P B

EXAMPLE 2 A = and B =

S OO
S O =
S = N
S O <o
S o O
S O =

Since zero is a triple eigenvalue for both matrices, it will appear in every Jordan
block; either there is a single 3 by 3 block, or a 2 by 2 and a 1 by 1 block, or
three 1 by 1 blocks. Therefore the possible Jordan forms are

01 0 010 000
Jy=|0 0 1|, J,=[0 0 0|, and J,=|0 0 0.
00 0 000 000

In the case of A4, the only eigenvector is (1, 0, 0). Therefore its Jordan form has
only one block, and according to the main theorem 5U, A must be similar to J,.
The matrix B has the additional eigenvector (0, 1, 0), and therefore its Jordan form
is J,. There must be two blocks along the diagonal. As for J,, it is in a class by
itself; the only matrix similar to the zero matrix is M~ 10M = 0.

In these examples, a count of the eigenvectors was enough to determine J—and
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that is always possible when there is nothing more complicated than a triple
eigenvalue. But as a general rule, this counting technique is exploded by the last
exercise.

Application to difference and differential equations (powers and exponentials). If A can
be diagonalized, the powers of 4 = SAS ™! are easy: A* = SA*¥S™!. If it cannot be
diagonalized we still have A = MJM !, with the Jordan form in the middle—and
now we need the powers of J:

A = (MIM~ YMIM™ Yy (MIM ™ Y) = MJ*M 1.

J is block-diagonal and the powers of those blocks can be taken separately:

A1 01 A nA" Y onn— 1)An2
sm=lo 4 1| =0 nin=1
0 0 4 0 0 A

This will enter the solution to a difference equation, if there is a triple eigenvalue
and a single eigenvector. It also leads to the solution to the corresponding differ-
ential equation:

o g

e}.l tell %tZell
elit=10 e teM
0 0 ™
That comes from summing the series I + Jit + (J;)%/2! + - -, which produces
1 + it + -+ - = ¢ on the diagonal and re* just above it.

EXAMPLE The third column of ¢’ appears in the solution to du/dt = Ju:

du, /dt A1 Offu 0
duy/dt | =10 4 1||u,| startingfrom wu,=|0].
du,/dt 0 0 Alu, 1

The system is solved by back-substitution (since the matrix is triangular). The last
equation yields u; = e¢*. The equation for u, is du,/dt = Au, + u; and its solution
is te*. The top equation is du,/dt = ju, + u, and its solution is t2¢*. For a block
of size m—{rom an eigenvalue of multiplicity m with only one eigenvector—the
extra factor t appears m — 1 times.

These powers and exponentials of J are a part of the solution formula. The
other part is the M that connects the original matrix 4 to the more convenient
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matrix J:

if  wey = Au, then u, = A*uy = MJ*M ™ 'u,
if du/dt = Au then u=e*uy= Me''M™'y,.

When M and J are S and A (the diagonalizable case) those are the formulas of

5.3 and 5.4. Appendix B returns to the nondiagonalizable case and shows how the
Jordan form can be reached.

I hope the following table will be a convenient summary.

Table of Similarity Transformations

—

A is diagonalizable: The columns of S are the eigenvectors and S™'AS = A is diagonal.
2. A is arbitrary: The columns of M are the eigenvectors and generalized eigenvectors of
A, and the Jordan form M~ 'AM = J is block diagonal.
A is arbitrary and U is unitary: U can be chosen so that U~ 'AU = T is triangular.
4. A is normal, AA" = A"A: U can be chosen so that U 'AU = A.
Special cases of 4, all with orthonormal eigenvectors:

If A is Hermitian, then A is real.

If A4 is real symmetric, then A is real and U = Q is orthogonal.
If A is skew-Hermitian, then A is imaginary.

If A is orthogonal or unitary, then all |4 = 1.

c o b

EXERCISES
5.6.1  If B is similar to 4 and C is similar to B, show that C is similar to 4. (Let B =
M~'AM and C = N~ 'BN.) Which matrices are similar to the identity?
5.6.2  Describe in words all matrices that are similar to [ _?], and find two of them.
5.6.3 Explain why A is never similar to 4 + 1.

5.6.4 Find a diagonal M, made up of 1’s and —I’s, to show that

2 1 2 —1
1 21 ' =1 2 =1
A= { 2 1 is similar to B = _q 7 _1
r 2 —1 2

5.6.5 Show (if B is invertible) that BA is similar to AB.

56.6 (a) If CD = —DC (and D is invertible) show that C is similar to — C.
(b) Deduce that the eigenvalues of C must come in plus-minus pairs.
(c) Show directly that if Cx = Ax then C(Dx) = — A(Dx).
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5.6.7 Consider any 4 and a special “plane rotation” M:

a b ¢ cos) —sinf 0
A=|d e [], M=|sin( cos0 0]
g h i 0 0 1

Choose the rotation angle 8 so as to annihilate the (3, 1) entry of M ™' AM.

Note This “annihilation” is not so easy to continue, because the rotations that 5
produce zeros in place of d and h will spoil the new zero in the corner. We have
to leave one diagonal below the main one, and finish the eigenvalue calculation in
a different way. Otherwise, if we could make A diagonal and see its eigenvalues, we
would be finding the roots of the polynomial det (4 — AI) by using only the square
roots which determine cos é—and that is impossible.

5.6.8 What matrix M changes the basis V; = (1, 1), ¥, = (1, 4) to the basis v, = (2, 5),
v, = (1, 4)? The columns of M come from expressing V; and V, as combinations of
the v’s.

5.6.9 For the same two bases, express the vector (3, 9) as a combination ¢, V; + ¢,V, and
also as d,v; + d,v,. Check numerically that M connects ¢ to d: Mc = d.

5.6.10 Confirm the last exercise algebraically: If V; =m, v, + m,,v, and V, =m,,0; +m,,0,
and m, ¢, +m ¢, =d; and m,¢; +m,,c,=d,, then the vectors ¢,V, +c,V, and
d v, +d,v, are the same. This is the “change of basis formula” Mc¢=d.

5.6.11 If the transformation T is a reflection across the 45° line in the plane, find its matrix
with respect to the standard basis v, = (1, 0), v, = (0, 1) and also with respect to
V, =(1,1), V, =(1, —1). Show that those matrices are similar.

5.6.12 The identity transformation takes every vector to itself: Tx = x. Find the corre-
ponding matrix, if the first basis is v, = (1, 2), v, = (3, 4) and the second basis is
w, = (1, 0), w, = (0, 1). (It is not the identity matrix!)

5.6.13 The derivative of a + bx + ¢x? is b + 2ex + 0x2.
(a) Write down the 3 by 3 matrix D such that

(b) Compute D? and interpret the results in terms of derivatives.
(c) What are the eigenvalues and eigenvectors of D?

5.6.14 Show that the transformation Tf(x) = j’g f({t)dt has no eigenvalues, while for
Tf(x) = df/dx every number is an eigenvalue. The functions are to be defined for all x.

5.6.15 On the space of 2 by 2 matrices, let T be the transformation that transposes every
matrix. Find the eigenvalues and “eigenmatrices” of T (the matrices which satisfy
AT = JA).



5.6.16

5.6.17

5.6.18

5.6.19

5.6.20

5.6.21

5.6.22

5.6.23

5.6.24

5.6.25

5.6.26

5.6.27

5.6.28
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(@) Find an orthogonal Q so that 0~ '4Q = A if
000
A=]1 1 1 and A=]0 0 0f.
0 0 3

Then find a second pair of orthonormal eigenvectors x,, x, for 2 = 0.
(b) Verify that P = x,x] + x,x} is the same for both pairs.

Prove that every unitary matrix A is diagonalizable, in two steps:

(i) If A is unitary, and U is too, thensois T = U~ 'AU.
(i) An upper triangular T that is unitary must be diagonal.
It follows that the triangular T is A, and any unitary matrix (distinct eigenvalues or

not) has a complete set of orthonormal eigenvectors: U~ 'AU = A. All eigenvalues
satisfy |4l = 1.

Find a normal matrix that is not Hermitian, skew-Hermitian, unitary, or diagonal.

Show that all permutation matrices are normal.

Suppose T is a 3 by 3 upper triangular matrix, with entries t;;- Compare the entries
of TT" and T"T, and show that if they are equal then T must be diagonal.

If N is normal, show that |Nx|| = |[N¥x]|| for every vector x. Deduce that the ith
row of N has the same length as the ith column. Note: If N is also upper triangular,
this leads again to the conclusion that it must be diagonal.

Prove that a matrix with orthonormal eigenvectors has to be normal, as claimed
in ST:If U 'NU = A, or N = UAUY, then NNH = NHN,

Find a unitary U and triangular T so that U™ 'AU = T, for
1
a-|? 73 d A= 8 0 8
“ls 5 an = .
1 0 0
If A has eigenvalues 0, 1, 2, what are the eigenvalues of A(A4 — I}(A — 2I)?

(a) Show by direct multiplication that a triangular matrix, say 3 by 3, satisfies its
own characteristic equation: (T — A INT — A,D(T — A1) = 0.

{(b) Substituting U "' AU for T, deduce the Cayley-Hamilton theorem: Any matrix
satisfies its own characteristic equation: (A — 2 I)(A — A,1)(A — A4,1) = 0.

The characteristic polynomial of A = {¢ %] is 4> — (a + d)4 + (ad — bc). By direct
substitution verify the Cayley-Hamilton theorem: A% — (a + d)A + (ad — bc)l = 0.

In Example 2 at the end of the chapter, find the M that achieves M~ BM = J.

If a;; = | above the main diagonal and g;; = O elsewhere, find its Jordan form (say
4 by 4) by finding all its eigenvectors.

Show, by trying for an M and failing, that no two of the Jordan forms in the 3 by 3
example are similar: J; # M~ 'J,M,and J, # M 'J;M, and J, # M~ 'J M.
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5.6.29

5.6.30

5.6.31

5 Eigenvalues and Eigenvectors

Solve the first equation by back-substitution and the second by reaching A =
MJM™!:

du_J_Slu1 1 nddU—A— 3 1o, !
a0 sl ] T2 ™ @ 2 1 ||e ] 7|0l

Compute J'® and 4% and e if 4 = MJM 1

4o 14 9f 3 2112 1]]3 2
L-t6 —10] [-4 3|0 2]|l4 37
Write out all possible Jordan forms for a 4 by 4 matrix that has zero as a quadruple
eigenvalue. (By convention, the blocks get smaller as we move down the matrix J)

If there are two independent eigenvectors, show that there are two different pos-
sibilities for J.
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5.1

5.2

5.3

54

5.5

5.6

5.7

5.8

5.9

5.10

REVIEW EXERCISES: Chapter 5

Find the eigenvalues and eigenvectors and the diagonalizing matrix S for

L] o . a7 2
T2 3 an Tl =15 —4f

Find the determinants of 4 and A~ ! if

A, 0]
A:S[ N Nt
0 ]

If A has eigenvalues 0 and 1, corresponding to the eigenvectors

1 [ 2
and ,
how can you tell in advance that 4 is symmetric? What are its trace and determinant?
What is 4?

In the previous exercise, what will be the eigenvalues and eigenvectors of 42? What
is the relation of A% to A?

Does there exist a matrix 4 such that the entire family A + cI is invertible for all
complex numbers ¢? Find a real matrix with 4 + rI invertible for all real r.

Solve for both initial values and then find e“"

du 31 . 1 . 0
dz=|:1 3:Iu if uoz[o} and if uoz[lJ.

Would you prefer to have interest compounded quarterly at 40%; per year, or annually
at 50%;?

True or false (with counterexample if false):

(a) If B is formed from A by exchanging two rows, then B is similar to A.

(b) 1If a triangular matrix is similar to a diagonal matrix, it is already diagonal.

(¢} Any two of these statements imply the third: A4 is Hermitian, 4 is unitary, A2 = I.
(d) If A and B are diagonalizable, so is 4B.

What happens to the Fibonacci sequence if we go backward in time, and how is F_,
related to F,? The law F, ,, = F,,, + F, is still in force, so F_,=1

Find the general solution to du/dt = Au if

0 —1 0
A=11 0 —1].
0 1 0

Can you find a time T at which the solution u(T) is guaranteed to return to the initial
value u,?




5.1

5.12

513

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5 Eigenvalues and Eigenvectors

If P is the matrix that projects R” onto a subspace S, explain why every vector in §
is an eigenvector and so is every vector in S*. What are the eigenvalues? (Note the
connection to P? = P, which means 12 = 1)

Show that every matrix of order >1 is the sum of two singular matrices.

(a) Show that the matrix differential equation dX/dt = AX 4+ XB has the solution
X(?) = e*X(0)e™. (b) Prove that the solutions of dX/dt = AX — X A keep the same
eigenvalues for all time.

If the eigenvalues of 4 are 1 and 3 with eigenvectors (5, 2) and (2, 1), find the solutions
to du/dt = Au and u, , ; = Au, starting from u = (9, 4).

Find the eigenvalues and eigenvectors of

What property do you expect for the eigenvectors, and is it true?

a blla b |01 _ 4

¢ dile d| |0 of
show that 4 has no square root. Change the diagonal entries of 4 to 4 and find a
square root.

By trying to solve

0 4
(a) Find the eigenvalues and eigenvectors of 4 = |:1 ol
4
(b) Solve du/dt = Au starting from u, = (100, 100).
{(c) Ifo(t) = income to stockbrokers and w(f) = income to client, and they help each

other by dv/dt = 4w and dw/dt = }v, what does the ratio v/w approach as t - «?

True or false, with reason if true and counterexample if false:

(a) Forevery matrix A there is a solution to du/dt = Au starting fromu, = (1, ..., 1).
(b) Every invertible matrix can be diagonalized.

(c) Every diagonalizable matrix can be inverted.

{(d) Exchanging the rows of a 2 by 2 matrix reverses the signs of its eigenvalues.
(e) If eigenvectors x and y correspond to distinct eigenvalues then x"y = 0.

If K is a skew-symmetric matrix show that Q = (I — K)(I + K) ! is an orthogonal
matrix. Find Q if K =[_9 2].

If KH = — K (skew-Hermitian), the eigenvalues are imaginary and the eigenvectors
are orthogonal.

(a) How do you know that K — I is invertible?

(b) How do you know that K = UAU" for a unitary U?

(c) Why is e unitary?

(d) Why is ¢** unitary?
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5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

If M is the diagonal matrix with entries d, d2, d3, what is M~ 'AM and what
are its eigenvalues if

If A2 = —J what are the eigenvalues of A7 If 4 is a real n by n matrix show that n
must be even, and give an example.

If Ax = 2,x and ATy = 4,y (all real) show that xTy = 0.

A variation on the Fourier matrix is the “sine matrix”

sinf)  sin 26 sin 30
S=——|sin20 sin40 sin60| with 0= g
\/5 sin 30 sin 60 sin 90

Verify that ST = §7'_ (The columns are the eigenvectors of the tridiagonal —1, 2, —1
matrix.)

(a) Find a nonzero matrix N such that N3 = 0.

(b) If Nx = Ax show that A must be zero.

() Prove that N (called a “nilpotent” matrix) cannot be symmetric.

(a) Find the matrix P = aa"/a"a that projects any vector onto the line through
a=(212).

(b) What is the only nonzero eigenvalue of P and what is the corresponding eigen-
vector?

(c) Solve u,,, = Py, starting from u, = (9,9, 0).

Suppose the first row of 4 is 7, 6 and its eigenvalues are i, —i. Find A.

(a) For which numbers ¢ and d does A have real eigenvalues and orthogonal eigen-
vectors?

1 20
A=12 d
0 5 3

(b) For which ¢ and d can we find three orthonormal vectors that are combinations
of the columns (don’t do it!)?

If the vectors x; and x, are in the columns of S, what are the eigenvalues and

2 0., 2 3
= d B = S 19
A S|:0 l]S an S[O J

What is the limit as k — oo (the Markov steady state) of ['¢ 3 J[£]?

eigenvectors of




POSITIVE DEFINITE
MATRICES

6.1 H MINIMA, MAXIMA, AND SADDLE POINTS

Up to now, we have had almost no reason to worry about the signs of the eigenva-
[ues. In fact, it would have been premature to ask whether 4 is positive or negative
before it was known to be real. But Chapter 5 established that the most important
matrices—symmetric matrices in the real case, and Hermitian matrices in the
complex case—do have real eigenvalues. Therefore it makes sense to ask whether
they are positive, and one of our goals is the following: to find a test that can be
applied directly to the symmetric matrix A, without computing its eigenvalues,
which will guarantee that all those eigenvalues are positive. The test brings together
three of the most basic ideas in the book—pivots, determinants, and eigenvalues.

Before looking for such a test, we want to describe a new situation in which
the signs of the eigenvalues are significant. It is completely unlike the question of
stability in differential equations, where we needed negative rather than positive
eigenvalues. (We should not hurry past that point, but we will: If — 4 passes the
test we are looking for, then du/dt = Au has decaying solutions ¢*x, with every
eigenvalue 4 < 0. And d?u/di® = Au has pure oscillatory solutions ¢’'x, with @ =
\/—‘),.) The new situation is one arising in so many applications to science, to
engineering, and to every problem of optimization, that we hope the reader is
willing to take the background for granted and start directly with the mathe-
matical problem.

Itis the problem of identifying a minimum, which we introduce with two examples:

Flx,y))=7+2x+y)?* —ysiny — x3
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| and
S(x, py=2x + 4xy + y2.

Does either F or f have a minimum at the point x = y = 0?

Remark 1 The zero-order terms F(0,0) = 7 and f(0, 0) = 0 have no effect on the
answer. They simply raise or lower the graphs of F and f.

Remark 2 The linear terms give a necessary condition: To have any chance of a
minimum, we must have a stationary point. The first derivatives must vanish when
x =y =0, and they do:

oF JoF
——=4x+y—3x*=0 and ——=4x+y —ycosy—siny=0
Ox dy
) of
Lf=4x+4y:0 and if=4x+2y:O.
0x dy

Thus the origin is a stationary point for both F and f. Geometrically, the surface
z = F(x, y) is tangent to the horizontal plane z = 7, and the surface z = f(x, y) is
tangent to the plane z = 0. The question is whether F and f lie above those planes,
as we move away from the tangency point x = y = 0.

Remark 3 The quadratic terms, coming from the second derivatives, are decisive:

0*F o
—07=4—6x=4 7%];:4
X x
*F 0°F % o 4
dxdy  dyox oxdy  Oydx
3*F . o
W:4+ysmy—2cosy:2, W:Z

These derivatives contain the answer. Since they are the same for F and f, they
must contain the same answer. The two functions behave in exactly the same way
near the origin, and F has a minimum if and only if { has a minimum.

Remark 4 The higher-degree terms in F have no effect on the question of a local
minimum, but they can prevent it from being a global minimum. In our example
the term — x* must sooner or later pull F toward — o, regardless of what happens
near x = y = 0. Such an eventuality is impossible for f, or for any other “quadratic
Jorm,” which has no higher terms.

Every quadratic form f = ax* + 2bxy + cy* has a stationary point at the origin,
where Jf/0x = 0f/dy = 0. If it has a local minimum at x = y = 0, then that point
is also a global minimum. The surface z = f(x, y) will be shaped like a bowl, resting
on the one point at the origin.
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To summarize: The question of a local minimum for F is equivalent to the same
question for f. If the stationary point of F were at x = o, y = finstead of x = y = 0,
the only change would be to use the second derivatives at «, f:

x20%F 0*F y* 0°F
T Y )
Sx, p) 2 ox? (o ) + xy 2% 3y (o B) + 2 02 (2, ) (1)

This quadratic f" behaves near (0, 0) in the same way that F behaves near (a, f).

There is one case to be excluded. It corresponds to the possibility F” = 0, which
is a tremendous headache even for a function of one variable. The third derivatives
are drawn into the problem because the second derivatives fail to give a definite
decision. To avoid that difficulty it is usual to require that the quadratic part be
nonsingular. For a true minimum, f is allowed to vanish only at x = y = 0. When
[ is strictly positive at all other points it is called positive definite.

The problem now comes down to this: For a function of two variables x and
y, what is the correct replacement for the condition F” > 0? With only one vari-
able, the sign of the second derivative decides between a minimum or a maximum.
Now we have three second derivatives, F,,, F,, = F,,, and F,,. These three
numbers specify f, and they must determine whether or not F (as well as f) has
a minimum. What are the conditions on a, b, and ¢ which ensure that [ =ax*+
2bxy + cy? is positive definite?

It is easy to find one necessary condition:
(1) If f is positive definite, then necessarily a > 0.

We look at x =1, y =0, where ax? + 2bxy + cy? is equal to a. This must be
positive if f is to be positive definite. Translating back to F, this means that
0%F [0x? > 0; we fix y = 0, let only x vary, and must have F” > 0 for a minimum.
Similarly, if we fix x = 0 and look in the y direction, there is a condition on the
coeflicient ¢:

(i) If f is positive definite, then necessarily ¢ > 0.

Do these conditions ¢ > 0 and ¢ > 0 guarantee that f is positive? The answer is
no—the cross term 2bxy can pull f below zero, if it is large enough.

EXAMPLE [ = x> — 10xy + y?. In this case a = 1 and ¢ = | are both positive.
Suppose, however, that we look at x = y = 1; since f(1, 1) = —8, this f is not
positive definite. The conditions a > 0 and ¢ > 0 ensure that f is increasing in the
x and y directions, but it may still decrease along another line. The function is
negative on the line x = y, because b = — 10 overwhelms a and c. It is impossible
to test for positive definiteness by looking along any finite number of fixed lines—
and this f goes both above and below zero.

Evidently b enters the problem, and in our original f the coefficient b was posi-

tive. Does this make f positive, and ensure a minimum? Again the answer is no;
the sign of b is of no importance! Even though all its coefficients were positive, our
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original example 2x* + 4xy + y* was not positive definite. Neither F nor { had a
minimum. On the line x = —y, f is negative: f(1, —1)=2—4+ 1= —1.

It is the size of b, compared to a and c, that must be controlled if f is to be positive
definite. We now want to find a precise test, giving a necessary and sufficient condi-
tion for positive definiteness. The simplest technique is to “complete the square™:

. 2 2 b \? Eh
f =ax* 4+ 2bxy + cy :ax+ay - c~; ¥y (2)

The first term on the right is never negative, since the square is multiplied by the
positive coefficient a. Necessary condition (i) is still in force. But the square can
be zero, and the second term must then be positive. That term is y? multiplied by
the coefficient (ac — b?)/a. The last requirement for a positive f is that this coeffi-
cient must be positive:

(iii) If f is positive, then necessarily ac > b*.

Notice that conditions (i) and (iii), taken together, automatically imply condition
(ii). If a > 0, and ac > b* > 0, then certainly ¢ > 0. The right side of (2) is guaran-
teed to be positive, and we have answered the question at last:

6A The quadratic form f = ax? + 2bxy + cy? is positive definite if and only if
a>0 and ac — b* > 0. Correspondingly, F has a (nonsingular) minimum at
x = y =0 if and only if its first derivatives are zero and

F O*F °F 2 i
O°F oF L 00
6){2 (0, 0) - 0, [(?\'2 (03 0)] [avl (0’ 0):} - [F’X (",V (0’ )]

The conditions for a maximum are easy, since f has a maximum whenever —f
has a minimum. This means reversing the signs of a, b, and c. It actually leaves
the second condition ac — b? > 0 unchanged: The quadratic form is negative definite
if and only if a < 0 and ac — b? > 0. The same change applies to F.

The quadratic form f is singular when ac — b* = 0; this is the case we ruled
out. The second term in (2) would disappear, leaving only the first square—which
is either positive semidefinite, when a > 0, or negative semidefinite, when a < 0. The
prefix semi allows the possibility that f can equal zero, as it will at the point x = b,
y = —a. Geometrically the surface z = f(x, y) degenerates from a genuine bowl
into an infinitely long trough. (Think of the surface z = x? in three-dimensional
space; the trough runs up and down the y axis, and each cross section is the same
parabola z = x%.) And a still more singular quadratic form is to have zero every-
where, a = b = ¢ = 0, which is both positive semidefinite and negative semidefi-
nite. The bowl has become completely flat.

In one dimension, for a function F (x), the possibilities would now be exhausted:
Either there is a minimum, or a maximum, or F”' = 0. In two dimensions, how-
ever, a very important possibility still remains: The combination ac — b* may be
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f=2xy
f=-3 =3
.f:_l: f:O /f: L X f
g=1— e
f=3~ N

Fig. 6.1. The saddle f = 2xy and its level curves.

negative. This occurred in our example, when the size of b dominated a and c;
J was positive in some directions and negative in others. It also occurs, for any
b, if a and c are of opposite sign. The x and y directions give opposite results—on
one axis f increases, on the other it decreases. It is useful to consider the two
special cases

fi=2xy  and  fy=x?— )2

In the first, b is dominating, with a = ¢ = 0. In the second, a and ¢ are of opposite
sign. Both have ac — b? = —1.

These quadratic forms are indefinite, because they can take either sign; both f>0
and f < 0 are possible, depending on x and y. So we have a stationary point that
is neither a maximum or a minimum. It is called a saddle point. (Presumably because
the surface z = f(x, y), say z = x> — y?, is shaped like a saddle (Fig. 6.1). It goes
down in the direction of the y axis, where the legs fit, and goes up in the direction
of the x axis.) You may prefer to think of a road going over a mountain pass; the
top of the pass is a minimum as you look along the range of mountains, but it is
a maximum as you go along the road.

The saddles 2xy and x? — y? are practically the same; if we turn one through
45° we get the other. They are also almost impossible to draw.

Calculus would have been enough to find our conditions for a minimum: F,_, > 0
and F, F, > FZ . But linear algebra is ready to do more, as soon as we recog-
nize how the coefficients of f fit into a symmetric matrix 4. The terms ax? and
cy* appear on the diagonal, and the cross derivative 2bxy is split between the

entry above and the entry below. Then f is identically equal to the matrix product

ax® + 2bxy + cy* =[x y] I:Z b} [’C:' (3)

ciLy
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This identity is the key to the whole chapter. It can be rewritten as f = x"Ax; it
generalizes immediately to n dimensions; and it provides a perfect shorthand for
studying the problem of maxima and minima. When the variables are x,, ..., x,,
instead of simply x and y, they go into a column vector x. For any symmetric
matrix A, the product = x'Ax is a pure quadratic form:

dir dys A | | X1

dyy  dj; az X2
xTAx =[x, x, X, ] !

anl anZ ann xn

2
= A XT F A%, X + Ay XX, 0+ a,, X

n

Y Zn: a; XX 4

i=1j=1

There are no higher-order terms or lower-order terms—only second-order. The
function is zero at x = 0, and also its first derivatives are zero. The tangent is flat,
and x = O s a stationary point. We have to decide if it is a minimum or a maximum
or a saddle point.

2

EXAMPLE 1 [ =2x>+4dxy+y> and A= [2

2
1] — saddle point

0

EXAMPLE 2 [ = 2xy and A= [1

1
O] — saddle point

EXAMPLE 3 f = 2x{ — 2x,x, + 2x3 — 2x,x3 + 2x} corresponds to

2 —1 0
A=|—-1 2 —11| - minimum
0 -1 2
Those are pure quadratics, but any function F(x,, ..., x,) is approached in the

same way. We look for stationary points, where all first derivatives are zero. At
those points, A is the “second-derivative matrix” or “Hessian matrix.” Its entries
are a;; = 0°F/dx; Ox; This is automatically symmetric, for the same reason that
0°F/dx 0y = 6>F/dy Ox. Then F has a minimum when the pure quadratic f = xTAx is
positive. The second-order terms are isolated in f, and they control F near the
stationary point—as the Taylor series shows near x = 0:

F(x) = F(0) + x"(grad F) 4+ {x"Ax + 3rd-order terms. 5
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At a stationary point, grad F = (0F/dx,, ..., 8F/Cx,) is a vector of zeros. The
quadratic x"Ax takes F up or down. If the stationary point is at x, instead of 0,
the scries starts with F(x,) and x changes to x — x, on the right side of (5).

The next section contains the tests to decide whether /= x" Ax is positive. Equiv-
alently, they decide whether the matrix A is positive definite—which is the main
goal of the chapter.

6.1.2

6.1.3

6.1.4

6.1.5

EXERCISES
Show that the quadratic / = x? 4 4xy + 2y? has a saddle point at the origin, de-
spite the fact that its coefficients are positive. Rewrite f as a difference of two squares.

Decide for or against the positive definitencss of the following matrices, and write
out the corresponding f = xTAx:

13 - 23 -1 2
@ [3 5] (®) [—1 1] © [3 5:| @ [ 2 8}

The determinant in (b) is zero; along what line is f zero?

If a 2 by 2 symmetric matrix passes the tests a > 0, ac > b2, solve the quadratic
equation det(4 — Al) = 0 and show that the roots are positive.

Decide between a minimum, maximum, or saddle point for the functions
(@) F= —1+4("—x)—5xsiny+ 6y* at the point x = y = 0;
{(b) F =(x*— 2x)cos y, with stationary point at x = I, y=nm

{a) For which numbers b is the matrix A = [} 4] positive definitc?

(b} Find the factorization A = LDLT when b is in the range for positive definiteness.
(c) Find the minimum value of }(x* + 2bxy + 9y?) — y for b in this range.

(d) What is the minimum if b = 3?

Suppose the positive coefficients @ and ¢ dominate b in the sense that a + ¢ > 2b.
Is this enough to guarantec that ac > b* and the matrix is positive definite? Give a
proof or a counterexample.

(a) What 3 by 3 matrices correspond to
fi=xi+ x5+ x3 - 2x,x, — 2x,x; + 2x,x; and
fo=x1+2x3 4+ 3x3 — 2x,x, — 2x,x, — 4x,x,?

(b) Show that f} is a single perfect square and not positive definite. Where is /, equal
to 0?7
(c) Express f, as a sum of three squares and factor its A4 into LDL".

IfA={; ?!]is positive definite prove that A~ ' is positive definite.

The quadratic f = 3(x; + 2x,)> + 4x3 is positive. Find its matrix A, factor it into
LDL', and connect the entries in D and L to the original f.
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6.1.10

6.1.11

6.1.12

6.1.13

If R =[f 7] write out R* and check that it is positive definite unless R is singular.

(a) IfA={; !]isHermitian (with complex b) find its pivots and its determinant.

(b) Complete the square for complex f = x"Ax = alx,|> + 2 Re b, x, + ¢|x,|* =
alx, + (bjayx,)* + 2

(c) What are the tests for f > 0, to ensure that A is positive definite?

(d) Are the matrices [,1; '] and [, *F'] positive definite?

Decide whether F = x?y? — 2x — 2y has a minimum at the point x = y = 1 (after
showing that the first derivatives are zero at that point).

Under what conditions on a, b, ¢, is ax* + 2bxy + cy? = x% + y? for all x, y?
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6.2 B TESTS FOR POSITIVE DEFINITENESS

Which symmetric matrices have the property that xTAx > 0 for all nonzero vectors
x? There are four or five different ways to answer this question, and we hope to
find all of them. The previous section began with some hints about the signs of
eigenvalues, but that discussion was left hanging in midair. Instead, the question
of eigenvalues gave place to a pair of conditions on a matrix:

b
if A:[Z J, we need a>0, ac—bh*>0.
I

Our goal is to generalize those conditions to a matrix of order n, and to find
the connection with the signs of the eigenvalues. In the 2 by 2 case, at least, the
conditions mean that hoth eigenvalues are positive. Their product is the deter-
minant ac — b*> > 0, so the eigenvalues are either both positive or both negative.
They must be positive because their sum is the trace a + ¢ > 0.

It is remarkable how closely these two approaches—one direct and computa-
tional, the other more concerned with the intrinsic properties of the matrix (its
eigenvalues)—reflect the two parts of this book. In fact, looking more closely at
the computational test, it is even possible to spot the appearance of the pivots.
They turned up when we decomposed f into a sum of squares:

b\ ac— b
ax? + 2bxy + cy? = a<x +y> +Ly2. (1
a a

The coefficients a and (ac — b?)/a are exactly the pivots for a 2 by 2 matrix. If
this relationship continues to hold for larger matrices, it will allow a very simple
test for positive definiteness: We check the pivots. And at the same time it will
have a very natural interpretation: x"Ax is positive definite if and only if it can
be written as a sum of n independent squares.

One more preliminary remark. The two parts of this book were linked by the
theory of determinants, and therefore we ask what part determinants play. Cer-
tainly it is not enough to require that the determinant of A is positive. That
requirement is satisfied when a = ¢ = —1 and b = 0, giving A = —1, a form that
is actually negative definite. The important point is that the determinant test is
applied not only to A itself, giving ac — b* > 0, but also to the 1 by 1 submatrix
a in the upper left corner. The natural generalization will involve all n of the upper
left submatrices

dyp dy; X
Ay =[ay], A2=|: . Ay =ldy azy dyy|, .., A,=A
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‘ Here is the main theorem, and a detailed proof:

6B Each of the following tests is a necessary and sufficient condition for the real
symmetric matrix 4 to be positive definite:

‘ () x"Ax > 0 for all nonzero vectors x.

‘ (I) All the eigenvalues of A satisfy 4, > 0.
(ITT)  All the upper left submatrices A, have positive determinants.
(IV)  All the pivots (without row exchanges) satisfy d, > 0.

Proof Condition I defines a positive definite matrix, and our first step will be
to show its equivalence to condition II. Therefore we suppose that I is satisfied,
and deduce that each eigenvalue 4; must be positive. The argument is simple.
Suppose x; is the corresponding unit eigenvector; then

_ T Ao — 15, —
Ax; = Ax;, SO X; Ax; = x; 4% = Ay,

because x{x; = 1. Since condition I holds for all x, it will hold in particular for
the eigenvector x;, and the quantity x/ Ax; = 4, must be positive. A positive definite
matrix has positive eigenvalues.
Now we go in the other direction, assuming that all 4, >0 and deducing
xTAx > 0. (This has to be proved for every vector x, not just the eigenvectors!)
5 Since symmetric matrices have a full set of orthonormal eigenvectors (the spectral
theorem), we can write any x as a combination ¢,x; + - - - + ¢,x,. Then

Ax = ciAxy + - + ,AX, = A X1 + 0+ CphaX,
Because of the orthogonality, and the normalization xx; = 1,

xTAx = (¢, x] + - + ¢xD(c A xq + -+ + ¢ h,x,)
=cidy + -+ 2, ()

If every 4; > 0, then (2) shows that x"Ax > 0. Thus condition II implies condition I.
We turn to III and IV, whose equivalence to I will be proved in three steps:

If T holds, so does 11I: First, the determinant of any matrix is the product of its
eigenvalues. And if I holds, we already know that these eigenvalues are positive:

det A =AAy... 4, >0.

To prove the same result for all the submatrices 4,, we check that if 4 is posi-
tive definite, so is every A,. The trick is to look at the vectors whose last n — k
components are zero:

A, = || x
xTAx = [x{ 0] l:* k *] [Ok] = X A%
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If x"Ax > 0 for all nonzero x, then in particular xg Ayx, > 0 for all nonzero x,.
Thus condition I holds for 4,, and the submatrix permits the same argument that
worked for A itselfl. Its eigenvalues (which are not the same 4;!) must be positive,
and its determinant is their product, so the upper left determinants are positive.

If 111 holds, so does TV: This is easy to prove because there is a direct relation
between the numbers det A, and the pivots. According to Section 4.4, the kth
pivot d, is exactly the ratio of det A4, to det 4, _,. Therefore if the determinants
are all positive, so are the pivots—and no row exchanges are needed for positive
definite matrices.

If 1V holds, so does I: We are given that the pivots are positive, and must deduce
that x"Ax > 0. This is what we did in the 2 by 2 case, by completing the square.
The pivots were the numbers outside the squares. To see how that happens for
symmetric matrices of any size, we go back to the source of the pivots—Gaussian
elimination and A = LDU. Here is the essential fact: In Gaussian elimination of
a symmetric matrix, the upper triangular U is the transpose of the lower triangular
L. Therefore A = LDU becomes A = LDLT.

EXAMPLE
2 -1 0 10 o] 1 -1 0
A=|—-1 2 —1|=|-+ 1 o 3 0 1 —2|=LDL"
0 -1 2 0 -2 1 o o 1

Multiplying on the left by x" and on the right by x, we get a sum of squares in which
the pivots 2, 3, and % are the coefficients:

0|2 1 -

10 1 0][u
x'Ax=[u v w]{-% 1 0 3 0 1 —%j|v
0 -2 1 o o 1f|w

= 2 — 0 + 30— 3w)* + $0u)

Those positive pivots, multiplying perfect squares, make xTAx positive. Thus con-
dition 1V implies condition I, completing the proof. The theorem would be exactly
the same in the complex case, for Hermitian matrices A = 4,

It is beautiful that two basic constructions—elimination and comp