b Bt _.,}

o
.!'ﬁ-




LINEAR

ALGEBRA
WITH APPLICATIONS

Third Edition

W. KEITH NICHOLSON

University of Calgary

PWS PUBLISHING COMPANY

Boston




PWS PUBLISHING COMPANY
20 Park Plaza, Boston, MA 02116-4324

Copyright © 1995 by PWS Publishing Company.
Copyright © 1990 by PWS-KENT Publishing Company.
Copyright © 1986 by PWS Publishers.

All rights reserved. No part of this book may be reproduced, stored in a retricval system, or
transcribed in any form or by any means— electronic, mechanical, photocopying, recording, or
otherwise—without the prior written permission of PWS Publishing Company.

PWS Publishing Company is a division of Wadsworth, Inc.

| (@) 2

International Thomson Publishing
The trademark ITP is used under license

@ This book is printed on recycled, acid-free paper.

Library of Congress Cataloging-in-Publication Data

Nicholson, W. Keith.

Linear algebra with applications / W. Keith Nicholson.—3rd ed.

p. Cm.

Updated cd. of: Elementary linear algebra, with applications.
© 199(0),

Includes index.

ISBN 0-534-93666-0

|. Algebras, Linear. I. Nicholson, W. Keith. Elementary linear algebra, with applica-
tons. 11. Title.

QAI184.N53 1993 03-28879
5127 .5—dc20 CIP
Sponsaoring Editor: Steve Quigley

Production Coordinator: Susan M. C. Caffey

Manufacturing Coordinator: ~ Marcia A. Locke

Marketing Manager: Marianne C. P. Rutter

Assistant Editor: Marnie Pommett

Editorial Assistant: John V. Ward

Production: Bookman Productions/Hal Lockwood

Interior Hlustrator: Deborah Doherty

Interior/Cover Designer: Susan M. C. Caffey

Compositor: Weimer Graphics, Inc.

Cover Art: (Odvssey by Vivian Angel

Cover Printer: John P. Pow Company, Inc.

Text Printer and Binder: RR Donnelley/Harrisonburg

Printed and bound in the United States of America.
Y5969798 — 10987654



IMPORTANT SYMBOLS F B WR&R LA

Description Page
rank of matrix A 21, 230
size of matrix 34
matrix 34
transpose of A 41
identity matrix 46
trace of matrix A 56
inverse of matrix A 57
determinant of matrix A 107
(i, j)—minor of matrix A 109
(i, j)—cofactor of matrix A 109
adjoint of matrix A 123
length or norm of v 141, 282
vector from P, to P, 144
dot product of w and v 157
projection of uond 162
cross product 168
real numbers 187
space of n-tuples 187
space of m X n matrices 190
degree of p(x) 191
space of polynomials 192
interval from a to b 192
space of functions on [a, D] 192
space of polynomials of degree at most n 202
span of a set of vectors 204
set containment 206
dimension of V 214
row space of matrix A 228
column space of matrix A 228

0000000000000 00000000 0000000000 00000000000000000000000900



[ a0 L RNy L
Symbol

E(A)
X-Y
UJ_
proj{v)
proj, (X)
C

Z!’F-

C4(x)
I'V—-W
L

kerT
im7T
nullity T
rank’
Cylv)
Mps(T)
L(V.W)

argz

PPPPPPP0P000000000 0000009000090 000000990990009099909000%909

IMPORTANT SYMBOLS FESS VR &YIREIGAY

Description

eigenspace of matrix A

dot product of n-tuples X and ¥
orthogonal complement of U
projection of v onto U
projection of X on subspace U
complex numbers

conjugate transpose of matrix Z
characternistic of polynomial of A
linear transformation

identity operator on V

kernel of transformation T
image of transformation T
nullity of transformation T

rank of transformation 7
coordinates of v with respect to B
matrix of transformation T
space of transformations

change of basis matnx from Bto D
matrix of operator T
determinant of operator T

trace of operator T
characteristic polynomial of T
eigenspace of transformation T
direct sum of U/ and W

inner product of v and w
distance between v and w

absolute value of complex number

conjugate of complex number :
argument of complex number

Page

252
270
277
278, 437
278
302
304
253
339
343
352
352
354
354
372
373
379
380
382
386
386
386
392
395
421
425
467
467
470



Contents

‘@%”%%%ﬁf%%;%’@@ﬁk@%%@ﬁ 'FErYRYYT Y Y R Y Y Y E X L & X &

auzyd Chapter 1 SYSTEMS OF LINEAR EQUATIONS 1
1.1 Solutions and Elementary Operations 1
1.2  Gaussian Elimination 10
1.3 Homogeneous Equations 24
1.4 An Application to Network Flow (Optional) 27
1.5 An Application to Electrical Networks (Optional) 29
acsad Chapter 2 MATRIX ALGEBRA 33
2.1 Matrix Addition, Scalar Multiplication, and Transposition 33
2.2  Matrix Multiplication 43
2.3  Matrix Inverses 56
2.4 Elementary Matrices 68
2.5 LU-Factorization (Optional) 78
2.6 An Application to Input—Output Economic Models (Optional) 90
2.7 An Application to Markov Chains (Optional) 96
acesad Chapter 3 DETERMINANTS 107
3.1 The Laplace Expansion 107
3.2 Determinants and Matrix Inverses 120
3.3 An Application to Polynomial Interpolation (Optional) 131

3.4 Proof of the Laplace Expansion (Optional) 136




\'g

waad Chapter 4

4.1
4.2
4.3
4.4

w2y Chapter 5

3.1
2.2
5.3
5.4
3.5
3.6
3.7

ey Chapter 6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10

6.11

sy Chapter 7

1.1
1.2
1.3

Contents

VECTOR GEOMETRY

Vectors and Lines

The Dot Product and Projections

Planes and the Cross Product

An Application to Least Squares Approximation (Optional)

VECTOR SPACES

Examples and Basic Properties

Subspaces and Spanning Sets

Linear Independence and Dimension

Existence of Bases

Rank of a Matrix

An Application to Polynomials (Optional)

An Application to Differential Equations (Optional)

EIGENVALUES AND DIAGONALIZATION

Eigenvalues and Similarity

Diagonalization

Orthogonality in R”

Orthogonal Diagonalization

Positive Definite Matrices

LP-Factorization (Optional)

Computing Eigenvalues (Optional)

Complex Matrices (Optional)

An Application to Quadratic Forms (Optional)

An Application to Best Approximation and Least Squares
(Optional)

An Application to Systems of Differential Equations
(Optional)

LINEAR TRANSFORMATIONS

Examples and Elementary Properties
Kernel and Image of a Linear Transformation
Isomorphisms and Composition

141

141
156
165
178

187

187
198
208
219
226
238
244

251

251
261
270
281
289
295
298
302
313

324

331

339

339
352
362



1.4
1.5
1.6
1.7
1.8

a2s2vd Chapter 8

8.1
8.2
8.3
8.4
8.5

e Appendix A

s Appendix B

B.1
B.2

wacesd Appendix C

o B

WA

Contents

The Matrix of a Linear Transformation

Change of Basis

Invariant Subspaces and Direct Sums

Block Triangular Form

An Application to Linear Recurrence Relations (Optional)

INNER PRODUCT SPACES

Inner Products and Norms

Orthogonal Sets of Vectors

Orthogonal Diagonalization

lsometries

An Application to Fourier Approximation

COMPLEX NUMBERS

INTRODUCTION TO LINEAR PROGRAMMING

Graphical Methods
The Simplex Algorithm

MATHEMATICAL INDUCTION

SELECTED ANSWERS

INDEX

371
379

410

421

421
431
441
448

465

481

481
489

501

507

531



Preface

CPVP000C00000CPVPIPCPIFILVBOIP DL AOOOIPIES

This textbook is a basic introduction to the ideas and techniques of linear algebra
for first- or second-year students who have a working knowledge of high school alge-
bra. lts aim is to achieve a balance among the computational skills, theory, and
applications of linear algebra, while keeping the level suitable for beginning students.
The contents are arranged to permit enough flexibility to allow the presentation of
a traditional introduction to the subject, or to allow a more applied course. Calculus
is not a prerequisite; places where it is mentioned are clearly marked and may be
omilted.

Linear algebra has wide application to the mathematical and natural sciences, o
engineering, o computer science, and (increasingly) to management and the social
sciences. As a rule, students of linear algebra learn the subject by studying examples
and solving problems. More than 330 solved examples are included here, many of a
computational nature, together with a wide variety of exercises. In addition, a number
of sections are devoted to applications and to the computational side of the subject.
These are optional, but they are included at the end of the relevant chapters (rather
than at the end of the book) to encourage students to browse.

The examples also play a role in motivating theorems, although most proofs are
included at a level appropriate to the student. This means that the book can be used to
give a course emphasizing computation and examples (and omitting many proofs) or
to give a more rigorous treatment. Some longer proofs arec omitted altogether or are
deferred to the end of the chapter.

The third edition continues the trend toward spending more time on matrix com-
putations as well as applications, a view supported by the Lincar Algebra Curriculum
Study Group.' For example, the chapter on abstract inner product spaces has been
moved to the end and replaced by a discussion of the dot product in R". This allows
diagonalization, with its wealth of applications, to be introduced earlier and also
shifts linear transformations toward the beginning of the book. The net effect is
an overall reduction in the level of abstraction. A good example ol this effect 1s

'‘College Miflf!t’:l;;:tlil‘.! Journal 24, Jan. 1993, p. 41.
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evidenced in Chapter 6, where students will find the more “hands-on™ treatment a
refreshing change from the abstract material in Chapter 5.

New Features in the Third Edition

4

Greater emphasis on matrix computations achieves an overall reduction in the
level of abstraction in the text. For example, there are new sections in this edition on
positive definite matrices and the block upper triangular form of a matrix.

To provide a seamless, more interesting coverage of topics, subsections have
been eliminated and biographical footnotes have been added.

New exercises have been inserted, and exercises with answers that appear 1n the
text or in the student manual are marked with a ».

Revisions of some parts of the text now result in improved exposition. Examples
include the discussions of Gaussian elimination and vector geometry, and the
section on quadratic forms, now with a more thorough discussion of congruence.

Changes in organization and location of some topics now allow for more flexible
coverage: Eigenvalues and diagonalization and their applications now appear
earlier in the text (in Chapter 6); and the discussion of operators (formerly
Chapter 9) is now divided between Chapters 7 and 8. Abstract inner products
now appear in Chapter 8, where a new section on isometries has been added.

The following characteristics, popular with users of the first two editions of this

text, have been retained in the third edition:

L 4

Presentation of techniques in examples, with emphasis on concrete computations
and on the algorithmic nature of some techniques, allows students to master new
skills readily. The text has more than 330 solved examples, all keyed to the exer-
cises in the book.

A wide variety of exercises, which start with routine computational problems
and progress to more theoretical exercises, helps students develop skills in an
appropriate, logically paced fashion.

Optional applications at the end of each chapter offer students specific examples
of where linear algebra yields new insight into problems rather than merely
playing a descriptive role.

Material is organized for maximum flexibility of coverage, giving instructors
alternative paths through the topics. (See the “Chapter Dependencies™ chart on
page xii.) Optional sections include LU-factorization, LP-factorization, comput-
ing eigenvalues, and complex matrices, plus appendices on linear programming,
complex numbers, and mathematical induction. For example, the material on
LU-factorization requires only Chapter 2; the optional appendix on linear pro-
gramming depends only upon Chapter 1.

Answers to even-numbered computational exercises and to selected others
enable students to check the accuracy of their computation immediately.
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Ancillary Materials
& The Partial Solutions Manual now contains solutions to selected even-numbered
exercises.

¢ The Complete Answers and Solutions Manual contains answers or solutions to
all the exercises found in the book.

¢ A computer package (Pascal program MAX: MAtriX Algebra Calculator) is
available upon request.

L 2

EXPtest is a testing program for IBM PCs.

k4

The Testbank is a printed version of EXPtest.

Chapter Summaries

Chapter 1: A standard treatment of Gaussian elimination is given. The rank of a
matrix is introduced via the row-echelon form.

Chapter 2: The operations of matrix algebra (including transposition) are intro-
duced, and matrix inverses are defined and studied through the use of elementary
matrices. The relationship of matrix algebra to linear equations is emphasized, and
block multiplication is introduced to simplify matrix computations. An optional sec-
tion on LU-factorization is included for more applied courses.

Chapter 3: Determinants are defined inductively. The Laplace expansion is
stated first (motivated by examples and the 2 X 2 case), so the students begin by
computing determinants using familiar row and column operations (the proof is given
later). The usual rules are deduced from the Laplace expansion, and the adjoint for-
mula is given.

Chapter 4: Vector operations are defined (motivated by examples) and used to
solve (primarily geometric) problems. Then coordinates are introduced in R’ and R’,
and straight lines and planes are described via the dot and cross products.

Chapter 5: The basic theory of finite dimensional vector spaces is given. The
prototype example throughout 1s [R"., Many examples are given to motivate and
describe such concepts as subspaces, spanning sets, linear independence, and dimen-
sion. Examples involving matrices and polynomials are also given, as are examples
of spaces of functions (examples requiring calculus are clearly marked). The pace is
slow because this is the first acquaintance many students have had with an abstract
system.

Chapter 6: Eigenvalues and the characteristic polynomial are introduced, simi-
larity is defined, and the diagonalization algorithm is given. The Gram-Schmidt algo-
rithm is presented in R" and orthogonal projections are discussed. Then the principal
axes theorem is proved and the Cholesky decomposition for positive definite matrices
is given. Three applications are covered. Linear transformations are not required. An
optional section on diagonalization of complex matrices is included.

Chapter 7: Linear transformations are introduced, motivated by many examples
from geometry, matrix theory, and calculus (clearly marked). The kernel and image
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are defined, the dimension theorem is proved, and isomorphisms are discussed.
Invariant subspaces are introduced and used to derive the block triangular form.

Chapter 8: General inner products are introduced (the prototype example being
[®"), and distance, norm, and the Schwarz inequality are discussed. The Gram-
Schmidt algorithm is given, projections are introduced, and the approximation theo-
rem is proved. Another proof of the principal axes theorem is given and isometries
are characterized.

wasdyd®  Chapter Dependencies

The following chart suggests how the matenal introduced in each chapter draws on
concepts covered in certain earlier chapters. A solid arrow means that ready assimila-
tion of ideas and techniques presented in the later chapter depends on famihiarity with
the earlier chapter. A broken arrow indicates that some reference to the earlier chapter
is made but the chapter need not be covered.

Chapter 1
Systems of
Linear Equations

l

Chapter 2
Matrix Algebra
Chapter 3 | A Chapter 4
Determinants Vector Geometry
/
Y
Chapter 5
Yector Spaces
Chapter 6 Chapter 7
— Eigenvalues and » Linear
Diagonalization Transformations
Chapter 8
Inner Product
Spaces
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Suggested Course Outlines

@

1. Two-Semester Course. Much of the book can be covered in two 35-lecture
semesters, with time left for some applications. The following outline is based on
class experience and includes three applications. The pace in the first semester 18

more leisurely.

Chapter 1 Sections 1.1-1.3 4 lectures
Applications Sections 1.4-1.5 | lecture

Chapter 2 Sections 2.1-2.4 9 lectures
Application Section 2.7 3 lectures
Chapter 3 Sections 3.1-3.2 6 lectures
Chapter 4 Sections 4.1-4.3 10 lectures
Application Section 4.4 2 lectures

Chapter 5

Sections 5.1-5.5

10 lectures

Chapter 6 Sections 6.1-6.4 8 lectures
Application Section 6.9 3 lectures
Chapter 7 Sections 7.1-7.6 7 lectures
Chapter 8 Sections 8.1-8.3 7 lectures

9. One-Semester Applied Course. This 35-lecturc outline goes directly to diagonal-

ization and its applic

ations. The sections marked with an asterisk are intended as

alternatives.
Chapter | Sections 1.1-1.3 3 lectures
Chapter 2 Sections 2.1-2.4 6 lectures

LLU-factorization®

Section 2.5

2 lectures®

Chapter 3 Sections 3.1-3.2 4 lectures
Chapter 5 Sections 5.1-5.5 9 lectures
Chapter 6 Sections 6.1-0.7 9 lectures
Complex Matrices™ Section 6.8 2 lectures™
Application Section 6.9, 6.10, or 611 2 lectures
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A Note to
the Student

This text was written with you, the student, in mind, and it is my sincere hope that
you will benefit from it. Many comments trom previous students have been incorpo-
rated into the text, which I feel will reflect your own needs.

Linear algebra is an old subject and had its beginnings in the last century as a
tool for studying geometry. In recent years it has begun to rival calculus as the most
commonly used subject in mathematics. Linear algebra is used in engineering, medi-
cine, computer science, economics, statistics, and biology to name a few areas, as
well as in other parts of mathematics. Though I cannot demonstrate examples of all
these applications in this text, enough are included to give you a good idea of the
power of linear algebra. What I can promise is that this book will give you the infor-
mation and skills you need to start to learn these various applications.

It is said that there are three vital things to remember when buying a house: First
there is location, second you must consider location, and we cannot forget the third,
location. Similarly, there are three things you must do to pass a mathematics course:
First do exercises. second do exercises, and third (you guessed it) do exercises.
Mathematics is a bit like swimming—you cannot learn the butterfly stroke 1f you
stand on the edge of the pool and watch your instructor in the water. You have to get
in there and do ir. Doing it in a mathematics course means doing exercises.

Of course you may falter now and then. That is why so many examples are
included in the text. Many of these examples are prototypes for the exercises and will
reveal the techniques you need. However, the examples are not the entire text! You
should think of each theorem as a sort of super exercise that distills facts and infor-
mation into a compact form applicable to a wide variety of special cases. Hence it
should not be surprising that the proofs of the theorems involve techniques and ways
of thinking that are useful in all these cases.

Actually, there is another, more subtle, aspect of the theorems which 15 also
important. The proofs of theorems (and the solutions of examples) are partly
designed to train you to think logically or analytically. To some extent this will come
automatically as you study this subject (or any other mathematics course for that mat-
ter), but you can foster its development by writing the solutions to the exercises as
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clearly as possible in a step-by-step manner, with enough explanation to make it
understandable. It has been said that you do not really understand mathematics until
you can explain it to the first person you meet on the street. The reader of your solu-
tion should be considered as such a person.

Finally, mathematics is a tough taskmaster and demands work from anyone seek-
ing to master it. You may become discouraged. But it 1s not that difficult! Thousands
of students have passed this course, and you can too. So let us begin.

W. Keith Nicholson
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Section 1.1
Solutions and Elementary Operations
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Practical problems in many fields of study—such as biology, business, chemistry,
economics, electronics, engineering, and the social sciences—can often be reduced to
solving a system of linear equations. Linear algebra arose from attempts to find sys-
tematic methods for solving these systems, so it is natural to begin this book by
studying linear equations.

If a, b, and ¢ are real numbers, the graph of an equation of the form

ax + by = ¢

is a straight line (provided that a and b are not both zero). Accordingly, such an equa-
tion is called a linear equation in the variables x and y. When only two or three vari-
ables are present, they are usually denoted by x, y, and z. However, it 1s often
convenient to write the variables as x, x,, . . ., X, particularly when more than
three variables are involved.

= "*"?""'r
DEFINITION BN
An equation of the form
a.x + dx F « i +ax =b

is called a linear equation in the n variables x , x,, . . . ,x.Herea,a, ...,
a_denote real numbers (called the coefficientsof x , x,, . . . , X, respectively)
and b is also a number (called the constant term of the equation). A finite col-
lection of linear equations in the variables x, x,, . . . , x, is called a system of

linear equations in these variables.

2%, — 3x,+ Sxy =7 n

Hence,
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Chapter 1 Systems of Linear Equations

EXAMPLE |

and

X, +x,+x+x=20

are both linear equations; the coefficients of the first equation are 2, -3, and 5, and
the constant term is 7. Note that each variable in a linear equation occurs (o the first
power only. The following are not linear equations.

X, +xx, + 2}[3

DEFINITION

Given a linear equation ax, + ax, + -+ - + ax = b, asequence 5,5, . . .,
s_of n numbers is called a solution to the equation if

ais|+ﬂzsz+*--+a"3”:b

that is, if the equation is satisfied when the substitutions x, = §, X, = 5, . . .,

x = s, are made. A sequence of numbers is called a solution to a system of
equations if it is a solution to every equation in the system.

For example, x = -2,y = 5,z=0andx = 0,y = 4, z = —1 are both solutions to
the system
x+y+ z=3
2x+y+3z=1
A system may have no solution at all, or it may have an infinite family of solu-
tions. For instance, the system x + y = 2, x + y = 3 has no solution because the

sum of two numbers cannot be 2 and 3. On the other hand, the system in Example |
has infinitely many solutions.

Show that, for arbitrary values of s and ¢,

X EF = FF)

I}II—E_:‘;-'-Z

-
5=
Il
—

is a solution to the system
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Solution

EXAMPLE 2

Solution

Solutions and Elementary Operations

Simply substitute these values for x, x,, x,, and x, in each equation.

X —2x; + 3%y —(t-s5s+D-20+s5+2)+3s+1t =3
2.1:,—13+3,x:3—x4:2(1—5+l]—{r+5+2]+35—r: 0

Because both equations are satisfied, it is a solution for all s and 1.

¢ 00

The quantities s and ¢ in Example 1 are called parameters, and the set of solu-
tions. described in this way, is said to be given in parametric form and is called the
general solution to the system. It turns out that the solutions to every system of equa-
tions (if there are solutions) can be given in parametric form. The following exam-
ples show how this happens in the simplest systems where only one equation 1s
present.

Describe all solutions to 3x — y = 4 in parametric form.
The equation can be written in the form
y=3x — 4

Thus, if ¢ denotes any number at all, we can set x = 1 and then obtain v = 31 — 4.
This is clearly a solution for any value of . On the other hand, every solution to 3x —
y = 4 arises in this way (7 is just the value of x). Hence the set of afl solutions can be
described parametrically as

X=1
y=3t-4

t arbitrary

Note that there are infinitely many distinct solutions, one for each choice of the
parameter /.

It is important to realize that the solutions to 3x — y = 4 can be given in para-
metric form in several ways. Instead of writing y = 3x — 4 as before, we could have
found x in terms of y

x =1y +4)
and then chosen y = s (s a parameter). Hence the solutions are
|
x==x(5s+4) ,
: s arbitrary
y==25

This is also a correct parametric representation of the solutions to 3x -y =4 1In
fact, the parameters are related by s = 3t — 4 (ort = (s + 4)).

¢4
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Chapter 1

EXAMPLE 3

Solution

Systems of Linear Equations

Describe all solutions to 3x — y + 2z = 6 in parametric form.

Solving the equation for y in terms of x and z, we gety = 3x + 2z - 6. lf s and 1 are
arbitrary, then, setting x = s, z = 1, we get solutions
X=g
y=3+21-6 s and 1 arbitrary
Z2 =1
Of course we could have solved for x: x = ~(y — 2z + 6). Then, if we take y = p,
z = g, the solutions are represented as follows:
x=5(p-2q +06)
y=p p and g arbitrary

=4

&

The same family of solutions can “look™ quite different!

*ee

When only two variables are involved, the solutions to systems of linear equa-
tions can be described geometrically because the graph of a linear equation ax + by
= ¢ is a straight line. Moreover, a point P(s, t) with coordinates s and ¢ lies on the line
if and only if as + bt = ¢— that is, when x = s, y = 1 is a solution to the equation.
Hence the solutions to a system of linear equations correspond to the points P(s, 1)
that lie on all the lines in question.

In particular, if the system consists of just one equation (as in Example 2), there
must be infinitely many solutions because there are infinitely many points on a line.
If the system has two equations, there are three possibilities for the corresponding
straight lines:

1. The lines intersect in a single point. Then the system has a unique solution
corresponding to that point.

2. The lines are parallel (and distinct) and so do not intersect. Then the system
has no solution.

3. The lines are identical. Then the system has infinitely many solutions — one
for each point on the (common) line.

These three situations are illustrated in Figure 1.1. In each case the graphs of two spe-
cific lines are plotted and the corresponding equations indicated. In the last case, the
equations are 3x — y = 4 (treated in Example 2) and —6x + 2y = -8, which have
identical graphs.

When three variables are present, the graph of an equation ax + by + ¢z = d
can be shown to be a plane and so again provides a “picture” of the set of solutions.
However, this graphical method has its limitations: When more than three vanables
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FIGURE 1.1 (a) Unique solu-
tion(x = 2,y = 1), (b) No

solution, (c) Infinitely many
solutions (x = 1,y = 3t — 4)

Solutions and Elementary Operations

Unique solution No solution Infinitely many solutions
x=2,y=1 x=1y=3-4
(a) (b) (c)

are involved, no physical image of the graphs (called hyperplanes) is possible. It is
necessary to turn to a more “algebraic” method of solution.

Before describing the method, we introduce a concept that simplifies the compu-
tations involved. Consider the following system

3%, ¥ 20— Kb X, ==
2% - x,+2x, = 0
3x, + X, +2x; +5x, = 2

of three equations in four variables. The array of numbers'

e - A [ P
2 0 =1 2| 6
31 2 5] 2

occurring in the system is called the augmented matrix of the system. Each row of
the matrix consists of the coefficients of the variables (in order) from the correspond-
ing equation, together with the constant term. For clarity, the constants are separated
by a vertical line. The augmented matrix is just a different way of describing the sys-
tem of equations. The array of coefficients of the variables

[ 3 ~1 1]
G 1 2
3 1 25

is called the coefficient matrix of the system and | 0| is called the constant
matrix of the system. )

| A rectangular array of numbers is called a matrix. Matrices will be discussed in more detail in Chapter 2.
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Elementary Operations

The algebraic method for solving systems of linear equations is described as follows.
Two such systems are said to be equivalent if each has the same set of solutions. A
system 1s solved by writing a series of systems, one by one, each equivalent to the
previous system. Each of these systems has the same set of solutions as the original
one; the aim is to end up with a system that is easy to solve. Each system in the series
is obtained from the preceding system by a simple manipulation chosen so that it
does not change the set of solutions.

As an illustration, we solve the system x + 2y = -2, 2x + y = 7 in this manner.
At each stage, the corresponding augmented matrix is displayed. The original
system is

X +2y ==2 1 2‘—2
2x+ y= 1T 2 1| 7

First, subtract twice the first equation from the second. The resulting system is

X+ 2y = -2 1 2|—2
By =i 0 -3/ 11

which is equivalent to the original (see Theorem 1). At this stage we obtain y = — =

by multiplying the second equation by —L. The result is the equivalent system

x+2y=-2 {1 zi—z}

y % 0 1

Il

Finally, we subtract twice the second equation from the first to get another equivalent

system,
16
3
.
3

Now this system is easy to solve! And because it is equivalent to the original system,
it provides the solution to that system.

Observe that, at each stage, a certain operation is performed on the system (and
thus on the augmented matrix) to produce an equivalent system. The following opera-
tions, called elementary operations, can routinely be performed on systems of linear
equations to produce equivalent systems.

11 0 1

x =3 [10
) i

. Interchange two equations.
II.  Multiply one equation by a nonzero number.

[II.  Add a multiple of one equation to a different equation.
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Solutions and Elementary Operations

THEOREM 1

Suppose that an elementary operation is performed on a system of linear equa-
tions. Then the resulting system has the same set of solutions as the original, so
the two systems are equivalent.

Proof We prove this theorem only for operations of type Il and leave the proofs
for the other operations as exercises. Let

X, + Xy + -+ x, =d ()

L

and

ax, +a,x, +---+ax, =b (k)

denote two different equations in the system in question. Suppose a new system 1S
formed by replacing (=) by equation ()

(a, + ke)x, + -+ +(a, + ke,)x, = b+ kd (k%)

obtained by adding k times equation (*) to equation (). If s, s
tion of the original system, then

o @ v w8 1S dsolu-
n

EESI+F:4€2+"'+EL¥ :d

mH

and

as, + a8, +---+a,s, =b

By multiplication and addition, these give
(a, + ke,)s, + (a, + key)s, + -+« +(a, + ke,)s, = b + kd

Hence s, 5,, . . . , s, is a solution of the new system. Moreover, no additional
solutions have been introduced because the process is reversible. In fact, because (#)
and (++) are different equations in the original system, we can subtract times equa-
tion (+) from equation (*#*) in the new system, and so retrieve the original system.
Thus every solution of the new system is a solution of the original system. L 4

Elementary operations performed on a system of equations produce correspond-
ing manipulations of the rows of the augmented matrix. Thus multiplying a row of a
matrix by a number k means multiplying every entry of the row by k. Adding one row
to another row means adding each entry of that row to the corresponding entry of the
other row. Subtracting two rows is done similarly.

In hand calculations (and in computer programs) we usually manipulate the rows
of the augmented matrix rather than the equations. For this reason we restate these
elementary operations for matrices.



o

Chapter 1

EXAMPLE 4

Solution

Systems of Linear Equations

T, T o e RS
DEFINITION DA TN 11 A
The following are called elementary row operations on a matrix.

[. Interchange two rows.

II. Multiply one row by a nonzero number.
I1I. Add a multiple of one row to a different row.

In the illustration preceding Theorem | these operations led to a matrix of the form

| O|*

0 I |*
where the asterisks represent numbers. In the case of three equations in three vari-
ables, the goal is to produce a matrix of the form

1. 00 0 [ #
01 0f*
0 0 1]*]

This does not always happen, as we will see in the next section. Here is an example
in which it does happen.

Find all solutions to the following system of equations.
3x + 4y + 2 1
2x + 3y = U
4x + 3y —z=-2

The augmented matrix of the original system is

-1]|-2

(3 4
23 0] 0
4 3

To create a 1 in the upper left corner we could multiply row I through by -.
However, the 1 can be obtained without fractions by subtracting row 2 from row 1.
The result is

SR N R —
LIS Ry —
=
o

Lt
I
e
|
-3

The upper left 1 is now used to “clean up” the first column. First subtract 2 imes row
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1 from row 2 to obtain

1 1 1] 1]
0 1 -2|-2
0 -1 -5|-6]

This completes the work on column 1. We now use the 1 in the second position of the
second row to clean up the second column by subtracting row 2 from row 1 and
adding row 2 to row 3. For convenience, both row operations are done in one step.
The result 1s

1 0 3| 3
0 1 -2|-2
0 0 -7|-8]

Note that these manipulations did not affect the first column (the second row has a
zero there), so our previous effort there has not been undermined. Finally we clean up
the third column. Begin by multiplying row 3 by — %+ to obtain

-

(1 0
0 1
0 0

Now subtract 3 times row 3 from row 1, and add 2 times row 3 to row 2 to get

3
-2
1

3
—2

£
{EE

—

1 0 0]-3
0 1 0| =
0 0 1 %_
The corresponding equations are x = —4, y = %, and z = %, which give the so-
lution,
L 2 2
Nt AR P e SR e A EXERCISES 1.1
1. In each case verify that the following are solutions for all (B) x,=25+12r+13
values of s and 1. X, =35 2x, +5x; +9x;+3x, = -1
(@) x = 197 — 35 x,=—5—3t—3 solution of X, +2x, +4x, = |

2x+3y+ z =235

y = 25 - 13t is a solution of Sy Ty <47 =

Z =k

-
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Find all solutions to the following in parametric form in
two ways.’

(@) 3x + y = 2

(€ 3x -y +22=5

#b) 2x + 3y = 1
ofd) x -2y +5z=1

. Regarding 2x = 5 as the equation 2x + Oy = 5 in two

variables, find all solutions in parametric form.

Regarding 4x — 2y = 3 as the equation 4x — 2y + Oz = 3
in three variables, find all solutions in parametric form.

Find all solutions to the general system ax = b of one
equation in one variable (a8) when ¢ = 0 and (b) when
a # 0.

Show that a system consisting of exactly one linear equa-
tion can have no solution, one solution, or infinitely
many solutions. Give examples.

Write the augmented matrix for each of the following
systems of linear equations.

(@) x -3y =5 ob)x + 2y =0
2x + y =1 yio= ]
(€) x—=y+ =2 ofd) x + v = 1
x—szl y+z=20

y+2x =0 _—

Write a system of linear equations that has each of the
following augmented matrices.

@1 -1 610 o) 2 -1 0]|-1
0O 1 0|3 =3 2 1| 0
¥ =] B 0O 1 1] 3

Gaussian Elimination

10.

11.

12.

13.

+14,

+15.

Find the solution of each of the following systems of lin-
ear equations using augmented matrices.

(@ x -3y =1 ob) x+2v= |
2x — Ty = 3 Ix+ 4y = -1

(€) 2x + 3y = -1 o(d) 3x + 4y = |
3x + 4y = 2 4y + S5y = -3

Find the solution of each of the following systems of lin-
ear equations using augmented matrices.

(@ x+y+2z=-1 ob) 2x+ y+z=-I
2x + y+ 3z = 0 x+2y+z= 10
2y + z = 2 Ix — 2z= 3

Find all solutions (if any) of the following

linear equations.

systems of

{ﬂ) 3x - 2_'1.' = 5 Q{I}} X - 21-,.- = K
—12x + 8y = -20 —12x + By = 16
Show that 2x+ v+ 3z =205
T A 4}‘+9‘-’.., =
has no solution unless ¢ = 2b — 3a.

By examining the possible positions of lines in the plane,
show that three equations in two variables can have zero,
one, or infinitely many solutions.

Solve the system ;: i %: z ? by changing variables
x= 5 -2% : . . o,
eyl — Ay and solving the resulting equations for x
and v'.
Find a, b. and ¢ such that

X’ —x+3

ax + b . €
{,r:+2}{2,r—|1 42 2x -1

| Hine: Multiply through by (x* + 2)(2x — 1) and equate

coefficients of powers of x.]

The algebraic method introduced in the preceding section can be summarized as fol-
lows: Given a system of linear equations, use a series of elementary row operations to
carry the augmented matrix to a “nice” matrix (meaning that the corresponding equa-
tions are easy to solve). In Example 4§1 .1.* this nice matrix took the form

1 0 0 |*]
01 0]*
a0 I|*

> glIndicates that the exercise has an answer at the end of the book or in the student solution manual.
*This means Example 4 in Section 1.1.
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The following definitions identify the nice matrices that arise in this process.

DEFINITION BN 2 7 R Gy
A matrix is said to be in row-echelon form (and will be called a row-echelon
matrix) if it satisfies the following three conditions:

1. All zero rows (consisting entirely of zeros) are at the bottom.

Q. The first nonzero entry from the left in each nonzero row is a 1, called the
leading 1 for that row.

3. Each leading 1 is to the right of all leading 1’s in the rows above it.

The row-echelon matrices have a “staircase” form, as indicated by the following ex-
ample (the asterisks indicate arbitrary numbers).

'Ullixﬁa £  k k|
Qe L *® % X
0O 00 01 * *
0O 0 0 0 0O D_i
000000 0]

The leading 1’s proceed “down and to the right” through the matrix. Entries above
and to the right of the leading 1’s are arbitrary, but all entries below and to the left of
them are zero.

DEFINITION INATRLET 2 75 1 B BTG

A row-echelon matrix is said to be in reduced row-echelon form (and will be
called a reduced row-echelon matrix) if it also satisfies the following condi-
tion:

4. Each leading 1 is the only nonzero entry in its column.

Hence a matrix in row-echelon form is in reduced form if, in addition, the entries
directly above each leading 1 are zero. Note that a matrix in row-echelon form can,
with a few more row operations, be carried to reduced form.
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EXAMPLE |

EXAMPLE 2

Systems of Linear Equations

The following matrices are in row-echelon form (for any choice of numbers in

*-positions).

0 1 *= *|[1 *= * #][] *= =
]*#

001 *[|0 1 * =0 1 *
0 0 I

00 0 0/[0 00 1][0O0 1

==

—

The following, on the other hand, are in reduced row-echelon form.

—

01 0 *][1t 0 * o][t 0 0
1 * 0

0 01 *[l0o1 * 0[f[0 10
0 0 I

000O0/[00O0 ][00

Clearly the choice of the positions for the leading 1’s determines the (reduced) row-
echelon form (apart from the numbers in x-positions).

L& 2 4

The importance of row-echelon matrices stems from the following theorem.

AL Ty

L3

7\ "
Mh
Every matrix can be brought to (reduced) row-echelon form by a series of
elementary row operations.

THEOREM 1

The proof is given later. In fact a step-by-step procedure (called the Gaussian algo-
rithm) is given for actually finding the row-echelon matrix.

Theorem 1 reduces the problem of finding solutions of systems of linear equa-
tions to the case in which the augmented matrix is in (reduced) row-echelon form.
This case is easy as the next example shows.

In each case assume that the augmented matrix of a system of linear equations has
been carried to the given reduced row-echelon matrix by row operations. Then solve
the system.

@[t 0 0|1-11 (1 3 01 3|0 @1 500 2] 3
01 0|0 600012 5|0 0 01 0 4]|-5
0 0 1| 2 0000 O0]1] 0 001 2|6

00 00 0[]0
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Solution

Gaussian Elimination

In case (a) the corresponding system of equations is

X, = —1
0
X; = 2

¥
[

and the solution is apparent.
In case (b) the last equation in the corresponding system is

Ox, +0x, +0x; + Ox, + Ox; =1

There are certainly no values of x, x,, x,, x,, and x, that satisfy this equation, so the
system has no solution in this case.
In case (c) the corresponding system of equations 18

X+ 3x5 -2x. = 3
X% +4x; = =35

Xo+ 2x. = B

(= ()

Use these equations to solve for the variables x , x,, and x, (corresponding to the lead-
ing 1°s) in terms of the other variables.

X = 3=3x, +2x;
X, = =) —4x,
X, = 6-2x.

Now x, and x, can be assigned arbitrary values, say x, = s and x_ = ¢, where s and ¢
are parameters. This gives the solution

X = J== DRy X5 = X, = —3— 4 X, =60-2t Xs =1

in parametric form.

*o0

In general, when the augmented matrix of a system of linear equations has been
carried to (reduced) row-echelon form, variables corresponding to columns contain-
ing a leading 1 are called leading variables. The nonleading variables (if any) end up
as parameters in the final solution, and the leading variables are given (by the equa-
tions) in terms of these parameters.

Gaussian Elimination

There remains the task of giving a systematic procedure by which the augmented
matrix can be carried by row operations to reduced row-echelon form. One such
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&

reduction was carried out in Example 4§1.1 where the solution turned out to be
unique. Other situations are described in the following examples.

EXAMPLE 3
Solve the following system of equations.
x+ 2y—- z= 2
2x + Sy + 2z = -1

Tx + 17y + 52 = —1

Solution  The augmented matrix

4 2] 2
9 § 211
7 17 5=l

already has the first leading | in place. Subtract 2 times row | from row 2, and sub-
tract 7 times row | from row 3, to obtain

1 2 -1 2
0 1 4| -5
0 3 12|-15

Now subtract 2 times row 2 from row 1, and subtract 3 times row 2 from row 3, to
get the reduced row-echelon form.

1 0 9|12
01 4|-5
00 0| 0]

The corresponding system of equations is

X -9z = 12
yv+4z = -5
0= 0

If z = t where 1 is an arbitrary parameter, we obtain the solution
x=9+12 y=—=4t — 5 z =

in parametric form.

*49

The row of 0's in the row-echelon form in Example 3 means that one of the
equations in the original system is redundant in the sense that it provides no new in-
formation about the solutions to the system. In fact, the third equation is just the sum
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EXAMPLE 4

Solution

Gaussian Elimination

4

of the first equation plus three times the second, so any solution to the first two equa-
tions is automatically a solution to the third. It is instructive to see how one can dis-
cover this fact. We do this by “keeping track™ of the row operations performed in
the solution to Example 3. Let R, R,, R, denote the three rows of the original
augmented matrix. Then the first manipulation in the solution can be described as
follows:

1 2 -1| 2] R
2 5 2|~ R,
|7 47 5 |=1] R,
1 2 1| 2] R,
01 4| -5 R, — 2R,
0 3 12]-15] R, — 7R,

Now observe that, in this last matrix, the last row is three times the second row.
Hence

R, — 7R, = 3(R, — 2R))
This can be manipulated algebraically to give
R, = 3R, + R,

In other words, the original third row, R, equals the first row plus three times the
second row, as asserted. Note that we have been manipulating the symbols R, R,
and R, as though they were numbers or variables. This is a typical matrix calculation.
Matrix calculations will be treated in detail later in this book.

Solve the following system of equations.
X + 10z = 5
Ix+y— 4z =-1
I

Il

4x + y+ 6z

We manipulate the augmented matrix, keeping track of the manipulations for reference.
As before, we use R , R, R, to denote the three rows. The augmented matrix 1s

1 0 10] 5 R
5. F |- R,
4 1 6| 1 R,

5 =
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The indicated row operations give

1 0 10| 5] R

0 1 -34|-16 R, — 3R,

0 1 -34|-19 R, — 4R,

1 0 10| 5] R

0 1 -34|-16 R, — 3R,

0 0 0] -3] (R —4R)- (R, -3R)

But this means that the following system of equations

X +10z = 3
y—34z = -16
0=-3

is equivalent to the original system. In other words, the two have the same solutions.
This last system clearly has no solution (the last equation requires x, y, and z to have
the property that Ox + Oy + 0z = -3 and no such x, y, and z exist). Hence the origi-
nal system has no solution.

Lo L

Because we have kept track of the operations performed in Example 4, 1t 1s pos-
sible to give a clear explanation of why there is no solution. The offending equation
0 = —3 corresponds to the row [0 0 0 3] in the last matrix. In terms of the rows
R..R,, and R, of the original matrix, the last row is

[0 0 0 3] =(R, -4R) - (R, = 3R) = R, - (R + k)

The fact that this is “almost zero” suggests that we compare R, with R, + R, or, what
is the same thing, that we compare the third equation with the first plus the second.

Third equation: 4x + y+ 62 =1
First equation plus the second: Ax+y+6z2=4

Since no numbers x, v, and z can satisfy both these equations, the system has no
solution.

The key to all these examples is carrying the augmented matrix to reduced row-
echelon form. Suppose an arbitrary matrix 1s presented to you, even one that is not
the augmented matrix of a system of linear equations. Here is a step-by-step proce-
dure by which it can be brought to row-echelon form.
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EXAMPLE 5

Solution
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GAUSSIAN SRy S AN . A
ALGORITHM*

Step 1. If the matrix consists entirely of zeros, stop —it is already in
row-echelon form.

Step 2. Otherwise, find the first column from the left containing a nonzero
entry (call it a), and move the row containing that entry to the top
position.

Step 3. Now multiply that row by 1L to create a leading 1.

Step 4. By subtracting multiples of that row from rows below it, make each
entry below the leading | zero.

This completes the first row, and all further row operations are carried out on
the other rows.

Step 5. Repeat steps 1-4 on the matrix consisting of the remaining rows.

The process stops when either no rows remain at step 5 or the remaining rows
consist of zeros.

Observe that the Gaussian algorithm is recursive: When the first leading 1 has
been obtained, the procedure is repeated on the remaining rows of the matrix. This
makes the algorithm easy to use on a computer.

Bring the following matrix to row-echelon form, using the Gaussian algorithm.

0 0 0 21 9
0 2 -6 20 2
0 2 6 -2 2 0
0 3 9 2 219

We follow the steps in the algorithm.

Step 1. The matrix has nonzero entries, so proceed to step 2.
Step 2. The first nonzero column is column 2. Choose @ = -2 inrow 2 (@ = 2 in row
3Jora = 3 inrow 4 would do as well). Interchange rows 1 and 2 to obtain

*Carl Friedrich Gauss (1777-1855) ranks with Archimedes and Newton as one of the three greatest mathe-
maticians of all time. He was a child prodigy; and at the age of 21 he gave the first proof that every poly-
nomial has a complex root. In 1801 he published a timeless masterpiece, Disquisitiones Arithmeticae, in
which he founded modern number theory. He went on to make ground-breaking contributions 1o nearly
every branch of mathematics, often well before others rediscovered and published the results. In addition,
he did fundamental work in both physics and astronomy. Gauss is said to have been the last mathematician
to know everything in his subject: it is no wonder he is called “the prince of mathematicians.”
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Step 3.

Step 4.

Step 5.

0 2 -6 2 0 2
O o0 0 21 9
0O 2 6 -2 2 0

0 3 9 2219

Multiply row | through by —3 to obtain

0 1 3 -1 0 -1
0O 00 21 9
0 26 -2 2 0
039 22 19

Subtract 2 times row | from row 3, and subtract 3 times row | from row 4.
The result 18

L5 —

013 -10 -
000 21 9
000 02 2
000 52 22

This completes the first row (now shaded), and we ignore it from now
on and repeat steps 1—4 on the new matrix (unshaded) consisting of the
remaining three rows. Steps 1-3 amount to multiplying row 2 by x
(creating the second leading 1), and step 4 then subtracts 5 times this
new row 2 from row 4. This produces the matrix

0 1 3 -1 0 -1]
0o 00 1 <+ 3
000 0 2 2
000 0 -+ -4

where the second row (now completed) has been shaded.

Now repeat steps 1—4 on the last two rows to get

0 1 3 -1 0 -I]
000 14 3
000 0 1 |
000 00 0

where the completed third row has been shaded. This completes the procedure
since the remaining (1-row) matrix consists of zeros and the algorithm stops at
step 1. Of course the matrix is now in row-echelon form.

*o¢
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¢

In all our earlier examples the augmented matrix was carried to reduced row-
echelon form by modifying step 4 in the Gaussian algorithm to introduce zeros above
(as well as below) each leading | as soon as the leading | is created. However, when
solving a large system it is numerically more efficient to go to row-echelon form first
and then create the zeros above the leading 1’s, starting with the first leading 1 from
the right and working from right to left.’

This is the matrix version of a technique called back-substitution for solving a
system of linear equations with a row-echelon augmented matrix. The idea is to use
the last equation to find the last leading variable (in terms of the nonleading vari-
ables) and then substitute it back into all the earlier equations. Then the second last
equation yields the second last leading variable (which is also substituted back), and
so on. Here is an example.

Solve the following system of equations.

-x, + 3x, + 3x, + X, =
2%, — bxy +3x; —x; = 2

using the Gaussian algorithm and back-substitution.

The reduction of the augmented matrix to row-echelon form is as follows (the details
are omitted).

= - —

] -3 1 -1 0]|-l | -3 1 -1 0]|-1
-1 30 3 1] 3 O 01 2 1| 2
2 -6 3 0 -1 2 0O 0 0 0 1|=Il
-1 3 1 5 1| 6] o 00 0 0] 0
The corresponding equations are
M M o T - = ]
5t s 2
x, = —|

The leading variables are x , x,, and x_. Solving the last equation for x, is easy:

x; = -1

a - a a 1
*With n equations where n is large, this procedure requires roughly 5 multiplications and divisions,
whereas this number is roughly 4 if the zeros above cach leading 1 are introduced when the leading | is
created. This is an important consideration when solving a large system.
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Now substitute this into the second to last equation. The result is
X =3~2x,
Finally, substituting both x, and x, into the first equation gives
x, = =4 + 3x, + 3x,

If the nonleading variables are assigned as parameters x, = s, x, = 1, the solution is

4

x, =—4+3s+3% X, = § x; =32t X, =1 X, = -1

*0¢

Systems of linear equations that have no solution are called inconsistent sys-
tems; systems that have at least one solution are said to be consistent.

EXAMPLE 7

Find a condition on the numbers a, b, and ¢ such that the following system of equa-
tions is consistent. When that condition is satisfied, find all solutions (in terms of a,
b, and c).

x+3y+z=a

b
Ix+Ty—=z=¢

-x =2y + 2

Solution  The Gaussian algorithm applies except that now the augmented matrix has entries a,
b, and ¢ as well as known numbers.

=T 3 1|4

-1 =2 11|b

| .3 7 =1]e
1 3 1 a |

0 1 21 b+ a
0 -2 -4 |c-3a]

I 0 5] -24—-3b |
2 b+ a
0 0 O|c—a+2b|

Now the whole thing depends on the quantity ¢ — a + 2b. The last row corresponds
to an equation 0 = ¢ — a + 2b. Thus if ¢ — a + 2b is not zero, there 1s noO sO-
lution (just as in Example 4). Hence the condition for consistency is ¢ = a — 2b.
Then the last matrix becomes

1 D =5 |<¥u=ah
0 1 2 a+b
00 0 0
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EXAMPLE 8

Solution

Gaussian Elimination @
Thusif ¢ = a — 2b, taking z = t, { a parameter, gives the solutions

X = 5t —(2a + 3b) y=(a+b)—2t =

2 2 4

Rank

[t can be proven that the reduced row-echelon form of a matrix A is uniquely
determined by A. That is, no matter which series of row operations 1s used to carry A
(o a reduced row-echelon matrix, the result will always be the same matrix. (See
Supplementary Exercise 7 in Chapter 5.) By contrast. this is not true for row-echelon
matrices: Different series of row operations can carry the same matrix A to different
row-echelon matrices. However, it is true that the number of leading 1°s must be the
same in each of these row-echelon matrices (this will be proved in Chapter 5). Hence
the number of leading 1’s depends only on A and not on the way in which A is carried
to row-echelon form.

DEFINITION I, AN

If a matrix A is carried to a row-echelon matrix R by elementary row operations,
the number of leading 1’s in R is called the rank of A and is denoted rank A.

] Ok =1 4
Compute the rank of A=|2-1 3 £
0 1 -5 8]
The reduction of A to row-echelon form 1s
11 =1 41 1 1 =1 4] [1 1 -1 4]

21 3 0/>|0 -1 5 -8/{>|0 1 -5 8
01 58 |0 1 -5 8 [00 00

Because this row-echelon matrix has two leading 1°s, rank A = 2.

06

The notion of rank of a matrix has a useful application to equations.

THEOREM 2 £

Suppose a system of m equations in n vanables has a solution. If the rank of the
augmented matrix is r, the set of solutions involves exactly n — r parameters.
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Proof The fact that the rank of the augmented matrix is r means there are exactly r
leading variables, and hence exactly n — r nonleading variables. These nonleading
variables are all assigned as parameters, so the set of solutions involves exactly
n — r parameters. &

In particular, this shows that, for any system of linear equations, exactly three
possibilities exist:

1. No solution.

2. A unique solution. This occurs when every variable is a leading variable.

3. [Infinitely many solutions. This occurs when there is at least one nonleading
variable, so a parameter is involved.

EXAMPLE 9

Suppose the matrix A in Example 8 is the augmented matrix of a system of m = 3
linear equations in n = 3 variables. As rank A = r = 2. the set of solutions will
haven — r = | parameter. The reader can verify this fact directly.

L4 4 4
LIRSy EXERCISES 1.2
1. Which of the following matrices are in reduced row- @ 1t 20 31 0]-1]
echelon form? Which are in row-echelon form? 0o 01 -1 I 0] 2
@ 1 -1 2 #b)[2 1 -1 3 000 00 1|3
0 0 0 0o 0 00 000 00 O0f 0,
0o 01 o)1 2 0 2 0 1| 1]
(¢)[1 -2 3 5 od) [1 0 0 3 1 0o 01 50 -3|-1
0o 0 0 1 0 0 0 1 1 0O 000 1 61
0O 0 0 01 0 0 0 0 0 0] 0]
() [1 | ofy [0 O I (et 2 1 3 1|1]
0 1 0 0 1 0O 1 -1 0 1|1
0 0 1 0 0 0 I =1]0
2. Carry each of the following matrices to reduced row- :ﬂ 0 00 0]0]
echelon form. od) 1 -1 2 4 6| 2]
@ fo -1 212 1 -] o 12 1 -1]-1
0o 1 -2 2 7 2 4 0O 00 1 0} 1
02 4371 0 0 000 0] 0
0o 3 -6 1 6 4 |I] 4. Find all solutions (if any) to each of the following sys-
*(b) 0 -1 3 1 3 2 1] tems of linear equations.
0 -2 6 1 =50 -I (@ x-2y= | ob) 3x - ¥y =0
0 3 -9 2 4 1 -l 4y - x = -2 2x = 3y = 1
o 1 3 -1 30 I (€) 2x + y =35 o(d) 3x — vy = 2
; ; : 3Ix+2y =6 y — B = —4
3. The augmented matrix of a system of linear equations has ! 5 2) ;
been carried to the following by row operations. In each (€) 3x — y = ‘;'r +(f) %I = ;'v = ;
= 3y - 2x =

case solve the system. 2y — 6x
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Gaussian Elimination

3. Find all solutions (if any) to each of the following sys-

tems of linear equations.

@ x+ y+2z=1 M®) 2x +3y+3z = -9
3x—- y+ z=-1 Ix -4y + z= 5
-x+3y+4z= |1 ~Sx + 7y + 2z = -14

(€© x+ y- z= 3 «(d) x+2y— 2z =2
—x +4y+ 5z = -2 2x 4 3y - 3 =1
xX+6y+3z= 4 x+4y -3z =3

(€) 5x +y =2 off) 3x—2y+ z =2
Ix-y+2z=1 x— y+3z= 5
Xty- z=3 -x+ y+ z = -1

9) x +y+ z= +(h) x+2y—4z =10
X + 2=J 2y — y+ 2z = 5

2x+5y+2z=5

X+ y—-2z= 17

6. Find all solutions to each of the following systems and
express the last equation of each system as a sum of mul-

tiples of the first two.

(@ x, + x, + x;=1 o) 2x, + x, — 3x; = -3
2I|_12+3IJ=3 311+12-513= 5
Ix, =3x,+5x;, =5 -2x, + x, + S5x; = =35

7. Find all solutions to the following systems.
(@) 3x, + 8x, — 3x; — ldx,

2xy 3 = 5=

2X,

o) x - x, +x, - x, =
=+
+
x, +
X -
+
+ 2x; + 3 — xy
X~ Xod2x 4+ X

X, + Xy + x4 =
Xog — X3 + Xy =
X, + Xy + x4 =
X, + X3 — 2x,

ofld x, + x, +2x; — x,
Ix, —

x; + 2x, — 3xy + 5x,

x5 + x, — 5x, + 6x,

X, + ..I“3+ Xy =

X, + 4x, =

I
S P oo W

-3

8. In each of the following, find conditions on a and b such
that the system has no solution, one solution, and infi-

nitely many solutions.

(@) x -2y =1 ob) x + by = -1
ax + by = 5 ax + 2y = 5
(c) x — by = —1I ofd) ax + y = 1
X+ay= 3 2x +y=0b

@

9. In each of the following, find (if possible) conditions on
a, b, and ¢ such that the system has no solution, one solu-
tion, or infinitely many solutions.

(@) 3x+ y—- z=a o®) 2x+ y- z=a
x— y+2z=b 2v+3z=b4
x+3y—-dz=c¢c ;| - z=cC

(€) x+3y+2z:=-8 eo(d) x +ay =0
X + g= 3 ] s bz = 0
Ix+3y+az= b 2+ ex =4

(€) 3x - y+ 2z =3
X+ y— =2
2x =2y + 3z =0b

offf x + ay - e
-x + (a - 2)y + %]
2x + 2y + (@ — 2)z = |

10. Find the rank of each of the matrices in Exercise 1.
11. Find the rank of each of the following matrices.
@f1 12 o(b) [-2 3 3
3 -1 1 3 —4 |
=1 3 4 -5 7 2

[ 1 1 -1 3 ofd [ 3 2 1 2
-1 4 5 -2 I -1 3 5
| E6 Z 2 -1 1 1 -

e[1 2 -1 0 |
0 a Il-a a +1
1 2-a -1 24

o [1 1 2 @
| | —a 2 0
2 2-a 6—-—a 4

12. Consider a system of linear equations with augmented
matrix A and coefficient matrix C. In each case either
prove the statement or give an example showing that it is

false.

(a) If there is more than one solution, A has a row of

ZETOS.

#(b) If A has a row of zeros, there is more than one solu-

tion.

(c) If there is no solution, the row-echelon form of C has

a row of zeros.

#(d) If the row-echelon form of C has a row of zeros,

there 15 no solution.
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Now assume that A has 3 rows and 5 columns. 17. Three Nissans, two Fords, and four Chevrolets can be

(e) If the system is consistent, there is more than one so- rented for $106 per day. At the same rates two Nissans,

lution. four Fords, and three Chevrolets cost $107 per day,

¢ (f) The rank of A is at most 3, whereas four Nissans, three Fords, and two Chevrolets

(g) Ifrank A = 3, the system is consistent. cost $102 per day. Find the rental rates for all three kinds
(h) If rank C = 3, the system is consistent. of cars.

¢ 18. A school has three clubs, and each student is required to

13. Find a sequence of row operations carryin :
4 P fying belong to exactly one club. One year the students switched

by +¢ b+ ¢ byt G 9 & club membership as follows:
qta ta cta| 0 |b b b Club A. j5remainin A, rswitchto B, -3switchto C.
sty @ty ot h a 2 9 Club B. s5remain in B, ;switchto A, +5switch to C.
14. In each case, show that the reduced row-echelon form is as Club C. xremain in C, %5wit¢h to A, Tyswitch to B.
given. If the fraction of the student population in each club 15 un-
@ [p 0 a 1 0 0 changed, find each of these fractions.
b 0 0] wihabe # 0 |0 1 “} 19. Given points (p, q,), (p,, ¢,). and (p,, ¢,) in the plane with
. 001 P, Py and p_ distinct, show that lhjc}f lie on some curve
e ®)1 a b+c 1 0 * with equation y = a + bx + cx?. [Hint: Solve for a, b,
| b c+a| wherec#zaorb#a {D 1 * and ¢.]
1l ¢ a+d 0 0 0 20. The scores of three players in a tournament have been lost.

The only information available 1s the total of the scores for
players | and 2, the total for players 2 and 3, and the total
for players 3 and 1.

ax + by + ¢z = 0

151» Shﬂw lhﬂt {ﬂ]l— + JFJ']_'}-‘ g Gz = [}

} always has a solution

otherthanx = 0,y = 0,z = 0. (a) Show that the individual scores can be rediscovered.

¢ (b) Is this true with four players (knowing the totals for
16. Find the circle x2 + y> + ax + by + ¢ = 0 passing players | and 2,2 and 3, 3 and 4, and 4 and 1)?
through the following points. 21. A boy finds $1.05 in dimes, nickels, and pennies. If there
(@) (<2, 1),(5.0),and & (b) (1, 1),(5,-3), and are 17 comns in all, how many coins of each type can he
(4, 1) (-3,-3) have?
I ASEII Section 1.3 Homogeneous Equations

A system of equations in the variables x, x,, . . . , x_is called homogeneous if all

the constant terms are zero—that is, if each equation of the system has the form
ax. +ax,+::-%¥ax =0

Clearly x, = 0,x, =0, . . ., x = 015 a solution to such a system; it is called
the trivial solution. Any solution in which at least one variable has a nonzero value
is called a nontrivial solution. Our chief goal in this section is to give a useful condi-
tion for a homogeneous system to have nontrivial solutions. The following example
is instructive.

EXAMPLE |

Show that the following homogeneous system has nontrivial solutions.
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Solution

EXAMPLE 2

Solution

Homogeneous Equations

@

X — X +2x,+x, =0
2x; 42k, -x, =0
3x, + x, +2x;+x, =0

The reduction of the augmented matrix to reduced row-echelon form is outlined
below.

1 =1 2 110] i 2 1§ 1 0 1 0]0]
2 2 0 -1l0l—= 10 4 -4 =3|0|—=10 1 -1 0/{0
3 1 2 1[g 0 4 -4 2|0 00 0 1|0

The leading variables are x , x,, and x,, so x, is assigned as a parameter—say x, = 1.
Then the general solution is x, = £, x, = 1, x, = 1, x, = 0; so, taking r = 1 (say),
we get a nontrivial solution.

A 2

The existence of a nontrivial solution in Example 1 is ensured by the presence of a
parameter in the solution. This is due to the fact that there is a nonleading variable
(x, in this case). But there must be a nonleading variable here because there are four
variables and only three equations (and hence at most three leading variables). This
discussion generalizes to a proof of the following useful theorem.

; .‘-mr"ah &,
THEOREM 1 SRR oS
If a homogeneous system of linear equations has more variables than equations,
then it has a nontrivial solution (in fact, infinitely many).

Proof Suppose there are m equations in n variables where n > m, and let R denote
the reduced row-echelon form of the augmented matrix. If there are r leading vari-
ables, there are n — r nonleading variables, and so n — r parameters. Hence it
suffices to show that r < n. But r < m because R has r leading 1's and m rows, and
m < n by hypothesis. &

Note that the converse of Theorem 1 is not true (Exercise 3(b)). The next example
provides an illustration of how Theorem 1 is used.

We call the graph of an equation ax? + bxy + ¢y* + dx + ey + f = 0 a conic if the
numbers a, b. and ¢ are not all zero. Show that there is at least one conic through any
five points in the plane that are not all on a line.

Let the coordinates of the five points be (p,, q,), (P, 4,). (P, 4, (P, q,), and (p., g,).
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The graph of ax? + bxy + ¢y* + dx + ey + f = 0 passes through (p, g ) if

”P;E + bp,q; + L"ff':'z +dp, +eq + [ =0

This gives five equations, linear in the six variables a, b, ¢, d, ¢, and f. Hence there 1s
a nontrivial solution by Theorem |. If a = b = ¢ = 0, the five points all lie on the
line dx + ey + f = 0, contrary to assumption. Hence one of a, b, ¢ is nonzero.

L2 2
IR eIt A2y EXERCISES 1.3 ezt 270
3. (a) Does Theorem I imply that the system '~~~ _
| | x—6y =10
1. Consider the following statements about a system of hiais ionteivial soliitions? Bxplain, q

linear equations with augmented matrix A. In each case

either prove the statement or give an example for which

it is false.

(a) If the system is homogeneous, every solution is
trivial.

(b) If the system has a nontrivial solution, it cannot be
homogeneous.

(c) If there exists a trivial solution, the system is homo-
geneous.

(d) If the system is consistent, it must be homogeneous.

Now assume that the system is homogeneous.

(e) If there exists a nontrivial solution, there is no trivial
solution.

(f) If there exists a solution, there are infinitely many
solutions.

(g) If there exist nontrivial solutions, the row-echelon
form of A has a row of zeros.

(h) If the row-echelon form of A has a row of zeros,
there exist nontrivial solutions.

In each of the following, find all values of a for which
the system has nontrivial solutions, and determine all so-
lutions in each case.

x+ayv-3z2=0 43y 46z =0
_I+f]}‘—52=[-} oy

2x + 3y +az = 0
¢(d ax +y+ z=0

T ¥y— &=

C)x+y -z=0
ay —z =10
x+y+az =

=
=

x+yv+az =10

¢ (b) Show that the converse to Theorem | is not true.

4.

That is, show that the existence of nontrivial solu-
tions does not imply that there are more variables
than equations.
In each case determine how many solutions (and how
many parameters) are possible for a homogencous
system of four linear equations in six variables with
augmented matrix A. Assume that A has nonzero entries.
Give all possibilities.
(@) Rank A = 2.
(b) Rank A = 1.
(€) A has a row of zeros.
(d) The row-echelon form of A has a row of zeros.
The graph of an equation ax + by + ¢z = () 1s a plane
through the origin (provided that not all of «, b, and ¢ are
zero). Use Theorem | to show that two planes through

the origin have a point in common other than the origin

(0, 0, 0).

(@) Show that there is a line through any pair of points in
the plane. [Hint: Every line has equation ax + by +
¢ = 0, where a, b, and ¢ are not all zero. |

(b) Generalize and show that there is a plane ax + by +
¢z + d = 0through any three points in space.

The graph of an equation a(x* + y*) + bx + cv + d =

0is a circle if a # (. Show that there is a circle through

any three points in the plane that are not all on a line.

Consider a homogeneous system of linear equations in n
variables, and suppose that the augmented matrix has
rank r. Show that the system has nontrivial solutions if
andonlyiftn > r®

ﬁl.i' p and g are statements, “p if and only if ¢” means that both p implies g and ¢ implies p.
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Solution
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An Application to Network Flow

An Application to Network Flow (Optional)

There are many types of problems that concern a network of conductors along which
some sort of flow is observed. Examples of these include an irnigation network and a
network of streets or freeways. There are often points in the system at which a net
flow either enters or leaves the system. The basic principle behind the analysis of
such systems is that the total flow into the system must equal the total flow out. In
fact we apply this principle at every junction in the system.

—— =t
JUNCTION RULE  Saassi i des AN 0
At each of the junctions in the network, the total flow into that junction must
equal the total flow out.

This requirement gives a linear equation relating the flows in conductors emanating
from the junction.

A network of one-way streets is shown in the accompanying diagram. The rate of
flow of cars into intersection A is 500 cars per hour, and 400 and 100 cars per hour
emerge from B and C, respectively. Find the possible flows along each street.

Suppose the flows along the streets are f, £, f,, f,. f,, and f, cars per hour in the direc-
tions shown. Then, equating the flow in with the flow out at each intersection, we get

Intersection A 0= f, + 1, + £,

Intersection B

ht it Sy =400

Intersection C L+ f=f+100
Intersection D E = ik
These give four equations in the six variables f. f,, . . . ./[..
h+hth = 500
f; + + f, = 400
5 +fs = fo =100
5 s = 0
The reduction of the augmented matrix 1s
111 0 0 0]500] 1 0 0 1 0 1]400]
1 00 1 0 1]400 010 -1 -1 0 0
O 01 0 1 -1]100 O 01 0 1 —-1{100
(0 1. 0 =] =1 O] WU o000 0 0 0] 0O
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g

Hence, when we use f,, f., and f, as parameters, the general solution 1s

S =400 - f, — f
=i+ 5
S =100 = £ + fs

This gives all solutions to the system of equations and hence all the possible flows.

Of course, not all these solutions may be acceptable in the real situation. For
example, the flows f,, f,, . . . , f, are all positive in the present context (if one came
out negative, it would mean traffic flowed in the opposite direction). This imposes
constraints on the flows: f, =2 0 and f, 2 0 become

fi + [, < 400
fﬁ_fﬁil{}ﬂ

Further constraints might be imposed by insisting on maximum values on the flow in
each street.

L 2 2
WA eIt sy EXERCISES 1.4
1. Find the possible flows in each of the following networks
of pipes.
(a)

(@) Find the possible flows.
¢ (b) If canal BC is closed, what range of flow on AD
must be maintained so that no canal carries a flow of
more than 307
3. A traffic circle has five one-way streets, and vehicles
enter and leave as shown in the accompanying diagram.

¢ (b)
34 25
40
Y
2. A proposed network of irrigation canals is described in
the accompanying diagram. At peak demand, the flows at (a) Compute the possible flows.

interchanges A, B, C, and D are as shown. ¢ (b) What road in the circle has the heaviest flow?
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RSNV Section 1.5 An Application to Electrical Networks (Optional)’

In an electrical network it i1s often necessary to find the current in amperes (A)
flowing in various parts of the network. These networks usually contain resistors that
retard the current. The resistors are indicated by a symbol J\/Wj and the resistance
is measured in ohms (£2). Also, the current is increased at various points by voltage
sources (for example, a battery). The voltage of these sources is measured in volts
(V), and they are represented by the symbol ~1]-. We assume these voltage sources
have no resistance. The flow of current 1s governed by the following principles.

OHM'S LAW RN M AN ] S
The current I and the voltage drop V across a resistance R are related by the
equation V = RI.

KIRCHHOFF'S LAWS  ShaaiSu;: S0 Rt 8 ) o

1. (Junction Rule) The current flow into a junction equals the current flow out
of that junction.

2. (Circuit Rule) The algebraic sum of the voltage drops (due to resistances)
around any closed circuit of the network must equal the sum of the voltage
increases around the circuit.

When applying rule 2, select a direction (clockwise or counterclockwise) around
the closed circuit and then consider all voltages and currents positive when 1n this di-
rection and negative when in the opposite direction. This is why the term algebraic
sum 1s used in rule 2. Here is an example.

EXAMPLE 1

Find the various currents in the circuit shown.

Solution  First apply the junction rule at junctions A, B, C, and D to obtain

Junction A I =1, + I,
Junction B L =L +1I
Junction C I, + 1, =1L
Junction D L+ =1,

Note that these equations are not independent (in fact, the third 1s an easy conse-
quence of the other three).

Next, the circuit rule insists that the sum of the voltage increases (due to the
sources) around a closed circuit must equal the sum of the voltage drops (due to
resistances). By Ohm’s law, the voltage loss across a resistance R (in the direction of

"This section 1s independent of Section 1.4.
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the current /) is RI. Going counterclockwise around three closed circuits yields

Upper left 10+ 5 = 20/,
Upper rnight -3 + 20 = 104; + 51,
Lower ~10 ==+31: —51,

Hence, disregarding the redundant equation obtained at junction C, we have six
equations in the six unknowns /,, . . ., I.. The solution is

Ii=ﬁ ;¢=%%
"zz'ﬂ' 15:%%
I?.:i% Iﬁ:';%

The fact that /, is negative means, of course, that this current is in the opposite direc-
tion, with a magnitude of +; amperes.

L 2 2 2
" ISP ¥R A5y EXERCISES 1.5
In Exercises 1-4, find the currents in the circuits.
1. ¢ 2. & 4. All resistances are 10£€)
WMy > o
j— 60 [
- 51
20V I 5V
2
*— A “ e
4 ()
__..._‘_1{} v
2 {) Iy
MW <
51 10V
3 [, 1, 5. Find the voltage x such that the current I, = (.
71 <9 < — "N\ ‘11 < AAA
5V 20 {2 20V I§ 2€)
(R Y/s 10
1Q
4+ 3V 445V
10V I, 100 20 ) Vv -F—'ZV I
| . I i
= >—AN—* AAA- —= >
WA N R LAy SUPPLEMENTARY EXERCISES FOR CHAPTER 1
1. We show in Chapter 4 that the graph of an equation ax + (a) By examining the possible positions of planes in space,
by + ¢z = dis a plane in space when not all of a, b, and show that three equations in three variables can have

¢ are zero. zero, one, or infinitely many solutions.
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(b) Can two equations in three variables have a unique solu-

*

¢ 4,

¢ 6.

1.

+ 8.

9.

tion? Give reasons for your answer.

Find all solutions to the following systems of linear equa-
tions.
@ x+ x5+ 5- x,= 3
3x, + 5x, — 203+ x, = |1
-3x, — Txy + Txy = 5x, =
x; + 3x; — dxy + 3xy = D

{h] X + 412 - Xy + Xq =
35+ 2x, + x3 t2x, =
x — 6x; + 35, -

..1'1 + ]412 == 5.‘3 + 2.‘4 —

s = Lh b2

In each case find (if possible) conditions on a, b, and ¢

such that the system has zero, one, or infinitely many so-

lutions.

(@) x+2y— 4z = 4
3x— y+ 13z = 2
4x+ y+az=a+3

M) x+ y+3z=a
ax+ y+5z=4
x+ay+4z=a

Show that any two rows of a matrix can be interchanged
by elementary row transformations of the other two

types.
If ad # bc,

. 1 0
form .
x+ay+ ¢z

Find a. b, and c so that the system bx + ¢y — 3z = 1

a
show that L_ y

] has reduced row-echelon

I
=

ax +2y+ bz =95

has the solutionx = 3,y = -1,z = 2

x+2v+2z=-3
Solve the system { 2x + y+ z = 0 wherei® = -I

X— y—iz =1
|Sce Appendix A.]

X+ y+ z =235

Show that the real system < 2x — v — z =1 has a

3x+2v+2: =0
complex solution: x = 2, y =i, z =3 — i where i =
~1. Explain. What happens when such a real system has
a unique solution?

A man is ordered by his doctor to take 5 units of vitamin
A. 13 units of vitamin B, and 23 units of vitamin C each
day. Three brands of vitamin pills are available, and the
numbers of units of each vitamin per pill are shown in
the accompanying table.

Vitamin
Brand A B | C
] 1 2 4
2 | I 3
0 | |

(a) Find all combinations of pills that provide exactly
the required amount of vitamins (no partial pills al-
lowed).

¢ (b) If brands 1, 2, and 3 cost 3¢, 2¢, and 5¢ per pill, re-

10.

11.

12.

13.

14.

spectively, find the least expensive treatment.

A restaurant owner plans to use x tables seating 4, v
tables seating 6, and z tables seating 8, for a total of 20
tables. When fully occupied, the tables seat 108 cus-
tomers. If only half of the x tables, half of the y tables,
and one-fourth of the z tables are used, each fully occu-
pied, then 46 customers will be seated. Find x, y, and z.

(a) Show that a matrix with two rows and two columns
that is in reduced row-echelon form must have one
of the following forms:

o] [o) oo oo

[Hint: The leading | in the first row must be in col-

umn | or 2 or not exist.|

List the seven reduced row-echelon forms for ma-

trices with two rows and three columns.

(c) List the four reduced row-echelon forms for matri-
ces with three rows and two columns.

(b)

An amusement park charges $7 for adults, 52 for youths,
and $.50 for children. If 150 people enter and pay a total

of $100, find the numbers of adults, youths, and children.
[Hint: These numbers are nonnegative infegers. |

Solve the following system of equations for x and y.

a

M +y —y = 1

2x = ay + 3yt = 13

A3y +2y =0
[Hint: These equations are linear in the new variables
x, = x%,x, = xy,and x, = %]

If a consistent (possibly nonhomogeneous) system of lin-
ear equations has more variables than equations, prove
that it has more than one solution.



s

_i?ﬁéﬁ#@é#é@%@@@@%%@@@%%%@%%%%@@%%%@a%@

Section 2.1
Matrix Addition, Scalar Multiplication, and Transposition

In the study of systems of linear equations in Chapter 1, we found it convenient to
manipulate the augmented matrix of the system. Our aim was to reduce 1t to row-
echelon form (using elementary row operations) and hence to write down all
solutions to the system. In the present chapter, we will consider matrices for their own
sake, although some of the motivation comes from linear equations. This subject 1s
quite old and was first studied systematically in 1858 by Arthur Cayley.'

DEFINITION BN 2 i i

A rectangular array of numbers is called a matrix (the plural is matrices), and
the numbers are called the entries of the matrix.

A e

Matrices are usually denoted by uppercase letters: A, B, C, and so on. Hence

|

1 2 -1 1 -1
A= B = C=|3
L 5 J L 2] 5

b =

are matrices.

| Arthur Cayley (1821-1895) showed his mathematical talent early and graduated from Cambridge in 1842
as senior wrangler. With no employment in mathematics in view, he took legal training and worked as a
lawyer while continuing to do mathematics, publishing nearly 300 papers in fourteen years. Finally, in
1863, he accepted the Sadlerian professorship at Cambridge and remained there for the rest of his life, val-
ued for his administrative and teaching skills as well as for his scholarship. His mathematical achievements
were of the first rank. In addition to originating matrix theory and the theory of determinants, he did funda-
mental work in group theory, in higher-dimensional geometry, and in the theory of invariants. He was one
of the most prolific mathematicians of all time and produced 966 papers filling thirteen volumes of 600
pages each.
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Clearly matrices come in various shapes depending on the number of rows and
columns. For example, the matrix A shown has 2 rows and 3 columns. In general, a
matrix with m rows and n columns is referred to as an m X n matrix or as having
size m X n. Thus matrices A, B, and C above have sizes 2 X 3,2 X 2, and 3 X 1,
respectively. A matrix of size 1 X n is called a row matrix, whereas one of size
n X 11s called a column matrix.

Each entry of a matrix is identified by the row and column in which it lies. The
rows are numbered from the top down, and the columns are numbered from left to

right. Then the (i, j)-entry of a matrix is the number lying simultaneously in row i
and column j. For example,

1 -1
The (1, 2)-entry of 0 J s —I

1 2 -]
3)-entry IS
The (2, 3)-entry of 0 s ﬁ] 1S 6

A special notation has been devised for the entries of a matrix. If A is anm X n
matrix, and if the (i, j)-entry of A is denoted as a;, then A is displayed as follows:

oL
I

This is usually denoted simply as A = [a;]. Thus a, is the entry in row i and column j
of A. For example, a3 X 4 matrix in this notation is written

a, dy, 4y dy,

A=la, 4y a ay

g By gy dy

Ann X n matrix A 1s called a square matrix. For a square matrix A = [a;], the
entries a,,, G, dy3, . . . , 4, are said to lie on the main diagonal of the matrix A.
Hence the main diagonal extends from the upper left corner of A to the lower right
corner (shaded in the following 3 X 3 matrix):

— Foe

a,, 4a, d;

Ay by Oy,

dy Uy Gy |

=3

It 1s worth pointing out a convention regarding rows and columns:
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EXAMPLE 1

Solution

Matrix Addition, Scalar Multiplication, and Transposition

CONVENTION B AN T AR

Rows are mentioned before columns.

For example: If a matrix has size m X n, it has m rows and n columns.
If we speak of the (i, j)-entry of a matrix, it lies in row { and column j.
If an entry is denoted a;, the first subscript i refers to the row and the
second subscript j to the column in which g; lies.

Two matrices A and B are called equal (written A = B) if and only 1t:

1. They have the same size.
2. Corresponding entries are equal.
If the entries of A and B are written in the form A = [a;], B = [b;]. described earlier,

then the second condition takes the following form:

la;l = [b;] means a; = b;forall iandj.

_ a b 1 2 =l 1 0| . S
Given A = . B = ,and C = . discuss the possibility that
¢ id 30 1 -1 2
A=BB=CA=C.

A = B is impossible because A and B are of different sizes: A 1s 2 X 2 whereas B 1s
2 % 3. Similarly, B = C is impossible. A = C is possible provided that correspond-

a b 1 0
ing entries are equal: [ d] = [ I 2} meansa =1, b =0, c = -1, andd = 2.
& _

L 2 2

Matrix Addition

DEFINITION R, AN s

If A and B are matrices of the same size, their sum A + B is the matrix formed
by adding corresponding entries. If A = [g;] and B = [b;], this takes the form

A+B = la;+by]

Note that addition is not defined for matrices of different sizes.
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EXAMPLE 2
[2 1 3} [I

IfA = and B =
-1 2 0 2

1
0

| 241 141 32 2

Solution ‘“B-[ 1+2 240 0+6] [ }

~]1
} compute A + B.

*oe

EXAMPLE 3
Finda, b, andcif[a b c¢]+[c a b]=[3 2 -—1]

Solution  Add the matrices on the left side to obtain
[a+c b+a c+bl=1[3 2 -—1]

Because corresponding entries must be equal, this gives three equations: @ + ¢ = 3,
b+a=2andc + b = —1.Solving these yieldsa = 3,b = —1,c = 0.

A 2 4

If A, B, and C are any matrices of the same size, then
A+B=B+ A (commutative law)
A+(B+0O)=(A+B)+C (associative law)

In fact, if A = [a;] and B [b;], then the (i, j)-entries of A + B and B + A are,
respectively, a; + b; and b; + a;. Since these are equal, we get

A+B=[a‘:,~+b,;,-]:[b,-j +a;]=B+A

The associative law is verified similarly.
The m X n matrix in which every entry is zero is called the zero matrix and 1s
denoted as 0 (or 0,,, if it is important to emphasize the size). Hence

O0+X=X

holds for all m X n matrices X. The negative of an m X n matrix A (written —A ) 18
defined to be the m X n matri:c obtained by multiplying each entry of A by —1. If
A = [a,], this becomes —A = [—a;]. Hence

A+(-A) =20

holds for all matrices A where, of course, 0 is the zero matrix of the same size as A.
A closely related notion is that of subtracting matrices. If A and B are twom X n
matrices, their difference A — B is defined by

A—-—B=A+(—-B)
Note thatif A = [g;] and B = [b;], then
A—B= ['ﬂij] ¥ [_bu_] - ['ﬂ;j - b;‘j]

is the m X n matrix formed by subtracting corresponding entries.
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EXAMPLE 4

Solution

EXAMPLE 5

Solution 1

Solution 2

Matrix Addition, Scalar Multiplication, and Transposition

@

p 3 -1 0 B 1 -1 1 iC 1 0 =2 & w 5
= 5 — " dan — : 4, o .
| 2 —4 2 o0 6" B e

and A+ B — C.
== 1 0
_.A:
| =1 -2 4
[ 3-1 -1-(=1) 0-1 2 0 -l
A-B= =
_l—(—Z} 2-0 -4 -6 3 2 =10
3+1-1 —-1-1-0 0+1+2 3 -2 3
A+ B-C= s
_1—2~3 24+40-1 —-4+6-1 -4 1 1| oo

3 2 1
Solve + X =
[—l l] [—1

X ¥
Xmustbea2 X 2 matrix. If X = L w]’ the equation reads

1 0 32+x}r_3+,1:2+y
- 2 |=1 1 z wl |=1+z2 l+w

0
2], where X 1s a matrix.

+ ] . i g

We solve a numerical equation @ + x = b by subtracting the number a from both
3 2
sides to obtain x = b — a. This also works for matrices. To solve { J + X =

1 0 )
[ I J, simply subtract the matrix[ i J from both sides to get
¥ 0 3 2 1-3 0-2] [-2 -2
“l=i 27| 3|7 <141 2-1] Lo 1
L 2 2

This is the same solution as obtained in Solution 1.

The two solutions in Example 5 are really different ways of doing the same
thing. However, the first obtains four numerical equations, one for each entry, and
solves them to get the four entries of X. The second solution solves the single matrix
equation directly via matrix subtraction, and manipulation of entries comes in only at
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the end. The matrices themselves are manipulated. This ability to work with matrices
as entities lies at the heart of matrix algebra.

It is important to note that the size of X in Example 5 was inferred from the con-
text: X had to be a 2 X 2 matrix because otherwise the equation would not make
sense. This type of situation occurs frequently; the sizes of matrices involved in some
calculations are often determined by the context. For example, if

1 3 ~1
A+C =
[2 0 l}

then A and C must be the same size (so that A + C makes sense), and that size must
be 2 X 3 (so that the sum is 2 X 3). For simplicity we shall often omit reference to
such facts when they are clear from the context.

Scalar Multiplication

— —_—
DEFINITION LN 2 e
If A is any matrix and k is any number, the scalar multiple kA is the matrix
obtained from A by multiplying each entry of A by k. If A = [a,], this is

kA = [ka;)

The term scalar arises here because the set of numbers from which the entries are
drawn is usually referred to as the set of scalars. We have been using real numbers as
scalars, but we could equally well have been using complex numbers.

EXAMPLE 6
e [ e e [ 0 L 5A.'B. and 3A — 2B
=~ & 5@ an = lo 3 Z,C\Dmputﬂ » 5 D, and . ,
: 15 -5 -4
Solution 5A = . A ; 1B = : | |
10 0 30 - 0 3 i

9 -3 12 2 4 -2 7 =7 14
3A - 2B = - =
6 0 18 0O 6 4 6 -6 14

1

L4 2 4

If A is any matrix, note that kA is the same size as A for all scalars k. We also
have

0A =0 and K) = 0
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EXAMPLE 7

Solution

Matrix Addition, Scalar Multiplication, and Transposition

@

because the zero matrix has every entry zero. In other words, kA = 0 if either k = 0
or A = 0. The converse of these properties is also true, as Example 7 shows.

If kA = 0, show that eitherk = Oor A = (.

Write A = [a;] so that kA = 0 means ka; = 0 for all / and J. If &k = 0, there is noth-
ing to do. If kK # 0, then ka; = O implies that a¢; = 0 for all i and j; thatis, A = 0.

L2 L

For future reference, the basic properties of matrix addition and scalar multipli-
cation are listed in Theorem 1.

THEOREM 1 B AN R
Let A, B, and C denote arbitrary m X n matrices where m and n are fixed. Let
and p denote arbitrary real numbers. Then

1. A+B = B+ A.

2. A+(B+C)=(A+B) +C

3. Thereis an m X n matrix 0 such that 0 + A = A for cach A.

4. Foreach A there is an m X n matrix —A such that A +(—A) = 0.
5. k(A+B) = kA+kB

6. (k+pA = kA + pA

1. (kp)A = k(pA)

8. IA=A

Proof Properties 1-4 were given previously. To check property 5, let A = [a,] and
B = [b;] denote matrices of the same size. Then A + B =[a; + b;], as before, 5o the
(i, j)-entry of k(A + B) is

k(a, + b;) = ka, + kb,

But this is just the (i, j)-entry of kA + kB, and it follows that k(A + B) = kA + kB.
The other properties can be similarly verified; the details are left to the reader. ¢

These properties enable us to do calculations with matrices in much the same
way that numerical calculations are carried out. To begin with, property 2 implies
that the sum (A + B)+ C= A+ (B + C) is the same no matter how it 1S
formed and so is written as A + B + C. Similarly, the sum A + B+ C + D
is independent of how it is formed; for example, it equals both (A + B) + (C + D)
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EXAMPLE 8

Solution

Solution

Matrix Algebra

and A + [B + (C + D)]. Furthermore, property | ensures that, for example,
B+D+A+C=A+B+ C + D. In other words, the order in which the matri-
ces are added does not matter. A similar remark applies to sums of five (or more)
matrices.

Properties 5 and 6 in Theorem 1 extend to sums of more than two terms. For
example,

k(A + B+ C) = kA + kB + kC
(k+p+mA=kA + pA + mA

Similar observations hold for more than three summands. These facts, together with
properties 7 and 8, enable us to simplify expressions by collecting like terms, expand-
ing, and taking common factors in exactly the same way that algebraic expressions
involving variables are manipulated. The following examples illustrate these tech-
niques.

Simplify 2(A + 3C) — 3(2C — B) — 3[2(2A + B — 4C) — 4A — 2C)] where A, B
and C are all matrices of the same size.

The reduction proceeds as though A, B, and C were variables.

2(A +3C) - 3(2C - B) - 32(2A + B-4C) - 4(A - 20)]
=2A+6C - 6C + 3B - 3[4A + 2B — 8C — 4A + 8C]

= 2A + 3B - 3[2B]
= 2A - 3B *ee

Find 1 X 3 matrices X and Y such that

X+2¥=[1 3 -2]
X+ Y=[2 0 1]

If we write A = [l 3 —2]and B = [2 0 1], the equations become X +2}Y = A and
X + Y = B. The manipulations used to solve these equations when X, Y, A, and B are
numbers all apply in the present context. Hence subtracting the second equation from
the first gives ¥ = A — B = [—1 3 —3]. Similarly, subtracting the first equation
from twice the second gives X = 2B — A = [3 —3 4].

*oe

Transpose

Many results about a matrix A involve the rows of A, and the corresponding result for
columns is derived in an analogous way, essentially by replacing the word row by the
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word column throughout. The following definition 1s made with such applications in
mind.

W s
DEFINITION DA TN R

If A is an m X n matrix, the transpose of A, written A7, is the n X m matrix
whose rows are just the columns of A in the same order.

In other words, the first row of A7 is the first column of A, the second row of A7 is the
second column of A, and so on.

EXAMPLE 10
Write down the transpose of each of the following matrices.
) [l 2] (3 1 -1
A=|3 B=[52 806 C€=|3 4 b=|13 2
| 2| 0 =1 2 i
b 1 3 5
Soluton A" =[1 3 2] B =|2| C“"=[2 2 6} and D' = D.
6.|

L & 2 2

If A = [a;] is a matrix, write AT = [b,]. Then bj; is the jth element of the ith row
of A7 and so is the jth element of the ith column of A. This means b, = a; so the defi-
nition of AT can be stated as follows:

IfA = [a;], then AT = [a;]

This is useful in verifying the following properties of transposition.

THEOREM 2 I RN

Let A and B denote matrices of the same size, and let £ denote a scalar.

1. If Aisanm X n matrx, then A7 1s an n X m matrix.
2. AT =A

3. (kA)" = kAT

4. (A+B)Y =A"T+H
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Proof We prove only property 3. If A = [a,], then kA = [ka,], sO
(kA)" = [k'ﬂjr] = k{'ﬂﬁ] = kA"
which proves property 3. L 4
The matrix D in Example 10 has the property that D = D’. Such matrices ar¢
important.
} e . iy L g S
DEFINITION ENCRR 1T e e
A matrix A is called symmetric if A = A”.
A symmetric matrix A is necessarily square (if A is m X n, then ATis n X m, so
A = AT forces n = m). The name comes from the fact that these matrices exhibit a
symmetry about the main diagonal. That is, entries that are dircctly across the main
(a b ¢
diagonal from each other are equal. For example, |b" d ¢ |is symmetric when
& g .f
b=b'c=c’ande = e’ )
EXAMPLE 11
If A and B are symmetric n X n matrices, show that A + B is symmetric.
Solution  We have A” = A and B” = B, so, by Theorem 2, (A + B)) = A" + B = A + B.
Hence A + B is symmetric.
L2 2 4
DIV ML ELE 1A% EXERCISES 2.1
1. Find a, b, ¢, and d if: (e) [I -5 4 u]f oM 0 -1 2]
@[a b] [c-3d -d 2 1 0 6 1 0 -4
c d| |2a+d a+b ) -2 4 0
¢b) [a = b h—r:_zll (5:‘3—1_,:rl—ﬁf*'l"[l'l]qiI.Jr ol 1 =1
ke =ud d —al|l -3 1 Z 1 Bl ; -1 0 |2 3
{c]3ﬂ+2b= 1] e(d) [a b| _|b c
b a Z ¢ d d a , 3 9 .
: 3- LetA = ! B = p — ' B— : =
2. Compute the following: 0 -1/ o 1 4 70
(@) [3 2 1 3 0 =2 1 3
s 10l 71 a1 2 [0 1
D=|-1 0| and E = 0 n.Cnmpulc the fol-
*(b) q[ 3} - [ﬁ} . _;[ l} | 4
L 2 =1 lowing (where possible).
@[-2 1_ 1 -2],42 -3 (a) 3A — 2B ¢ (b)5C (c) 3E"
| 3 2 0 -l -1 2 ¢(d)B + D (€)4A7—3C  *(f)(A + CO)
o(d) [3 -1 2]-2[9 3 4]+ [3 Il —6] (9) 2B — 3E ¢(h)A - D (i) (B — 2E)
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5. Flnd:AIfZ 1 o o 5 9
(@) 54 =, 5| =" 6 |

*(0) 34 + ﬂ = 54 - zm

5. Find A in terms of B if:
(@) A+B=3A+2B *(b)2A—-B =5A + 2B)
6. If X, ¥ A, and B are matrices of the same size, solve
the following equations to obtain X and Y in terms of A

and B.
(a) 5X + 3y = A ®M) 4X + 3¥y = A

7. Find all matrices X and Y such that:
(@) 3x—2¥ =3 —-1] *(b) 2x —5Y =[I 2]
8. Simplify the following expressions where A, B, and C are
matrices.
(@) 2[9A — B) + T2B — A)] — 2[3(2B + A) — 2(A +
3B) — 5(A + B)]
®(®) 5[3(A — B + 2C) — 2(3C — B) — A] + 2[3(3A — B
+ C) + 2B — 2A) — 2C)
9. If Aisany 2 X 2 matrix, show that:

@a=ds ol oo o 1]

for some numbers a, b, ¢, and d

1 0 ¥ 1 0 0 1
2 -
(6) ‘d‘"’[n J*‘?_ﬂ {]}+{I {:J“LS[I ﬂ]
for some numbers p, g, r, and s
10. letA=[11-1,B=[012],andC =1[3 0 1].1If rA

+ sB + 1C = 0 for some scalars r. 5, and ¢, show that
necessarily r = 5 = 1 = ().

11. (a) If O +A = A holds for every m X n matrix A, show

that Q = 0,,.
*®) IfAisanm X n matrix and A + A’ = 0,,, show
that A" = —A.
12. If A denotes an m X n matrix, show that A = —A if and
only if A = 0.

13. A square matrix is called a diagonal matrix if all the
entries off the main diagonal are zero. If A and B are diag-
onal matrices, show that the following matrices are also
diagonal.

(@) A+B *() A-B (c) kA for any number k

s sremes Section 2.9 Matrix Multiplication

v

14. In each case determine all s and r such that the given

15.

matrix is symmetric:

(@[ 1 s *M®)[s5 1
_—-2 ! st |

(e)[s 25 st *d[2 s
r -1 s 2s 0 s +1¢
1 s 8 3 3 i

In each case find the matrix A.

o 38 -]e s

w9 -]

T

(€ (24301 2 0)) =347 +[2 1 1]

* (d) [za" - 5[_: g]r = 44 - 9[_: [ﬂ

16.

17.
18.

19.

20.

21.

Let A and B be symmetric (of the same size). Show that
each of the following is symmetric.

(@) A - B ® (b) kA for any scalar k
Show that A + AT is symmetric for any squarc matrix A.

A square matrix W is called skew-symmetric if W' =

—W. Let A be any square matnx.

(@) Show that A — A7 is skew-symmetric.

(b) Find a symmetric matrix S and a skew-symmetric
matrix W such that A = § + W.

® (c) Show that S and W in part (b) are uniquely deter-

mined by A.

If W is skew-symmetric (Exercise 18), show that the
entries on the main diagonal are zero.

Prove the following parts of Theorem 1.
(@) (k+p)A = kA + pA  ®(b) (kp)A = kipA)

Let A, A,, A, . . ., A, denote matrices of the same size.

Use induction on n to verify the following extensions of

properties 5 and 6 of Theorem 1.

(@) k(A, + A, + -+ + A) = kA, + kA, + - - - + kA
for any number &

(B) ki +k;+ - - -+kJA=kA+ kA + - + LA
for any numbers k, k., . .. . k,

Matrix multiplication is a little more complicated than matrix addition or scalar mul-
tiplication, but it is well worth the extra effort. It provides a new way to look at sys-
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tems of linear equations and has a wide variety of other applications as well (see, for
example, Sections 2.6 and 2.7).

r "!;.rv - - - o , -
DEFINITION N R 7 e e s _
If A is an m X n matrix and B is an n X k matrix, the product AB of A and B 1s
the m X k matrix whose (i, j)-entry is computed as follows:

Multiply each entry of row i of A by the corresponding entry of column j of B,
and add the results.

This is called the dot product of row i of A and column j of B.

EXAMPLE 1
Compute the (1, 3)- and (2, 4)-entries of AB where
[ 2 0
[3 -1 2] °
A= and B=10 2 3 4
0 1 4
-1 0 5 8]

Then compute AB.

Solution  The (1, 3)-entry of AB is the dot product of row 1 of A and column 3 of B (high-
lighted in the following display), computed by multiplying corresponding entries and

adding the results.
2 1 6 0]
3 =1 2 |
o 1 4|0 234 1, B)eiitry =36 +(=1):3 +295= 25
-1 0 5 8]

Similarly the (2, 4) entry of AB involves row 2 of A and column 4 of B.

N 2 1 6 0]
[{l ; 4] 0 2 3 4 2,4)-entry =0-0+1-4+4-8 =36
-1 0 5 8

Since Ais2 X 3and Bis 3 X 4, the product is 2 X 4.
1 6 0
3 -1 2 4 1 25 12
2 3 4|=
0 1 4
0 5 8

-4 2 23 36
Computing the (i, j)-entry of AB involves going across row i of A and down col-
umn j of B, multiplying corresponding entries, and adding the results. This requires

[ 3
0

—1

40
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that the rows of A and the columns of B be the same length. The following rule is a
useful way to remember when the product of A and B can be formed and what size of

the product matrix is.

Suppose A and B have sizes:
A B

The product AB is defined only when n = n’; in this case, the product matrix AB
is of size m X p.

EXAMPLE 2

IfA =11 32]and B = |0 |, compute A2, AB, BA, and B* when they are defined.

Solution Here Aisa 1l X 3 matrix and B is a 3 X 1 matrix so A? and B? are not defined.
However, the rule reads

A B - B A
I X3 3X1 3 x 1 L33
so both AB and BA can be formed and these are 1 X 1 and 3 X 3 matrices,
respectively.
&
AB=[1 3 2]|6[=[1-5+3-6+2-4]=]31]
._4_.
B (5:1 53 5:2] [5 15 10]
BA=|6|[1 3 2]=[6-1 6:3 6-2|=|6 18 12
4 4-1 4-3 4-2| |4 12 8

L2 2 2

Unlike numerical multiplication, matrix products AB and BA need not be equal.
In fact they need not even be the same size, as Example 2 shows. It turns out to be
rare that AB = BA (although it is by no means impossible), and A and B are said to
commute when this happens.



Chapter 2  Matrix Algebra

g

EXAMPLE 3

—

6 9 1 2
LetA = [_4 —6] and B = [__] {J.Cnmpulcﬂ-.ﬂﬂ, and BA.

‘ 6 9 6 9 0 0
Solution As= 0 <, [ WY Q. = | U_,snﬂl-tf}cannccurevenifﬂi{}.Next.

A "6 9|[1 2] [-3 12
" |-4 -6|[-1 Of [2 -8

1 2 6 9] =L =
BA = |
ol <1 3

Hence AB # BA, even though AB and BA are the same size.

A 44

The number 1 plays a neutral role in numerical multiplication in the sense that
|.a=aanda- 1 = a for all numbers a. An analogous role for matrix multiplica-
tion is played by square matrices of the following types:

" |1 0 0 0
1 0 0
1 0 0O 1 0 0
0 1 0 and so on
0 1 0 0 1 0
0 0 1
= =100 0 1

In general, an identity matrix / is a square matrix with 1's on the main diagonal and
zeros elsewhere. 1f it is important to stress the size of an n X n identity matrix, we
shall denote it by I,; however, these matrices are usually written simply as 1. Identity
matrices play a neutral role with respect to matrix multiplication in the sense that

Al = A and IB =8

whenever the products are defined.

Before proceeding, let us state the definition of matrix multiplication more for-
mally. If A = [g;] is m X n and B = [b;] is n X p, the ith row of A and the jth
column of B are, respectively,

[ﬂr'l ap - Hm] and
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Hence the (i, j)-entry of the product matrix AB is the dot product

a,b,; + Apby; + -0 ”mbn;' = z ”;‘i-baj'
k=1
where summation notation has been introduced for convenience.’ This is useful in
verifying facts about matrix multiplication.

THEOREM 1 &

Assume that k is an arbitrary scalar and that A, B, and C are matrices of sizes
such that the indicated operations can be performed.

1. A=A, BI=B

2. A(BC)=(AB)C

3. A(B+C)=AB + AC, A(B— C)=AB — AC

4. (B+C)A=BA+CA, (B— C)A=BA — CA

5. k(AB) = (kA)B = A(kB)

6. (AB)'=B'A"

Proof We prove properties 3 and 6, leaving the rest as exercises.

Property 3. Write A = [a;], B = [b;], and C = [c;] and assume that A ism X n and
that Band Caren X p. Then B + C = [b; +¢;], s0 the (i, j)-entry of A(B + C) 18

i
n i

I n
Z ”m(bkj + ij) = E (ﬂikbij T Hmﬂk;) = z a,b,; + Z a;Cy;
k=1

k=1 k=] k=1

This is the (i, j)-entry of AB + AC because the sums on the right are the (i, J)-entries
of AB and AC, respectively. Hence A(B + C) = AB + AC.

Property 6. Write AT = [a/] and B = [b;], where a; = a;; and b; = b;. If B and A7
are p X nand n X m, respectively, the (i, j)-entry of BTA' is

fl

n f

# F g —
zbfkﬂij = th'ﬂjk = Erﬂjkbh
k=1 k=1

k=1

This is the (j, i)-entry of AB—that is, the (i, j)-entry of (AB)’. Hence BTAT = (AB)". &

Property 2 in Theorem | asserts that the associative law A(BC) = (AB)C holds
for all matrices (if the products are defined). Hence the product 1s the same no matter

4

2Summation notation is a convenient shorthand way to write sums. For example, a, + a; + a4, + a, =2ﬂh

k=]

5 5
s X5t Gy Xg T A1 % :zﬂi'rjs and 12+ 224+ P+ £+ 5= Zf :



@ Chapter 2

Warning

EXAMPLE 4

Solution

EXAMPLE 5

Solution

Mmatrix Algebra

how it is formed and so is simply written ABC. This extends: The product ABCD of
four matrices can be formed several ways — for example, (AB)(CD), [A(BC)]D, and
A[B(CD)] — but property 2 implies that they are all equal and so are written simply
as ABCD. A similar remark applies in general: Matrix products can be written unam-
biguously with no parentheses.

However, a note of caution about matrix multiplication is in order. The fact that
AB and BA need not be equal means that the order of the factors is important in a
product of matrices. For example, ABCD and ADCB may not be equal.

000000000000 0000000000000000000000000000009

If the order of the factors in a product of matrices is changed, the product matrix may
change (or may not exist).

0000000000000 000000000000000000000000000009

Ignoring this warning is a source of many errors by students of linear algebra!
Properties 3 and 4 in Theorem 1 are called the distributive laws, and they
extend to more than two terms. For example,

ABB-C+ D —-E)=AB - AC + AD - AE
(A+C—- DB =AB + CB - DB

Note again that the warning is in effect: For example, A(B — C) need not equal
AB — CA. Together with property 5 of Theorem 1, the distributive laws make possi-
ble a lot of simplification of matrix expressions.

Simplify the expression A(BC — CD) + A(C — B)D — AB(C — D).

A(BC - CD) + A(C — B)D — AB(C - D)
= ABC - ACD + (AC — AB)D — ABC + ABD
= ABC - ACD + ACD — ABD — ABC + ABD
=0
L& & 4

Examples 5 and 6 show how we can use the properties in Theorem 1 to deduce
facts about matrix multiplication.

Suppose that A, B, and C are n X n matrices and that both A and B commute with C;
that is, AC = CA and BC = CB. Show that AB commutes with C.

Showing that AB commutes with C means verifying that (AB)C = C(AB). The
computation uses property 2 of Theorem 1 and the given facts that AC = CA and
BC = CB.

(AB)C = A(BC) = A(CB) = (AC)B = (CA)B = ((AB) EX X
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EXAMPLE 6
Show that AB = BA if and only if (A — B)(A + B) =A? — B~.

Theorem 1 shows that the following always holds:
(A—B)YA + B) = A(A + B)—B(A + B) = A° + AB — BA — B?
Hence if AB = BA, then (A — B)XA + B) = A? — B? follows. Conversely, if this last

equation holds, then equation (*) becomes
A2— B2 = A? + AB— BA — B?

Solution
(%)

This gives 0 = AB — BA, and AB = BA follows.
60

Matrices and Linear Equations
One of the most important motivations for matrix multiplication results from its close

connection with linear equations.

EXAMPLE 7
Write the following system of linear equations as a single matrix equation.
3.-’:[_2_1-1 + x:.!, — bl

2.1:] + .112 _.I_'a_ = bz

The two linear equations can be written as a single matrix equation as follows:
3, = 2% b,
5 = (%)
S B B~ b,
The matrix on the left can be factored as a product of matrices:
X
3 -2 1 b,
X, | =
2 1 -1 . b,

If these matrices are denoted by A, X, and B, respectively, the system of equations

Solution

becomes the matrix equation AX = B.
L2 2 4

In the same way, consider any system of linear equations:
= bl

-EIHII + HIIIE + - + III”I"
= bz

A, X; + dypXy + -0 F dy X,

co @ X, b

HFFHIL + Hmzxf_: + ;
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[a), a a, | %, B ]
dy Ay "y, X3 b, :
IfA =] _ |, X=| | and B=| | | these equations become
a,, a, a,, %y | b, |
the single matrix equation
AX = B

This is called the matrix form of the system of equations, and B is called the con-
stant matrix. As in Section 1.1, A is called the coefficient matrix of the system, and
a column matrix X, is called a solution to the system if AX, = B.

The matrix form is useful for formulating results about solutions of systems of
linear equations. For example, if X, is a solution to AX = B and if X, 1s a solution to
the associated homogeneous system AX = 0, then X, + X, is a solution to AX = B.
Indeed, AX, = B and AX, = 0, so

AX, + X)) =AX, + A, =B +0=8B

This observation has a useful converse.

THEOREM 2 BNIHRT 2 s £ B P

Suppose X, is a particular solution to the system AX = B of linear equations.
Then every solution X, to AX = B has the form

XIZXH+X]

for some solution X, of the associated homogeneous system AX = 0.

Proof Suppose that X, is any solution to AX = B so that AX, = B. Write X, =
X, — X,. Then X, = X, + X,, and we compute:

AXQ=A{X2_X]] :AXE_AX1 :B_BZD

Thus X, is a solution to the associated homogeneous system AX = 0. ¢

EXAMPLE 8

Express every solution to the following system as the sum of a specific solution plus
a solution to the associated homogeneous system.

xX—-y— z=2
2x -y -3z=06
X = Do
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g

Gaussian elimination gives x = 4 + 2t, y = 2 + f, z = 1, [ arbitrary. Hence the
general solution is

Thus X, =

is a specific solution, and it is easily verified that X, =1

1

4 +

[

g | =2

2t] [4
i

= . —

all solutions to the associated homogeneous system.

gives

L2 24

Block Multiplication

It is sometimes useful to be able to compute a particular row or column of a matrix
product AB without having to find the whole product. The next example shows how.

Find row 2 and column 3 of AB where A =

¥ T

1
8
1

e
b2

= O

=z

and B =

2
0
3

Write R, = [4 8 0] for row 2 of A. By the definition of matrix multiplication, row 2

of AB is obtained by multiplying R, by the various columns of B:

row2of AB = RB=[4 8 0]

0 3 2 |
1 8 0 -6
1 4 3 7

Similarly, if we write C; for column 3 of B, then column 3of AB is

column 3 of AB = AC; =

—

3 1 2]
8 0
1 2]

4
0

2
0
L3

2]

8
6

=[8 84 8 —44]

L4 4 4

In general, when forming matrix products YA and AX, it is often convenient to
view the matrix A as a column of rows or as a row of columns. If A is m X n, and if

R.R,...,R,aretherowsof Aand C,, C,, ..

A=l €

G, ]

., C, are the columns, we write
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Then the definition of matrix multiplication shows that

R, R X
R, R, X

AX=| J|X=| 7 | and YA=Y[C, G C.]=1¥6 ¥Cs ~~ YC KW
R, | |RX]

This gives AX in terms of its rows and YA in terms of its columns. In other words, the
rows of AX are R X, R,X, ..., R X and the columns of YA are YC,, YC,, . . ., Y.

These are special cases of a more general way of looking at matrices that,
among its other uses, can greatly simplify matrix multiplications. The idea is to
partition a matrix A into smaller matrices (called blocks) by inserting vertical
lines between the columns and horizontal lines between the rows.? As an example,
consider the matrices

) _ -2
I 0] 0 0 0O
5 6
0 11 O 0 0O A ) X
A= = ] and o] x| =
2 =11 4 2 1 P QO - Y
3 11=1 7 5
) : L I 6_|

where the blocks have been labeled as indicated. This 1s a natural way to think of A 1n
view of the blocks 7, and 0,; that occur.

This notation is particularly useful when we are multiplying the matrices A and B
because the product AB can be computed in block form as follows:

b

4 =3

AB:F U][X}:[IX+(}Y}:[ X }: 5 6
P o|lly| |Px+orv| |Px+o0v| |30 8

| '8

This is easily checked to be the product AB, computed in the conventional manner. In
other words, we can compute the product by ordinary matrix multiplication, using
blocks as entries. The only requirement is that the blocks be compatible. That is, the
sizes of the blocks must be such that all (matrix) products of blocks that occur make
sense. This means that the number of columns in each block of A must equal the
number of rows in the corresponding block of B.

T . AN g i o AT
Block Multiplication Swax® LR R
If matrices A and B are partitioned compatibly into blocks, the product AB can
be computed by matrix multiplication using blocks as entries.

We omit the proof.

We have already been doing this with the augmented matrices arising from systems of linear equations.
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One of the most important examples of block multiplication is given in equation
(+) earlier where one factor is partitioned 1nto its rows or columns. Here is another

Section 2.2 Matrix Multiplication

illustration.
EXAMPLE 10 o
X
X
IfC,C,...,C,are the columns of an m X n matrix A, and if X = _1 is a col-
umn matrix, then '-
IFI
i
)
AX =€ € gl [= G+ mls= = Fxk,.
-In--
* e
Any compatible partitioning can be used in block multiplication. We conclude
with an example in which block multiplication is used to compute higher powers of a
matrix.
EXAMPLE 11 ] ]
1 -1| O
Compute A® using block multiplication, where A = | —| 1| 0}
] -1]-2

. 1 -1
Solution  Write X = [ } Yy =[1 —1],and Z = [—2]. Then

Az_XUXﬂ_ X? 0
ozl @ | magy 2

Now¥YX+Z¥ =12 -2]+[-2 2] =0,s0

. [ X% 0
A=ﬂzl

Powers of this are easy to compute:

At = (AP = X' o][x* o] _[x* 0
a Z||o 28| o Z]
Xt o[ o] [x* 0
A% =AY = =
( ) -0 zd,# l_D Zf-l_. -0 ZH-
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1. Compute the following matrix products.

£ : . 1 -1
@ [1 3][2 -1 ob)[1 -1 2] 2 3 1 5. GivenA = [D I]’ B = [
0 -2 (0 1 2 0 4 1 9 7
-1 0 2 3 -1
W y-nre 3 0 LR
9 = £
1 @ i *(d) [l 3 3] G ]. from Theorem 1.
) ' L B (a) A(B — D) = AB — AD
(e) |1 O Of |3 -2 _ ] 2 (¢) (CD)" = D'CT
01 0[5 =7| e[l -1 3 1 :
00 1||9 7 -8 6. LetAbea?l X 2 matrix.
(9) [ 2 +(h) |3 1] [ 2 —1] (a) If A commutes with
__:, [] = 3] @2 BLEY 2 for some a and b.
(i) [2 3 I] a 0 0|le@{) |la 0 0| |a O O +(b) If A commutes with
5 7 41|10 b 0O 0O b 0 (0 b 0O _
= 0 0 ¢ oo o o & for some a and c.

Chapter 2

Matrix Algebra

We have Z% = [—2]°
4X? = 8X, and X® = (8X)? = 64X? = 128X. Finally:

0

" [128}{

0

X 0
= 128 = 128
256 0 2

=

|

-1

0

[256]. Also X? = 2X is easily verified, so X* = (2X)* =

-1 0
10
0 2|

*o9

Block multiplication is useful in computing products of matrices in a computer
with limited memory capacity. The matrices are partitioned into blocks in such a way
that each product of blocks can be handled. Then the blocks are stored in auxiliary
memory (on tape, for example), and the products are computed one by one.

EXERCISES 2.2

1
3

1 0
{:_ﬂ,czzu
5 8

2}, verify the following facts

¢(b) A(BC) = (AB)C

show thatA = [ﬂ h}
0 a

- [ d

show that A

2. In each of the following cases, find all possible products

Al AB, AC, and so on. i} i}

! - 2 1 0
1 23 1 =2
(@) A= “| B=|; ] C=|2 5
-1 0 0] + 3 0 3
3 ; : 90
1 2 4 -1 6
*®) A=, | | B= I(}] C=|-11
. : L | AL 22
3. Finda, b, a,, and b, if:
(@) |a b 3 =51 [1 -~
a b||-1 2] (2 0
e[ 2 11[a 6] [7 2
4, Verify thatA? — A — 6/ = 0if:
3 -l r 2
(&Y e [u _2} o) A = [2 _J

- | (c) Show that A commutes with every 2 X 2 matrix if

and only if A = [ﬂ ﬁ} for some a.
0 a

7. Write each of the following systems of linear equations in

matrix form.

() 3x; + 2x; — x5+ x5 =1
Xp— ¥y +3x, =0
X Xy — X3 =2

o) —x; +2x, —x3+ x4, =6
2%+ Xp— x5+ 2xy =1
3x; — 2x; + x, =0

In each case, express every solution of the system as a
sum of a specific solution plus a solution of the associated
homogeneous system.

2x + ¥ = 3 x+2y+ 52 = 2
x—-—y—32 =20 x+ y+2z= 0
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16. (a) Compute AB, using the indicated block partitioning.

Section 2.2 Matrix Multiplication

(€) x, + x, — x —5x; = 2

X, + X _4,1'5 = =1

X+ 13-1—,1:4-.!:5:—1

22X, —4x; + x3+ x5 = 6
o(d) 2¢,+ x, — x, — x3 = —1
3x, + X + X3 — 2x, = —2
—Xy — X+ 25+ x, = 2
—2x;, — X, + 2, = 3

9. If X, and X, are solutions to the homogeneous sysiem of
equations AX = 0, show that sX, + X, is also a
solution for any scalars s and ¢ (called a linear combina-
tion of X, and X).

In each of the following, write the general solution as a
linear combination (Exercise 9) of specific solutions.

10.

2 113 1 1 210
1 o0l|1 2 1 olo
A=l—5Tt ol 25|70 5[]
0o olo 1 110

¢ (b) Partition A and B in part (a) differently and compute
AB again.
(c) Find A? using the partitioning in part (a) and then
again using a different partitioning.

(@ x +20+ x3— x +3x =10
X+ 2+ 2+ x +2x =0
2x, +dxs+ 2y — xy +7x5 = 0
o) x, + x,— 23+ 3x, +2x, =0
26, — X+ 3x3+ 4x, + x5=0
—x; — 20+ 3x35 + xy =0
3x, + X3+ Txy +3x, =0
[ 2
11. Assume that A|=1| = 0 = A| 0|, and that AX = B has a
| 2 3
B
solution X, = |—1/|. Find a two-parameter family of solu-
| 3
tions to AX = B.
12. (a) If A2 can be formed, what can be said about the size
of A?
¢(b) If AB and BA can both be formed, describe the sizes
of A and B.
(c) If ABC can be formed, A is 3 X 3, and C 1s
| 5 X 5, what size is B?
" 13. (a) Find two 2 X 2 matrices A such that A = (.
#(b) Find three 2 X 2 matrices A such that (i) A* = I and
(ii) A? = A.
(c) Find 2 X 2 matrices A and B such that AB = 0 but
BA # 0.
1 0 0
18, Write P= |0 0 1/, and let A be 3 X n and B be
8 1 %9
m X 3.
(a) Describe PA in terms of the rows of A.
¢ (b) Describe BP in terms of the columns of B.

15. Let A, B, and C be as in Exercise 5. Find the (3, 1)-entry
of CAB using exactly six numerical multiplications.

17. In each case compute all powers of A using the block
decomposition indicated. ~ .
1 -1 2 -l
Ll 0o 1|0 0
(a) A= |1] 1 —I e(b)A =
11_1 | 0 0|-1 1
0o 0 0 1]
18. Compute the following using block multiplication (all
blocks k X k).
@ [ X1+ 0 e(b)[7 X]|[I -X
[—r I [r I] 0 f} 0 !}
© [1 x][1 x] o(d |1 xX"[-x 1
(¢) _;; _i], anyn = 1 ¢« ? ‘:]f , anyn =2 1
19. (a) If A has a row of zeros, show that the same 1s true of
AB for any B.
(b) If B has a column of zeros, show that the same is true
of AB for any A.
Q0. Let A denote an m X n MALrix.
(@) If AX = 0 for every n X 1 matrix X, show that
A= 0.
¢(b) If YA = 0 for every | X m matrix ¥, show that
A =0

21. (a) IfU = [é 2], and AU = 0, show that A = 0.

~1
(b) Let U be such that AU = 0 implies that A = 0. If
AU = BU, show that A = B.
22, Simplify the following expressions where A, B, and C
represent matrices.
(a) A3BB — C)+(A — 2B)C +2B(C +2A)
e(d) ABB +C —D) +B(C — A+ D) — (A+ BC +
(A — B)D
(c) AB(BC — CB) + (CA — AB)BC + CA(A — B)C
e(d) (A—BC—A) + (C—BA—-C)+(C— A)?

93. IfA = [“

e

: {1 0|y =z
ToomA. = L‘ l} [ﬂ w}

ﬂ where a # 0, show that A factors in the
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24, If A and B commute with C, show that the same is true
of*
(a) A+B #(b) kA, k any scalar

25. If A is any matrix, show that AAT and ATA are symmetric.

#26. If A and B are symmetric, show that AB is symmetric if
and only if AB = BA.

27. If Ais a2 X 2 matrix, show that A”TA = AA7 if and only
a
-b a
28. (a) Find all symmetric 2 X 2 matrices A such that
Al = 0.
¢(b) Repeat (a)if Ais3 X 3.
(c) Repeat (a)if Aisn X n.
29. Show that there exist no 2 X 2 matrices A and B such

that AB — BA = [. [Hint: Examine the (1, 1)- and (2, 2)-
entries. ]

if A is symmetric or A =[ b} for some a and b.

¢30. Let B be an n X n matrix. Suppose AB = 0 for some
nonzero m X n matrix A. Show that no n X n matnx C
exists such that BC = .

31. (a) If A and B are 2 X 2 matrices whose rows sum to I,
show that the rows of AB also sum to 1.
¢ (b) Repeat part (a) for the case where A and B are n X n.
32. Let A and B be n X n matrices for which the systems of
equations AX = 0 and BX = 0 each have only the trivial
solution X = 0. Show that the system (AB)X = 0 has
only the trivial solution.

33. The trace of a square matrix A, denoted tr A, is the sum
of the elements on the main diagonal of A. Show that, if
A and B are n X n matrices:
(d8) tr(A +B)=trA+trB
#(b) tr (kA) = ktr (A) for any number k
(€) tr(AT) = tr(A)

ISR Section 2.3 Matrix Inverses

(d) tr(AB) = tr(BA)
¢(e) tr(AAT) is the sum of the squares of all entries of A.

34. Show AB — BA = [is impossible. [Hint: See the preced-
ing exercise. |

35. A square matrix P is called an idempotent if P* = P.
Show that:
(a) 0 and [/ are idempotents.

(b) [ é‘ é] [: g} and ?LE [: :} are idempotents.
(c) If Pis an idempotent, sois I — P, and P(/ — P) = 0.
(d) If P is an idempotent, so is P,
o(e) If P is an idempotent, so is O = P + AP — PAP for
any square matrix A (of the same size as P).
() IfAisn X mand Bism X n, and if AB = [, then
BA 1s an idempotent.

36. Let A and B be n X n diagonal matrices (all entries off
the main diagonal are zero).
(a) Show that AB is diagonal and AB = BA.
(b) Formulate a rule for calculating XA if X is m X n.
(c) Formulate a rule for calculating AY if Yisn X k.

37. If A and B are n X n matrices, show that:
(a) AB = BAifand only if (A + B)* = A’ +2AB + B~
¢(b) AB = BA if and only if (A + BXA — B) =(A — B)
(A + B).
(c) AB = BA if and only if ATB" = BTAT.

38. Prove the following parts of Theorem 1.
(a) Part 1
¢(b) Part 2
(¢) Part4
(d) Part 5

Three basic operations on matrices, addition, multiplication, and subtraction, are ana-
logues for matrices of the same operations for numbers. In this section we introduce
the matrix analogue of numerical division.

To begin, consider how a numerical equation

ax = b

is solved when @ and b are known numbers. If a = 0, there is no solution (unless
b = 0). But if a # 0, we can multiply both sides by the inverse a—' to obtain the
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Solution
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@

solution x = a-'b. This multiplication by a-' is commonly called dividing by a, and
the property of a-' that makes this work is that a 'a = 1. Moreover, we saw In
Section 2.2 that the role that 1 plays in arithmetic is played in matrix algebra by the
identity matrix /. This suggests the following definition.

DEFINITION ESNIIL L e 3 B
If A is a square matrix, a matrix B is called an inverse of A if and only if

AB =1 and BA =1

A matrix A that has an inverse is called an invertible matrix.*

-1 1 0 1
Show that B = |' } is an inverse of A = [ ]

1 0
Compute AB and BA.
0O 1][-1 1 1 0 -1 1110 1 1 0
| 1 1 0 0 1 I Of 1 1 0 1
Hence AB = I = BA, so B is indeed an inverse of A. o b
i .
Show that A = |3 has no inverse.
a b | ,
LetB = [ 4 denote an arbitrary 2 X 2 matrix. Then
c

0O 0)lla b 0 0
AB = =
I ) |es d a+ 3¢ b+ 3d

so AB has a row of zeros. Hence AB cannot equal I for any B.

L & 4

Example 2 shows that it is possible for a nonzero matrix to have no inverse. But
if a matrix does have an inverse, it has only one.

4No nonsquare matrix is invertible (see Exercise 24§2.4).
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THEOREM 1 BN 2 i o e e

If B and C are both inverses of A, then B = C.

Proof Since B and C are both inverses of A, CA = I = AB. Hence B = IB =
(CA)B = C(AB) = CI = C. |

If A is an invertible matrix, the (unique) inverse of A is denoted as A-'. Hence A-!
(when it exists) is a square matrix of the same size as A with the property that

AA-' =1 and A-'A =1

These equations characterize A-' in the following sense: If somehow a matrix B can
be found such that AB = [ = BA, then A is invertible and B is the inverse of A; in
symbols, B = A-'. This gives us a way of verifying that the inverse of a matrix
exists. Examples 3 and 4 offer illustrations.

EXAMPLE 3
['_] il
IfA = [I J, show that A3 = Jand so find A-'.
' 0 -11]0 -1 -1 1
Solution We have A® = = . and so
1 =-1][1 =1 -1 0
i e -1 1110 -1 - 1 0 i
- -1 o1 =1 [0 1|
Hence A? = [, as asserted. This can be writtlen Elts AlA = | = AAZ so i1t shows that A?
is the inverse of A. Thatis, A~! = A* = |, ﬂ-!.
94
The following example gives a useful formula for the inverse of a 2 X 2 matnx.
EXAMPLE 4

a b ] d —b
IfA=[ ]andad-bc;tﬂ, show that A ' = { ]
& d
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We verify that AA-! = ] and leave A~'A = [ to the reader.

a b i d —=b 1 a b d —b

e dl\ad —bci—=¢ a ad — bclc d||—c¢ a
B 1 ad — bc 0 =
ad-be| O ad — bc|

Matrix inverses can be used to solve certain systems of linear equations. Recall
(Example 7§2.2) that a system of linear equations can be written as a single matrix
equation

09

AX = B

where A and B are known matrices and X is to be determined. If A 18 invertible, we
multiply each side of the equation on the left by A" to get

A'AX = A'B
IX =A'B
X =A"'B

This gives the solution to the system of equations (the reader should venfy that
X = A-'B really does satisfy AX = B ). Furthermore, the argument shows that if X
is any solution, then necessarily X = A-'B, so the solution is unique. Of course
the technique works only when the coefticient matrix A has an inverse. This proves
Theorem 2.

THEOREM 2 BT 272
Suppose a system of n equations in n variables is written in matrix form as
AX = B

If the n X n coefficient matrix A is invertible, the system has the unique
solution

X =A"H
[t 2 Z [ 1 2 =4
A =2 1 1|, show thatA™ =|-1 -1 3|, and use it to solve the follow-
1 0 1 -1 -2

ing system of linear equations.
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2% + Xt Xy = 0

Verification that AA™' = I and A~'A = [ 1s left to the reader. The matrix form of the
system of equations is AX = B, where A is as before and

X 3
X =|nx, B =
|55 =2
Theorem 2 gives the solution
1 2 —4][ 3] | 11
X=A"'B=|-1 -1 3 =| -9
=1 =2 & |22 |13

Thus, x, = 11,x, = —9,and x; = —13.

o0

An Inversion Method

Given a particular n X n matrix A, it is desirable to have an efficient technique to
determine whether A has an inverse and, if so, to find that inverse. For simplicity, we
shall derive the technique for 2 X 2 matrices; the n X n case is entirely
analogous.

Given the invertible 2 X 2 matrix A, we determine A-' from the equation

AA-' = I. Write
A7 = [II I1:|
Yy M

where x,, y,, x,, and y, are to be determined. Equating columns in the equation

AA-! = [ gives
HEHEEEE M
A = and A =
Y 0 Y2 I

These are systems of linear equations, each with A as coefficient matrix. Since A 1s
invertible, each system has a unique solution by Theorem 2. But this means there 1s a
sequence of elementary row operations carrying A to the 2 X 2 identity matrix /.
This sequence carries the augmented matrices of both systems to reduced row-eche-

lon form and so solves the systems:
N
A —glif
Vi l Y,

+[o]- "
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Hence we can do borh calculations simultaneously.

1 0 X, X,
A ~3: | ¥ )
0 1 i ¥

This can be written more compactly as follows:
(A 1] |1 A7

In other words, the sequence of row operations that carries A to [ also carries / to A~
This is the desired algorithm.

MATRIX INVERSION S pany S 0 M e .11 oot e e
ALGORITHM

If A is a (square) invertible matrix, there exists a sequence of elementary row
operations that carry A to the identity matrix / of the same size, written A — L
This same series of row operations carries / to A-'; that is, I — A~'. The algo-
rithm can be summarized as follows:

A 1> |1 A

where the row operations on A and [ are carried out simultaneously.

EXAMPLE 6
Use the inversion algorithm to find the inverse of the matrix
2 4 1
A=|1 4 -1
I 3 B

Solution  Apply elementary row operations to the double matrix

2 7 1|1 0 0]
[A I]=|1 4 -1|0 1 O
1 3 0/0 0 1

so as to carry A to [. First interchange rows 1 and 2.

— -

|1 4 -1]0 1 0
2 7 1|1 0 0
1 3 0]0 0 1
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@

Next subtract 2 times row | from row 2, and subtract row 1 from row 3.

1 4 -1]10 1 0
0 -1 3|1 =2 0
0O -1 1|0 =1 1

Continue to reduced row-echelon form.

"L 9 11 & =3 D]

10 0|3 F 4

0 10|+ &+ 3

00 1]+ 5 7
(-3 -3 11

Hence A™' = I 1 =3| asisreadily verified.

ta | —

*oe

Given any n X n matrix A, Theorem 1§1.2% shows that A can be carried by
elementary row operations to a matrix R in reduced row-echelon form. If R = [,
the matrix A is invertible (this will be proved in the next section), so the algorithm
produces A-'. If R # I, then R has a row of zeros (it is square), so no system of
linear equations AX = B can have a unique solution. But then A is not mvertible
by Theorem 2. Hence the algorithm is effective in the sense conveyed in Theorem 3.

S . o— i
THEOREM 3 ERNIHE e e
If A is an n X n matrix, either A can be reduced to / by elementary row opera-

tions or it cannot. In the first case, the algorithm produces A '; in the second
case, A ! does not exist.

Properties of Inverses

Sometimes the inverse of a matrix is given by a formula. Example 4 is one illustra-
tion, Examples 7 and 8 provide two more.

This means Theorem | in Section 1.2.
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EXAMPLE 7

Solution

EXAMPLE 8

Solution

Matrix Inverses @

If A is an invertible matrix, show that the transpose A’ is also invertible. Show further
that the inverse of A”is just the transpose of A~'; in symbols, (A")~" = (A~ g L

A-! exists (by assumption). Its transpose (A~')" is the candidate proposed for the
inverse of AT. We test it as follows:

ATANT = (A AT =1 =1
(A-1)TAT = (AA-N = [T =1
Hence (A-1)7 is indeed the inverse of A; that 1s, (AN)-! = (A ). L 2 2

If A and B are invertible n X n matrices, show that their product AB is also invertible
and (AB)-' = B-'A-\.

We are given a candidate for the inverse of AB, namely B—'A-'. We test it as follows:
(B-'A-")AB) = B-(A-'A)B = B-'IB=B'B =1
(AB)Y(B-'A-') = A(BB-DA"' = AIA-!' = AA! = |

Hence B-'A-! is the inverse of AB; in symbols, (AB)~' = B 'A~".

*0¢

We now collect several basic properties of matrix inverses for reference.

THEOREM 4 A AN TR

All the following matrices are square matrices of the same size.

1. [lisinvertible and I-' = 1.

9. If A isinvertible, sois A-', and (A-") ' =A.

3. If A and B are invertible, so is AB, and (AB) "' =B 'A~".

4. If A, A,, ..., A, are all invertible, so is their product A A, - - - A, and
(AAy--- A)'=A - ATATL

5. If A is invertible, so is A* for k > 1, and (A¥)~' = (A~ ")\

6. If A isinvertible and a # 0 is a number, then aA 18 invertible and (a¢A)-' =

—A-1,
7. If A is invertible, so is its transpose A’, and (A") ' = (A N

Proof

1. This is an immediate consequence of the formula I* = [.

9. The equations AA-' = I = A-'A show that A is the inverse of A~'; in sym-
bols, (A-')~! = A.

3. This is Example 8.
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4. Use induction on k. If k = 1, there is nothing to prove because the conclu-
sion reads (A,)"! = A,~". If k = 2, the result is just property 3. If & = 2,
assume inductively that (A|A, - - - A,_\)"' = A,_,7" -+ - A,7'A; . We apply
this fact together with property 3 as follows:

] -]
[AIAE Rl Ak—l‘q‘k] = [(‘d‘l"d"z et 2 ‘q‘k—l)Akl

= A (AA, -+ AL

= Ak_l(‘qk—l_i HE A2_|A| I)

Here property 3 is applied to get the second equality. This is the conclusion
for & matrices, so the proof by induction 1s complete.

5. Thisis property 4 withA, = A, = -+ = A, = A.
6. This is left as Exercise 28.
7. This is Example 7. 4

EXAMPLE 9

2 1
Find A if (A" = 2I) =[ 1 0}

Solution By Theorem 4(2) and Example 4

AT ~2p = [T —207] = i ™ s
== 71 Sla o] Tl 2
2

o [0 T _[2 0, [0 -1, 1
— -l- — + by s g
Sl 1 21710 2|71 2™ 14

4 2 4

The reversal of the order of the inverses in properties 3 and 4 of Theorem 4 is a
consequence of the fact that matrix multiplication is not commutative. Another mani-
festation of this comes when matrix equations are dealt with. If a matrix equation
B = C is given, it can be left-multiplied by a matrix A to yield AB = AC. Similarly,
right-multiplication gives BA = CA. However, we cannot mix the two: If B = C, 1t
need not be the case that AB = CA. Examples 10 and 11 illustrate how such manipu-
lations are used.

EXAMPLE 10
Cancellation Laws Let A be an invertible matrix. Show that:

(a) IfAB = AC,thenB = C.
(b) IfBA = CA,then B = C.
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Solution Given the equation AB = AC, left-multiply both sides by A~' to obtain A 'AB =
A-'AC. This gives IB = IC — that is, B = C. This proves part (a), and the proof of
part (b) is similar.
¢
One application of cancellation is as follows: If A is invertible, then the only
matrix X such that AX = 0is X = 0. This follows directly from Example 10 because
AX = 0 can be written AX = A0. (Alternatively, left-multiply AX = 0 by A~' to get
X = A '(AX) = A-'0 = 0.) Of course, YA = 0 implies ¥ = 0 in the same way, and
these facts give a useful method of showing that a matrix is nor invertible.
EXAMPLE 11 5 i
Show that A = [3 4] has no inverse.
: 4
Solution Observe that AX = 01f X = Al Hence if A had an inverse, it would mean X = 0,
which is not the case. So A has no inverse.
00
MR Ny EXERCISES 2.3
1. In each case, show that the matrices are inverses of each e [-1 4 5 2] (K [1 -1 5 2]
other i o 0 0 -l 1 0 7 5
@[3 5] [2 -5 ®[3 0] |4 O 1 2 2 0 0 1 36
1 2] -1 5 B il I [0 -1 -1 0 1 -1 5 1]
. - o) [1 2 0 0]
()1 2 0 TZ—ﬁ(d]jﬂ][}ﬂ} mnlgun
o * 3 :
?33*;:3 LRl 001 50
L ' = 0001 7
000 0 1]

2. Find the inverse of each of the following matrices.

(@[ 3 -1 +(b) |4
EriERap
od [ 1 -1 2](e) [3
-5 7 -1l |
(@) [2 3 4] e(h) [3
4 3 1 5
|1 2 J 1

1
2

-] b3 Ln

e J—

In each case, solve the equations by finding the mverse of

] | 1 -1 0 the coefficient matrix.

3.0 2 @ 3x — y=5 e(b) 2x — 3y =0

-1 O -l 2x + 3y = 1 x — 4y =1
o] ¢ [3 1 -1 (€ x+ y+2:= 5 ¢(d) x+4y+2z= 1
| 2 1 0 x+ y+ z= 0 2x + 3y + 3z = -1
I] 1 5 =l x + 2y + 47 = -2 4x + v+4z= 10
7 : (€) x+v —w=1®fx+y+z+w= 1
=1 (i) [2 =1 -X+yv—2z = —] X+ v = D
0 3 -1 1 y+z+w=20 y + w = —1
-1 4 & & X —z+w= X +w = 2
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L =1 3 9. In each case either prove the assertion or give an example
4. GivenA™” =] 2 0 5| showing that it is false.
-1 1 0 (a) If A # 0is a square matrix, then A is invertible.
l #(b) If A and B are both invertible, then A + B is invertible.
(@) Solve the system of equations AX = |—1|. (c) If A and B are both invertible, then (A-'B)" is
3 invertible.

1 =} 97 ¢(d) If A* = 31, then A is invertible.
¢(b) Find a matrix B such thatAB = [0 1 1} (€) IfA2 = AandA # 0, then A is invertible.
1 0 0 +(f) IfAB = B forsome B # 0, then A is invertible.
1 % ] (g) If A is invertible and skew symmetric (A7 = —A), the
31 ] same is true of A~
5. Find A when- i #10. If A, B, and C are square matrices and AB = | = CA,

. | < 1 =T show that A is invertibleand B = C = A !
o [u I] R - [z 3]

(c) Find a matrix C such that CA = |:

11. Suppose CA = [, where Cism X nand A is n X m.

I oAyt o 20 ; Consider the system AX = B of n equations in m variables.
(c) ( ) = | (@) Show that this system has a unique solution CB if it
7] 1s consistent.
o(d) (7 - 24")" [] J 6 5 1 2 -3
o ¢(b) If C = ; and A =|1 =2} find X
{)rﬂ{] _]] [2 3] P 6 —10
e - =
0 1 1 2
\ a
M1 0],) _[1 0 o : :
*{f] 2 1 A S 2 2 {I.f it EK]H[H} th:['l {I} B =10 ;Hj‘l[j {“}B — 4
\ J 3 22

T a4 owil
@ @ -0t =7, | -

;% 12. Verify that A = [ﬂ ,2] satisfies A* — 34 +21I'= 0,
1 apT
¢(h) (A 20 2[1 L‘l]

and use this fact to show that A~' = (3] — A).
6. Find A when: a —b — —d]
] =% 3 0 1 -l 13. Let QO = e I . Compute QQ7 and so
(@ A" =2 1 1| eM® a'=|12 1 ¢ d a -b
0 2 -2 1 0 1 d —¢ b a
x] [3 -1 2][» 4 e, -
1. Given|x,|=|1 0 4|y, | and|z,|= 14. Let U = [1 [J. Show that each of U, —U, and — I, is
X; 2 1 0f|» 24
its own inverse and that the product of any two of these is
L=l A | the third.
2 =3 0] |y, | expressthe variables x,, x,, and - 6 i 01 0
-1 1 =2] |y 15. Consider A:Lt D},Bz[] *D],c= 0 0 1}
x5 in terms of z;, z,, and z,. 5 0 0
g + Ay = 7 _ Find the inverses by computing (a) A%, ¢ (b) B*; and (c) C*
8. (&) In the system 4x + 5y = I’ Substifuse; e ney 16. In each case, find A-" in terms of c.

= : a)[ ¢ 1 +(b)[2 -c

variables x” and y’ given by i _ i‘;, t :;' ,. Then ( ):_{i {_] (®) c ;]

find x and y. €1 ¢ 0 o(d)[1 0 1

c =1 ¢ 'l

¢ (b) Explain part (a) by writing the equations as 2 ¢ 1 3 ¢ 2

X 7 X X . i 1 =1 1
= : = . What is th la-

A[yj| [I} d |:v] ﬂ[}r"] atis the el 17. Ifc¢ # 0, find the inverseof |2 —1 2| interms of c.

tionship between A and B? Generalize. 0 2 ¢



+18.

19.

21.

23.

Section 2.3 Matrix Inverses

Find the inverse of [ sin 6 cos E] for any real num-

—cos 8 sin @
ber 0.

Show that A has no inverse when (@) A has a row of zeros;
¢ (b) A has a column of zeros; (€) each row of A sums
to 0; ¢ (d) each column of A sums to 0.

Let A denote a square matrix.
(a) Let YA = 0 for some matrix ¥ # 0. Show that A has
no INVerse.
1 -1 1
(b) Use part (@) to show that (i) |0 1 1|;and
1 0 2

(ii) I Of have no inverse. [Hint: For part
0 -1

(ii) compare row 3 with the difference between row |
and row 2.]

k3 2 1 -
I
I

If A is invertible, show that (a) A2 # 0; (b) A* # 0 for all
2 T S

Suppose AB = 0, where A and B are square matrices.
Show that:
(a) If one of A and B has an inverse, the other is zero.

¢(b) It is impossible for both A and B to have inverses.

(c) (BAY =0
a 0

0 b

and b # 0. Describe the inverse.
(b) Show that a diagonal matrix is invertible if and only
if all the main diagonal entries are nonzero. Describe

the inverse.
(€) If A and B are square matrices, show that (i) the block

matrix [A D}
[.} B A 0O | A_I 0
are both invertible; and (i) | o | = 0o B
(d) Use part (¢) to find the inverses of:

(a) Show that |: ] is invertible if and only if @ # 0

is invertible if and only if A and B

M [1 0 0 o(i) [3 1 0
0 2 i 59 0
0 T 1 0 0 -1

(i) 2 1 0 0] (vV[3 4 0 0
1 10 0 2 30 0
00 1 =i 00 1 3
00 1 -2 00 0 -1

(e) Extend part (€) to block diagonal matrices — that
1s, matrices with square blocks down the main diago-
nal and zero blocks elsewhere.

@

o Q. <
24. (a) Show that [ﬂ b] is invertible if and only if a#0

and b # 0.
¢ (b) If A and B are square and invertible, show that (i) the
A X
block matrix [{] B] is invertible for any X; and
ay[A X _[a" -a'x']
0 B 0 B’
(12 11
; 0 -1 -1 0
(c) Use part (b) to invert (i) 0o 0 2 1l and
0 0 1 1
o(ii)[3 1 3 0]
2 1 -1 1
0 0 5 2/
00 3 1

If A and B are invertible symmetric matrices such that
AB = BA, show that A-', AB, AB-!, and A 'B~' are also
invertible and symmetric.

(@) Let A = ]:::, :} B = [? ﬂ and C = [: :]

Verify that AB = CA and that A is invertible but
B # C.(Compare with Example 10.)

¢ (b) Find 2 X 2 matrices £, Q, and R such that PQ = PR,
P is not invertible, and Q # R. (Compare with
Example 10.)

27. Let A be an n X n matrix and let / be the n X »n identity
matrix.
(a) If A2 = 0, verify that(/ — A)~' = [+ A.
(b) IfA* = 0, verify that (/ — A)' = I+ A + A%
| 2 -1
(¢) Using part (b), find the inverseof | 0 1 3],
0 o0 1

o(d) If A» = 0, find the formula for (f — A)-".

28. Prove property 6 of Theorem 4: If A 1s invertible and a #
0, then aA is invertible and (aA) ' = LA,
29. lLet A B, and C denote n X n matrices. Show that:
(a) If A and AB are both invertible, B 1s mvertible.
¢(b) If AB and BA are both invertible, A and B arc both

invertible. | Hint: See Exercise 10.]
(e) If A, C, and ABC are all invertible, B is invertible.

30. Let A and B denote invertible n X n matrices.
(a) IfA' = B!, does it mean that A = B? Explain.
¢(b) Showthat A = Bifandonly if A-'B = [.
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31. Let A B and C be n X n matrices, with A and B invert-

ible. Show that:
¢(a) If A commutes with C, then A-' commutes with C.
(b) If A commutes with B, then A-! commutes with B-'.

32. Let A and B be square matrices of the same size.
(a) Show that (AB)* = A’B>if AB = BA.
¢(b) If A and B are invertible and (AB)* = A*B?, show that
AB = BA.

() If A= [{; g} and B = [é {ﬂ show that (AB)? =

AB2but AB # BA.
33. If /2 = [, show that I + U is not invertible unless U/ = L.

34. (a) If Jis the 4 X 4 matrix with every entry 1, show that
I — 1J is self-inverse and symmetric.

(b) If X is n X m and satisfies X'X = [, show that

[, — 2XX" is self-inverse and symmetric.
35. An n X n matrix P is called an idempotent if P? =P.
Show that:

(@) I7is the only invertible idempotent.

i Y Section 2.4

+(b) P is an idempotent if and only if [ — 2P is self-
INVErse.
(c) U is self-inverse if and only if U = I — 2P for some
idempotent P.
(d) 7 — aP is invertible forany @ # 1, and (/ - aP)™ =

I+( ¢ )F.
1 —a

36. If A2 = kA, where k # 0, show that A is invertible if and
only if A = kI

37. Let A and B denote n X n invertible matrices.
(a) ShowthatA '+ B-' = A-"(A+B)B .
+(b) If A + B is also invertible, show that A-' + B~ is
invertible and find a formula for (A-'"+ B ') .

38. let A and B be n X n matrices, and let / be the n X n
identity matrix.
(a) Verify that A(/ + BA) = (I + AB)A and that (/ + BA)B
= B(I + AB).
(b) If I + AB is invertible, verify that / + BA is also
invertible and that (I + BA)-' = I — B(I + AB) 'A.

Elementary Matrices

It is now evident that elementary row operations play a fundamental role in linear
algebra by providing a general method for solving systems of linear equations. This
leads to the matrix inversion algorithm. It turns out that these elementary row opera-
tions can be performed by left-multiplication by certain invertible matrices (called
elementary matrices). This section is devoted to a discussion of this useful fact and

some of its consequences.
Recall that the elementary row operations are of three types:
Type I: Interchange two rows.
Type I1: Multiply a row by a nonzero number.
Type III: Add a multiple of a row to a different row.

DEFINITION PR P TP R

An n X n matrix is called an elementary matrix if it is obtained from the
n X n identity matrix by an elementary row operation.

The elementary matrix so constructed is said to be of type L, 11, or III when the corre-
sponding row operation is of type I, I, or 111.
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EXAMPLE 1 :

0 1 0] E ] 1 0 5
Verify that E, = |1 0 0} E, = , and E, =|0 1
0 0 1 0 0

e S e
o - O
L% o (N e S ne

0], are ele-
]

L - L - L =

mentary matrices.

Solution  E, is obtained from the 3 X 3 identity /; by interchanging the first two rows, so It is
an elementary matrix of type I. Similarly, E, comes from multiplying the third row of
I, by 9 and so is an elementary matrix of type Il. Finally, £; is an elementary matrix
of type III; it is obtained by adding 5 times the third row of /; to the first row.

L4 & 4

Now consider the following three 2 X 2 elementary matrices E;, E,. and E,
obtained by doing the indicated elementary row operations to /.

0 1
E, = [ 0 Interchange rows 1 and 2 of [,
(1 0] _
E, = 0k Multiply row 2 of I, by k # 0.
1 &
E, = 0 1 Add k times row 2 of I, to row 1.

a b c
IfA = L’ ] is any 2 X 3 matrix, we compute E, A, E, A, and E;A:
q r

=

0 1lla b c i r
EA = i S
1 O|lp q r | a b
1 0lla b ¢| |a b c
E:A = =
0 k||p g r] |kp kq kr
1 klla b ¢l [a+kp b+kg ¢+ kr
EA = B
' 0 Lj|lp g r] L P g r

Observe that E,A is the matrix resulting from interchanging rows 1 and 2 of A and
that this row operation is the one that was used to produce E, from [,. Similarly, E,A
is obtained from A by the same row operation that produced E, from /, (multiplying
row 2 by k). Finally, the same is true of E;A: It is obtained from A by the same opera-
tion that produced E, from I, (adding k times row 2 to row 1). This phenomenon
holds for arbitrary m X n matrices A.
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EXAMPLE 2

Solution

Matrix Algebra

AN e
THEOREM 1 DA ST M .1 A NS

Let A denote any m X n matrix and let E be the m X m elementary matrix
obtained by performing some elementary row operation on the m X m identity

matrix /. If the same elementary row operation is performed on A, the resulting
matrix is EA.

Proof We prove it only for E of type III (types I and II are left as Exercise 16). If E
is obtained by adding k times row p of I, to row g, we must show that EA is obtained
from A in the same way. Let R, R,, ..., R, and K, K,, . . ., K,, denote the rows of E
and I, respectively. Then, by the definition of E,

R, = K, ifi £ g

R, = K, + kK,
Hence
row iof EA = RA = KA =rowiofA ifi # g
whereas
rowgof EA = RA = (K, + kK,)A = KA + kK A
This is row g of A plus k times row p of A, as required. &
(4 1 2 1]
GivenA = |3 0 1 6/ find an elementary matrix E such that EA 1s the result of
3 7 9 8
subtracting 7 times row 1 from row 3.
"1 0 0]
The elementary matrix is E = | 0 1 0], obtained by doing the given row opera-
g L ¢ I 1)
tion to f,. The product
1.0 O|[4 1 2 1 4 1 2 1
FA=|0 1 0|13 0 1 6|= 3 0 1 6
=7 0 L5 9 8] |23 0 5 i

is indeed the result of applying the operation to A.

LA 4 4

Given any elementary row operation, there is another row operation (called 1ts
inverse) that reverses the effect of the first operation. The inverses are described in
the accompanying table.
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Type Operation Inverse operation
I Intr:rc‘:haﬁge rows p and g Interchange rows p and ¢ |
I Multiply row p by ¢ #0 - Muluply row p by + ‘
11 Add k times row p to Subtract k times row p
row g (p #q) from row ¢ |

Note that type I operations are self-inverse.

THEOREM 2 BPNIRL e 3 S
Every elementary matrix E is invertible, and the inverse is an elementary
matrix of the same type. More precisely:

E-' is the elementary matrix obtained from I by the inverse of the row
operation that produced E from /.

Proof E is the result of applying a row operation p to I. Let E” denote the matrix
obtained by applying the inverse operation p” to /. By Theorem 1, applying p to a
matrix A produces EA; then applying p”to EA gives E'(EA):

A P 5 EA £ E’EA

But p’ reverses the effect of p, so applying p followed by p’ does not change A.
Hence E’EA = A. In particular, taking A = I gives E'E = 1. A similar argument

shows EE’ = I, so E-' = E’ as required. &
EXAMPLE 3
Write down the inverses of the elementary matrices E,, E,, and E, in Example 1.
0 1 0] 10 0] 1. 0 5]
Solution  The matricesare E, = |1 0 OL E, =|{0 1 OjandE;= [0 1 0} sothey are
0 0 1) 0 0 9 0 0 1]
of types I, 11, and IIL, respectively. Hence Theorem 2 gives
0 1 0 (1 0 0] (1 0 -5]
E'=E=|1 00 Eltsl0 1 0 E'=|0 1 0
0 0 I 0 0 3 0 0 1]

*oe

Now suppose a sequence of elementary row operations are performed on
an m X n matrix A, and let E,, E,, . . . , E; denote the corresponding elementary
matrices. Theorem 1 asserts that A is carried to E,A under the first operation; in sym-
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EXAMPLE 4

Matrix Algebra

bols, A — E,A. Then the second row operation is applied to E;A (not to A) and
the result is E,(E,A), again by Theorem 1. Hence the reduction can be described as
follows:

A —“} EIA _}' EEE'|A "_..’ EaEz.E]A "_":" = ""‘} EE oo EE_EIA

In other words. the net effect of the sequence of elementary row operations is to left-
multiply by the product U = E, - - - E,E, of the corresponding elementary matrices
(note the order). The result 1s

A— UA where UV=E...EkE,

Moreover, the matrix U can be easily constructed. Apply the same sequence of ele-
mentary operations to the n X n identity matrix / in place of A:

I-UlI=U

In other words, the sequence of elementary row operations that carries A — UA also
carries | — U. Hence it carries the double matrix [A []to [UA U]J:

A 1= [UA U]

just as in the matrix inversion algorithm. This simple observation is surprisingly use-
ful, and we record it as Theorem 3.

THEOREM 3 B INCIST 1 s R P GR .

Let A be an m X n matrix and assume that A can be carried to a matrix B by
elementary row operations. Then:

1. B = UA where U is an invertible m X m matrix.

9. U=EE,, - E;E, where E,, E,, . . ., E_,, E, are the elementary
matrices corresponding (in order) to the elementary row operations that
carry A — B.

3. U can be constructed without finding the E; by

A 11— [UA Ul

In other words, the operations that carry A — UA also carry [ — U.

Proof All that remains is to verify that U is invertible. Since U is a product of
elementary matrices, this follows by Theorem 2, L

2 3 1

[ 9 J and express it as R = UA,

Find the reduced row-echelon form R of A = l:

where U/ is invertible.
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Solution

EXAMPLE 5

Solution

Elementary Matrices

@

Use the usual row reduction A — R but carry out / - U simultanewsly in the format
[A Il—=[R Ul
2 31|10 1 2 110 1
_}
1 2 1|0 1 2 31|10

12 110 1
“*04—1‘1-2

(1 0-1] 2-3
=
0 1 1]-1 2

.

1 0 -1 2 -3
Hence R = and U = )
[{} | 1] {—1 2]

L2 2

The next example shows how the factorization of U into elementary matrices (as
in property 2 of Theorem 3) can be obtained.

1 2 -1

{1 5] to a reduced row-echelon matrix R by elementary row oper-

Bring A = [

ations and find elementary matrices E,, E,, and E; such that R = E,E.E | A.

The reduction is as follows:

1 2 «~I 1 & =l 1 2 ~] 1 B 11
A= — - — =R
1 1 5 0 -1 6 0 1 -6 0 1 -6

Each row operation can be carried out by left-multiplication by the elementary matrix
obtained by performing that row operation on the 2 X 2 identity matrix. The three
reductions and the corresponding elementary matrices are

o

;!

1 2 -1 1 0

= EA where E, =

[0 -1 6} L J
4

1 2 -1 1 0

[{} , —6] = EE(E,A) where E, = L} "J
1

I 0 11 1 =2

]:0 | —6] = E,(E,E,A) where E, = L} l]

This gives R = E;E,E A, as required.

L8 2 g
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These techniques are very useful when applied to square matrices. In particular,
Theorem 3 provides a way to deduce several conditions for invertibility that will be
referred to later. Recall that the rank of a matrix A is the number of nonzero rows in
any row-echelon matrix to which it can be carried (Section 1.2).°

T A ST SRS S
THEOREM 4 BN [ 5 R
The following conditions are equivalent for an n X n matrix A:

1. A is invertible.
2. If YA =0 where Yis | X n, then necessarily ¥ = 0.
3. A has rank n.

4. A can be carried to the n X n identity matrix by elementary row
operations.

5. A is a product of elementary matrices.

Proof We show that if any of the statements is true, then the next one is necessarily
true. and also that the truth of property 5 implies the truth of property 1. Hence, if any
statement is true, they all are true.

(1) implies (2). Assume A is invertible so that A~' exists. If YA = 0, right-multi-
plication by A~' gives Y = ¥YI = YAA-! = 0A~! = 0.

(2) implies (3). Assume property 2 holds. Now A can be carried to a matrix R in
reduced row-echelon form that, by Theorem 3, can be written as R = UA for some
invertible matrix /. We must show that R has n nonzero rows. If not, the last row of
R consists of zeros (Risn X n), so YR = 0 where ¥ =[0 0 --- O 1]. But then
YUA = 0, so YU = 0 by property 2. Because U is invertible, this implies ¥ = (), a
contradiction. Hence R has n nonzero rows, and property 3 follows.

(3) implies (4). A can be carried to a matrix R in reduced row-echelon form, and
R has n nonzero rows by property 3. Since R is n X n, this means R = I, and prop-
erty 4 follows.

(4) implies (5). Given property 4, Theorem 3 implies that I = UA, where U 1s an
invertible matrix that can be factored as a product U = E, - - - E,E, of elementary
matrices. Hence

A = U_1 s— (Eﬁ e E1E1]_I == E|_!E1-i 1w E.-h._]
and property 5 follows from Theorem 2.

(5) implies (1). This follows from Theorem 2 and the fact that the product of
invertible matrices is invertible. L 2

“The proof that the number of nonzero rows 1s the same in each row-echelon matrix to which A can be car-
ried will be given in Section 3.5.
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EXAMPLE 6
=2 3

1 0
Solution  We reduce A to I and write the elementary matrix at each stage.

e

Express A = |: jl as a product of elementary matrices.

!
[_; g} = EA where E, = [{1} {IJ]
Nl
[] G] = EI{E]A) where E, = [i 0}
0 3 2 1
!}

1 0 - {I n}
— where £, = |
[D ]:l_Eﬂ{EEEIA) - 0 4

Hence E.E.E,A = I and so A = (E,E,E,)"'. This means that

. Jo 1][ 1 o]t o
A=E"EE =1 oll2 1llo 3

by Theorem 2. This is the desired factorization.

64

We have seen that the matrix products AB and BA need not be equal. However, if
AB = I where A and B are both square matrices, then necessarily BA = [ as well.
(This fails if A and B are not both square; see Exercise 12.) The proof requires
Theorem 4.

THEOREM 5 BNCRU L e L T
Let A and B be n X n matrices. If AB =1, then also BA =1, so A and B are
invertible, A=B-'and B=A"'.

Proof It suffices to show that A is invertible (then left-multiplying AB = I by A"/
gives B = A-'). We use property 2 of Theorem 4. If YA = 0, then right-multiplication
by B gives

0=(YA)B=YAB)=YI =Y
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Hence YA = 0 implies ¥ = 0, so A is invertible by Theorem 4. &

Finally, we give two fundamental conditions for invertibility of a square matrix A

in terms of systems of equations with A as coefficient matrix.
AN T KL NG

THEOREM 6 BNIIL 7 R

Let A be an n X n matrix. The following conditions are equivalent.

1. A isinvertible.

2. The homogeneous system AX = 0 has only the trivial solution X' = 0.

3. The system AX = B has a solution for every n X | matrix B.
Proof Theorem 2§2.3 shows that (1) implies both (2) and (3), so we show that
either (2) or (3) implies that A is invertible. If (2) holds, it suffices to show that A" is
invertible. We use Theorem 4 by verifying that YA” = 0, Ya 1 X n matrix, implies
that ¥ = 0. Taking transposes gives AY” = (YA")" = 0" = (. Hence YT = 0 by (2), so
Y = 0 as required.

Now assume that (3) holds. If B, denotes column j of I, (3) gives a column X,
such that AX; = B. If X = [X, X, X ] is the n X n matrix with the X; as
columns, then

AX = AlX, X, X ] =lAX, AX, AX| =[B, B, Bl=1I
Hence A is invertible by Theorem 5. &
IR YRR e TRy EXERCISES 2.4
_ ‘ ‘ (-1 2] 1 =2
1. For each of the following elementary matrices, describe () A =] 4 4} B =1, J
the corresponding elementary row operation and write the - g 3
inverse. (€) A = -1 2 B o= 3 HJ
1 0 3] 0 0 |1 S T S
0 0 1] 100 . : o
1 0] 1 0 0 {g)gz_:_l} Bzil:
(E =10 4+ O ofd)E=|-21 0 . 2 =
0 0 1 0 0 1 ,(ﬂﬂ:zl] 3:_'3
L . . -1 3f 2 1
0 1 0 1 0 0 - 3 -
(@E=|1 00 o(E ={0 10 [Tt RE
00 1 0 0 5 3.LctA—_l|andC~_11.
2. In each case find an elementary matrix E such that (a) Find elementary matrices [, and E, such that
B = EA. C = E,EA.
(@) A = 2 1 B = 2 l ¢(b) Show that there is no elementary matrix £ such that
3 —-1f | =2 C = EA.
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®4. If E is elementary, show that A and EA differ in at most
tWO rows.

5. (a) Is / an elementary matrix? Explain.
¢(b) Is 0 an elementary matrix? Explain.
6. In each case find an invertible matrix I/ such that /A = R

is in reduced row-echelon form, and express U/ as a prod-
uct of elementary matrices.

1 -1 2
WA=y ) {]}
P 2 1
*h) 4= 5 12 -J
[1 2 -1 0]
e)A=1|3 1 12
I -3 3 2]
(2 1 -1 0]
o(d) A =13 -1 2 1
§ 2% 33
7. In each case find an invertible matrix U such that
UA = B, and express UU as a product of elementary
matrices.

21 3 1 -1 =2
('3‘5“_—112}3'[3 0 1]
2 -1 0 3 0 1
L 11}"3:[2 -1 n]

8. In each case factor A as a product of elementary matrices.

1 1 2 '3
@ 4=, J *®) 4= ] 2]
1 0 3 1 O =3
©A=]01 1| eda=|0 1 4
5 16 2 2 15

9. Let E be an elementary matrix.
(a) Show that E7 is also elementary of the same type.
(b) Show that E" = Eif Eis of type I or ILI.

#10. Show that every matrix A can be factored as A = UR
where U is invertible and R is in reduced row-echelon
form.

1
11. If A = [I _ﬂ and B = |:_§ _ﬂ find an elementary
matrix F such that AF = B. [Hint: See Exercise 9.]
1{2 6 -3
= - T
12. LetA . [3 5 6]' Show that AA™ = I,but A7TA # I,
. :3 2 9 2 2
13. If A= and B=| | —1| wverify that
1 2 2 1 0

AB = fzh'ut BA # f;.

@

14. Show that the following are equivalent for n X n matrices
A and B:

(i) A and B are both invertible.
¢ (ii) AB is invertible.

1 3 =1 1 1 2
15. ConsiderA = |2 | 5 B=1| 3 0 -=-3|
1 =7 13 -2 5 17

(a) Show that A is not invertible by finding a nonzero
1 X 3 matrix ¥ such that YA = 0. [Hint: Row 3 of A
equals 2(row 2) — 3(row 1).]
#(b) Show that B is not invertible. [Hint: Column 3 =
3(column 2) — column 1.]

16. Prove Theorem 1 for elementary matrices of: (a) type I;
(b) type 11

17. While trying to invert A, [A ] 1s carried to [P (] by
row operations. Show that P = QA.
¢ 18. Show that a square matrix A is invertible if and only if it
can be left-cancelled: AB = ACimphes B = C,
19. If A and B are n X n matrices and AB is a product of ele-
mentary matrices, show that the same is true of A.
# 20. If U is invertible, show that the reduced row-echelon form
of amatrix [U A]iis[f U-'A]
21. Two matrices A and B are called row-equivalent (written

A 1 B) if there 1s a sequence of elementary row operations
carrying A to B.
(@) Show that A r B if and only if A = UB for some
invertible matrix U,
#(b) Show that: (i) A r A for all matrices A.
(ii) IfA r B, then B r A.
(lii)IfA rBand B r C, then A 1 C.
(c) Show that, if A and B are both row-equivalent to
some third matrix, then A r B,

I -1 3 2 | -1 4 5
(d) Show that |0 1 4 I|land|-2 1 -11 -8
I 0 8 6 —l 2 2. 2
are row-equivalent. [Hint: Consider part (¢) and
Theorem 1§1.2.]
22. If U and V are invertible n X n matrices, show that
U r V. (See Exercise 21.)
23. (See Exercise 21.) Find all matrices that are row-equiva-
lent to:
(@fo o 0] ¢®) 0 0 0O
0 0 0] R .
()1 0 0] (d)[1 2 0]
0 1 0] 0 0 1
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Vg

924. LetAand Bbem X nand n X m matrices, respectively. (b) Given any m X n matrix A, there exist m X m ele-
(a) If m > n, show that AB is not invertible. [Hint: Use mentary matrices £, . . ., E, and n X n elementary
Theorem 181.3 to find ¥ # 0 with YA = 0.] matrices F,, . . ., F, such that, in block form,
(b) Show that the only invertible matrices are square; that
is, AB =1, and BA = I, imply m = n. (But sce E, -+ EAF, --+ F, = ["‘r Uil
Exercises 12 and 13.) roL00

25. Define an elementary column operation on a matrix to be
one of the following: (I) Interchange two columns. (II) 26. Suppose B is obtained from A by: (a@) interchanging rows I

Multiply a column by a nonzero scalar. (I1I) Add a multi- and j; #(b) multiplying row i by k # 0; (€) adding &

ple of a column to another column. Show that: times row i to row j (i # j). In each case describe how to

(a) If an elementary column operation is done to an obtain B-' from A-'. [Hint: See part (@) of the preceding
m X n matrix A, the result is AF, where Fisann X n exercise. |

elementary matrix.

crasEhal® Section 2.5 LU-Factorization (Optional)’

In this section the Gaussian algorithm is used to show that any matrix A can be writ-
ten as a product of matrices of a particularly nice type. This is used in computer pro-
grams to solve systems of linear equations.

An m X n matrix A is called upper triangular if each entry of A below and to
the left of the main diagonal is zero. Here, as for square matrices, the elements a,,
dy,, . . . are called the main diagonal of A. Hence the matrices

. 4 " . 11 1

] -1 0 3 0 2 10 5
0 -1 1

0 2 11 00 F ]
0 0 0

0 0 -3 0 0 01 0 1
- g B ; 0 0 0

are all upper triangular. Note that each row-echelon matrix is upper triangular.

By analogy a matrix is called lower triangular if its transpose IS upper
triangular—that is, each entry above and to the right of the main diagonal is zero. A
matrix is called triangular if it is either upper or lower triangular.

One reason for the importance of triangular matrices is the ease with which sys-
tems of linear equations can be solved when the coefficient matrix is triangular.

EXAMPLE 1

Solve the system
x, +2x, —3x; — X + 5% =3
Sx, 40, + X =8
2x, =6

where the coefficient matrix is upper triangular.

TThis section is not used later, so it may be omitted with no loss of continuity.
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Solution

LU-Factorization @

As for a row-echelon matrix, let x, = s and x, = 1. Then solve for x;, x;, and x, in that
order as follows:

Xs = 06/2 =3
Substitution into the second equation gives
1, = L—di
Finally substitution of both x5 and x; into the first equation gives
X, =-9-25+ %t
L 2 2

The method used in Example 1 is called back substitution for obvious reasons.
It works because the matrix is upper triangular, and it provides an elficient
method for finding the solutions (when they exist). In particular, it can be used in
Gaussian elimination because row-echelon matrices are upper triangular. Similarly, it
the matrix of a system of equations is lower triangular, the system can be solved (if a
solution exists) by forward substitution. Here each equation is used to solve for one
variable by substituting values already found for earlier variables.

Suppose now that an arbitrary matrix A is given and consider the system

AX =B

of linear equations with A as coefficient matrix. If A can be factored as A = LU,
where L is lower triangular and U is upper triangular, the system can be solved in two
stages as follows:

1. Solve LY = B for Y by forward substitution.
2. Solve UX = Y for X by back substitution.

Then X is a solution to AX = B because AX = LUX = LY = B. Moreover, every
solution arises in this way (take Y = UX). This focuses attention on obtaining such
factorizations A = LU of matrices.

The Gaussian algorithm provides a method of obtaining these factorizations. The
method exploits the following facts about triangular matrices.

N e
LEMMA 1 ENIRG -
The product of two lower triangular matrices (or two upper triangular matrices)
is again lower triangular (upper triangular).

LEMMA 2

Let A be an n X n lower triangular (or upper triangular) matrix. Then A is
invertible if and only if no main diagonal entry is zero. In this case, A~" is also
lower (upper) triangular.
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The proofs are straightforward and are left as Exercises 8 and 9.

Now let A by any m X n matrix. The Gaussian algorithm produces a sequence
of row operations that carry A to a row-echelon matrix U. However, no multiple of a
row is ever added to a row above it (because we are not insisting on reduced row-
echelon form). The point is that, apart from row interchanges,* the only row opera-
tions needed are those that make the corresponding elementary matrix lower triangu-
lar. This observation gives the following theorem.

THEOREM 1 BNTHET

Suppose that, via the Gaussian algorithm, a matrix A can be carried to a row-
echelon matrix U using no row interchanges. Then

A= LU

where L is lower triangular and invertible and U 1s row-echelon (and upper tri-
angular).

Proof The hypotheses imply that there exist lower triangular, elementary matrices
E.E, ... ,Esuchthat U = (E,--- EE|)A. Hence A = LU, where L = E,-'E, - -
E,' is lower triangular and invertible by Lemmas 1 and 2. &

DEFINITION BENERUET 2/ 1 PRy

A factorization A = LU as in Theorem 1 is called an I.U-factorization of the
matrix A.

Such a factorization may not exist (Exercise 4) because at least one row interchange
is required in the Gaussian algorithm. A procedure for dealing with this situation will
be outlined later. However, if an LU-factorization does exist, the row-echelon matrix
U/ in Theorem 1 is obtained by Gaussian elimination and the algorithm also yields a
simple procedure for writing down the matrix L. The following example illustrates
the technique.

0 2 -6 -2 4]
Find an LU-factorization of the matrix A = |0 -1 3 3 2
0 -1 3 7 10

*Any row interchange can actually be accomplished by row operations of other types (Exercise 5), but one
of these must involve adding a multiple of some row to a row above it.
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@

We are assuming that we can carry A to a row-echelon matrix U as before, using no
row interchanges. The steps in the Gaussian algorithm are shown, and at each stage
the corresponding elementary matrix is computed. The reason for the circled entries
will be apparent shortly.

0 (2} -6 -2 4]
ol-1| 3 3 2|=A
0y 3 710
0 1 -3 -1 2] (L 0 0]
0 -1 3 3 2|=EA E =(0 10
0 -1 3 7 10] 0 0 1
3 4 % <1 2 U
0 0 0 2 4|=EEA E, =%t 10
0 -1 3 7 10] 0 0 1
0 1 -3 -1 2 (31, 4@
0 0 {]4=E3EIE]A E,=|0 1 0
0 0 0 12 1 0 1
0 1 -3 -1 2] 1 0 0]
0 0 0 1 2|=EEEEA E, =0 + 0
0 0 0 6 12 0 0 1
0 1 =3 -1 2] 1 0 0]
v=lo 0o 0 1 2|=EEEEEA E=|0 10
00 0 0 0] 0 -6 |

Thus (as in the proof of Theorem 1), the LU-factorization of A is A = LU, where

[ 2 0]
L=E'ESE'EE; =|-1 2 0
-1 6 1]

Now observe that the first two columns of L can be obtained from the columns cir-
cled during execution of the algorithm.
XX 2

The procedure in Example 2 works in general. Moreover, we can construct the
matrix L as we go along, one (circled) column at a time, starting from the left. There
is no need to compute the elementary matrices E,, and the method 1s suitable for use
in a computer program because the circled columns can be stored in memory as they
are created.
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To describe the process in general, the following notation is useful. Given
positive integers m = r, let C|, C,, . . ., C, be columns of decreasing lengths m,
m—1,...,m— r+1.Then let

9% | TN 25 (*)

denote the m X m lower triangular matrix obtained from the identity matrix by
replacing the bottom m — j + 1 entnies of column j by C, foreach j =1, 2, . . ., r.
Thus the matrix L in Example 2 has this form:

2 0 0] 2 5
L=L|C,G]=|-1 2 0 where C, = | —1| and Q:M.
-1 6 1 =

Here is another example.

= = —

3 - e 3000

~1 ‘ o -1 5 00

If If C, = 0 and C, =|-1|, then L,[C,, C,] = 6 -1 1 of
7

el g oz T 6 1)

L 4 4 4

Note that if r < m, the last m — r columns of L _[C,, . .., C,] are the corresponding
columns of the identity matrix /,,.

Now the general version of the procedure in Example 2 can be stated. Given a
nonzero matrix A, call the first nonzero column of A (from the left) the leading

column of A.

S 5 -
LU-ALGORITHM EENTIR 2 e )
Let A be an m X n matrix that can be carried to a row-echelon matrix U using
no row interchanges. An LU-factorization A = LU can be obtained as follows:

Stepl. IfA=0,take L=17,and U =0.

Step 2. If A #0, let C, be the leading column of A and do row operations (with
no row Interchanges) to create the first leading 1 and bring A to the

following block form:
0 | ] | X,
4= [oToTA,

Step 3. If A, # 0, let C, be the leading column of A, and apply step 2 to bring
A, to block form:
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EXAMPLE 4

Solution

0 | 1 l X,
A: = (00 A,
Step 4. Continue in this way until all the rows below the last leading | created

consist of zeros. Take U to be the (row-echelon) matrix just created,
and take [see preceding equation ()]

.L- — Lm[Cli Cl’ . Wi .,CJ

where C,, C,, Cs, . . . are the leading columns of the matrices A,
Ay

The proof is given at the end of this section.

Of course the integer r in the LU-algorithm is the number of leading 1's in the row-eche
matrix U, so it is the rank of A.

5§ =5 10 0 5]

| - -3 3 2 2 1
Find an LU-factorization for A = 2 2 0 -1 0
| 1 -1 10 2 5

The reduction to row-echelon form 1s

RN & 1 o o5] [1 =L 2 0 1
3|l 3 2 2 1 0 0/ 8\ 2 4
_}
2tz o = 0 0 ol 4|-1 2
\1J)-1 10 2 5/ [0 0\8) 2 4]
F =t 2 8 1]
o 0 1 L 1

_}
0 0 0 0
LUU‘U U_
™ =f B G B
0 0 1 4+ 4

- :
0O 00 10
0 00 0 0

If U/ denotes this row-echelon matrix, then A = LU, where
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¢

50 00
38 0 0
L=12 4 2 o0
18 0 1

*oe

The next example deals with a case where no row of zeros is present in U (in fact, A
is invertible).

EXAMPLE 5 _ "
2.4 2
Find an LU-factorization for A = L 1 2L
-1 0 2]
Solution  The reduction to row-echelon form is
Fa o 3 ¢ oz 1] (12 17 [L 2 1]
1j]1 21—=1]0 Il=]0 1 -1 =10 1 =-1|=U
\-1) 0 2 _0@3_ 00 (s) oo 1
2 0 9]
so L = 1 -1 0]
=k Z 5

LA 2 4

There are matrices (for example [l {}]} that have no LU-factorization and so

require at least one row interchange when being carried to row-echelon form via the
Gaussian algorithm. However, it turns out that if all the row interchanges encountered
in the algorithm are carried out first, the resulting matrix requires no interchanges and
s0 has an LU-factorization. Here is the precise result.

THEOREM 2

Suppose an m X n matrix A is carried to a row-echelon matrix U via the
Gaussian algorithm. Let P,, P,, . . ., P, be the elementary matrices correspond-
ing (in order) to the row interchanges used and write P =P - - - P,P,. (If no
interchanges are used take P =1.)

Then;

1. PA is the matrix obtained from A by doing these interchanges (in order)
to A.

2. PA has an LU-factorization.
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Solution

LU-Factorization

The proof is given at the end of this section.

A matrix P that is the product of elementary matrices corresponding to row inter-
changes is called a permutation matrix. Such a matrix is obtained from the identity
matrix by arranging the rows in a different order, so it has exactly one 1 in each row
and each column, and has zeros elsewhere. We regard the identity matrix as a permu-
tation matrix. The elementary permutation matrices are those obtained from / by a
single row interchange, and every permutation matrix is a product of elementary

ones.
0 0 -1 2]
-1 -1 1 2] . . _
If A = 5 1 -3 6l find a permutation matrix P such that PA has an LU-
0O 1 -1 4

factorization, and then find the factorization.

Apply the Gaussian algorithm to A:

i = — - i— =

-1 -1 1 2 1 1 -1 -2 1 1 -1 =2
O 0 -1 2 O 0 -1 2 0 -1 -1 10
A— — —
2 1 -3 6 0 -1 -1 10 0O 0 -1 2
L8 1 - d @ 1 ~L @& 0 1 -1 4]
11 -1 =21 [1 1 -1 <=2]
0 1 1 -10 O 1 1 -10
e —
0 0 -1 2 00 1 =2
0O 0 =2 14 0o 0 0 10

— | — — e

Two row interchanges were needed, first rows 1 and 2 and then rows 2 and 3. Hence,
as in Theorem 2,

j 1T 0 0] [ 1
0 0

0

1

o T S e [
-_—0 o O
o - D
_— o O

0
1
0
0

o B2 ke

L O D
o Qo = O
= O = O
= o & =
N

If we do these interchanges (in order) to A, the result is PA. Now apply the LU-
algorithm to PA:

= 121 T1 1 =1 <97 [I 1 =1 =2
21 1 =3 6 0 ~1 10 01 1 -10
PA: —_— —
ol 0 -1 2 0 =1 2 0 0 2
o) 1 -1 4] [0 -1 4] [0 0 14
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L L =F 227 11 =1 =2
01 1 —10 01 1 —10
“le s 4 <27 lgs 1 =27~
00 0 _ 00 0 1
1 0 0 0] 11 -1 =2
5 1 0 0 01 1 —10
Hence PA = LU, where L = 0 0 -1 0 and U = 0 0 1 =2
0 1 -2 10] 00 0 1
*00

Theorem 2 provides an important general factorization theorem for matrices. If A
is any m X n matrix, it asserts that there exists a permutation matrix P and an LU-
factorization PA = LU. Moreover, it shows that either P=/or P =P, - - - P,P|, where
P, P,, - - -, P, are the elementary permutation matrices arising in the reduction of A
to row-echelon form. Now observe that P,' = P, for each i. Thus P~' = PP,

. P_, so the matrix A can be factored as

A=PILU

where P-! is a permutation matrix, L is lower triangular and invertible, and U 1s a
row-echelon matrix. This is called a PLU-factorization of A.
The LU-factorization in Theorem | is not unique. For example,

1 0|1 -2 3 1 01 =2 3

3 2/{0 0 0] [3 1|0 00
However, the fact that the row-echelon matrix here has a row of zeros 1s necessary.
Recall that the rank of a matrix A is the number of nonzero rows in any row-echelon

matrix U/ to which A can be carried by row operations. Thus if A is m X n, the matrix
{J has no row of zeros if and only if A has rank m.

THEOREM 3 e, RN T R

Let A be an m X n matrix that has an LU-factorization

A=LU

If A has rank m (that is, [/ has no row of zeros), then L and U are uniquely
determined by A.
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Proof Suppose A = MV is another LU-factorization of A, so M is lower triangular
and invertible and V is row-echelon. Hence LU = MV, and we must show that L =
M and U = V. We write N = M-'L. Then N is lower triangular and invertible
(Lemmas 1 and 2) and NU = V, so it suffices to prove that N = LIt Nism X m, we
use induction on m. The case m = 1 is left to the reader. If m > 1, observe first that
column 1 of V is N times column 1 of U. Thus if either column is zero, so is the other
(N is invertible). Hence we can assume (by deleting zero columns) that the (1, 1)-

a 0 .
entry is | in both U and V. Now we write N = [ } U = [ ] and

X N, 0 U,
A a aY 1 Z
o= L} “] in block form. Then NUU = V becomes ]:X XY + NIUl-] = |:U vl].
Hence a = 1, Y =2, X =0, and NyU, = V,. But NU, = V, implies N, = I by
induction, whence N = L &

If Ais an m X m invertible matrix, then A has rank m by Theorem 4§2.4. Hence
we get the following important special case of Theorem 3.

COROLLARY PAINTHUL 4 o 1 B e

If an invertible matrix A has an LU-factorization A = LU, then L and U are
uniquely determined by A.

Of course, in this case U is an upper triangular matrix with Is along the main
diagonal.

Proofs of Theorems

Proof of the LU-algorithm Proceed by induction on n. If n = 1, it is left to the
reader. If n > 1, let C, denote the leading column of A and let K, denote the first col-
amn of the m X m identity matrix. There exist elementary matrices E,, . . ., E, such
that, in block form,

(E, -~ EE)A = 1:0 \ K, %} where (E, - - - E,E))C, = K,.
|

Moreover, each E; can be taken to be lower triangular (by assumption). Write
Ly = (BEy~+-EE)™ = Ef'Ey - E-!

Then L, is lower triangular, and L,K, = C,. Also, each L (and so each E; ') 1s the
result of either multiplying row 1 of I,, by a constant or adding a multiple of row 1 to
another row. Hence
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_epHlp -l -l _ 0
I‘U - (EE E?_ o IE'J-; }Irn - C] ]
I

m..

in block form. Now, by induction, let A, = L,U, be an LU-factorization of A,, where

L, =L, [C,,...,C,]and U, is row-echelon. Then block multiplication gives
i {}‘K X, | _[L[O|0]1]X

b = “gu,"nzﬂ 0[0]|U,

h REe] ] | X | g
Hence A = LU, where U = oTo | U is row-echelon and

s 22 _CU—L[C C C
i i - 0| L, __ Pl TR ]

This completes the proof. L 4

Proof of Theorem 2 Let A be a nonzero m X n matrix and let K; denote column
j of I,. There is a permutation matrix P, (where either P, is elementary or P, = /)
such that the first nonzero column C, of P,A has a nonzero entry on top. Hence, as in

the LU-algorithm,
- 0|1]X,
P -A=
il " fpeh Lnn | Al]

in block form. Then let P, be a permutation matrix (either elementary or /,,) such that

4 Ol1 X
PEPL*H[CI]['H'A:]:U%UIA:]
|

and the first nonzero column C, of A has a nonzero entry on top. Thus

AR X,
-1 -1
Lm[Kl" Cz] 'Hz'Lm[C1] B A= 010 O I X,
) 0[0]A,]
in block form. Continue to obtain elementary permutation matrices Py, P, .. ., P,
and columns C,, C,, ..., C,of lengths m, m — 1, ..., such that

(LPL,_\P, - -LPLP)A=U

where U is a row-echelon matrix and L, = L,[K,, ..., K, ,, C] ! for each j, where
the notation means the first j — 1 columns are those of /,.. It is not hard to verify that
each L, has the form L, = L,[K,, ..., K; ,, (7] where C/is a column of length m — j
+ 1. We now claim that each permutation matrix P, can be “moved past” each matrix

L, to the right of it, in the sense that
P,L, = L/P,
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where L/ = L (K, ..., K;, C"’] for some column C ;" of length m — j+ 1. Given
that this is true, we obtain a factorization of the form
{LFL:IH.L‘;L;}(PrPr ]‘.'"“:.I‘Fll}""ﬁl = U
If we write P = P.P,_, - - - P,P,, this shows that PA has an LU-factorization because
LL’, - --L;L!is lower triangular and invertible. All that remains is to prove the
following rather technical result. \ 4
LEMMA 3 BN
Let P, result from interchanging row k of I,, with a row below it. If j < k, let C,
be a column of length m — j + 1. Then there is another column C; of length
m — j + 1 such that
Ph+Lm[K] ’ lK:I|C_|I'_1 == Lmi.K1 ..'K.l'—lcj’l'P.ﬂ'
The proof is left as Exercise 12.
PR TS &AL EXERCISES 2.5
1. Find an LU-factorization of the following matrices. 3. In each case use the given LU-decomposition of A to
2 6 =2 0 2 2 4 2 solve the system AX = B by finding ¥ such that LY = B,
@3 9 3 3 1 o) | I -1 3 and then X such that UX = ¥
-1 -3 1 -3 1] -1 7 -7 2 0 0][1 0 0 1 1
2 6§ =2 0.3 —1 -3 1 0 -1 (@ A=|0 -1 0{|0 0 1 258 = (-l
1 5 -1 25 4 1 1 ] 1 1 3]|0 0 0 1 2
@3 7 3 2 s5/*@| 1 2 -3 -1 | "2 0 0][1 1 0 - L
-1 -1 1 2 3 |0 2 -4 2 (] o) A=| 1300 1 0 I:B=]-I
e o3 34 6 0 2] -1 2 11|10 0 0 0O |
1 -1 2 1 3 1 2 0 0 Ol[1 =1 2 1] il §
|2 2 -4 -1 16 _|t-toojfo 11 -4 5 |-
0 2 0 3 4 8 @ A=\ ¢ 20flo o1 4872
2 4 -4 1 -2 6] 0 10 2[00 00 I 0]
2 2 -2 4 2] "2 00 O]t -1 O 1 4
1 -1 0 2 1 | =1 010 1 = =l -6
*M|3 1 2 6 3 sA=| 13 ollo o 1 1/%P7| 4
1 3 22 1 3 0 1 <[00 @ & B B
2. Fin?i a Permutatmn matrix P and an LU-factorization of 4. Show that 0 1| _jpuis impossible where L is lower
PAif A is: | 0
0 0 2 0 =1 2 triangular and U is upper tniangular.
() {i _; d]' +(0) _[: g L: 5. Let E and F be the elementary matrices obtained from the
- . L ; identity matrix by adding multiples of row k to rows p and
0 -1 2 1 3 -1 -2 30 f k d k H i
11 314 5 4 —6 5 g. 1f k# p and k # g, show that EF’ = FE.
(<) ] =] =F 6 2 *(d) 1 1 =1 3 6. Show that we can accomplish any row interchange by
L2 =2 =4 1 8 |2 § ~-10 4 using only row operations of other types.
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(@) Let L and L, be invertible lower triangular matrices,
and let U and U, be invertible upper triangular matri-
ces. Show that LU = LU, if and only if there exists
an invertible diagonal matrix D such that L, = LD
and U, = D-'U. [Hint: Scrutinize L-'L, = U Uy'.]
Use part (@) to prove Theorem 3 in the case that A s
invertible.

Prove Lemma |. [Hint: Use block multiplication and
induction. |

Prove Lemma 2. [Hint: Use block multiplication and
imnduction. ]

A triangular matrix is called unit triangular if it 1s square
and every main diagonal element is a 1.
(a) If A can be carried by the Gaussian algorithm to row-

11.

12.

echelon form using no row interchanges, show that A =
LU where L is unit lower triangular and U is upper trian-
gular.

(b) Show that the factorization in (@) is unique.

Let C,, C,, ..., C, becolumns of lengths m, m — 1....,
m — r + 1.If K; denotes column j of I, show that L [C,,
Cy - - oy Cl = LIC,) LK. G L,[K. Ky G3) - - -
LK. K., ...,K |, C] The notation is as in the proof
of Theorem 2. | Hint: Use induction on m and block mult-
plication. ]

I; 4
Prove Lemma 3. |Hint: P;' = P,. Wnte P, = L{; H}:l

in block form where P, is an (m — k) X (m — k) permu-
tation matnx. |

An Application to Input-Output Economic Models (Optional)’

In 1973 Wassily Leontief was awarded the Nobel prize in economics for his work on
mathematical models.!” Roughly speaking, an economic system in this model consists
of several industries, each of which produces a product and each of which uses some
of the production of the other industries. The following example is typical.

EXAMPLE 1
A primitive society has three basic needs: food, shelter, and clothing. There are thus
three industries in the society—the farming, housing, and garment industries—that
produce these commodities. Each of these industries consumes a certain proportion of
the total output of each commodity according to the following table.
T ]
OUTPUT
Farming | Housing ‘ Garment
| Farming 4 2 | 3
Consumption Housing e 6 4
Garment 4 2 ‘ 3 |
Find the annual prices that each industry must charge for its income to equal is
expenditures.
Solution Let p,, p,, and p; be the prices charged per year by the farming. housing, and garment

industries, respectively, for their total output. To see how these prices are determined,
consider the farming industry. It receives p, for its production in any year. But it con-

*The applications in this section and the next are independent and may be taken in any order.

10See W. W. Leontief, “The world economy of the year 2000,” Scientific American, Sept. 1980.
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&

sumes products from all these industries in the following amounts (from row | of the
table): 40% of the food, 20% of the housing, and 30% of the clothing. Hence the
expenditures of the farming industry are .4p, + .2p, +.3p;, 50

4p, + 2p, + 3p; = p,

A similar analysis of the other two industries leads to the following system of
equations.

Ap, + 2p, + 3ps = p

2p, + .6p, + 4p, = p;
Ap, + 2p, + 3ps = ps

This has the matrix form EP = P, where

-4 2 3 P,
E=|2 6 4 and P=|p,
4. 2 3 | P |

The equations can be written as the homogeneous system
U—EP=1

where I is the 3 X 3 identity matrix, and the solutions are

2t
P =3
i)

L =

where 1 is a parameter. Thus the pricing must be such that the total output of the
farming industry has the same value as the total output of the garment industry,

whereas the total value of the housing industry must be < as much.
0

In general, suppose an economy has n industries, each of which uses some (pos-
sibly none) of the production of every industry. We assume first that the economy 1s
closed (that is, no product is exported or imported) and that all product is used. Given
two industries i and j, let e; denote the proportion of the total annual output of indus-
try j that is consumed by industry i. Then E' = [¢;] 15 called the input-output matrix
for the economy. Clearly,

0<e; <1 for all i and j (1)

Moreover, all the output from industry j is used by some industry (the model 1s
closed), so

g+ ey e by = 1 for each j (2)

Condition 2 asserts that each column of E sums to 1. Matrices satisfying conditions 1
and 2 are called stochastic matrices.
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As in Example 1, let p, denote the price of the total annual production of industry
i. Then p, is the annual revenue of industry i. On the other hand, industry i spends
e p, + eq.p, + - - + + e,p, annually for the product it uses (¢;p; 1s the cost
for product from industry j). The closed economic system is said to be in
equilibrium if the annual expenditure equals the annual revenue for each industry—
that is, if

e P, + exps + -+ €u.P, = P for eachi=1:2 550
P
: % : . : ;
If we write P = | . |, these equations can be written as the matrix equation
_pn_
EP =P

This is called the equilibrium condition, and the solutions P are called equilibrium
price structures. The equilibrium condition can be written as

(- EP =0

which is a system of homogeneous equations for P. Moreover, there is always a
nontrivial solution P. Indeed, the column sums of / — E are all 0 (because E 1s sto-
chastic), so the row-echelon form of I — E has a row of zeros. In fact, more is true:

THEOREM 1 BN 7 7 3 S B

Let E be any n X n stochastic matrix. Then there is a nonzeron X | matrix P
with nonnegative entries such that EP = P. If all the entries of E are positive,
the matrix P can be chosen with all entries positive.

Theorem 1 guarantees the existence of an equilibrium price structure for any
closed input-output system of the type discussed here. The proof is beyond the scope
of this book.!"

Find the equilibrium price structures for four industries if the input-output matrix is

B & 1

3.4 20
=

1.3 5 2

0o .1 2 .7

1 The interested reader is referred to P. Lancaster’s Theory of Matrices (New York: Academic Press, 1969)
or to E. Seneta’s Non-negative Matrices (New York: Wiley, 1973).
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Q@

Find the prices if the total value of business is $1000.

P

Prl . e : N pancns
If P= is the equilibrium price structure, then the equilibrium condition 18

L5}

Lp“_
EP = P. When we write this as (I — E)P = 0, the methods of Chapter 1 yield the
following family of solutions:

44t
39t
St
4Tt

L ]

where ¢ is a parameter. If we insist that p; + p; + ps + Ps = $1000, then t = 5.525
(to four figures). Hence

1243.09]
215.47
281.77
259.67

to five figures.
2 2

The Open Model

We now assume that there is a demand for products in the open sector of the econo-
my, which is the part of the economy other than the producing industries (for exam-
ple, consumers). Let d; denote the total value of the demand for product i in the open
sector. If p, and ¢, are as before, the value of the annual demand for product i by the
producing industries themselves is e p, + €aps + + + - + €,P,. S0 the total arnual
revenue p, of industry i breaks down as follows:

p, = (eap) + €ppit - +e,p) +d; foreichi = 1o 2y n
]
The column D = | : | is called the demand matrix, and this gives a matrix equation
d,
o P=EP+D
or
(I-EY =D ()

This is a system of linear equations for P. and we ask for a solution P with every
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entry nonnegative. Note that every entry of E is between 0 and 1, but the column
sums of E need not equal 1 as in the closed model.

Before proceeding, it is convenient to introduce a useful notation. If A = [q]
and B = [b,] are matrices of the same size, we write A > B if g; = b, for all i and j,
and we write A 2 B if a; 2 b;; for all i and j. Thus P = 0 means that every entry of P is
nonnegative. Note that A =2 0 and B 2 0 implies that AB = 0.

Now, given a demand matrix D =0, we look for a production matrix P = 0 satis-
fying equation (*). This certainly exists if / — E 1s invertible and (/ — £) ' =2 0. On
the other hand, the fact that D > (0 means any solution P to equation (*) satisfies P >
EP. Hence the following theorem is not too surprising.

THEOREM 2

Let E =2 0 be a square matrix. Then I — E is invertible and (/ — £) ' 20 1f and
only if there exists a column P > ( such that P > EP.

Heuristic Proof If (I — E)-' 20, the existence of P > 0 with EP > P is left as
Exercise 11. Conversely, suppose such a column P exists. Observe that

I—EXI +E+E + -+ ) = [— E

holds for all kK = 2. If we can show that every entry of E* approaches () as k becomes
large, then, intuitively, the infinite matrix sum

L=l g B

exists and (I — E)U = I. Since U =0, this does it. To show that E* approaches 0, it
suffices to show that EP << P for some number p with 0 < p < 1 (then £E*P < p*P
for all k = 1 by induction). The existence of . is left as Exercise 12. L 4

The condition P = EP in Theorem 2 has a simple economic interpretation. It P is a
production matrix, entry i of EP is the total value of all product used by industry 7 in
a year. Hence the condition P = EP means that, for each i, the value of product pro-
duced by industry i exceeds the value of the product it uses. In other words, each
industry runs at a profit.

EXAMPLE 3 ) )
6 2 3
IfE=|.1 4 .2| showthatl/ — Eisinvertibleand(/ — E) ' = (.
2 2

Solution UseP =[3 2 2] in Theorem 2.

L 4 & 4
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117, the entries of EP, are the row sums of E. Hence P, =

EP, holds if the row sums of E are all less than 1. This proves the first of the follow-

Let E > 0 be a square matrix. In each of the following cases. I — E is invertible

A

. ‘ -;ﬁl .'.‘e:-:;""‘

(a) Show that E is a stochastic matrix if and only if

WE = W.

(b) Use part (@) to deduce that, if E and F are both sto-

chastic matrices, then EF is also stochastic.

Find a 2 X 2 matrix E with entries between 0 and | such
that:

(@) 7 — E has no inverse.

+(b) / — E has an inverse but not all entries of (/ — E)!

are nonnegative.

If Fisa? X 2 matrix with entries between 0 and 1, show
that I — E is invertible and (/ = E) ' = 0 if and only if
b

tr E < | +det E. Here, if £ = [? y

} thentr £ = a +

dand det £ = ad — bc.

In each case show that [ — E is invertible and (/ — E)'
> ().

.

(6 5 .1 iz
(@ [.1 3 3 e(b) |2 5 2
2 .1 4 il il ol
[6 2 .1 8 1 I
() |3 4 2 d) |3 .1 2
2 8 .1 ¥ 3 2

Prove that (1) implies (2) in the Corollary to Theorem 2.
If(/ — E)' = 0,find P = 0suchthat EP = P.

Section 2.6 An Application to Input-Output Economic Models
It P;=[1 1
ing useful facts (the second is Exercise 10).
COROLLARY
and (I — E)-'=20:
1. All row sums of E are less than 1.
2. All column sums of E are less than 1.
PRI &MLy EXERCISES 2.6
1. Find the possible equilibrium price structures when the
input-output matrices are:
L 2 3 i
(@)| 6 2 3 +b)|.1 9 2
I:...'Jl .f] -4 B |:4 ] 3 B T‘l
3 1 4 3 0 o«
2 3 .1 0 2 T 0l
@3 3 2 3 @i, 2 8 2
.2 3 6 3] B S
#92. Three industries A, B, and C are such that all the output of 8
A is used by B, all the output of B is used by C, and all the ’
output of C is used by A. Find the possible equilibrium
price structures.
3. Find the possible equilibrium price structures for three
1 0 0
industries where the input-output matrix is |0 0 1}, 9.
1 0
Discuss why there are two parameters here.
¢4. Prove Theorem | for a 2 X 2 stochastic matrix E by first
writing it in the form E = ‘ b . where
|l —a 1 - b
0<a<land) b = L.
5. If £is an n X n stochastic matrix and C is ann X | 10
matrix. show that the sum of the entries of C equals the '
sum of the entries of the n X 1 matrix EC. 1.
6. Let W=11 1 1 I]. Let E and F denote n X n 192.

matrices with nonnegative entries.

If EP < P where E = 0 and P > 0, find a number p
such that EP < pPand 0 < p < 1.
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An Application to Markov Chains (Optional)

Many natural phenomena progress through various stages and can be in a variety of
states at each stage. For example, the weather in a given city progresses day by day
and, on any given day, may be sunny or rainy. Here the states are “sun” and “rain,”
and the weather progresses from one state to another in daily stages. Another exam-
ple might be a football team: The stages of its evolution are the games it plays, and
the possible states are “win,” “draw,” and *loss.”

The general setup is as follows: A “system” evolves through a series of “stages,”
and at any stage it can be in any one of a finite number of “states.” At any given
stage, the state to which it will go at the next stage depends on the past and present
history of the system—that is, on the sequence of states it has occupied to date. A
Markov chain is such an evolving system wherein the state to which it will go next
depends only on its present state and does not depend on the carlier history of the
system.'?

Even in the case of a Markov chain, the state the system will occupy at
any stage is determined only in terms of probabilities. In other words, chance plays
a role. For example, if a football team wins a particular game, we do not know
whether it will win, draw, or lose the next game. On the other hand, we may
know that the team tends to persist in winning streaks; for example, if 1t wins
one game it may win the next game % of the time, lose § of the time and draw
of the time. These fractions are called the probabilities of these various possibilities.
Similarly, if the team loses, it may lose the next game with probability 5 (that is,
half the time), win with probability 1. and draw with probability 5. The probabilities
of the various outcomes after a drawn game will also be known.

We shall treat probabilities informally here: The probability that a given
event will occur is the long-run proportion of the time that the event does indeed
occur. Hence all probabilities are numbers between O and 1. A probability of 0
means the event is impossible and never occurs; events with probability 1 are certain
to occur.

If a Markov chain is in a particular state, the probabilities that it goes to the vari-
ous states at the next stage of its evolution are called the transition probabilities for
the chain, and they are assumed to be known quantities. To motivate the general con-
ditions that follow, consider the following simple example. Here the system 1s a man,
the stages are his successive lunches, and the states are the two restaurants he
chooses.

A man always eats lunch at one of two restaurants, A and B. He never eats at A twice
in a row. However, if he eats at B, he is three times as likely to eat at B next time as
at A. Initially he is equally likely to eat at either restaurant.

1”The name honors Andrei Andreyevich Markov (1856—1922) who was a professor at the university in St
Petersburg, Russia.
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(a) What is the probability that he eats at A on the third day after the initial one?
(b) What proportion of his lunches does he eat at A?

Solution  The table of transition probabilities follows. The A column indicates that if he eats at
A on one day, he never eats there again on the next day and so 1s certain to go to B.

| ‘ Present lunch ‘

A | B
Next lunch A 0 &
‘ B ] ‘ 75

The B column shows that, if he eats at B on one day, he will eat there on the next day
2 of the time and switches to A only ; of the time.

The restaurant he visits on a given day is not determined. The most that we can
expect is to know the probability that he will visit A or B on that day. Let

(mh
)

he eats at A on day m, and s, is the probability that he eats at B. It is convenient to
let S, correspond to the initial day. Because he is equally likely to eat at A or B on that

Lm)
O
S, = [ } denote the state vector for day m. Here s, denotes the probability that

b
initial day, s, = .Sand 5, = 5,80 §; = [5}

0 .25
P =
T
denote the transition matrix. We claim that the relationship

Sm+i = PSm

Now let

holds for all m. This will be derived later: for now, we use 1t as follows to succes-
sively compute S, S5, S3, .. ..

) .25 '.5 125
S, = PS,

I

1 .95 875
< 0 25][.125] [.21875
@M g5 | 8] | 7812s

S, = PS,

[0 .25](.21875 1953125

1 75]|.78125] | .8046875

Hence the probability that his third lunch (after the initial one) is at A is approxi-
mately .195, whereas the probability that it is at B is .805.
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If we carry these calculations on, the next state vectors are (Lo five figures)

20117 19971 |
S, = | =
79883 .80029 |
[.20007 | 19998
Se = S; =
79993 | 80002 |
-y
Moreover, the higher values of S, get closer and closer to ﬂ} . Hence, in the long

run, he eats 20% of his lunches at A and 80% at B.
E X X

Example | incorporates most of the essential features of all Markov chains. The
general model is as follows: The system evolves through various stages and at each
stage can be in exactly one of n distinct states. It progresses through a sequence of
states as time goes on.

DEFINITION 3

If a Markov chain is in state j at a particular stage of its development, the
probability p, that it goes to state i at the next stage is called the transition
probability. The n X n matrix P = [p,] is called the transition matrix for the
Markov chain.

The situation is depicted graphically in Figure 2.1.

We make one important assumption about the transition matrix P = [p;]: It does
not depend on which stage the process is in. This assumption means that the transition
probabilities are independent of time — that is, they do not change as time goes on. It
is this assumption that distinguishes Markov chains in the literature of this subject.

Suppose the transition matrix of a three-state Markov chain 1s

Present state
1 2 3

P P2 Pis '3 1 4]l
P=1py Pn Pn|=|D 9 2  Next state

2
P31 Pa2 P3 2 0 2

b= [ e —

If, for example, the system is in state 2, column 2 lists the probabilities of where it
goes next. Thus the probability is p;, = .1 that it goes from state 2 to state 1, and the
probability is p,, = .9 that it goes from state 2 to state 2. The fact that p;, = 0 means
that it is impossible for it to go from state 2 to state 3 at the next stage.

*o o
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Consider the jth column of the transition matrix P.

[ =

P
P:;

| Prj _
If the system is in state j at some stage of its evolution, the transition probabilities p,;,
Pys - -« » Py Tepresent the fraction of the time that the system will move to state 1,
state 2. . . ., state n, respectively, at the next stage. We assume that 1t has to go to
some state at each transition, so the sum of these probabilities equals 1:

p;+ py+t---+p; =1 foreachj

Thus the columns of P all sum to 1 and the entries of P lie between 0 and 1. A matnx
with these properties is called a stochastic matrix.

As in Example 1, we introduce the following notation: Let s/ denote the proba-
bility that the system is in state i after m transitions. The n X | matrices

[~ =
_||."!.|
'j'i
{m)
S, = m=20,1 2
Lol
-‘T" —

are called the state vectors for the Markov chain. Note that the sum of the entries of
S must equal 1, because the system must be in some state after m transitions. The
matrix S, is called the initial state vector for the Markov chain and is given as part
of the data of the particular chain. For example, if the chain has only two states, then

an initial vector §, = [[}] means that it started in state 1. If it started in state 2, the

0 S
initial vector would be S, = [ ] If §, = [ w it is equally likely that the system
l S

started 1n state | or in state 2.

THEOREM 1 EENIILL e b

Let P be the transition matrix for an n-state Markov chain. If S, is the state
vector at stage m, then

Srul'! = PS.H'J

foreachm=0,1,2,....

Heuristic Proof Suppose that the Markov chain has been run N times, cach time
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starting with the same initial state vector. Recall that p; is the proportion of the time
the system goes from state j at some stage (o state i at the next stage, whereas s'™ 1s
the proportion of the time it is in state  at stage m. Hence

(m+1)
5! N

is (approximately) the number of times the system is in state i at stage m + 1. We are
going to calculate this number another way. The system got to state / at stage m + |
through some other state (say state j ) at stage m. The number of times it was in state J
at that stage is (approximately) s ™N, so the number of times it got to state i via state
jis p,-_,-{sj““W}. Summing over j gives the number of times the system is in state i (at
stage m + 1). This is the number we calculated before, so

simON = pus™N + posi™N + -« + pusimN

Cancelling N gives s™D = p,s™ + p,s;™ + -+ + p,s!™ for each i, and this can be
expressed as the matrix equation S, ,, = PS§,,. »

If the initial probability vector S, and the transition matrix P are given, Theorem
| gives S, S,, S5, . . ., one after the other, as follows:

3 =P8,
S?. = PSI
S; = P§,
Hence the state vector S, is completely determined for each m =0, 1,2, . . . by P

and S,,.

A wolf pack always hunts in one of three regions R, R,, and R,. Its hunting habits are
as follows:

1. [If it hunts in one region one day, it is as likely as not to hunt there again the
next day.

2. If it hunts in R, it never hunts in R, the next day.

3. If it hunts in R, or R., it is equally likely to hunt in each of the other regions
the next day.
If the pack hunts in R, on Monday, find the probability that it hunts there on Thursday.

F
o

L ol -

o el ol
| N N

o R




Section 2.7

Solution

An Application to Markov Chains

o

The stages of this process are the successive days; the states are the three regions.
The transition matrix P is determined as follows (see the table): The first habit asserts
that p,; = ps; = Pss = 5 Now column | displays what happens when the pack starts
in R,: It never goes to state 2, so p,; = 0 and, because the column must sum to I,
py = +. Column 2 describes what happens if it starts in Ry: p,, = + and p,, and p,,
are equal (by habit 3), so p,, = p;, = ¢ because the column sum must equal 1.
Column 3 is filled in a similar way.

l
Now let Monday be the initial stage. Then S, = |0 | because the pack hunts in
0

R, on that day. Then S,, S,, and S, describe Tuesday, Wednesday, and Thursday,
respectively, and we compute them using Theorem 1.

—.

1
J

—

¥ E; i

s =pPS,=|0| S,=pPS=|4| S=PS,=|%
21 4 13
| 2 ] | B L

Hence the probability that the pack hunts in Region R, on Thursday 1s 5.
244

Another phenomenon that was observed in Example | can be expressed in gen-
eral terms. The state vectors S,, S,. S,. . . . were calculated in that example and were

2
found to “approach™ § = [8} That means that the first component of §,, becomes

and remains very close to .2 as m becomes large, whereas the second component
approaches .8 as m increases. When this is the case, we say that S, converges Lo §.
For large m, then, there is very little error in taking S, = 3, sO the long-term
probability that the system is in state 1 is .2, whereas the probability that it 18 in
state 2 is .8. In Example 1, enough state vectors were computed for the limiting
vector S to be apparent. However, there is a better way to do this that works in
most cases.

Suppose P is the transition matrix of a Markov chain, and assume that the state
vectors S, converge to a limiting vector S. Then S, is very close to S for sufficiently
large m, so S,,,, is also very close to S. Thus the equation §,,.., = PS,, from Theorem ]
is closely approximated by

S =PS

so it is not surprising that S should be a solution to this matrix equation. Moreover. it
is easily solved because it can be written as a system of linear equations

(= P)5 ==

with the entries of § as variables.
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0 .25

| ?5]1 the general solution to (/ — P)S = 0 1s

In Example |, where P = ]:

)

t
LJ, where f is a parameter. But if we insist that the entries of § sum to |

2
(as must be true of all state vectors), we find 1 = .2andso § = [ 8] as before.

All this is predicated on the existence of a limiting vector for the sequence of
state vectors of the Markov chain, and such a vector may not always exist. However,
it does exist in one commonly occurring situation. A stochastic matrix P 1s called

0 25
regular if some power P of P has every entry positive. The matrix P = [1 - 5] of

Example 1 is regular (in this case, each entry of P? is positive), and the general theo-
rem is as follows:

THEOREM 2
Let P be the transition matrix of a Markov chain and assume that P 1s regular.
Then there is a unique column matrix S satisfying the following conditions.

1. P§S =8.

2. The entries of S are positive and sum to 1.

Moreover, condition 1 can be written as
d—=PiS=8

and so gives a homogeneous system of linear equations for §. Finally, the
sequence of state vectors S, S,, 5,, . . . converges to S in the sense that if m 1s
large enough, each entry of S, is closely approximated by the corresponding
entry of §.

This theorem will not be proved here.!”

If P is the regular transition matrix of a Markov chain, the column § satisfying
conditions 1 and 2 of Theorem 2 is called the steady-state vector for the Markov
chain. The entries of S are the long-term probabilities that the chain will be in each of
the various states.

"The interested reader can find an elementary proof in J. Kemeny, H. Mirkil, J. Snell, and G. Thompson,
Finite Mathematical Structures (Englewood Cliffs, N.1.: Prentice-Hall, 1958).
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EXAMPLE 4

Solution

¢

A man eats one of three soups — beef, chicken, and vegetable — each day. He never
eats the same soup two days in a row. If he eats beef soup on a certain day, he 1S
equally likely to eat each of the others the next day; if he does not eat beef soup, he is
twice as likely to eat it the next day as the alternative.

An Application to Markov Chains

(a) If he has beef soup one day, what is the probability that he has it again two
days later?

(b)  What are the long-run probabilities that he eats each of the three soups?

B G L4
B | 0 | % %
C + 0 +
14 L 1 0

The states here are B, C, and V, the three soups. The transition matrix P is given in
the table. (Recall that for each state, the corresponding column lists the probabilities
for the next state.) If he has beef soup initially, then the initial state vector is

t
S, =0
0

Then two days later the state vector is S,. If P is the transition matrix, then

so he eats beef soup two days later with probability <. This answers (a) and also

shows that he eats chicken and vegetable soup each with probability +.
To find the long-run probabilities, we must find the steady-statc vector S.

Theorem 2 applies because P is regular (P* has positive entries), so S satisties
PS = §. Thatis, (I — P)S = 0 where

6 -4 —4
I-P==-|-3 6 -2
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41
3t
3t

The solution 1s § =

, where ¢ is a parameter, and we use S = |3

i

because the

3

entries of S must sum to 1. Hence, in the long run, he eats beef soup 40% of the time
and eats chicken soup and vegetable soup each 30% of the time.

EXERCISES 2.7

1. Which of the following SIDChdSliC matrices is regular?

2.

3.

*(d)

(@) [0 o
1 0
0 1

+(b) 0 %
3

1
2
L |
0 0 4

IR

In each case find the steady-state vector and, assuming
that it starts in state 1, find the probability that it is in state
2 after 3 transitions.

1

.

it - B
0 .2
6 .
4 7

4 .1 .5
2 6 2
4 3 3

(c) |

b rif—

0
1
0

rf— S raf—

1
3
4
£
.

o(f)

(e) [.8
B
I

— O

3
3
6

o —

A fox hunts in three territories A, B, and C. He never

hunts in the same territory on two successive days. If he

hunts in A, then he hunts in C the next day. If he hunts in

B or C. he is twice as likely to hunt in A the next day as In

the other territory.

(a) What proportion of his time does he spend in A, in B,
and in C?

(b) If he hunts in A on Monday (C on Monday), what is
the probability that he will hunt in B on Thursday?

Assume that there are three classes — upper, middle, and

lower — and that social mobility behaves as follows:

|. Of the children of upper-class parents, 70% remain

upper-class, whereas 10% become middle-class and 20%

become lower-class.

2. Of the children of middle-class parents, 80% remain

middle-class, whereas the others are evenly split between

the upper class and the lower class.

3. For the children of lower-class parents, 60% remain

lower-class, whereas 30% become middle-class and 10%

upper-class.

(a) Find the probability that the grandchild of lower-class
parents becomes upper-class.

¢(b) Find the long-term breakdown of society into classes.

3.

+6.

L2 44

The Prime Minister says she will call an election. This
gossip is passed from person to person with a probability
p #0 that the information is passed incorrectly at any
stage. Assume that when a person hears the gossip he or
she passes it to one person who does not know. Find the
long-term probability that a person will hear that there is
going to be an election.

John makes it to work on time one Monday out of four. On
other work days his behavior is as follows: If he is late one
day, he is twice as likely to come to work on time the next
day as to be late. If he is on time one day, he is as likely to
be late as not the next day. Find the probability of his
being late and that of his being on time Wednesdays.

Suppose you have 1¢ and match coins with a friend. At
each match you either win or lose 1¢ with equal probabili-
ty. If you go broke or ever get 4¢, you quit. Assume your
friend never quits. If the states are 0, 1, 2, 3, and 4 repre-
senting your wealth, show that the corresponding transi-
tion matrix P is not regular. Find the probability that you
will go broke after 3 matches.

A mouse is put into a maze of compartments, as in the
diagram. Assume that he always leaves any compartment
he enters and that he is equally likely to take any tunnel
entry.

o(a) If he starts in compartment 1, find the probability that

he is in compartment 4 after 3 moves.

+(b) Find the compartment in which he spends most of his

time if he is left for a long time.
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9. If a stochastic matrix has a 1 on its main diagonal, show
that it cannot be regular, Assume itisnot 1 > 1.

10. If S, is the stage-m state vector for a Markov chain, show
that S ., = P*S, holds forallm=1 and k = | (where P is
the transition matrix).

11. A stochastic matrix is doubly stochastic if all the row
sums also equal 1. Find the steady-state vector for a dou-
bly stochastic matrix.

+12. Consider the 2 X 2 stochastic matrix P = [] ;p | _q ‘J,
where 0 <p <land0D <g < 1.

(a) Show that [ﬂ is the steady-state vector for P.

pTq

SR A TR R T T LA

1. Solve for the matrix X if: (@) PXQ = R; (b) XP = §;

where
1 0
1 1 -1
P:Z—],Qz[ ],
3
0 3 2 0
-1 1 -4
R:—dﬂ—ﬁ,S:[;ﬂ
6 6 =6

2. Consider p(X) = X* — 5X?+ 11X — 41
1 3
(a) Ifp(A) = [_, ﬂ} compute p(A7).

¢(b) If p(U/) = 0 where U is n X n, find U in terms
of U.

3. Show that, if a (possibly nonhomogeneous) system of

equations is consistent and has more variables than equa-

tions, then it must have infinitely many solutions. [Hint:
Use Theorem 2§2.2 and Theorem 1§1.3.]

4. Assume that a system AX = B of linear equations has at
least two distinct solutions Y and Z.
(a) Show that X, = ¥ + Y — Z) is a solution for
every k.
¢(b) Show that X, = X, implies k = m. [Hint: See
Example 7§2.1.]
(¢) Deduce that AX = B has infinitely many solutions.
' 5. (a) Let A be a 3 X 3 matrix with all entries on and

below the main diagonal zero. Show that A* = 0.
(b) Generalize to the n X n case and prove your answer.

Supplementary Exercises for Chapter 2

¢

=B
p+glP P
by first verifying inductively that
™
oo ] [q f?}ril pP—q) [F ff}
p+glP P p+q |
form =1,2,.... (It can be shown that the sequence
of powers P, P2, P, . . . of any regular transition
matrix converges to the matnx each of whose
columns equals the steady-state vector for P.)

(b) Show that P converges to the matrix

SUPPLEMENTARY EXERCISES FOR CHAPTER 2

6. Let/,, denote the n X n matrix with (p, g)-entry equal to |
and all other entries 0. Show that:
(@) I, =1, +L,+---+1,
I;J.-r.

® 1o ={s
(c) IfA = {aj-j] isn X n,then A :2 Z} Hl;r'"e'j'
j=

=1
o(d) IfA = [a,],then ] Al, = a,l, forallp, g, r and s.
7. A matnx of the form af,, where a is a number, 1s called an
n X nscalar matrix.
(@) Show that each n X n scalar matrix commutes
with every n X n matrx.
¢(b) Show that A is a scalar matrix if 11 commutes

with every n X n matrix. [Hint: See part (d) of
Exercise 6. ]

B. Let M = [g g], where A, B, C, and D are all n x n

and each commutes with all the others. If M® = 0, show
that (A + D) = 0. [Hint: First show that A* = —B(C =
DPandthat BA+ D) = 0 = C(A+ D).]

9. If Ais 2 X 2, show that A-' = A" if and only if A =

cos 8 smn# cos 0 sin #
[-sin # cos @ sin @ —cos H]
for some @, [Hint: fa* + B = 1, thena = cos 0, b =
sin # for some #, Use cos (# — @) = cos Bcos ¢ +sin ¢
sin . |

] for some # or A = [
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Determinants

With each square matrix we can associate a number called the determinant of the
matrix. The determinant of a matrix tells us whether or not the matnix 1s invertible: in
fact, determinants can be used to give a formula for the inverse of a matnx.
Determinants also give us a method (called Cramer’s rule) for solving linear equa-
tions. Another important application of determinants to matrix theory will be found in
Chapter 6.

The theory of determinants is older than the theory of matrices (Cramer’s rule
was published in 1750), and determinants were extensively studied in the eighteenth
and nineteenth centuries. Although they are somewhat less important today, they still
play a role in the theory and applications of matnces.

Section 3.1
The Laplace Expansion

It is a well-known fact that division by a number a 1s allowed only 1f a # (). In other
words a ' exists if and only if a # 0. Let A denote a square matrix. The determinant
of A is a number, denoted det A or | A |, that can be computed from the entries of A and
which enables us to tell whether A is invertible. In fact, we show later that A 1s invert-
ible if and only if det A # 0. In this section det A will be defined, and some methods
for computing it will be given.

There i1s no difficulty if A1s I X 1.

DEFINITION O3
Given a 1 X 1 matrix [a], define det[a] = a.

Then [a] has an inverse if and only if det[a] # 0. In fact, the inverse 1s [ 1/al].
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EXAMPLE 2

Solution

Determinants

DEFINITION AN R AN .
a b b
IfA = . definedet A = = ad - bc.
c d c d
> 3 - 10=2 d =t % i =3
2 4| B = 5 4l T =

*oe

We now show that a 2 X 2 matrix A has an inverse if and only if det A # 0. Write

a b d
A = and consider the matrix B =
c d -

computation gives

-b
ﬂj’j called the adjoint of A. Direct

AB = (detA)] = BA

to obtain the formula

If det A # 0, we can multiply through by
det A

A
det A
On the other hand, if A exists, we claim that det A # 0. For if det A = 0, then
AB = (det A)l = 0. This implies that B = A 'AB = A~'0 = 0, and hence thata = b
= ¢ =d = 0. Butthen A = 0, contrary to the assumption that A is invertible.

In each case, calculate the determinant of A and find the inverse (if it exists) from the
formula.

5 4
(d}delﬁ=‘2 3l_5 3—4-2=?,50A'exists.ThﬂudjﬂinlquisB:
3 -4 A l B 1{ 3 -4
. SO = i
-2 5 det A 71-2 5
2 3
(b) In this case, det A = 6 9 =2-9— 3.6 = (. Hence A has no inverse.

*o¢
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EXAMPLE 3

Solution

The Laplace Expansion

@

Here is a procedure for defining the determinant of any n X n matrix. Once we
know how to define determinants of 2 X 2 matrices, we give a rule by which the
determinant of any 3 X 3 matrix can be defined (in terms of certain determinants of
2 X 2 matrices). Next we do 4 X 4 matrices in terms of 3 X 3 matrices, and so on.
At each stage we give a rule for defining the determinant of a square matrix in terms
of determinants of square matrices one size smaller.

Before stating this rule, we must introduce minors and cofactors of a square
matrix. Assume that it has been specified how to compute determinants of (n — 1) X
(n — 1) matrices.

DEFINITION BNTHLET 7 e PR

The (i, j)-minor of an n X n matrix A, denoted M;(A), is defined to be the
determinant of the (n — 1) X (rn — 1) matrix formed from A by deleting row
i and column j. Next the number C,(A) = (—1)*M(A) is called the (i, j)-
cofactor of A and (—1)*/ is called the sign of the (i, j)-position.

Clearly C;(A) equals either M (A) or —My(A), depending on the choice of i and j. The
following sign diagram is a useful device for remembering the sign of a position.

+1 -1 +1 -1 +I
-1 +1 -1 +1 -
+1 -1 +1 -1 +]
-1 +1 -1 +1 -l

L. -

Note that the signs alternate along each row and column and that the sign of position
(1, 1) is +1. We have already decided how to compute the determinant of a 2 X 2
matrix, so we can find the minors and cofactors for any 3 X 3 matrix.

Find the minors and cofactors of positions (1, 2), (3, 1), and (2, 3) in the following
matrix.

-1
A=|5 2 7
8

3 7

g8 4

and column 2 are deleted. The sign of position (1, 2) is (—1)' ™ = —1 (this is also
the (1, 2)-entry of the sign diagram), so the (1, 2)-minor and the (1, 2)-cofactor are

The (1, 2)-minor is the determinant of the matrix |: } that remains when row |
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5 7
= Fodf =Pl =36
8 4

C,,(A) = (=)' M,(A) = (=1)(-36) = 36

M, (A) =|

Turning to position (3, 1), we find

6
l:(—n-?—ﬁ-zz—lu
2 7

MM{A} - ‘

C,(A) = (=DM (A) = (+1)(=19) = -19
Finally, the (2, 3)-minor and the (2, 3)-cofactor are

3 =
8 9

C,y(A) = (1)*""My(A) = (1) - 53 = =35

M:?.(A} -

}:3-9—[—”-8:35

Clearly other minors and cofactors can be found—there are nine in all, one for each
position in the matrix.

L2 2

With the notion of minor and cofactor in hand, we can formulate the rule for
finding the determinant of an n X n matrix A. Recall that the idea is to do this induc-
tively—that is, to find a way to compute det A in terms of determinants of certain
(n — 1) X (n — 1) matrices.

i o ury e
DEFINITION B, AN T R

Given n > 2, assume that det M has been defined for any (n — 1) X (n — 1)
matrix M. If A is n X n, define

dEtA — ﬂ“C“'(A} + H:|C1|{A} + N B ﬂ,”CI”{A}

In other words, the definition says that det A can be found by multiplying each entry
a, in the first column by the corresponding cofactor C;,(A) and adding the results.
This is called the Laplace expansion' of det A along the first column. The astonish-
ing thing is that det A can be computed by taking the Laplace expansion along any
column: Simply multiply the entries of the column by the corresponding cofactors
and add the results. Even more remarkably, det A can also be found from the Laplace
expansion along any row.

"This expansion was first used by Pierre Simon de Laplace { 1749 ~1827). He is most remembered for his
work on celestial mechanics and probability theory.
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Laplace Expansion

The determinant of an n X n matrix A can be computed by using the Laplace
expansion along any row or column of A, More precisely, if A = [a,] so that a,
is the (i, j)-entry of A, then the expansion along row i 1s

dEtA — H”C”(A} + a,izc.':g(lq} + H.‘HCH{A} + -+ ur‘.qu{A]

The expansion along column j is given by

detA =q,,C,,(A) + a,,C,,(A) + a,,C,;(A) + --- + a,C,(A)

The proof will be given in Section 3.4.

EXAMPLE 4

0 ~3 B

3
Compute the determinant of A = | |
9 —6

Solution  The Laplace expansion along the first row is as follows:

det A = 3C,,(A) + 4C,,(A) + 5C,4(A)
= 3M,,(A) — 4M,(A) + SM,,(A)

7 2 1 2 17
= 3 -4 + 3

s ol l+3ls s
= 3(-58) — 4(—24) + 3(-533)

= =353

Now we compute det A by expanding along the first column.

det A = 3C,,(A) + 1C,,(A) + 9C,,(A)
= 3M, (A) - M, (A) + 9IM,,(A)
¢ ol[s <+l 2|

=3 - + 9

8§ -6 8 -6 7 2
= 3(—58) — (—64) + 9(-27)
=453

The reader is invited to verify that det A can be computed by expanding along the
second or third row or along the second or third column.

*o o
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Solution

Determinants

The fact that the Laplace expansion along any row or column of a matnx A
always gives the same result (the determinant of A) is remarkable, to say the least.
The choice of a particular row or column can simplify the calculation.

300 0O

s 12 0
Compute det A where A = > 6 0 -1l
-6 3 1 0

The first choice we must make is which row or column to use in the Laplace expan-
sion. The expansion involves multiplying entries by cofactors, so the work is mini-
mized when the row or column contains as many zeros as possible. Row 1 1s a best
choice in this matrix (column 4 would do as well), and the expansion is

det A = 3C,,(A) + 0C(A) + 0C;(A) + 0C,,(A)
=3M,(A) +0+0+0

1 2 0
=36 0 -l
3 1%

This is the first stage of the calculation, and we have succeeded in expressing the
determinant of (the 4 X 4 matrix) A in terms of the determinant of a 3 X 3 matrix.
The next stage involves this 3 X 3 matrix. Again, we can use any row or column for
the Laplace expansion. The third column is preferred (with two zeros), so

ol Ho 2

1 2
6 0

+ 0
I 31

=3[0 + 1(=5) + 0]
= —15

This completes the calculation.

6
detA = 3({}
3

L2 2

Computing the determinant of matrix A can be tedious, even using the Laplace
expansion. For example, if A is a 4 X 4 matrix, the Laplace expansion along
any row or column involves calculating four minors, each of which is itself the deter-
minant of a 3 X 3 matrix. And if A is 5 X 5, the expansion involves five determi-
nants of 4 X 4 matrices! There is a clear need for some techniques to cut down the
work.

The motivation for the method (see Example 5) is the observation that calculat-
ing a determinant is simplified a great deal when a row or column consists mostly of
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zeros. (In fact, when a row or column consists entirely of zeros, the determinant is
zero — simply expand along that row or column.)

Recall next that one method of creating zeros in a matrix is to apply elementary
row operations to it. Hence a natural question to ask is what effect such a row opera-
tion has on the determinant of the matrix. It turns out that the effect is easy to deter-
mine and that elementary column operations can be used in the same way. These
observations lead to a technique for evaluating determinants that greatly reduces the
labor involved. The necessary information is given in Theorem 2.

S

THEOREM 2 ANy

Let A denote an n X n matrix.

1. If A has a row or column of zeros, det A = 0.

2. If two distinct rows (or columns) of A are interchanged, the determinant of
the resulting matrix 1s —det A.

3. If a row (or column) of A is multiplied by a constant u, the determinant of
the resulting matrix 1s u(det A).

4. If two distinct rows (or columns) of A are identical, detA = 0.

5. If a multiple of one row of A is added to a different row (or if a multiple of
a column is added to a different column), the determinant of the resulting
matrix 18 det A.

Proof We prove properties 2, 4, and 5 and leave the rest as exercises.

Property 2. If A is n X n, this follows by induction on n. If n = 2, the verification 1s
left to the reader. If n = 2 and two rows are interchanged, let B denote the resulting
matrix. Expand det A and det B along a row other than the two that were inter-
changed. The entries in this row are the same for both A and B, but the cofactors in B
are the negatives of those in A (by induction) because the corresponding (n — 1) X
(n — 1) matrices have two rows interchanged. Hence det B = —det A, as required. A
similar argument works if two columns are interchanged.

Property 4. If two rows of A are equal, let B be the matrix obtained by interchanging

them. Then B = A, so det B = det A. But det B = — det A by property 2, so detA =
det B = 0. Again, the same argument works for columns.

Property 5. Let B be obtained from A = [a,;] by adding « times row p L0 TOW g. Then
row g of Bis (a, + ua,, a, + uay, ....a, + ua,). The cofactors of these ele-
ments in B are the same as in A (they do not involve row g); in symbols, C (B) =
C (A) for each j. Hence, expanding B along row g gives
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det B = 2 (aw. + uam}Cw.(B)
=1

=Y a,C,(A) +u) a,C (A
f= =1
= detA + udetC

where C is the matrix obtained from A by replacing row g by row p (and both expan-
sions are along row g). Because rows p and g of C are equal, det C = 0 by property 4.
Hence det B = det A, as required. As before, a similar proof holds for columns. %

To illustrate Theorem 2, consider the following matrices.

3 =l 4 (because the last row consists of
2 35 1|{=0 Zeros)
0 0 0
3 -1 5 -1 3 .
(because two columns are inter-
2 8 T|=-7 812 changed)
1 2 -1 —1 1
1 2 8 1 2 (because the second row of the
0 9/=3/1 0 3 matrix on the left is 3 times the sec-
1 2 —1 1 2 - ond row of the matrix on the right)
2 1 2
4 0 41=0 (because two columns are identical)
I 3 ]
2 5 2 0 9 20 (because twice the second row of
-1 2 9|=|-1 2 9 the matrix on the left was added to
1 1 3 3 1 | the first row)

The following four examples illustrate how Theorem 2 is used to evaluate
determinants.

EXAMPLE 6

Evaluate det A whenA =1 0 —1]|

Solution  The matrix does have zero entries, so expansion along (say) the second row would
involve somewhat less work. However, a column operation can be used to get a zero
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%

in position (2, 3)—namely, add column I to column 3. Because this does not change
the value of the determinant, we obtain

det A =

Il

where we expanded the second 3 X 3 matrix along row 2.

*o

EXAMPLE 7

If det

Solution

det A = 3(-1) det

X

p

= 6, evaluate det A where A =

First take common factors out of rows 2 and 3.

a + x

3x

b+ v
y
q

a+x b+y c+2

3y
—q

¢+ 2
Z

r

3z

—r

Now subtract the second row from the first and interchange the last two rows.

det A = =3 det

(a b
X V¥
P 4

c

7 | = Jdet

r

o

P

X

D

C

r|=3-

£

6 =18

L2 & 4

The determinant of a matrix is a sum of products of its entries. In particular, if
these entries are polynomials in x, then the determinant itself is a polynomial in x. It
is often of interest to determine which values of x make the determinant zero, so 1t 1s
very useful if the determinant is given in factored form. Theorem 2 can help.

EXAMPLE 8

Find the values of x for whichdet A = 0, where A =

Solution
1 x
detA = |

X
X X

X
X
1

1
0
0

X

]

s

X
.
X=X

¥
| — x°

1 x
x |

A X

To evaluate det A, subtract x times row | from rows 2 and 3.

| — x~

2
X — X

]

X
-r’t L]
]

2
X—X

.
| — x~
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At this stage we could simply evaluate the determinant (the result is 2x’ — 3x° + 1).
Then we would have to factor this polynomial to find the values of x that make 1t
zero. However, this factorization can be obtained directly by first factoring each entry
in the determinant and taking a common factor of (1 — x) from each row.

(1= x)1+ x) x(1 — x)
x(1 — x) (1 —x)(1 + x)

I + x x
X 1l + x

=({1=-xCx+1

2

detA = = (]l — x)

Hencedet A = 0Omeans (1 —x)’(2x + 1) = 0,s0x = lorx = — P

raf—

EXAMPLE 9

If a,, a,, and a, are given, show that

1 ] 1

dett @, a, a;|=1(a;—a,)a,—ala, —a,)

2
2 2 2
a,” a, a,

' s el

Solution  Begin by subtracting the second column from the third, and then subtract the first
from the second.

] | | 1 0 ]
dett @, a, a,|=4detla a —a a,—a,
2 3 2 2 2 2 2 2
Lﬂl ﬂz Hj I H] ﬂlj - ﬂi ﬂ} - HE i
o= I
% | 3 2
= det| , > ) 2
a4, —dq f; — ty

I ]
dett a, a, a,|=(a;—a,)a, - a,)dﬂt{ j|
2

s e s R T s

= (a, — a,)a, — q,)a, — aq,)

L & & 2

The matrix in Example 9 is called a Vandermonde matrix, and the formula for its
determinant can be generalized to the n X n case (see Theorem 2§3.3).

If Ais an n X n matrix, forming ¥A means multiplying every row of A by u.
Applying property 3 of Theorem 2 to each row gives the following useful result.

THEOREM 3
If Ais ann X n matrix, then det(uA) = u"det A for any number u.
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EXAMPLE 10

-

Solution

The Laplace Expansion

%

The next example displays a type of matrix whose determinant is easy (O
compute.

Evaluate det Aif A =

-
-
ra
el

b 0 0
Expand along row 1 to get detA = a|w ¢ 0| Now expand this along the top row
y z d
c 0 ] _r _
to getdetA = ab = abcd, the product of the main diagonal entries.
Z

L4 4 4

A square matrix is called a lower triangular matrix if all entries above the main
diagonal are zero (as in Example 10). Similarly, an upper triangular matrix is one
for which all entries below the main diagonal are zero. A triangular matrix is
one that is either upper or lower triangular. Theorem 4 gives an easy rule for calculat-
ing the determinant of any triangular matrix. The proof is like the solution to
Example 10.

THEOREM 4 B, AN ] e

If A is a triangular matrix, then det A is the product of the entries on the
main diagonal.

This theorem is useful in computer calculations because it is a routine matter to
carry a matrix to triangular form using row operations.

Block matrices such as those in the next theorem arise frequently in practice, and
the theorem gives an easy method of computing their determinants.

THEOREM 5 BPNCHST s £ IR

A X A 0
Consider matrices [D Bil and L{ B]in block form. where A and B are

square matrices. Then

A X A 0
det = det Adet B and det = det A det B
0 B Y B




118 Chapter 3
EXAMPLE 11
S AT R IR LA

1. Compute the determinants of the following matrices.

(a) [2 —I} +(b)
3 2

(c) [ aﬂ +(d)
lab b*

() [cos® —sin@ of) [
sin@  cos Hi‘

Determinants

A X

0 B

= 1 it is easily verified. In general, compute det T using the Laplace expansion
along the first column.

det T = a M(T) — ayM,(T) + - - - £ a;M(T) (*)

where a,,, ., . . . ,a;, denote the entries in the first column of A. The minor M, (T) 1s
the determinant of the submatrix S. (T) of T obtained by deleting row i and column |

Proof Write T = [ ] and proceed by induction on k where A 1s k X k. If

S.(A) X,
of T. Hence S{(T) = 0 i in block form, so
S(A) X,
M. (T) = det{ 5 B} = det [S,(A)] - det B = M, (A) - det B

by induction. Hence det B is a common factor in equation (*), and so
det T = (a, M, ,(A) — a,;M,,(A) + - -+ + g, M, ,(A)) det B
= (det A) det B

The proof of the other case is similar. 4
(3 1|0 0 O
2 110 0 0 4 (3 -1 2]
det|0 1|3 -1l 2:{:1&1[2 ]]detﬁ B O0|l=1:5= X%
2 =15 00 10 1
3 L O A
L2 L 2

Theorem 5 extends to block upper (lower) triangular matrices, where each
“diagonal block™ is a square matrix and all blocks below (above) the main diagonal are
zero. Then the determinant is the product of the determinants of the diagonal blocks.

EXERCISES 3.1
(9) [1 2 3] o) [0 « 0
6 9 4 5 6 b ¢ d
8§ 12 7 & 9 0 e 0
(a + 1 a i [1 b ¢ ¢() [0 a b
a o ]j| b ¢ |1 a 0 ¢
-2 {‘] _3 _C 1 b_ h i ”
1 2 5
0 3 ()
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(k) [1 0 -1 0] eI 1 0O 3 1] 2a+p 2b+g 2c+r a b ¢
0 3 0 2 2 2 60 o) det|2p+x 2g+y 2r+z|=9detyp g r
1 0 2 1 -1 0 -3 1 2x +a 2v+ b 2z + ¢ X v z
0 5 0 7 4 1 12 0 _ _ _ .
() [3 1 -5 ‘2_ * (n) :4 { 3 ’1 - 9. Compute the determinants of each matrix, using Theorem 3.
o < o s i 5 5 @f -1 20 2] ¢«®T1 2 0 3 0]
4 -
130 1 0 122 1130 0 00 21 1
L 2 s B & =l g 0 00 3 —I 00 -1 0 2
@ [1 -1 5 2] ¢ [0 0 0 a] 0o 00 1 1 00 30 1
3 12 4 0 0
1 38 0 0 ¢ z i} 10. IfdetA = 2. det B = —1,and det C = 3, find:
L 12— ¢ ¥ (a]dtﬁ;{? #{b]dtigg
- - i g e e
9. Show that det A = 0 if A has a row or column consisting 0 0 C Y 7 C
of zeros. A X Y] Fa W og]
3, Show that the sign of the position in the last row and the (c) detjf 0 B 0O ¢ (d) det| 0 B 0
last column is always +1. 0 Z C] ¥ Z €]
@ - = identi atri 1
4. Show that det/ = I for any identity matrix /. 11. (a) Find det A if A is 3 X 3 and det (24) = 6.
5. Evaluate each determinant by reducing it to upper triangu- (b) Under what conditions is det (—A) = det A?
lar form.
@ [1 -1 2 e®) -1 3 1 12. Evaluate by first adding all other rows to the first row.
3011 2 53 x-1 2 3
-2 -1 3 | =2 1 {ﬂ] det 2 -3 x -2
@ [-1 -1 10] e [23 1 1] | 2 & 2
* 1 1 3 02 -1 3 x-1 -3 |
0 1 I 9 0 5 11 ¢ (b) det 2 -1 x — |
13 -1 2] d 1 2 5 | 3 x+2 2]
[ a b ¢ i 3 -l Id
6. Evaluate by inspection: (@) detla + 1 b +1 ¢ +1 13. (a) Findbifdet] 2 6 y|=ax+ by +cz.
:lfa'. -1 b‘ -1 ¢ -1 .__5 4 :."..._.
a b« (2 x -
¢ (b) detja ; b 2; ¢ ; b ¢ (b) Findcifdetf 1 y 3|=ax+by+cL
" -3 z 4
a b c ) g
7. Ifdetl p g r|= -1 compute: 14. Find the real numbers x° and y such that det A = 0 if:
Xy z 0 @ ¥ | & =
P o B (a) A =]y 0 x eb) A=|—1x -2 x
= w8 —x —-x -3
(a) det|3p + a 3g +b 3r+c LT ) .
2p 2g 2F 1 x x x rx vy 0 0]
= 2 3 B
e(b) det|2p + x 29 +y 2r+z * x> b x oy
Ix Iy 3z | & | & |y 0 0 x|
8. Show that: T T
p+x g+y r+212 a b c 15 h l[l,r.rz_q:
(@) dett@ + x b+y c+z|=2detlp g r | Bhowmidely . & s i
a+p btg c+r ¥ ¥ I ] % £ 89
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1 % 22 %% 21. By expanding along the first column, show that:
4 2 i
16. a 1 X X7\ _ - a0 - bx)1 - ex). 1 1 0 0 0 0
Show that det 5 % % & (1—ax) (1 — cx) 01 1 0 0 0
- 4 A VO | +
g L R
x -1 0 0 5 09 U vo- % 0
17. showthardel® * T % - g pr 4?4 LB 00 0w & L
0O 0 x -l : .
if the matrixisn X n, n = 2.
a b ¢ x+d
o ) = ¢ 22. Form matrix B from a matrix A by writing the columns of
(This matrix is called the companion matrix of the poly- 4:Inpeverse-order. Fapreas det B n terma-of el
nomial @ + bx + cx* + dx + x°) 23. Prove property 3 of Theorem 2 by expanding along the
= b . row (or column) in question.
ara TR EER 24. Show that the line through two distinct points (x,, v,) and
¢18. Showthatdetlb+x c+x a+x|= r v 1
EE dhak BEX (xs, ¥5) in the plane has equation det| x, y, 1{ = 0
(a+ b+ c+ 3x)lab + ac + bc‘}—{az + b* +r:1}]. Xy Vo
9 HCLGL s C, denote the columns of a matrix A, write 25. Let A be an n X n matrix. Given a polynomial plx) =

A = [C, C,5:--C,]nblock form. Show that:

+ det[C] C5 -+ - C]

ag + ax + -+ ax, we write p(A) = ay + aA +
+« - + a,A". For example, if p(x) = 2-3x + 5x*, then
p(A) = 21 —3A + 5A%. The characteristic polynomial of
A is defined to be ¢,(x) = det [x/ — A] and the Cayley-
Hamilton theorem asserts that ¢, (4) = 0 for any matrix A.

20. Shuw:{hat )
0 0 0 q (a) Verify the theorem for (i) A = F 2} and
0 §) a * 1 -1
dﬂ[ ' 3 ' : = {_”kﬂlﬂ’_’ R ﬂ” ” ]- _] ]
0 a_ i d (ii)A =0 1 0}
HH * . * * B 2 2
wh-.:re either n = 2k or n = 2k + 1, and =%-entries are (b) Piove:thé thaateiifor A = [u b].
arbitrary. ¢ i
"I ARSI Section 3.2 Determinants and Matrix Inverses

In this section, several theorems about determinants are derived. One consequence of
these theorems is that a square matrix A is invertible if and only if det A # 0.
Moreover, determinants are used to give a formula for A~ that, in turn, yields a for-
mula (called Cramer’s rule) for the solution of any system of linear equations with an
invertible coefficient matrix.

We begin with a remarkable theorem about the determinant of a product of
matrices. The proof is given at the end of this section.

THEOREM 1
Product Theorem

If A and B are n X n matrices, then det(AB) = det A det B.
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EXAMPLE 1

Determinants and Matrix Inverses

@

The complexity of matrix multiplication makes the product theorem quite unex-
pected. (The reader should verify it for arbitrary 2 X 2 matrices A and B.)

a b c d ac — bd  ad + bc
If A= and B = . then AB = .
-b a —-d ¢ —(ad + bc) ac — bd
Hence det A det B = det(AB) gives the identity
@ + B + &) = (ac—bd)” + (ad + be)’

This identity is important for complex numbers.
o ¢

Theorem 1 extends easily to det(ABC) = det A det B det C. In fact, induction
gives

dﬂt("‘q' AE D AE_]A;:) k= dﬂl.ﬂ] dﬁl:’qz == et .rd.lk I dEt AL‘

for any square matrices A,, . . . , A, of the same size. In particular, if each A, = A, we
obtain

det(A¥) = (detA)* forany k = |

We can now give the invertibility condition.

THEOREM 2 & _
An n X n matrix A is invertible if and only if det A # 0. When this is the case,
l
det(A™') = —.
“o det A

Proof If A is invertible, then AA™' = I; so, using Theorem 1,
| =det] = det(AA™") = det A detA™

Hence det A =0 and det A" = ... :
det A
Conversely, if det A # 0, we show that A can be carried to / by elementary row
operations (and invoke Theorem 4§2.4). Certainly, A can be carried to 1ts reduced
row-echelon form R, so R = E, - - - E;E\A where the E, are elementary matrices
(Theorem 3§2.4). Hence

det R = detE, - - - det E, det E, det A

Since det E # 0 for all elementary matrices E, this shows det K # 0. In particular R
has no row of zeros, so R = I (R is square). This is what we wanted. ¢



¢

Chapter 3

EXAMPLE 2

Solution

Solution

Determinants

1 0 —c
For which values of cdoes A = | -1 3 1 | have an inverse?
0 2c -4

Compute det A by first adding ¢ times column 1 to column 3 and then expanding
along row 1.

1 0 -—c 1 0 0
detA = det| -1 3 ll=detl]-1 3 1-¢|=2(c+ 2)c -3
| 0 2¢ -4 0 2 =4 |

HencedetA = 0ifec = —2orc = 3,and A has an inverseif c# —2andc # 3. ¢¢ ¢

Reprove Theorem 58§2.4: If AB =1, then A and B are invertible, A = B ',
B=A"'andBA = I.

Take determinants to obtain 1 = det [ = det(AB) = det A det B. This implies
det A # 0 and det B # 0, so A" and B™' exist. Then left-multiplying AB = I by A~
yields B = A~',and A = B ' is derived similarly. Finally, BA = BB' = I.

L2 2

The next theorem is not too surprising in view of the similar way that row and
column operations affect the determinant.

Proof Consider first the case of an elementary matrix E. If E is of type I or Il, then
E" = E; so certainly det E” = det E. If E is of type 111, then E” is also of type III; so
det E” = 1 = det E by Theorem 2§3.1. Hence det E7 = det E for every elementary
matrix E.

Now let A be any square matrix. If A is not invertible, then neither is A'; so
det A" = 0 = det A by Theorem 2. If A is invertible, then A = E, - - - E,E,, where
the E. are elementary matrices (Theorem 4§2.4).

Hence A" = E'E] - - - Ef', so the product theorem gives

detA” = detETdetE, - - - detE/ = detE detE, - - - detE,
det £, - - - det E, det E,
det A

Il

This completes the proof. ¢



Section 3.2 Determinants and Matrix Inverses

EXAMPLE 4 .
[fdet A = 2 and det B = 5, calculate det (A'B 'A'B").

Solution  We use several of the facts just derived.
det(A*B'ATB) = det(A”) det B det A" det(B’)

= (det A)’ det A (det B)”
( det B :
= L. i §%
5
= 80 *0e
EXAMPLE 5
A square matrix is called orthogonal if A™' = A". What are the possible values of

det A if A is orthogonal?

Solution If A is orthogonal, we have I = AA’. Take determinants to obtain | = det [ =
det(AA”) = det A det A" = (detA)’. Hence detA = *1.

6

Adjoints

At the beginning of Section 3.1 we defined the adjoint of a 2 X 2 matrix

a b d —b
A= [ d] to be adj(A) = [ } Then we verified that A(adj A) = (det A)f =

¢ —C a

i 1 : : ;
(adj A)A and hence that, if det A # 0, A = T adj A. It is now possible to
e

define the adjoint of an arbitrary square matrix and to show that this formula for the
inverse is valid (when the inverse exists).

Recall that the (i, j)-cofactor C;;(A) of a square matrix A is a number defined for
each position (i, j) in the matrix.

DEFINITION e, RN,

If A is a square matrix, the cofactor matrix of A is defined to be the matrix
[C,;(A)] whose (i, j)-entry is the (i, j)-cofactor of A. The adjoint of A, denoted
adj(A), is the transpose of this cofactor matrix; in symbols,

adj(A) = [Cij (A)] !

This agrees with the earlier definition fora2 X 2 matrix A.
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EXAMPLE 6

Solution

Determinants

1 3 =2
Compute the adjointof A=| 0 1 5 and calculate A(adj A) and (adj A)A.
__2 _6 B
We first find the cofactor matrix.
i . 1 5‘ 0 5} ‘ 0 1|
- - -6 7 -2 7 -2 -6
¥ A C A
E“(f E“[; C”(A] 3 -2 | -2 13
11{ ) 112( } 13( } = =F 9 L 7 o 2 -6
Ca) G GA] | 3 o) 11 =2 13
L L D 0 5 0 1 |
(37 -10 2]
= |-9 3 0
1 =8 )
Then the adjoint of A is the transpose of this cofactor matrix.
37 -10 2] [ 37 -9 17]
adjA =|-9 3 0] =|-10 3 -3
JT =h 1 P 2. B Ay
The computation of A(adj A) gives
"1 3 2] 37 -9 17] [3 0 O
A(adjA)=| 0 1 -10 3 =5(=|0 3 0|=3I
-2 -6 7] 2 0 1] 0 0 3

and the reader can verify that also (adj A)A = 3/. Hence analogy with the 2 X 2 case
would indicate that det A = 3; this is in fact the case.

*oo

The relationship A(adj A) = (det A)I holds for any square matrix A. To see
why this is so, consider the general 3 X 3 case. Writing C;(A) = C,; for short, we
have

_ o = _ =
C, C, C; Ch Gy G
adjA = | (G, Gy Cy| =6 C,, Gy
| G5, Cs, Cn_ _Cn C,, G5

If A = [a;] in the usual notation, we are 10 verify that A(adj A) = (det A)/. That is,
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Determinants and Matrix Inverses

¢

8, a, @;|[Ci Cy Cy| [detA O 0
A(adjA) = |ay, ay anl||C, € Cyu|= 0 detA O
a;, 04

32 3y CH. CE'_-‘. C_u 0 0 det ﬂ_

k. el e + - L

Consider the (1, 1)-entry in the product. It is given by a,,C,; + a.»C;, + a;;C,5, and
this is just the Laplace expansion of det A along the first row of A. Similarly, the
(2. 2)-entry and the (3, 3)-entry are the Laplace expansions of det A along rows 2
and 3, respectively.

So it remains to be seen why the off-diagonal elements in the matrix product
A(adj A ) are all zero. Consider the (1, 2)-entry of the product. It is given by a,,C;, +
a,,Cy> + @,3Cy;. This looks like the Laplace expansion of the determinant of some
matrix. To see which, observe that C,;, C,,, and C,; are all computed by deleting row
2 of A (and one of the columns), so they remain the same if row 2 of A is changed. In
particular, if row 2 of A is replaced by row 1, we obtain

a, a, 4a;)
a,,Cy, + a,,Cy, + a0y = detfay, a, a5 | = 0
| 4y Oy Oy

where the expansion is along row 2 and where the determinant is zero because two
rows are identical. A similar argument shows that the other off-diagonal entries are
Zero.

This argument works in general and yields the first part of Theorem 4. The sec-

ond assertion follows from the first by multiplying through by the scalar

det A

e A AN 1 A

THEOREM 4
Adjoint Formula

If A is any square matrix, then
A(adj A) = (det A) = (adj A)A
In particular, if det A # 0, the inverse of A is given by

I .
A = adj A
det A

It is important to note that this theorem is not an efficient way to find the inverse of
matrix A. For example, if A were 10 X 10, the calculation of adj A would require
computing 10° = 100 determinants of 9 X 9 matrices! On the other hand, the matrix
inversion algorithm would find A" with about the same effort as finding det A.
Clearly Theorem 4 is not a practical result; its main virtue is that it gives a formula
for A-! that is useful for theoretical purposes.
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EXAMPLE 7 ] _
I 1 7
Use Theorem 4 to find the inverse of A = | —ua | —a| for the values of a for
—1 I
which it exists. = 9 %
Solution The adjoint is computed as follows:
Pe,. nt:',._,,_lr 1-a a-a 0]
adid =|C,, G Cyi| =|=l—a l—a* 14 d
G Gy G 2a a-a l+ua
g =leegg g |
=g =gt T=tl® @G=d
0 1 +a I-+a:

The reader can verify that A(adj A) = (I — a’)l = (adj A)A, and this shows that det A
— 1 — a&* (as can be separately verified). Hence A~ ' exists if 1 — a” # 0 (that is,
a # *1), and in this case

] [ 1—-a -1—-a =2a
A_i:‘l e gngt =g wa— g
|
i 0 1 + a | +a | G @

EXAMPLE 8
IfAisn X n,n 2 2, show that det(adj A) = (det A)" .

Solution  Write d = det A so that A(adj A) = dI by Theorem 4. Taking determinants gives
d det(adj A) = d", so we are done if d # 0. So assume d = 0; we must show that
det(adj A) = 0, that is adj A is not invertible. If A # 0, this follows from A(adj A) =
dl = 0;if A = 0, it follows because adj A = 0.

oo
Theorem 4 has a nice application to linear equations. Suppose
AX =B

is a system of n equations in n variables x,, x,, . . . , x,. Here A is the n X n coeffi-
cient matrix, and X and B are the columns

B [ b, |

x=|2| B=|"
_I“_ I_b"_.

of variables and constants, respectively. If det A # (), we left-multiply by A ' to obtain
the solution X = A~'B. When we use the adjoint formula, this becomes
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X
oo (adi A)B
- | detA .
_I.rj
_Cu(‘d‘} CEI{AJ R Cr:I(A}_ ‘hlﬁ
1 CH(A} CH(A) s CH:{A) !.?2
~ detA
C.(A) G, (A) --- C,A)]]|b,]
Hence the variables x,, X5, . . ., X, are given by
X, = ] 1b,C,,(A) + b,C, (A) + - - -+ b,C,(A)]
det A
¥, e (B G ) T (AN e - +B,C1A))
det A
I
I" = [bICm{A) + bEL;H(A} o + hrrCrlrr(A]]
det A -

Now the quantity b,C,,(A) + b,Cy(A) + - -+ + b.C.,(A) occurring in the formula for
x, looks like the Laplace expansion of the determinant of a matrix. The cofactors
involved are C,,(A), C;,(A), ..., C, (A), corresponding to the first column of A. If A,
is obtained from A by replacing the first column of A by B, then C,(A)) = C;;(A) for
each i. Hence expanding det(A,) by the first column gives

det A, = b,C, (A) + b,C, (A) + - - -+ b,C (A)

Rl 11

= BiCi (A)+ 5,C5(A) o v 15, L(A)

mnl

= (det A)x,
det A, S5 ; .
Hence x, = TR and similar results hold for the other variables.
e
THEOREM 5 Al

Cramer’s Rule?

If A is an invertible n X n matrix, the solution to the system
AX = B

of n equations in the variables x;, x,, ..., X, is given by

'Gabriel Cramer (1704 —1752) was a Swiss mathematician who wrote an introductory work on algebraic
curves. He popularized the rule that bears his name, but the idea was known earlier.
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EXAMPLE 9

Solution

Determinants

_ det A, _ det A, o det A

X, = X, = x =

det A det A ’ " det A

where, for each k, A, is the matrix obtained from A by replacing column k by B.

Find x,, given the following system of equations.
5x, +x, — x, =4
9%, +x, - X =1

Compute the determinant of the coefficient matrix A and the matrix A, obtained from
it by replacing the first column by the column of constants.

5 1 -1
detA =det|9 1 -1|=-16
1 -1 5]
41 -1
detA, =detf 1 1 -1[=12
12 ~1 3]

Hence x, = (detA,)/detA = —3.

L4 2 4

Note that Cramer’s rule enabled us to calculate x, here without computing x, or
x;. Although this might seem an advantage, the truth of the matter i1s that, for large
systems of equations, the number of computations needed to find al/ the variables by
the Gaussian algorithm is comparable to the number required to find one of the deter-
minants involved in Cramer’s rule. Furthermore, the algorithm works when the
matrix of the system is not invertible and even when the coefficient matrix is not
square. Like the adjoint formula, then, Cramer’s rule is nof a practical numerical
technique; its virtue is theoretical.

Proof of Theorem 1

Theorem | asserts that det AB = det A det B holds for any two n X n matrices A and
B. The proof we give involves elementary matrices.

Recall that each elementary matrix E is obtained by performing an elementary
row operation on the identity matrix /. Because det / = 1, Theorem 2§3.1 provides
the following information:
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_1 if E results from interchanging two rows of / (type 1)

det E =1 U if E results from multiplying a row of I by u # 0 (type 1I)
| if E results from adding a multiple of one row of / to

another row (type 11I)

Next recall that when the elementary row operation that produced E from / is
performed on any n X n matrix A, the resulting matrix is £A (Theorem 1§2.4). But
then, det(EA) equals — det A, u det A, and det A, respectively (again by Theorem
2§3.1). Combining this with the formulas for det £, we have

det(EA) = det Edet A

This can be extended as follows: If E, and E, are both elementary, then

This process continues to produce Lemma 1.

T ‘*'.r""i"'_" PR L : ' n L A
LEMMA 1 S, RN 1 s e
IfE,E,...,E,are n X nelementary matrices, then
det(E, - - - E,E\A) = detE, - --det E,det £, det A

for any n X n matrx A.

This formula is the key to proving Theorem 1. The following preliminary result is
needed.

LEMMA 2 B, AN T WAS

If A is a noninvertible square matrix, then det A = 0.

Proof Because A is not invertible, it cannot be carried to the identity matrix by row
operations (Theorem 4§2.4). Therefore, if R is the reduced row-echelon form of A, R
must have a row of zeros. Hence det R = 0. On the other hand, R can be obtained
from A by row operations, so (by Theorem 3§2.4) there exist elementary matrices
E,E, ...,EsuchthatR = E, - - - E;E\A. But then Lemma 1 gives

0 =detR = detE, - -det E;det E, detA
sodet A = 0 (each det E; # 0 by the remark above). 4

Proof of Theorem 1 We must show that det AB = det A det B. We split the
argument into two cases.
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Case 1. A is not invertible. In this case, det A = 0 by Lemma 2. Now observe that AB
is not invertible either (if (AB) ' did exist, then A[B(AB) '| = I. so A would be
invertible by Theorem 5§2.4). But then det(AB) = 0 by Lemma 2 (applied to AB in
place of A), sodet AB = 0 = det A det B, as required.

Case 2. A is invertible. Then A is a product of elementary matrices by Theorem
482.4,say A = E, - - - E;E,. Hence Lemma | with A = [ gives

dEtA —_— dﬂt{Eﬁ poe= A E'EE]] —_— d'Eft Eﬁ. =t dﬂt E? dﬂl EJ.
Now use Lemma | once more to obtain

det(AB) = det(E, - - - E,E B)
= detE, - - - detE, det E, det B

= det Adet B
Hence the result holds in this case too. ¢
et I R N A EXERCISES 3.2
1. Find the adjoint of each of the following matrices. a b ¢
(@ | 3 1 2 o) |l -1 2 6. LetA = |p ¢ r|andassumethatdetA = 3.
-1 1 3 3 1 0 W v ow
| 1 3 8 0 =1 7 Compute:
(€ [1 0 I *d [-1 2 2 du 2a —p
I 1 0 = | 2 = 2 (a) det(3B”'ywhere B = |4y 2b —g
0 1 1 2.8 B I 4w 2c —r

2p —a + u 3u

2. Use determinants to find which real values of ¢ make each ¢(b) det(2C')where C = [2g —-b + v 3v

of the following matrices invertible. 2r —c +w 3w
@ [1 o0 2 *®) [0 ¢ —c 4

3 -4 ¢ = B R T. Ifdﬂ[|:[_ d} = -2, calculate:

:2 5 8 - o) 90
(€ | ¢ | 'D] ¢(d) [4 ¢ 3 (@) det| ¢ +1 =1 2a

Q 26 £ o il F=3 2 3

-1 ¢ | 5 ¢ 4 26 0 ad
(€ | 1 2 4 M) [1 ¢ -] o(b) det| 1 2 2

=1 =F ¢ c I a+1 2 2c -1

|2 & ] 9 1 e -

8. Solve each of the following by Cramer’s rule:

! = 4 i =
3. Let A, B, and C denote n X n matrices and assume that (a) g.r + ?} B I (b) i"" + 4 - Y
detA = —1,det B = 2, and det C = 3. Evaluate: > S S _2_ o(d “IJ ¥ ===
(a) det(A’BC'B™) o(b) det(B’C 'AB™'C") € 5x+y— z=~1 (d) 4x — y+ 3z= 1
ey wdn = 9 br =2y — = 4

Let A and B be invertible n X n matrices. Evaluate:
(a) det(B 'AB) +(b) det(A 'B 'AB)

IfAis3 X 3anddet 2A") = —4 = det (A*(B™")), find

det A and det B.

Ix + 2z =—7

3x+ v+ 2z =—1

9. Use Theorem 4 to find the (2, 3)-entry of A ' if:

3 2 1 1 & =]
(@) A= 112 ¢b) A =(3 1 |
-1 2 1 0 4 7



10.

1.
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Explain what can be said about det A if:

(@) A° = A e(b) A’ =1
() A'= A ¢ (d) PA = P Pinvertible
(€) A" = uA, Aisn X n ¢(f) A= —AT Aisn X n

(9) A“+1=0,Aisn X n

Let A be n X n. Show that uA = (uh)A , and use this with
Theorem |1 to deduce the result in Theorem 3§3,1: det(uA)
= u" det A.

If A and B are n X n matrices, AB = —BA, and n is odd.
show that either A or B has no inverse.

Show that det AB = det BA holds for any two n X n
matrices A and B.

If A* = 0 for some k > 1, show that A is not invertible.

+ ITABC is invertible (A, B, and C all square), show that B

is invertible.

If A7 = AIL describe the cofactor matrix of A in terms
of A.

. Show that no 3 X 3 matrix A exists such that A* + [ = 0.

Find a2 X 2 matrix A with this property.
Show that det(A + B') = det(A” + B) for any n X n
matrices A and B.
Let A and B be invertible n X n matrices. Show that det A
= det B if and only if A = UB, where U is a matrix with
detV = 1.
For each of the matrices in Exercise 2, find the inverse for
those values of ¢ for which it exists.

| a b
- 1l ¢
-b —-c 1
Hence find A ' for any a, b, and c.

If A = ,Show that det A = | + a? + b* + 2

An Application to Polynomial Interpolation

a p g

22. (a) ShowthatA = [0 b r/|has an inverse if and only
0 0 ¢
if abe # 0, and find A ' in that case.
¢ (b) Show that if an upper triangular matrix is invertible.
the inverse is also upper triangular.

23. Let A be a matrix each of whose entries are Integers.
Show that each of the following conditions implies the
other.

(1) Aisinvertible and A ' also has Integer entries,

(2) detA = lor—|

30 |
¢ 24 IfA'= |0 2 3| findadjA.
3 T =l
25. IfAis3 X 3anddetA = 2, find det(A ' + 4 adj A).
A

If A and B are 2 X 2. show that det [g } = det A det B,

X

What if A and B are 3 X 37 [Hint: Multiply by [{; :;J]
LetAben X n, n22, and assume one column of A con-
sists of zeros. Find the possible values of rank (adj A).
IFAis 3 X 3 and invertible, compute det( ~A'adj A) ).
Show that adj(uA) = " " adj A for all n X n matrices A.
Let A and B denote invertible n X n matrices. Show that:
(a) adj(adjA) = (det A)" A (here n>2)
|Hint: See Example 8.]
¢ (b) adj(A ") = (adjA) !
(€) adj(A") = (adjA)"
¢ (d) adj(AB) = (adjB)(adjA) |Hint: Show that AB
adj(AB) = AB adj B adj A.|

Section 3.3  An Application to Polynomial Interpolation (Optional)

There often arise situations wherein two variables x and y are related but the actual
functional form y = f{x) of the relationship is unknown. Suppose that for certain val-
ues v, Xy, . .., x, of x, the corresponding values y,. y,, . ...y, are known (say from
experimental measurements). One way 1o estimate the value of v corresponding to
some other value of x is to find a polynomial p(x) that “fits” the data. that is. plx;) =
y; holds foreach i = 1,2, ..., n. Then the estimate for y is p(x). Such a polynomial

always exists if the x; are distinct.
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EXAMPLE 1

Solution

Determinants

THEOREM 1 BN =5 o IR
Let n data pairs (x;, ¥,), (X3 Y2)s - + - 5 (X ¥,) DE given, and assume that the x,
are distinct. Then there exists a unique polynomial

n—1

p(x)zr.]+r,x+r}x1+--++r,, X

such that p(x;) = y;foreachi = 1,2,...,n.

Proof The conditions that p(x;) = y, are
L+ nhx + rlez o B SUIE RS i e =V

2 e ]
rn+qx2+r111+---+r|11 = ¥

2

IE]' T rl'xr: + rl']:n el & ."“_].-f” - .-"’rn
In matrix form, this is
- 5 qar - e w
1 x X X, i ¥
2 -1 .
..] .-":" .I" L -I:: 1] I_?:'J—I | ._'}'“ |

It can be shown (see Theorem 2) that the determinant of the coefficient matrix equals
the product of all terms (x; — x;) with i > j and 50 is nonzero (because the x; are dis-

tinct). Hence the equations have a unique solution rg, ry, . . ., r,—) and the theorem
follows. L

The polynomial in Theorem 1 is called the interpolating polynomial for the data.

Find a polynomial p(x) of degree 2 such that p(0) = 1, p(1) = 3, and p(2) = 2.

Write p(x) = r, + rx + rx'. The conditions are

p(0) =,
p=n+ n+ n =
p(2)=r, +2n+4n =2

The solutionisr, = 1,7, = Lyand r, = — 3,50 p(x) = 12+ Tx — 3x%).

o

The next example shows how Theorem 1 is used in interpolation.
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EXAMPLE 2

Solution

EXAMPLE 3

Solution

An Application to Polynomial Interpolation

®

Given the data values
0. 1.21), 01,:3.53), 2, 5.01y,:(3,. 3.79)
use polynomial interpolation to estimate the value of y corresponding tox = L.J.

We find the polynomial p(x) of the degree 3 that fits these data. If p(x) = r, + rix +
r.x* + ryx, the conditions are

T = 1.2]

L+ n+ n+ =333

r, +2n +4r, + 8r, = 5.01

ry+3n +9n + 27, = 3.79
The solutionis r, = 1.21,r, = 2.12,r, = 0.51, and r; = —0.31, so the interpolating
polynomial is p(x) = 1.21 + 2.12x + 0.51x* — 0.31x’. Hence the estimated value of

y corresponding to x = 1.51is p(1.5) = 4.49.
*09

As a final example, we construct a polynomial that approximates a known
function. This type of approximation is often useful in practical situations because
polynomials are easy to compute.

Find a cubic polynomial p(x) that approximates the function sin x on the interval
0 < x <3 (x in radians). Use the following values of sin x.

sin0 = 0, sin(F) = 0.5000, sin (§) = 0.8660, sin(3) = 1
Then use p(x) to approximate sin(0.5).

fp(x) =rg+rx + X + rx,use xo =0, x, =%, x, =, and x3 = 5, and y; =
sin(x;) as given.

p(0) =r =0

2 3
o o T I
—|l=r+nr —|+nKHl—]| + — | = 0.5000
p[s) 0 "(6) E(ﬁJ rf“(ﬁ]

-
—

() (’”) f'“) r“f 0.8660
—l=n+n|l=|+n|=| + =] =0.
Pk?’j o TH 3 2k3 3k3
(a7 Fra () Car )
— | = — — | +n|=| =100
S r““[z]”%z] "MJ W

Clearly r, = 0, so multiplying the remaining equations by %, #, and %, respectively,

gives
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T

2

n o+ + —— = 0.9549
6 36
2
T
n+ BT 0.8270
3 9
rzﬂ' FJFTE
poa 2 BT 06366
2
If these are regarded as equations in r,, r,m, and ry7, the coefficient matrix has an
Inverse:
L4 k] [ & =4 1T
L g | w=lei8 94 =9
1+ 4| |18 36 18

This leads to r; =

= —0.0652 and r; = —0.1140, so

plx) =

1.0203, r,m = —0.2049, and ry7° = —1.1250. Finally, then,

1.0203x — 0.0652x2 — 0.1140x

This gives p(0.5) = 0.4796 as the approximation to sin(0.5). The true value 1s
sin(0.5) = 0.4794 to four decimal places. This is quite good, and even better Approxi-

mations are achieved with polynomials of higher degree.
o0

We conclude this section by evaluating the determinant of the matrix that arose
in the proof of Theorem 1. If a,, a,, . . . , a, are numbers, the n X n matrix

] ! 1 S ] |
ﬂ| ﬂ?. [I_-,_ Hn -] I

2z 2 2 2 2
a a, a, --+ 4a,, 4,
n—1 n=1 in—1 fi—1 |
ﬂ-l HZ H1 o ﬂ"_l f‘" )

(or its transpose) is called a Vandermonde matrix, and its determinant is called a
Vandermonde determinant. There is a simple formula for this determinant. If n =
2. the determinant is (a, — a,); if n = 3, it is (a; — a,)(a; — a,)(a, — a,) by Example
9§3.1. The general result is as follows:

THEOREM 2 &
Vandermonde Determinant

Let @, @5 - <« » 4, be real numbers, n
Vandermonde determinant is given by

> 2. Then the corresponding
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1 I I |
fﬁ ﬂ: ﬂ] a,
2 2 2 2
det| a; Hy Hy =ER Oy [T I I{ﬂa —a;)
y & B 2 | S j<i<n
-1 I ~1 -1
Rl AR

where [] (a; — a;) means the product of all factors (a, — a), where i >
Isj<isn
and both i and j are between | and n.

Proof We may assume that the g, are distinct because otherwise both sides would
be zero. Proceed by induction on n = 2 and assume inductively that the theorem
is true for n — 1. The trick is to replace a, with a variable x and consider the

determinant
] | | I
a, a, a,_ X
2 2 2 2
p(x) = det| a, g eeslge y X
f—I n—I M| =1
a| HE ﬂ” -] X ]

If this is expanded along the last column, it is clear that p(x) is a polynominal in x of
degree at most n — 1. Moreover, p(a,) = 0 (because x = a, produces identical
columns), so x — a, is a factor of p(x) by the factor theorem — say, p(x) = (x —
a,)p,(x). Then the fact that p(a,) = 0 and a, # @, means that p,(a,) = (. So, again by
the factor theorem p,(x) = (x — a,)p,(x). This gives p(x) = (x — a,)x — a,)p,(x).
The process continues (the a; are distinct) to give

px) = x—a)x—ay) - (x —a,_d (%)

where d is a constant. In fact, d is the coefficient of x" ' in p(x) and so, by the
Laplace expansion, d is the (n, n)-cofactor of the matrix:

] | S j
ﬂ1 ﬂ: ﬂn [
+ 2 2 2
d = (=1)""" det| g a; i
o Ay | 2
& B .. af

Because (—1)""" = 1, the induction hypothesis shows that d is the product of all
terms (a; — a;) where 1 <j <i<n — 1, and the result now follows from equation (x)

by substituting x = a, in p(x). A g
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1. Find a polynomial p(x) of degree 2 such that: (a) (0,1),(1,2),(2,5),(3,10)
(a) p(0) =2,p(1) =3,p(3) =8 e(b) (0,1),(1,1.49), [2.=0.42), (3;—11:33)
e(B) p0) =5p(1) =3,p2) =5 (¢) (0,2),(1,2.03), (2,—0.40), (—1,0.59)

2. Find a polynomial p(x) of degree 3 such that:

4. Use the polynomial p(x) in Example 3 to approximate

(a) pO) =p(l) = L,p(-1) = 4,p2) = =5 . :
a) sin(0.3) and ¢ (b) sin{0.7).
e(b) p(0) = p(l) = L,p(—1) =2,p(=2) = -3 (a) (b)
3. Given the following data pairs, find the interpolating 5. Find a quadratic polynomial p(x) approximating ¢ on the
polynomial of degree 3 and estimate the value of y corre- range 0 < x < L (Usex, = 0,x, = 4, and x, = 5,50 ¥ =

sponding to x = 1.5.

FRBIEYT Section 3.4

I,y, = 2.117,and y, = 4.482.) Use p(x) to estimate e’

Proof of the Laplace Expansion (Optional)

Recall that our definition of the term determinant is inductive: The determinant of
any 1 X 1 matrix is defined first; then it is used to define the determinants of 2 X 2
matrices. Then that is used for the 3 X 3 case, and so on. The case of al X | matrix
[a] poses no problem. We simply define

detla]l = a

as in Section 3.1. Given an n X n matrix A, define A, to be the (n — 1) X (n — 1)
matrix obtained from A by deleting row i and column j. Now assume that the determi-
nant of any (n — 1) X (n — 1) matrix has been defined. Then the determinant of A is
defined to be

detA = a,, detA,, — a, detA, +---*a,detA,
=) (-)"'a, det 4,
i=1

Observe that, in the terminology of Section 3.1, this is just the Laplace expansion of
det A along the first column, that det A;; is just the (i, j)-minor of A (previously denot-
ed as M, (A)), and that (—1)*/ det A; is the (i, j)-cofactor (previously denoted

. " " a H
as C;(A)). To 1illustrate the definition consider the 2 x 2 matrix A = [ : '1].
ay Ay

Then the definition gives

a,, 4
dy  dyp

=

and this is the same as the definition in Section 3.1.

Of course. the task now is to use this definition to prove that the Laplace expan-
sion along any row or column yields det A (this is Theorem 1§3.1). The proof pro-
ceeds by first establishing the properties of determinants stated in Theorem 2§3.1, but
for rows only (see Lemma 2). This being done, the full proof of Theorem 1§3.1 1s not
difficult. The proof of Lemma 2 requires the following preliminary result.
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LEMMA 1 SN
Let A, B, and C be n X n matrices that are identical except that the pth row of
A is the sum of the pth rows of B and C. Then

detA = det B + det C.

Proof We proceed by induction on n, the cases n = | and n = 2 being easily
checked. Consider ag;, and A,

Case 1: Ifi#p,
id;, = b‘-] = f“ ﬂﬂd df.':[ﬂ“ = dEt Br'l -+ dﬁt C.:i

by induction because A,,, B;, C;, are identical except that one row of A, is the
sum of the corresponding rows of B;, and C;,.

Case2: lfi=p

a, = b, + c, and A, =8B, =C,
Now write out the defining sum for det A, splitting off the pth term for special
attention.
detA = Y a,(-1)""' detA, + a, (-1)""' detA,,
i#p
=Y a,(-1)"" [det B, + det C,1+ (b, + ¢,)(=)""' detA,
[£p

But the terms here involving B, and b, add up to det B because a;; = b, if i # p and
A, = B,. Similarly, the terms involving C; and ¢, add up to det C. Hence
det A = det B + det C, as required. @

LEMMA 2 BN 2 e e RPN

Let A = [a;] denote an n X n matrix.

1. If B = [b,] is formed from A by multiplying a row of A by a number u,
then det B = u det A.

2. If A contains a row of zeros, then det A = 0.

3. If B = [b,] is formed by interchanging two rows of A, then det B
= —det A.

4. If A contains two 1dentical rows, then det A = 0.

5. If B = [b;] is formed by adding a multiple of one row of A to a
different row, then det B = det A.
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Proof For later reference the defining sums for det A and det B are as follows:

det A = 2:1“{4}”'(1::[;4“ (%)
i=l

detB = Y b,(=1)"'det B, (%)

i=1

Property 1. The proof is by induction on n, the cases n = 1 and n = 2 being casily
verified. Consider the ith term in the sum (%) for det B where B is the result of multi-
plying row p of A by u.

a. If i # p, then b, = a, and det B, = u det A, by induction because B
comes from A,, by multiplying a row by u.

b. Ifi = p, thenb, = ua, and B, = A,

In either case, each term in equation (%) is u times the corresponding term in equa-
tion (%), so it is clear that det B = udet A.

Property 2. This is clear by property | because the row of zeros has a common fac-
tor u = 0.

Property 3. Observe first that it suffices to prove property 3 for interchanges
of adjacent rows. (Rows p and g (9 ~ p) can be interchanged by carrying out
2(q — p) — | adjacent changes, which results in an odd number of sign changes in
the determinant.) So suppose that rows p and p + | of A are interchanged to obtain
B. Again consider the ith term in (%%).

a. Ifi #pandi # p + 1, then b, = a, and det B;, = ~-det A, by induction
because B,, results from interchanging adjacent rows in Aj. Hence the ith
term in (*#) is the negative of the ith term in (%), and so det B = —det A.

b. Ifi=pori=p+ 1, then b, = a,,, and B, = A, Whereas b,y =

a,and B,., = A, Hence terms p and p + | in (#%) are

hp,(—lli”" det B, = =t (— 1 et det(A, )
bp-f.“{_l]“”H*!d{H(BF+II} = -_”;11{ _]}'r”-ldut Apl

This means that terms p and p + 1 in (*x) are the same as these terms 1n (), except
that the order is reversed and the signs are changed. Thus the sum (#:) is the negative
of the sum (*); that is, det B = —det A.

Property 4. 1If rows p and ¢ in A are identical, let B be obtained from A by
interchanging these rows. Then B = A 50 det A = det B. But det B = —det A by
property 3 so detA = —det A. This implies that det A = 0.

Property 5. Suppose B results from adding u times row g of A to row p. Then
Lemma | applies to B to show that det B = det A + det C, where C is obtained from
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A by replacing row p by u times row g. It now follows from properties 1 and 4 that
det C = 0 sodet B = det A, as asserted. &

Proof of the Laplace Expansion

These facts are enough to enable us to prove Theorem 1 §3.1. For convenience, 1t is
restated here in the notation of the foregoing lemmas. The only difference between
the notations is that the (i, j)-cofactor of an n X n matrix A was denoted earlier by

C,A) = (—1)* det A,

e —— EENTHE % 4 SR e

IfA = [a,]is an n X n matrix, then
1. detA = z a;(-1)"'det A, (Laplace expansion along column j)
i=1

9. detA = Z a,(-1)"’detA;,  (Laplace expansion along row i).

j=l1

Here A, denotes the matrix obtained from A by deleting row i and column j.

Proof Lemma 2 establishes the truth of Theorem 2§3.1 for rows. With this infor-
mation, the arguments in Section 3.2 proceed exactly as written to establish that det A
= det A" holds for any n X n matrix A. Now suppose B is obtained from A by inter-
changing two columns. Then B’ is obtained from A’ by interchanging two rows so, by

property 3 of Lemma 2,

det B = det B" = —detA” = —det A

Hence property 3 of Lemma 2 holds for columns too.

This enables us to prove the Laplace expansion for columns. Given an n X n
matrix A = [a,], let B = [b;] be obtained by moving column j to the left side, using
j — 1 interchanges of adjacent columns. Then det B = (—1)’ " "det A and, because
B, = A, and b, = a;forall i, we obtain

detA = (=1)'detB = (-I}J""Ebﬂ(—l]“"det B,
i=1

= Y a,(-1)"det A,

i=l

This is the Laplace expansion of det A along column j. |
Finally, to prove the row expansion, write B = A”. Then B, = A}, and b, = a;

for all i and j. Expanding det B along column j gives
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%

detA = detA” = detB = Zbﬁ(-—l)f”ﬂet B,

i=1
= Y a,(-1)*'det(A]) = Y a,(~1)"'det A,
i=]

=]

This is the required expansion of det A along row . ¢
PRy, EXERCISES 3.4
1. Prove Lemma | for columns. 3. If u is a number and A is an n X n matrix, prove that

det(uA) = u" det A by induction on n, using only the

+2. Verify that interchanging rows p and ¢ (g > p) can be
definition of det A.

accomplished using 2(g — p) — | adjacent interchanges.

LIRS EEET A%y SUPPLEMENTARY EXERCISES FOR CHAPTER 3
1. Show that ¢(b) Use (a) to prove that det A" = det A. [Hint: Induction
a+ px b+gx ¢+ rx a b c onnwhere Aisn X n.]
det| p + ux g + vx r + wx =[1+x3]detp g r|
W+ ax v+ bx w+cx u v w

0 I .
% s _ 3. Show that det[f {5;] = (—-1)" forall n = 1 and
2. (a) Show that M, (A)" = M, (A") for all i, j and all square m

matrices A. m= 1.
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SECTION 4.1
Vectors and Lines

Many quantities in nature are completely specified by one number (called the magni-
tude of the quantity) and are usually referred to as scalar quantities. Some examples
are temperature, time, length, and net assets. However, certain quantities require both
a magnitude and a direction to specify them. Consider displacement: To say that a
boat sailed 10 kilometers (km) does not specify where it went. It 1s necessary to give
the direction too; perhaps it sailed 10 km northwest. Quantities that require both a
magnitude and a direction to describe them are called vector quantities. Other exam-
ples include velocity and force. Vector quantities will be denoted by boldface type: u,
v, W, and so on.

A vector v can be represented geometrically as a directed line segment or arrow
(see Figure 4.1). The head and tail of the arrow are called, respectively, the terminal
point and the initial point of the vector. The magnitude of a vector v will be denoted
by ||v||, and is sometimes referred to as the length of v because it is represented by the
length of the arrow.

\“’"
FIGURE 4.1

Two vectors v and w are equal (written v = w) if they have the same length and
the same direction. Thus, for example, the two vectors in Figure 4.2 are equal even
though the initial and terminal points are different.”

'Readers familiar with this material can proceed to Chapter 5.
*This is like the situation for rational fractions; We write: 3 =45 == even though the numerators and
denominators are different.




¢

Chapter 4

EXAMPLE 1

Solution

Vector Geometry

YA

A
0.0) X

FIGURE 4.2

There is only one vector with zero length. It is called the zero vector and is
denoted by 0. In other words,

v=0 ifandonlyif [v|[ =0

No direction is assigned to the vector 0. Two nonzero vectors arc called parallel if
they have the same or opposite directions (Figure 4.3). Given a vector v, the vector
with the same magnitude as v but the opposite direction is called the negative of v
and is denoted —v (Figure 4.4). Because 0 is the only vector with length 0, it follows
that —0 = 0. Clearly v and —v are parallel if v # ().

Parallel
vectors —V

FIGURE 4.3 FIGURE 4.4

Probably the most useful aspect of vectors is that they can be added and multi-
plied by a number in such a way that these operations reflect physical or geometrical
facts. Consider the following example.

Find the displacement resulting from a 1-km walk northeast and a |-km walk east.

Let wi and wa denote the northeast and east displacements, respectively. If wi 1s done
first, the resulting displacement v is given by the first diagram. The second diagram
shows the resulting displacement when w: is done first. The resulting displacement 1s
the same in both cases. so it is designated v in both. Moreover, the magnitude ||v| and
the direction of v (given by 6) are determined (Exercise 1), so v is determined com-
pletely by w, and w:.

L 2 2
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The situation in Example 1 is typical of many vector quantities other than
displacements, and this leads to a general notion of vector addition.

DEFINITION SRR T RER

If u and w are two vectors, their sum u + w is defined as follows: Position u
and w so that they emanate from a common point P. They determine a parallel-
ogram, and the diagonal drawn from P represents u + Ww. This is called the
parallelogram rule.

The situation is shown in Figure 4.5(a). We haveu + w = w + U because the two
vectors enter into the definition in a symmetric fashion. However, it is often conve-
nient to regard u + w as “first u and then w” by placing the initial point of w at the
terminal point of u, as in Figure 4.5(b). Similarly, u + w = W + u is the result of
“first w and then u” (Figure 4.5(c)).

s — — E—

/
~/ (a)

W

FIGURE 4.5

The basic properties of vector addition are as follows:

1. u + v = v + uforall vectors u and v

2. u+ (v+ w) = (u+ v)+ wforall vectors u, v, and w

3. v + 0 = vforall vectors v

4. v + (-v) = 0for all vectors v
The first of these has already been mentioned, and the last two follow from the paral-
lelogram rule. The second is illustrated by Figure 4.6. The two diagrams have u, v,

and w in the same position. The vector across the bottom is u + (v + W) in Figure
4.6(a) and (u + v) + w in Figure 4.6(b).

Y v
u u W
u+ (v+w (u+v)+w
(a) (b)

FIGURE 4.6
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Because of the fact that u + (v + w) = (u + v) + w, we shall write this sim-
ply as u + v + w. The foregoing discussion makes it clear that u + v + w can be
regarded as the result of u, v, and w being placed end to end with the terminal point
of each vector coinciding with the initial point of the next vector. The sumu + v + W
then has the same initial point as u and the same terminal point as w

Vectors can be used effectively to give proofs of theorems in Euclidean geometry
that make no use of coordinates. If A and B are two geometrical points, the vector
from A to B is denoted as AB.

Show that the diagonals of a parallelogram bisect each other.

Let the parallelogram have vertices A, B, C, and D, as shown: let E denote the inter-
section of the two diagonals; and let M denote the midpoint of diagonal AC. We must
show that M = E and that this is the midpoint of diagonal BD. This is accomplished
by showing that BM = MD. (The fact that BM and MD have the same direction
means that M = E, and the fact that they have the same length means that M = E 15
the midpoint of BD.) Now AM = MC because M is the midpoint of AC, and BA =
CD because the figure is a parallelogram. Hence

BM = BA + AM = CD + MC = MC + CD = MD

where the first and last equalities use the parallelogram rule of vector addition.

L 2 2

By analogy with numerical arithmetic, vector subtraction 1s defined as follows:
u-v=u-+(-v)

As for numerical subtraction, the solution X to a vector equation X + v = u I8 X =
u — v. In fact, adding —v to each side of x + v = u gives

X+ v+ (—v)=u+ (-v)
X+0=u-v

X=u-Y%

Like vector addition, subtraction has a geometric interpretation, as shown in Figure
4.7: We have v + AB = u by vector addition, so AB = u — v as shown. The situa-
tion in Figure 4.7 is best remembered by observing that

u — vis the vector that, when added to v, gives u
Scalar Multiplication

DEFINITION B NAHS 7 B

Given any vector v and any number a, the scalar multiple of v by a 1s the vec-
tor av defined by specifying its magnitude and direction as follows:
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1. The magnitude of av is ||av|| =|a| |v].

the same as that of vifa > Oand v # 0.
2. The direction of av is{ unspecified ifa = O orv = 0.
opposite to thatof vifa < O and v # 0.

Some examples of scalar multiplication appear in Figure 4.8.

2v (=2)v

/ o /('%)v

v

b |

FIGURE 4.8

Taking @ = 0 in the formula for [av| yields ||Ov|]| = 0. In other words, Ov
has magnitude zero, so it is the zero vector; that is, Ov = 0. Similarly, a0 = 0 for
each number a. Observe also that 1v = v because 1v has the same magnitude and
direction as v. However, (—1)v has the same magnitude as v but the opposite direc-
tion, so (~1)v = —v. These properties of scalar multiplication are collected below for
reference:

1. |lav|| = |a|||v|| for all scalars a and vectors v
2. 1v = v for all vectors v

3. (-1)v = —v for all vectors ¥

4. (v = 0 for all vectors v

5. a0 = 0 for all scalars a

A vector is called a unit vector if its magnitude is 1.

. ] " , ; : .
If v # 0, show that —ﬂv is a unit vector in the same direction as v.
v

The vectors in the same direction as v are av, where a > 0. Because [av| = allv||

when a > 0, this is a unit vector when a = ﬁ
i

L2 2 4

Many properties of vector addition and scalar multiplication have been men-
tioned (and utilized) so far. Several of these facts are consequences of the following
eight fundamental properties.
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THEOREM 1

Vector addition and scalar multiplication exhibit the following properties.

1. u + v = v + u forall vectors u and v

2. u+ (v+w) = (u+ v)+ wforall vectors u, v, and w
3. u + 0 = uforall vectors u

u + (—u) = 0 for all vectors u

lu = uforall vectors u

a(bu) = (ab)u for all vectors u and scalars a, b

(a + b)u = au + bu for all vectors u and scalars a, b

RN

a(u + v) = gu + av for all vectors u, v and scalars a

Proof Only the last three properties remain to be verified. They follow easily from
the definitions when the scalars a and b are positive or zero. The general case is not
difficult (though it is a bit tedious), and the details are left as Exercise 33. ¢

As for matrices, these properties enable us to carry out algebraic manipulations
of vectors as though the vectors were variables.

(a) Simplify 5(u — 2v) + 6(5u + 2v)—2(v—u).
(b) Ifv = 4w, show thatw = v.
(8) 5(u-2v) + 6(5u + 2v)—2(v—u)
=50 — 10v + 30u + 12v — 2v + 2u
=:3n
B) ;v=4w) = (5w =1lw=w Y

Show that the midpoints of the four sides of any quadrilateral are the vertices of a
parallelogram. Here a quadrilateral 1s any figure with four vertices.
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Suppose that the vertices of the quadrilateral are A, B, C, and D (in that order)
and that E, F, G, and H are the midpoints of the sides as shown in the diagram. It suf-
fices to show EF = HG (because then these two sides are parallel and of equal
length). Now the fact that E is the midpoint of AB means that EB = ;—AB'. Similarly,
BF = LBC, s0

EF = EB + BF = LAB + 1BC = L(AB + BC) = AC

A similar argument shows that HG = LAC too, so EF = HG as required.

* o

Coordinates

Examples 2 and 5 use vectors to verify geometrical propositions without the benefit
of coordinates. On the other hand, the introduction of coordinates gives us a conve-
nient way of doing vector calculations and enables us to use vectors to study lines
and planes.

To introduce coordinates into space, choose three mutually perpendicular lines
(called the X axis, the Y axis, and the Z axis) which meet at a point (called the
origin). Each of these axes is a copy of the real line with O at the origin. The plane
determined by the X and Y axes is called the X-Y plane; similarly we get the X-Z
plane and the Y-Z plane. Each point P determines a unique triple (x, ¥, z) of numbers
called the coordinates of P. For example, x is the point of intersection of the X axis
and the plane through P parallel to the Y-Z plane (see Figure 4.9). When the coordi-
nates of a point P are to be emphasized, we shall write P = P(x, , 2).

DEFINITION B T AN T A i A
Given a point P, the position vector of P is defined to be the vector p = OP
from the origin to P. If P = P (x, y, z) in space, the position vector is denoted

p=(xy2

and the numbers x, y, and z are called the X, Y, and Z components of p. If
P = P(x, y) in the X-Y plane, the position vector is denoted

p=(y

Using vectors, we find that geometry in space is much like geometry in the
plane. Consequently we shall emphasize the situation in space. In vector geometry
the coordinates of a point P(x, y, z) are computed by finding its position vector
p = (x, ¥, 2)- This vector point of view is useful as we shall see.

Every vector v is the position vector of a unique point P(x, ¥, ) ( if v is positioned
with its initial point at the origin, then the terminal point is P). In particular, the zero
vector is the position vector of the origin itself:

0 =(0,0,0)
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Vector Geometry

The coordinate vectors i, j, and k are defined by

i=i(1,0,0)
j =0, 1,0)
k =(0.0,1)

These are unit vectors pointing along the positive X, ¥, and Z axes, respectively (see
Figure 4.10), and as we shall see, every vector can be expressed in terms of i, J,
and k.

Indeed, let v = (x, ¥, 2) be any vector in component form. Consider the point
P,(x, 0, 0) on the X axis. Because P, is at a distance x| from the origin, the position
vector of P, is xi. (In fact, the magnitude of xi is |xi|| = |x| [[il = |x|, and the direction
is along the positive X axis if x > 0 and along the negative X axis if x <0.) This veri-
fies the first of the following statements (the others are similar):

d = {x, O 1 is the position vector of A(x, 0, 0)
yj = (0, y, 0) is the position vector of P (0, y, 0)
zk = (0, 0, 2) is the position vector of P(0, 0, z)

These vectors are shown in Figure 4.11. Vector addition gives u = xi + yj, whence
v=u+zk= (xi + yj) + zKk. Thus

v=(ky=xd+y+ K (%)

for all x, v, and z. This enables us to give the reason for writing vectors in component
form: Vector addition and scalar multiplication correspond to matrix operations.

I e e
THEOREM 2 AN AN 1 o R
Letu = (x, y, z) and u, = (x,, y,, z;) be two vectors in component form.
Then:

1. uw=u,ifandonlyifx = x,,y = y,,and z = Z,

2. u+ U, = (x + x,y + y.2 + 7y

3. au = (ax, ay, az) for any scalar a

B U - =@ —xy— Yt ™= o)

Proof (1). The vectors u = (x, y,z) and u; = (x,, y,, z,) are position vectors of
points P(x, v, z) and P,(x,, y,, 2;), respectively. Hence u = u, means P = P,;that is,
x=x,y =y,andz = g;,
(2), (3), and (4). Equation (%) shows that u = xi +yj + zk and u; = x;i + y,j +
z,;k. Hence Theorem 1 gives

u+u = (xi+yj+zk)+ (xi+yj+ k)
=(x+x)i+y+y))+(z+z)k
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&

where the last step again uses Equation (*). This gives (2); (3) and (4) are similar and
are left as Exercise 22. 4

Given vectors u = (3, —1,2) and v = (1,0, —1), compute u + V, 3u, and
2u — 3v.

These are just matrix calculations.
n+v=0G-1L2)+(10,-H=(4,-11)
3u =33 -1,2)=(9, -3, 6)
Ju-3v=23,-1,2-31,0,-1)=(3,-2,7)

L2 4

The following theorem is a particularly useful consequence of Theorem 2.

THEOREM 3 S, AN T R
Given points P,(x, y,, ;) and P,(x,, ¥,, 2,), the vector from P, to P, 1s

PP, = (X =X, Y2~ ¥u 2 — Zy)

Proof [et p, = (x,,v,,2) and p, = (X3, ¥», Z,) denote the position vectors of P,
and P,. Then

FP, = p;,— P = (X — X, ¥ — ¥ o — Z1)

using Theorem 2. (See the accompanying figure.) \ 4

P,

Origin
These results all have natural analogues for vectors in the plane. If u = (x, y) and
u, = (x;, ;) then:
1. u=u,ifandonlyifx = x,,andy = ¥,
2" “+U|:(I+II1F+}1|)
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3. au = (ax, ay) for any scalar a
. v—u, =[x =Xy =W
5. The vector from P,(x,, y,) to P(x,, y,) 18 PP,=(x,— X, Y2 — V).

The verifications are entirely analogous to those in Theorems 2 and 3 and are
omitted.

The midpoint of two points is the point on the line segment between them that 1s
halfway from one to the other.

Show that the midpoint of P,(x,, ¥,, z;) and P,(x,, ¥, Z5) 18

2 ¢ 2 F 2
Let p,, p,, and p be the position vectors of P, Py, and P(x, y, z), respectively. We find
x, v, and z by computing p = (x, y,z). We have PP = 3PP, because P is the
midpoint (see the diagram) and PP, = p, — p,. Hence

F(II + X Y+ 3T zz]

P=D ""FP*: p+3i(p,-P) =3 +P) =3+, ) +¥ 4 t3)

This gives the result. Note that the position vector p = (p; + p,) of the midpoint is
the “average” of the position vectors p, and p,.
*o¢

Lines in Space

These vector techniques can be used to give a very simple way of describing straight
lines in space. We use the fact that there is exactly one line through a particular point
in space that is parallel to a given nonzero vector.

DEFINITION BN T e i B

Given a straight line, any nonzero vector that is parallel to the line is called a
direction vector for the line.

Every line has many direction vectors. In fact, any nonzero multiple of a direction
vector also serves as a direction vector.

Suppose B, = Py(xy, Yo» Zo) 1s any point and d = (a, b, ¢) is any vector (assumed
to be nonzero). There is a unique line through F, with direction vector d, and we want
to give a condition that a point P = P(x, y, z) lies on that line. Let p, = (X, Yo, %)
and p = (x, y, z) be the position vectors of F, and P, respectively (see Figure 4.12).
Then

P=pP t EP
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Hence P lies on the line if and only if PP is parallel to d— that is, if and only if
P,P = td for some scalar ¢. Thus p is the position vector of a point on the line 1f and
onlyifp = p, + td for some scalar .

VECTOR EQUATION  Sanitis IO MM .1 b ot
OF A LINE

The line parallel tod # 0 through the point with position vector p, is given by

P=p + td for some scalar 1

In other words, the point with position vector p is on this line if and only if a
real number £ exists such that p = p, + rd.

In component form the vector equation becomes

(-'r- }’r E} = (-xl:l-'r }Jih E:’J) + f{ﬂ, ba ":)

Equating components gives a different description of the line.

PARAMETRIC NIRRT 75 e

EQUATIONS OF A LINE

The line through Py(x, Yo, o) With direction vector d = (a, b, c) # 0 is given
by

X =x, +t1a
y=y, +1b t any scalar
gi= gy il

[n other words, the point P(x, y, z) is on this line if and only if a real number ¢
exists such thatx = x, + 1@,y = ¥, + th,and z = z, + Ic.

Find the equations of the line through the points F(2, 0, 1) and P(4, —1,1).

Letd = Eﬁ =@4 -2, —1-0,1~-=1) = (2, —1,0) denote the vector from P,
to P,. Clearly d serves as a direction vector for the line. Using P, as the point on the
line leads to the parametric equations

x=2+2t
y = -1 ! a parameter
T

Note that if P, is used (rather than £), the equations are
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x =4+ 2s
y==1l-—3 § a parameter
z=1

These are different from the preceding equations, but this is merely the result of a
change in parameter. In fact,s =t — 1. 2 £ 2

Find the equations of the line through Fy(3, —1, 2) parallel to the line with equations

x=—1+2¢
y=1+1
z=-3+4

The coefficients of ¢ give a direction vector d = (2, 1, 4) of the given line. Because
the line we seek is parallel to this line, d serves as direction vector. Thus the
parametric equations are

x =32
y=—-1+1
z=2+4 FYYe

Determine whether the following lines intersect and, if so, find the point of
intersection.

x=1-3t x=-1+3s
y=2+3 y=3-4s
=14+t z=1-35

A typical point P(x, y,z) on the first line has position vector (x, y,2) = (I — 3¢,
2 + 51, 1 + 1) for some value of the parameter ¢. Similarly, a point on the second line
has position vector (x, v,2) = (—1 + 5, 3 — 45, 1 — &) for some value of 5. Hence
if P(x, v, z) lies on both lines, there must exist 7 and s such that

(1] = 32+0]1 ¥+ =Eyna=(14%53 —495]1 —g5)
This means that the three equations
1=3t=-1+3s

2+5t=3-4s
I+t =1-—4%
must have a solution. Of course if there is no solution, the lines do not intersect. But

in this case t = 1 and s = —1 satisfy all three equations. Thus the lines do intersect
and the point of intersection is (x, y,2) = (1 — 32 + 541 + 1) =(-2, 7,2)
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using + = 1. Of course this point can be found from (x, y, z) = (=1 + 5 3 — 45
| — s)usings = —1.

L4 2 4

The description of (nonvertical) lines in the plane 1s usually done using the
notion of slope. The next example derives the point-slope formula using vector
| techniques.

EXAMPLE 11
Show that the line through Py(x,, y,) with slope m has direction vectord = (I, m) and
equation y — y, = m(x — x,). This equation 1s called the point-slope formula.

Solution Let Py(x,, y,) be the point on the line one unit to the right of £,—so thatx; = x; + 1.

by Then d = P,P, serves as direction vector of the line, so d = (x; — Xy, ¥, — Yo)
= (1, vy, — ¥,). But the slope m can be computed as follows:
o — y 1|r.- o
Hl — }I ‘}U = il '},D — }!1 2 }?f}
X;— X 1

Hence d = (1.m) and the parametric equations are x = x, + 4, y = Yy, + mi.
Eliminating ¢ gives y — Yy, = mf = m{x — Xg), as asserted.

o0

Note that the vertical line through Py(x,, y,) has a direction vector d = (0, 1) that
is not of the form (1, m) for any m. This result confirms that the notion of slope
makes no sense in this case. However, the vector method gives parametric equations
for the line:

X ::‘ID
y=5y t!I

Because v is arbitrary here (7 is arbitrary), this is usually written simply as x = x,.

sk Ay EXERCISES 4.1

1. Find |v| and 6, in Example 1. 4. Simplify the following where u, v, and w represent
VECLOTs.
(@) 6(u + 3v — w) — 12(v — 3u) + 32w - 2u — 2v)
o (b) 8(2u — v + 3w) + 3(5v — 6w) — 2(8u + 3v + Iw)

9. Use vectors to show that the line joining the midpoints of
two sides of a triangle is parallel to the third side and half

as long.
3. Let A, B. and C denote the three vertices of a triangle.
(a) If E is the midpoint of side BC, show that 5. Letu=(-1,1,2),v =(2,0,3),and w = (-1, 3,9).
AE = %{AB_' + AO). Compute the following in component form.
. (@) u+ 2v - w o (B) +(3u - v+ 4w
¢ (b) If Fis the midpoint of side AC, show that (€) 6u +2v — 2w o (d) 2v - 3(u+w)

ﬁ=%ﬂf‘.‘f (E}%{v—3u+1w} o 2u+v) —(Vv+w-—u
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6. Determine whether u and v are parallel in each of the
following cases.
(@) u=(1,2-1xv=1(2120
¢(b) u=(3-6,3):v=(-1,2-1)
(€) u=(1,0,1);v=(101)
¢(d) u=(20-1);v=(-804)
7. Let u and v be the position vectors of points P and O,
respectively, and let R be the point whose position vector
is u + v. Express the following in terms of u and v.
(a) OP *(0) OR
(c) RP ¢ (d) RO where 0 is the origin

8. In each case, find @ in component form.
(@) P(1,—1,3), 0(2,1,0)
¢ (b) P(2,0,1),Q(1,—1,6)
(c) P(0,0,1),Q(1,0,—3)
¢ (d) P(1,-1,2),0(1,—-1,2)
(e) P(1,0,-3),0(—1,0,3)
¢ (f) P(3,—1,6),0(1,1,4)
9. In each case, find a point Q such that @ has (1) the same
direction as v; (i1) the opposite direction to v.
(a) P(—1,2.2),v =(1,2:—1)
¢ (b) P(3,0,—1),v = (2,—-1,3)
10. Let u=(3,-1,0), v=(4,0,1), and w = (1,1,3). In
each case, find x such that:
(@) 3(2u + x) + w=2x—v
¢(b) 2(3v—x) = 5w + u— 3x
11. Let u=(1,12), v=1(0,1,2), and w = (1,0,—1). In
each case, find numbers a, b, and ¢ such that x = agu +
bv + cw.
(a) x = (2,~1,6) ¢(b) x = (1,3,0)
12. Letu=(3,—-1,0),v=(4,0,1),andz = (1, 1, 1). In each
case, show that there are no numbers a, b, and ¢ such that:
(@) au + bv + cz = (1,2,1)
¢(b) au + bv + cz = (5,6,—1)
13. let P, = P(2,1,-2) and P, = P,(1,—2,0). Find the
coordinates of the point P:
(a) + the way from P, to P,
¢ (b) . the way from P, to P,
14. Find the two points trisecting the segment between
P(2,3, 5)and (8, —06.,2).
15. Let P, = Pi(x,,y,, zy) and P, = Py(xy, ¥5, 25) be two
points with position vectors p, and p,, respectively. If r
and s are positive integers, show that the point P lying

the way from P, to P, has position vector

[ Y real
P Jr'+5111 i"+!:r[]|1

P 8

16. Find the vector and parametric equations of the following

lines.
(@) The line parallel to (2, —1,0) and passing through
Pil, —1.3)
¢ (b) The line passing through P(3, —1,4) and
O(1,0,—1)

(c) The line passing through P(3, —1,4) and O(3, —1,53)
¢ (d) The line parallel to (1, 1, 1) and passing through

Pil11)
(e) The line passing through P(1,0, —3) and parallel to
the line with parametric equations x = —1 + 21,

y=2—-tandz =3 + 3¢
¢ (f) The line passing through P(2, —1, 1) and parallel to
the line with parametric equations x = 2 — , y = 1,
andz = &
(g) The lines through P(1, 0, 1) that meet the line with
vector equation p = (1,2, 0) + #(2, —1,2) at points
at distance 3 from Py(1,2,0).

17. In each case, verify that the points P and Q lie on the line.
(@) x=3 — 4r P(—1,3,0),0(11,0,3)
y =2 +1

!
— 4 P(2,3,-3).0(—1,3,—9)

I

— 21

&
—
E
L

1 et e 3
1

— ey, ==

18. Find the point of intersection (if any) of the following
pairs of lines.

(@) x =3 +1¢ x =4 + 25
y=1— 2t y =6+ 35
z=3+ 3 z=14+5

*O) x=1-1 x =325
y=2+ 2 v=1+ g5
ol N g%

(€) (x.v,2) = 3,—1,2) + t(1,1,—=1)
(x, v,2) = (1,1, =2) + 5(2,0,3)
*(d) (x, v.,2) = (4, —1,5) + (1,0, 1)
(x, v.2) = (2,-7.12) + (0, —2.,3)

19. Show that if a line passes through the origin, the position
vectors of points on the line are all scalar multiples of
some fixed nonzero vector.

20. Show that every line parallel to the Z axis has parametric
equations x = x,, vy = ¥, 2 = ¢ for some fixed numbers x,
and :irr‘]_.
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91. Let d = (a, b, ¢) be a vector where &, b, and ¢ are all
nonzero. Show that the equations of the line through
Py(xg. Yo» Zo) With direction vector d can be written in the
form

X — X ¥—Y% _ £ 4

a b C

This is called the symmetric form of the equations.
29. (a) Prove (3) of Theorem 2.
+(b) Prove (4) of Theorem 2.

93. A parallelogram has sides AB, BC, CD and DA. Given
A(1,—1,2), C(2,1,0), and the midpoint M(1,0,~3) of AB,

. Find all points C on the line through A(1,—1,2) and
B = (2.0, 1) such that |AC|| = 2|[BC|.

95. Make a sketch like that in Figure 4.6, illustrating each of
the following ways of adding four vectors.

(@) [(u + v) + w| + 2

(b) (u + v) + (w + 2)

(€ u+[v+(w+12z)]

96. Let A, B, C, D, E, and F be the vertices of a regular hexa-
gon, taken in order. Show that AB + AC + AD + AE
+ AF = 3AD.

97. Let OAB be a right-angled triangle, as shown in the dia-
gram, with the right angle at 0. If C is the foot of the per-
pendicular from O to the hypotenuse, show that

|OA "
| aB I

AC= AB

0 B

(a) Let P,, P,, Ps, P, Ps, and Pg be six points equally
spaced on a circle with center C. Show that CP, +
CP, + CP, + CP, + CP5 + CP, = 0.

¢(b) Show that the conclusion in part (a) holds for any

even set of points evenly spaced on the circle.

(c) Show that the conclusion in part (a) holds for three
points.

(d) Do you think it works for any finite set of points
evenly spaced around the circle?

2

., Consider a quadrilateral with vertices A, B, C, and D 1n
order (as shown in the diagram). If the diagonals AC and

&

BD bisect each other, show that the quadrilateral is a par-
allelogram (this 1s the converse of Example 2). [Hint: Let
E be the intersection of the diagonals. Show that AB =
DC by writing AB = AE + EB.)

B
A

D C

«30. Consider the parallelogram ABCD (see diagram), and let
E be the midpoint of side AD. Show that BE and AC tn-
sect each other: that is, show that the intersection point 15
one-third of the way from E to B and from A to C. [Hint:
If F is one-third of the way from A to C, show that FB =
2EF and argue as in Example 2.]

C

A

31. The intersection of the three medians of a triangle 1s
called the centroid of the triangle. If u, v, and w are the
position vectors of the vertices of a triangle, show that the
centroid has position vector w(u + v + W).

39. Given four noncoplanar points in space, the figure with
these points as vertices is called a tetrahedron. The line
from a vertex through the centroid (see previous eXercise)
of the triangle formed by the remaining vertices is called
2 median of the tetrahedron. If u, v, w, and X are the posi-
tion vectors of the four vertices, show that the point on a
median one-fourth the way from the centroid to the vertex
has position vector +(u + v + w + X). Conclude that
the four medians are concurrent.

33. Prove the following parts of Theorem I: (a) part (6): (b)
part (7); (c) part (8).
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EXAMPLE 1

Yector Geometry

The Dot Product and Projections

Any student of geometry soon realizes that the notion of perpendicular lines is funda-
mental. As an illustration, suppose a point P and a plane are given and it 1s desired to
find the point Q that lies in the plane and is closest to F, as shown in Figure 4.13.
Clearly, what is required is to find the line through P that is perpendicular to the
plane and then to obtain Q as the point of intersection of this line with the plane.
Finding the line perpendicular to the plane requires a way to determine when two
vectors are perpendicular. Surprisingly enough, this can be done by using the follow-
ing formula for the length of a vector in terms of its components.

THEOREM 1 DN 2 75 g B

Let v = (x, y, z) be a vector. Then

V| = Jx% + ¥ + 22

where the notation vV indicates the positive square root.

Proof This is an application of the Pythagorean theorem.? Position v with its initial
point at the origin and its terminal point at P(x, y, z), as shown in the diagram, and
let u be the position vector of Q(x, y,0). If A = A(x, 0, 0), the lengths of the line
segments OA and AQ are |x| and |y|, respectively, 2 = x? + y? by the
Pythagorean theorem. However, the length of PQ is |z, and so, again by the

Pythagorean theorem, | 22 = (x2 + yY) + Z%, from which the desired
conclusion follows. &

THEOREM 2 BN 2 o

Distance Formula
The distance d between points P (x,, v, z,) and P,(x,, v,, Z,) is given by

[ , T T2
06 =)0+ s =) + (2 ~g)

Proof Theorem 3§4.1 gives PP, = (x;, — X;, ¥» — V;, Z» — 2;). So the result

follows by Theorem 1 because d = ||P,P,||. h 'S

Compute the distance between P,(3, —1,2) and P,(—1, 1,0).

‘The Pythagorean theorem is as follows: Given a right-angled triangle, the square of the length of the

hypotenuse equals the sum of the squares of the lengths of the other two sides. A proof is sketched in
Exercise 39,
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Solution

The Dot Product and Projections @

The distance is
JET =37 - DP +(0-27 =+16+4+4 =24 =276,

L2 &

Let u and v be two nonzero vectors and suppose they are positioned with a com-
mon initial point. Then they determine a unique angle 6 1n the range

0<P=T

(recall that 7 radians equals 180°). This angle 6 will be referred to as the angle
between u and v (see Figure 4.14). Clearly u and v are parallel if either § = 0 or
@ = m ; they are said to be orthogonal if § = 3—that s, it ¢ is a right angle. If one
of u and v is 0, the angle between them is not defined.

Among other uses, the following concept leads to a way of computing the angle
between two nonzero vectors.

DEFINITION I RN RS

The dot product u - v of two vectors u and v is defined as follows:

o lal| |v]| cos 6 ifuz0andv =0
=i ifu=0o0rv=>0

where @ is the angle between u and v.

Note that u - v is a number (even though u and v are vectors). For this reason, u - v is
sometimes called the scalar product of u and v.

The dot product of two vectors u and v is not easy to compute using the defini-
tion because the angle between the vectors is not usually known. However, the fol-
lowing fundamental theorem provides a very easy way of calculating u - v, provided
that u and v are given in component form (and so leads to a method of computing the
angle). The proof depends on the law of cosines from trigonometry: If a triangle has
sides of lengths a, b, and h, and if 0 is the angle between the sides of lengths a and b
(as in Figure 4.15), then

W =da + b*— 2abcos 8

b b
FIGURE 4.15
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Observe that this is a generalization of the Pythagorean theorem: If 6 = 5 (that is,
@ = 90°), then cos @ = 0 and the result becomes A* = a* + b°.

THEOREM 3 BN 275 1 Bt O

Let v; = (x,,¥,,2) and v, = (x,, y,, 2,) be two vectors given in component
form. Then their dot product can be computed as follows:

Vi V2=X5b+Yn+4%5

Proof The result is true if v; = 0 or v, = 0. Otherwise consider the triangle in the
diagram and apply the law of cosines.

2

v, = vilIF = (vl + [lvoll* = 2liv,[| [Iva]l cos ©
= [vilI* + [v,[ = 2v, - v,
It follows that v - v = {[[vy[? + [vo? — [v; — vi[P}). Because v, — v, = (x, — x,,

Y, = ¥, 2, — Z,)in component form, Theorem 1 gives
Vo Vpi= {00 0 + )+ (5 35 + 2)
_[(Iz - IL}E iy (}’2 - }’:}2 T (33 e 31)2”

The reader can verify that the right side reduces to x,x, + y,y, + 2,2, %

EXAMPLE 2
Compute u-vwhenu = (2,—1,3)and v = (1,4, —1).

Solution wu-.-v=2-1+(-1) - -4+3-1)=-5
e

The next theorem lists several basic properties of the dot product that we will use
repeatedly.

THEOREM 4
Let u, v, and w denote arbitrary vectors.

u - vis areal number
u-v
u-0=0=0-nu

u-u = |uff

1
-
=

+ (kv) for any scalar k

ol o d N O
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®

Proof (1), (2),and (3) These follow from the definition of u - v.
@) Ifu = (v, y,2), thenu + u = x* + y* + 22 = |u|? by Theorem 1.
(5)Ifu = (x, y,z)and v = (x, y,, ), then Theorem 3 gives
(ku) » v = (kx, ky, kz) » (x, ¥, 5))
= (kx)x; + (ky)y, + (k2)z,
= k(xx, + yy, + 28))
= k(u - v)

The verification that u - (kv) = k(u - v) is analogous and is left to the reader.
(6) This is verified as in (5). It s left as Exercise 35. @

Observe that (5) and (6) of Theorem 4 can be combined to enable us to make
such calculations as the following:

2u-3v — 2w + 4z) = 6(u - v) — 4(u - w) + B(u - z)

Such calculations are carried out without comment in what follows. Here 1s an
example.

EXAMPLE 3
Verify that Ju + v|? = [lul? + [P + 2(u - v).

Solution  Apply Theorem 4.

{u+v)-{u+v}:(u+v}-u+(u+v]-v

Il

o+ vIF

u-g+v-u+u-v-+vey

ul* + [IvI[* + 2(u - v)

L 4 2 4

As we have mentioned, one important use of the dot product is in calculating the
angle 6 between two nonzero vectors u and v. Because lu| # 0 and |jv| # 0, the

defining relationshipu - v = |jul| |[v]| cos 6 can be solved for cos ¢ to get
u-v
cos 8 =
- {1l

This can be used to find 6. In this connection, it is worth noting that cos @ has the
same signasu + v, SO

u-v>0 ifandonlyif  Bisacute (0 <6 < %)
u-v<_o0 it and only if Qis obtuse (¥ < 0 < )

u-v=20 if and only if 6 =1

In this last case, the (nonzero) vectors are perpendicular. The following terminology
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EXAMPLE 4

Solution

EXAMPLE 5

Solution

Vector Geometry

is used in linear algebra.

DEFINITION BN 2 75 e e B s

Two vectors u and v are said to be orthogonal if u = 0 or v = 0 or the angle
between them is 7.

Hence we have the following theorem:

THEOREM 5 BINCTIIGT e P b e I e

Two nonzero vectors u and v are orthogonal if and only ifu-v = 0.

Compute the angle betweenu = (—1,1,2)andv = (2, 1, —1).

HY

u-v —2+1-2 _ Ll Now recall that cos # and sin @

Wl v~ Jeve 2

are defined so that (cos @, sin @) is the point on the unit circle determined by the angle
6 (drawn counterclockwise, starting from the positive X axis). In the present case, we

(L 1

know that cos # = —+ and that 0 < 6 < 7. Because cos 5 = 3, it follows that

8= 1%’3 (see the diagram). X 2

Compute cosf =

Show that the points P(3, —1, 1), Q(4, 1,4), and R(6, 0, 4) are the vertices of a right
triangle.

The vectors along the sides of the triangle are

Evidently PQ - OR = (1,2,3)+(2, =1,0) =2 —2 + 0 = 0, so PQ and QR are
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EXAMPLE 6

Solution

EXAMPLE 7

Solution

The Dot Product and Projections

®

orthogonal vectors. This means sides PQ and OR are perpendicular — that 1s, the
angle at Q is a right angle.

L 2 &

Examples 6 and 7 demonstrate how the dot product can be used to verify geo-
metrical theorems involving perpendicular hnes.

A parallelogram with sides of equal length is called a rhombus. Show that the
diagonals of a rhombus are perpendicular.

Let u and v denote vectors along two adjacent sides of a rhombus, as shown in the
diagram. Then the diagonals are u — vand u + v, and we compute
(u-v)s(u+v)=u-(u+v)—-v-(u+yv)

=—u-ut+tu-v-V-u—VvV-y¥

= [hull* — [l
= {)
because |ju| = ||Vl (it is a rhombus). Henceu — vandu + vare orthogonal. ¢¢¢

The line through a vertex of a triangle, perpendicular to the opposite side is called an
altitude of the triangle. Show that the three altitudes of any triangle are concurrent.

Let the vertices be A, B, and C, and let P be the point of intersection of the altitudes
through A and B, as in the diagram. We must show that PC is orthogonal to AB; that
is, PC- AB = 0. We have AB = AC — BC, 50

PC- AB = PC - AC — PC - BC
— (PB + BO) - AC — (PA + AC) - BC
PB . AC + BC- AC — PA'- BC — AC - BC
0+ BC-AC — 0 — AC - BC
=0

1

L2 2

Projections

If a nonzero vector d is given, it is often useful to be able to write an arbitrary vector
u as a sum of two vectors,

u=u +u

where u, is parallel to d and u, = u — u; is orthogonal to d. Suppose that u and
d # 0 emanate from a common initial point Q (see Figure 4.16).
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(b)

FIGURE 4.16

Let P be the terminal point of u, and let P, denote the foot of the perpendicular
dropped from P to the line through Q parallel to d. Then u; = QP, has the required
properties:

1. w,isparalleltod

2. wu, = u — uisorthogonal tod

3. u=u, +u,

¥

DEFINITION BN 7 R e

The vector u, = OP, is called the projection of u on d. It is denoted

He g

u,=projg u

In Figure 4.16(a) the vector u;, = projy u has the same direction as d; however, 1t
has the opposite direction from d if the angle between u and d is greater than 3
(Figure 4.16(b)). Note that the projection u;, = projgu is zero if and only if u and d
are orthogonal.

Calculating the projection of u on d is remarkably easy.

THEOREM 6 AR, L AN ] e

Letuandd # 0 be vectors.

1. The projection u; of u on d is given by projyu = "——E d.

2. The vector u — proj, u is orthogonal to d.

Proof The vector u, = proj, u is parallel to d and so has the form u, = rd for some
scalar . The requirement that u — wu, and d are orthogonal determines 1. In fact it
means that (u — u,) - d = 0 by Theorem 5; and if u; = rd 1s substituted here, the
condition is



Section 4.2 The Dot Product and Projections @
0=@u —td)-d=u-d— #d-d) =u-d — df?
: u-d :
It follows that 1 = T where the assumption that d # 0 guarantees that |d||* #0. ¢
EXAMPLE 8
Find the projection of u = (2, =3,1)ond = (I, — 1,3) and express u = u; + u,
where u, is parallel to d and u, is orthogonal to d.
Solution The projection u, of uond is
: u-d 2+3+3 %
u = proj, u = d =—= —(l, =1, =11, -1, 3
I p .Jlli ||dl11 I.. g [_1)2 it 3L I
The vector u, = u — u, = (14, —25, —13) is orthogonal to d by Theorem 6
(alternatively, observe thatd - u, = 0), and u = u, + u, as required. 2 2
EXAMPLE 9
Find the shortest distance (see diagram) from the point P(1, 3, —2) to the line through
P,(2,0, —1) with direction vector d = (I, —1,0). Also find the point P, that lies on
the line and is closest to P.
Solution Letu = (1,3, —=2) — (2,0, —1) = (—1,3, —1) denote the vector from P, to P, and
let u, denote the projection of u on d. Thus
P{].?l.._z} “1"__[]-":1 -z 2-1_32+02d:—2d:{—2‘ 2_ D}
i d]|° I +(-H)"+0
\“ ~u by Theorem 6. We see geometrically that the point P, on the line is closest to P, so the
d distance is
P, T a
PP = Ju—u| = . 1 =D =3
To find the coordinates of P,, let p, and p, denote the position vectors of P, and
P,, respectively. Then p, = (2,0, —1) and p, = p, + U, = 2, —=1). Hence £
= P,(0,2, —1) is the required point. It can be checked that the distance from P, to
Pis /3, as expected.
L 2 2
ARV E A A%y Exercises 4.2
1. Compute ||v|| if v equals: 3. (a) Find a unit vector in the direction from (3. —1.4) to
(@) (2,-1,1) e (b) (1,—-1,2) (1;3,9).
() (1.0,—1) e (d) (—1,0,2) (b) Ifu # 0, when is au a unit vector?
(e) 2(1,—1.2) ¢ (f) —3(1.1.2) 4. Find the distance between the following pairs of points.
2. Find a unit vector in the direction of: (@) (3. —1.0)and (2,0, 1)

@@ (2.-2.1) o (B) (-2.-1,2) e (B) (2, —1,2)and (2,0, 1)
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¢

(¢) (—3,5,2)and(—1, 3, 3)
o (d) (4,0, —2)and (3,2,0)

5. Compute u - v where:

@ u=@2 -1L3)v=(1 -2
e b)) u=(1,2 —1)v=mu
(€) u=(l1,1, =3),v=2(2,1,1)

¢ (d) u=(3 -1,58),vy =6, =1, =)
() u=(xy2,v=_(abc0)
o (f) u=(a,bc)v=0
6. Find the angle between the following pairs of vectors.
(@) u=(1,0,3),v=1(2,01)
e B)u=C@G, -1,0,v=(-620)
(€) u=(7,—1,3),v=(,4 -1
e (d) u=(21 -1),v=(3673)
() u=(1, —1,0,v=(011
o () u=1(0,34,v=(52, -7,-1)
7. Find all real numbers x such that:
(a) (2. —1,3)and (x, —2, 1) are orthogonal
e (b) (2, —1, 1)and (1, x, 2) are at an angle of 5
8. Find all vectors v = (x, y, z) orthogonal to both:
(@) u, = (—1, —3,2)anduw, = (0, 1, 1)
e (B) u, = (3, —1,2)andu, = (2,0, 1)
(¢) u, = (2,0, —landu, = (—4,0,2)
e (d) u, = (2, —1,3)andu, = (0,0,0)
9. Find two vectors x and y that are both orthogonal to v =
(1, 2, 0) and such that x is orthogonal to y.
10. Consider the triangle with
(5, —2, 1), and R(7, 5, 3).
(a) Show that it is a right-angled triangle.
¢ (b) Find the lengths of the three sides and verify the
Pythagorean theorem.
11. Show that the triangle with vertices A(4,—7.9), B(6, 4, 4),
and C(7, 10, —6) is not a right-angled triangle.

vertices P(2,0, —3),

192. Find the three internal angles of the triangle with vertices:
(a) A3, 1, —2),B(3,0, —1),and C(5,2, —1)
e (b) A(3,1, —2),B(5,2, —1),and C(4,3, —3)
13. Show that the line through Py(3,1,4) and P2, 1,3)
is perpendicular to the line through P,(1, —1,2) and
B{0.°5,.3).

14. In each case, compute the projection of u on v.
(@) w=0G705%= (2 —-13)
e Blu=@G, —2,)Lv=411)
() u=(l, -1,2,v=@3, -L1)
e (du=@3 -2 -1),v=(-642)

.. !u-

15. In each case, write u = u, + u,, where u, is parallel to ¥
and u, is orthogonal to v.
(@) u=¢ -1, 1)L v=(, —-1,3)
e ®Yu=0310,v=(-214)
() u=(2, -1,0,v=(3,1, —1)
o (du=(3, -21),v=(-64 —1)

16. Calculate the distance from the point P to the line in each
case and find the point Q on the line closest to F.
(a) P(3,2,—1) line:(x y.2) = (2,1,3) + 13, -1, —2)
o (B) P(1,-1,3) line:(x y,2) =(1,0,—=1) + 13, 1,4)

17. Show that two lines in the plane with slopes m, and m, are
perpendicular if and only if mm, = —1. [Hinr: Example
11§4.1.]

18. (a) Show that, of the four diagonals of a cube, no pair is
perpendicular.
(b) Show that each diagonal is perpendicular to the face
diagonals 1t does not meet.

19. Given a rectangular solid with sides of lengths 1, I,

and /2 , find the angle between a diagonal and one of the
longest sides.

Consider a rectangular solid with sides of lengths a, b,
and c. Show that it has two orthogonal diagonals if and
only if the sum of two of @, b, and ¢? equals the third.

21. let A, B, and C(2, —1, 1) be the vertices of a triangle
where AB is parallel to (1, —1.1), AC is parallel to
(2.0, —1), and angle C is a right angle. Find the equation
of the line through B and C.

22. Given v = (x, y,2z) in component form, show that
the projections of v on i, j, and k are xi, yj, and zk,

respectively.

23. Canu-v = —7if jul| = 3 and |v| = 2? Defend your
answer.

24, Show that (u + v) * (u — v) = [u® — |v|} for any

vectors u and v.
25. (a) Show that u + v[2 + Ju — v[[2 = 2(Jul}? + |Iv[?
for any vectors u and v.
+ (b) What does this say about parallelograms?

26. Show that if the diagonals of a parallelogram are perpen-
dicular, it is necessarily a rhombus. [Hint: Example 6.]

27. Let A and B be the end points of a diameter of a circle
(see diagram). If C is any point on the circle, show that
AC and BC are perpendicular. [Hinr: Express AC and BC
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in terms of u=0A and v = GT where O is the
center.]

L

8. If u and v are orthogonal, show that |ju + v||2 = |ju?
+ VIR

29. Let u, v, and w be pairwise orthogonal vectors.
(a) Show that |u + v + w|[2 = [ul + [v[P + [wlP.
¢ (b) If u, v, and w are all the same length show that they
all make the same angle withu + v + w,

'30. (a) Show that m = (a, b) is perpendicular to the line
ax + by + ¢ = 0.

(b) Show that the shortest distance from Fy(x,, ¥;) 1O

| ax, + by, + c|

the line is [Hint: If P, is on the

—
Vat + b
line, projectu = P,F,onn.]
31. Assume u and v are nonzero vectors that are not parallel.
Show that w = |[ullv + [[v|u is a nonzero vector that
bisects the angle between u and v.

32. Let o, B, and 7y be the angles a vector v # () makes with the
positive X, ¥, and Z axes, respectively. Then cos «, cos B,

and cos ¥y = ﬁ
v

¢ (b) Show that cos’a + cos’f + cos’y = L.

Section 4.3

33.

37.

;s 2 2 - 2
|IIII + Vi¥a o E1E-1| = JI] + ¥ + il ’\'IIE + ¥ -+ L3

39.

e

Let v # 0 be any nonzero vector and suppose that a vec-
tor u can be written as u = p + q, where p is parallel to
v and q is orthogonal to v. Show that p is necessarily the
projection of u on v. [Hint: Argue as in the proof of
Theorem 6.]

Use Theorem 284.1 and Theorem 1 to venfy the formula

Ikv]| = |k| ||v|| for all scalars k and vectors v.

Prove (6) of Theorem 4.

Let v # 0 be a nonzero vector and let @ # 0 be a scalar.

If u is any vector, show that the projection of u on v

equals the projection of u on av.

(a) Show that the Cauchy-Schwarz inequality [u - v|<
|lull Iv]| holds for all vectors u and v. [Hint: [cos 8] < |
for all angles 0.]

(b) Show that [u - v| = [ju|| |[v]if and only if u and v are
parallel, [Hint: Wheniscos 8 = = 17]

(c) Show that

2 |I

2

holds for all numbers x,, x5, v, ¥o. 2;, and z,.
(d) Show that |xy + vz + zx| < x? + ¥ + Z2forallx, y,
and z.
(e) Show that (x + ¥ + 2)* < 3(x* + ¥* + %) holds for
all x, v, and z.
Prove that the triangle inequality flu + v|| < |juf| + [|v||
holds for all vectors u and v. [Hint: Consider the triangle
with u and v as two sides.]
Prove the Pythagorean theorem. [Hint: In the diagram, let
h=p+q Then £ = £ and § = § using similar trian-
gles. ]

and cos 7 are called the direction cosines of the vector v. p
(@) If v = (a, b, ¢), show that cos a = 4 cos g= i
M i .
a

Planes and the Cross Product

It is evident geometrically that among all planes that are perpendicular to a given
straight line there is exactly one containing a given point. This fact can be used to
give a very simple description of a plane. To do this, it is necessary to introduce the

following notion:
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s i A SO AR
DEFINITION ESNIRER L7 e
A nonzero vector n is called a normal to a plane if it is orthogonal to every
vector in the plane.

For example, the coordinate vector k is a normal to the X-¥ plane.

FIGURE 4.17

Given a point P, = P,(x,, Yo, Z) and a nonzero vector n, there is a unique plane
through P, with normal n. By Figure 4.17 a point P = P(x, y, z) lies on this plane i
and only if the vector PP is orthogonal to n — that is, if and only if n - EP=1.
Because P,P = (x — X5 ¥ — Y» 2 — Zo), this gives the following:

SCALAR EQUATION vkt IO ¥.1) o R
OF A PLANE
The plane through P(xy, Y Z,) With normal n = (q, b, ¢) # 0 is given by

alx —xg) + by —n) +c2— ) =0

In other words, the point P(x, y, z) is on this plane if and only if x, y, and z
satisfy this equation.

EXAMPLE 1
Find an equation of the plane through Py(1, —1, 3) with normaln = (3, —1,2).

Solution  Here the general scalar equation becomes
3(x—D—-(+ 1)+ 2z—-3)=0
This simplifies to 3x —y + 2z = 10.

0

If we write d = ax, + by, + cz,, the scalar equation shows that every plane
with normal n = (a, b, ) has a linear equation of the form
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EXAMPLE 2

Solution

EXAMPLE 3

Solution 1

Planes and the Cross Product

&

ax + by + cz = d ()

for some constant d. Conversely, the graph of this equation is a plane withn = (a, b, ¢)
as a normal vector (assuming that a, b, and c are not all zero).

Find an equation of the plane through Py(3, —1, 2) that is parallel to the plane with
equation 2x — 3y = 6.

The plane with equation 2x — 3y = 6 has normal n = (2, —3,0). Because the two
planes are parallel, n serves as a normal to the plane we seek, so the equation is
2x — 3y =d for some d by equation (*). Insisting that Py(3, — 1, 2) lies on the plane
determinesd:d = 2 - 3 — 3(—1)=9. Hence the equation is 2x — 3y = 9.

0

Consider points Py(x,, ¥y, 2o) and P(x, y, z) with position vectors p, = (X, V. Zy)
and p = (x, y, 7). Given a nonzero vector n, the scalar equation of the plane through
P.(x,, Vo 2o) with normal n = (q, b, ¢) takes the vector form:

VECTOR EQUATION Sty s SO Mo 8.7 o Ce
OF A PLANE

The plane with normal n # 0 through the point with position vector p; Is given
by

n-(p—py) =0

In other words, the point with position vector p is on the plane if and only if p
satisfies this condition.

Moreover, equation (*) translates as follows: Every plane with normal m has vector
equation
n-p=4d

for some number d. This is useful in the second solution of Example 3.

Find the shortest distance from the point P,(2,1, —3) to the plane with equation
3x — vy + 4z = 1. Also find the point on this plane closest to P,.

The plane in question has normal n = (3, —1,4). Choose any point P, on the plane
— say Py(0, —1, 0) — and let P(x, y, z) be the point on the plane closest to P, (see the
diagram). The vector from F, to P, is u = (2,2, —3). Now erect n with its initial
point at P,. Then PP, = wu, is the projection of u on n:
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Solution 2

Yector Geometry

n-u_ B -
u, = M n=>@G -L4)=0G-1 4
_____ ",:'l]:[z'lt:-_"}:I
Hence the distance is [PP]| = |ju,]| = &2, To calculate point P, let p = (x, y, 2)

and p, = (0, —1,0) be the position vectors of P and P, Then p = p, + u —
u, =0, —-1,0) + (2,2,-3) + 53, -1 4 = (%, &, =2). This gives the coor-
dinates of P.

Letp = (x, y,z) and p, = (2, 1, —3) be the position vectors of P and F,. Then P 1s on
the line through P, with direction vector n, so p =p, + m for some value of r. In
addition, P lies on the plane, son - p = 3x — y + 4z = 1. This determines f:

l=n-p=n-:(p,+m=n-p,+fnf=-7+ 126)
This givest = £ = 2, so
(x, , D=p=p,+m=(2, 1, =3)+#%@3, -1, 4) = (38, 9, -23)

as before. This determines P (in the diagram), and the reader can verify that the
required distance is | PP, || = & /26, as before.

o

It is clear geometrically that if three distinct points P, Q, and R are not all on
some line, there is a unique plane that contains all three. Now the vectors PQ and PR
lie in the plane, so any nonzero vector orthogonal to both PQ and PR serves as a nor-
mal. Hence we must find a systematic way to discover a vector orthogonal to two
given vectors. The cross product provides such a vector.

The Cross Product

DEFINITION BN 7 5 i B

Given vectors v, = (x;, y;, 2;) and v, = (x,, ¥,, Z5), the cross product v, X v, 18
defined by

v, X ¥, = (h2 — 200, —(0122 — 2%), (X1y2 — YiX2))
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¢

There is a useful way to remember this definition. Recall that any vector u = (x, v, 2)
can be writtenasu = xi + yj + zk, wherei = (1,0,0),j= (0, 1.0),and k = (0.0, I)
are the coordinate vectors introduced in Section 4.1. Then the cross product can be
described as follows:

DETERMINANT FORM S 1akSy,~ Ch 0 Rt - s s
OF THE CROSS PRODUCT

Ifv, = (x,, ¥,, z,) and v, = (x5, ¥,, 2,) are two vectors, then

i j k
v, Xv, =detlx, y g
(X2 V2 D
i 4L, % 4. ™ N
= = J-+ Kk
Yo & Xy 4 Xy ¥

where the determinant is expanded along the first row by cofactors.

EXAMPLE 4
Findu X vifu=(2, —1,4)andv = (1, 3, 7).
Solution i § K
-1 4 2 4 2 -1
uxv=gdet|2 -1 4 =| ‘i—l ‘j+‘ ‘k
3 7 1 7 1 3
|4 3 7]
= —19i — 10j + 7k
= (-19, -10, 7)

o ¢

It is easily verified that u X v is orthogonal to both u and v in Example 4. This
holds in general by the following result.

THEOREM 1 BN 7 i B e s

Letw = (x;, ¥, 21), U = (X3, ¥5, o), and ¥ = (x;, ¥3, Z3). Then

w-(uxv)=det|x, ¥ z
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EXAMPLE 5

Solution 1

Solution 2

Yector Geometry

Proof Recall thatw « (u X v)is computed by multiplying corresponding compo-
nents of wand u X v and then adding. The result follows by expanding the determi-
nant along row 1. 2

Because of Theorem 1 and the determinant form of the cross product, scveral
properties of the cross product follow easily from properties of determinants (they
can also be verified directly).

THEOREM 2 S, AN T R
Let u, v, and w denote arbitrary vectors.

u X vIsavector

u X v is orthogonal to both u and v
uxXx0=0=0XxXu

uaxXu=0

uXxXv=—(vxu

(ku) X v = k(u X v) = u X (kv) for any scalar &
uxX(v+w =@uxv)+(uxXw
(v+w)Xu=(vXu +(wXu)

il o

Proof (1) is clear; (2) follows from Theorem I; and (3) and (4) follow because the
determinant of a matrix is zero if one row is zero or two rows are identical. If two
rows are interchanged, the determinant changes sign, and this proves (5). The proofs
of (6), (7), and (8) are left as Exercise 27. @

Find an equation of the plane through P(1, 3, —2), Q(l, 1, 5), and R(2, -2, 3).

The vectors P_Q' = (0, —2,7)and PR = (1, —5, 5) lie in the plane, so

i j k
POx PR=det|0 -2 7|=25i+7j+2k=(257 2)
I =5 3

is a normal to the plane (being orthogonal to both PQ and PR). Because P(1,3, —2)
lies in the plane, the equation is 25(x — 1) + 7(y — 3) + 2(z + 2) = 0. This simpli-
fies to 25x + 7y + 2z = 42. Incidentally, the reader can verify that this same equa-
tion is obtained if either Q or R is used as the point lying in the plane.

The plane has equation ax + by + ¢z — d = 0 and substituting £, (). and R gives
three equations
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EXAMPLE 6

Planes and the Cross Product

@

a+3b-2c—d =10
a+b+5-d=90
2a-2b+3c—d =0

Gaussian elimination gives a = 25t, b = 7Tt, ¢ = 21, d = 421. Taking 1 = |
gives the preceding solution. L2 2 2

Find the shortest distance between the nonparallel lines

(x, v 2)=(, 0, =)+ 12, 0, 1)

(x, » 2) =G, 1, 0) + s(1, 1, 1)
Then find the points A and B on the lines that are closest together.
Direction vectors for the two linesare d, = (2,0, 1)andd, = (1,1, —1).s0
&
1| = (-1, 3, 2)

— ) e

i
n=d, xd, = det|2
1

=

is perpendicular to both lines. Consider the plane containing the first line with n as
normal. This plane contains P (1,0, —1) and is parallel to the second line. Because
P,(3, 1, 0) is on the second line, the distance in question is just the shortest distance
between P,(3, 1, 0) and this plane. The vector u from P, to P, is u = PP,=(2,1,1)
and so, as in Example 3, the distance is the length of the projection of u on n.

u.n | Ju-n 3 34

TF T e Via 14

Note that it is necessary that n = d, X d, not be zero for this calculation to be pos-
sible. As is shown later (Theorem 4), this is guaranteed by the fact that d, and d, are
not parallel.

The points A and B have coordinates A(1 + 21, 0,t — 1)and B(3 + 5, 1 + 5, —5)
for some s and ¢, so AB = 2+s — 2t 1 + 5 1 — s —t). This vector 1s orthogonal
to d, and d., and the conditions AB - d, = 0 and AB - d, = 0 give equations 5t —

s =5 and t — 3s = 2. The solution is s =  and + = 7 so the points are

A(#%, 0, ) and B3}, &, ) Wehave |AB| = 2, as before.

distance =

o0

Recall that the dot product of two vectors u and v was defined by u - v = || v
cos 6, where @ is the angle between u and v. One virtue of this defimtion 1s that
it does not depend on any coordinate system (although u - v can be computed
using Theorem 3§4.2 when the components of u and v are given in some coordinate
system). However, the cross product u X v has been defined in terms of
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FIGURE 4.18

Yector Geometry

components of u and v, and the question naturally arises whether u X v can be
defined in terms of the vectors u and v themselves without any reference to coordi-
nates. In other words, can the length and direction of u X v be given in terms of the
length and direction of u and v? The answer is affirmative and is based to some
extent on the following identity relating the dot product and the cross product.

THEOREM 3 DN RN
Lagrange Identity*

If u and v are any two vectors, then

lu X v = [P flv[? — (u - v)?

Proof Given u and v, introduce a coordinate system and write u = (x,. y,, z,) and
v = (X, V5 Z5) in component form. Then all the terms in the identity can be computed
in terms of the components. The detailed proof is left as Exercise 26. ¢

An expression for the magnitude of the vector u X v can be easily obtained from
the Lagrange identity. If 6 is the angle between u and v, substituting u - v = |ju| ||v|
cos # into the Lagrange identity gives

v|[? sin? 6

o
using the fact that | — cos?@ = sin*6. But sin 6 is nonnegative on the range 0 < 6
< 7, so taking the positive square root of both sides gives

> vl =l flviP = fjul? V][ cos?6 = [ju

> wll = Jjul] [}v]] sin 6

This expression for [[u X v|| makes no reference to a coordinate system and, more-
over, it has a nice geometrical interpretation. The parallelogram determined by the
vectors u and v has base length ||v|| and altitude |jul| sin 8 (see Figure 4.18). Hence the
area of the parallelogram formed by uw and v is

(Jull sin O)[fv]| = fu > v|

This is also valid if u and v are parallel because thenu X v = 0 by Theorem 2 and
sin @ = 0(as & = 0 or ). This proves the first part of Theorem 4,

‘Joseph Louis Lagrange (1736-1813) was born in Italy and spent his early years in Turin. At the age of 19
he solved a famous problem by inventing an entirely new method, known today as the calculus of vana-
tions, and went on to become one of the greatest mathematicians of all time. His work brought a new level
of rigor to analysis and his Mécanique Analytigue is a masterpiece in which he introduced methods still in
use. In 1766 he was appointed to the Berlin Academy by Frederick the Great who asserted that the “great-
est mathematician in Europe” should be at the court of the “greatest king in Europe.” After the death of
Frederick, Lagrange went to Paris at the invitation of Louis XVI. He remained there throughout the revolu-
tion and was made a count by Napoleon, who called him the “lofty pyramid of the mathematical sciences.”
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EXAMPLE 8
Solution
Pouer===""T
iy K
Distance i

Planes and the Cross Product

THEOREM 4 AN, AN T R

If u and v are two vectors and # is the angle between u and v, then

1. |lu X v|| = |ju| |lv] sin & = area of the parallelogram determined by
uandyv

2. wuand v are parallel if and only ifu X v = 0

Proof of (2) By (1), u X v = 0if and only if the area of the parallelogram is
zero. But the area vanishes if and only if u and v have the same or opposite direction
— that is, if they are parallel. 4

Find the area of the triangle with vertices P(2, 1, 0), Q(3, — 1, 1), and R(1, 0, 1).

First compute RP = (1,1, —1) and RQ = (2, —1, 0). The area of the triangle is half
the area of the parallelogram determined by these vectors (see the diagram), so it
equals +|RP X RQ|. Now

SR
RPx RO=det|1 1 —1|=(1, -2 -3)
8 = 0

so the area of the triangle is L[(—1, =2, =3)] = L1 +4+9 = {14
*oe

Theorem 4 can also be used to find the shortest distance from a point to a line.
The next example illustrates this by resolving part of Example 9§4.2.

Find the shortest distance (see diagram) from the point P(1, 3, —2) to the line through
P2, 0, —1) with direction vectord = (1, —1,0).

Computeu = PP = (—1,3, —1). Then

i j k
uxd=det|-1 3 -1|=(-1-1-2)
L 1 =1

so the parallelogram determined by u and d has area u x dl| = VI+1+4 =46
On the other hand, the area of this parallelogram equals ||d|| times the distance in
question. Hence the distance from P to the line 1s
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FIGURE 4.19

EXAMPLE 9

Solution

Vector Geometry

Of course this agrees with Example 9§4.2, but the technique here is entirely different.
L2 2

If three vectors u, v, and w are given, they determine a “squashed” rectangular
solid called a parallelepiped (Figure 4.19), and it is often useful to be able to find the
volume of such a solid. The base of the solid is the parallelogram determined by u
and v. so it has area A = |lu X v|| by Theorem 4. The height of the solid is the
length h of the projection of wonu X v. Hence

hziw-(u){ﬂ1 || ||:|W'(“KVJ|:]w-{uxv}|

TR lu x| A

Thus the volume of the parallelepiped is hA = [w + (u X V)|.

THEOREM 5 B, AN T

The volume of the parallelepiped determined by w, w, and v (Figure 4.19) is
given by |w - (u X v)|.

Find the volume of the parallelepiped determined by the vectors w = (1.2 —1).
u=(,1,0,andv = (—2,0, 1).

We use Theorem 1.

=

1 2 -1
w-(uxv)=det|f I 1 0}j=-3
20 1
Hence the volume is |w + (u X v)| = |=3| = 3 by Theorem 5.

*o¢

We can now give a coordinate-free description of the cross product u X v. Its
magnitude is given by |ju X v|| = [juf|[|vl| sin 6, and if u X v # 0, its direction is
very nearly determined by the fact that it 1s orthogonal to both u and v and so points
along the line normal to the plane determined by u and v. It remains only to decide
which of the two possible directions is correct.

Before this can be done, the basic issue of how coordinates are assigned must be
clarified. When coordinate axes are chosen in space, the procedure is as follows: An
origin is selected and two perpendicular lines (the X and Y axes) are chosen through
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1. Compute u X v where:

Planes and the Cross Product
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the origin, the positive direction on each of these axes being chosen quite arbitrarily.
Then the line through the origin normal to this X-Y plane is called the Z axis, but
there is a choice of which direction on this axis is the positive one. The two possibili-
ties are shown in Figure 4.20, and it is a standard convention that Cartesian coordi-
nates are always right-hand coordinate systems. The reason for this terminology is
that, in such a system, if the Z axis is grasped in the right hand with the thumb point-
ing in the positive-Z direction, then the fingers curl around from the positive X axis to
the positive Y axis (through a right angle).

W4

z X
Left-hand system Right-hand system
FIGURE 4.20

Suppose now that u and v are given and that 6 is the angle between them
(s0 0 € # < ). Then the direction of |jlu X v| is given by the right-hand rule.

S sy
RIGHT-HAND RULE  So#any; ST0 Mt .7 s
If the vector u X v is grasped in the right hand and the fingers curl around
from u to v through the angle 6, the thumb points in the direction of u X v.

To indicate why this is true, introduce coordinates in such a way that the initial points
of u and v are at the origin, u points along the positive X axis, v lies in the X-Y plane,
and v and the positive ¥ axis are on the same side of the X axis. Then, in this system,
u and v have component form u = (g, 0,0) and v = (b, ¢, 0), where a = 0and ¢ =
0. The situation is depicted in Figure 4.21. The right-hand rule asserts that u X v
should point in the positive Z direction. But our definition of u X v gives

— —

1

J
u X v = det 0 = (0, 0, ac) = (ac)k
C

= o FW

a
_b =

and (ac) k has the positive Z direction because ac > 0.

Exercises 4.3

(@ u=(1,2,3),v =(1,0,—1) () u=@G3-2.1), v =(1,1.1)
¢(b) u=3,-10),v =(—6.2,0) o(d) u=(2,0,-1),v=(.47)
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Q. Ifi, j, and k are the coordinate vectors, verify that i X j
=k, jXk=1andk Xi = ].

3. Show that u X (v X w) need not equal (u X v) X w by
calculating both when u = (1,1,1), v = (I, 1,0), and
w = (0,0, 1).

4. Find two unit vectors orthogonal to both u and v if:
{a) v = (L2.2)% =121
o(b) u = (1,2,-1),v = (3,1,2)

5. Find the equation of each of the following planes.
(a) Passing through A(2, 1,3), B(3,—1,5), and C(0,2, —4)
¢(b) Passing through A(l, —1, 6), B0, 0. 1), and
Ci:T —11)
(€) Passing through P(2, —1.4) and parallel to the plane
with equation 3x — 2y —z = 0
¢(d) Passing through P(3, 0, —1) and parallel to the plane
with equation 2x — y+2z = 3
(e) Containing P(3,0, —1) and the line (x,y,2) =
(0,0,2)+1(1,0,1)
¢(f) Containing P(2,1,0) and the line (x, ¥, 2) =
(3,-1,2)+1,0,—1)
(g) Containing the lines (x, y,2) = (1, —1,2) + (1,0, 1)
and (x, v, z) = (0,0,2) + #1, —1,0)
¢(h) Containing the lines (x, y,2) = (3,1,0) + (1, —1,3)
and(x, y,2) =(0,—2.3) + #2,1,—1)
(i) Each point of which is equidistant from P(2, —1,3)
and O(1,1, —1)
¢(j) Each point of which is equidistant from P(0, 1, —1)
and 02, —1, —3)
6. In each case, find the equation of the line.
(a) Passing through P(3, —1,4) and perpendicular to the
plane 3x — 2y — z =10
¢(b) Passing through P(2, —1,3) and perpendicular to the
plane 2x + y = 1
(¢) Passing through P(0,0,0) and perpendicular to the
lines (x, v,2) = (1,1,0) + #2,0, —1) and (x, y,2) =
(L] —5) 4+ ), =177)
¢(d) Passing through P(1,1, —1) and perpendicular to the
lines (x, v.2) = (2,0,1) + K1,1,—2) and (x, y,Z) =
(5.5 =2) 4+ H1.2. =3
() Passing through P(2, 1, —1), intersecting the line
(x,v,z) = (1,2, —1) + #3,0,1), and perpendicular
to that line
#(f) Passing through P(1. 1, 2), intersecting the line
(x, v,2) = (2,1,0) + «1, 1, 1), and perpendicular to
that line
7. In each case, find the shortest distance from the point P to
the plane and find the point Q on the plane closest to P.
(a) P(2,3,0); plane with equation 5x —y + z = 1
¢(b) P(3, 1, —1); plane with equation2x + y —z = 6

8. (a) Does the line through P(1,2, —3) with direction vec-
tord = (1,2, —3) lie in the plane 2x — y — z = 37
Explain.

¢(b) Does the plane through P(4.0,5), O(2,2,1), and
R(1, —1,2) pass through the origin? Explain.

9. Show that every plane contamming P(1.2, —1) and
(O(2,0, 1) must also contain R(—1,6, —5).

10. Find the equations of the line of intersection of the fol-
lowing planes.
(@) 2x — 3y + 2z =S5andx + 2y —z = 4
o) Ix+y—2z=landx + ¥y + =3

11. In cach case, find all points of intersection of the given
plane and the line (x, v, 2) = (1, —2,3) + (2,3, —1).
(@) r—3yv+2:=4
¢b) 2x—y—z=5
(€) 3x—y+z=28
o(d) —x+4v+3z2=06

12. Find the equations of all planes:
(@) Perpendicular to the line (x, v,2) = (2, =1, 3) +
12 1:3)
¢(b) Perpendicular to the line (x,y,2) = (1,0, —1) +
1(3,0,2)
(c) Containing the origin
#(d) Containing P(3.2, —4)
(e) Containing P(1,1, —1)and Q(0, 1, 1)
¢(f) Containing P(2, —1,1) and Q(1,0,0)
(g) Containing the line (x, v,2) =(2,1,0) + #(1, —1,0)
¢(h) Containing the line (x,y,2) =(3.0,2) + «(1,2, 1)

13. [f a plane contains two distinct points P, and P, show that
it contains every point on the line through £, and P,.

14. Find the shortest distance between the following pairs of
parallel lines.
(a) (x v.2) = 2.~1.3) + 1(1,—1.4)
(. yv,.2) = (1,0.1) +#l,—1,4)
#(b) (x, v.2) = (3,0,2) + 1(3,1,0)
{x:y )= (=1,22) +43,1,0)

15. Find the shortest distance between the following pairs of
nonparallel lines and find the points on the lines that are
closest together.

(8) (x.y z} = (3;0.1) + 52, },—3)
% ¥:2r = (1 =1 0 L0 1)
e(b) (x, v,2) = (1,—1,0) + s(1,1,1)
(x ¥.20= 12,=1.3) +.43. 1.0
)y s LD+ al, .~
(x, v.2) = (1,2,0) + 1(1,0,2)
o(d) (x, v,2) =(1,2,3) + 5(2,0,—1)
(x. v.2) =3, -1, + K1, 1,0)

1l
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16. Find the area of the triangle with the following vertices.
(a) A(3,—-1,2),B(1,1,0), and C(1,2, —1)
+(b) A(3,0,1), B(5,1,0), and C(7,2,—1)
(¢) A(1,1,-1), B(2,0,1), and C(1, —1,3)
o(d) A(3,—1,1), B(4,1,0), and C(2, —3,0)
17. Find the volume of the parallelepiped determined by w, u,
and v when:
(@) w=1(2,1,1),v = (1,0,2),and u = (2,1,—1)
¢(b) w=(1,0,3),v = (2,1,-3),andu = (L, 1, 1)
18. Let P, be a point with position vector p,. and let ax + by
+cz = d be the equation of a plane with normal n =
(a, b, c).
(a) Show that the point on the plane closest to F, has
d — (py* M)
(L1l
p=p,+ mforsomesandp-n =d.|
#(b) Show that the shortest distance from F; to the plane
ld — (py = M)
] |
(c) Let P, denote the reflection of F, in the plane — that
is, the point on the opposite side of the plane such
that the line through P, and P;is perpendicular to
d = (py * M)
[l

position vector p = Py *+ n. [Hint:

15

the plane. Show that p, + 2 n is the

position vector of Py.

9. Simplify (au + bv) X (cu + dv).

Show that the shortest distance from a point P to the line
|RP x d]

|l

Let u and v be nonzero, nonorthogonal vectors. If @ is the
a x ¥

u-v
Show that points A, B, and C are all on one line if and
only if AB X AC = 0.

Show that points A, B, C, and D are all on one plane if
and only if AB - {AC X AD) = 0.

Use Theorem 5 to confirm that, if u, v, and w are mutual-
ly perpendicular, the (rectangular) parallelepiped they
determine has volume [Jul| ||v]| [/w]|.

Show that the volume of the parallelepiped determined by
g, v,andu X visfu x v|

Complete the proof of Theorem 3.

through P, with direction vector d is

angle between them, show that tan 6 =

Prove the following properties in Theorem 2.
(a) Property 6  #(b) Property 7 (c) Property 8

(a) Showthatw - (u X V)=u-(v X w)=v-(w X u)
holds for all wvectors w, u, and v. [Hinw
Theorem 1.1

Planes and the Cross Product

¢(b) Show that v — w and (u X

29.

30.

31.

32.

33.

+34.

@

v) + (v X w) +

(w x u) are orthogonal.

Show that u X (v X w) = (u - w)v — (0 * V)W
[Hint: First do it for u = i, j, and Kk: then write u = xi +
yj + zk and use Theorem 2.]

Prove the Jacobi
(w X u) +w X (u
exercise. |

u X (v X w)+v X
[Hint: The previous

identity:
¥ ov) =0
Show that (u X v) + (w X zZ) = del[u' o 1

VW V¥-+I

[Hint: Exercises 28 and 29.]

Let P O, R, and § be four points, not all on one plane, as
in the diagram. Show that the volume of the pyramid they
determine is -[PQ - (PR X PS)| |Hint: The volume of a
cone with base area A and height h is +Ah.]

0

R

Consider a triangle with vertices A, B, and C, as in the

diagram. Let a, B, and 7y denote the angles at A, B, and C,

respectively, and let a, b, and ¢ denote the lengths of the

sides opposite A, B, and C, respectively. Write u = AB,

v = BC, and w = CA.

(a) Deduceu + v + w = 0.

(b) Show that u X v=w X u=v X w. [Hint
Computen X (u + v + wiandv X (u + v + w).]

(€) Deduce the law of sines:

sin o sinfi _ siny
I b ¢

Let A be a 3 X 3 matrix. Given vectors u, v, and W,
show that the volume of the parallelepiped determined by
ud, vA, and wA equals |det A| times the volume of the
parallelepiped determined by u, v, and w.
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Chapter 4 Yector Geometry
35. Show that the (shortest) distance between two planesn - p 38. Given the cube with vertices P(x, v, z), where each of x, y,
. . |dy, — d| and z is either 0 or 2, consider the plane perpendicular
—— 5 = ‘ al 1% # i : =
Ganica & B y WHR DA NOTHR LS || to the diagonal through P(0.0,0) and P(2,2,2) and
bisecting it.

36. Let A and B be points other than the origin, and let a and
b be their position vectors. If a and b are not parallel,
show that the plane through A, B, and the origin is given
by {P(x, v, 2)|(x, ¥, 2) = sa + th for some s and t}.

(a) Show that the plane meets six of the edges of the
cube and bisects them.

(b) Show that the six points in (a) are the vertices of a
regular hexagon.

37. Let A bea2 x 3 matrix of rank 2 with rows r, and r,.
Show that .#’= (XA|X = [x y]; x, y arbitrary} is the
plane through the origin with normal r; X r,.

A% Section 4.4 An Application to Least Squares Approximation (Optional)

In many scientific investigations, data are collected that relate two variables. For
example, if x is the number of dollars spent on advertising by a manufacturer and y 1s
the value of sales in the region in question, the manufacturer could generate data by
spending x,, Xx,, . . . , X, dollars at different times and measuring the corresponding
sales values y;, ¥5, . . .4 ¥,

Suppose it is known that a linear relationship exists between the variables x and y
— in other words, that y = a + bx for some constants ¢ and b. If the data are plot-
ted, the points (x,, y,), (X3, ¥5), - . ., (x,, ¥,) may appear to lie on a straight line and
estimating a and b requires finding the “best-fitting” line through these data points.
For example, if five data points occur as shown in Figure 4.22, line 1 1s clearly a bet-
ter fit than line 2. In general, the problem is to find the values of the constants a and b
such that the line y = a + bx best approximates the data in question. Note that an
exact fit would be obtained if @ and b were such that y, = a + bx, were true for each
data point (x,, y;). But this is too much to expect. Experimental errors in measurement
are bound to occur, so the choice of @ and b should be made in such a way that the
errors between the observed values y, and the corresponding fitted values a + bx; are
in some sense minimized.

Y Line? Line!
l:-rjx }’5}

(xg ¥a)

FIGURE 4.22

The first thing we must do is explain exactly what we mean by the best fit of a
line y = a + bx to an observed set of data points (x,, ¥,), (X3, ¥2), - . ., (x,, y,). For
convenience, write the linear function a + bx as
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fix) =a + bx
by ; so that the fitted points (on the line) have coordinates (x;, flx)), . . ., (x,, flx,)).
. g G, foe) Figure 4.23 is a sketch of what the line y = flx) might look like. For each i the
4 1x,, v,) observed data point (x,, y;) and the fitted point (x, f{x;)) need not be the same, and the
=R !|f-‘?;rﬁiﬂ} distance d, between them measures how far the line misses the observed point. For
\ | | this reason d. is often called the error at x;, and a natural measure of how close the
d, I I line y = flx) is to the observed data points is the sum d, + d, +- -+ d, of all these
Xy, fox) : errors. However, it turns out to be better to use the sum of squares
Xy ¥
:(IJIJ'I : _ S=d> + d2+ - +d’
X X X X

as the measure of error, and the line y = fix) is to be chosen so as to make this sum
FIGURE 4.23 as small as possible. This line is said to be the least squares approximating line for
the data points (x;, y,), (X5, ¥2), - - - 5 (X, Y)-

The square of the distance d, is given by df = [y, — flx)]* for each i, so the
quantity S to be minimized is the sum:

S=[y, — AP + 2 = fR)P + -+ + [y, — fx)P

Note that all the numbers x; and y, are given here; what is required is that the function
fbe chosen in such a way as to minimize this expression. Because filx) = a + bx, this
amounts to choosing @ and b so as to minimize S, and the problem can be solved
using vector techniques. The following notations simplify the discussion.

-J'J"1—I [1 Ilq
1 x a
r="2| M=|. Z={}
: L b

_Fn_ L] I"_

Observe that

-}'1 —{a + bxlﬂ _}11 - f{‘r] )_

Y—MZz'ﬁ_m+é%} Y2 = §(x2)

Mg (a + bI")_ | Yn = f{"rrr)_,

so the quantity S that is to be minimized is just the sum of the squares of the entries
of this column matrix.

Now suppose for a moment that n = 3. Then ¥ — MZ is an ordered triple and so
can be regarded as a vector (written as a column rather than as a row). Moreover, S 1s
the square of the length of this vector.

§ = ||¥ — MZJp

Here Y and M are given, and we are asked to choose Z such that the length of the vec-
tor Y — MZ is as small as possible. To this end, consider the set P of all vectors MZ

a
where Z = [‘J varies. Then P takes the form




$

Chapter 4

FIGURE 4.24

Yector Geometry

a and b are arbitrary

a + bx,

a
2o = 4| a + bx,
b 2

F= {MZ
hLﬂ + bﬁij

If x,, x,, and x; are distinct, this is the plane through the origin with equation(x, — x;)
x + (x; — x))y + (x; — xp)z = 0 (in fact, it contains

— =3 — = — —

U=|x, and V=11] S0 UxV=|x;—x
_.-":3_ ._]_ _I] o .I:_.

is a normal). Thus the task is to choose a point MA in P as close as possible to Y. It is
clear geometrically (see Figure 4.24) that the vector ¥ — MA is orthogonal to every
vector MZ in the plane P. This means that

(MZ) - (Y —MA) =0

for all Z and this condition determines A.
To see this, observe that the dot product of column vectors U and V can be writ-
ten as U+ V= U"V, where U and V are regarded as 3 X 1 matrices. Hence, for each Z

0 = (MZ)'(Y — MA) = ZTMT(Y — MA) = Z - (MY — M'MA)

where the last dot product is in two dimensions. In other words, the vector
MY — M"MA is orthogonal to every two-dimensional vector Z and so must be zero
(being orthogonal to itself!). This means that

(M'MA = M"Y

These are called the normal equations for A and can be solved using Gaussian elimi-
nation. Moreover, M'M can be shown to be invertible when x,, x,, and x, are distinct
(it is sufficient that at least two of x,, x,, and x; be distinct), so solving for A yields

A=WMM'MY

This solves our problem (at least when n = 3) because if A = r”} the best-fitting
lineisy =a, + ax. “

Of course this argument depends heavily on the fact that n = 3 so that we can
avail ourselves of the theory of vectors in two and three dimensions and use such
notions as the length of a vector, orthogonality, and the dot product. However, all
these notions extend to vectors in higher dimensions than two or three, and the entire
argument goes through almost unaltered in the general context. This argument is
carried out in Chapter 6, and the result is the following useful theorem.

THEOREM 1 EHNTHLE
Suppose that n data points (x,, y,), (X, ¥2), . . . » (x,, ¥,) are given, where at least

two of x;, x,, . . ., x, are distinct. Put
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¥ | R &

1 x;

y =2 mM=|. 7
kA b ox,

Then the least squares approximating line for these data points has the equation

YV = dy+ 41X

dy
where A =

] is found by Gaussian elimination from the normal equations
a,

M'™MA = M"Y

The condition that at least two of x,, x,, . . ., x, are distinct ensures (hat M'M is
an invertible matrix, so A is unique:

A=MM'MY

EXAMPLE 1

Let data points (x,, ,), (X, ¥,), - . . , (x5, ¥s) be given as in the accompanying table.
Find the least squares approximating line for these data.

Solution  In this case we have

:!'- y I I
- T [ 11|11 x
1 1 MM = :
3 2 ‘::I "'T'IE I‘i g
4 3 |_] Iﬁ_
g ‘; i 5 X+ ][5 2
b el o X+ e A 21 111
o
oy = 1 1 1]y,
X A | |
ks
[ Nty s _[15}
On t xy, +- 00+ X5y 78
: T T ﬂﬂ_
so the normal equations (M M)A = M'YforA = % become
|

5 21[a,] [15]
21 111f|a | |78
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a 0.24
The solution (using Gaussian elimination) is [ "] = L} %jl to two decimal places, so
a, :

the least squares approximating line for these data is y = 0.24 + 0.66x. Note that
M™M is indeed invertible here (the determinant is 114), and the exact solution 1s

R | [111 21715 | [27
A=MM'MY=— = —
114|-21  5[|78] 114[75

Suppose now that, rather than a straight line, we want to find the parabola y = a,
+ a,x + a,x* that is the least squares approximation to the data points (x;, y,). . . .,
(x,, y,). In the function fix) = a, + ax + a.x?, the three constants a,, a,, and a, must
be chosen to minimize the sum of squares of the errors:

S = DJI _ﬂxl)]l + [)’3 _ﬂIZ)F gl U’?rr Fﬁ"r.u)]z

Choosing a,, a,, and a, amounts to choosing the (parabolic) function f that mini-
mizes S.

In general, there is a relationship y = fix) between the variables, and the range of
candidate functions is limited — say, to all lines or to all parabolas. The task is to
find, among the suitable candidates, the function that makes the quantity $ as small as
possible. The function that does so is called the least squares approximating function
(of that type) for the data points.

As might be imagined, this is not always an easy task. However, if the functions
fix) are restricted to polynomials of degree m,

o

flx) =ay + ax + -+ + a@x"

the analysis proceeds much as before (when m = 1). The problem is to choose the

numbers d,, d,, . - - , d,, SO as to minimize the sum
S=0D —fx)P+ y, —flx)PP + -+ + B = J2F
The resulting function y = fix) = @, + aix + -+ - + a,x"1s called the least squares
approximating polynomial of degree m for the data (X ik = « ¢ o B ¥a)e BY
analogy with the preceding analysis, define
k3 [ X, Ilz e x{"u BN
L VI L
BR 1 x, xf o |
Then
v, —(ay +ax; +- - +ﬂmv’51mj-l [y, — f(x)]
e Al }j: —(a, +ax, + - - +am1;’} = ¥, —f(:'fg}
_.}rn_{ﬂu+ﬂlxn+'+'+aml:}_ _}n-_jr('xn}
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&

s0 S is the sum of the squares of the entries of ¥ — MA. An analysis similar to that for
Theorem 1 can be used to prove Theorem 2.

THEOREM 2 AT
Suppose n data points (x, ¥,), (X, ¥2), - . ., (x,,y,) are given, where at least
m + 1of x;, x,, . . ., X, are distinct (in particularn =2 m + 1). Put
[y, ] I %, X G J:;"'I
P
y=|2| m|' 2w
Lyn_ _1 .1'” Ir:; S I::r_

Then the least squares approximating polynomial of degree m for the data
points has the equation

}J:ﬂn'!‘ﬂll + +{Imrm
4y
where A = | % | is found by Gaussian elimination from the normal equations
ﬂﬂ'l'

M'M)A = M"Y

The condition that at least m + 1of x,, x,, . . ., x, be distinct ensures that the
matrix MM’ is invertible, so A is unique:

A=MM 'MY

A proof of this theorem is given in Section 6.10.

EXAMPLE 2

Find the least squares approximating quadratic y = @, + a,x + a,x* for the following
data points.

(—3,3), (—1,1), (0,1), (1,2), (3,4)
Solution  This is an instance of Theorem 2 with m = 2. Here

— =iz - =

3 1 -3 9
[ 1 -1 1
y=[1| M=|1 00
2 T
4 ¥ 3 B
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Hence,
[1 -3 9]
"1 1 11 I]ft =1 1f [5 0 20
MM=|-3 -1 01 3|1 0 O|=|0 20 O
9 1.0 1 91 1 1 120 0 164
ik 3 9
3]
1 1 1 1 1]{1] [11]
MY=|-3 -1 01 [ [=] 4
(9 1 01 9|2 | 66 |
_4_
The normal equations for A are
5 0 20] [(11] L]
0 20 0] A=| 4 whence A =10.20
120 0 164 ] |66 10.26 |
This means that the least squares approximating quadratic for these datais y = 1.15
+ 0.20x + 0.26x2. Again the matrix M'M is invertible, the inverse being
(164 0 =20
(MTM)_' - $ 0 21 0| so A can be calculated from A = {MTM)_'MTY.
=20 0 3

However, this takes much more computation than Gaussian elimination.

LA & 4

Least squares approximation can be used to estimate physical constants, as Is
illustrated by the next example.

EXAMPLE 3
Hooke’s law in mechanics asserts that the magnitude of the force f required to hold a
spring is a linear function of the extension e of the spring (see the accompanying dia-
gram). That 1s,
f - kE + E{]
¢ where k and e, are constants depending only on the spring. The following data were

collected for a particular spring.

El 9 11 12 16 19
f Y f133 38 43 54 6l
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Find the least squares approximating line f = a, + a,e to these data, and use it to
estimate k.
Solution Here fand e play the role of y and x in the general theory. We have
(33 1 9]
38 1 11
Y =|43 M=|1 12
54 1 16
61 .1 19
as in Theorem 1, so 5 67 279
MM = and MY =
67 963 3254
Hence the normal equations for A are
5 67 " 229 " p 7.70
= whence =
67 963 3254 - 2.84
The least squares approximating line is f = 7.70 + 2.84¢, so the estimate for k is
k= 284,
*4¢
¥RETLAy  Exercises 4.4

1. Find the least squares approximating line v = a, + a,x [ r_ ' _] 5 | 2 =
for each of the following sets of data points. ] | |
(8 (1, 1).(3.2), (4, 3).(6,4) = | 5 | % | <6
¢(b) (2.4),(4,3),(7,2). 8. 1) L= [ " 7

(€) (=1, —=1),(0, 1), (1.2),(2.4), (3, 6) , _

e(d) (—2,3),(=1,1),(0,0), (1, =2).(2, —=4) 5. A naturalist mtf:asurecl lhe,r heights vy, {1‘n mclﬂqrs) of several
Find the least squares approximating quadratic v = a, + :-:.pr‘u::e [mfz? w,th ln;nk d:an*fcterﬁ il {:j“ Genpmetess) Thff
a,x + ax* for each of the following sets of data points. data e o petn the taoke: Fin “}E ]easl. HHaes

approximating line for these data and use it to estimate the

(8) (0, 1).(2,2),(3.3). (4, 5) L s oo ¢
¢(b) (=2, 1),(0,0),(3.2).(4.3) Ight of a spruce tree with a trunk of diameter 10 ¢m.

3. If M is a square invertible matrix, show that A = M 'Y e e .
(in the notation of Theorem 2). | X | 5 | 7 | 8 12 | 13 16 |

Newton’s laws of motion imply that an object dropped |
from rest at a height of 100 meters will be at a height s
= 100 —3gr* meters 7 seconds later, where g is a constant
called the acceleration of gravity. The values of s and ¢ 6. (a) Use m = 0in Theorem 2 to show that the best-fitting
given in the table are observed. Write x = 2, find the horizontal line y = a,through the data points (x,, v,),
least squares approximating line s =a + bx for these data ey (X YIS Y=< (¥, + ¥, + - -+ + y,), the aver-

and use b to estimate g. Then find the least squares
approximating quadratic s =a, + a,f + a.t’ and use the
value of a, to estimate g.

age of the v coordinates.
¢ (b) Deduce the conclusion in (a) without using
Theorem 2.
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Assume n = m + 1 in Theorem 2 (so M is square). If the
x, are distinct, use Theorem 2§3.3 to show that M is
invertible. Deduce that A = M™'Y and that the least

Suppose that u and v are nonzero vectors. If u and v are
not parallel, and au + bv =a,u + b,v, show that a = a,
and b = b,.

Consider a triangle with vertices A, B, and C. Let E and F
be the midpoints of sides AB and AC, respectively, and let
the medians EC and FB meet at O. Write EO = sEC :smd
FO = tFB, where s and ¢ are scalars. Show that s = ¢ = L
by expressing AO two ways in the form aAB + bAC, ﬂnd
applying Exercise 1. Conclude that the medians of a trian-
gle meet at the point on each that is one-third of the way
from the midpoint to the vertex (and so are concurrent).

A river flows at | km per hour and a swimmer moves at
2 km per hour (relative to the water). At what angle must
he swim to go straight across? What is his resulting
speed?

A wind is blowing from the south at 75 knots, and an air-
plane flies heading east at 100 knots. Find the resulting
velocity of the airplane.

5.

¢ 6.

squares polynomial s the interpolating polynomial
(Section 3.3) and actually passes through the data points.

SUPPLEMENTARY EXERCISES FOR CHAPTER 4

An airplane pilot flies at 300 km/hr in a direction 307

south of east. The wind i1s blowing from the south at
150 km/hr.

(a) Find the resulting direction and speed of the airplane.
(b) Find the speed of the airplane if the wind is from the
west (at 150 km/hr).

A rescue boat has a top speed of 13 knots. The captain
wants to go due east as fast as possible in water with a
current of 5 knots due south. Find the velocity vector
v = (x, v) that she must achieve, assuming the X and Y
axes point east and north, respectively, and find her
resulting speed.

A boat goes 12 knots heading north. The current is
5 knots from the west. In what direction does the boat
actually move and at what speed?
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Section 5.1
Examples and Basic Properties

In Euclidean geometry, a point P in space is described by a triple (x, , 2) of real num-
bers called its Cartesian coordinates (the name honors René Descartes 1596-1650).
This is called an ordered triple because the order of the coordinates is important. For
example, (1, 2, 3) represents a different point than (1, 3, 2). Similarly, a point P in the
plane is described by an ordered pair (x, y) of real numbers. Ordered sequences of n
real numbers are important for values of n other than 2 or 3.

AN B
DEFINITION NI i s ey
An ordered n-tuple v = (v, v,, ..., v,) is an ordered sequence of n numbers

Vi, Vs, . . . , v, (called the entries of the n-tuple). Two such n-tuples are defined
to be equal only when corresponding entries are equal:

(Vis Vagg o a5 Vo) = (W, Wy, Lo, W ) mEANS V| = W, Vy = Wy, ..., V, = W,

Ordered 2- and 3-tuples are called ordered pairs and ordered triples, respectively.
Our interest here is not so much in these n-tuples themselves as in the set of all

n-tuples. This set is described as follows:

DEFINITION S, U AN ] R

Given an integer n > 1, the set of all n-tuples with real entries is called
Euclidean n-space and is denoted R". Here R denotes the set of real numbers.
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The space R’ has a geometrical meaning when it is identified with the geometrical
vectors discussed in Chapter 4. Thus a vector (g, b, ¢) in R is identified with the
“arrow” from the origin to the point P(a, b, ¢) with a, b, and ¢ as coordinates. Then
vector addition is given geometrically by the parallelogram law, and scalar multiplica-
tion takes on a geometric meaning as well. The geometry is useful in that it often pro-
vides a “picture” of some aspect of the space R’ that enhances our comprehension and
even helps us understand the spaces R"” when n > 3. Of course R* can be identified
with the geometric plane. And R' is R itself and so is identified with the points on a
line.

These topics are discussed in Chapter 4, and the reader who is totally unfamiliar
with them would do well to read Section 4.1. However, Chapter 4 is not required for
understanding the present chapter because our treatment here is algebraic in nature.

DEFINITION BN R st 1 P

Letv = (v, Vg, ..., V)sand u = (uy, Uy, . .., u,) be n-tuples in R".

1. The sum u + v is defined by

u+v=_(uy +v,l+ vy..., U, +v,)
2. If a is any real number, the scalar multiple av is defined by

av = (av, av,, . .., av,)
3. The zero n-tuple 0 in R"is defined by
0=(0,0,...,0)
4. The negative — v of the n-tuple v is defined by
2 (=W s )

5. The difference u — v is defined to be u + (—v). That 1s,

u — "F=(u] — Vil — Vouoo., U4, — Fﬂ)

Of course, these definitions are consistent with the corresponding matrix operations
(regarding the n-tuples in R" as | X n matrices),! so all the computations with
matrices are available in R". These definitions also conform to the geometric opera-
tions in R? introduced in Section 4.1.

Letu = (3,—1,2,4)andv = (5,0,—6,1)in R". Then

u+vs=(8-1,—4,5)
3u — 5v=(9,—3,6,12) — (25,0,—30,5) = (—16,-3,36,7)

L 4 &

'The n-tuples in R" will often be viewed as 1 X n matrices, and will sometimes be written as columns.
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The following fundamental properties of the n-tuples in R* follow easily from
the definitions (they also come from the corresponding properties of matrices).

PROPERTIES OF [ Sohadci H M s .1 s

Let u, v, and w denote n-tuples in R", and let a and b be real numbers. Then
u+v=v+u
ut+t(v+w =(u+v)+w
v+0=v¥
v+ (—v) =0

(@ + b) v=av+ bv

a(bv) = (ab)v

1.

2

3

4

5. alv + w) = av + aw
6

7

8. lv=yv¥

The foregoing properties of R" are not exclusive to R". For example, the set of all
m X n matrices also has an addition and a scalar multiplication that satisfy these
conditions. It turns out that many other sets of mathematical objects have these prop-
erties, and the general study of such systems is the subject of this chapter. These sys-
tems are defined as follows.

DEFINITION &

A vector space consists of a nonempty set V of objects (called vectors) that can

be added, that can be multiplied by a real number (called a scalar in this con-

text), and for which certain axioms hold. If v and w are two vectors in V, their

sum is expressed as v + W, and the scalar product of v by a real number a 18

denoted as av. These operations are called vector addition and scalar multipli-

cation, respectively, and the following axioms are assumed to hold.

Axioms for vector addition

A1. IfuandvareinV,thenu + visinV.

A2. u+v=v+uforalluandvinV.

A3. u+(v+w=@+vVv)+ w for allu, v, and win V.

AB. An element 0 in Vexists such thaty + 0 = v = 0 + v forevery v in V.

A5. For each v in V, an element —v in V exists such that —v + v = 0 and
v+(—v) =0

Axioms for scalar multiplication

§1. IfvisinV,thenavisinVforallainR.
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S2. a(v + w) = av + aw for all vand w in Vand all @ in R.
$3. (a + b)v = av + bvforallvin Vandall a and b in R.
S4. a(bv) = (ab)v forall vin Vand all a and b in R.

$5. lv=vforallvinV.

The content of axioms Al and S1 is described by saying that V is closed under vector
addition and scalar multiplication. The element 0 in axiom A4 is called the zero vec-
tor, and the vector —v in axiom AS is called the negative of v.

The properties of R" that we have discussed give

R" is a vector space using the preceding addition and scalar multiplication.

L& & 4

It is important to realize that, in a general vector space, the vectors need not be
n-tuples. They can be any kind of object at all as long as the addition and scalar mul-
tiplication are defined and the axioms are satisfied. The following examples illustrate
the diversity of the concept.

The space R" consists of special types of matrices. More generally, let M, ,
denote the set of all m X n matrices with real entries. Then Theorem 182.1 gives the
following information.

The set M, of all m X n matrices is a vector space using matrix addition and scalar
multiplication. The zero element in this vector space is the zero matrix of size m X n,
and the vector space negative of a matrix (required by axiom A35) is the same as that
discussed in Section 2.1. ¢

Show that?
V={(x v)|xand yin R}
IS a vector space ﬁsing the operations of R,

Axioms A2, A3, S2, S3, S4, and S5 all hold R’ and so are satisfied in V. Hence we
check the remaining axioms. Givenain R, andu = (x, x, y) and v = (x;, x;, y,)in 'V,
we have

*We use set-theoretic notation. If p(x) is a condition on x, the notation {x | p(x)} means “the set of all x such
that the condition p{x) is satisfied.”
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ut+v=(x+x, x+x,y+ty)
av = (ax,, ax,, ay,)

so both lie in V (they have the correct form because the first components are equal).
Hence axioms Al and S1 are satisfied. To verify axiom A4, we must find a vector 0
in Vsuchthatv + 0 = v = 0 + v for every v in V. The vector 0 = (0, 0. 0) certain-
ly has this property (it holds for all v in %), so the fact that it lies in V means that it
serves as the zero vector of V. Finally, if v = (x, x, y) is in V, take —v = (—x, —ux,
—v). Because this is also in V it serves as the negative of v in V. Hence axiom AS 1s
satisfied. A 2

Let V denote the set of all ordered pairs (x, y,) and define addition in V as in R,
However, define a new scalar multiplication in V by

a(x, y) = (ay, ax)
Determine if V is a vector space with these operations.

Axioms Al-AS5 are valid for V because they hold in R’. Also a(x, ¥) = (ay, ax) is
again in V, so axiom S1 holds. To verify axiom 52, let v = (x, y) and w = (x, y,) be
typical elements in V and compute

alv+w)=alx+x, y+y)=1(aly+y) alx + )
av + aw = (ay, ax) + (ay,, ax,) = (ay + ay,, ax + ax,)

Because these are equal, axiom S2 holds. Similarly, the reader can verify that axiom
S3 holds. However, axiom S4 fails because

a(b(x, y)) = a(by, bx) = (abx, aby)

need not equal ab(x, y) = (aby, abx). Hence V is not a vector space. (In fact axiom S5
also fails.)

L 2 2 4

Sets of polynomials provide another important source of examples of vector
spaces, so we review some basic facts. A polynomial in an indeterminate x is an
expression |

px) = ay, + ax + ax- +---+ ax"

where ag, a,, a,, . . . , a, are real numbers called coefficients of the polynomial. It all
the coefficients are zero, the polynomial is called the zero polynomial and is denoted
simply as 0. If p(x) # 0, the highest power of x with a nonzero coefficient 1s called
the degree of p(x) and is denoted as deg p(x). Hence deg(3 + 5x) = 1, deg(l + x +
x2) = 2. and deg(4) = 0. (The degree of the zero polynomial is not defined.)
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Let P denote the set of all polynomials and suppose that

p(x) = a, + ax + ax° + -

g(x) = by + bx + bx* + - -
are two polynomials in P (possibly of different degrees). Then p(x) and g(x) are
called equal [written p(x) = g(x)] if and only if all the corresponding coefficients
agree—that 1s, a, = b,, a;, = by, a, = b,, and so on. In particular, a, + a.x + a.x* +
-++-= Omeans thata, = 0,a, = 0,a, = 0, ..., and this is the reason for calling x an
indeterminate. The set P has an addition and scalar multiplication defined on it as
follows: If p(x) and g(x) are as before and «a is a real number,

p(x) + q(x) = (ay + by) + (a, + b))x + (a, + b)x + - -
ap(x) = aa, + (aa,)x + (aa,)x* + - - -

Evidently these are again polynomials, so P 1s closed under these operations. The
other vector space axioms are easily verified.

The set P of all polynomials 1s a vector space with the foregoing addition and scalar
multiplication. The zero vector 1s the zero polynomial, and the negative of a polyno-
mial p(x) = a, + a;x + a,x" + - - - is the polynomial —p(x) = —a, — a,x —
a,x’ — - - - obtained by negating all the coefficients.

o

If @ and b are real numbers and a < b, the interval [a, b] is defined to be the set of
all real numbers x such that @ £ x £ b. A (real-valued) function f on [a, b] is a rule
that associates every number x in [a, b] with a real number denoted fix). The rule is fre-
quently specified by giving a formula for fix) in terms of x. For example, filx) = 2, fix)
= sin x, and flx) = x* + 1 are familiar functions. In fact, every polynomial p(x) can be
regarded as the formula for a function p. The set of all functions on [a, b] is denoted
Fla, b]. Two functions f and g in Flaq, b] are equal if fix) = g(x) for every x in [a, b],
and we describe this by saying that fand g have the same action. Note that two polyno-
mials are equal (defined prior to Example 6) if and only if they are equal as functions.

If f and g are two functions in F[a, b], and r 1s a real number, define the sum
f + g and the scalar product rf by

(f + g)x) = f(x)+ g(x) for each x in [a, b]
(rf)(x) = rf(x) for each x in |a, b]
In other words, the action of f+ g upon x is to associated x with the number

fix) + g(x), and rf associates x with rfix). These operations on F[a, b] are called
pointwise addition and scalar multiplication of functions.

The set Fla, b] of all functions on the interval [q, b] is a vector space if pointwise
addition and scalar multiplication of functions are used. The zero function (in axiom
A4) 1s denoted as 0 and has action defined by
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O(x) = 0 forallxin [a, b]
The negative of a function fis denoted —f and has action defined by
[—ﬁlf.!::l = —_ﬂl’] for all x in [ﬂ. b

Axioms Al and S1 are clearly satisfied because, if f and g are functions on [a, b].
then f + g and rf are again such functions. The verification of the remaining axioms
is left as Exercise 21.

*oe

Other examples of vector spaces will appear later, but these are sufficiently var-
ied to indicate the scope of the concept and to illustrate the properties of vector spaces
to be discussed. With such a variety of examples, it may come as a surprise that a
well-developed theory of vector spaces exists. That is, many properties can be shown
to hold for all vector spaces and hence hold in every example. Such properties are
called theorems and can be deduced from the axioms. Here is an important example.

THEOREM 1 B R T T PN L7 e
Cancellation

Let u. v. and w be vectors in a vector space V. If v + u = v + w,thenu = w.

Proof We are givenv + u = v + w. If these were numbers instead of vectors, we
would simply subtract v from both sides of the equation to obtain u = w. This can be
accomplished with vectors by adding —v to both sides of the equation. The steps are

as follows.
V+u=V+Ww
v+ (v4+u)=-v+(v+w) (axiomAS)
(-v+v)+u=(-v+v)+w (axiom A3)
O+u=0+w (axiom A))
u=w (axiom A4)
This is the desired conclusion. &

As with many good mathematical theorems, the technique of the proof of
Theorem 1 is at least as important as the theorem itself. The idea was to mimic the
well-known process of numerical subtraction in a vector space V' as follows: To sub-
tract a vector v from both sides of a vector equation, we added —v to both sides. With
this in mind, we define difference u — v of two vectors in V as

u—v=u+(-v)

We shall say that this vector is the result of having subtracted v from u, and, as in
arithmetic, this operation has the property given in Theorem 2.
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THEOREM 2 S AN TR

If u and v are vectors in a vector space V, the equation
X+v=u

has one and only one solution x in V given by

X=u—Y%

Proof The difference x = u — v is a solution to the equation because (using sev-
eral axioms)

x+v=@w—-—v)+v=[u+(-v)]+v=u+(—v+v)=u+0=u

To see that this is the only solution, suppose X, is another solution so that X, + v =
u. Thenx + v = x, + v (they both equal u), so x = x, by cancellation. 4

Similarly, cancellation shows that there is only one zero vector in any vector
space and only one negative of each vector. (Exercises 17 and 18). Hence we speak
of the zero vector and the negative of a vector.

The next theorem introduces some basic facts that are used extensively later.

THEOREM 3 NIHE 7 e B

Let v denote a vector in a vector space V and let a denote a real number.
1. Ov =0

2. ad =10

3. Ifav = 0, theneithera = 0orv = 0

4, (—1yv = —v

5. (—a)v = —(av) = a(—vV)

Proof The proofs of (2) and (5) are left as Exercise 19.
1. Observe that Ov + Ov = (0 + O)v = Ov = Ov + 0 where the first equality
is by axiom S3. It follows that Ov = 0 by cancellation.

3. Assume av = 0; it suffices to show that if a # 0, then necessarily v = 0.
But @ # 0 means we can scalar-multiply the given equation av = 0 by ! to
obtain

v=1Ilv=(Lav=2@@)=50=0
using (2) and axioms S4 and S5.
4., Wehave —v + v = 0 by axiom AS5. On the other hand,
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(—Dv+v=(—lv+lv=(—1+DHv=0=0

using (1) and axioms S5 and S3. Hence (—1)v + v = —v + v (because
both are equal to 0), so (—1)v = —v by cancellation. L 2

Axioms S2 and S3 extend. For example, a(u + v + w) = gu + av + aw and
(a+ b + c)v=av + bv + cv hold for all values of the scalars and vectors
involved. More generally,’

alvi + v, +---+ v,) =av, +av,+ ---+ av,
(a,+a, +---+a)y=a,v+a,y+---+ay
hold for all n = 1, all numbers a, a,, . . . , a,, and all vectors, v, v, . . ., v,. The

verifications are by induction and are left to the reader (Exercise 20). These facts—
together with the axioms, Theorem 3, and the definition of subtraction—enable us to
simplify expressions involving sums of scalar multiples of vectors by collecting like
terms, expanding, and taking out common factors. This has been discussed for the
vector space of matrices in Section 2.1 (and for geometric vectors in Section 4.1): the
manipulations in an arbitrary vector space are carried out in the same way. To 1llus-
trate, we rework Example 8§2.1 in the general context.

If u, v, and w are vectors in a vector space V, simplity
2 + 3w) — 32w — v) — 3[2(2u + v — 4w) — 4(u — 2w)]
The reduction proceeds as though u, v, and w were matrices or variables.

2(u + 3w) — 32w — v) — 3[2(2u + v — 4w) — 4(u — 2Zw)]
= 2u + 6w — 6w + 3v — 3[4u + 2v — 8w — 4u + 8w]

= 2u + 3v — 3|2v]
= 2u + 3v — 6v
= 20 — 3v

*o¢

The next example shows that the techniques for solving linear equations in Chapter |
work for vector variables too.

Let u and v be vectors in a vector space V. Find vectors x and y in V such that

Xx —4dy =0
2x + 3y = v
It is a consequence of axiom A3 that we can omit parentheses when writing a sum v, + v, = - - + v,

of vectors.
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Solution 1

The usual row operations on equations work here. Subtract twice the first equation

from the second to obtain 11y = v — 2u. This gives y = v — Zu. Substituting
this in the first equation gives X = u + 4y = fu + jv.

Solution 2

Write the equations in matrix form

2 bl

as in Section 2.2, where the product of a matrix and a column of vectors i1s defined in

the obvious way. But [

-

1
2

1 3 4
~Al& i

o R [ R el

Hence x = 5(3u + 4v) andy = ;(—2u + v), as before.

RSP E5y EXERCISES 5.1
1. Letu = (1,2-1,0.4)and v = (2,7,5,3,—2). Compute:
(@) u +v ¢(b) 3u — 2v

4.

51

o) a(l, 3,0, ) + b2, —1,1,0) + 3, 1, =1, 1)

() —2u+v ¢(d) —3(2u — 3v)

Vectors u, v, and w in R" are called linearly independent
if the only way au + bv + ¢w = 0 can hold is when
a=~b=c=0.In each case, determine whether u, v,
and w are linearly independent.

(@) u=(1,2,-1,1) &(b) u =(1,3,-1,4)

v = (2,1,3.0) yo=(2.1,1,—2)
w=(1,0,1,2) w = (4,-3,5,—-14)
(€) u=(1,-1,32-4)¢(d) u =(2,1,1,3,0)

v =(2,0,1,3,-5) v =(1,3,-1,0,4)
w=(0—-2,5,1-3) w=1(2,1,628,1)

In each case, determine scalars, a, b, and ¢ (if they exist)

such that the condition 1s satisfied:

(38) a(l,2, -1, 1) + b(2,0,1,1) + (1,0, 2, 1) = (1, 4,
—4,1)

(1,4, —5,2)

In each case, show that V is a vector space using the oper-
ations of R*.

(@) V={(x0)|xinR} (®)V={x —x)|xinR]
(¢) V={(2x—yx+y)|xandyinR)

o(d) V={(3x — vy 2x + 5y)|xand yin R}

Let V denote the set of ordered triples (x, y z) and define
addition on V as in ’. For each of the following definitions

*o¢

of scalar multiplication decide whether V'1s a vector space.
(a) a(x, y, z) = (ax, y, az) #(b) a(x, ¥, 2) = (ax, 0, az)
(€) alx, y.2) = (0,0, 0) o(d) awx yz) = (2ax, 2ay, 2az)

6. Are the following sets vector spaces with the indicated

operations? If not, why not?
(a) The set V of nonnegative real numbers; ordinary
addition and scalar multiplication.

# (b) The set V of all polynomials of degree = 3, together

¥

(c) Theset Vofall2 X 2 matnices of the form

with 0; operations of P, [a bjl
operations of M, .

0 ¢

¢ (d) The set V of all 2 X 2 matrices with equal column

sums; operations of M, ,.
(e) The set Vof 2 X 2 matrices with zero determinant;
usual matrix operations.

# (f) The set V of real numbers; usual operations.

(g) The set V of complex numbers; usual addition and
multiplication by a real number.

¢ (h) A set V = {0} consisting of a single vector 0 where

0 +0=0andad = 0forall ainR.

(i) The set V of all ordered pairs (x, y) with the addition
of R*, but scalar multiplication a(x, y) = (x, y) for
all @ in R,

¢ (j) The set V of all functions fi R — R with pointwise

addition and scalar multiplication defined by

(af) (x) = flax).
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(k) The set V of all 2 X 2 matrices whose entries sum to 1 0 0 1 i
0; npcrau'ﬂns of MH. * {.h} V= M::;“ = 1:“ J* ¥ = |:| [}]* W= [1 _|1|
¢ (1) The set V of all 2 X 2 matrices with the addition

) PO | - T
of M,, but scalar multiplication = defined by () V=Pu=x +xv-= F+lw=x —x +x+1

¢ (d) V=F0, nl;u=sinx, v=cosx, w=I

a» X =aX.
7. Let V be the set of positive real numbers with vector addi- .18, S:mpll.fy each of the following.
tion being ordinary multiplication and scalar multiplica- (3) 3[2(u — 2v — w) + 3(w —v)] — T(u — 3v — w)
tion being av = V. Show that V is a vector space. e (B) 43u — v+ w) — 2[(3u — 2v) — 3(v — w)] +

6w — u — v)
15. Show that x = v is the only solution to the equation
X + X = 2vin a vector space V. Cite all axioms used.

¢ B. If Vis the set of ordered pairs (x, y) of real numbers, show
that it is a vector space if (x, y) + (x, ¥,) = (x + x|,
y+y + 1andalx,y) = (ax,ay + a — 1).

16. Show that —0 = 0 in any vector space. Cite all axioms

9. (a) The line through the origin with slope m has the used

equation y = mx and so consists of points P(x, mx) ‘ ‘
with x in R. Show that V = {(x, mx) | x in R} is a 17. Show that the zero vector 0 is uniquely determined by the

| vector space using the operations of R’. property in axiom A4.
. ¢ (b) The plane V through the origin with direction vector ¢18. Given a vector v, show that its negative —v is uniquely
(a, b, c) # 0 has equation ax + by + cz=0, and so V' = determined by the property in axiom A3.
{(x, ¥, 2) | ax + by + cz = 0}. Show that V 1s a vector 19. (a) Prove (2) of Theorem 3.
space using the operations of R, ¢ (b) Prove that (—a)v = —(av) in Theorem 3 by first
10. (a) Let V be the set of ordered pairs (x, y) of real num- computing (—a)v + av. Then do it using (4) of
bers with the scalar multiplication of R* but with Theorem 3 and axiom S4.
addition defined by (¢) Prove that a(—v) = —(av) in Theorem 3 in two
(T L3 a3 3 ways, as in part (b).
5. %) + Uy 92) = [ AR R FE) 920. Letv, v,...,YV, denote vectors in a vector space V and
Show that V'1s a vector space. let a. a,, . . . , a, denote numbers. Use induction on n to
¢ (B) Whatif (x,, y,) + (6 ¥2) = (%{';Ii Fxz, %/},11 + },;-) prove each of the following.
- (@) alv, + v, +---+V)=av, +av, +- - -+ av,
where %l_ indicates the positive square root? (B) (@, + a,+ -+ ag)v=av+a,v+.--+ay
11. Find x and y (in terms of u and v) such that: 21. Verify axioms A2-A5 and S2-S5 for the space F[a, b] of
(@) 2x +y=u e(b) 3x — 2y =u functions on [a, #] (Example 7).
5x +3y=v dx — Sy =V 22. Prove each of the following for vectors u and v and
12. Find all vectors X, ¥, and z (in terms of u, v) such that: scalars a and b.
(8) x —2y+ z=2u—V (a) Ifav =bvandv # 0,thena = b.
)X —3y— z= v—u ¢ (b) Ifav = awanda # 0, thenv = w.
-x +3y —4z=4v — Tu 23. By calculating (1 + 1)(v + w) in two ways (using
o) x-— y+2z=3u—v axioms S2 and S3), show that axiom A2 follows from the
—3x +4y— z= ¥V — u other axioms.
5x —6y + 5z=Tw — 3 Q4. Let V be a vector space, and define V" to be the set of all
() 3x+2y+ z=10 n-tuples (v,, v,, . . ., v,) of n vectors v,, each belonging to
x+ y—2z=10 V. Define addition and scalar multiplication in V" as
X+ y+3z=90 follows:
e(d) 3x— y + 42=10
x+y— 52=0 (U, Wy, .., 0 )+ (v, V5, ..., V)
x—3y +14z2 =0 = (U + v, Wy + ¥y, o, 0, V)
13. In each case show that the condition au + bv + cw = 0 a(vy, Vo, .-, V) =(avy, avy, ..., av,)
in Vimplies thata = b = ¢ = 0. Show that V" is a vector space.

(@) V=R%u=(2102),v=(,1-10,w= (01,
2.1
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25. Let V" be the vector space of n-tuples from the preceding b) (A +A)X =AX + A X
exercise, written as columns. If A is an m X n matrix, (c) A(X + X)) =AX + AX,
and X is in V", define AX in V" by matrix multiplication. (d) (kA)X = k(AX) = A(KX) if k is any number
v, u, (e) IX = Xiflisthen X n identity matrix
More precisely, if A=[g;Jand X = | : |, letAX= | - |, (f) Let E be an elementary matrix obtained by perform-
¥, u, ing a row operation on (the rows of) /, (see Section
where u, = a,v, + a,v, + - - - + a,v, for each i Prove 2.4). Show that EX is the column resulting from per-

that:
(a) B(AX)=(BA)X

TRV % Section 5.2

forming that same row operation on the vectors (call
them rows) of X. [Hint: Theorem 18§2.4.]

Subspaces and Spanning Sets

Very often the most interesting vector spaces arise as parts of larger vector spaces.

e o sy 3o e
DEFINITION ENIR (7 S

If V is a vector space, a subset U of V is called a subspace of V if U is itself a
vector space where U uses the vector addition and scalar multiplication of V.

If U is a subspace of V, it is clear (by axioms Al and S1) that the sum of two vectors
in U is again in U and that any scalar multiple of a vector in U is again in U—in
short, that U is closed under the vector addition and scalar multiplication of V. The
nice part is that the converse is also true: If U is closed under these operations, then
all the other axioms are automatically satisfied. For example, axiom A2 asserts that
u + u, = u, + u holds for all vectors u and u, in U. But this is clear because the equa-
tion is already true in V, and U uses the same addition as V. Similarly, axioms A3, 82,
S3, S4, and S5 hold automatically in U because they are true in V. All that remains 1s
to verify axioms A4 and AS.

THEOREM 1 BN e 3 BT
Subspace Test

Let U be a subset of a vector space V. Then U is a subspace of V if and only if it
satisfies the following three conditions.*

1. 0 lies in U where 0 1s the zero vector of V.
2. Ifu, and u, lie in U, then u, + u, lies in U.
3. Ifuliesin U, then gu lies in U for all a in R.

*Condition (1) can be replaced by the requirement that U/ is nonempty (Exercise 24).
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Proof 1If (1), (2) and (3) hold, then axiom A4 follows from (1), and axiom A5
follows from (3) (because —u = (—1)u lies in U for all u in U). Hence U is a sub-
space by the discussion preceding the theorem. Conversely, if U is a subspace it is
closed under addition and scalar multiplication, and this gives (2) and (3). If z
denotes the zero vector of U, then z = 0z in U by Theorem 3§5.1. But 0z = 0 in V
by the same theorem, so () = z lies in U. This proves (1). X

If U is a subspace of V, the proof shows that U and V share the same zero vector.
Also, if u lies in U, then —u = (—1)u lies in U; that 1s, the negative of a vector in U
is the same as its negative in V.

The subspace test provides an easy way of finding subspaces.

Show that U = {(x, —x) | xin R} is a subspace of R2.
Clearly 0 = (0, 0) is in U, and the equations
(x, =x)+(y, -y) = ((x+y) —(x+}y))

a(x, —x) = (ax, —(ax))

show that U is closed under addition and scalar multiplication. Hence the subspace

test applies.
2 2 2

If V is any vector space, show that {0} and V are subspaces of V.

U = V clearly satisfies the conditions of the test. As to U = {0}, it satisfies the con-
ditions because 0 + 0 = 0 and a0 = 0 for all a in R.

L& 2 4

The vector space {0} is called the zero subspace of V. Because all zero subspaces
look alike, we speak of the zero vector space and denote it by 0. It 1s the unmique vec-
tor space containing just one vector.

Let v be a vector in a vector space V. Show that the set
Rv = {av|ain R}
of all scalar multiples of v is a subspace of V.

Because 0 = Ov, it is clear that 0 lies in Rv. Given two vectors av and a,v in Ry,
their sum av + a,v = (a + a,)v is also a scalar multiple of v and so lies in Ryv.
Hence Ry is closed under addition. Finally, given av, r(av) = (ra)v lies in Rv, so Rv
is closed under scalar multiplication. Hence the subspace test applies.

o ¢
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EXAMPLE 6

Vector Spaces

Let A be an m X n matrix. Consider the set

U = {AX | X lies in R", X written as a column}
Show that U is a subspace of R” called the range of the matrix A.

Note first that U is in fact a subset of R” because A is m X n. Each vector in U 1s of
the form AX for some vector X in R". To apply the subspace test, note that 0 = A0
has the required form, so 0 lies in U. Similarly, the equations AX + AX, = A(X + X))
and r{AX) = A(rX) show that sums and scalar multiples of vectors in U again have
the required form. Hence U is a subspace of R".

4 2 4

The next example gives another important subspace related to a matnx A.
However, rather than specify the form of each vector in the subspace (as in Example
4), we describe it by specifying a condition that vectors must satisfy to be in the
subspace.

Let A be an m X n matrix. Show that the set
U = {XinR"|AX = 0, X written as a column}

is a subspace of R" called the null space of the matrix A and denoted null A. Note
that U is the set of solutions to the homogeneous system of equations with A as coef-
ficient matrix (and is also called the solution space of the system).

Here U consists of all columns X in R" satisfying the condition that AX = 0. Because
A0 = 0, it is clear that 0 lies in U. If X and X, both lie in U, then A(X + X;) = AX +
AX, = 0 + 0 = 0. This shows that X + X, qualifies for membership in U, so U is
closed under addition. Similarly, A(rX) = r(AX) = r0 = 0, so rX lies in U. This
means that U is closed under scalar multiplication and so is a subspace of R".

& 4

The next example describes a subset U of the space M,,, first by giving a condi-
tion that each matrix of U must satisfy and second by giving the form of each matrix
in U. Both characterizations of U are used to show that it is a subspace of M,,.

i A .
LetA = [ ] be a fixed matrix in M, ,, and let
0 0

U= {XinM,, | AX = XA}
Show that U is a subspace of M,,.
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Subspaces and Spanning 5ets

P

If 0is the 2 X 2 zero matrix, then A0 = 0A, so 0 satisfies the condition for member-
ship in U. Next suppose that X and X, lie in U so that AX = XA and AX, = X;A. Then

AX +X))=AX+ AX, = XA+ XA =(X+ X|)A
A(aX) = a(AX) = a(XA) = (aX)A

for all @ in R, so both X + X, and aX lie in U. Hence U is a subspace of M,,.

X

L . Y i
If X liesin U, write X = [ jl Then the condition AX = XA becomes

2 W

11 [x y] RESAE 1}
0 0ffz w z w0 O
Comparing entries gives x + 2 =x, y + w = x, and z = 0. Thus X has the form

y+w ¥y '
X = where y and w are arbitrary real numbers. Hence

0 W
+
U:{[J’ W }’]
0 W

specifies U by giving the form of all matrices in U. Now 0 clearly lies in U (when y
and w are zero), and it is easily verified that sums and scalar multiples of matrices of
this form are again of the same form and so lie in U. This shows again that U 1s a
subspace of M,,.

y and w In IFE}

¢

The two solutions of Example 6 are quite different. The first has the advantage
that it is brief and works in the same way for any square matrix A. The second is
more tedious and would be different if another matrix A were used. However, the
explicit form of the vectors (in this case, matrices) in a subspace is often needed in
other contexts.

Suppose p(x) is a polynomial and a is a number. Then the number p(a) obtained
by replacing x by a in the expression for p(x) is called the evaluation of p(x) at a. For
example, if p(x) =5 — 6x + 2x°, then the evaluation of p(x) at a = 2 is p(2) = 1.
If p(a) = 0, the number a is called a root of p(x).

Consider the set U of all polynomials in P that have 3 as a root:
U= {px)inP|p3) = 0}
Show that U is a subspace of P.

Clearly the zero polynomial lies in U. Now let p(x) and g(x) lic in U so p(3) = 0
and ¢(3) = 0. Then (p + g)(x) = p(x) + g(x) for all x, so (p+ q@)3) =
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Solution

Vector Spaces

p(3)+ g(3) = 0 + 0 = 0, and U is closed under addition. The verification that U is
closed under scalar multiplication is similar.

The form of all the polynomials in U follows from the factor thcorem:?
U= {(x — 3)gx)|gx)inP)

The verification of this, and of the fact that it shows U to be a subspace of P, 1s left as
Exercise 26.

L 4 & 4

There are other important examples of vector spaces consisting of polynomials.
Let P, denote the set of all polynomials of degree at most n, together with the zero
polynomial. In other words, P, consists of all polynomials of the form

ds ¥ Gx + wx *0E od s

where a,, a,, a,, . . ., a, are real numbers and so is closed under the addition and
scalar multiplication in P. Moreover, the zero polynomial is included in P,. So the
subspace test gives Example 8.

For eachn 2 0, P, is a subspace of P.
*0¢

The next example refers to material in Chapter 4.

Regard R? as the set of points in space. Show that every plane through the origin is a
subspace.

As shown in Section 4.3, every plane P through the origin has equation ax + by + ¢z
= () for some numbers a, b, and c, not all zero. In other words, P is the following sub-
set of R3:

P={(xy2inR|ax + by + cz =0)

It is clear from this that 0 = (0, 0, 0) lies in P; the verification that P is closed under
the addition and scalar multiplication of R” is left as Exercise 27.

*o¢

The next example involves the notion of the derivative ' of a function f. (If the
reader is not familiar with calculus, this example may be omitted.) A function f
defined on the interval [a, b] is called differentiable if the derivative function f’
exi1sts.

“The factor theorem is given in Section 5.6.
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Show that the subset D[a, b] of all differentiable functions on [a, b] is a subspace of
the vector space F[a, b] of all functions on [a, b].

The derivative of any constant function is the constant function 0; in particular, 0
itself is differentiable and so lies in D[a, b]. If f and g both lie in D[a, b] (so that f°
and g’ exist), then it is a theorem of calculus that f + g and af are both differentiable
[in fact, (f + g)'=f + g"and (af)’ = af’], so both lie in D[a, b]. This shows that
D[a, b] is a subspace of Fla, b]. L2 22

Consider the two subsets P and Q of R” defined by

P = {(ab)inR*|a = 0) 0 = {(ab)inR*|d’ = b’

Then P and Q both contain the zero vector (0, 0) of R?, but they are not subspaces. In
fact. P is closed under addition but not scalar multiplication (for example (1, 0) lies
in P but (—1)(1, 0) = (—1, 0) is not in P), whereas Q is closed under scalar multi-
plication but not addition (for example (2, —2) and (1, 1) both lie in Q, but their sum
(2.—2) + (1, 1) = (3,—1) does not lie in Q).

LA 4 4

Linear Combinations and Spanning Sets

The set of solutions to a system of m homogeneous linear equations in n variables is a
subspace of R" (Example 5), and the Gaussian algorithm gives a convenient way to
describe this subspace. For example, consider the system
x, —2x, +x,+x, =0
—X,. % 2X; +x, =0

The augmented matrix is reduced as follows:

"1 2 1 1101 1 =2 1 1101 [1 =2 0 -1]0]
1 2 0 1lol=1l0 o 1 2]/0|=>/0 O 1 2]|0
|2 -4 1 0/0] |0 O -1 =20} |[O 00 0]0]

Taking x, = s and x, = t, the solution takes the form

X, 25+t 2s t] [2.) T
X5 § s 0 1 0
— = -+ = 5 g it 4
¥ — 2t 0 —2t 0 -2
%] L ] O] L 2l i3 M

where s and t are arbitrary parameters. Hence every solution can be found as a sum of
scalar multiples of the two basic solutions
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and

= o = b
I
ra

k. el — -

Such descriptions often turn out to be the most convenient way to describe a
subspace.

DEFINITION BN ) T ey
A vector v is called a linear combination of the vectors v,, v,, ..., v,if it can
be expressed in the form

vV=aV,tav,+ -+ ayv,

where a,, a,, . . . , a, are scalars called the coefficients of v, v,, ..., Vv,

Determine whether (1, 1, 4) or (1, 5, 1) is a linear combination of the vectors v, =
(1,2,—Dandv, = (3,5,2)in R’.

First, (1, 1, 4) is a linear combination of v, and v,; indeed,
(1,1,4) = 5(1,2,.—1 + #3,5:2)

where s = —2 and ¢ = 1. Turning to (1, 5, 1), the question is whether s and ¢ can be
found such that (1, 5, 1) = s(1, 2,—1) + #(3, 5, 2). Equating components gives

1l =5+ 3
5 =25+ 5t
| = -5+ 21

These equations have no solution, so (1, 5, 1) is not a linear combination of v, and v,.
00

In the system of three homogeneous linear equations considered prior to
Example 12, the solutions turned out to be just the set of all linear combinations of
two particular solutions. This prompts the following terminology:

DEFINITION . e 2NV -2 TAN S *%_w*:-i Rl Y ¢
If {v,, V,,...,V,} is any set of vectors in a vector space V, the set of all linear
combinations of these vectors is called their span, and is denoted by

span{v,, Vo, ..., V,}

If it happens that V = span{v,, v,, . .., v,}, then these vectors are called a
spanning set for V.
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For example, the span of two vectors v and w is the set
span{v, w} = {sv + rw| sand rin R}

of all sums of scalar multiples of the vectors.

Show that R" = span{e,, e,,...,e,}, where

e, =(1,0,0,...,0)
e, =1(0, 1,0, ...,0

e ={0,0 8, .-vs 1)

We must show that every vector in R" lies in span{e, e,, ..., e,}. Butif
v = (a,, a,,...,a,) is any vector in R", then
¥V = (ﬂl‘-' adry - - ,a”:l = da,& + I:IE_EE'I" . '+HHE“
Hence v lies in span{e,, e,, ..., e,}. L 2 2

Show that P, = span{l, x,x* ....x}.

We need only show that each polynomial p(x) in P, is a linear combination of 1.
X.....Xx" But this is clear because p(x) has the form

n

plx) =a, + ax +ax>++ax.

A 2 4

In the case of a single vector v in a vector space V, the span is
span{v} = {sv|sinR} = Ry

The notation Rv was introduced in Example 3 where it was verified that Rv is a sub-
space of V. It turns out that the span of any set of vectors 1s a subspace.

THEOREM 2 EENIER (o ey

Let U = span{v,, V,,...,V,} in a vector space V. Then

1. U s a subspace of V containing each of v, v,, ..., V,.

Q. U is the “smallest” subspace containing these vectors in the sense that any
subspace of V that contains each of v, v,, ..., v, must contain U.

Proof
1. Clearly 0 = Ov, + - - - + Ov, belongs to U. If v = a;v, + - - - + a4V, and
w = byv, + - - - + b,v,are two members of U and a is in R, then



@ Chapter 5

EXAMPLE 15

Solution

EXAMPLE 16

Solution

Yector Spaces

v+w=(a +b)v,+- --+(a, +b)v,

av = (aa )v, + - - - + (aa,)v,

so both v + w and av lie in U. Hence U is a subspace of V. It contains each

of v, Vs, ..., V,; for example, v, = Oy, + 1v; + Ov; + + - - + Ov,. This
proves (1).

2. Let W be a subspace of V that contains each of v, v,, .. ., v,. Because W is
closed under scalar multiplication, each of a\v, a,v,, . .., a,v, lies in W for
any choice of a,, a,, - . ., a, in R. But then @\v;, + a,v, + - - - + a,v, lies in
W because W is closed under addition. This means that W contains every
member of U, which proves (2). &

Theorem 2 is useful for determining spanning sets, as the following examples
show.

Show that R* = span{(1, 1, 1), (1, 1, 0), (0, 1, 1)}.

Writev, = (1, 1, 1), v, = (1, 1,0), v;=(0, I, 1), and U = span{v,, v,, vy}. Clearly
U is contained in R*. We have R® = span{(1, 0, 0), (0, 1, 0), (0, 0, 1)}: so to prove
that R’ is contained in U, it is enough by Theorem 2 to show that each of (1, 0, 0), (0,
1, 0), and (0, 0, 1) lies in span{v,, v,, v;}. But they can be given explicitly as linear
combinations of v, v,, and v;:

(i: 0, 0)=0; 1, = (0, k T) =%.—¥,
0,0 D=, 1, D=0, 1,0=v -V,

and then, using the first of these, we have

(U+ !a 0) — (11- la 0) o (13 ﬂa 0) = vl = {‘rl = ‘?3} = 1"2 = ?l ¥ "'r.'*- **‘

Show that P, = span{x® + x%, x, 2x* + 1, 3}.

Write U = span{x®> + x%, x, 2x2 + 1, 3}. Then U is contained in P,, and we use
the fact that P, = span{1, x, x2, x*} to show that P, is contained in U. In fact, x and
I = &+ - 3clearly lie in U. But then successively,

xt= 427+ ) -1
H= 0+ ) -x

also lie in U. Hence P, is contained in U by Theorem 2.

L & 2

The following notation is useful: If X and Y are two sets, then X C ¥ means that
X is contained in Y that is, every member of X is a member of Y. Clearly X = Yif
andonly if X C Yand ¥ C X are both true.
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EXAMPLE 17

Let u and v be two vectors in a vector space V. Show that
span{u, v} = span{u + v,u — Vvj

Solution We have span{u + v, u — v} C span{u, v} because bothu + vand u — v lie in
span{u, v}. On the other hand,

t(u+v)++(u-—v)

F(u+v)—+(m-v)

u

so span{u, v} C span{u + v,u — v} by Theorem 2.

4 2
SRR &Ry EXERCISES 5.2
" 1. Which of the following are subspaces of R'? Support your (g9 U=1{A| A in M,,, BAC = CAB}, B and C fixed
| answer. 2 X 2 matrices
(@) U = {(a,b,1)|aand b in R) 4. Which of the following are subspaces of F[0, 1]? Support
¢(b) U={(a,b,c) ] a+2b — ¢c=0;a b, and cin R} your answer.
(€) U=1{(0,0,¢)|cinR} (@) U = {f|f0) = 0]
¢(d) U=((a,b,0)|a®>=0b%aandbin R) e (b) U= (f|fi0) = 1}
() U={[(a,a—1,c)|aandcinR} () U= (f|A0) = A}
¢(f) U= ((abc)|a +b =c’ab andcinR]) ¢ (d) U= {f|fix) = 0forall xin [0, 1]}
(9) U = {(a,a,c)|aand cinR} (€) U = {f|fix) = fiy) forall xand v in [0, 1]}
2. Which of the following are subspaces of P,? Support your ¢(f) U= {f|fix+y) = flx) + fly) forall xand y in [0, 1]}
answer. (9) U = {f | [y f(x)dx = D}
(8) U = {fin)|A2) = 1) 5. Let A be anm X n matrix. For which columns B in R" is
¢(®) U = {xg(x)|g(x)in P} U= (X|XinR" AX = B} a subspace of R"?

(€) U = {xg(x)| g(x) in P;)
e(d) U = {xg(x) + (1 — x) h(x) | g(x) and h(x) in P,}
(¢) U = The set of all polynomials in P, with constant
term 0
¢(f) U= {fix)|degfix) = 3]
3. Which of the following are subspaces of M,,? Support
your answer.

6. Let X be a vector in R” (written as a column), and define
U= {AX|AinM, }.
(a) Show that U is a subspace of R".
¢ (b) Showthat U = R"if X # 0.

7. Write each of the following as a linear combination of
x+ 1, + x,and X + 2.
(8) X¥* +3x+ 2 e(b) 22 — 3x + 1

— —

(@) U= - a b a, b, and ¢, In [I%} (c) x* + 1 ¢ (d) x
el i 8. Write each of the following as a linear combination of
B _ (l.—1.13 CL.0.1) and (1, 1, O)
i{h} [J= 1 & g H+b=ﬂ'+d; a,b,c,anddlnﬂ (E} (2‘]‘_.” *(b} {:!!_?55}
o - Cc 521 +(d {D,ﬂ,ﬂ}
() U={A|AinM,, A=A") (€) (3:2.4) ()
¢(d) U={A|AinM,,, AB =0}, Bafixed 2 X 2 matrix 9. Determine whether v lies in span{u, w} in each case.
() U={A|AinM,,, A* = A} (@) v=(1,—1,2:u={1,1,1). w=(0,1,3)
¢(f) U={A|AinM,,, A is not invertible } ¢(b) v=0G.1,-3xu=(1,1w=(0123)
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€) v=3F —2x— Lu=xX+1,w=x+2 22. If P, = span{p,(x), ps(x), ..., px)} and a is in R, show
o (dv=xu=xX+1,w=x+2 that p(a) # 0 for some i.
(&) v = [} 3j|: G [1 -|]1 - [1 l} 23. Let U be a subspace of a vector space V.
=1 1 z Lo (@) If guisin U where a # 0, show thatuis in U.
S L 5 ¢ (b) Ifuandu + varein U, show that v isin U.
* (f) v= 5 3} = |:2 J' W= [] [}] 24. Let U be a nonempty subset of a vector space V. Show
| i _ o o " that U/ is a subspace if and only if (2) and (3) in Theorem
10. th:ch of the following functions lie in span{cos’x, [
R :
::; 'I;;S{gﬂrk KIS, n]::n ) 1 25. Let U be a nonempty su‘F&set of a vr:cmr space v Sbﬂw
(c) # o (d) 1+2 that U 1s a ﬁub.*sp‘a::t: of Vif am‘:I only if u, + au, hes in U
11. (a) Show that R"is spanned by {(1,0, 1),(1,1,0),(0, 1, D}. for all u, and u, in U and all an 18 |
¢ (b) Show that P, is spanned by {1 + 2x% 3x, 1 + x}. 36; Lex-U' be the get in Ixample. £ © = {piy) m.P | P.HJ -
(c) Show that M,, is spanned by ?I] O ;hﬂ fﬂc[;r :E::}tem tl? Eh{:‘; ttha; v cﬁnmm ,;] : [(m;I]
iples of x — 3; is, show tha = {(x — 3)g(x
{{l ﬂ]ﬂ [1 {]} {D I} |:I 1} qu} in P}. Use this to show that U/ is a subspace of I:f
o . b ft 27. Let P denote the set in Example 9. Show that P 1s a sub-
12. If X and Y are two sets of vectors in a vector space V, and space of R’ by:
if X C Y, show that span X C span Y. (a) Using the description P = {(x, y, 2) in R’ | ax + by
13. Letu, v, and w denote vectors in a vector space V. + ¢z = 0).
(@) Show that span{u, v, w} = span{u + v, u + W, (b) Using Theorem 4§4.2 and the description P = {v in
vV + w) R'|v-n=0},n=(abec).
¢ (b) Show that span{u, v, w} = span{u — v, u+ 98 [etA A,...,A,denoten X nmatrices. If ¥is a non-
W, W} zero column in R” and A\)Y =AY =- - - =AY =0,
14. Show that span{v,, v,, . .., v, 0} = span{v,, v,, .. ., show that {A,, A,, . . ., A, )} cannot span M_ .
v,} holds for any set of vectors {v,. vy, ..., V,}. 29. Let{v,, V., ....v,)and {u,. u,, ...,u,} be sets of vec-
15. If X and Y are nonempty subsets of a vector space V such tors in a vector space; and let
that span X = span Y = V, must there be a vector com- v, u,
mon to both X and ¥? Justify your answer. Wi y = | :
16. Is it possible that {(1,2,0), (1,1, 1)} can span the sub- v, u,
space U = {(a, b,0) |aand b in R}? as in Exercise 2585.1.
17. Describe span{0}. (a) Show that span{v,,...,v,} C span{fu,, ..., u}if
18. Let v denote any vector in a vector space V. Show that and only if AY = X for some n X n matrix A.
span{v} = span{av] forany a # (. (b) If X =AY where A is invertible, show that
19. Determine all subspaces of Rv where v # 0 in some vec- span{v,...,v,} = span{u ..., u,}.
tor space V. 30. If I/ and W are subspaces of a vector space V, let U U W
20. If R’ is regarded as the set of points in space and if d # 0 = {v|visin Uorvisin W}. Show that U U W is a sub-
in R’, show that span{d} is the line through the origin space ifandonly it U € Wor W C U.
with direction vector d. 31. Show that P cannot be spanned by a finite set of poly-
21. It M, = span{A,, A,, . ..., A}, show that M, = span nomials.
(AL Az ... AL}
IRV Section 5.3 Linear Independence and Dimension

Some spanning sets in a vector space V are in some sense better than others. If

V = span{v,, v, ...

tion of the vectors v, v, ..

, v, }, then each vector v in V can be written as a linear combina-
., v,. This section is devoted to the study of spanning
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Linear Independence and Dimension

v

sets having the property that each vector in V has exactly one representation as a lin-
ear combination of these vectors. It turns out to be enough to insist on this property
for the zero vector only.

DEFINITION PN AN T S
A set of vectors {v,, V,,...,V,} is called linearly independent if it satisfies
the following condition:

¥,

Ifs,v, + s, +- - - +5,v,=0, thens, =s5,=---=5,=0.

A set of vectors that is not linearly independent is said to be linearly
dependent.

For example, {(1,—1), (1, 1), (2, 1)} is linearly dependent because
(I,—D +3(1,1) — 22, 1) = (0,0

Because we refer to linear independence frequently, it is worthwhile to formulate
the definition slightly differently. The trivial linear combination of the vectors
V,,¥s . . .. V, is the one with every coefficient zero.

ﬂ\’1+01’2+--*+01'"

This is obviously one way of expressing 0 as a linear combination of these vectors,
and they are linearly independent when it is the only way.

Show that {(1,0,—1),(2, 1, 2), (3,—2, 0)} is linearly independent in R
Suppose that a linear combination of these vectors gives zero.
5:(1,0, =13 + 5(2,1,2), +.8&(3.-2,0) = (0,0,.0)

We must show that it is the trivial combination — that is, that s, = 5, = 53 = 0.
Equating components gives
s, +2s, + 35, = 0
s, — 25, =0
5 28, =10

These equations have only the trivial solution 5, = 5, = 53 = 0.

L 4 2 2

Show that {1 + x, 3x + x% 2 + x — x?} is linearly independent in P,.
Suppose a linear combination of these polynomials vanishes.

sl +x) 4+ 58x+3)+52+x —x)=0
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Equating the coefficients of 1, x, and x? gives a set of linear equations.
s; + + 25, =0
5 +35, + s5,=0
5, — §5,=0

Here again the only solutionis s, = 5, = 53 = 0. 2 2

Show that {sin x, cos x} is linearly independent in the vector space F[0, 2r] of func-
tions defined on the interval [0, 2m].

Suppose that a linear combination of these functions vanishes.
s(sin x) + s,(cosx) = 0

This must hold for all values of x (by the definition of equality in F[0, 2x]). Taking
x = 0 yields s, = 0 (because sin ) = 0 and cos 0 = 1). Similarly, s, = 0 follows
from taking x = Tit (because Sil‘l% = 1 and cus% = (). & B

Suppose that {u, v} is a linearly independent set in a vector space V. Show that
{u +v, u — v} is also linearly independent.

Suppose a linear combination of u + vand u — v vanishes.
stu+v)+ta —v)=0

We must deduce that s = r = 0. Collecting coefficients of u and v gives
(s+tu+(s —Hv=1>0

Now this is a linear combination of u and v that vanishes; so, because {u, v} 1s
linearly independent, all the coefficients must be zero. This yields linear equations
s +t=0ands — t = 0, and the only solutioniss =t = 0. R XS

If v # 0, the set {v] consisting of the single vector v 1s linearly independent.

The linear combinations in this case are just the scalar multiples sv, s in R. If sv = 0,
then s = 0 by Theorem 3§5.1 (because v # 0). This shows that {v} is linearly

independent. 00
If {v, vy, . ...V, is linearly independent in a vector space V, show that
{a\v,, ayv,, . . ., a,v,} is also linearly independent, provided that the numbers
a,, a, . ... a,areall nonzero.

Suppose a linear combination of the new set vanishes;

si(avy) + sy(avy) + - - - + 5,(a,v,) =0
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where s,, 55, . . . , 5, lie in R. Then s,a, = s,a, = - - - =s5,a, = 0 by the linear inde-
pendence of {v,, . . ., v,}. The fact that each a, is nonzero now implies that
3y = 52 = T TE N = ﬂ. “*

Show that no linearly independent set of vectors can contain the zero vector.

The set {0, v,, V., ..., V,} cannot be linearly independent because 10 + Ov, + Ov,
+ Ov; + - - - + Ov, = 0is a nontrivial linear combination that vanishes.

L2 2 2

The following is a convenient test for linear dependence.

THEOREM 1 S Y RN

A set {v,, v,, ..., v, ]} of vectors in a vector space V is linearly dependent if
and only if some v, is a linear combination of the others.

Proof Assume that {v,, v,. . ... V,} is linearly dependent. Then some nontrivial
linear combination vanishes—say, a,v, + a,¥v, + - - - + a,v, = 0 where some coef-
ficient is not zero. Suppose a, # 0. Then v, = (—a)/a,)v, + - - - + (—a,/a,)v, gives

v, as a linear combination of the others. In general, if @, # 0 then a similar argument
expresses V, as a linear combination of the others.

Conversely, suppose one of the vectors is a linear combination of the others—
say, Vv, = a,vV, + - - - + a,v,. Then the nontrivial linear combination lv, — a,v,
— . - - — a,yv, equals zero, so the set {v,, ..., v,} is not linearly independent; that
is, it is linearly dependent. A similar argument works if any v, is a linear combination
of the others. L 4

Theorem 1 has a geometric interpretation in R’. Let u and v be nonzero vectors
in R3 with their initial points at their origin (see Chapter 4). Theorem | shows that the
set {u, v} is linearly dependent if and only if one of them is a scalar multiple of the
other; that is, if and only if they are parallel. Hence the set {u, v} is linearly indepen-
dent if and only if u and v are not parallel and, in this case, span {u, v} is the plane
through the origin containing u and v.

Similarly, the set {u, v, w} is linearly dependent if and only if one of them 1s 1n
the subspace (plane or line through the origin) spanned by the others. Hence the set
{u, v, w} in Figure 5.1 is linearly independent because w is not in the plane contain-
ing u and v.

The notion of independence was motivated by the insistence that the set of
vectors in question be such that linear combinations have uniquely determined
coefficients. However, the definition of linear independence requires only that linear
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combinations equaling zero have uniquely determined coefficients (necessarily all
zero). Theorem 2 asserts that linearly independent sets have the stronger uniqueness
property.

THEOREM 2 BN 2 ot B BT

Let {v,, V5, ..., V,} be a linearly independent set of vectors in a vector space
V. If a vector v has two (ostensibly different) representations

l"r = .‘iﬂﬁ + SEFI + =" + Sﬂ‘?"
'Il'r - I]‘rl "|"’ fﬂ"g-l' s . +I”"r”
as linear combinations of these vectors then s, = ¢, s, =1,,...,5, = 1,
Proof We have s,v, + 5,;v, + - - - + 5V, = ,v, + t,¥, + - - - + 1,v, (because

both sides equal v); so, taking everything to the left side, we get
($; =)V + (5, — L) v+ +(s, —1)v, =0

All the coefficients are zero by the independence of the v, so s, =1, 5, = 1,, . .

Fo

s, = t,, as required. *

-7

The following theorem uses a simple fact about linear equations (Theorem
1§3.1) to prove a basic result about linear independence: The number of vectors in an
independent set can never exceed the number in a spanning set.

THEOREM 3
Fundamental Theorem

Suppose a vector space V can be spanned by n vectors. If any set of m vectors
in V 1s linearly independent, then m < n.

Proof Let V = span{v,, Vo, . . ., v,}). We must show that every set {u,, u,,

., u,} of vectors in V with m > n fails to be linearly independent. This is
accomplished by showing that numbers x,, x,, . . . , x,, can be found, not all zero,
such that

m

thﬁ.ujzx,u,+xiu1+-~+xu = 0

m-m
i=1

Because V 1s spanned by the vectors v, v,, ..., v,, each vector u; can be expressed
as a linear combination of the v;:
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i
=1

Substituting these expressions into the preceding equation gives

f T I

I]=ZJ9 zﬂg‘“: =Z ZH‘J’IJ V.
j=1

i=1 i=1 \ j=I

This is certainly the case if each coefficient of v, is zero—that is, if

m

N A= ST ET D,

j=1

But this is a system of n equations in the m variables x;, x,, . . . , x,; so, because
m > n, it has a nontrivial solution by Theorem 1§1.3. This is what we wanted. ¢

We now come to a very important definition.

DEFINITION AN, YRS NS

A set {e,, e,, ..., e,} of vectors in a vector space V is called a basis of V if 1t
satisfies the following two conditions:

1. {e,, e, ...,e,} islinearly independent

2. V=span{e,e,, ...,¢e,}

Thus if a set of vectors {e,, e,, ..., e,} is a basis, then every vector in V can be writ-
ten as a linear combination of these vectors in a unique way (Theorem 2). But even
more is true: Any two (finite) bases of V contain the same number of vectors.

THEOREM 4 BNIH o 7 R ey

Let {e,, e,,...,e,} and {f, £,,...,f,} be two bases of a vector space V. Then
n=m.
Proof Because V = span{e, e, . . ., e¢,}, it follows from Theorem 3 that
m < n.Similarly n < m, son = m, as asserted. ¢

Theorem 4 guarantees that no matter which basis of V is chosen it contains the
same number of vectors as any other basis. Hence there i1s no ambiguity about the fol-
lowing definition.
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DEFINITION SPNIILE e e R O

If {e,, e, ...,e,} is a basis of the nonzero vector space V, the number of n of
vectors in the basis is called the dimension of V, and we write

dimV = n
The zero vector space V = 0 is defined to have dimension 0:
| dimO0O = 0
A vector space V is called finite dimensional if V = 0 or V has a finite basis.

In the discussion of bases to this point, we have tacitly assumed that a basis is
nonempty and hence that the dimension of the space is at least 1. On the other hand,
the zero space 0, consisting of the zero vector alone, has no basis (Example 7), so our
insistence that dim 0 = 0 amounts to saying that the empty set of vectors is a basis of
the zero space.

Show that dim R" = n and that {e,, e,, ..., e } is a basis where

e, =(1,00,...,0),e,=(0,1,0,...,0),...,e, =(0,0,0,...,1)
This basis is called the standard basis for R".
R" = span{e,, e,,...,e,} because

(a,a,...,a,) =ae, +ae, +---+ ae

a—n

holds for all vectors (a,, a5, . . . , a,) in R". But this also shows that the vectors
e, e, ..., e, are linearly independent because a,e, + - - - + a,e, = 0 implies that
a, =---=a, =0.Hence {e,, e, ...,e ) isabasisof R", sodimR" = n.

*o¢

Similar considerations apply to the space of all m X n matrices.

The space M,,, has dimension mn, and one basis consists of all m X n matrices with
exactly one entry equal to 1 and all other entries equal to 0. &b

Show thatdim P, = n + 1 and that {1, x, 22, . .., x"} is a basis.

Each polynomial p(x) = a, + ax + - - - + ax" in P, is clearly a linear combination
oL 1, Xuiiinis xX',so P, = span{1, x, . .., xX"}. On the other hand, if a linear combina-
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tion of these vectors vanishes, a,0 + ax + - - -+ a,x" =0, then a,=a, =
. = a, = 0 because x is an indeterminate. So {1, x, . . ., X"} is linearly indepen-
dent and hence is a basis.

L & 2

Example 10 shows that the space P of all polynomials cannot be finite dimen-
sional. In fact, if dim P = n, then P would be spanned by n polynomials. But the fact
that {1, x, x?,...,x"} are n + 1 linearly independent vectors in P would then contra-
dict the fundamental theorem.

If v # 0 is any nonzero vector in a vector space V, show that span{v} = [Rv has
dimension 1.

{v} clearly spans Rv, and it is linearly independent by Example 5. Hence {vlisa
basis of Rv, and so dim Rv = 1. L X 22

11
As in Example 6§5.2, let A = [0 {]] and consider the subspace

U={XinM,, |AX = XA}
of M,,. Show that dim U = 2 and find a basis of U.

It was shown in Example 6§5.2 that

[y

Hence each matrix X in UU can be written

v+ w Y 1 ] 1 0
X = =y +~ W
| 0 w 0 0 0 1

—

I 1 1 0
so U = span B where B = { 0 {]]’ [O I]} Moreover, the set B is linearly indepen-

dent (verify this), so it is a basis of U and dim U = 2. o9

yand w in Iﬁ},

Show that the set V of all symmetric 2 X 2 matrices is a vector space, and find the
dimension of V.
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A matrix A is symmetric if A" = A. If A and B lie in V, then
(A+B)'=A"+ B " =A+8B
(kA = kAT = kA

using Theorem 2§2.1; so A + B and kA are also symmetric. This shows that V i1s a
vector space (being a subspace of M,,). Now a matrix A is symmetric when entries
directly across the main diagonal are equal, so each 2 X 2 symmetric matrix has

the form
a c 1 0 bUU 0 1
= + +c
c bl Yo o o 1|71 o

I 0] (0 O [O 1 ;
Hence the set B = o oflo 111 o spans V, and the reader can verity that

B is linearly independent. Thus B is a basis of V, so dim V = 3.

o

The fundamental theorem takes the following useful form when stated for vector
spaces of dimension n.

THEOREM 5 DN 2 7 i e BT

Let V be a vector space and assume that dim V=n > 0.

1. No set of more than n vectors in V can be linearly independent.

2. No set of fewer than n vectors can span V.

Proof V can be spanned by n vectors (any basis), so (1) restates the fundamental
theorem. But the n basis vectors are also linearly independent, so no spanning set can
have fewer than n vectors, again by Theorem 3. This gives (2). '

Hence any set of more than n vectors in R" must be linearly dependent by (1) of
Theorem 5. Here is another application.

Let A denote an n X n matrix. Then there exist n* + 1 real numbers a, a,, a,,
., a., not all zero, such that

agl + a, A+ aA* + - - - + @A = 0
where / denotes the n X n identity matrix.

The space M, , of all » X n matrices has dimension n* by Example 9. Hence the
n’ + 1 matrices I, A, . . . , A" cannot be linearly independent by property | of
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Theorem 5. so a nontrivial linear combination must vanish. This is the desired
conclusion.

L2 2
We note in passing that the result in Example 14 can be written as flA) = 0 where
fix) = a, + ax + - - - + azx" . In other words, A satisfies a nonzero polynomial of
degree n’. In fact, we know that A satisfies a nonzero polynomial of degree n (this is
the Cayley—Hamilton theorem; see Theorem 2§7.7), but the brevity of the solution 1n
Example 14 is an indication of the power of these methods.

AN E AR5y EXERCISES 5.3
1. Show that each of the following sets of vectors is linearly (a) {(1, —1,0), (x,1,0),(0,2,3))

independent.
(a) {(1,—1),(2,0)} in R’
e(b) ((1,2),(—1,1)}in R
(¢) {(1,—1,0),(0,—1,2),(2,1,1)} in R’
o(d) {(1,1,1),(0,1,1),(0,0,1)} in R’
() {(1+x 1 — x,x+ x'}inP,
of) {xx+1,1 — x—x}inP,

o LT SE 3B Jow
o 3L HE G G

9. Which of the following subsets of V are linearly indepen-
dent?
(a) Vv =R% {(1,—1,0),(3,2,—1),(3,5,~2))
e(®) V=R {(1,1,1),(1,—1,1),(0,0,1))
() v=R,{((1,-1,1,-1),(2,0,10),(0,-2,1,-2)}
o(d) vV =R {(1,1,0,0),(1,0,1,0), (0,0, 1,1),
(0,1,0,1)}
() V=P, [X+1,x+1,x}
o) V=P, (¥ —x+3, 2 +x+5 2 +5x+1]

L 11 Moo 1o
(9) V= Mﬂ;{{] 1]‘ ! 1}‘ L} 1]}

_M-_-]ﬂ_]_]llﬂ_].
e(h) V= My, 0 -1 {_1 |]’ L I} Ll f}]

i g o3
k) 1 "
IE X

@ v = F 25 |

& V = : 1 1 1
0) FIO, 1; {_{11_ -6 1 —5x+6 ,?_—_9}
3. Which of the following are linearly independent in

F[0, 2mx]?

(a) {sin’x, cos’x}
¢(b) {1, sinx, cos’x}

(¢) {x,sinx, cos’x}

4. Find all values of x such that the following are linearly
independent in R,

o(B) ((2,x,1),(1,0,1),(0,1,3))

5. Show that the following are bases of the space V

indicated.
(@) {(1.1,0),(1,0,1),(0,1.H}; V = R’
o(b) (L1 1 (1,=1,1),(,1L-D}V=FR

(<) {E:- ﬂ‘ [[1} :;]* B ﬂ [:} ﬂ} viem N

old) (1 +x,x+22+x, V="

6. Exhibit a basis and calculate the dimension of each of the

following subspaces of R*.
() {(@a + b.a — b,b)|aand binR]
¢(b) {(a + b,a — b, a, b) | a and b in R}
(¢) {(a,b,c+a,c)|a b, andcin R}
e(d) {(a —bb+cab+ ¢) | a, b, and ¢ in R}
(€) {(abecd|a+b+c+d=0)]
o(f) {(abcd|a+b=c+d

. -
(@) (XinR'|XA = 0) whered = |\ 1 & 1

1 -1 0 2
s -1 2 1 2]
¢(h) {XinR'| XA = 0} where A = 110 3}

7. Exhibit a basis and calculate the dimension of each of the
following subspaces of P,.
(@) {a(l + x) + b(x + x’) | aand b in R)
¢(b) {a + b(x +x*)|aandbin R}
(€) {p(x)|p(1) = 0]
¢ (d) (p(x)|px) = p(—x)}
8. Exhibit a basis and calculate the dimension of each of the

following subspaces of M, .
(a) (A|A" = —A)

+(b) {A ﬂ:_: <:1| B [—i []1]’4}
(c) {ﬂ A:_: g N [g g]

@) |4
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1 1
9. LetA = [{] {]:| and define U/ = {X|X is in M,, and
AX =X}.
(a) Find a basis of U containing A.
¢ (b) Find a basis of U not containing A.

10. In earr._th_casc, find a basis of the solution space.
x||2x— y+ z=10
x+2y—z=0

w

(a)

x=3y+2z =0]

b

¢ (b) - x+3y—2z=0
2x — 4y + 3z=0 |
+2u=10
§ r+ s+ t = 0
@ ¢|| 2r—25- t+24=0
r—3s—-2t+2u= ﬂ‘
r r+ s— t+2u=0|
s|| 3r— s+2t— u=0
{ r—3+4tr-5u=10
]| Sr—3s+ 51— 4u = [}J
11. (a) Let V denote the set of all 2 X 2 matrices with equal
column sums. Show that V is a subspace of M,,, and
compute dim V.
¢ (b) Repeat part (a) for 3 X 3 matrices.
¢ (c) Repeat part (@) forn X n matrices.
12. (a) Let V = {(x* + x + Dp(x) | p(x) in P,}. Show that V
is a subspace of P, and find dim V. [Hint: If fix) g(x)
= 0in P then fix) = 0 or g(x) = 0.]
¢ (b) Repeat with V = {[(x2 — x)p(x) | p(x) in P;}, a subset
of Ps.
(c) Generalize.

b

y
L—E—
[x]] 3x— y+ z=0
y
._E...
=

3r— &

¢ (d) |

W

13. In each case, either prove the assertion or give an example
showing that it 1s false.
(a) Every set of four nonzero polynomials in P, is a basis.
¢ (b) P, has a basis of polynomials fix) such that f0) = 0.
(c) P, has a basis of polynomials f{x) such that f0) = 1.
¢ (d) Every basis of M,, contains a noninvertible matrix.
(e) No linearly independent subset of M,, contains a
matrix A with A* = 0.
o(f) If {u, v, w} is linearly independent, then au + bv
+ c¢w = 0 for some a, b, c.
(9) {u, v, w} is linearly independent if au + bv + cw
= () for some a, b, c.
¢ (h) If {u, v} is linearly independent, so is {u, u + v}.
(i) If {u, v} is linearly independent, so is {u, v, u + v}.
¢ (j) If {u, v, w] is linearly independent, so is {u, v}.
(k) If {u, v, w} is linearly dependent, so is {u, v}.

14. let A # 0 and B # 0 be n X n matrices, and assume
that A is symmetric and B is skew-symmetric (that 1s,
B" = —B). Show that {A, B} is linearly independent.

15. Show that every set of vectors containing a linearly
dependent set is again linearly dependent.

#16. Show that every nonempty subset of a linearly indepen-

dent set of vectors is again linearly independent.

17. Let fand g be functions on [a, b], and assume that fla) =
| = g(b)and fib) = 0 = g(a). Show that {f, g} is linearly
independent in F[a, b].

18. Let {A,, A,, . . ., A,} be linearly independent in M, ,
and suppose that U and V are invertible matrices of size
m X m and n X n, respectively. Show that {UA,V,
UA,V, . . ., UA,V} is linearly independent.

19. letAbem X nandlet B, ..., B, becolumns in R
such that AX, = B, has a solution X, for each i If
{B,, ..., B,} 1s lnearly independent, show that {X|,
. . . » X,} 1s also linearly independent.

20. (a) Show that {v, w} is linearly independent if and only
if neither v nor w is a scalar multiple of the other.
¢ (b) If v, w are nonzero vectors in R', show that v and w
are linearly independent if and only if the lines
through the origin with 