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Notation

R | real numbers
N | natural numbers: {0,1,2,...}
C | complex numbers
{ ‘} set of ... such that ...
(...) | sequence; like a set but order matters
V., W,U | vector spaces
U,wW | vectors
6, 6V zero vector, zero vector of V'
, D | bases
&, = (e, , @) | standard basis for R"
5, 5 | basis vectors

Repg(¥) | matrix representing the vector
P, | set of n-th degree polynomials
Msan | set of nxm matrices
[S] | span of the set S
M @& N | direct sum of subspaces
V 2 W | isomorphic spaces
h,g | homomorphisms
H,G | matrices
t,s | transformations; maps from a space to itself
T,S | square matrices
Repp p(h) | matrix representing the map h
h;; | matrix entry from row ¢, column j
|T'| | determinant of the matrix T'
#(h), N (h) | rangespace and nullspace of the map h
Roo(h), Noo(h) | generalized rangespace and nullspace

Lower case Greek alphabet

name symbol | name symbol | name symbol
alpha Q@ iota L rho P
beta J6] kappa K sigma o
gamma 7y lambda A tau T
delta ) mu I upsilon v
epsilon € nu v phi 10)
zeta ¢ xi I3 chi X
eta n omicron o psi 0
theta 0 pi T omega W

Cover. This is Cramer’s Rule applied to the system =z + 2y = 6, 3z +y = 8. The area
of the first box is the determinant shown. The area of the second box is x times that,
and equals the area of the final box. Hence, x is the final determinant divided by the
first determinant.



Preface

In most mathematics programs linear algebra is taken in the first or second
year, following or along with at least one course in calculus. While the location
of this course is stable, lately the content has been under discussion. Some in-
structors have experimented with varying the traditional topics, trying courses
focused on applications, or on the computer. Despite this (entirely healthy)
debate, most instructors are still convinced, I think, that the right core material
is vector spaces, linear maps, determinants, and eigenvalues and eigenvectors.
Applications and computations certainly can have a part to play but most math-
ematicians agree that the themes of the course should remain unchanged.

Not that all is fine with the traditional course. Most of us do think that
the standard text type for this course needs to be reexamined. Elementary
texts have traditionally started with extensive computations of linear reduction,
matrix multiplication, and determinants. These take up half of the course.
Finally, when vector spaces and linear maps appear, and definitions and proofs
start, the nature of the course takes a sudden turn. In the past, the computation
drill was there because, as future practitioners, students needed to be fast and
accurate with these. But that has changed. Being a whiz at 5x5 determinants
just isn’t important anymore. Instead, the availability of computers gives us an
opportunity to move toward a focus on concepts.

This is an opportunity that we should seize. The courses at the start of
most mathematics programs work at having students correctly apply formulas
and algorithms, and imitate examples. Later courses require some mathematical
maturity: reasoning skills that are developed enough to follow different types
of proofs, a familiarity with the themes that underly many mathematical in-
vestigations like elementary set and function facts, and an ability to do some
independent reading and thinking, Where do we work on the transition?

Linear algebra is an ideal spot. It comes early in a program so that progress
made here pays off later. The material is straightforward, elegant, and acces-
sible. The students are serious about mathematics, often majors and minors.
There are a variety of argument styles—proofs by contradiction, if and only if
statements, and proofs by induction, for instance—and examples are plentiful.

The goal of this text is, along with the development of undergraduate linear
algebra, to help an instructor raise the students’ level of mathematical sophis-
tication. Most of the differences between this book and others follow straight
from that goal.

One consequence of this goal of development is that, unlike in many compu-
tational texts, all of the results here are proved. On the other hand, in contrast
with more abstract texts, many examples are given, and they are often quite
detailed.

Another consequence of the goal is that while we start with a computational
topic, linear reduction, from the first we do more than just compute. The
solution of linear systems is done quickly but it is also done completely, proving



everything (really these proofs are just verifications), all the way through the
uniqueness of reduced echelon form. In particular, in this first chapter, the
opportunity is taken to present a few induction proofs, where the arguments
just go over bookkeeping details, so that when induction is needed later (e.g., to
prove that all bases of a finite dimensional vector space have the same number
of members), it will be familiar.

Still another consequence is that the second chapter immediately uses this
background as motivation for the definition of a real vector space. This typically
occurs by the end of the third week. We do not stop to introduce matrix
multiplication and determinants as rote computations. Instead, those topics
appear naturally in the development, after the definition of linear maps.

To help students make the transition from earlier courses, the presentation
here stresses motivation and naturalness. An example is the third chapter,
on linear maps. It does not start with the definition of homomorphism, as
is the case in other books, but with the definition of isomorphism. That’s
because this definition is easily motivated by the observation that some spaces
are just like each other. After that, the next section takes the reasonable step of
defining homomorphisms by isolating the operation-preservation idea. A little
mathematical slickness is lost, but it is in return for a large gain in sensibility
to students.

Having extensive motivation in the text helps with time pressures. I ask
students to, before each class, look ahead in the book, and they follow the
classwork better because they have some prior exposure to the material. For
example, I can start the linear independence class with the definition because I
know students have some idea of what it is about. No book can take the place
of an instructor, but a helpful book gives the instructor more class time for
examples and questions.

Much of a student’s progress takes place while doing the exercises; the exer-
cises here work with the rest of the text. Besides computations, there are many
proofs. These are spread over an approachability range, from simple checks
to some much more involved arguments. There are even a few exercises that
are reasonably challenging puzzles taken, with citation, from various journals,
competitions, or problems collections (as part of the fun of these, the original
wording has been retained as much as possible). In total, the questions are
aimed to both build an ability at, and help students experience the pleasure of,
doing mathematics.

Applications, and Computers. The point of view taken here, that linear
algebra is about vector spaces and linear maps, is not taken to the exclusion
of all other ideas. Applications, and the emerging role of the computer, are
interesting, important, and vital aspects of the subject. Consequently, every
chapter closes with a few application or computer-related topics. Some of the
topics are: network flows, the speed and accuracy of computer linear reductions,
Leontief Input/Output analysis, dimensional analysis, Markov chains, voting
paradoxes, analytic projective geometry, and solving difference equations.
These are brief enough to be done in a day’s class or to be given as indepen-
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dent projects for individuals or small groups. Most simply give a reader a feel
for the subject, discuss how linear algebra comes in, point to some accessible
further reading, and give a few exercises. I have kept the exposition lively and
given an overall sense of breadth of application. In short, these topics invite
readers to see for themselves that linear algebra is a tool that a professional
must have.

For people reading this book on their own. The emphasis on motivation
and development make this book a good choice for self-study. While a pro-
fessional mathematician knows what pace and topics suit a class, perhaps an
independent student would find some advice helpful. Here are two timetables
for a semester. The first focuses on core material.

week | Mon. Wed. Fri.

1] 111 1.1.1,2  112,3
2| 113 1.11.1 1.11.2
3| 1.III.1, 2 1.111.2 2.1.1

4 | 212 2.11 2.111.1
5 | 2.II1.1, 2 2.111.2 exam
6 | 2.111.2, 3 2.111.3 3.1.1
71312 3.11.1 3.11.2
8 | 3.I1.2 3.11.2 3.111.1
9 | 3.III.1 3.111.2 31IV.1, 2
10 | 3.IV.2, 3,4 3.IvV.4 exam
11 | 3.IV.4,3. V.1 3.V.1,2 41I.1,2
12 | 4.1.3 4.11 4.11
13 | 4.111.1 5.1 5.11.1
14 | 5.11.2 5.11.3 review

The second timetable is more ambitious (it presupposes 1.II, the elements of
vectors, usually covered in third semester calculus).

week | Mon. Wed. Fri.
1] 111 1.1.2 1.1.3
2| 113 1.III.1, 2 1.111.2
31211 2.1.2 2.11
4 | 2.111.1 2.111.2 2.111.3
5 | 2.111.4 3.I.1 exam
6 | 3.1.2 3.11.1 3.11.2
7 | 3.II1.1 3.111.2 3.1IV.1, 2
8 | 3.IV.2 3.1V.3 3.1V.4
9| 3.V.1 3.V.2 3.VI.1
10 | 3.VI.2 4.1.1 exam
11 | 4.1.2 4.1.3 4.1.4
12 | 4.11 411, 4.1I1.1  4.111.2, 3
13 | 5.II.1, 2 5.I1.3 5.111.1
14 | 5.111.2 5IV.1, 2 51V.2

See the table of contents for the titles of these subsections.
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For guidance, in the table of contents I have marked some subsections as
optional if, in my opinion, some instructors will pass over them in favor of
spending more time elsewhere. These subsections can be dropped or added, as
desired. You might also adjust the length of your study by picking one or two
Topics that appeal to you from the end of each chapter. You’ll probably get
more out of these if you have access to computer software that can do the big
calculations.

Do many exercises. (The answers are available.) I have marked a good sam-
ple with v’s. Be warned about the exercises, however, that few inexperienced
people can write correct proofs. Try to find a knowledgeable person to work
with you on this aspect of the material.

Finally, if I may, a caution: I cannot overemphasize how much the statement
(which I sometimes hear), “I understand the material, but it’s only that I can’t
do any of the problems.” reveals a lack of understanding of what we are up
to. Being able to do particular things with the ideas is the entire point. The
quote below expresses this sentiment admirably, and captures the essence of
this book’s approach. It states what I believe is the key to both the beauty and
the power of mathematics and the sciences in general, and of linear algebra in
particular.

I know of no better tactic Jim Hefferon

than the illustration of exciting principles Saint Michael’s College

by well-chosen particulars. Colchester, Vermont USA
~Stephen Jay Gould jim@joshua.smcvt.edu

April 20, 2000

Author’s Note. Inventing a good exercise, one that enlightens as well as tests,
is a creative act, and hard work (at least half of the the effort on this text
has gone into exercises and solutions). The inventor deserves recognition. But,
somehow, the tradition in texts has been to not give attributions for questions.
I have changed that here where I was sure of the source. I would greatly appre-
ciate hearing from anyone who can help me to correctly attribute others of the
questions. They will be incorporated into later versions of this book.
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Chapter 1
Linear Systems

1.I Solving Linear Systems

Systems of linear equations are common in science and mathematics. These two
examples from high school science [Onan] give a sense of how they arise.

The first example is from Physics. Suppose that we are given three objects,
one with a mass of 2 kg, and are asked to find the unknown masses. Suppose
further that experimentation with a meter stick produces these two balances.

|e—— 40 —»>fa— 50 ——=| | 25 —»l@a— 50 ——»
w (o) © (o) @ ®
— 15 |e— j— 25 —f

Now, since the sum of moments on the left of each balance equals the sum of
moments on the right (the moment of an object is its mass times its distance
from the balance point), the two balances give this system of two equations.

40h + 15¢ = 100
25¢ = 50 + 50h

The second example of a linear system is from Chemistry. We can mix,
under controlled conditions, toluene C;Hg and nitric acid HNOg3 to produce
trinitrotoluene C;HsOgN3 along with the byproduct water (conditions have to
be controlled very well, indeed — trinitrotoluene is better known as TNT). In
what proportion should those components be mixed? The number of atoms of
each element present before the reaction

xC7Hg + yHNO3 — 2C7H506N3 + wH>0

must equal the number present afterward. Applying that principle to the ele-
ments C, H, N, and O in turn gives this system.

Tex =Tz

8x + 1y =5z + 2w
ly =3z
3y =6z + 1w
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To finish each of these examples requires solving a system of equations. In
each, the equations involve only the first power of the variables. This chapter
shows how to solve any such system.

1.I.1 Gauss’ Method
1.1 Definition A linear equation in variables x1, xo, ... ,x, has the form
a1r1 + asxo + azxrs + - + apxr, =d

where the numbers ay,... ,a, € R are the equation’s coefficients and d € R is
the constant. An n-tuple (s1,sa,...,$,) € R™ is a solution of, or satisfies, that
equation if substituting the numbers s, ..., s, for the variables gives a true
statement: a;81 + asss + ...+ a,S, = d.

A system of linear equations

01,171 + a12T2 + -+ A1 Ty = di
a2,1T1 + Q2% + -+ G2pTy = da
Am,1T1 + Gm2%2 + -+ Gy nTp = dpy,
has the solution (s1, S, . .. , s,) if that n-tuple is a solution of all of the equations

in the system.

1.2 Example The ordered pair (—1,5) is a solution of this system.

3r1+ 2209 =7
—r1+ 22=06

In contrast, (5, —1) is not a solution.

Finding the set of all solutions is solving the system. No guesswork or good
fortune is needed to solve a linear system. There is an algorithm that always
works. The next example introduces that algorithm, called Gauss’ method. It
transforms the system, step by step, into one with a form that is easily solved.

1.3 Example To solve this system
31’3 =9

x1 + dry — 203 =2
%x1—|—2:p2 =3
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we repeatedly transform it until it is in a form that is easy to solve.

11‘1 + 21‘2 =3
swap row 1 with row 3 3
— 1’1+5£L’2—2{E3:2
3{,C3 =9
x1 + 6 =9
multiply row 1 by 3 ! 2
— x1+5x2—2x3:2
3%3 =9
1+ 62 =9
add —1 times row 1 to row 2 L 2
— —X2 — 2!173 =7
3£C3 = 9

The third step is the only nontrivial one. We’ve mentally multiplied both sides
of the first row by —1, mentally added that to the old second row, and written
the result in as the new second row.

Now we can find the value of each variable. The bottom equation shows
that x3 = 3. Substituting 3 for x3 in the middle equation shows that zo = 1.
Substituting those two into the top equation gives that 1 = 3 and so the system
has a unique solution: the solution set is { (3,1, 3) }.

Most of this subsection and the next one consists of examples of solving
linear systems by Gauss’ method. We will use it throughout this book. It is
fast and easy. But, before we get to those examples, we will first show that
this method is also safe in that it never loses solutions or picks up extraneous
solutions.

1.4 Theorem (Gauss’ method) If a linear system is changed to another by
one of these operations

(1) an equation is swapped with another
(2) an equation has both sides multiplied by a nonzero constant

(3) an equation is replaced by the sum of itself and a multiple of another

then the two systems have the same set of solutions.

FEach of those three operations has a restriction. Multiplying a row by 0 is
not allowed because obviously that can change the solution set of the system.
Similarly, adding a multiple of a row to itself is not allowed because adding —1
times the row to itself has the effect of multiplying the row by 0. Finally, swap-
ping a row with itself is disallowed to make some results in the fourth chapter
easier to state and remember (and besides, self-swapping doesn’t accomplish
anything).

Proor. We will cover the equation swap operation here and save the other two
cases for Exercise 29.
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Consider this swap of row ¢ with row j.

1,171 + a12To + -0 1T, = di 1,171 + a1 oTo + - A1 T, = di
;1T + Q%o+ ATy = d; aj171 + ajora+ -0 Ty = d;
—
aj1T1 + Ajo%2+ -0 5Ty = d; ;11 + Qia%a+ - QinTn = d;
Am 11 + A 22 + - Am nTn = dm Am 11 + A 272 + - Am nTn = dm
The n-tuple (s1,...,$,) satisfies the system before the swap if and only if
substituting the values, the s’s, for the variables, the x’s, gives true statements:
a1,181+a1 282+ +a1,nSy = diand... i 181+0a; 2824+ nSp = d; and ...
aj151+aj282+ -+ ajnsn =djand ... Q151+ Am252 - QmonSn = dpy.

In a requirement consisting of statements and-ed together we can rearrange
the order of the statements, so that this requirement is met if and only if aq 151+

1,282+ -+ a1 sy, =dy and ... aj151 +aj252+ -+ a;nS, =d; and ...
@151 + Q282+ -+ QinSn = d; and ... am, 151+ am 282+ -+ AmnSn = dpm.-
This is exactly the requirement that (si,... ,s,) solves the system after the row
swap. QED

1.5 Definition The three operations from Theorem 1.4 are the elementary re-
duction operations, or row operations, or Gaussian operations. They are swap-
ping, multiplying by a scalar or rescaling, and pivoting.

When writing out the calculations, we will abbreviate ‘row i’ by ‘p;’. For
instance, we will denote a pivot operation by kp; + p;, with the row that is
changed written second. We will also, to save writing, often list pivot steps
together when they use the same p;.

1.6 Example A typical use of Gauss’ method is to solve this system.

T+ Yy =0
20 — y+32=3
r—2y— z2=3

The first transformation of the system involves using the first row to eliminate
the x in the second row and the z in the third. To get rid of the second row’s
2z, we multiply the entire first row by —2, add that to the second row, and
write the result in as the new second row. To get rid of the third row’s x, we
multiply the first row by —1, add that to the third row, and write the result in
as the new third row.

s T+ Yy =0
nope —3y+32=3
~2o1tp2 —3y— 2=3

(Note that the two p; steps —2p1 + p2 and —p; + p3 are written as one opera-
tion.) In this second system, the last two equations involve only two unknowns.
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To finish we transform the second system into a third system, where the last
equation involves only one unknown. This transformation uses the second row
to eliminate y from the third row.

ot r+ oy =0
L2rps —3y+ 32=3
—4z=0

Now we are set up for the solution. The third row shows that z = 0. Substitute
that back into the second row to get y = —1, and then substitute back into the
first row to get x = 1.

1.7 Example For the Physics problem from the start of this chapter, Gauss’
method gives this.

40h +15¢=100 5/4pitp: 40h+  15¢=100
—50h + 25¢ = 50 (175/4)c = 175

So ¢ = 4, and back-substitution gives that h = 1. (The Chemistry problem is
solved later.)

1.8 Example The reduction

r+ y+ z2=9 gt z+ y+ z= 9
o2 +4y —3z=1 Pzee 2y — bz =—17
3z+6y—5z=0 e 3y — 8z =27
+ y+ z= 9

~(3/2pptes % — 5z=—17

1., 3

T2FT T2

shows that 2z =3, y=—1,and z = 7.

As these examples illustrate, Gauss’ method uses the elementary reduction
operations to set up back-substitution.

1.9 Definition In each row, the first variable with a nonzero coefficient is the
row’s leading variable. A system is in echelon form if each leading variable is
to the right of the leading variable in the row above it (except for the leading
variable in the first row).

1.10 Example The only operation needed in the examples above is pivoting.
Here is a linear system that requires the operation of swapping equations. After
the first pivot

T— Yy =0 r—y =0
20 —2y+ z+2w=4 ~2p14p2 z4+2w=4
Y + w=0 y 4+ w=0

224+ w=25 224+ w=>5
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the second equation has no leading y. To get one, we look lower down in the
system for a row that has a leading y and swap it in.

T —y =0

p2p3 y + w=0
z4+2w=4

2z4+ w=>

(Had there been more than one row below the second with a leading y then we
could have swapped in any one.) The rest of Gauss’ method goes as before.

r—y = 0

~2p3tpa y + w= 0
z+ 2w= 4

—3w = -3

Back-substitution gives w =1, z=2 ,y=—1, and z = —1.

Strictly speaking, the operation of rescaling rows is not needed to solve linear
systems. We have included it because we will use it later in this chapter as part
of a variation on Gauss’ method, the Gauss-Jordan method.

All of the systems seen so far have the same number of equations as un-
knowns. All of them have a solution, and for all of them there is only one
solution. We finish this subsection by seeing for contrast some other things that
can happen.

1.11 Example Linear systems need not have the same number of equations
as unknowns. This system

r+3y= 1
20+ y=-3
20 + 2y = -2

has more equations than variables. Gauss’ method helps us understand this
system also, since this

r+ 3y= 1

—2p1+p2 o
RN —by=—5
—2p1+p3 _4y =_4

shows that one of the equations is redundant. Echelon form

y= 1
_(4/5)_/7)2+I)3 x—|—75z:75
0= 0

gives y = 1 and x = —2. The ‘0 = 0’ is derived from the redundancy.
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That example’s system has more equations than variables. Gauss’ method
is also useful on systems with more variables than equations. Many examples
are in the next subsection.

Another way that linear systems can differ from the examples shown earlier
is that some linear systems do not have a unique solution. This can happen in
two ways.

The first is that it can fail to have any solution at all.

1.12 Example Contrast the system in the last example with this one.

r+3y= 1 ot rz+ 3Jy= 1
20+ y=-3 QLPZ —by=-5
2w 42y= 0 e —dy=—2

Here the system is inconsistent: no pair of numbers satisfies all of the equations
simultaneously. Echelon form makes this inconsistency obvious.

Jy= 1
_(4/1)/12-1-/)3 T _5Z —_5
0= 2

The solution set is empty.

1.13 Example The prior system has more equations than unknowns, but that
is not what causes the inconsistency — Example 1.11 has more equations than
unknowns and yet is consistent. Nor is having more equations than unknowns
necessary for inconsistency, as is illustrated by this inconsistent system with the
same number of equations as unknowns.

r+2y=38 ~2p14p2 r+2y= 8
2z +4y =38 0=-8

The other way that a linear system can fail to have a unique solution is to
have many solutions.

1.14 Example In this system

r+ y=4
20+ 2y =38

any pair of numbers satisfying the first equation automatically satisfies the sec-
ond. The solution set {(z,y) | 4+ y = 4} is infinite — some of its members
are (0,4), (—1,5), and (2.5,1.5). The result of applying Gauss’ method here
contrasts with the prior example because we do not get a contradictory equa-
tion.

~2p1tp2 r+y=4
0=0
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Don’t be fooled by the ‘0 = 0’ equation in that example. It is not the signal
that a system has many solutions.

1.15 Example The absence of a ‘0 = 0’ does not keep a system from having
many different solutions. This system is in echelon form

r+y+2=0
y+2=0

has no ‘0 = 0’, and yet has infinitely many solutions. (For instance, each of
these is a solution: (0,1, —1), (0,1/2,—1/2), (0,0,0), and (0, —m, 7). There are
infinitely many solutions because any triple whose first component is 0 and
whose second component is the negative of the third is a solution.)

Nor does the presence of a ‘0 = 0’ mean that the system must have many
solutions. Example 1.11 shows that. So does this system, which does not have
many solutions — in fact it has none — despite that when it is brought to
echelon form it has a ‘0 = 0’ row.

2x —22=6 2z —22=6
y+ z=1 —pi+ps y+ z=1
20+ y— z="7 — y+ z=1
3y+32=0 Jy+32=0

20 —2z= 6

—p2tps y+ z= 1

—3p2+pa 0= 0

0=-3

We will finish this subsection with a summary of what we’ve seen so far
about Gauss’ method.

Gauss’ method uses the three row operations to set a system up for back
substitution. If any step shows a contradictory equation then we can stop
with the conclusion that the system has no solutions. If we reach echelon form
without a contradictory equation, and each variable is a leading variable in its
row, then the system has a unique solution and we find it by back substitution.
Finally, if we reach echelon form without a contradictory equation, and there is
not a unique solution (at least one variable is not a leading variable) then the
system has many solutions.

The next subsection deals with the third case — we will see how to describe
the solution set of a system with many solutions.

Exercises
v' 1.16 Use Gauss’ method to find the unique solution for each system.
T —2z=0
2 3y= 13
@ TVZ I ®) sty =1
v= —x+y+z=4

v' 1.17 Use Gauss’ method to solve each system or conclude ‘many solutions’ or ‘no
solutions’.
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(a) 2z+2y=5 (b) —z4+y=1 (c) z—3y+ z= 1

r—4y=0 r+y=2 r+ y+2z2=14
d) —z—- y=1 (e dy+2=20 (f) 2z + z4+w= 5
—3x—3y=2 20 —2y+z2= 0 Y —w=-1
T +z= 5 3x — z—w= 0
r+ y—z=10 dr+y+2z4+w= 9

v' 1.18 There are methods for solving linear systems other than Gauss’ method. One
often taught in high school is to solve one of the equations for a variable, then
substitute the resulting expression into other equations. That step is repeated
until there is an equation with only one variable. From that, the first number in
the solution is derived, and then back-substitution can be done. This method both
takes longer than Gauss’ method, since it involves more arithmetic operations and
is more likely to lead to errors. To illustrate how it can lead to wrong conclusions,
we will use the system

z+3y= 1
20+ y=-3
20 +2y= 0

from Example 1.12.
(a) Solve the first equation for « and substitute that expression into the second
equation. Find the resulting y.
(b) Again solve the first equation for z, but this time substitute that expression
into the third equation. Find this y.
What extra step must a user of this method take to avoid erroneously concluding
a system has a solution?
v' 1.19 For which values of k are there no solutions, many solutions, or a unique
solution to this system?
r— y=1
3x—3y=k

v' 1.20 This system is not linear:
2sina — cosf+3tany= 3
4sina + 2cos B — 2tany =10
6sinac —3cosf+ tany= 9
but we can nonetheless apply Gauss’ method. Do so. Does the system have a
solution?

v' 1.21 What conditions must the constants, the b’s, satisfy so that each of these
systems has a solution? Hint. Apply Gauss’ method and see what happens to the
right side.

(a) x—3y=b1 (b) x1 + 229 + 313 = b1

3.II+ y:bg 2:E1+5$2+3:I’3:b2
T+ Ty="b3 1 + 8x3 = b3
2x+4y=b4

1.22 True or false: a system with more unknowns than equations has at least one
solution. (As always, to say ‘true’ you must prove it, while to say ‘false’ you must
produce a counterexample.)

1.23 Must any Chemistry problem like the one that starts this subsection — a
balance the reaction problem — have infinitely many solutions?

v 1.24 Find the coefficients a, b, and ¢ so that the graph of f(z) = az®+ bz + ¢ passes
through the points (1,2), (—1,6), and (2, 3).
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1.25 Gauss’ method works by combining the equations in a system to make new
equations.
(a) Can the equation 3z—2y = 5 be derived, by a sequence of Gaussian reduction
steps, from the equations in this system?

r+y=1

dr—y==6
(b) Can the equation 5z —3y = 2 be derived, by a sequence of Gaussian reduction
steps, from the equations in this system?

20+ 2y =5

3z+ y=4
(c) Can the equation 62 — 9y + 5z = —2 be derived, by a sequence of Gaussian
reduction steps, from the equations in the system?

20+ y—z=4
6rx—3y+2=>5

1.26 Prove that, where a,b,... ,e are real numbers and a # 0, if
ar +by =c
has the same solution set as
axr +dy =e
then they are the same equation. What if a = 07
v/ 1.27 Show that if ad — bc # 0 then

axr +by=7j
cx+dy=k
has a unique solution.
v' 1.28 In the system
axr + by =c
der+ey=f

each of the equations describes a line in the zy-plane. By geometrical reasoning,
show that there are three possibilities: there is a unique solution, there is no
solution, and there are infinitely many solutions.

1.29 Finish the proof of Theorem 1.4.
1.30 Is there a two-unknowns linear system whose solution set is all of R2?

v 1.31 Are any of the operations used in Gauss’ method redundant? That is, can
any of the operations be synthesized from the others?

1.32 Prove that each operation of Gauss’ method is reversible. That is, show that if
two systems are related by a row operation S < S2 then there is a row operation
to go back Sz < Si.

1.33 A box holding pennies, nickels and dimes contains thirteen coins with a total
value of 83 cents. How many coins of each type are in the box?

1.34 [Con. Prob. 1955] Four positive integers are given. Select any three of the
integers, find their arithmetic average, and add this result to the fourth integer.
Thus the numbers 29, 23, 21, and 17 are obtained. One of the original integers
is:
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(a) 19 (b) 21  (c) 23 (d) 29 (e) 17
v'1.85 [Am. Math. Mon., Jan. 1935] Laugh at this: AHAHA + TEHE = TEHAW.
It resulted from substituting a code letter for each digit of a simple example in
addition, and it is required to identify the letters and prove the solution unique.
1.36 [Wohascum no. 2] The Wohascum County Board of Commissioners, which has
20 members, recently had to elect a President. There were three candidates (A, B,
and C); on each ballot the three candidates were to be listed in order of preference,
with no abstentions. It was found that 11 members, a majority, preferred A over
B (thus the other 9 preferred B over A). Similarly, it was found that 12 members
preferred C over A. Given these results, it was suggested that B should withdraw,
to enable a runoff election between A and C'. However, B protested, and it was
then found that 14 members preferred B over C! The Board has not yet recovered
from the resulting confusion. Given that every possible order of A, B, C' appeared
on at least one ballot, how many members voted for B as their first choice?
1.37 [Am. Math. Mon., Jan. 1963] “This system of n linear equations with n un-
knowns,” said the Great Mathematician, “has a curious property.”
“Good heavens!” said the Poor Nut, “What is it?”
“Note,” said the Great Mathematician, “that the constants are in arithmetic
progression.”
“It’s all so clear when you explain it!” said the Poor Nut. “Do you mean like
6z 4+ 9y = 12 and 15z + 18y = 2177
“Quite so,” said the Great Mathematician, pulling out his bassoon. “Indeed,
the system has a unique solution. Can you find it?”
“Good heavens!” cried the Poor Nut, “I am baffled.”
Are you?

1.I.2 Describing the Solution Set

A linear system with a unique solution has a solution set with one element.
A linear system with no solution has a solution set that is empty. In these cases
the solution set is easy to describe. Solution sets are a challenge to describe
only when they contain many elements.

2.1 Example This system has many solutions because in echelon form

2x +2z=3 /2 pten 2x + z= 3
r—y—z=1 == —y—(3/2)z=-1/2
3z —y —4q ~G/Ypites —y—(3/2)z=-1/2
2x + z= 3

e —y—(3/2)z=—1/2

0= 0

not all of the variables are leading variables. The Gauss’ method theorem
showed that a triple satisfies the first system if and only if it satisfies the third.
Thus, the solution set {(z,y,2) |22+ 2z=3andz —y—z=1and 3z —y = 4}
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can also be described as {(z,y,2) | 2z + 2 = 3 and —y — 32/2 = —1/2}. How-
ever, this second description is not much of an improvement. It has two equa-
tions instead of three, but it still involves some hard-to-understand interaction
among the variables.

To get a description that is free of any such interaction, we take the vari-
able that does not lead any equation, 2z, and use it to describe the variables
that do lead, x and y. The second equation gives y = (1/2) — (3/2)z and
the first equation gives x = (3/2) — (1/2)z. Thus, the solution set can be de-
scribed as {(z,y, 2) = ((3/2) = (1/2)z,(1/2) — (3/2)z,2) | z € R}. For instance,
(1/2,-5/2,2) is a solution because taking z = 2 gives a first component of 1/2
and a second component of —5/2.

The advantage of this description over the ones above is that the only variable
appearing, z, is unrestricted — it can be any real number.

2.2 Definition The non-leading variables in an echelon-form linear system are
free variables.

In the echelon form system derived in the above example, x and y are leading
variables and z is free.

2.3 Example A linear system can end with more than one variable free. This
row reduction

x4+ y+ z— w= 1 r+ y+ z— w= 1
y— z+ w=-1 —3p14ps y— z+ w=-1
3x +6z—6w= 6 —3By+3z—-3w= 3
—y+ z— w= 1 —y+ z— w= 1
r+y+z—w= 1
3p2-+ps y—z+w=-1
p2tpa 0= 0
0= 0

ends with = and y leading, and with both z and w free. To get the description
that we prefer we will start at the bottom. We first express y in terms of
the free variables z and w with y = —1 + z — w. Next, moving up to the
top equation, substituting for y in the first equation = + (=1 4+ z — w) + z —
w = 1 and solving for x yields x = 2 — 2z + 2w. Thus, the solution set is
{2-2z+4+2w,-14+2z—w,z,w) ‘ z,w € R}.

We prefer this description because the only variables that appear, z and w,
are unrestricted. This makes the job of deciding which four-tuples are system
solutions into an easy one. For instance, taking z = 1 and w = 2 gives the
solution (4,—2,1,2). In contrast, (3,—2,1,2) is not a solution, since the first
component of any solution must be 2 minus twice the third component plus
twice the fourth.
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2.4 Example After this reduction

2z — 2y =0 2 — 2y =
z2+3w=2 —(3/2)p1+ps3 z+3w=2
—_

3z — 3y =0 —1/2)p1+p 0=0
r— y+2z4+6w=4 2z + 6w =4
2@ — 2y =

*QPLJ)FM z4+ 3w =

0=0

0=0

z and z lead, y and w are free. The solution set is {(y,y,2 — 3w, w) | y,w € R}.
For instance, (1,1,2,0) satisfies the system — take y = 1 and w = 0. The
four-tuple (1,0, 5,4) is not a solution since its first coordinate does not equal its
second.

We refer to a variable used to describe a family of solutions as a parameter
and we say that the set above is paramatrized with y and w. (The terms
‘parameter’ and ‘free variable’ do not mean the same thing. Above, y and w
are free because in the echelon form system they do not lead any row. They
are parameters because they are used in the solution set description. We could
have instead paramatrized with y and z by rewriting the second equation as
w = 2/3 — (1/3)z. In that case, the free variables are still y and w, but the
parameters are y and z. Notice that we could not have paramatrized with x and
Y, so there is sometimes a restriction on the choice of parameters. The terms
‘parameter’ and ‘free’ are related because, as we shall show later in this chapter,
the solution set of a system can always be paramatrized with the free variables.
Consequenlty, we shall paramatrize all of our descriptions in this way.)

2.5 Example This is another system with infinitely many solutions.

z 4+ 2y =1 ) T+ 2y =1
2z + z —g Tire —4dy+z =0
3 +2y+z—w=4 ot Ay +z—w=1
T+ 2y =1

patps -4y +z =0

—w=1

The leading variables are x, y, and w. The variable z is free. (Notice here that,
although there are infinitely many solutions, the value of one of the variables is
fixed — w = —1.) Write w in terms of z with w = —1 + 0z. Then y = (1/4)=.
To express x in terms of z, substitute for y into the first equation to get x =
1— (1/2)z. The solution set is {(1 — (1/2)z, (1/4)z,2,—1) | z € R}.

We finish this subsection by developing the notation for linear systems and
their solution sets that we shall use in the rest of this book.

2.6 Definition An mxn matrizis a rectangular array of numbers with m rows
and n columns. Each number in the matrix is an entry,
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Matrices are usually named by upper case roman letters, e.g. A. Each entry is
denoted by the corresponding lower-case letter, e.g. a; ; is the number in row i
and column j of the array. For instance,

1 22 5
=% %)
has two rows and three columns, and so is a 2x 3 matrix. (Read that “two-
by-three”; the number of rows is always stated first.) The entry in the second
row and first column is as; = 3. Note that the order of the subscripts matters:
a2 # as; since aj; o = 2.2. (The parentheses around the array are a typo-

graphic device so that when two matrices are side by side we can tell where one
ends and the other starts.)

2.7 Example We can abbreviate this linear system

xr1 + 2172 =4
o — T3 = 0
€ + 2x3 =4
with this matrix.
1 2 0 |4
01 —-110
1 0 2 |4

The vertical bar just reminds a reader of the difference between the coeflicients
on the systems’s left hand side and the constants on the right. When a bar
is used to divide a matrix into parts, we call it an augmented matrix. In this
notation, Gauss’ method goes this way.

L2 04y /12 04 (12 0|4
01 —1]0] 2% 1o 1 —1]lo] ™2 (0o 1 -1]0
10 2 |4 0 -2 2|0 00 010

The second row stands for y — z = 0 and the first row stands for  + 2y = 4 so
the solution set is {(4 — 2z,z,z) | z € R}. One advantage of the new notation is
that the clerical load of Gauss’ method — the copying of variables, the writing
of +’s and =’s, etc. — is lighter.

We will also use the array notation to clarify the descriptions of solution
sets. A description like {(2 — 2z + 2w, —1+4 2z — w, z,w) | z,w € R} from Ex-
ample 2.3 is hard to read. We will rewrite it to group all the constants together,
all the coefficients of z together, and all the coefficients of w together. We will
write them vertically, in one-column wide matrices.

2 -2 2
-1 1 -1

{ ol Tl # o z,w € R}
0 0 1
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For instance, the top line says that x = 2 — 2z 4+ 2w. The next section gives a
geometric interpretation that will help us picture the solution sets when they
are written in this way.

2.8 Definition A wvector (or column vector) is a matrix with a single column.
A matrix with a single row is a row wvector. The entries of a vector are its
components.

Vectors are an exception to the convention of representing matrices with
capital roman letters. We use lower-case roman or greek letters overlined with
an arrow: d, 5, ... or a, B: ... (boldface is also common: a or «). For
instance, this is a column vector with a third component of 7.

1
v= |3
7
2.9 Definition The linear equation ayx1 + asxs + --- + a2z, = d with un-
knowns x4, ... ,x, is satisfied by
S1
F=1:
Sn
if a181 + asss + -+ + ans, = d. A vector satisfies a linear system if it satisfies

each equation in the system.

The style of description of solution sets that we use involves adding the
vectors, and also multiplying them by real numbers, such as the z and w. We
need to define these operations.

2.10 Definition The vector sum of @ and v is this.

(5 U1 u; + U1
i+v=1: |+ :|=

(- W W, AF Uy

In general, two matrices with the same number of rows and the same number
of columns add in this way, entry-by-entry.

2.11 Definition The scalar multiplication of the real number r and the vector
¥ is this.

U1 rvy

Un TUn

In general, any matrix is multiplied by a real number in this entry-by-entry way.
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Scalar multiplication can be written in either order: r- ¥ or ¥ - r, or without
the ¢ symbol: rd. (Do not refer to scalar multiplication as ‘scalar product’
because that name is used for a different operation.)

2.12 Example

2 3 2+3 5 i 278
3+ (-1 =(3-1]=(2 1 =5
1 4 1+4 5 s ol

Notice that the definitions of vector addition and scalar multiplication agree
where they overlap, for instance, ¥ + ¥ = 2.

With the notation defined, we can now solve systems in the way that we will
use throughout this book.

2.13 Example This system

2 +y - w =4
Y + wtu=4
x — 242w =0
reduces in this way.
21 0 -1 04 1o 2 1 0 -1 0] 4
001 0 1 1|4 Wt lg 1 0 1 1] 4
10 -1 2 0|0 0 —-1/2 -1 5/2 0|-2
1o 21 0 -1 0 |4
Westes g1 0 1 1 |4
00 -1 3 1/2]0

The solution set is {(w + (1/2)u,4 — w — u,3w + (1/2)u, w,u) | w,u € R}. We
write that in vector form.

x 0 1 1/2

Y 4 -1 -1
{{z]=]0]+] 3 |w+]|1/2|u|wueR}

w 0 1 0

u 0 0 1

Note again how well vector notation sets off the coefficients of each parameter.
For instance, the third row of the vector form shows plainly that if u is held
fixed then z increases three times as fast as w.

That format also shows plainly that there are infinitely many solutions. For
example, we can fix u as 0, let w range over the real numbers, and consider the
first component z. We get infinitely many first components and hence infinitely
many solutions.
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Another thing shown plainly is that setting both w and u to zero gives that
this

SIS ST
Il
coohm O

is a particular solution of the linear system.
2.14 Example In the same way, this system

r— y+ z=1
3x + 2=3
dxr —2y+32=5

reduces
A A 1 -1 1|1 1 -1 1|1
3 0 13| 7220 3 20| = (o 3 —2]0
5 —2 3|5) e \g 3 920 0 0 010
to a one-parameter solution set.
1 ~1/3
{{o]+| 2/3 | z|zeR}
0 1

Before the exercises, we pause to point out some things that we have yet to
do.

The first two subsections have been on the mechanics of Gauss’ method.
Except for one result, Theorem 1.4 — without which developing the method
doesn’t make sense since it says that the method gives the right answers — we
have not stopped to consider any of the interesting questions that arise.

For example, can we always describe solution sets as above, with a particular
solution vector added to an unrestricted linear combination of some other vec-
tors? The solution sets we described with unrestricted parameters were easily
seen to have infinitely many solutions so an answer to this question could tell
us something about the size of solution sets. An answer to that question could
also help us picture the solution sets — what do they look like in R?, or in R3,
etc?

Many questions arise from the observation that Gauss’ method can be done
in more than one way (for instance, when swapping rows, we may have a choice
of which row to swap with). Theorem 1.4 says that we must get the same
solution set no matter how we proceed, but if we do Gauss’ method in two
different ways must we get the same number of free variables both times, so
that any two solution set descriptions have the same number of parameters?
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Must those be the same variables (e.g., is it impossible to solve a problem one
way and get y and w free or solve it another way and get y and z free)?

In the rest of this chapter we answer these questions. The answer to each
is ‘yes’. The first question is answered in the last subsection of this section. In
the second section we give a geometric description of solution sets. In the final
section of this chapter we tackle the last set of questions.

Consequently, by the end of the first chapter we will not only have a solid
grounding in the practice of Gauss’ method, we will also have a solid grounding
in the theory. We will be sure of what can and cannot happen in a reduction.

Exercises

v' 2.15 Find the indicated entry of the matrix, if it is defined.

1 3 1
A_<2 —1 4)

(a) a1 (b) ai,2 (C) a2 (d) as,1
v 2.16 Give the size of each matrix.

1 1
1 0 4 5 10
(a) (2 X 5> (b) <—31 _11> () (10 5>

v' 2.17 Do the indicated vector operation, if it is defined.

@ ()0 @) o)) w60
0 () () o) <) ()

v' 2.18 Solve each system using matrix notation. Express the solution using vec-

tors.
(a) 3z+6y=18 (b)) z+y= 1 (c) =1 + z3= 4
r+2y= 6 r—y=-—1 1 — X2+ 23 = 5
4y — x9 + Drs =17
(d) 2a4+b—c=2 (e) z+2y—=z =3 (f) =z +z+w=4
2a +c=3 20+ y +w=4 2 +y —w=2
a—b =0 r— y+z+tw=1 3r+y+=z =7
v’ 2.19 Solve each system using matrix notation. Give each solution set in vector
notation.
(a) 2z+y—2=1 (b) z -z =1 (¢) z— y+ =z =0
dx —y =3 y+2z—w=3 y +w=0
c4+2y+3z—w="7 3 — 2y+3z2+w=0
—y —w=0

(d) a+2b+3c+d—ec=1
3a— b+ c+d+e=3
v' 2.20 The vector is in the set. What value of the parameters produces that vec-
tor?

(a) (_55) {(_11) k| ke R}
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-1 -2 3
(b) <2>,{<1>i+<0>g’\i,jek}
1 0 1
0 1 2
(c) (—4), {(1) m+ (O) n ’ m,n € R}
2 0 1
2.21 Decide if the vector is in the set.
(a) (31 ,{(26>k]keR}
(b) (Z) {(_54)1' |j € R}
2 0 1
(c) <1>,{<3>+<—1>T‘7‘€R}
-1 -7 3
1 2 -3
(d) <o>, {<0>j+ (—1) k|jkeR}
1 1 1
2.22 Paramatrize the solution set of this one-equation system.
T1+z2t -+ an=0

v 2.23 (a) Apply Gauss’ method to the left-hand side to solve
T+ 2y — w=a
2z + z =b
T+ y +2w=rc
for x, y, z, and w, in terms of the constants a, b, and c.
(b) Use your answer from the prior part to solve this.
T+ 2y - w= 3
2x +z = 1
T+ y +2w=-2
v 2.24 Why is the comma needed in the notation ‘a;,;’ for matrix entries?
v’ 2.25 Give the 4 x4 matrix whose i, j-th entry is
(a) i+4; (b) —1 to the i + j power.
2.26 For any matrix A, the transpose of A, written A™" is the matrix whose
columns are the rows of A. Find the transpose of each of these.

1
1 2 3 2 =3 5 10
(a) (4 : 6) (b) (1 1) (©) (10 5) (@ <(1)>

v 2.27 (a) Describe all functions f(x) = aa® + bx + ¢ such that f(1) = 2 and
f(=1) =6.
(b) Describe all functions f(z) = az® + bx + ¢ such that f(1) = 2.

2.28 Show that any set of five points from the plane R? lie on a common conic
section, that is, they all satisfy some equation of the form az? + by? + cxy + dx +
ey + f = 0 where some of a, ... , f are nonzero.

2.29 Make up a four equations/four unknowns system having

(a) a one-parameter solution set;
(b) a two-parameter solution set;
(c) a three-parameter solution set.



20 Chapter 1. Linear Systems

2.30 [USSR Olympiad no. 174]
(a) Solve the system of equations.

axr + y:a2

rz+ay= 1
For what values of a does the system fail to have solutions, and for what values
of a are there infinitely many solutions?

(b) Answer the above question for the system.

axr + y:a3

r+ay= 1
2.31 [Math. Mag., Sept. 1952] In air a gold-surfaced sphere weighs 7588 grams. It
is known that it may contain one or more of the metals aluminum, copper, silver,
or lead. When weighed successively under standard conditions in water, benzene,
alcohol, and glycerine its respective weights are 6588, 6688, 6778, and 6328 grams.
How much, if any, of the forenamed metals does it contain if the specific gravities
of the designated substances are taken to be as follows?

Aluminum 2.7 Alcohol 0.81
Copper 8.9 Benzene 0.90
Gold 19.3 Glycerine  1.26
Lead 11.3 Water 1.00
Silver 10.8

1.I.3 General = Particular + Homogeneous

The prior subsection has many descriptions of solution sets. They all fit a
pattern. They have a vector that is a particular solution of the system added
to an unrestricted combination of some other vectors. The solution set from
Example 2.13 illustrates.

0 1 1/2
4 -1 —1
{|10] +w| 3 |+u|1/2]||wueR}

0 1 0
0 0 1

——

particular unrestricted

solution combination

The combination is unrestricted in that w and u can be any real numbers —
there is no condition like “such that 2w —u = 0” that would restrict which pairs
w,u can be used to form combinations.

That example shows an infinite solution set conforming to the pattern. We
can think of the other two kinds of solution sets as also fitting the same pat-
tern. A one-element solution set fits in that it has a particular solution, and
the unrestricted combination part is a trivial sum (that is, instead of being a
combination of two vectors, as above, or a combination of one vector, it is a
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combination of no vectors). A zero-element solution set fits the pattern since
there is no particular solution, and so the set of sums of that form is empty.

We will show that the examples from the prior subsection are representative,
in that the description pattern discussed above holds for every solution set.

3.1 Theorem For any linear system there are vectors ﬁl, ey Bk such that
the solution set can be described as

{(F+cii+ - +ewb| e, ... e €R}
where p'is any particular solution, and where the system has k free variables.

This description has two parts, the particular solution p and also the un-
restricted linear combination of the g’s. We shall prove the theorem in two
corresponding parts, with two lemmas.

We will focus first on the unrestricted combination part. To do that, we
consider systems that have the vector of zeroes as one of the particular solutions,
so that p+ clﬁl + -+ ckﬁk can be shortened to 6151 + -+ ckﬁk.

3.2 Definition A linear equation is homogeneous if it has a constant of zero,
that is, if it can be put in the form a;z1 + asxs + -+ + apx, = 0.

(These are ‘homogeneous’ because all of the terms involve the same power of
their variable — the first power — including a ‘Oz’ that we can imagine is on
the right side.)

3.3 Example With any linear system like

3r+4y=3

20— y=1
we associate a system of homogeneous equations by setting the right side to
Zeros.

3r+4y=20

2z — y=0
Our interest in the homogeneous system associated with a linear system can be
understood by comparing the reduction of the system

3r+4y =3 —(2/3)p1+p2 3T+ y =3
2e— y=1 —(11/3)y=—1

with the reduction of the associated homogeneous system.

3r+4y=0 7(2/3)_p>1+pz 3r + 4y=0
20— y=0 —(11/3)y=0

Obviously the two reductions go in the same way. We can study how linear sys-
tems are reduced by instead studying how the associated homogeneous systems
are reduced.
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Studying the associated homogeneous system has a great advantage over
studying the original system. Nonhomogeneous systems can be inconsistent.
But a homogeneous system must be consistent since there is always at least one
solution, the vector of zeros.

3.4 Definition A column or row vector of all zeros is a zero vector, denoted 0.

There are many different zero vectors, e.g., the one-tall zero vector, the two-tall
zero vector, etc. Nonetheless, people often refer to “the” zero vector, expecting
that the size of the one being discussed will be clear from the context.

3.5 Example Some homogeneous systems have the zero vector as their only
solution.

3r+2y+2=0 oy 3r+2y+ z2z=0 3xr+2y+ z2z=0
6x + 4y =0 2357 2z =0 "4 y+ 2=0
y+z=0 y+ 2=0 —22=0

3.6 Example Some homogeneous systems have many solutions. One example
is the Chemistry problem from the first page of this book.

Tx -7 =0 Tx — Tz =0
8r+ y—57—2k=0 ~(/T)p1tp2 y+3z—2w=0
y—37 =0 y— 3z =0
3y—65— k=0 3y—6z2— w=0

Tr — Tz =0

—p2tps y+ 3z—2w=0

—3p2+pa —62z +2w =0

—15z 4+ 5w =0

Tr — Tz =0

—(5/%%4 y+ 3z—-2w=0

—6z+2w =0

0=0

The solution set:
1/3
1
{ 1/3 w | keR}
1

has many vectors besides the zero vector (if we interpret w as a number of
molecules then solutions make sense only when w is a nonnegative multiple of

We now have the terminology to prove the two parts of Theorem 3.1. The
first lemma deals with unrestricted combinations.



Section I. Solving Linear Systems 23

3.7 Lemma For any homogeneous linear system there exist vectors /671,
0Bi such that the solution set of the system is

{Clﬂ1+"'+ckﬁk ‘ Cly..- ,Ck ER}
where k is the number of free variables in an echelon form version of the system.

Before the proof, we will recall the back substitution calculations that were
done in the prior subsection. Imagine that we have brought a system to this
echelon form.

r+ 2y—z+ 2w=0
-3y +z =0
—w=0

We next perform back-substitution to express each variable in terms of the
free variable z. Working from the bottom up, we get first that w is 0 - z,
next that y is (1/3) - z, and then substituting those two into the top equation
x+2((1/3)z) — 2 4+ 2(0) = 0 gives = (1/3) - 2. So, back substitution gives
a paramatrization of the solution set by starting at the bottom equation and
using the free variables as the parameters to work row-by-row to the top. The
proof below follows this pattern.

Comment: That is, this proof just does a verification of the bookkeeping in
back substitution to show that we haven’t overlooked any obscure cases where
this procedure fails, say, by leading to a division by zero. So this argument,
while quite detailed, doesn’t give us any new insights. Nevertheless, we have
written it out for two reasons. The first reason is that we need the result — the
computational procedure that we employ must be verified to work as promised.
The second reason is that the row-by-row nature of back substitution leads to a
proof that uses the technique of mathematical induction.* This is an important,
and non-obvious, proof technique that we shall use a number of times in this
book. Doing an induction argument here gives us a chance to see one in a setting
where the proof material is easy to follow, and so the technique can be studied.
Readers who are unfamiliar with induction arguments should be sure to master
this one and the ones later in this chapter before going on to the second chapter.

Proor. First use Gauss’ method to reduce the homogeneous system to echelon
form. We will show that each leading variable can be expressed in terms of free
variables. That will finish the argument because then we can use those free
variables as the parameters. That is, the B’s are the vectors of coefficients of
the free variables (as in Example 3.6, where the solution is = (1/3)w, y = w,
z = (1/3)w, and w = w).

We will proceed by mathematical induction, which has two steps. The base
step of the argument will be to focus on the bottom-most non-‘0 = 0’ equation
and write its leading variable in terms of the free variables. The inductive step
of the argument will be to argue that if we can express the leading variables from

* More information on mathematical induction is in the appendix.
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the bottom ¢ rows in terms of free variables, then we can express the leading
variable of the next row up — the ¢ 4+ 1-th row up from the bottom — in terms
of free variables. With those two steps, the theorem will be proved because by
the base step it is true for the bottom equation, and by the inductive step the
fact that it is true for the bottom equation shows that it is true for the next
one up, and then another application of the inductive step implies it is true for
third equation up, etc.

For the base step, consider the bottom-most non-‘0 = 0’ equation (the case
where all the equations are ‘0 = 0’ is trivial). We call that the m-th row:

Al Ll + Al 4180041 F 0+ QT = 0

where a,, ¢,, # 0. (The notation here has ‘¢’ stand for ‘leading’, so a,, ¢,, means
“the coefficient, from the row m of the variable leading row m”.) Either there
are variables in this equation other than the leading one z,,, or else there are
not. If there are other variables z, .1, etc., then they must be free variables
because this is the bottom non-‘0 = 0’ row. Move them to the right and divide

by am, 0,
Te,, = (=m t+1/Cm,e, )T, 41+ + (=Qmn/Am e, )Tn

to expresses this leading variable in terms of free variables. If there are no free
variables in this equation then z,, = 0 (see the “tricky point” noted following
this proof).

For the inductive step, we assume that for the m-th equation, and for the
(m — 1)-th equation, ..., and for the (m — t)-th equation, we can express the
leading variable in terms of free variables (where 0 < ¢ < m). To prove that the
same is true for the next equation up, the (m — (¢ + 1))-th equation, we take
each variable that leads in a lower-down equation xzy, , ... , 2, , and substitute
its expression in terms of free variables. The result has the form

Arm— (t41), 0 (e41) Bhom (¢ 41) T SUNS of multiples of free variables = 0

# 0. We move the free variables to the right-hand side
to end with =, expressed in terms of free

where A — (t4+1) m— (141)
and divide by @, (141,

| Cm—(t+1) ) —(t+1)
variables.

Because we have shown both the base step and the inductive step, by the
principle of mathematical induction the proposition is true. QED

We say that the set {01,51 + e+ ckﬁk | c1,...,cr € R} is generated by or
spanned by the set of vectors {51,... ,Ek}. There is a tricky point to this
definition. If a homogeneous system has a unique solution, the zero vector,
then we say the solution set is generated by the empty set of vectors. This fits
with the pattern of the other solution sets: in the proof above the solution set is
derived by taking the ¢’s to be the free variables and if there is a unique solution
then there are no free variables.

This proof incidentally shows, as discussed after Example 2.4, that solution
sets can always be paramatrized using the free variables.
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The next lemma finishes the proof of Theorem 3.1 by considering the par-
ticular solution part of the solution set’s description.

3.8 Lemma For a linear system, where p'is any particular solution, the solu-
tion set equals this set.

{r+ h } h satisfies the associated homogeneous system}

Proor. We will show mutual set inclusion, that any solution to the system is
in the above set and that anything in the set is a solution to the system.*

For set inclusion the first way, that if a vector solves the system then it is in
the set described above, assume that § solves the system. Then §— p’solves the
associated homogeneous system since for each equation index i between 1 and
n,

ai1(s1 —p1) + -+ ain(sn —pn) = (@i,181 + - + @i nSn)
— (%1171 + -+ ai,npn)
=d; —d;
=0

where p; and s; are the j-th components of p and 5. We can write 5§ — p as f_i,

where & solves the associated homogeneous system, to express § in the required
P+ h form.

For set inclusion the other way, take a vector of the form p + ﬁ, where p’
solves the system and h solves the associated homogeneous system, and note
that it solves the given system: for any equation index 7,

aii(pr+hy) + -+ ain(pn + hn) = (aiipr + - + @i npn)
+ (az‘,1h1 + -+ ai,nhn)
=d; +0
where h; is the j-th component of h. QED
The two lemmas above together establish Theorem 3.1. We remember that

theorem with the slogan “General = Particular + Homogeneous”.

3.9 Example This system illustrates Theorem 3.1.

r+2y— z=1
2z + 4y =2
y—3z2=0
Gauss’ method
) r+2y— z=1 r+2y— z=1
~Aptee 2, =0 "2£° y—32=0
y—32=0 22=0

* More information on equality of sets is in the appendix.
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shows that the general solution is a singleton set.

1

{10]}
0

That single vector is, of course, a particular solution. The associated homoge-
neous system reduces via the same row operations

r+2y— z=0 g r+2y— z2=0
21 + 4y = ~Ere s y—32=0
y—3z2=0 22=0

to also give a singleton set.

0

{{o}
0

As the theorem states, and as discussed at the start of this subsection, in this
single-solution case the general solution results from taking the particular solu-
tion and adding to it the unique solution of the associated homogeneous system.

3.10 Example Also discussed there is that the case where the general solution
set is empty fits the ‘General = Particular+Homogeneous’ pattern. This system
illustrates. Gauss’ method

x + z4+ w=-1 g T + z+w=-1
2z —y + w= 3 nxee —y—2z—w= 5
TH+y+3z4+2w= 1 " y+2z24+w= 2

shows that it has no solutions. The associated homogeneous system, of course,
has a solution.

T + z+ w=0 ot N T + z4+w=0
2r —y + w=0 Patpz p2TEs —y—2z—w=0
r4+y+3z+2w=0 "t 0=0

In fact, the solution set of the homogeneous system is infinite.

-1 -1
—2 -1
{ NEEE w | z,w € R}

0 1

However, because no particular solution of the original system exists, the general
solution set is empty — there are no vectors of the form p'+ h because there are
no p’s.

3.11 Corollary Solution sets of linear systems are either empty, have one
element, or have infinitely many elements.
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Proor. We'’ve seen examples of all three happening so we need only prove that
those are the only possibilities.

First, notice a homogeneous system with at least one non-0 solution 7 has
infinitely many solutions because the set of multiples s¥ is infinite — if s # 1
then s — 7 = (s — 1)@ is easily seen to be non-0, and so 7 # .

Now, apply Lemma 3.8 to conclude that a solution set

{P+ h | h solves the associated homogeneous system }
is either empty (if there is no particular solution ), or has one element (if there
is a p'and the homogeneous system has the unique solution 0), or is infinite (if
there is a p'and the homogeneous system has a non-0 solution, and thus by the

prior paragraph has infinitely many solutions). QED

This table summarizes the factors affecting the size of a general solution.

number of solutions of the
associated homogeneous system

one mfinitely many
) unique infinitely many
D ag?g%gg yes solution solutions
exists? no no 1o
solutions solutions

The factor on the top of the table is the simpler one. When we perform
Gauss’ method on a linear system, ignoring the constants on the right side and
so paying attention only to the coefficients on the left-hand side, we either end
with every variable leading some row or else we find that some variable does not
lead a row, that is, that some variable is free. (Of course, “ignoring the constants
on the right” is formalized by considering the associated homogeneous system.
We are simply putting aside for the moment the possibility of a contradictory
equation.)

A nice insight into the factor on the top of this table at work comes from con-
sidering the case of a system having the same number of equations as variables.
This system will have a solution, and the solution will be unique, if and only if it
reduces to an echelon form system where every variable leads its row, which will
happen if and only if the associated homogeneous system has a unique solution.
Thus, the question of uniqueness of solution is especially interesting when the
system has the same number of equations as variables.

3.12 Definition A square matrix is nonsingular if it is the matrix of coeffi-
cients of a homogeneous system with a unique solution. It is singular otherwise,
that is, if it is the matrix of coefficients of a homogeneous system with infinitely
many solutions.
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3.13 Example The systems from Example 3.3, Example 3.5, and Example 3.9
each have an associated homogeneous system with a unique solution. Thus these
matrices are nonsingular.

3 2 1 12 -1
(241) 6 —4 0 2 4 0
0 1 1 01 -3

The Chemistry problem from Example 3.6 is a homogeneous system with more
than one solution so its matrix is singular.

70 =7 0
8§ 1 -5 =2
01 -3 0
0 3 -6 -1

3.14 Example The first of these matrices is nonsingular while the second is

singular
1 2 1 2
3 4 3 6

because the first of these homogeneous systems has a unique solution while the
second has infinitely many solutions.

r+2y=0 r+2y=0
3z +4y=0 3z 4+6y=0

We have made the distinction in the definition because a system (with the same
number of equations as variables) behaves in one of two ways, depending on
whether its matrix of coefficients is nonsingular or singular. A system where
the matrix of coefficients is nonsingular has a unique solution for any constants
on the right side: for instance, Gauss’ method shows that this system

r+2y=a
3r+4y=1>

has the unique solution z = b — 2a and y = (3a — b)/2. On the other hand, a
system where the matrix of coefficients is singular never has a unique solutions —
it has either no solutions or else has infinitely many, as with these.

r+2y=1 r+2y=1
3x 4+ 6y =2 3x 46y =3

Thus, ‘singular’ can be thought of as connoting “troublesome”, or at least “not
ideal”.

The above table has two factors. We have already considered the factor
along the top: we can tell which column a given linear system goes in solely by
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considering the system’s left-hand side — the the constants on the right-hand
side play no role in this factor. The table’s other factor, determining whether a
particular solution exists, is tougher. Consider these two

3x+2y=>5 3z 4+2y=>5
3x+2y=>5 3r+2y=4

with the same left sides but different right sides. Obviously, the first has a
solution while the second does not, so here the constants on the right side
decide if the system has a solution. We could conjecture that the left side of a
linear system determines the number of solutions while the right side determines
if solutions exist, but that guess is not correct. Compare these two systems

3x+2y=>5 3r4+2y=5
dr+2y=4 and 3x+2y=4

with the same right sides but different left sides. The first has a solution but
the second does not. Thus the constants on the right side of a system don’t
decide alone whether a solution exists; rather, it depends on some interaction
between the left and right sides.

For some intuition about that interaction, consider this system with one of
the coefficients left as the parameter c.

r+2y+3z2=1
r+ y+ z=1
cx+3y+42=0

If ¢ = 2 this system has no solution because the left-hand side has the third row
as a sum of the first two, while the right-hand does not. If ¢ # 2 this system has
a unique solution (try it with ¢ = 1). For a system to have a solution, if one row
of the matrix of coefficients on the left is a linear combination of other rows,
then on the right the constant from that row must be the same combination of
constants from the same rows.

More intuition about the interaction comes from studying linear combina-
tions. That will be our focus in the second chapter, after we finish the study of
Gauss’ method itself in the rest of this chapter.

Exercises
v' 3.15 Solve each system. Express the solution set using vectors. Identify the par-
ticular solution and the solution set of the homogeneous system.
(a) 3z +6y=18 (b)) z+y= 1 (c) = + x23= 4

r+2y= 6 r—y=-—1 1 — T2 +2x3= 5

4y — xo + dxs =17
(d) 2a4+b—c=2 (&) z+2y—=z =3 (f) =z +z4+w=4
2a +c=3 20+ vy +w=4 2z +y —w=2
a—b =0 r— y+z4+w=1 3xr4+y—+z =7

3.16 Solve each system, giving the solution set in vector notation. Identify the
particular solution and the solution of the homogeneous system.
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(a) 2z+y—2=1 (b) z -z =1 (¢) z— y+ =z =0
4 —y =3 Yy+2z—w=3 Y +w=0
c+2y+3z—w="7 3r— 2y+3z+w=0

—y —w=0

(d) a+20+3c+d—e=1
3a— b+ c+d+e=3
v’ 3.17 For the system

20— y - w= 3
y+z+2w= 2
T—2y—=z =-1
which of these can be used as the particular solution part of some general solu-
tion?
0 2 -1
-3 1 —4
@[] o] ©];
0 0 -1

v' 3.18 Lemma 3.8 says that any particular solution may be used for p. Find, if
possible, a general solution to this system

rT— vy +w=4

20+ 3y — 2 =0
y+z+w=4
that uses the given vector as its particular solution.
0 -5 2
0 1 —1
@ |, ®) |, (|,
4 10 1

3.19 One of these is nonsingular while the other is singular. Which is which?

1 3 1 3
(2) <4 —12) (b) (4 12)

v' 3.20 Singular or nonsingular?
(a) G 3) (b) (_13 _26> () G : 1) (Carefull)
1 2 1 2 2 1
(d) (1 1 3> (e) (1 0 5)
3 4 7 -1 1 4
v' 3.21 Is the given vector in the set generated by the given set?

o (T
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3.22 Prove that any linear system with a nonsingular matrix of coefficients has a
solution, and that the solution is unique.

3.23 To tell the whole truth, there is another tricky point to the proof of Lemma 3.7.
What happens if there are no non-‘0 = 0’ equations? (There aren’t any more tricky
points after this one.)

v 3.24 Prove that if § and ¢ satisfy a homogeneous system then so do these vec-
tors.
(a) 5+t (b) 35 (c) ki+mi for k,m € R
What’s wrong with: “These three show that if a homogeneous system has one
solution then it has many solutions — any multiple of a solution is another solution,
and any sum of solutions is a solution also — so there are no homogeneous systems
with exactly one solution.”?

3.25 Prove that if a system with only rational coefficients and constants has a

solution then it has at least one all-rational solution. Must it have infinitely many?
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1.II Linear Geometry of n-Space

For readers who have seen the elements of vectors before, in calculus or physics,
this section is an optional review. However, later work in this book will refer to
this material often, so this section is not optional if it is not a review.

In the first section, we had to do a bit of work to show that there are only
three types of solution sets — singleton, empty, and infinite. But for systems
with two equations and two unknowns, we can just see this. We picture each
two-unknowns equation as a line in R? and then the two lines could have a
unique intersection, be parallel, or be the same.

One solution No solutions Infinitely many
solutions

3r+2y= 7 3v42y="7 3x4+2y= 7

r— y=-1 3z +2y=4 6z + 4y =14

As this shows, sometimes our results are expressed clearly in a picture. In this
section we develop the terminology and ideas we need to express our results
from the prior section, and from some future sections, geometrically. The two-
dimensional case is familiar enough, but to extend to systems with more than
two unknowns we shall also need some higher-dimensional geometry.

1.II.1 Vectors in Space

“Higher-dimensionsional geometry” sounds exotic. It is exotic — interesting
and eye-opening. But it isn’t distant or unreachable.

As a start, we define one-dimensional space to be the set R'. To see that
definition is reasonable, draw a one-dimensional space

and make the usual correspondence with R: pick a point to label 0 and another
to label 1.

Now, armed with a scale and a direction, finding the point corresponding to,
say +2.17, is easy — start at 0, head in the direction of 1 (i.e., the positive
direction), but don’t stop there, go 2.17 times as far.

The basic idea here, combining magnitude with direction, is the key to ex-
tending to higher dimensions.
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An object comprised of a magnitude and a direction is a vector (we will use
the same word as in the previous section because we shall show below how to
describe such an object with a column vector). We can draw a vector as having
some length, and pointing somewhere.

e

—_—

There is a subtlety here — these

—_—

are equal, even though they start in different places, because they have equal
lengths and equal directions. Again: those vectors are not just alike, they are
equal.

How can things that are in different places be equal? Think of a vector as
representing a displacement (‘vector’ is Latin for “carrier” or “traveler”). These
squares undergo the same displacement, despite that those displacements start
in different places.

,::—»

0—

Sometimes, to emphasize this property vectors have of not being anchored, they
are referred to as free vectors.
These two, as free vectors, are equal;

//

we can think of each as a displacement of one over and two up. More generally,
two vectors in the plane are the same if and only if they have the same change
in first components and the same change in second components: the vector
extending from (a1, as) to (b1,bs) equals the vector from (c1,c2) to (di,ds) if
and only if by —ay; =dy — ¢ and by — ay = dy — Co.

An expression like ‘the vector that, were it to start at (a1, a2), would stretch
to (by,be) is awkward. Instead of that terminology, from among all of these

/1)

we single out the one starting at the origin as being in canonical (or natural)
position and we describe a vector by stating its endpoint when it is in canonical
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position, as a column. For instance, the ‘one over and two up’ vectors above are

denoted in this way.
1
2

More generally, the plane vector starting at (a1, as) and stretching to (by,bs) is

denoted
by —ax
by — az
since the prior paragraph shows that when the vector starts at the origin, it
ends at this location.
1 b
2

We often just say “the point
rather than “the endpoint of the canonical position of” that vector. That is, we
shall find it convienent to blur the distinction between a point in space and the
vector that, if it starts at the origin, ends at that point. Thus, we will refer to
both of these as R™.

{(z1,2) | 21,22 € R} {(2) | 21,22 € R}

In the prior section we defined vectors and vector operations with an alge-

braic motivation;
r- = + =
V2 () V2 Wa U2 + wa
we can now interpret those operations geometrically. For instance, if U repre-
sents a displacement then 37 represents a displacement in the same direction

but three times as far, and —1¢ represents a displacement of the same distance
as ¥ but in the opposite direction.

And, where ¢ and W represent displacements, ¥ + w represents those displace-
ments combined.

<y
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The long arrow is the combined displacement in this sense: if, in one minute, a
ship’s motion gives it the displacement relative to the earth of ¢ and a passen-
ger’s motion gives a displacement relative to the ship’s deck of w, then v+ 4 is
the displacement of the passenger relative to the earth.

Another way to understand the vector sum is with the parallelogram rule.
Draw the parallelogram formed by the vectors v, V5 and then the sum o} + v
extends along the diagonal to the far corner.

) (961 + 12)
~7 \v1 + Y2

To .
x1
Y1
The above drawings show how vectors and vector operations behave in R?.

We can extend to R?, or to even higher-dimensional spaces where we have no
pictures, with the obvious generalization: the free vector that, if it starts at

(a1,...,an), ends at (by,...,b,), is represented by this column
bl — a
bn — Qnp

(vectors are equal if they have the same representation), we aren’t too careful
to distinguish between a point and the vector whose canonical representation
ends at that point,
U1
R*={| : ||v1,-..,vn €R}
Un
and addition and scalar multiplication are component-wise.

Having considered points, we now turn to the lines. In R2, the line through
(1,2) and (3,1) is comprised of (the endpoints of ) the vectors in this set

@) (2 e

That description expresses this picture.

()00

The vector associated with the parameter ¢ has its whole body in the line — it
is a direction vector for the line. Note that points on the line to the left of z = 1
are described using negative values of .
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In R3, the line through (1,2,3) and (5,5,5) is the set of (endpoints of)
vectors of this form

1 4
{{2]+¢t-|3])|teRr}
3 2

and lines in even higher-dimensional spaces work in the same way.

If a line uses one parameter, so that there is freedom to move back and
forth in one dimension, then a plane must involve two. For example, the plane
through the points (1,0,5), (2,1, —3), and (—2,4, 0.5) consists of (endpoints of)
the vectors in

1 1 -3
{lo|+t- [ 1 )+s-| 4 ||t,seR}
5 -8 —4.5

(the column vectors associated with the parameters

1 2 1 -3 -2 1
1 |=(1]-10 4 =1 4]-10
-8 -3 ) —4.5 0.5 )

are two vectors whose whole bodies lie in the plane). As with the line, note that
some points in this plane are described with negative t’s or negative s’s or both.

A description of planes that is often encountered in algebra and calculus uses
a single equation

x
P={ly||22+3y—2=14}
z

as the condition that describes the relationship among the first, second, and
third coordinates of points in a plane. The translation from such a description
to the vector description that we favor in this book is to think of the condition
as a one-equation linear system and paramatrize x = (1/2)(4 — 3y + 2).

2 —3/2 1/2
P={l0o)+| 1 |y+[ 0 |2]|yzeR}
0 1

Generalizing from lines and planes, we define a k-dimensional linear sur-
face (or k-flat) in R™ to be {p'+ t10) + toUs + - - - + t4Tg ‘ t1,...,tr € R} where
U1,...,70, € R". For example, in R*,

|t e R}

—~

w

+

~
OO O =
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is a line,
0 1 2
0 1 0
{ ol Tt o | T4 t,s € R}
0 -1 0
is a plane, and
3 0 1 2
1 0 0 0
{5 *r o | +511 1], r,s,t € R}
0.5 -1 0 0

is a three-dimensional linear surface. Again, the intuition is that a line per-
mits motion in one direction, a plane permits motion in combinations of two
directions, etc.

A linear surface description can be misleading about the dimension — this

1 1 2
0 1 2
L={{ [+t o | T2 ¢ | t,s € R}

-2 -1 -2

is a degenerate plane because it is actually a line.
1 1
0 1

L={ I I | r € R}

-2 —1

We shall see in the Linear Independence section of Chapter Two what relation-
ships among vectors causes the linear surface they generate to be degenerate.

We finish this subsection by restating our conclusions from the first section
in geometric terms. First, the solution set of a linear system with n unknowns
is a linear surface in R™. Specifically, it is an k-dimensional linear surface,
where k is the number of free variables in an echelon form version of the system.
Second, the solution set of a homogeneous linear system is a linear surface
passing through the origin. Finally, we can view the general solution set of any
linear system as being the solution set of its associated homogeneous system
offset from the origin by a vector, namely by any particular solution.

Exercises

v' 1.1 Find the canonical name for each vector.
(a) the vector from (2,1) to (4,2) in R?
(b) the vector from (3,3) to (2,5) in R?
(c) the vector from (1,0,6) to (5,0,3) in R?
(d) the vector from (6,8,8) to (6,8,8) in R?

o~~~
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v' 1.2 Decide if the two vectors are equal.
(a) the vector from (5, 3) to (6,2) and the vector from (1, —-2) to (1,1)
(b) the vector from (2,1,1) to (3,0,4) and the vector from (5,1,4) to (6,0,7)
v 1.3 Does (1,0,2,1) lie on the line through (—2,1,1,0) and (5,10, —1,4)?
v 1.4 (a) Describe the plane through (1,1,5,-1), (2,2,2,0), and (3,1,0,4).
(b) Is the origin in that plane?
1.5 Describe the plane that contains this point and line.

HICINGA

v' 1.6 Intersect these planes.

1 0 1 0 2
{(1)75—&-(1)5’15756[&} {<1>+<3>k+<0>m|k,meR}
1 3 0 0 4

v' 1.7 Intersect each pair, if possible.

1 0 1 0
(a) {<1>+t<1> |t€R},{<3>+s<1> | s e R}
2 1 -2 2
2 1 0 0
(b) {(O) +t<1> |t€R}, {s (1) +w<4> |s,w€]R}
1 —1 2 1

1.8 Show that the line segments (a1, az2)(b1,b2) and (ci1,c2)(d1, d2) have the same
lengths and slopes if b1 — a1 = d1 — ¢1 and b2 — a2 = d2 — ca. Is that only if?
1.9 How should R® be defined?
v/ 1.10 [Math. Mag., Jan. 1957] A person traveling eastward at a rate of 3 miles per
hour finds that the wind appears to blow directly from the north. On doubling his
speed it appears to come from the north east. What was the wind’s velocity?

1.11 Euclid describes a plane as “a surface which lies evenly with the straight lines
on itself”. Commentators (e.g., Heron) have interpreted this to mean “(A plane
surface is) such that, if a straight line pass through two points on it, the line
coincides wholly with it at every spot, all ways”. (Translations from [Heath], pp.
171-172.) Do planes, as described in this section, have that property? Does this
description adequately define planes?

1.I1.2 Length and Angle Measures

We’ve translated the first section’s results about solution sets into geometric
terms for insight into how those sets look. But we must watch out not to be
mislead by our own terms; labeling subsets of R* of the forms {§+ t7 | t € R}
and {p' + t0 + s ’ t,s € R} as “lines” and “planes” doesn’t make them act like
the lines and planes of our prior experience. Rather, we must ensure that the
names suit the sets. While we can’t prove that the sets satisfy our intuition —
we can’t prove anything about intuition — in this subsection we’ll observe that
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a result familiar from R? and R3, when generalized to arbitrary R¥, supports
the idea that a line is straight and a plane is flat. Specifically, we’ll see how to
do Euclidean geometry in a “plane” by giving a definition of the angle between
two R™ vectors in the plane that they generate.

2.1 Definition The length of a vector ¥ € R™ is this.

19l = /oi + -+
2.2 Remark This is a natural generalization of the Pythagorean Theorem. A
classic discussion is in [Polya).

We can use that definition to derive a formula for the angle between two
vectors. For a model of what to do, consider two vectors in R3.

B @
A

Put them in canonical position and, in the plane that they determine, consider
the triangle formed by , ¥, and @ — v.

S

To that triangle, apply the Law of Cosines,
1z -3 =ll@|* + 5]* - 2@ 5] cos®
where 6 is the angle between « and . Expand both sides
(ur —v1)® + (ug — v2)? + (uz — v3)?
= (ui +uj +uf) + (v + 03 +v5) — 2@ || [|7] cos
and simplify.

UV + U2V + U3V3
[ [ 17l

)

0 = arccos(

In higher dimensions no picture suffices but we can make the same argument
analytically. First, the form of the numerator is clear — it comes from the middle
terms of the squares (u; — v1)?, (ug — v2)?, etc.

2.3 Definition The dot product (or inner product, or scalar product) of two
n-component real vectors is the linear combination of their components.

—

*U=uUV1 + UgV2 + - + UKV,

IS
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Notice that the dot product of two vectors is a real number, not a vector, and
that the dot product of a vector from R™ with a vector from R™ is defined
only when n equals m. Notice also this relationship between dot product and
length: dotting a vector with itself gives its length squared @+ 4 = ujuy + -+ +
upti, = ||@ .

2.4 Remark The wording in that definition allows one or both of the two to
be a row vector instead of a column vector. Some books require that the first
vector be a row vector and that the second vector be a column vector. We shall
not be that strict.

Still reasoning with letters, but guided by the pictures, we use the next
theorem to argue that the triangle formed by @, ¥, and @ — ¢ in R"™ lies in the
planar subset of R™ generated by @ and v.

2.5 Theorem (Triangle Inequality) For any @, ¢ € R,
g+ 7| <@+ 7]

with equality if and only if one of the vectors is a nonnegative scalar multiple
of the other one.

This inequality is the source of the familiar saying, “The shortest distance

between two points is in a straight line.”

. finish
U+T -

start . —

u
Proor. We’ll use some algebraic properties of dot product that we have not
shown, for instance that - (Ei—i—l;) =@ d+ii-b and that @7 = 7. Verification
of those properties is Exercise 17. The desired inequality holds if and only if its

square holds.

1z + 71> < (lall + I17])>
(@+9) - (@+0) < @|* + 2@ | |7]| + |7
UrU+ U T VU +TTS U+ 2| [|T0] + TV
207 < 2|17

That, in turn, holds if and only if the relationship obtained by multiplying both
sides by the nonnegative numbers ||@ || and ||7]|

2(|[ @) - (

@ |9) < 2]Ja]f?||7 >

and rewriting

0 < [l@ |7 1* — 2 (I ]1@) - (@ 19) + @ |7
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is true. But factoring

<

0 < ([laf|v—l[7fa)-(

@7 — ||7]|@)

shows that this certainly is true since it only says that the square of the length
of the vector ||@||v — || ||d is not negative.

As for equality, it holds when, and only when, ||i||7 — |7 || is 0. The check
that ||@ ||¥ = || || if and only if one vector is a nonnegative real scalar multiple
of the other is easy. QED

This result supports the intuition that even in higher-dimensional spaces,
lines are straight and planes are flat. For any two points in a linear surface, the
line segment connecting them is contained in that surface (this is easily checked
from the definition). But if the surface has a bend then that would allow for a
shortcut (shown here dotted, while the line segment from P to @, contained in
the linear surface, is solid).

Because the Triangle Inequality says that in any R™, the shortest cut between
two endpoints is simply the line segment connecting them, linear surfaces have
no such bends.

Back to the definition of angle measure. The heart of the Triangle Inequal-
ity’s proof is the ‘@ - ¥ < ||a|| ||U']]’ line. At first glance, a reader might wonder
if some pairs of vectors satisfy the inequality in this way: while « - ¥ is a large
number, with absolute value bigger than the right-hand side, it is a negative
large number. The next result says that no such pair of vectors exists.

2.6 Corollary (Cauchy-Schwartz Inequality) For any i, 7 € R",
@7 < flaf |7
with equality if and only if one vector is a scalar multiple of the other.

Proor. The Triangle Inequality’s proof shows that @+ v < ||@ || ||T]| so if @7 is
positive or zero then we are done. If  « ¥ is negative then this holds.

@0 = —(i+0) = (—u) v < || —a|[|[7]] =[] [|7]]
The equality condition is Exercise 18. QED

The Cauchy-Schwartz inequality assures us that the next definition makes
sense because the fraction has absolute value less than or equal to one.
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2.7 Definition The angle between two nonzero vectors u, v € R" is

U*v
6= _uv
arceos( )

(the angle between the zero vector and any other vector is defined to be a right

angle).

Thus vectors from R are orthogonal if and only if their dot product is zero.

2.8 Example These vectors are orthogonal.

S SRR

Although they are shown away from canonical position so that they don’t appear
to touch, nonetheless they are orthogonal.

2.9 Example The R? angle formula given at the start of this subsection is a
special case of the definition. Between these two

the angle is

WO +OE + Oy _ o ®
VIZ 4124+ 02/07 + 32 + 22 V2v13

approximately 0.94 radians. Notice that these vectors are not orthogonal. Al-
though the yz-plane may appear to be perpendicular to the zy-plane, in fact
the two planes are that way only in the weak sense that there are vectors in each
orthogonal to all vectors in the other. Not every vector in each is orthogonal to
all vectors in the other.

)

arccos(

Exercises

v' 2.10 Find the length of each vector.

1

4 0
(a) (f) (b) <;> (©) (1) (d) <o> @ |7
1 0 0

v/ 2.11 Find the angle between each two, if it is defined.
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o (0 @) 06

v 2.12 During maneuvers preceding the Battle of Jutland, the British battle cruiser
Lion moved as follows (in nautical miles): 1.2 miles north, 6.1 miles 38 degrees
east of south, 4.0 miles at 89 degrees east of north, and 6.5 miles at 31 degrees
east of north. Find the distance between starting and ending positions.

2.13 Find k so that these two vectors are perpendicular.
k 4
1 3

2.14 Describe the set of vectors in R? orthogonal to this one.

v 2.15 (a) Find the angle between the diagonal of the unit square in R? and one of
the axes.
(b) Find the angle between the diagonal of the unit cube in R* and one of the
axes.
(c) Find the angle between the diagonal of the unit cube in R™ and one of the
axes.
(d) What is the limit, as n goes to oo, of the angle between the diagonal of the
unit cube in R™ and one of the axes?
2.16 Is there any vector that is perpendicular to itself?
v' 2.17 Describe the algebraic properties of dot product.
(a) Is it right-distributive over addition: (% + U)W = @+ W + ¥+ W?
(b) Is is left-distributive (over addition)?
(c) Does it commute?
(d) Associate?
(e) How does it interact with scalar multiplication?
As always, any assertion must be backed by either a proof or an example.
2.18 Verify the equality condition in Corollary 2.6, the Cauchy-Schwartz Inequal-
ity.
(a) Show that if @ is a negative scalar multiple of ¢ then @+ ¢ and o'+ 4 are less
than or equal to zero.
(b) Show that |@+d| = ||@ | |||l if and only if one vector is a scalar multiple of
the other.
2.19 Suppose that € +7 = 4 *w and 4 # 0. Must 7 = @?
v 2.20 Does any vector have length zero except a zero vector? (If “yes”, produce an
example. If “no”, prove it.)
v 2.21 Find the midpoint of the line segment connecting (1, y1) with (z2,y2) in R?.
Generalize to R".
2.22 Show that if 7 # 0 then @/||7 || has length one. What if 7 = 07
2.23 Show that if r > 0 then ¥ is r times as long as ¥. What if » < 07
v 2.24 A vector ¥ € R" of length one is a unit vector. Show that the dot product
of two unit vectors has absolute value less than or equal to one. Can ‘less than’
happen? Can ‘equal to’?
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2.25 Prove that |4+ 7 ||° + @ — 7||* = 2||@||* + 2|7 ||*.

2.26 Show that if Z+ 7 = 0 for every 7 then # = 0.

2.27 Is ||u1 + - + Un|| < JJd1]] + -+ + ||@n]|? If it is true then it would generalize
the Triangle Inequality.

2.28 What is the ratio between the sides in the Cauchy-Schwartz inequality?

2.29 Why is the zero vector defined to be perpendicular to every vector?

2.30 Describe the angle between two vectors in R*.

2.31 Give a simple necessary and sufficient condition to determine whether the
angle between two vectors is acute, right, or obtuse.

v 2.32 Generalize to R™ the converse of the Pythagorean Theorem, that if @ and o
are perpendicular then |7+ 7 ||* = ||@||* + |7 ||*.

2.33 Show that ||@ || = ||7]| if and only if @+ ¥ and @ — ¥ are perpendicular. Give
an example in R2.

2.34 Show that if a vector is perpendicular to each of two others then it is perpen-
dicular to each vector in the plane they generate. (Remark. They could generate
a degenerate plane — a line or a point — but the statement remains true.)

2.35 Prove that, where ,7 € R" are nonzero vectors, the vector

u n v
el 1ol
bisects the angle between them. Illustrate in R2.

2.36 Verify that the definition of angle is dimensionally correct: (1) if £ > 0 then
the cosine of the angle between ki and v equals the cosine of the angle between
@ and ¥, and (2) if K < O then the cosine of the angle between ki and ¥ is the
negative of the cosine of the angle between @ and .

v' 2.37 Show that the inner product operation is linear: for i, ¥,w € R™ and k,m € R,
U+ (kU + mw) = k(d* V) + m(u » W).

v' 2.38 The geometric mean of two positive reals x,y is \/zy. It is analogous to the
arithmetic mean (z + y)/2. Use the Cauchy-Schwartz inequality to show that the
geometric mean of any x,y € R is less than or equal to the arithmetic mean.

2.39 [Am. Math. Mon., Feb. 1933] A ship is sailing with speed and direction ;
the wind blows apparently (judging by the vane on the mast) in the direction of
a vector @; on changing the direction and speed of the ship from ¢ to ¥ the
apparent wind is in the direction of a vector b,

Find the vector velocity of the wind.

2.40 Verify the Cauchy-Schwartz inequality by first proving Lagrange’s identity:
2

Z ajbj = Z CL]2' Z b? — Z (akbj—ajbk)Q

1<j<n 1<j<n 1<j<n 1<k<j<n

and then noting that the final term is positive. (Recall the meaning

Z a;bj = aiby + azb2 + - + anby,
1<j<n

and

2 2 2 2
E a;" =a1” +a2” + -+ an

1<j<n
of the ¥ notation.) This result is an improvement over Cauchy-Schwartz because

it gives a formula for the difference between the two sides. Interpret that difference
in R%.
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1.IIT1 Reduced Echelon Form

After developing the mechanics of Gauss’ method, we observed that it can be
done in more than one way. One example is that we sometimes have to swap
rows and there can be more than one row to choose from. Another example is
that from this matrix
2 2
(3

Gauss’ method could derive any of these echelon form matrices.

i) I YR O

The first results from —2p; + p2. The second comes from following (1/2)p; with
—4p1 + p2. The third comes from —2p; + ps followed by 2ps + p1 (after the first
pivot the matrix is already in echelon form so the second one is extra work but
it is nonetheless a legal row operation).

The fact that the echelon form outcome of Gauss’ method is not unique
leaves us with some questions. Will any two echelon form versions of a system
have the same number of free variables? Will they in fact have exactly the same
variables free? In this section we will answer both questions “yes”. We will
do more than answer the questions. We will give a way to decide if one linear
system can be derived from another by row operations. The answers to the two
questions will follow from this larger result.

1.I11.1 Gauss-Jordan Reduction

Gaussian elimination coupled with back-substitution solves linear systems,
but it’s not the only method possible. Here is an extension of Gauss’ method
that has some advantages.

1.1 Example To solve

TH+y—2z=-2
y+3z= 7
T — z=-1

we can start by going to echelon form as usual.

1 1 —-2]-=2 N 11 —2|-=2
0 1 3| 7| o1 3|7
0o -1 1 1 0 0 4 8

—pP1+p3
—
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We can keep going to a second stage by making the leading entries into ones
1 —2|-2
1 3 7
0 1 2

(1&)3 0
0

and then to a third stage that uses the leading entries to eliminate all of the
other entries in each column by pivoting upwards.

, 1102 10 01
st b o1 T2 (o o1 01
st \g o0 1|2 00 1|2

The answer isx =1,y =1, and z = 2.

Note that the pivot operations in the first stage proceed from column one to
column three while the pivot operations in the third stage proceed from column
three to column one.

1.2 Example We often combine the operations of the middle stage into a
single step, even though they are operations on different rows.

2 1|7\ 2te (2 1|7
4 216 0 —4|-8

(1/2)p1 (1 1/2 ‘ 7/2)

(=1/4)p 0 1] 2
—(1/2)pztpr (1 0] 5/2
0 1| 2

The answer is ¢ = 5/2 and y = 2.

This extension of Gauss’ method is Gauss-Jordan reduction. It goes past
echelon form to a more refined, more specialized, matrix form.

1.3 Definition A matrix is in reduced echelon form if, in addition to being in
echelon form, each leading entry is a one and is the only nonzero entry in its
column.

The disadvantage of using Gauss-Jordan reduction to solve a system is that the
additional row operations mean additional arithmetic. The advantage is that
the solution set can just be read off.

In any echelon form, plain or reduced, we can read off when a system has
an empty solution set because there is a contradictory equation, we can read off
when a system has a one-element solution set because there is no contradiction
and every variable is the leading variable in some row, and we can read off when
a system has an infinite solution set because there is no contradiction and at
least one variable is free.

In reduced echelon form we can read off not just what kind of solution set
the system has, but also its description. Whether or not the echelon form
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is reduced, we have no trouble describing the solution set when it is empty,
of course. The two examples above show that when the system has a single
solution then the solution can be read off from the right-hand column. In the
case when the solution set is infinite, its parametrization can also be read off
of the reduced echelon form. Consider, for example, this system that is shown
brought to echelon form and then to reduced echelon form.

26 1 215 26 1 215
03 1 4|1 2% (o 3 1 4|1
03 1 2|5 000 -2/|4
o s , 1 0 —1/2 0]-9/2
((//_)))m(/)_pjjpzfpitm 01 1/3 0 3
1/3)p2 —pP3TP1
~(1/2)ps 00 0 1] =2

Starting with the middle matrix, the echelon form version, back substitution
produces —2x4 = 4 so that x4 = —2, then another back substitution gives
3x9 + 23 + 4(—2) = 1 implying that zo = 3 — (1/3)x3, and then the final
back substitution gives 21 4+ 6(3 — (1/3)x3) + 3 + 2(—2) = 5 implying that
21 = —(9/2) + (1/2)x3. Thus the solution set is this.

o1 —9/2 1/2
e | 3 ~1/3
S =1 o | = 0 + ! z3 | 23 € R}
Ty —2 0

Now, considering the final matrix, the reduced echelon form version, note that
adjusting the parametrization by moving the z3 terms to the other side does
indeed give the description of this infinite solution set.

Part of the reason that this works is straightforward. While a set can have
many parametrizations that describe it, e.g., both of these also describe the
above set S (take ¢ to be x3/6 and s to be x3 — 1)

—9/2 3 —4 1/2

3 —2 8/3 -1/3
i o |16 t|teR}y | eI s|seR}

-2 0 -2 0
nonetheless we have in this book stuck to a convention of parametrizing using
the unmodified free variables (that is, x3 = x3 instead of x3 = 6t). We can

easily see that a reduced echelon form version of a system is equivalent to a
parametrization in terms of unmodified free variables. For instance,

1 =4 — 2x3

O = O
S = N
S W

1
—= 0
$2:37CE3 0

(to move from left to right we also need to know how many equations are in the
system). So, the convention of parametrizing with the free variables by solving
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each equation for its leading variable and then eliminating that leading variable
from every other equation is exactly equivalent to the reduced echelon form
conditions that each leading entry must be a one and must be the only nonzero
entry in its column.

Not as straightforward is the other part of the reason that the reduced
echelon form version allows us to read off the parametrization that we would
have gotten had we stopped at echelon form and then done back substitution.
The prior paragraph shows that reduced echelon form corresponds to some
parametrization, but why the same parametrization? A solution set can be
parametrized in many ways, and Gauss’ method or the Gauss-Jordan method
can be done in many ways, so a first guess might be that we could derive many
different reduced echelon form versions of the same starting system and many
different parametrizations. But we never do. Experience shows that starting
with the same system and proceeding with row operations in many different
ways always yields the same reduced echelon form and the same parametrization
(using the unmodified free variables).

In the rest of this section we will show that the reduced echelon form version
of a matrix is unique. It follows that the parametrization of a linear system in
terms of its unmodified free variables is unique because two different ones would
give two different reduced echelon forms.

We shall use this result, and the ones that lead up to it, in the rest of the
book but perhaps a restatement in a way that makes it seem more immediately
useful may be encouraging. Imagine that we solve a linear system, parametrize,
and check in the back of the book for the answer. But the parametrization there
appears different. Have we made a mistake, or could these be different-looking
descriptions of the same set, as with the three descriptions above of S? The prior
paragraph notes that we will show here that different-looking parametrizations
(using the unmodified free variables) describe genuinely different sets.

Here is an informal argument that the reduced echelon form version of a
matrix is unique. Consider again the example that started this section of a
matrix that reduces to three different echelon form matrices. The first matrix
of the three is the natural echelon form version. The second matrix is the same
as the first except that a row has been halved. The third matrix, too, is just a
cosmetic variant of the first. The definition of reduced echelon form outlaws this
kind of fooling around. In reduced echelon form, halving a row is not possible
because that would change the row’s leading entry away from one, and neither
is combining rows possible, because then a leading entry would no longer be
alone in its column.

This informal justification is not a proof; we have argued that no two different
reduced echelon form matrices are related by a single row operation step, but
we have not ruled out the possibility that multiple steps might do. Before we go
to that proof, we finish this subsection by rephrasing our work in a terminology
that will be enlightening.

Many different matrices yield the same reduced echelon form matrix. The
three echelon form matrices from the start of this section, and the matrix they
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were derived from, all give this reduced echelon form matrix.

6 1)

We think of these matrices as related to each other. The next result speaks to
this relationship.

1.4 Lemma Elementary row operations are reversible.

Proor. For any matrix A, the effect of swapping rows is reversed by swapping
them back, multiplying a row by a nonzero k is undone by multiplying by 1/k,
and adding a multiple of row ¢ to row j (with ¢ # j) is undone by subtracting
the same multiple of row ¢ from row j.

A PSR PITR Y A m (1@&' A Ak’ﬁfﬂ' —kﬂ;m A
(The i # j conditions is needed. See Exercise 13.) QED

This lemma suggests that ‘reduces to’ is misleading — where A — B, we
shouldn’t think of B as “after” A or “simpler than” A. Instead we should think
of them as interreducible or interrelated. Below is a picture of the idea. The
matrices from the start of this section and their reduced echelon form version
are shown in a cluster. They are all related; some of the interrelationships are
shown also.

7 <(2) —01> T (11
(2 2) « 1 . 0 {1
e N‘\,\ ! - 2 2
(1 0>Mk«> 0 -1
0 1

The technical phrase in this situation is that matrices that reduce to each other
are ‘equivalent with respect to the relationship of row reducibility’. The next
result verifies this statement using the definition of an equivalence.*

1.5 Lemma Between matrices, ‘reduces to’ is an equivalence relation.

Proor. We must check the conditions (i) reflexivity, that any matrix reduces to
itself, (ii) symmetry, that if A reduces to B then B reduces to A, and (iii) tran-
sitivity, that if A reduces to B and B reduces to C' then A reduces to C.
Reflexivity is easy; any matrix reduces to itself in zero row operations.
That the relationship is symmetric is Lemma 1.4 — if A reduces to B by
some row operations then also B reduces to A by reversing those operations.
For transitivity, suppose that A reduces to B and that B reduces to C.
Linking the reduction steps from A — --- — B with those from B — --- — C
gives a reduction from A to C. QED

* More information on equivalence relations is in the appendix.
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1.6 Definition Two matrices that are interreducible by the elementary row
operations are row equivalent.

The diagram below has the collection of all matrices as a box. Inside that
box, each matrix lies in some class. Matrices are in the same class if and only if
they are interreducible. The classes are disjoint — no matrix is in two distinct
classes. The collection of matrices has been partitioned into row equivalence
classes. One of the reasons that showing the row equivalence relation is an
equivalence is useful is that any equivalence relation gives rise to a partition.*

All matrices: A row equivalent

to B.

One of the classes in this partition is the cluster of matrices shown above,
expanded to include all of the nonsingular 2x2 matrices.

The next subsection proves that the reduced echelon form of a matrix is
unique; that every matrix reduces to one and only one reduced echelon form
matrix. Rephrased in the relation language, we shall prove that every matrix is
row equivalent to one and only one reduced echelon form matrix. In terms of the
partition in the picture what we shall prove is: every equivalence class contains
one and only one reduced echelon form matrix. So each reduced echelon form
matrix serves as a representative of its class.

After that proof we shall, as mentioned in the introduction to this section,
have a way to decide if one matrix can be derived from another by row reduction.
We can just apply the Gauss-Jordan procedure to both and see whether or not
they come to the same reduced echelon form.

Exercises
v' 1.7 Use Gauss-Jordan reduction to solve each system.
(a) z+y=2 (b) =z —z=4 (c) 3z—2y= 1
r—y=0 2z + 2y =1 6+ y=1/2
(d) 22—y =—
z+3y— z= 5

y+2z= 5
v 1.8 Find the reduced echelon form of each matrix.

. 13 1 1 03 1 2
(a) (1 3) (b)<2 0 4) (c) (1 4 2 5)
-1 -3 -3 348 1 2
01 3 2
(d)<0056>
1 515

v' 1.9 Find each solution set by using Gauss-Jordan reduction, then reading off the
parametrization.

—_

* More information on partitions and class representatives is in the appendix.
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(a) 2z+y—2=1 (b) z -z =1 (¢) z— y+ =z =0
4 —y =3 Yy+2z—w=3 Y +w=0
r+2y+3z—w= 3r— 2y+3z+w=0

-y —w=0

(d) a+2b+3c+d—e=1
3a— b+ c+d+e=3
1.10 Give two distinct echelon form versions of this matrix.

2 1 1 3
6 4 1 2
1 5 1 5

v 1.11 List the reduced echelon forms possible for each size.
(a) 2x2  (b) 2x3 (c) 3x2 (d) 3x3
v' 1.12 What results from applying Gauss-Jordan reduction to a nonsingular matrix?
1.13 The proof of Lemma 1.4 contains a reference to the ¢ # j condition on the
row pivoting operation.
(a) The definition of row operations has an ¢ # j condition on the swap operation

pi <> pj. Show that in A ganiCRganiic A this condition is not needed.

(b) Write down a 2x2 matrix with nonzero entries, and show that the —1-p1 +p1
operation is not reversed by 1 - p1 + p1.

(¢) Expand the proof of that lemma to make explicit exactly where the i # j
condition on pivoting is used.

1.II1.2 Row Equivalence

We will close this section and this chapter by proving that every matrix is
row equivalent to one and only one reduced echelon form matrix. The ideas
that appear here will reappear, and be further developed, in the next chapter.

The underlying theme here is that one way to understand a mathematical
situation is by being able to classify the cases that can happen. We have met this
theme several times already. We have classified solution sets of linear systems
into the no-elements, one-element, and infinitely-many elements cases. We have
also classified linear systems with the same number of equations as unknowns
into the nonsingular and singular cases. We adopted these classifications because
they give us a way to understand the situations that we were investigating. Here,
where we are investigating row equivalence, we know that the set of all matrices
breaks into the row equivalence classes. When we finish the proof here, we will
have a way to understand each of those classes — its matrices can be thought
of as derived by row operations from the unique reduced echelon form matrix
in that class.

To understand how row operations act to transform one matrix into another,
we consider the effect that they have on the parts of a matrix. The crucial
observation is that row operations combine the rows linearly.
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2.1 Definition A linear combinationof z1,... ,x,, is an expression of the form
11 + ey + - -+ + ¢y, Where the ¢’s are scalars.

(We have already used the phrase ‘linear combination’ in this book. The mean-
ing is unchanged, but the next result’s statement makes a more formal definition
in order.)

2.2 Lemma (Linear Combination Lemma) A linear combination of linear
combinations is a linear combination.

Proor. Given the linear combinations ¢ 121 + - -+ + ¢1 n 2y through ¢, 121 +
-+ + CpmnTp, consider a combination of those

di(ciiz1 4+ c1p2n) + -+ dn(Cmiz1 + -+ Cmnn)

where the d’s are scalars along with the ¢’s. Distributing those d’s and regroup-
ing gives

=diciz1 + -+ dicipxy +dacoizr + -+ dpciaxr o F dmCianTy
= (dlcl,l +-+ dmcm,l)xl + -+ (dlcl,n + -+ dmcm,n)xn

which is indeed a linear combination of the x’s. QED

In this subsection we will use the convention that, where a matrix is named
with an upper case roman letter, the matching lower-case greek letter names
the rows.

(€3] B1

Q2 B2
A — B =

Qm Bim

2.3 Corollary Where one matrix row reduces to another, each row of the
second is a linear combination of the rows of the first.

The proof below uses induction on the number of row operations used to
reduce one matrix to the other. Before we proceed, here is an outline of the ar-
gument (readers unfamiliar with induction may want to compare this argument
with the one used in the ‘General = Particular + Homogeneous’ proof).* First,
for the base step of the argument, we will verify that the proposition is true
when reduction can be done in zero row operations. Second, for the inductive
step, we will argue that if being able to reduce the first matrix to the second
in some number ¢ > 0 of operations implies that each row of the second is a
linear combination of the rows of the first, then being able to reduce the first to
the second in ¢ 4 1 operations implies the same thing. Together, this base step
and induction step prove this result because by the base step the proposition

* More information on mathematical induction is in the appendix.
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is true in the zero operations case, and by the inductive step the fact that it is
true in the zero operations case implies that it is true in the one operation case,
and the inductive step applied again gives that it is therefore true in the two
operations case, etc.

Proor. We proceed by induction on the minimum number of row operations
that take a first matrix A to a second one B.

In the base step, that zero reduction operations suffice, the two matrices
are equal and each row of B is obviously a combination of A’s rows: B; =
0'621+"'+1'&i+"'+0'&7rz-

For the inductive step, assume the inductive hypothesis: with ¢ > 0, if a
matrix can be derived from A in ¢ or fewer operations then its rows are linear
combinations of the A’s rows. Consider a B that takes t+1 operations. Because
there are more than zero operations, there must be a next-to-last matrix G so
that A — --- — G — B. This G is only t operations away from A and so the
inductive hypothesis applies to it, that is, each row of G is a linear combination
of the rows of A.

If the last operation, the one from G to B, is a row swap then the rows
of B are just the rows of G reordered and thus each row of B is also a linear
combination of the rows of A. The other two possibilities for this last operation,
that it multiplies a row by a scalar and that it adds a multiple of one row to
another, both result in the rows of B being linear combinations of the rows of
G. But therefore, by the Linear Combination Lemma, each row of B is a linear
combination of the rows of A.

With that, we have both the base step and the inductive step, and so the
proposition follows. QED

2.4 Example In the reduction

02pﬂ211(1&;211—p2_+}p110
1 1 0 2 0 1 0o 1)’

call the matrices A, D, G, and B. The methods of the proof show that there
are three sets of linear relationships.

0=0-a1+1 s v1=0-a1+1 as b1 =(-1/2)ay +1- a9
52:1'()41+0'Ck2 72:(1/2)a1+0~a2 ﬂ2:(1/2)a1+0'a2

The prior result gives us the insight that Gauss’ method works by taking
linear combinations of the rows. But to what end; why do we go to echelon
form as a particularly simple, or basic, version of a linear system? The answer,
of course, is that echelon form is suitable for back substitution, because we have
isolated the variables. For instance, in this matrix

OO O N
S oo W
OO =
S W ot o
N WO
O~ O
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21 has been removed from z5’s equation. That is, Gauss’ method has made z5’s
row independent of x1’s row.

Independence of a collection of row vectors, or of any kind of vectors, will
be precisely defined and explored in the next chapter. But a first take on it is
that we can show that, say, the third row above is not comprised of the other
rows, that ps # c1p1 + copa + cqpy. For, suppose that there are scalars ¢y, ca,
and ¢4 such that this relationship holds.

00033 0)=c(237280 0
+c(0 0 1 5 1 1)
+c(0 0 0 0 2 1)

The first row’s leading entry is in the first column and narrowing our considera-
tion of the above relationship to consideration only of the entries from the first
column 0 = 2¢; +0c¢2+0cy4 gives that ¢; = 0. The second row’s leading entry is in
the third column and the equation of entries in that column 0 = 7¢y + 1cg + Ocy,
along with the knowledge that ¢; = 0, gives that co = 0. Now, to finish, the
third row’s leading entry is in the fourth column and the equation of entries
in that column 3 = 8¢y + 5¢2 + Ocy, along with ¢; = 0 and ¢, = 0, gives an
impossibility.

The following result shows that this effect always holds. It shows that what
Gauss’ linear elimination method eliminates is linear relationships among the
TOWS.

2.5 Lemma In an echelon form matrix, no nonzero row is a linear combination
of the other rows.

Proor. Let R be in echelon form. Suppose, to obtain a contradiction, that
some nonzero row is a linear combination of the others.

pi=cip1+...+c_1pi—1+ Cit+1pPi4+1 + ...+ CmpPm

We will first use induction to show that the coefficients ¢1, ..., ¢;_1 associated
with rows above p; are all zero. The contradiction will come from consideration
of p; and the rows below it.

The base step of the induction argument is to show that the first coefficient
c1 is zero. Let the first row’s leading entry be in column number ¢; be the
column number of the leading entry of the first row and consider the equation
of entries in that column.

Piey = C1P10y + - F Cic1pi—1,00 + Cit1Pi+1,00 + oo+ CmPmgy

The matrix is in echelon form so the entries pa ¢,, ..., pm.e, , including p; ¢, , are
all zero.

O=cipre, +-+ci—1-04+¢41-04+---+¢p-0

Because the entry p; ¢, is nonzero as it leads its row, the coefficient ¢; must be
Zero.
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The inductive step is to show that for each row index k between 1 and i — 2,

if the coefficient ¢; and the coefficients co, ... , ¢ are all zero then cg 1 is also
zero. That argument, and the contradiction that finishes this proof, is saved for
Exercise 21. QED

We can now prove that each matrix is row equivalent to one and only one
reduced echelon form matrix. We will find it convenient to break the first half
of the argument off as a preliminary lemma. For one thing, it holds for any
echelon form whatever, not just reduced echelon form.

2.6 Lemma If two echelon form matrices are row equivalent then the leading
entries in their first rows lie in the same column. The same is true of all the
nonzero rows — the leading entries in their second rows lie in the same column,
etc.

For the proof we rephrase the result in more technical terms. Define the form
of an m xn matrix to be the sequence ({1,%s,... ,{,) where £; is the column
number of the leading entry in row ¢ and ¢; = oo if there is no leading entry
in that column. The lemma says that if two echelon form matrices are row
equivalent then their forms are equal sequences.

Proor. Let B and D be echelon form matrices that are row equivalent. Because
they are row equivalent they must be the same size, say nxm. Let the column
number of the leading entry in row ¢ of B be ¢; and let the column number of
the leading entry in row j of D be k;. We will show that ¢; = k1, that fo = ko,
etc., by induction.

This induction argument relies on the fact that the matrices are row equiv-
alent, because the Linear Combination Lemma and its corollary therefore give
that each row of B is a linear combination of the rows of D and vice versa:

Bi = 8i,101 + $i202 + -+ Sim0m and  6; =1;101 + 1202+ -+ Ejmbm

where the s’s and t’s are scalars.

The base step of the induction is to verify the lemma for the first rows of
the matrices, that is, to verify that ¢; = ky. If either row is a zero row then
the entire matrix is a zero matrix since it is in echelon form, and hterefore both
matrices are zero matrices (by Corollary 2.3), and so both ¢; and k; are oco. For
the case where neither (37 nor 01 is a zero row, consider the ¢ = 1 instance of
the linear relationship above.

B1 = 51,101 + 51,202 + -+ 4 51 m0m
(0 s by, e ):31_’1(0 o dy gy )
+ 512 (0 R | )

+81,m(0 e 0 .- )
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First, note that ¢; < k; is impossible: in the columns of D to the left of column
k1 the entries are are all zeroes (as dj x, leads the first row) and so if ¢; < ky
then the equation of entries from column ¢; would be by ¢, = s1,1-04---+571 -0,
but by ¢, isn’t zero since it leads its row and so this is an impossibility. Next,
a symmetric argument shows that k; < ¢; also is impossible. Thus the ¢; = k;
base case holds.

The inductive step is to show that if /1 = k1, and fo = ko, ... , and £, = k.,
then also £,41 = k.1 (for  in the interval 1..m — 1). This argument is saved
for Exercise 22. QED

That lemma answers two of the questions that we have posed (i) any two
echelon form versions of a matrix have the same free variables, and consequently
(ii) any two echelon form versions have the same number of free variables. There
is no linear system and no combination of row operations such that, say, we could
solve the system one way and get y and z free but solve it another way and get
y and w free, or solve it one way and get two free variables while solving it
another way yields three.

We finish now by specializing to the case of reduced echelon form matrices.

2.7 Theorem Each matrix is row equivalent to a unique reduced echelon form
matrix.

Proor. Clearly any matrix is row equivalent to at least one reduced echelon
form matrix, via Gauss-Jordan reduction. For the other half, that any matrix
is equivalent to at most one reduced echelon form matrix, we will show that if
a matrix Gauss-Jordan reduces to each of two others then those two are equal.
Suppose that a matrix is row equivalent the two reduced echelon form ma-
trices B and D, which are therefore row equivalent to each other. The Linear
Combination Lemma and its corollary allow us to write the rows of one, say
B, as a linear combination of the rows of the other 3; = ¢; 161 + -+ + ¢imOm.
The preliminary result, Lemma 2.6, says that in the two matrices, the same
collection of rows are nonzero. Thus, if 51 through (3, are the nonzero rows of
B then the nonzero rows of D are §; through 6,. Zero rows don’t contribute to
the sum so we can rewrite the relationship to include just the nonzero rows.

Bi = ¢i,101 + - 4 ¢ 0 (%)

The preliminary result also says that for each row j between 1 and r, the
leading entries of the j-th row of B and D appear in the same column, denoted
¢;. Rewriting the above relationship to focus on the entries in the £;-th column

( s b, e ):Ci,l( e dyg, e )
+Ci,2( d27€j )

+Ci,r( d7,7£j )
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gives this set of equations for i =1 up to i = r.

b1, =ciadie, + -+ c1dje, + o+ crpdeg;

bje; = cjadig; + -+ ¢jgdie; + o+ Crdry;

B

br l; = Cnldl,fj +---+ Cr,jdj7€j + -+ Cr,rdnlj

Since D is in reduced echelon form, all of the d’s in column ¢; are zero except for
dj7gj, which is 1. Thus each equation above simplifies to bi7£j = clv,jdjjj =c -1
But B is also in reduced echelon form and so all of the b’s in column ¢; are zero
except for b; .., which is 1. Therefore, each ¢; ; is zero, except that c¢;; = 1,
and coo =1, ..., and ¢, = 1.

We have shown that the only nonzero coefficient in the linear combination
labelled () is ¢; j, which is 1. Therefore §; = J;. Because this holds for all
nonzero rows, B = D. QED

We end with a recap. In Gauss’ method we start with a matrix and then
derive a sequence of other matrices. We defined two matrices to be related if one
can be derived from the other. That relation is an equivalence relation, called
row equivalence, and so partitions the set of all matrices into row equivalence
classes.

each class
consists of
row equivalent
matrices

All matrices:

(There are infinitely many matrices in the pictured class, but we’ve only got
room to show two.) We have proved there is one and only one reduced echelon
form matrix in each row equivalence class. So the reduced echelon form is a
canonical form* for row equivalence: the reduced echelon form matrices are
representatives of the classes.

one reduced
echelon form matrix
from each class

All matrices:

We can answer questions about the classes by translating them into questions
about the representatives.

* More information on canonical representatives is in the appendix.
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2.8 Example We can decide if matrices are interreducible by seeing if Gauss-
Jordan reduction produces the same reduced echelon form result. Thus, these

are not row equivalent
1 -3 1 =3
-2 6 -2 5

because their reduced echelon forms are not equal.

b))

2.9 Example Any nonsingular 3 x 3 matrix Gauss-Jordan reduces to this.

1 00
0 1 0
0 0 1

2.10 Example We can describe the classes by listing all possible reduced ech-
elon form matrices. Any 2x 2 matrix lies in one of these: the class of matrices

row equivalent to this,
0 0
0 0

the infinitely many classes of matrices row equivalent to one of this type
1 a
0 0
where a € R (including a = 0), the class of matrices row equivalent to this,
0 1
0 0

and the class of matrices row equivalent to this

o 1)

(this the class of nonsingular 2 x2 matrices).

Exercises
v' 2.11 Decide if the matrices are row equivalent.

1 0 2 1 0 2
@G0y o)z
2 1 -1
© (11 o 7(1 0 2) (d)(1 1 1>,(0 3 —1)
<431>0210 1 2 2 2 2 5
1

1 1\ /o 1 2
(e) (0 0 3)’(1 1 1>

2.12 Describe the matrices in each of the classes represented in Example 2.10.
2.13 Describe all matrices in the row equivalence class of these.



Section III. Reduced Echelon Form 59

(a) ((1) 8) (b) (; j) (©) G ;)

2.14 How many row equivalence classes are there?

2.15 Can row equivalence classes contain different-sized matrices?
2.16 How big are the row equivalence classes?
(a) Show that the class of any zero matrix is finite.
(b) Do any other classes contain only finitely many members?
v/ 2.17 Give two reduced echelon form matrices that have their leading entries in the
same columns, but that are not row equivalent.
v' 2.18 Show that any two n Xn nonsingular matrices are row equivalent. Are any
two singular matrices row equivalent?
v' 2.19 Describe all of the row equivalence classes containing these.
(a) 2x 2 matrices  (b) 2x 3 matrices  (c) 3 X 2 matrices
(d) 3x3 matrices
2.20 (a) Show that a vector B, is a linear combination of members of the set
{51, R ﬁn} if and only there is a linear relationship 0 = cofBo + -+ + cnfin
where cg is not zero. (Watch out for the G = 0 case.)
(b) Derive Lemma 2.5.
v' 2.21 Finish the proof of Lemma 2.5.
(a) First illustrate the inductive step by showing that f2 = ko.
(b) Do the full inductive step: assume that ¢ is zero for 1 < k < i — 1, and
deduce that ci41 is also zero.
(c) Find the contradiction.

2.22 Finish the induction argument in Lemma 2.6.

(a) State the inductive hypothesis, Also state what must be shown to follow from
that hypothesis.

(b) Check that the inductive hypothesis implies that in the relationship Br41 =
Sr+1,101 + Sr42,202 + -+ + Sp41,m0m the coefficients sy41,1, ..., Sr41,r are each
ZEro.

(c) Finish the inductive step by arguing, as in the base case, that ¢,41 < krq1
and k,4+1 < £,41 are impossible.

2.23 Why, in the proof of Theorem 2.7, do we bother to restrict to the nonzero rows?
Why not just stick to the relationship that we began with, 5; = ¢;, 101+ - - +¢i,mOm,
with m instead of r, and argue using it that the only nonzero coefficient is ¢; ;,
which is 17

v' 2.24 [Trono] Three truck drivers went into a roadside cafe. One truck driver pur-
chased four sandwiches, a cup of coffee, and seven doughnuts for $8.45. Another
driver purchased three sandwiches, a cup of coffee, and seven doughnuts for $6.30.
What did the third truck driver pay for a sandwich, a cup of coffee, and a dough-
nut?

2.25 The fact that Gaussian reduction disallows multiplication of a row by zero is
needed for the proof of uniqueness of reduced echelon form, or else every matrix
would be row equivalent to a matrix of all zeros. Where is it used?

v' 2.26 The Linear Combination Lemma says which equations can be gotten from
Gaussian reduction from a given linear system.

(1) Produce an equation not implied by this system.
3z +4y =38
204+ y=3
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(2) Can any equation be derived from an inconsistent system?

2.27 Extend the definition of row equivalence to linear systems. Under your defi-
nition, do equivalent systems have the same solution set?

v’ 2.28 In this matrix
1 2 3
(3 0 3)
1 4 5

the first and second columns add to the third.
(a) Show that remains true under any row operation.
(b) Make a conjecture.
(¢) Prove that it holds.
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Topic: Computer Algebra Systems

The linear systems in this chapter are small enough that their solution by hand
is easy. But large systems are easiest, and safest, to do on a computer. There
are special purpose programs such as LINPACK for this job. Another popular
tool is a general purpose computer algebra system, including both commercial
packages such as Maple, Mathematica, or MATLAB, or free packages such as
SciLab, or Octave.

For example, in the Topic on Networks, we need to solve this.

i() - le - iz = 0
11 — i3 — 5 =0

19 — 4+ 15 =0

13+ 14 —ig= 0

501 + 1045 =10

219 + 4y =10

511 — 21y =+ 5015 =0

It can be done by hand, but it would take a while and be error-prone. Using a
computer is better.

We illustrate by solving that system under Maple (for another system, a
user’s manual would obviously detail the exact syntax needed). The array of
coefficients can be entered in this way

> A:=array( [[1,-1,-1,0,0,0,0],

[0,1,0,-1,0,-1,0],
[0,0,1,0,-1,1,01,
(0,0,0,1,1,0,-11,
[0,5,0,10,0,0,0],
[0,0,2,0,4,0,0],
[0,5,-1,0,0,10,011 );
(putting the rows on separate lines is not necessary, but is done for clarity).
The vector of constants is entered similarly.
> u:=array( [0,0,0,0,10,10,0] );
Then the system is solved, like magic.
> linsolve(A,u);
7 2 5 2 b 7
-, -, -,-,-,0,-1
3 3 3 3 3 3
Systems with infinitely many solutions are solved in the same way — the com-
puter simply returns a parametrization.

Exercises
1 Use the computer to solve the two problems that opened this chapter.
(a) This is the Statics problem.

40h 4 15¢ = 100
25¢ = 50 + 50h
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(b) This is the Chemistry problem.

Th =1Tj
8h+ 1i = 55 + 2k
1i =3

3i =65 + 1k

2 Use the computer to solve these systems from the first subsection, or conclude
‘many solutions’ or ‘no solutions’.
(a) 2z+2y=5 (b) —z+y=1 (c) z—3y+ z= 1

r—4y=0 r+y=2 r+ y+2z=14
d —z—- y=1 (e dy+2=20 (f) 2z + z+w= 5
—3x—3y=2 20 —2y+z2= 0 Y —w=-1
T +z= 5 3x —z—w= 0
r+ y—2z=10 dr+y+2z4+w= 9

3 Use the computer to solve these systems from the second subsection.
(a) 3z +6y=18 (b)) z+y= 1 (c) = + x23= 4

r+2y= 6 r—y=-—1 1 — X2+ 23 = 5

41 — x9 + Drs =17
d) 2a+b—c=2 (e) z+2y—=z =3 () =z +z+w=4
2a +c=3 20+ vy +w=4 2c +y —w=2
a—>b =0 r— y+z+w=1 3x+y+ 2z =7

4 What does the computer give for the solution of the general 2 x 2 system?
ar +cy=p
bx +dy=q
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Topic: Input-Output Analysis

An economy is an immensely complicated network of interdependences. Changes
in one part can ripple out to affect other parts. Economists have struggled to
be able to describe, and to make predictions about, such a complicated object.
Mathematical models using systems of linear equations have emerged as a key
tool. Onme is Input-Output Analysis, pioneered by W. Leontief, who won the
1973 Nobel Prize in Economics.

Consider an economy with many parts, two of which are the steel industry
and the auto industry. As they work to meet the demand for their product from
other parts of the economy, that is, from users external to the steel and auto
sectors, these two interact tightly. For instance, should the external demand
for autos go up, that would lead to an increase in the auto industry’s usage of
steel. Or, should the external demand for steel fall, then it would lead to a fall
in steel’s purchase of autos. The type of Input-Output model we will consider
takes in the external demands and then predicts how the two interact to meet
those demands.

We start with a listing of production and consumption statistics. (These
numbers, giving dollar values in millions, are excerpted from [Leontief 1965],
describing the 1958 U.S. economy. Today’s statistics would be quite different,
both because of inflation and because of technical changes in the industries.)

used by used by  wused by

steel auto others total

value of 5305 2664 25 448
steel
value of

auto 48 9030 30346

For instance, the dollar value of steel used by the auto industry in this year is
2,664 million. Note that industries may consume some of their own output.

We can fill in the blanks for the external demand. This year’s value of the
steel used by others this year is 17,389 and this year’s value of the auto used
by others is 21,268. With that, we have a complete description of the external
demands and of how auto and steel interact, this year, to meet them.

Now, imagine that the external demand for steel has recently been going up
by 200 per year and so we estimate that next year it will be 17,589. Imagine
also that for similar reasons we estimate that next year’s external demand for
autos will be down 25 to 21,243. We wish to predict next year’s total outputs.

That prediction isn’t as simple as adding 200 to this year’s steel total and
subtracting 25 from this year’s auto total. For one thing, a rise in steel will
cause that industry to have an increased demand for autos, which will mitigate,
to some extent, the loss in external demand for autos. On the other hand, the
drop in external demand for autos will cause the auto industry to use less steel,
and so lessen somewhat the upswing in steel’s business. In short, these two
industries form a system, and we need to predict the totals at which the system
as a whole will settle.
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For that prediction, let s be next years total production of steel and let a be
next year’s total output of autos. We form these equations.

next year’s production of steel = next year’s use of steel by steel
+ next year’s use of steel by auto
+ next year’s use of steel by others
next year’s production of autos = next year’s use of autos by steel
+ next year’s use of autos by auto

+ next year’s use of autos by others

On the left side of those equations go the unknowns s and a. At the ends of the
right sides go our external demand estimates for next year 17,589 and 21, 243.
For the remaining four terms, we look to the table of this year’s information
about how the industries interact.

For instance, for next year’s use of steel by steel, we note that this year the
steel industry used 5395 units of steel input to produce 25,448 units of steel
output. So next year, when the steel industry will produce s units out, we
expect that doing so will take s - (5395)/(25448) units of steel input — this is
simply the assumption that input is proportional to output. (We are assuming
that the ratio of input to output remains constant over time; in practice, models
may try to take account of trends of change in the ratios.)

Next year’s use of steel by the auto industry is similar. This year, the auto
industry uses 2664 units of steel input to produce 30346 units of auto output. So
next year, when the auto industry’s total output is a, we expect it to consume
a - (2664)/(30346) units of steel.

Filling in the other equation in the same way, we get this system of linear
equation.

5395 2664
55 113 8+30346 a+ 17589 = s
48 9030

a+21243=a

95448 ° 30346

Rounding to four decimal places and putting it into the form for Gauss’ method
gives this.

0.7880s — 0.0879a = 17589
—0.0019s + 0.7024a = 21 268

The solution is s = 25708 and a = 30 350.

Looking back, recall that above we described why the prediction of next
year’s totals isn’t as simple as adding 200 to last year’s steel total and subtract-
ing 25 from last year’s auto total. In fact, comparing these totals for next year
to the ones given at the start for the current year shows that, despite the drop
in external demand, the total production of the auto industry is predicted to
rise. The increase in internal demand for autos caused by steel’s sharp rise in
business more than makes up for the loss in external demand for autos.
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One of the advantages of having a mathematical model is that we can ask
“What if ... 77 questions. For instance, we can ask “What if the estimates for
next year’s external demands are somewhat off?” To try to understand how
much the model’s predictions change in reaction to changes in our estimates, we
can try revising our estimate of next year’s external steel demand from 17,589
down to 17,489, while keeping the assumption of next year’s external demand
for autos fixed at 21,243. The resulting system

0.7880s — 0.0879a = 17489
—0.0019s + 0.7024a = 21 243

when solved gives s = 25577 and a = 30314. This kind of exploration of the
model is sensitivity analysis. We are seeing how sensitive the predictions of our
model are to the accuracy of the assumptions.

Obviously, we can consider larger models that detail the interactions among
more sectors of an economy. These models are typically solved on a computer,
using the techniques of matrix algebra that we will develop in Chapter Three.
Some examples are given in the exercises. Obviously also, a single model does
not suit every case; expert judgment is needed to see if the assumptions under-
lying the model can are reasonable ones to apply to a particular case. With
those caveats, however, this model has proven in practice to be a useful and ac-
curate tool for economic analysis. For further reading, try [Leontief 1951] and
[Leontief 1965].

Exercises
Hint: these systems are easiest to solve on a computer.

1 With the steel-auto system given above, estimate next year’s total productions
in these cases.

(a) Next year’s external demands are: up 200 from this year for steel, and un-
changed for autos.

(b) Next year’s external demands are: up 100 for steel, and up 200 for autos.
(c) Next year’s external demands are: up 200 for steel, and up 200 for autos.

2 Imagine a new process for making autos is pioneered. The ratio for use of steel
by the auto industry falls to .0500 (that is, the new process is more efficient in its
use of steel).

(a) How will the predictions for next year’s total productions change compared
to the first example discussed above (i.e., taking next year’s external demands
to be 17,589 for steel and 21,243 for autos)?

(b) Predict next year’s totals if, in addition, the external demand for autos rises
to be 21,500 because the new cars are cheaper.

3 This table gives the numbers for the auto-steel system from a different year, 1947
(see [Leontief 1951]). The units here are billions of 1947 dollars.

used by  used by  used by

steel auto others total

value of 6.90 1.28 18.69
steel

value of 0 4.40 14.27

autos
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(a) Fill in the missing external demands, and compute the ratios.

(b) Solve for total output if next year’s external demands are: steel’s demand
up 10% and auto’s demand up 15%.

(c¢) How do the ratios compare to those given above in the discussion for the
1958 economy?

(d) Solve these equations with the 1958 external demands (note the difference
in units; a 1947 dollar buys about what $1.30 in 1958 dollars buys). How far off
are the predictions for total output?

4 Predict next year’s total productions of each of the three sectors of the hypothet-
ical economy shown below

used by  used by  wused by  used by

farm rail shipping  others  total

value of 25 50 100 800
farm

value of 25 50 50 300
rail

value of 15 10 0 500
shipping

if next year’s external demands are as stated.
(a) 625 for farm, 200 for rail, 475 for shipping
(b) 650 for farm, 150 for rail, 450 for shipping
5 This table gives the interrelationships among three segments of an economy (see

[Clark & Coupe]).

used by used by used by  used by total
food wholesale retail others ora
value of
food 0 2318 4679 11869
value of
wholesale 393 1089 22459 122242
value of
retail 3 53 75 116 041

We will do an Input-Output analysis on this system.
(a) Fill in the numbers for this year’s external demands.
(b) Set up the linear system, leaving next year’s external demands blank.
(¢) Solve the system where next year’s external demands are calculated by tak-
ing this year’s external demands and inflating them 10%. Do all three sectors
increase their total business by 10%? Do they all even increase at the same
rate?
(d) Solve the system where next year’s external demands are calculated by taking
this year’s external demands and reducing them 7%. (The study from which
these numbers are taken concluded that because of the closing of a local military
facility, overall personal income in the area would fall 7%, so this might be a
first guess at what would actually happen.)
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Gauss’ method lends itself nicely to computerization. The code below illus-
trates. It operates on an nxn matrix a, pivoting with the first row, then with
the second row, etc. (This code is in the C language. For readers unfamil-
iar with this concise language, here is a brief translation. The loop construct
for(pivot_row=1;pivot_row<=n-1;pivot_row++){---} sets pivot_row to be
1 and then iterates while pivot_row is less than or equal to n — 1, each time
through incrementing pivot_row by one with the ‘++’ operation. The other
non-obvious construct is that the ‘-="in the innermost loop amounts to the
alrow_below,col] = —multiplier x a[pivot_row,col] + a[row_below,col]

operation.)

for(pivot_row=1;pivot_row<=n-1;pivot_row++){
for(row_below=pivot_row+l;row_below<=n;row_below++){
multiplier=a[row_below,pivot_row]/a[pivot_row,pivot_row];
for(col=pivot_row;col<=n;col++){
alrow_below,col]l-=multiplier*a[pivot_row,col];
}
}
}

While this code provides a first take on how Gauss’ method can be mechanized,
it is not ready to use. It is naive in many ways. The most glaring way is that
it assumes that a nonzero number is always found in the pivot_row, pivot_row
position for use as the pivot entry. To make it practical, one way in which this
code needs to be reworked is to cover the case where finding a zero in that
location leads to a row swap, or to the conclusion that the matrix is singular.

Adding some if --- statements to cover those cases is not hard, but we
won’t pursue that here. Instead, we will consider some more subtle ways in
which the code is naive. There are pitfalls arising from the computer’s reliance
on finite-precision floating point arithmetic.

For example, we have seen above that we must handle as a separate case a
system that is singular. But systems that are nearly singular also require great
care. Consider this one.

r+2y=3
1.000 000 01z + 2y = 3.000 000 01

By eye we get the solution x = 1 and y = 1. But a computer has more trouble. A
computer that represents real numbers to eight significant places (as is common,
usually called single precision) will represent the second equation internally as
1.000 000 0z + 2y = 3.000 000 0, losing the digits in the ninth place. Instead of
reporting the correct solution, this computer will report something that is not
even close — this computer thinks that the system is singular because the two
equations are represented internally as equal.

For some intuition about how the computer could think something that is
so far off, we can graph the system.



68 Chapter 1. Linear Systems

At the scale of this graph, the two lines are hard to resolve apart. This system
is nearly singular in the sense that the two lines are nearly the same line. Near-
singularity gives this system the property that a small change in the system
can cause a large change in its solution; for instance, changing the 3.000 00001
to 3.000000 03 changes the intersection point from (1, 1) to (3,0). This system
changes radically depending on a ninth digit, which explains why the eight-
place computer is stumped. A problem that is very sensitive to inaccuracy or
uncertainties in the input values is ill-conditioned.

The above example gives one way in which a system can be difficult to solve
on a computer. It has the advantage that the picture of nearly-equal lines
gives a memorable insight into one way that numerical difficulties can arise.
Unfortunately, though, this insight isn’t very useful when we wish to solve some
large system. We cannot, typically, hope to understand the geometry of an
arbitrary large system. And, in addition, the reasons that the computer’s results
may be unreliable are more complicated than only that the angle between some
of the linear surfaces is quite small.

For an example, consider the system below, from [Hamming].

0001z +y=1
z—y=0

The second equation gives © = y, so x = y = 1/1.001 and thus both variables
have values that are just less than 1. A computer using two digits represents
the system internally in this way (we will do this example in two-digit floating
point arithmetic, but a similar one with eight digits is easy to invent).

(1.0 x 107%)z + (1.0 x 10%)y = 1.0 x 10°
(1.0 x 10%)z — (1.0 x 10%)y = 0.0 x 10°

The computer’s row reduction step —1000p; + ps produces a second equation
—1001y = —999, which the computer rounds to two places as (—1.0 x 10%)y =
—1.0 x 103. Then the computer decides from the second equation that y = 1
and from the first equation that x = 0. This y value is fairly good, but the =
is way off. Thus, another cause of unreliable output is the mixture of floating
point arithmetic and a reliance on pivots that are small.
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An experienced programmer may respond that we should go to double pre-
cision where, usually, sixteen significant digits are retained. It is true, this will
solve many problems. However, there are some difficulties with it as a general
approach. For one thing, double precision takes longer than single precision (on
a ’486 chip, multiplication takes eleven ticks in single precision but fourteen in
double precision [Programmer’s Ref.]) and has twice the memory requirements.
So attempting to do all calculations in double precision is just not practical. And
besides, the above systems can obviously be tweaked to give the same trouble in
the seventeenth digit, so double precision won’t fix all problems. What we need
is a strategy to minimize the numerical trouble arising from solving systems
on a computer, and some guidance as to how far the reported solutions can be
trusted.

Mathematicians have made a careful study of how to get the most reliable
results. A basic improvement on the naive code above is to not simply take
the entry in the pivot_row, pivot_row position for the pivot, but rather to look
at all of the entries in the pivot_row column below the pivot_row row, and take
the one that is most likely to give reliable results (e.g., take one that is not too
small). This strategy is partial pivoting. For example, to solve the troublesome
system (%) above, we start by looking at both equations for a best first pivot,
and taking the 1 in the second equation as more likely to give good results.
Then, the pivot step of —.001ps 4 p1 gives a first equation of 1.001y = 1, which
the computer will represent as (1.0 x 10%)y = 1.0 x 10°, leading to the conclusion
that y = 1 and, after back-substitution, x = 1, both of which are close to right.
The code from above can be adapted to this purpose.

for(pivot_row=1;pivot_row<=n-1;pivot_row++){

/* find the largest pivot in this column (in row max) */
max=pivot_row;
for(row_below=pivot_row+l;pivot_row<=n;row_below++){

if (abs(alrow_below,pivot_row]) > abs(al[max,row_below]))
max=row_below;
}
/* swap rows to move that pivot entry up */
for(col=pivot_row;col<=n;col++){
temp=a[pivot_row,col];
a[pivot_row,col]=a[max,col];
a[max,col]=temp;

}

/* proceed as before */
for(row_below=pivot_row+l;row_below<=n;row_below++){

multiplier=a[row_below,pivot_row]/a[pivot_row,pivot_row];
for(col=pivot_row;col<=n;col++){
al[row_below,col]-=multiplier*a[pivot_row,col];
}
}
}

A full analysis of the best way to implement Gauss’ method is outside the
scope of the book (see [Wilkinson 1965]), but the method recommended by most
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experts is a variation on the code above that first finds the best pivot among
the candidates, and then scales it to a number that is less likely to give trouble.
This is scaled partial pivoting.

In addition to returning a result that is likely to be reliable, most well-
done code will return a number, called the conditioning number of the matrix,
that describes the factor by which uncertainties in the input numbers could be
magnified to become possible inaccuracies in the results returned (see [Rice]).

The lesson of this discussion is that just because Gauss’ method always works
in theory, and just because computer code correctly implements that method,
and just because the answer appears on green-bar paper, doesn’t mean that the
answer is reliable. In practice, always use a package where experts have worked
hard to counter what can go wrong.

Exercises
1 Using two decimal places, add 253 and 2/3.

2 This intersect-the-lines problem contrasts with the example discussed above.

r+2y=3
3z —2y=1

'1 C1 ’/ 1 1 1 1 17
-1 0 1 2 3 4
Illustrate that, in the resulting system, some small change in the numbers will
produce only a small change in the solution by changing the constant in the bot-
tom equation to 1.008 and solving. Compare it to the solution of the unchanged
system.
3 Solve this system by hand ([Rice]).
0.000 3z + 1.556y = 1.569
0.3454x — 2.346y = 1.018

(a) Solve it accurately, by hand. (b) Solve it by rounding at each step to
four significant digits.

4 Rounding inside the computer often has an effect on the result. Assume that
your machine has eight significant digits.

(a) Show that the machine will compute (2/3) + ((2/3) — (1/3)) as unequal to
((2/3) 4+ (2/3)) — (1/3). Thus, computer arithmetic is not associative.

(b) Compare the computer’s version of (1/3)z +y = 0 and (2/3)z + 2y = 0. Is
twice the first equation the same as the second?

5 Ill-conditioning is not only dependent on the matrix of coefficients. This example
[Hamming] shows that it can arise from an interaction between the left and right
sides of the system. Let € be a small real.

3x+ 2y+ z= 6
2 + 2ey + 2ez =2 + 4e
T+2ey— ez= 1+4¢
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(a) Solve the system by hand. Notice that the &’s divide out only because there
is an exact cancelation of the integer parts on the right side as well as on the
left.

(b) Solve the system by hand, rounding to two decimal places, and with ¢ =
0.001.



72 Chapter 1. Linear Systems

Topic: Analyzing Networks

This is the diagram of an electrical circuit. It happens to describe some of the
connections between a car’s battery and lights, but it is typical of such diagrams.
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To read it, we can think of the electricity as coming out of one end of the battery
(labeled 6V OR 12V), flowing through the wires (drawn as straight lines to make
the diagram more readable), and back into the other end of the battery. If, in
making its way from one end of the battery to the other through the network of
wires, some electricity flows thro