INSTRUCTOR’S MANUAL

APPLIED
PARTIAL DIFFERENTIAL
EQUATIONS

with Fourier Series
and Boundary Value Problems

Fourth Edition

Richard Haberman
Department of Mathematics
Southern Methodist University

PRENTICE HALL, Upper Saddle River, NJ 07458






Preface

In this manual there are solutions to most of the starred exercises of APPLIED PARTIAL
DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems, Fourth
Edition, by Richard Haberman.

Over 1000 exercises of varying difficulty form an essential part of this text. It is hoped that
these approximately 250 selected solutions will be useful for instructors and those
contemplating adopting this text.

I would like to express my appreciation to Shari Webster and Nita Blanscet for the preparation
of this manual using LaTeX.

Richard Haberman
Contents

1. Heat Equation 1
2. Method of Separation of Variables 3
3. Fourier Series 8
4. Vibrating Strings and Membranes 11
5. Sturm-Liouville Eigenvalue Problems 12
6. Finite Difference Numerical Methods 18
7. Higher Dimensional PDEs 21
8. Nonhomogeneous Problems 29
9. Green's Functions for Time-Independent Problems 35
10. Infinite Domain Problems - Fourier Transform 48
11.  Green's Functions for Wave and Heat Equations 58
12.  The Method of Characteristics for Wave Equations 62
13.  Laplace Transform Solutions 71

14.  Dispersive Waves 78






Chapter 1. Heat Equation

Section 1.2

1.2.9 (d) Circular cross section means that P = 277, A = nr?, and thus P/A = 2/r, where 7 is the radius.
Also v = 0.

1.2.9 (e) u(z,t) = u(t) implies that
du 2h

p —
dt T
The solution of this first-order linear differential equation with constant coefficients, which satisfies the
initial condition u(0) = uy, is

u(t) = ug exp [—02’7’:}] .

Section 1.3

1.3.2 Ou/dz is continuous if Ko(zo—) = Ko(zo+), that is, if the conductivity is continuous.

Section 1.4

1.4.1 (a) Equilibrium satisfies (1.4.14), d?u/dz? = 0, whose general solution is (1.4.17), u = ¢; + coz. The
boundary condition u(0) = 0 implies ¢; = 0 and (L) = T implies ¢ = T'//L so that v = Tz/L.

1.4.1 (d) Equilibrium satisfies (1.4.14), d>u/dz? = 0, whose general solution (1.4.17), u = ¢; + c2z. From
the boundary conditions, u(0) = T yields T = ¢; and du/dz(L) = a yields a@ = ¢;. Thus u =T + az.

1.4.1 (f) In equilibrium, (1.2.9) becomes d*u/dz? = —Q/Ko = —x? , whose general solution (by integrating
twice) is u = —z*/12 + ¢; + coz. The boundary condition u(0) = T yields ¢; = T, while du/dz(L) =0
yields c; = L3/3. Thus u = —z%/12 + L32/3 + T.

1.4.1 (h) Equilibrium satisfies d*>u/dz?> = 0. One integration yields du/dz = cy, the second integration
yields the general solution u = ¢; + coz.

z2=0: co—(aa—-T)=0
r=L: co=aandthuse¢; =T + a.

Therefore, u = (T + @) + az =T + a(z + 1).

1.4.7 (a) For equilibrium:
'

dz—u——l im liesu——£+c z + cp and du =-z+c

dr? p D) ! 2 dr -
From the boundary conditions Z—;‘(O) =1and %;—‘-(L) = f,¢c1 =1 and —L + ¢; =  which is consistent
only if 3+ L =1. If § =1 — L, there is an equilibrium solution (u = —-%2- +z+ec) UB#1-L,
there isn’t an equilibrium solution. The difficulty is caused by the heat flow being specified at both
ends and a source specified inside. An equilibrium will exist only if these three are in balance. This
balance can be mathematically verified from conservation of energy:

d [t du du L
a/o cpudz——%(O)+E(L)+/o Qodz=-1+p8+ L.

If B+ L =1, then the total thermal energy is constant and the initial energy = the final energy:
L L 2
/ f(z) dz = / (—-? +z+ c2) dz, which determines c;.
0 0

If 8+ L # 1, then the total thermal energy is always changing in time and an equilibrium is never
reached.



Section 1.5

1.5.9 (a) In equilibrium, (1.5.14) using (1.5.19) becomes & (r4%) = 0. Integrating once yields rdu/dr = ¢;
and integrating a second time (after dividing by r) yields u = ¢; Inr + ¢3. An alternate general solution
is u = ¢;In(r/r1) + c3. The boundary condition u(ry) = Ty yields ¢3 = Ty, while u(ry) = Ts yields
ca=(T;— T1)/11'l(’l'2/7"1). Thus, u = m [(T2 —T1)In ’I‘/’I'l + T ln(rz/rl)].

1.5.11 For equilibrium, the radial flow at r = a, 2waf3, must equal the radial flow at r = b, 2wb. Thus 8 = b/a.

1.5.13 From exercise 1.5.12, in equilibrium % (7‘2-‘3—,‘5) = 0. Integrating once yields r2du/dr = c¢; and integrat-
ing a second time (after dividing by 72 ) yields u = —c; /7 + c2. The boundary conditions u(4) = 80
and u(1) = 0 yields 80 = —c¢; /4 + ¢, and 0 = —¢; + co. Thus ¢; = ¢ = 320/3 or u =322 (1-1).

T



Chapter 2. Method of Separation of Variables

Section 2.3

2.3.1 (a) u(r,t) = ¢(r)h(t) yields ¢4 = th 4 (r%ﬁ) Dividing by k¢h yields 42 = #% (r%‘rﬁ) =-\or
dh = —\kh and 14 (r42) = —)e.

231 (¢) u(z,y) = d)(:v)h(y) yields h%‘f— + ¢%§- = 0. Dividing by ¢h yields %‘;Z = —%%’% = -)lor
49 — _\¢ and £k =\,

2.3.1 (e) u(z,t) = @(z)h(t) yields ¢(z)%: = kh(t)—? Dividing by k¢h, yields 242 = %‘f; =
2.3.1 (f) u(z,t) = $(@)h(t) yields ¢(z)of = 2h(t) 4. Dividing by c*¢h, yields Lk = 144 = —\.
2.3.2 (b) A= (nm/L)? with L =1 so that A = n?x2, n=1,2,...
2.3.2 (d)
() If A > 0,6 = c1cosVAz + casinvAz. $(0) = 0 implies ¢; = 0, while (L) = 0 implies
caVAcos VAL = 0. Thus VAL = —7/2 + nw(n = 1,2,...).
(ii) A =0,¢ =c1 +cozx. ¢(0) =0 implies ¢; = 0 and d¢/dz(L) = 0 implies c2 = 0. Therefore A =0
is not an eigenvalue.
(iii) If A < 0, let A = —s and ¢ = ¢; cosh/sz + ¢, sinh v/sz. ¢(0) = 0 implies ¢; = 0 and d¢/dz(L) =0
implies cz4/s cosh \/sL = 0. Thus c; = 0 and hence there are no eigenvalues with A < 0.

2.3.2 (f) The simpliest method is to let =’ = x —a. Then d?>¢/dz'? + A\¢ = 0 with ¢(0) = 0 and ¢#(b—a) = 0.
Thus (from p. 46) L=b—a and A = [n7/(b— a)]2, n=12,...

2.3.3 From (2.3.30), u(z,t) = Y00 | By sin 282e~*(n7/L)*  The initial condition yields
2cos 3L =3 B sin 272, From (2. 3 35), B, = % fOL 2 cos 37£ sin 272 dr.

2.3.4 (a) Total heat energy = fOL cpuA dz = cpAY, Bne"k(%)zt-l—‘—cl.‘;%, using (2.3.30) where B,
satisfies (2.3.35).

2.34 (b)
heat flux to right = —K0u/0z
total heat flow to right = —KoAau/ Oz
heat flow out at z =0 = KoA
heat flow out (z = L) = "KOA(%:L—L

L
2.3.4 (c) From conservation of thermal energy, % fOL udr = kg—;‘ 0 = k%(L) - k%’j(O). Integrating from

t = 0 yields
L L Ou
/ u(z,t) dz —/ u(z,0) de =k [—(L %(0)] dz

heat energy initial heat 1ntegra,1 of integral of
at t energy flow in at flow out at
z=1L z=1L

2.3.8 (a) The general solution of kw = au(a > 0) is u(z) = acosh/¥z + bsinh \/Fz. The boundary
condition u(0) = 0 yields a = 0, while u(L) = 0 yields b = 0. Thus u = 0.



2.3.8 (b) Separation of variables, u = ¢(z)h(t) or ¢% + agh = khg—z%, yields two ordinary differential
equations (divide by k¢h): klh ‘fiﬁ + %= ;%‘f} = —A. Applying the boundary conditions, yields the
eigenvalues A = (nm/L)? and corresponding eigenfunctions ¢ = sin 2f%. The time-dependent part are
exponentials, h = e~ *te~*t, Thus by superposition, u(z,t) = e~ Z°° by, sin 2L e~ k(nn/ L)’ where

the initial conditions u(z,0) = f(z) = Y p_; by sin 272 yields b, = 7 fo f(z)sin 2EE dx. Ast — oo,
u — 0, the only equilibrium solution.

2.39 (a) If a < 0, the general equilibrium solution is u(z) = acosy/ 5%z + bsiny/=2z. The boundary
condition u(0) = 0 yields a = 0, while u(L) = 0 yields bsin /&L = 0. Thus if /Z*L # nm,u=01is

the only equilibrium solution. However, if 4/ 52L = nm, then u = Asin 7% is an equilibrium solution.

2.3.9 (b) Solution obtained in 2.3.8 is correct. If —¢ = (%)2 ,u(z,t) — by sin 22, the equilibrium solution.

If -2 < (X)?, then u — 0 as t — co. However, if —% > (£)?,u — oo (if by # 0). Note that by > 0 if
f(z) > 0. Other more unusual events can occur if b; = 0. [Essentially, the other possible equilibrium
solutions are unstable.]

Section 2.4

2.4.1 The solution is given by (2.4.19), where the coefficients satisfy (2.4.21) and hence (2.4.23-24).

L 2

L nne s N
L/2 = “ag Sy

(a) Ao =%fLL/21dm= 2, An = %f,f’/zcos"Lﬂdzz 2. Lo

(b) by inspection Ag = 6, A3 = 4, others = 0.

=2(1-cosm) =4/m A= F fOL sin ZZ cos 212 dz

L
(c) Ao = _T2fo sin 22 dz = 2 cos Z£ .
(d) by inspection Ag = —3, others = 0.
2.4.3 Let ' = z — 7. Then the boundary value problem becomes d?¢/dz'? = —\¢ subject to ¢(—m) = ¢(m)
and d¢/dz'(—m) = dé/dz'(w). Thus, the eigenvalues are A = (nw/L)? = n?x?2, since L = m,n =

0,1,2,... with the corresponding eigenfunctions being both sinnrz' /L = sinn(z—n) = (—1)"sinnz =>
sinnz and cosnnz' /L = cosn(z — n) = (—1)" cosnz => cosnz.

Section 2.5

2.5.1 (a) Separation of variables, u(z,y) = h(z)¢(y), implies that %%’-} = —-%dz = —\. Thus d?h/dz? =
—\h subject to A'(0) = 0 and A'(L) = 0. Thus as before, A\ = (nw/L)%,n = 0,1,2,... with h(z) =
cosnmz/L. Furthermore, -d—y% =X = (2F ) ¢ so that
n=0:¢=c + cy, where #(0) =0 yields ¢; =0
n #0: ¢ = c; cosh “F¥ + ¢y sinh 7%, where ¢(0) = 0 yields ¢; = 0.

The result of superposition is

u(z,y) = Aoy+EA cos 2 sin hn—zy.

n=1
The nonhomogeneous boundary condition yields
it ntH nwx
f(z) = AoH + ngl A, sinh s

so that
n7rH

L
AoH = %/ f(z) dz and A, sinh / f(z )cos—-— dz.
0



2.5.1 (c) Separation of variables, u = h(z)@(y), yields %gZh = —%%@ = X. The boundary conditions

#(0) = 0 and #(H) = 0 yield an eigenvalue problem in y, whose solution is A = (nw/H)? with
¢ = sinnmy/H,n = 1,2,3,... The solution of the z-dependent equation is h(z) = cosh n7z/H using
dh/dz(0) = 0. By superposition:

nry

u(z,y) = ZA cosh—sm T

n=1

The nonhomogeneous boundary condition at z = L yields g(y) = Y, An cosh % sin %%, so that
A, is determined by A, cosh 22k = Z fo g(y) sin ZF dy.

2.5.1 (e) Separation of variables, u = ¢(x)h(y), yields the eigenvalues A = (nm/L)? and corresponding
eigenfunctions ¢ = sinnmz/L,n = 1,2,3,... The y-dependent differential equation, Z—Z’é = (%)211,
satisfies h(0) — %(0) = 0. The general solution h = ¢; cosh 2% + cysinh = obeys h(0) = ¢,
while d = '}j’ (c1 sinh 27 + ¢, cosh 272) obeys %(O) = %%, Thus, ¢; = ;% and hence h,(y) =
cosh m + = s1nh Z7L. Superposition yields

u(z,y) = EA hn(y)sinnrz/L,

n=1

where A, is determined from the boundary condition, f(z) = Y r.; Aphn(H)sinnnz/L, and hence
9 L
Aphn(H) = f/ f(z)sinnwrz/L dz .
0

2.5.2 (a) From physical reasoning (or exercise 1.5.8), the total heat flow across the boundary must equal
zero in equilibrium (without sources, i.e. Laplace’s equation). Thus fo ) dz = 0 for a solution.

2.5.3 In order for u to be bounded as 7 — 00,¢; = 0 in (2.5.43) and & = 0 in (2.5.44). Thus,

[o o] oo
u(r,8) = z Apr~" cosnf + Z B,r~"sinnb.

n=0 n=1

(a) The boundary condition yields Ag = In2, A3a=3 = 4, other 4, =0, B, = 0.

(b) The boundary conditions yield (2.5.46) with a~™ replacing a™. Thus, the coefficients are determined
by (2.5.47) with a™ replaced by a™™

2.5.4 By substituting (2.5.47) into (2.5.45) and interchanging the orders of summation and integration

u(r,8) = 71r/ f l Z( ) cosnOcosn0+smn6smn§)]

Noting the trigonometric addition formula and cos z = R,[e**], we obtain

u(r, 8) = % /_ : £@) [—% + Reg) 2)" ei"“’-‘;)] dé.

Summing the geometric series enables the bracketed term to be replaced by

1 1 1 1—Zcos(f—6 1_1r
——+R6—r—.0§—=——+ 20'2( )—= 22 247
2 1— Lei(6-0) 2 1+5-Zcos(@-0) 1+ —2cos(d-80)

a



2.5.5 (a) The eigenvalue problem is d?¢/df? = —\¢ subject to d¢/dd(0) = 0 and ¢(w/2) = 0. It can be
shown that A > 0 so that ¢ = cos /A8 where ¢(r/2) = 0 implies that cosvAr/2 = 0 or VAr/2 =
—m/2 +nm,n = 1,2,3,... The eigenvalues are A = (2n — 1)2. The radially dependent term satisfies
(2.5.40), and hence the boundedness condition at r = 0 yields G(r) = r>»~1. Superposition yields

u(r, 6) E Apr?™=1cos(2n — 1)6.
The nonhomogeneous boundary condition becomes

f(6) = ZA cos(2n —1) or A, = / £(6) cos(2n — 1)8 df.

n=1

2.5.5 (c) The boundary conditions of (2.5.37) must be replaced by ¢(0) = 0 and ¢(n/2) = 0. Thus, L = 7/2,
so that A = (nm/L)? = (2n)? and ¢ = sin %% = sin2nf. The radial part that remains bounded at

r=0is G=rY* =r2n, By superposition,

u(r,0) = Z Apr®™sin2nf .

n=1

To apply the nonhomogeneous boundary condition, we differentiate with respect to r:

ou

e EA (2n)r?"~1 sin2nd .
n=1

Thebc at r =1, f(6) = o2, 2nAd, sin2n6 , determines A,,2nA, = 4 foﬂ/ % £(6) sin 2n6 dé.

2.5.6 (a) The boundary conditions of (2.5.37) must be replaced by ¢(0) = 0 and ¢(m) = 0. Thus L = m,
so that the eigenvalues are A = (nm/L)? = n? and corresponding eigenfunctions ¢ = sinnwd/L =

sinnf,n = 1,2, 3,... The radial part which is bounded at r = 0is G = VX = rn. Thus by superposition

o0
u(r,0) = Z Apr"sinnd .

n=1
The bc at 7 = a, g(6) = > oo ; Ana™sinnb, determines An, Apa™ = 2 fo g(8) sinnf db.
2.5.7 (b) The boundary conditions of (2.5.37) must be replaced by ¢'(0) = 0 and ¢'(w/3) = 0. This will

yield a cosine series with L = /3, A = (nw/L)? = (3n)? and ¢ = cosnwd/L = cos3nf,n =0,1,2,....
The radial part which is bounded at r =0is G = rVX = 37 Thus by superposition

u(r,0) = Z Apr3™cos3nd .
n=0
The boundary condition at r =a, g(8) = Yoo, Ana®" cos 3nf, determines An: Ag = 2 [ /3 9(6) df

and (n # 0)A,a® = £ [7/% g(6) cos 3n6 do.

2.5.8 (a) There is a full Fourier series in . It is easier (but equivalent) to choose radial solutions that sétisfy
the corresponding homogeneous boundary condition. Instead of " and r~" (1 and In r for n = 0), we
choose ¢ (r) such that ¢;(a) = 0 and ¢2(r) such that ¢o(b) =0:

_ r/a) n=0 _ [ In(r/b) n=0
a0 ={ G er nz0 #0-{ H ey 150

a T



2.5.9

2.5.9

Then by superposition

0) =Y cosnB[Angs(r) + Bnga(r)] + D sinnb[Créi(r) + Dnda(r)].

n=0 n=1

The boundary conditions at 7 = a and r = b,

£(8) =" cosnf [Ang1(a) + Bnga(a)] + ) sinnf [Cngs(a) + Dréa(a)]

n=0 n=1

= E cosné [An¢1 (b) + Bpo2 (b)] + Z sin nf [Cn¢1 (b) + Dnoo (b)]

n=0 n=1

easily determine Ay, By, Cy, Dy, since ¢;1(a) = 0 and ¢2(b) = 0: Dy2(a) = & f f(8)sinnb db, etc.

(a) The boundary conditions of (2.5.37) must be replaced by ¢(0) = 0 and ¢(7/2) = 0. This is a
sine series with L = 7/2 so that A = (nw/L)? = (2n)? and the eigenfunctions are ¢ = sinnn/L =
sin2nd,n = 1,2,3,.... The radial part which is zero at 7 = a is G = (r/a)?" — (a/r)?". Thus by

superposition,
o0 n
u(r,0) = ZA" [(2)2 - (g)zn] sin 2n6.
n=1

The nonhomogeneous boundary condition, f(6) = > p.; An [(%)% - (%)'m] sin 2n6, determines A,
4 (&) - ()] = £ 5" £®)sin2m0 as.

(b) The two homogeneous boundary conditions are in r, and hence ¢(r) must be an eigenvalue problem.

By separation of variables, u = ¢(r)G(6),d*G/d§? = A\G and rz%?+r +A¢ = 0. The radial equation
is equidimensional (see p.78) and solutions are in the form ¢ = rP. Thus p?> = —X (with A > 0) so
that p = +ivX. rEiVA = e*iVAlnr Thyg real solutions are cos(v/X Inr) and sin(v/Xlnr). It is more
convenient to use independent solutions which simplify at 7 = a, cos|v/XIn(r/a)] and sin[vXIn(r/a)].
Thus the general solution is

¢ = ¢ cos[V A In(r/a)] + ¢z sin[VAIn(r/a)].
The homogeneous condition ¢(a) = 0 yields 0 = ¢;, while ¢(b) = 0 implies sin[vXIn(r/a)] = 0 . Thus
VXIn(b/a) = nm, n = 1,2,3,... and the corresponding eigenfunctions are ¢ = sin [mrhr:(,'; = ] The
solution of the 8 -equation satisfying G(0) = 0 is G = sinh v\ = sinh —’(‘%0—5 Thus by superposition

= o nm6 o | In(r/a)
w= D Ansinh o7y { (b/a)]

The nonhomogeneous boundary condition,

i In(r/a)
ftn= z“ e = [y |

will determine A,. One method (for another, see exercise 5.3.9) is to let z = In(r/a)/In(b/a). Then
a<r <b,lets 0 <z < 1. This is a sine series in z (with L = 1) and hence

Ap smh21 (b/ ) / f(r)sin [nﬂ' Eb;a;] dz.

But dz = dr/rin(b/a). Thus

m° In(r/a)
Ap smh21 W) ln(b/a)/ fr)sn[ (b/a)] dr/r.




Chapter 3. Fourier Series

Section 3.2

322 (a) z ~ ap+ Yoo ancosnaz/L + Y o2 bysinnrz/L. From (3.2.2), ap = 0 since f(z) is odd,

(n # 0)a, = 0 since f(z) is odd, and b, = %f_LLa:sinmra:/L dz = 2L (—1)n+t,
3.2.2 (c) sinmz/L~ag+ Y oo, ancosnmz/L+ Y . bysinnmz/L. By inspection, by = 1, all others = 0.
3.2.2 (f) From (3.2.2),

@ = 3 [Fdr=1/2
(n#0) an = %[, cosnnz/L de=
by = L [Fsinnmz/Lde=Zkcospz| = lmcosnm
Thus b, = 2/nm, n odd, but b, = 0, n even.
L2 _2 L/2
3.3.2 (d) From (3.3.6), B, = £ [,/ “sinnnz/L dz = ;;cosmrz/L‘O 2 (1-cosZT).

2 —-z<0 (orz>0)

e® —z>0 (orz<0). Thus.

3.3.10 f(-z) = {

2 T
fe(z) = 3[f(@) + f(-2)] = 3 :2 :ee—w i §8

2—e* <0

fo(z) = 5f(@) = F(=aN =31 2o _.2 250

€ — T

3313 b, =2 fOL f(z)sinnmz/L dz, given that f(z) is even around L/2. Note (perhaps by graphing) that
sinnmz/L is odd around L/2 for n even. Thus f(z)sinnnz/L is odd around L/2 for n even, and hence
b, = 0 for n even.

Section 3.4
3.4.1 (a) f: =f:—+fcb+. Thus

o—
/ u— dr = wv
a

3.4.3 (a) We want to determine the sine coefficients of df /dz: % = Yoo bnsin 22 where the cosine
coefficients of f are given

c—
b b

b du b du
+uv| -— v— dr = w| +uv| -— v— dz.
a

dz dx

a

c+
ct+

= Zancos— (n#0) ap, = /fos—da:

n=0

Here by integration by parts

_ df 2 nwL |To—
bn— - dx—L[fsmTO

/), a° in 7 fsm—

s / fc os— da:]

Thus b, = £ sin 2522 (a — B) — ZZap,.



349 % =% (22)bycos 222 since u(0) = 0 and u(L) = 0. W ~ = (%22 by, sin 222 Thus from
p. 119, 3700 | %agip nre g3 (ZE ) by sin 2#2 +q. Thus ﬂ"ﬁ+k( 21" b, = £ fo gsin 2% dz.

3.4.12 The eigenfunctions of the related homogeneous problem are cosnmz/L,n = 0,1,2,.... Thus u ~
Yoo o An(t) cosnrz/L, which can be differentiated (if u is continuous) since it is a cosine series:
Oufdz ~ 32> Ap(—nm/L)sin 22, This can be differentiated again (if du/dz is continuous) only
because du/0z(0) = 0 and Gu/dz(L) = 0: 8*u/0z% ~ = o2 ) An(nw/L)? cosnmz/L. Thus from p.
119

n=0

= [dA, nm 2 nwT —¢t . —op 3mzT
;[dt +k(T) An]cosT=e +e cosT

The right hand side is a simple cosine series (with only two non-zero terms). Thus
-t
9 e n=0
%M(%”) An={ e n=3
0 otherwise .

The initial conditions are 4o(0) = ¢ fOL f(z) dz and (n #0) An(0) = £ [, f L f(z) cos 2z 222 dg. The
solution of the differential equations are

n#0,3 Au(t) = Ay(0)e Fnm/L)%
Ao(t) = Ap(0)+1—et, obtained by integration
—2 —k(nm/L)2%t
As(t) = Ag(0)eklnm/L)*t 4 e oem T T I

obtained by using the method of undetermined coefficients (judicious guessing) for the particular
solution. This works if e~2¢ is not a homogeneous solution, i.e., —2 # —k(3w/L)2.

Section 3.5

3.5.4 (a) Using 3.4.13 with f(z) = coshz(f(0) =1, f(L) = cosh L),
sinhz ~ f(coshL — 1) + Y02, [2%bn + 2((—1)" cosh L — 1)] cos 272 Since this is a cosine series, it
may be differentiated

oo
nm\2 2nw n . nwT
coshz ~ — 1; [(T) bn + Iz ((-1)"cosh L — 1)] sin ——.
Thus by = = (%) ba = 2 [(-1)" cosh L — 1] or by = 15t

3.5.4 (b) Integrating yields sinhz = Ao + Y po; — b, cosnmz/L, where Ay = + fOL sinhz dz =
+(cosh L — 1). Integrating again yields coshz — 1 = Aoz + >, ; — (%)2 b, sinnmz/L. Thus

00 L 2
> b |1+ (—) sinnre/L =1+ Aog.
el nmw

Using (3.3.8) and (3.3.12) b, [1 + (nL—")z] =2 [1—(-1)" + £(cosh L — 1)2£(-1)"+1 or

2 1-(=1)"coshL
s E)

3.5.7 Evaluate (3.5.6) at z = L/2:

L? L* 412 1 1 1 1 1 L?/8 3
( —3—3+§— ) Orl——+§—%=4L2/ﬂ_3="r/32'

8 4



Section 3.6
3.6.1 The complex Fourier coefficient is defined by (3.6.7):

1 L . /L 1 zo+A . /L
c":ﬂ/_Lf(z)e d$=m e e de .

Thus a
T
= ___]_'____ L inwz /L ° — 1 eimrzo/L(eimrA/L _ 1) .
"7 2LAinm . 2inw A
Equivalently, .
— inm(zo+A/2)/L(intAJ2L _ —inwA /2L
= i AC (e € ) or
1 .
Cn = M—Ae""'(“"‘Aﬂ)M sin(nm/2L) .
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Chapter 4. Vibrating Strings and Membranes

Section 4.4
4.4.1 (a) Natural frequencies are cv/), but A = (nw/L)?. Thus frequencies are nwe/L,n =1,2,3, ...

4.4.1 (b) Natural frequencies are cv/A. The boundary condition ¢(0) = 0 implies ¢ = ¢; sin v/ Az, while
d¢/dz(H) = 0 yields VXH = (m — )7 with m = 1,2,3. Thus the frequencies are (m — 3)wc/H and
the eigenfunctions are sin(m — 1)rz/H.

4.4.2 (c) By separation of variables, u = ¢(z)h(t), ‘(’:th = —Ah and To%‘g + (@ + Apo)¢ = 0. With ¢(0) =0
and ¢(L) = 0, (a + Apo)/To = (nw/L)2,n =1,2,3,... and ¢ = sinnmz/L. In general h(t) involves a
linear combination of sinv/At and cosv/At, but the homogeneous initial condition u(z,0) = 0 implies
there are no cosines. Thus by superposition

oo
u(z,t) = Z Apsiny/Aptsinnrz/L,
n=1

where the frequencies of vibration are /A, = ,/ﬁ"—"ﬁpzuﬂf—a. The other initial condition, f(z) =
Yoo AnVAnsinnnz/L, determines A,

9 L
ApvV o = f/ f(z)sinnrz/L dz.
0

4.4.3 (b) By separation of variables, u = ¢(z)h(t), %ﬂ—h' = %:i = —\. The boundary conditions ¢(0) =0

and ¢(L) = 0 yield A = (nw/L)? with ¢ = sinnwz/L, n = 1,2,3,.... The time-dependent equation
has constant coefficients,
2
poh" + Bh' + (%) Toh =0,

and hence can be solved by substitution h = e™. This yields the quadratic equation
nr 2
p01‘2 + Br + (—1-,?) To =0,

whose roots are

_ =B+ /B — 4poTo(nn/L)
2p0 '
Since 82 < 4poTo(m/L)?, the discriminant is < 0 for all n:

r

B . To (nm\2 2
T 20 + 1wy, where wy, % ( I ) 4p(2,

Real solutions are h = e~5t/2P0 (sin wy,t, coswyt). Thus by superposition
S nne
u = e Bt/2p0 Z (an cos wpt + by, sin wy,t) sin A

n=1
The initial condition u(z,0) = f(z) determines an, a, = 2 fOL f(z) sin 272 dz, while g—‘t‘(m, 0) =g(z) is
oo

a little more complicated, g(z) = 3 o ; bnwn sin i L Z a, sin "Lﬂ, and thus

n= 2po
n=1

f(=)

L
bow, = _[3_a,_,_ + 2—/ g(z) sin nre dz.
Po 0 L

11



Chapter 5. Sturm-Liouville Eigenvalue Problems

Section 5.3
5.3.1 By separation of variables, u = ¢(z)h(t),
1d%h 1 d2¢
R e [T o] =
Thus,
d2h d*¢
P —Mh & dT0d2+a¢+)\p0¢=0.

For the time-dependent equation (if A > 0), h = ¢; cos VAt + ¢z sinv/At. The spatial equation is in
Sturm-Liouville form: p = Tp constant, ¢ = a(z),0 = po(z).

5.3.3 Hd*¢/dz* = %(qub/dx)—dH/dx d¢/dz. Thus %(Hdd)/dm)+d¢/dx(Ha—dH/dx)+()\B+7)H¢ =0.
To be in standard Sturm-Liouville form,

%:aHorH:clexp [/ a(t) dt], let ¢; = 1.

Then p(z) = H, q(z) =vH, and o(z) = H.
5.3.4 (b) By separation of variables, u = ¢(z)h(t), 1% =1 (k%‘g - vo%‘g) = —\. The boundary value
problem is kj—@ —vpde = +Ap=0. ¢ =€’ implies kr? —wvor+A=0or

_ ’Uo:f:\/vg-—‘l)\k _ 'l)o:i:i\/‘l/\k—’l)g
2k - '

"= 2%k

To satisfy the boundary conditions ¢(0) = 0 and ¢(L) =

42k — vg

= e % gin ——
2% and ¢(z) =e sin = L

Thus, by superposition,
- 3 A Ant
u=nz=:1Anef£' sm L nt —efg"’ZA smTe nt,
The initial value problem can be solved

f(z) = et® Z Ay sin mlrlz

/ f(z sm— dz.

5.3.9 (c) Since it is equidimensional, ¢ = ", which implies 7(r—1)+r+A = 0orr? = —\. If A > 0,7 = iV},
where 7YX = ¢£iVAInz  Thyg the general solution is ¢ = c; cos (\/:\- In w) + co sin (\/X In a:) The
boundary condition ¢(1) = 0 implies ¢; = 0, and hence ¢(b) = 0 yields sin (\/_ In b) =0or vAlnb=

nm, n =1,2,.... Thus A = (nm/Inb)%. If A = O the differential equation becomes £ (zd¢/dz) = O
Thus, the general solution is ¢ = ¢; + ¢z Inz. The condition ¢(1) = 0 yields ¢; = 0, and then ¢(b) =
implies c2 = 0. Thus A = 0 is not an eigenvalue.

so that

2 7r2
Note that A = 3¢ + &k (22)".

12



Section 5.4

5.4.2

5.4.3

5.4.6

The eigenfunctions satisfy (5.4.6) with the boundary conditions being d¢/dz(0) = 0 and d¢/dz(L) = 0.
From the Rayleigh quotient (5.4.16) A > 0. Also A = 0 only if d¢/dz = 0 for all z. The boundary
conditions imply A = 0 is an eigenvalue with ¢ = constant = 1 the corresponding eigenfunction. Thus
by superposition using (5.4.5)

U= Z an¢n(x)e_)"‘t(with A1=0,¢1 =1).

n=1
The initial conditions,
[o¢]
f@) = Zan¢n($) )
n=1
yield
L
@ = fo foncp dz
n= T
Jo d2cp dz
since the eigenfunctions are orthogonal with weight cp. As t — oo,
L
d
u—=a = Jo Lf dhad
Iy cp dz

a weighted average of the initial temperature distribution. This can also be shown using conservation
of total thermal energy. Since the ends are insulated, the final thermal energy (¢ — oo) equals the
initial thermal energy (¢ = 0).

From (5.2.11) the eigenfunctions, denoted ¢y, (r), are orthogonal with weight r. The time-dependent
part satisfies (5.2.10), and hence h(t) = e~*¥*. By superposition

oo
u= Z Andn (r)e  FE,
n=1

The initial condition,
o0
fr) = Z andn(r) ,
n=1

determines a,,

o Jo 1@)9nlr)r dr
T [ Rmrdr

By separation of variables, u = ¢(z)h(z),
To%g;- Apop = 0
Zh+Xh = 0.

The boundary conditions are of the Sturm-Liouville type, and therefore the eigenfunctions denoted
¢n(x) are orthogonal with weight po(z). We call the eigenvalues A,,. Then the time-dependent problem
has solutions cosv/A,t and sin /At . Initially at rest means 8u/dt(zx,0) = 0, so that only cosines are
needed. Thus by superposition

o0
u= Z Apdn(z) cos v/ Ant.
n=1
The initial position yields

f(x) = ZAn¢n(w) )

13



determining A,
Jy £(@)¢n(2)po(2) dz

Jy #2p0 do

An =

Section 5.5
5.5.1 (g) To be self-adjoint (if p is constant),

w( ) w2 (L) = w2 0) - w((0) 22 0).

The derivatives at £ = L may be eliminated from the boundary conditions. After some algebra, we
obtain

dv du dv du
(08 - 51) [uO T 0) ~ v 0)] = w0 T ) - vOF(O).
Thus, it is self-adjoint only if ad — By = 1.
5.5.9 Multiply the differential equation by ¢ and integrate:

/¢ dx+,\/ e®¢? dz = 0.

Note that
pd0_d ( d3_¢) dgpdy _ d @z) _4 (@ﬁ) N (ﬁ)2
det ~ dz \" da3 dz dz® ~ dz \ dz? dz \ dz dz? de? )
Thus ¢E‘§ Wg +f0 (43 ) dz 4+ X [} = ¢? do = 0.

From the boundary condltlons, the boundary contributions vanish. Thus
-1y (£8) as
f e¢? dr

so that A < 0.

Section 5.6
5.6.1 (c) From (5.6.6) using p =1,q = 0,0 = 1 and using the boundary conditions,

1)+fo (%T') z.

A1 S
fo uf dz
Any trial function should satisfy the boundary conditions (and be continuous with no zeroes). Ge-
ometrically, a simple example is a parabola (ur(0) = 0,ur(l) = 1,dur/dz(l) = -1, from the

boundary conditions. To obtain this parabola, we substitute uz = ax + bz? into the condition at
z=1:a+2b+a+b =0, asimple choice being a = 3,b = —2 so that ur = 3z — 222 and
ur/dr = 3 — 4z. Thus,

1

3
14340 do _ -5 G- 1-g(-1-21) _40/12 _ 1
e fol (3z — 222)° dz fol (922 — 1223 + 4a%) dz ~ 3-3+5F 4/ 6

14



Section 5.7
5.7.1 ¢® = Tp/p. In this example 1 < ¢2 < 1+ o2 . Thus from the bottom of page 197 with L =1

<M <72 (1+a?) or < VA7 <7Vl + el

The circular frequency (cycles per 2m units of time) is v/, but the actual frequency is v\/2r (cycles
per 1 unit of time):

VA 1

o

<

1
=< = 2,
5 S S35 1+

Section 5.8

5.8.2 (c) By extension of Fig. 5.8.2 (a), 0 < vV A{L < Zr <AL < 3’5"—, 2 < V3L < ST", etc. In general
(n =11 < VAL < (n— %) m. The eigenfunction sin v/Ar is graphed as a function of vz. The
endpoint = L occurs at /AL . For the first eigenfunction this occurs before 7/2; the eigenfunction
has no zeroes for 0 < z < L. For the second eigenfunction, the end occurs before 37/2 and after ;
the eigenfunction has one zero at /A3z = 7. Etc.. In general, the nth eigenfunction has n — 1 zeroes.

x=L (n=1) x=L (n=2)
|

! simAx

> VX x

3

|
|
I
|
|
I
|
|
|
|
|
|
|
|
!
|
|
|
|
|

!
|
|
|
!
|
|
|
|
|
I
|
|
|
|
|
|
|
I
|

5.8.3 (b) If A >0, then ¢ = c; cos VAT + ¢z sin VAz. dgp/dz(0) = 0 implies ¢y = 0. The boundary condition
at ¢ = L yields —vAsin VAL + hcosv/AL = 0, or tan VAL = h/v/X = hL/v/AL. Thus, the straight
line in Fig. 5.8.1 must be replaced by the hyperbola (z = ¢/x’, where ¢ = hL and ' = \/XL) Finally,
0 < VML < %7 <AL < 3x..... In general, (n — 1) < /ML < (n-3Hm n=123...
Asymptotically for large n, AL ~ (n — 1)m. '
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2 2 "
5.8.7 (a) [y (ug—xi’- - v%ﬁ-) dr =ug —v¥| =2 [22(0)%(r) — 2(0)%(r)] .

5.8.7 (b) If A > 0, then ¢(0) = 0 implies ¢ = sin v/Az. The other condition yields sin v = 2v/X = 2/ /.
From a graphical solution, there is only one solution since the slope 2/7 of the straight line is less than
1, the slope at the origin of the sinusoidal function. In fact, we note that A = 1 /4 (although this is not
important).

5.8.7 (c) If A =—s <0, then ¢(0) = 0 implies ¢ = sinh /5z. The other condition yields sinh \/sm = 2,/5 =
2y/sm/m. There are no solutions (by graphing the sinh function and the straight line) since the slope
2/m of the straight line is less than 1, the slope at the origin of the hyperbolic function.

5.8.7 (d) If A =0, then ¢(0) = 0 implies ¢ = z. The other condition yields m = 2, and hence A = 0 is not
an eigenvalue. :

5.8.7 (e) Since the boundary conditions for this eigenvalue problem are not of the form (5.3.2), this is not a
regular Sturm-Liouville problem. Thus, there may be complex eigenvalues (with a non-zero imaginary
part), not obtained in parts (b) - (d).

5.8.8 (c) IfA > 0,6 = ¢, cos vV Az +cysin vz, so that dédz = v/ X(—c, sin v Xz +c; cos Vz). The condition
at = 0, yields ¢; = c2v/\, so that the eigenfunction is any multiple of ¢ = sin v Az + v/ cos v/ )\z.
The boundary condition at £ = 1 then yields tan vX = 2v/}/ (A —1). This is graphed using Fig. 5.8.1
with the straight line replaced by z = zz—?f_l—lj-, where =’ = v/X. Note the singularity at v\ =1 < /2.

Thus v/Ap ~ (n—1)x.

2 T 3n/2
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5.8.10 (a) h=1,L =1 and thus, from (5.8.15), tan VX = —V/A with 7/2 < /A1 < 7 from (5.8.19). Using a
PC, tan(2.03) = —2.022419 and tan(2.02) = —2.074373. Thus v/2; ~ 2.03 or \; ~ 4.12.

5.8.10 (b) h=1,L =1 and thus, from (5.8.15), tan v/A; = —v/A; with 7/2 < /A1 < 7 from (5.8.19). Using
Newton’s method (letting z = v/X;) with f(z) = z + tanz , yields

o = — f(zn) _ ~ zp+tanzn
T T i)t 1+secz,

In this manner, we obtain v/A; = limp_,c0 Tn, = 2.028758... or A\; = 4.11586...
5.8.13 fOL sin? Vz dz = %fOL(l—cos 2vAz)dz = L - %‘:‘- =L %W But tan VAL = —v/X/h.
. _ — X2 _ 1 L .o _L 1
Therefore, sin VAL = 7;%7?; and cos VAL = WEoh Thus f;” sin Vz dz = 5 + IO

Section 5.9
5.9.1 (b) To satisfy ¢(0) = 0, we use (5.9.9) and hence d¢/dz =~ (ap)~/*(Ao/p)'/2 cos (\}/2 [ (o /p)!/? dxo).

Thus L
/\1/2/ (o/p)*? dzo ~ (n + %) .
0

5.9.3 (a)
¢ = (A'+ AiXY201/?)exp].. ]

¢" [A" +iAY/2 (24'01/2 + L0~ 1/26" A) — Ao A] exp].. ]
By substituting into the differential equation, we obtain A" = iX!/2 (24'0'/2 + 571/20'A) + qA = 0.
5.9.3 (e) Let A =Yoo A A2 Thus A}, 02 + 10720'Apyy = & (AL + gAs) or & (61/*An4) =

ig71/% (A" + qAy). By integrating, Any1 = 2071/4 [ 0~/4 (Al + qAn) dzo.

Section 5.10
5.10.2 (b) From (3.5.5) or (3.3.21-23),z = £ - 44 3> 1 cosnrz/L (odd only). From (5.10.14) witho =1

for a cosine series
L 0 L
/ fPdz = Zaﬁ/ cos’ nmz /L dz.
0 0

n=0
With f = z,a0 = L/2, (n 0dd) an = 5%, (n even) a, = 0, we obtain (dividing by L?)
4
1=14%% Zl(oddonly)orZ=1+L+L+4+...
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Chapter 6. Numerical Methods

Section 6.2
6.2.6 We use (6.2.13):

u ﬂ(@) _ O u(z+Az,y) —u(z - Az,y)
ozdy ~ Oy 0z’ Oy 2Azx

1
T 2Ay 2A$[u($ + Az,y + Ay) —u(z — Az,y + Ay) —u(z + Az,y — Ay) + u(z — Az,y — Ay)].

Section 6.3
6.3.4 (a) Att=0,u!” = f(z;) = f;. Thus, from (6.3.24)

Z Bn sm

since z; = jAz and Az = L/N. We multiply by sinlnﬁ”i and sum from j = 1 to j = N — 1 (analogous
to integrating over z):

Z Br sin w

Z fi sin =2 J Z Br Z sin 2 gin "Nﬂ

=1 j=1

The discrete eigenfunctions are orthogonal (see exercise 6.3.3), and hence the inner summation is
nonzero only for n = m. Thus

Z fi sin 270 _ = Bm Z sin? —= m ]
j=1

6.3.4 (b) Using the double angle formula E i1 s1n2Ml 5 Z (l—sinm—N"i). However

N-1 2mna N

2m7r Z 2mnj et IF" — iR
1 — Z—N—
Jj=1 Jj=1

since €2™" = 1, where the sum of a finite geometric series has been used. Thus,

= mm
sin? —= ‘7 (N -1).
Jj=1
6.3.6 (d) From the top of page 238, the scheme is stable if and only if
1 _ L B
s< e For n = 10, from a calculator or pc s < {— gz = 0.5125....

6.3.9 (a) Using the centered difference, f; = (KIEF(W —2u; +up) and fo = ZA_lmF(”3 — 2uy + u;), where
Az = % From the boundary conditions uy = ug = 0.

6.3.9 (b) From part (a), AW = 7WhereA—z—A75[ -2 1_2]

18



6.3.10 (a) As on page 240, we let ugm) be the probability that a particle is located at point j at time mAt.

(m-1) (m— 1)+b (m—l)

j—1  Tau;

Thus u( m) =au;

6.3.10 (b) Using the Taylor series of a function of two variables,

(m-1) _ , (m) Ou 2

umm - (M) Ou (Az)? 8 — 2 3
u;ly = — At— 5 Ax % “ 4 7 922 +O[(At) AzAt, (Az)°]
w{mD = ym) du , (Bo)? 8%u 2 3
u{T = ~ At + Az 81: =50 +Ol(A1)?, AzAt, (Ac)?]
Thus,
u{™ = (2a+b)u{™ — (2a+ b)At +a(A:v) g > + O[(At)?, AzAt, (Az)?].
From 2a + b = 1, we obtain % = T“’g—; since lim,, .o and atso %ﬁ = %

6.3.14 (c) The eigenvalues are determined from (6.3.50):

1-X 2 -3
2 4-) -6
0 1/3 2-2A

==X +A2(1+6)+A(=6—-10+4) = -A(A2 = 7TA+12) = =A(A —4)(A - 3).

Thus, A = 0,3,4. According to the Gershgorin circle theorem, every eigenvalue lies in the region

composed of the interiors of 3 circles:

=(1-N[E-N2-N+2-42-)) -

1
[A-1| <5,|A—4| <8, and 1,\—2|5§,

from (6.3.62). In this case all three eigenvalues lie in the first two circles, but none lie in the third
circle.

Section 6.4
6.4.1 Here we do not assume Az = Ay. From (6.2.16)

+1
W =l o o o -l ),
At (A )? (Ay)2
We substitute (6.4.2) and obtain
Q -1 5 eiaA:c -2+ e—iaA:c ei,BAy -2+ e—iﬁAy
e v V-V

Thus, Q =1+ 2kAt[C°s((‘Xi§2) =L C”%ﬁ‘;)y,)_l]. To be stable —1 < Q < 1. Since cos(aAz)> —1 and
cos(BAy) > —1, we are guaranteed stability if 4kAt[ZA_le + ZA_IyTI] < 2, which yields the desired result.
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Section 6.5
(m+1) _ ,,(m) 2™y (m)
6.5.5 (a) The partial difference equation is 4—x;—— +¢ ’+2Az’ L = 0 using (6.2.13).

6.5.5 (b) We substitute (6.5.6) into the results of part (a) and obtain
%—tl + €225 =T — 0, Thus Q = 1 — c&tisin(aAx). Stability is determined by |Q| . Since

2Az Az
|Q| V1402 > 1, where 0 = cA—sm(an), this scheme is unstable.
. c 1 L umtD g mD u{T) —ul) s
6.5.6 Using (6.2.13), therallrtlal dlff(il*ence .eguatlon is —L—gxy? + e sa—— = 0. By substituting
(6.5.6), we obtain x2 + c&———¢ "~ = 0. This is equivalent to Q@ — & + 2ic = 0, where ¢ =

cRisin(aAx). Thus Q2+2i0Q—1=00r Q = —io+v1—02. Ifo? < 1, then @ =ve2+1-02=1.
The numerical scheme is stable if 02 < 1. This (stability of the numerical scheme) is guaranteed if
c%ﬁ < 1 since lsin(an)| < 1. However, if 02 > 1, then Q = i(—0 + V02 —1). In this case, the
scheme is unstable since |Q| > |a| for one root and |a| > lin this case.
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Chapter 7. Higher Dimensional PDES

Section 7.3

7.3.1

7.3.1

7.3.2

(a) The result of product solutions u(z,y,t) = ¢(z,y)h(t) is dh/dt = —Akh and VZ¢ = —/\¢, which
is further separated ¢(z,y) = f(z)g(y) : Z—ié = —uf with £(0) = f(L) = 0 yielding p = ("”) f =
sin 22, n = 1,2,... and Z—:'Z- = —(A\ — pu)g with g(0) = g(H) = 0 yielding A — p = (%) g =
sin 5%, m = 1,2,...Thus A %)2 + (%)2@ = sin Esin B n = 1,2,...,m = 1,2,... By

superposition
00 00 mry
= Z Z Anm s1n sin —=e " Anmkt,
H

n=1m=1

The initial condition implies
m7ry
f= Z Z Anm s1n —_ sm
H
n=1m=1

yielding (by two-dimensional orthogonality)

4 H L nrz | mrm
anm=m-/0 /0 fsstm Hy dz dy.

As t — 0o, u — 0 (the only equilibrium temperature if v = 0 along the entire boundary).

(c) The result of product solutions u(z,y,t) = ¢(z,y)h(t) is dh/dt = —A\kh and V?2¢ = —\¢, which

is further separated ¢(z,y) = f(z)g(y):

£f = _uf with f'(0) = f/(L) = 0 yielding p = (“T”)2,f = cos 22,1 = 0,1,2,..and T% = —(A —
p)g with g(0) = g(H) = 0 yielding A — p = (B¢ H”) ,g =sin ¥ m = 1,2,...Thus Apm = (EL—)

(—'—”—’5)2 ¢ = cos 2 sin B2 n = 0,1,2,...,m = 1,2,... By superposition

H
o 00 mry
— —)\n kt
= E E Anm cos T in Y i mit
n=0m=1

The initial condition implies

f= Z E Anm cos sin mey’

n=0m=1

yielding (by two-dimensional orthogonality)
ST [ f cos BIZ sin MU gy dy

H L . 2 mm iLH n=0"
Jo o C052%Sm2m_Hudwdy={ %LH n#0

Anm =

Ast — 00, u — 0 (the only equilibrium temperature if u = 0 along the entire boundary).

(b) The result of product solutions u(z,y, z,t) = ¢(z,y, 2)h(t) is dh/dt = —Akh and VZ¢ = —)\g,

which is further separated ¢(z,y) = f(z)g9(y)Q(2):

ﬁ@ = —pf with f'(0) = f'(L) = O yielding p = (2% )2 f=cosZ n=0, 1,2,...3—;& = —vg with g'(0) =
g'(L) = 0 yielding v = (T”) ,g=cos ¥ m =0,1,2,. E? =—(A—p—v)Q with Q'(0) = Q'(W) =

0 yielding A —p—v = (‘W")2 ,Q = cosl”Wz,Z =0,1,2,...Thus A\pme = (-’-‘Lﬂ)2 + (-'-"H—")2 + (%,Vl")2 ¢ =

cosn—z-’ﬁcos—Hu,cosl‘fV’,n =0,1,2,...,m=0,1,2,...,£=0,1,2,...

By superposition

oo o0 o0
T mTY Zﬂ' ~Anmekt
= Z Z E Anme cos —— COos e CoS — W nmt
n=0 m=0 {=0
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The initial condition implies
N o = mm Irz
f= Z Z Zanmgcos—cos——}—[—qcosw
n=0m=0 £=0
yielding (by three-dimensional orthogonality)

fo fo fo f cos 272 cos = cos ”Wz dz dy dz
fo fo fo f cos? 2IZ cos? XY cos? £IZ dx dy dz

Anme =

The normalization integrals in the denominator are easy, but one must distinguish between n = 0 and
n # 0 (and similarly with m and £). As t — 0o (Agoo = 0, all others > 0)

1 W ,H L
u(z,Y,2,t) = agoo = m/ / / f dz dy dz,
o Jo Jo

the average of the initial temperature distribution since all sides are insulated and thus all the initial
energy must be in this mode.

7.3.4 (b) The eigenvalue problems both yield cosine series. Thus, by superposition
nrT m7ry
A — t
u(z,y,t) = Z_:o;_% nm €08 —— €08~z rm (£) -

However, the solution of (7.3.17) satisfying h(0) = 0 is

_ t n=0,m=0
ham (£) = { sinwpmt otherwise,

where w2, = ¢? [(nm/L)? + (mm/H)?]. To satisfy the other initial condition,

f= Z Z Anm COS mIZ[ry h(rlm (0)’

m=0n=0

and thus by orthogonality (2-dimensional)

S £ cos B2 cos MU dgs dy
fo fo cos? % cos? TFE dx dy

We note that A, (0) = 1 for n = 0,m = 0, but otherwise h/,,,,(0) = wnm.

Anmhinm (0) =

7.3.6 (b) By separating the z-variable, u(z,y, 2) = ¢(z,y)h(2), Eﬂ' = Ah and V2%¢ = —\¢. From Section
7.3, ¢ = 0 on the boundaries implies that )\nm = (nmw/L)? + (m7r/ W)? with the eigenfunctions being
¢nm = sinnmz/Lsinmry/W,n = 1,2,3,...,m = 1,2,3,.... Since dh/dz(0) = 0, it follows that
h(z) = coshv/Apmz. Thus by superposition

Z Z Apm sm —_ sm

n=1m=1

The nonhomogeneous boundary condition,

f= E E Anm cosh /A H sin 2 sin Wy

n=1m=1

cosh vV Anm?Z.

determines A,m

A h /o SV f sin B2 sin MY gy dy
nm €0sh \/Anm H = .
fo fo sin® 222 sin? 7Y dp dy = LY
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7.3.7 (c) A solution only exists if fOH fOW f(y,2) dy dz = 0, the condition for an equilibrium. By separation
of variables

u(z,y,2) = Z z Apm c0s 22 cos T Z cosh Bamz,
n=0m=0

where 82, = (nm/W)? + (mn/H)?. The nonhomogeneous boundary condition,

oo 00
i nw mnz
f - 7;) n;) A‘nmﬂnm sinh BnmL Cos Wy CcOoSs _H ,
determines Anp,
Mﬂ cos Lz m7rz d d
AnmBrm sinh Bp L = fO fo f cos y dz

2 nw 2 mnz
fo fo cos —lW cos? MIZ dy dz

Since Bgo = 0, we note that if fOH fOW f dy dz # 0, there are no solutions. However, if fOH fOW fdydz=
0, then Agp is arbitrary and the other coefficients uniquely determined.

7.3.7 (d) See the solution to 7.3.7(c). Instead the nonhomogeneous condition
9(y, 2) 'n,;() mZ:O Anm cos 2¥ cos T % cosh BnmL,

always determines Ay, (without difficulty)

H W
Is Jo gcos B cos BEE dy dz
H W :
Iy Jo cos? Zi¥ cos? BEZ dy dz

Apm cosh B L =

Section 7.4

7.4.1 (a) Equation (7.3.15) with f'(0) = f'(L) = 0 yields u = (mn/L)? with f(z) = cosmnz/L,m =
0,1,2,.... Equation (7.3.16) with g(0) = g(H) = 0 yields A — p = (nw/H)? with g(y) = sinnny/H,n =
.. Thus Apym = (nw/H)? + (mm/L)?, wheren = 1,2,3,... and m = 0,1,2,....

Section 7.7
7.7.1 The product solutions are represented in (7.7.45). The initial condition u(r,§,0) = 0 implies that all

terms with cos ¢v/Anmt vanish. The other initial condition du/8t(r,8,0) = a(r) sin 36 implies that only
m = 3 is needed (and in fact only the sin 36 terms). Thus, by superposition,

oo
u(r,0,t) = Z A Js ( Asnr) sin 36 sin ¢/ Asnt.
n=1
From the initial condition (cancelling the sin 30 term)
oo
a(r) = Z Ancv/AznJ3 (\//\3,,1') .
n=1

Using the orthogonality of Js (vAsnr) with weight r:

Ancv/Asn = /Oa a(r)Js (x/Er) rdr //Oa J? (\/Er) rdr.
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7.7.2 (d) The boundary condition in (7.7.35) should be f'(a) = 0. From the Rayleigh quotient (7.6.5),
A > 0 with A = 0 only if ¢(r,0) is constant. Thus from (7.7.34) A = 0 only for m = 0 in which case
¢(r,0) = 1. Otherwise A > 0 and the transformation z = v/A\r may be used. Thus, first (7.7.37)
is valid, then f(r) satisfies (7.7.38). The boundary condition f'(a) = 0, then implies that the other
Amn are determined by J!, (v Amna) = 0. The time-dependent part yields (7.7.5). Thus, the initial
condition u(r,#,0) = 0 implies that h(0) = 0 and hence h(t) = sin cy/Amnt. However, if A = 0,h(t) =1t
from (7.7.5). Thus, by superposition,

o0 o0
u(r,8,t) = Z Z (Amn cosmé + By sinmb) Hppn (7, 1),

m=0n=1

where
t m=0,n=1

Hpp(r,t) = { Jm (VAmnr) sincy/Amat  otherwise.

The other initial condition becomes

B(r,8) = Z Z (Amn cosmb + By sinmb) ¢mn(r),

m=0n=1

where
m=0,n=1

1
Gmn(r) = { cvVAmndm (VAmnr) otherwise.

From orthogonality of these two-dimensional eigenfunctions

= JZa I B 0)gmn(r) cosmé rdr df
T [T ]y 82(r) cos?mé rdr df

and B, is the same as A,,, with cosmé above replaced by sin mé.

7.7.3 (a) The boundary conditions for (7.7.12) are g(0) = g(w/2) = 0. This is a standard eigenvalue problem
with L = 7/2. Thus, u = (mn/L)? = 4m? with eigenfunctions g(d) = sin2mf,m = 1,2,3,.... Thus,
the m? in (7.7.34) must be replaced by 4m? [i.e., m replaced by 2m in (7.7.37) - (7.7.38)]. Thus, the
frequencies of vibration are cy/Am, where Jom (VAmna) = 0.

7.7.5 The boundary conditions for (7.7.12) are g(0) = g(7/2) = 0. This is a standard eigenvalue problem with
L = w/2. Thus, p = (mm/L)? = 4m? with eigenfunctions g(d) = sin2mf,m = 1,2,3,.... Thus, the
m? in (7.7.34) must be replaced by 4m? [i.e., m replaced by 2m in (7.7.37)]. The boundary conditions
for (7.7.37) are f(a) = f(b) = 0. Thus
c1dom \/—Xa) + c2Yom (\/Xa) =0

c1dam \/Xb) +c2Yom (\/Xb) =0.
Nontrivial solutions can be obtained from the determinant (or by elimination):

Jom (\/Xa) Yom (\/Xb) — Jom (\/Xb) Yom (\/Xa) =0,

where the frequencies are cv/\.

7.7.8 For the heat equation, Section 7.7 is valid with (7.7.5) replaced by dh/dt = —Akh. The boundary
condition introduces more substantial changes. The Rayleigh quotient shows A > 0 with A = 0 only
when ¢(r, ) is constant, which means m = 0. The other eigenfunctions still satisfy (7.7.38) with the

boundary condition f'(a) = 0 yielding J;, (\/Xa) = 0. Thus

1 m=0,n=1
Pmn(r,0) = I (\/Xr) cosmb otherwise.
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By superposition

u(r,0,t) = i i Amn®mn(r,0) “Amnkt 4 z Z Bondm (\/Zr) sin mfe~Amnkt

n=1m=0 . n=1m=1

The initial conditions yield equations for A,,, and By,,. Using the two-dimensional orthogonality of

the eigenfunctions
I~ i foa (r,0)mn(r,0)rdr db
Iy @2 (r,O)rdr df

and a similar expression for Bp,,. As t = o0o,e *mnkt — 0 except for m = 0,n = 1 since then
Amn = 0. Thus u(r,6,t) - Ag1, where Ag; = (f fo r,0)rdr d9)/( %), the average of the

initial temperature distribution. Using physical reasoning, the equilibrium should be a constant. By
conservation of thermal energy that constant should be the above value, since the boundaries are
insulated.

7.7.9 (b) For the heat equation, Section 7.7 is valid with (7.7.5) replaced by dh/dt = —Akh. The boundary
conditions for (7.7.12) are g'(0) = ¢’(w) = 0. This is a cosine series in  with L = 7, i.e. p = (mn/L)? =
m? (as before) but with g = cosm#@ only. Thus (7.7.18-20) is valid with the condition at r = a being
f'(a) = 0. The Rayleigh quotient shows A > 0 with A = 0 only when m = 0 and f(r) = 1. The
other eigenfunctions satisfy (7.7.37) - (7.7.38), where now the boundary condition at r = a yields
J! (vVXa) = 0. Thus the eigenfunctions are

Amn =

bomlr) = 1 m=0,n=1
T Im (VAmar)  otherwise.

By superposition

u(r,6,t) = Z Z Apn®mn (r) cos mfe=Amnkt

n=1m=0

The initial conditions determine the coefficients A, (by orthogonality):

fO fO ¢mn (7') cosmérdrdf
fO fo mn (7') CO52 mbrdrdf

As t — 00,e*mnkt 5 0 except for m = 0,n = 1 since then A, = 0. Thus u(r,6,t) — Ag1, where
Agy = Jo Jy f(r 0)rdrd0

102
27!'(1

Amn -

the average of the initial temperature distribution. The temperature approaches an equilibrium. This
can be obtained easily by conservation of thermal energy since the boundary is insulated.

7.7.10 Subsection 7.7.9 is valid with h(t) instead solving dh/dt = —Akh. Thus by superposition

u(r,t) = ZanJo (\/_r) TAnkt

where (7.7.63) is satisfied. The initial condition yields (7.7.66) with a(r) replaced by f(r). Ast —
00,u — 0 since A, > 0. This can be shown to be the only equilibrium solution since u(a,t) = 0, see
exercise 1.5.10.

7.7.12 (a) z%y" — 6y ~ 0. Substituting y = zP yields p(p—1) -6 =0o0r (p—3)(p+2) =0or p = —2,3.
Thusy =ci(z 2 +...) +co(z3 +...).

7.7.12 (c) z%y"+zy'+4y ~ 0. Substituting y = zP yields p(p—1)+p+4 = 0 or p = £2i. Since z% = ¢*%Ine
we obtain real solutions y = ¢; [cos(2Inz) +...] + 2 [sin(2lnz) +...].

7.7.12 (e) z2y" — 4zy’ + 6y ~ 0. Substituting y = zP? yields p(p — 1) —4p+6 =0 or p> —5p+6 = 0 or
(p-3)p-2)=00rp=23 Thusy=c1 (z2+...) +c2 (2 +...).
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Section 7.8
7.8.1 (b) Since A > 0, (7.7.37) is valid. The boundary conditions yield

c1dm \/X) +coYm (\/X) =0
c1dm 2\/X) eV (2\/X) =0.

By the determinant condition for a nontrivial solution (or by elimination), the eigenvalues are deter-
mined by
Tm (V) Y (2V3) = J (2V1) Yo (VX) = 0.

7.8.1 (d) Using the Rayleigh quotient minimization principle (5.6.5) with p = r,q = —m?/r, and 0 = r
(and z =)
2
Silr (%) +m —]dr
f12 ur dr
The smallest occurs with m = 0. Upper and lower bounds can be obtained using the technique
discussed in Section 5.7. Since 1 <r < 2,

AC TN (O

A1 = min

2 flu2dr =1" f1u2dr
2
But min L—(;)— (%)2, where L =2 —1 = 1. Thus
f u? dr
1,
57!‘ < A <272

7.8.2 (d) Section 7.7 is valid with dh/dt = —\kh. The boundary conditions for (7.7.12) are g(0) = g(7/2) = 0.
This is the standard sine series with L = 7/2 so that A = (mm/L)? = 4m? with g() = sin2m#@. Thus
(7.7.34) - (7.7.39) are valid with m replaced by 2m. Thus by superposition

o0 o0
u(r’ o’t) = Z Z can2m (V Amnr) Sin 2m06—’\""‘kt,
n=1m=1
where (7.7.39) is valid with m replaced by 2m. The initial condition determines ¢y

ST 2 G(r,0)Jam (VAmnr) sin 2m8 rdr df
C, = )
T TR e g2 (VAer) sin? 2mé rdr df

7.8.8 If m = 1, then f = 271/2y where " +y = 0. Thus

—1/2 -1/2

Jij2(2) =z (c1cosz +casinz) and Yja(2) =2 (cgcosz +cysinz) , where

we cannot determine c¢; from differential equation. Equation (7.7.33) can be used as a definition. As
z — 0 we have obtained Jy/; ~ ¢127%/2 and Yy/; ~ c3z~'/2 Thus from (7.7.33), c; = 0 so that
Jija ~ c2z%/? resulting in ¢; = 1/ (2'/211) and ¢3 = —2%/2(-1)!/7 but cs cannot be determined
from this type of consideration. Gamma function results (see exercise 10.3.14) show that (—1/2)! =
I'(1/2) = /7 and (1/2)! = T'(3/2) = 1/2I'(1/2) = 1/2y/mw. Thus, c2 = /2/7 and ¢z = —/2/7.
Therefore Jy /3(2) = \/2/mzsinz and Y} /5(2) = —/2/mzcos 2 + c4y/7/2J1/2(2). From (7.8.3), ¢4 = 0.
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Section 7.9

7.9.1

7.9.2

7.9.3

(b) This is similar to the problem in subsection 7.9.3. To satisfy u(r,8, H) = 0, instead we use
h(z) = sinh v/A(z — H). The condition at z = 0 implies m = 7 only (and sin 79 only also). Thus by
superposition

o0

w(r,6,2) = 3 Amp sinh v/Arn(H — 2) sin 767 (\//\7,,7') ,

n=1
where (7.9.18) is satisfied with m = 7. It is not necessary to use notation A7,; instead A, may be used.
The boundary condition at z = 0 (after cancelling sin 76) determines A,

Iy a(r)J7 (VAzar) 7 dr
A, Y/ H = .
sinh V'Azn fo JZ (VAznr) T dr

(b) This has eigenvalue problems in # and z and so is similar to subsection 7.9.4. The boundary
conditions in @ are g(0) = g(m) = 0 so that u = (mn/L)? = m? since L = 7 with g() = sinmé
only. In z the boundary conditions are h(0) = 0 and h'(H) = 0. Thus h(z) = siny/—Xz with
A= —(n—-1/2)2(n/H)?,n =1,2,.... Thus (7.9.31) is valid with n replaced by n — 1/2. In this way
(7.9.37) is valid (n = n — 1/2 and sinm# only). By superposition

T . 1\ 7z .
u(r,0,2) = Z ZAmnI [(n - 5) Er] sin (n - 5) 5 sinmé.
m=1n=1
The boundary condition at r = a determines A,

Amnl, [(n— -].'.) la] fo fo 0 Z Slnm031n (n_ _) 12 dy d0
2/ H Jo fo sin? (n — %) %Zsin®* m6 dz df

The normalization integral equals 7H /4.

(b) By separation of variables, time only first, V3¢ + A¢ = 0 and dh/dt = —\kh. Here V2¢ is the
same operator as in Section 7.7 with an extra term ¢,,. If we next separate z, we know Q., = —vQ
with v = (¢n/H)?, because of the boundary conditions and Q(z) = cosérz/H,¢ = 0,1,2,.... Thus
V2¢ + N¢ = 0 where X' = X\ — (¢r/H)? and here the Laplacian is the two-dimensional one previously
analyzed. We follow Section 7.7. The boundary condition for (7.7.12) is ¢'(0) = ¢'(n/2). This is a
cosine series in 6, where p = [mm/(7/2)]?> = 4m? and g(f) = cos2mé,m = 0,1,2,... [and thus m is
replaced by 2m in (7.7.34) and (7.7.38)]. Note that A’ = 0 only for m = 0 with f(r) = 1. Otherwise
(7.7.38) is valid. The boundary condition at r = a yields Jj,, (1/Al,,a) = 0. In this manner, the
three-dimensional eigenfunctions are

btmn(r,0,2) = 1 m=0,£=0,n=1
tmni %2 = cos L2 cos 2mBJam (\/N,r)  otherwise.

By superposition
oo o0 o0

u(r,0,z,t) = Z Z ZAlmn¢lmn("'a 8, z)e~Memnkt

n=1m=0 £=0
where Agmn = (0n/H)? + A.,.. The initial condition determines Agmn

Apmn =///f(r,0, 2)bemn(r,8,2) rdr do dz ////(ﬁmn rdr df dz .

As t = oo, e Aemnkt _y o6 except for £ = 0,m = 0,n = 1 since Ago; = 0:

1
u(r,0,2,t) = Ago1 = m///f(r,e,z)r dr df dz,
the average of the initial temperature distribution. We expect this because with insulated boundaries

the equilibrium temperature ought to be a constant (with the same thermal energy as the initial
condition).
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7.9.4 (a) By separation of variables in time V2¢ + A¢ = 0 and dh/dt = —Akh. Here V2¢ is the same
operator as in Section 7.7 with an extra term ¢,,. If we next separate z, we know Q,, = —v(Q where
from the boundary condition v = (¢r/H)? with ¢ = sinérz/H,L = 1,2,3,...V2¢ + N'¢ = 0 where
M = X — v and here the Laplacian is the two-dimensional one previously analyzed. Since there is no
#-dependence, we may follow Section 7.7.9. The orthogonal eigenfunctions in the radial direction are
Jo (v/ALr) where Jo (v/ALa) = 0 determines A},. By superposition

o 1 bz
U(r,z,t) = AnrJi M. r) sin _e—)\kt,
;n;l néJ0 ( n ) I7;

where A = X' + (¢x/H)?. The initial condition determines Ape

A, = [ [ f(r,2)do (/Apr) Sini}—’i,i rdr dz
"SI R () s B rdr dz
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Chapter 8. Nonhomogeneuous Problems

Section 8.2

8.2.1

8.2.1

8.2.2

8.2.2

8.2.6

8.2.6

(a) An equilibrium satisfies d*ug/dz? = 0 with ug(0) = A and dug/dz(L) = B. Thus ug(z) = A+Bxz.
We now introduce the displacement from equilibrium, defined by (8.2.9). wv(z,t) satisfies (8.2.10)
subject to the boundary conditions, (8.2.11)and dv/8z(L,t) = 0, and the initial conditions (8.2.13).
Since the boundary conditions and pde are homogeneous, it may be solved by separation of variables,
v(z,t) = ¢(x)h(t). Thus dh/dt = —Akh and d?¢/dz? = —A¢ subject to #(0) = 0 and d¢/dz(L) = 0.
The eigenfunctions are sin vV Az, where VAL = (n— %)ﬂ', n =1,2,3,... Thus by superposition

o0
1
v(z,t) =Y apsin(n — =)rz/Le” .
(0= 3 axsinn

The initial conditions determine the coefficients a,,
2 ) 1
ap == | g(z)sin(n — =)rz/L dz,
L J, 2

where g(z) = f(z) — ug(z).

(d) An equilibrium satisfies kd?>ug/dz® = —Q = —k or d’ug/dz* = —1 subject to ug(0) = A and
ug(L) = B. Thus, ug(z) = —22/2 + A + vz, where B = —L?/2 + A + yL. The displacement from
equilibrium, defined by (8.2.9), satisfies (8.2.10-13). Consequently the solution is given by (8.2.17).

(a) A reference temperature distribution r(z,t) must satisfy the boundary conditions, r(0,t) = A(t)
and r,(L,t) = B(t). An example is the quadratic r(z,t) = A(t)z+[B(t) — A(t)]z?/2L. By introducing
the difference by (8.2.25), we have u(z,t) = v(z,t) + r(:z: t). Thus
v 82 827'
5 Mo =0 m g
subject to the homogeneous boundary condmons Vg (0, t) = vy(L,t) = 0 and the initial condition
’U(:l), 0) = f(.’L‘) - T(za 0)
(c) A reference temperature distribution r(z,t) must satisfy the boundary conditions, r;(0,t) = A(t)
and r(L,t) = B(t). The simplest example is the linear function r(z,t) = A(t)z + B(t) — LA(t). By
introducing the difference by (8.2.25), we have u(z,t) = v(z,t) + r(z,t). Thus
ov | 0% or
5 Fa =9
since 82r/8z? = 0, subject to the homogeneous boundary conditions, v;(0,t) = 0 and v(L,t) = 0, and
the initial condition v(z,0) = f(z) — r(z,0).

(a) An equilibrium satisfies d*ug/dz? = 0 with ug(0) = A and ug(L) = B. Thus ug(z) = A+ (B —
A)z/L. By introducing the displacement, defined by (8.2.9), we have

Po _ 0%

o2~ 7 Ox?

subject to v(0,t) = v(L,t) = 0 and the initial conditions v(z,0) = f(z) — ug(z) and v(z,0) = g().
From Section 4.4

v(z,t) = Z (Ap cos nrct/L + By sinnwet/L) sinnnz /L,

n=1
where from initial conditions
A, =2 foL[ f(z) — up(z)]sin 22dz and B, 25 = £ fOL g(z) sin 222dz. For large t,v(z,t) oscillates so
that u(z,t) ug(z).
(d) An equilibrium satisfies c?d?ug/dz? = —sinwz/L with ug(0) = ug(L) = 0. Thus ug(z) =
(L/mc)?sin mz/L. By introducing the displacement, defined by (8.2.9), we have the same result as
exercise 8.2.6(a).
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Section 8.3

8.3.1 (c) A reference temperature distribution r(z,t) must satisfy r(0,t) = A(¢) and r5(L,t) = 0. The
simplest example is r(z,t) = A(t). We introduce the difference [v(:z;, t) = u(z,t) — r(z,t)], so that

0 6
5 k3 = Q@) -

since Or/0t = dA/dt and 8*r/ 8z% = 0. The boundary conditions are homogeneous v(0,t) = 0 and
vz(L,t) = 0. The initial condition is v(z,0) = f(z) — A(0). The related homogeneous eigenfunctions
are sin(n — $)rz/L,n = 1,2,3... since d’¢/dz? + A\ = 0 subject to #(0) = 0 and d¢/dx(L) = 0.
According to the method of eigenfunction expansion

(o)
. 1
v(z,t) = E By, (t)sin(n — —2-)7rz/L.
n=1
This can be differentiated term-by-term since both v(z,t) and the eigenfunctions satisfy the same set
of homogeneous boundary conditions. Thus
i

> |G+ # v - 5T =00 - G

n=1

A

By orthogonality

dB, B 2 L dA] .
o nBn = @u(t) = E/o [Q(% t) - E] sin(n — Q)fdw‘

The solution of this is given by (8.3.10).

8.3.1 (f) The related homogeneous eigenfunctions yield a Fourier cosine series. Thus, by the method of
eigenfunction expansion

u(z,t) = Z Ap(t) cos ?

n=0
This can be differentiated term-by-term since both u(z,t) and cosnwz/L satisfy the same set of ho-
mogeneous boundary conditions. Thus A, (t) satisfies (8.3.9) whose solution is given by (8.3.10).

8.3.3 The related homogeneous eigenfunctions satisfy L(¢) = Ao¢ = 0 (where o = ¢p) and ¢(0) = ¢(L) =
According to the method of eigenfunction expansions

u(z,t) = Z an(t)dn(z).
n=1

This can be differentiated term-by-term since both u(z,t) and ¢,(z) satisfy the same set of homoge-
neous boundary conditions. Thus

cpz dan s (@) = Z an(®)L{bn(@)] + 12 1),
but L{¢,) = —Ancpd,. Thus

cp2¢n<z> %

+ )\nan] f(z,t).

Since the eigenfunctions are orthogonal with weight o = ¢p

dﬂ + Anan = fo(t) = / f(z,t)pn(z)dz // $ne p da.
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Now the integrating factor may be used to derive an expression similar to (8.3.10). The initial conditions

yield
L L
an(0) = /0 9(2)dn(@)cpde / /0 $2cpde.

8.3.4 (a) An equilibrium solution satisfies
4L [Ko(z)%2] = 0 subject to ug(0) = A and ug(L) = B.
By integration Ko(z)dug/dz = ¢;. By integrating again ug(z) = c2 + ¢1 f: m‘j%y.
The boundary conditions yield cc = Aand B—A=¢; foL dz/Ko(Z).

8.3.5 Since there is no #-dependence, the corresponding homogeneous eigenfunctions are Jo(v/Anr) such
that Jo(v/Ana) = 0. We note that V2¢ = —A¢. According to the method of eigenfunction expansion

u(r,t) = > An()Jo(v/Aar).

This can be differentiated term-by-term since both u(z,t) and Jo(v/Anr) satisfy the same set of homo-
geneous boundary conditions. Thus

Z I:% + k/\nAn] JO(\/ET) = f(T, t)'

n=1

Since these Bessel functions are orthogonal with weight r

dA, _ _ Jo¥ £ (ry ) Jo(VAnr)rdr
gt Fndn = fa(t) = 2 [ B(VAar)rdr

This is in the form of (8.3.9) whose solution is given by (8.3.10) involving the initial conditons, A,(0) =
0.

8.3.7 A reference temperature distribution r(z,t) must satisfy 7(0,¢t) = 0 and r(L,t) = t. The simplest
example is 7(z,t) = z t/L. The difference [v(z,t) = u(z,t) — r(z, t)] satisfies

v 0% z

ot oz2 L’

subject to homogeneous boundary conditions v(0,t) = v(L,t) = 0 and the initial condition v(z,0) = 0.
This problem has an equilibrium solution vg(z) = 2®/6L+cix where 0 = L2 /6+c; L. This is equivalent
to starting with the reference temperature distribution

ri(z,t) = at/L + 23 /6L — Lz /6 .

In this case [v1(z,t) = u(z,t) — r1(z,t)], the new difference satisfies %1;1 - %”} = 0 with v1(0,t) =
v1(L,t) = 0 and the initial condition v;(z,0) = Lz/6 — 23 /6L. The solution is

oo
'U](:L', t) = Z [11% Sin _”lz_we—(nﬂ'/lz)zt ,

n=1

where a, = £ [ (La/6 — 2 /6L) sin 22da .
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Section 8.4

8.4.1. (b) The related homogeneous eigenfunctions are cosines. Thus

u(z,t) = i Apn(t)cos nmz/L.

n=0
From the pde
L
Aln(t) =gqn + kI.,,/ Ugy cOSNTZ /L dx
0

where Iy =1/L, (n #0)I,, = 2/L, and

L
Gn = In/ Q(z,t)cos nwz/L dz .
0
Using Green’s formula (8.4.11) with v = cos nnz/L,

A+ k(nm/L)?An = gn + kL,[(-1)"B — A].
Using the integrating factor

t
An(t) = An(0)e™ MK 4 e Ak / {gn + KL[(-1)"B — A} e *dr
0
where A,(0) = I, fOL f(z)cos nwz/L dz .

Section 8.5

8.5.2 (b) The related eigenfunctions are sines. Thus

u(z,t) = Z An(t)sin nrz/L .

n=1

By term-by-term differentiation .
A, + EApAn = gncos wt,

where A, = (n7/L)? and g, = %fOL g(z)sin nrz/L dx. fw? =# 2\, = (nmc/L)?, then (8.5.29)
may be used. From the initial conditions, cc = 0 and

c1 + [gn/(BPAn —w?)] = %/L f(z) sin nwz/L dz .
0

If w> = (nmc/L)?, resonance, then only for that one value of n, (8.5.31) is valid. From the initial
conditions, c; = 0 and

9 L
a = ——/ f(z)sin nrz/L dx .
L Jo

8.5.5 (c) The eigenfunctions for V2¢ = —\¢ on a semi-circle are J,, (v/AmnT) sin m8, where Jp, (vVAmna) =
0, by modifying Section 7.7 with the boundary conditions g(0) = g(w) = 0. Thus, the method of
eigenfunction expansions yields

u(r,6,t) = Z Z Amn(t) I (V AmnT) sin mé .

m=1n=1

By substituting into the pde B
Amn + C2/\mnAmn = an,
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where

= V4 i 2 (v Amnr) sin? dé .
Qmn //Q Jm (v AmaT) sin merdrdﬂ///Jm( AmnT) sin mérdr

Using (8.5.19)

¢ in ¢V Amn(t —
Amn = Cmn €05 ¢/ Amnt + / Qmn(7) sin ¢ VAmn(t — 7) dr ,
0 c\/Amn

where the sin ¢v/ A, t vanishes because of the initial condition and where
Cmn = //fJ AmnT)sin mé rd rd@ ///J2 VAmnr) sin? m@rdrdé .

8.5.6 (a) Since ¢ are orthogonal with weight 1,dA = rdrd6,a’' (0) = 0 and
a(0) = [ [ Herdrdd /[ [ ¢?rdrdf. From the pde,

lza" +la= //g¢rdrd0///¢2'rdrd0
Section 8.6

8.6.1 (b) Using two-dimensional eigenfunctions

o0 o0
u(z,y) = z Z Apmsin nrz/L sin mry/H.

n=1m=1
Using (8.6.17), we need the normal derivative

V-t = 0¢/0x |,_; = nIzr cos?sm mIZIry le=z = %(—1)"sin mny/H.

Thus H
~ _nm n . _ ﬂ 1\ [ _ (_1\™m
qu¢~nds = T(_l) /0 sin mmy/Hdy = mL( H*1-(-1)™],
so that
Anm = {~Qum = 2 (1" (1= ()]} / A
where A = (35)? + (%F)?, and where Qnm = [ [ Q sin nrz/Lsin mry/H.

8.6.1 (d) Using two-dimensional eigenfunctions

oo o0
u(z,y) = Z Z Apm cos nwz/L cos mry/H .

n=0 m=0

By term-by-term differentiation (valid since u and the eigenfunctions satisfy the same set of homoge-
neous boundary conditions):

J [ Q cos nwz/L cos mmy/H dz dy

—Apm[(nm/L)? + (m7l'/H)2] = [ [ cos?nwz/L cos? mry/Hdzdy

Thus if [ [ Qdzdy #0, there is no solution. However, if [ [ Qdzdy = 0, then Ago is arbitrary and
the others are determined above.

cosmb

sin mé }’ where

8.6.3 (a) The two-dimensional eigenfunctions for V2¢ = —\¢ are the set Jom(vAmnT) {
JIm(vVAmna) = 0. By the method of eigenfunction expansion

u(r,8) = E Z Ay cos m Jm(\/—r) + Z Z B,,,, sin m# Jm(\/_r)

m=0n=1 m=1n=1
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From (8.6.17)

_“fQ( 008 16 ) I (VAT)r dr df

( Amn ) sinm@
Bmn ) cos?mf \ ,
J f( sin? md )Jm(\/Xr)rdrdO

8.6.6 Using one-dimensional eigenfunctions
oo
u(z,y) = Z an(y)sinnz.
n=1

Substituting into the pde yields (8.6.5)

2. [d?a
E - - n%a,|sin nz = e?¥sin z .
dy

n=1

Thus for n # 1,a,(y) = a,sinh ny + B, cosh ny. However, for n =1,

‘%‘,L — a; = €% and thus a;(y) = 3 €® + aysinhy + By coshy ,

using the method of undetermined coefficients for a particular solution. The other boundary conditions
are an(0) = 0 and an(L) = 2 [ f(z)sinnzdz. Thus 3 + B; = 0 and (n # 1)B, = 0. Also
32l + oy sinh L - 2cosh L = ay(L) and (n # 1)apsinh n L = ap(L), determining all a,.
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Chapter 9. Time-Independent Green’s Functions

Section 9.2

9.2.1 (d) Using the method of eigenfunction expansion with a cosine series

u(z,t) = i an(t) cos nmz/L .

n=0
The pde becomes
du/dt =) a(t)cos nmz/L = k6*u/0z* + Q(g,1) .

n=0
Thus a/,(t) = qa(t) + fo kwcosnmv/de / fOL cos? nmz/Ldz,

where g, (t) = fo Q(z,t) cos nrz/Ldx / fOL cos? nmz/Ldzx . Using Green’s formula (8.4.12) with v =
cos nwz/L

L 92

5 Zcos nrz/Ldx = — (nm/L)? /OLucos nnz/Ldz + (—1)"B(t) — A(t).

Thus al,(t) + k(nm/L)%an, = gn(t) + k[(—-1)"B(t) — A(t)]/I., where Iy = L and (n # 0)I, = L/2.
Using the usual integrating factor [see (9.2.16)],

t _1\n _
an(t) — an(o)e—k(nw/L)2t+/ [Qn(to) + k( 1) B(?) A(to) e—k(mr/L)z(t—to)dtO,
0 n

where a,,(0) = fo g(x) cos 272dz /I, . Therefore

u(z,t) = / (o) z — cos —ME __m;a:o e~ k(nm/L)* g

n-—O
/ (=1)"B(to) — Ato) _ nzwe—k(nw/L)z(t—to)dto
n=0 I"
L oo
1
+/ / Q(xo,t0) ZT s LI —mzvoe"“(""/L)2(t‘t°)dtodazo.
o Jo n=0 """
We introduce the Green’s function,
G(z,t; 0,t0) = Z T L"’ cosﬁ’ffwﬂe—unw/L)?(t-t*’),

n=0
so that
L L gt
u(z,t) = / 9(z0)G(z, t; zo, 0)dzo +/ /Q(:co,to)G(a:,t;xo,to)dtodxo
0 o Jo

t t
+/ kB(to)G(z,t; L, to)dto —/ kA(t)G(z,t;0,t0)dto.
0 0

oo

9.2.3 The method of eigenfunction expansion yields u = Z an(t)sin nwz /L. This can be term-by-term
n=1

differentiated with respect to z since both w and sin nwz/L satisfy the same set of homogeneous
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boundary conditions. Therefore, %‘E = —c*(%2)2a, + qn(t), where gn(t) = % fOL Q(z,t) sin 272 dz.
Using (8.5.19)

nwct . nmct L [t . nme
an(t) = c1 COS T + c2 sin 7 + -T;;C- /0 qn(to) sin T(t - to)dto,

where an(0) =c¢; = fOL f(z)sin 222dz and %= (0) = 2fc, = 2 fOL g(x) sin 212dz.

By substituting these back into the series, we obtain

L 2 2 nrT nwT nwct
U(l‘,t)=/0 f(zo) Zf in O sin —— cos ——dxg

L L
L 00 nnct

2 in PTT0 o T sin 7=

g(zo) — sin dzo
) o 2 pon e T

o0 .
2 i M0 o TT sin 2FE(t — ¢
/ / Q(IEO,to Z 'z O 7 nf’c 0) dtodzg .

= L

We introduce a Green’s function

sin — t—t
G(z,t;zo,t0) = Z L sin mraco sin nre “( o)

n7rc ?
L e

so that Lo
u(z,t) = / / Q (@0, 0)G(z, t; 2o, to)dtodzo
0 0

L L aG
+/ 9(z0)G(z,t; 70, 0) dxo +/ f(mo)gt‘(fv,t; o, 0) dxo .
0 0

We must have some ”faith” in these calculations since the series for G /0t does not converge. This
result will be obtained later in a different way [see (11.2.24)].

Section 9.3
9.3.5 (a) du/dz = [ If f(Z)dZ using the boundary condition at z = L. Integrating again gives

u(z) = [y (J° f(Z)dz) dzo using u(0) = 0. Integration-by-parts,

dw=dzo v=[;° f(z)dZ
w=zg dv= f(zo)dzo,

yields
T T
u@)=s [ f@ds - [ auf(zo)dao,
L 0
which is equivalent to answer given.

9.3.5 (b) Let u; be a homogeneous solution satisfying u(0) = 0, i.e., u1 = z, while let u be an independent
one satisfying du/dz(L) = 0, i.e. ug = 1. Since p =1 from (9. 3 10-12) & —1 = f and d" = —zf . Thus
from (9.3.9)

T T
U=z f(zo)dzo — / zof(zo)dzo + 1T + co.
0 0

The boundary condition u(0) = 0 yields ¢ = 0, while du/dz(L) = 0 yields ¢; = — fOL f(zo)dzo, which
is equivalent to answer given.
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9.3.5 (c¢) In order for u(z) = fo f(z0)G(z, zo)dzo,

Gz, 70) = { -z T < T

- o>

9.3.6 (a) If < zo,G(z,%0) = c1Z + c2, where c2 = 0 from G(0,z0) = 0. If z > zo,G(x,%0) = c3 + c4,

where ¢z = 0 from dG/dz(L,zo) = 0. From continuity at = zo: c1z9 = c4. By integrating from zo—
To+

to o+, T =1lor0—c; =1. Thus ¢; = —1 and ¢4 = —xo, yielding
o

—r <
—ZX9 T >Tg .

G(z,20) = {

9.3.6 (b) See answer on p. 743.

9.3.9 (a) Let u; be a homogeneous solution satisfying u(0) = 0, i.e., u; = sinz, while u, satisfies u(L) =0,
i.e. ug = sin(z — L). Note these are independent if L # nw. We also note that uidus/dz — usdu, /dx =
sin L # 0. From (9.3.10-12) dv, /dz = — fsin(z — L)/ sin L and dvy/dz = fsinz/sin L.

Thus from (9.3.9)

—sinz sm(w

sin L

/ f(zo) sin(zg — L)dzy + ———— / f(zo) sinzodzo + c1 sinz + ¢ sin(z — L) .

The boundary condition 4(0) = 0 yields ¢; = 0, while u(L) = 0 yields ¢; = 0.
9.3.9 (b) In order to put the result of part (a) into the form (9.3.15),

_ [ sinzsin(zo — L)/sinL z < xo
G(z,20) = { sinzgsin(z — L)/sinL z >z .

9.3.11 (a) For z # x9,d*G/dz?*+G = 0. f z < z0,G(zx,z0) = bsinz using G(0,70) = 0. If z > z9,G(z,70) =
a sin(z — L) using G(L, zo) = 0. To be continuous at z = zo:

bsinzg = asin(ze — L). 1)

Integrating the defining differential equation from zo— to o+ yields

To+
/ Gdzr = 1.

This integral vanishes since G is continous, and thus

dG

acos(xg — L) — bsinzg = 1. (2)

Equations (1) - (2) may be solved by elimination only if L # nm, yielding a = sinzg/sinL and b
= sin(z¢ — L)/ sin L, using a trigonometric addition formula. Thus

(2, 30) = sinzsin(zg — L)/sinL z < zg
Y007 sinzgsin(z — L)/sinL x> xo.

Alternate method: The constants a and b may be redefined so that G(z, zo) is automatically continuous
at £ = zp:

_ [ esin(zo — L)sinz z < zo
G(z,20) = { csinzgsin(z — L) z > zo,

where c is a constant independent of zg. The jump condition on the derivative (9.3.45) determines c,
yielding the same answer.
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9.3.13 (b) For z # z0,d>G/dz? + kG = 0. A particularly convenient choice of homogeneous solutions is

ik(z—x0) —ik(z—z0)
_ c et + co€ T < Xo
G(z7 xo) - { cseik(z—wo) + c4e—1:k($—20) > wo .

The corresponding solution of ¢ is obtained by multiplying u and thus G(z, zo) by e~**. For example
eilkz—wt) ig a right-going wave (assuming w/k > 0). For z < zo, we want a left-going wave in order to
be outward propagating and thus ¢; = 0. For x > g, it should be right-going and thus ¢4 = 0:
026_“‘:(2_10) r < To
G(z7w0) = { caetk(z—20) T > Io.

To be continuous at £ = zg,ca = c3. The jump condition is obtained by integrating th defining
differential equation from xzo— to zo+:

To+
%g + k2 / Gdr=1.
To
Since G is continuous
dG zo+
—_— =1 or
dz co—

c3ik + cotk = 1, yielding ¢ = ¢c3 = —l— A particularly convenient form for the Green’s function is
g ik

a _ L iklz—zol
(:l:,.’l:o) - 2’”{76 .
9.3.14 (d) Using Green’s formula with v = G(z, zo):

/ L[uL(G) — GL(w))dz = (UE _o
0 dz o

We note that L(u) = f and L(G) = 6(z — z¢). Thus

dG

u(zg) = / f(z)G(z,zo)dz +p(u% —Gd )

X

The Green’s function satisfies the related homogeneous boundary conditions, G(0,z¢) = 0 and
%(L, zo) + hG(L, zo) = 0, while u satisfies the given conditions. Thus

L dG
w(zo) = /0 1(@)G (@, z0)dz + p(L)G(L, z0)(~hu(L) + hu(L)  §) = p(0)a T (0,20) .

Switching z and zo and using symmetry yields the given answer.

9.3.15 (a) For z # zo, L(G) = 0. This problem defines homogeneuous solutions needed to solve the boundary
conditions for the Green’s function. Thus

G(z,20) = {

ayi(z) z <o
coy2(z) = > x0 .

Continuity at x = x¢ yields

c1y1(zo) = cay2(zo) - 3)

The jump condition for the derivative is obtained by integrating the defining differential equation,
yielding
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dG zo+

P% =1

since f * ¢ G dz vanishes because G is continuous. In this manner

& B (@) ~ & 22 (@) = ~1/p(0) (4)

Solving (3) - (4) simultaneously yields
_ | n@ya(z)/c z<xo
G(z,20) = { y2(2)y1(z0)/c = > 0,

where c is the constant defined on page 387 and is related to the Wronskian
dyz dy:
w=yr— =~ ya— - =c/p(e) .
The constant c is determined from the calculations of y; and ys at either end: ¢/p(0) = —y2(0) or
¢/p(L) =y (L) .

9.3.21 If z # zo, then dG/dz = 0. If z < zo,G(z,z0) = 0 in order to satisfy G(0,z¢) = 0. If z > zo, the
general solution is G(z,z¢) = ¢. The Green’s function is not continuous, since its derivative is a Dirac
delta function. The jump condition is obtained by integrating the defining differential equation

Glet=1.

To—
Therefore ¢ — 0 = 1. We conclude that

G(z, o) = {

0 z<x
1 z> o,

which is not symmetric.

1 ”

9.3.25 (b) The simplest particular solution corresponds to the initial condition u(0) = u (0) = uv (0) =

"

u (0) = 0. Taking the Laplace transform of the differential equation yields
s*u(s) = F(s) and thus a(s) = F(s)/s*.
Using the convolution theorem,

u(z) = /0 " f(@)g(e - D)z ,

where g(z) is a function whose Laplace transform is 1/s*. From the table inside the front cover,
g(z) = z%/3!. Thus

u(z) = /0 " F@) (@ - )° /3143

Section 9.4
9.4.2 (a) Using Green’s formula

/OL [uL(¢n) — dnL(u)]dz = (u% ~ ¢>h3:) L

Since L(u) = f,u(0) = a,u(L) = B and L(¢r) = 0,¢,(0) = 0, ¢ (L) = 0, it follows that

d¢h (L) der(0)
dr

0= / fonde +pL)B2 L) _ 0)a
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9.4.3 (b) Homogeneous solutions satisfy d?¢/dz? + ¢ = 0 with d¢/dz(0) = d¢/dx(w) = 0. Thus ¢ =
cosz is a nontrivial homogeneous solution. According to the Fredholm alternative, solutions to the
nonhomogeneous problem (subject to homogeneous boundary conditions) exist only if the right hand
side is orthogonal to ¢(z). Since

™

coszsin zdz = 0,
0

there are an infinite number of solutions.

9.4.6 (a) The general solution of the differential equation is
u=14ccosx+cysinz .

The boundary condition u(0) = 0 implies 0 = 1 + ¢;, while u(w) = 0 yields 0 = 1 — ¢;. These are
inconsistent so that no solutions exist. To apply the Fredholm alternative, we note that ¢ = sinz is
a homogeneous solution since ¢(0) = ¢(w) = 0. Furthermore,

™
/ l-sinzdr=2#0.
0

Thus, there are no solutions since the right hand side f(z) = 1 is not orthogonal to ¢, = sinz.

9.4.6 (b) The general solution of the differential equation is
u=14cjcosx+cysin x .

The boundary condition du/dz(0) = 0 implies 0 = ¢, while du/dz(m) = 0 yields 0 = —c;. This is
possible with ¢; = 0 and ¢; arbitrary:
u=1+ccosx.

There are an infinite number of solutions. To apply the Fredholm alternative, we note that ¢ = cosz
is a homogeneous solution since ¢ (0) = ¢ (w) = 0. Since
/ l-coszdr=0,
0
the right-hand side f(z) = 1 is orthogonal to all homogeneous solutions ¢, = cos z. Thus there should
be an infinite number of solutions.

9.4.6 (c) The general solution of the differential equation is
u=1+cycos T+ cysinzx .

The boundary condition u(—=) = u(r) implies 1 — ¢; = 1 —¢;, while u'(—m) = v/(7) yields —co = —ca.
Thus the above soltuion for u is valid with both ¢; and ¢ arbitrary. There are an infinite number
of solutions. To apply the Fredholm alternative, we note that both ¢, = sin  and ¢, = cos z are
homogeneous solutions satisfying the homogeneous boundary conditions. Here

™ iy
/ l-coszdr =0 and 1-sinzdzx=0.
- -7

Thus, there are an infinite number of solutions.

9.4.8 (a) To obtain a particular solution, we substitute u, = Az sin z into the differential equation in order
to determine the constant A. Here u', = A(z cos z + sin z) and u;; = A(—zsin z + 2cos ).

Therefore A(—zsin  + 2cos z + z sinz) = cos z or A = 1. Thus the general solution is

u==zsin /2+c cos z +casin z .
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The boundary condition u(0) = 0 yields 0 = ¢;, while u(n) = 0 also yields 0 = ¢;. Thus
1 . .
u= —2-a:sm r+cysSinx,

with ¢z arbitrary, which is an infinite number of solutions. To apply the Fredholm alternative, we note
that ¢, = sin z is a homogeneous solution satisfying the boundary conditions. Since

T
/ cos rsin zdr =0,
0

there are an infinite number of solutions.

9.4.10 Since ¢ = sin z is a solution of both the corresponding homogeneous differential equation and
boundary condition, a modified Green’s function G, (z, zo) must be introduced satisfying

d?Gp
dz?

subject to G (0,29) = Gum(m,z0) = 0. The constant c is chosen so that the right-hand side is
orthogonal to ¢, = sin z:

+Gm=6(zx—x)+csinz,

™
2
0=/ sin z[0(z — zo) + ¢ sin z]dz or c=—;sin:c0.
0

If £ # zo, G}l + Gm = csin z. The method of undetermined coefficients can be used to find a particular
solution, G, = —$x cos z. Thus

cicosT+cesinzr x < xo
c3cosT+ceqsinT T >xp .

1
Gn(z,z0) = p sin zp x cos = + {
The boundary conditions yield
0=c¢; and 0= —sinxzg—c3,

while continuity at = = zo yields

€1 COS Tg + ¢ sin Ty = c3COS Lo + c48in zo ,

which simplifies to ¢; = — coszg + ¢4. The jump condition z = xg is
dG To+
m =1
dx co—

since G, (z, 7o) is continuous. The jump condition will be satisfied since ¢ was picked so that G, (z, Zo)
exists. Thus there are an infinite number of modified Green’s functions

(ca — cos zg) sin x < To

G (z,z0) = lsin ToZTCOS T + . .
T cysin T —sin zgcos z T > xo

where c4 is an arbitrary function of zg, c4(zo). We chose G, (z,Zo) to be symmetric, as is guaranteed
by Exercise 9.4.9, so that (9.4.17) may be derived. For example, for z < zo G (z,z0) = Gm(To, )
yields

1 .
—sin 2oz cos & + [ea(zo) — cos zo]sin

1 . . .
= —sin T g cos xo + c4(x)sin g — sin z cos zp .
T
As a function of z, c4(x) is some combination of sinz and z cos z:

c4(r) =asinz + bz cos zcosz :
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9.4.11

9.4.11

where a and b are constants, independent of z and z¢. Equating the coefficients of sin z and z cos z
yields

sin z: asin g + bz Ccos g — COS Tg = %wocos To + asin g — cos o
zcosz: <sinzg=Dbsinzp.

Thus b = 1/7 and a is arbitrary, yielding an infinite number of symmetric modified Green’s functions:

L(z cos z sin o + o cos zo sin z)
—cosrosinz 2z <o

L (2o cos zosin z + z cos z sin x)
—cosrsinzy = > zo .

G (z,20) = asin z sin o +

To obtain a formula for u(z), we use Green’s formula

dGp, du|”

/ WL (Go) = G ()] de =u 2 G T2}

Using the differential equations for u(z) and G, (z, o), we obtain

™
u(zg) = f(w)Gm(a: xo)dx + 2 smxo/ u(z) sin zdz + ﬂdGm( ) — a%( 0).
0
We can use any modlﬁed Green’s function. With a =0
dG
dxm( ) = ——(xo cos Zo + sin zg)
dGm (0) —(sm Zo + Zo COS Zg) — COS Zg -

Switching x and zo, using the symmetry of G (z, o), we obtain
B . 1 . .
u(z) = f(20)Gm(z, z0)dzo — -7?(.7: cos = + sin z) — a[;(smaz + zcosz) — cosz] + ksinz,
0

where the constant k = ;2; fo" u(zg) sin zo dzo. This constant is arbitrary, representing an arbitrary mul-
tiple of the homogeneous solution. This solution is consistent (based on calculating f0” u(Zo) sin zo dzo)
is the original problem actually has a solution. From exercise 9.4.2 a solution only exists if

™
=/ f(z)sinzdzr —a-—-(,
0
since ¢p =sin = .
(a) By integrating the differential equation from 0 to L,

dG, |*
dz |,

Applying the boundary conditions yields ¢ = 1.

(b) The modified Green’s function represents a steady-state heat flow problem with heat source
—6(z — mo) insulated at z = 0 with heat flow to the right (out) at £ = L of —c. The total thermal

energy generated inside per unit time is fOL —&(z — zo)dzr = —1. For equilibrium, the heat generated
inside must equal the heat flowing out. Thus

—-1=—c.
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9.4.11

9.4.11

94.11

(c) From the differential equation

_J artec <z
G’a(w,mo)—{ c3T+cy T>Tp-

dG,/dz(0) = 0 implies ¢; = 0, while dG,/dz(L) =c=1impliescg =c=1.
To be continous at £ = zg, c1To + ¢z = ¢c3To + ¢4 Or c3 = Tg + ¢4. Thus

_ | zo+ca(mo) T<T0
Ga(z,70) = { z+ca(zo) >0,

which automatically satisfies the jump condition dG,/dz |zo+ — dGe/dx |zo— = 1. In general, this
different modified Green’s function is not symmetric.

(d) To be symmetric, for example G, (z,To) = G4(Zo,x) for = < zg : To + ca(zo) = o + ca(z) .

This is only valid if c4(zo) is an arbitrary constant a, independent of zg:

o T <o

Ga(ma:BO):a'I'{ T T>Tp.

There is an infinite number of symmetric modified Green’s funciton of this type because if there is one,
any multiple of the homogeneous solution @x(z¢) can be added.

(e) Using Green’s formula with v = G,(z, zo),

L
L/ &a, dG, du
/0 ( T — G, (z, zo) )dm—u%--—Ga(w,wo)%o

Using the differential equations for v and G,(z,z¢) and the fundamental property of the Dirac delta
function yields

—u %, )|

L
uzn) = [ F0)Ga(ez0)de +u() G o0

From part (d), & (w xo)| =1 and £l;ig"-ﬂh(:/r: wo)l = 0, and thus
L
u(ao) = [ 1@)Gala 0o +u(l).
0
Switching z and o using the symmetry of G,(z, o) yields
L
w@) = [ f(@o)Galo, z0)dzo + ulL)
0
To show this is consistent, we substitute £ = L, in which case we obtain

L
/0 f(zo)dzo = 0

since G, (L, To) is independent of zo. This is the condition for the solution to exist from the Fredholm
alternative since ¢n(z) = 1. Thus u(L) is arbitrary above (and may be replaced by an arbitrary
constant), representing an arbitrary multiple of the homogeneuous solution ¢y (z) = 1.
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Section 9.5

9.5.3 (c) On the semi-circle with G = 0 on the boundary, the eigenfunctions of V2¢ = —A¢ are the
family @mn = sinmbJy, (vVAmar) where Ap,yp, is determined from Jy, (v Amna) = 0. By the method of
eigenfunction expansion,

G(r,6;70,60) = 2 Z Amn®mn(,6) . (5)

n=1m=1

Since G and ¢, satisfy the same set of homogeneous boundary conditions,

Z Z Ann V2 bmn = Z Z A (= Amnrmn) -

n=1m=1 n=1m=1
Using the orthogonality of @y, and the differential equation for G:

ff¢mnV2dedy _ ¢mn(r0,00)

“Amndmn = Trdy ] BRodzdy

Substituting this into (5) yields

Smn(T,0)dmn(ro, 60)
G(r,0;r0,60) = Z E _,\m:ff¢%mr?i1‘;0

1m=1

9.5.4 Using Green’s formula with v = G(Z, Zy):

/ / / (uV3G - GV2u)dz dy dz = # (uVG — GVu) -7 dS .
Substituting V2G = §(@ — Zo) with G = 0 on the boundary yields

w(@o) = / / G(2,70)f()dwdydz + ﬁh(?)VG%dS.

By switching Z and 7 and using the symmetry of G, we obtain
u(’a?) = // G(?, ?o)f(?o)dxod’yodZO + #h(?o)V?OG - fidSp .

9.5.9 (b) The §—dependent eigenfunctions are sinmf,m = 1,2, ... since G =0 on 6 = 0 and § = 7. Thus,
the method of eigenfunction expansion yields

G= Z Ap(r)sin mé .

m=1

By taking the Laplacian and using the differential equation for the Green’s function, we obtain

ot 2
VIG=6(T - To)= ) [%dii (rd:;rm) - %Am] sin mé . (6)
m=1

Since

/ / F(r,0)8(F - o)dwdy = / £(r,0)8(Z — Fo)rdrdf = f(ro, 6o),

it is helpful to note that
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(5(? - ?0) = %6(7’ - 7'0)5(0 - 00) .

Thus from (6), using the orthogonality of sines,

1d, dA, m
- = &8(r —ro)d(6 —
rdr(r dr &) 2 Am / (r = 10)8(6 = o)
This may be solved by the methods of Section 9.3 to obtain one—dlmensional Green’s functions. For
T # 710, the equation is equidimensional, whose solutions are 7P with p = +m. For r < rp, the solution
must be bounded, and thus it is proportional to r™. For r > g, it satisfies the zero boundary condition
at r = a. In this manner

sin mt9d‘9 _ 2 sin meoa(r —ro)

TTro

erm [(mym = (2)m] r<ro
Am(r) =
erg (A= ("] r>mo,

where we have made this function automatically continuous at r = ro. The constant c is chosen to

satisfy the jump-condition r4m |T0 = 2 sin mb, . Thus

1 1,a 1, r 1. a 2
m—12 m+1 o\ym , 2/ %\m m _ : 9
e[(@ymid 4 2yt - Lyt ()] g = 2 sin b,
so that ¢ = a‘mWQ , yielding the answer.

9.5.10 (a)
/ / [u(V? + kv —o(VZ + K*)u] dV = / / /(uv% —oV2)dV = ﬁf (uVv —vVu) -7 dS .

9.5.10 (b) Let p = |2 — To| in three dimensions as in (9.5.28b). Then (p # 0)V2G + k%G = 0. Spherically
symmetric solutions will satisfy
iz— ( dG) +kG=0.

dp dp
Introduce the change of variable, G = y/p. This is admittedly motivated by the answer. Since
dG/dp = %dy/dp —y/p?, it follows that

2
a7 Y4k y=0.
Thus y = 1€ + ce™ 7 or G = (c1€%** + c3e™**) /p .

The time-dependent problem is obtained by multiplying by e~*. We note that e*(**~«?) is outgoing
if w/k > 0, while e~“(k#+%?) i5 incoming. Thus, to be outgoing c; =0

G = cie'*?/p.

To determine ¢; we integrate the defining differential equation over a small sphere centered at @ = @9

with radius p:
// (V2G +K*G)dV =1.
It can be shown that ‘l’i_r)r(x) / / / GdV = 0 and thus from the divergence theorem
lim (JVG-AdS=1.
p—0
On the surface of the sphere, VG - i = 0G/9p is constant. Hence li_r)rb %j— # dS = 1. However, the
p

surface area is 4mp?. Thus lim 47rp26— = 1, which implies ¢; = —1/4n.
p—0 dp
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9.5.10

9.5.13

(c) Letr = |# —2o| in two dimensions as in (9.5.28a). For r # 0, V2G+k%G = 0. Circularly symmetric
solutions will satisfy 24 (r42) + k2G = 0, which is equivalent to r?d?G/dr® + rdG/dr + k*r*G = 0.
This can be related to Bessel’s differential equation, so that G = c; JJo(kr) + c2Yo(kr).

To investigate whether or not this solution is outgoing for large r, we use the asymptotic expansions
for the Bessel functions (7.8.3). In this way, for large r

G ~ (2/7kr)'/?[c; cos(kr — m/4) + cy sin(kr — 7/4)] .
By using Euler’s formulas, we obtain an equivalent expression
G ~ (21kr) T2 [(e1 — iea)e™*T=T/D 4 (¢ + dcy)e RPN
The time-dependent problem is obtained by multiplying by e~**. We note that e**—«?) is outgoing
if w/k > 0, while e~¥*7+%) is incoming. Thus, to be outgoing
c1+ica=0. (7

To determine the remaining constant we must investigate the singularity at r = 0. If we integrate
the defining differential equation over a circle of radius r centered at @ = o, we obtain using the
divergence theorem

?{VG-ﬁds+k2/ GdA=1.

Since G is only a function of r, VG - i = dG/dr, and § ds = 277, we have

T
27rrﬁ+27rk2/ GrdFr=1.
dT 0

Since rG is integrable, we take the limit as r — 0 and obtain the simpler expression for the singularity
condition

lim 27r1'E =1.
r—0 dT

We use the asymptotic expansions for Bessel functions for small arguments, (7.7.33). In this manner
G =ci[l - (kr/2)? +..] + c2[2/7 log(kr) + ...]

Thus, c2 = 1/4 to satisfy the singularity condition. By also using (7), we obtain
1
G= Z[Yo(kr) —iJo(kr)] .

(a) To satisfy the boundary condition that G/8y = 0 at y = 0, we introduce a positive image source
at (2o, —Yo, 2z0). The Green’s function for this half-space is the superposition of the two infinite space
Green’s functions

G(Z,Zo) = —zl; ([ = 20)* + (v = 0)* + (2 - 20)?]

+[@-2) + G +10)* + (2 - 20)7] %) .

It can be verified that 8G/dy = 0 at y = 0.
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9.5.13 (b) From the three-dimensional version of Green’s formula

w(o) = / / / F(B)G(Z, Bo)dV — ﬁ{ GVu-hdS,

since 8G/dy = 0 on y = 0. We note that # = —j. Thus, after switching 7 and % and using the
symmetry of G

ou

dzod
ayo Toazo ,

y=0

u@) = [[[ 1@I6@ zaavs + [[ 6@, 20

Yo=0

where Ou/0yo| = h(zo, 20) and

yo=0

G2, Bolyymo = —5ol(E = 0)? +37 + (2 = 20)7] 7.

9.5.14 To satisfy the boundary conditions that G = 0 at £ = 0, we use the method of images. We introduce
three image sources, negative ones at (—zo,yo) and (zo, —yo) and a positive one at (—zo, —yo). The
Green’s function in the first quadrant is the superposition of the four infinite-space two-dimensional
Green’s functions each satisfying (9.5.31a). By using properties of logarithms, we obtain

_ 1 n[(w —29)® + (y — 90)*1[(z + 20)® + (y + y0)”]
62,20 = 3= {2 e L Lt

It is easy to verify that G = 0 along £ = 0 and along y = 0.

9.5.19 The Green’s function inside a circle of radius a is given by (9.5.57), where ¢ is the angle between
7 and 7. We use polar coordinates with % being represented by (r,8) and @ by (r0,680). Thus
¢ = 0 — 6. For a semi-circle with G = 0 on the boundaries, image sources may be introduced. There
are negative ones located at (ro, —6g) and the corresponding point outside of the circle. In this case
¢ =0+ 0y. Thus

1 s 12418 — 2rrycos(d —0o)
G(?7?0) - AT In [a T27'02 + aJ‘ — 21"7‘0 a2 COS(0 - 00)

R 2 + 18 — 2rrpcos( +0y)
4 r2r2 + a4 — 2rroa?cos(6+0y) |

At y=0,6 =0 or 8§ = 7 in which case the above formula yields G = 0 as desired.

9.5.22 (c) In three dimensions the response to a Dirac delta function is G = —1/47p, where p = |2 — T|
is the distance from the source and where @ = (2o, 0, 20). To satisfy G =0 at z =0 and at z = L,
image sources must be introduced. To satisfy G = 0 at £ = 0, a negative source must be introduced
at (—zo,Yo,20). Note: to satisfy G = 0 at £ = L, a negative image source at (—z¢ + 2L, yo, 20) and
a positive image source at (zo + 2L, yo, 29) exists. This process must continue indefinitely. There will
be positive sources at zo + 2Ln and negative sources at —xo + 2Ln, where n is an arbitrary integer
(positive or negative). Thus

= 1 1
G(Z, Do) =~ > (m—am_m*—?nI) ’

n=—oo

where @, = (zo + 2Ln, yo, 20) and ?n = (—zo + 2Ln, yo, 20) -
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Chapter 10. Fourier Transform

Section 10.2
1021 u = [5° c(w)e~“me=kw gy + ffoo c(w)e~“Te=k*tdy) In the latter integral, let w' = —w. Then

u=[° c(w)e~wee—kw gy, 4+ I e(=u! )ei'se=kw*tdyy! | Since w' is a "dummy” variable, it may be
called w. Now Euler’s formula yields

‘= /oo[c(w) + e(~w)] cos wze™H tdu + /°° [—c(w) + ¢(~w)] sin wae™F .
0 0

Comparing this with (10.2.9) yields (for w > 0)

A(w) = ¢(w) + ¢(—w) and B(w) = i[—c(w) + ¢(—w)] .
By adding and subtracting these formulas (for w > 0),
c(w) = $[A(w) + iB(w)] and ¢(—w) = 3[A(w) — iB(w)].
If A and B are real, then

e(w) = 3[A(w) — iBw)] = ¢(~w).

Section 10.3
10.3.6 The Fourier transform is obtained from (10.3.6) with v = 1:
a iwz |2

P =g [ sende = L [ ceda = £
21 J_o 2T 2miw

—a —a

Thus, F(w) =

iwa _ p,—iwa) — 1 o
5o (e e ') = ——sinwa .

10.3.7 The inverse Fourier transform is obtained from (10.3.7) with v = 1:

flz) = /00 F(w)e "% dw = /_Z e—lwlag—iwe g,

—0o0

0o 0
— / e—wae—iwwdw + / ewae—iwzdw .
0 —00
Thus

w(—a iz) |° ew(a-—iz)

1 1 2
a+ict  a—izx o242’

flz) =

- + -
—1iz | a—1iz

10.3.10 (a) By separation of variable (u = h(t)@(r))

1dh _ 1d( 52
khdt  rodr :

Thus rz%? + r%‘f + s2r2¢ = 0, which is Bessel’s differential equation of order 0. Thus
¢ = c1Jdo(sr) + c2Yo(sr) .
Since u is bounded at r = 0,c; = 0. By the superposition principle (see p. 447),

u(r,t) = /ooo B(s)Jo(sr)e_’zktds .

It is convenient (due to the weight function for Bessel functions) to let B(s) = sA(s) .
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10.3.10 (b) One or two-dimensional Green’s formula may be used. In one-dimension

b v U °
/a [wL(v) — vL(w)]dr = (u% - vj—r

?

a

where L = %(r%), so that p =7 and a = 0 and b = L. We note that
L{Jo(sr)] = =s*rJo(st) and L[Jo(s17)] = —s2rJo(s17) -

Thus, letting u = Jy(sr) and v = Jy(s17) in Green’s formula yields

L
2 .2 _ dv  du
(s sl)/0 Jo(sr)Jo(sir)rdr =L (udr Udr) .

For large L, the right-hand side may be approximated using (7.8.3):

2 du 2
u = Jo(sr) ~ \/ ;T;;cos(sr —m/4) and thus i _SVEZ sin(sr — w/4)

and a similar expression for v (with s replaced by s;). Thus

L
2 s . T ™ S1 . T vy
2_ 2 ~ R— J— —_—— —_——) — —_— —_—— —_——
(s sl)/o Jo(sr)Jo(s17)rdr L1rL [1/31 sin(sL 4)cos(le 4) ‘/ 5 sin(sy L 4)cos(sL 4)

so that fOL Jo(sr)Jo(s17)rdr
2 1/ sin(sL — Z) cos(s1L — §) — /S sin(s1 L — §) cos(sL — F)

2 _
s? — s?

10.3.10 (c) In order to use the results of part (b), we multiply equation on bottom of page 456 by Jo(s17)r
and integrate from 0 to L:

L oo L
/0 f(r)Jo(slr)rdr=/0 A(s)/0 Jo(sr)Jo(sir)rdr sds .

In the above expressions, we note that A(s) = A(s1) + A(s) — A(s1) . The contribution to the integral
from A(s) — A(s1) vanishes as L — oo by the Riemann-Lebesgue lemma (see first edition of this text)
since [A(s) — A(s1)]/(s? — s?) is continuous. This result can be shown as in exercise 10.3.9 (b) by
integration-by-parts. Thus

oo o0 /L sin(sL — Z)cos(s;L — ) — \/Zsin(s; L — T) cos(sL — %)
/ F()do(sir)rdr = 2A(sy) lim / : sds .
0 ™ L—oo Jgo s2 — s1

Wealsonotethat,/ =1+4,/& -1 and ,/’ —1+,/3 -1, Whereagamterms‘/———land

/2 —1, do not contribute due to the Riemann-Lebesgue lemma. Similarly, s> —s? = (s—s1)(s+s1) =
2s1(s — s1) + (s — s1)2, where the latter term will not contribute as L — oo, as well as s = s1 + s — s1.

Thus,
) 00 o3 L-= _ Ty _gj - -
/ F(r)Jo(sar)rdr = 2 A(s1) lim / sin(sL = §) cos(anl — ) —sin(sa L — §) cos(sL — §)
0 ™ L—oo 0

ds.
281(8—81) 148

o0 L3 L _
sin L (s sl)ds

Using the trigonometric addition formulas, [;° f(r)Jo(sir)rdr = LA(s;) lim /
L—oo Jg §— 81

The change of variables w = L(s — s;) shows that

/00 f(r)Jo(sir)rdr = Als1) /00 Sinwdw = A(s1)
0 T Joew W
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for s; > 0, using the sine integral (see exercise 10.3.9 (b) again). This gives a symmetric inversion
formula

A(s) = /0 ~ Fr)Jo(sr)rdr

10.3.16 Let t = ky™, so that dt = kny™ 'dy. Thus

n 1 t 1+
Pe—ky" gy = — Pet “e~tdt .
/0 ve v kn/o ve y"‘l kn/ @

Using the definition of the gamma function in exercise 10.3.14,

00 n 1
/ yPe M dy = k=PI (g)
0 n
where z —1=2 —lorz = (1+p)/n

Section 10.4
10.4.3 (a) Taking the Fourier transform yields

0a
ot

The solution of this initial value problem is

= —kw?a — iwci .

(w,t) = F(w) e hwlto—iwet
G(w)

Inverting using the convolution theorem yields
u(z,t) / f(@)g(z — z)dz

where the shift theorem determines g(z), g(z) = ,/f;e‘(”“"“)z/ 4kt Thus

u(z,t F)e~(@—2+et)*/akt gz
0= 7z [ 1@
10.4.5 (a) Taking the Fourier transform yields

ou 9 =

-(,-)—t' = —kw"a + Q .

A particular solution is obtained using the usual integrating factor.

10.4.5 (b) The general solution is a particular solution plus an arbitrary multiple of the homogeneous solution

]

t
2 2 = 2
=ce kWt 4 gk t/ Q(w,T)e* Tdr .
0

From the initial conditions, ¢ = @%(w,0) = F(w), the Fourier transform of the initial conditions.

10.4.5 (c) Using the convolution theorem,

mt)_—/ j[—(z 2)* 4kt gz b / Q@)
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10.4.6 Taking the Fourier transform yields
—w?Y +idY/dw =0,
since F[zf(z)] = —idF/dw. the general solution of this first-order differential equation is
Y(w) = ce~ /3

By using the formula for the inverse Fourier transform, we obtain

o .3 , b w?
y(z) = c/ e e gy, = 2c/ cos(— + wr)dw ,
—00 0 3

where Euler’s formula and symmetry has been used. The constant ¢ can be determined from the initial
conditon
V3

2 o0 w? 1
—2/3 2y = — hadll = 920Y23-2/3p(Z
37200 [ 1(3) = 0) = 2 [ con()ds = 263250 (5)
from exercise 10.3.17. Thus,
- 1 _sinw/3 1
VAT()T@)  «v3  or

from exercise 10.3.15. In this manner

o] 3
y(z) = Ai(z) = %_-/0 cos(% + wz)dw .

10.4.7 (a) By taking the Fourier transform of the pde, we obtain

ou . \3-
5= k(—iw)°a .

The solution of this ordinary differential equation is
ikwSt

w(w,t) = c(w)e ,

where c(w) is determined from the initial conditions, @(w,0) = F(w) = ¢(w). Thus

o0
u(z,t) =/ F(w)eik“’ate'i“’“dw.

—00

10.4.7 (b) If g(z) = [©_etk«’te=iwzdy then by the convolution theorem

wa) =5 [ " @9 - 2)dz .

10.4.7 (¢) Using symmetry and the change of variables kw3t = s/3 [or w = s/(3kt)!/?] yields

® k3 dw 2 & 33 S d
g(z)—/ cos(kw’t — wx) —W/o cos(?—@_k.t)_lﬁ;U) S .

—00

By using exercise 10.4.6, we obtain g(z) = (3ki’)’l 5 Ai [(3,;;1 ,3] , so that
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Section 10.5
10.5.3 Only the Fourier cosine transform of e has a simple expression:

—az? 2 oo —ax? 1 * —az? jiwe
Cle == e coswrdr = — e e“dx ,
0

T T J_ o

using symmetry. Thus .
Cle™*] =2 F[e™*'] = ——=e™"/4.

10.5.10 We use the inverse cosine transform of e~“*. From exercise 10.5.1 (see the table of Fourier cosine
transforms), zz3.z = f0°° e “*coswzdw . Differentiating this with respect to a yields

6 a *® —woa
3_(1 [m] =/0 (—w)e coswzrdw .
Thus 5 %0 — (o 2y
1 —wa] _ _ 9 0" 20— (z°+a
C™F [we™e] = o [_,,32 +a2] T T (@@ +a2)?

10.5.11 (a) We take the Fourier sine transform and obtain

oun 2 2
E_k(ww w*a) ,

where 4 is the sine transform and where (10.5.27) has been used. The general solution of this ordinary
differential equation is

w, t) = % + Aw)e ket |

By using the initial condition, @(w,0) = F(w) = A(w) + =

w
_ 2 2 ] _pw?t
(w,t) = — [F(w) ﬂw] e .

To invert this, we note from the tables that S[1] = 2/7w. Furthermore, the remaining term is the
form of a product, one the sine transform of a known function and the other the cosine transform of
a known function, Cle=2="] = e~%*/42 /\/7a, where we will let 4a = 1/kt or a = 1/4kt. Thus by the
convolution theorem for sine transforms [see the table or exercise (10.5.6)]

1 [ 1 T 7)2 s =)2
= = ) — 1] = |, [ —e—(&—8)°/4kt _ [ Z —(z+8)"/4kt
u(z,t) =1+ 77/0 [f(®) - 1] 5 [’/ i ‘/kte ] dz.

10.5.11 (b) By letting v(z,t) = u(z,t), we obtain %t‘i = kg%‘é subject to v(0,t) = 0 and v(z,0) = f(z) — 1.

This problem has been solved in Section 10.5. From (10.5.39)
o)1) =~ / 1 (@) — 1emE Ak _ (et skt g
Varkt Jo

10.5.11 (c) The answers are the same.

10.5.17 (a) By taking the sine transform of the pde, we obtain

ou 2 gt o
ETie k [ﬂ_wAe wa| ,
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where (10.5.27) has been used and where i(w, t) is the sine transform of u(z,t). Homogeneous solution
of this equation is e“k“’zt, while a particular solution is obtained by the method of undetermined
coefficients (judiciuous guessing). In this manner

a(w,t) = c(w)e ™t + w;:.izﬁ e'oot
ﬂmmMMwMMMhmM$M%m=0=dm+wiéy
10.5.17 (b) Ast — oo,e~***t — 0. Thus for large t @(w,t) ~ ;-i%:%ei“t .
Section 10.6
10.6.1 (a) By taking the Fourier transform in z, we obtain
—wli+ Ey—’j =0.

10.6.2

The boundary conditions for this differential equation are @(w,0) = F;(w) and @(w, H) = F3(w). The
solution of this equation, solving these boundary conditions, is

sinh wy sinhw(H —y)
sinhwH sinhwH

The desired solution u(z,y) is the inverse Fourier transform obtained by the defining integral, (10.3.7).

i(w,y) = F2(w)

+ Fl(w)

(b) The boundary conditions suggest the use of a cosine transform in y. By applying this transform,
Laplace’s equation becomes

d* —wa=0

dz? o

where @(z,w) is the cosine transform in y of u(z,y) and where (10.5.26) has been used, simplified by
Ou/dy(z,0) = 0. The solution of the differential equation is a linear combination of hyperbolic (or
exponential) functions. Since du/dz(L,y) = 0,04/8z(L,w) = 0. Thus

4(z,w) = A(w) cosh w(L —z) ,
where the other boundary condition u(0,y) = g1(y) becomes @(0,w) = G1(w), the cosine transform of

91(y). Thus
Gi(w) = A(w)cosh w L,

determining A(w). The solution u(z,y) is the inverse cosine transform, determined by the defining
integral, of u(z,w).

10.6.4 (a) By taking the sine transform, in z, we obtain

—wla+d*a/dy?* =0,
where @(w, y) is the sine transform in z of u(z,y). The general solution of this differential equation is
w(w,y) = a(w)e™™Y + b(w)e*? ,

where only w > 0 is needed. Since we assume u — 0 as y — 00, it follows that @(w,y) — 0 as y — oo.
Thus b(w) = 0, so that
t(w,y) = a(w)e ™Y .

The nonhomogeneous boundary condition du/dy(z,0) = f(z), becomes 0u/dy(w,0) = F(w) when the
sine transform is introduced, where F'(w) is the sine transform of f(z), F(w) = S[f(z)]. Thus

—wa(w) = S[f(z)],
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10.6.11

so that ]
u(w,y) = —=S[f (@)™ .

The apparent singularity at w = 0 may cause some difficulty in calculating the inverse transform. The
simplest way to determine u(z,y) is to first eliminate the singularity. Note that

0
%ﬂ(w, y) = S[f(z)]e™" .
The convolution theorem for sine transforms may be used since

he) = €™ = s

from the tables or exercise 10.5.1. Thus

Ou 1 Yy Yy =
55“””‘?/0 'f(w)[(m——i)2+y2_(w+f:)2+y2 -

By integrating this with respect to y, we obtain

2% +y®
wa) =5 [ f@nET T s+ (),

where Q(z) is an arbitrary function of z. Since u — 0 as y — 0o, we obtain Q(z) =

(a) By taking the sine transform in z and the sine transform in y, we obtain
ou
at k (wl + W2)U ,

where @(w;,ws, t) is the appropriate “double” transform of u(z,y,t). We introduce @ = (w;,w2) and
w=|W| = +/w?+w?. Then
(@) = o(@)e "t

where ¢(@) = F(@), the double transform of the initial conditions. Thus
u(z,y,t) = / / F(@)e ™t sin w2 sinway dw; dws ,

where F(&) = % [° [, f(z,y) sinwizsinwsy dzdy . We note that F(@) is odd in w; and odd in
wy. Thus the integrand in the double integral for u(z,y,t) is even in both w; and wy. Furthermore we
may extend f(z,y) as an odd function of z and y. If we replace sinw;z by e¥®1%/ + 4 in both double
integrals, no error is made since the cosine term makes no contribution due to its symmetry. Similarly
sinwyr may be replaced by e*™2/ £ i. Thus

wad) = [ [ -R@e e T b

—F(w) = / / f(=z, y)e’w ?d:vdy

These are related to the formulas for double Fourier transforms, where the convolution theorem may be
used so that u(z,y,t) satisfies (10.6.95). However, this answer depends on f(zg,¥yo) for —oco < zg < 0
and —oo < yg < oo while it is only naturally given in the first quadrant. We note that we have extended
f(z,y) as an odd function in both z and y. If we add up contributions from all four quadrants, we
obtain the answer given.
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10.6.12 (a) If we introduce first a sine transform in y, then
— 2 —

with 4(0,w,t) = %(L,w,t) = 0 and the initial conditions @(z,w,0) = F(z,w). Here @(z,w,t) is the
sine transform in y of u(z,y,t). The pde for @(z,w,t) is suited for the usual Fourier series in x

i(r,w,t) = ZA wt)sm— (8)
where the initial conditions yield

L
Fla,w) = ZA"(w 0) sm% or Ap(w,0)= /0 F(z,w)sin ?dm.

n=1

By substituting (8) into the pde, we obtain the differential equation satisfied by A, (w,t):
dA,/dt = —k[(nm/L)? + w?]A, .

Thus
An(w, t) = An(w, O)e—k[(nﬂ-/L)2+w2]t .

By inversion of the sine transform
*® (& N
u(z,y,t) =/ ZAn(W,t)sin— sinwydw,
0 n=1 L

where A, (w,t) is given above with

L poo
Ap(w,0) = Liw/o /0 f(z,y) sinwy sin ?dydx ,

since F(z,w) is the sine transform in y of f(z,y).
10.6.15 (a) We introduce @(a,2) the double Fourier transform in z and y of u(z, y, 2):

du
2
—-Ww U+F—O

where w = y/w? + w? > 0 . The general solution of this equation is
a(d,z) = A(@)e ¥* + B(d)e¥*

Since v = 0 as z = oo, if follows that @ — 0 as z — oo, and hence B(@) = 0. Furthermore, the
boundary condition at z = 0 is that @ equals F(@) there, the double Fourier transform of f(z,y):

a(@2) = F(@)e % .
10.6.15 (b) By using the convolution theorem for double Fourier transforms
u@,9) = gz [[ £@0)(? = Po)daodyo
where the double Fourier transform of g(7) is known to equal e~“*:

Fla(®) = e
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Determining g(7) is not easy. From the general inversion formula

2
9(7)) — // e—wze—iﬁ.T)dwldw2 — / i /oo e—wze—iwrcos(¢—0)wdwd¢ ,
0 0

where the latter integral is obtained using polar coordiantes. If polar coordinates were chosen oriented
in the direction of 7 (which is ) then @ - 7 = wr cos ¢, which is equivalent to replacing 6 by 0 in
the double integral. The w -integral (and what follows) is easier by integrating from oo to z:

/g(-,,-.\ /2"/ e o8 b

. 2 _ . . . .
since [ o€ wdz = —e™¥* |3 = —e™“* . The w integral is now easy

z 27 —w(z+ircosg) | 2m
/ g(?)dz:-/ £ d¢>:—/ dé
=) 0o - 0

(z+1ircos¢) |, z+ircos¢

z 27 : 2T
_ Z—1ircos¢ _ do
/oo 9(7)dz = /0 22 4 r2 cos? ¢d¢ = /0 22 +r2cos?¢’

since the cos ¢ integral is zero by symmetry. The resulting integral can be put in the given form

Thus

2 2 de -2z
‘? dz = — / = ?
/oog( )dz Z o (22 +712)cos? ¢+ 22 sin ¢ 2(22 +72)1/2

for z > 0. Differentiating this yields g(7) = 2mwz(2% 4+ r2)~3/2 | so that

f(Zo,Y0)
ue2) = / / w (@ =20l + (g - )7 + 7200

10.6.16 (b) We want the radial problem to be an eigenvalue problem. By separation of variables of Laplace’s
equation in polar coordinates, u(r, ) = ¢(r)h(6),

d’h d d¢

T Ah  and r%(r%) +Xp=0;
see (2.5.37) and (2.5.40). The eigenvalue problem consists of the radial equation, to be solved subject
to ¢(0) bounded and ¢(a) = 0. this is in the form of a singular Sturm-Liouville problem, singular
at 7 = 0. In some sense, though, the eigenfunctions will be orthogonal with weight 1/r. The radial
differential equation is equidimensional

so that solutions are in the form ¢ = P with p(p—1)+p+X = O or p = +iv/X . Since r¥iVA = ¢£iVAlr,
real solutions are linear combinations of sin(v/X Inr) and cos(v/A Inr). However, the boundary condi-
tion at r = a is most easily satisfied using the following set of independent solutions:

¢ = c1 cos (VA lng) + ¢ sin (VA ln%) .
Here ¢(a) = 0 implies that ¢; = 0, so that
o(r) =co sin(\/x In 2)

The other condition, ¢(0) is bounded, is satisfied for all A > 0. We thus use the generalized superpo-
sition principle of integrating over A. We introduce w = v/X and integrate over w instead:

oo
ug(r,6) = / A(w) sinh w8 sin (wln g)dw ,
0
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where we have noted that the #-dependent part which satisfies h(0) = 0 is sinh w§. The nonhomoge-
neous boundary condition becomes

g2(r) = / A(w) sinh w—sin (wln =)dw .
0 2 a

In order to determine A(w), it is convenient to consider the variable p = —In(r/a). As 0 < r < a, it
follows that 0 < p < 00, a semi-infinite variable similar to the type that transforms might be used for:

(oo}
mm:/'pmmmmwgmm@m.
0
Thus —A(w) sinh w /2 is the Fourier transform in p of ga(r), and hence by definition of its transform
. T 2 [% .
—A(w)sinh w- = = g2(r)sin wpdp .
2 mJ
We may return to the physically meaningful variable r, by noting that dp = —dr/r in which case
a
—A(w) sinh we = —?-/ g2(r) sin [wln r/a]éf- .
2 T Jo T

Note the appearance of the "weight" 1/r .
10.6.18 By taking the Fourier transform in z, we obtain

U 4 5
—625'——6(4)“,

where %i(w, t) is the Fourier transform in z of u(z,t). The general solution of this differential equation
is
(w,t) = A(w) cos cwt + B(w) sin cwt .

By transforming the initial conditions, we obtain

a m —_—
70,0 =GWw),

where G(w) is the Fourier transform in z of g(z). Hence 0 = A(w) and G(w) = cw B(w). Thus

i(w,0) =0 and

sin cwt

@(w,t) = G(w) =§G@w@y
We note that in the tables (or by exercise 10.3.6) that if

0 |z|>ct
f(x)_{l lz| < ct,

then F[f(z)] = F(w) = sin cwt/mw. This enables us to use the convolution theorem for Fourier

transforms: 1 [
T _ s
uet) = Tz [ o(@) (e - a)aa),
where | |
~_J O jz—z|>ct
f(‘”_”)‘{l |z —z| <ct.
Thus

1 T+ct
u@ﬂ=%/ o(z)dz .

—ct
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Chapter 11. Green’s Functions for Wave and Heat Eqns

Section 11.2
11.2.6 (a) From (11.2.24),
t [e5s}
U(f'?,t)=/ / G(z,t; xo,t0)Q(z0, to)dzodto ,
0 —00

0 |z — 0| >c(t—to)
here fi 11.2.31-32) G =
where from ( ) { §lc_ |z — zo| < e(t —to) .

Contributions only occur if z — ¢(t — tp) < o < T + ¢(t — to). Thus

z+c(t—to)
u(z,t) / / (:L'o, to)dwodto .
z—

c(t—to)

11.2.6 (b) If z = z;1,t = t1, then 1 — ¢(t1 —to) < To < 21 +¢(t1 — o), as sketched on page 746 for 0 < tp < t.

11.2.7 (a) From exercise 11.2.6,

z+c(t—to)
u(a: t) = / / Q(Zo,to)dfl)odto .
z—

c(t—to)

If Q(z,t) = g(x)e~™¢, then

z+c(t— to) .
U(:L' t / / —iwito d.’l?odto .
20 z—c(t— to)

In order to do the tp-integration first, the order of integration must be interchanged, requiring an
analysis of the triangular region (see page 746). If z is first fixed, there appears to be two cases,
zo < z in which case to ranges from 0 to ¢t — £=%¢ and zo > z in which case ¢y ranges from 0 to

t — 2=2_ Both correspond to tp ranging from 0 to ¢ — J”’T”"l Thus

z+ct t—lz==ol ]
u(:c, t) = —/ Zo)/ _Wtodtodxo .

By performing the to-integration, we obtain

1 /.’B+Ct —iw(t—'m_:gl)]fl_@ or
T

u(z,t) = % g(zo)[l —e o

—ct

uwt)= [ " g(@0)I(x, z0)dzo ,

where the influence function I(z, o) satisfies

0 |z — x| > ct
I(z,zo) = (it 220l

T |z — zo| < ct .

;ol —iw(t—2072)

If £ > xp, then e~ ™(t- occurs which is right-going (outward), while if z < z¢, then e
occurs which is left-going (also outward). This outward propagating influence function does not have
an infinite spatial extent. Instead, it is cut-off at a distance corresponding to the propagation velocity
+c.
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11.2.8 (a) From (11.2.24)
t
w(@ 1) = / / / G2, P0,10)Q(Z0, to)dVodto ,
0
where Q(Z0,t0) = g(Fo)e ™ and the Green’s function satisfies (11.2.47) with p = |& — @|. Thus

u(T,t) = / / / / 8[p = c(t — to)]e"“dVydtyo .

The singularity occurs at to =t — M However, note that d(ct) = ]—[6(t) [see (9.3.34)]. In order
for tg > 0,¢ > Z=Zel_ Thys

() = / / W@ I(Z, Zo, )V ,

where
0 t< 2Tl
I(?a?O,t) = 1 e—iw(t—ﬂo—l) > ? ?0
4rmc?| T -0 ol ’ :
Notice that the region of influence is |Z — Z¢| < ct, the inside of a sphere expanding (outward) as t
increases.

11.2.10 (a) By symmetry, a negative image source at (—zo,to) may be used so that
G(.’E, t) Zo, tO) = Goo(x’ t’ Zo, tO) - Goo(fl?, t’ —Zo, tO) )
where G, is given by (11.2.31-32).

11.2.10 (b) We use the one-dimensional version of (11.2.16). At z = 0,7 = —1, and at £ = 00,7 = i. Thus
a o0
E— == _ to .
u(z,t) c /( P Gamo)0 dto

Since G = 8G/0z¢ = 0 at zo = oo and G(z,0) = 0 because G(0,z) = 0. Thus

t o aG
(o, t) = ¢ /0 h(to) 5

0 zo=0

dtO ’ (9)
since u(0,t) = h(t). We evaluate 0G/dz, from part (a):
Gz, t; 70, to) = 2lc{—ﬂ[a: — w0 — et — to)] + Hlz — 30 + c(t — to)]

+H[z + 2o — c(t — to)] — H[z + zo + c(t — t0)]} ,

gﬂi 1{5[:1:—:1:0—c(t—to)]—é[x—wo+ct—to)]
+6[z + o — c(t — to)] — 8[x + o + c(t — t0)]} ,
g—z - %{5[.7: — et —to)] = 8[z + oft — to)]} = %5[:,; — et —to)],

since 6[z + c(t — to)] = 0 because z > 0 and ¢t > tp. Thus from (9)

¢
u(z,t) = c /0 h(to)éé[x —c(t — to)] dito

t T
= / h(to)sto + = — 1) dto ,
0 C

because of (9.3.34). Thus

u(z, t) = 0 if z>ct
T Mt-2) if 0<z<ect.
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11.2.12 (a) The solution is obtained from (11.2.24) using the three-dimensional infinite space Green’s function
for the wave equation (11.2.39). In this manner

G(z,y,t;21,y1,t1) = 47rc/ // =d8[p — c(t —to)] - 6(xo — 21)0(yo — y1)d(to — t1)dzodyodzodto ,

where p?> = [(z — 20)? + (y — ¥0)? + (2 — 20)?] and where we will need to show our answer does not
depend on z. The xo, yo, to integrals are easy due to the delta functions. If ¢ > ¢;, then

(o o]

1
G(z,y,t;x1,y1,t1) = E&[pl — ¢t — t1)]dz0 ,

4me J_
where p? = r% + (2 — 20)? and r is the two-dimensional distance from source point to response point
r=[@—z)"+ @ -,

The integrand is symmetric around zo = 2,20 = 2z £ (p} — r2)1/2. Thus

1 1
G(z,y,t;71,Y1,t1) = e Z5[P1 —c(t —t1)]dzo -
2

It is now convenient to change varlables (fix ), p2 =712 + (2 — 20)? so that 2p1dp1 = 2(z — 20)(—dz0).
Thus G(z,y,t;z1,y1,t1) = Z”C fr 8[p1 —c(t —t1)]dp1. There is an impulse at p; = c(t —t;). Thus

ZO—Z

if r> C(t—tl)

0
G((L‘,y,t;(b‘l,yl,tl):{ L 1 if 7'<C(t—t1).

Ine JeA(t—t1)2—12
Section 11.3

11.3.2 (a)f [p—+r +qu]d:c— ufrv — £ ]| + pv| +f u[qv+m(p'v)— = (rv)]dz ,

L(u)

. 2
since vpz¥ = FHUPf) ~ FH(P) , FH ) = Flu

uf; (rv) . By letting

2
- u%;(vp) , and vr% = %(vm) -

£ (vp))

. d*v dv ,d’p dr
L(’U) 2(pU)——(T’lI)+q’U—pd2+(2 )d—+(dx2_da:+Q)v’
b
we obtain f:[vL(u) —uL*(v)]de = —H| , where
a
_.d _ dv du dp
H(@) = - (vp) — vr] - po'hs = plu e v %) 4 (2
If L = L*, then
d? d’p dr d
Pt O N (G- O =g g e

This requires 2dp/dx — r = r and d?p/dz? — dr/dz = 0. Consequently r = dp/dz, which results in

d d
L—E(Pa)'i'q

11.3.6 (c) We use the one-dimensional version of (11.3.21). Since fi = —i at z = 0,

t 8G Ou
w(z,t) = k /0 (000, t0) 5 (2,0, o) — G, 50, t0) (0, to)ldto.
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Since the Green’s fucntion satisfies the homogeneous boundary condition, G(0,t; zo,%0) = 0, which
because of symmetry yields G(zo,to;0,t) = 0. Thus,

t
u(z,t) = k/o u(0, to)g—z(z,t; 0,t0)dto -

For the Green’s function we use (11.3.34). Thus

1 {(m—xo) [ (w—xo)2]+ (z + z0) p[_(z+xo)2]}

aG
a_:z(,(“”t’””°’t°)‘,/—4,rk(t_to) 2t —t0) P |Tak(t —to) | | 2kt —to) T | 4k(t - to)
and G Tt = to) 2
xr — 1o T
= (2,t;0,t0) = —A—————exp |- | ,
6wo(m ) \/41rk(t—t0)exp [ 4k(t — to) |

so that in general since u(0,t) = A(?),

(l;2

u(z,t) = m/o Alto)(t — to) 3 2exp [Zk(:——to) dto .

In the given case where A(tg) =1

T

t 2
t — to) " 2ez [L] dto .
’_47rk/o ( 0) 4 2kt — to) 0
This can be simplified by the change of variables n = ﬁj and thus dn = ;2= (t — to)~3/2dty. In

u(z,t) =

this manner, we obtain
2 {o0)

2
—_— e "dp.
ﬁ z/V4kt

u(z,t) =

11.3.7 The Green’s function satisfies the related homogeneous boundary condition 0G/0z = 0 at = 0. This
boundary condition can be satisfied using one-dimensional infinite space Green’s functions (11.3.27),
if we introduce a positive image source at (—zo,%p). In this manner, the desired Green’s function is

Gz, £ 70, t0) = \/ﬁs {ea:p [-L‘:(;—f‘%] +eap [—%—(%] } .
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Chapter 12. Method of Characteristics

Section 12.2

12.2.2 The general solution of the pde is
w(z,t) = P(z + 3t)

using (12.2.12) since ¢ = —3. In order to satisfy the initial condition, w(z,0) = P(z) = cos x. Therefore

w(z,t) = cos(z + 3t) .
12.2.5 (b) Using the ideas of subsection 12.2.2, if dz/dt = z, then dw/dt = 1. The characteristics satisfy

T = zge’, (10)
where the characteristics start (¢t = 0) at z = zo. Along the characteristics
w(z,t) =t+wo,
where wg is the value of w at t = 0 where z = zo, i.e., wo = f(zo). Thus
w(z,t) =t+ f(zo) =t + f(ze™),
using (10) to solve for zo as a function of z and ¢.

12.2.5 (d) Using the ideas of subsection 12.2.2, if dz/dt = 3t, then dw/dt = w. The characteristics satisfy

T = gtz + zo (11)

where the characteristics start (¢ = 0) at £ = zo. Along the characteristics,
w(z,t) = weet

where wy is the value of w at ¢t = 0, where = z, i.e., wo = f(zo). Thus
w(z, 1) = f@)et = f(z - 3t

using (11) to solve for zo as a function of z and ¢.

12.2.6 Using the ideas of subsection 12.2.2, if dz/dt = 2u, then du/dt = 0. The latter equation states that
u is constant along the characteristic. If the characteristic starts (¢t = 0) at zo, then u = f(zo) there
and everywhere on this characteristic. Thus

T = 2f($0)t+.’l’0 ’

since £ = o at ¢t = 0. These characteristics are straight lines with velocity 2f(zo). However, they are
not necessarily parallel to each other, as different lines have different slopes.

12.2.8 The characteristics satisfy £ = 2f(zo)t + zo. If o > 0, then f(zo) =2:
r=4t+xo .
Along these characteristics (zo > 0) u = 2. Thus
u=2 for z>4t.
If zo < 0, then f(zp) =1:

r=2t+xo.
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Along these characteristics (zg < 0)u = 1. Thus

1 for z<2t
Y=Y 2 for z>4t.

We have not determined what occurs for 2t < z < 4t. In the limit as L — 0 of exercise 12.2.7, all
values of u between 1 and 2 occur at the discontinuity at zo = 0. Thus there are an infinite number of
characteristics starting at o = 0, each satisfying

z = 2f(zo)t
u(z,t) = f(zo) -

By eliminating f(zo) in this "fan-shaped” region
u(z,t) =z/2t .
Thus

2 T >4t.
This is similar to the result sketched in Figures 12.6.4 and 12.6.5.

1 T <2t
u(z,t) =< z/2t 2t <z <4t

Section 12.3

12.34 (a) & = dPlact (—c)|t=0 = —c4E(z) .

d(z—ct
dF(z— dF(—
12.34 (b) & = W(E__;Z = T(i__tgz =-14p(—a) .

Section 12.4
12.4.1 The general solution of the wave equation is given by (12.3.4)
u(z,t) = F(z —ct) + G(z +ct) . (12)

Since for z > 0 u(z,0) = 0 and du/dt(z,0) = 0, it follows from (12.3.10-11) that
F(z)=0 and G(z)=0 onlyfor z>0.
The boundary condition, u(0,t) = h(t) for ¢t > 0, yields
h(t) = F(—ct) + G(ct) if t>0. (13)

We now can evaluate (12). If z > ct, then the arguments of both F' and G are positive and there
F =G =0. Thus
u(z,t)=0 if z>ct.
However if z < ct, then the argument of F only is negative. From (13), letting z = —ct,
F(z) =h(-z/c) —G(-2z) for z2<0.

Thus
T —ct

F(z —ct) = h( — ) — G(ct — ),

resulting in
u(z,t) = h(t — %) — G(ct — z) + G(z + ct)

if z < ct. In this case both arguments of G are positive, and hence both G equal zero. Thus

(s, t) = 0 z>ct
T Mt-%) 0<z<ct.

It is very helpful in understanding this result to sketch characteristics (as for example in Figures 12.4.1
and 12.4.2).
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12.4.2

12.4.6

The general solution of the wave equation is given by (12.3.4)

u(z,t) = F(z — ct) + G(z + ct) . (14)

The initial conditons are only valid for z < 0. Thus (12.3.10-11) implies that
G(z) = %cos z and F(z)= %cos z for z<0. (15)

The boundary condition, u(0,t) = e~* for ¢t > 0 yields
et = F(—ct)+G(ct) for t>0. (16)
We now can evaluate (14). If z < —ct, then the arguments of both F' and G are negative, and there

F =G =1/2cos z. Thus

1 1
u(z,t) = §cos(a:—-ct)+§cos(:c+ct) =cosz cos ¢t ,x < —ct.

If —ct < z < 0, then the argument of G only is positive. From (16), letting z = ct
G(z)=e*°—F(-z) for 2>0.

Thus for zx +ct > 0
G(z + ct) = e~@+D/e _ P(—g —ct)

which yields
u(z,t) = e~ @tet/e _ F(—z — ct) + F(z — ct)

if 4+ ct > 0. In this case both arguments of F' are negative, and hence (15) may be used:
—(t4z/e) , 1 1
u(z,t) =e + 3 cos(z — ct) — 3 cos(—z — ct) .

In conclusion
w(z, 1) = coSs T cos ct z+ct <0
T e~(te/d) fsingsinet z4ct>0.

Figure 12.4.1 reflected around the t-axis, i.e., z replaced by —z, shows the important characteristic,
z+ct=0.

The general solution of the wave equation is given by (12.3.4)
u(z,t) = F(z — ct) + G(z + ct) .
The zero initial conditions from (12.3.10-11) imply that
F(z)=0 and G(z)=0 onlyfor z>0.

Since z + ct > 0, it follows that
u(z,t) = F(z —ct) .
To apply the nonhomogeneous boundary condition, we calculate:
ou _dF(z —ct)
E—a—:(w’t) T od(z—ct
and thus
dF(—ct) _ 14d

Ou
%(O, t) = W = EEZF(_Ct) = h(t)
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for t > 0. Consequently
t
Fl=ct) = —c / h(B)dE
0

where we have used F(0) = 0 since we have assumed F(z) is continuous and we already know F(z) =0
for £ > 0. We note that (z = —ct) for 2 < 0

—z/c
F(z) = —c / h(B)dE
i}
and hence
t—z/c
F(z—ct):—c/ h(t)dt if z—ct<O0.
0

In summary,
0 z>ct

u(@t) = { —cf(f—% h(®)dt z<ct.
12.4.7 The general solution of the wave equation is given by (12.3.4)
u(z,t) = F(z — ct) + G(z +ct) . (17)
The initial conditions (valid for z > 0) are applied in (12.3.10-11). Since it is initially at rest,
1
F(z) =G(z) = Ef(x) for z>0.

The boundary condition requires du/0x:

Ou dF(z—ct)  dG(z +ct)
0z d(z —ct) d(z +ct)

Evaluating this at x = 0 yields
1d 1d
By integrating this, we obtain for ¢ > 0
t
¢ / h(@)dE = —F(—ct) + G(ct) (18)
0

since G(0) — F(0) = 1£(0) — 3 f(0) = 0 by continuity. In (17) G is known for positive arguments, but
F is not known for negative arguments, needed if z < ct. However, from (18), letting z = —ct

—z/c
F(z) = G(—2) — ¢ / h@dE for z<0.
0
Consequently, for z — ct < 0 (i.e.,, 0 < z < ct)
t—z/c
F(z—ct)=G(ct —z) — c/ h()dt .
0

We thus can calculate u,

[ slf@+et)+ fla—ct)] z>ct
u(m’t)_{ ;[f($+0t)+f(ct—z)]—Cﬁ_m/ch(f)dt' T <ct.

65



Section 12.5

12.5.1 (b) By separation of variables, u(z,t) is given by (4.4.11) where the conditions for A, and B, are
given in (4.4.12) and (4.4.13). If g(z) = 0, B, =0 and

nwT nmwct
L

o0
u(z,t) = Z Ay sin cos ——,
n=1

where f(z) = Y o2, Apsin 2f2 for 0 < z < L. However, the series does not equal f(z) outside of
0 < z < L. Instead, from the theory of Fourier sine series.

Z A, sin ? = f(z), (19)
n=1

where f(x) is the odd periodic extension of f(z). Since sin a cos b = }sin (a + b) + sin(a — b), it
follows that

u(z,t) = % X:A,1 sin %(x + ct) + % ZA" sin PLI(::: —ct) .
n=1 n=1
Thus from (19)
1. _
u(z,t) = {f(z +ct) + fla - et)],

where f(z) is the odd periodic extension of f(x). This is the result found on page 545.

Section 12.6

12.6.1 (a) By integration, p(z,t) = c(z), where ¢(z) is an arbitrary function of z. From the initial condition,
p(z,0) = f(z) = ¢(z). Thus the solution is

plz,t) = f(z) .
12.6.1 (c) This is an ordinary differential equation, keeping z fixed, whose general solution is
p(z,t) = A(z)e™>",
where A(z) is an arbitrary function of z. From the initial condition p(z,0) = f(z) = A(z). Therefore
p(z,t) = fz)e 3.
The method of characteristics can also be used (if dz/dt = 0, then dp/dt = —3zp).

12.6.2 This is an ordinary differential equation, keeping z fixed, whose general solution is
plz,t) = A(z)e’
where A(z) is an arbitrary function of z. The condition says that
1+sin ¢ = A(z)e’ = A(z)e™"/?
since this is given along z = —2¢ (equivalent to ¢t = —z/2). Thus
A(z) = €*/?(1 +sin ) ,

yielding the solution
p(z,t) = €*/2(1 + sin z)e* = (1 + sin z)ett % .
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12.6.3 (a) The general solution of this pde is
p(z,t) = Az — cot) ,
where A is an arbitrary function. From the initial condition, p(z,0) = A(z) = sin z. Therefore,
p(z,t) = sin(z — cot) .
By the method of characteristics, if dz/dt = co, then dp/dt = 0. The characteristics satisfy
T = cot + o ,

where z(0) = zo. Also
p(z,t) = p(xo,0) =sinzg ,

from the initial condition. Thus,
p(z,t) = sin(z — cot) .

12.6.3 (b) By the method of characteristics, if dz/dt = co, then dp/dt = 0. The characteristics that start at
z(0) = zo for zg > 0 are
T =cot+xg .

From the initial condition
p(z,t) = p(z0,0) = f(zo) for zo>0.

Thus p(z,t) = f(z — cot) for zo = z — cot > 0. However, there are characteristics that start at z =0
at t = tg < 0. For these
T = co(t —to) -

From the boundary condition

p(z,t) = p(0,t0) = glto) for to=t—(—i%>0.

to =t — x/cp is called the retarded time. In summary,

_ [ f(x—cot) x>cot
p(:z:,t)—{ g( —%) cot>z>0.

12.6.4 (a) The condition u(0) = Umaz yields @ = Umaz, While U(Pmaz) = 0 yields 0 = o + Bpmas OF
B = —Umaz/Pmaz- Thus u(p) = Umaz(l — p/Pmaz) - The flow satisfies ¢ = pu, and hence g(p) =
UmazP(l = p/Pmaz) - This is a parabola which is concave down with ¢(0) = g(pmaes) = 0.

12.6.4 (b) The flow is maximum where
q'(p) = Umaz(1 = 2p/pmaz) = 0.

Thus p = Pmaz/2, U = Umaez /2, and hence ¢ = Pmazlmaz/4 is the maximum flow.
12.6.8 (a) By the method of characteristics, if dr/dt = c, then dp/dt = e~3%. The characteristics satisfy

r=ct+xo, (20)

where z(0) = zo. Along the characteristics
dp/dt = e=3(ct+20) |

Since zg is constant, by integration

p(z,t) = -_713—06_3(“"'“) +k, (21)
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where k is determined from the initial condition

p(z0,0) = f(zo) = —3}56‘3“0 +k. (22)
Using (20) - (22),
plz,t) = _3%6—33 + %e_s(z_“) + f(z —ct) .
12.6.8 (c) By the method of characteristics, if dz/dt = t, then dp/dt = 5. The characteristics satisfy
T = %tz + o, (23)

where z(0) = zo. Along the characteristics,
p(z,t) = 5t + p(20,0) ,

since at t = 0,z = zo. From the initial condition and (23)
L,
p(z,t) =5t + f(z — Et ).
12.6.8 (e) By the method of characteristics, if dz/dt = —t2, then dp/dt = —p. The characteristics satisfy
T= -%t3 + 20, (24)

where £(0) = zo. Along the characteristics, p satisfies an ordinary differential equation whose general
solution is

p(z,t) = p(z0,0)e™"
since at t = 0,z = zo. Furthermore, p(zo,0) = f(zo). Therefore, from (24)

p(z,t) = f(z + %t3)e"t .

12.6.8 (g) By the method of characteristics, if dz/dt = z, then d p/dt = t. The characteristics satisfy a
differential equation whose solution is
r = .’L'oet , (25)

since z(0) = zo. Along these characteristics,
1
p(z,t) = §t2 + p(20,0) ,

since at t = 0,z = z¢. Furthermore, p(zo,0) = f(zo). Therefore, from (25)
1
p(z,t) = §t2 + f(ze™?) .

12.6.9 (a) By the method of characteristics, if dz/dt = —p?, then dp/dt = 3p. Along the characteristics

p(z,t) = p(zo,0)e™
since we choose = g at t = 0. thus the characteristics satisfy

Z—f = —p*(z0,0)e’* .
Since zq is constant,
T = —%(eet — 1)p?(x0,0) + 2o .
From the initial condition p(z¢,0) = f(z¢), we have a parametric representation of the solution:
p(z,t) = f(zo)e®, where o satisfies z = —§ (% — 1) f2(z0) + zo.
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12.6.9 (c) By the method of characteristics, if dz/dt = t2p, then dp/dt = —p. Along the characteristics
p(IL‘,t) = p(a"0>0)e_t ’
since we choose = xg at t = 0. The characteristics satisfy

d
d_:: = t2e"tp(0,0) .

Since zg is constant and p(zg,0) = f(zo) ,

¢
T = f(xo)/ e~ Tdr + 70 , (26)
0

where the integral can be evaluated (by tables, symbolic integration routines, or repeated integration-
by-parts). A parametric representation is

p(z,t) = f(zo)e™,

where z, satisfies (26).
12.6.14 (a) Since p = f(z —Vt),pt = =V f',px = f', etc.. Therefore
2f

V' + umaz (1 — V' =vf".
pma:c
12.6.14 (c) By integration
2
‘—Vf+umam(f_ f ) =Vf'+c'
mar

If f — ps as £ — oo such that f' — 0, then —Vps + umaz(p2 — _p§_) = ¢. Similarly as £ = —o0

Pmaz

2
—Vp1 + Umaz(p1 — p—:{;) = ¢. Subtracting these yields

p3 P
V(Pl - P2) + Umaz (P2 — )
Pma

mazx

=0.

) — Umaz (Pl -
z

Thus ) )
_ umaa:(P2 - p_:::) — Umaz (Pl - p_mlpa:j

- )

P2 —pP1
where long division yields the given answer. However, in this form V = [g]/[p] since ¢ = pu and
U = Umaz (1l — p/Pmaz) if v = 0. This is the same as the shock velocity derived in (12.6.20).

12.6.17 (a) The pde is (12.6.12) where c(p) = ¢'(p), where ¢ = pu = Umaz(p — p2/Pmaz)- Thus

c(p) = Umaz(1 — 2p/Pmaz) -

By the method of characteristics, if dz/dt = c(p), then dp/dt = 0. Since p is constant along the
characteristics, the characteristics are straight lines. We use the notation z(0) = zo. We need to
calculate the density wave velocity for p = pmaez/5 and p = 3pmaz/5:

c(Pmaz /D) = BUmaez/5 and c(3pmac/5) = —Umaa/5 -
Thus, if £ > 0, from the initial condition
p(z,t) = 3pmaz/D along T = —Upmat/5+ zo ,
while if z¢ < 0,

p(Z,1) = Pmaz/5 along z = 3umazt/5+ o .
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These two families of characteristics intersect as in Fig. 12.6.9 (a), though if > zo, the slopes of the
lines should be negative here. Thus a shock exists separating p = pmaz /5 from p = 3pmas/5, starting
at z; = 0 at t = 0. The shock velocity satisfies (12.6.20):

3 2 1 4
dzg _ [(I] _ 5Pmaz * §Pmaz — 5Pmaz * 5Pmaz _ Umaz

dt (o] oo s Pmaz — %pmam 5 7

since ¢ = pu and u(%pmu) = %umam and u(%pmaz) = %pmaz. Figure 12.6.9 (c) is valid with z, = #ma=¢,
and thus / N
_ Pmez/d z< ._msnat
p(z,t)—{ 3Pmac /5 x> tmext.

In addition Fig. 12.6.10 is valid with the changes reflected by the above formula.
12.6.18 (b) The pde is (12.6.12), where
U = Umaz(1 = p*/Pras)
g = pu = tmaz (p = P*/Prnas)
c(p) = 4'(p) = timaz(1 = 36°/Phaz)-
Sinc:;1 1q” (p) < 0,q¢(p) is concave down. Furthermore ¢'(p) is a decreasing function of p. Thus, since
initially

) <0
p(x,o)_{p2 >0

with ps < p1, the faster density wave velocity is ahead of the slower density wave velocity. Thus density
will spread out necessitating fan-like characteristics. By the method of characteristics, if dz/dt = c(p),
then dp/dt = 0. The characteristics are straight lines. We use the notation z(0) = zo. Thus, if o >0
from the initial condition

p(z,t) = pa along z =c(p2)t+ 20,

while if zg < 0
p(z,t) =p1 along z=c(p1)t+zo .

Since these diverge, Figure 12.6.4 is valid. So far

p2 T >c(pa)t
1) =
CURE Bl

but we have not determined p(z,t) for c(p1)t < z < ¢(p2)t, since ¢(p2) > c(p1). There, by the method
of characteristics, = ¢(p)t, since at t = 0,z = zo = 0. We solve for p(z,t) there as follows:

x
7 = c(p) = Umaz(1 — 3p2/p$naa:)

T
Umazt

and hence 3p%/p%,,, =1— or

Pmaz T
T,t) = 1- .
p(z,1) 3 —

This is valid in the fan-shaped region, c¢(p1)t < = < ¢(p2)t.
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Chapter 13. Laplace Transform
Section 13.2
13.2.4 Using the convolution theorem with g(t — ) = 1 (and hence g(t) = 1),

c[[ r0at] = F60) = P,

since g(t) = 1 implies that G(s) = 1/s. An alternate method to derive this result is to let

u(t) = /ot F@dE, sothat du/dt=f(t).

By taking the Laplace transform, we obtain sU(s) = F((s) or U(s) = F(s)/s, since u(0) = 0.

13.2.5 (b) We use
L[-tf(t)] =dF/ds .

Here f(t) = —sin4t, so that F(s) = —4/(s? + 16). Thus

. d -4 8s
Llsindl] = G316 ~ @102

13.2.5 (d) We use
Lle*f(t)] = F(s - a)
with @ = 3 and f(t) = sin4¢. Since from the tables

4 _ 4
(s—3)2+4+16 s2—65+25"

F(s) = Er?-TG’ we have L[e3f(t)] =

13.2.5 (f) It is possible to express f(t) in terms of step functions:
f@t)=t[H(t-5)— H(t-8)].

Now we use the formula
LIft—bH(t—b)]=e"F(s).

with b = 5. We want f(t — 5) = t2, and thus f(t) = (¢t + 5)2 = t? + 10¢ + 25. From the tables,
F(s)=%+ 3% + 2. Thus

2 10 25
2 — =5
£[tH(t—5)]—e s(s—3+:9—2'+?).
Also f(t — 8) = t2, and thus f(t) = (t + 8)? = t* + 16t + 64. From the tables, F(s) = & + 1§ + & .
Thus
2 10 25 2 16 64
2 _ _ _ — —5s¢ < - Yy —8s “ fahd il
LC{t’{[H(t—-5)—H(t—-8)]}=e (83+32+ s) e (83+32+ s)

13.2.5 (h) We use the formula
LIH(t - b)f(t—b)] = e " F(s)

with =1 and f(¢) = t*. Consequently from the tables

Llt-1)*Ht-1)] = e_’:—; :
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13.2.6 (¢) We use the method of partial fractions

s _ s _a n b
s24+8+7 (s+7(s+1) s+7 s+1’

where from (13.2.4)

. s 7 ) s -1
a=lm —7=5 ad b=tm 7 7%
Thus . .
-1f_ 8 N _f -m_ It
£ [32 +8s+ 7] 65 "6
13.2.6 (j) First we let
s+2 a b c

F(s)

=s(s2+9)=§+s+3i+s—3i’

using complex roots, where

pem SF2 2 842 2-30 L s+2 2430
T 208249 9 T so-3is(s—3i) —18 ' so+3is(s+3i) —18
Thus 2 243, 2-3i 2 2 3
_ 4 T 3it O -3t _ 42 N g
f(t)—9+ 18 ¢ + 15 ¢ 9 9cos3t+18( 2isin 3t),

using Euler’s formulas. This can also be obtained by noting F(s) = gég + %gﬁz and therefore

c1s+co s+2 2/9 s+2-2(s*+9) s—2s* 1-32s

$2+9  s(s2+9) s s(s2+9) T s(s2+9) s2+49°

In this manner using the tables

2 1 2
=24 Zgi -~z .
f(t) 9+3sm 3t 9cos3

We also need to invert —5e~4*F(s) . From the table the inversion of this is —5H (¢t —4) f(t — 4) . Thus

_1[ S+2

. 2 2 1, 2
5E19) s1n3t—§cos 3t—5H(t—4) g T 3sin 3(t——4)—§cos3(t—4) .

2 1
1-— —4s - 24
(1-5e )] 9+3

13.2.7 (b) By taking the Laplace transform of the differential equation, we obtain
sY(s)—2+Y(s)=1/s,
since y(0) = 2. Thus

_241/s  1+2s a b
Yis) = s+1  s(s+1) s s+1

using partial fractions, where from (13.2.4)

=1 and b= lim
s—0 s+ 1 s——1 s

Consequently
yt)=1+et.
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13.2.7 (d) The right-hand side can be expressed in terms of a step function
fit)=etH(t-3).

Its Laplace transform is
F(s) = G(s)e™3*

where g(t — 3) = e~ or g(t) = e~ (**3) ] 50 that G(s) = e~3/s + 1. Thus
F(s)=e 36t /541,

which can be obtained in other ways. By taking the Laplace transform of the differential equation, we

obtain
$2Y (s) —s3—T+5[sY(s) —3] —6Y(s) =e (V) /s + 1.
Consequently,
3s+22 e~ 3(s+1)
Y(s) = .
)= T 56 T GF D2 +55-6)
We invert these separately:
3s + 22 3s + 22 a b
Y = = =
(%) s2+55—-6 (s+6)s—1) s+6+ s—1’

using partial fractions, where

. 3s+22 4 .
a_sl—lfgs s—1 7 and b—gl_)ml s+6 7

35+22 25

Thus y; (t) = 2! — 2e75¢. For the other term we first need

1 1 c1 Co c3

Gi(s) = (s+1)(s2 + 55 — 6) = (s+1)(s+6)(s—1) =.<>'+1+.<>'+6+s—1 ’

where using partial fractions

c—lim;—_—lc—lim ! ——l-c—lim;—-l-
1T 515 +6)(s—1) 10° 2 so-6(s+1)(s—1) 35 ° sol(s+1)(s+6) 14°
Thus 1 1 1
_ Lt L -6t Tt
91(t) = T0¢ +35e +14e.

We use the formula
L7e 3G (s)|= H(t - 3)g1(t - 3) .
Thus

_ 4 et sy o L o—@-3 16—z, 1 43
y(t) = 7e 7e +ePH(t—3)| 106 +35e +14e ].

Note that for ¢t > 3 6 15 4
25 e~ e 1
_ Lt 612 _ _ 14 —et
y(t)=e [7 + 14]+e (35 — =1+ ¢ -

13.2.7 (f) By taking the Laplace transform of the differential equation, we obtain

1
s2+1’

s2Y (s) +4Y (s) =

and thus
1

YO =@ nETy
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Partial fractions may be utilized. Alternatively

Y(s)= 5o + 3—2%—‘1

because Y (s) is even is s. Thus by multiplying by (s% + 1)(s? + 4)
a(s®>+4)+b(s2+1)=1.

Consequently a + b =0 and 4a + b = 1. Thus a = —b = 1/3. By inversion, we obtain

1. 1.1,
y(t) = 3 sin t— 5(5 sin 2t).

Section 13.3

13.3.2 By taking the Laplace transform, we obtain s?Y(s) + Y(s) = F(s) or Y(s) = f}% . Using the
convolution theorem

u(t) = /0 F (gt — Dt ,

where G(s) = 1/s? + 1. Thus g(t) = sin ¢ so that

t
y(t) = / F(@)sin(t — £)dE

If f(t) = 8(t — to), then y(t) = G(t, to):
G(t,to) = /t 0(t — to) sin(t — t)dt = sin(t — o),
0

for ¢t > to. Thus .
u(t) = / FOG(E, D .
0

Section 13.4
13.4.3 By taking the Laplace transform in t, we obtain

s*U(z,s) — s sin z = c20°U/0z® .
The general solution of this ordinary differential equation is

U(z,s) = ﬁ sin  + A(s)e™" + B(s)e® ,

using the method of undetermined coefficients for a particular solution. Since u(z,t) is bounded as
T — %00, its Laplace transform must also be bounded as z — +o00. Thus A(s) = B(s) = 0:

U(z,s) sin z .

s
T s2+c?
From the inverse Laplace transform (using the table), we obtain

u(z,t) =sin z cos ct .

13.4.4 By taking the Laplace transform in ¢, we obtain

sU = kd*U/0z®> for >0

74



since u(z,0) = 0. The general solution of this differential equation is
U(z,s) = A(s)e‘ﬁz/‘/z + B(s)e\/‘_"/ﬁ .

The problems is defined for 0 < z < co. The boundary conditions are u(0,t) = f(¢t) and u(z,t) — 0 as
z — 0o. These are Laplace transformed in ¢, yielding

U(0,s) = F(s) and U(z,s) 20 as z— o0,

where F(s) is the Laplace transform of f(t). The condition as £ — oo yields B(s) = 0, while the
condition at z = 0 yields A(s) = F(s):

U(z,s) = F(s)e"V5/VE

To apply the convolution theorem, we must invert G(s) = e~ V**/ vk . From the table
g(t) = ﬁt‘g'/?e“ﬁ/‘“ , where a = z/vk. Thus

z

t
w(z, ) = / F)5 =t = 72 /40D

Section 13.5
13.5.3 By taking the Laplace transform in ¢, we obtain
s°U = c*0%U /02
since u(z,0) = gt-u(x, 0) = 0. We also Laplace transform the boundary conditions
U(0,s)=0 and U,(L,s)= B(s),
where B(s) is the Laplace transform of b(¢). The general solution of this ordinary differential equation
° U(z,s) = c1(s) sinh Ew + c2(s) cosh -Zz .
The boundary conditions yield 0 = c2(s) and B(s) =c;ZcoshZL, and thus
sinh 2z
cosh2L

U(z,s) = EB(S)

From the convolution theorem ;
u(et) = [ b1~k
0

inh 2 .
where F(s) = -j:-:%nm-%—% = 9%9- . Thus from exercise 13.2.4,

t
f(t) = / 9B,

where

sinh £z esT —e % P _s — —2
Gls) = € Cosh %L = ceiL +e < =¢ [ec(z H—e AHL)] Z(—l)"e 2

n=0
oo

— CZ(—I)n [e—g(L—z+2nL) _ e—§(m+L+2Ln)] )
n=0

Each term in this series is inverted easily:

o) = S (=1)° [5(,: SpALL L w)] |
n=0
By integration
fe)y=cd) (1" [H(t - #TE) ~H(t- w)] .
n=0
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Section 13.6

13.6.4 (a) For the Green’s function, ¢(z, t) is replaced by é(z — z0)d(t — to). The corresponding homogeneous
boundary condition must be satisfied G(0, t; zo,to) = 0 and G — 0 as  — oo, along with the causality
condition G(z,t;zo,to) = 0 for t < ty. by taking the Laplace transform in ¢, the pde becomes

sG = k0’G [0z® + 6(z — mo)e ™%

subject to the boundary conditions G(0,s;zo,t) =0 and G — 0 as z — co. The differential
equation for G may be solved using techniques for Green’s functions. For = # o, sG = k8>G/8z%. We
choose independent homogeneous solutions that each satisfy one of the boundary conditions (sinh \/%z

and e~V*/%2). Thus
~ —+/s/kzo o3 £
G(z, 5,0, t0) = AeV °sinh /3x z < To
Asinh\/s/kwoe_\"/k” >0,

where we have chosen coefficients such that G is automatically continuous at z = z,. Here A is a
constant, independent of zg, obtained from the jump condition on the derivative:

~ |To+
dG | _
0=k d_ +e sto 5
T |0
since G is continuous. In this way, we obtain
e—Stoe— s/kxzo e—sto

A= T(siuh V/s/k o + cosh\/s/kzo) = W

Section 13.7
13.7.1 (b) Here F(s) = 1/(s% +9) has simple poles at s = +3i. The inversion integral is

~Y+i00 st
ft) = = s,

210 Joy_joo 249

for t > 0, where v > 0 to be to the right of all singularities. Closing the contour to the left for £ > 0
and neglecting the large semi-circle (as can be justified) yields (13.7.11)

£(t) =3 res(sn)

where these are the residues of e®*/s? + 9. Since these are simple poles at s = £3i

es"t e3it e—3it 1 e3it _ e—3it 1
t) = = = - = — sin 3t
f(t) zn: % 6 T e 3 2 3 SOt

using Euler’s formula.

Section 13.8
13.8.1 One way to obtain this result is to use (11.2.24) in which case

L
u(e,t) == [ f(a0) -Gz, 0, 0)dzo
0 0

This can also be obtained using Laplace transforms. Here we evaluate %G(w, t; zg,0) using Laplace
transforms. From (13.6.11-12)

9 6, t;20,0) =

-1 sinh £(L — zp)sinh 2z = < =z
Oto

csinh 2L | sinhizosinh$(L—2z) z>o.
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To invert this, we note as in (13.8.5) that the singularities are only simple poles s, located at the
zeros of the denominator sinh %sn = 0. Again s = 0 is not a pole. There are an infinite number of
poles located at

L
zs,n:z'nw n==1, £2, £3,....
The residue at each pole may be evaluated

R(sn) _ P(sp)e?
Q'(sn) L cosh(%sn) ’

res(sp) =

where if £ < zg s s
P(sp) = —sinh _cﬁ(L — xo) sinh ?"x ,
and the result for £ > zo can be obtained by symmetry. Since sinh iz =4 sin z

P(s,) = sin el (L — o) sin nre cos n sin el sin 20T
= — — T — T — —
" L L L L’

which is thus also the result for x > z¢. Consequently

o0

P — cos nr sin BEZQ gip BAZ ginmet/L 2 . nmzg . nmx  nwct
—G(z,t;20,0) = E L & =—= E sin % sin 272 cos
Oto L cos(nm) L L L L
n==00(pn:£0) n=1

Thus

L oo
u(z,t) = /0 f (wo)% Z sin n;zo sin nz:v cos m;ct dzg .
n=1

o nwT nwct
n=

This is the result of separation of variables since u(z,t) = ), ansin 272 cos 25%, where a, =

%foL f(zo) sin 222 dxg .
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Chapter 14. Dispersive Waves
Section 14.2

14.2.1 (c) u = e¥*==«?) implies i(—iw) = (ik)? or w = k2.

14.2.5 Assume ¢ = A(y)e’**=«%) and free surface s = Be!**~“%), From Laplace’s equation g—z‘g + i? =0,

> Y
we have

—k2A+ A"(y) =0.
To solve the bc at the bottom y = —h, it is easier to use solutions which are functions of y + h rather
than y. The general solution is a linear combination of exponentials but hyperbolic functions are
simpler:

A(y) = c1 cosh k(y + h) + ca sinh k(y + h).

The bc at y = —h becomes A'(—h) =0 or cg =0. With ¢; = 4,

¢ = Acosh k(y + h)etke—«b),

The free surface conditions (at y = 0) become

% +9s=0= —iwAcoshkh+gB =0
o¢ Os . . .
8_y —ga- =0= kAsinhkh —iwB =0

This linear combination (in A and B) has a nontrivial solution only if its determinant is zero

—iwcosh kh ¢
ksinh kh  iw.

Thus w? cosh kh — gksinh kh = 0 or w? = gktanh kh. This can also be obtained by elimination.

14.2.7 Assume ¢ = A(y)e**—«%) and free surface s = Be!**~«!). From Laplace’s equation g—i% + %@ =0,
we have

-k*A + A”(y) =0,
whose general solution is

A(y) = cleky + Cze_ky.

Since g% = A'(y)e!*2—wt) the bc becomes A'(y) — 0 as y - —oo. Thus ¢z = 0 (assuming k& > 0).
With 1 = A,

¢ - Aekyei(kz—wt)‘
The free surface conditions (at y = 0) become

g—f+gs=0=>—iwA+gB=0
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9¢ Os
3y ot

This linear combination (in A and B) has a nontrivial solution only if its determinant is zero

=0—2kA—-iwB=0

—iw g
k iw.

Thus w? — gk = 0 or w? = gk. This can also be obtained by elimination.

Section 14.3
14.3.9 (a) Let u = G(z)e ¢ so that

—iwsG = G" + é(x).
The jump conditions are that G and G’ are continuous at z = 0, but [G"] = —1. Homogeneous solutions
(G = e™) satisfy —iwy = r®. One root is r = iw}/3 = ik. The other two roots are r = (£v/3 — i)k/2.

Since k = w}/® or wy = 3, in this problem the group velocity %’- = 3k? > 0. The radiation condition
implies that the oscillatory term exists only for £ > 0. Thus

o {bge $ho o 3 [k]o £ <0
e*? 4 bre” kee AgH x>0,

where we have insisted that the non-oscillatory solutions decay. The conditions at = 0 are (letting
z =sgnk)

G continuous: by = a1 + b;

G’ continuous: by(—% + 3?3) =ia; + b (—% - légs)

[G”] =-1: —a; + b1(—"li + %32) - bz(—% + %32) = —

Solving this system yields a; = 2/3, 3b; = iv3s —1, and 3by =iv/3s + 1.

Section 14.5

1453 (b) w' = k2 — k. The group velocity is a parabola with minimum when w =0or k=1 Here
w'(}) = —. There are two waves if £ > —% and there are no waves if £ < -1

Section 14.6

14.6.1 k= % =ko+(z—w (ko)t)a—kQ- ko and —w = ‘99 =—wp+(z— w'(ko)t)%'? = —wp since z = w'(ko)t.

Section 14.7

14.7.8 From exercise (14.7.7), the consistency equation is u; = —% ez + 2Pz (u— A) + Pu,. Here we assume
P = A+ B)\+ C)? with C assumed constant. Substituting this into the consistency equation yields

1
ur = =5 (Assa + BrgaX) +2(As + Ba))(u = A) + (A + BA+ CW)us.

Since we do not wish u(z,t) to depend on J, the coefficients of each power of A must be identical. The
O()\?) terms are 0 = —2B, + Cu; which can be immediately integrated to yield

2B =Cu + 2Bo(t).
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The O()) terms are 0 = ——Bzm +2uB, —2A; + Bu,. In order to integrate to solve for A, we eliminate
B to show that 2uB; + Buz = Cuug + ug(3Cu + Bo(t)) may in fact be integrated. Thus,

Then the O(1) terms yield the following generally nonlinear partial differential equations that satisfy
Lax’s equations

1
Up = —-EAM,; +2ud; + Aug.

Section 14.8

14.8.6 (b) Substituting u = e**+(e—)t yields ¢ — iw = —1 + Rk? — k* — ik® . Collecting real and imaginary
parts yields the answer.

14.8.7 (c) Substituting u = e***+(e~i)t yields ¢ — iw = —i(ik) = k. Thus, ¢ = k and w = 0. This problem
is ill-posed because the growth rate ¢ is unbounded as k — oo.
Section 14.9
14.9.3 In the method of multiple scales, (14.9.22) is substituted into the equation and we obtain one addition
term to (14.9.23) due to the nonlinear damping;:
6 8 Ou
“ 502 or 80

When the perturbation expansion (14.9.24) is introduced, to leading order we obtain

'(T) ]+ 26—-+w u——e(wa +e—)3

+ 20T 5 -

G 802 >+ o) =

whose general solution is uo (8, T) = A(T)e® + A*(T)e~*. The O(e) equation is

8u1

6 6’”0
(o

oT 60

6uo 3UO

+w) = —2w(l) g7 =7 +W'(T) 55 [ ]3
= —[2w(T)A'(T) + ' (T)A(T)]ie® + iw3[A3e3? — 342 A%e] + (%)

after substituting the expression for ug, The third harmonic terms et3®are not secular. However the

terms et®correspond to the forcing frequency equaling the natural frequency, are said to be secular,
and must be eliminated:

—2u(T)A'(T) — w'(T)A(T) — 3w?A2A* =0,

which is a differential equation the complex amplitude A(T") must satisfy. To obtain equations for the
amplitude and phase, we substitute A(T) = r(T)e*¥(T) and obtain

2wr! (T) + W' (T)r(T) + 3wr® =0,

and ¢'(T) = 0 which implies that the slow phase ¥(T') is a constant.
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14.9.5 We use the method of multiple scales with a phase 6 satisfying %—‘Z— = w(et) where the slowly varying
frequency is the usual frequency for a pendulum of length L

_ g
w(et) = 4 /m

We substitute (14.9.22) into 4 -&;,- + w?(et)u = eﬂ% 4L du and obtain
o oo , 0u 2 dL, du . bu
w g + el2u(T) 5155+ (D) gg) + € 5 +whu = ‘T ar“ae * <o)

instead of (14.9.23). When the perturbation expansion (14.9.24) is introduced, to leading order we
obtain

. 2,
( 062
whose general solution is ug(6,T) = A(T)e® + A*(T)e~*. The O(e) equation is

0+ u) =0

o Gt ) = —{2() 0 (1) 0 - o 2 L O
— _[w(T)A/(T) + o' (T)A(T)]ie® — %Z—TA ¢ + (x)

after substituting the expression forug, All the terms on the right hand side, corresponding to the
forcing frequency equaling the natural frequency, are said to be secular and must be eliminated:

2 dL
!
2w(T)A'(T) + ' (T)A(T) + wL(T) dTA 0,
which is a differential equation the amplitude A(T") must satisfy. This equation is easily solved by first
dividing by wA:
A W2l
atetT =0

Integrating yields 2lnA+Inw + 2InL =constant, so that the amplitude satisfies

A(T) = cqw™ 2Lt = g LY4L™! = o L7374,
using the expression for the frequency w. Smce = w(et) = —(76—5,

it follows that 6 = [, /z{4ydt + . Thus

up = cL™3/% cos(/ \ /ﬁdt + ).

14.9.8 In the method of multiple scales we assume the wave amplitude and frequency are slowly varying and

satisfy k = 9% and w = —&¢. Using (14.9.67) and (14.9.68), our equation 3% %3 becomes
Ou  Ou 0 0 Y , 0%u %u
~wag tear = (k ao“a_x) u=k 56 T € €(3k 6X802+3ka602)+0(6)

We claim that the perturbation method will not work unless the frequency satisfies the dispersion
relation
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w= k3.

Conservation of waves kr+ wx = 0 becomes kr+ 3k2kx 0. The perturbation expansion u =

ug + €uy + ..., yields the O(1) equation k:”(a—“CL + Wg‘l) = 0, so that the slowly varying plane wave
satisfies up = A(X T)e? + A*(X,T)e~%. The O(e) equation is

Buo

6“1 Puy Do e O gy, Ouo -

13
k ( 803 o5 ) = T oT 60X 062

= —Are® — 3(k®Ax + kkxA)e¥ + ().

All terms on the right-hand side are secular (with forcing frequency equaling natural frequency) and
must be eliminated, so that

Ar + 3k?Ax + 3kkx A =0.

Section 14.10

14.10.3 In this problem (as we will show), there can be a boundary layer at both boundaries z = 0 and z = 1.
The leading-order solution of the outer expansion (u = ug + ...) is

o = — 2
0=~
Inner (left): Near z = 0, we introduce the boundary layer scaling z = €!/2X[,, so that the differential
equation becomes

du

— 4y = /2
dXL u=¢'*Xg.

The inner (left) expansion (u = Up(Xy) + ...) yields to leading- orderﬁ} 4Up = 0, whose general

solution is Up = c;€?*X% + coe™2XZ, In matching the left boundary layer solutlon to the outer solution,
the limit X; — +oois involved, so that to avoid exponential growth on the boundary layer scale,
c1 = 0 and thus Uy = cze~2%X2. The boundary condition at z = 0 (X = 0) is satisfied if c2 = 1 so
that the leading-order solution in the left boundary layer is

Uo = 6—2XL.

Inner (right): Near z = 1, we introduce the boundary layer scaling z — 1 = €'/2Xg, so that the
differential equation becomes

d’*u 1/2

—dX% —4du=1+€/2Xp.
The inner (right) expansion (u = Vo(Xg) + ...) yields to leading-order —ﬁl 4Vp = 1, whose general
solution is Vp = —§ + cse?>*® + c4e2X®. In matching the right boundary layer solution to the outer
solution, the limit Xp — —o0 1s involved, so that to avoid exponential growth on the boundary layer
scale, 04 =0 and thus Vo = —- + c;,e”’(R The boundary condition at z = 1(Xg = 0) is satisfied if
2= —— +czorcg = so that the leading-order solution in the right boundary layer is

— 1.9 2Xr
Vo = 1t 1¢
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In this problem, the inner and outer solutions have been obtained without matching. However, one
should always do at least a leading-order match. In this problem the matching of the leading-order
inner (left) to the leading-order outer solution is limx, 4o Up = limgz—y0 ug = 0 since Up = e 2XcL and
ug = —Z. In this problem the matching of the leadmg—order inner (right) to the leading-order outer
olutlon is imx,—co Vo = limg—y1 up = ‘Z since Vp = + 9e”“" and up = —§.

14.10.6 For the second-order differential equation e 3+ (22 + 1) + 2u = 0, the differential equation is
reduced to first-order when € = 0. Thus, we expect a boundary layer to be necessary. To determine
the location of the boundary layer (either z = 0 or z = 1), we note that derivatives will be large in

a boundary layer so that roughly the differential equation will be 4 d—X—g + (positive)g—)’} = 0 (because

2z + 1 > 0) whose solution is u = A + Be~ (positive)X  The limit X — —oomust be not permitted
so that a boundary layer can only occur at £ = 0. The outer solution (away from the boundary layer)
has an outer expansion u = ug(z) +.... The leading-order outer equation is (2z+ 1)%’;‘1 +2ug = 0. This
first-order linear ordinary differential equation can be solved by many methods, but since it is an Euler
equation perhaps the simplest method is to observe that some power ug = c¢(2z + 1)"satisfies this
equation, where by direct substitution 2r + 2 = Oor equivalently » = —1. The constant ¢ can be
determined from the boundary condition at z = 1 since we have shown that a boundary layer exists
in this problem at £ = 0. In this way ¢ = 6 and the leading-order outer solution (which solves the
boundary condition at z = 1) is

up =62z +1)7!

The boundary layer at £ = 0 has the scaling z = eX so that the differential equation in the boundary
layer is & W + (2eX + 1) + 2eu = 0. The inner expansion is u = Up(X) + ... and the leading-order
inner solution satisfies W-Q- + ﬁ- = 0, whose general solution is Up(X) = A + Be~*X. The boundary
condition at £ =0 (X = 0) yields 1 = A + B. Thus, we may express the leading-order inner solution
as )

Us(X)=1— B+ Be™X.
The constant B can be determined by matching the leading-order inner and outer solutions. Here,

limx 400 Up = limg_0 ug, which yields1 — B = 6 or B = —5. Thus, the leading-order inner solution
is Up(X) = 6 — 5™ where z = X .
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