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Classes of groups and their properties

2.1 Classes of groups and closure operators

A group theoretical class or class of groups X is a collection of groups with
the property that if G ∈ X, then every group isomorphic to G belongs to X.
The groups which belong to a class X are referred to as X-groups.

Following K. Doerk and T. O. Hawkes [DH92], we denote the empty class
of groups by ∅ whereas the Fraktur (Gothic) font is used when a single capital
letter denotes a class of groups. If S is a set of groups, we use (S) to denote
the smallest class of groups containing S, and when S = {G1, . . . , Gn}, a finite
set, (G1, . . . , Gn) rather than ({G1, . . . , Gn}).

Since certain natural classes of groups recur frequently, it is convenient to
have a short fixed alphabet of classes:

• ∅ denotes the empty class of groups;
• A denotes the class of all abelian groups;
• N denotes the class of all nilpotent groups;
• U denotes the class of all supersoluble groups;
• S denotes the class of all soluble groups;
• J denotes the class of all simple groups;
• P denotes either the class A ∩ J of all cyclic groups of prime order or the

set of all primes;
• P denote the class of all primitive groups;
• Pi denotes the class of all primitive groups of type i, 1 ≤ i ≤ 3;
• E denotes the class of all finite groups.

The group classes are, of course, partially ordered by inclusion and the

X ⊆ Y

will be used to denote the fact that X is a subclass of the class Y.
Sometimes it is preferable to deal with group theoretical properties or

properties of groups: A group theoretical property P is a property pertaining
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88 2 Classes of groups and their properties

to groups such that if a group G has P, then every isomorphic image of G
has P. The groups which have a given group theoretical property form a class
of groups and to belong to a given group theoretical class is a group theor-
etical property. Consequently, there is a one-to-one correspondence between
the group classes and the group theoretical properties; for this reason we will
often not distinguish between a group theoretical property and the class of
groups that possess it.

Note that we do not require that a class of groups contains groups of
order 1.

Definition 2.1.1. Let G be a group and let X be a class of groups.

1. We define

π(G) = {p : p ∈ P and p | |G|}, and

π(X) =
⋃

{π(G) : G ∈ X}.

2. We also define

K X = {S ∈ J : S is a composition factor of an X-group}

and
charX = {p : p ∈ P and Cp ∈ X};

we say that char(X) is the characteristic of X.

Obviously charX is contained in π(X), but the equality does not hold in
general. If X =

(
G : G = Op′

(G)
)

is the class of all p′-perfect groups for some
prime p, then charX = {p} 	= π(X) = P. Note that charX, regarded as a
subclass of J, is contained in K X. The class of all p′-perfect groups shows that
the inclusion is proper.

Definition 2.1.2. If X and Y are two classes of groups, the product class
XY is defined as follows: a group G belongs to XY if and only if there is a
normal subgroup N of G such that N ∈ X and G/N ∈ Y. Groups in the class
XY are called X-by-Y-groups.

If X = ∅ or Y = ∅, we have the obvious interpretation XY = ∅.

It should be observed that this binary algebraic operation on the class of
all classes of groups is neither associative nor commutative. For instance, let
G be the alternating group of degree 4. Then G ∈ (CC)C, where C is the class
of all cyclic groups. However G has no non-trivial normal cyclic subgroups, so
G /∈ C(CC).

On the other hand, the inclusion X(YZ) ⊆ (XY)Z is universally valid and,
indeed, follows at once from our definition.

For the powers of a class X, we set X0 = (1), and for n ∈ N make the
inductive definition Xn = (Xn−1)X. A group in X2 is sometimes denoted
meta-X.
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The past decades have seen the introduction of a very large number of
classes of groups and it would be quite impossible to use a systematic alphabet
for them. However, one soon observes that many of these classes are obtainable
from simpler classes by certain uniform procedures. From this observation
stems the importance for our purposes of the concept of closure operation.
The first systematic use of closure operations in group theory occurs in papers
of P. Hall [Hal59, Hal63] although the ideas are implicit in earlier papers of
R. Baer and also in B. I. Plotkin [Plo58].

By an operation we mean a function C assigning to each class of groups X
a class of groups C X subject to the following conditions:

1. C ∅ = ∅, and
2. X ⊆ C X ⊆ C Y whenever X ⊆ Y.

Should it happen that X = C X, the class X is said to be C-closed. By 1 and 2,
the classes ∅ and E are C-closed when C is any operation.

A partial ordering of operations is defined as follows: C1 ≤ C2 means that
C1 X ⊆ C2 X for every class of groups X. Products of operations are formed
according to the rule

(C1 C2)X = C1(C2 X).

An operation C is called a closure operation if it is idempotent, that is, if

3. C = C
2.

If C is a closure operation, then by Condition 2 and Condition 3, the class C X
is the uniquely determined, smallest C-closed class that contains X. Thus if A

and B are closure operations, A ≤ B if and only if B-closure invariably implies
A-closure.

A closure operation can be determined by specifying the classes of groups
that are closed. Let S be a class of classes of groups and suppose that every
intersection of members of S belongs to S: for example, S might consist of
the closed classes of a closure operation. S determines a closure operation C

defined as follows: for any class of groups X, let C X be the intersection of
all those members of S that contain X. The C-closed classes are precisely the
members of S.

Now we list some of the most commonly used closure operations.
For a class X of groups, we define:

S X = (G : G ≤ H for some H ∈ X);
Q X = (G : there exist H ∈ X and an epimorphism from H onto G);

Sn X = (G : G is subnormal in H for some H ∈ X);

R0 X =
(
G : there exist Ni � G (i = 1, . . . , r)

with G/Ni ∈ X and
r⋂

i=1

Ni = 1
)
.
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Note that a group G ∈ R0 X if and only if G is isomorphic with a subdirect
product of a direct product of a finite set of X-groups ([DH92, II, 1.18]).

N0 X =
(
G : there exist Ki subnormal in G (i = 1, . . . , r)

with Ki ∈ X and G = 〈K1, . . . , Kr〉
)
;

D0 X = (G : G = H1 × · · · × Hr with each Hi ∈ X);
EΦ X = (G : there exists N � G with N ≤ Φ(G) and G/N ∈ X).

The operations Sn and Q, and N0 and R0 are dual in the well-known duality
between normal subgroup and factor group: this will become more apparent
in the context of Fitting classes and formations in next sections.

Lemma 2.1.3 ([DH92, II, 1.6]). The operations defined in the above list
are all closure operations.

We shall say that a class X is subgroup-closed if X = S X, that is, if every
subgroup of an X-group is again an X-group; if X = Q X, we shall say that X
is an homomorph, that is, every epimorphic image of an X is an X-group. If
X = Sn X, we might say that X is subnormal subgroup-closed and if X = R0 X,
we could say that X is residually closed . An EΦ-closed class is called saturated .

The product of two closure operations need not be a closure operation
since it may easily fail to be idempotent. This leads us to make the following
definition. Let {Aλ : λ ∈ Λ} be a set of operations (not necessarily closure oper-
ations). We define C = 〈Aλ : λ ∈ Λ〉, the closure operation generated by the Aλ,
as that closure operation whose closed classes are the classes of groups that are
Aλ-closed for every λ ∈ Λ. That is, C X =

⋂{Y : X ⊆ Y = Aλ Y for all λ ∈ Λ}
for any class X of groups.

It is easily verified that C is the uniquely determined least closure operation
such that Aλ ≤ C for every λ ∈ Λ.

Of particular interest are 〈A〉, the closure operation generated by the op-
eration A, and also 〈A, B〉. In the latter case A B and B A may differ from 〈A, B〉,
even although A and B are closure operations.

Now follows a simple but useful criterion for the product of two closure
operations to be a closure operation.

Proposition 2.1.4 ([DH92, II, 1.16]). If A and B are closure operations,
any two of the following statements are equivalent:

1. A B is a closure operation;
2. B A ≤ A B;
3. A B = 〈A, B〉.

Next we give a list of some situations in which the criterion may be applied.

Lemma 2.1.5 ([DH92, II, 1.17 and 1.18]).

1. Q EΦ ≤ EΦ Q. Thus EΦ Q is a closure operation.
2. D0 S ≤ S D0. Hence S D0 is a closure operation.
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3. D0 EΦ ≤ EΦ D0. Hence EΦ D0 is a closure operation.
4. R0 Q ≤ Q R0, whence Q R0 is a closure operation. Moreover, R0 ≤ S D0,

whence every S D0-closed class is R0-closed.

We shall adhere to the conventions about the empty class exposed in
[DH92, II, p. 271].

2.2 Formations: Basic properties and results

Some of the most important classes of groups are formations. They are con-
sidered in some detail in the present section. We gather together facts of a
general nature about formations and we give some important examples. Some
classical results are also included.

Definition 2.2.1. A formation is a class of groups which is both Q-closed and
R0-closed, that is, a class of groups F is a formation if F has the following two
properties:

1. If G ∈ F and N � G, then G/N ∈ F;
2. If N1, N2 � G with N1 ∩ N2 = 1 and G/Ni ∈ F for i = 1, 2, then G ∈ F.

By Lemma 2.1.5, Q R0 = 〈Q, R0〉. Hence a class F is a formation if and only if
F = Q R0 F. If X is a class of groups, we shall sometimes write form X instead
of Q R0 X for the formation generated by X.

Note that a class of groups which is simultaneously closed under S, Q, and
D0 is a formation by Lemma 2.1.5. Therefore the class Nc of nilpotent groups
of class at most c, the class S(d) of soluble groups of derived length at most
d, the class E(n) of groups of exponent at most n, the class U of supersoluble
groups, and the class A of abelian groups are the most classical examples of
formations. They are 〈S, Q, D0〉-closed classes of groups.

The following elementary fact is useful in establishing the structure of
minimal counterexamples in proofs involving Q- and R0-closed classes.

Proposition 2.2.2 ([DH92, II, 2.5]). Let X and Y be classes of groups.

1. Let X = Q X, Y = R0 Y, and let G be a group of minimal order in X\Y.
Then G is monolithic (i.e. G has a unique minimal normal subgroup). If,
in addition, Y is saturated, then G is primitive.

2. Let G be a group of minimal order in R0 X\X. Then G has a normal
subgroups N1 and N2 such that G/Ni ∈ X for i = 1, 2 and N1∩N2 = 1. If
X = Q X, then N1 and N2 can be chosen to be minimal normal subgroups
of G.

The next lemma provides some more examples of formations.

Lemma 2.2.3. 1. If S is a non-abelian simple group, then D0

(
(S) ∪ (1)

)
=

D0(S, 1) is a 〈Sn, N0〉-closed formation. Hence form(S) = D0(S, 1).
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2. If F and G are formations and F ∩G = (1), then D0(F ∪G) = R0(F ∪G).
3. Let ∅ 	= F be a formation and let S be a non-abelian simple group. Then

Q R0(F, S) = D0(F, S) = D0

(
F ∪ (S)

)
.

Proof. 1. Write D = D0(S, 1). Applying [DH92, A, 4.13], every normal
subgroup of a D-group is a direct product of a subset of direct components
isomorphic with S. Hence D is Sn-closed. In addition, every normal subgroup
N of a group G ∈ D satisfies G = N × CG(N). Hence G/N ∈ D and D is
Q-closed.

Assume that R0 D 	= D and derive a contradiction. Let G be a group of
minimal order in R0 D\D. Then, by Proposition 2.2.2, G has minimal normal
subgroups N1 and N2 such that G/Ni ∈ D, i = 1, 2, and N1 ∩ N2 = 1.
Consider the normal subgroup N2N1/N1 of G/N1. Since G/N1 ∈ D, it follows
that G/N1 = N2N1/N1 ×R/N1 and N2N1/N1 and R/N1 are direct products
of copies of S. In particular, G = (N1N2)R and R ∩ N1N2 = N1. It implies
that R ∩N2 = 1 and G = RN2. But G/N2 ∈ D and so R ∈ D. Hence G ∈ D,
contrary to our initial supposition. Consequently D is R0-closed and hence D
is a formation. It is clear then that D = form(S).

Finally we show that D is N0-closed. Let N1 and N2 be normal subgroups
of a group G = N1N2 such that Ni ∈ D, i = 1, 2. Then M = N1 ∩ N2 ∈ D
and G/M ∈ D0 D = D. Moreover if Ci = CMi

(M), it is clear that C1 ∩
C2 ≤ CM (M) = 1 and |Ci| = |Ni : M |, i = 1, 2. Hence C1C2 = CG(M) is
isomorphic to G/M . Consequently G = M × CG(M) ∈ D. We can conclude
that D is N0-closed.

2. Clearly D0(F∪G) ⊆ R0(F∪G). Let G ∈ R0(F∪G). Then G has normal
subgroups Ni, i = 1, . . . , n, such that G/Ni ∈ F and G has normal subgroups
Mi, i = 1, . . . , m, such that G/Mi ∈ G. Moreover

(⋂n
i=1 Ni

)
∩
(⋂m

j=1 Mj

)
= 1.

Put N =
⋂n

i=1 Ni and M =
⋂m

j=1 Mj . Then G/N ∈ R0 F = F and G/M ∈
R0 G = G. Hence G/MN ∈ Q F ∩ Q G = F ∩ G = (1). It follows that G =
MN ∼= M × N and G ∈ D0(F ∪ G). Hence D0(F ∪ G) = R0(F ∪ G).

3. Denote D = D0(F, S) = D0

(
F ∪ (S)

)
. Clearly we may assume S /∈ F.

In this case, D0(S, 1) ∩ F = (1) and D = D0

(
F, D0(S, 1)

)
= R0

(
F, D0(S, 1)

)
by

Statement 2. In particular, D is R0-closed.
Let G ∈ D and N a normal subgroup of G. Since G ∈ D, we have that

G = M1 × M2, M1 ∈ F and M2 ∈ D0(S, 1). If N is contained in either M1

or M2, then G/N ∈ D and if M1 ∩ N = M2 ∩ N = 1, then N ≤ Z(G) =
Z(M1) × Z(M2). Since groups in D0(S, 1) have trivial centre, we have that
N ≤ M1, with contradicts N ∩M1 = 1. Hence either N ≤ M1 or N ≤ M2. In
both cases, G/N ∈ D. This implies that D is Q-closed and so D is indeed a
formation. ��

An important result in the theory of formations is the theorem of D. W.
Barnes and O. H. Kegel that shows that a if a group with a prescribed action
appears as a Frattini chief factor of a group in a given formation, then it will
also appear as a complemented chief factor of a group in the same formation.
The proof of this result depends on the following lemma.
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Lemma 2.2.4 ([BBPR96a]). Let the group G = NB be the product of two
subgroups N and B. Assume that N is normal in G. Since B acts by conjuga-
tion on N , we can construct the semidirect product, X = [N ]B, with respect to
this action. Then the natural map α : X −→ G given by (nb)α = nb, for every
n ∈ N and b ∈ B, is an epimorphism, Ker(α)∩N = 1 and Ker(α) ≤ CX(N).

Corollary 2.2.5 ([BK66]). Let F be a formation. Let M and N be normal
subgroups of a group G ∈ F. Assume that M ≤ CG(N) and form the semi-
direct product H = [N ](G/M) with respect to the action of G/M on N by
conjugation. Then H ∈ F.

Proof. Consider G acting on N by conjugation and construct X = [N ]G, the
corresponding semidirect product. By Lemma 2.2.4, there exists an epimorph-
ism α : X −→ G = NG such that Ker(α) ∩ N = 1. Since X/ Ker(α) ∼= G ∈ F
and X/N ∼= G ∈ F, it follows that X ∈ R0 F = F. Now M is a normal subgroup
of X contained in G and X/M ∼= [N ](G/M). Hence X/M ∈ Q F = F. ��

Let G be a group in a formation F and let N be an abelian normal subgroup
of G. Suppose that U is a subgroup of G such that G = UN . Then, by
Lemma 2.2.4, G is an epimorphic image of X = [N ]U , where U acts on
N by conjugation. If Z = N ∩ U , we have that Z ≤ CG(N) and it is a
normal subgroup of X. Moreover, X/Z ∼= [N ](U/Z) ∼= [N ](G/N) ∈ F by
Corollary 2.2.5. Since X has a normal subgroup, X1 say, such that X/X1

∼=
G ∈ F and X1 ∩ U = 1, it follows that X ∈ F. In particular, U ∈ F.

This result is a particular case of the following theorem of R. M. Bryant,
R. A. Bryce, and B. Hartley.

Theorem 2.2.6 ([BBH70]). Let U be a subgroup of a group G such that
G = UN for some nilpotent normal subgroup N of G. If G belongs to a
formation F, then U is an F-group.

The proof of this result also involves an application of Lemma 2.2.4. We need
to prove a preliminary lemma.

Assume that G is a group and N a normal subgroup of G. Let N∗ be a
copy of the subgroup N and consider G acting by conjugation on N∗. Denote
X = [N∗]G the semidirect product of N∗ with G with respect to this action.

If G is a group and n is a positive integer, denote K1(G) = G and Kn(G) =
[G, Kn−1(G)] ([Hup67, III, 1.9]).

Lemma 2.2.7. With the above notation

Kn([N, N∗]N) ≤ Kn+1(N∗) Kn(N) for all n ∈ N.

Proof. We use induction on n. We write a star (∗) to denote the image
by the G-isomorphism between N and N∗. Let x, y ∈ N . Then [x, y∗] =
x−1(y∗)−1xy∗ = x−1(y−1)∗xy∗ =

(
(y−1)∗

)x
y∗ =

(
(y−1)xy

)∗ = [x, y]∗ =
[x∗, y∗]. This argument shows that if A and B are subgroups of N , then
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[A, B∗] = [A∗, B∗]. In particular, [N,N∗] = (N∗)′ and so K1([N,N∗]N) =
[N, N∗]N = (N∗)′N = K2(N∗) K1(N). Now assume that the lemma holds for
a given value of n ≥ 1. Then

Kn+1([N,N∗]N) =
[
Kn([N, N∗]N), [N, N∗]N

]
by definition

≤
[
Kn+1(N∗) Kn(N), [N, N∗]N

]
by inductive hypothesis

=
[
Kn+1(N∗), [N,N∗]N

]
·
[
Kn(N), [N,N∗]N

]
by [DH92, A, 7.4 (f)]

=
[
Kn+1(N∗), [N,N∗]

]
[Kn+1(N∗), N ]

·
[
Kn(N), [N,N∗]

]
[Kn(N), N ] by [DH92, A, 7.4 (f)]

≤ Kn+2(N∗) Kn+1(N) because
[
Kn(N), [N, N∗]

]
= [Kn(N∗), K2(N∗)]

because of the preceeding argument and applying [Hup67, III, 2.11].This com-
pletes the induction step and with it the proof of the lemma. ��

Proof (of Theorem 2.2.6). Assume that the result is not true and let G
be a counterexample of minimal order. Then there exists a nilpotent nor-
mal subgroup N of G and a proper subgroup U of G such that G = NU ,
G ∈ F, and U /∈ F. Among the pairs (N,U) of subgroups of G satisfy-
ing the above condition, we choose a pair such that |G : U | + cl(N) is
minimal (here cl(N) denotes the nilpotency class of N). Let V be a max-
imal subgroup of G containing U . Then V = U(V ∩ N) and G = V N .
If U 	= V , then |G : V | + cl(N) < |G : U | + cl(N) and so V ∈ F by
the choice of the pair (N, U). Therefore U ∈ F by minimality of G, con-
trary to the choice of G. Therefore U = V is a maximal subgroup of G. If
Z = Z(N) were not contained in U , then G = U Z(N) and U would be in F
by the above argument. This would contradict the choice of G. Consequently
Z(N) is contained in U . Denote X = [N∗]U the semidirect product of a
copy of N with U as usual. By Lemma 2.2.4, there exists an epimorphism
α : X −→ UN = G and Ker(α) ∩ N∗ = Ker(α) ∩ U = 1. It is clear that
Z is a normal subgroup of G and X/Z ∼= [N∗](U/Z). Now we consider the
group T = [N∗](G/Z). Note that T ∈ F by Corollary 2.2.5 and [N∗](U/Z)
is a supplement of 〈(N/Z)T 〉 in T . Moreover 〈(N/Z)T 〉 = [N/Z, T ](N/Z) =
[N/Z, N∗][N/Z, G/Z](N/Z) = [N/Z, N∗](N/Z). If c = cl(N), we have that
Kc

(
〈(N/Z)T 〉

)
= Kc([N,N∗]N)Z/Z is contained in Kc+1(N∗) Kc(N)Z/Z

by Lemma 2.2.7. Since Kc+1(N∗) = 1 and Kc(N) ≤ Z, it follows that
Kc

(
〈(N/Z)T 〉

)
= 1 and 〈(N/Z)T 〉 is a normal nilpotent subgroup of T whose

nilpotency class is less than c. Consequently, since T ∈ F, we have that
[N∗](U/Z) ∈ F by the minimal choice of G. Hence X ∈ R0 F = F. This
contradicts the choice of G and shows that U is, like G, and F-group. ��

Let F be a non-empty formation. Each group G has a smallest normal
subgroup whose quotient belongs to F; this is called the F-residual of G and
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it is denoted by GF. Clearly GF is a characteristic subgroup of G and GF =⋂{N � G : G/N ∈ F}. Consequently GF = 1 if and only if G ∈ F.
The following proposition will be useful for later applications.

Proposition 2.2.8. Let F be a non-empty formation and let G be a group. If
N is normal subgroup of G, we have:

1. (G/N)F = GFN/N .
2. If U is a subgroup of G = UN , then UFN = GFN .
3. If N is nilpotent and G = UN , then UF is contained in GF.

Proof. 1. Denote R/N = (G/N)F. It is clear that G/R ∈ F. Hence GFN is
contained in R. Moreover G/GFN ∈ F. It implies that (G/N)

/
(GFN/N) ∈ F

and so R/N ≤ GFN/N . Therefore R = GFN .
2. Let θ denote the canonical isomorphism from G/N = UN/N to U/(U ∩

N). Then
(
(G/N)F

)θ =
(
U/(U ∩N)

)F, which is equal to UF(U ∩N)/(U ∩N)
by Statement 1. Hence UFN/N = (G/N)F = GFN/N and UFN = GFN .

3. We have G/GF = (UGF/GF)(NGF/GF) ∈ F. Applying Theorem 2.2.6,
it follows that UGF/GF ∈ F. Therefore UF is contained in U ∩ GF. ��

Remark 2.2.9. We shall use henceforth the property of the F-residual stated
in Statement 1 without further comment.

In general, the product class of two formations is not a formation in general
([DH92, IV, 1.6]). Fortunately we know a way of modifying the definition of a
product to ensure that the corresponding product of two formations is again
a formation. It was due to W. Gaschütz ([Gas69]).

Definition 2.2.10. Let F and G be formations. We define F◦G := (G : GG ∈
F), and call F ◦ G the formation product of F with G.

This product enjoys the following properties ([DH92, IV, pages 337–338]).

Proposition 2.2.11. Let F, G, and H be formations. Then:

1. F ◦ G ⊆ FG, and G ⊆ F ◦ G if F is non-empty,
2. if F is Sn-closed, then F ◦ G = FG,
3. F ◦ G is a formation,
4. GF◦G = (GG)F for all G ∈ E, and
5. (F ◦ G) ◦ H = F ◦ (G ◦ H).

Example 2.2.12. Let F and G be formations such that π(F)∩ π(G) = ∅. Denote
π1 = π(F) and π2 = π(G). Then F×G =

(
G : G = Oπ1(G)×Oπ2(G), Oπ1(G) ∈

F, Oπ2(G) ∈ G
)

is a formation. Moreover, if F and G are saturated, then F×G
is saturated and, if F and G are subgroup-closed, then F×G is also subgroup-
closed.
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Proof. Note that F × G = (F ◦ G) ∩ (G ◦ F). Hence F × G is a formation by
Proposition 2.2.11 (3).

Assume that F and G are saturated, then F ◦ G and G ◦ F are saturated
by [DH92, IV, 3.13]. Hence F × G is saturated. ��

Remark 2.2.13. Example 2.2.12 could be generalised along the following lines:
Let I be a non-empty set. For each i ∈ I, let Fi be a subgroup-closed saturated
formation. Assume that π(Fi) ∩ π(Fj) = ∅ for all i, j ∈ I, i 	= j. Denote
πi = π(Fi), i ∈ I. Then

Xi∈I Fi :=
(
G = Oπi1

(G) × · · ·×
Oπin

(G) : Oπij
(G) ∈ Fij

, 1 ≤ j ≤ n, {i1, . . . , in} ⊆ I
)

is a subgroup-closed saturated formation.

One of the most important results in the theory of classes of groups
is the one stating the equivalence between saturated and local formations.
W. Gaschütz introduced the local method to generate saturated formations
in the soluble universe. Later, his student U. Lubeseder [Lub63] proved that
every saturated formation in the soluble universe can be described in that
way. Lubeseder’s proof requires elementary ideas from the theory of modular
representations, which are dispensed with in the account of the theorem in
Huppert’s book [Hup67]. In 1978 P. Schmid [Sch78] showed that solubility is
not necessary for Lubeseder’s result, although his proof reinstates the facts
about blocks used by Lubeseder and also makes essential use of a theorem of
W. Gaschütz, about the existence of certain non-split extensions. In an un-
published manuscript, R. Baer has investigated a different definition of local
formation. It is more flexible than the one studied by P. Schmid in that the
simple components, rather than the primes dividing its order, are used to label
chief factors and its automorphism group. Hence the actions allowed on the
insoluble chief factors can be independent of those on the abelian chief factors.
R. Baer’s approach leads to a family of formations called Baer-local forma-
tions. Local formations are a special case of Baer-local formations. Moreover,
in the universe of soluble groups the two definitions coincide. The price to
be paid for the greater generality of Baer’s approach is that the Baer-local
formations are no longer saturated. However, there is a suitable substitute for
saturation. We say that a formation is solubly saturated if it is closed under
taking extensions by the Frattini subgroup of the soluble radical. Of course
solubly saturation is weaker than saturation. But it evidently coincides with
saturation for classes of finite soluble groups, and it plays a precisely analog-
ous role in Baer’s generalisation: the Baer-local formations are precisely the
solubly saturated ones.

Another approach to the Gaschütz-Lubeseder theorem in the finite uni-
verse is due to L. A. Shemetkov (see [She78, She97, She00]). He uses functions
assigning a certain formation to each group (he recently calls them satellites)
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and introduces the notion of composition formation. It turns out that the
composition formations are exactly the Baer-local formations ([She97]).

Any function f : P −→ {formations} is called a formation function. Given
a formation function f , we define the class LF(f) as the class of all groups
satisfying the following condition:

G ∈ LF(f) if, for all chief factors H/K of G and for all primes p
dividing |H/K|, we have that AutG(H/K) = G

/
CG(H/K) ∈ f(p).

(2.1)

The class LF(f) is a formation ([DH92, IV, 3.3]).

Definition 2.2.14. A class of groups F is called a local formation if there
exists a formation function f such that F = LF(f).

Theorem 2.2.15 (Gaschütz-Lubeseder-Schmid, [DH92, IV, 4.6]).

A map f : J −→ {classes of groups} is called a Baer function provided
that f(J) is a formation for all simple groups J .

If f is a Baer function, then the class of all groups G satisfying that
AutG(H/K) belongs to f(J) if H/K is a chief factor of G whose composition
factor is isomorphic to J is a formation. We call this formation the Baer-local
formation defined by f , and we denote it by BLF(f). A class B is called a
Baer-local formation if B = BLF(f) for some Baer function f .

Theorem 2.2.16 ([DH92, IV, 4.12]). The solubly saturated formations are
precisely the Baer-local formations.

Example 2.2.17. Let Q be the solubly saturated formation locally defined by
the Baer function f given by

f(S) =

{
(1) when S ∼= Cp, and
D0(1, S) when S ∈ J \ P.

The formation in Example 2.2.17 is characterised as the class Q of all
groups G such that G = C∗

G(H/K) for every chief factor H/K of G, i.e.
the class of all groups which only induce inner automorphisms on each chief
factor (see [Ben70]). Groups in Q are called quasinilpotent . It is clear that a
nilpotent group is just a soluble quasinilpotent group. Q is also Sn-closed and
N0-closed, that is, Q is a Fitting class (see Section 2.3). Each group G has
a largest normal Q-subgroup. This subgroup is called the generalised Fitting
subgroup of G, and it is denoted by F∗(G). Applying [HB82b, X, 13.9, 13.10],
F∗(G) is the intersection of the innerisers of the chief factors of G.

The main properties of the generalised Fitting subgroup are analysed in
many books, for example in Section 13 of Chapter X of the book of B. Huppert
and N. Blackburn [HB82b] or, more recently, in Section 6.5 of the book of
H. Kurzweil and B. Stellmacher [KS04]. Let us summarise here the most
relevant.

A formation F is saturated if and only if F is local.
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Definitions 2.2.18. 1. A group G is said to be quasisimple if G is perfect,
i.e. G′ = G, and G/ Z(G) is a non-abelian simple group.

2. A subgroup H of a group G is said to be a component of G if H is a
quasisimple subnormal subgroup of G.

3. The cosocle of a group G, Cosoc(G), is the intersection of all maximal
normal subgroups of G.

4. A group G is said to be comonolithic if G has a unique maximal normal
subgroup.

5. If G is a comonolithic group and M = Cosoc(G) is the unique maximal
normal subgroup of G, then the quotient G/M is said to be the head of G.

It is clear that if G is a quasisimple group, then G is comonolithic and
Cosoc(G) = Z(G). Also it is easy to see that if K is a normal subgroup of a
quasisimple group G, then G/K is also a quasisimple group.

The next result, due to H. Wielandt, will be extremely useful.

Theorem 2.2.19 ([Wie39]). If H and K are subnormal subgroups of a group
G, H is perfect and comonolithic and H is not contained in K, then K nor-
malises H.

Proposition 2.2.20 (see [KS04, 6.5.3]). If H and K are components of a
group G, then either H = K or [H,K] = 1.

Definition 2.2.21. The layer of a group G is the subgroup E(G) generated
by all components of G, i.e. the product of all components of G.

Proposition 2.2.22. Let G be a group.

1. We have that F∗(G) = F(G) E(G) and [F(G), E(G)] = 1; in fact

CF∗(G)

(
E(G)

)
= F(G)

(see [HB82b, X, 13.15]).
2. E(G) is the central product of all components of G, but not the product of

any proper subset of them (see [HB82b, X, 13.18] or [KS04, 6.5.6]).
3. F∗(G)/ F(G) = Soc

(
CG

(
F(G)

)
F(G)/ F(G)

)
(see [HB82b, X, 13.13]).

4. CG

(
F∗(G)

)
≤ F∗(G) (see [HB82b, X, 13.12] or [KS04, 6.5.8]).

2.3 Schunck classes and projectors

The starting point of the theory of classes of groups is the attempt to develop
a generalised Sylow theory, which leads to an investigation into the problem
of the existence of certain conjugacy classes of subgroups in finite groups.

Perhaps the most well-known existence and conjugacy theorem is Sylow’s
theorem which says, in its simplest form, that if p is a prime and G is a group,
then the maximal p-subgroups of G are conjugate in G.

The beginnings of this particular area of finite group theory came with
P. Hall’s generalisation of Sylow’s theorem for soluble groups.
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Theorem 2.3.1 ([Hal28]). Let G be a soluble group and π any set of primes.
Then the maximal π-subgroups of G are conjugate in G.

In a soluble group G, the π-subgroups of G with π′-index in G are exactly
the maximal π-subgroups of G and they are referred as the Hall π-subgroups
of G. Of course, this is the terminology we shall use here and we also use
Hallπ(G) to denote the set of all Hall π-subgroups of G.

By considering the order and index of Hall π-subgroups, it is easy to see
that they satisfy the following three conditions.

Let N be a normal subgroup of a soluble group G. Then:

1. Hallπ(G/N) = {SN/N : S ∈ Hallπ(G)}.
2. Hallπ(N) = {S ∩ N : S ∈ Hallπ(G)}.
3. If T/N ∈ Hallπ(G/N) and S ∈ Hallπ(T ), then S ∈ Hallπ(G).

In particular, Hall π-subgroups behave well as we pass from G to a factor
group G/N or to a normal subgroup N . It is these three properties that have
led to wide generalisations, the first and third properties leading to the theory
of saturated formations and Schunck classes and the associated projectors and
the second property to the theory of Fitting classes and injectors.

Both generalisations lead to conjugacy classes of subgroups in soluble
groups which share another important property of Hall subgroups:

If S ∈ Hallπ(G) and S ≤ H ≤ G, then S ∈ Hallπ(H).

The results of P. L. M. Sylow and P. Hall seemed to be suggestive of
certain arithmetic properties of groups. In 1937, P. Hall [Hal37] discovered
the so-called Hall systems of a soluble group G by choosing a set of Hall p′-
subgroups of G, one for each prime p, and taking their intersections. He proved
that if Σ and Σ∗ are two Hall systems of G, there exists an element g ∈ G such
that Σ∗ = Σg. That is, G acts transitively by conjugation on the set of its Hall
systems. Therefore the number of Hall systems of a soluble group is the index
in G of the stabiliser of a Hall system with respect to the action of G. This
stabiliser is what P. Hall called the system normaliser . P. Hall observed that
all system normalisers are nilpotent, they are preserved under epimorphisms,
and form a conjugacy class of subgroups. It is important to remark that system
normalisers, defined in terms of the genuine Sylow structure of a soluble group,
cover the central chief factors of the group and avoid the eccentric ones. Hence
they are the natural connection between the two characterisations of soluble
groups, the arithmetic and the normal (or commutator) structure, and afford
a “measure of the nilpotence” of the group.

Despite of system normalisers, there was a little evidence to suggest the
huge proliferation of results in the area. However, in 1961, R. W. Carter
[Car61] introduced another conjugacy class of subgroups in each soluble group.

A Carter subgroup of a group G is a nilpotent subgroup C of G such that
NG(C) = C. He proves:



100 2 Classes of groups and their properties

Theorem 2.3.2 (R. W. Carter). A soluble group G has a Carter subgroup
and any two Carter subgroups of G are conjugate in G.

It is clear that a Carter subgroup of a group G is a maximal nilpotent
subgroup of G. However, if G is a non-nilpotent soluble group, then G has a
maximal nilpotent subgroup which is not a Carter subgroup. Consequently,
regarding maximality, the Carter subgroups are not to the class N of all
nilpotent groups as the Hall subgroups are to the class Sπ of all soluble
π-groups.

However, there is a close relation between the abovementioned conjugacy
classes: in a group G of nilpotent length 2, the Carter subgroups of G are
exactly the system normalisers of G. Carter’s theorem would then follow from
this observation using induction on the nilpotent length.

W. Gaschütz viewed the Carter subgroups as analogues of the Sylow and
Hall subgroups of a soluble groups and in 1963 published a seminal paper
[Gas63] where a broad extension of the Hall and Carter subgroups was presen-
ted. The theory of formations was born. The new “covering subgroups” had
many of the properties of the Sylow and Hall subgroups, but the theory was
not arithmetic one, based on the orders of subgroups. Instead, the import-
ant idea was concerned with group classes having the same properties. He
introduces the concepts of formation and F-covering subgroup, for a class F of
groups. He then proved that if F is a formation of soluble groups, then every
soluble group has an F-covering subgroup if and only if F is saturated and,
in this case, the F-covering subgroups form a unique conjugacy class of sub-
groups. These F-covering subgroups coincided with the Sylow p-subgroups,
the Hall π-subgroups, and the Carter subgroups in the respective classesSp,
Sπ, and N. Subsequently, H. Schunck in his Kiel Dissertation [Sch66], writ-
ten under the direction of W. Gaschütz and H. Schubert, discovered precisely
which classes Z, of soluble groups, always gave rise to Z-covering subgroups;
he showed that these classes can be characterised in terms of their primitive
groups and that they form a considerably larger family of classes than the
saturated formations [Sch67]. They are known as Schunck classes and are the
main concern of this section.

Two years later, W. Gaschütz [Gas69] defined the notion of Z-projector
of some class of soluble groups Z and showed that for Schunck classes Z the
notions of Z-projector and Z-covering subgroup coincided. Since then the term
“projector” has been widely adopted in this context in preference to “covering
subgroup.”

The first serious attempt to broaden the study of Schunck classes and their
projectors and take it outside the soluble universe was made by P. Förster
[För84b], [För85b], and [För85c]. However, it should be remarked that the
study of projective classes outside the soluble universe had been observed and
treated previously by R. P. Erickson [Eri82] and P. Schmid [Sch74].

In the first part of the section we gather some of the basic facts about
Schunck classes and projectors. The book of K. Doerk and T. O. Hawkes
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[DH92] presents, in its Chapter III, an excellent treatment of this theme.
Hence we refer to it for the proof of some of the results we include here.
In the second part, we study the relationship between Schunck classes and
formations and some Schunck classes which are close to saturated formations.

Definitions 2.3.3. Let H be a class of groups.

1. A subgroup X of a group G is said to be H-maximal subgroup of G if
X ∈ H and if X ≤ K ∈ H, then X = K.
Denote by MaxH(G) the set of all H-maximal subgroups of G.

2. A subgroup U of a group G is called an H-projector of G if UN/N is
H-maximal in G/N for all N � G.
We shall use ProjH(G) to denote the (possibly empty) set of H-projectors
of a group G.

3. An H-covering subgroup of a group G is a subgroup E of G satisfying the
following two conditions:
a) E ∈ MaxH(G), and
b) if T ≤ G, E ≤ T , N � T , and T/N ∈ H, then T = NE.

The set of all H-covering subgroups of a group G will be denoted by
CovH(G).

Consider the case where H = Eπ, the class of all π-groups. Then, for each
soluble group G,

MaxH(G) = ProjH(G) = CovH(G) = Hallπ(G) 	= ∅.

However, the set Hallπ(G) can be empty for a non-soluble group G. In fact,
P. Förster [För85b] showed that if π a non-empty set of primes such that, for
each group G, Hallπ(G) 	= ∅ then, either π = {p}, p a prime, or π = P.

Definitions 2.3.4. 1. A class H is called projective if ProjH(G) 	= ∅ for
each group G.

2. A class H will be called a Gaschütz class if CovH(G) 	= ∅ for each group
G.

3. A class H is said to be a Schunck class if H is a homomorph that comprises
precisely those groups whose primitive epimorphic images are in H.

Remark 2.3.5. If H is a Schunck class, then H is a saturated homomorph, that
is, EΦ H = H = Q H.

It is clear that a saturated formation is a Schunck class. However, the
family of all Schunck classes is considerably larger than the one of all saturated
formations. Moreover, the fundamental role of the local definition of saturated
formations, and therefore the arithmetic properties, are substituted in the case
of Schunck classes by the primitive quotients of the group, and therefore by
the role of maximal subgroups. In 1974, K. Doerk [Doe71, Doe74] introduced
the concept of the boundary of a Schunck class, which plays a fundamental
role in the study of Schunck classes.



102 2 Classes of groups and their properties

Definitions 2.3.6. 1. For a class H of groups, define

b(H) := (G ∈ E \ H : G/N ∈ H for all 1 	= N � G).

Obviously, b(∅) = b(E) = ∅.
b(H) is said to be the boundary of H.
We say that a class of groups B is a boundary if B = b(H) for some
class of groups H.

2. If Y is a class of groups, define

h(Y) :=
(
G ∈ E : Q(G) ∩ Y = ∅

)
,

that is, the class of Y-perfect groups.
Clearly h(∅) = E and h(E) = ∅ if 1 ∈ Y. Moreover Y ∩ h(Y) = ∅ and
h(Y) is a homomorph.

Theorem 2.3.7. 1. Let H be a homomorph. Then h
(
b(H)

)
= H.

2. Let B be a boundary. Then b
(
h(B)

)
= B.

Proof. 1. Clearly H ⊆ h
(
b(H)

)
. Suppose that h

(
b(H)

)
is not contained in

H and let G be a group in h
(
b(H)

)
\ H of minimal order. Since h

(
b(H)

)
is

a homomorph, it follows that G ∈ b(H). This is a contradiction. Therefore
H = h

(
b(H)

)
.

2. If B = b(X) for some class of groups X, it follows that every proper
epimorphic image of a group in B does not belong to B. Hence B ⊆ b

(
h(B)

)
.

Assume that G ∈ b
(
h(B)

)
. Then G /∈ h(B) and so there exists a normal

subgroup N of G such that G/N ∈ B. Suppose that N 	= 1. In this case
G/N ∈ h(B) by definition of boundary. This contradicts our choice of G.
Consequently N = 1 and G ∈ B. This means that B = b

(
h(B)

)
. ��

Theorem 2.3.8. Let ∅ 	= H be a class of groups. H is a Schunck class if and
only if H is a homomorph and b(H) ⊆ P.

Proof. If H is a Schunck class, then H is a homomorph. Suppose that G ∈ b(H)
but G is not primitive. Then every epimorphic image of G belongs to H. Hence
G ∈ H, contrary to the choice of G. Consequently G is primitive and b(H) ⊆ P.

Conversely suppose that H is a homomorph and b(H) ⊆ P. Let G be
a group whose epimorphic primitive images lie in H. Suppose that G does
not belong to H. Then G ∈ b(H) by [DH92, III, 2.2 (c)]. In this case G is
primitive. This implies G ∈ H, which contradicts the fact that G ∈ b(H).
Therefore G ∈ H. ��

Corollary 2.3.9. For each class X, the class

P Q X =
(
G : Q(G) ∩ P ⊆ Q X

)
is the smallest Schunck class containing X. Therefore X is a Schunck class if
and only if X = P Q X.
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Proof. Clearly X ⊆ P Q X and P Q X is a homomorph. Moreover if G ∈ b(P Q X),
then G /∈ P Q X. Hence Q(G) ∩ P is not contained in Q X. Since G/N ∈ P Q X
for all 1 	= N � G, it follows that Q(G/N) ∩ P ⊆ Q X. Therefore G should
be primitive. Applying Theorem 2.3.8, P Q X is a Schunck class. Now if H is a
Schunck class and X ⊆ H, then Q X ⊆ Q H = H. Hence P Q X ⊆ P Q H = H. ��

Remark 2.3.10. The above corollary shows, in particular, that P Q is a closure
operation.

For another closure operation for Schunck classes related to crowns, the
reader is referred to [Haw73] and [Laf84a].

Combining Theorem 2.3.7 and Theorem 2.3.8, we have:

Corollary 2.3.11. If Z is a boundary composed of primitive groups, then h(Z)
is a Schunck class.

In general, Schunck classes are not R0-closed, as the following example
shows:

Example 2.3.12. Let E be a non-abelian simple group. Then Z = (E × E) is
a boundary composed of a primitive group. Hence h(Z) is a Schunck class by
Corollary 2.3.11. Clearly E ∈ h(Z) and E × E ∈ R0 h(Z) \ h(Z).

This example also shows that h(Z) is not D0-closed.

Suppose that H is a projective class. If G is a group in H, then ProjH(G) =
{G}. Hence, for each normal subgroup N of G, we have that ProjH(G) =
{G/N} by definition of H-projector. Therefore G/N ∈ H. Moreover, if G is a
group such that every primitive epimorphic images of G is in H, then G must
be an H-group because otherwise an H-projector E of G would be contained in
a maximal subgroup M of G. Since G/ CoreG(M) is primitive, it would follow
that G/ CoreG(M) ∈ H, and so G = E CoreG(M) = M . This contradiction
yields that G ∈ H and H is a Schunck class. It is proved in [DH92, III, 3.10]
that the converse is also true.

Theorem 2.3.13 ([DH92, III, 3.10]). A class H 	= ∅ is projective if and
only if it is a Schunck class.

Förster’s proof of the above theorem depends on the following property
of the projectors and covering subgroups. This property, usually called H-
inductivity, allows him to translate the question of the universal existence of
H-projectors and H-covering subgroups to the groups in the boundary of H
(see [DH92, III, 3.8]).

Proposition 2.3.14 ([DH92, III, 3.7]). Let H be a homomorph. Let f de-
note a function which assigns to each group G a possibly empty set f(G) of
subgroups of G. If f is either of the functions ProjH(·) or CovH(·), then it
satisfies the following two conditions:
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2. whenever N � G, N ≤ V ≤ G, U ∈ f(V ), and V/N ∈ f(G/N), then
U ∈ f(G).

W. Gaschütz [Gas69] actually proved that in the soluble universe the
Schunck classes are exactly the Gaschütz classes. However, in the general
finite universe, they are no longer coincidental. For instance, the alternating
group of degree 5 has no N-covering subgroups. However, we have:

Theorem 2.3.15 ([DH92, III, 3.11]). A Schunck class whose boundary
contains no primitive groups of type 2 is a Gaschütz class.

The conjugacy question can be also resolved partially by examining the
groups in the boundary. This approach works well for covering subgroups (see
[DH92, III, 3.13]), but in the case of projectors, we must work with Schunck
classes of monolithic boundary (see [DH92, III, 3.19]). In this context, the
following result turns out to be crucial. It will also be used in other chapters.

Proposition 2.3.16 ([För84b]). Let H be a Schunck class. Then b(H)∩P3 =
∅ if and only if H satisfies the following property:

Let H be an H-maximal subgroup of G such that G = H F∗(G). Then
H is an H-projector of G. (2.2)

Proof. Assume that b(H) ∩ P3 = ∅. Let G be a group with an H-maximal
subgroup H such that G = H F∗(G). We prove that H is an H-projector of G
by induction on |G|. First we claim:

For all N � G, the hypotheses are inherited from H, G to H, HN . (2.3)

Since G = H F∗(G), we have that HN = H
(
HN ∩ F∗(G)

)
= H F∗(HN)

as HN ∩ F∗(G) is a normal quasinilpotent subgroup of HN .

For all minimal normal subgroups M of G such that G/M /∈ H, the
hypotheses are inherited from H, G to HM/M , G/M . (2.4)

It follows that G/M = (HM/M)
(
F∗(G)M/M

)
and F∗(G)M/M is a nor-

mal quasinilpotent subgroup of G/M . Hence G/M = (HM/M) F∗(G/M).
Assume that K/M is an H-maximal subgroup of G/M such that HM/M ≤

K/M . Since G/M /∈ H, we have that K is a proper subgroup of G. Moreover,
if K ∈ H, we have H = K by the H-maximality of K. Therefore we may
assume that K /∈ H. Since F∗(G) is contained in the inneriser of M , it follows
that G = H F∗(G) = HM CG(M) and so K = HM CK(M).

Assume that M is abelian. Then K = H CK(M) and M is a minimal
normal subgroup of K. Since K /∈ H, we have that there exists a normal
subgroup C of K such that K/C ∈ b(H) ⊆ P1 ∪ P2 by [DH92, III, 2.2c]. It
is clear that M is not contained in C. Hence K/C ∈ P1 and Soc(K/C) =
MC/C. Consequently MC = CK(MC/C) = CK(M). Moreover HC 	= K
because K/C /∈ H. This implies that HC is a maximal subgroup of K, K =
(HC)(MC) and HC ∩ MC = C. On the other hand, HC ∩ M = 1 and

1. G ∈ f(G) if and only if G ∈ H;



2.3 Schunck classes and projectors 105

HC ∼= HCM/M = K/M ∈ H. The H-maximality of H in G implies that C
is contained in H and so K = HM .

Suppose that M is not abelian. Put C = CG(M). Then G/C is a
primitive group of type 2 and Soc(G/C) = MC/C by Proposition 1.1.14.
Suppose, by way of contradiction, that G/C ∈ H. Then K/ CK(M) =
HM CK(M)/ CK(M) ∼= G/C ∈ H. Let N be a normal subgroup of K
such that K/N ∈ b(H) ([DH92, III, 2.2 (c)]). Since N ∩ M = 1, we have
that Soc(K/N) = NM/N . Hence N = CG(NM/M) = C. This contradicts
K/C ∈ H. Therefore G/C /∈ H and HC is a proper subgroup of G. By in-
duction, H is an H-projector of HC. Hence H(HC ∩ M)/(HC ∩ M) is an
H-projector of HC/(HC ∩ M) ∼= G/M . Therefore HM/M is an H-projector
of G/M . In particular HM/M = K/M . This completes the proof of (2.4).

Assume that G ∈ H. Then H = G is an H-projector of G. Hence we
may assume that G /∈ H. If G/M ∈ H for all minimal normal subgroups
of G, it follows that G ∈ b(H). Hence G is a monolithic primitive group,
Soc(G) is a minimal normal subgroup of G and CG

(
Soc(G)

)
≤ Soc(G) by

Proposition 1.1.12 and Proposition 1.1.14. Then G = H Soc(G), and from H ∈
MaxH(G) and the fact that Soc(G) is the unique minimal normal subgroup
of G, we derive the claim of the proposition: H ∈ ProjH(G).

Therefore we may suppose that G/M /∈ H for some minimal normal sub-
group M of G. Then, in view of (2.3) and (2.4), the inductive hypothesis can
be applied to yield that H ∈ ProjH(HM) and HM/M ∈ ProjH(G/M). By
H-inductivity, H ∈ ProjH(G).

Conversely assume that H satisfies Property 2.2. Suppose that b(H)∩ P3 	=
∅ and derive a contradiction. Consider G ∈ b(H) ∩ P3. Then, by Theorem 1,
S = Soc(G) = A × B, where A and B are the two unique minimal normal
subgroups of G and both are complemented by a core-free maximal subgroup
U of G. Consider the subgroup T = U ∩S. Then T is isomorphic to A and B.
Since U is primitive by Corollary 1.1.13, it follows that T is not contained in
Φ(U). Let Y be a proper subgroup of U such that U = TY . Write X = Y B.
Then XA = Y S = Y TS = US = G. Hence X/(X ∩ A) ∼= G/A ∈ H. Let L
be a minimal supplement of X ∩ A in X. Clearly X ∩ A ∩ L is contained in
Φ(L) and so L ∈ EΦ H = H. Let H be an H-maximal subgroup of G containing
L. Since G = XA = LA, it follows that G = HA. Applying (2.2), H is an
H-projector of G. Since G/B ∈ H, we have that G = HB. Therefore H is a
core-free maximal subgroup of G such that H ∩B = H ∩A = 1. In particular,
L = H. This implies that X = G and so Y = U , contrary to the choice of Y .
Consequently b(H) ∩ P3 = ∅. ��

The same arguments to those used in the proof of Proposition 2.3.16 lead
to the following result.

Proposition 2.3.17. Let H be a Schunck class. If H is an H-maximal sub-
group of a group G such that G = H F(G), then H is an H-projector of G.

We now direct our attention towards certain formations that may be nat-
urally associated with a Schunck class. In fact, our next objective is to prove
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that a Schunck class H contains a unique largest formation. This result was
proved independently by U. Kattwinkel [Kat77] and K.-U. Schaller [Sch77] in
the soluble universe and by J. Lafuente [Laf84a] in the general case. We begin
with a definition.

Definition 2.3.18. Let H be a class of groups.
A chief factor H/K of a group G is said to be H-central in G if [H/K]∗G

is in H. Otherwise, the chief factor H/K is said to be H-eccentric in G.

Note that if H is a saturated formation and H is the canonical local defin-
ition of H (see [DH92, IV, 3.9]), then a chief factor H/K of a group G is
H-central in G if and only if H/K is H-central in G in the sense of [DH92,
IV, 3.1].

Let H be a class of groups. Denote by f(H) the class of all groups G in
which every chief factor is H-central. The class f1(H) is defined to be the class
of all groups such that [H/K]

(
G
/

CG(H/K)
)
∈ H for every chief factor H/K

of G.
It follows that f1(H) is contained in f(H) but the equality does not hold

in general.

Example 2.3.19. Let S be a non-abelian simple group. Consider the class H
of all groups with no quotient isomorphic to the direct product S × S of two
copies of S, i.e. the Schunck class of all (S × S)-perfect groups, is a Schunck
class whose boundary is b(H) = (S × S). The group S × S ∈ f(H) \ f1(H).
Note that f1(H) is contained in H.

Theorem 2.3.20. Let H be a class of groups. Then:

1. f(H) and f1(H) are formations.
2. If F is a formation contained in H, then F is contained in f(H).
3. Let H be a Schunck class. Then b(H) ∩ P3 = ∅ if and only if f(H) is the

largest formation contained in H.
4. Let H be a Schunck class. Then f1(H) is the largest formation contained

in H.

Proof. 1. Clearly f(H) and f1(H) are formations.
2. Suppose, arguing for contradiction, that F is a formation contained in H

such that F is not contained in f(H). Let G be a group in F\ f(H) of minimal
order. Then G has a unique minimal normal subgroup N and G/N ∈ f(H)
by [DH92, II, 2.5]. Assume that N is non-abelian. Then CG(N) = 1 and G is
isomorphic to [N ]∗G. Hence [N ]∗G ∈ H. Now if N is an abelian, we have that
[N ]
(
G
/

CG(N)
)
∈ F ⊆ H by Corollary 2.2.5. Therefore G ∈ f(H), contrary to

our supposition. Hence F is contained in f(H) and Statement 2 holds.
3. Let H be a Schunck class such that b(H) ∩ P3 = ∅. Assume that f(H)

is not contained in H. Then a group of minimal order in the non-empty
class f(H) \ H is in the boundary of H. Hence G is a monolithic primit-
ive group. If G is a primitive group of type 1, then G is isomorphic to
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[Soc(G)]
(
G
/

CG

(
Soc(G)

))
∈ H by Proposition 1.1.12 and if G is a prim-

itive group of type 2, then G = [Soc(G)] ∗G ∈ H. In both cases, we have that
G ∈ H. This contradiction yields f(H) ⊆ H.

Conversely assume that f(H) is the largest formation contained in H. If G
is in the boundary of H and G is a primitive group of type 3, then G/A and
G/B are H-groups, where A and B are the minimal normal subgroups of G.
This implies that G/A and G/B belong to f(H) because all their factors are
H-central. Hence G ∈ H, contrary to assumption. Consequently, b(H)∩P3= ∅.

4. Consider a group G ∈ f1(H) and let N be a normal subgroup of G
such that G/N is primitive. If G/N is a primitive group of type 1 or 3, then
G/N belongs to H by Proposition 1.1.12 (3). If X = G/N is a primitive group
of type 2 and Z = Soc(G/N), then [Z]X is a primitive group of type 3 by
Proposition 1.1.12 (3). Hence [Z]X ∈ H and so X ∈ H since H is Q-closed.
Consequently every primitive epimorphic image of G belongs to H and then
G is an H-group.

Let F be a formation contained in H. Then F is contained in f(H) by
Statement 2. Let G be an F-group. Then every abelian chief factor of G is
H-central in G. Suppose that H/K is a non-abelian chief factor of G. Denote
X = [H/K]

(
G
/

CG(H/K)
)
. Then X is a primitive group of type 3 by Pro-

position 1.1.12 (3) with two minimal normal subgroups X1 and X2 such that
X1 ∩ X2 = 1 and X/Xi ∈ F, 1 ≤ i ≤ 2. Hence X ∈ R0 F = F. Therefore
G ∈ f1(H) and F is contained in f1(H). ��

Example 3.1.37 shows that a class of groups H does not contain a unique
largest formation in general.

Example 2.3.21. Every Schunck class whose boundary consists of primitive
groups of type 2 is a saturated formation.

Proof. By Theorem 2.3.20 (3), f(H) is contained in H. Now if G is a group
in H and H/K is an abelian chief factor of G, then [H/K] ∗ G is an H-group
because it is not in the boundary of H. Since every non-abelian chief factor of
G is H-central in G, it follows that G ∈ f(H) and H is a saturated formation.

We bring the section to a close by studying a concrete family of Schunck
classes with an eye to a subsequent application in Chapter 4.

Consider a formation F. Then, by Lemma 2.1.5 (1), H = EΦF is a Schunck
class and it is the smallest Schunck class containing F. Note that a primitive
group is in H if and only if it is in F. Hence H has monolithic boundary and
so f(H) is the largest formation contained in H by Theorem 2.3.20 (3). It
follows that H = EΦf(H), but F is not equal to f(H) in general: if F = A is
the formation of all abelian groups, then f(EΦ F) is the class of all nilpotent
groups.

Schunck classes H of the form EΦF for some formation F can be charac-
terised by the property that each group not in H always has a special critical
subgroup.
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Definition 2.3.22. Let H be a class of groups.

1. A maximal subgroup U of a group G is said to be H-normal in G if
the primitive group G/ CoreG(U) is in H. Otherwise, U is said to be H-
abnormal in G.

2. A maximal subgroup U of a group G is said to be H-critical in G if U is
an H-abnormal critical subgroup of G.

Note that an H-critical subgroup is a monolithic maximal subgroup sup-
plementing an H-eccentric chief factor.

Lemma 2.3.23. Let H be a Schunck class and let G be a group, N a normal
subgroup of G, and M ≤ G. If U is H-critical in M and M ∩ N ≤ U , then
UN/N is H-critical in MN/N .

Proof. By Proposition 1.4.10, UN/N is critical in MN/N . Since N ∩M ≤ U ,
we have that CoreM (U)N/N = CoreMN/N (UN/N) and so M/ CoreM (U) ∼=
(MN/N)

/
CoreMN/N (UN/N) is not in H. In other words, UN/N is an H-

critical subgroup of MN/N . ��

Let S be a non-abelian simple group and the Schunck class H of all groups
with no quotient isomorphic to the direct product S × S of two copies of S.
All monolithic maximal subgroups of the group G = S × S are H-normal in
G. Hence G /∈ H and G has no H-critical subgroups.

The following theorem characterises the Schunck classes of the form H =
EΦF, for some formation F, among the Schunck classes for which every group
which is not in H possesses H-critical subgroups.

Theorem 2.3.24. For a Schunck class H, the following statements are pair-
wise equivalent:

1. every group which is not in H possesses H-critical subgroups;
2. H = EΦQ R0P(H), where P(H) is the class of all primitive groups in H;
3. H = EΦF, for some formation F;
4. a group G belongs to H if and only if every minimal normal subgroup of

G/Φ(G) is H-central in G.

Proof. 1 implies 2. Since, for every group G, Φ(G) is the intersection of all
normal subgroups N of G such that G/N is primitive and H is a homomorph,
it follows that H ⊆ EΦQ R0P(H).

Let G ∈ R0P(H). Then there exist normal subgroups N1, . . . , Nt of G such
that

⋂t
i=1 Ni = 1 and G/Ni is a primitive group in H, 1 ≤ i ≤ n. Con-

sequently, Φ(G) = 1. Suppose that G /∈ H and let U be an H-critical subgroup
of G. Then U is monolithic and G = UN for some minimal normal subgroup
of G. Moreover N ∩ Ni = 1 for some i. Therefore NNi/Ni is a chief factor of
G which is G-isomorphic to N . If G/Ni is a primitive group of type 1, then
G/Ni

∼= [N ]
(
G/ CG(N)

) ∼= G/ CoreG(U) ∈ H by Proposition 1.1.12. If G/Ni
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is a primitive group of type 2, then Ni = CG(N) = CoreG(U) by Proposi-
tion 1.1.14 and G/Ni = G/ CoreG(U) ∈ H. Suppose that G/Ni is a primitive
group of type 3. Then, by Proposition 1.1.13, NNi/Ni and C = CG(N)/Ni

are the minimal normal subgroups of G/Ni and G/C and G/NNi are primit-
ive groups of type 2. Moreover Ni = C ∩ NNi. Assume that G = UNi. Then
N CoreG(U) is contained in Ni CoreG(U) because N CoreG(U)/ CoreG(U) =
Soc

(
N CoreG(U)/ CoreG(U)

)
. Hence N is abelian. This contradiction shows

that Ni is contained in U . Hence G/ CoreG(U) ∈ Q(G/Ni) ⊆ H. In any case,
we have that G/ CoreG(U) is an H-group, contrary to the choice of U . There-
fore G ∈ H and the equality H = EΦQ R0P(H) holds.

Since for every class X of groups, the class Q R0X is a formation, it is clear
that 2 implies 3.

3 implies 4. Let G be a group in H. If N/Φ(G) is a minimal normal subgroup
of G/Φ(G), then N/Φ(G) is a supplemented chief factor of G and the primitive
group associated with N/Φ(G) is isomorphic to a quotient group of G. Hence
[N/Φ(G)] ∗ G ∈ H and the chief factor N/Φ(G) is H-central in G.

Conversely, assume that every minimal normal subgroup of G/Φ(G) is
H-central in G. Without loss of generality we may suppose that Φ(G) = 1. Let
N be a normal subgroup of G such that G/N is a monolithic primitive group.
Then Soc(G/N) = AN/N for some minimal normal subgroup A of G. Since
A is H-central in G, it follows that G/N ∈ H and so G/N ∈ F. Therefore
G/Φ(G) = G ∈ Q R0F = F.

4 implies 1. Let G be a group which is not in H. Assume first that Φ(G) = 1.
Suppose that all critical subgroups of G are H-normal in G. This means that
each minimal normal subgroup is H-central in G. By hypothesis, G is in H.
This is a contradiction. Therefore G has an H-critical subgroup.

For the case Φ(G) 	= 1, consider the group G∗ = G/Φ(G) which is not
in H either. Since Φ(G∗) = 1, the G∗ possesses an H-critical subgroup U∗ =
U/Φ(G). Clearly U is H-critical in G. ��

The “soluble” version of Theorem 2.3.24 was proved by P. Förster in
[För78].

2.4 Fitting classes, Fitting sets, and injectors

The theory of Fitting classes began when B. Fischer in his Habilitationschrift
[Fis66] wanted to see how far it is possible to dualise the theory of saturated
formations and projectors by interchanging the roles of normal subgroups and
quotients groups. From this point of view the closure operations Sn and N0

are the natural duals of Q and R0, and so a Fitting class, i.e. a 〈Sn, N0〉-closed
class, should be regarded as the dual of a formation. However, in the soluble
universe, it turns out that Fitting classes parallel Schunck classes more closely
in the dual theory because they are precisely the classes for which a theory
of injectors, dual of projectors, is possible. At the time of Fischer’s initial
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investigation the projectors were still known by covering subgroups and by
close analogy the dual concept chosen by Fischer was the so-called Fischer
subgroup: if F is a class of groups, a Fischer F-subgroup belongs to F and
contains each F-subgroup that it normalises. For an arbitrary Fitting class F,
Fischer was able to prove that the existence of Fischer F-subgroups in every
soluble group. However, he was not able to prove that the Fischer subgroups
of a soluble group are all conjugate. Some years later, R. S. Dark [Dar72] gave
an example of a Fitting class F and a soluble group which has two conjugacy
classes of Fischer F-subgroups.

As it turned out, the definition of projector, rather than covering sub-
group, is the right thing to dualise in order to guarantee conjugacy. In 1967
the concept of injector appears in the celebrated paper “Injektoren endlicher
auflösbarer Gruppen” by B. Fischer, W. Gaschütz, and B. Hartley [FGH67].
They prove that a class of soluble groups F is a Fitting class if and only if
every soluble group has an F-injector. Moreover, the F-injectors then form a
single conjugacy class.

When F is the Fitting class of all soluble π-groups, π a set of primes, the
F-injectors of a soluble group, like its F-projectors, turn out to be the Hall
π-subgroups. This is the only situation in which the injectors and projectors
coincide, and so the two theories are quite independent generalisations of the
classical Sylow and Hall subgroups.

In fact, as we see in Section 2.2, in the general, non-necessarily soluble,
universe, projective classes and Schunck classes remain equivalent concepts.
However, in Chapter 7, we shall show that there exist non-injective Fitting
classes.

Definition 2.4.1. A Fitting class is a class of groups which is both Sn-closed
and N0-closed, that is, a class of groups F is a Fitting class if F has the
following two properties:

1. if G ∈ F and N is a subnormal subgroup of G, then N ∈ F, and
2. if N1 and N2 are subnormal subgroups of a group G and G = 〈N1, N2〉,

then G ∈ F.

Hence a class F is a Fitting class if and only if F = 〈Sn, N0〉F.
As usual for classes defined by closure operations, the intersection of a

family of Fitting classes is again a Fitting class, and the union of a family
of Fitting classes which is a directed set with respect to the partial order of
inclusion is also a Fitting class.

In particular, if Z is a class of groups, the intersection FitZ of all Fitting
classes containing Z is the smallest Fitting class containing Z; Fit Z = 〈Sn, N0〉Z
is the Fitting class generated by Z. Note that if S is a non-abelian simple group,
then Fit(S) = form(S) = D0(1, S) by Example 2.2.3 (1).

Historically, the first example of a Fitting class is the class N of all nilpotent
groups. This was proved by H. Fitting in 1938. The formations Nc and S(d)

are also Fitting classes and, in general, since D0 ≤ N0 and R0 ≤ SD0, a subgroup
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closed Fitting class is R0-closed. However a formation does not need to be a
Fitting class. The formations A of all abelian groups and U of all supersoluble
groups are not N0-closed. Nevertheless, the following result can be used in
some contexts as a substitute of the R0-closure. It is known as the “quasi-
R0-lemma.”

Lemma 2.4.2 ([DH92, IX, 1.13]). Let N1 and N2 be normal subgroups of
a group G such that N1 ∩N2 = 1 and G/N1N2 is nilpotent. Suppose that F is
a Fitting class such that G/N1 ∈ F. Then G ∈ F if and only if G/N2 ∈ F.

Definition 2.4.3. If F is a Fitting class and G is a group, then the subgroup

GF = 〈S : S is a subnormal F-subgroup of G}

is a normal F-subgroup of G, and it is called the F-radical of G.

Remark 2.4.4. If N is a normal subgroup of G and F is a Fitting class, then
NF = N ∩ GF.

As might be expected, the class product of Fitting classes need not be a
Fitting class in general (see Step 7 in [DH92, IX, 2.14 (b)]). A special product
can be defined, which is dual to the formation product of Definition 2.2.10,
which preserves the Fitting class property.

Definitions and notation 2.4.5. Let X and Y be Fitting classes.

1. X � Y is the class of all groups G such that G/GX ∈ Y. (This product,
called Fitting product, was introduced by Gaschütz, see [DH92, IX, 1.10])

2. X · Y is the class of all groups G such that G = GXGY.

Proposition 2.4.6 (see [DH92, IX, 1.12]). Let F, G, and H be Fitting
classes. Then:

1. F � G ⊆ FG, and F ⊆ F � G if G is non-empty,
2. if the class G is a homomorph, then F � G = FG,
3. F � G is a Fitting class,
4. for all G ∈ E, the G-radical of G/GF is GF�G/GF, and
5. (F � G) � H = F � (G � H).

On the other hand, if X and Y are Fitting classes, then the class X · Y is
not necessarily a Fitting class (see [DH92, page 575]).

If X and Y are Fitting classes such that X ⊆ Y and F is a Fitting class,
we write that F ∈ Sec(X,Y) if X ⊆ F ⊆ Y; in this case we say that F is in the
section of X and Y. The most known section of Fitting classes is the Lockett
section.

In [Loc71], Lockett exploited the aberrant behaviour of radicals in direct
products and show how to associate with each Fitting class X another con-
taining it, called X∗, such that (G × H)X∗ = GX∗ × HX∗ . Lockett’s universe
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was the soluble one, but the definition of X∗, its Fitting character and its be-
haviour with respect to direct products still hold in the general finite universe
(see [DH92, X, Section 1]). Thus X∗ is the class of all groups G such that
(G × G)X is subdirect in G × G. We now define X∗ as the intersection of all
Fitting classes F such that F∗ = X∗. Obviously X∗ is a Fitting class and it
has the remarkable property that (X∗)∗ = X∗ by [DH92, X, 1.13].

Definition 2.4.7. Let X be a Fitting class.

1. X is a Lockett class if X = X∗.
2. The Lockett section of X is Locksec(X) = Sec(X∗, X∗).

Observe that if X is a Fitting class, each group G /∈ X such that every
proper subnormal subgroup of G is in X has to be comonolithic, by the N0-
closure of G, and GX = Cosoc(G). Hence the following definition makes sense.

As we have seen in Section 2.3 boundaries play an important role in the
study of Schunck classes. In fact, they provide a method to construct Schunck
classes by exploiting the one-to-one correspondence between homomorphs and
boundaries given by the maps b and h (Theorem 2.3.7). It is clear how the
analogous maps b and h for Fitting classes must be defined.

Definitions and notation 2.4.8. Let X be a Fitting class.

1. The boundary of X, b(X), is the class of all groups X /∈ X such that every
proper subnormal subgroup of X is an X-group.

2. b̄(X) =
(
G ∈ b(X) : G = G′).

3. For a prime p, we denote bp X = (G ∈ b(X) : G/ Cosoc(G) ∈ Sp).
4. Xb denotes the Fitting class generated by the cosocles of all groups G ∈

b(X):
Xb = Fit

(
Cosoc(G) : G ∈ b(X)

)
.

Definition 2.4.9. If Y is a class of groups, denote

h(Y) =
(
H : Sn(H) ∩ F = ∅

)
.

Remark 2.4.10. It reasonable to think that to use the same notation for dis-
tinct concepts of boundary introduces considerable ambiguity. However, we
shall rely on the context to make the meaning clear. The same applies to the
map h.

Definition 2.4.11. A preboundary is a class m of groups satisfying the fol-
lowing properties:

1. m is subnormally independent, that is, if M is a proper subnormal sub-
group of a group X ∈ m, then M /∈ m;

2. if X ∈ m, then X is comonolithic.

The maps b and h bear the same relation to the closure operation Sn as
the maps b and h of Section 2.3 bear to the closure operation Q. The following
theorem is the Fitting class version of Theorem 2.3.7.
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Theorem 2.4.12 ([DH92, XI, 4.4]).

1. If F is a Fitting class, then h
(
b(F)

)
= F.

2. If B is a boundary of a Fitting class, then b
(
h(B)

)
= B.

3. If F is a Fitting class such that F = FS, then b(F) is a preboundary of
perfect groups and if B is a preboundary of perfect groups, then h(B) is
a Fitting class such that h(B) = h(B)S

Therefore if T is Fitting class, then TS = T if and only if b(F) is a
preboundary of perfect groups.

Lemma 2.4.13. Let E be a comonolithic perfect group. Then

N(E) = [E, Cosoc(E)]

is the smallest normal subgroup of E contained in Cosoc(E) such that

Cosoc(E)/ N(E) = Z
(
E/ N(E)

)
.

Proof. Put M = Cosoc(E). Observe first that N(E) is a normal subgroup of
E such that N = N(E) ≤ M and M/N ≤ Z(E/N). Since E is perfect, we have
that M/N = Z(E/N) by the maximality of M . Let N1 be a normal subgroup
of G such that N1 ≤ M and M/N1 = Z(E/N1). Then [E, M ] = N(E) is
contained in N1. ��

Hence, if E is a comonolithic perfect group, then E/ N(E) is quasisimple.

Definition 2.4.14. Let F be a Fitting class. A comonolithic perfect subnormal
subgroup E of a group G is said to be an F-component of G if E /∈ F and
N(E) = [E, Cosoc(E)] ∈ F.

The subgroup generated by of all F-components of G is denoted by EF(G).

Note that for the trivial Fitting class F = (1), we have that the (1)-
components of any group G are exactly the usual components and E(1)(G) =
E(G) (see Definition 2.2.18 (2) and Definition 2.2.21).

Definitions and notation 2.4.15. Let G be a group and m a preboundary.
We denote

1. bm(G) for the set of all subnormal subgroups X of G such that X ∈ m.
2. Em(G) for the subgroup generated by all subnormal subgroups X of G such

that X ∈ bm(G).

If F is a Fitting class such that FS = F and X is an F-component of
a group G, then X is a comonolithic perfect subnormal subgroup such that
N(X) ≤ XF ≤ Cosoc(X). However, XF = Cosoc(X), since Cosoc(X)/ N(X)
is abelian. In other words, X ∈ b(F). Therefore if m = b(F), then Em(G) =
EF(G), for every group G, and bm(G) is the set of all F-components of G.
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W. Anderson introduced the concept of Fitting sets in a successful attempt
to localise the theory of Fitting classes to individual groups. He could adapt
the general method of B. Fischer, W. Gaschütz, and B. Hartley to prove the
existence of injectors, for Fitting sets, in each soluble group (see [DH92, VIII,
2.9]). In the proofs of both theorems, a lemma due to B. Hartley involving
Carter subgroups turns out to be crucial (see [DH92, VIII, 2.8]). I. Hawthorn
published in [Haw98] a completely original proof which only depends on some
easy results on strongly closed p-subgroups. We present here this proof of the
fundamental result of B. Fischer, W. Gaschütz, B. Hartley, and W. Anderson
and we even go a bit further.

Definition 2.4.16. Let G be a group. A Fitting set F of G is a non-empty
set of subgroups of G such that

1. if H ∈ F and g ∈ G, then Hg ∈ F ,
2. if H ∈ F and S is a subnormal subgroup of H, then S ∈ F , and
3. if N1 and N2 are normal F-subgroups of the product N1N2, then N1N2 ∈

F .

If F is a Fitting class and G is a group, then the set TrF(G) = {H ≤ G :
H ∈ F} (which is called the trace of F in G) of all F-subgroups of G is a
Fitting set of G. But not every Fitting set arise in this manner (see [DH92,
VIII, 2.2]).

Definition 2.4.17. If F is a Fitting set of G, then the subgroup

GF = 〈S : S is a subnormal F-subgroup of G〉

is a normal F-subgroup of G and it is called the F-radical of G (see [DH92,
VIII, 2.4]).

Remark 2.4.18. Let F be a Fitting set of a group G. If H ≤ G, then the set

FH = {S ≤ H : S ∈ F}

is a Fitting set of H. When there is no danger of confusion we shall usually
denote FH simply by F .

Definitions 2.4.19. Let F be a non-empty set of subgroups of a group G.

1. The subgroups in F are called F-subgroups of G. An F-subgroup is said
to be F-maximal in G if for any F-subgroup T such that S ≤ T , we have
that S = T .

2. An F-subgroup S is said to be an F-injector of G if S ∩N is F-maximal
in N for any subnormal subgroup N of G.

The, possibly empty, set of F-injectors of a group G will be denoted by
InjF (G).

If F is a Fitting class, we talk about F-maximal subgroups and of F-
injectors. The, possibly empty, set of F-injectors of a group G will be denoted
by InjF(G).
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tive set if G possesses F-injectors.
A class F of groups is said to be an injective class in a universe X if every

group G ∈ X possesses F-injectors.

Definition 2.4.21. Let G be a group and p a prime. Consider a p-subgroup
P0 of G and suppose that P0 ≤ P , for P ∈ Sylp(G). We say that P0 is strongly
closed in P with respect to G, if P g

0 ∩ P ≤ P0, for all g ∈ G.

Remark 2.4.22. Let G be a group and p a prime. Let P0 be a p-subgroup of G
such that P0 ≤ P ∈ Sylp(G). Suppose that P0 is strongly closed in P with
respect to G. Then:

1. P0 is a normal subgroup of P .
2. P0 ∩ Op(G) is a normal subgroup of G.

Lemma 2.4.23. Let G be a group and p a prime. Let P0 be a p-subgroup
of G such that P0 ≤ P ∈ Sylp(G). Suppose that P0 is strongly closed in P
with respect to G.

1. If P0 ≤ P x, for some x ∈ G, then P0 is strongly closed in P x with respect
to G.

2. If N is a normal subgroup of G, then P0N/N is strongly closed in PN/N
with respect to G/N .

Proof. 1. Observe that P x−1

0 = P x−1

0 ∩ P ≤ P0. Hence x ∈ NG(P0). If
g ∈ G, we have

P g
0 ∩ P x = (P gx−1

0 ∩ P )x ≤ P x
0 = P0.

This means that P0 is strongly closed in P x with respect to G.
2. Observe that, for each g ∈ G, there exists an element x ∈ N such that

P g
0 ∩ PN = P g

0 ∩ P x = (P gx−1

0 ∩ P )x ≤ P x
0 ≤ P0N.

The assertion easily follows. ��

Lemma 2.4.24 (M. E. Harris, [Har72]). Let G be a soluble group and p
a prime. Let P0 be a p-subgroup of G such that P0 ≤ P ∈ Sylp(G). If P0

is strongly closed in P with respect to G, then P0 is a normally embedded
subgroup of G (see [DH92, Section I, 7]).

Proof. We use induction on the order of G. If M is a non-trivial normal
subgroup of G, for any H ≤ G we write H̄ to denote the subgroup HM/M of
the quotient group Ḡ = G/M .

By Lemma 2.4.23 (2), we have that P̄0 is strongly closed in P̄ with respect
to Ḡ. By induction, the subgroup P̄0 is normally embedded in Ḡ, that is, there
exists a normal subgroup N̄ of Ḡ, such that P̄ ∩ N̄ = P̄0. This means that

Definitions 2.4.20. A set of subgroups F of a group G is said to be an injec-
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there exists a normal subgroup N of G such that P0M = (P ∩ N)M . Then
P ∩ P0M = P ∩ (P ∩ N)M = (P ∩ N)(P ∩ M).

If either CoreG(P0) 	= 1 or Op′(G) 	= 1, then put either M = CoreG(P0)
or M = Op′(G). In this case, P0 = P ∩N and the assertion follows. Hence we
may assume that CoreG(P0) = Op′(G) = 1. Then, by [KS04, 6.4.4], we have
that CG

(
Op(G)

)
≤ Op(G) inasmuch as G is soluble. If M = P0 ∩ Op(G) 	= 1,

then M is a non-trivial normal subgroup of G by Remark 2.4.22 (2). This
contradicts CoreG(P0) = 1. Hence we can assume that P0 and Op(G) have
trivial intersection. Since P0 is normal in P by Remark 2.4.22 (1), it follows
that P0 ≤ CG

(
Op(G)

)
≤ Op(G). Hence P0 = 1 and the lemma follows. ��

Applying a result of P. Lockett (see [DH92, I, 7.8]) we have the following
lemma.

Lemma 2.4.25. Let G be a soluble group and p and q two primes. Let P0 be
a p-subgroup of G such that P0 ≤ P ∈ Sylp(G) and Q0 a q-subgroup of G such
that Q0 ≤ Q ∈ Sylq(G). If P0 is strongly closed in P with respect to G and Q0

is strongly closed in Q with respect to G, then there exists an element g ∈ G
such that P g

0 Q0 = Q0P
g
0 .

Theorem 2.4.26 (B. Fischer, W. Gaschütz, B. Hartley, and W.

unique conjugacy class of F-injectors.

Proof (I. Hawthorn). We apply induction on the order of G and assume the
result is true for all groups of smaller order.

Since G is soluble, there exists a prime p such that Op(G) is a proper
subgroup of G. By induction, Op(G) possesses a unique conjugacy class of
F-injectors. Let S be one of them. Note that if g ∈ G, the subgroup Sg is also
an F-injector of Op(G) and then there exists an element h ∈ Op(G) such that
Sg = Sh. Consequently the Frattini argument holds and G = NG(S) Op(G).
In fact, if P is a Sylow p-subgroup of NG(S), then G = P Op(G).

Let R be the subgroup generated by the F-subgroups of PS containing S.
Since any such subgroup is subnormal in PS, we have that R ∈ F .

Let T be an F-subgroup of G such that S is contained in T . Observe
that T ∩ Op(G) is an F-subgroup. The F-maximality of S in Op(G) implies
that S = T ∩ Op(G). Hence T is contained in NG(S). Therefore any Sylow
p-subgroup of T is conjugate in NG(S) to a subgroup of P . Since T/S ∼=
T Op(G)/ Op(G) is a p-group, it follows that T is conjugate in NG(S) to a
group of the form P0S, for some subgroup P0 of P . Hence, all extensions of
S which are elements of F are conjugate in NG(S) to subgroups of R. In
particular if G has in F-injector, then it is conjugate to R.

It remains to show that R is an F-injector of G. Since R is F-maximal in
G, it is enough to prove that R contains an F-injector of M for every maximal
normal subgroup M of G.

Suppose that |G : M | = q, q a prime, and let T be an F-injector of M .
The subgroups T ∩M ∩Op(G) = T ∩Op(G) and S ∩M ∩Op(G) = M ∩S are

Anderson). If G is a soluble group and F is a Fitting set of G, then G has a
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F-injectors of the normal subgroup M ∩Op(G). Therefore they are conjugate
in M ∩ Op(G). Choose T in such a way that T ∩ Op(G) = M ∩ S = U . Let
P1 ∈ Sylp(T ) and Q1 ∈ Sylq(S) so that T = P1U and S = Q1U . Since S
and T are subgroups of NG(U), there exist a Sylow p-subgroup P of NG(U)
such that P1 ≤ P and a Sylow q-subgroup Q of NG(U) such that Q1 ≤ Q.
If g ∈ NG(U), then (P g

1 ∩ P )U ≤ T g ∈ F . Since (P g
1 ∩ P )U and T are

subnormal subgroups of PU , we have that 〈P g
1 ∩ P, P1〉U is an F-subgroup

of PU . Moreover T ≤ 〈P g
1 ∩ P, P1〉U ≤ 〈T g, T 〉 ≤ M . The F-maximality of T

in M yields P g
1 ∩ P ≤ P1. This is to say that P1 is strongly closed in P with

respect to NG(U). Analogously it can be shown that Q1 is strongly closed in Q
with respect to NG(U). By Lemma 2.4.25, there exists an element g ∈ NG(U)
such that the product P g

1 Q1 is a subgroup of NG(U).
Consider the subgroup K = P g

1 Q1U = (P1U)g(Q1U) = T gS. Observe that
K ∩ Op(G) = T gS ∩ Op(G) =

(
T g ∩ Op(G)

)
S =

(
T ∩ Op(G)

)g
S = UgS =

US = S and similarly K ∩M = T g. Hence S and T g are normal F-subgroups
of K and therefore K is an F-group. Since S is contained in K, we have that
R contains a conjugate of K. This concludes the proof. ��
Theorem 2.4.27. Let F be a Fitting set of a group G such that G/GF is
soluble. Then G has a unique conjugacy class of F-injectors.

Proof. Denote N = GF . The set F∗ = {H/N : H ∈ F , N ≤ H} is a Fitting
set of the soluble group G/N . Moreover, using the arguments of [DH92, VIII,
2.17 (a)], we have that

F0 = {S ≤ G : SN/N ∈ F∗ and S is subnormal in SN}
is a Fitting set of G . Observe that F0 ⊆ F and for any subnormal subgroup
S of G, we have that SF0 = SF .

We apply now the arguments of [DH92, VIII, 2.17 (b)], which hold in the
non-soluble case, to conclude that if V/N is an F∗-injector of G/N , then V
is an F0-injector of G. We claim that, indeed, V is an F-injector of G. To see
that, we prove that for any subnormal subgroup S of G, the subgroup V ∩ S is
F-maximal in S. Suppose that there exists W ∈ F such that V ∩ S ≤ W ≤ S.
Then (V∩ S)N/N = (V/N)∩(SN/N) ≤ WN/N ≤ SN/N . Since SF = SF0 ≤
V ∩ S ∈ InjF0

(S), then SF ≤ W . Recall that N∩ S = SF , by [DH92, VIII, 2.4
(d)]. Therefore WN ∩S = W (N∩ S) = WSF = W . Hence W is subnormal in
WN and then WN ∈ F . Consequently, WN/N ∈ F∗. Since (V/N)∩ (SN/N)
is F∗-maximal in SN/N , we have that (V ∩ S)N = WN . This implies that

V ∩ S = (V ∩ S)(N ∩ S) = (V ∩ S)N ∩ S = WN ∩ S = W,

and then V ∩ S is F-maximal in S. Thus, we deduce that V ∈ InjF (G) as
claimed.

On the other hand, applying [DH92, VIII, 2.15], if V ∈ InjF (G), then
V/N is an F∗-injector of the soluble group G/N . By Theorem 2.4.26, the
F∗-injectors of G/N are conjugate in G/N . Consequently the F-injectors of
G form a conjugacy class of subgroups of G. ��



118 2 Classes of groups and their properties

Corollary 2.4.28 ([BCMV84]). If F is a Fitting class, every group in FS
has a unique conjugacy class of F-injectors.

One line taken in the study of Fitting classes in the soluble universe has
been their classification according to the embedding properties of their inject-
ors, and in this direction the pursuit of those with normal injectors has been
especially fruitful. In this context the following definition makes sense.

Definition 2.4.29. Let X be a class of groups which is closed under taking
subnormal subgroups, and let 1 	= F be a Fitting class contained in X.

1. We say that F is normal in X or X-normal if GF is F-maximal in G for
all G ∈ X.

2. F is said to be dominant in X or X-dominant if for all H ∈ X any two
F-maximal subgroups of H containing HF are conjugate in H.

If X = E, we simply say that F is a normal (respectively dominant) Fitting
class.

It is clear that if F is X-normal, then every group G has a unique F-injector,
namely the F-radical. Moreover, applying [DH92, IX, 4.2], if F is X-dominant,
then every X-group has a unique conjugacy class of F-injectors, namely the
F-maximal subgroups of H containing HF.

The first investigation in normal Fitting classes was carried out by D.
Blessenohl and W. Gaschütz in [BG70]. They quickly settle the question of
which Schunck classes of soluble groups have normal projectors — these turn
out to be the classes of all π-perfect groups (the projector in G being Oπ(G))
— and then go to lay the foundations for the much more complex dual theory
(see [DH92, X, Section 3]).

2.5 Fitting formations

We have seen that many of the examples of Fitting classes are formations
too. Naturally such classes are called Fitting formations. The class N, of all
nilpotent groups, the classes Eπ, of all π-groups, the class EπEπ′ , of all groups
with a normal Hall π-subgroup, for any set π of prime numbers, are examples
of Fitting formations.

We will be interested in the following example:

Example 2.5.1. Let I be a non-empty set. For each i ∈ I, let Fi be a subgroup-
closed Fitting formation. Assume that π(Fi)∩π(Fj) = ∅ for all i, j ∈ I, i 	= j.
Then Xi∈I Fi is a saturated Fitting formation (see Remark 2.2.13).

The most remarkable milestone in the theory of Fitting formations was
settled by R. A. Bryce and J. Cossey in 1982.
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Theorem 2.5.2 (R. A. Bryce and J. Cossey, [BC82]). Every subgroup-
closed Fitting class of finite soluble groups is a saturated formation.

The way towards the proof of this impressive result started ten years

Theorem 2.5.3 (R. A. Bryce and J. Cossey, [BC72]). Every subgroup-
closed Fitting formation of finite soluble groups is saturated.

An outline of the proof of these two results appears in Chapter XI of
[DH92].

Unfortunately the above theorem is not true in the general universe of
all finite groups as it is pointed out in [DH92, IX, 1.6]. In [BBE98], the

formation to be saturated.

Theorem 2.5.4 ([BBE98]). For a subgroup-closed Fitting formation F the
following are equivalent:

1. If G ∈ F is a primitive group of type 2 and Ep is the maximal Frattini
extension of G with p-elementary abelian kernel, then Ep ∈ F, for every
prime p dividing |Soc(G)|,

2. F is saturated.

Up to now, no classification of the Fitting formations is known. However
many of the known Fitting formations are gathered in two types: solubly sat-
urated Fitting formations and Fitting formations defined by Fitting families
of modules.

The search for a soluble non-saturated Fitting formation led to T. O.
Hawkes to the introduction of what he called (see [Haw70]) the class of
p-soluble groups, p a prime, whose absolute arithmetic p-rank is a p′-number.
After that, and extending Hawkes’s methods, many examples of soluble non-
saturated Fitting formations have been introduced by different authors. The
method presented by J. Cossey and C. Kanes in [CK87] and modified by Cos-
sey in [Cos89] includes all previous constructions. Motivated by the local (or
Baer) functions, the criterion to decide whether a particular p-soluble group
belongs to one of these Cossey-Kanes classes is defined by imposing some con-
ditions of a certain class of modules associated with the p-chief factors. That
the classes so defined are Fitting formations is a consequence of the closure
properties of the family of modules.

Definition 2.5.5. Let K be a field. We associate with each group G of a
suitable universe V a class M(G) of irreducible KG-modules. The class M =⋃

G M(G) is said to be a Fitting family of modules over K if it satisfies the
following properties:

1. If V ∈ M(G) and N is a normal subgroup of G such that N ≤ CG(V ),
then V , regarded in the natural way as a K(G/N)-module, is in M(G/N).

before. In [BC72] the same authors proved the following.

authors found necessary and sufficient conditions for a subgroup-closed Fitting
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2. If V ∈ M(H) and H is an epimorphic image of G, then V , regarded in
the natural way as a KG-module, is in M(G).

3. If V ∈ M(G), N is a subnormal subgroup of G and U is an irreducible
constituent of VN , then U ∈ M(N).

4. If N1 and N2 are normal subgroups of G such that G = N1N2 and V is
an irreducible KG-module such that all composition factors of VNi are in
M(Ni), for i = 1, 2, then V ∈ M(G).

Clearly if M(G) is non-empty, then the trivial KG-module KG is in M(G).
With this definition we can construct Fitting formations with the following

procedure.

Theorem 2.5.6. Fix a prime r. Let K be an extension field of k = GF(r).
For any r-soluble group G, we denote TK(G) the class of all irreducible KG-
modules V such that V is a composition factor of the module WK = W ⊗K,
where W is an r-chief factor of G. If, for every r-soluble group G, a class of
irreducible KG-modules M(G) is defined, and M =

⋃
G M(G), the class

T(1,M) =
(
G : G is r-soluble and TK(G) ⊆ M(G)

)
is a Fitting formation provided M is a Fitting family in the r-soluble universe.

A proof of this theorem is presented in [DH92, IX, 2.18].
Thus, given a Fitting family M in the r-soluble universe, r a prime, we

have a way to distinguish between the abelian chief factors of a soluble group
G: an r-chief factor M of G can be such that all composition factors of MK

are in M(G) or not.

ated by the class of characters, called π-factorable characters, introduced
by I. M. Isaacs in [Isa84]. D. Gajendragadkar introduced in [Gaj79] the idea
of π-special characters and established their basic properties. This idea was
considerably developed and refined by Isaacs. The definition of π-special mod-
ules is derived from the definition of π-special characters and the properties
are similar to those of Isaacs and Gajendragadkar.

We therefore specify that for the rest of this section all groups considered
are soluble.

Definition 2.5.7. Let K be an algebraically closed field of characteristic r >
0, π a set of primes, and G a group.

1. An irreducible KG-module V is called π-special if the dimension of V is
a π-number and whenever S is a subnormal subgroup of G and U is a
composition factor of VS, then det(x onU) = 1 for all π′-elements x of S.

2. Suppose that P = {πi : i ∈ I} is a partition of P, the set of all primes.
An irreducible KG-module V is called P-factorable if V = Uj1 ⊗· · ·⊗Ujn

for some πji
-special modules Uji

, πji
∈ P, i = 1, . . ., n, and ji 	= jk when

i 	= k.

The family of modules proposed by J. Cossey and C. Kanes [CK87] is motiv-
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3. An irreducible KG-module V is called π-factorable if V is P-factorable
for P = {π, π′}.

It turns out that if U and W are respectively π-special and π′-special
irreducible KG-modules, then U⊗W is irreducible. Moreover, if U ′ and W ′ are
respectively π-special and π′-special irreducible KG-modules, and U ⊗ W ∼=
U ′ ⊗ W ′, then U ∼= U ′ and W ∼= W ′ (see [CK87, 2.4] for more details and
notation). It is also true the following:

Lemma 2.5.8 ([CK87, 2.2]). Let G be a group, K a field, π a set of primes
and V be π-special KG-module. If S is a subnormal subgroup of G, then every
irreducible constituent of VS is π-special.

The next lemma equips us with the basic arguments to prove closure prop-
erties of “Fitting type.” Its proof is rather technical and can be seen in [CK87].

Lemma 2.5.9. Let G be a group, K an algebraically closed field and P =
{πi : i ∈ I} a partition of the set P of all primes.

1. If V is a P-factorable KG-module and N is a normal subgroup of G, then
any irreducible KN -submodule of VN is a P-factorable KN -module.

2. Suppose that M and N are normal subgroups of G such that G = MN . Let
V be an irreducible KG-module such that all irreducible KM -submodules
of VM and all irreducible KN -submodules of VN are P-factorable. Then
V is a P-factorable KG-module.

And now we prove the main result.

Theorem 2.5.10. Let K be an algebraically closed field of characteristic a
prime p. Let P = {πi : i ∈ I} be a partition of the set P of all primes.
For each i ∈ I, let Xi be a Fitting formation. Denote X = {Xi : i ∈ I}. For
every soluble group G, denote by M(G) the class of all irreducible P-factorable
KG-modules V such that V = V1 ⊗ · · · ⊗ Vn(V ). Suppose further that

1. Vj is a πi(j)-special KG-module, and
2. G/ CG(Vj) ∈ Xi(j), for j = 1, . . ., n(V ).

Then M = M(K,P,X ) =
⋃

G M(G) is a Fitting family in the universe S.

Proof. 1. Let G be a group, let N be a normal subgroup of G, and let
V be a KG-module in M(G) such that N ≤ CG(V ). Suppose that V =
V1 ⊗ · · · ⊗ Vn is a P-factorisation of V where Vj is a πi(j)-special KG-module
and G/ CG(Vj) ∈ Xi(j), for each j = 1, . . ., n. Then CG(V ) =

⋂n
j=1 CG(Vj),

and so N ≤ CG(Vj) for each j. Consider Vj as a K(G/N)-module. It is
clear that Vj is also a πi(j)-special K(G/N)-module. Therefore the K(G/N)-
module V is P-factorable. Since (G/N)

/
CG/N (Vj) ∼= G/ CG(Vj), we have

that V ∈ M(G/N).
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2. Let G and H be two groups such that ϕ : G −→ H is an epimorphism,
and consider an KH-module V ∈ M(H). Suppose that V = V1 ⊗· · ·⊗Vn is a
P-factorisation of V where Vj is a πi(j)-special KH-module and H/ CH(Vj) ∈
Xi(j), for each j = 1, . . ., n. Each Vj is considered as a KG-module via ϕ. Let
S be a subnormal subgroup of G. Since ϕ is an epimorphism, the image Sϕ is
a subnormal subgroup of H. Moreover, U is a composition factor of (Vj)S if
and only if U is a composition factor of (Vj)Sϕ . For any π(j)′-element x of S,
we have that xϕ is a π(j)′-element of Sϕ and det(x on U) = det(xϕ onU) = 1.
Therefore the KG-module Vj is πi(j)-special and V is a P-factorable KG-
module. Finally, observe that Ker(ϕ) ≤ CG(V ) =

⋂n
j=1 CG(Vj). Then

G/ CG(Vj) ∼=
(
G/ Ker(ϕ)

)/(
CG(Vj)/ Ker(ϕ)

) ∼= H/ CH(Vj) ∈ Xi(j). There-
fore V ∈ M(G).

3. Let G be a group, N be a normal subgroup of G and V a KG-module
in M(G). Let U be an irreducible KN -submodule of VN . Then U is a P-
factorable KN -module by Lemma 2.5.9 (1). In fact, if V = V1 ⊗ · · · ⊗ Vn is a
P-factorisation of V where Vj is a πi(j)-special KG-module then there exists
a KN -submodule Uj of Vj such that U = U1 ⊗ · · · ⊗ Un is a P-factorisation
of U where each Uj is a πi(j)-special KN -module, 1 ≤ j ≤ n. Since each
Xi(j) is a Fitting class and G/ CG(Vj) ∈ Xi(j), then the normal subgroup
N CG(Vj)/ CG(Vj) is in Xi(j). This is to say that N/ CN (Vj) ∈ Xi(j). Since
Uj is a KN -submodule of Vj , we have that CN (Vj) is a normal subgroup
of CN (Uj) and then N/ CN (Uj) is an epimorphic image of N/ CN (Vj). Since
each Xi(j) is also a formation, we have that N/ CN (Uj) ∈ Xi(j). Therefore we
deduce that U ∈ M(N).

4. Let G be a group and suppose that M and N are normal subgroups
of G such that G = MN . Let V be an irreducible KG-module such that
all irreducible KM -submodules of VM are in M(M) and all irreducible KN -
submodules of VN are in M(N). By Lemma 2.5.9 (2), V is P-factorable KG-
module. Suppose that V = V1 ⊗ · · · ⊗ Vn is a P-factorisation of V where Vj is
a πi(j)-special KG-module. By Clifford’s theorem [DH92, B, 7.3], (Vj)M and
(Vj)N are completely reducible. Suppose that (Vj)M = Zj,1 ⊕ · · · ⊕ Zj,r(j) is
a decomposition of (Vj)M in irreducible KM -submodules. By Lemma 2.5.8
every Zj,t is a πi(j)-special KM -module. Therefore

VM =
r(1)⊕

k(1)=1

· · ·
r(n)⊕

k(n)=1

[
Z1,k(1) ⊗ · · · ⊗ Zn,k(n)

]
Any Z1,k(1) ⊗ · · · ⊗ Zn,k(n) is a P-factorisation of an irreducible constituent
of VM . Then Z1,k(1) ⊗ · · · ⊗ Zn,k(n) ∈ M(M). Therefore M/ CM (Zj,l) ∈ Xi(j)

for any par (j, l). It is clear that CM (Vj) =
⋂r(j)

i=1 CM (Zj,i). Since Xi(j) is a
formation, the group M/ CM (Vj) is in Xi(j). We can argue analogously with
VN and deduce that N/ CN (Vj) ∈ Xi(j). Moreover since

M CN (Vj)/ CM (Vj) CN (Vj) ∼= M/ CM (Vj) ∈ Xi(j)



2.5 Fitting formations 123

and
N CM (Vj)/ CM (Vj) CN (Vj) ∼= N/ CN (Vj) ∈ Xi(j),

and Xi(j) is a Fitting class, we have that

G/ CM (Vj) CN (Vj) =
[M CN (Vj)/ CM (Vj) CN (Vj)][N CM (Vj)/ CM (Vj) CN (Vj)]

is in Xi(j). Finally, notice that CM (Vj) CN (Vj) is a normal subgroup of CG(Vj)
and then G/ CG(Vj) is isomorphic to a quotient group of G/ CM (Vj) CN (Vj).
Since Xi(j) is a formation, we have that G/ CG(Vj) ∈ Xi(j). This implies that
V ∈ M(G). ��

Examples and remarks 2.5.11. The Cossey-Kanes construction covers many of
the known constructions of Fitting formations. For instance:

1. Let p be a prime and K an algebraically closed field of characteristic
p. If P =

{
π1 = {p}, π2 = p′

}
and X = {X1 = (1),X2 = S}, then Mp =

M(K,P,X ) is a Fitting family of modules in the universe S. The Fitting
formation T = T(Mp) is the one introduced by Hawkes in [Haw70].

2. The Fitting formations studied by K. L. Haberl and H. Heineken
([HH84] or [DH92, IX, 2.26]) are constructed using a not necessarily algebraic-
ally closed field K. Nevertheless they can also be included in the Cossey-Kanes
construction thanks to a modification made by Cossey in [Cos89]. According to
[HH84, 4.1], every Haberl-Heineken Fitting formation can be seen as a Fitting
formation constructed by the Cossey-Kanes method with X1 = S, X2 = (1).

3. The non-saturated Fitting formations introduced by T. R. Berger and
J. Cossey in [BC78] are defined in terms of the Cossey-Kanes procedure. The
Fitting formations of Berger-Cossey are the first examples of non-saturated
Fitting formations composed of soluble groups whose p-length is less or equal
to 1 for all primes p.

4. A result due to L. G. Kovács, which appears in [CK87, 4.2], character-
ises the saturation of the Fitting formations T

(
M(K,P,X )

)
. This means that

some of the Fitting formations constructed by the Cossey-Kanes procedure
can be saturated.

5. Let M =
⋃

G M(G) be a Fitting family. In Theorem 2.5.6, assume that,
instead of the class ΓK(G), we work with the class ∆K(G) of all irreducible
KG-modules V such that V is a composition factor of the module WK =
W ⊗K, where W is a complemented r-chief factor of G (r is a prime, K is a
field with charK = r and G is r-soluble). Then the class

C(M) =
(
G : G is r-soluble and ∆K(G) ⊆ M(G)

)
is a Fitting class and a Schunck class (see [CO87]). Moreover, in this paper a
criterion to decide which of these classes is a formation is presented.




