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F-subnormality

How a subgroup can be embedded in a group is always a question of particular
interest for clearing up the structure of finite groups.

One of the most important subgroup embedding properties is the sub-
normality, transitive closure of the relation of normality. This property was
extensively studied by H. Wielandt (see [Wie94a]). For an excellent survey of
the theory of subnormal subgroups, we refer the reader to J. C. Lennox and
S. E. Stonehewer [LS87].

In finite groups the significance of the subnormal subgroups is apparent
since they are precisely those subgroups which occur as terms of composition
series, the factors of which are of great importance in describing the group
structure.

Let F be a saturated formation of full characteristic. If G is a soluble group,
the F-normaliser D of G associated with a Hall system Σ of G is contained
in the F-projector E of G in which Σ reduces (see [DH92, V, 4.11] and The-
orem 4.2.9). In 1969, T. O. Hawkes [Haw69] analysed how D is embedded in
E. It turns out that D can be joined to E by means of a maximal chain of
F-normal subgroups, that is, D is F-subnormal in E ([DH92, V, 4.12]). The
F-subnormality could be regarded, in the soluble universe, as the natural ex-
tension of the subnormality to formation theory. In fact, most of the results
concerning subnormal subgroups can be read off by specialising to the case
where F is the formation of all nilpotent groups.

this chapter is to present the main results of the
F-
normal subgroups properties by the methods of formation theory.

6.1 Basic properties

In the sequel, F will denote a non-empty formation.

subnormal subgroups. They are primarily connected with the study of sub-
Our objective in

A subgroup U of a group G is called F-normal in G if G/ CoreG(U) ∈ F;
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236 6 F-subnormality

otherwise U is said to be F-abnormal in G. This definition was introduced in
Definition 2.3.22 (1) for maximal subgroups.

Illustrations 6.1.1. 1. A subgroup U is F-normal in G if and only if GF is
contained in U .

2. A maximal subgroup is normal in G if and only if it is N-normal in G. In
general, a subgroup U is subnormal in G provided that U is N-subnormal
in G.

3. If F = LF(F ) is a saturated formation, a maximal subgroup M of G is
F-normal in G if and only if G/ CoreG(M) ∈ F (p) for every prime p divi
ding

∣∣Soc
(
G/ CoreG(M)

)∣∣.
Definition 6.1.2. A subgroup H of a group G is said to be F-subnormal in
G if either H = G or there exists a chain of subgroups

H = H0 < · · · < Hn = G

such that Hi−1 is an F-normal maximal subgroup of Hi for i = 1, . . . , n. We
shall write H F-sn G; SnF(G) will denote the set of all F-subnormal subgroups
of a group G. It is clear that SnF is a subgroup functor.

Remark 6.1.3. Assume that F = N, the formation of all nilpotent groups.
Then SnN(G) ⊆ Sn(G) for all groups G by Illustration 6.1.1 (2). However the
equality does not hold in general because if G = Alt(5), then 1 ∈ Sn(G) \
SnN(G). Nevertheless, if G is soluble, then Sn(G) = SnN(G).

To avoid the above situation, O. H. Kegel [Keg78] introduced a little bit
different notion of F-subnormality. It unites the notions of subnormal and
F-subnormal subgroup.

Definition 6.1.4. A subgroup U of a group G is called K-F-subnormal sub-
group of G if either U = G or there is a chain of subgroups

U = U0 ≤ U1 ≤ · · · ≤ Un = G

such that Ui−1 is either normal in Ui or Ui−1 is F-normal in Ui, for i =
1, . . . , n. We shall write U K-F-sn G and denote SnK-F(G) the set of all K-F-
subnormal subgroups of a group G. Clearly SnK-F is a subgroup functor.

Remark 6.1.5. SnK-N(G) = Sn(G) for every group G.

Let e be one of the functors SnF or SnK-F.

Lemma 6.1.6. e is inherited, that is, if G is a group, we have

1. If H ∈ e(K) and K ∈ e(G), then H ∈ e(G).
2. If N � G and U/N ∈ e(G/N), then U ∈ e(G).
3. If H ∈ e(G) and N � G, then HN/N ∈ e(G/N).

-
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Proof. It is obvious from the definitions that Statements 1 and 2 are fulfilled
in both cases. We show that Statement 3 is satisfied when e = SnF. Let H
be an F-subnormal subgroup of G and let N be a normal subgroup of G.
Proceeding by induction on |G|, we may clearly suppose that H 	= G. Let
X be an F-normal maximal subgroup of G such that H is contained in X
and H is F-subnormal in X. If N ≤ X, then HN/N is F-subnormal in X/N
by induction. Since X/N is F-normal in G/N , it follows that HN/N is
F-subnormal in G/N by Assertion 1.Therefore we may assume that N is not
contained in X and so G = NX. By induction, H(X ∩ N)/(X ∩ N) is
F-subnormal in X/(X ∩N) ∼= G/N . Hence HN/N is F-subnormal in G/N .��

Lemma 6.1.7. Assume that F is subgroup-closed.

1. If H is a subgroup of a group G and GF ≤ H, then H ∈ e(G).
2. If H ∈ e(G) and K ≤ G, then H ∩ K ∈ e(K), that is, e is w-inherited.
3. If {Hi : 1 ≤ i ≤ n} ⊆ e(G), then

⋂n
i=1 Hi ∈ e(G).

Proof. 1. It follows at once from the fact that XF ≤ GF for all subgroups X
of G.

2. Let e = SnF. Proceeding by induction on |G|, we may clearly assume that
H 	= G. Then there exists an F-normal maximal subgroup M of G such
that H ≤ M and H is F-subnormal in M . Since KF ≤ GF ≤ M , it follows
that M∩K is F-subnormal in K by Assertion 1. On the other hand, H∩K
is F-subnormal in M ∩ K by induction. Therefore H ∩ K is F-subnormal
in K.

3. It follows at once applying Lemma 5.1.5, as e is w-inherited, and using
induction on n. ��

Example 6.1.8. Lemma 6.1.7 (2) does not remain true if F is not subgroup-
closed. Let F = LF(f), where f(2) = S2 Q R0

(
Sym(3)

)
, f(3) = S3S2 and

f(p) = ∅ for all p > 3. If G = Sym(4) and H is a Sylow 3-subgroup of G, then
H ∈ SnF(G) (H ≤ Sym(3) ≤ G). However H /∈ SnF

(
Alt(4)

)
.

The theory of F-subnormal subgroups is relevant only in the case of per-
sistence in intermediate subgroups. Therefore

Unless otherwise stated, we stipulate that for the rest of the chapter
the formation F is closed under the operation of taking subgroups.

Lemma 6.1.9. Let G be a group.

1. If A is a K-F-subnormal subgroup of G, then AF is subnormal in G.
2. Let H = E K(F). Then AH = GH for every F-subnormal subgroup of G.
3. If 1 ∈ SnF(G), then Sn(G) ⊆ SnF(G).
4. If G is a p-group for some prime p and 1 ∈ SnF(Cp), then SnF(G) =

Sn(G) = S(G).
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Proof. 1. We argue by induction on |G|. If A = G, then GF is normal
in G, and the statement is true. Suppose A < G and let X be an F-normal
maximal subgroup of G containing A such that A is K-F-subnormal in X.
Then AF is subnormal in X by induction. Since AF ≤ XF, it follows that AF

is subnormal in XF. Moreover GF is contained in X. Hence XF is subnormal
in GF. This implies that XF is subnormal in G, hence so is AF. A similar
argument could be applied if X is a normal subgroup of G.

2. Proceeding by induction on |G|, we may assume that A < G. We argue
H = XH for an

F-
GH is contained in X as G/ CoreG(X) ∈ F ⊆ H. Now XFGH/GH belongs to H
because it is subnormal in G/GH, by Statement 1 and Lemma 6.1.6 (3), and
H is closed under taking subnormal subgroups. Hence X/XF ∩GH belongs to
H. It implies that XH is contained in GH. Note that every composition factor
of GH/XH belongs to K(F). Therefore GH = (GH)H is contained in XH and
so AH = XH = GH.

3. Since SnF is a w-inherited functor, the result follows from Lemma 5.1.4.
4. It is enough to show that 1 ∈ SnF(G). Assume that it is not true and let

G be a counterexample of minimal order. Let M be a maximal subgroup of G.
The minimal choice of G implies that 1 ∈ SnF(M). Since |G/M | = p, it follows
that M/M ∈ SnF(G/M). Hence M ∈ SnF(G) by Lemma 6.1.6 (2). Therefore
1 ∈ SnF(G). This contradiction shows that no counterexample exists. ��

Proposition 6.1.10. If G ∈ E K(F), then SnF(G) = SnK-F(G).

Proof. The inclusion SnF(G) ⊆ SnK-F(G) follows from the definitions.
Let H ∈ SnK-F(G). We prove that H ∈ SnF(G) by induction on |G|. We

may assume that H 	= G. Let N be a minimal normal subgroup of G. Then
G/N ∈ E K(F) and HN/N ∈ SnK-F(G/N) by Lemma 6.1.6 (3). Consequently
HN/N ∈ SnF(G/N) by induction. This implies that HN is F-subnormal in
G by Lemma 6.1.6 (2). Moreover HN ∈ E K(F) by Lemma 6.1.9 (1). Assume
that HN is a proper subgroup of G. Since H is K-F-subnormal in HN by
Lemma 6.1.7 (2), it follows that H is F-subnormal in HN by induction. Hence
H ∈ SnF(G), as required. Hence we may suppose that G = HN for every
minimal normal subgroup N of G. In particular, CoreG(H) = 1. On the
other hand, HF is subnormal in G by Lemma 6.1.9 (1) and so N normalises
HF by [DH92, A, 14.3]. Thus HF is normal in G. This implies that HF ⊆
CoreG(H) = 1. Consequently G/N ∈ F for each minimal normal subgroup N
of G. If G ∈ F, then H is clearly F-subnormal in G. Hence we may assume
that G /∈ F and therefore G ∈ b(F). This means that G is a monolithic group,
and GF = Soc(G) is the unique minimal normal subgroup of G. Let M be a
proper subgroup of G such that H ∈ SnK-F(M) and either M � G or GF is
contained in M . If the second condition holds, then NH = G is contained in
M , contrary to supposition. Therefore M � G. Since GF is not contained in
M , it follows that M = 1 = H and G = Soc(G) is a simple group. Therefore

as in Assertion 1 and use the same notation. It follows that A
normal maximal subgroup X of G such that A is F-subnormal in X. Moreover
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G ∈ F ∩ b(F). This contradiction leads to G ∈ F and so H is F-subnormal in
G. ��

Proposition 6.1.11. Let F be a saturated formation and let G be a group
with an F-subnormal subgroup H such that G = H F∗(G). If H ∈ F, then
G ∈ F.

Proof. We argue by induction on |G|. Suppose that H is a proper subgroup
of G and let M be an F-normal maximal subgroup of G such that H ≤ M and
H is F-subnormal in M . Then M = H F∗(M). By induction, M ∈ F. Assume
G /∈ F. By Proposition 2.3.16, M is an F-projector of G. This is impossible
because G = GFM and GF is contained in M . Consequently G ∈ F. ��

6.2 F-subnormal closure

Let F be a formation. By Lemma 6.1.7 (3), intersections of F-subnormal sub-
groups are F-subnormal. Therefore for any subset X of a group G, there exists
a unique smallest F-subnormal subgroup of G containing X, the F-subnormal
closure of X in G. We write SG(X; F) to denote this subgroup. It is clear
that the same argument can be applied to K-F-subnormal subgroups. Con-
sequently there exists a unique K-F-subnormal subgroup of G containing X,
the K-F-closure of X in G. It is denoted by SG(X; K-F).

When F = N, the formation of all nilpotent groups, the subgroup SG(X) =
SG(X; K-F) is the subnormal closure of X in G, that is, the smallest subnormal
subgroup of G containing X.

The normal closure of X in G is generated by all of the conjugates of X
in G and we might wonder whether or not the subnormal closure is generated
by some natural subset of the set of these conjugates. Let us say that two
subsets X, Y ⊆ G are strongly conjugate if they are conjugate in 〈X, Y 〉. It is
rather clear that SG(X) must contain all strong conjugates of X. In fact, the
following powerful result, due to D. Bartels, is true.

Theorem 6.2.1 ([Bar77]). Let X be a subset of a group G. Then SG(X) =
〈Y ⊆ G : Y is strongly conjugate to X in G〉.

The first part of this section is devoted to prove this theorem. First of all,
we introduce some notation.

Notation 6.2.2. Let X and Y be subsets of a group G. We write:

• X σ Y if X and Y are strongly conjugate in G.
• X σ∞ Y if there are subsets X = X0, X1, . . . , Xn = Y such that Xi σ Xi+1

for all i, 0 ≤ i < n (n natural number).
• X =U Y if X and Y are conjugate in the subgroup U of G.
• X =¨G Y if SG(X) = SG(Y ) = S and X =S Y .
• KG(X) = 〈Y ⊆ G : X σ Y 〉.
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It is clear that σ∞ and =¨G are equivalence relations on the set of all subsets
of G.

Lemma 6.2.3. Let X and Y be subsets of a group G such that X σ Y . Then
X =¨G Y .

Proof. Denote J := 〈X,Y 〉. Since X σ Y , there exists an element g ∈ J such
that Y = Xg. In particular, 〈XJ〉, the normal closure of X in J , is equal to J .
Applying [DH92, A, 14.1], SG(X)∩J is subnormal in J and contains X. Since
J = 〈XJ 〉, it follows that SG(X)∩J = J and so SG(J) = SG(X). Analogously
SG(J) = SG(Y ). Therefore X =¨G Y . ��

Lemma 6.2.4. Let X be a subset of a group G. Then

SG(X) = 〈Y ⊆ G : X =¨G Y 〉.

Proof. Denote A = 〈Y ⊆ G : X =¨G Y 〉. Then A = 〈Xg : g ∈ SG(X)〉 by
Lemma 6.2.3. It is clear that A is normal in SG(X). Hence A is subnormal in
G. Since A contains X, it follows that A = SG(X). ��

By Lemma 6.2.3, X σ Y implies X =¨G Y . Hence KG(X) ⊆ SG(X) for
every subgroup X of G.

Lemma 6.2.5. Let X be a subset of a group G. Then

1. KG(X) = 〈Y ⊆ G : X σ∞ Y 〉.
2. X σ∞ Xg for all g ∈ KG(X).

Proof. 1. It is clear that KG(X) ≤ 〈Y ⊆ G : X σ∞ Y 〉. Let Y ⊆ G such
that X σ∞ Y . We have to show that Y ⊆ KG(X). There is a natural number n
and there are subsets X = X0, X1, . . . , Xn = Y such that Xi σ Xi+1 for all i,
0 ≤ i < n. Suppose inductively that we have already shown that X0, X1, . . . ,
Xn−1 are contained in KG(X). Since KG(X) = 〈Z : X σ Z〉, we may assume
that n > 1. There exists an element g ∈ 〈X0, X1, . . . , Xn−1〉 ⊆ KG(X) such
that Xg = Xg

0 = Xn−1. Then Y ≤ KG(Xg), and since σ is G-invariant, it
follows that KG(Xg) = KG(X)g = KG(X), and the induction step is complete.

2. Let Y be a subset of G. Let y be an element of Y ∪ Y −1 and assume
that X σ Y . Then Xy σ Y y and Y y σ Y , whence Xy σ∞ X.

If g ∈ KG(X), then g = g1 · · · gt, where gi ∈ Yi ∪Y −1
i , X σ Yi, for all i, 1 ≤

i ≤ t. If t = 1, then Xg1 σ∞ X by the above argument. Suppose inductively
that X(g1···gt−1) σ∞ X. Then Xg−1

t σ∞ X(g1···gt−1) because Xg−1
t σ∞ X. Hence

X σ∞ Xg. ��

Proposition 6.2.6. For any subset X of a group G, the following statements
are equivalent:
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2. The equivalence relations σ∞ and =¨G coincide when restricted to the
conjugacy class of X in G.

Proof. Assume that KG(X) = SG(X). Then X =¨G Y implies that Y = Xg

for some g ∈ SG(X). By Lemma 6.2.5 (2), X σ∞ Y . Since =¨G is a transitive
relation, X σ∞ Y implies X =¨G Y by Lemma 6.2.3. Thus Statement 2 holds.

Conversely, assume Statement 2. Since KG(X) = 〈Y ⊆ G : X σ∞ Y 〉 by
Lemma 6.2.5 (1), it follows that KG(X) = 〈Y ⊆ G : X =¨G Y 〉, which is equal
to SG(X) by Lemma 6.2.4. ��

Lemma 6.2.7. Let X0 and X1 be subsets of a group G such that X0 ⊆ 〈X1〉.
Then KG(X0) ≤ KG(X1).

Proof. Let t be an element of G such that t ∈ 〈X0, X
t
0〉. Then obviously

t ∈ 〈X1, X
t
1〉. Hence X0 σ Y for some Y ⊆ G implies that there is a subset

W of G such that Y ⊆ W and X1 σ W . The lemma follows by definition of
KG(X1). ��

Lemma 6.2.8. Let G be a group and let N be a normal subgroup of G. Let
X ⊆ G and let Y1/N be a subset of G/N such that XN/N σ Y1/N . Then there
exists a subset Y of G such that X σ Y and Y1 = Y N .

Proof. Let

A := {V ⊆ G : V N/N = Y1/N and X =¨G V }.

Since XN/N σ Y1/N , it follows that XN/N and Y1/N are conjugate in
SG/N (XN/N) = SG(X)N/N . Hence Y1 = XzN for some z ∈ SG(X). It
is clear that X =¨G Xz and so Xz = V ∈ A. This shows that A is
non-empty. Let W be an element of A such that 〈X, W 〉 has minimal or-
der. Since XN/N σ WN/N , there exists an element t ∈ 〈X,W 〉 such that
WN/N = XtN/N = Y1/N . It is clear that X =¨G Xt. Hence Xt belongs
to A. The minimal choice of 〈X, W 〉 implies that 〈X,Xt〉 = 〈X,W 〉 and so
X σ Xt ( = Y ). ��

Corollary 6.2.9. For any subset X of a group G and for any N � G,
KG(X)N/N = KG/N (XN/N).

∞ and
= ¨G coincide on the conjugacy class of X in G.

Proof. Assume that the result is false, and let (G, X) be a counterexample
with |G| + |〈X〉| as small as possible. Clearly X 	= ∅ and the conjugacy class
of X in G splits into σ∞-equivalence classes; we denote the set of these equi-
valence classes by Ω. Since X σ∞ Y implies X =¨G Y for all Y ⊆ G by
Lemma 6.2.3, it follows from our choice of (G,X) that Ω contains at least
two elements. It is clear that G acts transitively by conjugation on Ω in the
obvious way.

1. KG(X) = SG(X).

Proposition 6.2.10. For any subset X of a group G, the relations σ
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Let K = KG(X). By Proposition 6.2.6, K is a proper subgroup of G. For
any non-trivial normal subgroup N of G, the relations σ∞ and =¨G coin-
cide on the conjugacy class of XN/N in G/N by minimality of G. Hence
KG/N (XN/N) = SG/N (XN/N) = SG(X)N/N by Proposition 6.2.6, and
so KN/N = KG/N (XN/N) is subnormal in G/N . In particular, KN is
subnormal in G. Suppose that Z = KN is a proper subgroup of G. Then
K = KZ(X) = SZ(X) by the choice of G. Hence K is subnormal in Z and so
is in G. Proposition 6.2.6 implies that the relations σ∞ and =¨G coincide on
the conjugacy class of X in G. This is a contradiction against the choice of
(G,X). Consequently, G = KN for any non-trivial normal subgroup N of G.
From this we conclude that CoreG(K) = 1 and 〈XG〉, the normal closure of
X in G, is equal to G.

Let p be a prime dividing |〈X〉| and let Q be a Sylow p-subgroup of 〈X〉. By
Lemma 6.2.7, KG(Q) is contained in K. Suppose that Q is a proper subgroup
of 〈X〉. The minimal choice of (G,X) implies that KG(Q) is subnormal in G.
Let N be a minimal normal subgroup of G. By [DH92, A, 14.3], N normalises
KG(Q). Since G = KN , it follows that 〈KG(Q)G〉 = 〈KG(Q)K〉 is a subgroup
of K. Hence 〈KG(Q)G〉 is contained in CoreG(K) = 1. This contradiction
shows that Q = 〈X〉 and 〈X〉 is a p-group.

For any subgroup U of G, let [U ] denote the set

[U ] = {ω ∈ Ω : there exists Xg ∈ ω such that Xg ⊆ U}.

The following statements hold:
1. For any proper subgroup U of G and for every Sylow p-subgroup P of

U , [U ] = [P ].
It is clear that [P ] ⊆ [U ]. Conversely, let ω ∈ [U ] and let Y ∈ ω be a subset

of U . Let L = SU (Y ). Since L is subnormal in U , it follows that L ∩ P is a
Sylow p-subgroup of L. Hence Y z is contained in P for some z ∈ L. It is clear
that Y =¨G Y z. Since =¨G and σ∞ coincide on the conjugacy class of Y in U
by induction, we have that Y σ∞ Y z. Hence ω ∈ [P ].

2. [U ] is a proper subset of Ω for any proper subgroup U of G.
Assume that [U ] = Ω. Then Ω = [P ] for some Sylow p-subgroup P of

U . Since Ω 	= ∅, it follows P 	= 1 and so Z(P ) 	= 1. Note that if x ∈ Z(P )
and ω ∈ Ω, then ωx = ω because x centralises an element of ω. Hence Z(P )
acts trivially on Ω. Since Ω = [P ] = [P g] for all g ∈ G, it follows that
Z(P g) acts trivially on Ω. This implies that N = 〈Z(P )G〉 acts trivially on
Ω. Let ω0 be the element of Ω such that X ∈ ω0. If z ∈ K, then Xz ∈ ω0

by Lemma 6.2.5 (2). Hence ωz
0 = ω0. Let g be an element of G. There exist

z ∈ K and n ∈ N such that g = zn. It follows that ωg
0 = ω0 and so Xg σ∞ X

for all g ∈ G. Therefore KG(X) = 〈XG〉 = G. This contradiction shows that
[U ] 	= Ω.

3. Any maximal subgroup M of G such that [M ] 	= ∅ contains a Sylow
p-subgroup of G.

Let P be a Sylow p-subgroup of M . By Statement 1 and Statement 2,
[M ] = [P ] 	= Ω. Note that if ω ∈ [P ] and g ∈ M ∪ NG(P ), then ωg ∈ [P ].
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Hence 〈M, NG(P )〉 is not transitive on Ω. Therefore 〈M, NG(P )〉 is a proper
subgroup of G. In particular, NG(P ) ≤ M and so P is a Sylow p-subgroup
of G.

4. Any Sylow p-subgroup P of G is contained in a unique maximal subgroup
of G.

Obviously G is not a p-group. Let P be contained in L∩M , where L and
M are maximal subgroups of G. Then [L] = [M ] = [P ] by Statement 1 and
[P ] 	= Ω by Statement 2. This implies that 〈L,M〉 is not transitive on Ω.
Hence G 	= 〈L, M〉 and L = M .

5. X is contained in a unique maximal subgroup of G.
Suppose that X is contained in at least two maximal subgroups L and M

order. There exist Sylow p-subgroups R and S of L and M respectively such
that R ∩ S is a Sylow p-subgroup of L ∩ M containing X. By Statement 4,
R and S are Sylow p-subgroups of G. Moreover R 	= S by Statement 4. From
this we conclude that R ∩ S is a proper subgroup of R1 = NR(R ∩ S). Since
N = NG(R ∩ S) is a proper subgroup of G, this implies N is contained in M
by our choice of M and L. The same argument with L and S replacing M
and R yields N ≤ L. But then R ∩ S < R1 ≤ M ∩ L and R ∩ S is a Sylow
p-subgroup of M ∩ L. This contradiction proves Statement 5.

Now from Statement 5 we deduce the final contradiction, thus proving the
lemma. We know that K is a proper subgroup of G. Let M be the unique
maximal subgroup of G containing X. Since 〈XG〉 = G, it follows that M =
NG(M). Let g ∈ G\M . Then G = 〈X, Xg〉. This implies X σ Xg and therefore
we have G = K. ��

Combining Proposition 6.2.6 and Proposition 6.2.10, we have:

Theorem 6.2.11. SG(X) = KG(X) for any subset X of G.

Let X be a subset of G and g ∈ G such that g ∈ 〈X,Xg〉. Then g ∈
〈SG(X), SG(X)g〉 ≤ SG

(
SG(X)

)
= SG(X). Hence the following result is true.

Corollary 6.2.12. SG(X) =
〈
g ∈ G : g ∈ 〈X,Xg〉

〉
.

Let H be a subgroup of a group G. If A is a subgroup of G, containing
H, then HAN is a subnormal subgroup of A containing H. Now if g ∈ G
and g ∈ 〈H, Hg〉 = J , then the normal closure of H in J is equal to J .
The subnormality of HJN in J implies that J = HJN and g ∈ H〈H,Hg〉N.
Moreover there exists z ∈ 〈H, Hg〉N such that J = 〈H, Hz〉. Thus we have
shown the following:

Theorem 6.2.13. Let H be a subgroup of a group G. Then

SG(H) =
〈
Hg : g ∈ 〈H,Hg〉N

〉
=
〈
g ∈ G : g ∈ H〈H, Hg〉N

〉
.

The descriptions of the subnormal closure provide a proof of the following
subnormality criterion due to Wielandt.

of G. Choose L and M such that the Sylow p-subgroups of L ∩ M have maximal
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Theorem 6.2.14 ([Wie74]). Let H be a subgroup of a group G. The follow-
ing statements are pairwise equivalent:

1. H is subnormal in G.
2. H is subnormal in 〈H, g〉 for all g ∈ G.
3. H is subnormal in 〈H,Hg〉 for all g ∈ G.
4. If g ∈ G and g ∈ 〈H, Hg〉, then g ∈ H.

Moreover, they are equivalent to:

5. If g ∈ G and g ∈ 〈H, Hg〉N, then g ∈ H.

not provide a description of the
N-subnormal closure. Let G = Alt(5) and H = {1}. Then SG(H) = H and
SG(H; N) = G.

If G is a soluble group, then SG(H) = SG(H; K-N) = SG(H; N) by Pro-
position 6.1.10. In this context, the following conjecture arises.

Conjecture 6.2.16 (K. Doerk). Let F be a saturated formation and π = charF.
Given a subgroup H of a soluble group G ∈ Sπ, the F-subnormal closure of
H in G is the subgroup SG(H; F) =

〈
g ∈ G : g ∈ H〈H,Hg〉F

〉
.

A. Ballester-Bolinches and M. D. Pérez-Ramos [BBPR91] confirmed Con-
jecture 6.2.16. In fact, they showed that the conjecture is valid for groups with
soluble F-residual, that is, groups in the class SF.

Henceforth in the rest of the section

F = LF(F ) will denote a subgroup-closed saturated formation of char-
acteristic π.

The proof of Doerk’s conjecture depends heavily on the following extension
of Theorem 6.2.14 to subgroup-closed saturated formations.

Theorem 6.2.17 ([BBPR91]). For a subgroup H of a π-group G ∈ SF, the
following statements are pairwise equivalent:

1. H is F-subnormal in G
2. H is F-subnormal in 〈H,x〉 for every x ∈ G.
3. H is F-subnormal in 〈H,Hx〉 for every x ∈ G.
4. If T is a subgroup of G such that T is contained in 〈H,T 〉F, then T is

contained in H.
5. If x ∈ G and x ∈ 〈H, x〉F, it follows that x ∈ H.
6. If x ∈ G and x ∈ 〈H, Hx〉F, it follows that x ∈ H.

Proof. 3 implies 1. We argue by induction on |G|. We can assume that GF 	= 1
by Lemma 6.1.7 (1). Let N be a minimal normal subgroup of G such that
N is contained in GF. By induction, HN/N is F-subnormal in G/N and so
HN is F-subnormal in G by Lemma 6.1.6 (2). If HN were a proper subgroup
of G, then H would be F-subnormal in HN ∈ SF by induction. Applying

Remark 6.2.15. Theorem 6.2.11 does
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Lemma 6.1.6 (1), H is F-subnormal in G and the implication is true. Hence
we can suppose G = HN and G 	= H. Since N is soluble, H is a maximal
subgroup of G. If H is a normal subgroup of G, then H is F-subnormal in
G because G ∈ E K(F). If H is not normal in G, there exists an element
x ∈ G such that H 	= Hx. Then G = 〈H,Hx〉 and H is F-subnormal in G by
Statement 3.

By Lemma 6.1.7 (2), 1 implies 2 and 2 implies 3. Consequently, 1, 2, and 3
are pairwise equivalent.

It is clear that 4 implies 5 and 5 implies 6 because XF ≤ Y F ≤ GF if
X ≤ Y ≤ G.

1 implies 4. Suppose that H is F-subnormal in G and T is a subgroup of G
such that T is contained in 〈H,T 〉F. Then 〈H, T 〉 = H〈H, T 〉F. If H were a
proper subgroup of 〈H, T 〉, there would exist an F-normal maximal subgroup
M of 〈H, T 〉 containing H. Since 〈H, T 〉F ≤ M , we would have M = 〈H,T 〉.
This contradiction yields H = 〈H,T 〉 and T is contained in H.

To complete the proof we now show that 6 implies 1. We proceed by
induction on |G|. Let x ∈ G and T = 〈H, Hx〉. If T is a proper subgroup
of G, then by induction H is F-subnormal in T . Since 3 is equivalent to 1,
we may assume that T = G for some x ∈ G. By Lemma 6.1.7 (1), HGF is
F-subnormal in G. Hence, if HGF were a proper subgroup of G, then H would
be F-subnormal in HGF by induction. Therefore H would be F-subnormal in
G by Lemma 6.1.6 (1). Therefore we may suppose G = 〈H,Hx〉 = HGF =
H〈H, Hx〉F. In particular, x = ht for some h ∈ H and t ∈ 〈H,Hx〉F =
〈H, Ht〉F. Applying Statement 6, it follows that t ∈ H. Hence x ∈ H and
H = G is F-subnormal in G. The circle of implications is now complete. ��

If H is a subgroup of a group G, denote

TG(H; F) =
〈
x ∈ G : x ∈ H〈H,Hx〉F

〉
.

Lemma 6.2.18. If N is a normal subgroup of a group G and H is a subgroup
of G, then

TG/N (HN/N ; F) = TG(H;F)N/N.

Proof. Denote with bars the images in Ḡ = G/N . It is clear that TG(H; F) =
TG(H; F)N/N is contained in TG/N (HN/N ; F). Consider now ḡ ∈ 〈H̄, H̄ ḡ〉F.
Then there exists an element z ∈ 〈H, Hg〉F such that z̄ = ḡ. Hence the set
L = {z ∈ 〈H,Hg〉F : z̄ = ḡ} is non-empty. Let t ∈ L such that 〈H,Ht〉F
has minimal order. Then 〈H, Hg〉FN = 〈H, Ht〉FN and t = xn for some
x ∈ 〈H, Ht〉F and n ∈ N . It is clear that x ∈ 〈H, Hg〉F and x̄ = t̄. Hence
x ∈ L. The minimal choice of t implies that 〈H, Hx〉F = 〈H, Ht〉F. Therefore
ḡ ∈ TG(H; F) and the equality holds. ��

Theorem 6.2.19 ([BBPR91]). Let G be a π-group with soluble F-residual.
Let H be a subgroup of G. Then SG(H;F) = TG(H; F) =

〈
T ≤ G : T ≤

H〈H, T 〉F
〉
.
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Proof. Write S = TG(H;F). If L is an F-subnormal subgroup of G containing
H, then S is contained in L by Theorem 6.2.17. Thus the first equality holds if
we prove that S is F-subnormal in G. We argue by induction on |G|. Since GF

is soluble and G is a π-group, it follows that GF is a proper subgroup of G. Of
course, it may be assumed that GF 	= 1. Let N be a minimal normal subgroup
of G contained in GF. Then, by Lemma 6.2.18, SN/N = TG/N (HN/N ;F).
Hence SN/N is F-subnormal in G/N . By Lemma 6.1.6 (2), SN is F-subnormal
in G. Suppose that SN = X is a proper subgroup of G. Then S = TX(H; F)
is F-subnormal in X by induction. By Lemma 6.1.6 (1), S is F-subnormal
in G. Therefore we must have G = SN and thus S is a maximal subgroup
of G because N is abelian and S is a proper subgroup of G. This argument
also yields CoreG(S) = 1. Therefore G is a primitive group of type 1 and
N = Soc(G) = CG(N).

Suppose, by way of contradiction, that S is not F-subnormal in G and
let us choose H of minimal order among those subgroups of G such that
TG(H; F) is not F-subnormal in G. If M is a maximal subgroup of H satisfying
H = TH(M ; F), then H ≤ TG(M ;F) and TG(M ; F) is F-subnormal in G.
Consequently S is contained in TG(M ; F) and S is F-subnormal in G, contrary
to the choice of H. Therefore, each maximal subgroup of H is F-subnormal
in H. This implies that every primitive epimorphic image of H belongs to
F. Hence H ∈ F because F is saturated. Let N0 be a minimal H-invariant
subgroup of N . Put A = HN0. If A = G, then H = S. By Theorem 6.2.17, S
is F-subnormal in G, contrary to supposition. Hence A is a proper subgroup
of G. Suppose that A is not an F-group. Then N0 = AF and A = SA(H; F) =
TA(H; F) ≤ S. This is a contradiction. Therefore A ∈ F. Let SocH(N) be the
product of all minimal H-invariant subgroups of N . Since F is a formation,
it follows that H SocH(N) ∈ F. Suppose that HN /∈ F and let L be an
F-maximal subgroup of HN containing H SocH(N). Then HN = L(HN)F

and L ∩ (HN)F = 1 by Theorem 4.2.17. But then, since (HN)F 	= 1, we
have that 1 	= (HN)F ∩ SocH(N) ≤ (HN)F ∩ L, which is a contradiction.
Therefore HN ∈ F. Let 1 = N0 � N1 � N2 � · · · � Nr = N be an H-
composition series of N . Then H

/
CH(Ni/Ni−1) ∈ F (p), for i = 1, . . . , r, and

p the prime dividing |N |. Hence HF (p) ≤ ⋂{CH(Ni/Ni−1) : i = 1, . . . , r} and
so that HF (p)/ CHF (p)(N) = HF (p) is a p-group by [DH92, A, 12.4]. Therefore
H ∈ SpF (p) = F (p).

Consider now g ∈ 〈H,Hg〉F \ H. It is clear that H is a proper subgroup
of T = 〈H, Hg〉 /∈ F. Obviously T = HTF is contained in S. Denote TF = R.
Let 1 = K0 � K1 � · · · � Ks = N be a T -composition series of N . If
every T -chief factor Kj/Kj−1, j ∈ {1, . . . , s}, is centralised by R, it fol-
lows, arguing as above, that R is a p-group and since H ∈ F (p), it follows
that T ∈ F (p) ⊆ F, contrary to the choice of T . Consequently, there exists
a T -chief factor Ki/Ki−1, i ∈ {1, . . . , s}, such that R is not contained in
CT (Ki/Ki−1). Write L = KiT = Ki(RH), and denote with bars the images
in L̄ = L/Ki−1. We have that K̄i ≤ L̄F, because otherwise K̄i ∩ L̄F = 1, and
then R̄ ≤ CL̄(K̄i), contradicting our choice of K̄i. Therefore L̄F = K̄iR̄ by
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Proposition 2.2.8. Assume that |L̄| < |G|. Then SL̄(H̄, F) = TL̄(H̄, F) = L̄ by
induction. Applying Lemma 6.2.18, TL̄(H̄;F) = TL(H;F)Ki−1/Ki−1. Hence
TL(H; F)Ki−1 = KiRH. If TL(H; F) ∩ Ki = 1, then TL(H; F) = RH and
Ki = Ki−1. This is a contradiction. Thus 1 	= Ki ∩ TL(H; F) ≤ S ∩ N , which
is also impossible. Therefore |L̄| = |G|, that is, G = NT and S = T = 〈H, g〉.
Let n ∈ N such that [H,n] 	= 1 and consider M = 〈H,Hng〉. Since G = HGF,
it follows that M < G, because otherwise ng ∈ S, and so n ∈ S, contradicting
our supposition. Let L be a maximal subgroup of G containing M . If L = S,
then Hn ≤ S. Hence 1 	= [h, n] = h−1hn ∈ S ∩ N , for some h ∈ H. This
is impossible. If N were contained in L, then L would contain Hg, and so
S = 〈H, Hg〉 ≤ L. This would be a contradiction. Hence CoreG(L) = 1 and
L = H(L∩GF) = HLF. Our choice of G implies that L = TL(H; F) ≤ S, and
we have reached the desired contradiction. Therefore TG(H;F) is F-subnormal
in G and SG(H; F) = TG(H; F).

On the other hand, it is clear that SG(H; F) is contained in LG(H; F) =〈
T ≤ G : T ≤ H〈H, T 〉F

〉
. Now, if K is an F-subnormal subgroup of G

containing H and T is a generator of LG(H;F), it follows that T ≤ K〈K, T 〉F.
Thus, if t ∈ T , then t = ktxt with kt ∈ K, xt ∈ 〈K,T 〉F. Denote by R = 〈xt :
t ∈ T 〉. Then 〈K,T 〉 = 〈K, R〉 and R ≤ 〈K, R〉F. Since K is F-subnormal in G,
it follows that R ≤ K by Theorem 6.2.17. Consequently T is contained in K
and LG(H; F) ≤ K. Since SG(H;F) is F-subnormal in G, SG(H;F) contains
LG(H; F) and the proof of the theorem is complete. ��

Open question 6.2.20. Let F be a saturated formation of characteristic π.
Is it possible to find a useful description for the F-subnormal closure of a
subgroup H of a π-group G?.

6.3 Lattice formations

One of the most striking results in the theory of subnormal subgroups is
the celebrated “join” theorem, proved by H. Wielandt in 1939: the subgroup
generated by two subnormal subgroups of a finite group is itself subnormal.
As a result, the set of all subnormal subgroups of a group is a sublattice of
the subgroup lattice.

Let F be a formation. One might wonder whether the set of F-subnormal
subgroups of a group forms a sublattice of the subgroup lattice. The answer
is in general negative.

Example 6.3.1 ([BBPR91]). Let F be the formation of all 2-nilpotent groups
and G = Sym(4). By [DH92, A, 10.9], G has an irreducible and faithful module
V over GF(3). Let R = [V ]G be the corresponding semidirect product. If P is a
Sylow 2-subgroup of G, then V P is an F-normal maximal subgroup of R. Since
V P ∈ F, it follows that P is F-subnormal in R. However, if x ∈ G \ NR(P ),
then G = 〈P, P x〉 is not F-subnormal in R.
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Therefore the following question naturally arises:

Which are the formations F for which the set SnF(G) is a sublattice
of the subgroup lattice of G for every group G?

This question was first proposed by L. A. Shemetkov in his monograph [She78]
in 1978 and it appeared in the Kourovka Notebook in 1984 as Problem 9.75
[MK84].

In 1992, A. Ballester-Bolinches, K. Doerk, and M. D. Pérez-Ramos gave in
[BBDPR92] the answer to that question in the soluble universe for saturated
formations.

On the other hand, O. H. Kegel [Keg78] showed that if F is a subgroup-
closed formation such that FF = F, then the set of all K-F-subnormal sub-
groups of a group G is a sublattice of the subgroup lattice of G for every
group G. He also asks for other formations enjoying the lattice property for
K-F-subnormal subgroups.

In 1993, A. F. Vasil’ev, S. F. Kamornikov, and V. N. Semenchuk [VKS93]
published the extension of the lattice results of [BBDPR92] to the general
finite universe. They also proved that the problems of O. H. Kegel and L. A.
Shemetkov are equivalent for saturated formations.

Our objective in this section is to give a full account of the above results.
In the sequel, F will be a (subgroup-closed) formation.

Definition 6.3.2. We say that F is a lattice (respectively, K-lattice) forma-
tion if the set of all F-subnormal (respectively, K-F-subnormal) subgroups is
a sublattice of the lattice of all subgroups in every group.

The next result provides a criterion for a saturated formation to be a
lattice formation.

Theorem 6.3.3. Any two of the following assertions about a saturated form-
ation F are equivalent:

1. F is a lattice formation.
2. If A and B are F-subnormal F-subgroups of a group G, then 〈A,B〉 is an

F-subgroup of G.
3. F is a Fitting class and the F-radical GF of a group G contains every

F-subnormal F-subgroup of G.

Proof. Assume, arguing by contradiction, that F is a lattice formation such
that F does not satisfy Statement 2. Let G be a group of minimal order among
the groups X having two F-subnormal F-subgroups H and K such that 〈H,K〉
is not an F-group. Among the pairs (H,K) of F-subnormal F-subgroups of G
such that 〈H,K〉 /∈ F, we choose a pair (A, B) with |A|+|B| maximal. Because
of Lemma 6.1.7 (2) and the choice of G, it must be G = 〈A, B〉. Moreover if
N is a minimal normal subgroup of G, it follows that G/N ∈ F because G/N
is generated by the F-subnormal F-subgroups AN/N and BN/N . Therefore
G is in the boundary of F. In particular, G is a monolithic primitive group.



6.3 Lattice formations 249

Put N = Soc(G) = GF. By Lemma 6.1.7 (2) and Proposition 6.1.11, AN =
AF ∗(AN) and BN = BF ∗(BN) are F-groups. Applying Lemma 6.1.7 (1), we
have that AN and BN are F-subnormal subgroups of G. The choice of the
pair (A,B) yields N ≤ A ∩ B.

Let H be a minimal supplement to N in G. By [DH92, A, 9.2(c)], we have
H ∩ N ≤ Φ(H); since H/(H ∩ N) ∼= HN/N = G/N ∈ F, it follows that
H ∈ EΦ F = F. On the other hand, A = N(A ∩ H) and B = N(B ∩ H). By
Lemma 6.1.6 (1) and Lemma 6.1.7 (1), A ∩ H is F-subnormal in G. Hence
the normal closure (A ∩ H)H of A ∩ H in H is F-subnormal in G. Note
that N(A∩H)H is normal in G and A is contained in N(A∩H)H . Therefore
G = N

(
(A∩H)H(B ∩ H)

)
. Since (A∩H)H

follows that (A ∩H)H(B ∩H) is an F-subnormal F-subgroup of G. Applying
Proposition 6.1.11, G ∈ F and we have reached the desired contradiction.
Therefore G ∈ F. We have proved that 1 implies 2.

2 implies 3. Suppose that G is a group such that G = N1N2 with Ni � G
and Ni ∈ F for i = 1, 2. Then Ni ∈ E K(F), i = 1, 2, and so G ∈ E K(F). Apply-
ing Proposition 6.1.10, Ni are F-subnormal in G for i = 1, 2. By Statement 2,
G ∈ F and we have shown that F is N0-closed. Therefore F is a Fitting class
because F is subgroup-closed.

Let G be a group and A = 〈X ∈ F : X is F-subnormal in G〉. Then A is
normal in G and A ∈ F by Statement 2. Hence A is contained in the F-radical
GF of G.

3 implies 1. Suppose that F is not a lattice formation and derive a contra-
diction. Let G be a counterexample with least possible order. Then G has two
F-subnormal subgroups U and V such that 〈U, V 〉 is not F-subnormal. If N is
a minimal normal subgroup of G, then 〈U, V 〉N/N is F-subnormal in G/N by
Lemma 6.1.6 (3). Hence 〈U, V 〉N is F-subnormal in G by Lemma 6.1.6 (2). As-
sume that 〈U, V 〉N is a proper subgroup of G. Then U and V are F-subnormal
in 〈U, V 〉N by Lemma 6.1.7 (2). Hence 〈U, V 〉 is F-subnormal in 〈U, V 〉N by
the minimal choice of G. Therefore 〈U, V 〉 is F-subnormal in G, contrary to
supposition. Hence G = 〈U, V 〉N for every minimal normal subgroup N of G.

On taking N contained in CoreG(〈U, V 〉), if this is non-trivial, we can
conclude G = 〈U, V 〉. This is not possible. Thus CoreG(〈U, V 〉) = 1. On the
other hand, UF and V F are subnormal in G by Lemma 6.1.9 (1) and so
N normalises 〈UF, V F〉 by [DH92, A, 14.3 and 14.4]. Hence

〈
〈UF, V F〉G

〉
=〈

〈UF, V F〉〈U,V 〉〉 ≤ CoreG(〈U, V 〉) = 1. This yields U ∈ F and V ∈ F. By
Statement 3, U and V are contained in GF and so G = GFN . On taking
N ≤ GF, we conclude that G = GF ∈ F. In particular, 〈U, V 〉 is F-subnormal
in G. This is the final contradiction. ��
Corollary 6.3.4. Let F be a saturated lattice formation. If G ∈ E K(F), then
GF = 〈X ∈ F : X is F-subnormal in G〉.

subgroup of G is
F-subnormal. Hence GF≤ 〈X ∈ F : X is F-subnormal in G〉 and the equality
holds by Theorem 6.3.3 (3). ��

and B∩H are F-subnormal in G, it

Proof. Applying Proposition 6.1.10, every subnormal
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Remark 6.3.5. If F = Sp for some prime p, there exist groups G such that
1 = 〈X ∈ F : X is F-subnormal in G〉 < GF = Op(G) < GF = Op(G).

A well-known result of Baer asserts that if p is a prime, then a p-element
x of a group G lies in Op(G) if, and only if, any two conjugates of x generate
a p-subgroup of G. As a consequence a subgroup H of a group G is contained
in the Hall π-subgroup of F(G), π a set of primes, if, and only if, 〈H, Hg〉
is a nilpotent π-group for every g ∈ G ([DH92, A, 14.11]). This result does
not hold for saturated Fitting formations. For instance, if F is the class of all
groups with nilpotent length at most 2 and G = Sym(4), then 〈H, Hg〉 ∈ F
for every subgroup H generated by a transposition and every g ∈ G. However
H is not contained in Alt(4) = GN2 .

Our next theorem shows that lattice formations F do enjoy the above
property in groups with soluble residual. This result was proved in the soluble
universe in [BBDPR92].

Theorem 6.3.6. Let F be a lattice formation of characteristic π. For a sub-
group H of a π-group G ∈ SF, the following statements are equivalent:

1. H is contained in the F-radical GF of G;
2. 〈H, Hg〉 is an F-group for every g ∈ G.

Proof. 1 implies 2. If H is contained in GF, then 〈H, Hg〉 ≤ GF for all g ∈ G.
Hence 〈H,Hg〉 is an F-group for all g ∈ G.

2 implies 1. By Lemma 6.1.7 (1), the subgroup H is F-subnormal in 〈H, Hg〉
for all g ∈ G. By Theorem 6.2.17, H is F-subnormal in G. Since H ∈ F, it
follows that H ≤ GF by Theorem 6.3.3 (3). ��

Lemma 6.3.7. Let F be a K-lattice formation. Then F is a lattice formation.

Proof. Assume the result is false and let G be a group of minimal order among
the groups X for which SnF(X) is not a sublattice of the subgroup lattice of
X. Then G has two F-subnormal subgroups U and V such that 〈U, V 〉 is
not F-subnormal in G. Let N be a minimal normal subgroup of G. Then
〈U, V 〉N is F-subnormal in G by Lemma 6.1.6 (3) and Lemma 6.1.6 (2). Put
H = E K(F). Applying Lemma 6.1.9 (2), UH = V H = GH. If G /∈ H, then
N ≤ GH and so 〈U, V 〉 = 〈U, V 〉N . This contradiction yields G ∈ H and so
SnF(G) = SnK-F(G) by Proposition 6.1.10. We have reached a contradiction.
Therefore F is a lattice formation. ��

F-subnormal F-subgroup of a group G is contained in the F-radical of G.

Proof. We proceed by induction on |G|; we may clearly suppose that G /∈ F.
Let 1 	= H be a K-F-subnormal subgroup of G such that H ∈ F. Let N

is K-
F-subnormal in G/N. Applying induction HN/N ≤ (G/N)F =A/N . If A is a

Lemma 6.3.8. Let F be a saturated K-lattice formation. Then every K-

be a minimal normal subgroup of G. By Lemma 6.1.6 (3), HN/N
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proper subgroup of G, then H is contained in AF because H is K-F-subnormal
in A by Lemma 6.1.7 (2). Since AF is a normal F-subgroup of G, it follows
that AF ≤ GF. Therefore H is contained in GF. There remains the possibility
that G/N ∈ F for all minimal normal subgroups N of G. Then G is in the
boundary of F and so G is a primitive group and N = GF is the unique
minimal normal subgroup of G. Assume that N /∈ F. Then (HN)F ∩ N = 1.
This implies that (HN)F ≤ CG(N) ≤ N . On the other hand, H is a proper
subgroup of G and therefore H is contained in a proper subgroup M of G
such that either M � G or GF ≤ M . In both cases N ≤ M and so HN
is a proper subgroup of G. By induction, H ≤ (HN)F ≤ (HN)F ∩ N = 1.
This contradiction implies that N ∈ F. Therefore G ∈ E K(F) and so H is
F-subnormal in G by Proposition 6.1.10. In this case, H is contained in GF

by Lemma 6.3.7 and Theorem 6.3.3 (3). This is the final contradiction. ��
Theorem 6.3.9. Let F be a saturated formation. Then F is a lattice formation
if and only if F is a K-lattice formation.

Proof. Only the necessity of the condition is in doubt. Assume, arguing by
contradiction, that F is a lattice formation and there exists a group G for
which SnK-F(G) is not a sublattice of the subgroup lattice of G. Furthermore
let G be a group of smallest order with this property. Then G has two K-
F-subnormal subgroups U and V such that 〈U, V 〉 is not K-F-subnormal in
G. Let N be a minimal normal subgroup of G. Since UN/N and V N/N
are K-F-subnormal in G by Lemma 6.1.6 (3), it follows that 〈U, V 〉N/N is

F-
then 〈U, V 〉 would be K-F-subnormal in 〈U, V 〉N by minimality of G (note
that U and V are K-F-subnormal in 〈U, V 〉 by Lemma 6.1.7 (2)). Applying
Lemma 6.1.6 (1), 〈U, V 〉 is K-F-subnormal in G. This contradiction yields
G = 〈U, V 〉N for every minimal normal subgroup N of G. In particular,
CoreG(〈U, V 〉) = 1. By Lemma 6.1.9 (1), UF and V F are subnormal subgroups
of G. Therefore 〈UF, V F〉 = D is subnormal in G and Soc(G) ≤ NG(D) by
[DH92, A, 14.3 and 14.4]. Hence DG = D〈U,V 〉N = D〈U,V 〉 ≤ 〈U, V 〉. This
means that DG ≤ CoreG(〈U, V 〉) = 1. Hence U and V belong to F. Applying
Lemma 6.3.8, 〈U, V 〉 is contained in GF. Hence G = GFN for every minimal
normal subgroup N of G. In particular, G = GF and 〈U, V 〉 is K-F-subnormal
in G by Lemma 6.1.7 (1). This is the desired contradiction. ��
Lemma 6.3.10. Let {Fi : i ∈ I} be a family of saturated lattice formations.
Then F =

⋂
i∈I Fi is a saturated lattice formation.

Proof. It is sufficient to see that F satisfies Statement 3 of Theorem 6.3.3. It is
clear that F is a saturated Fitting formation. Moreover XFi is contained in XF

for every group X, i ∈ I. Hence every F-subnormal subgroup is Fi-subnormal
for all i ∈ I by Lemma 6.1.7 (1).

Let G be a group and let H be an F-subnormal F-subgroup of G. Then H
is an Fi-subnormal Fi-subgroup of G for every i ∈ I. By Theorem 6.3.3 (3),

K-F-subnormal in G/N by the minimal choice of G. Hence 〈U, V 〉N is K-
subnormal in G by Lemma 6.1.6 (2). If 〈U,V 〉N were a proper subgroup of G,
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H is contained in
⋂

i∈I GFi
, which is a normal F-subgroup of G because Fi is

subgroup-closed for every i ∈ I. Therefore H is contained in GF and F is a
lattice formation. ��

Lemma 6.3.11. Let I be a non-empty set. For each i ∈ I, let Fi be a
subgroup-closed saturated lattice formation. Assume that π(Fi) ∩ π(Fj) = ∅
for all i, j ∈ I, i 	= j. Then F = Xi∈I Fi is a subgroup-closed saturated lattice
formation.

Proof. By Remark 2.2.13, F is a subgroup-closed saturated formation.
Assume that F does not satisfy Statement 2 of Theorem 6.3.3 and derive

a contradiction. Let G be a counterexample of minimal order. Then G has
two F-subnormal F-subgroups A and B such that 〈A,B〉 is not an F-group.
Then obviously A 	= 1 and B 	= 1. Observe that 〈A, B〉 and any epimorphic
image of G inherits the conditions of G. Therefore G = 〈A,B〉 and G/N ∈ F
for every minimal normal subgroup N of G. Since G /∈ F, it follows that
N = GF is the unique minimal normal subgroup of G and CG(N) ≤ N .
Since A is F-subnormal in AN by Lemma 6.1.7 (2) and N is a quasinilpotent
normal subgroup of G, it follows that AN belongs to F by Proposition 6.1.11.
Hence there exists i ∈ I such that N ∈ Fi. Moreover, CG(N) ≤ N forces
AN ∈ Fi. The same arguments can be applied to B. We then conclude that
AN , BN ∈ Fi. Since G/N ∈ F and F = Xi∈I Fi, it follows that G/N has a
normal π(Fi)-Hall subgroup. Since AN/N and BN/N are π(Fi)-groups, we
have that G/N is a π(Fi)-group. In particular, G is a π(Fi)-group and so A
and B are Fi-subnormal Fi-subgroups of G. Therefore G = 〈A,B〉 ∈ Fi ⊆ F by
Theorem 6.3.3 (2). This contradiction confirms that F is a lattice formation.

��

Z-
associated with some classes of groups will play a central role in Section

Lemma 6.3.12. Let F be a saturated Fitting formation. Assume that each of
the following conditions holds:

1. F = SpF for all p ∈ charF.
2. F is an F2-normal Fitting class.
3. Every F-critical group G with Φ(G) = 1 is either cyclic or G is monolithic

such that Soc(G) is non-abelian and G/ Soc(G) is a cyclic group of prime
power order.

Then F is a lattice formation.

Proof. It will be established that every F-subnormal F-subgroup H of a group
G is contained in the F-radical of G. This will be accomplished by induction on
|G|, which we suppose greater than 1. Obviously we may suppose G /∈ F and
1 	= H < G. Let N be a minimal normal subgroup of G. Then HN/N is an

Let Z be a class of groups. A group G is called S-critical for Z, or simply
critical, if G is not in Z but all proper subgroups of G are in Z. Critical groups

6.4.
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F-subnormal F-subgroup of G/N by Lemma 6.1.6 (3). By induction, HN/N
is contained in (G/N)F = T/N . If T is a proper subgroup of G, then H is
F-subnormal in T by Lemma 6.1.7 (2) and H is contained in TF by induction.
Since T is normal in G, it follows that TF ≤ GF and H is contained in GF.
Hence we may assume that G/N ∈ F for every minimal normal subgroup N
of G. This implies that G is a monolithic primitive group and N = GF is the
unique minimal normal subgroup of G and CG(N) ≤ N . By Lemma 6.1.7 (2)
and Proposition 6.1.11, HN = HF ∗(HN) is an F-group. Hence N ∈ F and
G ∈ F2. By Statement 2, GF is the F-injector of G.

If N were abelian, then N would be a p-group for some prime p ∈ char F.
Then G ∈ SpF = F, contrary to supposition. Hence N is non-abelian. If HGF

were a proper subgroup of G, then H would be contained in (HGF)F. Thus
HGF ∈ F and HGF = GF by the F-maximality of GF in G. Consequently
we may assume that G = HGF. Let M be a maximal subgroup of G con-
taining GF. Then M = (H ∩ M)GF and H ∩ M is F-subnormal in M by
Lemma 6.1.7 (2). Since H ∩ M ∈ F, it follows that H is contained in MF by
induction. This forces M ∈ F and so M = GF by the F-maximality of GF in G.
Hence G/GF is a cyclic group of order p, for a prime number p ∈ char F. Let
Hp and J be Sylow p-subgroups of H and GF, respectively, such that P = HpJ
is a Sylow p-subgroup of G ([Hup67, VI, 4.7]). Then G = PGF. Consider the
subgroup PN of G. Since N = GF, it follows that PN is F-subnormal in
G by Lemma 6.1.9 (1). Moreover, PN is the product of its F-subnormal F-
subgroups HpN and JN . If G = PN , then HpN is subnormal in G. Since
HpN ∈ F, it follows that HpN ≤ GF. Consequently G = GF, contrary to the
choice of G. Hence we may assume that PN is a proper subgroup of G. By
induction PN ∈ F. This implies that P is F-subnormal in G.

Let A be a maximal subgroup of G such that A 	= GF. Then G = AGF and
A = Ap(A ∩ GF p

we may assume that Ap is contained in P . Then, by Lemma 6.1.6 (1), Ap is
F-subnormal in G because Ap is F-subnormal in P by Lemma 6.1.9 (4). Since
Ap and A ∩ GF are two F-subnormal F-subgroups of A, it follows that A ∈ F
by induction. Therefore G is an F-critical group. By Statement 3, G/N is a
cyclic group of order pα for some α ≥ 1. But then G = PN . This contradicts
our supposition. Therefore G satisfies Statement 3 of Theorem 6.3.3 and F is
a lattice formation. ��

Example 6.3.13. Let F = Sπ be the class of all soluble π-groups for a set
of primes π. Then F is a lattice formation as F satisfies Statements 1–3 of
Lemma 6.3.12.

There exist non-soluble saturated lattice formations as the next example
due to A. F. Vasil’ev, S. F. Kamornikov, and V. N. Semenchuk [VKS93] shows:

Example 6.3.14. Let S be a non-abelian simple group with the property that
if T < S, then T is soluble (e. g., G = Alt(5)). Let F = Sπ D0(1, S), for
π = π(S). By Proposition 2.2.11, F is a formation. Moreover, by [DH92, II,

) for some Sylow p-subgroup A of G. Without loss of generality
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1.9], F is Sn-closed. It is not difficult to prove that F is also N0-closed and
saturated. Hence F is a saturated Fitting formation contained in Eπ.

Suppose, by way of contradiction, that F is not subgroup-closed, and
choose a group G of minimal order such that G ∈ F and G has a sub-
group H /∈ F. Let N be a normal soluble π-subgroup of G such that
G/N ∈ D0(1, S) ⊆ F. If N 	= 1, then HN/N ∈ F by the minimal choice
of G. Hence H ∈ SπF = F, contrary to supposition. Therefore N = 1 and
G = S1 × · · · × Sn is a direct product of copies of S. For i = 1, . . . , n, let πi

denote the projection of G onto the ith component of the direct product. Let
A denote the subset of {1, . . . , n} defined by

i ∈ A if and only if πi(H) = Si.

Set K =
⋂

i∈A Ker
(
(πi)H

)
and K∗ =

⋂
i/∈A Ker

(
(πi)H

)
. Then H/K ∈ D0(1, S)

and H/K∗ is soluble. Since H/KK∗ ∈ D0(1, S) and H/KK∗ is soluble, it
follows that H = KK∗ = K × K∗ as K ∩ K∗ = 1. Hence H ∈ F. This
contradiction shows that F is subgroup-closed.

Assume that F is not a lattice formation and choose a group G of minimal
order having an F-subnormal F-subgroup H which is not contained in GF.
Clearly H 	= 1. By familiar arguments, G ∈ b(F) and so G is a monolithic
primitive group. Let N be the unique minimal normal subgroup of G. If N
is abelian, then G ∈ SπF = F, which contradicts our assumption. Hence N
is non-abelian and CG(N) = 1. By Lemma 6.1.7 (2) and Proposition 6.1.11,
HN = HF ∗(HN) is an F-group. Since CG(N) = 1, it follows that HN has
no normal soluble π-subgroups. Thus HN ∈ D0(1, S) and HN = N ≤ GF.
This is the final contradiction. Applying Theorem 6.3.3 (3), F is a lattice
formation. ��

We have now arrived at our first main objective, namely the classification
of the subgroup-closed saturated lattice formations.

Theorem 6.3.15. Let F = LF(F ) be a saturated formation. Then F is a
lattice formation if and only if F = M×G for some subgroup-closed saturated
formations M and G satisfying the following conditions:

1. π(M) ∩ π(G) = ∅.
2. There exists a set of prime numbers π∗ and a partition {πi : i ∈ I} of π∗

such that G = Xi∈I Sπi
.

3. M = SpM for all p ∈ π(M) and M is an M2-normal Fitting class.
4. Every non-cyclic M-critical group G with Φ(G) = 1 is a primitive group

of type 2 such that G/ Soc(G) is a cyclic group of prime power order.

Proof. First of all, applying Proposition 3.1.40, F (p) is a subgroup-closed
formation for every prime p ∈ π = charF.

Assume that F is a lattice formation. For the ease of reading we break the
argument into separately-stated steps.
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1. For each p ∈ π, every primitive group G of type 1 in F ∩ b
(
F (p)

)
is

cyclic.
It is clear that N = Soc(G), the unique minimal normal subgroup of G,

is a q-group for some prime q 	= p. By [DH92, B, 10.9], G has an irreducible
and faithful G-module V over GF(p). We claim that G has a unique core-free
maximal subgroup, which provides the result.

Suppose that M1 and M2 are maximal subgroups of G such that M1 	= M2

and CoreG(Mi) = 1 for i = 1, 2 and derive a contradiction. Then Mi ∈ F (p),
i = 1, 2. Consider the semidirect product H = [V ]G, with respect to the action
of G on V . Clearly H /∈ F because G /∈ F (p). Hence HF = V and G is not
F-subnormal in H. But for i = 1, 2, V Mi is an F-normal maximal subgroup of
H, and Mi is F-subnormal in V Mi because V Mi ∈ SpF (p) = F (p) ⊆ F, that
is, Mi is F-subnormal in H (Lemma 6.1.6 (1) and Lemma 6.1.7 (1)). Since
F is a lattice formation, it follows that G = 〈M1,M2〉 is F-subnormal in H,
contrary to supposition.

2. If p and q belong to π, and q ∈ charF (p), then p ∈ charF (q).
Assume that Cp /∈ F (q) and consider an irreducible and faithful Cq-module

V over GF(p) ([DH92, B, 10.9]). Then the semidirect product [V ]Cq, with
respect to the action of Cq on V , is a non-cyclic primitive group of type 1 in
F∩b

(
F (p)

)
. This contradicts Step 1. Therefore Cp ∈ F (q) and p ∈ charF (q).

3. If p, q ∈ π and p ∈ char F (q), then charF (p) = charF (q).
If r ∈ charF (q) \ charF (p), then r 	= q and Cq ∈ F (r), because of

Step 2. Consider an irreducible and faithful Cq-module V over GF(r). Then
[V ]Cq ∈ F ∩ b

(
F (p)

)
and [V ]Cq is non-cyclic primitive group of type 1.

This contradicts Step 1. Therefore charF (q) ⊆ charF (p) and analogously
charF (p) ⊆ charF (q).

4. If p, q ∈ π and p ∈ charF (q), then Sp ⊆ F (q).
Since F (q) is subgroup-closed, and a p-group of order pn is isomorphic with

n =
(
. . . (Cp �Cp) . . .

)
� Cp, it

is enough to prove that Hn ∈ F (q) for all n ∈ N. Denote inductively H1 = Cp

and Hn = Hn−1 � Cp for n ≥ 2. We can assume that p 	= q. Since Z(Hn)
is cyclic, Hn has a unique minimal normal subgroup, and consequently there
exists an irreducible and faithful Hn-module V over GF(q) by [DH92, B, 10.9].
Consider the semidirect product G = [V ]Hn, with respect to the action of Hn

on V . If (Hn−1)� denotes the base group of Hn, then Hn = (Hn−1)�Cp. Since
(Hn−1)� and Cp are F (q)-groups, it follows that V (Hn−1)� and V Cp belong to
F (q). Moreover they are F-subnormal in G. Hence G ∈ F by Theorem 6.3.3 (2)
and so Hn ∈ F (q).

5. If p, q ∈ π and q ∈ charF (q), then SpF (q) = F (q).
Assume that F (q) 	= SpF (q) and derive a contradiction. Let G be a group

of minimal order in the supposed non-empty class SpF (q)\F (q). Then, since
F (q) is a subgroup-closed formation, G has a unique minimal normal sub-
group, M say, and G/M ∈ F (q). Moreover M is a p-group and every maximal
subgroup of G belongs to F (q). If M ≤ Φ(G), then G ∈ F and we may argue
as in Step 1 to obtain that G is cyclic. Consequently G ∈ F (q) by Step 4.

a subgroup of the n-fold iterated wreath product H
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This contradiction implies that M is not contained in Φ(G). Let R be a max-
imal subgroup of G such that G = MR. Then M ∩ R = 1, R ∈ F (q) and
M = GF. Clearly we may assume that p 	= q. Hence considering a faithful
and irreducible G-module over GF(q), it is rather clear that R must be a
cyclic r-group for some prime r, r ∈ π. From Step 3 and Step 4, it follows
that G ∈ SpSr ⊆ SpF (p) = F (p) ⊆ F. This is the desired contradiction.
Therefore F (q) = SpF (q).

Calling two elements p, q ∈ π equivalent if and only if charF (p) =
charF (q), we obtain an equivalence relation on π whose equivalence classes
{πi : i ∈ I} form a partition of π.

Let p ∈ πi, i ∈ I. Since F (p) is a subgroup-closed formation, it follows
that F (p) ⊆ Eπi

. If 2 /∈ πi, then every group in Eπi
is soluble by the Odd

Order Theorem [FT63]. Therefore F (p) ⊆ Sπi . In fact, we have:
6. If p ∈ πi, i ∈ I, and 2 /∈ πi, then F (p) = Sπi

.
Assume that F (p) 	= Sπi

and choose a group G ∈ Sπi
\ F (p) of minimal

order. Then G has a unique minimal normal subgroup N , N is a q-group for
some prime q ∈ πi, and G/N ∈ F (p). By Step 5, G ∈ SqF (p) = F (p). This
contradiction forces F (p) = Sπi

.
Put M = (1) if 2 /∈ π and M = F ∩ Eπi0

if 2 ∈ πi0 for some i0 ∈ I.
Assume that 2 ∈ π. Then {πi : i 	= i0} is a partition of π∗ = π \ πi0 .

Let G = Xi∈I\{i0} Sπi
. Then G is a subgroup-closed lattice-formation by

Lemma 6.3.11 and Example 6.3.13.
7. F = M × G, π(M) ∩ π(G) = ∅.
It is clear that M×G is contained in F. Suppose, for a contradiction, that

this inclusion is proper, and choose a group G of minimal order in F \ (M ×
G). Then G is a monolithic primitive group because M × G is a saturated
formation. Let N be the unique minimal normal subgroup of G. Suppose that
N is non-abelian. Then 2 divides |N | and G ∈ F (2) ⊆ F∩Eπi0

= M, contrary
to our choice of G. Therefore N is abelian. Let p be the prime dividing |N |.
Then G ∈ F (p). If p ∈ πi0 , it follows that G ∈ M. If p ∈ πi for some i ∈ I\{i0},
we have G ∈ G. In both cases, G ∈ M × G, another contradiction.

Evidently, πi0 = π(M) and π∗ = π \ πi0 = π(G). Hence π(M) ∩ π(G) = ∅.
8. M = SpM for all p ∈ π(M).
Let p ∈ π(M). Assume that SpM is not contained in M and derive a

contradiction. Let G ∈ SpM \ M be a group of minimal order. By familiar
reasoning, G is a primitive group of type 1 and N = Soc(G) is an abelian
p-group. Our eventual goal is to show that every core-free maximal subgroup
M of G is cyclic. Suppose that M1 and M2 are maximal subgroups of M
such that M1 	= M2. Since SpM is subgroup-closed, it follows that NMi ∈
M ⊆ F for i = 1, 2. Moreover, NMi are F-subnormal in G because N =
GF (Lemma 6.1.7 (1)). By Theorem 6.3.3 (2), G = N〈M1, M2〉 ∈ F, which
contradicts the assumption that G /∈ M. Therefore M has a unique maximal
subgroup and so M is a cyclic group of prime power order. By Step 4, M ∈
F (q), where q ∈ π(M). Therefore G ∈ SpF (q) = F (q) by Step 5. We conclude
then that G ∈ F ∩ Eπi0

. This final contradiction completes the proof.
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9. M is an M2-normal Fitting class.
It is clear that M is a Fitting class. Let G ∈ M2 be a group and let J be an

M-maximal subgroup of G containing GM. Since G/GM ∈ M ⊆ F, it follows
that GF ≤ GM. Consequently J is F-subnormal in G by Lemma 6.1.7 (1).
Applying Theorem 6.3.3 (3), J ≤ GF = GM because G ∈ Eπi0

. Therefore
GF is F-maximal in G. Let H be a subnormal subgroup of G. Then H is
actually F-subnormal because G ∈ E K(F) (Proposition 6.1.10). In addition,
H ∩ GF is contained in HF as H ∩ GF is an F-subnormal F-subgroup of H
(Lemma 6.1.7 (2) and Theorem 6.3.3 (3)). Consequently H ∩GF = HF = HM

and HM = H∩GM is M-maximal in H. This means that GM is an M-injector
of G.

10. If G is a non-cyclic M-critical group and Φ(G) = 1, then G is a
primitive group of type 2 such that Soc(G) is non-abelian and G/ Soc(G) is a
cyclic group of prime power order.

Let G be a non-cyclic M-critical group such that Φ(G) = 1. Then G is a
monolithic primitive group because M is saturated. Assume that N = Soc(G)
is abelian. Then N < G because G is non-cyclic, and so N is a p-group for
some prime p ∈ π(M). Hence G ∈ SpM = M by Step 8. This contradiction
implies that N is non-abelian. Suppose that N < G. Let M1 and M2 be
two different maximal subgroups of G containing N . Then Mi ∈ M and Mi

is F-subnormal in G, i = 1, 2, as N = GF (Lemma 6.1.7 (1)). Applying
Theorem 6.3.3 (2), G ∈ F. Since G ∈ Eπi0

, it follows that G ∈ M, contrary to
the assumption that G is M-critical. This contradiction proves that G/N has
a unique maximal subgroup and so G/N is cyclic of prime power order.

Applying Lemma 6.3.12, M is a lattice formation.
Conversely, assume that F = M×G for subgroup-closed saturated forma-

tions M and G satisfying Statements 1 to 4. By Example 6.3.13, Lemma 6.3.11,
and Lemma 6.3.12, F is a lattice formation. ��

Corollary 6.3.16. Let F be a saturated formation of soluble groups of char-
acteristic π. Then F is a lattice formation if and only if there exists a partition
{πi : i ∈ I} of π such that F = Xi∈I Sπi

.

Corollary 6.3.16 holds not only for subgroup-closed saturated formations
but also for Sn-closed saturated ones. This was proved in [VKS93].

Lockett [Loc71] described the F-injectors of soluble π-groups, here F is a
lattice formation of soluble groups of characteristic π. It turns out that if G is
a soluble π-group, the F-injectors of G are exactly the F-maximal subgroups
of G containing GF, that is, F is a dominant Fitting class in Sπ.

Theorem 6.3.17 ([Loc71]). Let π be a non-empy set of primes and let
G be a soluble π-group. Assume that {πi : i ∈ I} is a partition of π
and F = Xi∈I Sπi

. For each i ∈ I, let Vi be a Hall πi-subgroup of Ci =
CG

(
Xj �=i Oπj

(G)
)
. Then:
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2. the subgroup 〈Vi : i ∈ I〉 = Xi∈I Vi is an F-subgroup of G containing
GF = Xi∈I Oπi(G).

Let I(G) be the set of all such subgroups 〈Vi : i ∈ I〉 obtained from the various
choices of Vi ∈ Hallπi

(Ci). Then

3. if W is an F-subgroup of G containing GF, then W ≤ V for some V ∈
I(G).

4. I(G) = InjF(G).

Proof. It is clear that F(G) is contained in GF = Xi∈I Oπi
(G) and CG

(
F(G)

)
is contained in F(G) because G is soluble.

1. Take i, j ∈ I, i 	= j. Then [Vi, Cj ] ≤ Ci ∩Cj ≤ CG(GF) ≤ CG

(
F(G)

)
≤

F(G) ≤ GF. Therefore Cj normalises ViGF = Vi × Xi�=j Oπj
(G). Since Vi =

Oπi
(ViGF), it follows that Cj normalises Vi. In particular, Vj normalises Vi.

By a similar argument Vi normalises Vj . Hence [Vi, Vj ] ≤ Vi ∩ Vj = 1.
2. We deduce at once from Statement 1 that 〈Vi : i ∈ I〉 is the direct

product of its Hall πi-subgroups and also that GF ≤ 〈Vi : i ∈ I〉 ∈ F.
3. Let i ∈ I. Since W ∈ F, the Hall πi-subgroup Wi of W cent-

ralises Oπj (W ), which contains Oπj (G) by assumption, i 	= j. Therefore
Wi is contained in a Hall πi-subgroup, Vi say, of CG

(
Xj �=i Oπi

(G)
)
. Hence

W = Xi∈I Wi ≤ Xi∈I Vi ∈ I(G).
4. It is enough to prove that I(G) is a conjugacy class of G.
Let V = Xi∈I Vi and V̄ = Xi∈I V̄i be two typical elements of I(G). For each

i ∈ I, there exists an element xi ∈ CG

(
Xj �=i Oπj

(G)
)

such that V̄i = V xi
i .

Let x =
∏

i∈I xi, where the product may be taken in any order. If i 	= j, the
element xj normalises each conjugate of Vi, and therefore V x = Xi∈I V x

i =
Xi∈I V xi

i = V̄ . ��

The next result, due to A. Ballester-Bolinches, K. Doerk, and M. D. Pérez-
Ramos [BBDPR92], shows that these injectors have a good behaviour with
respect to F-subnormal subgroups.

Theorem 6.3.18. Let F be a lattice formation of soluble groups of character-
istic π. If G is a soluble π-group and V is an F-injector of G and H is an
F-subnormal subgroup of G, then V ∩ H is an F-injector of H.

Proof. Assume that the result is not true and let G be a counterexample
of minimal order. Clearly we may suppose that H is an F-normal maximal
subgroup of G. Hence G/ CoreG(H) is a πi-group for some member πi of
{πi : i ∈ I}, where {πi : i ∈ I} is the partition of π such that F = Xi∈I Sπi

.
Write π = πi. Then CoreG(H) contains every Hall π′-subgroup of G.

Note that HF is contained in GF because HF is an F-subnormal F-subgroup
of G (Lemma 6.1.6 (1) and Theorem 6.3.3 (3)). Let V be an F-injector of G
such that V ∩H is not an F-injector of H. Since HF is contained in V ∩H, it
follows that V ∩H is not F-maximal in H. Let R be an F-maximal subgroup
of H containing V ∩ H. It is clear that R is an F-injector of H. Since the

1. [Vi, Vj ] = 1 if i 	= j,
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Hall π′-subgroup Vπ′ of V is contained in the Hall π′-subgroup Rπ′ of R and
Rπ′ is contained in CoreG(H), it follows that Vπ′ = Rπ′ as V ∩ CoreG(H) is
an F-injector of CoreG(H). On the other hand, according to Lockett’s result,
the Hall π-subgroup Vπ of V is a Hall π-subgroup of C = CG

(
Xj �=i Oπj

(G)
)

and the Hall π-subgroup Rπ of R is a Hall π-subgroup of CH

(
Xj �=i Oπj

(H)
)
.

Moreover Vπ ∩ H ≤ Rπ. Since G/ CoreG(H) is a π-group, it follows that
Xj �=i Oπj

(G) = Xj �=i Oπj
(H) and so there exists an element g ∈ C such that

V g
π ∩ H = Rπ. If C = G, then Vπ is a Hall π-subgroup of G. Thus G =

CoreG(H)Vπ and V g
π ∩H = V h

π ∩H for some h ∈ CoreG(H). This implies that
|Vπ ∩H| = |Rπ| and Rπ = Vπ ∩H, contrary to our supposition. Consequently
C is a proper subgroup of G. Since C is normal in G, it follows that V ∩C is
an F-injector of C. Moreover H ∩C is F-subnormal in C by Lemma 6.1.7 (2).
The minimality of G yields V ∩H ∩C is an F-injector of H ∩C. In particular
V ∩ H ∩ C = R ∩ C. Since Rπ is a Hall π-subgroup of R ∩ C, we have that
Vπ ∩ H = Rπ. This contradiction proves the result. ��

The following result is a characterisation of saturated lattice formations
of soluble groups by means of properties of Fitting type. Most of the work is
already contained in the above theorem.

Theorem 6.3.19. Let F be a saturated formation of soluble groups of char-
acteristic π. The following statements are pairwise equivalent:

1. F is a lattice formation.
is an

F-
F-injector of H.

3. F is a Fitting class and if H is an F-subnormal F-subgroup of a soluble
π-group G, then 〈H,Hg〉 ∈ F for every g ∈ G.

Proof. Applying Theorem 6.3.3 (3) and Theorem 6.3.18, we have that 1 im-
plies 2.

Assume that Statement 2 holds. Let H be an F-subnormal F-subgroup of
a soluble π-group G. If g ∈ G, then Hg is contained in every F-injector of G.
Therefore 〈H, Hg〉 ∈ F.

Suppose, arguing by contradiction, that the statement 3 is true but F is not
a lattice formation. On this supposition, by Theorem 6.3.3 (3), there exists a
group G of minimal order having an F-subnormal F-subgroup 1 	= H which is
not contained in the F-radical of G. If N is a minimal normal subgroup of G,
then HN/N is contained in the F-radical K/N of G/N by minimality of G.
Since H is F-subnormal in K by Lemma 6.1.7 (2), and KF is contained in GF,
it follows that K = G. Hence G/N ∈ F for every minimal normal subgroup
of G. Thus G is a monolithic primitive group. Let A = GF be the unique
minimal normal subgroup of G. By Lemma 6.1.7 (2) and Proposition 6.1.11,
T = HA = HF ∗(T ) is an F-group. Note that 〈T, T g〉 is F-subnormal in
G for all g ∈ G because A is contained in T (Lemma 6.1.7 (1)). Applying

2. F is a Fitting class satisfying that if G is a soluble π-group, V
injector of G and H is an F-subnormal subgroup of G, then V ∩ H is an
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Statement 3, it follows that 〈TG〉 ∈ F. Since 〈TG〉 is normal in G and F
is a Fitting class, TG is contained in the F-radical of G. In particular, H
is contained in GF, which contradicts our assumption. Hence F is a lattice
formation. ��

Remark 6.3.20. In [BBMPPR00], it is proved that an Sn-closed saturated
formation of soluble groups of full characteristic satisfying Statement 3 of
Theorem 6.3.19 is actually subgroup-closed. Therefore Theorem 6.3.19 hold
not only for subgroup-closed saturated formations of soluble groups, but also
for Sn-closed ones.

We round this section off with a characterisation of lattice formations of
soluble groups.

It is not always true in general that a lattice formation of soluble groups
is saturated. It is enough to consider the formation of all abelian groups. In
the sequel we shall take a closer look at this family of formations, following
ideas of A. F. Vasil’ev and S. F. Kamornikov [VK02].

Therefore until further notice we make the following general assumption.

Hypothesis 6.3.21. F is not only a subgroup-closed formation but also sol-
uble.

F

F-
ZF is an homomorph containing F.

The formation of all abelian groups shows that the inclusion could be
proper. Moreover it is rather easy to see that ZF = F if F is saturated.

We gather together in a convenient “portmanteau” lemma some relevant
properties of ZF, when F is a lattice formation.

Lemma 6.3.22. Let F be a lattice formation. Then:

1. ZF is a subgroup-closed formation of soluble groups.
2. π(F) = π(ZF) and ZF contains all nilpotent π(F)-groups.
3. ZF is a Fitting class.

Proof. 1. First we prove that ZF is a soluble class. Suppose, by way of
contradiction, that ZF is not contained in S. Then ZF \ S is not empty. Let
G be a group of minimal order in ZF \ S. By familiar reasoning, G is a non-
abelian simple group such that every subgroup of G is F-subnormal in G. Let
M be a maximal subgroup of G. Then 1 	= M and GF is contained in M
because M is F-subnormal in G. But then GF = 1 because G is simple. This
means that G ∈ F and so G is soluble, contrary to supposition. Hence ZF is
composed of soluble groups.

It is clear that ZF is a homomorph. Let N1 and N2 be minimal normal
subgroups of a group G such that N1∩N2 = 1 and G/Ni ∈ ZF for i = 1, 2. Let
P be a Sylow subgroup of G. Then our assumption implies that PNi/Ni is

Let Z be the class of all groups G such that every subgroup of G is
subnormal in G. The basic properties of F-subnormal subgroups imply that
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F-subnormal in G/Ni for i = 1, 2. By Lemma 6.1.7 (3), PN1 ∩PN2 = P is
F-subnormal in G. Moreover since Ni/Ni isF-subnormal in G/Ni, it follows that
Ni is F-subnormal in G for i = 1, 2 by Lemma 6.1.6 (2). Hence 1 = N1∩N2 is
F-subnormal in G. By Lemma 6.1.7 (2), 1 is F-subnormal in P . Therefore every
subgroup of P is F-subnormal in G by Lemma 6.1.9 (3) and Lemma 6.1.6 (2).
Since every subgroup of G is generated by its subgroups of prime power order,
and F is a lattice formation, it follows that G ∈ ZF. Applying [DH92, II, 2.6],
ZF is R0-closed and so ZF is a formation.

Let G ∈ ZF and let H be a subgroup of G. Since every subgroup of H is
F-subnormal in G, it follows by Lemma 6.1.7 (2) that H ∈ ZF. Hence ZF is
subgroup-closed.

2. It is clear that π(F) ⊆ π(ZF) because F ⊆ ZF. Let p ∈ π(ZF) and let
G be a group in ZF such that p divides |G|. Then Cp ∈ ZF because ZF is
subgroup-closed. Hence 1 is F-subnormal in Cp and so Cp ∈ F. This shows
that p ∈ π(F).

If P is a p-group for some prime p ∈ π(F) = π(ZF), then Cp ∈ ZF be-
cause ZF is subgroup-closed. By Lemma 6.1.9 (4), every subgroup of P is
F-subnormal in P . Hence P ∈ ZF. This implies that every nilpotent π(F)-
group is a ZF-group.

3. It is clear that only the N0-closure of ZF needs checking. Let A and B be
normal subgroups of a group G such that G = AB and A and B belong to ZF.
We prove that G ∈ ZF by induction on the order of G. If G is nilpotent, then
G ∈ ZF because π(G) ⊆ π(ZF) and ZF contains all nilpotent π(ZF)-groups.
Hence we may suppose that G is not nilpotent. Let P be a Sylow subgroup
of G. Then P is the product of P ∩A and P ∩B, which are obviously normal
subgroups of P . Moreover, P ∩A and P ∩B are ZF-subgroups of P because ZF

is
leads to the conclusion that P ∈ ZF. Furthermore, G is soluble because ZF is
composed of soluble groups. Therefore G ∈ K E(F) as π(F) = π(ZF) = charZF.
This implies that A and B are F-subnormal in G by Proposition 6.1.10. Since
A and B belong to ZF, it follows that P ∩ A and P ∩ B are F-subnormal

= (P ∩ A)(P ∩ B) is
F-
is F-subnormal in G Lemma 6.1.6 (1). Since every subgroup of G is generated
by its subgroups of prime power order, it follows that G ∈ ZF. Consequently
ZF is N0-closed and so ZF is a Fitting class. ��

Combining Theorem 2.5.2 and Lemma 6.3.22, we have:

Proposition 6.3.23. Let F be a lattice formation. Then ZF is a saturated
formation.

Theorem 6.3.24. Let F be a lattice formation. Then ZF is a lattice forma-
tion.

Proof. By Theorem 6.3.3 (3), it is sufficient to prove that every ZF-subnormal
ZF-subgroup H of a group G is contained in the ZF-radical GZF

of G.

subgroup-closed. Since P is a proper subgroup of G, the induction hypothesis

subgroups of G by Lemma 6.1.6 (1). Therefore P
subnormal in G because F is a lattice formation. Hence every subgroup of P



262 6 F-subnormality

Suppose, by way of contradiction, that there exists a group G of min-
imal order having a ZF-subnormal ZF-subgroup H such that H is not con-
tained in GZF

. Among the ZF-subnormal ZF-subgroups of G that are not
contained in GZF

, let H be one of maximal order. Let N be a minimal nor-
mal subgroup of G. Then HN/N is a ZF-subnormal ZF-subgroup of G/N by
Lemma 6.1.6 (3). The choice of G implies that HN/N ≤ (G/N)ZF

= L/N .
Assume that L is a proper subgroup of G. The minimality of G forces the
conclusion that H is contained in LZF

as H is ZF-subnormal ZF-subgroup
of L. Since L is normal in G, it follows that LZF

is contained in GZF
. This

contradiction shows that L = G and so G/N ∈ ZF for every minimal normal
subgroup of G. Consequently G is a monolithic primitive group and N = GZF

is the unique minimal normal subgroup of G. Moreover CG(N) ≤ N . By
Lemma 6.1.7 (2) and Proposition 6.1.11, HN = HF ∗(HN) is an ZF-group.
Since HN is ZF-subnormal in G by Lemma 6.1.7 (1), it follows that N ≤ H by
the choice of the pair (G,H). Therefore H = N(H∩M), where M is a core-free
maximal subgroup of G complementing N in G. On the other hand, H/N is
F-subnormal in G/N . Hence H is F-subnormal in G by Lemma 6.1.6 (2). Since
H ∈ ZF, it follows that H∩M = X is also F-subnormal in G Lemma 6.1.6 (1).
Consequently XM , the normal closure of X in M , is F-subnormal in G be-
cause F is a lattice formation. Furthermore XM ∈ ZF because M ∈ ZF and
ZF is subgroup-closed. Since XM is ZF-subnormal in G, it follows that XM

is ZF-subnormal in NXM by Lemma 6.1.7 (2), and NXM belongs to ZF by
Proposition 6.1.11. Since NXM is a normal subgroup of G and ZF is a Fit-
ting class, it follows that H ≤ NXM ≤ GZF

. This contradiction proves the
theorem. ��

We are now in a position to state and prove Vasil’ev and Kamornikov’s
characterisation of lattice formations of soluble groups.

Theorem 6.3.25 ([VK02]). Let F be a formation of soluble groups. The
following statements are pairwise equivalent:

1. The set of all K-F-subnormal subgroups is a sublattice of the subgroup
lattice of every group.

2. The set of all F-subnormal subgroups is a sublattice of the subgroup lattice
of every group.

3. There exists a partition {πi : i ∈ I} of the set π(F) such that F = Xi∈I Fπi
,

where Fπi
= F∩Sπi

. Moreover, Fπi
= Sπi

for all i ∈ I such that |πi| > 1.

Proof. Of the three statements in the theorem, it follows that 1 implies 2.
Assume that Statement 2 holds. Then the preceding results show that ZF

is a saturated lattice formation of soluble groups. Hence, by Theorem 6.3.15,
there exists a partition {πi : i ∈ I} of π := charZF = π(ZF) = π(F) such that
ZF = Xi∈I Sπi

. Hence F = Xi∈I Fπi
, where Fπi

= F ∩ Sπi
for all i ∈ I.

Let G be a soluble primitive πi-group for some i ∈ I. Then G ∈ ZF

and so every subgroup of G is F-subnormal in G. In particular, G ∈ F and
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thus G ∈ Fπi
. Suppose, in addition, that |πi| ≥ 2. If A is a πi-group such

that |π(A)| ≥ 2, then by a theorem of Hawkes [Haw75, Theorem 1], A is
isomorphic to a subgroup of a multiprimitive π(A)-group G, that is, every
epimorphic image of G is primitive. Since G is primitive and G is a πi-group,
it follows that G ∈ Fπi

. Hence A ∈ Fπi
because Fπi

is subgroup-closed. If A
is a πi-group, then A is isomorphic to a subgroup of a πi-group B such that
|π(B)| ≥ 2 as |πi| ≥ 2. Hence A ∈ Fπi

. Consequently Fπi
= Sπi

for all i ∈ I
such that |πi| ≥ 2 and Statement 3 is true.

To complete the proof we now show that 3 implies 1. Suppose that F is
a formation such that F = Xi∈I Fπi

for a partition {πi : i ∈ I} of π = π(F).
Assume, in addition, that Fπi

= Sπi
if |πi| ≥ 2. Consider the subgroup-closed

formation H = Xi∈I Sπi
. By Lemma 6.3.11, H is a saturated lattice formation

and charH = π. We aim to show that SnK-H(G) = SnK-F(G) for every group
G. Assume, arguing by contradiction, there exists a group G of minimal order
such that SnK-H(G) 	= SnK-F(G). Clearly SnK-F(G) ⊆ SnK-H(G) because F ⊆ H.
Hence there exists a subgroup H ∈ SnK-H(G) \ SnK-F(G). Then H is a proper
subgroup of G and thus there exists a subgroup M of G such that either M

H-
If M were normal in G, we would have that H would be K-F-subnormal in
G. This would contradict our choice of H. Hence M is an H-normal maximal
subgroup of G and so GH is contained in M . Then G/ CoreG(M) is a πi-
group for some πi ⊆ π as G/ CoreG(M) is a soluble primitive H-group. Note
that |πi| > 1 because M is not normal in G. Therefore G/ CoreG(M) ∈ Fπi

.
This means that M is F-normal in G and H is K-F-normal in G, contrary
to our initial supposition. Therefore SnK-F(X) = SnK-H(X) for all groups X.
Applying Corollary 6.3.16 and Theorem 6.3.9, the set SnK-F(X) is a sublattice
of the subgroup lattice of X for all groups X. ��

Example 6.3.26. Let F be the formation of all abelian groups. Then F is a
lattice formation of soluble groups such that ZF = N, the class of all nilpotent
groups. It is clear that Fp 	= Sp for all p ∈ π(F) = P.

In [VK01], A. F. Vasil’ev and S. F. Kamornikov consider w-inherited sub-
group functors f enjoying the following property:

If G is a group and H,K ∈ f(G), then H ∩ K ∈ f(G) and 〈H, K〉 ∈
f(G).

They called them subgroup NTL-functors. The techniques employed in this
section allow them to prove the following nice result in the universe of all
soluble groups:

Theorem 6.3.27. Let f be a subgroup NTL-functor. Then:

1. The class χf = {G | f(G) = S(G)} is a subgroup-closed saturated forma-
tion,

subnormal in M , it follows that H is K-F-subnormal in M by minimality of G.
is normal in G or M is an H-normal maximal subgroup of G. Since H is K-
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2. there exists a partition {πi | i ∈ I} of π(χf) such that χf = Xi∈I Sπi
,

3. For every group G, f(G) = Snχf
(G).

Consequently the subgroup NTL-functors in the soluble universe are exactly
f = SnF, for some subgroup-closed saturated lattice formation F.

The authors also consider the problem in the general finite universe. The
best they were able to prove is the following:

Proposition 6.3.28. Let f be a subgroup NTL-functor. Then:

1. The class χf = {G | f(G) = S(G)} is a subgroup-closed solubly saturated
formation,

2. For every group G, Snχf
(G) is contained in f(G).

Consequently the following question remains open.

Open question 6.3.29 ([VK01]). Let f be a subgroup NTL-functor. Is there
a solubly saturated formation F such that f = SnF?.

The reader is referred to [KS03] for more information about subgroup
functors and classes of groups.

Postscript

Lattice formations have been also involved in the study of F-normality associ-
ated with subgroup-closed saturated formations F in the soluble universe. As
it is known, this notion was primarily associated with maximal subgroups.

A first attempt to give a definition valid for arbitrary subgroups was made
by A. Ballester-Bolinches, K. Doerk, and M. D. Pérez-Ramos in [BBDPR95].
In the case F = N, the class of all nilpotent groups, the F-normality coin-
cides with the classical normality and, for a general subgroup-closed satur-
ated formation F, the F-subnormality turns out to be associated naturally
with the F-normality in the obvious way. However, the results concerning lat-
tice properties of F-normal subgroups differ from the corresponding ones for
F-subnormal subgroups.

More recently, M. Arroyo-Jordá and M. D. Pérez-Ramos [AJPR01] study
an alternative definition of F-normality, the F-Dnormality. It was suggested
by K. Doerk. This new definition satisfies all the desired properties. Moreover,
in this case, lattice formations turn out to be the subgroup-closed saturated
formations for which the set of all F-Dnormal subgroups is a sublattice of the
subgroup lattice in every soluble group.

The same authors [AJPR04a], [AJPR04b], studied Fitting classes with
stronger closure properties involving F-subnormal subgroups, for a lattice
formation F of full characteristic.
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Definition 6.3.30. 1. Let F be a lattice formation containing the class N
of nilpotent groups. A class X of groups is said to be an F-Fitting class
if: a) for every G ∈ X and every F-subnormal subgroup H of G we have
H ∈ X; and b) for G = 〈H, K〉 with H, K F-subnormal in G, if H, K ∈ X,
then G ∈ X.

subnormal subgroup K of G, V ∩ K is X-maximal in K.

Every F-Fitting class is also a Fitting class. They proved in [AJPR04b]
the following nice result (see Theorem 2.4.26):

if and only if it is an X-injector.

6.4 F-subnormal subgroups and F-critical groups

We saw in Section 6.3 that if F is a saturated formation, then F is a lattice
formation if and only if F contains all groups generated by two F-subnormal
F-subgroups (Theorem 6.3.3 (2)). As a consequence, a saturated lattice form-
ation F enjoys the following property:

If A and B are F-subnormal F-subgroups of a group G and G = AB,
then G ∈ F. (6.1)

It turns out that Condition (6.1) is not sufficient for a subgroup-closed
saturated formation to be a lattice formation: the formation of all p-nilpotent
groups, p a prime, satisfies Condition (6.1), but it is not a lattice formation (see
Example 6.3.1). Moreover, the formation of all groups with nilpotent length
at most two does not satisfy Condition (6.1). Consequently the question of
determining the subgroup-closed saturated formations which are closed under
taking products of F-subnormal subgroups arises (see [MK99, Problem 14.99]).
This problem has already been settled and solved in the soluble universe by
A. Ballester-Bolinches in [BB92] for subgroup-closed saturated formations of
full characteristic (see also [Sem92]).

The first result of this section puts a rich source of subgroup-closed satur-
ated formations satisfying Condition 6.1 at our disposal.

Proposition 6.4.1. Let F be a saturated formation. Suppose that, for every
p ∈ π = charF, there exists a set of primes π(p) with p ∈ π(p) such that F
is locally defined by the formation function f given by f(p) = Eπ(p) if p ∈ π
and f(q) = ∅ if q /∈ π. Then F is closed under taking products of F-subnormal
subgroups.

Proof. Assume that the result is false and derive a contradiction. Then there
exists a group G of minimal order with two F-subnormal F-subgroups A and B

2. A subgroup of a group G is said to be an (X, F)-injector if, for every
F-

Theorem 6.3.31. Let F be a lattice formation containing N, and X an
F-Fitting class. Then for every group G, a subgroup V of G is an (X,F)-injector
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such that G = AB and G /∈ F. If N is a minimal normal subgroup of G, then
it is clear that G/N is the product of the F-subnormal F-subgroups AN/N
and BN/N by Lemma 6.1.6 (3). The choice of G implies that G/N ∈ F.
Therefore G is in the boundary of F and so G is a monolithic primitive group.
Then N = GF is the unique minimal normal subgroup of G and CG(N) ≤ N .
By Lemma 6.1.7 (2) and Proposition 6.1.11, AN = AF ∗(AN) is an F-group.
Analogously BN ∈ F. Since CG(N) ⊆ N , it follows that AN and BN belong
to Eπ(p) for all p ∈ π(N). Therefore G ∈ Eπ(p) for each prime p dividing |N |.
This implies that G ∈ F, contrary to our supposition. Consequently F is closed
under taking products of F-subnormal products. ��

Note that the above result also holds if we replace Eπ(p) by Sπ(p), for all
p ∈ charF.

Unfortunately, the converse of Proposition 6.4.1 is not true in general, as
the following example shows.

Example 6.4.2. Let S be a non-abelian simple group, and consider the satur-
ated formation H =

(
G : S /∈ Q(G)

)
. Let F be the largest subgroup-closed

formation contained in H. By Theorem 3.1.42, F =
(
G : S(G) ⊆ H

)
is satur-

ated. In addition, F cannot be locally defined by a formation function as in
Proposition 6.4.1.

We assert that F is closed under taking products of F-subnormal sub-
groups. Suppose, for a contradiction, that this is not true and let G be

least order. Then G has two proper F-subnormal
F-
mal subgroup of G. Since G/N is a product of the F-subnormal F-subgroups
AN/N and BN/N , the choice of G implies that G/N ∈ F. Therefore G is in
the boundary of F and so G is a monolithic primitive group. In particular,
N = GF is the unique minimal normal subgroup of G. Assume G /∈ H. Then
G ∈ b(H) = (S). Hence G is non-abelian and simple. This implies that N = G
and therefore G = A = B, contrary to supposition. Consequently G ∈ H. Since
G /∈ F, it follows that S(G) is not contained in H. Among the proper subgroups
X of G not belonging to H, we choose H of minimal order. Then every proper
subgroup of H belongs to H. Applying [DH92, III, 2.2(c)], there exists a nor-
mal subgroup K of H such that H/K ∈ b(H). Hence H/K is a non-abelian
simple group. Since H/H ∩ N belongs to F, it follows that H = (H ∩ N)K.
It H ∩ N were a proper subgroup of H, we would have H ∩ N ∈ F and so
H/K ∈ F ⊆ H, contrary to supposition. Hence H ∩ N = H and H is a sub-
group of N . By Lemma 6.1.7 (2) and Proposition 6.1.11, AN = HF ∗(AN)
is an F-group. Consequently N ∈ F and so H ∈ F. This final contradiction
proves that F is closed under taking F-subnormal subgroups.

At the time of writing no useful characterisation of subgroup-closed satur-
ated formations satisfying (6.1) is known. The picture improves, however, if
attention is confined just to subgroup-closed saturated formations of soluble
groups. The following result supports this view.

subgroups A and B such that G = AB and G ∈/ F. Let N be a minimal nor-
a counterexample of
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Theorem 6.4.3. Let F be a saturated formation of soluble groups of charac-
teristic π. The following statements are equivalent:

1. For each prime p ∈ π, there exists a set of primes π(p), with p ∈ π(p), such
that F is locally defined by the formation function f given by f(p) = Sπ(p)

and f(q) = ∅ if q /∈ π.
2. F satisfies Condition (6.1).

Proof. It follows at once from Proposition 6.4.1 that 1 implies 2.
2 implies 1. We are assuming in this chapter that F is subgroup-closed.

Hence, for every p ∈ π, F (p) is a subgroup-closed formation by Proposi-
tion 3.1.40. Therefore F (p) is contained in F ∩ Eπ(p) ⊆ Sπ(p), where π(p) =
charF (p). Suppose, for a contradiction, that the inclusion is proper and choose
a group G of minimal order in (F∩Sπ(p))\F (p). Then every proper subgroup
of G belongs to F (p) and G is a soluble monolithic group. Assume that G
contains two inconjugate maximal subgroups, L and M say. Then G = ML
by [DH92, A, 16.2]. Moreover M and L belong to F (p). Let W be a faithful
G-module over GF(p) and denote by Z = [W ]G the corresponding semidirect

F is contained in W and therefore WM and WL are two
F-
to SpF (p) = F (p). Hence WM and WL are F-groups. Since Z = (WM)(WL)
and F satisfies (6.1), it follows that Z ∈ F. This implies that G ∈ F (p), which
is clearly not the case. Hence G has a single conjugacy class of maximal sub-
groups. This implies that G is a cyclic group whose order is a power of a
prime, q say. Moreover, q ∈ π(p). On the other hand, it is rather easy to

Since q ∈ π(p), it follows that F (p) contains Sq by [DH92, IX, 1.9]. Hence
G ∈ F (p) and we have reached a contradiction. Consequently F (p) = F∩Sπ(p)

for all p ∈ π. It remains to prove that F = LF(f), where f is the formation
function defined by f(p) = Sπ(p), p ∈ π, and f(q) = ∅ if q /∈ π. To this end
assume, by way of contradiction, that M = LF(f) is not contained in F and
let G be a group of minimal order in M \ F. Then G is a soluble primitive
group and N = Soc(G) = GF is the unique minimal normal subgroup of G.
Let q be the prime dividing |N |. Then q ∈ π and G/N ∈ f(q) = Sπ(q). Hence
G/N ∈ F ∩ Sπ(q) = F (q). By Remark 3.1.7 (2), G ∈ F. It follows that our
supposition is wrong and hence M is contained in F. Since F is obviously con-
tained in M, we have F = M and the proof of the theorem is complete. ��

From now on we focus our attention on formations whose associated critical
groups have special properties. In order to carry out our task we shall need
some definitions.

Recall that if Z be a class of groups, a group G is called S-critical for Z,
or simply Z-critical, if G is not in Z but all proper subgroups of G are in
Z. Following [DH92, VII, 6.1], we denote CritS(Z) the class of all Z-critical
groups. The motivation for investigating such minimal classes is that detailed

product. Then Z
subnormal subgroups of Z by Lemma 6.1.7 (1). Moreover WM an WL belong

see that F is clearly a Fitting class as F is closed under taking products of
F-subnormal subgroups. Hence F (p) is also a Fitting class by Proposition 3.1.40.
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knowledge of groups that just fail to have a group theoretic property is likely to
give some insight into just what makes a group have the property. The minimal
classes have been investigated for a number of classes of groups. For instance,
O. J. Schmidt (see [Hup67, III, 5.2]) studied the N-critical groups. These
groups are also called Schmidt groups. They have a very restricted structure
and they are useful in proving a known result of H. Wielandt about groups
with nilpotent Hall π-subgroups (see [Hup67, III, 5.8]). K. Doerk [Doe66]
studied the critical groups with respect to the class of all supersoluble groups
and R. W. Carter, B. Fischer, and T. O. Hawkes (see [DH92, VII, Section
6]) used a method of extreme classes to study the soluble F-critical groups in
the case when F is the formation of all soluble groups with nilpotent length
less than or equal to r. K. Doerk and T. O. Hawkes [DH92, VII, 6.18] gave a
complete description of a soluble group G which is not in F but all maximal
subgroups are in F, where F is an arbitrary (not necessarily subgroup-closed)
saturated formation of soluble groups (note that such a group G is F-critical if
F is a subgroup-closed formation). This result was extended by A. Ballester-
Bolinches and M. C. Pedraza-Aguilera to the general universe of all finite
groups in [BBPA96].

The reader is referred to [Rob02], [BBERR05], and [BBERss] for further
information about critical groups associated with some interesting classes of
groups.

A useful property for a formation F in this connection is that of having
F-critical groups with a well-known structure. For instance, if F is either a
soluble saturated lattice formation or the formation of all p-nilpotent groups
for a prime p, then every F-critical group is either a Schmidt group or a cyclic
group of prime order. Therefore a subgroup-closed class Z is contained in F if
and only if F contains every Schmidt group and every cyclic group of prime
order in Z.

This raises the following question.

Which are the saturated formations F such that every F-critical group
is either a Schmidt group or a cyclic group of prime order?

This question was proposed by L. A. Shemetkov in [MK92, Problem 9.74].
Hence we shall say that a formation F has the Shemetkov property or F is a
Š-formation if every F-critical group is a Schmidt group or a cyclic group of
prime order.

The first investigation of Š-formations was taken up by V. N. Semenchuk
and A. F. Vasil’ev [SV84] in the soluble realm. A. Ballester-Bolinches and M.
D. Pérez-Ramos [BBPR95] determined necessary and sufficient conditions for
a subgroup-closed saturated formation to be a Š-formation. This result can be
used to give examples of subgroup-closed saturated Š-formations of different
nature.

On the other hand, L. A. Shemetkov [She92, Problem 10.22] proposes the
following question:

Let F be a subgroup-closed Š-formation. Is F saturated?
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A. N. Skiba [Ski90] answered this question affirmatively in the soluble uni-
verse. However his result does not remain true in the general case as A.
Ballester-Bolinches and M. D. Pérez-Ramos showed in [BBPR96b]. In this
paper, they gave a criterion for a subgroup-closed Š-formation to be saturated
from which Skiba’s result emerges. An alternative approach to Shemetkov’s
question is due to S. F. Kamornikov [Kam94]. There he proved that a
subgroup-closed Š-formation is a Baer-local formation.

We shall begin our treatment of this material with a general result con-
cerning formations F whose F-critical groups have the composition factors
of their F-residual in a class of simple groups X. We shall then specialise X
to J and in this class aim to give a detailed account of the present state of
knowledge.

Theorem 6.4.4 ([BB05]). Let ∅ 	= X be a class of simple groups satisfying
π(X) = charX. Denote Y = X ∩ P, the abelian groups in X.

For a formation F, the following statements are equivalent:

1. Every F-critical group G such that GF is contained in OX(G) is either a
Schmidt group or a cyclic group of prime order.

2. Every F-critical group G whose F-residual is contained in OX(G) is sol-
uble, F is a Y-local formation, and for each prime p ∈ Y ∩ charF there
exists a set of primes π(p) with p ∈ π(p) such that F is Y-locally defined
by the Y-formation function f given by

f(S) =

⎧⎪⎨⎪⎩
Eπ(p) if S ∼= Cp, p ∈ Y ∩ char F,
∅ if S ∼= Cp, p ∈ Y \ charF,
F if S ∈ X′ ∪ (X \ Y).

Proof. 1 implies 2. It is clear that every F-critical group G with GF ≤ OX(G)
is soluble by Statement 1. The next stage of the proof is to show that F is
a Y-local formation. Applying Lemma 3.1.21, it is enough to prove that F is
(Cp)-local for all primes p ∈ Y.

Let p be a prime in Y. By Theorem 3.1.11, the smallest (Cp)-local forma-
tion F1 containing F is (Cp)-locally defined by the (Cp)-local formation func-
tion f given by

f(p) = Q R0

(
A/ CA(H/K) : A ∈ F

and H/K is an abelian p-chief factor of A
)
, and

f(S) = Q R0

(
A/L : A/L is monolithic and if Soc(A/L) ∈ E(S)

)
if S ∈ (Cp)′.

Denote π(p) = π
(
Spf(p)

)
, and consider the (Cp)-local formation M =

LF(Cp)(g), where

g(p) = Eπ(p),

g(S) = F if S ∈ (Cp)′.
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It is clear that F is contained in M. Assume that M is not contained in F and
derive a contradiction. Let G be a group of minimal order in the non-empty
class M \ F. Since G is monolithic and G /∈ F, it follows that N := Soc(G) is
a p-group. Then p ∈ charF. Moreover there exists a subgroup H of G such
that H ∈ CritS(F). By Statement 1, H is a Schmidt group as π(G) ⊆ charF.

Suppose that H is a proper subgroup of G. Since HN/N ∈ F and H /∈ F,
it follows that H ∩N 	= 1. In particular, |H| = paqb for some prime q 	= p and
one of the non-trivial Sylow subgroups of H is normal in H by [Hup67, III,
5.2]. Assume that a Sylow q-subgroup Q of H is normal in H. Then H/Q ∈ F
because p ∈ charF and so M contains Sp. Since H/(H ∩ N) belongs to F, it
follows that H ∈ R0 F = F. This would contradict the choice of G. Therefore
H has a normal Sylow p-subgroup and a Sylow q-subgroup of H is cyclic by
[Hup67, III, 5.2].

does not belong to π(p) . Then H ∩ N is a Sylow
p-

Q(H ∩ N)/(H ∩ N) is not contained in Op′,p(H/H ∩ N). This implies that
q ∈ π(p), contrary to our supposition. Hence H ∩ N is a Sylow p-subgroup
of G. Let C = CG(N). If H is a subgroup of C, then H is nilpotent. This is
not possible. Hence H is not contained in C. Since H ∩ N is contained in C,
it follows that q divides |G/C|. Denote A = [N ](G/C). By Corollary 2.2.5,
A ∈ M. Hence q ∈ π(p). This contradiction proves that q ∈ π(p).

The definition of π(p) implies the existence of a group B ∈ F and an
abelian p-chief factor L/M of B satisfying that q divides

∣∣B/CB(L/M)
∣∣.

By Corollary 2.2.5, C = [L/M ]
(
B
/

CB(L/M)
)
∈ F. Denote V = L/M and

B∗ = B
/

CB(L/M), and E = 〈g CB(L/M)〉 for some element g ∈ B such that
o
(
g CB(L/M)

)
= q. It is clear that V is a faithful and irreducible B∗-module

over GF(p). Moreover V , regarded as E-module, is completely reducible by
Maschke’s theorem [DH92, B, 4.5]. Since V is faithful for B∗ and E is a cyclic
group of order q, we can find an irreducible E-submodule W of V such that W
is a faithful E-module. Let F = WE be the corresponding semidirect product.
Then F is isomorphic to E(q|p), the unique Schmidt primitive group defined in
[DH92, B, 12.5]. Then F ∈ F because F is subgroup-closed. If Φ

(
Op(H)

)
	= 1,

then H/Φ
(
Op(H)

)
is isomorphic to E(q|p) constructed above. This implies

that H/Φ
(
Op(H)

)
∈ F ⊆ M and so H ∈ M because M is (Cp)-saturated by

Theorem 3.2.14. The minimality of G implies that H ∈ F, and this contradicts
the fact that H ∈ CritS(F). Thus our supposition is false and Φ

(
Op(H)

)
= 1.

But then H is isomorphic to E(q|p) ∈ F and we have reached the contradiction
that H ∈ F.

p-
minimal normal subgroup of G and Φ(Q) is normal in G, we have that Φ(Q) =
1 and Q is a cyclic group of order q. Note that Φ(P ) is elementary abelian
by [DH92, VII, 6.18] and G/Φ(P ) ∼= E(q|p) and Φ(P ) = Φ(G). Hence G is

Suppose that q
subgroup of H. Assume not, and let P be a Sylow p-subgroup of H containing

subgroup,P say. Let Q be a Sylow q-subgroup of G. Since N is the unique
Consequently H = G and G is a Schmidt group with a normal Sylow

H ∩ N . Since [P, Q]=P (see the proof of [Hup67, III, 5.2(c)]), it follows that
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of the above extension. Then E/A is isomorphic to E(q|p) and A ≤ Φ(E).
E

)
is a p-group by [GS78, Theorem 1]. Let Q∗ be a Sylow

q- ∗

contained in each maximal subgroup of E (note that every Sylow subgroup of
E belongs to F). This implies that E is a Schmidt group. In particular, AQ∗ is
nilpotent and then 1 	= Q∗ ≤ CE

(
Soc(G)

)
. This contradiction yields AQ∗ /∈ F.

In this case, we can find a subgroup J of AQ∗ such that J ∈ CritS(F). By
Statement 1, J should be a Schmidt group with an elementary abelian Sylow
p-subgroup. This implies that J is isomorphic to E(q|p) ∈ F, and we have a
contradiction. Therefore F = M is a Y-local formation, and we have completed
the proof of the implication.

2 implies 1. Suppose that F is a Y-local formation and there exists a set of
primes π(p) with p ∈ π(p), for each p ∈ π = charF, such that F is Y-locally
defined by the Y-formation function f given by f(p) = Eπ(p) if p ∈ π ∩ Y,
f(q) = ∅, if p ∈ Y \π, and f(E) = F for every simple group E ∈ X′ ∪ (X \Y).
We shall prove that every group in CritS(F) whose F-residual is an X-group
is a Schmidt group or a cyclic group of prime order.

Let G be a group in CritS(F) such that GF ≤ OX(G). By Condition 2, G
is soluble. We prove by induction on |G| that G is a Schmidt group or a cyclic
group of prime order.

If G is a p-group for some prime p and G has not order p, then p ∈ π ∩Y
and so G is an Eπ(p)-group. In particular, G is an F-group. This contradicts
our choice of G. Hence G is cyclic group of prime order.

Assume that G has not prime power order and there exists a minimal
normal subgroup B of G such that G/B is not an F-group. Then B has to
be contained in Φ(G) because G is F-critical. Therefore G/B ∈ CritS(F). By
induction, G/B is either a Schmidt group or a cyclic group of prime order. If
G/B is a cyclic group of prime order, then so is G. This contradiction shows
that G/B is a Schmidt group. Let p be the prime dividing |B|. Then G is

	

Sylow p-subgroup, P say. Then GF is a p- group and so p ∈ π ∩Y. Since G is
not nilpotent because it is F-critical, then there exists a q-element g ∈ G such
that g does not centralise P . Let us choose g of minimal order. Then every
proper subgroup of N = 〈g〉 centralises P . Consequently PN is a Schmidt
group. Suppose that PN is a proper subgroup of G. Then PN ∈ F. Hence
PN/ Op′,p(PN) belongs to Eπ(p). It follows that q ∈ Eπ(p), G ∈ f(p) = Eπ(p)

and G is an F-group. This contradiction yields G = PN and G is a Schmidt
group. If G has a normal Sylow q-subgroup, a similar argument can be used
to conclude that G is a Schmidt group.

Consequently we may assume that G/B ∈ F for every minimal normal
subgroup B of G. Then N = GF = Soc(G) is a minimal normal subgroup
of G and it is a p-group for some prime p ∈ π ∩ Y. If N is contained in

an epimorphic image of the maximal Frattini extension E of E(q|p) with
p-elementary abelian kernel (see [DH92, Appendix β]). Denote by A the kernel

Moreover C
(
Soc(A)

subgroup of E. IfAQ belongs to F, then E is F-critical because G ∈/ F and A is

a {p, q}-group, for some prime q = p and either G has a normal Sylow
p-subgroup or G has a normal Sylow q-subgroup. Suppose that G has a normal
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Φ(G), then Op′,p(G/N) = Op′,p(G)/N = Op(G)/N and so G/ Op(G) ∈ Eπ(p).
Hence G ∈ f(p) = Eπ(p) and G is an F-group. This contradiction implies that
Φ(G) = 1 and G is a monolithic primitive group. If N = G, then G is a cyclic
group of prime order. Thus we may assume that N is a proper subgroup of G.
Since G /∈ F, it follows that G /∈ f(p) = Eπ(p). Hence there exists an element
g ∈ G whose order is a prime q /∈ π(p). Denote A = 〈g〉. If NA were a proper
subgroup of G, then NA ∈ F. Hence NA/ Op′,p(NA) ∼= A belongs to Eπ(p).
This contradiction yields G = AN and then every maximal subgroup of G
is nilpotent. Consequently G is a Schmidt group and the Statement 1 of the
theorem is now clear. ��

If X = J, the class of all simple groups, then Y is the class of all abelian
simple groups. Therefore we have:

Corollary 6.4.5. Let F be a formation. The following statements are equi-
valent:

1. Every F-critical group is either a Schmidt group or a cyclic group of prime
order.

2. Every F-critical group is soluble, F is solubly saturated and, for each prime
p ∈ charF, there exists a set of primes π(p) with p ∈ π(p) such that F is
P-locally defined by the P-formation function f given by

f(S) :=

⎧⎪⎨⎪⎩
Eπ(p) if S ∼= Cp, p ∈ charF,
∅ if S ∼= Cp, p /∈ charF,
F if S ∈ J \ P.

In particular, every subgroup closed Š-formation is solubly saturated (see
[Kam94]). It is clear that every soluble formation is saturated if and only if it
is solubly saturated. Hence combining Theorem 6.4.4 and Theorem 6.4.3 we
have

Corollary 6.4.6. Let F be a soluble Š-formation. Then F is saturated and it
is closed under taking products of F-subnormal subgroups.

The saturated formation S of all soluble groups shows that the converse
of the above result does not hold.

There also exist non-saturated Š-formations.

Example 6.4.7 ([BBPR96b]). Let

F = (G : every {3, 5}-subgroup of G is nilpotent).

By [DH92, VII, 6.5], F is a subgroup-closed formation. Let G be an F-critical
group. Then G has a {3, 5}-subgroup H such that H is not nilpotent. The
choice of G implies that H = G. Especially, G is a {3, 5}-group which is not
nilpotent but all its subgroups are nilpotent. Therefore G is a Schmidt group.
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Take G = Alt(5), the alternating group of degree 5. Then G ∈ F. Let
E be the maximal Frattini extension of G with 5-elementary abelian kernel.
Then E/Φ(E) is isomorphic to G and CG

(
Φ(E)

)
= O5′(G) = 1 by [GS78,

Proposition 5]. If F were saturated, it would be true that E ∈ F. But this
is not true because Φ(E)P , for a Sylow 3-subgroup P of E, is not nilpotent
inasmuch as P does not centralise Φ(E).

The following result provides a criterion for a Š-formation to be saturated.

Theorem 6.4.8 ([BBPR96b]). Let F be a Š-formation. The following state-
ments are equivalent:

1. F is a saturated formation.
2. Let G be a primitive group of type 2 such that G ∈ F. If p is a prime divid-

ing |Soc(G)| and V is an irreducible and faithful G-module over GF(p),
then every Schmidt subgroup isomorphic to E(q|p) of [V ]G belongs to F.

Proof. If F is a saturated formation, then the statement 2 is always true:
Let G ∈ F be a primitive group of type 2; then G ∈ F (p) for every prime
p ∈ π

(
Soc(G)

)
, where F is the canonical local definition of F. The semidirect

product [V ]G ∈ SpF (p) = F (p) ⊆ F, for each irreducible and faithful
G-module V
clear because F is subgroup-closed.

To complete the proof we now show that 2 implies 1. By Corollary 6.4.5,
F is solubly saturated and, for each prime p ∈ charF, there exists a set of
primes π(p) with p ∈ π(p) such that F = LFP(f), where f is the P-formation
function given by

f(S) :=

⎧⎪⎨⎪⎩
Eπ(p) if S ∼= Cp, p ∈ charF,
∅ if S ∼= Cp, p /∈ charF,
F if S ∈ J \ P.

Applying Theorem 3.4.5, the formation H = LF(f) is the largest saturated
formation contained in F. Suppose, by way of contradiction, that the class
F \ H is non empty, and let G be a group of minimal order in this class.
Then G is a primitive group of type 2 and, since G /∈ H, there exists a prime
p ∈ π

(
Soc(G)

)
⊆ charF such that G /∈ f(p) = Eπ(p). Consequently there

exists an element g ∈ G of order q, for some prime q /∈ π(p). Furthermore,
by [DH92, B, 10.9], G has an irreducible and faithful module V over GF(p).
Let X = [V ]G be the corresponding semidirect product. Denote A = 〈g〉 and
consider the subgroup V A of X. V , regarded as an A-module, is semisimple
by [DH92, B, 4.5]. Moreover, since V is faithful and A is a cyclic group of order
q, we can find an irreducible A-submodule W of V such that W is a faithful
A-module. Let B = WA be the corresponding semidirect product. It is clear
that B is a Schmidt group which is isomorphic to E(q|p). By Condition 2,
B ∈ F. It yields B/ CB(W ) ∈ f(p). Hence q ∈ π(p). This contradiction shows
that H = F and F is saturated. ��

over GF(p) and p dividing the order of Soc(G). Now the result is
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Remark 6.4.9. Let F be a saturated Š-formation. According to Corollary 6.4.5,
F = LFP(f), where f is the P-formation function given by f(p) = Eπ(p),
p ∈ π(p), if p ∈ charF, f(p) = ∅ if p /∈ charF and f(S) = F if S ∈ J \ P. By
Theorem 3.1.17, the canonical P-local definition of F, F say, is given by

F (S) =

⎧⎪⎨⎪⎩
F ∩ Eπ(p) if p ∈ charF,
∅ if p /∈ charF,
F if S ∈ J \ P.

Furthermore, by Corollary 3.1.18, the canonical local definition of F is F (p) =
F ∩ Eπ(p) if p ∈ char F and F (p) = ∅ otherwise. Using familiar arguments it
can be proved that F = LF(f).

Unfortunately, not every saturated formation which is locally defined as
above is a Š-formation.

Example 6.4.10 ([BBPR95]). Consider F = LF(f) which is locally defined by
the formation function given by f(2) = f(3) = E{2,3}, f(5) = E{2,5}, and
f(q) = ∅ if q 	= 2, 3, 5. Then F is subgroup-closed and charF = {2, 3, 5};
Alt(5) is F-critical but it is neither a Schmidt group nor a cyclic group of
prime order.

For saturated formations of soluble groups, the following characterisation
holds.

Theorem 6.4.11. Let F be a saturated formation of soluble groups. Then
every soluble F-critical group is either a Schmidt group or a cyclic group of
prime order if and only if F satisfies the following condition: there exists a
formation function f , defined by f(p) = Sπ(p) for a set of primes π(p) such
that p ∈ π(p) if p ∈ charF and f(p) = ∅ otherwise, such that F = LF(f).

Proof. Assume that every soluble F-critical group is either a Schmidt group
or a cyclic group of prime order. Let F be the canonical local definition of
F = LF(F ). Since F is subgroup-closed, it follows that F (p) is subgroup-
closed for each p ∈ π = charF by Proposition 3.1.40. Hence F (p) is contained
in F ∩ Sπ(p), where π(p) = charF (p) for every p ∈ π. Assume that there
exists a prime p ∈ π such that F (p) 	= Sπ(p) ∩ F and let G be a group of
minimal order in the non-empty class (F∩Sπ(p)) \ F (p). Then 1 	= Soc(G) is
the unique minimal normal subgroup of G which is not a p-group. By [DH92,
B, 10.9] there exists an irreducible and faithful G-module V over GF(p). Let
X = [V ]G be the corresponding semidirect product. It is clear that X is a
primitive group and V = Soc(X) is the unique minimal normal subgroup of
X. Since G /∈ F (p), we have that X is not an F-group. Let M be a maximal
subgroup of X. If CoreX(M) = 1, then M is isomorphic to G. Hence M ∈ F.
Assume that CoreX(M) 	= 1. Then V ≤ M and M ∩G is a maximal subgroup
of G. In this case M ∩G ∈ F (p) and so M ∈ SpF (p) = F (p) ⊆ F. Hence X is
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an F-critical soluble group. By hypothesis, X is a Schmidt group (clearly X
cannot be a cyclic group of prime order). In particular G is a nilpotent group.
Assume that Soc(G) is a proper subgroup of G. Let A be a maximal subgroup
of G containing Soc(G). Then V A is a maximal subgroup of X and so V A is
nilpotent. Let q be the prime dividing |Soc(G)|. Then the Sylow q-subgroup
Aq of A is non-trivial and Aq ≤ CV A(V ) = V . This contradiction yields
Soc(G) = G and hence G is a cyclic group of order q ∈ π(p) = charF (p). This
means that G ∈ F (p), contrary to our supposition. Consequently, for each
prime p ∈ π, we have that F (p) = F ∩ Sπ(p), where π(p) = charF (p).

We are now close to completing the proof of the implication. Let f be the
formation function given by f(p) = Sπ(p) if p ∈ π and f(q) = ∅, if q 	= π
and F (q) = ∅. It is clear that F is contained in LF(f). Assume that the
equality is not true and take a group G ∈ LF(f) \ F of minimal order. Since
LF(f) is composed of soluble groups, it follows that G is a soluble primitive
group. Let p be the prime dividing |Soc(G)|. Then G/N ∈ Sπ(p) ∩ F = F (p).
Consequently G ∈ SpF (p) ⊆ F, and we have reached a contradiction. Hence
F = LF(f).

Suppose now that there exists a formation function f , defined by f(p) =
Sπ(p) for a set of primes π(p) such that p ∈ π(p) if p ∈ charF and f(p) = ∅
otherwise, such that F = LF(f). Let G a soluble F-critical group. Assume that
Φ(G) = 1. Then G is a primitive group. Let p be the prime dividing Soc(G).
If q 	= p is a prime dividing the order of G, and g ∈ G is an element of G of
order q, then g does not centralise N . Denote A = 〈g〉. If NA were a proper
subgroup of G, then NA ∈ F. Hence NA/ Op′,p(NA) ∼= A belongs to Sπ(p)

and q ∈ π(p). Since G does not belong to Sπ(p), it follows that G = AN for
some subgroup A of G of prime order. This means that G is a Schmidt group.
Hence, in this case, G is either a Schmidt group or a cyclic group of prime
order.

Assume that Φ(G) 	= 1. The group G∗ = G/Φ(G) is an F-critical group
and Φ(G∗) 	= 1. The above argument implies that G∗ is either a Schmidt
group or a cyclic group of prime order. Consequently, G is a Schmidt group
and the other implication of the theorem is now clear. ��

We now present a set of necessary and sufficient conditions for a saturated
formation to be a Š-formation.

Theorem 6.4.12 ([BBPR95]). Let F be a saturated formation. Then F is a
Š-formation if and only if F satisfies the following two conditions:

1. There exists a formation function f , defined by f(p) = Eπ(p) for a set of
primes π(p) such that p ∈ π(p) if p ∈ charF and f(p) = ∅ otherwise, such
that F = LF(f); this formation function f satisfies the following property:

If G ∈ CritS(F)∩ b(F) and G is an almost simple group such that
G /∈ f(p) for some prime p ∈ π

(
Soc(G)

)
, then G /∈ f(q) for each

prime q ∈ π
(
Soc(G)

)
. (6.2)

2. CritS(F) ∩ b(F) does not contain non-abelian simple groups.
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Proof. Denote π := charF. If F is a Š-formation, every group G ∈ CritS(F) ∩
b (F) has abelian socle. Bearing in mind Remark 6.4.9, only the sufficiency of
the conditions is in doubt.

Assume that there exists a set of primes π(p) with p ∈ π(p), for each
p ∈ π, such that F is locally defined by the formation function f given by
f(p) = Eπ(p) if p ∈ π, and f(q) = ∅ if q /∈ π. Then F = LFP(f̂), where f̂ is the
P-formation function defined by f̂(p) = f(p) for all p ∈ P and f̂(S) = F for
all S ∈ J \ P (see Corollary 3.1.13 and Corollary 3.1.18). By Corollary 6.4.5,
it will be sufficient to show that every F-critical group is soluble to conclude
that F is a Š-formation. Suppose that CritS(F) \ S is not empty and derive
a contradiction. Let G be a group of minimal order in CritS(F) \ S. Then
Φ(G) = 1 and G is a monolithic primitive group in b(F). Let N = Soc(G)
be the unique minimal normal subgroup of G. If N = G, then G is simple.
Since this contradicts 2, we must have N < G, so that N ∈ F. Assume that
N is non-abelian. Then CG(N) = 1 and π(N) ⊆ π(p), for every p ∈ π(N).
Now since G /∈ F, there exists a prime q ∈ π(G) such that q /∈ π(p) for
some prime p ∈ π(N); in particular, q /∈ π(N). Let g be an element of G
of order q. Denote A = 〈g〉. The group A operates by conjugation on N

subgroup Np p

subgroup of G. Hence NpA ∈ F. Since Np is normal in NpA and q /∈ π(p),
it follows that A ≤ CG(Np). On the other hand, N = N1 × · · · × Nr is a
direct product of non-abelian simple groups Ni, 1 ≤ i ≤ r, which are pairwise
isomorphic. Since Np = (N1)p × · · · × (Nr)p for some Sylow p-subgroup (Ni)p

of Ni, 1 ≤ i ≤ r, and (Ni)p ≤ Ni ∩ Ng
i , it follows that Ni = Ng

i , 1 ≤ i ≤ r.
Hence A normalises Ni for all i ∈ {1, . . . , r}. Suppose that NiA 	= G for
every i ∈ {1, . . . , r}. Then NiA ∈ F. Consequently A ≤ CG(Ni) for every
i ∈ {1, . . . , r} because q /∈ π(p). This implies that A ≤ CG(N) = 1, which
is impossible. We conclude for this contradiction that G = NiA for some
i ∈ {1, . . . , r} and N = Ni is a non-abelian simple group. In particular, G
is an almost simple group. We may apply now Condition 1 and deduce that
G /∈ f(r) for each r ∈ π(N). But the above argument shows that A centralises
a Sylow r-subgroup of N for each r ∈ π(N). Hence A ≤ CG(N) = 1, and again
we have a contradiction. Therefore N must be abelian. Let p be the prime
dividing |N |. Then p ∈ π and G /∈ f(p) because G /∈ F. Let g be an element
of G whose order is a prime q /∈ π(p). Denote again A = 〈g〉. If NA = G, then
G is soluble. This contradiction implies that NA is a proper subgroup of G.
But in this case q ∈ π(p) because N is self-centralising in G, contrary to our
initial supposition that q /∈ π(p).

Thus we are forced to the conclusion that every F-critical group is soluble
and F is a Š-formation. ��

Remark 6.4.13. None of the conditions 1 and 2 can be dispensed with in The-
orem 6.4.12 (see [BBPR95, Examples]).

and (|N |, |A|) = 1. By [DH92, I, 1.3], there exists an A-invariant Sylow
p- of N . Since G is not soluble, it follows that N A is a proper
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With the help of the preceding theorem we can now give examples of
subgroup-closed saturated Š-formations of different nature. The simplest ex-
ample is the formation F of the p-nilpotent groups, p a prime number. It is clear
that F = LF(f), where f(p) = Sp and f(q) = E for every prime q 	= p. Hence
F belongs to the family of saturated formations described in Theorem 6.4.12.
Let G ∈ CritS(F)∩b(F). Then G is not a p′-group. Thus p ∈ π(G). Since G is
not p-nilpotent, we can apply the p-nilpotence criterion of Frobenius [Hup67,
IV, 5.8] to conclude that G = NG(P ) for some p-subgroup 1 	= P of G. Hence
Soc(G) is abelian and F satisfies Conditions 1 and 2 of Theorem 6.4.12. Con-
sequently F is a Š-formation. This is a classical result due to Itô ([Hup67, IV,
5.4]).

Less trivial is the following result.

Theorem 6.4.14 ([BBPR95]). Let {πi : i ∈ I} be a family of pairwise
disjoint sets of primes and put π =

⋃{πi : i ∈ I}. Let F be the saturated
formation locally defined by the formation function f given by f(p) = Eπi

if
p ∈ πi, i ∈ I, and f(q) = ∅ if q /∈ π. Then F is a subgroup-closed saturated
Š-formation.

Proof. By Proposition [DH92, IV, 3.14], F is a subgroup-closed saturated
formation. It is clear that π = charF. Note that a group G belongs to F
if and only if G has a normal Hall πi-subgroup for every i ∈ I.

We claim that F satisfies Conditions 1 and 2 of Theorem 6.4.12. On one
hand, the formation function defined above satisfies Condition 1. On the other
hand, assume that G is a non-abelian simple group in CritS(F) ∩ b(F) and
derive a contradiction. Then 2 ∈ charF, by the Odd Order Theorem [FT63],
and so there exists an element i ∈ I such that 2 ∈ πi. Denote π1 = π \ πi

and π2 = πi. If X is a group in F, we denote by X1 the normal Hall π1-
subgroup of X. The normal Hall π2-subgroup of X is denoted by X2. We
reach a contradiction after the following steps:

Step 1. Let M be a maximal subgroup of G such that M1 	= 1 and M2 	= 1.
Then Sylp(M) ⊆ Sylp(G), for every prime p dividing the order of M .

Let p be a prime dividing |M | and let Mp ∈ Sylp(M). There exists a Sylow
p-subgroup Gp of G such that Mp ⊆ Gp. Assume, arguing by contradiction,
that Mp is a proper subgroup of Gp. Then Mp is a proper subgroup of Tp =
NGp

(Mp). Suppose that p ∈ π2 (similar arguments can be used if p ∈ π1). In
this case, we have that M1 ≤ NG(Mp) and so 〈M1, Tp〉 ≤ NG(Mp), which is
a proper subgroup of G because G is a non-abelian simple group. Let L be a
maximal subgroup of G such that NG(Mp) ≤ L. Then L = L1 × L2 because
L ∈ F. Furthermore, L1 	= 1 and L2 	= 1 as p ∈ π(L) and M1 ≤ L1. Hence
〈M2, L2〉 ≤ NG(M1) = M and so Mp is a Sylow p-subgroup of L2. But then
Tp is a Sylow p-subgroup of L2 containing properly a Sylow p-subgroup of L2.
This contradiction yields Mp = Gp and Mp is a Sylow p-subgroup of G.

Step 2. Let p be a prime in π1 and let 1 	= P be a p-subgroup of G. Then
NG(P ) is of Glauberman type with respect to the prime p (cf. [Gor80, 4.1,
page 281]).
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It is clear that NG(P ) is a proper subgroup of G. Hence NG(P ) ∈ F and
NG(P ) = NG(P )1 ×NG(P )2. In particular, NG(P ) is p-soluble. Suppose that
p = 3, then SL(2, 3) is not involved in G because the Sylow 2-subgroup of
SL(2, 3) is not centralised by a Sylow 3-subgroup of SL(2, 3). Hence NG(P ) is
strongly p-soluble in the sense of [Gor80, page 234]. Moreover, Op

(
NG(P )

)
	=

1 and p is an odd prime. Therefore we can apply [Gor80, pages 268–269]
to conclude that NG(P ) is p-constrained and p-stable. By [Gor80, Theorem
8.2.11, page 279] we have that NG(P ) is of Glauberman type with respect to
the prime p.

Step 3. Let p be a prime in π1 and let 1 	= P be a Sylow p-subgroup
of G. Then P ≤ N ′, where N = NG

(
ZJ(P )

)
and ZJ(P ) is the centre of the

Thompson subgroup of P .
By Step 2, the normaliser of every nonidentity p-subgroup of G is of

Glauberman type with respect to the prime p. Applying [Gor80, Theorem 8.4.3,
page 282], we conclude that P ∩ G′ = P ∩ G = P ∩ N ′.

Step 4. Let M be a maximal subgroup of G. Then M is either a π1-group
or a π2-group.

Since G is F-critical, we have that every maximal subgroup of G belongs
to F. Assume that the above statement is not true. Then the set

Σ := {M : M is a maximal subgroup of G, M1 	= 1, and M2 	= 1}

is non-empty. We define a binary relation R in Σ by M RL if and only
if M2 ≤ L2. Clearly R is reflexive and transitive. Moreover, if M RL and
LRM , then M2 = L2 and so M = NG(M2) = NG(L2) = L. Hence (Σ,R) is
a partially ordered set. Let M be a maximal element of (Σ,R). Since M1 	= 1
and M1 is soluble, by the Feit-Thompson theorem, we have that (M1)′ is a
proper subgroup of M1. Let p be a prime dividing |M1 : (M1)′| and let P be a
Sylow p-subgroup of M . Then, by Step 1, P is a Sylow p-subgroup of G and
moreover P ≤ N ′, where N = NG

(
ZJ(P )

)
, by Step 3. Clearly N is a proper

subgroup of G and M2 ≤ N . Let L be a maximal subgroup of G containing
N . Then M2 ≤ L2. Moreover L1 	= 1 because p ∈ π1. Therefore L ∈ Σ and
M RL. By the maximality of M , we have that L = M . In particular, P is
contained in (M1)′ because N ′ ≤ (M1)′ × (M2)′. Hence |M1 : (M1)′| is a
p′-number, contrary to our supposition.

Step 5. G has a maximal subgroup of odd order.
If every maximal subgroup of G were of even order, then G would be

an Eπ2-group by Step 4. This would imply that G ∈ F, and we would have
a contradiction. Hence we conclude that G has a maximal subgroup of odd
order.

Applying [LS91, Theorem 2], we have that G is one of the following groups:
Alt(p), p a prime number, p ≡ 3 (mod 4) and p 	= 7, 11, 23; L2(q), q ≡ 3
(mod 4), Lε

p(q), ε = ±1, p odd prime, and G 	= U3(3) or U5(2); M23, Th, F2,
or F1.

In the remaining steps we rule out the above possibilities for the non-
abelian simple group G.
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Step 6. G is not of the type Alt(p), p a prime number, p ≡ 3 (mod 4) and
p 	= 7, 11, 23.

Suppose that G = Alt(p) for some prime p, p ≡ 3 (mod 4). It is clear that
Alt(p − 1) is a maximal subgroup of G, Alt(p − 1) ∈ F and Alt(p − 1) ∈ Eπ2 .
Let P be a Sylow p-subgroup of G and let M be a maximal subgroup of G
such that NG(P ) ≤ M . By Step 4, M is either a π1-group or a π2-group. If
M ∈ Eπ2 , then G ∈ Eπ2 and so G ∈ F. This contradiction yields M ∈ Eπ1 .
Hence M = P = NG(P ) and we have a contradiction.

Step 7. G 	= L2(q), q ≡ 3 (mod 4).
Assume that G = L2(q), for some q ≡ 3 (mod 4). Then by [LS91, The-

orem 2], if M is a maximal subgroup of odd order, then M is isomorphic to
a semidirect product of an elementary abelian group of order q and a cyc-
lic group of order (q − 1)/2. On the other hand, by the theorem of Dickson
[Hup67, II, 8.27], G has a subgroup H which is isomorphic to the dihedral
group of order 2

(
(q−1)/2

)
. Then H ∈ Eπ2 by Step 4, and therefore M ∈ Eπ2 .

It means that G ∈ Eπ2 . This contradiction confirms Step 7.
Step 8. G 	= Lε

p(q), ε ∈ {±1}, p odd prime.
Assume that G = Lε

p(q) for some odd prime p, ε ∈ {±1} and G 	= U3(3) or
U5(2). Again, by [LS91, Theorem 2], if M is a maximal subgroup of G of odd
order, then the order of M is p

(
(qp − ε)/(q − ε)(q − ε, p)

)
. From Tables 3.5A

and 3.5B and the corresponding results of Chapter 4 of [KL90], it follows that
there exists a proper subgroup M of G of even order such that p ∈ π(M).
Hence M ∈ Eπ2 and then G ∈ Eπ2 . This contradiction proves Step 8.

Step 9. G is not of type M23, Th, F2, or F1.
Using the Atlas [CCN+85] as reference for the list of maximal subgroups

of G, we see that in this case G should be a π2-group. This final contradiction
proves the theorem. ��

We now turn our attention to an application of Theorem 6.4.12 leading to
a characterisation of the subgroup-closed saturated Š-formations.

Theorem 6.4.15 ([BBPR96b]). Let F = LF(F ) be a subgroup-closed sat-
urated formation. Denote π = charF and π(p) = charF (p), for every p ∈ π.
Any two of the following statements are equivalent:

1. F is a Š-formation.
2. A π-group G belongs to F if and only if NG(Q)/ CG(Q) belongs to Eπ(p)

for each p-subgroup Q of G and each prime p ∈ π.
3. A π-group G belongs to F if and only if NG(Q) ∈ Eπ\{p}Eπ(p) for each

non-trivial p-subgroup Q of G and each prime p ∈ π.

Proof. 1 implies 2. Assume that F is a Š-formation. According to The-
orem 6.4.12, we have that F (p) = Eπ(p) ∩ F, for every p ∈ π. Let G
be a π-group in F. Suppose that a prime p ∈ π is fixed and let Q be
a p-subgroup of G. Then NG(Q) ∈ F because F is subgroup-closed. In
particular NG(Q)/ Op′

(
NG(Q)

)
∈ F (p) ⊆ Eπ(p). Since Q is a normal

p-subgroup of NG(Q), it follows that Op′
(
NG(Q)

)
≤ CG(Q). This means that
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NG(Q)/ CG(Q) ∈ Eπ(p). Conversely, assume that G is a π-group such that
NG(Q)/ CG(Q) belongs to Eπ(p) for each p-subgroup Q of G and each p ∈ π,
but G is not an F-group. If we choose G of minimal order among the groups
X /∈ F satisfying the above property, we have that G is an F-critical group
because this property holds in every subgroup of G. Since F is a Š-formation,
it follows that G is a Schmidt group. In particular π(G) = {p, q} for two dis-
tinct primes p and q in π and G has a normal Sylow p-subgroup, P say. By
hypothesis, we have that G/ CG(P ) ∈ Eπ(p). If q were not in π(p), it would
be true that Q ≤ CG(P ). This is not possible. Hence q ∈ π(p) and then
Q ∈ Eπ(p) ∩F = F (p). Therefore G ∈ SpF (p) = F (p) ⊆ F. This contradiction
yields G ∈ F.

2 implies 1. We see that F satisfies the Statements 1 and 2 of The-
orem 6.4.12.

(a) For each prime p ∈ π, we have that F (p) = Eπ(p) ∩ F.
Let p be a prime in π. Since F (p) is subgroup-closed by Proposition 3.1.40,

it follows that F (p) is contained in Eπ(p) ∩ F. Assume, by way of contradic-
tion, that F (p) 	= Eπ(p) ∩ F and let G be a group of minimal order in the
non-empty class (Eπ(p) ∩ F) \ F (p). Then 1 	= Soc(G) is the unique minimal
normal subgroup of G and it is not a p-group. By [DH92, B, 10.9], there ex-
ists an irreducible and faithful G-module over GF(p). Let X = [V ]G be the
corresponding semidirect product. X is a primitive group and X /∈ F because
G /∈ F (p). Let q be a prime in π and let Q be a non-trivial q-subgroup of G.
Suppose that p 	= q. Then NX(Q) is a proper subgroup of G because V is
the unique minimal normal subgroup of X. Let L be a maximal subgroup
of G containing NX(Q). If CoreX(L) = 1, then L is isomorphic to G and if
CoreG(L) 	= 1, then V ≤ L and L = V (G∩L). Since G∩L ∈ F (p), it follows
that L ∈ SpF (p) = F (p) ⊆ F. In both cases, L ∈ F. Therefore NX(Q) ∈ F and
so NX(Q)/ CX(Q) ∈ Eπ(q). Now, if p = q and NX(Q) is a proper subgroup
of G, we can argue as above to conclude that NX(Q)/ CX(Q) ∈ Eπ(p). If Q
is a normal subgroup of X, then V = Q and X/ CX(Q) ∈ Eπ(p) because it is
isomorphic to G. Since X is a π-group, we can apply Statement 2 to conclude
that X ∈ F. This contradiction shows that F (p) = Eπ(p) ∩ F.

(b) CritS(F) ∩ b(F) does not contain primitive groups of type 2.
Assume that G is a primitive group of type 2 in CritS(F) ∩ b(F). Since

G is F-critical, it follows that G is a π-group. On the other hand, applying
Statement 2, we can determine a prime p ∈ π and a p-subgroup Q of G such
that NG(Q)/ CG(Q) /∈ Eπ(p). Then Q is non-trivial. Suppose that NG(Q) is
a proper subgroup of G. Then NG(Q) ∈ F ⊆ Eπ\{p}Eπ(p). This means that
NG(Q)/ CG(Q) ∈ Eπ(p), contrary to our supposition. Hence Q is a normal sub-
group of G. But then Soc(G) ≤ Q and Soc(G) is abelian. This contradiction
confirms Statement b.

From Statements a and b we deduce that F enjoys the properties given in
Theorem 6.4.12. This means that F is a Š-formation.

Assume now that G is a π-group. Let p be a prime in π and let Q be a non-
trivial p-subgroup of G. If NG(Q) ∈ Eπ\{p}Eπ(p), then NG(Q)/ CG(Q) ∈ Eπ(p).
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we can repeat the arguments used in the proof of 2 implies 1 to conclude that
F is a Š-formation. Consequently 3 implies 1 and the circle of implications is
complete. ��

Illustration 6.4.16. Let F be the saturated formation of p-nilpotent groups, p
a prime number. It is clear that F = LF(F ), where F (p) = Sp and F (q) = F
for every prime q 	= p. We have seen above that F is a Š-formation. Therefore
F satisfies Condition 2 of Theorem 6.4.15. Hence a group G is p-nilpotent if
and only if NG(Q)/ CG(Q) is a p-group for every p-subgroup Q of G. The
statement 3 of this theorem says that a group G is p-nilpotent if and only if
NG(Q) is p-nilpotent for every p-subgroup Q of G. These statements are two
equivalent forms of the well known p-nilpotence criterion due to Frobenius.

The next topic we broach concerns the relation between the F-residual of a
group and the subgroup generated by the F-residuals of some of its F-critical
subgroups. The springboard for these results was a theorem of Berkovich
[Ber99] stating that the nilpotent residual of a group G is the subgroup gen-
erated by the nilpotent residuals of the subgroups A of G such that A/Φ(A)
is a Schmidt group.

Berkovich’s result is a particular case of a more general theorem as we
shall see below.

Let F be a formation. Denote by BF the class of all groups G such that
G/Φ(G) is an F-critical group. Note that if F = N, the class of all nilpotent
groups, BN is the class of all groups such that G/Φ(G) is a Schmidt group
(see [Ber99]).

Let G be a group and let T(G) = 〈AF : A ≤ G; A ∈ BF〉 if BF ∩ S(G) 	= ∅;
otherwise, we let T(G) = 1.

Theorem 6.4.17 ([ABB02]). Let F be a saturated formation, and let G be
a group. Then T(G) = GF.

Proof. Clearly XF ≤ GF for every subgroup X of G because F is subgroup-
closed. Hence T = T(G) is contained in GF.

has an
F- 0 of T in A.
Then A0 ∩ T is contained in Φ(A0). Since A/T is isomorphic to A0/A0 ∩ T ,
it follows that A0/A0 ∩ T is F-critical. Therefore the factor group (A0/A0 ∩
T )
/
Φ(A0/A0 ∩ T ) is also F-critical because F is saturated. It means that

A0 ∈ BF and so AF
0 is contained in T . Hence AF

0 ≤ A0∩T ≤ Φ(A0). It follows
that A0/Φ(A0) ∈ F. Now since F is saturated, we conclude that A0 ∈ F. This
contradiction completes the proof. ��

We continue the section with an application of Theorem 6.4.17 leading
to a characterisation of the Š-formations in the soluble universe among the
subgroup-closed saturated formations. It rests on the following result.

This elementary remark proves that 2 implies 3. Now, if Statement 3 holds,

critical subgroup, A/T say. Choose now a minimal supplement A
G/T ∈/ F. Then G/TAssume, arguing by contradiction, that
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Theorem 6.4.18 ([ABB02]). Let F be a saturated formation of soluble
groups of full characteristic such that every soluble group in CritS(F) is a
Schmidt group. If A is a group in BF, then AN = AF.

Proof. We shall argue by induction on |A|. Firstly, if Φ(A) = 1, then A is
an F-critical group. Assume that A is not soluble. Then A is a non-abelian
simple group. In this case AF = A = AN. Thus we may suppose that A is
soluble and then A is a Schmidt group. Hence there exists a normal abelian
Sylow p-subgroup of A, P say, for some prime p. It is rather clear that P
coincides with both the nilpotent residual and the F-residual of A. Hence
we can assume that Φ(A) 	= 1. Let N be a minimal normal subgroup of A
contained in Φ(A). Then A/N ∈ BF. Hence the induction hypothesis implies
that (A/N)F = (A/N)N. This yields AFN = ANN .

If AN ∩ N = 1, then AN = AN ∩ AFN = AF(AN ∩ N) = AF. Thus we
can suppose that N is contained in AN and AN = AFN . If N is contained in
AF, then AN = AF and the theorem is true. Consequently we shall assume
that N ∩ AF = 1, and hence Φ(A) ∩ AF = 1. Note that we can suppose that
A/Φ(A) is an extension of a p-group by a q-group for some primes p and q.
Since this class is a saturated formation, we have that A is also an extension
of a p-group by a q-group. Therefore AN is a p-group, and consequently N is
a p-group, too.

Let us have a look now at the structure of the F-group A/AF. Given
a subgroup H of A, denote by H̄ the corresponding subgroup HAF/AF of
A/AF = Ā. By Theorem 6.4.11, we have that the class F is locally defined
by a formation function f given by f(r) = Sπ(r), where π(r) is a set of
primes such that r ∈ π(r), for all primes r. Now note that N̄ is a minimal
normal subgroup of Ā. Therefore, Ā/ CĀ(N̄) ∈ Sπ(p). We can conclude that
A/ CA(N) ∼= Ā/ CĀ(N̄) ∈ Sπ(p). If q ∈ π(p), then A ∈ Sπ(p) = f(p) and so
A ∈ F, against the supposition that A/Φ(A) is F-critical. Therefore q /∈ π(p)
and we have that A/ CA(N) is a p-group. Since the normal Sylow p-subgroup
of A centralises N , it follows that N is central in G. On the other hand, A/Φ(A)
is an F-critical group with trivial Frattini subgroup. Since AF ∩Φ(A) = 1 and
AFΦ(A)/Φ(A) =

(
A/Φ(A)

)F, it follows that AF is abelian. But the equality
AN = AF ×N yields that AN is complemented in A by a Carter subgroup of
A by Theorem 4.2.17. We can conclude that there exists a Carter subgroup
C of A such that A = ANC and AN ∩ C = 1. Now N is central in A. Hence
N ≤ NG(C) = C. Consequently N ≤ AN ∩ C = 1, contrary to supposition.
This final contradiction proves the result. ��
Theorem 6.4.19 ([ABB02]). Let F be a saturated Fitting formation of sol-
uble groups of full characteristic. The following statements are equivalent:

1. Every soluble group in CritS(F) is a Schmidt group.
2. GF = 〈AN : A ≤ G;A ∈ BF〉 for every group G.

Proof. By Theorem 6.4.17, we have that GF = 〈AF : A ≤ G,A ∈ BF〉. Hence
if every soluble group in CritS(F) is a Schmidt group, we apply Theorem 6.4.18
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to conclude that GF = 〈AN : A ≤ G; A ∈ BF〉 for every group G. Therefore 1
implies 2. Therefore, only the sufficiency of the Condition 2 is in doubt. To
prove that every soluble group in CritS(F) is a Schmidt group, we shall use
Theorem 6.4.11. Write F = LF(F ), where F denotes the canonical local defin-
ition of F. Consider any prime p. We prove that F (p) = Sπ(p) ∩ F, where
π(p) = charF (p). Since F is a subgroup-closed Fitting formation, we have
that F(p) is subgroup-closed Fitting formation by Proposition 3.1.40. Since F
is integrated, we have that F (p) ⊆ Sπ(p)∩ F. Assume that Sπ(p) ∩ F 	=F ( p)
and take a group G in (Sπ(p)∩ F) \ F (p) of minimal order. By familiar reas-
oning, 1 	= Soc(G) is the unique minimal normal subgroup of G. Moreover,
Soc(G) cannot be a p-group since, being F full, it holds that F ( p)= SpF (p).
Note that, in fact, Op(G) = 1. By [DH92, B, 10.9], there exists an irreducible
and faithful G-module V over GF(p). Consider now the corresponding semi-
direct product X = [V ]G. Note that if X ∈ F, then X/ CX(V ) ∈ F (p) and
thus X/V ∈ F (p). This is impossible because G ∼= X/V . Therefore X /∈ F
and X is in fact an F-critical group.

We are ready at this point to reach our final contradiction. Since XF =
〈AN : A ≤ X; A ∈ BF〉, and X ∈ BF, we have that XF = XN = V .
Therefore G ∼= X/V = X/XN is nilpotent. Then G is a q-group for some
prime q ∈ charF (p). Since F (p) is a Fitting class of soluble groups, it follows
that Sq is contained in F (p) by [DH92, IX, 1.9] and then G ∈ F (p). This
contradiction yields F (p) = Sπ(p) ∩ F. It follows then that F = LF(f), where
f is the formation function defined by f(p) = Sπ(p) if p ∈ charF and f(p) = ∅
otherwise. Applying Theorem 6.4.11, every soluble group in CritS(F) is a
Schmidt group. ��

Remark 6.4.20. The formation in the above theorem is not a Š-formation in
general (see Example 6.4.10).

We close our extended treatment of Š-formations with a survey describing
another context where this family of saturated formations appears.

In [Keg65] O. H. Kegel introduced the notion of a triple factorisation. This
is a factorisation of a group G involving three subgroups A, B, and C of the
type G = AB = AC = BC. The evidence is that the existence of a triple
factorisation can have greater consequences for the group structure than does
a single factorisation. For example, Kegel shows that a group which has a triple
factorisation by nilpotent groups is nilpotent. Consequently, it seems natural
to wonder which are the saturated formations F which are closed under taking
triple factorisations. The first contribution to the solution of this problem was
made by Vasil’ev [Vas87, Vas92] in the soluble universe. The following three
results are proved in that universe.

Theorem 6.4.21 (Vasil’ev). Let F be an Sn-closed saturated formation.
Then the following statements are equivalent:
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2. (Kegel’s property) F contains each group G = AB = AC = BC where A,
B, C ∈ F.

3. F contains each group having three pairwise non-conjugate maximal sub-
groups belonging to F.

The above result has been improved in [BBPAMP00].

Theorem 6.4.22. Let F be an Sn-closed saturated formation of full charac-
teristic. The following statements are equivalent.

1. F is a Š-formation.
2. F satisfies the property:

If G is a group of the form G = AB = AC = BC, where A and B
are F-subgroups of G and C is an F-subnormal F-subgroup of G,
then G is an F-group.

In the study of factorised groups, the case of a triply factorised group
G = AB = AC = BC where C is a normal subgroup of G is of particular
interest. For instance, the factoriser of a normal subgroup of a factorised
group always has this form. Hence the following characterisation of the above
formations is also of interest ([BBPAMP00]).

Theorem 6.4.23. Let F be an Sn-closed saturated formation of full charac-
teristic. The following statements are equivalent:

1. F is a Š-formation.
2. F satisfies the property:

If G is a group of the form G = AB = AC = BC, where A and
B are F-subgroups of G and C is a normal subgroup of G, then
GF = CF.

Bearing in mind the above results, a natural question arises:

Let F be a Fitting formation, non-necessarily subgroup-closed, with the
Kegel property. Is F saturated?

This question, proposed by Vasil’ev in the Kourovka Notebook [MK99] for
formations of soluble groups, was partially answered in [BBE05].

Theorem 6.4.24. Let F be a Fitting formation with the following property:

for every prime p ∈ charF, whenever G is a primitive F-group whose
socle is a p-group, all groups E(q|p) are in F for all primes q 	= p such
that q divides |G/ Soc(G)|. (6.3)

Then F satisfies the Kegel property if and only if F is a subgroup-closed Š-
formation.

Note that if F is saturated, then F satisfies (6.3).
Let F be a Fitting formation. If for some primes p, q, the group E(q|p) ∈ F,

then Sp(Cq) ⊆ F by [DH92, XI, 2.5]. Since Sp(Cq) ⊆ F ∩N2 and F ∩N2 is a
Fitting formation of metanilpotent groups, it follows that SpSq ⊆ F∩N2 ⊆ F
by [DH92, XI, 2.4]. Hence E(q|p) ∈ F if and only if SpSq ⊆ F.

1. F is a Š-formation.
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6.5 Wielandt operators

One of the significant properties of subnormal subgroups is that the nilpotent
residual of the subgroup generated by two subnormal subgroups of a group is
the subgroup generated by the nilpotent residuals of the subgroups. This is
a consequence of an elegant theory of operators created by H. Wielandt for
proving results on permutability of subnormal subgroups.

For a group G and the lattice Sn(G) of all subnormal subgroups of G, a
map ω : Sn(G) −→ Sn(G) is called a Wielandt operator in G if, for any H,
K ∈ Sn(G), the following conditions are satisfied:

〈H, K〉ω = 〈Hω,Kω〉, (6.4)

if H � K, then Hω � K. (6.5)

Here, of course, Hω denotes the image of H under the map ω. Note that
Condition 6.5 implies that Hω is a normal subgroup of H.

The importance of the theory of operators is suggested by the following
result of H. Wielandt.

Theorem 6.5.1 ([Wie57]). Let ϕ and ψ be two Wielandt operators in a
group G. Assume that two subnormal subgroups H and K of G are permutable
if H = Hϕ = Hψ. Then AϕBψ = BψAϕ for any pair (A,B) of subnormal
subgroups of G.

It is a consequence of the above result that each new operator leads to the dis-
covering of a new case of permutability of subnormal subgroups and gives new
insights on the construction of subnormal subgroup generation. Wielandt’s
theory of operators is clearly of interest in relation to the theory of classes of
groups and may repay further study.

Suppose that a Wielandt operator ω is defined in all groups G. If ω satisfies
(Xω)α = (Xα)ω for any homomorphism α of a group X, then the class F :=
(X : Xω = 1) is a Fitting formation and Gω is the F-residual of G for every
group G. Conversely if F is a Fitting formation, then the map δ : Sn(G) −→
Sn(G), Hδ = HF for all H ∈ Sn(G), defines a Wielandt operator in every group
G, permuting with all homomorphisms provided that δ satisfies Condition 6.4.

Consequently, the problem of finding Wielandt operators which are per-
mutable with homomorphisms is reduced to the description of Fitting forma-
tions F satisfying the following property:

If U and V are subnormal subgroups of a group G, then 〈U, V 〉F =
〈UF, V F〉. (6.6)

Let us state this property in a formal definition.

Definition 6.5.2. Let F be a formation. We say that F satisfies the Wielandt
property for residuals if whenever U and V are subnormal subgroups of 〈U, V 〉
in a group G, then 〈U, V 〉F = 〈UF, V F〉.
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The formations appearing in this section are not subgroup-closed in gen-
eral.

Not all formations have the Wielandt property for residuals. For instance,
let F be the saturated formation composed of all groups with no epimorphic
image isomorphic to Alt(5). Then if G is the symmetric group of degree 5, it
follows that GF = 1 	= 〈Alt(5), 1〉F = Alt(5). In fact, we have:

Proposition 6.5.3. Let F be a formation. If F satisfies the Wielandt property
for residuals, then F is a Fitting formation.

Proof. Let G be a group in F, and N a subnormal subgroup of G. Then
NF ≤ 〈NF, GF〉 = 〈N, G〉F = GF = 1. Hence N ∈ F and F is Sn-closed.

Suppose that G = N1N2 for normal subgroups N1 and N2 such that
Ni ∈ F, i = 1, 2. Then GF = NF

1 NF
2 = 1. This means that G ∈ F and F is

N0-closed.
Consequently, F is a Fitting class. ��

The validity of the converse is not known at the time of writing and seems
to be quite difficult.

Our aim in the first part of this section is to show that many of the known
Fitting formations have the Wielandt property for residuals.

The procedure we describe here is based on the papers [KS95] and
[BBCE01].

The basic strategy is the following: first we prove a reduction theorem for a
minimal counterexample. This allows us to reduce the problem in many cases
to considering a restricted class of groups in the boundary of the formation.
As an application, we deduce that many known Fitting formations have the
Wielandt property for residuals.

The main obstacle in giving the complete answer for the problem is in un-
derstanding the restriction of an irreducible module to a subnormal subgroup.
Although a certain amount of information can be derived from repeated ap-
plication of the Clifford theorems, the closed relation between the components
of the restriction is lost. In particular, for a subnormal subgroup, it is difficult
to find the relationship between the kernels of the action of the subnormal
subgroup on each component of the restriction.

We begin by describing two ways to obtain new formations with the
Wielandt property from some old ones.

Proposition 6.5.4. If F1, F2, and Fi, i ∈ I, are formations satisfying the
Wielandt property for residuals, then

1. the formation F1 ◦ F2 satisfies the Wielandt property, and
2. the formation

⋂
i∈I Fi satisfies the Wielandt property.

Proof. 1. We have that XF1◦F2 = (XF2)F1 by Proposition 2.2.11 (4) for
any group X. Let G be a group and U and V subgroups of G such that U
and V are subnormal subgroups of H = 〈U, V 〉. Then HF1◦F2 = (HF2)F1 =
〈UF2 , V F2〉F1 = 〈UF1◦F2 , V F1◦F2〉.
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2. We have that X i∈I Fi =
∏

i∈I XFi for any group X, where in the
product only a finite set of residuals appear since X is finite. Consider a
group G and U and V subgroups of G such that U and V are subnormal
subgroups of H = 〈U, V 〉. Then H i∈I Fi =

∏
i∈I HFi =

∏
i∈I〈UFi , V Fi〉 =

〈∏i∈I UFi ,
∏

i∈I V Fi〉 = 〈U i∈I Fi , V i∈I Fi〉. ��

Note that if F is a Fitting formation, then UF is contained in GF for
every subnormal subgroup U of G. Therefore it is always true that 〈UF, V F〉
is contained in 〈U, V 〉F provided that U and V are subnormal in 〈U, V 〉. If U
and V permute, the equality holds as the next result shows.

Proposition 6.5.5. Let F be a Fitting formation. If U and V are subgroups
of G such that UV = V U and U and V are subnormal in UV , then (UV )F =
UFV F.

Proof. Assume that the result is false and let G be a counterexample of least
order. Let U and V be subnormal subgroups of UV = V U such that |U |+ |V |
is maximal doing false the result. Clearly U and V are proper subgroups of G
and G = UV . Let N be a proper normal subgroup of G such that U ≤ N .
Then N = U(V ∩N). The minimality of G yields NF = UF(V ∩N)F. If U is a
proper subgroup of N , then GF = NFV F by the maximality of the pair (U, V ).
Hence GF = UFV F. This contradiction shows that U and V are maximal
normal subgroups of G. Thus UF and V F are normal in G. Assume that one
of them, UF say, is not trivial, and let N be a minimal normal subgroup
of G such that N ≤ UF. It follows that G/N is a group generated by the
subnormal subgroups UN/N and V N/N of G/N . Then, by minimality of G,
we have that GF = UF(V FN) = UFV F, contrary to our initial supposition.
Hence UF = 1 = V F or, equivalently, U and V are in F. Since F is a Fitting
class, we deduce that G ∈ F, i.e. GF = 1. This final contradiction proves the
proposition. ��

Corollary 6.5.6. Let F be a Fitting formation. If U and V are subgroups
of a group G such that U and V are subnormal in 〈U, V 〉 and U ∈ F, then
〈U, V 〉F = V F.

Proof. Since U is a subnormal subgroup of 〈U, V 〉 and U ∈ F, we have that
U is contained in the F-radical 〈U, V 〉F of 〈U, V 〉. Hence 〈U, V 〉 = 〈U, V 〉FV .
By Proposition 6.5.5, we deduce that 〈U, V 〉F = (〈U, V 〉F)FV F = V F. ��

A well-known result of H. Wielandt (see [Wie94b]) asserts that the Fitting
subgroup of a group G normalises the nilpotent residual of each subnormal
subgroup of G. The next corollary extends this result to an arbitrary Fitting
formation.

Corollary 6.5.7. Let F be a Fitting formation. If U and V are subgroups
of a group G such that U and V are subnormal in 〈U, V 〉, it follows that
UF normalises V F. In particular, GF normalises the F-residual HF of each
subnormal subgroup H of G.



288 6 F-subnormality

Proof. Consider the subgroup K = 〈UF, V 〉 generated by its subnormal sub-
groups UF and V . Then KF = V F by Corollary 6.5.6 and KF is normal in K.
Hence UF normalises V F. ��

Let F be a Fitting formation. Given a group X, we denote by W(X, F)
the set of all pairs (A,B) such that A and B are subnormal subgroups of
〈A,B〉 ≤ X and 〈AF, BF〉 < 〈A,B〉F. Let B(F) denote the class of all groups
X such that W(X, F) 	= ∅. If F does not satisfy the Wielandt property for
residuals, then the class B(F) is non-empty. In the following we analyse the
structure of a group G of minimal order in B(F). We consider a pair (U, V ) in
W(G, F) such that |U |+|V | is maximal. Denote H = 〈UF, V F〉 and A = U∩V .
By Proposition 6.5.5, U and V do not permute. In particular, neither U nor
V is normal in G. Moreover, UF 	= 1 	= V F by Corollary 6.5.6.

Statement 6.5.8. G = 〈U, V 〉. Moreover, UF 	= V F.

Proof. By minimality of G, it is clear that G = 〈U, V 〉 and 1 	= GF. If N =
UF = V F, then N is normal in G. The minimal choice of G implies that
GF/N = 〈UF/N, V F/N〉 = 1. Then N = GF. This contradiction yields UF 	=
V F. ��

Statement 6.5.9. GF = HN for every minimal normal subgroup N of G. In
particular, H is core-free in G. Moreover, H is normal in GF.

Proof. Let N be a minimal normal subgroup of G. We consider G/N =
〈UN/N, V N/N〉. By minimality of G, we deduce that GFN = HN . If N is
not contained in GF, then N∩GF = 1. This means that GFN = GF×N . Since
H ≤ GF, it follows that H ∩N = 1. But GFN = HN implies that |GF| = |H|
and then GF = H, contrary to our supposition. Hence Soc(G) ≤ GF and
GF = HN for any minimal normal subgroup N of G.

By [DH92, A, 14.3], Soc(G) normalises H because H is subnormal in G.
Hence H is normal in GF.

Assume that H is not core-free in G. Then H contains a minimal normal
subgroup of G, N say. Hence GF = GFN = HN = H, against to our choice
of G. Therefore H is core-free in G. ��

Statement 6.5.10. If Soc(G) is non-abelian, then Soc(G) is a minimal nor-
mal subgroup of G and G is in the boundary of F. In this case, GF is the
unique minimal normal subgroup of G.

Proof. First, note that for every minimal normal subgroup N of G, since
H ∩ N is normal in N , we have that N = (H ∩ N) × N∗ and GF = H × N∗

with N∗ 	= 1. This implies that H centralises N∗. If there exist two minimal
normal subgroups N1 and N2 of G, then GF = H×N∗

i ≤ CG(N∗
3−i), for i = 1,

2. Therefore N∗
i ≤ Z(GF) and both N1 and N2 are abelian. In other words, if

Soc(G) is not a minimal normal subgroup of G, then Soc(G) is abelian.
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Assume that N = Soc(G) is non-abelian. Then N is a minimal normal
subgroup of G and CG(N) = 1. It is clear that N is a direct product of copies
of a non-abelian simple group, E say. This means that N ∈ D0(1, E) = X.
Then GF/H ∈ X and (GF)X ≤ H. Since (GF)X is normal in G, it follows
that (GF)X = 1 by Statement 6.5.9. Hence GF ∈ X. Assume that N is a
proper subgroup of GF. Then there exists a copy of E centralising N . This is
a contradiction. Hence N = GF. In particular, G is in the boundary of F. ��

Statement 6.5.11. If Soc(G) is abelian, then GF is an elementary abelian
p-group for some prime p.

Proof. Let N be a minimal normal subgroup of G. By Statement 6.5.9, GF =
HN . Since Soc(G) is abelian, N is an elementary abelian p-group for some
prime p. In particular, Op(GF) and (GF)′ are normal subgroups of G contained
in H. Since H is core-free in G, Op(GF) = (GF)′ = 1, and GF is an abelian
p-group.

If, on the other hand, Φ(GF) = 1, then we can take N to be contained in
Φ(GF). In this case, GF = HN = H. This contradiction leads to Φ(GF) = 1,
and GF is an elementary abelian p-group. ��

Statement 6.5.12. H = UFV F. Furthermore, UF and V F are proper sub-
groups of U and V , respectively.

Proof. Whether or not Soc(G) is abelian, every subnormal subgroup of GF

is a normal subgroup of GF. In particular, UF and V F are normal in GF.
Therefore H = UFV F. Assume that UF = U . Then U normalises V F. This
would imply that V F is normal in G, contrary to Statement 6.5.9. Therefore
UF < U and V F < V . ��

Statement 6.5.13. A = GF and GF is contained in A. Moreover,

1. A is a maximal normal subgroup of U and V , and G/A is a q-group for
some prime q ∈ charF;

2. if Soc(G) is a p-group, then p ∈ charF; and
3. GN = Oq(G) is contained in A.

Proof. Let M be a proper subnormal subgroup of G such that U ≤ M and
consider the subgroup Y = 〈U,M∩V 〉. The lattice properties of the subnormal
subgroups imply that Y is subnormal in G. Furthermore Y is contained in
M . Assume that U is a proper subgroup of Y . Then, by maximality of the
pair (U, V ), we have that GF = 〈Y F, V F〉. By minimality of G, it follows that
Y F = 〈UF, (M ∩ V )F〉. Therefore GF = 〈UF, (M ∩ V )F, V F〉 = 〈UF, V F〉 = H
and we have reached a contradiction. Hence U = Y and so M ∩ V ≤ U .
In particular M ∩ V = U ∩ V = A. The arguments for a proper subnormal
subgroup of G containing V are analogous.

Let M be a maximal normal subgroup of G such that U ≤ M . By the
foregoing arguments, we have that M ∩ V = A. Therefore, A is a normal
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subgroup of V . Moreover, V/A = V/(V ∩U) = V/(M ∩V ) ∼= V M/M = G/M
is a simple group (note that V is not contained in M). Analogously, we deduce
that A is normal in U and that U/A is a simple group. This implies that A is
a normal subgroup of G and that A is a maximal normal subgroup of U and
V . Since AF is a normal subgroup of G contained in H, it follows that AF = 1
by Statement 6.5.9. This means that A ∈ F and A is contained in GF.

Since GF is normal in G, we have that (UGF)F = UF by Corollary 6.5.6.
Therefore UGF is a proper subnormal subgroup of G. Assume that U < UGF.
Since G = 〈UGF, V 〉, we deduce that GF = 〈(UGF)F, V F〉 = 〈UF, V F〉 by
maximality of the pair (U, V ), contrary to supposition. Hence GF is a subgroup
of U . Analogously, GF is contained in V , and we have the equality.

Assume that U/A is a non-abelian simple group. Then U/A normalises
V/A by Theorem 2.2.19, and V is normal in G. This contradiction yields
that U/A is a cyclic group of prime order, q say. The same argument for
V proves that V/A is a cyclic group of prime order, r say. If r 	= q, then
[U/A, V/A] ≤ [Oq(G/A), Or(G/A)] = 1. Then G/A = U/A × V/A is abelian,
and U and V are normal subgroups of G. This possibility cannot happen.
Therefore, r = q and G/A is a group generated by two subnormal q-subgroups,

group. If q /∈ charF, then UF = U and V F = V , contrary to Statement 6.5.12.
Therefore we must have q ∈ charF and so G ∈ F by [DH92, IX, 1.9]. This
contradiction yields A 	= 1 and then A contains a minimal normal subgroup
of G. On the other hand, we can assume that either Soc(G) is an elementary
abelian p-group for some prime p, or Soc(G) is a non-abelian minimal normal
subgroup of G by Statements 6.5.10 and 6.5.11. In both cases, we have that
Soc(G) and GF are subgroups of A and Statement 2 holds. Since GF ≤ A, we
have that the q-group G/A belongs to F. Therefore q ∈ charF and Statement 1
holds.

Now we prove that if M is a maximal normal subgroup of G, then A is
contained in M . Assume that there exists a maximal normal subgroup M
of G such that A is not contained in M . Then G = AM , U = A(U ∩M), and
V = A(V ∩M). The subnormal subgroup T = 〈U∩M, V ∩M〉 is a supplement
of A in G and A∩M ≤ T ≤ M . Hence M = G∩M = TA∩M = T (A∩M) = T .
By minimality of G, MF = 〈(U ∩ M)F, (V ∩ M)F〉. On the other hand, since
G = MU , by Proposition 6.5.5, it follows that GF = MFUF = 〈(U∩M)F, (V ∩
M)F, UF〉 = 〈(V ∩ M)F, UF〉 = 〈UF, V F〉, contrary to our initial supposition.
Therefore, every maximal normal subgroup of G contains A.

Clearly, GN is contained in A. Since every maximal subgroup of G/GN is
normal in G/GN, it follows that A/GN ≤ Φ(G/GN). Since G/A is a q-group,
we deduce that G/GN is a q-group. Then GN = Oq(G) and 3 holds. ��

Next, we assume that Soc(G) is abelian. This implies that GF is an ele-
mentary abelian p-group for some prime p ∈ charF by Statements 6.5.11
and 6.5.13. Denote B = GF. Then B is a G-module over the field GF(p).

U/A and V/A, and so G/A is a q-group. Suppose that A = 1. Then G is a
q-
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Proof. We denote by J(BA) the intersection of all maximal A-submodules
of BA. Since A is normal in G, the action of G permutes these maximal
submodules, and thus J(BA) is a normal subgroup of G.

Suppose that J(BA) 	= 0, and let N be a minimal normal subgroup of G
such that N ≤ J(BA). By Statement 6.5.9, we have, in additive notation, that
B = H + N . Since B, H, and N are A-submodules and N ≤ J(BA), we have
that B = H by Nakayama’s lemma ([HB82a, VII, 6.4]). This is a contradiction.
Therefore, J(BA) = 0, and B is a completely reducible A-module over GF(p)
by [HB82a, VII, 1.6]. ��

It is clear that H is an A-submodule of B.

Statement 6.5.15. Let Z be an arbitrary irreducible A-submodule of H.
Then if Z1 is an irreducible A-submodule of B, then there exists g ∈ G such
that Z1 is A-isomorphic to Zg.

Proof. Let Z be an irreducible A-submodule of H and consider the normal
closure 〈ZG〉 =

∑
g∈G Zg. Then 〈ZG〉A is a completely reducible A-module

and is a direct sum of its irreducible submodules which are isomorphic to
some conjugate of Z. Let N be a minimal normal subgroup of G such that
N ≤ 〈ZG〉. Hence NA is again a completely reducible A-module and is a direct
sum of its irreducible submodules, which are isomorphic to some conjugate
of Z. On the other hand, B = H + N by Statement 6.5.9. Therefore, every
A-composition factor of B/H is isomorphic to a conjugate of Z.

Let Z1 be an irreducible A-submodule of B. The normal closure N1 = 〈ZG
1 〉

is not contained in H, and every A-composition factor of N1 is isomorphic to
a conjugate of Z1. Again by Statement 6.5.9, B = H + N1 and so every A-
composition factor of B/H is isomorphic to a conjugate of Z1. This implies
that Z1 is A-isomorphic to a conjugate of Z. ��

The following lemma is needed in the proof of our next statement.

Lemma 6.5.16. Let K be a field of characteristic p, and let G be a group with
a normal subgroup N such that G/N is a p-group. If W is an irreducible KN -
module, then the induced KG-module WG has all of its composition factors
isomorphic.

Proof. Let T be the inertia subgroup of W in G. First note that (WT )N =⊕
g Wg, where g runs over a transversal of N in T . This is a particular case

of Mackey’s theorem ([DH92, B, 6.21]). Since T is the inertia subgroup of W
in G, we have that Wg ∼= W for all g ∈ T . Therefore (WT )N is homogeneous,
and all of its composition factors are isomorphic to W . In particular, if U/V
is a composition factor of WT , then (U/V )N is homogeneous, and all its
composition factors are isomorphic to W .

If U/V is a composition factor of WT , then the G-module (U/V )G ∼=
UG/V G is irreducible by [DH92, B, 7.4]. It is thus sufficient to prove that all
composition factors of WT are isomorphic. Let U/V be a composition factor

Statement 6.5.14. B is a completely reducible A-module over GF(p).
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of WT . Then, by [DH92, B, 8.3], (U/V )N is an irreducible N -module. Hence
(U/V )N is isomorphic to W . By [DH92, B, 5.17], all composition factors of
WT are isomorphic. ��

Statement 6.5.17. If p = q, then all composition factors of B are iso-
morphic.

Proof. Suppose that p = q. Let Z be an irreducible A-submodule of B. By
Lemma 6.5.16, the induced module ZG has all its composition factors iso-
morphic. Let M be a composition factor of B, and let Z1 be an irreducible
A-submodule of MA. By Statement 6.5.15, Z1 is A-isomorphic to Zg for some
g ∈ G. Then Zg−1

1 is an irreducible A-submodule of M which is isomorphic to
Z. In other words, MA has an irreducible submodule isomorphic to Z, that
is, 0 	= HomKA(Z, MA). By Nakayama’s reciprocity theorem [DH92, B, 6.5],
it follows that 0 	= HomKG(ZG,M). Therefore a composition factor of ZG

is isomorphic to M , and then all composition factors of ZG are isomorphic
to M . ��

Statement 6.5.18. If p 	= q, then B = Soc(G).

Proof. Let Z be an irreducible A-submodule of BA. Since p 	= q, it follows
that ZG is a completely reducible G-module by [HB82a, VII, 9.4].

Denote by α the inclusion of Z in BA. Applying [HB82a, VII, 4.4], there
exists a KG-homomorphism α′ : ZG −→ B such that (z ⊗ g)α′ = zg for all
g ∈ G and all z ∈ Z. Hence Im(α′) = 〈ZG〉, the normal closure of Z in
G. Therefore 〈ZG〉 is a completely reducible G-module and 〈ZG〉 ≤ Soc(G).
In particular, Z is contained in Soc(G). Since, by Statement 6.5.14, BA is a
completely reducible A-module, it follows that B is contained in Soc(G) and
the equality holds by Statement 6.5.9. ��

The most important examples of Fitting formations are as follows:
1. The solubly saturated Fitting formations (see Chapter 3).
2. The Fitting formations constructed by Fitting families of modules

([DH92, Chapter IX, 2, Construction F]). Fix a prime r. Let K be an ex-
tension field of GF(r). For any r-soluble group G, denote TK(G) the class
of all irreducible KG-modules V such that V is a composition factor of the
module WK = W ⊗ K, where W is an r-chief factor of G.

Suppose that, for every group G, a class of irreducible KG-modules M(G)
is defined. Then the class M :=

⋃
G M(G) is called a Fitting family if it

satisfies the four properties listed in Definition 2.5.5. Applying Theorem 2.5.6,
the class

T(1, M) =
(
G : G is r-soluble and TK(G) ⊆ M(G)

)
is a Fitting formation provided that M is a Fitting family.

In both cases, we have a way to distinguish between the abelian r-chief
factors of any group X in the following sense:
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1. If F is a solubly saturated formation defined by the canonical P-local
of X can be

F-central if X/ CX(M) ∈ F (r) or F-eccentric otherwise.
2. If F = T(1,M) is a Fitting formation constructed by a Fitting family of

modules M, then an abelian r-chief factor M of X can be such that all
composition factors of MK are in M(X) or not.

Let X be an arbitrary group, and let M be an X-module over GF(r). Denote
by Irr(M) the class of all irreducible X-modules occurring as composition
factors of M .

Suppose that F is either a solubly saturated formation or a Fitting forma-
tion defined by a Fitting family of modules, and let ModF(U) denote the class
of all irreducible U -modules occurring as

1. F-central chief factors of U below B, if F is a solubly saturated Fitting
formation, or

2. abelian chief factors M of U below B such that every composition factor
of MK is in M(U), if F = T(1,M) is a Fitting formation constructed by a
Fitting family of modules M.

Analogously, let ModF(V ) denote the corresponding set for V .

Statement 6.5.19. If F is either a solubly saturated Fitting formation or a
Fitting formation defined by a Fitting family of modules, then G is in the
boundary of F.

Proof. Assume first that p = q. In this case, all composition factors of B
are isomorphic G-modules by Statement 6.5.17. We consider a G-composition
series of B, 0 = B0 ≤ B1 ≤ · · · ≤ Br = B say.

The composition factor B1 is a minimal normal subgroup of G and so
B = HB1 by Statement 6.5.9. Since H is core-free in G, it follows that B1 	=
UF. Moreover, B1 is a completely reducible U -module by Clifford’s theorems
[DH92, B, 7.3]. It then decomposes as B1 = B′

1 ⊕ B∗
1 , where B′

1 = B1 ∩ UF.
Since B1 is not contained in UF, we have that B∗

1 	= 0.
be a U -composition factor of B∗

1 . Then M is isomorphic to a
U - 1

′
1

F ∈ F. This implies
that M ∈ ModF(U) and Irr(B∗

1) is contained in ModF(U).
Assume now that B′

1 	= 0 and let M be an irreducible U -submodule of
B′

1. Then UF = M ⊕ M1, for some U -submodule M1 of UF. Since U/M1 /∈ F
and U/UF ∈ F, it follows that M is not in ModF(U). Consequently Irr(B′

1) ∩
ModF(U) = ∅ if B′

1 	= 0.
The arguments for V are completely analogous. Hence B1, considered as

V -module, decomposes as B1 = B′′
1 ⊕ B∗∗

1 where B′′
1 ≤ B1 ∩ V F and B∗∗

1 is a
non-trivial V -submodule of B1 such that Irr(B∗∗

1 ) is contained in ModF(V ).
Moreover, Irr(B′′

1 ) ∩ ModF(V ) = ∅ provided that B′′
1 	= 0.

Let B′ = UF + Br−1. Assume that B′/Br−1 	= 0 and let M/Br−1 be an
irreducible U -submodule of B′/Br−1. Since B′/Br−1 is completely reducible
as U -module, it follows that B′/Br−1 = M/Br−1 ⊕ M1/Br−1. Note that

formation function F , then an abelian r-chief factor M

composition factor of B /B , which is a section of U/U
Let M
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M1 = M1∩(UF+Br−1) = (M1∩UF)+Br−1 and UF+M1 = UF+Br−1 = B′.
Therefore UF/(M1 ∩ UF) is U -isomorphic to (UF + M1)/M1

∼= B′/M1 and
B′/M1 is U -isomorphic to M/Br−1. Since M/Br−1 	= 0, we have that UF

is not contained in M1 and so U/(M1 ∩ UF) is not in F. Hence M/Br−1 /∈
ModF(U). Consequently Irr(B′/Br−1) ∩ ModF(U) = ∅.

The same argument holds for V , that is, if B′′ = V F + Br−1, then
Irr(B′′/Br−1) ∩ ModF(V ) = ∅ provided that B′′/Br−1 	= 0.

Suppose that r ≥ 2. Then the composition factors B1 and B/Br−1 are
different. Furthermore B = B′ + B′′.

Assume that B′/Br−1 = 0. Then B = B′′ and Irr(B/Br−1)∩ModF(V ) =
∅. Let ϕ : B/Br−1 −→ B1 be a G-isomorphism. Since ϕ is a V -isomorphism, it
follows that Irr(B1) ∩ ModF(V ) = ∅. This is a contradiction because B∗∗

1 is a
non-trivial V -submodule of B1 such that Irr(B∗∗

1 ) ⊆ ModF(V ). Consequently
B′/Br−1 	= 0 and B′′/Br−1 	= 0. Moreover ϕ(B′/Br−1) is contained in B′

1

and ϕ(B′′/Br−1) is contained in B′′
1 . Hence B1 = ϕ(B/Br−1) = ϕ(B′/Br−1 +

B′′/Br−1) = ϕ(B′/Br−1)+ϕ(B′′/Br−1) = B′
1+B′′

1 ≤ (B1∩UF)+(B1∩V F) ≤
H. This is a contradiction. Therefore r = 1 and B is an irreducible G-module.

Consider now the case where p 	= q. Then, by Statement 6.5.18, B is a
completely reducible G-module. By Clifford’s theorem, UF is a completely
reducible U -module. If M is an irreducible U -submodule of UF, then there
exists a U -submodule M0 of UF such that UF = M ⊕ M0. Since U/M0 is
not in F, we have that M /∈ ModF(U). That is, Irr(UF) ∩ ModF(U) = ∅. On
the other hand, since U/UF ∈ F, it follows that M ∈ ModF(U), for every
chief factor M of U between UF and U . That is, Irr(B/UF) is contained in
ModF(U). With a similar argument, we deduce the corresponding result for
V . Hence

Irr(BU/UF) ∩ Irr(UF) = ∅ = Irr(V F) ∩ Irr(BV /V F).

Now suppose that B = N1×· · ·×Nr, where Ni is a minimal normal subgroup
of G, i = 1, . . . , r, and r ≥ 2. Each Ni can be decomposed as Ni = N∗

i ⊕
(Ni ∩ UF), where N∗

i is a complement of Ni ∩ UF in Ni as U -modules. Then
BU = (N∗

1 ⊕ · · · ⊕ N∗
r ) ⊕

(
(N1 ∩ UF) ⊕ · · · ⊕ (Nr ∩ UF)

)
. Denote B∗ =

N∗
1 ⊕ · · · ⊕N∗

r . Then UF ∩B∗ = 0 because Irr(UF) ∩ Irr(BU/UF) = ∅. Hence
UF = (N1 ∩ UF) ⊕ · · · ⊕ (Nr ∩ UF). The same arguments hold for V : V F =
(N1∩V F)⊕· · ·⊕(Nr∩V F). Comparing the two decomposition as vector spaces,
B = N1+H = N1+UF+V F = N1+

(
(N1∩UF)⊕· · ·⊕(Nr∩UF)

)
+
(
(N1∩V F)⊕

· · ·⊕(Nr∩V F)
)

= N1⊕
(
(N2∩UF)+(N2∩V F)

)
⊕· · ·⊕

(
(Nr∩UF)+(Nr∩V F)

)
=

N1 ⊕ · · · ⊕ Nr, we deduce that Ni = (Ni ∩ UF) + (Ni ∩ V F) for each i ≥ 2.
Therefore Ni ≤ UF + V F = H for each i ≥ 2. This contradiction leads to
r = 1 and B is a minimal normal subgroup of G.

Consequently, in both cases, we have that G is a monolithic group in the
boundary of F. ��

For convenience, we incorporate the class of all groups satisfying the above
statements in a formal definition.
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Definition 6.5.20. Let F be a Fitting formation. Define b3(F) as the class of
all triples (G,U, V ) such that

1. G ∈ b(F) and U and V are subnormal subgroups of G;
2. G = 〈U, V 〉;
3. U ∩ V = GF 	= 1;
4. U/GF and V/GF are cyclic groups of order q, a prime.

Note that if (G,U, V ) ∈ b3(F), then GF is contained in GF and G/GF is a
q-group, q ∈ charF.

The above statements lead to the following result.

Theorem 6.5.21. Let F be a Fitting formation. Suppose that either

1. F is a solubly saturated Fitting formation, or
2. F = T(1, M) is a Fitting formation defined by a Fitting family of modules

M constructed over an extension field K of GF(r).

Then the following statements are equivalent:

1. F satisfies the Wielandt property for residuals.
2. For every triple (G,U, V ) ∈ b3(F), we have that GF = 〈UF, V F〉.

Applying Theorem 6.5.21, a large number of Fitting formations satisfying the
Wielandt property for residuals appear.

Corollary 6.5.22. Let F be a Fitting formation. Then F satisfies the Fitting
property for residuals provided that one of the following conditions hold:

1. SpF = F, for all primes p ∈ charF.
2. FSp = F, for all primes p ∈ charF.
3. F is solubly saturated, and its boundary is composed of non-abelian simple

groups.
4. charF = ∅.
5. F = E X for some class X of simple groups.
6. F = D0(1, X1), where X1 is a class of non-abelian simple groups.

Let p be a prime, and let Mp be the class of all groups whose abelian p-chief
factors are central. It is rather clear that Mp is a Fitting formation. Moreover,
Mp is solubly saturated by Lemma 3.2.15 and Mp∩S is the class of all soluble
p-nilpotent groups. The Mp-radical of a group G is the intersection of the
centralisers of the abelian p-chief factors of G. This subgroup also appears
when a P-local definition of a solubly saturated formation is considered (see
Section 3.2).

Corollary 6.5.23. Let p be a prime. Then Mp satisfies the Wielandt property
for residuals.
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Proof. Applying Theorem 6.5.21, we need only consider triples in b3(Mp).
Suppose that (G, U, V ) is a triple in b3(Mp). Then G = 〈U, V 〉 is a mono-

lithic group in b(Mp), U and V are subnormal subgroups of G, U ∩ V is the
Mp-radical of G and G/(U ∩V ) is a q-group for some prime q ∈ charMp = P.
Denote by N the Mp-residual of G. Then N is an abelian p-group con-
tained in U ∩ V = A. Since N is a completely reducible A-module, it fol-
lows that A ≤ CG(N). Consequently G = QA = QCG(N) for every Sylow
q-subgroup Q of G. Let B = NQ. We have that B is soluble and N is a min-
imal normal subgroup of Q. It is clear that Q does not centralise N because
G /∈ Mp. This implies that BMp = N . On the other hand, U = A(Q ∩ U)
and V = A(Q ∩ V ). Hence G = A〈Q ∩ U,Q ∩ V 〉 and Q = 〈Q ∩ U,Q ∩ V 〉. It
means that B = N〈Q∩U,Q∩V 〉 = 〈N(Q∩U), N(Q∩V )〉 = 〈U ∩B, V ∩B〉.
Note that BMp = BF, where F is the saturated formation of all p′-nilpotent
groups. Combining Proposition 6.5.4 (1) and Corollary 6.5.22 (1), it fol-
lows that F satisfies the Wielandt property for residuals. Therefore BMp =
〈(U ∩ B)Mp , (V ∩ B)Mp〉 ≤ 〈UMp , V Mp〉 and so N = 〈UMp , V Mp〉. ��

Let F be a solubly saturated formation. Then, applying Theorem 3.2.14,
there exists a Baer function f such that F = LFP(f). Denote Supp(f) =
{p ∈ P : f(p) 	= ∅} ∪ {S ∈ J \ P : f(S) 	= ∅}. Then it rather clear that
F =

⋂
p∈Supp(f) Mp ◦ f(p)∩⋂S∈Supp(f)\P

E
(
(S)′

)
◦ f(S) by Remarks 3.1.2 and

Remark 3.1.9.
Therefore, applying Proposition 6.5.4 and Corollary 6.5.23, we have:

Theorem 6.5.24 ([KS95]). Let F be a solubly saturated formation and let f
be a Baer function P-locally defining F. If for all S ∈ Supp(f), f(S) satisfies
the Wielandt property for residuals, then F satisfies the Wielandt property for
residuals.

Corollary 6.5.25. Let F be a saturated formation locally defined by a forma-
tion function f . If for all primes p, the formations f(p) satisfy the Wielandt
property for residuals, then F satisfies the Wielandt property for residuals.

Proof. Set

g(J) =

{
f(p) when J ∼= Cp, p ∈ P and⋂

p||J| f(p) when J ∈ J \ P,

then it is clear that F = LFP(g). Applying Proposition 6.5.4 (2), g(J) satisfies
the Wielandt property for residuals if J ∈ J\P. By Theorem 6.5.24, F satisfies
the Wielandt property for residuals. ��

Corollary 6.5.26. Any soluble subgroup-closed Fitting formation satisfies the
Wielandt property for residuals.

Proof. Any soluble subgroup-closed Fitting formation F is a primitive sat-
urated formation. Therefore, F has a local definition f such that f(p) satis-
fies the Wielandt property for residuals for all prime numbers p (see [DH92,
page 497]). ��
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Example 6.5.27. (see Example 2.2.17) Let Q be the Fitting formation of all
quasinilpotent groups. Then Q is a solubly saturated formation P-locally
defined by the P-local formation function f given by

f(S) =

{
(1) when S ∼= Cp, and
D0(1, S) when S ∈ J \ P.

Since f(S) satisfies the Wielandt property for residuals for all S, it follows
that Q satisfies the Wielandt property for residuals by Theorem 6.5.24.

In the next examples, we work in the universe of all soluble groups.
Let Xi be Fitting formations, i = 1, 2. For every group G, denote by M(G)

the class of all irreducible KG-modules V such that V = U ⊗ W with U π-
special, W π′-special, and G/ Ker(G onU) ∈ X1 and G/ Ker(G onW ) ∈ X2.
Applying Theorem 2.5.10, M = M(K,P, X1, X2) =

⋃
G M(G) is a Fitting

family. Let T(1, M) = T(1, r,P,X1, X2)be the Fitting formation defined by M.

Theorem 6.5.28. Let π be a set of primes and consider the partition P =
{π, π′} of the set of all prime numbers. The Fitting formation F = T(1, M) =
T(1, r,P, X1,X2) satisfies the Wielandt property for residuals in the following
case: X1 = Sρ and X2 = Sσ for some sets of primes ρ and σ (not both empty).

The following result is used in the proof of Theorem 6.5.28. It can be
proved by using similar arguments to those used in the proof of [HB82a, VII,
9.13].

Lemma 6.5.29. Let N be a normal subgroup of G, and let V1 and V2 be two
KG-modules such that

1. (V1)N is absolutely irreducible, and
2. V2 is absolutely irreducible and (V2)N is homogeneous, and all of its con-

stituents are isomorphic to (V1)N . Write (V2)N
∼= s(V1)N .

Then there exists an irreducible K(G/N)-module W with dimW = s such
that V2

∼= V1 ⊗ W .

Proof (of Theorem 6.5.28). We use only the restriction on the Xi at one
point, and so have written the proof as far as possible to be independent of
that hypothesis. Applying Theorem 6.5.21, we need only consider groups in
b3(F). Hence we suppose that G is in the boundary of F and, moreover, that
U and V are subnormal subgroups of G satisfying G = 〈U, V 〉, A = U ∩ V =
GF 	= 1, and U/A and V/A are of prime order q, q ∈ char F. Note that G/A
is a q-group and Oq(G) = GN = Oq(U) = Oq(V ) = Oq(A). Furthermore,
G has a unique minimal normal subgroup B = GF which is a p-group for
some prime p. First, we observe that p = r (the characteristic of K), since
otherwise all r-chief factors would come from G/B ∈ F, and so G would be
in F. We are working with a field K which is algebraically closed. However,
when dealing with dimensions of KX-modules for a subgroup X of G, we
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can assume that K is a splitting field for G and all its subgroups. In fact, by
Brauer’s theorem [HB82a, VII, 2.6], we can assume that K is a finite Galois
extension of k = GF(p). We are interested in the behaviour of the irreducible
components of BK . By [HB82a, VII, 1.15], the KG-module BK is completely
reducible. Let N be an irreducible component of BK . Applying [HB82a, VII,
1.18 (b)], every irreducible KG-submodule of BK is G-isomorphic to Nη for
some η ∈ G(K/k).

We collect some properties we need. First, if L is a normal subgroup of G,
then a KL-module Q is π-special if and only if all of its G-conjugates are
π-special, and L/Ker(L onQ) ∈ Xi if and only if the same is true for all of
the G-conjugates of Q. Further, Q is π-special if and only if all of its Galois
conjugates are special and L/Ker(L onQ) ∈ Xi if and only if the same is true
for all of the Galois conjugates of Q.

Clearly we may assume that q ∈ π. Suppose, by way of contradiction, that
B 	= 〈UF, V F〉. Then CoreG(〈UF, V F〉) = 1. We have that BU is completely
reducible as U -module and so B = UF ⊕ B0, with B 	= B0 	= 0. It follows
that (UF)K can contain no components in M(U) and (B0)K must have all
its components in M(U). Let N be an irreducible component of BK . If no
component of (BU )K is in M(U), then no component of (BU )K is in M(U)
and thus B0 = 0. This is a contradiction. If every component of NU is in
M(U), then every component of (BU )K is in M(U). This implies that UF = 1
(or, equivalently, B = B0). It is also a contradiction. Hence, if we denote by
D(NU ) the sum of all irreducible KU -submodules of NU which do not lie
in M(U), then 0 	= D(NU ) 	= N . In particular, NU is not a homogeneous
module. Similar remarks apply to V .

Furthermore, NA = N1 ⊕ · · · ⊕ Nt, where the Ni are irreducible KA-
modules, all conjugate by elements of G. Since A ∈ F, for each i we have
that Ni = Zi ⊗ Xi, where Zi is a π-special irreducible KA-module with
A/ Ker(A on Zi) ∈ X1 and Xi is a π′-special irreducible KA-module with
A/ Ker(A on Xi) ∈ X2. Note that since all Ni are G-conjugates, so are the Zi

and the Xi, because if Ng
i
∼= N1 for some G ∈ G, then Zg

i ⊗Xg
i
∼= (Zi⊗Xi)g =

Ng
i
∼= N1 = Z1 ⊗ X1, and thus Zg

i
∼= Z1 and Xg

i
∼= X1, by [CK87, 2.4].

We break the proof into a number of cases.
Case 1. Suppose that all of the Zi, as well as all of the Xi, are isomorphic.

This is equivalent to saying that NA is homogeneous. If p = q, then NA is
irreducible by [DH92, B, 8.3]. This implies that NU is irreducible and either
N ∈ M(U) or N /∈ M(U). This contradiction yields p 	= q. Since NU is a
completely irreducible U -module, we can write NU = L1 ⊕ · · ·⊕Lu, where Li

are irreducible KU -modules. Analogously, NV = P1 ⊕ · · · ⊕ Pv, where Pi are
irreducible KV -modules.

If Lj is an irreducible component of NU such that Ni is a component of
(Lj)A, then (Lj)A

∼= tjNi for some tj . Since q divides |K|−1 by [HB82a, VII,
2.6], we have that tj is either 1 or q by [DH92, B, 8.5].

Analogously, if Pk is an irreducible component of NV such that Ni is a
component of (Pk)A, then either (Pk)A = Ni or (Pk)A

∼= qNi. We have that
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NA = N1 ⊕ · · ·⊕Nr, and each irreducible component Ni is Ni = Z ⊗X, with
Z a π-special KA-module and X a π′-special KA-module. Applying [CK87,
2.3], there is a unique π′-special KU -module Y contained in XU such that
X = YA. Moreover, ZU is completely reducible by [HB82a, VII, 9.4]. Let W
be an irreducible component of ZU . By the Nakayama’s reciprocity theorem,
0 	= HomU (ZU , W ) ∼= HomA(Z, WA) ([DH92, B, 6.5]). Therefore Z is an
irreducible component of WA. Since Z is π-special, then so is W by [CK87,
2.3]. It is clear that the inertia subgroup of Z in U is the whole U . Then WA

is homogeneous, i.e. WA
∼= tZ. Again, by [DH92, B, 8.5], either t = 1 or t = q.

Assume that t = q. Therefore, we have that dimW = dimZU = q dimZ.
This implies that W ∼= ZU and ZU is a π-special KU -module. Let L be any
irreducible KU -module such that Z⊗X is a component of LA. It follows that
ZU ⊗ Y is irreducible by [CK87, 2.4]. By [HB82a, VII, 4.5 (a)], we have that
(Z ⊗X)U = (Z ⊗YA)U ∼= ZU ⊗Y . Applying Nakayama’s reciprocity theorem
([DH92, B, 6.5]), it follows that 0 	= HomA(Z⊗X, LA) ∼= HomU

(
(Z⊗X)U , L

)
.

Consequently ZU⊗Y ∼= L. This implies that Li
∼= ZU⊗Y for all i ∈ {1, . . . , u}

and NU is homogeneous, contrary to 0 	= D(NU ) 	= N . Hence t = 1, and W
has the same dimension as Z. Consequently, W ⊗ Y is an irreducible KU -
module with (W ⊗ Y )A = Z ⊗ X.

For any irreducible component Lj of NU , it follows from Lemma 6.5.29 that
Lj = (W ⊗ Y ) ⊗ Jj , where Jj is an irreducible K(U/A)-module (regarded
as KU -module) and dimJj = 1 or q. Since U/A is cyclic, it follows that
dimJj = 1 by [DH92, B, 9.2]. Hence (Lj)A = Ni.

Arguing with V , we have that if NV = P1⊕· · ·⊕Pv, with the Pi irreducible
V -modules, and Pk is an irreducible component of NV such that Ni is a
component of (Pk)A, then (Pk)A = Ni is irreducible.

It implies that Ni is in fact U -module and V -module. Therefore Ni = N
is an irreducible G-module. This is a contradiction.

Case 2. Suppose that not all of the Xi are isomorphic. We let T denote
the inertia subgroup of X1 and note that A ≤ T 	= G. Since G/A is a
q-
subgroup M of G satisfying T ≤ M and so either U or V is not contained
in M . We may suppose that U is not contained in M . Recall that all Xi are
isomorphic to G-conjugates of X1, and so the inertia subgroups are conjugate
in G. It then follows that U is not contained in the inertia subgroup of any
Xi. Now let L be a component of NU and suppose that N1 is a component
of LA. If L is π-factorable, then L = D ⊗ E with D π-special and E π′-
special. Note that LA = DA ⊗ EA; if DA = D1 ⊕ · · · ⊕ Dm with all Di

irreducible A-modules, then Di is π-special for all i ∈ {1, . . . , m} by [CK87,
2.2]. Suppose that EA is irreducible. Then LA = (D1⊗EA)⊕· · ·⊕(Dm⊗EA).
Therefore EA is isomorphic to X1 by [CK87, 2.4], and then U is contained in
the inertia subgroup of X1, contrary to supposition. Hence we cannot have EA

irreducible. By Clifford’s theorem, since the inertia subgroup of X1 in U is A,
we have that E is the direct sum of q = |U/A| irreducible modules conjugate
to X1. But then the dimension of E is not a π′-number. This contradiction

group generated by U/A and V/A, we have that there is a maximal normal
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yields that L cannot be a π-factorable module. It follows that no component
of NU can be π-factorable, and so no component of NU can be in M(U), i.e.
NU = D(NU ), and we have reached a contradiction.

Case 3. Suppose that all of the Xi are isomorphic. By Case 1, we may
assume that not all the Zi are isomorphic and let T be the inertia subgroup
of Z1. As before, it follows that we may suppose that U is not contained in
the inertia subgroup of any Zi.

Now let L be any irreducible KU -module such that Z1⊗X1 is a component
of LA. We then have that X1 has a unique extension to a π′-special KU -
module, (X1)∗ say by [CK87, 2.3]. Also, since Z1 is not U -invariant, we have
that (Z1)U is irreducible by [DH92, B, 7.8] and π-special by [CK87, 2.3]. It
follows that (Z1)U ⊗ (X1)∗ is irreducible by [CK87, 2.4]. By [HB82a, VII, 4.5],
we have that (Z1 ⊗ X1)U = Z1 ⊗

(
(X1)∗

)
A

U ∼= ZU
1 ⊗ (X1)∗. Now 0 	=

HomA(Z1 ⊗X1, LA) ∼= HomU

(
(Z1 ⊗X1)U , L

)
by the Nakayama’s reciprocity

theorem ([DH92, B, 6.5]). Then L is isomorphic to (Z1)U ⊗ (X1)∗.
It follows that if NU = L1 ⊕ · · · ⊕ LU with the Li irreducible, then Li =

(Zi)∗⊕(Xi)∗ with (Zi)∗ π-special and (Xi)∗ π′-special, 1 ≤ i ≤ u. In each case
the π′-special factor is isomorphic to (X1)∗, and thus if U/ Ker

(
U on(X1)∗

)
is not in X2, then no component of NU is in MU , i.e. NU = D(NU ). This
contradiction proves that U/ Ker

(
U on(X1)∗

)
∈ X2. Some of the Lj is in

M(U). Suppose Li ∈ M(U). Then the group U/ Ker
(
U on(Zi)∗

)
∈ X1. On

the other hand, since A ∈ F, the group A/ Ker(A onZj) belongs to X1 for all
j. Recall that all Zj are conjugate and then so are the Ker(A onZj). Since
(Zj)∗ = (Zj)U , we have that Ker

(
U on(Zj)∗

)
= CoreU

(
Ker(A onZj)

)
. Thus

A/ Ker
(
U on(Zj)∗

)
∈ X1.

At this point, we must invoke the special form of Xi, i = 1, 2. Since
U/ Ker

(
U on(Zi)∗

)
∈ Sρ and Ker

(
U on(Zi)∗

)
is contained in A, we must

have Q ∈ ρ. Then U/ Ker
(
U on(Zj)∗

)
is a ρ-group and hence is in X1 for

all j. Thus Lj ∈ M(U) for all j. In other words, D(NU ) = 0. This final
contradiction proves GF = 〈UF, V F〉 and then F has the Wielandt property
for residuals. ��

Examples 6.5.30. 1. Set P =
{
π = {p}, π′ = {p}′

}
, p a prime, X1 = (1) and

X2 = S, then T(1, p,P, X1, X2) = T(1, Mp) are the Fitting classes intro-
duced by T. O. Hawkes in [Haw70]. Applying Theorem 6.5.28, T(1, Mp)
satisfies the Wielandt property for residuals.

2. The Fitting formations studied by K. L. Haberl and H. Heineken in
[HH84] can be seen as Fitting formations constructed by the Cossey-Kanes
method with X1 = S and X2 = (1). Hence, by Theorem 6.5.28, these
classes also satisfy the Wielandt property for residuals.

Let F be a Fitting formation satisfying the Wielandt property for residuals.
In general, the F-residual of a group generated by two F-subnormal subgroups
is not the subgroup generated by their F-residuals, as the following example
shows.

( )
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Example 6.5.31. Let F be the saturated Fitting formation of all groups of
nilpotent length at most 2. Then F is a subgroup-closed formation of soluble
groups. Applying Corollary 6.5.26, F has the Wielandt property for residuals.

Let G be the symmetric group of degree 4. If A is the alternating group

subnormal in G = 〈A,B〉, A and B belong to F, but G /∈ F.

From this example the following problem arises:

a precise description of those formations F for which the
F-
subgroup generated by their F-residuals.

We will be mainly concerned with this problem from now on. Our treat-
ment of the question closely follows the approaches developed in the papers
of S. F. Kamornikov [Kam96] and A. Ballester-Bolinches, M. C. Pedraza-
Aguilera, and M. D. Pérez-Ramos [BBPAPR96], and A. Ballester-Bolinches
[BB05].

For the purposes of this discussion, let F be a fixed, but arbitrary, forma-
tion.

Definition 6.5.32. 1. We say that F has the generalised Wielandt property
for residuals, F is a GWP-formation for short, if F enjoys the following
property:

If G is a group generated by two F-subnormal subgroups A and B,
then GF = 〈AF, BF〉.

2. F satisfies the Kegel-Wielandt property for residuals, F is a KW-formation
for short, if F has the following property:

Let G = 〈A,B〉 be a group generated by two K-F-subnormal sub-
groups A and B. Then GF = 〈AF, BF〉.

Obviously, every KW-formation is a GWP-formation. We show in the fol-
lowing that that the converse holds for saturated formations, and the soluble
GWP-formations are exactly the soluble subgroup-closed saturated lattice
formations. We need a couple of preliminary results.

To be a subgroup-closed Fitting formation is a necessary condition for a
formation F to have the generalised Wielandt property for residuals.

Lemma 6.5.33. If F is a GWP-formation, then F is a subgroup-closed Fitting
formation.

Proof. First suppose, by way of contradiction, that F is not subgroup-closed.
Let G be an F-group of minimal order having a subgroup not in F and, among
subgroups of G not in F, let M be one of maximal order. Then M is a maximal
subgroup of G. Since GF = 1, it follows that M is F-subnormal in G. Since
F is a GWP-formation, we have that MF = 〈MF, 1〉 = 〈MF, GF〉 = GF =
1. This contradicts the choice of G. Consequently F is subgroup-closed. In

of degree 4 and B is a Sylow 2-subgroup of G, then A and B are both
F-

Find
residual of a group generated by two F-subnormal subgroups is the
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particular, F is Sn-closed. To complete the proof we now show that F is N0-
closed. Suppose that this is not true and derive a contradiction. Let G be a
group of minimal order having two normal subgroups N1 and N2 such that
G = N1N2 and Ni ∈ F for i = 1, 2. If N is a minimal normal subgroup
of G, it follows that G/N ∈ F. Therefore G is in the boundary of F and
N = GF is the unique minimal normal subgroup of G. It is clear that Ni 	= 1,
i = 1, 2. Hence N is contained in N1 ∩ N2 and thus Ni is F-subnormal in
G, i = 1, 2 by Lemma 6.1.7 (1). Since F is a GWP-formation, it follows that
GF = NF

1 NF
2 = 1, contrary to supposition. Therefore F is N0-closed. The proof

of the lemma is now complete. ��
The following result is another step to attain our objectives.

Theorem 6.5.34. Let F be a GWP-formation. Then F is a lattice formation.

subnormal subgroups of a group is F-subnormal by Lemma 6.1.7 (3).
Suppose that F is not a lattice formation and derive a contradiction. By

this supposition, there exists a group G of minimal order such that SnF(G)
is not a sublattice of the subgroup lattice of G. In particular, G has two
F-subnormal subgroups A and B such that 〈A,B〉 is not F-subnormal in G.

by minimality of G. Therefore X = 〈A,B〉N is
F-
by Lemma 6.1.7 (2), it follows that 〈A,B〉 is F-subnormal in X provided that
X is a proper subgroup of G. This would imply the F-subnormality of 〈A,B〉
in G by Lemma 6.1.6 (1). Consequently G = 〈A,B〉N for every minimal
normal subgroup N of G. Hence either G = 〈A,B〉 or CoreG(〈A, B〉) = 1.
If G = 〈A,B〉, then 〈A,B〉 is F-subnormal in G, contrary to supposition.
Hence CoreG(〈A, B〉) = 1. On the other hand, AF and BF are subnormal
subgroups of G by Lemma 6.1.9 (1). Hence 〈AF, BF〉 is subnormal in G and
so N normalises 〈AF, BF〉 ([DH92, A, 14.3 and 14.4]). Since F is a GWP-
formation, we have that 〈AF, BF〉 = 〈A, B〉F. This implies that 〈A,B〉F is
normal in G. Hence 〈A,B〉F ≤ CoreG(〈A,B〉) = 1 and 〈A,B〉 is an F-group.
Let us consider the subgroup AN . Clearly N is not contained in A. If NF =
N , then no simple component of N belongs to F and thus (AN)F = N .
This contradicts the fact that A is F-subnormal in AN (Lemma 6.1.6 (2)).
Therefore N ∈ F. This implies that G ∈ E K(F) and so N is F-subnormal
in G by Proposition 6.1.10. Then N is an F-subnormal subgroup of AN by
Lemma 6.1.6 (2). In particular, (AN)F = AFNF = 1 = (BN)F because the
property of F. Since G = 〈AN,BN〉 and F is a GWP-formation, it follows
that GF = 〈(AN)F, (BN)F〉 = 1. This final contradiction proves that F is a
lattice formation. ��

A challenging unsolved problem in the theory of formations is whether
the converse of Theorem 6.5.34 is true. The chance of finding the answer

Proof. By Lemma 6.5.33, F is subgroup-closed. Hence the intersection of
F-

Let N be a minimal normal subgroup of G. Then AN/N and BN/N are
F-subnormal in G/N by Lemma 6.1.6 (3). Hence 〈AN/N,BN/N〉= 〈A,B〉N/N
is F-subnormal in G/N

subnormal in G by Lemma 6.1.6 (2). Since A and B are F-subnormal in X
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seems remote. With our present knowledge even the saturated case remains
unanswered.

We shall prove a result that provides a test for a subgroup-closed saturated
lattice formation to be a GWP-formation in terms of its boundary. This allows
us to present the complete answer to the problem in the soluble universe and
give interesting examples.

As in the case of groups generated by subnormal subgroups, we thought
it would be desirable to collect the arguments common to our next results.
Let F be a subgroup-closed Fitting formation. Given a group Z, we denote
by R(Z,F) the set of all pairs (H,K) such that H and K are F-subnormal
subgroups of 〈H,K〉 and 〈HF,KF〉 < 〈H, K〉F. Let W(F) denote the class of
all groups Z such that R(Z,F) 	= ∅.

If F is not a GWP-formation, then the class W(F) is not empty.
In the following we analyse the structure of a group G of minimal order in

W(F). Then G has two F-subnormal subgroups A and B such that 〈A,B〉F 	=
〈AF, BF〉. Choose A and B with |A| + |B| maximal.

Arguing as in the subnormal case, we have:

Result 6.5.35. G = 〈A,B〉, and

Result 6.5.36. Soc(G) ≤ GF and GF = 〈AF, BF〉N for any minimal normal
subgroup of G. In particular, CoreG(〈AF, BF〉) = 1.

Result 6.5.37. 〈AF, BF〉 is normal in GF.

Proof. Applying Lemma 6.1.9 (1), AF and BF are subnormal subgroups of G.
Hence Soc(G) ≤ NG(〈AF, BF〉) by [DH92, A, 14.3 and 14.4]. This implies that
〈AF, BF〉 is normal in GF. ��

Result 6.5.38. GF ∈ Q R0(N) for any minimal normal subgroup N of G.

Proof. Let N be a minimal normal subgroup of G. Then GF = 〈AF, BF〉N
and 〈AF, BF〉 � GF by Results 6.5.36 and 6.5.37. Hence (GF)Q R0(N) is a
normal subgroup of G contained in 〈AF, BF〉. Since CoreG(〈AF, BF〉) = 1 by
Result 6.5.36, we have that (GF)Q R0(N) = 1 and GF ∈ Q R0(N). ��

Result 6.5.39. N ∈ F for any minimal normal subgroup N of G.

Proof. Since NF is normal in G, we have that either NF = 1 or NF = N .
Assume that NF = N . By Lemma 6.1.6 (2), A is F-subnormal in AN . Hence
AF is normal in AN by Lemma 6.1.9 (1) and [DH92, A, 14.3]. This implies
that AN/AFN ∈ F and so (AN)F = AFN . Hence AN = A(AN)F. The
F-subnormality of A in AN yields AN = A. Since F is subgroup-closed, it
follows that NAF/AF ∈ F, whence N/(N ∩ AF) ∈ F. Therefore N = N ∩ AF

and GF = 〈AF, BF〉, contrary to our initial supposition. Consequently N ∈ F.
��
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Proof. Let N be a minimal normal subgroup of G contained in GF. Then
N ∈ F by Result 6.5.39 and GF ∈ Q R0(N) by Result 6.5.38. Hence GF ∈ F.

��

Result 6.5.41. GF is contained in A∩B. In particular, AFBF is a subgroup
of G.

Proof. Clearly AGF is a proper subgroup of G. Hence AGF is contained in a
maximal F-normal subgroup of G. The minimality of G yields (AGF)F = AF.
Assume that A is a proper subgroup of AGF. Since AGF is F-subnormal
in G, it follows that GF = 〈(AGF)F, BF〉 = 〈AF, BF〉 by the choice of the
pair (A,B), contrary to our initial supposition. Hence A = AGF and GF is
contained in A. Analogously GF is contained in B. ��

With the same arguments to those used in Statement 6.5.10, we have:

Result 6.5.42. If GF is non-abelian, then G is in the boundary of F.

Suppose now that there exists a family of subgroup-closed formations {Fi}i∈I
such that π(Fi) ∩ π(Fj) = ∅, i 	= j, and F = Xi∈I Fi.

Result 6.5.43. There exist i, j ∈ I such that G/GF ∈ Fi and GF ∈ Fj.
Moreover if either G /∈ b(F) or GF is non-abelian, then i = j.

Proof. By Result 6.5.40, we have that GF ∈ F and, by Result 6.5.38, GF is
a direct product of copies of a simple group. Hence there exists j ∈ I such
that GF ∈ Fj . On the other hand, G/GF = Xi1/GF × · · · × Xit

/GF, where
Xik

/GF ∈ Fik
is a Hall π(Fik

)-subgroup of G/GF, 1 ≤ k ≤ t, for some set
{i1, . . . , it} ⊆ I. Let k ∈ {1, . . . , t}. Then Xik

/GF = 〈(A ∩ Xik
)/GF, (B ∩

Xik
)/GF〉 = 〈A ∩ Xik

, B ∩ Xik
〉/GF and Xik

= 〈A ∩ Xik
, B ∩ Xik

〉. Applying
Lemma 6.1.7 (2), A ∩ Xik

and B ∩ Xik
are F-subnormal subgroups of Xik

.
Assume that Xik

is a proper subgroup of G for all k ∈ {1, . . . , t}. Then
XF

ik
= 〈(A∩Xik

)F, (B∩Xik
)F〉 by the minimal choice of G, leading to XF

ik
= 1.

This is due to the fact that XF
ik

is a normal subgroup of G contained in
〈AF, BF〉 and CoreG(〈AF, BF〉) = 1 by Result 6.5.36. Hence G ∈ N0 F = F,
contrary to hypothesis. Therefore there exists an index i = ik ∈ {i1, . . . , it}
such that Xi = G. This means that G/GF ∈ Fi.

Suppose that i 	= j. Then GF is a Hall π(Fj)-subgroup of G and there
exists a Hall π(Fi)-subgroup C of G such that G = GFC and GF ∩ C = 1.
It follows that A/AF = GF/AF × (C ∩ A)AF/AF and so A normalises AFBF.
Analogously B normalises AFBF. It implies that AFBF = 1 by Result 6.5.36
and GF is a minimal normal subgroup of G. Hence G ∈ b(F).

If GF is non-abelian, CG(GF) = 1. Since A = GF × (C ∩ A) and B =
GF × (C ∩ B), it follows that A = B = GF. Then, by Results 6.5.35 and
6.5.41, A = B = G, and this contradicts our initial hypothesis.

Consequently if either G /∈ b(F) or GF is non-abelian, we have that i = j.
��

Result 6.5.40. GF ∈ F.
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Assume now that F is a saturated GWP-formation. Then F is a lattice
formation by Theorem 6.5.34 and, since F is saturated, it follows that F is a
K-lattice formation by Theorem 6.3.9.

Suppose that F is not a KW-formation. Then there exists a group G and
a pair (A,B) of K-F-subnormal subgroups of G such that G = 〈A,B〉 and
GF 	= 〈AF, BF〉. Let us take (A,B) satisfying |A| + |B| maximal. Then, as in
the above reductions, G enjoys the properties stated in Results 6.5.35, 6.5.36,
6.5.37, and 6.5.38. G also has the following property.

Result 6.5.44. GF ∈ F.

Proof. Consider the subgroup M = 〈A,BF〉. Suppose that M = G. Then
G = AGF. Since by Lemma 6.1.9 (1), AF is subnormal in G and GF is a
direct product of isomorphic simple groups by Result 6.5.38, it follows that
GF normalises AF and so AF is a normal subgroup of G. By Result 6.5.36,
we have that A ∈ F. By virtue of Lemma 6.3.8, it follows that A ≤ GF. If
GF ∩ GF 	= 1, then GF ∈ F and the result follows. Hence GF ∩ GF = 1 and
G = GF × GF. By Result 6.5.36, we have that Soc(G) ≤ GF. It implies that
GF = 1 and so A = 1 and G = B, giving a contradiction. Therefore we may
assume that M is a proper subgroup of G. The choice of G, Lemma 6.1.6 (1)
and Lemma 6.1.7 (2) imply that MF = 〈A,BF〉F = 〈AF, (BF)F〉.

Arguing in a similar way with B, we have 〈AF, B〉F = 〈(AF)F, BF〉. If either
A < 〈A,BF〉 or B < 〈AF, B〉, it follows that GF =

〈
〈A,BF〉F, 〈AF, B〉F

〉
=

〈AF, BF〉 by the choice of G (note that F is subgroup-closed). This contra-
diction yields A = 〈A, BF〉 and B = 〈AF, B〉. Then BF is contained in A
and AF is a normal subgroup of GF. Hence (A ∩GF)/AF is a K-F-subnormal
F-subgroup of GF/AF by Lemma 6.1.7 (2) and Lemma 6.1.6 (3). Applying
Lemma 6.3.8, (A ∩ GF)/AF is contained in (GF/AF)F. If AF 	= A ∩ GF, then
(GF/AF)F 	= 1 and GF ∈ F because GF is a direct product of simple groups.
Therefore we may assume AF = A ∩ GF. In this case, BF is contained in AF.
Arguing in a similar way with B, we conclude that AF is contained in BF.
Consequently AF = BF is a normal subgroup of G. By Result 6.5.36, A and
B are F-groups. By Lemma 6.3.8, G ∈ F and GF = 1. ��

This completes our preparations, and we can now deduce the main results.

Theorem 6.5.45. Let F be a saturated formation. Then:
F is a GWP-formation if and only if F is a KW-formation.

Proof. Only the necessity of the condition is in doubt. Assume that F is a
GWP-formation which is not a KW-formation. Then there exists a group G
and a pair (A,B) of K-F-subnormal subgroups of G such that G = 〈A,B〉 and
GF 	= 〈AF, BF〉. If |A| + |B| maximal, then GF ∈ F by Result 6.5.44. Then
SnF(G) = SnK-F(G) by Proposition 6.1.10. This contradiction yields that F is
a KW-formation. ��
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Our next main result provides a test for a subgroup-closed saturated lattice
formation to have the generalised Wielandt property for residuals in terms of
its boundary.

If F is a subgroup-closed Fitting formation, let bn(F) denote the class of
all groups G ∈ b(F) such that Soc(G) is not abelian and G has the properties
stated in Results 6.5.35–6.5.43.

Theorem 6.5.46. Let F be a subgroup-closed saturated lattice formation.
Then F is a GWP-formation if and only if the following condition is fulfilled
by all groups G ∈ bn(F):

If G = 〈A,B〉 with A and B F-subnormal subgroups of G, then GF =
〈AF, BF〉. (6.7)

Proof. It is clear that only the sufficiency of the condition is in doubt.
Assume that Property (6.7) holds. We suppose that F is not a GWP-

formation and derive a contradiction. Since W(F) is not empty, a group G of
minimal order in W(F) satisfies the properties stated in Results 6.5.35–6.5.43
for a pair of F-subnormal subgroups A and B of G with |A| + |B| maximal.

Applying Theorem 6.3.15, F = M × H, where M is a subgroup-closed
saturated Fitting formation such that Sπ(M)M = M and H = Xi∈I Sπi

, with
πl∩πk = ∅ for all k 	= l in I. Moreover π(M)∩π(H) = ∅. Since G /∈ bn(F), GF is
an elementary abelian p-group for some prime p by Results 6.5.38 and 6.5.42.
Therefore GF ∈ M or GF ∈ Sπi

for some i ∈ I. In addition, by Result 6.5.43,
G/GF ∈ M or G/GF ∈ Sπj for some j ∈ I. If GF ∈ M and G/GF ∈ M, then
p ∈ π(M) and G ∈ Sπ(M)M = M ⊆ F, contradicting G ∈ W(F). Assume now
that G/GF ∈ Sπj for some j ∈ I. Then GF is a Hall π(M)-subgroup of G and
there exists a Hall πj-subgroup C of G such that G = GFC and GF ∩ C = 1.
Then A/AF = GF/A × (C ∩ A)AF/AF. It follows that A normalises AFBF.
Analogously B normalises AFBF. Consequently AFBF = 1 and A and B are
F-groups. Since F is a lattice formation and A and B are F-subnormal in G,
we have that G ∈ F by Theorem 6.3.3 (3). It contradicts our supposition.
Suppose that GF ∈ Sπi

. If G/GF ∈ M or G/GF ∈ Sπj
for some j ∈ I, i 	= j,

we can argue as above and obtain a contradiction. Hence G/GF ∈ Sπi
and

so G ∈ Sπi ⊆ F, contradicting G ∈ W(F). It follows that our supposition is
wrong and hence F is a GWP-formation. ��

If F is a soluble subgroup-closed saturated lattice formation, then bn(F) =
∅. Moreover, if F is a soluble GWP-formation, then F is a subgroup-closed
Fitting formation by Lemma 6.5.33, and hence saturated by Theorem 2.5.2.
Therefore we have:

Corollary 6.5.47 (see [Kam96, BBPAPR96]). Let F be a soluble forma-
tion. Then F is a GWP-formation if and only if F is a subgroup-closed satur-
ated lattice formation.

Another interesting examples of GWP-formations follow from the following
result.
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Corollary 6.5.48 ([Kam96]). Let F be a saturated formation representable
as F = M×H, where π(M)∩π(H) = ∅, M = M2 is a subgroup-closed saturated
Fitting formation, H = Xi∈I Sπi

, and moreover πl ∩ πk = ∅ for all k 	= l in
I. Then F is a GWP-formation.

Proof. Applying Theorem 6.3.15, F is a subgroup-closed saturated lattice
formation. Hence, by Theorem 6.5.46, it is enough to check the property in
groups in bn(F) generated by two F-subnormal subgroups. Let G be one of
them. Then G ∈ b(F) and Soc(G) = GF is non-abelian. Moreover, by Res-
ult 6.5.43, GF ∈ M and G/GF ∈ M (note that H is a soluble formation). Hence
G ∈ M2 = M ⊆ F. This contradiction proves that F is a GWP-formation. ��

This completes our discussion about GWP-formations. We can turn this
situation on its head and ask the following.

Let F be a subgroup-closed formation and let G be a group generated
by two F-subnormal subgroups A and B of G. When do we have
GF = 〈AF, BF〉?
The question is answered in [BBEPA02] for subgroup-closed saturated

formations. It is proved there that if G is a group whose derived subgroup is
nilpotent, then GF = 〈AF, BF〉 provided that A and B are F-subnormal in
G = 〈A,B〉. Furthermore the class NA of all groups whose derived subgroup is
nilpotent is characterised as the largest subgroup-closed saturated formation
enjoying that property.

Let F be a GWP-formation. Then F has the following property:

If A and B are K-F-subnormal (F-subnormal) subgroups of a group
G and G = AB, then GF = AFBF. (6.8)

In general, Property 6.8 does not characterise the GWP-formations as the
class of all 2-nilpotent groups shows. Hence the question of how one subgroup-
closed formation satisfying Property 6.8 can be characterised arises. This ques-
tion is closely related to the characterisation of the subgroup-closed formations
satisfying Property 6.1.

The above question has a nice answer in the soluble universe for subgroup-
closed saturated formations of full characteristic.

Theorem 6.5.49 ([BBPAPR96]). Let F be a subgroup-closed saturated
formation of soluble groups of full characteristic. The following statements
are pairwise equivalent:

1. F satisfies the property:
If A and B are two F-subnormal subgroups of a soluble group G
and G = AB, then GF = AFBF.

2. For each prime number p, there exists a set of primes π(p) with p ∈ π(p)
such that F is locally defined by the formation function f given by f(p) =
Sπ(p).
These sets of primes satisfy the following property:
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If q ∈ π(p), then π(q) ⊆ π(p) for every pair of primes p and q.

Let F be a subgroup-closed saturated formation of full characteristic sat-
isfying the conditions of the above theorem. Then a soluble group G is an
F-group if and only if G has a normal π(p)-complement for every prime p,
where π(p) is the set of primes such that p ∈ π(p).




