
1

Maximal subgroups and chief factors

1.1 Primitive groups

This book, devoted to classes of finite groups, begins with the study of a class,
the class of primitive groups, with no hereditary properties, the usual require-
ment for a class of groups, but whose importance is overwhelming to under-
stand the remainder. We shall present the classification of primitive groups
made by R. Baer and the refinement of this classification known as the O’Nan-
Scott Theorem. The book of H. Kurzweil and B. Stellmacher [KS04], recently
appeared, presents an elegant proof of this theorem. Our approach includes
the results of F. Gross and L. G. Kovács on induced extensions ([GK84])
which are essential in some parts of this book.

We will assume our reader to be familiar with the basic concepts of per-
mutation representations: G-sets, orbits, faithful representation, stabilisers,
transitivity, the Orbit-Stabiliser Theorem, . . . (see [DH92, A, 5]). In partic-
ular we recall that the stabilisers of the elements of a transitive G-set are
conjugate subgroups of G and any transitive G-set Ω is isomorphic to the
G-set of right cosets of the stabiliser of an element of Ω in G.

Definition 1.1.1. Let G be a group and Ω a transitive G-set. A subset Φ ⊆ Ω
is said to be a block if, for every g ∈ G, we have that Φg = Φ or Φg ∩ Φ = ∅.

Given a G-set Ω, trivial examples of blocks are ∅, Ω and any subset with
a single element {ω}, for any ω ∈ Ω. In fact, these are called trivial blocks.

Proposition 1.1.2. Let G be a group which acts transitively on a set Ω and
ω ∈ Ω. There exists a bijection

{block Φ of Ω : ω ∈ Φ} −→ {H ≤ G : Gω ≤ H}

which preserves the containments.
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Proof. Given a block Φ in Ω such that ω ∈ Φ, then GΦ = {g ∈ G : Φg = Φ} is
a subgroup of G and the stabiliser Gω is a subgroup of GΦ. Conversely, if H
is a subgroup of G containing Gω, then the set Φ = {ωh : h ∈ H} is a block
and ω ∈ Φ. These are the mutually inverse bijections required. ��

The following result is well-known and its proof appears, for instance, in
Huppert’s book [Hup67, II, 1.2].

Theorem 1.1.3. Let G be a group which acts transitively on a set Ω and
assume that Φ is a non-trivial block of the action of G on Ω. Set H = {g ∈
G : Φg = Φ}. Then H is a subgroup of G.

Let T be a right transversal of H in G. Then

1. {Φt : t ∈ T } is a partition of Ω.
2. We have that |Ω| = |T ||Φ|. In particular |Φ| divides |Ω|.
3. The subgroup H acts transitively on Φ.

Notation 1.1.4. If H is a subgroup of a group G, the core of H in G is the
subgroup

CoreG(H) =
⋂

g∈G

Hg.

Along this chapter, in order to make the notation more compact, the core of
a subgroup H in a group G will often be denoted by HG instead of CoreG(H).

Theorem 1.1.5. Let G be a group. The following conditions are equivalent:

1. G possesses a faithful transitive permutation representation with no non-
trivial blocks;

2. there exists a core-free maximal subgroup of G.

Proof. 1 implies 2. Suppose that there exists a transitive G-set Ω with no
non-trivial blocks and consider any ω ∈ Ω. The action of G on Ω is equivalent
to the action of G on the set of right cosets of Gω in G. The kernel of this
action is CoreG(Gω) and, by hypothesis, is trivial. By Proposition 1.1.2, if H
is a subgroup containing Gω, there exists a block Φ = {ωh : h ∈ H} of Ω such
that ω ∈ Φ and H = GΦ = {g ∈ G : Φg = Φ}. Since G has no non-trivial
blocks, either Φ = {ω} or Φ = Ω. If Φ = {ω}, then Gω = H and if Φ = Ω,
then H = GΩ = G. Hence the stabiliser Gω is a core-free maximal subgroup
of G.

2 implies 1. If U is a core-free maximal subgroup of G, then the action of G
on the set of right cosets of U in G is faithful and transitive. By maximality
of U , this action has no non-trivial blocks by Proposition 1.1.2. ��

Definitions 1.1.6. A a faithful transitive permutation representation of a
group is said to be primitive if it does not have non-trivial blocks.

A primitive group is a group which possesses a primitive permutation rep-
resentation. Equivalently, a group is primitive if it possesses a core-free
maximal subgroup.
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A primitive pair is a pair (G,U), where G is a primitive group and U a
core-free maximal subgroup of G,

Each conjugacy class of core-free maximal subgroups affords a faithful
transitive and primitive permutation representation of the group. Thus, in
general, it is more precise to speak of primitive pairs. Consider, for instance,
the alternating group of degree 5, G = Alt(5). There exist three conjugacy
classes of maximal subgroups, namely the normalisers of each type of Sylow
subgroup. Obviously all of them are core-free. This gives three non-equivalent
primitive representations of degrees 5 (for the normalisers of the Sylow 2-
subgroups), 10 (for the normalisers of the Sylow 3-subgroups) and 6 (for the
normalisers of the Sylow 5-subgroups).

The remarkable result that follows, due to R. Baer, classifies all primitive
groups (a property defined in terms of maximal subgroups) according to the
structure of the socle, i.e. the product of all minimal normal subgroups.

Theorem 1.1.7 ([Bae57]).

1. A group G is primitive if and only if there exists a subgroup M of G such
that G = MN for all minimal normal subgroups N of G.

2. Let G be a primitive group. Assume that U is a core-free maximal subgroup
of G and that N is a non-trivial normal subgroup of G. Write C = CG(N).
Then C ∩ U = 1. Moreover, either C = 1 or C is a minimal normal
subgroup of G.

3. If G is a primitive group and U is a core-free maximal subgroup of G,
then exactly one of the following statements holds:
a) Soc(G) = S is a self-centralising abelian minimal normal subgroup

of G which is complemented by U : G = US and U ∩ S = 1.
b) Soc(G) = S is a non-abelian minimal normal subgroup of G which is

supplemented by U : G = US. In this case CG(S) = 1.
c) Soc(G) = A×B, where A and B are the two unique minimal normal

subgroups of G and both are complemented by U : G = AU = BU and
A ∩ U = B ∩ U = A ∩ B = 1. In this case A = CG(B), B = CG(A),
and A, B and AB ∩ U are non-abelian isomorphic groups.

Proof.
of G, then it is clear that G = UN for every minimal normal subgroup N
of G. Conversely, if there exists a subgroup M of G, such that G = MN for
every minimal normal subgroup N of G and U is a maximal subgroup of G
such that M ≤ U , then U cannot contain any minimal normal subgroup of G,
and therefore U is a core-free maximal subgroup of G.

2. Since U is core-free in G, we have that G = UN . Since N is normal,
then C is normal in G and then C ∩U is normal in U . Since C ∩U centralises
N , then C ∩ U is in fact normal in G. Therefore C ∩ U = 1.

If C 	= 1, consider a minimal normal subgroup X of G such that X ≤ C.
X.

1. If G is a primitive group, and U is a core-free maximal subgroup

Since X is not contained in U , then G = XU . Then C = C∩XU = X(C∩U) =
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3. Let us assume that N1, N2, and N3 are three pairwise distinct minimal
normal subgroups. Since N1 ∩ N2 = N1 ∩ N3 = N2 ∩ N3 = 1, we have that
N2×N3 ≤ CG(N1). But then CG(N1) is not a minimal normal subgroup of G,
and this contradicts 2. Hence, in a primitive group there exist at most two
distinct minimal normal subgroups.

Suppose that N is a non-trivial abelian normal subgroup of G. Then N ≤
CG(N). Since by 2, CG(N) is a minimal normal subgroup of G, we have that
N is self-centralising. Thus, in a primitive group G there exists at most one
abelian minimal normal subgroup N of G. Moreover, G = NU and N is
self-centralising. Then N ∩ U = CG(N) ∩ U = 1.

If there exists a unique minimal non-abelian normal subgroup N , then
G = NU and CG(N) = 1.

If there exist two minimal normal subgroups A and B, then A ∩ B = 1
and then B ≤ CG(A) and A ≤ CG(B). Since CG(A) and CG(B) are minimal
normal subgroups, we have that B = CG(A) and A = CG(B). Now A ∩ U =
CG(B) ∩ U = 1 and B ∩ U = CG(A) ∩ U = 1. Hence G = AU = BU .

Since A = CG(B), it follows that B is non-abelian. Analogously we have
that A is non-abelian.

By the Dedekind law [DH92, I, 1.3], we have A(AB∩U) = AB = B(AB∩
U). Hence A ∼= A/(A∩B) ∼= AB/B ∼= B(AB∩U)/B = AB∩U . Analogously
B ∼= AB ∩ U . ��

Baer’s theorem enables us to classify the primitive groups as three different
types.

Definition 1.1.8. A primitive group G is said to be

1. a primitive group of type 1 if G has an abelian minimal normal subgroup,
2. a primitive group of type 2 if G has a unique non-abelian minimal normal

subgroup,
3. a primitive group of type 3 if G has two distinct non-abelian minimal

normal subgroups.

We say that G is a monolithic primitive group if G is a primitive group of
type 1 or 2.

Definition 1.1.9. Let U be a maximal subgroup of a group G. Then U/UG is
a core-free maximal subgroup of the quotient group G/UG. Then U is said to
be

1. a maximal subgroup of type 1 if G/UG is a primitive group of type 1,
2. a maximal subgroup of type 2 if G/UG is a primitive group of type 2,
3. a maximal subgroup of type 3 if G/UG is a primitive group of type 3.

We say that U is a monolithic maximal subgroup if G/UG is a monolithic
primitive group.
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Obviously all primitive soluble groups are of type 1. For these groups, there
exists a well-known description called Galois’ theorem. The proof appears in
Huppert’s book [Hup67, II, 3.2 and 3.3].

Theorem 1.1.10. 1. (Galois) If G is a soluble primitive group, then all core-
free maximal subgroups are conjugate.

2. If N is a self-centralising minimal normal subgroup of a soluble group G,
then G is primitive, N is complemented in G, and all complements are
conjugate.

Remarks 1.1.11. 1.
is p-soluble for all primes dividing the order of Soc(G).

2. If G is a primitive group of type 1, then its minimal normal subgroup
N is an elementary abelian p-subgroup for some prime p. Hence, N is a vector
space over the field GF(p). Put dimN = n, i.e. |N | = pn. If M is a core-free
subgroup of G, then M is isomorphic to a subgroup of Aut(N) = GL(n, p).
Therefore G can be embedded in the affine group AGL(n, p) = [Cn

p ] GL(n, p)
in such a way that N is the translation group and G∩GL(n, p) acts irreducibly
on N . Thus, clearly, primitive groups of type 1 are not always soluble.

3. In his book B. Huppert shows that the affine group AGL(3, 2) = [C2 ×
C2 × C2] GL(3, 2) is an example of a primitive group of type 1 with non-
conjugate core-free maximal subgroups (see [Hup67, page 161]).

4. Let G be a primitive group of type 2. If N is the minimal normal
subgroup of G, then N is a direct product of copies of some non-abelian simple
group and, in particular, the order of N has more than two prime divisors. If p
is a prime dividing the order of N and P ∈ Sylp(N), then G = NG(P )N by the
Frattini argument. Since P is a proper subgroup of N , then NG(P ) is a proper
subgroup of G. If U is a maximal subgroup of G such that NG(P ) ≤ U , then
necessarily U is core-free. Observe that if P0 ∈ Sylp(G) such that P ≤ P0,
then P = P0 ∩ N is normal in P0 and so P0 ≤ U . In other words, U has
p′-index in G. This argument can be done for each prime dividing |N |. Hence,
the set of all core-free maximal subgroups of a primitive group of type 2 is
not a conjugacy class.

5. In non-soluble groups, part 2 of Theorem 1.1.10 does not hold in general.
Let G be a non-abelian simple group, p a prime dividing |G| and P ∈ Sylp(G).
Suppose that P is cyclic. Let GΦ,p be the maximal Frattini extension of G with
p-elementary abelian kernel A = Ap(G) (see [DH 92; Appendix β] for details
of this construction). Write J = J(KG) for the Jacobson radical of the group
algebra KG of G, over the field K = GF(p). Then the section N = A/AJ
is irreducible and CG(N) = Op′,p(G) = 1. Consequently GΦ,p/AJ is a group
with a unique minimal normal subgroup, isomorphic to N , self-centralising
and non-supplemented.

In primitive groups of type 1 or 3, the core-free maximal subgroups com-
plement each minimal subgroup. This characterises these types of primitive
groups. In case of primitive groups of type 2 we will see later that the minimal

The statement of Theorem 1.1.10 (1) is also valid if G
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normal subgroup could be complemented by some core-free maximal subgroup
in some cases; but even then, there are always core-free maximal subgroups
supplementing and not complementing the socle.

Proposition 1.1.12 ([Laf84a]). For a group G, the following are pairwise
equivalent:

1. G is a primitive group of type 1 or 3;
2. there exists a minimal normal subgroup N of G complemented by a sub-

group M which also complements CG(N);
3. there exists a minimal normal subgroup N of G such that G is isomorphic

to the semidirect product X = [N ]
(
G/ CG(N)

)
.

Proof. Clearly 1 implies 2. For 2 implies 1 observe that, since N ∩ MG = 1,
then MG ≤ CG(N). But, since also MG ∩ CG(N) = 1, we have that MG =
1. Suppose that S is a proper subgroup of G such that M ≤ S. Then the
subgroup S ∩ N is normal in S and is centralised by CG(N). Hence S ∩ N is
normal in S CG(N) = G. By minimality of N , we have that S ∩ N = 1 and
then S = M . Then M is a core-free maximal subgroup of G and the group G
is primitive. Observe that the minimal normal subgroup of a primitive group
of type 2 has trivial centraliser.

2 implies 3. Observe that G = NM , with N∩M = 1, and M ∼= G/ CG(N).
The map α : G −→ [N ]

(
G/ CG(N)

)
given by (nm)α =

(
n, m CG(N)

)
is the

desired isomorphism.
3 implies 2. Write C = CG(N). Assume that there exists an isomorphism

α : [N ](G/C) −→ G

and consider the following subgroups N∗ =
(
{(n,C) : n ∈ N}

)α, M∗ =(
{(1, gC) : g ∈ G}

)α, and C∗ =
(
{(n, gC) : ng ∈ C}

)α. For each n ∈ N ,
the element (n−1, nC)α is a non-trivial element of C∗. Hence C∗ 	= 1. It is
an easy calculation to show that N∗ is a minimal normal subgroup of G,
C∗ = CG(N∗) and M∗ complements N∗ and C∗. ��

Corollary 1.1.13. The following conditions for a group G are equivalent:

1. G is a primitive group of type 3.
1 2

such that
a) N1 and N2 have a common complement in G;
b) the quotient groups G/Ni, for i = 1, 2, are primitive groups of type 2.

Proof. 1 implies 2. By Theorem 1, if G is a primitive group of type 3, then G
possesses two distinct minimal normal subgroups N1, N2 which have a com-
mon complement M in G. Observe that M ∼= G/N1 and N2N1/N1 is a minimal
normal subgroup of G/N1. If gN1 ∈ CG/N1(N2N1/N1), then [n, g] ∈ N1, for all
n ∈ N2. But then [n, g] ∈ N1∩N2 = 1, and therefore g ∈ CG(N2) = N1. Hence

2.The group G possesses two distinct minimal normal subgroups N , N ,
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CG/N1(N2N1/N1) = 1. Consequently G/N1 is a primitive group of type 2 and
therefore so are M and G/N2.

2 implies 1. Let M be a common complement of N1 and N2. Then
G/Ni

∼= M is a primitive group of type 2 such that Soc(G/Ni) = N1N2/Ni

and CG(N1N2/Ni) = Ni. Therefore CG(N2) = N1 and CG(N1) = N2. By
Proposition 1.1.12, this means that G is a primitive group of type 3. ��

Proposition 1.1.14 ([Laf84a]). For a group G, the following statements are
pairwise equivalent.

1. G is a primitive group of type 2.
2. G possesses a minimal normal subgroup N such that CG(N) = 1.
3. There exists a primitive group X of type 3 such that G ∼= X/A for a

minimal normal subgroup A of X.

Proof. 3 implies 2 is Corollary 1.1.13 and 2 implies 1 is the characterisation
of primitive groups of type 2 in Theorem 1. Thus it only remains to prove
that 1 implies 3. If G is a primitive group of type 2 and N is the unique
minimal normal subgroup of G, then N is non-abelian and CG(N) = 1. By
Proposition 1.1.12, the semidirect product X = [N ]G is a primitive group of
type 3. Clearly if A = {(n, 1) : n ∈ N}, then X/A ∼= G. ��

Consequently, if M is a core-free maximal subgroup of a primitive group
G of type 3, then M is a primitive group of type 2 and Soc(M) is isomorphic
to a minimal normal subgroup of G.

According to Baer’s Theorem, the socle of a primitive group of type 2 is
a non-abelian minimal normal subgroup and therefore is a direct product of
copies of a non-abelian simple group (see [Hup67, I, 9.12]). Obviously, the
simplest examples of primitive groups of type 2 are the non-abelian simple
groups. Observe that if S is a non-abelian simple group, then Z(S) = 1 and
we can identify S and the group of inner automorphisms Inn(S) and write
S ≤ Aut(S). Since CAut(S)(S) = 1, any group G such that S ≤ G ≤ Aut(S)
is a primitive group of type 2 such that Soc(G) is a non-abelian simple group.
Conversely, if G is a primitive group of type 2 and S = Soc(G) is a simple
group, then, since CG(S) = 1, we can embed G in Aut(S).

Definition 1.1.15. An almost simple group G is a subgroup of Aut(S) for
some simple group S, such that S ≤ G.

If G is an almost simple group and S ≤ G ≤ Aut(S), for a non-abelian
simple group S, then CG(S) = 1. Hence G possesses a unique minimal normal
subgroup S and every maximal subgroup U of G such that S 	≤ U is core-free
in G.

Proposition 1.1.16. Suppose that S is a non-abelian simple group and let
G be an almost simple group such that S ≤ G ≤ Aut(S). If U is a core-free
maximal subgroup of G, then U ∩ S 	= 1.
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Proof. Recall Schreier’s conjecture ([KS04, page 151]) which states that the
group of outer automorphisms Out(S) = Aut(S)/ Inn(S) of a non-abelian

Suppose that U ∩S = 1. We know that U ∼= US/S ≤ Aut(S)/ Inn(S) and,
by Schreier’s conjecture ([KS04, page 151]) we deduce that U is soluble. Let Q
be a minimal normal subgroup of U . Then Q is an elementary abelian q-group
for some prime q. Observe that CG(Q) is normalised by U . Therefore CS(Q)
is normalised by U and then U CS(Q) is a subgroup of G. Since U is maximal
in G and CG(S) = 1, then CS(Q) = 1. The q-group Q acts fixed-point-freely
on S and then S is a q′-group. By the Odd Order Theorem ([FT63]), we have
that q 	= 2. Now Q acts by conjugation on the elements of the set Syl2(S) and
by the Orbit-Stabiliser Theorem ([DH92, A, 5.2]) we deduce that Q normalises
some P ∈ Syl2(S). If P and P x−1

, for x ∈ S, are two Sylow 2-subgroups of
S which are normalised by Q, then Q, Qx ∈ Sylq

(
NQS(P )

)
and there exists

an element g ∈ NQS(P ), such that Qg = Qx. Write g = yz, with y ∈ Q
and z ∈ S. Then Qx = Qz with z ∈ NS(P ). Hence [Q, xz−1] ≤ Q ∩ S = 1
and xz−1 ∈ CS(Q) = 1. Therefore x = z ∈ NS(P ) and we conclude that Q
normalises exactly one Sylow 2-subgroup P of S. Hence NG(Q) ≤ NG(P ).
But U = NG(Q), by maximality of U . The subgroup UP is a proper subgroup
of G which contains properly the maximal subgroup U . This is a contradiction.
Hence U ∩ S 	= 1. ��

For our purposes, it will be necessary to embed the primitive group G in
a larger group. Suppose that Soc(G) = S1 × · · · × Sn, where the Si are copies
of a non-abelian simple group S, i.e. Soc(G) ∼= Sn, the direct product of n
copies of S. Since CG

(
Soc(G)

)
= 1, the group G can be embedded in Aut(Sn).

The automorphism group of a direct product of copies of a non-abelian simple
group has a well-known structure: it is a wreath product.

Thus, the study of some relevant types of subgroups of groups which are
wreath products and the analysis of some special types of subgroups of a
direct product of isomorphic non-abelian simple groups will be essential.

Definition 1.1.17. Let X and H be two groups and suppose that H has a
permutation representation ϕ on a finite set I = {1, . . . , n} of n elements.
The wreath product X �ϕ H (or simply X � H if the action is well-known) is
the semidirect product [X�]H, where X� is the direct product of n copies of
X: X� = X1 × · · · × Xn, with Xi = X for all i ∈ I, and the action is

(x1, . . . , xn)h = (x1(h−1)ϕ , . . . , xn(h−1)ϕ ) (1.1)

for h ∈ H and xi ∈ X, for all i ∈ I.
The subgroup X� is called the base group of X � H.

Remarks 1.1.18. Consider a wreath product G = X �ϕ H.
1. If ϕ is faithful, then CG(X�) ≤ X�.

simple group S is always soluble. The classification of simple groups has
allowed us to check that this conjecture is true.
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2. For any g ∈ G, then g = xh, with x ∈ X� and h ∈ H. For each
i = 1, . . . , n, we have that Xg

i = Xh
i = Xihϕ .

3. Thus, the group G acts on I by the following rule: if i ∈ I, for any
g = xh ∈ G, with x ∈ X� and h ∈ H, then ig = ih

ϕ

. In particular ih = ih
ϕ

, if
h ∈ H.

4. If S ⊆ I, then write

πS : X� −→
∏
j∈S

Xj

for the projection of X� onto
∏

j∈S Xj . Then for any y ∈ X� and any g ∈ G,
we have that

(yg)πSg = (yπS )g.

Proposition 1.1.19. Let S be a non-abelian simple group and write Sn =
S1 × · · · × Sn for the direct product of n copies S1, . . . , Sn of S, for some
positive integer n. Then the minimal normal subgroups of Sn are exactly the
Si, for any i = 1, . . . , n,

Proof. Let N be a minimal normal subgroup of Sn. Suppose that N ∩ Si = 1
for all i = 1, . . . , n. Then N centralises all Si and hence N ≤ Z(Sn) = 1. This
is a contradiction. Therefore N ∩ Si = N for some index i. Then N = Si. ��

Proposition 1.1.20. Let S be a non-abelian simple group and write Sn =
S1 × · · · × Sn for the direct product of n copies S1, . . . , Sn of S, for some
positive integer n. Then Aut(Sn) ∼= Aut(S) � Sym(n), where Sym(n) is the
symmetric group of degree n.

Proof. If σ is a permutation in Sym(n), the map ασ defined by

(x1, . . . , xn)ασ = (x1σ−1 , . . . , xnσ−1 )

n) associated with σ. Now H = {ασ ∈ Aut(Sn :
σ ∈ Sym(n)} is a subgroup of Aut(Sn) and σ �−→ ασ defines an isomorphism
between Sym(n) and H. By Proposition 1.1.19, the minimal normal subgroups
of the direct product S1 × · · · × Sn are exactly the S1, . . . , Sn. Therefore, if
γ ∈ Aut(Sn), then there exists a σ ∈ Sym(n) such that Sγ

i = Siσ = Sασ
i , for

all i = 1, . . . , n.
Let D be the subgroup of all elements β in Aut(Sn) such that Sβ

i = Si

for all i. The maps β1, . . . , βn defined by (x1, . . . , xn)β = (xβ1
1 , . . . , xβn

n ) are
automorphisms of S and the map β �→ (β1, . . . , βn) defines an isomorphism
between D and Aut(S)n. Moreover, by Proposition 1.1.19 again, if β ∈ D and
γ ∈ Aut(Sn), then (Sγ

i )β = Sγ
i . This means that D is a normal subgroup of

Aut(Sn).
Observe that ασ ∈ D if and only if σ = 1, or, in other words, D ∩ H = 1.

Moreover for all γ ∈ Aut(Sn), we have that γα−1
σ ∈ D. Therefore Aut(Sn) =

[D]H. This allows us to define a bijective map between Aut(Sn) and Aut(S) �
Sym(n) which is an isomorphism. ��

)is an element of Aut(S
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F. Gross and L. G. Kovács published in [GK84] a construction of groups,
the so-called induced extensions, which is crucial to understand the structure
of a, non-necessarily finite, group that possesses a normal subgroup which is a
direct product of copies of a group. It is clear that primitive groups of type 2
are examples of this situation. We present in the sequel an adaptation of this
construction to finite groups.

Z

g

��

X
f

�� Y

(1.2)

where g is a monomorphism. Let G be the following subset of X:

G = {x ∈ X : xf = zg for some z ∈ Z},

and the following mapping

h : G −→ Z xh = xfg−1
for every x ∈ G.

Then G is a subgroup of X and h is a well-defined group homomorphism such
that the following diagram of groups and group homomorphisms is commut-
ative:

G

ι

��

h �� Z

g

��

X
f

�� Y

(where ι is the canonical inclusion of G in X). Moreover Ker(hι) = Ker(f).
Further, if (G0, ι0, h0) is a triple, with G0 a group, ι0 : G0 −→ X a mono-

morphism and h0 : G0 −→ Z is a group homomorphism, such that the diagram

G0
h0 ��

ι0

��

Z

g

��

X
f

�� Y

is commutative, then there exists a monomorphism Φ : G0 −→ G, such that
Φh = h0, Φι = ι0 and

(
Ker(h0)

)Φ ≤
(
Ker(h)

)ι = Ker(f).

Proof. It is an easy exercise to prove that G is a subgroup of X and, since g
is a monomorphism, the mapping h is a well-defined group homomorphism.
It is not difficult to see that Ker(h)ι = Ker(f).

For the second statement, let x ∈ G0 and observe that xh0 is an element
of Z such that (xh0)g = (xι0)f , and then xι0 ∈ G and (xι0)h = xh0 . Write
Φ : G0 −→ G such that xΦ = xι0 . ��

Proposition 1.1.21. Consider the following diagram of groups and group
homomorphisms:



1.1 Primitive groups 11

Definition 1.1.22. The triple (G, ι, h) introduced in Proposition 1.1.21 is
said to be the pull-back of the diagram (1.2).

Proposition 1.1.23. Consider the following extension of groups:

1 ��K ��X
f

��Y ��1

and a monomorphism g : Z −→ Y . Consider the triple (G, ι, h), the pull-back
of the diagram (1.2).

1. There exists an extension

Eg : 1 ��K ��G
h ��Z ��1

such that the following diagram of groups and group homomorphisms is
commutative:

Eg : 1 �� K ��

id

��

G
h ��

ι

��

Z ��

g

��

1

E : 1 �� K �� X
f

�� Y �� 1

2. Moreover, if

E0 : 1 ��K ��G0
h0 ��Z ��1

is another extension such that the diagram

E0 : 1 �� K ��

id

��

G0
h0 ��

ι0

��

Z ��

g

��

1

E : 1 �� K �� X
f

�� Y �� 1

is commutative, there exists a group isomorphism Φ : G0 −→ G such that
Φh = h0, Φι = ι0 and Φ|K = idK .

Proof. The proof of 1 is a direct exercise. To see 2, first notice that, by
the Short Five Lemma ([Hun80, IV, 1.17]), the homomorphism ι0 is a
monomorphism. By Proposition 1.1.21, there exists a group monomorphism
Φ : G0 −→ G such that Φh = h0, Φι = ι0 and Φ|K = idK . Furthermore, since
|G| = |Z|/|K| = |G0|, we have that Φ is an isomorphism. ��

Definition 1.1.24. The extension Eg is said to be the pull-back extension of
the extension E and the monomorphism g.

Hypotheses 1.1.25. Let B be a group. Assume that C a subgroup of a group
B such that |B : C| = n and let T = {t1 = 1, . . . , tn} be a right transversal
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of C in B. Then B, acting by right multiplication on the set of right cosets
of C in B, induces a transitive action ρ : B −→ Sym(n) on the set of indices
I = {1, . . . , n} in the following way. For each i ∈ I and each h ∈ B, the
element tih belongs to some coset Ctj, i.e. tih = ci,htj, for some ci,h ∈ C.
Then ih

ρ

= j. Write P = Bρ ≤ Sym(n).
Let α : A −→ B be a group homomorphism and write C = Aα and S =

Ker(α). Write W = A�ρP . There exists an induced epimorphism ᾱ : A�ρP −→
C �ρ P defined by

(
(a1, . . . , an)x

)ᾱ = (aα
1 , . . . , aα

n)x, for a1, . . . , an ∈ A and
x ∈ P . Write M = Ker(ᾱ). Observe that (a1, . . . , an)x ∈ M if and only
if aα

j = 1, for all j ∈ I and x = 1. This is to say that M = Ker(ᾱ) =
Ker(α) × . . . × Ker(α) = S1 × . . . × Sn. We have the exact sequence:

E : 1 ��M ��A �ρ P
ᾱ ��C �ρ P ��1

Lemma 1.1.26. Assume the hypotheses and notation of Hypotheses 1.1.25.

1. The mapping λ = λT : B −→ C �ρ P such that hλ = (c1,h, . . . , cn,h)hρ, for
any h ∈ B, is a group monomorphism.

2. Consider the pull-back exact sequence Eλ:

Eλ : 1 �� M ��

id

��

G
σ ��

��

B ��

λ

��

1

E : 1 �� M �� A �ρ P
ᾱ �� C �ρ P �� 1

Then, the isomorphism class of the group G is independent from the choice
of transversal of C in B.

Proof. 1. Let h, h′ ∈ B. Observe that

ci,hh′ti(hh′)ρ = tihh′ = ci,htihρ h′ = ci,hcihρ
,h′ti(hh′)ρ .

Hence, by (1.1) in Definition 1.1.17, we have that

hλh′λ = (c1,h, . . . , cn,h)hρ(c1,h′ , . . . , cn,h′)h′ρ

= (c1,h, . . . , cn,h)(c1,h′ , . . . , cn,h′)(h
ρ)−1

(hh′)ρ

= (c1,h, . . . , cn,h)(c1hρ
,h′ , . . . , cnhρ

,h′)(hh′)ρ

= (c1,hh′ , . . . , cn,hh′)(hh′)ρ = (hh′)λ

and λ is a group homomorphism.
Suppose that hλ = h′λ. Then (c1,h, . . . , cn,h)hρ = (c1,h′ , . . . , cn,h′)h′ρ and

therefore, since C �ρ Pn = [Cn]Pn is a semidirect product, we have that

cj,h = cj,h′ = cj , j ∈ I; hρ = h′ρ = τ.

Therefore, for any index j ∈ I, we have that tjh = cjtjτ = tjh
′ and then

h = t−1
j cjtjτ = h′. Hence λ is a group monomorphism.
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2. Let T ′ = {t′1, . . . , t′n} be some other right transversal of C in B such
that Ct′i = Cti, for each i ∈ I: there exist elements b1, . . . , bn ∈ C such that
t′i = biti, for i = 1, . . . , n. For each i ∈ I and each h ∈ B, the element t′ih
belongs to the coset Ct′j = Ctj , for ih

ρ

= j, and t′ih = c′i,ht′j , for some c′i,h ∈ C.
Then

t′ih = bitih = bici,htj = c′i,ht′j = c′i,hbjtj and ci,h = b−1
i c′i,hbj

and it appears the element (b1, . . . , bn) ∈ C� associated with T ′. Then, for
λ′ = λT ′ , we have that

hλ = (c1,h, . . . , cn,h)hρ =
(
(b1, . . . , bn)−1(c′1,h, . . . , c′n,h)(b1hρ , . . . , bnhρ )

)
hρ

=
(
(b1, . . . , bn)−1(c′1,h, . . . , c′n,h)(b1, . . . , bn)(h

−1)ρ)
hρ

= (b1, . . . , bn)−1(c′1,h, . . . , c′n,h)hρ(b1, . . . , bn)

=
(
(c′1,h, . . . , c′n,h)hρ

)(b1,...,bn) = (hλ′
)(b1,...,bn),

for any h ∈ B, and then
(
Im(λ′)

)(b1,...,bn) = Im(λ). For each i ∈ I, let ai be an
element of A such that aα

i = bi. This is to say that (a1, . . . , an)ᾱ = (b1, . . . , bn).
If x ∈ G, then

(x(a1,...,an))ᾱ = (xᾱ)(b1,...,bn) = (hλ)(b1,...,bn) = hλ′

and then x(a1,...,an) ∈ G∗ = {w ∈ W : wᾱ = hλ′
for some h ∈ B}, which is

the pull-back defined with the monomorphism λ′:

Eλ′ : 1 �� M ��

id

��

G∗ σ′
��

��

B ��

λ′

��

1

E : 1 �� M �� A �ρ P
ᾱ �� C �ρ P �� 1

Thus, G∗ = Ga for some a ∈ A� associated with the transversals T and
T ′, i.e. the pull-back groups constructed from two different transversals are
conjugate in W . In other words, the isomorphism class of the group G is
independent from the choice of transversal. ��

Definition 1.1.27 ([GK84]). In the above situation and with that notation,
we will say that Eλ is the induced extension defined by α : A −→ B.

Recall that G is a subgroup of W = A �ρ P defined by:

G = {x ∈ W : xᾱ = hλ, for some h ∈ B}

and σ is defined by σ = ᾱ|Gλ−1.
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1. NG(A1) = NG(S1) = NG(S2 × · · · × Sn) = N = {x ∈ W : xᾱ = hλ, for
some h ∈ C}.

2. N/(S2 × · · · × Sn) ∼= A. Moreover, the image of M/(S2 × · · · × Sn) under
this isomorphism is S = Ker(α).

3. In particular Nσ = C and |G : N | = |B : C| = n. Thus, if ρ′ : G −→
Sym(n) is the action of G on the right cosets of N in G by multiplication,
then ρ′ = σρ.

4. The set {S1, . . . , Sn} is the conjugacy class of the subgroup S1 in G.

Proof. 1. We can consider the subgroup

N = {w ∈ W : wᾱ = hλ, for some h ∈ C}.
Observe that if (a1, . . . , an)x ∈ N , for ai ∈ A and x ∈ P , then there exists

h ∈ C, such that

hλ = (c1,h, . . . , cn,h)hρ = (aα
1 , . . . , aα

n)x.

Since h ∈ C, it is clear that c1,h = h and hρ belongs to the stabiliser P1 of 1.
In other words

N ≤ A1 × (A2 × · · · × An)P1 = NW (A1) = NW (S1) = NW (S2 × · · · × Sn)

and hence N ≤ NG(A1). Conversely, if (a1, . . . , an)x ∈ NG(A1), then x ∈ P1

and there exists h ∈ B such that aα
i = ci,h and x = hρ ∈ P1, i.e. 1hρ

= 1.
Hence h = t1h = c1,ht1 = c1,h = aα

1 ∈ C. Then NG(A1) ≤ N . Hence N =
NG(A1) = NG(S1).

2. Consider the projection e1 : A1 × (A2 × · · · × An)P1 = NW (A1) −→ A
on the first component. Obviously, Ker(e1) = (A2 × · · · × An)P1.

Let e be the restriction to N of the projection e1:

e = e1|N : N −→ A.

Observe that if x ∈ N , then xᾱ = cλ for some c ∈ C. We can characterise
this c = xσ in the following way. Assume that x = (a1, . . . , an)y. Then xᾱ =
(aα

1 , . . . , aα
n)y = cλ = (c, c2,c, . . . , cn,c)cρ. Hence c = aα

1 = xeα.
We have that Ker(e) = Ker(e1)∩N . If x ∈ Ker(e), then xᾱ = (xeα)λ = 1.

Thus x ∈ Ker(ᾱ) = M and then Ker(e) ≤ M . Therefore Ker(e) = Ker(e1) ∩
M = (A2 × · · · × An)P1 ∩ M = S2 × · · · × Sn.

For any a ∈ A, consider the element c = aα ∈ C. Then cρ ∈ P1 and
ci,c = tict

−1
j ∈ C, where j = ic

ρ

, for i = 2, . . . , n. Since C = Aα, there exist
elements a2, . . . , an in A such that aα

j = cj,c, for j = 2, . . . , n. The element x =
(a, a2, . . . , an)cρ ∈ N , since xᾱ = (aα, aα

2 , . . . , aα
n)cρ = (c, c2,c, . . . , cn,c)cρ =

cλ. Now xe = a, and then e is an epimorphism.
Hence

N/ Ker(e) = N/(S2 × · · · × Sn) ∼= A.

Finally observe that Me ∼= M/ Ker(e|M ) = M/(S2 × · · · × Sn) ∼= S. Since
Me ≤ S = Ker(α) and these two subgroups have the same order, equality
holds.

Proposition 1.1.28. With the notation introduced above, we have the follow-
ing.
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3. Choose a right transversal of N in G, {g1 = 1, . . . , gn} such that gσ
i = ti.

Then for each g ∈ G, we have that gig = xi,ggigρ′ , for some xi,g ∈ N . Then

ci,gσ tigσρ = tig
σ = gσ

i gσ = xσ
i,gg

σ

igρ′ = xσ
i,gtigρ′

and then ig
σρ

= ig
ρ′

, for every i ∈ I. Therefore gσρ = gρ′
for each g ∈ G, and

then σρ = ρ′.
4. Observe that for each i ∈ I, the permutation tρi moves 1 to i. Therefore,

having in mind (1.1) of Definition 1.1.17, we see that Sgi

1 = Si, and then
{S1, . . . , Sn} is the conjugacy class of the subgroup S1 in G. ��

We prove next that in fact the structure of the group G analysed in Pro-
position 1.1.28 characterises the induced extensions.

Theorem 1.1.29. Let G be a group. Suppose that we have in G the following
situation: there exist a normal subgroup M of G and a normal subgroup S of
M such that {S1, . . . , Sn} is the set of all conjugate subgroups of S in G and
M = S1 × · · · × Sn. Write N = NG(S1) and K = S2 × · · · × Sn.

Let α : N/K −→ G/M be defined by (Kx)α = Mx. Then G is the induced
extension defined by α.

Proof. Let σ : G −→ G/M and e : N −→ N/K be the natural epimorphisms.
If T = {t1 = 1, . . . , tn} is a right transversal of N in G, then T σ is a right
transversal of N/M in G/M . Consider ρ : G/M −→ Sym(n) the permutation
representation of G/M on the right cosets of N/M in G/M . Then ρ̄ = σρ
is the permutation representation of G on the right cosets of N in G. Write
P = Gρ̄ = (G/M)ρ. Let

λ̄ = λT : G −→ N �ρ̄ P

be the embedding of G into N �ρ̄ P defined in Lemma 1.1.26 and

λ = λT σ : G/M −→ (N/M) �ρ P

be the embedding of G/M into (N/M) �ρ P . As usual, for each x ∈ G, write
tix = ci,xtj , for some ci,x ∈ N , and ix

ρ

= j. Observe that ci,gσ = (ci,g)σ.
Write Si = Sti . For each i ∈ I = {1, . . . , n}, write also Ki =

∏
j∈I\{i} Sj .

Then K = K1 and Ki = Kti .
If we write σ̄ : N �ρ̄ P −→ (N/M) �ρ P for the epimorphism induced by σ,

then σλ = λ̄σ̄. Consider

ē : N � P −→ (N/K) � P, induced by e

and
ᾱ : (N/K) � P −→ (N/M) � P, induced by α.

Since eα = σ|N , we find that ēᾱ = σ̄. Therefore λ̄ēᾱ = λ̄σ̄ = σλ and the
following diagram is commutative:
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G
σ ��

λ̄ē

��

G/M

λ

��

(N/K) � P ᾱ �� (N/M) � P

The commutativity of the diagram shows that M λ̄ēᾱ = Mσλ = 1 and then
M λ̄ē ≤ Ker(ᾱ).

Consider an element x ∈ G such that xλ̄ = (c1,x, . . . , cn,x)xρ̄ ∈ Gλ̄∩Ker(ē).
Then we have 1 = (Kc1,x, . . . , Kcn,x)xρ. This means that xρ = id and
ci,x ∈ K, for i ∈ I. Therefore, ci,x = tixt−1

i , for i ∈ I. Hence, x ∈ ⋂n
i=1 Kti =⋂n

i=1 Ki = 1. Therefore Gλ̄ ∩ Ker(ē) = 1 and then λ̄ē is a monomorph-
ism. Observe that Ker(ᾱ) = (M/K)� = (M/K)1 × · · · × (M/K)n and then
|Ker(ᾱ)| = |M |. Thus, the restriction λ̄ē|M : M −→ Ker(ᾱ) is an isomorphism.

Therefore, the following diagram is commutative:

1 �� M ��

��

G
σ ��

λ̄ē

��

G/M ��

λ

��

1

1 �� Ker(ᾱ) �� (N/K) � P ᾱ �� (N/M) � P �� 1

Therefore G is the induced extension defined by α. ��

Remark 1.1.30. We are interested in the action of the group G on the normal
subgroup M = S1 × · · · × Sn, when G is an induced extension. We keep
the notation of Theorem 1.1.29. The action of the group N on S, ψ : N −→
Aut(S), is defined by conjugation: if x ∈ N , then xψ is the automorphism of
S given by the conjugation in N by the element x: for every s ∈ S, we have
sxψ

= sx.
The induced extension G can be considered as a subgroup of the wreath

product W = N �ρ P , via the embedding

λ̄ = λT : G −→ N �ρ̄ P given by xλ̄ = (c1,x, . . . , cn,x)gρ̄, for all x ∈ G.

If (x1, . . . , xn) ∈ M = S1 × · · · × Sn and x ∈ G, then, by Definition 1.1.17,

(x1, . . . , xn)x =
(
x

cψ
1,x

1 , . . . , x
cψ

n,x
n

)xρ̄

= (y1, . . . , yn),

where x
cψ

i,x

i = yixρ̄ , for i ∈ {1, . . . , n}.

Proposition 1.1.31. In the hypotheses 1.1.25, assume that S is a group and
C acts on S by a group homomorphism ψ : C −→ Aut(S). Then the group B
acts on the direct product Sn = S1 × · · · × Sn by a group homomorphism

ψB : B −→ Cψ �ρ P ≤ Aut(Sn)
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such that for (x1, . . . , xn) ∈ Sn and h ∈ B, then

(x1, . . . , xn)hψB

= (y1, . . . , yn), where x
cψ

i,h

i = yihρ̄ , for i ∈ {1, . . . , n}.
(1.3)

Moreover, Ker(ψB) = CoreB

(
Ker(ψ)

)
.

Proof. If ψ̄ : C �ρ P −→ Cψ �ρ P is induced by ψ and λ is the monomorphism
of Lemma 1.1.26, then ψB = λψ̄. Clearly ψB is a group homomorphism.
Observe that h ∈ Ker(ψB) if and only if hρ is the identity permutation and
ci,h ∈ Ker(ψ), for all i ∈ I. This means that tiht−1

i = ci,h ∈ Ker(ψ), for all
i ∈ I. And this is equivalent to saying that h ∈ CoreB

(
Ker(ψ)

)
. In other

words, Ker(ψB) = CoreB

(
Ker(ψ)

)
. ��

These observations motivate the following definition.

Definition 1.1.32. With the notation of Proposition 1.1.31, the action ψB is
called the induced B-action from ψ, and the B-group (Sn, ψB) is the induced
B-group.

The semidirect product [Sn]ψBB = [S1 × · · · × Sn]B is called the twisted
wreath product of S by B; it is denoted by S �(C,ψ) B.

Thus, if G is the induced extension defined by the map α : N/K −→ G/M
as in Theorem 1.1.29, then the conjugacy action of G on the normal subgroup
M = S1 × · · · × Sn is the induced G-action from the conjugacy action of
N = NG(S1) on S1.

Remarks 1.1.33. 1.
up to equivalence of B-groups, on the chosen transversal of C in B.

2. The construction of induced actions is motivated by the classical con-
struction of induced modules. If S is a C-module, the induced B-action gives
to Sn the well-known structure of induced B-module: Sn ∼= SB . This explains
the name and the notation.

Proposition 1.1.34. Let S and B be groups and C a subgroup of B. Suppose
that (S, ψ) is a C-group and consider the twisted wreath product G = S�(C,ψ)B.
Then

1. NB(S1) = C and CB(S1) = Ker(ψ).
2. CB(S�) = CoreB

(
Ker(ψ)

)
. Moreover if CoreB(C) = 1, then CG(S�) =

Z(S�).

Proof. 1. If h ∈ NB(S1), then, by (1.3), 1hρ

= 1 and h = c1,h ∈ C.
Conversely, if c ∈ C, then c = c1,c and 1cρ

= 1; moreover (x, 1, . . . , 1)c ρ

=
(xcψ

, 1, . . . , 1). Hence C ≤ NB(S1).
Observe that the elements of CB(S1) are elements c ∈ C such that cψ =

idS1 . Hence CB(S1) = Ker(ψ).

The structure of induced B-group does not depend,
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2. Observe that Sti
1 = Si, for all i ∈ I. Therefore CB(S�) =

⋂n
i=1 CB(Si) =⋂n

i=1 CB(Sti
1 ) = CoreB

(
CB(S1)

)
= CoreB

(
Ker(ψ)

)
.

If (x1, . . . , xn)h ∈ CG(S�), then h ∈ ⋂n
i=1 NB(Si) = CoreB(C) = 1. There-

fore (x1, . . . , xn) ∈ Z(S�). ��

If 1 −→ M −→ G −→ B −→ 1 is the induced extension defined by a
group homomorphism α : A −→ B, then G splits over M if and only if G is
isomorphic to the twisted wreath product S�(C,ψ)B. F. Gross and L. G. Kovács
characterise when the induced extension splits. This characterisation, which
will be crucial in Chapter 7, is just a consequence of a deep analysis of the
supplements of M in G.

Theorem 1.1.35 (([GK84])). Let G be a group in which there exists a nor-
mal subgroup M of G such that M = S1×· · ·×Sn, where {S1, . . . , Sn} is the set
of all conjugate subgroups of a normal subgroup S1 of M . Write N = NG(S1)
and K = S2 × · · · × Sn.

1. Let L/K be a supplement of M/K in N/K. Then, there exists a supple-
ment H of M in G satisfying the following:
a) L = (H ∩ N)K and H ∩ M = (H ∩ S1) × · · · × (H ∩ Sn). Further,

{H ∩S1, . . . , H ∩Sn} is a conjugacy class in H, and H ∩S1 = L∩S1.
b) Suppose that H0 is a supplement of M in G such that H0 ∩ N ≤ L.

Then there is an element k ∈ K such that Hk
0 ≤ H. Moreover, Hk

0 =
H if and only if L = (H0 ∩ N)K and H0 ∩ M = (H0 ∩ S1) × · · · ×
(H0 ∩ Sn).

c) In particular, H is unique up to conjugacy under K.
2. Suppose that H is a supplement M in G such that H ∩ M = (H ∩ S1) ×

· · ·×(H∩Sn). Write L = (H∩N)K. Assume further that R is a subgroup
of G such that G = RM . Then the following are true:

in N to a subgroup of L.
b) R is conjugate to H in G if and only if (R ∩ N)K is conjugate to L

in N and also R ∩ M = (R ∩ S1) × · · · × (R ∩ Sn).
3. There is a bijection between, on the one hand, the conjugacy classes in G

of supplements H of M in G such that H∩M = (H∩S1)×· · ·×(H∩Sn),
and, on the other hand, the conjugacy classes in N/K of supplements L/K
of M/K in N/K, Moreover, under this bijection, we have the following:
a) the conjugacy classes in G of supplements U of M which are maximal

subgroups of G such that U ∩ M = (U ∩ S1) × · · · × (U ∩ Sn) are
in one-to-one correspondence with the conjugacy classes in N/K of
supplements of M/K which are maximal subgroups of N/K.

of M/K.

Proof. By Theorem 1.1.29, the group G is the induced extension defined by
α : N/K −→ G/M given by (Kx)α = Mx, for all x ∈ G. Let T = {t1 =

a) R is conjugate in G to a subgroup of H if and only if R ∩N is conjugate

b) the conjugacy classes in G of complements of M , if any, are in one-
to-one correspondence with the conjugacy classes in N/K of complements
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1, . . . , tn} be a right transversal of N in G and write ρ : G −→ Sym(n) the
permutation representation of G on the right cosets of N in G. As usual, for
each x ∈ G, write tix = ci,xtj , for some ci,x ∈ N , and ix

ρ

= j. Write Si = Sti .
For each i ∈ I = {1, . . . , n}, write also Ki =

∏
j∈I\{i} Sj . Then K = K1 and

Ki = Kti . For P = Gρ, let λ be the embedding of G into (N/K) �ρ P defined
by λ : G −→ (N/K) �ρ P such that xλ = (Kc1,x, . . . , Kcn,x)xρ, for any x ∈ G.

1a. Define

H =
(
(L/K) �ρ P

)λ−1

= {x ∈ G : ci,x ∈ L, for all i ∈ II}.

This subgroup H satisfies the required properties.
Fix an element g ∈ G. Then, for each i ∈ I, we have that ci,g ∈ N = ML

and there exists mi,g ∈ M such that m−1
i,g ci,g ∈ L.

Observe that, if m ∈ M , then ci,m = mt−1
i . Then

mλ = (Kmt−1
1 , . . . , Kmt−1

n ) = (Km,Kmt−1
2 , . . . , Kmt−1

n ).

Write m = (s1, . . . , sn). Then, for any i ∈ I, using (1.1) in Definition 1.1.17,
(mt−1

i )π1 = si, since 1tρ
i = i. Therefore (s1, . . . , sn)λ = (Ks1, . . . , Ksn).

Since the restriction of λ to M is an isomorphism onto (M/K)�, i.e. Mλ =
(M/K)�, there exists a unique mg ∈ M such that mλ

g = (Km1,g, . . . , Kmn,g).
Hence

(m−1
g g)λ = (mλ

g )−1gλ = (Km−1
1,g, . . . , Km−1

n,g)(Kc1,g, . . . , Kcn,g)gρ =

= (Km−1
1,gc1,g, . . . , Km−1

n,gcn,g)gρ ∈ (L/K) �ρ P,

and then m−1
g g ∈ H. Hence, G = HM .

Observe that Kmi,g = Kci,mg = Km
t−1
i

g . If g ∈ L, then we can choose
m1,g = 1, and then mg ∈ K. Thus m−1

g g ∈ H ∩N . Then L ≤ K(H ∩N). On
the other hand, if h ∈ H ∩ N , then h = c1,h ∈ L. Hence L = K(H ∩ N).

If m = (s1, . . . , sn) ∈ M ∩ H, then Ksi ∈ L/K, for all i ∈ I. Observe
that, for any i ∈ I, we have that (1, . . . , si, . . . , 1)λ = (K, . . . , Ksi, . . . , K) ∈(
(L∩M)/K

)� and then (1, . . . , si, . . . , 1) ∈ H∩Si. Hence, H∩M = (H ∩ S1)×
· · · × (H ∩ Sn).

Since G = HM , we can choose the transversal T ⊆ H. Hence, for all i ∈ I,
we have that H∩Si = (H∩S1)ti . Therefore {H∩S1, . . . , H∩Sn} is a conjugacy
class in H. Moreover (L ∩ M)/K =

(
(H ∩ N)K ∩ M

)
/K = (H ∩ M)K/K =

(H ∩S1)K/K ∼= H ∩S1 and also (L∩M)/K = (L∩S1)K/K ∼= L∩S1. Hence
|H ∩S1| = |L∩S1|. Since H ∩S1 = H ∩N ∩S1 ≤ L∩S1, we have the equality
H ∩ S1 = L ∩ S1.

1b. Assume now that H0 is a subgroup of G such that G = MH0 and
H0 ∩ N ≤ L. For each i ∈ I, there must be an element mi ∈ M such that
ti ∈ m−1

i H0, i.e. miti ∈ H0. We may choose m1 = 1. Now, there exists a
unique k ∈ M such that
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(K,Km2, . . . , Kmn) = kλ = (Kkt−1
1 , . . . , Kkt−1

n ).

This implies that k ∈ K and tikt−1
i m−1

i ∈ K, for all i ∈ I. We show that
Hk−1

0 ≤ H.
Let x ∈ H0 and consider y = xk−1

. Observe that, for all i ∈ I, Mtix =
Mtix

k−1
= Mtiy and then ix

ρ

= iy
ρ

. Now

ci,y = tiyt−1
iyρ = tiyt−1

ixρ = tikxk−1t−1
ixρ =

= tik(t−1
i m−1

i miti)x(t−1
ixρ m−1

ixρ mixρ tixρ )k−1t−1
ixρ =

= (tikt−1
i m−1

i )(mitixt−1
ixρ m−1

ixρ )(mixρ tixρ k−1t−1
ixρ ).

Now observe that miti and t−1
ixρ m−1

ixρ are in H0 and then, mitixt−1
ixρ m−1

ixρ ∈ H0.
On the other hand, tixt−1

ixρ = ci,x ∈ N , and then mitixt−1
ixρ m−1

ixρ ∈ N . Since
tikt−1

i m−1
i ∈ K and also mixρ tixρ k−1t−1

ixρ ∈ K, we have that

ci,y = (tikt−1
i m−1

i )(mitixt−1
ixρ m−1

ixρ )(mixρ tixρ k−1t−1
ixρ ) ∈ K(H0 ∩ N)K ≤ L

for all i ∈ I. This means that y ∈ H.
Assume that Hk

0 ≤ H, for k ∈ K. Clearly, if Hk
0 = H, then L = (H0∩N)K

and H0 ∩ M = (H0 ∩ S1) × · · · × (H0 ∩ Sn). Conversely, suppose that L =
(H0 ∩ N)K and H0 ∩ M = (H0 ∩ S1) × · · · × (H0 ∩ Sn). Observe that Hk

0

satisfies the same properties. Thus, we can assume that H0 ≤ H.
As in 1a, since G = H0M , we have that {H0 ∩ S1, . . . , H0 ∩ Sn} is a

conjugacy class in H0, and H0∩S1 = L∩S1. Hence, |H ∩S1| = |H0∩S1|, and
then H∩S1 = H0∩S1. Therefore, H∩M = H0∩M . Then, from G = H0M =
HM , we deduce that |G : H0| = |M : M ∩ H0| = |M : M ∩ H| = |G : H|.
Hence, |H| = |H0| and then, H = H0.

Part 1c is a direct consequence of 1b.
2a. Clearly L/K is a supplement of M/K in N/K. By 1c, the subgroup

H is determined, up to conjugacy in K, by L.
Suppose that G = RM and R ∩ N is conjugate to a subgroup of L in

N . Since N = RM ∩ N = (R ∩ N)M , there is an element m ∈ M such
that (R ∩ N)m ≤ L. Write H0 = Rm. Then G = H0M and H0 ∩ N ≤ L.
It follows, from 1b, that H0 is conjugate to a subgroup of H. Hence R is
conjugate to a subgroup of H. Conversely, if R is conjugate to a subgroup
of H, then, since G = RM , we have that Rm ≤ H, for some m ∈ M . Then
(R ∩ N)m = Rm ∩ N ≤ H ∩ N ≤ L.

2b. If G = RM and L is conjugate to (R∩N)K in N , there is an element
m ∈ M such that L =

(
(R ∩ N)K

)m = (R ∩ N)mK = (Rm ∩ N)K. If
R ∩ M = (R ∩ S1) × · · · × (R ∩ Sn), by 1b, we deduce that H0 = Rm is
conjugate to H. The rest of 2b follows easily.

3. The bijection follows easily from 1 and 2.
3a. Let L be a maximal subgroup of N such that K ≤ L and N = LM and

consider one of the supplements U of M in G determined by the conjugacy
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class of L in N under the bijection. Suppose that U ≤ H < G. Then N =
(H∩N)M . Set L0 = (H∩N)K. Then L0/K is a supplement of M/K in N/K.
Clearly L = (U ∩ N)K ≤ L0. By maximality of L, we have that L = L0. But
then H ∩ N ≤ L and, by 1b, Hk ≤ U , for some k ∈ K. Clearly, this implies
that U = H. Hence U is maximal in G.

Conversely, let U be a maximal subgroup of G which supplements M in G
such that U ∩M = (U ∩ S1)× · · · × (U ∩ Sn). Write L = (U ∩N)K. Suppose
that L ≤ L0 < N . Consider a supplement R of M in G determined by L0

under the bijection. Then L0 = (R ∩ N)K. Since U ∩ N ≤ L0, then Uk ≤ R,
for some k ∈ K. By maximality of U , we have that R = Uk. This implies that
L and L0 are conjugate in N and, since L ≤ L0, equality holds.

3b. Observe that if L/K is a complement of M/K in N/K, then L∩S1 = 1.
Hence H ∩ S1 = 1 and therefore H ∩ M = 1. This is to say that H is a
complement of M in G. Conversely, if H is a complement of M in G, then
(H ∩ N)K ∩ M = (H ∩ N ∩ M)K = K. ��

The following result, due also to F. Gross and L. G. Kovács, is an applic-
ation of the induced extension procedure to the construction of groups which
are not semidirect products. We will use it in Chapter 5.

Theorem 1.1.36 ([GK84]). Let B be any finite simple group. Then there
exists a finite group G with a minimal normal subgroup M such that M is
a direct product of copies of Alt(6), the alternating group of degree 6, the
quotient group G/M is isomorphic to B and G does not split over M .

Proof. Consider the group A = Aut
(
Alt(6)

)
. Let D denote the normal sub-

group of inner automorphisms, D ∼= Alt(6), of A. It is well-known that the
quotient group A/D is isomorphic to an elementary abelian 2-group of or-
der 4 and A does not split over D, i.e. there is no complement of D in A (see
[Suz82]).

By the Odd Order Theorem ([FT63]), the Sylow 2-subgroups of B are non-
trivial. By the Burnside Transfer Theorem (see [Suz86, 5.2.10, Corollary 2]),
a Sylow 2-subgroup of B cannot by cyclic. By a theorem of R. Brauer and
M. Suzuki (see [Suz86, page 306]), the Sylow 2-subgroups of G cannot by
isomorphic to a quaternion group. Hence a Sylow 2-subgroup of B has two
transpositions generating a dihedral 2-group (see [KS04, 5.3.7 and 1.6.9]).
Therefore B must contain a subgroup G which is elementary abelian of order 2.

= C and Ker
(α) = D.

not split over D, the group G has the required properties. ��

Let G be a group which is an induced extension of a normal subgroup
M = S1 × · · · × Sn. We have presented above a complete description of those
supplements of M in G whose intersection with M is a direct product of the
projections in each component H∩M = (H∩S1)×· · ·×(H∩Sn). But nothing

αA

Now let G be the induced extension defined by α : A −→ B. Since A does

Then there is a homomorphism α of A into B such that
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is said about those supplements H whose projections πi : H ∩ M −→ Si

are surjective. Subgroups D of a direct product M such that all projections
πi : D −→ Si are surjective are fully described by M. Aschbacher and L. Scott
in [AS85]. In the sequel we present here an adaptation of their results suitable
for our purposes.

Definition 1.1.37. Let G =
∏n

i=1 Si be a direct product of groups. A subgroup
H of G is said to be diagonal if each projection πi : H −→ Si, i = 1, . . . , n,
is injective.

If each projection πi : H −→ Si is an isomorphism, then the subgroup H
is said to be a full diagonal subgroup.

Obviously if H is a full diagonal subgroup of G =
∏n

i=1 Si, then all the
Si are isomorphic. Observe that if x = (x1, . . . , xn) ∈ H, then xi = xπi , for
all i = 1, . . . , n, and then x = (x1, x

π−1
1 π2

1 , . . . , x
π−1
1 πn

1 ). All ϕi = π−1
1 πi are

isomorphisms of S1 and then ϕ = (ϕ1 = 1, ϕ2, . . . , ϕn) ∈ Aut(S1)n. Con-
versely, given a group S and ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Aut(S)n, it is clear that
{xϕ = (xϕ1 , xϕ2 , . . . , xϕn) : x ∈ S} is a full diagonal subgroup of Sn.

More generally, given a direct product of groups G =
∏n

i=1 Si such that
all Si are isomorphic copies of a group S, to each pair (∆,ϕ), where ∆ =
{I1, . . . , Il} is a partition of the set I = {1, . . . , n} and ϕ = (ϕ1, . . . , ϕn) ∈
Aut(S)n, we associate a direct product D(∆,ϕ) = D1 × · · · × Dl, where each
Dj is a full diagonal subgroup of the direct product

∏
i∈Ij

Si defined by the
automorphisms {ϕi : i ∈ Ij}. It is easy to see that if Γ is a partition of I
refining ∆, then D(∆,ϕ) ≤ D(Γ,ϕ). In particular, the trivial partition Ω ={
{1}, . . . {n}

}
of I gives D(Ω,ϕ) = G, for any ϕ ∈ Aut(S)n.

For groups S with trivial centre, the group G can be embedded in the
wreath product W = Aut(S) � Sym(n). In particular, if S is a non-abelian
simple group, then G ≤ Aut(Sn). In the group W the conjugacy by the
element ϕ ∈ W makes sense and D(∆,ϕ) = Dϕ

(∆,id), where id denotes the
n-tuple composed by all identity isomorphisms.

Lemma 1.1.38. Let H be a full diagonal subgroup of the direct product G =∏n
i=1 Si, where the Si are copies of a non-abelian simple group S. Then H is

self-normalising in G.

Proof. Since H is a full diagonal subgroup of G, all πi are isomorphisms of
H onto Si. Observe that (x1, . . . , xn) ∈ H if and only if xj = x

π−1
1 πj

1 , for
j = 2, . . . , n and for all x1 ∈ S. Write ϕj = π−1

1 πj , for j = 2, . . . , n.
If g = (g1, . . . , gn) ∈ NG(H), then for all x ∈ S we have that

(x, xϕ2 , . . . , xϕn)g =
(
xg1 , (xϕ2)g2 , . . . , (xϕn)gn

)
∈ H.

Hence, for j = 2, . . . , n, (xϕj )gj = (xg1)ϕj = (xϕj )g
ϕj
1 and the automorphism

g
ϕj

1 g−1
j is the trivial automorphism of Sj . Hence g

ϕj

1 = gj and g ∈ H. This is
to say that H is self-normalising in G. ��



1.1 Primitive groups 23

Proposition 1.1.39. Suppose that H is a subgroup of the direct product G =∏n
i=1 Si, where the Si are non-abelian simple groups for all i ∈ I = {1, . . . , n}.

Assume that all projections πi : H −→ Si, i ∈ I, are surjective.

1. There exists a partition ∆ of I such that the subgroup H is the direct
product

H =
∏
D∈∆

HπD ,

where
a) each HπD is a full diagonal subgroup of

∏
i∈D Si,

b) the partition ∆ is uniquely determined by H in the sense that if H =∏
D∈∆ HπD =

∏
G∈Γ HπG , for ∆ and Γ partitions of I, then ∆ = Γ ,

and
c) if H ≤ K ≤ G, then K =

∏
G∈Γ HπG , where Γ is a partition of I

which refines ∆.
2. Suppose that the Si are isomorphic copies of a non-abelian simple group

S, for all i ∈ I, i.e. G ∼= Sn. Let U be a subgroup of Aut(G). Then U ,
acting by conjugation on the simple components Si of Soc

(
Aut(G)

)
, is a

permutation group on the set {S1, . . . , Sn} (and therefore on I).
Observe that the action of U on I induces an action on the set of all
partitions of I. We can say that a partition ∆ of I is U -invariant if
∆x = ∆ for all x ∈ U .

invariant set of blocks of the action of U on I.
3. In the situation of 2, if Γ is a U -invariant partition of I which refines ∆

and every member of Γ is again a block for the action of U on I, then the
subgroup K =

∏
G∈Γ HπG is also U -invariant.

Proof. 1a. Let D be a subset of I =
H ∩

(∏
i∈D Si

)
is non-trivial. It is clear that D is a normal subgroup of H

and then every projection of D is a normal subgroup of the corresponding
projection of H. Since, by minimality of D, Dπj is non-trivial, for each j ∈ D,
we have that Dπj = Sj . Moreover, for each j ∈ D, we have that Ker(πj)∩D =
H ∩ ∏

i∈D,i �=j Si = 1, by minimality of D. Therefore D is a full diagonal
subgroup of

∏
i∈D Si. Let E = HπD be the image of the projection of H in∏

i∈D Si. Then D = DπD is normal in E. By Lemma 1.1.38, D = E. Write
F = H∩∏i/∈D Si. Clearly D×F ≤ H. For each x ∈ H, we can write x = x1x2,
where x1 is the projection of x onto

∏
i∈D Si and x2 is the projection of x

onto
∏

i/∈D Si. Observe that x1 ∈ D ≤ H and then x2 ∈ F . This is to say that
H = D × F . Now the result follows by induction on the cardinality of I.

To prove 1b suppose that H =
∏

D∈∆ HπD =
∏

G∈Γ HπG , for ∆ and Γ
partitions of I. Observe that for each D ∈ ∆, since HπD is a full diagonal
subgroup of

∏
i∈D Si, we have that the following statements are equivalent for

a non-trivial element h ∈ H:

If H is U -invariant, i.e. U ≤ NAut(G)(H), then the partition ∆ is a

minimal such that the subgroup D

U-

( )
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2. hπi 	= 1 if and only if i ∈ D;
3. there exists an i ∈ D such that hπi 	= 1 and for each D′ ∈ ∆, with D′ 	= D,

there exists a j ∈ D′ such that hπj = 1.

Suppose that h ∈ HπD . Then hπi 	= 1, for all i ∈ D, and hπj = 1, for all
j /∈ D. If i ∈ D, there exists G ∈ Γ such that i ∈ G. Thus h ∈ HπG and in fact
D = G. Hence ∆ = Γ .

1c. Suppose finally that K is a subgroup of G containing H. Obviously, the
projections πi : K −→ Si are surjective. Then, by the above arguments, we
have that K =

∏
G∈Γ KπG , where Γ is a partition of I, and, for each G ∈ Γ ,

KπG is a full diagonal subgroup of
∏

j∈G Sj . In particular, for all i ∈ G, the
Si are isomorphic to a non-abelian simple group SG . Since H =

∏
D∈∆ HπD ,

we have HπG =
∏

D∩G,D∈∆ HπD∩G . If G ∩ D 	= ∅, then HπD∩G ∼= SG . Observe
that HπG is a direct product contained in KπG ∼= SG . This implies that the
direct product has a unique component which is equal to KπG . Hence, for each
G ∈ Γ , HπG = KπG is a partition of
I which refines ∆.

2. By Proposition 1.1.20, we can consider that U is a subgroup of the
wreath product A �Sym(n), for A = Aut(S) and S a non-abelian simple group
such that S ∼= Si, for all i ∈ I. We see in Remark 1.1.18 (2) of that U acts by
conjugation on the set {A1, . . . , An} of factors of the base group. Since S is
the unique minimal normal subgroup of A, the group U acts by conjugation
on {S1, . . . , Sn}.

Suppose that H is U -invariant. Then, for any x ∈ U , by Remark 1.1.18 (4),
we have

H = Hx =
∏
D∈∆

(HπD )x =
∏
D∈∆

(Hx)πDx =
∏

Dx∈∆x

HπDx

and then ∆ = ∆x, by 1b. Hence ∆ is U -invariant. Moreover Dx is an element
of the partition ∆. Therefore either D = Dx or D∩Dx = ∅. Hence the elements
of ∆ are blocks for the action of U on I.

3. This follows immediately from Remark 1.1.18 (4): for any x ∈ U , we
have

Kx =
∏
G∈Γ

(HπG )x =
∏
G∈Γ

(Hx)πGx =
∏
G∈Γ

HπG = K,

and therefore K is U -invariant. ��

The purpose of the following is to present a proof of the Theorem of O’Nan
and Scott classifying all primitive groups of type 2. The first version of this
theorem, stated by Michael O’Nan and Leonard Scott at the symposium on
Finite Simple Groups at Santa Cruz in 1979, appeared in the proceedings in
[Sco80] but one of the cases, the primitive groups whose socle is complemen-
ted by a maximal subgroup, is omitted. In [Cam81], P. J. Cameron presented
an outline of the proof of the O’Nan-Scott Theorem again with the same
omission. Finally, in [AS85] a corrected and expanded version of the theorem

1. h ∈ HπD ;

, and G ⊆ D, for some D ∈ ∆, i.e. Γ
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appears. Independently, L. G. Kovács presented in [Kov86] a completely dif-
ferent approach to the same result.

We are indebted to P. Jiménez-Seral for her kind contributions in [JS96].
These personal notes, written for a doctoral course at the Universidad de
Zaragoza and adapted for her students, are motivated mainly by the self-
contained version of the O’Nan-Scott Theorem which appears in [LPS88].

To study the structure of a primitive group G of type 2 whose socle Soc(G)
is non-simple, we will follow the following strategy. We observe that in general,
for any supplement M of Soc(G) in G, we have that M is a maximal subgroup
of G if and only if M ∩Soc(G) is a maximal M -invariant subgroup of Soc(G).
We will focus our attention in the structure of the intersection U ∩ Soc(G) of
a core-free maximal subgroup U of G with the socle.

General remarks and notation 1.1.40. We fix here the main notation which is
used in our study of primitive groups of type 2 in the sequel. We also review
some previously known facts and make some remarks. All these observations
give rise to the first steps of the classification theorem of O’Nan and Scott.

Let G be a primitive group of type 2.
1. Write Soc(G) = S1 × · · · × Sn where the Si are copies of a non-abelian

simple group S, for i ∈ I = {1, . . . , n}. Write also Kj =
∏

i∈I,i �=j Si, for each
j ∈ I.

2. Write N = NG(S1) and C = CG(S1). Let ψ : N −→ Aut(S1) denote
the conjugacy action of N = NG(S1) on S1. Sometimes we will make the
identification Sψ

1 = Inn(S1) = S1.
3. The quotient group X = N/C is an almost simple group with Soc(X) =

S1C/C.
4. Suppose that U is a core-free maximal subgroup of G.
5. The subgroup U ∩ Soc(G) is maximal with respect to being a proper

U -invariant subgroup of Soc(G).
6. By Proposition 1.1.19, the group G, acting by conjugation on the ele-

ments of the set {S1, . . . , Sn}, induces the structure of a G-set on I. Write
ρ : G −→ Sym(n) for this action. The kernel of this action is Ker(ρ) =⋂n

i=1 NG(Si) = Y . Therefore G/Y is isomorphic to a subgroup Gρ = Pn

of Sym(n). For any g ∈ G, we write gρ for the image of g in Pn.
Moreover, since Soc(G) is a minimal normal subgroup, the conjugacy ac-

tion of G on {S1, . . . , Sn}, and on I, is transitive. Observe that Sixρ = Sx
i

and Kixρ = Kx
i , for x ∈ G and i ∈ I.

It is worth remarking here that the action of Soc(G) on I is trivial. There-
fore if H is a supplement of Soc(G) in G and ∆ is a partition of I, then ∆ is
H-invariant if and only if ∆ is G-invariant. Also, a subset D ⊆ I is block for
the action of H if and only if D is a block for the action of G.

Since the set {S1, . . . , Sn} is a conjugacy class of subgroups of G, we have
that Y = CoreG(N). In particular Soc(G) ≤ Y .

Now U is core-free and maximal in G and therefore G = UY . This means
that if τ is a permutation of I in Pn, there exists an element x ∈ U such that
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the conjugation by x permutes the Si in the same way τ does: Siτ = Sx
i , for

all i ∈ I. In other words, xρ = τ . This is to say that the projection of U onto
Pn is surjective.

7. The stabiliser of the element 1 for the action of G on I is N = NG(S1).
Therefore |G : N | = n. Observe that N = NG(S1) = NG(K1). Let T = {1 =
t1, t2, . . . , tn} be a right transversal of N in G such that Sti

1 = Si, for i ∈ I.
8. Observe that Soc(G) ≤ N and then G = UN . For this reason the

transversal T can be chosen such that T ⊆ U .
9. Write V = U ∩ N = NU (S1). Then T is a right transversal of V in U .

Observe that N = N ∩ U Soc(G) = (N ∩ U) Soc(G) = V Soc(G) = V CS1.
10. The conjugation in S1 by the elements of V induces a group homo-

morphism ϕ : V −→ Aut(S1). It is clear that Ker(ϕ) = CU (S1).
11. For any i ∈ I, we have

tig = ai,gtj , with ai,g ∈ N and ig
ρ

= j.

Moreover, since T ⊆ U , if g ∈ U , then ai,g ∈ V .
12. Denote with a star (∗) the projection of N in X: if a ∈ N , then

a∗ = aC ∈ X.
13. The group G is the induced extension defined by α : N/K1 −→

G/ Soc(G). Hence, the action of G on Soc(G) is the induced G-action from ψ:

ψG : G −→ X �ρ Pn ≤ Aut(Sn),

given by gψG

= (a∗
1,g, . . . , a

∗
n,g)gρ, for any g ∈ G. Observe that Ker(ψG) =

CoreG

(
Ker(ψ)

)
= CoreG

(
CG(S1)

)
= 1. Hence ψG is injective. In other words,

ψG is an embedding of G into the wreath product X �ρ Pn, and then into
Aut(Sn). We identify G and GψG

.
With this identification, NG(S1) = G∩ (X1 × [X2 ×· · ·×Xn]Pn−1), where

Pn−1 is the stabiliser of 1. If g ∈ NG(S1), then gρ fixes 1, i.e. gρ ∈ Pn−1.
Moreover a1,g = g. Hence gψG

= (g∗, a∗
2,g, . . . , a

∗
n,g)g

ρ ∈ (X1 × [X2 × · · · ×
Xn]Pn−1). Hence the projection of NG(S1) on X1 is surjective.

14. Observe that, for each i ∈ I, any element xi of Si can be written as
xi = eti

i , for certain ei ∈ S1. For any j 	= i, we have that x
t−1
j

i ∈ Sk, for
some k 	= 1 and therefore x

t−1
j

i ∈ CG(S1). This implies that a∗
j,xi

= 1 for any
j 	= i. Moreover ai,xi

= ei. Also it is clear that xi normalises all the Sj , for
j = 1, . . . , n and then xi

ρ = 1. Hence xψG

i = e∗i . This is to say that, with the
identification of 2, SψG

i = Si, for all i ∈ I, and then Soc(G)ψG

= S�.
15. For each i ∈ I, the quotient group Y CG(Si)/ CG(Si) is isomorphic to a

subgroup of Aut(Si) and then Y/
⋂n

i=1 CY (Si) ∼= Y is embedded in Aut(S1)×
· · · × Aut(Sn). Observe that the kernel of the homomorphism which assigns
to each n-tuple of Aut(S1) × · · · × Aut(Sn) the n-tuple of the corresponding
projections of Out(S1) × · · · × Out(Sn) is Soc(G). Hence the quotient group
Y/ Soc(G) is isomorphic to a subgroup of Out(S1) × · · · × Out(Sn). Hence,
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by the Schreier’s conjecture ([KS04, page 151]), the group Y/Soc(G) =
(
Y ∩

U Soc(G)
)
/ Soc(G) = (Y ∩ U) Soc(G)/ Soc(G) ∼= (U ∩ Y )/

(
U ∩ Soc(G)

)
is

soluble.
16. As in Remarks 1.1.18, if S ⊆ I, then we write

πS : Soc(G) −→
∏
j∈S

Sj

for the projection of Soc(G) onto
∏

j∈S Sj . If S = {j}, then the projection
onto Sj is denoted simply πj .

17. Write Rj =
(
U ∩ Soc(G)

)πj . Since the action of G on I is transitive
and G = U Soc(G), then all projections Rj , j = 1, . . . , n are conjugate by
elements of U . Hence U ∩ Soc(G) ≤ R1 × · · · × Rn = R1 × Rt2

1 × · · · × Rtn
1 .

18. By Remark 1.1.18 (4), if y ∈ U ∩ Soc(G) and g ∈ V , then (yg)π1 =
(yπ1)g. This is to say that R1 is a V -invariant subgroup of S1.

Therefore R1 × · · · ×Rn = R1 ×Rt2
1 × · · · ×Rtn

1 is a V -invariant subgroup
of Soc(G).

19. By 5 and 18, we have two possibilities for each Ri:
a) either Ri is a proper subgroup of Si; in this case,

U ∩ Soc(G) = R1 × · · · × Rn = (U ∩ S1) × · · · × (U ∩ Sn),

b) or Ri = Si, i.e. the projections of U ∩ Soc(G) on each Si are surjective.
20. Let us deal first with the Case 19a: suppose that R1 is a proper sub-

group of S1. Suppose that R1 ≤ T1 < S1 and T1 is a V -invariant subgroup of
S1. Then T1 × T t2

1 · · · × T tn
1 is U -invariant in Soc(G) and, by 5, we have that

T1 × T t2
1 · · · × T tn

1 = U ∩ Soc(G) = R1 × · · · × Rn. Hence R1 = T1.
This means that if R1 is a proper subgroup of S1, then R1 is maximal with

respect to being a proper V -invariant subgroup of S1.
21. If the projection π1 of U ∩ Soc(G) on S1 is not surjective, then two

possibilities arise:
a) either R1 = 1, i.e. U ∩ Soc(G) = 1: the core-free maximal subgroup U

complements Soc(G);
b) or 1 	= R1 < S1.

22. Suppose that 1 	= R1 < S1. Then, by 19a, R1 = U ∩ S1 and then
R1 ≤ V . Hence R1 = V ∩ S1.

Moreover, if we suppose that there exists a proper subgroup M of N such
that V C ≤ M < N , then M ∩ S1 is a V -invariant subgroup of S1 and R1 ≤
M ∩ S1. Observe that if S1 ≤ M , then N = V CS1 ≤ M and N = M , against
our assumption. Hence, R1 ≤ M ∩ S1 	= S1. By maximality of R1, we have
that R1 = M ∩S1 and then M = M ∩CV S1 = CV (M ∩S1) = CV R1 = CV .
Therefore V C is a maximal subgroup of N .

23. Now we consider the Case 19b. Assume that H is a supplement of
Soc(G) in G and we suppose that the projection of H ∩ Soc(G) on each
component Si of Soc(G) is surjective. Then, by Proposition 1.1.39, there exists
an H-invariant partition ∆ of I into blocks for the action of H on I such that
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H ∩ Soc(G) =
∏
D∈∆

(
H ∩ Soc(G)

)πD
,

and, for each D ∈ ∆, the projection
(
H∩Soc(G)

)πD is a full diagonal subgroup
of the direct product

∏
i∈D Si.

Now we prove that H is maximal in G if and only if ∆ is a minimal
non-trivial G-invariant partition of I in blocks for the action of G on I.

Suppose 1 < Γ < ∆, where all are H-invariant partitions of I into blocks
for the action of H on I. Then by Proposition 1.1.39 (3), the product of
projections of H ∩ Soc(G) obtained from Γ is an H-invariant subgroup J of
Soc(G). By Proposition 1.1.39 (1b), H ∩ Soc(G) < J < Soc(G). But if H is
maximal in G, then H ∩ Soc(G) is maximal as an H-invariant subgroup of
Soc(G) as in 5. Hence H is not maximal in G.

Now suppose H < L < G. Then H Soc(G) = L Soc(G) = G implies
H ∩ Soc(G) < L ∩ Soc(G) < Soc(G). Then, by Proposition 1.1.39 (1c), L ∩
Soc(G) is the product of projections of H ∩ Soc(G) (which are the same as
the projections of L ∩ Soc(G)) obtained from a non-trivial proper refinement
Γ of ∆. Then by Proposition 1.1.39 (2), Γ is L-invariant so, like ∆, it is an
H-invariant set of blocks for the action of H on I. Thus if ∆ is a minimal
such partition of I, then H is maximal in G.

Finally, any H-invariant block is G-invariant, by 6.
24. If the projection of U ∩ Soc(G) on each component Si of Soc(G) is

surjective, then U ∩ Soc(G) = D1 × · · · × Dl, with 1 ≤ l < n, and each Di is
isomorphic to S. Hence Soc(G) =

(
U ∩ Soc(G)

)
K1 and then G = UK1.

25. In this study we have observed three different types of core-free max-
imal subgroups U of a primitive group G of type 2 according to the image of
the projection π1 : U ∩ Soc(G) −→ S1.
a)
(
U ∩ Soc(G)

)π1 = S1, i.e. the projection π1 of U ∩ Soc(G) on S1 is sur-
jective.

b) 1 	= R1 =
(
U ∩ Soc(G)

)π1
< S1, i.e. the image of the projection π1 of

U ∩ Soc(G) on S1 is a non-trivial proper subgroup of S1. In this case

1 	= U ∩ Soc(G) = R1 × · · · × Rn = (U ∩ S1) × · · · × (U ∩ Sn).

c)
(
U ∩ Soc(G)

)π1 = 1, i.e. U is a complement of Soc(G) in G.
26. With all the above remarks, we have a first approach to the O’Nan-

Scott classification of primitive groups of type 2. We have the following five
situations:
a) Soc(G) is a simple group, i.e. n = 1: the group G is almost simple;
b) n > 1 and U ∩ Soc(G) = D is a full diagonal subgroup of Soc(G);
c) n > 1 and U ∩ Soc(G) = D1 × · · · × Dl, a direct product of l subgroups,

with 1 < l < n, such that, for each j = 1, . . . , l, the subgroup Dj is a
full diagonal subgroup of a direct product

∏
i∈Ij Si, and {I1, . . . , Il} is a

minimal non-trivial G-invariant partition of I in blocks for the action of
U on I;
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d) n > 1 and the projection R1 =
(
U ∩ Soc(G)

)π1 is a non-trivial proper
subgroup of S1; here, R1 = V C ∩ S1 and V C/C is a maximal subgroup
of X.

e) U ∩ Soc(G) = 1.

This enables us to describe all configurations of primitive groups of type 2.

Proposition 1.1.41. Let S be a non-abelian simple group and consider an
almost simple group X such that S ≤ X ≤ Aut(S). Let Pn be a primitive
group of permutations of degree n. Construct the wreath product W = X � Pn

and consider the subgroups DX = {(x, . . . , x) : x ∈ X} ≤ X� and DS =
{(s, . . . , s) : s ∈ S} ≤ S�. Clearly Pn ≤ CW (DX). Suppose that U is a
subgroup of W such that DS ≤ U ≤ DX × Pn, and the projection of U on Pn

is surjective.
Then the group G = S�U is a primitive group of type 2 and U is a core-free

maximal subgroup of G.

Proof. It is clear that S� is a minimal normal subgroup of G and CG(S�) = 1.
Hence G is a primitive group of type 2 and Soc(G) = S�.

Observe that DS = Soc(G) ∩ DX = Soc(G) ∩ U . Since Pn is a primitive
group, the action of U on the elements of the set {S1, . . . , Sn} is primitive
and there are no non-trivial blocks. By 1.1.40 (23), U is a maximal subgroup
of G. ��

Definition 1.1.42. A primitive pair (G,U) constructed as in Proposition
1.1.41 is called a primitive pair with simple diagonal action.

A detailed and complete study of these primitive groups of simple diagonal
type appears in [Kov88].

Remarks 1.1.43. In a primitive pair (G, U) with simple diagonal action, we
have the following.

1. U ∩ Soc(G) = DS 	= 1: this is the case 26b in 1.1.40
2. DS ∩ (S2 × · · · × Sn) = 1 and Soc(G) = DS(S2 × · · · × Sn). Hence

NG(S1) = NU (S1) Soc(G) = NU (S1)(S2 × · · · × Sn), and analogously for the
centraliser. Hence

NG(S1)/ CG(S1) ∼= NU (S1)/ CU (S1).

Proposition 1.1.44. Let (Z,H) be a primitive pair such that either Z is an
almost simple group or (Z, H) is a primitive pair with simple diagonal action.
Write T = Soc(Z). Given a positive integer k > 1, let Pk be a transitive group
of degree k and construct the wreath product W = Z � Pk. Write Pk−1 for the
stabiliser of 1.

Consider a subgroup G ≤ W such that

1. Soc(W ) = T � = T1 × · · · × Tk ≤ G,
2. the projection of G onto Pk is surjective,
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3. the projection of NG(T1) = NW (T1)∩G = (Z1 × [Z2 × · · · ×Zk]Pk−1)∩G
onto Z1 is surjective.

Put U = G ∩ (H � Pk). Then G is a primitive group of type 2 and U is a
core-free maximal subgroup of G.

Proof. Set M = H ∩ T ; clearly NZ(M) = H. With the obvious notation,
write M � = M1 × · · · × Mk. Then clearly H � Pk ≤ NW (M �). Moreover if
(z1, . . . , zk)x ∈ NW (M �), then zi ∈ NZi

(Mi) = Hi for any i = 1, . . . , k. Hence
H � Pk = NW (M �) and therefore U = NG(M �).

Notice that T1 ×· · ·×Tk is a minimal normal subgroup of G and CG(T1 ×
· · ·×Tk) = 1. Hence G is a primitive group of type 2 and Soc(G) = T1×· · ·×Tk.

Clearly G = U Soc(G). Since W is a semidirect product, every element of
W can be written uniquely as a product of an element of Z� and an element
of Pk. Hence, if (h1, . . . , hk)x ∈ T �, for x ∈ Pk and hi ∈ Hi, i = 1, . . . , k, then
x = 1 and hi ∈ Ti ∩ Hi = Mi. Hence U ∩ Soc(G) = M �. In particular, U is
core-free in G. Let us see that U is a maximal subgroup of G.

Observe that NG(T1) = NW (T1) ∩ U Soc(G) = NU (T1) Soc(G). Let V1

be the projection of NU (T1) on Z1. It is clear that V1 is contained in the
projection of U on Z1, i.e. V1 ≤ H1. Since the projection of NG(T1) onto Z1

is surjective and the projection of Soc(G) on Z1 is T1, then Z1 = V1T1. Since
clearly M1 ≤ NG(T1), then M1 ≤ V1 ≤ H1, so V1 ∩ T1 = M1 and by easy
order calculations, V1 = H1.

Let L be an intermediate subgroup U ≤ L < G. By the above arguments,
the projection of NL(T1) on Z1 is an intermediate subgroup between H1 and
Z1. By maximality of H in Z, we have that this projection is either H1 or Z1.

Write Qi for the projection of L ∩ Soc(G) on Ti, for i = 1, . . . , k. Since L
acts transitively by conjugation on the elements of the set {T1, . . . , Tk}, we
have that all Qi are isomorphic to a subgroup Q such that M ≤ Q ≤ T and
L ∩ Soc(G) ≤ Q1 × · · · × Qk. The subgroup L ∩ Soc(G) is normal in L and
then in NL(T1). Hence Q1 is normal in the projection of NL(T1) on Z1. If this
projection is H1, then Q is normal in H and then M ≤ Q ≤ H ∩ T = M , i.e.
Q = M . In this case L = L ∩ U Soc(G) = U

(
L ∩ Soc(G)

)
= U .

Suppose that the projection of NL(T1) on Z1 is the whole of Z1. Then Q is
a normal subgroup of Z and therefore Q = T . If for each i = 1, . . . , k we write
Ti = Si1 × · · · × Sir, where all the Sij are isomorphic copies of a non-abelian
simple group S, then we can put

Soc(G) = (S11 × · · · × S1r) × · · · × (Sk1 × · · · × Skr).

The projection of L∩ Soc(G) on each simple component is surjective. By Re-
mark 1.1.40 (23), L∩Soc(G) =

∏
D∈∆

(
L∩Soc(G)

)πD is a direct product of full
diagonal subgroups and the partition ∆ of the set {11, . . . , 1r, . . . , k1, . . . , kr}
associated with L∩Soc(G) is a set of blocks for the action of L. Observe that
M1 × 1 × · · · × 1 ≤ L ∩ Soc(G). If Z is an almost simple group, then r = 1
and D = {1} is a block of ∆. Hence, in this case, ∆ is the trivial partition of
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{1, . . . , k}. If (Z, H) is a primitive pair of simple diagonal action, then M is a
full diagonal subgroup of T . Hence the set {11, . . . , 1r} is the union set of some
members D1, . . . ,Dl of the partition ∆. Since the projection of L∩Soc(G) on
T1 is surjective, then T1 =

∏l
i=1

(
L∩Soc(G)

)πDi ∼= S1×· · ·×Sl (here the Si’s
are simply the names of the projections). Hence l = r. Since L is transitive on
the Ti’s, so that because the blocks corresponding to T1 have one element, all
the blocks do. In other words, L ∩ Soc(G) = T1 × · · · × Tk. Hence L = G. ��

Definition 1.1.45. A primitive pair (G,U) constructed as in Proposition
1.1.44 is called a primitive pair with product action.

A detailed and complete study of these primitive groups in product action
appears in [Kov89].

Remarks 1.1.46. 1.
group on the set of right cosets of H in Z and the cardinality of Ω is |Z : H|
(the degree of the permutation group Z). Now, if (G,U) is a primitive pair with
product action, as in Proposition 1.1.44, then the degree of the permutation
group G is

|G : U | = |G : G ∩ (H � Pk)| = |W : H � Pk| = |Z : H|k.

2. Observe that we have two different types of primitive pairs with product
action:

a) If Z is an almost simple group, T = Soc(Z), and R = H ∩ T , then
1 	= R < T and the projection R1 =

(
U ∩ Soc(G)

)π1 is a non-trivial proper
subgroup of T1, by Proposition 1.1.16; this is Case 26d in 1.1.40.

b) If (Z,H) is a primitive pair with simple diagonal action, then U ∩
Soc(G) = D1 × · · · × Dk a direct product of k full diagonal subgroups, with
1 < k < n; here we are in Case 26c of 1.1.40.

Examples 1.1.47. 1. Let S be a non-abelian simple group and H a maximal
subgroup of S. If C is a cyclic group of order 2, construct the wreath product
G = S �C with respect to the regular action. The group G is a primitive group
of type 2 and Soc(G) = S� = S1 × S2.

Consider the diagonal subgroup D = {(x, x) : x ∈ S}. Then U = D×C is a
core-free maximal subgroup of G and (G,U) is a primitive pair with diagonal
action.

Consider now the subgroup U∗ = H � C = [H1 × H2]C. Then U∗ is also a
core-free maximal subgroup of G and the pair (G,U∗) is a primitive pair with
product action.

2. Let G be the primitive group of Example 1 and construct the wreath
product W = G �Z with respect to the regular action of the cyclic group Z of
order 2. Then, the socle of W is isomorphic to the direct product of four copies
of S: Soc(W ) = S1 × S2 × S3 × S4. Moreover Soc(W ) is complemented by a
2-subgroup P isomorphic to the wreath product C2 � C2, that is, isomorphic
to the dihedral group of order 8. The group W is a primitive group of type 2.

If (Z,H) is a primitive pair, then Z is a permutation
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If we consider the maximal subgroup U of G and construct M = U � Z,
we obtain a core-free maximal subgroup of index |W : M | = |S|2 such that
M ∩ Soc(W ) = D1 × D2. Taking now the maximal subgroup U∗ of G, then
the subgroup M∗ = U∗ � Z is another core-free maximal subgroup of W of
index |S : H|4 such that M∗ ∩ Soc(G) = H1 × H2 × H3 × H4.

Therefore the pairs (W,M) and (W,M∗) are non-equivalent primitive pairs
of type 2 with product action.

Write DS = {(s, s, s, s) : s ∈ S}, the full diagonal subgroup of Soc(W ).
Observe that M contains properly the subgroup M0 = DS × P and therefore
M0 is non-maximal in W .

According to Remark 1.1.40 (26), there still remains another structure of
primitive group of type 2 to describe: those primitive groups of type 2 with
the special property that the core-free maximal subgroup is a complement of
the socle. This new configuration is in fact a twisted wreath product.

Theorem 1.1.48. 1. If (G,U) is a primitive pair of type 2 and U∩Soc(G) =
1, then, with the notation of Definition 1.1.32, G ∼= S �(V,ϕ) U .

2. Conversely, let S be a non-abelian simple group and a group U with a sub-
group V such that there exists a group homomorphism ϕ : V −→ Aut(S).
Construct the twisted wreath product G = S �(V,ϕ)U . If CoreU (V ) = 1 then
G is a primitive group of type 2. Moreover, if U is maximal in G, then
(G,U) is a primitive pair of type 2. By construction, U ∩ Soc(G) = 1.

Proof. 1. Recall that G is the induced extension defined by α : N/K1 −→
G/ Soc(G). Hence Soc(G) is the induced U -group from the action ϕ of V on
S (see Remark 1.1.40 (10)). Since G splits on Soc(G), then G is isomorphic
to the twisted wreath product G ∼= S �(V,ϕ) U .

2. To prove the converse, it is enough to recall that in the twisted wreath
product G = S �(V,ϕ) U , we have that CG(Z�) = Z(S�) = 1, by Proposi-
tion 1.1.34, and the conclusion follows. ��

Definition 1.1.49. A primitive pair (G,U) constructed as in Theorem 1.1.48
is called a primitive pair with twisted wreath product action.

Maximal subgroups of a primitive group G of type 2 complementing
Soc(G) are called by some authors small maximal subgroups.

Obviously one can wonder about the existence of primitive groups of type 2
with small maximal subgroups. P. Förster, in [För84a], gives sufficient con-
ditions for U , V , and S to obtain a primitive group with small maximal
subgroups.

Theorem 1.1.50 ([För84a]). Let U be a group with a non-abelian simple
non-normal subgroup S such that whenever A is a non-trivial subgroup of U
such that S ≤ NU (A), then S ≤ A. Write V = NU (S) and ϕ : V −→ Aut(S)
for the obvious group homomorphism induced by the conjugation. Construct
the twisted wreath product G = S �(V,ϕ) U .



1.1 Primitive groups 33

Then G is a primitive group of type 2 such that Soc(G) = S�, the base
group, is complemented by a maximal subgroup of G isomorphic to U .

Proof. First we see that if CU (S) 	= 1, then, by hypothesis, we have that
S ≤ CU (S) and this contradicts the fact that S is a non-abelian simple group.
Hence CU (S) = 1 and ϕ is in fact a monomorphism of V into Aut(S) and V
is an almost simple group such that Soc(V ) = S.

Write n = |U : V | and S� = S1 × · · · × Sn. Since U acts a transitive
permutation group by right multiplication on the set of right cosets of V in
U , and then on the set I = {1, . . . , n}, S� is a minimal non-abelian subgroup
of G. Moreover, if C = CoreU (V ) 	= 1, then S ≤ NU (C) = U . Now C is
an almost simple group with Soc(C) = S. Hence S is normal in U , giving a
contradiction. Hence C = CoreU (V ) = 1. Therefore, to prove that (G, U) is a
primitive pair of type 2 with twisted wreath product action by Theorem 1.1.48,
it only remains to prove U is a maximal subgroup of G. To do this, let M be
a maximal subgroup of G such that U ≤ M . Observe that M = M ∩ G =
M ∩ U Soc(G) = U

(
M ∩ Soc(G)

)
. All projections Rj =

(
M ∩ Soc(G)

)πj , for
j ∈ I, are conjugate by elements of M , that is, all Ri are isomorphic to the
subgroup R1 and S1∩U ≤ R1 ≤ S1 and M ∩Soc(G) ≤ R1×· · ·×Rk. Observe
that V ≤ NG(S1) by (1.3) in Proposition 1.1.31, since v = v1,v, for all v ∈ V ,
and 1v = 1. By 1.1.18 (4), (yv)π1 = (yπ1)v, for all y ∈ M ∩ Soc(G). Since the
subgroup S normalises M ∩Soc(G), then S normalises R1 =

(
M ∩Soc(G)

)π1 .
The automorphisms induced in S1 by S are the inner automorphisms. Hence
R1 is a normal subgroup of S1, and, since S1 is a simple group, we have that
R1 = 1 or R1 = S1. In the first case, we have that M ∩ Soc(G) = 1 and then
M = U . Thus, assume that the projections πj are surjective, for all j ∈ I.

By 1.1.40 (23), there exists a minimal non-trivial M -invariant partition ∆
of I in blocks for the action of M on I such that

M ∩ Soc(G) =
∏
D∈∆

(
M ∩ Soc(G)

)πD
,

and, for each D ∈ ∆, the projection
(
M∩Soc(G)

)πD is a full diagonal subgroup
of the direct product

∏
i∈D Si.

For each y ∈ M ∩ Soc(G) ad x ∈ M , we have that (yx)πDx = (yπD )x for
any D ∈ ∆. Suppose that ∆0 is an orbit of the action of M on ∆. Then the
subgroup

T =
∏

D∈∆0

(
M ∩ Soc(G)

)πD

is normal in M . If ∆0 is a proper subset of ∆, then there exists some j which
is not in a member of ∆0. Then Sj centralises T and then T is normal in
〈M, Sj〉. Since T is a proper subgroup of Soc(G), we have that Sj ≤ M , by
maximality of M . But this implies that Soc(G) ≤ M , and this is not true.
Hence, M acts transitively on ∆. And so does U , since M = U

(
M ∩Soc(G)

)
.

Assume that each member D of ∆ has m elements of I and |∆| = l, i.e.
n = lm. Since ∆ is a non-trivial partition, then m > 1.
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Suppose that l = 1. This means that M∩Soc(G) is a full diagonal subgroup
of Soc(G). Hence M = [M ∩ Soc(G)]U and M ∩ Soc(G) is a normal subgroup
of M which is isomorphic to S (π1 is an isomorphism between M ∩ Soc(G)
and S1). This gives a homomorphism ψ : U −→ Aut(S) whose restriction to
V is the monomorphism ϕ. Notice that Ker(ψ) is a normal subgroup of U
and, by hypothesis, if Ker(ψ) 	= 1, then S ≤ Ker(ψ). This contradicts the fact
that ϕ is a monomorphism. Therefore Ker(ψ) = 1 and ψ is a monomorphism.
Since Sψ = Inn(S) is normal in Uψ ≤ Aut(S), then S is normal in U . But
this contradicts the fact that CoreU (S) = 1. Hence l > 1.

The partition ∆ has l members which are blocks for the action of M (or
U) on I. Write ∆ = {D1, . . . ,Dl}. The subgroup U acts transitively on ∆.
We can assume without loss of generality that 1 ∈ D1. Let U1 denote the
stabiliser of D1 by the action of U on ∆. Clearly |U : U1| = l.

For any x ∈ V , since V ≤ NG(S1), then 1x = 1 and 1 ∈ D1 ∩ Dx
1 . Hence

D1 = Dx
1 and x ∈ U1. Therefore V ≤ U1. Since D1 =

(
M ∩ Soc(G)

)πD1 ∼= S,
there exists a group homomorphism ψ : U1 −→ Aut(D1) ∼= Aut(S) whose
restriction to V is the monomorphism ϕ. Repeating the arguments of the above
paragraph, we obtain that Sψ is normal in Uψ

1 and then U1 ≤ NU (S) = V .
Therefore V = U1.

But now we have that l = |U : U1| = |U : V | = n, and then m = 1.
This is the final contradiction. Thus we deduce that U is a maximal subgroup
of G. ��

Remarks 1.1.51. 1. Examples of pairs U , S satisfying the conditions of the
hypothesis of Theorem 1.1.48 are S = Alt(n) and U = Alt(n + 1), for n ≥ 5.
In this case S is maximal in U . Also S = PSL(2, pn) and U = PSL(2, p2n), for
pn ≥ 3 satisfies the hypothesis. Here NU (S) ∼= PGL(2, pn) is maximal in U .

2. In [Laf84b], J. Lafuente proved that if G is a primitive group of type 2
and U is a small maximal subgroup of G, then U is also a primitive group of
type 2 and each simple component of Soc(U) is isomorphic to a section of the
simple component of Soc(G).

The O’Nan-Scott Theorem proves that these are all possible configurations
of primitive groups of type 2.

Theorem 1.1.52 (M. O’Nan and L. Scott). Let G be a primitive group
of type 2 and U a core-free maximal subgroup of G. Then one of the following
holds:

1. G is an almost simple group;
2. (G,U) is equivalent to a primitive pair with simple diagonal action; in this

case U ∩ Soc(G) is a full diagonal subgroup of Soc(G);
3. (G,U) is equivalent to a primitive pair with product action such that U ∩

Soc(G) = D1 × · · · ×Dl, a direct product of l > 1 subgroups such that, for
each j = 1, . . . , l, the subgroup Dj is a full diagonal subgroup of a direct
product

∏
i∈Ij Si, and {I1, . . . , Il} is a minimal non-trivial G-invariant

partition of I in blocks for the action of U on I.
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4. (G,U) is equivalent to a primitive pair with product action such that the
projection R1 =

(
U ∩ Soc(G)

)π1 is a non-trivial proper subgroup of S1; in
this case R1 = V C ∩ S1 and V C/C is a maximal subgroup of X;

5. (G,U) is equivalent to a primitive pair with twisted wreath product action;
in this case U ∩ Soc(G) = 1.

Proof. Recall that by 1.1.40 we can distinguish five different cases.
Case 1. If n = 1, then G is an almost simple group. Thus we suppose that

n > 1.
Case 2. Assume that n > 1 and U∩Soc(G) = D is a full diagonal subgroup
Then there exist automorphisms ϕi ∈ Aut(S), i ∈ I, such that D =

U ∩ Soc(G) = {(xϕ1 , xϕ2 , . . . , xϕn) : x ∈ S}. Since D is normal in U and U is
maximal in G, we have that U = NG(D). Let Pn be the permutation group
induced by the conjugacy action of G on the simple components of Soc(G):
Pn = G/Y (see 1.1.40 (13)). By 1.1.40 (23), the group Pn is transitive and
primitive. We embed G in X � Pn as in 1.1.40 (13) and then in Aut(S) � Pn.
Consider ϕ = (ϕ−1

1 , . . . , ϕ−1
n ) ∈ Aut(S)n ≤ Aut(S) � Pn. By conjugation by

ϕ in Aut(S) � Pn, we have that Dϕ = DS = {(x, . . . , x) : x ∈ S} and Uϕ =
NGϕ(DS) = Gϕ ∩ (DX × Pn), where DX = {(x, . . . , x) : x ∈ X}. Then
Gϕ = UϕS� and, since Sϕ

i = Si, for all i ∈ I, the action of Uϕ and of U
on I are the same. Hence, the projection of Uϕ onto Pn is surjective. By
Proposition 1.1.41, we have that (Gϕ, Uϕ) is a primitive pair with simple
diagonal action and is equivalent to (G, U).

Case 3. Assume that n > 1 and U ∩ Soc(G) = D1 × · · · × Dl, a direct
product of l > 1 subgroups such that, for each j = 1, . . . , l, the subgroup Dj

is a full diagonal subgroup of a direct product
∏

i∈Ij Si, and {I1, . . . , Il} is
a minimal non-trivial U -invariant partition of I in blocks for the action of U
on I.

Suppose that the Si are ordered in such a way that I1 = {1, . . . , m}. Write
K = S1×· · ·×Sm, N∗ = NG(K), C∗ = CG(K). Observe that I1 is a minimal
block for the action of G on I. Then N∗ acts transitively and primitively
on I1. Hence, X∗ = N∗/C∗ is a primitive group whose socle is Soc(X∗) =
KC∗/C∗. Put V ∗ = U∩N∗. Since Soc(G) ≤ N∗, then N∗ = N∗∩U Soc(G) =
V ∗ Soc(G) = V ∗C∗K. Moreover K ∩ V ∗ = K ∩ N∗ ∩ U = K ∩ U = D1. Let
{g1 = 1, . . . , gl} be a right transversal of V ∗ in U (and of N∗ in G). We can
assume that this transversal is ordered in such a way that Dgi

1 = Di, for
i = 1, . . . , l, and put Ki = Kgi , for i = 1, . . . , l. Then G acts transitively, by
conjugation of the Ki’s, on the set {K1, . . . , Kl}.

Clearly D1 is a V ∗-invariant subgroup of K. Suppose that D1 ≤ T1 < K1

and T1 is a V ∗-invariant subgroup of K1. Then T1×T g2
1 · · ·×T gl

1 is U -invariant
in Soc(G) and, by maximality of U , we have that T1 × T g2

1 · · · × T gl

1 = U ∩
Soc(G) = D1×· · ·×Dl. Hence D1 = T1. In other words, D1 is maximal as V ∗-
invariant subgroup of K and then a maximal V ∗C∗-invariant subgroup of K.
Suppose that s ∈ S1∩V ∗C∗. There exist v ∈ V ∗ and c ∈ C∗, such that s = vc.
Now v = sc−1 ∈ CG(Si), for i = 2, . . . , m and v ∈ S1 CG(S1) ≤ NG(S1).
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Consider the element (t, tϕ2 . . . , tϕm) ∈ D1 associated with some t ∈ S1;
then (t, tϕ2 . . . , tϕm)v = (tv, tϕ2 . . . , tϕm) ∈ D1, since D1 is normal in V ∗.
Hence tv = t. This happens for any t ∈ S1 and therefore v ∈ CG(S1). Hence
s ∈ CS1(S1) = 1. Therefore S1 ∩ V ∗C∗ = 1 and then K 	= K ∩ V ∗C∗. Since
D1 ≤ V ∗C∗ ∩ K ≤ K and D1 is maximal as V ∗C∗-subgroup of K, we have
that D1 = V ∗C∗ ∩ K. And, finally, if M is a maximal subgroup of N∗ such
that V ∗C∗ ≤ M , then M ∩ K is a V ∗C∗-invariant subgroup of K containing
D1. Hence D1 = V ∗C∗ ∩ K = M ∩ K. Now M = M ∩ N∗ = M ∩ V ∗C∗K =
V ∗C∗(M ∩K) = V ∗C∗. Therefore V ∗C∗/C∗ is a core-free maximal subgroup
of X∗.

Observe that (V ∗C∗/C∗) ∩ Soc(X∗) = D1C
∗/C∗ is a full diagonal sub-

group of Soc(X∗). Thus X∗ is a group of Case 2. Hence (X∗, V ∗C∗/C∗) is a
primitive pair with simple diagonal action.

Write Pl = G/
(⋂l

i=1 NG(Ki)
)

for the permutation group induced by the
action of G by conjugation of the Ki’s. For any g ∈ G, we write gρ for the
projection of g in Pl. On the other hand, for each g ∈ G and each i ∈ {1, . . . , l},
let ai,g be the element of N∗ such that gig = ai,ggj , for some j. For any a ∈ N∗,
write ā = aC∗ for the projection of a on X∗. Consider the conjugacy action
ψ : N∗ −→ Aut(K) and the induced G-action on (X∗)�:

ψG : G −→ X∗ � Pl given by gψG

= (ā1,g, . . . , āl,g)gρ, for any g ∈ G.

Arguing as in 1.1.40 (13–14), we have that

1. the map ψG is a group homomorphism and is injective; the projection of
GψG

on Pl is surjective;
2. NG(K1)ψG

= GψG∩(X∗
1×[X∗

2×· · ·×X∗
l ]Pl−1), where Pl−1 is the stabiliser

of 1. The image of NG(K1) by the projection on the first component of
(X∗)� is the whole of X∗

1 ;
3. the elements of Soc(G) can be written as (e1, e

g2
2 , . . . , egl

l ), for certain
e1, . . . , el ∈ K1. The image by ψG of the elements of the socle is

(e1, e
g2
2 , . . . , egl

l )ψG

= (ē1, ē2, . . . , ēl),

and then (KC∗/C∗)� = Soc(X∗ � Pl) ≤ GψG

.

Now, for any g ∈ U , since the gi ∈ U , we have that ai,g ∈ N∗ ∩ U = V ∗.
Hence UψG ≤ GψG ∩

(
(V ∗C∗/C∗) �Pl

)
. Since V ∗C∗/C∗ is maximal in X∗ and

UψG

is maximal in GψG

, we have that UψG

= GψG ∩
(
(V ∗C∗/C∗ � P1

)
. By

Proposition 1.1.44, this means that (G,U) is equivalent to (GψG

, UψG

) which
is a primitive pair with product action.

Case 4. Suppose now n > 1 and the projection R1 =
(
U ∩ Soc(G)

)π1 is a
non-trivial proper subgroup of S1.

Moreover, R1 = V C ∩ S1 and V C is a maximal subgroup of N .
Consider the embedding ψG : G −→ X � Pn of 1.1.40 (13). Then X is

almost simple and G is isomorphic to a subgroup GψG

of X � Pn satisfying
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all conditions of Proposition 1.1.44. Hence UψG ≤ GψG ∩
(
(V C/C) � Pn

)
.

Since V C/C is maximal in X and UψG

is maximal in GψG

, we have that
Uψ = Gψ ∩

(
(V C/C) � Pn

)
. Therefore (G,U) is equivalent to a primitive pair

with product action.
Case 5. Assume finally that U ∩ Soc(G) = 1. Then, by Theorem 1.1.48,

G ∼= S �(V,ϕ) U and the pair (G,U) is equivalent to a primitive pair with
twisted wreath product action. ��

If U is a core-free maximal subgroup of a primitive group G of type 2,
then there are exactly three different possibilities as we saw in 1.1.40 (25):

1.
(
U ∩ Soc(G)

)π1 = S1, i.e. the projection π1 of U ∩ Soc(G) on S1 is sur-
jective.

2. 1 	= R1 =
(
U ∩ Soc(G)

)π1
< S1, i.e. the image of the projection π1 of

U ∩ Soc(G) on S1 is a non-trivial proper subgroup of S1.

1 	= U ∩ Soc(G) = R1 × · · · × Rn = (U ∩ S1) × · · · × (U ∩ Sn).

3.
(
U ∩ Soc(G)

)π1 = 1, i.e. U is a complement of Soc(G) in G.

As we saw in 1.1.35, in a primitive group G of type 2, there exists a
bijection between

1. the set of all conjugacy classes of maximal subgroups U of G such that
the projection

(
U ∩ Soc(G)

)π1 is a proper subgroup of S1,
2. the set of all conjugacy classes of maximal subgroups of N/(S2×· · ·×Sn)

supplementing Soc(G)/(S2 × · · · × Sn).

Under this bijection, the complements, if any, of Soc(G) in G are in corres-
pondence with the complements of Soc(G)/K1 in N/K1. Thus, this bijection
works in Cases 2 and 3. Since core-free maximal subgroups of Case 2 occur in
every primitive group of type 2, these are called frequent maximal subgroups
by some authors. We complete this study in the following way.

Proposition 1.1.53. Let G be a primitive group of type 2. There exist bijec-
tions between the following sets:

1. the set of all conjugacy classes of maximal subgroups U of G such that the
projection

(
U ∩ Soc(G)

)π1 is a non-trivial proper subgroup of S1,
2. the set of all conjugacy classes of maximal subgroups of N/(S2 ×· · ·×Sn)

supplementing but not complementing Soc(G)/(S2 × · · · × Sn), and
3. the set of all conjugacy classes of core-free maximal subgroups of X.

Proof. We only have to see the bijection between the sets in 2 and 3. Write
K = S2 × · · · × Sn and observe that if L/C is core-free maximal subgroup of
X, then obviously L/K is a maximal subgroup of N/K and N = L Soc(G).
If L/K complements Soc(G)/K in N/K, then K = L∩ Soc(G); in particular
L ∩ S1 = 1. But L ∩ S1C = C(L ∩ S1) = C and this contradicts the fact
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that (L/C) ∩ (S1C/C) is non-trivial by Proposition 1.1.16. Thus L does not
complement Soc(G)/K in N .

Conversely, let L/K be a maximal subgroup of N/K such that N =
L Soc(G) and K < Soc(G) ∩ L. Let us see that C ≤ L. Consider L0/K =
CoreN/K(L/K). Since Soc(G)/K is a minimal normal subgroup of N/K,
then L0/K ≤ CN/K

(
Soc(G)/K

)
= C/K and L0 ≤ C. If L0 = C, then

C ≤ L and we are done. Suppose that C/L0 is nontrivial. Since L/L0 is
a core-free maximal subgroup of N/L0, it is clear that N/L0 is a prim-
itive group. Observe that Soc(G)L0/L0 is a minimal normal subgroup of
N/L0 and CN/L0

(
Soc(G)L0/L0

)
= C/L0. Since we are assuming that C/L0

is nontrivial, the primitive group N/L0 is of type 3. Hence L/L0 comple-
ments Soc(G)L0/L0. This is to say that L ∩ Soc(G) ≤ L0, i.e. L ∩ Soc(G) =
L0∩Soc(G). Therefore L∩Soc(G) is a normal subgroup of N between K and
Soc(G). Since Soc(G)/K ∼= S, a non-abelian simple group, and L supplements
Soc(G) in N , we have that K = Soc(G) ∩ L. This is not possible. ��

As we saw in 1.1.35, the existence of complements of the socle in a prim-
itive group G of type 2 is characterised by the existence of complements of
Soc(G)/(S2 × · · · × Sn) in NG(S1)/(S2 × · · · × Sn). We wonder whether it
is possible to obtain a characterisation of the existence of complements of
Soc(G) in G in terms of complements of Soc(X) in X as we saw in 1.1.53 for
supplements. The answer is partially affirmative.

Corollary 1.1.54. With the notation of 1.1.40, let G be a primitive group of
type 2 such that Soc(X) is complemented in X. Then Soc(G) is complemented
in G.

The converse does not hold in general.

Proof. Suppose that there exists a subgroup Y ≤ N such that C ≤ Y and
N = Y S1 and Y ∩ S1C = C. Then it is clear that

S2×· · ·×Sn ≤ Y ∩Soc(G) ≤ Y ∩S1C ∩Soc(G) = C ∩Soc(G) = S2×· · ·×Sn

and therefore Y is a complement of Soc(G)/(S2×· · ·×Sn) in N/(S2×· · ·×Sn).
The conclusion follows by Theorem 1.1.35.

It is well-known that if S = Alt(6), the alternating group of degree 6,
the automorphism group A = Aut(S) is an almost simple group whose socle
is non-complemented. With the cyclic group C ∼= C2 we consider the reg-
ular wreath product H = A � C. In H we consider the diagonal subgroups
DS = {(x, x) : x ∈ S)} and DA = {(x, x) : x ∈ A}. Then NH(DS) = DAC.
Since DS

∼= S, the conjugacy action of NH(DS) on DS gives a group homo-
morphism ϕ : NH(DS) −→ Aut(S). We construct the twisted wreath product
G = S �(NH(DS),ϕ) H. Then Soc(G) = S1 × · · · × Sn is a minimal normal
subgroup of G and it is the direct product of n = |H : NH(D)| copies of
S. Moreover since CoreH

(
NH(DS)

)
= 1, then CG

(
Soc(G)

)
= 1 by Propos-

ition 1.1.34 (2). Hence G is a primitive group of type 2. Clearly Soc(G) is
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complemented in G. NH(S1) = NH(DS) = DAC and CH(S1) = Ker(ϕ) =
CH(DS) = C. Hence, X ∼= DA

∼= A and Soc(X) is not complemented in X.
��

Primitive pairs (G,U) of diagonal type, i.e. core-free maximal subgroups
U of primitive groups G of type 2 such that the projection π1 of U ∩ Soc(G)
on S1 is surjective, appear in Cases (2) and (3) of the O’Nan-Scott Theorem.
In this case U ∩ Soc(G) is a direct product of l full diagonal subgroups, with
1 ≤ l < n, and U = NG(D).

Proposition 1.1.55. Let G be a primitive group of type 2. Given a minimal
non-trivial partition ∆ = {I1, . . . , Il} of I in blocks for the action of G on I
and a subgroup D = D1 × · · · × Dl, where Dj is a full diagonal subgroup of∏

i∈Ij
Si, for each j = 1, . . . , l, associated with ∆. The following statements

are pairwise equivalent:

1. there exists a maximal subgroup U of G such that U ∩ Soc(G) = D;
2. NG(D) is a maximal subgroup of G;
3. G = NG(D) Soc(G).

Proof. 1 implies 2. Suppose that there exists a maximal subgroup U of G such
that U ∩ Soc(G) = D. Then U ≤ NG(D) and, by maximality of U in G, we
have that U = NG(D).

2 implies 3. Observe that NG(D) ∩ Soc(G) = NSoc(G)(D) = D, by
Lemma 1.1.38, and then Soc(G) 	≤ NG(D). Therefore G = NG(D) Soc(G).

3 implies 1. Let H be a maximal subgroup of G such that NG(D) ≤ H.
Then D = NSoc(G)(D) = Soc(G) ∩ NG(D) ≤ Soc(G) ∩ H. Then H ∩ Soc(G)
is a direct product of full diagonal subgroups associated with a partition of I
which refines {I1, . . . , Il}, by Proposition 1.1.39. By minimality of the blocks,
we have that H ∩ Soc(G) = D and therefore H = NG(D). ��

Example 1.1.56. We construct a primitive group G of type 2 with no maximal
subgroup of diagonal type. Consider the symmetric group of degree 5, H ∼=
Sym(5) and denote with S the alternating group of degree 5. If C is a cyclic
group of order 2, let G be the regular wreath product G = H � C. Then
Soc(G) = S1 × S2

∼= Alt(5) × Alt(5). Any full diagonal subgroup of Soc(G)
is isomorphic to Alt(5) and its normaliser N is isomorphic to Sym(5) × C2.
Observe that |G/ Soc(G)| = 8 > 4 = |N Soc(G)/Soc(G)|. Hence N does not
satisfy 3. Clearly N Soc(G) is a normal maximal subgroup of G containing N .

Proposition 1.1.57. Let G be a primitive group of type 2. Two maximal
subgroups U , U∗ of G, such that U∩Soc(G) and U∗∩Soc(G) are direct products
of full diagonal subgroups, are conjugate in G if and only if U ∩ Soc(G) and
U∗ ∩ Soc(G) are conjugate in Soc(G).

Proof. Suppose that Ug = U∗ for some g ∈ G. Then g = xh, with x ∈
NG

(
U ∩Soc(G)

)
and h ∈ Soc(G). Hence U∗∩Soc(G) =

(
U ∩Soc(G)

)g =
(
U ∩
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Soc(G)
)h. Conversely, if U∗ ∩ Soc(G) =

(
U ∩ Soc(G)

)h for some h ∈ Soc(G),

then U∗ = NG

(
U∗ ∩ Soc(G)

)
= NG

((
U ∩ Soc(G)

)h) = NG

(
U ∩ Soc(G)

)h =
Uh. ��

1.2 A generalisation of the Jordan-Hölder theorem

In the first book dedicated to Group Theory, the celebrated Traité des sub-
stitutions et des équations algébriques ([Jor70]), published in Paris in 1870,
the author, C. Jordan, presents the first version of a theorem known as the
Jordan-Hölder Theorem: The length of all composition series of a finite group
is an invariant of the group and the orders of the composition factors are
uniquely determined by the group. Nineteen years later, in 1889, O. Hölder
([Höl89]) completed his contribution to the theorem proving that not only
the orders but even the composition factors are uniquely determined by the
group.

In recent years a number of generalisations of the classic Jordan-Hölder
Theorem have been done. For example it has been proved that given two chief
series of a finite group G, there is a one-to-one correspondence between the
chief factors of the series, corresponding factors being G-isomorphic, such that
the Frattini chief factors of one series correspond to the Frattini chief factors
of the other (see [DH92, A, 9.13]). This result was first published by R. W.
Carter, B. Fischer, and T. O. Hawkes (see [CFH68]) for soluble groups, and
for finite groups in general by J. Lafuente (see [Laf78]). A further contribution

of common supplements.
But if we restrict our arguments to a proper subset of the set of all maximal

subgroups, we find that this is no longer true. For instance, in the elementary
abelian group G of order 4, there are three maximal subgroups, say A, B, and
C. If we consider the set X = {A,B}, the maximal subgroup B is a common
complement in X for the chief factors A and C. Also G/A is complemented
by A ∈ X. However G/C has no complement in X.

In general, the key of the proof of these Jordan-Hölder-type theorems is to
prove the result in the particular case of two pieces of chief series of a group
G of the form

1 < N1 < N1 × N2 1 < N2 < N1 × N2

where N1 and N2 are minimal normal subgroups of G. It is not difficult to
prove that if N1N2/N1 is supplemented by a maximal subgroup M , then M
also supplements N2 (see Lemma 1.2.16), but the converse is not true. The
particular case in which N1 and N2 are supplemented and either N1N2/N1 or
N1N2/N2 is a Frattini chief factor is the hardest one (see [DH92, A, 9.12]) and,

is given by D. W. Barnes (see [Bar72]), for soluble groups, and again by
J. Lafuente [Laf89] for finite groups in general, describing the bijection in terms
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in fact, proving the generalised Jordan-Hölder Theorem is reduced to prov-
ing that, in the above situation, N1N2/N1 and N1N2/N2 are simultaneously
Frattini chief factors of G.

For this reason J. Lafuente, in [Laf89], wonders about the precise condition
on a set X of maximal subgroups of a group G which allows a proof that, in
the above situation, if N1 and N2 have supplements in X, then N1N2/N1 and
N1N2/N1 possess simultaneously supplements in X, or, in other words, which
is the precise condition on X to prove a Jordan-Hölder-type Theorem. In this
section we present, among other related results, an answer to this question.

Definition 1.2.1. Given a group G and two normal subgroups K, H of G
such that K ≤ H, we say that the section H/K is a chief factor of G if there
is no normal subgroup of G between K and H, i.e. if N is a normal subgroup
of G and K ≤ N ≤ H, then either H = N or K = N .

Equivalently, H/K is a chief factor of G if H/K is a minimal normal
subgroup of G/K.

Hence H/K is a direct product of copies of a simple group and we have
two possibilities:

1. either H/K is abelian, and there exists a prime p such that H/K is an
elementary abelian p-group, or

2. H/K is non-abelian, and there exists a non-abelian simple group S such
that H/K ∼= S1 × · · · × Sn, where Si

∼= S for all i = 1, . . . , n.

Given a group G and two normal subgroups K, H of G such that K ≤ H,
the group G acts by conjugation on the cosets of the section H/K: for h ∈ H
and g ∈ G, then (hK)g = hgK. This action of G on H/K defines a group
homomorphism ϕ : G −→ Aut(H/K) such that

Ker(ϕ) = CG(H/K) = {g ∈ G : hgK = hK for all h ∈ H}.

We say that CG(H/K) is the centraliser of H/K in G. We write AutG(H/K) =
Im(ϕ) ∼= G

/
CG(H/K) for the group of automorphisms of H/K induced

by the conjugation of the elements of G. The set of G composed of all ele-
ments which induce inner automorphisms on H/K is the subset C∗

G(H/K) =
H CG(H/K).

Definition 1.2.2. Given a chief factor H/K of a group G, the inneriser of
H/K in G is the subgroup

C∗
G(H/K) = H CG(H/K).

It is clear that if H/K is abelian, then C∗
G(H/K) = CG(H/K)

Definition 1.2.3. Let G be a group and let F1 and F2 two chief factors of G.
A map γ : F1 −→ F2 is a G-isomorphism if γ is a group isomorphism and
(xg)γ = (xγ)g, for any x ∈ F1 and any g ∈ G.

Two chief factors F1, F2 of G are G-isomorphic if there exists a G-
isomorphism γ : F1 −→ F2.

If two chief factors F1, F2 of G are G-isomorphic, then write F1
∼=G F2.
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Proposition 1.2.4. Let G be a group and let H1/K1 and H2/K2 be two chief
factors of G.

1. If H1/K1 and H2/K2 are G-isomorphic, then CG(H1/K1) = CG(H2/K2).
2. In general, the converse of 1 is not true.
3. Suppose that H1/K1 and H2/K2 are non-abelian. Then H1/K1 and

H2/K2 are G-isomorphic if and only if CG(H1/K1) = CG(H2/K2).

Proof. Since clearly 1 is true, we prove 3 and give a counterexample to prove 2.
Suppose that H1/K1 and H2/K2 are non-abelian chief factors of G such

that C = CG(H1/K1) = CG(H2/K2). We have that Ki ≤ C ∩ Hi ≤ Hi, for
i = 1, 2. Since the chief factors are non-abelian, Hi is not contained in C.
Therefore Ki = C ∩ Hi, for i = 1, 2. Hence, Hi/Ki

∼=G HiC/C, for i = 1, 2.
Observe that H1C/C is a minimal normal subgroup of the group G/C with
trivial centraliser. This means that G/C is a primitive group of type 2, by
Proposition 1.1.14. Since H2C/C is also a minimal normal subgroup of G/C,
then H1C = H2C. Hence H1/K1 and H2/K2 are G-isomorphic.

To see that this does not hold when the chief factors are abelian, let P
be an extraspecial p-group, p an odd prime, of order p3. Let F be a field of
characteristic q, with q 	= p, such that F contains a primitive p-th root of unity.
Then there exist p− 1 non-equivalent irreducible and faithful P -modules over
F of dimension p (see [DH92, B, 9.16]). Since p − 1 > 1, we can consider two
non-isomorphic such P -modules, V1, V2. If V is the direct sum V = V1 ⊕ V2,
construct the semidirect product G = [V ]P . The group G has two isomorphic
minimal normal subgroups V1, V2 such that CG(Vi) = V , for i = 1, 2. But V1

and V2 are not G-isomorphic. ��

Observe that in a primitive group G of type 3, the two minimal normal
subgroups are not G-isomorphic. In other words, G-isomorphism is an equi-
valence relation in the set of all chief factors of G which is too “narrow” to
include the case of the relation between the two minimal normal subgroups
of a primitive group of type 3. J. Lafuente and P. Förster [För83] propose
two equivalent “enlargements” of G-isomorphism. Here we follow Lafuente’s
definition.

Definition 1.2.5. Let G be a group. We say that two given chief factors of G
are G-connected if either they are G-isomorphic or there exists a normal
subgroup N of G such that G/N is a primitive group of type 3 whose minimal
normal subgroups are G-isomorphic to the given chief factors.

Obviously, in a group G, two abelian chief factors are G-connected if and
only if they are G-isomorphic.

Proposition 1.2.6 ([Laf84a]). In a group G, the relation of being G-con-
nected is an equivalence relation on the set of all chief factors of G.
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Proof. The only non-obvious property to prove is transitivity. Let F1, F2, F3

be chief factors of G such that F1 is G-connected to F2 and F2 is G-connected
to F3. We may suppose that no two are G-isomorphic. Therefore

1. there exists a normal subgroup N of G such that G/N is a primitive
group of type 3 whose minimal normal subgroups are A/N ∼=G F1 and
B/N ∼=G F2, and

2. there exists a normal subgroup M of G such that G/M is a primitive
group of type 3 whose minimal normal subgroups are C/M ∼=G F2 and
D/M ∼=G F3.

Observe that CG(F2) = CG(B/N) = A and also CG(F2) = CG(C/M) = D.
Hence A = D. Moreover N ≤ NM ≤ A and A/N is a chief factor. If N = NM ,
then M ≤ N ≤ A and M = N . This implies that F1

∼=G F3 and, in particular,
F1 and F3 are G-connected.

Now suppose that A = MN . Then the group G/A is isomorphic to
(G/N)

/
(A/N), which is the quotient group of a primitive group of type 3

over one of its minimal normal subgroups. Therefore G/A is a primitive group
of type 2 by Corollary 1.1.13. On the other hand BA/A ∼=G B/(B ∩ A) =
B/N ∼=G F2 and, since M = A ∩ C, we have that CA/A ∼=G C/(C ∩ A) =
C/M ∼=G F2, so BA/A and CA/A are minimal normal subgroups of G/A.
Hence AC = AB. Analogously, working with G/B, we obtain that AB = BC.

Note that if C is contained in B, then AB = B and then A = B, giving a
contradiction. If B is contained in C, then AB = C. Since M < A ≤ AB = C
and C/M is a chief factor of G, we have that A = C and then A = B,
which gives again a contradiction. Hence the subgroup E = B ∩C is a proper
subgroup of B and of C. Consider the group G/E. We have that

B/E ∼=G BC/C = AC/C ∼=G A/(A ∩ C) = A/M ∼=G F3

and then
CG(B/E) = CG(F3) = CG(A/M) = C.

Also
C/E ∼=G BC/B = AB/B ∼=G A/(A ∩ B) = A/N ∼=G F1

and then
CG(C/E) = CG(F1) = CG(A/N) = B.

On the other hand, let U , V be maximal subgroups of G such that N ≤ U
and U is a common complement of A/N and B/N and M ≤ V and V is a
common complement of A/M and C/M . Consider the subgroup X = (U ∩
V )E.

If X = G, then U = U ∩ X = (U ∩ V )(U ∩ E) = (U ∩ V )(N ∩ C) =
(U ∩ V )(N ∩ M) = U ∩ V . This contradicts the fact that U 	= V . Hence X is
a proper subgroup of G. Now we have:

XB = (U ∩ V )B = (U ∩ V N)B = UB = G
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and
XC = (U ∩ V )C = (UM ∩ V )C = V C = G.

Moreover B ∩ X is a normal subgroup of X and (B ∩ X)/E is centralised
by CG(B/E) = C. Hence B ∩ X is a normal subgroup of XC = G. Since
B/E is a chief factor of G and X is a proper subgroup of G, then B ∩ X =
E. Analogously C ∩ X = E. In other words, the subgroup X is a common
complement of B/E and C/E. By Corollary 1.1.13, the group G/(B ∩ C) is
a primitive group of type 3. Consequently, F1 is G-connected to F3. ��

Definition 1.2.7. Let H/K be a chief factor of a group G.

1.We say that H/K is a Frattini chief factor of G if H/K ≤ Φ(G/K).
2. If there exists a proper subgroup M of G such that G = MH and K ≤

H ∩ M , we say that H/K is a supplemented chief factor of G and M is
a supplement of H/K in G. If H/K in a non-Frattini chief factor of G,
then H/K is supplemented in G by a maximal subgroup of G.

3. If H/K is a chief factor of G supplemented by a subgroup M of G and
K = H ∩ M , then we say that H/K is a complemented chief factor of G
and M is a complement of H/K in G.

Remarks 1.2.8. Let G be a group and H/K a supplemented chief factor of G.
Consider a maximal subgroup M of G supplementing H/K in G. Clearly, in
the quotient group G/MG, the maximal subgroup M/MG is core-free. There-
fore G/MG is a primitive group. We get K = H ∩ MG and then note that
if MG < X < HMG and X is normal in G, then X = MG(X ∩ H), where
K ≤ X ∩H ≤ H. Hence X ∩H = K or H. In both cases we have a contradic-
tion. Thus HMG/MG is a minimal normal subgroup of the primitive group
G/MG.

1. Note that if M is a maximal subgroup of type 1 or 3 of a group G,
then each chief factor of G supplemented by M is in fact complemented by
M . In these cases, HMG/MG is a minimal normal subgroup of the primitive
group G/MG, which is of type 1 or 3, and then M ∩ HMG = MG. Therefore
M ∩ H = MG ∩ H = K, as claimed.

2. Observe that HMG/MG
∼=G H/K. Write

C = CG(H/K) = CG(HMG/MG).

a) If H/K is abelian, then the primitive group G/MG is of type 1; in this
case C = HMG and M/MG

∼= G/C; therefore G/MG is isomorphic to the
semidirect product [H/K](G/C).

b) if H/K is non-abelian, then two cases arise:
i. If C = MG, then G/MG is a primitive group of type 2; clearly

Soc(G/C) = HC/C ∼=G H/K.
ii. If MG is contained in C, then G/MG is a primitive group of type 3

whose minimal normal subgroups are HMG/MG and C/MG; in this
case G/C is a primitive group of type 2 and Soc(G/C) = HC/C ∼=G
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H/K. If S is a maximal subgroup supplementing HC/C in G, then
G = HS and K = H ∩ C = H ∩ SG. Hence S is also a supplement of
H/K in G and SG = C as in 2(b)i.

Hence for any supplemented chief factor H/K of G, there exists a maximal
subgroup M of G supplementing H/K in G such that G/MG is a monolithic
primitive group. We say then that M is a monolithic supplement of H/K in
G. This observation leads us to two definitions.

Definition 1.2.9. For any chief factor H/K of a group G, we define the
primitive group associated with H/K in G to be

1. the semidirect product [H/K]
(
G
/

CG(H/K)
)
, if H/K is abelian, or

2. the quotient group G
/

CG(H/K), if H/K is non-abelian.

Notation 1.2.10. The primitive group associated with H/K is denoted by
[H/K] ∗ G.

It is easy to see that if H/K is a supplemented chief factor of a group G,
and M is a monolithic supplement of H/K in G, then [H/K] ∗ G ∼= G/MG.

Definition 1.2.11. Let H/K be a supplemented chief factor of the group G.
Assume that M is a maximal subgroup G supplementing H/K in G such
that G/MG is a monolithic primitive group. We say that the chief factor
Soc(G/MG) = HMG/MG is the precrown of G associated with M and H/K,
or simply, a precrown of G associated with H/K.

Remarks 1.2.12. 1. If H/K is a non-abelian chief factor of the group G,
then for each maximal subgroup M of G supplementing H/K in G such
that G/MG is a monolithic primitive group, we have that MG = CG(H/K).
Therefore the unique precrown of G associated with H/K is

Soc(G/MG) = HMG/MG

= H CG(H/K)
/

CG(H/K) = C∗
G(H/K)

/
CG(H/K).

2. If H/K is a complemented abelian chief factor of G and M is a com-
plement of H/K in G, then the precrown of G associated with M and H/K
is

Soc(G/MG) = HMG/MG = CG/MG
(HMG/MG) = CG(H/K)/MG.

For this reason it is interesting to know how many different precrowns
are associated with a particular abelian chief factor. The answer, in a soluble
group, is particularly elegant.

Proposition 1.2.13. Let H/K be a complemented chief factor of a soluble
group G. Then the function which assigns to each conjugacy class of comple-
ments of H/K in G, {Mg : g ∈ G} say, the common core MG of its elements
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induces a bijection between the set of all conjugacy classes of complements of
H/K in G and the set of all normal subgroups of G which complement H/K
in CG(H/K).

Therefore there exists a bijection between the set of all precrowns of G
associated with H/K and the set of all conjugacy classes of complements of
H/K in G.

Proof. Write C = CG(H/K). Let N be a normal subgroup of G such that
C = HN and H ∩ N = K. Then HN/N ∼=G H/K and HN/N is a self-
centralising minimal normal subgroup of the group G/N . By Theorem 1.1.10,
HN/N is complemented in G/N and all complements are conjugate. If M/N
is one of these complements, then N = MG. Hence the correspondence is
surjective.

Let M and S be two complements of H/K in G such that N = MG =
SG. Then G/N is a soluble primitive group such that and S/N , M/N are
complements of Soc(G/N) = HN/N . By Theorem 1.1.10, there exists an
element g ∈ G such that Sg = M . Hence the correspondence is injective.

Finally observe that, since H/K is abelian, the precrowns of G associated
with H/K have a common numerator CG(H/K) and different denominators
MG, one for each conjugacy class of complements of H/K in G. ��

Our next goal is to give a characterisation of the property of being G-
connected. Observe that in a primitive group G of type 3, if A and B are
the minimal normal subgroups, then C∗

G(A) = C∗
G(B) = AB = Soc(G). This

means that two G-connected chief factors have the same inneriser. But this
cannot be a characterisation as we can see from the example in Proposi-
tion 1.2.4 (2). To characterise the property of being G-connected in terms of
the inneriser we have to be more precise.

But before that we have to include here a technical lemma, which will be
crucial in our presentation.

Lemma 1.2.14 (see [För88]).

1. Let N1, . . . , Nn be normal subgroups of a group G (n ≥ 2), and consider
N =

∏n
i=1 Ni. Suppose that

⋂n
i=1 Ni = 1 and that |N | =

∏n
i=1|N/Ni|.

For i = 1, . . . , n, write pi : G/Ni −→ G/N for the natural projection:
(gNi)pi = gN , for all g ∈ G. Then the following statements are equivalent:
a) There exists a subgroup U of G which complements all the Ni’s in G.
b) There exist group isomorphisms ϕi : G/N1 −→ G/Ni, for i = 2, . . . , n,

such that ϕipi = p1, for all i = 2, . . . , n.
2. Let N1 and N2 be two normal subgroups of a group G such that N1 ∩

N2 = 1. Write N = N1N2. Suppose that, for i = 1, 2, there exist group
isomorphisms γi between G/Ni and a semidirect product X = [Z]Y , where
Z is a normal subgroup of X, such that (N/Ni)γi = Z.
Then there exists a subgroup H of G such that G = HN and H ∩N = 1.
For such H the following statements are equivalent:
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a) there exists a subgroup U of G such that H ≤ U and U is a common
complement of N1 and N2 in G, and

b) N1
∼=H N2.

If, moreover, the Ni, i = 1, 2, are abelian, then each of the previous
statements is equivalent to
c) N1

∼=G N2.

Proof. 1. Define ϕ : N −→ N/N1 × · · · ×N/Nn, by xϕ = (xN1, . . . , xNn),
for every x ∈ N . It is clear that ϕ is a group homomorphism. If x ∈ Ker(ϕ),
then x ∈ ⋂n

i=1 Ni = 1. Moreover, since |N | =
∏n

i=1|N/Ni|, we have that ϕ is
an isomorphism.

Suppose that there exist group isomorphisms ϕi : G/N1 −→ G/Ni, for
i = 2, . . . , n, such that ϕipi = p1, for all i = 2, . . . , n. Given g1N1 ∈ G/N1,
we consider giNi = (g1N1)ϕi , for i = 2, . . . , n. Then (g1N1)ϕipi = giN and
(g1N1)p1 = g1N . Hence g−1

1 gi ∈ N , for all i = 1, . . . , n.
Since ϕ is an isomorphism, there exists a unique element x0 ∈ N such that

(N1, g
−1
1 g2N2, . . . , g

−1
1 gnNn) = (x0N1)ϕ = (x0N1, . . . , x0Nn)

and then x0 ∈ N1 and x−1
0 g−1

1 gi ∈ Ni, for i = 2, . . . , n. Therefore giNi =
g1x0Ni, for all i = 2, . . . , n. Then, (g1x0N1)ϕi = (g1N1)ϕi = giNi = g1x0Ni.
For the element g = g1x0 ∈ g1N1∩g2N2∩· · ·∩gnNn, we have that (gN1)ϕi =
gNi, for i = 2, . . . , n.

For each i = 1, . . . , n, we choose a system of coset representatives Ui =
{x1i, . . . , xri} of Ni in G, such that (xk1N1)ϕi = xkiNi for all i = 2, . . . , n
and all k = 1, . . . , r. The above arguments show that there exist zk ∈ xk1N1∩
xk2N2 ∩ · · · ∩ xknNn such that (zkN1)ϕi = zkNi, for all i = 2, . . . , n. Thus we
obtain a common system of coset representatives U = {z1, . . . , zk} of all the
Ni’s in G.

Let us prove that U is a subgroup of G. If we suppose that x11N1 = N1,
which forces z1N1 = N1, we obtain Ni = Nϕi

1 = (z1N1)ϕi = z1Ni, for all
i = 2, . . . , n. Hence z1 ∈ ⋂n

i=1 Ni = 1 and 1 ∈ U .
Suppose that (zkN1)−1 = ztN1 for some t. Then zkzt ∈ N1. Hence zkzt ∈⋂n

i=1 Ni = 1. Therefore z−1
k = zt ∈ U .

For zk, zj ∈ U , we have that zkzjN1 = ztN1 for some t. Then z−1
t zkzj ∈

N1. As above this implies that z−1
t zkzj ∈ ⋂n

i=1 Ni = 1 and zkzj = zt ∈ U .
Therefore U is a subgroup of G and is the required common complement

of all the Ni’s in G.
To prove the converse, let U be a common complement of the Ni’s in G

and define ϕi : G/N1 −→ G/Ni by (gN1)ϕi = uNi, where g = un, u ∈ U , and
n ∈ Ni. This is a well-defined homomorphism and it is injective. Since all the
Ni have a common complement, they have, in particular, the same order and
|G/N1| = |G/Ni|, for all i = 2, . . . , n. Then the ϕi are group isomorphisms.
Finally note that, for all i = 2, . . . , n and all g ∈ G, (gN1)ϕipi = uN = gN =
(gN1)p1 , i.e. ϕipi = p1.
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2. Since Y is a complement of Z in X and γi is a group isomorphism,
then Hi/Ni = Y γ−1

i is a complement of Zγ−1
i = N/Ni in G/Ni, for each

i = 1, 2. Consider the subgroup H = H1 ∩ H2. Observe that G = H1N =
H1N2 = H2N1. Then HN = (H1 ∩ H2)N = (H1 ∩ H2N1)N2 = H1N2 = G,
and H ∩ N = H1 ∩ H2 ∩ N = N1 ∩ N2 = 1.

Suppose that there exists a subgroup U of G such that H ≤ U and U
is a common complement of N1 and N2 in G. Consider the isomorphisms ϕi

between G/Ni = UNi/Ni and U defined by (uNi)ϕi = u. Then (N/Ni)ϕi =
U ∩ N . Write τi for the restriction of ϕi to N/Ni.

Consider also the isomorphisms ρi : N/Ni −→ N3−i, i = 1, 2, given by
(nNi)ρi = n3−i, for all n ∈ N , where n = n1n2, n1 ∈ N1 and n2 ∈ N2.

Consider the isomorphism ψ = ρ−1
1 τ1τ

−1
2 ρ2 between N2 and N1. It is not

difficult to see that if n2 ∈ N2, then nψ
2 = n−1

1 , where n2 = un1 for u ∈ U
and n1 ∈ N1. The fact that ψ is H-invariant is an easy consequence of the
fact that U is H-invariant. Therefore 2a implies 2b.

Conversely, if ϕ is an H-isomorphism between N1 and N2, then T = {aaϕ :
a ∈ N1} is a subgroup of N = N1N2, and H ≤ NG(T ). Consider U = HT .
Since N = TNi, then G = UNi, for i = 1, 2. Moreover, U ∩ Ni ≤ HT ∩ N =
T (H ∩ N) = T , and then U ∩ Ni ≤ T ∩ Ni = 1, for i = 1, 2. Hence U is a
common complement of N1 and N2 in G. Therefore 2b implies 2a.

If, moreover, the Ni, i = 1, 2, are abelian and 2a is true, then it is easy to
see that any H-isomorphism between N1 and N2 is a G-isomorphism. ��

Proposition 1.2.15. Let G be a group and Hi/Ki, i = 1, 2, two supplemented
chief factors of G. Then the following are equivalent.

1. H1/K1 and H2/K2 are G-connected;
2. for each i = 1, 2, there exists a precrown Ci/Ri associated with Hi/Ki,

such that
a) C1 = C2, and
b) there exists a common complement U of the factors Ri/(R1 ∩ R2) in

G, i = 1, 2.

Proof. 1 implies 2. If the Hi/Ki, i = 1, 2, are abelian, then H1/K1
∼=G

H2/K2. In this case C1 = CG(H1/K1) = C2 = CG(H2/K2) = C. Hence
the numerators of the precrowns coincide. For each i = 1, 2, let Mi be a
complement of Hi/Ki in G. Then C = H1(M1)G = H2(M2)G. If R = (M1)G =
(M2)G, then both chief factors have the same precrown C/R and we can take
U = G. Otherwise R1 = (M1)G 	= (M2)G = R2. We can assume without loss
of generality that R1 ∩R2 = 1. In particular, C = R1 ×R2 and R1

∼=G R2
∼=G

H1/K1.
Note that G/R1

∼= G/R2
∼= [H1/K1](G/C) and the isomorphisms map the

C/Ri onto H1/K1. By the previous lemma, there exists a common complement
to R1 and R2 in G.
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Suppose now that the Hi/Ki, i = 1, 2, are non-abelian and H1/K1
∼=G

H2/K2. Then they have the same precrown and we can take G as complement
of the trivial factor.

Assume finally that Hi/Ki, i = 1, 2, are non-abelian and there exists a
normal subgroup N of G such that G/N is a primitive group of type 3 with
minimal normal subgroups A1/N and A2/N such that A1/N ∼=G H1/K1 and
A2/N ∼=G H2/K2. Clearly CG(A1/N) = A2 and CG(A2/N) = A1. Hence
the precrown of G associated with H1/K1 and with A1/N is A1A2/A2 and
the precrown of G associated with H2/K2 and with A2/N is A1A2/A1. Since
A1 ∩ A2 = N and G/N is a primitive group of type 3, the conclusion follows
easily from Theorem 1 (3c).

2 implies 1. Suppose that there exist normal subgroups C, R1, R2 of G such
that C/Ri is a precrown associated with Hi/Ki and there exists a common
complement U of the factors Ri/(R1 ∩ R2) in G, i = 1, 2.

If H1/K1 and H2/K2 are non-abelian, then Ri = CG(Hi/Ki) and G/Ri is
a primitive group of type 2, i = 1, 2. If R1 = R2, then H1/K1 and H2/K2 are
G-isomorphic and then G-connected. If R1 	= R2, we apply Corollary 1.1.13
to conclude that G/(R1 ∩ R2) is a primitive group of type 3 whose minimal
normal subgroups are Ri/(R1 ∩ R2) ∼=G Hi/Ki, i = 1, 2. Therefore H1/K1

and H2/K2 are G-connected.
Assume that H1/K1 and H2/K2 are abelian. If R1 = R2, then H1/K1 and

H2/K2 are G-isomorphic and if R1 	= R2, then both factors are G-isomorphic
to Soc(G/UG). In both cases, they are G-connected. ��

Lemma 1.2.16 ([Bra88]). Let G be a group and suppose that Z, Y , X, W
are normal subgroups of G such that Z = XY and X ∩ Y = W .

1. If Z/X is complemented in G by M , then Y/W is complemented in G by
M .

2. Moreover, if M complements Z/X and S complements X/W , then (M ∩
S)Y complements Z/Y ; in this case M ∩ S complements Z/W in G.

3. Parts 1 and 2 hold in terms of supplements.

When Y/W is a non-abelian chief factor of G, we can say even more:

4. the set of monolithic supplements of Y/W in G coincides with the set of
monolithic supplements of Z/X in G;

5. moreover, if X/W is an abelian chief factor of G then the (possibly empty)
set of complements of X/W in G coincides with the set of complements
of Z/Y in G.

Proof. 1, 3. If G = MZ and X ≤ Z ∩ M, then G = MY . Moreover
W = X ∩ Y ≤ M ∩ Z ∩ Y = M ∩ Y . Then M is a supplement of Y/W in G.

2, 3. If G = MZ with X ≤ Z ∩ M and G = SX with W ≤ S ∩ X,
then

(
(M ∩ S)Y

)
Z = (M ∩ S)Z = (M ∩ S)XY = (M ∩ SX)Y = MY =

M(XY ) = MZ = G. Moreover
(
(M ∩ S)Y

)
∩ Z = (M ∩ S ∩ Z)Y contains

(X ∩ S)Y and Y = WY ≤ (X ∩ S)Y . Hence (M ∩ S)Y is a supplement of
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Z/Y in G. Moreover, in this case, G = (M ∩ S)Z and W is contained in
S ∩X = S ∩X ∩Z ≤ M ∩S ∩Z. This is to say that M ∩S supplements Z/W
in G.

A substitution of the above inequalities by equalities gives the result in
terms of complements.

For the remainder of the proof we can suppose without loss of generality
that W = 1 and then Y is a non-abelian minimal normal subgroup of G
centralising X.

4. If M is a monolithic supplement of Y in G then G = MY and the group
G/MG is a monolithic primitive group of non-abelian socle. Then we have
Soc(G/MG) = MGY/MG and CG(Y ) = CG(MGY/MG) = MG. Hence X ≤
CG(Y ) = MG ≤ M . Then G = MZ with X ≤ Z ∩ M and M is a monolithic
supplement of Z/X in G. Conversely, if M is a monolithic supplement of Z/X
in G, then, by Statement 3, M supplements Y in G.

5. Suppose that X is an abelian minimal normal subgroup of G comple-
mented by M . Then CG(X) = XMG and then Z = X × (Z ∩MG). Since Y is
non-abelian, this implies that Y = Z ′ is contained in Z ∩MG. Then Y is con-
tained in M and M complements Z/Y . Note that the roles of X and Y in the
original hypothesis can be interchanged without loss. Hence, by Statement 1,
the (possibly empty) set of complements in G of X coincides with the set of
complements of Z/Y in G. ��

Lemma 1.2.17 (see [Haw67]). Let U and S be two maximal subgroups of
a group G such that UG 	= SG. Suppose that U and S supplement the same
chief factor H/K of G. Then M = (U ∩ S)H is a maximal subgroup of G
such that MG = H(UG ∩ SG).

1. Assume that H/K is abelian. Then M is a maximal subgroup of type 1 and
complements the chief factors UG/(UG∩SG) and SG/(UG∩SG). Moreover
M ∩ U = M ∩ S = U ∩ S.

2. Assume that H/K is non-abelian. Then either U or S is of type 3. Sup-
pose that U is of type 3 and S is monolithic. Then UG < SG = CG(H/K).
Moreover M is a maximal subgroup of type 2 of G such that M supple-
ments the chief factor SG/UG.

3. Assume that U and S are of type 3. Then M is a maximal subgroup of
type 3 of G such that M complements the chief factors HSG/MG and
HUG/MG. Moreover M ∩ U = M ∩ S = U ∩ S.

Proof. 1. Assume that H/K is abelian and denote C = CG(H/K). First
observe that M∩U = H(U∩S)∩U = (H∩U)(U∩S) = K(U∩S) = U∩S, since
H∩U = K, by the abelian nature of H/K. Analogously M∩S = U∩S. Hence
M is a proper subgroup of G. Note also that C = UGH = SGH = UGSG and
UG/(UG∩SG) is a G-chief factor which is G-isomorphic to the precrown C/SG.
Hence UG/(UG ∩SG) is G-isomorphic to H/K. Now, MUG = (U ∩S)HUG =
(U ∩ SUG)H = UH = G and UG ∩ SG ≤ M ∩ UG and then we deduce that
M is a maximal subgroup of G which complements UG/(UG ∩SG). The same
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argument holds for the chief factor SG/(UG ∩SG). Since M also complements
the chief factor C/(UG ∩ SG)H, we have that MG = H(UG ∩ SG).

2. Assume that H/K is non-abelian. If U and S were both monolithic, of
type 2, then UG = SG = CG(H/K). This is not true by hypothesis and then
either U or S is of type 3.

Assume that U is of type 3 and S is monolithic. It is clear that SG =
CG(H/K). Observe that HUG/UG is a chief factor of G which is G-isomorphic
to H/K. Then HUG/UG and SG/UG are the two minimal normal subgroups
of the primitive group G/UG of type 3. Both are complemented by U ; in
particular, G = USG.

Observe that MSG = H(U ∩ S)SG = H(USG ∩ S) = HS = G and
M ∩ SG = (U ∩ S)H ∩ SG contains UGH ∩ SG = UG(H ∩ SG) = UGK = UG

and then M supplements the chief factor SG/UG.
Now the group G/UGH = (M/UGH)(SGH/UGH) is primitive of type 2.

If the normal subgroup MG/UGH were non-trivial, then SGH would be con-
tained in MG and so SG ≤ M . This is not possible. Hence MG = UGH.

Consider a subgroup T such that U ∩S ≤ T ≤ U . Then S = (U ∩S)SG ≤
TSG ≤ USG = G. By maximality of S in G we have that either S = TSG

or G = TSG. Observe that T ∩ SG = U ∩ SG = UG, and then, U ∩ TSG =
T (U∩SG) = T (T ∩SG) = T , so U∩S = T or U = U∩G = T . This means that
U ∩ S is a maximal subgroup of U . In the isomorphism U/(U ∩ H) ∼= G/H,
the image of (U ∩S)/(U ∩H) is M/H. Hence M is a maximal subgroup of G
of type 2.

3. Assume now that U and S are maximal subgroups of type 3: the quo-
tient groups G/UG and G/SG are primitive groups of type 3.

If C = CG(H/K), then U complements the chief factors HUG/UG and
C/UG. Analogously, S complements the chief factors HSG/SG and C/SG.
In particular, UG 	≤ SG and SG 	≤ UG. Therefore G = USG = SUG. Now,
by an analogous argument to that presented at the end of 2, we have that
M = (U ∩ S)H is a maximal subgroup of G.

On the other hand, since C/SG and C/UG are chief factors of G and
UG 	= SG, then C = UGSG. Write L = UG ∩ SG. Observe that HUG/HL ∼=G

UG/(UG ∩ HL) = UG/L ∼=G C/SG and then HUG/HL is a chief factor
of G and CG(HUG/HL) = CG(C/SG) = HSG. Similarly HSG/HL is a
chief factor of G and CG(HSG/HL) = HUG. Hence the quotient group
G∗ = G/HL has two minimal normal subgroups, namely N = HSG/HL and
CG∗(N) = HUG/HL. Observe that M(SGH) = (U∩ S)SGH = (USG ∩ S)H =
SH = G. Because U complements C/UG, we have that U ∩ UGSG = UG, so
U ∩SG = UG∩SG = L and M∩ HSG = (U ∩S ∩HSG)H = (U ∩SG)H = HL.
Analogously G = M(UGH) and M ∩ HUG = HL. Therefore, the maximal
subgroup M∗ = M/HL of G∗ complements N and CG∗(N). By Proposi-
tion 1.1.12, the group G∗ is a primitive group of type 3. Hence MG = HL.

Finally observe that M∩U = H(U∩ S)∩U = (H ∩U)(U∩S) = K(U∩S)=
U ∩ S. Analogously M ∩ S = U ∩ S. ��
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Definitions 1.2.18. Let X be a set of maximal subgroups of a group G.

1. If X is non-empty, then the X-Frattini subgroup of G is defined to be the
intersection of the cores of all members of X. It is denoted by ΦX(G). If
X = ∅, we define ΦX(G) = G.

2. Let H/K be a chief factor of G. We say that H/K is an X-supplemented
(respectively, X-complemented) chief factor if it has a supplement (re-
spectively, complement) in X; otherwise H/K is said to be an X-Frattini
chief factor.

3. If C∗/N is a precrown of G associated with an X-supplemented chief factor
H/K of G, we shall say that C∗/N is an X-precrown of G associated with
H/K.

Notation 1.2.19. Let N be a normal subgroup of a group G and let X be a
set of maximal subgroups of G. We write

X/N = {Z/N : Z ∈ X and N is contained in Z}

and if ϕ : G −→ H is a group homomorphism, we write

Xϕ = {Sϕ : S ∈ X}.

The following lemma will be used frequently in the sequel.

Lemma 1.2.20. Let X be a set of maximal subgroups of a group G. Let H/K
be a chief factor of a group G.

1. H/K is an X-Frattini chief factor of G if and only if H/K ≤ ΦX/K(G/K).
2. If A is a normal subgroup of G contained in K, then H/K is X-Frattini in

G/K if and only if (H/A)
/
(K/A) is X/A-Frattini in G/A. Furthermore,

if H/K is X-supplemented in G, then a maximal subgroup U ∈ X is a
supplement of H/K in G if and only if U/A is an X/A-supplement of
(H/A)

/
(K/A) in G/A.

Definition 1.2.21. A set X of maximal subgroups of a group G is said to
be solid for the Jordan-Hölder theorem, or simply JH-solid, if it satisfies the
following condition:

(JH) If U , S ∈ X with UG 	= SG and both supplement a chief factor H/K of
G, then there exists M ∈ X such that MG = (UG ∩ SG)H.

Applying Lemma 1.2.17, the set of all maximal subgroups of a group G
that supplement a single chief factor, the set Max(G) of all maximal subgroups
of a group G, and the set Max∗(G) of all monolithic maximal subgroups of a
group G are JH-solid.

Note that

Φ(G) =
⋂

{M ∈ Max(G)} =
⋂

{M ∈ Max∗(G)}.

We will use the following results in inductive arguments.
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Theorem 1.2.22. Let G be a group factorised as G = MN , where M is a
subgroup of G and N is a normal subgroup of G. Then G/N ∼= M/(N ∩ M),
and we have the following.

1. If
N = Hn < · · · < H0 = G (1.4)

is a piece of chief series of G, then

M ∩ N = M ∩ Hn < · · · < M ∩ H0 = M (1.5)

is a piece of chief series of M . If S is a maximal subgroup of G which
supplements a chief factor Hi/Hi+1 in (1.4), then M ∩ S is a maximal
subgroup of M which supplements the chief factor (Hi ∩ M)/(Hi+1 ∩ M)
in (1.5). Moreover, the core of M ∩ S in M is (M ∩ S)M = M ∩ SG.

2. Conversely, if
M ∩ N = Mn < · · · < M0 = M (1.6)

is a piece of chief series of M , then

N = MnN < · · · < M0N = MN = G (1.7)

is a piece of chief series of G. If U is a maximal subgroup of M which sup-
plements a chief factor Mi/Mi+1 in (1.6), then UN is a maximal subgroup
of G which supplements the chief factor MiN/Mi+1N in (1.7). Moreover,
the core of UN in G is (UN)G = UMN .

Lemma 1.2.23. Let X be a JH-solid set of maximal subgroups of a group G
and N a normal subgroup of G.

1. The set X/N is a JH-solid set of maximal subgroups of G/N.
2. Suppose that the subgroup M supplements N in G: G = MN. Then the

set
(X ∩ M)/(N ∩ M) = {(S ∩ M)/(N ∩ M) : N ≤ S ∈ X}

is a JH-solid set of maximal subgroups of M/(N ∩ M).
Moreover, if ϕ is the isomorphism between G/N and M/(N ∩M) then we
have that (X/N)ϕ = (X ∩ M)/(M ∩ N).

Now we can prove the announced strengthened form of the Jordan-Hölder
theorem for chief series of finite groups and give an answer to Lafuente’s
question. To do this we proceed following Lafuente’s arguments in [Laf89]. It
must be observed that these arguments deal with the modular lattice of all
normal subgroups of a group in which we can use the Duality Principle (see
[Bir69, Chapter 1, Theorem 2]).

Notation 1.2.24. If A/B and C/D are sections of a group G, then we write
A/B � C/D (or C/D � A/B) if C = AD and B = A ∩ D.
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Observe that if A/B � C/D, then A/B ∼=G C/D. In particular, A/B is a
chief factor of G if and only if C/D is a chief factor of G.

Lemma 1.2.25. Let K and H be normal subgroups of a group G and let

K = Y0 < Y1 < · · · < Ym−1 < Ym = H

be a piece of chief series between K and H. Suppose that X∗/X is a chief
factor of G between H and K.

1. If X∗Yj = XYj, then X∗Yk = XYk for j ≤ k ≤ m.
2. If X∗ ∩ Yj−1 = X ∩ Yj−1, then X∗ ∩ Yk−1 = X ∩ Yk−1, for 1 ≤ k ≤ j.
3. If X∗Yj−1 > XYj−1, then X∗Yk−1 > XYk−1, for 1 ≤ k ≤ j and X∗ ∩

Yj−1 = X ∩ Yj−1. In this case,

X∗Yj−1/XYj−1 � X∗Yk−1/XYk−1 � X∗/X.

4. If X∗ ∩ Yj > X ∩ Yj, then X∗ ∩ Yk > X ∩ Yk, for j ≤ k ≤ m and
X∗Yj = XYj. Moreover

X∗/X � (X∗ ∩ Yk)/(X ∩ Yk) � (X∗ ∩ Yj)/(X ∩ Yj).

Proof. Note that Statement 1 and its dual, which is Statement 2, are obvious.
3. By Statement 1, if X∗Yj−1 > XYj−1, then X∗Yk−1 > XYk−1, for

1 ≤ k ≤ j. On the other hand, we have

(X∗Yk−1)(XYj−1) = X∗Yj−1 X∗Yk−1 = X∗(XYk−1).

Moreover X ≤ X(X∗ ∩ Yj−1) = X∗ ∩ XYj−1 ≤ X∗. Since X∗/X is a chief
factor of G, then either X = X(X∗∩Yj−1) = X∗∩XYj−1 or X∗∩XYj−1 = X∗.
In the last case X∗ ≤ XYj−1 and then X∗Yj−1 = XYj−1, contrary to our
supposition. Hence X∗ ∩ Yj−1 ≤ X and then X∗ ∩ Yj−1 = X ∩ Yj−1. By
Statement 2, X∗ ∩ Yk−1 = X ∩ Yk−1. Hence

X∗ ∩ XYk−1 = X(X∗ ∩ Yk−1) = X(X ∩ Yk−1) = X

and

XYj−1 ∩ X∗Yk−1 = (XYj−1 ∩ X∗)Yk−1

= X(Yj−1 ∩ X∗)Yk−1 = X(X ∩ Yj−1)Yk−1 = XYk−1.

Statement 4 is dual of Statement 3. ��

Definition 1.2.26. Let A/B, A/C and C/D be chief factors of a group G

A/B is X-Frattini and C/D is X-supplemented, we will say that the situation
A/B � C/D is an X-crossing. We write [A/B � C/D] to denote an
X-crossing.

such that A/B � C/D. If X is a set of maximal subgroups of G, such that
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Remark 1.2.27. 1. If A/B � C/D and A/B is X-supplemented, then C/D
is X-supplemented, by Lemma 1.2.16.

2. If [A/B � C/D] is an X-crossing, then C/D is abelian. If C/D is a
non-abelian X-supplemented chief factor, then A/B is also X-supplemented,
by Lemma 1.2.16 (4), against our supposition.

Next we see a characterisation of JH-solid sets of monolithic maximal
subgroups in terms of X-crossing situations.

Theorem 1.2.28. Let X be a set of maximal subgroups of a group G.

1. Assume that X is JH-solid. Let Z/Y , Y/W and X/W be chief factors
of G. If [Z/X � Y/W ] is an X-crossing, then [Z/Y � X/W ] is an X-
crossing. Moreover, in this case, a maximal subgroup U ∈ X supplements
Y/W if and only if U supplements X/W .

2. Conversely, assume that X is a monolithic set of maximal subgroups of
G such that whenever we have chief factors Z/Y , Y/W and X/W of G
such that [Z/X � Y/W ] is an X-crossing, then [Z/Y � X/W ] is an
X-crossing. Then X is JH-solid.

Proof. 1. We can assume that W = 1. We have to prove that if X and Y
are minimal normal subgroups of G, Z/X is X-Frattini chief factor and Y is
X-suplemented, then Z/Y is X-Frattini and X is X-supplemented.

Assume that U is an X-supplement of Y . If X ≤ U , then G = UZ and
X ≤ U ∩ Z, so U supplements Z/X. This contradiction yields that X is
not contained in U and then U supplements X. Suppose that, in this case,
there exists S ∈ X supplementing Z/Y . Then S also supplements X. Since
Y 	≤ UG and Y ≤ SG, by the property (JH), there exists M ∈ X such that
MG = (UG ∩ SG)X. If Z ≤ M , then Z = Z ∩ MG = X(UG ∩ SG ∩ Z) =
X(UG∩Y ) = X, which is a contradiction. Hence M supplements Z/X, which
we have supposed to be X-Frattini. We deduce that Z/Y must be an X-
Frattini chief factor of G.

2. Suppose that we have U , S ∈ X, both supplementing the same chief
factor H/K of G and UG 	= SG. Since U and S are monolithic, the chief
factor H/K must be abelian, by Lemma 1.2.17 (2). Therefore K = U ∩ H =
UG ∩ H = SG ∩ H = S ∩ H.

Observe that C = CG(H) = HSG = HUG = UGSG. Write A = UG ∩ SG.
Then

C/HA = HUG/HA ∼=G UG/(UG ∩ HA) = UG/A ∼=G C/SG

and then C/HA is a chief factor of G and C/HA � UG/A. Observe that
UG/A is X-complemented by S. Suppose that C/HA is X-Frattini. Then
[C/HA � UG/A] is an X-crossing. By hypothesis, [C/UG � HA/A] is an X-
crossing. But C/UG is obviously X-complemented by U . This contradiction
yields that C/HA is X-complemented in G, i. e. there exists M ∈ X such
that G = MC and HA = MG. Therefore X is JH-solid. ��
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Proposition 1.2.29. With the hypotheses of Lemma 1.2.25, assume that
X∗/X is an X-supplemented chief factor of G. Let

j′ = max{j : X∗Yj−1/XYj−1 is X-supplemented chief factor of G}

and set Y ∗ = Yj′ and Y = Yj′−1. Then Y ∗/Y is X-supplemented.
Furthermore the following conditions are satisfied:

1. If X∗Y ∗ = XY ∗, then X∗Y ∗ = XY ∗ = X∗Y . Write R∗ = X∗Y ∗ and R =
XY . Then X∗/X � R∗/R � Y ∗/Y . Moreover X∗∩Y = X∩Y = X∩Y ∗.
Write S = X ∩ Y and S∗ = X∗ ∩ Y ∗, then X∗/X � S∗/S � Y ∗/Y .

2. If X∗Y ∗ 	= XY ∗, then [X∗Y ∗/XY ∗ � X∗Y/XY ] is an X-crossing and
X∗/X � X∗Y/XY and XY ∗/XY � Y ∗/Y .

In particular, in both cases X∗Y/XY and XY ∗/XY are X-supplemented
chief factors of G.

Proof. Observe that X∗Y0/XY0 = X∗/X is X-supplemented. Hence j′ is
well-defined.

Assume that XY ∗ = XY . Then X∗Y ∗ = X∗Y . So X∗Y ∗/XY ∗ =
X∗Y/XY is X-supplemented, giving a contradiction to the election of j′.
Therefore XY ∗/XY � Y ∗/Y and XY ∗/XY is a chief factor.

1. Assume that X∗Y ∗ = XY ∗. Then XY ≤ X∗Y ≤ X∗Y ∗ = XY ∗.
Therefore X∗Y ∗ = X∗Y because X∗Y > XY by hypothesis. From part 3 of
Lemma 1.2.25, it follows that X∗/X � R∗/R � Y ∗/Y . On the other hand,
X∗ = XY ∗ ∩ X∗ = (X∗ ∩ Y ∗)X. Hence X∗/X � (X∗ ∩ Y ∗)/(X ∩ Y ∗).
Now, from part 3 of Lemma 1.2.25, X∗ ∩ Y = X ∩ Y = X ∩ Y ∗. Thus,
X∗/X � S∗/S � Y ∗/Y .

In this case R∗/R = X∗Y ∗/XY = XY ∗/XY = X∗Y/XY is X-
supplemented, by definition of j′.

2. Now consider X∗Y ∗ 	= XY ∗. From the choice of j′, it follows that
X∗Y ∗/XY ∗ is an X-Frattini chief factor of G. Then XY ≤ XY ∗ ∩ X∗Y ≤
X∗Y . If XY ∗ ∩ X∗Y = X∗Y , it follows that X∗Y ∗ = XY ∗ contrary to our
assumption. Hence XY = XY ∗ ∩ X∗Y and [X∗Y ∗/XY ∗ � X∗Y/XY ] is an
X-crossing. Moreover X∗/X � X∗Y/XY and XY ∗/XY � Y ∗/Y .

Since [X∗Y ∗/XY ∗ � X∗Y/XY ] is an X-crossing, we have that X∗Y/XY
and XY ∗/XY are X-supplemented chief factors of G. ��

Proposition 1.2.30. With the hypotheses of Lemma 1.2.25, assume that
X∗/X is an X-Frattini chief factor of G. Let

j′ = min{j : (X∗ ∩ Yj)/(X ∩ Yj) is an X-Frattini chief factor of G}

and set Y ∗ = Yj′ and Y = Yj′−1. Then Y ∗/Y is X-Frattini.
Furthermore the following conditions are satisfied:

1. If X∗∩Y = X∩Y , then X∩Y = X∩Y ∗ = X∗∩Y . Write S∗ = X∗∩Y ∗ and
S = X ∩ Y . Then X∗/X � S∗/S � Y ∗/Y . Moreover X∗Y = X∗Y ∗ =
XY ∗. Write R = XY and R∗ = X∗Y ∗, then X∗/X � R∗/R � Y ∗/Y .
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2. If X∗∩Y 	= X ∩Y , then [(X∗∩Y ∗)/(X ∩Y ∗) � (X∗∩Y )/(X ∩Y )] is an
X-crossing and X∗/X � (X∗∩Y ∗)/(X∩Y ∗) and (X∗∩Y ∗)/(X∗∩Y ) �
Y ∗/Y .

In particular, in both cases (X∗ ∩ Y ∗)/(X∗ ∩ Y ) and (X∗ ∩ Y ∗)/(X ∩ Y ∗)
are X-Frattini chief factors of G.

Proof. This is the dual statement of Proposition 1.2.29. ��

Definition 1.2.31. Given a set X of maximal subgroups of a group G, we
say that two chief factors of G, say X∗/X and Y ∗/Y , are X-related if one
of these properties is satisfied:

1. There exists an X-supplemented chief factor R∗/R such that X∗/X �
R∗/R � Y ∗/Y ,

2. There exists an X-crossing [A/Z � T/B] such that X∗/X � Z/B and
T/B � Y ∗/Y .

3. There exists an X-Frattini chief factor S∗/S such that X∗/X � S∗/S �
Y ∗/Y ,

4. There exists an X-crossing [A/Z � T/B] such that X∗/X � A/Z and
A/T � Y ∗/Y .

The importance of the X-relation becomes clear in the following theorem.

Theorem 1.2.32. Let X be a JH-solid set of maximal subgroups of a group
G. If the chief factors X∗/X and Y ∗/Y are X-related, then

1. X∗/X and Y ∗/Y are G-connected, and
2. X∗/X is X-Frattini if and only if Y ∗/Y is X-Frattini.
3. If X∗/X and Y ∗/Y are X-supplemented, there exists a common

X-

Furthermore, if X is composed of monolithic maximal subgroups of G then
any two X-related chief factors are G-isomorphic.

Proof. 1. Observe that in Cases 1 and 3 of the definition of X-relation,
we have that X∗/X is G-isomorphic to Y ∗/Y . Suppose that there exists an
X-crossing [A/Z � T/B] such that X∗/X � Z/B and T/B � Y ∗/Y . Since
X is JH-solid, there exists a common X-supplement U of Z/B and T/B, by
Theorem 1.2.28. Then TUG/UG and ZUG/UG are minimal normal subgroups
of the primitive group G/UG. If ZUG = TUG, then Z/B ∼=G T/B; in this
case X∗/X ∼=G Y ∗/Y . Otherwise G/UG is a primitive group of type 3 whose
minimal normal subgroups are TUG/UG and ZUG/UG. Since X∗/X ∼=G Z/B
and Y ∗/Y ∼=G T/B, then X∗/X and Y ∗/Y are G-connected. The analysis of
Case 4 is analogous.

Observe that if all elements of X are monolithic maximal subgroups of
G, then necessarily ZUG = TUG in the above analysis. Therefore X∗/X ∼=G

Y ∗/Y .

supplement to both.
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2. If X∗/X is X-Frattini, then we are not in Case 1 of the definition
of X-relation. Suppose that there exists an X-crossing [A/Z � T/B] such
that X∗/X � Z/B and T/B � Y ∗/Y . Then [A/T � Z/B] is an X-
crossing by Theorem 1.2.28. Then Z/B is X-complemented. This implies that
X∗/X is X-supplemented by Lemma 1.2.16. Therefore we are not in Case 2
of Definition 1.2.31 either. If we are in Case 3, then Y ∗/Y is X-Frattini by
Lemma 1.2.16. In Case 4, [A/T � Z/B] is an X-crossing by Theorem 1.2.28
and again Y ∗/Y is X-Frattini by Lemma 1.2.16.

3. If X∗/X and Y ∗/Y are X-supplemented, we are either in Case 1 or in
Case 2 of Definition 1.2.31. In Case 1, if U is an X-supplement of R∗/R, then U
supplements X∗/X and Y ∗/Y , In Case 2, there exists an X-crossing [A/Z �
T/B] such that X∗/X � Z/B and T/B � Y ∗/Y . By Theorem 1.2.28, we
know that there exists a common X-supplement U to Z/B and T/B. By
Lemma 1.2.16, U also X-supplements X∗/X and Y ∗/Y , ��

Lemma 1.2.33. Under the hypotheses of Lemma 1.2.25, assume that X∗/X
and Yj/Yj−1 are X-related.

1. X∗/X and Yj/Yj−1are X-supplemented in G if and only if X∗Yj−1/XYj−1

is X-supplemented in G.
2. X∗/X and Yj/Yj−1 are X-Frattini if and only if (X∗ ∩ Yj)/(X ∩ Yj) are

X-Frattini.

Proof. 1. Set Y ∗ = Yj , Y = Yj−1 and assume that there exists an X-
supplemented chief factor R∗/R such that X∗/X � R∗/R � Y ∗/Y . Since
(X∗Y )R = R∗ and XY ≤ R, then XY < X∗Y . By part 3 of Lemma 1.2.25,
X∗Y/XY � X∗/X and in particular, X∗Y/XY is a chief factor. On the other
hand, XY ≤ X∗Y ∩R ≤ X∗Y . As X∗Y is not contained in R, then R∗/R �
X∗Y/XY . Therefore X∗Yj−1/XYj−1 is X-supplemented in G. Now suppose
that there exists an X-crossing [A/Z � T/B] such that Z/B � X∗/Xy
T/B � Y ∗/Y . Since XY ≤ B and (X∗Y )B = Z, we have that X∗Y > XY
and, as above, X∗/X � X∗Y/XY . Now Z = (X∗Y )B and X∗Y ∩ B =
Y (X∗ ∩ B) = XY . Hence Z/B � X∗Y/XY . Therefore X∗Yj−1/XYj−1 is
X-supplemented in G.

The converse follows from part 3 of Lemma 1.2.25.
2. This is the dual statement of 1. ��

Theorem 1.2.34. Let G be a group and X a JH-solid set of maximal sub-
groups of G. For any pair K, H of normal subgroups of G such that K < H
and two pieces of chief series of G between K and H

K = X0 ≤ X1 ≤ · · · ≤ Xn = H

and
K = Y0 ≤ Y1 ≤ · · · ≤ Ym = H,

then n = m and there exists a unique permutation σ ∈ Sym(n) such that
Xi/Xi−1 and Yiσ/Yiσ−1 are X-related, for 1 ≤ i ≤ n. Furthermore



1.2 A generalisation of the Jordan-Hölder theorem 59

iσ = max{j : XiYj−1/Xi−1Yj−1 is X-supplemented}
if Xi/Xi−1 is X-supplemented, and

iσ = min{j : (Xi ∩ Yj)/(Xi−1 ∩ Yj) is X-Frattini}
if Xi/Xi−1 is X-Frattini.

Proof. We can assume without loss of generality that m ≤ n. Write X∗ = Xi,
X = Xi−1, Y ∗ = Yiσ and Y = Yiσ−1.

By Proposition 1.2.29, if X∗/X is X-supplemented, then so is Y ∗/Y .
Furthermore, if X∗Y ∗ = XY ∗, then X∗/X � R∗/R � Y ∗/Y , where
R∗ = X∗Y ∗ = X∗Y and R = XY , by part 1 of Proposition 1.2.29. Hence
R∗/R is X-supplemented by definition of iσ. So, this is Case 1 of the definition
of X-relation. And if X∗Y ∗ 	= XY ∗, then we are in Case 2 of Definition 1.2.31
by part 2 of Proposition 1.2.29.

Dually, by Proposition 1.2.30, if X∗/X is X-Frattini, then so is Y ∗/Y .
Furthermore, if X∗ ∩ Y ∗ = X ∩ Y ∗, then X∗/X � S∗/S � Y ∗/Y , where
S∗ = X∗ ∩Y ∗ and S = X ∩Y , by part 1 of Proposition 1.2.30. Hence S∗/S is
X-Fratttini by definition of iσ. So, this is Case 3 of the definition of X-relation.
and if X∗ ∩ Y ∗ 	= X ∩ Y , then we are in Case 4 of Definition 1.2.31.

Therefore, in any case, Xi/Xi−1 and Yiσ/Yiσ−1 are X-related, for 1 ≤ i ≤n.
Now we prove that the map σ : {1, . . . , n} → {1, . . . , m} defined above is

injective. Write Z∗ = Xk and Z = Xk−1, where i < k and iσ = kσ.
Suppose that X∗/X is X-supplemented; then so are Y ∗/Y and Z∗/Z.

Assume that X∗Y ∗ = XY ∗. From X∗ ≤ Z we get that ZY ∗ = ZY .
Since Z∗/Z is X-supplemented and kσ = j, Z∗Y/ZY is a chief factor of
G and then ZY = ZY ∗ < Z∗Y = Z∗Y ∗. By part 2 of Proposition 1.2.29,
ZY ∗/ZY � Y ∗/Y . In particular ZY ∗ > ZY and yields a contradiction.
Hence X∗Y ∗ > XY ∗. Then [X∗Y ∗/XY ∗ � X∗Y/XY ] is an X-crossing
by part 2 of Proposition 1.2.29. The chief factor X∗Y ∗/X∗Y is X-Frattini.
Since kσ = j, then Z∗Y/ZY and ZY ∗/ZY are X-supplemented chief factors
of G. As X∗ ≤ Z gives X∗Y ≤ ZY and X∗Y ∗ ≤ ZY ∗. Observe that
ZY ∗ = (ZY )(X∗Y ∗). Moreover ZY ∩ X∗Y ∗ = X∗(Z ∩ Y ∗)Y In the situ-
ation Y ≤ (Z ∩ Y ∗)Y ≤ Y ∗ and Y ∗/Y chief factor of G, we cannot have
ZY ∩Y ∗ = Y ∗, since this would imply Y ∗ ≤ ZY and then ZY ∗ = ZY and this
contradicts the fact that ZY ∗/ZY is a chief factor. Hence ZY ∩X∗Y ∗ = X∗Y .
In other words, ZY ∗/ZY � X∗Y ∗/X∗Y and we deduce that ZY ∗/ZY is
X-Frattini by Lemma 1.2.16. This is a contradiction.

We have shown that the restriction to σ to the subset I of {1, . . . , n} com-
posed of all indices i corresponding to X-supplemented chief factors Xi/Xi−1,
is injective. Applying dual arguments we show that the restriction of σ to the
subset of {1, . . . , n} \ I composed of all indices i corresponding to X-Frattini
chief factors Xi/Xi−1, is injective. By the arguments at the beginning of the
proof, σ is injective. Therefore n = m and σ is a permutation of the set
{1, . . . , n}.
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Finally if τ is any permutation with the above properties, then the defini-
tion of σ requires that iτ ≤ iσ for all i ∈ I and iτ ≥ iσ for all i ∈ {1, . . . , n}\I
by Lemma 1.2.33. Consequently σ = τ . ��

Remark 1.2.35. By Theorem 1.2.32, the bijection constructed in Theorem
1.2.34 satisfies that if Xi/Xi−1 and Yiσ/Yiσ−1 are X-supplemented, there ex-
ists a common X-supplement to both. Clearly when Xi/Xi−1, and Yiσ/Yiσ−1,
is abelian we can change the X-supplementation by X-complementation. But
we can go further and say the same even for non-abelian X-complemented
chief factors. We know, by Theorem 1.1.48, the existence of non-abelian
chief factors complemented by maximal subgroups. Observe that if Xi/Xi−1

and Yiσ/Yiσ−1 are X-complemented non-abelian chief factors, then we are
in Case 1 of Definition 1.2.31, since Case 2 is not possible by Remark 2
of 1.2.27. If U is an X-complement of the non-abelian chief factor Xi/Xi−1

and Yiσ/Yiσ−1 � R∗/R � Xi/Xi−1, then U also supplements R∗/R, by
of Lemma 1.2.16 (4), and the same for Yiσ/Yiσ−1. Observe that U/UG is
a small maximal subgroup of the primitive group G/UG of type 2. Then,
Soc(G/UG) = XiUG/UG = R∗UG/UG = YiσUG/UG and UG = U ∩ YiσUG.
Thus, U ∩ Yiσ = UG ∩ Yiσ = Yiσ−1 and U complements Yiσ/Yiσ−1.

Theorem 1.2.36. Let G be a group and X a set of monolithic maximal sub-
groups of G. Then the following conditions are equivalent:

1. X is a JH-solid set.
2. For any pair K, H of normal subgroups of G such that K < H and two

pieces of chief series of G between K and H

K = X0 ≤ X1 ≤ · · · ≤ Xn = H and K = Y0 ≤ Y1 ≤ · · · ≤ Ym = H,

then n = m and there exists σ ∈ Sym(n) such that
a) Xi/Xi−1

∼=G Yiσ/Yiσ−1;
b) Xi/Xi−1 is X-Frattini if and only if Yiσ/Y iσ−1 is X-Frattini;
c) if Xi/Xi−1 is X-supplemented (respectively, complemented) in G,

there exists a maximal subgroup U ∈ X of G such that G supplements
(respectively, complements) both Xi/Xi−1 and Yiσ/Yiσ−1.

Proof. After Theorem 1.2.34 we have only to see that 2 implies 1.
Suppose that we have U , S ∈ X, both supplementing the same chief factor

H/K of G and UG 	= SG. Since U and S are monolithic, the chief factor H/K
must be abelian, by Lemma 1.2.17 (2). Therefore K = U ∩ H = UG ∩ H =
SG ∩ H = S ∩ H.

Observe that C = CG(H) = HSG = HUG = UGSG. Write A = UG ∩ SG.
Then

C/HA = HUG/HA ∼=G UG/(UG ∩ HA) = UG/A ∼=G C/SG

and then C/HA is a chief factor of G and C/HA � UG/A. Observe that UG/A
is X-complemented by S and C/UG is obviously X-complemented by U . By



1.2 A generalisation of the Jordan-Hölder theorem 61

Statement 2, all chief factors of G between C and A are X-complemented.
In particular C/HA is X-complemented in G, i. e. there exists a maximal
subgroup M ∈ X such that G = MC and HA = M ∩ C. This implies that
MG = HA. Therefore X is JH-solid. ��

Corollary 1.2.37. If X is a JH-solid set of maximal subgroups of a group
G and H is a normal subgroup of G such that all chief factors H/Ki, i =
1, . . . , n, of G are X-supplemented, and

⋂n
i=1 Ki = K, then every chief factor

between K and H is X-supplemented.

Proof. Denote Kj =
⋂j

i=1 Ki and K0 = H. Then

K = Kn ≤ Kn−1 ≤ · · · ≤ K0 = H

is a piece of a chief series of G. Assume that Ki 	= Ki+1. Then H = KiKi+1,
Ki/Ki+1 is a chief factor of G and Ki/Ki+1 ∼=G H/Ki+1. If M is an X-
supplement of H/Ki+1 in G, then M is an X-supplement of Ki/Ki+1 in G
by Lemma 1.2.16 (1). We deduce that all chief factors in the above series are
X-supplemented. Now apply Theorem 1.2.36 to conclude the proof. ��

Corollary 1.2.38. Let X be a JH-solid set of monolithic maximal subgroups
of a group G and write R = ΦX(G). Suppose that N is a normal subgroup
of G such that N = N1 × · · · × Nn, where Ni

= 1, then every chief factor of G below

Proof. We use induction on n. If n = 1, the result is obvious. Thus we assume
that n ≥ 2.

If N1 is X-Frattini, then N1 ≤ R ∩ N = 1, giving a contradiction. Hence
there exists M ∈ X such that G = MN1. The quotient group G/MG is a
monolithic primitive group and then NMG/MG = N1MG/MG = Soc(G/MG).
Then N = N1× (N ∩MG). By Theorem 1.2.36, every piece of chief series of G
between N1 and N has exactly n − 1 chief factors and so every piece of chief
series of G below N0 = N ∩ MG has exactly n − 1 chief factors. Since the
normal subgroup N0 is contained in Soc(G), we have that N0 can be written
as a direct product of n−1 minimal normal subgroups of G. Since R∩N0 = 1, it
follows that every chief factor of G below N0 is X-supplemented by induction.
Since clearly M supplements N/N0, we have that all chief factors of G below
N are X-supplemented, by Theorem 1.2.36. ��

Observe that in a primitive group G of type 3 with minimal normal sub-
groups N1 and N2, if M is a core-free maximal subgroup, then X = {M} is a
JH-solid set of maximal subgroups of G, R = MG = 1, and N = Soc(G) sat-
isfies that R∩N = 1. However neither N/N1 nor N/N2 are X-supplemented.

Remarks 1.2.39. 1. Given a modular lattice L, J. Lafuente in [Laf89] in-
troduced the concept of M-set in L and he proved a general Jordan-Hölder
theorem in modular lattices with an M-set.

is a minimal normal sub-
groups of G, 1 ≤ i ≤ n. If R ∩ N
N is X-supplemented in G.
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In fact, Theorem 1.2.28 shows that, for a set of maixmal subgroups X of
a group G, the set MX of all X-supplemented chief factors of G is an M-set
in the modular lattice N of all normal subgroups of G if and only if X is
JH-solid.

2. For JH-solid sets containing some maximal subgroups of type 3, a con-
verse of Theorem 1.2.34, giving an equivalence analogous to Theorem 1.2.36,
does not hold.

Let T be a non-abelian simple group and consider the group G which is the
direct product of three copies of T : G = T1 × T2 × T3. Suppose that X is the
set whose elements are three monolithic maximal subgroups M1, M2, and M3,
such that (Mi)G = Tj ×Tk, where {i, j, k} = {1, 2, 3}. Consider the subgroups
U1 = ∆23 ×T1 = {(x, y, y) : x, y ∈ T}, which is a maximal subgroup of type 3
of G such that (U1)G = T1, and U2 = ∆13 × T2 = {(x, y, x) : x, y ∈ T}, a
maximal subgroup of type 3 of G such that (U2)G = T2. The set X∪{U1, U2}
is not a JH-solid set of maximal subgroups: the minimal normal subgroup T3

is supplemented by U1 and U2 but no maximal subgroup of X∪ {U1, U2} has
core

(
(U1)G ∩ (U2)G

)
T3 = T3.

On the other hand, it is easy to see that no chief factor of G is X-Frattini,
and that any two G-isomorphic chief factors are supplemented by exactly one
element of X, so the conditions of Theorem 1.2.36 (2) hold. In other words,
X is a JH-solid set of maximal subgroups of G.

1.3 Crowns

The concept of crown of a soluble group was introduced in [Gas62]. In this
seminal paper, W. Gaschütz analyses the structure of the chief factors of a
soluble group G as G-modules. Associated with a G-module a, there exists
a section of the group, called a-Kopf, or crown in English, such that, viewed
as a G-module, is completely reducible and homogeneous with a composition
series of length the number of complemented chief factors G-isomorphic to a
in any chief series of G. These crowns are complemented sections of G.

The study of non-soluble chief factors made by J. Lafuente in [Laf84a], and,
in particular, the introduction of the concept of G-connected chief factors,
allowed him to discover that some sections associated with non-abelian chief
factors can be constructed enjoying similar properties to Gaschütz’s crowns.
This originated the concept of crown of a non-abelian chief factor.

Given a group G, fixing a JH-solid set of maximal subgroups X of G and
restricting ourselves to X-supplemented chief factors, we can presume, after
the results of Section 1.2, that most of the known results on crowns hold for
the so-called X-crowns. The aim of this section is to present results in this
direction.

Let us start with the following observations. Let G be a group and H/K
a non-abelian chief factor of G. If there exists a maximal subgroup M of G of
type 3 complementing H/K, then the primitive group G/MG has two minimal
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normal subgroups, namely HMG/MG and C/MG, where C = CG(H/K) and
HMG ∩C = MG. In this case C∗

G(H/K) = HC. By Remark 1.2.8 (2b), there
exists a monolithic maximal supplement S of HMG/MG such that SG = C.
Analogously, since CG(C/MG) = HMG, there exists a monolithic maximal
supplement T of C/MG such that TG = HMG. This means that, although the
sets

E1 = {N : C∗/N is a precrown associated with a chief factor
G-connected to H/K}

E2 = {MG : M is a maximal subgroup of G supplementing
a chief factor G-connected to H/K}, and

E3 = {MG : M is a maximal subgroup of G supplementing
a chief factor G-isomorphic to H/K}

in general are different, in fact⋂
{N : N ∈ E1} =

⋂
{N : N ∈ E2} =

⋂
{N : N ∈ E3}.

If we replace the set of all maximal subgroups for a proper JH-solid subset,
the above equalities are not longer true.

Let G be a primitive group of type 3 with minimal normal subgroups A
and B. If M and S are monolithic maximal subgroups with MG = A and
SG = B, and X = {M, S}, then X is JH-solid and

E4 = {MG : M is a maximal subgroup in X

supplementing a chief factor G-connected to A}
= {A,B}

and

E5 = {MG : M is a maximal subgroup in X

supplementing a chief factor G-isomorphic to A}
= {B}.

Then ⋂
{N : N ∈ E4} = 1 < B =

⋂
{N : N ∈ E5}.

These observations motivate the following definitions.

Definitions 1.3.1. 1. Let H/K be a supplemented chief factor of a group G
and consider the set E composed of all cores of the monolithic maximal
subgroups of G which supplement chief factors G-connected to H/K. Write
R =

⋂{N : N ∈ E} and C∗ = C∗
G(H/K). Then we say that the factor

C∗/R is the crown of G associated with H/K.
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2. Let X be a JH-solid set of monolithic maximal subgroups of a group G
and H/K an X-supplemented chief factor of G. Write C∗ = C∗

G(H/K)
and consider the normal subgroup

RX =
⋂

{MG : M ∈ X and M supplements a chief factor

G-connected to H/K}.

Then C∗/RX is the X-crown of G associated with H/K.

Obviously a crown of G associated with a supplemented chief factor of G
is just an X-crown of G for the set X = Max∗(G) of all monolithic maximal
subgroups of G.

Theorem 1.3.2. Let X be a JH-solid set of monolithic maximal subgroups of
a group G and H/K an X-supplemented chief factor of G. Write C∗/RX for
the X-crown of G associated with H/K. Then

C∗/RX = Soc(G/RX).

Furthermore

1. every minimal normal subgroup of G/RX is an X-supplemented chief
factor of G which is G-connected to H/K, and

2. no X-supplemented chief factor of G over C∗ or below RX is G-connected
to H/K.

In other words, there exist m normal subgroups A1, . . . , Am of G such that

C∗/RX = A1/RX × · · · × Am/RX

where Ai/RX is an X-supplemented chief factor G-connected to H/K, for i =
1, . . . , m, and m is the number of X-supplemented chief factors G-connected
to H/K in each chief series of G. Moreover, Φ(G/RX) = Oq′(G/RX) = 1,
for each prime q dividing the order of |H/K|.

Proof. We can write RX = R = N1 ∩ · · · ∩ Nr, such that C∗/Ni are X-
precrowns associated with chief factors G-connected to H/K and r is minimal
with this property. Consider the group monomorphism

ψ : C∗/R = C∗/(N1 ∩ · · · ∩ Nr) −→ C∗/N1 × · · · × C∗/Nr

c(N1 ∩ · · · ∩ Nr) �−→ (cN1, . . . , cNr)

for any c ∈ C∗. Observe that ψ is compatible with the action of G:(
c(N1 ∩ · · · ∩ Nr)ψ

)g = (cN1, . . . , cNr)g = (cgN1, . . . , c
gNr)

=
(
cg(N1 ∩ · · · ∩ Nr)

)ψ
.
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From minimality of r, we have that C∗ = Ni(N1 ∩ · · · ∩ Ni−1), for i ≤ r,
and then

(N1 ∩ · · · ∩ Ni−1)/(N1 ∩ · · · ∩ Ni) ∼=G C∗/Ni.

Therefore the chain

R = (N1 ∩ · · · ∩ Nr) ≤ (N1 ∩ · · · ∩ Nr−1) ≤ · · · ≤ N1 ≤ C∗

is a piece of chief series of G and each chief factor is G-connected to H/K.
Hence the order |C∗/R| = |H/K|r and ψ is an isomorphism. By Corol-

lary 1.2.37, every chief factor of G between R and C∗ is X-supplemented in
G. Therefore, there exist r normal subgroups A1, . . . , Ar of G such that

C∗/R = A1/R × · · · × Ar/R,

where Ai/R is a X-supplemented chief factor G-connected to H/K, i =
1, . . . , r.

Suppose that H0/K0 is a X-supplemented chief factor of G which is G-
connected to H/K and let M ∈ X be a supplement of H0/K0 in G. Then
H0 ≤ C∗. Observe that since R ≤ MG, then H0 	≤ R. Therefore no X-
supplemented chief factor of G over C∗ or below R is G-connected to H/K.

By Theorem 1.2.36, the number of X-supplemented chief factors G-
connected to H/K in each chief series of G is an invariant of the group and
coincides with the length of any piece of chief series of G between R and C∗.

If B/R is a minimal normal subgroup of G/R and B ∩C∗ = R, then B ≤
CG(A1/R) which is contained in C∗ by Proposition 1.2.15. This contradiction
implies that C∗/R = Soc(G/R). Since every minimal normal subgroup of
G/R is supplemented in G/R, we have that Φ(G/R) = 1 = Oq′(G/R), for
each prime q dividing the order of |H/K|. ��
Corollary 1.3.3 ([Laf84a]). Two supplemented chief factors of a group G
define the same crown of G if and only if they are G-connected.

Let C∗/R be the X-crown of G associated with an X-supplemented chief
factor H/K. Applying Theorem 1.3.2, we have that C∗/R = (RX/R) ×
(C0/R), and the X-crown of G associated to H/K is isomorphic to C0/R
which is a direct product of X-supplemented components of C∗/R.

Corollary 1.3.4. Let X be a JH-solid set of monolithic maximal subgroups
of a group G. Let H/K be an X-supplemented chief factor of a group G and
write C∗/R for the X-crown of G associated with H/K. Then

1. if H/K is abelian and p is the prime dividing |H/K|, then C∗ =
CG(H/K) = C and

C/R = Soc(G/R) = F(G/R) = Op(G/R)

is a completely reducible and homogeneous G-module over GF(p) whose
composition factors are G-isomorphic to H/K and the length of a com-
position series of C/R, as G-module, is the number of X-complemented
G-chief factors G-isomorphic to H/K in each chief series of G;
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2. if H/K is non-abelian, then {Aj/R : j = 1, . . . ,m} is the set of all min-
imal normal subgroups of G/R; in particular, if C∗/R is a chief factor
of G, then R = CG(H/K) and G/R ∼= [H/K] ∗ G is a primitive group of
type 2.

Proof. Applying Theorem 1.3.2, C∗/R = Soc(G/R).
1. If H/K is abelian, then H/K is a p-group for some prime p and C∗ =

C = CG(H/K) is the common centraliser of the chief factors of G between C
and R. Then CG/R(C/R) = C/R = F (G/R) and Statement 1 follows from
Theorem 1.3.2.

2. Suppose now that H/K is non-abelian. Then {Aj/R : j = 1, . . . , m}, as
in Theorem 1.3.2, are the minimal normal subgroups of G/R. Finally observe
that if C∗/R is a chief factor, then C∗/R is the X-precrown of G associated
with H/K and R = CG(H/K). ��

Our main goal is now to prove that in every group G, we can order in
some sense the X-crowns of G to obtain a chief series of G in which some
G-isomorphic images of the X-crowns are placed one after the other, possibly
separated by X-Frattini chief factors, and all X-supplemented chief factors
which are G-connected are consecutive.

We need a technical proposition to explore how the crowns of the quotient
group are related to the crowns of the original group. We will use it in inductive
arguments.

Proposition 1.3.5. Let X be a JH-solid set of monolithic maximal subgroups
of a group G and let N be a normal subgroup of G contained in some maximal
subgroup of G in X.

1. For any X-crown C∗/R of G, either
a) C∗ ≤ RN or
b) RN < C∗ and (C∗/N)

/
(RN/N) is an X/N -crown of G/N .

2. For any X/N -crown (C∗
0/N)

/
(R0/N) of G/N , there is an X-crown C∗/R

of G such that C∗
0 = C∗ and R0 = RN .

Proof. 1. Assume that C∗ is not contained in RN . Then, applying Co-
rollary 1.3.4, there exists a minimal normal subgroup A/R of G/R such that
A is not contained in RN . Therefore AN/RN is a chief factor of G which
is G-isomorphic to A/R. Hence RN < AN ≤ C∗

G(AN/RN) = C∗. Applying
Theorem 1.3.2, AN/RN is X-supplemented and clearly (C∗/N)

/
(NR/N) is

the X/N -crown of G/N associated with the chief factor AN/N/RN/N of
G/N .

2. Let (C∗
0/N)

/
(R0/N) be the X/N -crown of G/N associated with an

X/N -supplemented chief factor (H/N)
/
(K/N) of G/N . Then (H/N)

/
(K/N)

is G-isomorphic to the chief factor H/K of G and H/K is X-supplemented
in G. Consider the X-crown C∗/R of G associated with H/K. It follows that
C∗

0/N = C∗
G/N

(
(H/N)

/
(K/N)

)
= C∗

G(H/K)
/
N and then C0 = C∗.
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On the other hand, it is clear that RN ≤ R0. In addition, every chief
factor of a given chief series of G between RN and R0 is X-supplemented
in G and G-connected to H/K. Since, by Theorem 1.3.2, the number of
X/N -supplemented chief factors of each chief series of G/N which are G/N -
connected to (H/N)

/
(K/N) is exactly the number of chief factors of G/N

between R0/N and C∗/N , we have that RN = R0. ��

Lemma 1.3.6. Let G be a group with Φ(G) = 1. There exists a crown C∗/R
and a non-trivial normal subgroup D of G such that C∗ = R × D.

Proof. We argue by induction on the order of G. Let M be a minimal normal
subgroup of G. Since Φ(G) = 1, it follows that M is supplemented in G and
we can consider the crown C∗

0/R0 and a precrown C∗
0/N0 associated with M

in G. We know that C∗
0 = N0 × M .

If N0 = R0, then the normal subgroup D = M and the crown C∗/R =
C∗

0/R0 fulfils our requirements.
Assume that R0 < N0. This means that R0 × M < C∗

0 . Write F/M =
Φ(G/M). By Proposition 1.3.5, (C∗

0/M)
/
(R0M/M) is a crown of G/M asso-

ciated with the chief factors of G/M , i.e. the chief factors of G over M , which
are G-connected to M . Since, by Theorem 1.3.2, Φ

(
(G/M)

/
(R0M/M)

)
= 1,

we have that F ≤ R0M and then F = M × (F ∩ R0). Put N = F ∩ R0.
Suppose that N 	= 1, and let A be a minimal normal subgroup of G contained
in N . Recall that all monolithic maximal subgroups of G form a JH-solid
set and their intersection is Φ(G). Since obviously MA ∩ Φ(G) = 1, we can
apply Corollary 1.2.38 and deduce that the chief factor MA/M is supple-
mented in G. But this contradicts the fact that MA/M ≤ F/M = Φ(G/M).
Therefore F = M and Φ(G/M) = 1. By induction, there exists a crown
(C∗

1/M)
/
(R1/M) and a non-trivial normal subgroup D1/M of G/M , such

that C∗
1/M = (R1/M) × (D1/M).

Suppose first that (C∗
1/M)

/
(R1/M) is the crown associated with the chief

factors G-connected to M . Then C∗
1 = C∗

0 and R1 = R0 ×M . In this case, we
take D = D1 and C∗/R = C∗

0/R0. Note that M = D1∩R1 = D1∩(R0×M) =
(D1 ∩ R0) × M . Hence D1 ∩ R0 = 1.

Suppose now that the chief factors of G between M and D1 are not G-
connected to M . If C∗

0/M ≤ (R0M/M)(D1/M), then C∗
0 = R0(C∗

0∩D1). Then
C∗

0/R0
∼=G (C∗

0 ∩D1)/(R0∩D1) and M ≤ C∗
0 ∩D1. Hence all chief factors of G

between (R0∩D1)×M and C∗
0 ∩D1 are G-connected to M by Theorem 1.3.2.

Since no chief factor of G between M and D1 is G-connected to M , we deduce
that C∗

0 ∩ D1 = (R0 ∩ D1) × M . Then C∗
0 = R0M , against our assumption.

Hence, by Proposition 1.3.5, we have that (R0M/M)(D1/M) < C∗
0/M and

then R0 ≤ R0M ≤ R0D1 ≤ C∗
0 . Applying Theorem 1.3.2, every chief factor

of G between R0M and R0D1 is G-connected to M . Since D1R0/MR0
∼=G

D1/M(D1 ∩ R0) and we are assuming that all chief factors of G between M
and D1 are not G-connected to M , we have that D1 = M(D1 ∩ R0). In this
case, take D = D1 ∩ R0 	= 1 and C∗ = C∗

1 . This completes the proof. ��
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We prove now the corresponding result for a JH-solid set X of monolithic
maximal subgroups of a group G.

Proposition 1.3.7. Let G be a group and X a JH-solid set of monolithic max-
imal subgroups of G such that ΦX(G) = 1. There exists an X-crown C∗/RX

of G and a non-trivial normal subgroup D of G such that C∗ = RX × D.

Proof. Observe first that Φ(G) ≤ ΦX(G) = 1. By Lemma 1.3.6, there exists a
crown C∗/R and a non-trivial normal subgroup D of G such that C∗ = R×D.
Consider the G-isomorphism ϕ : C∗/R −→ D. If C∗/R = (A1/R) × · · · ×
(Ar/R), then all the images (Ai/R)ϕ = Ni are minimal normal subgroups
of G below D, the Ni are G-connected, C∗/R is the crown of G associated with
them and D = N1×· · ·×Nr. Moreover, by Theorem 1.2.38, every chief factor
of G below D is X-supplemented in G. Hence R = RX and C∗/R = C∗/RX

is the X-crown of G associated with the Ni. ��

Theorem 1.3.8 (see [För88]). Let X be a non-empty JH-solid set of mono-
lithic maximal subgroups of a group G and.

1. Let C∗
1/R1, . . . , C∗

n/Rn denote the X-crowns of G. Then there exists a
permutation σ ∈ Sym(n) and a chain of normal subgroups of G

1 = C(0) ≤ R(1) < C(1) ≤ R(2) < C(2) ≤ · · · < C(n−1) ≤ R(n) < C(n) ≤ G

such that G/C(n) = ΦX/C(n)
(G/C(n)) (including the case G = C(n)) and

for i = 1, . . . , n, we have

R(i)/C(i−1) = ΦX/C(i−1)
(G/C(i−1)), C∗

iσ = RiσC(i), Riσ ∩ C(i) = R(i).

2. Moreover, if N is a normal subgroup of G and C(k−1) ≤ N ≤ R(k), for
some k ∈ {1, . . . , n},

1 = N/N = C(k−1)N/N ≤ R(k)/N < C(k)/N

≤ R(k+1)/N < · · · < C(n)/N ≤ G/N

is a chain of G/N enjoying the corresponding property.

Proof. 1. We use induction on |G|. Clearly ΦX(G) is contained in each
Ri. Moreover, every X-supplemented chief factor of G is G-isomorphic to
an X/ΦX(G)-supplemented chief factor of G/ΦX(G). Hence, by Proposi-
tion 1.3.5 (2), we can assume without loss of generality that ΦX(G) = R(1) = 1.

By Proposition 1.3.7, there exists an X-crown C∗
k/Rk of G and a nor-

mal subgroup C(1) of G such that C∗
k = Rk × C(1). If G = C(1), the res-

ult is trivial. If C(1) is a proper subgroup of G and X/C(1) = ∅, then
ΦX/C(1)

(G/C(1)) = G/C(1) or, in other words, no maximal subgroup of G
in X contains C(1). Hence no chief factor of G over C(1) is X-supplemented.
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In this case there exists exactly one X-crown of G and the theorem holds trivi-
ally. Assume that X̄ = X/C(1) is non-empty, i.e. C(1) is contained in some
maximal subgroup of G in X. Then we can apply the inductive hypothesis to
the quotient group Ḡ = G/C(1). Observe that if C∗

j ≤ RjC(1), for some j 	= k,
then C∗

j /Rj
∼=G (C∗

j ∩C(1))/(Rj ∩C(1)) and the chief factors of G between C∗
j

and Rj are G-connected to some chief factors of G below C(1) and therefore
to the chief factors in C∗

k/Rk, which is not possible by Theorem 1.3.2. Hence,
by Proposition 1.3.5, RjC(1) < C∗

j , for all j ∈ {1, . . . , n} \ {k}. Therefore
{C̄∗

j /R̄j : j 	= k} are the X-crowns of Ḡ and, by induction, there exists a
bijection τ : {2, . . . , n} −→ {1, . . . , n} \ {k}, and a chain of normal subgroups
of Ḡ

1 = C̄(1) ≤ R̄(2) < C̄(2) ≤ R̄(3) < C̄(3) ≤ · · · < C̄(n−1) ≤ R̄(n) < C̄(n) ≤ Ḡ

such that Ḡ/C̄(n) = ΦX̄/C̄(n)
(Ḡ/C̄(n)), and for i = 2, . . . , n + 1, we have

R̄(i)/C̄(i−1) = ΦX/C̄(i−1)
(Ḡ/C̄(i−1)), C̄∗

iτ = R̄iτ C̄(i), R̄iτ ∩ C̄(i) = R̄(i).

Now, just take the inverse images R(j)/C(1) = R̄(j) and C(j)/C(1) = C̄(j),
for j = 2, . . . , n. The required permutation is σ such that 1σ = k and iσ = iτ ,
for i = 2, . . . , n.

2. Assume that N is a normal subgroup of G such that C(k−1) ≤ N ≤
R(k). Every X-supplemented chief factor H/K of G such that N ≤ K
is G-isomorphic to an X/N -supplemented chief factor of G/N and there-
fore is G-connected to some chief factor between R(j)/N and C(j)/N , for
some j ≥ k. The X/N -crown of G/N associated with (H/N)

/
(K/N) is

(C∗
jσ/N)

/
(Rjσ/N) and clearly we have that C∗

jσ/N = (Rjσ/N)(C(j)/N)
and (Rjσ/N) ∩ (C(j)/N) = R(j)/N . In addition, R(i)/C(i−1) is equal to
ΦX/C(i−1)

(G/C(i−1)). Hence

(R(i)/N)
/
(C(i−1)/N) = Φ(X/N)/(C(i−1)/N)

(
(G/N)

/
(C(i−1)/N)

)
for all i = k +1, . . . , n. Now R(k)/C(k−1) = ΦX/C(k−1)

(G/C(k−1)) implies that
ΦX/N (G/N) = R(k)/N . ��

Now, the result we were looking for becomes clear.

Corollary 1.3.9 (see [Gas62] and [För88]). Let X be a JH-solid set of
monolithic maximal subgroups of a group G. If C∗

1/R1, . . . , C
∗
n/Rn are the

X-crowns of G, there exists a permutation σ ∈ Sym(n) and a chief series
of G

1 = F1,0 < F1,1 < · · · < F1,m1 = N1,0 < N1,1 < · · · < N1,k1

= F2,0 < F2,1 < · · · < F2,m2 = N2,0 < N2,1 < · · · < N2,k2

. . .

= Fn,0 < Fn,1 < · · · < Fn,mn
= Nn,0 < Nn,1 < · · · < Nn,kn

= Fn+1,0 < Fn+1,1 < · · · < Fn+1,mn+1 = G
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such that

1. the Fi,j/Fi,j−1 are X-Frattini chief factors of G,
2. the Ni,j/Ni,j−1 are X-supplemented chief factors of G satisfying that

Ni,j/Ni,j−1 is G-connected to Ni′,j′/Ni′,j′−1 if and only if i = i′; moreover
Ciσ/Riσ is the X-crown associated with Ni,j/Ni,j−1;

3. Fi,mi
/ Fi,j = ΦX/Fi,j

(G/Fi,j), for each i = 1, . . . , n+1 and j = 1, . . . ,
mi−1.

Let X be a JH-solid set of monolithic maximal subgroups of a group G.
Then if C∗/RX is the X-crown of G associated with a chief factor H/K, and
RX = G0 < G1 < · · · < Gn = C∗ is a piece of chief series of G, then the
subgroup

V =
n⋂

i=1

{Mi : Mi is an X-supplement of Gi/Gi−1}.

is a supplement (if H/K is abelian, then V is a complement) of C∗/RX in
G, by repeated applications of Lemma 1.2.16 (2). However, this supplement
depends on the choice of the chief series and on the choice of the maximal sub-
groups and it is not preserved by epimorphic images. The following example
is illustrative of these problems.

Example 1.3.10. Denote by N the elementary abelian group of order 32. The
cyclic group Z of order 2 acts on N by inversion. Form the semidirect product
G = [N ]Z and write A = 〈a〉, N = 〈a, b〉, and Z = 〈z〉. Consider the JH-solid
set of maximal subgroups X = {M1 = 〈a, z〉,M2 = 〈b, az〉,M3 = 〈ab, z〉,M4 =
〈a2b, z〉}. The X-crown of G associated with any of the chief factors below N is
N = CG(A). All subgroups of the form Vij = Mi∩Mj , i 	= j, are complements
of N in G. Note that

⋂4
i=1 Mi = 1.

Consider now the group G/A. Observe that X/A = {M1/A} and the X/A-
crown of G/A associated with N/A is N/A itself. Notice that the subgroup
V23A/A = 〈a, bz〉/A is a complementchief factor!complemented of N/A in G/A
which does not belong to X/A.

Proposition 1.3.11. Let G be a group and X a JH-solid set of monolithic
maximal subgroups of G. Assume that if U and S are two distinct elements
of X, then UG 	= SG. Let C∗/RX be the X-crown of G associated with the
X-supplemented chief factor F . Consider the set

XF = {M ∈ X : M supplements a chief factor G-connected to F}.

We define the subgroup T = T(G,X, F ) =
⋂{M : M ∈ XF }. Clearly TG =

RX.

1. Assume that if U and S are two distinct elements of X and both sup-
plement a chief factor H/K of G, then M = (U ∩ S)H ∈ X. Then the
subgroup T satisfies the following properties.
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a) For any piece of chief series of G, RX = G0 < G1 < · · · < Gn = C∗

and any family {Mi ∈ X : i = 1, . . . , n} such that Mi is a supplement
of Gi/Gi−1, for each i = 1, . . . , n, we have

T(G,X, F ) =
n⋂

i=1

Mi

and T(G,X, F ) is a supplement (a complement, if F is abelian) of
C∗/RX in G.

b) For any normal subgroup N of G such that F is G-connected with an
X/N -supplemented chief factor F1 of G/N , then T(G/N,X/N, F1) =
TN/N .

2. Conversely, assume that the subgroup T satisfies the above Conditions 1a
and 1b. Then, if U and S are elements of XF such that UG 	= SG, and
both supplement a chief factor H/K of G, then M = (U ∩ S)H ∈ XF .

Proof. 1. a) Fix a piece of chief series of G, RX = G0 < G1 < · · · <
Gn = C∗ and a family {Mi ∈ X : i = 1, . . . , n} such that Mi is a supplement
of Gi/Gi−1, for each i = 1, . . . , n and write D =

⋂n
i=1 Mi. If XF = {Mi ∈ X :

i = 1, . . . , n}, then there is nothing to prove.
Assume that there exists U ∈ XF \ {Mi ∈ X : i = 1, . . . , n}. Then U

supplements Gj/Gj−1, for some j = 1, . . . , n. Since U and Mj are distinct
monolithic XF -supplements of the same chief factor Gj/Gj−1 and UG 	= MjG,
we have that Gj/Gj−1 is abelian by Lemma 1.2.17 (2), and so is C∗/RX.
Therefore U and Mj complement Gj/Gj−1. By hypothesis, M = (U∩Mj)Gj ∈
XF . Now we have that Mj∩M = (Mj∩U)(Mj∩Gj) = (Mj∩U)Gj−1 = Mj∩U
and analogously U ∩ M = Mj ∩ U . Then D ∩ U = D ∩ M . Observe that M
complements a chief factor Gk/Gk−1, for some k > j. If M = Mk, then
D ∩ U = D. If M 	= Mk, repeat the previous argument replacing U by M
and Mj by Mk. Observe also that Gn/Gn−1 is self-centralising in G/Gn−1

and so the latter group is primitive. Hence (Mn)G = Gn−1. Therefore Mn

is the unique maximal subgroup of G in ∈ XF complementing the last chief
factor. Since the other possible maximal subgroups in XF do not change the
intersection, it follows that T(G,X, F ) =

⋂n
i=1 Mi.

Moreover, if we apply repeatedly Lemma 1.2.16 (2), we deduce that the
subgroup T =

⋂n
i=1 Mi is a supplement (complement if the crown is abelian)

of C∗/RX in G.
b) Let N be a minimal normal subgroup of G such that G/N has an X/N -

supplemented chief factor F1 which is G-connected to F . By Proposition 1.3.5,
we have that RXN < C∗ and (C∗/N)

/
(RXN/N) is the X/N -crown of G/N

associated with F1. If N ≤ RX, it is clear that T/N = T(G/N,X/N, F1).
Assume that N is G-connected to F , i.e. RX < RXN . We consider a piece of
chief series of G

RX = G0 < G1 = RXN < G2 · · · < Gn = C∗.
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By Statement 1a we have that

T = T(G,X, F ) =
n⋂

i=1

{Mi : Mi is an X-supplement of Gi/Gi−1}.

Since N ≤ ⋂n
i=2 Mi and G = M1N , we have that

TN =

(
n⋂

i=1

Mi

)
N = M1N ∩

(
n⋂

i=2

Mi

)
=

n⋂
i=2

Mi,

and

TN/N =
n⋂

i=2

(Mi/N) = T(G/N,X/N, F ).

An inductive argument proves the validity of the Statement 1b for any
normal subgroup N of G such that F is G-connected with a chief factor of
G/N .

2. Assume that the subgroup T satisfies Statement 1a and Statement 1b
and suppose that U and S are elements of XF such that UG 	= SG, and both
supplement the same chief factor H/K of G. Since U and S are monolithic
and UG 	= SG, H/K is abelian by Lemma 1.2.17 (2).

Observe that C∗ = C = CG(H/K) = HUG = HSG and K = UG ∩ H =
SG∩H. Suppose that RX < UG∩SG. Let N/RX be a chief factor of G such that
N ≤ UG∩SG. It is clear that F2 = (HN/N)

/
(KN/N) is a chief factor of G/N

and the X/N -crown of G/N associated with F2 is C/N . We see that in the
group G/N all hypotheses hold for X/N and T(G/N,X/N, F2) = TN/N . To
see that TN/N satisfies Statement 1a, let 1 = N/N = G1/N < · · · < Gn/N =
C/N be a piece of chief series of G/N and Mi/N an X/N -complement of
(Gi/N)

/
(Gi−1/N) for i = 2, . . . , n. Let M1 be an X-complement of N/RX.

Then RX < N = G1 < · · · < Gn = C is a piece of chief series of G and Mi is
an X-complement of Gi/Gi−1, for i = 1, . . . , n. Since G satisfies Statement 1a,
we have that T =

⋂n
i=1 Mi and then TN = M1N ∩ (

⋂n
i=2 Mi) =

⋂n
i=2 Mi.

Since T satisfies Statement 1b, we have TN/N =
⋂n

i=2(Mi/N) and TN/N
satisfies Statement 1a. Clearly, TN/N satisfies Statement 1b.

Arguing by induction, we have that the maximal subgroup

M/N =
(
(U/N) ∩ (S/N)

)
(HN/N) =

(
(U ∩ S)H

)
/N ∈ XF /N

and then M = (U∩S)H ∈ XF . Hence, we can assume that UG∩SG = RX = 1.
This implies that K = 1 and H is a minimal normal subgroup of G. Observe
that also UG and SG are minimal normal subgroups of G. We can consider
these three different pieces of chief series of G below C:

1 < H < C 1 < UG < C 1 < SG < C.

By Statement 1a, applied to the second or the third piece of chief series, we
have that T = U ∩S =

⋂{M : M ∈ XF }. In other words, for all M ∈ XF , we



1.4 Systems of maximal subgroups 73

have that U ∩ S ≤ M . Since X is JH-solid, the number of X-complemented
chief factors of G which are G-isomorphic to H is the same in any chief series
by Theorem 1.2.36. Hence, there exists an X-complement of C/H in G. If M is
such a complement, then H ≤ M . Therefore (U ∩S)H ≤ M . But (U ∩S)H is
a maximal subgroup of G, by Lemma 1.2.17. Therefore M = (U ∩S)H ∈ XF .

��

1.4 Systems of maximal subgroups

JH-solid sets of monolithic maximal subgroups are characterised by their ex-
cellent adequacy to the Jordan-Hölder correspondence, as we saw in The-
orem 1.2.36, but are not strong enough to fulfil some expected properties when
working with supplements of X-crowns. A supplement of a particular X-crown
C∗/R of a group G is obtained by the intersection of an X-supplement of each
chief factor in a piece of chief series of G passing through R and C∗, applying
repeatedly Lemma 1.2.16. If we want these supplements of X-crowns to be
preserved by epimorphic images and to be independent of the choice of the
chief series and of the choice of maximal subgroups, the JH-solid set of mono-
lithic maximal subgroups X have to satisfy some rather stronger conditions
characterised in Proposition 1.3.11. A subsystem of maximal subgroups of a
group G is in fact a JH-solid set of monolithic maximal subgroups of G, with
different cores, and satisfying the properties stated in Proposition 1.3.11.

Why are we interested in supplements of X-crowns? The answer will be
clear in Section 4.3 where the subgroups of prefrattini type are introduced.
W. Gaschütz constructed his celebrated prefrattini subgroups, in [Gas62], by
intersecting complements of (abelian) crowns. Several generalisations of pre-
frattini subgroups are constructed by intersecting some cleverly chosen max-
imal subgroups. The key is these “clever” choice of supplements. Within the
limits of the soluble groups, maximal subgroups into which a fixed Hall system
reduces are used. But the extension of these ideas to a general non necessarily
soluble group required of a new arithmetical-free method of choice of maximal
subgroups. Subsystems of maximal subgroups are the answer and, supporting
this idea, we will show that in a soluble group G, given a system of maximal
subgroups X of G, there exists a Hall system Σ of G such that X is the set of
all maximal subgroups of G into which Σ reduces. Thus, the original method
for soluble groups due to Gaschütz is included in our theory.

In this way from soluble to finite, we lose the arithmetical properties. This
is no surprising since they characterise solubility. But we find deep relations
between maximal subgroups hidden behind the luxuriant Hall theory.

Definition 1.4.1. Let G be a group. We say that two maximal subgroups U ,
S of G are core-related in G if UG = SG.

It is clear that the core-relation is an equivalence relation in the set Max(G)
of all maximal subgroups of a group G.
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By Theorem 1.1.10, the core-relation coincides with conjugacy in soluble
groups. Moreover, by Lemma 1.2.17 (2), two monolithic maximal subgroups
supplementing the same non-abelian chief factor are core-related.

Definitions 1.4.2. 1. Let X be a, possibly empty, set of monolithic maximal
subgroups of G. We will say that X is a subsystem of maximal subgroups
of G provided the following two properties are satisfied:
a) if U , S ∈ X and U 	= S, then UG 	= SG, and
b) if U , S ∈ X, U 	= S and both complement the same abelian chief

factor H/K of G, then M = (U ∩ S)H ∈ X.
2. If a subsystem of maximal subgroups X is a complete set of represent-

atives of the core-relation in the set Max∗(G) of all monolithic maximal
subgroups of G, then we will say that X is a system of maximal subgroups
of G.

Since Condition 1b of the above definition only has an effect on maximal
subgroups of type 1, we have that every subset of representatives of the core-
relation in the set of maximal subgroups of type 2 is a subsystem of maximal
subgroups.

If X is a subsystem of maximal subgroups of a group G, then X can
be written as the disjoint union set X = X1 ∪ X2, where Xk = {U ∈
X : U is a maximal subgroup of type k} for k = 1, 2. On the other hand,
if F1, . . . , Fn are representatives of the G-isomorphism classes of abelian
chief factors of G, then X1 is a disjoint union set X1 =

⋃n
i=1 XFi

, for
XFi

= {U ∈ X : U complements a chief factor G-isomorphic to Fi}.
Clearly a subsystem of maximal subgroups is, in particular, a JH-solid set

of monolithic maximal subgroups by Lemma 1.2.17.
Let X be a subsystem of maximal subgroups of a group G. If g ∈ G,

denote Xg = {Sg : S ∈ X}. It is clear that Xg is again a subsystem of
maximal subgroups of G.

We say that two subsystems of maximal subgroups X1 and X2 of a group
G are conjugate in G, if there exists an element g ∈ G such that X1

g = X2.

Proposition 1.4.3. Let G be a group and ϕ an epimorphism of G. If X is
a subsystem of maximal subgroups of G, then the set Xϕ = {Mϕ : Ker(ϕ) ≤
M ∈ X} is a subsystem of maximal subgroups of Gϕ.

Conversely, if Y is a subsystem of maximal subgroups of Gϕ, then the set
Yϕ−1

= {M ≤ G : Ker(ϕ) ≤ M, M/ Ker(ϕ) ∈ Y} is a subsystem of maximal
subgroups of G.

Proof. Let Mϕ, Sϕ be two distinct maximal subgroups of Gϕ in Xϕ. Then
M,S are two distinct maximal subgroups of G in X and then MG 	= SG.
Moreover Ker(ϕ) ≤ M∩S. It is clear that this implies that (Mϕ)Gϕ 	= (Sϕ)Gϕ .

If Mϕ and Sϕ are two maximal subgroups complementing an abelian chief
factor Hϕ/Kϕ of Gϕ, then H/K is an abelian chief factor of G which is
complemented by M and S. Therefore (M ∩S)H ∈ X. Hence (Mϕ∩Sϕ)Hϕ ∈
Xϕ.
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For the converse, just notice that for any subgroup H ≤ G such that
Ker(ϕ) ≤ H, we have

(
H/ Ker(ϕ)

)
Gϕ = HG/ Ker(ϕ). ��

Notation 1.4.4. Bearing in mind Notation 1.2.19, if G is a group, N is a normal
subgroup of G, and ϕ : G −→ G/N is the canonical epimorphism, we write

Xϕ = X/N = {M/N : M ∈ X and N ≤ M}

for a subsystem of maximal subgroups X of G.

Corollary 1.4.5. Let G be a group factorised as G = MN , where M is a
subgroup of G and N is a normal subgroup of G. If X is subsystem of maximal
subgroups of G and Y is a subsystem of maximal subgroups of M , then

(X ∩ M)/(N ∩ M) = {(S ∩ M)/(N ∩ M) : S ∈ X, N ≤ S}

is a subsystem of maximal subgroups of M/(N ∩ M) and

YN/N = {SN/N : S ∈ Y, N ∩ M ≤ S}

is a subsystem of maximal subgroups of G/N .

Lemma 1.4.6. Let C/R be the crown of a complemented abelian chief factor
F of a group G.

1. Suppose that N is a normal subgroup of G such that R ≤ N < C. If T is
a complement of C/N in G, then the set

Y(F, N, T ) = {TM : N ≤ M < C and C/M is a chief factor of G}

is a subsystem of maximal subgroups of G.
Moreover any chief factor of G between C and N is complemented by some
maximal subgroup of Y(F,N, T ) and T =

⋂{U : U ∈ Y(F,N, T )}.
2. Let H/K be a chief factor of G such that R ≤ K < H < C, T a

complement of C/H in G, and U a complement of H/K in G. Then
S = T ∩ U is a complement of C/K in G such that T = SH and
Y(F, H, T ) ∪ {U} ⊆ Y(F, K, S).

3. If X is a subsystem of maximal subgroups of G such that F is X-
supplemented in G, and T = T(G,X, F ) is the complement of C/RX

defined in Proposition 1.3.11, then

Y(F, RX, T ) = XF

= {U ∈ X : U complements a chief factor G-isomorphic to F}.
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Proof. 1. Since F is abelian, C = CG(F ). Write Y = Y(F, N, T ) and
consider U = TM ∈ Y, for some normal subgroup M such that N ≤ M and
C/M is a chief factor of G. It is clear that U complements C/M in G. Hence
U is a maximal subgroup of G. Since UG < C, it follows that UG = M .

Let U1 = TM1 and U2 = TM2 be two elements of Y, with M1 and M2 as in
the definition of the elements of Y. We have seen in the preceding paragraph
that (Ui)G = Mi, i = 1, 2. Clearly U1 	= U2 implies that (U1)G = M1 	= M2 =
(U2)G. Suppose that U1 and U2 complement the same chief factor H/K of G.
Observe that C = HM1 = HM2 = M1M2 and M1 ∩ H = K = M2 ∩ H. The
subgroup M3 = (M1 ∩ M2)H is a normal subgroup of G and N ≤ M3 ≤ C.
Moreover

C/M3 = HM1/(M1 ∩ M2)H
∼=G M1/(M1 ∩ M2)(M1 ∩ H)
= M1/(M1 ∩ M2)
∼=G F

and G/M3 is a chief factor of G. By Lemma 1.2.17, the subgroup (U1 ∩U2)H
is maximal in G. Since M1 ∩ TM2 ≤ C ∩ TM2 = M2(C ∩ T ) = M2, it follows
that M1 ∩ TM2 = M1 ∩ M2. Hence

(U1∩U2)H = (TM1∩TM2)H = T (M1∩TM2)H = T (M1∩M2)H = TM3 ∈ Y.

Consequently, Y is a subsystem of maximal subgroups of G.
Let H/K be a chief factor of G such that N ≤ K < H ≤ C. Let U be a

complement of H/K in G and write M = UG. Then C = HM and K = M∩H.
Then TM ∈ Y(F, N, T ). Now (TM)H = TC = G and TM ∩H ≤ TM ∩C =
M . Hence TM ∩ H = M ∩ H = K and TM complements H/K in G.

Clearly, T ≤ ⋂{U : U ∈ Y(F,N, T )}. If N = Gk ≤ Gk−1 ≤ · · · ≤ G0 = G
is a piece of chief factor of G and, for i = 1, . . . , k, Ui is a maximal subgroup in
Y(F, N, T ) complementing Gi−1/Gi, then T =

⋂k
i=1 Ui, by Proposition 1.3.11.

Hence, T =
⋂{U : U ∈ Y(F,N, T )}.

2. Applying Corollary 1.3.4, C/K is completely reducible G-module.
Hence, by [DH92, A, 4.6], C = HA for some normal subgroup A of G contain-
ing K such that H ∩ A = K. By Lemma 1.2.16 (2), the subgroup S = T ∩ U
is a complement of C/K in G and SH = (T ∩U)H = T ∩UH = T . If C/M is
a chief factor of G such that H ≤ M , then SM = TM ∈ Y(F,H, T ). Hence
Y(F, H, T ) ⊆ Y(F,K, S). Moreover C/UG is a chief factor of G such that
K ≤ UG. Since SUG complements C/UG in G, it follows that U = SUG is a
maximal subgroup of G in Y(F,K, S).

3. Let TM be a maximal subgroup of G in Y(F, RX, T ). The chief factor
C/M is complemented by some maximal subgroup, U say, in X. Since UG =
M , because C/M is self-centralising in G/M , it follows that TM ≤ U . Hence
U = TM ∈ X. Therefore Y(F, RX, T ) ⊆ XF . If U ∈ XF , then T ≤ U
and U complements C/UG

∼=G F . Clearly RX ≤ UG and U = TUG. Hence
U ∈ Y(F, RX, T ). Therefore XF ⊆ Y(F,RX, T ). ��
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Theorem 1.4.7. Let G be a group. Every subsystem of maximal subgroups
of G is contained in a system of maximal subgroups of G. In particular, every
group possesses a system of maximal subgroups.

Proof. Let X be a subsystem of maximal subgroups of G. Then X = X1∪X2,
where

Xk = {U ∈ X : U is a maximal subgroup of type k}, for k = 1, 2.

Also, if F1, . . ., Fn are representatives of the G-isomorphism classes of com-
plemented abelian chief factors of G, we have that X1 =

⋃n
i=1 XFi

, where
XFi

= {U ∈ X : U complements a chief factor G-isomorphic to Fi}.
Fix a complemented abelian chief factor F which is X-complemented in

G. Consider its X-crown C/RX and the subgroup T 0 = T (G,X, F ) as in the
previous lemma. Then Y(F,RX, T 0) = XF . If C/R is the crown of F and
R = Gr ≤ Gr−1 ≤ . . . ≤ G0 = RX ≤ . . . ≤ C is a piece of chief series of
G, applying Lemma 1.4.6 (2), we construct a series of subsystems of maximal
subgroups

XF = Y(F, G0, T
0) ⊆ Y(F,G1, T

1) ⊆ . . . ⊆ Y(F, Gr, T
r) = Y(F,R, T ),

and T is a complement of the crown C/R such that T 0 = TRX.
Note that every complemented chief factor G-isomorphic to F lies between

R and C and hence it is complemented by a maximal subgroup in Y(F, R, T )
by Lemma 1.4.6 (1). Hence, Y(F, R, T ) is a complete set of representatives of
the core-relation in the set of all maximal subgroups of G which complement
a chief factor G-isomorphic to F .

Now, it is rather clear that

Y1 =
n⋃

i=1

Y(Fi, Ri, Ti)

is a subsystem of maximal subgroups of G which is a complete set of rep-
resentatives of the core-relation in the set of all maximal subgroups of G of
type 1. Moreover X1 ⊆ Y1.

For the maximal subgroups of type 2, just note that we only have to
complete X2 to a complete set of representatives Y2 of the core-relation in
the set of all maximal subgroups of type 2 of G.

Consequently Y = Y1 ∪ Y2 is a system of maximal subgroups of G and
X ⊆ Y. ��

Corollary 1.4.8. Let G be a group factorised as G = MN , where M is a
subgroup of G and N is a normal subgroup of G. If Y is a subsystem of
maximal subgroups of M , then there exists a system of maximal subgroups X
of G such that

Y/(M ∩ N) = (X ∩ M)/(N ∩ M)
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Proof. By Corollary 1.4.5, the set

YN/N = {SN/N : S ∈ Y, N ∩ M ≤ S}
is a subsystem (a system, in fact) of maximal subgroups of G/N . By Propos-
ition 1.4.3. the set

X0 = {S ≤ G : N ≤ S, S/N ∈ YN/N}
is a subsystem of maximal subgroups of G. By Theorem 1.4.7 there exists a
system of maximal subgroups X of G such that X0 ⊆ X.

Observe that if S ∈ X0, then S = UN for some U ∈ Y such that N ∩M ≤
U . Moreover S ∩ M = UN ∩ M = U(N ∩ M) = U . Hence

Y/(M ∩ N) = (X0 ∩ M)/(M ∩ N) ⊆ (X ∩ M)/(M ∩ N).

Observe that (X∩M)/(M ∩N) is a system of maximal subgroups of M/(N ∩
M) and so is Y/(M ∩ N). Hence equality holds. ��

The following results analyse the behaviour of systems of maximal sub-
groups in some particular maximal subgroups called critical subgroups. These
subgroups turn out to be crucial in the introduction of normalisers associated
with some classes of groups in Chapter 4.

Definition 1.4.9. Let G be a group. A monolithic maximal subgroup M of G
is said to be a critical subgroup of G if M supplements the subgroup F′(G) =
Soc

(
G mod Φ(G)

)
.

Since

F′(G)/Φ(G) = Soc
(
G/Φ(G)

)
= N1/Φ(G) × · · · × Nn/Φ(G)

for normal subgroups Ni of G such that each Ni/Φ(G) is a chief factor of G,
we can say that a maximal subgroup M of G is critical if there exists a chief
factor of G of the form N/Φ(G) supplemented by M .

If the group G is soluble, then F′(G) = F(G), the Fitting subgroup of G.
In this case, this definition coincides with that of [DH92, III, 6.4 (a)].

Proposition 1.4.10. Let G be a group and N a normal subgroup of G. If M
is a subgroup of G, then F′(M)N/N is contained in F′(MN/N). Consequently,
if U is critical in M and M ∩ N is contained in U , then UN/N is critical in
MN/N .

Proof. Write F/N = Φ(MN/N) and recall that Φ(M) ≤ F . Let K/Φ(M) be
a minimal normal subgroup of M/Φ(M). We have that Φ(M) ≤ K ∩ F ≤ K
and K ∩ F is normal in M . Hence either Φ(M) = K ∩ F or K ≤ F by
minimality of K/Φ(M). If K ≤ F , then KN/N ≤ F′(MN/N). Assume that
Φ(M) = K ∩ F . It follows that KF/F is a minimal normal subgroup of
MN/F . Hence KN/N ≤ F′(MN/N) and F′(M)N/N ≤ F′(MN/N).

Assume that U is critical in M . Then M = U F′(M) and MN/N =
(UN/N)

(
F′(M)N/N

)
= (UN/N) F′(MN/N). If M ∩N ≤ U , UN/N is max-

imal in MN/N . Hence, in this case, UN/N is critical in MN/N .
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Proposition 1.4.11. Let M be a critical subgroup of a group G. Suppose that
H/K is a chief factor of G covered by M and avoided by Φ(G). Then we have
the following.

1. The section (H ∩ M)/(K ∩ M) is a chief factor of M such that M ∩
CG(H/K) = CM

(
(H ∩ M)/(K ∩ M)

)
.

2. AutG(H/K) ∼= AutM

(
(H ∩ M)/(K ∩ M)

)
.

3. [H/K] ∗ G ∼= [(H ∩ M)/(K ∩ M)] ∗ M .
4. If U is a monolithic maximal subgroup of G which supplements H/K in

G, then U ∩ M is a maximal subgroup of M which supplements (H ∩
M)/(K ∩ M) in M .

Proof. First of all, since H = K(M∩H), it follows that H/K is M -isomorphic
to (H∩M)/(K∩M). Therefore M∩CG(H/K) = CM

(
(H∩M)/(K∩M)

)
. We

shall prove now that G = M CG(H/K). Since M is critical in G, M is a supple-
ment in G of a chief factor of G of the form N/Φ(G). Note that HΦ(G)/KΦ(G)
is G-isomorphic to H/K. Hence, by considering HΦ(G)/KΦ(G) instead of
H/K if necessary, we can assume that Φ(G) ≤ K.

If G = MK, then G = M CG(H/K). Assume that K ≤ M . Then H ≤ M ,
since M covers H/K. Therefore [H,N ] ≤ Φ(G) and thus N ≤ CG(H/K).
Consequently, in both cases, G = M CG(H/K).

Now Statements 1 and 2 follow from [DH92, A, 13.9].
3. If H/K is non-abelian, then clearly [H/K]∗G ∼= [(H∩M)/(K∩M)]∗M .

If H/K is abelian, then the correspondence

α : [H/K] ∗ G −→ [(H ∩ M)/(K ∩ M)] ∗ M,

given by(
xK, y CG(H/K)

)α =
(
x(K ∩ M), y CM

(
(H ∩ M)/(K ∩ M)

))
for any x ∈ H, y ∈ M , is an isomorphism. Hence [H/K]∗G ∼= [(H ∩M)/(K ∩
M)] ∗ M .

4. Note that H = K(M ∩ H) because M covers H/K.
Let us prove first that if X is a monolithic maximal subgroup of G such

that X ∩M = U ∩M and N ≤ X, then X ∩M is a maximal subgroup of M
which supplements (H ∩ M)/(K ∩ M) in M .

Note that X = X ∩ MN = (X ∩ M)N . Let T be a subgroup such that
X ∩ M ≤ T ≤ M . Then N ∩ M ≤ X ∩ M ≤ T and X = (X ∩ M)N ≤
TN ≤ MN = G. By maximality of X in G, we have that either X = TN or
TN = G. If X = TN , then X ∩M = TN ∩M = T (N ∩M) = T . If G = TN ,
then M = M ∩ TN = T (M ∩ N) = T . Hence X ∩ M is a maximal subgroup
of M .

Now consider the subgroup (X ∩M)(H ∩M). Suppose that (X ∩M)(H ∩
M) = X ∩ M . This is to say that M ∩ H ≤ M ∩ X = U ∩ M and then
H = K(M ∩ H) ≤ U , which is a contradiction. Hence, by maximality of
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X ∩ M in M , we have that M = (X ∩ M)(H ∩ M) = (U ∩ M)(H ∩ M).
Moreover K ∩ M is contained in U ∩ H ∩ M . Therefore U ∩ M supplements
(H ∩ M)/(K ∩ M) in M .

Clearly if N ≤ U , we can apply the above arguments to X = U . Suppose
that G = UN . If UG = MG, then K = UG)∩H = MG∩H ≤ M ∩H and then
H = K. This contradiction yields UG 	= MG. Applying Lemma 1.2.17, the sub-
group X = (U ∩M)N is a maximal subgroup of G. Also by Lemma 1.2.17 (2),
we have that N/Φ(G) is abelian. In particular M ∩ N = Φ(G) ≤ U ∩ M .
Therefore X ∩ M = (U ∩ M)(N ∩ M) = U ∩ M and U ∩ M supplements
(H ∩ M)/(K ∩ M) in M by the above arguments. ��

Corollary 1.4.12. Let M be a critical subgroup of a group G. Assume that
U is a monolithic maximal subgroup of G such that UG 	= MG. Then M ∩ U
is a monolithic maximal subgroup of M .

Proof. Assume that U supplements a chief factor H/K of G. Suppose that
H/K is supplemented by M . By Lemma 1.2.17 (2), the chief factor H/K is
abelian. In this case U complements the chief factor C/UG, for C = CG(H/K),
and this chief factor is covered by M , since MG 	= UG. Hence, we can assume
that U supplements a chief factor covered by M . Since this chief factor is
avoided by Φ(G), we have that M ∩ U is a maximal subgroup of M , by
Proposition 1.4.11 (4). ��

Theorem 1.4.13. Let X be a subsystem of maximal subgroups of a group G
and M a critical subgroup of G in X. Consider the set

XM = {S ∩ M : S ∈ X, S 	= M},

with no repetitions. Then

1. if G = MN , for some chief factor N/Φ(G) of G, then XM = {S ∩ M :
N ≤ S ∈ X};

2. XM is a subsystem of maximal subgroups of M .

Proof. 1. Let S be an element of X such that S ∩ M ∈ XM and G = SN .
Then N/Φ(G) is abelian by Lemma 1.2.17 (2), S∗ = (S ∩ M)N ∈ X and
S∗ ∩ M = S ∩ M .

2. Assume that G = MN , for some chief factor N/Φ(G) of G. Applying
Corollary 1.4.12, all elements of XM are monolithic maximal subgroups of
M . Consider two distinct maximal subgroups S ∩ M and U ∩ M in XM . By
Statement 1, we can assume that N ≤ S ∩ U . By Theorem 1.2.22, we have
that SG = N(S ∩M)M 	= UG = N(U ∩M)M . Hence (S ∩M)M 	= (U ∩M)M .

Suppose that S ∩ M and U ∩ M are distinct elements of XM , for S,
U ∈ X, and both complement the same abelian chief factor H/K of M . We
can assume that N ≤ S ∩U . Then S = N(S ∩M) and U = N(U ∩M). Since
M ∩ N ≤ S ∩ M , it follows that H ∩ M ∩ N ≤ H ∩ M ∩ S = K. Therefore
H(M ∩ N)/K(M ∩ N) ∼=M H/K. Clearly, S ∩ M and U ∩ M complement



1.4 Systems of maximal subgroups 81

the chief factor H(M ∩ N)/K(M ∩ N) of M . By Theorem 1.2.22, U and S
complement the chief factor HN/KN of G. Thus, (S∩U)HN = (S∩U)H is a
maximal subgroup in X, inasmuch as X is a subsystem of maximal subgroups
of G. Therefore (S ∩ U)H ∩ M = (S ∩ U ∩ M)H ∈ XM .

Consequently, XM is a subsystem of maximal subgroups of M . ��

Theorem 1.4.14. Let M be a critical subgroup of a group G. Assume that Y
is a system of maximal subgroups of M . Then there exists a system of maximal
subgroups X of G such that M ∈ X and XM ⊆ Y.

Proof. Without loss of generality we can assume that Φ(G) = 1. Since M is
critical in G, it follows that G = NM , for some minimal normal subgroup N
of G.

Suppose that N is non-abelian and consider the following set of monolithic
maximal subgroups of G

X = {SN : M ∩ N ≤ S ∈ Y} ∪ {M}.

If U is a maximal subgroup of G and N ∩ UG = 1, then G = UN and UG =
CG(N) = MG, since N is non-abelian. If N ≤ UG, then U ∩ M is a maximal
subgroup of M and there exists S ∈ Y, such that N ∩M ≤ SM = (U ∩M)M .
Now observe that SNG = SMN = UG. Therefore X is a complete set of
representatives of the core-relation in G.

Suppose now that S1 and S2 are maximal subgroups of M in Y such that
M ∩N ≤ S1 ∩ S2 and the maximal subgroups U1 = S1N and U2 = S2N of G
complement the same abelian chief factor H/K of G. We see that (U1∩U2)H ∈
X. Changing if necessary H/K by HN/KN , we can assume that N ≤ K. Now
S1 and S2 complement the abelian chief factor (H∩M)/(K∩M) of M . Since Y
is a system of maximal subgroups of M , the subgroup (S1∩S2)(H∩M) is in Y.
Since N∩M ≤ H∩M ≤ (S1∩S2)(H∩M), we have that (S1∩S2)(H∩M)N =
(S1∩S2)H is a maximal subgroup of G in X. Clearly (S1∩S2)H = (U1∩U2)H.
This shows that X is a system of maximal subgroups of G and M ∈ X.

Finally, if S ∈ Y and M ∩ N ≤ S, then M ∩ SN = S. Hence XM ⊆ Y.
Assume now that N is abelian. Hence M ∩ N = 1. Write Y = Y1 ∪

Y2, where Yi is the set of maximal subgroups of type i in Y, for i = 1, 2.
Let {F1, . . . , Fn} be a complete set of representatives of the M -isomorphism
classes of abelian chief factors of M . Then Y1 =

⋃n
i=1 YFi , where YFi = {S ∈

Y : S complements a chief factor M -isomorphic to Fi}.
Applying Theorem 1.2.22, X2 = {SN : S ∈ Y2} is a complete set of

representatives of the core-relation in the set of all maximal subgroups of
type 2 of G. Note that (X2)M = {SN ∩ M : S ∈ Y2} = Y2.

Since M ∼= G/N , we can find a complete set {L1, . . . , Ln} of representat-
ives of the G/N -isomorphism (G-isomorphism) classes of abelian chief factors
of G/N such that Li

∼= Fi, 1 ≤ i ≤ n.
If N is not isomorphic to Li for all i = 1, . . . , n, then all complements of N

in G are core-related. In this case X1 = {SN : S ∈ Y1}∪{M} is a subsystem
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of maximal subgroups of G containing a representative of each equivalence
class of the core-relation in the set of all maximal subgroups of G of type 1.
Therefore X = X1 ∪ X2 is a system of maximal subgroups of G such that
XM = Y.

Suppose that N is G-isomorphic to some of Li, 1 ≤ i ≤ n. Let us assume
that N ∼=G Ln. For each i ∈ {1, . . . , n − 1}, denote XLi = {SN : S ∈ YFi}.
Then (XLi

)M = YFi
and XLi

is a subsystem of maximal subgroups of G
containing a representative of each equivalence class of the core-relation in
the set of all complements of chief factors of G which are G-isomorphic to Li.

If Li is a Frattini chief factor of G/N , then all complements of N in G
are core-related and X1 = {SN : S ∈ Y1} ∪ {M} is a system of maximal
subgroups of G satisfying the condition of the theorem. Therefore we may
assume that Ln is complemented, and so there exists a Y-complemented chief
factor A/B of M such that A/B is M -isomorphic to Fn.

Let C/R be the crown of G associated with N and AN/BN in G. By Pro-
position 1.3.5, RN is a proper subgroup of C and (C/N)

/
(RN/N) is the crown

of (AN/N)
/
(BN/N) in G/N . Applying Proposition 1.3.11, (C/N)

/
(RN/N)

in G/N is complemented in G/N . Let T be a subgroup of M such TN/N is a
complement of (C/N)

/
(RN/N) in G/N . Since TN is a complement of C/RN

in G and M is a complement of RN/R in G, it follows that T = TN ∩ M
is a complement of C/R in G by Lemma 1.4.6 (2). In addition, applying
Lemma 1.4.6 (1), the set Y(AN/BN, RN, TN), composed of all subgroups
TK where K is a normal subgroup of G such that RN ≤ K and C/K is a
chief factor of G, is a subsystem of maximal subgroups of G and

Y(Ln, RN, TN) ∪ {M} ⊆ Y(Ln, R, T )
= {TK : R ≤ K and C/K is chief factor of G}.

Write XLn = Y(Ln, R, T ). Then XLn is a subsystem of maximal sub-
groups of G by Lemma 1.4.6 (1).

Consider a subgroup U ∈ XLn
, U 	= M . We see that U ∩ M ∈ YFn

.
Suppose that U = TK for some normal subgroup K of G such that R ≤ K
and C/K is a chief factor of G. If K is contained in MG, then U = TK = M
against our assumption. Hence we have that G = MK and C = MGK. In
particular, UG 	= MG. Moreover, (C∩M)/(K∩M) is a chief factor of M which
is M -isomorphic to Fn and is complemented in M by the maximal subgroup
U ∩ M of M by Proposition 1.4.11 (1) and (4). Note that (C ∩ M)/(K ∩ M)
is Y-complemented in M because Y is a system of maximal subgroups of M .
Consider a maximal subgroup Y ∈ YFn which complements the chief factor
(C ∩ M)/(K ∩ M) in M . Applying Proposition 1.3.11, we have that T is
contained in Y . Hence U ∩M = T (K ∩M) ≤ Y . Maximality of U ∩M in M
forces U ∩ M = Y . Therefore, (XLn

)M ⊆ YFn
.

If U is a maximal subgroup of G which complements a chief factor iso-
morphic to Ln, then U complements the chief factor C/UG

∼=G Ln. The
maximal subgroup TUG is in XLn

and
(
TUG

)
G

= UG. Thus, XLn
is a com-
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plete set of representatives for the core-relation in the set of all complements
of chief factors G-isomorphic to Ln.

Consider the union set X1 =
⋃n

i=1 XFi
and X = X1 ∪ X2 is a system of

maximal subgroups of G such that XM ⊆ Y and M ∈ X. ��

Theorem 1.4.15. If N is a normal subgroup of a group G and X∗ is system
of maximal subgroups of G/N , then there exists a system of maximal subgroups
X of G such that X/N = X∗.

Proof. We argue by induction of the order of G. It is clear that N 	= 1.
Assume that N is a minimal normal subgroup of G. It is clear that we can
suppose that N ∩ Φ(G) = 1. Let M be a critical subgroup of G such that
G = MN . If α is the isomorphism G/N ∼= M/(M ∩ N), then (X∗)α =
{(U ∩ M)/(N ∩ M) : U/N ∈ X∗} is a system of maximal subgroups of
M/(N ∩M). By induction, there exists a system of maximal subgroups X(M)
of M such that X(M)/(N ∩ M) = (X∗)α. By Theorem 1.4.14 there exists a
system of maximal subgroups X of G such that XM ⊆ X(M).

The set (X/N)α = {(S ∩ M)/(N ∩ M) : S ∈ X, N ≤ S} is a system of
maximal subgroups of M/(M ∩N) by Corollary 1.4.5. Notice that (X/N)α ⊆
X(M)/(M ∩ N) = (X∗)α and then (X/N)α = (X∗)α. Consequently X/N =
X∗ and the theorem is true.

Now assume that L is a minimal normal subgroup of G and L is a proper
subgroup of N . By inductive hypothesis the theorem is true for the group G/L.
Since X∗∗ =

{
(S/L)

/
(N/L) : S/N ∈ X∗} is a system of maximal subgroups

of (G/L)
/
(N/L), there exists a system of maximal subgroups X0 of G/L such

that X0

/
(N/L) = X∗∗. On the other hand, since for L the theorem is true,

there exists a system of maximal subgroups X of G such that X/L = X0. If
H ∈ X and N ≤ H, then L ≤ H and H/L ∈ X0, (H/L)

/
(N/L) ∈ X∗∗, and

then H/N ∈ X∗. Consequently, X∗ = X/N . ��

Corollary 1.4.16. Given a system of maximal subgroups X of a group G and
a critical subgroup M of G such that M ∈ X, there exists a system of maximal
subgroups Y of M , such that XM ⊆ Y.

Proof. Assume that M supplements a chief factor N/Φ(G) of G. Denote by α
the isomorphism α : G/N −→ M/(N∩M). Then (X∩N)/(M∩N) is a system
of maximal subgroups of M/(N∩M). By Theorem 1.4.15, there exists a system
of maximal subgroups Y of M such that Y/(N∩M) = (X∩M)/(M∩N). Let
U ∈ X with U 	= M . If G = UN , then N/Φ(G) is abelian by Lemma 1.2.17 (2),
and V = (U ∩ M)N ∈ X. In this case, we have that U ∩ M = V ∩ M . Hence
we can assume that N ≤ U . Then (U ∩ M)/(N ∩ M) ∈ (X ∩ N)/(M ∩ N)
and U ∩ M ∈ Y. Therefore XM ⊆ Y. ��

The soluble case is particularly interesting in this context. Given a Hall
system Σ of a soluble group G, we consider the set

S(Σ) = {S ∈ Max(G) : Σ reduces into S}.
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Maximal subgroups are always pronormal (see [DH92, Section I, 6]) and there-
fore if M is a maximal subgroup of G, then Σ reduces into exactly one con-
jugate of M by a theorem due to Mann (see [DH92, I, 6.6]). Then S(Σ) is a
complete set of representatives of the core-relation. By [DH92, I, 4.22], S(Σ)
is indeed a system of maximal subgroups of G. the following result shows that
all systems of maximal subgroups of the soluble group G arise in this manner.

Theorem 1.4.17. Let X be a subsystem of maximal subgroups of a soluble
group G. Then there exists a Hall system Σ of G such that Σ reduces into
each maximal subgroup of G in X.

Proof. We argue by induction on the order of G. Let N be a minimal normal
subgroup of G. Then X/N is a subsystem of maximal subgroups of G/N
by Proposition 1.4.3. By induction there exists a Hall system Σ of G such
that the Hall system ΣN/N reduces into each maximal subgroup of G/N
in X/N . Hence Σ reduces into each maximal subgroup of G containing N
and belonging to X by [DH92, I, 4.17 b]. In particular, we can assume that
Φ(G) = 1.

If no complement of N in G is in X, then Σ reduces into each max-
imal subgroup of G in X. Thus, we can assume that the set of complements
{T1, . . . , Tr} of N in X is non-empty, i.e. r ≥ 1. We can also assume that T1

is not normal in G. By [DH92, I, 4.16] there exists an element n ∈ N such
that Σ0 = Σn reduces into T1. Then Σ0N/N = ΣN/N . This means that we
can assume without loss of generality that Σ0 = Σ. If r = 1, then it is clear
that Σ reduces into each maximal subgroup of G in X. Suppose that r > 1.
For j 	= 1, the subgroup M = (T1 ∩ Tj)N is a maximal subgroup of G in X.
Since ΣN/N reduces into M/N , it is clear that Σ reduces into M . Let p be
the prime dividing the order of N and consider the Hall p′-subgroup Q of G
in Σ. We know, by Lemma 1.2.17 (1), that M complements a p-chief factor
of G. Hence T1 ∩ Tj has p-index in G and so Q ≤ (T1 ∩ Tj)a for some a ∈ N .
This implies that Σ reduces into T a

1 and into T a
j by [DH92, I, 4.20]. Since T1

is pronormal in G, we have that a ∈ T1 ∩ N = 1 and then Σ reduces into Tj .
Thus, in any case Σ reduces into Ti, for i = 1, . . . , r and then Σ reduces into
each maximal subgroup of G in X. ��

Corollary 1.4.18. If G is a soluble group then:

1. the map

{Hall systems of G} −→ {Systems of maximal subgroups of G}

such that the image of a Hall system Σ of G is the set X(Σ) given by

X(Σ) = {S ∈ Max(G) : Σ reduces into S},

is surjective.
2. All systems of maximal subgroups of G are conjugate.
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3. The number of systems of maximal subgroups of G is the index of the
stabiliser NG

(
X(Σ)

)
=
⋂{NG(S) : S ∈ X(Σ)}.

Corollary 1.4.19. A group G is soluble if and only if all systems of maximal
subgroups of G are conjugate.

Proof. Only the sufficiency of the condition is in doubt. Suppose that all
systems of maximal subgroups are conjugate in G. If G is non-soluble, there
exists a non-abelian chief factor H/K of G; then G

/
CG(H/K) is a primitive

group of type 2 by Proposition 1.1.14. Take S and U two maximal subgroups
of G such that SG = UG = CG(H/K), i.e. S

/
CG(H/K) and U

/
CG(H/K) are

two core-free maximal subgroups of G
/

CG(H/K). There exist two systems
of maximal subgroups of G, X and Y, such that S ∈ X and U ∈ Y by
Theorem 1.4.14. Since Y = Xg for some g ∈ G, then U = Sg and all core-free
maximal subgroups of G

/
CG(H/K) are conjugate. But this contradicts the

fact of being a primitive group of type 2 (see Remark 1.1.11 (4)). Therefore
G is soluble. ��




