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Preface

Coding theory originated with the 1948 publication of the paper “A mathematical theory
of communication” by Claude Shannon. For the past half century, coding theory has grown
into a discipline intersecting mathematics and engineering with applications to almost every
area of communication such as satellite and cellular telephone transmission, compact disc
recording, and data storage.

During the 50th anniversary year of Shannon’s seminal paper, the two volume Handbook
of Coding Theory, edited by the authors of the current text, was published by Elsevier
Science. That Handbook, with contributions from 33 authors, covers a wide range of topics
at the frontiers of research. As editors of the Handbook, we felt it would be appropriate
to produce a textbook that could serve in part as a bridge to the Handbook. This textbook
is intended to be an in-depth introduction to coding theory from both a mathematical and
engineering viewpoint suitable either for the classroom or for individual study. Several of
the topics are classical, while others cover current subjects that appear only in specialized
books and journal publications. We hope that the presentation in this book, with its numerous
examples and exercises, will serve as a lucid introduction that will enable readers to pursue
some of the many themes of coding theory.

Fundamentals of Error-Correcting Codes is a largely self-contained textbook suitable
for advanced undergraduate students and graduate students at any level. A prerequisite for
this book is a course in linear algebra. A course in abstract algebra is recommended, but not
essential. This textbook could be used for at least three semesters. A wide variety of examples
illustrate both theory and computation. Over 850 exercises are interspersed at points in the
text where they are most appropriate to attempt. Most of the theory is accompanied by
detailed proofs, with some proofs left to the exercises. Because of the number of examples
and exercises that directly illustrate the theory, the instructor can easily choose either to
emphasize or deemphasize proofs.

In this preface we briefly describe the contents of the 15 chapters and give a suggested
outline for the first semester. We also propose blocks of material that can be combined in a
variety of ways to make up subsequent courses. Chapter 1 is basic with the introduction of
linear codes, generator and parity check matrices, dual codes, weight and distance, encoding
and decoding, and the Sphere Packing Bound. The Hamming codes, Golay codes, binary
Reed-Muller codes, and the hexacode are introduced. Shannon’s Theorem for the binary
symmetric channel is discussed. Chapter 1 is certainly essential for the understanding of
the remainder of the book.

Chapter 2 covers the main upper and lower bounds on the size of linear and nonlinear
codes. These include the Plotkin, Johnson, Singleton, Elias, Linear Programming, Griesmer,
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Gilbert, and Varshamov Bounds. Asymptotic versions of most of these are included. MDS
codes and lexicodes are introduced.

Chapter 3 is an introduction to constructions and properties of finite fields, with a few
proofs omitted. A quick treatment of this chapter is possible if the students are familiar
with constructing finite fields, irreducible polynomials, factoring polynomials over finite
fields, and Galois theory of finite fields. Much of Chapter 3 is immediately used in the study
of cyclic codes in Chapter 4. Even with a background in finite fields, cyclotomic cosets
(Section 3.7) may be new to the student.

Chapter 4 gives the basic theory of cyclic codes. Our presentation interrelates the con-
cepts of idempotent generator, generator polynomial, zeros of a code, and defining sets.
Multipliers are used to explore equivalence of cyclic codes. Meggitt decoding of cyclic
codes is presented as are extended cyclic and affine-invariant codes.

Chapter 5 looks at the special families of BCH and Reed—Solomon cyclic codes as well as
generalized Reed—Solomon codes. Four decoding algorithms for these codes are presented.
Burst errors and the technique of concatenation for handling burst errors are introduced
with an application of these ideas to the use of Reed—Solomon codes in the encoding and
decoding of compact disc recorders.

Continuing with the theory of cyclic codes, Chapter 6 presents the theory of duadic
codes, which include the family of quadratic residue codes. Because the complete theory of
quadratic residue codes is only slightly simpler than the theory of duadic codes, the authors
have chosen to present the more general codes and then apply the theory of these codes
to quadratic residue codes. Idempotents of binary and ternary quadratic residue codes are
explicitly computed. As a prelude to Chapter 8, projective planes are introduced as examples
of combinatorial designs held by codewords of a fixed weight in a code.

Chapter 7 expands on the concept of weight distribution defined in Chapter 1. Six equiv-
alent forms of the MacWilliams equations, including the Pless power moments, that relate
the weight distributions of a code and its dual, are formulated. MDS codes, introduced in
Chapter 2, and coset weight distributions, introduced in Chapter 1, are revisited in more
depth. A proof of a theorem of MacWilliams on weight preserving transformations is given
in Section 7.9.

Chapter 8 delineates the basic theory of block designs particularly as they arise from
the supports of codewords of fixed weight in certain codes. The important theorem of
Assmus—Mattson is proved. The theory of projective planes in connection with codes, first
introduced in Chapter 6, is examined in depth, including a discussion of the nonexistence
of the projective plane of order 10.

Chapter 9 consolidates much of the extensive literature on self-dual codes. The Gleason—
Pierce-Ward Theorem is proved showing why binary, ternary, and quaternary self-dual
codes are the most interesting self-dual codes to study. Gleason polynomials are introduced
and applied to the determination of bounds on the minimum weight of self-dual codes.
Techniques for classifying self-dual codes are presented. Formally self-dual codes and ad-
ditive codes over 4, used in correcting errors in quantum computers, share many properties
of self-dual codes; they are introduced in this chapter.

The Golay codes and the hexacode are the subject of Chapter 10. Existence and uniqueness
of these codes are proved. The Pless symmetry codes, which generalize the ternary Golay
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codes, are defined and some of their properties are given. The connection between codes
and lattices is developed in the final section of the chapter.

The theory of the covering radius of a code, first introduced in Chapter 1, is the topic
of Chapter 11. The covering radii of BCH codes, Reed—Muller codes, self-dual codes, and
subcodes are examined. The length function, a basic tool in finding bounds on the covering
radius, is presented along with many of its properties.

Chapter 12 examines linear codes over the ring Z, of integers modulo 4. The theory of
these codes is compared and contrasted with the theory of linear codes over fields. Cyclic,
quadratic residue, and self-dual linear codes over Z, are defined and analyzed. The nonlinear
binary Kerdock and Preparata codes are presented as the Gray image of certain linear codes
over Z4, an amazing connection that explains many of the remarkable properties of these
nonlinear codes. To study these codes, Galois rings are defined, analogously to extension
fields of the binary field.

Chapter 13 presents a brief introduction to algebraic geometry which is sufficient for a
basic understanding of algebraic geometry codes. Goppa codes, generalized Reed—Solomon
codes, and generalized Reed—Muller codes can be realized as algebraic geometry codes.
A family of algebraic geometry codes has been shown to exceed the Gilbert—Varshamov
Bound, a result that many believed was not possible.

Until Chapter 14, the codes considered were block codes where encoding depended only
upon the current message. In Chapter 14 we look at binary convolutional codes where
each codeword depends not only on the current message but on some messages in the
past as well. These codes are studied as linear codes over the infinite field of binary rational
functions. State and trellis diagrams are developed for the Viterbi Algorithm, one of the main
decoding algorithms for convolutional codes. Their generator matrices and free distance are
examined.

Chapter 15 concludes the textbook with a look at soft decision and iterative decoding.
Until this point, we had only examined hard decision decoding. We begin with a more
detailed look at communication channels, particularly those subject to additive white Gaus-
sian noise. A soft decision Viterbi decoding algorithm is developed for convolutional codes.
Low density parity check codes and turbo codes are defined and a number of decoders for
these codes are examined. The text concludes with a brief history of the application of codes
to deep space exploration.

The following chapters and sections of this book are recommended as an introductory
one-semester course in coding theory:

* Chapter 1 (except Section 1.7),

* Sections 2.1,2.3.4,2.4,2.7-2.9,

* Chapter 3 (except Section 3.8),

* Chapter 4 (except Sections 4.6 and 4.7),

* Chapter 5 (except Sections 5.4.3, 5.4.4, 5.5, and 5.6), and

* Sections 7.1-7.3.

If it is unlikely that a subsequent course in coding theory will be taught, the material in
Chapter 7 can be replaced by the last two sections of Chapter 5. This material will show
how a compact disc is encoded and decoded, presenting a nice real-world application that
students can relate to.
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For subsequent semesters of coding theory, we suggest a combination of some of the

following blocks of material. With each block we have included sections that will hopefully
make the blocks self-contained under the assumption that the first course given above has
been completed. Certainly other blocks are possible. A semester can be made up of more
than one block. Later we give individual chapters or sections that stand alone and can be
used in conjunction with each other or with some of these blocks. The sections and chapters
are listed in the order they should be covered.
* Sections 1.7, 8.1-8.4, 9.1-9.7, and Chapter 10. Sections 8.1-8.4 of this block present the
essential material relating block designs to codes with particular emphasis on designs
arising from self-dual codes. The material from Chapter 9 gives an in-depth study of self-
dual codes with connections to designs. Chapter 10 studies the Golay codes and hexacode
in great detail, again using designs to help in the analysis. Section 2.11 can be added to
this block as the binary Golay codes are lexicodes.
Sections 1.7, 7.4-7.10, Chapters 8, 9, and 10, and Section 2.11. This is an extension of
the above block with more on designs from codes and codes from designs. It also looks
at weight distributions in more depth, part of which is required in Section 9.12. Codes
closely related to self-dual codes are also examined. This block may require an entire
semester.
Sections 4.6, 5.4.3,5.4.4,5.5, 5.6, and Chapters 14 and 15. This block covers most of the
decoding algorithms described in the text but not studied in the first course, including both
hard and soft decision decoding. It also introduces the important classes of convolutional
and turbo codes that are used in many applications particularly in deep space communi-
cation. This would be an excellent block for engineering students or others interested in
applications.

Sections 2.2, 2.3, 2.5, 2.6, 2.10, and Chapter 13. This block finishes the nonasymptotic

bounds not covered in the first course and presents the asymptotic versions of these bounds.

The algebraic geometry codes and Goppa codes are important for, among other reasons,

their relationship to the bounds on families of codes.

Section 1.7 and Chapters 6 and 12. This block studies two families of codes extensively:

duadic codes, which include quadratic residue codes, and linear codes over Z4. There

is some overlap between the two chapters to warrant studying them together. When
presenting Section 12.5.1, ideas from Section 9.6 should be discussed. Similarly it is

helpful to examine Section 10.6 before presenting Section 12.5.3.

The following mini-blocks and chapters could be used in conjunction with one another

or with the above blocks to construct a one-semester course.

* Section 1.7 and Chapter 6. Chapter 6 can stand alone after Section 1.7 is covered.

* Sections 1.7, 8.1-8.4, Chapter 10, and Section 2.11. This mini-block gives an in-depth
study of the Golay codes and hexacode with the prerequisite material on designs covered
first.

 Section 1.7 and Chapter 12. After Section 1.7 is covered, Chapter 12 can be used alone
with the exception of Sections 12.4 and 12.5. Section 12.4 can either be omitted or
supplemented with material from Section 6.6. Section 12.5 can either be skipped or
supplemented with material from Sections 9.6 and 10.6.

 Chapter 11. This chapter can stand alone.

* Chapter 14. This chapter can stand alone.
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1 Basic concepts of linear codes

In 1948 Claude Shannon published a landmark paper “A mathematical theory of commu-
nication” [306] that signified the beginning of both information theory and coding theory.
Given a communication channel which may corrupt information sent over it, Shannon
identified a number called the capacity of the channel and proved that arbitrarily reliable
communication is possible at any rate below the channel capacity. For example, when trans-
mitting images of planets from deep space, it is impractical to retransmit the images. Hence
if portions of the data giving the images are altered, due to noise arising in the transmission,
the data may prove useless. Shannon’s results guarantee that the data can be encoded before
transmission so that the altered data can be decoded to the specified degree of accuracy.
Examples of other communication channels include magnetic storage devices, compact
discs, and any kind of electronic communication device such as cellular telephones.

The common feature of communication channels is that information is emanating from a
source and is sent over the channel to a receiver at the other end. For instance in deep space
communication, the message source is the satellite, the channel is outer space together with
the hardware that sends and receives the data, and the receiver is the ground station on Earth.
(Of course, messages travel from Earth to the satellite as well.) For the compact disc, the
message is the voice, music, or data to be placed on the disc, the channel is the disc itself,
and the receiver is the listener. The channel is “noisy” in the sense that what is received
is not always the same as what was sent. Thus if binary data is being transmitted over the
channel, when a 0 is sent, it is hopefully received as a 0 but sometimes will be received as a
1 (or as unrecognizable). Noise in deep space communications can be caused, for example,
by thermal disturbance. Noise in a compact disc can be caused by fingerprints or scratches
on the disc. The fundamental problem in coding theory is to determine what message was
sent on the basis of what is received.

A communication channel is illustrated in Figure 1.1. At the source, a message, denoted
x in the figure, is to be sent. If no modification is made to the message and it is transmitted
directly over the channel, any noise would distort the message so that it is not recoverable.
The basic idea is to embellish the message by adding some redundancy to it so that hopefully
the received message is the original message that was sent. The redundancy is added by the
encoder and the embellished message, called a codeword ¢ in the figure, is sent over the
channel where noise in the form of an error vector e distorts the codeword producing a
received vector y.! The received vector is then sent to be decoded where the errors are

! Generally our codeword symbols will come from a field F,, with g elements, and our messages and codewords
will be vectors in vector spaces FX and F”, respectively; if ¢ entered the channel and y exited the channel, the
difference y — ¢ is what we have termed the error e in Figure 1.1.
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Basic concepts of linear codes
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Figure 1.1 Communication channel.

removed, the redundancy is then stripped off, and an estimate X of the original message
is produced. Hopefully X = x. (There is a one-to-one correspondence between codewords
and messages. Thus we will often take the point of view that the job of the decoder is to
obtain an estimate y of y and hope that y = ¢.) Shannon’s Theorem guarantees that our
hopes will be fulfilled a certain percentage of the time. With the right encoding based on the
characteristics of the channel, this percentage can be made as high as we desire, although
not 100%.

The proof of Shannon’s Theorem is probabilistic and nonconstructive. In other words, no
specific codes were produced in the proof that give the desired accuracy for a given channel.
Shannon’s Theorem only guarantees their existence. The goal of research in coding theory is
to produce codes that fulfill the conditions of Shannon’s Theorem. In the pages that follow,
we will present many codes that have been developed since the publication of Shannon’s
work. We will describe the properties of these codes and on occasion connect these codes to
other branches of mathematics. Once the code is chosen for application, encoding is usually
rather straightforward. On the other hand, decoding efficiently can be a much more difficult
task; at various points in this book we will examine techniques for decoding the codes we
construct.

1.1

Three fields

Among all types of codes, linear codes are studied the most. Because of their algebraic
structure, they are easier to describe, encode, and decode than nonlinear codes. The code
alphabet for linear codes is a finite field, although sometimes other algebraic structures
(such as the integers modulo 4) can be used to define codes that are also called “linear.”

In this chapter we will study linear codes whose alphabet is a field IF,, also denoted
GF(q), with g elements. In Chapter 3, we will give the structure and properties of finite
fields. Although we will present our general results over arbitrary fields, we will often
specialize to fields with two, three, or four elements.

A field is an algebraic structure consisting of a set together with two operations, usu-
ally called addition (denoted by +) and multiplication (denoted by - but often omitted),
which satisfy certain axioms. Three of the fields that are very common in the study
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|
of linear codes are the binary field with two elements, the ternary field with three el-
ements, and the quaternary field with four elements. One can work with these fields
by knowing their addition and multiplication tables, which we present in the next three
examples.
Example 1.1.1 The binary field [F, with two elements {0, 1} has the following addition and
multiplication tables:
+ (0 1 10 1
010 1 0/0 O
1|1 0 110 1
This is also the ring of integers modulo 2. ]
Example 1.1.2 The ternary field IF3 with three elements {0, 1, 2} has addition and multi-
plication tables given by addition and multiplication modulo 3:
|
Example 1.1.3 The quaternary field [F4 with four elements {0, 1, ®, @} is more compli-
cated. It has the following addition and multiplication tables; [F, is not the ring of integers
modulo 4:
+10 1 o o 10 1 0w
010 1 w w 0({0 0 0 O
1{1 0 o w 110 1 v o
wlow o 0 1 w|0 o o 1
wlwo o 1 0 o|l0 o 1 w
Some fundamental equations are observed in these tables. For instance, one notices that
x+x=0forallx € Fy. Alsow =0’ =l +wandw’ =o° = 1. ]
I
1.2 Linear codes, generator and parity check matrices

Let Iy denote the vector space of all n-tuples over the finite field F,. An (n, M) code C
over I, is a subset of IF; of size M. We usually write the vectors (a;, az, . .., a,) in IE‘Z in the
form aya; - - - a, and call the vectors in C codewords. Codewords are sometimes specified
in other ways. The classic example is the polynomial representation used for codewords in
cyclic codes; this will be described in Chapter 4. The field I, of Example 1.1.1 has had
a very special place in the history of coding theory, and codes over [, are called binary
codes. Similarly codes over I3 are termed ternary codes, while codes over [F4 are called
quaternary codes. The term “quaternary” has also been used to refer to codes over the ring
Z4 of integers modulo 4; see Chapter 12.
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Without imposing further structure on a code its usefulness is somewhat limited. The most
useful additional structure to impose is that of linearity. To that end, if C is a k-dimensional
subspace of IFZ, then C will be called an [n, k] linear code over F,. The linear code C
has g* codewords. The two most common ways to present a linear code are with either a
generator matrix or a parity check matrix. A generator matrix for an [n, k] code C is any
k x n matrix G whose rows form a basis for C. In general there are many generator matrices
for a code. For any set of k independent columns of a generator matrix G, the corresponding
set of coordinates forms an information set for C. The remaining r = n — k coordinates are
termed a redundancy set and r is called the redundancy of C. If the first k coordinates form
an information set, the code has a unique generator matrix of the form [/ | A] where I is
the k x k identity matrix. Such a generator matrix is in standard form. Because a linear code
is a subspace of a vector space, it is the kernel of some linear transformation. In particular,
there is an (n — k) x n matrix H, called a parity check matrix for the [n, k] code C, defined
by

C={xeF, | Hx" =0}. (1.1)

Note that the rows of H will also be independent. In general, there are also several possible
parity check matrices for C. The next theorem gives one of them when C has a generator
matrix in standard form. In this theorem AT is the transpose of A.

Theorem 1.2.1 IfG = [I; | Al is a generator matrix for the [n, k] code C in standard form,
then H = [—A" | I,_] is a parity check matrix for C.

Proof: We clearly have HGT = —AT 4+ AT = O. Thus C is contained in the kernel of the
linear transformation x — HX'. As H has rank n — k, this linear transformation has kernel
of dimension &, which is also the dimension of C. The result follows. a

Exercise 1 Prior to the statement of Theorem 1.2.1, it was noted that the rows of the
(n — k) x n parity check matrix H satisfying (1.1) are independent. Why is that so? Hint:
The map x — Hx' is a linear transformation from ]FZ to IF’;”‘ with kernel C. From linear
algebra, what is the rank of H? ¢

Example 1.2.2 The simplest way to encode information in order to recover it in the presence
of noise is to repeat each message symbol a fixed number of times. Suppose that our
information is binary with symbols from the field [, and we repeat each symbol # times. If
for instance n = 7, then whenever we want to send a 0 we send 0000000, and whenever we
want to send a 1 we send 1111111. If at most three errors are made in transmission and if
we decode by “majority vote,” then we can correctly determine the information symbol, O
or 1. In general, our code C is the [n, 1] binary linear code consisting of the two codewords
0=00---0and1 = 11---1 and is called the binary repetition code of length n. This code
can correct up to e = | (n — 1)/2] errors: if at most e errors are made in a received vector,
then the majority of coordinates will be correct, and hence the original sent codeword can
be recovered. If more than e errors are made, these errors cannot be corrected. However,
this code can detect n — 1 errors, as received vectors with between 1 and n — 1 errors will
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1.3 Dual codes

definitely not be codewords. A generator matrix for the repetition code is
G=[1]|1 - 1],

which is of course in standard form. The corresponding parity check matrix from
Theorem 1.2.1 is

The first coordinate is an information set and the last n — 1 coordinates form a redundancy
set. |

Exercise 2 How many information sets are there for the [n, 1] repetition code of
Example 1.2.27? ¢

Example 1.2.3 The matrix G = [I4 | A], where
00
G =

S - O O
—_ = O =

1
1
0
1

S o~ O

1
0 01
0 0]1
0 1]1
is a generator matrix in standard form for a [7, 4] binary code that we denote by H3. By
Theorem 1.2.1 a parity check matrix for Hj is

01 1 1|1 0 O
H=[AT|L1=|1 0 1 010
1 1 0 0 0 1
This code is called the [7, 4] Hamming code. [ |

Exercise 3 Find at least four information sets in the [7, 4] code H3 from Example 1.2.3.
Find at least one set of four coordinates that do not form an information set. ¢

Often in this text we will refer to a subcode of a code C. If C is not linear (or not known
to be linear), a subcode of C is any subset of C. If C is linear, a subcode will be a subset of
C which must also be linear; in this case a subcode of C is a subspace of C.

Dual codes

The generator matrix G of an [n, k] code C is simply a matrix whose rows are independent
and span the code. The rows of the parity check matrix H are independent; hence H is the
generator matrix of some code, called the dual or orthogonal of C and denoted C*. Notice
that C* is an [n, n — k] code. An alternate way to define the dual code is by using inner
products.



Basic concepts of linear codes

Recall that the ordinary inner product of vectors X = xj -+ - x,, y =y --- ¥, in F Z is

X-y= in Vi

i=1
Therefore from (1.1), we see that C* can also be defined by
Ct={xeF,|x-c=0forallceC}. (1.2)

It is a simple exercise to show that if G and H are generator and parity check matrices, re-
spectively, for C, then H and G are generator and parity check matrices, respectively, for C*.

Exercise 4 Prove that if G and H are generator and parity check matrices, respectively,
for C, then H and G are generator and parity check matrices, respectively, for C*. ¢

Example 1.3.1 Generator and parity check matrices for the [n, 1] repetition code C are
given in Example 1.2.2. The dual code C is the [n, n — 1] code with generator matrix
H and thus consists of all binary n-tuples aja; - - - a,—1b, where b = a; +ar + - - - + a,—;
(addition in IF,). The nth coordinate b is an overall parity check for the firstn — 1 coordinates
chosen, therefore, so that the sum of all the coordinates equals 0. This makes it easy to see
that G is indeed a parity check matrix for C*. The code C* has the property that a single
transmission error can be detected (since the sum of the coordinates will not be 0) but not
corrected (since changing any one of the received coordinates will give a vector whose sum
of coordinates will be 0). |

A code C is self-orthogonal provided C € C* and self-dual provided C = C*. The length
n of a self-dual code is even and the dimension is n/2.

Exercise 5 Prove that a self-dual code has even length n and dimension n/2. ¢

Example 1.3.2 One generator matrix for the [7,4] Hamming code H3 is presented in
Example 1.2.3. Let 7/:(3 be the code of length 8 and dimension 4 obtained from Hj3 by
adding an overall parity check coordinate to each vector of G and thus to each codeword
of H3. Then

1 00 0[O0 1 1 1
G- 01 0 01 0 1 1
100 1 01 1 0 1
00 0 11 1 10

is a generator matrix for 7/%3. It is easy to verify that 7’-\[3 is a self-dual code. |

Example 1.3.3 The [4, 2] ternary code H3 », often called the fetracode, has generator matrix
G, in standard form, given by

1 ol1 1
G‘b Jl 4]

This code is also self-dual. |
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I
Exercise 6 Prove that 7/-\[3 from Example 1.3.2 and H3 » from Example 1.3.3 are self-dual
codes. ¢
Exercise 7 Find all the information sets of the tetracode given in Example 1.3.3. ¢
When studying quaternary codes over the field [F, (Example 1.1.3), it is often useful to
consider another inner product, called the Hermitian inner product, given by
(X y)=x-y=) x7,
i=1
where , called conjugation, is given by 0=0,1=1,and® = w. Using this inner product,
we can define the Hermitian dual of a quaternary code C to be, analogous to (1.2),
Ct ={xeF, | (x,¢c)=0forallceC}.
Define the conjugate of C to be
C={clceC)
where¢ =c¢y¢;---¢, whenc = cyc; - - - ¢,. Notice that Ctrn = EL. ‘We also have Hermitian
self-orthogonality and Hermitian self-duality: namely, C is Hermitian self-orthogonal if
C C C** and Hermitian self-dual if C = C1 .
Exercise 8 Prove that if C is a code over Fy, then C" = EL. ¢
Example 1.3.4 The [6, 3] quaternary code G has generator matrix G in standard form
given by
1 0 0|1 o w
Ge=10 1 0|lw 1 w
0 0 1l|lw o 1
This code is often called the hexacode. It is Hermitian self-dual. ]
Exercise 9 Verify the following properties of the Hermitian inner product on I} :
(@) (x,x) € {0, 1} forallx € F}.
(b) (x,y+2z) = (x,y) + (x,z) forallx,y, z € [F}.
(© (x+y,z)=(x,z)+ (y,z) forallx,y, z € F}.
@) (x,y) = (y,x) forall x,y € F}.
(e) (ax,y) = a(x,y) forallx,y € F}.
) (x,ay) =(x,y) forallx,y € .
Exercise 10 Prove that the hexacode Gg from Example 1.3.4 is Hermitian self-dual. ¢
I
1.4 Weights and distances

An important invariant of a code is the minimum distance between codewords. The
(Hamming) distance d(x,y) between two vectors X,y € IFg is defined to be the number
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of coordinates in which x and y differ. The proofs of the following properties of distance
are left as an exercise.

Theorem 1.4.1 The distance function d(X, y) satisfies the following four properties:
(i) (non-negativity) d(x, y) > 0 for all x, y € Fy.

(i) dx,y)=0ifandonlyifx =y.

(iii) (symmetry) d(x,y) = d(y, X) forall x,y € ]FZ.

(iv) (triangle inequality) d(x, z) < d(x, y) + d(y, z) forall X, y, z € IE‘Z.

This theorem makes the distance function a metric on the vector space ]FZ.
Exercise 11 Prove Theorem 1.4.1. ¢

The (minimum) distance of a code C is the smallest distance between distinct codewords
and is important in determining the error-correcting capability of C; as we see later, the higher
the minimum distance, the more errors the code can correct. The (Hamming) weight wt(X)
of a vector x € I} is the number of nonzero coordinates in x. The proof of the following
relationship between distance and weight is also left as an exercise.

Theorem 1.4.2 Ifx,y € F?, then d(x,y) = wt(x — y). If C is a linear code, the minimum
distance d is the same as the minimum weight of the nonzero codewords of C.

As aresult of this theorem, for linear codes, the minimum distance is also called the minimum
weight of the code. If the minimum weight d of an [n, k] code is known, then we refer to
the code as an [n, k, d] code.

Exercise 12 Prove Theorem 1.4.2. ¢

When dealing with codes over I, 3, or Iy, there are some elementary results about
codeword weights that prove to be useful. We collect them here and leave the proof to the
reader.

Theorem 1.4.3 The following hold:
(i) Ifx,y e}, then

wt(x +y) = wt(x) + wt(y) — 2wt(x Ny),

where X Ny is the vector in Iy, which has 1s precisely in those positions where both
X and y have 1s.

(i) Ifx,y € F}, then wt(xNy) =x-y (mod 2).

(iii) Ifx € 5, then wt(x) = x - X (mod 2).

(iv) Ifx € I, then wt(x) = x - X (mod 3).

v) Ifx € [Fy, then wt(x) = (x,x) (mod 2).

Exercise 13 Prove Theorem 1.4.3. ¢

Let A;, also denoted A;(C), be the number of codewords of weight i in C. The list A; for
0 < i < niscalled the weight distribution or weight spectrum of C. A great deal of research
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is devoted to the computation of the weight distribution of specific codes or families of
codes.

Example 1.4.4 Let C be the binary code with generator matrix

1 1 00
G=]10 0 1 1
00 00

- o O
- o O

The weight distributionof Cis Ag = A¢ = land A, = A4 = 3. Notice that only the nonzero
A; are usually listed. ]

Exercise 14 Find the weight distribution of the ternary code with generator matrix

1 1.0 0 0O
G=(0 0 1 1 0 O
00 0 011
Compare your result to Example 1.4.4. ¢

Certain elementary facts about the weight distribution are gathered in the following
theorem. Deeper results on the weight distribution of codes will be presented in Chapter 7.

Theorem 1.4.5 Let C be an [n, k, d] code over IF,. Then:
(i) Ao+ A1)+ -+ Au(C) = g~

i) AglC)=1land A{(C)=AC)=---=A,_1(C)=0.
(iii) If C is a binary code containing the codeword 1 = 11---1, then A;(C) = A,,_;(C) for
0<i<n.

(iv) If C is a binary self-orthogonal code, then each codeword has even weight, and C*
contains the codeword1 =11--- 1.

(v) IfCis aternary self-orthogonal code, then the weight of each codeword is divisible by
three.

(vi) IfC is a quaternary Hermitian self-orthogonal code, then the weight of each codeword
is even.

Exercise 15 Prove Theorem 1.4.5. ¢

Theorem 1.4.5(iv) states that all codewords in a binary self-orthogonal code C have even
weight. If we look at the subset of codewords of C that have weights divisible by four, we
surprisingly get a subcode of C; that is, the subset of codewords of weights divisible by four
form a subspace of C. This is not necessarily the case for non-self-orthogonal codes.

Theorem 1.4.6 Let C be an [n, k] self-orthogonal binary code. Let Cy be the set of code-

words in C whose weights are divisible by four. Then either:

i) C=~Cq,or

(ii) Coisan[n, k — 1] subcode of C andC = Cy U Cy, where C1 = x + Cq for any codeword
X whose weight is even but not divisible by four. Furthermore Cy consists of all
codewords of C whose weights are not divisible by four.
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Proof: By Theorem 1.4.5(iv) all codewords have even weight. Therefore either (i) holds
or there exists a codeword x of even weight but not of weight a multiple of four. Assume
the latter. Let y be another codeword whose weight is even but not a multiple of four.
Then by Theorem 1.4.3(i), wt(x +y) = wt(x) + wt(y) — 2wt(xNy) =2+ 2 — 2wt(xNy)
(mod 4). But by Theorem 1.4.3(ii), wt(x N'y) = x - y (mod 2). Hence wt(x 4+ y) is divisible
by four. Therefore x +y € Cy. This shows thaty € x + Cypand C = Cy U (x + Cy). That C
is a subcode of C and that C; = x 4 C consists of all codewords of C whose weights are
not divisible by four follow from a similar argument. O

There is an analogous result to Theorem 1.4.6 where you consider the subset of codewords
of a binary code whose weights are even. In this case the self-orthogonality requirement is
unnecessary; we leave its proof to the exercises.

Theorem 1.4.7 Let C be an [n, k] binary code. Let C, be the set of codewords in C whose

weights are even. Then either:

G C=2¢_C,,or

(i) C.isan[n, k — 1] subcode of C andC = C, U C,, where C, = x + C,, for any codeword
X whose weight is odd. Furthermore C, consists of all codewords of C whose weights
are odd.

Exercise 16 Prove Theorem 1.4.7. ¢

Exercise 17 Let C be the [6, 3] binary code with generator matrix

1 1.0 0 0 O
G=(0 1 1 0 0 O
111 1 11

(a) Prove that C is not self-orthogonal.

(b) Find the weight distribution of C.

(c) Show that the codewords whose weights are divisible by four do not form a subcode
of C. ¢

The next result gives a way to tell when Theorem 1.4.6(i) is satisfied.

Theorem 1.4.8 Let C be a binary linear code.

(i) If C is self-orthogonal and has a generator matrix each of whose rows has weight
divisible by four, then every codeword of C has weight divisible by four.

(ii) If every codeword of C has weight divisible by four, then C is self-orthogonal.

Proof: For (i), letx and y be rows of the generator matrix. By Theorem 1.4.3(1), wt(x +y) =
wt(x) + wt(y) —2wt(xNy) =0+ 0 — 2wt(xNy) = 0 (mod 4). Now proceed by induc-
tion as every codeword is a sum of rows of the generator matrix. For (ii), let X,y € C. By
Theorem 1.4.3(i) and (ii), 2(x - y) = 2wt(x Ny) = 2wt(x Ny) — wt(X) — wi(y) = —wt(X +
y) =0 (mod 4). Thus x -y =0 (mod 2). a

It is natural to ask if Theorem 1.4.8(ii) can be generalized to codes whose codewords
have weights that are divisible by numbers other than four. We say that a code C (over
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any field) is divisible provided all codewords have weights divisible by an integer A > 1.
The code is said to be divisible by A; A is called a divisor of C, and the largest such
divisor is called the divisor of C. Thus Theorem 1.4.8(ii) says that binary codes divisible
by A =4 are self-orthogonal. This is not true when considering binary codes divisible
by A =2, as the next example illustrates. Binary codes divisible by A = 2 are called
even.

Example 1.4.9 The dual of the [n, 1] binary repetition code C of Example 1.2.2 consists
of all the even weight vectors of length n. (See also Example 1.3.1.) If n > 2, this code is
not self-orthogonal. ]

When considering codes over I3 and F4, the divisible codes with divisors three and
two, respectively, are self-orthogonal as the next theorem shows. This theorem includes the
converse of Theorem 1.4.5(v) and (vi). Part (ii) is found in [217].

Theorem 1.4.10 Let C be a code over F,, with g = 3 or 4.

(i) When q = 3, every codeword of C has weight divisible by three if and only if C is
self-orthogonal.

(i) When q = 4, every codeword of C has weight divisible by two if and only if C is
Hermitian self-orthogonal.

Proof: In (i), if C is self-orthogonal, the codewords have weights divisible by three by
Theorem 1.4.5(v). For the converse let X,y € C. We need to show that x - y = 0. We can
view the codewords x and y having the following parameters:

x: » 0 = # 0
y: 0 x = # 0
a b ¢ d e

where there are a coordinates where x is nonzero and y is zero, b coordinates where y is
nonzero and X is zero, ¢ coordinates where both agree and are nonzero, d coordinates when
both disagree and are nonzero, and e coordinates where both are zero. So wt(x +y) = a +
b+cand wt(x—y)=a+b+d.ButxtyeCandhencea+b+c=a+b+d=0
(mod 3). In particular c = d (mod 3). Therefore x -y = ¢ 4+ 2d = 0 (mod 3), proving (i).

In (ii), if C is Hermitian self-orthogonal, the codewords have even weights by Theo-
rem 1.4.5(vi). For the converse letx € C.If xhas a Os, b 1s, ¢ ws, and d @s, then b + ¢ + d
is even as wt(x) = b + ¢ + d. However, (x, X) also equals b + ¢ + d (as an element of [Fy).
Therefore (x, x) = Oforallx € C.Nowletx, y € C.Sobothx + yand wx + yareinC. Using
Exercise 9 we have 0 = (x4+y,x+y) =& X)+ X, ¥)+{y,X)+{y,y) =(X,y) +
(y, x). Also 0= (wx+y, ox+y)= (X X)+ oYy +aoly,x)+(y,y) =Xy +
w(y, x). Combining these (x, y) must be 0, proving (ii). O

The converse of Theorem 1.4.5(iv) is in general not true. The best that can be said in this
case is contained in the following theorem, whose proof we leave as an exercise.

Theorem 1.4.11 Let C be a binary code with a generator matrix each of whose rows has
even weight. Then every codeword of C has even weight.
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Exercise 18 Prove Theorem 1.4.11. ¢

Binary codes for which all codewords have weight divisible by four are called doubly-
even.? By Theorem 1.4.8, doubly-even codes are self-orthogonal. A self-orthogonal code
must be even by Theorem 1.4.5(iv); one which is not doubly-even is called singly-even.

Exercise 19 Find the minimum weights and weight distributions of the codes Hj3 in
Example 1.2.3, H3L, 7’-\[3 in Example 1.3.2, the tetracode in Example 1.3.3, and the hexacode
in Example 1.3.4. Which of the binary codes listed are self-orthogonal? Which are doubly-
even? Which are singly-even? ¢

There is a generalization of the concepts of even and odd weight binary vectors to
vectors over arbitrary fields, which is useful in the study of many types of codes. A vector
X = X|X3--+ X, IN IF’ql is even-like provided that

ix,- =0
i=1

and is odd-like otherwise. A binary vector is even-like if and only if it has even weight; so
the concept of even-like vectors is indeed a generalization of even weight binary vectors.
The even-like vectors in a code form a subcode of a code over I, as did the even weight
vectors in a binary code. Except in the binary case, even-like vectors need not have even
weight. The vectors (1, 1, 1) in F; and (1, w, w) in ]F?1 are examples. We say that a code is
even-like if it has only even-like codewords; a code is odd-like if it is not even-like.

Theorem 1.4.12 Let C be an [n, k] code over F,. Let C, be the set of even-like codewords
in C. Then either:

i C=C¢_C,,or

(ii) C.isan[n,k — 1] subcode of C.

Exercise 20 Prove Theorem 1.4.12. ¢

There is an elementary relationship between the weight of a codeword and a parity check
matrix for a linear code. This is presented in the following theorem whose proof is left as
an exercise.

Theorem 1.4.13 Let C be a linear code with parity check matrix H. If ¢ € C, the columns
of H corresponding to the nonzero coordinates of ¢ are linearly dependent. Conversely,
if a linear dependence relation with nonzero coefficients exists among w columns of H,
then there is a codeword in C of weight w whose nonzero coordinates correspond to these
columns.

One way to find the minimum weight d of a linear code is to examine all the nonzero

codewords. The following corollary shows how to use the parity check matrix to find d.

2 Some authors reserve the term “doubly-even” for self-dual codes for which all codewords have weight divisible
by four.
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Corollary 1.4.14 A linear code has minimum weight d if and only if its parity check matrix
has a set of d linearly dependent columns but no set of d — 1 linearly dependent columns.

Exercise 21 Prove Theorem 1.4.13 and Corollary 1.4.14. ¢
The minimum weight is also characterized in the following theorem.

Theorem 1.4.15 IfCisan|[n, k, d] code,then everyn — d + 1 coordinate position contains
an information set. Furthermore, d is the largest number with this property.

Proof: Let G be a generator matrix for C, and consider any set X of s coordinate positions.
To make the argument easier, we assume X is the set of the last s positions. (After we
develop the notion of equivalent codes, the reader will see that this argument is in fact
general.) Suppose X does not contain an information set. Let G = [A | B], where A is
k x (n—s) and B is k x s. Then the column rank of B, and hence the row rank of B,
is less than k. Hence there exists a nontrivial linear combination of the rows of B which
equals 0, and hence a codeword ¢ which is 0 in the last s positions. Since the rows of G are
linearly independent, ¢ # 0 and hence d < n — s, equivalently, s < n — d. The theorem
now follows. d

Exercise 22 Find the number of information sets for the [7,4] Hamming code Hj3
given in Example 1.2.3. Do the same for the extended Hamming code H3 from Example

1.3.2. ¢
I
1.5 New codes from old
As we will see throughout this book, many interesting and important codes will arise by
modifying or combining existing codes. We will discuss five ways to do this.
1.5.1 Puncturing codes

Let C be an [n, k, d] code over F,. We can puncture C by deleting the same coordinate i
in each codeword. The resulting code is still linear, a fact that we leave as an exercise; its
length is n — 1, and we often denote the punctured code by C*. If G is a generator matrix for
C, then a generator matrix for C* is obtained from G by deleting column i (and omitting a
zero or duplicate row that may occur). What are the dimension and minimum weight of C*?
Because C contains g* codewords, the only way that C* could contain fewer codewords is if
two codewords of C agree in all but coordinate i. In that case C has minimum distance d = 1
and a codeword of weight 1 whose nonzero entry is in coordinate i. The minimum distance
decreases by 1 only if a minimum weight codeword of C has a nonzero ith coordinate.
Summarizing, we have the following theorem.

Theorem 1.5.1 Let C be an [n, k, d] code over Fy, and let C* be the code C punctured on
the ith coordinate.
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1) Ifd > 1,C*isan [n — 1, k, d*] code where d* =d — 1 if C has a minimum weight
codeword with a nonzero ith coordinate and d* = d otherwise.

(ii) When d =1, C* is an [n — 1,k, 1] code if C has no codeword of weight 1 whose
nonzero entry is in coordinate i; otherwise, if k > 1,C* isan [n — 1,k — 1, d*] code
withd* > 1.

Exercise 23 Prove directly from the definition that a punctured linear code is also
linear. ¢

Example 1.5.2 Let C be the [5, 2, 2] binary code with generator matrix

11000
G‘[00111]

Let C and CZ be the code C punctured on coordinates 1 and 5, respectively. They have
generator matrices

. [t ooo . 1100
Gl_[0111] and GS_[0011]'

So Cjis a[4,2, 1] code, while C% is a [4, 2, 2] code. [ ]

Example 1.5.3 Let D be the [4, 2, 1] binary code with generator matrix
1 0 0 O
G= |:O 1 1 1] ’

Let D} and Dj be the code D punctured on coordinates 1 and 4, respectively. They have
generator matrices

., 1 oo
Df=[1 1 1] and D4=[0 X 1]

SoDjisal3, 1, 3] code and Dj is a [3, 2, 1] code. [ |

Notice that the code D of Example 1.5.3 is the code C} of Example 1.5.2. Obviously D}
could have been obtained from C directly by puncturing on coordinates {1, 5}. In general a
code C can be punctured on the coordinate set 7' by deleting components indexed by the set
T in all codewords of C. If T has size ¢, the resulting code, which we will often denote C r
isan [n — t, k*, d*] code with k* > k — t and d* > d — ¢ by Theorem 1.5.1 and induction.

Extending codes

We can create longer codes by adding a coordinate. There are many possible ways to extend
a code but the most common is to choose the extension so that the new code has only
even-like vectors (as defined in Section 1.4). If C is an [n, k, d] code over [F,, define the
extended code C to be the code

-~

C= {x1x2-~-xn+1 EFZ‘H |x1xz--~x,, e Cwithx; +x + -+ + X4 :0}.
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We leave it as an exercise to show that 6 is linear. In fact 5 isan[n+ 1,k, ZZ] code, where
d=dord+1.Let G and H be generator and parity check matrices, respectively, for C.
Then a generator matrix G for C can be obtained from G by adding an extra column to G
50 that the sum of the coordinates of each row of G is 0. A parity check matrix for Cis the
matrix

(1.3)

This construction is also referred to as adding an overall parity check. The [8, 4, 4] binary
code H3 in Example 1.3.2 obtained from the [7, 4, 3] Hamming code H3; by adding an
overall parity check is called the extended Hamming code.

Exercise 24 Prove directly from the definition that an extended linear code is also
linear. ¢

Exercise 25 Suppose we extend the [, k] linear code C over the field IF, to the code c
where

C= {x1x2-~-x,,+1 IS IFZH | X1X X, € Cwithxlz—l—x% +-~-+x3+1 = 0}.
Under what conditions is C linear? ¢

Exercise 26 Prove that H in (1.3) is the parity check matrix for an extended code a where
C has parity check matrix H. ¢

If C is an [n, k, d] binary code, then the extended code 6 contains only even weight
vectors and is an [n + 1, k, 3] code, where d equals d if d is even and equals d + 1 if d is
odd. This is consistent with the results obtained by extending H3. In the nonbinary case,
however, whether or not disdord + 1 is not so straightforward. For an [, k, d] code
C over I, call the minimum weight of the even-like codewords, respectively the odd-like
codewords, the minimum even-like weight, respectively the minimum odd-like weight, of
the code. Denote the minimum even-like weight by d, and the minimum odd-like weight
Ey d,.Sod = min{d,, d,}.Ifd, < d,, then C has minimum weight/d\ =d,.Ifd, < d,, then
d=d,+ 1.

Example 1.5.4 Recall that the tetracode H3 > from Example 1.3.3 is a [4, 2, 3] code over
F3 with generator matrix G and parity check matrix H given by

101 1 1 -1 1 0
G‘[o 11 —1} and H‘[—1 10 1]’

The codeword (1, 0, 1, 1) extends to (1, 0, 1, 1, 0) and the codeword (0, 1, 1, —1) extends
to (0,1,1, -1, —1). Hence d = d, = d, = 3 and d = 3. The generator and parity check
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matrices for H3 , are

1 1111
Gz[é?i_i _ﬂ and H=|-1 -1 1 0 0
1 101 0

If we extend a code and then puncture the new coordinate, we obtain the original code.
However, performing the operations in the other order will in general result in a different
code.

Example 1.5.5 If we puncture the binary code C with generator matrix
G =
on its last coordinate and then extend (on the right), the resulting code has generator matrix

G =

In this example, our last step was to extend a binary code with only even weight vectors.
The extended coordinate was always 0. In general, that is precisely what happens when you
extend a code that has only even-like codewords.

Exercise 27 Do the following.
(a) LetC = Hs be the [4, 2, 3] tetracode over F3; defined in Example 1.3.3 with generator
matrix

1 01 1

o= [o 11 —1] '
Give the generator matrix of the code obtained from C by puncturing on the right-most
coordinate and then extending on the right. Also determine the minimum weight of the
resulting code.

(b) Let C be a code over F,. Let C; be the code obtained from C by puncturing on the
right-most coordinate and then extending this punctured code on the right. Prove that
C = C; if and only if C is an even-like code.

(c) With C; defined as in (b), prove that if C is self-orthogonal and contains the all-one
codeword 1, then C = C;.

(d) With C; defined as in (b), prove that C = C; if and only if the all-one vector 1 is
inCt. ¢

Shortening codes

Let C be an [n, k, d] code over F, and let T be any set of ¢ coordinates. Consider the set
C(T) of codewords which are 0 on T'; this set is a subcode of C. Puncturing C(T) on T gives
a code over I, of length n — ¢ called the code shortened on T and denoted Cr.



17

1.5 New codes from old

Example 1.5.6 Let C be the [6, 3, 2] binary code with generator matrix

1 0
G=|(0 1
0 0

- o O

1 11

Ctisalsoa [6, 3, 2] code with generator matrix

1 11100
G)=|1 11 01 0
1 110 0 1

If the coordinates are labeled 1,2, ...,6,let T = {5, 6}. Generator matrices for the shortened
code C7 and punctured code C” are

1 0 0 1
Grz[(])(l)ig}andGT=0101
0 0 1 1

Shortening and puncturing the dual code gives the codes (C*)r and (C*)”, which have
generator matrices

1 1 1 1
1y INT
(GHr=[1 1 1 1] and (G™) _[1 11 O]'
From the generator matrices G and G”, we find that the duals of C7 and CT have generator
matrices

1 1 10

1 _
(Gr) _[0 0 0 1

} and (GH)t=[1 1 1 1].

Notice that these matrices show that (C)r = (CT)* and (CH)T = (C1)*. |
The conclusions observed in the previous example hold in general.

Theorem 1.5.7 Let C be an [n, k, d] code over IF,. Let T be a set of t coordinates. Then:

(i) (€Hr =" and (CH)" = (Cr)*, and

(ii) ift <d, then CT and (CL)T have dimensions k and n — t — k, respectively;

(iii) ift = d and T is the set of coordinates where a minimum weight codeword is nonzero,
then CT and (CY)y have dimensionsk — 1 andn —d — k + 1, respectively.

Proof: Let ¢ be a codeword of C* which is 0 on 7 and ¢* the codeword with the coordi-
nates in T removed. So ¢* € (CL)T. If xeC, then 0 =x-¢ =x*-c*, where x* is the
codeword x punctured on 7. Thus (C1)7 C (CT)*. Any vector ¢ € (CT)* can be extended
to a vector € by inserting Os in the positions of 7. If x € C, puncture x on T to obtain x*.
AsO=x"-¢c=x-G, c e (CH)7. Thus (C1)7 = (CT)*. Replacing C by C* gives (C1) =
(Cr)*, completing (i).

Assume t < d. Then n —d 4+ 1 < n —t, implying any n — ¢t coordinates of C contain
an information set by Theorem 1.4.15. Therefore C’ must be k-dimensional and hence
(CH)7 = (CT)* has dimension n — ¢ — k by (i); this proves (ii).
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As in (ii), (iii) is completed if we show that CT has dimension k — 1. If S C T with §
of size d — 1, C5 has dimension k by part (ii). Clearly C5 has minimum distance 1 and C”
is obtained by puncturing C on the nonzero coordinate of a weight 1 codeword in C5. By

Theorem 1.5.1(ii) CT has dimension k — 1. O
Exercise 28 Let C be the binary repetition code of length n as described in Example 1.2.2.
Describe (C1)7 and (C7)* for any T. ¢
Exercise 29 Let C be the code of length 6 in Example 1.4.4. Give generator matrices for
(CH)r and (Cr)t when T = (1,2} and T = {1, 3}. ¢
Direct sums

For i € {1, 2} let C; be an [n;, k;, d;] code, both over the same finite field IF,. Then their
direct sum is the [n + ny, k1 + k>, min{d;, d>}] code

CidCr={(c1,cx) | €1 €Cy,e2 € Car}.
If C; has generator matrix G; and parity check matrix H;, then

G, O H, 0:|

GI@G2=|:0 G,

o H (1.4)

:| and H, 1 b H2 = |:
are a generator matrix and parity check matrix for C; & C,.

Exercise 30 Let C; have generator matrix G; and parity check matrix H; fori € {1, 2}.
Prove that the generator and parity check matrices for C; @ C, are as given in (1.4). ¢

Exercise 31 Let C be the binary code with generator matrix

1 1001 10
1 01 01 01
G=|1 0 01 1 10
1 01 0110
1 001011

Give another generator matrix for C that shows that C is a direct sum of two binary
codes. ¢

Example 1.5.8 The [6, 3, 2] binary code C of Example 1.4.4 is the direct sum D & D & D
of the [2, 1, 2] code D = {00, 11}. |

Since the minimum distance of the direct sum of two codes does not exceed the minimum
distance of either of the codes, the direct sum of two codes is generally of little use in
applications and is primarily of theoretical interest.

The (u | u + v) construction

Two codes of the same length can be combined to form a third code of twice the length
in a way similar to the direct sum construction. Let C; be an [n, k;, d;] code for i € {1, 2},
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both over the same finite field F,. The (u | uw + v) construction produces the [2n, ki +
ko, min{2d;, d,}] code

C={m,u+v)|uelvel,l.

If C; has generator matrix G; and parity check matrix H;, then generator and parity check
matrices for C are

G G H 0
d . 1.5
[ % Gz} . [—Hz Hz] (4
Exercise 32 Prove that generator and parity check matrices for the code obtained in the
(u | u 4 v) construction from the codes C; are as given in (1.5). ¢

Example 1.5.9 Consider the [8, 4, 4] binary code C with generator matrix

101 0[1 010
G_|0 1o 1jo 101
001 100 11
00001 1 111

Then C can be produced from the [4, 3, 2] code C; and the [4, 1, 4] code C, with generator
matrices

1 010
Gi=|0 1 0 1| and G,=[1 1 1 1]
0 0 1 1

respectively, using the (u | u + v) construction. Notice that the code C is also constructed
using the (u | u + v) construction from the [2, 2, 1] code C3 and the [2, 1, 2] code C4 with
generator matrices

1 0
G3—|:0 1] and G4=1[1 1],

respectively. |

Unlike the direct sum construction of the previous section, the (u | u 4 v) construction
can produce codes that are important for reasons other than theoretical. For example, the
family of Reed—Muller codes can be constructed in this manner as we see in Section 1.10.
The code in the previous example is one of these codes.

Exercise 33 Prove that the (u | u + v) construction using [n, k;, d;] codes C; produces a
code of dimension k = k; + k, and minimum weight d = min{2d,, d,}. ¢

1.6  Permutation equivalent codes

In this section and the next, we ask when two codes are “essentially the same.” We term
this concept “equivalence.” Often we are interested in properties of codes, such as weight
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distribution, which remain unchanged when passing from one code to another that is es-
sentially the same. Here we focus on the simplest form of equivalence, called permutation
equivalence, and generalize this concept in the next section.

One way to view codes as “essentially the same” is to consider them “the same” if they
are isomorphic as vector spaces. However, in that case the concept of weight, which we
will see is crucial to the study and use of codes, is lost: codewords of one weight may be
sent to codewords of a different weight by the isomorphism. A theorem of MacWilliams
[212], which we will examine in Section 7.9, states that a vector space isomorphism of two
binary codes of length n that preserves the weight of codewords (that is, send codewords
of one weight to codewords of the same weight) can be extended to an isomorphism of
that is a permutation of coordinates. Clearly any permutation of coordinates that sends one
code to another preserves the weight of codewords, regardless of the field. This leads to the
following natural definition of permutation equivalent codes.

Two linear codes C and C; are permutation equivalent provided there is a permutation of
coordinates which sends C; to C,. This permutation can be described using a permutation
matrix, which is a square matrix with exactly one 1 in each row and column and Os elsewhere.
Thus C; and C, are permutation equivalent provided there is a permutation matrix P such
that G is a generator matrix of C; if and only if G P is a generator matrix of C;. The effect
of applying P to a generator matrix is to rearrange the columns of the generator matrix.
If P is a permutation sending C; to C,, we will write C; P = C,, where C1P ={y |y =
xP forx € Cy}.

Exercise 34 Prove that if G| and G, are generator matrices for a code C of length n and
P is an n x n permutation matrix, then G| P and G, P are generator matrices for CP. ¢

Exercise 35 Suppose C; and C, are permutation equivalent codes where C; P = C, for
some permutation matrix P. Prove that:

(a) C{ P =Cy, and

(b) if C; is self-dual, so is Cs. ¢

Example 1.6.1 Let Cy, C,, and C3 be binary codes with generator matrices

1 1.0 0 0O 1 000 01
Gi=|0 01 1 0 O, G,=]0 01 1 O Of, and
00 0 011 01 0010

1 1.0 0 0O
Gy:=|1 01 0 0 0],
11 1 1 11

respectively. All three codes have weight distribution Ag = Ag = 1 and A, = A4 = 3. (See
Example 1.4.4 and Exercise 17.) The permutation switching columns 2 and 6 sends G
to G,, showing that C; and C, are permutation equivalent. Both C; and C, are self-dual,
consistent with (a) of Exercise 35. C; is not self-dual. Therefore C and C3 are not permuta-
tion equivalent by part (b) of Exercise 35. |
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The next theorem shows that any code is permutation equivalent to one with generator
matrix in standard form.

Theorem 1.6.2 Let C be a linear code.

(1) C is permutation equivalent to a code which has generator matrix in standard form.

(i) IfZ and R are information and redundancy positions, respectively, for C, then R and
T are information and redundancy positions, respectively, for the dual code C*.

Proof: For (i), apply elementary row operations to any generator matrix of C. This will
produce a new generator matrix of C which has columns the same as those in [, but possibly
in a different order. Now choose a permutation of the columns of the new generator matrix
so that these columns are moved to the order that produces [/ | A]. The code generated by
[1x | A]is equivalent to C.

If 7 is an information set for C, then by row reducing a generator matrix for C, we
obtain columns in the information positions that are the columns of /; in some order. As
above, choose a permutation matrix P to move the columns so that C P has generator matrix
[Zx | A]; P has moved 7 to the first k coordinate positions. By Theorem 1.2.1, (C P)* has the
last n — k coordinates as information positions. By Exercise 35, (CP)* = C* P, implying
that R is a set of information positions for C*, proving (ii). O

It is often more convenient to use permutations (in cycle form) rather than permutation
matrices to express equivalence. Let Sym, be the set of all permutations of the set of n
coordinates. If o € Sym, and X = x;x; - - - x,,, define

X0 = y1y2--+Yn, Wherey; =xj,-1forl <j<n.

So xo = xP, where P = [p; ;] is the permutation matrix given by

| ifj=io,
o . 1.6
Pij {O otherwise. (1.6)

This is illustrated in the next example.

Example 1.6.3 Letn = 3,x = x;xpx3,and 6 = (1,2,3). Then lo~' = 3,20~ =1, and
307! =2.S0x0 = x3xx2. Let

010
P=(0 0 1

1 0 0
Then x P also equals x3x1x;. |
Exercise 36 If o, T € Sym,, show that x(c7) = (x0)r. ¢

Exercise 37 Let S be the set of all codes over F, of length n. Let C;,C, € S. Define
C; ~ C, to mean that there exists an n X n permutation matrix P such that C; P = C,.
Prove that ~ is an equivalence relation on S. Recall that ~ is an equivalence relation on a
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set S if the following three conditions are fulfilled:

(i) (reflexive) C ~ C forall C € S,

(i) (symmetric) if C; ~ C;, then C, ~ Cy, and

(iii) (transitive) if C; ~ C» and C, ~ C3, then C; ~ Cs. ¢

The set of coordinate permutations that map a code C to itself forms a group, that is, a
set with an associative binary operation which has an identity and where all elements have
inverses, called the permutation automorphism group of C. This group is denoted by PAut(C).
So if C is a code of length n, then PAut(C) is a subgroup of the symmetric group Sym,,.

Exercise 38 Show that if C is the [n, 1] binary repetition code of Example 1.2.2, then
PAut(C) = Sym,,. ¢

Exercise 39 Show that (1, 2)(5, 6), (1, 2, 3)(5,6,7), and (1, 2,4, 5,7, 3, 6) are automor-
phisms of the [7, 4] binary code H3 given in Example 1.2.3. These three permutations
generate a group of order 168 called the projective special linear group PSL,(7). This is in
fact the permutation automorphism group of Hj3. ¢

Knowledge of the permutation automorphism group of a code can give important theor-
etical and practical information about the code. While these groups for some codes have been
determined, they are in general difficult to find. The following result shows the relationship
between the permutation automorphism group of a code and that of its dual; it also establishes
the connection between automorphism groups of permutation equivalent codes. Its proof is
left to the reader.

Theorem 1.6.4 Let C, Cy, and C, be codes over F,. Then:

(i) PAut(C) = PAut(Ch),

(ii) ifg = 4, PAut(C) = PAut(C**), and

(iii) if C, P = C, for a permutation matrix P, then P~'PAut(C,)P = PAut(C,).

Exercise 40 Prove Theorem 1.6.4. ¢

One can prove that if two codes are permutation equivalent, so are their extensions; see
Exercise 41. This is not necessarily the case for punctured codes.

Exercise 41 Prove that if C; and C; are permutation equivalent codes, then so are C; and
C,. ¢

Example 1.6.5 Let C be the binary code with generator matrix
1 1.0 00
o= [o 01 1 1} ’
Let C and C; be C punctured on coordinate 1 and 5, respectively. Then Ci has only

even weight vectors, while C} has odd weight codewords. Thus although C is certainly
permutation equivalent to itself, C} and C% are not permutation equivalent. |
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In some instances, the group PAut(C) is transitive as a permutation group; thus for every
ordered pair (i, j) of coordinates, there is a permutation in PAut(C) which sends coordinate
i to coordinate j. When PAut(C) is transitive, we have information about the structure of
its punctured codes. When PAut(a) is transitive, we have information about the minimum
weight of C.

Theorem 1.6.6 Let C be an [n, k, d] code.

(i) Suppose that PAut(C) is transitive. Then the n codes obtained from C by puncturing C
on a coordinate are permutation equivalent.

(ii) Suppose that PAut(a) is transitive. Then the minimum weight d of C is its mini-
mum odd-like weight d,. Furthermore, every minimum weight codeword of C is odd-
like.

Proof: The proof of assertion (i) is left to the reader in Exercise 42. Now assume that
PAut(@) is transitive. Applying (i) to C we conclude that puncturing C on any coordinate
gives a code permutation equivalent to C. Let ¢ be a minimum weight vector of C and
assume that ¢ is even-like. Then wt(€¢) = d, whereC € C is the extended vector. Puncturing
C on a coordinate where ¢ is nonzero gives a vector of weight d — 1 in a code permutation
equivalent to C, a contradiction. O

Exercise 42 Prove Theorem 1.6.6(i). ¢

Exercise 43 Let C be the code of Example 1.4.4.

(a) Is PAut(C) transitive?

(b) Find generator matrices for all six codes punctured on one point. Which of these punc-
tured codes are equivalent?

(c) Find generator matrices for all 15 codes punctured on two points. Which of these
punctured codes are equivalent? ¢

Exercise44 LetC = C; @ C,, where C; and C, are of length n; and n,, respectively. Prove
that

PAut(C;) x PAut(C,) € PAut(C),

where PAut(C;) x PAut(C,) is the direct product of the groups PAut(C;) (acting on the first
ny coordinates of C) and PAut(C,) (acting on the last n, coordinates of C). ¢

For binary codes, the notion of permutation equivalence is the most general form
of equivalence. However, for codes over other fields, other forms of equivalence are
possible.

1.7

More general equivalence of codes

When considering codes over fields other than [F, equivalence takes a more general form.
For these codes there are other maps which preserve the weight of codewords. These
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maps include those which rescale coordinates and those which are induced from field
automorphisms (a topic we study more extensively in Chapter 3). We take up these maps
one at a time.

First, recall that a monomial matrix is a square matrix with exactly one nonzero entry in
each row and column. A monomial matrix M can be written either in the form D P or the
form P D;, where D and D, are diagonal matrices and P is a permutation matrix.

Example 1.7.1 The monomial matrix

0 a O
M=|0 0 b
c 0 0
equals
a 0 O0]f0 1 O 01 O0f][c O O
DP=|0 b O0[|0 O 1|=PD;=|0 0 1|{0 a O
0 0 ¢c|/[1l OO 1 0 0J]|0O O b

We will generally choose the form M = D P for representing monomial matrices; D is
called the diagonal part of M and P is the permutation part. This notation allows a more
compact form using (1.6), as we now illustrate.

Example 1.7.2 The monomial matrix M = D P of Example 1.7.1 can be written
diag(a, b, ¢)(1, 2, 3),

where diag(a, b, c) is the diagonal matrix D and (1, 2, 3) is the permutation matrix P written
in cycle form. |

We will apply monomial maps M = D P on the right of row vectors x in the manner of the
next example.

Example 1.7.3 Let M = diag(a, b, c)(1, 2, 3) be the monomial map of Example 1.7.2 and
X = X1 X2X3 = (xl, X2, X3). Then

XM = xDP = (ax;, bxy, cx3)P = (cx3, axy, bxy). ]

This example illustrates the more general principle of how to apply M = D P to a vector X
where o is the permutation (in cycle form) associated to P. For all i:

* first, multiply the ith component of x by the ith diagonal entry of D, and

* second, move this product to coordinate position io .

With this concept of monomial maps, we now are ready to define monomial equivalence.
Let C; and C; be codes of the same length over a field I, and let G; be a generator matrix
for C;. Then C; and C, are monomially equivalent provided there is a monomial matrix M
so that G M is a generator matrix of C,. More simply, C; and C, are monomially equivalent
if there is a monomial map M such that C, = C; M. Monomial equivalence and permutation
equivalence are precisely the same for binary codes.
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Exercise 45 Let S be the set of all codes over F, of length n. Let C;,C> € S. Define
C; ~ C, to mean that there exists an n x n monomial matrix M such that C{M = C,. Prove
that ~ is an equivalence relation on S. (The definition of “equivalence relation” is given
in Exercise 37.) ¢

There is one more type of map that we need to consider: that arising from automorphisms
of the field F,, called Galois automorphisms. We will apply this in conjunction with
monomial maps. (We will apply field automorphisms on the right of field elements since
we are applying matrices on the right of vectors.) If y is a field automorphism of F, and
M = DP is a monomial map with entries in I, then applying the map My to a vector x
is described by the following process, where again o is the permutation associated to the
matrix P. For all i:

* first, multiply the ith component of x by the ith diagonal entry of D,
» second, move this product to coordinate position io, and
* third, apply y to this component.

Example 1.7.4 The field F4 has automorphism y given by xy =x2. If M = DP =
diag(a, b, c)(1, 2, 3) is the monomial map of Example 1.7.2and X = xjxyx3 = (x|, X2, X3) €
Fi, then

XMy = (axi, bxy, cx3) Py = (cx3, axy, bxa)y = ((cx3)%, (ax1)?, (bx2)?).
For instance,
(1, w, 0)diag(w, w, 1)(1,2,3)y = (0, w, 1). ]

We say that two codes C; and C, of the same length over IF, are equivalent provided
there is a monomial matrix M and an automorphism y of the field such that C; = C; M y.
This is the most general notion of equivalence that we will consider. Thus we have three
notions of when codes are the “same”: permutation equivalence, monomial equivalence,
and equivalence. All three are the same if the codes are binary; monomial equivalence
and equivalence are the same if the field considered has a prime number of elements.
The fact that these are the appropriate maps to consider for equivalence is a conse-
quence of a theorem by MacWilliams [212] regarding weight preserving maps discussed in
Section 7.9.

Two equivalent codes have the same weight distribution. However, two codes with the
same weight distribution need not be equivalent as Example 1.6.1 shows. Exercise 35 shows
that if C; and C, are permutation equivalent codes, then so are their duals under the same
map. However, if C; M = C,, it is not necessarily the case that CllM = C’j‘.

Example 1.7.5 Let C; and C; be [2, 1, 2] codes over F4 with generator matrices [1 1]
and [1 w], respectively. Then the duals ClL and CzL under the ordinary inner product
have generator matrices [1 1] and [1 @], respectively. Notice that C;diag(1, w) = C,, but
Cidiag(l, w) # Cy. [

In the above example, C; is self-dual but C; is not. Thus equivalence may not pre-
serve self-duality. However, the following theorem is valid, and its proof is left as an
exercise.
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Theorem 1.7.6 Let C be a code over F,. The following hold:

(1) If M is a monomial matrix with entries only from {0, —1, 1}, then C is self-dual if and
only if CM is self-dual.

(ii) If g = 3 and C is equivalent to Cy, then C is self-dual if and only if Cy is self-dual.

(iii) If ¢ = 4 and C is equivalent to Cy, then C is Hermitian self-dual if and only if C; is
Hermitian self-dual.

As there are three versions of equivalence, there are three possible automorphism groups.
Let C be a code over IF,,. We defined the permutation automorphism group PAut(C) of C in
the last section. The set of monomial matrices that map C to itself forms the group MAut(C)
called the monomial automorphism group of C. Finally, the set of maps of the form My,
where M is a monomial matrix and y is a field automorphism, that map C to itself forms
the group T"Aut(C), called automorphism group of C.> That MAut(C) and I"Aut(C) are
groups is left as an exercise. In the binary case all three groups are identical. If ¢ is a prime,
MAut(C) = I'Aut(C). In general, PAut(C) € MAut(C) C I'Aut(C).

Exercise 46 For 1 <i < 3 let D; be diagonal matrices, P; permutation matrices, and y;

automorphisms of IF,,.

(a) You can write (D Pyy;)(D;, P>y») in the form D3 Psys. Find D3, P3, and y3 in terms of
Dl, Dz, Pl’ Pz, Y1, and V2.

(b) You can write (D Pyy;)”" in the form D, P>y». Find D,, P,, and y, in terms of Dy, P,
and ;. ¢

Exercise 47 Let S be the set of all codes over IF, of length n. Let C{,C; € §. De-
fine C; ~ C, to mean that there exists an n x n monomial matrix M and an automor-
phism y of F, such that C{My = C,. Prove that ~ is an equivalence relation on S. (The
definition of “equivalence relation” is given in Exercise 37.) You may find Exercise 46
helpful. ¢

Exercise 48 Prove that MAut(C) and I"Aut(C) are groups. (Hint: Use Exercise 46.) ¢

Example 1.7.7 Let C be the tetracode with generator matrix as in Example 1.3.3. La-
beling the coordinates by {1, 2, 3,4}, PAut(C) is the group of order 3 generated by
the permutation (1,3,4). MAut(C) = F'Aut(C) is a group of order 48 generated by
diag(1, 1, 1, —1)(1, 2, 3, 4) and diag(1, 1, 1, —1)(1, 2). |

Exercise 49 Let C be the tetracode of Examples 1.3.3 and 1.7.7.

(a) Verify that the maps listed in Example 1.7.7 are indeed automorphisms of the tetracode.

(b) Write the generator (1, 3, 4) of PAut(C) as a product of the two generators given for
MAut(C) in Example 1.7.7.

(c) (Hard) Prove that the groups PAut(C) and I'Aut(C) are as claimed in Example
1.7.7. ¢

3 The notation for automorphism groups is not uniform in the literature. For example, G(C) or Aut(C) are sometimes
used for one of the automorphism groups of C. As a result of this, we avoid both of these notations.
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Example 1.7.8 Let G be the generator matrix of a [6, 3] code Gy over 4, where

1l o 1 0 0 w
G/6= 01 w1 0 w
0 0 1 w1l o

Label the columns {1, 2, 3, 4, 5, 6}. If this generator matrix is row reduced, we obtain the
matrix

1 0
0 1
0 0

- o O

1 w
o W
w 1

g —~ 8

Swapping columns 5 and 6 gives the generator matrix G of Example 1.3.4; thus G¢(5, 6) =
Ge. (The codes are equivalent and both are called the hexacode.) Using group theoretic
arguments, one can verify the following information about the three automorphism groups
of Gg; however, one can also use algebraic systems such as Magma or Gap to carry out this
verification: PAut(Gy) is a group of order 60 generated by the permutations (1, 2, 6)(3, 5, 4)
and (1,2, 3,4,5). MAut(gg) is a group of order 3 - 360 generated by the monomial map
diag(w, 1, 1, w, w, ®)(1, 2, 6) and the permutation (1, 2, 3, 4, 5).4 Finally, FAut(gg) is a
group twice as big as MAut(Gy) generated by MAut(Gy) and diag(1l, @, w, o, , 1)(1, 6)y,
where y is the automorphism of F4 given by xy = x?. ]

Exercise 50 Let G be the hexacode of Example 1.7.8.

(a) Verify that (1, 2, 6)(3,5,4) and (1, 2, 3,4, 5) are elements of PAut(g/é).

(b) Verify that diag(w, 1, 1, ®, @, ®)(1, 2, 6) is an element of MAut(g’ﬁ).

(c) Verify that diag(1l, , w, w, w, 1)(1, 6)y is an element of FAut(g/é). ¢

Recall that PAut(C*) = PAut(C), by Theorem 1.6.4. One can find MAut(C*) and
[ Aut(Ch) from MAut(C) and ' Aut(C) although the statement is not so simple.

Theorem 1.7.9 Let C be a code over IF,. Then:
(i) MAut(C") ={D~'P | DP € MAut(C)}, and
(ii) TAut(Ct) = {D~'Py | DPy € T'Aut(C)}.

In the case of codes over Fy, PAut(C#) = PAut(C) by Theorem 1.6.4; the following extends
this in the nicest possible fashion.

Theorem 1.7.10 Let C be a code over Fy. Then:
(i) MAut(C*#) = MAut(C), and
(i) TAut(C1#) = I Aut(C).

The third part of Theorem 1.6.4 is generalized as follows.

4 This group is isomorphic to the nonsplitting central extension of the cyclic group of order 3 by the alternating
group on six points.
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Theorem 1.7.11 Let Cy and C, be codes over F,. Let P be a permutation matrix, M a
monomial matrix, and y an automorphism of F.

(i) IfCiP = Cs, then P™'PAut(C,)P = PAut(C»).

(i) IfCiM = Cs, then M~'MAut(C,)M = MAut(C»).

(iii) IfCiMy = C,, then (My)~'TAut(C;)My = T'Aut(C»).

Exercise 51 Prove Theorems 1.7.9, 1.7.10, and 1.7.11. ¢

Exercise 52 Using Theorems 1.6.4 and 1.7.11 give generators of PAut(Gs), MAut(Ge),
and "' Aut(Ge) from the information given in Example 1.7.8. ¢

As with PAut(C), we can speak of transitivity of the automorphism groups MAut(C) or
I"'Aut(C). To do this we consider only the permutation parts of the maps in these groups.
Specifically, define MAutp,(C) to be the set {P | DP € MAut(C)} and I"Autp.(C) to be
{P | DPy € I'Aut(C)}. (The subscript Pr stands for projection. The groups MAut(C) and
"' Aut(C) are semi-direct products; the groups MAutp(C) and I"Autp,(C) are obtained from
MAut(C) and I"'Aut(C) by projecting onto the permutation part of the semi-direct prod-
uct.) For instance, in Example 1.7.7, MAutp,(C) = I'Autp,(C) = Sym,; in Example 1.7.8,
MAutp(C) is the alternating group on six points and I'Autp,(C) = Sym,. We leave the proof
of the following theorem as an exercise.

Theorem 1.7.12 Let C be a linear code over IF,. Then:
(i) MAutp(C) and " Autp,(C) are subgroups of the symmetric group Sym
(i) PAut(C) € MAutp,(C) < I'Autp,(C).

and

n’

Exercise 53 Prove Theorem 1.7.12. (Hint: Use Exercise 46.) ¢

We now say that MAut(C) (I"Aut(C), respectively) is transitive as a permutation group
if MAutp,(C) (' Autp,(C), respectively) is transitive. The following is a generalization of
Theorem 1.6.6.

Theorem 1.7.13 Let C be an [n, k, d] code.

(i) Suppose that MAut(C) is transitive. Then the n codes obtained from C by puncturing
C on a coordinate are monomially equivalent.

(i1) Suppose that T Aut(C) is transitive. Then the n codes obtained from C by puncturing C
on a coordinate are equivalent.

(>iii) Suppose that either MAut(E) or FAut(E) is transitive. Then the minimum weight d of
C is its minimum odd-like weight d,,. Furthermore, every minimum weight codeword
of C is odd-like.

Exercise 54 Prove Theorem 1.7.13. ¢
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1.8 Hamming codes

Hamming codes

We now generalize the binary code H3 of Example 1.2.3. The parity check matrix obtained
in that example was

H=[A"|L]=

—_—= O

1 1 1 0
0 1 0 1
1 0 0 0

- o O

1

Notice that the columns of this parity check matrix are all the distinct nonzero binary
columns of length 3. So H3 is equivalent to the code with parity check matrix

0 00 1 1 11
H=|0 110 0 11
1 01 01 01

whose columns are the numbers 1 through 7 written as binary numerals (with leading Os as
necessary to have a 3-tuple) in their natural order.

This form generalizes easily. Let n = 2" — 1, with r > 2. Then the r x (2" — 1) matrix
H, whose columns, in order, are the numbers 1, 2, ..., 2" — 1 written as binary numerals,
is the parity check matrix of an [n = 2" — 1, k = n — r] binary code. Any rearrangement
of columns of H, gives an equivalent code, and hence any one of these equivalent codes
will be called the binary Hamming code of length n = 2" — 1 and denoted by either H, or
‘H, .. It is customary when naming a code, such as the Hamming code, the tetracode, or the
hexacode, to identify equivalent codes. We will follow this practice with these and other
codes as well.

Since the columns of H, are distinct and nonzero, the minimum distance is at least 3 by
Corollary 1.4.14. Since the columns corresponding to the numbers 1, 2, and 3 are linearly
dependent, the minimum distance equals 3, by the same corollary. Thus H, is a binary
[2" —1,2" — 1 —r, 3] code. In the following sense, these codes are unique.

Theorem 1.8.1 Any [2" — 1,2" — 1 — r, 3] binary code is equivalent to the binary Ham-
ming code 'H,.

Exercise 55 Prove Theorem 1.8.1. ¢

Exercise 56 Prove that every [8, 4, 4] binary code is equivalent to the extended Hamming
code H3. (So for that reason, we say that the [8, 4, 4] binary code is unique.) ¢

Similarly, Hamming codes H, . can be defined over an arbitrary finite field F,. Forr > 2,
‘H,,» has parity check matrix H, , defined by choosing for its columns a nonzero vector
from each 1-dimensional subspace of ]F;. (Alternately, these columns are the points of the
projective geometry PG(r — 1, ¢g).) There are (¢" — 1)/(g — 1) 1-dimensional subspaces.
Therefore H, , has length n = (¢" — 1)/(g — 1), dimension n — r, and redundancy r. As
no two columns are multiples of each other, H, , has minimum weight at least 3. Adding
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two nonzero vectors from two different 1-dimensional subspaces gives a nonzero vector
from yet a third 1-dimensional space; hence H, , has minimum weight 3. When g = 2,
‘H,., is precisely the code H,.

Suppose you begin with one particular order of the 1-dimensional subspaces and one
particular choice for representatives for those subspaces to form the parity check matrix
H, , for H, . If you choose a different parity check matrix H[;_, by choosing a different
order for the list of subspaces and choosing different representatives from these subspaces,
H (;,, can be obtained from H, , by rescaling and reordering the columns — precisely what
is accomplished by multiplying H, , on the right by some monomial matrix. So any code
you get in the above manner is monomially equivalent to any other code obtained in the
same manner. Again H, , will therefore refer to any code in the equivalence class. As in
the binary case, these codes are unique, up to equivalence.

Theorem 1.8.2 Any [(¢" — 1)/(g — 1), (g" — 1)/(q — 1) — 1, 3] code over F, is mono-
mially equivalent to the Hamming code H, ,.

Exercise 57 Prove Theorem 1.8.2. ¢

Exercise 58 Prove that the tetracode of Example 1.3.3 was appropriately denoted in that
example as H3 ;. In other words, show that the tetracode is indeed a Hamming code. ¢

The duals of the Hamming codes are called simplex codes. They are [(¢" — 1)/(q — 1), r]
codes whose codeword weights have a rather interesting property. The simplex code H3l has
only nonzero codewords of weight 4 (see Example 1.2.3). The tetracode, being a self-dual
Hamming code, is a simplex code; its nonzero codewords all have weight 3. In general, we
have the following, which will be proved as part of Theorem 2.7.5.

Theorem 1.8.3 The nonzero codewords of the [(¢" — 1)/(qg — 1), r] simplex code over I,
all have weights g"~".

We now give a construction of the binary simplex codes and prove Theorem 1.8.3 in
this case. These codes are produced by a modification of the (u | u 4 v) construction of
Section 1.5.5.

Let G, be the matrix

[0 1 1
G2 = 10 1]
For r > 3, define G, inductively by
[0...0 | 1 | 1-.-1
0
G, = .
G;—l : Gr—l
0

We claim the code S, generated by G, is the dual of H,. Clearly, G, has one more
row than G,_; and, as G, has 2 rows, G, has r rows. Let G, have n, columns. So n, =
22 —land n, = 2n,_, + 1; by induction n,, = 2" — 1. The columns of G, are nonzero and
distinct; clearly by construction, the columns of G, are nonzero and distinct if the columns
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of G,_; are also nonzero and distinct. So by induction G, has 2" — 1 distinct nonzero
columns of length r. But there are only 2" — 1 possible distinct nonzero r-tuples; these
are the binary expansions of 1,2, ..., 2" — 1. (In fact, the columns are in this order.) So
S, =H; .

The nonzero codewords of S; have weight 2. Assume the nonzero codewords of S, have
weight 272, Then the nonzero codewords of the subcode generated by the last 7 — 1 rows of
G, have the form (a, 0, b), where a, b € S,_;. So these codewords have weight 2 - 212 —
2"~ Also the top row of G, has weight 1 +2"~! — 1 = 2"~!. The remaining nonzero
codewords of S, have the form (a, 1, b+ 1), wherea,be S,_;. Aswt(b+1) =272 —
1, wta,,b+1)=2""24+1+4+2"2—-1=2"1 Thus by induction S, has all nonzero
codewords of weight 2!

1.9

1.9.1

The Golay codes

In this section we define four codes that are called the Golay codes. The first two are binary
and the last two are ternary. In the binary case, the shorter of the codes is obtained from the
longer by puncturing and the longer from the shorter by extending. The same holds in the
ternary case if the generator matrix is chosen in the right form. (See Exercise 61.) Although
the hexacode G¢ of Example 1.3.4 and the punctured code G are technically not Golay
codes, they have so many properties similar to the binary and ternary Golay codes, they are
often referred to as the Golay codes over [F4. These codes have had an exceptional place in
the history of coding theory. The binary code of length 23 and the ternary code of length
11 were first described by M. J. E. Golay in 1949 [102].

The binary Golay codes

We let Go4 be the [24, 12] code with generator matrix G4 = [I}5 | A] in standard form,
where

e L ]
— O O O = = = O = ==
—__= O = O OO = ==

—_— O = = O = O O O = ==

—_ O = = O = O O O =~

_— == O == O = OO O
_— =m0 ==k O = O O

—_ O = OO O = = O | =
—_—m O = OO O = = = O =
OO = = O = O = O =
O OO == O = O | =
—_— O O O = O = O =

()
()
(=)

Notice how A is constructed. The matrix A is an example of a bordered reverse circulant
matrix. Label the columns of A by 00,0, 1,2, ..., 10. The first row contains 0 in column co
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and 1 elsewhere. To obtain the second row, a 1 is placed in column oo and a 1 is placed in
columns 0, 1, 3, 4, 5, and 9; these numbers are precisely the squares of the integers modulo
11. Thatis 0> =0, 12 = 10> = | (mod 11),2% = 92 = 4 (mod 11), etc. The third row of A
is obtained by putting a 1 in column oo and then shifting the components in the second row
one place to the left and wrapping the entry in column O around to column 10. The fourth
row is obtained from the third in the same manner, as are the remaining rows.

We give some elementary properties of G,4. For ease of notation, let A be the 11 x 11
reverse circulant matrix obtained from A by deleting row one and column oo. Note first that
the rows of G4 have weights 8 and 12. In particular the inner product of any row of G4
with itself is 0. The inner product of row one with any other row is also 0 as each row of A
has weight 6. To find the inner product of any row below the first with any other row below
the first, by the circulant nature of A}, we can shift both rows so that one of them is row two.
(For example, the inner product of row four with row seven is the same as the inner product
of row two with row five.) The inner product of row two with any row below it is O by
direct inspection. Therefore G4 is self-dual with all rows in the generator matrix of weight
divisible by four. By Theorem 1.4.8(i), all codewords of G,4 have weights divisible by
four.

Thus Gy is a [24, 12, d] self-dual code, with d = 4 or 8. Suppose d = 4. Notice that
AT = A. As Gy, is self-dual, by Theorem 1.2.1, [AT | I1] = [A | I12] is also a generator
matrix. Hence if (a, b) is a codeword of G4, wherea, b € IF;Z, sois (b, a). Thenifc = (a, b)
is a codeword of G4 of weight 4, we may assume wt(a) < wt(b). If wt(a) = 0, a = 0 and
as Gy is in standard form, b = 0, which is a contradiction. If wt(a) = 1, then c is one of the
rows of G4, which is also a contradiction. Finally, if wt(a) = 2, then c is the sum of two
rows of Go4. The same shifting argument as earlier shows that the weight of ¢ is the same as
the weight of a codeword that is the sum of row two of G4 and another row. By inspection,
none of these sums contributes exactly two to the weight of the right 12 components. So
d=38.

If we puncture in any of the coordinates, we obtain a [23, 12, 7] binary code G»3. It turns
out, as we will see later, that all these punctured codes are equivalent. By Exercise 59,
adding an overall parity check to one of these punctured codes (in the same position which
had been punctured) gives exactly the same G4 back. In the future, any code equivalent to
Go3 will be called the binary Golay code and any code equivalent to G4 will be called the
extended binary Golay code. The codes G»3 and G4 have amazing properties and a variety
of constructions, as we will see throughout this book.

Exercise 59 Prove that if Gp4 is punctured in any coordinate and the resulting code
is extended in the same position, exactly the same code G,4 is obtained. Hint: See
Exercise 27. ¢

The ternary Golay codes

The ternary code G, is the [12, 6] code over F3 with generator matrix G, = [l | A] in
standard form, where
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(0| 1 1 1 1 1]
1l o 1 -1 =1 1
1l 1 0 1 -1 —1
A= 1{-1 1 0 1 =1
1|-1 =1 1 0 1
1| 1 -1 -1 1 0]

In a fashion analogous to that of Section 1.9.1, we can show that Gy, is a [12, 6, 6]
self-dual code. The code Gy is a [11, 6, 5] code obtained from G, by puncturing. Again,
equivalent codes are obtained regardless of the coordinate. However, adding an overall
parity check to G;; in the same coordinate may not give the same G, back; it will give
eithera [12, 6, 6] code or a [12, 6, 5] code depending upon the coordinate; see Exercise 61.

Exercise 60 Prove that Gy, is a [12, 6, 6] self-dual ternary code. ¢

Exercise 61 Number the columns of the matrix A used to generate Gy, by 0o, 0, 1, 2, 3,

4. Let G/, be obtained from G, by scaling column oo by —1.

(a) Show how to give the entries in row two of A using squares and non-squares of integers
modulo 5.

(b) Why is Q’lz a[12, 6, 6] self-dual code? Hint: Use Exercise 60.

(c) Show that puncturing G, in any coordinate and adding back an overall parity check in
that same position gives the same code G/, .

(d) Show that if G, is punctured in coordinate oo and this code is then extended in the
same position, the resulting code is G,.

(e) Show that if G, is punctured in any coordinate other than co and this code is then
extended in the same position, the resulting code is a [12, 6, 5] code. ¢

In Exercise 61, we scaled the first column of A by —1 to obtain a [12, 6, 6] self-dual code
G, equivalent to G1,. By that exercise, if we puncture G, in any coordinate and then extend
in the same coordinate, we get G, back. In Chapter 10 we will see that these punctured
codes are all equivalent to each other and to G1;. As a result any [11, 6, 5] code equivalent
to one obtained by puncturing G/, in any coordinate will be called the ternary Golay code;
any [12, 6, 6] code equivalent to ggz (or Gyp) will be called the extended ternary Golay
code.

Reed—Muller codes

In this section, we introduce the binary Reed—Muller codes. Nonbinary generalized Reed—
Muller codes will be examined in Section 13.2.3. The binary codes were first constructed
and explored by Muller [241] in 1954, and a majority logic decoding algorithm for them was
described by Reed [293] also in 1954. Although their minimum distance is relatively small,
they are of practical importance because of the ease with which they can be implemented
and decoded. They are of mathematical interest because of their connection with finite affine
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and projective geometries; see [4, 5]. These codes can be defined in several different ways.
Here we choose a recursive definition based on the (u | u 4+ v) construction.

Let m be a positive integer and r a nonnegative integer with » < m. The binary codes
we construct will have length 2™ . For each length there will be m + 1 linear codes, denoted
R(r, m) and called the rth order Reed—Muller, or RM, code of length 2. The codes R(0, m)
and R(m, m) are trivial codes: the Oth order RM code R(0, m) is the binary repetition code
of length 2™ with basis {1}, and the mth order RM code R(m, m) is the entire space IF%
For 1 <r < m, define

R(r,m)={(w,u+v)|ueRr,m—1),ve R(r—1,m—1)}. 1.7)

Let G(O,m)=[11---1] and G(m, m) = I». From the above description, these are
generator matrices for R(0, m) and R(m, m), respectively. For 1 <r < m, using (1.5),
a generator matrix G(r, m) for R(r, m) is

Gir,m—1) G(r,m—1) :|

G(V’m):[ 0 G(r—1,m—1)

We illustrate this construction by producing the generator matrices for R(r, m) with
1<r<m<3:

T (R RIS
GUL2)={0 1]0 1/, G.3=|0 o 110 0 1 1|
L0 01 00001 1 1

1.0 0 0|1 0 0 0]
01 00[0 100
00 10[00T1°0
G2,3)={0 0 0 1|0 0 0 1
000O0[1 O0T10
0000[0 101
000 0/0 0 1 1]

From these matrices, notice that R(1, 2) and R(2, 3) are both the set of all even weight
vectors in IF“Z1 and Fg, respectively. Notice also that R(1, 3) is an [8, 4, 4] self-dual code,
which must be 773 by Exercise 56.

The dimension, minimum weight, and duals of the binary Reed—Muller codes can be
computed directly from their definitions.

Theorem 1.10.1 Let r be an integer with 0 < r < m. Then the following hold:
(1) R@G,m) SR, m),if0<i<j<m.
(i) The dimension of R(r, m) equals

(’g)+('7)+...+('j)_

(iii) The minimum weight of R(r, m) equals 2"".
(iv) R(m, m)* = {0}, and if 0 < r < m, then R(r,m)* = R(m —r — 1, m).
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Proof: Part (i) is certainly true if m = 1 by direct computation and if j = m as R(m, m)
is the full space F3 . Assume inductively that R(k, m — 1) € R(¢,m — 1) forall 0 < k <
£ <m.Let0 <i < j < m.Then:

R@i,m)={w,u+v)|ueRi,m—1),veR(I—1,m—1)}
C{wu+v)|lueR(G,m—-1),veR(—1,m—1)}
= R(j, m).

So (i) follows by induction if 0 < i. If i = 0, we only need to show that the all-one vector
of length 2 is in R(j, m) for j < m. Inductively assume the all-one vector of length 2!
is in R(j, m — 1). Then by definition (1.7), we see that the all-one vector of length 2™ is in
R(j, m) as one choice for u is 1 and one choice for v is 0.

For (ii) the result is true for »r = m as R(m, m) = F%m and

(000 ()

It is also true for m = 1 by inspection. Now assume that R(i, m — 1) has dimension

_1 -1 -1
<m0 >+<m1 >+...+<m. > forall 0 <i <m.
i

By the discussion in Section 1.5.5 (and Exercise 33), R(r, m) has dimension the sum of the
dimensions of R(r,m — 1) and R(r — 1, m — 1), that is,

("o ) () () () () e ()

The result follows by the elementary properties of binomial coefficients:

("5 )= () ma (220 ("= ()

Part (iii) is again valid for m = 1 by inspection and for both r = 0 and r = m as R(0, m)
is the binary repetition code of length 2 and R(m, m) = F%m Assume that R(i,m — 1)
has minimum weight 2=~ forall 0 <i < m.If 0 < r < m, then by definition (1.7) and
the discussion in Section 1.5.5 (and Exercise 33), R(r, m) has minimum weight min{2 -
2m717r’ 2m717(r71)} — pm—r.

To prove (iv), we first note that R(m, m)* is {0} since R(m, m) = IF% So if we define
R(—1,m) = {0}, then R(—1, m)* = R(m — (—1) — 1, m)forallm > 0. By direct compu-
tation, R(r, m)* = R(m —r — 1, m) for all r with —1 < r < m = 1. Assume inductively
that if —1 <i<m—1, then RG,m—Dt=R((m—-D—i—1,m—1).Let 0<r <
m. To prove R(r,m)* = R(m — r — 1, m), it suffices to show that R(m —r — 1, m) C
R(r, m)* as dim R(r, m) + dim R(m — r — 1, m) = 2™ by (ii). Notice that with the defini-
tion of R(—1, m), (1.7) extends to the case r = 0. Letx =(a,a+b) e R(m —r — 1, m)
whereae Rim —r —1,m—1)andbe Rm —r —2,m —1),and lety = (u,u+v) €
R(r,m)whereu € R(r,m — 1)andv e R(r —1,m — 1). Thenx-y=2a-u+a-v+b-
u+b-v=a-v+b-u+b-v.EachtermisOasfollows.Asae Rm —r —1,m — 1) =
Rr—1,m—1 a-v=0.AsbeRm —r —2,m—1)=R(r, m—1)-,b-u=0and
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b-v=0using R(r —1,m — 1) € R(r,m — 1) from (i). We conclude that R(m —r —
1,m) C R(r, m)*, completing (iv). O

We make a few observations based on this theorem. First, since R(0, m) is the length
2™ repetition code, R(m — 1, m) = R(0, m)* is the code of all even weight vectors in
IF‘% We had previously observed this about R(1, 2) and R(2, 3). Second, if m is odd and
r = (m — 1)/2 we see from parts (iii) and (iv) that R(r, m) = R((m — 1)/2, m) is self-dual
with minimum weight 2"~1/2_ Again we had observed this about R(1, 3). In the exercises,
you will also verify the general result that puncturing R(1, m) and then taking the subcode
of even weight vectors produces the simplex code S, of length 2" — 1.

Exercise 62 In this exercise we produce another generator matrix G”(1, m) for R(1, m).
Define

G'(1,1) = [(1) i]

For m > 2, recursively define

G'(I,m—1) G"(1,m— 1)}

G(l’m):[ 00---0 11---1

and define G”(1, m) to be the matrix obtained from G’(1, m) by removing the bottom row

and placing it as row two in the matrix, moving the rows below down.

(a) Show that G”(1, 1) is a generator matrix for R(1, 1).

(b) Find the matrices G'(1, 2), G"(1,2), G'(1, 3), and G"(1, 3).

(¢c) What do you notice about the columns of the matrices obtained from G”(1, 2) and
G’ (1, 3) by deleting the first row and the first column?

(d) Show using induction, part (a), and the definition (1.7) that G”(1, m) is a generator
matrix for R(1, m).

(e) Formulate a generalization of part (c) that applies to the matrix obtained from G”(1, m)
by deleting the first row and the first column. Prove your generalization is correct.

(f) Show that the code generated by the matrix obtained from G”(1, m) by deleting the
first row and the first column is the simplex code S,,.

(g) Show that the code R(m — 2, m) is the extended binary Hamming code 7’:[,”.

Notice that this problem shows that the extended binary Hamming codes and their duals

are Reed-Muller codes. ¢

Encoding, decoding, and Shannon’s Theorem

Since the inception of coding theory, codes have been used in many diverse ways; in
addition to providing reliability in communication channels and computers, they give high
fidelity on compact disc recordings, and they have also permitted successful transmission
of pictures from outer space. New uses constantly appear. As a primary application of
codes is to store or transmit data, we introduce the process of encoding and decoding a
message.
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Encoding

Let C be an [n, k] linear code over the field I, with generator matrix G. This code has qk
codewords which will be in one-to-one correspondence with ¢g* messages. The simplest way
to view these messages is as k-tuples x in IF];. The most common way to encode the message
x is as the codeword ¢ = xG. If G is in standard form, the first k coordinates of the codeword
c are the information symbols x; the remaining n — k symbols are the parity check symbols,
that is, the redundancy added to x in order to help recover x if errors occur. The generator
matrix G may not be in standard form. If, however, there exist column indices iy, is, . . ., ik
such that the £ x k matrix consisting of these k columns of G is the k x k identity matrix,
then the message is found in the k coordinates i, iy, . . ., iy of the codeword scrambled but
otherwise unchanged; that is, the message symbol x; is in component i; of the codeword.
If this occurs, we say that the encoder is systematic. If G is replaced by another generator
matrix, the encoding of x will, of course, be different. By row reduction, one could always
choose a generator matrix so that the encoder is systematic. Furthermore, if we are willing
to replace the code with a permutation equivalent one, by Theorem 1.6.2, we can choose a
code with generator matrix in standard form, and therefore the first & bits of the codeword
make up the message.

The method just described shows how to encode a message x using the generator matrix of
the code C. There is a second way to encode using the parity check matrix H. This is easiest to
do when G is in standard form [/, | A]. In this case H = [—AT | I,_] by Theorem 1.2.1.
Suppose that x = x; - - - x; is to be encoded as the codeword ¢ =c¢;---¢c,. As G is in
standard form, c; - - - ¢y = X7 - - - x¢. So we need to determine the n — k parity check symbols
(redundancy symbols) ¢y« -c,. As 0= He' = [—AT | I,_;]e", ATXT = [crqq -+ cu].
One can generalize this when G is a systematic encoder.

Example 1.11.1 LetC be the [6, 3, 3] binary code with generator and parity check matrices
1 001 01 1

G=(0 1 0 1 1 0| and H=|0
001 011 1

respectively. Suppose we desire to encode the message X = x;x,x3 to obtain the codeword

¢ =cjcy - - - c6. Using G to encode yields

¢ =XxG = (xq, x2, X3, X1 + X2, X2 + X3, X1 + x3). (1.8)

Using H to encode, 0 = Hec' leads to the system

0=ci+c+ ca,
0=1cy+c3+cs,
0=cy+c3+cs.

As G is in standard form, cjcyc3 = x1x2x3, and solving this system clearly gives the same
codeword as in (1.8). [ |
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Exercise 63 Let C be the Hamming code 3 of Example 1.2.3, with parity check matrix

0 1 1 1 0
H=|1 01 1 0 1
1 1 0 0 0

- o O

(a) Construct the generator matrix for C and use it to encode the message 0110.
(b) Use your generator matrix to encode xjxXx3X4.
(c) Use H to encode the messages 0110 and x;x,x3x4. ¢

Since there is a one-to-one correspondence between messages and codewords, one often
works only with the encoded messages (the codewords) at both the sending and receiving
end. In that case, at the decoding end in Figure 1.1, we are satisfied with an estimate <
obtained by the decoder from y, hoping that this is the codeword ¢ that was transmitted.
However, if we are interested in the actual message, a question arises as to how to recover
the message from a codeword. If the codeword ¢ = xG, and G is in standard form, the
message is the first k components of ¢; if the encoding is systematic, it is easy to recover
the message by looking at the coordinates of G containing the identity matrix. What can
be done otherwise? Because G has independent rows, there is an n x k matrix K such
that GK = Ii; K is called a right inverse for G and is not necessarily unique. As ¢ = xG,
cK =xGK =x.

Exercise 64 Let G be a k x n generator matrix for a binary code C.
(a) Suppose G = [I; A]. Show that

I
0 b
where O is the (n — k) x k zero matrix, is a right inverse of G.
(b) Find a7 x 3 right inverse K of G, where

1 01 11
G=(11 0
0 0 1

- o O
o)

0

Hint: One way K can be found is by using four zero rows and the three rows of 5.
(c) Find a7 x 4 right inverse K of G, where

1 101 0 00
GZOIIOIOO
0011010
00011 01

Remark: In Chapter 4, we will see that G generates a cyclic code and the structure of
G is typical of the structure of generator matrices of such codes.
(d) What is the message x if xG = 1000110, where G is given in part (c)? ¢
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0e® > ° ()
Send I-e Receive

Figure 1.2 Binary symmetric channel.

Decoding and Shannon’s Theorem

The process of decoding, that is, determining which codeword (and thus which message x)
was sent when a vector y is received, is more complex. Finding efficient (fast) decoding
algorithms is a major area of research in coding theory because of their practical applications.
In general, encoding is easy and decoding is hard, if the code has a reasonably large
size.

In order to set the stage for decoding, we begin with one possible mathematical model
of a channel that transmits binary data. This model is called the binary symmetric channel
(or BSC) with crossover probability o and is illustrated in Figure 1.2. If O or 1 is sent, the
probability it is received without error is 1 — p; if a O (respectively 1) is sent, the probability
that a 1 (respectively 0) is received is o. In most practical situations o is very small. This
is an example of a discrete memoryless channel (or DMC), a channel in which inputs
and outputs are discrete and the probability of error in one bit is independent of previous
bits. We will assume that it is more likely that a bit is received correctly than in error; so
0 <1/273

If E| and E, are events, let prob(E) denote the probability that £ occurs and prob(E| |
E») the probability that E; occurs given that E, occurs. Assume that ¢ € I is sent and
y € F} isreceived and decoded as' ¢ € [F5. So prob(c | y) is the probability that the codeword
cis sent given that y is received, and prob(y | ¢) is the probability that y is received given that
the codeword c is sent. These probabilities can be computed from the statistics associated
with the channel. The probabilities are related by Bayes’ Rule

prob(y | ¢)prob(c)
prob(c | y) =
prob(y)

where prob(c) is the probability that c is sent and prob(y) is the probability that y is received.
There are two natural means by which a decoder can make a choice based on these two

probabilities. First, the decoder could choose € = ¢ for the codeword ¢ with prob(e | y)
maximum; such a decoder is called a maximum a posteriori probability (or MAP) decoder.

5 While o is usually very small, if o > 1/2, the probability that a bit is received in error is higher than the
probability that it is received correctly. So one strategy is to interchange 0 and 1 immediately at the receiving
end. This converts the BSC with crossover probability o to a BSC with crossover probability 1 — ¢ < 1/2. This
of course does not help if o = 1/2; in this case communication is not possible — see Exercise 77.
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Symbolically, a MAP decoder makes the decision
‘¢ = arg max prob(c | y).
ceC

Here arg max.cc prob(c | y) is the argument ¢ of the probability function prob(c | y) that
maximizes this probability. Alternately, the decoder could choose € = ¢ for the codeword ¢
with prob(y | ¢) maximum; such a decoder is called a maximum likelihood (or ML) decoder.
Symbolically, a ML decoder makes the decision

‘¢ = arg max prob(y | ¢). (1.9)
ceC

Consider ML decoding over a BSC. If y = y;---y, andec =c¢;--- ¢y,

n

prob(y | ¢) = [ [ prob(yi | ¢,

i=1
since we assumed that bit errors are independent. By Figure 1.2, prob(y; | ¢;) = o if y; # ¢;
and prob(y; | ¢;) =1 — ¢ if y; = ¢;. Therefore

d(y.c)
prob(y | ©) = ™91 — )"0 = (1 — o' (ﬁ) . (1.10)
Since 0 < o < 1/2, 0 < 9/(1 — @) < 1. Therefore maximizing prob(y | ¢) is equivalent
to minimizing d(y, ¢), that is, finding the codeword ¢ closest to the received vector y in
Hamming distance; this is called nearest neighbor decoding. Hence on a BSC, maximum
likelihood and nearest neighbor decoding are the same.

Let e =y — ¢ so that y = ¢ 4 e. The effect of noise in the communication channel is to
add an error vector e to the codeword ¢, and the goal of decoding is to determine e. Nearest
neighbor decoding is equivalent to finding a vector e of smallest weight such thaty — e is in
the code. This error vector need not be unique since there may be more than one codeword
closest to y; in other words, (1.9) may not have a unique solution. When we have a decoder
capable of finding all codewords nearest to the received vector y, then we have a complete
decoder.

To examine vectors closest to a given codeword, the concept of spheres about codewords
proves useful. The sphere of radius r centered at a vector u in [} is defined to be the set

Sy = {veF,|duv) <r}

of all vectors whose distance from u is less than or equal to ». The number of vectors in
S, (u) equals

r n )
Z<i>(q —1). (1.11)
i=0

These spheres are pairwise disjoint provided their radius is chosen small enough.

Theorem 1.11.2 If d is the minimum distance of a code C (linear or nonlinear) and t =
L(d — 1)/2], then spheres of radius t about distinct codewords are disjoint.
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Proof: Ifz € S,(c;) N S,(cz), where ¢; and ¢, are codewords, then by the triangle inequality
(Theorem 1.4.1(3iv)),

d(e, ¢2) = d(er, 2) +d(z, ¢2) <21 <,
implying that ¢; = c;. O

Corollary 1.11.3 With the notation of the previous theorem, if a codeword ¢ is sent and 'y
is received where t or fewer errors have occurred, then ¢ is the unique codeword closest to
y. In particular, nearest neighbor decoding uniquely and correctly decodes any received
vector in which at most t errors have occurred in transmission.

Exercise 65 Prove that the number of vectors in S, (u) is given by (1.11). ¢

For purposes of decoding as many errors as possible, this corollary implies that for given
n and k, we wish to find a code with as high a minimum weight d as possible. Alternately,
given n and d, one wishes to send as many messages as possible; thus we want to find a
code with the largest number of codewords, or, in the linear case, the highest dimension.
We may relax these requirements somewhat if we can find a code with an efficient decoding
algorithm.

Since the minimum distance of C is d, there exist two distinct codewords such that the
spheres of radius # + 1 about them are not disjoint. Therefore if more than ¢ errors occur,
nearest neighbor decoding may yield more than one nearest codeword. Thus C is a t-error-
correcting code but not a (t + 1)-error-correcting code. The packing radius of a code is the
largest radius of spheres centered at codewords so that the spheres are pairwise disjoint.
This discussion shows the following two facts about the packing radius.

Theorem 1.11.4 Let C be an [n, k, d] code over F,. The following hold:

(i) The packing radius of C equalst = |(d — 1)/2].

(ii) The packing radiust of C is characterized by the property that nearest neighbor decoding
always decodes correctly a received vector in which t or fewer errors have occurred but
will not always decode correctly a received vector in which t + 1 errors have occurred.

The decoding problem now becomes one of finding an efficient algorithm that will correct
up to ¢ errors. One of the most obvious decoding algorithms is to examine all codewords
until one is found with distance ¢ or less from the received vector. But obviously this is
a realistic decoding algorithm only for codes with a small number of codewords. Another
obvious algorithm is to make a table consisting of a nearest codeword for each of the ¢”
vectors in 7 and then look up a received vector in the table in order to decode it. This is
impractical if g" is very large.

For an [n, k, d] linear code C over F,, we can, however, devise an algorithm using a
table with ¢"~* rather than ¢" entries where one can find the nearest codeword by looking
up one of these ¢"* entries. This general decoding algorithm for linear codes is called
syndrome decoding. Because our code C is an elementary abelian subgroup of the additive
group of IFZ, its distinct cosets x + C partition IFZ into ¢" ¥ sets of size ¢*. Two vectors x
and y belong to the same coset if and only if y — x € C. The weight of a coset is the smallest
weight of a vector in the coset, and any vector of this smallest weight in the coset is called
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a coset leader. The zero vector is the unique coset leader of the code C. More generally,
every coset of weight at most # = [(d — 1)/2] has a unique coset leader.

Exercise 66 Do the following:

(a) ProvethatifCisan|n, k, d]code overF,, every coset of weightatmostt = [(d — 1)/2]
has a unique coset leader.

(b) Find a nonzero binary code of length 4 and minimum weight d in which all cosets have
unique coset leaders and some coset has weight greater than r = | (d — 1)/2]. ¢

Choose a parity check matrix H for C. The syndrome of a vector x in IFZ with respect to
the parity check matrix H is the vector in IFZ*" defined by

syn(x) = H x'.

The code C consists of all vectors whose syndrome equals 0. As H has rank n — k, every
vector in ]Fg’k is asyndrome. If x;, X, € IFZ are in the same coset of C, thenx; —x, = c € C.
Therefore syn(x;) = H(x, +¢)T = H Xg +Hc"=H xg = syn(X;). Hence x; and x, have
the same syndrome. On the other hand, if syn(x;) = syn(x,), then H(x, — x;)T = 0 and so
X, — X; € C. Thus we have the following theorem.

Theorem 1.11.5 Tiwo vectors belong to the same coset if and only if they have the same
syndrome.

Hence there exists a one-to-one correspondence between cosets of C and syndromes. We
denote by C; the coset of C consisting of all vectors in F; with syndrome s.

Suppose a codeword sent over a communication channel is received as a vector y. Since
in nearest neighbor decoding we seek a vector e of smallest weight such thaty — e € C,
nearest neighbor decoding is equivalent to finding a vector e of smallest weight in the coset
containing y, that is, a coset leader of the coset containing y. The Syndrome Decoding
Algorithm is the following implementation of nearest neighbor decoding. We begin with a
fixed parity check matrix H.

I.  For each syndrome s € IP’Z*" , choose a coset leader eg of the coset Cg. Create a table
pairing the syndrome with the coset leader.

This process can be somewhat involved, but this is a one-time preprocessing task that
is carried out before received vectors are analyzed. One method of computing this table
will be described shortly. After producing the table, received vectors can be decoded.

II. After receiving a vector y, compute its syndrome s using the parity check matrix H.
III. y is then decoded as the codeword y — e;.

Syndrome decoding requires a table with only ¢"* entries, which may be a vast im-
provement over a table of g vectors showing which codeword is closest to each of these.
However, there is a cost for shortening the table: before looking in the table of syndromes,
one must perform a matrix-vector multiplication in order to determine the syndrome of the
received vector. Then the table is used to look up the syndrome and find the coset leader.

How do we construct the table of syndromes as described in Step I? We briefly discuss
this for binary codes; one can extend this easily to nonbinary codes. Given the ¢-error-
correcting code C of length n with parity check matrix H, we can construct the syndromes
as follows. The coset of weight 0 has coset leader 0. Consider the n cosets of weight 1.
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Choose an n-tuple with a 1 in position i and Os elsewhere; the coset leader is the n-tuple and
the associated syndrome is column i of H. For the (%) cosets of weight 2, choose an n-tuple
with two 1s in positions i and j, with i < j, and the rest Os; the coset leader is the n-tuple
and the associated syndrome is the sum of columns i and j of H. Continue in this manner
through the cosets of weight . We could choose to stop here. If we do, we can decode any
received vector with ¢ or fewer errors, but if the received vector has more than ¢ errors, it
will be either incorrectly decoded (if the syndrome of the received vector is in the table) or
not decoded at all (if the syndrome of the received vector is not in the table). If we decide
to go on and compute syndromes of weights w greater than ¢, we continue in the same
fashion with the added feature that we must check for possible repetition of syndromes.
This repetition will occur if the n-tuple of weight w is not a coset leader or it is a coset
leader with the same syndrome as another leader of weight w, in which cases we move on
to the next n-tuple. We continue until we have 2"* syndromes. The table produced will
allow us to perform nearest neighbor decoding.

Syndrome decoding is particularly simple for the binary Hamming codes H, with par-
ameters [n = 2" — 1, 2" — 1 — r, 3]. We do not have to create the table for syndromes and
corresponding coset leaders. This is because the coset leaders are unique and are the 2"
vectors of weight at most 1. Let H, be the parity check matrix whose columns are the
binary numerals for the numbers 1, 2, ..., 2" — 1. Since the syndrome of the binary n-tuple
of weight 1 whose unique 1 is in position i is the r-tuple representing the binary numeral for
i, the syndrome immediately gives the coset leader and no table is required for syndrome
decoding. Thus Syndrome Decoding for Binary Hamming Codes takes the form:

I. After receiving a vector y, compute its syndrome s using the parity check matrix H,.

II. If s = 0, then y is in the code and y is decoded as y; otherwise, s is the binary numeral
for some positive integer i and y is decoded as the codeword obtained from y by adding
1 to its ith bit.

The above procedure is easily modified for Hamming codes over other fields. This is
explored in the exercises.

Exercise 67 Construct the parity check matrix of the binary Hamming code H,4 of length
15 where the columns are the binary numbers 1, 2, ..., 15 in that order. Using this parity
check matrix decode the following vectors, and then check that your decoded vectors are
actually codewords.

(a) 001000001100100,

(b) 101001110101100,

(c) 000100100011000. ¢

Exercise 68 Construct a table of all syndromes of the ternary tetracode of Example 1.3.3
using the generator matrix of that example to construct the parity check matrix. Find a coset
leader for each of the syndromes. Use your parity check matrix to decode the following
vectors, and then check that your decoded vectors are actually codewords.

(@ (1,1, 1, 1),

() (1, -1,0, 1),

(c) (0,1,0,1). ¢



44

Basic concepts of linear codes

Exercise 69 Let C be the [6, 3, 3] binary code with generator matrix G and parity check
matrix H given by
1 0 00
G=(0 1 0 1
0 0 1 1
(a) Construct a table of coset leaders and associated syndromes for the eight cosets of C.
(b) One of the cosets in part (a) has weight 2. This coset has three coset leaders. Which
coset is it and what are its coset leaders?
(c) Using part (a), decode the following received vectors:
(i) 110110,
(i) 110111,
(iii) 110001.
(d) For one of the received vectors in part (c) there is ambiguity as to what codeword

it should be decoded to. List the other nearest neighbors possible for this received
vector. ¢

Exercise 70 Let 7/:(3 be the extended Hamming code with parity check matrix

1 1 1 1 1 1 1 1
~ 0 00 0 1 1 11
Bs=10 011001 1
01 01 01 01
Number the coordinates 0, 1, 2, ..., 7. Notice that if we delete the top row of ﬁ3, we have

the coordinate numbers in binary. We can decode 7?[3 without a table of syndromes and coset
leaders using the following algorithm. If y is received, compute syn(y) using the parity check
matrix IT13. If syn(y) = (0, 0, 0, 0)T, then y has no errors. If syn(y) = (1, a, b, ¢)T, then there
is a single error in the coordinate position abc (written in binary). If syn(y) = (0, a, b, ¢)T
with (a, b, c) # (0, 0, 0), then there are two errors in coordinate position O and in the
coordinate position abc (written in binary).

(a) Decode the following vectors using this algorithm:

(i) 10110101,
(i) 11010010,
(iii) 10011100.

(b) Verify that this procedure provides a nearest neighbor decoding algorithm for 7/'\{3. To do
this, the following must be verified. All weight 0 and weight 1 errors can be corrected,
accounting for nine of the 16 syndromes. All weight 2 errors cannot necessarily be
corrected but all weight 2 errors lead to one of the seven syndromes remaining. ¢

A received vector may contain both errors (where a transmitted symbol is read as a
different symbol) and erasures (where a transmitted symbol is unreadable). These are
fundamentally different in that the locations of errors are unknown, whereas the locations
of erasures are known. Suppose ¢ € C is sent, and the received vector y contains v errors
and e erasures. One could certainly not guarantee that y can be corrected if € > d because
there may be a codeword other than ¢ closer to y. So assume that € < d. Puncture C in the
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€ positions where the erasures occurred in y to obtain an [n — €, k*, d*] code C*. Note that
k* = k by Theorem 1.5.7(ii), and d* > d — €. Puncture ¢ and y similarly to obtain ¢* and y*;
these can be viewed as sent and received vectors using the code C* with y* containing v errors
but no erasures. If 2v < d — € < d*, ¢* can be recovered from y* by Corollary 1.11.3. There
is a unique codeword ¢ € C which when punctured produces ¢*; otherwise if puncturing
both ¢ and ¢’ yields ¢*, then wt(c — ¢’) < € < d, acontradiction unless ¢ = ¢’. The following
theorem summarizes this discussion and extends Corollary 1.11.3.

Theorem 1.11.6 LetC be an [n, k, d] code. If a codeword ¢ is sent and y is received where
v errors and € erasures have occurred, then ¢ is the unique codeword in C closest to'y
provided 2v + € < d.

Exercise 71 Let 7’-\(3 be the extended Hamming code with parity check matrix

1 11 1 1 1 11
-~ 00 0 0 1 1 11
B=1o 011001 1
01 01 01 01
Correct the received vector 101 » 0111, where « is an erasure. ¢

In Exercises 70 and 71 we explored the decoding of the [8, 4, 4] extended Hamming code
7’:[3. In Exercise 70, we had the reader verify that there are eight cosets of weight 1 and seven
of weight 2. Each of these cosets is a nonlinear code and so it is appropriate to discuss the
weight distribution of these cosets and to tabulate the results. In general, the complete coset
weight distribution of a linear code is the weight distribution of each coset of the code. The
next example gives the complete coset weight distribution of ﬂ3. As every [8, 4, 4] code
is equivalent to 7—1;, by Exercise 56, this is the complete coset weight distribution of any
[8, 4, 4] binary code.

Example 1.11.7 The complete coset weight distribution of the [8, 4, 4] extended binary
Hamming code 3 is given in the following table:

Number of vectors
Coset of given weight Number
weight |0 1 2 3 4 5 6 7 8| ofcosets
0 1 0 0 0 14 0 0 0 1 1
1 o1 0 7 0 7 0 1 0 8
2 0 0 40 8 0 4 0 O 7

Note that the first line is the weight distribution of 7’-\(3. The second line is the weight
distribution of each coset of weight one. This code has the special property that all cosets of
a given weight have the same weight distribution. This is not the case for codes in general.
In Exercise 73 we ask the reader to verify some of the information in the table. Notice that
this code has the all-one vector 1 and hence the table is symmetric about the middle weight.
Notice also that an even weight coset has only even weight vectors, and an odd weight
coset has only odd weight vectors. These observations hold in general; see Exercise 72.
The information in this table helps explain the decoding of 7':(3. We see that all the cosets
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of weight 2 have four coset leaders. This implies that when we decode a received vector in
which two errors had been made, we actually have four equally likely codewords that could
have been sent. ]

Exercise 72 Let C be a binary code of length n. Prove the following.

(a) IfC is an even code, then an even weight coset of C has only even weight vectors, and
an odd weight coset has only odd weight vectors.

(b) If C contains the all-one vector 1, then in a fixed coset, the number of vectors of weight
i is the same as the number of vectors of weightn — i, for 0 <i < n. ¢

Exercise 73 Consider the complete coset weight distribution of 7/:{3 given in Example

1.11.7. The results of Exercise 72 will be useful.

(a) Prove that the weight distribution of the cosets of weight 1 are as claimed.

(b) (Harder) Prove that the weight distribution of the cosets of weight 2 are as
claimed. ¢

We conclude this section with a discussion of Shannon’s Theorem in the framework of
the decoding we have developed. Assume that the communication channel is a BSC with
crossover probability o on which syndrome decoding is used. The word error rate Pey
for this channel and decoding scheme is the probability that the decoder makes an error,
averaged over all codewords of C; for simplicity we assume that each codeword of C is
equally likely to be sent. A decoder error occurs when€ = arg max.c¢ prob(y | ¢) is not the
originally transmitted word ¢ when y is received. The syndrome decoder makes a correct
decision if y — ¢ is a chosen coset leader. This probability is

le(y—c)(l _ Q)n—wt(y—c)

by (1.10). Therefore the probability that the syndrome decoder makes a correct decision is
Z?:o OliQi(l — 0)"%, where «; is the number of cosets weight i. Thus

P =1-) ao'(1—0)". (1.12)
i=0

Example 1.11.8 Suppose binary messages of length k are sent unencoded over a BSC with

crossover probability o. This in effect is the same as using the [k, k] code IF’; This code

has a unique coset, the code itself, and its leader is the zero codeword of weight 0. Hence

(1.12) shows that the probability of decoder error is

Perr=I_QO(I_Q)kZI_(l_Q)ko

This is precisely what we expect as the probability of no decoding error is the probability
(1 — 0)* that the k bits are received without error. [ ]

Example 1.11.9 We compare sending 2* = 16 binary messages unencoded to encoding
using the [7, 4] binary Hamming code 3. Assume communication is over a BSC with
crossover probability 0. By Example 1.11.8, P.; = 1 — (1 — 0)* for the unencoded data.
"H; has one coset of weight 0 and seven cosets of weight 1. Hence Poy = 1 — (1 — 0)7 —
70(1 — )% by (1.12). For example if o = 0.01, P, without coding is 0.039 403 99. Using
‘H3,itis 0.00203104.... |
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Exercise 74 Assume communication is over a BSC with crossover probability .

(a) Using Example 1.11.7, compute P, for the extended Hamming code 7/-\(3.

(b) Prove that the values of P, for both H3, found in Example 1.11.9, and ﬂ3 are equal.

(c) Which code Hj3 or 7/%3 would be better to use when communicating over a BSC?
Why? ¢

Exercise 75 Assume communication is over a BSC with crossover probability o using the

[23, 12, 7] binary Golay code G,;3.

(a) In Exercises 78 and 80 you will see that for G,3 there are (2i3 ) cosets of weight i for
0 < i < 3 and no others. Compute P, for this code.

(b) Compare P, for sending 2! binary messages unencoded to encoding with G,3 when
o = 0.01. ¢

Exercise 76 Assume communication is over a BSC with crossover probability ¢ using the

[24, 12, 8] extended binary Golay code Go4.

(a) In Example 8.3.2 you will see that for G4 there are 1, 24, 276, 2024, and 1771 cosets
of weights 0, 1, 2, 3, and 4, respectively. Compute P for this code.

(b) Prove that the values of P, for both G»3, found in Exercise 75, and G4 are equal.

(c) Which code Gy3 or G,4 would be better to use when communicating over a BSC?
Why? ¢

For a BSC with crossover probability g, the capacity of the channel is

C@) =1+plogyo+ (1 —pg)log,(1— o).

The capacity C(o0) = 1 — H»(0), where H,(p) is the Hilbert entropy function that we define
in Section 2.10.3. For binary symmetric channels, Shannon’s Theorem is as follows.5

Theorem 1.11.10 (Shannon) Let § > 0 and R < C(o). Then for large enough n, there
exists an [n, k] binary linear code C with k/n > R such that P, < § when C is used for
communication over a BSC with crossover probability 9. Furthermore no such code exists
if R > C(o).

Shannon’s Theorem remains valid for nonbinary codes and other channels provided the
channel capacity is defined appropriately. The fraction k/n is called the rate, or information
rate, of an [n, k] code and gives a measure of how much information is being transmitted;
we discuss this more extensively in Section 2.10.

Exercise 77 Do the following.

(a) Graph the channel capacity as a function of ¢ for0 < o < 1.

(b) In your graph, what is the region in which arbitrarily reliable communication can occur
according to Shannon’s Theorem?

(c) What s the channel capacity when o = 1/2? What does Shannon’s Theorem say about
communication when o = 1/27 (See Footnote 5 earlier in this section.) ¢

6 Shannon’s original theorem was stated for nonlinear codes but was later shown to be valid for linear codes as
well.
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1.12

Sphere Packing Bound, covering radius, and perfect codes

The minimum distance d is a simple measure of the goodness of a code. For a given length
and number of codewords, a fundamental problem in coding theory is to produce a code
with the largest possible d. Alternatively, given n and d, determine the maximum number
A, (n, d) of codewords in a code over IF, of length n and minimum distance at least d. The
number A,(n, d)is also denoted by A(n, d). The same question can be asked for linear codes.
Namely, what is the maximum number B, (n, d) (B(n, d) in the binary case) of codewords
in a linear code over F, of length n and minimum weight at least d? Clearly, B,(n, d) <
A,(n, d). For modest values of n and d, A(n, d) and B(n, d) have been determined and
tabulated; see Chapter 2.

The fact that the spheres of radius ¢ about codewords are pairwise disjoint immediately
implies the following elementary inequality, commonly referred to as the Sphere Packing
Bound or the Hamming Bound.

Theorem 1.12.1 (Sphere Packing Bound)

B,(n,d) < Agn,d) £ ———

3 (’Z)(q — 1

i=0
wheret = [(d — 1)/2].

Proof: Let C be a (possibly nonlinear) code over IF, of length n and minimum distance d.
Suppose that C contains M codewords. By Theorem 1.11.2, the spheres of radius ¢ about
distinct codewords are disjoint. As there are o = Z,t:o (:’) (g — 1) total vectors in any one
of these spheres by (1.11) and the spheres are disjoint, M« cannot exceed the number g”
of vectors in IE"q'. The result is now clear. O

From the proof of the Sphere Packing Bound, we see that when we get equality in the
bound, we actually fill the space IFZ with disjoint spheres of radius ¢. In other words, every
vector in IFZ is contained in precisely one sphere of radius ¢ centered about a codeword.
When we have a code for which this is true, the code is called perfect.

Example 1.12.2 Recall that the Hamming code H, , over I, is an [n, k, 3] code, where
n=(@ —1)/(g@—1)andk=n—r.Thent =1 and

n n n

q = q = q— = qk
' (n ;o 1+n@-1D ¢ .
Yo Ja-D
i=0 \!
Thus H, , is perfect. |

Exercise 78 Prove that the [23, 12, 7] binary and the [11, 6, 5] ternary Golay codes are
perfect. ¢
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Exercise 79 Show that the following codes are perfect:

(a) the codes C = IF”,

(b) the codes consisting of exactly one codeword (the zero vector in the case of linear
codes),

(c) the binary repetition codes of odd length, and

(d) the binary codes of odd length consisting of a vector ¢ and the complementary vector
¢ with Os and 1s interchanged.

These codes are called trivial perfect codes. ¢

Exercise 80 Prove that a perfect ¢-error-correcting linear code of length n has precisely
(’l’) cosets of weight i for 0 < i < t and no other cosets. Hint: How many weight i vectors
in FZ are there? Could distinct vectors of weights i and j withi <t and j <t be in the
same coset? Use the equality in the Sphere Packing Bound. ¢

So the Hamming codes are perfect, as are two of the Golay codes, as shown in Exercise 78.
Furthermore, Theorem 1.8.2 shows that all linear codes of the same length, dimension, and
minimum weight as a Hamming code are equivalent. Any of these codes can be called the
Hamming code. There are also some trivial perfect codes as described in Exercise 79. Thus
we have part of the proof of the following theorem.

Theorem 1.12.3

(1)  There exist perfect single error-correcting codes over B, which are not linear and all
such codes have parameters corresponding to those of the Hamming codes, namely,
lengthn = (q" — 1)/(q — 1) with q"~" codewords and minimum distance 3. The only
perfect single error-correcting linear codes over I, are the Hamming codes.

(i) The only nontrivial perfect multiple error-correcting codes have the same length,
number of codewords, and minimum distance as either the [23, 12, 7] binary Golay
code or the [11, 6, 5] ternary Golay code.

(iii) Any binary (respectively, ternary) possibly nonlinear code with 2'% (respectively, 3%)
vectors containing the 0 vector with length 23 (respectively, 11) and minimum dis-
tance 7 (respectively, 5) is equivalent to the [23, 12, 7] binary (respectively, [11, 6, 5]
ternary) Golay code.

The classification of the perfect codes as summarized in this theorem was a significant
and difficult piece of mathematics, in which a number of authors contributed. We will prove
part (iii) in Chapter 10. The rest of the proof can be found in [137, Section 5]. A portion of
part (ii) is proved in Exercise 81.

Exercise 81 The purpose of this exercise is to prove part of Theorem 1.12.3(ii). Let C be
an [n, k, 7] perfect binary code.
(a) Using equality in the Sphere Packing Bound, prove that

(n+ DI+ 1> =3(n+1)+8] =32+

(b) Prove that n + 1 is either 2° or 3 - 2” where, in either case, b <n — k + 1.
(c) Prove that b < 4.
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(d) Provethatn =23 orn =17.
(e) Name two codes that are perfect [n, k, 7] codes, one with n = 7 and the other with
n=23. ¢

One can obtain nonlinear perfect codes by taking a coset of a linear perfect code; see
Exercise 82. Theorem 1.12.3 shows that all multiple error-correcting nonlinear codes are
cosets of the binary Golay code of length 23 or the ternary Golay code of length 11. On
the other hand, there are nonlinear single error-correcting codes which are not cosets of
Hamming codes; these were first constructed by Vasil’ev [338].

Exercise 82 Prove that a coset of a linear perfect code is also a perfect code. ¢

Let C be an [n, k, d] code over F, and let t = [(d — 1)/2]. When you do not have a
perfect code, in order to fill the space Iy with spheres centered at codewords, the spheres
must have radius larger than 7. Of course when you increase the sphere size, not all spheres
will be pairwise disjoint. We define the covering radius p = p(C) to be the smallest integer
s such that IF; is the union of the spheres of radius s centered at the codewords of C.
Equivalently,

p(C) = max mind(x, c).
xelF; ceC

Obviously,t < p(C)andt = p(C)if and only if C is perfect. By Theorem 1.11.4, the packing
radius of a code is the largest radius of spheres centered at codewords so that the spheres
are disjoint. So a code is perfect if and only if its covering radius equals its packing radius.
If the code is not perfect, its covering radius is larger than its packing radius.

For a nonlinear code C, the covering radius p(C) is defined in the same way to be

p(C) = max mind(x, ¢).

xef" ceC
Again if d is the minimum distance of C and t = |(d — 1)/2], thent < p(C) and t = p(C)
if and only if C is perfect. The theorems that we prove later in this section are only for linear
codes.

If C is a code with packing radius ¢ and covering radius ¢ + 1, C is called quasi-perfect.
There are many known linear and nonlinear quasi-perfect codes (e.g. certain double error-
correcting BCH codes and some punctured Preparata codes). However, unlike perfect codes,
there is no general classification.

Example 1.12.4 By Exercise 56, the binary [8, 4, 4] code is shown to be unique, in the
sense that all such codes are equivalent to 773. In Example 1.11.7, we give the complete
coset weight distribution of this code. Since there are no cosets of weight greater than 2, the
covering radius, p(?flg.), is 2. Since the packing radius is t = [(4 — 1)/2] = 1, this code is
quasi-perfect. Both the covering and packing radius of the nonextended Hamming code H3
equal 1. This is an illustration of the fact that extending a binary code will not increase
its packing radius (error-correcting capability) but will increase its covering radius. See
Theorem 1.12.6(iv) below. ]
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Recall that the weight of a coset of a code C is the smallest weight of a vector in the coset.
The definition of the covering radius implies the following characterization of the covering
radius of a linear code in terms of coset weights and in terms of syndromes.

Theorem 1.12.5 Let C be a linear code with parity check matrix H. Then:

(i) p(C) is the weight of the coset of largest weight;

(ii) p(C) is the smallest number s such that every nonzero syndrome is a combination of s
or fewer columns of H, and some syndrome requires s columns.

Exercise 83 Prove Theorem 1.12.5. ¢

We conclude this chapter by collecting some elementary facts about the covering radius
of codes and coset leaders, particularly involving codes arising in Section 1.5. More on
covering radius can be found in Chapter 11.

Theorem 1.12.6 Let C be an [n, k] code over F,. Let C be the extension of C, and let C* be

a code obtained from C by puncturing on some coordinate. The following hold:

() IfC =Ci @®Cy, then p(C) = p(C1) + p(C2).

(i) p(C*) = p(C)or p(C*) = p(C) — 1.

(iii) p(C) = p(C) or p(C) = p(C) + 1.

@iv) Ifqg =2, then p(C) = p(C) + 1.

(v) Assume that X is a coset leader of C. If X' € IFZ all of whose nonzero components agree
with the same components of X, then X' is also a coset leader of C. In particular, if
there is a coset of weight s, there is also a coset of any weight less than s.

Proof: The proofs of the first three assertions are left as exercises.

For (iv), letx = x; - - - x, be acoset leader of C. Letx’ = x; - - - x,,. By part (iii), it suffices
to show that x’ is a coset leader ofa Letec=c|---c, €C,andlet¢=c|---Cpcpyq beits
extension. If ¢ has even weight, then wt(¢ + x') = wt(ec +x) + 1 > wit(x) + 1. Assume ¢
has odd weight. Then wt(€ + X’) = wt(c + x). If x has even (odd) weight, then ¢ + x has
odd (even) weight by Theorem 1.4.3, and so wt(c + X) > wt(x) as x is a coset leader. Thus
in all cases, wt(€ + x') > wt(x) + 1 = wt(x) and so X’ is a coset leader of C.

To prove (v), it suffices, by induction, to verify the result when x = x; - - - x,, is a coset
leader and X’ = x| - - - x),, where x; = x} forall j # i and x; # x/ = 0. Notice that wt(x) =
wt(x") + 1. Suppose that X’ is not a coset leader. Then there is a codeword ¢ € C such that
X' + cis a coset leader and hence

wt(x’ 4+ ¢) < wt(x') — 1 = wt(x) — 2. (1.13)
But as x and x’ disagree in only one coordinate, wt(x + ¢) < wt(x’ 4+ ¢) + 1. Using (1.13),
this implies that wt(x + ¢) < wt(x) — 1, a contradiction as X is a coset leader. ]
Exercise 84 Prove parts (i), (ii), and (iii) of Theorem 1.12.6. ¢

The next example illustrates that it is possible to extend or puncture a code and leave the
covering radius unchanged. Compare this to Theorem 1.12.6(ii) and (iii).
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Example 1.12.7 Let C be the ternary code with generator matrix [1 1 — 1]. Computing
the covering radius, we see that p(C) = p(C) = 2. If D = C and we puncture D on the last
coordinate to obtain D* = C, we have p(D) = p(D%). |

In the binary case by Theorem 1.12.6(iv), whenever we extend a code, we increase the
covering radius by 1. But when we puncture a binary code we may not reduce the covering
radius.

Example 1.12.8 Let C be the binary code with generator matrix
1 01 1
01 1 1)’
and let C* be obtained from C by puncturing on the last coordinate. It is easy to see that

p(C) = p(C*) = 1. Also if D is the extension of C*, p(D) = 2, consistent with Theorem
1.12.6. ]
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Bounds on the size of codes

2.1

In this chapter, we present several bounds on the number of codewords in a linear or
nonlinear code given the length n and minimum distance d of the code. In Section 1.12 we
proved the Sphere Packing (or Hamming) Bound, which gives an upper bound on the size
of a code. This chapter is devoted to developing several other upper bounds along with two
lower bounds. There are fewer lower bounds presented, as lower bounds are often tied to
particular constructions of codes. For example, if a code with a given length n and minimum
distance d is produced, its size becomes a lower bound on the code size. In this chapter we
will speak about codes that meet a given bound. If the bound is a lower bound on the size of
a code in terms of its length and minimum distance, then a code C meets the lower bound
if the size of C is at least the size given by the lower bound. If the bound is an upper bound
on the size of a code in terms of its length and minimum distance, then C meets the upper
bound if its size equals the size given by the upper bound.

We present the upper bounds first after we take a closer look at the concepts previously
developed.

Ay(n,d)and By(n, d)

In this section, we will consider both linear and nonlinear codes. An (n, M, d) code C over
I, is a code of length n with M codewords whose minimum distance is d. The code C can
be either linear or nonlinear; if it is linear, it is an [n, k, d] code, where k = logq M and d
is the minimum weight of C; see Theorem 1.4.2.

We stated the Sphere Packing Bound using the notation B, (n, d) and A,(n, d), where
B,(n, d), respectively A, (n, d), is the largest number of codewords in a linear, respectively
arbitrary (linear or nonlinear), code over I, of length n and minimum distance at least d.
A code of length n over I, and minimum distance at least d will be called optimal if it has
A,(n, d) codewords (or B,(n, d) codewords in the case that C is linear). There are other
perspectives on optimizing a code. For example, one could ask to find the largest d, given
n and M, such that there is a code over I, of length n with M codewords and minimum
distance d. Or, find the smallest n, given M and d such that there is a code over [F, of
length n with M codewords and minimum distance d. We choose to focus on A,(n, d) and
B, (n, d) here.

We begin with some rather simple properties of A, (n, d) and B, (n, d). First we have the
following obvious facts:
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Table 2.1 Upper and lower bounds on A,(n, d) for

6<n<24
n d=4 d=6 d=238 d=10
6 2 1 1
7 8 2 1 1
8 16 2 2 1
9 20 4 2 1
10 40 6 2 2
11 72 12 2 2
12 144 24 4 2
13 256 32 4 2
14 512 64 8 2
15 1024 128 16 4
16 2048 256 32 4
17 2720-3276 256-340 36-37 6
18 5312-6552 512-680 64-72 10
19 10496-13104 1024-1288 128-144 20
20 20480-26208 2048-2372 256-279 40
21 3686443689 25604096 512 4248
22 73728-87378 40966941 1024 50-88
23 147456-173491 8192-13774 2048 76-150

24 294912-344308  16384-24106 4096 128-280

Theorem 2.1.1 B,(n,d) < A,(n,d) and B,(n, d) is a nonnegative integer power of q.

So B, (n, d) is alower bound for A,(n, d) and A,(n, d) is an upper bound for B, (n, d). The
Sphere Packing Bound is an upper bound on A, (n, d) and hence on B, (n, d).

Tables which lead to information about the values of A,(n,d) or B,(n, d) have been
computed and are regularly updated. These tables are for small values of g and moderate to
large values of n. The most comprehensive table is compiled by A. E. Brouwer [32], which
gives upper and lower bounds on the minimum distance d of an [n, k] linear code over F,.
A less extensive table giving bounds for A,(n, d) is kept by S. Litsyn [205].

To illustrate, we reproduce a table due to many authors and recently updated by Agrell,
Vardy, Zeger, and Litsyn in [2, 205]. Most of the upper bounds in Table 2.1 are obtained
from the bounds presented in this chapter together with the Sphere Packing Bound; ad hoc
methods in certain cases produce the remaining values. Notice that Table 2.1 contains only
even values of d, a consequence of the following result.

Theorem 2.1.2 Letd > 1. Then:

(i) Ayn,d)<A;n—1,d—1)and By(n,d) < By(n—1,d —1), and

@ii) ifdiseven, Ay(n,d)= Ay(n —1,d — 1) and Bo(n,d) = Bo(n — 1,d — 1).

Furthermore:

(>iii) if'd is even and M = Ay(n, d), then there exists a binary (n, M, d) code such that all
codewords have even weight and the distance between all pairs of codewords is also
even.



55

21 A,(n,d)and B,(n, d)

Proof: Let C be a code (linear or nonlinear) with M codewords and minimum distance
d. Puncturing on any coordinate gives a code C* also with M codewords; otherwise
if C* has fewer codewords, there would exist two codewords of C which differ in one
position implying d = 1. This proves (i); to complete (ii), we only need to show that
Arx(n,d) > Ay(n—1,d — 1) (or By(n,d) > By(n — 1,d — 1) when C is linear). To that
end let C be a binary code with M codewords, length n — 1, and minimum distance d — 1.
Extend C by adding an overall parity check to obtain a code C of length » and minimum
distance d, since d — 1 is odd. Because C has M codewords, A>(n,d) > A,(n—1,d — 1)
(or By(n,d) > By(n — 1,d — 1)). For (iii), if C is a binary (n, M, d) code with d even, the
punctured code C* as previously stated is an (n — 1, M, d — 1) code. Extending C* pro-
duces an (n, M, d) code é\* since d — 1 is odd; furthermore this code has only even weight
codewords. Since d(x, y) = wt(x +y) = wt(x) + wt(y) — 2wt(x N y), the distance between
codewords is even. O

Exercise 85 In the proof of Theorem 2.1.2, we claim that if C is a binary code of length
n — 1 and minimum weight d — 1, where d — 1 is odd, then the extended code 6 of length
n has minimum distance d. In Section 1.5.2 we stated that this is true if C is linear, where
it is obvious since the minimum distance is the minimum weight. Prove that it is also true
when C is nonlinear. ¢

Theorem 2.1.2(ii) shows that any table of values of A,(n, d) or B,(n, d) only needs to
be compiled for d either always odd or d always even. Despite the fact that A,(n, d) =
As(n —1,d — 1) when d is even, we want to emphasize that a given bound for A,(n, d)
may not be the same bound as for A,(n — 1,d — 1). So since these values are equal, we
can always choose the smaller upper bound, respectively larger lower bound, as a common
upper bound, respectively lower bound, for both A(n, d) and A,(n — 1,d — 1).

Example 2.1.3 By usingn = 7andd = 4 (thatis, # = 1) in the Sphere Packing Bound, we
find that A,(7, 4) < 16. On the other hand, using n = 6 and d = 3 (still, r = 1) the Sphere
Packing Bound yields 64/7 implying that A,(6, 3) < 9. So by Theorem 2.1.2(ii) an upper
bound for both A,(7, 4) and A»(6, 3) is 9. |

Exercise 86 Let C be a code (possibly nonlinear) over IF, with minimum distance d. Fix a
codeword cin C. LetC; = {x — ¢ | x € C}. Prove that C; contains the zero vector 0, has the
same number of codewords as C, and also has minimum distance d. Prove also that C = C;
if C is linear. ¢

Exercise 87 By Example 2.1.3, A>(7,4) <9.

(a) Prove that By(7,4) < 8.

(b) Find a binary [7, 3, 4] code thus verifying B,(7, 4) = 2* = 8. In our terminology, this
code is optimal.

(c) Show that A,(7, 4) is either 8 or 9. (Table 2.1 shows that it is actually 8, a fact we will
verify in the next section.) ¢

Exercise 88 By Table 2.1, A>(13, 10) = 2.
(a) By computing the Sphere Packing Bound using (n, d) = (13, 10) and (12, 9), find the
best sphere packing upper bound for A,(13, 10).
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(b) Using part (a), give an upper bound on B;(13, 10).
(c) Prove that B,(13, 10) = A,(13, 10) is exactly 2 by carrying out the following.
(i) Constructa[13, 1, 10] linear code.
(i) Show that no binary code of length 13 and minimum distance 10 or more can
contain three codewords. (Hint: By Exercise 86, you may assume that such a code
contains the vector 0.) ¢

Exercise 89 This exercise verifies the entry for n = 16 and d = 4 in Table 2.1.

(a) Use the Sphere Packing Bound to get an upper bound on A, (15, 3). What (linear) code
meets this bound? Is this code perfect?

(b) Use two pairs of numbers (n, d) and the Sphere Packing Bound to get an upper bound
on Ay(16, 4). What (linear) code meets this bound? Is this code perfect?

(c) Justify the value of A,(16, 4) given in Table 2.1. ¢

In examining Table 2.1, notice that d = 2 is not considered. The values for A,(n, 2) and
B>(n, 2) can be determined for all n.

Theorem 2.1.4 A,(n,2) = By(n,2) = 2" .

Proof: By Theorem 2.1.2(ii), A(n,2) = Ap(n — 1, 1). But clearly Ay(n — 1, 1) < 2=l
and the entire space Fg_l isacode oflengthn — 1 and minimum distance 1, implying A,(n —
1,1) = 2""'. By Theorem 2.1.1 as Fg_l is linear, 2"~' = By(n — 1, 1) = By(n, 2). d

There is another set of table values that can easily be found as a result of the next
theorem.

Theorem 2.1.5 A,(n,n) = B,(n,n) =gq.

Proof: The linear code of size ¢ consisting of all multiples of the all-one vector of length
n (that is, the repetition code over I,) has minimum distance n. So by Theorem 2.1.1,
Ay(n,n) = By(n,n) > q.1f Ay(n, n) > g, there exists a code with more than g codewords
and minimum distance n. Hence at least two of the codewords agree on some coordinate;
but then these two codewords are less than distance n apart, a contradiction. So A,(n, n) =
B,(n,n)=gq. a

In tables such as Table 2.1, it is often the case that when one bound is found for a particular
n and d, this bound can be used to find bounds for “nearby” n and d. For instance, once you
have an upper bound for A,(n — 1, d) or B;(n — 1, d), there is an upper bound on A, (n, d)
or By(n,d).

Theorem 2.1.6 A,(n.d) < qA,(n — 1,d) and B,(n,d) < qB,(n — 1, d).

Proof: Let C be a (possibly nonlinear) code over I, of length » and minimum distance
at least d with M = A,(n, d) codewords. Let C(cr) be the subcode of C in which every
codeword has « in coordinate n. Then, for some «, C(«) contains at least M /g codewords.
Puncturing this code on coordinate n produces a code of length n — 1 and minimum distance
d. Therefore M/q < Ay;(n — 1,d) giving A,(n, d) < qA,;(n — 1, d). We leave the second
inequality as an exercise. O
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Exercise 90 Let C be an [n, k, d] linear code over F,.

(a) Prove that if i is a fixed coordinate, either all codewords of C have 0 in that coordinate
position or the subset consisting of all codewords which have a 0 in coordinate position
iisan[n, k — 1, d] linear subcode of C.

(b) Prove that B,(n,d) < gB,(n —1,d). ¢

Exercise 91 Verify the following values for A,(n, d).

(a) Show that A,(8, 6) = 2 by direct computation. (That is, show that there is a binary code
with two codewords of length 8 that are distance 6 apart; then show that no code with
three such codewords can exist. Use Exercise 86.)

(b) Show that A,(9, 6) < 4 using part (a) and Theorem 2.1.6. Construct a code meeting
this bound.

(c) What are B,(8, 6) and B»(9, 6)? Why? ¢

Exercise 92 Assume that A,(13, 6) = 32, as indicated in Table 2.1.

(a) Show that A,(14, 6) < 64, A,(15,6) < 128, and A,(16, 6) < 256.

(b) Show that if you can verify that A,(16, 6) = 256, then there is equality in the other
bounds in (a).

See also Exercise 108. ¢

Exercise 93 Show that B,(13, 6) < 32 by assuming that a [13, 6, 6] binary code exists.
Obtain a contradiction by attempting to construct a generator matrix for this code in standard
form. ¢

Exercise 94 Verify that A,(24, 8) = 4096 consistent with Table 2.1. ¢

Before proceeding to the other bounds, we observe that the covering radius of a code C
with A,(n, d) codewords is at most d — 1. For if a code C with A,(n, d) codewords has
covering radius d or higher, there is a vector X in IP’Z at distance d or more from every
codeword of C; hence C U {x} has one more codeword and minimum distance at least d.
The same observation holds for linear codes with B,(n, d) codewords; such codes have
covering radius d — 1 or less, a fact left to the exercises. For future reference, we state these
in the following theorem.

Theorem 2.1.7 Let C be either a code over F, with A,(n, d) codewords or a linear code
over F, with B,(n, d) codewords. Then C has covering radius d — 1 or less.

Exercise 95 Prove that if C is a linear code over F, with B,(n, d) codewords, then C has
covering radius at most d — 1. ¢

There are two types of bounds that we consider in this chapter. Until Section 2.10 the
bounds we consider in the chapter are valid for arbitrary values of n and d. Most of these
have asymptotic versions which hold for families of codes having lengths that go to infinity.
These asymptotic bounds are considered in Section 2.10.

There is a common technique used in many of the proofs of the upper bounds that we
examine. A code will be chosen and its codewords will become the rows of a matrix. There
will be some expression, related to the bound we are seeking, which must itself be bounded.
We will often look at the number of times a particular entry occurs in a particular column
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of the matrix of codewords. From there we will be able to bound the expression and that
will lead directly to our desired upper bound.

2.2

The Plotkin Upper Bound

The purpose of having several upper bounds is that one may be smaller than another for a
given value of n and d. In general, one would like an upper bound as tight (small) as possible
so that there is hope that codes meeting this bound actually exist. The Plotkin Bound [285]
is an upper bound which often improves the Sphere Packing Bound on A, (n, d); however,

it is only valid when d is sufficiently close to .

Theorem 2.2.1 (Plotkin Bound) Let C be an (n, M, d) code over F, such that rn <d

where r =1 — q~'. Then

d
M < .
_\‘d—rnJ

In particular,
d
d—rn|’

provided rn < d. In the binary case,

d
Ax(n,d) <2 bd _nJ

ifn < 2d.

A(n,d) < {

Proof: Let

§=Y "% dxy).

xeC yeC

Ifx#yforx,y € C, thend < d(x, y) implying that

MM —1)d < S.

2.1)

2.2)

2.3)

Let M be the M x n matrix whose rows are the codewords of C. For 1 <i < n, letn;, be
the number of times o € F, occurs in column i of M. As Zaqu niq=Mforl <i <n,

we have

S = i Z I’li,a(M —niyo,) = an — i Z niz,a‘

i=1 aelf,
By the Cauchy—Schwartz inequality,
2

2
§ N =q z ni,a'

aclF, aclF,

i=1 aelF,

(2.4)
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Using this, we obtain
2
S §nM2—Zq_l Z N = nrM?>. 2.5)
i=1 acl,
Combining (2.3) and (2.5) we obtain M < |d/(d — rn)] since M is an integer, which gives
bound (2.1).
In the binary case, this can be slightly improved. We still have
d 2d

M < = s
“d—n/2 2d—n

using (2.3) and (2.5). If M is even, we can round the expression 2d /(2d — n) down to the
nearest even integer, which gives (2.2). When M is odd, we do not use Cauchy—Schwartz.
Instead, from (2.4), we observe that

S= [nioM = nig)+nis(M —ni)l =Y 2mioni (2.6)
i=1 i=1

because n; 0 + n;,; = M. But the right-hand side of (2.6) is maximized when {n; o, n; 1} =
{(M —1)/2, (M + 1)/2}; thus using (2.3)

MM —1)d < n%(M DM+ 1),

Simplifying,
n 2d
M < = -1,
2d — n 2d —n
which proves (2.2) in the case that M is odd. d

The Plotkin Bound has rather limited scope as it is only valid when n < 2d in the binary
case. However, we can examine what happens for “nearby” values, namely n = 2d and
n=2d+1.

Corollary 2.2.2 The following bounds hold:
(i) Ifdiseven, Ay(2d,d) < 4d.

(i) Ifdisodd, Ay(2d,d) < 2d + 2.

(i) Ifd isodd, A,(2d + 1,d) < 4d + 4.

Proof: By Theorem 2.1.6, A»(2d,d) <2A,(2d —1,d). But by the Plotkin Bound,
Ar(2d — 1,d) < 2d, giving (i), regardless of the parity of d. If d is odd, we obtain a
better bound. By Theorem 2.1.2(ii), A>(2d,d) = A»(2d + 1,d + 1) if d is odd. Apply-
ing the Plotkin Bound, A,(2d + 1,d + 1) < 2d + 2, producing bound (ii). Finally if d is
odd, A,(2d + 1,d) = A,(2d 4+ 2, d + 1) by Theorem 2.1.2(ii). Since A,(2d +2,d + 1) <
4(d 4+ 1) by (i), we have (iii). O

Example 2.2.3 The Sphere Packing Bound for A,(17,9) is 65536/1607, yielding
A,(18,10) = A»(17,9) < 40. However, by the Plotkin Bound, A,(18, 10) < 10. There is
a code meeting this bound as indicated by Table 2.1. |
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|
Example 2.2.4 The Sphere Packing Bound for A,(14, 7)is 8192/235, yielding A»(15, 8) =
A(14,7) < 34. However, by Corollary 2.2.2(ii), A(14,7) < 16. Again this bound is at-
tained as indicated by Table 2.1. ]
Exercise 96 (a) Find the best Sphere Packing Bound for A,(n, d) by choosing the smaller
of the Sphere Packing Bounds for A;(n, d) and Ay(n — 1, d — 1) for the following values
of (n, d). (Note that d is even in each case and so A>(n,d) = A(n — 1,d — 1).) (b) From
the Plotkin Bound and Corollary 2.2.2, where applicable, compute the best bound. (c) For
each (n, d), which bound (a) or (b) is the better bound? (d) What is the true value of A,(n, d)
according to Table 2.1?
i) (m,d) = (7,4) (compare to Example 2.1.3), (8, 4).
(i) (n,d) = (9, 6) (compare to Exercise 91), (10, 6), (11, 6).
(iii) (n,d) = (14, 8), (15, 8), (16, 3).
@iv) (n,d) = (16, 10), (17, 10), (18, 10), (19, 10). (20, 10). ¢

|

2.3  The Johnson Upper Bounds

In this section we present a series of bounds due to Johnson [159]. In connection with these
bounds, we introduce the concept of constant weight codes. Bounds on these constant weight
codes will be used in Section 2.3.3 to produce upper bounds on A,(n, d). A (nonlinear)
(n, M, d) code C over IF, is a constant weight code provided every codeword has the same
weight w. For example, the codewords of fixed weight in a linear code form a constant
weight code. If x and y are distinct codewords of weight w, then d(x, y) < 2w. Therefore
we have the following simple observation.

Theorem 2.3.1 If C is a constant weight (n, M, d) code with codewords of weight w and
ifM > 1, thend <2uw.

Define A, (n, d, w) to be the maximum number of codewords in a constant weight (2, M)
code over I, of length n and minimum distance at least d whose codewords have weight
w. Obviously A,(n,d, w) < A,(n, d).

Example 2.3.2 It turns out that there are 759 weight 8 codewords in the [24, 12, 8] ex-
tended binary Golay code. These codewords form a (24, 759, 8) constant weight code with
codewords of weight 8; thus 759 < A,(24, 8§, 8). |

We have the following bounds on A, (n, d, w).

Theorem 2.3.3

() A n,d,w)=1ifd > 2w.

(i) A (n, 2w, w) < [(n(g — )/w)].
(i) Ax(n, 2w, w) = [n/w].

(iv) Ax(n,2e — 1, w) = As(n, 2e, w).
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Proof: Part (i) is a restatement of Theorem 2.3.1. In an (n, M, 2w) constant weight code
C over F, with codewords of weight w, no two codewords can have the same nonzero
entries in the same coordinate. Thus if M is the M x n matrix whose rows are the code-
words of C, each column of M can have at most ¢ — 1 nonzero entries. So M has at
most n(qg — 1) nonzero entries. However, each row of M has w nonzero entries and so
Mw < n(qg — 1). This gives (ii). For (iii), let C = {cy, ..., ¢y}, where M = [n/w] and
¢; is the vector of length n consisting of (i — 1)w Os followed by w 1s followed by
n —iw Os, noting that n — Mw > 0. Clearly C is a constant weight binary (n, [n/w], 2w)
code. The existence of this code and part (ii) with ¢ = 2 give (iii). Part (iv) is left for
Exercise 97. a

Exercise 97 Show that two binary codewords of the same weight must have even distance
between them. Then use this to show that A,(n, 2e — 1, w) = A,(n, 2e, w). ¢

The Restricted Johnson Bound

We consider two bounds on A, (n, d, w), the first of which we call the Restricted Johnson
Bound.

Theorem 2.3.4 (Restricted Johnson Bound for A, (n, d, w))

nd(qg — 1)
qw? —2(q — Dnw +nd(g — 1)

Ayn,d, w) < L

provided qw? —2(q — Dnw 4+ nd(g — 1) > 0, and

d
As(n,d,w) < S —
2w? —2nw + nd

provided 2w* — 2nw + nd > 0.

Proof: The second bound is a special case of the first. The proof of the first uses the same
ideas as in the proof of the Plotkin Bound. Let C be an (n, M, d) constant weight code with
codewords of weight w. Let M be the M x n matrix whose rows are the codewords of C.
Let

S = ZZd(x, y).

xeC yeC
Ifx #yforx,y € C, thend < d(x, y) implying that
MM —1)d < S. 2.7
For 1 <i < n, letn;, be the number of times o € F, occurs in column i of M. So

S = Z Z nig(M —n;g) = Z (Mnio—n},) + Z Z (Mn; o —n7,), (2.8)

n
i=1 acF, i=1 i=1 aeF?
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where F, denotes the nonzero elements of F,. We analyze each of the last two terms
separately. First,

3 o= (n = wyht
i=I

because the left-hand side counts the number of Os in the matrix M and each of the M rows
of M has n — w 0Os. Second, by the Cauchy—Schwartz inequality,

n 2 n
. < 2
nio|] <n nig-
i=1 i=1

Combining these we see that the first summation on the right-hand side of (2.8) satisfies

n

2
1 n
Z (Mn,-,o — ”1'2,0) <@ —wM?*— - (; n,-yo)

i=1
(n — w)*M?

n

=0n—-wM?*— (2.9)

A similar argument is used on the second summation of the right-hand side of (2.8). This
time

n
E E Nig =wM
i=l1 aeIFZ

because the left-hand side counts the number of nonzero elements in the matrix M and
each of the M rows of M has w nonzero components. By the Cauchy—Schwartz inequality,

2

Yo nia| =n@=10Y > n,

i=1 qeF? i=1 el

This yields

Z Z (Ml’l,"a — }’liz,a) = M m

i=1 qeF?

A
S
o
|
I'M=
]
3
]

=wM?— ;(wM)z. (2.10)
nig—1)

Combining (2.7), (2.8), (2.9), and (2.10), we obtain:
,  (n—wyM? ) 1 5
MM—-1)d<mn—-—wM — —— +wM” — ——(wM)~,
n n(g —1)

which simplifies to

M —1d <M [Z(q — Dnw — qw2:|

n(g — 1)
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Solving this inequality for M, we get

nd(g — 1)

M < :
~ qw?—2(g — Dnw +nd(g — 1)

provided the denominator is positive. This produces our bound. O

Example 2.3.5 By the Restricted Johnson Bound A,(7, 4, 4) < 7. The subcode C of H;
consisting of the even weight codewords is a [7, 3, 4] code with exactly seven codewords
of weight 4. Therefore these seven vectors form a (7, 7, 4) constant weight code with
codewords of weight 4. Thus A,(7,4,4) = 7. |

Exercise 98 Verify all claims in Example 2.3.5. ¢

Exercise 99 Using the Restricted Johnson Bound, show that A,(10, 6,4) < 5. Also con-
struct a (10, 5, 6) constant weight binary code with codewords of weight 4. ¢

The Unrestricted Johnson Bound

The bound in the previous subsection is “restricted” in the sense that gw? — 2(g — )nw +
nd(q — 1) > 0 is necessary. There is another bound on A,(n, d, w), also due to Johnson,
which has no such restriction.

Theorem 2.3.6 (Unrestricted Johnson Bound for A, (n, d, w))
@ If2w <d, then Ay;(n,d, w) = 1.
(i) If2w > dandd € {2¢ — 1, 2¢}, then, setting ¢* = q — 1,

A,(n,d, w) < ng” | (n — Dg* (n—w+e)q”
T = w w—1 e '

(i) Ifw < e, then Ay(n,2e — 1, w) = Ay(n,2e, w) = 1.
@iv) If w > e, then

As(n, 2e — 1, w) = Ax(n, 2e, w) < FV‘I {L”__WJHJ
w|w-—1 e

Proof: Part (i) is clear from Theorem 2.3.1. For part (ii), let C be an (n, M, d) constant
weight code over I, with codewords of weight w where M = A,(n, d, w). Let M be the
M x n matrix of the codewords of C. Let [ be the nonzero elements of F;. For 1 <i <n
anda € ]FZ, let C; () be the codewords in C which have « in column i. Suppose that C;(«)
has m; , codewords. The expression Y i, m; , counts the number of times & occurs in the
matrix M. Therefore } -, 3 i_; i counts the number of nonzero entries in M. Since
C is a constant weight code,
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But if you puncture C;(«) on coordinate i, you obtain an (n — 1, m; o, d) code with code-
words of weight w — 1. Thus m; o < A;(n —1,d, w — 1), yielding

wM = Z imi,a <q'nA;(n—1,d,w—1).

aE]F; i=l1
Therefore,
ng*
Ayn,d, w) < Aq(n—l,d,w—l)J. (2.11)
w

By induction, repeatedly using (2.11),

Ay d,wy < | " V” —Dg” L V" — A D i - i)J HJ

L w w—1 w—i+1

foranyi.lfd =2e — l,leti =w —e+ l;thenA,(n —i,d,w —i)=A,n—w+e—1,
2¢ —1,e — 1) =1 by Theorem 2.3.3(i) and part (ii) holds in this case. If d = 2e, let
i=w—e; then A;(n —i,d,w—i)=A,(n—w+e,2e,e)<|((n—w+e)g*)/e] by
Theorem 2.3.3(ii) and part (ii) again holds in this case.

Parts (iii) and (iv) follow from (i) and (ii) with d = 2e — 1 using Theorem 2.3.3(iv). O

Example 2.3.7 In Example 2.3.2 we showed that A,(24, 8, 8) > 759. The Restricted John-
son Bound cannot be used to obtain an upper bound on A,(24, 8, 8), but the Unrestricted
Johnson Bound can. By this bound,

24123222120
A4, 8,8) < | = | = | = | = | = = 759.
8171654
Thus A»(24, 8, 8) = 759. (]

Exercise 100 Do the following:

(a) Prove that Ay(n,d, w) = Ay(n,d,n — w). Hint: If C is a binary constant weight code
of length n with all codewords of weight w, what is the code 1 + C?

(b) Prove that

n

Ar(n,d, w) < { Ary(n—1,d, w)J.

n—uw
Hint: Use (a) and (2.11).

(c) Show directly that A,(7,4,6) = 1.

(d) Show using parts (b) and (c) that A,(8, 4, 6) < 4. Construct a binary constant weight
code of length 8 with four codewords of weight 6 and all with distance at least 4 apart,
thus showing that A,(8, 4, 6) = 4.

(e) Use parts (b) and (d) to prove that A,(9, 4, 6) < 12.

(f) What are the bounds on A;(9,4, 6) and A,(9, 4, 3) using the Unrestricted Johnson
Bound? Note that A»(9, 4, 6) = A,(9, 4, 3) by part (a).

(g) Show that A,(9, 4, 6) = 12. Hint: By part (a), A»(9,4,6) = A2(9,4,3). A binary
(9, 12, 4) code with all codewords of weight 3 exists where, for each coordinate, there
are exactly four codewords with a 1 in that coordinate. ¢
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Exercise 101 Do the following:

(a) Use the techniques given in Exercise 100 to prove that A,(8, 4, 5) < 8.

(b) Show that A,(8, 4, 5) = 8. Hint: By Exercise 100, A»(8,4,5) = A,(8, 4, 3). A binary
(8, 8, 4) code with all codewords of weight 3 exists where, for each coordinate, there
are exactly three codewords with a 1 in that coordinate. ¢

The Johnson Bound for A, (n, d)

The bounds on A, (n, d, w) can be used to give upper bounds on A, (1, ) also due to Johnson
[159]. As can be seen from the proof, these bounds strengthen the Sphere Packing Bound.
The idea of the proof is to count not only the vectors in IFZ that are within distance t =
L(d — 1)/2] of all codewords (that is, the disjoint spheres of radius ¢ centered at codewords)
but also the vectors at distance ¢ 4+ 1 from codewords that are not within these spheres. To
accomplish this we need the following notation. If C is a code of length n over F, and
X € IF;, let d(C, x) denote the distance from x to C. So d(C, x) = min{d(c, x) | ¢ € C}.

Theorem 2.3.8 (Johnson Bound for A,(n, d)) Lett = |(d — 1)/2].
(i) [Ifdisodd, then

n

Ayn,d) < 9 .
n 1 d
o e (e
— 1)
i=0 <.>(q ' Ag(n.d,t+1)
(i) Ifd is even, then
Ay(n.d) < g .
" Yg -
t n (- 1)[ 4 t+1
2 \i )" A d, 1+ 1)
(iii) Ifd is odd, then
27[

As(n,d) <

(iv) Ifd is even, then

Azx(n,d) < (2.12)
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(v) Ifdis odd, then
2}‘!

5 (1) () (THH?D |

Proof: Let C be an (n, M, d) code over [F,. Notice that ¢ is the packing radius of C;
d=2t+1if d is odd and d = 2t + 2 if d is even. So the spheres of radius ¢ centered at
codewords are disjoint. The vectors in these spheres are precisely the vectors in ]FZ that are
distance ¢ or less from C. We will count these vectors together with those vectors at distance
t + 1 from C and use this count to obtain our bounds. To that end let N be the vectors at
distance t + 1 from C; so N = {x € Fy 1d(C,x) =t + 1}. Let || denote the size of N.
Therefore,

As(n,d) < (2.13)

i=0

M;(?)(t]—l)iwtlf\fl <q", (2.14)

as the summation on the left-hand side counts the vectors in the spheres of radius # centered
at codewords; see (1.11). Our bounds will emerge after we obtain a lower bound on |A/].
Let X = {(¢,x) € C x N | d(c, x) =t + 1}. To get the lower bound on |[A/| we obtain
lower and upper estimates for | X'|.
We first obtain a lower estimate on |X|. Let X, = {x € A/ | (¢, x) € X’}. Then

X =) |Xel. (2.15)
ceC

FixceC.Letx € IFZ be a vector at distance ¢ + 1 from ¢ so that wt(c — x) =t + 1. There
are exactly

n R
(ro

such vectors x because they are obtained by freely changing any ¢ + 1 coordinates of c.
Some of these lie in X' and some do not. Because wt(¢ — x) =7+ 1,d(C,x) <t + 1. Let
¢’ € C with ¢/ # c. Then by the triangle inequality of Theorem 1.4.1, d < wt(¢' — ¢) =
wt(¢' — x — (¢ — X)) < wt(¢' — x) + wt(c — x) = wt(¢ — x) + ¢ + 1, implying

d—1t—1<wtc —x). (2.16)

Ifd =2t +2, wt(¢/ — x) >t + 1 yielding d(C, x) = ¢ + 1 since ¢’ € C was arbitrary and
we saw previously that d(C, x) < ¢ + 1. Therefore all such x lie in X giving

n
Xl = — L
[ Xel (t 1)(‘1 )

hence

|X| :M(til)(q — it! ifd =2t +2. (2.17)
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Ifd =2t + 1, wt(¢/ — x) > ¢ by (2.16) yielding t < d(C, x) < ¢ + 1. As we only want to
count the x where d(C, x) = ¢ + 1, we will throw away those with d(C, x) = ¢. Such x must
simultaneously be at distance ¢ from some codeword ¢’ € C and at distance 7 + 1 from
c¢. Hence the distance from ¢’ to ¢ is at most 2¢ + 1 = d, by the triangle inequality; this
distance must also be at least d as that is the minimum distance of C. Therefore we have
wt(¢/ — ¢) = 2t + 1. How many ¢’ are possible? As the set {¢’ — ¢ | ¢/ € C} forms a constant
weight code of length » and minimum distance d, whose codewords have weight d, there
are at most A,(n, d, d) such ¢'. For each ¢/, how many x are there with wt(x —¢) = ¢ + 1
and t = wt(¢’ — x) = wt((¢’ — ¢) — (x — ¢))? Since wt(¢’ — ¢) = 2t + 1, X — ¢ is obtained
from ¢’ — ¢ by arbitrarily choosing ¢ of its 2¢ + 1 nonzero components and making them
zero. This can be done in ('f) ways. Therefore

n T d
<t+1)(f] 1) <I>Aq(n’d7d)§|XC|

showing by (2.15) that

n oyt (4 g
M|:<t+1>(q 1 (t)Aq(n,d,d)]§|X| ifd =26+ 1. (2.18)

We are now ready to obtain our upper estimate on |X|. Fix x € N. How many ¢ € C
are there with d(c, x) = + 1? The set {¢ —x | ¢ € C with d(¢, x) = ¢ + 1} is a constant
weight code of length n with words of weight ¢ + 1 and minimum distance d because
(¢’ —x) — (¢ — x) = ¢/ — c. Thus for each x € N there are at most A,(n, d, t + 1) choices
for ¢ with d(c, x) = ¢ + 1. Hence |X| < |N|Aq(n, d,t+1)or

LI
Ayn,d, t+1) ~

We obtain bound (i) by combining (2.14), (2.18), and (2.19) and bound (ii) by combin-
ing (2.14), (2.17), and (2.19). Bounds (iii) and (iv) follow from (i) and (ii) by observing
that Ax(n, 2t +1,¢ + 1) = Ay(n, 2t +2,t + 1) = [n/(t + 1)] by Theorem 2.3.3. Finally,
bound (v) follows from (iii) and the observation (with details left as Exercise 102) that

N]. (2.19)

d d
(t)Az(n, d,d) = <t>A2(n, 2t+ 1,2t + 1)

d n n—t
= <t)A2(n,2t+2, 2t+1) < <t> L+1J

by Theorem 2.3.3(iv) and the Unrestricted Johnson Bound. O

Exercise 102 Show that

d n n—t
Ary(n,2t +2,2t+1) < )
(D)2 r22e02 ()17

using the Unrestricted Johnson Bound. ¢

Example 2.3.9 Using (2.12) we compute that an upper bound for A,(16, 6) is 263. Recall
that A>(16, 6) = A,(15,5). Using (2.13), we discover that A,(15, 5), and hence A,(16, 6),
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is bounded above by 256. In the next subsection, we present a code that meets this
bound. ]

Exercise 103 Compute the best possible upper bounds for A,(9,4) = A»(8,3) and
A(13,6) = A»(12,5) using the Johnson Bound. Compare these values to those in
Table 2.1. ¢

The Nordstrom—Robinson code

The existence of the Nordstrom—Robinson code shows that the upper bound on A,(16, 6)
discovered in Example 2.3.9 is met, and hence that A,(16, 6) = 256.

The Nordstrom—Robinson code was discovered by Nordstrom and Robinson [247] and
later independently by Semakov and Zinov’ev [303]. This code can be defined in several
ways; one of the easiest is the following and is due to Goethals [100] and Semakov and
Zinov’ev [304].

Let C be the [24, 12, 8] extended binary Golay code chosen to contain the weight 8
codeword ¢ = 11---100---0. Let T be the set consisting of the first eight coordinates.
Let C(T) be the subcode of C which is zero on T, and let C7 be C shortened on 7'. Let
CTbeC punctured on the positions of T =1{9,10,...,24}. By Corollary 1.4.14, as C is
self-dual, the first seven coordinate positions of C are linearly independent. Thus as ¢ € C
and C is self-dual, CT is the [8, 7, 2] binary code consisting of all even weight vectors of
length 8. Exercise 104 shows that the dimension of C7 is 5. Hence C7 is a [16, 5, 8] code.
(In fact Cy is equivalent to R(1, 4) as Exercise 121 shows.) For 1 <i <7,letc; e Cbea
codeword of C with zeros in the first eight coordinates except coordinate i and coordinate
8; such codewords are present in C because C’ is all length 8 even weight vectors. Let
¢o = 0.For0 < j <7,letC; be the coset ¢; + C(T) of C(T') in the extended Golay code C.
These cosets are distinct, as you can verify in Exercise 105. Let A be the union of the eight
cosets Cy, . . . , C7. The Nordstrom—Robinson code N 14 is the code obtained by puncturing
N on T. Thus N ¢ is the union of Cj, . .., C}, where Cj is C; punctured on T'. Figure 2.1
gives a picture of the construction. Clearly, N6 is a (16, 256) code, as Exercise 106 shows.
Let a, b € N be distinct. Then d(a, b) > 8, as C has minimum distance 8. Since a and b

T Nis
Coy [ 00000000 | 32 codewords of C;

Ci 10000001 | 32 codewords of C}

C,1 [ 01000001 | 32 codewords of C}

C74 | 00000011 | 32 codewords of C}

Figure 2.1 The Nordstrom—Robinson code inside the extended Golay code.
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disagree on at most two of the first eight coordinates, the codewords of A1 obtained from
a and b by puncturing on T are distance 6 or more apart. Thus N'i¢ has minimum distance
at least 6 showing that A,(16, 6) = 256. In particular, A6 is optimal.

Exercise 104 Show that C; has dimension 5. Hint: C = C*; apply Theorem 1.5.7(iii).

¢
Exercise 105 Show that the cosets C; for 0 < j < 7 are distinct. ¢
Exercise 106 Show that /16 has 256 codewords as claimed. ¢
We compute the weight distribution A;(N'1¢) of A16. Clearly
7
> AC) = AN e). (2.20)
=0

By Theorem 1.4.5(iv), C contains the all-one codeword 1. Hence as ¢ + 1 has Os in the
first eight coordinates and 1s in the last 16, Cf contains the all-one vector of length 16. By
Exercise 107 Alﬁ,i(Cj) = A,~(C_’;) for0<i<l16and0<j <7.As Cj- is obtained from C
by deleting eight coordinates on which the codewords have even weight, A,-(C;‘-) =0ifi
is odd. By construction A | contains 0. As N'j¢ has minimum distance 6, we deduce that
A;(N16) =0for 1 <i < 5 and therefore that Ai(Cj) =0forl <i<5and 1l <i < 15.
As C§ = Cr and the weights of codewords in C(T') are multiples of 4, so are the weights
of vectors in C§. Since Cj; has 32 codewords, A¢(Cj) = A16(Cj;) = 1 and Ag(C) = 30, the
other A;(Cj) being 0. For 1 < j <7, the codewords in C; have weights a multiple of 4;
since each codeword has two 1s in the first eight coordinates, the vectors in C j have weights
that are congruent to 2 modulo 4. Therefore the only possible weights of vectors in C;
are 6 and 10, and since A6(C>;) = Alo(ij), these both must be 16. Therefore by (2.20),
AoN16) = AisWN16) = 1, As(N16) = A1oN16) =7 - 16 = 112, and Ag(N 1) = 30, the
other A;(N i) being 0.

Exercise 107 Prove that AI(H-(C;T) = Ai(Cj‘-) forO0<i<l16and0<j <7. ¢

It turns out that AV | is unique [317] in the following sense. If C is any binary (16, 256, 6)
code, and ¢ is a codeword of C, then the code ¢ +C = {¢ + x | x € C} is also a (16, 256, 6)
code containing the zero vector (see Exercise 86) and this code is equivalent to N .

Exercise 108 From A 4, produce (15, 128, 6), (14, 64, 6), and (13, 32, 6) codes. Note that
these codes are optimal; see Table 2.1 and Exercise 92. ¢

Nearly perfect binary codes

We explore the case when bound (2.13) is met. This bound strengthens the Sphere Packing
Bound and the two bounds in fact agree precisely when (f + 1) | (n — t). Recall that codes
that meet the Sphere Packing Bound are called perfect. An (n, M, 2t + 1) binary code with
M = A,(n, 2t + 1) which attains the Johnson Bound (2.13) is called nearly perfect.

A natural problem is to classify the nearly perfect codes. As just observed, the Johnson
Bound strengthens the Sphere Packing Bound, and so perfect codes are nearly perfect



70

Bounds on the size of codes

(and (t + 1) | (n —1)); see Exercise 109. Nearly perfect codes were first examined by
Semakov, Zinov’ev, and Zaitsev [305] and independently by Goethals and Snover [101].
The next two examples, found in [305, Theorem 1], give parameters for other nearly perfect
codes.

Exercise 109 As stated in the text, because the Johnson Bound strengthens the Sphere
Packing Bound, perfect codes are nearly perfect. Fill in the details showing why this is
true. ¢

Example 2.3.10 Let C be an (1, M, 3) nearly perfect code. Sot = 1. If nis odd, (t + 1) |
(n — t) and so the Sphere Packing Bound and (2.13) agree. Thus C is a perfect single error-
correcting code and must have the parameters of H,, by Theorem 1.12.3. (We do not
actually need Theorem 1.12.3 because the Sphere Packing Bound gives M = 2" /(1 + n);
son =2" — 1 for some r and M = 2% ~!=".) If n is even, equality in (2.13) produces
2?1
T on+2

Hence M is an integer if and only if n = 2" — 2 for some integer r. Therefore the only
possible sets of parameters for nearly perfect (n, M, 3) codes that are not perfect are
(n, M,3) =" —2,2¥-27" 3) for r > 3. For example, the code obtained by puncturing
the subcode of even weight codewords in Hj , is a linear code having these parameters.
(See Exercise 110.) [ |

Exercise 110 Prove that the code obtained by puncturing the subcode of even weight
codewords in H; , is a linear code having parameters (n, M, 3) = (2" — 2, 2721 3y ¢

Example 2.3.11 Let C be an (n, M, 5) nearly perfect code. So t = 2. If n = 2 (mod 3),
(t + 1) | (n — t) and again the Sphere Packing Bound and (2.13) agree. Thus C is a perfect
double error-correcting code which does not exist by Theorem 1.12.3. If n = 1 (mod 3),
equality in (2.13) yields
2n+l
M=———.
(n+2)(n+1)

So for M to be an integer, both n + 1 and n + 2 must be powers of 2, which is impossible
for n > 1. Finally, consider the case n = 0 (mod 3). Equality in (2.13) gives

2n+l
M=——.
(n + 1)

Son = 2" — 1 for some m, and as 3 | n, m must be even. Thus C is a (2" — 1,2%" =" 5)
code, a code that has the same parameters as the punctured Preparata code P(m)*, which
we will describe in Chapter 12. |

These two examples provide the initial steps in the classification of the nearly perfect
codes, a work begun by Semakov, Zinov’ev, and Zaitsev [305] and completed by Lindstrém
[199, 200]; one can also define nearly perfect nonbinary codes. These authors show that all
of the nearly perfect binary codes are either perfect, or have parameters of either the codes
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in Example 2.3.10 or the punctured Preparata codes in Example 2.3.11, and that all nearly
perfect nonbinary codes must be perfect.

I

2.4 The Singleton Upper Bound and MDS codes

The next upper bound for A,(n, d) and B,(n, d), called the Singleton Bound, is much
simpler to prove than the previous upper bounds. It is a rather weak bound in general but
does lead to the class of codes called MDS codes; this class contains the very important
family of codes known as Reed—Solomon codes, which are generally very useful in many
applications. They correct burst errors and provide the high fidelity in CD players.

Theorem 2.4.1 (Singleton Bound [312]) Ford <n,
Ay(n,d) < g"
Furthermore if an [n, k, d] linear code over ¥, exists, thenk <n —d + 1.

Proof: The second statement follows from the first by Theorem 2.1.1. Recall that
Ay(n,n) =gq by Theorem 2.1.5 yielding the bound when d =n. Now assume that
d < n.By Theorem 2.1.6 A,(n,d) < gA,(n — 1, d). Inductively we have that A,(n, d) <
q"9A,(d,d). Since Ay(d,d) = q, A,(n,d) < g" 1. O

Example 2.4.2 The hexacode of Example 1.3.4 is a [6, 3, 4] linear code over FF4. In this
code, k=3=6—-4+1=n—d+1 and the Singleton Bound is met. So A4(6,4) =
43, u

Exercise 111 Prove using either the parity check matrix or the standard form of the generator
matrix for an [n, k, d] linear code that d < n — k + 1, hence verifying directly the linear
version of the Singleton Bound. ¢

A code for which equality holds in the Singleton Bound is called maximum distance
separable, abbreviated MDS. No code of length n and minimum distance d has more
codewords than an MDS code with parameters n and d; equivalently, no code of length n
with M codewords has a larger minimum distance than an MDS code with parameters n
and M. We briefly discuss some results on linear MDS codes.

Theorem 2.4.3 Let C be an [n, k] code over F, with k > 1. Then the following are
equivalent:

(i) Cis MDS.

(ii) Every set of k coordinates is an information set for C.

(ili) C* is MDS.

(iv) Every set of n — k coordinates is an information set for C*+.

Proof: The first two statements are equivalent by Theorem 1.4.15 as an [n, k] code is MDS

if and only if k = n — d + 1. Similarly the last two are equivalent. Finally, (ii) and (iv) are
equivalent by Theorem 1.6.2. O
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We say that C is a trivial MDS code over I, if and only if C = F; or C is monomially
equivalent to the code generated by 1 or its dual. By examining the generator matrix in
standard form, it is straightforward to verify the following result about binary codes.

Theorem 2.4.4 Let C be an [n, k, d] binary code.
(i) IfCis MDS, then C is trivial.
@) If3<dand5 <k,thenk <n—d—1.

Exercise 112 Prove Theorem 2.4.4. ¢

We will discuss other aspects of MDS codes in Section 7.4. Trivial MDS codes are
arbitrarily long. Examples of nontrivial MDS codes are Reed—Solomon codes over F, of
length n = g — 1 and extensions of these codes of lengths ¢ and g + 1. Reed—Solomon
codes and their generalizations will be examined in Chapter 5. The weight distribution of
an MDS code over IF,, is determined by its parameters n, k, and g (see Theorem 7.4.1). If an
MBDS code is nontrivial, its length is bounded as a function of ¢ and & (see Corollary 7.4.4).

2.5

The Elias Upper Bound

The ideas of the proof of the Plotkin Bound can be used to find a bound that applies to a larger
range of minimum distances. This extension was discovered in 1960 by Elias but he did not
publish it. Unfortunately, the Elias Bound is sometimes rather weak; see Exercises 114 and
115. However, the Elias Bound is important because the asymptotic form of this bound,
derived later in this chapter, is superior to all of the asymptotic bounds we discuss except
the MRRW Bounds. Before stating the Elias Bound, we need two lemmas.

Lemma 2.5.1 Let C be an (n, K, d) code over F, such that all codewords have weights at
most w, where w < rnwithr =1 — q_l. Then

Kw w
d < (2——).
K -1 rn

Proof: As in the proof of the Plotkin Bound, let M be the K x n matrix whose rows are

the codewords of C. For 1 < i < n, letn;  be the number of times « € IF, occurs in column
i of M. Clearly,

Z nig=K forl <i <n. (2.21)

acl,

Also, if T = )"}, nj o, then

T=) niog=Kn-w) (2.22)
i=1



73

2.5 The Elias Upper Bound

as every row of M has at least n — w zeros. By the Cauchy—Schwartz inequality and (2.21)

1 1
Yongz—— Yo nia| = qj(K —nig)®  and (2.23)

aGFZ q ozE]F;

Z”zzo > = (Z n; o) = —T2 (2.24)

Again, exactly as in the proof of the Plotkin Bound, using (2.3) and (2.4),

K(K—=1Dd <) > dxy) =) Y niaK —niy). (2.25)
xeC yeC i=1 ael,

Using first (2.21), then (2.23), and finally (2.24),

n

ZZM(K—n,a)—nK2 M KR

i=1 aelf, i=1 otE]FZ
1 n
<nk?-— 1 (qnl-z0 +K?* - 2Kn,»,o)
q-— i=1 ’
1
<nK?— —— (‘—’T2 +nk? - 2KT) . (2.26)
qg—11\n
Since w < rn, qw < (¢ — )n implying n < gn — qw and hence
K<Lkm—w). (2.27)
n
Also as w < rn, by (2.22)
k<2t (2.28)
n

Adding (2.27) and (2.28) gives 2K < gn~'(T 4+ K(n — w)). Multiplying both sides by
T — K(n — w), which is nonnegative by (2.22), produces

2KIT — K(n — w)] < L[T? = K2(n — w)?]
n

and hence

L2 —wy? — 2K —w) < L72
n n

—2KT.
Substituting this into (2.26) and using (2.25) yields

1
KK —1)d <nk?— —— [q K2(n — w)’ 4+ nk? — 2K*(n — w)] .

-1
Simplifying the right-hand side produces
KK —1)d < K*w (2—LE): (2——)
—1n rn

Solving for d verifies the lemma. O
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By (1.11) the number of vectors in a sphere of radius a in F' Z centered at some vector in
IE‘Z, denoted V,(n, a), is

Vonoay=Y" (’Z)(q — 1. (2.29)

i=0

Lemma 2.5.2 Suppose C is an (n, M, d) code over IF,. Then there is an (n, M, d) code c
over F, with an (n, K, d) subcode A containing only codewords of weight at most w such
that K > MV,(n, w)/q".

Proof: Let S, (0) be the sphere in IFZ of radius w centered at 0. Let x € IFZ be chosen so
that |S,,(0) N (x + C)| is maximal. Then

1
1S, N(x+C) = — Y [5,(0)N (y +C)
q "
yel,
1
=—> Y Y Hbn{y+cl
1" yeF! b5, (0) ceC
1 1 1
=— > Y 1=—[80)Cl = —V,(n. w)M.
4" pes,(0) ceC q q
The result follows by letting C' = x +C and A = S,(0) N C'. O

Theorem 2.5.3 (Elias Bound) Letr = 1 — g~'. Suppose that w < rn and w?> — 2rnw +
rnd > 0. Then

n

rnd q
w? = 2rnw +rnd  Vy(n, w)’

Aq(n,d) <

Proof: Let M = A,(n, d). By Lemma 2.5.2 there is an (n, K, d) code over F, containing
only codewords of weight at most w such that

MV,(n,w)/q" < K. (2.30)
As w < rn, Lemma 2.5.1 implies that d < Kw(2 — w/(rn))/(K — 1). Solving for K and
using w? — 2rnw + rnd > 0 yields

K < rnd (2.31)
~ w2 —2rnw+rnd’ '

Putting (2.30) and (2.31) together gives the bound. O

Example 2.54 By Theorem 2.1.2, A,(13,5) = A,(14,6). By the Sphere Packing
Bound, A,(13, 5) < 2048/23 implying A,(13,5) < 89,and A,(14, 6) < 8192/53 implying
A,(14, 6) < 154. The Johnson Bound yields A,(13,5) < 8192/105, showing A,(13,5) <
78; and A,(14,6) < 16384/197, showing A,(14, 6) < 83. The following table gives the
upper bounds on A,(13,5) and A,(14, 6) using the Elias Bound. Note that each w < n/2
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I

such that w? — nw + (nd/2) > 0 for (n, d) = (13, 5) and (1, d) = (14, 6) must be tried.

w  Ay(13,5) Ay(14,6)

0 8192 16384

1 927 1581

2 275 360

3 281 162

4 233

Thus the best upper bound from the Elias Bound for A,(13, 5) = A,(14, 6) is 162, while the

best bound from the Sphere Packing and Johnson Bounds is 78. By Table 2.1, A,(13,5) =

A>(14, 6) = 64, see also Exercises 92 and 108. |

Exercise 113 Verify that the entries in the table of Example 2.5.4 are correct and that all

possible values of w have been examined. ¢

Exercise 114 By Theorem 2.1.2, A5(9,5) = A,(10, 6).

(a) Compute upper bounds on both A,(9, 5) and A,(10, 6) using the Sphere Packing Bound,
the Plotkin Bound, and the Elias Bound. When computing the Elias Bound make sure
all possible values of w have been checked.

(b) What is the best upper bound for A,(9, 5) = A,(10, 6)?

(c) Find a binary code of length 10 and minimum distance 6 meeting the bound in part
(b). Hint: This can be constructed using the zero vector with the remaining codewords
having weight 6. (Note: This verifies the entry in Table 2.1.) ¢

Exercise 115 Prove that when w = rn the condition w? — 2rnw + rnd > 0 becomes

rn < d and the Elias Bound is weaker than the Plotkin Bound in this case. ¢

I
The Linear Programming Upper Bound

2.6

The next upper bound that we present is the linear programming bound which uses results of
Delsarte [61, 62, 63]. In general, this is the most powerful of the bounds we have presented
but, as its name signifies, does require the use of linear programming. In order to present this
bound, we introduce two concepts. First, we generalize the notion of weight distribution of
a code. The (Hamming) distance distribution or inner distribution of a code C of length n
is the list B; = B;(C) for 0 < i < n, where

1

Bi(C) = —
© C]

D Hvec|dv, o =i}l

ceC

By Exercise 117, the distance distribution and weight distribution of a linear code are
identical. In particular, if C is linear, the distance distribution is a list of nonnegative integers;
if C is nonlinear, the B; are nonnegative but need not be integers. We will see the distance
distribution again in Chapter 12. Second, we define the Krawtchouck polynomial K, ? (x)
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of degree k to be
k
K=Y (~1Y (g — D} (x) ('Z f) for0 <k <n.
— J —J
Jj=0

In 1957, Lloyd [206], in his work on perfect codes, was the first to use the Krawtchouck poly-
nomials in connection with coding theory. We will see related applications of Krawtchouck
polynomials in Chapters 7 and 12.

. n,2 k i(x\(n—x
Exercise 116 Letg = 2. Then K;""(x) = 3, _,(=1)’ (j) (kij).
(a) Prove that if w is an integer with 0 < w < n, then

n Sw\ (n—w v Sfw\ (n—w
Kp2(w) = (—Uf(.)( .)= (—1)’<.>( )
¢ jzz(:) J)\k—j ,2:(; J)\k—
Hint: Observe when some of the binomial coefficients are 0.
(b) Prove that K;"*(w) = (= 1) K>, (w). Hint: By part (),

n—

K (w) = Z(—l)j (l;)) (lli : lj) and hence

=0
L (w n—w
K2 (w) = (—Df( )( )
k j;o j)\n—k—j
In one of the summations replace j by w — j and use (1) = (,” ). ¢

Exercise 117 Let B;, 0 < i < n, be the distance distribution of an (n, M) code C over

F,.

(a) Provethat ) !, B; = M.

(b) Prove that By = 1.

(c) Prove thatifg =2, B, < 1.

(d) Prove that the distance distribution and weight distribution of C are identical if C is
linear. ¢

As with the other upper bounds presented so far, the Linear Programming Bound applies
to codes that may be nonlinear. In fact, the alphabet over which the code is defined is not
required to be a finite field; the Linear Programming Bound depends only on the code
parameters, including the alphabet size, but not the specific alphabet. This is an advantage
as the preliminary lemmas needed to derive the bound can most easily be proved if we
use Z,, the integers modulo ¢, as the alphabet. To facilitate this, define a: F, — Z, to be
any bijection from F, to Z, with «(0) = 0. Of course if ¢ is a prime, we can choose o to
be the identity. If ¢ = (c1, ¢z, ..., ¢,) € F?, define a(c) = (a(cy), a(ca), ..., alcy)) € Z’;.
If C is an (n, M) code over F, of length n, define a(C) = {a(c) | ¢ € C}. As «(0) =0,
if ¢ and v are in ]FZ, then wt(c) = wt(a(c)) and d(c, v) = d(x(c), a(v)) implying that the
weight and distance distributions of C are identical to the weight and distance distributions,
respectively, of «(C). In particular, when replacing Z, with any alphabet with ¢ elements,
this discussion shows the following.
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Theorem 2.6.1 There exists an (n, M) code C over F, if and only if there exists an (n, M)
code over any alphabet with q elements having the same distance distribution as C.

This theorem shows that any of the bounds on the size of a (possibly) nonlinear code over
[F, that we have derived apply to codes over any alphabet with g elements. As we will see
in Chapter 12, codes over Z, have been studied extensively.

In Zz define the ordinary inner product as done over fields, namely,u - v = ujv; 4+ --- +
u,v,. As with fields, let Z(’; = 7Z4 \ {0}.

Lemma 2.6.2 Let £ = ¢*™'/9 in the complex numbers C, where i = /—1. Letu € Z; with
wt(u) = w. Then

Z gu-v — KZaq(w)

veZy

W)=k
Proof: Rearrange coordinates so that u = uu, - - - u,0---0, where u,, Z0 for 1 <m <
w. Let A = {ay, as, ..., a;} be a set of k coordinates satisfying

Il<a<a<---<ajSw<aj <--<a.

LetS={ve Z; | wt(v) = k with nonzero coordinates exactly in .A}. Then

k
DoE =)y e (2.32)
=0 A

veZ; veS
Wiv)=k

The lemma follows if we show that the inner sum Zve s &"" always equals (— 1)/ (g — 1)k
as there are (1;)) (']’:J”) choices for A.
Before we do this, notice that

—1

LS

£ =—1 ifueZ, withu#0. (2.33)

v=I

This is because ZZ;(I) EW = ((E")1 —1)/(E" — 1) =0 as &9 = 1. Examining the desired
inner sum of (2.32), we obtain

ZEUAV = Z Z . Z E“ﬂlvﬂlguﬂzuﬂz .. .E”ﬂkvuk

veS Vay €L} Vay €L Vo, €L
=(q— 1)k_-7 E E ce. E gl Vay gllay Vay ., glhajVaj (2.34)
Vg, EZ; Vay EZZ; Va; GZZ
The last equality follows because ug,,, = Ug,,, = -+ = ug, = 0. But using (2.33),
J q-1
Z: 2 : } : Ellar Vay glhayVay . gllaj Ve — 1_[ E gllanV = (_1)]"
Vay €ZE 4y €L, va; €L} m=1 v=0

Combining this with (2.34), we have ), s £"Y = (—1)/(g — 1)’/ as required. O
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In Theorem 7.2.3 we will show that if C is a linear code of length n over F, with
weight distribution A,, for 0 < w < n, then A} = 1/IC| Y0 o Ay K (w) for0 <k <n
is the weight distribution of C*. As C is linear A, = B,, by Exercise 117. In particular
for linear codes Y _ B, K;"¥(w) > 0. The next lemma, which is the basis of the Linear
Programming Bound, shows that this inequality holds where B,, is the distance distribution
of a (possibly) nonlinear code.

Lemma 2.6.3 Let B,,, 0 < w < n, be the distance distribution of a code over F,. Then
> BuK{w)= 0 (2.35)
w=0

for0 <k <n.

Proof: By Theorem 2.6.1 we only need to verify these inequalities for an (n, M) code C
over Z,. By definition of the distance distribution and Lemma 2.6.2,

MZBUJKZ“](U)) = Z Z K]’:'Q(w) _ Z Z Z é__(X,y).v
w=0

w=0 x.yec? w=0 xyec? veZj
dx.y)=w dxy)=w Wtw)=k
= D D EETT= ) ) ) e
(x,y)ec2 veZj veZy xeC yeC
Wtv)=k Wh(v)=k
2
XV —X-v XV
=D D ETD =) D e =0,
vezy xeC xeC vezy | xeC
Wi(v)=k Wi(v)=k
proving the result. O

If C is an (n, M, d) code over I, with distance distribution B, 0 < w < n, then M =
ZZ}:O B, and By = 1 by Exercise 117.AlsoB; = B, =--- = B;_; = 0.ByLemma2.6.3,
we also have ZZ}:O B, K ,': “4(w) > 0 for 0 < k < n. However, this inequality is merely
> _oBw >0whenk = 0as K;?(w) = 1, which s clearly already true. If ¢ = 2, again by
Exercise 117, B, < 1, and furthermore if d is even, by Theorem 2.1.2, we may also assume
that B,, = 0 when w is odd. By Exercise 116, when w is even, K,’(”z(w) = K,':’_zk(w). Thus
the kth inequality in (2.35) is the same as the (n — k)th as the only (possibly) nonzero B,,s
are when w is even. This discussion yields our bound.

Theorem 2.6.4 (Linear Programming Bound) The following hold:

(i) Wheng =2, Ay(n,d) < max{an:0 By}, where the maximum is taken over all B,
subject to the following conditions:
(@ By=1land B, =0for1 <w <d —1,
®) By, >0ford <w <n,and
() > o BuK;"(w)>0forl <k <n.

(ii)) When d is even and q = 2, Ar(n,d) < maX{X:”w=0 B}, where the maximum is taken
over all B, subject to the following conditions:
(@ By=1land B, =0for1 <w <d —1andall odd w,
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® B, >0ford<w<nandB, <1, and
(© Yh_o BuK{*(w) = 0for 1 <k < [n/2].

Solving the inequalities of this theorem is accomplished by linear programming, hence
the name. At times other inequalities can be added to the list which add more constraints to
the linear program and reduce the size of ) ), _, B,,. In specific cases other variations to the
Linear Programming Bound can be performed to achieve a smaller upper bound. Many of the
upper bounds in Table 2.1 come from the Linear Programming Bound and these variations.

Example 2.6.5 We apply the Linear Programming Bound to obtain an upper bound on
A,(8, 3). By Theorem 2.1.2, A»(8, 3) = A»(9, 4). Hence we apply the Linear Programming
Bound (ii) with ¢ = 2, n = 9, and d = 4. Thus we are trying to find a solution to max{1 +
B, + B¢ + Bg} where

9+ By — 3By — 7By > 0
36 — 4B, + 20Bg > 0
2.
84 — 4B, + 8Bg — 28Bg > 0 (2.36)
126 + 6B; — 6B + 14Bg > 0

with B4 > 0, Bg > 0, and Bg > 0. The unique solution to this linear program is By =
18, B¢ = 24/5, and Bg = 9/5. Hence max{l + B4 + Bg + Bg} = 1 + (123/5), implying
A3(9,4) < 25.

We can add two more inequalities to (2.36). Let C be a (9, M, 4) code, and let x € C.
Define Cx = x + C; note that Cy is also a (9, M, 4) code. The number of codewords in C at
distance 8 from x is the same as the number of vectors of weight 8 in Cy. As there is clearly
no more than one vector of weight 8 in a (9, M, 4) code, we have

Bg < 1. (2.37)

Also the number of codewords at distance 6 from x is the same as the number of vectors of
weight 6 in Cy; this number is at most A, (9, 4, 6), which is 12 by Exercise 100. Furthermore,
if there is a codeword of weight 8 in Cy, then every vector in Cy of weight 6 has a 1 in the
coordinate where the weight 8 vector is 0. This means that the number of weight 6 vectors
in Cy is the number of weight 5 vectors in the code obtained by puncturing Cx on this
coordinate. That number is at most A,(8, 4, 5), which is 8 by Exercise 101. Putting these
together shows that

Bs+4Bg < 12. (2.38)

Including inequalities (2.37) and (2.38) with (2.36) gives a linear program which when
solved yields the unique solution B4 = 14, Bg = 16/3, and Bg = 1 implying max{1 +
By + B + Bg} = 64/3. Thus A»(9, 4) < 21. By further modifying the linear program (see
[218, Chapter 17]) it can be shown that A,(9, 4) < 20. In fact A»(9, 4) = 20; see Table 2.1.
See also Exercise 103. ]

Exercise 118 Find an upper bound on A,(9, 3) = A,(10, 4) as follows. (It may be helpful
to use a computer algebra program that can perform linear programming.)
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(a) Give the Sphere Packing, Johnson, and Elias Bounds for A,(9, 3) and A,(10, 4).
(b) Apply the Linear Programming Bound (ii) with n = 10, g = 2, and d = 4.
(c) Prove that Bg + 5By < 5.
(d) Combine the inequalities from the Linear Programming Bound (ii) with the inequality
in (c) to obtain an upper bound for A,(10, 4). Is it an improvement over the bound found
in (b)?
(e) What is the best bound on A»(9, 3) = A,(10, 4) from parts (a), (b), and (d)? How does
it compare to the value in Table 2.1?
(f) Assuming the value of A,(9,4) in Table 2.1 is correct, what bound do you get on
Az(9, 3) = A,(10, 4) from Theorem 2.1.6? ¢
Exercise 119 Do the following to obtain bounds on A,(13,5) = A,(14, 6). (It may be
helpful to use a computer algebra program that can perform linear programming.)
(a) Give the Sphere Packing, Johnson, and Elias Bounds for A,(13, 5) and A,(14, 6).
(b) Apply the Linear Programming Bound (ii) with n = 14, ¢ = 2, and d = 6 to obtain an
upper bound for A,(14, 6).
(c) What is the best bound on A,(13,5) = A,(14, 6) from parts (a) and (b)? How does it
compare to the value in Table 2.1?
(d) Assuming the value of A,(13, 6) in Table 2.1 is correct, what bound do you get on
A,(13,5) = A,(14, 6) from Theorem 2.1.6? ¢
I
2.7 The Griesmer Upper Bound

The final upper bound we discuss is a generalization of the Singleton Bound known as the
Griesmer Bound. We place it last because, unlike our other upper bounds, this one applies
only to linear codes.

To prove this bound we first discuss the generally useful idea of a residual code due to
H. J. Helgert and R. D. Stinaff [120]. Let C be an [n, k] code and let ¢ be a codeword of
weight w. Let the set of coordinates on which ¢ is nonzero be Z. Then the residual code
of C with respect to ¢, denoted Res(C, ¢), is the code of length n — w punctured on all the
coordinates of Z. The next result gives a lower bound for the minimum distance of residual
codes [131].

Theorem 2.7.1 Let C be an [n, k, d] code over F, and let ¢ be a codeword of weight w <
(q/(q — 1))d. Then Res(C, ¢)isan [n — w, k — 1,d'] code, whered' > d — w + [w/q].

Proof: By replacing C by a monomially equivalent code, we may assume that ¢ =
11---100---0. Since puncturing ¢ on its nonzero coordinates gives the zero vector,
Res(C, ¢) has dimension less than k. Assume that the dimension is strictly less than k — 1.
Then there exists a nonzero codeword X = x; - - - x,, € C which is not a multiple of ¢ with
Xw+1 -+ X, = 0. There exists o € I, such that at least w/q coordinates of x; - - - x,, equal
o. Therefore

—1
dSWt(X—O{C)fw—EZM,
q q

contradicting our assumption on w. Hence Res(C, ¢) has dimension k — 1.
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We now establish the lower bound for d’. Let x4 - - - x, be any nonzero codeword in
Res(C, ¢), and let x = xy - - - XXy 41 - - - X, be a corresponding codeword in C. There exists
a € F, such that at least w/q coordinates of xi - - - x,, equal . So

d <wt(x—ac) <w — bt 4+ Wt(xya1 - Xp).
q

Thus every nonzero codeword of Res(C, ¢) has weight at leastd — w + [w/q]. O

Applying Theorem 2.7.1 to a codeword of minimum weight we obtain the following.

Corollary 2.7.2 IfC is an [n, k, d] code over F, and ¢ € C has weight d, then Res(C, ¢) is
an[n—d,k —1,d'] code, where d’ > [d/q].

Recall that the Nordstrom—Robinson code defined in Section 2.3.4 is a nonlinear binary
code of length 16 and minimum distance 6, with 256 = 28 codewords, and, as we described,
its existence together with the Johnson Bound (see Example 2.3.9) implies that A,(16, 6) =
28, It is natural to ask whether B,(16, 6) also equals 28. In the next example we illustrate
how residual codes can be used to show that no [16, 8, 6] binary linear code exists, thus
implying that B,(16, 6) < 27.

Example 2.7.3 Let C be a [16, 8, 6] binary linear code. Let C; be the residual code of C
with respect to a weight 6 vector. By Corollary 2.7.2, C; is a [10, 7, d'] code with 3 < d’;
by the Singleton Bound d’ < 4. If d’ =4, C; is a nontrivial binary MDS code, which is
impossible by Theorem 2.4.4. So d’ = 3. Notice that we have now reduced the problem to
showing the nonexistence of a [10, 7, 3] code. But the nonexistence of this code follows
from the Sphere Packing Bound as

210
2 s —— = |

10 n 10\

0 1
Exercise 120 In Exercise 93, we showed that B,(13, 6) < 2°. Show using residual codes
that B>(13, 6) < 2*. Also construct a code that meets this bound. ¢

Exercise 121 Do the following:

(a) Use the residual code to prove that a [16, 5, 8] binary code contains the all-one code-
word 1.

(b) Prove thata[16, 5, 8] binary code has weight distribution Ay = A = 1 and Ag = 30.

(c) Prove that all [16, 5, 8] binary codes are equivalent.

(d) Prove that R(1,4)is a[16, 5, 8] binary code. ¢

Theorem 2.7.4 (Griesmer Bound [112]) Let C be an [n, k, d] code over F, with k > 1.
Then

k—1 d—‘
> — |-
n_;[q‘
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Proof: The proof is by induction on k. If k = 1 the conclusion clearly holds. Now assume
that £k > 1 and let ¢ € C be a codeword of weight d. By Corollary 2.7.2, Res(C, ¢) is an
[n —d,k—1,d]code,whered' > [d/q]. Applying the inductive assumption to Res(C, ¢),
we have n —d > Y*20[d /q"*'] and the result follows. O

Since [d/q°] =d and [d/q'] > 1fori =1, ...,k — 1, the Griesmer Bound implies the
linear case of the Singleton Bound.

The Griesmer Bound gives alower bound on the length of a code over I, with a prescribed
dimension k& and minimum distance d. The Griesmer Bound does provide an upper bound
on B, (n, d) because, given n and d, there is a largest k for which the Griesmer Bound holds.
Then B, (n, d) < q*.

Givenk, d, and g there need not exist an [n, k, d] code over IF, which meets the Griesmer
Bound; that is, no code may exist where there is equality in the Griesmer Bound. For
example, by the Griesmer Bound, a binary code of dimension kK = 12 and minimum distance
d = Thaslengthn > 22. Thus the [23, 12, 7] binary Golay code does not meet the Griesmer
Bound. Buta [22, 12, 7] binary code does not exist because the Johnson Bound (2.13) gives
Ax(22,7) < |2%%/2025] = 2071, implying B,(22,7) < 2!l

It is natural to try to construct codes that meet the Griesmer Bound. We saw that the
[23, 12, 7] binary Golay code does not meet the Griesmer Bound. Neither does the [24, 12, 8]
extended binary Golay code, but both the [12, 6, 6] and [11, 6, 5] ternary Golay codes do.
(See Exercise 122.) In the next theorem, we show that the [(¢" — 1)/(q — 1), r] simplex
code meets the Griesmer Bound; we also show that all its nonzero codewords have weight
g’ ", a fact we verified in Section 1.8 when ¢ = 2.

Theorem 2.7.5 Every nonzero codeword of the r-dimensional simplex code over F, has
weight q"~'. The simplex codes meet the Griesmer Bound.

Proof: Let G be a generator matrix for the r-dimensional simplex code C over F,. The
matrix G is formed by choosing for its columns a nonzero vector from each 1-dimensional
subspace of ]F;. Because C = {xG | x € ]F;}, if X # 0, then wt(xG) = n — s, where s is the
number of columns y of G such that x - y© = 0. The set of vectors of F ; orthogonal to X is
an (r — 1)-dimensional subspace of IE‘; and thus exactly (¢"~! — 1)/(g — 1) columns y of G
satisfy x - yT = 0. Thus wt(xG) = (¢" — 1)/(g — 1) — (¢"~' — 1)/(g — 1) = q"~! proving
that each nonzero codeword has weight ¢g"~!.
In particular, the minimum distance is ¢"~!. Since

r—1 r—1 r—1
3 [“ W =Y ¢ =@ —D/g -1
i=0

i | 4

the simplex codes meet the Griesmer Bound. O

Exercise 122 Prove thatthe [11, 6, 5]and [12, 6, 6] ternary Golay codes meet the Griesmer
Bound, but that the [24, 12, 8] extended binary Golay code does not. ¢

Solomon and Stiffler [319] and Belov [15] each construct a family of codes containing
the simplex codes which meet the Griesmer Bound. Helleseth [122] has shown that in
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many cases there are no other binary codes meeting the bound. For nonbinary fields, the
situation is much more complex. Projective geometries have also been used to construct
codes meeting the Griesmer Bound (see [114]).

In general, an [n, k, d] code may not have a basis of minimum weight vectors. However,
in the binary case, if the code meets the Griesmer Bound, it has such a generator matrix, as
the following result of van Tilborg [328] shows.

Theorem 2.7.6 Let C be an [n, k, d] binary code that meets the Griesmer Bound. Then C
has a basis of minimum weight codewords.

Proof: We proceed by induction on k. The result is clearly true if £ = 1. Assume that ¢ is
a codeword of weight d. By permuting coordinates, we may assume that C has a generator
matrix

1---1 e
G — 0---0 ’
Go G
where the first row is ¢ and G is a generator matrix of the [n — d, k — 1, d’] residual code
Ci1 =Res(C, ¢); d’ > dy = [d/2] by Corollary 2.7.2. As C meets the Griesmer Bound,

k—1 k—2
n—d:E(%W:Z’V%—‘, (2.39)

i=0

by Exercise 123. Suppose that d’ > d;. Thenn —d < Zf.:g [d'/2'] by (2.39) and C; vio-
lates the Griesmer Bound. Therefore d’ = d; and C; is an [n — d, k — 1, d{] code meeting
the Greismer Bound. By induction, we may assume the rows of G| have weight d;. For
i >2letr; =(s;_,ti—_;) berowi of G, wheres;_;isrowi — 1 of Gpand t,_; isrow i — 1
of G|. By Exercise 124, one of r; or ¢ + r; has weight d. Hence C has a basis of weight d
codewords. O

Exercise 123 Prove that fori > 1,
dl | d
i - 2i—1 |’
where di = [d/2]. ¢

Exercise 124 In the notation of the proof of Theorem 2.7.6 show that one of r; or ¢ + r;
has weight d. ¢

Exercise 125 Prove that if d is even, a binary code meeting the Griesmer Bound has only
even weight codewords. Do not use Theorem 2.7.9. ¢

This result has been generalized by Dodunekov and Manev [70]. Let

k—1 d
gk, d)y="Y" (2—1 (2.40)

i=0

be the summation in the binary Griesmer Bound. The Griesmer Bound says that for an
[, k, d] binary code to exist, n > g(k,d). So n — g(k, d) is a measure of how close the
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length of the code is to one that meets the Griesmer Bound. It also turns out to be a measure
of how much larger than minimum weight the weights of your basis vectors may need
to be.

Theorem 2.7.7 Let C be an [n, k, d] binary code with h = n — g(k, d). Then C has a basis
of codewords of weight at most d + h.

Proof: We proceed by induction on h. The case & = 0 is covered by Theorem 2.7.6. For
fixed h, proceed by induction on k. In the case k = 1, there certainly is a basis of one
codeword of weight d. When k > 1 assume that ¢ is a codeword of weight d. By permuting
coordinates, we may assume that C has a generator matrix

1---110---0
o J
Go G
where the first row is ¢ and G is a generator matrix of the [n — d, k — 1, d'] residual code
Cy =Res(C, ¢);d’ = d; = [d/2] by Corollary 2.7.2. Letd’ = d; + €. Using Exercise 126,

k=2 ’ -2
gk —1,d) [d—w - [dl J.rﬂ
L | % 2

=~

I
=~ =
v o

k—2 — k—2
=3 |5 2 y ) msw-ran e X 5 )

As part of the proof of Theorem 2.7.6, we in effect showed that g(k — 1,d;) = g(k —
1, [d/27) = g(k,d) — d (see Exercise 127). Ash =n — g(k, d),

k=2 k=2
, € €
eth—1,d") > gk — 1,d1)+;bJ —n—d+ (Z:; LZ—J —h). (2.41)
Therefore as Cy exists,n —d > gk — 1,d").Letn —d — gtk — 1,d’) = h; > 0.By(2.41),
hy <h-— Zf:g Le/2'|. By induction, we may assume the rows of G| have weight at most
d' 4+ hy.Forj>2,letr; = (sj_i,tj_;) berow j of G, where s;_; istow j — 1 of Gy and
tj_yistow j — 1 of G;. So

2 e d
wi(t;1) <d +h; < d, +€+h—ZbJ <di+h= (ﬂ +h,

=l

since € < Zf;g le/2']. By Exercise 128 one of r; or ¢+ r; has weight between d and

d + h. Hence C has a basis of codewords of weights at most d + 5. O
Exercise 126 Let x and y be nonnegative real numbers. Show that [x + y] > [x]+
Lyl ¢
Exercise 127 Show that g(k — 1, [d/2]) = g(k,d) — d. ¢

Exercise 128 In the notation of the proof of Theorem 2.7.7 show that one of r; or ¢ +r;
has weight between d and d + h. ¢
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Exercise 129

(a) Compute g(5, 4) from (2.40).

(b) What are the smallest weights that Theorem 2.7.7 guarantees can be used in a basis of
a[10, 5, 4] binary code?

(c) Show that a [10, 5, 4] binary code with only even weight codewords has a basis of
weight 4 codewords.

(d) Construct a [10, 5, 4] binary code with only even weight codewords. ¢

Both Theorems 2.7.6 and 2.7.7 can be generalized in the obvious way to codes over
F,; see [68]. In particular, codes over I, that meet the Griesmer Bound have a basis of
minimum weight codewords. This is not true of codes in general but is true for at least
one code with the same parameters, as the following theorem of Simonis [308] shows.
This result may prove to be useful in showing the nonexistence of linear codes with given
parameters [n, k, d].

Theorem 2.7.8 Suppose that there exists an [n, k, d] code C over F,. Then there exists an
[n, k, d] code C'" with a basis of codewords of weight d.

Proof: Lets be the maximum number of independent codewords {cy, . .., ¢;} in C of weight
d. Note that s > 1 as C has minimum weight d. We are done if s = k. So assume s < k.
The theorem will follow by induction if we show that we can create from C an [n, k, d]
code C; with at least s + 1 independent codewords of weight d. Let S = span{cy, ..., ¢}.
By the maximality of s, every vector in C \ S has weight greater than d. Let e; be a min-
imum weight vector in C \ S with wt(e;) = d; > d. Complete {ci, ..., ¢;, €} to a basis
{e1,...,¢, e, e, ..., e_s} of C. Choose di — d nonzero coordinates of e; and create e}
to be the same as e; except on these d; — d coordinates, where it is 0. So wt(e}) = d. Let
Ci =span{cy, ..., ¢, €}.e, ..., e_s}. We show C; has minimum weight d and dimen-
sion k. The vectors in C; fall into two disjoint sets: S = span{cy, ..., ¢;} and C; \ S. The
nonzero codewords in S have weight d or more as S C C. The codewords in C; \ S are
obtained from those in C \ S by modifying d; — d coordinates; therefore as C \ S has
minimum weight d;, C; \ S has minimum weight at least 4. So C| has minimum weight
d. Suppose that C; has dimension less than k. Then by our construction, €| must be
in spanfcy, ..., ¢, €, ..., €_;} C C. By maximality of s, €| must in fact be in S. So
e;—e; €C\S as e ¢ S. By construction wt(e; —e}) = d; — d; on the other hand as
e —e; €C\ S, wt(e; —€}) > d, since d; is the minimum weight of C \ S. This contra-
diction shows that C; is an [n, k, d] code with at least s + 1 independent codewords of
weight d. O

Exercise 130 Let C be the binary [9, 4] code with generator matrix

1 0001 1100
01 001 1O010
001 010111
000101111
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(a) Find the weight distribution of C and show that the minimum weight of C is 4.
(b) Apply the technique of Theorem 2.7.8 to construct a [9, 4, 4] code with a basis of weight
4 vectors.
(c) Choose any three independent weight 4 vectors in C and any weight 5 vector in C.
Modify the latter vector by changing one of its 1s to 0. Show that these four weight 4
vectors always generate a [9, 4, 4] code. ¢
Exercise 125 shows that a binary code meeting the Griesmer Bound has only even
weight codewords if d is even. The next theorem extends this result. The binary case is due
to Dodunekov and Manev [69] and the nonbinary case is due to Ward [346].
Theorem 2.7.9 Let C be a linear code over F,, where p is a prime, which meets the
Griesmer Bound. Assume that p' | d. Then p' divides the weights of all codewords of C;
that is, p' is a divisor of C.
I
The Gilbert Lower Bound

2.8

We now turn to lower bounds on A, (n, d) and B, (n, d). The Gilbert Bound is a lower bound
on B, (n, d) and hence a lower bound on A, (n, d).

Theorem 2.8.1 (Gilbert Bound [98])

n

q
By(n,d) > —

Y (’f‘)(q —1y
i=0 \!
Proof: Let C be a linear code over IF, with B,(n, d) codewords. By Theorem 2.1.7 the
covering radius of C is at most d — 1. Hence the spheres of radius d — 1 about the code-
words cover IF';. By (2.29) a sphere of radius d — 1 centered at a codeword contains
a= Z;tol (")(g — 1) vectors. As the B,(n, d) spheres centered at codewords must fill
the space I, B,(n, d)a > g" giving the bound. O

The Gilbert Bound can be also stated as
By(n,d) > "% Xizs (Na=1',

We present this formulation so that it can be compared to the Varshamov Bound given in
the next section.

The proof of Theorem 2.8.1 suggests a nonconstructive “greedy” algorithm for producing
a linear code with minimum distance at least d which meets the Gilbert Bound:
(a) Begin with any nonzero vector ¢; of weight at least d.
(b) While the covering radius of the linear code C; generated by {cy, ..., ¢;} is at least d,

choose any vector ¢; | in a coset of C; of weight at least d.

No matter how this algorithm is carried out the resulting linear code has at least

105 S5 (a1

codewords.
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For (possibly) nonlinear codes the greedy algorithm is even easier.
(a) Start with any vector in ]FZ.
(b) Continue to choose a vector whose distance is at least d to all previously chosen vectors
as long as there are such vectors.
The result is again a code with minimum distance at least d (and covering radius at most
d — 1) which meets the Gilbert Bound.

Exercise 131 Show that the two greedy constructions described after the proof of the
Gilbert Bound indeed yield codes with at least

08 T (a1
codewords. ¢

Exercise 132 Show that any (n, M, d) code with covering radius d — 1 or less meets the
Gilbert Bound. ¢

2.9

The Varshamov Lower Bound

The Varshamov Bound is similar to the Gilbert Bound, and, in fact, asymptotically they
are the same. The proof of the Varshamov Bound uses a lemma in which we show that if a
code’s parameters satisfies a certain inequality, then using a different greedy algorithm we
can attach another column to the parity check matrix and increase the length, and therefore
dimension, without decreasing the minimum distance.

Lemma 2.9.1 Let n, k, and d be integers with2 <d <nand 1 <k <n, and let q be a
prime power. If

d—2
n—1 i n—k
Z( . )(q—l) <q" (2.42)
, i
i=0

then there exists an (n — k) x n matrix H over F such that every set of d — 1 columns of
H is linearly independent.

Proof: We define a greedy algorithm for finding the columns hy, ..., h, of H. From the
set of all "% column vectors of length n — k over F,, choose:

(1) hj to be any nonzero vector;

(2) h; to be any vector that is not a multiple of hy;

() h; to be any vector that is not a linear combination of d — 2 (or fewer) of the vectors
hy,....h;_g;

(n) h, to be any vector that is not a linear combination of d — 2 (or fewer) of the vectors
hl, . ’hn—l-

If we can carry out this algorithm to completion, then hy, ..., h, are the columns of an

(n — k) x n matrix no d — 1 of which are linearly dependent. By Corollary 1.4.14, this
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matrix is the parity check matrix for a linear code with minimum weight at least d. We show
that the construction can indeed be completed. Let j be an integer with 1 < j <n — 1 and
assume that vectors hy, ..., h; have been found. Since j < n — 1, the number of different
linear combinations of d — 2 or fewer of hy, ..., h; is:
d-2 ;. d—2
J i n—1 i
— < _
.Z(i>(‘1 ) —,Z( ; )(q 1.
i=0 i=0
Hence if (2.42) holds, then there is some vector h; which is not a linear combination of
d — 2 (or fewer) of hy, ..., h;. Thus the fact that hy, hy, ..., h, can be chosen follows by
induction on j. O
The matrix H in Lemma 2.9.1 is the parity check matrix of a code of length n over F,
that has dimension at least £ and minimum distance at least d. Since the minimum distance
of a subcode of a code is at least the minimum distance of the code, we have the following
corollary.
Corollary 2.9.2 Let n, k, and d be integers with 2 <d <n and 1 < k < n. Then there
exists an [n, k] linear code over F, with minimum distance at least d, provided
=2 /. '
1+ — 1) < qg" k. 243
; ( l. )(q ) <q (2.43)
Theorem 2.9.3 (Varshamov Bound [337])
By dy = g o (S Ca)]
Proof: Let L be the left-hand side of (2.43). By Corollary 2.9.2, there exists an [n, k]
code over F, with minimum weight at least d provided log, (L) < n — k, or equivalently
k <n —log,(L). The largest integer k satisfying this inequality is n — [log,(L)]. Thus
Bq(l’l, d) > qn*flog,,(laﬂ’
giving the theorem. d
|
2.10 Asymptotic bounds

In this section we will study some of the bounds from previous sections as the code lengths
go to infinity. The resulting bounds are called asymptotic bounds. Before beginning this
exploration, we need to define two terms. For a (possibly) nonlinear code over IF, with M
codewords the information rate, or simply rate, of the code is defined to be n~! log, M.
Notice that if the code were actually an [n, k, d] linear code, it would contain M = qk
codewords and n~! logq M = k/n; so for an [n, k, d] linear code, the ratio k/n is the rate
of the code consistent with the definition of “rate” in Section 1.11.2. In the linear case the
rate of a code is a measure of the number of information coordinates relative to the total
number of coordinates. The higher the rate, the higher the proportion of coordinates in a
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codeword actually contain information rather than redundancy. If a linear or nonlinear code
of length n has minimum distance d, the ratio d/n is called the relative distance of the
code; the relative distance is a measure of the error-correcting capability of the code relative
to its length. Our asymptotic bounds will be either an upper or lower bound on the largest
possible rate for a family of (possibly nonlinear) codes over I, of lengths going to infinity
with relative distances approaching §. The function which determines this rate is

ag(8) = limsupn~"log, A,(n, én).
n—o0o

The exact value of «,(5) is unknown and hence we want upper and lower bounds on this
function. An upper bound on «,(8) would indicate that all families with relative distances
approaching & have rates, in the limit, at most this upper bound. A lower bound on a,(5)
indicates that there exists a family of codes of lengths approaching infinity and relative
distances approaching § whose rates are at least this bound. A number of upper and lower
bounds exist; we investigate six upper and one lower bound arising from the nonasymp-
totic bounds already presented in this chapter and in Section 1.12, beginning with the upper
bounds.

Asymptotic Singleton Bound

Our first asymptotic upper bound on «, (5) is a simple consequence of the Singleton Bound;
we leave its proof as an exercise.

Theorem 2.10.1 (Asymptotic Singleton Bound) If0 < § < 1, then o (§) < 1 — 6.

Exercise 133 Prove Theorem 2.10.1. ¢

Asymptotic Plotkin Bound

The Plotkin Bound can be used to give an improved (smaller) upper bound on «,(8) com-
pared to the Asymptotic Singleton Bound.

Theorem 2.10.2 (Asymptotic Plotkin Bound) Letr =1 — g~'. Then

o (8)=0 ifr<é<l1, and
@) <1-8/r if0<s=<r

Proof: Note that the two formulas agree when § = r. First, assume that r < § < 1. By the
Plotkin Bound (2.1),asrn < én, Ay(n, n) < én/(6n — rn) implying that0 < A,(n, én) <
8/(8 — r), independent of n. Thus o, (5) = 0 follows immediately.

Now assume that 0 < § < r. Suppose that C is an (n, M, dn) code with M = A,(n, on).
We can shorten C in a manner analogous to that given in Section 1.5.3 as follows. Let
n = [(n—1)/r]; n’ <n as § <r. Fix an (n — n’)-tuple of elements from F,. For at
least one choice of this (n — n’)-tuple, there is a subset of at least M /g" " codewords of C
whose right-most n — n’ coordinates equal this (n — n’)-tuple. For this subset of C, puncture
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the right-most n — n’ coordinates to form the code C’ of length n’ with M’ > M /q" ™"
codewords, noting that distinct codewords in C remain distinct in C’; the minimum distance
of C’ is at least that of C by our construction. This (n’, M’, §n) code satisfies rn’ < dn by
our choice of n’. Applying the Plotkin Bound to C’ gives

én

<M < ——— <én,
gt on—rn

as én — rn’ > 1. Therefore A,(n, én) = M < q"’”'(Sn and so

,(8) < limsupn™"log,(g" " n)

n— o0
" log,é6 log,n
=1imsup(1—n—+ & +i>
n— 00 n n n
i n )
=liml—-——=1--.
n—o00 n r
This completes the proof. O

Exercise 134 Draw the graphs of the inequalities given by the Asymptotic Singleton and
Asymptotic Plotkin Bounds when g = 2, where the horizontal axis is the relative distance &
and the vertical axis is the rate R = «,(8). Why is the Asymptotic Plotkin Bound stronger
than the Asymptotic Singleton Bound? Repeat this for the cases ¢ = 3 and g = 4. ¢

Asymptotic Hamming Bound

By the Asymptotic Plotkin Bound, when bounding «,(8) we can assume that0 < § <r =
1 — ¢! as otherwise «,(8) = 0. There is an asymptotic bound derived from the Hamming
Bound (Sphere Packing Bound) that is superior to the Asymptotic Plotkin Bound on an
interval of values for 8. In order to derive this bound, we define the Hilbert entropy function
on0 <x <rby

0 ifx =0,

Hq(X) = {xlogq(q . 1)—x10gqx -Q —x)lqu(l —x) if0<x<r.

We will need to estimate factorials; this can be done with Stirling’s Formula [115, Chapter 9],
one version of which is

nn+1/26—n+7/8 < nl < nn+1/2€—n+1.

The results of Exercises 135 and 136 will also be needed.

Exercise 135 Let0 <8 <1—g~ L

(a) Show that nlog,n — [dn]log,[én] — (n — [dn])log,(n — [dn]) < —(6n — 1)x
log, (8 — %) +log, n —n(1 —8)log, (1 —§8) when én >2. Hint: (§ —(1/n)n =
én—1<|én] <én.

(b) Show  that nlog,n — [dn]log,[dn] — (n — [dn])log,(n — |én]) = —log, n —
én logq §—(nn—dén+ l)logq(l —8+(1/n)) when én>1. Hint: n— [dn] <
n—(§—(1/n)nand | 6n] < én.
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(c) Show that lim,_ . n"'(n log, n — [8n]log, [dn] — (n — [dn])log,(n — [én])) =
—dlog, 8 — (1 —4)log,(1 —9). ¢

Exercise 136 Let 0 <i <én where 0 <8 <1—¢~" and g > 2. Prove that (,")) x
(-1 < ()@ -1 ¢
Recall that a sphere of radius a in IP’Z centered at some vector in IFZ contains
a/p A
V,(n,a) = ZO (i)(q — 1) (2.44)

vectors. The following lemma gives a relationship between V,(n,a) and the entropy
function.

Lemma 2.10.3 Let 0 < § < 1 — g~ ! where g > 2. Then

lim n~"log, V,(n, [8n]) = H,(3).

Proof: In (2.44) with a = [én], the largest of the 1 + |[6n] terms is the one with i = |dn ]
by Exercise 136. Thus

n _ 1ylenl n _ 1ylen)
(L(Snj>(q D 5Vq(n,L3nJ)§(1+L3nJ)<L8nJ)(q Her,

Taking logarithms and dividing by n gives
A+n""8n]log, (g — 1) < n"'log, V,(n, [8n])
< A+n""[8n]log,(qg — 1)+ n""log, (1 + |8n])

where A = n~"'log, (5,,)- Therefore,
lim n~! log, Vy(n, [6n]) = lim A+ élog (¢ — 1) (2.45)
n—oQ n—0oQ

as lim,,_, oo ! log, (1 + [én]) = 0.

As (L;”) =n!/(|8n]!(n — |8n])!), by Stirling’s Formula,

p+1/2p=n+1/8 n
<
|8n | Bnl+172¢=18n]+1(y — | §p |)r—18n]+1/2p=n+1n]+1 = (LSM)

and

n nn+1/267n+1
< .
<L5”J> - LSnJ L8nj+1/2e—L8nJ+7/8(n _ LanJ)n—|_6nj+l/2e—n+|_6nj+7/8 ’

hence

n

where
12

b= |8n | n1+1/2(5 — | $p | yr—Lonl+1/2°
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Since

lim n~! logq(Bek) = lim n_l(logq B + klog, e) = lim n! log, B,
n—00 n— 00 n—00

we conclude that

. T -1
nll)n;oA = nll)rglon log, B

= lim n”'[n log, n — [dn]log,[dn] — (n — [dn])log,(n — [én])]

n—0o0
+ lim n’1(1/2)[logq n —log,[dn] —log,(n — [én])]
n—00
= —élog, 8 — (1 —4)log,(1—6)+0

by Exercise 135. Plugging into (2.45), we obtain

lim n~! log, V,(n, |6n]) = —dlog, 6 — (1 —§)log, (1 — &) + dlog,(g — 1),

n—o00o
which is H,(8), proving the result. O

Theorem 2.10.4 (Asymptotic Hamming Bound) Ler 0 <8 <1 —¢q~', where g > 2.
Then ay(8) <1 — Hy(8/2).

Proof: Note firstthat A,(n, 6n) = A,(n, [dn]) < q"/V, (n, [([dn] — 1)/2]) by the Sphere
Packing Bound. If n> N, [([én]—1)/2] > |8n/2] — 1> |(§ —(2/N))n/2]. Thus
Ay(n,8n) < q"/Vy(n, (6 — (2/N))n/2], implying that

oy (8) = limsup n~! log, Ay(n, dn)

n—00

. B 1 2
a1 2))
1 2
1-H,(=(6-=
2 N

by Lemma 2.10.3. But as n goes to infinity, we may let N get as large as we please showing
that oty (8) = 1 — H,(8/2) since H, is continuous. d

IA

Exercise 137 Continuing with Exercise 134, add to the graphs drawn for g = 2, g = 3,
and g = 4 the graph of the inequality from the Asymptotic Hamming Bound. (A computer
graphing tool may be helpful.) In each case, for what values of § is the Asymptotic Ham-
ming Bound stronger than the Asymptotic Singleton Bound and the Asymptotic Plotkin
Bound? ¢

Asymptotic Elias Bound

The Asymptotic Elias Bound surpasses the Asymptotic Singleton, Plotkin, and Hamming
Bounds. As we know o, (8) =0 for 1 — q_1 =r < § < 1, we only examine the case 0 <
s <r.
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Theorem 2.10.5 (Asymptotic Elias Bound) Let 0 <8 <r=1—¢g~!, where q > 2.
Then ay(8) < 1 — Hy(r — A/r(r —98)).

Proof: Choose x sothatQ < x < r — /r(r — 8). Thenx?> — 2rx +r8 > 0. Letw = |xn|
and d = |én]. By Exercise 138, for n sufficiently large, w? —2rnw+rnd > 0. Asx < r,
w < rn. Thus by the Elias Bound, for n large enough,

n

rnd q
w? —2rnw +rnd  Vy(n, w)’

Ay(n,én) = Ay(n,d) <

So
1 1 rnd q"
1 A < 1 .
n~ log, Ay(n,dn) < n~ log, <w2 2w+ rmd Vo, w)>
d
e
=n"! log, n +1-— n_qu(n, lxn]).

w2 w d
(—) —2r—+4r—

n n n
Observing that lim,,_, o d/n = § and lim,_, o, w/n = x, by taking the limit of the above
and using Lemma 2.10.3,

a,(8) < 1 — Hy(x).

Since this is valid for all x with 0 < x < r — /r(r — 8) and H,(x) is continuous, ¢, () <
I — Hy(r — /r(r —9)). a

Exercise 138 Assume x?> —2rx +r8 > 0, w = |xn], andd = |8n] where §, x, and n are
positive. Show that for n large enough, w? — 2rnw + rnd > 0. Hint: Obtain a lower bound
on (w?> —2rnw + rnd)/n* by usingxn — 1 < w <xnandén — 1 < d. ¢

Exercise 139 Continuing with Exercise 137, add to the graphs drawn for ¢ = 2, g = 3,
and g = 4 the graph of the inequality from the Asymptotic Elias Bound. (A computer
graphing tool may be helpful.) In each case, for what values of § is the Asymptotic Elias
Bound stronger than the Asymptotic Singleton Bound, the Asymptotic Plotkin Bound, and
the Asymptotic Hamming Bound? ¢

The MRRW Bounds

There are two asymptotic versions of the Linear Programming Bound that are generally
the best upper bounds on «,(8). These bounds were discovered by McEliece, Rodemich,
Rumsey, and Welch [236]. As a result they are called the MRRW Bounds. The first of
these was originally developed for binary codes but has been generalized to codes over
any field; see Levenshtein [194, Theorem 6.19]. The second holds only for binary codes.
The First MRRW Bound, when considered only for binary codes, is a consequence of
the Second MRRW Bound as we see in Exercise 141. The proofs of these bounds, other
than what is shown in Exercise 141, is beyond the scope of this text. Again o, (§) = 0O for
1 —¢g~' =r <8 < 1; the MRRW Bounds apply only when 0 < § < r.



94

2.10.6

Bounds on the size of codes

Theorem 2.10.6 (The First MRRW Bound) Let0 <8 <r =1—¢g~!. Then

1
oq(8) < Hy (5[61 —1—(g—2)8-2y(g— D - 5)]) :
In particular if g = 2, then when 0 < § < 1/2,

1
ay(8) < H, (5 — /o1 — 5)) .
Theorem 2.10.7 (The Second MRRW Bound) Let 0 < § < 1/2. Then

(8 < min {1+ g?) — g(u* + 28u + 25)}

where g(x) = Hy((1 — /1 —x)/2).

The Second MRRW Bound is better than the First MRRW Bound, for ¢ = 2, when
8 < 0.272. Amazingly, if g = 2, the bounds agree when 0.273 < § < 0.5. Exercise 142
shows that the Second MRRW Bound is strictly smaller than the Asymptotic Elias Bound
when g = 2.

Exercise 140 Continuing with Exercise 139, add to the graphs drawn forqg = 2,q = 3, and
q = 4 the graph of the inequality from the First MRRW Bound. (A computer graphing tool
may be helpful.) In each case, for what values of § is the First MRRW Bound stronger than
the Asymptotic Singleton Bound, the Asymptotic Plotkin Bound, the Asymptotic Hamming
Bound, and the Asymptotic Elias Bound? ¢

Exercise 141 By the Second MRRW Bound, a>(8) < 1+ g((1 — 28)%) — g((1 — 28)> +
28(1 — 28) + 26). Verify that this is the First MRRW Bound when g = 2. ¢

Exercise 142 This exercise shows that Second MRRW Bound is strictly smaller than the
Asymptotic Elias Bound when g = 2.

(a) By the Second MRRW Bound, a(8) < 1 + g(0) — g(2). Verify that this is the Asymp-
totic Elias Bound when g = 2.

(b) Verify that the derivative of 1 + g(u?) — g(u® + 28u + 26) is negative at u = 0.

(¢) How do parts (a) and (b) show that the Second MRRW Bound is strictly smaller than
the Asymptotic Elias Bound when g = 2? ¢

Asymptotic Gilbert-Varshamov Bound

We now turn to the only asymptotic lower bound we will present. This bound is the asymp-
totic version of both the Gilbert and the Varshamov Bounds. We will give this asymptotic
bound using the Gilbert Bound and leave as an exercise the verification that asymptotically
the Varshamov Bound gives the same result.

Theorem 2.10.8 (Asymptotic Gilbert—Varshamov Bound) If 0 <8 <1 —g~! where
q > 2, then ay(8) > 1 — H,(d).
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Proof: By the Gilbert Bound A,(n,dn) = A,(n, [dn]) > q"/V,(n, [én] —1). Since
[6n] —1 < [8n], Ay(n,dn) > q"/V,(n, |6n]). Thus
y(8) = limsupn~"log, A,(n, n)

n—0oo

> limsup 1 —n~'log, V,(n, [8n]) = 1 — Hy(5)

n—o00

by Lemma 2.10.3. O

Exercise 143 Verify that, for g > 2, the asymptotic version of the Varshamov Bound
produces the lower bound oy (§) > 1 — H,(6) when 0 <6 <1 — q_l. ¢

The Asymptotic Gilbert—Varshamov Bound was discovered in 1952. This bound guar-
antees (theoretically) the existence of a family of codes of increasing length whose rela-
tive distances approach § while their rates approach 1 — H,(8). In the next section and in
Chapter 13 we will produce specific families of codes, namely lexicodes and Goppa codes,
which meet this bound. For 30 years no one was able to produce any family that exceeded
this bound and many thought that the Asymptotic Gilbert—Varshamov Bound in fact gave the
true value of o, (8). However, in 1982, Tsfasman, Vladut, and Zink [333] demonstrated that
a certain family of codes of increasing length exceeds the Asymptotic Gilbert—Varshamov
Bound. This family of codes comes from a collection of codes called algebraic geom-
etry codes, described in Chapter 13, that generalize Goppa codes. There is, however, a
restriction on I, for which this construction works: g must be a square with g > 49.
In particular, no family of binary codes is currently known that surpasses the Asymptotic
Gilbert—Varshamov Bound. In Figure 2.2 we give five upper bounds and one lower bound on
a4(8), for g = 2, discussed in this section and Section 1.12; see Exercise 140. In this figure,
the actual value of «»(8) is O to the right of the dashed line. Families of binary codes meet-
ing or exceeding the Asymptotic Gilbert—Varshamov Bound lie in the dotted region of the
figure.

Exercise 144 Continuing with Exercise 140, add to the graphs drawn forq = 3andg = 4
the graph of the inequality from the Asymptotic Gilbert—Varshamov Bound as done in
Figure 2.2 for g = 2. ¢

2.11

Lexicodes

It is interesting that there is a class of binary linear codes whose construction is the greedy
construction for nonlinear codes described in Section 2.8, except that the order in which
the vectors are chosen is determined ahead of time. These codes are called lexicodes [39,
57, 192], and we will show that they indeed are linear. The construction implies that the
lexicodes meet the Gilbert Bound, a fact we leave as an exercise. This implies that we can
choose a family of lexicodes of increasing lengths which meet the Asymptotic Gilbert—
Varshamov Bound.

The algorithm for constructing lexicodes of length » and minimum distance d proceeds
as follows.
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R = a(8)

< Singleton

. Plotkin
0.8 T\

Hamming

06 T

Elias

MRRW II

04 T

02 T

Yarshamov

0.2 0.4 0.6 0.8 1.0

Figure 2.2 Asymptotic Bounds with ¢ = 2.

L. Order all n-tuples in lexicographic order:

--000
--001
--010
--011
--100

el eleleNe]

II. Construct the class £ of vectors of length n as follows:
(a) Put the zero vector 0 in L.
(b) Look for the first vector x of weight d in the lexicographic ordering. Put x in L.
(c) Look for the next vector in the lexicographic ordering whose distance from each
vector in L is d or more and add this to L.
(d) Repeat (c) until there are no more vectors in the lexicographic list to look at.
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The set £ is actually a linear code, called the lexicode of length n and minimum distance
d. Infact if we halt the process earlier, but at just the right spots, we have linear subcodes of
L. To prove this, we need a preliminary result due to Levenshtein [192]. If u and v are binary
vectors of length n, we say that u < v provided that u comes before v in the lexicographic
order.

Lemma 2.11.1 If u, v, and w are binary vectors of length n withu < v+ w and v <
u+w, thenu+v<w.

Proof: If u < v+ w, then u and v + w have the same leading entries after which u has a
0 and v + w has a 1. We can represent this as follows:
u=a0--- ,

v+w=al---.
Similarly as v < u + w, we have

v=Db0--- ,
u+w=bl....
However, we do not know that the length i of a and the length j of b are the same. Assume
they are different, and by symmetry, that i < j. Then we have

vV = b,x ceey,

ut+w=>b'x.-.,
where b’ is the first i entries of b. Computing w in two ways, we obtain

w=u+@u+w=@+b)x...,
w=v+Wv+w=@+b)1+x) -,

a contradiction. So a and b are the same length, giving

u+v=(@+b)y0O---,
w=(@+b)l---,

showingu + v < w. O

Theorem 2.11.2 Label the vectors in the lexicode in the order in which they are generated

so that ¢ is the zero vector.

(i) L is alinear code and the vectors ¢,i are a basis of L.

(ii) After ¢y is chosen, the next 2 — 1 vectors generated are ¢| + ¢y, € + €y, ...,
Coi_1 + Cpi.

(iii) Let L; = {cg, €1, ...,C_1}. Then L; is an [n, i, d] linear code.

Proof: If we prove (ii), we have (i) and (iii). The proof of (ii) is by induction on i. Clearly it
is true fori = 1. Assume the first 2/ vectors generated are as claimed. Then £; is linear with
basis {¢}, €2, ..., ¢pi-1}. We show that £; is linear with the next 2/ vectors generated in
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order by adding ¢, to each of the previously chosen vectors in £;. If not, there is an r < 2°
such that ¢y, # €3 + ¢,. Choose r to be the smallest such value. Asd(cy + ¢, ¢ +¢;) =
d(c,, ¢;) > d for j <r, ¢y + ¢, was a possible vector to be chosen. Since it was not, it
must have come too late in the lexicographic order; so

Coiyy < Ci +c, . (246)

Asd(c, + ¢y, €j) = d(Caigr, € +¢j) > d for j < 2/ by linearity of £;, ¢, + ¢, could
have been chosen to be in the code instead of ¢, (which it cannot equal). So it must be that

Ci < € + Coiyp. 2.47)

If j <r, then ¢yy; =c¢y +c¢; by the assumption on r. Hence d(cy + ¢, ¢€j) =
d(eritr, €2t j) = d for j <r. So ¢4, + ¢ could have been chosen to be a codeword
instead of ¢,. The fact that it was not implies that

Cr < Coigp + Ci. (248)

But then (2.47) and (2.48) with Lemma 2.11.1 imply ¢ 4+ ¢, < ¢i4, contradicting
(2.46). d

The codes L; satisfy the inclusions £; C £, C --- C Ly = L, where k is the dimension
of L. In general this dimension is not known before the construction. If i < k, the left-most
coordinates are always 0 (exactly how many is also unknown). If we puncture £; on these
zero coordinates, we actually get a lexicode of smaller length.

Exercise 145 Do the following:

(a) Construct the codes £; of length 5 and minimum distance 2.

(b) Verify that these codes are linear and the vectors are generated in the order described
by Theorem 2.11.2.

(c) Repeat (a) and (b) for length 5 and minimum distance 3. ¢

Exercise 146 Find an ordering of Fg so that the greedy algorithm does not produce a linear
code. ¢

Exercise 147 Prove that the covering radius of £ is d — 1 or less. Also prove that the
lexicodes meet the Gilbert Bound. Hint: See Exercise 132. ¢

The lexicode L is the largest of the £; constructed in Theorem 2.11.2. We can give a
parity check matrix for £ provided d > 3, which is reminiscent of the parity check matrix
constructed in the proof of the Varshamov Bound. If C is a lexicode of length n with d > 3,
construct its parity check matrix H = [h,, - - - h;] as follows (where h; is a column vector).
Regard the columns h; as binary numbers where 1 <> (---001)T,2 < (---010)T, etc. Leth;
be the column corresponding to 1 and h; the column corresponding to 2. Once h;_j, ..., h;
are chosen, choose h; to be the column corresponding to the smallest number which is not
a linear combination of d — 2 or fewer of h;_1, ..., h;. Note that the length of the columns
does not have to be determined ahead of time. Whenever h; corresponds to a number that
is a power of 2, the length of the columns increases and zeros are placed on the tops of the
columns h; for j < i.



99

2.11 Lexicodes

Example 2.11.3 If n = 7 and d = 3, the parity check matrix for the lexicode L is

1 11 1 0 0 O
H=([1 1 0 0 1 1 O
1 01 01 0 1
So we recognize this lexicode as the [7, 4, 3] Hamming code. ]

As this example illustrates, the Hamming code H3 is a lexicode. In fact, all binary
Hamming and Golay codes are lexicodes [39].

Exercise 148 Compute the parity check matrix for the lexicode of length 5 and minimum
distance 3. Check that it yields the code produced in Exercise 145(c). ¢

Exercise 149 Compute the generator and parity check matrices for the lexicodes of length
6 and minimum distance 2, 3, 4, and 5. ¢



3 Finite fields

For deeper analysis and construction of linear codes we need to make use of the basic theory
of finite fields. In this chapter we review that theory. We will omit many of the proofs; for
those readers interested in the proofs and other properties of finite fields, we refer you to
[18, 196, 233].

Introduction

@
-

A field is asetF together with two operations: 4, called addition, and -, called multiplication,
which satisfy the following axioms. The set F is an abelian group under + with additive
identity called zero and denoted 0; the set F* of all nonzero elements of F is also an
abelian group under multiplication with multiplicative identity called one and denoted 1; and
multiplication distributes over addition. We will usually omit the symbol for multiplication
and write ab for the product a - b. The field is finite if F has a finite number of elements;
the number of elements in I is called the order of . In Section 1.1 we gave three fields
denoted IF,, I3, and 4 of orders 2, 3, and 4, respectively. In general, we will denote a field
with ¢ elements by F,; another common notation is GF(q) and read “the Galois field with
q elements.”

If p is a prime, the integers modulo p form a field, which is then denoted I,. This is
not true if p is not a prime. These are the simplest examples of finite fields. As we will see
momentarily, every finite field contains some [F, as a subfield.

Exercise 150 Prove that the integers modulo n do not form a field if n is not prime. 4

The finiteness of IF, implies that there exists a smallest positive integer p such that
14 ---41(p 1s)is 0. The integer p is a prime, as verified in Exercise 151, and is called
the characteristic of IF,. If a is a positive integer, we will denote the sum of a 1s in the
field by a. Also if we wish to write the sum of a as where « is in the field, we write this
as either aa or a - a. Notice that pae = 0 for all o € IF,. The set of p distinct elements
{0,1,2,...,(p — 1)} of IF, is isomorphic to the field I, of integers modulo p. As a field
isomorphic to IF,, is contained in F,, we will simplify terminology and say that F,, is a
subfield of IF,; this subfield IF, is called the prime subfield of IF,. The fact that IF,, is a
subfield of I, gives us crucial information about g; specifically, by Exercise 151, the field
IF, is also a finite dimensional vector space over I ,, say of dimension m. Therefore g = p™
as this is the number of vectors in a vector space of dimension m over IF,.
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Although it is not obvious, all finite fields with the same number of elements are iso-
morphic. Thus our notation I, is not ambiguous; IF, will be any representation of a field
with g elements. As we did with the prime subfield of IF, if we say that IF, is a subfield of
F,, we actually mean that I, contains a subfield with  elements. If IF, has a subfield with
r elements, that subfield is unique. Hence there is no ambiguity when we say that IF, is a
subfield of IF, . It is important to note that although all finite fields of order ¢ are isomorphic,
one field may have many different representations. The exact form that we use for the field
may be crucial in its application to coding theory. We summarize the results we have just
given in a theorem; all but the last part are proved in Exercise 151.

Theorem 3.1.1 Let F, be a finite field with q elements. Then:
(i) g = p™ for some prime p,

(ii) ¥, contains the subfield F,,

(iii) I, is a vector space over F, of dimension m,

(iv) pa=0foralla € F;, and

(v) T, is unique up to isomorphism.

Exercise 151 Prove the following:

(a) If @ and b are in a field F with ab = 0, then eithera = 0 or b = 0.

(b) If I is a finite field, then the characteristic of [F is a prime p and {0, 1,2, ..., (p — 1)}
is a subfield of F.

(c) If Fis a field of characteristic p, then pa = 0 for all « € F.

(d) A finite field F of characteristic p is a finite dimensional vector space over its prime

m

subfield and contains p™ elements, where m is the dimension of this vector space. ¢

Exercise 152 Let IF, have characteristic p. Prove that (o« + ) = a” + 87 forall o, 8 €
F,. ’

Throughout this chapter we will let p denote a prime number and ¢ = p™, where m is a
positive integer.

Polynomials and the Euclidean Algorithm

Let x be an indeterminate. The set of polynomials in x with coefficients in I, is denoted by
IF,[x]. This set forms a commutative ring with unity under ordinary polynomial addition and
multiplication. A commutative ring with unity satisfies the same axioms as a field except the
nonzero elements do not necessarily have multiplicative inverses. In factIF,, [x] is an integral
domain as well; recall that an integral domain is a commutative ring with unity such that
the product of any two nonzero elements in the ring is also nonzero. The ring F,[x] plays
a key role not only in the construction of finite fields but also in the construction of certain
families of codes. So a typical polynomial in IF,[x] is f(x) = Z?:O a;x'. As usual g; is
the coefficient of the term a;x' of degree i. The degree of a polynomial f(x) is the highest
degree of any term with a nonzero coefficient and is denoted deg f(x); the zero polynomial
does not have a degree. The coefficient of the highest degree term is called the leading
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coefficient. We will usually write polynomials with terms in either increasing or decreasing
degree order; e.g. ag + ayx + axx? + - - - 4+ @, x" or a,x" + a,_1x"' + -+ ajx + ay.

Exercise 153 Prove that F,[x] is a commutative ring with unity and an integral domain as
well. ¢

Exercise 154 Multiply (x> 4+ x2 4+ 1)(x> 4+ x 4 1)(x + 1) in the ring F,[x]. Do the same
multiplication in F3[x]. ¢

Exercise 155 Show that the degree of the product of two polynomials is the sum of the
degrees of the polynomials. ¢

A polynomial is monic provided its leading coefficient is 1. Let f(x) and g(x) be poly-
nomials in [F,[x]. We say that f(x) divides g(x), denoted f(x) | g(x), if there exists a
polynomial 2(x) € IF,[x] such that g(x) = f(x)h(x). The polynomial f(x)is called a divi-
sor or factor of g(x). The greatest common divisor of f(x) and g(x), at least one of which
is nonzero, is the monic polynomial in IF, [x] of largest degree dividing both f(x) and g(x).
The greatest common divisor of two polynomials is uniquely determined and is denoted by
gcd(f(x), g(x)). The polynomials f(x)and g(x) are relatively primeif gcd( f(x), g(x)) = 1.

Many properties of the ring I, [x] are analogous to properties of the integers. One can
divide two polynomials and obtain a quotient and remainder just as one can do with integers.
In part (i) of the next theorem, we state this fact, which is usually called the Division
Algorithm.

Theorem 3.2.1 Let f(x) and g(x) be in F,[x] with g(x) nonzero.
(1) (Division Algorithm) There exist unique polynomials h(x), r(x) € F,[x] such that

f(x) = g)h(x)+ r(x), where degr(x) < deg g(x) orr(x) = 0.

(1) If f(x) = g0)h(x) + r(x), then ged(f (x), g(x)) = ged(g(x), r(x)).

We can use the Division Algorithm recursively together with part (ii) of the previous
theorem to find the gcd of two polynomials. This process is known as the Euclidean Algor-
ithm. The Euclidean Algorithm for polynomials is analogous to the Euclidean Algorithm
for integers. We state it in the next theorem and then illustrate it with an example.

Theorem 3.2.2 (Euclidean Algorithm) Let f(x) and g(x) be polynomials in F [x] with
g(x) nonzero.
(i) Perform the following sequence of steps until r,,(x) = 0 for some n:

fx) = g(x)hi(x) + ri(x), where degri(x) < deg g(x),
g(x) = ri(x)ha(x) + ra(x), where degrr(x) < degri(x),
ri(x) = rp(x)hsz(x) + r3(x), where degr3(x) < degry(x),

I"n_3()6) - rn—Z(X)hn—l(x) + rn—l(x)s where deg rn—l(x) < deg rn—Z(x)v
Fp—2(x) = Fpo1()h,(x) + 1 (x), where r,(x) = 0.
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Then ged(f(x), g(x)) = cry—1(x), where c € F, is chosen so that cr,_i(x) is
monic.
(ii) There exist polynomials a(x), b(x) € F,[x] such that

a(x) f(x) + b(x)g(x) = ged(f(x), g(x)).

The sequence of steps in (i) eventually terminates because at each stage the degree of the
remainder decreases by at least 1. By repeatedly applying Theorem 3.2.1(ii), we have that
crp—1(x) = ged(r,—2(x), rp—3(x)) = ged(r,—3(x), rp_a(x)) = - - - = ged(f(x), g(x)). This
explains why (i) produces the desired gcd.

Technically, the Euclidean Algorithm is only (i) of this theorem. However, (ii) is a natural
consequence of (i), and seems to possess no name of its own in the literature. As we use (ii) so
often, we include both in the term “Euclidean Algorithm.” Part (ii) is obtained by beginning
with the next to last equation r,_3(x) = r,_2(x)h,—1(x) + r,—1(x) in the sequence in (i)
and solving for r,,_;(x) in terms of r,_»(x) and r,,_3(x). Using the previous equation, solve
for r,_»(x) and substitute into the equation for r,_;(x) to obtain r,_;(x) as a combination
of r,_3(x) and r,_4(x). Continue up through the sequence until we obtain r,_;(x) as a
combination of f(x) and g(x). We illustrate all of this in the next example.

Example 3.2.3 We compute gcd(x® + x* 4+ x? 4+ 1, x> + x? + x) in the ring F»[x] using
the Euclidean Algorithm. Part (i) of the algorithm produces the following sequence.

X+t at+1 :(x3+x2+x)(x2+l)+x+l
CAxttr =@+ DEF D)+
x+1=1x+1)+0.
Thus 1 = ged(x + 1, 1)=gcd(x3+x2+x,x—|—1)=gcd(x5+x4+x2+1,x3+x2+x).
Now we find a(x) and b(x) such that a(x)(x® +x* + x2+ 1) + b(x)(x> + x> +x) =1 by

reversing the above steps. We begin with the last equation in our sequence with a nonzero
remainder, which we first solve for. This yields

=3 4+x24+x)— @+ D>+ 1). 3.1

Now x + 1 is the remainder in the first equation in our sequence; solving this for x + 1 and
plugging into (3.1) produces
1= 4+224+0 - +x*+ 2+ D) -+ 2+ 02+ D)2+ D

= ()c2 + 1)()(5 +xt+ 224 D+ )c4()c3 + x4+ Xx).
Soa(x) = x2+ 1 and b(x) = x*. [ |
Exercise 156 Find gcd(x6 +x+x*+x3+x+1,x+ x>+ x>+ x) in Fy[x]. Find

a(x) and b(x) such that gcd(x® + x> + x* + X3 +x + 1, x° + x> + x? + x) = a(x)(x® +
X4+t 3+ x+ D+ b +x3 4+ 22 +x). ¢

Exercise 157 Find gcd(x®> — x* + x + 1, x> 4 x) in F3[x]. Find a(x) and b(x) such that
gcd()c5 —x*Hx+ L3+ 0)=a0)x = x4+ x + D+ b(x)(3 + x). ¢
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Exercise 158 Let f(x) and g(x) be polynomials in I, [x].

(a) Ifk(x)isadivisor of f(x)and g(x), prove that k(x) is a divisor of a(x) f(x) + b(x)g(x)
for any a(x),b(x) € F,[x].

(b) If k(x) is a divisor of f(x) and g(x), prove that k(x) is a divisor of gcd(f(x),
g(x)). ¢

Exercise 159 Let f(x) be a polynomial over I, of degree n.

(a) Prove thatif o € F, is aroot of f(x), then x — « is a factor of f(x).
(b) Prove that f(x) has at most n roots in any field containing [F,. ¢

3.3

Primitive elements

When working with a finite field, one needs to be able to add and multiply as simply as
possible. In Theorem 3.1.1(iii), we stated that I, is a vector space over I, of dimension m.
So a simple way to add field elements is to write them as m-tuples over IF, and add them
using ordinary vector addition, as we will see in Section 3.4. Unfortunately, multiplying
such m-tuples is far from simple. We need another way to write the field elements so that
multiplication is easy; then we need a way to connect this form of the field elements to
the m-tuple form. The following theorem will assist us with this. Recall that the set IFZ of
nonzero elements in F, is a group.

Theorem 3.3.1 We have the following:
(1) The group F; is cyclic of order g — 1 under the multiplication of T,.
(i) Ify is a generator of this cyclic group, then

Fl{ = {0’ 1 = VO’ V’ yzv DR yq—Z}’
and y' = 1ifand only if (g — 1) | i.

Proof: From the Fundamental Theorem of Finite Abelian Groups [130], IF‘:; is a direct
product of cyclic groups of orders my, ms, ..., m,, where m; | m;;; for 1 <i < a and
mymy ---my, = q — 1. In particular o« = 1 for all € IFZ Thus the polynomial x™« — 1
has at least g — 1 roots, a contradiction to Exercise 159 unlessa = 1 and m, = g — 1. Thus
FZ is cyclic giving (i). Part (ii) follows from the properties of cyclic groups. O

Each generator y of IF;‘ is called a primitive element of IF,,. When the nonzero elements of
a finite field are expressed as powers of y, the multiplication in the field is easily carried out
accordingtotherule y'y/ = y'*/ = y*, where0 < s < ¢ —2andi + j =s (mod g — 1).

Exercise 160 Find all primitive elements in the fields I, F3, and 4 of Examples 1.1.1,
1.1.2, and 1.1.3. Pick one of the primitive elements y of F4 and rewrite the addition and

multiplication tables of F4 using the elements {0, 1 = y°, y, y2}. ¢
Let y be a primitive element of F,. Then y9~! = 1 by definition. Hence (y')?~' = 1 for
0 <i < g — 2 showing that the elements of JF:; arerootsof x4~ —1 e »[x] and hence of

x? —x. As O is aroot of x4 — x, by Exercise 159 we now see that the elements of I, are
precisely the roots of x¢ — x giving this important theorem.
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Theorem 3.3.2 The elements of I, are precisely the roots of x4 — x.

In Theorem 3.1.1(v) we claim that the field with ¢ = p™ elements is unique. Theo-
rem 3.3.2 shows that a field with ¢ elements is the smallest field containing I, and all
the roots of x¢ — x. Such a field is termed a splitting field of the polynomial x¢ — x over
IF,,, that is, the smallest extension field of IF;, containing all the roots of the polynomial. In
general splitting fields of a fixed polynomial over a given field are isomorphic; by carefully
defining a map between the roots of the polynomial in one field and the roots in the other,
the map can be shown to be an isomorphism of the splitting fields.

Exercise 161 Using the table for F4 in Example 1.1.3, verify that all the elements of [y
are roots of x* — x = 0. ¢

In analyzing the field structure, it will be useful to know the number of primitive elements
inIF, and how to find them all once one primitive element has been found. Since F Z iscyclic,
we recall a few facts about finite cyclic groups. In any finite cyclic group G of order n with
generator g, the generators of G are precisely the elements g’ where ged(i, n) = 1. We let
¢(n) be the number of integers i with 1 <i < n such that gcd(i, n) = 1; ¢ is called the
Euler totient or the Euler ¢-function. So there are ¢(n) generators of G. The order of an
element o € G is the smallest positive integer i such that &' = 1. An element of G has
order d if and only if d | n. Furthermore g’ has order d = n/ ged(i, n), and there are ¢(d)
elements of order d. When speaking of field elements o € F, the order of « is its order in
the multiplicative group IF;. In particular, primitive elements of I, are those of orderg — 1.
The next theorem follows from this discussion.

Theorem 3.3.3 Let y be a primitive element of .

(1) There are ¢(q — 1) primitive elements in F,; these are the elements y' where
ged(i,g — 1) = 1.

(ii) For any d where d | (g — 1), there are ¢(d) elements in ¥, of order d; these are the
elements y4=V1/4 ywhere ged(i, d) = 1.

An element & € F, is an nth root of unity provided £" = 1, and is a primitive nth root
of unity if in addition §° # 1 for 0 < s < n. A primitive element y of I, is therefore a
primitive (g — 1)st root of unity. It follows from Theorem 3.3.1 that the field IF, contains a
primitive nth root of unity if and only if n | (g — 1), in which case y¢~1/" is a primitive
nth root of unity.

Exercise 162 (a) Find a primitive element y in the field F, given below. (b) Then write
every nonzero element in I, as a power of y. (c) What is the order of each element and
which are primitive? (d) Verify that there are precisely ¢(d) elements of order d for every

dl(g—1.
(i) Fs,
(i) Fq,

(i) Fy3. ¢
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Exercise 163 Let y be a primitive element of I, where g is odd.
(a) Show that the equation x*> = 1 has only two solutions, 1 and —1.
(b) Show that y@=1/2 = _1, ¢

Exercise 164 If g # 2, show that

Za:O. ¢

acl,

Exercise 165 What is the smallest field of characteristic 2 that contains a:

(a) primitive nineth root of unity?

(b) primitive 11th root of unity?

What is the smallest field of characteristic 3 that contains a:

(c) primitive seventh root of unity?

(d) primitive 11th root of unity? ¢

3.4

Constructing finite fields

We are now ready to link the additive structure of a finite field arising from the vector
space interpretation with the multiplicative structure arising from the powers of a primitive
element and actually construct finite fields.

A nonconstant polynomial f(x) € F,[x]is irreducible over F, provided it does not factor
into a product of two polynomials in I, [x] of smaller degree. The irreducible polynomials
inIF, [x] are like the prime numbers in the ring of integers. For example, every integer greater
than 1 is a unique product of positive primes. The same result holds in I, [x ], making I, [x]
a unique factorization domain.

Theorem 3.4.1 Let f(x) be a nonconstant polynomial. Then

F&x) = pr(x)" pa(x)® - - - pr(x)*,

where each p;(x) is irreducible, the p;(x)s are unique up to scalar multiplication, and the
a;s are unique.

Not only is F,[x] a unique factorization domain, it is also a principal ideal domain. An
ideal 7 in a commutative ring R is a nonempty subset of the ring that is closed under
subtraction such that the product of an element in 7 with an element in R is always in Z.
The ideal 7 is principal provided there is an a € R such that 7 = {ra | r € R}; this ideal
will be denoted (a). A principal ideal domain is an integral domain in which each ideal is
principal. Exercises 153 and 166 show that IF,[x] is a principal ideal domain. (The fact that
F,[x] is a unique factorization domain actually follows from the fact that it is a principal
ideal domain.)

Exercise 166 Show using the Division Algorithm that every ideal of IF,[x] is a principal
ideal. ¢
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To construct a field of characteristic p, we begin with a polynomial f(x) € F,[x] which
is irreducible over IF,. Suppose that f(x) has degree m. By using the Euclidean Algorithm
it can be proved that the residue class ring

Fplxl/(f(x))

is actually a field and hence a finite field F, with g = p™ elements; see Exercise 167. Every
element of the residue class ring is a coset g(x) + (f(x)), where g(x) is uniquely determined
of degree at most m — 1. We can compress the notation by writing the coset as a vector in
[} with the correspondence

Gt X" guax™ T4+ g1x + g0 + (f(X)) < gm—18m—2 - &180- (3.2)

This vector notation allows you to add in the field using ordinary vector addition.

Exercise 167 Let f(x) be an irreducible polynomial of degree m in F,[x]. Prove that

Fplxl/(f(x))
is a finite field with p™ elements. ¢
Example 3.4.2 The polynomial f(x) = x* + x + 1 is irreducible over [F,; if it were re-

ducible, it would have a factor of degree 1 and hence a root in F,, which it does not. So
Fg = F,[x]/(f (x)) and, using the correspondence (3.2), the elements of Fg are given by

Cosets Vectors

0+ (f(x)) 000
14 (f(x)) 001
X+ (f(x)) 010

x+1+(f(x) 011
X+ (f(x) 100

X2+ 1+ (f(x) 101

2+ x + (f(x)) 110
X4 x+ 14+ (f(x) 111

As an illustration of addition, adding x + (f(x)) to 2+ x+14+(f) yields X241+
(f(x)), which corresponds to adding 010 to 111 and obtaining 101 in IF; [ |

How do you multiply? To multiply g;(x) + (f(x)) times g»(x) + (f(x)), first use the
Division Algorithm to write
g1(x)g2(x) = f(x)h(x) + r(x), (3.3)

where degr(x) <m — 1 or r(x) =0. Then (g1(x)+ (f(x))(g2(x) + (f(x)) = r(x) +
(f(x)). The notation is rather cumbersome and can be simplified if we replace x by «
and let f(a) = 0; we justify this shortly. From (3.3), g1(«)g2(«) = r(«) and we extend our
correspondence (3.2) to

8m—18m—2 """ 8180 <> gm—lOZm_1 + gm—20lm_2 +--- 81U + 80- (34)
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So to multiply in F,, we simply multiply polynomials in « in the ordinary way and use
the equation f(«) = 0 to reduce powers of « higher than m — 1 to polynomials in o of
degree less than m. Notice that the subset {0~ + 0™ 2 + - - + 0 + ag | ap € F,} =
{ao | ag € F),} is the prime subfield of F,.

We continue with our example of Fg adding this new correspondence. Notice that the
group Fg is cyclic of order 7 and hence all nonidentity elements of Fg are primitive. In
particular « is primitive, and we include powers of « in our table below.

Example 3.4.3 Continuing with Example 3.4.2, using correspondence (3.4), we obtain

Polynomials Powers
Vectors in«a of o
000 0 0
001 1 1=a°
010 o o
011 o+1 o’
100 o? o?
101 o’ +1 of
110 a +a o
111 o +a+1 o’

The column “powers of o is obtained by using f(«) = & + « 4+ 1 = 0, which implies that
=a+1. Sod*=al=al@+D=c?+0a, @ =ac*=a@+a)=c>+a=
a4+ o+ 1, etc. [ |

Exercise 168 In the field [Fg given in Example 3.4.3, simplify
@ +a® —a+ D +a)/ @ +a).

Hint: Use the vector form of the elements to do additions and subtractions and the powers
of « to do multiplications and divisions. ¢

We describe this construction by saying that I, is obtained from IF, by “adjoining” a
root o of f(x)to IF,,. This root & is formally given by o« = x + (f(x)) in the residue class
ring F,[x1/(f (x)); therefore g(x) + (f(x)) = g(@) and f(&) = f(x + (f(x) = F(x) +
(f () =0+ (f(x)).

In Example 3.4.3, we were fortunate that o was a primitive element of Fg. In general, this
will not be the case. We say that an irreducible polynomial over IF, of degree m is primitive
provided that it has a root that is a primitive element of F, = IF,». Ideally we would like
to start with a primitive polynomial to construct our field, but that is not a requirement
(see Exercise 174). It is worth noting that the irreducible polynomial we begin with can be
multiplied by a constant to make it monic as that has no effect on the ideal generated by the
polynomial or the residue class ring.

Itis not obvious, but either by using the theory of splitting fields or by counting the number
of irreducible polynomials over a finite field, one can show that irreducible polynomials of
any degree exist. In particular we have the following result.
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Theorem 3.4.4 Forany prime p and any positive integer m, there exists a finite field, unique

up to isomorphism, with ¢ = p™ elements.

Since constructing finite fields requires irreducible polynomials, we note that tables of
irreducible and primitive polynomials over [F, can be found in [256].

Remark: In the construction of F, by adjoining a root of an irreducible polynomial f(x)
to I, the field F, can be replaced by any finite field IF,, where r is a power of p and f(x)
by an irreducible polynomial of degree m in IF,[x] for some positive integer m. The field
constructed contains IF, as a subfield and is of order r™.

Exercise 169

(a) Find all irreducible polynomials of degrees 1, 2, 3, and 4 over [F».

(b) Compute the product of all irreducible polynomials of degrees 1 and 2 in F,[x].

(c) Compute the product of all irreducible polynomials of degrees 1 and 3 in F,[x].

(d) Compute the product of all irreducible polynomials of degrees 1, 2, and 4 in F,[x].

(e) Make a conjecture based on the results of (b), (c), and (d).

() In part (a), you found two irreducible polynomials of degree 3. The roots of these
polynomials lie in Fg. Using the table in Example 3.4.3 find the roots of these two
polynomials as powers of «. ¢

Exercise 170 Find all monic irreducible polynomials of degrees 1 and 2 over F3. Then
compute their product in F3[x]. Does this result confirm your conjecture of Exercise 169(e)?
If not, modify your conjecture. ¢

Exercise 171 Find all monic irreducible polynomials of degrees 1 and 2 over 4. Then
compute their product in F4[x]. Does this result confirm your conjecture of Exercise 169(e)
or your modified conjecture in Exercise 170? If not, modify your conjecture again. ¢

Exercise 172 In Exercise 169, you found an irreducible polynomial of degree 3 different
from the one used to construct g in Examples 3.4.2 and 3.4.3. Let 8 be a root of this second
polynomial and construct the field Fg by adjoining 8 to F, and giving a table with each
vector in Fg associated to 0 and the powers of §. ¢

Exercise 173 By Exercise 169, the polynomial f(x) = x* + x + 1 € F,[x] is irreducible

over [F,. Let o be a root of f(x).

(a) Construct the field F¢ by adjoining « to I, and giving a table with each vector in Fg
associated to 0 and the powers of «.

(b) Which powers of « are primitive elements of [F4?

(c) Findthe roots of the irreducible polynomials of degrees 1, 2, and 4 from Exercise 169(a).

¢

Exercise 174 Let f(x) = x>+ x + 1 € Fs[x].

(a) Prove that f(x) is irreducible over F's.

(b) By part (a) Fo5 = Fs[x]/(f(x)). Let o be a root of f(x). Show that « is not primitive.
(c) Find a primitive element in [F,5 of the form a« + b, where a, b € Fs. ¢
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Exercise 175 By Exercise 169, x24+x+1, x> +x+1, and x* + x + 1 are irreducible
over F,. Is x> + x + 1 irreducible over F,? ¢

Exercise 176 Define a function 7 : F;, — FF, by 7(0) =0 and 7(a) = a ' fora e IE‘;.

(a) Show that (ab) = t(a)t(b) foralla, b € F,.

(b) Show thatif g =2, 3, or 4, then t(a + b) = t(a) + t(b).

(c) Show thatif (a +b) = t(a) + t(b) for all a, b € F,, then g = 2, 3, or 4. Hint: Let
a € F, witha +a? # 0. Then seta = o and b = o, ¢

3.5

Subfields

In order to understand the structure of a finite field F,, we must find the subfields contained
inTF,.

Recall that I, has a primitive element of order g — 1 = p™ — 1. If F; is a subfield of I,
then [F; has a primitive element of order s — 1 where (s — 1) | (¢ — 1). Because the identity
element 1 is the same for both F, and Iy, Fy has characteristic p implying thats = p”. Soitis
necessary to have (p” — 1) | (p™ — 1). The following lemma shows when that can happen.

Lemma 3.5.1 Leta > 1 be an integer. Then (a” — 1) | (@™ — 1) if and only if r | m.

Proof: Ifr | m,thenm = rhanda™ — 1 =(a" — 1) Zf:ol a'". Conversely, by the Division
Algorithm, let m = rh + u, with 0 < u < r. Then

am —1 Lahth—1 at—1
=a

a -1 a —1 a —1

As r | rh, by the above, (@’ — 1)/(a” — 1) is an integer; also (a* — 1)/(a” — 1) is strictly
less than 1. Thus for (@™ — 1)/(a” — 1) to be an integer, (a* — 1)/(a” — 1) must be 0 and
so u = Qyielding r | m. O

The same argument used in the proof of Lemma 3.5.1 shows that (x*~! — 1) | (x4~ — 1)
ifandonly if (s — 1) | (g — 1). Thus (x* — x) | (x9 — x)ifand only if (s — 1) | (g — 1). So
ifs =p",(x* —x) | (x4 — x)ifand only if » | m by Lemma 3.5.1. So we have the following
lemma.

Lemma 3.5.2 Let s = p" and g = p™. Then (x* — x) | (x4 — x) ifand only if r | m.

In particular if r | m, all of the roots of xP" — x are in IF,. Exercise 177 shows that the
roots of x?" — x in F,, form a subfield of F,. Since any subfield of order p” must consist of
the roots of x”" — x in I, this subfield must be unique. The following theorem summarizes
this discussion and completely characterizes the subfield structure of IF,.

Theorem 3.5.3 When g = p™,

(1) [, has a subfield of order s = p" if and only if r | m,

(ii) the elements of the subfield F; are exactly the elements of ¥, that are roots of x* — x,
and

(iii) for each r | m there is only one subfield ¥, of I,,.
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3.6 Field automorphisms

Corollary 3.5.4 If y is a primitive element of ¥, and I, is a subfield of T, then the
elements of Fs are {0, 1, «, ..., o2}, where o0 = y(‘f_l)/("_').

Exercise 177 If ¢ = p™ and r | m, prove that the roots of x”" — x in F, form a subfield
of IF,. Hint: See Exercise 152. ¢

We can picture the subfield structure very nicely using a lattice as the next example
shows.

Example 3.5.5 The lattice of subfields of [F52 is:

F224

F, ]

If F is a subfield of E, we also say that [E is an extension field of F. In the lattice of
Example 3.5.5 we connect two fields IF and E if F C E with no proper subfields between;
the extension field [E is placed above F. From this lattice one can find the intersection of
two subfields as well as the smallest subfield containing two other subfields.

Exercise 178 Draw the lattice of subfields of [Fys. ¢

Corollary 3.5.6 The prime subfield of F, consists of those elements o in F, that satisfy
the equation x? = x.

Exercise 179 Prove Corollary 3.5.6. ¢

Field automorphisms

The field automorphisms of IF, form a group under function composition. We can describe
this group completely.

Recall that an automorphism o of F, is a bijection o : F;, — I, such that o (a + 8) =
o@)+o(B)and o(axf) = o(a)o(B) forall o, B € Fq.l Define 5, : F, — F, by

op(a) = af foralla € Fy.

! In Section 1.7, where we used field automorphisms to define equivalence, the field automorphism o acted on
the right x — (x)o, because the monomial maps act most naturally on the right. Here we have o act on the
left by x — o(x), because it is probably more natural to the reader. They are interchangeable because two field
automorphisms o and t commute by Theorem 3.6.1, implying that the right action (x)(o7) = ((x)o)t agrees
with the left action (o 7)(x) = (to)(x) = t(o(x)).
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Obviously o,(ap) = o,(a)o,(B), and o,(a + B) = o,(a) + o,(B) follows from Exer-
cise 152. As o, has kernel {0}, o, is an automorphism of I, called the Frobenius auto-
morphism. Analogously, define o, () = a”".

The automorphism group of I, denoted Gal(FF,)), is called the Galois group of IF,. We
have the following theorem characterizing this group. Part (ii) of this theorem follows from
Corollary 3.5.6.

Theorem 3.6.1

(1) Gal(F,) is cyclic of order m and is generated by the Frobenius automorphism o p.
(ii) The prime subfield of T, is precisely the set of elements in ¥, such that o, () = «.
(iii) The subfield ¥, of ¥, is precisely the set of elements in IFy such that o () = a.

We use o, to denote the Frobenius automorphism of any field of characteristic p. If
E and T are fields of characteristic p with [E an extension field of I, then the Frobenius
automorphism of E when restricted to F is the Frobenius automorphism of F. An element
o € [ is fixed by an automorphism o of I provided o () = «. Letr | m. Then o, generates
a cyclic subgroup of Gal(F,) of order m/r. By Exercises 180 and 181, the elements of IF,
fixed by this subgroup are precisely the elements of the subfield IF,-. We let Gal(IF,, : F )
denote automorphisms of I, which fix I . Our discussion shows that o, € Gal(IF, : F ).
The following theorem strengthens this.

Theorem 3.6.2 Gal(F, : F) is the cyclic group generated by o ,.

Exercise 180 Let o be an automorphism of a field F. Prove that the elements of I fixed
by o form a subfield of IF. ¢

Exercise 181 Prove that if r | m, then the elements in F, fixed by o, are exactly the

elements of the subfield FF . ¢

Exercise 182 Prove Theorem 3.6.2. ¢

3.7

Cyclotomic cosets and minimal polynomials

Let [E be a finite extension field of IF,. Then IE is a vector space over IF, and so E = I, for
some positive integer ¢. By Theorem 3.3.2, each element « of E is a root of the polynomial
x4 — x. Thus there is a monic polynomial M, (x) in IF,[x] of smallest degree which has «
as a root; this polynomial is called the minimal polynomial of a over IF,. In the following
theorem we collect some elementary facts about minimal polynomials.

Theorem 3.7.1 Let Fy: be an extension field of F, and let o be an element of Fy with
minimal polynomial M (x) in F,[x]. The following hold:

(1) My (x) is irreducible over I .

(ii) If g(x) is any polynomial in F,[x] satisfying g(a) = 0, then M, (x) | g(x).
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(iii) M (x) is unique; that is, there is only one monic polynomial in I [x] of smallest degree
which has a as a root.

Exercise 183 Prove Theorem 3.7.1. ¢

If we begin with an irreducible polynomial f(x) over I, of degree r, we can adjoin a
root of f(x) to IF, and obtain the field IF,-. Amazingly, all the roots of f(x) lie in F.

Theorem 3.7.2 Let f(x) be a monic irreducible polynomial over I, of degree r. Then:

(1) all the roots of f(x) lie in Fyr and in any field containing ¥, along with one root of
f(x),

) f(x)= I—[;:](x —a;), where a; € Fyr for 1 <i <r, and

(i) f(x)|x9 —x.

Proof: Let a be aroot of f(x) which we adjoin to IF, to form a field E,, with g” elements. If
B is another root of f(x), notin [E,, it is a root of some irreducible factor, over [E,, of f(x).
Adjoining B to [E, forms an extension field E of IE,. However, inside E, there is a subfield Eg
obtained by adjoining 8 to IF,. l£g must have ¢" elements as f(x) is irreducible of degree
r over IF,. Since E, and Eg are subfields of E of the same size, by Theorem 3.5.3(iii),
E, = Eg proving that all roots of f(x) lie in F;-. Since any field containing I, and one
root of f(x) contains I, part (i) follows. Part (ii) now follows from Exercise 159. Part (iii)
follows from part (ii) and the fact that x¢ — x = I—[%Fq, (x — o) by Theorem 3.3.2. d

In particular this theorem holds for minimal polynomials M, (x) over IF, as such poly-
nomials are monic irreducible.

Theorem 3.7.3 Let Fy: be an extension field of F, and let o be an element of Fy with

minimal polynomial M, (x) in F,[x]. The following hold:

(i) My(x)|x? —x.

(ii) Mq(x) has distinct roots all lying in F .

(iii) The degree of M, (x) divides t.

@iv) x4 —x = [1, Ma(x), where o runs through some subset of ¥, which enumerates the
minimal polynomials of all elements of F, exactly once.

(v) x4 —x= I ¢ S, where f runs through all monic irreducible polynomials over T,
whose degree divides t.

Proof: Part (i) follows from Theorem 3.7.1(ii), since @? —a = 0 by Theorem 3.3.2. Since
the roots of x?' — x are the q' elements of I, x4 — x has distinct roots, and so (i) and
Theorem 3.7.2(i) imply (ii). By Theorem 3.4.1 x? —x = ]_[l’.l=1 pi(x), where p;(x) is ir-
reducible over IF,. As x?" — x has distinct roots, the factors p;(x) are distinct. By scaling
them, we may assume that each is monic as x4 — x is monic. So p;(x) = M,(x) for any
a € Fy with p;(a) = 0. Thus (iv) holds. But if M, (x) has degree r, adjoining « to IF,, gives
the subfield F,r = IF - of Fyr = F e implying mr | mt by Theorem 3.5.3 and hence (iii).
Part (v) follows from (iv) if we show that every monic irreducible polynomial over I, of
degree r dividing ¢ is a factor of x4 —x.But f(x) ]| (x? —x) by Theorem 3.7.2(iii). Since
mr | mt, (x4 —x) | (x? — x) by Lemma 3.5.2. O
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Two elements of I, which have the same minimal polynomial in FF,[x] are called
conjugate over . It will be important to find all the conjugates of o € [F,, that is, all the
roots of M,(x). We know by Theorem 3.7.3(ii) that the roots of M,(x) are distinct and lie
in IF,.. We can find these roots with the assistance of the following theorem.

Theorem 3.7.4 Let f(x) be a polynomial in F,[x] and let o be a root of f(x) in some
extension field IF ;.. Then:
@ f&x?) = f(x), and

(ii) a is also a root of f(x) inIF,.

Proof: Let f(x) =) | ,a;x'. Since ¢ = p™, where p is the characteristic of F,, f(x)? =
Y oailx'4 by applying Exercise 152 repeatedly. However, a/ = a;, because a; € F, and
elements of I, are roots of x? — x by Theorem 3.3.2. Thus (i) holds. In particular, f(a?) =
f(e)? =0, implying (ii). O

Repeatedly applying this theorem we see that o, o9, a?, ... are all roots of My(x).
Where does this sequence stop? It will stop after r terms, where ¢ = «. Suppose now
that y is a primitive element of F,. Then o = y* for some s. Hence a9 = a if and only
if y%¢' =% = 1. By Theorem 3.3.1(ii), s¢" = s (mod ¢’ — 1). Based on this, we define the
q-cyclotomic coset of s modulo g' — 1 to be the set

Cs ={s,5q,...,s¢" "} (mod ¢' — 1),

where r is the smallest positive integer such thatsqg” = s (mod g’ — 1). The sets C; partition
theset {0, 1,2, ..., g" — 2} of integers into disjoint sets. When listing the cyclotomic cosets,
it is usual to list C; only once, where s is the smallest element of the coset.

Example 3.7.5 The 2-cyclotomic cosets modulo 15 are Cy = {0}, C; = {1, 2,4, 8}, C3 =
{3,6,12,9}, Cs = {5, 10}, and C7; = {7, 14, 13, 11}. [ |

Exercise 184 Compute the 2-cyclotomic cosets modulo:

(a) 7,

(b) 31,

(c) 63. ¢

Exercise 185 Compute the 3-cyclotomic cosets modulo:
(@) 8,
(b) 26. ¢

Exercise 186 Compute the 4-cyclotomic cosets modulo:

(a) 15,

(b) 63.

Compare your answers to those of Example 3.7.5 and Exercise 184. ¢

We now know that the roots of My (x) = M,s(x) include {y? |i e Cy}. In fact these are
all of the roots. So if we know the size of C;, we know the degree of M,s(x), as these are
the same.
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Theorem 3.7.6 If y is a primitive element of By, then the minimal polynomial of y* over
F, is

My (x) = [ Jx = v.
ieCy

Proof: This theorem is claiming that, when expanded, f(x) = []; cc,(x — yh=> i f jxj

is a polynomial in F,[x], not merely IF,[x]. Let g(x) = f(x)?. Then g(x) = Hiec.,. (x? —

y4') by Exercise 152. As C; is a g-cyclotomic coset, gi runs through Cy as i does. Thus

gx) = f(x9) =3, f;x¥. But g(x) = (3, fjx/) =3, f{x%, again by Exercise 152.

Equating coefficients, we have f;’ = f; and hence by Theorem 3.6.1(iii), f(x) € Fy[x].
0

Exercise 187 Prove that the size r of a g-cyclotomic coset modulo ¢’ — 1 satisfies r | ¢.

¢

Example 3.7.7 The field Fg was constructed in Examples 3.4.2 and 3.4.3. In the table
below we give the minimal polynomial over [, of each element of Fg and the associated
2-cyclotomic coset modulo 7.

Roots Minimal polynomial 2-cyclotomic coset
0 X
1 x+1 {0}
a, o, ot XHx+1 {1,2,4}
o, o X441 {3,5, 6}

Notice that x® — x = x(x + (x> + x + 1)(x + x? + 1) is the factorization of x® — x into
irreducible polynomials in F,[x] consistent with Theorem 3.7.3(iv). The polynomials x> +
x + 1 and x3 4+ x2 4 1 are primitive polynomials of degree 3. [ |

Example 3.7.8 In Exercise 173, you are asked to construct [F;¢ using the irreducible poly-
nomial x* + x + 1 over F,. With « as a root of this polynomial, we give the minimal
polynomial over [, of each element of IF|¢ and the associated 2-cyclotomic coset modulo
15 in the table below.

Roots Minimal polynomial 2-cyclotomic coset
0 X
1 x+1 {0}
o, a2, ot of x4 {1,2,4,8}
a3, ab, o, al? P Ry | {3,6,9, 12}
o, a'? X2 4+x+1 {5, 10}
o o'l o3 ot x4+ (7,11, 13, 14}

The factorization of x!> — 1 into irreducible polynomials in F,[x] is
x+ D+ x + D + X3+ +x+ 1)(x2 + x4+ 1)(x4 +x3 41,

again consistent with Theorem 3.7.3(iv). |
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I
Exercise 188 Referring to Example 3.7.8:
(a) verify that the table is correct,
(b) find the elements of ¢ that make up the subfields I, and F4, and
(c) find which irreducible polynomials of degree 4 are primitive. ¢
Exercise 189 The irreducible polynomials of degree 2 over F; were found in Exercise 170.
(a) Which of the irreducible polynomials of degree 2 are primitive?
(b) Leta be aroot of one of these primitive polynomials. Construct the field Fg by adjoining
« to I3 and giving a table with each vector in ]F% associated to 0 and the powers of «.
(c) Inatable as in Examples 3.7.7 and 3.7.8, give the minimal polynomial over [F5 of each
element of Fg and the associated 3-cyclotomic coset modulo 8.
(d) Verify that the product of all the polynomials in your table is x° — x. ¢
Exercise 190 Without factoring x® — 1, how many irreducible factors does it have over
IF, and what are their degrees? Answer the same question about x® — 1 over F,. See
Exercises 184 and 186. ¢
Exercise 191 Without factoring x2® — 1, how many irreducible factors does it have over
F5; and what are their degrees? See Exercise 185. ¢
Exercise 192 Let f(x) = fo + fix +---+ fux“ be a polynomial of degree a in F,[x].
The reciprocal polynomial of f(x) is the polynomial
ff@=x"fOT) = fot faorx + -+ foxt.
(We will study reciprocal polynomials further in Chapter 4.)
(a) Give the reciprocal polynomial of each of the polynomials in the table of Example 3.7.7.
(b) Give the reciprocal polynomial of each of the polynomials in the table of Example 3.7.8.
(c) What do you notice about the roots and the irreducibility of the reciprocal polynomials
that you found in parts (a) and (b)?
(d) How can you use what you have learned about reciprocal polynomials in parts (a), (b),
and (c) to help find irreducible factors of x¢ — x over IF, where g = p™ with p a prime?
¢
I
Trace and subfield subcodes

3.8

Suppose that we have a code C over a field Fy:. It is possible that some of the codewords
have all their components in the subfield F,. Can much be said about the code consisting
of such codewords? Using the trace function, a surprising amount can be said.

Let C be an [n, k] code over F,:. The subfield subcode C|y, of C with respect to F, is
the set of codewords in C each of whose components is in IF,. Because C is linear over .,
Clp, is a linear code over F,,.

We first describe how to find a parity check matrix for C|p, beginning with a parity check
matrix H of C. Because [ is a vector space of dimension ¢ over F,, we can choose a
basis {by, by, ..., b;} C Fy of Fy over F,. Each element z € I can be uniquely written
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as z =2z1by + -+ z;b;, where z; € F, for 1 <i <t. Associate to z the t x 1 column
vector Z = [z; - - z,]T Create H from H by replacing each entry % by 7. Because H is an
(n — k) x n matrix with entries in [ ,Hisa t(n — k) x n matrix over F,. The rows of
H may be dependent. So a parity check matrix for C|p, is obtained from ﬁ by deleting
dependent rows; the details of this are left as an exercise. Denote this parity check matrix
by H |IFq .

Exercise 193 Prove that by deleting dependent rows from H, a parity check matrix for
Clp, is obtained. ¢

Example 3.8.1 A parity check matrix for the [6, 3, 4] hexacode Gg over F; given in
Example 1.3.4 is

1 o o 1 0
H=|lw 1 o 0 1
o o 1 0 0

- o O

The set {1, w} is a basis of F4 over [F,. So

o-[3) 1-[ #-[2) m 5[]

Thus
I 100100
010010 01 1 000
H= L0100 0 and Hlp,=(0 1 0 0 1 O
00100 1 1 01 0 0O
1100 0 0 001 0 01
So we see that G|, is the [6, 1, 6] binary repetition code. |

Exercise 194 The [6, 3, 4] code C over F4 with generator matrix G given by

1 001 1 1
G=(01 01 o ®
0011 & o

is the hexacode (equivalent to but not equal to the code of Example 3.8.1). Using the basis
{1, w} of F4 over I, find a parity check matrix for C|, . ¢

Example 3.8.2 In Examples 3.4.2 and 3.4.3, we constructed Fg by adjoining a primitive
element « to F, where o® = o + 1. Consider the three codes C1, C,, and C3 of length 7 over
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Fg given by the following parity check matrices, respectively:
H = [1 a o’ o ot o a6],

Il a o o o o af
Hy = |:1 o a* o o o and

1 a o & of & o
H; = 5 .

1 & o & &> o «

The code C; is a [7, 6, 2] MDS code, while C, and C; are [7, 5, 3] MDS codes. Choosing
{1, o, ?} as a basis of Fg over F», we obtain the following parity check matrices for C|F,,
CalF,, and C3|,:

1 0 01 01 1
Hip,=Hlp,=(0 1 0 1 1 1 0| and
|0 01 0 1 1 1]
1 0 01 0 1 1]
01 01 110
00 1 0 1 11
Bl =0 1 1 01 0 0
01 0 0 1 1 1
(00 1 1 1 0 1]
SoCi|F, = C»|F, are both representations of the [7, 4, 3] binary Hamming code H3, whereas
Cslp, is the [7, 1, 7] binary repetition code. |
Exercise 195 Verify all the claims in Example 3.8.2. ¢

This example illustrates that there is no elementary relationship between the dimension
of a code and the dimension of its subfield subcode. The following theorem does exhibit a
lower bound on the dimension of a subfield subcode; its proof is left as an exercise.

Theorem 3.8.3 Let C be an [n, k] code over F . Then:
1) C|Fq is an [n, ky] code over ¥, where k; > n —t(n — k), and
(ii) if the entries of a monomial matrix M € I"Aut(C) belong to ¥, then M € T Aut(C|,).

Exercise 196 Prove Theorem 3.8.3. ¢

An upper bound on the dimension of a subfield subcode is given by the following
theorem.

Theorem 3.8.4 Let C be an [n, k] code over F,. Then C |F, is an [n, k4] code over Fy,
where k, < k. If C has a basis of codewords in IFZ, then this is also a basis of C|, and C|,
is k-dimensional.

Proof: Let G be a generator matrix of C|g, . Then G has k, independent rows; thus the rank
of G is k; when considered as a matrix with entries in I, or in ;.. Hence the rows of G
remain independent in I, , implying all parts of the theorem. O
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Another natural way to construct a code over F, from a code over I, is to use the trace
Sfunction Tr; : F — F, defined by
—1 ) 1—1
Tr, () = Zoﬂ‘ = Zaé(a), forall o € Fyr,
i=0 i=0

where 0, = 0" and 0, () = . Furthermore, aq’ (@) =a? =aas every element of Iy is
arootof x4 — x by Theorem 3.3.2. So o(; is the identity and therefore o, (Tr; (o)) = Tr;(cx).
Thus Tr;(a) is a root of x? — x and hence is in [F, as required by the definition of trace.

Exercise 197 Fill in the missing steps that show that o, (Tr; (o)) = Tr;(e). ¢

Exercise 198 Using the notation of Examples 3.4.2 and 3.4.3, produce a table of values
of Tr3(B8) for all 8 € Fg where Tr3 : Fg — [F;. ¢

As indicated in the following lemma, the trace function is a nontrivial linear functional
on the vector space Fy over F,.

Lemma 3.8.5 The following properties hold for Tr; : Fyr — Fy:
(i) Tr, is not identically zero,

(i) Tr(a + B) = Tri(a) + Tr(B), for all o, B € Fye, and

(iii) Tr;(aa) = aTr(a), forallo € Fye and all a € F,.

1

Proof: Part (i) is clear because Tr,(x) is a polynomial in x of degree ¢'~' and hence has

t—1

at most ¢’~" roots in IF‘; by Exercise 159. Parts (ii) and (iii) follow from the facts that
o4(a + B) = o4(a) + 04(B) and o, (aa) = aoy(a) for all o, B € Fyn and all a € F, since
0y is a field automorphism that fixes I, . a

The trace of a vector ¢ = (c1,¢2,...,Cy) € IE“Z; is defined by Tr,(¢c) = (Tr,(cy),

Tr/(c2), ..., Tri(cy)). The trace of a linear code C of length n over F, is defined by
Tr,(C) = {Tr;(¢) | ¢ € C}.

The trace of C is a linear code of length n over IF,. The following theorem of Delsarte [64]
exhibits a dual relation between subfield subcodes and trace codes.

Theorem 3.8.6 (Delsarte) Let C be a linear code of length n over F . Then

Clr,)" = Tr,(CH).

Proof: We first show that (Chgq)l D Tr,(Ch). Let ¢ = (¢1, ¢a, . .., cy) be in C* and let
b=(,...,b,) bein C|]Fq. Then by Lemma 3.8.5(ii) and (iii),

Tr/(c) - b= Tr(ci)b; = Tr,(Zcib[) = Tr,(0) =0
i=1 i=1

asceCtandb e Clr, € C. Thus Tr,(¢c) € (Clg,)".
We now show that (C|g,)" € Tr,(C*) by showing that (Tr,(C1))t € C IF,. Let a=
(ai, ..., a,) € (Tr,(CH)*. Since a; € F, for 1 <i < n, we need only show that a € C,
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and for this it suffices to show thata - b = O forallb € C*. Letbh = (by, ..., b,)beavector
in C*. Then b € C* for all 8 € F,:, and

0=a-Tr(pb) =Y aTr(pb;) =Tr, (ﬂ Zaib,») = Tr(Bx)
i=l i=l

wherex = a - bby Lemma 3.8.5(ii) and (iii). If x # 0, then we contradict (i) of Lemma 3.8.5.
Hence x = 0 and the theorem follows. U

Example 3.8.7 Delsarte’s theorem can be used to compute the subfield subcodes of the
codes in Example 3.8.2. For instance, C]l has generator matrix

H=[ o o & o* & ofl.

The seven nonzero vectors ofo‘ area’(1, o, 0, ..., % for0 <i <6. Using Exercise 198,
we have Tr3(e’) = 1 fori € {0, 3, 5, 6} and Tr3(a’) = O fori € {1, 2, 4}. Thus the nonzero
vectors of (C; |F2)J— = Tr3(Cll) are the seven cyclic shifts of 1001011, namely 1001011,
1100101, 1110010, 0111001, 1011100, 0101110, and 0010111. A generator matrix for
(Ci|p,)* is obtained by taking three linearly independent cyclic shifts of 1001011. Such a
matrix is the parity check matrix of C;|f, given in Example 3.8.2. ]

Exercise 199 Verify all the claims made in Example 3.8.7. ¢

Exercise 200 Use Delsarte’s Theorem to find the subfield subcodes of C, and C3 from
Example 3.8.2 in an analogous manner to that given in Example 3.8.7. ¢

If C is a code of length n over [, which has a basis of vectors in I, the minimum weight
vectors in C and C|p, are the same up to scalar multiplication as we now see. In particular
the minimum weight vectors in the two codes have the same set of supports, where the
support of a vector ¢, denoted supp(c), is the set of coordinates where ¢ is nonzero.

Theorem 3.8.8 LetC bean [n, k, d] code overIF . Assume that C has a basis of codewords
in Iﬁ‘z. Then every vector in C of weight d is a multiple of a vector of weight d in C|, .

Proof: Let {by, ..., by} be a basis of C with b; € IE‘Z for 1 <i <k.Then {by,...,b;}is
also a basis 0fC|Fq, by Theorem 3.8.4.Letc =c¢;---¢, = Zle a;b;, with ; € F,:. Thus
¢ € C, and by Lemma 3.8.5, Tr,(¢) = Zle Tr,(e;)b; € Clr, < C. Also wi(Tr;(¢)) < wt(c)
as Tr,(0) = 0. Assume now that ¢ has weight d. Then either Tr,(¢) = 0 or Tr,(c) has weight
d with supp(c) = supp(Tr;(c)). By replacing ¢ by ac for some o € F;;, we may assume
that Tr,(c) # 0 using Lemma 3.8.5(i). Choose i so that ¢; # 0. As supp(c) = supp(Tr,(c)),
Tr,(c;) # 0and wt(c; Tr,(¢) — Tr;(c;)c) < d.Thus ¢;Tr,(¢) — Tr;(c;)e = 0and cis amultiple
of Tr,(c). ([l



4

Cyclic codes

We now turn to the study of an extremely important class of codes known as cyclic codes.
Many families of codes including the Golay codes, the binary Hamming codes, and codes
equivalent to the Reed—Muller codes are either cyclic or extended cyclic codes. The study
of cyclic codes began with two 1957 and 1959 AFCRL reports by E. Prange. The 1961
book by W. W. Peterson [255] compiled extensive results about cyclic codes and laid the
framework for much of the present-day theory; it also stimulated much of the subsequent
research on cyclic codes. In 1972 this book was expanded and published jointly by Peterson
and E. J. Weldon [256].

In studying cyclic codes of length n, it is convenient to label the coordinate positions as
0,1,...,n — 1 and think of these as the integers modulo n. A linear code C of length n over
IF, is cyclic provided that for each vector ¢ = cq - - - ¢,—2¢,—1 in C the vector ¢,_ico - - - Cp—2,
obtained from c¢ by the cyclic shift of coordinates i — i 4+ 1 (mod n), is also in C. So a
cyclic code contains all n cyclic shifts of any codeword. Hence it is convenient to think
of the coordinate positions cyclically where, once you reach n — 1, you begin again with
coordinate 0. When we speak of consecutive coordinates, we will always mean consecutive
in that cyclical sense.

When examining cyclic codes over F,, we will most often represent the codewords in
polynomial form. There is a bijective correspondence between the vectors ¢ = cocy - - - €1
in IE"; and the polynomials c¢(x) =co +cjx + -+ + Cp1x" 1 in F,[x] of degree at most
n — 1. We order the terms of our polynomials from smallest to largest degree. We allow
ourselves the latitude of using the vector notation ¢ and the polynomial notation c(x)
interchangeably. Notice that if c(x) = co+cjx +--- + Cp1x" 1, then xe(x) = ¢, 1 x" +
cox + c1x2 4+ -+ + ¢,_ox""1, which would represent the codeword ¢ cyclically shifted one
to the right if x" were set equal to 1. More formally, the fact that a cyclic code C is invariant
under a cyclic shift implies that if c(x) is in C, then so is xc(x) provided we multiply modulo
x™ — 1. This suggests that the proper context for studying cyclic codes is the residue class
ring

Ry =TF,x1/(x" = D).

Under the correspondence of vectors with polynomials as given above, cyclic codes are
ideals of R,, and ideals of R, are cyclic codes. Thus the study of cyclic codes in IF’; is
equivalent to the study of ideals in R,. The study of ideals in R, hinges on factoring
x™ — 1, a topic we now explore.
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Factoring x"* — 1

We are interested in finding the irreducible factors of x" — 1 over F,. Two possibilities
arise: either x" — 1 has repeated irreducible factors or it does not. The study of cyclic
codes has primarily focused on the latter case. By Exercise 201, x" — 1 has no repeated
factors if and only if g and n are relatively prime, an assumption we make throughout this
chapter.

Exercise 201 For f(x) =ao+ aix + -+ a,x" € F[x], define the formal derivative
of f(x) to be the polynomial f'(x) = a; + 2axx + 3azx2 + -+ -+ na,x" ! e F,[x]. From
this definition, show that the following rules hold:

@ (f +8)x) = f'(x)+ g'(x).

(®) (fg)(x) = f'(x)g(x) + f(x)g'(x).

©) (fx)™Y = m(fx))"! f'(x) for all positive integers .

@ If f(x)= fi)M folx)*--- fu(x)*™, where ay,...,a, are positive integers and
Si(x), ..., fu(x) are distinct and irreducible over I, then
J&x)
= fi(x) - fu(x).

ged(f(x), f(x))

(e) Show that f(x) has no repeated irreducible factors if and only if f(x) and f'(x) are
relatively prime.

(f) Show that x” — 1 has no repeated irreducible factors if and only if g and n are relatively
prime. ¢

To help factor x" — 1 over F, it is useful to find an extension field F, of IF, that
contains all of its roots. In other words, IF,; must contain a primitive nth root of unity,
which occurs precisely when n | (¢ — 1) by Theorem 3.3.3. Define the order ord,(g) of
g modulo n to be the smallest positive integer a such that g = 1 (mod n). Notice that if
t = ord,(g), then IF;: contains a primitive nth root of unity o, but no smaller extension field
of IF, contains such a primitive root. As the o' are distinct for 0 <i < n and (a!)" = 1,
I+ contains all the roots of x" — 1. Consequently, Fy is called a splitting field of x" — 1
over IF,. So the irreducible factors of x" — 1 over IF, must be the product of the distinct
minimal polynomials of the nth roots of unity in F,:. Suppose that y is a primitive element
of F,. Then a = y¢ is a primitive nth root of unity where d = (¢’ — 1)/n. The roots
of My (x) are {y?, y4, ydsqz, e, ydsqrfl} = {a*, a9, o, s }, where r is the
smallest positive integer such that dsq” = ds (mod g’ — 1) by Theorem 3.7.6. But dsq” =
ds (mod ¢' — 1) if and only if s¢" = 5 (mod n).

This leads us to extend the notion of g-cyclotomic cosets first developed in Section 3.7.
Let s be an integer with 0 < s < n. The g-cyclotomic coset of s modulo n is the set

Cs ={s,5q,...,5¢" "} (mod n),

where r is the smallest positive integer such that s¢g” = s (mod n). It follows that C; is the
orbit of the permutation i — ig (mod n) that contains s. The distinct g-cyclotomic cosets
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modulo n partition the set of integers {0, 1, 2, ..., n — 1}. As before we normally denote a
cyclotomic coset in this partition by choosing s to be the smallest integer contained in the
cyclotomic coset. In Section 3.7 we had studied the more restricted case where n = ¢' — 1.
Notice that ord,,(q) is the size of the g-cyclotomic coset C; modulo n. This discussion gives
the following theorem.

Theorem 4.1.1 Let n be a positive integer relatively prime to q. Let t = ord, (q). Let o be
a primitive nth root of unity in F .
(1) For each integer s with 0 < s < n, the minimal polynomial of a® over IF, is

Ma(0) = [ Jox = o),
ieCy
where Cy is the g-cyclotomic coset of s modulo n.
(ii) The conjugates of a® are the elements o' withi € Cj.
(iii) Furthermore,

X — 1= Mo ()

is the factorization of x" — 1 into irreducible factors over IF,, where s runs through a
set of representatives of the q-cyclotomic cosets modulo n.

Example 4.1.2 The 2-cyclotomic cosets modulo 9 are Cy = {0}, C; ={1,2,4,8,7, 5},
and C; = {3, 6}. So ordy(2) = 6 and the primitive ninth roots of unity lie in g4 but in no
smaller extension field of F,. The irreducible factors of x° — 1 over F, have degrees 1,
6, and 2. These are the polynomials M;(x) = x + 1, M,(x), and M,:(x), where « is a
primitive ninth root of unity in Fgs. The only irreducible polynomial of degree 2 over [,
is x2 4+ x + 1, which must therefore be M,:(x). (Notice also that o> is a primitive third
root of unity, which must lie in the subfield F4 of Fg4.) Hence the factorization of x° — 1 is
X—1=Gx+DxE4+x+ D0 +x3+ 1) and My(x) = x° +x3 + 1. [ ]

Example 4.1.3 The 3-cyclotomic cosets modulo 13 are Cy = {0}, C; ={1,3,9}, C, =
{2,6,5}, C4 ={4,12,10}, and C; = {7, 8, 11}. So ord3(3) = 3 and the primitive 13th
roots of unity lie in [F,;7 but in no smaller extension field of 5. The irreducible factors of
x13 — 1 over F5 have degrees 1, 3, 3, 3, and 3. These are the polynomials M (x) = x — 1,
My (x), My2(x), Mys(x), and M,7(x), where « is a primitive 13th root of unity in Fp;. W

In these examples we notice that the size of each g-cyclotomic coset is a divisor of
ord, (¢). This holds in general.

Theorem 4.1.4 The size of each q-cyclotomic coset is a divisor of ord, (q). Furthermore,
the size of C; is ord,(q).

Proof: Let = ord,(¢) and let m be the size of Cy. Then M,s(x) has degree m where « is a
primitive nth root of unity. Som | ¢ by Theorem 3.7.3. The fact that the size of C; is ord, (g)
follows directly from the definitions of g-cyclotomic cosets and ord,, (¢) as mentioned prior
to Theorem 4.1.1. O



124 Cyclic codes
I
Exercise 202 Letg = 2.
(a) Find the g-cyclotomic cosets modulo n where 7 is:
(i) 23,
(ii) 45.
(b) Find ord, (g) for the two values of n given in part (a).
(c) What are the degrees of the irreducible factors of x" — 1 over F, for the two values of
n given in part (a)? ¢
Exercise 203 Repeat Exercise 202 with ¢ = 3 and n = 28 and n = 41. ¢
Exercise 204 Factor x!> — 1 over F;. ¢
‘We conclude this section by noting that there are efficient computer algorithms for factor-
ing polynomials over a finite field, among them the algorithm of Berlekamp, MacWilliams,
and Sloane [18]. Many of the algebraic manipulation software packages can factor x"” — 1
over a finite field for reasonably sized integers n. There are also extensive tables in [256]
listing all irreducible polynomials over F, for n < 34.
I
4.2 Basic theory of cyclic codes

We noted earlier that cyclic codes over I, are precisely the ideals of
Ry =F,[x]/(x" = 1.

Exercises 153 and 166 show that IF, [x] is a principal ideal domain. It is straightforward then
to show that the ideals of R, are also principal, and hence cyclic codes are the principal
ideals of R,,. When writing a codeword of a cyclic code as c(x), we technically mean the
coset c(x) + (x™ — 1) in R,,. However, such notation is too cumbersome, and we will write
c(x) even when working in R,,. Thus we think of the elements of R, as the polynomials
in IF,[x] of degree less than n with multiplication being carried out modulo x" — 1. So
when working in R,, to multiply two polynomials, we multiply them as we would in
F,[x] and then replace any term of the form ax"*/, where 0 < j < n, by ax’/. We see
immediately that when writing a polynomial as both an element in F,[x] and an element
in R,, confusion can easily arise. The reader should be aware of which ring is being
considered.

As stated earlier, throughout our study of cyclic codes, we make the basic assumption that
the characteristic p of IF, does not divide the length n of the cyclic codes being considered,
or equivalently, that gcd(n, ¢g) = 1. The primary reason for this assumption is that x” — 1 has
distinct roots in an extension field of I, by Exercise 201, and this enables us to describe its
roots (and as we shall see, cyclic codes) by g-cyclotomic cosets modulo n. The assumption
that p does not divide n also implies that R,, is semi-simple and thus that the Wedderburn
Structure Theorems apply; we shall not invoke these structure theorems preferring rather
to derive the needed consequences for the particular case of R,,. The theory of cyclic codes
with ged(n, g) # 1is discussed in [49, 201], but, to date, these “repeated root” cyclic codes
do not seem to be of much interest.
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To distinguish the principal ideal (g(x)) of F,[x] from that ideal in R,, we use the
notation (g(x)) for the principal ideal of R, generated by g(x). We now show that there
is a bijective correspondence between the cyclic codes in R, and the monic polynomial
divisors of x" — 1.

Theorem 4.2.1 Let C be a nonzero cyclic code in R,,. There exists a polynomial g(x) € C
with the following properties:

(1)  g(x) is the unique monic polynomial of minimum degree in C,

(i) C = (gx)),and

(i) g(x) | (x" —1).

Letk = n —deg g(x), and let g(x) = Z::k g,-xi, where g,_; = 1. Then:

(iv) the dimension of C is k and {g(x), xg(x), ..., xk_lg(x)} is a basis for C,

(v) every element of C is uniquely expressible as a product g(x) f(x), where f(x) =0 or

deg f(x) <k,
(vi)

(g0 &1 & - &uk 0

G = 0 80 81 o En—k—1 8n—k
LO 8o 8n—k
[g(x)

- xg(x)

L x*lg(x)

is a generator matrix for C, and
(vii) if o is a primitive nth root of unity in some extension field of F,, then

g() = [ [ M (),

where the product is over a subset of representatives of the q-cyclotomic cosets
modulo n.

Proof: Let g(x) be a monic polynomial of minimum degree in C. Since C is nonzero,
such a polynomial exists. If ¢(x) € C, then by the Division Algorithm in F,[x], c(x) =
g(x)h(x) + r(x), where either r(x) = 0 or deg r(x) < deg g(x). As C is an ideal in R,,
r(x) € C and the minimality of the degree of g(x) implies (x) = 0. This gives (i) and (ii).
By the Division Algorithm x" — 1 = g(x)h(x) + r(x), where again r(x) = Oordeg r(x) <
deg g(x) in Fy[x]. As x" — 1 corresponds to the zero codeword in C and C is an ideal in
R, r(x) € C, a contradiction unless r(x) = 0, proving (iii).

Suppose that deg g(x) =n — k. By parts (ii) and (iii), if c(x) € C with ¢(x) =0 or
deg c(x) < n, then c(x) = g(x) f(x) in Fy[x]. If c(x) =0, then f(x) =0. If c(x) #0,
deg c(x) < n implies that deg f(x) < k, by Exercise 155. Therefore

C={g)f(x)| f(x)=0ordeg f(x) <k}
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So C has dimension at most k and

{g(x), xg(x), ..., x*1g(x)}

spans C. Since these k polynomials are of different degrees, they are independent in F,, [x].
Since they are of degree at most n — 1, they remain independent in R,,, yielding (iv) and
(v). The codewords in this basis, written as n-tuples, give G in part (vi). Part (vii) follows
from Theorem 4.1.1. a

We remark that part (ii) shows that R, is a principal ideal ring. Also parts (i)
through (vi) of Theorem 4.2.1 hold even if gcd(n, g) # 1. However, part (vii) requires
that ged(n, g) = 1. A parity check matrix for a cyclic code will be given in Theorem
4.2.7.

Corollary 4.2.2 Let C be a nonzero cyclic code in R,,. The following are equivalent:
(1) g(x) is the monic polynomial of minimum degree in C.
(i) C = (g(x)), g(x) is monic, and g(x) | (x" — 1).

Proof: That (i) implies (ii) was shown in the proof of Theorem 4.2.1. Assume (ii). Let
g1(x) be the monic polynomial of minimum degree in C. By the proof of Theorem 4.2.1(i)
and (ii), g1(x) | g(x) in F,[x] and C = {g1(x)). As g1(x) € C = (g(x)), g1(x) = g(N)a(x)
(mod x" — 1) implying g(x) = g(x)a(x) + (x" — 1)b(x) in F,[x]. Since g(x) | (x" — 1),
gx) | gx)alx) + (x" — 1)b(x)or g(x) | g1(x). Asboth g;(x)and g(x) are monic and divide
one another in I, [x], they are equal. O

Theorem 4.2.1 shows that there is a monic polynomial g(x) dividing x” — 1 and generat-
ing C. Corollary 4.2.2 shows that the monic polynomial dividing x" — 1 which generates C
is unique. This polynomial is called the generator polynomial of the cyclic code C. By the
corollary, this polynomial is both the monic polynomial in C of minimum degree and the
monic polynomial dividing x” — 1 which generates C. So there is a one-to-one correspon-
dence between the nonzero cyclic codes and the divisors of x” — 1, not equal to x" — 1.
In order to have a bijective correspondence between all the cyclic codes in R,, and all the
monic divisors of x” — 1, we define the generator polynomial of the zero cyclic code {0}
to be x" — 1. (Note that x” — 1 equals 0 in R,,.) This bijective correspondence leads to the
following corollary.

Corollary 4.2.3 The number of cyclic codes in R, equals 2", where m is the number of
q-cyclotomic cosets modulo n. Moreover, the dimensions of cyclic codes in R, are all
possible sums of the sizes of the q-cyclotomic cosets modulo n.

Example 4.2.4 In Example 4.1.2, we showed that, over [F,, X—1=0+x)A+x+
x2)(1 4+ x> + x°), and so there are eight binary cyclic codes C; of length 9 with generator
polynomial g;(x) given in the following table.
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i dim gi(x)

0 0 1+4x°

I 1 (A4+x+xH0+x3+x)=1T+x+x24+ -+ 8
2 2 A4+ 4+x)=14+x+x3+x*+x0+x7
3 03 14x34x

4 6 (I+x)(14+x+x)=1+x3

5 7 14x+x?

6 8 1+4+x

7 9 1

The following corollary to Theorem 4.2.1 shows the relationship between the generator
polynomials of two cyclic codes when one code is a subcode of the other. Its proof is left
as an exercise.

Corollary 4.2.5 Let Cy and C; be cyclic codes over IF, with generator polynomials g,(x)
and g,(x), respectively. Then C; C C, if and only if g2(x) | g1(x).

Exercise 205 Prove Corollary 4.2.5. ¢

Exercise 206 Find all pairs of codes C; and C; from Example 4.2.4 where C; C C;. ¢

Exercise 207 OverF,, (1 4+ x) | (x" — 1). Let C be the binary cyclic code (1 + x) of length

n. Let C; be any binary cyclic code of length n with generator polynomial g;(x).

(a) What is the dimension of C?

(b) Prove that C is the set of all vectors in F; with even weight.

(c) If C, has only even weight codewords, what is the relationship between 1 + x and
g1(x)?

(d) If C, has some odd weight codewords, what is the relationship between 1 + x and

g1(x)? ¢

Not surprisingly, the dual of a cyclic code is also cyclic, a fact whose proof we also leave
as an exercise.

Theorem 4.2.6 The dual code of a cyclic code is cyclic.

In Section 4.4, we will develop the tools to prove the following theorem about the
generator polynomial and generator matrix of the dual of a cyclic code; see Theorem 4.4.9.
The generator matrix of the dual is of course a parity check matrix of the original cyclic
code.

Theorem 4.2.7 Let C be an [n, k] cyclic code with generator polynomial g(x). Let
hx)=x"—1)/gx) = Zf:() hix'. Then the generator polynomial of C* is g'(x) =
x*h(x~")/ h(0). Furthermore, a generator matrix for C*, and hence a parity check matrix
forC, is
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he her heo oo h 0
0 e My -+ h ho 4.1
0 Iy ... ho

Example 4.2.8 The cyclic codes I and {0} are duals of one another. The repetition code

of length n over I, is a cyclic code whose dual is the cyclic code of even-like vectors of

F”. |
q

Exercise 208 Prove Theorem 4.2.6. ¢

Exercise 209 Based on dimension only, for 0 <i < 7 find CiL for the cyclic codes C; in
Example 4.2.4. ¢

It is also not surprising that a subfield subcode of a cyclic code is cyclic.
Theorem 4.2.9 Let C be a cyclic code over Fye. Then C|y, is also cyclic.
Exercise 210 Prove Theorem 4.2.9. ¢

Exercise 211 Verify that the three codes C1, C,, and C3 of length 7 over [Fg of Example 3.8.2
are cyclic. Verity that C; |, are all cyclic as well. ¢

Cyclic codes are easier to decode than other codes because of their additional structure.
We will examine decoding algorithms for general cyclic codes in Section 4.6 and specific
families in Section 5.4. We now examine three ways to encode cyclic codes. Let C be a
cyclic code of length n over I, with generator polynomial g(x) of degree n — k; so C has
dimension k.

The first encoding is based on the natural encoding procedure described in Section 1.11.
Let G be the generator matrix obtained from the shifts of g(x) in Theorem 4.2.1. We encode
the message m € IFZ as the codeword ¢ = mG. We leave it as Exercise 212 to show that if
m(x) and c(x) are the polynomials in I, [x] associated to m and ¢, then c(x) = m(x)g(x).
However, this encoding is not systematic.

Exercise 212 Let C be a cyclic code of length n over I, with generator polynomial g(x).
Let G be the generator matrix obtained from the shifts of g(x) in Theorem 4.2.1. Prove
that the encoding of the message m € IE"; as the codeword ¢ = mG is the same as forming
the product ¢(x) = m(x)g(x) in IF,[x], where m(x) and c(x) are the polynomials in I, [x]
associated to m and c. ¢

The second encoding procedure is systematic. The polynomial m(x) associated to the
message m is of degree at most k — 1 (or is the zero polynomial). The polynomial
x"*m(x) has degree at most n — 1 and has its first n — k coefficients equal to 0; thus
the message is contained in the coefficients of Xtk gnkl oyl By the Division
Algorithm,

x”_km(x) = g(x)a(x) + r(x), where deg r(x) <n —korr(x)=0.
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Let c(x) = x"*m(x) — r(x); as c(x) is a multiple of g(x), c(x) € C. Also c(x) differs from
x"*m(x) in the coefficients of 1, x, ..., x" %1 as deg r(x) < n — k. So c(x) contains the
message m in the coefficients of the terms of degree at least n — k.

The third encoding procedure, also systematic, for C = (g(x)) uses the generator poly-
nomial gJ-(x) of the dual code C' as given in Theorem 4.2.7. As C is an [n, k] code,
if ¢ = (co, ¢1, ..., cu—1) € C, Once ¢y, 1, ..., k1 are known, then the remaining com-
ponents cg, ..., c,— are determined from H ¢! =0, where H is the parity check ma-
trix (4.1). We can scale the rows of H so that its rows are shifts of the monic polyno-
mial g+ (x) = hy + hjx + - + hj_,x*~" + x*. To encode C, choose k information bits
Co, Cl, ..., Cr—1; then

k—1

¢ == Wjciksj, 42)
=0

where the computation ¢; is performed in the orderi =k, k+ 1,...,n — 1.

Exercise 213 Let C be a binary cyclic code of length 15 with generator polynomial g(x) =

(I4+x 4+ 20+ x +x2 4+ 23+ x4,

(a) Encode the message m(x) = 1 4+ x? 4+ x> using the first encoding procedure (the non-
systematic encoding) described in this section.

(b) Encode the message m(x) =1+ x2 4+ using the second encoding procedure (the
first systematic encoding) described in this section.

(c) Encode the message m(x) = 1 + x2 4+ x° using the third encoding procedure (the sec-
ond systematic encoding) described in this section. ¢

Exercise 214 Show that in any cyclic code of dimension k, any set of k consecutive
coordinates forms an information set. ¢

Each of the encoding schemes can be implemented using linear shift-registers. We
illustrate this for binary codes with the last scheme using a linear feedback shift-register.
For more details on implementations of the other encoding schemes we refer the reader
to [18, 21, 233, 256]. The main components of a linear feedback shift-register are delay
elements (also called flip-flops) and binary adders shown in Figure 4.1. The shift-register is
run by an external clock which generates a timing signal, or clock cycle, every ty seconds,
where 7 can be very small. Generally, a delay element stores one bit (a0 or a 1) for one clock
cycle, after which the bit is pushed out and replaced by another bit. A linear shift-register
is a series of delay elements; a bit enters at one end of the shift-register and moves to the
next delay element with each new clock cycle. A linear feedback shift-register is a linear
shift-register in which the output is fed back into the shift-register as part of the input. The

— -

Delay element Binary adder

Figure 4.1 Delay element and 3-input binary adder.
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Figure 4.2 Encoder for C, where C* = (1 + x2 + x3).

adder takes all its input signals and adds them in binary; this process is considered to occur
instantaneously.

Example 4.2.10 In Figure 4.2, we construct a linear feedback shift-register for encoding
the [7, 3] binary cyclic code C with generator polynomial g(x) = 1 + x + x> + x*. Then
g+ (x) = 1 4+ x? 4 x3, and so the parity check equations from (4.2) are:

co+ ¢ = c3,
c1+c3 =cy,
C2 + ¢4 = cs,

c3 + ¢5 = cg.

The shift-register has three flip-flops. Suppose we input ¢y = 1, ¢; =0, and ¢, = 0 into
the shift-register. Initially, before the first clock cycle, the shift-register has three unknown
quantities, which we can denote by xx*. The switch is set at position A for three clock
cycles, in which case the digits 1, 0, O from the source are moved into the shift-register
from left to right, as indicated in Table 4.1. These three bits also move to the transmission
channel. Between clock cycles 3 and 4, the switch is set to position B, which enables the

Table 4.1 Shift-register for C, where
Ct = (1 4+ x% + x3) with input 100

Clock

cycle Switch Source Channel Register
1 A 1 1 Tax

2 A 0 0 0lx

3 A 0 0 001

4 B 1 100

5 B 1 110

6 B 1 111

7 B 0 011




131

4.2 Basic theory of cyclic codes

feedback to take place. The switch remains in this position for 4 clock cycles; during this
time no further input arrives from the source. During cycle 3, the register reads 001, which
corresponds to cocjc; = 100. Then at cycle 4, ¢p = 1 and ¢; = 0 from the shift-register
pass through the binary adder and are added to give c3 = 1; the result both passes to the
channel and is fed back into the shift-register from the left. Note that the shift-register has
merely executed the first of the above parity check equations. The shift-register now contains
100, which corresponds to cjcac3 = 001. At clock cycle 5, the shift-register performs the
binary addition c¢; + ¢3 = 0+ 1 = 1 = ¢4, which satisfies the second of the parity check
equations. Clock cycles 6 and 7 produce cs and c¢ as indicated in the table; these satisfy
the last two parity check equations. The shift-register has sent cyc; - - - c¢ = 1001110 to
the channel. (Notice also that the codeword is the first entry of the column “Register” in
Table 4.1.) Then the switch is reset to position A, and the shift-register is ready to receive
input for the next codeword. ]

Exercise 215 Give the contents of the shift-register in Figure 4.2 in the form of a table
similar to Table 4.1 for the following input sequences. Also give the codeword produced.
(a) CcoC1Cy = 011,

(b) CcpC1Cy = 101. 0

Notice that we labeled the three delay elements in Figure 4.2 with x2, x, and 1. The
vertical wires entering the binary adder came after the delay elements x? and 1. These are
the nonzero terms in g-(x) of degree less than 3. In general if deg g* (x) = k, the k delay
elements are labeled x*~!, x¥=2, ... 1 from left to right. The delay elements with wires to
a binary adder are precisely those with labels coming after the nonzero terms in g*(x) of
degree less than k. Examining (4.2) shows why this works.

Exercise 216 Do the following:

(a) Let C be the [7, 4] binary cyclic code with generator polynomial g(x) = 1+ x + x>.
Find g*(x).

(b) Draw a linear feedback shift-register to encode C.

(c) Give the contents of the shift-register from part (b) in the form of a table simi-
lar to Table 4.1 for the input sequence cyocicac3 = 1001. Also give the codeword
produced. ¢

Exercise 217 Do the following:

(a) Let C be the [9, 7] binary cyclic code with generator polynomial g(x) = 1 + x + x?2
shown in Example 4.2.4. Find g*(x).

(b) Draw a linear feedback shift-register to encode C.

(c) Give the contents of the shift-register from part (b) in the form of a table similar
to Table 4.1 for the input sequence cocy ---c¢ = 1011011. Also give the codeword
produced. ¢

The idea of a cyclic code has been generalized in the following way. If a code C has
the property that there exists an integer s such that the shift of a codeword by s positions
is again a codeword, C is called a quasi-cyclic code. Cyclic codes are quasi-cyclic codes
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with s = 1. Quasi-cyclic codes with s = 2 are sometimes monomially equivalent to double
circulant codes; a double circulant code has generator matrix [/ A], where A is a circulant
matrix. We note that the term “double circulant code” is sometimes used when the generator
matrix has other “cyclic-like” structures such as
0 1---1
1
1 : ,
: B
1
where B is a circulant matrix; such a code may be called a “bordered double circulant
code.” See Section 9.8 where we examine more extensively the construction of codes using
circulant matrices.
I
4.3 Idempotents and multipliers

Besides the generator polynomial, there are many polynomials that can be used to generate
acyclic code. A general result about which polynomials generate a given cyclic code will be
presented in Theorem 4.4.4. There is another very specific polynomial, called an idempotent
generator, which can be used to generate a cyclic code.

An element e of a ring satisfying ¢* = e is called an idempotent. As stated earlier with-
out proof, the ring R, is semi-simple when gcd(n, g) = 1. Therefore it follows from the
Wedderburn Structure Theorems that each cyclic code in R, contains a unique idempotent
which generates the ideal. This idempotent is called the generating idempotent of the cyclic
code. In the next theorem we prove this fact directly and in the process show how to deter-
mine the generating idempotent of a cyclic code. Recall that a unity in a ring is a (nonzero)
multiplicative identity in the ring, which may or may not exist; however, if it exists, it is
unique.

Example 4.3.1 The generating idempotent for the zero cyclic code {0} is 0, while that for
the cyclic code R, is 1. ]

Theorem 4.3.2 Let C be a cyclic code in R,,. Then:

(i) there exists a unique idempotent e(x) € C such that C = (e(x)), and

(i) if e(x) is a nonzero idempotent in C, then C = (e(x)) if and only if e(x) is a unity
of C.

Proof: If C is the zero code, then the idempotent is the zero polynomial and (i) is clear and
(i1) does not apply.

So we assume that C is nonzero. We prove (ii) first. Suppose that e(x) is a unity in C.
Then (e(x)) € C as C is an ideal. If c(x) € C, then c(x)e(x) = c(x) in C, implying that
(e(x)) = C. Conversely, suppose that e(x) is a nonzero idempotent such that C = {(e(x)).
Then every element c¢(x) € C can be written in the form c(x) = f(x)e(x). But c(x)e(x) =
F)(e(x))? = f(x)e(x) = c(x) implying e(x) is a unity for C.
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As C is nonzero, by (ii) if e;(x) and e,(x) are generating idempotents, then both are
unities and e (x) = ex(x)e;(x) = ex(x). So we only need to show that a generating idem-
potent exists. If g(x) is the generator polynomial for C, then g(x) | (x" — 1) by Theo-
rem4.2.1. Let h(x) = (x" — 1)/g(x). Then ged(g(x), h(x)) = 1inF,[x] as x” — 1 has dis-
tinct roots. By the Euclidean Algorithm there exist polynomials a(x), b(x) € F,[x] so that
a(x)g(x) + b(x)h(x) = 1.Lete(x) = a(x)g(x) (mod x" — 1);thatis, e(x)is the coset repre-
sentative of a(x)g(x) + (x" — 1) in R,,. Then in R,,, e(x)? = (a(x)g(x)( — b(x)h(x)) =
a(x)g(x) = e(x) (mod x" — 1) as g(x)h(x) = x" — 1. Also if c¢(x) € C, c(x) = f(x)g(x)
implying c(x)e(x) = f(x)g(x)(1 — b(x)h(x)) = f(x)g(x) = c(x) (mod x" — 1);so e(x)is
a unity in C, and (i) follows from (ii). a

The proof shows that one way to find the generating idempotent e(x) for a cyclic code
C from the generator polynomial g(x) is to solve 1 = a(x)g(x) + b(x)h(x) for a(x) using
the Euclidean Algorithm, where h(x) = (x" — 1)/g(x). Then reducing a(x)g(x) modulo
x" — 1 produces e(x). We can produce g(x) if we know e(x) as the following theorem
shows.

Theorem 4.3.3 Let C be a cyclic code over F, with generating idempotent e(x). Then the
generator polynomial of C is g(x) = ged(e(x), x" — 1) computed in F [x].

Proof: Let d(x) = gcd(e(x), x" — 1) in F,[x], and let g(x) be the generator polynomial
for C. As d(x) | e(x), e(x) = d(x)k(x) implying that every element of C = (e(x)) is also a
multiple of d(x); thus C C (d(x)). By Theorem 4.2.1, in Fy[x] g(x) | (x" — 1) and g(x) |
e(x) as e(x) € C. So by Exercise 158, g(x) | d(x) implying d(x) € C. Thus (d(x)) < C,
and so C = (d(x)). Since d(x) is a monic divisor of x" — 1 generating C, d(x) = g(x) by
Corollary 4.2.2. O

Example 4.3.4 The following table gives all the cyclic codes C; of length 7 over
[F, together with their generator polynomials g;(x) and their generating idempotents

e;(x).

i dim gi(x) ei(x)

0 0 14«7 0

I 1 14+x+x>+-+x% T+x+x24+ 4x°
2 3 L+ x%+x3+x* 14+ x3 4+ x5 +x°

3 3 14+ x+x2+x* 14+x 4+ x2+x*

4 4 l+x+x3 x4+ x4 x4

5 4 14+ x24+x3 x40 +x°

6 6 1+x x4+x24+. - 4x°

7 7 1 1

The two codes of dimension 4 are [7, 4, 3] Hamming codes. |
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Example 4.3.5 The following table gives all the cyclic codes C; of length 11 over F;
together with their generator polynomials g;(x) and their generating idempotents e;(x).

i dim 8i(x) e;(x)

0 0 x''—1 0

I 1 14+x+x>+--4x0 —l—x—x*—...—x0

2 5 l—x—x>—x3+x*+x% 1T4+x+3+x*+x°+%°

3 5 T4+x2—x3—x* =34+ x% 1422420 +x7+x84x10

4 6 —14+x2—x34+x*+x —x? —x0 —x7 —x8 —x10

5 6 —l—-x+4+x2—x34x —x—x3—xt—x3—x°

6 10 —1+x —1+x+x2+-+x10

7 11 1 1

The two codes of dimension 6 are [11, 6, 5] ternary Golay codes. [ |

Notice that Theorem 1.8.1 shows that the only [7, 4, 3] binary code is the Hamming code.
In Section 10.4.1 we will show that the only [11, 6, 5] ternary code is the Golay code. By
Examples 4.3.4 and 4.3.5 these two codes have cyclic representations.

Exercise 218 Verify the entries in the table in Example 4.3.4. ¢
Exercise 219 Verify the entries in the table in Example 4.3.5. ¢

Exercise 220 Find the generator polynomials and generating idempotents of all cyclic
codes over 3 of length 8 and dimensions 3 and 5. ¢

Exercise 221 Let j(x)=14+x+x>+---4+x"'inR, and 7(x) =(1/n)j(x).

(a) Prove that j(x)? = nj(x)in R,.

(b) Prove that 7(x) is an idempotent in R,,.

(c) Prove that j(x) is the generating idempotent of the repetition code of length 1 over F,.

(d) Prove that if c¢(x) is in R, then c(x)j(x) = c(1)j(x) in R,,.

(e) Prove thatif c(x) is in R, then c(x)f(x) = 0in R, if c¢(x) corresponds to an even-like
vector in IFZ and c(x)f(x) is a nonzero multiple of 7(x) in R, if c¢(x) corresponds to an
odd-like vector in IF;. ¢

The next theorem shows that, just as for the generator polynomial, the generating idem-
potent and its first k — 1 cyclic shifts form a basis of a cyclic code.

Theorem 4.3.6 Let C be an [n, k] cyclic code with generating idempotent e(x) =
Sy eix'. Then the k x n matrix

€o €] (%) te €n—2 €n—1
€n—1 €o €] te €n-3 €n—2
€n—k+1 €n—k+2 En—k+3 o €p—k—1 €n—k

is a generator matrix for C.
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Proof: This is equivalent to saying that {e(x), xe(x), . .., x*"e(x)} is a basis of C. There-
fore it suffices to show that if a(x) € F,[x] has degree less than k such that a(x)e(x) =
0, then a(x) =0. Let g(x) be the generator polynomial for C. If a(x)e(x) =0, then
0 =a(x)e(x)g(x) = a(x)g(x) as e(x) is the unity of C by Theorem 4.3.2, contradicting
Theorem 4.2.1(v) unless a(x) = 0. a

IfC; and C, are codes of length n over F,;, thenC; +C> = {¢; + ¢, | ¢; € Ci and ¢; € Co}
is the sum of C; and C,. Both the intersection and the sum of two cyclic codes are cyclic,
and their generator polynomials and generating idempotents are determined in the next
theorem.

Theorem 4.3.7 Let C; be a cyclic code of length n over IF, with generator polynomial g;(x)

and generating idempotent e;(x) fori = 1 and 2. Then:

(i) CiNCy has generator polynomial lcm(g(x), g2(x)) and generating idempotent
e1(x)ex(x), and

(1)) Cy + Cy has generator polynomial gcd(gi(x), g2(x)) and generating idempotent
e1(x) + ex(x) — er(x)ex(x).

Proof: We prove (ii) and leave the proof of (i) as an exercise. We also leave it as an exercise
to show that the sum of two cyclic codes is cyclic. Let g(x) = gcd(g;(x), g2(x)). It follows
from the Euclidean Algorithm that g(x) = g;(x)a(x) + g2(x)b(x) for some a(x) and b(x)
inF,[x]. So g(x) € Ci 4 C,. Since C; + C, is cyclic, (g(x)) S C; + C,. On the other hand
g(x) | g1(x), which shows that C; C (g(x)) by Corollary 4.2.5; similarly C; C (g(x)) im-
plying C; + C2 € (g(x)). So C; + C2 = (g(x)). Since g(x) | (x" — 1) as g(x) | g1(x) and
g(x) is monic, g(x) is the generator polynomial for C; + C, by Corollary 4.2.2. If ¢(x) =
c1(x) + ca(x) where ¢;(x) € C; for i = 1 and 2, then c(x)(e1(x) + e2(x) — e1(x)ex(x)) =
c1(x) + ci(x)ez(x) — ci(x)ea(x) + c2(x)er(x) + c2(x) — c2(x)er(x) = c(x). Thus (ii) fol-
lows by Theorem 4.3.2 since e(x) + ex(x) — ej(x)ex(x) € C; + C». O

Exercise 222 Prove part (i) of Theorem 4.3.7. Also prove that if e¢;(x) and e;(x) are
idempotents, so are ej(x)ex(x), e1(x) + ea(x) — e1(x)ex(x), and 1 — e1(x). ¢

Exercise 223 Show that the sum of two cyclic codes is cyclic as claimed in Theorem
4.3.7. ¢

Exercise 224 LetC; beacyclic code of length n over F, fori = 1and 2. Leto be a primitive
nth root of unity in some extension field of F,. Suppose C; has generator polynomial g;(x),
where

gi(x) = [ | Mo (x)

sekK;
is the factorization of g;(x) into minimal polynomials over F, with K; a subset of the
representatives of the g-cyclotomic cosets modulo n. Assume that the representative of a
coset is the smallest element in the coset. What are the subsets of representatives of g-

cyclotomic cosets that will produce the generator polynomials for the codes C; + C, and
CiNCy? ¢
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Exercise 225 Find the generator polynomials and the generating idempotents of the fol-
lowing codes from Example 4.3.4: Cy 4+ Cg, C2 + C3,Cy + C4, C2 + Cs5,C3 + Cy4, C3 + Cs,
Cl 066,620C3,CQQC4, 02005,63064, andC3ﬂCS. 0

Exercise 226 Which pairs of codes in Exercise 220 sum to the code Fg? Which pairs of
codes in that example have intersection {0}? ¢

Exercise 227 If C; is a cyclic code with generator polynomial g;(x) and generating idem-
potent ¢;(x) for 1 <i < 3, what are the generator polynomial and generating idempotent
of C1 +Cyr +C3? ¢

We are now ready to describe a special set of idempotents, called primitive idempotents,
that, once known, will produce all the idempotents in R,, and therefore all the cyclic codes.
Let x" — 1 = fi(x)--- fs(x), where f;(x) is irreducible over IF, for 1 <i <s. The f;(x)
are distinct as x"” — 1 has distinct roots. Let ?, (x) = (x" — 1)/fi(x). In the next theorem we
show that the ideals (ﬁ(x)) of R, are the minimal ideals of R,,. Recall that an ideal Z in a
ring R is a minimal ideal provided there is no proper ideal between {0} and Z. We denote
the generating idempotent of (?i(x)) by e;(x). The idempotents e;(x), . . ., e;(x) are called
the primitive idempotents of R,,.

Theorem 4.3.8 The following hold in R,,.

(i) The ideals (?,- (X)) for 1 <i < s are all the minimal ideals of R,.

(i) R, is the vector space direct sum of (?i (X)) forl <i <s.

(iii) Ifi # j, thene;(x)e;(x) = 0in R,.

(iv) Yl ex)=1inR,.

(v) The only idempotents in (?,- (x)) are 0 and’e;(x).

(vi) If e(x) is a nonzero idempotent in 'R, then there is a subset T of {1,2,...,s} such

that e(x) =Y,y €i(x) and (e(x)) = Y, 1 ( f,(x)

Proof: Suppose that (/f\, (x)) is not a minimal ideal of R,,. By Corollary 4.2.5, there would
be a _generator polynomial g(x) of a nonzero ideal properly contained in { f,(x)) such
that f,(x) | g(x) with g(x) # f,(x) As fi(x) is irreducible and g(x) | (x" — 1), this is
impossible. So ( f,(x)) is a minimal ideal of R,,, completing part of ().

As {?,- (x) | 1 <i < s} has no common irreducible factor of x* — 1 and each polynomial
in the set divides x" — 1, gcd(?l(x), cee };(x)) = 1. Applying the Euclidean Algorithm
inductively,

1= Za,-(x)?i(x) (4.3)
i=1

for some a;(x) € F,[x]. So 1 is in the sum of the ideals (ﬁ(x)), which is itself an ideal
of R,. In any ring, the only ideal containing the identity of the ring is the ring itself.
This proves that R, is the vector space sum of the ideals (?,-(x)). To prove it is a di-
rect sum, we must show that (£;(x)) N Y (£;(x)) = {0} for 1 <i <s.As fi(x) | f;(x)
for j #1i, fj(x)flfj(x), and the irreducible factors of x" — 1 are distinct, we con-
clude that f;(x) = gcd{?j(x) |1 <j<s,j#1i}. Applying induction to the results of
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Theorem 4.3.7(ii) shows that (fi(x)) = ¥, (F;)). So (Fi()) N Y, (Fix) =
(fi(x)) N {fi(x)) = (em( f;(x), fi(x))) = (x" — 1) = {0} by Theorem 4.3.7 completing (ii).
Let M = (m(x)) be any minimal ideal of R,,. As

0#mx)=m(x) 1= Zm(x)ai(X)ﬁ(x)
i=1

by (4.3), there is an i such that m(x)ai(x)?i(x) # 0. Hence M N (E(x)) # {0} as
m(x)a;(x) fi(x) € M N (fi(x)), and therefore M = (f;(x)) by minimality of M and
(?i (x)). This completes the proof of (i).

If i # j, ¢(x)e;(x) € (f:(x)) N (F;(x)) = {0} by (i), yielding (iii). By using (iii) and
applying induction to Theorem 4.3.7(ii), Y ;_,¢;(x) is the generating idempotent of
> (E(x)) = R, by part (ii). The generating idempotent of R, is 1, verifying (iv).

If e(x) is a nonzero idempotent in (?,'(x)), then (e(x)) is an ideal contained in (ﬁ(x)).
By minimality as e(x) is nonzero, (?,- (x)) = (e(x)), implying by Theorem 4.3.2 that e(x) =
2;(x) as both are the unique unity of (?i(x)). Thus (v) holds.

For (vi), note that e(x)e;(x) is an idempotent in (f;(x)). Thus either e(x)e;(x)
is 0 or ¢i(x) by (v). Let T = {i | e(x)e;(x) # 0}. Then by (iv), e(x) =e(x)-1 =
e(x) ) i_ ei(x) = 3 i e(x)ei(x) = ), cp €i(x). Furthermore, (e(x)) = (3_;cp € (x)) =
> eT (e;(x)) by Theorem 4.3.7(ii) and induction. a

We remark that the minimal ideals in this theorem are extension fields of I,. Theorem
4.4.19 will also characterize these minimal ideals using the trace map.

Theorem 4.3.9 Let M be a minimal ideal of R,,. Then M is an extension field of IF,.

Proof: We only need to show that every nonzero element in M has a multiplicative inverse
in M. Let a(x) € M with a(x) not zero. Then {(a(x)) is a nonzero ideal of R, contained
in M, and hence {(a(x)) = M. So if e(x) is the unity of M, there is an element b(x) in
R, with a(x)b(x) = e(x). Now c(x) = b(x)e(x) € M as e(x) € M. Hence a(x)c(x) =
e(x)? = e(x). a

Exercise 228 What fields arise as the minimal ideals in R7 and R 5 over IF,? ¢

Theorem 4.3.8 shows that every idempotent is a sum of primitive idempotents and that
cyclic codes are sums of minimal cyclic codes. An interesting consequence, found in [280],
of this characterization of cyclic codes is that the dimension of a sum of cyclic codes satisfies
the same formula as that of the inclusion—exclusion principle, a fact that fails in general.

Theorem 4.3.10 Let C; be a cyclic code of length n over F, for 1 <i < a. Then:
dim(Cy +Co+ -+ +Co) = »_dim(C;) — Y dim(C; NC;))
i i<j
+ Y dim@NC;NC) -
i<j<k

+ (=D HdimC, NCaN---NCy).
Proof: Let {¢;(x) | 1 <i < s} be the primitive idempotents of R,. By Theorem 4.3.8,
the minimal ideals of R, are (e;(x)). Fix a basis B; of {¢;(x)) for 1 <i <s. Also by
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Theorem 4.3.8, each C; is a direct sum of {(e¢;(x)) | j € S;} for some subset S; of {1,
2,...,s}. Thusabasisof C;, +---+C;, is B;, U--- U B;,, and this basis contains |B;, U
---UB;,| =dim(C;, + - - - + C;,) elements, where | B| is the number of (distinct) elements
in B. Abasisof C;, N---NC;, is B;, N --- N B;,, and this basis contains |B;, N--- N B;,| =
dim(C;, N ---NC;,) elements. Since dim(C; +Ca +---+C,) = [B1U B, U--- U B,|, we
can apply the inclusion—exclusion principle to obtain the result. O

Example 4.3.11 Theorem 4.3.10 does not work in general for noncyclic codes. For exam-
ple, for 1 <i < 3, let C; be a binary code of length 2 with generator matrix G;, where

G =[1 0], G,=[0 1], and G3;=[1 1]

Then dim(C;) = 1for 1 <i < 3,dim(C; NC;) =0fori # j,and dim(C; NC, N C3) = 0.
But dim(C; + C, + C3) = 2, which does notequal 1 +1+1—-0—-0—-0+0. |

Exercise 229 Prove that if C; and C; are linear codes of length n over I, then dim(C; +
C,) = dim(C;) + dim(C,) — dim(C; N C»). ¢

‘We turn now to a particular permutation which maps idempotents of R,, to idempotents of
R,.Leta be aninteger such that gcd(a, n) = 1. The function u,, definedon {0, 1, ..., n — 1}
by i, =ia (mod n) is a permutation of the coordinate positions {0, 1,...,n — 1} of a
cyclic code of length n and is called a multiplier. Because cyclic codes of length n are
represented as ideals in R,,, for a > 0 it is convenient to regard 1, as acting on R, by

fOpa = f(x9) (mod x" —1). 4.4

This equation is consistent with the original definition of u, because x’u, = x'¢ = x/¢*+/"
in R, for an integer j such that 0 <ia + jn < n since x" =1 in R,. In other words
xipg = x1™4" If g < 0, we can attach meaning to f(x%) in R, by defining x'j, =
xiamodn ‘where of course, 0 < ia mod n < n. With this interpretation, (4.4) is consistent
with the original definition of ©, when a < 0. We leave the proof of the following as an

exercise.

Theorem 4.3.12 Let f(x) and g(x) be elements of R,. Suppose e(x) is an idempotent of

R, Let a be relatively prime to n. Then:

(i) ifb = a(mod n), then up, = g,

i) (f () +gne = f(X)ua + §(X)ia,

(i) (f()gGNpa = (f () pa)((x)ita),

(iv) g is an automorphism of R,

V) e(x)u, is an idempotent of R,,, and

(Vi) pg leaves invariant each q-cyclotomic coset modulo n and has order equal to
ord,(q).

Exercise 230 Prove that if gcd(a, n) = 1, then the map u, is indeed a permutation of
{0, 1,...,n — 1} as claimed in the text. What happens if gcd(a, n) # 1? ¢
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Exercise 231 Prove Theorem 4.3.12. ¢

Theorem 4.3.13 Let C be a cyclic code of length n over F, with generating idempotent
e(x). Let a be an integer with gcd(a, n) = 1. Then:

(1) Cu, = (e(x)u,) and e(x)u, is the generating idempotent of the cyclic code C,, and
(i) e(x)uy = e(x) and p, € PAut(C).

Proof: Using Theorem 4.3.12(iii), Cu, = {(e(x) f(x))us | f(x) € Ry} = {e(x)g X
SOOpa | fFEpa € Ry} = {e(x)nah(x) | h(x) € Ry} = (e(x)ieq) as p, is an automor-
phism of R,, by Theorem 4.3.12(iv). Hence Cpu, is cyclic and has generating idempotent
e(x)q by Theorem 4.3.12(v), proving (i).

If we show that e(x)u, = e(x), then by part (i), Ciu, = C and so u, € PAut(C). By
Theorem 4.3.8(vi), e(x) = ZieTa(x) for some set 7. By Theorem 4.3.12(ii), e(x)py =
e(x) if e;(x)py ='e;(x) for all i. But ¢;(x)py =¢;(x?) = (¢;(x))? by Theorem 3.7.4, the
latter certainly being a nonzero element of (e;(x)). But by Theorem 4.3.12(v), €;(x) i, is
also an idempotent of (e;(x)). Hence ¢;(x)u, = ¢;(x) by Theorem 4.3.8(v). O

Exercise 232 Consider the cyclic codes of length 11 over F5 as given in Example 4.3.5.

(a) Find the image of each generating idempotent, and hence each cyclic code, under ;.

(b) Verify that 3 fixes each idempotent.

(c) Write the image of each generator polynomial under w3 as an element of R;;. Do
generator polynomials get mapped to generator polynomials? ¢

Exercise 233 Show that any two codes of the same dimension in Examples 4.3.4 and 4.3.5
are permutation equivalent. ¢

Note that arbitrary permutations in general do not map idempotents to idempotents, nor
do they even map cyclic codes to cyclic codes.

Corollary 4.3.14 Let C be a cyclic code of length n over F,. Let A be the group of order
n generated by the cyclic shift i — i + 1 (mod n). Let B be the group of order ord,(q)
generated by the multiplier . Then the group G of order n - ord,(q) generated by A and
B is a subgroup of PAut(C).

Proof: The corollary follows from the structure of the normalizer of A in the symmetric
group Sym,, and Theorem 4.3.13(ii). In fact, G is the semidirect product of A extended
by B. O

Exercise 234 In the notation of Corollary 4.3.14, what is the order of the subgroup G of
PAut(C) for the following values of n and ¢?

(@ n=1549=2.

®n=17,q =2.

(c)yn=23,qg=2.

(dn=1549=4.

(e) n =25,q =3. ¢
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Corollary 4.3.15 Let C be a cyclic code of length n over F, with generating idempotent
e(x) =" Ole ix'. Then:
(1) e =e;ifiand j arein the same q-cyclotomic coset modulo n,

(i) ifqg =2,
e(x) = Z in,
jeJ ieC;

where J is some subset of representatives of 2-cyclotomic cosets modulo n, and
(iil) if g = 2, every element of R,, of the form
PIDIES
jeJ ieC;
where J is some subset of representatives of 2-cyclotomic cosets modulo n, is an
idempotent of R,,.

Proof: By Theorem4.3.13(ii), e(x), = e(x). Thuse(x)p, = Z”_Ol exil =" Ole,x =
Yo Ole,qx“f (mod x" — 1), where subscripts are read modulo n. Hence (i) holds, and

(ii) is a special case of (i). Part (iii) follows as e(x)* = 3~ ., >, e, =3 e, xi =
e(x) by Exercise 152 and the fact that 2C; = C; (mod n). d

Since any idempotent is a generating idempotent of some code, the preceding corollary
shows that each idempotent in R,, has the form

e(x) = Z aj Z x! 4.5)

ieC;

where the outer sum is over a system of representatives of the g-cyclotomic cosets modulo n
and each a; isinF,. For g = 2, but not for arbitrary g, all such expressions are idempotents.
(Compare Examples 4.3.4 and 4.3.5.)

We can also give the general form for the idempotents in R,, over 4. We can construct
a set § of representatives of all the distinct 4-cyclotomic cosets modulo 7 as follows. The
set $ =K UL;UL,, where K, L, and L, are pairwise disjoint. K consists of distinct
representatives k, where Cy = Cy. L1 and L, are chosen so thatifk € L; U Ly, Cy # Cy;
furthermore L, = {2k | k € L;}. Squaring e(x) in (4.5), we obtain

2 2 2

ey =) aj ) a¥,
JjES ieC;

as R, hgs characteristic 2. But if j € K, then Ziec, x¥ = Ziec, x’i; if je Ly, then
Ziecj x2 = Zieczj x' and 2j € Ly; and if 2j € L,, then Zieczj X2 = ZieC/ X and
j € Ly as i and 4i are in the same 4-cyclotomic coset. Therefore e(x) is an idempotent
if and only if ajz. =aq; forall j € K and ay; = ajz- for all j € L;. In particular e(x) is an
idempotent in R, if and only if

e(x):Zaiji—i—Z<aiji+ajz»Zx2i>, 4.6)
JjeK  ieC; JEL, ieC; ieC;

where a; aj € {0, 1} if j € K. Recall that in IF4, is called conjugation, and is given by
0=0,1=1, and ® = w; alternately, @ = a?. If e(x) is the generating idempotent of C,
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then we leave it as an exercise to show that C is a cyclic code with generating idempotent
e(x) = Zj a; ZieC/ x'. Furthermore, by examining (4.6), we see that e(x) = e(x)u,. By
Theorem 4.3.13, C = Cu,. We summarize these results.

Theorem 4.3.16 Let C be a cyclic code over Fy with generating idempotent e(x). Then e(x)
has the form given in (4.6). Also C = Cpu, is cyclic with generating idempotent e(x)i5.

Exercise 235 Show that if e(x) is the generating idempotent of a cyclic code C over Fy,
then C is a cyclic code with generating idempotent e(x) = 3, @; » ; e, x'. Show also that
e(x) = e(x)is. ¢

Exercise 236 Do the following:

(a) List the 4-cyclotomic cosets modulo 21.

(b) Constructaset S = K U L; U L, of distinct 4-cyclotomic coset representatives modulo
21 which can be used to construct idempotents in R, over [F4 as in the discussion prior
to Theorem 4.3.16.

(c) Give the general form of such an idempotent.

(d) How many of these idempotents are there?

(e) Write down four of these idempotents. ¢

Theorem 4.3.13 shows that u, maps cyclic codes to cyclic codes with the generating
idempotent mapped to the generating idempotent; however, the generator polynomial may
not be mapped to the generator polynomial of the image code. In fact, the automorphism
g maps the generator polynomial to its gth power. See Exercise 232.

A multiplier takes a cyclic code into an equivalent cyclic code. The following theorem, a
special case of a theorem of Palfy (see [150]), implies that, in certain instances, two cyclic
codes are permutation equivalent if and only if a multiplier takes one to the other. This is a
very powerful result when it applies.

Theorem 4.3.17 Let Ci and C, be cyclic codes of length n over F,. Assume that
gcd(n, ¢p(n)) = 1, where ¢ is the Euler ¢p-function. Then Cy and C, are permutation equiv-
alent if and only if there is a multiplier that maps C; to C,.

Since multipliers send generating idempotents to generating idempotents, we have the
following corollary.

Corollary 4.3.18 Let C; and C, be cyclic codes of length n over F,. Assume that
gcd(n, ¢p(n)) = 1, where ¢ is the Euler ¢-function. Then Cy and C, are permutation equiva-
lent if and only if there is a multiplier that maps the idempotent of C| to the idempotent of C;.

4.4

Zeros of a cyclic code

Recall from Section 4.1 and, in particular Theorem 4.1.1, that if ¢ = ord,(g), then F
is a splitting field of x" —1; so F, contains a primitive nth root of unity «, and
x"—1= H::o] (x —a') is the factorization of x" — 1 into linear factors over F,. Fur-
thermore x" — 1 =[], Mys(x) is the factorization of x” — 1 into irreducible factors
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over F,, where s runs through a set of representatives of the g-cyclotomic cosets
modulo n.

Let C be a cyclic code in R,, with generator polynomial g(x). By Theorems 4.1.1(i) and
4.2.1(vii), g(x) = [[; Mo (x) =[] [ [iee,(x — '), where s runs through some subset of
representatives of the g-cyclotomic cosets C; modulo n. Let T = |, C, be the union of
these g-cyclotomic cosets. The roots of unity Z = {a | i € T} are called the zeros of the
cyclic code C and {o | i & T} are the nonzeros of C. The set T is called the defining set of
C. (Note that if you change the primitive nth root of unity, you change T'; so T is computed
relative to a fixed primitive root. This will be discussed further in Section 4.5.) It follows
that c(x) belongs to C if and only if c(a’) = 0 for each i € T by Theorem 4.2.1. Notice
that 7', and hence either the set of zeros or the set of nonzeros, completely determines the
generator polynomial g(x). By Theorem 4.2.1, the dimension of C is n — |T'| as |T| is the
degree of g(x).

Example 4.4.1 In Example 4.3.4 atable giving the dimension, generator polynomials g; (x),
and generating idempotents e; (x) of all the cyclic codes C; of length 7 over [F, was given.
We add to that table the defining sets of each code relative to the primitive root o given in
Example 3.4.3.

i dim gi(x) ei(x) Defining set

0 0 14«7 0 {0,1,2,3,4,5,6}

I 1 14+x4+x24+- 42 14+x+x2+---4+2° {1,2,3,4,5,6}

2 3 14+ x2+x3+x* 14+ x3+ x> +x° {0,1,2,4}

3 3 1+x+x2+x* 14+ x+x2+x* {0, 3,5, 6}

4 4 14+x+x° x4 x4+ x* {1,2,4}

5 4 14x24x3 x4+ x4+ x {3,5,6)

6 6 1+x x+x24- 4 x° {0}

7 7 1 1 @ n

Exercise 237 What would be the defining sets of each of the codes in Example 4.4.1 if the
primitive root 8 = a® were used to determine the defining set rather than a? ¢

Our next theorem gives basic properties of cyclic codes in terms of their defining sets,
summarizing the above discussion.

Theorem 4.4.2 Let o be a primitive nth root of unity in some extension field of IF,. Let C
be a cyclic code of length n over ¥, with defining set T and generator polynomial g(x).
The following hold.

(i) T is a union of q-cyclotomic cosets modulo n.

(i) () = [Tieplx — ). |

(iii) c(x) € RyisinCifand only if c(a') =0 foralli € T.

@iv) The dimension of C isn — |T|.

Exercise 238 Let C be a cyclic code over IF, with defining set 7' and generator polynomial
g(x). Let C, be the subcode of all even-like vectors in C.

(a) Prove that C, is cyclic and has defining set T U {0}.

(b) Prove that C = C, if and only if 0 € T if and only if g(1) = 0.
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(c) Prove that if C # C,, then the generator polynomial of C, is (x — 1)g(x).
(d) Prove that if C is binary, then C contains the all-one vector if and only if 0 & T'. ¢

Exercise 239 Let C; be cyclic codes of length n over IF, with defining sets 7; for
i=1,2.

(a) Prove that C; N C; has defining set 71 U T5.

(b) Prove that C; 4 C; has defining set 7} N 7.

(c) ProvethatC; C Cy ifand only if T C T;.

Note: This exercise shows that the lattice of cyclic codes of length n over [F,, where the
join of two codes is the sum of the codes and the meet of two codes is their intersection, is
isomorphic to the “upside-down” version of the lattice of subsets of N' = {0, 1,...,n — 1}
that are unions of g-cyclotomic cosets modulo n, where the join of two such subsets is
the set union of the subsets and the meet of two subsets is the set intersection of the
subsets. ¢

The zeros of a cyclic code can be used to obtain a parity check matrix (possibly with
dependent rows) as explained in the next theorem. The construction presented in this theorem
is analogous to that of the subfield subcode construction in Section 3.8.

Theorem 4.4.3 Let C be an [n, k] cyclic code over I, with zeros Z in a splitting field F
of x" — 1 over F,. Let o € Fy be a primitive nth root of unity in Fy, and let Z = {ad ]
jeCi,U---UGC;, ), where Ci, ..., C;, are distinct g-cyclotomic cosets modulo n. Let L
be the w x n matrix over B defined by

1 Olil Ol2i1 . O[(n—l)il

1 aiz aziz - a("—l)iz
L =

1 aoiv g%v ... gO=Di

Then ¢ is in C if and only if LeT = 0. Choosing a basis of F, over F,, we may represent
each element of Fy: as a t x 1 column vector over ;. Replacing each entry of L by its
corresponding column vector, we obtain a tw x n matrix H over IF, which has the property
that ¢ € C if and only if He™ = 0. In particular, k > n — tw.

Proof: We have c(x) € C if and only if c¢(a/) = 0 for all j € C;, U---U C;,, which by
Theorem 3.7.4 is equivalent to cla’i)y=0 for 1 < Jj < w. Clearly, this is equivalent to
Le® = 0, which is a system of homogeneous linear equations with coefficients that are
powers of . Expanding each of these powers of « in the chosen basis of F: over I, yields
the equivalent system Hc¢' = 0. As the rows of H may be dependent, k > n — tw. O

If C' is the code over . with parity check matrix L in this theorem, then the code C is
actually the subfield subcode C'|F, .

Exercise 240 Show that the matrix L in Theorem 4.4.3 has rank w. Note: The matrix L is
related to a Vandermonde matrix. See Lemma 4.5.1. ¢

For a cyclic code C in R,, there are in general many polynomials v(x) in R, such
that C = (v(x)). However, by Theorem 4.2.1 and its corollary, there is exactly one such
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polynomial, namely the monic polynomial in C of minimal degree, which also divides x" — 1
and which we call the generator polynomial of C. In the next theorem we characterize all
polynomials v(x) which generate C.

Theorem 4.4.4 Let C be a cyclic code of length n over F, with generator polynomial g(x).

Let v(x) be a polynomial in R,,.

(i) C = (v(x)) if and only if gcd(v(x), x" — 1) = g(x).

(ii) v(x) generates C if and only if the nth roots of unity which are zeros of v(x) are precisely
the zeros of C.

Proof: First assume that gcd(v(x), x" — 1) = g(x). As g(x) | v(x), multiples of v(x) are
multiples of g(x) in R, and so (v(x)) € C. By the Euclidean Algorithm there exist
polynomials a(x) and b(x) in F,[x] such that g(x) = a(x)v(x) + b(x)(x" — 1). Hence
g(x) = a(x)v(x) in R, and so multiples of g(x) are multiples of v(x) in R, implying
(v(x)) 2 C. Thus C = (v(x)).

For the converse, assume that C = (v(x)). Let d(x) = ged(v(x), x" — 1). As g(x) | v(x)
and g(x) | (x" — 1) by Theorem 4.2.1, g(x) | d(x) by Exercise 158. As g(x) € C = (v(x)),
there exists a polynomial a(x) such that g(x) = a(x)v(x) in R,,. So there exists a polynomial
b(x) such that g(x) = a(x)v(x) + b(x)(x" — 1)inF,[x]. Thus d(x) | g(x) by Exercise 158.
Hence as both d(x) and g(x) are monic and divide each other, d(x) = g(x) and (i) holds.

As the only roots of both g(x) and x" — 1 are nth roots of unity, g(x) = ged(v(x), x" — 1)
if and only if the nth roots of unity which are zeros of v(x) are precisely the zeros of g(x);
the latter are the zeros of C. d

Corollary 4.4.5 Let C be a cyclic code of length n over F, with zeros (@ |ieT} for
some primitive nth root of unity o where T is the defining set of C. Let a be an integer such
that ged(a, n) = 1 and let a=" be the multiplicative inverse of a in the integers modulo n.
Then {a“il" | i € T} are the zeros of the cyclic code Cu, and a='T mod n is the defining
set for Cig.

Proof: Let e(x) be the generating idempotent of C. By Theorem 4.3.13, the generating
idempotent of the cyclic code Cu, is e(x)i,. By Theorem 4.4.4, the zeros of C and Cu,
are the nth roots of unity which are also roots of e(x) and ¢’(x) = e(x)u,, respectively. As
€'(x) = e(x)g = e(x*) (mod x" — 1), €'(x) = e(x?) + b(x)(x" — 1) in F,[x]. The corol-
lary now follows from the fact that the nth root of unity a/ is a root of ¢’(x) if and only if
a% is a root of e(x). |

Theorem 4.3.13 implies that the image of one special vector, the generating idempotent, of
a cyclic code under a multiplier determines the image code. As described in Corollary 4.4.5
a multiplier maps the defining set, and hence the zeros, of a cyclic code to the defining
set, and hence the zeros, of the image code. Such an assertion is not true for a general
permutation.

Exercise 241 An equivalence class of codes is the set of all codes that are equivalent
to one another. Give a defining set for a representative of each equivalence class of the
binary cyclic codes of length 15. Example 3.7.8, Theorem 4.3.17, and Corollary 4.4.5 will
be useful. ¢
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Exercise 242 Continuing with Exercise 241, do the following:

(a) List the 2-cyclotomic cosets modulo 31.

(b) List the defining sets for all [31, 26] binary cyclic codes. Give a defining set for a
representative of each equivalence class of the [31, 26] binary cyclic codes. Hint: Use
Theorem 4.3.17 and Corollary 4.4.5.

(c) Repeat part (b) for [31, 5] binary cyclic codes. (Take advantage of your work in
part (b).)

(d) List the 15 defining sets for all [31, 21] binary cyclic codes, and give a defining set for
a representative of each equivalence class of these codes.

(e) List the 20 defining sets for all [31, 16] binary cyclic codes, and give a defining set for
a representative of each equivalence class of these codes. ¢

If C is a code of length n over F,,, then a complement of C is a code C€ such that C 4 C¢ =
F; and CN C® = {0}. In general, the complement is not unique. However, Exercise 243
shows that if C is a cyclic code, there is a unique complement of C that is also cyclic. We
call this code the cyclic complement of C. In the following theorem we give the generator
polynomial and generating idempotent of the cyclic complement.

Exercise 243 Prove that a cyclic code has a unique complement that is also cyclic. ¢

Theorem 4.4.6 Let C be a cyclic code of length n over IF, with generator polynomial g(x),
generating idempotent e(x), and defining set T. Let C¢ be the cyclic complement of C. The

following hold.
(i) h(x)=(x" —1)/g(x) is the generator polynomial for CCand1 — e(x)isits generating
idempotent.

(ii) CC is the sum of the minimal ideals of R, not contained in C.
(i) IfN =1{0,1,...,n — 1}, then N'\ T is the defining set of C .

Exercise 244 Prove Theorem 4.4.6. ¢

The dual C* of a cyclic code C is also cyclic as Theorem 4.2.6 shows. The gener-
ator polynomial and generating idempotent for C* can be obtained from the generator
polynomial and generating idempotent of C. To find these, we reintroduce the concept of
the reciprocal polynomial encountered in Exercise 192. Let f(x) = fo + fix + -+ fux*
be a polynomial of degree a in F,[x]. The reciprocal polynomial of f(x) is the
polynomial

FFE) =xf Y = x(fOR_1) = fa+ farrX + -+ fox“.

So f*(x) has coefficients the reverse of those of f(x). Furthermore, f(x) is reversible
provided f(x) = f*(x).

Exercise 245 Show that a monic irreducible reversible polynomial of degree greater than
1 cannot be a primitive polynomial except for the polynomial 1 + x + x? over F,. ¢

We have the following basic properties of reciprocal polynomials. Their proofs are left
as an exercise.
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Lemma 4.4.7 Let f(x) € F,[x].

(i) IfB1, ..., By are the nonzero roots of f in some extension field of ¥y, then ,Bfl, ceey
B! are the nonzero roots of f* in that extension field.

(i) If f(x) is irreducible over F,, so is f*(x).

(iii) If f(x) is a primitive polynomial, so is f*(x).

Exercise 246 Prove Lemma 4.4.7. ¢

Exercise 247 In Example 3.7.8, the factorization of x> — 1 into irreducible polynomials
over IF, was found. Find the reciprocal polynomial of each of these irreducible polynomials.
How does this confirm Lemma 4.4.7? ¢

Exercise 248 Prove that if fi(x) and f>(x) are reversible polynomials in F,[x], so is
f1(x) f2(x). What about f;(x) + f>(x)? ¢

The connection between dual codes and reciprocal polynomials is clear from the follow-
ing lemma.

Lemma 4.4.8 Leta = apa, - - -a,—; andb = byb; - - - b,_| be vectors in IFZ with associated
polynomials a(x) and b(x). Then a is orthogonal to b and all its shifts if and only if
a(x)b*(x) =0inR,.

Proof: Letb®) = b;b; ;- - b,,;_; be the ith cyclic shift of b, where the subscripts are read
modulo n. Then
n—1
a-b® = 0if and only if Z ajbjy; =0. 4.7
Jj=0
But a(x)b*(x) =0 in R, if and only if a(x)(gc”"_deg bNp*(x) =0 in R,. But
a(x)(x" 19 MOy (x) = YU (312 ajbjix" 7). Thus a(x)b*(x) = 0 in R, if and
only if (4.7) holds for 0 <i <n — 1. O

We now give the generator polynomial and generating idempotent of the dual of a cyclic
code. The proof is left as an exercise.

Theorem 4.4.9 Let C be an [n, k] cyclic code over F, with generator polynomial g(x),
generating idempotent e(x), and defining set T. Let h(x) = (x" — 1)/g(x). The following
hold.

() Ctisacyclic code and C* = CSpu_,.

(ii) C* has generating idempotent 1 — e(x)u_; and generator polynomial

k
X
——h(xh.
7o) ™)
(iii) If B1, ..., Br are the zeros of C, then ﬂfl, e ﬂ,:l are the nonzeros of C*.

Gv) IfN =1{0,1,...,n — 1}, then N'\ (=1)T mod n is the defining set of C*.
(v) Precisely one of C and C* is odd-like and the other is even-like.

The polynomial 2(x) = (x" — 1)/g(x) in this theorem is called the check polynomial of
C. The generator polynomial of C* in part (ii) of the theorem is the reciprocal polynomial
of h(x) rescaled to be monic.
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Exercise 249 Prove Theorem 4.4.9. ¢

Exercise 250 Let C be a cyclic code with cyclic complement C€. Prove that if C is MDS
sois CC. ¢

The following corollary determines, from the generator polynomial, when a cyclic code
is self-orthogonal.

Corollary 4.4.10 Let C be a cyclic code over IF, of length n with generator polynomial
g(x) and check polynomial h(x) = (x" — 1)/g(x). Then C is self-orthogonal if and only if
h*(x) | g(x).

Exercise 251 Prove Corollary 4.4.10. ¢

Exercise 252 Using Corollary 4.4.10 and Examples 3.7.8, 4.2.4, and 4.3.4 give the gener-
ator polynomials of the self-orthogonal binary cyclic codes of lengths 7, 9, and 15. ¢

In the next theorem we show how to decide when a cyclic code is self-orthogonal.
In particular, this characterization shows that all self-orthogonal cyclic codes are even-
like. In this theorem we use the observation that if C is a g-cyclotomic coset modulo 7,
either Cu_y = C or Cuu_; = C' for some different g-cyclotomic coset C’, in which case
C'u_1=C as ,u2_1 is the identity.

Theorem 4.4.11 Let C be a self-orthogonal cyclic code over F, of length n with defin-
ing set T. Let Cy,...,Cx, D1,..., Dy, Ey, ..., E¢ be all the distinct q-cyclotomic cosets
modulo n partitioned so that C; = Ciju— for 1 <i <k and D; = E;ju_; for 1 <i <.
The following hold.

(i) C; CTforl <i <kandatleast one of D; or E; is contained in T for1 <i < L.
(i) C is even-like.

(iii)) CNCu_1 = {0}.

Conversely, if Cis a cyclic code with defining set T that satisfies (i), then C is self-orthogonal.

Proof: Let ' ={0,1,...,n — 1}. Let T be the defining set of C1. By Theorem 4.4.9,
T+ =N\ (=T mod n.AsC € C*,N'\ (=1)T mod n C T by Exercise 239.1fC; Z T,
then C; € (—1)T mod n because C; = C;uu_; implyingthat C; C N\ (=1)T modn C T,
a contradiction. If D; € T, then E; € (—1)T mod n because E; = D;u_; implying that
E; SN\ (=T mod n C T, proving (i). Part (ii) follows from part (i) and Exercise 238
as C; = {0} for some i. By Corollary 4.4.5, Ciu_; has defining set (—1)7 mod n. By (i)
T U(—1)T mod n = N yielding (iii) using Exercise 239.

For the converse, assume T satisfies (i). We only need to show that T+ C T, where T+ =
N\ (=1)T mod n by Exercise 239.AsC; C Tforl <i < k,C; € (—=1)T mod nimplying
C; € T*. Hence T+ is a union of some D;s and E;s. If D; € N\ (=1)T mod n, then
D; Z (—=1)T modn and so E; € T.By (i) D; € T. Similarly if E; C A\ (—=1)T mod n,
then E; C T. Hence T+ C T implying C is self-orthogonal. O

Exercise 253 Continuing with Exercise 242, do the following:

(a) Show that all [31, 5] binary cyclic codes are self-orthogonal.

(b) Show that there are two inequivalent [31, 15] self-orthogonal binary cyclic codes, and
give defining sets for a code in each equivalence class. ¢
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Corollary 4.4.12 Let D = C + (1) be a cyclic code of length n over F,, where C is self-
orthogonal. Then D NDu_y = (1).

Exercise 254 Prove Corollary 4.4.12. ¢

Corollary 4.4.13 Let p1(x), ..., pr(x), q1(x), ..., qe(x), r1(x), ..., re(x) be the monic ir-
reducible factors of x" — 1 over F,[x] arranged as follows. For1 < i <k, pf(x) = a; pi(x)
for some a; € ¥y, and for 1 <i < {, rj’(x) = biqi(x) for some b; € F,. Let C be a cyclic
code of length n over I, with generator polynomial g(x). Then C is self-orthogonal
if and only if g(x) has factors pi(x)--- pr(x) and at least one of q;(x) or r;(x) for
1<i<ed.

Exercise 255 Prove Corollary 4.4.13. ¢

Exercise 256 Using Corollary 4.4.13 and Examples 3.7.8,4.2.4, and 4.3.4 give the genera-
tor polynomials of the self-orthogonal binary cyclic codes of lengths 7, 9, and 15. Compare
your answers to those of Exercise 252. ¢

Exercise 257 Let j(x) =14+x4+x>+---4+x"1in R, and j(x) = (1/n)j(x). In Exer-
cise 221 we gave properties of j(x) and j(x). Let C be a cyclic code over IF, with generating
idempotent i(x). Let C, be the subcode of all even-like vectors in C. In Exercise 238 we
found the generator polynomial of C,.

(a) Prove that 1 — j(x) is the generating idempotent of the [1, n — 1] cyclic code over F,

consisting of all even-like vectors in R,,.
(b) Prove thati(1) =0ifC =C, and i(1) = 1if C # C,.
(c) Prove that if C # C,, then i(x) — j(x) is the generating idempotent of C,. ¢

We illustrate Theorems 4.3.13, 4.3.17, 4.4.6, and 4.4.9 by returning to Examples 4.3.4
and 4.3.5.

Example 4.4.14 In Examples 4.3.4 and 4.3.5, the following codes are cyclic complemen-
tary pairs: C; and Cg, C; and Cs, and C3 and Cy4. In both examples, the following are dual
pairs: C; and Cg, C; and C4, and C3 and Cs. In Example 4.3.4, C, and C; are equivalent
under w3, as are C4 and Cs. In Example 4.3.5, the same pairs are equivalent under u,. In
both examples, the permutation automorphism group for each of Cy, C¢, and C5 is the full
symmetric group. (In general, the permutation automorphism group of the repetition code
of length n, and hence its dual, is the symmetric group on n letters.) In Example 4.3.4, the
group of order 3 generated by 1, is a subgroup of the automorphism group of the remaining
four codes; in Example 4.3.5, the group of order 5 generated by w3 is a subgroup of the
automorphism group of the remaining four codes. ]

Exercise 258 Verify all the claims in Example 4.4.14. ¢
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Exercise 259 Let C be a cyclic code of length n over I, with generator polynomial g(x).
What conditions on g(x) must be satisfied for the dual of C to equal the cyclic complement
of C? ¢

Exercise 260 Identify all binary cyclic codes of lengths 7, 9, and 15 whose duals equal
their cyclic complements. (Examples 3.7.8, 4.2.4, and 4.3.4 will be useful.) ¢

In Theorem 4.4.9 we found the generating idempotent of the dual of any code. The
multiplier p_; was key in that theorem. We can also find the generating idempotent of the
Hermitian dual of a cyclic code over F,4. Here v, will play the role of ©_;. Recall from
Exercise 8 that if C is a code over [y, then % = El.

Theorem 4.4.15 Let C be a cyclic code of length n over Fy with generating idempotent
e(x) and defining set T. The following hold.

() C* isa cyclic code and C* = CCu_,, where CC is the cyclic complement of C.

(i) C* has generating idempotent 1 — e(x)p_s.

(i) IfFN =1{0,1,...,n — 1}, then N'\ (=2)T mod n is the defining set of C*.

(iv) Precisely one of C and C*" is odd-like and the other is even-like.

Proof: We leave the fact that C*# is a cyclic code as an exercise. Exercise 8 shows that
ctr = EL. By Theorem 4.4.9 El = Ec,u_l. Theorem 4.3.16 shows that EC =CC = Cua,
and (i) follows since p2/i_; = t_p. By Theorem 4.4.6 C*# = Cu_, has generating idem-
potent (1 — e(x))u_2 = 1 — e(x)u_, giving (ii). Cj1_, has defining set (—2)~!' T mod n by
Corollary 4.4.5. However, (—2)~' T = (—=2)T modulo n because u?, = 14 and 4 fixes all
4-cyclotomic cosets. By Theorem 4.4.6(iii) and Corollary 4.4.5, C*# = C®u_, has defin-
ing set (—2) "' W'\ T) = N\ (=2)T mod n, giving (iii). Part (iv) follows from (iii) and
Exercise 238 as precisely one of A and V' \ (—2)T mod n contains 0. O

Exercise 261 Prove that if C be a cyclic code over Fy, then Ct¥ is also a cyclic code. ¢

Exercise 262 Using Theorem 4.3.16 find generating idempotents of all the cyclic codes C
of length 9 over F4, their ordinary duals C*, and their Hermitian duals C*. ¢

We can obtain a result analogous to Theorem 4.4.11 for Hermitian self-orthogonal cyclic
codes over [F4. Again we simply replace i by pu_, and apply Theorem 4.4.15. Notice
that if C is a 4-cyclotomic coset modulo rn, then either Cu_» = C or Cu_, = C’ for a
different 4-cyclotomic coset C’, in which case C'u_, = C as /ﬁ_z = 4 and uy fixes all
4-cyclotomic cosets.

Theorem 4.4.16 Let C be a Hermitian self-orthogonal cyclic code over Fy of length n with
defining set T. Let Cy,...,Cy, Dy, ..., Dy, Eq, ..., E; be all the distinct 4-cyclotomic
cosets modulo n partitioned so that C; = Ciju_p for 1 <i <k and D; = E;u_ for 1 <
i < L. The following hold:

(i) C; CTforl <i <kandatleast one of D; or E; is contained in T for1 <i <.
(ii) C is even-like.

(iii) CNCu_, = {0}.



150

Cyclic codes

Conversely, if C is a cyclic code with defining set T that satisfies (i), then C is Hermitian
self-orthogonal.

Exercise 263 Prove Theorem 4.4.16. ¢

Corollary 4.4.17 Let D = C + (1) be a cyclic code of length n over F4 such that C is
Hermitian self-orthogonal. Then D N Du_, = (1).

Exercise 264 Prove Corollary 4.4.17. ¢

The next theorem shows the rather remarkable fact that a binary self-orthogonal cyclic
code must be doubly-even.

Theorem 4.4.18 A self-orthogonal binary cyclic code is doubly-even.

Proof: Let C be an [n, k] self-orthogonal binary cyclic code with defining set 7. By Theo-
rem 1.4.5(iv), C has only even weight codewords and hence 0 € T by Exercise 238. Suppose
that C is not doubly-even. Then the subcode Cy of C consisting of codewords of weights
divisible by 4 has dimension k — 1 by Theorem 1.4.6. Clearly, Cy is cyclic as the cyclic
shift of a vector is a vector of the same weight. By Theorem 4.4.2 and Corollary 4.2.5 (or
Exercise 239), the defining set of Cy is T U {a} for some a ¢ T. But then {a} must be a
2-cyclotomic coset modulo n, which implies that 2a = a (mod n). Hence a = O as n is odd,
which is impossible as 0 € T'. U

In Theorem 4.3.8, the minimal cyclic codes in R, are shown to be those with generator
polynomials g(x) where (x” — 1)/g(x) is irreducible over ;. So minimal cyclic codes are
sometimes called irreducible cyclic codes. These minimal cyclic codes can be described
using the trace function.

Theorem 4.4.19 Let g(x) be an irreducible factor of x" — 1 over F,. Suppose g(x) has
degree s, and let y € Fys be a root of g(x). Let Tr; : Fys — T, be the trace map from F ;s
to Fy. Then

n—1
C, = {ZTrs(Eyi)x[ | € € qu}
i=0

is the [n, s] irreducible cyclic code with nonzeros {y’qi |0 <i <s}.

Proof: By Lemma 3.8.5, C, is a nonzero linear code over IF,,. If ¢ (x) = Z;:ol Tr,(EyHxl,
then ¢z, -1(x) = ce(x)x in R, implying that C, is cyclic. Let g(x) = Z::OI gix'. By
Lemma 3.8.5,as g; € F, and g(y) =0,

n—1 n—1
> aiTr(Ey') =Tr, (S Zgn/l) = Tr,(0) = 0.
i=0 i=0

Hence (g(x)) C C)f. By Theorem 4.4.9, Cj is a cyclic code not equal to R, as C,, # {0}.
As g(x) is irreducible over I, there can be no proper cyclic codes between (g(x)) and R,.
So (g(x)) = C. The result follows from Theorem 4.4.9(jii). 0
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4.5

Minimum distance of cyclic codes

With any code, it is important to be able to determine the minimum distance in order
to determine its error-correcting capability. It is therefore helpful to have bounds on the
minimum distance, particularly lower bounds. There are several known lower bounds for
the minimum distance of a cyclic code. The oldest of these is the Bose—Ray-Chaudhuri—
Hocquenghem Bound [28, 132], usually called the BCH Bound, which is fundamental to
the definition of the BCH codes presented in Chapter 5. Improvements of this bound have
been obtained by Hartmann and Tzeng [117], and later van Lint and Wilson [203]. The BCH
Bound, the Hartmann—Tzeng Bound, and a bounding technique of van Lint and Wilson are
presented here. The BCH and Hartmann-Tzeng Bounds depend on the zeros of the code
and especially on the ability to find strings of “consecutive” zeros.

Before proceeding with the BCH Bound, we state a lemma, used in the proof of the BCH
Bound and useful elsewhere as well, about the determinant of a Vandermonde matrix. Let

ai, ..., o5 beelementsinafieldF. The s x s matrix V = [v; ;], where v; ; = a;_l is called
a Vandermonde matrix. Note that the transpose of this matrix is also called a Vandermonde
matrix.

Lemma 4.5.1 detV =[], <i<j<s(@j — a;). In particular, V is nonsingular if the elements
oy, ..., o are distinct.

In this section we will assume that C is a cyclic code of length n over I, and that « is
a primitive nth root of unity in IF,:, where ¢ = ord, (¢). Recall that T is a defining set for
C provided the zeros of C are {&' | i € T}. So T must be a union of g-cyclotomic cosets
modulo n. We say that 7' contains a set of s consecutive elements S provided there is a set
{b,b+1,...,b+ s — 1} of s consecutive integers such that

{(b,b+1,....,b+s—1)modn=SCT.

Example 4.5.2 Consider the binary cyclic code C of length 7 with defining set 7 =
{0, 3, 6, 5}. Then T has a set of three consecutive elements S = {5, 6, 0}. |

Theorem 4.5.3 (BCH Bound) Let C be a cyclic code of length n over F, with defining set
T. Suppose C has minimum weight d. Assume T contains § — 1 consecutive elements for
some integer §. Then d > 4.

Proof: By assumption, C has zeros that include al, ottt a2 Let c(x)be anonzero

codeword in C of weight w, and let

w
c(x) = Z ci; x".
=1

Assume to the contrary that w < §. As c@)=0for b<i<b+8—-2, Mu' =0,
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where
oith oi?b L oivb
at G+ GG+ D
M =
ghtw=1  brw=1)  iubtw—1)

andu = ¢;,c;, - - - ¢;,. Sinceu # 0, M is asingular matrix and hencedet M = 0.Butdet M =
ittt +iwb det V where V is the Vandermonde matrix

1 1 o 1
ail aiz . aiu;
V =
ah =D b= =D
Since the &’/ are distinct, det V # 0 by Lemma 4.5.1, contradicting det M = 0. a

Exercise 265 Find a generator polynomial and generator matrix of a triple error-correcting
[15, 5] binary cyclic code. ¢

The BCH Bound asserts that you want to find the longest set of consecutive elements in
the defining set. However, the defining set depends on the primitive element chosen. Let
B = a?, where gcd(a, n) = 1; so B is also a primitive nth root of unity. Therefore, if alis
the multiplicative inverse of a modulo n, the minimal polynomials Ms(x) and M 4,-1,(x)
are equal. So the code with defining set T, relative to the primitive element «, is the same
as the code with defining set a~'T mod n, relative to the primitive element 8. Thus when
applying the BCH Bound, or any of our other lower bounds, a higher lower bound may
be obtained if you apply a multiplier to the defining set. Alternately, the two codes C and
Cu, are equivalent and have defining sets T and a~'T (by Corollary 4.4.5) with respect
to the same primitive element «; hence they have the same minimum weight and so either
defining set can be used to produce the best bound.

Example 4.5.4 Let C be the [31,25,d] binary cyclic code with defining set 7 =
{0, 3,6, 12,24, 17}. Applying the BCH Bound to C, we see that d > 2, as the longest
consecutive set in T is size 1. However, multiplying T by 3~! = 21 (mod 31), we have
37T mod 31 = {0, 1, 2, 4, 8, 16}. Replacing « by o or C by Cu3 and applying the BCH
Bound, we obtain d > 4. In fact C is the even weight subcode of the Hamming code H
andd = 4. ]

Example 4.5.5 Let C be the [23, 12,d] binary cyclic code with defining set 7 =
{1,2,3,4,6,8,9,12,13, 16, 18}. The BCH Bound implies that d > 5 as T has four
consecutive elements. Notice that T = Cy, the 2-cyclotomic coset modulo 23 contain-
ing 1. Modulo 23, there are only two other 2-cyclotomic cosets: Cy = {0} and Cs5 =
{5,7,10, 11, 14,15, 17, 19, 20, 21, 22}. Let C, be the subcode of C of even weight
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codewords; C, is cyclic with defining set Cp U C; by Exercise 238. By Theorem 4.4.11,
C, is self-orthogonal. Hence C, is doubly-even by Theorem 4.4.18. Therefore its minimum
weight is at least 8; it must be exactly 8 by the Sphere Packing Bound. So C, has nonzero
codewords of weights 8, 12, 16, and 20 only. As C contains the all-one codeword by Ex-
ercise 238, C, cannot contain a codeword of weight 20 as adding such a codeword to 1
produces a weight 3 codeword, contradicting d > 5. Therefore C, has nonzero codewords
of weights 8, 12, and 16 only. Since C = C, U1 + C,, C has nonzero codewords of weights
7,8, 11,12, 15, 16, and 23 only. In particular d = 7. By Theorem 1.12.3, this code must be
the [23, 12, 7] binary Golay code. ]

Hartmann and Tzeng [117] showed that if there are several consecutive sets of § — 1
elements in the defining set that are spaced properly, then the BCH Bound can be improved.
To state the Hartmann-Tzeng Bound, which we do not prove, we develop the following
notation. If A and B are subsets of the integers modulo n, then A + B = {a + b mod n |
ae€A,be B}

Theorem 4.5.6 (Hartmann-Tzeng Bound) Let C be a cyclic code of length n over F,
with defining set T. Let A be a set of 5 — 1 consecutive elements of T and B = {jb mod n |
0 < j < s}, where gcd(b,n) < 8. If A+ B C T, then the minimum weight d of C satisfies
d>§+s.

Clearly the BCH Bound is the Hartmann—Tzeng Bound with s = 0.

Example 4.5.7 Let C be the binary cyclic code of length 17 with defining set 7 =
{1,2,4,8,9, 13, 15, 16}. There are two consecutive elements in 7' and so the BCH Bound
givesd > 3. The Hartmann-Tzeng Bound improves this. Let A = {1, 2} and B = {0, 7, 14}.
Sod=3,b=7,and s = 2; also gcd(7,17) = 1 < 8. So C has minimum weight d > 5.
Note that C is a [17, 9] code. By the Griesmer Bound, there is no [17,9, 7] code. Hence
d = 5 or 6. In fact, d = 5; see [203]. |

Example 4.5.8 Let C be the binary cyclic code of length 31 with defining set 7 =
{1,2,4,5,8,9, 10, 16, 18, 20} and minimum weight d. The BCH Bound shows thatd > 4
as the consecutive elements {8, 9, 10} are in 7. If d = 4, then the minimum weight vectors
are in the subcode C, of all even-like vectors in C. By Exercise 238, C, is cyclic with defin-
ingset7, ={0,1,2,4,5,8,9, 10, 16, 18, 20}. Applying the Hartmann-Tzeng Bound with
A =1{0,1,2}and B = {0, 8} (since gcd(8, 31) = 1 < § = 4), the minimum weight of C, is
at least 5. Hence the minimum weight of C is at least 5, which is in fact the true minimum
weight by [203]. |

Example 4.5.9 Let C be the binary cyclic code of length 31 with defining set 7 =
{1,2,3,4,5,6,8,9,10, 11, 12, 13,16, 17, 18, 20, 21, 22, 24, 26} and minimum weight d.
Applying the Hartmann-Tzeng Bound with A = {1,2,3,4,5, 6} and B = {0, 7} (since
gcd(7,31) =1 < § =7), we obtain d > 8. Suppose that d = 8. Then the cyclic subcode
C. of even-like codewords has defining set 7, = T U {0} by Exercise 238. But 177, contains
the nine consecutive elements {29, 30, 0, 1, 2, 3, 4, 5, 6}. Hence, the code with defining set
17T, has minimum weight at least 10 by the BCH Bound, implying that d = 8 is impossible.



154

Cyclic codes

Thus d > 9. We reconsider this code in Example 4.5.14 where we eliminate d = 9 and
d = 10; the actual value of d is 11. |

Exercise 266 Let C be the code of Example 4.5.9. Eliminate the possibility that d = 10
by showing that Theorem 4.4.18 applies to C,. ¢

Exercise 267 Let C; be the 2-cyclotomic coset modulo n containing i. Apply the BCH
Bound and the Hartmann—Tzeng Bound to cyclic codes of given length and defining set T'.
For which of the codes is one of the bounds improved if you multiply the defining set by a,
where gcd(a, n) = 1?

@ n=15and T = C5U (7,

(byn=15and T = C3 U Cs,

(C) n=39%and T = C3 U C13,

(d) n=45andT=C1 UC3UC5UC9UC15,

(&) n=51land T = C; UCy. ¢

Exercise 268 Find the dimensions of the codes in Examples 4.5.8 and 4.5.9. For each code
also give upper bounds on the minimum distance from the Griesmer Bound. ¢

Generalizations of the Hartmann—-Tzeng Bound discovered by Roos can be found in
[296, 297].

In [203] van Lint and Wilson give techniques that can be used to produce lower bounds
on the minimum weight of a cyclic code; we present one of these, which we will refer to
as the van Lint—Wilson Bounding Technique. The van Lint—Wilson Bounding Technique
can be used to prove both the BCH and the Hartmann—Tzeng Bounds. In order to use the
van Lint—Wilson Bounding Technique, a sequence of subsets of the integers modulo #,
related to the defining set of a code, must be constructed. Let N' = {0, 1, ..., n — 1}. Let
S C N. A sequence Iy, 1,1, . .. of subsets of A is an independent sequence with respect
to S provided
1. Iy =9, and
2. if i > 0, either I; = I; U {a} for some 0 < j < i such that [; C Sanda € N'\ S, or

I; ={b}+ I; forsome 0 < j <iandb # 0.

A subset I of N is independent with respect to S provided that [ is a set in an independent
sequence with respect to S. If S = A, then only the empty set is independent with respect
to S. Recall that « is a primitive nth root of unity in ., where t = ord,(q).

Theorem 4.5.10 (van Lint—Wilson Bounding Technique) Suppose f(x) is in F,[x] and
has degree at most n. Let I be any subset of N that is independent with respectto S = {i €
N | f(a') = 0}. Then the weight of f(x) is at least the size of I.

Proof: Let f(x) = cix/" 4 ¢2x™ + - -+ + ¢, x™, where ¢j # O for 1 < j < w, and let I be
any independent set with respect to S. Let Iy, I}, I», ... be an independent sequence with
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respect to S such that I = I; for some i > 0.If J € N, let V(J) be the set of vectors in IFZ’,
defined by

V() = {(&", o>, ok ke T).

If we prove that V(7)) is linearly independent in ]F:, ,then w > |V (I)| = |I|. Hence it suf-
fices to show that V(I;) is linearly independent for all i > 0, which we do by induction
oni. As Ip =0, V(lp) is the empty set and hence is linearly independent. Assume that
V(I;) is linearly independent for all 0 < j < i. I; is formed in one of two ways. First
suppose I; = I; U {a} forsome 0 < j < i, where I; C Sanda € N\ S. By the inductive
assumption, V (I;) is linearly independent. As 0 = f(a*) = cjo* + coa*? + - - + ¢, ks
for k € I;, the vector ¢ = (cy, ¢, ...,¢Cy) is orthogonal to V(/;). If V([;) is linearly
dependent, then (o', @2, ..., a%") is in the span of V(I;) and hence is orthogonal
to (c1,¢2,...,Cp). SO 0 =cra®t + cra® 4+ ... + c,a% = f(a®), a contradiction as
a ¢ S. Now suppose that I; = {b} + I; for some 0 < j < i where b # 0. Then V([;) =
{(&FPin o0 g0y | ke I} = V(I;)D, where D is the nonsingular diagonal

matrix diag(a”™, ..., a®»). As V(1) is independent, so is V (I;). O

The BCH Bound is a corollary of the van Lint—Wilson Bounding Technique.

Corollary 4.5.11 Let C be a cyclic code of length n over F,. Suppose that f(x) is a
nonzero codeword such that f(a®) = f(@’t) = ... = f@®™™ ) =0 but f(a"t) #0.
Then wt(f(x)) > w + 1.

Proof: Let S={i e N | f(@’)=0}.So {b,b+1,....b+w—1}CSbutb+w¢sS.
Inductively define a sequence Iy, I, ..., I+ as follows: Let Iy = @. Let ;1) = Ip; U
{b+w}for0<i <wand l; ={—1}+ Ij_; for 1 <i < w.Inductively I; = {b+ w —
i,b+w—i+1,...,b+w—1} C Sfor0 <i < w. Therefore Iy, I, ..., Iy is anin-
dependent sequence with respect to S. Since I+ = {b, b+ 1, ..., b + w}, the van Lint—
Wilson Bounding Technique implies that wt( f(x)) > |Ly+1| = w + 1. a

Exercise 269 Why does Corollary 4.5.11 prove that the BCH Bound holds? ¢

Example 4.5.12 Let C be the [17,9,d] binary cyclic code with defining set T =
{1,2,4,8,9,13, 15, 16}. In Example 4.5.7, we saw that the BCH Bound implies that
d > 3, and the Hartmann-Tzeng Bound improves this to d > 5 using A = {1, 2} and
B = {0, 7, 14}. The van Lint—Wilson Bounding Technique gives the same bound using
the following argument. Let f(x) € C be a nonzero codeword of weight less than 5. T is
the 2-cyclotomic coset C;. If f(a’) =0 for some i € C3, then f(x) is a nonzero code-
word in the cyclic code with defining set C; U C3, which is the repetition code, and hence
wt(f(x)) = 17, a contradiction. Letting S = {i € N | f(a’) = 0}, we assume that S has no
elements of C3 = {3, 5, 6,7, 10, 11, 12, 14}. Then the following sequence of subsets of A/
is independent with respect to S:
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Iy =9,

I = 1o U {6} = {6},
L={-T}+1L={16} S,

I = L U{6}= {6, 16},
IL,={-7}+13={9,16} C S,

Is = I, U{6) = {6.9, 16},

loe ={-T}+1s={2,9,16} C S,
L =IU{3) = (23,9, 16},
Is={-1}+1;={1,2,8,15} C S,
I = U {3} = {1,2,3,8, 15}.

Since wt( f(x)) > |Iy| = 5, the van Lint—Wilson Bounding Technique shows thatd > 5. In
fact, d = 5 by [203]. |

This example shows the difficulty in applying the van Lint—Wilson Bounding Technique.
In this example, the Hartmann—Tzeng and van Lint—Wilson Bounding Technique give the
same bound. In this example, in order to apply the van Lint—Wilson Bounding Technique,
we construct an independent sequence whose sets are very closely related to the sets A and
B used in the Hartmann-Tzeng Bound. This construction mimics that used in the proof
of Corollary 4.5.11 where we showed that the BCH Bound follows from the van Lint—
Wilson Bounding Technique. If you generalize the construction in this example, you can
show that the Hartmann-Tzeng Bound also follows from the van Lint—-Wilson Bounding
Technique.

Exercise 270 Prove that the Hartmann—-Tzeng Bound follows from the van Lint—Wilson
Bounding Technique. Hint: See Example 4.5.12. ¢

Exercise 271 Let C be the [21, 13, d] binary cyclic code with defining set 7 =
{3,6,7,9,12, 14, 15, 18}. Find a lower bound on the minimum weight of C using the
BCH Bound, the Hartmann—Tzeng Bound, and the van Lint—Wilson Bounding Technique.
Also using the van Lint—Wilson Bounding Technique, show that an odd weight codeword
has weight at least 7. Hint: For the latter, note that «® is not a root of an odd weight
codeword. ¢

Exercise 272 Let C be the [41,21,d] binary cyclic code with defining set 7 =

{3,6,7,11,12,13,14, 15,17, 19, 22, 24, 26, 27, 28, 29, 30, 34, 35, 38}.

(a) Find the 2-cyclotomic cosets modulo 41.

(b) Let f(x) be a nonzero codeword and let S = {i € N'| f(') = 0}. Show thatif 1 € S,
then f(x)is either 0 or 1 4 x + - - - 4+ x*0,

(c) Assume that 1 ¢ S. Show that either S =T or S = T U {0}.

(d) Now assume that f(x) has weight 8 or less. Show, by applying the rules for construct-
ing independent sequences, that the following sets are part of an independent sequence
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with respect to S: {28}, {12, 17}, {19,22,27}, {3,6, 11,30}, {11, 12, 14, 19, 38},
{6, 12, 26,27, 29, 34}, {6, 7, 13, 27, 28, 30, 35}, and {1, 6, 7, 13, 27, 28, 30, 35}.

(e) From part (d), show that wt(f(x)) > 8.

(f) If wt(f(x)) =8, show that {0, 14, 15, 17, 22, 29, 34, 35} and {0, 1, 14, 15, 17,22,
29, 34, 35} are independent with respect to S.

(g) Show thatd > 9. (In fact, d = 9 by [203].) ¢

We conclude this section with the binary version of a result of McEliece [231] that shows
what powers of 2 are divisors of a binary cyclic code; we give only a partial proof as the
full proof is very difficult. Recall that A is a divisor of a code provided every codeword has
weight a multiple of A.

Theorem 4.5.13 (McEliece) Let C be a binary cyclic code with defining set T. Let a > 2
be the smallest number of elements in N'\ T, with repetitions allowed, that sum to 0. Then
24~V s a divisor of C but 2% is not.

Proof: We prove only the case a = 2 and part of the case a = 3.

If a =2, then 0 € T'; otherwise a = 1. Thus C has only even weight vectors by Exer-
cise 238 proving that 2! = 2 is a divisor of C. By definition of a, there is an element
beN\Tsuchthat —bmodn e N\T.Sob c N\ (—1)T modn;as0 e T,b+#0.By
Theorem 4.4.9 A\ (—1)T mod n is the defining set for Ct. If 2¢ = 4 is a divisor of C,
by Theorem 1.4.8, C is self-orthogonal. Hence C € C* and by Corollary 4.2.5 (or Exer-
cise 239), N\ (—=1)T mod n € T. This is a contradiction as b € N\ (—1)T mod n and
be N\T.

Ifa = 3, we only prove that 241 = 4isadivisor of C. We show that A/ \ (=T mod n C
T. Suppose not. Then there exists b € N\ (—1)T mod n with b ¢ T. So —b mod n €
N\T and be N\T. Since b+ (—b) =0, a #3, and this is a contradiction. So
N\ (=T mod n C T. Therefore C € C* by Theorem 4.4.9 and Corollary 4.2.5 (or Ex-
ercise 239). Thus C is a self-orthogonal binary cyclic code which must be doubly-even by
Theorem 4.4.18. o

Example 4.5.14 Let C be the [31, 11,d] binary cyclic code with defining set 7 =
{1,2,3,4,5,6,8,9,10, 11, 12, 13, 16, 17, 18, 20, 21, 22, 24, 26} that we considered in
Example 4.5.9. There we showed that d > 9. The subcode C, of even weight vec-
tors in C is a cyclic code with defining set 7, = {0} U T by Exercise 238. Notice that
N\T, ={7,14,15,19, 23, 25,27, 28, 29, 30} and that the sum of any two elements in
this set is not 0 modulo 31, but 7 + 25+ 30 = 0 (mod 31). So a = 3 in McEliece’s
Theorem applied to C,. Thus all vectors in C,, and hence all even weight vectors in C,
have weights a multiple of 4. In particular, C has no codewords of weight 10. Furthermore
l+x4+ - 4+x0 =" —-1)/(x —1) e Cas 0 ¢ T. Thus if C has a vector of weight w,
it has a vector of weight 31 — w. Specifically, if C has a codeword of weight 9, it has a
codeword of weight 22, a contradiction. Thus we have d > 11. The Griesmer Bound gives
d <12.By[203],d = 11. |

Exercise 273 Let C be the [21, 9, d] binary cyclic code with defining set 7 = {0, 1, 2,
3,4,6,7,8,11, 12, 14, 16}. Show that d > 8. ¢
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4.6

Meggitt decoding of cyclic codes

In this section we present a technique for decoding cyclic codes called Meggitt decoding
[238, 239]. There are several variations of Meggitt decoding; we will present two of them.
Meggitt decoding is a special case of permutation decoding, which will be explored further
in Section 10.2. Permutation decoding itself is a special case of error trapping.

Let C be an [n, k, d] cyclic code over I, with generator polynomial g(x) of degree
n —k; C will correct t = [(d — 1)/2] errors. Suppose that c(x) € C is transmitted and
y(x) = c(x) + e(x) is received, where e(x) = ey + e1x + - - - + e,_1x" ! is the error vector
with wt(e(x)) < t. The Meggitt decoder stores syndromes of error patterns with coordinate
n — 1 in error. The two versions of the Meggitt Decoding Algorithm that we present can
briefly be described as follows. In the first version, by shifting y(x) at most n times, the
decoder finds the error vector e(x) from the list and corrects the errors. In the second
version, by shifting y(x) until an error appears in coordinate n — 1, the decoder finds the
error in that coordinate, corrects only that error, and then corrects errors in coordinates
n—2,n—73,...,1,0 in that order by further shifting. As you can see, Meggitt decoding
takes advantage of the cyclic nature of the code.

For any vector v(x) € Fy[x], let Rg()(v(x)) be the unique remainder when v(x) is div-
ided by g(x) according to the Division Algorithm; that is, R, (v(x)) =r(x), where
v(x) = g(x) f(x) +r(x) with r(x) = 0 or deg r(x) < n — k. The function Ry, satisfies
the following properties; the proofs are left as an exercise.

Theorem 4.6.1 With the preceding notation the following hold:

(1) Rywlav(x) + bv'(x)) = aRyu)(v(x)) + DRy (V' (x)) for all v(x), v'(x) € Fy[x] and
alla,b € F,.

(i) Ry (0(x) +a()(x" = 1) = Ry (v(x).

(iii) Rgyv(v(x)) = 0 if and only if v(x) mod (x" — 1) € C.

(iv) Ifc(x) € C, then Ryy(c(x) 4 e(x)) = Ryxy(e(x)).

(V) If Rgoy(e(x)) = Ryy(€'(x)), where e(x) and e'(x) each have weight at most t, then
e(x) =ée'(x).

(Vi) Rgoy(v(x)) = v(x) ifdeg v(x) <n — k.

Exercise 274 Prove Theorem 4.6.1. ¢

Part (ii) of this theorem shows that we can apply R,(y) to either elements of R, or elements
of F,[x] without ambiguity. We now need a theorem due to Meggitt that will simplify our
computations with Ry .

Theorem 4.6.2 Let g(x) be amonic divisor of x" — 1 of degreen — k. If Rg(xy(v(x)) = s(x),
then

Ron(xv(x) mod (x" — 1)) = Ry (x5(x)) = x5(x) — g(x)Sn—k—1,

n—k—1

where s,_i_1 is the coefficient of x in s(x).
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Proof: By definition v(x) = g(x) f(x) + s(x), where s(x) = Z;:g_l sixt. So xv(x) =
xg(x) f(x) + xs5(x) = xg(x) f(x) + g(x) fi(x) + 5'(x), where 5'(x) = Ry (xs(x)). Also
xv(x) mod (x" — 1) = xv(x) — (x" — Dv,_1. Thus xv(x) mod (x" — 1) = xg(x)f(x) +
g() fi(x) + 5'(x) — (X" — Dy = (xf(x) + fi(x) — h(x)v,—1)g(x) + s'(x), where
g(x)h(x) = x" — 1. Therefore Ry()(xv(x) mod (x" — 1)) = 5'(x) = Ry(x)(xs(x)) because
deg s'(x) < n —k. As g(x) is monic of degree n — k and xs(x) = Zf’;gil six™1 the
remainder when xs(x) is divided by g(x) is xs(x) — g(x)sy—x—1- O

‘We now describe our first version of the Meggitt Decoding Algorithm and use an example
to illustrate each step. Define the syndrome polynomial S(v(x)) of any v(x) to be

S((x)) = Ryo(x" *v(x)).
By Theorem 4.6.1(iii), if v(x) € R, then S(v(x)) = 0if and only if v(x) € C.

Step I:
This is a one-time precomputation. Find all the syndrome polynomials S(e(x)) of error
patterns e(x) = Z;:ol e;x' such that wt(e(x)) < ¢ and e,_; # 0.

Example 4.6.3 Let C be the [15,7,5] binary cyclic code with defining set T =
{1,2,3,4,6,8,9,12}. Let o be a 15th root of unity in Fis. Then g(x) =1+ x*+
x% 4+ x7 4+ x% is the generator polynomial of C and the syndrome polynomial of e(x) is
S(e(x)) = Rg(x)(xse(x)). Step I produces the following syndrome polynomials:

e(x) S(e(x)) e(x) S(e(x))

x4 +7 X6 4 x4 EE
KB x0T x5 4 x4 X2 4 x4 4+ x5 4 x6 4 o7
X244 xS 44T x4 4 x4 x4+t xS 447
e x4y x3 4 x4 L+ x2 43 x4 447
K104 x4 3347 x2 4 x4 x4 x4 x5+ x6
x4+ x4y x4+x" IT4+x4+x*+x5+x0+x7
x84 x4 x+x7 14 x4 14+ x*+x°

x7+x14 1+X7

The computations of these syndrome polynomials were aided by Theorems 4.6.1 and
4.6.2. For example, in computing the syndrome polynomial of x'? + x4, we have S(x!? +
x4 = Rg(x)()cg()c12 +x%) = Rg(x)(x5 +x7)= x> +x7 using Theorem 4.6.1(vi). In
computing the syndrome polynomial for 1 + x4, first observe that Ry()(x®) = 1 + x* +
x0+x7; then S(1+x')= Rg(x)(xs(l +x%y) = Rg(x)(xg) + Rg(x)(x7) =1+ x* 4 x°.
We see by Theorem 4.6.2 that Rg()(x%) = Ren)(xx%) = Rery(x(1 4+ x* + x° +x7)) =
Ryy(X +X° + X))+ Rey(x®) =x + X0 +x" + 14+ x* +x0 +x" =14+ x+x* +x° +
x®. Therefore in computing the syndrome polynomial for x 4+ x'4, we have S(x + x'4) =
Rooy(x¥(x + x') = Ror)(x?) + Rey(x) = 1 +x +x* + x>+ x® +x’. The others
follow similarly. ]
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Exercise 275 Verify the syndrome polynomials found in Example 4.6.3. ¢

Step II:

Suppose that y(x) is the received vector. Compute the syndrome polynomial S(y(x)) =
Rg(x)(x”’ky(x)). By Theorem 4.6.1(iv), S(y(x)) = S(e(x)), where y(x) = c(x) + e(x) with
c(x) eC.

Example 4.6.4 Continuing with Example 4.6.3, suppose that y(x) = 1 4+ x* + x7 +x° +

x'0 4+ x'% is received. Then S(y(x)) = x + x> + x% + x7. |
Exercise 276 Verify that S(y(x)) = x + x> + x® + x7 in Example 4.6.4. ¢
Step I1I:

If S(y(x)) is in the list computed in Step I, then you know the error polynomial e(x) and
this can be subtracted from y(x) to obtain the codeword c(x). If S(y(x)) is not in the list,
go on to Step IV.

Example 4.6.5 S(y(x)) from Example 4.6.4 is not in the list of syndrome polynomials

given in Example 4.6.3. n
Step 1V:
Compute the syndrome polynomial of xy(x), x2y(x), ... in succession until the syndrome

polynomial is in the list from Step I. If S(x’y(x)) is in this list and is associated with the
error polynomial e’(x), then the received vector is decoded as y(x) — x"~e/(x).

The computation in Step IV is most easily carried out using Theorem 4.6.2. As
Ry (" y(x)) = S(y()) = Y15 s,

S(xy(x)) = Ryry(x"*xy(x)) = Re(o)(x(x" *y(x))) = Ry (xS(y(x)))
= xS(Y(x)) — $p_t—18(x). (4.8)

We proceed in the same fashion to get the syndrome of x2y(x) from that of xy(x).

Example 4.6.6 Continuing with Example 4.6.4, we have, using (4.8) and S(y(x)) = x +
x>+ x0 4+ %7 that SGy(x) =x(x + x>+ x0+x7) —1-g(x) =1 + 22+ x3 + x* + x5,
which is not in the list in Example 4.6.3. Using (4.8), S(x%y(x)) = x(1 + x> + x> + x* +
x%) —0- g(x) = x + x> + x* + x> + x7, which corresponds to the error x* 4 x'# implying
that y(x) is decoded as y(x) — (x2 + x'2) = 1 + x% + x* + x7 + x° + x'°. Note that this
is the codeword (1 4+ x2)g(x). [ |

The Meggitt decoder can be implemented with shift-register circuits, and a second version
of the Meggitt Decoding Algorithm is often employed in order to simplify this circuit. In
this second implementation, the circuitry only corrects coordinate n — 1 of the vector in
the shift-register. The vector in the shift-register starts out as the received vector y(x); if
there is an error in position n — 1, it is corrected. Then the shift xy(x) is moved into the
shift-register. If there is an error in coordinate n — 1, it is corrected; this in effect corrects
coordinate n — 2 of y(x). This continues until y(x) and its n — 1 shifts have been moved
into the shift-register and have been examined. At each stage only the error at the end of
the shift-register is corrected. This process corrects the original received vector y(x) since
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a correction in coordinate n — 1 of x’y(x) produces a correction in coordinate n — 1 — i
of y(x). This version of Meggitt decoding allows the use of shift-registers whose internal
stages do not need to be directly accessed and modified and allows for fewer wires in the
circuit. For those interested in the circuit designs, consult [21]. We illustrate this in the
binary case by continuing with Example 4.6.6.

Example 4.6.7 After computing the syndrome polynomials of y(x), xy(x), and x?y(x),
we conclude there is an error in coordinate 14 of x2 y(x), that is, coordinate 12 of
y(x). Thus we modify x?y(x) in coordinate 14 to obtain x%y'(x) = x2 4+ x% + x° + x'1 +
x'2 (where y'(x) =1+ x*+x7 +x° +x'0 is y(x) corrected in coordinate 12). This
changes the syndrome as well. Fortunately, the change is simple to deal with as fol-
lows. S(x?y'(x)) = Ry (x*(x2y' (X)) = Ry(ry (3 (x?y(x))) — Ry (x®x ') = S(x?y(x)) —
Ry(x)(x??) because x?y'(x) = x2y(x) — x'* since we changed only coordinate 14 of x2y(x).
But S(xzy(x)) — Rg(x>(x22) =x 4+ +x*+x°+x7 —x7 =x + x>+ x* + x° from Ex-
ample 4.6.6 as Rg(x)(xzz) = Rg(x)(x7) = x’. Thus to get the new syndrome for xzy’(x), we
take S(x2y(x)) and subtract x”. This holds in general: namely, to obtain the new syndrome
polynomial after an error has been corrected, take the old syndrome and subtract x’. This
simple modification in the syndrome polynomial is precisely why the definition of syn-
drome S(v(x)) as Rg(x)(x"’kv(x)) was given; had we used the more natural R,(,)(v(x)) as
the definition of the syndrome polynomial of v(x), we would have had a more complicated
modification of the syndrome at this juncture. So we compute and obtain the following
table:

Syndrome of Syndrome Syndrome of Syndrome
x3y/(x) x2 4+ x*t x5+ x0 x8y/(x) x3
x4y (x) X340+ x84 x7 x°y'(x) x*
xy'(x) 1 x'0y'(x) X
x%'(x) x a1y (x) x©
x7y/(x) xz xlzy/(x) x7

We see that none of our syndromes is in the list from Step I until that of x'?y’(x). Hence
we change coordinate 14 of x'?y’(x) = x + x* + x® + x7 + x'? to obtain x'?y"(x) = x +
x* 4+ x84+ x7 4+ x1? 4 x! (where y'(x) = 1 + x> + x* + x7 + x° + x'%is y/(x) changed
in coordinate 2). As above, the syndrome of x'?y”(x)is x” — x” = 0. We could stop here, if
our circuit is designed to check for the zero syndrome polynomial. Otherwise we compute
the syndromes of x'3y”(x) and x'#y”(x), which are both 0 and not on the list, indicating
that the procedure should halt as we have considered all cyclic shifts of our received vector.
So the correct vector is y”(x) and in fact turns out to be the vector output of the shift-register
circuit used in this version of Meggitt decoding. |

Exercise 277 Verify the results in Example 4.6.7. ¢

In the binary case where we correct only the high-order errors one at a time, it is un-
necessary to store the error polynomial corresponding to each syndrome. Obviously the
speed of our decoding algorithm depends on the size of the list and the speed of the pattern
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recognition of the circuit. There are further variations of Meggitt decoding for which we
again refer the reader to [21].

Exercise 278 With the same code as in Example 4.6.3, find the codeword sent if two or

fewer errors have occurred and y(x) = 1 + x + x% 4+ x% + x"' 4+ x'2 + x'3 is received. Do

this in two ways:

(a) Carry out Steps I-IV (that is, the first version of the Meggitt Decoding Algorithm).

(b) Carry out Meggitt decoding by correcting only the high-order bits and shifting as in
Example 4.6.7 (that is, the second version of the Meggitt Decoding Algorithm). ¢

4.7

Affine-invariant codes

In this section we will look at extending certain cyclic codes and examine an important class
of codes called affine-invariant codes. Reed—Muller codes and some BCH codes, defined
in Chapter 5, are affine-invariant.

We will present a new setting for “primitive” cyclic codes that will assist us in the
description of affine-invariant codes. A primitive cyclic code over F, is a cyclic code of
length n = ¢’ — 1 for some ¢.! To proceed, we need some notation.

Let Z denote the field of order g, which is then an extension field of IF,. The set 7 will
be the index set of our extended cyclic codes of length g’. Let Z* be the nonzero elements
of 7, and suppose « is a primitive nth root of unity in Z (and hence a primitive element of
7). The set Z* will be the index set of our primitive cyclic codes of length n = ¢* — 1. With
X an indeterminate, let

F,[7]1= {a = Zang | ag € F, forall g EI}.
g€l

The set IF,[Z] is actually an algebra under the operations

cY a, X +d Y bXt = (cay +dby)X*
g€l gel gel
forc,d € Fy, and

S Xt Y hxe = 3 (Zahbg_h>Xg.

g€l g€l g€l N hel
The zero and unity of I, [Z] are ) Py 0X¢ and X, respectively. This is the group algebra
of the additive group of 7 over IF,,. Let

Fy[Z*] = {a =Y a,X*|ay €F, forall g eI*}.
gel*

! Cyclic codes of length n = ¢’ — 1 over an extension field of IF, are also called primitive, but we will only study
the more restricted case.
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F,[Z7] is a subspace of F,[Z] but not a subalgebra. So elements of IF,[Z*] are of the form

n—1

i
E a,i X« ,
i=0

while elements of I, [Z] are of the form
n—1 v

aoX? + Z agi X% .
i=0

The vector space F,[Z*] will be the new setting for primitive cyclic codes, and the algebra
IF,[Z] will be the setting for the extended cyclic codes. So in fact both codes are contained
in IF, [Z], which makes the discussion of affine-invariant codes more tractable.

Suppose that C is a cyclic code over F, of length n = ¢' — 1. The coordinates of C have
beendenoted {0, 1, ...,n — 1}.In'R,, the ith component c¢; of acodeword ¢ = cpcy - - - ¢;—1,
with associated polynomial c(x), is the coefficient of the term c;x’ in c(x); the component
¢; is kept in position x'. Now we associate ¢ with an element C(X) € F,[Z *] as follows:

n—1

coCX)=) CuX” =) CX5, (4.9
i=0

geT*

where C,i = ¢;. Thus the ith component of ¢ is the coefficient of the term C,i X “inC (X);
the component ¢; is kept in position X*'.

Example 4.7.1 Considertheelementc(x) =14+ x + x*inRyoverF,.Son =7 =23 — 1.
Let o be a primitive element of Fg. Then cp = Cpo = 1,1 = Cy1 = 1, and ¢3 = Cys = 1,
with the other ¢; = C,; = 0. So

c)=14+x+x & CX)= X+ X+ X .

We now need to examine the cyclic shift xc(x) under the correspondence (4.9). We have

n—1 n—1

n—1
xe(x) =co_1 + Zc,-,lxi < Z Ca,-le“i = Z Ca,-X‘mi.
i=0

i=1 i=0

Example 4.7.2 We continue with Example 4.7.1. Namely,

xe(x) = x +x2+x* < X4+ X* + X = xo! 4 xoo 4 xoo, .

In our new notation a primitive cyclic code over F,, of length n = ¢* — 1 is any subset C

of F,[Z*] such that

n—1
Y CuX” =3 C,X*eC ifandonlyif
i=0 geT*

n—1
D Cux™ =) Cx* ecC. (4.10)
i=0

geT*
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The coordinates of our cyclic codes are indexed by Z*. We are now ready to extend our
cyclic codes. We use the element O € 7 to index the extended coordinate. The extended

codeword of C(X) =}, 7. C,X¢ is C(X)= > ger Co X8 suchthat } , C, = 0.

Example 4.7.3 We continue with Examples 4.7.1 and 4.7.2. If C(X) = X + X“ + X«
thenC(X) = X"+ X + X* + X =1+ X + X* + X*. ]

From (4.10), together with the observation that X*° = X% = 1, in this terminology an
extended cyclic code is a subspace C of IF,[Z] such that

Y C,X¢eC ifandonlyif ) C,X*eCand » C,=0.
({4 gel gel
With this new notation we want to see where the concepts of zeros and defining sets

come in. This can be done with the assistance of a function ¢;. Let N = {s10<s<n}
For s € N define ¢, : F,[Z] — Z by

¢5<chxg) =) Cg’
gel gel

where by convention 0° = 1 in Z. Thus ¢0(6(X)) =Y 4z Cg implying that C(X) is the
extended codeword of C(X) if and only if qbo(C (X)) = 0 In particular, if C is extended
cyclic, then ¢>0(C(X)) = 0 for all C(X) € C. What is ¢S(C(X)) when 1 <s <n—1?As
0*=0inZ,

n—1

n—1
$(C(X) =) Cula) = Zcm) —Za(a) = ("), (4.11)
i=0

where c(x) is the polynomial in R, associated to C(X) in F,[Z*]. Suppose our original
code C defined in R,, had defining set T relative to the nth root of unlty o. Then 4.11)
shows thatif 1 <s <n —1,s € T if and only if ¢Y(C(X)) = 0 for all C(X) eC. Finally,
what is (j)n(C(X))? Equation (4.11) works in this case as well, implying that " = 1 is a
zero of C if and only if ¢, (6(X)) = 0 for all 6(X) € C.Buta® = o" = 1. Hence we have,
by Exercise 238, that 0 € T if and only if ¢,1(6(X)) = 0 for all 6(X) e C. We can now
describe an extended cyclic code in terms of a defining set as follows: a code Cof length ¢’
is an extended cyclic code with defining set T provided TcC N is a union of q-cyclotomic
cosets modulon = ¢' — 1 with 0 € T and

= {C(X) € F,[T] | ¢;(C(X)) =0 foralls € T}. (4.12)

We make several remarks.

« 0and n are distinctin 7 and each is its own g-cyclotomic coset.

« 0 e T because we need all codewords in C to be even-like.

e Ifne ?, then ¢, (6(X N=> ger» Co = 0. As the extended codeword is even-like, since
0eT, >_¢er C¢ = 0. Thus the extended coordinate is always 0, a condition that makes
the extension trivial.

* The defining set T of C and the defining set T are closely related: T is obtained by taking
T, changing O ton if 0 € T, and adding 0.
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e seT with 1 <s < nif and only if &* is a zero of C.

* By employing the natural ordering 0, ", al, ..., a" ! onZ, we can make the extended
cyclic nature of these codes apparent. The coordinate labeled O is the parity check co-
ordinate, and puncturing the code C on this coordinate gives the code C that admits the
standard cyclic shift @' — oo’ as an automorphism.

* To check that a code C in R, is cyclic with defining set T', one only needs to verify that
c(x) € Cif and only if c(«®) = 0 for all s € T. Parallel to that, to check that a code Cin
IF,[Z] is extended cyclic with defining set T one only needs to verify that E(X ) € Cif

and only if ¢;(C(X)) = O foralls € T.

Example 4.7.4 Let C be the [7, 4] binary cyclic code with defining set T = {1, 2, 4} and
generator polynomial g(x) = [[,.;(x —a’) = 1 +x + x*, where « is a primitive element
of Fy satisfying o® = 1 + . See Examples 3.4.3 and 4.3.4. The extended generator is
1+ X+ X%+ X*. Thena generator matrix for C is

1 X x¢ x« x¢ xo xo xo
11 1 0 1 0 0 0
1o 1 1 0 1 0 0
1o o 1 1 0 1 0
1o o o 1 1 0 1

Notice that this is the extended Hamming code 7’:[3. It has defining set T = {0,1,2,4}.
[ |

In Section 1.6, we describe how permutation automorphisms act on codes. From the
discussion in that section, a permutation o of Z acts on C as follows:

(chxg>a = C,Xx*.
g€z geT

We define the affine group GA1(Z) by GA(Z) = {0, | a € T%,b € T}, where go,, =
ag + b. Notice that the maps o, are merely the cyclic shifts on the coordinates
{a", &', ..., a"" '} each fixing the coordinate 0. The group GA;(Z) has order (n + 1)n =
q'(q" — 1). An affine-invariant code is an extended cyclic code C over F, such that
GA(2) < PAut(@). Amazingly, we can easily decide which extended cyclic codes are
affine-invariant by examining their defining sets. In order to do this we introduce a partial
ordering < on N. Suppose that ¢ = p™, where p is a prime. Then N= {0,1,...,n},
where n =¢q¢' — 1 = p™ — 1. So every element s € N can be written in its p-adic
expansion

mt—1

s=2s,-pi, where 0 <s; < pfor0 <i < mzt.
i=0

We say that » < s provided r; <'s; forall 0 <i < mt, wherer = ZT:’(;' ri p' is the p-adic

expansion of r. Notice that if » < s, then in particular » < s. We also need a result called
Lucas’ Theorem [209], a proof of which can be found in [18].
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Theorem 4.7.5 (Lucas) Letr = > "o Yriplands = Yo s p' be the p-adic expansions

of r and s. Then

s mt—1 5
(r) = Q <Vi> (mod p).

We are now ready to determine the affine-invariant codes from their defining sets, a result
due to Kasami, Lin, and Peterson [162].

Theorem 4.7.6 Let C be an extended cyclic code of length q" with defining set T. The code
C is affine-invariant if and only if whenevers € T thenr € T forallr € N withr < s.

Proof: Suppose that C(X)=Y,er CoX* €C. Let s € N and a, b € T with a # 0. So
(CX))oup =D ger C, X"’ Therefore,

G (C(X)ous) =Y Colag +by' =Y C, Z ( )(ag) b

g€z geT r=0

By Lucas’ Theorem, ( )is nonzero modulo p ifand only if; < s; forall0 <i < mt where

mt—1 mt—1
r=Y""rip ands =) " " s;p' are the p-adic expansions of r and 5. Hence

B(C(XNoup) =D Cg Y ( )(ag)rb” => ( ) BTy Cog

gel r<s r=s g€l

Therefore,

B (CX)ous) =Y (j)a’bf"@(&xn (4.13)

r=s

Let s be an arbitrary element of T and assume that if 7 <s, then r € T. By (4.12),
¢,(6(X)) = 0 asr € ’7: and therefore by (4.13), ¢>S(’C\(X)oa,b) = 0. As s was an arbitrary
element of T by (4.12), Cis afﬁne invariant.

Conversely, assume that C is affine- 1nvar1ant Assume that s € T and that r < s.
We need to show that r € T, that is ¢,(C(X)) =0 by (4.12). As C is affine- -invariant,
¢S(6(X)aa,;,) =0 for all @ € Z* and b € Z. In particular this holds for a = 1; letting
a = 1 in (4.13) yields

0=3" (j)@(&xnbs—f

r=s

for all b € Z. But the right-hand side of this equation is a polynomial in b of degree at
most s < g with all ¢’ possible b € Z as roots. Hence this must be the zero polynomial. So
(f)(ﬁ,(a(X )) = 0in Z for all r < s. However, by Lucas’ Theorem again, (}) 0 (mod p)
and Elus these binomial coefficients are nonzero in Z. Hence ¢,(6(X )) = 0 implying that
refT. O

Example 4.7.7 Suppose that C is an affine- 1nvar1ant code with deﬁmng set T such that
n e T. By Exercise 279, r < < n forall r € N.Thus T = N and C is the zero code. This
makes sense because if n € T, then the extended component of any codeword is always
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0. Since the code is affine-invariant and the group GA(Z) is transitive (actually doubly-
transitive), every component of any codeword must be zero. Thus C is the zero code. W

Exercise 279 Prove thatr <nforallr € N. ¢

Example 4.7.8 The following table gives the defining sets for the binary extended cyclic
codes of length 8. The ones that are affine-invariant are marked.

Defining set Affine-invariant
{0} yes
{0,1,2,4} yes
{0,1,2,3,4,5, 6} yes
{0,1,2,4,7} no
{0,1,2,3,4,5,6,7} yes
{0,3,5,6} no
{0,3,5,6,7} no
{0, 7} no

Notice the rather interesting phenomenon that the extended cyclic codes with defining
sets {0, 1, 2, 4} and {0, 3, 5, 6} are equivalent, yet one is affine-invariant while the other is
not. The equivalence of these codes follows from Exercise 41 together with the fact that
the punctured codes of length 7 are cyclic with defining sets {1, 2,4} and {3, 5, 6} and
are equivalent under the multiplier 3. These two extended codes have isomorphic auto-
morphism groups. The automorphism group of the affine-invariant one contains GA(IF'g)
while the other contains a subgroup isomorphic, but not equal, to GA(IFs). The code with
defining set {0} is the [8, 7, 2] code consisting of the even weight vectors in ]Fg The code
with defining set {0, 1, 2, 3,4, 5, 6} is the repetition code, and the code with defining set
{0,1,2,3,4,5, 6,7} is the zero code. Finally, the code with defining set {0, 1, 2, 4} is one
particular form of the extended Hamming code 7/-23.

|
Exercise 280 Verify all the claims in Example 4.7.8. ¢
Exercise 281 Give the defining sets of all binary affine-invariant codes of length 16. ¢
Exercise 282 Give the defining sets of all affine-invariant codes over 4 of length 16. ¢
Exercise 283 Give the defining sets of all affine-invariant codes over 3 of length 9. ¢

Corollary 4.7.9 IfC is a primitive cyclic code such that C is a nonzero affine-invariant code,
then the minimum weight of C is its minimum odd-like weight. In particular, the minimum
weight of a binary primitive cyclic code, whose extension is affine-invariant, is odd.

Proof: As GA,(Z) is transitive, the result follows from Theorem 1.6.6. |
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BCH and Reed-Solomon codes

5.1

In this chapter we examine one of the many important families of cyclic codes known as
BCH codes together with a subfamily of these codes called Reed—Solomon codes.

The binary BCH codes were discovered around 1960 by Hocquenghem [132] and in-
dependently by Bose and Ray-Chaudhuri [28, 29], and were generalized to all finite fields
by Gorenstein and Zierler [109]. At about the same time as BCH codes appeared in the
literature, Reed and Solomon [294] published their work on the codes that now bear their
names. These codes, which can be described as special BCH codes, were actually first
constructed by Bush [42] in 1952 in the context of orthogonal arrays. Because of their burst
error-correction capabilities, Reed—Solomon codes are used to improve the reliability of
compact discs, digital audio tapes, and other data storage systems.

BCH codes

BCH codes are cyclic codes designed to take advantage of the BCH Bound. We would like to
construct a cyclic code C of length n over IF,, with simultaneously high minimum weight and
high dimension. Having high minimum weight, by the BCH Bound, can be accomplished
by choosing a defining set 7 for C with a large number of consecutive elements. Since the
dimension of C is n — |T'| by Theorem 4.4.2, we would like |T'| to be as small as possible.
So if we would like C to have minimum distance at least §, we can choose a defining set as
small as possible that is a union of g-cyclotomic cosets with § — 1 consecutive elements.

Let & be an integer with 2 < § < n. A BCH code C over F, of length n and designed
distance § is a cyclic code with defining set

T=C,UCpy1 U---UCpys2, 5.1

where C; is the g-cyclotomic coset modulo n containing i. By the BCH Bound this code
has minimum distance at least §.

Theorem 5.1.1 A BCH code of designed distance & has minimum weight at least §.

Proof: The defining set (5.1) contains § — 1 consecutive elements. The result follows by
the BCH Bound. O

Varying the value of b produces a variety of codes with possibly different minimum
distances and dimensions. When b = 1, C is called a narrow-sense BCH code. As with any
cyclic code, if n = ¢' — 1, then C is called a primitive BCH code.
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BCH codes are nested in the following sense.

Theorem 5.1.2 For i =1 and 2, let C; be the BCH code over F, with defining set T; =
CobUCpyg U---UCpys,_2, where §; < 8. Then C, C C;.

Exercise 284 Prove Theorem 5.1.2. ¢

Example 5.1.3 We construct several BCH codes over F5 of length 13. The 3-cyclotomic
cosets modulo 13 are

Co=1{0}, C; ={1,3,9}, C, ={2,5,6}, Cs = {4,10, 12}, C; = {7, 8, 11}.

As ord;3(3) = 3, x'3 — 1 has its roots in Fss. There is a primitive element « in F33 which
satisfies o> + 2o + 1 = 0. Then B = «? is a primitive 13th root of unity in F3:. Using S,
the narrow-sense BCH code C; of designed distance 2 has defining set C; and generator
polynomial g;(x) = 2 + x 4+ x? 4 x3. By Theorem 5.1.1, the minimum distance is at least
2. However, Ciu,, which is equivalent to Cy, is the (non-narrow-sense) BCH code with
defining set 27'C; = C; = Cg by Corollary 4.4.5. This code has designed distance 3 and
generator polynomial g7(x) =2 + 2x + x3. Thus C; is a [13, 10, 3] BCH code. The even-
like subcode C; . of Cy is the BCH code with defining set Cy U C;. C; . has designed distance
3 and minimum distance 3 as (x — 1)g(x) = 1 4+ x + x*is even-like of weight 3. Note that
the even-like subcode of Cyu, is equivalent to C; . but is not BCH. The narrow-sense
BCH code C, of designed distance 3 has defining set C; U C;. As this defining set also
equals C; U C, U C3, C; also has designed distance 4. Its generator polynomial is g; 2(x) =
14 2x 4+ x% 4+ 2x3 + 2x* +2x3 4+ x%, and (1 + x)g1.2(x) = 1 + x* 4+ x> + x7 has weight
4. Thus C, is a [13, 7, 4] BCH code. Finally, the narrow-sense BCH code C; of designed
distance 5 has defining set C; U C, U C3 U Cy; this code is also the narrow-sense BCH code
of designed distance 7. C3 has generator polynomial 2 + 2x% + 2x3 + x> + 2x7 + x% 4 x°,
which has weight 7; thus C; is a [13, 4, 7] BCH code. Notice that C3 C C, C C; by the
nesting property of Theorem 5.1.2. [ ]

Exercise 285 This exercise continues Example 5.1.3. The minimal polynomials of 8, 82,
B* and B7 are g1(x) =24+ x +x2+x3, go(x) =2+ x>+ x3, ga(x) =24+ 2x +2x2 +
x3,and g7(x) = 2 + 2x + x3, respectively. Find generator polynomials, designed distances,
and minimum distances of all BCH codes over [F; of length 13. Note that computations will
be reduced if multipliers are used to find some equivalences between BCH codes. ¢

The next theorem shows that many Hamming codes are narrow-sense BCH codes.

Theorem 5.1.4 Let n = (¢" — 1)/(q — 1) where gcd(r,q — 1) = 1. Let C be the narrow-
sense BCH code with defining set T = Cy. Then C is the Hamming code H, ;.

Proof: Let y be a primitive element of F,. The code C is generated by M,(x),
where a = 97! is a primitive nth root of unity. An easy calculation shows that n =
g—1 er;ll iqg""'"" +r. So ged(n, g — 1) = ged(r, ¢ — 1) = 1. By Theorem 3.5.3, the
nonzero elements of F, in F,, are powers of y where the power is a divisor of
n=(q"—1)/(q—1). As ged(n, g — 1) = 1, the only element of [F, that is a power of
« is the identity. Therefore if we write the elements of F,- as r-tuples in F/, none of the
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r-tuples corresponding toa’, !, .. ., """ are multiples of one another using only elements

of F,. This implies that these elements are the distinct points of PG(r — 1, g). The r x n
matrix H, whose columns are the r-tuples corresponding to «, ', ..., @', is the parity

check matrix H, , of H, , as given in Section 1.8. O
Corollary 5.1.5 Every binary Hamming code is a primitive narrow-sense BCH code.

Exercise 286 Verify the claim made in the proof of Theorem 5.1.4 that n = (¢ — 1) x
Z:ll ig" """ +r,wheren = (¢" — 1)/(qg — 1). N

Exercise 287 Prove Corollary 5.1.5. ¢

But not every Hamming code is equivalent to a BCH code. Indeed as the next example
shows, some Hamming codes are not equivalent to any cyclic code.

Example 5.1.6 In Example 1.3.3, a generator matrix for the [4, 2, 3] ternary Hamming
code C = Hj3, also called the tetracode, was presented. In Example 1.7.7, its monomial
automorphism group was given; namely MAut(C) = "' Aut(C) is a group of order 48 gener-
ated by diag(1, 1, 1, —1)(1, 2, 3, 4) and diag(1, 1, 1, —1)(1, 2), where MAutp,(C) = Sym,.
Using this fact a straightforward argument, which we leave to Exercise 288, shows that a
monomial map M, such that CM is cyclic, does not exist. [ ]

Exercise 288 Verify that in Example 5.1.6 a monomial map M, such that CM is cyclic,
does not exist. ¢

The Hamming codes of Theorem 5.1.4 have designed distance § = 2, yet their actual
minimum distance is 3. In the binary case this can be explained as follows. These Hamming
codes are the narrow-sense BCH codes of designed distance § = 2 withdefiningset7T = C;.
But in the binary case, C; = C, and so T is also the defining set of the narrow-sense BCH
code of designed distance 6 = 3. This same argument can be used with every narrow-sense
binary BCH code in that the designed distance can always be assumed to be odd. In the next
theorem we give a lower bound on the dimension of a BCH code in terms of § and ord,(g).
Of course, the exact dimension is determined by the size of the defining set.

Theorem 5.1.7 Let C be an [n, k] BCH code over I, of designed distance 8. The following

hold:

(i) k=n—ord,(q)S—1).

(i) Ifg = 2 and C is a narrow-sense BCH code, then § can be assumed to be odd; further-
more if 6§ =2w + 1, then k > n — ord,(q)w.

Proof: By Theorem4.1.4 each g-cyclotomic cosethas size a divisor of ord,, (¢). The defining
set for a BCH code of designed distance § is the union of at most § — 1 g-cyclotomic cosets
each of size at most ord,, (¢). Hence the dimension of the code is at least n — ord,,(g)(§ — 1),
giving (i). If the code is narrow-sense and binary, then {1, 2, ..., § — 1} € T. Suppose that
diseven. Thend € Cs/, € T,implying that T contains the set {1, 2, . .., §} of § consecutive
elements. Hence we can increase the designed distance by 1 whenever the designed distance
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is assumed to be even. So we may assume that § is odd. If § = 2w + 1, then
T:CIUCQU“'UCQw:CIUCZ;U"'UCZw,l,

as Cy; = C;. Hence T is the union of at most w g-cyclotomic cosets of size at most ord,,(q),
yielding k > n — ord, (g)w. O

As we see in the proof of Theorem 5.1.7, it is possible for more than one value of § to be
used to construct the same BCH code. The binary Golay code provides a further example.

Example 5.1.8 In Example 4.5.5, we saw that the [23, 12, 7] binary Golay code is a cyclic
code with defining set T = C|. Thus it is a narrow-sense BCH code with designed distance
8§ =2.As C| = Cy = C3 = Cy, itis also a BCH code with designed distance any of 3, 4,
or 3. |

Because of examples such as this, we call the largest designed distance 8’ defining a BCH
code C the Bose distance of C. Thus we have d > §’ > §, where d is the actual minimum
distance of C by Theorem 5.1.1. For the Golay code of Example 5.1.8, the Bose distance is
5; notice that the true minimum distance is 7, which is still greater than the Bose distance. As
we saw in Chapter 4, there are techniques to produce lower bounds on the minimum distance
which, when applied to BCH codes, may produce lower bounds above the Bose distance.

Determining the actual minimum distance of specific BCH codes is an important, but
difficult, problem. Section 3 of [50] discusses this problem extensively. Tables of minimum
distances for very long codes have been produced. For example, Table 2 of [50] contains
a list of primitive narrow-sense binary BCH codes whose minimum distance is the Bose
distance. As an illustration of the lengths of codes involved, the primitive narrow-sense
binary BCH code of length n = 241%° — 1 and designed distance 49 actually has minimum
distance 49, as does every such code of length n = 249 — 1,

For narrow-sense BCH codes, the BCH Bound has been very good in general. In fact,
that is how the minimum weights of many of the BCH codes of high dimension have been
determined: find a vector in the code whose weight is the Bose designed distance. There
has been a great deal of effort to find the true minimum distance of all primitive narrow-
sense binary BCH codes of a fixed length. This has been done completely for lengths 3,
7,31, 63, 127, and 255; for lengths up to 127 see Figure 9.1 of [218] and Table 2 of [50]
and for length 255 see [10]. The true minimum distance of all but six codes of length
511 has been found in [10] and [46]; see also [50]. Of the 51 codes of length 511 whose
minimum distance is known, 46 have minimum distance equal to their Bose distance, four
have minimum distance equal to two more than their Bose distance, and one has minimum
distance four more than its Bose distance (the [511, 103, 127] code of designed distance
123). The following conjecture has been formulated by Charpin.

Conjecture Every binary primitive narrow-sense BCH code of Bose designed distance &
has minimum distance no more than § + 4.

If the code is not primitive, some codes fail to satisfy this conjecture. For example, the
binary narrow-sense BCH code of length 33 and designed distance 5 has minimum distance
10 (see [203]).
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As we see, finding the minimum distance for a specific code or a family of codes, such
as BCH codes, has been an important area of research. In this connection, it would be
very useful to have improved algorithms for accomplishing this. There is also interest in
determining as much as one can about the weight distribution or automorphism group of
a specific code or a family of codes. For example, in Theorem 5.1.9 we will show that
extended narrow-sense primitive BCH codes are affine-invariant; the full automorphism
groups of these codes are known [16].

By Theorem 4.2.6 and Exercises 238 and 243, the dual, even-like subcode, and cyclic
complement of a cyclic code C are all cyclic. If C is a BCH code, are its dual, even-like
subcode, and cyclic complement also BCH? In general the answer is no to each of these,
although in certain cases some of these are BCH. For example, suppose that C is a narrow-
sense BCH code of length n and designed distance §. Thenas 1 + 8§ —2 <n — 1,0isnotin
the defining set 7' of C, and hence, by Exercise 238, C is odd-like. Thus 7 = C, U C, U - - -
U Cs_; while the defining set of the even-like subcode C, is T U {0} = Co U C; U
U Cs_1; hence C, is a BCH code of designed distance § + 1.

Exercise 289 Let2 <§ < 15.

(a) Give the defining set of all binary BCH codes of designed distance é and length 15.

(b) What is the Bose distance of each of the codes in part (a)?

(c) What is the defining set of each of the duals of the codes in part (a)? Which of these
duals are BCH?

(d) Whatis the defining set of each of the even-like subcodes of the codes in part (a)? Which
of these even-like subcodes are BCH?

(e) What is the defining set of each of the cyclic complements of the codes in part (a)?
Which of these cyclic complements are BCH?

(f) Find the defining sets of all binary cyclic codes of length 15 that are not BCH.

(g) Find the minimum weight of the BCH codes of length 15. ¢

Let C be a primitive narrow-sense BCH code of length n = ¢" — 1 over IF,, with designed
distance §. The defining set 7" is C; UCy U --- U Cs_;. The extended BCH code E has
defining set T= {0} U T. The reader is asked to show in Exercise 290 that if s € T and
r <s, then r € T where < is the partial order on N = {0, 1, ..., n} of Section 4.7. By
Theorem 4.7.6, C is affine-invariant, and by Corollary 4.7.9 the minimum weight of C is its
minimum odd-like weight. So we have the following theorem.

Theorem 5.1.9 Let C be a primitive narrow-sense BCH code of lengthn = g — 1 over I,
with designed distance 5. Then C is affine-invariant, and the minimum weight of C is its
minimum odd-like weight.

Exercise 290 Let C be an extended BCH code of length g’ over I, with defining set

?—{O}UCIUQU -UCs_y. Let g = p™, wherepls a prime, andletn—q —1=

p™ — 1. Show, by carrying out the followmg, thatif s € T and r < s,thenr € T.

(a) Prove thatifr < s, thenr’ < s’ where r' = gr (mod n) and 5" = ¢gs (mod n).

(b) Prove that if there exists an s € T and an r=s but r ¢ T then there is an s” € T with
s” <8 —1andanr” < s” such thatr” ¢ T.

(¢) Prove that " and s” from part (b) do not exist. ¢
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When examining a family of codes, it is natural to ask if this family is asymptotically
“good” or “bad” in the following sense. We say that a family of codes is asymptotically
good provided that there exists an infinite subset of [n;, k;, d;] codes from this family
with lim;_, o, n; = 0o such that both liminf;_, o, k; /n; > 0 and liminf;_,  d; /n; > 0. For
example, codes that meet the Asymptotic Gilbert—Varshamov Bound are asymptotically
good. The family is asymptotically bad if no asymptotically good subfamily exists. Recall
from Section 2.10 that for an [n, k, d] code, the ratio k/n is called the rate of the code and
the ratio d/n is called the relative distance of the code. The former measures the number of
information coordinates relative to the total number of coordinates, and the latter measures
the error-correcting capability of the code. Ideally, we would like the rate and relative
distance to both be high, in order to be able to send a large number of messages while
correcting a large number of errors. But these are conflicting goals. So in a family of good
codes, we want an infinite subfamily where both the code rates and relative distances are
bounded away from 0; hence in this subfamily neither rate nor relative distance are low. In
general, the rates and relative distances for any class of codes is difficult or impossible to
determine. Unfortunately, primitive BCH codes are known to be bad [198].

Theorem 5.1.10 The family of primitive BCH codes over ¥, is asymptotically bad.

Note that this negative result does not say that individual codes, particularly those of
modest length, are not excellent codes. BCH codes, or codes constructed from them, are
often the codes closest to optimal that are known [32].

As a corollary of Theorem 5.1.10, we see that the primitive narrow-sense BCH codes
are asymptotically bad. These codes also have extensions that are affine-invariant by Theo-
rem 5.1.9. The fact that primitive narrow-sense BCH codes are asymptotically bad also, is
a corollary of the following result of Kasami [161].

Theorem 5.1.11 Any family of cyclic codes whose extensions are affine-invariant is asymp-
totically bad.

It is natural to ask whether or not there is any asymptotically good family of codes.
The answer is yes, as the Asymptotic Gilbert—Varshamov Bound implies. As we saw, the
proof of this bound is nonconstructive; it shows that a family of good codes exists but
does not give a construction of such a family. In Section 2.11 we saw that the lexicodes
meet the Asymptotic Gilbert—Varshamov Bound and hence are asymptotically good. We
will examine another family of codes in Chapter 13 that meets the Asymptotic Gilbert—
Varshamov Bound.

5.2

Reed-Solomon codes

In this section we will define Reed—Solomon codes as a subfamily of BCH codes. We will
also give another equivalent definition for the narrow-sense Reed—Solomon codes that will
allow us to generalize these important codes.

A Reed-Solomon code, abbreviated RS code, C over I, is a BCH code of length n =
q — 1. Thusord,(g) = 1implying that all irreducible factors of x” — 1 are of degree 1 and all
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g-cyclotomic cosets modulo n have size 1. In fact, the roots of x” — 1 are exactly the nonzero
elements of I, and a primitive nth root of unity is a primitive element of F,. So if C has
designed distance §, the defining set of C hassize§ — landisT = {b,b+1,...,b+ 6§ — 2}
for some integer . By Theorem 5.1.1 and the Singleton Bound, the dimension k and
minimum distance d of C satisfy k =n — 8+ 1 >n —d + 1 > k. Thus both inequalities
are equalities implying d = § and k = n — d + 1. In particular, C is MDS. We summarize
this information in the following theorem.

Theorem 5.2.1 Let C be an RS code over F, of length n = q — 1 and designed distance §.
Then:

(i) C has defining set T ={b,b+1,...,b+ § — 2} for some integer b,

(i) C has minimum distance d = § and dimensionk =n —d + 1, and

(iii) C is MDS.

Recall that in general the dual and cyclic complement of a BCH code are not BCH codes;
that is not the case with RS codes. Suppose that T is the defining set for an RS code C
of length n and designed distance §. Then T is a set of § — 1 consecutive elements from
N =1{0,1,...,n —1}. By Theorem 4.4.6, the defining set of the cyclic complement C®
of C is N'\ T, which is a set of n — 8 + 1 consecutive elements implying that C° is RS.
Similarly, as (—1)T mod n is also a set of § — 1 consecutive elements from A/, we have
using Theorem 4.4.9 that the defining set A"\ (—1)7 mod n of C* is a consecutive set of
n — 8 + 1 elements also. Therefore C* is an RS code.

Example 5.2.2 A primitive element of ;3 is 2. Let C be the narrow-sense Reed—Solomon
code of designed distance 5 over F 3. It is a code of length 12 with defining set {1, 2, 3, 4}
and generator polynomial (x — 2)(x — 29)(x —2)(x — 2% = 10 4+ 2x + 7x% + 9x3 4+ x*.
By Theorem 5.2.1, C has minimum distance 5 and C is a [12, 8,5] MDS code. ct
is the [12,4, 9] Reed—Solomon code with defining set {0, 1,2,3,4,5,6,7} and gen-
erator polynomial (x — 2%)(x —2")(x —22)---(x —27) =3 4+ 12x + x> +5x> + 11x* +
4x3 4+ 10x® + 5x7 4+ x8. The cyclic complement of C is the [12, 4, 9] Reed—Solomon
code with defining set {5, 6,7, 8,9, 10, 11, 0} and generator polynomial (x — 2°)(x — 2°)
(x =25 (x =2y = 9 4 6x + 12x% + 10x3 + 8x* 4 6x° +9x0 + 4x7 + xB. [ ]

‘We now present an alternative formulation of narrow-sense Reed—Solomon codes, which
is the original formulation of Reed and Solomon. This alternative formulation of narrow-
sense RS codes is of particular importance because it is the basis for the definitions
of generalized Reed—Solomon codes, Goppa codes, and algebraic geometry codes, as
we will see in Chapter 13. For k > 0, let P, denote the set of polynomials of degree
less than k, including the zero polynomial, in F,[x]. Note that Py is precisely the zero
polynomial.

Theorem 5.2.3 Let o be a primitive element of Fy and let k be an integer with 0 < k <
n=gq — 1. Then

C={(f(), f(@), fl@®),..., f@ )| f € Py}

is the narrow-sense [n, k,n — k + 1] RS code over F,.
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Proof: Clearly C is a linear code over I, as Py is a linear subspace over F, of F,[x]. As Py
is k-dimensional, C will also be k-dimensional if we can show that if f and f; are distinct
elements of Py, then the corresponding elements in C are distinct. If the latter are equal,
then their difference is {0} implying that f — f;, which is a nonzero polynomial of degree
at most k — 1, has n > k roots, contradicting Exercise 159. Thus C is k-dimensional.

Let D be the narrow-sense [n, k, n — k + 1] RS code over ;. So D has defining set T =
{1,2,...,n —k}. We show that C = D; it suffices to prove that C C D as both codes are k-
dimensional. Letc(x) = Z"_(l) c;jx’ € C.Thenthere exists some f(x) = Zﬁz_:lo fnx™ € Py
such thatc; = f(a’) for0 < j < n.To show that c(x) € D we need to show that c(a’) = 0
fori € T by Theorem 4.4.2.1f i € T, then

n—1 n—1
@)=Y cjal =" (Z fuet" )
j=0

Jj=
n— O[(l+m)n —1

k—
= Zf Za(”r’")/ = Z m al-‘rm —
m=0

j=0 m=0

Buta®™" = land o™ # las1 <i+m <n—1=gq — 2and « is a primitive nth root
of unity. Therefore c(a’) = 0 fori € T implying that C € D. Hence C = D. ]

Exercise 291 Letev: Py — [} be given by
ev(f) = (f(), f@), f@), ..., f@™),

where « is a primitive element of F, and n = g — 1. Prove that the evaluation map ev is a
nonsingular linear transformation. ¢

Note that the narrow-sense RS code defined in this alternate sense with k& = 0 is precisely
the zero code.

This alternate formulation of narrow-sense RS codes gives an alternate encoding
scheme as well. Suppose that fy, fi, ..., fx—1 are k information symbols and f(x) = fo +
fix + -+ fi1x*71, then

fos fis o os frot) 55 (£, fl@ ..., f@™). (5.2)
Notice that this encoding scheme is not systematic. There is a decoding scheme for RS
codes that is unusual in the sense that it finds the information symbols directly, under the
assumption that they have been encoded using (5.2). It is not syndrome decoding but is
an instance of a decoding scheme based on majority logic and was the original decoding
developed by Reed and Solomon [294]. Currently other schemes are used for decoding and
for that reason we do not present the original decoding here.

53

Generalized Reed-Solomon codes

The construction of the narrow-sense RS codes in Theorem 5.2.3 can be generalized to
(possibly noncyclic) codes. Let n be any integer with 1| < n < g.Choosey = (yo, - . ,Yn—1)



176

BCH and Reed-Solomon codes

to be an n-tuple of distinct elements of IFF;, and v = (v, ..., v,—1) to be an n-tuple of
nonzero, but not necessarily distinct, elements of IF,. Let k be an integer with 1 < k < n.
Then the codes

GRS (7, V) = {(vo f (Vo) vi f(¥1)s o s Va1 f W) | f € P}

are the generalized Reed—Solomon or GRS codes. Because no v; is 0, by repeating the proof
of Theorem 5.2.3, we see that GRS (7, V) is k-dimensional. Because a nonzero polynomial
f € Py has at most k — 1 zeros, GRS (v, v) has minimum distance at leastn — (k — 1) =
n — k + 1. By the Singleton Bound, it has minimum distance at most n — k + 1; hence,
GRS (7, v) has minimum distance exactly n — k 4+ 1. Thus GRS codes are also MDS, as
were RS codes. It is obvious that if w is another n-tuple of nonzero elements of IF,, then
GRS (7, v) is monomially equivalent to GRS (v, w). The narrow-sense RS codes are GRS
codes withn=¢g —1, y; = o', where « is a primitive nth root of unity, and v; = 1 for
0 <i <n — 1. We summarize this information in the following theorem.

Theorem 5.3.1 With the notation as above:

(i) GRSi(v,v)isan[n,k,n —k+ 1] MDS code,

(i) GRSi(7, v) is monomially equivalent to GRS (7, w), and

(iii) narrow-sense RS codes are GRS codes withn =q — 1, y; = o', and v; = 1 for 0 <
i<n-—1

Narrow-sense [q — 1, k, g — k] Reed—Solomon codes over I, can be extended to MDS
codes as follows. Let C = {(f(1), f(a), f(&?), ..., f(@?™2)) | f € Pi} be such a code.
Exercise 292 shows that if f € Py, where k < g, then Zﬂqu f(B)=0.So

C={(f(1), f@),f@>,..., F@2), f(O) | f € P}

is the extension of C. Notice that this is also a GRS code withn = ¢, y; = ol for0 <i <
n—2,Y-1=0,andv; =1for0<i <n-—1. Therefore@is alg,k,g —k+ 1] MDS
code. In other words, when extending the narrow sense RS codes by adding an overall
parity check, the minimum weight increases, an assertion that can be guaranteed in general
for codes over arbitrary fields only if the minimum weight vectors are all odd-like. This
results in the following theorem.

Theorem 5.3.2 The [q, k, g — k + 1] extended narrow-sense Reed—Solomon code over IF,
is generalized Reed—Solomon and MDS.

Exercise 292 Prove that if f € Py, where k < ¢, then Z,s <F, f(B) =0. See Exercise
164. ¢

‘We now show that the dual of a GRS code is also GRS.

Theorem 5.3.3 Let v = (Yo, ..., Ya—1) be an n-tuple of distinct elements of F, and let
v = (vo, ..., Vy—1) be an n-tuple of nonzero elements of F,. Then there exists an n-tuple
W = (Wo, ..., Wy—1) of nonzero elements of F, such that GRSy(~, V)t = GRS, _i (v, W)

for all k with 0 < k <n — 1. Furthermore, the vector w is any nonzero codeword in the
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1-dimensional code GRS, _ (7, V)t and satisfies

n—1
> wivih(y) =0 (5.3)

i=0
for any polynomial h € P,_,.

Proof: Let C = GRS (v, v). We first consider the case k = n — 1. Since the dual of an
MDS code is also MDS by Theorem 2.4.3, Ctis an [7, 1, n] code with a basis vec-
tor w = (wo, wy, ..., w,—1) having no zero components. But the code GRS;(v, w) is
precisely all multiples of w, implying that C* = GRS, (=, w), verifying the result when
k =n — 1. This also shows that if & is any polynomial in P,_;, then (5.3) holds be-
cause (V01 (}0); - - - » Vu—1h(¥u—1)) € GRS, _1(, v) = GRS (v, w)*. Now let 0 <k <n —
1. When f € Py and g € Pyt h = fg € Py_y. Thus, by (5.3), Yr—) wig(vi)vi f (i) =
Z;’;Ol w;vih(y;) = 0. Therefore GRS, (v, v)* € GRS, _;(~, w). Since the dimension of
GRS (v, v)* is n — k, the theorem follows. a

A generator matrix of GRS, (v, v) is

Vo (5] e Up—1
Voo viYi o Un—1Vn—-1
2 2 2
G = | VoYp V1Y o Un—1V,y | 5.4
k—1 k—1 k—1
VoY V1Y, o Un—1VY,—

By Theorem 5.3.3, a parity check matrix of GRSi(, v) is the generator matrix of
GRS, _x (v, w), where w is given in Theorem 5.3.3. Therefore a parity check matrix for
GRS; (7, v) is

Wo wi trr Wh—
Wo)o wiY1 o Wp—1VYn-1
2 2 2
H = | WoYy w1y T Wp—1Y,
n—k—1 n—k—1 n—k—1
WoYy w1y T Wh—1Y,—

Exercise 293 Prove that the matrix given in (5.4) is a generator matrix of
GRS (7, V). ¢

We know from Theorem 5.3.1 that C = GRS, (v, v) is MDS. We want to describe an
extension of C, denoted é, that is also MDS. Let v be a nonzero element of IF,. The
generator matrix of CisG = [G u'], whereu = (0,0, ..., 0, v). This extended code will
generally not be even-like. Choose w € I, so that

n—1

Z viwiyi"_l +vw =0.
i=0
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Such an element w exists as v # 0. Using (5.3) and the definition of w, we leave it to the
reader in Exercise 294 to verify that C has parity check matrix

wy wq S Wy 0
Wo Yo wiY1 ot Whp—1Vn-1 0
v 2 2 2
H = | WoYy wiyy oo Wap1y,; O
n—k n—k n—k
WoYo w1y, T We-1Yy— w

Notice that if w =0, Z;:(} w;v;ih(y;) = 0 for all h € P,, implying that v is a nonzero
vector in IFZ orthogonal to all of IE‘Z, which is a contradiction. So w # 0.

Exercise 294 Verify that H is a parity check matrix for C. ¢

We now verify that C is MDS. Consider the (n — k + 1) x (n — k + 1) submatrix M of
H formed by any n — k + 1 columns of H. If the right-most column of H is not among the
n — k + 1 chosen, then M = V D, where V is a Vandermonde matrix and D is a diagonal
matrix. The entries of V are powers of n — k + 1 of the (distinct) y;s; the diagonal entries of
D are all chosen from {wy, ..., w,_1}. As the y;s are distinct and the w;s are nonzero, the
determinants of V and D are both nonzero, using Lemma 4.5.1. Therefore M is nonsingular
in this case. Suppose the right-most column of H is among the n — k + 1 chosen. By
Theorem 2.4.3 any n — k columns of H are independent (and hence so are the corresponding
n — k columns of H) as C is MDS. This implies that the right-most column of A must be
independent of any n — k other columns of H. So all of our chosen columns are independent.
Thus by Corollary 1.4.14, ¢ has minimum weight at least n — k + 2. By the Singleton
Bound, the minimum weight is at most n — k + 2 implying that C is MDS.

In summary this discussion and Theorem 5.3.1(i) proves the following theorem.

Theorem 5.3.4 For1 <k <n < q, the GRS code GRSy (y, V) is an MDS code, and it can
be extended to an MDS code of length n + 1.

Recall thata [g — 1, k, ¢ — k] narrow-sense RS code over F, can be extended by adding
an overall parity check; the resulting [q, k, ¢ — k + 1] code is a GRS code which is MDS
by Theorem 5.3.2. This code itself can be extended to an MDS code by Theorem 5.3.4.
Thus a narrow-sense RS code of length g — 1 can be extended twice to an MDS code of
length g + 1.

So, in general, GRS codes C and their extensions C are MDS. There are MDS codes that
are not equivalent to such codes. However, no MDS code with parameters other than those
arising from GRS codes or their extensions is presently known [298].

Decoding BCH codes

In this section we present three algorithms for nearest neighbor decoding of BCH codes.
The first method is known as Peterson—Gorenstein—Zierler decoding. It was originally
developed for binary BCH codes by Peterson [254] in 1960 and generalized shortly
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thereafter by Gorenstein and Zierler to nonbinary BCH codes [109]. We will describe
this decoding method as a four step procedure. The second step of this procedure is
the most complicated and time consuming. The second method, known as Berlekamp-
Massey decoding, presents a more efficient alternate approach to carrying out step two
of the Peterson—Gorenstein—Zierler Algorithm. This decoding method was developed by
Berlekamp in 1967 [18]. Massey [224] recognized that Berlekamp’s method provided
a way to construct the shortest linear feedback shift-register capable of generating a
specified sequence of digits. The third decoding algorithm, discovered by Sugiyama,
Kasahara, Hirasawa, and Namekawa in 1975 [324], is also an alternate method to execute
the second step of the Peterson—Gorenstein—Zierler Algorithm. Known as the Sugiyama
Algorithm, it is a simple, yet powerful, application of the Euclidean Algorithm for
polynomials.

In this section we also present the main ideas in a list decoding algorithm which can
be applied to decoding generalized Reed—Solomon codes. This algorithm, known as the
Sudan—Guruswami Algorithm, will accomplish decoding beyond the packing radius, that
is, the bound obtained from the minimum distance of the code. When decoding beyond the
packing radius, one must expect more than one nearest codeword to the received vector
by Theorem 1.11.4. The Sudan—Guruswami Algorithm produces a complete list of all
codewords within a certain distance of the received vector. While we present this algorithm
applied to generalized Reed—Solomon codes, it can be used to decode BCH codes, Goppa
codes, and algebraic geometry codes with some modifications.

The Peterson-Gorenstein—Zierler Decoding Algorithm

Let C be a BCH code over I, of length n and designed distance 8. As the minimum distance
of C is at least §, C can correct at least t = [(§ — 1)/2] errors. The Peterson—Gorenstein—
Zierler Decoding Algorithm will correct up to ¢ errors. While the algorithm will apply to
any BCH code, the proofs are simplified if we assume that C is narrow-sense. Therefore
the defining set 7' of C will be assumed to contain {1, 2, ..., § — 1}, with « the primitive
nth root of unity in the extension field F,» of IF,, where m = ord,(g), used to determine
this defining set. The algorithm requires four steps, which we describe in order and later
summarize.

Suppose that y(x) is received, where we assume that y(x) differs from a codeword c(x)
in at most ¢ coordinates. Therefore y(x) = c(x) + e(x) where c(x) € C and e(x) is the error
vector which has weight v < ¢. Suppose that the errors occur in the unknown coordinates
ki, ko, ..., k,. Therefore

e(x) = eklxk' + ekzxk2 +---+ ekvxk“- (5.5

Once we determine e(x), which amounts to finding the error locations k; and the er-
ror magnitudes e;;, we can decode the received vector as c(x) = y(x) — e(x). Recall
by Theorem 4.4.2 that c(x) € C if and only if c(a’) =0 for all i € T. In particular
y(a') = c(a’) + e(a’) = e(a’) forall 1 <i < 2t,since2t <8 — 1. For 1 <i < 2t we de-
fine the syndrome S; of y(x) to be the element S; = y(c) in F . (Exercise 295 will ex-
plore the connection between this notion of syndrome and that developed in Section 1.11.)
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The first step in the algorithm is to compute the syndromes S; = y(a’) for I <i < 2t from
the received vector. This process is aided by the following theorem proved in Exercise 296.
In the theorem we allow S; to be defined as y(a') even when i > 2¢; these may not be
legitimate syndromes as c(a’) may not be 0 in those cases.

Theorem 5.4.1 S;, = S! foralli > 1.

Exercise 295 Let H be the t x n matrix

1 o a* ... o'
1 o o =12
H=
1 o a2t . a(n—l)t
If y(x)=yo+yix+---4y_1x""1, let y= (o, ..., s—1). Finally, let S=

(51, 5,,...,S,), where S; = y(ar').

(a) Show that Hy" = ST.

(b) Use Theorem 4.4.3 and part (a) to explain the connection between the notion of syndrome
given in this section and the notion of syndrome given in Section 1.11. ¢

Exercise 296 Prove Theorem 5.4.1. ¢

The syndromes lead to a system of equations involving the unknown error locations and
the unknown error magnitudes. Notice that from (5.5) the syndromes satisfy

v v
Si = y(a') = Zekj(oz')kf = Zek/(akf)’, (5.6)
j=1 j=1
for 1 <i < 2t. To simplify the notation, for 1 < j < v, let E; = e, denote the error
magnitude at coordinate k; and X ; = o¥i denote the error location number corresponding
to the error location k;. By Theorem 3.3.1, if o' = o for i and k between 0 and n — 1,

then i = k. Thus knowing X ; uniquely determines the error location k;. With this notation
(5.6) becomes

S5=ZEij-, for1 <i <2t, 57

=1

which in turn leads to the system of equations:

Si=E X\ +EX,+---+EX,,

S, = E\X; + E2X5 + -+ + E, X,

S3 = E\X] + E2X; + -+ E, X, (5.8)

Sy = E; X} + E2 X3 + -+ E, X7,

This system is nonlinear in the X ;s with unknown coefficients E;. The strategy is to use
(5.7) to set up a linear system, involving new variables o, 03, .. ., 0,, that will lead directly
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to the error location numbers. Once these are known, we return to the system (5.8), which
is then a linear system in the E ;s and solve for the error magnitudes.
To this end, define the error locator polynomial to be

ox) =1 —xXDA —xXy)---(1—xX,)=1+ Zaixi.
i=1

The roots of o (x) are the inverses of the error location numbers and thus
U(Xj_l) =1+ olXj_1 + <72Xj_2 + .+ (TVXJ-_U =0

for 1 < j <v. Multiplying by E;X’*" produces

E; X" +0E; X"+ 4 0,E; X} =0

for any i. Summing this over j for 1 < j < v yields
v v v
DEXT 4o Y EXTT 440, Y EXE=0. (5.9)
=1 ‘ j=1 j=1
Aslong as 1 <i and i + v < 2¢, these summations are the syndromes obtained in (5.7).
Because v < 1, (5.9) becomes
Sivv+ o181+ 0SS 2+ +0,85 =0
or
01Sitv-1 + 028y 2+ -+ 0,5 = —Siqy (5.10)

valid for 1 <i < v. Thus we can find the oy s if we solve the matrix equation

S S S3 e S Sy o =Syt
S S S4 e Sy Sut1 Oy—1 =Sy
S3 8 Ss e S Sup ov2 | = | —Sus3 (5.11)
Sy Sorr Svpz 0 Swa Saud o1 —S$2
that arises from (5.10). The second step of our algorithm is to solve (5.11) for oy, . .., 0,.

Once this second step has been completed, o (x) has been determined. However, deter-
mining o (x) is complicated by the fact that we do not know v, and hence we do not know
the size of the system involved. We are searching for the solution which has the smallest
value of v, and this is aided by the following lemma.

Lemma 5.4.2 Let i < t and let

s, S, S,

S 8 s S
M, = .

Sy Susr o S

Then M, is nonsingular if @ = v and singular if @ > v, where v is the number of errors
that have occurred.
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Proof: If p > v, let X, 1 =X,o=--=X,=0and E,y =E,p=---=E, =0.
Exercise 297 shows that if A, and B,, are given by
1 1 1 Ei X, o - 0
X X, - X, 0 ExX, -~ 0
A, = ) and B, = . )
PO GO (5 0 0 - E.X,

then M,, = AMB/LA;TL' Therefore det M, = det A, det B, detA,. If u > v, det B, =0 as
B, is a diagonal matrix with O on the diagonal. If & = v, then detB, # 0 as B, is a
diagonal matrix with only nonzero entries on the diagonal. Alsodet A, # 0 by Lemma4.5.1

because A, is a Vandermonde matrix with X, ..., X, distinct. Hence M, is nonsingular if
nw=v. O
Exercise 297 Do the following, where the notation is given in Lemma 5.4.2:

(a) Show thatif u > v, S; = l;=1 E]le for1 <i <2t.

(b) Show that M, = AMBMA;E‘ ¢

To execute the second step of our algorithm, we attempt to guess the number v of
errors. Call our guess o and begin with u = ¢, which is the largest that v could be. The
coefficient matrix of the linear system (5.11) that we are attempting to solve is M,, = M, in
Lemma 5.4.2. If M, is singular, we reduce our guess u to i = ¢t — 1 and decide whether or
not M, = M,_; is singular. As long as we obtain a singular matrix, we continue to reduce
our guess  of the number of errors by one until some M,, is nonsingular. With v = p,
solve (5.11) and thereby determine o (x).

The third step is then to find the roots of o(x) and invert them to determine the error
location numbers. This is usually done by exhaustive search checking o (a’) for 0 < i < n.
The fourth step is to plug these numbers into (5.8) and solve this linear system for the
error magnitudes £ ;. In fact we only need to consider the first v equations in (5.8) for the
following reason. The coefficient matrix of the first v equations has determinant

X, X2 - X, 1 1 1

X} X3 - X2 X X - X,
det . =X X5---X, det

Xy Xy - XV xrtoxyt o xo!

The right-hand side determinant is the determinant of a Vandermonde matrix; the latter is
nonzero as the X ;s are distinct.
The Peterson—Gorenstein—Zierler Decoding Algorithm for BCH codes is therefore the
following:
I. Compute the syndromes S; = y(a') for 1 <i <2t.
II. Intheorder u =t,u =1t —1,... decide if M, is singular, stopping at the first value
of  where M, is nonsingular. Set v = u and solve (5.11) to determine o (x).
III. Find the roots of o (x) by computing o (') for 0 < i < n. Invert the roots to get the
error location numbers X ;.
IV. Solve the first v equations of (5.8) to obtain the error magnitudes E;.
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We now discuss why this algorithm actually works. We are assuming that a codeword
has been transmitted and a vector received that differs from the transmitted codeword in
v <t coordinates. Thus there is only one correct set of error location numbers and one
correct set of error magnitudes. These lead to a unique error locator polynomial. Step II
must determine correctly the value of v since, by Lemma 5.4.2, v is the largest value
less than or equal to # such that M, is nonsingular. Once we know the number of errors,
we solve (5.11) to obtain a possible solution for the unknown coefficients of the error
locator polynomial. Because the matrix of the linear system used is nonsingular and our
correct set of coefficients of the error locator polynomial must also be a solution, these
must agree. Thus Step II correctly determines the error locator polynomial and hence
Step III correctly determines the error location numbers. Once those are computed, the
first v equations in (5.8) have a unique solution for the error magnitudes that Step IV
computes. Because the correct set of error magnitudes also is a solution, it must be the one
computed.

What happens if a received vector is more than distance ¢ from every codeword? In that
case just about anything could happen. For example, the supposed error locator polynomial
o (x) found in Step II may fail in Step III to have deg o (x) distinct roots that are all nth roots
of unity. For instance, the roots might be repeated or they might lie in an extension field of
IF, but not be nth roots of unity. If this were to occur at Step III, the decoder should declare
that more than ¢ errors have been made. Another problem could occur in Step IV. Suppose
an error locator polynomial has been found whose roots are all distinct nth roots of unity
and the number of these roots agrees with the degree of the error locator polynomial. Step
IV fails if the error magnitudes do not lie in IF,. This is certainly possible since the entries
in the coefficient matrix and the syndromes in (5.8) generally lie in an extension field of
[F,. Again were this to occur, the decoder should declare that more than ¢ errors have been
made.

We make several remarks about this algorithm before presenting some examples.

* After the errors are found and the received vector is corrected, the resulting vector should
be checked to make sure it is in the code. (This can be accomplished, for example, either
by dividing the corrected vector c(x) by the generator polynomial to verify that the
generator polynomial is a factor of the corrected vector, or by computing c(a’) and
verifying that these values are O for all i in the defining set.) If it is not, and all steps have
been performed correctly, more than ¢ errors occurred.

 If the BCH code is binary, all error magnitudes must be 1. Hence Step IV can be skipped,
provided the corrected vector is verified to be in the code, as just remarked.

 If all the syndromes are O in Step I, the received vector is in fact a codeword and the
received vector should be considered to be the transmitted vector.

» As with all nearest neighbor decoders, the decoder will make a decoding error if the
received vector is more than distance ¢ from the transmitted codeword but less than or
equal to distance ¢ from some other codeword. The decoder will give the latter codeword
as the nearest one, precisely as it is designed to do.

» If the BCH code is not narrow-sense, the algorithm still works as presented.

* In addition to the number of errors, v is the length of the shortest linear feedback shift-
register capable of generating the sequence Sy, S», .. .; see (5.10).
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Table 5.1 [Fi¢ with primitive element o, where

=14«

0000 O 1000 o3 1011 o 1110 !
0001 1 0011 o* 0101 ot 1111 o'
0010 « 0110 o? 1010 ¢ 1101 o
0100 «o? 1100 «f o111 ' 1001 o'

Example 5.4.3 Let C be the [15, 7] narrow-sense binary BCH code of designed distance
6 = 5, which has defining set T = {1, 2, 3,4, 6, 8,9, 12}. Using the primitive 15th root of
unity o from Table 5.1, the generator polynomial of C is

gx)=1 +xt+x0+x7 + 28

Suppose that C is used to transmit a codeword and y(x) = 1 + x + x> + x° + x? + x1%is
received. Using Table 5.1 and Theorem 5.4.1, Step I produces

Si=l+a+a’+a+a+a' =d?

S, =87 =a*,
S3=1+a3+a15~|—a18+a27+a30=a”,
Sy =87 =ab

For Step II, we note that

S[ Sz 062 Ol4
M = =
2 |:Sz Sg] |:Ol4 Olll

is nonsingular with inverse

8
_ o o
le: 14 |-
d o

Thus v = 2 errors have been made, and we must solve

sl -] L a1

The solution is [02 01]" = M; '[a'" ®]" = [a'* &?]T. Thus Step II produces the error
locator polynomial o (x) = 1 + a?x + o'*x2. Step III yields the roots a'' and o of o (x)
and hence the error location numbers X; = «* and X, = «'°. As the code is binary, we
skip Step IV. So the error vector is e(x) = x* + x'°, and the transmitted codeword is c(x) =
14 x4+ x*+x° 4+ x% 4+ x°, whichis (1 + x)g(x). [ |

Example 5.4.4 Let C be the code of Example 5.4.3. Suppose that y(x) = 1 + x> + x8 is
received. Then Step I produces S; = S, = S; = 0 and S3 = «'°. In Step II, the matrix

S S 0 O
M = =
g [ S, 83 } [o a0
is singular, asis M| = [S;] = [0]. Since the syndromes are not all 0 and we cannot complete
the algorithm, we must conclude that more than two errors were made. [ ]
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Example 5.4.5 Let C be the binary [15, 5] narrow-sense BCH code of designed distance
8 =7, which has defining set T = {1, 2, 3,4, 5,6, 8,9, 10, 12}. Using the primitive 15th
root of unity « in Table 5.1, the generator polynomial of C is

g(x):1+x+x2+x4+x5+x8+xlo.

Suppose that using C, y(x) = x + x* 4+ x> + x7 + x” + x'? is received. Step I produces
Si=a*, S =ab 8 =a', S, =a'l, S5 =1, and Sg = «'3. The matrix M is singular,
and we have

S5 VIR » Q0 9
M, = |:S2 S3:| = |:oz'3 ol and M, = o0 ol |

Then[oy 01]" = M, '[a'* o] = [«® «'#]". Thus Step IT produces the error locator poly-
nomial o (x) = 1 + a'*x + «x2. Step III yields the roots > and a* of o (x) and hence the
error location numbers X; = «'® and X, = '!. Skipping Step IV, the error vector is

e(x) = x'9 4+ x!!, and the transmitted codeword is c¢(x) = x + x* + x> + x7 + x% + x10 +
x4 x12 which is (x + xz)g(x). [ |

Example 5.4.6 Let C be the [15, 9] narrow-sense RS code over ¢ of designed distance
6 =7, which has defining set T = {1, 2, 3, 4, 5, 6}. Using the primitive 15th root of unity
« in Table 5.1, the generator polynomial of C is

g(x) = (@ +x)(@” +x) - (@ +x)

=a® +a’x +abx% 4+ a*x + oMyt 4 o' 4+ x5
Suppose that a codeword of C is received as
y) =a’ + o' + 57 +o’xt + o7 + o'k + oty ol

Step I produces S| = o, S =a’, S5 =a!% S, =, Ss =a’, and S = 3. The matrix
M3 is nonsingular and we have to solve

Sl S2 S3 03 —S4 Ol5 Ol7 O[lo 03 Ol5
Sz S3 S4 (o) = —S5 or Ol7 Ollo Ol5 [op) = Ol7
S3 S4 S5 (o5 —S6 Ollo Ol5 Ol7 o1 Ol3

The solution is o1 = &, 05 = «®, and 03 = a*. Thus Step II produces the error locator

polynomial o (x) = 1 + a’x + a%x? + a*x3. Step III yields the roots a'?, «’, and a* of
o (x) and hence the error location numbers X; = o, X, = «®, and X3 = «!!. For Step IV,
solve the first three equations of (5.8) or

o’ = E1a2 + Ezdﬁ + E30t”,
o' = Ejo* + Eya'? + Esd,
o' = E1016 + E2a3 + E3oz3.
The solutionis E; = 1, E; = &3, and E5 = «’. Thus the error vectoris e(x) = x% + o3x° +

o’x" and the transmitted codeword is ¢(x) = o + &®x2 + x3 + &2x* + &°x° + o"x° +
a*x”, which is (o + a*x)g(x). [}
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Exercise 298 Verify the calculations in Examples 5.4.3, 5.4.4, 5.4.5, and 5.4.6. ¢

Exercise 299 The following vectors were received using the BCH code C of Example 5.4.3.
Correct these received vectors:

@ yx)=14+x+x* 4+ +x0+x7 + 2104 x4 x5,

(b) y(x) :x+x4+x7+x8 +X11 +X12+X13,

©) yx)=14x+x°. ¢

Exercise 300 The following vectors were received using the BCH code C of Example 5.4.5.
Correct these received vectors:

@ yx)=14+x +x04+x7 +x8 +x12 4+ x5,

®) yx)=1+x +ax x4+ a8 x% 11,

©) yx)=14+x+x24+x0+x7 +x104 212 4 x4 ¢

Exercise 301 The following vectors were received using the RS code C of Example 5.4.6.

Correct these received vectors:

(@) y(x) = 333 + ax* + a5+ aBx0 4 abx” - ax® +atx® + @20 4 o2x!,

(b) y(x) = a + a®x + a*x + a'x? + afx6 + @l%%7 4+ o¥x® 4+ &3x® + a'x10
atxll, ¢

How can this algorithm be improved? As stated, this algorithm is quite efficient if the
error-correcting capability of the code is rather small. It is not unreasonable to work, even
by hand, with 3 x 3 matrices over finite fields. With computer algebra packages, larger
size matrices can be handled. But when the size of these matrices becomes quite large (i.e.
when the error-correcting capability of the code is very large), Step II becomes very time
consuming. The Berlekamp—Massey Algorithm introduced in the next subsection uses an
iterative approach to compute the error locator polynomial in a more efficient manner when
t is large. There is another method due to Sugiyama, Kasahava, Hirasawa, and Namekawa
[324] that uses the Euclidean Algorithm to find the error locator polynomial; this algorithm
is quite comparable in efficiency with the Berlekamp—Massey Algorithm and is described
in Section 5.4.3. Step III can also be quite time consuming if the code is long. Little seems
to have been done to improve this step although there is a circuit design using Chien search
that is often used; see [18] for a description. Step IV can be accomplished using a technique
due to Forney [86]; see [21].

The Berlekamp-Massey Decoding Algorithm

The Berlekamp-Massey Decoding Algorithm is a modification of the second step of
Peterson—Gorenstein—Zierler decoding. The verification that it works is quite technical
and is omitted; readers interested should consult [18, 21, 22]. Although the algorithm ap-
plies to BCH codes, it is simplified if the codes are binary, and we will present only that
case.

We will adopt the same notation as in the previous subsection. In Step II of the Peterson—
Gorenstein—Zierler Algorithm, the error locator polynomial is computed by solving a system
of v linear equations in v unknowns, where v is the number of errors made. If v is large,
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this step is time consuming. For binary codes, the Berlekamp—Massey Algorithm builds the
error locator polynomial by requiring that its coefficients satisfy a set of equations called
the Newton identities rather than (5.10). These identities hold over general fields provided
all error magnitudes are 1, which is precisely the case when the field is IF,. The equations
(5.10) are sometimes called generalized Newton identities. The Newron identities are:

S14+01 =0,
S> + 0181 + 20, =0,
S3 + 018 + 028 + 305 =0,

Sv +01Su—l +"'+6v—1S1 +vo, =Oa
and for j > v:
Sj +01$j_1 +--~~|-0'ij_‘, =0.

A proof that these identities hold is found in [210] or [50, Theorem 3.3]. It turns out that

we only need to look at the first, third, fifth, . .. of these. For convenience we number these
Newton identities (noting that io; = o; when i is odd):
(1) S +o01 =0,

2) S35+ 018 +028 +03 =0,
3) S5+ 0184+ 0283+ 035 + 0481 + 05 =0,

() Sop—1+018u—2+ 0283+ +03,28 +02,-1 =0,

Define a sequence of polynomials o*(x) of degree d,, indexed by u as follows:
O-(M)(x) =1 —i—al(”)x +c72(”)x2 4ot 055))6‘1”.

The polynomial o*)(x) is calculated to be the minimum degree polynomial whose coeffi-
cients ol(“ ), 02(“) 03(“ ). ... satisfy all of the first s numbered Newton identities. Associated
to each polynomial is its discrepancy A, which measures how far o%”(x) is from satisfying

the w + 1st identity:
— () (1) (1) (1)
Ap=Spup1+o7 Sopt+oy S+ + Oou Sy + Oout1-

We start with two initial polynomials, ~!/?(x) = 1 and 0@(x) = 1, and then generate
o™ (x) inductively in a manner that depends on the discrepancy. The discrepancy A_j,, = 1
by convention; the remaining discrepancies are calculated. Plugging the coefficients of
o©(x) into identity (1), we obtain S| (as 01(0) = 0) and so the discrepancy of o@(x) is
Ag = S.

We proceed with the first few polynomials to illustrate roughly the ideas involved. Noting
the discrepancy Ag = S, if ' (x) had an additional term S x, the coefficients of this poly-
nomial 6@ (x) + S;x = 1 + S;x would satisfy identity (1) since §; + S; = 0.So o V(x) =
1 + S;x. Plugging the coefficients of o(V(x) into (2), we have A = S3 + al(l)Sz =
S3 + 818, If A| = 0, then oD (x) satisfies (2) also. If A; # 0 and if S; # 0, then setting
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oPx)=oDx) + (S5 + S, Sz)Sl_lx2 =oWD@x) + A1A61x2, we see that this polynomial
satisfies (1) and (2). If A # 0but S; = 0,thenoV(x) = 1, A| = S3, and the lowest degree
polynomial that will satisfy (1) and (2) is 0@ (x) = 0V (x) + S3x° = o D(x) + A1x3. The
choices get more complicated as the process continues but, remarkably, the Berlekamp-
Massey Algorithm reduces each stage down to one of two choices.

The Berlekamp—Massey Algorithm for computing an error locator polynomial for binary
BCH codes is the following iterative algorithm that begins with 4 = 0 and terminates when
oW (x) is computed:

I If A, =0, then

O.(M-H)(x) — a(“)(x).

IL. If A, #0, find a value —(1/2) < p < u such that A, # 0 and 2p —d,, is as large as
possible. Then

O-(M-H)(x) — a(“)(x) + AHA;IXZ(V'_/J)G(’O)(X).

The error locator polynomial is o (x) = o (x); if this polynomial has degree greater than
t, more than ¢ errors have been made, and the decoder should declare the received vector is
uncorrectable. Once the error locator polynomial is determined, one of course proceeds as in
the Peterson—Gorenstein—Zierler Algorithm to complete the decoding. We now reexamine
Examples 5.4.3, 5.4.4, and 5.4.5 using the Berlekamp—Massey Algorithm. It is helpful in
keeping track of the computations to fill out the following table.

I aM(x) A, d, 2u—d,

—-1/2 1 1 0 -1
0 1 S0 0
1

t
Example 5.4.7 We recompute o (x) from Example 5.4.3, using Table 5.1. In that example
t = 2, and the syndromes are S| = 2,8 =a*, Sy = o', and Sy = o®. We obtain the table

% o™ (x) A, d, 2u—d,
—1/2 1 1 0 -1

0 1 r 0 0

1 1+ o%x o 1 1

2 1+ o%x 4+ a'¥x?

We explain how this table was obtained. Observe that Ag = §; = «? and so II is used in
computing oV (x). We must choose p < 0 and the only choice is p = —1/2. So

V() = 00(x) + AgAZ] 2P D(x) = 1 + o,

After computing A; = S5 + 01(1)52 + crz(l)Sl + 03(1) =o' + o?a* = «, we again use II
to find 0@ (x). We must find p < 1 with A, # 0 and 2p —d, as large as possible.
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Thus p = 0 and
0(2)()6) = a(l)(x) + AlAalxz(l_O)U(O)(x) =1+ ao*x +a'x%

Ast =2, 0(x)=0?x) =1+ a?x + a'*x2, which agrees with the result of Example
5.4.3. [ ]

Example 5.4.8 We recompute o (x) from Example 5.4.4 where t =2, 5, = S, =S4 =0,
and S5 = «'°. We obtain the table

" o®Wx) A, d, 2u—d,

—-1/2 1 1 0 -1
0 1 0 0 0
1 1 a0 2
2 1+ o'

Since Ag = S; =0, I is used to compute o V(x), yielding 0" (x) = 0@(x) = 1. Then
A= S3+ 01(0)52 + 02(0)51 + 03(0) = «'%. So we use IT to find ¢®(x). We must find p < 1
with A, # 0 and 2p — d, as large as possible. Thus p = —1/2 and

0(2)(x) =W+ AlA:{/2x2(1+1/2)0(_1/2)(x) =1+a'%%.

So o(x) = 0@ (x) = 1 + «'%x3, which has degree greater than ¢t = 2; hence the received
vector is uncorrectable, which agrees with Example 5.4.4. [ ]

Example 5.4.9 We recompute o (x) from Example 5.4.5 where t = 3 and the syndromes
are S =o', S, =al?, S5 =o', Sy =al!, S5 =1, and Sg = «'3. We obtain

1% a™(x) A, d, 2u—d,
—1/2 1 0 -1

0 1 a* 0 0

1 1+ a'x o 1 1

2 I1+ax+a%%2 0 2 2

3

14+ o'x + abx?
As Ay = S; = a'4, 1T is used to compute o V(x). As p < 0, p = —1/2 yielding
cPx) = 0(0)()() + AQA:}/2x2(0+1/2)0(_1/2)(x) =1+ax.

Since A, = S; + 01(1)52 + 02(1)51 + 03(1) =o' +a"a"® = &, we again use II to find
@ (x). We choose p < 1 with A, # 0and 2p — d, as large as possible. Thus p = 0 and

0(2)()5) = a“)(x) + AlAaleU’O)J(O)(x) =1+ a"x + a2

Now A, = S5 + 01(2)54 + 02(2)53 + 03(2)S2 + af)Sl + 05(2) =1+ aa'" + a®a' = 0. So
to compute 0@ (x), use I to obtain 0®(x) = 0@ (x); thus o (x) = 1 + a'*x + «x2, agree-
ing with Example 5.4.5. n

Exercise 302 Recompute the error locator polynomials from Exercise 299 using the
Berlekamp—Massey Algorithm. ¢
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fl\: fl\: N
- S Si_ Si—n >
SJ Jj-1 j-2 J=n ijnflsSj7n729"-1S1

Figure 5.1 Linear feedback shift-register.

Exercise 303 Recompute the error locator polynomials from Exercise 300 using the
Berlekamp—Massey Algorithm. ¢

As stated earlier, this decoding algorithm for BCH codes over arbitrary fields was first
developed by Berlekamp in the first edition of [18]. Shortly after, Massey [224] showed
that this decoding algorithm actually gives the shortest length recurrence relation which
generates the (finite or infinite) sequence Sy, Sz, ... whether or not this sequence comes
from syndromes. This is the same as the minimum length n of a linear feedback shift-register
that generates the entire sequence when Sy, . . ., S, is the initial contents of the shift-register.
In this context, the algorithm produces a sequence of polynomials o”)(x) associated with
a shift-register which generates Si, ..., S;. The discrepancy A; of oD(x) measures how
close the shift-register also comes to generating S; ;. If the discrepancy is 0, then the shift-
register also generates S; ;. Otherwise, the degree of the polynomial must be increased
with a new longer associated shift-register. In the end, the algorithm produces a polynomial
o(x) =14 )", oix', called the connection polynomial, leading to the shift-register of
Figure 5.1.

The Sugiyama Decoding Algorithm

The Sugiyama Algorithm is another method to find the error locator polynomial, and thus
presents another alternative to complete Step II of the Peterson—Gorenstein—Zierler Algor-
ithm. This algorithm, developed in [324], applies to a class of codes called Goppa codes that
include BCH codes as a subclass. This algorithm is a relatively simple, but clever, application
of the Euclidean Algorithm. We will only study the algorithm as applied to BCH codes.

Recall that the error locator polynomial o (x) is defined as ]_[;zl(l —xX). The error
evaluator polynomial w(x) is defined as

o =Y Ex; [ —xx,v)=ZE,-xj¥. (5.12)

Note that deg(o(x)) = v and deg(w(x)) < v — 1. We define the polynomial S(x) of degree
at most 2 — 1 by

2t—1

S =) Sipix',
i=0

where S; for 1 <i < 2t are the syndromes of the received vector.
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Expanding the right-hand side of (5.12) in a formal power series and using (5.7) together
with the definition of S(x), we obtain

w(x) = cr(x)z EjXj——— =0(x) Z E;X; Z(xX )
2t—1 v
= G(x)z (Z E; X'“) =0 (Z E; X’“) x' (mod x*)
=0 i=0 \j=1

= o(x)S(x) (mod x*).

Therefore we have what is termed the key equation

o(x) = o (x)S(x) (mod x*).

Exercise 304 You may wonder if using power series to derive the key equation is legitimate.
Give a non-power series derivation. Hint:

1 1 —x? Xz’ 5
Py =+ [0 e ¢

1#/

The following observation about o (x) and w(x) will be important later.
Lemma 5.4.10 The polynomials o (x) and w(x) are relatively prime.

Proof: The roots of o (x) are precisely Xj_1 for1 < j <v.But

o(X;') = E;X; ]_[ (1-X;'X;) #0,
i#]

proving the lemma. ]

The Sugiyama Algorithm uses the Euclidean Algorithm to solve the key equation. The
Sugiyama Algorithm is as follows.
I.  Suppose that f(x) = x* and s(x) = S(x). Set r_;(x) = f(x), ro(x) = s(x), b_1(x) =
0, and by(x) = 1.
II. Repeat the following two computations finding 4;(x), r;(x), and b;(x) inductively for
i=1,2,..., 1, until [ satisfies degr;_;(x) > t and degr;(x) < ¢:

ria(x) = ri—1(0)hi(x) + ri(x), where degri(x) < degr;_1(x),
bi(x) = bi_»(x) — hi(x)b;_1(x).

III. o(x) is some nonzero scalar multiple of b;(x).

Note that I from Step II is well-defined as degr;(x) is a strictly decreasing sequence
with degr_;(x) > t. In order to prove that the Sugiyama Algorithm works, we need the
following lemma.

Lemma 5.4.11 Using the notation of the Sugiyama Algorithm, let a_1(x) = 1, ap(x) = 0
and a;(x) = a;—>(x) — h;(x)a;—1(x) fori > 1. The following hold.
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(1) a;(x) f(x) + bi(x)s(x) = ri(x) fori = —1.

(il) bi(x)ri1(x) — b1 (X)ri(x) = (=1) f(x) fori = 0.

(iii) a;(x)bi—1(x) — a;_1(x)bi(x) = (=1)'*! fori > 0.

(iv) degb;(x) + degr;_1(x) = deg f(x) fori > 0.

Proof: All of these are proved by induction. For (i), the cases i = —1 and i = 0 follow
directly from the initial values set in Step I of the Sugiyama Algorithm and the values
a_1(x) =1 and ap(x) = 0. Assuming (i) holds with i replaced by i — 1 and i — 2, we have

a;i(x) f(x) + bi(x)s(x) = [ai—2(x) — hi(x)a;—1(x)] f(x)
+ [bi—2(x) — hi(x)bi—1(x)]s(x)
= a;—2(x) f(x) + bi—2(x)s(x)
— hi()[ai—1(x) f(x) + bi—1(x)s(x)]
= ri—2(x) — hi(xX)ri—1(x) = ri(x),
completing (i).

Again when i = 0, (ii) follows from Step I of the Sugiyama Algorithm. Assume (ii) holds
with i replaced by i — 1. Then

bi(x)ri—1(x) = bi—1(xX)ri(x) = [bi—2(x) — hi(x)bi—1(x)]ri—1(x) — bi—1(x)ri(x)
= bi—a(x)ri—1(x) = bi—1(X)[hi (x)ri—1(x) + ri(x)]
= bi2(xX)ri—1(x) — bi—1(xX)ri—2(x)
= (=D ) = (=1 f(x),
verifying (ii).
When i = 0, (iii) follows from Step I of the Sugiyama Algorithm, a_;(x) = 1, and
ap(x) = 0. Assume (iii) holds with i replaced by i — 1. Then

ai(x)bi—1(x) — ai—1(x)b;(x) = [a;—2(x) — hi(x)a;—1(x)]b;—1(x)
— @i—1(X)[bi—2(x) — hi(x)bi—1(x)]
= —[ai—1(x)bi—2(x) — aj—2(x)b;i—1(x)]
=—(=1' = (=D,
proving (iii).
When i = 0, (iv) follows again from Step I of the Sugiyama Algorithm. Assume (iv)
holds with i replaced by i — 1, that is, degb;_i(x) + degri_»(x) = deg f(x). In Step

II of the Sugiyama Algorithm, we have degr;(x) < degr;_»(x). So deg(b;—1(x)r;(x)) =
degb;_(x) + degr;(x) < deg f(x) implying (iv) for case i using part (ii). O

We now verify that the Sugiyama Algorithm works. By Lemma 5.4.11(i) we have
a;(0)x¥ + by(x)S(x) = ry(x). (5.13)
From the key equation, we also know that

a()x? + o (x)S(x) = w(x) (5.14)
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for some polynomial a(x). Multiply (5.13) by o(x) and (5.14) by b,(x) to obtain

a;(x)o(x)th + b (x)o(x)S(x) = r;(x)o(x) and (5.15)
a()b;(0)x* + o ()b (x)S(x) = w(x)b;(x). (5.16)

Modulo x? these imply that
ri(x)o(x) = w(x)b;(x) (mod x>). (5.17)

As dego(x) < t, by the choice of I, deg(r;(x)o(x)) = degr;(x) +dego(x) <t +t = 2t.
By Lemma 5.4.11(iv), the choice of I, and the fact that degw(x) < t, deg(w(x) X
bi(x)) = degw(x) +degb;(x) <t +degh;(x) =1+ (degx2’ —degrj_1(x)) <3t —t =
2¢t. Therefore (5.17) implies that r;(x)o (x) = w(x)b;(x). This, together with (5.15) and
(5.16), shows that

aj(x)o(x) = a(x)b;(x). (5.18)

However, Lemma 5.4.11(iii) implies that a;(x) and b;(x) are relatively prime and hence
a(x) = A(x)a;(x) by (5.18). Substituting this into (5.18) produces

o(x) = Ax)b;(x). (5.19)

Plugging these into (5.14) we obtain 2()ay(0)x? + A(x)b;(x)S(x) = w(x). Thus (5.13)
implies that

w(x) = Ax)r;(x). (5.20)

By Lemma 5.4.10, (5.19), and (5.20), A(x) must be a nonzero constant, verifying Step III
of the Sugiyama Algorithm.

Since we are only interested in the roots of o (x), it suffices to find the roots of b;(x)
produced in Step II; this gives the desired error location numbers.

Example 5.4.12 We obtain a scalar multiple of o(x) from Example 5.4.3, using the

Sugiyama Algorithm and Table 5.1. In that example t = 2, and the syndromes are S; = o2,

S, =a*, S5 =a'l, and S; = o8, The following table summarizes the results.

i ri(x) hi(x) bi(x)
-1 x* 0
0 o3 +a'lx?+ax +a? 1
1 ax? +otx +al? o’x + a0 a’x + a0
2 a? a’x ol4x? 4+ ox + 1

The first index I where degr;(x) <t =2 is I = 2. Hence o(x) is a multiple of b,(x) =
a'*x? 4+ o? + 1; in fact from Example 5.4.3, by(x) = o (x). [}
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Example 5.4.13 Using the Sugiyama Algorithm we examine Example 5.4.4 where t = 2,
S; =8, =S4 =0,and S3 = «'?. The following table summarizes the computations.

iori(x)  hi(x) Dbi(x)

-1 x* 0
0 «lOy? 1
1 0 ax? wdx?

The first index I where degr;(x) <t =2 1is I = 1. But in this case b;(x) = o’ x?%, which
has O for its roots indicating that more than two errors were made, in agreement with
Example 5.4.4. Note also that 71 (x) = 0 implies by (5.20) that w(x) = 0, which is obviously
impossible as o (x) and w(x) are supposed to be relatively prime by Lemma 5.4.10. [ ]

Example 5.4.14 We obtain a scalar multiple of o(x) from Example 5.4.5 using the
Sugiyama Algorithm. Here t =3 and S} = o'*, S, = al?, S5 =a'4, §4 =a'l, S5 =1,
and S = '3, The following table summarizes the results.

i ri(x) hi(x) bi(x)
—1 x6 0
0 B +x*+al'w3+a¥x2+abBx + ol 1
1 allx4 + atxd + al4x? + adx + o’ o?x + ot o?x + a?
2 al2 o2x +o? o*x?+ a2y 4+ o3

The first index / where degr;(x) <t =3 is I = 2. Hence o(x) is a multiple of b,(x) =
a*x? + a'?x + o'3. From Example 5.4.5, 0 (x) = a*by(x). [ |

Exercise 305 Verify the calculations in Examples 5.4.12, 5.4.13, and 5.4.14. ¢

Exercise 306 Using the Sugiyama Algorithm, find a scalar multiple of the error locator
polynomial from Example 5.4.6. ¢

Exercise 307 Using the Sugiyama Algorithm, find scalar multiples of the error locator
polynomials from Exercise 299. ¢

Exercise 308 Using the Sugiyama Algorithm, find scalar multiples of the error locator
polynomials from Exercise 300. ¢

Exercise 309 Using the Sugiyama Algorithm, find scalar multiples of the error locator
polynomials from Exercise 301. ¢

We remark that the Sugiyama Algorithm applies with other choices for f(x) and s(x),
with an appropriate modification of the condition under which the algorithm stops in Step
II. Such a modification works for decoding Goppa codes; see [232].

It is worth noting that the Peterson—Gorenstein—Zierler, the Berlekamp—Massey, or the
Sugiyama Algorithm can be used to decode any cyclic code up to the BCH Bound. Let C
be a cyclic code with defining set T and suppose that 7' contains § consecutive elements
{b,b+1,...,b+ 68 —2}. Let B be the BCH code with defining set C, U Cpy U---U
Cpis—2, which is a subset of 7. By Exercise 239,C C B.Lett = |(§ — 1)/2]. Suppose that



195

5.4.4

5.4 Decoding BCH codes

a codeword c(x) € C is transmitted and y(x) is received where ¢ or fewer errors have been
made. Then c(x) € B and any of the decoding algorithms applied to 5 will correct y(x)
and produce c(x). Thus these algorithms will correct a received word in any cyclic code
provided that if v errors are made, 2v + 1 does not exceed the BCH Bound of the code. Of
course this number of errors may be less than the actual number of errors that C is capable
of correcting.

The Sudan-Guruswami Decoding Algorithm

In a 1997 paper Madhu Sudan [323] developed a procedure for decoding [n, k, d] Reed—
Solomon codes that is capable of correcting some e errors where e > [(d — 1)/2]. This
method was extended by Guruswami and Sudan [113] to remove certain restrictions in the
original Sudan Algorithm. To be able to correct e errors where e > [(d — 1)/2], the algor-
ithm produces a list of all possible codewords within Hamming distance e of any received
vector; such an algorithm is called a list-decoding algorithm. The Sudan—Guruswami Al-
gorithm applies to generalized Reed—Solomon codes as well as certain BCH and algebraic
geometry codes. In this section we present this algorithm for generalized Reed—Solomon
codes and refer the interested reader to [113] for the other codes. The Sudan—-Guruswami
Algorithm has itself been generalized by Kétter and Vardy [179] to apply to soft decision
decoding.

To prepare for the algorithm we need some preliminary notation involving poly-
nomials in two variables. Suppose x and y are independent indeterminates and p(x, y) =
> i Pi, jx'y/ isapolynomial in F,[x, y], the ring of all polynomials in the two variables
x and y. Let wy and w, be nonnegative real numbers. The (w,, wy)-weighted degree of
p(x, y) is defined to be

max{w,i +w,j | p;; # 0}.

Notice that the (1, 1)-weighted degree of p(x, y) is merely the degree of p(x, y). For
positive integers s and 8, let Ny(8) denote the number of monomials x’y/ whose (1, s)-
weighted degree is § or less. We say that the point (¢, 8) € IF; lies on or is a root of p(x, y)
provided p(c, ) = 0. We will need the multiplicity of this root. To motivate the definition of
multiplicity, recall that if f(x) € IF,[x] and o is aroot of f(x), then its multiplicity as a root
of f(x) is the number m where f(x) = (x — )" g(x) for some g(x) € IF,[x] with g(a) #
0. When working with two variables we cannot generalize this notion directly. Notice,
however, that f(x 4+ o) = x™h(x), where h(x) = g(x + «); also h(0) # 0. In particular
f(x + a) contains a monomial of degree m but none of smaller degree. This concept can
be generalized. The root («, 8) of the polynomial p(x, y) has multiplicity m provided the
shifted polynomial p(x + &, y 4+ B) contains a monomial of degree m but no monomial of
lower degree.

Exercise 310 Let p(x, y) =14+ x +y —x? — y> — 2x%y + xy? — ¥ + x* — 2x%y —
x%y? + 2xy? € Fs[x]. Show that (1, 2) € FZ is a root of p(x, y) with multiplicity 3. ¢
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Recall that an [n, k] generalized Reed—Solomon code over [F, is defined by

GRSi (v, V) = {(vo f(Y0), vi f (Y15« s Vnct f (W) | f € Pi},

where vy = (Y0, Y1, - - -, ¥a—1) s an n-tuple of distinct elements of F,, v = (vo, vy, ..., Vu—1)
is an n-tuple of nonzero elements of I, and P is the set of polynomials in IF, [x] of degree
k — 1 or less including the zero polynomial. Suppose that ¢ = cyc; - - - ¢,—1 € GRSk (7, V)
issentand y’ = yyy| - - - y,_, = ¢+ eis received. Then there is a unique f € Py such that
¢ci = v f(y;) for 0 <i <n — 1. We can find c if we can determine the polynomial f. Let
A ={0. ), 1, ¥1)s - - - Vu—1, Yu—1)} Where y; = y//v;. Suppose for a moment that
no errors occurred in the transmission of ¢. Then y; = ¢;/v; = f(y;) for 0 <i <n — 1.
In particular, all points of A lie on the polynomial p(x,y) =y — f(x). Now suppose
that errors occur. Varying slightly our terminology from earlier, define an error locator
polynomial A(x, y) to be any polynomial in IF,[x, y] such that A(y;, y;) = 0 for all i such
that y; # ¢;/v;. Since y; — f(y;) = 0if y; = ¢;/v;, all points of A lie on the polynomial
px,y) = Ax, y)(y — f(x)). The basic idea of the Sudan—Guruswami Algorithm is to find
apolynomial p(x, y) € F,[x, y] where each element of .A is a root with a certain multiplic-
ity and then find the factors of that polynomial of the form y — f(x). Further restrictions
on p(x, y) are imposed to guarantee the error-correcting capability of the algorithm.

The Sudan—Guruswami Decoding Algorithm for the [n, k, n — k + 1] code GRS, (v, v)
is:
I. Fix a positive integer m. Pick § to be the smallest positive integer to satisfy

nm(m + 1)

> < Ni_1(8). (5.21)

Recall that N;_;(8) is the number of monomials x’y/ whose (1, k — 1)-weighted degree
is § or less. Set

RHN

II. Construct a nonzero polynomial p(x, y) € F,[x, y] such that each element of A is a
root of p(x, y) of multiplicity at least m and p(x, y) has (1, k — 1)-weighted degree at
most §.

III. Find all factors of p(x, y) of the form y — f(x) where f(x) € P and f(y;) = y; for
at least ¢ y;s. For each such f produce the corresponding codeword in GRS (7, v).

We must verify that this algorithm works and give a bound on the number of errors that
it will correct. The following three lemmas are needed.

Lemma 5.4.15 Let (o, B) € IF? be a root of p(x,y) € Fylx, y] of multiplicity m or more.
If f(x) is a polynomial in F[x] such that f(a) = B, then g(x) = p(x, f(x)) € Fy[x] is
divisible by (x — a)™.

Proof: Let fi(x) = f(x + «) — B. By our hypothesis, f1(0) =0, and so fi(x) = xfo(x)
for some polynomial f>(x) € F,[x]. Define g1(x) = p(x + «, fi(x) + B). Since («, B)is a
root of p(x, y) of multiplicity m or more, p(x + «, y + B) has no monomial of degree less
thanm. Setting y = fi(x) = xf>(x) in p(x + «, y + B) shows that g (x) is divisible by x™,
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which implies that g;(x — «) is divisible by (x — «)™. However,

gi1(x —a) = px, filx —a)+ B) = p(x, f(x)) = gx),
showing that g(x) is divisible by (x — a)™. U

Lemma 5.4.16 Fix positive integersm,t,and § suchthatmt > 8. Let p(x, y) € Fy[x, y] be
apolynomial such that (y;, y;)is arootof p(x, y) of multiplicity atleastm forO0 <i <n — 1.
Furthermore, assume that p(x, y) has (1, k — 1)-weighted degree at most é. Let f(x) € Py
where y; = f(y;) for at least t values of i with 0 <i <n — 1. Then y — f(x) divides
plx, y).

Proof: Let g(x) = p(x, f(x)). As p(x, y) has (1, kK — 1)-weighted degree at most §, g(x)
is either the zero polynomial or a nonzero polynomial of degree at most §. Assume g(x)
isnonzero.Let S={i |0 <i <n—1, f(y;) = y;}. By Lemma 5.4.15, (x — y;)" divides
g(x) fori € S. As the y;s are distinct, h(x) = [ [;_g(x — y;)" divides g(x). Since h(x) has
degree at least mt > § and ¢ is the maximum degree of g(x), we have a contradiction if
g(x) is nonzero. Thus g(x) is the zero polynomial, which implies that y = f(x) is a root of
p(x, y) viewed as a polynomial in y over the field of rational functions in x. By the Division
Algorithm, y — f(x) is a factor of this polynomial. O

Lemma 5.4.17 Let p(x,y) =}, >, pjex!yt € Fylx, yl. Suppose that (a, B) € IF(ZI and
that p'(x,y) =Y., >, Phyx*y’ = p(x +a,y + B). Then
/ AYA WS
v= X (1) ()8 e
jza =5 \¢

Proof: We have
Py =YY pix+a)y+p)
l

J
L () v (¢ b gt—b
=X X () o ()
I a=0 \4 b=0
Clearly, the coefficient p/ , of x* y” is as claimed. O

We are now in a position to verify the Sudan—-Guruswami Algorithm and give the error
bound for which the algorithm is valid.

Theorem 5.4.18 The Sudan—Guruswami Decoding Algorithm appliedtothe [n,k,n — k +
11 code GRSy (v, v) will produce all codewords within Hamming distance e or less of a
received vector where e =n — |§/m] — 1.

Proof: We first must verify that the polynomial p(x, y) from Step II actually exists. For
p(x, y) to exist, p(x + y;, ¥y + y;) must have no terms of degree less than m for 0 <i <
n — 1. By Lemma 5.4.17, this is accomplished if for each i with0 <i <n — 1,

VAN .
> <]> (b)y,-’ Yi 'pie=0 foralla=0, b>0witha+b<m. (522)
a

j=a =b
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For each i, there are (m(m + 1))/2 equations in (5.22) since the set {(a, b) € 7? |a >
0, b>0, a+ b < m} has size (m(m + 1))/2; hence there are a total of (nm(m + 1))/2
homogeneous linear equations in the unknown coefficients p; ;. Since we wish to produce
anontrivial polynomial of (1, k — 1)-weighted degree at most §, there are a total of N;_;(5)
unknown coefficients p; ¢ in this system of (nm(m + 1))/2 homogeneous linear equations.
As there are fewer equations than unknowns by (5.21), anontrivial solution exists and Step I1
can be completed. By our choice of ¢ in Step I, mt > §. If f(x) € Py is a polynomial with
f(y;) = y; for atleast t values of i, by Lemma 5.4.16, y — f(x) is a factor of p(x, y). Thus
Step III of the algorithm will produce all codewords atdistancee =n —t =n — [§/m] — 1
or less from the received vector. O

As Step I requires computation of Ny_(8), the next lemma proves useful.

Lemma 5.4.19 Let s and § be positive integers. Then

B 5|8 8 88 +2)
wor= (o132 ]) (|2]+1) = 252

Proof: By definition,

LJBts

N,(8) = ZZI_Z((S—G—I—H)

(2o
(691

The result follows. ]

Y | O

Example 5.4.20 Let C be a [15,6, 10] Reed—Solomon code over F4. The Peterson—
Gorenstein—Zierler Decoding Algorithm can correct up to four errors. If we choose m = 2
in the Sudan—Guruswami Decoding Algorithm, then (nm(m + 1))/2 = 45 and the smallest
value of § for which 45 < Ns(6) is 6 = 18, in which case N5(18) = 46 by Lemma 5.4.19.
Thent = |§/m] 4+ 1 = 10 and by Theorem 5.4.18, the Sudan—Guruswami Algorithm can
correct 15 — 10 = 5 errors. ]

Exercise311 LetC be the code of Example 5.4.20. Choose m = 6 in the Sudan—Guruswami
Algorithm. Show that the smallest value of § for which (nm(m + 1))/2 = 315 < Ns(8) is
8 = 53. Verify that the Sudan—Guruswami Algorithm can correct six errors with these
parameters. ¢

Exercise 312 Let C be a [31, 8, 24] Reed—Solomon code over [F3,. The Peterson—

Gorenstein—Zierler Algorithm can correct up to 11 errors.

(a) Choose m = 1 in the Sudan—Guruswami Algorithm. Find the smallest value of § for
which (nm(m + 1))/2 = 31 < N7(6). Using m = 1, how many errors can the Sudan—
Guruswami Algorithm correct?
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(b) Choose m = 2 in the Sudan—Guruswami Algorithm. Find the smallest value of § for
which (nm(m + 1))/2 = 93 < N7(§). Using m = 2, how many errors can the Sudan—
Guruswami Algorithm correct?

(c) Choose m = 3 in the Sudan—Guruswami Algorithm. Find the smallest value of § for
which (nm(m 4+ 1))/2 = 186 < N7(8). Using m = 3, how many errors can the Sudan—
Guruswami Algorithm correct? ¢

As can be seen in Example 5.4.20 and Exercises 311 and 312, the error-correcting
capability of the Sudan—Guruswami Decoding Algorithm can grow if m is increased. The
tradeoff for higher error-correcting capability is an increase in the (1, k — 1)-weighted
degree of p(x, y), which of course increases the complexity of the algorithm. The following
corollary gives an idea of how the error-correcting capability varies with m.

Corollary 5.4.21 The Sudan—Guruswami Decoding Algorithm applied to the [n, k,n —
k + 1] code GRS (v, v) will produce all codewords within Hamming distance e or less of
a received vector where e > n — 1 — ny/R(m + 1)/m and R = k/n.

Proof: As § is chosen to be the smallest positive integer such that (5.21) holds,

nm(m + 1)
> .

By Lemma 5.4.19, N;_;(§ — 1) > (6§ — 1)(§ + 1)/(2(k — 1)). Hence

N6 -1 =

82 —1 <nm(m+1)
20k = 1) — 2 '

If 8% <k, then 82/(2k) < 1/2 < nm@m + 1)/2. If 8% >k, then 82/(2k) < (8> —1)/
(2(k — 1)) by Exercise 313. In either case,

82 nm(m + 1)
—_ < —_—
2k — 2
implying

[k m+1
< Ny -+ —,
- n m

which produces the desired result from Theorem 5.4.18. O

S|o

Exercise 313 Do the following:
(a) Show that if 82 > k, then §%/(2k) < (6% — 1)/(2(k — 1)).
(b) Show that if §2/(2k) < nm(m + 1)/2, then 8§/m < n/(k/n)((m + 1)/m). ¢

In this corollary, R = k/n is the information rate. If m is large, we see that the fraction
e/n of errors that the Sudan—Guruswami Decoding Algorithm can correct is approximately
1 — +/R. The fraction of errors that the Peterson—Gorenstein—Zierler Decoding Algorithm
can correct is approximately (1 — R)/2. Exercise 314 explores the relationship between
these two functions.
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Exercise 314 Do the following:

(a) Verity that the fraction of errors that the Peterson—Gorenstein—Zierler Decoding Algor-
ithm can correct in a GRS code is approximately (1 — R)/2.

(b) Plot the two functions y =1 —+/R and y = (1 — R)/2 for 0 < R <1 on the same
graph. What do these graphs show about the comparative error-correcting capa-
bility of the Peterson—Gorenstein—Zierler and the Sudan—Guruswami Decoding
Algorithms? ¢

To carry out the Sudan—Guruswami Decoding Algorithm we must have a method to
compute the polynomial p(x, y) of Step II and then find the factors of p(x, y) of the
form y — f(x) in Step III. (Finding p(x, y) can certainly be accomplished by solving the
nm(m + 1)/2 equations from (5.22), but as the values in Exercise 312 indicate, the num-
ber of equations and unknowns gets rather large rather quickly.) A variety of methods
have been introduced to carry out Steps II and III. We will not examine these methods
here, but the interested reader can consult [11, 178, 245, 248, 300, 354].

Burst errors, concatenated codes, and interleaving

Reed-Solomon codes, used in concatenated form, are very useful in correcting burst errors.
As the term implies, a burst error occurs when several consecutive components of a code-
word may be in error; such a burst often extends over several consecutive codewords which
are received in sequence.

Before giving the actual details, we illustrate the process. Suppose that C is an [n, k]
binary code being used to transmit information. Each message from IF’; is encoded to a
codeword from I} using C. The message is transmitted then as a sequence of n binary
digits. In reality, several codewords are sent one after the other, which then appear to
the receiver as a very long string of binary digits. Along the way these digits may have
been changed. A random individual symbol may have been distorted so that one cannot
recognize it as either O or 1, in which case the received symbol is considered erased. Or
a random symbol could be changed into another symbol and the received symbol is in
error. As we discussed in Section 1.11, more erasures than errors can be corrected because
error locations are unknown, whereas erasure locations are known. Sometimes several
consecutive symbols, a burst, may have been erased or are in error. The receiver then breaks
up the string into codewords of length n and decodes each string, if possible. However, the
presence of burst errors can make decoding problematic as the codes we have developed
are designed to correct random errors. However, we can modify our codes to also handle
bursts. An example where the use of coding has made a significant impact is in compact disc
recording; a scratch across the disc can destroy several consecutive bits of information. The
ability to correct burst errors has changed the entire audio industry. We will take this up in the
next section.

Burst errors are often handled using concatenated codes, which are sometimes then
interleaved. Concatenated codes were introduced by Forney in [87]. We give a simple
version of concatenated codes; the more general theory can be found, for example, in [75].
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Let Abean[n, k, d] code over F,. Let Q = qk and define ¢ : Fy — A to be a one-to-one
IF,-linear map; thatis ¢ (x + y) = ¥(x) + ¥(y) forall x and y in F, and ¥ (ax) = e/ (x)
forallx € Fp and o € F,, noting that IF is an extension field of ;. Let Bbe an [N, K, D]
code over Fy. The concatenation of A and B is the code

C= {I/I(blvb27-'~vbN) | (blvb27"'3bN)€B}3

where ¥ (by, b, ..., by) = (W(by), ¥(by), ..., ¥ (by)). C is called a concatenated code
with inner code A and outer code B. In effect, a codeword in C is obtained by taking a
codeword in B and replacing each component by a codeword of A determined by the image
of that component under . The code C is then a code of length nN over IF,,. The following
theorem gives further information about C.

Theorem 5.5.1 Let A, B, and C be as above. Then C is a linear [nN, kK] code over I,
whose minimum distance is at least d D.

Exercise 315 Prove Theorem 5.5.1. ¢

Example 5.5.2 Let B be the [6, 3, 4] hexacode over F4 with generator matrix

1 0 0 1 o w
G=101 0 w 1 w
0 0l v w 1

Let A be the [2, 2, 1] binary code ]F% and define v : Fy — A by the following:
¥w(0) =00, ¢¥(1) =10, ¥(w) =01, ¢Y(w)=11.

This is [F,-linear, as can be easily verified. The concatenated code C with inner code .4 and
outer code BB has generator matrix

100000100T1 01
01000001 1 1111
0010000711001
000100110111
0000100710110
00000111110 1]

Rows two, four, and six of this matrix are obtained after multiplying the rows of G by w.
Cisa[l2,6,4] code. [ |

Exercise 316 Let B be the hexacode given in Example 5.5.2, and let A be the [3, 2, 2]
even binary code. Define v : Fy — A by the following:

¥(0) = 000, ¥(1)= 101, ¥(w) =011, @) = 110.

(a) Verify that ¢ is [F,-linear.

(b) Give a generator matrix for the concatenated code C with inner code A and outer code
B.

(c) Show that C is an [18, 6, 8] code. ¢
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We now briefly discuss how codes, such as Reed—Solomon codes, can be used to correct
burst errors. Let C be an [n, k] code over IF,. A b-burst is a vector in IFZ whose nonzero
coordinates are confined to b consecutive positions, the first and last of which are nonzero.
The code C is b-burst error-correcting provided there do not exist distinct codewords ¢; and
¢y, and a b'-burst u; and a b”-burst u, with b’ < b and b” < b such thate¢; +u; = ¢; + us.
If C is a linear, b-burst error-correcting code then no b’-burst is a codeword for any b’ with
1 <b <2b.

Now let Q0 = 2", and let B be an [N, K, D] code over Fy. (A good choice for B is
a Reed-Solomon code or a shortened Reed—Solomon code as such a code will be MDS,
hence maximizing D given N and K. See Exercise 317.) Let A be the [m, m, 1] binary
code F}'. Choosing a basis ej, e, ..., e, of Fyp = over F,, we define v : Fyp — A
by ¥ (a;e; + --- + aye,) = a - - - a,,. The map ¢ is one-to-one and F,-linear; see Exer-
cise 319. If we refer to elements of o as bytes and elements of I, as bits, each component
byte of a codeword in B is replaced by the associated vector from I’ of m bits to form the
corresponding codeword in C. The concatenated code C with inner code A and outer code
Bis an [n, k, d] binary code withn = mN,k = mK,and d > D. This process is illustrated
by the concatenated code constructed in Example 5.5.2. There the basis of Fy is e; =1
and e, = w, and the bytes (elements of F4) each correspond to two bits determined by the

map .

Exercise 317 LetCbean[n, k,n — k + 1] MDS code over I,,. Let C; be the code obtained
from C by shortening on some coordinate. Show that C; isan [n — 1,k —1,n —k + 1]
code; that is, show that C; is also MDS. ¢

Exercise 318 In compact disc recording two shortened Reed—Solomon codes over F,sq
are used. Beginning with a Reed—Solomon code of length 255, explain how to obtain

[32, 28, 5] and [28, 24, 5] shortened Reed—Solomon codes. ¢
Exercise 319 Let A be the [m, m, 1] binary code F/'. Let e, ey, ..., e, be a basis of
Fou over F. Define ¢ : Fon — A by ¥(ajey + -+ - + ane,) = ay - - - a,. Prove that ¥ is
one-to-one and [F»-linear. ¢

Let C be the binary concatenated [mN, mk] code, as above, with inner code A and
outer code B. Let ¢ = yr(b) be a codeword in C where b is a codeword in B. Let u be a
b-burst in IF;”N . We can break the burst into N strings of m bits each and use ¥ ~! to map
the burst into a vector of N bytes. More formally, let u = u; - - -uy, where u; € ' for
1 <i < N.Map uinto the vector ' = ¥~ !(u;)--- ¥ ~'(uy) in Fg As u is a b-burst, then
the number of nonzero bytes of v’ is, roughly speaking, at most »/m. For instance, if u is
a (3m + 1)-burst, then at most four of the bytes of u’ can be nonzero; see Exercise 320. So
burst error-correction is accomplished as follows. Break the received codeword into N bit
strings of length m, apply ¥ ! to each bit string to produce a vector in Fg, and correct that
vector using 3. More on this is left to Exercise 320.

Exercise 320 Let A =T} be the [m, m, 1] binary code of length m and let B be an
[N, K, D] code over Fon. Let ¥ be a one-to-one [F»-linear map from Fo» onto F5'. Let C
be the concatenated code with inner code A and outer code B.
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|
(a) Letube a b-burst of length m N in IF’Q”N associated to u’, a vector in Fg where Q = 2".
Let b < am + 1. Show that wt(u') < a + 1.
(b) Show that C corrects bursts of length b < am + 1, where a = (D — 1)/2] — 1.
(¢) Letm = Sandlet Bbea[31, 7, 25] Reed—Solomon code over [F3,. What is the maximum
length burst that the [156, 35] binary concatenated code C can correct? ¢
There is another technique, called interleaving, that will improve the burst error-correcting
capability of a code. Let C be an [n, k] code over IF, that can correct a burst of length b.
Define I(C, 1) to be a set of vectors in IFZ’ constructed as follows. For any set of t codewords
¢y, ..., ¢ fromC, with ¢; = ¢;1¢;5 - - - ¢ipp, form the matrix
Ci1 €12 -+ Cin
€1 C - Cp
M =
Crl1 Cr2 -+ Cn
whose rows are the codewords ¢y, ..., ¢;. The codewords of I(C, t) are the vectors
C11€21 ** * C11€12€22 * * * €2+ * C1pC2p * * * iy
of length nt obtained from M by reading down consecutive columns. The code I(C, )
is C interleaved to depth t.
Theorem 5.5.3 If C is an [n, k] code over [, that can correct any burst of length b, then
I(C,t) is an [nt, kt] code over F, that can correct any burst of length bt.
Exercise 321 Prove Theorem 5.5.3. ¢
Example 5.5.4 The [7, 4, 3] binary Hamming code H3 can correct only bursts of length
1. However, interleaving H3 to depth 4 produces a [28, 16] binary code I(H3, 4) that can
correct bursts of length 4. Note, however, that the minimum distance of 7(H3, 4) is 3 and
hence this code can correct single errors, but not all double errors. It can correct up to four
errors as long as they are confined to four consecutive components. See Exercise 322. R
Exercise 322 Prove that the minimum distance of I(H3, 4) is 3. ¢
I
5.6 Coding for the compact disc

In this section we give an overview of the encoding and decoding used for the compact disc
(CD) recorder. The compact disc digital audio system standard currently in use was devel-
oped by N. V. Philips of The Netherlands and Sony Corporation of Japan in an agreement
signed in 1979. Readers interested in further information on coding for CDs should consult
[47,99, 119, 133, 154, 202, 253, 286, 335, 341].

A compact disc is an aluminized disc, 120 mm in diameter, which is coated with a
clear plastic coating. On each disc is one spiral track, approximately 5 km in length (see
Exercise 324), which is optically scanned by an AlGaAs laser, with wavelength approxi-
mately 0.8 wm, operating at a constant speed of about 1.25 m/s. The speed of rotation of
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the disc varies from approximately 8 rev/s for the inner portion of the track to 3.5 rev/s for
the outer portion. Along the track are depressions, called pits, and flat segments between
pits, called lands. The width of the track is 0.6 um and the depth of a pit is 0.12 um. The
laser light is reflected with differing intensities between pits and lands because of inter-
ference. The data carried by these pits and lands is subject to error due to such problems
as stray particles on the disc or embedded in the disc, air bubbles in the plastic coating,
fingerprints, or scratches. These errors tend to be burst errors; fortunately, there is a very
efficient encoding and decoding system involving both shortened Reed—Solomon codes and
interleaving.

Encoding

We first describe how audio data is encoded and placed on a CD. Sound-waves are first
converted from analog to digital using sampling. The amplitude of a waveform is sampled
at a given point in time and assigned a binary string of length 16. As before we will call a
binary digit 0 or 1 from F; a bit. Because the sound is to be reproduced in stereo, there are
actually two samples taken at once, one for the left channel and one for the right. Waveform
sampling takes place at the rate of 44 100 pairs of samples per second (44.1 kHz). (The
sampling rate of 44.1 kHz was chosen to be compatible with a standard already existing
for video recording.) Thus each sample produces two binary vectors from ]F§6, one for each
channel. Each vector from F1° is cut in half and is used to represent an element of the field
s, which as before we call a byte. Each sample then produces four bytes of data. For every
second of sound recording, 44 100 - 32 = 1411200 bits or 44 100 - 4 = 176 400 bytes are
generated. We are now ready to encode the bytes. This requires the use of two shortened
Reed-Solomon codes, C; and C,, and two forms of interleaving. This combination is called
a cross-interleaved Reed—Solomon code or CIRC. The purpose of the cross-interleaving,
which is a variation of interleaving, is to break up long burst errors.

Step I: Encoding using Cy and interleaving

The bytes are encoded in the following manner. Six samples of four bytes each are grouped
together to form a frame consisting of 24 bytes. We can view aframe as L1 R LR, - - - Lg Ry,
where L; is two bytes for the left channel from the ith sample of the frame, and R; is two
bytes for the right channel from the ith sample of the frame. Before any encoding is done,
the bytes are permuted in two ways. First, the odd numbered samples L1R1, L3R5, and
LsRs are grouped with the even-numbered samples L2R2, L4R4, and L6R6 taken from two
frames later. So we are now looking at a new frame of 24 bytes:

L\R\LyRyL3R3L4RsLsRsL¢Rs.

Thus samples that originally were consecutive in time are now two frames apart. Second,
these new frames are rearranged internally into 24 bytes by separating the odd-numbered
samples from the even-numbered samples to form

~ ~ ~ ~ ~ ~

L\L3LsR R3RsLoL4L¢RoRyRs.
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Ci,1 €21 €31 C41 C51 Ce1 C71 Cg1 €91 Cio1 Ci1,1 C12,1 €131
0 0 0 0 c2 2 30 €42 €52 C62 €72 €82  Cop
0 0 0 0 0 0 0 0 C1,3 3 C33 C43 C53
0 0 0 0

0 0 0 0 0 0 0 0 Cl4

Figure 5.2 4-frame delay interleaving.

This separates samples as far apart as possible within the new frame. These permutations
of bytes allow for error concealment as we discuss later. This 24-byte message consisting
of a vector in ]F%;% is encoded using a systematic encoder for a [28, 24, 5] shortened Reed—
Solomon code, which we denote C;. This encoder produces four bytes of redundancy, that
is, two pairs P; and P, each with two bytes of parity which are then placed in the middle
of the above to form

LiL3LsR R3RsP, PyLyL4Le Ry RyRs,
further separating the odd-numbered samples from the even-numbered samples.

Thus from C; we produce a string of 28-byte codewords which we interleave to a depth of
28 using 4-frame delay interleaving as we now describe. Begin with codewords ¢y, ¢;, ¢3, . . .
from C; in the order they are generated. Form an array with 28 rows and a large number of
columns in the following fashion. Row 1 consists of the first byte of ¢; in column 1, the first
byte of ¢, in column 2, the first byte of ¢3 in column 3, etc. Row 2 begins with four bytes
equal to O followed by the second byte of ¢; in column 5, the second byte of ¢, in column
6, the second byte of ¢3 in column 7, etc. Row 3 begins with eight bytes equal to 0 followed
by the third byte of ¢; in column 9, the third byte of ¢, in column 10, the third byte of c;3
in column 11, etc. Continue in this manner filling out all 28 rows. If ¢; = ¢; 1¢;i2 - - - ¢i 28,
the resulting array begins as in Figure 5.2, and thus the original codewords are found going
diagonally down this array with slope —1/4. This array will be as long as necessary to
accommodate all the encoded frames of data. All the rows except row 28 will need to be
padded with zeros so that the array is rectangular; see Exercise 323.

Exercise 323 Suppose a CD is used to record 72 minutes of sound. How many frames
of data does this represent? How long is the array obtained by interleaving the code-
words in C; corresponding to all these frames to a depth of 28 using 4-frame delay
interleaving? ¢

Step II: Encoding using C, and interleaving

Each column of the array is a vector in 35, which is then encoded using a [32, 28, 5] short-
ened Reed—Solomon code C,. Thus we now have a list of codewords, which are generated
in the order of the columns, each consisting of 32 bytes. The codewords are regrouped with
the odd-numbered symbols of one codeword grouped with the even-numbered symbols of
the next codeword. This regrouping is another form of interleaving which further breaks
up short bursts that may still be present after the 4-frame delay interleaving. The regrouped
bytes are written consecutively in one long stream. We now re-divide this long string into
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segments of 32 bytes, with 16 bytes from one C, codeword and 16 bytes from another C»
codeword because of the above regrouping. At the end of each of these segments a 33rd byte
is added which contains control and display information.! Thus each frame of six samples
eventually leads to 33 bytes of data. A schematic of the encoding using C; and C, can be
found in [154].

Step 111: Imprinting and EFM

Each byte of data must now be imprinted onto the disc. First, the bytes are converted to
strings of bits using EFM described shortly. Each bit is of length 0.3 pm when imprinted
along the track. Each land-to-pit or pit-to-land transition is imprinted with a single 1, while
the track along the pit or land is imprinted with a string of Os whose number corresponds
to the length of the pit or land. For example, a pit of length 2.1 um followed by a land of
length 1.2 um corresponds to the string 10000001000. For technical reasons each land or
pit must be between 0.9 and 3.3 um in length. Therefore each pair of 1s is separated by
at least two Os and at most ten Os. Thus the 256 possible bytes must be converted to bit
strings in such a way that this criterion is satisfied. Were it not for this condition, one could
convert the bytes to elements of F5; it turns out that the smallest string length such that
there are at least 256 different strings where each 1 is separated by at least two Os but no
more than ten Os is length 14. In fact there are 267 binary strings of length 14 satisfying
this condition; 11 of these are not used. This conversion from bytes to strings of length 14
is called EFM or eight-to-fourteen modulation. Note, however, that bytes must be encoded
in succession, and so two consecutive 14-bit strings may fail to satisfy our conditions
on minimum and maximum numbers of Os between 1s. For example 10010000000100
and 00000000010001 are both allowable strings but if they follow one after the other, we
obtain

1001000000010000000000010001,

which has 11 consecutive 0Os. To overcome this problem three additional bits called merge
bits are added to the end of each 14-bit string. In our example, if we add 001 to the end of
the first string, we have

1001000000010000100000000010001,

which satisfies our criterion. So our frame of six samples leads to 33 bytes each of which
is converted to 17 bits. Finally, at the end of these 33 - 17 bits, 24 synchronization bits plus
three merging bits are added; thus each frame of six samples leads to 588 bits.

Exercise 324 Do the following; see the related Exercise 323:
(a) How many bits are on the track of a CD with 72 minutes of sound?
(b) How long must the track be if each bit is 0.3 um in length? ¢

! The control and display bytes include information for the listener such as playing time, composer, and title of
the piece, as well as technical information required by the CD player.
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Decoding

We are now ready to see how decoding and error-correction is performed by the CD player.?
The process reverses the encoding.

Step I: Decoding with C,
First, the synchronization bits, control and display bits, and merging bits are removed. Then
the remaining binary strings are converted from EFM form into byte form, a process called
demodulation, using table look-up; we now have our data as a stream of bytes. Next we
undo the scrambling done in the encoding process. The stream is divided into segments of
32 bytes. Each of these 32-byte segments contains odd-numbered bytes from one codeword
(with possible errors, of course) and even-numbered bytes from the next. The bytes in the
segments are regrouped to restore the positions in order and are passed on to the decoder
for C,. Note that if a short burst error had occurred on the disc, the burst may be split up into
shorter bursts by the regrouping. As C, is a [32, 28, 5] code over Fys¢, it can correct two
errors. However, it is only used to correct single errors or detect the presence of multiple
errors, including all errors of size two or three and some of larger size. The sphere of
radius 1 centered at some codeword ¢; does not contain a vector that differs from another
codeword ¢; in at most three positions as ¢; and ¢, are distance at least five from one another.
Therefore, if a single error has occurred, C; can correct that error; if two or three errors have
occurred, C, can detect the presence of those errors (but will not be used to correct them).
What is the probability that C, will fail to detect four or more errors when we use C; to
correct only single errors? Such a situation would arise if errors are made in one codeword
so that the resulting vector lies in a sphere of radius 1 about another codeword. Assuming
all vectors are equally likely, the probability of this occurring is approximately the ratio of
the total number of vectors inside spheres of radius 1 centered at codewords to the total
number of vectors in 15%6 This ratio is

25628[1 + 32(256 — 1)] 8161

256 - 256*
By Exercise 325, if C, were used to its full error-correcting capability by correcting all
double errors, then the probability that three or more errors would go undetected is about
7.5 x 1073, The difference in these probabilities indicates why the full error-correcting
capability of C, is not used since the likelihood of three or more errors going undetected
(or being miscorrected) is much higher with full error-correction.

~ 1.9 x 1075.

Exercise 325 Verify the following:
(a) A sphere of radius 2 centered at a codeword of a [32, 28] code over [F,56 contains

32 )
1432256 -1) + 5 (256 - 1)
vectors in 3z

2 The encoding of a digital video disc (DVD) involves Reed-Solomon codes in a fashion similar
to the CD. Tom Hgholdt has created a simulation of DVD decoding at the following web site:
http://www.mat.dtu.dk/persons/Hoeholdt_Tom/.
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(b) The probability that three or more errors would go undetected using the double error-
correcting capability of a [32, 28, 5] code over [F,s¢ is about 7.5 x 1073, ¢

Step 11: Decoding with C,

If the decoder for C, determines that no errors in a 32-byte string are found, the 28-
byte message is extracted and passed on to the next stage. If the decoder for C, detects a
single error, the error is corrected and the 28-byte message is passed on. If the decoder
detects more than two errors, it passes on a 28-byte string with all components flagged
as erasures. These 28-byte strings correspond to the columns of the array in Figure 5.2,
possibly with erasures. The diagonals of slope —1/4 are passed on as 28-byte received
vectors to the decoder for C;. C; can be used in different ways. In one scheme it is used only
to correct erasures. By Theorem 1.11.6, C; can correct four erasures. Due to the 4-frame
delay interleaving and the ability of C; to correct four erasures, a burst error covering 16
consecutive 588-bit strings on the disc can be corrected. Such a burst is approximately 2.8
mm in length along the track! In another scheme, again applying Theorem 1.11.6, C; is
used to correct one error (which may have escaped the decoding performed by C,) and two
erasures. A comparison of the two schemes can be found in [253].

Step III: Errors that still survive

It is possible that there are samples that cannot be corrected by the use of C, and C,
but are detected as errors and hence remain erased. One technique used is to “conceal” the
error. Recall that consecutive samples are separated by two frames before any encoding was
performed. When the final decoding is completed and these samples are brought back to their
correct order, it is likely that the neighboring samples were correct or had been corrected.
If this is the case, then the erased sample is replaced by an approximation obtained by
linear interpolation using the two reliable samples on either side of the sample in error.
Listening tests have shown that this process is essentially undetectable. If the neighbors
are unreliable, implying a burst is still present, so that interpolation is not possible, then
“muting” is used. Starting 32 samples prior to the burst, the reliable samples are gradually
weakened until the burst occurs, the burst is replaced by a zero-valued sample, and the
next 32 reliable samples are gradually strengthened. As this muting process occurs over
a few milliseconds, it is essentially inaudible. Both linear interpolation and muting mask
“clicks” that may otherwise occur. More details on interpolation and muting can be found
in [154, 253].
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Duadic codes

In Chapter 5 we described the family of cyclic codes called BCH codes and its subfamily of
RS codes. In this chapter we define and study another family of cyclic codes called duadic
codes. They are generalizations of quadratic residue codes, which we discuss in Section 6.6.
Binary duadic codes were initially defined in [190] and were later generalized to arbitrary
finite fields in [266, 270, 301, 315].

6.1

Definition and basic properties

We will define duadic codes in two different ways and show that the definitions are equiv-
alent. We need some preliminary notation and results before we begin. Throughout this
chapter Z, will denote the ring of integers modulo n. We will also let £,, denote the sub-
code of even-like vectors in R, = F,[x]/(x" — 1). The code &, is an [n, n — 1] cyclic code
whose dual code £ j is the repetition code of length n. By Exercise 221 the repetition code
has generating idempotent

- 1
j(x):;(l'i‘x‘f‘xz—i—-.._px”_l).

So by Theorem 4.4.9, £, has generating idempotent 1 — j(x)u_; = 1 — j(x). We sum-
marize this information in the following lemma.

Lemma 6.1.1 The code &, has the following properties:

(i) Episan[n,n — 1] cyclic code.

(ii) E,f is the repetition code with generating idempotent j(x) = (1/n)(1 +x + x>+ -+ - +
xn—l )

(iii) &, has generating idempotent 1 — f(x).

In defining the duadic codes, we will obtain two pairs of codes; one pair will be two
even-like codes, which are thus subcodes of £,,, and the other pair will be odd-like codes. It
will be important to be able to tell when either a vector or a cyclic code in R, is even-like
or odd-like.

Lemma 6.1.2 Leta(x) = Z::ol a;x' € R,.Alsolet C be a cyclic code in R, with generator

polynomial g(x). Then:

(i) a(x) is even-like if and only if a(1) = 0 if and only ifa(x)?(x) =0,

(i) a(x) is odd-like if and only ifa(1) # O ifand only if a(x) j(x) = a j(x) for some nonzero
acl,,
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(iii) C is even-like if and only if g(1) = 0 if and only if j(x) ¢ C, and
(iv) C is odd-like if and only if g(1) # 0 if and only if j(x) € C.

Proof: Parts (ii) and (iv) follow from (i) and (iii), respectively. By definition, a(x) is even-
like precisely when Z;:Ol a; = 0. This is the same as saying a(1) = 0. That this is equivalent
to a(x)j(x) = 0 follows from Exercise 221. This verifies (i). In part (iii), C is even-like if
and only if g(1) = 0 from Exercise 238. Note that (x — l)nf(x) =x"—11in Fy[x]. As
gx) | (x" —1) and x" — 1 has distinct roots, g(x) | 7(x) if and only if g(1) # 0. Since
j(x) € Cif and only if g(x) | j(x), part (iii) follows. O

We first define duadic codes in terms of their idempotents. Duadic codes come in two
pairs, one even-like pair, which we usually denote C; and C,, and one odd-like pair, usually
denoted D; and D,. Let e;(x) and e,(x) be two even-like idempotents with C; = (e (x))
and C, = (ex(x)). The codes C; and C, form a pair of even-like duadic codes provided the
following two criteria are met:

I. The idempotents satisfy

e1(x) +ex(x) = 1 — j(x), and (6.1)
II. there is a multiplier u, such that
Clﬂa = Cz and Cz,ua = C]. (62)

If c(x) € C;, then c(x)e;(x) = c(x) implying that ¢(1) = ¢(1)e;(1) = 0 by Lemma 6.1.2(i);
thus both C; and C, are indeed even-like codes. We remark that e;(x)u, = e>(x) and
er(x)iq = ey(x) if and only if Cypu, = C; and Couu, = C; by Theorem 4.3.13(i); thus we
can replace (6.2) in part II by

e1(X)pa = ex(x) and  erx(X)ua = e1(x). (6.3)
Associated to C; and C; is the pair of odd-like duadic codes
Di = (1 —eyx)) and Dy = (1 —e;(x)). (6.4)

As1 —e;(1) = 1,by Lemma 6.1.2(ii), D; and D, are odd-like codes. We say that i, gives a
splitting for the even-like duadic codes C and C; or for the odd-like duadic codes D and D;.

Exercise 326 Prove that if C; and C, form a pair of even-like duadic codes and that C,
and C) are also a pair of even-like duadic codes, then C; = C5. (This exercise shows that
if we begin with a code C; that is one code in a pair of even-like duadic codes, there is no
ambiguity as to what code it is paired with.) ¢

The following theorem gives basic facts about these four codes.

Theorem 6.1.3 Let C; = (e1(x)) and C; = (ex(x)) be a pair of even-like duadic codes of
length n over F,. Suppose i, gives the splitting for C and C,. Let Dy and D, be the
associated odd-like duadic codes. Then:

i) e(x)exlx) =0,

i) CiNCr={0}andC,+Cr,=¢&,,

(>iii) n is odd and Cy and C, each have dimension (n — 1)/2,
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(iv) Dy is the cyclic complement of C, and D, is the cyclic complement of Cy,
(v) D, and D, each have dimension (n 4+ 1)/2,

(vi) C; is the even-like subcode of D; fori =1, 2,

(vii) Dipg = Dy and Doy = Dy,

(viii) Dy N D, = (j(x)) and Dy + Dy = R, and

(ix) D;=Ci+ (j(x) = (j(x)+ &) fori =1,2.

Proof: Multiplying (6.1) by e;(x) gives ej(x)ex(x) = 0, by Lemma 6.1.2(i). So (i) holds.
By Theorem 4.3.7, C; N C; and C; + C; have generating idempotents e;(x)e;(x) = 0 and
e1(x) + ex(x) —e(x)er(x) = ej(x) +ex(x) =1 — 7(x), respectively. Thus part (ii) holds
by Lemma 6.1.1(iii). By (6.2), C; and C; are equivalent, and hence have the same dimension.
By (ii) and Lemma 6.1.1(i), this dimension is (n — 1)/2, and hence n is odd giving (iii).
The cyclic complement of C; has generating idempotent 1 — ¢;(x) by Theorem 4.4.6(i);
thus part (iv) is immediate from the definition of D;. Part (v) follows from the defini-
tion of cyclic complement and parts (iii) and (iv). As D; is odd-like with generating
idempotent 1 — e»(x), by Exercise 257, the generating idempotent of the even-like sub-
code of Dy is 1 —ex(x)— j(x) =ei(x). Thus C, is the even-like subcode of Di;
analogously C; is the even-like subcode of D, yielding (vi). The generating idempotent of
Dipgis (1 —ex(x)py =1 — ex(x)y = 1 — e1(x) by Theorem 4.3.13(i) and (6.3). Thus
D1, = Dy; analogously Dy, = D; producing (vii). By Theorem 4.3.7, Dy ND;, and
D, + D, have generating idempotents (I — e2(x))(1 — e;(x)) = 1 — e;(x) — ez(x) = j(x)
and (1 —ex(x)) + (1 —ej(x)) — (1 — e2(x))(1 — e1(x)) = 1, respectively, as ej(x)ex(x) =
0. Thus (viii) holds as the generating idempotent of R, is 1. Finally by (iii), (v), and
(vi), C; is a subspace of D; of codimension 1; as j(x) € D; \ C;, D; = C; + (j(x)). Also
D; = (j(x) + ¢j(x)) by (6.1) and (6.4). O

Example 6.1.4 We illustrate the definition of duadic codes by constructing the generating
idempotents of the binary duadic codes of length 7. The 2-cyclotomic cosets modulo 7
are Co = {0}, C; = {1, 2,4}, and C3 = {3, 6, 5}. Recall from Corollary 4.3.15 that every
binary idempotent in R,, is of the form e(x) = .., >, e, x' and all such polynomials
are idempotents. Thus there are 2° = 8 idempotents, with four being even-like. These
areeg(x) =0,e;(x) =1+ x+x>+x* ex(x) =1 +x3 +x° + x5, and e3(x) = x + x2 +
x3 4+ x* 4+ x° + x°. But eg(x) generates {0} and e3(x) generates £7; see Exercise 327. So
the only possible generating idempotents for even-like duadic codes are e¢;(x) and e;(x).
Note thate;(x) + ex(x) =1 — f(x) giving (6.1); also e1(x)us = ex(x) and ex(x)pu3 = ej(x)
giving (6.3). Thus there is one even-like pair of duadic codes of length 7 with one associated
odd-like pair having generating idempotents 1 — ex(x) = x> + x> +x% and 1 — ¢;(x) =
x + x? + x*; the latter are Hamming codes. ]

Exercise 327 Prove that x + x> + - - - + x"~! is the idempotent of the even-like code &,
of length n over IF,. ¢

Exercise 328 Find idempotent generators of all of the binary even-like and odd-like duadic
codes of length n = 17 and n = 23. The odd-like duadic codes of length 23 are Golay
codes. ¢
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Exercise 329 We could have defined duadic codes by beginning with the generating
idempotents of the odd-like duadic codes. Let D and D, be odd-like cyclic codes of length
n over F, with generating idempotents d;(x) and d»(x). Show that D and D, are odd-like
duadic codes if and only if:

I”. the idempotents satisfy d;(x) + d2(x) = 1 + j(x), and

I1”. there is a multiplier u, such that Dyu, = D; and Dou, = Dy. ¢

Duadic codes can also be defined in terms of their defining sets (and thus ultimately by
their generator polynomials). Let C; and C; be a pair of even-like duadic codes defined by
I and II above. As these are cyclic codes, C; and C, have defining sets 77 = {0} U S; and
T, = {0} U S, respectively, relative to some primitive nth root of unity. Each of the sets S;
and S; is a union of nonzero g-cyclotomic cosets. By Theorem 6.1.3(iii) C; and C, each have
dimension (n — 1)/2; by Theorem 4.4.2, S| and S, each have size (n — 1)/2. The defining
setof C; N Cy = {0} is T} U T,, which must then be {0, 1, ..., n — 1} by Exercise 239. Thus
SiUS, ={1,2,...,n — 1}; since each S; has size (n — 1)/2, S; N S, = @. By (6.2) and
Corollary 4.4.5, Ty, = T, and Trpu,—1 = Ty. Therefore Sjpu,-1 = Sy and S, = 8.
This leads to half of the following theorem.

Theorem 6.1.5 Let Cy and C; be cyclic codes over F, with defining sets Ty = {0} U S, and
T, = {0} U S, respectively, where 0 &€ Sy and 0 & S,. Then C| and C; are a pair of even-like
duadic codes if and only if:

I'. 81 and S, satisfy

SIUS ={1,2,...,n—1} and SiNS =0, and (6.5)
IU'. there is a multiplier ), such that
Sll’l/b = S2 and Sg/,Lb = S]. (66)

Proof: The previous discussion proved that if C; and C, are a pair of even-like duadic
codes, then I" and II" hold. Suppose that I’ and II' hold. Because 0 € T;, C; is even-like, by
Exercise 238, for i = 1 and 2. Let e;(x) be the generating idempotent of C;. As C; N C,
has defining set 7y UT, = {0, 1, ...,n — 1} by Exercise 239 and (6.5), C; N C, = {0}.
By Theorem 4.3.7, C; N C; has generating idempotent e;(x)ey(x), which therefore must
be 0. As C; + C;, has defining set 71 N T, = {0} by Exercise 239 and (6.5), C; +C, =
&,. By Theorem 4.3.7, C 4 C, has generating idempotent e;(x) + ex(x) — ej(x)ex(x) =
e1(x) + e>(x), which therefore must be 1 — 7(x) by Lemma 6.1.1(iii). Thus (6.1) holds. By
Corollary 4.4.5, C; u;,-1 has defining set T; u;, for i = 1 and 2. But by (6.6), T, = T> and
Toup = Ty. Thus Cypup1 = Co and Copy1 = Cy, giving (6.2) with @ = b, Therefore C;
and C, are a pair of even-like duadic codes. O

We can use either our original definitions I and II for duadic codes defined in terms of
their idempotents or I' and II' from Theorem 6.1.5. We give a name to conditions I and IT":
we say that a pair of sets S; and S,, each of which is a union of nonzero g-cyclotomic cosets,
forms a splitting of n given by u;, over F, provided conditions I and II' from Theorem 6.1.5
hold. Note that the proof of Theorem 6.1.5 shows that u, in (6.2) and u; in (6.6) are
related by @ = b~!. In other words, if 1, gives a splitting for the duadic codes, then pi,1
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gives the associated splitting of n. However, S t,-1 = S, implies S| = SQ(,LLa—l)71 = SHltq.
Similarly, S = S;u,, and we can in fact use the same multiplier for the splittings in either
definition.

This theorem has an immediate corollary.

Corollary 6.1.6 Duadic codes of length n over I, exist if and only if there is a multiplier
which gives a splitting of n.

Example 6.1.7 We construct the generating idempotents of the duadic codes of length 11
over 3. We first use the splittings of 11 over [F5 to show that there is only one pair of even-
like duadic codes. The 3-cyclotomic cosets modulo 11 are Cy = {0}, C; = {1, 3, 9, 5, 4},
and C; = {2, 6, 7, 10, 8}. The only possible splitting of 11 is §; = C; and S, = C», since
S; and S, must contain five elements. Thus there is only one pair of even-like duadic
codes. We now construct their idempotents. Let io(x) = 1,i;(x) = x + x> + x* + x> + x°,
and ir(x) = x? 4+ x% 4+ x7 4 x® 4 x'0. By Corollary 4.3.15, all idempotents are of the form

apio(x) + aiii(x) + azir(x), where ag, a;, a, € 3. By Exercise 330,i,(x)? = —i;(x). Thus
(I4+i1(x)? =142i1(x) —ij(x) =1+i1(x) and 1+ i(x) is an even-like idempotent.
As i1(x)y = ir(x), then ir(x)> = —ip(x) and 1 + i>(x) is another even-like idempotent.

Letting e;(x) = 1 4+ i;(x) and e>(x) = 1 + ir(x), we see that e;(x) 4+ ex(x) = 1 — j(x) as
Jx) =2(1 +x +x2 4 -+ x'9), giving (6.1). Also e; (x) 12 = ex(x) and ex(x) 2 = e1(x)
giving (6.3). Thus e;(x) and e,(x) are the idempotent generators of the unique pair of even-
like duadic codes. The corresponding generating idempotents for the odd-like duadic codes
are 1l — ex(x) = —ix(x)and 1 — e;(x) = —i(x). These odd-like codes are the ternary Golay
codes. ]

Exercise 330 In R, over F3 show that (x + x> + x* +x7 +x%)? = —(x + 23+ x* +
x5 +x9). ¢

Exercise 331 Find the generating idempotents of the duadic codes of length n = 23 over
Fs. ¢

Exercise 332 Find the splittings of n = 13 over 3 to determine the number of pairs
of even-like duadic codes. Using these splittings, find those codes which are permutation
equivalent using Theorem 4.3.17 and Corollary 4.4.5. ¢

Example 6.1.8 We construct the generating idempotents of the duadic codes of length 5
over F4. The 4-cyclotomic cosets modulo 5 are Cy = {0}, C; = {1, 4}, and C, = {2, 3}.
The only possible splitting of 5 over F4 is S} = C; and S, = C», since S| and S, must
contain two elements. Thus there is only one pair of even-like duadic codes. Let e;(x)
and e,(x) be their idempotents; let ig(x) = 1, i;(x) = x + x*, and ir(x) = x> + x>. By
Corollary 4.3.15, all idempotents are of the form e(x) = agio(x) + ayi;(x) + azi,(x), where
ao, ai, ay € Fq. Since e(x)? = ajio(x) + a3i)(x) + ajir(x) = e(x), we must have al = a
and a, = alz; thus agp = 0 or 1. Since u4 fixes cyclic codes over F4 by Theorem 4.3.13, the
only multipliers that could interchange two cyclic codes are pt, or ps3. Since w3 = g4z,
we can assume that p, interchanges the two even-like duadic codes. Suppose that
e1(x) = agio(x) + a1iy(x) + aliz(x). Then ex(x) = e1(x)ua = agio(x) + atii(x) + arir(x)
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and e;(x) + ex(x) = 1 — j(x) = i1(x) + i»(x); thus a; + a% = 1 implying that a; = w or
. To make ¢;(x) even-like, ag = 0. So we can take the idempotents of C; and C; to
be e1(x) = w(x + x*) + »(x? + x3) and e (x) = w(x + x*) + w(x? + x3). The associated
odd-like duadic codes have idempotents 1 + @(x + x*) + w(x? + x¥)and 1 + w(x + x*) +
@(x? + x%); these codes are each the punctured hexacode (see Exercise 363). [ |

Example 6.1.9 For comparison with the previous example, we construct the generating
idempotents of the duadic codes of length 7 over [F4. The codes in this example all
turn out to be quadratic residue codes. The 4-cyclotomic cosets modulo 7 are Cy = {0},
Cy={1, 4, 2}, and C3 = {3, 5, 6}. Again the only possible splitting of 7 over F, is
S1 = C; and S, = (3, and there is only one pair of even-like duadic codes with idempo-
tents e;(x) and ey (x). Let ig(x) = 1, i1(x) = x + x2 + x*, and i»(x) = x3 + x> + x°. Asin
the previous example all idempotents are of the form e(x) = apio(x) + aii;(x) + azi>(x),
where ag, a1, a, € F4. However, now e(x)? = a%io(x) + alzil(x) + a%iz(x) = e(x); we must
have ajz =a; for 0 < j <2 and hence a; = 0 or 1. Similarly to Example 6.1.8 we can
assume that w3 interchanges the two even-like duadic codes; see also Exercise 333. If
e1(x) = aopip(x) + a1 (x) + azir(x), then ex(x) = e1(x)us = aoio(x) + azi1(x) + ariz(x)
and e;(x) + e2(x) = 1 — j(x) = i1(x) + iz(x). Thus a; + a, = 1 implying that {a;, a,} =
{0, 1}. To make ¢; (x) even-like, ayp = 1. So the idempotents of C; and Cy are 1 + x + x? + x*
and 1 + x* + x° + x®. The associated odd-like duadic codes have idempotents x> + x> + x¢
and x + x? 4+ x*. These are all binary idempotents; the subfield subcodes C; I, and D; |, are
precisely the codes from Example 6.1.4. This is an illustration of Theorem 6.6.4, which
applies to quadratic residue codes. [ ]

The definition of duadic codes in terms of generating idempotents has the advantage that
these idempotents can be constructed with the knowledge gained from the splittings of n
over the fields IF, and [F4 without factoring x” — 1 as we saw in the preceding examples.
With more difficulty, the generating idempotents can also sometimes be constructed over
the field F;3 without factoring x" — 1.

Exercise 333 In this exercise, we examine which multipliers need to be checked to either

interchange duadic codes (as in II of the duadic code definition) or produce a splitting (as

in I' of Theorem 6.1.5). Suppose our codes are of length n over FF,, where of course, n

and g are relatively prime. The multipliers w, that need to be considered are indexed by

the elements of the (multiplicative) group Zﬁ ={a €Z, | gcd(a, n) = 1}. Let Q be the

subgroup of Zﬁ generated by ¢. Prove the following:

(a) If Cypq = C and Co 1, = Cy (from II of the duadic code definition), then C; e, = Co
and Copepu, = Cy forallc € Q.

() If Siup =S, and Soup, = S; (from II' of Theorem 6.1.5), then Siucup = S and
S2/.LC/.L[7 = Sl forall c € Q

(c) Prove that when checking IT of the duadic code definition or II' of Theorem 6.1.5, one
only needs to check multipliers indexed by one representative from each coset of Q in
Zi, and, in fact, the representative from Q itself need not be checked.

(d) What are the only multipliers that need to be considered when constructing duadic
codes of length n over IF, where:
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(i) n=5,9=4,

) n=7,q =4,

(i) n = 15,9 =4,

@iv) n=13,g =3, and

v) n=23,qg=2? ¢

Exercise 334 Find the generating idempotents of the duadic codes of length n over [y
where:

(a) n =3,

(b) n =9,

(©) n=11,

(d) n =13, and

(e) n =23. ¢

If n is the length of our duadic codes, a splitting of n leads directly to the defining sets
of the even-like and odd-like duadic codes, and hence the generator polynomials, once the
primitive nth root of unity has been fixed. From there one can construct the generating
idempotents, by using, for example, the Euclidean Algorithm and the technique in the proof
of Theorem 4.3.2. In the binary case, by examining the exponents of two of these four
idempotents another splitting of # is obtained as the next theorem shows. This provides
a way to use splittings of n to obtain generating idempotents of duadic codes directly in
the binary case. It is important to note that the splitting of n used to construct the defining
sets and generator polynomials is not necessarily the same splitting as the one arising from
the exponents of the idempotents; however, the multiplier used to give these splittings is
the same. In Theorem 6.3.3, we will see that binary duadic codes exist only if n = +1
(mod 8).

Theorem 6.1.10 Letn = £1 (mod 8) and let ei(x) and e>(x) be generating idempotents of

even-like binary duadic codes of length n given by the multiplier . The following hold:

(i) Ifn =1 (mod 8), then e;(x) = Zjes, x/, where Sy and S, form a splitting of n given
by 1a- ‘

(i) Ifn = —1 (mod 8), then 1 + ¢;(x) = ZjeS; x/, where Sy and S, form a splitting of n
given by [i,.

Proof: Since u, is the multiplier giving the splitting of (6.2), from (6.3) e;(x)u, = ex(x)
and e;(x)u, = ej(x). Then by (6.1),

n—1
e1(x) + ex(x) = ij. (6.7)
=1

By Corollary 4.3.15

ei(x)=e+» x/, (6.8)

JES;
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where €; is O or 1 and S; is a union of nonzero 2-cyclotomic cosets modulo n. Combining
(6.7) and (6.8), we have

n—1
ateat+y I+ x=) "x
Jjesi jeS j=1
which implies that €] =€, SN S, =@, and S; U S, = {1, 2,...,n — 1}. Furthermore
as e1(X)a = e2(x), (€1 + X 5, X e = €1 + 3 je5, ¥/ = €2+ 3, X7 implying that
Siitqy = Sz. Analogously, S>i, = S; using ex(x)u, = ej(x). Thus S| and S, is a splitting
of n given by u,. Now ej(x) is even-like; which in the binary case, means that e;(x)
has even weight. The weight of e;(x) is the size of Sj, if €; = 0, and is one plus the size
of Sy, if €y = 1. The size of S; is (n — 1)/2, which is even if n = 1 (mod 8) and odd if
n=—1(mod8).Soe; =0ifn =1(mod 8)and ¢; = 1 if n = —1 (mod 8), leading to (i)
and (ii). O

The converse also holds.

Theorem 6.1.11 Ler n = 1 (mod 8) and let S| and S, be a splitting of n over F, given

by a. The following hold.

(i) Ifn =1 (mod 8), then e;(x) = Z_/GS,, x/ withi = 1 and 2 are generating idempotents
of an even-like pair of binary duadic codes with splitting given by .

@ii) Ifn = —1 (mod 8), then e;(x) = 1 + ZjeS,- xJ withi = 1 and 2 are generating idem-
potents of an even-like pair of binary duadic codes with splitting given by [i,.

Proof: Define ¢;(x) = € + Z_ieSi xJ fori =1 and 2, where € = 0 if n = 1 (mod 8) and
€ = 1if n = —1 (mod 8). Then as S; has size (n — 1)/2, e;(x) has even weight and hence
is even-like. Furthermore, e;(x) is an idempotent as {0} U S; is a union of 2-cyclotomic
cosets, by Corollary 4.3.15. As Sju, = S> and S ey = Si, e1(X)py = ex(x) and e (), =
e1(x) showing (6.3), which is equivalent to (6.2). Because S; U S, = {1,2,...,n — 1} and
SIN Sy =0, e1(x) + ex(x) =2¢ + Y1 _ x/ = Y "7 | x/ giving (6.1). O

Exercise 335 Use Theorems 6.1.10 and 6.1.11 to find all the idempotents of the even-like
binary duadic codes of length 73 where ©, = ©_;. ¢

The proof of the following theorem is straightforward and is left as an exercise.

Theorem 6.1.12 Let 1. be any multiplier. The pairs Cy, Co, and Dy, D, are associated
pairs of even-like and odd-like duadic codes with splitting Sy, S, if and only if Cy ¢, Captc,
and D ., Do, are associated pairs of even-like and odd-like duadic codes with splitting
Sipbe-1, Sople-1.

Exercise 336 Prove Theorem 6.1.12. ¢

As we will see in Section 6.6, quadratic residue codes are duadic codes of prime length
n = p for which §| is the set of nonzero quadratic residues (that is, squares) in IF, S; is the
set of nonresidues (that is, nonsquares), and the multiplier interchanging the codes is (4,
where a is any nonresidue. Quadratic residue codes exist only for prime lengths, but there
are duadic codes of composite length. At prime lengths there may be duadic codes that
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I
are not quadratic residue codes. Duadic codes possess many of the properties of quadratic
residue codes. For example, all the duadic codes of Examples 6.1.4, 6.1.7, 6.1.8, and 6.1.9
and Exercises 328 and 331 are quadratic residue codes. In Exercises 332 and 334, some of
the codes are quadratic residue codes and some are not.

I

6.2 A bit of number theory

In this section we digress to present some results in number theory that we will need in the
remainder of this chapter. We begin with a general result that will be used in this section
and the next. Its proof can be found in [195, Theorem 4-11]. In a ring with unity, a unit is
an element with a multiplicative inverse. The units in a ring with unity form a group.

Lemma 6.2.1 Letn > 1 be an integer and let U,, be the group of units in Z,. Then:
(i) U, has order ¢(n), where ¢ is the Euler totient first described in Section 3.3.
(i) U, is cyclic if and only if n = 2, 4, p', or 2p', where p is an odd prime.

Note that the units in U, are often called reduced residues modulo n, and if U, is cyclic, its
generator is called a primitive root. We will need to know when certain numbers are squares
modulo an odd prime p.

Lemma 6.2.2 Let p be an odd prime and let a be in Z, with a # 0 (mod p). The following
are equivalent:

(i) aisasquare.

(i) The (multiplicative) order of a is a divisor of (p — 1)/2.

(iii) a?~Y/2 =1 (mod p).

Furthermore, if a is not a square, then a?~Y/2 = —1 (mod p).

Proof: Since Z, is the field IF,, the group Z; of nonzero elements of Z, is a cyclic
group by Theorem 3.3.1 (or Lemma 6.2.1); let o be a generator of this cyclic group. The
nonzero squares in Z, form a multiplicative group Q with generator &%, an element of order
(p — 1)/2. Thus the nonzero squares have orders a divisor of (p — 1)/2 showing that (i)
implies (ii). Suppose that a has order d a divisor of (p — 1)/2. So a? = 1 (mod p) and if
m = (p —1)/2,then 1 = (a?y"/¢ = a’»~Y/2 (mod p); hence (ii) implies (iii). If (iii) holds,
then a has order a divisor d of (p — 1)/2. Therefore as there is a unique subgroup of order
d in any cyclic group and Q contains such a subgroup, a € Q. Thus (iii) implies (i). Since
x? = 1(mod p)has only two solutions %1 in a field of odd characteristic and (a?~V/?)? = 1
(mod p), if a is not a square, then a’?~"/2 = —1 (mod p) by (iii). O

By this lemma, to check if a is a square modulo p, one only checks whether or not
a?=V/2 is 1 or —1. We now show that if a is a square modulo an odd prime p, then it is a
square modulo any prime power p’, where ¢ > 0.

Lemma 6.2.3 Let p be an odd prime and t a positive integer. Then a is a square modulo p
if and only if a is a square modulo p'.
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Proof: If a = b? (mod p'), then a = b> (mod p). For the converse, suppose that a is a
square modulo p. By Lemma 6.2.2, a?~"/2 = 1 (mod p). By Exercise 337

P2 [a<p71>/2]1’"‘ = 1 (mod p'). (6.9)

Let U be the units in Z . This group is cyclic of order ¢(p') = (p — 1)p'~' by Lemma6.2.1.
In particular, U has even order as p is odd. Let B be a generator of U. The set of squares
in U is a subgroup R of order ¢(p')/2 generated by 2. This is the unique subgroup of
that order and contains all elements of orders dividing ¢(p')/2. Therefore by (6.9), a € R,
completing the proof. O

Exercise 337 Prove that if p is a prime, x is an integer, and 7 is a positive integer, then
(1+ xp)?" =1+ yp' for some integer y. ¢

We will be interested in the odd primes for which —1, 2, and 3 are squares modulo p.

Lemma 6.2.4 Let p be an odd prime. Then —1 is a square modulo p if and only if p = 1
(mod 4).

Proof: As pisodd, p = £1 (mod 4). Suppose that p = 4r + 1, where r is an integer. Then
(=)P=D2 = (1) = 1; by Lemma 6.2.2, —1 is a square modulo p. Suppose now that
p = 4r — 1, where r is an integer. Then (—1)?~V/2 = (—=1)>~! = —1; by Lemma 6.2.2,
—1 is not a square modulo p. O

Lemma 6.2.5 Let p be an odd prime. Then 2 is a square modulo p if and only if p = +1
(mod 8).

Proof: We prove only the case p = 8r + 1, where r is an integer, and leave the cases
p=8r—1land p =8r +3asexercises. Letb =2-4-6---8 = 2*(4r)!. Then

b=2-4-6---4r-[p—@r—Dllp—@r —3)]---(p— D).

Considering b modulo p, we obtain 2% (4r)! = b = (=1)* (4r)! (mod p). Thus 2(»=1/2 =
2% = (=1)* = 1 (mod p). By Lemma 6.2.2, 2 is a square modulo p. O

Exercise 338 Complete the proof of Lemma 6.2.5 by examining the cases p = 8 — 1 and
p = 8r &£ 3, where r is an integer. ¢

We will need to know information about ord,(2) for later work. Using Lemma 6.2.5, we
obtain the following result.

Lemma 6.2.6 Ler p be an odd prime. The following hold:
(1) If p = —1(mod 8), then ord,(2) is odd.

(i) If p =3 (mod 8), then 2 | ord,(2) but 4 { ord,(2).
(iii) If p = —3 (mod 8), then 4 | ord,(2) but 8 { ord,,(2).

Proof: For (i), let p = 8r — 1, where r is an integer. By Lemmas 6.2.2 and 6.2.5, 2" ~1/2 =
241 =1 (mod p).So ord,(2) is a divisor of 4r — 1, which is odd. Part (i) follows. For (ii),
let p = 8r + 3, where r is an integer. By Lemmas 6.2.2 and 6.2.5, 2(P=1D/2 = 24+ = _|
(mod p). So as ord,(2) is always a divisor of p — 1 = 8r 42 = 2(4r + 1) but not a divisor
of 4r + 1, 2 | ord,(2); since 41 (p — 1), 4 { ord,,(2) yielding part (ii). Finally for (iii),
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let p = 8r — 3, where r is an integer. By Lemmas 6.2.2 and 6.2.5, 2(P=1/2 = 242 =
—1(mod p). So as ord,(2) is always a divisor of p — 1 =8r —4 =4(2r — 1) but not
a divisor of 4r —2 =2(2r — 1), 4 | ord,,(2); since 8 (p — 1), 8 { ord,,(2), showing (iii)
holds. d

Note that Lemma 6.2.6 does not address the case p = 1 (mod 8) because ord,(2) can
have various powers of 2 as a factor depending on p.

Corollary 6.2.7 Let p be an odd prime. The following hold.

(1) If p = —1(mod 8), then ord,(4) = ord,(2) and hence is odd.
(ii) If p = 3 (mod 8), then ord,(4) is odd.

(iil) If p = —3 (mod 8), then 2 | ord,(4) but 4 1 ord ,(4).

Exercise 339 Prove Corollary 6.2.7. ¢

Exercise 340 Compute ord,(2) and ord,(4) when 3 < p < 100 and p is prime. Compare
the results to those implied by Lemma 6.2.6 and Corollary 6.2.7. ¢

In order to discover when 3 is a square modulo p, itis simplest to use quadratic reciprocity.
To do that we define the Legendre symbol

a 1 if a is a nonzero square modulo p
p) | =1 ifaisanonsquare modulo p.

By Lemma 6.2.2 (a/p) = a»~"/? (mod p). The Law of Quadratic Reciprocity, a proof
of which can be found in [195], allows someone to decide if g is a square modulo p by
determining if p is a square modulo ¢ whenever p and g are distinct odd primes.

Theorem 6.2.8 (Law of Quadratic Reciprocity) Suppose p and q are distinct odd
primes. Then

()
p q

Lemma 6.2.9 Let p # 3 be an odd prime. Then 3 is a square modulo p if and only if
p = %1 (mod 12).

Proof: We wish to find (%) As pis an odd prime, p = 12r &= 1 or p = 12r £ 5, where r
is an integer. Suppose that p = 12r + 1. Then p = 1 = 12 (mod 3) and so (§) = 1. Also,

w

p—13-1

(D77 == =1.

By the Law of Quadratic Reciprocity, (%) = 1. The other cases are left as an exercise.
d

Exercise 341 Complete the proof of Lemma 6.2.9 by examining the cases p = 12r — 1
and p = 12r £ 5, where r is an integer. ¢

Exercise 342 Make a table indicating when —1, 2, and 3 are squares modulo p, where p
is a prime with 3 < p < 100. ¢
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Exercise 343 Show that if p is an odd prime, then
2 -l
— ) =(1) 3.
p

Existence of duadic codes

The existence of duadic codes for a given length n depends on the existence of a splitting
of n by Corollary 6.1.6. In this section we determine, for each g, the integers n for which
splittings exist. The following lemma reduces the problem to the case where n is a prime
power; we sketch the proof leaving the details to Exercise 344.

Lemma 6.3.1 Let n = nyn, where gcd(ny, ny) = 1. There is a splitting of n given by 1,
if and only if there are splittings of n1 and ny given by [Lamodn, ANd [Lamodn,, Tespectively.
Furthermore, q is a square modulo n if and only if q is a square modulo ny and a square
modulo n,.

Proof: Since gcd(n;, ny) = 1, it follows from the Chinese Remainder Theorem [195] that
z0 = (z mod n;, z mod n,) defines a ring isomorphism 6 from Z, onto Z,, X Z,,. The
second assertion follows from this observation.

For the first assertion, let Z; = {(z, 0) | z € Z,,} and Z, = {(0, 2) | z € Z,,}. Fori =1
and 2, the projections n; : Z; — Z,, are ring isomorphisms. If C is a g-cyclotomic coset
modulo n and CO N Z; # B, (CO N Z;)m; is a g-cyclotomic coset modulo n;. Let Sy and S,
form a splitting of n given by ;. Then (§:0 N Z;)m; and (5,60 N Z;)r; form a splitting of
n; given by s, where b; = b (mod n;).

Conversely, let S;; and S,; form a splitting of n; given by w;, for i =1 and 2. Then
((S1.1 X Zn,) U ({0} x S12)07 " and ((S2.1 X Zy,) U ({0} x S5,))0~! form a splitting of n
given by u; where b = (by, by)o 1. O

Exercise 344 In this exercise, fill in some of the details of Lemma 6.3.1 by doing the

following (where n| and n, are relatively prime and n = nn,):

(a) Prove that z0 = (z mod n;, z mod n;) defines a ring isomorphism 6 from Z, onto
Ly, X Ln,.

(b) Prove that if C is a g-cyclotomic coset modulo n and C6 N Z; # @, then (CO N Z;)m;
is a g-cyclotomic coset modulo r;.

(c) Prove that if S| and S, form a splitting of n given by u;, then (5,60 N Z;)x; and
(8520 N Z;)m; form a splitting of n; given by u,, where b; = b (mod n;).

(d) LetS;; and S, ; form a splitting of n; given by u,, fori = 1 and 2. Prove that ((S;; x
Zy,) U ({0} x 51,2))9—‘ and ((S2,1 X Z,,) U ({0} x 52,2))9_1 form a splitting of n given
by 1, Where b = (by, by)0~!. ¢

We are now ready to give the criteria for the existence of duadic codes of length n over
F
9

Theorem 6.3.2 Duadic codes of length n over ¥ exist if and only if q is a square modulo n.
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Proof: By Lemma 6.3.1, we may assume that n = p™, where p is an odd prime. We first
show that if a splitting of n = p™ exists, then ¢ is a square modulo n. Let U be the group
of units in Z,. By Lemma 6.2.1 this group is cyclic of order ¢(p™) = (p — 1)p™~!, which
is even as p is odd. Since ¢ is relatively prime to n, g € U. Let R be the subgroup of U
consisting of the squares in U. We only need to show that g € R. If u generates U, then
u? generates R. As U has even order, R has index 2 in U. Since g € U, define Q to be the
subgroup of U generated by ¢g. Notice thatifa € U, then ag € U and hence U is a union of
g-cyclotomic cosets modulo #; in fact, the g-cyclotomic cosets contained in U are precisely
the cosets of Q in U. The number of g-cyclotomic cosets in U is then the index |U : Q| of
Qin U. Let S; and S, form a splitting of n given by u;. Each g-cyclotomic coset of U is
in precisely one S; as U € S; U S, and S; N S, = . Because b and n are relatively prime,
b € U and so U, = U implying that (U N S))up = U N S,. In particular, this says that
U has an even number of g-cyclotomic cosets. Thus |U : Q| iseven;as |U : R| =2 and U
is cyclic, @ € R. Thus g € R as desired.

Now assume that g is a square modulo n. We show how to construct a splitting of n. For
1 <t < m,let U, be the group of units in Z,:. Let R, be the subgroup of U; consisting of
the squares of elements in U, and let Q, be the subgroup of U, generated by g. As in the
previous paragraph, U, is cyclic of even order, and R, has index 2 in U,. As ¢q is a square
modulo p™, then ¢ is a square modulo p’ implying that Q, € R;. Finally, U, is a union of
g-cyclotomic cosets modulo p’ and these are precisely the cosets of Q, in U,. The nonzero
elements of Z, are the set

UJpr v (6.10)

t=

We are now ready to construct the splitting of 2. Since U, is cyclicand O, € R, € U, with
|U; : R;| = 2, there is a unique subgroup K; of U, containing Q; such that | K, : Q;| = 2.
Note that U,, R;, Q,, and K, can be obtained from U,,, R, Q,,, and K,, by reducing the
latter modulo p’. Letb € K,,, \ Q.. Then K,, = Q,, UbQ,,, and hence, by reducing mod-
ulo p', K, = Q, UbQ, for 1 <t < m. Also, b> € Q, modulo p’. Let g(ll), gg), o gff)
be distinct coset representatives of K, in U,. Then the g-cyclotomic cosets modulo p’ in
U, are precisely the cosets gﬁl)Qt, gé’)Q,, e, gff)Q,, bg}')Q,, bgg)Q,, el bgff)Q,. Let
Sie=28"0,Ug0U---UgQ, and S, =bg{" 0, Ubgy’Q, U+ Ubg"Q,. Then
Siipp = Sy and Sy jup = Sy, asb? € Q, modulo p, S;, NS>, =P,and Sy, U S, = U,.
Note that p™~* gy) Q; and p™~! bg;’) Q, are g-cyclotomic cosets modulo p™. Thus by (6.10),
Si=UL, p" 'S, and S, = UL p™" 'S, , form a splitting of n given by 1. O

Exercise 345 Show that 2 is a square modulo 49. Use the technique in the proof to construct
a splitting of 49 over F,. ¢

We can now give necessary and sufficient conditions on the length n for the existence of
binary, ternary, and quaternary duadic codes. Recall from Theorem 6.1.3(iii) that n» must
be odd.

Theorem 6.3.3 Let n = pi' p3* - - - p% where pi, pa, ..., p, are distinct odd primes. The
following assertions hold:
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(1) Duadic codes of length n over 5 exist if and only if p; = 1 (mod 8) for 1 <i <r.
(i) Duadic codes of length n over F5 exist if and only if p; = £1 (mod 12) for 1 <i <r.
(iii) Duadic codes of length n over F4 exist for all (odd) n.

Proof: Duadic codes of length n over IF, exist if and only if g is a square modulo n by
Theorem 6.3.2. By Lemma 6.3.1, ¢ is a square modulo » if and only if g is a square modulo
pi for 1 <i <r.By Lemma 6.2.3, ¢ is a square modulo p;" if and only if g is a square
modulo p;. Part (i) now follows from Lemma 6.2.5 and (ii) from Lemma 6.2.9. Finally, part
(iii) follows from the simple fact that 4 = 22 is always a square modulo 7. O

Exercise 346 Find the integers n, with 3 < n < 200, for which binary and ternary duadic
codes exist. ¢

In the binary case, there are results that count the number of duadic codes of prime
length n = p. By Theorem 6.3.3, p = £1 (mod 8). Let e = (p — 1)/(20rd,(2)). Then it
can be shown [67] that the number of duadic codes of length p depends only on e. Further,
the number of inequivalent duadic codes also depends only on e. If e is odd, the number of
pairs of odd-like (or even-like) binary duadic codes is 2°~'. When e is even, there is a more
complicated bound for this number. For example, if p = 31, thenord,(2) = 5andsoe = 3.
There are four pairs of odd-like (or even-like) duadic codes. One pair is a pair of quadratic
residue codes; the other three pairs consist of six equivalent codes (see Example 6.4.8).
These facts hold for any length p = =£1 (mod 8) for which e = 3, such as p = 223, 433,
439, 457, and 727.

6.4

Orthogonality of duadic codes

The multiplier ;. plays a special role in determining the duals of duadic codes just as it
does for duals of general cyclic codes; see Theorem 4.4.9. We first consider self-orthogonal
codes.

Theorem 6.4.1 Let C be any [n, (n — 1)/2] cyclic code over F,. Then C is self-orthogonal
if and only if C is an even-like duadic code whose splitting is given by ju_.

Proof: Suppose C; = C is self-orthogonal with idempotent generator e;(x). Let C, =
(e2(x)), where e3(x) = e;(x)u_;. Since C; is self-orthogonal and j(x) is not orthogonal to
itself, j(x) ¢ C,. Thus by Lemma 6.1.2(iii), C; is even-like, which implies that j(x) € Cf‘.
By Theorem 4.4.9, j(x) € C = (1 — e;(x)uu_;). As ClL has dimension (n + 1)/2 and
C; C Ci, we have Ci = C; + (j(x)). Since e;(x)j(x) = 0 by Lemma 6.1.2(i), it follows
from Theorem 4.3.7 that ClL has generating idempotent e;(x) + j(x) = 1 — e;(xX)u_; =
1 — ex(x), giving (6.1). Since ex(x) = e;(x)u—_1, ej(x) = ez(x)uj = ep(x)u—; yielding
(6.3). Thus C; and C, are even-like duadic codes with splitting given by ;.

Conversely, let C = C; = (e;(x)) be an even-like duadic code with splitting given by
t_1. Then Cy = (e1(x)u_1) and C; C Dy = (1 — ey (X)pu_y) = ClL by Theorems 6.1.3(vi)
and 4.4.9 and (6.4). a
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By Theorem 6.1.3(iii) and (v), the dimensions of even-like and odd-like duadic codes C;
and D; indicate it is possible (although not necessary) that the dual of C; is either D; or
D,. The next two theorems describe when these two possibilities occur.

Theorem 6.4.2 IfC and C; are a pair of even-like duadic codes over IF,, with Dy and D,
the associated pair of odd-like duadic codes, the following are equivalent:
i Ci=D.

(i) Cy =D,
(iii) Cipu—1 = Ca.
(iv) Cop—1 =Cy.

Proof: Since Ciuu, = Cy, Copty = Cy, D1ty = D5, and Do, = D, for some a (by def-
inition of the even-like duadic codes and Theorem 6.1.3(vii)), (i) is equivalent to (ii)
by Exercise 35. Parts (iii) and (iv) are equivalent as ,u:i = wu_1. If () holds, C; is self-
orthogonal by Theorem 6.1.3(vi), implying that (iii) holds by Theorem 6.4.1. Conversely,
if (iii) holds, letting e;(x) be the generating idempotent for C;, we have e;(x)u_; = ex(x)
by Theorem 4.3.13. By Theorem 4.4.9, Ct=(1—ei(xX)u_1) = (1 —ex(x)) = Dy yielding
@). O

Theorem 6.4.3 If C; and C, are a pair of even-like duadic codes over F,; with D and D,
the associated pair of odd-like duadic codes, the following are equivalent:

i) Ct =D,

(i) Cy =D;.

(iii) Cipu—1 = Cy.

(iv) Cop—y =C.

Proof: Since Ciu, = Cy, Couy = Cy, D1y = D5, and Do, = D, for some a (by def-
inition of the even-like duadic codes and Theorem 6.1.3(vii)), (i) is equivalent to (ii) by
Exercise 35. Let ¢;(x) be the generating idempotent of C;. By Theorem 4.4.9, Cll =D, if
andonly if 1 —ej(x)u—1 =1 —ej(x) if and only if e;(x)u—; = e1(x). So ClL =D, if and
only if C;u—1 = C; by Theorem 4.3.13. Thus (i) and (iii) are equivalent and, analogously,
(i1) and (iv) are equivalent. The theorem now follows. a

Exercise 347 Identify the duadic codes and their duals in Exercises 328, 331, 332, and
335 and in Example 6.1.7. ¢

Results analogous to those in the last three theorems hold with p_; in place of p_; for
codes over [F4 where the orthogonality is with respect to the Hermitian inner product defined
in Section 1.3. These codes are of interest because if a code over F4 has only even weight
codewords, it must be Hermitian self-orthogonal by Theorem 1.4.10. The key to the analogy
is the result of Theorem 4.4.15 that if C is a cyclic code over F4 with generating idempotent
e(x), then C1* has generating idempotent 1 — e(x)u_,. We leave the proofs as an exercise.

Theorem 6.4.4 Let C be any [n, (n — 1)/2] cyclic code over F4. Then C is Hermitian
self-orthogonal if and only if C is an even-like duadic code whose splitting is given by p_5.

Theorem 6.4.5 If C| and C, are a pair of even-like duadic codes over Fy with D and D,
the associated pair of odd-like duadic codes, the following are equivalent:
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(i) Ci"=D.
(i) C3" =D,
(iii) Cipu— = Ca.
@iv) Cop—z =Cy.

Theorem 6.4.6 If C, and C, are a pair of even-like duadic codes over Fy with Dy and D,
the associated pair of odd-like duadic codes, the following are equivalent:

(i) Ci" =D,
(i) Cy" =D.
(iii) Cipu— =Cy.

(iv) Cop—z =Cs.

Exercise 348 Identify the duadic codes over IF4 and both their ordinary duals and Hermitian

duals in Examples 6.1.8 and 6.1.9 and in Exercise 334. ¢
Exercise 349 Prove Theorems 6.4.4, 6.4.5, and 6.4.6. ¢
In the binary case, p_; gives every splitting of duadic codes of prime length p = —1

(mod 8), as the following result shows.

Theorem 6.4.7 If p is a prime with p = —1 (mod 8), then every splitting of p over I, is
given by u_1. Furthermore, every binary even-like duadic code of length p = —1 (mod 8)
is self-orthogonal.

Proof: The second part of the theorem follows from the first part and Theorem 6.4.1. For
the first part, suppose that u, gives a splitting S; and S, for p. As u, interchanges S; and S5,
Wa, and hence a, cannot have odd (multiplicative) order. Suppose that a has order 2w. Then
a” is asolution of x> = 1inZ, = F,,, which has only the solutions 1 and —1. Since a® # 1
inZ,,a* = —1(mod p). If w = 2v, then —1 is the square of a” in Z,,, a contradiction to
Lemma 6.2.4. So w is odd. Since p, swaps S; and S,, applying i, an odd number of times
swaps them as well. Hence (1,)" = v = p—; gives the same splitting as p,. O

We use this result to find all the splittings of 31 over [F, leading to all the binary duadic
codes of length 31.

Example 6.4.8 There are seven 2-cyclotomic cosets modulo 31, namely: Cy = {0}, C; =
{1,2,4,8,16},C5; = {3, 6, 12, 17, 24}, C5s = {5, 9, 10, 18, 20}, C; = {7, 14, 19, 25, 28},
Cy = {11, 13, 21, 22, 26}, C;5 = {15, 23, 27, 29, 30}. By Theorem 6.4.7 all splittings S
and S, can be obtained using ;_; as 31 = —1 (mod 8). Since Cyuu—; = Cjs, one of Cy and
Cjs isin S; and the other is in S,. By renumbering S| and S, if necessary, we may assume
that C; isin S;. Similarly as Csu_; = C7 and Csu_; = Cyy, precisely one of C3 or C7 and
one of Cs and Cy; is in S;. Thus there are four possible splittings and hence four possible
pairs of even-like duadic codes (and four odd-like pairs as well). We give the splittings in
the following table.
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Splitting Sy Sz
1 CiUCs;UC; C3UC1UCs
2 CiUCs;UC; C7;UC1UCs
3 CiUCh1UC; C3UCsUCqs
4 CiuChuC; C;UCsUCs

By Theorems 6.1.10 and 6.1.11, we can use these splittings to determine generating
idempotents directly. The generating idempotents for the even-like duadic codes are e; (x) =
143 .5, x/; for the odd-like duadic codes they are e;(x) = )" g x/. The multiplier 113
sends splitting number 2 to splitting number 3; it also sends splitting number 3 to splitting
number 4. Hence the corresponding generating idempotents are mapped by i3 in the same
way, showing that the six even-like duadic codes (and six odd-like duadic codes) arising
from these splittings are equivalent by Theorem 4.3.13. These turn out to be the punctured
Reed—Muller codes R(2, 5)*; see Section 1.10. All multipliers map splitting number 1 to
itself (although a multiplier may reverse S| and S,). By Theorem 4.3.17, as 31 is a prime, a
duadic code arising from splitting number 1 is not equivalent to any duadic code arising from
splitting number 2, 3, or 4. The duadic codes arising from this first splitting are quadratic
residue codes. See Section 6.6. [ ]

Theorem 6.4.7 shows when all splittings over [F, of an odd prime p are given by p_;.
The following result for splittings of an odd prime p over [F4 are analogous; the proof is in
[266].

Theorem 6.4.9 If p is an odd prime, then every splitting of p over Fy4 is given by:
(i) both pu_y and p_» when p = —1 (mod 8),

(ii) both p_; and 1, when p = 3 (mod 8), and

(iii) both p_p and py when p = —3 (mod 8).

Theorems 6.4.7 and 6.4.9 do not examine the case p = 1 (mod 8). The next result
shows what happens there; see Lemma 6.4.16 and [266]. Part of this result is explained in
Exercise 351.

Theorem 6.4.10 Let p = 1 (mod 8) be a prime. The following hold:

(i) Iford,(2) is odd, then some splittings for p over Fy, but not all, can be given by i_i;
splittings given by p_ are precisely those given by ji_,.

(ii) Iford,(2) is odd, then some splittings for p over F4, but not all, can be given by ji_;
splittings given by _y are precisely those given by i _».

(iil) If 2 | ord,(2) but 4 { ord,(2), then some splittings for p over Fu, but not all, can be
given by p_q; splittings given by _ are precisely those given by ,.

(iv) If 4 | ord,(2), then some splittings for p over 4, but not all, can be given by i_s;
splittings given by (_, are precisely those given by ;.

Example 6.4.11 We look at various primes p = 1 (mod 8) in light of Theorem 6.4.10. If
p =17, ord,(2) = 8 and the theorem indicates that some, but not all, splittings over I are
given by both u_, and p,. If p = 41, ord,(2) = 20 and there is some splitting of 41 over
[F, given by both 15 and 5. If p = 57, ord,,(2) = 18 and there is some splitting of 57 over
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F4 given by both p_; and p,. Finally, if p = 73, ord,(2) = 9 and there is some splitting
of 73 over [, given by both p_; and p_»; there is also some splitting of 73 over F, given
by both p_; and p_». [ |

Exercise 350 Find the splittings alluded to in Example 6.4.11. Also, what are the other
splittings and what multipliers give them? ¢

Exercise 351 This exercise explains part of Theorem 6.4.10. In Section 6.6 we will

discuss quadratic residue codes over IF,, which are merely duadic codes of odd prime

length p with splittings over F, given by S, = Q, and S, =N, where Q, are the

nonzero squares and A, the nonsquares in [F,,. Binary quadratic residue codes exist if

p = £1 (mod 8); quadratic residue codes over Fj4 exist for any odd prime p. Do the

following:

(a) Show that in IF,, the product of two squares or two nonsquares is a square.

(b) Show that in I, the product of a square and a nonsquare is a nonsquare.

(c) Show thatif p = 1(mod 8), then —1, 2, and —2 are all squares in [F,.

(d) Prove that if p = 1 (mod 8), the splitting S; = Q,, and S, = N, over F, cannot be
given by either u_1 or pu_,. ¢

We now consider extending odd-like duadic codes over IF,. Recall that if D is an odd-
like code of length n, the ordinary extension D of D is defined by D = {¢ | ¢ € D} where
€= CCo =Cp- " Cp_iCoo and

Since the odd-like duadic codes are [n, (n + 1)/2] codes by Theorem 6.1.3(v), the extended
codes would be [n + 1, (n + 1)/2] codes. Hence these codes could potentially be self-dual.
If D is an odd-like duadic code, D is obtained from its even-like subcode C by adding
j(x) to a basis of C. But j(x) is merely a multiple of the all-one vector 1, and so if we
want to extend D in such a way that its extension is either self-dual or dual to the other
extended odd-like duadic code, then we must extend 1 in such a way that it is orthogonal
to itself. The ordinary extension will not always yield this. However, the next result shows
that we can modify the method of extension for D; and D, if ;_; gives the splitting and the
equation

l+y’n=0 6.11)

has a solution y in IF,;. Let D be an odd-like duadic code and suppose (6.11) has a solution.
Ifc=coci g € D,1let€ =cypcy - - Cy_1Coo, Where

n—1
Coo = —V § Ci.
i=0

The new extension of D is defined by D= {€| ¢ € D}. Notice that the codes D and D
are monomially equivalent because D = DD, where D is the (n + 1) x (n + 1) diagonal
matrix D = diag(l, 1,...,1, y).
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Theorem 6.4.12 Let Dy and D, be a pair of odd-like duadic codes of length n over F,.
Assume that there is a solution y € T, to (6.11). The following hold:

(1) If n—y gives the splitting for D and D,, then 151 and 132 are self-dual.

(i) If Dipu—y = Dy, then 131 and 732 are duals of each other:

Proof: Let C; and C; be the pair of even-like duadic codes associated to D; and D,. We
have the following two observations:

(a) z(x) is orthogonal to itself.

(b) j(x) is orthogonal to 5,-.

The first holds because as a vector j(x)is (1/n, 1/n,...,1/n, —y) € IFZ“. By the choice
of y, j(x) is orthogonal to itself. The second holds because C; is even-like and the extended
coordinate in Ei is always 0.

Assume that p_ gives the splitting of Dy and D;. Then Cyu_; = C,. By Theorem 6.4.2,
C, = Dll; also C is self-orthogonal by Theorem 6.4.1. As the eitension of C; is trivial, 51
is self-orthogonal. From (a) and (b) the code spanned by 51 and j(x) is self-orthogonal. By
Theorem 6.1.3(v) and (ix), this self-orthogonal code is 51 and so is self-dual. Analogously,
132 is self-dual proving (i).

Now assume that Dypu_; = D;. Then Cyu_; = C;. By Theorem 6.4.3, C, = D and
hence Cz and C | are orthogonal to each other by Theorem 6.1.3(vi). From (a) and (b)
the codes spanned by c 1 and j(x) and by 6’2 and j(x) are orthogonal to each other. By
Theorem 6.1.3(v) and (ix), these codes are 7~)1 and 132 of dimension (n + 1)/2; hence they
are duals of each other. d

Before proceeding, we make a few remarks.

* A generator matrix for 5,- is obtained by taking any generator matrix for C;, adjoining a
column of zeros and adding the row 1, 1,..., 1, — yn representing nj(x).

* In general y satisfying (6.11) exists in I, if and only if n and —1 are both squares or
both nonsquares in IF,.

 If g is a square, then IF, contains y such that (6.11) holds, as we now see. If ¢ = r2s,
where r is a prime, then every polynomial of degree 2 with entries in F, has roots in F,2,
which is a subfield of F,, by Theorem 3.5.3. Since ¥ is a root of the quadratic nx? + 1,
F,» C T, contains y.

. In (6.11), y = 1if n = —1 (mod r) where F, has characteristic r. For such cases, 13 =
D In particular, this is the case if I, has characteristic 2. More particularly, D 23
if the codes are either over IF, or FFy.

* There are values of n and ¢ where duadic codes exist but ¥ does not. For example,
if ¢ = 3, duadic codes exist only if n = 41 (mod 12) by Theorem 6.3.3. Suppose that
n = 1(mod 12).If y € Fs satisfies (6.11), then 1 + y? = 0 in F3, which is not possible.
If n = —1(mod 12) and if y € F3 satisfies (6.11), then 1 — y? = 0 in 3, which has
solution y = £1. Thus if n = —1 (mod 12), we may choose y = 1, and then 73,- is the
ordinary extension 5,;

Example 6.4.13 The 5-cyclotomic cosets modulo 11 are Cy = {0}, C; = {1, 3, 4, 5, 9},
and C, = {2, 6, 7, 8, 10}. There is one splitting S; = C; and S, = C, of 11 over Fs; it is
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given by pu_;. Let ij(x) = x + x> + x* + x° +x° and ir(x) = x> + x® + x7 + x8 + x10
The generating idempotent of £ over Fs is —i;(x) — i»(x). The even-like duadic codes C,
and C, of length 11 over IF's have generating idempotents e;(x) = i1(x) — 2i,(x) and ex(x) =
—2i1(x) + i»(x). The odd-like duadic codes D, and D, have generating 1demp0tents 1 | +
2i1(x) — zz(x) and 1 — i1(x) + 2i2(x). The solutions of (6.11) are y = £2. So D #+ D,,
however D is self-dual by Theorem 6.4.12(i). [ |

Exercise 352 Verify the claims made in Example 6.4.13. ¢

In case there is no solution to (6.11) in FF,, as long as we are willing to rescale the
last coordinate differently for D; and D,, we can obtain dual codes if Dyju_; = D;. It
is left as an exercise to show that if Dyu_; = D, then 2/51 and ﬁzD/ are duals where
D’ = diag(1, 1,...,1, —1/n).

Exercise 353 Let D; and D, be odd-like duadic codes over IF, of length n with D;u_; =
D;. Show that D and D, D’ are dual codes where D' = diag(1, 1,...,1, —1/n). ¢

In a manner similar to Theorem 6.4.12, the following theorem explains the duality of the
extended odd-like duadic codes over 4 under the Hermitian inner product. Recall that in
this case that y = 1 is a solution of (6.11) and D; = D;.

Theorem 6.4.14 Let Dy and D, be a pair of odd-like duadic codes of length n over Fy.
The following hold:

(1) If n—, gives the splitting for D and D,, then 231 and 52 are Hermitian self-dual.

(i) If Dip—y = Dy, then 131 and 52 are Hermitian duals of each other.

Exercise 354 Prove Theorem 6.4.14. ¢

We can characterize the lengths for which there exist self-dual extended cyclic binary
codes. To do that, we need the following two lemmas.

Lemma 6.4.15 For an odd prime p and a positive integer b, —1 is a power of 2 modulo
p? if and only if ord,(2) is even.

Proof: Suppose that ord,(2) is even. If w = ord,»(2), as 2 = 1 (mod p?) implies that
2¥ =1 (mod p), w cannot be odd. So w =2r and (2")?> = 1 (mod p®). Thus 2" # 1
(mod p”)isasolutionof x> = 1 (mod p”). By Exercise 355,2" = —1 (mod p”)and —1isa
power of 2 modulo p”. Conversely, suppose that —1 is a power of 2 modulo p”. Then —1isa
power of 2 modulo p and so ord,(—1) | ord,(2); as ord,(—1) = 2, ord,(2) is even. d

Exercise 355 Let p be an odd prime and b a positive integer. Prove that the only solutions
of x2 = 1 (mod p”) are x = +1 (mod p”). ¢

Lemma 6.4.16 Let p be an odd prime and a be a positive integer. A splitting of p® over F,
given by the multiplier pu_; exists if and only if ord,(2) is odd.

Proof: Let C; be the 2-cyclotomic coset modulo p“ containing i. Suppose that a split-
ting S; and S, of p® over IF, given by w_; exists. Then C; and Cyu_; are not in the
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same S;. Hence —1 ¢ C; and so —1 is not a power of 2. By Lemma 6.4.15, ord,(2) is
odd.

Conversely, suppose ord,(2) is odd. Suppose C;u_; = C; for some i # 0(mod p?).
Then i2/ = —i (mod p®) for some j. Hence 2/ = —1 (mod p?) for some 1 < b < a. But
this contradicts Lemma 6.4.15. Therefore, C;ju_; # C; for i # 0 (mod p“). One splitting
of p“ is given by placing exactly one of C; or C;ju_; in S; and the other in S,. This is
possible as C; and C; u_; are distinct if i % 0 (mod p¢). O

Exercise 356 Find all splittings of p = 89 over F, given by p_;. Find one splitting not
given by _1. ¢

Before continuing, we remark that Theorem 6.4.10(i) is a special case of Lemma 6.4.16.

Theorem 6.4.17 Self-dual extended cyclic binary codes of length n + 1 exist if and only if
n = p{'py’---p¥, where pi, ..., p, are distinct primes such that for each i either:
(i) p;i =—1(mod 8), or

(ii) p; = 1 (mod 8) and ord, (2) is odd.

Proof: We first show that n has a splitting given by p_; if and only if (i) or (ii) hold. By
Lemma 6.3.1, this is equivalent to showing that p;" has a splitting given by p_; if and
only if p; satisfies either (i) or (ii). By Theorem 6.3.3 and Corollary 6.1.6, the only primes
that can occur in any splitting of p{" satisfy p; = 1 (mod 8). If p; = —1 (mod 8), then
ord,, (2) is odd by Lemma 6.2.6. So by Lemma 6.4.16, n has a splitting over [F, given by
w—1 if and only if (i) or (ii) hold.

Suppose that n has a splitting over F, given by p_;. Let D and D, be odd-like duadic
codes given by this splitting. As Y~D,~ = 73,~ in the binary case, ﬁ are self-dual by Theo-
rem 6.4.12. Conversely, suppose that there is a self-dual extended cyclic binary code D of
lengthn + 1, where Dis an [n, (n + 1)/2] cyclic code. Let C be the [, (n — 1)/2] even-like
subcode of D; as Dis self-dual, C is self-orthogonal. Then w_; gives a splitting of n over
F, by Theorem 6.4.1. O

Exercise 357 Find all lengths n with 2 < n < 200 where there exist self-dual extended
cyclic binary codes of length n + 1. ¢

6.5

Weights in duadic codes

In this section, we present two results about the possible codeword weights in duadic codes.
The first deals with weights of codewords in binary duadic codes when the splitting is
given by ;. The second deals with the minimum weight codewords in duadic codes over
arbitrary fields. We conclude the section with data about binary duadic codes of lengths up
to 241, including minimum weights of these codes.

Theorem 6.5.1 Let D, and D, be odd-like binary duadic codes of length n with splitting

given by pi_y. Then fori = 1 and 2,

(i) the weight of every even weight codeword of D; is 0 mod 4, and the weight of every
odd weight codeword of D; is n mod 4, and moreover
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(i1) ﬁi is self-dual doubly-even if n = —1 (mod 8) and 13,- is self-dual singly-even ifn = 1
(mod 8).

Proof: Let(C; and C, be the associated even-like duadic codes. By Theorem 6.4.2 and Theo-
rem 6.1.3(vi), C; is self-orthogonal and is the even-like subcode of D;. By Theorem 4.4.18,C;
is doubly-even and so every even weight codeword of D; has weight congruent to 0 mod 4.
By Theorem 6.1.3(ix), the odd weight codewords of D; are precisely j(x) + c(x), where
c(x) € C;. As j(x) is the all-1 codeword, wt(j(x) + c(x)) = n — wt(c(x)) = n (mod 4).
Thus (i) holds.

By Theorem 6.3.3,n = £1 (mod 8). As p_; gives the splitting, Theorem 6.4.12(i) shows
that ﬁ = 7~)i is self-dual. By part (i), the codewords of 23,- that are extensions of even weight
codewords have weights congruent to 0 mod 4; those that are extensions of odd weight
codewords have weights congruent to (n + 1) mod 4. Part (ii) now follows. O

In the next theorem, we present a lower bound on the minimum odd-like weight in odd-
like duadic codes, called the Square Root Bound. If this bound is actually met and the
splitting is given by ©_;, an amazing combinatorial structure arises involving the supports
of the minimum weight codewords. This is a precursor of the material in Chapter 8, where
we will investigate other situations for which the set of supports of codewords of a fixed
weight form interesting combinatorial structures. Recall that in Chapter 3, we defined the
support of a vector v to be the set of coordinates where v is nonzero. In our next result, the
combinatorial structure that arises is called a projective plane. A projective plane consists
of a set P of points together with a set £ of lines for which the following conditions are
satisfied. A line ¢ € L is a subset of points. For any two distinct points, there is exactly one
line containing these two points (that is, two distinct points determine a unique line that
passes though these two points). Any two distinct lines have exactly one point in common.
Finally, to prevent degeneracy, we must also have at least four points no three of which
are on the same line. From this definition, it can be shown (see Theorem 8.6.2) that if P
is finite, then every line has the same number p + 1 of points, every point lies on p + 1
lines, and there are > +  + 1 points and > + 1 + 1 lines. The number  is called the
order of the projective plane. Any permutation of the points which maps lines to lines is an
automorphism of the projective plane. The projective plane is cyclic provided the plane has
an automorphism that is a (1> 4+ u + 1)-cycle. The projective plane we will obtain arises
from an odd-like duadic code of length n as follows. The set of points in the projective
plane is the set of coordinates of the code. The set of lines in the plane is the set of supports
of all the codewords of minimum weight. Thus as our code is cyclic, the resulting supports
will form a projective plane that is also cyclic. Exercise 358 illustrates this result.

Exercise 358 In Example 6.1.4, we constructed the (only) pair of odd-like binary duadic
codes of length 7. Pick one of them and write down the supports of the weight 3 codewords.
Show that these supports form a cyclic projective plane of order 2. ¢

Theorem 6.5.2 (Square Root Bound) Let D and D; be a pair of odd-like duadic codes
of length n over V. Let d, be their (common) minimum odd-like weight. Then the following
hold:
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(i) d*>n.
(ii) If the splitting defining the duadic codes is given by u_1, then d* —d, + 1 > n.
(iii) Suppose dg —d, + 1 =n, where d, > 2, and assume the splitting is given by p_.
Then fori = 1 and 2:
(a) d, is the minimum weight of D;,
(b) the supports of the minimum weight codewords of D; form a cyclic projective plane
of orderd, — 1,
(c) the minimum weight codewords of D; are multiples of binary vectors, and
(d) there are exactly n(q — 1) minimum weight codewords in D;.

Proof: Suppose the splitting defining the duadic codes is given by u,. Let c(x) € D be an
odd-like vector of weight d,. Then ¢'(x) = c(x)u, € D, is also odd-like and c(x)c'(x) €
D, ND, as Dy and D, are ideals in R,,. But D N D, = (f(x)) by Theorem 6.1.3(viii). By
Lemma 6.1.2(ii), c(x)c’(x) is odd-like, and in particular nonzero. Therefore c(x)c’(x) is a
nonzero multiple of j(x), and so wt(c(x)c’(x)) = n. The number of terms in the product
c(x)c’(x) is at most dg, implying (i). If u, = u_1, then the number of terms in c(x)c’(x)
is at most df —d, + 1 because, if c(x) = Z'};(l) cjxf, the coefficient of x° in c(x)¢'(x) is
> j c?, where the sum is over all subscripts with c¢; # 0. This produces (ii).

We prove (iii) for i = 1. Suppose the splitting is given by 4_; andn = d? — d, + 1. Let
c(x)=co+c1x + -+ cp_1x"! € D be an odd-like vector of weight d,,, and let ¢’(x) =
c(x)p—1. As in the proof of part (i), c(x)c’(x) € Dy N D, = (j(x)), implying c(x)c'(x) =
8j(x) for some § # 0. Let Ciy» .- Ci,, be the nonzero coefficients of c(x). Let M be the
d, x n matrix whose jth row corresponds to cifx_if c(x) obtained by multiplying c(x) by the
jth nonzero term of ¢/(x) = c(x~"). Adding the rows of M gives a vector corresponding
to c(x)c’(x) = 8j(x). Then M has d? nonzero entries. We label the columns of M by
x% x x2, ..., x"~1. Column x° of M has d, nonzero entries. This leaves d> — d, = n — 1
nonzero entries for the remaining n — 1 columns. Since the sum of the entries in the column
labeled x is the coefficient of x’ in 87(x), which is nonzero, each of the last n — 1 columns
contains exactly one nonzero entry. Thus the supports of any two rows of M overlap in
only the x° coordinate.

Suppose m(x) = my +mx + --- +m,_;x"~! € D; is a nonzero even-like vector of
weight w. We show that w > d, 4 1. By shifting m(x), we may assume that m( # 0. The
supports of m(x) and each row of M overlap in coordinate x°. If C; and C, are the even-like
duadic codes corresponding to D; and D,, then C; is self-orthogonal and ClL =D, by
Theorem 6.4.2. As m(x) € C; by Theorem 6.1.3(vi) and Ct =Dy, m(x) is orthogonal to
every row of M. Therefore the support of m(x) and the support of each row of M overlap
in at least one more coordinate. As columns x!,..., x"~! of M each have exactly one
nonzero entry, wt(m(x)) = w > d, + 1. This proves (iii)(a) and shows that the codewords
in D; of weight d, must be odd-like.

Let P = {x° x!,..., x"~!} be called points; let £, which we will call lines, be the distinct
supports of all codewords in D, of weight d,,, with supports considered as subsets of P.
Let £, and ¢,, be distinct lines associated with c(x), m(x) € Dy, respectively. As c¢(x) and
m(x) have weight d,, they are odd-like. Hence by Theorem 6.1.3(ix), c(x) = oef(x) + a(x)
and m(x) = ﬂf(x) + b(x), where a(x), b(x) € C; and &, B are nonzero elements of IF,,. As
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Cll = D, the inner product of ¢(x) and m(x) is a nonzero multiple of the inner product of
j(x) with itself, which is nonzero. Thus any two lines of £ intersect in at least one point.
The size of the intersection £, N £,, is not changed if both £, and ¢, are shifted by the
same amount. Hence by shifting c(x) and m(x) by x’ for some i, we may assume x° € £,
and x° ¢ £, as £. # £,,. We construct the d, x n matrix M from c(x) as above. If £ is
the support of any row of M, then the size of £ N £, is at least one, since we just showed
that lines of £ intersect in at least one point. Recall that each column of M except the
first has exactly one nonzero entry. As ¢, intersects each of the rows of M in at least one
coordinate and that cannot be the first coordinate, the size of £ N £,, must be exactly one
because wt(m(x)) = d, and M has d, rows. One of the rows of M has support £., implying
that £, N £,, has size one for all distinct lines. In particular, two points determine at most
one line and every pair of lines intersects in exactly one point. To complete (iii)(b), we only
need to show that two points determine at least one line. The set £ is invariant under cyclic
shifts as D; is cyclic, and so we only need to show that x% and x’, for i > 0, determine at
least one line. But that is clear, as all lines corresponding to rows of M have a nonzero
entry in coordinate x°, and some row has a nonzero entry in coordinate x'. It follows that
L is a cyclic projective plane of order d, — 1 giving (iii)(b).

Let c(x) =co+ c1x + -+ ¢y 1 X" € D; have weight d,. Defining M as above, if
r > s and c,, ¢, are nonzero, the unique nonzero entry of column x"~* of M is ¢,c,. The
rows of M sum to a vector corresponding to c(x)e(x™h = 57(x), where § # 0. Thus each
column of M sums to (1/n)8. Soif i < j < k and ¢;, c¢j, ¢ are nonzero (three such values
exist as d, > 2), cic; = cic;y = cjc = (1/n)8 implying that ¢; = ¢; = c. Hence (iii)(c)
holds. There are

()/(3)-

lines in £; since every minimum weight codeword is a multiple of the binary vector corre-
sponding to a line, (iii)(d) follows. d

In part (iii) of the previous theorem, the restriction that d, > 2 is not significant because
ifd, <2andn :df —d,+1,thenn < 3.

Exercise 359 In this exercise, you will construct certain duadic codes over 3 of length
13. The 3-cylotomic cosets modulo 13 are:

Co=1{0}, C, ={1,3,9), C,=12,5,6}, Cy ={4, 10, 12}, C; = {7, 8, 11}.

Letc;(x) = ), x/.

(a) Show that ¢;(x)?* = ca(x) — ca(x). Then use 5 to compute c2(x)?, c4(x)?, and c7(x)?.

(b) Show that c¢;(x)ca(x) = c1(x) + c2(x) + c7(x) and c¢j(x)ca(x) = c2(x) + c7(x). Then
use 1y to compute ¢;(x)c;(x) fori < jandi, j € {1, 2, 4, 7}.

(c) Construct generating idempotents for the two pairs of even-like duadic codes of length
13 over I3 whose splitting is given by p_;. Hint: The generating idempotents each have
weight 9. If e(x) is such an idempotent, e(x) + e(x)u_; = 1 — f(x).

(d) Construct the generating idempotents for the two pairs of odd-like duadic codes of
length 13 over I3 whose splitting is given by u_.
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Table 6.1 Binary duadic codes of lengthn < 119

Number

n Idempotent d d, a of codes

7 1* 3 3 —11 2
17 o, 1* 5 5 3x 2
23 1* 7 7 —1% 2
31 1,5, 7% 7 7 —11 2
31 1,3,5 7 7 —11 6
41 o, 1* 9 9 3x 2
47 1* 11 11 —11 2
49 0,1,7 4 9 -1t 4
71 1* 11 11 —11 2
73 0,1,3,5,11 9 9 —1f 8
73 0,1,3,5,13 9 9 —1f 8
73 0,1,5,9,17 12 13 3x 4
73 0,1, 3,09, 25" 13 13 5 2
79 1* 15 15 —11 2
89 0,1,3,5,13 12 17 —1f 8
89 0,1,3,5,19 12 17 —1f 8
89 0,1,3,11,33 15 15 S5 4
89 0,1,5,9,11* 17 17 3x 2
97 0, 1* 15 15 5 2
103 1* 19 19 —11 2
113 0,1, 9% 15 15 3x 2
113 0,1,3 18 19 9 4
119 0,1,13,17,21 4 15 3 4
119 0,1,7,11,51 6 15 3 4
119 0,1,7,13,17 8 15 3 4
119 0,1,7,11,17 12 15 3 4

(e) Show that 1 + ¢;(x) fori € {1, 2, 4, 7} are each in some code in part (d). Hint: Do this
for i = 1 and then use u,.
(f) Write down all 13 cyclic shifts of 1 + c;(x). What is the resulting structure? ¢

Table 6.1 gives information about the odd-like binary duadic codes D of lengthn < 119.
The splittings given in this table are obtained in a manner similar to that of Example 6.4.8.
The idempotent of D is of the form ) 1 Zieq x'. The column “Idempotent” gives the
index set 7 for each equivalence class of odd-like duadic codes; a * in this column means
that the code is a quadratic residue code. The columns “d” and “d,” are the minimum
weight and minimum odd weight, respectively. The column “a” indicates the multiplier i,
giving the splitting. A X in column “a” indicates that the two extended odd-like duadic
codes are duals of each other (i.e. u_; fixes each code by Theorem 6.4.12). If the splitting is
given by w_1, then by Theorem 6.5.1, the extended code is self-dual doubly-evenifn = —1
(mod 8) and self-dual singly-even if n = 1 (mod 8). We denote the codes whose extensions
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are self-dual singly-even by t and the codes whose extensions are self-dual doubly-even
by I in the column “a”. Finally, the column “Number of codes” is the number of either
even-like or odd-like duadic codes in an equivalence class of duadic codes constructed from
the given splitting. (For example, a 6 in the “Number of codes” column means that there
are six equivalent even-like codes and six equivalent odd-like codes in the class of codes
represented by the given splitting.) Theorem 4.3.17 shows that equivalence is determined
by multipliers except in the case n = 49; however, in that case using multipliers is enough
to show that there is only one class. The table comes from [277]. (The values of d, and d
for the [113, 57, 18] code in the table were computed probabilistically in [277] and exactly
in [315]. This code has higher minimum weight than the quadratic residue code of the same
length.) The minimum weight codewords in the [7, 4, 3] and [73, 37, 9] codes support
projective planes of orders 2 and 8, respectively; see Exercise 358. There are 16 duadic
codes of length 73 containing projective planes of order 8; while the codes fall into two
equivalence classes of eight codes each, the projective planes are all equivalent. The codes
of length 31, which are not quadratic residue codes, are punctured Reed—Muller codes; see
Example 6.4.8.

Information about the binary duadic odd-like codes of lengths 127 < n < 241 has been
computed in [277]. We summarize some of this information in Table 6.2. In this table we
list in the column labeled “d” the minimum weights that occur. The minimum weights re-
ported here were computed probabilistically. Some of these were computed exactly in [315];
wherever exact minimum weights were found, they agreed with those computed in [277].
See [189, 277]. There may be several codes at each length. For example, if n = 217, there
are 1024 duadic codes that fall into 88 equivalence classes by Theorem 4.3.17. Further infor-
mation on the idempotents and splittings can be found in [277]. In the column “Comments”,
we indicate if the extended codes are self-dual singly-even by t or self-dual doubly-even
by 1, or if the extended codes are duals of each other by x. By examining Tables 6.1 and
6.2, the Square Root Bound is seen to be very useful for duadic codes of relatively small
length but becomes weaker as the length gets longer.

Table 6.3, taken from [266], with certain values supplied by Philippe Gaborit, gives in-
formation about the odd-like duadic codes over F4 of odd lengths 3 through 41. No prime
lengths p = —1 (mod 8) are listed as these duadic codes have the same generating idem-
potents as those given in Table 6.1; because these codes have a binary generator matrix,
their minimum weight is the same as the minimum weight of the corresponding binary
code by Theorem 3.8.8. For the same reasons we do not list those codes of prime length
p = 1 (mod 8) which have binary idempotents (also described in Table 6.1). The codes of
length p = —1 (mod 8) have extensions that are self-dual under both the ordinary and the
Hermitian inner products; see Theorems 6.4.9 and 6.4.12 and Exercise 360. In Table 6.3,
the column labeled “n” gives the length, “d” the minimum weight, and “@” the minimum
weight of the extended code. Each row of the table represents a family of equivalent odd-
like duadic codes that are permutation equivalent. The column “Number of codes” is the
number of odd-like (or even-like) duadic codes in the equivalence class. In the “Com-
ments” column, the symbol # means that the splitting is given by p_; and so the extended
codes are self-dual with respect to the ordinary inner product. The symbol O means that
the splitting is given by p_, and so the extended codes are self-dual with respect to the
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Table 6.2 Binary duadic codes of length 119 < n < 241

n d Comments
127 15 I includes punctured Reed—Muller codes
127 16 I
127 19 I includes quadratic residue codes
137 21 X quadratic residue codes only
151 19 1 includes quadratic residue codes
151 23 I
161 4 1
161 8 T
161 16 T
167 23 1 quadratic residue codes only
191 27 I quadratic residue codes only
193 27 X quadratic residue codes only
199 31 I quadratic residue codes only
217 4 T
217 8 T
217 12 T
217 16 T
217 20 i
217 24 T
223 31 I includes quadratic residue codes
233 25 X quadratic residue codes only
233 29 T
233 32 X
239 31 1 quadratic residue codes only
241 25 X
241 30 X
241 31 X quadratic residue codes only

Hermitian inner product; see Theorem 6.4.14. At length 21, one of the splittings given by
n—1 yields odd-like duadic codes whose weight 5 codewords support a projective plane of
order 4.

Exercise 360 Prove thatif C is an [, n/2] code over F4 with a generator matrix consisting
of binary vectors, which is self-dual under the ordinary inner product, then C is also self-dual
under the Hermitian inner product. ¢

It has been a long-standing open problem to find a better bound than the Square Root
Bound, since this seems to be a very weak bound. Additionally, it is not known whether
the family of duadic codes over IF, is asymptotically good or bad. (See Section 5.1 for the
definition of asymptotically good.) Also there is no efficient decoding scheme known for
duadic codes. Finding such a scheme would enhance their usefulness greatly. We pose these
questions as research problems.
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Table 6.3 Duadic codes over Fy of length n < 41
(excluding those with binary generating idempotents)

Q)

Number
of codes

Comments
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Research Problem 6.5.3 Improve the Square Root Bound for either the entire family of

duadic codes or the subfamily of quadratic residue codes.

Research Problem 6.5.4 Decide whether or not the family of duadic codes is asymptoti-
cally good or bad.

Research Problem 6.5.5 Find an efficient decoding scheme for either the entire family of

duadic codes or the subfamily of quadratic residue codes.
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6.6

Quadratic residue codes

In this section we study more closely the family of quadratic residue codes, which, as we
have seen, are special cases of duadic codes. These codes, or extensions of them, include
the Golay codes and the hexacode. Quadratic residue codes are duadic codes over F, of
odd prime length n = p; by Theorem 6.3.2, ¢ must be a square modulo n. Throughout this
section, we will let n = p be an odd prime not dividing g; we will assume that g is a prime
power that is a square modulo p. Let Q,, denote the set of nonzero squares modulo p, and
let V', be the set of nonsquares modulo p. The sets Q, and N, are called the nonzero
quadratic residues and the quadratic nonresidues modulo p, respectively.
We begin with the following elementary lemma.

Lemma 6.6.1 Let p be an odd prime. The following hold:
(ii) Modulo p, we have Q,a = Q,, N ,a=N,, Q,b =N, and N ,b = Q, when a €
Q,andb e N,

Proof: The nonzero elements of the field I, form a cyclic group ]F; of evenorder p — 1 with
generator or. @, is the set of even order elements, that is, Q, = @ 0<i< (p—1)/2};
this set forms a subgroup of index 2 in ]F’;. Furthermore V), is the coset Q,«. The results
now follow easily. O

This lemma implies that the product of two residues or two nonresidues is a residue, while
the product of a residue and a nonresidue is a nonresidue; these are facts we use throughout
this section (see also Exercise 351). As a consequence of this lemma and Exercise 361, the
pair of sets Q,, and V, is a splitting of p given by the multiplier ;, for any b € N p,. This
splitting determines the defining sets for a pair of even-like duadic codes and a pair of
odd-like duadic codes, called the quadratic residue codes or OR codes, of length p over F,.
The odd-like QR codes have defining sets Q,, and /', and dimension (p + 1)/2, while the
even-like QR codes have defining sets Q, U {0} and AV}, U {0} and dimension (p — 1)/2.
This discussion proves the following theorem.

Theorem 6.6.2 Quadratic residue codes of odd prime length p exist over I, if and only if
q € Q.

Exercise 361 Prove that if p is an odd prime, Q,, and \V, are each unions of g-cyclotomic
cosets if and only if g € Q. ¢

In the next two subsections, we will present the generating idempotents for the QR codes
over fields of characteristic 2 and 3 as described in [274]. The following two theorems will
assist us with this classification. The first theorem provides, among other things, a form that
an idempotent must have if it is the generating idempotent for a quadratic residue code. In
that theorem, we have to distinguish between QR codes and trivial codes. The trivial codes
of length p over I, are: 0, IFg , the even-like subcode £, of Ffj’ , and the code (1) generated by
the all-one codeword. The second theorem will give the generating idempotents of the four
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QR codes from one of the even-like generators and describe how the generating idempotent
of a QR code over some field is related to the generating idempotent of a QR code over an
extension field.

Theorem 6.6.3 Let C be a cyclic code of odd prime length p over F,, where q is a square

modulo p. Let e(x) be the generating idempotent of C. The following hold.

(i) C is a quadratic residue code or one of the trivial codes if and only if e(x). = e(x)
forallc e Q,.

(ii) IfC is a quadratic residue code with generating idempotent e(x), then

e(x) =ap+ a in+a22xi,

i€Q, ieN,

for some ay, ay, and ay in IF,,.
(iii) If c € Q, and C is a quadratic residue code, then .. € PAut(C).

Proof: The trivial codes 0, IFg, &,, and (1) have defining sets {0} U Q, UN,,, ¥, {0},
and Q, UN,, respectively. Let T be the defining set of C. By Theorem 4.3.13 and
Corollary 4.4.5, the code Cp, is cyclic with generating idempotent e(x)u,. and defining
set ¢~'T mod p. So e(x)u. = e(x) if and only if ¢cT = T (mod p). Using Lemma 6.6.1,
e(x)pe = e(x) forall c € Q, if and only if 7 is a union of some of {0}, Q,,, or .. So part
(i) follows. Part (ii) follows from (i) and Lemma 6.6.1 as e(x“) = e(x) for all c € Q,,. Part
(iii) also follows from part (i) because C and C i have the same defining set for c € @, and
hence are equal, implying that u. € PAut(C). O

Theorem 6.6.4 Let C be an even-like quadratic residue code of prime length p over I,

with idempotent e(x). The following hold:

(i)  The four quadratic residue codes over I, or any extension field of F, have generating
idempotents e(x), e(x)/4p, e(x) + 7(x), and e(x)up + 7(x)f0r any b € ./\f,,.

(i) e(x)+e(x)up =1— j(x)forb e N,.

(iii) The four quadratic residue codes over ¥, have the same minimum weight and the same
minimum weight codewords, up to scalar multiplication, as they do over an extension
field of F,.

Proof: By (6.3) and Theorem 6.1.3, the generating idempotents for the four QR codes
over [F, are as claimed in (i). Because these four idempotents remain idempotents over
any extension field of IF, and are associated with the same splitting of p into residues and
nonresidues, they remain generating idempotents of QR codes over any extension field of
F,, completing (i). Part (ii) follows from (6.1), while (iii) follows from Theorem 3.8.8.

a

Part (i) of this theorem was already illustrated in Example 6.1.9.

QR codes over fields of characteristic 2

In this subsection, we will find the generating idempotents of all the QR codes over any
field of characteristic 2. We will see that we only have to look at the generating idempotents
of QR codes over IF, and Fy.
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Theorem 6.6.5 Let p be an odd prime. The following hold:
(i) Binary quadratic residue codes of length p exist if and only if p = £1 (mod 8).
(i) The even-like binary quadratic residue codes have generating idempotents

s+ ij and &+ ij,
JjeQ, JeN,
where § = 1if p = —1(mod 8) and 5§ = 0if p =1 (mod 8).
(iii) The odd-like binary quadratic residue codes have generating idempotents

€+ ij and e—i—ij,

j€Qp JEN,
where e =0if p=—1(mod 8) ande = 1if p =1 (mod 8).

Proof: Binary QR codes of length p exist if and only if 2 € @, by Theorem 6.6.2, which
is equivalent to p = =£1 (mod 8) by Lemma 6.2.5, giving (i). Let e(x) be a generating
idempotent of one of the QR codes. By Theorem 6.6.3,

e(x) = x,

ieS

where S is a union of some of {0}, Q,, and ./\/,,. As the cases S = {0}, Q, U./\/,,, and
{oyu g, U./\/,, yield trivial codes by Exercise 362, for QR codes, S equals {0} U Q,,
{0} UNp, Qp, or N ,. These yield the idempotents in (ii) and (iii); one only needs to check
that their weights are even or odd as required. O

Exercise 362 Prove thatif C is a binary cyclic code of length p with generating idempotent
e(x) =Y ;.gx" where S = {0}, Q, UN,, or {0} U Q, UN,, then C is the code F}, the
even subcode &, of F}, or the subcode generated by the all-one vector. ¢

Because 4 = 27 is obviously a square modulo any odd prime p, by Theorem 6.6.2, QR
codes over [, exist for any odd prime length. The idempotents for the QR codes over Fy
of length p = £1 (mod 8) are the same as the binary idempotents given in Theorem 6.6.5
by Theorem 6.6.4. We now find the generating idempotents for the QR codes over 4y of
length p where p = £3 (mod 8). (Recall that Fy = {0, 1, w, w}, wherew = 1 + w = %)

Theorem 6.6.6 Let p be an odd prime. The following hold:

(i) If p = £1 (mod 8), the generating idempotents of the quadratic residue codes over Fy
are the same as those over I, given in Theorem 6.6.5.

(i) The even-like quadratic residue codes over Fy have generating idempotents

8+waj+Eij and 8+62x'7+w2x-j,
j€Q, jeN, j€9, jeN,

where § =0 if p = —3 (mod 8) and § = 1 if p = 3 (mod 8).
(iii) The odd-like quadratic residue codes over F4 have generating idempotents

6+w2xj+52xf and 6+52xj+w2xj,
Jj€Qp JjEN, i€y JeN,

where ¢ = 1 if p = —3 (mod 8) and € = 0 if p = 3 (mod 8).
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Proof: Part (i) follows from Theorem 6.6.4. Let e(x) be a generating idempotent for an even-
like QR code C; over Fy with p = £3 (mod 8). By Theorem 6.6.3, e(x) = ag + a; Q(x) +
a; N(x), where Q(x) = ZjeQ,, x/and N(x) = Zje/v,, x/. By Lemma 6.2.5,2 € \,. This
implies that

0(x)* = Q(x*) = N(x) and N(x)*=Nx? = Q(x)

by Lemma 6.6.1. Therefore as e(x)’ =al + a?Q(x)* + a3N(x)* = a3 + alN(x) +
a%Q(x) =e(x), ap € {0, 1} and a; = a%. The other even-like QR code C, paired with
C, has generating idempotent e(x)u, by Theorem 6.6.4 as 2 € N ,. Again by Lemma 6.2.5,

Q)pr = Q(x*) = N(x) and Nz = N(x*) = Q(x)
as 2 € N ,,. Therefore e(x)u, = ap + ale(x) + a; N(x). By Theorem 6.6.4(ii)
e(x)+e(X)r =x + x>+ -+ xP71,

implying thata; + ai = 1. The only possibility is a; € {w, ®}. Notice that, for either choice
ofa;,a; Q(x) + a,zN(x) is odd-like if p = 3 (mod 8) and even-like if p = —3 (mod 8), as
Q(x) and N(x) each have (p — 1)/2 terms. Therefore parts (ii) and (iii) follow. d

Example 6.6.7 We consider the binary QR codes of length 23. In that case,
Ox=1{1,2,3,4,6,8,9, 12, 13, 16, 18} and

Ny =1{5,7,10,11, 14, 15, 17, 19, 20, 21, 22}.

The generating idempotents of the odd-like QR codes are

Z x/ and Z x/,

J€Qn3 JEND
and the generating idempotents of the even-like QR codes are
I+ Y x/ and 14 ) x/.

Jj€Qs JEN;

Note that the 2-cyclotomic cosets modulo 23 are {0}, O3, and N »3 implying that these are
in fact the only binary duadic codes of length 23. The odd-like codes are the [23, 12, 7]
binary Golay code. [ ]

Example 6.6.8 Now consider the QR codes of length 5 over [F4; note that
Qs=1{1,4} and N5={2,3}.

The generating idempotents of the odd-like QR codes are

1+ wkx + x4) + 5()62 + x3) and 1+ o(x + x4) + w(x2 + x3),

and the generating idempotents of the even-like QR codes are

wlx + x4) + 5()(2 + x3) and ow(x + x4) + a)(x2 + x3).

The 2-cyclotomic cosets modulo 5 are {0}, Qs, and N's showing that the QR codes are the
only duadic codes of length 5 over IF4. The odd-like codes are equivalent to the punctured
hexacode; see Exercise 363. See also Example 6.1.8. [ ]
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Exercise 363 Show that the odd-like QR codes of length 5 over 4 given in Example 6.6.8
are equivalent to the punctured hexacode, using the generator matrix of the hexacode found
in Example 1.3.4. ¢

The idempotents that arise in Theorems 6.6.5 and 6.6.6 are the generating idempotents
for QR codes over any field of characteristic 2 as the next result shows.

Theorem 6.6.9 Let p be an odd prime. The following hold:

(i) Quadratic residue codes of length p over Fy , where t is odd, exist if and only if p = +1
(mod 8), and the generating idempotents are those given in Theorem 6.6.5.

(i) Quadratic residue codes of length p over o, where t is even, exist for all p, and the
generating idempotents are those given in Theorems 6.6.5 and 6.6.6.

Proof: By Theorem 6.6.4, the result follows as long as we show that no quadratic residue
codes exist when 7 is odd and p = #£3 (mod 8). By Theorem 6.6.5, these codes do not exist
if t = 1. If QR codes exist with ¢ = 25 + 1 for some integer s > 1, then 2’ is a square
modulo p by Theorem 6.6.2. If 2 is a square modulo p, then 2 is also a square modulo p
as 2! =2 (2)?, contradicting Lemma 6.2.5. a

Exercise 364 Give the generating idempotents for all quadratic residue codes of prime
length p < 29 over Fy . Distinguish between the idempotents that generate even-like codes
and those that generate odd-like codes. Also distinguish between those that arise when ¢ is
even and when 7 is odd. ¢

Exercise 365 Let D, and D, be odd-like quadratic residue codes of prime length p over

[, with even-like subcodes C; and C,. Prove the following:

(a) If p=—1(mod 8), then C; and C, are self-orthogonal under the ordinary inner
product.

(b) If p = 1 (mod 8), then C;- = D, and C5 = D;.

(¢) If p =3 (mod 8) and ¢ is even, then C; and C, are self-orthogonal under the ordinary
inner product.

(d) If p = —3 (mod 8) and ¢ is even, then C’lL =D, and C2L =D.

(e) If t =2 and either p = —3 (mod 8) or p = —1 (mod 8), then C,; and C, are self-
orthogonal under the Hermitian inner product.

(f) If =2 and either p = 1(mod 8) or p =3 (mod 8), then C;* =D, and C," =
Dl. ¢

QR codes over fields of characteristic 3

Analogous results hold for fields of characteristic 3. As in the last section, we let Q(x) =
Yjeo, x/ and N(x) = Yjen, x/. We assume our QR codes have length p an odd prime
that cannot equal 3. We first examine quadratic residue codes over [3.

Theorem 6.6.10 Let p > 3 be prime. The following hold:
(i) Quadratic residue codes over 3 of length p exist if and only if p = £1 (mod 12).
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(i) The even-like quadratic residue codes over F3 have generating idempotents

—ij and —ij,

JjEQp JEN,

if p=1(mod 12), and

1+ij and l—i—ij,
jegp je-/\/p
if p=—1(mod 12).

(iii) The odd-like quadratic residue codes over F3 have generating idempotents

1+ ij and 1+ Zx-’,

Jj€Qp JEN,

if p=1(mod 12), and

—ij and —ij,

j€Qp JEN,
if p=—1(mod 12).

Proof: Part (i) follows from Theorem 6.6.2 and Lemma 6.2.9. Let p = £1 (mod 12). If
e(x) is a generating idempotent for an even-like QR code C; over F3, then by Theorem 6.6.3,
e(x) =ag+a10(x) + a)N(x), where a; € F5 for 0 < i < 2. The other even-like QR code
C, paired with C; has generating idempotent e(x)u,, where b € N, by Theorem 6.6.4.
Lemma 6.6.1 implies that

0y = Q(x") = N(x) and Nx)up = N(x*) = Q(x).

Therefore e(x)up, = ag + a, Q(x) + a; N(x).
We first consider the case p = 1 (mod 12). By Theorem 6.6.4(ii),

2_...__xp71

9

e(x)+e(xX)up = —x —x

implying that 2ap = O and a; + a; = —1. Thusayp = O and eithera; = ay = l or {a;, az} =
{0, —1}. If a; =a, =1, then e(x) = Q(x) + N(x); but Q(x) + N(x) = —(1 — j(x)),
which is the negative of the idempotent generator of the even-like code £ ,. Thusa; = a, =1
is not possible. So the two possibilities remaining for {a;, a,} must lead to generating idem-
potents for the two even-like QR codes that we know must exist. The generating idempotents
for the odd-like codes follow from Theorem 6.6.4.

We now consider the case p = —1 (mod 12). By Theorem 6.6.4(ii),

e(x) + ey =—1+x+x"+-+x"7",

implying that 2ap = —1 and a; +a, = 1. Thus ay =1 and either a; =a, = —1 or
{ai, a2} = {0, 1}. Again 1 — Q(x) — N(x) = —(1 — 7(x)) generates £, and so a; = ap =
—1 is impossible. The generating idempotents for the even-like and odd-like codes follow
as above. O
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Table 6.4 The field g

ol a+bp o a+bp o a+bp
0 0 p* 14p P> —p

1 1 P 1—p b —l—p
o P pt =1 ol —l1+p

Example 6.6.11 We find the generating idempotents of the QR codes of length 11 over F;.
Here

Q1 =1{1,3,4,5,9} and N ={2,6,7,8, 10}.

The generating idempotents of the odd-like QR codes are
—(x+x3+x4+x5+x9) and —(x2+x6+x7+x8+x10),
and the generating idempotents of the even-like QR codes are

T+ x4+ +x* +x5+x° and 14 x2+x%+x7 4+ x5+ x1°.

The 3-cyclotomic cosets modulo 11 are {0}, Q11, and A'1;, implying that the QR codes are
the only duadic codes of length 11 over F3. The odd-like codes are the [11, 6, 5] ternary
Golay code. Compare this example to Example 6.1.7. [ ]

We now turn to QR codes over Fg. Because 9 = 3? is a square modulo any odd prime
p, by Theorem 6.6.2, QR codes over Fg exist for any odd prime length greater than 3.
The idempotents for the QR codes over [Fg of length p = 1 (mod 12) are the same as the
idempotents given in Theorem 6.6.10 by Theorem 6.6.4. We now only need consider lengths
p where p = +£5 (mod 12). The field Fy can be constructed by adjoining an element p to
F3, where p?> = 14 p. So Fyg = {a + bp | a, b € F3}. Multiplication in Fy is described in
Table 6.4; note that p is a primitive 8th root of unity.

Theorem 6.6.12 Let p be an odd prime. The following hold:

(i) If p==£1(mod 12), the generating idempotents of the quadratic residue codes over
Fy are the same as those over F5 given in Theorem 6.6.10.

(ii) The even-like quadratic residue codes over Fy have generating idempotents

l+p Zx-’+p3 Zx-’ and 1+ p° Zx-’#—p ij,
J€Qp JeN, J€Qp JEN,
if p=5(mod 12), and
S SEETED SIIPITRNED S 3T
Jj€Q,p JEN, Jj€Q,p JjEN,
if p = —5(mod 12).
(iii) The odd-like quadratic residue codes over Fg have generating idempotents

—prj—p3ij and —p32xj—p2xj,

j€9p JeN, j€9yp JeN,
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if p =5 (mod 12), and

1+p2xj+p32xj and 1—|—,03ij+p2xj,

j€Qy JjEN, j€Qp JEN,
if p = —5(mod 12).

Proof: Part (i) follows from Theorem 6.6.4. Let e(x) be a generating idempotent for an
even-like QR code C, over Fy of length p with p = 5 (mod 12). Then by Theorem 6.6.3,
e(x) =ap+ a; Q(x) + axN(x), where a; € Fg for 0 <i < 2. Using Lemma 6.6.1, notice
that Q(x)’ = 0(x®) = N(x) and N(x)’ = N(x*) = Q(x) as 3 ¢ ./\/,, by Lemma 6.2.9.
As e(x)? = e(x), we must have e(x)’ = e(x). Thus e(x)® = ag + a13N(x) + agQ(x) =
e(x), implying that a; = ag and a, = a;. The other even-like QR code C, paired with
C has generating idempotent e(x)u,, where b € N, by Theorem 6.6.4. Again by
Lemma 6.6.1, Q(x)ip, = O(x?) = N(x) and N(x)u, = N(x?) = Q(x). Therefore, e(x) =
ap + a1 Q(x) + ai N(x) and e(x)p = ag + a7 Q(x) + a1 N (x).
We first consider the case p = 5 (mod 12). By Theorem 6.6.4(ii),

e(x)+e(x)up =—14+x —|—x2_{_..._"_xl’—17

implying that 2ag = —1 and a; +a; = 1. Thus ap = 1; by examining Table 6.4, either
ai=—1ora €{p, p°}.As 1 — Q(x)— N(x)=—(1 —7(x)) generates £, a; = —1 is
impossible. So the two possibilities remaining for a; must lead to generating idempotents
for the two even-like QR codes that we know exist. The generating idempotents for the
odd-like codes follow from Theorem 6.6.4.

We leave the case p = —5 (mod 12) as an exercise. |

Exercise 366 Prove Theorem 6.6.12 in the case p = —5 (mod 12). ¢
The following theorem is analogous to Theorem 6.6.9 and is proved in the same way.

Theorem 6.6.13 Let p be an odd prime with p # 3. The following hold:

(i) Quadratic residue codes of length p over Fx, where t is odd, exist if and only if p = +1
(mod 12), and the generating idempotents are those given in Theorem 6.6.10.

(ii) Quadratic residue codes of length p over T3, where t is even, exist for all p, and the
generating idempotents are those given in Theorems 6.6.10 and 6.6.12.

Exercise 367 Give the generating idempotents for all quadratic residue codes of prime
length p < 29 over Fa . Distinguish between the idempotents that generate even-like codes
and those that generate odd-like codes. Also distinguish between those that arise when ¢ is
even and when ¢ is odd. ¢

Exercise 368 Let D, and D, be odd-like quadratic residue codes of prime length p # 3
over 3 with even-like subcodes C; and C,. Prove the following:

(a) If p=—1 (mod 12), then C; and C; are self-orthogonal.

(b) If p =1 (mod 12), then C; = D, and Cy = D;.

(c) If p=—5 (mod 12) and ¢ is even, then C, and C, are self-orthogonal.

(d) If p =5 (mod 12) and ¢ is even, then ClL =D, and 02l =7D,. ¢



245

6.6.3

6.6 Quadratic residue codes

Extending QR codes

As with any of the duadic codes, we can consider extending odd-like quadratic residue
codes in such a way that the extensions are self-dual or dual to each other. These extensions
may not be the ordinary extensions obtained by adding an overall parity check, but all
the extensions are equivalent to that obtained by adding an overall parity check. Before
examining the general case, we look at QR codes over [, F3, and Fy. In these cases, it is
sufficient to use the ordinary extension.

Theorem 6.6.14 Let D, and D, be the odd-like QR codes over F, of odd prime length p.
(i) When g = 2, the following hold:

(a) 131 and 752 are duals of each other when p = 1 (mod 8).

(b) 13[ is self-dual and doubly-even for i = 1 and 2 when p = —1 (mod 8).
(i) When g = 3, the following hold:

(a) Zsi is self-dual fori = 1 and 2 when p = —1 (mod 12).

) If p=1(mod 12), then 231 and ﬁzD are duals of each other where D is the
diagonal matrix diag(1, 1, ..., 1, —1).

(iii)) When q = 4, the following hold:

(@) When p =1 (mod 8), 51 and 732 are duals of each other under either the ordinary
or the Hermitian inner product.

(b) When p = 3 (mod 8), 131 and 732 are duals of each other under the Hermitian
inner product; furthermore, ﬁi is self-dual under the ordinary inner product for
i=1and?2.

(c) When p = —3 (mod 8), 731 and 732 are duals of each other under the ordinary
inner product; furthermore, 73,4 is self-dual under the Hermitian inner product for
i =1and?2.

(d) When p = —1 (mod 8), 1/5,- is self-dual under either the ordinary or the Hermitian
inner product fori = 1 and 2.

Proof: Let C; be the even-like subcode of D;.

We first consider the case ¢ = 2 or ¢ = 4. In either case, j(x) is the all-one vector and
its extension is the all-one vector of length p + 1; this extended all-one vector is orthogo-
nal to itself under either the ordinary or Hermitian inner product. Suppose first that p = 1
(mod 8). By Lemmas 6.2.4 and 6.2.5, —1 and —2 are bothin Q,. ThusC;u—; = Cipu—» = C;
for i =1 and 2. Applying Theorems 6.4.3 and 6.4.6, we obtain (i)(a) and (iii)(a). Con-
sider next the case p = —1 (mod 8). This time by Lemmas 6.2.4 and 6.2.5, —1 and —2
are both in N,. Thus Ciu_; = Cipu—» = C». By Theorems 6.4.2 and 6.4.5, we obtain
part of (i)(b) and all of (iii)(d). To complete (i)(b), we note that the generating idem-
potent for D; has weight (p — 1)/2 by Theorem 6.6.5 and hence D; has a generator
matrix consisting of shifts of this idempotent by Theorem 4.3.6. Thus ﬁi has a gen-
erator matrix consisting of vectors of weight ((p — 1)/2) + 1 = 0 (mod 4). Thus @,- is
doubly-even. The cases p = £3 (mod 8) arise only when ¢ = 4. Using the same argu-
ment, if p =3 (mod 8), —1 € Np and —2 € Q,, yielding (iii)(b) by Theorems 6.4.2 and
6.4.6.1f p = -3 (mod 8), -1 € @, and -2 € ./\/p, yielding (iii)(c) by Theorems 6.4.3 and
6.4.5.
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Now let ¢ = 3. Consider first the case p = —1 (mod 12). Here the all-one vector ex-
tends to the all-one vector of length p + 1 and it is orthogonal to itself. By Lemma 6.2.4,
—1 € NV, and (ii)(a) follows from Theorem 6.4.2. Now suppose that p = 1 (mod 12). By
Lemma 6.2.4, —1 € Q,, and by Theorem 6.4.3, Cf = D,. In this case the all-one vector in
D; extends tol=11--- 1(=1)in 5,-. This vector is not orthogonal to itself, but is orthog-
onal to 1D = 1 p+1, where 1, is the all-one vector of length p 4 1 and D is the diagonal
matrix diag(1, 1, ..., 1, — 1). This proves (ii)(b). a

Example 6.6.15 We describe the extensions of the QR codes discussed in Examples 6.6.7,

6.6.8,and 6.6.11. We give the extension of the generating idempotent of odd-like codes; from

this one can form a basis of the extended codes using shifts of the generating idempotent

extended in the same way (see Theorem 4.3.6).

* The extended coordinate of either generating idempotent of an odd-like binary QR code
of length 23 is 1. These extended codes are each self-dual and doubly-even by Theo-
rem 6.6.14. They are extended binary Golay codes.

* The extended coordinate of either generating idempotent of an odd-like QR code of
length 11 over [F3 is —1. The extended codes are each self-dual by Theorem 6.6.14 and
are extended ternary Golay codes.

* Theextended coordinate of either generating idempotent of an odd-like QR code of length
5 over [Fy is 1. These extended codes are each Hermitian self-dual; they are also dual to
each other under the ordinary inner product by Theorem 6.6.14. They are equivalent to
the hexacode. [ ]

We are now ready to describe, in general, the extensions of the odd-like QR codes D,
and D, of length p over IF,. We want them both to be extended in the same way whenever
possible. Recall that we defined D for an arbitrary odd-like duadic code D of length n
using a solution y of (6.11). As an odd-like QR code is obtained from its even-like subcode
by adjoining the all-one vector 1, in order for either Dl to be self-dual or dual to Dz, the
extended vector 1, which is 1 extended by some y € F,, must be orthogonal to itself. This
means that p 4+ y2p? = 0 or

1+y?p=0, (6.12)

which is (6.11) with n = p. Suppose that C; is the even-like subcode of D;. We know
that either —1 € N, or —1 € Q,, implying C;u—; = C; or Cjju_; = C;, respectively. By
Theorems 6.4.2 or 6.4.3, these yield Cil =D, or ClL = D, respectively. Therefore, when-
ever (6.12) is satisfied, if —1 € /\/'p, ZND,- is self-dual for i =1 and 2, and if —1 € Q,,, QNDI
and 732 are duals of each other. This proves the following, using Lemma 6.2.4.

Theorem 6.6.16 Let D, and D; be the odd-like QR codes of length p over IF,, p an odd
prime. Suppose that (6.12) is satisfied. Then if p = —1 (mod 4), D; is self-dual for i = 1
and 2, and if p =1 (mod 4), Dy and D, are duals of each other.

Thus we are interested in the cases where (6.12) has a solution y in IF,,. This is answered
by the following. We only need the case where ¢ is a square modulo p since we are assuming
QR codes of length p over I, exist.
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Lemma 6.6.17 Let r be a prime so that g = r' for some positive integert. Let p be an odd
prime with p # r and assume that q is a square modulo p. There is a solution y of (6.12)
in F, except when t is odd, p = 1(mod 4), and r = —1 (mod 4). In that case there is a
solution yy inF, of —1 + yip =0.

Proof: Ifz is even, then every quadratic equation with coefficients in IF,, such as (6.12), has
asolutionin I, C F,. Assume that ¢ is odd. Then g is a square modulo p if and only if r is
a square modulo p as ¢ = (r*)~"/?r. So (£) = 1. Solving (6.12) is equivalent to solving
x> = —pinF,. Ast is odd, there is a solution in IF, if and only if the solution is in IF,.. This
equation reduces to x> = 1 if r = 2, which obviously has a solution x = 1. Assume that r is
odd. Thus we have a solution to x> = —p in F,. if and only if (=2) = (=!)(2) = 1. By
the Law of Quadratic Reciprocity,

(E))-cor
P r

Hence as (?) =1,

—1 r=1 r=1 p=1
<_) <£) — ()T (=T
r r

using Lemma 6.2.2. The only time the right-hand side of this equation is not 1 is when
p = 1(mod 4) and r = —1 (mod 4). In this exceptional case

r

showing that x> = p has a solution in F,;; hence —1 + yZp = 0 has a solution y; in F,. O

Combining Theorem 6.6.16 and Lemma 6.6.17, we obtain the following.

Theorem 6.6.18 Let r be a prime so that g = r' for some positive integer t. Let p be an
odd prime with p # r and assume that q is a square modulo p. Assume that if t is odd, then
either p # 1 (mod 4) orr #% —1 (mod 4). Let D and D, be the two odd-like QR code over
I, of length p. _

(i) If p=—1 (mod 4), then D; is self-dual fori = 1 and 2.

(i) If p = 1 (mod 4), then D, and D5 are duals of each other:

This theorem gives the extension except when ¢ = r’ where ¢ is odd, p = 1 (mod 4), and

= —1 (mod 4). But in that case —1 + ylzp = 0 has a solution y; in F; by Lemma 6.6.17.
If D is an odd-like QR code of length p, define D ={¢]|ce D), where & = ccop =
€O+ Cp—1Coo and

p—1
Coo = — V1 E Cj.
=0

Theorem 6.6.19 Letr be a prime so that g = r' for some odd positive integert andr = —1
(mod 4). Assume p = 1 (mod 4) is a prime such that q is a square modulo p. Let D and
D; be the two odd-like QR codes over ¥, of length p. Then D, and D, D are duals of each
other, where D is the diagonal matrix diag(1, 1, ..., 1, —1).
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Proof: By our assumption and Lemma 6.6.17, —1 + ylzp = 0 has a solution y; in F,. As
p =1(mod4), —1 € Q. Let C; be the even-like subcode of D;. Then C;u_; = C;, and,
by Theorem 6.4.3, ClL =D, and (,’2l = D;. The result follows as iis orthogonal to ip
because —1 + yZp = 0. O

Note that if 7 # 2, there are two solutions y of 1 4+ y?p = 0 over F,., one the negative of
the other. Similarly —1 + y{p = 0 has two solutions. We can use either solution to define
the extensions. When r = 2, we can always choose y = 1, and hence for the codes over
fields of characteristic 2, D="D. We see that when p = —1 (mod 12), the solution of (6.12)
in F3 is ¥ = 1 and so here also D = D. When p = 1(mod 12), (6.12) has no solution in
IF5 but one solution of —1 + 7/1 = 0in F3 is y; = 1; thus in this case D="D.

We now look at the extended codes over fields of characteristic 2 and 3.

Corollary 6.6.20 Let D and D, be odd-like OR codes over F,: of length p.
(i) Suppose that r = 2. The following hold:
(a) Zsi is self-dual fori = 1 and 2 when p = —1 (mod 8) or when p = 3 (mod 8) with
t even.
(b) 131 and 132 are duals of each other when p = 1 (mod 8) or when p = —3 (mod 8)
with t even.
(ii) Suppose that r = 3. The following hold:
(a) 131- is self-dual fori = 1 and 2 when p = —1 (mod 12).
®)If p=1(mod 12), then 731 and @ZD are duals of each other, where D is the
diagonal matrix diag(1, 1, ..., 1, —1).
(c) If p = —5 (mod 12) with t even, then 7~),~ is self-dual fori = 1 and 2, where y = p*>
from Table 6.4.
(d) If p =5 (mod 12) with t even, then 731 and 732 are duals of each other.

Exercise 369 Explicitly find the solutions of 1+ y?p =0 and —1 + yp = 0 over Fx
and F3:. Then use that information to prove Corollary 6.6.20. ¢

Exercise 370 Do the following:

(a) Give the appropriate extended generating idempotents for all odd-like quadratic residue
codes of prime length p < 29 over 5. Distinguish between those that arise when ¢ is
even and when 7 is odd. Also give the duality relationships between the extended codes.
See Exercise 364.

(b) Give the appropriate extended generating idempotents for all odd-like quadratic residue
codes of prime length p < 29 over Fs . Distinguish between those that arise when 7 is
even and when 7 is odd. Also give the duality relationships between the extended codes.
See Exercise 367. ¢

Automorphisms of extended QR codes

In this section, we briefly present information about the automorphism groups of the ex-
tended QR codes. Those interested in a complete description of the automorphism groups
of the extended QR codes (and extended generalized QR codes) should consult either [147]
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or [149]. Let D™ be one of the extensions 5, 13, or D of one of the odd-like QR codes

D, whichever is appropriate. The coordinates of D" are labeled {0, 1,..., p — 1, co} =
[, U {oo}. Obviously, the maps T, for g € IF,, givenby iT, =i 4+ g (mod p) foralli € IF,,
and ooT, = oo are in PAut(D™) as these act as cyclic shifts on {0, 1,..., p — 1} and fix

0o. Also if a € Q,, the multiplier 1, can be extended by letting oou, = oo; by Theo-
rem 6.6.3, this is also in PAut(D®*"). So far we have not found any automorphisms that
move the coordinate oo; however, the Gleason—Prange Theorem produces such a map. We
do not prove this result.

Theorem 6.6.21 (Gleason—Prange Theorem) Let D' be 23, 5, or D, where D is an
odd-like QR code of length p over F,. Let P be the permutation matrix given by the
permutation that interchanges oo with 0, and also interchanges g with —1/g for g € F,
g # 0. Then there is a diagonal matrix D, all of whose diagonal entries are £1, such that
DP e MAut(D®).

We have left the exact form of the diagonal matrix D rather vague as it depends on exactly
which generating idempotent is used for the unextended code. Note, however, that if the field
IF, has characteristic 2, then D is the identity matrix. The permutation matrices given by 7,
withg € F,, u, witha € Q,,, and P generate a group denoted PSL,(p) called the projective
special linear group. In all but three cases, the full automorphism group I' Aut(D") is only
slightly bigger (we can add automorphisms related to field automorphisms of I, ). The three
exceptions occur when p = 23 and g = 2' (where D has the same basis as the extended
binary Golay code), when p = 11 and g = 3' (where D" has the same basis as the extended
ternary Golay code), and when p = 5 and ¢ = 4’ (where D" has the same basis as the
hexacode).

Exercise 371 Find the permutation in cycle form corresponding to the permutation matrix
P in the Gleason—Prange Theorem when p = 5, p = 11, and p = 23. Note that these values
of p are those arising in Example 6.6.15. ¢

The automorphism from the Gleason—Prange Theorem together with T, for g € F,, and
Wa, for a € Q,, show that MAut(D®") is transitive. This implies by Theorem 1.7.13, that
the minimum weight of D is its minimum odd-like weight. Because QR codes are duadic
codes, the Square Root Bound applies. We summarize this in the following.

Theorem 6.6.22 Let D be an odd-like QR code of length p over F,. The minimum weight
of D is its minimum odd-like weight d,,. Furthermore, d> > p. If p = —1 (mod 4), then
d? —d, + 1 > p. Additionally, every minimum weight codeword is odd-like. If D is bi-
nary, its minimum weight d = d, is odd, and if, in addition, p = —1 (mod 8), then d = 3
(mod 4).

Proof: All statements but the last follow from the Square Root Bound and Theo-
rem 1.7.13, together with the observation that p_; gives the splitting for QR codes pre-
cisely when —1 € \V,,, that is when p = —1 (mod 4) by Lemma 6.2.4. If D is binary,
its minimum weight d is odd as odd-like binary vectors have odd weight. By Theo-
rem 6.6.14, D is doubly-even if p = —1 (mod 8); as D has minimum weight d + 1, d =
3 (mod 4). O
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Example 6.6.23 Using Theorem 6.6.22, we can easily determine the minimum weight of
the binary odd-like quadratic residue codes of lengths p = 23 and 47 and dimensions 12 and
24, respectively. Let D be such a code. As p = —1 (mod 4), each satisfies dg —d,+1>p
and d, is odd. When p = 23, this bound implies that d, > 6 and hence d, > 7 as it is
odd. The Sphere Packing Bound precludes a higher value of d,. By Theorem 6.6.14, D
is a [24, 12, 8] self-dual doubly-even code (the extended binary Golay code). When p =
47, d, > 8 by the bound and d, = 3 (mod 4) by Theorem 6.6.22. In particular, d, > 11.
The Sphere Packing Bound shows that d, < 15, and as d, = 3 (mod 4), d, = 11. Thus
D is a [47, 24, 11] code. Using Theorem 6.6.14, Disa [48, 24, 12] self-dual doubly-
even code. At the present time there is no other known [48, 24, d] binary code with
d>12. [ |

Exercise 372 Find the minimum distance of an odd-like binary QR code of length 31. ¢

Example 6.6.24 Let D be an odd- hke QR code over 5 of length p=11and d1mens1on 6.
Let D have minimum weight d and D have minimum weight d. By Theorem 6.6.14, Dis

elf dual as p = —1 (mod 12). Hence, 3 | d. By the Slngleton Bound, d <7 1mp1y1ng that
d=3ord =6. By Theorem 6.6.22,d = d, > 4. Asd<d d=6. Asd>d—1 d > 5.
The generating idempotent of D has weight 5 by Theorem 6.6.10. Thus D is an [11, 6, 5]
code, and Disa [12, 6, 6] self-dual code (the extended ternary Golay code). |

Example 6.6.25 Let D be an odd-like QR code over F4 of length p = 5 and dimension 3.
Suppose that D and D have minimum weight d and d, respectively. By Theorem 6.6.14, D
is Hermitian self-dual implying that 2 | d. By the Singleton Bound, d < 3 and d < 4. By
Theorem 6.6.22, d = d, > 3. Thus d = 3 and d = 4. Therefore D is a [5, 3, 3] code, and
Disa [6, 3, 4] Hermitian self-dual code (the hexacode). [ |

Example 6.6.26 Consider the duadic codes of length n = 17 over F4. The 4-cyclotomic
cosets modulo 17 are

Co=1{0}, Ci ={1,4,16, 13}, C, = (2,8, 15,9}, C3 = {3, 12, 14, 5},
and Cs = {6, 7, 11, 10}.

The odd-like quadratic residue codes D; and D, have defining sets Q7 = C; U C, and
N17 = C3 U Cg; the extended codes 131 and 132 are duals of each other under either the
ordinary or Hermitian inner product by Theorem 6.6.14. Both D; and D, have binary
idempotents by Theorem 6.6.6. By Theorem 6.6.22, D; and D, have minimum weight at
least 5; as all minimum weight codewords are odd-like, 231 and 132 have minimum weight
at least 6. In fact, both are [18, 9, 6] codes. This information is contained in Table 6.1. There
are two other splittings given by S; = C; U C3 with S, = C, U Ce,and S| = C; U Cg with
8, = C, U C;. The splittings are interchanged by e, yielding equivalent pairs of codes.
The odd-like codes D) and D) with defining sets S; and S, have a splitting given by u_».
By Theorem 6.4.14, 23/1 and 23/2 are Hermitian self-dual. It turns out that both are [18, 9, 8]
codes; these extended duadic codes have minimum weight higher than that of the extended
quadratic residue codes. These are the codes summarized in Table 6.3. It was shown in
[148] that a Hermitian self-dual [18, 9, 8] code over Fy is unique. Later, in [249], it was
shown that an [18, 9, 8] code over I, is unique. [ ]
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6.6 Quadratic residue codes

We conclude this section by presenting the automorphism groups of the binary extended
odd-like quadratic residue codes. For a proof, see [149]; we discuss (i) in Example 9.6.2
and (ii) in Section 10.1.2.

Theorem 6.6.27 Let p be a prime such that p = £1 (mod 8). Let D be a binary odd-like

quadratic residue code of length p with extended code D of length p + 1. The following

hold:

(i) Whenp=1, FAut(@) = PAut(YB) is isomorphic to the affine group GA3(2) of order
1344.

(ii) When p = 23, I‘Aut(ﬁ) = PAut(@) is isomorphic to the Mathieu group Moy of order
244 823 040.

i) If p ¢ {7, 23}, then FAut(ZS) = PAut(l/S) is isomorphic to the group PSL;,(p) of order
p(p* —1)/2.
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Weight distributions

In Chapter 1 we encountered the notion of the weight distribution of a code. In this chapter
we greatly expand on this concept.

The weight distribution (or weight spectrum) of a code of length n specifies the number of
codewords of each possible weight 0, 1, ..., n. We generally denote the weight distribution
of a code C by Ay(C), A1(C), ..., A,(C), or, if the code is understood, by Ay, Ay, ..., Ay,
where A; = A;(C) is the number of codewords of weight i. As a code often has many values
where A;(C) = 0, these values are usually omitted from the list. While the weight distribution
does not in general uniquely determine a code, it does give important information of both
practical and theoretical significance. However, computing the weight distribution of a large
code, even on a computer, can be a formidable problem.

7.1

The MacWilliams equations

A linear code C is uniquely determined by its dual C*. The most fundamental result about
weight distributions is a set of linear relations between the weight distributions of C and C*
which imply, in particular, that the weight distribution of C is uniquely determined by the
weight distribution of C* and vice versa. In other words, if we know the weight distribution
of C we can determine the weight distribution of C* without knowing specifically the
codewords of C* or anything else about its structure. These linear relations have been the
most significant tool available for investigating and calculating weight distributions. They
were first developed by MacWilliams in [213], and consequently are called the MacWilliams
equations or the MacWilliams identities. Since then there have been variations, most notably
the Pless power moments, which we will also examine.

LetCbean [n, k, d] code over IF, with weight distribution A; = A;(C)for 0 <i < n,and
let the weight distribution of C* be Al = A (C*)for 0 < i < n. The key to developing the
MacWilliams equations is to examine the g% x n matrix M whose rows are the codewords
of C listed in some order. As an illustration of how M can be used, consider the following.
The number of rows of M (i.e. the number of codewords of C) equals g*, but it also equals
3", A;. Using the fact that A7 = 1 we obtain the linear equation

n

ZAj =g AL (7.1)
j=0
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We next count the total number of zeros in M in two different ways. By counting first by
rows, we see that there are

n—1
PRCELY
j=0

zeros in M. By Exercise 373 a column of M either consists entirely of zeros or contains
every element of IF, an equal number of times, and additionally M has A7 /(g — 1) zero
columns. Therefore, counting the number of zeros of M by columns, we see that the number
of zeros in M also equals

](141L k—1 A% k—1 €1 1
A g (- = ¢~ (nAE + AY),
7 [ Ha (n q—1> g (nAy + AY)

again using Ay = 1. Equating these two counts, we obtain

n—1

> (= pA; =" (nAy + AY). (1.2)
i=0

Equations (7.1) and (7.2) are the first two equations in the list of n + 1 MacWilliams
equations relating the weight distributions of C and C*:

n—vy . v .
Z(" ]>Aj=qk—vz<" J)Aj for0 < v <n. (1.3)
— v — \p — v
j=0 j=0

Exercise 373 Let M be a q" x n matrix whose rows are the codewords of an [n, k] code
C over F,,. Let A{ be the number of codewords in C* of weight 1. Prove that:

(a) a column of M either consists entirely of zeros or contains every element of I, an

equal number of times, and
(b) M has Af-/(q — 1) zero columns. ¢

We now show that all the MacWilliams equations follow from a closer examination of
the matrix M. This proof follows [40]. Before presenting the main result, we need two
lemmas. Let the coordinates of the code C be denoted {1,2,...,n}. If I C {1,2,...,n},
then I will denote the complementary set {1,2,...,n}\ I. Recall that in Section 1.5 we
introduced the punctured code C! and t