Chapter 2
First Order Linear Differential Equations

Section 2.1

1.

e A o

11 (a).

11 (b).

11 ().

12 (a).
12 (b).
12 (©).
12 (d).

This equation is linear because it can be written in the form y” + p(7)y = g(¢). It is
nonhomogeneous because when it is put in this form, g(#) #0.

nonlinear

This equation is nonlinear because it cannot be written in the form y’ + p(t)y = g(¢).
nonlinear

This equation is nonlinear because it cannot be written in the form y” + p(t)y = g(¢).
linear, homogeneous

This equation is nonlinear because it can be written in the form y” + p(#)y = g(7).
nonlinear

This equation is linear because it cannot be written in the form y” + p(1)y = g(¢). It is
nonhomogeneous because when it is put in this form, g(#) #0.

linear, homogeneous

Theorem 2.1 guarantees a unique solution for the interval (—eo,00), since and sin(¢) are

both continuous for all # and —2 is on this interval.

Theorem 2.1 guarantees a unique solution for the interval (—eo,c0), since and sin(¢) are

both continuous for all # and O is on this interval.

Theorem 2.1 guarantees a unique solution for the interval (—eo,00), since and sin(z) are

both continuous for all # and 7 is on this interval.
2<t<o0
-2<t<?2
-2<t<?2

—co L <=2



6 ¢ Chapter 2 First Order Linear Differential Equations

13 (a). For this equation, p(¢) is continuous for all ¢+ 2,-2 and g(7) is continuous for all 7# 3.
Therefore, Theorem 2.1 guarantees a unique solution for (3,e0), the largest interval that
includes r=35.

13 (b). For this equation, p(¢) is continuous for all ¢+ 2,-2 and g(7) is continuous for all 7# 3.

Therefore, Theorem 2.1 guarantees a unique solution for (-2,2), the largest interval that
includes r=—-—.
2

13 (c). For this equation, p(¢) is continuous for all ¢+ 2,-2 and g(7) is continuous for all 7# 3.
Therefore, Theorem 2.1 guarantees a unique solution for (-2,2), the largest interval that
includes r=0.

13 (d). For this equation, p(¢) is continuous for all ¢+ 2,-2 and g(7) is continuous for all 7# 3.
Therefore, Theorem 2.1 guarantees a unique solution for (—ee,—2), the largest interval that
includes t=-5.

13 (e). For this equation, p(¢) is continuous for all ¢+ 2,-2 and g(7) is continuous for all 7# 3.

Therefore, Theorem 2.1 guarantees a unique solution for (-2,2), the largest interval that

includes 7= E
2

Infe+ ¢ Tnj
=2 =2

14 (a). 2<t< o,

14 (b). 0<1<2.

14 (c). —o<t<0.

14 (d). —=<t<0.

14.

undefined at r1=0,2.

15. y(t)= 3e' . Differentiating gives us y’ = 3" (2t) = 2ty . Substituting these values into the given
equation yields 2¢y + p(¢#)y = 0. Solving this for p(¢), we find that p(7) =—2¢. Putting =0
into the equation for y gives us y, = 3.
16(a). y=Ct' y' =Crt’”" 2ty’—=6y=0
“ 2Crt" —=6Ct =2r-6)Ct"' =0 = (2r-6)y=0 = 2r-6=0 = r=3
y(-2)=C(-2)'=8 = C#0 .. C(-2)’=8=C=-1

16 (b). —eo< 1< 0 since p(t)=7

16 (c). y(f)=—1, —c0o< t< oo,
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17. y(t) =0 satisfies all of these conditions.

Section 2.2
1 (a). First, we will integrate p(7) =3 to find P(¢) = 3¢. The general solution, then, is
y()=Ce " =Ce™.

1 (b). y(0)=C =-3. Therefore, the solution to the initial value problem is y =-3e™>'.

’ 1 - ’ 1
2@. Y-7y=0 (e 2yY =0, y=Ce”.

2(b). y(=)=Ce =2, C=2¢" y(1)=2¢"

3 (a). We can rewrite this equation into the conventional form: y”—2zy =0. Then we will integrate
p()=—2¢ to find P(f)=—¢>. The general solution, then, is y(f)=Ce " = Ce"" .

3 (b). y(1)=Ce=3.Solving for C yields C = 3e™". Therefore, the solution to the initial value

problem is y(f)=3e'e’ =3¢ V.

4 4 1
4@. 1'=4y=0 = y'-—y=0. j—7dz=—41n|z|=—1n(x4) =

1 ’ 4 ’
t_4 —t—syz(ﬂy) =0 y:Ct4.

4(). y)=C=1 .. y(t)=t".

5(a). We can rewrite this equation into the conventional form: y”+—y =0. Then we will integrate
t

4
p(t) = " to find P(7)= 4ln|t| =1Int". The general solution, then, is

y(t) = Ce_P(’) = C'e_lnt4 — (/’elnf4 — Ct_4 )
5(b). y()=C=1.Therefore, the solution to the initial value problem is y(7) = .
6 (a) u= eXp(t— COS l) K3 y(l) — Ce—(t—cost) )

72: ¥ T, T, T,
6 (b). y(;) =Ce =1 C=e" y=gle 7o =l

7 (a). First, we will integrate p(#) =—-2cos(2¢) to find P(¢) =—sin(2¢) . The general solution, then, is

y(t) — Ce—P(t) — Cesin(Zt) .

7 (b). y(m)=C =-2.Therefore, the solution to the initial value problem is y(f) = —2¢""*",

2 ’ C
8(a). ((r+Dy)y=0 Y=o
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8 (b).

9 (a).

9 (b).

10 (a).

10 (b).
11 (a).
11 (b).
11 ().

12.

13.

14.
15.

3
2+l

yO)=C=3 .. y(n=

We can rewrite this equation into the conventional form: y’ —3(#* +1)y = 0. Then we will
integrate p(7)=-3(¢* +1) to find P(¢f)=—t" — 3t. The general solution, then, is

y(f)=Ce "V =Ce"*¥.

y(1)= Ce* = 4. Solving for C yields C = 4e™*. Therefore, the solution to the initial value
problem is y(f) = 4e' 't

y+e'y=0 .. J.e”dt =—¢" (= y)Y=0 y=Ce .

y0)=Ce'=2 C=2¢" y()=2¢ .

1
Yy =ye ™ 4=y, 1=y, Divide: 4=¢" = a= 51114 =1In2
and y,=e* = M= ® —g - y()=8e ™",

. . . o .
First, we should put the equation into our conventional form: y’——y =0. Integrating
t

o
p(t)= - gives us P(1)= —a1n|t| = ln‘t_"‘ ‘ The general solution, then, is

—ln‘t‘a‘

y(£)=Ce ™" =Ce Celn‘ta‘ = Ct”. Using the general solution and the point (2,1), we can
solve for C interms of a: y(2)=1=C-2%; C=2"". We can then substitute this value for C

into the general solution at the point (4,4): y(4)=4=2"" -4 =47"2.4% = 4" Setting the
exponents equal to each other yields 1= %;a = 2. Finally, solving for y,,

1
=y)=2"1"=—.
Yo =y 1

=2z, z=y+2 .. z(0)=—-14+2=1 = z=e"'=y+2 .. y=-2+¢"

Putting this equation into a form more like #14, we have y’ = -2ty + 6t =—-21(y — 3). We will
then let z=y—3 (and z' = y’, accordingly). Substituting into our modified original equation
yields an equation for z(¢): z’ =—2tz, or put in a more conventional form, z" +2¢z=0. Using

the same substitution for the initial condition yields z(0) =4 — 3=1. Integrating p(r) =2t gives

t

us P(f)=t*. The general solution is then z(¢) = Ce~ " Our initial condition requires that C =1,
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t

so the solution for z(7) is z(f)=e~ " In terms of y(?), this solution reads y— 3= e . Solved

for y(7), this solution is y(z) = e +3.
16@0.é§:—kB,Bm):—A*

dc
16 (b). B(c)=—A"¢e ™ =A()-A" - Alc)=A"(1—-¢™) No.Alc) TA as ¢ Tw
16 (c). 095A"=A"(1-¢™) = —005=—¢" = —kc=1n(},) =—In(20)

1
" Cogs = 1n(20).

—ct

17. Solving the equation y” + ¢y =0 with our method yields the general solution y(#) = y.e
c(-04) _ 5 ,04¢

Looking at the graph, we can see that y(0)=2=y, and y(-04)=3=y.e

3
Solving for ¢ givesus ¢ = gln(a) ~1.01.

—c(t-1)

18.  y'=Ce” y)=Ce =y, = C=y,e’ .. y=y.e

1 1 (0. 1
=y, =1 03 == o~ = (07)=0.7cz1n(5)

1
¢c=~——1In(2)=-0990 .. c=-1.
0.7

t

19 (a). The general solution to this D.E.is y(f) = y,e ", which can be rewritten as In(y)=—t+c.

Thus, this D.E. corresponds to graph #2 with y, = y(0) = """ = ¢°.

tsin4t

19 (b). The general solution to this D.E. is y(#) = y.e , which can be rewritten as

In(y) = tsin4t + c . Thus, this D.E. corresponds to graph #1 with y, = y(0) =" =1.

2 l’2
19 (¢). The general solution to this D.E.is y(f)=ye™’ /2 , which can be rewritten as In(y) = Y +c.

Thus, this D.E. corresponds to graph #4 with y, = y(0)=¢"" " =¢.

t—sin4t

19 (d). The general solution to this D.E.is y(f)=y.e , which can be rewritten as

In(y) = t—sin4¢+ c . Thus, this D.E. corresponds to graph #3 with y, = y(0) =" =1.

3—-1 t d 1
20. 1 H=——=*t+1=—+1 .. Hn=—1 H)=— =e.
ny®=,-4 2 p()=—-In(ye)=7 " y,=¢

n+l

21 (a). Integrating p(r)=1t" gives us P(t)= t+1
n

. Thus the solution to this initial value problem is

n+l
"™ fn41

y()=y.e which can be rewritten as Iny =Iny, —

n+1’
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Substituting values from the table gives us the necessary equations to solve for y, and n. First,

n+l

1 1
——=Iny,— and -4=Iny,— can be combined to solve for n:
4 1 n+1
1 15 21 1 1
4——=—=——,50 n=3. ——=1Iny,—— by substitution, and therefore y, =1.
4 4 n+1 4 4

21 (B). y(B) =y =1.e” = y(=ly= e+

Section 2.3
1. For this D.E., p(f) = 2. Integrating gives us P(f)=2¢. An integrating factor is, then, p(f)=e>.

Multiplying the D.E. by u(f), we obtain e*'y’ +2¢*y = (e*'y)’ = ¢ . Integrating both sides

1 1
yields e*y = Eez’ + C. Therefore, the general solution is y(f) = 5 +Ce™.

t

2. y+2y=e"' = (e”y)=e = e’'y=e'+C = y=e'+Ce™”.
3. For this D.E., p(f) = 2. Integrating gives us P(f)=2¢. An integrating factor is, then, p(f)=e>.
Multiplying the D.E. by u(f), we obtain e*'y’ +2¢*y = (¢*'y)’ = 1. Integrating both sides yields

e”'y =t+C. Therefore, the general solution is y(f)=te™" + Ce ™.

2 2 2 1 2 1 2
4. Y 4+2ty=t = ("' y)=te' = e’yZEe’ +C = y:5+Ce_’.
. . L . . , 2 . 2
5. Putting this equation into the conventional form gives us y” + < y=t.ForthisD.E., p(t)= e

Integrating gives us P(f)=2Int. An integrating factor is, then, u(?) = " =1 Multiplying
the D.E. by u(f), we obtain £y’ +2ty = (£’y)’ = £ . Integrating both sides yields

1 1
ry= 1 t* + C . Therefore, the general solution is y(f) = th +Cr.

2t 2
6. (B +4)y +2y =12 +4) = ¥+ t2+4y:t2’ =" =2y g
£ 4r P4, 4+ C
L+ = E+D) = +47 = P +4)y=—+—+C I B T
(( ) =1( ) ( )y st y 14
7. For this D.E., p(¢) =1. Integrating gives us P(f) = t. An integrating factor is, then, u(r)=e'.

Multiplying the D.E. by u(z), we obtain e'y” + e’y =(e'y) = te'. Integrating both sides yields

e'y=te' —e' + C. Therefore, the general solution is y(f)=t—1+Ce™".
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10.

11.

y +2y=cos3t = (e”y) =e’ cos3t

u=e dv = cos 3tdt

2t L. 2t e’ . 2 2 -
du=2e"dt y = —sin 3¢ je cos3tdt=—51n3t——Je sin 3¢dt

3 3 3

u=e* dv = sin 3tdt

2 1 2% . e’ 20 5
du=2e"dt vy =——cos3t je sm3tdt=——cos3t+—Je cos 3tdt

3 3 3

2t

2t 2 2t 2 4
1= sin3r- S-S cos3t+ 21t = I(1+—)=(sin3t+2cos3r)
3 33 3 9" 3

3
1= Eez’(sin 3t+2cos3f)

3 3
Loetly= Bezt(sin 3t+2cos3)+C = y= B(sin 3t+2cos3t) + Ce™

For this D.E., p(#) =-3. Integrating gives us P(#) =—3¢. An integrating factor is, then,
U(t)=e". Multiplying the D.E. by (), we obtain ey’ — 3¢y =(e'y) = 6e".
Integrating both sides yields e™'y = —2¢~ + C. Solving for y gives us y=-2+ Ce”, and with
our initial condition, y(0)=1=-2+ C. Solving for C yields C = 3, and thus our final solution
is y=-2+3e".

y=2y=e", y0)=3. (e7y)Y=e = e 'y=e'+C = y=e"' +Ce”

y0)=1+C=3 = C=2, y=¢" +2e".

3 1 3
Putting this D.E. in the conventional form, we have y’ + 5 y= Ee’. For this D.E., p(1) = 5

3 2
Integrating gives us P(¢)= Et. An integrating factor is, then, u(f) =e? . Multiplying the D.E.

3 3 3 5
—t —t —t 1 —t
by u(r), we obtain e? y’ + gez y=(e?y) = 562 . Integrating both sides yields

3 5 3
3 5 | 3
ez’y=5e2’+C.Solving for y gives us yzge, o

+ Ce ? , and with our initial condition,

1 1 1, 1 -2
y(0)=0= 5 + C. Solving for C yields C = N and thus our final solution is y = ge’ - ge 2.
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12.

13.

14.

15.

Y +y=1+2¢"cos(20), y(72)=0 . (e'y) =e' +2cos2t
e'y=e +sin2t+C = y=1+e"'sin2t+Ce”
Y =1+Ce =0 = C=—e"; y=1+e " sin2t—e ",

t 3
Putting this D.E. in the conventional form, we have y’ + %() y= —Ecos(t). For this D.E.,

. sin(t)
t t —
= —COS( ) . Integrating gives us P(f) = _sm( ) . An integrating factor is, then, u(f)=e¢ 2 .
g g8 > g g u

p()

sin(t)

Multiplying the D.E. by u(z), we obtain e ? y

cos(r) 0 om0 3cos(r) Y

—F e > y=(*y=- e’ .
2 2

sin(t) sin(t) _ sin(t)

Integrating both sides yields e 2 y=-3e * +C.Solving for y givesus y=-3+Ce 2 ,

’

+

and with our initial condition, y(0)=—4=-3+C. Solving for C yields C =-1, and thus our

_sin()
final solutionis y=-3—-¢ 2 .
Y 42y=e'+1+1, y(-D=e, (e’y) =€ +1* +e”
=2t

1 1 1 ro1
ye'=e' +—te¥ ——e¥ +—e"+C = y=e'+-+—+Ce
2 2 2 4

11 1
y(—l)ze—5+Z+CeZ=e = sze_z

. y:e_’+£+l+le_2(’+l).
2 4 4

3 1 3
Putting this D.E. in the conventional form, we have y’ + - y=1+ - For this D.E., p(1) = e

Integrating gives us P(f) = 3In(f). An integrating factor is, then, u(f) = e’ = "V = £

Multiplying the D.E. by u(f), we obtain £y’ + 3¢’y = (£’y)’ = £ + t*. Integrating both sides

3

1 1 1
yields 'y = Zt4 + gt + C. Solving for y givesus y = i + 3 +Ct™, and with our initial

1 I 1 1
condition, y(-1)= 372 + 37 C . Solving for C yields C = R and thus our final solution

. t 1 1 _ . . . . o
1S y= 1 + 3 Zt *. The t-interval on which this solution exists is —o < <0,
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16.

17.

18.
19.

20.
21.

22.

23.

4 4
y +7y:at,u:t

4, 3 5 4 s 4 1° ot’ 4
'y +4ry=ot =(t"y) =>ty:aE+C:>y=?+Ct

Multiplying both sides of the equation by the integrating factor, t(f)= e, we have
e?'y=e"(Ce™ +t+1)=e”(t+1)+ C. Differentiating gives us

(e*y) =e* (1) +2e* (t+1) = e*' (2t + 3). Therefore,

(€”y) = (u(Dy) = u(r) g(t) = e (21 + 3) = g(1) =21+ 3 and

uH=e =" = P(t)=2t= p(t)=2.

21Ce" + pCe' =0=> p(f)=—2¢. Substituting, (Ce' +2)’ —21(Ce" +2)=—4t = g(t) = —41.
Multiplying both sides of the equation by the integrating factor, u(f) = t, we have

ty = t(Ct"' +1) =t + C. Differentiating gives us (ty)’ = 1. Therefore,

(ty) = (u()y) = u(0)-g(t)=1= (") = g(t)y=1" and

1
uH=t=e"" = P()=Int= p(t)= P ="

(e +t—1+(e" +t-)=t=g(t)=t, y,=0.
y(t)=—-2e" +e' +sint=y,=y(0)=-2+1+0=—1.
If y(f)=-2e" +e¢' +sint,then y’=2¢™" +e' +cost.
Substituting in y’ + y = g(#), 2™ +e' +cost) +(—2e” +e' +sinr)=2e' +cost+sint = g(1).

t+sint

y +(+cost)y=1+cost, y(0)=3, u=e

t+sint

(et+sinty)/:(1+cost)e :(et+sint)/:>et+sinty:et+sint +Czy:1+ce—(t+sint)'

y0)=1+C=3=C=2 ..y=1+2¢""""" and limy(r)=1.

Putting this D.E. in the conventional form, we have y’+2y=e¢"' —2.For this D.E., p(r)=2.

An integrating factor is, then, t(f) = ¢* . Multiplying the D.E. by (), we obtain

e’y +2e”'y=(e”y) =e' —2¢” . Integrating both sides yields e*'y = e’ —e*" + C. Solving for

y givesus y=e ' —1+ Ce™, and with our initial condition, y(0)=-2=1-1+C. Solving for

t

C yields C=-2, and thus our final solution is y=e™" —1—2¢*". Therefore, limy(#) =-1.
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24.

25.

26.

On [1,2]:
1
v+ ;y =3¢, y(1)=1. An integrating factor is u(t) = ¢t. Multiplying the D.E. by u(z), we

obtain (ty) =3 = ty=+C=y=1"+Ct"', y(1)=1+C=1= C=0. Therefore, the
solution for 1<¢<2is y=¢"and y(2)=4.

On [2,3]:

1
v+ ;y =0, y(2)=4. An integrating factor is u(¢)=¢. Multiplying the D.E. by u(z), we

C
obtain (ty) =0=ty=C=y=Ct", y(2)= 5= 4 = C = 8. Therefore, the solution for

2<t<3is y=

8
t

On [0,7]:
y’ +(sinf)y = sinz, y(0)= 3. An integrating factor is u(¢) = e “*'. Multiplying the D.E. by

—Cost _. .7 —cost

y te

—cost

u(t), we obtain e (sinf)y = (e”**'y)" = (sint)e” “*'. Integrating both sides yields

—cost —cost
e

e y=

y(0)=3=1+Ce = C =2¢". Therefore, the solution for 0< t< 7 is y =1+2¢“"" and

+ C. Solving for y givesus y =1+ Ce™’, and with our initial condition,

y(m)=1+2e.
On [r,27]:
y’ +(sinf)y = —sint, y()=1+2¢~. Multiplying the D.E. by u(#)=e ', we obtain

—Cost _ .7 —Ccost

e 'y +e ' (sint)y = (e”'y) = (—sint)e” . Integrating both sides yields

—cost —Ccost cost

e y=—e + C . Solving for y givesus y =—1+Ce™", and with our initial condition,
y(m)=1+ 2¢?=—1+Ce' = C=2¢"+2¢". Therefore, the solution for 7 < 1< 27 is
y==1+2e<"*" 42"

On [0,1]: y' =2, y(0)=1.

y=2t+C, y(0)=C=1=C=1.

Therefore, the solution for 0<#<1is y=2¢+1 and y(l)=3.

1
On [1,2]: ¥y + P y=2, y(1)=3. An integrating factor is p(#)=t. Multiplying the D.E. by
U(1), we obtain (ty) =2t=ty=t'+C=y=1t+Ct", y1)=1+C=3= C=2. Therefore,

2
the solution for 1< <2 is y:t+7.
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27. On [0,1]:
¥ +(2t—1)y =0, y(0)= 3. An integrating factor is u(f)=e' . Multiplying the D.E. by u(?),
we obtain ¢’ 'y’ +e' '(2t=1)y =(e" 'y) =0. Integrating both sides yields ¢' 'y =C.
Solving for y givesus y = Ce'™" , and with our initial condition, y(0) = 3= C. Therefore, the
solution for 0< 7<1is y=3e'" and y(1)= 3.
On [1,3]:
y' +(0)y=y" =0, y(1)= 3. Integrating gives us y = C = 3. Therefore, the solution for 1<¢<3
is y=3and y(3)=3.
On [3,4]:
¥ +(=4)y=0, y(3)= 3. An integrating factor is u(r)=e"'=*. Multiplying the D.E. by u(?),
we obtain {y’—-y=(;y) =0. Integrating both sides yields ;y=C. Solving for y gives us
y = Ct, and with our initial condition, y(3) = 3= C(3) = C =1. Therefore, the solution for
3<t<4is y=t.

28.  y(r)=t{Si(t)- Si(1) + 3}

Section 2.4

1. P(1)= A" =5000e™" . Thus, P(30)=5000e " = 22408 45.

2. P(H=(01+ %)Z’A0 P,(30) = (1.025)% - 5000
. InP,(30)=60In(1.025) +In5000=9.999  P,(30) =21999

3(). P(=0+r)A,=(1.006)A,.Setting P,(t)=2A4, yields 2=1.06', and solving for 7 gives us
t=11.9 years.

3(). PRn=0+ %)mA0 =(1.03)* A, . Setting P,(f)=2A4, yields 2=1.03", and solving for ¢ gives us
t=11.72 years.

3(c). P()=Ae" =A™ . Setting P(f)=2A, yields 2=¢"", and solving for ¢ gives us ¢ =11.55
years.

4. With r=.05 P()=e"A, P10)=e""A,

With unknown r, P(8)=e¢"*A, = ¢"’A,
“ 8r=05 = r=4=00625 (6.25%)
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5 (a).
5 (b).
5 (c).

10.

11.

12 (a).

12 (b).

12 ().

P, =(0.04+0.0040)P,; P,(0)= A,.
P, = A ™" This can be verified easily through differentiation.

For Plan A, P,(f)= A, . To find the time  at which Plan B “catches up” with Plan A, let us

set P ()= P,(1): Ae™ = A()e'o‘”+'()°2’2 . Dividing by A, and taking the natural logarithm of both
sides yields .06¢= .04¢+ .002¢”, and solving for ¢ gives us t=0 (the time of the initial
investment) and =10 years (the time at which Plan B “catches up”).

After 4 yrs, P(4)=1000e”",  P(10) =1000e*”*® =1000¢**** = 1858.93

We can simplify this problem by considering the two deposits separately and then adding the
principals of each deposit together at a time of twelve years. We have, then,

1000e"*" +1000e°" = 4000 . Introducing a new variable x =e®, we have x> +x—4=0.

Solving this with the quadratic formula yields one positive value of x: x =1.5616=¢"".

Solving for r yields r =0.0743.

11,000,000 = 10,000,000¢°* . Solving for k yields k = %m(%j.

P(30) = 10,000,000¢°"1)3 = 10,000,000¢" " =17.715.610.
In2 B In2

2=¢" and thus t=——=35 =~ 36.36 days.
k 11
In—
10
1 In3 2In(3
13=¢* = k==In(13). 3=¢" = 1=—"= ()z8.375 wks.
2 k  In(1.3)

1
80,000 = 100,000 . Solving for k yields k= gln(.8). Using this value for k, we have

(80,000 + 50,000)e™® =130,000-0.8 = 104,000 .
P’=kP+M, PO)=P, P —kP=M, (e"Py =Me™

M M M
e_kth—Ie_k’+C = P:—?+Ce"’, P0=—7+C

M M_
. P(t)= Y +(P, + 7)e"

M M
P, = T P, and P must be nonnegative = — = =>0. If net immigration rate M >0,

net growth rate k <0 and vice versa.

M M
Set kP+M=0 = P:—I. P(t):Po:_T in this case.
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13 (a). For Strategy I, we have M, = kP,. For Strategy II, we have M, = P,(e* —1).
13 (b). The net profit for each strategy would equal (M )(p I”Of%s h) , and so the profit for Strategy I

is, then: Pr, = 500,000(.3172)(.75)=118,950, and the profit for Strategy II
is: Pr,, = 500,000(e”'"*> = 1)(0.6) =111,983. Strategy I would be more profitable for the farm.

M M M M
14 (). BN)=—""+(F+-0e", RO =R ==~ + (A +- e

M M
P,(1)=Pe*, P,(2)= - +(Pe* + 7)e"

M M M M, M
14 (b). P(2)-P,(2)= —Iek + P’ + 7(32" T Pe* - 7ek = I(e”‘ —2e" +1)

M
27(ek—1)2. Since M >0, P(2)> P,(2) if k>0 and P(2)< P,(2) if k<O.

14 (c). If k>0, introduce the immigrants as early as possible. If k£ <0, introduce as late as possible.
15 (a). From the general solution of the radioactive decay equation, Q(f)= Ce ", we can use the data
given to find C and k. Q(1)= Ce™ =100 and Q(4)= Ce™" = 30, so combining these

3 1. (10
equations, we find that e = E and therefore, k = gln(?) =0.4013. Using this value of &

with the #=1 data, we find that C = Q, =149.4mg. C = Q,, since the exponential falls off the

expression for Q at r=0.

In2
15 (b). TZHT =~1.727 months.

In(0.01

15 (c). 0.01=¢7". Solving for ¢, we have t=— n(00h =~11.475 months.

In2 In2 ~1n(0.3
16@). 1=22_5730 = k=102 32,4 o ;=003

k 5730 k

T In(%)
t=In(2). — =| =22 |7 ~9953 yr.

") (mz o

16 (b). From (a) r= ") . NG 050 <, I0G) 1 5
In2 In2 In2

or 9901 < ¢<10005 yrs.

60,000 .
M — 60000k _ 60.,000(

16 (c). ) ~2.83(107).
©- =00 (107)
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17.

18.

19.

20.

21.

22.

23.

Q' =-kQ+ M . Writing this D.E. in the conventional form, we have Q" + kQ = M . For this
D.E., p(t)=k and P(f)= kt, which yields an integrating factor of u(f)=¢". Thus,

M
'O + ke" Q= (e"Q) = " M . Integrating both sides gives us Q= e" m + C. Solving for Q,
M u M i )
we have Q= & +Ce . Q,= n + C, so our equation for Q in terms of Q, now reads

M M M
o) = © + (QO - I)e_k' =50e™" + 7(1 - e"k’) . Setting Q(2) =100 and substituting

2  In2 M M
k= “T ==, =0231, we have 100=50¢ ™ + = ~(1-¢™) = 31.5 + - (0.37). Solving for
M ,we find M =42.78 (mg/yr.).

In2 et
= “7 =8 days. Q(=Qe ™ =Qe "

30=Q,e " = Q,=30e"? ~389ug
0.99Q, = Q,e”"". Solving for ¢ in terms of k, we have

1. (100 100
t=—In ( j —In ( ) 4-10°-0.0145 =0.058 -10°=58 million years.
99 In2 \ 99

Contact angle is 180 —30 +45=195° or 6, — 6, = 3.403 rad.
T, =e"%*9(100) = 277.6 1b.
The contact angle, 8, — 6, =2x +2x + 7 =571. T, = *'®°(100-9.8) = °"°"(980) = 4714 N.

Contact Z: 90°+ & + & +90° = 240° where sino = 2i - % — o=30°
a

4 2
0,—0 =—m for T, and ] for 7.
2 1 3 3 3 2

T, =100e*) =152 1b.
T, =100 =231 Ib.

The angle, o, is marked at various places on the diagram below. A right angle occurs at each

of the dots.
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To determine the angle «, part of the diagram is shown here with the radii of the circles

marked.

. a ) 2a
sing=— and sind=—= y=2x.
X

In the text, we are given that x +y =5a.

5a . a
Therefore, x +2x=3x=5a= x=—..sina=—=
X

= .6 = o =.6435 radians.

N
w‘ala

The corresponding contact angles and belt tensions are:
For T,: 2+ o =2214 radians = T, = T,e" "' =100e"***'" =155.7 Ib.
For T;: (7 +a)+2a =75+ 30 =3.501 radians
= T, = T,e""¢") =100V =201 4 Ib.
For T,: (5 +30)+o=7%+40 =4.145 radians
= T, = T,e" ' =100e"P**"> =229.1 Ib.
n_19

24. Contact £: 27 427 +271 +§ =3

1 197,
F= ge0-4< ") =~953.5 1b.

Section 2.5

1 (a). To begin, Q(0)=0 and Q" =(0.2)(3)— %(3). Putting the second equation in the conventional

form, we have Q" +0.03Q0 = 0.6. Multiplying both sides of this equation by the integrating

factor p(t)=e"""

100
e""0=06- 760'03’ +C =20e""" + C. Solving for Q, we have Q=20+ Ce™"*.

gives us (””'Q) =0.6¢"" . Integrating both sides yields
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00)=0=20+C,so C=-20. With this value for C, our final equation for Q is
0=20(1—e"""). Thus, Q(10) =20(1-e"?) = 5.181b.
1 (b). 1limQ(t)=201b and the limiting concentration is 0.21b/gal.

2. V=100(70)20) = 140.000m*. ' =0-2r = 0=Qe ™
1%

_r r 1 %
0010,=Qe " = —;:%111(0.01) = r:%In(IOO).

140 ,000 1

T In(100) = 21,491 m/ Lzﬁln(loo):OJSSS (=15.4%).
1%

3 (a). Tobegin, Q(0)=5 and Q' =0.25r— %r. Putting the second equation in the conventional

form, we have Q" +0.005rQ = 0.25r. Multiplying both sides of this equation by the integrating
factor u(r) = """ gives us ("**"Q)’ = 0.25re”*" . Integrating both sides yields

"0 =0.25(200)e""" + C = 50" + C . Solving for Q, we have Q=50+ Ce**" .
00)=5=50+C,so C=-45. With this value for C, our equation for Q now reads

20

0=50—45¢"" We know that Q(20) = 30 = 50— 45¢ 2", and solving for r yields

[(50 -30)
r=In —=

45
3 (b). This would be impossible, since Q(7) < 501b for all 0 <7< oo.

4 (a). Q =(10te’*)(100)— %(100) 00)=0

)(—10) = IOIn(%j ~ 8.11gal/min.

1 t 1
Q' =25 0+1000re " = (Qe’Y =10001

Qe =500 +C = Q=500 +Ce”™. Q0)=C=0. .. Q(r)=500re" oz.
4(b). Q=50002t-%)e7*=0 = =100 = r=100 min.,

0(100) _ 500100 .
= =1000e2 ~135.3 O
5000 5000 ¢ /gal

4 (c). Plot c(r) vs t. Yes.
5 (a). Tobegin, Q(0)=10, V(0)=100, and V(r) =100 + ¢. Since the tank has a capacity of 700

gallons, 100 + = 700. Solving for ¢ yields #= 600 minutes.
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5 (b).

5 (c).

6 (a).

6 (b).

7 (a).

7 (b).

Q——

0 (2) . Putting this in the conventional form, we have Q" +
100 + ¢ 100 + ¢

Multiplying both sides of the equation by the integrating factor u(f) = ¢*"™"**"” = (100 + 1)*

Q' =(050)-

(100 +1)°

3
gives us ((100 +1)’Q) = 5(100 +£)*. Integrating both sides yields (100 +7)>Q = 5

+C,

100 + ¢ C C
d solving f , h = + 0)=10=50+ ——, and solving for C
and solving for Q, we have Q 5 100+ 1) . 000) 1002 g

yields C =—-40(100)* = —400,000 .
Substituting this value of C back into our equation for Q gives us our final equation for Q,
100+¢ 400,000 400 400,000

f)= = 2O v = 400 at 1= 300, s0 O(300)= - — ~1975 Ib. Th
o= "G00+ '@ a 50 0600)=="="700): ©

concentration, then, is 9705 Ib/gal.

349.2
0(600) = 0 _ 400’0020 =~ 349.2 1b. The concentration, then, is 0 ~ 4988 Ib/gal.
2 (700) 0
Q Q
’ 15)———(15
Q=05 ) 500" )
1-
0(180)=001Q9, Q' = ( O‘) ——Z150 0=0y¢ o~ 30—
0] = ¢~ B0-0080)  _y ,-540-2) _ (]

5401-a)=In(100) = 1-a=0.8528 = «a=0.1472.

3 _ /_ _ QA
0,(0)=1000, Q,(0)=0, Q," =0 1000[500000) and

0, = 1000[Lj - 1000(L).
500,000 200,000

’ ’ 1
Putting the equation for Q, into the conventional form, we have Q, = —%QA . Thus,

t
=1000e ™ . Putting the equation for O, into the conventional form, we have
A g q B

, 1 L =
0, +——0, =2e 3 Multiplying both sides by the integrating factor u(r)=e>® yields

1 1 3t t 3t
Lt | ——— 2 . 2
(Q e™) =2e (200 500) =2e!% Integrating both sides gives us Q,e** = Te“)"‘) +C,and
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7 (c).

7(d).

8 (a).
8 (b).

8 (¢).

8(d).

2 — 2000 2000

solving for Q,, O, = 0??0 e % + Ce 20 . 0z(0)=0= T +C,so C= 5 Substituting

. . . 2000 L
this value back into our equation, we have O, = S e S0 ¢ 20

, 2000 1 ! 1 . b
Setting Q, =0, we have 0= (—) ——¢ 0 4 ——¢ 20 | Sipce ¢ 0 200 = 50—0,
3 500 200 200

3 1000
—t= ln(éj ,and thus 7= ln(éj = 305.4 hours.
1000 2 2

1

Here, we want to determine ¢, such that Q, (¢,) = 5 Ib and 7, such that Q, () <0.2 Ib where

< t,. This can be solved via plotting: 7, = 3800 hours and ¢, = 4056 hours. Therefore,
t = 4056 hours.
r,=r,=3+sint = V =constant.
Expect limQ(7) = .5(200) =100 Ib.
The tank is being “flushed out”, albeit in a pulsating manner.

, : 0 .

=.5@3+sint)———(3+sint), O0)=10
Q' =5 ) 200 ( ), 00)
3 + Slnt 1 . (3t—cos 1% 1 . (31—cos ry

"+ =—(3+sint) = ) = —(3+sint 20
0 200 0 2( ) (Qe ) 2( )e
Qe M =100e" " +C = Q=100+Ce
0(0)=10=100+Ce’™ = C=-90¢ ™= Q(1)=100—90e .
lime """ =0 = 1imQ(f)=100 Ib.
f(t)=3+sint. Therefore, 7= j(3 + sins)ds =[3s—coss], = 3t—cost + 1. Now,

0

g
d_ =05- EQ and Q(0)=10. Putting the first equation into the conventional form, we

T

do 1 0

have e + %Q 0.5, and multiplying both sides by the integrating factor u(z)=e>* gives

’

us [ezOOQJ =0.5¢2 Integrating both sides yields ¢2°Q =100e2® + C, and solving for Q,

Q=100+ Ce 2  Now, Q(t=0)=10=100+ C, and therefore, C =-90.



Chapter 2 First Order Linear Differential Equations * 23

T

Substituting this back into our equation for Q yields Q=100—90e 2, which in terms of ¢

3t—cost+l

reads Q=100—90¢ 2%

10 (a). No limit since we do not expect concentration to stabilize.

10 (b). Q"= 2(1+5sin7)(3)— %(3), 00)=10

3 DRV 3
10(€). Q' +550=0.6(1+sin1) (e”'Q) =0.6¢"'(1+siny).

. —cost+ asint ; 200 e’ (—cost + 2 sint
J.e“’ sintdt = e“ ( ) e™'Q= 0.6{ 3 e ( 200 S1111) +C

a+ az) I+ (%00)2
01 =06 200 N (—cost+ z%ojin 1) Ce At = 40 4 —0.6cost+0.009sin¢ et
3 1+ (3%90) 1.000225
0.6 0.6
00)=10=40-———+C = C=-30+——
1.000225 1.000225

Fhoot .
O(r)=40- 30e 7! + [0.6(6 —cost?) +0.009sin t)j

1.000225
10 (d).

25

100 200 300 200 °

11 (a). First, Q= Qoe_'“ for the radioactive material. To find k from the half-life of the material,

2
EQO = Q,e ™. Solving for k,we have k= Il—g Thus for the decay of the radioactive material

In2
-—1
alone, we have Q(r)=5e¢ '"® with ¢ measured in hours. Now, for the lake, we know that O

varies both with decay and with the water flow. Accordingly, we will begin with the

relationship Q(t+ Ar)— Q(t) = —kQ(t) At — % rAt.
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11 (b).
12.

13.

14.

Using a form of the definition of the derivative and solving for QG we have

r In2 60,000
0G4 —(k + VJQ = _(E + m)Q =~—0.08850. We know that O, = Q(0)=5 Ib, so our

final equation for Q reads Q(f) = 5¢*%*".

Here, (0.0001)(5) = 5¢™"***". Thus, ¢=104.07 hours.

0 =k(S—-6), S=72, 6(0)=350, 6(10)=290

O +k0=kS = ("0 =ke"S = €"0=¢"S+C = 0=S+Ce™
000)=6,=S+C = C=6,-S = 0=5+(0,—-S)e™"

290 =72+ (350—-72)e MY = 218=278¢7"", 10k = 1{%}

1. (278
k= —ln(—j 3 120=724+(350-72)e™ = e =—
10 (218 278

=~ 72.2 min.

1 n( 48 )_ 101n(%%)  10(1.756)
ok \278) In(Z) 0243

To begin,0= 5+ (6, - S)e™™ . With our substitutions for the time the food was in the oven, this

equation reads 120 = 350 + (40 — 350)e™'**. Solving for k, we have

11 (350—120

k=——1In
10 350-40

) = 02985 . The temperature of the food after 20 minutes in the oven is,

then, 8(20) = 350 + (40 — 350)e " = 350 — (310)(0.550) =179.5 degrees. Finally, the food is
cooled at room temperature, so 6(f) =110 =72 +(179.5 - 72)e *"**" . Solving for ¢ yields

1 ln(110_72
0.02985 (179.5-72

0=S+(0,—S)e™; 170=212+(72-212)e "’

k= lln(@) = lln(m) min."
5 42 5 3

, 0 L
P’ = r(l - E)P , P=F, exp{r[i— m_([ G(S)dsj}

0(t) =212+ (72-212)e™ =212 —140¢™"

t= ) =~ 34 .8 minutes.

[oas=2120- 122 (1- %)
! k

1 14
001=expyr 10——[212()__0(1_6101()}
140 k
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15.

16.

~In(100) = {10 151434 — )(1— .09)] = r(=5.143+3.78)

In(?
—4.6052 = r(-1.363) = r=3.379 min"
For the first cup, 6, = 72 + (34 — 72)e”". Thus, with the proper substitutions, 53= 72— 38¢ ™" .

1
e then, is equal to 3—2 For the second cup, 6, = 34 + (72— 34)e™ . With the proper

o _ _ ) 19 .
substitutions, we have 53 =34 +38¢ ™. ¢ then, is equal to g Thus, the two times are

equal.

0=S+(6,—S)e™™ For casserole, 45 =72+ (40— 72)e "

32
—27=-32¢", k= ln( )
2 \27

S(=72+228(1-¢™)  S(2)=150="72+228(1-¢?)

e 78 e 150 228
l-e"=— = 6""=— = =—1n
228 228 2 1150
=k(S()—-0) = O +kB=kS(t) = ("0) =ke"S(?)
= ke (72 +228 —228¢™) = ke" (300 — 228¢ ™)

228k 228k

e =300e" — N C = =300 e +Ce”
22 22
6(0)=45=300- 2% +.C = C=22%_ss5
k—o k—o
22 22
6(8) = 300~ 220K +( Sk _ 255)
k— k—a

5 4
e :(5“)4:(%j ~ 1873, ™ = (™) (%j =.5068

k:lln(?’z) 0.08495 a:—ln(zzgj 0.2094
2 \27 2 \150

k—o=-0.1244 kL =-0.682843

0(8) = 300 —228(—0.682843)(.1873379) + (228(—.682843) — 255)(.5068216)
=300 +29.166—208.14565 =121.02°



