Chapter 6
First Order Linear Systems

Section 6.1

-1 £ r -1 2t—=2  2¢ 32 3¢
1. 2A(1)—3tB(t)=2 — 31 = - 2
2 2r+1 0 r+2 4 4¢+2 0 3¢+ +6¢

|2r-2- 32 282+ 3¢
B 4 2-2t-37

—4 -2

£ t+1 | @=Da+D+2ED | (L
2t+1 1| [20+D+Qt+D=D| |1

4. det[tA(D)]=—-1 -1

[ 2 2841+ 2}
2. A(H)B(t)— B(H) A(1) =

3. A(De(n) =

l—l

5. There are two natural ways to do this problem. We can form the matrix A(#)B(?)
and then calculate det[A(7)B(#)]. Alternatively, we can separately calculate det[A(#)] and
det[B(7)] and use the fact that det[ A(¢#)B(7)] = det[ A(?)]det[B(?)].
Taking the latter course, det[A(£)]= (t—1)(2t+1)— 2> =—(t +1), and det[B(¢)]=
H(t+2)=1t" +2t. Thus, det[A(H)B(1)] = —(t + 1)(¢* +21) = —(£ + 3t* +21).

1
6. det[A(r)]=2t+1 and so the matrix A(¢) is invertible for every value ¢ except 7= 5 The

A by A- ] t+1 —t 1
t 1) = , #+——.
inverse of A(f) is given by A™'(¢) = il il >
7. As noted in Example 2, a square matrix is invertible if and only if its determinant is nonzero.
Now, det[A()]=t(t—3)—4 =1"—3t—4 =(t—4)(t+1) and so the matrix A(f) is invertible for
every value ¢ except t=4and r=-1. The inverse of A(f) is given by

Ae— |17 7 4,#—1
O=han| 2 . FHF
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8. det[A(f)]=2sintcost=sin2¢ and so the matrix A(¢) is invertible for every value t except
2t=nw = t:%’ n=0,x1,£2,+3,.... The inverse of A(f) 1is given by
! csct ! csct
1 cost cost Py Py
Al(t>=2.—[ o }: 27 2 "m0
sinfcost|—sint sint _lsect —sect 2
2 2
9. In this case, det[A(f)]=e'e* —e’e* =e* —¢*" and so det[A(7)] is zero for every value of t.

Hence, the given matrix A(t) is never invertible.

sint rcost 3
— — 1Mo 3
10 limA()=lim t t+1 { }

ir 2t
e sect > 110
i -1
11.  limA()=l G —0 |2 .
imAD=lm , e lim{*~2] lime™" |~ [-2 1
- r— —

cost 3
12.  Differentiating A(f) component wise, we have A’(f) =[ o 0} and

, —sint 0O , , )
A" ()= ) ol A(r),A’(t) and A”(¢) are defined for —eo< t < o0,

0 !
13. Differentiating A(7) component wise, we have A’(f) = and
A”(1) 0 - A(?) is defined fi <t<0and 0< <1
= . is defined for — oo an <l1.
-0251-07" 9¢”

A’(t) and A”’(¢) are defined for —o<f<0and 0<r<1.

3 sect
14, Po=|" and g(f) = .
sint ¢t -5
s Y| [y @ Dy, | [y + (@ D)y, gL
' Vil |4y +1y, +8cne | | 4y +1y, 8tlnt |

P+, t o+l t
o + . Therefore, P(#) = ., |and g(H)= .
4 ¢ y,| |8tlnt 4  f 8tInt

2t 1
16. Let A'(H)= { 2}. Integrating component wise, we find
cost 3t

[ £ +C, t+C12}

A(r) =
2 sint+C,, £ +C,,



Chapter 6 First Order Linear Systems ¢ 117

. Cll Clz 2.5 . 42 t+5
Since A(0)= = , we obtain A(7)=| | .
C, C,| |1 =2 sint+1 -2

4t
17. Let A’(¢)= [ s 32 Integrating component wise, we find
t

Int|+C, 2°+C C 2+C 2 5
Aw=| "1+ G T Since A@)=|_ " 2= we
5t+C,, t+C,, 5+C, 1+C,, 1 -2

, In[¢[+2 2 +3
obtain A(r)= .

5t(—4 -3

It
18. Let A”()= [ O}' Integrating component wise, we find

0
t t £
A/(t): t+C11 E+C12 :>A(t): E+Cllt+Dll g+C12l+D12 .
C21 C22 C21t + D21 C22t + D22
2 3
11 -1 2 oS, B3
Since A(O):[ } and A(l):{ },weobtain An=|5 Mt et
-2 1 =23 ) 20+1
19.  Integrating component wise, we obtain

JtB(S)dS: Jt2sds J.Otcossds J;st :[ﬁ sin? Zt}'
0

0
JOtSds J‘Ot(s+1)*1ds J;3s2ds 5t ln|t+1| £

. e —1 3t
20.  Integrating component wise, we obtain IO B(s)ds = [sin 2t 1—cos2mt ]
2 2

1 ¢
21 (a). One example is A= Lz O}'

0 ¢
22. O leis A= .
ne examp € 1S {O 0j|

Section 6.2

1. The given problem can be written as y’(¢) = P(1)y(1) + g(), y(3) =Y,
t_l

ln| t| e' 0

p(O=1t" and p,(H= ln| t| are discontinuous at ¢= 0. The coefficient function p,,(¢)=tant¢

has discontinuities at 7 /2,%+ 37 /2,.... The largest interval containing #, = 3 but containing

no discontinuities of any coefficient function is the interval 7 /2<t< 37w /2.

tant 0 0 o ]
where P(t) = ,80D=|_| ¥y, = ] . The coefficient functions
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7 (a).

7 (b).

8 (a).

8 (b).

0
tant is discontinuous at =+ /2 and (t +1)” is discontinuous at = —1. The largest interval
containing ¢, =0 but containing no discontinuities of any coefficient function is the interval
—l<t<m/2.

., |(cospy/e* 177 1/¢ 0
In standard form, the problem is y’ = y +  y(H=|_|.
2 41 sect 2

The only discontinuities of p,,(#) and p,,(?) are at =0, while g,(?) is
discontinuous at t=+x/2,+ 37 /2,.... The largest interval containing #, =1 but containing no
discontinuities of any coefficient function is the interval 0 <z< /2.

‘ 1 tant (t+1)7 0
In standard form, the problem is y’ = 2o 4 y + ,¥y(0)= ol

3t 5
P Y 0
In standard form, the problem is y’ = H2'2 ! Z t2 y,y()= {2}
=2 t=-2

The largest interval containing #, =1 but containing no discontinuities of any coefficient
function is the interval -2 <r<2.

Differentiating, y; = 5S¢, e5’ + 3c2e3’ and y} =5c,e” —3c,e’ . Calculating the right hand sides,

4y, +y,=4(c es’ +c,e’)+(ce” —c,e’)=5¢ce” +3c,e’ =y and
y,+4y,=(ce” +c,e’)+4(ce” —c,e’)=5¢c,e” —3c,e’ = ).

, |41
Y—14y

e’ cost e'sint
—e'sint *l e’ cost

2 2 1
For y=ce [ 1}+cze [ }we have y’=2cle2'[ 1}+3cze3t[ J. On the other hand,
2

O ) [ B

Tl I W1 2] 1 ul 4 | 3 , .
el 4l gty 4 1|7 ae | | T | 5| Thus, y'= Ay for every choice of

¢,and c,.
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10.

11.

12.

13.

In order to solve the initial value problem, we first note that

0 2 1 2 1 |¢ T Ivi 2 1]|¢ 4 bai
= + = . = t
y(0)=c¢, 1 c, 1 e, us, solving e, 3 , we obtain

2l 2 ! 2e” +2e” | | _
¢, =1 and c,=2.Therefore, y(t)=e¢ ! +2e LT o2 g is the solution of the
- - —e” —2¢

given initial value problem.

, o3 1 L 3+2 L|3+4
For y'=ce 5 +c,e 5 , Ay =ce 441 +c,e 442

. 1 _1 Cl _1 . 2651‘ _ 367[ )
Solving 12 e, =| g Ve obtain ¢, =2 and ¢, = 3. Therefore, y(f) = 2o 4 6o is the

solution of the given initial value problem.

y(7)
y'(D)

. [yo] 40 Jo 1Tyn] o
Y ()= L’N(IJ = [—tzy’(t) —4y(n +sin J = [_4 _p }L,(’)} + Lin J. Therefore, the scalar

0 1 0
equation can be written as Y’ = P(1)Y + G(¢) where P(7)= [ 4 IJ and G(¢)= [ ) J.
-4 - sin

Let Y(¢) = [ } Calculating Y’(7), we find

y(7)
y'(1)

Y'(r)= Y = 0 : ¥ + 0 Therefore, the scalar equation can
Ty | | —esect Brsect| v | | (2 +Dsect | ’ q

be written as Y’ = P(¢)Y + G(¢) where P(t) = [

y()
Let Y(¢)=| y’(¥) |. We solve for y””” by multiplying the equation by ¢ and find

v (1)

Let Y(?)= [ } Calculating Y’(7), we find

} and G()= [(t2 +1)sec t}'

—«ﬁ sect 3tsect

y'(1)
Y'(r)= vy (1) . Expressing Y’(¢) in matrix terms, we
—Se”'y""(H)—e 'ty ()= (e tant) y(£) + e~
0 1 0 y(1) 0
have Y'(¢) = 0 0 1 y'(¢) |+| O |[. Therefore, the scalar equation can be
—e"tant —e 't =Se” |y ()| |e”’
written as Y = P()Y + G(z) where
0 1 0 0
P(H= 0 0 1 and G()=| 0

—e"tant —e't' —5e7' e

t
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y(1) 0 1 0fy® 0
14. LetY()=|y® | Y(@®=|0 0 1| ¥(t) |[+| O |. Therefore, the scalar equation can
v (f) t —cost 2[|y7()]| |e
0 1 0 0
be written as Y’ = P()Y + G(r) where P(t)=1|0 0 1|{and G(r)=| O
t —cost 2 e
15. Let Y(7)= [y(t)} so that Y'(¥) = [y’(t)}' We are given that
y'(1) Y (1)

Y= 0 1} y@® . 0 | y'(®)
=3 2y ()| [2cos2t| | -3y(0)+2y'(f)+2cos2t |

Therefore, equating components of the vector Y’(), we see that the scalar equation is

¥y’ =-3y+2y" +2cos2t, y(-)=1,y'(-1)=4.

16. y7 =4y +2y= e, y(0)=1,y'(0)=-2, y”(0)=3.

yi(0) y(t) ] y'(1)
t “(t "(t
17. Let Y(1)= y2() = y”( ) so that Y'(¥) = y,,,( ) . We are given that

;| | Y@ Yy

(0] [y (®] y(n)
B y

, Y Y’ :
Y ()= = ' . Equating components of the vector
V4 y
Yo+ yssin(y) +ys | [y +y7sin(y) +(y”)?

Y’(#), we see that the scalar equation is
Y=y +y sin(y) + () yD=0,y'()=0,y"(D)=~1,y""(1)=2.

18.  Making the indicated change of variables, the system of differential equations is
V=Y +Y,+1Y,

Y =2Y,+Y, +Y,

Y’ = P(1)Y + G(t) where

. Therefore, the system can be expressed in the form

0 1 00 0
P b d G 0
D=0 0 o 1| EO=]g
2t 1 0 1 0
19.  Making the indicated change of variables, the system of differential equations is

Y] =t"Y, +4Y, - tY, + (sinn)Y, + e’
Y/ =Y -5, '
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Therefore, the system can be expressed in the form Y’ = P(¢)Y + G(¢) where

0O 1 0 O 0
4 ' —t sint e’
P(1) = 6 0 0 1 and G(t) = 0
1 0 0 =5 0
20.  Making the indicated change of variables, the system of differential equations is

Y =4Y,+7Y,-8Y, +6Y, +
Y] =3Y, - 6Y, +2Y, +5Y, —sint
Y’ = P(t)Y + G(t) where

. Therefore, the system can be expressed in the form

0O 1 0 O 0
p 4 -8 6 4G ?
H= )=
D=y o o 1|2dGO
3 -6 2 5 —sint
21.  Making the indicated change of variables, the system of differential equations is

15Y, +9Y, + 3Y/=12Y, - 6Y, + 3¢
Y, +5Y, - Y/=2Y,—6Y, +1 '
Writing this system in standard form,
Y] =4Y,-3Y,-5Y,-2Y, + ¢
Y/ =5Y,+6Y,-2Y,+Y,—t
Therefore, the system can be expressed in the form Y’ = P(¢)Y + G(¢) where

0O 1 0 O 0

4 -3 -5 2 r
P(t)= 00 0 1 and G(9)=

5 6 =2 1 —t

Section 6.3

1 (a). In matrix terms, the system has the form y’ = Ay where

Wil |9 4l , |19 4
v 7ls <2y | Y This
1 (b). We have

.| 6e” Caleulating A b 9 —4|2e"| |18 —12¢™ q
= . Calculatin , we obtain = an
y 9¢™ & &Y 15 =7 | 3¢* 30e™ —21e™

3t

therefore, Ay = [9 3;} , showing that the function y() is a solution of y’ = Ay .
e

3 -2
2 (a). y’={4 Jy-
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3 (a). In matrix terms, the system has the form y’ = Ay where

vy 1 4|y , 1 4
I FIN N
3 (b). We have
, {Ze’ cos2t—4e'sin2t¢

. . . Calculating Ay, we obtain
—e'sin2t—2e' cos2t

141 2¢ cos2t| |2e'cos2t—4e'sin2t
-1 1 -
the function y(?) is a solution of y’ = Ay.

0 1
4. y=/2 _2l.

} . Therefore,

—e'sin2t —2e'cos2t—e'sin2t

S5(a). In matrtix terntls, the system has the form y’ = Ay where
v 0O 1 1|y 0 1 1
v, |=|-6 -3 1|y,|ory =|-6 -3 1ly.
v, -8 -2 4]y, -8 -2 4
5 (b). We have
¢!
y’=|—e' |. Calculating Ay, we obtain
2¢'
0 1 1]¢€ —e' +2¢' e'
—6 -3 1|—€"|=|-6e"+3¢" +2¢' |=|—¢' | and therefore
-8 -2 4|2 —8e' +2¢' + 8¢’ 2¢'
the function y(?) is a solution of y’ = Ay.
2 1 1
6. y=[1 1 2.
1 21

7 (a) y’:rest} and also Ay :[9 _4}{261:[lgest_lzem}w’
CTh | 9e™ P15 -7 36 30e™ =21 1'
Similarly for y’,.
7 (b). The Wronskian W(t) is given by

2e3t —t

W (¢) = det[\P(¢)] where P(¢)= [ 3 »
3e”" Se

2¢" 2e7 | ¢
7). ym:[Se” Se_’}[c}

}. Thus, W (f) = 10e* — 6¢* = 4e*.
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1

J . Solving, we find

2 2c
7 (d). Given the general solution in part (c), y(0) = [3 5}[ ] }: [
6
c, —-1/4

0= 2w =asa) % 72
Y= 3™ 57| 9¢* —5¢”" |

8 (b). The Wronskian W(¢) is given by

c 3/4
[ : }: [ } Therefore, the solution of the initial value problem is

2% —de™ 4e* +2e
3¢’ —10e™  6e™ +5¢™

27 —4e" de’ +2e¢7 | ¢
8 (¢). Y(f):{ }[ }

W (¢) = det[\P(¢)] where W(¢)= [ } Thus, W (1) = 20e> #0.

3¢ —10e™" 6’ +5¢7" | ¢,
0

J . Solving, we find

-2 6 |c
8 (d). Given the general solution in part (c), y(0) = [ 7 11}[ ] }: [
_ ¢,

c -3/10
[ : }z [ 1/10}. Therefore, the solution of the initial value problem is
c, -

O=3/10) 26 "4 Lo ¥ T2 §e3t+€5_t
Y= 3¢¥ —10e™ 6’ +5¢7 || = Y|

. |—e” 3 2| " 3¢ —4e™ ,
9@. y = {25’} and also Ay, = [_4 —3}[—2{’} = {—45’ N 6e"} =y;.
Similarly for y’,.
9 (b). The Wronskian W(z) is given by
[ e 3e”
| —2e”" 6e™
and therefore, the given set of solutions is not a fundamental set of solutions.
10 (b). The Wronskian W(¢) is given by

W (1) = det['\P(¢)] where W(r)= } Thus, W ()=6e > —6e' =0

W)= det[‘P(t)] where W(¢) =

—5e™* cos 3t —Se ™ sin 3¢
) ] > ] . Thus
e “(cos3tr—3sin3r) e “'(3cos3t+ sin3¢)
W(t)=-15¢"" #0.
—5¢7* cos 3¢ —5e ' sin 3t ¢,
10 (¢). y(©)= o

(cos3t—3sin3f) e *(3cos3t+sin3f)

c -1
10 (d). Given the general solution in part (c), y(0) = [ }[ } [ } Solving, we find [ '}:[ ] }
¢y

e (cos3t—sin37)
2(2cos3t+4sin37) |

, ¢ -3 2| ¢ —3e¢' +4e' ,
11 (a). y; = 50! and also Ay, = 4 3 e 17| 4 6o =y

Similarly for y’,.

Therefore, the solution of the initial value problem is y(#) = {
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11 (b). The Wronskian W(¢) is given by

t —t

W (1) = det[¥(r)] where T(r):{ ; ,
—Le

e e’ |¢
11 (c). Y(f):[_ze, —e”}[c}

Tl 1
11 (d). Given the general solution in part (c), y(1) = { ¢ ¢ }{ 1}: [ 3} . Solving, we find

-t

}. Thus, W(t)=—-1+2=1.

e —e¢!

c 2¢7!
[ l}: [ ¢ } Therefore, the solution of the initial value problem is
c, —e

(t)_zeil e , e ~ 2e' ™ — ot 7
Y= —2e' —e' | | —de™ +e |

12 (b). The Wronskian W(¢) is given by

3t

.Thus, W(f)=-3e"" 0.

W ()= det[‘P(t)] where ()= E

1 e ¢
12 @), Y(’):L _263,}[6 }

1 e’ |c -2
12 (d). Given the general solution in part (¢), y(—1) = [l ; 4 }[ 1}: [ 4 } . Solving, we find
J— e 6‘2

—2e™

C2 463(t+1)

o [2t-2 207 1=-20 4207 | -2t
i=| , and also Ay, =

¢ 310 5,3+
[ l }: —%[6}. Therefore, the solution of the initial value problem is y(#) = [ }

13 (a).

22 2t =277 2t

[e-4rh+@i-4+4rh]
- [ (2+41") +(4—4r) } Y
Similarly for y’,.

13 (b). The Wronskian W(¢) is given by

=2t t-1 s
W(t):det[‘P(t)] where ‘I‘(t):[ 5 | }.Thus, W) =-t".

=2t t—1]¢
13 (¢). Y(t)=[ 5 . }L}

0 1fc -2 c 1
13 (d). Given the general solution in part (c), y(2) = [4 J{ 1}: [ ) } . Solving, we find [ 1}= [ 2}.

¢, ¢,

: . . -2t [t=1] |£—4r+2
Therefore, the solution of the initial value problem is y(#) = o T 2 B i |
t r—
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14 (b).

14 (c).

14 (d).

15 (a).

15 (b).

15 (©).

15 (d).

The Wronskian W(?) is given by

e 0 0
W () =det[WP(¢)] where W(£)=| 0 2e'cos2t 2e'sin2t|. Thus, W(7)=2.
0 —e'sin2r e'cos2t
e 0 0 ¢

y(©)=| 0 2e'cos2t 2e'sin2t|c, |.
0 —e'sin2r e'cos2t | c,
1 0 Ofc¢ 3
Given the general solution on part (¢), y(0)=|{0 2 Ofc, |=| 4
0 0 1fc, -2

q 3
Solving, we find | ¢, |=| 2 |. Therefore, the solution of the initial value problem
C, -2
3¢

is y(r)=| 4e'(cos2t—sin2t)
2e' (—cos2t + sin2t)

5e' -21 —-10 2 | 5¢ 5e'
y;=|-1le' | andalso Ay,=| 22 11 =2|-1l¢'|=|-1le' |=Yy;.
0 -110 =50 11} O 0

Similarly for y’, and y’,.
The Wronskian W(?) is given by

e’ e e
W () =det[P(¢)] where W(f)=|—-1le’ O —e'|. Thus, W(t)=—11le.
0 1l 5¢™
e’ e e |
yio)=|-1le 0 —e'|c,|.
0 1le' 5¢ |c,
5 1 1]¢ 3
Given the general solution on part (¢), y(0)=|-11 0 -1|c,|=|-10].
0 11 5 |c, -16
C 1
Solving, we find | ¢, |=|—1|. Therefore, the solution of the initial value problem
Cy -1
¢’ e' e’ 4e' —e™'
isy(n)=|-11le' |=| 0 |—=|—e" |=| —11le' +e”'

0 11e' S5¢”! —11le' = 5¢™"
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5¢" €
16 (a). W(t):det[ 3 i:z
—Te

16 (b). The trace of Aisequalto 6-6=0.

" [ P(s)lds " 0ds
16 (c). For ,= —1,W(t0)ejfo’ _0 s

2t 4t
—€

Se2t e4t o
17 (a). W(r)=det . =2e
—Te

9 5
17 (b). The trace of A= [ 7 3} isequalto 9+ (-3)=6.
[[mponas [leas o
17 (c). For t, =0,W (t,)e™" =2e" =2e.

-1 ¢ -1t

18 (a). W(r)=det| =—t e
0

18 (b). The trace of Aisequalto 1-t™.

" [P (s)lds (=5 )ds il o _ _
18 (¢). For 1, = I,W(t(,)ej’0 = —e(ef‘ = —ee' ™M = g = ot = et

2 0 e 2 0 1
19 (a). W(H)=det|—e' —e' e* |=e'ee*det|-1 -1 1|=—-6e"
-’ e eV -1 1 1
2 1 1
19 (b). The traceof A=|1 1 2| isequalto 2+1+1=4.
1 2 1
. [ ripsnas [ ads u
9 (c). For t,=0,W (t,))e™ =—6e" =-6e"".
3t
20 (a). W (1) = det E o }: 3¢’ #0.

20 (b). 3¢™ = 3eh™ 5 A= 3.
20 (0) 5 2¢ oy 0 6e A 5 2e
C). = = = .
v 1 e v 0 3e* 1 e

0 6| 1 | —2e -2 10
20 (d) A = 3 | S 3 = .
0 3¢’ | 3e'| -1 5 -1 5

The results are consistent since tr[A]=-2+5=3

. . " (P (s)lds
21. If W(¢) is constant, then by Abel’s Theorem, the function e™ must also be constant.

Therefore, g(¢) = jtt tr[ P(s)]ds must be constant and hence the derivative of g(¢) is identically
0

zero. However, by the fundamental theorem of calculus, g’(z) = #r[P(¢)] and hence the trace of
P(f) must be zero. Since the trace is equal to 3+« we conclude that ¢ =-3.
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Section 6.4

2
1 (a). Let F(t):[fl(t),fz(t)]z[i ;}.Then, det[F(£)] = 2t— .

1 (b). No, because we do not know whether the functions f(#) and f,() form a fundamental set of
solutions for a linear system.

1 (c). Yes. At t=1, the determinant is 2—1=1# 0. Therefore, [f (?),f,(H]k=0=k=0.

2(a). det[F()]=re' —tsint.

2 (b). No

2 (c). Yes. At t=1, the determinant is e - sinl # 0.

te'  sin’t
3(a). Let F(f)= [fl(t),fz(t)]z[

L } Then, det[F(¢)]=2te' —(t—1)sin’ ¢.
t_
3 (b). No, because we do not know whether the functions f,(#) and f,(¢) form a fundamental set of

solutions for a linear system.
3(c). Yes. At t=1, the determinant is 2e # 0.

t £ [t k] [O] )
4. k| |+k)| |= =| [det=t-t"#0 at =2 for example = k =0. Therefore, the
1 1 1 1]k 0]
given set of functions is linearly independent.
, e' e’ | |0 ke' +ke™ | [0]
5. We need to solve the equation k, +k, = or =| |. This vector
1 0 0 k, 0

=0 and k, =0. By the second equation, k, =0 and hence, using

equation requires ke’ + k,e™’

this fact in the first equation, k,e”" = 0. Multiplying this identity by the nonzero function e’,

t -t 0
we see that k, =0 as well. Hence, the only way to satisfy kl[el }r k{eo }E {0} is to choose
k, = k, = 0. This means the given set of functions is linearly independent.

e’ e’ sinh 0] ] ) )
6. k, | +k, | + k, o ITlof Letk, =1, k, =—1, k; =-2.The given set of functions is

linearly dependent.

1 0 0 k, 0
7. We need to solve the equation k| t |+ k,| 1 |=|0| or | kt+k, |=|0|. The first component of
0 ] |0 k,t* 0
this vector identity cannot be satisfied unless k, =0 and the third component cannot be
1 0 0
satisfied unless k, = 0. Hence, the only way to satisfy the identity k| ¢ [+ k,| 1 [=|0|1s to
0 ] |0
choose k, =k, =0. This means the given set of functions is linearly independent.
1 0 0o (O
8. k|t|+k)|1|+k|0|=]|0} Letk =0, k, =0, k; =1. The given set of functions is linearly

0 £ 0Ol (O
dependent.
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10.

11 (a).
11 (b).

11 (c).

12 (a).
12 (b).

12 (©).

1 0 0o |0 k, 0
We need to solve the equation k| t |+ k,| 1 |+k,|0|=|0| or | kt+k, |=|0|. The first
0 r 1| |0 kit +k| |0

component of this vector identity cannot be satisfied unless k, =0 and therefore the second
component requires k, = 0. Given that k, and k, must both be zero, the third component then

1 0 0| |0
requires that k, =0. Hence, the only way to satisfy the identity k| ¢ |+ k,| 1 |+ k|0 [=|0|1s
0 r 1] |0
to choose k, = k, = k, = 0. This means the given set of functions is linearly independent.

1 0 1 0
1
k|sin®t |+ k)| 2—2cos’t |+k,|0 |=|0 | Letk, =1, k, == k, =—1. The given set of
0 -2 1 0
functions is linearly dependent.

t t2
Let F(f)= [; t}. Then, det[F(1)] = re'.

Since the determinant is zero at ¢ =0, F(#) cannot be a fundamental matrix for a linear system
defined on an interval containing 7 = 0.
A fundamental matrix W(z) satisfies the matrix differential equation ¥’ = P(r)¥ . Given that

t

t tz 2t
Y(r) = ﬁ) }, we know that W’ (r) = ﬁ) | } Therefore, the equation ¥’ = P(#)'¥' implies
t

‘o2t L7
that {; | }: P(t)ﬁ) } Postmultiplying by W', we see that ¥"¥~' = P(¢). Therefore,
t

. Canceling the nonzero

e 2ttt -7 e’ @t—1)e!
1/(te ){0 1}{ }zP(t) and so P(f)=1/(te ){O , }

0 €
(2t— tz)}

t
term e’ we have P(f) = tl{O |

£ 2t ,
Let F(1)= 0 1 . Then, det[F(f)]=1t".

Since the determinant is zero at =0, F(#) cannot be a fundamental matrix for a linear system
defined on an interval containing 7 = 0.
A fundamental matrix W(z) satisfies the matrix differential equation ¥’ = P(r)¥ . Given that

£ 2t 2t 2
Y(r) = [0 | }, we know that W’ (1) = [O 0}. Therefore, the equation ¥’ = P(r)¥ implies
2t 2 t
that = P(1)
0 O 0

,J2t 271 21 200 =2 .
1/(t) g =P(t) andso P(¥)= 0 0 which is continuous on

2t
| } Postmultiplying by W', we see that ¥"¥~' = P(¢). Therefore,

0
(-00,0) and (0,%0).
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13 (a).

13 (b).

13 (©).
14 (a).

14 (b).
14 (c).
15 (a).

15 (b).

el —e’
t -t

We first show that ¥’ = P(r)¥ . Now, W’ (r) = {
e e

} whereas

—t

0 I]e e el —e’ _ , .
P(H)¥Y(r) = . = _, |- Thus, since ¥’ = P()'¥, we know that ¥'(7) is a
1 Ofe —e el e

solution matrix. To show W(¢) is a fundamental matrix, we need to verify that det[\¥(r)] #0.

Since det[W(7)]=-2, we know W(7) is a fundamental matrix.

- sinht cosht| [|le'—e” e +e . a b

V(1) = ) == B |- Thus, we need a matrix C = such that
cosht sinht| 2|e' +e e —e”' c d

lle'—e" e'+e'| | e’ |a b : : : : .

= PR = B . Expanding the right-hand side of this matrix

2|le'+e' e'—e el —e'|c d

equation, we arrive at the requirement

e —e’ e +e’'| [ae' +ce”’ be' +de ) ]
s PR ) » . _, |- Comparing entries, we see that
2|e'+e" e'—e'| |ae'—ce" be' —de

1/2 1/2,b=1/2,and d=1/2.Thus, C ez
a=1/2,c=-1/2,b=1/2,and d = . Thus, C= 12 12|

det[C]=1/2 and thus, ‘i’(t) is a fundamental matrix.
Since det[W(7)]#0, we know W¥(¢) is a fundamental matrix.
2e' —e’

- e +3e”’ el —e'[2 1 2 1
Yo=_, . = ~ . Thus, C= .
2¢' +e7" e =3¢’ e e |1 3 1 -3

det[C]=-7 and thus, ‘i’(t) is a fundamental matrix.

t _26721‘

We first show that ¥ = P()¥ . Now, ¥'() = [Z =
e

} whereas

0 -3¢ 0 6™
a solution matrix. To show W(7) is a fundamental matrix, we need to verify that det[\P'(7)] #0.

Now det[W(r)] = -3¢ 'and thus is never zero for any value 7. Therefore, W(z) is a fundamental
matrix.

1 1]e ™ el 2 , , .
P(H)¥Y(r) = 0 - = . Thus, since ¥’ = P()¥, we know that W¥(7) is

- 2e . a b
YY) = 6 0 and so we need a matrix C = J such that
—6e c
2 0] e e Ja b : : : : . :
. = o . Expanding the right-hand side of this matrix equation, we
|—6e" 0| [0 -3¢ |c d

arrive at the requirement

27 0| |ae' +ce™ be' +de™ , o

e 0 = 3ee? ade? | Comparing entries in the second column, we see that
—6e —3ce —3de

d=0and b=0. Comparing entries in the first column, we see ¢ =2 and a=0. Thus,

c:B g}
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15 (¢). det[C]=0 and thus, ‘i’(t) is a solution matrix but not a fundamental matrix.
16 (a). Since det[¥(¢)]=—6e> %0, we know P(7) is a fundamental matrix.

e +e' 4e* e +4e* e e 4|1 0 1 1 0 1
16 (b). ¥(H)=| 2" &* e |=|0 —2¢" €' |1 0 O|.Thus,C=|1 0 O
0 3e? 3e?! 0 0 3¢ [0 1 1 0 1 1

16 (¢). det[C]=1 and thus, ‘i’(t) is a fundamental matrix.

et

et

17. For W(1)= [ ¢ _t} , we need a matrix C such that ‘i’(t) =¥ (r)C where ‘i’(O) =1.This
—e

requirement means that [ = ‘i’(O) =¥Y(0)C.

1 1 11 1
Equivalently, C is the inverse of W(0) = [1 J. Thus, C=Y¥(0) ' = 5[1 J.
2t

18. For (1) = {f) Z }, we need a matrix C such that ‘i’(t) =¥ (r)C where ‘i’(O) =1.This
—3e

2t
requirement means that [ = ‘i’(O) =¥Y(0)C.

1 1 1|-3 -1
Equivalently, C is the inverse of ¥(0) = {0 3}. Thus, C=Y¥(0) ' = _5[ 0 1 }

Section 6.5

4 201 2
1(a). Ax, = {_1 JLJ = [_2} = 2x,. Thus, x, is an eigenvector corresponding to the eigenvalue

4 21-21 [-6]
A, =2. Similarly, Ax, = [ ] J{ ] }: [ 3 |7 3x,. Thus, x, is an eigenvector corresponding

to the eigenvalue A4, = 3.

1

1 [—2
1 (b). Solutions are y,(f) = eZt[_J and y,(H)=e" }

2t

3t
.. e —z€ . .
1 (¢). The Wronskian is W (f) = det[ 5 2 }: e’ —2¢” =—¢'. Since W(¢) is nonzero for any
—e e
value ¢, the two solutions form a fundamental set of solutions.

7 =313] |3
2 (a). Ax,= {16 —7}{8} = [—8} =—1x,. Thus, x, is an eigenvector corresponding to the eigenvalue

7 31 1
A, =—1. Similarly, Ax, = [16 7}[2} = [2} =1x,. Thus, x, is an eigenvector corresponding
to the eigenvalue 4, =1.

3 1
2 (b). Solutions are y,(f) = et[g} and y,(1)= e’{z}.
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2 (c).

3 (a).

3 (b).

4 (a).

4 (b).

5 (a).

5 (b).

5 (c).

6 (a).

6 (b).

6 (c).

8e™
two solutions form a fundamental set of solutions.
The vector x, =0 cannot be an eigenvector since an eigenvector must be nonzero. Considering

11 5|1 1
the other vector, Ax, = m 10172 =X,. Thus,

X, is an eigenvector corresponding to the eigenvalue 4, =1.

3 -t t
The Wronskian is W (1) = det[ ¢ 26 t} =-2#0. Since W(?) is nonzero for any value ¢, the
e

1
The solution is y,(#) = et[ 2}.

-5 2011 [1] -5 201] [-1
AX, = =| . |=1x,, Ax, = = . Thus,
-18 7)3]| |3] -18 72| |4

X, is an eigenvector corresponding to the eigenvalue A, =1, but x, is not an eigenvector.

3

1
The solution is y,(r) =¢' }

0 1)1 -1
AX, = L O}{ J = [ ) }: —X,. Thus, x, is an eigenvector corresponding to the eigenvalue

0 1(2 2
A, =—1. Similarly, Ax, = [1 O}{J = L} = X,. Thus, x, is an eigenvector corresponding to
the eigenvalue 4, =1.

1 2
Solutions are y,(7) = et[ J and y,(7)= e’[z}.

—t t

. et =2+2=4.Since W(z) is nonzero for any value ¢, the
e

The Wronskian is W () = det[ ¢
—e

two solutions form a fundamental set of solutions.

2 —1]1 4
Ax, = {_4 ) }[_2} = [—8} =4x,. Thus, x, is an eigenvector corresponding to the eigenvalue

2 11 0
A, =4 . Similarly, Ax, = [ 4 9 }[2} = [O} = 0x,. Thus, x, is an eigenvector corresponding
to the eigenvalue 4, =0.

1 1 1
Solutions are y,(f) = e‘”[_z} and y, (1) = €0|:2i| = [2}

4t

1
The Wronskian is W (1) = det[ ; 2} =4¢* #0. Since W(¢) is nonzero for any value ¢, the

4
e t

two solutions form a fundamental set of solutions.
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-4 3 ) -6 37 x, 0
7. For A= the equation (A—27)x =0 has the form = . Elementary row
-4 4 -4 2] x, 0
operations [—(1/3)R, then R, +2R,] can be used to row reduce the system to
2 -1 x 0 ) ™ ) ) _xl X, 1 0
= = . t = = = S #0.
0 0]x, 0 or 2x, = x,. Thus an eigenvector is X -, 2x, X, 5 X,
5 3 ) 6 37x 0
8. For A= the equation (A + I)x =0 has the form = . Thus an
-4 -3 -4 2] x, 0
. . X X 1
eigenvector is X = = =X, ,x, #0.
X, —2x, -2
11 , -4 1] x] [0
9. For A= 46 the equation (A—57)x =0 has the form = ol Elementary row
operations [—(1/4)R, then R, +4R,] can be used to row reduce the system to
1 -1/4] x, 0 4 T . . x| [ x 1 0
= = A t = = = S #0.
0 0 |x, 0 or 4x, = x,. Thus an eigenvector is X x| 4x, X, 4 X,
1 -7 3 5 =7 3| x 0
10. For A=|-1 -1 1|theequation (A+4/)x=0 hastheform|-1 3 1| x,|=|0|. Thus
4 -4 0 4 -4 4] x, 0
X, 2x, 2
an eigenvectoris X=|x, [=| x, [=x,| 1 [ x, #0.
X, —X, -1
31 1
11. For A=|-1 1 -1|theequation (A—2/)x=0 has the form
2 1 2
I 1 1]x 0
-1 -1 -1|x, [=|0|. Elementary row operations (R, + R, then R,—2R,) followed by
2 1 0|x, 0
I 0 —1]x 0
R, + R, and (—R;) can be used to row reduce the systemto |0 0 O | x, |=|0|,or
0 1 2 |x 0
X, X, 1
X=X . .
Thus an eigenvectoris X = x, |=|—2x; |=x;| -2 |, x; #0.
X, =—2x, . ) ) )
X, X5 1
1 3 1 -4 3 1]|x 0
12. For A=(2 1 2 |theequation (A—5/)x=0 hastheform| 2 -4 2 |x,|[=|0].
4 3 =2 4 3 T x 0
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13.

14.

15.

16.

17.

18.

X, X, 1
Thus an eigenvectoris X=|x, |=| x, [= x| 1|, x, 0.
X, X, 1
-2 3 1
For A=|-8 13 5 |the equation Ax=0 has the form
11 -17 -6

-2 3 1|x 0
-8 13 5 | x,|=|0|.Since the arithmetic looks forbidding, we turned to MATLAB and
11 =17 -6 x, 0
I 0 1]x 0
used the RREF command. MATLAB says the system is equivalentto [0 1 1| x, [=[0|, or
0 0 Ofx, 0

_ X, —X; -1
l Thus, an eigenvector is X =| x, [=|—x; |= x5/ =1 | x; #0.
X, =—X;. ~ 3 3
X, X, 1
- . —S5-4 1
The characteristic polynomial is p(1) = 0 4-3 or
p(A)= (A +5)(A—4).Thus, the eigenvalues are 4, =-5and 4,=4.
8 0 8—1
For A= [3 2}, the characteristic polynomial is p(A) = 3 o
p(A)=(8—-A)(2—A). Thus, the eigenvalues are A, =8 and A,=2.
3-4 3
The characteristic polynomial is p(4) = 6 6" or
p(A) = (A)(A-9). Thus, the eigenvalues are A, =0 and A,=9.
For A=|> | the ch stic polynomialis pty=| "~ >
= t terist = ;
or 4 3 e characteristic polynomial is p(4) 4 ) or

pA)=(5-2)B-1)-8=1-81+7=(A—-T)(A-1). Thus, the eigenvalues are
A =T7and A,=1.
The characteristic polynomial is

5-4 0 0

pMH=| 0 1-2 3
0o 2 2-1
or pA)=(G-DP=3A-4)=5-DA-DA+1)=-2+82—111-20 and the

eigenvalues are 4, =—1,4, =4, and 4,=5.
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-2 3 1
19. For A={-8 13 5 | the characteristic polynomial is
11 -17 -6
—2-1 3 1
p(A)=| -8 13-4 5 |. Given the arithmetic required to find the
11 -17 —-6-14

characteristic polynomial, it is advisable to use a computer routine such as
poly(A) from MATLAB. However, it is possible to find p(A) by hand:
—2—-1 3 1
-8 13-4 5 =(—2—l)‘
11 -17 -6-14
or pA)=(2-AX=TA+T)=38A-7+1IA-=T)==2 +51 -6A.
Thus, p(A) =-A(X* =51 +6)=—A(A - 3)(1—2) and hence the eigenvalues are
A =0,1,=3,and A,=2.
20.  The characteristic polynomial is
-1 -7 3
pA=|-1 -1-41 1
4 -4 -1
or p(A) =—-A(X =16) = (-A)(A—4)(A +4) = -1’ +161 and the eigenvalues are
A =0,4,=4,and A,=—4.
21. The eigenvalues are A, =—-2 and A, =2 with corresponding eigenvectors

3
-17 —-6-1 11 —-6-1

13-4 5 —8 5
11 -17

‘—8 13—&‘
+

3 1
X, = [2} and x, = [2} . A fundamental set of solutions consists of the functions
-2t 3 2t 1 : :
y(=e ) and y,(H)=e 5| Therefore, the general solution is

3 1 3 1
y()= clez'[z} + cze2’{2} . The solution of the initial value problem is y(z) = ez’[z} + €2t|:2i| )
22.  The eigenvalues are A, =—1 and A, =3 with corresponding eigenvectors

1 3
X, = [ 2} and x, = [ 2} . A fundamental set of solutions consists of the functions

1 3
y, ()= e’[ 2} and y,(H)= 631|: 2} . Therefore, the general solution is

1 3
y(t) = clet[ 2} + cze3t[ 2}. The solution of the initial value problem is

330D _ =D
y(@) = . P
N P
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23.

24.

25.

26.

The eigenvalues are A, =3 and A, =5 with corresponding eigenvectors

1 1
X, = [J and x, = [2} . A fundamental set of solutions consists of the functions

1 1 1 1
y, ()= e3’[1} and y,(H= es’{z} . Therefore, the general solution is y(7) = cle3’[l} + czeSt[z} .

1 1
The solution of the initial value problem is y(¢) = 3e3’[1} + 465{2:| .

The eigenvalues are A, =—0.11 and A, =-0.05 with corresponding eigenvectors

—0.11¢ 1 _ -005¢ 1
y(H=e [_J and y,(f)=e [2}

The eigenvalues are 4, =1,4, =2, and A, = 3 with corresponding eigenvectors

1 1
X, = [ J and x, = [2} . A fundamental set of solutions consists of the functions

1 1 1
x,=| 1| x,={0}], andx;=|1|. A fundamental set of solutions consists of the functions
-1 0 0
1 1 1
y,(H)=e'| 1 |, y,()=e”|0}|, and y,(f)=e”| 1 |. The solution of the initial value problem is
-1 0 0
1 1 1
y(H)y=e'| 1 [+e*|0[+2e¥]|1].
-1 0 0
The eigenvalues are 4, =-2,1, =1, and A, =4 with corresponding eigenvectors
1 2 1
=|-3|, x,=|-3|, and x,=|0 |.A fundamental set of solutions consists of the functions
3
1 1
y,()=e| -3 | y,()=¢'|-3| and y,(t)=e*|0|. The solution of the initial value problem is
3 0
1 -2 0

y(t)=e |3 |+e'| 3 [+e*]0].
3 0 0
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27.  The eigenvalues are A, =—2,4, =2, and A, =4 with corresponding eigenvectors
3 1 3
x,=| 4| x,=|0|, andx; =|2|. A fundamental set of solutions consists of the functions
-8 0 2
3 1 3
y()=e| 4 | y,()=e|0], and y,(r)=¢"|2]|.
-8 0 2
28.  The eigenvalues are A, =1,A4, =3, and A, =5 with corresponding eigenvectors
0 1 1
x,=|0}| x,=|1| andx;=|2|.A fundamental set of solutions consists of the functions
1 0 0
0 1 1
y,()=e0|y,(H=e|1] and y,()=¢e"|2].
| 1 0 0
29.  The eigenvalues are A, =—1,4, =1, and A, =2 with corresponding eigenvectors
1 1 2
X, =|-4| x,=|-2| and x,=|-2|. A fundamental set of solutions consists of the functions
-5 -3 -1
T1 1 2
y(=e'|-4|y,(D=e|-2] and y,()=e"|-2].
-5 -3 -1
30.  The eigenvalues are A, =—-2,4, =1, and A, =2 with corresponding eigenvectors
1 1 1
X, =|-5| x,=|-2|, and x; =|-1|. A fundamental set of solutions consists of the functions
-6 -3 0
1 1 1
y,(H)=e|-5] y,(H)=e'|-2| and y,()=e"|-1].
-6 -3 0

2 x |1 1
31.  We need to have | 5}[ J = ){ J for some value A . Therefore, equating vectors, it

follows that we 2— x=A and 1+5=—A.This requires A =—6 and x = 8.

X -1 -1
32. We need to have Y =1 . Therefore, it follows that
2x -y 1 1

—x+y=-1and —2x-y=1.Thisrequires x=0, y=-1.
39 (a). The eigenvalues are A, =—3 and A, =—-1. Corresponding eigenvectors are

1 1 : |
X = [_J and x, = L} . The general solution is y(f)=c,e”™ LJ fee” [J .
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. e el . _ % 37 1 % -7 1
39 (b). The solution of the initial value problem is y(f) =— ) e ] +3 ) e 1k

Therefore, Q,(1) = %(—e‘“ +3¢™) and Q,(f)= %(e‘” +3¢7).
Note that 0 < Q,(7) < Q,(7) . Therefore, we need 7 such that

%(e—“ +3¢7)< 01Q, = (¢ +3e ") < .02. Graphically, we find that a value 7=5.011 will
suffice. Since t=(V /r)t =507, we obtain a value of 7 =250.55 sec or t=4.18 min.
40 (a). The eigenvalues are A, =—1 and A, = A, =—4. Corresponding eigenvectors are

1 1 1
x,=|1|,x,=|-1| and x,=| O |.The general solution is
1 0 -1
1 1 1
Q) =ce|1|+c,e™|=1|+ce™| 0
1 0 -1
1 1
40 (b). The solution of the initial value problem is y(#)=2Qe |1 |- Qoem 0
1 -1
2 —e
Therefore, Q()=Q,|  2¢™'
2¢ " e
Section 6.6
2 1 o o 2-1 5
1. For A= 1 the characteristic polynomial is p(4) = L oa-alT A —4A+5.
Therefore, the eigenvalues are A, =2+1i and A, =2—i. We find an eigenvector x, by solving

(A-ADx=0 or

2-(2+1i) 1 5]_[0] _— =i 1 s [0] o
= . t t = .
1 y_ (2 + l) X, 0 1S equation reauces to 1 X, 0 €

- 1|x 0
elementary row operation R, + iR, reduces the system to [0 0}{ l }: [O} or —ix; +x,=0.
Xy

X

X
Thus, an eigenvector is X = { 1 }: [

}: xl[ }, x, #0. Since the eigenvalues and eigenvectors
X, i

ix,
occur in conjugate pairs, the eigenpairs are

1 1
A =241, xl:[} and A,=2-1, X2=|: }
i

-1
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-
A, =3i and A, =-3i. We find an eigenvector x, by solving (A—AI)x=0 or

=3i -9 x 0 . . X, 3ix, 3i )
_ =| |. Thus, an eigenvector is X, = = =x,| . |, x, #0. Since the
1 -3i|x, 0 X, X, 1

eigenvalues and eigenvectors occur in conjugate pairs, the eigenpairs are

3i -3i
A =30, X, = | and A,=-3i, x, = at

N L 6-1 —13
' AL 0 1 -2

Therefore, the eigenvalues are A, =3+ 2i and 4, = 3—2i. We find an eigenvector x, by
solving (A—A,1)x=0 or

[6—(3+2i) -13 X, 0 Thi ) q 3-2i -13 | x 0 ™
= . t t = .
i | _3+20) | x, 0 is equation reduces to ! 3220, 0 e

elementary row operations R, <> R,, then R, — (3—2i)R, reduces the system to

1 —-3+2) x| [0 3400 0. Th ' _
= — =+ =0. . t
0 0 ¥, ol % ( )X, us, an eigenvector is

X, (3+2i)x, 3+2i _ _ _
X= = =X, Lol x, #0.Choosing x, =1, we obtain the eigenvector
Xa

2. The characteristic polynomial is p(A) = = A’ +9. Therefore, the eigenvalues are

=1 —61+13.

}, the characteristic polynomial is p(4) = ‘

3+2i
X, = [ ! } Since the eigenvalues and eigenvectors occur in conjugate pairs, the eigenpairs

are
3+20 3-2i
A =342, x,= | and A,=3-2i, x,= Ll
4, The characteristic polynomial is p(1) = ‘ _2 ) = (A —2)* +1. Therefore, the eigenvalues

are A, =2+i and A, =2—-1i.We find an eigenvector x, by solving (A—AI)x=0 or
1-i 1 X, 0 ) ) 1 ) )
. = . Thus, an eigenvector is X, = . |- Since the eigenvalues and
-2 —1-ijx, 0 =1+
eigenvectors occur in conjugate pairs, the eigenpairs are

1 1
A =241, Xl=|: 1+} and A,=2-1, xzz{ | }
—1+i —1—i

5. Using the EIG command in MATLAB, we find eigenvalues 4, =1,A4,=1+i,and A, =1-1.
For each eigenvalue A, we use the RREF command in MATLAB to solve (A—Al)x =0,
-3 3+2i 3-2i
finding x,=| 0 |, x, = 1 ,and x;=| 1
1 —-1-i —1+i
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10.

3+2i| |-5+i
Note that another possible eigenvector for A, is x,=(-1+i)| 1 |=|-1+1i|.
—1-i 2
The eigenvalues are A, =2,A, =2+ 3i, and A, =2 - 3i. The corresponding eigenvectors are
1 —4-i —4+i
x,=|0|,x,=| 3i |, and x;=| -3i
-1 I+i 1-i

T 4 4
As in Example 1, y(f) = ¢ |=e"(cos2t +isin27) )
—1+i —1+i

} is one solution of y’ = Ay .

Expanding and collecting real and imaginary parts, we obtain

u 4cos2t 4| 4sin2f
1= -
yin=e —c0s2t—sin2t e

4cos2t

. . Thus, a fundamental set of solutions can be
cos2t—sin2¢t

4sin2t
cos2t—sin2t |

formed from y, ()= e‘”[ } and y,(7) = e‘”[

—Cco082¢t—sin2t

A2+ —2+i
y() = e”[ 5 }: (cost+isin t){ 5 } is one solution of y’ = Ay . Expanding and collecting

—2cost—sint | | cost—2sint
Ssint

real and imaginary parts, we obtain y(?) = [ } Thus, a

5cost

—2cost—sint
fundamental set of solutions can be formed from y,(7) = an

cost—2sint
y, ()= .

5cost

5sint
) 1= . -1-i| ]
Asin Example 1, y(f)=¢™ ] = (cos2t+isin2t) | is one solution of y’ = Ay .

Expanding and collecting real and imaginary parts, we obtain

—C0s2t +sin2t —C0s2t—sin2t )
y(t) = 0y ] . Thus, a fundamental set of solutions can be
cos

sin2t

—cos2t+sin2t —Ccos2t—sin2t
formed from y,(?) = and y,(1)= . .
cos2t sin2t

—1+i
y(2) = e'(cost+isin t)[ ) } is one solution of y’ = Ay . Expanding and collecting real and
i

Cost

—cost—sinf |  |cost—sint
, +ie
—sint

imaginary parts, we obtain y(7) = et[ } Thus, a fundamental set

—cost—sint coSt— sint}

of solutions can be formed from y,(¢) = e’{ } and y,(1) = e’[

—sint cost
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-5+4+3;

(2+3i)t

11. As in Example 1, y(f)=e

2

34 3i |=e*(cos3t+isin31)| 3+ 3i

-5+ 3i
is one solution of
2

y’ = Ay . Expanding and collecting real and imaginary parts, we obtain

—5cos3¢t— 3sin 3¢
2t

y()=e
2cos 3t 2sin 3¢

—5cos3¢— 3sin 3¢

3cos3t—5sin 3¢

3cos3t—3sin3t |+ie™| 3cos3t+ 3sin3t |. Thus, two linearly independent solutions

3cos3t—5sin 3¢

are y,(1)=e'| 3cos3t—3sin3t |and y,(f)=e”| 3cos3t+ 3sin3¢ |. The third solution needed

2cos 3t

2sin 3¢
1

to complete the fundamental set is obtained from the real eigenvalue A =2, y,(f)=e”| 0

[—sin5¢ ] [cos5t |

. cosSt sinSt

12. e'(cos5t+isin5¢) +ie

oooo_N.:

e'(cos2t+isin2f) +ie

i —sin2¢

|1

i i cos2t ]
[—sin5¢

cosSt

. cosSt 0
e 5

0
0

. sinSt
e
0
0

formed from

13.
cost

. sint
+c,e
nt cost

4cost+ 7sint
—4sint+ 7cost |

y(H) = clez’[

obtain the solution y(7) = ez’{

14.

. , €
—sin2t

cos2t

-1

. Also,

Thus, a fundamental set of solutions can be

0
0

cos2t |

t

sin2t

Proceeding as in Exercises 7-12, we find the general solution of y’ = Ay is

1 0 4
}. Imposing the initial condition, y(0) = CI{O} + cz{ }: [

1 7

Jove

Proceeding as in Exercises 7-12, we find the general solution of y’ = Ay is

3sin 3t 3cos 3t . L . 0 3 6
y(=¢ +c, . Imposing the initial condition, y(0) =c, ! +c, ol=12 , wWe

cos 3¢t sin 3¢

—6sin 3¢+ 6¢cos 3¢
2cos3t+2sin3t |

obtain the solution y(7) = {
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15.

16.

17.

18.

22.

Proceeding as in Exercises 7-12, we find the general solution of y’ = Ay is

3 3cos2t—2sin2t 3 2c0s2t + 3sin2t
y()=ce +c,e

) . Imposing the initial condition,
sin2t

Ccos2t

1 0 3
5| €082t—18sin2¢
y(=e o |
3cos2t—4sin2t¢
Proceeding as in Exercises 7-12, we find the general solution of y’ = Ay is

3 2 1
y(0)= cl[ }+ cz[ }: [ }, we find ¢, =3 and ¢, =—4 and the solution is

. cost . sint ) o -
y()=ce . |t . |- Imposing the initial condition,
—cost—sint cost—sint

8cost+14 sint}

1 0| |8
y(0)= Cl[—l} + 02[1_ = [6} we obtain the solution y(7) = 62'[6%“_ 22sins

Proceeding as in Exercises 7-12, we find the general solution of y’ = Ay is

-3 [3cost—2sint 2cost+ 3sint
y(t)=ce'| 0 |[+c,e’ cost +cqe’ sint
1 —cost+sint —cost—sint
) -3 3 27 [6
Imposing the initial condition, y(0)=¢,| O [+c¢,| 1 [+c;] O |=]|1 |, we find
1 -1 -1 2
27—21cost— 38sint
¢,=-9, c¢,=1, and c¢; =-12, and the solution y(#) = e cost—12sint
-9 +11cost+13sint
Proceeding as in Exercises 7-12, we find the general solution of y’ = Ay is
1 —4cos3t+ sin 3t —cos3t—4sin3t
y()=ce’| 0 |[+c,e’|  —3sin3¢ +cye” 3cos 3t
-1 cos 3t — sin 3¢ cos 3t +sin 3¢
1 —4 -1 -1
Imposing the initial condition, y(0)=¢,| 0 |+c,| O [+c,| 3 |=| 9 |, we find
-1 1 1 4

—2+cos3t—13sin 3¢
¢, =2, c¢,=-1, and c¢; = 3, and the solution y(7) = e”|  9cos3t+ 3sin3t
2+2cos3t+ 4sin 3t
1
The eigenvalues of A are A= (~1%£9+121)/2.1f 9+12u <0, A==_%if (B0).

therefore distinct and y(r) > 0.If 0<9+12u<1, ,the eigenvalues are distinct, real and

negative. Therefore, —0c <9 +121 <1 —oco< < 3
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23. The eigenvalues of A are A = (—5 1+ 4,u) /2. In order that both components of y(7) go to
zero as t — oo, we need each of these (real) eigenvalues to be negative. Therefore, we need

(~5+\1+41)/2<0 or \/I+4u <5. This inequality holds if and only if
1+41 <25 or —co< U <6.

24.  The eigenvalues of A are A= (—2i«/16—4,uz) /2=—1%+4—u* . Require
—oo< 4 —* <1=>3< I’ <oo. Therefore, —oo< 1 <—+/3 and\@<‘u<oo.

25. The eigenvalues of A are A =—1%+/4 +u” . In order that both components of y() go to zero
as t — oo, we need each of these (real) eigenvalues to be negative. Therefore, we need

—1++4+pu*> <0 or \/4+u* <1.This inequality cannot hold for any real value of (.
d [0 1 cost sint | ¢
26 (a). —v= v=v(f)= .

dagd |-1 0 —sint cost | ¢,
o6 (b 0 ¢, 1 cost+2sint 0 sint—2cost d,
. = = = V()= . )= + .
®). vO) -, 2 v —sint +2cost r cost+2sint| |d,
[2+d 2 sint—2cost+4 3 -2 3 3
r(0)= =l =)= , .v(—ﬂ): and r(—”): .
| 1+4d, 1 cost+2sint 2 1 2 -2

27 (d). If the charged particle is launched with initial velocity parallel to the magnetic field, it will
move with constant velocity.

28 (b). The eigenpairs are - A,X, and — van A,.X, and — van Ay X5,
m m

m
_r
The corresponding fundamental matrix is e "'y/(%).

Section 6.7

2
algebraic multiplicity 2. Corresponding eigenvectors are obtained by solving (A—-2/)x=0 or

2 1
1 (a). For A= {O }, the characteristic polynomial is p(1) = (1 —2)*. The eigenvalue A, =2 has

0 1)x 0
[O 0}[ ' }: {O} Therefore, all the eigenvectors corresponding to A, =2 have the form
X,

x 1
X = {01}: X, [O} , x, #0. The geometric multiplicity of A, =2 is 1.
1 (b). We find a generalized eigenvector corresponding to A, =2 by solving the equation

1 x
(A-2I)x = x, where x, =[ } The solution is x :{ 1} where x, is arbitrary. Choosing x, =0,
0 1

0
we obtain the generalized eigenvector X, = [J
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1 (c).

2 (a).

2 (b).

2 (c).

3 (a).

3 (b).

Thus, we have solutions y,(f) = e*'x, and, as in equation (6), y,(f) = te’'x, + ¢*'x,. A

2t ¢ 2t
fundamental matrix is W(¢) =[y,(?),y,(1)] = {eo (32, .
e

The general solution is W(#)c. Imposing the initial condition, ¥ (0)c =y,. We find

1 Ofc 1 1
[O 1}[ | }: { J or €= [ J- Thus, the solution of the initial value problem is
c, _

1—1¢
y(t)—e REE

The characteristic polynomial is p(A) = (3— A)*. The eigenvalue A, = 3 has algebraic
multiplicity 2. Corresponding eigenvectors are obtained by solving (A —31)x = 0. Therefore,

x 1
all the eigenvectors corresponding to A, = 3 have the form x = {01 } =X [O} , X, #20.The

geometric multiplicity of A, =3 is 1.

3t 1 3t 1 3t O 3t !
y(=e 0 and y,(r)=te 0 +e”| |=e¢”|, |- A fundamental matrix is
2 2
IR LA
- yl ’y2 - 0 %631 .
The general solution is W(#)c. Imposing the initial condition, ¥ (0)c =y,. We find

1 O Cl 4 4 . e e .
or ¢c= 5| Thus, the solution of the initial value problem is

C,

2t+4
y(n=e’ [ }

For A= {2 6} the characteristic polynomial is p(A) = (1 —6)’. The eigenvalue A, =6 has

algebraic multiplicity 2. Corresponding eigenvectors are obtained by solving (A—61)x=0 or

0 Ofx 0
[2 0}[ ' }: {O} Therefore, all the eigenvectors corresponding to A, = 6 have the form

0 0
X = [ }: xz[l} , x, #0. The geometric multiplicity of 4, =6 is 1.
Xy

We find a generalized eigenvector corresponding to A, = 6 by solving the equation
0.5

0
(A-6I)x =x, where x, = [J The solution is x = {
Xa

} where x, is arbitrary. Choosing

0.5
x, =0, we obtain the generalized eigenvector x, = { 0 } Thus, we have solutions y, (1) = e”x,

and, as in equation (6), y,(?) = teﬁ’x1 + €6tX2. A fundamental matrix is

0 0.5¢e”
Y(@) =y, (0),y,(0]= |: 61 61 :|
e te
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3 (c). The general solution is ‘¥'(#)c . Imposing the initial condition requires W (0)c =y,. We find

0 05]c -2 0 ) o .
= or ¢c= . Thus, the solution of the initial value problem is
I 0 |c, 0 -4

6t -2
y(H)=e AL

4 (a). The characteristic polynomial is p(1)=(3—2). The eigenvalue A, =3 has algebraic
multiplicity 2. Corresponding eigenvectors are obtained by solving (A —31)x = 0. Therefore,

0 0

all the eigenvectors corresponding to A, = 3 have the form x = [ }: xz[l} , X, #0.The
Xy

geometric multiplicity of A, =3 is 1.

0 0 1 1
4 (). y, ()= e3t[J and y, ()= te”[l} + 631[0} = e”L}. A fundamental matrix is

0 e3t
Yo =[y,(0,y,0l=| ,, |
e’ te
4 (c). The general solution is ‘¥(#)c . Imposing the initial condition, ¥(0)c=y,. We find

O 1 cl 2 _3 . e e .
= or ¢= 5 | Thus, the solution of the initial value problem is

1 Ofc, -3
3t 2
y(n=e [m— 3}.
(5 -1
5(a). For A= 41 }, the characteristic polynomial is p(1) = (1 — 3)*. The eigenvalue A, =3 has

algebraic multiplicity 2. Corresponding eigenvectors are obtained by solving (A—3/)x=0 or

2 —1|«x 0
[4 ) 1 }: [O} Therefore, all the eigenvectors corresponding to A, = 3 have the form

X 1
X = {2 ] }z XIL} , X, #0. The geometric multiplicity of A, =3 is 1.
X

5(b). We find a generalized eigenvector corresponding to A, = 3 by solving the equation

Sx,+.5

1
(A-3I)x =x, where x, = [2} The solution is x = [ } where x, is arbitrary. Choosing

Xa
: o S . y
x, =0, we obtain the generalized eigenvector X, = ol Thus, we have solutions y, () = e™'x,

and, as in equation (6), y,(?) = te3’x1 +e’ 'x,. A fundamental matrix is

W =1y, y,01=| ¢ FDE
- y1 ’Y2 - 26’3[ 2te3t .
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5 (c).

6 (a).

6 (b).

6 (c).

7 (a).

7 ().

7 (c).

The general solution is W(#)c. Imposing the initial condition requires ¥ (0)c =y,. We find

I S|c 1 S
"l=] for e= . Thus, the solution of the initial value problem is
2 0fec, 1 1

t+1
N=e )
yn=e {2t+1:|

The characteristic polynomial is p(A) = (3— A)*. The eigenvalue A, = 3 has algebraic
multiplicity 2. Corresponding eigenvectors are obtained by solving (A—37)x=0. Use

6
X, = [_J. The geometric multiplicity of A, =3 is 1.

0

_3t6 _3t6 3)‘_1_3t6t_1 ..
y()=e 4 and y,(1)=te 1 +e =e . A fundamental matrix is

6e’  (6t—1)e”
\P(t) = [yl(t)’ YZ(I)] = |: 3t 3t :|

—e’ —te
The general solution is W(#)c. Imposing the initial condition, ¥ (0)c =y,. We find

6 _1 Cl 0 _2 . . e .
= or ¢= . Thus, the solution of the initial value problem is
-1 0]ec, 2 -12

=72t
f=e” )
yn=e |:12l+2:|

1
For A=
oal)

algebraic multiplicity 2. Corresponding eigenvectors are obtained by solving (A—-2/)x=0 or

}, the characteristic polynomial is p(A) = (1 —2)*. The eigenvalue A, =2 has

-1 -1]=x 0
[ L }[ 1 }: [O} Therefore, all the eigenvectors corresponding to A, =2 have the form
Xy

X 1
X = L)‘C }: X, [_J , x, #0. The geometric multiplicity of A, =2 is 1.
1

We find a generalized eigenvector corresponding to A, =2 by solving the equation

-1-x,

1
(A-2I)x = x, where x, = [ J. The solution is x = {

} where x, is arbitrary. Choosing
X,

x, =0, we obtain the generalized eigenvector x, = [ 0 } Thus, we have solutions y, () = e*'x,

and, as in equation (6), y,(?) = tez’x1 + €2tX2. A fundamental matrix is

ezt (t _ 1)62t
Y@ =[y,®,y.0l=| e
—e —te
The general solution is W(#)c. Imposing the initial condition requires ¥ (0)c =y,. We find

1 -1fc 4 1
= or ¢c= . Thus, the solution of the initial value problem is
-1 0]ec, -1 -3

o 4 — 3¢
y()=e 31|
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8 (a).

8 (b).

8 (¢).

9 (a).

9 (b).

13.

The characteristic polynomial is p(A) = (1 —5)*. The eigenvalue A, =5 has algebraic
multiplicity 2. Corresponding eigenvectors are obtained by solving (A—57)x=0. Use

1
X, = [_J. The geometric multiplicity of A, =5 is 1.

_5t1 _Stl 5f1_5tt+1 ..
y(=e 4 and y,(r)=te 1 +e =e . A fundamental matrix is

0 —t
5¢ 1 5t
Y@=y, (D,y,(D]= { ‘ 5 v )Sf }
—e —te

The general solution is W(#)c. Imposing the initial condition, ¥ (0)c =y,. We find

4
[ }[ } { } or €= [O} Thus, the solution of the initial value problem is

=

y()=e { 4}
210

For A={0 2 1|, the characteristic polynomial is p(1)=(A—2)’. The eigenvalue A, =2 has
0 0 2

algebraic multiplicity 3. Corresponding eigenvectors are obtained by solving (A—-2/)x=0 or
0 1 0fx 0

0 O 1]x,|=|0].Therefore, all the eigenvectors corresponding to A, =2 have the form
0 0 Ofx, 0
X, 1

x=|0 |=x/0], x, #0. The geometric multiplicity of A, =2 is 1.

0 0
210
For A={0 2 0], the characteristic polynomial is p(1)=(A—2)’. The eigenvalue A, =2 has
0 0 2

algebraic multiplicity 3. Corresponding eigenvectors are obtained by solving (A—-2/)x=0 or
0 1 0fx 0

0 0 O] x,|=|0]. Therefore, all the eigenvectors corresponding to A, =2 have the form
0 0 Ofx 0

3
X, 0
x=|0 |= x1 0 |+ x5/ 0 |, where x is nonzero. The geometric multiplicity of A, =2 is 2.
1

X3

500

For A=1 5 0], the characteristic polynomial is p(1)=(A—5)’. The eigenvalue A, =5 has
1 15

algebraic multiplicity 3.
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14.

15.

16.

17.

0 0 Ofx 0
Corresponding eigenvectors are obtained by solving (A—-5)x=0or |1 0 Ofx, |=|0|.
I 1 0fx, 0
Therefore, all the eigenvectors corresponding to A, =5 have the form
0 0
x=| 0 [=x,]0], x; #0. The geometric multiplicity of A4, =5 is 1, so A does not have a full
X, 1
set of eigenvectors.

The characteristic polynomial is p(A)= (1 —5)’. The eigenvalue A, =5 has algebraic
multiplicity 3. Corresponding eigenvectors are obtained by solving (A—57)x=0. Use

0 0
x,=|1], x,=]0|. The geometric multiplicity of A, =5 is 2, so A does not have a full set of
0 1
eigenvectors.
5 01
For A={0 5 0], the characteristic polynomial is p(1)=(A—5)’. The eigenvalue A, =5 has
0 0 5

algebraic multiplicity 3. Corresponding eigenvectors are obtained by solving (A—57/)x=0 or
0 0 1]x 0

0 O O] x,|=|0]. Therefore, all the eigenvectors corresponding to A, =5 have the form
0 0 Ofx, 0

b 1 0
X=|x, |=x]0 |+ x,| 1|, where x is nonzero. The geometric multiplicity of 4, =5 is 2,s0 A
0 0 0

does not have a full set of eigenvectors.
The characteristic polynomial is p(A)= (1 —5)’. The eigenvalue A, =5 has algebraic
multiplicity 3. Corresponding eigenvectors are obtained by solving (A—5/)x=0x=0. Use

1 0 0
x,=|0}], x,=|1|, x;=|0[. The geometric multiplicity of A, =5 is 3, so A does have a full
0 0 1
set of eigenvectors.
2 0 00
1 200
For A= 00 3 0l the characteristic polynomial is p(1) = (1 —2)*(2— 3)*. The
0 01 3
eigenvalue A, =2 has algebraic multiplicity 2 as does A, = 3.
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18.

19.

20.

21.

22.

0 0

X
Corresponding eigenvectors for A, =2 have the form x = 02 =X, ol x, #0. Therefore, the

0 0
geometric multiplicity of A, =2 is 1. Similarly, eigenvectors corresponding to A, = 3 have the
0 0
0 : .
form x = o l™ X, ol x, #0 and so A, = 3 has geometric multiplicity 1. A does not have a
X, 1

full set of eigenvectors.
The characteristic polynomial is p(A)=(2—A)*. The eigenvalue A, =2 has algebraic
multiplicity 4. Corresponding eigenvectors are obtained by solving (A—27)x=0. Use

1 0 0
0 1 . — :
X, = ol X, = ol X, = ol The geometric multiplicity of A =2 is 3, so A does not have a full
0 0 1
set of eigenvectors.
2 0 00
0200 - o ; :
For A= 00 2 ol the characteristic polynomial is p(A) = (A —2)’(A — 3). The eigenvalue
0 01 3
A, =2 has algebraic multiplicity 3 while A, = 3 has algebraic multiplicity 1. Corresponding
X, 1 0 0
. X, 0 1
eigenvectors for A, =2 have the form x = =X 0 + X, 0 + x5 Ll Therefore, the
X3
—X, 0 0 -1
geometric multiplicity of A, =2 is 3. Eigenvectors corresponding to A, = 3 have the form
0 0
0 : . : ,
X = o l™ X, ol x, #0 and so A, = 3 has geometric multiplicity 1. Since every eigenvalue
X, 1

of A has geometric multiplicity equal to its algebraic multiplicity, A has a full set of
eigenvectors.

A musthave A, =a+ib and A, =a—ib as two distinct eigenvalues. Therefore, A cannot have
a repeated eigenvalue and cannot be defective.

In order for A to be symmetric, a,, = x must be the same as a,, =9. Thus, x =9. Similarly,

a,, =y mustequal a,, =4.

x=6, y=1.
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23.

24.
25.

26 (a).

26 (b).

30.

31.

In order for A to be symmetric, @, = x* —1 must be the same as a,, =0. Thus, we can have
either x=1 or x =-1. Similarly, a,, =2/y must equal a, =1.Hence,y=2.

In order for A to be Hermitian, @, =x—-3i=9-3i=x=9 and a,;,=2-yi=2+5i= y=-5.
In order for A to be Hermitian, a,, =2 + xi must be the same as @, =2 — xi. Thus, we need x =
0. Similarly, a,, =1+ yi mustequal g, =1-2i. Hence, y = 2. These choices are consistent
with the remaining undetermined entries, a,, and a,,.

A 00 f 1
=|o | forexample.

A= [; ﬂ , for example.
01 0fx] [1 0
The equation (A-20)x=v,is |0 O 1| x,|=|0]|. Choose v,=|1|.
0 0 Ofx, 0 0
01 0fx] [0 0
The equation (A-2/)x=v,is |0 O 1] x,|=]|1]. Choosev,=|0 |.A fundamental set of
0 0 O0fx; 0 1
1 t £
solutions can be formed from y,(1)=e>|0 |, y,(f)=¢”|1|,and y,()=e"| ¢ |.
0 0 1
4 0 O 0 0 Ofx 0
For A=|2 4 0|, theequation (A-4/)x=v,is |2 0 O | x, |=|0|. The solution is
1 3 4 I 3 0] x, 1
0 0
x=|1/3| where x, is arbitrary. Choosing x, =0 we have v, =|1/3|.
X, 0
0 0 Ofx 0 1/6
The equation (A-4I)x=v,is |2 0 O] x, |=|1/3]|. The solutionis x=|-1/18 | where x,
1 3 0] x, 0 Xy
1/6
is arbitrary. Choosing x, =0 we have v, =|-1/18 |. By equation (12), a fundamental set of
0
0 0
solutions can be formed from y,(£)=¢"|0 |, y,(t)=e* (v, +tv,)=¢"'|1/3 |, and
1 t

3
4t
y.(H)=e" (v, +1tv +0.5t2v)=e— —1+6¢].

3 3 2 1 18

97’
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2 -8 —10fx] [1 1]
32.  Theequation (A-I)x=v;is|(-2 6 8 |x,|=|-1|.Choose v,=|0|.
2 -6 -8 |x, 1 0
2 -8 -10]x | [+ Y
The equation (A-I)x=v,is [-2 6 8 | x,|=|0|.Choosev,=|—7 |. A fundamental set
2 -6 -8 |x 0 0
1] L+t —dpigs
of solutions can be formed from y, (f)=e¢'|—1|, y,(f)=¢'| —t |,and y,;(t)=¢' 1- %
1] t £
-6 -8 22 -8 -8 22| x 1
33.  For A=| 2 4 -4 /| theequation (A-2I)x=v,isgivenby |2 2 -4 |x,|[=|-1|.A
-2 -2 8 -2 -2 6 |x 0
-1.5
convenient solutionis v,=| O |. The equation (A-2)x=v,
—0.5
-8 -8 22| x -1.5 -0.5
is| 2 2 —4|x,|=| 0 |.Onesolutionis v;=| 0 [. A fundamental set consists of
-2 -2 6 |x —0.5 -0.25
1 t—1.5
y,(=e"|-1{,y,(=e"(v,+tv)=¢"| -t |,and
0 -0.5
, | —2—6t+27
v,(0=e¥(v, +1v, +057v)= | 27
-1-2¢
1 1
36 (a). Two linearly independent solutions are x, =|—-1|, x,=| 0 |.
0 -1
1
36 (b). Choose x, =|1]|.
1
1 1 1

36 (c). Q)y=ce™|=1|+c,e™| 0 |+ce|1].
0 -1 1
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Section 6.8

1
1 (a). For A= [ }, the characteristic polynomial is p(1) = A* + 41 +3= (A1 +3)(A +1). The

1 2

1 1
eigenvalues are A, =—3 and A, =—1, with corresponding eigenvectors X, = [ J and x, = [J

_3t e
Thus, the complementary solution of y' = Ay is y. = [ ‘ ’ }{ l}'

-3¢ —t
e

a,
1 (b). Inserting the suggested trial form y, = [ 1 } into the nonhomogeneous equation leads to
a,
= A U117 9 4] sotving this syst btai 1
= +g(t = + | , = |
Yo y, +8(t) or 0 I —2|a, ! olving this system, we obtain y, !

-3t —t
e’ |c 1
1 (c). The general solution of the nonhomogeneous problemis y. +y, = { ¢ . _[}[ 1:|+ [J
e’ | ¢,

I 1jfc 1 3
1 (d). Imposing the initial condition, [ ! J[ ! }+ [J = [J Solving, we find ¢, =1and ¢, =1.
e +e 41| : : o
Thus, y(=| , | is the unique solution of the given initial value problem.

+

2 1
2(a). For A= L 2} , the characteristic polynomial is p(1)= 1> —4A4 +3=(A—1)(A—3). The

1

1 1
eigenvalues are A, =1and A, = 3, with corresponding eigenvectors X, = [ J and x, = [ }

t 3t
e e'|c
Thus, the complementary solution of y' = Ay is y. = [ . %}{ 1}.
—e' e’ | ¢,
a
2 (b). Inserting the suggested trial form y, = e’{ ! } into the nonhomogeneous equation and solving
a4,

the system, we obtain y, = e'[ i }
8

oo |w

t 3l e 3
2 (c). The general solution of the nonhomogeneous problemis y. +y, = { ¢ ¢ }[ 1}+ et[ 8}.
—e' e

1 1fc —3 0 1
2 (d). Imposing the initial condition, [ }[ 1 }- [ 8} = [O} Solving, we find ¢, = 1 and ¢, = 3

1
-1 1jc,
1t 1,3t 3 ~t
{46 +ye —ze

B
1,3t , 1 -t

o is the unique solution of the given initial value problem.
—4€ +ge +ge
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3 (a).

3 (b).

3 (c).

3 (d).

4 (a).

4 (b).

4 (c).

4 (d).

0 1
For A= L O} , the characteristic polynomial is p(1)= A1 —1= (A +1)(1—1). The eigenvalues

1 1
are A, =—1and A, =1, with corresponding eigenvectors X, = [_J and x, = [J Thus, the

-t t
¢,

—t t c
complementary solution of y’ = Ay is y. = { ¢ ¢ }[ 1}.

a b
Inserting the suggested trial form y, = t[ ! }+[ l } into the nonhomogeneous equation leads to
2 2

A a, 0 1| ta+p t Sol 0 b 0
"= +g(t = + . ing thi tem, tai = .
Yo y, +8(t) or a, 10| 1a,+b, ] olving this system, we obtain y, i

R e 0
The general solution of the nonhomogeneous problemis y. +y, = { ¢ » et}[ 1:|+|: J.
e CZ -

I 1fc 0 2
Imposing the initial condition, [ { J[ ' }r [O} = [ J. Solving, we find ¢, =1.5 and

3 -t t
¢, =0.5.Thus, y(r) = 0.5[ 3 i ) } is the unique solution of the given initial value
-3¢ +e' —t
problem.
0 -1 - o > :
For A= Lol the characteristic polynomial is p(A) = A" —1. The eigenvalues are

1 1
A, =-land A, =1, with corresponding eigenvectors X, = [J and x, = { J. Thus, the

—t t
: , : e’ e |c
complementary solution of y'=Ayisy. =| _ , .
e —e C2
) . 2l G b, ¢ .
Inserting the suggested trial form y, =e + 4 b + into the nonhomogeneous
a, 2 P
_lezt _ 1
equation and solving the system, we obtain y, = 23 5 .
ze +1t

The general solution of the nonhomogeneous problem is
e’ e | |-t -1
+y,= + :
YeTYr=l g ot C, e+t

. - (L e | =3[0 . . 5 1
Imposing the initial condition, +| , |=]|, |- Solving, we find ¢,=—and ¢, =~.
1 -1jc, 1 6 2

3

5t 10 1,2
e t+5e —3e —1

Thus’ Y(t):{s —t 2 2t

.y is the unique solution of the given initial value problem.
s€ —se t3e +t
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5 (a).

5 (b).

5 (c).

5(d).

6 (a).

-3 =2
For A= { 43 }, the characteristic polynomial is p(1)=A* 1= (A +1)(A—1). The

1 1
eigenvalues are A, =—1and A, =1, with corresponding eigenvectors X, = [ J and x, = [ 2}.

—t t c
Thus, the complementary solution of y’ = Ay is y,. = { ¢ » ; ,}[ 1}.
—-e ' 2e

a

b
Inserting the suggested trial form y, = sin t[ 1 }+ cos t[ 1 } into the nonhomogeneous equation
2 2

a
lead A a,cost— b, sint -3 2| a,sint+ b, cost sint Sol

to y, = +g(t = + . i
cadsto y, = Ay, +g(0) or a,cost—b,sint 4 3 | a,sint+b,cost 0 ovine

3sint— cost
this system, we obtain y, =0.5 .
—4sint

The general solution of the nonhomogeneous problem is
A e 05 3sint—cost
Ye T ¥r - 2e'|c, —4sint
: o . Lo 1je | |=5] 10 : ,
Imposing the initial condition, + =| _|. Solving, we find ¢, =1 and
-1 2lec, 0 0

2¢”" —e' +3sint—cost

¢, =-0.5.Thus, y(#)= 0.5[ } is the unique solution of the given initial

—2e¢' +2¢' —4sint
value problem.

11
For A= [1 J , the characteristic polynomial is p(1) = A> —2A . The eigenvalues are
1

1
A, =0and A, =2, with corresponding eigenvectors X, = [ J and x, = [J Thus, the

1 eZt c
complementary solution of y’' = Ay is y. = [_1 ezt}[cl }
2

1+ sin2¢

1+sinz 1
it follows that y,=y(7 /2) =

Given y(¥) = = . Insertin
y@) L’ + cos?2t e™'? +cosm [e”/z - 1} £

y(?) into the differential equation, we see that y’(1) = Ay(z) + g(¢) and thus
2cos2t 0 2| 1+sin2t ) ) —2e'
L, 3 2sin2t} = [_2 O}Lr N COSZJ +g(7). Solving for g(¢), we obtain g(¢) = L[ R 2}.
) t+o | I+ 2 ) )
Given y(#) = Lz N B} it follows that y(I) = L N ﬂ} = LJ = a=1, f=-2.Inserting y(¢) into

the differential equation, we see that y’(r) = Ay(z) + g(¢) and thus

[ 1 ] t+1 . . — +1¢
y = o = EI RN +g(7). Solving for g(7), we obtain g(¢) = ol
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9.

10.

11.

12.

13.

14.

15.

16.

Following the hint, we form [y;,y,]1= P()ly,,y,] +[g(?),g,(¢)] which has the form

0 ¢ 1 € -2 ¢ )
. =P() + . Solving for P(¢), we have
- 0 e’ -1 0 -1

pnc] 2 O T _[2 0, [ ]t ¢
= " 1)’ -1 |-e” 1(_ )—e_’ 1| |0 —1f

If A™ exists, y,=—A"'b is the unique solution.
If A" does not exist, the matrix equation Ay =—b will either have no solution or a non-
unique solution. Therefore, either no equilibrium solution or a non-unique equilibrium

solution.
An equilibrium solution of y” = Ay + b is a constant solution. Therefore, since y’ =0 we need

Ay =-b.For A= b4 db= 2 W h =—Ab=- i = 10
= . = = that = = = .
y, or | -3 an q e see that y, | ar 3

et and 1 1T-2] [-1
€X1StS an ye—l ) 1 = 0 .

1 -1 2
As noted in the solution of Exercise 11, we need Ay, =—b.For A= [ 11 } and b= [ 2} we

0] 1
see that y, = [2 + a[l} where a is arbitrary.

110 -2 -1
A existsand |0 -1 2Jy,=|-3|=y,=|-1]|.
0 0 1 -2 -2
_ 100 )
As noted in the solution of Exercise 11, we need Ay, =-b.For A={0 1 1|andb=| 0
0 1 1 0
2 0
we see that y, =| 0 |+ a| —1| where a is arbitrary.
0 1

The characteristic polynomial is p(A)= A*—2A . The eigenvalues are A, =0 and A, =2, with

1 1
corresponding eigenvectors X, = [J and x, = { J.

2t
- e
Thus, one fundamental matrix is W¥(¢) = L 21}. Set
—e

~ - _ 1 2 7! 1 1
Y=¥C.¥Y()=1=¥YI)C. ~.C=¥1)" =[ ¢ 2} {1 L] _2}.
1 —e 5€ —5€

1 e 1 1 L1427 D)  L(]_ p26D
\P(t) = |:1 _ezt:||:%€22 —%262:| = I:;El _ 62(11); ;El + 62(11);]'
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17.

18.

19.

0o 2
For A= { ) 0}, the characteristic polynomial is p(1) = A* + 4 = (1 + 2i)(A - 2i). The

eigenvalues are A, =—2i and A, = 2i, with corresponding eigenvectors

-1 -1
X, = [ } and x, = [ } Converting to real solutions, we have
i —i

-1 -1
y() = ez”[ . }: (cos2t—isin ZI)[ . } Therefore, a fundamental set of solutions is
i i

—cos2t q sin2t
yi(®) sin2t and y (1 cos2t

o —cos2t sin2t
Thus, one fundamental matrix is (7)) =

. . The solution of the given initial
sin2¢t cos2t
—cos2t sin2t

value problem has the form ‘i‘(t) =Y C=| .
sin2t  cos2t

}C where C is a (2 X 2) matrix

1

~ —cos2t sin2t |0 1 ~ sin2t —cos2¢t—sin2t
thus W(7) = or Y(r)= .

- 1
chosen so that W(r /4) = {O } Imposing this condition, we have

Il
1
—_ O
I —
(SN
1
)
=
o

sin2t cos2t|1 -1 cos2t  sin2t—cos2t
The characteristic polynomial is p(A)= A*—2A . The eigenvalues are A, =0 and A, =2, with

1 1
corresponding eigenvectors X, = [J and x, = { J.

2t
Thus, one fundamental matrix is ‘i‘(t) = L ¢ 21}. Set

_ 1 0] - o 11T o] [2 ¢
Y=YC. WO)=|, | |=POC. LC=POYO=| = :

\P(t)_ 1 eZt % % _ 3
1 =¥ -3 -3 B

3
For A= [2 3} , the characteristic polynomial is p(1)=A*—=1=(A+1)(1—1). The

1 2
eigenvalues are A, =—1and A, =1, with corresponding eigenvectors X, = [J and x, = L}

1 2
Therefore, a fundamental set of solutions is y,(?) = et[l} and y,(1) = e’[l}. Thus, one

o e’ 2e
fundamental matrix is W(1)=| _, -
e e
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20.

21.

-t t

The solution of the given initial value problem has the form ‘i‘(t) =¥Y(C = [e }C

- 1 0
where C is a (2 X 2) matrix chosen so that ¥ (0) = {0 1}. Imposing this condition, we have

1 0 1 2 -1 2
0 1 =¥Y(0)C = ! 1C.Solving for C, we obtain C = ] ! and thus

~ e’ 2 |-1 2 - —e ' +2e" 2e"-2¢'
Y= . or Y(r) = L P B
e e |1 -1 —e ' +e'  2e'—e
The characteristic polynomial is p(1) = A*—2A +5. The eigenvalues are

—2i
A, =1+2iand A, =1-2i,with corresponding eigenvectors X = { { } Then

, .. —2i| |2e'sin2t| |—2e'cos2t
y(?)=e'(cos2t+isin2t) ) = +1i .

e' cos2t e’ sin2t
2¢'sin2t —2e' cos2t
. Set

e'cos2t  e'sin2t

- 10 T le™
¥ Y. \y(zjz[ }: 2e (i c. .c=2° (_)l .
4 0 1 0 e 0 e’

" sin2r =26V cos2s
(%) (%) :

Thus, one fundamental matrix is ‘i‘(t) = [

Y1) = {

1e""cos2t €' sin2t

11
For A= [1 J , the characteristic polynomial is p(A) = A* —2A4 = (1 —2). The eigenvalues are

1

1
A, =0and A, =2, with corresponding eigenvectors X, = [ J and x, = [J Therefore, a

1 1
fundamental set of solutions is y,(?) = [ J and y, ()= 62t|:1j|. A fundamental matrix is

1 eZt » ., eZs _eZS 1 -1 ‘
Y(1) = | and therefore, ¥~ (s)=0.5¢™" . s 05| ,, | Fromequation
e e’ e

(11), the solution is y(1) =¥ ()WY ' (,)y, +‘I’(t)‘[: W' (s)g(s)ds. Since y,=0and t,=0, we
(=¥ ¥ (g(s)ds = 1 e ['05 lus=| 1 € lasl !
Y= 0 & N S RPE L T e I T R S R 2t

e

have

er —1+2te*

=025 it
—(e”" =1)+2te”
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22.

23.

9 -4
For A= {15 7} , the characteristic polynomial is p(1)=A* =24 —3=(1-3)(A +1). The

2 2
eigenvalues are A, =—1and A, = 3, with corresponding eigenvectors X, = [5} and x, = [3}

2e”"
5¢”"

1 3e3Y 2e3s _ 3
Yls)=——e™ ) =
47 |=5¢7 2e7 | |
t t —%ezs
| ‘I’_l(s)g(s)dsz‘[{s N }s {
0 ol 3¢

—3(e'—e)—3(

¥([ P (9g(s)d e%) gel-2eage
s5)g(s)ds=
0 8 (el — ) =L (e - e%) Lo 15,0415 €3r
‘ 2
Then, y(1) =¥ (?)y, +‘P(t)'[0 ¥ (s)g(s)ds, y(0)=¥(0)y, +0= {5} =
2 2 2|¢ ¢ 1 Theref.
5_53c2:>c2_0' erefore,
2e”" 3¢ —2e' +2¢” 14—164 —2¢' +3e”
y(t): -t + 15 -t _ 15 ,t 15 3t = 55 _ 15 ¢ 15 3t
Se Te ' —Je +5e se ' —je +7e

0 1
For A= { | 0}, the characteristic polynomial is p(1) = A* +1= (A —i)(A +i). The

3t
A fundamental matrix is W(7) = [ 63[} and therefore,

oclu- ool.» EN [
Q
“
N|~ =
N Q
©
I—l

AAQ#L&

I

Q AN OS I 8]
Q

|—I

1 1
eigenvalues are A, =i and A, =—i, with corresponding eigenvectors X, = [} and x, = [ }
i —1

-1 -1 | 1 :
X, = [ ; } and x, = [ } Converting to real solutions, we have y(7) = e"[l} = (cost+isin t)[l]-

cost sint
Therefore, a fundamental set of solutions is y,(?) = [ ) J and y,(1) = [ t}' A fundamental
—sin cos

cost sint

matrix is W(¢) = [ } We have ¥ '(s) = [

coss —sins
—sint cost sins coss |

From equation (11), the solution is y(¢) =P (6)¥'(z,)y, + T(t)Jt ¥ '(s)g(s)ds. Since

0 2
Yo= 1 , 8(s)= 1 ,and 7, =0, we have

’ i int | 0[2coss—si
Y(f)=‘{’(t)‘l"(to)yo+‘P(t)J0‘P'(s)g(s)ds:[sml}+[co,“ S“”N o Sms}ds

cost —sint cost ['0| 2sins +coss

sint cost sint | 2sint+cost—1 1—cost+ 3sint
= + ) ) = .-
cost —sint cost | —2cost+sint+2 -2+ 3cost+sint
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24.

25 (a).

25 (b).

25 (c).

25 (d).

25 (e).

11
For A= [O J , the characteristic polynomial is p(1)= (1—1)*. The eigenvalue is A =1, with

1
corresponding eigenvector X = [O} Then

e' . 1 0 |t
y, = 0 .Letyzze(tv1+v2). v, = O,V2= ! =y,=e %

t t t
A fundamental matrix is W(7) = [Z et } and therefore,
e

1N -2s e’ —se’ _ e’ —se’ — o e’(1-ys) _ te”!
¥(s)=e [0 . }—[0 - }-JO‘P (s)g(s)ds—J{ - }S_L—e"}'
. 0 fe t+te' —t te'
Since y(O){ } Y =¥0[ ¥ (s)g(s)dS:[ , }:{ , }
0 0 e —1 e —1

-2 1 cr
Q(?) is an equilibrium solution if é[ ! Z}Q + [ 0 }z 0. Solving for Q, we obtain

Cv|2
Qe(t)=?L}-

The characteristic polynomial is p(1)=A* +(4r /V)A+3r /V>=(A+3r/V)A+r/V). The
eigenvalues are A, =—3r/Vand A, =-r/V ,with corresponding eigenvectors

1 1
X, = [ } and x, = [J Therefore, a fundamental set of solutions is

1 1
y, (=" LJ andy,(H)=e"" [J The complementary solution is

Q ( ) e—3rt/V efrt/V Cl
= .
Cc _e—3rt/V e—rt/V c,
Finding a constant particular solution is equivalent to finding an equilibrium solution, as in part

().
‘ . e—3rt/V e—rt/V Cl CV 2 ‘
The general solution is Q(#)=Q.(H) +Q, (1) = v +— Ll Imposing the
—e e

C, 3
. L 1he | ev|2| (O :
initial condition leads to Q(0)=0 or |1 + Exb = ol The solution of the initial

) CV 4 _ ef3rt/V _ 3efrt/V
value problem is Q(#) = — .

6
1. _c|?
V}EEQO)_ 3{1}'

2 + e—3rl/V _ 3e—rt/V
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26 (a).

26 (b).

26 (c).

27 (a).

27 (b).

28 (b).

1 1
-V +511'+ L+2(I,-1,)=0, 2(I, - 1)+ 1, +EI; =0. Therefore,

alr] [-6l+4,+2vV.| [-6 4TI ] [2V, 0 LO)] [0
—| = = + L 1>0, =

di| I} 41 61, 4 -6|n|"|o0 Lo)] [0
The characteristic polynomial is p(1) = A* +12A +20 = (A +10)(A +2). The eigenvalues are

1
-1

1
A, =-10 and A, =-2, with corresponding eigenvectors X, = [ and x, = [J Therefore, a

—-10¢ =2t
fundamental matrix is W(¢) = [ or o }
—e e
- 2‘/A . B 1 e—2s _e—2x 1 elOs _eIOS
I(t)=‘P(t)JO‘I’ l(s)[ 0 }ds since 1(0)=0. ¥ '(s) = WL_IOS e‘los}: -, |-
; 2V 10s 1 o 100 1

With V(0 =1, 1>0, [¥'(s)| " |ds=]|",. |= 5@ D1 Therefore,

R 0 O 0 e S %(e r_ 1)

I(r) = [ w(l=e™)+3(1-e™) }: {—%em’ —Lle 4 %}

—L(l-e")+1d-e7)

In the vector system v/ =-v+ (vXxK)+f, the term v xKk is given by

. . . . . V; -1 1 Vi fx
(vi+v jxk=-v j+vi.Therefore, the systemis | , |= + .
, ) ) Vy =1 =1jv, f,v

1
For f = 0.5{ \5}’ we seek a constant solution v; that is, an equilibrium solution. Thus, we need

X

-1 1 |v 1 0
to solve, if possible, +0.5 = . This system does indeed have a solution,
-1 -1 V3|70

Vy
1443
~1+4/3

velocity,” v,, then the particle will move at that constant velocity.

namely v, = 0.25{ } If we choose the initial velocity equal to the “equilibrium

The characteristic polynomial is p(A) = -A(A’ + ®’) . The eigenvalues are

0 1
A =0, 4, =iw,, A, =—iw,, with corresponding eigenvectors x, =|0 |and x=| i |. Therefore,
1 0

0 cosw.t sinwt
A fundamental matrix is ¥(#)=|0 -—sinw.t cos®.?|.
1 0 0
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. -1
0 coswt smwt|0 1 0

28 (¢). (=YY '(0)=|0 -sinw,t cosw,t|0 0 1

1 0 0 1 00
0 coswt sinwt|0 0 1 cosw,t sinwt 0
0 -sinw.t coswt|l 0 O|=|-sinwt cosw.t O]
1 0 0 010 0 0 1

28 (d). From equation 11, v(#) = ®(?)v, + dJ(t)J.(Jt(I)’l(s)g(s) ds, using ®(t) as a fundamental matrix
and noting that ®~'(0) = I. Therefore, v(¢) = O()v, +£(1).

28 (o). 1(0)= [ v(ndi= UO (I)(t)dt}vo + [ fdr=r. . UO (I)(t)dt}vo =i - [ f(ar

o' sinw,t o '(1-cosw.f) 0
jo O(dt=|-w.'(1-cosw,r) o 'sinwt 0.
0 0 T
T 2 4 2
D= det{J. (I)(t)dt} = —Z(l— cosw,T) = —ZSinz(w"Tj Ly S
0 . . 2 o,

Section 6.9
1 (a). For y’ =P(r)y+g(1), y(t,)=y,, Euler’s method has the form y,,, =y, + h[P(tn)yn + g(tn)].

1 2 1 -1
For P(t)= [2 3}, g(r= [J,yo =[ | }, and 7, =0 the iteration is

romseely o[

1 (b). Ingeneral, t, =t +kh,k=0,1,.... Since t,=0, we have t, = kh,k=0,1,.... In general,
h=Mb-a)/N.So,for a=0,b=1,and h=0.01, we obtain N =1/h=100.

5 B ) 1 t, 1 12
@. y,,=y,+ 241 ot ‘[ cYo= I I

2M). t,=1+kh,k=0,1,.... N=.5/h=50.
3 (a). For y’'=P(r)y +g(®), y(t,) =Y, Euler’s method has the form y,,, =y, + h[P(tn)yn + g(tn)].

o : 2 d 1 the iteration i
y t = s = s .=
—/ 0 g(?) y Yo 0 and ¢, e iteration 1s

N -, 1 2
=y + + L Va=| |
yn+1 yn 2_ tn 0 yn tn yO O

3(b). Ingeneral, t, =¢,+kh,k=0,1,.... Since t, =1, we have t, =1+ kh,k=0,1,....In general,
h=Mb-a)/N.So,for a=1,b=4,and h=0.01, we obtain N =3/h=300.

For P(t)= L
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1 0 1 0 0
4(). y, .=y, +h|3 2 1ly,+|2|} ¥y,=|0].
1 20 t 1

4®). t,=-1+kh,k=0,1,.... N=1/h=100.
5(a). For y’=P(r)y +g(®), y(t,) =Y, Euler’s method has the form y,,, =y, + h[P(tn)yn + g(tn)].
sint

t! 0 0
For P(t)= , g()= .Y, =| |, and ¢, =1 the iteration i
or P(1) [l—t | } g(1) Lz} Yo [O} and f, e iteration is

Tl £ sint, N 0 10
yn+1 y 1—tn 1 yn tj i) y()_ O .

5(b). Ingeneral, ¢, =¢,+kh,k=0,1,.... Since ¢, =1, we have t, =1+kh,k=0,1,.... In general,
h=Mb-a)/N.So,for a=1,b=6,and h=0.01, we obtain N =5/h=500.

W B
o=l eool[s 2T o]

1 t, 1 2
7. The iteration has the form y ., =y, + th i1 2 }yn + L ﬂ, Y, = [J where

n

2 I 1(2] |1 2 41 1204
t,=1and £, =1.01. Therefore, y,=| |+0.01 + =| |+001 |= and
1 3 2)1] |1 1 9 1.09
204 1 1.01)2.04 1 2.04 4.1409
0 + = +0.01
1.09 301 2 |1.09] [1.01 1.09 9.3304

2.081409
1.183304

8- B}WH JHEHIEh

1.99 -(1.01)* 1.01]1.99 1 7] [1.9800030
y,= +0.01 + =
0.03 2-101 0 003 |10l 0.059801
10 1] TJo 0
9. The iteration has the form y,,, =y, +hA[|3 2 1|y, +|2 |} ¥,=|0 |where
1 20 t, 1

t,=—1and t, =-0.99. Therefore,
0 1 0 1Jo] [o]] [o 1] (001
y,=[0({+001|3 2 1|0(+|2 ||=|0(+0.01] 3 [=[0.03
1 1 2 01 -1 1 -1 0.99
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and
[0.01 1 0 1]o0o01 0 0.01 1
y,=/003[+001[|3 2 1]003|+| 2 [|=]0.03[+001 3.08
10.99 1 2 0[099| [-0.99 0.99 -0.92
[ 0.02
=10.0608 |.
0.9808

sl S

0 L sinon] o 0 0.00008468318
y,= +0.01|| ™ + =
0.01 1-1.01 1 Joot| |a.on 0.020301

11 (a). Let z(f) = B ((’t))} _ [ yy((?)} With this,

, {zxn} {y%ﬂ} [ (1) } [0 1}[5(0} {()} [1}
Z’(H=|, =7, |= 0 |= +| 4, |.2(0)= )
O] O] [—a@®+t 0]z, |t 0

-1
. 0 1 0
11 (b). Thus, the iteration has the form z, ,, =z, +h L0 z, + o z,=

t,=0and 1,=0.01. ]

et <[ oo Ao -[a] oot Lo
Lol Lol o] Labonl 5

[ 9999
T 1=.01999 |

(G (1) 0 1Tam] [0] [
12 (a). z(t)—[zg(l)} Lzl(z) zz(t)+2} [t _J[ 2()} M,z(l)_m.

where 7, =1.

TS A W
S R R HR

|
-
ol AT

0 1.02
2 0.999696699

1
} where
0

and
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4 y
13 (a). Let z=|z, |=| ¥" |. With this,
23 y”
g Y z, 0 1 0]z 0 1
=7 =y |= Z =0 O l{z2 +| 0 |,z(0)=|-1]|.
] 7| |-t +r+l] |-t 2 0z | [r+] 0
0 1 0] [ 0] 1
13 (b). Thus, the iteration has the foorm z,,, =z, +h/| 0 0 1z, +| O || z,=|-1|where
-t, =2 0 t,+1 0
t,=0and £, =001. S
1 o 1 of1] [o]] [1 17 [0.99
13 (¢). Therefore, z,=|-1|+001|0 O 1|-1|{+(0||=|-1{+0.01 O |=| -1 |and
0 0 -2 0JOj  [1]] |O | 3] [0.03
[0.99 0 1 0fo9] [0 ]] [099 -1
z,=| -1 |+001| O O 1| -11{+| O |[=| -1 [+0.0]] 0.03
1003 -001 -2 0]0.03] [1.01]] [0.03 3.0001
098
=| —0.9997
10.060001

G| s e s Dol e SHECE Y
14 (a). Z(n)=| , = » = » + ,Z(0) = .
25(1) —e 'z, (t)—z2,(H) +2 —e ' —1]z,(0) 2 1
14(). z,,,=z,+h » z,+ s Ly = where 7, =0.
—e" 1 2] 1
[—1} H 0 1 }[—1} _Oﬂ {—0.99}
14 (¢). z, = +0.01 + = and
1 -1 -1] 1] |2 1.02
[—0.99} H 0 1 "—0.99} [OH [ —0.9798 }
Z,= +0.01 o001 + =
1.02 —e -1] 1.02 2 1.039601493

—0.00807508729
0.0759433736...

18.  Actual error: y(1) =¥,y = [

0.0764878206...
0.0027112167...
—0.0027112167..]
0.0027202379...
-0 .0027202379..]

‘ —0.0086591617...
Estimated error: ¥,,, — ¥,00 =

20.  Actual error: y(1)—¥,,, = {

Estimated error: ¥,,, — ¥,00 = [
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21 (a).

21 (b).

21 (c).

21 (d).

22 (a).

dQ, O 5 -15 5
—=-15=+—-0,= +

dt V, sz2 200-10¢ 2 500-20¢2
do, 15 35

dt _200—1()th 500—20tQ2

t=0:.01:19.9;

Q1(1)=40;Q2(1)=40;

h=0.01;

V1=200-10%*t;

V2=500-20%*t;

N=19.9/h;

for i=1:N
Q13G+1)=Q1@1)+h*(-(15/V1(1))*Q1(1)+(5/V2(1))*Q2(1));
Q2(1+1)=Q2(1)+h*((15/V1(1))*Q1(1)-(35/V2(1))*Q2(1));
end

plot(t,Q1,t,Q2,":")

ylabel('Amount of salt in tanks (Ib)")

xlabel('time (minutes)")

title('Chapter 6.9 Problem 21: two-tank draining problem')

Chapter 6.9 Problem 21: two-tank draining problem

'y
(&

N
(=]

w
a1
T

Amount of salt in tanks (Ib)
—_ - N N (]
o o o o o

(&)
T

0 2 4 6 8 10 12 14 16 18 20
Time (minutes)

15
The coefficients im are not continuous at ¢ = 20. Therefore, Existence-Uniqueness

Theorem 6.1 does not apply to any interval containing 7= 20.

_t 1
my” +w +ky=0, m=1, y=2te?, k=4n", y(O)zgmeters, y'(0)=0.

vl [o 1 Two]_ Jo2
A A DOV [ R
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22 (b).

22 (c).

23 (b).

t=0:.005:10;

h=.005;

N=2000;
y1(1)=0.2;y2(1)=0;
gamma=2*t.*exp(-0.5*t);
k=4%*(pir2);

for i=1:N
y1G+D)=y1()+h*y2();
y2(i+1)=y2()+h*(-k*y 1 (i)-gamma(i)*y2(i));
end

plot(t,y1)

0.20

0.15

0.10t

0.05F

-0.05+

-0.10}

-0.15¢

-0.20

o 1 2 3 4 5 6 7 8
time (min)

The amplitude of displacement decreases significantly during the time when damping is
significant. As damping dimishes, the vibration amplitude seems to settle down to a constant

value.

t=0:0.01:3;

h=0.01;

N=300;
y1(1)=2;y2(1)=0;

for i=1:N
y1Gi+1)=y1()+h*y2(i);

y2(i+D=y2()+h*((pi/H)"2)*(t((1)*2) *y 1(1)-0.5%y2(1));

end

plot(t,y1)

xlabel('time (s)");
ylabel('radial position (cm)');

title('Chapter 6.9 problem 23 radial position vs time')

y1(301)
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23 (c).
16 ?hapter 6.9' problem 2[3 radial polsilion Vs liryne
14 |
A12 F
8
§10F
:
4 |
2 1
0 0.5 1 1.5 2 2.5 3
time (s)
r(3)=15.2268..cm
Section 6.10
S - - o ) :
1. For A= 3 the characteristic polynomial is p(A)=A"— A —2. Eigenvalues are
o 1 2 ,
A, =-land A, =2.Corresponding eigenvectors are X, = ] and x, = Ll As in Example 1,
we can construct a diagonalizing matrix 7" from the eigenvectors of A, T = [1 J. The
. . : -1 0] . |
corresponding matrix of eigenvalues, D = 0 2l is such that 77 AT = D.
2. The characteristic polynomial is p(1) = A* —1. Eigenvalues are A, =—1and A,=1.
1 2 1 2
Corresponding eigenvectors are X, = [ J and x, = [ J. Therefore, T = { | J and
-1 0
D= .
0 1
11 - L ) :
3. For A= |1 the characteristic polynomial is p(A)=A"—2A . Eigenvalues are

-1 1
A, =0and A, =2.Corresponding eigenvectors are X, = [ ! } and x, = [J As in Example 1,

we can construct a diagonalizing matrix 7" from the eigenvectors of A, T = [ ] J. The

0 0
corresponding matrix of eigenvalues, D = {0 2}, is such that T"'AT = D.
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The characteristic polynomial is p(A)= A’ —5A . Eigenvalues are A, =0 and 4,=5.

3 1 3 1
Corresponding eigenvectors are X, = [ 2} and x, = [J Therefore, T = { } and

2 1
0 0
D= .

2 3
For A= L’ 2} the characteristic polynomial is p(1) = A*— 42— 5. Eigenvalues are

-1 1
A, =-land A, =5. Corresponding eigenvectors are X, = [ ! } and x, = [J As in Example 1,

we can construct a diagonalizing matrix 7" from the eigenvectors of A, T = {_1 J. The

-1 0| . |
,issuch that 77 AT =D.
0 5

The characteristic polynomial is p(1) = 1> =21 — 3= (A +1)(A— 3). Eigenvalues are
1

corresponding matrix of eigenvalues, D = {

1
A, =-land A, = 3. Corresponding eigenvectors are X, = [ J and x, = [J Therefore,

1 1 -1 0
T= and D= .
L fmen=3

2
For A:{

0
{ J the characteristic polynomial is p(A)= A’ — 31 +2. Eigenvalues are

0 1
A, =1land A, =2.Corresponding eigenvectors are X, = [J and x, = [J As in Example 1, we
can construct a diagonalizing matrix 7 from the eigenvectors of A, T = L J. The

1 0
corresponding matrix of eigenvalues, D = {0 2}, is such that T"'AT = D.
The characteristic polynomial is p(1)= A1 — A —6= (1 +2)(A - 3). Eigenvalues are

1 2
A, =-2and A, = 3. Corresponding eigenvectors are X, = [O} and x, = L} Therefore,

1 2 -2 0
T= and D= .
o 1 Jmeo=ly

25 -8 30
For A=| 24 -7 30 |, the eigenvalues are 4, =1and A, =2.From the characteristic
-12 4 -14

polynomial given, it follows that A, has algebraic multiplicity 2 and A, has algebraic
multiplicity 1.
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In order to find the eigenvectors corresponding to 4,, we solve (A—A,I)x =0 or

24 -8 30 | x, 0 12 -4 15| x, 0
24 -8 30 | x, |=|0]|. This systemreducesto |0 O O | x, |[=|0 |and hence
-12 4 -15|x,| |0 0 0 O |ux, 0

eigenvectors corresponding to A, all have the form

(4x,-15x,)/12] [x,/3] [-5x,/4
X = X, =l x, |+ 0 . Thus, we find two linearly independent
X, 0 X,
I -5
eigenvectors, X, =| 3 |and x, =| 0 | corresponding to A, and therefore, A, has geometric
0 4

multiplicity 2. Since A, has algeiaraic multiplicity 1, it also has geometric multiplicity 1. Thus,
A is not defective (that is, A is diagonalizable). In order to find the eigenvectors corresponding
23 -8 30 | x, 0
to A,,wesolve (A—A,)x=0o0r |24 -9 30 | x,|=|0]|.Solving this system, we obtain
-12 4 -16| x; 0

2 1 -5 2
an eigenvector corresponding to A,, x=| 2 |. Therefore,if 7={3 0 2 |, and
-1 0 4 -1
1 00
D=0 1 0] then T"'AT =D.
0 0 2
10. A, =—1 has algebraic multiplicity 1 and A, = 3 has algebraic multiplicity 2. The corresponding
1 1 1
eigenvectors are x=| 2 |for A, and x,=| 0 |andx, =|2 | for A,. Therefore, 4, has
-2 -2 0
geometric multiplicity 1 and A, has geometric multiplicity 2. A is diagonalizable and
I 1 1 -1 00
T={2 0 2f,and D={0 3 O0O].
-2 -2 0 0 0 3
1 0 1
11. ForA=|2 2 -3]|,theeigenvaluesare A, =1and A, =2.From the characteristic polynomial
0 0 1

given, it follows that A, has algebraic multiplicity 2 and A, has algebraic multiplicity 1.
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12.

13.

14.

15.

In order to find the eigenvectors corresponding to 4,, we solve (A—A,I)x =0 or

0 0 1]x 0 0 0 1fx 0
2 1 -3|x,|=|0]. Thissystemreducesto |2 1 O] x,|=]|0|and hence eigenvectors
0 0 0 |x 0 0 0 Ofx, 0
X, 1
corresponding to A, all have the form x=|—2x, |=x,| -2 |.
0 0

Thus, there is only one linearly independent eigenvector corresponding to A,. Therefore, 4,
has geometric multiplicity 1 and consequently A is defective (not diagonalizable).

A, =2 has algebraic multiplicity 2 and A, = 3 has algebraic multiplicity 1. The corresponding
1 0
eigenvectors are Xx=|4 |for A, and x=|1| for A,. Therefore, A, has geometric multiplicity
1 1
1 and A, has geometr_ic multiplicity] and A is not diagonalizable.
4 -1 1
For A=|10 -2 3|, the only eigenvalue is A, =1. From the characteristic polynomial given,
I 0 1
it follows that A, has algebraic multiplicity 3. In order to find the eigenvectors corresponding
3 -1 1|x 0
to A,,wesolve (A—ANx=0or [10 -3 3| x,|=|0|. This system reduces to
I 0 Ofux, 0

1 0 O]x 0
0 1 —1{x,|=|0]and hence eigenvectors corresponding to A, all have the form
0 0 0 |x, 0
0 0
X =| x; |= x5| 1 |. Thus, there is only one linearly independent eigenvector corresponding to
X, 1
A, . Therefore, A, has geometric multiplicity 1 and consequently A is defective (not

diagonalizable).

All four matrices are diagonalizable.

Matrices (a) and (d) have distinct eigenvalues.

Matrix (b) is a real, symmetric matrix.

Matrix (c) is lower triangular and has distinct eigenvalues.

FA6
or—2_1

} the eigenvalues are A, =2 and A, = 3 with corresponding eigenvectors

) 2 3 2
X, = [2} and x, = [J Make the substitution y = Tz = [2 Jz to obtain Tz’ = ATz +g().
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Multiplying by T~ gives z’ =T "'ATz+ T 'g(t) or

, » 2 0 -1 2 |4+3¢ 2 0 e
' =Dz+T g(t)= Z+ = Z+ . Thus, the system uncouples
0 3 2 -3[2+2€ 0 3 2

’ t
. Z 2z, +e ) . . .
nto [ 1 }: { ' } Solving these uncoupled first order equations, we obtain

2| | 3z,+2

[ —e' +ce”

—(2/3)+c,e”
|3 2] e 4 | 3¢ 2V || |3e'+4/3
Y212 1)@yt | 2e & o] 204273

2
16.  The eigenvalues are A, =—1and A, =2 with corresponding eigenvectors X, = [ } and

}. Finally, forming y = 7z, we obtain the general solution

-1

1 2 1
X, = [ J. Make the substitution y =7z = [ }z .

-1 -1
, » -1 0 1 1 ]e—2e —e'
z2’=Dz+T g(t):[o 2}z+[_1 —2}[—e2’+e’}:{e2’}'
: : : : —(1/2)e' +ce | :
Solving these first order equations, we obtain z = [ (e + 0,6 } Finally, forming y =17z,

) ) 2 1 |=(1/2)e" +ce” 2¢7 ¥ | ¢ —e' + te”
we obtain the solution y = 5 5 = 5 +, . |-
-1 —1| re* +c,e” —e' —e¥|c,| |3e' —te
11
17. For A= {2 2} the eigenvalues are 4, =0 and A, = 3 with corresponding eigenvectors

: ! I 1
X, = [ J and x, = [2} Make the substitution y =7z = [ 2}2 to obtain Tz’ = ATz +g().

-1

Multiplying by T~ gives z’ =T "'ATz+ T 'g(t) or

» 0 0 2/3 =1/3| ¢t 0 0 t—1
Z =Dz+T 'g(t)= Z+ = Z+ .
0 3 1/3 1/3 |3—-¢| |0 3 1
zy r—1
Thus, the system uncouples into [ 1}= [3 N J. Solving these uncoupled first order
2 2,
1/ —t+c,

~(1/3) +c,e

_{1 1} /) —t+¢ | |1 € [cl} 1/2)f —t—(1/3)
YZlar 2] —ai3)+ee |T=1 207 || |~/ 4 1-13) |

equations, we obtain z = [ } Finally, forming y = 7z, we obtain the solution
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18.

19.

20.

21.

2
The eigenvalues are 4, =2 and A, =5 with corresponding eigenvectors X, = [ J and

1 2 1
X, = L} Make the substitution y =7z = [ }z.

-1 1
/- Da+ T g(s) 2 0 1 —1l4r+4 2t+1
7’ =Dz+ H= Z+| | ] = .
89%0 5" |1 2 a1 2
: : —t—1+ce”
Solving these first order equations, we obtain z = ) 5, | Finally, forming y =7z, we
—35tcC,e
2 1|=t=1+ce*| [2¢* €' |c —2r—12
obtain the solution y = le = e2 es Y+ > .
-1 1] =2+ce” - e'|c, t+2
-9 -5 )
For A= g 4 the eigenvalues are A, =—1 and A, =—4 with corresponding eigenvectors

5 1 5 1
X, = [—8} and x, = [_J. Make the substitution y =7z = [—8 -1

}z to obtain 72" = ATxz.

-1 0
Multiplying by T~ gives z” =T 'ATz or " = Dz = [ 0 4}2 . Thus, the system uncouples

NN 4 I B
mto | ,,|= .

LJ L‘LZJ

. ) ) c,cost+d,sint ) )
Solving these uncoupled equations, we obtain z = . Finally, forming

¢, 082t +d,sin2t
y =Tz, we obtain the solution

5 1| ccost+dsint 5(c,cost+d, sint) + ¢, cos2t + d, sin2t
y= {—8 —1}{% cos2t+d, sin2t} B [_8(01 cost+d,sint)—c,cos2t—d, sin2t} '
The eigenvalues are 4, =-9 and A, =—1 with corresponding eigenvectors

7 1 7
X, = [ 15} and x, = [ J. Make the substitution x =7z = [ 5 JZ to obtain

” -9 0 . . . C1€73t + C2€3t
" + 0 | z=0. Solving the equations, we obtain z =

1

B . Finally, we obtain

ke™ +kye

the solution x = 7ot Cleii ’ c2ej’ = 7(6167_33’,-% cze33’) the +he .
=15 -1 ke +kpe —15(c,e™ +c,e)— (ke  + k,e')

-2 -1
For A= { ) } the eigenvalues are A, =—1and A, =1 with corresponding eigenvectors

1 1 1
X, = [ } and x, = [ 3}. Make the substitution y =7z = [

1
{ }z to obtain 72" = ATz.

-1 -3
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22.

27 (a).

27 (b).

27 (¢).

-1 0
Multiplying by T~ gives z” =T 'ATz or " = Dz = [ 0 Jz . Thus, the system uncouples

44
. - —%
mnto | ,,|= .
2 2

. ) ) c,cost+dsint| )
Solving these uncoupled equations, we obtain z = . Finally, forming y =7z,

-t t
c,e +de

we obtain the solution y = » . ) » ,
-1 3| ce’ +de —(c,cost+d,sint)—3(c,e” +d,e')

The eigenvalues are 4, =0 and A, =5 with corresponding eigenvectors

1 1}{clcost+dlsint} [ c,cost+d sint+c,e”’ +dye' }

1 2 o 1 2 _ 00
X =|_, and x, = 1 . Make the substitution x =7z = 5 1 to obtain z” + 0 s z=0

ct+c,
k, cos(+/51) + k, sin(+/57)
1 2 et+e, (e, +¢,) +2[k cos(V/50) + ky sin(\'51)|
T [—2 ILI cos(v51) + k, sin(v'S t)} ) {—2@1: +¢,)+ [k cos(v50) + &, sin(V5 t)]]'

Solving the equations, we obtain z = . Finally, we obtain the solution

500 =200
For A= [_200 200 } the eigenvalues are A, =100 and A, =600 with corresponding
. 1 2
eigenvectors X, = ) and x, = Ll
2

1
Make the substitution y =7z = [2 Jz to obtain 72"’ + ATz = 0. Multiplying by

T gi "+T'ATz=0or 2" + 1000 0 Thus, the syst les int
= VA 7= .
gives z Z or 0 600 0 us, the system uncouples into
z/+100z, 0 o o » 02 04 | 0.1 0.08
) =| |. The initial condition is z(0)=T"y(0) = = .
25+ 600z, 0 04 -02]0.15 0.01

¢,cos10z + d, sin10¢ }

Solving the uncoupled equations z’’ + Dz =0, we obtain z = Lz cos10/6+ 4, 5in10 Jot

0.08cos10¢

0.01cos10+/6¢
obtain the solution of the initial value problem:

1 27T 0.08coslOr O.OSColet+O.OZCos(10«@t)
Y72 -1]001cos10v6r ] | 0.16c0510-0.01cos(10467) |

Imposing the initial condition, we find z = [ } Finally, forming y =7z, we
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Section 6.11

5
1 (a). We proceed as in Example 2. For A= [5 4

}, the characteristic polynomial is p(A)=A"- 4.

4 1
Eigenvalues are A, =0 and A, =1 with corresponding eigenvectors X, = [5} and x, = [J

Since A is diagonalizable, we obtain from equation (7) e = TA(f)T~' where

4 1 et 1 0
T=[x,Xx,]= 5 1 and A(r) = 0 o = 0 o . Thus,
L[4 11 0T-1 1] [4+5" 4-4¢
D(H=e" = . = .
5 1]0 |5 -4 —5+5¢" 5-4¢

(t+D)A

1 (b). The solution of y’ = Ay,y(—1)=Yy, is given by y(¢) =€y, . Therefore,

(2) = ™4 sl ! [—4+5¢° 4-4e1 —4 +5¢°
=e =e — — '
! Yo 0] |-5+5¢° 5-4¢ |0] |-5+5¢°

2 (a). The characteristic polynomial is p(1) = (A —2)*. Eigenvalues are A=A, =2 with

1
corresponding eigenvector X, = [O} Therefore,

e 2 1 0 2| !
y«r){ i } Let y,(1)= e (1€ +7), 5:[0} <A—2I)n=§én=[l}iy2<r)=e H

2t 2t

e te )
Y() = { 5 }: ®d(7) since Y(0)=1
0 e

2.y =dmym=|¢ H— 3
A y_0e22_2€2'

6 5
3 (a). We proceed as in Example 2. For A= L 2} , the characteristic polynomial is
p(A)=A> -84 +7.Eigenvalues are A, =1and A, = 7 with corresponding eigenvectors

1 5
X, = [ } and x, = L} Since A is diagonalizable, we obtain from equation (7) e”* = TA()T ™'
here T=[x.x.]=| . | and A() 0 et 0
where T =[x,,X,]= an = = . Thus,
12 -1 1 0 e/’Lzz 0 e7t

1 sTe oTue —si6 ¢ +5¢"  —5¢' +5¢"
D(1)=e" = ' =(1/6) ; °l
-1 1|0 e"|1/6 1/6 —e'+e’" S5 +e”

3 (b). The solution of y’ = Ay,y(0) =y, is given by y(¢) = e"y,. Therefore,

(-h=e™ ) (1/6) ¢ F3e” e el ] (1/6) ~4e 4107
Dee _ _ |
’ I —e e’ Sel+e’ |1 4e”' +2e7
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4 (a). The characteristic polynomial is p(A)=(1—A1)(2—A)(-1— A). Eigenvalues are

1 1 1
A =-1, A, =1, A, =2 with corresponding eigenvectors x,=| 1 |, x,=(0], x,=|1
-3 0 0
e’ e e 1 11 0 0 -3
Therefore, W(r)=| ¢’ 0 €| ¥YO)=|1 0 1|=¥'0)=|1 -1 0
-3¢ 0 0 -3 0 0 0 1 3
e’ e o o -1 —e'+e” t(=e'+e)

0 e'
and ®(H)=| ¢’ 0 |1 -1 0 |=]|0 e L(—e" +e™)
0 0

3¢ 0 00 1 3 0 e’
1 _ez
4 (). y)=dDy0)=dD)|1|=|e*|.
ol |0

t 25" —1
5 (a). From Theorem 6.15, ®(t,5)= ¥ ()¥ '(s) = [1 }[ > }, and thus

2t =572 7!

2s't— s —t+ 157" _ ‘
O(r,5)=| . | 5 _, | @(2,5) is not a function of 7—s.
25 =258t —1+2ts
5(b). From Th 615,y =oGnym=|""" 2 T
(b). From Theorem 6.15, y(3) = ®(3,)y(l) = 6 —1461-11719 "
6. B=T'p(A)T=T"'QA -~ A+3NT =2T"'A’T-T'AT +3T"'T=2D>-D+3I.

20— A +3 0
Therefore, B = .

0 20—, +3
9 (a). As we saw in equation (6), if T'AT = D then A" = TD"T™". (For this present case,

3 2 1 0 _ 1 ol | ' 1 0] '
T= and D= ) Since A"=T T~ and since =1 whennis
4 3 0 -1 0 -1 0 -1
even, it follows that A" =1.
1 of
9(). A"=TD'T'= TL) J T'=TDT' = A when n is odd.
9 (c). Asin parts (a) and (b), we see that A™" =1 when nis even and A™" = A when n is odd.

1 0 | ] 1 0
10. A=T T~ . The four matrices are: D= )
0 -1 0 =i

1 0 -1 0 1 0 -1 0
D1: ‘,Dzz .’D3: .aD4: NE
0 i 0 i 0 —i 0 —i

11. For the given matrix, A= A.Thus,if B=A"?,then B>=A=A"as requested. Exercise 10

asks for four different square roots of A and any one of these will serve as B.

2 1 -1 142 1 44 . 2 1 O il 0
12. A"+A*=TBT = B=T AT+T AT .Since A°=1, B=1+D= 0 1 + 0 +i
T
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13.

14.

15.

16.

17.

1 172 oT[-1 17 [24 -16
Since A=TDT™, it follows that A> =TD’T™" = [ }{ } { }: [ }

2 110 22 -1 32 24
f(A)—cos(nA)—TCOS(M‘) T L R
nee B 0 cos(md,) | " |5 3] =5 2
cos(mA,) = cos(%j = %, cos(l,) = cos(%) =0. Therefore,
2 1TL o3 -1] [3v2 -2
secon T2 4L 52 53]

)= Sin(%) B %’ sin(7A,) = sin(%) =1. Therefore,
2 L 3 _ ) )
sewr=sman=[3 1] IH a5 142 }

5 3/0 1]-5 2 [8V2-15 -342+6
cosA,t 0

0  cosA,t
diagonalizable matrix with eigenvalues A, and A,. Thus, with =7 and the given eigenvalues,

cos(m /3) 0 Lo Juz 0
T'=T T
0  cos(7n/3) 0 1/2

As we saw following Theorem 6.16, cos(tA) = T[ }Tl when Aisa (2X2)

cos(mA) = T[
we have
1 0

=(1/ 2)T{O JT‘I =(1/2)]I.

Similarly, we find sin(zA) = (/3 /2)1.
2 -1
=t Maves 274 pz=7" =] 7' p=|" | The solution

= P 1 gives Z Z = 0 = ) . = 0 1 . € solution 18

ce +ce +1 , .. . :
Z(t) = . . Converting to the original variables, we obtain
k,cost+k,sint+2

1 1
Let T = { } Make the substitution y = 7z . Premultiplying by

11 ce ' +cee +1 ce +c,e' +kcost+k,sinr+3
y(0) =Tz(1)= =

—2 1] kcost+k,sint+2| |-2ce” —2c,e' —kcost—k,sint—4 |

1 1 1
Let T = { 5 J. Making the substitution y = 7z, the system becomes ATz’ + Tz = [J

. . -1 _1 _1 . 1 _2 _1 O _2
Premultiplying by 7™ = 5 1 |8lVes T ATz +z= 31 o 1 7 +z= 3 . Thus, the

ce —2

-t
c,e +

. : : L 1| ce -2 ce' +ce’ +1
original variables, we obtain y =7z = » = , » .
-2 1] c,e"+3] |2ce —ce’ +1

’

. _ZI’ Tz -2 ..
system uncouples into = . The solution is z(7) =
5 +2, 3

}. Converting to the
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18.  Make the substitution y=Tz. z”’+2z + Dz=0.. The solution is

1 x/?)

ce( : V;)t+c e( :?

Z(t) = . Converting to the original variables, we obtain
ke * cos( )+ ke ? sm(% )
L5, —1445); _1 3 _t
cle(_E ?) +cze( H) +ke 2cos(% )+k e 2sm(ﬁt)
y(O=Tx(t)= (-4-%)r -4+ 7 sl
—2ce' * 7 =2c,e ) —ke COS(T ) ke ? sm(— t)

1 1
19. LetT= { ) J. Making the substitution y = 7z, the system becomes 72"’ +2ATz’ = 0.

-1 -1

2 1 0
¢, +ce”

d +de™

-1 0 0
Premultiplying by 7' =[ } gives 2z’ +2T'ATz’ =0 or z”’ + 2[ Jz’ = [O} Thus, the

2z
system uncouples into | ,, ], =
2 +22;

original variables, we obtain
1 1| ¢ +c,e” c,+ce’ +d +de™
y(©) =Tz(t) = o |7 2 ENE
-2 —ljd+de™ | |20c, +c,e”)—(d +dye™)
20 (@). mx)=k,(x,— x,); myxy=k,(x;—x,)—k;(x, — x,); myxy=—k,(x;— x,). Therefore,
mx;+ k,(x, — x,) =0; myx)—kx, +(k +ky)x, —k,x; =0; myxy—k,x, +k,x,=0.
The result follows.

0
O}' The solution is z(¢) = {

}. Converting to the

1 1
20 (b). Kv, =0, where v, is any nonzero multiple of |1 |. Therefore, O, |1 | is an eigenpair.
1 1

20 (c). Letx= f(H)v,. Mx”" +Kx= M(f"(t)v,) +Kf (t)v, = 0. Therefore, since
K(f(t)vy) = f(OKv,=0, Mf"(t)v,=0 or m,;f”(t)=0, j=1.2,3= f”(¢)=0. Therefore,
f(=ct+ec, and x()=(c,t+¢,)vy. X(0)=c,v,=0=¢,=0, x()=c,v,=V, = ¢, =1.
Therefore, x(#) = tv,,. The system is executing motion at constant velocity v,. There is no
relative motion; the three-mass system is translating like a rigid body.

1 -1 0
21 (a).For this case, we have A= M 'K = £ -1 2 —1|.Using MATLAB, we find the
"o -1
1 -1 O
eigenvaluesof B=|—-1 2 -—1|are y,=0,7,=1,and ¥, =3 with corresponding
0 -1 1
1 1 1
eigenvectors w, =|1fu,=| 0 [,andu,=|-2|. Since A= (k/m)B, the eigenvalues of A are
1 -1 1

multiples of k/m times the eigenvalues of B while corresponding eigenvectors can be chosen to
be the same as those of B.
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21 (b). Making the substitution x = 7z, the system becomes 7z"" + ATz = 0. Premultiplying by

0 O 0 0
gives 2/ +T'ATz=0or 2 +|0 km™ 0 |z=|0|. Thus, the system uncouples into
0 0 3km 0
z’ 0 ct+c,
Z/+km™'z, |=|0|. The solutionis z(r)=| d,coswt+d,sinat |, where @= Nim™ .
'+ 3km™'z, | |0 e, cos~/ 3@t + e, sin/ 301
Converting to the original variables, we obtain
I 1 1 ot+c,

x(?)

I 0 -2 d,cosax + d, sinwt

I -1 1 |ecos V3ar + e, sin~/ 301
ct+c,+dcoswx+d,sinwx+e, cos~/ 3ot + e, sin+/3ar

= ¢ t+c,—2(e cos V3ot + e, sin \3ar)

¢t +c,—(d cosax +d,sinwr) + ¢, cos~/3or + e, sin~/3r



