Chapter 6

First Order Linear Systems

Section 6.1

1.
$$2A(t) - 3tB(t) = 2\begin{bmatrix} t - 1 & t^{2} \\ 2 & 2t + 1 \end{bmatrix} - 3t \begin{bmatrix} t & -1 \\ 0 & t + 2 \end{bmatrix} = \begin{bmatrix} 2t - 2 & 2t^{2} \\ 4 & 4t + 2 \end{bmatrix} - \begin{bmatrix} 3t^{2} & -3t \\ 0 & 3t^{2} + 6t \end{bmatrix}$$
$$= \begin{bmatrix} 2t - 2 - 3t^{2} & 2t^{2} + 3t \\ 4 & 2 - 2t - 3t^{2} \end{bmatrix}$$

2.
$$A(t)B(t) - B(t)A(t) = \begin{bmatrix} 2 & 2t^2 + t + 2 \\ -4 & -2 \end{bmatrix}$$

3.
$$A(t)\mathbf{c}(t) = \begin{bmatrix} t-1 & t^2 \\ 2 & 2t+1 \end{bmatrix} \begin{bmatrix} t+1 \\ -1 \end{bmatrix} = \begin{bmatrix} (t-1)(t+1) + t^2(-1) \\ 2(t+1) + (2t+1)(-1) \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

- 4. $\det[tA(t)] = -t^3 t^3$
- 5. There are two natural ways to do this problem. We can form the matrix A(t)B(t) and then calculate $\det[A(t)B(t)]$. Alternatively, we can separately calculate $\det[A(t)]$ and $\det[B(t)]$ and use the fact that $\det[A(t)B(t)] = \det[A(t)]\det[B(t)]$. Taking the latter course, $\det[A(t)] = (t-1)(2t+1) 2t^2 = -(t+1)$, and $\det[B(t)] = t(t+2) = t^2 + 2t$. Thus, $\det[A(t)B(t)] = -(t+1)(t^2 + 2t) = -(t^3 + 3t^2 + 2t)$.
- 6. $\det[A(t)] = 2t + 1$ and so the matrix A(t) is invertible for every value t except $t = -\frac{1}{2}$. The inverse of A(t) is given by $A^{-1}(t) = \frac{1}{2t+1} \begin{bmatrix} t+1 & -t \\ -t & t+1 \end{bmatrix}$, $t \neq -\frac{1}{2}$.
- 7. As noted in Example 2, a square matrix is invertible if and only if its determinant is nonzero. Now, $\det[A(t)] = t(t-3) 4 = t^2 3t 4 = (t-4)(t+1)$ and so the matrix A(t) is invertible for every value t except t=4 and t=-1. The inverse of A(t) is given by $A^{-1}(t) = \frac{1}{(t-4)(t+1)} \begin{bmatrix} t-3 & -2 \\ -2 & t \end{bmatrix}, \quad t \neq 4, t \neq -1.$

- 8. $\det[A(t)] = 2\sin t \cos t = \sin 2t \text{ and so the matrix } A(t) \text{ is invertible for every value } t \text{ except}$ $2t = n\pi \Rightarrow t = \frac{n\pi}{2}, \quad n = 0, \pm 1, \pm 2, \pm 3, \dots \text{ The inverse of } A(t) \text{ is given by}$ $A^{-1}(t) = \frac{1}{2\sin t \cos t} \begin{bmatrix} \cos t & \cos t \\ -\sin t & \sin t \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\csc t & \frac{1}{2}\csc t \\ -\frac{1}{2}\sec t & \frac{1}{2}\sec t \end{bmatrix}, \quad t \neq \frac{n\pi}{2}, \quad n = 0, \pm 1, \pm 2, \pm 3, \dots$
- 9. In this case, $\det[A(t)] = e^t e^{4t} e^{3t} e^{2t} = e^{5t} e^{5t}$ and so $\det[A(t)]$ is zero for every value of t. Hence, the given matrix A(t) is never invertible.

10.
$$\lim_{t \to 0} A(t) = \lim_{t \to 0} \begin{bmatrix} \frac{\sin t}{t} & t \cos t & \frac{3}{t+1} \\ e^{3t} & \sec t & \frac{2t}{t^2 - 1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 1 & 0 \end{bmatrix}.$$

- 11. $\lim_{t \to 0} A(t) = \lim_{t \to 0} \begin{bmatrix} te^{-t} & \tan t \\ t^2 2 & e^{\sin t} \end{bmatrix} = \begin{bmatrix} \lim_{t \to 0} te^{-t} & \lim_{t \to 0} \tan t \\ \lim_{t \to 0} [t^2 2] & \lim_{t \to 0} e^{\sin t} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -2 & 1 \end{bmatrix}.$
- 12. Differentiating A(t) component wise, we have $A'(t) = \begin{bmatrix} \cos t & 3 \\ 2t & 0 \end{bmatrix}$ and $A''(t) = \begin{bmatrix} -\sin t & 0 \\ 2 & 0 \end{bmatrix}$. A(t), A'(t) and A''(t) are defined for $-\infty < t < \infty$.
- 13. Differentiating A(t) component wise, we have $A'(t) = \begin{bmatrix} 0 & t^{-1} \\ -0.5(1-t)^{-1/2} & 3e^{3t} \end{bmatrix}$ and $A''(t) = \begin{bmatrix} 0 & -t^{-2} \\ -0.25(1-t)^{-3/2} & 9e^{3t} \end{bmatrix}$. A(t) is defined for $-\infty < t < 0$ and $0 < t \le 1$.
- 14. $P(t) = \begin{bmatrix} t^2 & 3 \\ \sin t & t \end{bmatrix} \text{ and } \mathbf{g}(t) = \begin{bmatrix} \sec t \\ -5 \end{bmatrix}.$
- 15. $\begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} t^{-1}y_1 + (t^2 + 1)y_2 + t \\ 4y_1 + t^{-1}y_2 + 8t \ln t \end{bmatrix} = \begin{bmatrix} t^{-1}y_1 + (t^2 + 1)y_2 \\ 4y_1 + t^{-1}y_2 \end{bmatrix} + \begin{bmatrix} t \\ 8t \ln t \end{bmatrix} = \begin{bmatrix} t^{-1} & t^2 + 1 \\ 4 & t^{-1} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} + \begin{bmatrix} t \\ 8t \ln t \end{bmatrix}. \text{ Therefore, } P(t) = \begin{bmatrix} t^{-1} & t^2 + 1 \\ 4 & t^{-1} \end{bmatrix} \text{ and } \mathbf{g}(t) = \begin{bmatrix} t \\ 8t \ln t \end{bmatrix}.$
- 16. Let $A'(t) = \begin{bmatrix} 2t & 1 \\ \cos t & 3t^2 \end{bmatrix}$. Integrating component wise, we find $A(t) = \begin{bmatrix} t^2 + C_{11} & t + C_{12} \\ \sin t + C_{22} & t^3 + C_{22} \end{bmatrix}.$

Since
$$A(0) = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ 1 & -2 \end{bmatrix}$$
, we obtain $A(t) = \begin{bmatrix} t^2 + 2 & t + 5 \\ \sin t + 1 & t^3 - 2 \end{bmatrix}$.

17. Let
$$A'(t) = \begin{bmatrix} t^{-1} & 4t \\ 5 & 3t^2 \end{bmatrix}$$
. Integrating component wise, we find
$$A(t) = \begin{bmatrix} \ln|t| + C_{11} & 2t^2 + C_{12} \\ 5t + C_{21} & t^3 + C_{22} \end{bmatrix}$$
. Since $A(1) = \begin{bmatrix} C_{11} & 2 + C_{12} \\ 5 + C_{21} & 1 + C_{22} \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ 1 & -2 \end{bmatrix}$, we obtain $A(t) = \begin{bmatrix} \ln|t| + 2 & 2t^2 + 3 \\ 5t - 4 & t^3 - 3 \end{bmatrix}$.

18. Let
$$A''(t) = \begin{bmatrix} 1 & t \\ 0 & 0 \end{bmatrix}$$
. Integrating component wise, we find
$$A'(t) = \begin{bmatrix} t + C_{11} & \frac{t^2}{2} + C_{12} \\ C_{21} & C_{22} \end{bmatrix} \Rightarrow A(t) = \begin{bmatrix} \frac{t^2}{2} + C_{11}t + D_{11} & \frac{t^3}{6} + C_{12}t + D_{12} \\ C_{21}t + D_{21} & C_{22}t + D_{22} \end{bmatrix}.$$
Since $A(0) = \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$ and $A(1) = \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix}$, we obtain $A(t) = \begin{bmatrix} \frac{t^2}{2} - \frac{5}{2}t + 1 & \frac{t^3}{6} + \frac{5}{6}t + 1 \\ -2 & 2t + 1 \end{bmatrix}$.

$$\int_0^t B(s) \, ds = \begin{bmatrix} \int_0^t 2s \, ds & \int_0^t \cos s \, ds & \int_0^t 2 \, ds \\ \int_0^t 5 \, ds & \int_0^t (s+1)^{-1} \, ds & \int_0^t 3s^2 \, ds \end{bmatrix} = \begin{bmatrix} t^2 & \sin t & 2t \\ 5t & \ln|t+1| & t^3 \end{bmatrix}.$$

20. Integrating component wise, we obtain
$$\int_0^t B(s) ds = \begin{bmatrix} e^t - 1 & 3t^2 \\ \frac{\sin 2\pi t}{2\pi} & \frac{1 - \cos 2\pi t}{2\pi} \end{bmatrix}.$$

21 (a). One example is
$$A = \begin{bmatrix} 1 & t \\ t^2 & 0 \end{bmatrix}$$

22. One example is
$$A = \begin{bmatrix} 0 & t \\ 0 & 0 \end{bmatrix}$$
.

Section 6.2

1. The given problem can be written as $\mathbf{y}'(t) = P(t)\mathbf{y}(t) + \mathbf{g}(t)$, $\mathbf{y}(3) = \mathbf{y}_0$ where $P(t) = \begin{bmatrix} t^{-1} & \tan t \\ \ln|t| & e^t \end{bmatrix}$, $\mathbf{g}(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\mathbf{y}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. The coefficient functions $p_{11}(t) = t^{-1}$ and $p_{21}(t) = \ln|t|$ are discontinuous at t = 0. The coefficient function $p_{12}(t) = \tan t$ has discontinuities at $\pm \pi/2, \pm 3\pi/2, \ldots$. The largest interval containing $t_0 = 3$ but containing no discontinuities of any coefficient function is the interval $\pi/2 < t < 3\pi/2$.

2. In standard form, the problem is $\mathbf{y'} = \begin{bmatrix} 1 & \tan t \\ t^2 - 2 & 4 \end{bmatrix} \mathbf{y} + \begin{bmatrix} (t+1)^{-2} \\ 0 \end{bmatrix}, \mathbf{y}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$

 $\tan t$ is discontinuous at $t = \pm \pi/2$ and $(t+1)^{-2}$ is discontinuous at t = -1. The largest interval containing $t_0 = 0$ but containing no discontinuities of any coefficient function is the interval $-1 < t < \pi/2$.

3. In standard form, the problem is $\mathbf{y'} = \begin{bmatrix} (\cos t)/t^2 & 1/t^2 \\ 2 & 4t \end{bmatrix} \mathbf{y} + \begin{bmatrix} 1/t^2 \\ \sec t \end{bmatrix}, \mathbf{y}(1) = \begin{bmatrix} 0 \\ 2 \end{bmatrix}.$

The only discontinuities of $p_{11}(t)$ and $p_{12}(t)$ are at t = 0, while $g_2(t)$ is discontinuous at $t = \pm \pi/2, \pm 3\pi/2, \ldots$ The largest interval containing $t_0 = 1$ but containing no discontinuities of any coefficient function is the interval $0 < t < \pi/2$.

4. In standard form, the problem is $\mathbf{y}' = \begin{bmatrix} \frac{3t}{t+2} & \frac{5}{t+2} \\ \frac{2}{t-2} & \frac{4t}{t-2} \end{bmatrix} \mathbf{y}, \mathbf{y}(1) = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$.

The largest interval containing $t_0 = 1$ but containing no discontinuities of any coefficient function is the interval -2 < t < 2.

- 5. Differentiating, $y_1' = 5c_1e^{5t} + 3c_2e^{3t}$ and $y_2' = 5c_1e^{5t} 3c_2e^{3t}$. Calculating the right hand sides, $4y_1 + y_2 = 4(c_1e^{5t} + c_2e^{3t}) + (c_1e^{5t} c_2e^{3t}) = 5c_1e^{5t} + 3c_2e^{3t} = y_1'$ and $y_1 + 4y_2 = (c_1e^{5t} + c_2e^{3t}) + 4(c_1e^{5t} c_2e^{3t}) = 5c_1e^{5t} 3c_2e^{3t} = y_2'$.
- 7 (a). $\mathbf{y'} = \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{y}$
- 7 (b). $\mathbf{y} = c_1 e^{5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
- 8 (a). $\mathbf{y'} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \mathbf{y}$
- 8 (b). $\mathbf{y} = c_1 \begin{bmatrix} e^t \cos t \\ -e^t \sin t \end{bmatrix} + c_2 \begin{bmatrix} e^t \sin t \\ e^t \cos t \end{bmatrix}$
- 9. For $\mathbf{y} = c_1 e^{2t} \begin{bmatrix} 2 \\ -1 \end{bmatrix} + c_2 e^{3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, we have $\mathbf{y'} = 2c_1 e^{2t} \begin{bmatrix} 2 \\ -1 \end{bmatrix} + 3c_2 e^{3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. On the other hand, $A\mathbf{y} = A \begin{bmatrix} c_1 e^{2t} \begin{bmatrix} 2 \\ -1 \end{bmatrix} + c_2 e^{3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = c_1 e^{2t} A \begin{bmatrix} 2 \\ -1 \end{bmatrix} + c_2 e^{3t} A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = c_1 e^{2t} \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} + c_2 e^{3t} \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = c_1 e^{2t} \begin{bmatrix} 4 \\ -2 \end{bmatrix} + c_2 e^{3t} \begin{bmatrix} 3 \\ -3 \end{bmatrix}$. Thus, $\mathbf{y'} = A\mathbf{y}$ for every choice of c_1 and c_2 .

In order to solve the initial value problem, we first note that

$$\mathbf{y}(0) = c_1 \begin{bmatrix} 2 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}. \text{ Thus, solving } \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}, \text{ we obtain } c_1 = 1 \text{ and } c_2 = 2. \text{ Therefore, } \mathbf{y}(t) = e^{2t} \begin{bmatrix} 2 \\ -1 \end{bmatrix} + 2e^{3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2e^{2t} + 2e^{3t} \\ -e^{2t} - 2e^{3t} \end{bmatrix} \text{ is the solution of the given initial value problem.}$$

- For $\mathbf{y'} = c_1 e^{5t} \begin{bmatrix} 5 \\ 5 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $A\mathbf{y} = c_1 e^{5t} \begin{bmatrix} 3+2 \\ 4+1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} -3+4 \\ -4+2 \end{bmatrix}$ 10. Solving $\begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 8 \end{bmatrix}$, we obtain $c_1 = 2$ and $c_2 = 3$. Therefore, $\mathbf{y}(t) = \begin{bmatrix} 2e^{5t} - 3e^{-t} \\ 2e^{5t} + 6e^{-t} \end{bmatrix}$ is the solution of the given initial value problem.
- Let $\mathbf{Y}(t) = \begin{vmatrix} y(t) \\ y'(t) \end{vmatrix}$. Calculating $\mathbf{Y}'(t)$, we find 11. $\mathbf{Y}'(t) = \begin{bmatrix} y'(t) \\ y''(t) \end{bmatrix} = \begin{bmatrix} y'(t) \\ -t^2 y'(t) - 4 y(t) + \sin t \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -4 & -t^2 \end{bmatrix} \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \sin t \end{bmatrix}.$ Therefore, the scalar equation can be written as $\mathbf{Y}' = P(t)\mathbf{Y} + \mathbf{G}(t)$ where $P(t) = \begin{bmatrix} 0 & 1 \\ -4 & -t^2 \end{bmatrix}$ and $\mathbf{G}(t) = \begin{bmatrix} 0 \\ \sin t \end{bmatrix}$.
- Let $\mathbf{Y}(t) = \begin{vmatrix} y(t) \\ y'(t) \end{vmatrix}$. Calculating $\mathbf{Y}'(t)$, we find 12. $\mathbf{Y}'(t) = \begin{bmatrix} y'(t) \\ y''(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\sqrt{t}\sec t & 3t\sec t \end{bmatrix} \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix} + \begin{bmatrix} 0 \\ (t^2 + 1)\sec t \end{bmatrix}.$ Therefore, the scalar equation can be written as $\mathbf{Y}' = P(t)\mathbf{Y} + \mathbf{G}(t)$ where $P(t) = \begin{bmatrix} 0 & 1 \\ -\sqrt{t} \sec t & 3t \sec t \end{bmatrix}$ and $\mathbf{G}(t) = \begin{bmatrix} 0 \\ (t^2 + 1) \sec t \end{bmatrix}$.
- Let $\mathbf{Y}(t) = \begin{vmatrix} y(t) \\ y'(t) \\ y''(t) \end{vmatrix}$. We solve for y''' by multiplying the equation by e^{-t} and find 13.

$$\mathbf{Y}'(t) = \begin{bmatrix} y'(t) \\ y''(t) \\ -5e^{-t}y''(t) - e^{-t}t^{-1}y'(t) - (e^{-t}\tan t)y(t) + e^{-t} \end{bmatrix}. \text{ Expressing } \mathbf{Y}'(t) \text{ in matrix terms, we}$$
have
$$\mathbf{Y}'(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -e^{-t}\tan t & -e^{-t}t^{-1} & -5e^{-t} \end{bmatrix} \begin{bmatrix} y(t) \\ y'(t) \\ y''(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ e^{-t} \end{bmatrix}. \text{ Therefore, the scalar equation can be}$$
written as
$$\mathbf{Y}' = P(t)\mathbf{Y} + \mathbf{G}(t) \text{ where}$$

$$P(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -e^{-t} \tan t & -e^{-t} t^{-1} & -5e^{-t} \end{bmatrix} \text{ and } \mathbf{G}(t) = \begin{bmatrix} 0 \\ 0 \\ e^{-t} \end{bmatrix}.$$

14. Let
$$\mathbf{Y}(t) = \begin{bmatrix} y(t) \\ y'(t) \\ y''(t) \end{bmatrix}$$
. $\mathbf{Y}'(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ t & -\cos t & 2 \end{bmatrix} \begin{bmatrix} y(t) \\ y'(t) \\ y''(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ e^{3t} \end{bmatrix}$. Therefore, the scalar equation can be written as $\mathbf{Y}' = P(t)\mathbf{Y} + \mathbf{G}(t)$ where $P(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ t & -\cos t & 2 \end{bmatrix}$ and $\mathbf{G}(t) = \begin{bmatrix} 0 \\ 0 \\ e^{3t} \end{bmatrix}$.

15. Let
$$\mathbf{Y}(t) = \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}$$
 so that $\mathbf{Y}'(t) = \begin{bmatrix} y'(t) \\ y''(t) \end{bmatrix}$. We are given that
$$\mathbf{Y}'(t) = \begin{bmatrix} 0 & 1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 2\cos 2t \end{bmatrix} = \begin{bmatrix} y'(t) \\ -3y(t) + 2y'(t) + 2\cos 2t \end{bmatrix}.$$

Therefore, equating components of the vector $\mathbf{Y}'(t)$, we see that the scalar equation is $y'' = -3y + 2y' + 2\cos 2t$, y(-1) = 1, y'(-1) = 4.

16.
$$y''' - 4y'' + 2y = e^{3t}$$
, $y(0) = 1$, $y'(0) = -2$, $y''(0) = 3$.

17. Let
$$\mathbf{Y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \\ y_4(t) \end{bmatrix} = \begin{bmatrix} y(t) \\ y''(t) \\ y'''(t) \\ y'''(t) \end{bmatrix}$$
 so that $\mathbf{Y}'(t) = \begin{bmatrix} y'(t) \\ y''(t) \\ y'''(t) \\ y^{(4)}(t) \end{bmatrix}$. We are given that
$$\mathbf{Y}'(t) = \begin{bmatrix} y_2 \\ y_3 \\ y_4 \\ y_2 + y_3 \sin(y_1) + y_3^2 \end{bmatrix} = \begin{bmatrix} y' \\ y'' \\ y'' \sin(y) + (y'')^2 \end{bmatrix}$$
. Equating components of the vector

 $\mathbf{Y}'(t)$, we see that the scalar equation is $y^{(4)} = y' + y'' \sin(y) + (y'')^2$, y(1) = 0, y'(1) = 0, y''(1) = -1, y'''(1) = 2.

18. Making the indicated change of variables, the system of differential equations is
$$Y_2' = Y_2 + Y_3 + tY_4$$
 Therefore, the system can be expressed in the form $Y_4' = 2tY_1 + Y_2 + Y_4$.

$$P(t) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & t \\ 0 & 0 & 0 & 1 \\ 2t & 1 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{G}(t) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

19. Making the indicated change of variables, the system of differential equations is
$$Y_2' = t^{-1}Y_2 + 4Y_1 - tY_3 + (\sin t)Y_4 + e^{2t}$$
$$Y_4' = Y_1 - 5Y_4$$

Therefore, the system can be expressed in the form $\mathbf{Y}' = P(t)\mathbf{Y} + \mathbf{G}(t)$ where

$$P(t) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 4 & t^{-1} & -t & \sin t \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -5 \end{bmatrix} \text{ and } \mathbf{G}(t) = \begin{bmatrix} 0 \\ e^{2t} \\ 0 \\ 0 \end{bmatrix}.$$

20. Making the indicated change of variables, the system of differential equations is

$$Y_2' = 4Y_1 + 7Y_2 - 8Y_3 + 6Y_4 + t^2$$

 $Y_4' = 3Y_1 - 6Y_2 + 2Y_3 + 5Y_4 - \sin t$. Therefore, the system can be expressed in the form

 $\mathbf{Y}' = P(t)\mathbf{Y} + \mathbf{G}(t)$ where

$$P(t) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 4 & 7 & -8 & 6 \\ 0 & 0 & 0 & 1 \\ 3 & -6 & 2 & 5 \end{bmatrix} \text{ and } \mathbf{G}(t) = \begin{bmatrix} 0 \\ t^2 \\ 0 \\ -\sin t \end{bmatrix}.$$

21. Making the indicated change of variables, the system of differential equations is

$$15Y_3 + 9Y_2 + 3Y_2' = 12Y_1 - 6Y_4 + 3t^2$$

$$Y_4 + 5Y_1 - Y_4' = 2Y_3 - 6Y_2 + t$$

Writing this system in standard form,

$$Y_2' = 4Y_1 - 3Y_2 - 5Y_3 - 2Y_4 + t^2$$

$$Y_4' = 5Y_1 + 6Y_2 - 2Y_3 + Y_4 - t$$

Therefore, the system can be expressed in the form $\mathbf{Y}' = P(t)\mathbf{Y} + \mathbf{G}(t)$ where

$$P(t) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 4 & -3 & -5 & -2 \\ 0 & 0 & 0 & 1 \\ 5 & 6 & -2 & 1 \end{bmatrix} \text{ and } \mathbf{G}(t) = \begin{bmatrix} 0 \\ t^2 \\ 0 \\ -t \end{bmatrix}.$$

Section 6.3

1 (a). In matrix terms, the system has the form y' = Ay where

$$\begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} 9 & -4 \\ 15 & -7 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \text{ or } \mathbf{y'} = \begin{bmatrix} 9 & -4 \\ 15 & -7 \end{bmatrix} \mathbf{y}.$$

1 (b). We have

$$\mathbf{y'} = \begin{bmatrix} 6e^{3t} \\ 9e^{3t} \end{bmatrix}. \text{ Calculating } A\mathbf{y}, \text{ we obtain } \begin{bmatrix} 9 & -4 \\ 15 & -7 \end{bmatrix} \begin{bmatrix} 2e^{3t} \\ 3e^{3t} \end{bmatrix} = \begin{bmatrix} 18e^{3t} - 12e^{3t} \\ 30e^{3t} - 21e^{3t} \end{bmatrix} \text{ and }$$

therefore, $A\mathbf{y} = \begin{bmatrix} 6e^{3t} \\ 9e^{3t} \end{bmatrix}$, showing that the function $\mathbf{y}(t)$ is a solution of $\mathbf{y}' = A\mathbf{y}$.

2 (a).
$$\mathbf{y'} = \begin{bmatrix} -3 & -2 \\ 4 & 3 \end{bmatrix} \mathbf{y}.$$

3 (a). In matrix terms, the system has the form y' = Ay where

$$\begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \text{ or } \mathbf{y'} = \begin{bmatrix} 1 & 4 \\ -1 & 1 \end{bmatrix} \mathbf{y}.$$

3 (b). We have

$$\mathbf{y'} = \begin{bmatrix} 2e^t \cos 2t - 4e^t \sin 2t \\ -e^t \sin 2t - 2e^t \cos 2t \end{bmatrix}.$$
 Calculating $A\mathbf{y}$, we obtain

$$\begin{bmatrix} 1 & 4 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2e^t \cos 2t \\ -e^t \sin 2t \end{bmatrix} = \begin{bmatrix} 2e^t \cos 2t - 4e^t \sin 2t \\ -2e^t \cos 2t - e^t \sin 2t \end{bmatrix}.$$
 Therefore,

the function y(t) is a solution of y' = Ay.

4 (a).
$$\mathbf{y}' = \begin{bmatrix} 0 & 1 \\ \frac{2}{t^2} & -\frac{2}{t} \end{bmatrix} \mathbf{y}$$
.

5 (a). In matrix terms, the system has the form y' = Ay where

$$\begin{bmatrix} y_1' \\ y_2' \\ y_3' \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ -6 & -3 & 1 \\ -8 & -2 & 4 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \text{ or } \mathbf{y'} = \begin{bmatrix} 0 & 1 & 1 \\ -6 & -3 & 1 \\ -8 & -2 & 4 \end{bmatrix} \mathbf{y}.$$

5 (b). We have

$$\mathbf{y'} = \begin{bmatrix} e^t \\ -e^t \\ 2e^t \end{bmatrix}$$
. Calculating $A\mathbf{y}$, we obtain

$$\begin{bmatrix} 0 & 1 & 1 \\ -6 & -3 & 1 \\ -8 & -2 & 4 \end{bmatrix} \begin{bmatrix} e^t \\ -e^t \\ 2e^t \end{bmatrix} = \begin{bmatrix} -e^t + 2e^t \\ -6e^t + 3e^t + 2e^t \\ -8e^t + 2e^t + 8e^t \end{bmatrix} = \begin{bmatrix} e^t \\ -e^t \\ 2e^t \end{bmatrix}$$
 and therefore

the function $\mathbf{y}(t)$ is a solution of $\mathbf{y'} = A\mathbf{y}$

6 (a).
$$\mathbf{y'} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix} \mathbf{y}$$
.

7 (a).
$$\mathbf{y}'_1 = \begin{bmatrix} 6e^{3t} \\ 9e^{3t} \end{bmatrix}$$
 and also $A\mathbf{y}_1 = \begin{bmatrix} 9 & -4 \\ 15 & -7 \end{bmatrix} \begin{bmatrix} 2e^{3t} \\ 3e^{3t} \end{bmatrix} = \begin{bmatrix} 18e^{3t} - 12e^{3t} \\ 30e^{3t} - 21e^{3t} \end{bmatrix} = \mathbf{y}'_1$.

Similarly for \mathbf{y}_2' .

7 (b). The Wronskian W(t) is given by

$$W(t) = \det[\Psi(t)]$$
 where $\Psi(t) = \begin{bmatrix} 2e^{3t} & 2e^{-t} \\ 3e^{3t} & 5e^{-t} \end{bmatrix}$. Thus, $W(t) = 10e^{2t} - 6e^{2t} = 4e^{2t}$.

7 (c).
$$\mathbf{y}(t) = \begin{bmatrix} 2e^{3t} & 2e^{-t} \\ 3e^{3t} & 5e^{-t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

7 (d). Given the general solution in part (c),
$$\mathbf{y}(0) = \begin{bmatrix} 2 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
. Solving, we find

$$\begin{vmatrix} c_1 \\ c_2 \end{vmatrix} = \begin{vmatrix} 3/4 \\ -1/4 \end{vmatrix}$$
. Therefore, the solution of the initial value problem is

$$\mathbf{y}(t) = (3/4) \begin{bmatrix} 2e^{3t} \\ 3e^{3t} \end{bmatrix} - (1/4) \begin{bmatrix} 2e^{-t} \\ 5e^{-t} \end{bmatrix} = (1/4) \begin{bmatrix} 6e^{3t} - 2e^{-t} \\ 9e^{3t} - 5e^{-t} \end{bmatrix}.$$

8 (b). The Wronskian W(t) is given by

$$W(t) = \det[\Psi(t)] \text{ where } \Psi(t) = \begin{bmatrix} 2e^{3t} - 4e^{-t} & 4e^{3t} + 2e^{-t} \\ 3e^{3t} - 10e^{-t} & 6e^{3t} + 5e^{-t} \end{bmatrix}. \text{ Thus, } W(t) = 20e^{2t} \neq 0.$$

8 (c).
$$\mathbf{y}(t) = \begin{bmatrix} 2e^{3t} - 4e^{-t} & 4e^{3t} + 2e^{-t} \\ 3e^{3t} - 10e^{-t} & 6e^{3t} + 5e^{-t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

8 (d). Given the general solution in part (c),
$$\mathbf{y}(0) = \begin{bmatrix} -2 & 6 \\ -7 & 11 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
. Solving, we find

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} -3/10 \\ -1/10 \end{bmatrix}$$
. Therefore, the solution of the initial value problem is

$$\mathbf{y}(t) = (-3/10) \begin{bmatrix} 2e^{3t} - 4e^{-t} \\ 3e^{3t} - 10e^{-t} \end{bmatrix} - (1/10) \begin{bmatrix} 4e^{3t} + 2e^{-t} \\ 6e^{3t} + 5e^{-t} \end{bmatrix} = \begin{bmatrix} -e^{3t} + e^{-t} \\ \frac{3}{2}e^{3t} + \frac{5}{2}e^{-t} \end{bmatrix}.$$

9 (a).
$$\mathbf{y}'_1 = \begin{bmatrix} -e^{-t} \\ 2e^{-t} \end{bmatrix}$$
 and also $A\mathbf{y}_1 = \begin{bmatrix} 3 & 2 \\ -4 & -3 \end{bmatrix} \begin{bmatrix} e^{-t} \\ -2e^{-t} \end{bmatrix} = \begin{bmatrix} 3e^{-t} - 4e^{-t} \\ -4e^{-t} + 6e^{-t} \end{bmatrix} = \mathbf{y}'_1$.

Similarly for \mathbf{y}_2' .

9 (b). The Wronskian W(t) is given by

$$W(t) = \det[\Psi(t)]$$
 where $\Psi(t) = \begin{bmatrix} e^{-t} & -3e^{-t} \\ -2e^{-t} & 6e^{-t} \end{bmatrix}$. Thus, $W(t) = 6e^{-2t} - 6e^{-2t} \equiv 0$

and therefore, the given set of solutions is not a fundamental set of solutions.

10 (b). The Wronskian W(t) is given by

$$W(t) = \det[\Psi(t)] \text{ where } \Psi(t) = \begin{bmatrix} -5e^{-2t}\cos 3t & -5e^{-2t}\sin 3t \\ e^{-2t}(\cos 3t - 3\sin 3t) & e^{-2t}(3\cos 3t + \sin 3t) \end{bmatrix}. \text{ Thus,}$$

$$W(t) = -15e^{-4t} \neq 0.$$

10 (c).
$$\mathbf{y}(t) = \begin{bmatrix} -5e^{-2t}\cos 3t & -5e^{-2t}\sin 3t \\ e^{-2t}(\cos 3t - 3\sin 3t) & e^{-2t}(3\cos 3t + \sin 3t) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

10 (d). Given the general solution in part (c),
$$\mathbf{y}(0) = \begin{bmatrix} -5 & 0 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$
. Solving, we find $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

Therefore, the solution of the initial value problem is $\mathbf{y}(t) = \begin{bmatrix} 5e^{-2t}(\cos 3t - \sin 3t) \\ e^{-2t}(2\cos 3t + 4\sin 3t) \end{bmatrix}$.

11 (a).
$$\mathbf{y}_{1}' = \begin{bmatrix} e^{t} \\ -2e^{t} \end{bmatrix}$$
 and also $A\mathbf{y}_{1} = \begin{bmatrix} -3 & -2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} e^{t} \\ -2e^{t} \end{bmatrix} = \begin{bmatrix} -3e^{t} + 4e^{t} \\ 4e^{t} - 6e^{t} \end{bmatrix} = \mathbf{y}_{1}'$. Similarly for \mathbf{y}_{2}' .

11 (b). The Wronskian W(t) is given by

$$W(t) = \det[\Psi(t)]$$
 where $\Psi(t) = \begin{bmatrix} e^t & e^{-t} \\ -2e^t & -e^{-t} \end{bmatrix}$. Thus, $W(t) = -1 + 2 = 1$.

11 (c).
$$\mathbf{y}(t) = \begin{bmatrix} e^t & e^{-t} \\ -2e^t & -e^{-t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

11 (d). Given the general solution in part (c), $\mathbf{y}(1) = \begin{bmatrix} e & e^{-1} \\ -2e & -e^{-1} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$. Solving, we find

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2e^{-1} \\ -e \end{bmatrix}$$
. Therefore, the solution of the initial value problem is

$$\mathbf{y}(t) = 2e^{-1} \begin{bmatrix} e^{t} \\ -2e^{t} \end{bmatrix} - e \begin{bmatrix} e^{-t} \\ -e^{-t} \end{bmatrix} = \begin{bmatrix} 2e^{t-1} - e^{1-t} \\ -4e^{t-1} + e^{1-t} \end{bmatrix}.$$

12 (b). The Wronskian W(t) is given by

$$W(t) = \det[\Psi(t)]$$
 where $\Psi(t) = \begin{bmatrix} 1 & e^{3t} \\ 1 & -2e^{3t} \end{bmatrix}$. Thus, $W(t) = -3e^{-3t} \neq 0$.

12 (c).
$$\mathbf{y}(t) = \begin{bmatrix} 1 & e^{3t} \\ 1 & -2e^{3t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

12 (d). Given the general solution in part (c), $\mathbf{y}(-1) = \begin{bmatrix} 1 & e^{-3} \\ 1 & -2e^{-3} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$. Solving, we find

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = -\frac{e^3}{3} \begin{bmatrix} 0 \\ 6 \end{bmatrix}.$$
 Therefore, the solution of the initial value problem is $\mathbf{y}(t) = \begin{bmatrix} -2e^{3(t+1)} \\ 4e^{3(t+1)} \end{bmatrix}.$

13 (a).

$$\mathbf{y}_{1}' = \begin{bmatrix} 2t - 2 \\ 2 \end{bmatrix} \text{ and also } A\mathbf{y}_{1} = \begin{bmatrix} 2t^{-2} & 1 - 2t^{-1} + 2t^{-2} \\ -2t^{-2} & 2t^{-1} - 2t^{-2} \end{bmatrix} \begin{bmatrix} t^{2} - 2t \\ 2t \end{bmatrix}$$
$$= \begin{bmatrix} (2 - 4t^{-1}) + (2t - 4 + 4t^{-1}) \\ (-2 + 4t^{-1}) + (4 - 4t^{-1}) \end{bmatrix} = \mathbf{y}_{1}'$$

Similarly for y'_2 .

13 (b). The Wronskian W(t) is given by

$$W(t) = \det[\Psi(t)]$$
 where $\Psi(t) = \begin{bmatrix} t^2 - 2t & t - 1 \\ 2t & 1 \end{bmatrix}$. Thus, $W(t) = -t^2$.

13 (c).
$$\mathbf{y}(t) = \begin{bmatrix} t^2 - 2t & t - 1 \\ 2t & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

13 (d). Given the general solution in part (c), $\mathbf{y}(2) = \begin{bmatrix} 0 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$. Solving, we find $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

Therefore, the solution of the initial value problem is $\mathbf{y}(t) = \begin{bmatrix} t^2 - 2t \\ 2t \end{bmatrix} - 2 \begin{bmatrix} t - 1 \\ 1 \end{bmatrix} = \begin{bmatrix} t^2 - 4t + 2 \\ 2t - 2 \end{bmatrix}$.

14 (b). The Wronskian W(t) is given by

14 (b). The Wronskian
$$W(t)$$
 is given by
$$W(t) = \det[\Psi(t)] \text{ where } \Psi(t) = \begin{bmatrix} e^{-2t} & 0 & 0 \\ 0 & 2e^{t}\cos 2t & 2e^{t}\sin 2t \\ 0 & -e^{t}\sin 2t & e^{t}\cos 2t \end{bmatrix}. \text{ Thus, } W(t) = 2.$$

$$14 \text{ (c). } \mathbf{y}(t) = \begin{bmatrix} e^{-2t} & 0 & 0 \\ 0 & 2e^{t}\cos 2t & 2e^{t}\sin 2t \\ 0 & -e^{t}\sin 2t & e^{t}\cos 2t \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix}.$$

14 (c).
$$\mathbf{y}(t) = \begin{bmatrix} e^{-2t} & 0 & 0 \\ 0 & 2e^{t}\cos 2t & 2e^{t}\sin 2t \\ 0 & -e^{t}\sin 2t & e^{t}\cos 2t \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix}.$$

14 (d). Given the general solution on part (c),
$$\mathbf{y}(0) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ -2 \end{bmatrix}$$
.

Solving, we find
$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ -2 \end{bmatrix}$$
. Therefore, the solution of the initial value problem is $\mathbf{y}(t) = \begin{bmatrix} 3e^{-2t} \\ 4e^t(\cos 2t - \sin 2t) \\ 2e^t(-\cos 2t + \sin 2t) \end{bmatrix}$.

is
$$\mathbf{y}(t) = \begin{bmatrix} 3e^{-2t} \\ 4e^{t}(\cos 2t - \sin 2t) \\ 2e^{t}(-\cos 2t + \sin 2t) \end{bmatrix}$$

15 (a).
$$\mathbf{y}_{1}' = \begin{bmatrix} 5e^{t} \\ -11e^{t} \\ 0 \end{bmatrix}$$
 and also $A\mathbf{y}_{1} = \begin{bmatrix} -21 & -10 & 2 \\ 22 & 11 & -2 \\ -110 & -50 & 11 \end{bmatrix} \begin{bmatrix} 5e^{t} \\ -11e^{t} \\ 0 \end{bmatrix} = \begin{bmatrix} 5e^{t} \\ -11e^{t} \\ 0 \end{bmatrix} = \mathbf{y}_{1}'.$

Similarly for y'_2 and y'_3 .

15 (b). The Wronskian W(t) is given by

$$W(t) = \det[\Psi(t)] \text{ where } \Psi(t) = \begin{bmatrix} 5e^{t} & e^{t} & e^{-t} \\ -11e^{t} & 0 & -e^{-t} \\ 0 & 11e^{t} & 5e^{-t} \end{bmatrix}. \text{ Thus, } W(t) = -11e^{t}.$$

15 (c).
$$\mathbf{y}(t) = \begin{bmatrix} 5e^{t} & e^{t} & e^{-t} \\ -11e^{t} & 0 & -e^{-t} \\ 0 & 11e^{t} & 5e^{-t} \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix}.$$

15 (d). Given the general solution on part (c),
$$\mathbf{y}(0) = \begin{bmatrix} 5 & 1 & 1 \\ -11 & 0 & -1 \\ 0 & 11 & 5 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -10 \\ -16 \end{bmatrix}$$
.

Solving, we find
$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$
. Therefore, the solution of the initial value problem is $\mathbf{y}(t) = \begin{bmatrix} 5e^t \\ -11e^t \\ 0 \end{bmatrix} - \begin{bmatrix} e^t \\ 0 \\ 11e^t \end{bmatrix} - \begin{bmatrix} e^{-t} \\ -e^{-t} \\ 5e^{-t} \end{bmatrix} = \begin{bmatrix} 4e^t - e^{-t} \\ -11e^t + e^{-t} \\ -11e^t - 5e^{-t} \end{bmatrix}$.

is
$$\mathbf{y}(t) = \begin{bmatrix} 5e^t \\ -11e^t \\ 0 \end{bmatrix} - \begin{bmatrix} e^t \\ 0 \\ 11e^t \end{bmatrix} - \begin{bmatrix} e^{-t} \\ -e^{-t} \\ 5e^{-t} \end{bmatrix} = \begin{bmatrix} 4e^t - e^{-t} \\ -11e^t + e^{-t} \\ -11e^t - 5e^{-t} \end{bmatrix}$$
.

16 (a).
$$W(t) = \det \begin{bmatrix} 5e^{-t} & e^{t} \\ -7e^{-t} & -e^{t} \end{bmatrix} = 2$$

16 (c). For
$$t_0 = -1$$
, $W(t_0)e^{\int_{t_0}^t tr[P(s)]ds} = 2e^{\int_{-1}^t 0ds} = 2$.

17 (a).
$$W(t) = \det \begin{bmatrix} 5e^{2t} & e^{4t} \\ -7e^{2t} & -e^{4t} \end{bmatrix} = 2e^{6t}$$

17 (b). The trace of
$$A = \begin{bmatrix} 9 & 5 \\ -7 & -3 \end{bmatrix}$$
 is equal to $9 + (-3) = 6$.

17 (c). For
$$t_0 = 0$$
, $W(t_0)e^{\int_{t_0}^t tr[P(s)]ds} = 2e^{\int_0^t 6ds} = 2e^{6t}$.

18 (a).
$$W(t) = \det \begin{bmatrix} -1 & e^t \\ t^{-1} & 0 \end{bmatrix} = -t^{-1}e^t$$

18 (b). The trace of A is equal to $1-t^{-1}$.

18 (c). For
$$t_0 = 1, W(t_0)e^{\int_{t_0}^t tr[P(s)]ds} = -e\left(e^{\int_1^t (1-s^{-1})ds}\right) = -ee^{s-\ln s|_1^t} = -ee^{t-\ln t-1} = -e^{t-\ln t} = -t^{-1}e^t$$
.

19 (a).
$$W(t) = \det \begin{bmatrix} 2e^{t} & 0 & e^{4t} \\ -e^{t} & -e^{-t} & e^{4t} \\ -e^{t} & e^{-t} & e^{4t} \end{bmatrix} = e^{t}e^{-t}e^{4t} \det \begin{bmatrix} 2 & 0 & 1 \\ -1 & -1 & 1 \\ -1 & 1 & 1 \end{bmatrix} = -6e^{4t}$$

19 (b). The trace of
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$
 is equal to $2+1+1=4$.

19 (c). For
$$t_0 = 0$$
, $W(t_0)e^{\int_{t_0}^t tr[P(s)]ds} = -6e^{\int_0^t 4ds} = -6e^{4t}$.

20 (a).
$$W(t) = \det \begin{bmatrix} 5 & 2e^{3t} \\ 1 & e^{3t} \end{bmatrix} = 3e^{3t} \neq 0$$
.

20 (b).
$$3e^{3t} = 3e^{\int_0^t tr[A]ds} \Rightarrow tr[A] = 3$$
.

20 (b).
$$3e^{3t} = 3e^{\int_0^t tr[A]ds} \Rightarrow tr[A] = 3$$
.
20 (c). $\psi = \begin{bmatrix} 5 & 2e^{3t} \\ 1 & e^{3t} \end{bmatrix} \Rightarrow \psi' = \begin{bmatrix} 0 & 6e^{3t} \\ 0 & 3e^{3t} \end{bmatrix} = A \begin{bmatrix} 5 & 2e^{3t} \\ 1 & e^{3t} \end{bmatrix}$.

20 (d).
$$A = \begin{bmatrix} 0 & 6e^{3t} \\ 0 & 3e^{3t} \end{bmatrix} \cdot \frac{1}{3e^{3t}} \begin{bmatrix} e^{3t} & -2e^{3t} \\ -1 & 5 \end{bmatrix} = \begin{bmatrix} -2 & 10 \\ -1 & 5 \end{bmatrix}.$$

The results are consistent since tr[A] = -2 + 5 = 3

If W(t) is constant, then by Abel's Theorem, the function $e^{\int_{t_0}^t tr[P(s)]ds}$ must also be constant. 21. Therefore, $g(t) = \int_{t_0}^{t} tr[P(s)]ds$ must be constant and hence the derivative of g(t) is identically zero. However, by the fundamental theorem of calculus, g'(t) = tr[P(t)] and hence the trace of P(t) must be zero. Since the trace is equal to $3 + \alpha$ we conclude that $\alpha = -3$.

Section 6.4

- 1 (a). Let $F(t) = [\mathbf{f}_1(t), \mathbf{f}_2(t)] = \begin{bmatrix} t & t^2 \\ 1 & 2 \end{bmatrix}$. Then, $\det[F(t)] = 2t t^2$.
- 1 (b). No, because we do not know whether the functions $\mathbf{f}_1(t)$ and $\mathbf{f}_2(t)$ form a fundamental set of solutions for a linear system.
- 1 (c). Yes. At t = 1, the determinant is $2 1 = 1 \neq 0$. Therefore, $[\mathbf{f}_1(t), \mathbf{f}_2(t)]\mathbf{k} = \mathbf{0} \Rightarrow \mathbf{k} = \mathbf{0}$.
- 2 (a). $\det[F(t)] = t^2 e^t t \sin t$.
- 2 (b). No
- 2 (c). Yes. At t = 1, the determinant is $e \sin 1 \neq 0$.
- 3 (a). Let $F(t) = [\mathbf{f}_1(t), \mathbf{f}_2(t)] = \begin{bmatrix} te^t & \sin^2 t \\ t 1 & 2 \end{bmatrix}$. Then, $\det[F(t)] = 2te^t (t 1)\sin^2 t$.
- 3 (b). No, because we do not know whether the functions $\mathbf{f}_1(t)$ and $\mathbf{f}_2(t)$ form a fundamental set of solutions for a linear system.
- 3 (c). Yes. At t = 1, the determinant is $2e \neq 0$.
- 4. $k_1\begin{bmatrix} t \\ 1 \end{bmatrix} + k_2\begin{bmatrix} t^2 \\ 1 \end{bmatrix} = \begin{bmatrix} t & t^2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$; det = $t t^2 \neq 0$ at t = 2 for example $\Rightarrow \mathbf{k} = \mathbf{0}$. Therefore, the given set of functions is linearly independent.
- We need to solve the equation $k_1\begin{bmatrix} e^t \\ 1 \end{bmatrix} + k_2\begin{bmatrix} e^{-t} \\ 0 \end{bmatrix} \equiv \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ or $\begin{bmatrix} k_1e^t + k_2e^{-t} \\ k_1 \end{bmatrix} \equiv \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. This vector equation requires $k_1e^t + k_2e^{-t} \equiv 0$ and $k_1 \equiv 0$. By the second equation, $k_1 = 0$ and hence, using this fact in the first equation, $k_2e^{-t} \equiv 0$. Multiplying this identity by the nonzero function e^t , we see that $k_2 = 0$ as well. Hence, the only way to satisfy $k_1\begin{bmatrix} e^t \\ 1 \end{bmatrix} + k_2\begin{bmatrix} e^{-t} \\ 0 \end{bmatrix} \equiv \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is to choose $k_1 = k_2 = 0$. This means the given set of functions is linearly independent.
- 6. $k_1 \begin{bmatrix} e^t \\ 1 \end{bmatrix} + k_2 \begin{bmatrix} e^{-t} \\ 1 \end{bmatrix} + k_3 \begin{bmatrix} \sinh t \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$; Let $k_1 = 1$, $k_2 = -1$, $k_3 = -2$. The given set of functions is linearly dependent.
- 7. We need to solve the equation $k_1\begin{bmatrix} 1 \\ t \\ 0 \end{bmatrix} + k_2\begin{bmatrix} 0 \\ 1 \\ t^2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ or $\begin{bmatrix} k_1 \\ k_1t + k_2 \\ k_2t^2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. The first component of this vector identity cannot be satisfied unless $k_1 = 0$ and the third component cannot be

satisfied unless $k_2 = 0$. Hence, the only way to satisfy the identity $k_1 \begin{bmatrix} 1 \\ t \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 0 \\ 1 \\ t^2 \end{bmatrix} \equiv \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ is to

choose $k_1 = k_2 = 0$. This means the given set of functions is linearly independent.

8. $k_1 \begin{bmatrix} 1 \\ t \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 0 \\ 1 \\ t^2 \end{bmatrix} + k_3 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; \text{ Let } k_1 = 0, \ k_2 = 0, \ k_3 = 1. \text{ The given set of functions is linearly dependent.}$

9. We need to solve the equation
$$k_1 \begin{bmatrix} 1 \\ t \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 0 \\ 1 \\ t^2 \end{bmatrix} + k_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \equiv \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 or $\begin{bmatrix} k_1 \\ k_1 t + k_2 \\ k_2 t^2 + k_3 \end{bmatrix} \equiv \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. The first

component of this vector identity cannot be satisfied unless $k_1 = 0$ and therefore the second component requires $k_2 = 0$. Given that k_1 and k_2 must both be zero, the third component then

requires that
$$k_3 = 0$$
. Hence, the only way to satisfy the identity $k_1 \begin{bmatrix} 1 \\ t \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 0 \\ 1 \\ t^2 \end{bmatrix} + k_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \equiv \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ is

to choose $k_1 = k_2 = k_3 = 0$. This means the given set of functions is linearly independent.

10.
$$k_1 \begin{bmatrix} 1 \\ \sin^2 t \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 2 - 2\cos^2 t \\ -2 \end{bmatrix} + k_3 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
; Let $k_1 = 1$, $k_2 = -\frac{1}{2}$, $k_3 = -1$. The given set of

functions is linearly dependent.

11 (a). Let
$$F(t) = \begin{bmatrix} e^t & t^2 \\ 0 & t \end{bmatrix}$$
. Then, $det[F(t)] = te^t$.

- 11 (b). Since the determinant is zero at t = 0, F(t) cannot be a fundamental matrix for a linear system defined on an interval containing t = 0.
- 11 (c). A fundamental matrix $\Psi(t)$ satisfies the matrix differential equation $\Psi' = P(t)\Psi$. Given that $\Psi(t) = \begin{bmatrix} e^t & t^2 \\ 0 & t \end{bmatrix}$, we know that $\Psi'(t) = \begin{bmatrix} e^t & 2t \\ 0 & 1 \end{bmatrix}$. Therefore, the equation $\Psi' = P(t)\Psi$ implies that $\begin{bmatrix} e^t & 2t \\ 0 & 1 \end{bmatrix} = P(t) \begin{bmatrix} e^t & t^2 \\ 0 & t \end{bmatrix}$. Postmultiplying by Ψ^{-1} , we see that $\Psi'\Psi^{-1} = P(t)$. Therefore, $1/(te^t) \begin{bmatrix} e^t & 2t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} t & -t^2 \\ 0 & t \end{bmatrix} = P(t)$ and so $P(t) = 1/(te^t) \begin{bmatrix} te^t & (2t-t^2)e^t \\ 0 & e^t \end{bmatrix}$. Canceling the nonzero term e^t we have $P(t) = t^{-1} \begin{bmatrix} t & (2t-t^2) \\ 0 & 1 \end{bmatrix}$.

12 (a). Let
$$F(t) = \begin{bmatrix} t^2 & 2t \\ 0 & 1 \end{bmatrix}$$
. Then, $det[F(t)] = t^2$.

- 12 (b). Since the determinant is zero at t = 0, F(t) cannot be a fundamental matrix for a linear system defined on an interval containing t = 0.
- 12 (c). A fundamental matrix $\Psi(t)$ satisfies the matrix differential equation $\Psi' = P(t)\Psi$. Given that $\Psi(t) = \begin{bmatrix} t^2 & 2t \\ 0 & 1 \end{bmatrix}$, we know that $\Psi'(t) = \begin{bmatrix} 2t & 2 \\ 0 & 0 \end{bmatrix}$. Therefore, the equation $\Psi' = P(t)\Psi$ implies that $\begin{bmatrix} 2t & 2 \\ 0 & 0 \end{bmatrix} = P(t) \begin{bmatrix} t^2 & 2t \\ 0 & 1 \end{bmatrix}$. Postmultiplying by Ψ^{-1} , we see that $\Psi'\Psi^{-1} = P(t)$. Therefore, $1/(t^2) \begin{bmatrix} 2t & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -2t \\ 0 & t^2 \end{bmatrix} = P(t)$ and so $P(t) = \begin{bmatrix} 2t^{-1} & -2 \\ 0 & 0 \end{bmatrix}$ which is continuous on $(-\infty,0)$ and $(0,\infty)$.

13 (a). We first show that
$$\Psi' = P(t)\Psi$$
. Now, $\Psi'(t) = \begin{bmatrix} e^t & -e^{-t} \\ e^t & e^{-t} \end{bmatrix}$ whereas

$$P(t)\Psi(t) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} e^t & e^{-t} \\ e^t & -e^{-t} \end{bmatrix} = \begin{bmatrix} e^t & -e^{-t} \\ e^t & e^{-t} \end{bmatrix}.$$
 Thus, since $\Psi' = P(t)\Psi$, we know that $\Psi(t)$ is a

solution matrix. To show $\Psi(t)$ is a fundamental matrix, we need to verify that $\det[\Psi(t)] \neq 0$. Since $\det[\Psi(t)] \equiv -2$, we know $\Psi(t)$ is a fundamental matrix.

13 (b).
$$\widehat{\Psi}(t) = \begin{bmatrix} \sinh t & \cosh t \\ \cosh t & \sinh t \end{bmatrix} = \frac{1}{2} \begin{bmatrix} e^t - e^{-t} & e^t + e^{-t} \\ e^t + e^{-t} & e^t - e^{-t} \end{bmatrix}$$
. Thus, we need a matrix $C = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that

$$\frac{1}{2} \begin{bmatrix} e^t - e^{-t} & e^t + e^{-t} \\ e^t + e^{-t} & e^t - e^{-t} \end{bmatrix} = \begin{bmatrix} e^t & e^{-t} \\ e^t & -e^{-t} \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$
 Expanding the right-hand side of this matrix

equation, we arrive at the requirement

$$\frac{1}{2} \begin{bmatrix} e^t - e^{-t} & e^t + e^{-t} \\ e^t + e^{-t} & e^t - e^{-t} \end{bmatrix} = \begin{bmatrix} ae^t + ce^{-t} & be^t + de^{-t} \\ ae^t - ce^{-t} & be^t - de^{-t} \end{bmatrix}$$
. Comparing entries, we see that

$$a=1/2, c=-1/2, b=1/2, \text{ and } d=1/2. \text{ Thus, } C=\begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix}.$$

- 13 (c). $\det[C] = 1/2$ and thus, $\widehat{\Psi}(t)$ is a fundamental matrix.
- 14 (a). Since $det[\Psi(t)] \neq 0$, we know $\Psi(t)$ is a fundamental matrix.

14 (b).
$$\widehat{\Psi}(t) = \begin{bmatrix} 2e^{t} - e^{-t} & e^{t} + 3e^{-t} \\ 2e^{t} + e^{-t} & e^{t} - 3e^{-t} \end{bmatrix} = \begin{bmatrix} e^{t} & -e^{-t} \\ e^{t} & e^{-t} \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix}$$
. Thus, $C = \begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix}$.

- 14 (c). $\det[C] = -7$ and thus, $\widehat{\Psi}(t)$ is a fundamental matrix.
- 15 (a). We first show that $\hat{\Psi} = P(t)\Psi$. Now, $\Psi'(t) = \begin{bmatrix} e^t & -2e^{-2t} \\ 0 & 6e^{-2t} \end{bmatrix}$ whereas

$$P(t)\Psi(t) = \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} e^t & e^{-2t} \\ 0 & -3e^{-2t} \end{bmatrix} = \begin{bmatrix} e^t & -2e^{-2t} \\ 0 & 6e^{-2t} \end{bmatrix}.$$
 Thus, since $\Psi' = P(t)\Psi$, we know that $\Psi(t)$ is

a solution matrix. To show $\Psi(t)$ is a fundamental matrix, we need to verify that $\det[\Psi(t)] \neq 0$. Now $\det[\Psi(t)] = -3e^{-t}$ and thus is never zero for any value t. Therefore, $\Psi(t)$ is a fundamental matrix

15 (b).
$$\widehat{\Psi}(t) = \begin{bmatrix} 2e^{-2t} & 0 \\ -6e^{-2t} & 0 \end{bmatrix}$$
 and so we need a matrix $C = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that

$$\begin{bmatrix} 2e^{-2t} & 0 \\ -6e^{-2t} & 0 \end{bmatrix} = \begin{bmatrix} e^t & e^{-2t} \\ 0 & -3e^{-2t} \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Expanding the right-hand side of this matrix equation, we

arrive at the requirement

$$\begin{bmatrix} 2e^{-2t} & 0 \\ -6e^{-2t} & 0 \end{bmatrix} = \begin{bmatrix} ae^t + ce^{-2t} & be^t + de^{-2t} \\ -3ce^{-2t} & -3de^{-2t} \end{bmatrix}$$
. Comparing entries in the second column, we see that

d=0 and b=0. Comparing entries in the first column, we see c=2 and a=0. Thus,

$$C = \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix}.$$

- 15 (c). $\det[C] = 0$ and thus, $\widehat{\Psi}(t)$ is a solution matrix but not a fundamental matrix.

16 (a). Since
$$\det[\Psi(t)] = -6e^{2t} \neq 0$$
, we know $\Psi(t)$ is a fundamental matrix.
16 (b). $\widehat{\Psi}(t) = \begin{bmatrix} e^t + e^{-t} & 4e^{2t} & e^t + 4e^{2t} \\ -2e^{-t} & e^{2t} & e^{2t} \\ 0 & 3e^{2t} & 3e^{2t} \end{bmatrix} = \begin{bmatrix} e^t & e^{-t} & 4e^{2t} \\ 0 & -2e^{-t} & e^{2t} \\ 0 & 0 & 3e^{2t} \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. Thus, $C = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$.

- For $\Psi(t) = \begin{bmatrix} e^t & e^{-t} \\ e^t & -e^{-t} \end{bmatrix}$, we need a matrix C such that $\hat{\Psi}(t) = \Psi(t)C$ where $\hat{\Psi}(0) = I$. This requirement means that $I = \widehat{\Psi}(0) = \Psi(0)C$. Equivalently, C is the inverse of $\Psi(0) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$. Thus, $C = \Psi(0)^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.
- For $\Psi(t) = \begin{bmatrix} e^t & e^{-2t} \\ 0 & -3e^{-2t} \end{bmatrix}$, we need a matrix C such that $\widehat{\Psi}(t) = \Psi(t)C$ where $\widehat{\Psi}(0) = I$. This 18. requirement means that $I = \hat{\Psi}(0) = \Psi(0)C$. Equivalently, C is the inverse of $\Psi(0) = \begin{bmatrix} 1 & 1 \\ 0 & -3 \end{bmatrix}$. Thus, $C = \Psi(0)^{-1} = -\frac{1}{3} \begin{bmatrix} -3 & -1 \\ 0 & 1 \end{bmatrix}$.

Section 6.5

- 1 (a). $A\mathbf{x}_1 = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} = 2\mathbf{x}_1$. Thus, \mathbf{x}_1 is an eigenvector corresponding to the eigenvalue $\lambda_1 = 2$. Similarly, $A\mathbf{x}_2 = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} -6 \\ 3 \end{bmatrix} = 3\mathbf{x}_2$. Thus, \mathbf{x}_2 is an eigenvector corresponding to the eigenvalue $\lambda_2 = 3$
- 1 (b). Solutions are $\mathbf{y}_1(t) = e^{2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{y}_2(t) = e^{3t} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.
- 1 (c). The Wronskian is $W(t) = \det \begin{bmatrix} e^{2t} & -2e^{3t} \\ -e^{2t} & e^{3t} \end{bmatrix} = e^{5t} 2e^{5t} = -e^{5t}$. Since W(t) is nonzero for any
- value t, the two solutions form a fundamental set of solutions. 2 (a). $A\mathbf{x}_1 = \begin{bmatrix} 7 & -3 \\ 16 & -7 \end{bmatrix} \begin{bmatrix} 3 \\ 8 \end{bmatrix} = \begin{bmatrix} -3 \\ -8 \end{bmatrix} = -1\mathbf{x}_1$. Thus, \mathbf{x}_1 is an eigenvector corresponding to the eigenvalue $\lambda_1 = -1$. Similarly, $A\mathbf{x}_2 = \begin{bmatrix} 7 & -3 \\ 16 & -7 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1\mathbf{x}_2$. Thus, \mathbf{x}_2 is an eigenvector corresponding to the eigenvalue $\lambda_2 = 1$
- 2 (b). Solutions are $\mathbf{y}_1(t) = e^{-t} \begin{vmatrix} 3 \\ 8 \end{vmatrix}$ and $\mathbf{y}_2(t) = e^{t} \begin{vmatrix} 1 \\ 2 \end{vmatrix}$.

- 2 (c). The Wronskian is $W(t) = \det\begin{bmatrix} 3e^{-t} & e^t \\ 8e^{-t} & 2e^t \end{bmatrix} = -2 \neq 0$. Since W(t) is nonzero for any value t, the two solutions form a fundamental set of solutions.
- 3 (a). The vector $\mathbf{x}_1 = \mathbf{0}$ cannot be an eigenvector since an eigenvector must be nonzero. Considering the other vector, $A\mathbf{x}_2 = \begin{bmatrix} 11 & 5 \\ -22 & -10 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \mathbf{x}_2$. Thus, \mathbf{x}_2 is an eigenvector corresponding to the eigenvalue $\lambda_2 = 1$.
- 3 (b). The solution is $\mathbf{y}_2(t) = e^t \begin{bmatrix} 1 \\ -2 \end{bmatrix}$.
- 4 (a). $A\mathbf{x}_1 = \begin{bmatrix} -5 & 2 \\ -18 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 1\mathbf{x}_1$, $A\mathbf{x}_2 = \begin{bmatrix} -5 & 2 \\ -18 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -4 \end{bmatrix}$. Thus,

 \mathbf{x}_1 is an eigenvector corresponding to the eigenvalue $\lambda_1 = 1$, but \mathbf{x}_2 is not an eigenvector.

- 4 (b). The solution is $\mathbf{y}_1(t) = e^t \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.
- 5 (a). $A\mathbf{x}_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} = -\mathbf{x}_1$. Thus, \mathbf{x}_1 is an eigenvector corresponding to the eigenvalue $\lambda_1 = -1$. Similarly, $A\mathbf{x}_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \mathbf{x}_2$. Thus, \mathbf{x}_2 is an eigenvector corresponding to the eigenvalue $\lambda_2 = 1$.
- 5 (b). Solutions are $\mathbf{y}_1(t) = e^{-t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{y}_2(t) = e^{t} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.
- 5 (c). The Wronskian is $W(t) = \det \begin{bmatrix} e^{-t} & 2e^{t} \\ -e^{-t} & 2e^{t} \end{bmatrix} = 2 + 2 = 4$. Since W(t) is nonzero for any value t, the two solutions form a fundamental set of solutions.
- 6 (a). $A\mathbf{x}_1 = \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ -8 \end{bmatrix} = 4\mathbf{x}_1$. Thus, \mathbf{x}_1 is an eigenvector corresponding to the eigenvalue $\lambda_1 = 4$. Similarly, $A\mathbf{x}_2 = \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0\mathbf{x}_2$. Thus, \mathbf{x}_2 is an eigenvector corresponding to the eigenvalue $\lambda_2 = 0$.
- 6 (b). Solutions are $\mathbf{y}_1(t) = e^{4t} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and $\mathbf{y}_2(t) = e^{0} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
- 6 (c). The Wronskian is $W(t) = \det \begin{bmatrix} e^{4t} & 1 \\ -2e^{4t} & 2 \end{bmatrix} = 4e^{4t} \neq 0$. Since W(t) is nonzero for any value t, the two solutions form a fundamental set of solutions.

- For $A = \begin{bmatrix} -4 & 3 \\ -4 & 4 \end{bmatrix}$ the equation $(A 2I)\mathbf{x} = \mathbf{0}$ has the form $\begin{bmatrix} -6 & 3 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Elementary row 7. operations $[-(1/3)R_1$ then $R_2 + 2R_1$] can be used to row reduce the system to $\begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ or } 2x_1 = x_2. \text{ Thus an eigenvector is } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 2x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2x_1 \end{bmatrix}, x_1 \neq 0.$
- For $A = \begin{bmatrix} 5 & 3 \\ -4 & -3 \end{bmatrix}$ the equation $(A+I)\mathbf{x} = \mathbf{0}$ has the form $\begin{bmatrix} 6 & 3 \\ -4 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Thus an 8.
 - eigenvector is $\mathbf{x} = \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{vmatrix} x_1 \\ -2x_1 \end{vmatrix} = x_1 \begin{vmatrix} 1 \\ -2 \end{vmatrix}, x_1 \neq 0$.
- For $A = \begin{bmatrix} 1 & 1 \\ -4 & 6 \end{bmatrix}$ the equation $(A 5I)\mathbf{x} = \mathbf{0}$ has the form $\begin{bmatrix} -4 & 1 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Elementary row 9. operations $[-(1/4)R_1$ then $R_2 + 4R_1$ can be used to row reduce the system to

 $\begin{bmatrix} 1 & -1/4 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ or } 4x_1 = x_2. \text{ Thus an eigenvector is } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 4x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 4 \end{bmatrix}, x_1 \neq 0.$ For $A = \begin{bmatrix} 1 & -7 & 3 \\ -1 & -1 & 1 \\ 4 & -4 & 0 \end{bmatrix}$ the equation $(A + 4I)\mathbf{x} = \mathbf{0}$ has the form $\begin{bmatrix} 5 & -7 & 3 \\ -1 & 3 & 1 \\ 4 & -4 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Thus 10.

an eigenvector is $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_2 \\ x_2 \\ -x_2 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, x_2 \neq 0.$

For $A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 1 & -1 \\ 2 & 1 & 2 \end{bmatrix}$ the equation $(A - 2I)\mathbf{x} = \mathbf{0}$ has the form 11.

 $\begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Elementary row operations $(R_2 + R_1, \text{ then } R_3 - 2R_1)$ followed by

 $R_1 + R_3$ and $(-R_3)$ can be used to row reduce the system to $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, or

 $x_1 = x_3$ $x_2 = -2x_3$. Thus an eigenvector is $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_3 \\ -2x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, x_3 \neq 0$.

For $A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 1 & 2 \\ 4 & 3 & -2 \end{bmatrix}$ the equation $(A - 5I)\mathbf{x} = \mathbf{0}$ has the form $\begin{bmatrix} -4 & 3 & 1 \\ 2 & -4 & 2 \\ 4 & 3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. 12.

Thus an eigenvector is
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, x_1 \neq 0.$$

13. For $A = \begin{bmatrix} -2 & 3 & 1 \\ -8 & 13 & 5 \\ 11 & -17 & -6 \end{bmatrix}$ the equation $A\mathbf{x} = \mathbf{0}$ has the form $\begin{bmatrix} -2 & 3 & 1 \\ -8 & 13 & 5 \\ 11 & -17 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Since the arithmetic looks forbidding, we turned to MATLAB and

used the RREF command. MATLAB says the system is equivalent to $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \text{ or }$

$$x_1 = -x_3$$

 $x_2 = -x_3$. Thus, an eigenvector is $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_3 \\ -x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}, x_3 \neq 0$.

- 14. The characteristic polynomial is $p(\lambda) = \begin{vmatrix} -5 \lambda & 1 \\ 0 & 4 \lambda \end{vmatrix}$, or $p(\lambda) = (\lambda + 5)(\lambda 4)$. Thus, the eigenvalues are $\lambda_1 = -5$ and $\lambda_2 = 4$.
- 15. For $A = \begin{bmatrix} 8 & 0 \\ 3 & 2 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = \begin{vmatrix} 8 \lambda & 0 \\ 3 & 2 \lambda \end{vmatrix}$, or $p(\lambda) = (8 \lambda)(2 \lambda)$. Thus, the eigenvalues are $\lambda_1 = 8$ and $\lambda_2 = 2$.
- 16. The characteristic polynomial is $p(\lambda) = \begin{vmatrix} 3 \lambda & -3 \\ -6 & 6 \lambda \end{vmatrix}$, or $p(\lambda) = (\lambda)(\lambda 9)$. Thus, the eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 9$.
- $p(\lambda) = (\lambda)(\lambda 9)$. Thus, the eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 9$. 17. For $A = \begin{bmatrix} 5 & 2 \\ 4 & 3 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = \begin{vmatrix} 5 - \lambda & 2 \\ 4 & 3 - \lambda \end{vmatrix}$, or

$$p(\lambda) = (5 - \lambda)(3 - \lambda) - 8 = \lambda^2 - 8\lambda + 7 = (\lambda - 7)(\lambda - 1)$$
. Thus, the eigenvalues are $\lambda_1 = 7$ and $\lambda_2 = 1$.

18. The characteristic polynomial is

$$p(\lambda) = \begin{vmatrix} 5 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 3 \\ 0 & 2 & 2 - \lambda \end{vmatrix}$$

or $p(\lambda) = (5 - \lambda)(\lambda^2 - 3\lambda - 4) = (5 - \lambda)(\lambda - 4)(\lambda + 1) = -\lambda^3 + 8\lambda^2 - 11\lambda - 20$ and the eigenvalues are $\lambda_1 = -1, \lambda_2 = 4$, and $\lambda_3 = 5$.

19. For
$$A = \begin{bmatrix} -2 & 3 & 1 \\ -8 & 13 & 5 \\ 11 & -17 & -6 \end{bmatrix}$$
, the characteristic polynomial is
$$p(\lambda) = \begin{vmatrix} -2 - \lambda & 3 & 1 \\ -8 & 13 - \lambda & 5 \\ 11 & -17 & -6 - \lambda \end{vmatrix}$$
. Given the arithmetic required to find the

characteristic polynomial, it is advisable to use a computer routine such as poly(A) from MATLAB. However, it is possible to find $p(\lambda)$ by hand:

$$\begin{vmatrix} -2 - \lambda & 3 & 1 \\ -8 & 13 - \lambda & 5 \\ 11 & -17 & -6 - \lambda \end{vmatrix} = (-2 - \lambda) \begin{vmatrix} 13 - \lambda & 5 \\ -17 & -6 - \lambda \end{vmatrix} - 3 \begin{vmatrix} -8 & 5 \\ 11 & -6 - \lambda \end{vmatrix} + \begin{vmatrix} -8 & 13 - \lambda \\ 11 & -17 \end{vmatrix}$$

or $p(\lambda) = (-2 - \lambda)(\lambda^2 - 7\lambda + 7) - 3(8\lambda - 7) + (11\lambda - 7) = -\lambda^3 + 5\lambda^2 - 6\lambda$.

Thus, $p(\lambda) = -\lambda(\lambda^2 - 5\lambda + 6) = -\lambda(\lambda - 3)(\lambda - 2)$ and hence the eigenvalues are $\lambda_1 = 0, \lambda_2 = 3$, and $\lambda_3 = 2$.

20. The characteristic polynomial is

$$p(\lambda) = \begin{vmatrix} 1 - \lambda & -7 & 3 \\ -1 & -1 - \lambda & 1 \\ 4 & -4 & -\lambda \end{vmatrix}$$

or $p(\lambda) = -\lambda(\lambda^2 - 16) = (-\lambda)(\lambda - 4)(\lambda + 4) = -\lambda^3 + 16\lambda$ and the eigenvalues are $\lambda_1 = 0, \lambda_2 = 4$, and $\lambda_3 = -4$.

21. The eigenvalues are $\lambda_1 = -2$ and $\lambda_2 = 2$ with corresponding eigenvectors

$$\mathbf{x}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
 and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. A fundamental set of solutions consists of the functions

$$\mathbf{y}_1(t) = e^{-2t} \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
 and $\mathbf{y}_2(t) = e^{2t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Therefore, the general solution is

$$\mathbf{y}(t) = c_1 e^{-2t} \begin{bmatrix} 3 \\ 2 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$
 The solution of the initial value problem is $\mathbf{y}(t) = e^{-2t} \begin{bmatrix} 3 \\ 2 \end{bmatrix} + e^{2t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$

22. The eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 3$ with corresponding eigenvectors

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
 and $\mathbf{x}_2 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. A fundamental set of solutions consists of the functions

$$\mathbf{y}_1(t) = e^{-t} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
 and $\mathbf{y}_2(t) = e^{3t} \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Therefore, the general solution is

$$\mathbf{y}(t) = c_1 e^{-t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} + c_2 e^{3t} \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$
. The solution of the initial value problem is

$$\mathbf{y}(t) = \begin{bmatrix} 3e^{3(t-1)} - e^{-(t-1)} \\ -2e^{3(t-1)} + 2e^{-(t-1)} \end{bmatrix}.$$

- 23. The eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = 5$ with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. A fundamental set of solutions consists of the functions $\mathbf{y}_1(t) = e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{y}_2(t) = e^{5t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Therefore, the general solution is $\mathbf{y}(t) = c_1 e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{5t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. The solution of the initial value problem is $\mathbf{y}(t) = 3e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 4e^{5t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
- The eigenvalues are $\lambda_1 = -0.11$ and $\lambda_2 = -0.05$ with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. A fundamental set of solutions consists of the functions $\mathbf{y}_1(t) = e^{-0.11t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{y}_2(t) = e^{-0.05t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
- The eigenvalues are $\lambda_1 = 1, \lambda_2 = 2$, and $\lambda_3 = 3$ with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \text{and} \ \mathbf{x}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$ A fundamental set of solutions consists of the functions $\mathbf{y}_1(t) = e^t \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \ \mathbf{y}_2(t) = e^{2t} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},$ and $\mathbf{y}_3(t) = e^{3t} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$ The solution of the initial value problem is $\mathbf{y}_1(t) = e^{t} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + e^{2t} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 2e^{3t} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$
- 26. The eigenvalues are $\lambda_1 = -2$, $\lambda_2 = 1$, and $\lambda_3 = 4$ with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -3 \\ 3 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 2 \\ -3 \\ 0 \end{bmatrix}, \text{ and } \mathbf{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}. \text{ A fundamental set of solutions consists of the functions}$ $\mathbf{y}_1(t) = e^{-2t} \begin{bmatrix} 1 \\ -3 \\ 3 \end{bmatrix}, \ \mathbf{y}_2(t) = e^t \begin{bmatrix} 2 \\ -3 \\ 0 \end{bmatrix}, \text{ and } \mathbf{y}_3(t) = e^{4t} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}. \text{ The solution of the initial value problem is}$ $\mathbf{y}(t) = e^{-2t} \begin{bmatrix} 1 \\ -3 \\ 3 \end{bmatrix} + e^t \begin{bmatrix} -2 \\ 3 \\ 0 \end{bmatrix} + e^{4t} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$

27. The eigenvalues are $\lambda_1 = -2$, $\lambda_2 = 2$, and $\lambda_3 = 4$ with corresponding eigenvectors

$$\mathbf{x}_1 = \begin{bmatrix} 3 \\ 4 \\ -8 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \text{ and } \mathbf{x}_3 = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}.$$
 A fundamental set of solutions consists of the functions

$$\mathbf{y}_{1}(t) = e^{-2t} \begin{bmatrix} 3 \\ 4 \\ -8 \end{bmatrix}, \mathbf{y}_{2}(t) = e^{2t} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \text{ and } \mathbf{y}_{3}(t) = e^{4t} \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}.$$

28. The eigenvalues are $\lambda_1 = 1, \lambda_2 = 3$, and $\lambda_3 = 5$ with corresponding eigenvectors

$$\mathbf{x}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ \text{and} \ \mathbf{x}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}.$$
 A fundamental set of solutions consists of the functions

$$\mathbf{y}_1(t) = e^t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \mathbf{y}_2(t) = e^{3t} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \text{ and } \mathbf{y}_3(t) = e^{5t} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}.$$

29. The eigenvalues are $\lambda_1 = -1, \lambda_2 = 1$, and $\lambda_3 = 2$ with corresponding eigenvectors

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -4 \\ -5 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 1 \\ -2 \\ -3 \end{bmatrix}$, and $\mathbf{x}_3 = \begin{bmatrix} 2 \\ -2 \\ -1 \end{bmatrix}$. A fundamental set of solutions consists of the functions

$$\mathbf{y}_1(t) = e^{-t} \begin{bmatrix} 1 \\ -4 \\ -5 \end{bmatrix}, \mathbf{y}_2(t) = e^{t} \begin{bmatrix} 1 \\ -2 \\ -3 \end{bmatrix}, \text{ and } \mathbf{y}_3(t) = e^{2t} \begin{bmatrix} 2 \\ -2 \\ -1 \end{bmatrix}.$$

30. The eigenvalues are $\lambda_1 = -2$, $\lambda_2 = 1$, and $\lambda_3 = 2$ with corresponding eigenvectors

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -5 \\ -6 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 1 \\ -2 \\ -3 \end{bmatrix}$, and $\mathbf{x}_3 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$. A fundamental set of solutions consists of the functions

$$\mathbf{y}_1(t) = e^{-2t} \begin{bmatrix} 1 \\ -5 \\ -6 \end{bmatrix}, \mathbf{y}_2(t) = e^{t} \begin{bmatrix} 1 \\ -2 \\ -3 \end{bmatrix}, \text{ and } \mathbf{y}_3(t) = e^{2t} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}.$$

- 31. We need to have $\begin{bmatrix} 2 & x \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ for some value λ . Therefore, equating vectors, it follows that we $2 x = \lambda$ and $1 + 5 = -\lambda$. This requires $\lambda = -6$ and x = 8.
- 32. We need to have $\begin{bmatrix} x & y \\ 2x & -y \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = 1 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Therefore, it follows that -x + y = -1 and -2x y = 1. This requires x = 0, y = -1.
- 39 (a). The eigenvalues are $\lambda_1 = -3$ and $\lambda_2 = -1$. Corresponding eigenvectors are

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. The general solution is $\mathbf{y}(t) = c_1 e^{-3\tau} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + c_2 e^{-\tau} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

39 (b). The solution of the initial value problem is
$$\mathbf{y}(t) = -\frac{Q_0}{2}e^{-3\tau}\begin{bmatrix} 1\\-1 \end{bmatrix} + 3\frac{Q_0}{2}e^{-\tau}\begin{bmatrix} 1\\1 \end{bmatrix}$$
.

Therefore,
$$Q_1(t) = \frac{Q_0}{2} \left(-e^{-3\tau} + 3e^{-\tau} \right)$$
 and $Q_2(t) = \frac{Q_0}{2} \left(e^{-3\tau} + 3e^{-\tau} \right)$.

Note that $0 < Q_1(\tau) < Q_2(\tau)$. Therefore, we need τ such that

$$\frac{Q_0}{2}(e^{-3\tau}+3e^{-\tau}) < .01Q_0 \Rightarrow (e^{-3\tau}+3e^{-\tau}) < .02$$
. Graphically, we find that a value $\tau \approx 5.011$ will suffice. Since $t = (V/r)\tau = 50\tau$, we obtain a value of $t \approx 250.55$ sec or $t \approx 4.18$ min.

40 (a). The eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = \lambda_3 = -4$. Corresponding eigenvectors are

$$\mathbf{x}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{x}_{2} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \text{ and } \mathbf{x}_{3} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}. \text{ The general solution is}$$

$$\mathbf{Q}(t) = c_{1}e^{-\tau} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + c_{2}e^{-4\tau} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + c_{3}e^{-4\tau} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

40 (b). The solution of the initial value problem is
$$\mathbf{y}(t) = 2Q_0e^{-\tau}\begin{bmatrix} 1\\1\\1 \end{bmatrix} - Q_0e^{-4\tau}\begin{bmatrix} 1\\0\\-1 \end{bmatrix}$$
.

Therefore,
$$\mathbf{Q}(t) = Q_0 \begin{bmatrix} 2e^{-\frac{r}{v}t} - e^{-4\frac{r}{v}t} \\ 2e^{-\frac{r}{v}t} \\ 2e^{-\frac{r}{v}t} + e^{-4\frac{r}{v}t} \end{bmatrix}$$
.

Section 6.6

1. For
$$A = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$
, the characteristic polynomial is $p(\lambda) = \begin{vmatrix} 2 - \lambda & 1 \\ -1 & 2 - \lambda \end{vmatrix} = \lambda^2 - 4\lambda + 5$.

Therefore, the eigenvalues are $\lambda_1 = 2 + i$ and $\lambda_2 = 2 - i$. We find an eigenvector \mathbf{x}_1 by solving $(A - \lambda I)\mathbf{x} = \mathbf{0}$ or

$$\begin{bmatrix} 2 - (2+i) & 1 \\ -1 & 2 - (2+i) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \text{ This equation reduces to } \begin{bmatrix} -i & 1 \\ -1 & -i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \text{ The }$$

elementary row operation $R_2 + iR_1$ reduces the system to $\begin{bmatrix} -i & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ or $-ix_1 + x_2 = 0$.

Thus, an eigenvector is $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ ix_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ i \end{bmatrix}$, $x_1 \neq 0$. Since the eigenvalues and eigenvectors occur in conjugate pairs, the eigenpairs are

$$\lambda_1 = 2 + i$$
, $\mathbf{x}_1 = \begin{bmatrix} 1 \\ i \end{bmatrix}$ and $\lambda_2 = 2 - i$, $\mathbf{x}_2 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$.

2. The characteristic polynomial is $p(\lambda) = \begin{vmatrix} -\lambda & -9 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 + 9$. Therefore, the eigenvalues are $\lambda_1 = 3i$ and $\lambda_2 = -3i$. We find an eigenvector \mathbf{x}_1 by solving $(A - \lambda_1 I)\mathbf{x} = \mathbf{0}$ or $\begin{bmatrix} -3i & -9 \\ 1 & -3i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Thus, an eigenvector is $\mathbf{x}_1 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3ix_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 3i \\ 1 \end{bmatrix}$, $x_2 \neq 0$. Since the

eigenvalues and eigenvectors occur in conjugate pairs, the eigenpairs are

$$\lambda_1 = 3i$$
, $\mathbf{x}_1 = \begin{bmatrix} 3i \\ 1 \end{bmatrix}$ and $\lambda_2 = -3i$, $\mathbf{x}_2 = \begin{bmatrix} -3i \\ 1 \end{bmatrix}$.

3. For $A = \begin{bmatrix} 6 & -13 \\ 1 & 0 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = \begin{vmatrix} 6 - \lambda & -13 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 - 6\lambda + 13$.

Therefore, the eigenvalues are $\lambda_1 = 3 + 2i$ and $\lambda_2 = 3 - 2i$. We find an eigenvector \mathbf{x}_1 by solving $(A - \lambda_1 I)\mathbf{x} = \mathbf{0}$ or

$$\begin{bmatrix} 6 - (3+2i) & -13 \\ 1 & -(3+2i) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \text{ This equation reduces to } \begin{bmatrix} 3-2i & -13 \\ 1 & -3-2i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \text{ The } \begin{bmatrix} -3-2i \\ 1 \end{bmatrix}$$

elementary row operations $R_1 \leftrightarrow R_2$, then $R_2 - (3-2i)R_1$ reduces the system to

$$\begin{bmatrix} 1 & -(3+2i) \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ or } x_1 - (3+2i)x_2 = 0. \text{ Thus, an eigenvector is}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} (3+2i)x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 3+2i \\ 1 \end{bmatrix}, \ x_2 \neq 0. \text{ Choosing } x_2 = 1, \text{ we obtain the eigenvector}$$

 $\mathbf{x}_1 = \begin{bmatrix} 3+2i \\ 1 \end{bmatrix}$. Since the eigenvalues and eigenvectors occur in conjugate pairs, the eigenpairs

$$\lambda_1 = 3 + 2i$$
, $\mathbf{x}_1 = \begin{bmatrix} 3 + 2i \\ 1 \end{bmatrix}$ and $\lambda_2 = 3 - 2i$, $\mathbf{x}_2 = \begin{bmatrix} 3 - 2i \\ 1 \end{bmatrix}$.

4. The characteristic polynomial is $p(\lambda) = \begin{vmatrix} 3 - \lambda & 1 \\ -2 & 1 - \lambda \end{vmatrix} = (\lambda - 2)^2 + 1$. Therefore, the eigenvalues

are $\lambda_1 = 2 + i$ and $\lambda_2 = 2 - i$. We find an eigenvector \mathbf{x}_1 by solving $(A - \lambda_1 I)\mathbf{x} = \mathbf{0}$ or

$$\begin{bmatrix} 1-i & 1 \\ -2 & -1-i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$
 Thus, an eigenvector is $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1+i \end{bmatrix}$. Since the eigenvalues and

eigenvectors occur in conjugate pairs, the eigenpairs are

$$\lambda_1 = 2 + i$$
, $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 + i \end{bmatrix}$ and $\lambda_2 = 2 - i$, $\mathbf{x}_2 = \begin{bmatrix} 1 \\ -1 - i \end{bmatrix}$.

5. Using the EIG command in MATLAB, we find eigenvalues $\lambda_1 = 1$, $\lambda_2 = 1 + i$, and $\lambda_3 = 1 - i$. For each eigenvalue λ , we use the RREF command in MATLAB to solve $(A - \lambda I)\mathbf{x} = \mathbf{0}$,

finding
$$\mathbf{x}_1 = \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 3+2i \\ 1 \\ -1-i \end{bmatrix}$, and $\mathbf{x}_3 = \begin{bmatrix} 3-2i \\ 1 \\ -1+i \end{bmatrix}$.

- Note that another possible eigenvector for λ_2 is $\mathbf{x}_2 = (-1+i)\begin{bmatrix} 3+2i\\1\\-1-i\end{bmatrix} = \begin{bmatrix} -5+i\\-1+i\\2\end{bmatrix}$.
- 6. The eigenvalues are $\lambda_1 = 2$, $\lambda_2 = 2 + 3i$, and $\lambda_3 = 2 3i$. The corresponding eigenvectors are $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} -4 i \\ 3i \\ 1 + i \end{bmatrix}$, and $\mathbf{x}_3 = \begin{bmatrix} -4 + i \\ -3i \\ 1 i \end{bmatrix}$.
- 7. As in Example 1, $\mathbf{y}(t) = e^{(4+2i)t} \begin{bmatrix} 4 \\ -1+i \end{bmatrix} = e^{4t} (\cos 2t + i \sin 2t) \begin{bmatrix} 4 \\ -1+i \end{bmatrix}$ is one solution of $\mathbf{y}' = A\mathbf{y}$. Expanding and collecting real and imaginary parts, we obtain $\mathbf{y}(t) = e^{4t} \begin{bmatrix} 4\cos 2t \\ -\cos 2t \sin 2t \end{bmatrix} + ie^{4t} \begin{bmatrix} 4\sin 2t \\ \cos 2t \sin 2t \end{bmatrix}$. Thus, a fundamental set of solutions can be formed from $\mathbf{y}_1(t) = e^{4t} \begin{bmatrix} 4\cos 2t \\ -\cos 2t \sin 2t \end{bmatrix}$ and $\mathbf{y}_2(t) = e^{4t} \begin{bmatrix} 4\sin 2t \\ \cos 2t \sin 2t \end{bmatrix}$.
- 8. $\mathbf{y}(t) = e^{it} \begin{bmatrix} -2+i \\ 5 \end{bmatrix} = (\cos t + i \sin t) \begin{bmatrix} -2+i \\ 5 \end{bmatrix}$ is one solution of $\mathbf{y}' = A\mathbf{y}$. Expanding and collecting real and imaginary parts, we obtain $\mathbf{y}(t) = \begin{bmatrix} -2\cos t \sin t \\ 5\cos t \end{bmatrix} + i \begin{bmatrix} \cos t 2\sin t \\ 5\sin t \end{bmatrix}$. Thus, a fundamental set of solutions can be formed from $\mathbf{y}_1(t) = \begin{bmatrix} -2\cos t \sin t \\ 5\cos t \end{bmatrix}$ and $\mathbf{y}_2(t) = \begin{bmatrix} \cos t 2\sin t \\ 5\sin t \end{bmatrix}$.
- 9. As in Example 1, $\mathbf{y}(t) = e^{2it} \begin{bmatrix} -1 i \\ 1 \end{bmatrix} = (\cos 2t + i \sin 2t) \begin{bmatrix} -1 i \\ 1 \end{bmatrix}$ is one solution of $\mathbf{y}' = A\mathbf{y}$. Expanding and collecting real and imaginary parts, we obtain $\mathbf{y}(t) = \begin{bmatrix} -\cos 2t + \sin 2t \\ \cos 2t \end{bmatrix} + i \begin{bmatrix} -\cos 2t \sin 2t \\ \sin 2t \end{bmatrix}$. Thus, a fundamental set of solutions can be formed from $\mathbf{y}_1(t) = \begin{bmatrix} -\cos 2t + \sin 2t \\ \cos 2t \end{bmatrix}$ and $\mathbf{y}_2(t) = \begin{bmatrix} -\cos 2t \sin 2t \\ \sin 2t \end{bmatrix}$.
- 10. $\mathbf{y}(t) = e^{t}(\cos t + i\sin t)\begin{bmatrix} -1 + i \\ i \end{bmatrix}$ is one solution of $\mathbf{y}' = A\mathbf{y}$. Expanding and collecting real and imaginary parts, we obtain $\mathbf{y}(t) = e^{t}\begin{bmatrix} -\cos t \sin t \\ -\sin t \end{bmatrix} + ie^{t}\begin{bmatrix} \cos t \sin t \\ \cos t \end{bmatrix}$. Thus, a fundamental set of solutions can be formed from $\mathbf{y}_{1}(t) = e^{t}\begin{bmatrix} -\cos t \sin t \\ -\sin t \end{bmatrix}$ and $\mathbf{y}_{2}(t) = e^{t}\begin{bmatrix} \cos t \sin t \\ \cos t \end{bmatrix}$.

11. As in Example 1,
$$\mathbf{y}(t) = e^{(2+3i)t} \begin{bmatrix} -5+3i \\ 3+3i \\ 2 \end{bmatrix} = e^{2t} (\cos 3t + i \sin 3t) \begin{bmatrix} -5+3i \\ 3+3i \\ 2 \end{bmatrix}$$
 is one solution of $\mathbf{y}' = A\mathbf{y}$. Expanding and collecting real and imaginary parts, we obtain

 $\mathbf{y'} = A\mathbf{y}$. Expanding and collecting real and imaginary parts, we obtain

$$\mathbf{y}(t) = e^{2t} \begin{bmatrix} -5\cos 3t - 3\sin 3t \\ 3\cos 3t - 3\sin 3t \\ 2\cos 3t \end{bmatrix} + ie^{2t} \begin{bmatrix} 3\cos 3t - 5\sin 3t \\ 3\cos 3t + 3\sin 3t \\ 2\sin 3t \end{bmatrix}. \text{ Thus, two linearly independent solutions}$$

$$\mathbf{y}(t) = e^{2t} \begin{bmatrix} -5\cos 3t - 3\sin 3t \\ 3\cos 3t - 3\sin 3t \\ 2\cos 3t \end{bmatrix} \text{ and } \mathbf{y}_2(t) = e^{2t} \begin{bmatrix} 3\cos 3t - 5\sin 3t \\ 3\cos 3t + 3\sin 3t \\ 2\cos 3t \end{bmatrix}. \text{ The third solution needed}$$

are
$$\mathbf{y}_1(t) = e^{2t} \begin{bmatrix} -5\cos 3t - 3\sin 3t \\ 3\cos 3t - 3\sin 3t \\ 2\cos 3t \end{bmatrix}$$
 and $\mathbf{y}_2(t) = e^{2t} \begin{bmatrix} 3\cos 3t - 5\sin 3t \\ 3\cos 3t + 3\sin 3t \\ 2\sin 3t \end{bmatrix}$. The third solution needed

to complete the fundamental set is obtained from the real eigenvalue $\lambda = 2$, $\mathbf{y}_3(t) = e^{2t} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

12.
$$e^{t}(\cos 5t + i\sin 5t)\begin{bmatrix} i\\1\\0\\0\end{bmatrix} = e^{t}\begin{bmatrix} -\sin 5t\\\cos 5t\\0\\0\end{bmatrix} + ie^{t}\begin{bmatrix} \cos 5t\\\sin 5t\\0\\0\end{bmatrix}. \text{ Also,}$$

$$e^{t}(\cos 5t + i\sin 5t)\begin{bmatrix} t \\ 1 \\ 0 \\ 0 \end{bmatrix} = e^{t} \begin{bmatrix} -\sin 5t \\ \cos 5t \\ 0 \\ 0 \end{bmatrix} + ie^{t} \begin{bmatrix} \cos 5t \\ \sin 5t \\ 0 \\ 0 \end{bmatrix}. \text{ Also,}$$

$$e^{t}(\cos 2t + i\sin 2t)\begin{bmatrix} 0 \\ 0 \\ -\sin 2t \\ \cos 2t \end{bmatrix} = e^{t} \begin{bmatrix} 0 \\ 0 \\ -\sin 2t \\ \sin 2t \end{bmatrix} + ie^{t} \begin{bmatrix} \cos 3t \\ \sin 5t \\ 0 \\ 0 \end{bmatrix}. \text{ Thus, a fundamental set of solutions can be}$$

formed from $e^{t}\begin{vmatrix} -\sin 5t \\ \cos 5t \\ 0 \end{vmatrix}$, $e^{t}\begin{vmatrix} \cos 5t \\ \sin 5t \\ 0 \end{vmatrix}$, $e^{t}\begin{vmatrix} 0 \\ 0 \\ -\sin 2t \end{vmatrix}$, $e^{t}\begin{vmatrix} 0 \\ 0 \\ \cos 2t \end{vmatrix}$.

13.

Proceeding as in Exercises 7-12, we find the general solution of
$$\mathbf{y}' = A\mathbf{y}$$
 is $\mathbf{y}(t) = c_1 e^{2t} \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} \sin t \\ \cos t \end{bmatrix}$. Imposing the initial condition, $\mathbf{y}(0) = c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$, we obtain the solution $\mathbf{y}(t) = e^{2t} \begin{bmatrix} 4\cos t + 7\sin t \\ -4\sin t + 7\cos t \end{bmatrix}$.

Proceeding as in Exercises 7-12, we find the general solution of $\mathbf{y'} = A\mathbf{y}$ is 14.

$$\mathbf{y}(t) = c_1 \begin{bmatrix} 3\sin 3t \\ \cos 3t \end{bmatrix} + c_2 \begin{bmatrix} 3\cos 3t \\ \sin 3t \end{bmatrix}. \text{ Imposing the initial condition, } \mathbf{y}(0) = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \end{bmatrix}, \text{ we}$$
obtain the solution
$$\mathbf{y}(t) = \begin{bmatrix} -6\sin 3t + 6\cos 3t \\ 2\cos 3t + 2\sin 3t \end{bmatrix}.$$

- 15. $\mathbf{y}(t) = c_1 e^{3t} \begin{bmatrix} 3\cos 2t - 2\sin 2t \\ \cos 2t \end{bmatrix} + c_2 e^{3t} \begin{bmatrix} 2\cos 2t + 3\sin 2t \\ \sin 2t \end{bmatrix}.$ Imposing the initial condition, $\mathbf{y}(0) = c_1 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \text{ we find } c_1 = 3 \text{ and } c_2 = -4 \text{ and the solution is}$ $\mathbf{y}(t) = e^{3t} \begin{bmatrix} \cos 2t - 18\sin 2t \\ 3\cos 2t - 4\sin 2t \end{bmatrix}.$
- Proceeding as in Exercises 7-12, we find the general solution of $\mathbf{y'} = A\mathbf{y}$ is 16. $\mathbf{y}(t) = c_1 e^{2t} \begin{bmatrix} \cos t \\ -\cos t - \sin t \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} \sin t \\ \cos t - \sin t \end{bmatrix}.$ Imposing the initial condition, $\mathbf{y}(0) = c_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$, we obtain the solution $\mathbf{y}(t) = e^{2t} \begin{bmatrix} 8\cos t + 14\sin t \\ 6\cos t - 22\sin t \end{bmatrix}$.
- 17. Imposing the initial condition, $\mathbf{y}(0) = c_1 e^t \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} + c_2 e^t \begin{bmatrix} 3\cos t - 2\sin t \\ \cos t \\ -\cos t + \sin t \end{bmatrix} + c_3 e^t \begin{bmatrix} 2\cos t + 3\sin t \\ \sin t \\ -\cos t - \sin t \end{bmatrix}.$ Imposing the initial condition, $\mathbf{y}(0) = c_1 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} + c_3 \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \\ 2 \end{bmatrix}$, we find

 $c_1 = -9$, $c_2 = 1$, and $c_3 = -12$, and the solution $\mathbf{y}(t) = e^t \begin{bmatrix} 27 - 21\cos t - 38\sin t \\ \cos t - 12\sin t \\ -9 + 11\cos t \end{bmatrix}$. Proceeding as in Exercises 7.13

Proceeding as in Exercises 7-12, we find the general solution of $\mathbf{y'} = A\mathbf{y}$ is 18.

$$\mathbf{y}(t) = c_1 e^{2t} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} -4\cos 3t + \sin 3t \\ -3\sin 3t \\ \cos 3t - \sin 3t \end{bmatrix} + c_3 e^{2t} \begin{bmatrix} -\cos 3t - 4\sin 3t \\ 3\cos 3t \\ \cos 3t + \sin 3t \end{bmatrix}.$$

Imposing the initial condition, $\mathbf{y}(0) = c_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 9 \\ 4 \end{bmatrix}$, we find

$$c_1 = -2$$
, $c_2 = -1$, and $c_3 = 3$, and the solution $\mathbf{y}(t) = e^{2t} \begin{bmatrix} -2 + \cos 3t - 13\sin 3t \\ 9\cos 3t + 3\sin 3t \\ 2 + 2\cos 3t + 4\sin 3t \end{bmatrix}$.

The eigenvalues of A are $\lambda = \left(-1 \pm \sqrt{9 + 12\mu}\right)/2$. If $9 + 12\mu < 0$, $\lambda = -\frac{1}{2} \pm i\beta$ $(\beta \neq 0)$, 22. therefore distinct and $y(t) \rightarrow 0$. If $0 < 9 + 12\mu < 1$, the eigenvalues are distinct, real and negative. Therefore, $-\infty < 9 + 12\mu < 1 - \infty < \mu < -\frac{2}{3}$.

- The eigenvalues of A are $\lambda = (-5 \pm \sqrt{1 + 4\mu})/2$. In order that both components of $\mathbf{y}(t)$ go to 23. zero as $t \to \infty$, we need each of these (real) eigenvalues to be negative. Therefore, we need $\left(-5+\sqrt{1+4\mu}\right)/2<0$ or $\sqrt{1+4\mu}<5$. This inequality holds if and only if $1 + 4\mu < 25$ or $-\infty < \mu < 6$.
- The eigenvalues of A are $\lambda = \left(-2 \pm \sqrt{16 4\mu^2}\right)/2 = -1 \pm \sqrt{4 \mu^2}$. Require 24. $-\infty < 4 - \mu^2 < 1 \Rightarrow 3 < \mu^2 < \infty$. Therefore, $-\infty < \mu < -\sqrt{3}$ and $\sqrt{3} < \mu < \infty$.
- The eigenvalues of A are $\lambda = -1 \pm \sqrt{4 + \mu^2}$. In order that both components of $\mathbf{y}(t)$ go to zero 25. as $t \to \infty$, we need each of these (real) eigenvalues to be negative. Therefore, we need $-1+\sqrt{4+\mu^2}<0$ or $\sqrt{4+\mu^2}<1$. This inequality cannot hold for any real value of μ .
- $26 \text{ (a)}. \frac{d}{dt}\mathbf{v} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \mathbf{v} \Rightarrow \mathbf{v}(t) = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}.$ $26 \text{ (b)}. \mathbf{v}(0) = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \Rightarrow \mathbf{v}(t) = \begin{bmatrix} \cos t + 2\sin t \\ -\sin t + 2\cos t \end{bmatrix}. \mathbf{r}(t) = \begin{bmatrix} \sin t 2\cos t \\ \cos t + 2\sin t \end{bmatrix} + \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}.$ $\mathbf{r}(0) = \begin{bmatrix} -2 + d_1 \\ 1 + d_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \Rightarrow \mathbf{r}(t) = \begin{bmatrix} \sin t 2\cos t + 4 \\ \cos t + 2\sin t \end{bmatrix}. \mathbf{v}\left(\frac{3\pi}{2}\right) = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \text{ and } \mathbf{r}\left(\frac{3\pi}{2}\right) = \begin{bmatrix} 3 \\ -2 \end{bmatrix}.$
- 27 (d). If the charged particle is launched with initial velocity parallel to the magnetic field, it will move with constant velocity.
- 28 (b). The eigenpairs are $-\frac{\gamma}{m} + \lambda_1, \mathbf{x}_1$ and $-\frac{\gamma}{m} + \lambda_2, \mathbf{x}_2$ and $-\frac{\gamma}{m} + \lambda_3, \mathbf{x}_3$. The corresponding fundamental matrix is $e^{-\frac{\gamma}{m}t}\psi(t)$.

Section 6.7

- 1 (a). For $A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = (\lambda 2)^2$. The eigenvalue $\lambda_1 = 2$ has algebraic multiplicity 2. Corresponding eigenvectors are obtained by solving $(A-2I)\mathbf{x} = \mathbf{0}$ or $\begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$. Therefore, all the eigenvectors corresponding to $\lambda_1 = 2$ have the form $\mathbf{x} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ x_1 \neq 0$. The geometric multiplicity of $\lambda_1 = 2$ is 1.
- 1 (b). We find a generalized eigenvector corresponding to $\lambda_1 = 2$ by solving the equation $(A-2I)\mathbf{x} = \mathbf{x}_1$ where $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. The solution is $\mathbf{x} = \begin{bmatrix} x_1 \\ 1 \end{bmatrix}$ where x_1 is arbitrary. Choosing $x_1 = 0$, we obtain the generalized eigenvector $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

- Thus, we have solutions $\mathbf{y}_1(t) = e^{2t}\mathbf{x}_1$ and, as in equation (6), $\mathbf{y}_2(t) = te^{2t}\mathbf{x}_1 + e^{2t}\mathbf{x}_2$. A fundamental matrix is $\Psi(t) = [\mathbf{y}_1(t), \mathbf{y}_2(t)] = \begin{bmatrix} e^{2t} & te^{2t} \\ 0 & e^{2t} \end{bmatrix}$.
- 1 (c). The general solution is $\Psi(t)\mathbf{c}$. Imposing the initial condition, $\Psi(0)\mathbf{c} = \mathbf{y}_0$. We find $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \text{ or } \mathbf{c} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$ Thus, the solution of the initial value problem is $\mathbf{y}(t) = e^{2t} \begin{bmatrix} 1 t \\ -1 \end{bmatrix}.$
- 2 (a). The characteristic polynomial is $p(\lambda) = (3 \lambda)^2$. The eigenvalue $\lambda_1 = 3$ has algebraic multiplicity 2. Corresponding eigenvectors are obtained by solving $(A 3I)\mathbf{x} = \mathbf{0}$. Therefore, all the eigenvectors corresponding to $\lambda_1 = 3$ have the form $\mathbf{x} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $x_1 \neq 0$. The geometric multiplicity of $\lambda_1 = 3$ is 1.
- 2 (b). $\mathbf{y}_{1}(t) = e^{3t} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{y}_{2}(t) = te^{3t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + e^{3t} \begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix} = e^{3t} \begin{bmatrix} t \\ \frac{1}{2} \end{bmatrix}$. A fundamental matrix is $\Psi(t) = [\mathbf{y}_{1}(t), \mathbf{y}_{2}(t)] = \begin{bmatrix} e^{3t} & te^{3t} \\ 0 & \frac{1}{2}e^{3t} \end{bmatrix}.$
- 2 (c). The general solution is $\Psi(t)\mathbf{c}$. Imposing the initial condition, $\Psi(0)\mathbf{c} = \mathbf{y}_0$. We find $\begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} \text{ or } \mathbf{c} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}. \text{ Thus, the solution of the initial value problem is}$ $\mathbf{y}(t) = e^{3t} \begin{bmatrix} 2t + 4 \\ 1 \end{bmatrix}.$
- 3 (a). For $A = \begin{bmatrix} 6 & 0 \\ 2 & 6 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = (\lambda 6)^2$. The eigenvalue $\lambda_1 = 6$ has algebraic multiplicity 2. Corresponding eigenvectors are obtained by solving $(A 6I)\mathbf{x} = \mathbf{0}$ or $\begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Therefore, all the eigenvectors corresponding to $\lambda_1 = 6$ have the form $\mathbf{x} = \begin{bmatrix} 0 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $x_2 \neq 0$. The geometric multiplicity of $\lambda_1 = 6$ is 1.
- 3 (b). We find a generalized eigenvector corresponding to $\lambda_1 = 6$ by solving the equation $(A 6I)\mathbf{x} = \mathbf{x}_1$ where $\mathbf{x}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. The solution is $\mathbf{x} = \begin{bmatrix} 0.5 \\ x_2 \end{bmatrix}$ where x_2 is arbitrary. Choosing $x_2 = 0$, we obtain the generalized eigenvector $\mathbf{x}_2 = \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}$. Thus, we have solutions $\mathbf{y}_1(t) = e^{6t}\mathbf{x}_1$ and, as in equation (6), $\mathbf{y}_2(t) = te^{6t}\mathbf{x}_1 + e^{6t}\mathbf{x}_2$. A fundamental matrix is $\Psi(t) = [\mathbf{y}_1(t), \mathbf{y}_2(t)] = \begin{bmatrix} 0 & 0.5e^{6t} \\ e^{6t} & te^{6t} \end{bmatrix}$.

- 3 (c). The general solution is $\Psi(t)\mathbf{c}$. Imposing the initial condition requires $\Psi(0)\mathbf{c} = \mathbf{y}_0$. We find $\begin{bmatrix} 0 & 0.5 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix} \text{ or } \mathbf{c} = \begin{bmatrix} 0 \\ -4 \end{bmatrix}.$ Thus, the solution of the initial value problem is $\mathbf{y}(t) = e^{6t} \begin{bmatrix} -2 \\ -4t \end{bmatrix}.$
- 4 (a). The characteristic polynomial is $p(\lambda) = (3 \lambda)^2$. The eigenvalue $\lambda_1 = 3$ has algebraic multiplicity 2. Corresponding eigenvectors are obtained by solving $(A 3I)\mathbf{x} = \mathbf{0}$. Therefore, all the eigenvectors corresponding to $\lambda_1 = 3$ have the form $\mathbf{x} = \begin{bmatrix} 0 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $x_2 \neq 0$. The geometric multiplicity of $\lambda_1 = 3$ is 1.
- 4 (b). $\mathbf{y}_1(t) = e^{3t} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\mathbf{y}_2(t) = te^{3t} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + e^{3t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = e^{3t} \begin{bmatrix} 1 \\ t \end{bmatrix}$. A fundamental matrix is $\Psi(t) = [\mathbf{y}_1(t), \mathbf{y}_2(t)] = \begin{bmatrix} 0 & e^{3t} \\ e^{3t} & te^{3t} \end{bmatrix}.$
- 4 (c). The general solution is $\Psi(t)\mathbf{c}$. Imposing the initial condition, $\Psi(0)\mathbf{c} = \mathbf{y}_0$. We find $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix} \text{ or } \mathbf{c} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}. \text{ Thus, the solution of the initial value problem is}$ $\mathbf{y}(t) = e^{3t} \begin{bmatrix} 2 \\ 2t 3 \end{bmatrix}.$
- 5 (a). For $A = \begin{bmatrix} 5 & -1 \\ 4 & 1 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = (\lambda 3)^2$. The eigenvalue $\lambda_1 = 3$ has algebraic multiplicity 2. Corresponding eigenvectors are obtained by solving $(A 3I)\mathbf{x} = \mathbf{0}$ or $\begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Therefore, all the eigenvectors corresponding to $\lambda_1 = 3$ have the form $\mathbf{x} = \begin{bmatrix} x_1 \\ 2x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $x_1 \neq 0$. The geometric multiplicity of $\lambda_1 = 3$ is 1.
- 5 (b). We find a generalized eigenvector corresponding to $\lambda_1 = 3$ by solving the equation $(A 3I)\mathbf{x} = \mathbf{x}_1$ where $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. The solution is $\mathbf{x} = \begin{bmatrix} .5x_2 + .5 \\ x_2 \end{bmatrix}$ where x_2 is arbitrary. Choosing $x_2 = 0$, we obtain the generalized eigenvector $\mathbf{x}_2 = \begin{bmatrix} .5 \\ 0 \end{bmatrix}$. Thus, we have solutions $\mathbf{y}_1(t) = e^{3t}\mathbf{x}_1$ and, as in equation (6), $\mathbf{y}_2(t) = te^{3t}\mathbf{x}_1 + e^{3t}\mathbf{x}_2$. A fundamental matrix is $\Psi(t) = [\mathbf{y}_1(t), \mathbf{y}_2(t)] = \begin{bmatrix} e^{3t} & (t + .5)e^{3t} \\ 2e^{3t} & 2te^{3t} \end{bmatrix}$.

- 5 (c). The general solution is $\Psi(t)\mathbf{c}$. Imposing the initial condition requires $\Psi(0)\mathbf{c} = \mathbf{y}_0$. We find $\begin{bmatrix} 1 & .5 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ or } \mathbf{c} = \begin{bmatrix} .5 \\ 1 \end{bmatrix}.$ Thus, the solution of the initial value problem is $\mathbf{y}(t) = e^{3t} \begin{bmatrix} t+1 \\ 2t+1 \end{bmatrix}.$
- 6 (a). The characteristic polynomial is $p(\lambda) = (3 \lambda)^2$. The eigenvalue $\lambda_1 = 3$ has algebraic multiplicity 2. Corresponding eigenvectors are obtained by solving $(A 3I)\mathbf{x} = \mathbf{0}$. Use $\mathbf{x}_1 = \begin{bmatrix} 6 \\ -1 \end{bmatrix}$. The geometric multiplicity of $\lambda_1 = 3$ is 1.
- 6 (b). $\mathbf{y}_1(t) = e^{3t} \begin{bmatrix} 6 \\ -1 \end{bmatrix}$ and $\mathbf{y}_2(t) = te^{3t} \begin{bmatrix} 6 \\ -1 \end{bmatrix} + e^{3t} \begin{bmatrix} -1 \\ 0 \end{bmatrix} = e^{3t} \begin{bmatrix} 6t 1 \\ -t \end{bmatrix}$. A fundamental matrix is $\Psi(t) = [\mathbf{y}_1(t), \mathbf{y}_2(t)] = \begin{bmatrix} 6e^{3t} & (6t 1)e^{3t} \\ -e^{3t} & -te^{3t} \end{bmatrix}.$
- 6 (c). The general solution is $\Psi(t)\mathbf{c}$. Imposing the initial condition, $\Psi(0)\mathbf{c} = \mathbf{y}_0$. We find $\begin{bmatrix} 6 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \text{ or } \mathbf{c} = \begin{bmatrix} -2 \\ -12 \end{bmatrix}.$ Thus, the solution of the initial value problem is $\mathbf{y}(t) = e^{3t} \begin{bmatrix} -72t \\ 12t + 2 \end{bmatrix}.$
- 7 (a). For $A = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = (\lambda 2)^2$. The eigenvalue $\lambda_1 = 2$ has algebraic multiplicity 2. Corresponding eigenvectors are obtained by solving $(A 2I)\mathbf{x} = \mathbf{0}$ or $\begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Therefore, all the eigenvectors corresponding to $\lambda_1 = 2$ have the form $\mathbf{x} = \begin{bmatrix} x_1 \\ -x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $x_1 \neq 0$. The geometric multiplicity of $\lambda_1 = 2$ is 1.
- 7 (b). We find a generalized eigenvector corresponding to $\lambda_1 = 2$ by solving the equation $(A-2I)\mathbf{x} = \mathbf{x}_1$ where $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. The solution is $\mathbf{x} = \begin{bmatrix} -1 x_2 \\ x_2 \end{bmatrix}$ where x_2 is arbitrary. Choosing $x_2 = 0$, we obtain the generalized eigenvector $\mathbf{x}_2 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$. Thus, we have solutions $\mathbf{y}_1(t) = e^{2t}\mathbf{x}_1$ and, as in equation (6), $\mathbf{y}_2(t) = te^{2t}\mathbf{x}_1 + e^{2t}\mathbf{x}_2$. A fundamental matrix is $\Psi(t) = [\mathbf{y}_1(t), \mathbf{y}_2(t)] = \begin{bmatrix} e^{2t} & (t-1)e^{2t} \\ -e^{2t} & -te^{2t} \end{bmatrix}$.
- 7 (c). The general solution is $\Psi(t)\mathbf{c}$. Imposing the initial condition requires $\Psi(0)\mathbf{c} = \mathbf{y}_0$. We find $\begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix} \text{ or } \mathbf{c} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}.$ Thus, the solution of the initial value problem is $\mathbf{y}(t) = e^{2t} \begin{bmatrix} 4 3t \\ 3t 1 \end{bmatrix}.$

- The characteristic polynomial is $p(\lambda) = (\lambda 5)^2$. The eigenvalue $\lambda_1 = 5$ has algebraic multiplicity 2. Corresponding eigenvectors are obtained by solving $(A-5I)\mathbf{x} = \mathbf{0}$. Use $\mathbf{x}_1 = \begin{vmatrix} 1 \\ -1 \end{vmatrix}$. The geometric multiplicity of $\lambda_1 = 5$ is 1.
- 8 (b). $\mathbf{y}_1(t) = e^{5t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{y}_2(t) = te^{5t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + e^{5t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = e^{5t} \begin{bmatrix} t+1 \\ -t \end{bmatrix}$. A fundamental matrix is $\Psi(t) = [\mathbf{y}_1(t), \mathbf{y}_2(t)] = \begin{bmatrix} e^{5t} & (t+1)e^{5t} \\ -e^{5t} & -te^{5t} \end{bmatrix}.$ The general solution is $\Psi(t)\mathbf{c}$. Imposing the initial condition, $\Psi(0)\mathbf{c} = \mathbf{y}_0$. We find
- $\begin{vmatrix} 1 & 1 & c_1 \\ -1 & 0 & c_2 \end{vmatrix} = \begin{vmatrix} 4 & c_1 \\ -4 & c_2 \end{vmatrix}$ or $\mathbf{c} = \begin{vmatrix} 4 \\ 0 & c_1 \end{vmatrix}$. Thus, the solution of the initial value problem is $\mathbf{y}(t) = e^{5t} \begin{bmatrix} 4 \\ -4 \end{bmatrix}.$
- 9 (a). For $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = (\lambda 2)^3$. The eigenvalue $\lambda_1 = 2$ has

algebraic multiplicity 3. Corresponding eigenvectors are obtained by solving $(A-2I)\mathbf{x} = \mathbf{0}$ or

 $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$ Therefore, all the eigenvectors corresponding to $\lambda_1 = 2$ have the form

 $\mathbf{x} = \begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ x_1 \neq 0.$ The geometric multiplicity of $\lambda_1 = 2$ is 1.

9 (b). For $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = (\lambda - 2)^3$. The eigenvalue $\lambda_1 = 2$ has

algebraic multiplicity 3. Corresponding eigenvectors are obtained by solving $(A-2I)\mathbf{x} = \mathbf{0}$ or

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$
 Therefore, all the eigenvectors corresponding to $\lambda_1 = 2$ have the form

 $\mathbf{x} = \begin{bmatrix} x_1 \\ 0 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \text{ where } \mathbf{x} \text{ is nonzero. The geometric multiplicity of } \lambda_1 = 2 \text{ is } 2.$ For $A = \begin{bmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 1 & 1 & 5 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = (\lambda - 5)^3$. The eigenvalue $\lambda_1 = 5$ has

13. algebraic multiplicity 3. Corresponding eigenvectors are obtained by solving $(A - 5I)\mathbf{x} = \mathbf{0}$ or $\begin{vmatrix} 0 & 0 & 0 & x_1 \\ 1 & 0 & 0 & x_2 \\ 1 & 1 & 0 & x_2 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$.

Therefore, all the eigenvectors corresponding to $\lambda_1 = 5$ have the form

$$\mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \ x_3 \neq 0$$
. The geometric multiplicity of $\lambda_1 = 5$ is 1, so A does not have a full

set of eigenvectors.

The characteristic polynomial is $p(\lambda) = (\lambda - 5)^3$. The eigenvalue $\lambda_1 = 5$ has algebraic 14. multiplicity 3. Corresponding eigenvectors are obtained by solving $(A-5I)\mathbf{x} = \mathbf{0}$. Use

$$\mathbf{x}_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. The geometric multiplicity of $\lambda_1 = 5$ is 2, so A does not have a full set of

eigenvectors.

For $A = \begin{bmatrix} 5 & 0 & 1 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = (\lambda - 5)^3$. The eigenvalue $\lambda_1 = 5$ has 15.

algebraic multiplicity 3. Corresponding eigenvectors are obtained by solving $(A - 5I)\mathbf{x} = \mathbf{0}$ or

algebraic multiplicity 5. Corresponding eigenvectors are obtained by solving
$$(A-3I)\mathbf{x} = \mathbf{0}$$
 of $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Therefore, all the eigenvectors corresponding to $\lambda_1 = 5$ have the form $\begin{bmatrix} x_1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \text{ where } \mathbf{x} \text{ is nonzero. The geometric multiplicity of } \lambda_1 = 5 \text{ is } 2, \text{ so } A$$

does not have a full set of eigenvectors.

The characteristic polynomial is $p(\lambda) = (\lambda - 5)^3$. The eigenvalue $\lambda_1 = 5$ has algebraic 16. multiplicity 3. Corresponding eigenvectors are obtained by solving $(A - 5I)\mathbf{x} = 0\mathbf{x} = \mathbf{0}$. Use

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
. The geometric multiplicity of $\lambda_1 = 5$ is 3, so A does have a full

set of eigenvectors.

17. For
$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$
, the characteristic polynomial is $p(\lambda) = (\lambda - 2)^2 (\lambda - 3)^2$. The

eigenvalue $\lambda_1 = 2$ has algebraic multiplicity 2 as does $\lambda_2 = 3$.

Corresponding eigenvectors for $\lambda_1 = 2$ have the form $\mathbf{x} = \begin{bmatrix} 0 \\ x_2 \\ 0 \\ 0 \end{bmatrix} = x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $x_2 \neq 0$. Therefore, the

geometric multiplicity of $\lambda_1 = 2$ is 1. Similarly, eigenvectors corresponding to $\lambda_2 = 3$ have the

form
$$\mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ x_4 \end{bmatrix} = x_4 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
, $x_4 \neq 0$ and so $\lambda_2 = 3$ has geometric multiplicity 1. A does not have a

full set of eigenvectors.

The characteristic polynomial is $p(\lambda) = (2 - \lambda)^4$. The eigenvalue $\lambda_1 = 2$ has algebraic 18. multiplicity 4. Corresponding eigenvectors are obtained by solving $(A-2I)\mathbf{x} = \mathbf{0}$. Use

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$
 The geometric multiplicity of $\lambda = 2$ is 3, so A does not have a full

For $A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = (\lambda - 2)^3 (\lambda - 3)$. The eigenvalue $\lambda = 2 \log_2 1$ 19.

 $\lambda_1 = 2$ has algebraic multiplicity 3 while $\lambda_2 = 3$ has algebraic multiplicity 1. Corresponding

eigenvectors for
$$\lambda_1 = 2$$
 have the form $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ -x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$. Therefore, the

geometric multiplicity of $\lambda_1 = 2$ is 3. Eigenvectors corresponding to $\lambda_2 = 3$ have the form

$$\mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ x_4 \end{bmatrix} = x_4 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \ x_4 \neq 0 \text{ and so } \lambda_2 = 3 \text{ has geometric multiplicity 1. Since every eigenvalue}$$

of A has geometric multiplicity equal to its algebraic multiplicity, A has a full set of eigenvectors.

- A must have $\lambda_1 = a + ib$ and $\lambda_2 = a ib$ as two distinct eigenvalues. Therefore, A cannot have 20. a repeated eigenvalue and cannot be defective.
- In order for A to be symmetric, $a_{12} = x$ must be the same as $a_{21} = 9$. Thus, x = 9. Similarly, 21. $a_{23} = y$ must equal $a_{32} = 4$.
- 22. x = 6, y = 1.

- 23. In order for A to be symmetric, $a_{13} = x^2 - 1$ must be the same as $a_{31} = 0$. Thus, we can have either x = 1 or x = -1. Similarly, $a_{21} = 2/y$ must equal $a_{12} = 1$. Hence, y = 2.
- In order for A to be Hermitian, $\overline{a}_{12} = x 3i = 9 3i \Rightarrow x = 9$ and $\overline{a}_{23} = 2 yi = 2 + 5i \Rightarrow y = -5$. 24.
- 25. In order for A to be Hermitian, $a_{11} = 2 + xi$ must be the same as $\overline{a}_{11} = 2 - xi$. Thus, we need x = xi0. Similarly, $a_{21} = 1 + yi$ must equal $\overline{a}_{12} = 1 - 2i$. Hence, y = 2. These choices are consistent with the remaining undetermined entries, a_{22} and a_{23} .
- 26 (a). $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, for example.
- 26 (b). $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, for example.
- 30.

The equation $(A-2I)\mathbf{x} = \mathbf{v}_1$ is $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Choose $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

The equation $(A-2I)\mathbf{x} = \mathbf{v}_2$ is $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. Choose $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. A fundamental set of

solutions can be formed from $\mathbf{y}_1(t) = e^{2t} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{y}_2(t) = e^{2t} \begin{bmatrix} t \\ 1 \\ 0 \end{bmatrix}$, and $\mathbf{y}_3(t) = e^{2t} \begin{bmatrix} \frac{t^2}{2} \\ t \\ 1 \end{bmatrix}$.

For $A = \begin{bmatrix} 4 & 0 & 0 \\ 2 & 4 & 0 \\ 1 & 3 & 4 \end{bmatrix}$, the equation $(A - 4I)\mathbf{x} = \mathbf{v}_1$ is $\begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 3 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. The solution is $\mathbf{x} = \begin{bmatrix} 0 \\ 1/3 \\ x_2 \end{bmatrix}$ where x_3 is arbitrary. Choosing $x_3 = 0$ we have $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1/3 \\ 0 \end{bmatrix}$. 31.

 $\begin{bmatrix} x_3 \end{bmatrix}$ The equation $(A-4I)\mathbf{x} = \mathbf{v}_2$ is $\begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 3 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1/3 \\ 0 \end{bmatrix}$. The solution is $\mathbf{x} = \begin{bmatrix} 1/6 \\ -1/18 \\ x_2 \end{bmatrix}$ where x_3

is arbitrary. Choosing $x_3 = 0$ we have $\mathbf{v}_3 = \begin{bmatrix} 1/6 \\ -1/18 \\ 0 \end{bmatrix}$. By equation (12), a fundamental set of solutions can be formed from $\mathbf{y}_1(t) = e^{4t} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_2(t) = e^{4t} (\mathbf{v}_2 + t\mathbf{v}_1) = e^{4t} \begin{bmatrix} 0 \\ 1/3 \\ t \end{bmatrix}$, and

$$\mathbf{y}_{3}(t) = e^{4t}(\mathbf{v}_{3} + t\mathbf{v}_{2} + 0.5t^{2}\mathbf{v}_{1}) = \frac{e^{4t}}{18} \begin{bmatrix} 3\\ -1 + 6t\\ 9t^{2} \end{bmatrix}.$$

32. The equation
$$(A - I)\mathbf{x} = \mathbf{v}_1$$
 is $\begin{bmatrix} 2 & -8 & -10 \\ -2 & 6 & 8 \\ 2 & -6 & -8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. Choose $\mathbf{v}_2 = \begin{bmatrix} \frac{1}{2} \\ 0 \\ 0 \end{bmatrix}$.

The equation $(A - I)\mathbf{x} = \mathbf{v}_2$ is $\begin{bmatrix} 2 & -8 & -10 \\ -2 & 6 & 8 \\ 2 & -6 & -8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ 0 \\ 0 \end{bmatrix}$. Choose $\mathbf{v}_3 = \begin{bmatrix} -\frac{3}{4} \\ -\frac{1}{4} \\ 0 \end{bmatrix}$. A fundamental set of solutions can be formed from $\mathbf{y}_1(t) = e^t \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, $\mathbf{y}_2(t) = e^t \begin{bmatrix} \frac{1}{2} + t \\ -t \\ t \end{bmatrix}$, and $\mathbf{y}_3(t) = e^t \begin{bmatrix} -\frac{3}{4} + \frac{t}{2} + \frac{t^2}{2} \\ -\frac{1}{4} - \frac{t^2}{2} \\ \frac{t^2}{2} \end{bmatrix}$.

33. For
$$A = \begin{bmatrix} -6 & -8 & 22 \\ 2 & 4 & -4 \\ -2 & -2 & 8 \end{bmatrix}$$
, the equation $(A - 2I)\mathbf{x} = \mathbf{v}_1$ is given by $\begin{bmatrix} -8 & -8 & 22 \\ 2 & 2 & -4 \\ -2 & -2 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$. A

convenient solution is $\mathbf{v}_2 = \begin{bmatrix} -1.5 \\ 0 \\ -0.5 \end{bmatrix}$. The equation $(A - 2I)\mathbf{x} = \mathbf{v}_2$

is
$$\begin{bmatrix} -8 & -8 & 22 \\ 2 & 2 & -4 \\ -2 & -2 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1.5 \\ 0 \\ -0.5 \end{bmatrix}$$
. One solution is $\mathbf{v}_3 = \begin{bmatrix} -0.5 \\ 0 \\ -0.25 \end{bmatrix}$. A fundamental set consists of $\mathbf{y}_1(t) = e^{2t} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{y}_2(t) = e^{2t} (\mathbf{v}_2 + t\mathbf{v}_1) = e^{2t} \begin{bmatrix} t - 1.5 \\ -t \\ -0.5 \end{bmatrix}$, and

$$\mathbf{y}_{3}(t) = e^{2t}(\mathbf{v}_{3} + t\mathbf{v}_{2} + 0.5t^{2}\mathbf{v}_{1}) = \frac{e^{2t}}{4} \begin{bmatrix} -2 - 6t + 2t^{2} \\ -2t^{2} \\ -1 - 2t \end{bmatrix}.$$

36 (a). Two linearly independent solutions are
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

36 (b). Choose
$$\mathbf{x}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
.

36 (b). Choose
$$\mathbf{x}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
.
36 (c). $\mathbf{Q}(t) = c_1 e^{-4t} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + c_2 e^{-4t} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + c_3 e^{-t} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

Section 6.8

- 1 (a). For $A = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = \lambda^2 + 4\lambda + 3 = (\lambda + 3)(\lambda + 1)$. The eigenvalues are $\lambda_1 = -3$ and $\lambda_2 = -1$, with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Thus, the complementary solution of $\mathbf{y'} = A\mathbf{y}$ is $\mathbf{y}_C = \begin{bmatrix} e^{-3t} & e^{-t} \\ -e^{-3t} & e^{-t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.
- 1 (b). Inserting the suggested trial form $\mathbf{y}_P = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ into the nonhomogeneous equation leads to $\mathbf{y}_P' = A\mathbf{y}_P + \mathbf{g}(t)$ or $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Solving this system, we obtain $\mathbf{y}_P = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
- 1 (c). The general solution of the nonhomogeneous problem is $\mathbf{y}_C + \mathbf{y}_P = \begin{bmatrix} e^{-3t} & e^{-t} \\ -e^{-3t} & e^{-t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
- 1 (d). Imposing the initial condition, $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. Solving, we find $c_1 = 1$ and $c_2 = 1$.

 Thus, $\mathbf{y}(t) = \begin{bmatrix} e^{-3t} + e^{-t} + 1 \\ -e^{-3t} + e^{-t} + 1 \end{bmatrix}$ is the unique solution of the given initial value problem.
- 2 (a). For $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = \lambda^2 4\lambda + 3 = (\lambda 1)(\lambda 3)$. The eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 3$, with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Thus, the complementary solution of $\mathbf{y}' = A\mathbf{y}$ is $\mathbf{y}_C = \begin{bmatrix} e^t & e^{3t} \\ -e^t & e^{3t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.
- 2 (b). Inserting the suggested trial form $\mathbf{y}_P = e^{-t} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ into the nonhomogeneous equation and solving the system, we obtain $\mathbf{y}_P = e^{-t} \begin{bmatrix} -\frac{3}{8} \\ \frac{1}{8} \end{bmatrix}$.
- 2 (c). The general solution of the nonhomogeneous problem is $\mathbf{y}_C + \mathbf{y}_P = \begin{bmatrix} e^t & e^{3t} \\ -e^t & e^{3t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + e^{-t} \begin{bmatrix} -\frac{3}{8} \\ \frac{1}{8} \end{bmatrix}$.
- 2 (d). Imposing the initial condition, $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} -\frac{3}{8} \\ \frac{1}{8} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Solving, we find $c_1 = \frac{1}{4}$ and $c_2 = \frac{1}{8}$. Thus, $\mathbf{y}(t) = \begin{bmatrix} \frac{1}{4}e^t + \frac{1}{8}e^{3t} \frac{3}{8}e^{-t} \\ -\frac{1}{4}e^t + \frac{1}{8}e^{3t} + \frac{1}{8}e^{-t} \end{bmatrix}$ is the unique solution of the given initial value problem.

- 3 (a). For $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = \lambda^2 1 = (\lambda + 1)(\lambda 1)$. The eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 1$, with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Thus, the complementary solution of $\mathbf{y'} = A\mathbf{y}$ is $\mathbf{y}_C = \begin{bmatrix} e^{-t} & e^t \\ -e^{-t} & e^t \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.
- 3 (b). Inserting the suggested trial form $\mathbf{y}_{P} = t \begin{bmatrix} a_{1} \\ a_{2} \end{bmatrix} + \begin{bmatrix} b_{1} \\ b_{2} \end{bmatrix}$ into the nonhomogeneous equation leads to $\mathbf{y}'_{P} = A\mathbf{y}_{P} + \mathbf{g}(t)$ or $\begin{bmatrix} a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} ta_{1} + b_{1} \\ ta_{2} + b_{2} \end{bmatrix} + \begin{bmatrix} t \\ -1 \end{bmatrix}$. Solving this system, we obtain $\mathbf{y}_{P} = \begin{bmatrix} 0 \\ -t \end{bmatrix}$.
- 3 (c). The general solution of the nonhomogeneous problem is $\mathbf{y}_C + \mathbf{y}_P = \begin{bmatrix} e^{-t} & e^t \\ -e^{-t} & e^t \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} 0 \\ -t \end{bmatrix}$.
- 3 (d). Imposing the initial condition, $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$. Solving, we find $c_1 = 1.5$ and $c_2 = 0.5$. Thus, $\mathbf{y}(t) = 0.5 \begin{bmatrix} 3e^{-t} + e^t \\ -3e^{-t} + e^t t \end{bmatrix}$ is the unique solution of the given initial value problem.
- 4 (a). For $A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = \lambda^2 1$. The eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 1$, with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Thus, the complementary solution of $\mathbf{y}' = A\mathbf{y}$ is $\mathbf{y}_C = \begin{bmatrix} e^{-t} & e^t \\ e^{-t} & -e^t \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.
- 4 (b). Inserting the suggested trial form $\mathbf{y}_P = e^{2t} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + t \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} + \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ into the nonhomogeneous equation and solving the system, we obtain $\mathbf{y}_P = \begin{bmatrix} -\frac{1}{3}e^{2t} 1 \\ \frac{2}{3}e^{2t} + t \end{bmatrix}$.
- 4 (c). The general solution of the nonhomogeneous problem is $\begin{bmatrix} e^{-t} & e^t \end{bmatrix} \begin{bmatrix} c_1 \end{bmatrix} \begin{bmatrix} -\frac{1}{2}e^{2t} 1 \end{bmatrix}$

$$\mathbf{y}_C + \mathbf{y}_P = \begin{bmatrix} e^{-t} & e^t \\ e^{-t} & -e^t \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} -\frac{1}{3}e^{2t} - 1 \\ \frac{2}{3}e^{2t} + t \end{bmatrix}.$$

4 (d). Imposing the initial condition, $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} -\frac{4}{3} \\ \frac{2}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Solving, we find $c_1 = \frac{5}{6}$ and $c_2 = \frac{1}{2}$. Thus, $\mathbf{y}(t) = \begin{bmatrix} \frac{5}{6}e^{-t} + \frac{1}{2}e^t - \frac{1}{3}e^{2t} - 1 \\ \frac{5}{6}e^{-t} - \frac{1}{2}e^t + \frac{2}{3}e^{2t} + t \end{bmatrix}$ is the unique solution of the given initial value problem.

- 5 (a). For $A = \begin{bmatrix} -3 & -2 \\ 4 & 3 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = \lambda^2 1 = (\lambda + 1)(\lambda 1)$. The eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 1$, with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$. Thus, the complementary solution of $\mathbf{y'} = A\mathbf{y}$ is $\mathbf{y}_C = \begin{bmatrix} e^{-t} & e^t \\ -e^{-t} & -2e^t \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.
- 5 (b). Inserting the suggested trial form $\mathbf{y}_P = \sin t \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + \cos t \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ into the nonhomogeneous equation leads to $\mathbf{y}_P' = A\mathbf{y}_P + \mathbf{g}(t)$ or $\begin{bmatrix} a_1 \cos t b_1 \sin t \\ a_2 \cos t b_2 \sin t \end{bmatrix} = \begin{bmatrix} -3 & -2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} a_1 \sin t + b_1 \cos t \\ a_2 \sin t + b_2 \cos t \end{bmatrix} + \begin{bmatrix} \sin t \\ 0 \end{bmatrix}$. Solving this system, we obtain $\mathbf{y}_P = 0.5 \begin{bmatrix} 3\sin t \cos t \\ -4\sin t \end{bmatrix}$.
- 5 (c). The general solution of the nonhomogeneous problem is

$$\mathbf{y}_C + \mathbf{y}_P = \begin{bmatrix} e^{-t} & e^t \\ -e^{-t} & -2e^t \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + 0.5 \begin{bmatrix} 3\sin t - \cos t \\ -4\sin t \end{bmatrix}.$$

- 5 (d). Imposing the initial condition, $\begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} -.5 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Solving, we find $c_1 = 1$ and $c_2 = -0.5$. Thus, $\mathbf{y}(t) = 0.5 \begin{bmatrix} 2e^{-t} e^t + 3\sin t \cos t \\ -2e^{-t} + 2e^t 4\sin t \end{bmatrix}$ is the unique solution of the given initial value problem.
- 6 (a). For $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = \lambda^2 2\lambda$. The eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 2$, with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Thus, the complementary solution of $\mathbf{y'} = A\mathbf{y}$ is $\mathbf{y}_C = \begin{bmatrix} 1 & e^{2t} \\ -1 & e^{2t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.
- 7. Given $\mathbf{y}(t) = \begin{bmatrix} 1 + \sin 2t \\ e^t + \cos 2t \end{bmatrix}$ it follows that $\mathbf{y}_0 = \mathbf{y}(\pi/2) = \begin{bmatrix} 1 + \sin \pi \\ e^{\pi/2} + \cos \pi \end{bmatrix} = \begin{bmatrix} 1 \\ e^{\pi/2} 1 \end{bmatrix}$. Inserting $\mathbf{y}(t)$ into the differential equation, we see that $\mathbf{y}'(t) = A\mathbf{y}(t) + \mathbf{g}(t)$ and thus $\begin{bmatrix} 2\cos 2t \\ e^t 2\sin 2t \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} 1 + \sin 2t \\ e^t + \cos 2t \end{bmatrix} + \mathbf{g}(t)$. Solving for $\mathbf{g}(t)$, we obtain $\mathbf{g}(t) = \begin{bmatrix} -2e^t \\ e^t + 2 \end{bmatrix}$.
- 8. Given $\mathbf{y}(t) = \begin{bmatrix} t + \alpha \\ t^2 + \beta \end{bmatrix}$ it follows that $\mathbf{y}(1) = \begin{bmatrix} 1 + \alpha \\ 1 + \beta \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \Rightarrow \alpha = 1$, $\beta = -2$. Inserting $\mathbf{y}(t)$ into the differential equation, we see that $\mathbf{y}'(t) = A\mathbf{y}(t) + \mathbf{g}(t)$ and thus $\mathbf{y}' = \begin{bmatrix} 1 \\ 2t \end{bmatrix} = \begin{bmatrix} 1 & t \\ t^2 & 1 \end{bmatrix} \begin{bmatrix} t+1 \\ t^2-2 \end{bmatrix} + \mathbf{g}(t)$. Solving for $\mathbf{g}(t)$, we obtain $\mathbf{g}(t) = \begin{bmatrix} -t^3 + t \\ -t^3 2t^2 + 2t + 2 \end{bmatrix}$.

9. Following the hint, we form $[\mathbf{y}_1', \mathbf{y}_2'] = P(t)[\mathbf{y}_1, \mathbf{y}_2] + [\mathbf{g}_1(t), \mathbf{g}_2(t)]$ which has the form

$$\begin{bmatrix} 0 & e^t \\ -e^{-t} & 0 \end{bmatrix} = P(t) \begin{bmatrix} 1 & e^t \\ e^{-t} & -1 \end{bmatrix} + \begin{bmatrix} -2 & e^t \\ 0 & -1 \end{bmatrix}.$$
 Solving for $P(t)$, we have

$$P(t) = \begin{bmatrix} 2 & 0 \\ -e^{-t} & 1 \end{bmatrix} \begin{bmatrix} 1 & e^{t} \\ e^{-t} & -1 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & 0 \\ -e^{-t} & 1 \end{bmatrix} (-1/2) \begin{bmatrix} -1 & -e^{t} \\ -e^{-t} & 1 \end{bmatrix} = \begin{bmatrix} 1 & e^{t} \\ 0 & -1 \end{bmatrix}.$$

- 10. If A^{-1} exists, $\mathbf{y}_2 = -A^{-1}\mathbf{b}$ is the unique solution.
 - If A^{-1} does not exist, the matrix equation $A\mathbf{y} = -\mathbf{b}$ will either have no solution or a non-unique solution. Therefore, either no equilibrium solution or a non-unique equilibrium solution.
- 11. An equilibrium solution of y' = Ay + b is a constant solution. Therefore, since y' = 0 we need

$$A\mathbf{y}_e = -\mathbf{b}$$
. For $A = \begin{bmatrix} 1 & 4 \\ -1 & -3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ we see that $\mathbf{y}_e = -A^{-1}\mathbf{b} = -\begin{bmatrix} -3 & -4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ -3 \end{bmatrix}$.

- 12. A^{-1} exists and $\mathbf{y}_e = \begin{bmatrix} 1 & 1 & -2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$.
- 13. As noted in the solution of Exercise 11, we need $A\mathbf{y}_e = -\mathbf{b}$. For $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$ we

see that
$$\mathbf{y}_e = \begin{bmatrix} 0 \\ 2 \end{bmatrix} + a \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 where a is arbitrary.

- 14. A^{-1} exists and $\begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{y}_e = \begin{bmatrix} -2 \\ -3 \\ -2 \end{bmatrix} \Rightarrow \mathbf{y}_e = \begin{bmatrix} -1 \\ -1 \\ -2 \end{bmatrix}.$
- 15. As noted in the solution of Exercise 11, we need $A\mathbf{y}_e = -\mathbf{b}$. For $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix}$

we see that
$$\mathbf{y}_e = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$
 where a is arbitrary.

16. The characteristic polynomial is $p(\lambda) = \lambda^2 - 2\lambda$. The eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 2$, with

corresponding eigenvectors
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Thus, one fundamental matrix is $\hat{\Psi}(t) = \begin{bmatrix} 1 & e^{2t} \\ 1 & -e^{2t} \end{bmatrix}$. Set

$$\Psi = \widehat{\Psi}C. \ \Psi(1) = I = \widehat{\Psi}(1)C. \ \therefore C = \widehat{\Psi}(1)^{-1} = \begin{bmatrix} 1 & e^2 \\ 1 & -e^2 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2}e^{-2} & -\frac{1}{2}e^{-2} \end{bmatrix}.$$

$$\Psi(t) = \begin{bmatrix} 1 & e^{2t} \\ 1 & -e^{2t} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2}e^{-2} & -\frac{1}{2}e^{-2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}(1+e^{2(t-1)}) & \frac{1}{2}(1-e^{2(t-1)}) \\ \frac{1}{2}(1-e^{2(t-1)}) & \frac{1}{2}(1+e^{2(t-1)}) \end{bmatrix}.$$

- 17. For $A = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = \lambda^2 + 4 = (\lambda + 2i)(\lambda 2i)$. The eigenvalues are $\lambda_1 = -2i$ and $\lambda_2 = 2i$, with corresponding eigenvectors
 - $\mathbf{x}_1 = \begin{bmatrix} -1 \\ i \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} -1 \\ -i \end{bmatrix}$. Converting to real solutions, we have
 - $\mathbf{y}(t) = e^{-2it} \begin{bmatrix} -1 \\ i \end{bmatrix} = (\cos 2t i\sin 2t) \begin{bmatrix} -1 \\ i \end{bmatrix}. \text{ Therefore, a fundamental set of solutions is}$ $\mathbf{y}_1(t) = \begin{bmatrix} -\cos 2t \\ \sin 2t \end{bmatrix} \text{ and } \mathbf{y}_2(t) = \begin{bmatrix} \sin 2t \\ \cos 2t \end{bmatrix}.$
 - Thus, one fundamental matrix is $\Psi(t) = \begin{bmatrix} -\cos 2t & \sin 2t \\ \sin 2t & \cos 2t \end{bmatrix}$. The solution of the given initial value problem has the form $\widehat{\Psi}(t) = \Psi(t)C = \begin{bmatrix} -\cos 2t & \sin 2t \\ \sin 2t & \cos 2t \end{bmatrix}C$ where C is a (2×2) matrix
 - chosen so that $\widehat{\Psi}(\pi/4) = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$. Imposing this condition, we have
 - $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \Psi(\pi/4)C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}C. \text{ Solving for } C, \text{ we obtain } C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \text{ and }$ $\text{thus } \widehat{\Psi}(t) = \begin{bmatrix} -\cos 2t & \sin 2t \\ \sin 2t & \cos 2t \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \text{ or } \widehat{\Psi}(t) = \begin{bmatrix} \sin 2t & -\cos 2t \sin 2t \\ \cos 2t & \sin 2t \cos 2t \end{bmatrix}.$
- 18. The characteristic polynomial is $p(\lambda) = \lambda^2 2\lambda$. The eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 2$, with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Thus, one fundamental matrix is $\widehat{\Psi}(t) = \begin{bmatrix} 1 & e^{2t} \\ 1 & -e^{2t} \end{bmatrix}$. Set

- $\Psi = \widehat{\Psi}C. \ \Psi(0) = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = \widehat{\Psi}(0)C. \ \therefore C = \widehat{\Psi}(0)^{-1}\Psi(0) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}.$ $\Psi(t) = \begin{bmatrix} 1 & e^{2t} \\ 1 & -e^{2t} \end{bmatrix} \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \frac{1}{2}e^{2t} & \frac{1}{2} \frac{1}{2}e^{2t} \\ \frac{3}{2} + \frac{1}{2}e^{2t} & \frac{1}{2} + \frac{1}{2}e^{2t} \end{bmatrix}.$
- 19. For $A = \begin{bmatrix} 3 & -4 \\ 2 & -3 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = \lambda^2 1 = (\lambda + 1)(\lambda 1)$. The

eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 1$, with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Therefore, a fundamental set of solutions is $\mathbf{y}_1(t) = e^{-t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{y}_2(t) = e^{t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Thus, one

fundamental matrix is $\Psi(t) = \begin{bmatrix} e^{-t} & 2e^{t} \\ e^{-t} & e^{t} \end{bmatrix}$.

The solution of the given initial value problem has the form $\hat{\Psi}(t) = \Psi(t)C = \begin{bmatrix} e^{-t} & 2e^{t} \\ e^{-t} & e^{t} \end{bmatrix}C$

where C is a (2×2) matrix chosen so that $\widehat{\Psi}(0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Imposing this condition, we have

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \Psi(0)C = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}C. \text{ Solving for } C, \text{ we obtain } C = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \text{ and thus}$$

$$\widehat{\Psi}(t) = \begin{bmatrix} e^{-t} & 2e^{t} \\ e^{-t} & e^{t} \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \text{ or } \widehat{\Psi}(t) = \begin{bmatrix} -e^{-t} + 2e^{t} & 2e^{-t} - 2e^{t} \\ -e^{-t} + e^{t} & 2e^{-t} - e^{t} \end{bmatrix}.$$

20. The characteristic polynomial is $p(\lambda) = \lambda^2 - 2\lambda + 5$. The eigenvalues are

 $\lambda_1 = 1 + 2i$ and $\lambda_2 = 1 - 2i$, with corresponding eigenvectors $\mathbf{x} = \begin{bmatrix} -2i \\ 1 \end{bmatrix}$. Then

$$\mathbf{y}(t) = e^{t}(\cos 2t + i\sin 2t) \begin{bmatrix} -2i \\ 1 \end{bmatrix} = \begin{bmatrix} 2e^{t}\sin 2t \\ e^{t}\cos 2t \end{bmatrix} + i \begin{bmatrix} -2e^{t}\cos 2t \\ e^{t}\sin 2t \end{bmatrix}.$$

Thus, one fundamental matrix is $\widehat{\Psi}(t) = \begin{bmatrix} 2e^t \sin 2t & -2e^t \cos 2t \\ e^t \cos 2t & e^t \sin 2t \end{bmatrix}$. Set

$$\Psi = \widehat{\Psi}C. \ \Psi\left(\frac{\pi}{4}\right) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2e^{\frac{\pi}{4}} & 0 \\ 0 & e^{\frac{\pi}{4}} \end{bmatrix} C. \ \therefore C = \begin{bmatrix} \frac{1}{2}e^{-\frac{\pi}{4}} & 0 \\ 0 & e^{-\frac{\pi}{4}} \end{bmatrix}.$$

$$\Psi(t) = \begin{bmatrix} e^{(t-\frac{\pi}{4})} \sin 2t & -2e^{(t-\frac{\pi}{4})} \cos 2t \\ \frac{1}{2}e^{(t-\frac{\pi}{4})} \cos 2t & e^{(t-\frac{\pi}{4})} \sin 2t \end{bmatrix}.$$

21. For $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = \lambda^2 - 2\lambda = \lambda(\lambda - 2)$. The eigenvalues are

 $\lambda_1 = 0$ and $\lambda_2 = 2$, with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Therefore, a

fundamental set of solutions is $\mathbf{y}_1(t) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{y}_2(t) = e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. A fundamental matrix is

$$\Psi(t) = \begin{bmatrix} 1 & e^{2t} \\ -1 & e^{2t} \end{bmatrix} \text{ and therefore, } \Psi^{-1}(s) = 0.5e^{-2s} \begin{bmatrix} e^{2s} & -e^{2s} \\ 1 & 1 \end{bmatrix} = 0.5 \begin{bmatrix} 1 & -1 \\ e^{-2s} & e^{-2s} \end{bmatrix}. \text{ From equation}$$

(11), the solution is $\mathbf{y}(t) = \Psi(t)\Psi^{-1}(t_0)\mathbf{y}_0 + \Psi(t)\int_{t_0}^t \Psi^{-1}(s)\mathbf{g}(s) ds$. Since $\mathbf{y}_0 = \mathbf{0}$ and $t_0 = 0$, we

$$\mathbf{y}(t) = \Psi(t) \int_0^t \Psi^{-1}(s) \mathbf{g}(s) \, ds = \begin{bmatrix} 1 & e^{2t} \\ -1 & e^{2t} \end{bmatrix} \int_0^t 0.5 \begin{bmatrix} e^{2s} \\ 1 \end{bmatrix} ds = \begin{bmatrix} 1 & e^{2t} \\ -1 & e^{2t} \end{bmatrix} 0.25 \begin{bmatrix} e^{2t} - 1 \\ 2t \end{bmatrix}$$
 have

$$=0.25 \begin{bmatrix} e^{2t} - 1 + 2te^{2t} \\ -(e^{2t} - 1) + 2te^{2t} \end{bmatrix}.$$

22. For
$$A = \begin{bmatrix} 9 & -4 \\ 15 & -7 \end{bmatrix}$$
, the characteristic polynomial is $p(\lambda) = \lambda^2 - 2\lambda - 3 = (\lambda - 3)(\lambda + 1)$. The eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 3$, with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

A fundamental matrix is $\Psi(t) = \begin{vmatrix} 2e^{-t} & 2e^{3t} \\ 5e^{-t} & 3e^{3t} \end{vmatrix}$ and therefore,

$$\Psi^{-1}(s) = -\frac{1}{4}e^{-2s} \begin{bmatrix} 3e^{3s} & -2e^{3s} \\ -5e^{-s} & 2e^{-s} \end{bmatrix} = \begin{bmatrix} -\frac{3}{4}e^{s} & \frac{1}{2}e^{s} \\ \frac{5}{4}e^{-3s} & -\frac{1}{2}e^{-3s} \end{bmatrix}.$$

$$\int_0^t \Psi^{-1}(s) \mathbf{g}(s) \, ds = \int_0^t \left[-\frac{3}{4} e^{2s} \right] ds = \left[-\frac{3}{8} (e^{2t} - 1) - \frac{5}{8} (e^{-2t} - 1) \right].$$

$$\Psi(t) \int_0^t \Psi^{-1}(s) \mathbf{g}(s) \, ds = \begin{bmatrix} -\frac{3}{4} (e^t - e^{-t}) - \frac{5}{4} (e^t - e^{3t}) \\ -\frac{15}{8} (e^t - e^{-t}) - \frac{15}{8} (e^t - e^{3t}) \end{bmatrix} = \begin{bmatrix} \frac{3}{4} e^{-t} - 2e^t + \frac{5}{4} e^{3t} \\ \frac{15}{8} e^{-t} - \frac{15}{4} e^t + \frac{15}{8} e^{3t} \end{bmatrix}.$$

Then,
$$\mathbf{y}(t) = \Psi(t)\mathbf{y}_0 + \Psi(t)\int_0^t \Psi^{-1}(s)\mathbf{g}(s) ds$$
, $\mathbf{y}(0) = \Psi(0)\mathbf{y}_0 + \mathbf{0} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} \Rightarrow$

$$\begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$
 Therefore,

$$\mathbf{y}(t) = \begin{bmatrix} 2e^{-t} \\ 5e^{-t} \end{bmatrix} + \begin{bmatrix} \frac{3}{4}e^{-t} - 2e^{t} + \frac{5}{4}e^{3t} \\ \frac{15}{8}e^{-t} - \frac{15}{4}e^{t} + \frac{15}{8}e^{3t} \end{bmatrix} = \begin{bmatrix} \frac{11}{4}e^{-t} - 2e^{t} + \frac{5}{4}e^{3t} \\ \frac{55}{8}e^{-t} - \frac{15}{4}e^{t} + \frac{15}{8}e^{3t} \end{bmatrix}.$$

23. For
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, the characteristic polynomial is $p(\lambda) = \lambda^2 + 1 = (\lambda - i)(\lambda + i)$. The

eigenvalues are $\lambda_1 = i$ and $\lambda_2 = -i$, with corresponding eigenvectors $\mathbf{x}_1 = \begin{vmatrix} 1 \\ i \end{vmatrix}$ and $\mathbf{x}_2 = \begin{vmatrix} 1 \\ -i \end{vmatrix}$.

$$\mathbf{x}_1 = \begin{bmatrix} -1 \\ i \end{bmatrix}$$
 and $\mathbf{x}_2 = \begin{bmatrix} -1 \\ -i \end{bmatrix}$. Converting to real solutions, we have $\mathbf{y}(t) = e^{it} \begin{bmatrix} 1 \\ i \end{bmatrix} = (\cos t + i \sin t) \begin{bmatrix} 1 \\ i \end{bmatrix}$.

Therefore, a fundamental set of solutions is $\mathbf{y}_1(t) = \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix}$ and $\mathbf{y}_2(t) = \begin{bmatrix} \sin t \\ \cos t \end{bmatrix}$. A fundamental

matrix is
$$\Psi(t) = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$$
. We have $\Psi^{-1}(s) = \begin{bmatrix} \cos s & -\sin s \\ \sin s & \cos s \end{bmatrix}$.

From equation (11), the solution is $\mathbf{y}(t) = \Psi(t)\Psi^{-1}(t_0)\mathbf{y}_0 + \Psi(t)\int_{t_0}^t \Psi^{-1}(s)\mathbf{g}(s) ds$. Since

$$\mathbf{y}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
, $\mathbf{g}(s) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, and $t_0 = 0$, we have

$$\mathbf{y}(t) = \Psi(t)\Psi^{-1}(t_0)\mathbf{y}_0 + \Psi(t)\int_0^t \Psi^{-1}(s)\mathbf{g}(s) ds = \begin{bmatrix} \sin t \\ \cos t \end{bmatrix} + \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix} \int_0^t \begin{bmatrix} 2\cos s - \sin s \\ 2\sin s + \cos s \end{bmatrix} ds$$

$$= \begin{bmatrix} \sin t \\ \cos t \end{bmatrix} + \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix} \begin{bmatrix} 2\sin t + \cos t - 1 \\ -2\cos t + \sin t + 2 \end{bmatrix} = \begin{bmatrix} 1 - \cos t + 3\sin t \\ -2 + 3\cos t + \sin t \end{bmatrix}.$$

$$= \begin{bmatrix} \sin t \\ \cos t \end{bmatrix} + \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix} \begin{bmatrix} 2\sin t + \cos t - 1 \\ -2\cos t + \sin t + 2 \end{bmatrix} = \begin{bmatrix} 1 - \cos t + 3\sin t \\ -2 + 3\cos t + \sin t \end{bmatrix}$$

24. For $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = (1 - \lambda)^2$. The eigenvalue is $\lambda = 1$, with corresponding eigenvector $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Then

$$\mathbf{y}_1 = \begin{bmatrix} e^t \\ 0 \end{bmatrix}. \text{ Let } \mathbf{y}_2 = e^t (t\mathbf{v}_1 + \mathbf{v}_2). \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \Rightarrow \mathbf{y}_2 = e^t \begin{bmatrix} t \\ 1 \end{bmatrix}.$$

A fundamental matrix is $\Psi(t) = \begin{bmatrix} e^t & te^t \\ 0 & e^t \end{bmatrix}$ and therefore,

$$\Psi^{-1}(s) = e^{-2s} \begin{bmatrix} e^{s} & -se^{s} \\ 0 & e^{s} \end{bmatrix} = \begin{bmatrix} e^{-s} & -se^{-s} \\ 0 & e^{-s} \end{bmatrix}. \int_{0}^{t} \Psi^{-1}(s) \mathbf{g}(s) \, ds = \int_{0}^{t} \begin{bmatrix} e^{-s}(1-s) \\ e^{-s} \end{bmatrix} ds = \begin{bmatrix} te^{-t} \\ 1-e^{-t} \end{bmatrix}.$$

Since $\mathbf{y}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\mathbf{y}(t) = \Psi(t) \int_0^t \Psi^{-1}(s) \mathbf{g}(s) \, ds = \begin{bmatrix} t + te^t - t \\ e^t - 1 \end{bmatrix} = \begin{bmatrix} te^t \\ e^t - 1 \end{bmatrix}$.

25 (a). $\mathbf{Q}(t)$ is an equilibrium solution if $\frac{r}{V}\begin{bmatrix} -2 & 1\\ 1 & -2 \end{bmatrix}\mathbf{Q} + \begin{bmatrix} cr\\ 0 \end{bmatrix} = \mathbf{0}$. Solving for \mathbf{Q} , we obtain

 $\mathbf{Q}_e(t) = \frac{Cv}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$

25 (b). The characteristic polynomial is $p(\lambda) = \lambda^2 + (4r/V)\lambda + 3r^2/V^2 = (\lambda + 3r/V)(\lambda + r/V)$. The eigenvalues are $\lambda_1 = -3r/V$ and $\lambda_2 = -r/V$, with corresponding eigenvectors

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Therefore, a fundamental set of solutions is

$$\mathbf{y}_1(t) = e^{-3rt/V} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $\mathbf{y}_2(t) = e^{-rt/V} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. The complementary solution is

$$\mathbf{Q}_{C}(t) = \begin{bmatrix} e^{-3rt/V} & e^{-rt/V} \\ -e^{-3rt/V} & e^{-rt/V} \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix}.$$

- 25 (c). Finding a constant particular solution is equivalent to finding an equilibrium solution, as in part (a).
- 25 (d). The general solution is $\mathbf{Q}(t) = \mathbf{Q}_C(t) + \mathbf{Q}_e(t) = \begin{bmatrix} e^{-3rt/V} & e^{-rt/V} \\ -e^{-3rt/V} & e^{-rt/V} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \frac{cV}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Imposing the initial condition leads to $\mathbf{Q}(0) = \mathbf{0}$ or $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \frac{cV}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. The solution of the initial

value problem is
$$\mathbf{Q}(t) = \frac{cV}{6} \begin{bmatrix} 4 - e^{-3rt/V} - 3e^{-rt/V} \\ 2 + e^{-3rt/V} - 3e^{-rt/V} \end{bmatrix}$$
.

25 (e).
$$\frac{1}{V} \lim_{t \to \infty} \mathbf{Q}(t) = \frac{c}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

- 26 (a). $-V_s + \frac{1}{2}I_1' + I_1 + 2(I_1 I_2) = 0$, $2(I_2 I_1) + I_2 + \frac{1}{2}I_2' = 0$. Therefore, $\frac{d}{dt} \begin{bmatrix} I_1' \\ I_2' \end{bmatrix} = \begin{bmatrix} -6I_1 + 4I_2 + 2V_s \\ 4I_1 6I_2 \end{bmatrix} = \begin{bmatrix} -6 & 4 \\ 4 & -6 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} + \begin{bmatrix} 2V_s \\ 0 \end{bmatrix}, \ t > 0, \begin{bmatrix} I_1(0) \\ I_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
- 26 (b). The characteristic polynomial is $p(\lambda) = \lambda^2 + 12\lambda + 20 = (\lambda + 10)(\lambda + 2)$. The eigenvalues are $\lambda_1 = -10$ and $\lambda_2 = -2$, with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Therefore, a fundamental matrix is $\Psi(t) = \begin{bmatrix} e^{-10t} & e^{-2t} \\ -e^{-10t} & e^{-2t} \end{bmatrix}$.
- 26 (c). $\mathbf{I}(t) = \Psi(t) \int_{0}^{t} \Psi^{-1}(s) \begin{bmatrix} 2V_{s} \\ 0 \end{bmatrix} ds \text{ since } \mathbf{I}(0) = \mathbf{0}. \ \Psi^{-1}(s) = \frac{1}{2e^{-12s}} \begin{bmatrix} e^{-2s} & -e^{-2s} \\ e^{-10s} & e^{-10s} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} e^{10s} & -e^{10s} \\ e^{2s} & e^{2s} \end{bmatrix}.$ $\mathbf{With} \ V_{s}(t) = 1, \ t > 0, \ \int_{0}^{t} \Psi^{-1}(s) \begin{bmatrix} 2V_{s} \\ 0 \end{bmatrix} ds = \int_{0}^{t} \begin{bmatrix} e^{10s} \\ e^{2s} \end{bmatrix} = \begin{bmatrix} \frac{1}{10}(e^{10t} 1) \\ \frac{1}{2}(e^{2t} 1) \end{bmatrix}, \text{ Therefore,}$ $\mathbf{I}(t) = \begin{bmatrix} \frac{1}{10}(1 e^{-10t}) + \frac{1}{2}(1 e^{-2t}) \\ -\frac{1}{10}(1 e^{-10t}) + \frac{1}{2}(1 e^{-2t}) \end{bmatrix} = \begin{bmatrix} -\frac{1}{10}e^{-10t} \frac{1}{2}e^{-2t} + \frac{3}{5} \\ \frac{1}{10}e^{-10t} \frac{1}{2}e^{-2t} + \frac{2}{5} \end{bmatrix}.$
- 27 (a). In the vector system $\mathbf{v'} = -\mathbf{v} + (\mathbf{v} \times \mathbf{k}) + \mathbf{f}$, the term $\mathbf{v} \times \mathbf{k}$ is given by $(v_x \mathbf{i} + v_y \mathbf{j}) \times \mathbf{k} = -v_x \mathbf{j} + v_y \mathbf{i}$. Therefore, the system is $\begin{bmatrix} v_x' \\ v_y' \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix} + \begin{bmatrix} f_x \\ f_y \end{bmatrix}$.
- 27 (b). For $\mathbf{f} = 0.5 \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}$, we seek a constant solution \mathbf{v} ; that is, an equilibrium solution. Thus, we need to solve, if possible, $\begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix} + 0.5 \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. This system does indeed have a solution, namely $\mathbf{v}_e = 0.25 \begin{bmatrix} 1 + \sqrt{3} \\ -1 + \sqrt{3} \end{bmatrix}$. If we choose the initial velocity equal to the "equilibrium velocity," \mathbf{v}_e , then the particle will move at that constant velocity.
- 28 (b). The characteristic polynomial is $p(\lambda) = -\lambda(\lambda^2 + \omega_c^2)$. The eigenvalues are

$$\lambda_1 = 0$$
, $\lambda_2 = i\omega_c$, $\lambda_3 = -i\omega_c$, with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix}$. Therefore,

A fundamental matrix is $\Psi(t) = \begin{bmatrix} 0 & \cos \omega_c t & \sin \omega_c t \\ 0 & -\sin \omega_c t & \cos \omega_c t \\ 1 & 0 & 0 \end{bmatrix}$.

$$28 \text{ (c)}. \quad \Phi(t) = \Psi(t)\Psi^{-1}(0) = \begin{bmatrix} 0 & \cos\omega_{c}t & \sin\omega_{c}t \\ 0 & -\sin\omega_{c}t & \cos\omega_{c}t \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & \cos\omega_{c}t & \sin\omega_{c}t & 0 \\ 0 & -\sin\omega_{c}t & \cos\omega_{c}t & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \cos\omega_{c}t & \sin\omega_{c}t & 0 \\ -\sin\omega_{c}t & \cos\omega_{c}t & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

28 (d). From equation 11, $\mathbf{v}(t) = \Phi(t)\mathbf{v}_0 + \Phi(t)\int_0^t \Phi^{-1}(s)\mathbf{g}(s) ds$, using $\Phi(t)$ as a fundamental matrix and noting that $\Phi^{-1}(0) = \mathbf{I}$. Therefore, $\mathbf{v}(t) = \Phi(t)\mathbf{v}_0 + \mathbf{f}(t)$.

28 (e).
$$\mathbf{r}(t) = \int_{0}^{\tau} \mathbf{v}(t)dt = \left[\int_{0}^{\tau} \Phi(t)dt\right] \mathbf{v}_{0} + \int_{0}^{\tau} \mathbf{f}(t)dt = \hat{\mathbf{r}} \cdot \therefore \left[\int_{0}^{\tau} \Phi(t)dt\right] \mathbf{v}_{0} = \hat{\mathbf{r}} - \int_{0}^{\tau} \mathbf{f}(t)dt$$

$$\int_{0}^{\tau} \Phi(t)dt = \begin{bmatrix} \omega_{c}^{-1} \sin \omega_{c}t & \omega_{c}^{-1}(1 - \cos \omega_{c}t) & 0\\ -\omega_{c}^{-1}(1 - \cos \omega_{c}t) & \omega_{c}^{-1} \sin \omega_{c}t & 0\\ 0 & 0 & \tau \end{bmatrix}.$$

$$D = \det \left\{ \int_{0}^{\tau} \Phi(t)dt \right\} = \frac{2\tau}{\omega_{c}^{2}} (1 - \cos \omega_{c}\tau) = \frac{4\tau}{\omega_{c}^{2}} \sin^{2} \left(\frac{\omega_{c}\tau}{2}\right) \therefore \frac{\omega_{c}\tau}{2} \neq n\pi \Rightarrow \tau \neq \frac{2n\pi}{\omega_{c}}.$$

Section 6.9

- 1 (a). For $\mathbf{y}' = P(t)\mathbf{y} + \mathbf{g}(t)$, $\mathbf{y}(t_0) = \mathbf{y}_0$, Euler's method has the form $\mathbf{y}_{n+1} = \mathbf{y}_n + h[P(t_n)\mathbf{y}_n + \mathbf{g}(t_n)]$. For $P(t) = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$, $\mathbf{g}(t) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{y}_0 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, and $t_0 = 0$ the iteration is $\mathbf{y}_{n+1} = \mathbf{y}_n + h[\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}\mathbf{y}_n + \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{y}_0 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$
- 1 (b). In general, $t_k = t_0 + kh$, k = 0, 1, ... Since $t_0 = 0$, we have $t_k = kh$, k = 0, 1, ... In general, h = (b a) / N. So, for a = 0, b = 1, and h = 0.01, we obtain N = 1 / h = 100.

2 (a).
$$\mathbf{y}_{n+1} = \mathbf{y}_n + h \begin{bmatrix} 1 & t_n \\ 2 + t_n & 2 \end{bmatrix} \mathbf{y}_n + \begin{bmatrix} 1 \\ t_n \end{bmatrix}, \mathbf{y}_0 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

- 2 (b). $t_k = 1 + kh, k = 0, 1, \dots$ N = .5 / h = 50.
- 3 (a). For $\mathbf{y}' = P(t)\mathbf{y} + \mathbf{g}(t)$, $\mathbf{y}(t_0) = \mathbf{y}_0$, Euler's method has the form $\mathbf{y}_{n+1} = \mathbf{y}_n + h[P(t_n)\mathbf{y}_n + \mathbf{g}(t_n)]$. For $P(t) = \begin{bmatrix} -t^2 & t \\ 2 - t & 0 \end{bmatrix}$, $\mathbf{g}(t) = \begin{bmatrix} 1 \\ t \end{bmatrix}$, $\mathbf{y}_0 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, and $t_0 = 1$ the iteration is $\mathbf{y}_{n+1} = \mathbf{y}_n + h[\begin{bmatrix} -t_n^2 & t_n \\ 2 - t_n & 0 \end{bmatrix}\mathbf{y}_n + \begin{bmatrix} 1 \\ t_n \end{bmatrix}$, $\mathbf{y}_0 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$.
- 3 (b). In general, $t_k = t_0 + kh$, k = 0, 1, ... Since $t_0 = 1$, we have $t_k = 1 + kh$, k = 0, 1, ... In general, h = (b a)/N. So, for a = 1, b = 4, and h = 0.01, we obtain N = 3/h = 300.

4 (a).
$$\mathbf{y}_{n+1} = \mathbf{y}_n + h \begin{bmatrix} 1 & 0 & 1 \\ 3 & 2 & 1 \\ 1 & 2 & 0 \end{bmatrix} \mathbf{y}_n + \begin{bmatrix} 0 \\ 2 \\ t_n \end{bmatrix}, \mathbf{y}_0 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

- 4 (b). $t_k = -1 + kh, k = 0, 1, \dots$ N = 1/h = 100.
- 5 (a). For $\mathbf{y}' = P(t)\mathbf{y} + \mathbf{g}(t)$, $\mathbf{y}(t_0) = \mathbf{y}_0$, Euler's method has the form $\mathbf{y}_{n+1} = \mathbf{y}_n + h[P(t_n)\mathbf{y}_n + \mathbf{g}(t_n)]$. For $P(t) = \begin{bmatrix} t^{-1} & \sin t \\ 1 - t & 1 \end{bmatrix}$, $\mathbf{g}(t) = \begin{bmatrix} 0 \\ t^2 \end{bmatrix}$, $\mathbf{y}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, and $t_0 = 1$ the iteration is $\mathbf{y}_{n+1} = \mathbf{y}_n + h\begin{bmatrix} t_n^{-1} & \sin t_n \\ 1 - t_n & 1 \end{bmatrix} \mathbf{y}_n + \begin{bmatrix} 0 \\ t_n^2 \end{bmatrix}$, $\mathbf{y}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
- 5 (b). In general, $t_k = t_0 + kh$, k = 0,1,... Since $t_0 = 1$, we have $t_k = 1 + kh$, k = 0,1,... In general, h = (b-a)/N. So, for a = 1, b = 6, and h = 0.01, we obtain N = 5/h = 500.

6.
$$\mathbf{y}_1 = \begin{bmatrix} -1\\1 \end{bmatrix} + 0.01 \begin{bmatrix} 1 & 2\\2 & 3 \end{bmatrix} \begin{bmatrix} -1\\1 \end{bmatrix} + \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} -0.98\\1.02 \end{bmatrix}$$
 and

$$\mathbf{y}_{2} = \begin{bmatrix} -0.98 \\ 1.02 \end{bmatrix} + 0.01 \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -0.98 \\ 1.02 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -0.9594 \\ 1.041 \end{bmatrix}$$

7. The iteration has the form $\mathbf{y}_{n+1} = \mathbf{y}_n + h \begin{bmatrix} 1 & t_n \\ 2 + t_n & 2 \end{bmatrix} \mathbf{y}_n + \begin{bmatrix} 1 \\ t_n \end{bmatrix}, \mathbf{y}_0 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ where $t_0 = 1$ and $t_1 = 1.01$. Therefore, $\mathbf{y}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 0.01 \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 0.01 \begin{bmatrix} 4 \\ 9 \end{bmatrix} = \begin{bmatrix} 2.04 \\ 1.09 \end{bmatrix}$ and

$$\mathbf{y}_{2} = \begin{bmatrix} 2.04 \\ 1.09 \end{bmatrix} + 0.01 \begin{bmatrix} 1 & 1.01 \\ 3.01 & 2 \end{bmatrix} \begin{bmatrix} 2.04 \\ 1.09 \end{bmatrix} + \begin{bmatrix} 1 \\ 1.01 \end{bmatrix} = \begin{bmatrix} 2.04 \\ 1.09 \end{bmatrix} + 0.01 \begin{bmatrix} 4.1409 \\ 9.3304 \end{bmatrix}$$
$$= \begin{bmatrix} 2.081409 \\ 1.183304 \end{bmatrix}.$$

8.
$$\mathbf{y}_1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix} + 0.01 \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1.99 \\ 0.03 \end{bmatrix}$$
 and

$$\mathbf{y}_2 = \begin{bmatrix} 1.99 \\ 0.03 \end{bmatrix} + 0.01 \begin{bmatrix} \begin{bmatrix} -(1.01)^2 & 1.01 \\ 2 - 1.01 & 0 \end{bmatrix} \begin{bmatrix} 1.99 \\ 0.03 \end{bmatrix} + \begin{bmatrix} 1 \\ 1.01 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1.9800030 \\ 0.059801 \end{bmatrix}$$

9. The iteration has the form $\mathbf{y}_{n+1} = \mathbf{y}_n + h \begin{bmatrix} 1 & 0 & 1 \\ 3 & 2 & 1 \\ 1 & 2 & 0 \end{bmatrix} \mathbf{y}_n + \begin{bmatrix} 0 \\ 2 \\ t_n \end{bmatrix} \end{bmatrix}$, $\mathbf{y}_0 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ where

 $t_0 = -1$ and $t_1 = -0.99$. Therefore,

$$\mathbf{y}_{1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + 0.01 \begin{bmatrix} 1 & 0 & 1 \\ 3 & 2 & 1 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + 0.01 \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 0.01 \\ 0.03 \\ 0.99 \end{bmatrix}$$

$$\mathbf{y}_{2} = \begin{bmatrix} 0.01 \\ 0.03 \\ 0.99 \end{bmatrix} + 0.01 \begin{bmatrix} 1 & 0 & 1 \\ 3 & 2 & 1 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 0.01 \\ 0.03 \\ 0.99 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ -0.99 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0.01 \\ 0.03 \\ 0.99 \end{bmatrix} + 0.01 \begin{bmatrix} 1 \\ 3.08 \\ -0.92 \end{bmatrix}$$
$$= \begin{bmatrix} 0.02 \\ 0.0608 \\ 0.9808 \end{bmatrix}.$$

10.
$$\mathbf{y}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + 0.01 \begin{bmatrix} 1 & \sin(1) \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.01 \end{bmatrix}$$
 and

$$\mathbf{y}_{2} = \begin{bmatrix} 0 \\ 0.01 \end{bmatrix} + 0.01 \begin{bmatrix} \frac{1}{1.01} & \sin(1.01) \\ 1 - 1.01 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0.01 \end{bmatrix} + \begin{bmatrix} 0 \\ (1.01)^{2} \end{bmatrix} = \begin{bmatrix} 0.00008468318 \\ 0.020301 \end{bmatrix}$$

11 (a). Let
$$\mathbf{z}(t) = \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} = \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}$$
. With this,

$$\mathbf{z}'(t) = \begin{bmatrix} z_1'(t) \\ z_2'(t) \end{bmatrix} = \begin{bmatrix} y'(t) \\ y''(t) \end{bmatrix} = \begin{bmatrix} z_2(t) \\ -z_1(t) + t^{3/2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ t^{3/2} \end{bmatrix}, \mathbf{z}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

11 (b). Thus, the iteration has the form
$$\mathbf{z}_{n+1} = \mathbf{z}_n + h \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \mathbf{z}_n + \begin{bmatrix} 0 \\ t_n^{3/2} \end{bmatrix}$$
, $\mathbf{z}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ where $t_0 = 0$ and $t_1 = 0.01$.

11 (c). Therefore,
$$\mathbf{z}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 0.01 \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 0.01 \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -0.01 \end{bmatrix}$$
 and

$$\mathbf{z}_{2} = \begin{bmatrix} 1 \\ -0.01 \end{bmatrix} + 0.01 \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -0.01 \end{bmatrix} + \begin{bmatrix} 0 \\ 0.001 \end{bmatrix} = \begin{bmatrix} 1 \\ -0.01 \end{bmatrix} + 0.01 \begin{bmatrix} -.01 \\ -.999 \end{bmatrix}$$
$$= \begin{bmatrix} .9999 \\ -.01999 \end{bmatrix}.$$

12 (a).
$$\mathbf{z}'(t) = \begin{bmatrix} z_1'(t) \\ z_2'(t) \end{bmatrix} = \begin{bmatrix} z_2(t) \\ -t^2 z_1(t) - z_2(t) + 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -t^2 & -1 \end{bmatrix} \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \mathbf{z}(1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

12 (b).
$$\mathbf{z}_{n+1} = \mathbf{z}_n + h \begin{bmatrix} 0 & 1 \\ -t^2 & -1 \end{bmatrix} \mathbf{z}_n + \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ \mathbf{z}_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 where $t_0 = 1$.

12 (c).
$$\mathbf{z}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 0.01 \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 1.01 \\ 1 \end{bmatrix}$$
 and

$$\mathbf{z}_{2} = \begin{bmatrix} 1.01 \\ 1 \end{bmatrix} + 0.01 \begin{bmatrix} 0 & 1 \\ -(1.01)^{2} & -1 \end{bmatrix} \begin{bmatrix} 1.01 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1.02 \\ 0.999696699 \end{bmatrix}$$

13 (a). Let
$$\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4' \end{bmatrix} = \begin{bmatrix} y \\ y' \\ y'' \end{bmatrix}$$
. With this,
$$\mathbf{z}' = \begin{bmatrix} z_1' \\ z_2' \\ z_3' \end{bmatrix} = \begin{bmatrix} y' \\ y'' \\ y''' \end{bmatrix} = \begin{bmatrix} z_2 \\ z_3 \\ -2z_2 - tz_4 + t + 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -t & -2 & 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ t + 1 \end{bmatrix}, \mathbf{z}(0) = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}.$$
13 (b). Thus, the iteration has the form $\mathbf{z}_{n+1} = \mathbf{z}_n + h \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -t_n & -2 & 0 \end{bmatrix} \mathbf{z}_n + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \mathbf{z}_0 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ where
$$t_0 = 0 \text{ and } t_1 = 0.01.$$
13 (c). Therefore, $\mathbf{z}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + 0.01 \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 - 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 - 2 & 0 \end{bmatrix} \mathbf{z}_0 + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + 0.01 \begin{bmatrix} -1 \\ 0.03 \\ 3 \end{bmatrix} = \begin{bmatrix} 0.99 \\ -1 \\ 0.03 \end{bmatrix}$ and
$$\mathbf{z}_2 = \begin{bmatrix} 0.99 \\ -1 \\ 0.03 \end{bmatrix} + 0.01 \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -0.01 & -2 & 0 \end{bmatrix} \begin{bmatrix} 0.99 \\ 0 & 0 & 1 \\ -0.01 & -2 & 0 \end{bmatrix} \mathbf{z}_0 \mathbf{z}_$$

$$\mathbf{z}_{2} = \begin{bmatrix} -0.99 \\ 1.02 \end{bmatrix} + 0.01 \begin{bmatrix} 0 & 1 \\ -e^{-0.01} & -1 \end{bmatrix} \begin{bmatrix} -0.99 \\ 1.02 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} -0.9798 \\ 1.039601493 \end{bmatrix}$$

18. Actual error:
$$\mathbf{y}(1) - \overline{\mathbf{y}}_{200} = \begin{bmatrix} -0.00807508729 \\ 0.0759433736... \end{bmatrix}$$

Estimated error: $\overline{\mathbf{y}}_{200} - \mathbf{y}_{100} = \begin{bmatrix} -0.0086591617... \\ 0.0764878206... \end{bmatrix}$

Estimated error:
$$\overline{\mathbf{y}}_{200} - \mathbf{y}_{100} = \begin{bmatrix} -0.0086591617... \\ 0.0764878206... \end{bmatrix}$$

20. Actual error:
$$\mathbf{y}(1) - \overline{\mathbf{y}}_{200} = \begin{bmatrix} 0.0027112167... \\ -0.0027112167... \end{bmatrix}$$

Estimated error: $\overline{\mathbf{y}}_{200} - \mathbf{y}_{100} = \begin{bmatrix} 0.0027202379... \\ -0.0027202379... \end{bmatrix}$

21 (a).
$$\frac{dQ_1}{dt} = -15\frac{Q_1}{V_1} + \frac{5}{V_2}Q_2 = \frac{-15}{200 - 10t}Q_1 + \frac{5}{500 - 20t}Q_2$$

$$\frac{dQ_2}{dt} = \frac{15}{200 - 10t}Q_1 - \frac{35}{500 - 20t}Q_2$$
21 (b).
$$t = 0:.01:19.9;$$

$$Q1(1) = 40;Q2(1) = 40;$$

$$h = 0.01;$$

$$V1 = 200-10*t;$$

$$V2 = 500-20*t;$$

$$N = 19.9/h;$$
for i = 1:N
$$Q1(i+1) = Q1(i) + h*(-(15/V1(i))*Q1(i) + (5/V2(i))*Q2(i));$$

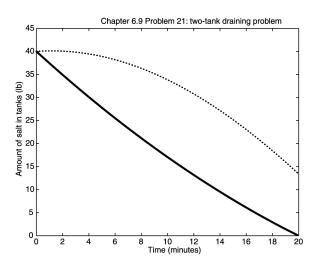
$$Q2(i+1) = Q2(i) + h*((15/V1(i))*Q1(i) - (35/V2(i))*Q2(i));$$
end
$$plot(t,Q1,t,Q2,':')$$

$$ylabel('Amount of salt in tanks (lb)')$$

$$xlabel('time (minutes)')$$

title('Chapter 6.9 Problem 21: two-tank draining problem')

21 (c).



21 (d). The coefficients $\pm \frac{15}{200-10t}$ are not continuous at t=20. Therefore, Existence-Uniqueness Theorem 6.1 does not apply to any interval containing t=20.

22 (a).
$$my'' + \gamma y' + ky = 0$$
, $m = 1$, $\gamma = 2te^{-\frac{t}{2}}$, $k = 4\pi^2$, $y(0) = \frac{1}{5}meters$, $y'(0) = 0$.

$$\mathbf{y}'(t) = \begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -4\pi^2 & -2te^{-\frac{t}{2}} \end{bmatrix} \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}, \mathbf{y}(0) = \begin{bmatrix} 0.2 \\ 0 \end{bmatrix}.$$

```
22 (b). t=0:.005:10;

h=.005;

N=2000;

y1(1)=0.2;y2(1)=0;

gamma=2*t.*exp(-0.5*t);

k=4*(pi^2);

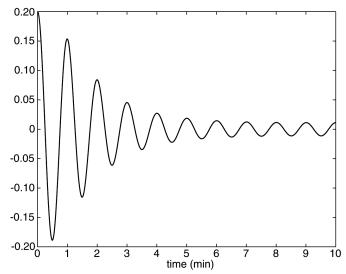
for i=1:N

y1(i+1)=y1(i)+h*y2(i);

y2(i+1)=y2(i)+h*(-k*y1(i)-gamma(i)*y2(i));

end

plot(t,y1)
```



22 (c).

The amplitude of displacement decreases significantly during the time when damping is significant. As damping dimishes, the vibration amplitude seems to settle down to a constant value.

```
23 (b). t=0:0.01:3;

h=0.01;

N=300;

y1(1)=2;y2(1)=0;

for i=1:N

y1(i+1)=y1(i)+h*y2(i);

y2(i+1)=y2(i)+h*(((pi/4)^2)*(t(i)^2)*y1(i)-0.5*y2(i));

end

plot(t,y1)

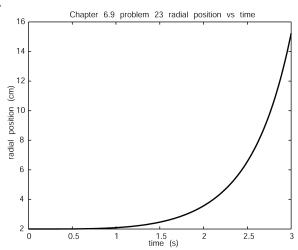
xlabel('time (s)');

ylabel('radial position (cm)');

title('Chapter 6.9 problem 23 radial position vs time')

y1(301)
```

23 (c).



$$r(3) = 15.2268...cm$$

Section 6.10

- 1. For $A = \begin{bmatrix} 5 & -6 \\ 3 & -4 \end{bmatrix}$ the characteristic polynomial is $p(\lambda) = \lambda^2 \lambda 2$. Eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 2$. Corresponding eigenvectors are $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. As in Example 1, we can construct a diagonalizing matrix T from the eigenvectors of A, $T = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$. The corresponding matrix of eigenvalues, $D = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$, is such that $T^{-1}AT = D$.
- 2. The characteristic polynomial is $p(\lambda) = \lambda^2 1$. Eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 1$.

 Corresponding eigenvectors are $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$. Therefore, $T = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}$ and $D = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.
- 3. For $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ the characteristic polynomial is $p(\lambda) = \lambda^2 2\lambda$. Eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 2$. Corresponding eigenvectors are $\mathbf{x}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. As in Example 1, we can construct a diagonalizing matrix T from the eigenvectors of A, $T = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$. The corresponding matrix of eigenvalues, $D = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$, is such that $T^{-1}AT = D$.

- 4. The characteristic polynomial is $p(\lambda) = \lambda^2 5\lambda$. Eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 5$. Corresponding eigenvectors are $\mathbf{x}_1 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Therefore, $T = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix}$.
- 5. For $A = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}$ the characteristic polynomial is $p(\lambda) = \lambda^2 4\lambda 5$. Eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 5$. Corresponding eigenvectors are $\mathbf{x}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. As in Example 1, we can construct a diagonalizing matrix T from the eigenvectors of A, $T = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$. The corresponding matrix of eigenvalues, $D = \begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix}$, is such that $T^{-1}AT = D$.
- 6. The characteristic polynomial is $p(\lambda) = \lambda^2 2\lambda 3 = (\lambda + 1)(\lambda 3)$. Eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 3$. Corresponding eigenvectors are $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Therefore, $T = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix}$.
- 7. For $A = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$ the characteristic polynomial is $p(\lambda) = \lambda^2 3\lambda + 2$. Eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 2$. Corresponding eigenvectors are $\mathbf{x}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. As in Example 1, we can construct a diagonalizing matrix T from the eigenvectors of A, $T = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$. The corresponding matrix of eigenvalues, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, is such that $T^{-1}AT = D$.
- 8. The characteristic polynomial is $p(\lambda) = \lambda^2 \lambda 6 = (\lambda + 2)(\lambda 3)$. Eigenvalues are $\lambda_1 = -2$ and $\lambda_2 = 3$. Corresponding eigenvectors are $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Therefore, $T = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix}$.
- 9. For $A = \begin{bmatrix} 25 & -8 & 30 \\ 24 & -7 & 30 \\ -12 & 4 & -14 \end{bmatrix}$, the eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 2$. From the characteristic polynomial given, it follows that λ_1 has algebraic multiplicity 2 and λ_2 has algebraic multiplicity 1.

In order to find the eigenvectors corresponding to λ_1 , we solve (A -

$$\begin{bmatrix} 24 & -8 & 30 \\ 24 & -8 & 30 \\ -12 & 4 & -15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}. \text{ This system reduces to } \begin{bmatrix} 12 & -4 & 15 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \text{ and hence } \begin{bmatrix} 12 & -4 & 15 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

eigenvectors corresponding to λ_1 all have the form

$$\mathbf{x} = \begin{bmatrix} (4x_2 - 15x_3)/12 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2/3 \\ x_2 \\ 0 \end{bmatrix} + \begin{bmatrix} -5x_3/4 \\ 0 \\ x_3 \end{bmatrix}. \text{ Thus, we find two linearly independent}$$
eigenvectors, $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} -5 \\ 0 \\ 4 \end{bmatrix}$ corresponding to λ_1 and therefore, λ_1 has geometric

multiplicity 2. Since λ_2 has algebraic multiplicity 1, it also has geometric multiplicity 1. Thus, A is not defective (that is, A is diagonalizable). In order to find the eigenvectors corresponding

to
$$\lambda_2$$
, we solve $(A - \lambda_2 I)\mathbf{x} = \mathbf{0}$ or $\begin{bmatrix} 23 & -8 & 30 \\ 24 & -9 & 30 \\ -12 & 4 & -16 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Solving this system, we obtain an eigenvector corresponding to λ_2 , $\mathbf{x} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$. Therefore, if $T = \begin{bmatrix} 1 & -5 & 2 \\ 3 & 0 & 2 \\ 0 & 4 & -1 \end{bmatrix}$, and

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \text{ then } T^{-1}AT = D.$$

 $\lambda_1 = -1$ has algebraic multiplicity 1 and $\lambda_2 = 3$ has algebraic multiplicity 2. The corresponding 10.

eigenvectors are
$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$$
 for λ_1 and $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ for λ_2 . Therefore, λ_1 has geometric multiplicity 1 and λ_2 has geometric multiplicity 2. A is diagonalizable and

$$T = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ -2 & -2 & 0 \end{bmatrix}, \text{ and } D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

For $A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & -3 \\ 0 & 0 & 1 \end{bmatrix}$, the eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 2$. From the characteristic polynomial 11.

given, it follows that λ_1 has algebraic multiplicity 2 and λ_2 has algebraic multiplicity 1.

In order to find the eigenvectors corresponding to λ_1 , we solve $(A - \lambda_1 I)\mathbf{x} = \mathbf{0}$ or

In order to find the eigenvectors corresponding to
$$\lambda_1$$
, we solve $(A - \lambda_1 I) \mathbf{x} = \mathbf{0}$ of $\begin{bmatrix} 0 & 0 & 1 \\ 2 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. This system reduces to $\begin{bmatrix} 0 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ and hence eigenvectors corresponding to λ_1 all have the form $\mathbf{x} = \begin{bmatrix} x_1 \\ -2x_1 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$.

Thus, there is only one linearly independent eigenvector corresponding to λ_1 . Therefore, λ_1 has geometric multiplicity 1 and consequently A is defective (not diagonalizable).

- $\lambda_1 = 2$ has algebraic multiplicity 2 and $\lambda_2 = 3$ has algebraic multiplicity 1. The corresponding 12. eigenvectors are $\mathbf{x} = \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}$ for λ_1 and $\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ for λ_2 . Therefore, λ_1 has geometric multiplicity 1 and λ_2 has geometric multiplicity 1 and λ_3 is not diagonalizable.

 For $A = \begin{bmatrix} 4 & -1 & 1 \\ 10 & -2 & 3 \\ 1 & 0 & 1 \end{bmatrix}$, the only eigenvalue is $\lambda_1 = 1$. From the characteristic polynomial given,
- 13.

it follows that λ_1 has algebraic multiplicity 3. In order to find the eigenvectors corresponding

to
$$\lambda_1$$
, we solve $(A - \lambda_1 I)\mathbf{x} = \mathbf{0}$ or
$$\begin{bmatrix} 3 & -1 & 1 \\ 10 & -3 & 3 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
. This system reduces to

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 and hence eigenvectors corresponding to λ_1 all have the form

$$\mathbf{x} = \begin{bmatrix} 0 \\ x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
. Thus, there is only one linearly independent eigenvector corresponding to

 λ_1 . Therefore, λ_1 has geometric multiplicity 1 and consequently A is defective (not diagonalizable).

All four matrices are diagonalizable. 14.

Matrices (a) and (d) have distinct eigenvalues.

Matrix (b) is a real, symmetric matrix.

Matrix (c) is lower triangular and has distinct eigenvalues.

For $A = \begin{bmatrix} 6 & -6 \\ 2 & -1 \end{bmatrix}$ the eigenvalues are $\lambda_1 = 2$ and $\lambda_2 = 3$ with corresponding eigenvectors 15. $\mathbf{x}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Make the substitution $\mathbf{y} = T\mathbf{z} = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} \mathbf{z}$ to obtain $T\mathbf{z}' = AT\mathbf{z} + \mathbf{g}(t)$.

Multiplying by
$$T^{-1}$$
 gives $\mathbf{z}' = T^{-1}AT\mathbf{z} + T^{-1}\mathbf{g}(t)$ or

$$\mathbf{z}' = D\mathbf{z} + T^{-1}\mathbf{g}(t) = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \mathbf{z} + \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} 4 + 3e^t \\ 2 + 2e^t \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \mathbf{z} + \begin{bmatrix} e^t \\ 2 \end{bmatrix}.$$
 Thus, the system uncouples

into
$$\begin{bmatrix} z_1' \\ z_2' \end{bmatrix} = \begin{bmatrix} 2z_1 + e^t \\ 3z_2 + 2 \end{bmatrix}$$
. Solving these uncoupled first order equations, we obtain

$$\mathbf{z} = \begin{bmatrix} -e^t + c_1 e^{2t} \\ -(2/3) + c_2 e^{3t} \end{bmatrix}$$
. Finally, forming $\mathbf{y} = T\mathbf{z}$, we obtain the general solution

$$\mathbf{y} = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -e^t + c_1 e^{2t} \\ -(2/3) + c_2 e^{3t} \end{bmatrix} = \begin{bmatrix} 3e^{2t} & 2e^{3t} \\ 2e^{2t} & e^{3t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} - \begin{bmatrix} 3e^t + 4/3 \\ 2e^t + 2/3 \end{bmatrix}.$$

The eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 2$ with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and 16.

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
. Make the substitution $\mathbf{y} = T\mathbf{z} = \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix} \mathbf{z}$.

$$\mathbf{z}' = D\mathbf{z} + T^{-1}\mathbf{g}(t) = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \mathbf{z} + \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} e^{2t} - 2e^{t} \\ -e^{2t} + e^{t} \end{bmatrix} = \begin{bmatrix} -e^{t} \\ e^{2t} \end{bmatrix}.$$

Solving these first order equations, we obtain $\mathbf{z} = \begin{bmatrix} -(1/2)e^t + c_1e^{-t} \\ te^{2t} + c_2e^{2t} \end{bmatrix}$. Finally, forming $\mathbf{y} = T\mathbf{z}$,

we obtain the solution
$$\mathbf{y} = \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} -(1/2)e^t + c_1e^{-t} \\ te^{2t} + c_2e^{2t} \end{bmatrix} = \begin{bmatrix} 2e^{-t} & e^{2t} \\ -e^{-t} & -e^{2t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} -e^t + te^{2t} \\ \frac{1}{2}e^t - te^{2t} \end{bmatrix}.$$

For $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ the eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 3$ with corresponding eigenvectors 17.

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Make the substitution $\mathbf{y} = T\mathbf{z} = \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \mathbf{z}$ to obtain $T\mathbf{z}' = AT\mathbf{z} + \mathbf{g}(t)$.

Multiplying by
$$T^{-1}$$
 gives $\mathbf{z}' = T^{-1}AT\mathbf{z} + T^{-1}\mathbf{g}(t)$ or
$$\mathbf{z}' = D\mathbf{z} + T^{-1}\mathbf{g}(t) = \begin{bmatrix} 0 & 0 \\ 0 & 3 \end{bmatrix} \mathbf{z} + \begin{bmatrix} 2/3 & -1/3 \\ 1/3 & 1/3 \end{bmatrix} \begin{bmatrix} t \\ 3-t \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 3 \end{bmatrix} \mathbf{z} + \begin{bmatrix} t-1 \\ 1 \end{bmatrix}.$$

Thus, the system uncouples into $\begin{bmatrix} z_1' \\ z_2' \end{bmatrix} = \begin{bmatrix} t-1 \\ 3z_2 + 1 \end{bmatrix}$. Solving these uncoupled first order

equations, we obtain $\mathbf{z} = \begin{bmatrix} (1/2)t^2 - t + c_1 \\ -(1/3) + c_2 e^{3t} \end{bmatrix}$. Finally, forming $\mathbf{y} = T\mathbf{z}$, we obtain the solution

$$\mathbf{y} = \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} (1/2)t^2 - t + c_1 \\ -(1/3) + c_2 e^{3t} \end{bmatrix} = \begin{bmatrix} 1 & e^{3t} \\ -1 & 2e^{3t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} - \begin{bmatrix} (1/2)t^2 - t - (1/3) \\ -(1/2)t^2 + t - (2/3) \end{bmatrix}.$$

The eigenvalues are $\lambda_1 = 2$ and $\lambda_2 = 5$ with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and 18.

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
. Make the substitution $\mathbf{y} = T\mathbf{z} = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \mathbf{z}$.

$$\mathbf{z'} = D\mathbf{z} + T^{-1}\mathbf{g}(t) = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} \mathbf{z} + \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} 4t + 4 \\ -2t + 1 \end{bmatrix} = \begin{bmatrix} 2t + 1 \\ 2 \end{bmatrix}.$$

Solving these first order equations, we obtain $\mathbf{z} = \begin{vmatrix} -t - 1 + c_1 e^{2t} \\ -\frac{2}{5} + c_2 e^{5t} \end{vmatrix}$. Finally, forming $\mathbf{y} = T\mathbf{z}$, we

obtain the solution $\mathbf{y} = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -t - 1 + c_1 e^{2t} \\ -\frac{2}{5} + c_2 e^{5t} \end{bmatrix} = \begin{bmatrix} 2e^{2t} & e^{5t} \\ -e^{2t} & e^{5t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} -2t - \frac{12}{5} \\ t + \frac{3}{5} \end{bmatrix}.$

For $A = \begin{vmatrix} -9 & -5 \\ 8 & 4 \end{vmatrix}$ the eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = -4$ with corresponding eigenvectors

$$\mathbf{x}_1 = \begin{bmatrix} 5 \\ -8 \end{bmatrix}$$
 and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Make the substitution $\mathbf{y} = T\mathbf{z} = \begin{bmatrix} 5 & 1 \\ -8 & -1 \end{bmatrix} \mathbf{z}$ to obtain $T\mathbf{z''} = AT\mathbf{z}$.

Multiplying by T^{-1} gives $\mathbf{z''} = T^{-1}AT\mathbf{z}$ or $\mathbf{z''} = D\mathbf{z} = \begin{bmatrix} -1 & 0 \\ 0 & -4 \end{bmatrix} \mathbf{z}$. Thus, the system uncouples

into
$$\begin{bmatrix} z_1^{\prime\prime} \\ z_2^{\prime\prime} \end{bmatrix} = \begin{bmatrix} -z_1 \\ -4z_2 \end{bmatrix}.$$

Solving these uncoupled equations, we obtain $\mathbf{z} = \begin{bmatrix} c_1 \cos t + d_1 \sin t \\ c_2 \cos 2t + d_2 \sin 2t \end{bmatrix}$. Finally, forming

$$\mathbf{y} = \begin{bmatrix} 5 & 1 \\ -8 & -1 \end{bmatrix} \begin{bmatrix} c_1 \cos t + d_1 \sin t \\ c_2 \cos 2t + d_2 \sin 2t \end{bmatrix} = \begin{bmatrix} 5(c_1 \cos t + d_1 \sin t) + c_2 \cos 2t + d_2 \sin 2t \\ -8(c_1 \cos t + d_1 \sin t) - c_2 \cos 2t - d_2 \sin 2t \end{bmatrix}.$$
The eigenvalues are $\lambda_1 = -9$ and $\lambda_2 = -1$ with corresponding eigenvectors

20.

$$\mathbf{x}_1 = \begin{bmatrix} 7 \\ -15 \end{bmatrix}$$
 and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Make the substitution $\mathbf{x} = T\mathbf{z} = \begin{bmatrix} 7 & 1 \\ -15 & -1 \end{bmatrix} \mathbf{z}$ to obtain

$$\mathbf{z''} + \begin{bmatrix} -9 & 0 \\ 0 & -1 \end{bmatrix} \mathbf{z} = \mathbf{0}$$
. Solving the equations, we obtain $\mathbf{z} = \begin{bmatrix} c_1 e^{-3t} + c_2 e^{3t} \\ k_1 e^{-t} + k_2 e^{t} \end{bmatrix}$. Finally, we obtain

the solution
$$\mathbf{x} = \begin{bmatrix} 7 & 1 \\ -15 & -1 \end{bmatrix} \begin{bmatrix} c_1 e^{-3t} + c_2 e^{3t} \\ k_1 e^{-t} + k_2 e^t \end{bmatrix} = \begin{bmatrix} 7(c_1 e^{-3t} + c_2 e^{3t}) + k_1 e^{-t} + k_2 e^t \\ -15(c_1 e^{-3t} + c_2 e^{3t}) - (k_1 e^{-t} + k_2 e^t) \end{bmatrix}.$$

For $A = \begin{bmatrix} -2 & -1 \\ 3 & 2 \end{bmatrix}$ the eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 1$ with corresponding eigenvectors 21.

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$. Make the substitution $\mathbf{y} = T\mathbf{z} = \begin{bmatrix} 1 & 1 \\ -1 & -3 \end{bmatrix} \mathbf{z}$ to obtain $T\mathbf{z''} = AT\mathbf{z}$.

Multiplying by T^{-1} gives $\mathbf{z''} = T^{-1}AT\mathbf{z}$ or $\mathbf{z''} = D\mathbf{z} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{z}$. Thus, the system uncouples into $\begin{vmatrix} z_1' \\ z_2' \end{vmatrix} = \begin{vmatrix} -z_1 \\ z_2 \end{vmatrix}$.

Solving these uncoupled equations, we obtain $\mathbf{z} = \begin{bmatrix} c_1 \cos t + d_1 \sin t \\ c_2 e^{-t} + d_2 e^{t} \end{bmatrix}$. Finally, forming $\mathbf{y} = T\mathbf{z}$, we obtain the solution $\mathbf{y} = \begin{bmatrix} 1 & 1 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} c_1 \cos t + d_1 \sin t \\ c_2 e^{-t} + d_2 e^{t} \end{bmatrix} = \begin{bmatrix} c_1 \cos t + d_1 \sin t + c_2 e^{-t} + d_2 e^{t} \\ -(c_1 \cos t + d_1 \sin t) - 3(c_2 e^{-t} + d_2 e^{t}) \end{bmatrix}.$

22.

 $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ and } \mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}. \text{ Make the substitution } \mathbf{x} = T\mathbf{z} = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} \mathbf{z} \text{ to obtain } \mathbf{z''} + \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} \mathbf{z} = \mathbf{0}.$ Solving the equations, we obtain $\mathbf{z} = \begin{bmatrix} c_1 t + c_2 \\ k_1 \cos(\sqrt{5}t) + k_2 \sin(\sqrt{5}t) \end{bmatrix}. \text{ Finally, we obtain the solution}$

$$\mathbf{x} = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} c_1 t + c_2 \\ k_1 \cos(\sqrt{5}t) + k_2 \sin(\sqrt{5}t) \end{bmatrix} = \begin{bmatrix} (c_1 t + c_2) + 2 \left[k_1 \cos(\sqrt{5}t) + k_2 \sin(\sqrt{5}t) \right] \\ -2(c_1 t + c_2) + \left[k_1 \cos(\sqrt{5}t) + k_2 \sin(\sqrt{5}t) \right] \end{bmatrix}.$$

- 27 (a). For $A = \begin{bmatrix} 500 & -200 \\ -200 & 200 \end{bmatrix}$ the eigenvalues are $\lambda_1 = 100$ and $\lambda_2 = 600$ with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.
- 27 (b). Make the substitution $\mathbf{y} = T\mathbf{z} = \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} \mathbf{z}$ to obtain $T\mathbf{z''} + AT\mathbf{z} = \mathbf{0}$. Multiplying by T^{-1} gives $\mathbf{z''} + T^{-1}AT\mathbf{z} = \mathbf{0}$ or $\mathbf{z''} + \begin{bmatrix} 100 & 0 \\ 0 & 600 \end{bmatrix} \mathbf{z} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Thus, the system uncouples into $\begin{bmatrix} z_1'' + 100z_1 \\ z_1'' + 600z_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \text{ The initial condition is } \mathbf{z}(0) = T^{-1}\mathbf{y}(0) = \begin{bmatrix} 0.2 & 0.4 \\ 0.4 & -0.2 \end{bmatrix} \begin{bmatrix} 0.1 \\ 0.15 \end{bmatrix} = \begin{bmatrix} 0.08 \\ 0.01 \end{bmatrix}.$
- 27 (c). Solving the uncoupled equations $\mathbf{z''} + D\mathbf{z} = \mathbf{0}$, we obtain $\mathbf{z} = \begin{bmatrix} c_1 \cos 10t + d_1 \sin 10t \\ c_2 \cos 10\sqrt{6}t + d_2 \sin 10\sqrt{6}t \end{bmatrix}$.

Imposing the initial condition, we find $\mathbf{z} = \begin{bmatrix} 0.08\cos 10t \\ 0.01\cos 10\sqrt{6}t \end{bmatrix}$. Finally, forming $\mathbf{y} = T\mathbf{z}$, we obtain the solution of the initial value problem:

$$\mathbf{y} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 0.08\cos 10t \\ 0.01\cos 10\sqrt{6}t \end{bmatrix} = \begin{bmatrix} 0.08\cos 10t + 0.02\cos(10\sqrt{6}t) \\ 0.16\cos 10t - 0.01\cos(10\sqrt{6}t) \end{bmatrix}.$$

Section 6.11

1 (a). We proceed as in Example 2. For $A = \begin{bmatrix} 5 & -4 \\ 5 & -4 \end{bmatrix}$, the characteristic polynomial is $p(\lambda) = \lambda^2 - \lambda$.

Eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 1$ with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Since *A* is diagonalizable, we obtain from equation (7) $e^{tA} = T\Lambda(t)T^{-1}$ where

$$T = [\mathbf{x}_{1}, \mathbf{x}_{2}] = \begin{bmatrix} 4 & 1 \\ 5 & 1 \end{bmatrix} \text{ and } \Lambda(t) = \begin{bmatrix} e^{\lambda_{1}t} & 0 \\ 0 & e^{\lambda_{2}t} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & e^{t} \end{bmatrix}. \text{ Thus,}$$

$$\Phi(t) = e^{tA} = \begin{bmatrix} 4 & 1 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & e^{t} \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 5 & -4 \end{bmatrix} = \begin{bmatrix} -4 + 5e^{t} & 4 - 4e^{t} \\ -5 + 5e^{t} & 5 - 4e^{t} \end{bmatrix}.$$

The solution of
$$\mathbf{y'} = A\mathbf{y}, \mathbf{y}(-1) = \mathbf{y}_0$$
 is given by $\mathbf{y}(t) = e^{(t+1)A}\mathbf{y}_0$. T

$$\mathbf{y}(2) = e^{(2+1)A}\mathbf{y}_0 = e^{3A} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -4 + 5e^3 & 4 - 4e^3 \\ -5 + 5e^3 & 5 - 4e^3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -4 + 5e^3 \\ -5 + 5e^3 \end{bmatrix}.$$

The characteristic polynomial is $p(\lambda) = (\lambda - 2)^2$. Eigenvalues are $\lambda_1 = \lambda_2 = 2$ with corresponding eigenvector $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Therefore,

$$\mathbf{y}_{1}(t) = \begin{bmatrix} e^{2t} \\ 0 \end{bmatrix}. \text{ Let } \mathbf{y}_{2}(t) = e^{2t}(t\xi + 7), \ \xi = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, (A - 2\mathbf{I})\eta = \xi \Rightarrow \eta = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \Rightarrow \mathbf{y}_{2}(t) = e^{2t} \begin{bmatrix} t \\ 1 \end{bmatrix}.$$

$$\Psi(t) = \begin{bmatrix} e^{2t} & te^{2t} \\ 0 & e^{2t} \end{bmatrix} = \Phi(t) \text{ since } \Psi(0) = \mathbf{I}.$$

- 2 (b). $\mathbf{y}(2) = \Phi(1)\mathbf{y}(1) = \begin{vmatrix} e^2 & e^2 \\ 0 & e^2 \end{vmatrix} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 3e^2 \\ 2e^2 \end{vmatrix}.$
- 3 (a). We proceed as in Example 2. For $A = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix}$, the characteristic polynomial is

 $p(\lambda) = \lambda^2 - 8\lambda + 7$. Eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 7$ with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$. Since A is diagonalizable, we obtain from equation (7) $e^{tA} = T\Lambda(t)T^{-1}$

where
$$T = [\mathbf{x}_1, \mathbf{x}_2] = \begin{bmatrix} 1 & 5 \\ -1 & 1 \end{bmatrix}$$
 and $\Lambda(t) = \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix} = \begin{bmatrix} e^t & 0 \\ 0 & e^{7t} \end{bmatrix}$. Thus,

$$\Phi(t) = e^{tA} = \begin{bmatrix} 1 & 5 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} e^t & 0 \\ 0 & e^{7t} \end{bmatrix} \begin{bmatrix} 1/6 & -5/6 \\ 1/6 & 1/6 \end{bmatrix} = (1/6) \begin{bmatrix} e^t + 5e^{7t} & -5e^t + 5e^{7t} \\ -e^t + e^{7t} & 5e^t + e^{7t} \end{bmatrix}.$$

3 (b). The solution of
$$\mathbf{y}' = A\mathbf{y}$$
, $\mathbf{y}(0) = \mathbf{y}_0$ is given by $\mathbf{y}(t) = e^{tA}\mathbf{y}_0$. Therefore,

$$\mathbf{y}(-1) = e^{(-1)A} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = (1/6) \begin{bmatrix} e^{-1} + 5e^{-7} & -5e^{-1} + 5e^{-7} \\ -e^{-1} + e^{-7} & 5e^{-1} + e^{-7} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = (1/6) \begin{bmatrix} -4e^{-1} + 10e^{-7} \\ 4e^{-1} + 2e^{-7} \end{bmatrix}.$$

4 (a). The characteristic polynomial is $p(\lambda) = (1 - \lambda)(2 - \lambda)(-1 - \lambda)$. Eigenvalues are

$$\lambda_1 = -1$$
, $\lambda_2 = 1$, $\lambda_3 = 2$ with corresponding eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

Therefore,
$$\Psi(t) = \begin{bmatrix} e^{-t} & e^{t} & e^{2t} \\ e^{-t} & 0 & e^{2t} \\ -3e^{-t} & 0 & 0 \end{bmatrix}$$
, $\Psi(0) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ -3 & 0 & 0 \end{bmatrix} \Rightarrow \Psi^{-1}(0) = \begin{bmatrix} 0 & 0 & -\frac{1}{3} \\ 1 & -1 & 0 \\ 0 & 1 & \frac{1}{3} \end{bmatrix}$

and
$$\Phi(t) = \begin{bmatrix} e^{-t} & e^{t} & e^{2t} \\ e^{-t} & 0 & e^{2t} \\ -3e^{-t} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -\frac{1}{3} \\ 1 & -1 & 0 \\ 0 & 1 & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} e^{t} & -e^{t} + e^{2t} & \frac{1}{3}(-e^{-t} + e^{2t}) \\ 0 & e^{2t} & \frac{1}{3}(-e^{-t} + e^{2t}) \\ 0 & 0 & e^{-t} \end{bmatrix}$$

- 4 (b). $\mathbf{y}(1) = \Phi(1)\mathbf{y}(0) = \Phi(1)\begin{vmatrix} 1 \\ 1 \\ 0 \end{vmatrix} = \begin{vmatrix} e^2 \\ e^2 \\ 0 \end{vmatrix}$.
- 5 (a). From Theorem 6.15, $\Phi(t,s) = \Psi(t)\Psi^{-1}(s) = \begin{vmatrix} t & t^2 \\ 1 & 2t \end{vmatrix} \begin{vmatrix} 2s^{-1} & -1 \\ 1 & s^{-2} & s^{-1} \end{vmatrix}$, and thus $\Phi(t,s) = \begin{vmatrix} 2s^{-1}t - s^{-2}t^2 & -t + t^2s^{-1} \\ 2s^{-1} - 2s^{-2}t & -1 + 2ts^{-1} \end{vmatrix}; \ \Phi(t,s) \text{ is not a function of } t - s.$
- 5 (b). From Theorem 6.15, $\mathbf{y}(3) = \Phi(3,1)\mathbf{y}(1) = \begin{bmatrix} 6-9 & -3+9 \\ 2-6 & -1+6 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -9 \\ -9 \end{bmatrix}$. 6. $B = T^{-1}p(A)T = T^{-1}(2A^3 A + 3I)T = 2T^{-1}A^3T T^{-1}AT + 3T^{-1}T = 2D^3 D + 3I$.
- Therefore, $B = \begin{bmatrix} 2\lambda_1^3 \lambda_1 + 3 & 0 \\ 0 & 2\lambda_2^3 \lambda_2 + 3 \end{bmatrix}$.
- As we saw in equation (6), if $T^{-1}AT = D$ then $A^n = TD^nT^{-1}$. (For this present case, $T = \begin{bmatrix} 3 & 2 \\ 4 & 3 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.) Since $A^n = T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}^n T^{-1}$ and since $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}^n = I$ when n is even, it follows that $A^n = I$
- 9 (b). $A^n = TD^nT^{-1} = T\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}^n T^{-1} = TDT^{-1} = A$ when n is odd.
- 9 (c). As in parts (a) and (b), we see that $A^{-n} = I$ when n is even and $A^{-n} = A$ when n is odd. 10. $A = T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} T^{-1}$. The four matrices are: $D = \begin{bmatrix} \pm 1 & 0 \\ 0 & \pm i \end{bmatrix}$ $D_1 = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}, D_2 = \begin{bmatrix} -1 & 0 \\ 0 & i \end{bmatrix}, D_3 = \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}, D_4 = \begin{bmatrix} -1 & 0 \\ 0 & -i \end{bmatrix}.$
- For the given matrix, $A^{-1} = A$. Thus, if $B = A^{1/2}$, then $B^2 = A = A^{-1}$ as requested. Exercise 10 11. asks for four different square roots of A and any one of these will serve as B.

12.
$$A^2 + A^{\frac{1}{2}} = TBT^{-1} \Rightarrow B = T^{-1}A^2T + T^{-1}A^{\frac{1}{2}}T$$
. Since $A^2 = I$, $B = I + D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} \pm 1 & 0 \\ 0 & \pm i \end{bmatrix}$.

13. Since
$$A = TDT^{-1}$$
, it follows that $A^3 = TD^3T^{-1} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 24 & -16 \\ 32 & -24 \end{bmatrix}$.

14.
$$f_{1}(A) = \cos(\pi A) = T \begin{bmatrix} \cos(\pi \lambda_{1}) & 0 \\ 0 & \cos(\pi \lambda_{2}) \end{bmatrix} T^{-1}. \ T = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}, \ T^{-1} = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}.$$

$$\cos(\pi \lambda_{1}) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \ \cos(\pi \lambda_{2}) = \cos\left(\frac{\pi}{2}\right) = 0. \text{ Therefore,}$$

$$f_{1}(A) = \cos(\pi A) = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} = \begin{bmatrix} 3\sqrt{2} & -\sqrt{2} \\ \frac{15}{2}\sqrt{2} & -\frac{5}{2}\sqrt{2} \end{bmatrix}.$$

$$\sin(\pi \lambda_{1}) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \ \sin(\pi \lambda_{2}) = \sin\left(\frac{\pi}{2}\right) = 1. \text{ Therefore,}$$

$$f_{2}(A) = \sin(\pi A) = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} = \begin{bmatrix} 3\sqrt{2} - 5 & -\sqrt{2} + 2 \\ \frac{15}{2}\sqrt{2} - 15 & -\frac{5}{2}\sqrt{2} + 6 \end{bmatrix}.$$

15. As we saw following Theorem 6.16, $\cos(tA) = T\begin{bmatrix} \cos \lambda_1 t & 0 \\ 0 & \cos \lambda_2 t \end{bmatrix} T^{-1}$ when A is a (2×2) diagonalizable matrix with eigenvalues λ_1 and λ_2 . Thus, with $t = \pi$ and the given eigenvalues,

we have
$$\cos(\pi A) = T \begin{bmatrix} \cos(\pi/3) & 0 \\ 0 & \cos(7\pi/3) \end{bmatrix} T^{-1} = T \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix} T^{-1}$$
$$= (1/2)T \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} T^{-1} = (1/2)I.$$

Similarly, we find $\sin(\pi A) = (\sqrt{3}/2)I$.

16. Let
$$T = \begin{bmatrix} 1 & 1 \ -2 & -1 \end{bmatrix}$$
. Make the substitution $\mathbf{y} = T\mathbf{z}$. Premultiplying by
$$T^{-1} = \begin{bmatrix} -1 & -1 \ 2 & 1 \end{bmatrix} \text{ gives } \mathbf{z}'' + D\mathbf{z} = T^{-1} \begin{bmatrix} 1 \ 0 \end{bmatrix} = \begin{bmatrix} -1 \ 2 \end{bmatrix}, D = \begin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix}. \text{ The solution is}$$

$$\mathbf{z}(t) = \begin{bmatrix} c_1 e^{-t} + c_2 e^t + 1 \\ k_1 \cos t + k_2 \sin t + 2 \end{bmatrix}. \text{ Converting to the original variables, we obtain}$$

$$\mathbf{y}(t) = T\mathbf{z}(t) = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} c_1 e^{-t} + c_2 e^t + 1 \\ k_1 \cos t + k_2 \sin t + 2 \end{bmatrix} = \begin{bmatrix} c_1 e^{-t} + c_2 e^t + k_1 \cos t + k_2 \sin t + 3 \\ -2c_1 e^{-t} - 2c_2 e^t - k_1 \cos t - k_2 \sin t - 4 \end{bmatrix}.$$

17. Let $T = \begin{bmatrix} 1 & 1 \ -2 & -1 \end{bmatrix}$. Making the substitution $\mathbf{y} = T\mathbf{z}$, the system becomes $AT\mathbf{z}' + T\mathbf{z} = \begin{bmatrix} 1 \ 1 \end{bmatrix}$.

Premultiplying by $T^{-1} = \begin{bmatrix} -1 & -1 \ 2 & 1 \end{bmatrix}$ gives $T^{-1}AT\mathbf{z}' + \mathbf{z} = \begin{bmatrix} -2 \ 3 \end{bmatrix}$ or $\begin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix} \mathbf{z}' + \mathbf{z} = \begin{bmatrix} -2 \ 3 \end{bmatrix}$. Thus, the system uncouples into $\begin{bmatrix} -z_1' + z_1 \ z_2' + z_2 \end{bmatrix} = \begin{bmatrix} -2 \ 3 \end{bmatrix}$. The solution is $\mathbf{z}(t) = \begin{bmatrix} c_1 e^t - 2 \ c_2 e^{-t} + 3 \end{bmatrix}$. Converting to the original variables, we obtain $\mathbf{y} = T\mathbf{z} = \begin{bmatrix} 1 & 1 \ -2 & -1 \end{bmatrix} \begin{bmatrix} c_1 e^t - 2 \ c_2 e^{-t} + 3 \end{bmatrix} = \begin{bmatrix} c_1 e^t + c_2 e^{-t} + 1 \ -2c_1 e^t - c_2 e^{-t} + 1 \end{bmatrix}$.

Make the substitution y = Tz. z'' + z' + Dz = 0. The solution is 18.

$$\mathbf{z}(t) = \begin{bmatrix} c_1 e^{\left(-\frac{1}{2} - \frac{\sqrt{5}}{2}\right)t} + c_2 e^{\left(-\frac{1}{2} + \frac{\sqrt{5}}{2}\right)t} \\ k_1 e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}}{2}t\right) + k_2 e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}}{2}t\right) \end{bmatrix}.$$
 Converting to the original variables, we obtain

$$\mathbf{y}(t) = T\mathbf{z}(t) = \begin{bmatrix} c_1 e^{\left(-\frac{1}{2} - \frac{\sqrt{5}}{2}\right)t} + c_2 e^{\left(-\frac{1}{2} + \frac{\sqrt{5}}{2}\right)t} + k_1 e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}}{2}t\right) + k_2 e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}}{2}t\right) \\ -2c_1 e^{\left(-\frac{1}{2} - \frac{\sqrt{5}}{2}\right)t} - 2c_2 e^{\left(-\frac{1}{2} + \frac{\sqrt{5}}{2}\right)t} - k_1 e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}}{2}t\right) - k_2 e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}}{2}t\right) \end{bmatrix}.$$
Let $T = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix}$. Making the substitution $\mathbf{y} = T\mathbf{z}$, the system becomes $T\mathbf{z''} + 2AT\mathbf{z'} = \mathbf{0}$.

19.

Premultiplying by $T^{-1} = \begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$ gives $\mathbf{z''} + 2T^{-1}AT\mathbf{z'} = \mathbf{0}$ or $\mathbf{z''} + 2\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\mathbf{z'} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Thus, the

system uncouples into $\begin{bmatrix} z_1'' - 2z_1' \\ z_2'' + 2z_2' \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. The solution is $\mathbf{z}(t) = \begin{bmatrix} c_1 + c_2 e^{2t} \\ d_1 + d_2 e^{-2t} \end{bmatrix}$. Converting to the

original variables, we obtai

$$\mathbf{y}(t) = T\mathbf{z}(t) = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} c_1 + c_2 e^{2t} \\ d_1 + d_2 e^{-2t} \end{bmatrix} = \begin{bmatrix} c_1 + c_2 e^{2t} + d_1 + d_2 e^{-2t} \\ -2(c_1 + c_2 e^{2t}) - (d_1 + d_2 e^{-2t}) \end{bmatrix}.$$

- $m_1x_1'' + k_1(x_1 x_2) = 0; \quad m_2x_2'' k_1x_1 + (k_1 + k_2)x_2 k_2x_3 = 0; \quad m_3x_3'' k_2x_2 + k_2x_3 = 0.$ The result follows.
- 20 (b). $K\mathbf{v}_0 = \mathbf{0}$, where \mathbf{v}_0 is any nonzero multiple of $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Therefore, 0, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ is an eigenpair.
- 20 (c). Let $\mathbf{x} = f(t)\mathbf{v}_0$. $M\mathbf{x''} + K\mathbf{x} = M(f''(t)\mathbf{v}_0) + Kf(t)\mathbf{v}_0 = \mathbf{0}$. Therefore, since $K(f(t)\mathbf{v}_0) = f(t)K\mathbf{v}_0 = \mathbf{0}, \ Mf''(t)\mathbf{v}_0 = \mathbf{0} \ or \ m_i f''(t) = 0, \ j = 1,2,3 \Rightarrow f''(t) = 0.$ Therefore, $f(t) = c_1 t + c_2$ and $\mathbf{x}(t) = (c_1 t + c_2)\mathbf{v}_0$. $\mathbf{x}(0) = c_2 \mathbf{v}_0 = \mathbf{0} \Rightarrow c_2 = 0$, $\mathbf{x}(t) = c_1 \mathbf{v}_0 = \mathbf{v}_0 \Rightarrow c_1 = 1$. Therefore, $\mathbf{x}(t) = t\mathbf{v}_0$. The system is executing motion at constant velocity \mathbf{v}_0 . There is no relative motion; the three-mass system is translating like a rigid body.
- 21 (a). For this case, we have $A = M^{-1}K = \frac{k}{m}\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$. Using MATLAB, we find the

eigenvalues of $B = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$ are $\gamma_1 = 0, \gamma_2 = 1$, and $\gamma_3 = 3$ with corresponding eigenvectors $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, and $\mathbf{u}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$. Since A = (k/m)B, the eigenvalues of A are

multiples of k/m times the eigenvalues of B while corresponding eigenvectors can be chosen to be the same as those of B.

21 (b). Making the substitution $\mathbf{x} = T\mathbf{z}$, the system becomes $T\mathbf{z''} + AT\mathbf{z} = \mathbf{0}$. Premultiplying by

making the substitution
$$\mathbf{x} = I\mathbf{z}$$
, the system becomes $I\mathbf{z}' + AI\mathbf{z} = \mathbf{0}$. Premultiplying by gives $\mathbf{z}'' + T^{-1}AT\mathbf{z} = \mathbf{0}$ or $\mathbf{z}'' + \begin{bmatrix} 0 & 0 & 0 \\ 0 & km^{-1} & 0 \\ 0 & 0 & 3km^{-1} \end{bmatrix} \mathbf{z} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Thus, the system uncouples into
$$\begin{bmatrix} z_1'' \\ z_2'' + km^{-1}z_2 \\ z_3'' + 3km^{-1}z_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
. The solution is $\mathbf{z}(t) = \begin{bmatrix} c_1t + c_2 \\ d_1\cos\omega t + d_2\sin\omega t \\ e_1\cos\sqrt{3}\omega t + e_2\sin\sqrt{3}\omega t \end{bmatrix}$, where $\omega = \sqrt{km^{-1}}$.

$$\begin{bmatrix} z_1'' \\ z_2'' + km^{-1}z_2 \\ z_3'' + 3km^{-1}z_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}. \text{ The solution is } \mathbf{z}(t) = \begin{bmatrix} c_1t + c_2 \\ d_1\cos\omega t + d_2\sin\omega t \\ e_1\cos\sqrt{3}\omega t + e_2\sin\sqrt{3}\omega t \end{bmatrix}, \text{ where } \omega = \sqrt{km^{-1}}.$$

Converting to the original variables, we obtain

$$\mathbf{x}(t) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -2 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} c_1 t + c_2 \\ d_1 \cos \omega t + d_2 \sin \omega t \\ e_1 \cos \sqrt{3} \omega t + e_2 \sin \sqrt{3} \omega t \end{bmatrix}$$

$$= \begin{bmatrix} c_1 t + c_2 + d_1 \cos \omega t + d_2 \sin \omega t + e_1 \cos \sqrt{3} \omega t + e_2 \sin \sqrt{3} \omega t \\ c_1 t + c_2 - 2(e_1 \cos \sqrt{3} \omega t + e_2 \sin \sqrt{3} \omega t) \\ c_1 t + c_2 - (d_1 \cos \omega t + d_2 \sin \omega t) + e_1 \cos \sqrt{3} \omega t + e_2 \sin \sqrt{3} \omega t \end{bmatrix}.$$