
Chapter 8
Nonlinear Systems

Section 8.1
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1 (c). There are no points in 3-dimensional space where the hypotheses of Theorem 8.1 fail to be
satisfied.
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2 (c). The hypotheses of Theorem 8.1 are not satisfied at t n y= ± + =( ) /2 1 2 01p  and  .
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Therefore, the requested partial derivatives are
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3 (c). The hypotheses of Theorem 8.1 are satisfied everywhere except on the planes t = 0 and
1 2 01 2+ + =y y .

4 (a). For ¢¢¢ + ¢ = ¢¢ = ¢ = ¢¢ = -y ty t y y y ycos( ) ( ) , ( ) , ( ) , ( )2 0 1 0 1 0 2, let
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4 (c). The hypotheses of Theorem 8.1 are satisfied in all of ty y y1 2 3 - space .
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Therefore, the requested partial derivatives are
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5 (c). The hypotheses of Theorem 8.1 are satisfied everywhere except on the “hyperplanes” y1 2=
and y3 2= - .

6. Since ¢ = - +y t y y t2
2

2 1
43cos ( ) , it follows that the scalar problem is ¢¢ = ¢ - +y t y y tcos ( )2 43 ,

y y( ) , ( )2 1 2 1= ¢ = - .
7. Since ¢ = +y y y ey2 2 1

2tan , it follows that the scalar problem is ¢¢ = ¢ + ¢y y y eytan ,
y y( ) , ( )0 0 0 1= ¢ = .
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8. Since ¢ = +y y y y3 1 2 3
2 , it follows that the scalar problem is ¢¢¢ = ¢ + ¢¢y yy y( )2,

y y y( ) , ( ) , ( )- = - ¢ - = ¢¢ - = -1 1 1 2 1 4 .
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2 1 2( ) / , it follows that the scalar problem is ¢¢¢ = ¢ ¢¢ +y y y t( ) /2 1 2,
y y y( ) , ( ) / , ( )1 1 1 1 2 1 3= ¢ = ¢¢ = .

11. Laplace transforms cannot be productively used because the equation is nonlinear.
14 (a). Let   Then a ax ax a x a x= = + + +p d/ ( ). tan ( / ) ( / )2 1 3 2 153 3 5 5 L . Retaining the

first term of the Maclaurin series in equation (7), we have
mx k x mx k x mx kx¢¢ + ª ¢¢ + = ¢¢ +( / )tan( / ) ( / )( / )2 2 2 2d p p d d p p d .

14 (b).  As in part (a), retaining the first two terms of the Maclaurin series in equation (7)
results in equation (8).
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14 (d). The system version of equation (7) satisfies the hypotheses of Theorem 8.1
everywhere except along y n1 2 1 2= ± +( ) /p . The system version of equation (8)
satisfies the hypotheses of Theorem 8.1 everywhere in ty y1 2 - space

15 (a). Adding equations 3 and 4, we obtain 
dc

dt
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+ = 0. Thus, using the linearity of differentiation,
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= 0 and hence, c t e t e( ) ( )+ ∫ 0  is a constant function.

15 (b). Substituting e t e c t( ) ( )= -0  in equations 1 and 3, we find
da

dt
k e a t k c t a t k c t= - + + ¢1 0 1 1( ) ( ) ( ) ( ) and 

dc

dt
k e a t k c t a t k k c t= - - ¢ +1 0 1 1 2( ) ( ) ( ) ( ) ( ) .

15 (c). The hypotheses of Theorem 8.1 are satisfied for all points in ( , , )t a c - space .
16 (a). At the instant shown in the figure,
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16 (b). Equation (10) is physically relevant as long as - £ £R y t R( ) .

Section 8.2

1. For
¢ = - +
¢ = -
x x y

y y x

( )

( ) ,

1

1
we see that ¢ =x 0 if (a)   or (b)  x y= =0 1. In Case (a), we have ¢ =y 0 only if y = 0, yielding
the equilibrium point ( , ) ( , )x y = 0 0 . In Case (b), we have ¢ =y 0 only if x = 1, yielding the
equilibrium point ( , ) ( , )x y = 11 .
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2. For
¢ = +
¢ = - -
x y x
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1 2
we see that ¢ =x 0 if (a)   or (b)  x y= - =3 0. In Case (a), we have ¢ =y 0 only if y = 2,
yielding the equilibrium point ( , ) ( , )x y = -3 2 . In Case (b), we have ¢ =y 0 only if x = 1,
yielding the equilibrium point ( , ) ( , )x y = 1 0 .
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4 32

we see that ¢ =x 0 if (a)   or (b)  x y= = -2 1. In Case (a), we cannot have ¢ =y 0. In Case (b),
we have ¢ =y 0 only if  x x= =1 3 or  , yielding the equilibrium points
( , ) ( , ) ( , ) ( , )x y x y= - = -1 1 3 1 and .
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1 1

2
we see that ¢ =x 0 if (a)   or (b)  x y= = -1 1. In Case (a), we have ¢ =y 0 only if y = 0,
yielding the equilibrium point ( , ) ( , )x y = 1 0 . In Case (b), we have ¢ =y 0 only if x = 2, yielding
the equilibrium point ( , ) ( , )x y = -2 1 .
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we see that ¢ =x 0 if (a)   or (b)  x x y= =0 2 . In Case (a), we have ¢ =y 0 only if y = 0,
yielding the equilibrium point ( , ) ( , )x y = 0 0 . In Case (b), we have ¢ =y 0 only if y = 0, yielding
the same equilibrium point as in Case (a), ( , ) ( , )x y = 0 0 .

6. For
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¢ = +
x y y x
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we see that ¢ =x 0 if (a)  y  or (b)  = =0 y x . In Case (a), we have ¢ =y 0 only if x = 0, yielding
the equilibrium point ( , ) ( , )x y = 0 0 . In Case (b), we have ¢ =y 0 only if x = 0, yielding the
same equilibrium point ( , ) ( , )x y = 0 0 .
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we see that ¢ =y 0 if x y2 2= . Using this requirement in the first equation, we see that ¢ =x 0
requires 2 8 02x - =  or x = ±2 . Since y x= ± , we find 4 equilibrium points,
( , ), ( , ), ( , ), ( , ).2 2 2 2 2 2 2 2- - - -and 

8. For
¢ = + -

¢ = + -
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2 3 ,

we see that ¢ =x 0 if x y2 23 2= - . In this event, we have ¢ =y 0 only if 2 3 2 3 02 2( )- + - =y y .
Solving for y we obtain y = ±1. Then, since x y2 23 2= - , we see that x = ±1 for each choice
of  y. The equilibrium points are
( , ) ( , ), ( , ), ( , ), ( , )x y = - - - -11 1 1 1 1 1 1 .
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9. For
¢ = -
¢ = +

¢ = -

x y

y x y x

z y z
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we see that ¢ =x 0 requires y = 1. Using this requirement in the second equation, we see that

¢ =y 0 requires x x( )1 0+ = . Thus, we need in Case (a) x = 0 or in Case (b), x = -1. Finally,
¢ =z 0 requires z = 2 since y  is nonzero. We obtain 2 equilibrium points,

( , , ) ( , , ) ( , , ) ( , , )x y z x y z= = -0 1 2 11 2 and .
10. For
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( ) ,
we see that ¢ =x 0 requires z = ±1. Using this requirement in the second equation, we see that

¢ =y 0 requires 1 2 0- + =x y  while ¢ =z 0 requires 1 0- - =x y . Satisfying ¢ =y 0 and ¢ =z 0
therefore requires x y= =2 3 1 3/ / and  . Combining this requirement with z = ±1, we obtain 2
equilibrium points,
( , , ) ( / , / , ) ( , , ) ( / , / , )x y z x y z= = -2 31 31 2 31 3 1 and .

11. Making the substitution y y y y1 2= = ¢  and   the scalar equation can be expressed
as the system

¢ =

¢ = - -

y y

y y y

1 2

2 1 1
3

Since ¢ = - +y y y2 1 1
21( ), we cannot have ¢ =y2 0 unless y1 0= . Similarly, from the first equation,

¢ =y1 0 requires y2 0= . Thus, the only equilibrium point is ( , ) ( , ) ( , )y y y y1 2 0 0= ¢ = .
12. Making the substitution y y y y1 2= = ¢  and   the scalar equation can be expressed

as the system
¢ =

¢ = - -

y y

y e y yy

1 2

2 2
2

11 1 sin ( )p
Thus, the equilibrium points are ( , ) ( , ) ( . , ), , , ,y y y y n n1 2 0 5 0 0 1 2= ¢ = + = ± ± K .

13. Making the substitution y y y y1 2= = ¢  and   the scalar equation can be expressed
as the system

¢ =

¢ = - - + -

y y

y y y y

1 2

2 1
2

1
4 1

21 2 1( )
From the first equation, ¢ =y1 0 requires y2 0= . Thus, in the second equation, ¢ =y2 0 requires
1 0 11

2
1- = = ±y y or  . There are two equilibrium points

( , ) ( , ) ( , )y y y y1 2 1 0= ¢ =  and ( , ) ( , ) ( , )y y y y1 2 1 0= ¢ = - .
14. Making the substitution y y y y y y1 2 3= = ¢ = ¢¢, ,  and   the scalar equation can be expressed as

the system
¢ =
¢ =
¢ = + -

y y

y y

y y y

1 2

2 3

3 3 11 2sin
Thus, the equilibrium points are
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( , , ) (( / ) , , ), , , , .
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y y y n n
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1 2 3

6 2 0 0

5 6 2 0 0 0 1 2

= +
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p p
p p

  and

K
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15. Making the substitution y y y y y y1 2 3= = ¢ = ¢¢,   and  , the scalar equation can be expressed as
the system

¢ =
¢ =

¢ = + - + -

y y

y y

y y y y

1 2

2 3

3 2
2

1
2

2
2 14 2( )( ) .

From the first equation, ¢ =y1 0 requires y2 0=  while (by the second equation) ¢ =y2 0 requires
y3 0= . Having these requirements, the third equation tells us that ¢ =y3 0 only if y1 2= ± .
Hence, There are two equilibrium points
( , , ) ( , , ) ( , , )y y y y y y1 2 3 2 0 0= ¢ ¢¢ =  and ( , , ) ( , , ) ( , , )y y y y y y1 2 3 2 0 0= ¢ ¢¢ = - .

16. Since ( , )0 0  is an equilibrium point, we know b d= =0 0 and  . Similarly, since ( , )2 1  is an
equilibrium point, we know 2 2 0a + =  and  g - =6 0. Thus, a = -1 and g = 6.

17. Since ( , )11  is an equilibrium point, we know a b g d+ + = + - =2 0 1 0 and  . Similarly, since
( , )2 0  is an equilibrium point, we know 2 2 0a + =  and  2g - =1 0. Thus, a = -1 and g = 1 2/ .
Using the equations derived from the equilibrium point ( , )11 , we have
- + + = + - =1 2 0 1 0b d and  (1 / 2) . Therefore, b = -1 and d = 1 2/ .

18. The slope of a phase plane trajectory is given by ¢ ¢ =y x g x y f x y/ ( , ) / ( , ), see equation (9). As
given, g f( , ) / ( , )2 1 2 1 1=  and g f( , ) / ( , )1 1 1 1 0- - = . Therefore, g( , )1 1 0- =  and so b = 2.
Knowing b = 2 and g f( , ) / ( , )2 1 2 1 1= , we obtain ( ) / ( ) / ( )3 2 1 2 1+ + = + =b a a or  5 . Thus,
we obtain a = 3.

19. The slope of a phase plane trajectory is given by ¢ ¢ =y x g x y f x y/ ( , ) / ( , ), see equation (9). As
given, g f( , ) / ( , )11 11 0=  and g f( , ) / ( , )1 1 1 1 4- - = . Therefore, g( , )11 0=  and so
2 0 2+ = = -g g or  .  Knowing g = -2  and  g f( , ) / ( , )1 1 1 1 4- - = ,  we obtain
( ) / ( )2 1 4- - + =g a b  or 1 1 1/ ( )a b- + = . Finally, since there is a vertical tangent at ( , )0 1-
we know f ( , )0 1 0- = , and thus - + =b 1 0. Using b = 1 along with the prior equation
1 1 1/ ( )a b- + = , we obtain a = 1.

20. The slope of a phase plane trajectory is given by ¢ ¢ =y x g x y f x y/ ( , ) / ( , ), see equation (9). As
given, g f( , ) / ( , ) /1 2 1 2 1 6=  and thus
1 6 1 2 1 2 1 0 5 5 2/ ( , ) / ( , ) ( . ) / ( )= = - + -g f n . Solving for n, we obtain n = 3.

21. Making the substitution y y y y1 2= = ¢  and   the scalar equation can be expressed
as the system

¢ =

¢ = - +

y y

y y y

1 2

2 2 1
22 a .

Since ( , ) ( , )y y1 2 2 0=  is an equilibrium point, it follows that 2 81
2y = = a .

22 (a). v i j= -4 3
22 (b). v i j= +15
22 (a). v j= -

24. For A =
-

-
È

Î
Í

˘

˚
˙

9 1

1 9
, the eigenvalues are l l1 210 8= - = - and   with corresponding eigenvectors

u u1 2

1

1

1

1
=

-
È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ and  . The general solution is

y( )t c e c et t=
-

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

- -
1

10
2

8
1

1

1

1
 and hence all solution points are attracted to the origin. Thus, the

direction field corresponding to the given matrix is C.
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25. For A =
- -
- -

È

Î
Í

˘

˚
˙

1 3

3 1
, the eigenvalues are l l1 24 2= - = and   with corresponding eigenvectors

u u1 2

1

1

1

1
=

È

Î
Í

˘

˚
˙ =

-
È

Î
Í

˘

˚
˙ and  . The general solution is

y( )t c e c et t=
È

Î
Í

˘

˚
˙ +

-
È

Î
Í

˘

˚
˙

-
1

4
2

2
1

1

1

1
 and hence solution points that begin on the line y x=  are attracted

to the origin whereas those that begin on the line y x= -  are repelled away from the origin.
Thus, the direction field corresponding to the given matrix is B.

26. For A =
-

-
È

Î
Í

˘

˚
˙

4 6

6 4
, the eigenvalues are l l1 210 2= - = and   with corresponding eigenvectors

u u1 2

1

1

1

1
=

-
È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ and  . The general solution is

y( )t c e c et t=
-

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

-
1

10
2

2
1

1

1

1
 and hence solution points that begin on the line y x=  are repelled

away from the origin whereas those that begin on the line y x= -  are attracted to the origin.
Thus, the direction field corresponding to the given matrix is D.

27. For A =
È

Î
Í

˘

˚
˙

4 2

2 4
, the eigenvalues are l l1 26 2= = and   with corresponding eigenvectors

u u1 2

1

1

1

1
=

È

Î
Í

˘

˚
˙ =

-
È

Î
Í

˘

˚
˙ and  . The general solution is

y( )t c e c et t=
È

Î
Í

˘

˚
˙ +

-
È

Î
Í

˘

˚
˙1

6
2

2
1

1

1

1
 and hence solution points that begin on the line y x=  are repelled

away from the origin as are those that begin on the line y x= - . Thus, the direction field
corresponding to the given matrix is A.

28. The phase plane point ( , )a 0  is an equilibrium point when a  is a root of
f y( ) = 0.

29 (a). Making the substitution y y y y1 2= = ¢  and   the scalar equation can be expressed
as the system

¢ =

¢ = - -

y y

y y y

1 2

2 1 1
3 .

The nullclines are the lines y y1 20 0= =  and  . The only equilibrium point is the point ( , )0 0 .
30 (a). Making the substitution y y y y1 2= = ¢  and   the scalar equation can be expressed

as the system
¢ =

¢ = - -

y y

y y y

1 2

2 1 1
21( ) .

The nullclines are the lines y y y1 1 20 0= ± =, = 1,  and  . The equilibrium points are
( , ), ( , ), ( , )0 0 1 0 1 0- .
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31 (a). Making the substitution y y y y1 2= = ¢  and   the scalar equation can be expressed
as the system

¢ =

¢ = -

y y

y y

1 2

2
2

11 2sin .
The nullclines are the lines y n n1 4 0 1 2= ± + = ± ±( / ) , , , ,p p Kand the line y2 0=  The
equilibrium points are ( ( / ) , ), , , ,± + = ± ±p p4 0 0 1 2n n K.

32 (a). The nullclines are the lines y x y x= - =3 2  and  . These lines intersect at the point ( , )11
yielding the only equilibrium point.

33 (a). The nullclines are the lines y x y x= - =2   and  . These lines intersect at the point ( , )11  yielding
the only equilibrium point.

34 (a). The nullclines are the lines y x y x f= - = - =2 2 4 0and    where   and the line
y x g= =( / )1 2 0  where  .  The lines f g= =0 0 and   intersect at the points
( / , / ) ( / , / )4 3 2 3 8 3 4 3 and  yielding the only equilibrium points.

35 (a). The nullclines are the lines y x y x f= - = =2 6 0 and   where  ,  and the line
y x g= - =,  where  0. The lines f g= =0 0 and   intersect at the points ( , ) ( , )0 0 2 2 and -
yielding the only equilibrium points.

36 (a). The nullclines are the curves y x y x= - = - +1 12 2and  . These curves intersect at the
equilibrium points ( , ) ( , )-1 0 1 0 and .

Section 8.3

1 (a). Given ¢¢ + =x x4 0, multiply by ¢x  to obtain ¢ ¢¢ + ¢ =x x x x4 0 . Integrating, we obtain

0 5 2
2 2. ¢( ) + =x x C .

1 (b). The equation ¢¢ + =x x4 0 can be expressed as 
¢ =
¢ = -
x y

y x4 .
 With this notation, the conserved

quantity found in part (a) is 0 5 22 2. y x C+ = . The graph passes through the point ( , ) ( , )x y = 11
when C = 2 5. .

1 (c). At ( , )11 , the velocity vector is v i j i j= ¢ + ¢ = -x y 4 . The velocity vector is tangent to the graph
and indicates that the graph is traversed in the clockwise direction as t increases.

2 (a). Given ¢¢ - + =x x( )1 0, multiply by ¢x  to obtain ¢ ¢¢ - ¢ + =x x x x( )1 0. Integrating, we obtain
( ) ( )¢ - + =x x C2 21 .

2 (b). The equation ¢¢ - + =x x( )1 0 can be expressed as 
¢ =
¢ = +
x y

y x 1.
 With this notation, the conserved

quantity found in part (a) is y x C2 21- + =( ) . The graph passes through the point ( , ) ( , )x y = 11
when C = -3.

2 (c). At ( , )11 , the velocity vector is v i j i j= ¢ + ¢ = +x y 2 . The velocity vector indicates that the
solution point moves upward and to the right along the right branch of the hyperbola as t
increases.

3 (a). Given ¢¢ + =x x 3 0, multiply by ¢x  to obtain ¢ ¢¢ + ¢ =x x x x 3 0 . Integrating, we obtain

0 5 0 25
2 4. .¢( ) + =x x C .
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3 (b). The equation ¢¢ + =x x 3 0 can be expressed as 
¢ =

¢ = -

x y

y x 3.
 With this notation, the conserved

quantity found in part (a) is 0 5 0 252 4. .y x C+ = . The graph passes through the point
( , ) ( , )x y = 11  when C = 0 75. .

3 (c). At ( , )11 , the velocity vector is v i j i j= ¢ + ¢ = -x y . The velocity vector is tangent to the graph
and indicates that the graph is traversed in the clockwise direction as t increases.

4 (a). Given ¢¢ - + =x x x( sin )3 0p p , multiply by ¢x  to obtain
¢ ¢¢ - ¢ + =x x x x x( sin )3 0p p . Integrating, we obtain 2 42 4( ) ( cos )¢ - - =x x x Cp .

4 (b). The equation ¢¢ - + =x x x( sin )3 0p p  can be expressed as 
¢ =

¢ = +

x y

y x x3 p psin .
 With this notation,

the conserved quantity found in part (a) is 2 42 4y x x C- - =( cos )p .
The graph passes through the point ( , ) ( , )x y = 11  when C = -3.

4 (c). At ( , )11 , the velocity vector is v i j i j= ¢ + ¢ = +x y . The velocity vector indicates that the
solution point moves upward and to the right along the right branch of the graph as t increases.

5 (a). Given ¢¢ + =x x 2 0, multiply by ¢x  to obtain ¢ ¢¢ + ¢ =x x x x 2 0 . Integrating, we obtain

0 5 1 3
2 3. ( / )¢( ) + =x x C .

5 (b). The equation ¢¢ + =x x 2 0 can be expressed as 
¢ =

¢ = -

x y

y x 2.
 With this notation, the conserved

quantity found in part (a) is 0 5 1 32 3. ( / )y x C+ = . The graph passes through the point
( , ) ( , )x y = 11  when C = 5 6/ .

5 (c). At ( , )11 , the velocity vector is v i j i j= ¢ + ¢ = -x y . The velocity vector is tangent to the graph
and indicates that the solution point moves “down the graph” as t increases.

6 (a). Given ¢¢ + + =x x x/ ( )1 02 , multiply by ¢x  to obtain ¢ ¢¢ + ¢ + =x x x x x/ ( )1 02 . Integrating, we
obtain ( ) ln( )¢ + + =x x C2 21 .

6 (b). The equation ¢¢ + + =x x x/ ( )1 02  can be expressed as 
¢ =

¢ = - +

x y

y x x/ ( ).1 2  With this notation, the

conserved quantity found in part (a) is y x C2 21+ + =ln( ) .
The graph passes through the point ( , ) ( , )x y = 11  when C = +1 2ln .

6 (c). At ( , )11 , the velocity vector is v i j i j= ¢ + ¢ = -x y 0 5. . The velocity vector indicates that the
solution point moves clockwise along the curve as t increases.

7. Rewriting the conservation law in terms of x x  and  ¢ , we have ( ) cos¢ + =x x x C2 2 .
Differentiating with respect to t, we obtain 2 2 02¢ ¢¢ + ¢ - ¢ =x x x x x x x xcos sin  or

¢ ¢¢ + - =x x x x x x( cos sin )2 2 02 . Therefore, the differential equation is
¢¢ + - =x x x x xcos . sin0 5 02 .

8. Rewriting the conservation law in terms of x x  and  ¢ , we have ( )¢ - =-x e Cx2 2

. Differentiating

with respect to t, we obtain 2 2 0
2

¢ ¢¢ - - ¢ =-x x e xxx( )( ) . Therefore, the differential equation is

¢¢ + =-x xe x 2

0.

9 (a). The equation ¢¢ + + =x x x 3 0 can be expressed as 
¢ =

¢ = - -

x y

y x x 3.
 The nullclines are the lines

defined by y = 0 and - + =x x( )1 02 ; the lines y x= =0 0 and  . Thus, the only equilibrium
point is the point ( , ) ( , )x y = 0 0 .
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9 (b). The velocity vector has the form v i j( , ) ( )x y y x x= - + 3 . Thus, we obtain v i j( , )11 2= - ,
v i j( , )1 1 2- = - - , v i j( , )- = +11 2 , and v i j( , )- - = - +1 1 2 .

9 (c). Multiplying by ¢x , the equation becomes ¢ ¢¢ + ¢ + =x x x x x( )3 0 . Integrating, we obtain
0 5 0 5 0 252 2 4. ( ) . .¢ + + =x x x C  or 2 22 2 4

1y x x C+ + = . The graph of the conserved quantity
passes through the point ( , )11  when C1 5= . The graph passes through the other three points and
is consistent with the sketch in part (b).

10. Since ¢¢ + =x xa 0 it follows that 0 5 0 52 2
1

2 2. ( ) .¢ + = + =x x C x y Ca a and hence  .
10 (a). Figure A is a circle of radius 2 and thus a = + =1 42 2 and  x y .

Figure B is a hyperbola with asymptotes y x= ± . Since (0, 2) is on the graph, we see that
a = - - =1 42 2 and  y x .
Figure C shows horizontal lines, y = ±2 . Thus, a = 0.

10 (b). The solution point in Figure A travels clockwise around the circle. Solution points in Figure B
move to the right on the upper branch and to the left on the lower branch. Solutions points in
Figure C move to the right on the upper line and to the left on the lower line.

11. In analogy with Exercise 9, multiply the equation ¢¢¢ + ¢ = ¢¢y f y y( ) 0 by  , obtaining
¢¢ ¢¢¢ + ¢¢ ¢ =y y y f y( ) 0. Integrating, we find 0 5. ( )¢¢ + ¢ =y F y C  where F u( )  is an antiderivative

of f u( ). Thus, the differential equation has a conservation law given by 0 5 2. ( ) ( )¢¢ + ¢ =y F y C .

12. (a) From the definition of E(t), it follows that 
dE

dt
mx x kxx mx kx x= ¢ ¢¢ + ¢ = ¢¢ + ¢( ) . From the

differential equation, mx x kx¢¢ + ¢ + =g 0 and hence mx kx x¢¢ + = - ¢g . Therefore,
dE

dt
x x= - ¢ ¢ £( )g 0.

(b) Energy is not conserved. On t-intervals where ¢ πx t( ) 0, E(t) is a decreasing function of t
and energy is being lost.

13 (a). For the system
¢ =
¢ = -
x x

y y

2

2
we have f x y x g x y y( , ) ( , )= = -2 2  and  . Thus, f gx y= = -2 2  and  . Since f gx y= - , the

system is Hamiltonian.
13 (b). Let H x y( , )  denote the Hamiltonian function. Thus, H x y g x y yx ( , ) ( , )= - = 2 . Integrating with

respect to x, we obtain H x y xy p y( , ) ( )= +2 . Differentiating with respect to y in order to
determine p y( ) , we find H x y x p y f x y xy ( , ) ( ) ( , )= + ¢ = =2 2 . Therefore, ¢ =p y( ) 0 and hence
p y C( ) =  is a constant function. Dropping the constant, we obtain a Hamiltonian function,
H x y xy( , ) = 2 .

13 (c). From part (b), the phase-plane trajectories are defined by 2xy C= . If a phase-plane trajectory
passes through the point ( , )11 , then C = 2 and the trajectory is given by xy = 1.

14 (a). For the system
¢ =

¢ = -

x xy

y y

2
2

we have f x y xy g x y y( , ) ( , )= = -2 2  and  . Thus, f y g yx y= = -2 2  and  . Since f gx y= - , the

system is Hamiltonian.
14 (b). Let H x y( , )  denote the Hamiltonian function. Thus, H x y g x y yx ( , ) ( , )= - = 2 . Integrating with

respect to x, we obtain H x y xy p y( , ) ( )= +2 . Differentiating with respect to y in order to
determine p y( ) , we find H x y xy p y f x y xyy ( , ) ( ) ( , )= + ¢ = =2 2 .
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Therefore, ¢ =p y( ) 0 and hence p y C( ) =  is a constant function. Dropping the constant, we
obtain a Hamiltonian function, H x y xy( , ) = 2.

14 (c). From part (b), the phase-plane trajectories are defined by xy C2 = . If a phase-plane trajectory
passes through the point ( , )11 , then C = 1 and the trajectory is given by xy 2 1= .

15 (a). For the system
¢ = - +
¢ = - + +
x x x

y y xy x

2 1

2 4
we have f x y x x g x y y xy x( , ) ( , )= - = - + +2 2 4+1  and  . Thus, f x g xx y= - = - +1 2 1 2  and  .

Since f gx y= - , the system is Hamiltonian.

15 (b). Let H x y( , )  denote the Hamiltonian function. Thus, H x y g x y y xy xx ( , ) ( , )= - = - -2 4 .
Integrating with respect to x, we obtain H x y xy x y x p y( , ) ( )= - - +2 22 . Differentiating with
respect to y in order to determine p y( ) , we find
H x y x x p y f x y x xy ( , ) ( ) ( , )= - + ¢ = = - +2 2 1. Therefore, ¢ =p y( ) 1 and hence p y y C( ) = + .

Dropping the additive constant, we obtain a Hamiltonian function,
H x y xy x y x y( , ) = - - +2 22 .

15 (c). From part (b), the phase-plane trajectories are defined by xy x y x y C- - + =2 22 . If a phase-
plane trajectory passes through the point ( , )11 , then C = -1 and the trajectory is given by
xy x y x y- - + + =2 22 1 0.

16 (a). For the system
¢ = -
¢ =
x y

y x

8

2
we have f x y g x y x( , ) ( , )= - =8 2  and  . Thus, f gx y= =0 0  and  . Since f gx y= - , the system

is Hamiltonian.
16 (b). Let H x y( , )  denote the Hamiltonian function. Thus, H x y f x y yy ( , ) ( , )= = -8 . Integrating with

respect to y, we obtain H x y y q x( , ) ( )= - +4 2 . Differentiating with respect to x in order to
determine q x( ), we find H x y q x xx ( , ) ( )= ¢ = -2 . Therefore, q x x C( ) = - +2 . Dropping the
additive constant, we obtain a Hamiltonian function, H x y x y( , ) = - -2 24 .

16 (c). From part (b), the phase-plane trajectories are defined by - - =x y C2 24 . If a phase-plane
trajectory passes through the point ( , )11 , then C = -5  and the trajectory is given by
x y2 24 5+ = .

17 (a). For the system
¢ =

¢ =

x y x

y y x

2
2

cos

sin
we have f x y y x g x y y x( , ) cos ( , ) sin= =2 2  and  . Thus, f y x g y xx y= - =2 2sin sin  and  . Since

f gx y= - , the system is Hamiltonian.

17 (b). Let H x y( , )  denote the Hamiltonian function. Thus, H x y g x y y xx ( , ) ( , ) sin= - = - 2 . Integrating
with respect to x, we obtain H x y y x p y( , ) cos ( )= +2 . Differentiating with respect to y in order
to determine p y( ) , we find H x y y x p y f x y y xy ( , ) cos ( ) ( , ) cos= + ¢ = =2 2 . Therefore,

¢ =p y( ) 0 and hence p y C( ) =  is a constant function. Dropping the constant, we obtain a
Hamiltonian function, H x y y x( , ) cos= 2 .
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17 (c). From part (b), the phase-plane trajectories are defined by y x C2 cos = . If a phase-plane
trajectory passes through the point ( , )11 , then C = cos1 and the trajectory is given by
y x2 1cos cos= .

18 (a). For the system
¢ = - +

¢ = + -

x y x

y y x x

2 3

4 23

we have f gx y= - =1 1  and  . Since f gx y= - , the system is Hamiltonian.

18 (b). Let H x y( , )  denote the Hamiltonian function. Thus, H x y f x y y xy ( , ) ( , )= = - +2 3. Integrating

with respect to y, we obtain H x y y xy y q x( , ) ( )= - - +2 3 . Differentiating with respect to x in
order to determine q x( ), we find H x y y q x y x xx ( , ) ( )= - + ¢ = - - +4 23 . Therefore,
q x x x C( ) = - + +4 2 . Dropping the additive constant, we obtain a Hamiltonian function,
H x y y xy y x x( , ) = - + - +2 4 23 .

18 (c). If a phase-plane trajectory H x y C( , ) =  passes through the point ( , )11 , then the trajectory is
given by y xy y x x2 4 23 8- + - + = .

19 (a). For the system
¢ = -

¢ =

x y

y x

2

3 2

we have f x y y g x y x( , ) ( , )= - =2 3 2  and  . Thus, f gx y= =0 0  and  . Since f gx y= - , the

system is Hamiltonian.
19 (b). Let H x y( , )  denote the Hamiltonian function. Thus, H x y g x y xx ( , ) ( , )= - = -3 2. Integrating

with respect to x, we obtain H x y x p y( , ) ( )= - +3 . Differentiating with respect to y in order to
determine p y( ) , we find H x y p y f x y yy ( , ) ( ) ( , )= ¢ = = -2 . Therefore, ¢ = -p y y( ) 2  and hence

p y y C( ) = - +2  is a constant function. Dropping the additive constant, we obtain a
Hamiltonian function, H x y x y( , ) = - -3 2 .

19 (c). From part (b), the phase-plane trajectories are defined by - - =x y C3 2 . If a phase-plane
trajectory passes through the point ( , )11 , then C = -2  and the trajectory is given by
x y3 2 2+ = .

20 (a). For the system
¢ =

¢ = - -

x xe

y x ye

xy

xy2
we have f e xye g e xyex

xy xy
y

xy xy= + = - -  and  . Since f gx y= - , the system is Hamiltonian.

20 (b). Let H x y( , )  denote the Hamiltonian function. Thus, H x y f x y xey
xy( , ) ( , )= = . Integrating with

respect to y, we obtain H x y e q xxy( , ) ( )= + . Differentiating with respect to x in order to
determine q x( ), we find H x y ye q x x yex

xy xy( , ) ( )= + ¢ = +2 . Therefore, q x x C( ) = +2 .
Dropping the additive constant, we obtain a Hamiltonian function, H x y e xxy( , ) = + 2 .

20 (c). If a phase-plane trajectory H x y C( , ) =  passes through the point ( , )11 , then the trajectory is
given by e x exy + = +2 1 .
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21. Consider the system
¢ = + +

¢ = - - +

x x x y

y x y x y

3

2

3 2 3

3 2 2 3

sin( )

sin( ) .

Calculating the partial derivatives, we have f x x yx = + +3 6 2 32 cos( ) and
g x x yy = - - +3 6 2 32 cos( ) . Since f gx y= - , the system is Hamiltonian.

Let H x y( , )  denote the Hamiltonian function. Thus,
H x y g x y x y x yx ( , ) ( , ) sin( )= - = + +3 2 2 32 . Integrating with respect to x, we obtain
H x y x y x y p y( , ) cos( ) ( )= - + +3 2 3 . Differentiating with respect to y in order to determine
p y( ) , we find H x y x x y p y f x y x x yy ( , ) sin( ) ( ) ( , ) sin( )= + + + ¢ = = + +3 33 2 3 3 2 3 . Therefore,

¢ =p y( ) 0 and hence p y C( ) =  is a constant function. We obtain a Hamiltonian function,
H x y x y x y( , ) cos( )= - +3 2 3 .

22. Consider the system
¢ = +

¢ = - -

x e y

y e x

xy

xy

3

3 .

Calculating the partial derivatives, we have f yex
xy=  and g xey

xy= - . Since f gx yπ - , the

system is not Hamiltonian.
23. Consider the system

¢ = - -
¢ = +
x xy x

y xy y

sin( )

sin( ) .

2

2
Calculating the partial derivatives, we have f y xyx = - -2 2 1cos( )  and g x xyy = +2 2 1cos( ) .

Since f gx yπ - , the system is not Hamiltonian.

24. Consider the system
¢ = - +

¢ = + -

x x xe

y xy x e

y

y

3

6 3

2

.

Calculating the partial derivatives, we have f x ex
y= - +6  and g x ey

y= -6 . Since f gx y= - , the
system is Hamiltonian. Let H x y( , )  denote the Hamiltonian function. Thus,
H x y g x y xy x ex

y( , ) ( , )= - = - - +6 3 . Integrating with respect to x, we obtain
H x y x y x p y( , ) ( / ) ( )= - - +3 3 22 2 . Differentiating with respect to y in order to determine p y( ) ,
we find H x y x p y f x y x xey

y( , ) ( ) ( , )= - + ¢ = = - +3 32 2 . Therefore, ¢ =p y xey( )  and hence

p y xe Cy( ) = + . Dropping the additive constant, we obtain a Hamiltonian function,
H x y x y x xey( , ) ( / )= - - +3 3 22 2 .

25. Consider the system
¢ =

¢ = -

x y

y x x 2 .
Calculating the partial derivatives, we have fx = 0 and gy = 0. Since f gx y= - , the system is

Hamiltonian.
Let H x y( , )  denote the Hamiltonian function. Thus, H x y g x y x xx ( , ) ( , )= - = -2 . Integrating
with respect to x, we obtain H x y x x p y( , ) ( / )( ) ( )= - +1 6 2 33 2 . Differentiating with respect to y
in order to determine p y( ) , we find H x y p y f x y yy ( , ) ( ) ( , )= ¢ = = . Therefore, ¢ =p y y( )  and

hence p y y C( ) .= +0 5 2 . Dropping the additive constant, we obtain a Hamiltonian function,
H x y x x y( , ) ( / )( )= - +1 6 2 3 33 2 2 .
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26. Consider the system
¢ = +

¢ = - +

x x y

y x x y

2

23 .
Calculating the partial derivatives, we have fx = 1 and gy = 1. Since f gx yπ - , the system is not

Hamiltonian.
27. Consider the system

¢ =
¢ =
x f y

y g x

( )

( ) .
Calculating the partial derivatives, we have ∂ =x f y[ ( )] 0  and ∂ =y g x[ ( )] 0 . Since

∂ = -∂x yf y g x[ ( )] [ ( )], the system is Hamiltonian.
Let H x y( , )  denote the Hamiltonian function. Thus, H x y g xx ( , ) ( )= - . Integrating with respect
to x, we obtain H x y G x p y( , ) ( ) ( )= - + . Differentiating with respect to y in order to determine
p y( ) , we find H x y p y f yy ( , ) ( ) ( )= ¢ = . Therefore, p y F y C( ) ( )= + . Dropping the additive
constant, we obtain a Hamiltonian function, H x y F y G x( , ) ( ) ( )= - .

28. Consider the system
¢ = +
¢ = +
x f y y

y g x x

( )

( ) .

2

6
Calculating the partial derivatives, we have ∂ + =x f y y[ ( ) ]2 0 and ∂ + =y g x x[ ( ) ]6 0. Since

∂ + = -∂ +x yf y y g x x[ ( ) ] [ ( ) ]2 6 , the system is Hamiltonian. Let H x y( , )  denote the
Hamiltonian function. Thus, H x y g x xx ( , ) ( )= - - 6 . Integrating with respect to x, we obtain
H x y G x x p y( , ) ( ) ( )= - - +3 2 . Differentiating with respect to y in order to determine p y( ) , we
find H x y p y f y yy ( , ) ( ) ( )= ¢ = + 2 . Therefore, p y F y y C( ) ( )= + +2 . Dropping the additive

constant, we obtain a Hamiltonian function, H x y G x x F y y( , ) ( ) ( )= - - + +3 2 2.
29. Consider the system

¢ = -

¢ = + +

x f y xy

y g x y

3 2

12

( )

( ) .
Calculating the partial derivatives, we have ∂ - = -x f y xy y[ ( ) ]3 2 2  and ∂ + + =y g x y y[ ( ) ]2 1 2 .

Since ∂ - = -∂ + +x yf y xy g x y[ ( ) ] [ ( ) ]3 2 12 , the system is Hamiltonian.

Let H x y( , )  denote the Hamiltonian function. Thus, H x y g x yx ( , ) ( )= - - -2 1. Integrating with
respect to x, we obtain H x y G x y x x p y( , ) ( ) ( )= - - - +2 . Differentiating with respect to y in
order to determine p y( ) , we find H x y yx p y f y xyy ( , ) ( ) ( )= - + ¢ = -2 3 2 . Therefore,
p y F y C( ) ( )= +3 . Dropping the additive constant, we obtain a Hamiltonian function,
H x y F y G x y x x( , ) ( ) ( )= - - -3 2 .

30. Consider the system
¢ = - +
¢ = -
x f x y y

y f x y

( )

( ) .

2

Calculating the partial derivatives, we have ∂ - + = ¢ -x f x y y f x y[ ( ) ] ( )2  and
∂ - = - ¢ -y f x y f x y[ ( )] ( ). Since ∂ - + = -∂ -x yf x y y f x y[ ( ) ] [ ( )]2 , the system is Hamiltonian.
Let H x y( , )  denote the Hamiltonian function. Thus, H x y f x yx ( , ) ( )= - - . Integrating with
respect to x, we obtain H x y F x y p y( , ) ( ) ( )= - - + . Differentiating with respect to y in order to
determine p y( ) , we find H x y f x y p y f x y yy ( , ) ( ) ( ) ( )= - + ¢ = - + 2 .
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Therefore, p y y C( ) = +2 . Dropping the additive constant, we obtain a Hamiltonian function,
H x y F x y y( , ) ( )= - - + 2 .

31. Consider the composition K x t y t( ( ), ( )). Differentiating with respect to t, we obtain
d

dt
K x t y t

K

x

dx

dt

K

y

dy

dt
g f f g( ( ), ( )) ( ) ( )=

∂
∂

+
∂
∂

= - + =m m 0 . Therefore, K x t y t( ( ), ( )) is a conserved

quantity.

Section 8.4

1 (a). All points lying within the ellipse E having semi-major axis e  and semi-minor axis e / 2 lie
within the circle of radius e . Likewise, all points lying within the circle of radius e / 2 lie
within the ellipse E. Therefore, given e > 0, choose d e= / 2.

1 (b). The origin is not an asymptotically stable equilibrium point since the solution points remain on
an ellipse and do not approach the origin as t Æ • .

2. The origin is an unstable equilibrium point. Any solution point starting near the origin will
follow a branch of the hyperbola and will eventually exit any circle centered at the origin.

3 (a). Making the substitution y x= ¢ , the scalar equation ¢¢ + ¢ + =x x xg 0 can be expressed as the
system

¢ =
¢ = - -
x y

y x yg .
The origin is the only equilibrium point for this system.

3 (b). We analyze stability by appealing to Theorem 8.3. The system in part (a) has the form ¢ =y yA

where A =
- -

È

Î
Í

˘

˚
˙

0 1

1 g
. The characteristic polynomial for A is p( )l l gl= + +2 1 and thus the

eigenvalues of A are l g g1
20 5 4= - - -( ).  and l g g2

20 5 4= - + -( ). . When g 2 4 0- ≥ , we

see that l l1 2£ . Thus, if 2 £ g , then l l1 2 0£ <  which shows the origin is asymptotically
stable. On the other hand, if g £ -2 , then 0 1 2< £l l  which shows the origin is an unstable
equilibrium point. For - < <2 2g , the eigenvalues are complex with nonzero imaginary parts.
For - < <2 0g , the real parts of l l1 2 and   are positive, which shows the origin is an unstable
equilibrium point. Likewise, for 0 2< <g , the origin is an asymptotically stable equilibrium
point. When g = 0, the origin is a stable (but not asymptotically stable) equilibrium point.

4. For the system ¢ =
- -È

Î
Í

˘

˚
˙y y

3 2

4 3
, the coefficient matrix has eigenvalues l l1 21 1= - = and  .

Thus, by Theorem 8.3, the origin is an unstable equilibrium point.

5. For the system ¢ =
-

-
È

Î
Í

˘

˚
˙y y

5 14

3 8
, the coefficient matrix has eigenvalues l l1 21 2= - = - and  .

Thus, by Theorem 8.3, the origin is an asymptotically stable equilibrium point.

6. For the system ¢ =
-È

Î
Í

˘

˚
˙y y

0 2

2 0
, the coefficient matrix has eigenvalues l l1 22 2= = -i i and  .

Thus, by Theorem 8.3, the origin is a stable equilibrium point but not an asymptotically stable
equilibrium point.
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7. For the system ¢ =
-

È

Î
Í

˘

˚
˙y y

1 4

1 1
, the coefficient matrix has eigenvalues

l l1 21 2 1 2= + = -i i and  . Thus, by Theorem 8.3, the origin is an unstable equilibrium point.

8. For the system ¢ =
- -È

Î
Í

˘

˚
˙y y

7 3

5 1
, the coefficient matrix has eigenvalues l l1 24 2= - = - and  .

Thus, by Theorem 8.3, the origin is an asymptotically stable equilibrium point.

9. For the system ¢ =
- -

È

Î
Í

˘

˚
˙y y

9 5

7 3
, the coefficient matrix has eigenvalues l l1 22 4= = and  .

Thus, by Theorem 8.3, the origin is an unstable equilibrium point.

10. For the system ¢ =
- -

-
È

Î
Í

˘

˚
˙y y

3 5

2 1
, the coefficient matrix has eigenvalues

l l1 22 3 2 3= - + = - -i i and  . Thus, by Theorem 8.3, the origin is an asymptotically stable
equilibrium point.

11. For the system ¢ =
-
-

È

Î
Í

˘

˚
˙y y

9 4

15 7
, the coefficient matrix has eigenvalues l l1 23 1= = - and  .

Thus, by Theorem 8.3, the origin is an unstable equilibrium point.

12. For the system ¢ =
- -È

Î
Í

˘

˚
˙y y

13 8

15 9
, the coefficient matrix has eigenvalues l l1 23 1= - = - and  .

Thus, by Theorem 8.3, the origin is an asymptotically stable equilibrium point.

13. For the system ¢ =
-
-

È

Î
Í

˘

˚
˙y y

3 2

5 3
, the coefficient matrix has eigenvalues l l1 2= = -i i and  . Thus,

by Theorem 8.3, the origin is a stable (but not asymptotically stable) equilibrium point.

14. For the system ¢ =
-
-

È

Î
Í

˘

˚
˙y y

1 5

1 3
, the coefficient matrix has eigenvalues

l l1 21 1= - + = - -i i and  . Thus, by Theorem 8.3, the origin is an asymptotically stable
equilibrium point.

15. For the system ¢ =
-

-
È

Î
Í

˘

˚
˙y y

3 3

1 5
, the coefficient matrix has eigenvalues l l1 26 2= - = - and  .

Thus, by Theorem 8.3, the origin is an asymptotically stable equilibrium point.
16. Eigenvalues are l l1 22 3= - = and  . Since one of the eigenvalues is real and positive, the

origin is an unstable equilibrium point.
17. Eigenvalues are l l1 22 3= = and  . Since the eigenvalues are real and positive, the origin is an

unstable equilibrium point.
18. Eigenvalues are l l1 24 2= - = - and  . Since the eigenvalues are real and negative, the origin is

an asymptotically stable equilibrium point.
19. Eigenvalues are l l1 21 2 1 2= - = +i i and  . Since the eigenvalues are complex with positive

real parts, the origin is an unstable equilibrium point.
20. Eigenvalues are l l1 22 2= - =i i and  . Since the eigenvalues are purely imaginary, the origin is

a stable equilibrium point but it is not an asymptotically stable equilibrium point.
21. Eigenvalues are l l1 22 2 2 2= - - = - +i i and  . Since the eigenvalues are complex with

negative real parts, the origin is an asymptotically stable equilibrium point.
22. Eigenvalues are l l1 22 3= - = and  . Since one of the eigenvalues is real and positive, the

origin is an unstable equilibrium point.
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23. Eigenvalues are l l1 22 3= - = - and  . Since the eigenvalues are real and negative, the origin is
an asymptotically stable equilibrium point.

24 (a). Solving 0 y g= +A e 0, it follows that y ge = - -A 1
0  is the unique equilibrium point.

24 (b). Let z y y( ) ( )t t= - e . Then, ¢ = ¢ = + = - =z y y g y y zA A A A0 e . Theorem 8.3 can be applied to
the new system ¢ =z zA .

25. For the system ¢ =
-

-
È

Î
Í

˘

˚
˙ +

-È

Î
Í

˘

˚
˙y y

2 1

1 2

4

2
, the unique equilibrium point is

y e A= -
-È

Î
Í

˘

˚
˙ = -

- -
- -

È

Î
Í

˘

˚
˙

-È

Î
Í

˘

˚
˙ =

-È

Î
Í

˘

˚
˙

-1
4

2
1 3

2 1

1 2

4

2

2

0
( / ) . With the change of variable z y y( ) ( )t t e= -  the

system becomes ( ) ( )z y z y+ ¢ =
-

-
È

Î
Í

˘

˚
˙ + +

-È

Î
Í

˘

˚
˙e e

2 1

1 2

4

2
 or ¢ =

-
-

È

Î
Í

˘

˚
˙ +

-
-

È

Î
Í

˘

˚
˙ +

-È

Î
Í

˘

˚
˙z z y

2 1

1 2

2 1

1 2

4

2e .

This last system reduces to the homogeneous system ¢ =
-

-
È

Î
Í

˘

˚
˙z z

2 1

1 2
. The coefficient matrix

has eigenvalues l l1 23 1= - = - and  . By Theorem 8.3, the origin is an asymptotically stable
equilibrium point of ¢ =z zA  and therefore, y e is an asymptotically stable equilibrium point of

the nonhomogeneous system ¢ =
-

-
È

Î
Í

˘

˚
˙ +

-È

Î
Í

˘

˚
˙y y

2 1

1 2

4

2
.

26. For the system ¢ =
-

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙y y

0 1

1 0

2

1
, the unique equilibrium point is y e A= -

È

Î
Í

˘

˚
˙ =

-
È

Î
Í

˘

˚
˙

-1
2

1

1

2
. With

the change of variable z y y( ) ( )t t e= -  the system reduces to the homogeneous system

¢ =
-

È

Î
Í

˘

˚
˙z z

0 1

1 0
. The coefficient matrix has eigenvalues l l1 2= = -i i and  . By Theorem 8.3, the

origin is a stable but not an asymptotically stable equilibrium point of ¢ =z zA . Therefore, y e is
a stable but not an asymptotically stable equilibrium point of the nonhomogeneous system.

27. For the system ¢ =
- -

È

Î
Í

˘

˚
˙ +

-È

Î
Í

˘

˚
˙y y

3 2

4 3

2

2
, the unique equilibrium point is

y e A= -
-È

Î
Í

˘

˚
˙ =

- -È

Î
Í

˘

˚
˙

-È

Î
Í

˘

˚
˙ =

-
È

Î
Í

˘

˚
˙

-1
2

2

3 2

4 3

2

2

2

2
. With the change of variable z y y( ) ( )t t e= -  the system

becomes ( ) ( )z y z y+ ¢ =
- -

È

Î
Í

˘

˚
˙ + +

-È

Î
Í

˘

˚
˙e e

3 2

4 3

2

2
 or ¢ =

- -
È

Î
Í

˘

˚
˙ +

- -
È

Î
Í

˘

˚
˙ +

-È

Î
Í

˘

˚
˙z z y

3 2

4 3

3 2

4 3

2

2e . This

last system reduces to the homogeneous system ¢ =
- -

È

Î
Í

˘

˚
˙z z

3 2

4 3
. The coefficient matrix has

eigenvalues l l1 21 1= - = and  . By Theorem 8.3, the origin is an unstable equilibrium point of
¢ =z zA  and therefore, y e is an unstable equilibrium point of the nonhomogeneous system

¢ =
- -

È

Î
Í

˘

˚
˙ +

-È

Î
Í

˘

˚
˙y y

3 2

4 3

2

2
.

28. For the system ¢ =
-

-
È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙y y

1 1

10 5

1

2
, the unique equilibrium point is y e A= -

È

Î
Í

˘

˚
˙ =

-
-

È

Î
Í

˘

˚
˙

-1
1

2

3 5

8 5

/

/
.

With the change of variable z y y( ) ( )t t e= -  the system reduces to the homogeneous system
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¢ =
-

-
È

Î
Í

˘

˚
˙z z

1 1

10 5
. The coefficient matrix has eigenvalues l l1 22 2= + = -i i and  . By Theorem

8.3, the origin is an unstable equilibrium point of ¢ =z zA . Therefore, y e is an unstable
equilibrium point of the nonhomogeneous system.

29. For the system ¢ =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

y y

2 1 1

1 1 2

1 2 1

, the coefficient matrix has eigenvalues

l l l1 2 31 2 3= - = =, ,  and  . Thus, by the discussion following Theorem 8.3, the origin is an
unstable equilibrium point.

30. For the system ¢ =
-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

y y

1 1 0

0 1 2

0 0 1

2

0

3

, the unique equilibrium point is y e A= -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-1

2

0

3

4

6

3

.

With the change of variable z y y( ) ( )t t e= -  the system reduces to the homogeneous system

¢ =
- -
- -

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

z z

1 1 2

0 1 2

0 0 1

. The coefficient matrix has eigenvalues l l l1 1 31 1 1= = - = -, ,  and  . By

Theorem 8.3, the origin is an unstable equilibrium point of ¢ =z zA . Therefore, y e is an
unstable equilibrium point of the nonhomogeneous system.

31. For the system ¢ =

- -
-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

y y

3 5 0 0

2 1 0 0

0 0 0 2

0 0 2 0

, the coefficient matrix has eigenvalues

l l l l1 2 3 42 3 2 3 2 2= - + = - - = = -i i i i, , ,  and  . Thus, by the discussion following Theorem
8.3, the origin is a stable (but not asymptotically stable) equilibrium point.

32. For the system ¢ =
-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

+

-È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

y y

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1

2

1

0

, unique equilibrium point is given by

y e = -

-È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=

-È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

-A 1

1

2

1

0

2

1

1

0

.  With the change of variables z y y( ) ( )t t e= - , the system reduces to the

homogeneous system ¢ =
-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

z z

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

. The coefficient matrix has eigenvalues

l l l l1 2 3 41 1 1 1= - = - = - =, , ,  and  . Thus, by the discussion following Theorem 8.3, the
origin is an unstable equilibrium point.

34 (a). Since the coefficient matrix A is real and symmetric, it has real eigenvalues and a full set of
eigenvectors.
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34 (b). From the discussion following Theorem 8.3, the equilibrium point y 0e =  is isolated if and
only if det[ ]A π 0. Now, det[ ]A = -1 2a  and therefore, y 0e =  is an isolated equilibrium point
if and only if a π ±1.

34 (c). When a = 1 the equilibrium points lie on the line y x= . When a = -1 the equilibrium points
lie on the line y x= - .

34 (d). No, since the eigenvalues of A are real and not purely imaginary; see Theorem 8.3.
34 (e). The eigenvalues of A are l a l a1 21 1= - + = - -, and  . By part (b), if y 0e =  is an isolated

equilibrium point, then a π ±1. Clearly, both eigenvalues are negative when - < <1 1a
whereas one of the eigenvalues is positive when a > 1.

35. Since 
1 1

2
2

1

2
12

21 22

a

a a

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙, it follows that 1 2 212+ =a  and a a21 222 4+ = . From the first

equation, we have a12 1 2= / . Since y 0=  is not an isolated equilibrium point, it follows that
det[ ]A = 0. Thus, a a a22 12 21 0- =  or a a22 211 2 0- =( / ) . This last equation, together with the

prior equation a a21 222 4+ =  tells us that a a21 222 1= = and  . Thus, A =
È

Î
Í

˘

˚
˙

1 1 2

2 1

/
.

Section 8.5

1 (a). For the system
¢ = + -
¢ = -
x x y

y y x

2 2 32

,

the equilibrium points are y ye e=
È

Î
Í

˘

˚
˙ =

-
-

È

Î
Í

˘

˚
˙

4

4

4

4
 and  .

1 (b). At an equilibrium point, the linearized system ¢ =z zA  has coefficient matrix A
x y

=
-

È

Î
Í

˘

˚
˙

2 2

1 1
.

Thus, the linearized systems are (i) ¢ =
-

È

Î
Í

˘

˚
˙z z

8 8

1 1

and (ii) ¢ =
- -
-

È

Î
Í

˘

˚
˙z z

8 8

1 1
.

1 (c). In case (i), the eigenvalues are l l1 22 438 6 561= =. .K K and   and thus the nonlinear system is
unstable at the corresponding equilibrium point y e. For case (ii), the eigenvalues are
l l1 28 815 1 815= - =. .K K and   and thus the nonlinear system is unstable at the
corresponding equilibrium point y e.

2 (a). For the system
¢ = + -
¢ =
x x y

y x

2 29 9

,

the equilibrium points are y ye e=
È

Î
Í

˘

˚
˙ =

-
È

Î
Í

˘

˚
˙

0

1

0

1
 and  .
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2 (b). At an equilibrium point, the linearized system ¢ =z zA  has coefficient matrix A
x y

=
È

Î
Í

˘

˚
˙

2 18

1 0
.

Thus, the linearized systems are (i) ¢ =
È

Î
Í

˘

˚
˙z z

0 18

1 0
 and (ii) ¢ =

-È

Î
Í

˘

˚
˙z z

0 18

1 0
2 (c). In case (i), the eigenvalues are l l1 24 242 4 242= = -. .K K and   and thus the nonlinear system

is unstable at the corresponding equilibrium point y e. For case (ii), the eigenvalues are ±3 2 i
and thus nothing can be inferred about the stability of the nonlinear system.

3 (a). For the system
¢ = -

¢ = + -

x x

y x y

1

2

2

2 2 ,

the equilibrium points are y y y ye e e e=
È

Î
Í

˘

˚
˙ =

-È

Î
Í

˘

˚
˙ =

-
-

È

Î
Í

˘

˚
˙ =

-
È

Î
Í

˘

˚
˙

1

1

1

1

1

1

1

1
, , ,  and  .

3 (b). At an equilibrium point, the linearized system ¢ =z zA  has coefficient matrix A
x

x y
=

-È

Î
Í

˘

˚
˙

2 0

2 2
.

Thus, the linearized systems are (i) ¢ =
-È

Î
Í

˘

˚
˙z z

2 0

2 2
,

(ii) ¢ =
-

È

Î
Í

˘

˚
˙z z

2 0

2 2
, (iii) ¢ =

- -
È

Î
Í

˘

˚
˙z z

2 0

2 2
, and (iv) ¢ =

-
-

È

Î
Í

˘

˚
˙z z

2 0

2 2
.

3 (c). In cases (i) – (iii), l = 2 is an eigenvalue and thus the nonlinear system is unstable at each of
the corresponding equilibrium points y e. For case (iv), the eigenvalues are
l l1 22 2= - = - and   and thus the nonlinear system is asymptotically stable at the
corresponding equilibrium point y e.

4 (a). For the system
¢ = - -

¢ = - +

x x y

y x y

1

12 2 ,

the equilibrium point is y e =
-

È

Î
Í

˘

˚
˙

0

1
.

4 (b). At the equilibrium point, the linearized system ¢ =z zA  has coefficient matrix A
x y

=
-

-
È

Î
Í

˘

˚
˙

1 1

2 2
.

Thus, the linearized system is ¢ =
-È

Î
Í

˘

˚
˙z z

1 1

0 2
.

4 (c). The eigenvalues are l l1 21 2= = and   and thus the nonlinear system is unstable at the
equilibrium point y e.
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5 (a). For the system
¢ = - -
¢ = + -
x x y

y x y y

( )( )

( )( ) ,

2 3

2 1

the equilibrium points are y y ye e e=
-

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ =

-È

Î
Í

˘

˚
˙

2

1

2

1

6

3
, ,  and  .

5 (b). At an equilibrium point, the linearized system ¢ =z zA  has coefficient matrix

A
y x

y x y
=

- -
- + -

È

Î
Í

˘

˚
˙

3 2

1 4 2
. Thus, the linearized systems are (i) ¢ =

-
- -

È

Î
Í

˘

˚
˙z z

4 0

2 4
,

(ii) ¢ =
-È

Î
Í

˘

˚
˙z z

2 0

0 4
, and (iii) ¢ =

-È

Î
Í

˘

˚
˙z z

0 8

2 4
.

5 (c). In case (i), the eigenvalues are l l1 24 4= - = - and   and thus the nonlinear system is
asymptotically stable at the corresponding equilibrium point y e. For case (ii), the eigenvalues
are l l1 22 4= - = and   and thus the nonlinear system is unstable at the corresponding

equilibrium point y e. In case (iii), the eigenvalues are l l1 22 2 3 2 2 3= + = -i i and  . Thus
the nonlinear system is unstable at the corresponding equilibrium point y e.

6 (a). For the system
¢ = - +
¢ = + -
x x y y

y x y

( )( )

( )( ) ,

1

2 4

the equilibrium points are y y ye e e=
-
-

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ =

-
-

È

Î
Í

˘

˚
˙

2

2

4

4

2

1
, ,  and  .

6 (b). At an equilibrium point, the linearized system ¢ =z zA  has coefficient matrix

A
y x y

y x
=

+ - -
- +

È

Î
Í

˘

˚
˙

1 2 1

4 2
. Thus, the linearized systems are (i) ¢ =

-
-

È

Î
Í

˘

˚
˙z z

1 1

6 0
,

(ii) ¢ =
-È

Î
Í

˘

˚
˙z z

5 5

0 6
, and (iii) ¢ =

-
-

È

Î
Í

˘

˚
˙z z

0 1

5 0
.

6 (c). In case (i), the eigenvalues are - ±0 5 0 5 23. . i  and thus the nonlinear system is asymptotically
stable at the corresponding equilibrium point y e. For case (ii), the eigenvalues are
l l1 25 6= = and   and thus the nonlinear system is unstable at the corresponding equilibrium

point y e. In case (iii), the eigenvalues are ± 5 . Thus the nonlinear system is unstable at the
corresponding equilibrium point y e.

7 (a). For the system
¢ = - +
¢ = -
x x y y

y x y

( )( )

,

2 4

2

the equilibrium points are y ye e=
È

Î
Í

˘

˚
˙ =

-
-

È

Î
Í

˘

˚
˙

0

0

2

4
 and  .

7 (b). At an equilibrium point, the linearized system ¢ =z zA  has coefficient matrix

A
y x y

=
+ - -

-
È

Î
Í

˘

˚
˙

4 4 8

2 1
. Thus, the linearized systems are (i) ¢ =

-
-

È

Î
Í

˘

˚
˙z z

4 8

2 1
,

and (ii) ¢ =
-

È

Î
Í

˘

˚
˙z z

0 6

2 1
.
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7 (c). In case (i), the eigenvalues are l l1 20 5 3 39 0 5 3 39= + = -. ( ) . ( )i i and   and thus the
nonlinear system is unstable at the corresponding equilibrium point y e. For case (ii), the
eigenvalues are l l1 24 3= - = and   and thus the nonlinear system is unstable at the
corresponding equilibrium point y e.

8 (a). For the system
¢ = -
¢ = + -
x xy

y x y x

1

4 1( )( ) ,

the equilibrium point is y e =
È

Î
Í

˘

˚
˙

1

1
.

8 (b). At the equilibrium point, the linearized system ¢ =z zA  has coefficient matrix

A
y x

x y x
=

+ - -
È

Î
Í

˘

˚
˙2 4 1 4 1( )
. Thus, the linearized system is ¢ =

È

Î
Í

˘

˚
˙z z

1 1

5 0
.

8 (c). The eigenvalues are 0 5 1 21. ±( )  and thus the nonlinear system is unstable at the equilibrium

point y e.
9 (a). For the system

¢ = -

¢ = -

x y x

y x y

2

2 ,

the equilibrium points are y ye e=
È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

0

0

1

1
 and  .

9 (b). At an equilibrium point, the linearized system ¢ =z zA  has coefficient matrix A
y

x
=

-
-

È

Î
Í

˘

˚
˙

1 2

2 1
.

Thus, the linearized systems are (i) ¢ =
-

-
È

Î
Í

˘

˚
˙z z

1 0

0 1
,

and (ii) ¢ =
-

-
È

Î
Í

˘

˚
˙z z

1 2

2 1
.

9 (c). In case (i), the eigenvalues are l l1 21 1= - = - and   and thus the nonlinear system is
asymptotically stable at the corresponding equilibrium point y e. For case (ii), the eigenvalues
are l l1 23 1= - = and   and thus the nonlinear system is unstable at the corresponding
equilibrium point y e.

10. At an equilibrium point, the linearized system ¢ =z zA  has coefficient matrix

A
x y x

y x y
=

- - -
- - -

È

Î
Í

˘

˚
˙

( / )[ ( / ) ] ( / )

( / ) ( / )[ ( / ) ( / ) ]

1 2 1 1 2 1 4

1 12 1 4 1 1 3 4 3
. Thus, the linearized systems are: (i) at

0

0

È

Î
Í

˘

˚
˙, ¢ =

È

Î
Í

˘

˚
˙z z

1 2 0

0 1 4

/

/
, (ii) at 

0

3 2/

È

Î
Í

˘

˚
˙ , ¢ =

- -
È

Î
Í

˘

˚
˙z z

1 8 0

1 8 1 4

/

/ /
,

(iii) at 
2

0

È

Î
Í

˘

˚
˙, ¢ =

- -È

Î
Í

˘

˚
˙z z

1 2 1 2

0 1 12

/ /

/
. Thus, in all three of these cases, the system is

unstable at the corresponding equilibrium point.
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11 (c). By Taylor’s theorem, f z f f z f z( ) ( ) ( ) ( ) /= + ¢ + ¢¢0 0 22g  where g  is between z and 0. For
f z z( ) sin= , we have sin ( sin ) /z z z1 1 1

2 2- = - g  where g  is between z1 and 0. Now,

g z z( ) / sin / sin /= - + £ -z z z z z z z1 1 1
2

2
2

1 1 1 . So, by the remarks above,

g z z( ) / / / /£ =z z z1
2

1 12 2. Hence, since z1 2/  goes to 0 as z goes to 0, the system is

almost linear at both equilibrium points.

12 (a). For the given system ¢ = +z z g zA ( ), the coefficient matrix A is A =
-
-

È

Î
Í

˘

˚
˙

9 4

15 7
, while

g z( ) =
È

Î
Í

˘

˚
˙

z2
2

0
.

12 (b). g z( ) = z2
2 , or using polar coordinates with z r z r1 2= =cos sinq q  and  , we obtain

g z( ) sin= r2 2 q .

12 (c). From part (b), g z z( ) / sin / sin= =r r r2 2 2q q . Thus, g z z( ) / Æ 0  as z Æ 0. In
addition to the limit requirement, the system satisfies the other necessary conditions to be an
almost linear system.

12 (d). The eigenvalues of A are l l1 21 3= - =  and  . Thus, by Theorem 8.4, z 0=  is an unstable
equilibrium point.

13 (a). For the system ¢ = +z z g zA ( ),
¢ = - +

¢ = - + +

z z z z z

z z z z z

1 1 2 1 2

2 1 2 1
2

2
2

5 14

3 8 ,

the coefficient matrix A is given by A =
-

-
È

Î
Í

˘

˚
˙

5 14

3 8
, while g z( ) =

+
È

Î
Í

˘

˚
˙

z z

z z
1 2

1
2

2
2 .

13 (b). Using polar coordinates with z r z r1 2= =cos sinq q  and  , we obtain

g z( ) cos sin= ( ) + +( ) = ( ) + ( )z z z z r r1 2

2

1
2

2
2 2 2 2 2 2

q q  or g z( ) (cos sin )= +r4 2 2 1q q .

(Also note that z = r .)

13 (c). From part (b), g z z( ) / (cos sin ) / /= + £ =r r r r r4 2 2 21 2 2q q . Thus, g z z( ) / Æ 0

as z Æ 0. In addition to the limit requirement, the system satisfies the other necessary
conditions to be an almost linear system.

13 (d). The eigenvalues of A are l l1 22 1= - = -  and  . Thus, by Theorem 8.4, z 0=  is an
asymptotically stable equilibrium point.

14 (a). For the given system ¢ = +z z g zA ( ), the coefficient matrix A is A =
-

-
È

Î
Í

˘

˚
˙

3 1

2 2
, while

g z( )
( ) /

=
+

+
È

Î
Í

˘

˚
˙

z z

z z
1
2

2
2

1
2

2
2 1 3

.

14 (b). Using polar coordinates with z r z r1 2= =cos sinq q  and  , we obtain g z( ) / /= +r r2 3 8 31 .

14 (c). From part (b), g z z( ) / / // / / /= + = +r r r r r2 3 8 3 8 3 1 31 1 . Thus,

g z z( ) /  does not exist as z Æ 0. The system is not almost linear at z = 0.
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15 (a). For the system ¢ = +z z g zA ( ),

¢ = - + + +

¢ = - - + +

z z z z z z

z z z z z z

1 1 2 2 1
2

2
2

2 1 2 1 1
2

2
2

3

5

cos

cos ,

the coefficient matrix A is given by A =
-
- -

È

Î
Í

˘

˚
˙

1 3

1 5
, while g z( )

cos

cos
=

+
+

È

Î
Í
Í

˘

˚
˙
˙

z z z

z z z
2 1

2
2
2

1 1
2

2
2

.

15 (b). Using polar coordinates with z r z r1 2= =cos sinq q  and  , we obtain

g z( ) cos cos= +( ) + =z z z z r r1
2

2
2 2

1
2

2
2 2 2  or g z( ) cos= r r . (Also note that z = r .)

15 (c). From part (b), g z z( ) / cos / cos= =r r r r . Thus, g z z( ) / Æ 1 as z Æ 0. Therefore,
the system is not an almost linear system.

16 (a). For the given system ¢ = +z z g zA ( ), the coefficient matrix A is A =
-

-
È

Î
Í

˘

˚
˙

2 2

1 3
, while

g z( )
cos

sin
=

È

Î
Í

˘

˚
˙

z z z

z z z
1 2 2

1 2 2

.

16 (b). Using polar coordinates with z r z r1 2= =cos sinq q  and  , we obtain g z( ) cos sin= r2 q q .

16 (c). From part (b), g z z( ) / sin cos /= £r r r2 q q . Thus, g z z( ) / Æ 0  as z Æ 0. In
addition to the limit requirement, the system satisfies the other necessary conditions to be an
almost linear system.

16 (d). The eigenvalues of A are l l1 24 1= - = -  and  . Thus, by Theorem 8.4, z 0=  is an
asymptotically stable equilibrium point.

17 (a). For the system ¢ = +z z g zA ( ),

¢ = +
¢ = - +
z z z

z z z z
1 2 2

2

2 1 1 2

2

2 ,

the coefficient matrix A is given by A =
-

È

Î
Í

˘

˚
˙

0 2

2 0
, while g z( ) =

È

Î
Í

˘

˚
˙

z

z z
2
2

1 2

.

17 (b). Using polar coordinates with z r z r1 2= =cos sinq q  and  , we obtain

g z( ) cos sin sin= ( ) + = ( ) +z z z r r1 2

2

2
4 2 2 4 4q q q  or

g z( ) sin (cos sin ) sin= + =r r4 2 2 2 2q q q q . (Also note that z = r .)

17 (c). From part (b), g z z( ) / sin / sin= =r r r2 q q . Thus, g z z( ) / Æ 0  as z Æ 0. In
addition to the limit requirement, the system satisfies the other necessary conditions to be an
almost linear system.
(d) The eigenvalues of A are l l1 22 2= - =i i  and  . No conclusion can be drawn from Theorem
8.4 relative to the stability of ¢ = +z z g zA ( ).

18 (a). For the given system ¢ = +z z g zA ( ), the coefficient matrix A is A =
- -

-
È

Î
Í

˘

˚
˙

3 5

2 1
, while

g z( ) =
È

Î
Í
Í

˘

˚
˙
˙

- +

- +

z e

z e

z z

z z

1

2

1
2

2
2

1
2

2
2 .

18 (b). Using polar coordinates with z r z r1 2= =cos sinq q  and  , we obtain g z( ) = -re r .
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18 (c). From part (b), g z z( ) / = -e r . Thus, g z z( ) / Æ 1 as z Æ 0; the system is not almost
linear at z = 0.

19 (a). For the system ¢ = +z z g zA ( ),
¢ = + +

¢ = - - +

z z z z z

z z z z

1 1 2 1 2

2 1 2 1
2

9 5

7 3 ,

the coefficient matrix A is given by A =
- -

È

Î
Í

˘

˚
˙

9 5

7 3
, while g z( ) =

È

Î
Í

˘

˚
˙

z z

z
1 2

1
2 .

19 (b). Using polar coordinates with z r z r1 2= =cos sinq q  and  , we obtain

g z( ) cos sin cos= ( ) + = ( ) +z z z r r1 2

2

1
4 2 2 4 4q q q  or

g z( ) cos (cos sin ) cos= + =r r4 2 2 2 2q q q q . (Also note that z = r .)

19 (c). From part (b), g z z( ) / cos / cos= =r r r2 q q . Thus, g z z( ) / Æ 0  as z Æ 0. In
addition to the limit requirement, the system satisfies the other necessary conditions to be an
almost linear system.
(d) The eigenvalues of A are l l1 22 4= =  and  . Thus, by Theorem 8.4, z 0=  is an unstable
equilibrium point of the system.

20 (a). For the given system ¢ = +z z g zA ( ), the coefficient matrix A is A =
- -

È

Î
Í

˘

˚
˙

2 2

5 2
, while

g z( ) =
È

Î
Í

˘

˚
˙

0

1
2z

.

20 (b). Using polar coordinates with z r z r1 2= =cos sinq q  and  , we obtain g z( ) cos= r2 2 q .

20 (c). From part (b), g z z( ) / cos= r 2 q . Thus, g z z( ) / Æ 0  as z Æ 0. In addition to the
limit requirement, the system satisfies the other necessary conditions to be an almost linear
system.

20 (d). The eigenvalues of A are l l1 26 6= = -i i  and  . Thus, no conclusions can be drawn by
using Theorem 8.4.

21 (a). The system
¢ = - + +
¢ = - -
x x xy y

y x xy y2

can be expressed as ¢ = +z z g zA ( ) where the coefficient matrix A is given by A =
-

-
È

Î
Í

˘

˚
˙

1 1

1 2
,

z =
È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

z

z

x

y
1

2

, and g z( ) =
-

È

Î
Í

˘

˚
˙

z z

z z
1 2

1 2

. Since A is invertible, the solutions of

A Ae ez g z 0 z 0 g z+ = = - -( ) ( ) are vectors  such that 1  and therefore, we need g z 0( )e = . Clearly,
the only solution of g z 0 z 0( ) = = is e .

21 (b). The linearized system is ¢ =z zA  and we find that A has eigenvalues
l l1 22 618 0 382= - = -. .K K  and   we see that z 0=  is an asymptotically stable equilibrium
point of ¢ =z zA .
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21 (c). Using polar coordinates with z r z r1 2= =cos sinq q  and  , we obtain

g z( ) cos sin cos sin= ( ) = =2 2 21 2

2 4 2 2 2z z r rq q q q . (Also note that z = r .) Therefore,

g z z( ) / cos sin / cos= =2 22r r rq q q . Thus, g z z( ) / Æ 0  as z Æ 0. In
addition to the limit requirement, the system satisfies the other necessary conditions to be an
almost linear system.

21 (d). By Theorem 8.4, z 0=  is an asymptotically stable equilibrium point of the original system.
22 (a). The system has the form

¢ =

¢ = - +

x y

y x1 1 3 2( ) ./

22 (c). At an equilibrium point, the linearized system ¢ =z zA  has coefficient matrix

A
x

=
- +

È

Î
Í

˘

˚
˙

0 1

3 2 1 01 2( / )( ) / . Thus, at z = 0, A =
-

È

Î
Í

˘

˚
˙

0 1

3 2 0/
. The eigenvalues of A are

l l1 23 2 3 2= = -i i/ /  and   and hence the linearized system is stable but not asymptotically
stable at z = 0.

22 (d). Theorem 8.4 does not provide any information about the stability of the nonlinear system since
the eigenvalues of the linearized system ¢ =z zA  are purely imaginary.

23 (a). Multiplying by ¢x  we obtain ¢ ¢¢ = ¢ - +x x x x[ ( ) ]/1 1 3 2 . Integrating, we obtain
0 5 0 4 12 5 2. ( ) . ( ) /¢ = - +x x x . Therefore, with y x= ¢  we have y x x C2 5 22 0 8 1= - + +. ( ) / .

24 (a). At the equilibrium point (0, 0), the linearized system ¢ =z zA  has coefficient matrix

A =
-

-
È

Î
Í

˘

˚
˙

1 1

1 1
. Since A is not invertible, Theorem 8.4 does not apply.

24 (b). Let z =
È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

z

z

x

y
1

2

. For the given system ¢ = +z z g zA ( ), g z( )
/

/
=

-È

Î
Í

˘

˚
˙

z

z
1
2 3

2
1 32

. Using polar

coordinates, g z z( ) / cos sin/ / / /= +- -r r2 3 4 3 4 3 2 34q q . Thus, the limit of g z z( ) /  does

not exist as z Æ 0; The system is not almost linear at (0, 0).

27. In this case, a a a a g r g r11 12 21 22 1
3

2
30 1 1 0= = = - = = =, , , , cos , sina q a qand  . Thus, h r r( ) = a 2

and we obtain the system
¢ =
¢ = -
r ra
q

3

1 .
Solving, r t C t t t C( ) ( ) ( ) ./= - = - +-

1
1 2

22a q and   Hence, x C t t C= - - +-( ) cos( )/
1

1 2
22a  and

y C t t C= - - +-( ) sin( )/
1

1 2
22a .

28. So, a a a a g r g r11 12 21 22 1
2

2
21 0 0 1= = = = = =, , , , cos , sinq qand  . Thus, h r r( ) =  and we obtain

the initial value problem
¢ = + =

¢ = =

r r r r2 0 1

0 0 3

, ( )

, ( ) .q q
The solution is r e et t= - =( / ) / [ ( / ) ] , /2 3 1 2 3 3q p . However, the denominator in the
expression for r, 1 2 3- ( / )et , vanishes at 3 2/ = et . Solving for t, we have t = =ln . .1 5 0 405K.
Thus, the solution does not exist at t = 1.
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29. So, a a a a g r r g r r11 12 21 22 1
2

2
20 1 1 0= = = - = = - = -, , , , cos ln , sin lnq qand  . Thus, h r r( ) ln= - 2

and we obtain the initial value problem
¢ = - =
¢ = =
r r r r2 0 1

1 0 4

ln , ( )

, ( ) / .q q p
The general solution is r C e t Ct= = +-

1
2

2exp( ) , q . Imposing the initial conditions we arrive at
r e tt= - = +-exp( ) , /2 1 4q p . Hence, at t = 1, we find
x e= - + ª --exp( )cos( / ) .2 1 1 4 0 0896p K and y e= - + ª-exp( )sin( / ) .2 1 1 4 0 411p K

Section 8.6

1 (a). Since the eigenvalues are real and have opposite signs, y 0=  is an unstable saddle point.

1 (d). We have Y( ) [ , ]t e e
e e

e e
t t

t t

t t
= =

-
È

Î
Í

˘

˚
˙

-

-
l l1 2

1 2

2

2
x x  and ¢ =

-È

Î
Í

˘

˚
˙

-

-Y ( )t
e e

e e

t t

t t

2

2

2

2
.

Therefore, A t t
e e

e e

e e

e e

t t

t t

t t

t t
= ¢ =

-È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

-
-

-

- -

Y Y( ) ( )
. .

. .

. .

. .
1

2

2

2 22

2

0 5 0 5

0 5 0 5

0 5 1 5

1 5 0 5
.

2 (a). Since the eigenvalues are real and positive, y 0=  is an unstable node.

2 (d). We have Y( ) [ , ]t e e
e e

e e
t t

t t

t t
= =

-
È

Î
Í

˘

˚
˙l l1 2

1 2

2

2

2

2
x x  and ¢ =

-
È

Î
Í

˘

˚
˙Y ( )t

e e

e e

t t

t t

4

2 2

2

2
.

Therefore, A t t= ¢ =
-

-
È

Î
Í

˘

˚
˙

-Y Y( ) ( )
/ /

/ /
1

9 5 2 5

2 5 6 5
.

3 (a). Since both eigenvalues are real and positive, y 0=  is an unstable improper node.

3 (d). We have Y( ) [ , ]t e e
e

e
t t

t

t
= =

È

Î
Í

˘

˚
˙l l1 2

1 2

22 0

0 2
x x  and ¢ =

È

Î
Í

˘

˚
˙Y ( )t

e

e

t

t

4 0

0 2

2

.

Therefore, A t t
e

e

e

e

t

t

t

t
= ¢ =

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

-
-

-Y Y( ) ( )
.

.
1

2 24 0

0 2

0 5 0

0 0 5

2 0

0 1
.

4 (a). Since the eigenvalues are real and negative, y 0=  is an asymptotically stable node.

4 (d). We have Y( ) [ , ]t e e
e e

e
t t

t t

t
= =

È

Î
Í

˘

˚
˙

- -

-
l l1 2

1 2

2

0
x x  and ¢ =

- -
-

È

Î
Í

˘

˚
˙

- -

-Y ( )t
e e

e

t t

t

2

0

2

.

Therefore, A t t= ¢ =
-

-
È

Î
Í

˘

˚
˙

-Y Y( ) ( )1
2 1

0 1
.

5 (a). Since the eigenvalues are real and have opposite signs, y 0=  is an unstable saddle point.

5 (d). We have Y( ) [ , ]t e e
e e

e
t t

t t

t
= =

È

Î
Í

˘

˚
˙

-

-
l l1 2

1 2

2

0
x x  and ¢ =

-
-

È

Î
Í

˘

˚
˙

-

-Y ( )t
e e

e

t t

t

2

0
.

Therefore, A t t
e e

e

e e

e

t t

t

t t

t
= ¢ =

-
-

È

Î
Í

˘

˚
˙

-È

Î
Í

˘

˚
˙ =

-
-

È

Î
Í

˘

˚
˙

-
-

-

- -

Y Y( ) ( )1 2

0

2

0

1 4

0 1
.

6 (a). For A =
-
-

È

Î
Í

˘

˚
˙

1 6

1 4
, the eigenvalues are l l1 21 2= - = - and  .

6 (b). Since the eigenvalues are real and negative, y 0=  is an asymptotically stable improper node.
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7 (a). For A =
-

-
È

Î
Í

˘

˚
˙

6 10

2 3
, the eigenvalues are l l1 21 2= = and  .

7 (b). Since the eigenvalues are real and positive, y 0=  is an unstable improper node.

8 (a). For A =
-
-

È

Î
Í

˘

˚
˙

6 14

2 5
, the eigenvalues are l l1 21 2= = - and  .

8 (b). Since the eigenvalues have opposite sign, y 0=  is an unstable saddle point.

9 (a). For A =
- -

È

Î
Í

˘

˚
˙

1 2

5 1
, the eigenvalues are l l1 23 3= = -i i and  .

9 (b). Since the eigenvalues are complex with zero real part, y 0=  is a stable, but not asymptotically
stable, center.

10 (a). For A =
-
- -

È

Î
Í

˘

˚
˙

1 1

1 1
, the eigenvalues are l l1 21 1= - + = - -i i and  .

10 (b). Since the eigenvalues are complex with negative real part, y 0=  is an asymptotically stable
spiral point.

11 (a). For A =
-
-

È

Î
Í

˘

˚
˙

1 6

2 6
, the eigenvalues are l l1 23 2= - = - and  .

11 (b). Since the eigenvalues are real and negative, y 0=  is an asymptotically stable improper node.

12 (a). For A =
-È

Î
Í

˘

˚
˙

2 3

3 2
, the eigenvalues are l l1 22 3 2 3= + = -i i and  .

12 (b). Since the eigenvalues are complex with positive real part, y 0=  is an unstable spiral point.

13 (a). For A =
- -È

Î
Í

˘

˚
˙

2 4

5 2
, the eigenvalues are l l1 24 4= = -i i and  .

13 (b). Since the eigenvalues are complex with zero real part, y 0=  is a stable, but not asymptotically
stable, center.

14 (a). For A =
-

-
È

Î
Í

˘

˚
˙

7 24

2 7
, the eigenvalues are l l1 21 1= = - and  .

14 (b). Since the eigenvalues are real with opposite sigen, y 0=  is an unstable saddle point.

15 (a). For A =
-
-

È

Î
Í

˘

˚
˙

1 8

1 5
, the eigenvalues are l l1 21 3= = and  .

15 (b). Since the eigenvalues are real and positive, y 0=  is an unstable improper node.

16 (a). For A =
-
- -

È

Î
Í

˘

˚
˙

2 1

1 2
, the eigenvalues are l l1 22 2= - + = - -i i and  .

16 (b). Since the eigenvalues are complex with negative real part, y 0=  is an asymptotically stable
spiral point.

17 (a). For A =
- -

È

Î
Í

˘

˚
˙

2 4

4 6
, the eigenvalues are l l1 22 2= - = - and  .

17 (b). Since the eigenvalues are real and negative and A is not a multiple of the identity, y 0=  is an
asymptotically stable improper node.

18 (a). For A =
È

Î
Í

˘

˚
˙

3 0

0 3
, the eigenvalues are l l1 23 3= = and  .
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18 (b). Since the eigenvalues are real and positive and A is a multiple of the identity, y 0=  is an
unstable proper node.

19 (a). For A =
-

È

Î
Í

˘

˚
˙

1 2

8 1
, the eigenvalues are l l1 21 4 1 4= + = -i i and  .

19 (b). Since the eigenvalues are complex with positive real part, y 0=  is an unstable spiral point.

20 (a). For A =
- -È

Î
Í

˘

˚
˙

1 2

2 3
, the eigenvalues are l l1 21 1= = and  .

20 (b). Since the eigenvalues are real and positive and A is not a multiple of the identity, y 0=  is an
unstable improper node.

21 (a). For A1

2 1

1 2
=

-
-

È

Î
Í

˘

˚
˙, the eigenvalues are l l1 23 1= - = - and  . Since the eigenvalues are real

and negative, y 0=  is an asymptotically stable equilibrium point. Therefore, A1 corresponds to
Direction Field 2.

21 (b). For A2

1 2

2 1
=

- -
È

Î
Í

˘

˚
˙, the eigenvalues are l l1 23 3= - =i i and  . Since the eigenvalues are

complex with zero real part, y 0=  is a stable, but not asymptotically stable, center. Therefore,
A2  corresponds to Direction Field 4.

21 (c). For A3

2 1

1 2
=

- -
È

Î
Í

˘

˚
˙, the eigenvalues are l l1 23 3= - = and  . Since the eigenvalues are real

and have opposite sign, y 0=  is an unstable saddle point. Therefore, A3  corresponds to
Direction Field 1.

21 (d). For A4

1 2

2 1
=

-
È

Î
Í

˘

˚
˙ , the eigenvalues are l l1 21 2 1 2= - = +i i and  . Since the eigenvalues are

complex with positive real part, y 0=  is an unstable spiral point. Therefore, A4  corresponds to
Direction Field 3.

22. For a center, eigenvalues are purely imaginary. Therefore, a = -2.

23. Consider A =
-
-

È

Î
Í

˘

˚
˙

4

2 2

a
. The characteristic polynomial is p( ) ( )l l l a= + + -2 2 2 8 . Thus, the

eigenvalues are l a= - ± -1 9 2 . In order to have an asymptotically stable spiral point at
y 0= , we need complex eigenvalues with negative real parts. Thus, we need 9 2 0- <a  or
9 2/ < a .

24. Note that l l1 22 2= - = - and   no matter the value of a . Thus, y = 0 is always an
asymptotically stable equilibrium point; it will be a proper node if a = 0.

25. Consider A =
-
-

È

Î
Í

˘

˚
˙

4 2

4a
. The characteristic polynomial is p( ) ( )l l a= + -2 2 16 . Thus, the

eigenvalues are l a= ± -16 2 . In order to have a saddle point at y 0= , we need real
eigenvalues with opposite signs. Thus, we need 16 2 0- >a  or a < 8.
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26. Consider the nonhomogeneous system ¢ =
-

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙y y

1 4

1 1

3

2
. The system has a unique

equilibrium point given by y e =
-

È

Î
Í

˘

˚
˙

1

1
. Making the substitution z y y= - e, we obtain

¢ =
-

-
È

Î
Í

˘

˚
˙z z

1 4

1 1
. The eigenvalues of the coefficient matrix are l l1 21 2 1 2= + = -i i and  .

Therefore, z 0=  is an unstable spiral point and consequently, y y= e is an unstable spiral point
of the original system.

27. Consider the nonhomogeneous system ¢ =
- -

È

Î
Í

˘

˚
˙ +

-
È

Î
Í

˘

˚
˙y y

6 5

7 6

4

6
. The system has a unique

equilibrium point given by y e = -
- -

È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙ =

- -È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙ =

-
È

Î
Í

˘

˚
˙

-
6 5

7 6

4

6

6 5

7 6

4

6

6

8

1

. Making the

substitution z y y= - e, we obtain ¢ =
- -

È

Î
Í

˘

˚
˙z z

6 5

7 6
. The eigenvalues of the coefficient matrix

are l l1 21 1= - = and  . Therefore, z 0=  is an unstable saddle point and consequently, y y= e

is an unstable saddle point of the original system.

28. Consider the nonhomogeneous system ¢ =
-

-
È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙y y

5 14

3 8

2

1
. The system has a unique

equilibrium point given by y e =
È

Î
Í

˘

˚
˙

1

0 5.
. Making the substitution z y y= - e, we obtain

¢ =
-

-
È

Î
Í

˘

˚
˙z z

5 14

3 8
. The eigenvalues of the coefficient matrix are l l1 22 1= - = - and  . Therefore,

z 0=  is an asymptotically stable improper node and consequently, y y= e is an asymptotically
stable improper node of the original system.

29. Consider the nonhomogeneous system ¢ =
-È

Î
Í

˘

˚
˙ +

-
È

Î
Í

˘

˚
˙y y

1 0

0 2

2

4
. The system has a unique

equilibrium point given by y e = -
-È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙ =

-
È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

-
1 0

0 2

2

4

1 0

0 0 5

2

4

2

2

1

.
. Making the

substitution z y y= - e, we obtain ¢ =
-È

Î
Í

˘

˚
˙z z

1 0

0 2
. The eigenvalues of the coefficient matrix are

l l1 21 2= - = and  . Therefore, z 0=  is an unstable saddle point and consequently, y y= e is an
unstable saddle point of the original system.

30 (a). The characteristic equation is l l2
11 22 11 22 12 21 0- + + - =( )a a a a a a . The origin is a center if the

roots are purely imaginary. That is, if a a11 22 0+ =  and a a a a11 22 12 21 0- < .
30 (b). Note that f x y a x a y( , ) = +11 12  and g x y a x a y( , ) = +21 22 . Thus, f ax = 11 and g ay = 22 . By part

(a), f gx y= -  and hence the system is Hamiltonian.
30 (c). The converse is not true since the system can be Hamiltonian even though a a a a11 22 12 21 0- = .

32 (a). The eigenvalues of the coefficient matrix A =
-È

Î
Í

˘

˚
˙

2 1

5 2
 are l l1 23 3= = - and  .

32 (b). Since the eigenvalues are real with opposite sign, y 0=  is an (unstable) saddle point.
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32 (c). Since the system is Hamiltonian, we know that H x y x yy ( , ) = - +2 . Therefore,

H x y xy y q x( , ) . ( )= - + +2 0 5 2 . We determine q x( ) by differentiating H x y( , )  with respect to x,
finding H x y y q x x yx ( , ) ( )= - + ¢ = - -2 5 2 . Thus, ¢ = -q x x( ) 5  and so q x x C( ) .= - +2 5 2 .
Dropping the additive constant, we obtain a Hamiltonian function,
H x y x xy y( , ) . .= - - +2 5 2 0 52 2. The conservation law for the system is H x y C( , ) = .

33 (a). The eigenvalues of the coefficient matrix A =
- -

È

Î
Í

˘

˚
˙

1 3

3 1
 are l l1 22 2 2 2= - = -i i and  .

33 (b). Since the eigenvalues are complex with zero real part, y 0=  is a stable, but not asymptotically
stable, center.

33 (c). Since the system is Hamiltonian, we know that H x y x yy ( , ) = + 3 . Therefore,

H x y xy y q x( , ) . ( )= + +1 5 2 . We determine q x( ) by differentiating H x y( , )  with respect to x,
finding - - = - = - - ¢3x y H x y y q xx ( , ) ( ) . Thus, ¢ =q x x( ) 3  and so q x x C( ) .= +1 5 2 . Dropping
the additive constant, we obtain a Hamiltonian function, H x y xy x y( , ) . ( )= + +1 5 2 2 . The
conservation law for the system is H x y C( , ) = .

34 (a). The eigenvalues of the coefficient matrix A =
-

È

Î
Í

˘

˚
˙

2 1

0 2
 are l l1 22 2= = - and  .

34 (b). Since the eigenvalues are real with opposite sign, y 0=  is an (unstable) saddle point.
34 (c). Since the system is Hamiltonian, we know that H x y x yy ( , ) = +2 . Therefore,

H x y xy y q x( , ) . ( )= + +2 0 5 2 . We determine q x( ) by differentiating H x y( , )  with respect to x,
finding H x y y q x yx ( , ) ( )= + ¢ =2 2 . Thus, ¢ =q x( ) 0 and so q x C( ) = . Dropping the additive
constant, we obtain a Hamiltonian function, H x y xy y( , ) .= +2 0 5 2. The conservation law for
the system is H x y C( , ) = .

Section 8.7

1 (a). Consider the system
¢ = - -

¢ = - -

x x x xy

y y y xy

2

23 0 5. .
If y = 0, then all direction field filaments on the positive x-axis point towards
x = 1. Thus, x approaches an equilibrium value of xe = 1 as t increases. Similarly, if x = 0, then
y approaches an equilibrium value of ye = 1 3/  as t increases.
In each case, the presence of the xy term causes the derivative to decrease. Therefore, the
presence of the other species is harmful in each case.

1 (b). Rewriting the system as
¢ = - -
¢ = - -
x x x y

y y y x

( )

( . ) ,

1

1 3 0 5
we see that ¢ = = - - =x x x y0 0 1 0 if (i)   or (ii)  . In case (i), ¢ =y 0 if y y= =0 1 3 or  / . Thus,
two equilibrium points are ( , ) ( , )x y = 0 0  and ( , ) ( , / )x y = 0 1 3 . In case (ii), ¢ =y 0 if y = 0 (and
hence, x = 1) or if 1 3 0 5 0- - =y x.  (and hence x y x y+ = + =1 0 5 3 1 and  . ). Thus, case (ii)
leads us to two more equilibrium points ( , ) ( , )x y = 1 0  and ( , ) ( . , . )x y = 0 8 0 2 .
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1 (c). At the equilibrium point z 0= , the linearized system takes the form ¢ =
È

Î
Í

˘

˚
˙z z

1 0

0 1
. The

eigenvalues of the coefficient matrix are l l1 21 1= = and  . Since, z 0=  is an unstable proper
node of the linearized system, the original system is also unstable at y 0= .

2 (a). Consider the system
¢ = - -
¢ = - +
x x x

y y xy

2

.
If y = 0, then x approaches an equilibrium value of xe = 0 as t increases. If x = 0, then y
approaches an equilibrium value of ye = 0 as t increases.
The presence of y is a matter of indifference to x. The presence of x is beneficial to y.

2 (b). The only equilibrium point in the first quadrant is ( , ) ( , )x y = 0 0 .

2 (c). At the equilibrium point z 0= , the linearized system takes the form ¢ =
-

-
È

Î
Í

˘

˚
˙z z

1 0

0 1
. The

eigenvalues of the coefficient matrix are l l1 21 1= - = - and  . Since, z 0=  is an asymptotically
stable proper node of the linearized system, the original system is also asymptotically stable at
y 0= .

3 (a). Consider the system
¢ = - -

¢ = - - +

x x x xy

y y y xy

2

2 .
If y = 0, then all direction field filaments on the positive x-axis point towards x = 1. Thus, x
approaches an equilibrium value of xe = 1 as t increases. Similarly, if x = 0, then y approaches
an equilibrium value of ye = 0 as t increases. The presence of the xy term in the first equation
causes the derivative to decrease. Therefore, the presence of y is harmful to x. On the other
hand, the presence of the xy term in the second equation causes the derivative to increase.
Therefore, the presence of x is beneficial to y.

3 (b). Rewriting the system as
¢ = - -
¢ = - + -
x x x y

y y y x

( )

( ) ,

1

1
we see that ¢ = = - - =x x x y0 0 1 0 if (i)   or (ii)  . In case (i), ¢ =y 0 if y y= = -0 1 or  . The
latter possibility has been excluded and thus case (i) leads to a single equilibrium point,
( , ) ( , )x y = 0 0 . In case (ii), ¢ =y 0 if y = 0 (and hence, x = 1) or if 1 0+ - =y x  (and hence
x y x y+ = - =1 1 and  ). This second set of equations also has solution x = 1 and y = 0. Thus,
case (ii) leads us to one more equilibrium point ( , ) ( , )x y = 1 0 .

3 (c). At the equilibrium point z 0= , the linearized system takes the form ¢ =
-

È

Î
Í

˘

˚
˙z z

1 0

0 1
. The

eigenvalues of the coefficient matrix are l l1 21 1= - = and  . Since, z 0=  is an unstable saddle
point of the linearized system, the original system is also unstable at y 0= .
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4 (a). Consider the system
¢ = - +

¢ = - +

x x x xy

y y y xy

2

2 .
If y = 0, then x approaches an equilibrium value of xe = 1 as t increases. If x = 0, then y
approaches an equilibrium value of ye = 1 as t increases.
In both cases, the presence of one species is beneficial to the other species.

4 (b). The only equilibrium points in the first quadrant are ( , ) ( , )x y = 0 0 , ( , ) ( , )x y = 0 1 , and
( , ) ( , )x y = 1 0 .

4 (c). At the equilibrium point z 0= , the linearized system takes the form ¢ =
È

Î
Í

˘

˚
˙z z

1 0

0 1
. The

eigenvalues of the coefficient matrix are l l1 21 1= = and  . Since, z 0=  is an unstable proper
node of the linearized system, the original system is also unstable at y 0= .

5 (a). When y = 0, the assumed model reduces to ¢ = +x r x x1 11( )a . In this case, we see from the

figure, that ln ( ) . ln ( )x t t x= +0 5 0 . Differentiating, we obtain 
¢

=
x t

x t

( )
( )

.0 5 or ¢ =x x0 5. . Thus,

a1 10 0 5= = and  r . . Similarly, when x = 0, the model reduces to ¢ = +y r y y2 21( )a . In this case,

we see from the figure, that ln ( ) ln ( )y t t y= - + 0 . Differentiating, we obtain 
¢

= -
y t

y t

( )
( )

1 or

¢ = -y y . Thus, a 2 20 1= = - and  r . So far, we have deduced that the assumptions of the
population model imply it has the form

¢ = +
¢ = - +
x y x

y x y

0 5 1

1
1

2

. ( )

( ) .

b
b

Knowing the equilibrium point ( , ) ( , )x ye e = 2 3 , allows us to determine the last remaining
model parameters, b b1 2 and  . In particular, we know from the first equation that
0 5 1 3 2 01. ( )+ =b  while the second equation gives - + =( )1 2 3 02b . Consequently,
b b1 21 3 1 2= - = -/ / . and  

5 (b). From part (a), the model is given by
¢ = -
¢ = - +
x x xy

y y xy

( / ) ( / )

( / ) .

1 2 1 6

1 2
The presence of y causes ¢x  to decrease and hence y is harmful to x. The presence of x causes

¢y  to increase and hence x is beneficial to y.
6 (a). Consider the system

¢ = - - +
¢ = - -
x r x y x x

y r y x y

( )

( ) .

1

1

a b m
a b

The equilibrium points are ( , ) ( , )x y = 0 0 , ( , ) ( , )x y = -0 1a , ( , ) ( ( ), )x y r= +- -a m1 11 0 , and
( , ) ( ( ) , ( ))x y r r= + - - +- - -d a m b a b m1 1 11 1  where d a b= -2 2.

6 (b). If m  is chosen large enough so that b m a( )1 1+ >-r  then we see from part (a) that the
“coexisting species” equilibrium point is moved into the fourth quadrant and is therefore
physically irrelevant.
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6 (c). At z 0= , the linearized system has the form ¢ =
+È

Î
Í

˘

˚
˙z z

r

r

m 0

0
. The point z 0=  is an unstable

improper node. At the equilibrium point z =
È

Î
Í

˘

˚
˙

0

1 / a
, the linearized system is

¢ =
+ -

- -
È

Î
Í

˘

˚
˙

- -

-z z
r r

r r

( )1 01 1

1

m ba
ba

. The eigenvalues are l l m ba1 2
1 11= - = + -- -r r r  and  ( ). Since

the eigenvalues have opposite sign, the equilibrium point is an unstable saddle point. The
equilibrium point ( , ) ( ( ), )x y r= +- -a m1 11 0  is an asymptotically stable improper node since the
eigenvalues of the linearized system are negative and different:
l m l bm a ba1

1
2

1 11 1= - + = - -- - -r r r r( [ ( ) ])  and  .
6 (d). For the nonlinear system, ( , )0 0  and ( , )0 1a -  are unstable equilibrium points. The equilirium

point ( , ) ( ( ), )x y r= +- -a m1 11 0  is stable.
6 (e). It appears that the y species will be driven to extinction with the x species approaching the

limiting value a m- -+1 11( )r .
7 (a). Consider the system

¢ = - -
¢ = - - -
x r x y x

y r y x y y

( )

( ) .

1

1

a b
a b m

We see that ¢ = = - - =x x x y0 0 1 0 if (i)   or (ii)  a b . In case (i), ¢ =y 0 if
y y r r= = -0 or  ( ) / ( )m a . Thus case (i) leads to two equilibrium points, ( , ) ( , )x y = 0 0  and
( , ) ( ,( ) / ( ))x y r r= -0 m a . In case (ii), ¢ =y 0 if y = 0 or if 1 0- - - =( / )m a br y x . Thus case (ii)
leads to two equilibrium points, ( , ) ( / , )x y = 1 0a  and
( , ) ( [ ( )], [ ( )])x y r r= - - - + -- - - -d a b m d b a m1 1 1 11 1  where d a b= -2 2.

7 (b). If m > r, then 1 01- <-mr . In this case, we see from part (a) that the only physically relevant
equilibrium points are ( , ) ( , )x y = 0 0  and ( , ) ( / , )x y = 1 0a .

7 (c). At z 0= , the linearized system has the form ¢ =
-

È

Î
Í

˘

˚
˙z z

r

r

0

0 m
. Since we are assuming m > r,

the point z 0=  is an unstable saddle point. At the equilibrium point z =
È

Î
Í

˘

˚
˙

1

0

/ a
, the linearized

system is ¢ =
- -

- -
È

Î
Í

˘

˚
˙

-

-z z
r r

r r

ba
m ba

1

10
. The eigenvalues are l l m ba1 2

1= - = - - -r r r  and  .

Since both eigenvalues are negative, the equilibrium point is an asymptotically stable improper
node.

7 (d). For the nonlinear system, ( , )0 0  is unstable and ( , )a -1 0  is stable.
7 (e). If m > r, it appears that the y species will be driven to extinction with the x species approaching

the limiting value a -1.
8. The strategy of nurturing the desirable species leads to an equilibrium

x-population of a m- -+1 11( )r . This is greater than the equilibrium x-population of a -1 that
results from harvesting the undesirable species.
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9. Consider the population model
¢ = ± ± ± ±

¢ = ± ± ± ±
¢ = ± ± ±

x a x b x c xy d xz

y a y b y c xy d yz

z a z c xz d yz

1 1
2

1 1

2 2
2

2 2

3 3 3 .
Since x and y are mutually competitive, we need to choose a negative sign for c c1 2 and   (the
presence of x reduces the growth rate ¢y  and similarly the presence of y reduces the growth
rate ¢x ). The same argument applies to the signs of d d1 2 and   since the predator is harmful to x
and to y. The presence of the prey is beneficial to the predator z and thus we need to choose a
positive sign for c d3 3 and  .
So far, we have deduced

¢ = ± ± - -

¢ = ± ± - -
¢ = ± + +

x a x b x c xy d xz

y a y b y c xy d yz

z a z c xz d yz

1 1
2

1 1

2 2
2

2 2

3 3 3 .
We also know that, in the absence of the other two species, x and y each evolve towards a
nonzero equilibrium value. Thus, from the first equation, we know the term
± ± = ± ±a x b x x a b x1 1

2
1 1( )  has a positive zero, as does the corresponding term in the second

equation, ± ± = ± ±a y b y y a b y2 2
2

2 2( ) . From this fact, we infer that a b1 1 and   have opposite
signs, as do a b2 2 and  . The general solution of an equation of the form ¢ = +u au bu2 is
u Ae Bt Ct Dat= + + +- 2 . If a is negative, then u t t( ) Æ • Æ • as  . Hence, there cannot be a
nonzero equilibrium solution when a is negative. Applying this observation to the equations

¢ = ± ±x a x b x1 1
2  and ¢ = ± ±y a y b y2 2

2 , we deduce that a a1 2 and   are positive and b b1 2 and   are
negative. Likewise, in order that z decrease to zero in the absence of x and y, we need to have
a3 negative. In summary, we arrive at the following model which will support the
observations:

¢ = - - -

¢ = - - -
¢ = - + +

x a x b x c xy d xz

y a y b y c xy d yz

z a z c xz d yz

1 1
2

1 1

2 2
2

2 2

3 3 3 .
10 (a). Consider the system

¢ = - +
¢ = -
¢ = -

s si r

i si i

r i r

a g
a b
b g .

Summing these three equations, we obtain ¢ + ¢ + ¢ =s t i t r t( ) ( ) ( ) 0. Hence, s t i t r t( ) ( ) ( )+ +  is
constant, say s t i t r t N( ) ( ) ( )+ + =  where N denotes the size of the population.

10 (b). If those who recover are permanently immunized, then
¢ = -

¢ = -
¢ =

s si

i si i

r i

a
a b
b .

As in part (a), we can sum these equations and again conclude that s t i t r t N( ) ( ) ( )+ + = .
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10 (c). If some infected members perish, then
¢ = -

¢ = -
¢ = -

s si

i si i

r i r

a
a b
b g .

In this case, ¢ + ¢ + ¢ = -s t i t r t r t( ) ( ) ( ) ( )g . Thus, the population is not constant but rather is
decreasing.

11 (a). Consider the system
¢ = - +

¢ = -
¢ = -

s si r

i si i

r i r

a g
a b
b g .

Using the fact, from Exercise 10, that s i r N+ + = , we obtain a reduced system,
¢ = - + - -

¢ = -
s si N i s

i si i

a g
a b

( )

.
11 (b). For the given values, a b g= = = =1 9 and  N , the reduced system has the form

¢ = - + - -
¢ = -
s si i s

i si i

( )

.

9

Rewriting this system slightly,
¢ = - + - -

¢ = -
s si i s

i i s

9

1( ) .
We see that ¢ = = =i i s0 0 1 if (i)   or (ii)  . In case (i), ¢ =s 0 if s = 9. Thus case (i) leads to the
equilibrium point ( , ) ( , )s i = 9 0 . In case (ii), ¢ =s 0 if i = 4 . Thus case (ii) leads to the
equilibrium point ( , ) ( , )s i = 1 4 .

11 (c). At z =
È

Î
Í

˘

˚
˙

9

0
, the linearized system has the form ¢ =

- -È

Î
Í

˘

˚
˙z z

1 10

0 8
. The eigenvalues are

l l1 21 8= - =  and  . This equilibrium point is an unstable saddle point. At z =
È

Î
Í

˘

˚
˙

1

4
, the

linearized system has the form ¢ =
- -È

Î
Í

˘

˚
˙z z

5 2

4 0
. The eigenvalues are

l1 5 7 2 5 7 2= - - - +( ) / ( ) /i i  and  . This equilibrium point is an asymptotically stable spiral
point.

11 (d). ( , )9 0  is an unstable equilibrium point while ( , )1 4  is stable.


