Chapter 8
Nonlinear Systems

Section 8.1

1(a). For y’ +ty=siny’,y(0)=0,y’(0)=1, let y(t)=[yl(t)}=[y,(t)}. Thus,
».(0] [y

, | Y y’ ) »©O)| [ y©)| (O
Y= ,1=| ,|F .= ) , y(0)= =, A=,
Y y —ly +siny —ty, tsmy, y,(0) y'(0) 1

t’ b
1 (b). From part (a), f(r,y)= [fl( 7 )’2)}:[ yz_ } Therefore, the requested partial
fz(taylayz) —tyl+smy2
derivatives are % =0, % =1, % =—1, % =C0SY,.
9y, dy, ay, dy,
1 (c). There are no points in 3-dimensional space where the hypotheses of Theorem 8.1 fail to be
satisfied.

2(a). For y’+()’ +y"” =tan(¢/2),y(H=1,y’()=-2, let y(r):[y'(t)}:[y(t)}. Thus,

NOINELG)
, » _ Y2 _ 1
y= M‘ Lan(tu) -y - yi} Y= [—2}'

t’ 9
2 (). For f(t,y)=[f]( . yz)}, the requested  partial derivatives are
fz(t’ylayz)
ad e) 9 1 ;5 O
i:O, f\ =1,£=——y12/3, 2:—3)}5-
dy, ay, ay, 3 dy,

2 (c). The hypotheses of Theorem 8.1 are not satisfied at t=*2n+1)7r /2 and y, =0.
3(a). For y/+t'A+y+2y) " '=t"e",y(2)=2,y’2) =1, let

¥, (1) y(0)
= = .Th
Yo |:y2(t):| |:y,(t)j| *

, Iy Y y _ ¥,
y= vil |y’ [—'A+y+2y) " w1 | | A+ y, +2y)  + e |
2| [y@ | |2
2 = = = .
e [mz)} [y'(z)} m

_ H@y,Y,) _ Y2
3 (b). From part (@), £(1.y) = |:f2(ta)’1’y2)} - |:_t_l(1 +y+ 2)’2)_l + t_le_rj|'

Therefore, the requested partial derivatives are
%:0 %:1’ %: t_1(1+y1 +2y2)—2’ %

) =2t A+y, +2y,)7".
ayl ayz ayl ayz 1 ’
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3(c). The hypotheses of Theorem 8.1 are satisfied everywhere except on the planes 7=0 and

I+y +2y,=0.
4 (a). For y””’ +cos(ty’)=t(y""), y(0)=1,y’(0)=1,y”’(0) = -2, let
¥, (0 y(0) i s 1
y()=| YO |=| Y (®) |. Thus, y’ =| 5 |= Vs , y0)=| 1
ys(O | [0 yi ] |—cos(ty,) +y: -2
Ji(EY1.52,Y3)

4 (b). For f(1,y) =| /2(t:y1,¥,.5) |, the requested partial derivatives are
S3(831.52,¥3)

f O o A I
_:0,—: ,—:0,_:0,_:0,_:17
a9y, dy, day, o, 9y, 9;

of, oy . df;

=2 =0, == =tsin(ty,),=—=>=2

dy, Iy, gy, T

4 (c). The hypotheses of Theorem 8.1 are satisfied in all of #y,y,y, - space.
5(a). For y”’+2{"(y-2)"(y”+2)" =0,y(0)=0,y’(0)=2,y”(0)=2, let
y,(0) y(®)
y(O=|y,(0)|=] ¥ (1) |- Thus,
(O] [0

’

il |y y Y2
Y=y =1y |= y” = Y :
il 7] 2 0-97 07+ 200 (-2 (s + )
¥,(0) y©) | |0
y(©0)= yz(O)} y'(©0) |=]2].
y;(0) ] [Y'O)] [2
JiEY1,52,Y3) AR
5 (b). From part (a), £(2,y) =| f,(2,y,,,.¥3) |= A

f3(t,y1,y2,)73) _2t1/3(y1_2)_1(y2 +2)_1
Therefore, the requested partial derivatives are
Uy o, W,
9y, dy, dy,
Yoo Uy
ay, ay, dys

s

=1

s _o 9

—2=21"( =27 (3, +2) 7, =0, =207y, -2 (y,+2)7
ady, 9y, dy;

5(c). The hypotheses of Theorem 8.1 are satisfied everywhere except on the “hyperplanes” y, =2
and y, =-2.

6. Since y} =tcos’(y,)— 3y, +1*, it follows that the scalar problem is y”’ =tcos’(y’)—3y +1*,
y2)=1y'2)=-1.

7. Since y,=y,tany +e, it follows that the scalar problem is y”’=y’tany+e’,

y(©0)=0,y"0)=1.
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8. Since y,=y,y,+y;, it follows that the scalar problem is Y =yy +(")’,
yED ==Ly (-D)=2,y"(-)=—4.

9. Since y;=(y,y; +1’)"?, it follows that the scalar problem is y’”’=("y"+1)",
y) =1y 1)=1/2,y"1)=3.

11.  Laplace transforms cannot be productively used because the equation is nonlinear.

14 (a). Let a=m/(28). Then tanax = ax +(1/3)a’x’ +(2/15)a’x” +--- . Retaining the
first term of the Maclaurin series in equation (7), we have
mx”" + (2kd / m)tan(mx /20) = mx”’ + (2ko / w)(mx /1 20) = mx”” + kx .

14 (b). As in part (a), retaining the first two terms of the Maclaurin series in equation (7)
results in equation (8).

, i Y
14 (c). Equat 7b '= = .
(c). Equation (7) becomes y [yj {—(ZkS/mn)tan(n'yl /26)}
: Y Y
Equation (8) becomes y’ = [ , } = { }
Vol L=k Im)(y, + (x* 1126%)yy)

14 (d). The system version of equation (7) satisfies the hypotheses of Theorem 8.1
everywhere except along y, = +(2n +1)7 /2. The system version of equation (8)
satisfies the hypotheses of Theorem 8.1 everywhere in ty,y, - space

15 (a). Adding equations 3 and 4, we obtain % + % =0. Thus, using the linearity of differentiation,

+
d(cdt €) =0 and hence, c(¢) +e(?) = ¢, 1s a constant function.

15 (b). Substituting e(?) = e, — c(¢) in equations 1 and 3, we find
d d
?‘; = —ke,a(t) + ke(Ha(t) + ke(r) and ?j = kea(t) - ke(Da() — (K + k,)e(?).

15 (c). The hypotheses of Theorem 8.1 are satisfied for all points in (z,a,c) - space .

16 (a). At the instant shown in the figure,

(0) (1)
Vi = QIR + [ 7 dy =2 /3R’ + | m(R® ~ y*) dy
=(2/3)nR’ +7[R*y(1)— (1/3)(y(1)’].

16 (b). Equation (10) is physically relevant as long as —R< y(#) < R.

Section 8.2

1. For

x'=x(-1+y)
y'=y(l-x),

we see that x"=0 if (a) x=0or (b) y=1.1In Case (a), we have y’=0 only if y=0, yielding
the equilibrium point (x,y)=(0,0). In Case (b), we have y’=0 only if x=1, yielding the
equilibrium point (x,y) = (L,1).
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For

x'=y(x+3)

y=(x-D(y-2),
we see that x’=0 if (a) x=-3or(b) y=0. In Case (a), we have y'=0 only if y=2,
yielding the equilibrium point (x,y)=(-3,2). In Case (b), we have y’=0 only if x=1,
yielding the equilibrium point (x,y) = (1,0).
For

X'=(x-2)(y+1)

y=x’—4x+3,
we see that x’=0 if (a) x=2 or(b) y=—1.1In Case (a), we cannot have y’=0. In Case (b),
we have y'=0 only if x=lor x=3, yielding the equilibrium points
(x,y)=(1,=1) and (x,y) = (3,~1).
For

X'=(x-D)(y+1)

y'=(x-2)y,
we see that x’=0 if (a) x=1or(b) y=-1. In Case (a), we have y’=0 only if y=0,
yielding the equilibrium point (x,y) = (1,0). In Case (b), we have y’ =0 only if x =2, yielding
the equilibrium point (x,y)=(2,—1).
For

x'=x(x-2y)

Y =yBx-y),
we see that x"=0 if (a) x=0or(b) x=2y. In Case (a), we have y’=0 only if y=0,
yielding the equilibrium point (x,y)=(0,0). In Case (b), we have y’ =0 only if y =0, yielding
the same equilibrium point as in Case (a), (x,y)=(0,0).
For

xX'=y(y-x)

Y =x(x+2y),
we see that x" =0 if (a) y=0 or (b) y = x.In Case (a), we have y’ =0 only if x =0, yielding
the equilibrium point (x,y)=(0,0). In Case (b), we have y’=0 only if x=0, yielding the
same equilibrium point (x,y)=(0,0).
For

X =x+y>-8

y/ — x2 _ y2 ,
we see that y’ =0 if x*= yz. Using this requirement in the first equation, we see that x" =0
requires 2x*—8=0 or x=22. Since y==xx, we find 4 equilibrium points,
(2,2),(2,-2),(—2,-2),and (-2,2).
For

X' =x>+2y*-3

y =2x>+y* =3,
we see that x” =0 if x> =3—2y’. In this event, we have y’ =0 only if 2(3—2y*)+y*—-3=0.
Solving for y we obtain y=#*1. Then, since x> =3-2y”, we see that x =1 for each choice
of y. The equilibrium points are

(x,y)=(@LD,(=LD),d,=1),(=1,=1D.
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9.

10.

11.

12.

13.

14.

For
x'=y-1
V' =x(y+x)
Z,=y(2_z)7

we see that x” =0 requires y =1. Using this requirement in the second equation, we see that
y"=0 requires x(1+ x)=0. Thus, we need in Case (a) x =0 or in Case (b), x =—1. Finally,
7’=0 requires z=2 since y is nonzero. We obtain 2 equilibrium points,
(x,y,2)=(0,1,2) and (x,y,z) = (—1,1,2).
For

x'=z7"-1

y=z(1-2x+y)

Z==(l-x-y),
we see that x” =0 requires z = %1. Using this requirement in the second equation, we see that
y’ =0 requires 1-2x+ y=0 while z'=0 requires 1— x—y =0. Satisfying y’=0 and z'=0
therefore requires x =2/3 and y =1/3. Combining this requirement with z= %1, we obtain 2
equilibrium points,
(x,y,2)=(2/3,1/3,1) and (x,y,z)=(2/3,1/3,-1).
Making the substitution y, =y and y, =y’ the scalar equation can be expressed
as the system

V=Y,

Vi==n— W
Since y,=-y,(1+y,), we cannot have y;, =0 unless y, =0. Similarly, from the first equation,
y; =0 requires y, =0. Thus, the only equilibrium point is (y,,y,) = (y,y") =(0,0).
Making the substitution y, =y and y, =y’ the scalar equation can be expressed
as the system

V=Y,

y;=1=e"y,—sin’(ny,)
Thus, the equilibrium points are (y,,y,)=(y,y)=(n+0.5,0),n=0,£1,12,....
Making the substitution y, =y and y, =y’ the scalar equation can be expressed
as the system

V=Y,

yi=l=y/=20+y)"y,
From the first equation, y; =0 requires y, =0. Thus, in the second equation, y, =0 requires
1-y/ =0 or y,=%1. There are two equilibrium points
(>y2) = (3, =(1,0) and (y;,y,) = (y,y") = (=10).
Making the substitution y, =y, y,=y’, and y,=y" the scalar equation can be expressed as

the system
V=Y,
Y2 =5

y; =1+ y;—2siny,
Thus, the equilibrium points are
(¥1>¥2:¥3) = ((w /6) +2nm,0,0) and

(315Y,,¥3) = (57 /6)+2n1,0,0),n=0,£1,£2.... .
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15.

16.

17.

18.

19.

20.

21.

22 (a).
22 (b).
22 (a).

24.

Making the substitution y,=y,y,=y" and y,=y"", the scalar equation can be expressed as

the system
V=Y,
Yy =Ys

Yi=yy O —H2+yy)
From the first equation, y; =0 requires y, =0 while (by the second equation) y, =0 requires
v, =0. Having these requirements, the third equation tells us that y; =0 only if y =12.
Hence, There are two equilibrium points
G1sY2sy3) = (0553 = (2,0,0) and (,,y5,33) = (0,Y5y") = (<2,0,0).
Since (0,0) is an equilibrium point, we know =0 and 6=0. Similarly, since (2,1) is an
equilibrium point, we know 20t +2=0and y—-6=0.Thus, «=-1and y=6.
Since (1,1) is an equilibrium point, we know o+ f3+2=0and y+J—1=0. Similarly, since
(2,0) is an equilibrium point, we know 2a¢+2=0and 2y—-1=0. Thus, ¢=-1and y=1/2.
Using the equations derived from the equilibrium point (1,1), we have
—1+B+2=0and (1/2)+6—-1=0. Therefore, B=—1 and 6=1/2.
The slope of a phase plane trajectory is given by y’/x" = g(x,y)/ f(x,y), see equation (9). As
given, g2,1)/ f2,)=1 and g(,—-1)/f({1,—1)=0. Therefore, g(1,—1)=0 and so B=2.
Knowing B=2 and g(2,1)/ f(2,1)=1, we obtain (3+8)/2+oa)=1o0r 5/2+c)=1. Thus,
we obtain o = 3.
The slope of a phase plane trajectory is given by y’/x" = g(x,y)/ f(x,y), see equation (9). As
given, g(,l)/f(1,)=0 and gd,-1)/fd,—-1)=4. Therefore, g(1,1)=0 and so
2+y=0o0r y=-2. Knowing y=-2 and g(1-1)/f(—-1)=4, we obtain
Q-y)/(a—B+1)=4 or 1/(a—B+1)=1. Finally, since there is a vertical tangent at (0,—1)
we know f(0,—1)=0, and thus —+1=0. Using =1 along with the prior equation
1/(x—B+1)=1, we obtain a=1.
The slope of a phase plane trajectory is given by y’/x" = g(x,y)/ f(x,y), see equation (9). As
given, g(1,2)/ f(1,2)=1/6 and thus
1/6=g(1,2)/ f(1,2)=(—=14+0.5)/(5-2"). Solving for n, we obtain n = 3.
Making the substitution y, =y and y, =y’ the scalar equation can be expressed
as the system

V=Y,

Yi=y, =2y +o.
Since (y,,y,) = (2,0) is an equilibrium point, it follows that 2y’ =8 = c.
v=4i-3j
v=15i+j
v=-]

-9
For A= [ ! 9}, the eigenvalues are A, =—10 and A, =—-8 with corresponding eigenvectors

1 1
u = [ } and u, = [ } The general solution is
1 1

1 1
y(r) = clemt|: J + czegt[l} and hence all solution points are attracted to the origin. Thus, the

direction field corresponding to the given matrix is C.
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25.

26.

27.

28.

29 (a).

30 (a).

-1 3
J, the eigenvalues are A, =—4 and A4, =2 with corresponding eigenvectors

For A:{

1 1
u = [J and u, = [_J. The general solution is

1 1
y() = cle‘”[l} + czez’{ J and hence solution points that begin on the line y = x are attracted

to the origin whereas those that begin on the line y =—x are repelled away from the origin.
Thus, the direction field corresponding to the given matrix is B.
-4 6

For A=
or [6 4

}, the eigenvalues are A, =—10 and A, =2 with corresponding eigenvectors

1 1
u = [ } and u, = [ } The general solution is
1 1

1 1
y() = clelo’[ J + czez’[l} and hence solution points that begin on the line y = x are repelled

away from the origin whereas those that begin on the line y =—x are attracted to the origin.

Thus, the direction field corresponding to the given matrix is D.
4 2

For A=
ot b 4

}, the eigenvalues are A, =6 and A, =2 with corresponding eigenvectors
1 1 o
u = ! and u, = 1 . The general solution is

1 1
y() = cle6'[l}r 02€2t|:_1i| and hence solution points that begin on the line y = x are repelled

away from the origin as are those that begin on the line y=—x. Thus, the direction field

corresponding to the given matrix is A.
The phase plane point (¢,0) is an equilibrium point when ¢« is a root of

f=0.

Making the substitution y, =y and y, =y’ the scalar equation can be expressed
as the system
V=Y,
Yi=-yn-y
The nullclines are the lines y, =0 and y, =0. The only equilibrium point is the point (0,0).
Making the substitution y, =y and y, =y’ the scalar equation can be expressed
as the system
V=Y,
yi==yd=y).
The nullclines are the lines y, =0,y =%1, and y,=0. The equilibrium points are
(0,0),(-1,0),(1,0).
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31 (a).

32 (a).
33 (a).

34 (a).

35 (a).

36 (a).

Making the substitution y, =y and y, =y’ the scalar equation can be expressed
as the system

V=Y,

y,=1-2sin’y, .
The nullclines are the lines y,=+x(r/4)+nrm,n=0,£1,£2,...and the line y,=0 The
equilibrium points are (£(x /4)+nr,0),n=0,£1,£2.....
The nullclines are the lines y=3x—2 and y=x. These lines intersect at the point (1,1)
yielding the only equilibrium point.
The nullclines are the lines y=2—x and y = x. These lines intersect at the point (1,1) yielding
the only equilibrium point.
The nullclines are the lines y=2x—-2and y=4—x where f=0 and the line
y=(1/2)x where g=0. The lines f=0and g=0 intersect at the points
(4/3,2/3) and (8/3,4 /3) yielding the only equilibrium points.
The nullclines are the lines y=2x—-6and y=x, where f=0 and the line
y=—x,where g=0. The lines f=0and g=0 intersect at the points (0,0) and (2,-2)
yielding the only equilibrium points.
The nullclines are the curves y=1-x”and y=-1+x. These curves intersect at the
equilibrium points (-1,0) and (1,0).

Section 8.3

1 (a).

1 (b).

1 (c).

2 (a).

2 (b).

2 (c).

3 (a).

777

Given x”" 4+ 4x =0, multiply by x” to obtain x’x”" +4x’x =0. Integrating, we obtain
05(x")’ +2x*=C.

,_

The equation x”" +4x =0 can be expressed as With this notation, the conserved

y' =—4x.

quantity found in part (a) is 0.5y +2x” = C. The graph passes through the point (x,y) = (1,1)
when C=125.

At (1,1), the velocity vector is v= xi + y’j=1i—4j. The velocity vector is tangent to the graph
and indicates that the graph is traversed in the clockwise direction as ¢ increases.

Given x”"—(x +1)=0, multiply by x” to obtain x’x”" — x’(x +1) = 0. Integrating, we obtain
(x)—(x+1)*=C.

’

The equation x”” — (x +1) =0 can be expressed as With this notation, the conserved

’

y=x+1.

quantity found in part (a) is y* — (x +1)* = C. The graph passes through the point (x,y)= (1,1)
when C =-3.

At (1,1), the velocity vector is v= x"i + yj=1i+2j. The velocity vector indicates that the
solution point moves upward and to the right along the right branch of the hyperbola as ¢
increases.

Given x” + x* =0, multiply by x’ to obtain x’x”’ + x’x” = 0. Integrating, we obtain

0.5(x")* +025x* =C.
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3 (b).

3 (c).

4 (a).

4 (b).

4 (c).

5 (a).

5 (b).

5 (c).

6 (a).

6 (b).

6 (c).

9 (a).

The equation x”" + x* =0 can be expressed as x’ g , With this notation, the conserved
y==x".
quantity found in part (a) is 0.5y +0.25x* = C. The graph passes through the point
(x,y)=(1,1) when C=0.75.
At (1,1), the velocity vector is v= xi + y’j=1i— j. The velocity vector is tangent to the graph
and indicates that the graph is traversed in the clockwise direction as ¢ increases.
Given x” — (x” +7sinzx) = 0, multiply by x’ to obtain
x'x”” — x"(x* + wsinzmx) = 0 . Integrating, we obtain 2(x")* — (x* — 4 cosmx)=C.
x'=y

The equation x”’ — (x* + sinzx) = 0 can be expressed as With this notation,
q p

y = x’ +mwsinmx.

the conserved quantity found in part (a) is 2y*> — (x* — 4 cosmx) = C.

The graph passes through the point (x,y) = (1,1) when C =-3.

At (1,1), the velocity vector is v= xi + y’j=1+ j. The velocity vector indicates that the

solution point moves upward and to the right along the right branch of the graph as ¢ increases.

Given x” + x* =0, multiply by x’ to obtain x’x”’ + x’x” = 0. Integrating, we obtain

0.5(x')’ +(1/3)x*=C.

The equation x”" + x> =0 can be expressed as x’ g , With this notation, the conserved
y==x".

quantity found in part (a) is 0.5y +(1/3)x’ = C. The graph passes through the point

(x,y)=(,1) when C=5/6.

At (1,1), the velocity vector is v= xi + y’j=1i— j. The velocity vector is tangent to the graph

and indicates that the solution point moves “down the graph” as ¢ increases.

Given x” + x/(1+ x*)=0, multiply by x” to obtain x’x”" + x’x /(1+ x*)=0. Integrating, we

obtain (x)* +In(1+x*)=C.

’

X =Yy

The equation x”" + x/(1+ x*)=0 can be expressed as With this notation, the

y =—x/(1+x%).
conserved quantity found in part (a) is y*> +In(1+x”)=C.

The graph passes through the point (x,y)=(1,1) when C=1+1n2.

At (1,1), the velocity vector is v= x"i+ y’j=1i—0.5j. The velocity vector indicates that the
solution point moves clockwise along the curve as 7 increases.

Rewriting the conservation law in terms of x and x”, we have (x")* +x*cosx=C.
Differentiating with respect to ¢, we obtain 2x’x” +2x’xcosx — x°x’sinx =0 or
x’(2x” +2xcosx — x*sinx) = 0. Therefore, the differential equation is

x4+ xcosx—0.5x"sinx=0.
Rewriting the conservation law in terms of x and x’, we have (x")* — e =C. Differentiating
with respect to ¢, we obtain 2x'x”" — (e"x2 )(—2xx”) = 0. Therefore, the differential equation is
144 *Xz
X" +xe" =0.

x'=y

The equation x”’ + x + x° =0 can be expressed as The nullclines are the lines

’ 3
y=—x—x.

defined by y =0 and —x(1+ x*)=0; the lines y =0 and x =0. Thus, the only equilibrium
point is the point (x,y)=(0,0).
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9 (b).

9 (c).

10.
10 (a).

10 (b).

11.

12.

13 (a).

13 (b).

13 (©).

14 (a).

14 (b).

The velocity vector has the form v(x,y)= yi— (x + x°)j. Thus, we obtain v(I,1)=i-2j,
v(l,-1)=-i-2j, v(-L)=i+2j,and v(-1,-1)=—-i+2j.

Multiplying by x’, the equation becomes x’x”’ + x’(x + x”) = 0. Integrating, we obtain
0.5(x")* +0.5x” +0.25x* = C or 2y* +2x” + x* = C,. The graph of the conserved quantity
passes through the point (1,1) when C, = 5. The graph passes through the other three points and
is consistent with the sketch in part (b).

Since x” +ox =0 it follows that 0.5(x”)* +0.5cx” = C, and hence ax’ +y*=C.

Figure A is a circle of radius 2 and thus a=1and x* +y*=4.

Figure B is a hyperbola with asymptotes y = +x. Since (0, 2) is on the graph, we see that
o=-land y’—x*=4.

Figure C shows horizontal lines, y = 2. Thus, a=0.

The solution point in Figure A travels clockwise around the circle. Solution points in Figure B
move to the right on the upper branch and to the left on the lower branch. Solutions points in

Figure C move to the right on the upper line and to the left on the lower line.
In analogy with Exercise 9, multiply the equation y””” + f(y")=0 by y’’, obtaining

2 777

YY"+ y"f(y")=0. Integrating, we find 0.5y”" + F(y")= C where F(u) is an antiderivative
of f(u). Thus, the differential equation has a conservation law given by 0.5(y”")* + F(y")=C.

dE
(a) From the definition of E(?), it follows that o mx’x”" + kxx" = (mx”" + kx)x’”. From the

differential equation, mx”” + " + kx =0 and hence mx”” + kx = -y’ . Therefore,
dE
— ==y )x"<0.
5 -
(b) Energy is not conserved. On f-intervals where x’(¢) # 0, E(¢) is a decreasing function of ¢
and energy is being lost.
For the system
x'=2x
y'==2y
we have f(x,y)=2x and g(x,y)=-2y.Thus, f, =2 and g =-2.Since f, =-g ,the
system is Hamiltonian.
Let H(x,y) denote the Hamiltonian function. Thus, H (x,y)=-—g(x,y)=2y.Integrating with
respect to x, we obtain H(x,y)=2xy + p(y). Differentiating with respect to y in order to
determine p(y),we find H (x,y)=2x+ p'(y)= f(x,y)=2x. Therefore, p’(y)=0 and hence

p(y) = C is a constant function. Dropping the constant, we obtain a Hamiltonian function,
H(x,y)=2xy.
From part (b), the phase-plane trajectories are defined by 2xy = C. If a phase-plane trajectory
passes through the point (1,1), then C =2 and the trajectory is given by xy =1.
For the system

x"'=2xy

y ==y
we have f(x,y)=2xy and g(x,y)=-y’. Thus, f,=2y and g, =—2y.Since f =-g ,the
system is Hamiltonian.
Let H(x,y) denote the Hamiltonian function. Thus, H (x,y)=—g(x,y) = y’. Integrating with
respect to x, we obtain H(x,y)= xy” + p(y). Differentiating with respect to y in order to
determine p(y),we find H (x,y)=2xy+ p’(y)= f(x,y)=2xy.
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14 (c).

15 (a).

15 (b).

15 (©).

16 (a).

16 (b).

16 (c).

17 (a).

17 (b).

Therefore, p’(y)=0 and hence p(y)= C is a constant function. Dropping the constant, we
obtain a Hamiltonian function, H(x,y)= xy>.
From part (b), the phase-plane trajectories are defined by xy* = C. If a phase-plane trajectory
passes through the point (1,1), then C =1 and the trajectory is given by xy’=1.
For the system

X =x—x>+1

y=—=y+2xy+4x
we have f(x,y)=x—x"+1 and g(x,y)=-y+2xy+4x.Thus, f,=1-2x and g, =—1+2x.
Since f, =-g,,the system is Hamiltonian.
Let H(x,y) denote the Hamiltonian function. Thus, H (x,y)=-g(x,y)=y—2xy—4x.
Integrating with respect to x, we obtain H(x,y)= xy —x’y —2x" + p(y). Differentiating with
respect to y in order to determine p(y), we find
H (x,y)=x— x*+p'(y)= f(x,y)= x— x> +1. Therefore, p’(y)=1 and hence p(y)=y+C.
Dropping the additive constant, we obtain a Hamiltonian function,
H(x,y)=xy—x"y—2x"+y.
From part (b), the phase-plane trajectories are defined by xy — x’y —2x” +y = C. If a phase-
plane trajectory passes through the point (1,1), then C =—1 and the trajectory is given by
xy—x’y—2x"+y+1=0.
For the system

x'=-8y

vy =2x
we have f(x,y)=-8 and g(x,y)=2x.Thus, f, =0 and g =0.Since f, =-—g ,the system
is Hamiltonian.
Let H(x,y) denote the Hamiltonian function. Thus, H (x,y)= f(x,y)=-8y. Integrating with
respect to y, we obtain H(x,y)=—4y’ +g(x). Differentiating with respect to x in order to
determine ¢(x), we find H (x,y)=¢q’(x)=-2x. Therefore, g(x)= -x*+C. Dropping the
additive constant, we obtain a Hamiltonian function, H(x,y) = —x*—4 y2 .
From part (b), the phase-plane trajectories are defined by —x* — 4y” = C . If a phase-plane
trajectory passes through the point (1,1), then C =-5 and the trajectory is given by
x*+4y* =5,
For the system

x'=2ycosx

y’ = y’sinx
we have f(x,y)=2ycosx and g(x,y)=y’sinx.Thus, f =-2ysinx and g, =2ysinx. Since
f. =—8,,the system is Hamiltonian.

Let H(x,y) denote the Hamiltonian function. Thus, H (x,y)=—g(x,y) =—y’sinx. Integrating
with respect to x, we obtain H(x,y)= y’cosx + p(y). Differentiating with respect to y in order
to determine p(y), we find H (x,y)=2ycosx + p’(y)= f(x,y)=2ycosx. Therefore,

P’ (y)=0 and hence p(y)=C is a constant function. Dropping the constant, we obtain a
Hamiltonian function, H(x,y)= y’cosx.
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17 (¢).

18 (a).

18 (b).

18 (c).

19 (a).

19 (b).

19 (c).

20 (a).

20 (b).

20 (c).

From part (b), the phase-plane trajectories are defined by y’cosx = C. If a phase-plane
trajectory passes through the point (1,1), then C = cosl and the trajectory is given by
y*cosx = cosl.
For the system

xX'=2y—x+3

y =y+4x’-2x
we have f =-1 and g =1.Since f, =-—g ,the system is Hamiltonian.
Let H(x,y) denote the Hamiltonian function. Thus, H (x,y)= f(x,y) =2y — x + 3. Integrating
with respect to y, we obtain H(x,y) =y’ — xy — 3y + g(x). Differentiating with respect to x in
order to determine g(x),we find H (x,y)=-y+q (x)=—y— 4x” +2x . Therefore,
g(x)=—x" +x* + C. Dropping the additive constant, we obtain a Hamiltonian function,
H(x,y)=y —xy+3y—x*+x°.
If a phase-plane trajectory H(x,y)= C passes through the point (1,1), then the trajectory is
givenby y*—xy +3y—x* +x*=8.
For the system

x'=-2y

2

y =3x
we have f(x,y)=-2y and g(x,y)=3x".Thus, f,=0 and g,=0.Since f =-g ,the
system is Hamiltonian.

Let H(x,y) denote the Hamiltonian function. Thus, H_ (x,y)=—g(x,y) =-3x". Integrating
with respect to x, we obtain H(x,y)=—x"+ p(y). Differentiating with respect to y in order to
determine p(y),we find H (x,y)= p'(y)= f(x,y)=-2y. Therefore, p’(y)=-2y and hence

p(y)=-y” +C is a constant function. Dropping the additive constant, we obtain a
Hamiltonian function, H(x,y)=—-x"—y~.
From part (b), the phase-plane trajectories are defined by —x” — y* = C. If a phase-plane
trajectory passes through the point (1,1), then C =-2 and the trajectory is given by
X +yr=2.
For the system

x' = xe”

y' ==2x—ye"”
we have f, =e" +xye” and g =—-e" — xye” . Since f, =—g,, the system is Hamiltonian.
Let H(x,y) denote the Hamiltonian function. Thus, H (x,y)= f(x,y) = xe” . Integrating with
respect to y, we obtain H(x,y)=e" +g(x). Differentiating with respect to x in order to
determine g(x), we find H (x,y)= ye* +¢’(x)=2x + ye" . Therefore, g(x)= x>+ C.
Dropping the additive constant, we obtain a Hamiltonian function, H(x,y)=e" + x°.
If a phase-plane trajectory H(x,y)= C passes through the point (1,1), then the trajectory is
givenby e” +x*=1+e.
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21.

22.

23.

24.

25.

Consider the system

x’=x" +3sin(2x + 3y)

y =-3x*y—2sin(2x + 3y) .
Calculating the partial derivatives, we have f, = 3x”+6cos(2x + 3y) and
g = —3x*—6¢0s(2x + 3y). Since f, = -8, the system is Hamiltonian.
Let H(x,y) denote the Hamiltonian function. Thus,
H (x,y)=—g(x,y)=3x"y +2sin(2x + 3y) . Integrating with respect to x, we obtain
H(x,y)=x"y—cos(2x + 3y) + p(y). Differentiating with respect to y in order to determine
p(y),wefind H (x,y)= x° +3sin(2x +3y) + p’(y) = f(x,y) = x” + 3sin(2x + 3y) . Therefore,
p’(y)=0 and hence p(y)= C is a constant function. We obtain a Hamiltonian function,
H(x,y)=xy—cos(2x +3y).
Consider the system

X =e +y’

y ==V —x’.
Calculating the partial derivatives, we have f, = ye™ and g =—xe”. Since f, #—g,,the
system is not Hamiltonian.
Consider the system

x"=—=sin(2xy)— x

y =sinxy)+y.
Calculating the partial derivatives, we have f, =-2ycos(2xy)—1and g =2xcos(2xy)+1.
Since f, #-g,, the system is not Hamiltonian.
Consider the system

x =-3x" + xe’

Yy =6xy+3x—e¢ .
Calculating the partial derivatives, we have f, =—6x+e’ and g =6x—e¢’.Since f, =-g ,the
system is Hamiltonian. Let H(x,y) denote the Hamiltonian function. Thus,
H (x,y)=-g(x,y)=—-6xy—3x +¢’ . Integrating with respect to x, we obtain
H(x,y)=-3x"y—(3/2)x* + p(y). Differentiating with respect to y in order to determine p(y),
we find H (x,y)= -3x* + p’(y) = f(x,y)=-3x" + xe" . Therefore, p’(y)= xe’ and hence
p(y) = xe’ + C . Dropping the additive constant, we obtain a Hamiltonian function,
H(x,y)=-3x>y—(3/2)x*> + xe’.
Consider the system

x'=y

y=x—-x".
Calculating the partial derivatives, we have f, =0 and g =0. Since f, =-g ,the system is
Hamiltonian.
Let H(x,y) denote the Hamiltonian function. Thus, H (x,y)=—g(x,y) = x* — x. Integrating
with respect to x, we obtain H(x,y) = (1/6)(2x” —3x*) + p(y). Differentiating with respect to y
in order to determine p(y), we find H (x,y) = p’(y) = f(x,y) =y. Therefore, p’(y)=y and
hence p(y)=0.5y" + C. Dropping the additive constant, we obtain a Hamiltonian function,
H(x,y)=(1/6)2x> —3x>+3y?).
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26.

27.

28.

29.

30.

Consider the system

xX'=x4+2y

y=x"=2x+y.
Calculating the partial derivatives, we have f =1and g =1.Since f, #—g ,the system is not
Hamiltonian.
Consider the system

x'=f)

y'=g(x).

Calculating the partial derivatives, we have d,[f(y)]=0 and d [g(x)]=0. Since
d.[f(y)]=-0,[g(x)], the system is Hamiltonian.
Let H(x,y) denote the Hamiltonian function. Thus, H (x,y)=—g(x). Integrating with respect
to x, we obtain H(x,y)=—-G(x)+ p(y). Differentiating with respect to y in order to determine
p(y),wefind H (x,y)= p'(y)= f(y). Therefore, p(y)= F(y)+ C.Dropping the additive
constant, we obtain a Hamiltonian function, H(x,y) = F(y)— G(x).
Consider the system

x'=f(y)+2y

y =g(x)+6x.
Calculating the partial derivatives, we have d,[f(y)+2y]=0 and d [g(x)+6x]=0. Since
d.[f(y)+2y]=-0,[g(x)+6x], the system is Hamiltonian. Let H(x,y) denote the
Hamiltonian function. Thus, H (x,y)=-g(x)—6x. Integrating with respect to x, we obtain
H(x,y)=-G(x)—3x" + p(y). Differentiating with respect to y in order to determine p(y), we
find H (x,y) = p'(y)= f(y)+2y. Therefore, p(y)= F(y)+ y>+C. Dropping the additive
constant, we obtain a Hamiltonian function, H(x,y)=—-G(x)—3x" + F(y) + y°.
Consider the system

x'=3f(y)—2xy

Y =g(x)+y> +1.
Calculating the partial derivatives, we have 9 [3f(y)—2xy]=-2y and 9 [g(x)+y* +1]=2y.
Since 9 [3f(y)—2xy]=—0d,[g(x)+ y® +1], the system is Hamiltonian.
Let H(x,y) denote the Hamiltonian function. Thus, H (x,y)=—g(x)— y’ —1. Integrating with
respect to x, we obtain H(x,y)=—G(x)— y’x— x + p(y). Differentiating with respect to y in
order to determine p(y), we find H (x,y)=-2yx + p’(y) =3f(y)—2xy. Therefore,
p(y)=3F(y)+ C.Dropping the additive constant, we obtain a Hamiltonian function,
H(x.y)=3F(y)- G(x)=y’x—x.
Consider the system

x'=f(x—y)+2y

y=fx=y).
Calculating the partial derivatives, we have d [f(x—y)+2y]= f’(x—y) and
d,[f(x=y)]=~f"(x-y).Since d,[f(x—y)+2y]=—0,[f(x—y)], the system is Hamiltonian.
Let H(x,y) denote the Hamiltonian function. Thus, H (x,y)=—f(x—y). Integrating with
respect to x, we obtain H(x,y)=—F(x—y)+ p(y). Differentiating with respect to y in order to
determine p(y),we find H (x,y)= f(x—y)+ pP(y)=f(x—y)+2y.
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31.

Therefore, p(y)=y” + C. Dropping the additive constant, we obtain a Hamiltonian function,
H(x,y)==F(x=y)+y’.
Consider the composition K(x(t),y(t)). Differentiating with respect to ¢, we obtain

d _Kdr OKdy _ -
dtK(x(t),y(t)) = dr + oy di =—(ug)f +(f)g=0.Therefore, K(x(t),y(t)) is a conserved

quantity.

Section 8.4

1 (a).

1 (b).
2.

3 (a).

3 (b).

All points lying within the ellipse E having semi-major axis € and semi-minor axis €/2 lie
within the circle of radius €. Likewise, all points lying within the circle of radius €/2 lie
within the ellipse E. Therefore, given € >0, choose d=¢€/2.
The origin is not an asymptotically stable equilibrium point since the solution points remain on
an ellipse and do not approach the origin as ¢ — co.
The origin is an unstable equilibrium point. Any solution point starting near the origin will
follow a branch of the hyperbola and will eventually exit any circle centered at the origin.
Making the substitution y = x’, the scalar equation x”’ + 9+ x =0 can be expressed as the
system

x'=y

y==x—p.
The origin is the only equilibrium point for this system.
We analyze stability by appealing to Theorem 8.3. The system in part (a) has the form y’ = Ay

0 1
where A= [ 1 7}' The characteristic polynomial for A is p(1) = A> + A +1 and thus the

eigenvalues of A are A, = 0.5(—3/— NY - 4) and A, = O.5(—y+ NY - 4) .When y>-4>0, we
see that A, < A,. Thus, if 2<y,then A, <A, <0 which shows the origin is asymptotically
stable. On the other hand, if y < -2, then 0 < A, < A, which shows the origin is an unstable
equilibrium point. For —2 <y <2, the eigenvalues are complex with nonzero imaginary parts.
For -2 <y <0, the real parts of 4, and A, are positive, which shows the origin is an unstable
equilibrium point. Likewise, for 0 < ¥ < 2, the origin is an asymptotically stable equilibrium
point. When y =0, the origin is a stable (but not asymptotically stable) equilibrium point.
SRS
L 4 3 -
Thus, by Theorem 8.3, the origin is an unstable equilibrium point.
5 —14]
_3 _8 -
Thus, by Theorem 8.3, the origin is an asymptotically stable equilibrium point.
0
2

Thus, by Theorem 8._3, the origin is a stable equilibrium point but not an asymptotically stable
equilibrium point.

For the system y’ = y , the coefficient matrix has eigenvalues A, =—l and A, =1.

For the system y’ = y , the coefficient matrix has eigenvalues A, =—1and A, =-2.

For the system y’ =

-2
0 }y , the coefficient matrix has eigenvalues A, =2iand A, =-2i.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

For the system y’ =
A =1+2iand A,=
For the system y’ =
Thus, by Theorem 8
For the system y’ =
Thus, by Theorem 8
For the system y’ =

A =-2+3iand A,
equilibrium point.

For the system y’ =
Thus, by Theorem 8
For the system y’ =
Thus, by Theorem 8
For the system y’ =
by Theorem 8.3, the
For the system y’ =

A =—l+iand A, =
equilibrium point.

For the system y’ =

1

-3

1
-1
—2i.Thus, by Theorem 8.3, the origin is an unstable equilibrium point.
-7 3]

l}y , the coefficient matrix has eigenvalues

y . the coefficient matrix has eigenvalues 4, =—4 and A, =-2.

5 1
.:3, the or:igin is an asymptotically stable equilibrium point.
_97 _53 y , the coefficient matrix has eigenvalues A, =2 and A, =4.
3, the or:igin is an unstable equilibrium point.
_23 :? y, the coefficient matrix has eigenvalues

—2 —3i. Thus, by Theorem 8.3, the origin is an asymptotically stable

9 —4]
15 -7

y , the coefficient matrix has eigenvalues A4, =3 and 4, =-1.

.3, the origin is an unstable equilibrium point.

-13

-8
5 9 }y , the coefficient matrix has eigenvalues 4, =-3 and A, =-1.

3, the origin is an asymptotically stable equilibrium point.

3 =2

5 _3}y , the coefficient matrix has eigenvalues A, =i and A, =—i. Thus,

_origin is a stable (but not asymptotically stable) equilibrium point.

1 -5

] 3}y , the coefficient matrix has eigenvalues

—1-i. Thus, by Theorem 8.3, the origin is an asymptotically stable

}y , the coefficient matrix has eigenvalues 4, =—6 and A, =-2.
1 -5

Thus, by Theorem 8.3, the origin is an asymptotically stable equilibrium point.

Eigenvalues are A, =—2 and A, = 3. Since one of the eigenvalues is real and positive, the
origin is an unstable equilibrium point.

Eigenvalues are A, =2 and A, = 3. Since the eigenvalues are real and positive, the origin is an
unstable equilibrium point.

Eigenvalues are A, =—4 and A, =-2. Since the eigenvalues are real and negative, the origin is
an asymptotically stable equilibrium point.

Eigenvalues are A, =1—-2iand A, =1+ 2i. Since the eigenvalues are complex with positive
real parts, the origin is an unstable equilibrium point.

Eigenvalues are A, =—2i and A, =2i. Since the eigenvalues are purely imaginary, the origin is
a stable equilibrium point but it is not an asymptotically stable equilibrium point.

Eigenvalues are A, =—-2—2iand A, =-2+2i. Since the eigenvalues are complex with
negative real parts, the origin is an asymptotically stable equilibrium point.

Eigenvalues are A, =—2 and A, = 3. Since one of the eigenvalues is real and positive, the
origin is an unstable equilibrium point.
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23.

24 (a).
24 (b).

25.

26.

27.

28.

Eigenvalues are A, =-2 and A, =-3. Since the eigenvalues are real and negative, the origin is
an asymptotically stable equilibrium point.

Solving 0= Ay, +g,, it follows that y, =—A"'g, is the unique equilibrium point.

Let z(r)=y(¢)-y,. Then, 2’ =y’ = Ay + g, = Ay — Ay, = Az. Theorem 8.3 can be applied to
the new system z’ = Az.

-2 1

—4
| 2}y + [ ) }, the unique equilibrium point is

For the system y’ = [

—4 -2 -1|-4 -2
y, = —Al[ ) }: —(1/ 3)[ { 2}{ ) }: [ 0 } With the change of variable z(¢)=y(7) -y, the

-2 1 —4 -2 1 -2 1 —4
system becomes (z+y,) = — (z+y,)+ 5 orz' = i _2Z+ | - y,+ 5 |

-2
This last system reduces to the homogeneous system z’ = [ ! 2}2. The coefficient matrix

has eigenvalues A, =—3 and A, =—1.By Theorem 8.3, the origin is an asymptotically stable
equilibrium point of z" = Az and therefore, y, is an asymptotically stable equilibrium point of

-2 1 —4
the nonhomogeneous system y’ = [ | 2}y + [ ) }

0 1 2 2 1
For the system y’ = [ ] O}y + [J , the unique equilibrium point is y, = —AI[J = [ 2}. With

the change of variable z(#) = y(#) -y, the system reduces to the homogeneous system

0 1
7 = [ ] 0:|Z. The coefficient matrix has eigenvalues A, =i and A, =—i. By Theorem 8.3, the
origin is a stable but not an asymptotically stable equilibrium point of z’ = Az . Therefore, y, is
a stable but not an asymptotically stable equilibrium point of the nonhomogeneous system.

3 2 -2
For the system y’ = [ 4 3}y + [ ) }, the unique equilibrium point is

2| |3 2|2 2
y, = —Al[ ) }z [ 4 3 }[ ) }: [ 2}. With the change of variable z(7) = y(¢) -y, the system

) 3 2 2] 3 2] [3 2] .[?] o
+y,) = +y,)+ = + + .
ecomes (z+Y,) 4 3 (z+y,) S i BV BV \ P S 18

last system reduces to the homogeneous system z’ = [

}z. The coefficient matrix has

eigenvalues A, =—1and A, =1.By Theorem 8.3, the origin is an unstable equilibrium point of
z’ = Az and therefore, y, is an unstable equilibrium point of the nonhomogeneous system

L

-1 1 1 1 -3/5
For the system y’ = [ 10 S}y + {2} , the unique equilibrium point is y, = —Al[z} = [ g /5}-

With the change of variable z(7) = y(#) -y, the system reduces to the homogeneous system
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-10
8.3, the origin is an unstable equilibrium point of z" = Az. Therefore, y, is an unstable
equilibrium point of the nonhomogeneous system.

-1
7 = [ 5i|Z. The coefficient matrix has eigenvalues 4, =2 +iand A, =2—i.By Theorem

2 1 1
29. For the system y’=|1 1 2|y, the coefficient matrix has eigenvalues
1 21

A =-1,A1,=2,and A, =3.Thus, by the discussion following Theorem 8.3, the origin is an
unstable equilibrium point.

1 -1 0 2 2 4
30.  Forthesystem y’=|0 -1 2 |y+|0]|, the unique equilibrium pointis y, =—A"'[0 |=|6 |.
0 0 -1 3 3 3
With the change of variable z(7) = y(#) —y, the system reduces to the homogeneous system
1 -1 =2
z’=|0 -1 -2|z.The coefficient matrix has eigenvalues A, =1,A4, =—-1, and A,=-1.By
0 0 -1

Theorem 8.3, the origin is an unstable equilibrium point of z’ = Az. Therefore, y_ is an
unstable equilibrium point of the nonhomogeneous system.

(-3 =5 0 0
2 -10 - : .
31.  For the system y’ = 0 0 o0 2 y , the coefficient matrix has eigenvalues
0 0 20

A=-2+3i,A,= —2-3i, A, =2i,and A, =-2i.Thus, by the discussion following Theorem
8.3, the origin is a stable (but not asymptotically stable) equilibrium point.

01 0 O -1
10 0 0 20 . S o
32.  For the system y’ = 00 -1 0 y+ L unique equilibrium point is given by
00 0 -1 0
-1 -2
4 2 1 : :
y.=—-A L With the change of variables z(¢) = y(¢) -y, , the system reduces to the
0 0
01 0 O
100 - . :
homogeneous system z’ = 0 -1 z. The coefficient matrix has eigenvalues
0 0 0 -1

A =-LA,=-1, 4, =-1,and A, =1. Thus, by the discussion following Theorem 8.3, the
origin is an unstable equilibrium point.

34 (a). Since the coefficient matrix A is real and symmetric, it has real eigenvalues and a full set of
eigenvectors.
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34 (b). From the discussion following Theorem 8.3, the equilibrium point y, = 0 is isolated if and
only if det[A]# 0. Now, det[A]=1- o and therefore, y. =0 is an isolated equilibrium point
if and only if o # *1.

34 (c). When a =1 the equilibrium points lie on the line y = x. When o =—1 the equilibrium points
lie on the line y=—x.

34 (d). No, since the eigenvalues of A are real and not purely imaginary; see Theorem 8.3.

34 (e). The eigenvalues of A are 4, =—1+0a,and A, =—1-o. By part (b), if y, =0 is an isolated
equilibrium point, then o # 1. Clearly, both eigenvalues are negative when —1< o <1
whereas one of the eigenvalues is positive when |05 | >1.

1 a,|l 1
35. Since [ ]2}[ }: 2[ }, it follows that 1+2a,, =2 and a,, +2a,, = 4. From the first
a, G, |2 2
equation, we have a, =1/2. Since y = 0 is not an isolated equilibrium point, it follows that
det[A]=0. Thus, a,, — a,,a,, =0 or a,,—(1/2)a,, =0. This last equation, together with the
1 1/2
prior equation a,, + 2a,, = 4 tells us that a,, =2 and a,, =1.Thus, A= {2 | }
Section 8.5
1 (a). For the system
X =x"+y* =32
y=y-x,
S : 4 —4
the equilibrium points are y, = 4 and y, = 4l
—_ . o . : 2x 2y
1 (b). At an equilibrium point, the linearized system z’ = Az has coefficient matrix A = L1l
8 8
Thus, the linearized systems are (i) z’' = L1 z
46 2 -8 -8
z = zZ.
and (ii) 11

1 (c). Incase (i), the eigenvalues are A, =2.438... and A, =6.561... and thus the nonlinear system is
unstable at the corresponding equilibrium point y,. For case (i), the eigenvalues are
A, =-8.815... and A,=1.815... and thus the nonlinear system is unstable at the
corresponding equilibrium point y,.

2 (a). For the system

X' =x"+9y*-9

’
y =X,

0 0
the equilibrium points are y, = [J and y, = [ J.
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2 (b).

2 (c).

3 (a).

3 (b).

3(c).

4 (a).

4 (b).

4 (c).

2x 18y
o |

At an equilibrium point, the linearized system z’ = Az has coefficient matrix A = [

0 18 0 -18
Thus, the linearized systems are (i) z’' = L 0 z and (ii) z’ = {0 z

In case (i), the eigenvalues are A, =4.242... and A, =—-4.242... and thus the nonlinear system

is unstable at the corresponding equilibrium point y,. For case (ii), the eigenvalues are +34/2
and thus nothing can be inferred about the stability of the nonlinear system.

For the system

x =1-x

y/:x2+y2_2,

. : 1 -1 -1 1
the equilibrium points are y, = ] )y, = 1 Y, = n and y, = nt

—2x 0
At an equilibrium point, the linearized system z’ = Az has coefficient matrix A = [ ) ) }
X 2y

-2 0
Thus, the linearized systems are (i) z’' = [ ) Z}Z’

201 T2 0 20
(i1) z' = [_2 z}z, (i) z' = [_2 _2}2, and (iv) z' = [ ) _2}2.
In cases (i) — (iii), A =2 is an eigenvalue and thus the nonlinear system is unstable at each of
the corresponding equilibrium points y,. For case (iv), the eigenvalues are
A, =-2 and A, =-2 and thus the nonlinear system is asymptotically stable at the
corresponding equilibrium point y,.
For the system
xX'=x—-y-1

y/:x2_y2+1’

0
the equilibrium pointis y, = [ J.

I -1
At the equilibrium point, the linearized system z’ = Az has coefficient matrix A= [2 ) }
X =2y

1 -1
Thus, the linearized system is z" = [O ) }z.

The eigenvalues are A, =1and A, =2 and thus the nonlinear system is unstable at the
equilibrium point y, .
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5 (a).

5 (b).

5 (c).

6 (a).

6 (b).

6 (c).

7 (a).

7 ().

For the system
x'=(x=2)(y-3)

y=@+2y)(y-1,

e : 2 2 —6
the equilibrium points are y, = | LY, = b and y, = 3 |
At an equilibrium point, the linearized system z’ = Az has coefficient matrix

. Py t c (] c t )

., |72 0 dain 720 8
(i1) z' = 0 4 z,and (iii) z" = s 4 Z.
In case (i), the eigenvalues are A, =—4 and A, =—4 and thus the nonlinear system is
asymptotically stable at the corresponding equilibrium point y,. For case (i), the eigenvalues
are A, =—2 and A, =4 and thus the nonlinear system is unstable at the corresponding
equilibrium point y, . In case (iii), the eigenvalues are A, =2+ 2+/3i and A,=2— 2+/3i. Thus
the nonlinear system is unstable at the corresponding equilibrium point y, .
For the system

x'=(x=y)y+D)

Y=(x+2)(y-4),

S : —2 4 —2
the equilibrium points are y, = 5 y, = 4l and y, = Ll
At an equilibrium point, the linearized system z’ = Az has coefficient matrix

+1 x-2y-1
A= Yy y

y—4 xX+2

. ’r_ 5 5 d (i ,_ 0 -1
(i1) z' = 0 6 z,and (iii) z' = 5 0 Z.

In case (i), the eigenvalues are —0.5 £0.5i V23 and thus the nonlinear system is asymptotically
stable at the corresponding equilibrium point y,. For case (ii), the eigenvalues are
A, =5 and A, =6 and thus the nonlinear system is unstable at the corresponding equilibrium

-1 1
}. Thus, the linearized systems are (i) z’' = [ 6 O}Z’

point y,. In case (iii), the eigenvalues are +4/5 . Thus the nonlinear system is unstable at the
corresponding equilibrium point y,.
For the system

x'=(x=2y)(y+4)

y'=2x-y,

0 -2
the equilibrium points are y, = [O} and y, = {_4}.
At an equilibrium point, the linearized system z’ = Az has coefficient matrix

y+4 x—-4y-8
s

- [O 6 }
and (ii) z’ = Z.

4 -8
}. Thus, the linearized systems are (i) z’' = [2 Jz,

2 -1
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7 (c).

8 (a).

8 (b).

8 (¢).

9 (a).

9 (b).

9 (c).

10.

In case (i), the eigenvalues are A, =0.5(3++39i) and A, =0.5(3—+/39i) and thus the
nonlinear system is unstable at the corresponding equilibrium point y,. For case (ii), the
eigenvalues are A, =—4 and A, = 3 and thus the nonlinear system is unstable at the
corresponding equilibrium point y,.
For the system

x'=xy—1

Y= +4y)(x-1),

1

the equilibrium pointis y, = L}

At the equilibrium point, the linearized system z’ = Az has coefficient matrix

X I 1
A= y . Thus, the linearized system is z’ = Z.
2x+4y—-1 4(x-1) 50
The eigenvalues are 0.5(1 +4/21 ) and thus the nonlinear system is unstable at the equilibrium
point y,.
For the system
X =y’ —x
y = x2 =Y,

0 1
the equilibrium points are y, = [O} and y, = [J

-1 2
At an equilibrium point, the linearized system z’ = Az has coefficient matrix A = [2 ﬂ
x —

-1 0
Thus, the linearized systems are (i) z’' = [ }z ,

0 -1
46 2 -1 2
and (ii) z' = y 1 Z.

In case (i), the eigenvalues are A, =—1and A, =-1 and thus the nonlinear system is
asymptotically stable at the corresponding equilibrium point y,. For case (i), the eigenvalues
are A, =-3 and A, =1 and thus the nonlinear system is unstable at the corresponding
equilibrium point y, .
At an equilibrium point, the linearized system z’ = Az has coefficient matrix
A/2)[1-=x—-(1/2)y] —-(1/4)x
_[ -(1/12)y A/4)1-A/3)x—(4/3)y]

0 1/2 0 0 1/8 0
, 2 = z, (ii) at , 2 = zZ,
0 0O 1/4 3/2 -1/8 -1/4

2 -1/2 -1/2
(iii) at ol 7z = 0 112 z. Thus, in all three of these cases, the system is

unstable at the corresponding equilibrium point.

}. Thus, the linearized systems are: (i) at
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11 (c).

12 (a).

12 (b).

12 ().

12 (d).

13 (a).

13 (b).

13 (©).

13 (d).

14 (a).

14 (b).

14 (c).

By Taylor’s theorem, f(z)= f(0)+ f’(0)z+ f”’(y)z> /2 where 7 is between z and 0. For
f(z)=sinz, we have sinz, —z, = (—sin 7)212 /2 where 7y is between z, and 0. Now,

||g(z) || /|| z || = | = sinzl| INZ + 75 < |z1 - sinzl| /|z1|. So, by the remarks above,
||g(z) || /|| z || < ‘le /2‘ /| zl| = | z1| /2. Hence, since |Z1| /2 goes to 0 as z goes to 0, the system is

almost linear at both equilibrium points.

—4
} , while
7

For the given system z’ = Az + g(z), the coefficient matrix A is A= [1

5
g(Z)—{O}-

|| g(z) || = z;, or using polar coordinates with z, = rcos@ and z, = rsin@, we obtain
|| g(z) || =r’sin 6.
From part (b), || g(z) || /|| y/ || =r’sin’@/r=rsin* 0. Thus, | g(z) || /|| z || —0 as || z || —0.In
addition to the limit requirement, the system satisfies the other necessary conditions to be an
almost linear system.
The eigenvalues of A are A, =—1 and A, = 3. Thus, by Theorem 8.4, z=0 is an unstable
equilibrium point.
For the system z’ = Az +g(z),

3/=5z 14z, + 22,

5=35-8%,+z +z;,
- . o 5 -14 . 42,
the coefficient matrix A is given by A= ,while g(z)=| , ~,|.
3 -8 3 +3
Using polar coordinates with z, = rcosf and z, = rsin@, we obtain

|| g(z) || = \/(zlzz)2 + (le + zf)z = \/(r2 cos@sine)2 + (r2)2 or || g(z) || = \/r4 (cos*Osin’ 0 +1).
(Also note that || z || =r.)

From part (b), || g(z) || /|| zZ || = \/r“(cos2 Osin*0+1) /r< P2 1r=r2. Thus, | g(z) || /|| z || -0
as || // || — 0. In addition to the limit requirement, the system satisfies the other necessary

conditions to be an almost linear system.
The eigenvalues of A are A, =—2 and A, =—1. Thus, by Theorem 8.4, z=0 is an
asymptotically stable equilibrium point.

For the given system z’ = Az + g(z), the coefficient matrix A is A= {_2 2} , while

2 2

7 T2,

g(z) = :
(ZIZ + Z;)I/S

Using polar coordinates with z, = rcos@ and z, =rsin@, we obtain || g(z) || =1+

From part (b), g(z)” /|| z|| = rm\/l +r% Ir= \/1+ r¥3 /' Thus,
|| g(z) || /|| z || does not exist as || z || — 0. The system is not almost linear at z = 0.
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15 (a).

15 (b).

15 (©).

16 (a).

16 (b).

16 (c).

16 (d).

17 (a).

17 (b).

17 (¢).

18 (a).

18 (b).

For the system z’ = Az +g(z),
7 =—7+32,+2,c08+/2 + 2
’ 2 2
25 =—7,—5z,+z,c08+/2  +2; ,
Z,C084/7] + zf]

3
the coefficient matrix A is given by A= [ } , while g(z) = .
-1 =5 z,co8+7 + 2,

Using polar coordinates with z, = rcos8 and z, = rsin@, we obtain

|| g(z) || = \/(zf + zf)cos2 \/zf +z7) = \/r2 cos’r or || g(z) || = r| cosr|. (Also note that || z || =r.)
From part (b), g(z)” /|| z||: r| cosr|/r= |c0sr|. Thus,
the system is not an almost linear system.

g(z) || /|| z || —1 as || zZ || — 0. Therefore,

2

For the given system z’ = Az + g(z), the coefficient matrix A is A= {_1 3} , while

42, €082,
z2,8inz, |

g(z)= [

Using polar coordinates with z, = rcos@ and z, = rsin@, we obtain || g(z) || = r2| cosOsin9|.
From part (b), g(z)” /|| z|| = r2|sin0c059|/r <r.Thus, g(z)”/”z” —0 as || z|| —0.In
addition to the limit requirement, the system satisfies the other necessary conditions to be an
almost linear system.

The eigenvalues of A are A, =—4 and A, =-1.Thus, by Theorem 8.4, z=0 is an
asymptotically stable equilibrium point.

For the system z’ = Az +g(z),

7 =2z,+2;
5, ="27+22,,
. o { 0 2} : [ z }
the coefficient matrix A is given by A= , while g(z) = .
-2 0 22,

Using polar coordinates with z, = rcos8 and z, = rsin@, we obtain
|| g(z) || = \/(2122)2 +z; = \/(r2 cos(9sin9)2 +7r*sin* @ or
|| g(z) || = \/r4 sin® O(cos” 0 +sin” @) = r2| sin@ | . (Also note that || Z || =r.)
From part (b), g(z)”/” z|| = r2|sin0|/r: r| sin0|. Thus, g(z)”/”z” —0 as || z|| —0.In
addition to the limit requirement, the system satisfies the other necessary conditions to be an

almost linear system.
(d) The eigenvalues of A are A, =—2i and A, =2i.No conclusion can be drawn from Theorem

8.4 relative to the stability of z’ = Az + g(z).

-5

For the given system z’ = Az + g(z), the coefficient matrix A is A= {_2 J , while

z e—\/z,2+z22
(=" : |-

2,€

Using polar coordinates with z, = rcosf and z, = rsin@, we obtain || g(z) || =re".
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18 (c).

19 (a).

19 (b).

19 (c).

20 (a).

20 (b).
20 (c).

20 (d).

21 (a).

21 (b).

g(z) || /|| // || —1as || // || — 0; the system is not almost

From part (b),

linear at z = 0.

For the system z’ = Az +g(z),
4 =92 +52,+ 22,

g(z) || /|| Z || =e¢ . Thus,

=Tz -3z, +7,

.. . .. 9 5 . 42,
the coefficient matrix A is given by A= 7 3l while g(z)=| , |
Using polar coordinates with z, = rcos8 and z, = rsin@, we obtain
|| g(z) || = \/(ZIZZ)2 +z' = \/(r2 cos(9sin0)2 +7r*cos* @ or

|e@) = \/r4 cos’ O(cos’ 0 +sin” ) = r*|cos 8. (Also note that |[z]=r.)
From part (b), g(z)”/” z|| = r2|cose|/r: r|cost9|. Thus, g(z)”/”z” —0 as || z|| —0.In
addition to the limit requirement, the system satisfies the other necessary conditions to be an

almost linear system.
(d) The eigenvalues of A are A, =2 and A, =4.Thus, by Theorem 8.4, z= 0 is an unstable

equilibrium point of the system.

2

s _2} , while

For the given system z’ = Az + g(z), the coefficient matrix A is A= {

0
g(Z)=[ 2}.
g

Using polar coordinates with z;, = rcos@ and z, = rsin@, we obtain || g(z) || =r’cos’ 6.
From part (b), || g(z) || /|| z || =rcos’ 0. Thus, | g(z) || /|| z || —0 as || z || — 0. In addition to the
limit requirement, the system satisfies the other necessary conditions to be an almost linear
system.

The eigenvalues of A are A4, =iv6 and A, =—i~6. Thus, no conclusions can be drawn by
using Theorem 8 4.

The system
X'=-x+xy+y
y'=x—xy=2y

-1 1
can be expressed as z’ = Az + g(z) where the coefficient matrix A is given by A = [ ! 2} ,

2, —44;
Az +g(z) = 0 are vectors z, such that 0=—A"'g(z,) and therefore, we need g(z,)=0. Clearly,
the only solution of g(z)=01isz, =0.
The linearized system is z' = Az and we find that A has eigenvalues
A, =-2618... and A,=-0.382... we see that z =0 is an asymptotically stable equilibrium
point of z’' = Az.

3 X 42y . .. . .
z= = ,and g(z)= . Since A is invertible, the solutions of
y
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21 (c).

21 (d).
22 (a).

22 (c).

22 (d).
23 (a).

24 (a).

24 (b).

27.

28.

Using polar coordinates with z, = rcos8 and z, = rsin@, we obtain

|| g(z) || = 1/2(z1z2)2 =2r* cos’ Bsin’ @ = 2 r2| cosOsin@
||g(z)||/|| z|| = «Er2|cos0sin9|/r= \Er|c0s9| . Thus, g(z)||/||z|| —0 as || z|| —0.In
addition to the limit requirement, the system satisfies the other necessary conditions to be an
almost linear system.

By Theorem 8.4, z=0 is an asymptotically stable equilibrium point of the original system.
The system has the form

. (Also note that || z || =r.) Therefore,

x'=y
y=1-(1+x)".
At an equilibrium point, the linearized system z’ = Az has coefficient matrix
0 1
A= [_(3 121+ x) O}' Thus,atz=0, A= [_3 /n O}' The eigenvalues of A are

A= iv3/2 and A, = —i+/3/2 and hence the linearized system is stable but not asymptotically
stable at z = 0.

Theorem 8.4 does not provide any information about the stability of the nonlinear system since
the eigenvalues of the linearized system z’ = Az are purely imaginary.

Multiplying by x” we obtain x’x”" = x’[1—(1+ x)**]. Integrating, we obtain

0.5(x")> = x—0.4(1+ x)*?. Therefore, with y = x” we have y*=2x-0.8(1+x)"*+C.

At the equilibrium point (0, 0), the linearized system z’ = Az has coefficient matrix

1 -1
A= { 11 } Since A is not invertible, Theorem 8.4 does not apply.

2/3

Z X -
Let z= [ l }: [ } For the given system z’ = Az + g(z), g(z) = {;11/3 } Using polar
z y Z

2 2

g(z) || /|| zZ || = \/r"z/3 cos*? @+ 4r™*"sin*? 0 . Thus, the limit of || g(z) || /|| z || does
not exist as || z || — 0; The system is not almost linear at (0, 0).

coordinates,

In this case, @, =0,a,=1,a,, =-1,a,, =0, g = oo’ cosf,and g, =cr’sinf. Thus, h(r)=or’
and we obtain the system

v =ar’

0=-1.
Solving, r(¢)=(C,—20t)""* and 6(f)=—t+ C,.Hence, x = (C,—20t)""* cos(—t + C,) and
y=(C,=20t)"*sin(=t+C,).
So, a,=1,a,=0,a, =0,a,,=1,g =r’cos@,and g, =r’sin@. Thus, h(r)=r and we obtain
the initial value problem

P=r+r*, r(0)=1

6'=0, 60)=+3.
The solution is r=(2/3)e’ /[1-(2/3)e'], 6 =m /3. However, the denominator in the

expression for r, 1—(2/3)e’, vanishes at 3/2=¢". Solving for 7, we have t=1n1.5=0.405....
Thus, the solution does not exist at r = 1.
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29.  So, a,=0,a,=1,a,=-1,a,,=0,g =—rcosBInr’,and g, =—rsin@lnr’. Thus, h(r)=—Inr’
and we obtain the initial value problem
r'==2rlnr, r(0)=1
0=1,00)=r/4.
The general solution is = C,exp(e "), 8= t+ C,. Imposing the initial conditions we arrive at
r=exple” —1), O=t+m/4.Hence,at t=1, we find
x=exp(e” —1)cos(l1+7m/4)=—-0.0896... and y=exp(e” —1)sin(l+7/4)=0.411...
Section 8.6
1 (a). Since the eigenvalues are real and have opposite signs, y = 0 is an unstable saddle point.
2t ~t 2 2t _ -t
1(d). We have W(1) = [e"'x, .e"'x,] = {ezt ¢ } and W (1) :[ < }
e’ - e e
2¢”" —e ' |05 05| [05 15
Therefore, A=W ()Y '(=| _, B = )
2¢7 e | 05" —0.5¢ 15 05
2 (a). Since the eigenvalues are real and positive, y = 0 is an unstable node.
t 2 2t t 4 2t
2(d). Wehave W(r)=[e'x,.e"x,]=| ¢ |and wn=| 7|
2¢' —e” 2¢' —2e”
Therefore, A=W/~ (=] . -
refore, A= = .
Sreore 2/5 6/5
3 (a). Since both eigenvalues are real and positive, y = 0 is an unstable improper node.
2" 0 4 0
3(d). We have W(1) = [e"'x,e"'x,]=| and W' (1 =| . .
0 2 0 2
4¢ 0 [05e™ 0 2.0
Therefore, A=Y ()Y ' (1) = = )
0 2 0 05¢"| [0 1
4 (a). Since the eigenvalues are real and negative, y = 0 is an asymptotically stable node.
2t —t _2 =2t _ 7t
4(d). Wehave W(1) = [e"'x,,e™'x, ] = [e e_[} and W (1) :[ ¢ e}
0 e 0 —e
, » -2 1
Therefore, A=W (Y (1)= 0 Ll
5 (a). Since the eigenvalues are real and have opposite signs, y = 0 is an unstable saddle point.
t 2 —t t _2 —t
5(d). Wehave W(n)=[e'x,.e"x,]=|C = |and ¥(n=|" |
0 e 0 -
P e 2! 2e| |1 4
Therefore, A=Y (HY¥Y (¢) = ~ = .
0 —-' |0 e' 0 -1
1 -6 )
6 (a). For A= Lol the eigenvalues are A, =—1and A, =-2.
6 (b). Since the eigenvalues are real and negative, y = 0 is an asymptotically stable improper node.
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7 (a).
7 (b).
8 (a).
8 (b).
9 (a).
9 (b).

10 (a).
10 (b).

11 (a).
11 (b).
12 (a).
12 (b).
13 (a).
13 (b).

14 (a).
14 (b).
15 (a).
15 (b).
16 (a).
16 (b).

17 (a).

17 (b).

18 (a).

For A= S __1;) , the eigenvalues are 4, =1and A,=2.

Since the_eigenva_lues are real and positive, y = 0 is an unstable improper node.
For A= :2 154 , the eigenvalues are A, =1and A,=-2.

Since the:eigenva:lues have opposite sign, y = 0 is an unstable saddle point.
For A= _15 _21 , the eigenvalues are A, =3iand A4, =-3i.

Since the eigenvalues are complex with zero real part, y = 0 is a stable, but not asymptotically
stable, center.

-1 1
For A= }, the eigenvalues are 4, =—1+iand A,=—-1-1.
-1 -1
Since the eigenvalues are complex with negative real part, y = 0 is an asymptotically stable
spiral point.
1 6] )
For A= s 6 the eigenvalues are 4, =—3 and A,=-2.
Since the_eigenv_alues are real and negative, y = 0 is an asymptotically stable improper node.
o3
For A= 3 0| the eigenvalues are A, =2+ 3iand A,=2-3i.
Since the_eigen\;alues are complex with positive real part, y = 0 is an unstable spiral point.
SO
For A= 5 o | the eigenvalues are A, =4iand A, =—4i.

Since the eigenvalues are complex with zero real part, y = 0 is a stable, but not asymptotically
stable, center.

For A= Z __274_ , the eigenvalues are 4, =1and A4, =-1.

Since the:eigenvaiues are real with opposite sigen, y = 0 is an unstable saddle point.
For A= j 2}, the eigenvalues are A, =1and A, =3.

Since the:eigenvalues are real and positive, y = 0 is an unstable improper node.

For A= :? _12}, the eigenvalues are 4, =—2+iand A,=-2-1.

Since the eigenvalues are complex with negative real part, y = 0 is an asymptotically stable
spiral point.

2 4
For A= 4 6}’ the eigenvalues are A, =—2 and A, =-2.

Since the eigenvalues are real and negative and A is not a multiple of the identity, y =0 is an
asymptotically stable improper node.

3 0

For A= 0 3}, the eigenvalues are 4, =3 and A, =3.
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18 (b).

19 (a).
19 (b).
20 (a).
20 (b).

21 (a).

21 (b).

21 (c).

21 (d).

22.
23.

24.

25.

Since the eigenvalues are real and positive and A is a multiple of the identity, y =0 is an
unstable proper node.

1 2
For A= g J, the eigenvalues are A, =1+4iand A,=1-4i.
Since the_eigenvalues are complex with positive real part, y = 0 is an unstable spiral point.
-1 -2
For A= 5 3 }, the eigenvalues are A, =1and 4,=1.

Since the eigenvalues are real and positive and A is not a multiple of the identity, y =0 is an
unstable improper node.

-2

-2 1
For A = [ | , the eigenvalues are A, =—3 and A, =—1. Since the eigenvalues are real

and negative, y = 0 is an asymptotically stable equilibrium point. Therefore, A, corresponds to
Direction Field 2.

1 2
For A, = b 1l the eigenvalues are A, = —/3i and A, = \/3i . Since the eigenvalues are

complex with zero real part, y = 0 is a stable, but not asymptotically stable, center. Therefore,
A, corresponds to Direction Field 4.

DU

__1 _2_
and have opposite sign, y = 0 is an unstable saddle point. Therefore, A, corresponds to
Direction Field 1.

1 2
For A, =

For A, = , the eigenvalues are 4, =—+3 and A, = /3. Since the eigenvalues are real

-2 1
complex with positive real part, y = 0 is an unstable spiral point. Therefore, A, corresponds to

Direction Field 3.
For a center, eigenvalues are purely imaginary. Therefore, ov =-2.

}, the eigenvalues are A, =1-2iand A, =1+2i. Since the eigenvalues are

-2 2
eigenvalues are A =—1£+/9—2a . In order to have an asymptotically stable spiral point at
y =0, we need complex eigenvalues with negative real parts. Thus, we need 9—2a <0 or
9/2< .

Note that 4, =-2 and A, = -2 no matter the value of «. Thus,y = 0 is always an
asymptotically stable equilibrium point; it will be a proper node if a=0.

o
Consider A = [ } The characteristic polynomial is p(1) = A* + 24 + (2a— 8) . Thus, the

4
Consider A = [a 4}. The characteristic polynomial is p(1) = A* + (20t —16) . Thus, the

eigenvalues are A =2+16— 2. In order to have a saddle point at y = 0, we need real
eigenvalues with opposite signs. Thus, we need 16 —20 >0 or o < 8.
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26.

27.

28.

29.

30 (a).
30 (b).
30 (c).

32 (a).
32 (b).

4

3
l}y + {2} The system has a unique

1
Consider the nonhomogeneous system y’ = [ !

1
equilibrium point given by y, = [ J. Making the substitution z=y —y,, we obtain

-1 1
Therefore, z =0 is an unstable spiral point and consequently, y =y, is an unstable spiral point
of the original system.

1 -4
7' = [ }z. The eigenvalues of the coefficient matrix are A, =1+2iand A, =1-2i.

6 5
-7 -6

. 6 5TT[4] [-6 -5T4] [6 ,
equilibrium point given by y, =— 7 _6 6=l 7 61673 . Making the

5
-7 -6
are A, =—1and A, =1. Therefore, z=0 is an unstable saddle point and consequently, y =y,
is an unstable saddle point of the original system.

4
Consider the nonhomogeneous system y’ = [ }y + [ 6}' The system has a unique

substitution z=y—y,, we obtain z’ = [ }z. The eigenvalues of the coefficient matrix

5 -14 2
Consider the nonhomogeneous system y’ = [3 g }y + L} The system has a unique

1
equilibrium point given by y, = {0 5}. Making the substitution z=y —y,, we obtain

5 -14
7 = [3 g }z. The eigenvalues of the coefficient matrix are A, =—2 and A, =—1. Therefore,

z =0 is an asymptotically stable improper node and consequently, y =y, is an asymptotically
stable improper node of the original system.

0 2

o -1 0T T27 [t o 27 [2 _
equilibrium point given by y, =— 0 2 4170 —osl-al7|2 . Making the

-1 0
substitution z=y—y,, we obtain z’ = [ 0 2}1 The eigenvalues of the coefficient matrix are

-1 0 2
Consider the nonhomogeneous system y’ = [ }y +{ 4}. The system has a unique

A, =-land A, =2.Therefore, z=0 is an unstable saddle point and consequently, y =y, is an

unstable saddle point of the original system.

The characteristic equation is A* — (a,, + a,,)A + a,,a,, — a,,a,, =0 . The origin is a center if the

roots are purely imaginary. That is, if @, + a,, =0 and q,,a,, — a,,a,, <0.

Note that f(x,y)=qa,x +a,y and g(x,y)=a,x +a,y. Thus, f =a, and g = a,,. By part

(@), f, =—g, and hence the system is Hamiltonian.

The converse is not true since the system can be Hamiltonian even though a,,a,, — a,,a,, =0.
-2 1

5 2} are A, =3 and A,=-3.

Since the eigenvalues are real with opposite sign, y = 0 is an (unstable) saddle point.

The eigenvalues of the coefficient matrix A = {



244 « Chapter 8 Nonlinear Systems

32 (c). Since the system is Hamiltonian, we know that H (x,y)=-2x+y. Therefore,
H(x,y)=-2xy+0.5y” +q(x). We determine ¢(x) by differentiating H(x,y) with respect to x,
finding H (x,y)=-2y+q’(x)=-5x—2y. Thus, ¢’(x)=—5x and so g(x)=-2.5x"+C.
Dropping the additive constant, we obtain a Hamiltonian function,

H(x,y)=-2.5x"—2xy +0.5y". The conservation law for the system is H(x,y)=C.
| N | 13

33 (a). The eigenvalues of the coefficient matrix A = 3 1 are A, = —2+/2i and A, = —2:2i.

33 (b). Since the eigenvalues are complex with zero real part, y = 0 is a stable, but not asymptotically
stable, center.

33 (c). Since the system is Hamiltonian, we know that H (x,y)= x + 3y. Therefore,

H(x,y)= xy +1.5y” +q(x). We determine g(x) by differentiating H(x,y) with respect to x,
finding —3x—y=—H (x,y)=—y—¢'(x). Thus, ¢’'(x) = 3x and so ¢(x)=1.5x" + C. Dropping
the additive constant, we obtain a Hamiltonian function, H(x,y)= xy +1 S(x*+ yz). The
conservation law for the system is H(x,y)=C.

2 1

34 (a). The eigenvalues of the coefficient matrix A = {O 2} are A, =2and 4,=-2.

34 (b). Since the eigenvalues are real with opposite sign, y = 0 is an (unstable) saddle point.

34 (c). Since the system is Hamiltonian, we know that H (x,y)=2x + y. Therefore,

H(x,y)=2xy +0.5y° + g(x). We determine ¢(x) by differentiating H(x,y) with respect to x,
finding H (x,y)=2y+¢’(x)=2y.Thus, ¢'(x) =0 and so g(x)= C. Dropping the additive
constant, we obtain a Hamiltonian function, H(x,y)=2xy +0.5y>. The conservation law for
the system is H(x,y)=C.

Section 8.7

1 (a). Consider the system

X =x—x>—xy

Y =y-3y"=05xy.
If y =0, then all direction field filaments on the positive x-axis point towards
x = 1. Thus, x approaches an equilibrium value of x, =1 as f increases. Similarly, if x =0, then
y approaches an equilibrium value of y, =1/3 as t increases.
In each case, the presence of the xy term causes the derivative to decrease. Therefore, the
presence of the other species is harmful in each case.

1 (b). Rewriting the system as

xX'=x(1-x—1y)

¥y =y(1-3y-0.5x),
we see that x"=0if (i) x=0or (i) 1-x—y=0.Incase (i), y'=0if y=0or y=1/3. Thus,
two equilibrium points are (x,y)=(0,0) and (x,y)=(0,1/3).In case (ii), y' =0 if y=0 (and
hence, x=1)orif 1-3y—0.5x=0 (and hence x+ y=1and 0.5x + 3y =1). Thus, case (ii)
leads us to two more equilibrium points (x,y) = (1,0) and (x,y)=(0.8,0.2).
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1 (c).

2 (a).

2 (b).

2 (c).

3 (a).

3 (b).

3 (c).

1 0
At the equilibrium point z = 0, the linearized system takes the form z’ = [O Jz. The

eigenvalues of the coefficient matrix are A, =1and A, =1. Since, z= 0 is an unstable proper
node of the linearized system, the original system is also unstable at y = 0.
Consider the system

X =—-x-x’

’

y==y+xy.
If y =0, then x approaches an equilibrium value of x, =0 as 7 increases. If x=0, then y
approaches an equilibrium value of y, =0 as ¢ increases.
The presence of y is a matter of indifference to x. The presence of x is beneficial to y.
The only equilibrium point in the first quadrant is (x,y) = (0,0).
0
-1
eigenvalues of the coefficient matrix are A, =—1and A, =-1. Since, z=0 is an asymptotically
stable proper node of the linearized system, the original system is also asymptotically stable at
y=0.
Consider the system

X =x—x>—xy

-1
At the equilibrium point z = 0, the linearized system takes the form z’ = [ 0 }z. The

Y=-y-yi+ay.

If y =0, then all direction field filaments on the positive x-axis point towards x = 1. Thus, x
approaches an equilibrium value of x, =1 as ¢ increases. Similarly, if x =0, then y approaches
an equilibrium value of y, =0 as ¢ increases. The presence of the xy term in the first equation

causes the derivative to decrease. Therefore, the presence of y is harmful to x. On the other
hand, the presence of the xy term in the second equation causes the derivative to increase.
Therefore, the presence of x is beneficial to y.

Rewriting the system as
xX'=x0-x-y)
y==y(l+y-x),

we see that x"=0if (i) x=0or (ii) 1-x—y=0.Incase (i), y=0if y=0or y=—-1.The

latter possibility has been excluded and thus case (i) leads to a single equilibrium point,

(x,y)=1(0,0). In case (ii), y’=0 if y=0 (and hence, x =1) or if 1+ y— x =0 (and hence

x+y=1and x—y=1). This second set of equations also has solution x =1 and y = 0. Thus,

case (ii) leads us to one more equilibrium point (x,y) = (1,0).

0

At the equilibrium point z = 0, the linearized system takes the form z’ = [O }z. The

eigenvalues of the coefficient matrix are A, =—1and A, =1. Since, z =0 is an unstable saddle
point of the linearized system, the original system is also unstable at y =0.
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4 (a).

4 (b).

4 (c).

5 (a).

5 (b).

6 (a).

6 (b).

Consider the system
X =x—x"+xy
Y=y-yitay.
If y =0, then x approaches an equilibrium value of x, =1 as ¢ increases. If x =0, then y
approaches an equilibrium value of y, =1 as ¢ increases.
In both cases, the presence of one species is beneficial to the other species.
The only equilibrium points in the first quadrant are (x,y)=(0,0), (x,y)=(0,1), and
(x,y)=(1,0).
0

1
eigenvalues of the coefficient matrix are A, =1and A, =1. Since, z= 0 is an unstable proper
node of the linearized system, the original system is also unstable at y = 0.
When y = 0, the assumed model reduces to x” = r,(1+ o, x)x. In this case, we see from the
X' =0.5 or x’=0.5x. Thus,
x(1)
o, =0 and 5, =0.5. Similarly, when x = 0, the model reduces to y’ =r,(1+ ,y)y . In this case,

’

At the equilibrium point z = 0, the linearized system takes the form z’ = [O }z. The

figure, that In x(7) = 0.5¢+ Inx(0). Differentiating, we obtain

)
=-lor
y(0)
y'=-y.Thus, o, =0 and r, =—1. So far, we have deduced that the assumptions of the

population model imply it has the form
x'=0.5(1+By)x
Y ==1+Bx)y .
Knowing the equilibrium point (x,,y,) =(2,3), allows us to determine the last remaining
model parameters, 3, and f,.In particular, we know from the first equation that
0.5(1+ 3p,)2 =0 while the second equation gives —(1+2f3,)3 =0. Consequently,
B =-1/3and B,=-1/2.
From part (a), the model is given by
x'=1/2)x=(1/6)xy

’

yV==y+A/2)xy.
The presence of y causes x” to decrease and hence y is harmful to x. The presence of x causes
y’ to increase and hence x is beneficial to y.

Consider the system
x"=r(1-ox— By)x + ux
y=r(l—ay—-px)y.
The equilibrium points are (x,y)=(0,0), (x,y)=(0,a™"), (x,y)= (o' +ur™"),0), and
(x,y)=8"(o(1+ ur™") = B,oe— B+ ur™)) where §=a” - 3°.
If u is chosen large enough so that B(1+ ur™") > o then we see from part (a) that the

“coexisting species” equilibrium point is moved into the fourth quadrant and is therefore
physically irrelevant.

we see from the figure, that Iny(#) = -7+ In y(0). Differentiating, we obtain
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6 (c).

6 (d).

6 (e).

7 (a).

7 (b).

7 (c).

7 (d).
7 (e).

0

}z. The point z =0 is an unstable
’

r+
At z=0, the linearized system has the form z’ = [ 0

improper node. At the equilibrium point z = [ }, the linearized system is

1/

, | rQ+w = Bah
‘= —rBa’ —r
the eigenvalues have opposite sign, the equilibrium point is an unstable saddle point. The
equilibrium point (x,y)= (™' (1+ ur™"),0) is an asymptotically stable improper node since the
eigenvalues of the linearized system are negative and different:
A =-r(l+ur™") and A, = r[1- Bu(or)™ - Ba'].
For the nonlinear system, (0,0) and (0,cr”") are unstable equilibrium points. The equilirium
point (x,y)= (e (1+ ur™),0) is stable.
It appears that the y species will be driven to extinction with the x species approaching the
limiting value a™'(1+ur™").
Consider the system

x'=r(l1-ox—By)x
y=r(l—oy—fx)y—uy.

We see that x" =0 if (i) x=0 or (ii) 1—ox— Py =0.1Incase (i), y' =0 if
y=0or y=(r—pu)/(or). Thus case (i) leads to two equilibrium points, (x,y)=(0,0) and
(x,y)=(0,(r—w)/(ar)).Incase (ii), y'=0if y=0orif 1—(u/r)—oy— Px=0. Thus case (ii)
leads to two equilibrium points, (x,y) = (1/¢,0) and
(x,y)= (6"l — B - ur H1,67'[-B+a(l— ur™)]) where § =0’ - p°.
If u>r,then 1—ur~" <0.In this case, we see from part (a) that the only physically relevant
equilibrium points are (x,y)=(0,0) and (x,y)=(1/a,0).
0

r—u

}z . The eigenvalues are A, =—r and A, =r(1+ur"' - Bo"). Since

r
At z=0, the linearized system has the form z’ = [O }z. Since we are assuming U > r,

la
the point z =0 is an unstable saddle point. At the equilibrium point z = [ 0 }, the linearized

—r —rBo!

0 r—u-—rBa’’
Since both eigenvalues are negative, the equilibrium point is an asymptotically stable improper
node.

For the nonlinear system, (0,0) is unstable and (a™',0) is stable.
If u> r,itappears that the y species will be driven to extinction with the x species approaching

system is z’ = [ }z. The eigenvalues are A, =—r and A, =r—pu—rfBo .

the limiting value o'\

The strategy of nurturing the desirable species leads to an equilibrium

x-population of &' (1+ ur™"). This is greater than the equilibrium x-population of &' that
results from harvesting the undesirable species.
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9.

10 (a).

10 (b).

Consider the population model

X' =tax+bx’tcxytdxz

y=%a,yt bzyz ey £dyyz

7 =taztcxztdyz.
Since x and y are mutually competitive, we need to choose a negative sign for ¢, and ¢, (the
presence of x reduces the growth rate y” and similarly the presence of y reduces the growth
rate x”). The same argument applies to the signs of d, and d, since the predator is harmful to x
and to y. The presence of the prey is beneficial to the predator z and thus we need to choose a
positive sign for ¢, and d,.
So far, we have deduced

X’ =taxtbx’—cxy—dxz

y =%a,yt b2y2 —Cyxy —dyyz

7 =taz+cxz+dyz.
We also know that, in the absence of the other two species, x and y each evolve towards a
nonzero equilibrium value. Thus, from the first equation, we know the term
+a,x + bx* = x(+q, + b,x) has a positive zero, as does the corresponding term in the second
equation, ta,y +b,y* = y(+a, = b,y). From this fact, we infer that @, and b, have opposite
signs, as do a, and b,. The general solution of an equation of the form u’ = au + bu’ is
u=Ae™™ + B’ + Ct+ D.If a is negative, then u(f) — oo as t — oo. Hence, there cannot be a
nonzero equilibrium solution when a is negative. Applying this observation to the equations
x’=tax+tbx’ and y’ =+a,y £ b,y’, we deduce that g, and a, are positive and b, and b, are
negative. Likewise, in order that z decrease to zero in the absence of x and y, we need to have
a, negative. In summary, we arrive at the following model which will support the
observations:

x’ =ax—bx’—cxy—dxz

Y =ay- b2y2 —Cyxy —dyyz

7 =—a,z+cxz+dyyz.
Consider the system

s =—asi+y
i’ = asi— i
r=Bi—-y.

Summing these three equations, we obtain s'(¢7) +i’(¢) + ¥’ () = 0. Hence, s(¢) +i(¢) + r(?) is
constant, say s(f)+i(¢) + r(tf) = N where N denotes the size of the population.
If those who recover are permanently immunized, then

’

s =—osi
i = osi— Bi
r'=pi.

As in part (a), we can sum these equations and again conclude that s(¢) +i(¢) +r(f)=N .
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10 (c).

11 (a).

11 (b).

11 (c).

11 (d).

If some infected members perish, then

s =—asi
i’ = asi— Bi
r=Bi—-y.
In this case, s'(¢) +i’(¢) + ' (t) = =y (¢) . Thus, the population is not constant but rather is
, VA ) pop
decreasing.
Consider the system
s =—osi+y
i’ = osi— fi
r=Bi—-y.

Using the fact, from Exercise 10, that s+i+r= N, we obtain a reduced system,
s =—asi+y(N—i-s)
'=osi—Bi.
For the given values, ==y =1and N =9, the reduced system has the form
§S=—si+(9—i—5)
I'=si—1i.
Rewriting this system slightly,
S =—si+9—i-s
=i(s—1).
We see that =0 if (i) i=0 or (ii) s=1.In case (i), s'=0 if s=9. Thus case (i) leads to the
equilibrium point (s,i) =(9,0). In case (ii), s"=0 if i = 4. Thus case (ii) leads to the
equilibrium point (s,i) = (1,4).
-1 -10

9
At z= [O}’ the linearized system has the form z’ = [ 0 3

}z. The eigenvalues are

1
A, =-1 and A, =8. This equilibrium point is an unstable saddle point. At z = [4}, the

-5 2
linearized system has the form z’ = [ 4 0 }z. The eigenvalues are
A =(5- iN7)/2 and (=5+i+/7)/2. This equilibrium point is an asymptotically stable spiral
point.

(9,0) is an unstable equilibrium point while (1,4) is stable.



