Chapter 8 Nonlinear Systems

Section 8.1

1 (a). For
$$
y'' + ty = \sin y', y(0) = 0, y'(0) = 1
$$
, let $\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}$. Thus,
\n
$$
\mathbf{y}' = \begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} y' \\ y'' \end{bmatrix} = \begin{bmatrix} y \\ y'' \end{bmatrix} = \begin{bmatrix} y \\ -ty + \sin y' \end{bmatrix} = \begin{bmatrix} y_2 \\ -ty_1 + \sin y_2 \end{bmatrix}, \mathbf{y}(0) = \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} y_0(0) \\ y'(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.
$$
\n1 (b). From part (a), $\mathbf{f}(t, \mathbf{y}) = \begin{bmatrix} f_1(t, y_1, y_2) \\ f_2(t, y_1, y_2) \end{bmatrix} = \begin{bmatrix} y_2 \\ -ty_1 + \sin y_2 \end{bmatrix}$. Therefore, the requested partial derivatives are $\frac{\partial f_1}{\partial y_1} = 0$, $\frac{\partial f_1}{\partial y_2} = 1$, $\frac{\partial f_2}{\partial y_2} = -t$, $\frac{\partial f_2}{\partial y_2} = \cos y_2$.

1 (c). There are no points in 3-dimensional space where the hypotheses of Theorem 8.1 fail to be satisfied. $\lceil v(t)\rceil$ $\lceil v(t)\rceil$

2 (a). For
$$
y'' + (y')^3 + y^{1/3} = \tan(t/2), y(1) = 1, y'(1) = -2
$$
, let $\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} y_1(t) \\ y'(t) \end{bmatrix}$. Thus,
\n
$$
\mathbf{y}' = \begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} y_2 \\ \tan(t/2) - y_1^{1/3} - y_2^3 \end{bmatrix}, \mathbf{y}(1) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}.
$$
\n2 (b). For $\mathbf{f}(t, \mathbf{y}) = \begin{bmatrix} f_1(t, y_1, y_2) \\ f_2(t, y_1, y_2) \end{bmatrix}$, the requested partial derivatives are $\frac{\partial f_1}{\partial y_1} = 0, \frac{\partial f_1}{\partial y_2} = 1, \frac{\partial f_2}{\partial y_1} = -\frac{1}{3}y_1^{-2/3}, \frac{\partial f_2}{\partial y_2} = -3y_2^2$.
\n2 (c). The hypotheses of Theorem 8.1 are not satisfied at $t = \pm (2n + 1)\pi/2$ and $y_1 = 0$.
\n3 (a). For $y'' + t^{-1}(1 + y + 2y')^{-1} = t^{-1}e^{-t}, y(2) = 2, y'(2) = 1$, let
\n
$$
\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}.
$$
Thus,
\n
$$
\mathbf{y}' = \begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix} = \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}.
$$
Thus,
\n
$$
\mathbf{y}' = \begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix} = \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}.
$$
Thus,
\n
$$
\mathbf{y}' = \begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix} = \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}.
$$
Thus,
\n
$$
\mathbf{y}' = \begin
$$

3 (c). The hypotheses of Theorem 8.1 are satisfied everywhere except on the planes $t=0$ and $1 + y_1 + 2y_2 = 0$.

4 (a). For
$$
y''' + cos(ty') = t(y'')^2
$$
, $y(0) = 1$, $y'(0) = 1$, $y''(0) = -2$, let
\n
$$
\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{bmatrix} = \begin{bmatrix} y(t) \\ y'(t) \\ y''(t) \end{bmatrix}. \text{ Thus, } \mathbf{y}' = \begin{bmatrix} y'_1 \\ y'_2 \\ y'_3 \end{bmatrix} = \begin{bmatrix} y_2 \\ y_3 \\ -cos(ty_2) + y_3^2 \end{bmatrix}, \mathbf{y}(0) = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}
$$
\n4 (b). For $\mathbf{f}(t, \mathbf{y}) = \begin{bmatrix} f_1(t, y_1, y_2, y_3) \\ f_2(t, y_1, y_2, y_3) \\ f_3(t, y_3, y_3) \end{bmatrix}$, the requested partial derivatives are

$$
\frac{\partial f_1}{\partial y_1} = 0, \quad \frac{\partial f_1}{\partial y_2} = 1, \quad \frac{\partial f_1}{\partial y_3} = 0, \quad \frac{\partial f_2}{\partial y_1} = 0, \quad \frac{\partial f_2}{\partial y_2} = 0, \quad \frac{\partial f_2}{\partial y_3} = 1, \quad \frac{\partial f_3}{\partial y_1} = 0, \quad \frac{\partial f_3}{\partial y_2} = t \sin(t y_2), \quad \frac{\partial f_3}{\partial y_3} = 2ty_3
$$

4 (c). The hypotheses of Theorem 8.1 are satisfied in all of $ty_1y_2y_3$ - space.

5 (a). For
$$
y''' + 2t^{1/3}(y - 2)^{-1}(y'' + 2)^{-1} = 0
$$
, $y(0) = 0$, $y'(0) = 2$, $y''(0) = 2$, let
\n
$$
\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{bmatrix} = \begin{bmatrix} y(t) \\ y'(t) \\ y''(t) \end{bmatrix}
$$
\nThus,
\n
$$
\mathbf{y}' = \begin{bmatrix} y_1' \\ y_2' \\ y_3' \end{bmatrix} = \begin{bmatrix} y' \\ y'' \\ y''' \end{bmatrix} = \begin{bmatrix} y \\ y'' \\ -2t^{1/3}(y - 2)^{-1}(y'' + 2)^{-1} \end{bmatrix} = \begin{bmatrix} y_2 \\ y_3 \\ -2t^{1/3}(y_1 - 2)^{-1}(y_3 + 2)^{-1} \end{bmatrix},
$$
\n
$$
\mathbf{y}(0) = \begin{bmatrix} y_1(0) \\ y_2(0) \\ y_3(0) \end{bmatrix} = \begin{bmatrix} y(0) \\ y'(0) \\ y'''(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}.
$$
\n5 (b). From part (a), $\mathbf{f}(t, \mathbf{y}) = \begin{bmatrix} f_1(t, y_1, y_2, y_3) \\ f_2(t, y_1, y_2, y_3) \\ f_3(t, y_1, y_2, y_3) \end{bmatrix} = \begin{bmatrix} y_2 \\ y_3 \\ -2t^{1/3}(y_1 - 2)^{-1}(y_2 + 2)^{-1} \end{bmatrix}.$
\nTherefore, the requested partial derivatives are

$$
\frac{\partial f_1}{\partial y_1} = 0, \quad \frac{\partial f_1}{\partial y_2} = 1, \quad \frac{\partial f_1}{\partial y_3} = 0
$$

$$
\frac{\partial f_2}{\partial y_1} = 0, \quad \frac{\partial f_2}{\partial y_2} = 0, \quad \frac{\partial f_2}{\partial y_3} = 1
$$

$$
\frac{\partial f_3}{\partial y_1} = 2t^{1/3}(y_1 - 2)^{-2}(y_3 + 2)^{-1}, \quad \frac{\partial f_3}{\partial y_2} = 0, \quad \frac{\partial f_3}{\partial y_3} = 2t^{1/3}(y_1 - 2)^{-1}(y_3 + 2)^{-2}
$$

- 5 (c). The hypotheses of Theorem 8.1 are satisfied everywhere except on the "hyperplanes" $y_1 = 2$ and $y_3 = -2$.
- Since $y'_2 = t\cos^2(y_2) 3y_1 + t^4$, it follows that the scalar problem is $y'' = t\cos^2(y') 3y + t^4$, 6. $y(2) = 1, y'(2) = -1.$
- Since $y'_2 = y_2 \tan y_1 + e^{y_2}$, it follows that the scalar problem is $y'' = y' \tan y + e^{y'}$, 7. $y(0) = 0, y'(0) = 1.$
- Since $y'_3 = y_1y_2 + y_3^2$, it follows that the scalar problem is $y'' = yy' + (y'')^2$, 8. $y(-1) = -1$, $y'(-1) = 2$, $y''(-1) = -4$.
- Since $y'_3 = (y_2y_3 + t^2)^{1/2}$, it follows that the scalar problem is $y''' = (y'y'' + t^2)^{1/2}$, 9. $y(1) = 1, y'(1) = 1/2, y''(1) = 3.$
- 11. Laplace transforms cannot be productively used because the equation is nonlinear.

14 (a). Let $a = \pi/(2\delta)$. Then $\tan ax = ax + (1/3)a^3x^3 + (2/15)a^5x^5 + \cdots$. Retaining the first term of the Maclaurin series in equation (7), we have $mx'' + (2k\delta/\pi)\tan(\pi x/2\delta) \approx mx'' + (2k\delta/\pi)(\pi x/2\delta) = mx'' + kx$.

- 14 (b). As in part (a), retaining the first two terms of the Maclaurin series in equation (7) results in equation (8).
- 14 (c). Equation (7) becomes $\mathbf{y}' = \begin{bmatrix} y'_1 \\ y'_2 \end{bmatrix} = \begin{bmatrix} y_2 \\ -(2k\delta/m\pi)\tan(\pi y_1/2\delta) \end{bmatrix}$.

Equation (8) becomes $\mathbf{y}' = \begin{bmatrix} y'_1 \\ y'_2 \end{bmatrix} = \begin{bmatrix} y_2 \\ -(k/m)(y_1 + (\pi^2/12\delta^2)y_1^3) \end{bmatrix}$.
- 14 (d). The system version of equation (7) satisfies the hypotheses of Theorem 8.1 everywhere except along $y_1 = \pm (2n + 1)\pi / 2$. The system version of equation (8) satisfies the hypotheses of Theorem 8.1 everywhere in ty_1y_2 - space
- 15 (a). Adding equations 3 and 4, we obtain $\frac{dc}{dt} + \frac{de}{dt} = 0$. Thus, using the linearity of differentiation, $d(c + q)$

$$
\frac{a(c+e)}{dt} = 0
$$
 and hence, $c(t) + e(t) \equiv e_0$ is a constant function

15 (b). Substituting $e(t) = e_0 - c(t)$ in equations 1 and 3, we find

$$
\frac{da}{dt} = -k_1 e_0 a(t) + k_1 c(t) a(t) + k_1' c(t) \text{ and } \frac{dc}{dt} = k_1 e_0 a(t) - k_1 c(t) a(t) - (k_1' + k_2) c(t).
$$

- 15 (c). The hypotheses of Theorem 8.1 are satisfied for all points in (t, a, c) space.
- 16 (a). At the instant shown in the figure,

$$
V_{\text{sub}} = (2/3)\pi R^3 + \int_0^{y(t)} \pi r^2 dy = (2/3)\pi R^3 + \int_0^{y(t)} \pi (R^2 - y^2) dy
$$

$$
= (2/3)\pi R^{3} + \pi [R^{2}y(t) - (1/3)(y(t))^{3}].
$$

16 (b). Equation (10) is physically relevant as long as $-R \le y(t) \le R$.

Section 8.2

For

 $1.$

$$
x' = x(-1 + y)
$$

 $y' = y(1-x)$,

we see that $x' = 0$ if (a) $x = 0$ or (b) $y = 1$. In Case (a), we have $y' = 0$ only if $y = 0$, yielding the equilibrium point $(x, y) = (0, 0)$. In Case (b), we have $y' = 0$ only if $x = 1$, yielding the equilibrium point $(x, y) = (1,1)$.

2. For

$$
x' = y(x+3)
$$

 $y' = (x - 1)(y - 2)$,

we see that $x'=0$ if (a) $x=-3$ or (b) $y=0$. In Case (a), we have $y'=0$ only if $y=2$, yielding the equilibrium point $(x,y) = (-3,2)$. In Case (b), we have $y' = 0$ only if $x = 1$, yielding the equilibrium point $(x, y) = (1, 0)$.

3. For

 $x' = (x - 2)(y + 1)$

$$
y' = x^2 - 4x + 3
$$

we see that $x' = 0$ if (a) $x = 2$ or (b) $y = -1$. In Case (a), we cannot have $y' = 0$. In Case (b), we have $y' = 0$ only if $x = 1$ or $x = 3$, yielding the equilibrium points $(x, y) = (1, -1)$ and $(x, y) = (3, -1)$.

4. For

$$
x' = (x-1)(y+1)
$$

$$
y'=(x-2)y,
$$

we see that $x' = 0$ if (a) $x = 1$ or (b) $y = -1$. In Case (a), we have $y' = 0$ only if $y = 0$, yielding the equilibrium point $(x, y) = (1, 0)$. In Case (b), we have $y' = 0$ only if $x = 2$, yielding the equilibrium point $(x, y) = (2, -1)$.

5. For

$$
x' = x(x - 2y)
$$

$$
y' = y(3x - y),
$$

we see that $x' = 0$ if (a) $x = 0$ or (b) $x = 2y$. In Case (a), we have $y' = 0$ only if $y = 0$, yielding the equilibrium point $(x, y) = (0, 0)$. In Case (b), we have $y' = 0$ only if $y = 0$, yielding the same equilibrium point as in Case (a), $(x, y) = (0,0)$.

6. For

$$
x' = y(y - x)
$$

$$
y' = x(x + 2y),
$$

we see that $x' = 0$ if (a) $y = 0$ or (b) $y = x$. In Case (a), we have $y' = 0$ only if $x = 0$, yielding the equilibrium point $(x, y) = (0, 0)$. In Case (b), we have $y' = 0$ only if $x = 0$, yielding the same equilibrium point $(x, y) = (0,0)$.

7. For

$$
x' = x^2 + y^2 - 8
$$

$$
y'=x^2-y^2,
$$

we see that $y' = 0$ if $x^2 = y^2$. Using this requirement in the first equation, we see that $x' = 0$ requires $2x^2 - 8 = 0$ or $x = \pm 2$. Since $y = \pm x$, we find 4 equilibrium points, $(2, 2), (2, -2), (-2, -2),$ and $(-2, 2)$.

8. For

$$
x' = x2 + 2y2 - 3
$$

$$
y' = 2x2 + y2 - 3
$$

we see that $x' = 0$ if $x^2 = 3 - 2y^2$. In this event, we have $y' = 0$ only if $2(3 - 2y^2) + y^2 - 3 = 0$. Solving for *y* we obtain $y = \pm 1$. Then, since $x^2 = 3 - 2y^2$, we see that $x = \pm 1$ for each choice of *y*. The equilibrium points are

 $(x, y) = (1, 1), (-1, 1), (1, -1), (-1, -1).$

9. For

$$
x' = y - 1
$$

\n
$$
y' = x(y + x)
$$

\n
$$
z' = y(2 - z)
$$

we see that $x' = 0$ requires $y = 1$. Using this requirement in the second equation, we see that $y' = 0$ requires $x(1 + x) = 0$. Thus, we need in Case (a) $x = 0$ or in Case (b), $x = -1$. Finally, $z' = 0$ requires $z = 2$ since *y* is nonzero. We obtain 2 equilibrium points, $(x, y, z) = (0, 1, 2)$ and $(x, y, z) = (-1, 1, 2)$.

10. For

$$
x' = z2 - 1
$$

\n
$$
y' = z(1 - 2x + y)
$$

\n
$$
z' = -(1 - x - y)2
$$

we see that $x' = 0$ requires $z = \pm 1$. Using this requirement in the second equation, we see that $y' = 0$ requires $1-2x + y = 0$ while $z' = 0$ requires $1-x-y=0$. Satisfying $y' = 0$ and $z' = 0$ therefore requires $x = 2/3$ and $y = 1/3$. Combining this requirement with $z = \pm 1$, we obtain 2 equilibrium points,

 $(x, y, z) = (2 / 3, 1 / 3, 1)$ and $(x, y, z) = (2 / 3, 1 / 3, -1)$.

- 11. Making the substitution $y_1 = y$ and $y_2 = y'$ the scalar equation can be expressed
	- as the system
		- $y'_1 = y_2$

$$
y_2' = -y_1 - y_1^3
$$

Since $y'_2 = -y_1(1 + y_1^2)$, we cannot have $y'_2 = 0$ unless $y_1 = 0$. Similarly, from the first equation, $y_1' = 0$ requires $y_2 = 0$. Thus, the only equilibrium point is $(y_1, y_2) = (y, y') = (0,0)$.

12. Making the substitution $y_1 = y$ and $y_2 = y'$ the scalar equation can be expressed as the system

> $y'_1 = y_2$ $y'_2 = 1 - e^{y_1} y_2 - \sin^2(\pi y)$ $1 - e^{y_1} y_2 - \sin^2(\pi y_1)$

3

Thus, the equilibrium points are $(y_1, y_2) = (y, y') = (n + 0.5, 0), n = 0, \pm 1, \pm 2, \dots$

13. Making the substitution $y_1 = y$ and $y_2 = y'$ the scalar equation can be expressed as the system

 $y'_1 = y_2$

$$
y_2' = 1 - y_1^2 - 2(1 + y_1^4)^{-1}y_2
$$

From the first equation, $y_1' = 0$ requires $y_2 = 0$. Thus, in the second equation, $y_2' = 0$ requires $1 - y_1^2 = 0$ or $y_1 = \pm 1$. There are two equilibrium points

 $(y_1, y_2) = (y, y') = (1, 0)$ and $(y_1, y_2) = (y, y') = (-1, 0)$.

14. Making the substitution $y_1 = y$, $y_2 = y'$, and $y_3 = y''$ the scalar equation can be expressed as the system

 $y'_1 = y_2$

$$
y_2'=y_3
$$

$$
y_3' = 1 + y_3 - 2\sin y_1
$$

Thus, the equilibrium points are

 $(y_1, y_2, y_3) = ((\pi / 6) + 2n\pi, 0, 0)$ and $(y_1, y_2, y_3) = ((5\pi/6) + 2n\pi, 0, 0), n = 0, \pm 1, \pm 2, \dots$

- 15. Making the substitution $y_1 = y$, $y_2 = y'$ and $y_3 = y''$, the scalar equation can be expressed as the system
	- $y'_1 = y_2$ $y'_2 = y_3$ $y'_3 = y_2^2 + (y_1^2 - 4)(2 + y_2^2)^{-1}$ 2 1 2 $(y_1^2-4)(2+y_2^2)^{-1}$.

From the first equation, $y_1' = 0$ requires $y_2 = 0$ while (by the second equation) $y_2' = 0$ requires $y_3 = 0$. Having these requirements, the third equation tells us that $y_3' = 0$ only if $y_1 = \pm 2$. Hence, There are two equilibrium points

 $(y_1, y_2, y_3) = (y, y', y'') = (2, 0, 0)$ and $(y_1, y_2, y_3) = (y, y', y'') = (-2, 0, 0)$.

- 16. Since (0,0) is an equilibrium point, we know $\beta = 0$ and $\delta = 0$. Similarly, since (2,1) is an equilibrium point, we know $2\alpha + 2 = 0$ and $\gamma - 6 = 0$. Thus, $\alpha = -1$ and $\gamma = 6$.
- 17. Since (1,1) is an equilibrium point, we know $\alpha + \beta + 2 = 0$ and $\gamma + \delta 1 = 0$. Similarly, since (2,0) is an equilibrium point, we know $2\alpha + 2 = 0$ and $2\gamma - 1 = 0$. Thus, $\alpha = -1$ and $\gamma = 1/2$. Using the equations derived from the equilibrium point $(1,1)$, we have $-1+\beta+2=0$ and $(1/2)+\delta-1=0$. Therefore, $\beta=-1$ and $\delta=1/2$.
- 18. The slope of a phase plane trajectory is given by $y'/x' = g(x, y) / f(x, y)$, see equation (9). As given, $g(2,1) / f(2,1) = 1$ and $g(1,-1) / f(1,-1) = 0$. Therefore, $g(1,-1) = 0$ and so $\beta = 2$. Knowing $\beta = 2$ and $g(2,1) / f(2,1) = 1$, we obtain $(3 + \beta) / (2 + \alpha) = 1$ or $5 / (2 + \alpha) = 1$. Thus, we obtain $\alpha = 3$.
- 19. The slope of a phase plane trajectory is given by $y'/x' = g(x, y) / f(x, y)$, see equation (9). As given, $g(1,1) / f(1,1) = 0$ and $g(1,-1) / f(1,-1) = 4$. Therefore, $g(1,1) = 0$ and so $2 + \gamma = 0$ or $\gamma = -2$. Knowing $\gamma = -2$ and $g(1, -1)/f(1, -1) = 4$, we obtain $(2-\gamma)/(\alpha-\beta+1)=4$ or $1/(\alpha-\beta+1)=1$. Finally, since there is a vertical tangent at $(0,-1)$ we know $f(0,-1) = 0$, and thus $-\beta + 1 = 0$. Using $\beta = 1$ along with the prior equation $1/(\alpha - \beta + 1) = 1$, we obtain $\alpha = 1$.
- 20. The slope of a phase plane trajectory is given by $y' / x' = g(x, y) / f(x, y)$, see equation (9). As given, $g(1,2) / f(1,2) = 1/6$ and thus

 $1/6 = g(1,2) / f(1,2) = (-1 + 0.5) / (5 - 2^n)$. Solving for *n*, we obtain $n = 3$.

- 21. Making the substitution $y_1 = y$ and $y_2 = y'$ the scalar equation can be expressed as the system
	- $y'_1 = y_2$

$$
y_2' = y_2 - 2y_1^2 + \alpha.
$$

Since $(y_1, y_2) = (2, 0)$ is an equilibrium point, it follows that $2y_1^2 = 8 = \alpha$.

- 22 (a). $v = 4i 3j$
- 22 (b). $v = 15i + j$
- 22 (a). $\mathbf{v} = -\mathbf{j}$
- 24. For $A = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ - È Î $\begin{vmatrix} -9 & 1 \\ 1 & -9 \end{vmatrix}$ ˚ ˙ 9 1 $1 \quad -9 \big|$, the eigenvalues are $\lambda_1 = -10$ and $\lambda_2 = -8$ with corresponding eigenvectors $\mathbf{u}_{1} = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$ and \mathbf{u}_{2} 1 1 1 $=$ $\begin{vmatrix} -1 \end{vmatrix}$ and $\mathbf{u}_2 = \begin{vmatrix} 1 \end{vmatrix}$ \mathbf{r} Î $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ ˚ and $\mathbf{u}_2 =$ Î Í \overline{a} ˚ and $\mathbf{u}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. The general solution is $\mathbf{y}(t) = c_1 e^{-10t} \begin{vmatrix} 1 \\ -1 \end{vmatrix} + c_2 e^{-8t}$ Î $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ ˚ $|+$ È Î Í $\overline{}$ ˚ $\left|e^{-10t}\right|_{-1}^{1}$ + $c_2e^{-8t}\left|_{1}^{1}\right|$ 10 2 $\left[\begin{array}{c} 1 \end{array}\right]$ 1 1 $1 \nvert$ and hence all solution points are attracted to the origin. Thus, the direction field corresponding to the given matrix is C.
- For $A = \begin{bmatrix} -1 & -3 \\ -3 & -1 \end{bmatrix}$, the eigenvalues are $\lambda_1 = -4$ and $\lambda_2 = 2$ with corresponding eigenvectors 25. $\mathbf{u}_1 = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$ and $\mathbf{u}_2 = \begin{vmatrix} 1 \\ -1 \end{vmatrix}$. The general solution is $\mathbf{y}(t) = c_1 e^{-4t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and hence solution points that begin on the line $y = x$ are attracted to the origin whereas those that begin on the line $y = -x$ are repelled away from the origin. Thus, the direction field corresponding to the given matrix is B. For $A = \begin{bmatrix} -4 & 6 \ 6 & -4 \end{bmatrix}$, the eigenvalues are $\lambda_1 = -10$ and $\lambda_2 = 2$ with corresponding eigenvectors 26. $\mathbf{u}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. The general solution is $\mathbf{y}(t) = c_1 e^{-10t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and hence solution points that begin on the line $y = x$ are repelled away from the origin whereas those that begin on the line $y = -x$ are attracted to the origin. Thus, the direction field corresponding to the given matrix is D. For $A = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$, the eigenvalues are $\lambda_1 = 6$ and $\lambda_2 = 2$ with corresponding eigenvectors 27. $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. The general solution is $\mathbf{y}(t) = c_1 e^{6t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and hence solution points that begin on the line $y = x$ are repelled away from the origin as are those that begin on the line $y = -x$. Thus, the direction field corresponding to the given matrix is A. The phase plane point $(\alpha,0)$ is an equilibrium point when α is a root of 28. $f(y)=0$. 29 (a). Making the substitution $y_1 = y$ and $y_2 = y'$ the scalar equation can be expressed as the system $v'_1 = v_2$ $y'_2 = -y_1 - y_1^3$. The nullclines are the lines $y_1 = 0$ and $y_2 = 0$. The only equilibrium point is the point (0,0). 30 (a). Making the substitution $y_1 = y$ and $y_2 = y'$ the scalar equation can be expressed
	- as the system $y'_1 = y_2$ $y'_2 = -y_1(1 - y_1^2)$.
	- The nullclines are the lines $y_1 = 0$, $y_1 = \pm 1$, and $y_2 = 0$. The equilibrium points are $(0,0), (-1,0), (1,0).$
- 31 (a). Making the substitution $y_1 = y$ and $y_2 = y'$ the scalar equation can be expressed as the system
	- $y'_1 = y_2$ $y'_2 = 1 - 2\sin^2 y$ $1 - 2\sin^2 y_1$.

The nullclines are the lines $y_1 = \pm (\pi/4) + n\pi$, $n = 0, \pm 1, \pm 2, \dots$ and the line $y_2 = 0$ The equilibrium points are $(\pm (\pi / 4) + n\pi, 0), n = 0, \pm 1, \pm 2, \dots$

- 32 (a). The nullclines are the lines $y = 3x 2$ and $y = x$. These lines intersect at the point (1,1) yielding the only equilibrium point.
- 33 (a). The nullclines are the lines $y = 2 x$ and $y = x$. These lines intersect at the point (1,1) yielding the only equilibrium point.
- 34 (a). The nullclines are the lines $y = 2x 2$ and $y = 4 x$ where $f = 0$ and the line $y = (1/2)x$ where $g = 0$. The lines $f = 0$ and $g = 0$ intersect at the points $(4/3, 2/3)$ and $(8/3, 4/3)$ yielding the only equilibrium points.
- 35 (a). The nullclines are the lines $y = 2x 6$ and $y = x$, where $f = 0$ and the line $y = -x$, where $g = 0$. The lines $f = 0$ and $g = 0$ intersect at the points (0,0) and (2,-2) yielding the only equilibrium points.
- 36 (a). The nullclines are the curves $y = 1 x^2$ and $y = -1 + x^2$. These curves intersect at the equilibrium points $(-1,0)$ and $(1,0)$.

Section 8.3

- 1 (a). Given $x'' + 4x = 0$, multiply by x' to obtain $x'x'' + 4x'x = 0$. Integrating, we obtain $0.5(x')^{2} + 2x^{2} = C$.
- 1 (b). The equation $x'' + 4x = 0$ can be expressed as $x' =$ $' =$ $x' = y$ $y' = -4x$. With this notation, the conserved quantity found in part (a) is $0.5y^2 + 2x^2 = C$. The graph passes through the point $(x, y) = (1,1)$ when $C = 2.5$.
- 1 (c). At (1,1), the velocity vector is $\mathbf{v} = x'\mathbf{i} + y'\mathbf{j} = \mathbf{i} 4\mathbf{j}$. The velocity vector is tangent to the graph and indicates that the graph is traversed in the clockwise direction as *t* increases.
- 2 (a). Given $x'' (x + 1) = 0$, multiply by x' to obtain $x'x'' x'(x + 1) = 0$. Integrating, we obtain $(x')^{2} - (x+1)^{2} = C$.
- 2 (b). The equation $x'' (x+1) = 0$ can be expressed as $\begin{pmatrix} x' = 0 \\ y' = 0 \end{pmatrix}$ $y' = x +$ $x' = y$ $y' = x + 1$. With this notation, the conserved quantity found in part (a) is $y^2 - (x + 1)^2 = C$. The graph passes through the point $(x, y) = (1,1)$ when $C = -3$.
- 2 (c). At (1,1), the velocity vector is $\mathbf{v} = x'\mathbf{i} + y'\mathbf{j} = \mathbf{i} + 2\mathbf{j}$. The velocity vector indicates that the solution point moves upward and to the right along the right branch of the hyperbola as *t* increases.
- 3 (a). Given $x'' + x^3 = 0$, multiply by x' to obtain $x'x'' + x'x^3 = 0$. Integrating, we obtain $0.5(x')^{2} + 0.25x^{4} = C$.
- 3 (b). The equation $x'' + x^3 = 0$ can be expressed as $x' =$ $' =$ $x' = y$ $y' = -x^3$. With this notation, the conserved quantity found in part (a) is $0.5y^2 + 0.25x^4 = C$. The graph passes through the point $(x, y) = (1,1)$ when $C = 0.75$.
- 3 (c). At (1,1), the velocity vector is $\mathbf{v} = x'\mathbf{i} + y'\mathbf{j} = \mathbf{i} \mathbf{j}$. The velocity vector is tangent to the graph and indicates that the graph is traversed in the clockwise direction as *t* increases.
- 4 (a). Given $x'' (x^3 + \pi \sin \pi x) = 0$, multiply by x' to obtain $x'x'' - x'(x^3 + \pi \sin \pi x) = 0$. Integrating, we obtain $2(x')^2 - (x^4 - 4\cos \pi x) = C$.
- 4 (b). The equation $x'' (x^3 + \pi \sin \pi x) = 0$ can be expressed as $\pi' =$ $y' = x^3 +$ $x' = y$ $y' = x^3 + \pi \sin \pi x$. With this notation, the conserved quantity found in part (a) is $2y^2 - (x^4 - 4\cos \pi x) = C$. The graph passes through the point $(x, y) = (1,1)$ when $C = -3$.
- 4 (c). At (1,1), the velocity vector is $\mathbf{v} = x'\mathbf{i} + y'\mathbf{j} = \mathbf{i} + \mathbf{j}$. The velocity vector indicates that the solution point moves upward and to the right along the right branch of the graph as *t* increases.
- 5 (a). Given $x'' + x^2 = 0$, multiply by x' to obtain $x'x'' + x'x^2 = 0$. Integrating, we obtain $0.5(x')^{2} + (1/3)x^{3} = C$.
- 5 (b). The equation $x'' + x^2 = 0$ can be expressed as $x' =$ $' =$ $x' = y$ $y' = -x^2$. With this notation, the conserved quantity found in part (a) is $0.5y^2 + (1/3)x^3 = C$. The graph passes through the point $(x, y) = (1,1)$ when $C = 5/6$.
- 5 (c). At (1,1), the velocity vector is $\mathbf{v} = x'\mathbf{i} + y'\mathbf{j} = \mathbf{i} \mathbf{j}$. The velocity vector is tangent to the graph and indicates that the solution point moves "down the graph" as *t* increases.
- 6 (a). Given $x'' + x/(1 + x^2) = 0$, multiply by x' to obtain $x'x'' + x'x/(1 + x^2) = 0$. Integrating, we obtain $(x')^{2} + \ln(1 + x^{2}) = C$.
- 6 (b). The equation $x'' + x/(1 + x^2) = 0$ can be expressed as $\begin{pmatrix} x' = 0 \\ y' = 0 \end{pmatrix}$ $\prime = -x/(1 +$ $x' = y$ $y' = -x/(1 + x^2)$. With this notation, the conserved quantity found in part (a) is $y^2 + ln(1 + x^2) = C$. The graph passes through the point $(x, y) = (1,1)$ when $C = 1 + \ln 2$.
- 6 (c). At (1,1), the velocity vector is $\mathbf{v} = x'\mathbf{i} + y'\mathbf{j} = \mathbf{i} 0.5\mathbf{j}$. The velocity vector indicates that the solution point moves clockwise along the curve as *t* increases.
- 7. Rewriting the conservation law in terms of *x* and *x'*, we have $(x')^2 + x^2 \cos x = C$. Differentiating with respect to *t*, we obtain $2x'x'' + 2x'x\cos x - x^2x'\sin x = 0$ or $x'(2x'' + 2x\cos x - x^2\sin x) = 0$. Therefore, the differential equation is $x'' + x \cos x - 0.5x^2 \sin x = 0$.
- 8. Rewriting the conservation law in terms of *x* and *x'*, we have $(x')^2 e^{-x^2} = C$. Differentiating with respect to *t*, we obtain $2x'x'' - (e^{-x^2})(-2xx') = 0$. Therefore, the differential equation is $x'' + xe^{-x^2} = 0.$
- 9 (a). The equation $x'' + x + x^3 = 0$ can be expressed as $\begin{pmatrix} x' = 0 \\ 0 \end{pmatrix}$ $\prime = -x$ – $x' = y$ $y' = -x - x^3$. The nullclines are the lines defined by $y = 0$ and $-x(1 + x^2) = 0$; the lines $y = 0$ and $x = 0$. Thus, the only equilibrium point is the point $(x, y) = (0,0)$.
- 9 (b). The velocity vector has the form $\mathbf{v}(x,y) = y\mathbf{i} (x + x^3)\mathbf{j}$. Thus, we obtain $\mathbf{v}(1,1) = \mathbf{i} 2\mathbf{j}$, $\mathbf{v}(1,-1) = -\mathbf{i} - 2\mathbf{j}$, $\mathbf{v}(-1,1) = \mathbf{i} + 2\mathbf{j}$, and $\mathbf{v}(-1,-1) = -\mathbf{i} + 2\mathbf{j}$.
- 9 (c). Multiplying by *x'*, the equation becomes $x'x'' + x'(x + x^3) = 0$. Integrating, we obtain $0.5(x')^2 + 0.5x^2 + 0.25x^4 = C$ or $2y^2 + 2x^2 + x^4 = C_1$. The graph of the conserved quantity passes through the point (1,1) when $C_1 = 5$. The graph passes through the other three points and is consistent with the sketch in part (b).
- 10. Since $x'' + \alpha x = 0$ it follows that $0.5(x')^2 + 0.5\alpha x^2 = C_1$ and hence $\alpha x^2 + y^2 = C$.
- 10 (a). Figure A is a circle of radius 2 and thus $\alpha = 1$ and $x^2 + y^2 = 4$. Figure B is a hyperbola with asymptotes $y = \pm x$. Since (0, 2) is on the graph, we see that $\alpha = -1$ and $y^2 - x^2 = 4$. Figure C shows horizontal lines, $y = \pm 2$. Thus, $\alpha = 0$.
- 10 (b). The solution point in Figure A travels clockwise around the circle. Solution points in Figure B move to the right on the upper branch and to the left on the lower branch. Solutions points in Figure C move to the right on the upper line and to the left on the lower line.
- 11. In analogy with Exercise 9, multiply the equation $y'' + f(y') = 0$ by y'', obtaining $y''y''' + y''f(y') = 0$. Integrating, we find $0.5y'' + F(y') = C$ where $F(u)$ is an antiderivative of $f(u)$. Thus, the differential equation has a conservation law given by $0.5(y'')^2 + F(y') = C$.
- 12. (a) From the definition of $E(t)$, it follows that $\frac{dE}{dt} = mx'x'' + kxx' = (mx'' + kx)x'$. From the differential equation, $mx'' + \chi x' + kx = 0$ and hence $mx'' + kx = -\chi x'$. Therefore, *dE*

$$
\frac{dE}{dt} = (-\gamma x')x' \le 0.
$$

(b) Energy is not conserved. On *t*-intervals where $x'(t) \neq 0$, $E(t)$ is a decreasing function of *t* and energy is being lost.

13 (a). For the system

$$
x'=2x
$$

$$
y' = -2y
$$

we have $f(x,y) = 2x$ and $g(x,y) = -2y$. Thus, $f_x = 2$ and $g_y = -2$. Since $f_x = -g_y$, the system is Hamiltonian.

- 13 (b). Let $H(x, y)$ denote the Hamiltonian function. Thus, $H_x(x, y) = -g(x, y) = 2y$. Integrating with respect to *x*, we obtain $H(x, y) = 2xy + p(y)$. Differentiating with respect to *y* in order to determine $p(y)$, we find $H_y(x,y) = 2x + p'(y) = f(x,y) = 2x$. Therefore, $p'(y) = 0$ and hence $p(y) = C$ is a constant function. Dropping the constant, we obtain a Hamiltonian function, $H(x, y) = 2xy$.
- 13 (c). From part (b), the phase-plane trajectories are defined by $2xy = C$. If a phase-plane trajectory passes through the point (1,1), then $C = 2$ and the trajectory is given by $xy = 1$.
- 14 (a). For the system

$$
x' = 2xy
$$

$$
y' = -y^2
$$

we have $f(x,y) = 2xy$ and $g(x,y) = -y^2$. Thus, $f_x = 2y$ and $g_y = -2y$. Since $f_x = -g_y$, the system is Hamiltonian.

14 (b). Let $H(x,y)$ denote the Hamiltonian function. Thus, $H_x(x,y) = -g(x,y) = y^2$. Integrating with respect to *x*, we obtain $H(x, y) = xy^2 + p(y)$. Differentiating with respect to *y* in order to determine $p(y)$, we find $H_y(x, y) = 2xy + p'(y) = f(x, y) = 2xy$.

Therefore, $p'(y) = 0$ and hence $p(y) = C$ is a constant function. Dropping the constant, we obtain a Hamiltonian function, $H(x,y) = xy^2$.

- 14 (c). From part (b), the phase-plane trajectories are defined by $xy^2 = C$. If a phase-plane trajectory passes through the point (1,1), then $C = 1$ and the trajectory is given by $xy^2 = 1$.
- 15 (a). For the system

 $x' = x - x^2 + 1$

 $y' = -y + 2xy + 4x$

we have $f(x,y) = x - x^2 + 1$ and $g(x,y) = -y + 2xy + 4x$. Thus, $f_x = 1 - 2x$ and $g_y = -1 + 2x$. Since $f_x = -g_y$, the system is Hamiltonian.

15 (b). Let $H(x,y)$ denote the Hamiltonian function. Thus, $H_x(x,y) = -g(x,y) = y - 2xy - 4x$. Integrating with respect to *x*, we obtain $H(x,y) = xy - x^2y - 2x^2 + p(y)$. Differentiating with respect to *y* in order to determine $p(y)$, we find $H_y(x, y) = x - x^2 + p'(y) = f(x, y) = x - x^2 + 1$. Therefore, $p'(y) = 1$ and hence $p(y) = y + C$.

Dropping the additive constant, we obtain a Hamiltonian function, $H(x, y) = xy - x^2y - 2x^2 + y$.

- 15 (c). From part (b), the phase-plane trajectories are defined by $xy x^2y 2x^2 + y = C$. If a phaseplane trajectory passes through the point $(1,1)$, then $C = -1$ and the trajectory is given by $xy - x^2y - 2x^2 + y + 1 = 0$.
- 16 (a). For the system

$$
x' = -8y
$$

$$
y'=2x
$$

we have $f(x,y) = -8$ and $g(x,y) = 2x$. Thus, $f_x = 0$ and $g_y = 0$. Since $f_x = -g_y$, the system is Hamiltonian.

- 16 (b). Let $H(x,y)$ denote the Hamiltonian function. Thus, $H_y(x,y) = f(x,y) = -8y$. Integrating with respect to *y*, we obtain $H(x,y) = -4y^2 + q(x)$. Differentiating with respect to *x* in order to determine $q(x)$, we find $H_x(x, y) = q'(x) = -2x$. Therefore, $q(x) = -x^2 + C$. Dropping the additive constant, we obtain a Hamiltonian function, $H(x,y) = -x^2 - 4y^2$.
- 16 (c). From part (b), the phase-plane trajectories are defined by $-x^2 4y^2 = C$. If a phase-plane trajectory passes through the point $(1,1)$, then $C = -5$ and the trajectory is given by $x^2 + 4y^2 = 5$.
- 17 (a). For the system

 $x' = 2y\cos x$

$$
y' = y^2 \sin x
$$

we have $f(x,y) = 2y\cos x$ and $g(x,y) = y^2\sin x$. Thus, $f_x = -2y\sin x$ and $g_y = 2y\sin x$. Since $f_r = -g_y$, the system is Hamiltonian.

17 (b). Let $H(x, y)$ denote the Hamiltonian function. Thus, $H_x(x, y) = -g(x, y) = -y² \sin x$. Integrating with respect to *x*, we obtain $H(x, y) = y^2 \cos x + p(y)$. Differentiating with respect to *y* in order to determine $p(y)$, we find $H_y(x,y) = 2y \cos x + p'(y) = f(x,y) = 2y \cos x$. Therefore, $p'(y) = 0$ and hence $p(y) = C$ is a constant function. Dropping the constant, we obtain a Hamiltonian function, $H(x, y) = y^2 \cos x$.

- 17 (c). From part (b), the phase-plane trajectories are defined by $y^2 \cos x = C$. If a phase-plane trajectory passes through the point $(1,1)$, then $C = \cos 1$ and the trajectory is given by $y^2 \cos x = \cos 1$.
- 18 (a). For the system $x' = 2y - x + 3$

 $y' = y + 4x^3 - 2x$

we have $f_x = -1$ and $g_y = 1$. Since $f_x = -g_y$, the system is Hamiltonian.

- 18 (b). Let $H(x,y)$ denote the Hamiltonian function. Thus, $H_y(x,y) = f(x,y) = 2y x + 3$. Integrating with respect to *y*, we obtain $H(x,y) = y^2 - xy - 3y + q(x)$. Differentiating with respect to *x* in order to determine $q(x)$, we find $H_x(x,y) = -y + q'(x) = -y - 4x^3 + 2x$. Therefore, $q(x) = -x^4 + x^2 + C$. Dropping the additive constant, we obtain a Hamiltonian function, $H(x,y) = y^2 - xy + 3y - x^4 + x^2$.
- 18 (c). If a phase-plane trajectory $H(x, y) = C$ passes through the point (1,1), then the trajectory is given by $y^2 - xy + 3y - x^4 + x^2 = 8$.
- 19 (a). For the system $x' = -2y$

$$
y' = 3x^2
$$

we have $f(x,y) = -2y$ and $g(x,y) = 3x^2$. Thus, $f_x = 0$ and $g_y = 0$. Since $f_x = -g_y$, the system is Hamiltonian.

- 19 (b). Let $H(x,y)$ denote the Hamiltonian function. Thus, $H_x(x,y) = -g(x,y) = -3x^2$. Integrating with respect to *x*, we obtain $H(x, y) = -x^3 + p(y)$. Differentiating with respect to *y* in order to determine $p(y)$, we find $H_y(x, y) = p'(y) = f(x, y) = -2y$. Therefore, $p'(y) = -2y$ and hence $p(y) = -y^2 + C$ is a constant function. Dropping the additive constant, we obtain a Hamiltonian function, $H(x,y) = -x^3 - y^2$.
- 19 (c). From part (b), the phase-plane trajectories are defined by $-x^3 y^2 = C$. If a phase-plane trajectory passes through the point $(1,1)$, then $C = -2$ and the trajectory is given by $x^3 + y^2 = 2$.
- 20 (a). For the system
	- $x' = xe^{xy}$

$$
y' = -2x - ye^{xy}
$$

we have $f_x = e^{xy} + xye^{xy}$ and $g_y = -e^{xy} - xye^{xy}$ $y = e^{xy} + xye^{xy}$ and $g_y = -e^{xy} - xye^{xy}$. Since $f_x = -g_y$, the system is Hamiltonian.

- 20 (b). Let $H(x,y)$ denote the Hamiltonian function. Thus, $H_y(x,y) = f(x,y) = xe^{xy}$. Integrating with respect to *y*, we obtain $H(x,y) = e^{xy} + q(x)$. Differentiating with respect to *x* in order to determine $q(x)$, we find $H_x(x,y) = ye^{xy} + q'(x) = 2x + ye^{xy}$. Therefore, $q(x) = x^2 + C$. Dropping the additive constant, we obtain a Hamiltonian function, $H(x,y) = e^{xy} + x^2$.
- 20 (c). If a phase-plane trajectory $H(x,y) = C$ passes through the point (1,1), then the trajectory is given by $e^{xy} + x^2 = 1 + e$.

21. Consider the system

```
x' = x^3 + 3\sin(2x + 3y)y' = -3x^2y - 2\sin(2x + 3y).
```
Calculating the partial derivatives, we have $f_x = 3x^2 + 6\cos(2x + 3y)$ and $g_y = -3x^2 - 6\cos(2x + 3y)$. Since $f_x = -g_y$, the system is Hamiltonian. Let $H(x, y)$ denote the Hamiltonian function. Thus, $H_x(x,y) = -g(x,y) = 3x²y + 2\sin(2x + 3y)$. Integrating with respect to *x*, we obtain $H(x,y) = x^3y - cos(2x + 3y) + p(y)$. Differentiating with respect to *y* in order to determine $p(y)$, we find $H_y(x, y) = x^3 + 3\sin(2x + 3y) + p'(y) = f(x, y) = x^3 + 3\sin(2x + 3y)$. Therefore, $p'(y) = 0$ and hence $p(y) = C$ is a constant function. We obtain a Hamiltonian function, $H(x, y) = x³y - cos(2x + 3y)$.

22. Consider the system

$$
x'=e^{xy}+y^3
$$

$$
y'=-e^{xy}-x^3.
$$

Calculating the partial derivatives, we have $f_x = ye^{xy}$ and $g_y = -xe^{xy}$. Since $f_x \neq -g_y$, the system is not Hamiltonian.

23. Consider the system

 $x' = -\sin(2xy) - x$

$$
y' = \sin(2xy) + y.
$$

Calculating the partial derivatives, we have $f_x = -2y\cos(2xy) - 1$ and $g_y = 2x\cos(2xy) + 1$. Since $f_x \neq -g_y$, the system is not Hamiltonian.

24. Consider the system

 $x' = -3x^2 + xe^y$

$$
y'=6xy+3x-e^y.
$$

Calculating the partial derivatives, we have $f_x = -6x + e^y$ and $g_y = 6x - e^y$. Since $f_x = -g_y$, the system is Hamiltonian. Let $H(x, y)$ denote the Hamiltonian function. Thus,

$$
H_x(x, y) = -g(x, y) = -6xy - 3x + e^y
$$
. Integrating with respect to x, we obtain

 $H(x,y) = -3x^2y - (3/2)x^2 + p(y)$. Differentiating with respect to *y* in order to determine $p(y)$, we find $H_y(x, y) = -3x^2 + p'(y) = f(x, y) = -3x^2 + xe^y$. Therefore, $p'(y) = xe^y$ and hence $p(y) = xe^{y} + C$. Dropping the additive constant, we obtain a Hamiltonian function,

 $H(x,y) = -3x^2y - (3/2)x^2 + xe^y$.

25. Consider the system

 $x' = y$

$$
y'=x-x^2.
$$

Calculating the partial derivatives, we have $f_x = 0$ and $g_y = 0$. Since $f_x = -g_y$, the system is Hamiltonian.

Let $H(x, y)$ denote the Hamiltonian function. Thus, $H_x(x, y) = -g(x, y) = x² - x$. Integrating with respect to *x*, we obtain $H(x, y) = (1/6)(2x^3 - 3x^2) + p(y)$. Differentiating with respect to *y* in order to determine $p(y)$, we find $H_y(x,y) = p'(y) = f(x,y) = y$. Therefore, $p'(y) = y$ and hence $p(y) = 0.5y^2 + C$. Dropping the additive constant, we obtain a Hamiltonian function, $H(x,y) = (1/6)(2x^3 - 3x^2 + 3y^2)$.

- 26. Consider the system
	- $x' = x + 2y$
	- $y' = x^3 2x + y$.

Calculating the partial derivatives, we have $f_x = 1$ and $g_y = 1$. Since $f_x \neq -g_y$, the system is not Hamiltonian.

27. Consider the system

 $x' = f(y)$ $y' = g(x)$.

Calculating the partial derivatives, we have $\partial_x[f(y)] = 0$ and $\partial_y[g(x)] = 0$. Since

 $\partial_x[f(y)] = -\partial_y[g(x)]$, the system is Hamiltonian.

Let $H(x, y)$ denote the Hamiltonian function. Thus, $H_x(x, y) = -g(x)$. Integrating with respect to *x*, we obtain $H(x,y) = -G(x) + p(y)$. Differentiating with respect to *y* in order to determine $p(y)$, we find $H_y(x, y) = p'(y) = f(y)$. Therefore, $p(y) = F(y) + C$. Dropping the additive constant, we obtain a Hamiltonian function, $H(x, y) = F(y) - G(x)$.

28. Consider the system

 $x' = f(y) + 2y$

$$
y'=g(x)+6x.
$$

Calculating the partial derivatives, we have $\partial_x[f(y) + 2y] = 0$ and $\partial_y[g(x) + 6x] = 0$. Since $\partial_x[f(y) + 2y] = -\partial_x[g(x) + 6x]$, the system is Hamiltonian. Let $H(x, y)$ denote the Hamiltonian function. Thus, $H_x(x, y) = -g(x) - 6x$. Integrating with respect to *x*, we obtain $H(x,y) = -G(x) - 3x^2 + p(y)$. Differentiating with respect to *y* in order to determine $p(y)$, we find $H_y(x, y) = p'(y) = f(y) + 2y$. Therefore, $p(y) = F(y) + y^2 + C$. Dropping the additive constant, we obtain a Hamiltonian function, $H(x, y) = -G(x) - 3x^2 + F(y) + y^2$.

29. Consider the system

$$
x' = 3f(y) - 2xy
$$

$$
y' = g(x) + y2 + 1.
$$

Calculating the partial derivatives, we have $\partial_x[3f(y) - 2xy] = -2y$ and $\partial_y[g(x) + y^2 + 1] = 2y$. Since $\partial_x[3f(y)-2xy] = -\partial_y[g(x)+y^2+1]$, the system is Hamiltonian.

Let $H(x,y)$ denote the Hamiltonian function. Thus, $H_x(x,y) = -g(x) - y^2 - 1$. Integrating with respect to *x*, we obtain $H(x, y) = -G(x) - y^2x - x + p(y)$. Differentiating with respect to *y* in order to determine $p(y)$, we find $H_y(x,y) = -2yx + p'(y) = 3f(y) - 2xy$. Therefore, $p(y) = 3F(y) + C$. Dropping the additive constant, we obtain a Hamiltonian function, $H(x, y) = 3F(y) - G(x) - y^2 x - x$.

30. Consider the system

$$
x' = f(x - y) + 2y
$$

$$
y'=f(x-y).
$$

Calculating the partial derivatives, we have $\partial_x[f(x-y) + 2y] = f'(x-y)$ and $\partial_y[f(x-y)] = -f'(x-y)$. Since $\partial_x[f(x-y)+2y] = -\partial_y[f(x-y)]$, the system is Hamiltonian. Let $H(x, y)$ denote the Hamiltonian function. Thus, $H_x(x, y) = -f(x - y)$. Integrating with respect to *x*, we obtain $H(x,y) = -F(x - y) + p(y)$. Differentiating with respect to *y* in order to determine $p(y)$, we find $H_y(x,y) = f(x - y) + p'(y) = f(x - y) + 2y$.

Therefore, $p(y) = y^2 + C$. Dropping the additive constant, we obtain a Hamiltonian function, $H(x,y) = -F(x - y) + y^2$.

31. Consider the composition $K(x(t), y(t))$. Differentiating with respect to *t*, we obtain

 $\frac{d}{dt}K(x(t),y(t)) = \frac{\partial K}{\partial x}$ *x dx dt K y* $f(x(t), y(t)) = \frac{\partial K}{\partial x} \frac{dx}{dt} + \frac{\partial K}{\partial y} \frac{dy}{dt} = -(\mu g)f + (\mu f)g = 0$. Therefore, $K(x(t), y(t))$ is a conserved

quantity.

Section 8.4

- 1 (a). All points lying within the ellipse E having semi-major axis ε and semi-minor axis $\varepsilon/2$ lie within the circle of radius ε . Likewise, all points lying within the circle of radius $\varepsilon/2$ lie within the ellipse E. Therefore, given $\varepsilon > 0$, choose $\delta = \varepsilon / 2$.
- 1 (b). The origin is not an asymptotically stable equilibrium point since the solution points remain on an ellipse and do not approach the origin as $t \rightarrow \infty$.
- 2. The origin is an unstable equilibrium point. Any solution point starting near the origin will follow a branch of the hyperbola and will eventually exit any circle centered at the origin.
- 3 (a). Making the substitution $y = x'$, the scalar equation $x'' + \gamma x' + x = 0$ can be expressed as the system

 $x' = y$

$$
y'=-x-\gamma y.
$$

The origin is the only equilibrium point for this system.

- 3 (b). We analyze stability by appealing to Theorem 8.3. The system in part (a) has the form $y' = Ay$ where $A = \begin{vmatrix} 1 & -1 \\ -1 & -1 \end{vmatrix}$ È Î $\begin{bmatrix} 0 & 1 \\ -1 & -\gamma \end{bmatrix}$ ˚ ˙ 0 1 $\begin{bmatrix} 1 & -\gamma \end{bmatrix}$. The characteristic polynomial for *A* is $p(\lambda) = \lambda^2 + \gamma \lambda + 1$ and thus the eigenvalues of *A* are $\lambda_1 = 0.5(-\gamma - \sqrt{\gamma^2 - 4})$ and $\lambda_2 = 0.5(-\gamma + \sqrt{\gamma^2 - 4})$. When $\gamma^2 - 4 \ge 0$, we see that $\lambda_1 \le \lambda_2$. Thus, if $2 \le \gamma$, then $\lambda_1 \le \lambda_2 < 0$ which shows the origin is asymptotically stable. On the other hand, if $\gamma \le -2$, then $0 < \lambda_1 \le \lambda$, which shows the origin is an unstable equilibrium point. For $-2 < \gamma < 2$, the eigenvalues are complex with nonzero imaginary parts. For $-2 < \gamma < 0$, the real parts of λ_1 and λ_2 are positive, which shows the origin is an unstable equilibrium point. Likewise, for $0 < \gamma < 2$, the origin is an asymptotically stable equilibrium point. When $\gamma = 0$, the origin is a stable (but not asymptotically stable) equilibrium point.
- 4. For the system $y' = \begin{bmatrix} -3 & -1 \\ 1 & 1 \end{bmatrix}$ Î $\begin{vmatrix} -3 & -2 \\ 4 & 3 \end{vmatrix}$ ˚ $\mathbf{y}' = \begin{vmatrix} 1 & 3 \end{vmatrix}$ $3 -2$ 4 3 **y**, the coefficient matrix has eigenvalues $\lambda_1 = -1$ and $\lambda_2 = 1$.

Thus, by Theorem 8.3, the origin is an unstable equilibrium point.

- 5. For the system $y' = \begin{bmatrix} 5 & -1 \ 2 & -1 \end{bmatrix}$ - È Î $\begin{vmatrix} 5 & -14 \\ 3 & -8 \end{vmatrix}$ ˚ $\mathbf{y}' = \begin{vmatrix} 2 & 1 \end{vmatrix}$ $5 -14$ $3 \quad -8$ $\vert y \vert$, the coefficient matrix has eigenvalues $\lambda_1 = -1$ and $\lambda_2 = -2$. Thus, by Theorem 8.3, the origin is an asymptotically stable equilibrium point.
- 6. For the system $y' = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$ Î $\begin{vmatrix} 0 & -2 \\ 2 & 0 \end{vmatrix}$ $\overline{}$ $\mathbf{y}' = \begin{vmatrix} 2 & 0 \end{vmatrix}$ **y** $0 -2$ 2 0 **y**, the coefficient matrix has eigenvalues $\lambda_1 = 2i$ and $\lambda_2 = -2i$. Thus, by Theorem 8.3, the origin is a stable equilibrium point but not an asymptotically stable equilibrium point.

For the system $\mathbf{y}' = \begin{bmatrix} 1 & 4 \\ -1 & 1 \end{bmatrix} \mathbf{y}$, the coefficient matrix has eigenvalues 7. $\lambda_1 = 1 + 2i$ and $\lambda_2 = 1 - 2i$. Thus, by Theorem 8.3, the origin is an unstable equilibrium point. For the system $\mathbf{y}' = \begin{bmatrix} -7 & -3 \\ 5 & 1 \end{bmatrix} \mathbf{y}$, the coefficient matrix has eigenvalues $\lambda_1 = -4$ and $\lambda_2 = -2$. 8. Thus, by Theorem 8.3, the origin is an asymptotically stable equilibrium point. For the system $\mathbf{y}' = \begin{bmatrix} 9 & 5 \\ -7 & -3 \end{bmatrix} \mathbf{y}$, the coefficient matrix has eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 4$. 9. Thus, by Theorem 8.3, the origin is an unstable equilibrium point. For the system $\mathbf{y}' = \begin{bmatrix} -3 & -5 \\ 2 & -1 \end{bmatrix} \mathbf{y}$, the coefficient matrix has eigenvalues 10. $\lambda_1 = -2 + 3i$ and $\lambda_2 = -2 - 3i$. Thus, by Theorem 8.3, the origin is an asymptotically stable equilibrium point. For the system $\mathbf{y}' = \begin{vmatrix} 9 & -4 \\ 15 & -7 \end{vmatrix} \mathbf{y}$, the coefficient matrix has eigenvalues $\lambda_1 = 3$ and $\lambda_2 = -1$. 11. Thus, by Theorem 8.3, the origin is an unstable equilibrium point. For the system $\mathbf{y}' = \begin{bmatrix} -13 & -8 \\ 15 & 9 \end{bmatrix} \mathbf{y}$, the coefficient matrix has eigenvalues $\lambda_1 = -3$ and $\lambda_2 = -1$. 12. Thus, by Theorem $8.\overline{3}$, the origin is an asymptotically stable equilibrium point. For the system $\mathbf{y}' = \begin{vmatrix} 3 & -2 \\ 5 & -3 \end{vmatrix} \mathbf{y}$, the coefficient matrix has eigenvalues $\lambda_1 = i$ and $\lambda_2 = -i$. Thus, 13. by Theorem 8.3, the origin is a stable (but not asymptotically stable) equilibrium point. For the system $\mathbf{y}' = \begin{vmatrix} 1 & -5 \\ 1 & -3 \end{vmatrix} \mathbf{y}$, the coefficient matrix has eigenvalues 14. $\lambda_1 = -1 + i$ and $\lambda_2 = -1 - i$. Thus, by Theorem 8.3, the origin is an asymptotically stable equilibrium point. For the system $\mathbf{y}' = \begin{vmatrix} -3 & 3 \\ 1 & -5 \end{vmatrix} \mathbf{y}$, the coefficient matrix has eigenvalues $\lambda_1 = -6$ and $\lambda_2 = -2$. 15. Thus, by Theorem 8.3, the origin is an asymptotically stable equilibrium point. Eigenvalues are $\lambda_1 = -2$ and $\lambda_2 = 3$. Since one of the eigenvalues is real and positive, the 16. origin is an unstable equilibrium point. Eigenvalues are $\lambda_1 = 2$ and $\lambda_2 = 3$. Since the eigenvalues are real and positive, the origin is an 17. unstable equilibrium point. 18. Eigenvalues are $\lambda_1 = -4$ and $\lambda_2 = -2$. Since the eigenvalues are real and negative, the origin is an asymptotically stable equilibrium point. Eigenvalues are $\lambda_1 = 1 - 2i$ and $\lambda_2 = 1 + 2i$. Since the eigenvalues are complex with positive 19. real parts, the origin is an unstable equilibrium point. 20. Eigenvalues are $\lambda_1 = -2i$ and $\lambda_2 = 2i$. Since the eigenvalues are purely imaginary, the origin is a stable equilibrium point but it is not an asymptotically stable equilibrium point. Eigenvalues are $\lambda_1 = -2 - 2i$ and $\lambda_2 = -2 + 2i$. Since the eigenvalues are complex with 21. negative real parts, the origin is an asymptotically stable equilibrium point. 22. Eigenvalues are $\lambda_1 = -2$ and $\lambda_2 = 3$. Since one of the eigenvalues is real and positive, the origin is an unstable equilibrium point.

- Eigenvalues are $\lambda_1 = -2$ and $\lambda_2 = -3$. Since the eigenvalues are real and negative, the origin is 23. an asymptotically stable equilibrium point.
- 24 (a). Solving $\mathbf{0} = A\mathbf{y}_e + \mathbf{g}_0$, it follows that $\mathbf{y}_e = -A^{-1}\mathbf{g}_0$ is the unique equilibrium point.
- 24 (b). Let $\mathbf{z}(t) = \mathbf{y}(t) \mathbf{y}_e$. Then, $\mathbf{z}' = \mathbf{y}' = A\mathbf{y} + \mathbf{g}_0 = A\mathbf{y} A\mathbf{y}_e = A\mathbf{z}$. Theorem 8.3 can be applied to the new system $z' = Az$.
- For the system $\mathbf{y}' = \begin{vmatrix} -2 & 1 \\ 1 & -2 \end{vmatrix} \mathbf{y} + \begin{vmatrix} -4 \\ 2 \end{vmatrix}$, the unique equilibrium point is 25. $\mathbf{y}_e = -A^{-1}\begin{bmatrix} -4 \\ 2 \end{bmatrix} = -(1/3)\begin{bmatrix} -2 & -1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} -4 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$. With the change of variable $\mathbf{z}(t) = \mathbf{y}(t) - \mathbf{y}_e$ the system becomes $(\mathbf{z} + \mathbf{y}_e)' = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} (\mathbf{z} + \mathbf{y}_e) + \begin{bmatrix} -4 \\ 2 \end{bmatrix}$ or $\mathbf{z}' = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} \mathbf{z} + \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} \mathbf{y}_e + \begin{bmatrix} -4 \\ 2 \end{bmatrix}$. This last system reduces to the homogeneous system $\mathbf{z}' = \begin{vmatrix} -2 & 1 \\ 1 & -2 \end{vmatrix} \mathbf{z}$. The coefficient matrix has eigenvalues $\lambda_1 = -3$ and $\lambda_2 = -1$. By Theorem 8.3, the origin is an asymptotically stable equilibrium point of $z' = Az$ and therefore, y_e is an asymptotically stable equilibrium point of the nonhomogeneous system $\mathbf{y}' = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} \mathbf{y} + \begin{bmatrix} -4 \\ 2 \end{bmatrix}$.
- For the system $\mathbf{y}' = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \mathbf{y} + \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, the unique equilibrium point is $\mathbf{y}_e = -A^{-1} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$. With 26. the change of variable $\mathbf{z}(t) = \mathbf{y}(t) - \mathbf{y}_e$ the system reduces to the homogeneous system $\mathbf{z}' = \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix}$ **z**. The coefficient matrix has eigenvalues $\lambda_1 = i$ and $\lambda_2 = -i$. By Theorem 8.3, the origin is a stable but not an asymptotically stable equilibrium point of $z' = Az$. Therefore, y_e is a stable but not an asymptotically stable equilibrium point of the nonhomogeneous system. For the system $\mathbf{y}' = \begin{bmatrix} 3 & 2 \\ -4 & -3 \end{bmatrix} \mathbf{y} + \begin{bmatrix} -2 \\ 2 \end{bmatrix}$, the unique equilibrium point is 27. $\mathbf{y}_e = -A^{-1}\begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} -3 & -2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$. With the change of variable $\mathbf{z}(t) = \mathbf{y}(t) - \mathbf{y}_e$ the system becomes $(\mathbf{z} + \mathbf{y}_e)' = \begin{bmatrix} 3 & 2 \\ -4 & -3 \end{bmatrix} (\mathbf{z} + \mathbf{y}_e) + \begin{vmatrix} -2 \\ 2 \end{vmatrix}$ or $\mathbf{z}' = \begin{vmatrix} 3 & 2 \\ -4 & -3 \end{vmatrix} \mathbf{z} + \begin{vmatrix} 3 & 2 \\ -4 & -3 \end{vmatrix} \mathbf{y}_e + \begin{vmatrix} -2 \\ 2 \end{vmatrix}$. This
	- last system reduces to the homogeneous system $\mathbf{z}' = \begin{vmatrix} 3 & 2 \\ -4 & -3 \end{vmatrix} \mathbf{z}$. The coefficient matrix has eigenvalues $\lambda_1 = -1$ and $\lambda_2 = 1$. By Theorem 8.3, the origin is an unstable equilibrium point of $z' = Az$ and therefore, y_e is an unstable equilibrium point of the nonhomogeneous system $y' = \begin{vmatrix} 3 & 2 \\ -4 & -3 \end{vmatrix} y + \begin{vmatrix} -2 \\ 2 \end{vmatrix}.$
- For the system $\mathbf{y}' = \begin{vmatrix} -1 & 1 \\ -10 & 5 \end{vmatrix} \mathbf{y} + \begin{vmatrix} 1 \\ 2 \end{vmatrix}$, the unique equilibrium point is $\mathbf{y}_e = -A^{-1} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} -3/5 \\ -8/5 \end{vmatrix}$. 28. With the change of variable $\mathbf{z}(t) = \mathbf{y}(t) - \mathbf{y}_e$ the system reduces to the homogeneous system

 $\mathbf{z}' = \begin{bmatrix} -1 & 1 \\ -10 & 5 \end{bmatrix}$ **z**. The coefficient matrix has eigenvalues $\lambda_1 = 2 + i$ and $\lambda_2 = 2 - i$. By Theorem 8.3, the origin is an unstable equilibrium point of $z' = Az$. Therefore, y_e is an unstable equilibrium point of the nonhomogeneous system. For the system $\mathbf{y}' = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix} \mathbf{y}$, the coefficient matrix has eigenvalues 29. $\lambda_1 = -1, \lambda_2 = 2$, and $\lambda_3 = 3$. Thus, by the discussion following Theorem 8.3, the origin is an unstable equilibrium point. For the system $\mathbf{y}' = \begin{bmatrix} 1 & -1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & -1 \end{bmatrix} \mathbf{y} + \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$, the unique equilibrium point is $\mathbf{y}_e = -A^{-1} \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 3 \end{bmatrix}$.
With the change of variable $\mathbf{z}(t) = \math$ 30. $\mathbf{z}' = \begin{vmatrix} 1 & -1 & -2 \\ 0 & -1 & -2 \\ 0 & 0 & -1 \end{vmatrix} \mathbf{z}$. The coefficient matrix has eigenvalues $\lambda_1 = 1, \lambda_1 = -1$, and $\lambda_3 = -1$. By Theorem 8.3, the origin is an unstable equilibrium point of $z' = Az$. Therefore, y_e is an unstable equilibrium point of the nonhomogeneous system. For the system $\mathbf{y}' = \begin{vmatrix} 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 2 \end{vmatrix} \mathbf{y}$, the coefficient matrix has eigenvalues 31. $\lambda_1 = -2 + 3i$, $\lambda_2 = -2 - 3i$, $\lambda_3 = 2i$, and $\lambda_4 = -2i$. Thus, by the discussion following Theorem 8.3, the origin is a stable (but not asymptotically stable) equilibrium point. For the system $\mathbf{y}' = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \mathbf{y} + \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \end{bmatrix}$, unique equilibrium point is given by
 $\mathbf{y}_e = -A^{-1} \begin{bmatrix} -1 \\ 2 \\ 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 1 \\ 0 \end{bmatrix}$. Wi 32. homogeneous system $\mathbf{z}' = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{z}$. The coefficient matrix has eigenvalues $\lambda_1 = -1, \lambda_2 = -1, \lambda_3 = -1$, and $\lambda_4 = 1$. Thus, by the discussion following Theorem 8.3, the origin is an unstable equilibrium point.

34 (a). Since the coefficient matrix A is real and symmetric, it has real eigenvalues and a full set of eigenvectors.

- 34 (b). From the discussion following Theorem 8.3, the equilibrium point $y_e = 0$ is isolated if and only if det[A] \neq 0. Now, det[A] = 1 – α^2 and therefore, $y_e = 0$ is an isolated equilibrium point if and only if $\alpha \neq \pm 1$.
- 34 (c). When $\alpha = 1$ the equilibrium points lie on the line $y = x$. When $\alpha = -1$ the equilibrium points lie on the line $y = -x$.
- 34 (d). No, since the eigenvalues of A are real and not purely imaginary; see Theorem 8.3.
- 34 (e). The eigenvalues of A are $\lambda_1 = -1 + \alpha$, and $\lambda_2 = -1 \alpha$. By part (b), if $y_e = 0$ is an isolated equilibrium point, then $\alpha \neq \pm 1$. Clearly, both eigenvalues are negative when $-1 < \alpha < 1$ whereas one of the eigenvalues is positive when $|\alpha| > 1$.
- Since $\begin{bmatrix} 1 & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, it follows that $1 + 2a_{12} = 2$ and $a_{21} + 2a_{22} = 4$. From the first 35. equation, we have $a_{12} = 1/2$. Since $y = 0$ is not an isolated equilibrium point, it follows that det[A] = 0. Thus, $a_{22} - a_{12}a_{21} = 0$ or $a_{22} - (1/2)a_{21} = 0$. This last equation, together with the

prior equation $a_{21} + 2a_{22} = 4$ tells us that $a_{21} = 2$ and $a_{22} = 1$. Thus, $A = \begin{bmatrix} 1 & 1/2 \\ 2 & 1 \end{bmatrix}$.

Section 8.5

1 (a). For the system $x' = x^2 + y^2 - 32$ $y' = y - x$,

the equilibrium points are $y_e = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$ and $y_e = \begin{bmatrix} -4 \\ -4 \end{bmatrix}$.

1 (b). At an equilibrium point, the linearized system $\mathbf{z}' = A\mathbf{z}$ has coefficient matrix $A = \begin{bmatrix} 2x & 2y \\ -1 & 1 \end{bmatrix}$.

Thus, the linearized systems are (i)
$$
\mathbf{z}' = \begin{bmatrix} 8 & 8 \\ -1 & 1 \end{bmatrix} \mathbf{z}
$$

 $\begin{bmatrix} -8 & -8 \end{bmatrix}$

and (ii)
$$
\mathbf{z}' = \begin{bmatrix} -8 & -8 \\ -1 & 1 \end{bmatrix} \mathbf{z}
$$

- 1 (c). In case (i), the eigenvalues are $\lambda_1 = 2.438...$ and $\lambda_2 = 6.561...$ and thus the nonlinear system is unstable at the corresponding equilibrium point y_e . For case (ii), the eigenvalues are $\lambda_1 = -8.815...$ and $\lambda_2 = 1.815...$ and thus the nonlinear system is unstable at the corresponding equilibrium point y_e .
- $2(a)$. For the system

$$
x' = x^2 + 9y^2 - 9
$$

$$
y' = x
$$

the equilibrium points are $y_e = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $y_e = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$.

- 2 (b). At an equilibrium point, the linearized system $\mathbf{z}' = A\mathbf{z}$ has coefficient matrix $A = \begin{bmatrix} 2x & 18y \\ 1 & 0 \end{bmatrix}$.
	- Thus, the linearized systems are (i) $\mathbf{z}' = \begin{bmatrix} 0 & 18 \\ 1 & 0 \end{bmatrix} \mathbf{z}$ and (ii) $\mathbf{z}' = \begin{bmatrix} 0 & -18 \\ 1 & 0 \end{bmatrix} \mathbf{z}$
- 2 (c). In case (i), the eigenvalues are $\lambda_1 = 4.242...$ and $\lambda_2 = -4.242...$ and thus the nonlinear system is unstable at the corresponding equilibrium point y_e . For case (ii), the eigenvalues are $\pm 3\sqrt{2}i$ and thus nothing can be inferred about the stability of the nonlinear system.

3 (a). For the system

 $x' = 1 - x^2$ $y' = x^2 + y^2 - 2$, the equilibrium points are $y_e = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, y_e = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, y_e = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$, and $y_e = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

3 (b). At an equilibrium point, the linearized system $\mathbf{z}' = A\mathbf{z}$ has coefficient matrix $A = \begin{bmatrix} -2x & 0 \\ 2x & 2y \end{bmatrix}$. Thus, the linearized systems are (i) $\mathbf{z}' - \begin{bmatrix} -2 & 0 \end{bmatrix}$.

Thus, the linearized systems are (1)
$$
\mathbf{z}' = \begin{bmatrix} 2 & 2 \end{bmatrix} \mathbf{z}
$$
,
\n(ii) $\mathbf{z}' = \begin{bmatrix} 2 & 0 \ -2 & 2 \end{bmatrix} \mathbf{z}$, (iii) $\mathbf{z}' = \begin{bmatrix} 2 & 0 \ -2 & -2 \end{bmatrix} \mathbf{z}$, and (iv) $\mathbf{z}' = \begin{bmatrix} -2 & 0 \ 2 & -2 \end{bmatrix} \mathbf{z}$.

- 3 (c). In cases (i) (iii), $\lambda = 2$ is an eigenvalue and thus the nonlinear system is unstable at each of the corresponding equilibrium points y_e . For case (iv), the eigenvalues are $\lambda_1 = -2$ and $\lambda_2 = -2$ and thus the nonlinear system is asymptotically stable at the corresponding equilibrium point y_e .
- 4 (a). For the system $x' = x - y - 1$ $y' = x^2 - y^2 + 1$, the equilibrium point is $y_e = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$.

4 (b). At the equilibrium point, the linearized system $\mathbf{z}' = A\mathbf{z}$ has coefficient matrix $A = \begin{bmatrix} 1 & -1 \\ 2x & -2y \end{bmatrix}$.

Thus, the linearized system is $\mathbf{z}' = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \mathbf{z}$.

4 (c). The eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 2$ and thus the nonlinear system is unstable at the equilibrium point y_e .

5 (a). For the system

$$
x' = (x-2)(y-3)
$$

$$
y' = (x+2y)(y-1)
$$

the equilibrium points are $\mathbf{y}_e = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \mathbf{y}_e = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, and $\mathbf{y}_e = \begin{bmatrix} -6 \\ 3 \end{bmatrix}$.

5 (b). At an equilibrium point, the linearized system $z' = Az$ has coefficient matrix $A = \begin{bmatrix} y-3 & x-2 \\ y-1 & x+4y-2 \end{bmatrix}$. Thus, the linearized systems are (i) $\mathbf{z}' = \begin{bmatrix} -4 & 0 \\ -2 & -4 \end{bmatrix} \mathbf{z}$, (ii) $\mathbf{z}' = \begin{bmatrix} -2 & 0 \\ 0 & 4 \end{bmatrix} \mathbf{z}$, and (iii) $\mathbf{z}' = \begin{bmatrix} 0 & -8 \\ 2 & 4 \end{bmatrix} \mathbf{z}$.

- 5 (c). In case (i), the eigenvalues are $\lambda_1 = -4$ and $\lambda_2 = -4$ and thus the nonlinear system is asymptotically stable at the corresponding equilibrium point y_e . For case (ii), the eigenvalues are $\lambda_1 = -2$ and $\lambda_2 = 4$ and thus the nonlinear system is unstable at the corresponding equilibrium point y_e . In case (iii), the eigenvalues are $\lambda_1 = 2 + 2\sqrt{3}i$ and $\lambda_2 = 2 - 2\sqrt{3}i$. Thus the nonlinear system is unstable at the corresponding equilibrium point y_{ρ} .
- $6(a)$. For the system

$$
x' = (x - y)(y + 1)
$$

$$
y' = (x + 2)(y - 4)
$$

the equilibrium points are $\mathbf{y}_e = \begin{bmatrix} -2 \\ -2 \end{bmatrix}, \mathbf{y}_e = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$, and $\mathbf{y}_e = \begin{bmatrix} -2 \\ -1 \end{bmatrix}.$

- 6 (b). At an equilibrium point, the linearized system $z' = Az$ has coefficient matrix $A = \begin{bmatrix} y+1 & x-2y-1 \\ y-4 & x+2 \end{bmatrix}$. Thus, the linearized systems are (i) $\mathbf{z}' = \begin{bmatrix} -1 & 1 \\ -6 & 0 \end{bmatrix} \mathbf{z}$, (ii) $\mathbf{z}' = \begin{bmatrix} 5 & -5 \\ 0 & 6 \end{bmatrix} \mathbf{z}$, and (iii) $\mathbf{z}' = \begin{bmatrix} 0 & -1 \\ -5 & 0 \end{bmatrix} \mathbf{z}$.
- 6 (c). In case (i), the eigenvalues are $-0.5 \pm 0.5i\sqrt{23}$ and thus the nonlinear system is asymptotically stable at the corresponding equilibrium point y_{ℓ} . For case (ii), the eigenvalues are $\lambda_1 = 5$ and $\lambda_2 = 6$ and thus the nonlinear system is unstable at the corresponding equilibrium point y_e . In case (iii), the eigenvalues are $\pm \sqrt{5}$. Thus the nonlinear system is unstable at the corresponding equilibrium point y_{α} .
- 7 (a). For the system

$$
x' = (x - 2y)(y + 4)
$$

$$
y' = 2x - y,
$$

the equilibrium points are $y_e = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $y_e = \begin{bmatrix} -2 \\ -4 \end{bmatrix}$.

7 (b). At an equilibrium point, the linearized system $z' = Az$ has coefficient matrix $A = \begin{bmatrix} y+4 & x-4y-8 \\ 2 & -1 \end{bmatrix}$. Thus, the linearized systems are (i) $\mathbf{z}' = \begin{bmatrix} 4 & -8 \\ 2 & -1 \end{bmatrix} \mathbf{z}$, and (ii) $\mathbf{z}' = \begin{vmatrix} 0 & 6 \\ 2 & -1 \end{vmatrix} \mathbf{z}$.

- 7 (c). In case (i), the eigenvalues are $\lambda_1 = 0.5(3 + \sqrt{39} i)$ and $\lambda_2 = 0.5(3 \sqrt{39} i)$ and thus the nonlinear system is unstable at the corresponding equilibrium point **y***^e* . For case (ii), the eigenvalues are $\lambda_1 = -4$ and $\lambda_2 = 3$ and thus the nonlinear system is unstable at the corresponding equilibrium point \mathbf{y}_e .
- 8 (a). For the system

$$
x' = xy - 1
$$

y' = (x + 4y)(x - 1),
the equilibrium point is $\mathbf{y}_e = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

8 (b). At the equilibrium point, the linearized system $z' = Az$ has coefficient matrix

 $\overline{}$

˚ $\overline{}$

 $A = \begin{bmatrix} y & x \\ 2 & 4 & 1 \end{bmatrix}$ $=\begin{vmatrix} 2x+4y-1 & 4(x-1) \end{vmatrix}$ \mathbf{r} Î $\begin{vmatrix} y & x \\ 2x+4y-1 & 4(x-1) \end{vmatrix}$ $\begin{bmatrix} y & x \\ 2x + 4y - 1 & 4(x - 1) \end{bmatrix}$. Thus, the linearized system is $\mathbf{z}' = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{vmatrix} 1 & 1 \\ 5 & 0 \end{vmatrix}$ ˚ $\mathbf{z}' = \begin{vmatrix} 5 & 0 \end{vmatrix}$ **z** 1 1 $5 \quad 0$ |z.

- 8 (c). The eigenvalues are $0.5(1 \pm \sqrt{21})$ and thus the nonlinear system is unstable at the equilibrium point y_e .
- 9 (a). For the system $x' = y^2 - x$

 $y' = x^2 - y$, the equilibrium points are $y_e = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and y_e Î Í $\overline{}$ ˚ and $y_e =$ 0 0 and $y_e = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

9 (b). At an equilibrium point, the linearized system $\mathbf{z}' = A\mathbf{z}$ has coefficient matrix $A = \begin{bmatrix} -1 & 2y \\ 2x & -1 \end{bmatrix}$ È Î $\begin{vmatrix} -1 & 2y \\ 2x & -1 \end{vmatrix}$ ˚ $\overline{}$ 1 2 $2x -1$.

Î Í \overline{a}

1 1

˚ ˙

Thus, the linearized systems are (i) $\mathbf{z}' = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ - È Î $\begin{vmatrix} -1 & 0 \\ 0 & -1 \end{vmatrix}$ ˚ $\mathbf{z}' = \begin{vmatrix} 0 & -1 \end{vmatrix}$ **z** 1 0 $\begin{bmatrix} 0 & -1 \end{bmatrix}$ **z**, and (ii) $\mathbf{z}' = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ È $\begin{vmatrix} -1 & 2 \\ 2 & -1 \end{vmatrix}$ $\mathbf{z}' = \begin{vmatrix} 2 & 1 \end{vmatrix}$ 1 2 2 -1 $\vert z \vert$

- Î ˚ 9 (c). In case (i), the eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = -1$ and thus the nonlinear system is asymptotically stable at the corresponding equilibrium point y_e . For case (ii), the eigenvalues are $\lambda_1 = -3$ and $\lambda_2 = 1$ and thus the nonlinear system is unstable at the corresponding equilibrium point **y***^e* .

10. At an equilibrium point, the linearized system $z' = Az$ has coefficient matrix

$$
A = \begin{bmatrix} (1/2)[1 - x - (1/2)y] & -(1/4)x \\ -(1/12)y & (1/4)[1 - (1/3)x - (4/3)y] \end{bmatrix}.
$$
 Thus, the linearized systems are: (i) at
\n
$$
\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \mathbf{z}' = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/4 \end{bmatrix}, \mathbf{z}', \text{(ii) at } \begin{bmatrix} 0 \\ 3/2 \end{bmatrix}, \mathbf{z}' = \begin{bmatrix} 1/8 & 0 \\ -1/8 & -1/4 \end{bmatrix}, \mathbf{z}', \text{(iii) at } \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \mathbf{z}' = \begin{bmatrix} -1/2 & -1/2 \\ 0 & 1/12 \end{bmatrix}, \mathbf{z}.
$$
 Thus, in all three of these cases, the system is unstable at the corresponding equilibrium point.

unstable at the corresponding equilibrium point.

- 11 (c). By Taylor's theorem, $f(z) = f(0) + f'(0)z + f''(\gamma)z^2/2$ where γ is between *z* and 0. For $f(z) = \sin z$, we have $\sin z_1 - z_1 = (-\sin \gamma) z_1^2 / 2$ where γ is between z_1 and 0. Now, $\mathbf{g}(\mathbf{z}) \| / \| \mathbf{z} \| = |z_1 - \sin z_1| / \sqrt{z_1^2 + z_2^2} \le |z_1 - \sin z_1| / |z_1|$ 2 $\frac{2}{2} \leq |z_1 - \sin z_1| / |z_1|$. So, by the remarks above, $g(z) \|z\| \le |z_1^2/2|z_1| = |z_1|/2$. Hence, since $|z_1|/2$ goes to 0 as **z** goes to 0, the system is almost linear at both equilibrium points.
- 12 (a). For the given system $\mathbf{z}' = A\mathbf{z} + \mathbf{g}(\mathbf{z})$, the coefficient matrix *A* is $A = \begin{bmatrix} 9 & -1 \ 1 & -1 \end{bmatrix}$ - È Î $\begin{vmatrix} 9 & -4 \\ 15 & -7 \end{vmatrix}$ ˚ $\overline{}$ 9 4 $15 \quad -7 \mid$, while

$$
\mathbf{g}(\mathbf{z}) = \begin{bmatrix} z_2^2 \\ 0 \end{bmatrix}.
$$

- 12 (b). $\|\mathbf{g}(\mathbf{z})\| = z_2^2$, or using polar coordinates with $z_1 = r \cos \theta$ and $z_2 = r \sin \theta$, we obtain $\mathbf{g}(\mathbf{z})$ $\|=$ $r^2 \sin^2 \theta$.
- 12 (c). From part (b), $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| = r^2 \sin^2 \theta / r = r \sin^2 \theta$. Thus, $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| \to 0$ as $\|\mathbf{z}\| \to 0$. In addition to the limit requirement, the system satisfies the other necessary conditions to be an almost linear system.
- 12 (d). The eigenvalues of *A* are $\lambda_1 = -1$ and $\lambda_2 = 3$. Thus, by Theorem 8.4, $\mathbf{z} = \mathbf{0}$ is an unstable equilibrium point.
- 13 (a). For the system $\mathbf{z}' = A\mathbf{z} + \mathbf{g}(\mathbf{z})$,

$$
z'_1 = 5z_1 - 14z_2 + z_1z_2
$$

\n
$$
z'_2 = 3z_1 - 8z_2 + z_1^2 + z_2^2
$$

the coefficient matrix *A* is given by $A = \begin{bmatrix} 5 & -1 \end{bmatrix}$ - È Î $\begin{vmatrix} 5 & -14 \\ 3 & -8 \end{vmatrix}$ ˚ ˙ $5 -14$ $3 \quad -8 \mid$, while **g**(**z**) = $\begin{bmatrix} z_1^2 + z_2^2 + z_3^2 \end{bmatrix}$ È Î $\begin{vmatrix} z_1 z_2 \\ z^2 + z^2 \end{vmatrix}$ ˚ $\overline{}$ *z z* $z_1^2 + z$ $1^{\sim}2$ 1 2 2 $\frac{1}{2}$.

13 (b). Using polar coordinates with $z_1 = r \cos \theta$ and $z_2 = r \sin \theta$, we obtain $\mathbf{g}(\mathbf{z}) \big\| = \sqrt{(z_1 z_2)^2 + (z_1^2 + z_2^2)^2} = \sqrt{(r^2 \cos \theta \sin \theta)^2 + (r^2)}$ 2 2 $\left(\frac{2}{2}\right)^2 = \sqrt{(r^2 \cos \theta \sin \theta)^2 + (r^2)^2} \text{ or } ||\mathbf{g}(\mathbf{z})|| = \sqrt{r^4 (\cos^2 \theta \sin^2 \theta + 1)}.$ (Also note that $\|\mathbf{z}\| = r$.)

- 13 (c). From part (b), $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| = \sqrt{r^4(\cos^2\theta \sin^2\theta + 1)}/r \le r^2\sqrt{2}/r = r\sqrt{2}$. Thus, $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| \to 0$ as $\|\mathbf{z}\| \to 0$. In addition to the limit requirement, the system satisfies the other necessary conditions to be an almost linear system.
- 13 (d). The eigenvalues of *A* are $\lambda_1 = -2$ and $\lambda_2 = -1$. Thus, by Theorem 8.4, $z = 0$ is an asymptotically stable equilibrium point.

14 (a). For the given system $\mathbf{z}' = A\mathbf{z} + \mathbf{g}(\mathbf{z})$, the coefficient matrix *A* is $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ - È Î $\begin{vmatrix} -3 & 1 \\ 2 & -2 \end{vmatrix}$ ˚ ˙ 3 1 $\begin{bmatrix} 2 & -2 \end{bmatrix}$, while

$$
\mathbf{g}(\mathbf{z}) = \begin{bmatrix} z_1^2 + z_2^2 \\ (z_1^2 + z_2^2)^{1/3} \end{bmatrix}.
$$

- 14 (b). Using polar coordinates with $z_1 = r \cos \theta$ and $z_2 = r \sin \theta$, we obtain $\|\mathbf{g}(\mathbf{z})\| = r^{2/3} \sqrt{1 + r^{8/3}}$.
- 14 (c). From part (b), $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| = r^{2/3}\sqrt{1+r^{8/3}}/r = \sqrt{1+r^{8/3}}/r^{1/3}$. Thus,

 $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\|$ does not exist as $\|\mathbf{z}\| \to 0$. The system is not almost linear at $\mathbf{z} = \mathbf{0}$.

15 (a). For the system $\mathbf{z}' = A\mathbf{z} + \mathbf{g}(\mathbf{z})$,

$$
z'_1 = -z_1 + 3z_2 + z_2 \cos \sqrt{z_1^2 + z_2^2}
$$

$$
z'_2 = -z_1 - 5z_2 + z_1 \cos \sqrt{z_1^2 + z_2^2}
$$

the coefficient matrix *A* is given by $A = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ $-1 -$ È Î $\begin{vmatrix} -1 & 3 \\ -1 & -5 \end{vmatrix}$ ˚ $\overline{}$ 1 3 $1 \quad -5 \mid$, while **g**(**z**) = $z_2 \cos \sqrt{z_1^2 + z_2 \cos \sqrt{z_1^2 + z_1^2}}$ \mathbf{r} Î Í Í \overline{a} ˚ $\overline{}$ $\overline{}$ $z_2 \cos \sqrt{z_1^2 + z_2^2}$ $z_1 \cos \sqrt{z_1^2 + z_2^2}$ 2 $\cos \sqrt{4}$ 2 2 2 $\frac{1}{1}$ $\cos \sqrt{4}$ 2 2 $\frac{2}{2}$.

15 (b). Using polar coordinates with $z_1 = r \cos \theta$ and $z_2 = r \sin \theta$, we obta

$$
\|\mathbf{g}(\mathbf{z})\| = \sqrt{(z_1^2 + z_2^2)\cos^2\sqrt{z_1^2 + z_2^2}} = \sqrt{r^2\cos^2 r} \text{ or } \|\mathbf{g}(\mathbf{z})\| = r|\cos r|. \text{ (Also note that } \|\mathbf{z}\| = r.)
$$
\nFrom part (b) $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| = r|\cos r|$, $r = |\cos r|$. Thus $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| \to 1$ as $\|\mathbf{z}\| \to 0$. Therefore,

15 (c). From part (b), $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| = r|\cos r|/r = |\cos r|$. Thus, $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| \to 1$ as $\|\mathbf{z}\| \to 0$. Therefore, the system is not an almost linear system.

16 (a). For the given system $\mathbf{z}' = A\mathbf{z} + \mathbf{g}(\mathbf{z})$, the coefficient matrix *A* is $A = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ - È Î $\begin{vmatrix} -2 & 2 \\ 1 & -3 \end{vmatrix}$ ˚ ˙ 2 2 $1 \quad -3 \mid$, while

$$
\mathbf{g}(\mathbf{z}) = \begin{bmatrix} z_1 z_2 \cos z_2 \\ z_1 z_2 \sin z_2 \end{bmatrix}.
$$

- 16 (b). Using polar coordinates with $z_1 = r \cos \theta$ and $z_2 = r \sin \theta$, we obtain $\|\mathbf{g}(\mathbf{z})\| = r^2 |\cos \theta \sin \theta|$.
- 16 (c). From part (b), $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| = r^2 |\sin \theta \cos \theta| / r \le r$. Thus, $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| \to 0$ as $\|\mathbf{z}\| \to 0$. In addition to the limit requirement, the system satisfies the other necessary conditions to be an almost linear system.
- 16 (d). The eigenvalues of *A* are $\lambda_1 = -4$ and $\lambda_2 = -1$. Thus, by Theorem 8.4, $z = 0$ is an asymptotically stable equilibrium point.
- 17 (a). For the system $\mathbf{z}' = A\mathbf{z} + \mathbf{g}(\mathbf{z})$,

$$
z'_1 = 2z_2 + z_2^2
$$

$$
z'_2 = -2z_1 + z_1z_2,
$$

the coefficient matrix *A* is given by $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ È Î $\begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$ ˚ $\overline{}$ $\begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$, while $\mathbf{g}(\mathbf{z}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{pmatrix} z_2^2 \\ z_2 \end{pmatrix}$ ˚ $\begin{bmatrix} z_2^2 \\ z_1 z_2 \end{bmatrix}$ 2 2 $1^{\sim}2$.

17 (b). Using polar coordinates with $z_1 = r \cos \theta$ and $z_2 = r \sin \theta$, we obtain

$$
\|\mathbf{g}(\mathbf{z})\| = \sqrt{(z_1 z_2)^2 + z_2^4} = \sqrt{(r^2 \cos \theta \sin \theta)^2 + r^4 \sin^4 \theta} \text{ or}
$$

\n
$$
\|\mathbf{g}(\mathbf{z})\| = \sqrt{r^4 \sin^2 \theta (\cos^2 \theta + \sin^2 \theta)} = r^2 |\sin \theta|. \text{ (Also note that } \|\mathbf{z}\| = r.)
$$

\n17 (c). From part (b), $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| = r^2 |\sin \theta| / r = r |\sin \theta|$. Thus, $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| \to 0$ as $\|\mathbf{z}\| \to 0$. In

addition to the limit requirement, the system satisfies the other necessary conditions to be an almost linear system.

(d) The eigenvalues of *A* are $\lambda_1 = -2i$ and $\lambda_2 = 2i$. No conclusion can be drawn from Theorem 8.4 relative to the stability of $z' = Az + g(z)$.

18 (a). For the given system
$$
\mathbf{z}' = A\mathbf{z} + \mathbf{g}(\mathbf{z})
$$
, the coefficient matrix A is $A = \begin{bmatrix} -3 & -5 \\ 2 & -1 \end{bmatrix}$, while

$$
\mathbf{g}(\mathbf{z}) = \begin{bmatrix} z_1 e^{-\sqrt{z_1^2 + z_2^2}} \\ z_2 e^{-\sqrt{z_1^2 + z_2^2}} \end{bmatrix}.
$$

18 (b). Using polar coordinates with $z_1 = r \cos \theta$ and $z_2 = r \sin \theta$, we obtain $\|\mathbf{g}(\mathbf{z})\| = re^{-r}$.

- 18 (c). From part (b), $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| = e^{-r}$. Thus, $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| \to 1$ as $\|\mathbf{z}\| \to 0$; the system is not almost linear at $z = 0$.
- 19 (a). For the system $z' = Az + g(z)$,

$$
z'_1 = 9z_1 + 5z_2 + z_1z_2
$$

$$
z'_2 = -7z_1 - 3z_2 + z_1^2,
$$

the coefficient matrix *A* is given by $A = \begin{bmatrix} 1 & -7 \\ -7 & -1 \end{bmatrix}$ È Î $\begin{vmatrix} 9 & 5 \\ -7 & -3 \end{vmatrix}$ ˚ ˙ $\begin{bmatrix} 9 & 5 \\ -7 & -3 \end{bmatrix}$, while $\mathbf{g}(\mathbf{z}) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $\left| \begin{array}{c} z_1 z_2 \\ z^2 \end{array} \right|$ ˚ $\overline{}$ *z z z* $1^{\sim}2$ 1 $\begin{matrix} 2 \\ 2 \end{matrix}$.

19 (b). Using polar coordinates with $z_1 = r \cos \theta$ and $z_2 = r \sin \theta$, we obtain

$$
\|\mathbf{g}(\mathbf{z})\| = \sqrt{\left(z_1 z_2\right)^2 + z_1^4} = \sqrt{\left(r^2 \cos \theta \sin \theta\right)^2 + r^4 \cos^4 \theta}
$$
 or

$$
\|\mathbf{g}(\mathbf{z})\| = \sqrt{r^4 \cos^2 \theta (\cos^2 \theta + \sin^2 \theta)} = r^2 |\cos \theta|. \text{ (Also note that } \|\mathbf{z}\| = r.)
$$

19 (c). From part (b), $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| = r^2 |\cos \theta|/r = r |\cos \theta|$. Thus, $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| \to 0$ as $\|\mathbf{z}\| \to 0$. In addition to the limit requirement, the system satisfies the other necessary conditions to be an almost linear system.

(d) The eigenvalues of *A* are $\lambda_1 = 2$ and $\lambda_2 = 4$. Thus, by Theorem 8.4, $z = 0$ is an unstable equilibrium point of the system.

20 (a). For the given system $\mathbf{z}' = A\mathbf{z} + \mathbf{g}(\mathbf{z})$, the coefficient matrix *A* is $A = \begin{vmatrix} 1 & -5 \\ -5 & -1 \end{vmatrix}$ È Î $\begin{vmatrix} 2 & 2 \\ -5 & -2 \end{vmatrix}$ ˚ $\overline{}$ 2 2 $5 \quad -2 \mid$, while

$$
\mathbf{g}(\mathbf{z}) = \begin{bmatrix} 0 \\ z_1^2 \end{bmatrix}.
$$

- 20 (b). Using polar coordinates with $z_1 = r \cos \theta$ and $z_2 = r \sin \theta$, we obtain $\|\mathbf{g}(\mathbf{z})\| = r^2 \cos^2 \theta$.
- 20 (c). From part (b), $||\mathbf{g}(\mathbf{z})||/||\mathbf{z}|| = r\cos^2\theta$. Thus, $||\mathbf{g}(\mathbf{z})||/||\mathbf{z}|| \to 0$ as $||\mathbf{z}|| \to 0$. In addition to the limit requirement, the system satisfies the other necessary conditions to be an almost linear system.
- 20 (d). The eigenvalues of *A* are $\lambda_1 = i\sqrt{6}$ and $\lambda_2 = -i\sqrt{6}$. Thus, no conclusions can be drawn by using Theorem 8.4.
- 21 (a). The system

$$
x' = -x + xy + y
$$

$$
y' = x - xy - 2y
$$

can be expressed as $\mathbf{z}' = A\mathbf{z} + \mathbf{g}(\mathbf{z})$ where the coefficient matrix *A* is given by $A = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ - È Î $\begin{vmatrix} -1 & 1 \\ 1 & -2 \end{vmatrix}$ ˚ $\overline{}$ 1 1 $1 \quad -2 \mid$

 $\mathbf{z} =$ Î $\left| \begin{array}{c} z_1 \\ z \end{array} \right|$ ˚ $\left| = \right|$ Î $\left| \begin{array}{c} x \\ y \end{array} \right|$ ˚ $\overline{}$ *z z x y* 1 $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ y \end{bmatrix}$, and $\mathbf{g}(\mathbf{z}) = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ \mathbf{r} Î $\begin{pmatrix} z_1 z_2 \\ z_3 z \end{pmatrix}$ ˚ $\overline{}$ *z z z z* $1^{\sim}2$ $1^{\sim}2$. Since *A* is invertible, the solutions of

 $A\mathbf{z} + \mathbf{g}(\mathbf{z}) = \mathbf{0}$ are vectors \mathbf{z}_e such that $\mathbf{0} = -A^{-1}\mathbf{g}(\mathbf{z}_e)$ and therefore, we need $\mathbf{g}(\mathbf{z}_e) = \mathbf{0}$. Clearly, the only solution of $g(z) = 0$ is $z_z = 0$.

21 (b). The linearized system is $z' = Az$ and we find that *A* has eigenvalues $\lambda_1 = -2.618...$ and $\lambda_2 = -0.382...$ we see that $\mathbf{z} = \mathbf{0}$ is an asymptotically stable equilibrium point of $z' = Az$.

21 (c). Using polar coordinates with $z_1 = r \cos \theta$ and $z_2 = r \sin \theta$, we obtain

 $\|\mathbf{g}(\mathbf{z})\| = \sqrt{2(z_1 z_2)^2} = \sqrt{2r^4 \cos^2 \theta \sin^2 \theta} = \sqrt{2} r^2 |\cos \theta \sin \theta|$. (Also note that $\|\mathbf{z}\| = r$.) Therefore, $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| = \sqrt{2} r^2 |\cos \theta \sin \theta| / r = \sqrt{2} r |\cos \theta|$. Thus, $\|\mathbf{g}(\mathbf{z})\|/\|\mathbf{z}\| \to 0$ as $\|\mathbf{z}\| \to 0$. In addition to the limit requirement, the system satisfies the other necessary conditions to be an almost linear system.

- 21 (d). By Theorem 8.4, $z = 0$ is an asymptotically stable equilibrium point of the original system.
- 22 (a). The system has the form

 $x' = y$

$$
y' = 1 - (1 + x)^{3/2}
$$

22 (c). At an equilibrium point, the linearized system $z' = Az$ has coefficient matrix

 $A = \begin{bmatrix} 0 & 1 \\ -(3/2)(1+x)^{1/2} & 0 \end{bmatrix}$. Thus, at $\mathbf{z} = \mathbf{0}$, $A = \begin{bmatrix} 0 & 1 \\ -3/2 & 0 \end{bmatrix}$. The eigenvalues of A are $\lambda_1 = i\sqrt{3/2}$ and $\lambda_2 = -i\sqrt{3/2}$ and hence the linearized system is stable but not asymptotically

stable at
$$
z = 0
$$

- 22 (d). Theorem 8.4 does not provide any information about the stability of the nonlinear system since the eigenvalues of the linearized system $z' = Az$ are purely imaginary.
- 23 (a). Multiplying by x' we obtain $x'x'' = x'[1-(1+x)^{3/2}]$. Integrating, we obtain $0.5(x')^2 = x - 0.4(1+x)^{5/2}$. Therefore, with $y = x'$ we have $y^2 = 2x - 0.8(1+x)^{5/2} + C$.
- 24 (a). At the equilibrium point (0, 0), the linearized system $z' = Az$ has coefficient matrix $A = \left[\begin{array}{cc} 1 & -1 \end{array} \right]$

$$
\begin{bmatrix} -1 & 1 \end{bmatrix}
$$
. Since *A* is not invertible, Theorem 8.4 does not apply

$$
\lfloor \overline{-1} \rfloor
$$

24 (b). Let
$$
\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}
$$
. For the given system $\mathbf{z}' = A\mathbf{z} + \mathbf{g}(\mathbf{z})$, $\mathbf{g}(\mathbf{z}) = \begin{bmatrix} -z_1^{2/3} \\ 2z_2^{1/3} \end{bmatrix}$. Using polar

coordinates, $||\mathbf{g}(\mathbf{z})||/||\mathbf{z}|| = \sqrt{r^{-2/3} \cos^{4/3} \theta + 4r^{-4/3} \sin^{2/3} \theta}$. Thus, the limit of $||\mathbf{g}(\mathbf{z})||/||\mathbf{z}||$ does not exist as $||\mathbf{z}|| \rightarrow 0$; The system is not almost linear at (0, 0).

In this case, $a_{11} = 0$, $a_{12} = 1$, $a_{21} = -1$, $a_{22} = 0$, $g_1 = \alpha r^3 \cos \theta$, and $g_2 = \alpha r^3 \sin \theta$. Thus, $h(r) = \alpha r^2$ 27. and we obtain the system $r' = \alpha r^3$

$$
\theta'=-1.
$$

Solving,
$$
r(t) = (C_1 - 2\alpha t)^{-1/2}
$$
 and $\theta(t) = -t + C_2$. Hence, $x = (C_1 - 2\alpha t)^{-1/2} \cos(-t + C_2)$ and $y = (C_1 - 2\alpha t)^{-1/2} \sin(-t + C_2)$.

So, $a_{11} = 1$, $a_{12} = 0$, $a_{21} = 0$, $a_{22} = 1$, $a_{11} = r^2 \cos \theta$, and $a_{21} = r^2 \sin \theta$. Thus, $h(r) = r$ and we obtain 28. the initial value problem

$$
r' = r + r^2
$$
, $r(0) = 1$

$$
\theta'=0\ ,\ \theta(0)=\sqrt{3}\ .
$$

The solution is $r = (2/3)e^{t}/[1-(2/3)e^{t}]$, $\theta = \pi/3$. However, the denominator in the expression for r, $1-(2/3)e^{t}$, vanishes at $3/2 = e^{t}$. Solving for t, we have $t = \ln 1.5 = 0.405...$ Thus, the solution does not exist at $t = 1$.

So, $a_{11} = 0$, $a_{12} = 1$, $a_{21} = -1$, $a_{22} = 0$, $g_1 = -r\cos\theta \ln r^2$, and $g_2 = -r\sin\theta \ln r^2$. Thus, $h(r) = -\ln r^2$ 29. and we obtain the initial value problem

$$
r' = -2r \ln r, \ r(0) = 1
$$

\n
$$
\theta' = 1, \ \theta(0) = \pi / 4.
$$

\nThe general solution is $r = C_1 \exp(e^{-2t}), \ \theta = t + C_2$. Imposing the initial conditions we arrive at
\n $r = \exp(e^{-2t} - 1), \ \theta = t + \pi / 4$. Hence, at $t = 1$, we find
\n $x = \exp(e^{-2} - 1)\cos(1 + \pi / 4) \approx -0.0896...$ and $y = \exp(e^{-2} - 1)\sin(1 + \pi / 4) \approx 0.411...$

Section 8.6

1 (a). Since the eigenvalues are real and have opposite signs, $y = 0$ is an unstable saddle point.

1 (d). We have
$$
\Psi(t) = [e^{\lambda_1 t} \mathbf{x}_1, e^{\lambda_2 t} \mathbf{x}_2] = \begin{bmatrix} e^{2t} & e^{-t} \\ e^{2t} & -e^{-t} \end{bmatrix}
$$
 and $\Psi'(t) = \begin{bmatrix} 2e^{2t} & -e^{-t} \\ 2e^{2t} & e^{-t} \end{bmatrix}$.
\nTherefore, $A = \Psi'(t)\Psi^{-1}(t) = \begin{bmatrix} 2e^{2t} & -e^{-t} \\ 2e^{2t} & e^{-t} \end{bmatrix} \begin{bmatrix} 0.5e^{-2t} & 0.5e^{-2t} \\ 0.5e^{t} & -0.5e^{t} \end{bmatrix} = \begin{bmatrix} 0.5 & 1.5 \\ 1.5 & 0.5 \end{bmatrix}$.

2 (a). Since the eigenvalues are real and positive, $y = 0$ is an unstable node.

2 (d). We have
$$
\Psi(t) = [e^{\lambda_1 t} \mathbf{x}_1, e^{\lambda_2 t} \mathbf{x}_2] = \begin{bmatrix} e^t & 2e^{2t} \ 2e^t & -e^{2t} \end{bmatrix}
$$
 and $\Psi'(t) = \begin{bmatrix} e^t & 4e^{2t} \ 2e^t & -2e^{2t} \end{bmatrix}$.
\nTherefore, $A = \Psi'(t)\Psi^{-1}(t) = \begin{bmatrix} 9/5 & -2/5 \ -2/5 & 6/5 \end{bmatrix}$.

3 (a). Since both eigenvalues are real and positive, $y = 0$ is an unstable improper node.

3 (d). We have
$$
\Psi(t) = [e^{\lambda_1 t} \mathbf{x}_1, e^{\lambda_2 t} \mathbf{x}_2] = \begin{bmatrix} 2e^{2t} & 0 \\ 0 & 2e^t \end{bmatrix}
$$
 and $\Psi'(t) = \begin{bmatrix} 4e^{2t} & 0 \\ 0 & 2e^t \end{bmatrix}$
Therefore, $A = \Psi'(t)\Psi^{-1}(t) = \begin{bmatrix} 4e^{2t} & 0 \\ 0 & 2e^t \end{bmatrix} \begin{bmatrix} 0.5e^{-2t} & 0 \\ 0 & 0.5e^{-t} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$.

4 (a). Since the eigenvalues are real and negative, $y = 0$ is an asymptotically stable node.

4 (d). We have
$$
\Psi(t) = [e^{\lambda_1 t} \mathbf{x}_1, e^{\lambda_2 t} \mathbf{x}_2] = \begin{bmatrix} e^{-2t} & e^{-t} \\ 0 & e^{-t} \end{bmatrix}
$$
 and $\Psi'(t) = \begin{bmatrix} -2e^{-2t} & -e^{-t} \\ 0 & -e^{-t} \end{bmatrix}$.
Therefore, $A = \Psi'(t)\Psi^{-1}(t) = \begin{bmatrix} -2 & 1 \\ 0 & -1 \end{bmatrix}$.

5 (a). Since the eigenvalues are real and have opposite signs, $y = 0$ is an unstable saddle point. $\begin{bmatrix} t & 1 \end{bmatrix}$

5 (d). We have
$$
\Psi(t) = [e^{\lambda_1 t} \mathbf{x}_1, e^{\lambda_2 t} \mathbf{x}_2] = \begin{bmatrix} e^{t} & 2e^{-t} \\ 0 & e^{-t} \end{bmatrix}
$$
 and $\Psi'(t) = \begin{bmatrix} e^{t} & -2e^{-t} \\ 0 & -e^{-t} \end{bmatrix}$
\nTherefore, $A = \Psi'(t)\Psi^{-1}(t) = \begin{bmatrix} e^{t} & -2e^{-t} \\ 0 & -e^{-t} \end{bmatrix} \begin{bmatrix} e^{-t} & -2e^{-t} \\ 0 & e^{t} \end{bmatrix} = \begin{bmatrix} 1 & -4 \\ 0 & -1 \end{bmatrix}$.
\n6 (a). For $A = \begin{bmatrix} 1 & -6 \\ 1 & -4 \end{bmatrix}$, the eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = -2$.

6 (b). Since the eigenvalues are real and negative, $y = 0$ is an asymptotically stable improper node.

- 7 (a). For $A = \begin{bmatrix} 6 & -10 \\ 2 & -3 \end{bmatrix}$, the eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 2$.
- 7 (b). Since the eigenvalues are real and positive, $y = 0$ is an unstable improper node.
- 8 (a). For $A = \begin{bmatrix} -6 & 14 \\ -2 & 5 \end{bmatrix}$, the eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = -2$.
- 8 (b). Since the eigenvalues have opposite sign, $y = 0$ is an unstable saddle point.

9 (a). For
$$
A = \begin{bmatrix} 1 & 2 \ -5 & -1 \end{bmatrix}
$$
, the eigenvalues are $\lambda_1 = 3i$ and $\lambda_2 = -3i$.

9 (b). Since the eigenvalues are complex with zero real part, $y = 0$ is a stable, but not asymptotically stable, center.

10 (a). For
$$
A = \begin{bmatrix} -1 & 1 \ -1 & -1 \end{bmatrix}
$$
, the eigenvalues are $\lambda_1 = -1 + i$ and $\lambda_2 = -1 - i$.

10 (b). Since the eigenvalues are complex with negative real part, $y = 0$ is an asymptotically stable spiral point.

11 (a). For
$$
A = \begin{bmatrix} 1 & -6 \\ 2 & -6 \end{bmatrix}
$$
, the eigenvalues are $\lambda_1 = -3$ and $\lambda_2 = -2$.

11 (b). Since the eigenvalues are real and negative, $y = 0$ is an asymptotically stable improper node. $\begin{bmatrix} 2 & 3 \end{bmatrix}$

12 (a). For
$$
A = \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix}
$$
, the eigenvalues are $\lambda_1 = 2 + 3i$ and $\lambda_2 = 2 - 3i$.

12 (b). Since the eigenvalues are complex with positive real part, $y = 0$ is an unstable spiral point.

13 (a). For
$$
A = \begin{bmatrix} -2 & -4 \ 5 & 2 \end{bmatrix}
$$
, the eigenvalues are $\lambda_1 = 4i$ and $\lambda_2 = -4i$.

- 13 (b). Since the eigenvalues are complex with zero real part, $y = 0$ is a stable, but not asymptotically stable, center.
- 14 (a). For $A = \begin{bmatrix} 7 & -24 \\ 2 & -7 \end{bmatrix}$, the eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = -1$.
- 14 (b). Since the eigenvalues are real with opposite sigen, $y = 0$ is an unstable saddle point.

15 (a). For
$$
A = \begin{bmatrix} -1 & 8 \\ -1 & 5 \end{bmatrix}
$$
, the eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 3$.

15 (b). Since the eigenvalues are real and positive, $y = 0$ is an unstable improper node.

16 (a). For
$$
A = \begin{bmatrix} -2 & 1 \ -1 & -2 \end{bmatrix}
$$
, the eigenvalues are $\lambda_1 = -2 + i$ and $\lambda_2 = -2 - i$

- 16 (b). Since the eigenvalues are complex with negative real part, $y = 0$ is an asymptotically stable spiral point.
- 17 (a). For $A = \begin{bmatrix} 2 & 4 \ -4 & -6 \end{bmatrix}$, the eigenvalues are $\lambda_1 = -2$ and $\lambda_2 = -2$.
- 17 (b). Since the eigenvalues are real and negative and A is not a multiple of the identity, $y = 0$ is an asymptotically stable improper node.
- 18 (a). For $A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$, the eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = 3$.
- 18 (b). Since the eigenvalues are real and positive and A is a multiple of the identity, $y = 0$ is an unstable proper node.
- 19 (a). For $A = \begin{bmatrix} 1 & 2 \\ -8 & 1 \end{bmatrix}$, the eigenvalues are $\lambda_1 = 1 + 4i$ and $\lambda_2 = 1 4i$.
- 19 (b). Since the eigenvalues are complex with positive real part, $y = 0$ is an unstable spiral point.
- 20 (a). For $A = \begin{bmatrix} -1 & -2 \\ 2 & 3 \end{bmatrix}$, the eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 1$.
- 20 (b). Since the eigenvalues are real and positive and A is not a multiple of the identity, $y = 0$ is an unstable improper node.
- 21 (a). For $A_1 = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}$, the eigenvalues are $\lambda_1 = -3$ and $\lambda_2 = -1$. Since the eigenvalues are real and negative, $y = 0$ is an asymptotically stable equilibrium point. Therefore, A_i corresponds to Direction Field 2.
- 21 (b). For $A_2 = \begin{bmatrix} 1 & 2 \\ -2 & -1 \end{bmatrix}$, the eigenvalues are $\lambda_1 = -\sqrt{3}i$ and $\lambda_2 = \sqrt{3}i$. Since the eigenvalues are complex with zero real part, $y = 0$ is a stable, but not asymptotically stable, center. Therefore, A₂ corresponds to Direction Field 4.
- 21 (c). For $A_3 = \begin{bmatrix} 2 & 1 \ -1 & -2 \end{bmatrix}$, the eigenvalues are $\lambda_1 = -\sqrt{3}$ and $\lambda_2 = \sqrt{3}$. Since the eigenvalues are real and have opposite sign, $y = 0$ is an unstable saddle point. Therefore, A_3 corresponds to Direction Field 1.
- 21 (d). For $A_4 = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$, the eigenvalues are $\lambda_1 = 1 2i$ and $\lambda_2 = 1 + 2i$. Since the eigenvalues are complex with positive real part, $y = 0$ is an unstable spiral point. Therefore, A_4 corresponds to Direction Field 3.
- 22. For a center, eigenvalues are purely imaginary. Therefore, $\alpha = -2$.
- Consider $A = \begin{bmatrix} -4 & \alpha \\ -2 & 2 \end{bmatrix}$. The characteristic polynomial is $p(\lambda) = \lambda^2 + 2\lambda + (2\alpha 8)$. Thus, the 23. eigenvalues are $\lambda = -1 \pm \sqrt{9 - 2\alpha}$. In order to have an asymptotically stable spiral point at $y = 0$, we need complex eigenvalues with negative real parts. Thus, we need $9 - 2\alpha < 0$ or $9/2 < \alpha$.
- Note that $\lambda_1 = -2$ and $\lambda_2 = -2$ no matter the value of α . Thus, $y = 0$ is always an 24. asymptotically stable equilibrium point; it will be a proper node if $\alpha = 0$.
- Consider $A = \begin{bmatrix} 4 & -2 \\ \alpha & -4 \end{bmatrix}$. The characteristic polynomial is $p(\lambda) = \lambda^2 + (2\alpha 16)$. Thus, the 25. eigenvalues are $\lambda = \pm \sqrt{16 - 2\alpha}$. In order to have a saddle point at $y = 0$, we need real eigenvalues with opposite signs. Thus, we need $16 - 2\alpha > 0$ or $\alpha < 8$.

26. Consider the nonhomogeneous system $y' =$ È Î $\begin{pmatrix} 1 & 4 \\ -1 & 1 \end{pmatrix}$ ˚ $|\mathbf{y}| +$ È Î Í $\overline{\mathcal{L}}$ $\mathbf{y}' = \begin{bmatrix} 1 & 1 \end{bmatrix} \mathbf{y} + \begin{bmatrix} 2 \end{bmatrix}$ 1 4 1 1 3 2 . The system has a unique equilibrium point given by $y_e =$ $\Big|$ È Î $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ ˚ $\overline{}$ 1 1 . Making the substitution $\mathbf{z} = \mathbf{y} - \mathbf{y}_e$, we obtain $\mathbf{v} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ - \mathbf{r} Î $\begin{vmatrix} 1 & -4 \\ -1 & 1 \end{vmatrix}$ ˚ $\mathbf{z}' = \begin{vmatrix} 1 & 1 \end{vmatrix}$ **z** $1 -4$ 1 **1 z**. The eigenvalues of the coefficient matrix are $\lambda_1 = 1 + 2i$ and $\lambda_2 = 1 - 2i$. Therefore, $z = 0$ is an unstable spiral point and consequently, $y = y_e$ is an unstable spiral point of the original system. 27. Consider the nonhomogeneous system $y' = \begin{vmatrix} -7 & -1 \end{vmatrix}$ È Î $\begin{vmatrix} 6 & 5 \\ -7 & -6 \end{vmatrix}$ $\left| \mathbf{y} + \right|$ – È Î $\begin{bmatrix} 4 \\ -6 \end{bmatrix}$ ˚ $y' = \begin{vmatrix} 7 & -6 \\ 4 & -6 \end{vmatrix}$ 6 5 $7 - 6$ 4 6 . The system has a unique equilibrium point given by $y_e = -\begin{vmatrix} -7 & -1 \end{vmatrix}$ \mathbf{r} Î $\begin{bmatrix} 6 & 5 \\ -7 & -6 \end{bmatrix}$ ˚ ˙ - \mathbf{r} Î $\begin{bmatrix} 4 \\ -6 \end{bmatrix}$ ˚ $\begin{vmatrix} -6 & - \\ 7 & 6 \end{vmatrix}$ Î $\begin{vmatrix} -6 & -5 \\ 7 & 6 \end{vmatrix}$ \perp – È Î $\begin{bmatrix} 4 \\ -6 \end{bmatrix}$ |=|
|-È Î $\begin{bmatrix} 6 \\ -8 \end{bmatrix}$ ˚ ˙ 6 5 \vert $7 - 6$ 4 6 6 -5 7 6 4 6 6 8 1 . Making the substitution $\mathbf{z} = \mathbf{y} - \mathbf{y}_e$, we obtain $\mathbf{z}' = \begin{vmatrix} 1 & -1 \\ -7 & -1 \end{vmatrix}$ \mathbf{r} Î $\begin{vmatrix} 6 & 5 \\ -7 & -6 \end{vmatrix}$ ˚ $\mathbf{z}' = \begin{vmatrix} 7 & -6 \end{vmatrix}$ **z** 6 5 $7 -6$ $\vert z \vert$. The eigenvalues of the coefficient matrix are $\lambda_1 = -1$ and $\lambda_2 = 1$. Therefore, $z = 0$ is an unstable saddle point and consequently, $y = y_e$ is an unstable saddle point of the original system. 28. Consider the nonhomogeneous system $y' = \begin{bmatrix} 5 & -1 \end{bmatrix}$ - È Î $\begin{vmatrix} 5 & -14 \\ 3 & -8 \end{vmatrix}$ ˚ $|\mathbf{y}+$ È Î Í \overline{a} $\mathbf{y}' = \begin{bmatrix} 3 & -8 \end{bmatrix} \mathbf{y} + \begin{bmatrix} 1 \end{bmatrix}$ $5 -14$ $3 - 8$ 2 $1 \cdot$ The system has a unique equilibrium point given by $y_e =$ Î $\begin{pmatrix} 1 \\ 0.5 \end{pmatrix}$ ˚ $\overline{}$ 1 0.5 . Making the substitution $z = y - y_e$, we obtain $\mathbf{v} = \begin{bmatrix} 5 & -1 \\ 2 & 1 \end{bmatrix}$ - È Î $\begin{vmatrix} 5 & -14 \\ 3 & -8 \end{vmatrix}$ ˚ $\mathbf{z}' = \begin{vmatrix} 2 & 2 \end{vmatrix}$ $5 -14$ $3 \quad -8$ **z**. The eigenvalues of the coefficient matrix are $\lambda_1 = -2$ and $\lambda_2 = -1$. Therefore, $z = 0$ is an asymptotically stable improper node and consequently, $y = y_e$ is an asymptotically stable improper node of the original system. 29. Consider the nonhomogeneous system $y' = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ Î $\begin{vmatrix} -1 & 0 \\ 0 & 2 \end{vmatrix}$ $\left| \mathbf{y} + \right|$ – È Î $\begin{bmatrix} 2 \\ -4 \end{bmatrix}$ $\mathbf{y}' = \begin{bmatrix} 0 & 2 \end{bmatrix} \mathbf{y} + \begin{bmatrix} 4 \end{bmatrix}$ 1 0 0 2 2 4 . The system has a unique equilibrium point given by $y_e = -\frac{1}{6}$ Î $\begin{vmatrix} -1 & 0 \\ 0 & 2 \end{vmatrix}$ ˚ ˙ - È Î $\begin{bmatrix} 2 \\ -4 \end{bmatrix}$ $\Big] = \Big[0 \quad - \Big]$ È Î $\begin{vmatrix} 1 & 0 \\ 0 & -0.5 \end{vmatrix}$ \perp – \mathbf{r} Î $\begin{bmatrix} 2 \\ -4 \end{bmatrix}$ ˚ $\left| = \right|$ Î Í \vert ˚ $\overline{}$ $1 \quad 0$ ⁻ 0 2 2 4 1 0 0 -0.5 2 4 2 2 1 $.5 \parallel -4 \parallel = \parallel 2 \parallel$. Making the substitution $\mathbf{z} = \mathbf{y} - \mathbf{y}_e$, we obtain $\mathbf{z}' = \begin{bmatrix} -\mathbf{z} \\ \mathbf{z}' \end{bmatrix}$ Î $\begin{vmatrix} -1 & 0 \\ 0 & 2 \end{vmatrix}$ ˚ $\mathbf{z}' = \begin{pmatrix} 0 & 0 \end{pmatrix} \mathbf{z}$ 1 0 $0 \quad 2 \vert z$. The eigenvalues of the coefficient matrix are $\lambda_1 = -1$ and $\lambda_2 = 2$. Therefore, $z = 0$ is an unstable saddle point and consequently, $y = y_e$ is an unstable saddle point of the original system. 30 (a). The characteristic equation is $\lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{12}a_{21} = 0$. The origin is a center if the roots are purely imaginary. That is, if $a_{11} + a_{22} = 0$ and $a_{11}a_{22} - a_{12}a_{21} < 0$. 30 (b). Note that $f(x,y) = a_{11}x + a_{12}y$ and $g(x,y) = a_{21}x + a_{22}y$. Thus, $f_x = a_{11}$ and $g_y = a_{22}$. By part (a), $f_x = -g_y$ and hence the system is Hamiltonian. 30 (c). The converse is not true since the system can be Hamiltonian even though $a_{11}a_{22} - a_{12}a_{21} = 0$. 2 1

32 (a). The eigenvalues of the coefficient matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ Î $\begin{vmatrix} -2 & 1 \\ 5 & 2 \end{vmatrix}$ ˚ $\overline{}$ $5 \quad 2$ are $\lambda_1 = 3$ and $\lambda_2 = -3$.

32 (b). Since the eigenvalues are real with opposite sign, $y = 0$ is an (unstable) saddle point.

- 32 (c). Since the system is Hamiltonian, we know that $H_y(x,y) = -2x + y$. Therefore, $H(x,y) = -2xy + 0.5y^2 + q(x)$. We determine $q(x)$ by differentiating $H(x,y)$ with respect to *x*, finding $H_x(x, y) = -2y + q'(x) = -5x - 2y$. Thus, $q'(x) = -5x$ and so $q(x) = -2.5x^2 + C$. Dropping the additive constant, we obtain a Hamiltonian function, $H(x,y) = -2.5x^2 - 2xy + 0.5y^2$. The conservation law for the system is $H(x,y) = C$.
- 33 (a). The eigenvalues of the coefficient matrix $A = \begin{vmatrix} 1 & -3 \\ -3 & -1 \end{vmatrix}$ È Î $\begin{bmatrix} 1 & 3 \\ -3 & -1 \end{bmatrix}$ ˚ ˙ 1 3 $3 \quad -1 \text{ are } \lambda_1 = -2\sqrt{2}i \text{ and } \lambda_2 = -2\sqrt{2}i$.
- 33 (b). Since the eigenvalues are complex with zero real part, $y = 0$ is a stable, but not asymptotically stable, center.
- 33 (c). Since the system is Hamiltonian, we know that $H_y(x, y) = x + 3y$. Therefore,

 $H(x,y) = xy + 1.5y^2 + q(x)$. We determine $q(x)$ by differentiating $H(x,y)$ with respect to *x*, finding $-3x - y = -H_x(x, y) = -y - q'(x)$. Thus, $q'(x) = 3x$ and so $q(x) = 1.5x^2 + C$. Dropping the additive constant, we obtain a Hamiltonian function, $H(x, y) = xy + 1.5(x^2 + y^2)$. The conservation law for the system is $H(x, y) = C$.

- 34 (a). The eigenvalues of the coefficient matrix $A = \begin{bmatrix} 0 & -1 \end{bmatrix}$ \mathbf{r} Î $\begin{vmatrix} 2 & 1 \\ 0 & -2 \end{vmatrix}$ ˚ ˙ 2 1 $0 \quad -2 \mid$ are $\lambda_1 = 2$ and $\lambda_2 = -2$.
- 34 (b). Since the eigenvalues are real with opposite sign, $y = 0$ is an (unstable) saddle point.
- 34 (c). Since the system is Hamiltonian, we know that $H_y(x,y) = 2x + y$. Therefore,

 $H(x,y) = 2xy + 0.5y^2 + q(x)$. We determine $q(x)$ by differentiating $H(x,y)$ with respect to *x*, finding $H_x(x, y) = 2y + q'(x) = 2y$. Thus, $q'(x) = 0$ and so $q(x) = C$. Dropping the additive constant, we obtain a Hamiltonian function, $H(x,y) = 2xy + 0.5y^2$. The conservation law for the system is $H(x, y) = C$.

Section 8.7

1 (a). Consider the system

$$
x' = x - x^2 - xy
$$

y' = y - 3y² - 0.5xy.

If $y = 0$, then all direction field filaments on the positive *x*-axis point towards

 $x = 1$. Thus, *x* approaches an equilibrium value of $x_e = 1$ as *t* increases. Similarly, if $x = 0$, then *y* approaches an equilibrium value of $y_e = 1/3$ as *t* increases.

In each case, the presence of the *xy* term causes the derivative to decrease. Therefore, the presence of the other species is harmful in each case.

1 (b). Rewriting the system as

 $x' = x(1-x-y)$

$$
y' = y(1 - 3y - 0.5x),
$$

we see that $x' = 0$ if (i) $x = 0$ or (ii) $1 - x - y = 0$. In case (i), $y' = 0$ if $y = 0$ or $y = 1/3$. Thus, two equilibrium points are $(x, y) = (0,0)$ and $(x, y) = (0,1/3)$. In case (ii), $y' = 0$ if $y = 0$ (and hence, $x = 1$) or if $1 - 3y - 0.5x = 0$ (and hence $x + y = 1$ and $0.5x + 3y = 1$). Thus, case (ii) leads us to two more equilibrium points $(x, y) = (1, 0)$ and $(x, y) = (0.8, 0.2)$.

1 (c). At the equilibrium point $\mathbf{z} = \mathbf{0}$, the linearized system takes the form $\mathbf{z}' = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Î $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ ˚ $\mathbf{z}' = \begin{vmatrix} 0 & 1 \end{vmatrix}$ **z** 1 0 0 1 . The

eigenvalues of the coefficient matrix are $\lambda_1 = 1$ and $\lambda_2 = 1$. Since, $z = 0$ is an unstable proper node of the linearized system, the original system is also unstable at $y = 0$.

2 (a). Consider the system

 $x' = -x - x^2$ $y' = -y + xy$.

If $y = 0$, then *x* approaches an equilibrium value of $x_e = 0$ as *t* increases. If $x = 0$, then *y* approaches an equilibrium value of $y_e = 0$ as *t* increases.

The presence of *y* is a matter of indifference to *x*. The presence of *x* is beneficial to *y*.

2 (b). The only equilibrium point in the first quadrant is $(x, y) = (0,0)$.

2 (c). At the equilibrium point $z = 0$, the linearized system takes the form $z' = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ - È Î $\begin{vmatrix} -1 & 0 \\ 0 & -1 \end{vmatrix}$ ˚ $\mathbf{z}' = \begin{vmatrix} 0 & -1 \end{vmatrix}$ **z** 1 0 $0 -1$. The

eigenvalues of the coefficient matrix are $\lambda_1 = -1$ and $\lambda_2 = -1$. Since, $\mathbf{z} = \mathbf{0}$ is an asymptotically stable proper node of the linearized system, the original system is also asymptotically stable at $y = 0$.

3 (a). Consider the system

$$
x' = x - x^2 - xy
$$

 $y' = -y - y^2 + xy$.

If $y = 0$, then all direction field filaments on the positive *x*-axis point towards $x = 1$. Thus, *x* approaches an equilibrium value of $x_e = 1$ as *t* increases. Similarly, if $x = 0$, then *y* approaches an equilibrium value of $y_e = 0$ as *t* increases. The presence of the *xy* term in the first equation causes the derivative to decrease. Therefore, the presence of *y* is harmful to *x*. On the other hand, the presence of the *xy* term in the second equation causes the derivative to increase. Therefore, the presence of *x* is beneficial to *y*.

3 (b). Rewriting the system as

$$
x' = x(1 - x - y)
$$

$$
y' = -y(1+y-x),
$$

we see that $x' = 0$ if (i) $x = 0$ or (ii) $1 - x - y = 0$. In case (i), $y' = 0$ if $y = 0$ or $y = -1$. The latter possibility has been excluded and thus case (i) leads to a single equilibrium point, $(x, y) = (0, 0)$. In case (ii), $y' = 0$ if $y = 0$ (and hence, $x = 1$) or if $1 + y - x = 0$ (and hence $x + y = 1$ and $x - y = 1$). This second set of equations also has solution $x = 1$ and $y = 0$. Thus, case (ii) leads us to one more equilibrium point $(x, y) = (1, 0)$.

3 (c). At the equilibrium point $z = 0$, the linearized system takes the form $z' = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ \mathbf{r} Î $\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$ ˚ $\mathbf{z}' = \begin{vmatrix} 0 & -1 \end{vmatrix}$ **z** 1 0 $0 \t -1$. The

eigenvalues of the coefficient matrix are $\lambda_1 = -1$ and $\lambda_2 = 1$. Since, $\mathbf{z} = \mathbf{0}$ is an unstable saddle point of the linearized system, the original system is also unstable at $y = 0$.

4 (a). Consider the system

$$
x' = x - x2 + xy
$$

$$
y' = y - y2 + xy
$$

If $y = 0$, then *x* approaches an equilibrium value of $x_e = 1$ as *t* increases. If $x = 0$, then *y* approaches an equilibrium value of $y_e = 1$ as *t* increases.

- In both cases, the presence of one species is beneficial to the other species.
- 4 (b). The only equilibrium points in the first quadrant are $(x, y) = (0,0)$, $(x, y) = (0,1)$, and $(x, y) = (1, 0)$.
- 4 (c). At the equilibrium point $\mathbf{z} = \mathbf{0}$, the linearized system takes the form $\mathbf{z}' = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Î $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ ˚ $\mathbf{z}' = \begin{vmatrix} 0 & 1 \end{vmatrix}$ **z** 1 0 0 1 . The

eigenvalues of the coefficient matrix are $\lambda_1 = 1$ and $\lambda_2 = 1$. Since, $\mathbf{z} = \mathbf{0}$ is an unstable proper node of the linearized system, the original system is also unstable at $y = 0$.

5 (a). When $y = 0$, the assumed model reduces to $x' = r_1(1 + \alpha_1 x)x$. In this case, we see from the figure, that $\ln x(t) = 0.5t + \ln x(0)$. Differentiating, we obtain $\frac{x'(t)}{x^{x-1}}$ *x t* $\left(t\right)$ (t) 0.5 or $x' = 0.5x$. Thus, $\alpha_1 = 0$ and $r_1 = 0.5$. Similarly, when $x = 0$, the model reduces to $y' = r_1(1 + \alpha_2 y)y$. In this case, we see from the figure, that $\ln y(t) = -t + \ln y(0)$. Differentiating, we obtain $\frac{y'(t)}{t} = -t$ *y t* (t) $\left(t\right)$ 1 or

 $y' = -y$. Thus, $\alpha_2 = 0$ and $r_2 = -1$. So far, we have deduced that the assumptions of the population model imply it has the form

$$
x' = 0.5(1 + \beta_1 y)x
$$

$$
y' = -(1 + \beta_2 x) y.
$$

Knowing the equilibrium point $(x_0, y_0) = (2,3)$, allows us to determine the last remaining model parameters, β_1 and β_2 . In particular, we know from the first equation that $0.5(1 + 3\beta_1)2 = 0$ while the second equation gives $-(1 + 2\beta_2)3 = 0$. Consequently, $\beta_1 = -1/3$ and $\beta_2 = -1/2$.

5 (b). From part (a), the model is given by

$$
x' = (1/2)x - (1/6)xy
$$

$$
y' = -y + (1/2)xy.
$$

The presence of *y* causes x' to decrease and hence *y* is harmful to *x*. The presence of *x* causes *y*¢ to increase and hence *x* is beneficial to *y*.

6 (a). Consider the system

$$
x' = r(1 - \alpha x - \beta y)x + \mu x
$$

 $y' = r(1 - \alpha y - \beta x)y$.

The equilibrium points are $(x, y) = (0, 0)$, $(x, y) = (0, \alpha^{-1})$, $(x, y) = (\alpha^{-1}(1 + \mu r^{-1}), 0)$, and $(x, y) = \delta^{-1}(\alpha(1 + \mu r^{-1}) - \beta, \alpha - \beta(1 + \mu r^{-1}))$ where $\delta = \alpha^2 - \beta^2$.

6 (b). If μ is chosen large enough so that $\beta(1 + \mu r^{-1}) > \alpha$ then we see from part (a) that the "coexisting species" equilibrium point is moved into the fourth quadrant and is therefore physically irrelevant.

6 (c). At $z = 0$, the linearized system has the form $z' = \begin{bmatrix} r+1 \\ 0 \end{bmatrix}$ Î $\begin{vmatrix} r+\mu & 0 \\ 0 & r \end{vmatrix}$ ˚ $\mathbf{z}' = \begin{vmatrix} 0 & r \end{vmatrix}$ **z** *r r* μ 0 $\int_0^{\pi} r \, |z|$. The point $z = 0$ is an unstable improper node. At the equilibrium point $\mathbf{z} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 0

Î $\begin{bmatrix} 0 \\ 1/\alpha \end{bmatrix}$ ˚ $\overline{}$ $1/\alpha$, the linearized system is

$$
\mathbf{z}' = \begin{bmatrix} r(1 + \mu r^{-1} - \beta \alpha^{-1}) & 0 \\ -r \beta \alpha^{-1} & -r \end{bmatrix} \mathbf{z}
$$
. The eigenvalues are $\lambda_1 = -r$ and $\lambda_2 = r(1 + \mu r^{-1} - \beta \alpha^{-1})$. Since

the eigenvalues have opposite sign, the equilibrium point is an unstable saddle point. The equilibrium point $(x, y) = (\alpha^{-1}(1 + \mu r^{-1}), 0)$ is an asymptotically stable improper node since the eigenvalues of the linearized system are negative and different:

$$
\lambda_1 = -r(1 + \mu r^{-1})
$$
 and $\lambda_2 = r[1 - \beta \mu (\alpha r)^{-1} - \beta \alpha^{-1}].$

- $\lambda_1 = -r(1 + \mu r^{-1})$ and $\lambda_2 = r[1 \beta \mu (\alpha r)^{-1} \beta \alpha^{-1}]$.
6 (d). For the nonlinear system, (0,0) and (0, α^{-1}) are unstable equilibrium points. The equilirium point $(x, y) = (\alpha^{-1}(1 + \mu r^{-1}), 0)$ is stable.
- 6 (e). It appears that the *y* species will be driven to extinction with the *x* species approaching the limiting value $\alpha^{-1}(1 + \mu r^{-1})$.
- 7 (a). Consider the system

$$
x' = r(1 - \alpha x - \beta y)x
$$

$$
y' = r(1 - \alpha y - \beta x)y - \mu y.
$$

We see that $x' = 0$ if (i) $x = 0$ or (ii) $1 - \alpha x - \beta y = 0$. In case (i), $y' = 0$ if $y = 0$ or $y = (r - \mu) / (\alpha r)$. Thus case (i) leads to two equilibrium points, $(x, y) = (0,0)$ and $(x, y) = (0, (r - \mu) / (\alpha r))$. In case (ii), $y' = 0$ if $y = 0$ or if $1 - (\mu / r) - \alpha y - \beta x = 0$. Thus case (ii) leads to two equilibrium points, $(x,y) = (1/\alpha,0)$ and

 $(x,y) = (\delta^{-1} [\alpha - \beta (1 - \mu r^{-1})], \delta^{-1} [-\beta + \alpha (1 - \mu r^{-1})])$ where $\delta = \alpha^2 - \beta^2$.

- 7 (b). If $\mu > r$, then $1 \mu r^{-1} < 0$. In this case, we see from part (a) that the only physically relevant equilibrium points are $(x, y) = (0,0)$ and $(x,y) = (1/\alpha,0)$.
- 7 (c). At $z = 0$, the linearized system has the form $z' = \begin{vmatrix} 0 & r 1 \end{vmatrix}$ È Î $\begin{vmatrix} r & 0 \\ 0 & r - r \end{vmatrix}$ ˚ $\mathbf{z}' = \begin{vmatrix} 0 & r - u \end{vmatrix}$ **z** *r r* 0 $0 \quad r - \mu \mid \mathbf{z}$. Since we are assuming $\mu > r$,

the point $z = 0$ is an unstable saddle point. At the equilibrium point $z = \left| \right|$ Î $\begin{bmatrix}1/\alpha\\0\end{bmatrix}$ ˚ $\overline{}$ 1 0 $\sqrt{\alpha}$, the linearized - 1

system is
$$
\mathbf{z}' = \begin{bmatrix} -r & -r\beta\alpha^{-1} \\ 0 & r - \mu - r\beta\alpha^{-1} \end{bmatrix} \mathbf{z}
$$
. The eigenvalues are $\lambda_1 = -r$ and $\lambda_2 = r - \mu - r\beta\alpha^{-1}$.

Since both eigenvalues are negative, the equilibrium point is an asymptotically stable improper node.

- 7 (d). For the nonlinear system, (0,0) is unstable and $(\alpha^{-1},0)$ is stable.
- 7 (e). If $\mu > r$, it appears that the *y* species will be driven to extinction with the *x* species approaching the limiting value α^{-1} .
- 8. The strategy of nurturing the desirable species leads to an equilibrium *x*-population of $\alpha^{-1}(1 + \mu r^{-1})$. This is greater than the equilibrium *x*-population of α^{-1} that results from harvesting the undesirable species.

9. Consider the population model

$$
x' = \pm a_1 x \pm b_1 x^2 \pm c_1 xy \pm d_1 xz
$$

\n
$$
y' = \pm a_2 y \pm b_2 y^2 \pm c_2 xy \pm d_2 yz
$$

\n
$$
z' = \pm a_3 z \pm c_3 xz \pm d_3 yz.
$$

Since *x* and *y* are mutually competitive, we need to choose a negative sign for c_1 and c_2 (the presence of *x* reduces the growth rate *y*¢ and similarly the presence of *y* reduces the growth rate x'). The same argument applies to the signs of d_1 and d_2 since the predator is harmful to x and to *y*. The presence of the prey is beneficial to the predator *z* and thus we need to choose a positive sign for c_3 and d_3 .

So far, we have deduced

$$
x' = \pm a_1 x \pm b_1 x^2 - c_1 xy - d_1 xz
$$

\n
$$
y' = \pm a_2 y \pm b_2 y^2 - c_2 xy - d_2 yz
$$

\n
$$
z' = \pm a_3 z + c_3 xz + d_3 yz.
$$

We also know that, in the absence of the other two species, *x* and *y* each evolve towards a nonzero equilibrium value. Thus, from the first equation, we know the term $\pm a_1x \pm b_1x^2 = x(\pm a_1 \pm b_1x)$ has a positive zero, as does the corresponding term in the second equation, $\pm a_2 y \pm b_2 y^2 = y(\pm a_2 \pm b_2 y)$. From this fact, we infer that a_1 and b_1 have opposite signs, as do a_2 and b_2 . The general solution of an equation of the form $u' = au + bu^2$ is $u = Ae^{-at} + Bt^2 + Ct + D$. If *a* is negative, then $u(t) \rightarrow \infty$ as $t \rightarrow \infty$. Hence, there cannot be a nonzero equilibrium solution when *a* is negative. Applying this observation to the equations $x' = \pm a_1 x \pm b_1 x^2$ and $y' = \pm a_2 y \pm b_2 y^2$, we deduce that a_1 and a_2 are positive and b_1 and b_2 are negative. Likewise, in order that *z* decrease to zero in the absence of *x* and *y*, we need to have a_3 negative. In summary, we arrive at the following model which will support the observations:

$$
x' = a_1 x - b_1 x^2 - c_1 xy - d_1 xz
$$

\n
$$
y' = a_2 y - b_2 y^2 - c_2 xy - d_2 yz
$$

\n
$$
z' = -a_3 z + c_3 xz + d_3 yz
$$
.

10 (a). Consider the system

 $s' = -\alpha s i + \gamma r$

$$
i' = \alpha s i - \beta i
$$

$$
r' = \beta i - \gamma r.
$$

Summing these three equations, we obtain $s'(t) + i'(t) + r'(t) = 0$. Hence, $s(t) + i(t) + r(t)$ is constant, say $s(t) + i(t) + r(t) = N$ where *N* denotes the size of the population.

10 (b). If those who recover are permanently immunized, then

 $s' = -\alpha s i$ $i' = \alpha s i - \beta i$ $r' = \beta i$.

As in part (a), we can sum these equations and again conclude that $s(t) + i(t) + r(t) = N$.

10 (c). If some infected members perish, then

 $s' = -\alpha s i$ $i' = \alpha s i - \beta i$ $r' = \beta i - \gamma r$. In this case, $s'(t) + i'(t) + r'(t) = -\gamma r(t)$. Thus, the population is not constant but rather is decreasing. 11 (a). Consider the system $s' = -\alpha s i + \gamma r$ $i' = \alpha s i - \beta i$ $r' = \beta i - \gamma r$. Using the fact, from Exercise 10, that $s + i + r = N$, we obtain a reduced system, $s' = -\alpha s i + \gamma (N - i - s)$ $i' = \alpha s i - \beta i$. 11 (b). For the given values, $\alpha = \beta = \gamma = 1$ and $N = 9$, the reduced system has the form $s' = -si + (9 - i - s)$ $i' = si - i$. Rewriting this system slightly, $s' = -si + 9 - i - s$ $i' = i(s-1)$. We see that $i' = 0$ if (i) $i = 0$ or (ii) $s = 1$. In case (i), $s' = 0$ if $s = 9$. Thus case (i) leads to the equilibrium point $(s, i) = (9, 0)$. In case (ii), $s' = 0$ if $i = 4$. Thus case (ii) leads to the equilibrium point $(s,i) = (1, 4)$. 11 (c). At $z =$ Î Í \overline{a} ˚ ˙ $\begin{bmatrix} 9 \\ 0 \end{bmatrix}$, the linearized system has the form $\mathbf{z}' = \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix}$ $\begin{vmatrix} -1 & -10 \\ 0 & 8 \end{vmatrix}$ ˚ $\mathbf{z}' = \begin{vmatrix} 0 & \mathbf{z} \end{vmatrix}$ $1 -10$ $0 \quad 8 \quad |$ **z**. The eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 8$. This equilibrium point is an unstable saddle point. At $\mathbf{z} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Î $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$ ˚ $\overline{}$ 1 $_4$, the linearized system has the form $\mathbf{z}' = \begin{bmatrix} -5 & -1 \\ 1 & 1 \end{bmatrix}$ Î $\begin{vmatrix} -5 & -2 \\ 4 & 0 \end{vmatrix}$ ˚ $\mathbf{z}' = \begin{vmatrix} 1 & 0 \end{vmatrix}$ **z** 5 -2 $4 \quad 0 \quad |z|$. The eigenvalues are $\lambda_1 = (-5 - i\sqrt{7})/2$ and $(-5 + i\sqrt{7})/2$. This equilibrium point is an asymptotically stable spiral point. 11 (d). $(9,0)$ is an unstable equilibrium point while $(1,4)$ is stable.