Chapter 10
Series Solutions of Linear Differential Equations

Section 10.1

oo t”
1. Consider the power series Zz—n Applying the ratio test at an arbitrary value of ¢, # 0, we
n=0
n n+l t
obtain lim | = lim 51" 5‘ The limiting ratio is less than 1 if
| t| <2 . Therefore, the radius of convergence is R=2.
n+l_ 2 ¢
2. —|= —|= | t|. Therefore, the radius of convergence is R=1.
e ()7 | (141)
3. Consider the power series Z(t— 2)" . Applying the ratio test at an arbitrary value of 7, r# 2,
n=0
L |@=2) . Ny . .
we obtain lim —2)71 = 11m| t—2|= | t—2|. The limiting ratio is less than 1 if | t—2|< 1.
Therefore, the radius of convergence is R=1.
GBr-1"" 2 )
4, e 13t-1|<1=-1<3t-1<1=0< 1< 3 Therefore, the radius of
1
convergence is R=—.
3
- (1—=1)"
5. Consider the power series Z ( ‘) . Applying the ratio test at an arbitrary value of 7, 1 # 1, we
n=0 n:
L nl(t—1)"" -1 o .
obtain lim|——————|= = 0. The limiting ratio is less than 1 for all ¢, 7 #1.
o=l (n+DIE=1)" | no=|n+1
Therefore, the radius of convergence is R = oo.
(n+DIE=D""| . .
6. 1) = 11m| (n+D(t-1) | =oo, t#1. Therefore, the radius of convergence is
n—oo n'(t— n—oo
R=0.
. oo =D . . .
7. Consider the power series 2 . Applying the ratio test at an arbitrary value of ¢, #0,
n=l1
n+l
we obtain lim —|=lim = | t|. The limiting ratio is less than 1 if | t| < 1. Therefore,
noel (n+1Dt" | o=l n+1

the radius of convergence is R=1.
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10.

11.

12.

13.

14.

(_1)n+l(t_ 3)n+l4n
(_1)”(t_ 3)11 4n+1
convergence is R=4.

t—3
4

<l=>-4<t-3<4=-1<t<7. Therefore, the radius of

n—oo

Consider the power series Z(IH n)(t+2)" . Applying the ratio test at an arbitrary value of 7,
n=l1

t#—2,we obtain
. |n(n + D) +2)""
lim
noel (Inn)(t+2)"
can be found using L Hopital’s Rule.) The limiting ratio is less than 1 if | t+2 | < 1. Therefore,
the radius of convergence is R=1.
. |+ D=
lim 3 -
noel o (t=1)
convergence is R=1.

(In(n+1)(t+2)
Inn

= lim

n—oo

In(n +1) N

=|r+2

t+2|. (The last limit

n—>o0

=|t-1|]<1=-1<t-1<1=0<t<2. Therefore, the radius of

. t—4)"
Consider the power series 2% Applying the ratio test at an arbitrary value of ¢,
n=l1
2"\Nn+1(t—4)"" v - -
t#4,we obtain lim JZ Unh)) = lim n+l1G-4) = =4 ‘ The limiting ratio is
n—yoo 2" \/;(t_ 4)" n—oo 2\/;

less than 1 if | t—4 | < 2. Therefore, the radius of convergence is R=2.
(t—2)"* arctan(n)

(t—2)" arctan(n +1)

Therefore, the radius of convergence is R=1.

Applying the ratio test, we see the power series for f(#) and g(¢) both have radius of
convergence R =1. Therefore, each series converges in the interval —1<7<1.

@ fFO=1+t++0+t"+1 +--
g()=0+t+41 +96 +16¢* +25£ +---

() f()+g(H)=1+2t+5 +10£ +17¢" +26£ +---

©) f(H)—g()=1-3 -8 =15t =241 —--.

d) f/()=1+2t+3 +4£ +5t* +6£ +---

() f()=2+6t+12¢>+20r + 301" +42¢ +---

Applying the ratio test, we see the power series for f(#) and g(¢) both have radius of
convergence R =1. Therefore, each series converges in the interval —1<7<1.

@ f(O=t+2+30 +41 +5 +61° +---
gt)y=—t+2 =3 +41* =5 +61°—---

() f()+g(H)=41 +8t" +121° +16¢° +20¢° +---

(©) f(£)—g(H)=2t+6 +10£ +141 +18¢ +22¢" +---

(d) f/(O)=1+41t+9 +161 +25¢* + 361 +---

(e) f(H)=4+18t+48¢ +1001° +180t* +2941 +---

=[r-2|<1=-l<r-2<1=1<1<3 (recall limarctan(n):%].

n—oo n—>o0
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15.

16.

17.

18.

19.

20.

Applying the ratio test, we see the power series for f(¢) has radius of convergence R=1/2
while the series for g(7) has radius of convergence R =1. Therefore, each series converges in
the interval |r—1|<1/2,0r 1/2<t<3/2.
@ f(O=1=-20t=D)+4(-1)>=8(t=1) +16(t—1)* = 32(t=1)" +---
g =1+-D+=-1) > +(t=-1) +(t=D + (=1 +--
) f(D+gH)=2—(=D+5(-1)>=7(t=1)> +17(t=1)* = 31(1=1)° +---
©) f(O-gm)==3(-D+3(1-1>=9(r—1)° +15-1D* = 33(t—1)" +---
(@ f/(=-2+8(1-1)-24(t—1)* +64(t—1)> = 160(r—1)* +384(r—1)°---
(e) f/()=8—48(t—1)+192(t—1)> - 640(t—1)° +1920(t - 1)* = 5376(¢t—1)’---
Applying the ratio test, we see the power series for f(#) is 1/2 and g(#) is 1. Therefore,

R=1.
2

@ FO=14+2(t+D)+4@+D> +8(t+1)° +16(t+1)* +32(t+1)° +---
gO)=(+D+2t+ 1)+ 3¢+ 1> + 4+ 1) +5(t+1)° +6(t+1)° +---

®) fF(O+g(H)=1+3t+D)+6(t+1)°+11(t+1)° +20( +1)* +37(t +1)° +---

©) fF(O-gO)=1+@+D)+2(t+1)>+5(t+1)° +12(t+D)* +27(t +1)° +---

(d) fF/()=2+8(t+1)+24(t+1)> +64(t+1)° +160(¢ +1)* +384(t+1)° +---

() f()=8+48(t+1)+192(t+1)* +640(¢ +1)> +1920(¢ +1)* +5376(¢ +1)° +---

Consider the power series 22" "
n=0
the lower limit of n =0 transforms to k£ =2 while the upper limit remains at c. Thus, the

. Make the change of index k= n +2. With this change,

power series can be rewritten as Z 2*7{* . Finally, changing to the original summation index,
k=2

n, we obtain 22"’2t" .
n=2

Make the change of index k =n + 3. The power series can be rewritten as Z(k —2)(k—=Dr".
k=3

Finally, changing to the original summation index, n, we obtain Z (n=2)(n-Dt".

n=3

Consider the power series Z a,t""’

n=0
the lower limit of n =0 transforms to k£ =2 while the upper limit remains at c. Thus, the

. Make the change of index k= n +2. With this change,

power series can be rewritten as Zakfztk . Finally, changing to the original summation index,
k=2

n, we obtain Z a, ,t".
n=2

Make the change of index k =n—1. The power series can be rewritten as Z(k +Da, 1.
k=0

Finally, changing to the original summation index, n, we obtain 2 (n+Da,,,t".
n=0
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21.

22.

23.

24.

25.

26.

27.

Consider the power series Z n(n—1)a, "> . Make the change of index k = n— 2. With this
n=2
change, the lower limit of n =2 transforms to £ =0 while the upper limit remains at oo

Thus, the power series can be rewritten as Z(k +2)(k +1)a,,,t* . Finally, changing to the
k=0

n+2

original summation index, n, we obtain Z(n +2)(n+1Da
n=0

Make the change of index k& =n+ 3. The power series can be rewritten as 2(—1)k’3ak73tk .

k=3

n

Finally, changing to the original summation index, n, we obtain 2:(—1)"’3 a, ;t".
n=3

Consider the power series Z(—l)"“(n +1a, "** . Make the change of index k=n+2. With
n=0
this change, the lower limit of n =0 transforms to k =2 while the upper limit remains at oo

Thus, the power series can be rewritten as Z(—l)k’l(k - l)a,ﬁztk . Finally, changing to the
k=2

original summation index, n, we obtain 2(—1)”’1(n —Da, ,t"
n=2

) ) oo (_l)n t2n+l

Let f(f)=t*(t—sinf). t—sint=— Yy ———

f()=r(1=sinn) 2 ot

n=1

)n+1 2n+3

. Therefore, f(t)= Z(QT)‘

) (_1)n+2(2n + 1)'(t)2n+5
lim

) 5—5|=0. Thus, the radius of convergence is R=oo.
noe | (=)' 2n + 3T

2n

Let f(#)=1-cos3¢. From the Maclaurin series for cosu we have cosu = Z(—l)" (; i
n=0 n):
1t 729¢°
Therefore, cos3t—1—9—t+8 £_12 +---. Hence,
2! 4! 6!
9 81r* 7291 S 3D :
f= o A + a " 2(—1) m We calculate the radius of convergence by

using the ratio test. For an arbitrary value of 7, ## 0, we have
. m)!(3n™ " | 9
Qn+2)!30" | o= 2n+ 2)(2n +1)

R ~ \ (=20)""
Letf(t)_nzfl—(—zt)' 1- (2t) %( 20_2( . ‘(2)

=0. Thus, the radius of convergence is R =oo.

n—oo

=2l <1.

Thus, the radius of convergence is R = 5

1 o
Let f(t)=1/(1—¢*). From the Maclaurin series for 1/(1— u) we have -y = Z u" . Therefore,
—u

n=0

— =1+ +¢" +1°+--- Hence, f(1)= ),1".



272 « Chapter 10 Series Solutions of Linear Differential Equations

We calculate the radius of convergence by using the ratio test. For an arbitrary value of 7, 1 #0,
2n+2

= hm‘t ‘— t”. Thus, the radius of convergence is R=1.

n—oo

we have lim

n—oo

I tn 2 3 t4 tS
28(a). ' =) —=l+t+—t—+—+—+..

“~ n! 20 31 41 5!
t o ot r
e’t_z( LUV S O AN S
— n! 20 31 41 5!
1 £t ot r o ot r £
28 (b). sinh(f)= —<|1+t+—=+—+—+—+ .. |- |l—-t+———+———+ .. |/=t+—+—+...
2 21 31 41 5 20 31 41 5! 315!
1 S S A S £ 7 £t
cosh(t)=—q|1+t+ -+ —+—+—+..|+|l-t+—-———+———+. =1+ +—+..
2 21 31 41 5 20 31 41 5 2! 4!

29 (a). Consider the differential equation y”’ — @’y =0 and assume there is solution of the form

y(t)= Zant" . Differentiating, we obtain y’(¢) = 2“nant"’l and y”’(1)= Zn(n ~Da, ",

n=1

Inserting these series into the differential equation, we have 2 n(n—"1ya,t"> _wzz a,t"=0.
n=2 n=0
Making the change of index k =n—2 in the series for y’’(f), we obtain

Y (n+2)(n+1a, " -0 Y a,t"=0,0r Y [(n+2)(n+1)a,,, -0a,]" =0. Equating the
n=0 n=0 n=0

CO a,
coefficients to zero, we find the recurrence relation a,,, = ——"——,n=0,1,...
(n +2)(n+ 1)

29 (b). The recurrence relation in part (a) leads us to
=w'a,/2, a,=w'a,/12=w'a, /24, a,= w’a, /30=w’a, /720, ...
=wa, /6, a;,=w'a, 120=w'a, /120, a, = w’a, / 42 = w’a, /5040, ...
(or)’ L (o )* y o)’ (o)  (ar)’  (on)

oo+ A or + + + +--1].
2 24 720 [0 6 120 5040

By Exercise 28, y,(f) = coshar and y,(#)=sinhor.
30 (a). y(1)= JZW 'AA+C = Er +C, y(0)=C=1= y(1)= 1+2t" g
n=1 -
30 (b). R=1.
1

30 (c). y(1)= :

Thus, y(#)=a,[1+

=
31 (a). Consider the function given by y’(f) = 2 (

n=0

, y(I) =1. Integrating the series termwise,

n+l

we obtain y(#)=C + 2 . Imposing the condition y(I) =1, it follows that C =1.

=0 1)‘

r—1
Adjusting the index of summation, we can write y(7) =1+ Z (1= 2 ( )

n=1
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n‘(t l)n+1
(n+D!(t-1)"

r—1
n+l

31 (b). Applying the ratio test, lim

n—oo

= 0. Therefore, the radius of

n—>oo

convergence is R=oo.
31 (c). From the power series (7a), we see that y(7)=e'"

32 (a). y(r)——1+j 2( " —d/l——1+2( )"

t . nflﬁ__ N _ nﬁ
n=0 ( 1)'__1—}_2(_1) - {1—'—2( 1) n'}

tn+1 n+1 ) tn
RN ALY Ly == (D" +1=1+ 1”+l .
y 2( '~ Then, y() Z( S D Z( ) = 20
32 (b). R=oo.
32 (c). y(=e".
l n

33 (a). Consider the function given by y’(¢) = Z( 1" !, y(1)=0. Integrating the series

n=2 '

. (t )n+1

termwise, we obtain y(#)=C + -1
¥ (1) Z( S D)

that C =0. Adjusting the index of summation we can write

1
Y e
( 1)n+ln'(t 1)n+l

. Imposing the condition y(1) =0, it follows

33 (b). Applying the ratio test, lim =0. Therefore, the radius of

ol (=)' (n+DI(=D" | no=|n+1
convergence is R=oo.
- t—1)"
33 (c). From the power series (7a), we see that Z(—l)" % =e """ Thus,
n=0 n
t—1 t—1
1- ( T ) ( ) Z( 1) =e¢ " Or, using the results of part (a),
=D . (t—l) oD =
1- - = y(t
1! 2! y(®.
2n+1
34 (a). y(f)= j 2( )" s2"ds = 2( -
1 n+1 2n+3 2 +1
34 (b). lim () @n+D)_ \t\<1:>R_1

”4)00| ( 1)n 2n+1(2n+ 3) |
34 (c). y(f)=tan"'(¢).
' = 1"
35 (a). Consider the function y(r) where JO y(s)ds= Z—. Differentiating both sides, we obtain
n

n=l1

y(t)= Z "' . Adjusting the index of summation, we can write y(f)= 2 t".
n=l n=0
n+l

t
35 (b). Applying the ratio test, hm —| | Therefore, the radius of convergence is R=1.

- 1
35 (c). From the power series (7d), we see that y(7) = Z "= l_t
n=0 -
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36.

37.

38.

Assume there is solution of the form y(7) = Z a,t" . Differentiating, we obtain
n=0

Y=Y na"" and y”()= Y n(n—Da, "> =D (n+2)(n+1a, 1", 1y’ =D na,t".
n=1 n=2 n=0 n=0

Therefore, 2[(n +2)(n+1Da,,,—(n+1a,l]t" =0.Equating the coefficients to zero, we find
n=0

+1
the recurrence relation a, ., = (n+Da, =% The recurrence leads us to
n+2)(n+1) n+2
) a a4, 4 a; _4q
a:—’a——,a:—:—,a:—:—
277 37 4 8777 5 15
£t £
Therefore, y(f)= a1+ —+—+.;+ayt+—=+—+ .. y0)=qg,=1, y(0)=q =-1.
2 8 3 15
£t £
Finally, y(f)=1+ —+—+ ..;—t+—+—+ ...;.
mayy(){ 278 }{ 3015

Consider the initial value problem y”’ +#y'—2y =0, y(0)=0, y’(0) =1 and assume there is

solution of the form y(#) = Z a,t" . Differentiating, we obtain
n=0

V()= Z na,t"" and y”(1)= Zn(n —1)a,t"~* . Inserting these series into the differential
n=1 n=2

equation, we have 2 n(n—Da,t" >+ IE na,t"" - 22 a,t" =0.Making the change of index

n=2 n=l1 n=0

k = n—2 in the series for y”’(r), we obtain Z(n +2)(n+1a,,,t" +Z na,t" — 22 a,t"=0,or

n=0 n=1 n=0

2[(11 +2)(n+Da,,, +(n—2)a,]t" =0.Equating the coefficients to zero, we find the

n=0
. —(n-2)a,
recurrence relation a,,, =—————"—,n=0,1,... The recurrence leads us to
(n+2)(n+1)

a,=2a,/2=a,, a,=0a,/12=0, a,=-2a, /30=0, ...
a,=a, 16, a;=-a,/20=-qa, /120, a,=-3a,/42=a, /1680, ...
Imposing the initial conditions, we have g, =0 and g, =1. Thus,
3 5 7

t
YO =t+————+
6 120 1680

+ ...

Assume there is solution of the form y(#) = Z a,t" . Differentiating, we obtain
n=0

Y=Y na,"" and y7()= Y n(n—Da," > =D (n+2)(n+Da, 1" ty= D at"" =Y a 1"
n=2 n=0 n=0 n=1

n=1

Therefore, 2a, + Z[(n +2)(n+1a,,, +a, ]t" =0. Equating the coefficients to zero, we find

n=1

__an—l _

the recurrence relation a, , = ——*———, n=
(n+2)(n+1)

ghigeee
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39.

40.

The recurrence leads us to
:_—ao’ a, = —4 , a5 = 4 =0
3.2 4.3 5-4

r t
Therefore, y(1) = ao{l— 3 + } + al{t— T + }, a,=1, a,=2.

t3 t4
Finally, y(f)=1——+ ...p+ 24 t——+ ...;.
mally. 0= {1- 2o o

Consider the initial value problem y”’ + (1+¢)y"+y=0,y(0)=-1,y’(0) =1 and assume there

a,

is solution of the form y(¢) = Z a,t" . Differentiating, we obtain
n=0

V()= 2 na,t"" and y”(1)= Zn(n —1)a,t""* . Inserting these series into the differential
n=1 n=2

equation, we have 2 n(n—1a,t" > +(1+ t)z na " + Zant” =0 or

n=2 n=1 n=0

Zn(n —~Da, "’ +Z na " + 2(1 +n)a,t" =0.Making the change of index k=n—2 in the
n=2 n=1 n=0

series for y”’(f) and k =n—1 in the series for y’(z), we obtain

Y (n+2)(n+a, 1"+ (n+Da, " + D (1+n)a," =0, or
n=0 n=0 n=0
2[(n +2)(n+Da,,,+(n+1Da,, +(n+1a, lt" =0. Equating the coefficients to zero, we find
n=0

—-(n+1
the recurrence relation a, ., = (n+1a

— + 1 _ —
v~ (2 +1a, = %1~ % The recurrence leads us to
n+2)(n+1) n+2

a,=—(a,+a)/2, ay=—(a,+a,)/3, a,=—(ay+a,)/4=0, a;=—(a, +a,)/5.
Imposing the initial conditions, we have a,=—1and g, =1. Thus,
a,=0, a,=-1/3, a,=1/12, a;,=1/20 and so we find

1 1 1
D==l+t—=+—t'+—F +-.
Y 30 120 T 20

Assume there is solution of the form y(¢) = Z a,t" . Differentiating, we obtain
n=0

=3

V()= Z(n +Da,, t" and y” (1) = Z(n +2)(n+1a,,,t" . Inserting these series into the
n=0

n=0

differential equation, we have 2 {(n +2)(n+1Da
n=0

—3(n+Da,,, + 6an}t” = 0. Equating the

S5(n+1 -6
coefficients to zero, we find the recurrence relation a, ., = (n+1d,, 64, , n=0,1,2,.... The
(n+2)(n+1)

recurrence leads us to
_Sa,—6a, 5(2)-6(1)

_5(a,—6a, 102)-6(2) 4
a, > 5 _

e 3
5(a,—6a, 154/3)-6Q) 2 5(4)a,—6a, 20Q2/3)-6(4/3) 4

ay, > ds
4.3 12 3 5-4 20 15
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41.

4 2 4
Therrefore, y(f)=1+2t+2¢ +§t3 +§t4 4+ —F 4.

15
Consider the initial value problem y”’—2y"+y=0,y(0)=0,y’(0) =2 and assume there is

solution of the form y(#)= Z a,t" . Differentiating, we obtain
n=0

V()= Z na,t"" and y”(1)= Zn(n —1)a,t"~* . Inserting these series into the differential
n=1 n=2

equation, we have 2 n(n—1la,t" > - 22 na, " + Zant” = 0. Making the change of index
n=2 n=l1 n=0

k =n—2 in the series for y”’(#) and k = n—1 in the series for y’(¢), we obtain

Y (n+2)(n+a,, " =2 (n+1a, "+ Y,a,t" =0, or
n=0 n=0 n=0
2[(;1 +2)(n+Da,,,—2(n+1a,,, +a,l]t" =0. Equating the coefficients to zero, we find the
n=0
2(n+1 -
recurrence relation a,,, = (n+Dad,, a, . The recurrence leads us to
(n+2)(n+1)
a,=Q2a,—a,)/2, a;=(4a,—-a,)/6, a,=(6a,—a,)/12, a;=(8a, —a;)/20.

Imposing the initial conditions, we have a,=0 and g, =2. Thus,

1 1
a,=2, a;=1, a,=1/3, a;=1/12 and so we find y(t)=2t+2t2+t3+§t4+Et5+---.

Section 10.2

1.

Consider the differential equation y” + (sect)y’ + #(t* — 4)~'y = 0. The coefficient function
p(t) =sect is not analytic at odd integer multiples of 7 /2. Thus, in the interval —10< <10,
3t | Sm

p(1) is not analytic at + %, + - + > Similarly, the coefficient function g(¢) = #(t* — 4)" is

not analytic at =12 . These 8 points are the only singular points in —10 < 7<10.

The function p(t) = £ is not analytic at #=0. The function ¢(#) = sint is analytic everywhere.
Therefore, =0 is the only singular point in =10 << 10.

Consider the differential equation (1—#°)y”’ +ty’ + (cscf)y = 0. Putting the differential
equation into the form of equation (1), we see that the coefficient function p(f)=t(1—t*)" is
not analytic at 7= %1. Similarly, the coefficient function ¢(f) = (csc£)(1—¢*)"" is not analytic at

integer multiples of 7 or at #=*1. Thus, in the interval —10 < # <10, the singular points are
givenby t=0,=1,+ 7, +27,+37.

t
3
The function p(?) = 'e is not analytic at t=0, + E, tr, £t—, X2, = 5—”, +3m.The
sin2t 2 2 2

t

function ¢(f) = —————— is also not analytic at t= %5 . Therefore,
1= o5 P52t y
3 5

t=0, £ r +r, i—ﬂ, +2x, _7r’ + 37w, £ 5 are the singular points in =10 <7< 10.

2’ 2
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10.

11.

12.

13 (a).

Consider the differential equation (1+ 1n| t|) y” +y’ +(1+¢)y=0.Putting the differential
equation into the form of equation (1), we see that the coefficient function p(#)= (1+ ln| t|)_1 is
not analytic at =0 or at t=+e"". Similarly, the coefficient function g(¢)=(1+£*)(1+ 1n| t|)"1
is not analytic =0 or at = te'. These three points are the only singular points in the interval
-10<1<10.

t
The function p(f) = —- is not analytic at #=0. The function g(¢) = tant is not analytic at

1+
3 5 3 5
t= iz, i—n, i—n,... . Therefore, t= 0, iz, i—ﬁ, i—nare the singular points in
2 2 2 2 2 2

-10<t<10.

Consider the differential equation y”” +(1+2£) "'y’ + #(1—*)"'y = 0. Since the coefficient
functions are rational functions, each is analytic with a radius of convergence R equal to the
distance from #, =0 to its nearest singularity; see Figure 10.2. The only singularity of
p(t)=(1+21)"is t=—1/2 while the only singularities of g(f) = #(1—¢*)"" are t=%1. Thus, the
radius of convergence of the series for p(¢) is R=1/2 while the series for g(¢) has radius of
convergence R=1. The given initial value problem is guaranteed to have a unique solution that

is analytic in the interval —1/2<t<1/2.

2
p()=4(1-9¢)" and ()= t(1-9¢*)™" are not analytic at =+1/3. Thus, for t,=1, R= 3

Consider the differential equation y”” + (4 —3¢)"'y” + 3#(5 + 301)"'y = 0.. Since the coefficient
functions are rational functions, each is analytic with a radius of convergence R equal to the
distance from #, = —1 to its nearest singularity; see Figure 10.2. The only singularity of

p(t)=(4—30)"is t=4/3 while the only singularity of g(f)= 3¢5+ 30¢)"is t=-1/6. Thus,
the radius of convergence of the series for p(¢) is R= |— 1-(4/3) | =7/3 while the series for
q(?) has radius of convergence R = |— 1-(-1/6) | =5/6. The given initial value problem is
guaranteed to have a unique solution that is analytic in the interval =5/6<t+1<5/6.

p(t)=(1+4+)"" is not analytic at 7= ié and g(f)=t(4 + )" is not analytic at t=—4 . Thus,

for 7,=0, R:%.

Consider the differential equation y” +(1+3(t—2))"'y’ +(sinf)y = 0. The coefficient function
p(t)=(3t—5)"" is a rational function and is analytic with a radius of convergence R equal to
the distance from #, =2 to its nearest singularity; see Figure 10.2. The only singularity of
p(t)=(3t— 5)"is t=5/3. The other coefficient function, q(t) = sint, is analytic everywhere
with an infinite radius of convergence. The radius of convergence of the series for p(?) is

R= |2 -(5/3) | =1/3. Therefore, the given initial value problem is guaranteed to have a unique
solution that is analytic in the interval —1/3<7-2<1/3.

p(t)=(t+3)1+¢)" is not analytic at =i and g(¢) = ¢* is analytic everywhere. Thus, for
t,=1, R=12.

Consider the differential equation y”’ +#y” + y =0. Let the solution be given by y(#) = Z at".
n=0

Differentiating, we obtain y’(¢) = 2 na,t"" and y”(t)= Zn(n —Da,t" .
n=2

n=1
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Inserting these series into the differential equation, we have

Zn(n —Da, " + thant”’l +2 a,t"=0 or Zn(n ~Da, " +2 na,t" +Zant" =0.
n=l1 n=0 n=0

n=2 n=2 n=l1

Adjusting the indices, we obtain Z(n +2)(n+1a,,,t" +2 na,t" +2 a,t"=0 or

n=0 n=l1 n=0

2a, +a, + i[(n +2)(n+1a

n=1

.o H(n+1Da, Jt" = 0. Consequently, the recurrence relation is

givenby a,=—q,/2and a,,=-a,/(n+2), n=1,2,....
13 (b). The recurrence leads us to
a,=-a,/2,a,=—a,/4=aq,/8,...
a,=—a,/3,a;,=—a,/5=aqa,/15,...

Thus, the general solution is
2 4 3 5

y(t)=ao[l—%+%—---]+q[t—%+f—5—---]=yl(t)+y2(t).

13 (c). Since the coefficient functions are analytic for —eo < f < oo, the series converges for —eo <t < oo,
13 (d). The coefficient function p(7)=t is odd and the coefficient function ¢(7) =1 is even. Therefore,

Theorem 10.2 guarantees that the given equation has even solutions and odd solutions.

14 (a). 2[(n +2)(n+1Da,,, +2na, +3a,]t" =0. Consequently, the recurrence relation is given by
n=0
—(2n+3)a,
Qi =7"-" >N
(n+2)(n+1)
14 (b). The recurrence leads us to
a,=-3a,/2,a,=-5a,/6, a,=-"7a,/12="Ta,/8, a;=-9a,/20=3q,/8 ...
a,=—a,/3,a;,=-a,/5=aqa,/15,...
Thus, the general solution is
3 Tt 50 3¢
N=al-—+——-1+qt——+——-].
y()ao[zg]%[68]

14 (c). Since the coefficient functions are analytic for —eco < f < oo, R=1o0,

14 (d). p(#)=2t is odd and ¢(¢) = 3 is even. Therefore, Theorem 10.2 guarantees that the given
equation has even solutions and odd solutions.

15 (a). Consider the differential equation (1+¢*)y”” +ty’ +2y = 0. Let the solution be given by

=0,1,2,....

y(t)= Zant" . Differentiating, we obtain y’(f) = 2‘4nant"’l and y”’(1)= Zn(n —Da,t" .
n=2

n=0 n=1

Inserting these series into the differential equation, we have

(1+2)Y n(n=Da, "> +1Y na, " +2) a,i" =0 or
n=2 n=1 n=0

2 n(n—1a,t" >+ 2 n(n—1a,t" +2 na,t" +22 a,t" =0. Adjusting the indices, we obtain

n=2 n=2 n=l1 n=0

Z(n +2)(n+1Da,,,t" +Z n(n—1a,t" +2 na,t" +22 a,t" =0. Consequently, the recurrence
n=0 n=2 n=l1 n=0
relation is given by a, =—a,,a,=—a, /2, and a,,,= —(n* + 2)a, /I[(n+2)(n+1)], n=2,3,....

n+2



Chapter 10 Series Solutions of Linear Differential Equations * 279

15 (b). The recurrence leads us to
a,=—a,,a,=—a,/2=a,/2,...
a,=—a,/2,a,=-1la,/20=11q,/40,...
Thus, the general solution is
YO =afl-f+ o Jrai= e B oy 04 a0
0 ) 1 ) 40 1 2\*)-

15 (c). The coefficient functions p(¢) = #(1+ )" and g(¢) = 2(1+*)™" fail to be analytic at = =i.
Therefore, the radius of convergence for each coefficient function is R =1. Consequently,
Theorem 10.1 guarantees that the power series solution converges in the interval —1<7<1.

15 (d). The coefficient function p(f)=t(1+¢*)™" is odd and the coefficient function g(¢) =2(1+¢*)" is
even. Therefore, Theorem 10.2 guarantees that the given equation has even solutions and odd
solutions.

16 (a). 2[(n +2)(n+Da,,,—5mn+1Da,, +6a, lt" =0.Consequently, the recurrence relation is given
n=0
S5(n+1a,, —6a,
by an+2 =
(n+2)(n+1)
16 (b). The recurrence leads us to
a,=(5a,—6a,)/2=>5a,/2-3a, ,a,=(5(2)a,—6a,)/(3-2)=19q, /6 —5aq,
Thus, the general solution is

,n=0,12,....

2

y(t)=a0[1—3t2—5t3—---]+a1[t+57+

194

+]

16 (c). Since the coefficient functions are analytic for —eco < f < oo, R=1o0,
16 (d). p(#)=-5 and ¢(7) = 6 are both even. Therefore, Theorem 10.2 does not apply.
17 (a). Consider the differential equation y”’—4y” + 4y =0. Let the solution be given by

y(t)= Zant" . Differentiating, we obtain y’(f) = 2‘4nant"’l and y”’(1)= Zn(n —Da,t" .
n=0 n=1 n=2

Inserting these series into the differential equation, we have

2 n(n-1a,t" > - 424luznzf”’1 +4Z a,t" =0. Adjusting the indices, we obtain

n=2 n=l1 n=0

Z(n +2)(n+1a, t" - 42(11 +1Da,,,t" +4Z a,t" =0. Consequently, the recurrence relation
n=0 n=0 n=0
is givenby a,,,=[4(n+1Da,, —4a,]/[(n+2)(n+1)], n=0,1,....

n+2 —
17 (b). The recurrence leads us to
a,=2a,-2a,,a,=8a,—4a)/6=(16a,-16a,—4a,)/6=2a,-(@8/3)a,,...
Thus, the general solution is
3

8t
y(t) = a,[1-2¢ —T+---]+al[t+2t2 +26 1= y,(6) + y,(D).

n+l

17 (c). The coefficient functions are constant and hence analytic everywhere. Consequently, Theorem
10.1 guarantees that the power series solution converges in the interval —co <t < oo,
17 (d). The coefficient function p(f)=—4 is even and hence Theorem 10.2 does not apply.
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18 (a). 2[(11 +2)(n+Da,,, +(n+Dna,, +a ]t" =0.Consequently, the recurrence relation is given
n=0

—[(n +Dna, ., + an]
b3’ an+2
n+2)(n+1
18 (b). The recurrence leads us to
—a, -l@Wa, +a] a, q -®@)a,+a,] a, aq
a2 = ,a3 =—-—, a4 = =—— 4 2
2 3.2 6 6 4.3 8 12
Thus, the general solution is
£ 3 3 4
N=a)l-————--- +alt——+—+-
y()ao[26 ]aq[612 -]

1
18 (¢). q(t) = 147 is not analytic atr=—-1, R=1.

1
18 (d). g(1) = Tes is neither even nor odd. Therefore, Theorem 10.2 does not apply.
19 (a). Consider the differential equation (3+ ¢)y”’ + 3¢y’ + y = 0. Let the solution be given by

y(t)= Z a,t" . Differentiating, we obtain y’(f) = 2 na,t"" and y”(t)= Zn(n —Da,t" .
n=0 n=l1 =
Inserting these series into the differential equation, we have

(3+t)2n(n Da,t*" 2+3t2na " 1+§:a t"=0 or

n=2

32 n(n—1a,t" > + Zn(n Da, " +3Z na,t" +Za " =0. Adjusting the indices, we obtain

n=1

32(11 +2)(n+1Da,,,t" +2(n +Dna,,,t" +32 na,t" +2 a,t" =0. Consequently, the
n=0 n=l1 n=1 n=0
recurrence relation is given by
a,=-a,/6and a, ,=—[n(n+a, +Bn+Da,l/[3(n+2)(n+1)], n=12,....
19 (b). The recurrence leads us to
a,=-a,/6,a,=—2a, +4a,))/18=—(-2a,/6+4a,)/18=(a,—12a,) /54 ,...

Thus, the general solution is
2 3 3

2
y(t)=ao[l—%+5t—4+-~]+al[t—?t+---]=yl(t)+y2(t).

19 (c). The coefficient functions p(f)=3t(3+¢)"' and g(¢)= (3+1)"" fail to be analytic at t=-3.
Therefore, the radius of convergence for each coefficient function is R = 3. Consequently,
Theorem 10.1 guarantees that the power series solution converges in the interval -3 <7< 3.

19 (d). The coefficient function p(f)=3#3+ )" is neither even nor odd. Therefore, Theorem 10.2
does not apply.

20 (a). Z[Z(n +2)(n+1Da,,,+n(n—1a, +4a,]t" =0.Consequently, the recurrence relation is given
n=0

—[n(n -+ 4]%
2n+2)(n+1)

by an+2 =
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20 (b). The recurrence leads us to

q 4 q
azz_ao’a3:_§’ a4:Z, aszﬁ
Thus, the general solution is
t4 3 5
N=al-+——-]+a[t——+—+--].
y(0)=al g lrali- oot
20 (c). R=+/2.

20 (d). p(#) =0 can be considered odd and ¢(?) = is even. Therefore, Theorem 10.2 guarantees

2
" +2
that the given equation has even solutions and odd solutions.

21 (a). Consider the differential equation y”’ + ¢’y =0. Let the solution be given by y(#) = Z at".
n=0
Differentiating, we obtain y’(¢) = 2 na,t"" and y”(t)= Zn(n —1)a,t"~* . Inserting these
n=1 n=2
series into the differential equation, we have 2 n(n—Na,t" > +1 Z a,t" =0 or
n=2 n=0

2 n(n—1a,t"> +2 a,t"*”* =0. Adjusting the indices, we obtain

n=2 n=0

Z(n +2)(n+1a,,,t" +Z a, ,t" =0. Consequently, the recurrence relation is given by
n=0 n=2

a,=0,a,=0, and a,,,=-a, ,/[(n+2)(n+1)], n=2,3,....
21 (b). The recurrence leads us to
a,=0,a,=0,a,=-a,/12,a, =—a, /20,...

Thus, the general solution is
4 5

t t
y(t)=aO[l—E+---]+al[t—%+---]=yl(t)+y2(t).

21 (c). The coefficient functions are polynomials and hence analytic everywhere. Consequently,
Theorem 10.1 guarantees that the power series solution converges in the interval —co <t < oo,
21 (d). The coefficient function p(f)=0 can be considered an odd function while g(¢) = ¢’ is clearly

an even function. Therefore, Theorem 10.2 guarantees that the given equation has even
solutions and odd solutions.

oo

22 (a). 2[(n +2)(n+1Da,,, +na, +a,l](t—1)" =0. Consequently, the recurrence relation is given by
n=0

— +1 —

g =—tba, =4, o5
n+2)(n+1) n+2

22 (b). The recurrence leads us to

4

G L __h_G a_a

’ ‘13 — T T, Cl4 - = . (15 = — =
2 3 4 8 5 15
Thus, the general solution is

y(t)=a0[l—(t_1) =D +_“]+a1[(t_1)_(t—l) G

2 8 3 15
22 (c). The coefficient functions are analytic everywhere. Consequently, R =co.

a,=-—

1.
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23 (a).

Consider the differential equation y”’+ y =0. Let the solution be given by

y(z) = Zanz” where z=t—1. Differentiating, we obtain
n=0

y(z)= Z”%ZH and y”(z)= En(n - l)anz”’2 . Inserting these series into the differential
n=1 n=2

equation, we have Z n(n-1a,z"" +2 a,z" =0. Adjusting the indices, we obtain
n=2 n=0

2 (n+2)(n+Da,,,z" +2 a,z" =0. Consequently, the recurrence relation is given by
n=0 n=0

a,.,=—a, l[(n+2)(n+1)], n=0,1,....

n+2

23 (b). The recurrence leads us to

a,=—a,/2,a,=-a,/12=a,/24,...
a,=-a,16,a;,=—a,/20=aqa, /120,...
Thus, the general solution is
2 4
(=1 (=1
24

(=D (=D

6 120 -

y()=ay[l- +- ]+ al(t—1)—

23 (c). The coefficient functions are constants and hence analytic everywhere. Consequently, Theorem

24 (a).

24 (b).

24 (c).
25 (a).

10.1 guarantees that the power series solution converges in the interval —eco < f—1< oo,

oo

2[(n +Dna, ,—(n+2)(n+a,,+m+Da,, +a,l](t—1)"=0.Consequently, the recurrence
n=0

.. n+D*a  +a
relation is given by a, ., = ( ) sy ~.n=0,12,....
(n+2)(n+1)
The recurrence leads us to
_ata, a @ a, _da,ta, a  q

a, + , A3 = =
2 2 2 3-2 2 3
Thus, the general solution is
2 3 2 3
(t=1) +(t 1) e (r=1) +(t D e
2 3 2 2

1
p(H=q(t)= ﬁ are not analytic at #=2. Consequently, R=1.

y()=ay[l+ 1+ al(t-1)- 1.

Consider the differential equation y”"+y" +(t—2)y=0 or y”+y +[(t—1)—1]y=0. Let the

solution be given by y(z) = Zanz” where z = t—1. Differentiating, we obtain
n=0

y(z)= Z”%ZH and y”(z)= En(n - l)anz”’2 . Inserting these series into the differential
n=1 n=2

equation, we have 2 n(n—1a,z" > + Z na, 7" + z:anz"+1 —2 a,z" =0. Adjusting the
n=1 n=0

n=2 n=0

indices, we obtain Z(n +2)(n+1a,,,z" + Z(n +Da, 7"+ Zanqz" —2 a,z"=0.
n=0 n=0 n=l1 n=0

Consequently, the recurrence relation is given by

a,=(a,—a)/2and a, ,=—[(n+Da, ,—a,+a, ]l/[(n+2)(n+])], n=12,....
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25 (b). The recurrence leads us to
a,=—Qa,—a,+a,)/6=—(a,—a,)/3,...
Thus, the general solution is

_ (t—1)2_(t—1)3 ~ _(t—1)2 (t-1)°
y() =ay[l+ > 3 +- 1+ aql(t—1) > + 3 +---].

25 (c). The coefficient functions are polynomials and hence analytic everywhere. Consequently,
Theorem 10.1 guarantees that the power series solution converges in the interval

—co < f—1< oo,
2 2
26.  a,=TTH)A oo
(n+2)(n+1)
16
For u=35, a,=-4a,, a;= s 4= dy = =0, T,(=qa[t—4 +%7].
Set T,()=a[l—4+%]=1= q, =5. Therefore, T,(t) =161 — 201’ + 5¢
For =6, a,=-18a,, a, = 48a,, a, =-32a,, T,(1) = a,[1-181" + 48" — 32{°]; a,=-1.
Therefore, T,(t) = 32— 481" +18¢7 -1
27 (¢).
T, (L)
24 Tz(t)
3 3

N A

ANANIAY I
VARV

-2
27 (d). [Ty(0]<1 for —1<7<1. Forlt>1, lim|T,(1)|=eo.

28 (a). 2[(n +2)(n+Da,,, —n(n—1)a, —2na, + u(u +1)a,]t" = 0. Therefore the recurrence relation
n=0
+1)— +1
s q D p+la, o,
(n+2)(n+1)

28 (b). When u=N, a,,,=ay,, = ay,,=...=0. Therefore, if 4 =2M ,a polynomial solution of the

form a, + a,t’ + ...+ a,, " exists, while if 4 =2M +1, a polynomial solution of the form

2M +1

at+alt’ +..+a,, exists.
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28 (c).

28 (d).

29 (a).

29 (d).

30 (a).

30 (b).

33.

34.
35.

If u=0andy=1, (1-£)(0)—210)+0(1)=0.
If u=landy=t, (1-¢*)(0)—2:(1)+12)(¥)=0.

If u=2, a_, = [n(n+1)—6]a,

(n+2)(n+1)
_[n(n+1)—12]a,

3 1
=S P()==1t——.
(1) 2 >

5 3
If u=3, a,,,= = P(H==1—=t.

(n+2)(n+1) 2" T2
1)-20 35 15 3
Ifu=4, a, = n(n +1) = 20la, =P (="t -—1r+=.
(n+2)(n+1) 8 478
+1)—30 63 35 15
If u=s, o =0 ¥D=300a, . 035 35, 15
(n+2)(n+1) : 8 4 8

Consider the differential equation y’’ —2zy” + 21y = 0. Let the solution be given by

y(t)= Zant" . Differentiating, we obtain y’(f) = 2‘4nant"’l and y”’(1)= Zn(n —Da,t" .
n=0 n=1 n=2

Inserting these series into the differential equation, we have

2 n(n-1a,t" > - 22 na,t" + 2/12 a,t" =0. Adjusting the indices, we obtain

n=2 n=l1 n=0

Z(n +2)(n+1a,,t" — 22 na,t" + 2,112 a,t" =0. Consequently, the recurrence relation is
n=0 n=l1 n=0

given by a, =—pua, and a,,,=2n—-2u)a, /[(n+2)(n+1], n=12,....

For u =2, the even indexed coefficients a, vanish when n > 2. From the recurrence relation,
H,(t)= a,—2a,t’ = —a,(2t’ —1). Choosing a,=-2 leads us to H,(t)=4t"—2.For u=3,the
odd indexed coefficients a, vanish when n > 3. From the recurrence relation,

H,(t)=at- (2/3)(11t3 =—q[(2/ 3)t’ — £). Choosing a,=—12 leads us to H,(t) = 8 —12¢.
Similarly, H,(f)=16¢" — 48+ +12 and H ()= 32+ —160t> +120¢.

Try y(1)= D a,t" = Y [(n+Dna,,, +(n+Da,, —a,l" =0.
n=0 n=0

oo n

a t
=a . = "— = y(f)=a, ) —— . By the ratio test, lim
n+l (n + 1)2 y(1) o; (n+ 1)2 y m

converges in —1<r<1.

Z_I‘H-l(n + 1)2
"(n+2)*

= and the series

Try y(¢) = iant" = i[n(n—l) +1]a,t" =0=[n(n—1)+1]a, =0.

n=0 n=0
o 1£v1-4 . P
The polynomial x“— x +1 has roots s Since there are no positive integer roots, the

factor [n(n—1) +1] is nonzero for all n=0,1,2,... Therefore, a, =0, n=0,1,2,... and y(#)=0,
The trivial solution results.

The coefficient function p(f)=sin¢ is odd and analytic everywhere. The coefficient function
g(t)=t" is even and analytic everywhere. Thus, Theorem 10.2(b) applies. The differential
equation has a general solution of the form (15).

No. p(t) =cost is even; g(t) =t is odd.

The coefficient function p(7) =0 can be regarded as a function that is odd and analytic
everywhere. The coefficient function g(f) = ¢ is even and analytic everywhere. Thus, Theorem
10.2(b) applies. The differential equation has a general solution of the form (15).
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36.
37.

38.
39.

40 (a).

40 (b).

40 (c).

No. p(f)=1 and ¢(f) = ¢* are both even.

The coefficient function g(#) = ¢ is odd. Thus, Theorem 10.2(b) does not apply.

No. p(f) = e' is neither even nor odd and ¢(f) =1 is even.

Consider the differential equation y”’ + ay” + by = 0. The coefficient function p(¢)= a can be
regarded as an odd function if a =0, but is even if a is nonzero. The coefficient function

q(t) = b is even. Both coefficient functions are analytic everywhere. Thus, Theorem 10.2(b)

applies if a=0 and b is arbitrary.
p(0=0, ()=

R The denominator of g(#) vanishes at t=+i = R=1.

y(t)= iant” = i[(n +2)(n+Da,,,+n(n—a, +a,l]t"=0

_ _ nn—-1)+1
(n+2)(n+1)

an +2
a,

= lim

n—>oo

=r(n)=mn+2)(n+1), s(n)=n(n—1)+1. Then lim

n—oo

=1. Therefore,

the series diverges for ‘tz‘ >1= | > 1 by the Ratio Test.

No contradiction. The unique solution of the initial value problem exists for —eo < f < oo, but its
Maclaurin series has a radius of convergence R=1.

Section 10.3

1 (a).
1 (b).

2.

N+ R2a+1-DA+a* =1V =200 +a*=0
Using the technique in Section 4.5, the general solution is y = ¢,#* +¢,* Int,£>0.
W= t’ cos(01nt) ' sin(d1n¥)

e [ycos(Slnf)—Ssin(SIns)]  #'[ysin(Slnf) + Scos(Slnt)]
in0<t<oosince d#0.
When put in standard form, the differential equation is y”/ —4¢ 'y’ +6¢ 7y =0. Thus, £, =0 is

=720

the only singular point. The characteristic equation is A*—5A +6 =0 which has roots

A, =2 and A, =3.Hence, the general solution is y =¢,t* +¢,t’,t#0.

t, = 0. The characteristic equation is * — A —6 =0 which has roots 4, =—2 and A, =3.
Hence, the general solution is y =t~ +c,t°,t#0.

When put in standard form, the differential equation is y”/ — 3¢y’ + 4¢ 7y =0. Thus, £, =0 is
the only singular point. The characteristic equation is A* —4A + 4 = 0 which has roots

A, =2 and A, =2.Hence, the general solution is y = ¢’ +c,t’ 1n| t),t#0.

t, = 0. The characteristic equation is A*—2A +5 =0 which has roots

A, =1+2iand A, =1-2i.Hence, the general solution is y = ¢,zcos(21n[f]) + c,tsin(21n|f), = 0.
When put in standard form, the differential equation is y”/—3¢™'y’ +29¢ 7y =0. Thus, £, =0 is

the only singular point. The characteristic equation is A* — 4 +29 = 0 which has roots
A, =2+5iand A, =2-5i.Hence, the general solution is

y=c,t*cos(5n|t]) +c,* sin(SIn| ¢]), £ 0.
t, = 0. The characteristic equation is A* — 61 +9 =0 which has roots A, = A, = 3. Hence, the
f,t#0.

general solution is y = ¢,#’ +¢,t’ In
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9. When put in standard form, the differential equation is y” + 'y’ +9¢ 7y =0. Thus, #,=0 is
the only singular point. The characteristic equation is A* +9 =0 which has roots
A, =3iand A, =-3i. Hence, the general solutionis y =c, cos(3ln| t|) +c, sin(31n| t),t#0.

10. t, = 0. The characteristic equation is A* +2A +1=0 which has roots A, = A, =—1. Hence, the
general solution is y = ¢t +c,t ' In|d, 1 0.

11.  When put in standard form, the differential equation is y’’ + 3¢y’ +17¢ 7y =0. Thus, #, =0 is

the only singular point. The characteristic equation is A* +22 +17 =0 which has roots
A, =-1+4iand A, =-1-4i.Hence, the general solution is

y=c,t" cos(41n|t])+c,t " sin(41In|z),120.

12. t, = 0. The characteristic equation is A* + 104 +25 =0 which has roots A, = A, =-5. Hence,
the general solution is y = ¢t +c,t " In|f,t#0.

13.  Consider the differential equation y” +5¢'y’ + 40¢y = 0. We see that, #, =0 is the only
singular point. The characteristic equation is A* +4A + 40 =0 which has roots
A, =-2+6iand A, =-2-06i.Hence, the general solution is
y=c,t”cos(61n|t]) +c,¢ sin(61n| £]),1£0.

14. t, = 0. The characteristic equation is A? — 31 =0 which has roots A, =0, A, =3. Hence, the
general solution is y =c, +c,t°,t#0.

15.  When put in standard form, the differential equation is y”’—(t—1)"'y’ = 3(t—1)”y =0. Thus,
t, =1 is the only singular point. The characteristic equation is A>—2A —3=0 which has roots
A, =-3and A, =1.Hence, the general solution is y =¢,(t—1)* +¢,(t=1)", ¢t #1.

16.  t,=1.The characteristic equation is A* +2A +17 =0 which has roots
A, =-1+4i, A, =-1-4i.Hence, the general solution is
y=c,(t=1)"cos(4Inlt—1)) + c,(t—1)""sin(41Int = 1)),z # 1.

17.  When put in standard form, the differential equation is y”’ +6(t+2)"'y’ +6(t+2)y=0.
Thus, #, =-2 is the only singular point. The characteristic equation is A* + 54 + 6 =0 which
has roots 4, =-3 and A, =-2.Hence, the general solution is
y=c,(t+2)7 +c,(t+2)7, 1 2.

18. t, = 2. The characteristic equation is A? + 4 =0 which has roots A, =2i, A, =-2i.Hence, the
general solution is y = ¢, cos(2In|t—2|) + ¢, sin(21In|t - 2|), 2 # 2.

19.  From the form of the general solution, #, = -2 and the characteristic equation has roots
A, =1and A, =-2.Therefore, the characteristic equation is A> + A —2 = 0. Matching the
characteristic equation with the general form given in equation (3), we see that
a—1=1and B=-2.Thus, the differential equation is (#+2)°y” +2(t+2)y’ =2y =0.

20.  t,=1,A=00. ~A=0=>0a=1, f=0.

21.  From the form of the general solution, #, =0 and the characteristic equation has roots
A, =2+iand A, =2-i.Therefore, the characteristic equation is A>—4A + 5 =0. Matching
the characteristic equation with the general form given in equation (3), we see that
a—1=-4 and B=5.Thus, the differential equation is #’y’’ — 3ty + 5y =0.

22.  The characteristic equation has roots A, =2 and A, =—1. Therefore, the characteristic equation
is ’-~A1-2=0= a=0, B=-2. Thus, the differential equation is t*y”’ +ty’ -y = g(t). We
can determine the nonhomogenous term g(7) by inserting the given particular solution
v,(t)=2t+1.Doing so, we obtain £0)+12)—-2Qt+1)=-2t-2=g(1).
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23.

24.

25.

26.

27.

28.

29.

30.

31.

From the form of the general solution, the characteristic equation has roots A, =2 and A, =3.

Therefore, the characteristic equation is A* — 54 + 6 = 0. Matching the characteristic equation
with the general form given in equation (3), we see that ¢ —1=-5 and S=6.

Thus, the differential equation is t°y”" —4ty” + 6y = g(). We can determine the
nonhomogenous term g(¢) by insertlng the given particular solution y,(#) =In¢. Doing so, we
obtain £’y — 4ty + 6y, = g(t) or £*(—t>)—4#(t")+6Int= g(¢). Thus, g(f)=—5+6Inz.
Under the change of variable 7= ¢°, the differential equation transforms into

Y (z)-Y’(z)—2Y(z) = 2. The general solution is Y(z)=c,e* +c,e” 1= y=c/t" +c,t° —1.
Under the change of variable ¢= e, the differential equation #’y”’ —ty’ +y=1¢" transforms
into Y”(2)=2Y"(2) +Y(2) = (e*) " or Y (2)—2Y’(z) + Y (2) = e*. Solving this constant
coefficient equation using the techniques of Chapter 4, we find the general solution
Y(z)=ce” +c,ze" +0.25¢7°. Since z = Int, the solution can be converted to
y(t)=ct+c,tint+0.25¢".

Under the change of variable ¢ = e°, the differential equation transforms into

Y(2) +9Y(z) = 10e°.

The general solution is Y(z) = ¢,cos(3z) + ¢, sin(3z) +e* = y = ¢,cos(3In7) + c2 sin(3In¢) +¢.
Under the change of variable ¢= ¢, the differential equation #’y”’ —6y =10¢" —6 transforms
into Y”'(2)=Y’(2)—6Y(2) =10(e*) > =6 or Y”’(z)—Y’(z)— 6Y(z) = 10e>* — 6. Solving this
constant coefficient equation using the techniques of Chapter 4, we find the general solution
Y(z)=ce” +c,e* =2z +1. Since z=Int, the solution can be converted to

y(t)=ct’ +c,t” =27 Int+1.

Under the change of variable ¢ = e°, the differential equation transforms into

2. .77

1 5
Y’ (z)—5Y’(2) + 6Y(z) = 3z. Therefore, Y, = c,e™ +c,e™ , Y, =Az+B= Ez + 12

1 5 1 5
The general solution is Y (z) = ‘4 ezt —= P+t +—Int+—.
g (2)=ce” +c,e’ Sty =al vot o B

Under the change of variable ¢= ¢, the differential equation #*y”’ +8ty’ +10y = 36(t+ ™)
transforms into Y"’(z) + 7Y’(z) + 10Y(z) = 36(e* + ¢ ). Solving this constant coefficient
equation using the techniques of Chapter 4, we find the general solution

Y(z)=ce” +c,e +2e° +9e". Since z=Int, the solution can be converted to

y(O)=c it +c,t T +2t+917.

The complementary solution is y.(f)=c,t”' +c,t’. For a particular solution, use

y,(t)= At + B. Then, the general solution is y(f)=c,t”" +c,t’ —2¢t—2. Imposing the initial
conditions, we obtain y(l)=c¢,+c¢,—-2-2=1and y’(1)=—c, + 3¢, —2 = 3. Solving, we find

5 5
the solution of the initial value problem is y(#) = 5 1+ 5 t* —2t—2. The interval of existence

18 0<t<oo,

Consider the initial value problem #*y”’ — 51y’ +5y =10, y(1) = 4, y’(1) = 6. The complementary
solution is y.(f)= ¢, + c,t. By inspection, a particular solution is y,(f)=2. Thus, the general
solution is y(f) = ¢, + c,t +2 . Imposing the initial conditions, we obtain y(1)=¢, +c, +2=4

and y’(1) = 5¢, + ¢, = 6. Solving, we find the solution of the initial value problem is

y(t) = > 4+ t+2. The interval of existence is the entire 7-axis.
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32.  The complementary solution is y.(f)=c,t"' +c,t " In(—t) . For a particular solution, use
v,(t) = At+ B. Then, the general solution is y.(?) = clt"1 + czt_1 In(—7) +2¢+9 . Imposing the
initial conditions, we obtain y(-1)=-¢,—2+9=1and y'(-1)=—c, +¢c, +2=0.

Solving, we find the solution of the initial value problem is y(¢) = 61"+ 41 'In(—=£) +2¢+9.
The interval of existence is —eo < 1< 0.

33.  Consider the initial value problem #*y” + 31y’ + y=2¢",y(1)=-2,y’(1)=1. The
complementary solution is y.(f)=c,t”' +c,t ' Int. Using the change of variable = ¢ as in
Example 2, we find a particular solution y,(¢)=¢"'(Inf)*. Thus, the general solution is
y(t)= clt_1 + czt_1 Int+ ¢t '(In?)*. Imposing the initial conditions, we obtain y(I) = ¢,=-2 and
y'(1) =—c, +c, =1. Solving, we find the solution of the initial value problem is
y(£)==2t"—t"Int+¢"'(Inr)*. The interval of existence is the positive r-axis.
dy dyd; 1dy d* ldy 1d%1 1 (dzy dyj

4. == = =S

dt dzdt tdz dt t"dz tdz"t t'\dz dz
3 2 3 2 3 2
d—f = —%(d J dy) + %(d ); — d—);J = %[d ): — 3d—)2) + ZQJ Therefore,
dt t t'\dz7  dz '\ dz dz dz
&y &Y _dy [a’ZY de (dY
+p

t3y///+at2y//+ﬁt_y/+w:d_Z3_3d_Z2+2d_Z+a

— [+ =0
dz>  dz dj ¥

Z
3 2
:>d—§+(a—3)d f +([)’—oc+2)d—Y+yY:0.
dz dz dz

35.  Consider the differential equation 'y””” + 3t°y”’ — 3ty’ = 0. Assuming a solution of the form
y(t)= 7", we obtain the characteristic equation A’ =41 =0. The roots are
A,=0,4,=2and A,=-2.The general solution is y(f)=c, +c,t* +c,t ", t#0.

36. o=0, B=1, y=—1=Y"”-3Y” +3Y’—Y =0. The characteristic equation is
A =31 +31-1=(A-1)’=0. The roots are A, = A, = A, =1. Therefore,
Y =ce’ +c,ze" +ciz’et = y=ct+c,tint+cyt(Int)’.

37.  Consider the differential equation 'y””” + 3¢’y”’ +ty’ = 8¢ +12. Using the change of variable
t=e" as suggested in Exercise 34, the differential equation transforms to Y’”’(z) = 8¢> +12.
The general solution is Y(z) = ¢, + ¢,z +c5z” + e +27°. Using the fact that z = Int, the general
solution becomes y(#)=c, +c,Int+c,(In >+ +2(n7)’, t>0.

38. =6, f=7, y=1=Y"”+3Y"”+3Y"+Y =0. The characteristic equation is (1 + 1)’ =0.The
roots are A, = A, = A, =—1. Therefore,
Y.=ce +cze i teszle Y,=Az+B=Y=ce +cuze + czle +z-1
=y=ct ' +c,t ' Int+c,t”'(Inf)’ +Int—1.

Section 104

1. When put in standard form, the differential equation is y’’ +¢'(cost)y’ +¢ 'y =0.
Thus, #=0 is the only singular point. The coefficient functions are p(f) =t "'(cost) and

q(t)=1t". Clearly tp(t)=cost and ’q(f) = t are analytic. Therefore, =0 is a regular singular
point.



Chapter 10 Series Solutions of Linear Differential Equations * 289

sint A s
p(t) = — . Since tp(t) = ) =1 3 + T + ... and t°g(¢) =1 are both
analytrc at t=0, then t =0 is a regular singular point.
When put in standard form, the differential equation is y”’ +(t+1)"'y’ +(+*—=1)"'y =0. Thus,
t=1and r=-1 are singular points. The coefficient functions are p(¢)=(t+1)"' and
g(t)= (> =1)". Clearly (t—1D)p(t)=(t=1)(t+1)" and (t—1)°q() = (t—1)(¢+1)"" are analytic at
t=1. Therefore, =1 is a regular singular point. Similarly, #=—1 is also a regular singular
point.

p(H)=

t+1 1 1
2 = 2 and ¢(f)= ———.
( -1) (t=D(t+1) (t=D(t+1)

1 1
At t=-1, (t+)p(1) = — — and (t+1)’q(H) = — — as t — —1. Therefore, t=—1
(t+Dp(0) T~ 4 and (1+1)"g(1) - 4 as erefore

is a regular singular point.

1
At t=1, hm(t— Dp(t) = i m does not exist.. Therefore, =1 is an irregular singular
point.
When put in standard form, the differential equation is y’’ +¢>(1—cos#)y’ + 1>y =0. Thus,

t=0 is the only singular point. The coefficient functions are p(f)=t>(1—cos?) and g(f)=1".
3 5

t
Using a Maclaurin series, tp(f)=t"'(1—cost) = 7w + a is analytic at =0 as is
rqt)=1. Therefore, t=01isa regular singular pomt

p(t)=q()= | | Since neither #p(t) = | | nor t q(t) = | | are analytic at ¢ =0, there is an irregular

singular point at #=0.

When put in standard form, the differential equation is y”’ +(1—e')"'y’ +(1—¢")"'y=0. Thus,
t=0 is the only singular point. The coefficient functions are p(f)=(1-¢")™" and
q(t)=(1—e")"". Using a Maclaurin series,

£or B t 7 B
tp(H=tl-e)" = t[—t ———————— J = (—1 ———————— j is analytic at =0 as is £°q(?)..

21 3 21 3
Therefore, =0 is a regular singular point.
t+2 —1 1 1
p(t)= = and ¢(1) = Vi 2 7
2-H2+1n (-2 A4-1)y @=2)@t+2)
1 1
At t=-2,(t+2)p (t)—%—m and (1+2)°q(t) = (—2) %R as t — —2. Therefore,

t=-2 is a regular singular point.

1
At t=2, (t=2)p(t)=—1and (1—2)°q(¢) = — — as t — 2. Therefore, =2 is a regular

1
(t+2)* " 16

singular point.

When put in standard form, the differential equation is y”’ +(1— )"y’ +(1—1*)""ty=0.
Thus, t=1and ¢=—1 are singular points. The coefficient functions are p(#)=(1—¢*)"" and
q(t) = t(1—¢*)"'"". Neither of the functions (#+1)p(¢) or (t+1)*g(¢) is analytic at t=*1.
Therefore, =1 is an irregular singular point as is t=—1.
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10. p)=1, g(t)= £*. Since tp(t)=1t is analytic at =0, but tzq(t) = £ is not, there is an irregular
singular point at #=0.

11. For this problem, p(7) = (sin2¢)/ P(t). Since we know there are singular points at
t=0and r= %1, we know that P(7) must be zero at those points. Since #p(¢) is analytic at
t=0 and since (sin27)/¢ tends to 2 as ¢t — 0, it follows that #° is a factor of P(f). Similarly,
(t—1)p(¢) is not analytic at =1 and thus (#—1)* must be a factor of P(¢). The same argument
applies at =—1 and thus (¢+1)> must be a factor of P(¢).In summary,
P(t)=1(t=D*(t+ 1> =12 = 1)°.

12. P(t)=1.

13.  For this problem, p(f)=[tP()]"'. Since we know there are singular points at = %1, we know
that P(f) must be zero at t=*1. Since t’q(f)=1/1t, it follows [without any assumptions on
P(?)] that =0 is an irregular singular point. Since, (#—1) p(?) is not analytic at =1 it follows
that (#—1)* must be a factor of P(¢). The same argument applies at #=—1 and thus (¢+1)°
must be a factor of P(7).In summary, P(f)= (t—1)*(t+1)* = (£* = 1)°.

14(a). t=0 is aregular singular point if n=1.

14(b). =0 1s an irregular singular point if n =2.

15. For this problem, #p(f)=t/(sint) and #°g(f)=1/¢"">. Since t/(sin?) is analytic at t=0, it
follows that =0 is a regular singular point if n=0,1,2 and an irregular singular point if n > 2.

1 +1 1
16 (a). tp(t) = 5 and ’q(f) = tT - 5 as t — 0. Thus, =0 is a regular singular point.
16 (b). Substituting the series y = Zan 7*" into the differential equation, we obtain
n=0
2AA -1 =A+1layt" + D [2A +n)(A+n-1)=(A+n)+Da, +a, 1" =0. Therefore, the
n=1
indicial equation is F(1)=0 where F(A1)=2A>—31+1. The roots of the indicial equation are
1
A=—and 4,=1.
2
—a —a
16 (¢). a, = nl - n-l ,n=12,...
©. a, FA+n) 2A+n)’-3A+n)+1
For A, =1, the recurrence relation is a, = z_a”" ,n=12,.....
20+ n)" -30+n)+1
£

16(d). y()=aqy|t——+—=+--]|.

17 (a). For this problem, tp(f)=1 and #’q(t)= (t—1)/4 . Thus, t=0 is a regular singular point.

17 (b). Substituting the series y = Zan 7*" into the differential equation 4¢*y”" + 41y’ +(t—1)y =0,

n=0

we obtain (41° —1)a,t* + 2[(4(2, +n)* =1a, +a, ]t**" =0. Therefore, the indicial equation
n=l

is F(1)=0 where F(A1)=4A"—1.The roots of the indicial equation are
A=—1/2and A,=1/2.
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17 (¢). a

17 (d).
18 (a).

18 (b).

18 (¢). a

18 (d).

19 (a).
19 (b).

19 (¢). a
19 (d).

20 (a).
20 (b).

20 (¢). a

_ __an—l _ __an—l _
S FGan) a1 TR
For A =1/2, the recurrence relation is a, =—a, , /[4(n+ 05)°-1,n=12,.....
y(t) = a,[t"”* =1 /8) +(1/192)£" —--].

t 3
tp(t) = 6 and °q(t)= 6 Both limits exist as # — 0. Thus, #=0 is a regular singular point.

n

Substituting the series y = Zan r
n=0

[16A(A—1) + 3la,t" + D [16(A +n)(A+n—1)+3)a, +(A+n—1)a, 17*"" =0. Therefore, the

n=l

indicial equation is F(4) =0 where F(A1)=161>—161 + 3. The roots of the indicial equation

into the differential equation, we obtain

1 3
are 4, =7 and lzzz.
_ -A+n-Da,,  —-(A+n-Da,_ n=12....

n FA+n)  16(A+n)A+n—1)+3"
~(3/4+n-1a,

163/4+m)3/4+n—1+3""

g higeeegen

3 L
For A, = 2 the recurrence relation is a, =

7

ER A 7l‘]‘Tl
y(t)=a0[t4——+ +~--:|,t>0.

32 10240
For this problem, tp(f)=1 and £’q(f)=t—9. Thus, t=0 is a regular singular point.

n

Substituting the series y = Zan /*" into the differential equation 7*y”" + 1y’ +(t—9)y =0, we

n=0

obtain (1> — 9)a,t* + Z[((/l +n)*=9a, +a, ]7**" =0. Therefore, the indicial equation is
n=l1

F(A)=0 where F(A)=2>-9. The roots of the indicial equation are A, =—3 and A, = 3.
_ "% TA n=12
" F(A+n) (A+n)’-9 7777
For A =3, the recurrence relation is a, =—a, , /[(n+3)*=9],n=1,2,.....
y(t) = a,[t’ — A/ Dt +A/112) —---].
tp(t)=t+2 and £°q(f)=—t. Both limits exist as t — 0. Thus, =0 is a regular singular point.

n

Substituting the series y = Zan r
n=0

[AA=1)+24)a, " + 2{[(& +n+D)A+n)+2(A+n+1D]a
n=0
Therefore, the indicial equation is F(1) =0 where F(1)= A’ + 4. The roots of the indicial
equation are 4, =—land 4,=0.
—-A+n-1
n+l = ()‘ Z )an N 2071, 2’
A+n+2)A+n+1)

into the differential equation, we obtain

+(A+n-1a 3" =0.

n+l

—(n-1a,

—" - n=0,12,...,..
n+2)(n+1)

For A, =0, the recurrence relation is a, =
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t
20 (d). y(n= ao[l + E}
21 (a). For this problem, tp(f)= 3 and #’q(t)=2t+1. Thus, =0 is a regular singular point.
21 (b). Substituting the series y = Zan 7*" into the differential equation 1’y”" + 3ty + (2t +1)y =0,
n=0
we obtain (A’ + 24 + Dayt* + O [(A +n)* +2(A +n) +1)a, +2a, ,1¢*"" = 0. Therefore, the
n=1
indicial equation is F(1) =0 where F(1)=A*+2A +1. The roots of the indicial equation are
A=A,=-1.
-2 -2
21(c). @, =——nl_— Dol n=1,2,...
F(A+n) ((A+n)+1)
For A =-1, the recurrence relation is a, =—2a,_, /n*,n=12,....
21 (d). y()=a [t —2+1t—-].
22 (a). Both limits exist as t — 0. Thus, #=0 is a regular singular point.
22 (b). Substituting the series y = Zan 7*" into the differential equation, we obtain
n=0
[AA=D=A=3layt + D {[(A+n)*=2(A+n)-3)la, + (A +n—1Da, }t**" =0. Therefore, the
n=l1
indicial equation is F(4) =0 where F(A1)=A*—24— 3. The roots of the indicial equation are
A =-land A4,=3.
-A+n-1 -A+n-1
22 (¢). a, = A+n=Da,, (’12 na. g
F(A+n) A+n)" =2(A+n)-3
—(n+2
For A, =3, the recurrence relation is a, = M, n=12,...,.
nn+4)
3t P
22(d). y(h=ay| ' ——+—+|
(d). () o|: s 13 }
23 (a). For this problem, tp(f)=t—2 and t’q(f)= t. Thus, =0 is a regular singular point.
23 (b). Substituting the series y = Zan /*" into the differential equation ry”’ +(t—2)y’ +y=0, we
n=0
obtain (X’ = 30)a,* ™ + D (A +n+ DA +n-2)a, +a, 17" =0. Therefore, the indicial
n=0
equation is F(1) =0 where F(1)=A*—31. The roots of the indicial equation are
A, =0and A,=3.
-A+n+1 -A+n+1 -
23 (C)' anH = (l . )a” = (l . )a” = a” = 071, 27 oo
F(A+n) A+n+DA+n-2) A+n-2)
For A =3, the recurrence relation is a, =—a, ,/(n+1),n=0,1,.....
23 (d). y()=a,[t’ —t* +(1/2)t —---].
2
24 (a). tp(t)=— s’ —2ast—0 and £’g(t)=2+t—2ast—0.Thus, =0 is a regular singular

point.
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24 (b). 1’y =2sinty’ + 2+ 1)y = [2,(1 —~Da,t* +(A+DAg " + (A +2)(A +Da,t* ™ +-- ~]
3
—2[r— % + ...}[Moz“ +A+Dart + A +2)ar +- ]+ 2+ 0]att +aft + a7 + .. ]=0.
For 7': A(A—1a, - 2Aa, +2a,= (A’ =31 +2)a,= (A—1)(A-2)a, =
For /*": M(A+1)a, —2(A+1)a, +2a, +a0 [(A+1)(A—-2)+2]a, +a, _o.

For /"1 (A+2)(A+1)a,—2(A+2)a, +— M +2a,+a, =0.

Therefore, the indicial equation is F(A) = (/l 1)(A—=2)=0. The roots of the indicial equation
are A, =land A,=2.

£
24 (c). y(O=a)lt’ —————-- ]
25 (a). For this problem, tp(f) = 4 and t’q(t) = te'. Thus, =0 is a regular singular point.

25 (b). Given the series y = Zant’“” ,we have 1y’ = A(A—Da,/* ™ + (A +DAat* +
n=0
~4y" = da,l' " + (A +Dat* +---, and
=[1+t+(1/2)f +- ][aot + aW 1= a,t* +(a, + 1)t

Therefore, substituting the series into the differential equation 7y’ — 4 y’ +e'y =0, we obtain
AA=5)ayt* ™" +[(A+1)(A—4)+a,]t* +---=0. Therefore, the indicial equation is > —51=0.
The roots of the indicial equation are A, =0 and A,=5.

25 (c). y(t)=a,[t’ —(1/6)t°—(5/84)t" —--]

l+1

2

26 (a). tp(t) = —,L ——last—0 and ’q(¢) = — 0 ast—0.Thus, £=0 is a regular singular

Sin ¢ sin ¢
point.
26 (b). (sint)y”’ —y +y=
3 5
[r— % + % . }[/m “Day " + (A + DAa ™ + A+ DA+ Dyt + (A + A+ 2)ar " +-]
At + A+ Dat* + (/l +2)a, "+ |+ at +artt + a4 =0
For /"1 AMA—1Da,—Aa,= (A —21)a, = M(A—2)a, =0

For *: (A +1a, — (l +1)a1 +a,=(4 +1)(/1 Da,+a,=0.

1
For /":(A+2)(A+1)a, +(A+2)a, - gl(l —Da, +a,=A+2)a, +a - gﬂ,(/l -Da,=0
Therefore, the indicial equation is F(A) = A(A—2)=0. The roots of the indicial equation are

A, =0and A,=2.
£ #
26 t f——+—+
(©. y(@)=al Y -]
27 (a). For this problem, tp(f)=t/(2—2¢") and t°q(t)=1" /(1—e'). Thus, t=0 is a regular singular
point.

27 (b). Given the series y = Zan *", we have

n=0
(-e")y” =-AA—-Da,/' '[-0.5A4(A—Da, — (A +DAa]t* +---,
0.5y = O.S[Za()t’l_1 +(A+ l)alt’l 4]
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Therefore, substituting the series into the differential equation (1—e")y”” +(1/2)y"+y=0, we
obtain —A(A—1.5)a,t* " +[~(A +1)(A—0.5)a, +0.5(-A* + A +2)a,]t* +---=0. Therefore, the
indicial equation is A*—1.54 =0. The roots of the indicial equation are A, =0 and A,=1.5.

27 (¢). (0= ap[r" +(1/2)r"* = (17/96)t" +--]

Section 10.5

1 (a).

1 (b).

1 (c).
1 (d).

1 (e).

2 (b).

2 (c).

2 (d).

2 (e).
3 (a).

3 (b).

3 (c).
3 (d).

3 (e).

When put in standard form, the differential equation is y”’ —(2£)"'(1+#)y’ +1¢'y=0.
Therefore, =0 is a regular singular point.

n+i

Substituting the series y = Eant
n=0

QN - 3/1)(101‘H + Z[(l +n+1)Q2MA+n)-1a
n=0

Therefore, the exponents at the singularity are A, =0 and 1,=1.5.

The recurrence relationis a,,, =[(A +n—-2)a,]/[(A+n+1)Q2A+2n-1)], n=0,1,....

For A, =0, y = a,[1+2¢—¢’] is a polynomial solution.

For A,=3/2, y=a,[t’* = (1/10)£"* = (1/280)t"* —---].

Note that #p(¢) and #°q(¢) are analytic everywhere. Thus, see equations (18)-(21), the second

series found in part (d) converges for 0 < z.
Substituting the series into the differential equation, we obtain

into the differential equation, we obtain

—(A+n-2)a,]t"" =0.

n+l

n+l

[2AA=1) +5A]a, " +[24A + D) + 54 + D]ar* + D [2(A+n+ DA +n+5/2)a,,, +3a, 11"
n=l1
=0. Therefore, F(1)=2A(A+3/2)= A, = —%, A, =0.
The recurrence relation is a,,, = —34,., ,n=12,...and (A+1)2A+5)a, =0
2+n+D(A+n+5/2)

3
For )’1 :—5, y= ao[t_3/2_(3/2)t1/2 +(9/40)l5/2 +.“]'

For A,=0, y=a,[1-(3/14) +(9/616)t* —---].

The series converges for 0 < 7.

When put in standard form, the differential equation is y”’ —(3¢)"'y’ + (3°) '(1+ 1)y =0.
Therefore, =0 is a regular singular point.

n+i

Substituting the series y = Eant
n=0

B =4+ Dayt" + D ABA+m)A+n-1)=A-n+1la, +a, }t"" =0.

n=1
Therefore, the exponents at the singularity are A, =1/3 and 4, =1.
The recurrence relationis a, =—a, ,/[3(A+n)A+n—-1)—-A-n+1], n=1,2,....
For A, =1/3, y=a,[t"” - " +(1/8)t"" +--].
For A, =1, y=a,[t—(1/5) +(1/80)t +---].
Note that #p(¢) and #°q(¢) are analytic everywhere. Thus, see equations (18)-(21), the series
found in part (d) converge for 0 < 7.

into the differential equation, we obtain
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4 (b). Substituting the series into the differential equation, we obtain

[6AA—1)+ A +1]ayt* + D AI6(A +n)A +n—1)+(A+n)+1la, —a,  }¢"* =0. Therefore,
n=l1

F(/l):6),2—5/1+1:>11:%, /12:%

G =12,

6A+n)A+n-D+A+m+1 "
4 (d). For A, =%, y=a,[t"” +1/5" +1/110)t"° +---].

4 (c). The recurrence relation is a, =

1
For 4,=3.y= ap[1"? + U/ +(1/182)17 +--1].

4 (e). The series converges for 0 < t.
5(a). When put in standard form, the differential equation is y” —5¢™'y’ +1>(9+ )y =0.
Therefore, =0 is a regular singular point.

5 (b). Substituting the series y = Zan "** into the differential equation, we obtain
n=0

(X =64 +9a,t* +[(A+DA—5A+1)+9]a +

N AA+m)A+n-1)=5A+n)+9]a, +a, }"" =0
n=2
Therefore, the exponents at the singularity are A, = A, = 3.
5(c). The recurrence relationis a, =—a, ,/(A+n— 3, n=2,3,....
5(d). For A, =3, y=aqa[t' =1/ +(1/64)t" +--].
5 (e). Note that tp(f) and t°g(?) are analytic everywhere. Thus, see equations (18)-(21), the series
found in part (d) converges for 0 < 7.
6 (b). Substituting the series into the differential equation, we obtain

[4AA -1 +8A+1]a,* + D {[4(A+n)* +4(A +n) +1la, - 2a, , } "™ = 0. Therefore,
n=l1

1
FA =42 +41+1= A, =12=—5.
2
6 (c). The recurrence relation is a, = #2, n=12,...
QA +n)+1)

1
6 (d). For A, = — )= a [t + 1/ 2 +1/8)F +--1].

6 (e). The series converges for 0 < ¢.
7 (a). When put in standard form, the differential equation is y”’ —2¢"'y’ + (2 +¢)y = 0. Therefore,
t=0 is a regular singular point.

7 (b). Substituting the series y = Zan "** into the differential equation, we obtain
n=0

(X =34 +2)a)* + Y A[(A+n)=3A+n)+2la, +a, }1"" =0,
n=l1
Therefore, the exponents at the singularity are A, =1 and A4, =2.
7 (¢). The recurrence relationis a, =—a, ,/[A+n—-DA+n-2)], n=1,2,....

7(d). For A, =2, y=aqa,[t’—1/2)F +(1/12)t* +---].
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7 (e).

8 (b).

8 (¢).

8 (d).
8 (e).
9 (a).

9 (b).

9 (c).
9 (d).
9 (e).

10 (b).

10 (c).

10 (d).
10 (e).
11 (a).

11 (b).

11 (c).
11 (d).
11 (e).

Note that p() and #’q(t) are analytic everywhere. Thus, see equations (18)-(21), the series
found in part (d) converges for 0 < 7.
Substituting the series into the differential equation, we obtain

[AA-1) +4A]a,* +[AA +1) +4A+ D] + D {[[A +n+ DA +n+4da,, —2a, } " =0
n=l1

Therefore, F(A)=A"+3A= A, =-3, 1,=0.

The recurrence relation is a,,, = Gin +21;l(";+ nid) n=12,..and A+ DA +4)q, =0

For A,=0, y=a,[1+(1/5¢ +(1/70)t* +---].
The series converges for 0 < 7.
When put in standard form, the differential equation is y’* +¢ 'y’ — (1 + )y = 0. Therefore,

t=0 is a regular singular point.
Substituting the series y = Zan "
n=0

(X =Dayt* +[(A+1)> =1]a + i{[(a +n) —1la, —a, 31" =0.

into the differential equation, we obtain

Therefore, the exponents at the singularity are A, =—1 and 4, =1.

The recurrence relation is a, =a, , /[(A+ n)’—-1], n=2,3,....

For A, =1, y=a,[t+(1/8)f +(1/192)t* +---].

Note that #p(¢) and #°q(¢) are analytic everywhere. Thus, see equations (18)-(21), the series
found in part (d) converges for 0 < 7.

Substituting the series into the differential equation, we obtain

[AA -1 +5A +4]at" +[AA+1)+5A+1)+4]a "

+Y {lA+m)A+n+4)+4la, —a, ,} "™ =0. Therefore, F(A)= A +4A+4 = 4 =1, =-2.

n=2

Gy #= 23 and 4D+ 5)a, =0
n

For A==2, y=ay[t”+(1/4)+(1/64)t +---].

The series converges for 0 < 7.

When put in standard form, the differential equation is y”’ +¢ 'y’ — (16 + 1)y = 0. Therefore,
t=0 is a regular singular point.

The recurrence relation is a, =

n+i

Substituting the series y = Eant into the differential equation, we obtain

n=0

(A =16)a,t* + i{[(ﬂ +n)’=16la, —a, }t"" =0.

n=1

Therefore, the exponents at the singularity are A, =—4 and 1, =4.

The recurrence relation is a, =a, , /[(A+n)*=16], n=1,2,....

For A, =4, y=a,[t' +(1/9)£ +(1/180)¢° +---].

Note that #p(¢) and #°q(¢) are analytic everywhere. Thus, see equations (18)-(21), the series
found in part (d) converges for 0 < 7.
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12 (b).

12 (©).

12 (d)

12 (o).
13 (a).

13 (b).

14 (a).

14 (b).

15 (a).

16 (a).

16 (b).

Substituting the series into the differential equation, we obtain
[82° =24 ~1]ayt* + Y {[BA+ 1)’ =2(A + n)~la, +a,_,} " = 0. Therefore,
n=l1

FO)=822— 24— 1= A =~ 2, =%
4 2

el =12

GA+m+D2Ar+nm)—1" "

The recurrence relation is a, =

1
. For A, === a, [t =1 /2)e" +(1/40)¢7" +--1].

1
For 4,=2.y= a [ = (1/14)6 +(1/616)£" +--]..

The series converges for 0 < 7.

When put in standard form, the differential equation is

y/ ="' +1)7'A+ 1)y +1' (£ +1)"'y =0. Therefore, =0 is a regular singular point and all
other points are ordinary points.
Substituting the series y = Zan "
n=0

i(mn—l)(mn—z)aHtM + i(mnﬂ)(mn—l)a

n=1 n=-1

into the differential equation, we obtain

n+i
n+l t

Y A+n-Da, "™ =0
n=0
Therefore, indicial equation is A* —24 =0. The exponents at the singularity are A, =0 and
A, =2.

in 3¢
tp(t) = S —3ast— 0 and t’q(f)=cost — 1 ast—0.Thus, =0 is a regular singular
point.
2..m (3t)3 ’ ﬁ —
'y +(3t— 3l —l—...jy +(1—2!+... y=0.

Therefore, indicial equation (A +1)>’=0= A, =1, =-1.
When put in standard form, the differential equation is y”’ —(* —4) 7y  + (£’ = 4) 7y =0.
Therefore, t=2 and ¢=-2 are irregular singular points. All other points are ordinary points.

1
tp(t) = - —last—0 and ’g(f)=— T
(-0 (-1

singular point.
Neither (1—1)p(¢) nor (¢-1)*g(¢) are analytical at t=1,so0 ¢t=1is an irregular singular point.

——last—0.Thus, =0 is aregular

1 1 1 1 1
1-0)=l——t——F+..= ¢ 1——t——t2+...) "+t —y=0.
(I-1) 3175 ( 3179 Yi+ty' =y

Therefore, indicial equation A’ ~1=0= 4, =-1, A,=1.
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17 (a).

17 (b).

17 (¢).
18 (a).

18 (b).

18 (¢).

18 (d).

19 (a).

19 (b).

19 (c).

20.

We need to substitute the series y = 2 a,(t— 1)"** into the differential equation. Before doing
n=0

so, let us make the change of variable 7=7—1. We now substitute the series y = Z anl'”“1 into
n=0

the transformed equation, —7(7 +2)y”" —2(t + 1)y’ + (et + 1)y = 0, obtaining

2Xa,7 ™ + Y {[~(A+n)’ = (A +n) +a(e+D]a, - 24 +n+1)’a, 7" =0,
n=0
Thus, the exponents at the singularity are 4, =4, =0.

For A =0, the recurrence relation is a,,, =[-n’—n+a(a+1]a, /[2(n+1)*].
Thus, y(#) = ao[l + e +D (t—-D+ oot 1)[_126+ oo+ D] (t—1)° +}

When a=1, y()=a,t.
(1= ===D(t+D)=—-D((t=1)+2), t=(t—1)+1.Let T=1—1. We now substitute the
series into the transformed equation, —7(7 +2)y”’ — (t +1)y’ + &’y = 0, obtaining

—[22(A-1) + A]a,T* +2{ RA+n+DA+n)+(A+n+1D]a

n=0

+[-A+n)* +a’la ™",

n+l

1
Thus, F(A)=2A"— A =0 and the exponents at the singularity are A, =0 and A, = 5
o [-n* +a]a,
For A, =0, the recurrence relationis a,,, = ————.
(n+1)2n+1)
2002 —1
and (1) = ao[l ra (-1 + D -y +}

|-m+1/27 + o’ ]a,
T (n+3/2)2n+2)

(a” - —4)(t_1)§+..} t—1>0.

1
For A, = 5 the recurrence relation is a

and y(1) = ao[(t—l)'z %

t—1)° +
(z=1) 30

| ~(n+A)*+a’ | 1
TSt A+D@n+2A+1D)| 2

By the Ratio Test, lim| 2+

n—oo

an

= convergence for l|‘L'| <lor|t-1<2 ~.R=2.

1 1
When o = 5 one solution (with A = —) reduces to y(f)=aq,(t—1)*.

n+i

Substituting the series y = Eant
n=0

Ya ™ + Y {A+n+1)a,, ~A+n-aa, "™ =0.
n=0

into the differential equation, we obtain

The recurrence relation is a,,, = (n—®)a, /(n+1)*. For =5, the solution is

y(t) = a,[1-5t+ 56— (5/3)F +(5/24)¢* — (1/120)£°].

y(#) is neither an even nor an odd function. Theorem 10.2 does not apply.

The indicial equation is AL —1)+ oA+ B=A+(@—-1)A+=0.Since A, =1, A, =2, then
A+@-DA+B=A-1D)A-2)=AV-31+2=a=-2, B=2.
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21.

22.

23.

24 (a).
24 (b).

24 (c).

The indicial equation is A* + (ot—1)A + 8 =0.In order to have A, =1+2i and A, =1-2i, we
need (A—2A)A-21,)=A" -4, +A)A+ A A, =2’ =21 +5. Therefore, «=—1and f=5.
The indicial equation is A(A —1)+aAd +2=0 has A =2 as a root. Therefore,
2()+20+2=0= o =-2. Therefore,

£y =2ty + 2+ By = I AA+m)A+n-1)=2A+n)+2}a, "™ + B a, " =0

n=0 n=l1

= [AA-1) =21 +2]a,t* + i{[(z +n)’ =3(A+n)+2la, +Pa,_ 3" =0.

n=1
For A =2, the recurrence relation becomes [(n +2)°=3(n+2)+ 2]an +pBa, =0, n=12,...
Therefore, [n” +4n+4-3n-6+2|a, + fa, = (n’ +n)a, + Pa, , =0= f=—4.
The indicial equation is A° = 0 and the corresponding recurrence relation is
(n+1)’a,,, +ona, + Pa,  =0.Therefore, x=—1and f=3.
p(?) 1s odd and ¢(7) is even, so we expect even and odd solutions.
The indicial equation is AL—1)+A-0*=00or FA)=A" -0 = A, =-v, 1,=0.
For the Bessel equation, A(A—1)+A—-0v*=0o0r F1)= A" -v".
The indicial equation and exponents at the singularity are the same for both equations.

(A =V )a,t* +[(A+1)° =0 g + i{[(/l +n)=v%la,—a, 31" =0

n=2
a
=q =—"2 — n=23,..
" (A+n) -0’
b _a — : : [13 2"
For Bessel’s equation, a, = ——22—— n=2,3,... The minus sign creates a “term-to-term
q " A+ n) -0 g

change of sign in the series solution. This sign alteration is not present in the series solutions of
the modified Bessel equation.



