Chapter 10 Series Solutions of Linear Differential Equations

Section 10.1

Consider the power series $\sum_{n=0}^{\infty} \frac{t^n}{2^n}$. Applying the ratio test at an arbitrary value of t, $t \neq 0$, we 1. obtain $\lim_{n \to \infty} \left| \frac{2^n t^{n+1}}{2^{n+1} t^n} \right| = \lim_{n \to \infty} \left| \frac{t}{2} \right| = \left| \frac{t}{2} \right|$. The limiting ratio is less than 1 if . Therefore, the radius of convergence is R = 2. $\lim_{n \to \infty} \left| \frac{t^{n+1} n^2}{t^n (n+1)^2} \right| = \lim_{n \to \infty} \left| \frac{t}{(1+\frac{1}{2})^2} \right| = |t|.$ Therefore, the radius of convergence is R = 1. 2. Consider the power series $\sum_{n=0}^{\infty} (t-2)^n$. Applying the ratio test at an arbitrary value of $t, t \neq 2$, 3. we obtain $\lim_{n \to \infty} \left| \frac{(t-2)^{n+1}}{(t-2)^n} \right| = \lim_{n \to \infty} |t-2| = |t-2|$. The limiting ratio is less than 1 if |t-2| < 1. Therefore, the radius of convergence is R = 1. $\lim_{n \to \infty} \left| \frac{(3t-1)^{n+1}}{(3t-1)^n} \right| = \left| 3t-1 \right| < 1 \implies -1 < 3t-1 < 1 \implies 0 < t < \frac{2}{3}.$ Therefore, the radius of 4. convergence is $R = \frac{1}{3}$. Consider the power series $\sum_{n=0}^{\infty} \frac{(t-1)^n}{n!}$. Applying the ratio test at an arbitrary value of t, $t \neq 1$, we 5. obtain $\lim_{n \to \infty} \left| \frac{n!(t-1)^{n+1}}{(n+1)!(t-1)^n} \right| = \lim_{n \to \infty} \left| \frac{t-1}{n+1} \right| = 0$. The limiting ratio is less than 1 for all $t, t \neq 1$. Therefore, the radius of convergence is $R = \infty$. $\lim_{n \to \infty} \left| \frac{(n+1)!(t-1)^{n+1}}{n!(t-1)^n} \right| = \lim_{n \to \infty} \left| (n+1)(t-1) \right| = \infty, \ t \neq 1.$ Therefore, the radius of convergence is 6. R = 0Consider the power series $\sum_{n=1}^{\infty} \frac{(-1)^n t^n}{n}$. Applying the ratio test at an arbitrary value of $t, t \neq 0$, 7. we obtain $\lim_{n \to \infty} \left| \frac{nt^{n+1}}{(n+1)t^n} \right| = \lim_{n \to \infty} \left| \frac{nt}{n+1} \right| = |t|$. The limiting ratio is less than 1 if |t| < 1. Therefore, the radius of convergence is R = 1.

8. $\lim_{n \to \infty} \left| \frac{(-1)^{n+1} (t-3)^{n+1} 4^n}{(-1)^n (t-3)^n 4^{n+1}} \right| = \left| \frac{t-3}{4} \right| < 1 \Rightarrow -4 < t-3 < 4 \Rightarrow -1 < t < 7.$ Therefore, the radius of convergence is R = 4.

9. Consider the power series
$$\sum_{n=1}^{\infty} (\ln n)(t+2)^n$$
. Applying the ratio test at an arbitrary value of t,
 $t \neq -2$, we obtain

$$\lim_{n \to \infty} \left| \frac{(\ln(n+1))(t+2)^{n+1}}{(\ln n)(t+2)^n} \right| = \lim_{n \to \infty} \left| \frac{(\ln(n+1))(t+2)}{\ln n} \right| = |t+2| \lim_{n \to \infty} \frac{\ln(n+1)}{\ln n} = |t+2|$$
. (The last limit
can be found using L'Hôpital's Rule.) The limiting ratio is less than 1 if $|t+2| < 1$. Therefore,
the radius of convergence is $R = 1$.
10.
$$\lim_{n \to \infty} \left| \frac{(n+1)^3(t-1)^{n+1}}{n^3(t-1)^n} \right| = |t-1| < 1 \Rightarrow -1 < t - 1 < 1 \Rightarrow 0 < t < 2$$
. Therefore, the radius of
convergence is $R = 1$.
11. Consider the power series
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}(t-4)^n}{2^n}$$
. Applying the ratio test at an arbitrary value of t,
 $t \neq 4$, we obtain
$$\lim_{n \to \infty} \left| \frac{2^n \sqrt{n+1}(t-4)^{n+1}}{2^{n+1} \sqrt{n}(t-4)^n} \right| = \lim_{n \to \infty} \left| \frac{\sqrt{n+1}(t-4)}{2\sqrt{n}} \right| = \left| \frac{t-4}{2} \right|$$
. The limiting ratio is
less than 1 if $|t-4| < 2$. Therefore, the radius of convergence is $R = 2$.
12.
$$\lim_{n \to \infty} \left| \frac{(t-2)^{n+1} \arctan(n)}{(t-2)^n \arctan(n+1)} \right| = |t-2| < 1 \Rightarrow -1 < t -2 < 1 \Rightarrow 1 < t < 3 \left(\operatorname{recall} \lim_{n \to \infty} \operatorname{ration}(n) = \frac{\pi}{2} \right)$$
.
Therefore, the radius of convergence is $R = 1$.
13. Applying the ratio test, we see the power series for $f(t)$ and $g(t)$ both have radius of
convergence $R = 1$. Therefore, each series converges in the interval $-1 < t < 1$.
(a) $f(t) = 1 + t + t^2 + t^3 + t^4 + t^5 + \cdots$
(b) $f(t) + g(t) = 1 + 2t + 5t^2 + 10t^3 + 17t^4 + 26t^5 + \cdots$
(c) $f(t) - g(t) = 1 - 3t^2 - 8t^3 - 15t^4 - 24t^3 - \cdots$
(d) $f'(t) = 1 + 2t + 3t^2 + 4t^3 + 5t^4 + 6t^5 + \cdots$
(e) $f''(t) = 2 + 6t + 12t^2 + 20t^3 + 30t^4 + 42t^5 + \cdots$
(f) $f''(t) = 2 + 6t + 12t^2 + 20t^3 + 30t^4 + 42t^5 + \cdots$

- 14. Applying the ratio test, we see the power series for f(t) and g(t) both have radius of convergence R = 1. Therefore, each series converges in the interval -1 < t < 1.
 - (a) $f(t) = t + 2t^2 + 3t^3 + 4t^4 + 5t^5 + 6t^6 + \cdots$ $g(t) = -t + 2t^2 - 3t^3 + 4t^4 - 5t^5 + 6t^6 - \cdots$
 - (b) $f(t) + g(t) = 4t^2 + 8t^4 + 12t^6 + 16t^8 + 20t^{10} + \cdots$
 - (c) $f(t) g(t) = 2t + 6t^3 + 10t^5 + 14t^7 + 18t^9 + 22t^{11} + \cdots$
 - (d) $f'(t) = 1 + 4t + 9t^2 + 16t^3 + 25t^4 + 36t^5 + \cdots$
 - (e) $f''(t) = 4 + 18t + 48t^2 + 100t^3 + 180t^4 + 294t^5 + \cdots$

15. Applying the ratio test, we see the power series for f(t) has radius of convergence R = 1/2 while the series for g(t) has radius of convergence R = 1. Therefore, each series converges in the interval |t-1| < 1/2, or 1/2 < t < 3/2.

(a) $f(t) = 1 - 2(t-1) + 4(t-1)^2 - 8(t-1)^3 + 16(t-1)^4 - 32(t-1)^5 + \cdots$ $g(t) = 1 + (t-1) + (t-1)^2 + (t-1)^3 + (t-1)^4 + (t-1)^5 + \cdots$ (b) $f(t) + g(t) = 2 - (t-1) + 5(t-1)^2 - 7(t-1)^3 + 17(t-1)^4 - 31(t-1)^5 + \cdots$ (c) $f(t) - g(t) = -3(t-1) + 3(t-1)^2 - 9(t-1)^3 + 15(t-1)^4 - 33(t-1)^5 + \cdots$ (d) $f'(t) = -2 + 8(t-1) - 24(t-1)^2 + 64(t-1)^3 - 160(t-1)^4 + 384(t-1)^5 \cdots$ (e) $f''(t) = 8 - 48(t-1) + 192(t-1)^2 - 640(t-1)^3 + 1920(t-1)^4 - 5376(t-1)^5 \cdots$ 16. Applying the ratio test, we see the power series for f(t) is 1/2 and g(t) is 1. Therefore, $R = \frac{1}{2}$. (a) $f(t) = 1 + 2(t+1) + 4(t+1)^2 + 8(t+1)^3 + 16(t+1)^4 + 32(t+1)^5 + \cdots$ $g(t) = (t+1) + 2(t+1)^2 + 3(t+1)^3 + 4(t+1)^4 + 5(t+1)^5 + 6(t+1)^6 + \cdots$ (b) $f(t) + g(t) = 1 + 3(t+1) + 6(t+1)^2 + 11(t+1)^3 + 20(t+1)^4 + 37(t+1)^5 + \cdots$ (c) $f(t) - g(t) = 1 + (t+1) + 2(t+1)^2 + 5(t+1)^3 + 12(t+1)^4 + 27(t+1)^5 + \cdots$ (d) $f'(t) = 2 + 8(t+1) + 24(t+1)^2 + 64(t+1)^3 + 160(t+1)^4 + 384(t+1)^5 + \cdots$ (e) $f''(t) = 8 + 48(t+1) + 192(t+1)^2 + 640(t+1)^3 + 1920(t+1)^4 + 5376(t+1)^5 + \cdots$

- 17. Consider the power series $\sum_{n=0}^{\infty} 2^n t^{n+2}$. Make the change of index k = n+2. With this change, the lower limit of n = 0 transforms to k = 2 while the upper limit remains at ∞ . Thus, the power series can be rewritten as $\sum_{k=2}^{\infty} 2^{k-2} t^k$. Finally, changing to the original summation index, n, we obtain $\sum_{k=2}^{\infty} 2^{n-2} t^n$.
- 18. Make the change of index k = n + 3. The power series can be rewritten as $\sum_{k=3}^{\infty} (k-2)(k-1)t^k$. Finally, changing to the original summation index, n, we obtain $\sum_{n=3}^{\infty} (n-2)(n-1)t^n$.
- 19. Consider the power series $\sum_{n=0}^{\infty} a_n t^{n+2}$. Make the change of index k = n+2. With this change, the lower limit of n = 0 transforms to k = 2 while the upper limit remains at ∞ . Thus, the power series can be rewritten as $\sum_{k=2}^{\infty} a_{k-2}t^k$. Finally, changing to the original summation index, n, we obtain $\sum_{n=2}^{\infty} a_{n-2}t^n$.
- 20. Make the change of index k = n 1. The power series can be rewritten as $\sum_{k=0}^{\infty} (k+1)a_{k+1}t^k$. Finally, changing to the original summation index, *n*, we obtain $\sum_{n=0}^{\infty} (n+1)a_{n+1}t^n$.

- Consider the power series $\sum_{n=2}^{\infty} n(n-1)a_n t^{n-2}$. Make the change of index k = n-2. With this 21. change, the lower limit of n = 2 transforms to k = 0 while the upper limit remains at ∞ . Thus, the power series can be rewritten as $\sum_{k=0}^{k} (k+2)(k+1)a_{k+2}t^k$. Finally, changing to the original summation index, *n*, we obtain $\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}t^n$.
- Make the change of index k = n + 3. The power series can be rewritten as $\sum_{k=2}^{\infty} (-1)^{k-3} a_{k-3} t^k$. 22. Finally, changing to the original summation index, *n*, we obtain $\sum_{n=2}^{\infty} (-1)^{n-3} a_{n-3} t^n$.
- Consider the power series $\sum_{n=0}^{\infty} (-1)^{n+1} (n+1) a_n t^{n+2}$. Make the change of index k = n+2. With 23. this change, the lower limit of n = 0 transforms to k = 2 while the upper limit remains at ∞ . Thus, the power series can be rewritten as $\sum_{k=2}^{\infty} (-1)^{k-1} (k-1) a_{k-2} t^k$. Finally, changing to the original summation index, *n*, we obtain $\sum_{n=2}^{\infty} (-1)^{n-1} (n-1) a_{n-2} t^n$.

24. Let
$$f(t) = t^2(t - \sin t)$$
. $t - \sin t = -\sum_{n=1}^{\infty} \frac{(-1)^n t^{2n+1}}{(2n+1)!}$. Therefore, $f(t) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} t^{2n+3}}{(2n+1)!}$.
$$\lim_{n \to \infty} \left| \frac{(-1)^{n+2} (2n+1)! (t)^{2n+5}}{(-1)^{n+1} (2n+3)! (t)^{2n+3}} \right| = 0$$
. Thus, the radius of convergence is $R = \infty$.

Let $f(t) = 1 - \cos 3t$. From the Maclaurin series for $\cos u$ we have $\cos u = \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n}}{(2n)!}$. 25. Therefore, $\cos 3t = 1 - \frac{9t^2}{2!} + \frac{81t^4}{4!} - \frac{729t^6}{6!} + \cdots$. Hence, $f(t) = \frac{9t^2}{2!} - \frac{81t^4}{4!} + \frac{729t^6}{6!} - \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(3t)^{2n}}{(2n)!}.$ We calculate the radius of convergence by

using the ratio test. For an arbitrary value of t, $t \neq 0$, we have $\lim_{n \to \infty} \left| \frac{(2n)!(3t)^{2n+2}}{(2n+2)!(3t)^{2n}} \right| = \lim_{n \to \infty} \left| \frac{9t^2}{(2n+2)(2n+1)} \right| = 0.$ Thus, the radius of convergence is $R = \infty$.

26. Let
$$f(t) = \frac{1}{1+2t} = \frac{1}{1-(-2t)}$$
. $\frac{1}{1-(-2t)} = \sum_{n=0}^{\infty} (-2t)^n = \sum_{n=0}^{\infty} (-2t)^n t^n$. $\lim_{n \to \infty} \left| \frac{(-2t)^{n-1}}{(-2t)^n} \right| = 2|t| < 1$.
Thus, the radius of convergence is $R = \frac{1}{2}$.

27. Let
$$f(t) = 1/(1-t^2)$$
. From the Maclaurin series for $1/(1-u)$ we have $\frac{1}{1-u} = \sum_{n=0}^{\infty} u^n$. Therefore,
 $\frac{1}{1-t^2} = 1+t^2+t^4+t^6+\cdots$. Hence, $f(t) = \sum_{n=0}^{\infty} t^{2n}$.

We calculate the radius of convergence by using the ratio test. For an arbitrary value of $t, t \neq 0$, we have $\lim_{n \to \infty} \left| \frac{t^{2n+2}}{t^{2n}} \right| = \lim_{n \to \infty} \left| t^2 \right| = t^2$. Thus, the radius of convergence is R = 1. 28 (a). $e^t = \sum_{n=0}^{\infty} \frac{t^n}{n!} = 1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \frac{t^4}{4!} + \frac{t^5}{5!} + \dots$ $e^{-t} = \sum_{n=0}^{\infty} \frac{(-t)^n}{n!} = 1 - t + \frac{t^2}{2!} - \frac{t^3}{3!} + \frac{t^4}{4!} - \frac{t^5}{5!} + \dots$ 28 (b). $\sinh(t) = \frac{1}{2} \left\{ \left(1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \frac{t^4}{4!} + \frac{t^5}{5!} + \dots \right) - \left(1 - t + \frac{t^2}{2!} - \frac{t^3}{3!} + \frac{t^4}{4!} - \frac{t^5}{5!} + \dots \right) \right\} = t + \frac{t^3}{3!} + \frac{t^5}{5!} + \dots$ $\cosh(t) = \frac{1}{2} \left\{ \left(1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \frac{t^4}{4!} + \frac{t^5}{5!} + \dots \right) + \left(1 - t + \frac{t^2}{2!} - \frac{t^3}{3!} + \frac{t^4}{4!} - \frac{t^5}{5!} + \dots \right) \right\} = 1 + \frac{t^2}{2!} + \frac{t^4}{4!} + \dots$

29 (a). Consider the differential equation $y'' - \omega^2 y = 0$ and assume there is solution of the form $y(t) = \sum_{n=0}^{\infty} a_n t^n$. Differentiating, we obtain $y'(t) = \sum_{n=1}^{\infty} na_n t^{n-1}$ and $y''(t) = \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2}$. Inserting these series into the differential equation, we have $\sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} - \omega^2 \sum_{n=0}^{\infty} a_n t^n = 0$. Making the change of index k = n-2 in the series for y''(t), we obtain $\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}t^n - \omega^2 \sum_{n=0}^{\infty} a_n t^n = 0$, or $\sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} - \omega^2 a_n]t^n = 0$. Equating the

coefficients to zero, we find the recurrence relation $a_{n+2} = \frac{\omega^2 a_n}{(n+2)(n+1)}, n = 0, 1, \dots$

29 (b). The recurrence relation in part (a) leads us to

$$a_{2} = \omega^{2} a_{0} / 2, \ a_{4} = \omega^{2} a_{2} / 12 = \omega^{4} a_{0} / 24, \ a_{6} = \omega^{2} a_{4} / 30 = \omega^{6} a_{0} / 720, \dots$$

$$a_{3} = \omega^{2} a_{1} / 6, \ a_{5} = \omega^{2} a_{3} / 20 = \omega^{4} a_{1} / 120, \ a_{7} = \omega^{2} a_{5} / 42 = \omega^{6} a_{1} / 5040, \dots$$
Thus, $y(t) = a_{0} [1 + \frac{(\omega t)^{2}}{2} + \frac{(\omega t)^{4}}{24} + \frac{(\omega t)^{6}}{720} + \dots] + \frac{a_{1}}{\omega} [\omega t + \frac{(\omega t)^{3}}{6} + \frac{(\omega t)^{5}}{120} + \frac{(\omega t)^{7}}{5040} + \dots].$
By Exercise 28, $y_{1}(t) = \cosh \omega t$ and $y_{2}(t) = \sinh \omega t$.

30 (a).
$$y(t) = \int_0^t \sum_{n=1}^\infty n\lambda^{n-1} d\lambda + C = \sum_{n=1}^\infty t^n + C$$
, $y(0) = C = 1 \Rightarrow y(t) = 1 + \sum_{n=1}^\infty t^n = \sum_{n=0}^\infty t^n$.
30 (b). $R = 1$

30 (b). R = 1.

30 (c). $y(t) = \frac{1}{1-t}$.

31 (a). Consider the function given by $y'(t) = \sum_{n=0}^{\infty} \frac{(t-1)^n}{n!}$, y(1) = 1. Integrating the series termwise, we obtain $y(t) = C + \sum_{n=0}^{\infty} \frac{(t-1)^{n+1}}{(n+1)!}$. Imposing the condition y(1) = 1, it follows that C = 1. Adjusting the index of summation, we can write $y(t) = 1 + \sum_{n=1}^{\infty} \frac{(t-1)^n}{n!} = \sum_{n=0}^{\infty} \frac{(t-1)^n}{n!}$.

31 (b). Applying the ratio test,
$$\lim_{n \to \infty} \left| \frac{n!(t-1)^{n+1}}{(n+1)!(t-1)^n} \right| = \lim_{n \to \infty} \left| \frac{t-1}{n+1} \right| = 0.$$
 Therefore, the radius of convergence is $R = \infty$.
31 (c). From the power series (7a), we see that $y(t) = e^{t-1}$.
32 (a). $y'(t) = -1 + \int_0^t \sum_{n=0}^{\infty} (-1)^n \frac{\lambda^n}{n!} d\lambda = -1 + \sum_{n=0}^{\infty} (-1)^n \frac{t^{n+1}}{(n+1)!} = -1 + \sum_{n=0}^{\infty} (-1)^{n+1} \frac{t^{n+1}}{(n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{t^n}{n!} \right|$
 $y' = -\sum_{n=0}^{\infty} (-1)^n \frac{t^n}{n!}$. Then, $y(t) = -\sum_{n=0}^{\infty} (-1)^n \frac{t^{n+1}}{(n+1)!} + 1 = 1 + \sum_{n=0}^{\infty} (-1)^{n+1} \frac{t^{n+1}}{(n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{t^n}{n!}$.
32 (b). $R = \infty$.
32 (c). $y(t) = e^{-t}$.
33 (a). Consider the function given by $y'(t) = \sum_{n=2}^{\infty} (-1)^n \frac{(t-1)^n}{n!}$, $y(1) = 0$. Integrating the series termwise, we obtain $y(t) = C + \sum_{n=2}^{\infty} (-1)^n \frac{(t-1)^{n+1}}{(n+1)!}$. Imposing the condition $y(1) = 0$, it follows that $C = 0$. Adjusting the index of summation, we can write $y(t) = \sum_{n=3}^{\infty} (-1)^{n+1} \frac{(t-1)^n}{n!} = -\sum_{n=3}^{\infty} (-1)^n \frac{(t-1)^n}{n!}$.
33 (b). Applying the ratio test, $\lim_{n \to \infty} \left| \frac{(-1)^{n+1}n!(t-1)^{n+1}}{(-1)^n(n+1)!(t-1)^n} \right| = \lim_{n \to \infty} \left| \frac{t-1}{n+1} \right| = 0$. Therefore, the radius of convergence is $R = \infty$.
33 (c). From the power series (7a), we see that $\sum_{n=0}^{\infty} (-1)^n \frac{(t-1)^n}{n!} = e^{-t(t-1)}$. Thus, $1 - \frac{(t-1)}{1!} + \frac{(t-1)^2}{2!} + \sum_{n=3}^{\infty} (-1)^n \frac{t^{2n+1}}{n!} = e^{-t(t-1)}$. Or, using the results of part (a), $1 - \frac{(t-1)!}{1!} + \frac{(t-1)^2}{2!} - e^{-t(t-1)} = y(t)$.
34 (a). $y(t) = \int_0^t \sum_{n=0}^{\infty} (-1)^n \frac{t^{2n+1}}{2n+1}$.
34 (b). $\lim_{n=\infty} \left| \frac{(-1)^{n+1}t^{2n+3}(2n+1)}{(-1)^n t^{2n+3}(2n+3)} \right| = |t^2| < 1 \Rightarrow R = 1$.
34 (c). $y(t) = \tan^{-1}(t)$.
35 (a). Consider the function $y(t)$ where $\int_0^t y(s) ds = \sum_{n=1}^{\infty} \frac{t^n}{n!}$. Differentiating both sides, we obtain $y(t) = \sum_{n=1}^{\infty} t^{n-1}$. Adjusting the index of summation, we can write $y(t) = \sum_{n=0}^{\infty} t^n$.
35 (b). Applying the ratio test, $\lim_{n\to\infty} \left| \frac{t^{n+1}}{t^n} \right| = |t|$. Therefore, the radius of convergence is $R = 1$.

35 (c). From the power series (7d), we see that $y(t) = \sum_{n=0}^{\infty} t^n = \frac{1}{1-t}$.

36. Assume there is solution of the form $y(t) = \sum_{n=0}^{\infty} a_n t^n$. Differentiating, we obtain

$$y'(t) = \sum_{n=1}^{\infty} na_n t^{n-1}$$
 and $y''(t) = \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}t^n$, $ty' = \sum_{n=0}^{\infty} na_n t^n$.

Therefore, $\sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} - (n+1)a_n]t^n = 0$. Equating the coefficients to zero, we find

the recurrence relation $a_{n+2} = \frac{(n+1)a_n}{(n+2)(n+1)} = \frac{a_n}{n+2}$ The recurrence leads us to

$$a_2 = \frac{a_0}{2}, \ a_3 = \frac{a_1}{3}, \ a_4 = \frac{a_2}{4} = \frac{a_0}{8}, \ a_5 = \frac{a_3}{5} = \frac{a_1}{15}$$

Therefore,
$$y(t) = a_0 \left\{ 1 + \frac{t}{2} + \frac{t}{8} + \dots \right\} + a_1 \left\{ t + \frac{t}{3} + \frac{t}{15} + \dots \right\}, \ y(0) = a_0 = 1, \ y'(0) = a_1 = -1$$

Finally, $y(t) = \left\{ 1 + \frac{t^2}{2} + \frac{t^4}{8} + \dots \right\} - \left\{ t + \frac{t^3}{3} + \frac{t^5}{15} + \dots \right\}.$

- 37. Consider the initial value problem y'' + ty' 2y = 0, y(0) = 0, y'(0) = 1 and assume there is solution of the form $y(t) = \sum_{n=0}^{\infty} a_n t^n$. Differentiating, we obtain
 - $y'(t) = \sum_{n=1}^{\infty} na_n t^{n-1} \text{ and } y''(t) = \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2}. \text{ Inserting these series into the differential}$ equation, we have $\sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} + t \sum_{n=1}^{\infty} na_n t^{n-1} - 2\sum_{n=0}^{\infty} a_n t^n = 0.$ Making the change of index k = n-2 in the series for y''(t), we obtain $\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}t^n + \sum_{n=1}^{\infty} na_n t^n - 2\sum_{n=0}^{\infty} a_n t^n = 0, \text{ or}$ $\sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} + (n-2)a_n]t^n = 0.$ Equating the coefficients to zero, we find the recurrence relation $a_{n+2} = \frac{-(n-2)a_n}{(n+2)(n+1)}, n = 0, 1, ...$ The recurrence leads us to $a_2 = 2a_0/2 = a_0, a_4 = 0a_2/12 = 0, a_6 = -2a_4/30 = 0, ...$ $a_3 = a_1/6, a_5 = -a_3/20 = -a_1/120, a_7 = -3a_5/42 = a_1/1680, ...$ Imposing the initial conditions, we have $a_0 = 0$ and $a_1 = 1$. Thus, $y(t) = t + \frac{t^3}{6} - \frac{t^5}{120} + \frac{t^7}{1690} + \cdots$.

38. Assume there is solution of the form $y(t) = \sum_{n=0}^{\infty} a_n t^n$. Differentiating, we obtain

$$y'(t) = \sum_{n=1}^{\infty} na_n t^{n-1} \text{ and } y''(t) = \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}t^n, ty = \sum_{n=0}^{\infty} a_n t^{n+1} = \sum_{n=1}^{\infty} a_{n-1}t^n$$

Therefore, $2a_2 + \sum_{n=1}^{\infty} [(n+2)(n+1)a_{n+2} + a_{n-1}]t^n = 0$. Equating the coefficients to zero, we find

the recurrence relation $a_{n+2} = \frac{-a_{n-1}}{(n+2)(n+1)}$, n = 1, 2, ...

The recurrence leads us to

$$a_{3} = \frac{-a_{0}}{3 \cdot 2}, \ a_{4} = \frac{-a_{1}}{4 \cdot 3}, \ a_{5} = \frac{-a_{5}}{5 \cdot 4} = 0$$
Therefore, $y(t) = a_{0} \left\{ 1 - \frac{t^{3}}{6} + ... \right\} + a_{1} \left\{ t - \frac{t^{2}}{12} + ... \right\}, \ a_{0} = 1, \ a_{1} = 2.$
Finally, $y(t) = \left\{ 1 - \frac{t^{3}}{6} + ... \right\} + 2 \left\{ t - \frac{t^{4}}{12} + ... \right\}.$
39. Consider the initial value problem $y'' + (1 + t)y' + y = 0$, $y(0) = -1$, $y'(0) = 1$ and assume there is solution of the form $y(t) = \sum_{n=0}^{\infty} a_{n}t^{n}$. Differentiating, we obtain
 $y'(t) = \sum_{n=1}^{\infty} na_{n}t^{n-1}$ and $y''(t) = \sum_{n=2}^{\infty} n(n-1)a_{n}t^{n-2}$. Inserting these series into the differential equation, we have $\sum_{n=2}^{\infty} n(n-1)a_{n}t^{n-2} + (1 + t)\sum_{n=1}^{\infty} na_{n}t^{n-1} + \sum_{n=0}^{\infty} a_{n}t^{n} = 0$ or
 $\sum_{n=2}^{\infty} n(n-1)a_{n}t^{n-2} + (1 + t)\sum_{n=1}^{\infty} na_{n}t^{n-1} + \sum_{n=0}^{\infty} a_{n}t^{n} = 0$. Making the change of index $k = n-2$ in the series for $y'(t)$ and $k = n-1$ in the series for $y'(t)$, we obtain
 $\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}t^{n} + \sum_{n=0}^{\infty} (n+1)a_{n+1}t^{n} + \sum_{n=0}^{\infty} (1 + n)a_{n}t^{n} = 0$. Equating the coefficients to zero, we find the recurrence relation $a_{n+2} = \frac{-(n+1)a_{n+1}(-n+1)a_{n}}{(n+2)(n+1)a_{n+2}t}$. The recurrence leads us to $a_{2} = -(a_{0} + a_{1})/2, \ a_{2} = -(a_{2} + a_{2})/4 = 0, \ a_{2} = -(a_{1} + a_{2})/5.$
Imposing the initial conditions, we have $a_{n} = -1$ and $a_{n} = 1$. Thus, $a_{2} = (a_{n} + a_{1})/2, \ a_{2} = -1/3, \ a_{n} = 1/12, \ a_{n} = 1/20$ and so we find $y(t) = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}t^{n}$ and $y''(t) = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}t^{n}$. Inferentiating, we obtain $y'(t) = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+1}t^{n}$ and $y''(t) = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}t^{n}$. Inserting these series into the differential equation, we have $\sum_{n=0}^{\infty} [n+2)(n+1)a_{n+2}t^{n}$. Inserting these series into the differential equation, we have $\sum_{n=0}^{\infty} [n+2)(n+1)a_{n+2}t^{n}$. Inserting these series into the differential equation, we have $\sum_{n=0}^{\infty} [n+2)(n+1)a_{n+2}t^{n}$. Inserting these series into the differential equation, we have $\sum_{$

Therefore,
$$y(t) = 1 + 2t + 2t^2 + \frac{4}{3}t^3 + \frac{2}{3}t^4 + \frac{4}{15}t^5 + \cdots$$

41. Consider the initial value problem y'' - 2y' + y = 0, y(0) = 0, y'(0) = 2 and assume there is solution of the form $y(t) = \sum_{n=0}^{\infty} a_n t^n$. Differentiating, we obtain $y'(t) = \sum_{n=1}^{\infty} na_n t^{n-1}$ and $y''(t) = \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2}$. Inserting these series into the differential equation, we have $\sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} - 2\sum_{n=1}^{\infty} na_n t^{n-1} + \sum_{n=0}^{\infty} a_n t^n = 0$. Making the change of index k = n-2 in the series for y'(t) and k = n-1 in the series for y'(t), we obtain $\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}t^n - 2\sum_{n=0}^{\infty} (n+1)a_{n+1}t^n + \sum_{n=0}^{\infty} a_n t^n = 0$, or $\sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} - 2(n+1)a_{n+1} + a_n]t^n = 0$. Equating the coefficients to zero, we find the recurrence relation $a_{n+2} = \frac{2(n+1)a_{n+1} - a_n}{(n+2)(n+1)}$. The recurrence leads us to $a_2 = (2a_1 - a_0)/2$, $a_3 = (4a_2 - a_1)/6$, $a_4 = (6a_3 - a_2)/12$, $a_5 = (8a_4 - a_3)/20$. Imposing the initial conditions, we have $a_0 = 0$ and $a_1 = 2$. Thus, $a_2 = 2$, $a_3 = 1$, $a_4 = 1/3$, $a_5 = 1/12$ and so we find $y(t) = 2t + 2t^2 + t^3 + \frac{1}{3}t^4 + \frac{1}{12}t^5 + \cdots$.

Section 10.2

- 1. Consider the differential equation $y'' + (\sec t)y' + t(t^2 4)^{-1}y = 0$. The coefficient function $p(t) = \sec t$ is not analytic at odd integer multiples of $\pi/2$. Thus, in the interval -10 < t < 10, p(t) is not analytic at $\pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}$. Similarly, the coefficient function $q(t) = t(t^2 4)^{-1}$ is not analytic at $t = \pm 2$. These 8 points are the only singular points in -10 < t < 10.
- 2. The function $p(t) = t^{\frac{2}{3}}$ is not analytic at t = 0. The function $q(t) = \sin t$ is analytic everywhere. Therefore, t = 0 is the only singular point in -10 < t < 10.
- 3. Consider the differential equation $(1 t^2)y'' + ty' + (\csc t)y = 0$. Putting the differential equation into the form of equation (1), we see that the coefficient function $p(t) = t(1 t^2)^{-1}$ is not analytic at $t = \pm 1$. Similarly, the coefficient function $q(t) = (\csc t)(1 t^2)^{-1}$ is not analytic at integer multiples of π or at $t = \pm 1$. Thus, in the interval -10 < t < 10, the singular points are given by $t = 0, \pm 1, \pm \pi, \pm 2\pi, \pm 3\pi$.

4. The function
$$p(t) = \frac{e^t}{\sin 2t}$$
 is not analytic at $t = 0, \pm \frac{\pi}{2}, \pm \pi, \pm \frac{3\pi}{2}, \pm 2\pi, \pm \frac{5\pi}{2}, \pm 3\pi$. The function $q(t) = \frac{t}{(25 - t^2)\sin 2t}$ is also not analytic at $t = \pm 5$. Therefore,
 $t = 0, \pm \frac{\pi}{2}, \pm \pi, \pm \frac{3\pi}{2}, \pm 2\pi, \pm \frac{5\pi}{2}, \pm 3\pi, \pm 5$ are the singular points in $-10 < t < 10$.

5. Consider the differential equation $(1 + \ln |t|)y'' + y' + (1 + t^2)y = 0$. Putting the differential equation into the form of equation (1), we see that the coefficient function $p(t) = (1 + \ln |t|)^{-1}$ is not analytic at t = 0 or at $t = \pm e^{-1}$. Similarly, the coefficient function $q(t) = (1 + t^2)(1 + \ln |t|)^{-1}$ is not analytic t = 0 or at $t = \pm e^{-1}$. These three points are the only singular points in the interval -10 < t < 10.

6. The function
$$p(t) = \frac{t}{1+|t|}$$
 is not analytic at $t = 0$. The function $q(t) = \tan t$ is not analytic at $t = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \dots$. Therefore, $t = 0, \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}$ are the singular points in $-10 < t < 10$.

7. Consider the differential equation $y'' + (1+2t)^{-1}y' + t(1-t^2)^{-1}y = 0$. Since the coefficient functions are rational functions, each is analytic with a radius of convergence *R* equal to the distance from $t_0 = 0$ to its nearest singularity; see Figure 10.2. The only singularity of $p(t) = (1+2t)^{-1}$ is t = -1/2 while the only singularities of $q(t) = t(1-t^2)^{-1}$ are $t = \pm 1$. Thus, the radius of convergence of the series for p(t) is R = 1/2 while the series for q(t) has radius of convergence R = 1. The given initial value problem is guaranteed to have a unique solution that is analytic in the interval -1/2 < t < 1/2.

8.
$$p(t) = 4(1-9t^2)^{-1}$$
 and $q(t) = t(1-9t^2)^{-1}$ are not analytic at $t = \pm 1/3$. Thus, for $t_0 = 1$, $R = \frac{2}{3}$.

9. Consider the differential equation $y'' + (4 - 3t)^{-1}y' + 3t(5 + 30t)^{-1}y = 0$. Since the coefficient functions are rational functions, each is analytic with a radius of convergence *R* equal to the distance from $t_0 = -1$ to its nearest singularity; see Figure 10.2. The only singularity of $p(t) = (4 - 3t)^{-1}$ is t = 4/3 while the only singularity of $q(t) = 3t(5 + 30t)^{-1}$ is t = -1/6. Thus, the radius of convergence of the series for p(t) is R = |-1 - (4/3)| = 7/3 while the series for q(t) has radius of convergence R = |-1 - (-1/6)| = 5/6. The given initial value problem is guaranteed to have a unique solution that is analytic in the interval -5/6 < t + 1 < 5/6.

10.
$$p(t) = (1 + 4t^2)^{-1}$$
 is not analytic at $t = \pm \frac{t}{2}$ and $q(t) = t(4 + t)^{-1}$ is not analytic at $t = -4$. Thus,
for $t_0 = 0$, $R = \frac{1}{2}$.

- 11. Consider the differential equation $y'' + (1 + 3(t-2))^{-1}y' + (\sin t)y = 0$. The coefficient function $p(t) = (3t-5)^{-1}$ is a rational function and is analytic with a radius of convergence *R* equal to the distance from $t_0 = 2$ to its nearest singularity; see Figure 10.2. The only singularity of $p(t) = (3t-5)^{-1}$ is t = 5/3. The other coefficient function, $q(t) = \sin t$, is analytic everywhere with an infinite radius of convergence. The radius of convergence of the series for p(t) is R = |2 (5/3)| = 1/3. Therefore, the given initial value problem is guaranteed to have a unique solution that is analytic in the interval -1/3 < t-2 < 1/3.
- 12. $p(t) = (t+3)(1+t^2)^{-1}$ is not analytic at $t = \pm i$ and $q(t) = t^2$ is analytic everywhere. Thus, for $t_0 = 1, R = \sqrt{2}$.
- 13 (a). Consider the differential equation y'' + ty' + y = 0. Let the solution be given by $y(t) = \sum_{n=0}^{\infty} a_n t^n$.

Differentiating, we obtain
$$y'(t) = \sum_{n=1}^{\infty} na_n t^{n-1}$$
 and $y''(t) = \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2}$.

Inserting these series into the differential equation, we have

$$\sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} + t \sum_{n=1}^{\infty} na_n t^{n-1} + \sum_{n=0}^{\infty} a_n t^n = 0 \text{ or } \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} + \sum_{n=1}^{\infty} na_n t^n + \sum_{n=0}^{\infty} a_n t^n = 0$$

Adjusting the indices, we obtain
$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}t^n + \sum_{n=1}^{\infty} na_n t^n + \sum_{n=0}^{\infty} a_n t^n = 0 \text{ or}$$

 $2a_2 + a_0 + \sum_{n=1}^{n} [(n+2)(n+1)a_{n+2} + (n+1)a_n]t^n = 0$. Consequently, the recurrence relation is given by $a_2 = -a_0/2$ and $a_{n+2} = -a_0/(n+2)$, n = 1/2

given by
$$a_2 = -a_0/2$$
 and $a_{n+2} = -a_n/(n+2)$, $n = 1, 2, ...$

13 (b). The recurrence leads us to

$$a_2 = -a_0/2, a_4 = -a_2/4 = a_0/8, \dots$$

 $a_3 = -a_1/3, a_5 = -a_3/5 = a_1/15, \dots$

 $a_3 = -a_1/3$, $a_5 = -a_3/5 = a_1$ Thus, the general solution is

$$y(t) = a_0 [1 - \frac{t^2}{2} + \frac{t^4}{8} - \dots] + a_1 [t - \frac{t^3}{3} + \frac{t^5}{15} - \dots] = y_1(t) + y_2(t) .$$

- 13 (c). Since the coefficient functions are analytic for $-\infty < t < \infty$, the series converges for $-\infty < t < \infty$.
- 13 (d). The coefficient function p(t) = t is odd and the coefficient function q(t) = 1 is even. Therefore, Theorem 10.2 guarantees that the given equation has even solutions and odd solutions.
- 14 (a). $\sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} + 2na_n + 3a_n]t^n = 0$. Consequently, the recurrence relation is given by $a_{n+2} = \frac{-(2n+3)a_n}{(n+2)(n+1)a_n}, \quad n = 0, 1, 2, \dots$

$$a_{n+2} = \frac{1}{(n+2)(n+1)}, \ n = 0, 1, 2, \dots$$

14 (b). The recurrence leads us to

$$a_2 = -3a_0/2$$
, $a_3 = -5a_1/6$, $a_4 = -7a_2/12 = 7a_0/8$, $a_5 = -9a_3/20 = 3a_1/8$...
 $a_3 = -a_1/3$, $a_5 = -a_3/5 = a_1/15$,...
Thus, the general solution is

$$y(t) = a_0 [1 - \frac{3t^2}{2} + \frac{7t^4}{8} - \dots] + a_1 [t - \frac{5t^3}{6} + \frac{3t^5}{8} - \dots].$$

- 14 (c). Since the coefficient functions are analytic for $-\infty < t < \infty$, $R = \infty$.
- 14 (d). p(t) = 2t is odd and q(t) = 3 is even. Therefore, Theorem 10.2 guarantees that the given equation has even solutions and odd solutions.
- 15 (a). Consider the differential equation $(1 + t^2)y'' + ty' + 2y = 0$. Let the solution be given by

$$y(t) = \sum_{n=0}^{\infty} a_n t^n$$
. Differentiating, we obtain $y'(t) = \sum_{n=1}^{\infty} n a_n t^{n-1}$ and $y''(t) = \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2}$.

Inserting these series into the differential equation, we have

$$(1+t^{2})\sum_{n=2}^{\infty}n(n-1)a_{n}t^{n-2} + t\sum_{n=1}^{\infty}na_{n}t^{n-1} + 2\sum_{n=0}^{\infty}a_{n}t^{n} = 0 \text{ or}$$

$$\sum_{n=2}^{\infty}n(n-1)a_{n}t^{n-2} + \sum_{n=2}^{\infty}n(n-1)a_{n}t^{n} + \sum_{n=1}^{\infty}na_{n}t^{n} + 2\sum_{n=0}^{\infty}a_{n}t^{n} = 0. \text{ Adjusting the indices, we obtain}$$

$$\sum_{n=0}^{\infty}(n+2)(n+1)a_{n+2}t^{n} + \sum_{n=2}^{\infty}n(n-1)a_{n}t^{n} + \sum_{n=1}^{\infty}na_{n}t^{n} + 2\sum_{n=0}^{\infty}a_{n}t^{n} = 0. \text{ Consequently, the recurrence}$$
relation is given by $a_{2} = -a_{0}, a_{3} = -a_{1}/2$, and $a_{n+2} = -(n^{2}+2)a_{n}/[(n+2)(n+1)], n = 2, 3, \dots$

15 (b). The recurrence leads us to

 $a_2 = -a_0$, $a_4 = -a_2/2 = a_0/2$,... $a_3 = -a_1/2$, $a_5 = -11a_3/20 = 11a_1/40$,... Thus, the general solution is

$$y(t) = a_0[1 - t^2 + \frac{t^4}{2} - \dots] + a_1[t - \frac{t^3}{2} + \frac{11t^5}{40} - \dots] = y_1(t) + y_2(t)$$

- 15 (c). The coefficient functions $p(t) = t(1 + t^2)^{-1}$ and $q(t) = 2(1 + t^2)^{-1}$ fail to be analytic at $t = \pm i$. Therefore, the radius of convergence for each coefficient function is R = 1. Consequently, Theorem 10.1 guarantees that the power series solution converges in the interval -1 < t < 1.
- 15 (d). The coefficient function $p(t) = t(1+t^2)^{-1}$ is odd and the coefficient function $q(t) = 2(1+t^2)^{-1}$ is even. Therefore, Theorem 10.2 guarantees that the given equation has even solutions and odd solutions.
- 16 (a). $\sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} 5(n+1)a_{n+1} + 6a_n]t^n = 0.$ Consequently, the recurrence relation is given by $a_{n+2} = \frac{5(n+1)a_{n+1} - 6a_n}{(n+2)(n+1)}, n = 0, 1, 2, \dots$
- 16 (b). The recurrence leads us to

 $a_2 = (5a_1 - 6a_0)/2 = 5a_1/2 - 3a_0, a_3 = (5(2)a_2 - 6a_1)/(3 \cdot 2) = 19a_1/6 - 5a_0$

Thus, the general solution is

$$y(t) = a_0[1 - 3t^2 - 5t^3 - \dots] + a_1[t + \frac{5t^2}{2} + \frac{19t^3}{6} + \dots].$$

16 (c). Since the coefficient functions are analytic for $-\infty < t < \infty$, $R = \infty$.

- 16 (d). p(t) = -5 and q(t) = 6 are both even. Therefore, Theorem 10.2 does not apply.
- 17 (a). Consider the differential equation y'' 4y' + 4y = 0. Let the solution be given by

$$y(t) = \sum_{n=0}^{\infty} a_n t^n$$
. Differentiating, we obtain $y'(t) = \sum_{n=1}^{\infty} n a_n t^{n-1}$ and $y''(t) = \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2}$.

Inserting these series into the differential equation, we have

$$\sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} - 4\sum_{n=1}^{\infty} na_n t^{n-1} + 4\sum_{n=0}^{\infty} a_n t^n = 0.$$
 Adjusting the indices, we obtain
$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}t^n - 4\sum_{n=0}^{\infty} (n+1)a_{n+1}t^n + 4\sum_{n=0}^{\infty} a_n t^n = 0.$$
 Consequently, the recurrence relation is given by $a_{n+2} = [4(n+1)a_{n+1} - 4a_n]/[(n+2)(n+1)], n = 0, 1, \dots$

17 (b). The recurrence leads us to

$$a_2 = 2a_1 - 2a_0$$
, $a_3 = (8a_2 - 4a_1)/6 = (16a_1 - 16a_0 - 4a_1)/6 = 2a_1 - (8/3)a_0$,...
Thus, the general solution is

$$y(t) = a_0[1 - 2t^2 - \frac{8t^3}{3} + \dots] + a_1[t + 2t^2 + 2t^3 \dots] = y_1(t) + y_2(t)$$

- 17 (c). The coefficient functions are constant and hence analytic everywhere. Consequently, Theorem 10.1 guarantees that the power series solution converges in the interval $-\infty < t < \infty$.
- 17 (d). The coefficient function p(t) = -4 is even and hence Theorem 10.2 does not apply.

18 (a). $\sum_{n=1}^{\infty} [(n+2)(n+1)a_{n+2} + (n+1)na_{n+1} + a_n]t^n = 0$. Consequently, the recurrence relation is given by $a_{n+2} = \frac{-[(n+1)na_{n+1} + a_n]}{(n+2)(n+1)}$. 18 (b). The recurrence leads us to $a_2 = \frac{-a_0}{2}, a_3 = \frac{-[(2)(1)a_2 + a_1]}{3 \cdot 2} = \frac{a_0}{6} - \frac{a_1}{6}, a_4 = \frac{-[(3)(2)a_3 + a_2]}{4 \cdot 3} = -\frac{a_0}{8} + \frac{a_1}{12}$ Thus, the general solution $y(t) = a_0[1 - \frac{t^2}{2} - \frac{t^3}{6} - \cdots] + a_1[t - \frac{t^3}{6} + \frac{t^4}{12} + \cdots].$ 18 (c). $q(t) = \frac{1}{1+t}$ is not analytic at t = -1, R = 1. 18 (d). $q(t) = \frac{1}{1+t}$ is neither even nor odd. Therefore, Theorem 10.2 does not apply. 19 (a). Consider the differential equation (3 + t)y'' + 3ty' + y = 0. Let the solution be given by $y(t) = \sum_{n=0}^{\infty} a_n t^n$. Differentiating, we obtain $y'(t) = \sum_{n=1}^{\infty} n a_n t^{n-1}$ and $y''(t) = \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2}$. Inserting these series into the differential equation, we have $(3+t)\sum_{n=1}^{\infty}n(n-1)a_nt^{n-2} + 3t\sum_{n=1}^{\infty}na_nt^{n-1} + \sum_{n=1}^{\infty}a_nt^n = 0$ or $3\sum_{n=1}^{\infty} n(n-1)a_n t^{n-2} + \sum_{n=1}^{\infty} n(n-1)a_n t^{n-1} + 3\sum_{n=1}^{\infty} na_n t^n + \sum_{n=1}^{\infty} a_n t^n = 0.$ Adjusting the indices, we obtain $3\sum_{n=1}^{\infty} (n+2)(n+1)a_{n+2}t^n + \sum_{n=1}^{\infty} (n+1)na_{n+1}t^n + 3\sum_{n=1}^{\infty} na_nt^n + \sum_{n=0}^{\infty} a_nt^n = 0.$ Consequently, the recurrence relation is given by $a_2 = -a_0 / 6$ and $a_{n+2} = -[n(n+1)a_{n+1} + (3n+1)a_n] / [3(n+2)(n+1)], n = 1, 2,$ 19 (b). The recurrence leads us to $a_2 = -a_0 / 6$, $a_3 = -(2a_2 + 4a_1) / 18 = -(-2a_0 / 6 + 4a_1) / 18 = (a_0 - 12a_1) / 54$,... Thus, the general solution is $y(t) = a_0[1 - \frac{t^2}{6} + \frac{t^3}{54} + \dots] + a_1[t - \frac{2t^3}{9} + \dots] = y_1(t) + y_2(t).$ 19 (c). The coefficient functions $p(t) = 3t(3+t)^{-1}$ and $q(t) = (3+t)^{-1}$ fail to be analytic at t = -3. Therefore, the radius of convergence for each coefficient function is R = 3. Consequently, Theorem 10.1 guarantees that the power series solution converges in the interval -3 < t < 3. 19 (d). The coefficient function $p(t) = 3t(3+t)^{-1}$ is neither even nor odd. Therefore, Theorem 10.2 does not apply.

20 (a).
$$\sum_{n=0}^{\infty} [2(n+2)(n+1)a_{n+2} + n(n-1)a_n + 4a_n]t^n = 0.$$
 Consequently, the recurrence relation is given
by $a_{n+2} = \frac{-[n(n-1)+4]a_n}{2(n+2)(n+1)}.$

20 (b). The recurrence leads us to

$$a_2 = -a_0, a_3 = -\frac{a_1}{3}, a_4 = \frac{a_0}{4}, a_5 = \frac{a_1}{12}$$

Thus, the general solution is

$$y(t) = a_0[1 - t^2 + \frac{t^4}{4} - \dots] + a_1[t - \frac{t^3}{3} + \frac{t^5}{12} + \dots]$$

20 (c). $R = \sqrt{2}$.

20 (d). p(t) = 0 can be considered odd and $q(t) = \frac{4}{t^2 + 2}$ is even. Therefore, Theorem 10.2 guarantees that the given equation has even solutions and odd solutions.

21 (a). Consider the differential equation $y'' + t^2 y = 0$. Let the solution be given by $y(t) = \sum_{n=0}^{\infty} a_n t^n$.

Differentiating, we obtain $y'(t) = \sum_{n=1}^{\infty} na_n t^{n-1}$ and $y''(t) = \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2}$. Inserting these series into the differential equation, we have $\sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} + t^2 \sum_{n=0}^{\infty} a_n t^n = 0$ or

$$\sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} + \sum_{n=0}^{\infty} a_n t^{n+2} = 0.$$
 Adjusting the indices, we obtain
$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}t^n + \sum_{n=2}^{\infty} a_{n-2}t^n = 0.$$
 Consequently, the recurrence relation is given by
 $a_2 = 0, a_3 = 0,$ and $a_{n+2} = -a_{n-2} / [(n+2)(n+1)], n = 2, 3, \dots$
21 (b). The recurrence leads us to

$$a_2 = 0, a_3 = 0, a_4 = -a_0 / 12, a_5 = -a_1 / 20, \dots$$

Thus, the general solution is

$$y(t) = a_0[1 - \frac{t^4}{12} + \dots] + a_1[t - \frac{t^5}{20} + \dots] = y_1(t) + y_2(t).$$

- 21 (c). The coefficient functions are polynomials and hence analytic everywhere. Consequently, Theorem 10.1 guarantees that the power series solution converges in the interval $-\infty < t < \infty$.
- 21 (d). The coefficient function p(t) = 0 can be considered an odd function while $q(t) = t^2$ is clearly an even function. Therefore, Theorem 10.2 guarantees that the given equation has even solutions and odd solutions.
- 22 (a). $\sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} + na_n + a_n](t-1)^n = 0$. Consequently, the recurrence relation is given by $a_{n+2} = \frac{-(n+1)a_n}{(n+2)(n+1)} = \frac{-a_n}{n+2}, n = 0, 1, 2, \dots$
- 22 (b). The recurrence leads us to

$$a_{2} = -\frac{a_{0}}{2}, \ a_{3} = -\frac{a_{1}}{3}, \ a_{4} = -\frac{a_{2}}{4} = \frac{a_{0}}{8}, \ a_{5} = -\frac{a_{3}}{5} = \frac{a_{1}}{15}$$

Thus, the general solution is
$$y(t) = a_{0}[1 - \frac{(t-1)^{2}}{2} + \frac{(t-1)^{4}}{8} + \cdots] + a_{1}[(t-1) - \frac{(t-1)^{3}}{3} + \frac{(t-1)^{5}}{15} + \cdots].$$

22 (c). The coefficient functions are analytic everywhere. Consequently, $R = \infty$.

- 23 (a). Consider the differential equation y'' + y = 0. Let the solution be given by
- $y(z) = \sum_{n=0}^{\infty} a_n z^n \text{ where } z = t-1. \text{ Differentiating, we obtain}$ $y'(z) = \sum_{n=1}^{\infty} na_n z^{n-1} \text{ and } y''(z) = \sum_{n=2}^{\infty} n(n-1)a_n z^{n-2}. \text{ Inserting these series into the differential}$ equation, we have $\sum_{n=2}^{\infty} n(n-1)a_n z^{n-2} + \sum_{n=0}^{\infty} a_n z^n = 0. \text{ Adjusting the indices, we obtain}$ $\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} z^n + \sum_{n=0}^{\infty} a_n z^n = 0. \text{ Consequently, the recurrence relation is given by}$ $a_{n+2} = -a_n / [(n+2)(n+1)], n = 0, 1, \dots.$ 23 (b). The recurrence leads us to $a_2 = -a_0 / 2, a_4 = -a_2 / 12 = a_0 / 24, \dots.$ $a_3 = -a_1 / 6, a_5 = -a_3 / 20 = a_1 / 120, \dots.$ Thus, the general solution is $y(t) = a_0 [1 \frac{(t-1)^2}{2} + \frac{(t-1)^4}{24} + \dots] + a_1 [(t-1) \frac{(t-1)^3}{6} + \frac{(t-1)^5}{120} + \dots].$ 23 (c). The coefficient functions are constants and hence analytic everywhere. Consequently, Theorem 10.1 guarantees that the power series solution converges in the interval $-\infty < t-1 < \infty.$ 24 (a). $\sum_{n=0}^{\infty} [(n+1)na_{n+1} (n+2)(n+1)a_{n+2} + (n+1)a_{n+1} + a_n](t-1)^n = 0. \text{ Consequently, the recurrence relation is given by}$ $a_{n+2} = \frac{(n+1)^2a_{n+1} + a_n}{(n+2)(n+1)}, n = 0, 1, 2, \dots.$

24 (b). The recurrence leads us to

$$a_2 = \frac{a_1 + a_0}{2} = \frac{a_1}{2} + \frac{a_0}{2}, \ a_3 = \frac{4a_2 + a_1}{3 \cdot 2} = \frac{a_1}{2} + \frac{a_0}{3}$$

Thus, the general solution is

$$y(t) = a_0 \left[1 + \frac{(t-1)^2}{2} + \frac{(t-1)^3}{3} + \cdots\right] + a_1 \left[(t-1) - \frac{(t-1)^2}{2} + \frac{(t-1)^3}{2} + \cdots\right].$$

- 24 (c). $p(t) = q(t) = \frac{1}{t-2}$ are not analytic at t = 2. Consequently, R = 1.
- 25 (a). Consider the differential equation y'' + y' + (t-2)y = 0 or y'' + y' + [(t-1)-1]y = 0. Let the solution be given by $y(z) = \sum_{n=1}^{\infty} a_n z^n$ where z = t-1. Differentiating, we obtain
 - $y'(z) = \sum_{n=1}^{\infty} na_n z^{n-1} \text{ and } y''(z) = \sum_{n=2}^{\infty} n(n-1)a_n z^{n-2} \text{ . Inserting these series into the differential equation, we have } \sum_{n=2}^{\infty} n(n-1)a_n z^{n-2} + \sum_{n=1}^{\infty} na_n z^{n-1} + \sum_{n=0}^{\infty} a_n z^{n+1} \sum_{n=0}^{\infty} a_n z^n = 0 \text{ . Adjusting the indices, we obtain } \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}z^n + \sum_{n=0}^{\infty} (n+1)a_{n+1}z^n + \sum_{n=1}^{\infty} a_{n-1}z^n \sum_{n=0}^{\infty} a_n z^n = 0.$ Consequently, the recurrence relation is given by $a_2 = (a_0 a_1)/2 \text{ and } a_{n+2} = -[(n+1)a_{n+1} a_n + a_{n-1}]/[(n+2)(n+1)], n = 1, 2, \dots$

25 (b). The recurrence leads us to $a_3 = -(2a_2 - a_1 + a_0)/6 = -(a_0 - a_1)/3,...$ Thus, the general solution is $y(t) = a_0[1 + \frac{(t-1)^2}{2} - \frac{(t-1)^3}{3} + \cdots] + a_1[(t-1) - \frac{(t-1)^2}{2} + \frac{(t-1)^3}{3} + \cdots].$

25 (c). The coefficient functions are polynomials and hence analytic everywhere. Consequently, Theorem 10.1 guarantees that the power series solution converges in the interval $-\infty < t-1 < \infty$.

26.
$$a_{n+2} =$$

 $a_{n+2} = \frac{(n^2 - \mu^2)a_n}{(n+2)(n+1)}, n = 0, 1, 2, \dots$ For $\mu = 5$, $a_3 = -4a_1$, $a_5 = \frac{16}{5}a_1$, $a_7 = a_9 = \dots = 0$, $T_5(t) = a_1[t - 4t^3 + \frac{16}{5}t^5]$. Set $T_5(1) = a_1[1 - 4 + \frac{16}{5}] = 1 \Rightarrow a_1 = 5$. Therefore, $T_5(t) = 16t^5 - 20t^3 + 5t$ For $\mu = 6$, $a_2 = -18a_0$, $a_4 = 48a_0$, $a_6 = -32a_0$, $T_6(t) = a_0[1 - 18t^2 + 48t^4 - 32t^6]$; $a_0 = -1$. Therefore, $T_6(t) = 32t^6 - 48t^4 + 18t^2 - 1$

27 (d). $|T_N(t)| \le 1$ for -1 < t < 1. For $|t| \ge 1$, $\lim_{t \to +\infty} |T_N(t)| = \infty$.

- 28 (a). $\sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} n(n-1)a_n 2na_n + \mu(\mu+1)a_n]t^n = 0.$ Therefore the recurrence relation is $a_{n+2} = \frac{[n(n+1) - \mu(\mu+1)]a_n}{(n+2)(n+1)}, n = 0, 1, 2, ...$
- 28 (b). When $\mu = N$, $a_{N+2} = a_{N+4} = a_{N+6} = ... = 0$. Therefore, if $\mu = 2M$, a polynomial solution of the form $a_0 + a_2 t^2 + ... + a_{2M} t^{2M}$ exists, while if $\mu = 2M + 1$, a polynomial solution of the form $a_1 t + a_3 t^3 + ... + a_{2M+1} t^{2M+1}$ exists.

28 (c). If
$$\mu = 0$$
 and $y = 1$, $(1 - t^{2})(0) - 2t(0) + 0(1) = 0$.
If $\mu = 1$ and $y = t$, $(1 - t^{2})(0) - 2t(1) + 1(2)(t) = 0$.
28 (d). If $\mu = 2$, $a_{n+2} = \frac{[n(n+1) - 6]a_{n}}{(n+2)(n+1)} \Rightarrow P_{2}(t) = \frac{3}{2}t^{2} - \frac{1}{2}$.
If $\mu = 3$, $a_{n+2} = \frac{[n(n+1) - 12]a_{n}}{(n+2)(n+1)} \Rightarrow P_{3}(t) = \frac{5}{2}t^{3} - \frac{3}{2}t$.
If $\mu = 4$, $a_{n+2} = \frac{[n(n+1) - 20]a_{n}}{(n+2)(n+1)} \Rightarrow P_{4}(t) = \frac{35}{8}t^{4} - \frac{15}{4}t^{2} + \frac{3}{8}$.
If $\mu = 5$, $a_{n+2} = \frac{[n(n+1) - 30]a_{n}}{(n+2)(n+1)} \Rightarrow P_{5}(t) = \frac{63}{8}t^{5} - \frac{35}{4}t^{3} + \frac{15}{8}t$.

29 (a). Consider the differential equation $y'' - 2ty' + 2\mu y = 0$. Let the solution be given by

$$y(t) = \sum_{n=0}^{\infty} a_n t^n$$
. Differentiating, we obtain $y'(t) = \sum_{n=1}^{\infty} n a_n t^{n-1}$ and $y''(t) = \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2}$.
Inserting these series into the differential equation, we have

$$\sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} - 2\sum_{n=1}^{\infty} na_n t^n + 2\mu \sum_{n=0}^{\infty} a_n t^n = 0$$
. Adjusting the indices, we obtain
$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}t^n - 2\sum_{n=1}^{\infty} na_n t^n + 2\mu \sum_{n=0}^{\infty} a_n t^n = 0$$
. Consequently, the recurrence relation is given by $a_2 = -\mu a_0$ and $a_{n+2} = (2n-2\mu)a_n / [(n+2)(n+1)], n = 1, 2, \dots$

29 (d). For $\mu = 2$, the even indexed coefficients a_n vanish when n > 2. From the recurrence relation,

 $H_{2}(t) = a_{0} - 2a_{0}t^{2} = -a_{0}(2t^{2} - 1)$. Choosing $a_{0} = -2$ leads us to $H_{2}(t) = 4t^{2} - 2$. For $\mu = 3$, the odd indexed coefficients a_{n} vanish when n > 3. From the recurrence relation, $H_{3}(t) = a_{1}t - (2/3)a_{1}t^{3} = -a_{1}[(2/3)t^{3} - t)$. Choosing $a_{1} = -12$ leads us to $H_{3}(t) = 8t^{3} - 12t$. Similarly, $H_{4}(t) = 16t^{4} - 48t^{2} + 12$ and $H_{5}(t) = 32t^{5} - 160t^{3} + 120t$.

30 (a). Try
$$y(t) = \sum_{n=0}^{\infty} a_n t^n \Rightarrow \sum_{n=0}^{\infty} [(n+1)na_{n+1} + (n+1)a_{n+1} - a_n]t^n = 0.$$

 $\Rightarrow a_{n+1} = \frac{a_n}{(n+1)^2} \Rightarrow y(t) = a_0 \sum_{n=0}^{\infty} \frac{t^n}{(n+1)^2}.$ By the ratio test, $\lim_{n \to \infty} \left| \frac{t^{n+1}(n+1)^2}{t^n(n+2)^2} \right| = |t|$ and the series converges in $-1 < t < 1.$

30 (b). Try
$$y(t) = \sum_{n=0}^{\infty} a_n t^n \Rightarrow \sum_{n=0}^{\infty} [n(n-1)+1]a_n t^n = 0 \Rightarrow [n(n-1)+1]a_n = 0.$$

The polynomial $x^2 - x + 1$ has roots $\frac{1 \pm \sqrt{1-4}}{2}$. Since there are no positive integer roots, the factor [n(n-1)+1] is nonzero for all n = 0, 1, 2, ... Therefore, $a_n = 0, n = 0, 1, 2, ...$ and y(t) = 0, The trivial solution results.

- 33. The coefficient function $p(t) = \sin t$ is odd and analytic everywhere. The coefficient function $q(t) = t^2$ is even and analytic everywhere. Thus, Theorem 10.2(b) applies. The differential equation has a general solution of the form (15).
- 34. No. $p(t) = \cos t$ is even; q(t) = t is odd.
- 35. The coefficient function p(t) = 0 can be regarded as a function that is odd and analytic everywhere. The coefficient function $q(t) = t^2$ is even and analytic everywhere. Thus, Theorem 10.2(b) applies. The differential equation has a general solution of the form (15).

- No. p(t) = 1 and $q(t) = t^2$ are both even. 36.
- The coefficient function q(t) = t is odd. Thus, Theorem 10.2(b) does not apply. 37.
- No. $p(t) = e^t$ is neither even nor odd and q(t) = 1 is even. 38.
- Consider the differential equation y'' + ay' + by = 0. The coefficient function p(t) = a can be 39. regarded as an odd function if a = 0, but is even if a is nonzero. The coefficient function q(t) = b is even. Both coefficient functions are analytic everywhere. Thus, Theorem 10.2(b) applies if a = 0 and b is arbitrary.

40 (a).
$$p(t) = 0$$
, $q(t) = \frac{1}{1+t^2}$. The denominator of $q(t)$ vanishes at $t = \pm i \Rightarrow R = 1$.

40 (b).
$$y(t) = \sum_{n=0}^{\infty} a_n t^n \Rightarrow \sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} + n(n-1)a_n + a_n]t^n = 0$$

 $\Rightarrow r(n) = (n+2)(n+1), \ s(n) = n(n-1) + 1.$ Then $\lim_{n \to \infty} \left| \frac{a_{n+2}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{n(n-1)+1}{(n+2)(n+1)} \right| = 1.$ Therefore,

the series diverges for $|t^2| > 1 \Rightarrow |t| > 1$ by the Ratio Test.

40 (c). No contradiction. The unique solution of the initial value problem exists for $-\infty < t < \infty$, but its Maclaurin series has a radius of convergence R = 1.

Section 10.3

- 1 (a). $\lambda^2 + (-2\alpha + 1 1)\lambda + \alpha^2 = \lambda^2 2\alpha\lambda + \alpha^2 = 0$
- 1 (b). Using the technique in Section 4.5, the general solution is $y = c_1 t^{\alpha} + c_2 t^{\alpha} \ln t, t > 0$. 2. $W = \begin{vmatrix} t^{\gamma} \cos(\delta \ln t) & t^{\gamma} \sin(\delta \ln t) \\ t^{\gamma-1} [\gamma \cos(\delta \ln t) \delta \sin(\delta \ln t)] & t^{\gamma-1} [\gamma \sin(\delta \ln t) + \delta \cos(\delta \ln t)] \end{vmatrix} = \delta t^{2\gamma-1} \neq 0$ in $0 < t < \infty$ since $\delta \neq 0$.
- When put in standard form, the differential equation is $y'' 4t^{-1}y' + 6t^{-2}y = 0$. Thus, $t_0 = 0$ is 3. the only singular point. The characteristic equation is $\lambda^2 - 5\lambda + 6 = 0$ which has roots $\lambda_1 = 2$ and $\lambda_2 = 3$. Hence, the general solution is $y = c_1 t^2 + c_2 t^3$, $t \neq 0$.
- $t_0 = 0$. The characteristic equation is $\lambda^2 \lambda 6 = 0$ which has roots $\lambda_1 = -2$ and $\lambda_2 = 3$. 4. Hence, the general solution is $y = c_1 t^{-2} + c_2 t^3, t \neq 0$.
- When put in standard form, the differential equation is $y'' 3t^{-1}y' + 4t^{-2}y = 0$. Thus, $t_0 = 0$ is 5. the only singular point. The characteristic equation is $\lambda^2 - 4\lambda + 4 = 0$ which has roots $\lambda_1 = 2$ and $\lambda_2 = 2$. Hence, the general solution is $y = c_1 t^2 + c_2 t^2 \ln |t|, t \neq 0$.
- $t_0 = 0$. The characteristic equation is $\lambda^2 2\lambda + 5 = 0$ which has roots 6. $\lambda_1 = 1 + 2i$ and $\lambda_2 = 1 - 2i$. Hence, the general solution is $y = c_1 t \cos(2\ln|t|) + c_2 t \sin(2\ln|t|), t \neq 0$.
- When put in standard form, the differential equation is $y'' 3t^{-1}y' + 29t^{-2}y = 0$. Thus, $t_0 = 0$ is 7. the only singular point. The characteristic equation is $\lambda^2 - 4\lambda + 29 = 0$ which has roots $\lambda_1 = 2 + 5i$ and $\lambda_2 = 2 - 5i$. Hence, the general solution is $y = c_1 t^2 \cos(5 \ln |t|) + c_2 t^2 \sin(5 \ln |t|), t \neq 0.$
- $t_0 = 0$. The characteristic equation is $\lambda^2 6\lambda + 9 = 0$ which has roots $\lambda_1 = \lambda_2 = 3$. Hence, the 8. general solution is $y = c_1 t^3 + c_2 t^3 \ln|t|, t \neq 0$.

- 9. When put in standard form, the differential equation is $y'' + t^{-1}y' + 9t^{-2}y = 0$. Thus, $t_0 = 0$ is the only singular point. The characteristic equation is $\lambda^2 + 9 = 0$ which has roots $\lambda_1 = 3i$ and $\lambda_2 = -3i$. Hence, the general solution is $y = c_1 \cos(3\ln|t|) + c_2 \sin(3\ln|t|), t \neq 0$.
- 10. $t_0 = 0$. The characteristic equation is $\lambda^2 + 2\lambda + 1 = 0$ which has roots $\lambda_1 = \lambda_2 = -1$. Hence, the general solution is $y = c_1 t^{-1} + c_2 t^{-1} \ln |t|, t \neq 0$.
- 11. When put in standard form, the differential equation is $y'' + 3t^{-1}y' + 17t^{-2}y = 0$. Thus, $t_0 = 0$ is the only singular point. The characteristic equation is $\lambda^2 + 2\lambda + 17 = 0$ which has roots $\lambda_1 = -1 + 4i$ and $\lambda_2 = -1 4i$. Hence, the general solution is $y = c_1 t^{-1} \cos(4 \ln |t|) + c_2 t^{-1} \sin(4 \ln |t|), t \neq 0$.
- 12. $t_0 = 0$. The characteristic equation is $\lambda^2 + 10\lambda + 25 = 0$ which has roots $\lambda_1 = \lambda_2 = -5$. Hence, the general solution is $y = c_1 t^{-5} + c_2 t^{-5} \ln|t|, t \neq 0$.
- 13. Consider the differential equation $y'' + 5t^{-1}y' + 40t^{-2}y = 0$. We see that, $t_0 = 0$ is the only singular point. The characteristic equation is $\lambda^2 + 4\lambda + 40 = 0$ which has roots $\lambda_1 = -2 + 6i$ and $\lambda_2 = -2 6i$. Hence, the general solution is $y = c_1 t^{-2} \cos(6\ln|t|) + c_2 t^{-2} \sin(6\ln|t|), t \neq 0$.
- 14. $t_0 = 0$. The characteristic equation is $\lambda^2 3\lambda = 0$ which has roots $\lambda_1 = 0$, $\lambda_2 = 3$. Hence, the general solution is $y = c_1 + c_2 t^3$, $t \neq 0$.
- 15. When put in standard form, the differential equation is $y'' (t-1)^{-1}y' 3(t-1)^{-2}y = 0$. Thus, $t_0 = 1$ is the only singular point. The characteristic equation is $\lambda^2 - 2\lambda - 3 = 0$ which has roots $\lambda_1 = -3$ and $\lambda_2 = 1$. Hence, the general solution is $y = c_1(t-1)^3 + c_2(t-1)^{-1}, t \neq 1$.
- 16. $t_0 = 1$. The characteristic equation is $\lambda^2 + 2\lambda + 17 = 0$ which has roots $\lambda_1 = -1 + 4i$, $\lambda_2 = -1 4i$. Hence, the general solution is $y = c_1(t-1)^{-1}\cos(4\ln|t-1|) + c_2(t-1)^{-1}\sin(4\ln|t-1|), t \neq 1$.
- 17. When put in standard form, the differential equation is $y'' + 6(t+2)^{-1}y' + 6(t+2)^{-2}y = 0$. Thus, $t_0 = -2$ is the only singular point. The characteristic equation is $\lambda^2 + 5\lambda + 6 = 0$ which has roots $\lambda_1 = -3$ and $\lambda_2 = -2$. Hence, the general solution is $y = c_1(t+2)^{-3} + c_2(t+2)^{-2}, t \neq -2$.
- 18. $t_0 = 2$. The characteristic equation is $\lambda^2 + 4 = 0$ which has roots $\lambda_1 = 2i$, $\lambda_2 = -2i$. Hence, the general solution is $y = c_1 \cos(2\ln|t-2|) + c_2 \sin(2\ln|t-2|), t \neq 2$.
- 19. From the form of the general solution, $t_0 = -2$ and the characteristic equation has roots $\lambda_1 = 1$ and $\lambda_2 = -2$. Therefore, the characteristic equation is $\lambda^2 + \lambda 2 = 0$. Matching the characteristic equation with the general form given in equation (3), we see that $\alpha 1 = 1$ and $\beta = -2$. Thus, the differential equation is $(t+2)^2 y'' + 2(t+2)y' 2y = 0$.
- 20. $t_0 = 1, \ \lambda = 0, 0. \ \therefore \lambda^2 = 0 \Longrightarrow \alpha = 1, \ \beta = 0.$
- 21. From the form of the general solution, $t_0 = 0$ and the characteristic equation has roots $\lambda_1 = 2 + i$ and $\lambda_2 = 2 i$. Therefore, the characteristic equation is $\lambda^2 4\lambda + 5 = 0$. Matching the characteristic equation with the general form given in equation (3), we see that $\alpha 1 = -4$ and $\beta = 5$. Thus, the differential equation is $t^2y'' 3ty' + 5y = 0$.
- 22. The characteristic equation has roots $\lambda_1 = 2$ and $\lambda_2 = -1$. Therefore, the characteristic equation is $\lambda^2 - \lambda - 2 = 0 \Rightarrow \alpha = 0$, $\beta = -2$. Thus, the differential equation is $t^2y'' + ty' - y = g(t)$. We can determine the nonhomogenous term g(t) by inserting the given particular solution $y_P(t) = 2t + 1$. Doing so, we obtain $t^2(0) + t(2) - 2(2t + 1) = -2t - 2 = g(t)$.

- 23. From the form of the general solution, the characteristic equation has roots $\lambda_1 = 2$ and $\lambda_2 = 3$. Therefore, the characteristic equation is $\lambda^2 - 5\lambda + 6 = 0$. Matching the characteristic equation with the general form given in equation (3), we see that $\alpha - 1 = -5$ and $\beta = 6$. Thus, the differential equation is $t^2y'' - 4ty' + 6y = g(t)$. We can determine the nonhomogenous term g(t) by inserting the given particular solution $y_p(t) = \ln t$. Doing so, we obtain $t^2y''_p - 4ty'_p + 6y_p = g(t)$ or $t^2(-t^{-2}) - 4t(t^{-1}) + 6\ln t = g(t)$. Thus, $g(t) = -5 + 6\ln t$.
- 24. Under the change of variable $t = e^z$, the differential equation transforms into Y''(z) - Y'(z) - 2Y(z) = 2. The general solution is $Y(z) = c_1 e^{-z} + c_2 e^{2z} - 1 \Rightarrow y = c_1 t^{-1} + c_2 t^2 - 1$.
- 25. Under the change of variable $t = e^z$, the differential equation $t^2y'' ty' + y = t^{-1}$ transforms into $Y''(z) - 2Y'(z) + Y(z) = (e^z)^{-1}$ or $Y''(z) - 2Y'(z) + Y(z) = e^{-z}$. Solving this constant coefficient equation using the techniques of Chapter 4, we find the general solution $Y(z) = c_1e^z + c_2ze^z + 0.25e^{-z}$. Since $z = \ln t$, the solution can be converted to $y(t) = c_1t + c_2t\ln t + 0.25t^{-1}$.
- 26. Under the change of variable $t = e^z$, the differential equation transforms into $Y''(z) + 9Y(z) = 10e^z$.

The general solution is $Y(z) = c_1 \cos(3z) + c_2 \sin(3z) + e^z \Rightarrow y = c_1 \cos(3\ln t) + c_2 \sin(3\ln t) + t$.

- 27. Under the change of variable $t = e^z$, the differential equation $t^2y'' 6y = 10t^{-2} 6$ transforms into $Y''(z) - Y'(z) - 6Y(z) = 10(e^z)^{-2} - 6$ or $Y''(z) - Y'(z) - 6Y(z) = 10e^{-2z} - 6$. Solving this constant coefficient equation using the techniques of Chapter 4, we find the general solution $Y(z) = c_1e^{3z} + c_2e^{-2z} - 2ze^{-2z} + 1$. Since $z = \ln t$, the solution can be converted to $y(t) = c_1t^3 + c_2t^{-2} - 2t^{-2}\ln t + 1$.
- 28. Under the change of variable $t = e^z$, the differential equation transforms into Y''(z) - 5Y'(z) + 6Y(z) = 3z. Therefore, $Y_c = c_1 e^{2z} + c_2 e^{3z}$, $Y_p = Az + B = \frac{1}{2}z + \frac{5}{12}$.

The general solution is $Y(z) = c_1 e^{2z} + c_2 e^{3z} + \frac{1}{2}z + \frac{5}{12} \Rightarrow y = c_1 t^2 + c_2 t^3 + \frac{1}{2} \ln t + \frac{5}{12}$

- 29. Under the change of variable $t = e^z$, the differential equation $t^2y'' + 8ty' + 10y = 36(t + t^{-1})$ transforms into $Y''(z) + 7Y'(z) + 10Y(z) = 36(e^z + e^{-z})$. Solving this constant coefficient equation using the techniques of Chapter 4, we find the general solution $Y(z) = c_1 e^{-5z} + c_2 e^{-2z} + 2e^z + 9e^{-z}$. Since $z = \ln t$, the solution can be converted to $y(t) = c_1 t^{-5} + c_2 t^{-2} + 2t + 9t^{-1}$.
- 30. The complementary solution is $y_c(t) = c_1t^{-1} + c_2t^3$. For a particular solution, use $y_p(t) = At + B$. Then, the general solution is $y(t) = c_1t^{-1} + c_2t^3 2t 2$. Imposing the initial conditions, we obtain $y(1) = c_1 + c_2 2 2 = 1$ and $y'(1) = -c_1 + 3c_2 2 = 3$. Solving, we find the solution of the initial value problem is $y(t) = \frac{5}{2}t^{-1} + \frac{5}{2}t^3 2t 2$. The interval of existence is $0 < t < \infty$.
- 31. Consider the initial value problem $t^2y'' 5ty' + 5y = 10$, y(1) = 4, y'(1) = 6. The complementary solution is $y_c(t) = c_1t^5 + c_2t$. By inspection, a particular solution is $y_p(t) = 2$. Thus, the general solution is $y(t) = c_1t^5 + c_2t + 2$. Imposing the initial conditions, we obtain $y(1) = c_1 + c_2 + 2 = 4$ and $y'(1) = 5c_1 + c_2 = 6$. Solving, we find the solution of the initial value problem is $y(t) = t^5 + t + 2$. The interval of existence is the entire *t*-axis.

- 32. The complementary solution is $y_C(t) = c_1 t^{-1} + c_2 t^{-1} \ln(-t)$. For a particular solution, use $y_P(t) = At + B$. Then, the general solution is $y_C(t) = c_1 t^{-1} + c_2 t^{-1} \ln(-t) + 2t + 9$. Imposing the initial conditions, we obtain $y(-1) = -c_1 2 + 9 = 1$ and $y'(-1) = -c_1 + c_2 + 2 = 0$. Solving, we find the solution of the initial value problem is $y(t) = 6t^{-1} + 4t^{-1} \ln(-t) + 2t + 9$. The interval of existence is $-\infty < t < 0$.
- 33. Consider the initial value problem $t^2y'' + 3ty' + y = 2t^{-1}$, y(1) = -2, y'(1) = 1. The complementary solution is $y_c(t) = c_1t^{-1} + c_2t^{-1}\ln t$. Using the change of variable $t = e^z$ as in Example 2, we find a particular solution $y_p(t) = t^{-1}(\ln t)^2$. Thus, the general solution is $y(t) = c_1t^{-1} + c_2t^{-1}\ln t + t^{-1}(\ln t)^2$. Imposing the initial conditions, we obtain $y(1) = c_1 = -2$ and $y'(1) = -c_1 + c_2 = 1$. Solving, we find the solution of the initial value problem is $y(t) = -2t^{-1} t^{-1}\ln t + t^{-1}(\ln t)^2$. The interval of existence is the positive *t*-axis.

$$34. \qquad \frac{dy}{dt} = \frac{dy}{dz}\frac{dz}{dt} = \frac{1}{t}\frac{dy}{dz}; \quad \frac{d^2y}{dt^2} = -\frac{1}{t^2}\frac{dy}{dz} + \frac{1}{t}\frac{d^2y}{dz^2}\frac{1}{t} = \frac{1}{t^2}\left(\frac{d^2y}{dz^2} - \frac{dy}{dz}\right).$$

$$\frac{d^3y}{dt^3} = -\frac{2}{t^3}\left(\frac{d^2y}{dz^2} - \frac{dy}{dz}\right) + \frac{1}{t^3}\left(\frac{d^3y}{dz^3} - \frac{d^2y}{dz^2}\right) = \frac{1}{t^3}\left(\frac{d^3y}{dz^3} - 3\frac{d^2y}{dz^2} + 2\frac{dy}{dz}\right).$$
Therefore,
$$t^3y''' + \alpha t^2y'' + \beta ty' + \gamma y = \frac{d^3Y}{dz^3} - 3\frac{d^2Y}{dz^2} + 2\frac{dY}{dz} + \alpha\left(\frac{d^2Y}{dz^2} - \frac{dY}{dz}\right) + \beta\left(\frac{dY}{dz}\right) + \gamma Y = 0$$

$$\Rightarrow \frac{d^3Y}{dz^3} + (\alpha - 3)\frac{d^2Y}{dz^2} + (\beta - \alpha + 2)\frac{dY}{dz} + \gamma Y = 0.$$

- 35. Consider the differential equation $t^3 y''' + 3t^2 y'' 3ty' = 0$. Assuming a solution of the form $y(t) = t^{\lambda}$, we obtain the characteristic equation $\lambda^3 4\lambda = 0$. The roots are $\lambda_1 = 0, \lambda_2 = 2$ and $\lambda_3 = -2$. The general solution is $y(t) = c_1 + c_2 t^2 + c_3 t^{-2}$, $t \neq 0$.
- 36. $\alpha = 0, \ \beta = 1, \ \gamma = -1 \Rightarrow Y''' 3Y'' + 3Y' Y = 0$. The characteristic equation is $\lambda^3 - 3\lambda^2 + 3\lambda - 1 = (\lambda - 1)^3 = 0$. The roots are $\lambda_1 = \lambda_2 = \lambda_3 = 1$. Therefore, $Y = c_1 e^z + c_2 z e^z + c_3 z^2 e^z \Rightarrow y = c_1 t + c_2 t \ln t + c_3 t (\ln t)^2$.
- 37. Consider the differential equation $t^3y'' + 3t^2y'' + ty' = 8t^2 + 12$. Using the change of variable $t = e^z$ as suggested in Exercise 34, the differential equation transforms to $Y''(z) = 8e^{2z} + 12$. The general solution is $Y(z) = c_1 + c_2 z + c_3 z^2 + e^{2z} + 2z^3$. Using the fact that $z = \ln t$, the general solution becomes $y(t) = c_1 + c_2 \ln t + c_3 (\ln t)^2 + t^2 + 2(\ln t)^3$, t > 0.
- 38. $\alpha = 6, \ \beta = 7, \ \gamma = 1 \Rightarrow Y''' + 3Y'' + 3Y' + Y = 0$. The characteristic equation is $(\lambda + 1)^3 = 0$. The roots are $\lambda_1 = \lambda_2 = \lambda_3 = -1$. Therefore, $Y_c = c_1 e^{-z} + c_2 z e^{-z} + c_3 z^2 e^{-z}, \ Y_p = Az + B \Rightarrow Y = c_1 e^{-z} + c_2 z e^{-z} + c_3 z^2 e^{-z} + z - 1$ $\Rightarrow y = c_1 t^{-1} + c_2 t^{-1} \ln t + c_3 t^{-1} (\ln t)^2 + \ln t - 1.$

Section 10.4

1. When put in standard form, the differential equation is $y'' + t^{-1}(\cos t)y' + t^{-1}y = 0$. Thus, t = 0 is the only singular point. The coefficient functions are $p(t) = t^{-1}(\cos t)$ and $q(t) = t^{-1}$. Clearly $tp(t) = \cos t$ and $t^2q(t) = t$ are analytic. Therefore, t = 0 is a regular singular point.

- 2. $p(t) = \frac{\sin t}{t^2}$ and $q(t) = \frac{1}{t^2}$. Since $tp(t) = \frac{\sin t}{t} = 1 \frac{t^2}{3!} + \frac{t^4}{5!} \frac{t^6}{7!} + \dots$ and $t^2q(t) = 1$ are both analytic at t = 0, then t = 0 is a regular singular point.
- 3. When put in standard form, the differential equation is $y'' + (t+1)^{-1}y' + (t^2-1)^{-1}y = 0$. Thus, t = 1 and t = -1 are singular points. The coefficient functions are $p(t) = (t+1)^{-1}$ and $q(t) = (t^2-1)^{-1}$. Clearly $(t-1)p(t) = (t-1)(t+1)^{-1}$ and $(t-1)^2q(t) = (t-1)(t+1)^{-1}$ are analytic at t = 1. Therefore, t = 1 is a regular singular point. Similarly, t = -1 is also a regular singular point.

4.
$$p(t) = \frac{t+1}{(t^2-1)^2} = \frac{1}{(t-1)^2(t+1)} \text{ and } q(t) = \frac{1}{(t-1)^2(t+1)^2}.$$

At $t = -1$, $(t+1)p(t) = \frac{1}{(t-1)^2} \to \frac{1}{4}$ and $(t+1)^2q(t) = \frac{1}{(t-1)^2} \to \frac{1}{4}$ as $t \to -1$. Therefore, $t = -1$ is a regular singular point.

At t = 1, $\lim_{t \to 1} (t-1)p(t) = \lim_{t \to 1} \frac{1}{(t-1)(t+1)}$ does not exist.. Therefore, t = 1 is an irregular singular point.

5. When put in standard form, the differential equation is $y'' + t^{-2}(1 - \cos t)y' + t^{-2}y = 0$. Thus, t = 0 is the only singular point. The coefficient functions are $p(t) = t^{-2}(1 - \cos t)$ and $q(t) = t^{-2}$. Using a Maclaurin series, $tp(t) = t^{-1}(1 - \cos t) = \frac{t}{2!} - \frac{t^3}{4!} + \frac{t^5}{6!} - \cdots$ is analytic at t = 0 as is $t^2q(t) = 1$. Therefore, t = 0 is a regular singular point.

6.
$$p(t) = q(t) = \frac{1}{|t|}$$
. Since neither $tp(t) = \frac{t}{|t|}$ nor $t^2q(t) = \frac{t^2}{|t|}$ are analytic at $t = 0$, there is an irregular singular point at $t = 0$.

7. When put in standard form, the differential equation is $y'' + (1 - e^t)^{-1}y' + (1 - e^t)^{-1}y = 0$. Thus, t = 0 is the only singular point. The coefficient functions are $p(t) = (1 - e^t)^{-1}$ and $q(t) = (1 - e^t)^{-1}$. Using a Maclaurin series,

$$tp(t) = t(1 - e^{t})^{-1} = t\left(-t - \frac{t^{2}}{2!} - \frac{t^{3}}{3!} - \cdots\right)^{-1} = \left(-1 - \frac{t}{2!} - \frac{t^{2}}{3!} - \cdots\right)^{-1}$$
 is analytic at $t = 0$ as is $t^{2}q(t)$..
Therefore, $t = 0$ is a regular singular point.
 $t + 2 = -1$ 1 1

$$p(t) = \frac{t+2}{(2-t)(2+t)} = \frac{-1}{(t-2)} \text{ and } q(t) = \frac{1}{(4-t^2)^2} = \frac{1}{(t-2)^2(t+2)^2}.$$

At $t = -2$, $(t+2)p(t) = \frac{-(t+2)}{(t-2)} \to 0$ and $(t+2)^2q(t) = \frac{1}{(t-2)^2} \to \frac{1}{16}$ as $t \to -2$. Therefore,
 $t = -2$ is a regular singular point.

At
$$t=2$$
, $(t-2)p(t) = -1$ and $(t-2)^2 q(t) = \frac{1}{(t+2)^2} \rightarrow \frac{1}{16}$ as $t \rightarrow 2$. Therefore, $t=2$ is a regular circular point.

singular point.

9. When put in standard form, the differential equation is $y'' + (1 - t^2)^{-1/3} y' + (1 - t^2)^{-1/3} ty = 0$. Thus, t = 1 and t = -1 are singular points. The coefficient functions are $p(t) = (1 - t^2)^{-1/3}$ and $q(t) = t(1 - t^2)^{-1/3}$. Neither of the functions $(t \pm 1)p(t)$ or $(t \pm 1)^2q(t)$ is analytic at $t = \pm 1$. Therefore, t = 1 is an irregular singular point as is t = -1.

- 10. p(t) = 1, $q(t) = t^{\frac{1}{3}}$. Since tp(t) = t is analytic at t = 0, but $t^2q(t) = t^{\frac{2}{3}}$ is not, there is an irregular singular point at t = 0.
- 11. For this problem, $p(t) = (\sin 2t) / P(t)$. Since we know there are singular points at t = 0 and $t = \pm 1$, we know that P(t) must be zero at those points. Since tp(t) is analytic at t = 0 and since $(\sin 2t) / t$ tends to 2 as $t \to 0$, it follows that t^2 is a factor of P(t). Similarly, (t-1)p(t) is <u>not</u> analytic at t = 1 and thus $(t-1)^2$ must be a factor of P(t). The same argument applies at t = -1 and thus $(t+1)^2$ must be a factor of P(t). In summary, $P(t) = t^2(t-1)^2(t+1)^2 = t^2(t^2-1)^2$.
- 12. P(t) = 1.
- 13. For this problem, $p(t) = [tP(t)]^{-1}$. Since we know there are singular points at $t = \pm 1$, we know that P(t) must be zero at $t = \pm 1$. Since $t^2q(t) = 1/t$, it follows [without any assumptions on P(t)] that t = 0 is an irregular singular point. Since, (t-1)p(t) is <u>not</u> analytic at t = 1 it follows that $(t-1)^2$ must be a factor of P(t). The same argument applies at t = -1 and thus $(t+1)^2$ must be a factor of P(t). In summary, $P(t) = (t-1)^2(t+1)^2 = (t^2-1)^2$.
- 14(a). t = 0 is a regular singular point if n = 1.
- 14(b). t = 0 is an irregular singular point if $n \ge 2$.
- 15. For this problem, $tp(t) = t/(\sin t)$ and $t^2q(t) = 1/t^{n-2}$. Since $t/(\sin t)$ is analytic at t = 0, it follows that t = 0 is a regular singular point if n = 0, 1, 2 and an irregular singular point if n > 2.

16 (a).
$$tp(t) = -\frac{1}{2}$$
 and $t^2q(t) = \frac{t+1}{2} \rightarrow \frac{1}{2}$ as $t \rightarrow 0$. Thus, $t = 0$ is a regular singular point.

16 (b). Substituting the series $y = \sum_{n=0}^{\infty} a_n t^{\lambda + n}$ into the differential equation, we obtain

$$[2\lambda(\lambda-1)-\lambda+1]a_0t^{\lambda} + \sum_{n=1}^{\infty} [(2(\lambda+n)(\lambda+n-1)-(\lambda+n)+1)a_n + a_{n-1}]t^{\lambda+n} = 0.$$
 Therefore, the indicial equation are

indicial equation is $F(\lambda) = 0$ where $F(\lambda) = 2\lambda^2 - 3\lambda + 1$. The roots of the indicial equation are $\lambda_1 = \frac{1}{2}$ and $\lambda_2 = 1$.

16 (c).
$$a_n = \frac{-a_{n-1}}{F(\lambda+n)} = \frac{-a_{n-1}}{2(\lambda+n)^2 - 3(\lambda+n) + 1}, n = 1, 2, \dots$$

For
$$\lambda_2 = 1$$
, the recurrence relation is $a_n = \frac{\alpha_{n-1}}{2(1+n)^2 - 3(1+n) + 1}$, $n = 1, 2, ...$

16 (d).
$$y(t) = a_0 \left[t - \frac{t^2}{3} + \frac{t^3}{30} + \cdots \right]$$

- 17 (a). For this problem, tp(t) = 1 and $t^2q(t) = (t-1)/4$. Thus, t = 0 is a regular singular point.
- 17 (b). Substituting the series $y = \sum_{n=0}^{\infty} a_n t^{\lambda+n}$ into the differential equation $4t^2y'' + 4ty' + (t-1)y = 0$, we obtain $(4\lambda^2 - 1)a_0t^{\lambda} + \sum_{n=1}^{\infty} [(4(\lambda + n)^2 - 1)a_n + a_{n-1}]t^{\lambda+n} = 0$. Therefore, the indicial equation is $F(\lambda) = 0$ where $F(\lambda) = 4\lambda^2 - 1$. The roots of the indicial equation are $\lambda_1 = -1/2$ and $\lambda_2 = 1/2$.

17 (c). $a_n = \frac{-a_{n-1}}{F(\lambda + n)} = \frac{-a_{n-1}}{4(\lambda + n)^2 - 1}, n = 1, 2, ...$ For $\lambda = 1/2$, the recurrence relation is $a_n = -a_{n-1}/[4(n+0.5)^2 - 1], n = 1, 2, ...$ 17 (d). $y(t) = a_0[t^{1/2} - (1/8)t^{3/2} + (1/192)t^{5/2} - \cdots].$ 18 (a). $tp(t) = \frac{t}{16}$ and $t^2q(t) = \frac{3}{16}$. Both limits exist as $t \to 0$. Thus, t = 0 is a regular singular point. 18 (b). Substituting the series $y = \sum_{n=0}^{\infty} a_n t^{\lambda + n}$ into the differential equation, we obtain $[16\lambda(\lambda-1)+3]a_0t^{\lambda} + \sum_{n=1}^{\infty} [(16(\lambda+n)(\lambda+n-1)+3)a_n + (\lambda+n-1)a_{n-1}]t^{\lambda+n} = 0.$ Therefore, the indicial equation is $F(\lambda) = 0$ where $F(\lambda) = 16\lambda^2 - 16\lambda + 3$. The roots of the indicial equation are $\lambda_1 = \frac{1}{4}$ and $\lambda_2 = \frac{3}{4}$. 18 (c). $a_n = \frac{-(\lambda + n - 1)a_{n-1}}{F(\lambda + n)} = \frac{-(\lambda + n - 1)a_{n-1}}{16(\lambda + n)(\lambda + n - 1) + 3}, n = 1, 2, ...$ For $\lambda_2 = \frac{3}{4}$, the recurrence relation is $a_n = \frac{-(3/4 + n - 1)a_{n-1}}{16(3/4 + n)(3/4 + n - 1) + 3}$, n = 1, 2, ..., ...18 (d). $y(t) = a_0 \left[t^{\frac{3}{4}} - \frac{t^{\frac{7}{4}}}{32} + \frac{7t^{\frac{11}{4}}}{10240} + \cdots \right], t > 0.$ 19 (a). For this problem, tp(t) = 1 and $t^2q(t) = t - 9$. Thus, t = 0 is a regular singular point. 19 (b). Substituting the series $y = \sum_{n=0}^{\infty} a_n t^{\lambda + n}$ into the differential equation $t^2 y'' + ty' + (t - 9)y = 0$, we obtain $(\lambda^2 - 9)a_0t^{\lambda} + \sum_{n=1}^{\infty} [((\lambda + n)^2 - 9)a_n + a_{n-1}]t^{\lambda + n} = 0$. Therefore, the indicial equation is $F(\lambda) = 0$ where $F(\lambda) = \lambda^2 - 9$. The roots of the indicial equation are $\lambda_1 = -3$ and $\lambda_2 = 3$. 19 (c). $a_n = \frac{-a_{n-1}}{F(\lambda+n)} = \frac{-a_{n-1}}{(\lambda+n)^2 - 9}, n = 1, 2, \dots$ For $\lambda = 3$, the recurrence relation is $a_n = -a_{n-1}/[(n+3)^2 - 9], n = 1, 2, \dots$

19 (d). $y(t) = a_0[t^3 - (1/7)t^4 + (1/112)t^5 - \cdots].$

20 (a). tp(t) = t + 2 and $t^2q(t) = -t$. Both limits exist as $t \to 0$. Thus, t = 0 is a regular singular point.

20 (b). Substituting the series $y = \sum_{n=0}^{\infty} a_n t^{\lambda + n}$ into the differential equation, we obtain

$$[\lambda(\lambda-1)+2\lambda]a_0t^{\lambda-1} + \sum_{n=0}^{\infty} \{ [(\lambda+n+1)(\lambda+n)+2(\lambda+n+1)]a_{n+1} + (\lambda+n-1)a_n \} t^{\lambda+n} = 0.$$

Therefore, the indicial equation is $F(\lambda) = 0$ where $F(\lambda) = \lambda^2 + \lambda$. The roots of the indicial equation are $\lambda_1 = -1$ and $\lambda_2 = 0$.

20 (c).
$$a_{n+1} = \frac{-(\lambda + n - 1)a_n}{(\lambda + n + 2)(\lambda + n + 1)}, n = 0, 1, 2, ...$$

For $\lambda = 0$ the recurrence relation is $a_n = \frac{-(n - 1)a_n}{(n - 1)(n - 1)}$

For $\lambda_2 = 0$, the recurrence relation is $a_n = \frac{-(n-1)a_n}{(n+2)(n+1)}$, $n = 0, 1, 2, \dots, \dots$

20 (d).
$$y(t) = a_0 \left[1 + \frac{t}{2} \right]$$
.
21 (a). For this problem, $tp(t) = 3$ and $t^2q(t) = 2t + 1$. Thus, $t = 0$ is a regular singular point.
21 (b). Substituting the series $y = \sum_{n=0}^{\infty} a_n t^{\lambda+n}$ into the differential equation $t^2y'' + 3ty' + (2t+1)y = 0$,
we obtain $(\lambda^2 + 2\lambda + 1)a_0t^{\lambda} + \sum_{n=1}^{\infty} [((\lambda + n)^2 + 2(\lambda + n) + 1)a_n + 2a_{n-1}]t^{\lambda+n} = 0$. Therefore, the
indicial equation is $F(\lambda) = 0$ where $F(\lambda) = \lambda^2 + 2\lambda + 1$. The roots of the indicial equation are
 $\lambda_1 = \lambda_2 = -1$.
21 (c). $a_n = \frac{-2a_{n-1}}{F(\lambda+n)} = \frac{-2a_{n-1}}{((\lambda+n)^{1/2}}, n = 1, 2, ...$
For $\lambda = -1$, the recurrence relation is $a_n = -2a_{n-1}/n^2, n = 1, 2, ...$.
21 (d). $y(t) = a_0[t^{-1} - 2 + t - \cdots]$.
22 (a). Both limits exist as $t \to 0$. Thus, $t = 0$ is a regular singular point.
22 (b). Substituting the series $y = \sum_{n=0}^{\infty} a_n t^{\lambda+n}$ into the differential equation, we obtain
 $[\lambda(\lambda-1) - \lambda - 3]a_0t^{\lambda} + \sum_{n=1}^{\infty} [(\lambda+n)^2 - 2(\lambda+n) - 3)]a_n + (\lambda+n-1)a_{n-1}]t^{\lambda+n} = 0$. Therefore, the
indicial equation is $F(\lambda) = 0$ where $F(\lambda) = \lambda^2 - 2\lambda - 3$. The roots of the indicial equation are
 $\lambda_n = -1$ and $\lambda_n = 3$.
22 (c). $a_n = \frac{-(\lambda+n-1)a_{n-1}}{F(\lambda+n)} = \frac{-(\lambda+n-1)a_{n-1}}{n(\lambda+n)^2 - 2(\lambda+n) - 3}, n = 1, 2, ...$
For $\lambda_2 = 3$, the recurrence relation is $a_n = \frac{-(n+2)a_{n-1}}{n(n+4)}, n = 1, 2, ...,$
For $\lambda_2 = 3$, the recurrence relation is $a_n = \frac{-(n+2)a_{n-1}}{n(n+4)}, n = 1, 2, ...,$
23 (a). For this problem, $tp(t) = t - 2$ and $t^2q(t) = t$. Thus, $t = 0$ is a regular singular point.
23 (b). Substituting the series $y = \sum_{n=0}^{\infty} a_n t^{\lambda+n}$ into the differential equation $ty'' + (t-2)y' + y = 0$, we
obtain $(\lambda^2 - 3\lambda)a_0t^{\lambda-1} + \sum_{n=0}^{\infty} (\lambda + n + 1)[(\lambda + n - 2)a_n + a_{n-1}]t^{\lambda+n} = 0$. Therefore, the indicial
equation is $F(\lambda) = 0$ where $F(\lambda) = \lambda^2 - 3\lambda$. The roots of the indicial equation are
 $\lambda_1 = 0$ and $\lambda_2 = 3$.
23 (c). $a_{n+1} = \frac{-(\lambda + n + 1)a_n}{(\lambda - n + 1)(\lambda + n - 2)} = \frac{-a_n}{(\lambda - n-2)}, n = 0, 1, 2,$
For $\lambda = 3$, the recurrence relation is $a_n =$

24 (b).
$$t^{2}y'' - 2\sin ty' + (2 + t)y = [\lambda(\lambda - 1)a_{t}t^{\lambda} + (\lambda + 1)\lambda a_{t}t^{\lambda+1} + (\lambda + 2)(\lambda + 1)a_{2}t^{\lambda+2} + \cdots]$$

 $-2\left[t - \frac{t^{2}}{3!} + \cdots\right] [\lambda a_{0}t^{\lambda-1} + (\lambda + 1)a_{1}t^{\lambda} + (\lambda + 2)a_{2}t^{\lambda+1} + \cdots\right] + (2 + t)[a_{0}t^{\lambda} + a_{1}t^{\lambda+1} + a_{2}t^{\lambda+2} + \cdots] = 0.$
For $t^{\lambda}: \lambda(\lambda + 1)a_{0} - 2\lambda a_{0} + 2a_{0} = (\lambda^{2} - 3\lambda + 2)a_{0} = (\lambda - 1)(\lambda - 2)a_{0} = 0.$
For $t^{\lambda-1}: \lambda(\lambda + 1)a_{1} - 2(\lambda + 1)a_{1} + 2a_{1} + a_{0} = [(\lambda + 1)(\lambda - 2) + 2]a_{1} + a_{0} = 0.$
For $t^{\lambda-2}: (\lambda + 1)a_{2} - 2(\lambda + 2)a_{2} + \frac{2}{3!}\lambda a_{0} + 2a_{2} + a_{1} = 0.$
Therefore, the indicial equation is $F(\lambda) = (\lambda - 1)(\lambda - 2) = 0$. The roots of the indicial equation are $\lambda_{1} = 1$ and $\lambda_{2} = 2.$
24 (c). $y(t) = a_{0}[t^{2} - \frac{t^{2}}{2} - \frac{t^{4}}{6} - \cdots]$
25 (a). For this problem, $tp(t) = 4$ and $t^{2}q(t) = te^{t}$. Thus, $t = 0$ is a regular singular point.
25 (b). Given the series $y = \sum_{n=0}^{\infty} a_{n}t^{n+n}$, we have $ty'' = \lambda(\lambda - 1)a_{0}t^{\lambda-1} + (\lambda + 1)\lambda a_{1}t^{\lambda} + \cdots, -\frac{-4y'}{2}\lambda a_{0}t^{\lambda-1} + (\lambda + 1)a_{1}t^{\lambda} + \cdots, and$
 $e^{t}y = [1 + t + (1/2)t^{2} + \cdots][a_{0}t^{\lambda} + a_{1}t^{\lambda+1} + \cdots] = a_{0}t^{\lambda} + (a_{1} + 1)t^{\lambda+1} + \cdots.$
Therefore, substituting the series into the differential equation $ty'' - 4y' + e^{t}y = 0$, we obtain $\lambda(\lambda - 5)a_{0}t^{\lambda-1} + (\lambda + 1)A_{1}t^{\lambda} + \cdots = 0$.
The roots of the indicial equation are $\lambda_{1} = 0$ and $\lambda_{2} = 5$.
25 (c). $y(t) = a_{0}[t^{2} - (1/6)t^{b} - (5/84)t^{7} - \cdots]$
26 (a). $tp(t) = -\frac{t}{\sin t} \rightarrow -1$ as $t \rightarrow 0$ and $t^{2}q(t) = \frac{t^{2}}{\sin t} \rightarrow 0$ as $t \rightarrow 0$. Thus, $t = 0$ is a regular singular point.
26 (b). $(\sin ty)'' - y' + y = \left[\frac{\left[t - \frac{t^{3}}{3!} + \frac{t^{5}}{5!} - 1\right] a_{0}(\lambda - 1)a_{0} - \lambda a_{0} = (\lambda^{2} - 2)\lambda a_{0} = \lambda(\lambda - 2)a_{0} = 0.$
For $t^{1-1}: \lambda(\lambda - 1)a_{0} - \lambda a_{0} = (\lambda^{2} - 2)\lambda a_{0} = \lambda(\lambda - 2)a_{0} = 0.$
For $t^{1-1}: \lambda(\lambda - 1)a_{0} - \lambda a_{0} = (\lambda^{2} - 2)\lambda a_{0} = \lambda(\lambda - 2)a_{0} = 0.$
For $t^{1-1}: \lambda(\lambda - 1)a_{0} - \lambda a_{0} = (\lambda^{2} - 2)\lambda a_{0} = \lambda(\lambda - 2)a_{0} = 0.$
For $t^{1-1}: \lambda(\lambda - 1)a_{0} - \lambda a_{0} = (\lambda^{2} - 2)\lambda a_{0} = \lambda(\lambda - 2)a_{0} =$

27 (b). Given the series
$$y = \sum_{n=0}^{\infty} a_n t^{\lambda+n}$$
, we have
 $(1-e^t)y'' = -\lambda(\lambda-1)a_0 t^{\lambda-1}[-0.5\lambda(\lambda-1)a_0 - (\lambda+1)\lambda a_1]t^{\lambda} + \cdots,$
 $0.5y' = 0.5[\lambda a_0 t^{\lambda-1} + (\lambda+1)a_1 t^{\lambda} + \cdots].$

Therefore, substituting the series into the differential equation $(1 - e^t)y'' + (1/2)y' + y = 0$, we obtain $-\lambda(\lambda - 1.5)a_0t^{\lambda - 1} + [-(\lambda + 1)(\lambda - 0.5)a_1 + 0.5(-\lambda^2 + \lambda + 2)a_0]t^{\lambda} + \dots = 0$. Therefore, the indicial equation is $\lambda^2 - 1.5\lambda = 0$. The roots of the indicial equation are $\lambda_1 = 0$ and $\lambda_2 = 1.5$. 27 (c). $y(t) = a_0[t^{3/2} + (1/2)t^{5/2} - (17/96)t^{7/2} + \dots]$

Section 10.5

- 1 (a). When put in standard form, the differential equation is $y'' (2t)^{-1}(1+t)y' + t^{-1}y = 0$. Therefore, t = 0 is a regular singular point.
- 1 (b). Substituting the series $y = \sum_{n=0}^{\infty} a_n t^{n+\lambda}$ into the differential equation, we obtain

$$(2\lambda^2 - 3\lambda)a_0t^{\lambda - 1} + \sum_{n=0}^{\infty} [(\lambda + n + 1)(2(\lambda + n) - 1)a_{n+1} - (\lambda + n - 2)a_n]t^{n+\lambda} = 0.$$

Therefore, the exponents at the singularity are $\lambda_1 = 0$ and $\lambda_2 = 1.5$.

- 1 (c). The recurrence relation is $a_{n+1} = [(\lambda + n 2)a_n]/[(\lambda + n + 1)(2\lambda + 2n 1)], n = 0, 1, ...$
- 1 (d). For $\lambda_1 = 0$, $y = a_0[1 + 2t t^2]$ is a polynomial solution. For $\lambda_2 = 3/2$, $y = a_0[t^{3/2} - (1/10)t^{5/2} - (1/280)t^{7/2} - \cdots]$.
- 1 (e). Note that tp(t) and $t^2q(t)$ are analytic everywhere. Thus, see equations (18)-(21), the second series found in part (d) converges for 0 < t.
- 2 (b). Substituting the series into the differential equation, we obtain

$$[2\lambda(\lambda - 1) + 5\lambda]a_0t^{\lambda - 1} + [2\lambda(\lambda + 1) + 5(\lambda + 1)]a_1t^{\lambda} + \sum_{n=1}^{\infty} [2(\lambda + n + 1)(\lambda + n + 5/2)a_{n+1} + 3a_{n-1}]t^{n+\lambda} = 0.$$
 Therefore, $F(\lambda) = 2\lambda(\lambda + 3/2) \Longrightarrow \lambda_1 = -\frac{3}{2}, \ \lambda_2 = 0.$

2 (c). The recurrence relation is
$$a_{n+1} = \frac{-3a_{n-1}}{2(\lambda + n + 1)(\lambda + n + 5/2)}$$
, $n = 1, 2, ...$ and $(\lambda + 1)(2\lambda + 5)a_1 = 0$

- 2 (d). For $\lambda_1 = -\frac{3}{2}$, $y = a_0[t^{-3/2} (3/2)t^{1/2} + (9/40)t^{5/2} + \cdots]$. For $\lambda_2 = 0$, $y = a_0[1 - (3/14)t^2 + (9/616)t^4 - \cdots]$.
- 2 (e). The series converges for 0 < t.
- 3 (a). When put in standard form, the differential equation is $y'' (3t)^{-1}y' + (3t^2)^{-1}(1+t)y = 0$. Therefore, t = 0 is a regular singular point.
- 3 (b). Substituting the series $y = \sum_{n=0}^{\infty} a_n t^{n+\lambda}$ into the differential equation, we obtain $(3\lambda^2 - 4\lambda + 1)a_0t^{\lambda} + \sum_{n=1}^{\infty} \{ [3(\lambda + n)(\lambda + n - 1) - \lambda - n + 1]a_n + a_{n-1} \} t^{n+\lambda} = 0.$

Therefore, the exponents at the singularity are $\lambda_1 = 1/3$ and $\lambda_2 = 1$.

- 3 (c). The recurrence relation is $a_n = -a_{n-1}/[3(\lambda + n)(\lambda + n 1) \lambda n + 1], n = 1, 2, ...$
- 3 (d). For $\lambda_1 = 1/3$, $y = a_0[t^{1/3} t^{4/3} + (1/8)t^{7/3} + \cdots]$. For $\lambda_2 = 1$, $y = a_0[t - (1/5)t^2 + (1/80)t^3 + \cdots]$.
- 3 (e). Note that tp(t) and $t^2q(t)$ are analytic everywhere. Thus, see equations (18)-(21), the series found in part (d) converge for 0 < t.

4 (b). Substituting the series into the differential equation, we obtain

$$\begin{bmatrix} 6\lambda(\lambda-1)+\lambda+1 \end{bmatrix} a_0 t^{\lambda} + \sum_{n=1}^{\infty} \{ [6(\lambda+n)(\lambda+n-1)+(\lambda+n)+1]a_n - a_{n-1} \} t^{n+\lambda} = 0. \text{ Therefore,} \\ F(\lambda) = 6\lambda^2 - 5\lambda + 1 \Longrightarrow \lambda_1 = \frac{1}{3}, \ \lambda_2 = \frac{1}{2}.$$

4 (c). The recurrence relation is
$$a_n = \frac{a_{n-1}}{6(\lambda + n)(\lambda + n - 1) + (\lambda + n) + 1}$$
, $n = 1, 2, ...$
4 (d). For $\lambda_1 = \frac{1}{3}$, $y = a_0[t^{1/3} + (1/5)t^{4/3} + (1/110)t^{7/3} + \cdots]$.
For $\lambda_2 = \frac{1}{2}$, $y = a_0[t^{1/2} + (1/7)t^{3/2} + (1/182)t^{5/2} + \cdots]$.

- 4 (e). The series converges for 0 < t.
- 5 (a). When put in standard form, the differential equation is $y'' 5t^{-1}y' + t^{-2}(9 + t^2)y = 0$. Therefore, t = 0 is a regular singular point.

5 (b). Substituting the series
$$y = \sum_{n=0}^{\infty} a_n t^{n+\lambda}$$
 into the differential equation, we obtain
 $(\lambda^2 - 6\lambda + 9)a_0t^{\lambda} + [(\lambda + 1)\lambda - 5(\lambda + 1) + 9]a_1t^{\lambda+1} + \sum_{n=2}^{\infty} \{[(\lambda + n)(\lambda + n - 1) - 5(\lambda + n) + 9]a_n + a_{n-1}\}t^{n+\lambda} = 0$.
Therefore, the exponents at the singularity are $\lambda = \lambda = 3$.

Therefore, the exponents at the singularity are $\lambda_1 = \lambda_2 = 3$.

- 5 (c). The recurrence relation is $a_n = -a_{n-2}/(\lambda + n 3)^2$, n = 2, 3, ...
- 5 (d). For $\lambda_1 = 3$, $y = a_0[t^3 (1/4)t^5 + (1/64)t^7 + \cdots]$.
- 5 (e). Note that tp(t) and $t^2q(t)$ are analytic everywhere. Thus, see equations (18)-(21), the series found in part (d) converges for 0 < t.
- 6 (b). Substituting the series into the differential equation, we obtain

$$\begin{split} & \left[4\lambda(\lambda-1)+8\lambda+1\right]a_nt^{\lambda}+\sum_{n=1}\left\{\left[4(\lambda+n)^2+4(\lambda+n)+1\right]a_n-2a_{n-1}\right\}t^{n+\lambda}=0\,. \text{ Therefore,} \\ & F(\lambda)=4\lambda^2+4\lambda+1 \Longrightarrow \lambda_1=\lambda_2=-\frac{1}{2}. \\ & \text{ The recurrence relation is } a_n=\frac{2a_{n-1}}{\left(2(\lambda+n)+1\right)^2}, \ n=1,2,... \end{split}$$

6 (d). For
$$\lambda_1 = -\frac{1}{2}$$
, $y = a_0[t^{-1/2} + (1/2)t^{1/2} + (1/8)t^{3/2} + \cdots]$.

6 (e). The series converges for 0 < t.

6 (c).

7 (a). When put in standard form, the differential equation is $y'' - 2t^{-1}y' + t^{-2}(2+t)y = 0$. Therefore, t = 0 is a regular singular point.

7 (b). Substituting the series
$$y = \sum_{n=0}^{\infty} a_n t^{n+\lambda}$$
 into the differential equation, we obtain
 $(\lambda^2 - 3\lambda + 2)a_n t^{\lambda} + \sum_{n=0}^{\infty} \{ [(\lambda + n)^2 - 3(\lambda + n) + 2]a_n + a_n \} t^{n+\lambda} = 0$

$$(\lambda^{2} - 3\lambda + 2)a_{0}t^{2} + \sum_{n=1}^{\infty} \{[(\lambda + n)^{2} - 3(\lambda + n) + 2]a_{n} + a_{n-1}\}t^{n+n} = 0.$$

Therefore, the exponents at the singularity are $\lambda_1 = 1$ and $\lambda_2 = 2$.

- 7 (c). The recurrence relation is $a_n = -a_{n-1}/[(\lambda + n 1)(\lambda + n 2)], n = 1, 2, ...$
- 7 (d). For $\lambda_2 = 2$, $y = a_0[t^2 (1/2)t^3 + (1/12)t^4 + \cdots]$.

- 7 (e). Note that tp(t) and $t^2q(t)$ are analytic everywhere. Thus, see equations (18)-(21), the series found in part (d) converges for 0 < t.
- 8 (b). Substituting the series into the differential equation, we obtain

$$\left[\lambda(\lambda-1)+4\lambda\right]a_{0}t^{\lambda}+\left[\lambda(\lambda+1)+4(\lambda+1)\right]a_{1}t^{\lambda+1}+\sum_{n=1}\left\{\left[(\lambda+n+1)(\lambda+n+4)\right]a_{n+1}-2a_{n-1}\right\}t^{n+\lambda}=0$$

Therefore, $F(\lambda) = \lambda^2 + 3\lambda \Rightarrow \lambda_1 = -3$, $\lambda_2 = 0$.

8 (c). The recurrence relation is
$$a_{n+1} = \frac{2a_{n-1}}{(\lambda + n + 1)(\lambda + n + 4)}$$
, $n = 1, 2, ...$ and $(\lambda + 1)(\lambda + 4)a_1 = 0$

- 8 (d). For $\lambda_2 = 0$, $y = a_0[1 + (1/5)t^2 + (1/70)t^4 + \cdots]$.
- 8 (e). The series converges for 0 < t.
- 9 (a). When put in standard form, the differential equation is $y'' + t^{-1}y' t^{-2}(1+t^2)y = 0$. Therefore, t = 0 is a regular singular point.

9 (b). Substituting the series
$$y = \sum_{n=0}^{\infty} a_n t^{n+\lambda}$$
 into the differential equation, we obtain

$$(\lambda^2 - 1)a_0t^{\lambda} + [(\lambda + 1)^2 - 1]a_1t^{\lambda + 1} + \sum_{n=2}^{\infty} \{[(\lambda + n)^2 - 1]a_n - a_{n-2}\}t^{n+\lambda} = 0$$

Therefore, the exponents at the singularity are $\lambda_1 = -1$ and $\lambda_2 = 1$.

- 9 (c). The recurrence relation is $a_n = a_{n-2} / [(\lambda + n)^2 1], n = 2, 3, ...$ 9 (d). For $\lambda_2 = 1$, $y = a_0 [t + (1/8)t^3 + (1/192)t^4 + \cdots]$.
- 9 (e). Note that tp(t) and $t^2q(t)$ are analytic everywhere. Thus, see equations (18)-(21), the series found in part (d) converges for 0 < t.
- 10 (b). Substituting the series into the differential equation, we obtain $\begin{bmatrix} \lambda(\lambda-1) + 5\lambda + 4 \end{bmatrix} a_0 t^{\lambda} + \begin{bmatrix} \lambda(\lambda+1) + 5(\lambda+1) + 4 \end{bmatrix} a_1 t^{\lambda+1} + \sum_{n=2}^{\infty} \{ [(\lambda+n)(\lambda+n+4) + 4] a_n - a_{n-2} \} t^{n+\lambda} = 0. \text{ Therefore, } F(\lambda) = \lambda^2 + 4\lambda + 4 \Rightarrow \lambda_1 = \lambda_2 = -2.$

10 (c). The recurrence relation is $a_n = \frac{a_{n-2}}{(\lambda + n + 2)^2}$, n = 2, 3, ... and $(\lambda + 1)(\lambda + 5)a_1 = 0$

- 10 (d). For $\lambda = -2$, $y = a_0[t^{-2} + (1/4) + (1/64)t^2 + \cdots]$.
- 10 (e). The series converges for 0 < t.
- 11 (a). When put in standard form, the differential equation is $y'' + t^{-1}y' t^{-2}(16+t)y = 0$. Therefore, t = 0 is a regular singular point.

11 (b). Substituting the series $y = \sum_{n=0}^{\infty} a_n t^{n+\lambda}$ into the differential equation, we obtain

$$(\lambda^2 - 16)a_0t^{\lambda} + \sum_{n=1}^{\infty} \{ [(\lambda + n)^2 - 16]a_n - a_{n-1} \} t^{n+\lambda} = 0$$

Therefore, the exponents at the singularity are $\lambda_1 = -4$ and $\lambda_2 = 4$.

11 (c). The recurrence relation is $a_n = a_{n-1} / [(\lambda + n)^2 - 16], n = 1, 2,$

- 11 (d). For $\lambda_2 = 4$, $y = a_0[t^4 + (1/9)t^5 + (1/180)t^6 + \cdots]$.
- 11 (e). Note that tp(t) and $t^2q(t)$ are analytic everywhere. Thus, see equations (18)-(21), the series found in part (d) converges for 0 < t.

12 (b). Substituting the series into the differential equation, we obtain

$$\begin{bmatrix} 8\lambda^{2} - 2\lambda - 1 \end{bmatrix} a_{0}t^{\lambda} + \sum_{n=1}^{\infty} \left\{ [8(\lambda + n)^{2} - 2(\lambda + n) - 1]a_{n} + a_{n-1} \right\} t^{n+\lambda} = 0. \text{ Therefore,} F(\lambda) = 8\lambda^{2} - 2\lambda - 1 \Rightarrow \lambda_{1} = -\frac{1}{4}, \ \lambda_{2} = \frac{1}{2}.$$

12 (c). The recurrence relation is $a_{n} = \frac{-a_{n-1}}{(4(\lambda + n) + 1)(2(\lambda + n) - 1)}, \ n = 1, 2, ...$
12 (d). For $\lambda_{1} = -\frac{1}{4}, \ y = a_{0}[t^{-1/4} - (1/2)t^{3/4} + (1/40)t^{7/4} + \cdots].$
For $\lambda_{2} = \frac{1}{2}, \ y = a_{0}[t^{1/2} - (1/14)t^{3/2} + (1/616)t^{5/2} + \cdots].$

- 12 (e). The series converges for 0 < t.
- 13 (a). When put in standard form, the differential equation is $y'' t^{-1}(t^2 + 1)^{-1}(1 + t)y' + t^{-1}(t^2 + 1)^{-1}y = 0$. Therefore, t = 0 is a regular singular point and all other points are ordinary points.
- 13 (b). Substituting the series $y = \sum_{n=0}^{\infty} a_n t^{n+\lambda}$ into the differential equation, we obtain

$$\sum_{n=1}^{\infty} (\lambda + n - 1)(\lambda + n - 2)a_{n-1}t^{n+\lambda} + \sum_{n=-1}^{\infty} (\lambda + n + 1)(\lambda + n - 1)a_{n+1}t^{n+\lambda} - \sum_{n=0}^{\infty} (\lambda + n - 1)a_nt^{n+\lambda} = 0$$

Therefore, indicial equation is $\lambda^2 - 2\lambda = 0$. The exponents at the singularity are $\lambda_1 = 0$ and $\lambda_2 = 2$.

- 14 (a). $tp(t) = \frac{\sin 3t}{t} \to 3$ as $t \to 0$ and $t^2q(t) = \cos t \to 1$ as $t \to 0$. Thus, t = 0 is a regular singular point.
- 14 (b). $t^2y'' + \left(3t \frac{(3t)^3}{3!} + ...\right)y' + \left(1 \frac{t^2}{2!} + ...\right)y = 0.$

Therefore, indicial equation $(\lambda + 1)^2 = 0 \Longrightarrow \lambda_1 = \lambda_2 = -1$.

- 15 (a). When put in standard form, the differential equation is $y'' (t^2 4)^{-2}y' + (t^2 4)^{-2}y = 0$. Therefore, t = 2 and t = -2 are irregular singular points. All other points are ordinary points.
- 16 (a). $tp(t) = \frac{1}{(1-t)^{\frac{1}{3}}} \rightarrow 1 \text{ as } t \rightarrow 0 \text{ and } t^2 q(t) = -\frac{1}{(1-t)^{\frac{1}{3}}} \rightarrow -1 \text{ as } t \rightarrow 0$. Thus, t = 0 is a regular singular point.

Neither (t-1)p(t) nor $(t-1)^2q(t)$ are analytical at t=1, so t=1 is an irregular singular point.

16 (b).
$$(1-t)^{\frac{1}{3}} = 1 - \frac{1}{3}t - \frac{1}{9}t^2 + ... \Rightarrow t^2 \left(1 - \frac{1}{3}t - \frac{1}{9}t^2 + ...\right)y'' + ty' - y = 0$$

Therefore, indicial equation $\lambda^2 - 1 = 0 \Rightarrow \lambda_1 = -1, \ \lambda_2 = 1.$

17 (a). We need to substitute the series $y = \sum_{n=1}^{\infty} a_n (t-1)^{n+\lambda}$ into the differential equation. Before doing so, let us make the change of variable $\tau = t - 1$. We now substitute the series $y = \sum_{n=1}^{\infty} a_n \tau^{n+\lambda}$ into the transformed equation, $-\tau(\tau+2)y'' - 2(\tau+1)y' + \alpha(\alpha+1)y = 0$, obtaining $-2\lambda^{2}a_{0}\tau^{\lambda-1} + \sum_{n=1}^{\infty} \{ [-(\lambda+n)^{2} - (\lambda+n) + \alpha(\alpha+1)]a_{n} - 2(\lambda+n+1)^{2}a_{n+1}\tau^{\lambda+n} = 0 .$ Thus, the exponents at the singularity are $\lambda_1 = \lambda_2 = 0$. 17 (b). For $\lambda = 0$, the recurrence relation is $a_{n+1} = [-n^2 - n + \alpha(\alpha + 1)]a_n / [2(n+1)^2]$. Thus, $y(t) = a_0 \left[1 + \frac{\alpha(\alpha + 1)}{2}(t-1) + \frac{\alpha(\alpha + 1)[-2 + \alpha(\alpha + 1)]}{16}(t-1)^2 + \cdots \right]$. 17 (c). When $\alpha = 1$, $y(t) = a_0 t$. 18 (a). $(1-t)^2 = -(t-1)(t+1) = -(t-1)((t-1)+2)$, t = (t-1)+1. Let $\tau = t-1$. We now substitute the series into the transformed equation, $-\tau(\tau+2)y'' - (\tau+1)y' + \alpha^2 y = 0$, obtaining $-[2\lambda(\lambda-1)+\lambda]a_0\tau^{\lambda-1}+\sum_{n=0}^{\infty}\{-[2(\lambda+n+1)(\lambda+n)+(\lambda+n+1)]a_{n+1}+[-(\lambda+n)^2+\alpha^2]a_n\}\tau^{\lambda+n}.$ Thus, $F(\lambda) = 2\lambda^2 - \lambda = 0$ and the exponents at the singularity are $\lambda_1 = 0$ and $\lambda_2 = \frac{1}{2}$. 18 (b). For $\lambda_1 = 0$, the recurrence relation is $a_{n+1} = \frac{\left[-n^2 + \alpha^2\right]a_n}{(n+1)(2n+1)}$. and $y(t) = a_0 \left| 1 + \alpha^2 (t-1) + \frac{\alpha^2 (\alpha^2 - 1)}{6} (t-1)^2 + \cdots \right|.$ For $\lambda_2 = \frac{1}{2}$, the recurrence relation is $a_{n+1} = \frac{\left[-(n+1/2)^2 + \alpha^2\right]a_n}{(n+3/2)(2n+2)}$. and $y(t) = a_0 \left[(t-1)^{\frac{1}{2}} + \frac{(\alpha^2 - \frac{1}{4})}{3} (t-1)^{\frac{3}{2}} + \frac{(\alpha^2 - \frac{1}{4})(\alpha^2 - \frac{9}{4})}{30} (t-1)^{\frac{5}{2}} + \cdots \right], t-1 > 0.$ 18 (c). By the Ratio Test, $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a} \right| = \lim_{n \to \infty} \left| \frac{-(n+\lambda)^2 + \alpha^2}{(n+\lambda+1)(2n+2\lambda+1)} \right| = \frac{1}{2}$ \Rightarrow convergence for $\frac{1}{2}|\tau| < 1$ or |t-1| < 2 $\therefore R = 2$. 18 (d). When $\alpha = \frac{1}{2}$, one solution (with $\lambda = \frac{1}{2}$) reduces to $y(t) = a_0(t-1)^{\frac{1}{2}}$. 19 (a). Substituting the series $y = \sum_{n=0}^{\infty} a_n t^{n+\lambda}$ into the differential equation, we obtain $\lambda^2 a_0 t^{\lambda-1} + \sum_{i=1}^{\infty} \{ (\lambda+n+1)^2 a_{n+1} - (\lambda+n-\alpha)a_n \} t^{n+\lambda} = 0.$ 19 (b). The recurrence relation is $a_{n+1} = (n - \alpha)a_n / (n+1)^2$. For $\alpha = 5$, the solution is $y(t) = a_0 [1 - 5t + 5t^2 - (5/3)t^3 + (5/24)t^4 - (1/120)t^5].$ 19 (c). y(t) is neither an even nor an odd function. Theorem 10.2 does not apply. The indicial equation is $\lambda(\lambda - 1) + \alpha\lambda + \beta = \lambda^2 + (\alpha - 1)\lambda + \beta = 0$. Since $\lambda_1 = 1$, $\lambda_2 = 2$, then 20. $\lambda^2 + (\alpha - 1)\lambda + \beta = (\lambda - 1)(\lambda - 2) = \lambda^2 - 3\lambda + 2 \Longrightarrow \alpha = -2, \ \beta = 2.$

- 21. The indicial equation is $\lambda^2 + (\alpha 1)\lambda + \beta = 0$. In order to have $\lambda_1 = 1 + 2i$ and $\lambda_2 = 1 2i$, we need $(\lambda \lambda_1)(\lambda \lambda_2) = \lambda^2 (\lambda_1 + \lambda_2)\lambda + \lambda_1\lambda_2 = \lambda^2 2\lambda + 5$. Therefore, $\alpha = -1$ and $\beta = 5$.
- 22. The indicial equation is $\lambda(\lambda 1) + \alpha\lambda + 2 = 0$ has $\lambda = 2$ as a root. Therefore, $2(1) + 2\alpha + 2 = 0 \Rightarrow \alpha = -2$. Therefore,

$$t^{2}y'' - 2ty' + (2 + \beta t)y = \sum_{n=0}^{\infty} \{(\lambda + n)(\lambda + n - 1) - 2(\lambda + n) + 2\}a_{n}t^{n+\lambda} + \beta \sum_{n=1}^{\infty} a_{n-1}t^{n+\lambda} = 0$$

$$\Rightarrow [\lambda(\lambda - 1) - 2\lambda + 2]a_{0}t^{\lambda} + \sum_{n=1}^{\infty} \{[(\lambda + n)^{2} - 3(\lambda + n) + 2]a_{n} + \beta a_{n-1}\}t^{n+\lambda} = 0.$$

For $\lambda = 2$, the recurrence relation becomes $[(n+2)^2 - 3(n+2) + 2]a_n + \beta a_{n-1} = 0$, n = 1, 2, ...Therefore, $[n^2 + 4n + 4 - 3n - 6 + 2]a_n + \beta a_{n-1} = (n^2 + n)a_n + \beta a_{n-1} = 0 \Rightarrow \beta = -4$.

- 23. The indicial equation is $\lambda^2 = 0$ and the corresponding recurrence relation is $(n+1)^2 a_{n+1} + \alpha n a_n + \beta a_{n-1} = 0$. Therefore, $\alpha = -1$ and $\beta = 3$.
- 24 (a). p(t) is odd and q(t) is even, so we expect even and odd solutions.
- 24 (b). The indicial equation is $\lambda(\lambda 1) + \lambda v^2 = 0$ or $F(\lambda) = \lambda^2 v^2 \Rightarrow \lambda_1 = -v$, $\lambda_2 = v$. For the Bessel equation, $\lambda(\lambda - 1) + \lambda - v^2 = 0$ or $F(\lambda) = \lambda^2 - v^2$. The indicial equation and exponents at the singularity are the same for both equations.

24 (c).
$$[\lambda^2 - \upsilon^2]a_0t^{\lambda} + [(\lambda + 1)^2 - \upsilon^2]a_1t^{\lambda - 1} + \sum_{n=2}^{\infty} \{[(\lambda + n)^2 - \upsilon^2]a_n - a_{n-2}\}t^{n+\lambda} = 0$$

$$\Rightarrow a_n = \frac{a_{n-2}}{(\lambda + n)^2 - \upsilon^2}, \ n = 2, 3, ...$$

For Bessel's equation, $a_n = \frac{-a_{n-2}}{(\lambda + n)^2 - v^2}$, n = 2,3,... The minus sign creates a "term-to-term" change of sign in the series solution. This sign alteration is not present in the series solutions of the modified Bessel equation.