
Chapter 10
Series Solutions of Linear Differential Equations

Section 10.1

1. Consider the power series 
tn

n
n 20=

•

Â . Applying the ratio test at an arbitrary value of t, t π 0, we

obtain lim lim
n

n n

n n n

t

t

t t
Æ •

+

+ Æ •
= =

2
2 2 2

1

1 . The limiting ratio is less than 1 if

t < 2 . Therefore, the radius of convergence is R = 2.

2. lim
( )

lim
n

n

n n
n

t n

t n

t
t

Æ •

+

Æ •+
=

+( )
=

1 2

2 1 21 1
.  Therefore, the radius of convergence is R = 1.

3. Consider the power series ( )t n

n

-
=

•

Â 2
0

. Applying the ratio test at an arbitrary value of t, t π 2,

we obtain lim
( )
( )

lim
n

n

n n

t

t
t t

Æ •

+

Æ •

-
-

= - = -
2
2

2 2
1

. The limiting ratio is less than 1 if t - <2 1.

Therefore, the radius of convergence is R = 1.

4. lim
( )
( )n

n

n

t

t
t t t

Æ •

+-
-

= - < fi - < - < fi < <
3 1
3 1

3 1 1 1 3 1 1 0
2
3

1

.  Therefore, the radius of

convergence is R =
1
3

.

5. Consider the power series 
( )

!
t

n

n

n

-
=

•

Â 1

0

. Applying the ratio test at an arbitrary value of t, t π 1, we

obtain lim
!( )

( )!( )
lim

n

n

n n

n t

n t

t

nÆ •

+

Æ •

-
+ -

=
-
+

=
1

1 1
1
1

0
1

. The limiting ratio is less than 1 for all t, t π 1.

Therefore, the radius of convergence is R = • .

6. lim
( )!( )

!( )
lim ( )( ) ,  

n

n

n n

n t

n t
n t t

Æ •

+

Æ •

+ -
-

= + - = • π
1 1

1
1 1 1

1

.  Therefore, the radius of convergence is

R = 0.

7. Consider the power series 
( )-

=

•

Â 1

1

n n

n

t

n
. Applying the ratio test at an arbitrary value of t, t π 0,

we obtain lim
( )

lim
n

n

n n

nt

n t

nt

n
t

Æ •

+

Æ •+
=

+
=

1

1 1
. The limiting ratio is less than 1 if t < 1. Therefore,

the radius of convergence is R = 1.
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8. lim
( ) ( )
( ) ( )n

n n n

n n n

t

t

t
t t

Æ •

+ +

+

- -
- -

=
-

< fi - < - < fi - < <
1 3 4
1 3 4

3
4

1 4 3 4 1 7
1 1

1 .  Therefore, the radius of

convergence is R = 4.

9. Consider the power series (ln )( )n t n

n

+
=

•

Â 2
1

. Applying the ratio test at an arbitrary value of t,

t π -2, we obtain

lim
(ln( ))( )

(ln )( )
lim

(ln( ))( )
ln

lim
ln( )

lnn

n

n n n

n t

n t

n t

n
t

n

n
t
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+
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+ +
+

=
+ +

= +
+

= +
1 2

2
1 2

2
1

2
1

. (The last limit

can be found using L’Hôpital’s Rule.) The limiting ratio is less than 1 if t + <2 1. Therefore,
the radius of convergence is R = 1.

10. lim
( ) ( )

( )n

n

n

n t

n t
t t t

Æ •

++ -
-

= - < fi - < - < fi < <
1 1

1
1 1 1 1 1 0 2

3 1

3 .  Therefore, the radius of

convergence is R = 1.

11. Consider the power series 
n t n

n
n

( )-
=

•

Â 4
21

. Applying the ratio test at an arbitrary value of t,

t π 4, we obtain lim
( )

( )
lim

( )
n

n n

n n n

n t

n t

n t

n

t
Æ •

+

+ Æ •

+ -
-

=
+ -

=
-2 1 4

2 4

1 4

2

4
2

1

1
. The limiting ratio is

less than 1 if t - <4 2. Therefore, the radius of convergence is R = 2.

12. lim
( ) arctan( )

( ) arctan( )
 lim arctan( )

n

n

n n

t n

t n
t t t n

Æ •

+

Æ •

-
- +

= - < fi - < - < fi < < =Ê
ËÁ

ˆ
¯̃

2
2 1

2 1 1 2 1 1 3
2

1

recall 
p

.

Therefore, the radius of convergence is R = 1.
13. Applying the ratio test, we see the power series for f(t) and g(t) both have radius of

convergence R = 1. Therefore, each series converges in the interval - < <1 1t .
(a) f t t t t t t( ) = + + + + + +1 2 3 4 5 L

      g t t t t t t( ) = + + + + + +0 4 9 16 252 3 4 5 L

(b) f t g t t t t t t( ) ( )+ = + + + + + +1 2 5 10 17 262 3 4 5 L

(c) f t g t t t t t( ) ( )- = - - - - -1 3 8 15 242 3 4 5 L

(d) ¢ = + + + + + +f t t t t t t( ) 1 2 3 4 5 62 3 4 5 L

(e) ¢¢ = + + + + + +f t t t t t t( ) 2 6 12 20 30 422 3 4 5 L
14. Applying the ratio test, we see the power series for f(t) and g(t) both have radius of

convergence R = 1. Therefore, each series converges in the interval - < <1 1t .
(a) f t t t t t t t( ) = + + + + + +2 3 4 5 62 3 4 5 6 L

      g t t t t t t t( ) = - + - + - + -2 3 4 5 62 3 4 5 6 L

(b) f t g t t t t t t( ) ( )+ = + + + + +4 8 12 16 202 4 6 8 10 L

(c) f t g t t t t t t t( ) ( )- = + + + + + +2 6 10 14 18 223 5 7 9 11 L

(d) ¢ = + + + + + +f t t t t t t( ) 1 4 9 16 25 362 3 4 5 L

(e) ¢¢ = + + + + + +f t t t t t t( ) 4 18 48 100 180 2942 3 4 5 L



270 • Chapter 10  Series Solutions of Linear Differential Equations

15. Applying the ratio test, we see the power series for f(t) has radius of convergence R = 1 2/
while the series for g(t) has radius of convergence R = 1. Therefore, each series converges in
the interval t - <1 1 2/ , or 1 2 3 2/ /< <t .

(a) f t t t t t t( ) ( ) ( ) ( ) ( ) ( )= - - + - - - + - - - +1 2 1 4 1 8 1 16 1 32 12 3 4 5 L

      g t t t t t t( ) ( ) ( ) ( ) ( ) ( )= + - + - + - + - + - +1 1 1 1 1 12 3 4 5 L

(b) f t g t t t t t t( ) ( ) ( ) ( ) ( ) ( ) ( )+ = - - + - - - + - - - +2 1 5 1 7 1 17 1 31 12 3 4 5 L

(c) f t g t t t t t t( ) ( ) ( ) ( ) ( ) ( ) ( )- = - - + - - - + - - - +3 1 3 1 9 1 15 1 33 12 3 4 5 L

(d) ¢ = - + - - - + - - - + -f t t t t t t( ) ( ) ( ) ( ) ( ) ( )2 8 1 24 1 64 1 160 1 384 12 3 4 5L

(e) ¢¢ = - - + - - - + - - -f t t t t t t( ) ( ) ( ) ( ) ( ) ( )8 48 1 192 1 640 1 1920 1 5376 12 3 4 5L
16. Applying the ratio test, we see the power series for f t( )  is 1/2 and g t( )   is 1. Therefore,

R =
1
2

.

(a) f t t t t t t( ) ( ) ( ) ( ) ( ) ( )= + + + + + + + + + + +1 2 1 4 1 8 1 16 1 32 12 3 4 5 L

      g t t t t t t t( ) ( ) ( ) ( ) ( ) ( ) ( )= + + + + + + + + + + + +1 2 1 3 1 4 1 5 1 6 12 3 4 5 6 L

(b) f t g t t t t t t( ) ( ) ( ) ( ) ( ) ( ) ( )+ = + + + + + + + + + + +1 3 1 6 1 11 1 20 1 37 12 3 4 5 L

(c) f t g t t t t t t( ) ( ) ( ) ( ) ( ) ( ) ( )- = + + + + + + + + + + +1 1 2 1 5 1 12 1 27 12 3 4 5 L

(d) ¢ = + + + + + + + + + + +f t t t t t t( ) ( ) ( ) ( ) ( ) ( )2 8 1 24 1 64 1 160 1 384 12 3 4 5 L

(e) ¢¢ = + + + + + + + + + + +f t t t t t t( ) ( ) ( ) ( ) ( ) ( )8 48 1 192 1 640 1 1920 1 5376 12 3 4 5 L

17. Consider the power series 2 2

0

n n

n

t +

=

•

Â . Make the change of index k n= + 2. With this change,

the lower limit of n = 0 transforms to k = 2 while the upper limit remains at • . Thus, the

power series can be rewritten as 2 2

2

k k

k

t-

=

•

Â . Finally, changing to the original summation index,

n, we obtain 2 2

2

n n

n

t-

=

•

Â .

18. Make the change of index k n= + 3.  The power series can be rewritten as ( )( )k k tk

k

- -
=

•

Â 2 1
3

.

Finally, changing to the original summation index, n, we obtain ( )( )n n tn

n

- -
=

•

Â 2 1
3

.

19. Consider the power series a tn
n

n

+

=

•

Â 2

0

. Make the change of index k n= + 2. With this change,

the lower limit of n = 0 transforms to k = 2 while the upper limit remains at • . Thus, the

power series can be rewritten as a tk
k

k
-

=

•

Â 2
2

. Finally, changing to the original summation index,

n, we obtain a tn
n

n
-

=

•

Â 2
2

.

20. Make the change of index k n= - 1.  The power series can be rewritten as ( )k a tk
k

k

+ +
=

•

Â 1 1
0

.

Finally, changing to the original summation index, n, we obtain ( )n a tn
n

n

+ +
=

•

Â 1 1
0

.
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21. Consider the power series n n a tn
n

n

( )- -

=

•

Â 1 2

2

. Make the change of index k n= - 2. With this

change, the lower limit of n = 2 transforms to k = 0 while the upper limit remains at • .

Thus, the power series can be rewritten as ( )( )k k a tk
k

k

+ + +
=

•

Â 2 1 2
0

. Finally, changing to the

original summation index, n, we obtain ( )( )n n a tn
n

n

+ + +
=

•

Â 2 1 2
0

.

22. Make the change of index k n= + 3.  The power series can be rewritten as ( )- -
-

=

•

Â 1 3
3

3

k
k

k

k

a t .

Finally, changing to the original summation index, n, we obtain ( )- -
-

=

•

Â 1 3
3

3

n
n

n

n

a t .

23. Consider the power series ( ) ( )- ++ +

=

•

Â 1 11 2

0

n
n
n

n

n a t . Make the change of index k n= + 2. With

this change, the lower limit of n = 0 transforms to k = 2 while the upper limit remains at • .

Thus, the power series can be rewritten as ( ) ( )- --
-

=

•

Â 1 11
2

2

k
k

k

k

k a t . Finally, changing to the

original summation index, n, we obtain ( ) ( )- --
-

=

•

Â 1 11
2

2

n
n

n

n

n a t .

24. Let f t t t t( ) ( sin )= -2 . t t
t

n

n n

n

- = -
-

+

+

=

•

Âsin
( )
( )!

1
2 1

2 1

1

. Therefore, f t
t

n

n n

n

( )
( )

( )!
=

-
+

+ +

=

•

Â 1
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1 2 3

1

.

lim
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( ) ( )!( )n
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+ +

+ +

- +
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=
1 2 1
1 2 3

0
2 2 5

1 2 3 . Thus, the radius of convergence is R = • .

25. Let f t t( ) cos= -1 3 . From the Maclaurin series for cosu  we have cos ( )
( )!

u
u

n
n

n

n

= -
=

•

Â 1
2

2

0

.

Therefore, cos
! ! !

3 1
9
2

81
4

729
6

2 4 6

t
t t t

= - + - + L . Hence,

f t
t t t t

n
n

n

n
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! ! !
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( )
( )!
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=

•

Â9
2

81
4

729
6

1
3
2

2 4 6
1

2

1

L . We calculate the radius of convergence by

using the ratio test. For an arbitrary value of t, t π 0, we have

lim
( )!( )

( )!( )
lim

( )( )n

n

n n

n t

n t

t

n nÆ •

+

Æ •+
=

+ +
=

2 3
2 2 3

9
2 2 2 1

0
2 2

2

2

. Thus, the radius of convergence is R = • .

26. Let f t
t t

( )
( )

=
+

=
- -

1
1 2

1
1 2

.    
1

1 2
2 2

0 0- -
= - = -

=

•

=

•

Â Â( )
( ) ( )

t
t tn

n

n

n

n . lim
( )
( )n

n

n

t

t
t

Æ •

+-
-

= <
2
2

2 1
1

.

Thus, the radius of convergence is R =
1
2

.

27. Let f t t( ) / ( )= -1 1 2 . From the Maclaurin series for 1 1/ ( )- u  we have 
1

1 0-
=

=

•

Âu
un

n

. Therefore,

1
1

12
2 4 6

-
= + + + +

t
t t t L. Hence, f t t n

n

( ) =
=

•

Â 2

0

.
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We calculate the radius of convergence by using the ratio test. For an arbitrary value of t, t π 0,

we have lim lim
n

n

n n

t

t
t t

Æ •

+

Æ •
= =

2 2

2
2 2. Thus, the radius of convergence is R = 1.

28 (a). e
t

n
t

t t t tt
n

n

= = + + + + + +
=

•

Â ! ! ! ! !
...

0

2 3 4 5

1
2 3 4 5

.

e
t

n
t

t t t tt
n

n

-

=

•

=
-

= - + - + - +Â ( )
! ! ! ! !

...
0

2 3 4 5

1
2 3 4 5

28 (b). sinh( )
! ! ! !

...
! ! ! !

...
! !

...t t
t t t t

t
t t t t

t
t t

= + + + + + +
Ê
ËÁ

ˆ
¯̃

- - + - + - +
Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

= + + +
1
2

1
2 3 4 5

1
2 3 4 5 3 5

2 3 4 5 2 3 4 5 3 5

.

cosh( )
! ! ! !

...
! ! ! !

...
! !

...t t
t t t t

t
t t t t t t

= + + + + + +
Ê
ËÁ

ˆ
¯̃

+ - + - + - +
Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

= + + +
1
2

1
2 3 4 5

1
2 3 4 5

1
2 4

2 3 4 5 2 3 4 5 2 4

29 (a). Consider the differential equation ¢¢ - =y yw 2 0 and assume there is solution of the form

y t a tn
n

n

( ) =
=

•

Â
0

.   Differentiating, we obtain ¢ = ¢¢ = --

=

•
-

=

•

Â Ây t na t y t n n a tn
n

n
n
n

n

( ) ( ) ( )1

1

2

2

1 and  .

Inserting these series into the differential equation, we have n n a t a tn
n

n
n
n

n

( )- - =-

=

•

=

•

Â Â1 02

2

2

0

w .

Making the change of index k n= - 2 in the series for ¢¢y t( ), we obtain

( )( )n n a t a tn
n

n
n
n

n

+ + - =+
=

•

=

•

Â Â2 1 02
0

2

0

w , or [( )( ) ]n n a a tn
n

n
n+ + - =+

=

•

Â 2 1 02
0

2w . Equating the

coefficients to zero, we find the recurrence relation a
a

n n
nn

n
+ =

+ +
=2

2

2 1
0 1

w
( )( )

, , ,K

29 (b). The recurrence relation in part (a) leads us to
      a a a a a a a a2

2
0 4

2
2

4
0 6

2
4

6
02 12 24 30 720= = = = =w w w w w/ , / / , / / , K

      a a a a a a a a3
2

1 5
2

3
4

1 7
2

5
6

16 20 120 42 5040= = = = =w w w w w/ , / / , / / , K

Thus, y t a
t t t

( ) [
( ) ( ) ( )

]= + + + +0

2 4 6

1
2 24 720

w w w
L +

a
t

t t t1
3 5 7

6 120 5040w
w

w w w
[

( ) ( ) ( )
]+ + + + L .

By Exercise 28, y t t y t t1 2( ) cosh ( ) sinh= =w w  and  .

30 (a). y t n d C t C y C y t t tn

n

t
n

n

n

n

n

n

( ) ,  ( ) ( )= + = + = = fi = + =-

=

•

=

•

=

•

=

•

ÂÚ Â Â Âl l1

1
0

1 1 0

0 1 1 .

30 (b). R = 1.

30 (c). y t
t

( ) =
-
1

1
.

31 (a). Consider the function given by ¢ =
-

=
=

•

Ây t
t

n
y

n

n

( )
( )

!
, ( )

1
1 1

0

.  Integrating the series termwise,

we obtain y t C
t

n

n

n

( )
( )
( )!

= +
-

+

+

=

•

Â 1
1

1

0

. Imposing the condition y( )1 1= , it follows that C = 1.

Adjusting the index of summation, we can write y t
t

n

t

n

n

n

n

n

( )
( )

!
( )

!
= +

-
=

-
=

•

=

•

Â Â1
1 1

1 0

.
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31 (b). Applying the ratio test, lim
!( )

( )!( )
lim

n

n

n n

n t

n t

t

nÆ •

+

Æ •

-
+ -

=
-
+

=
1

1 1
1
1

0
1

. Therefore, the radius of

convergence is R = • .
31 (c). From the power series (7a), we see that y t et( ) = -1.

32 (a). ¢ = - + - = - + -
+

= - + - = - + -
Ï
Ì
Ó

¸
˝
˛=

• +

=

•
-

=

•

=

•

Â ÂÚ ÂÂy t
n
d

t

n

t

n

t

n
n

n

n

n
n

n

t
n

n
n

n

nn

( ) ( )
!

( )
( )!

( )
!

( )
!

1 1 1 1
1

1 1 1 1
0

1

0
0

1

11

l
l

¢ = - -
=

•

Ây
t

n
n

n

n

( )
!

1
0

.  Then, y t
t

n

t

n

t

n
n

n

n

n
n

n

n
n

n

( ) ( )
( )!

( )
( )!

( )
!

= - -
+

+ = + -
+

= -
+

=

•
+

+

=

•

=

•

Â Â Â1
1

1 1 1
1

1
1

0

1
1

0 0

.

32 (b). R = • .
32 (c). y t e t( ) = - .

33 (a). Consider the function given by ¢ = -
-

=
=

•

Ây t
t

n
yn

n

n

( ) ( )
( )

!
, ( )1

1
1 0

2

. Integrating the series

termwise, we obtain y t C
t

n
n

n

n

( ) ( )
( )
( )!

= + -
-

+

+

=

•

Â 1
1

1

1

2

. Imposing the condition y( )1 0= , it follows

that C = 0. Adjusting the index of summation, we can write

y t
t

n

t

n
n

n

n

n
n

n

( ) ( )
( )

!
( )

( )
!

= -
-

= - -
-+

=

•

=

•

Â Â1
1

1
11

3 3

.

33 (b). Applying the ratio test, lim
( ) !( )

( ) ( )!( )
lim

n

n n

n n n

n t

n t

t

nÆ •

+ +

Æ •

- -
- + -

=
-
+

=
1 1

1 1 1
1
1

0
1 1

. Therefore, the radius of

convergence is R = • .

33 (c). From the power series (7a), we see that ( )
( )

!
( )-

-
=

=

•
- -Â 1

1

0

1n
n

n

tt

n
e . Thus,

1
1

1
1

2
1

12

3

1-
-

+
-

+ -
-

=
=

•
- -Â( )

!
( )

!
( )

( )
!

( )t t t

n
en

n

n

t . Or, using the results of part (a),

1
1

1
1

2

2
1-

-
+

-
- =- -( )

!
( )

!
( )( )t t

e y tt .

34 (a). y t s ds
t

n
n n

n

t
n

n

n

( ) ( ) ( )= - = -
+=

• +

=

•

ÂÚ Â1 1
2 1

2

0
0

2 1

0

.

34 (b). lim
( ) ( )
( ) ( )n

n n

n n

t n

t n
t R

Æ •

+ +

+

- +
- +

= < fi =
1 2 1
1 2 3

1 1
1 2 3

2 1
2 .

34 (c). y t t( ) tan ( )= -1 .

35 (a). Consider the function y(t) where y s ds
t

n

t n

n

( )
0

1
Ú Â=

=

•

. Differentiating both sides, we obtain

y t tn

n

( ) = -

=

•

Â 1

1

. Adjusting the index of summation, we can write y t tn

n

( ) =
=

•

Â
0

.

35 (b). Applying the ratio test, lim
n

n

n

t

t
t

Æ •

+

=
1

. Therefore, the radius of convergence is R = 1.

35 (c). From the power series (7d), we see that y t t
t

n

n

( ) = =
-=

•

Â
0

1
1

.
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36. Assume there is solution of the form y t a tn
n

n

( ) =
=

•

Â
0

. Differentiating, we obtain

¢ = ¢¢ = - = + + ¢ =-

=

•
-

=

•

+
=

•

=

•

Â Â Â Ây t na t y t n n a t n n a t ty na tn
n

n
n
n

n
n

n

n
n
n

n

( ) ( ) ( ) ( )( ) ,  1

1

2

2
2

0 0

1 2 1 and  .

Therefore,  [( )( ) ( ) ]n n a n a tn
n

n
n+ + - + =+

=

•

Â 2 1 1 02
0

. Equating the coefficients to zero, we find

the recurrence relation a
n a

n n

a

nn
n n

+ =
+

+ +
=

+2

1
2 1 2

( )
( )( )

 The recurrence leads us to

      a
a

a
a

a
a a

a
a a

2
0

3
1

4
2 0

5
3 1

2 3 4 8 5 15
= = = = = =, ,  ,  

Therefore, y t a
t t

a t
t t

y a y a( ) ... ... ,  ( ) ,  ( )= + + +
Ï
Ì
Ó

¸
˝
˛

+ + + +
Ï
Ì
Ó

¸
˝
˛

= = ¢ = = -0

2 4

1

3 5

0 11
2 8 3 15

0 1 0 1.

Finally, y t
t t

t
t t

( ) ... ...= + + +
Ï
Ì
Ó

¸
˝
˛

- + + +
Ï
Ì
Ó

¸
˝
˛

1
2 8 3 15

2 4 3 5

.

37. Consider the initial value problem ¢¢ + ¢ - = = ¢ =y ty y y y2 0 0 0 0 1, ( ) , ( )  and assume there is

solution of the form y t a tn
n

n

( ) =
=

•

Â
0

. Differentiating, we obtain

¢ = ¢¢ = --

=

•
-

=

•

Â Ây t na t y t n n a tn
n

n
n
n

n

( ) ( ) ( )1

1

2

2

1 and  . Inserting these series into the differential

equation, we have n n a t t na t a tn
n

n
n
n

n
n

nn

( )- + - =-

=

•
-

=

•

=

•

Â ÂÂ1 2 02

2

1

01

. Making the change of index

k n= - 2 in the series for ¢¢y t( ), we obtain ( )( )n n a t na t a tn
n

n
n
n

n
n

nn

+ + + - =+
=

•

=

•

=

•

Â ÂÂ2 1 2 02
0 01

, or

[( )( ) ( ) ]n n a n a tn
n

n
n+ + + - =+

=

•

Â 2 1 2 02
0

. Equating the coefficients to zero, we find the

recurrence relation a
n a

n n
nn

n
+ =

- -
+ +

=2

2
2 1

0 1
( )

( )( )
, , ,K The recurrence leads us to

      a a a a a a a2 0 0 4 2 6 42 2 0 12 0 2 30 0= = = = = - =/ , / , / , K
      a a a a a a a a3 1 5 3 1 7 5 16 20 120 3 42 1680= = - = - = - =/ , / / , / / , K
Imposing the initial conditions, we have a a0 10 1= = and  . Thus,

y t t
t t t

( ) = + - + +
3 5 7

6 120 1680
L.

38. Assume there is solution of the form y t a tn
n

n

( ) =
=

•

Â
0

. Differentiating, we obtain

¢ = ¢¢ = - = + + = =-

=

•
-

=

•

+
=

•
+

=

•

-
=

•

Â Â Â Â Ây t na t y t n n a t n n a t ty a t a tn
n

n
n
n

n
n

n

n
n
n

n
n

n

n

( ) ( ) ( ) ( )( ) ,1

1

2

2
2

0

1

0
1

1

1 2 1 and  

Therefore,  2 2 1 02 2
1

1a n n a a tn
n

n
n+ + + + =+

=

•

-Â[( )( ) ] . Equating the coefficients to zero, we find

the recurrence relation a
a

n n
nn

n
+

-=
-

+ +
=2

1

2 1
1 2

( )( )
,  , ,...
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The recurrence leads us to

      a
a

a
a

a
a

3
0

4
1

5
2

3 2 4 3 5 4
0=

-
◊

=
-

◊
=

-
◊

=,  ,  

Therefore, y t a
t

a t
t

a a( ) ... ... ,  ,  = - +
Ï
Ì
Ó

¸
˝
˛

+ - +
Ï
Ì
Ó

¸
˝
˛

= =0

3

1

4

0 11
6 12

1 2.

Finally, y t
t

t
t

( ) ... ...= - +
Ï
Ì
Ó

¸
˝
˛

+ - +
Ï
Ì
Ó

¸
˝
˛

1
6

2
12

3 4

.

39. Consider the initial value problem ¢¢ + + ¢ + = = - ¢ =y t y y y y( ) , ( ) , ( )1 0 0 1 0 1 and assume there

is solution of the form y t a tn
n

n

( ) =
=

•

Â
0

. Differentiating, we obtain

¢ = ¢¢ = --

=

•
-

=

•

Â Ây t na t y t n n a tn
n

n
n
n

n

( ) ( ) ( )1

1

2

2

1 and  . Inserting these series into the differential

equation, we have n n a t t na t a tn
n

n
n
n

n
n

nn

( ) ( )- + + + =-

=

•
-

=

•

=

•

Â ÂÂ1 1 02

2

1

01

 or

n n a t na t n a tn
n

n
n
n

n
n

nn

( ) ( )- + + + =-

=

•
-

=

•

=

•

Â ÂÂ1 1 02

2

1

01

. Making the change of index k n= - 2 in the

series for ¢¢y t( ) and k n= - 1 in the series for ¢y t( ) , we obtain

( )( ) ( ) ( )n n a t n a t n a tn
n

n
n

n
n
n

nn

+ + + + + + =+
=

•

+
=

•

=

•

Â ÂÂ2 1 1 1 02
0

1
00

, or

[( )( ) ( ) ( ) ]n n a n a n a tn n
n

n
n+ + + + + + =+ +

=

•

Â 2 1 1 1 02 1
0

. Equating the coefficients to zero, we find

the recurrence relation a
n a n a

n n

a a

nn
n n n n

+
+ +=

- + - +
+ +

=
- -

+2
1 11 1

2 1 2
( ) ( )

( )( )
. The recurrence leads us to

  a a a a a a a a a a a a2 0 1 3 2 1 4 3 2 5 4 32 3 4 0 5= - + = - + = - + = = - +( ) / , ( ) / , ( ) / , ( ) / .
Imposing the initial conditions, we have a a0 11 1= - = and  . Thus,
a a a a2 3 4 50 1 3 1 12 1 20= = - = =, / , / , /  and so we find

y t t t t t( ) = - + - + + +1
1
3

1
12

1
20

3 4 5 L.

40. Assume there is solution of the form y t a tn
n

n

( ) =
=

•

Â
0

. Differentiating, we obtain

¢ = + ¢¢ = + ++
=

•

+
=

•

Â Ây t n a t y t n n a tn
n

n
n

n

n

( ) ( ) ( ) ( )( )1 2 11
0

2
0

 and  . Inserting these series into the

differential equation, we have ( )( ) ( )n n a n a a tn n n
n

n

+ + - + +{ } =+ +
=

•

Â 2 1 5 1 6 02 1
0

. Equating the

coefficients to zero, we find the recurrence relation a
n a a

n n
nn

n n
+

+=
+ -

+ +
=2

15 1 6
2 1

0 1 2
( )
( )( )

,  , , ,.... The

recurrence leads us to

  a
a a

a
a a

2
1 0

3
2 15 6

2
5 2 6 1

2
2

5 2 6
3 2

10 2 6 2
6

4
3

=
-

=
-

= =
-

◊
=

-
=

( ) ( )
,

( ) ( ) ( )
.

a
a a

a
a a

4
3 2

5
4 35 3 6

4 3
15 4 3 6 2

12
2
3

5 4 6
5 4

20 2 3 6 4 3
20

4
15

=
-

◊
=

-
= =

-
◊

=
-

=
( ) ( / ) ( )

,  
( ) ( / ) ( / )
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Therrefore,  y t t t t t t( ) = + + + + + +1 2 2
4
3

2
3

4
15

2 3 4 5 L.

41. Consider the initial value problem ¢¢ - ¢ + = = ¢ =y y y y y2 0 0 0 0 2, ( ) , ( )  and assume there is

solution of the form y t a tn
n

n

( ) =
=

•

Â
0

. Differentiating, we obtain

¢ = ¢¢ = --

=

•
-

=

•

Â Ây t na t y t n n a tn
n

n
n
n

n

( ) ( ) ( )1

1

2

2

1 and  . Inserting these series into the differential

equation, we have n n a t na t a tn
n

n
n
n

n
n

nn

( )- - + =-

=

•
-

=

•

=

•

Â ÂÂ1 2 02

2

1

01

. Making the change of index

k n= - 2 in the series for ¢¢y t( ) and k n= - 1 in the series for ¢y t( ) , we obtain

( )( ) ( )n n a t n a t a tn
n

n
n

n
n
n

nn

+ + - + + =+
=

•

+
=

•

=

•

Â ÂÂ2 1 2 1 02
0

1
00

, or

[( )( ) ( ) ]n n a n a a tn n
n

n
n+ + - + + =+ +

=

•

Â 2 1 2 1 02 1
0

. Equating the coefficients to zero, we find the

recurrence relation a
n a a

n nn
n n

+
+=

+ -
+ +2

12 1
2 1

( )
( )( )

. The recurrence leads us to

  a a a a a a a a a a a a2 1 0 3 2 1 4 3 2 5 4 32 2 4 6 6 12 8 20= - = - = - = -( ) / , ( ) / , ( ) / , ( ) / .
Imposing the initial conditions, we have a a0 10 2= = and  . Thus,

a a a a2 3 4 52 1 1 3 1 12= = = =, , / , /  and so we find y t t t t t t( ) = + + + + +2 2
1
3

1
12

2 3 4 5 L.

Section 10.2

1. Consider the differential equation ¢¢ + ¢ + - =-y t y t t y(sec ) ( )2 14 0. The coefficient function
p t t( ) sec=  is not analytic at odd integer multiples of p / 2. Thus, in the interval - < <10 10t ,

p t( ) , , is not analytic at 
2 2 2

± ± ±
p p p3 5

. Similarly, the coefficient function q t t t( ) ( )= - -2 14  is

not analytic at t = ±2 . These 8 points are the only singular points in - < <10 10t .

2. The function p t t( ) =
2
3  is not analytic at t = 0. The function q t t( ) sin=  is analytic everywhere.

Therefore, t = 0 is the only singular point in - < <10 10t .
3. Consider the differential equation ( ) (csc )1 02- ¢¢ + ¢ + =t y ty t y . Putting the differential

equation into the form of equation (1), we see that the coefficient function p t t t( ) ( )= - -1 2 1 is
not analytic at t = ±1. Similarly, the coefficient function q t t t( ) (csc )( )= - -1 2 1 is not analytic at
integer multiples of p  or at t = ±1. Thus, in the interval - < <10 10t , the singular points are
given by t = ± ± ± ±0 1 2 3, , , ,p p p .

4. The function p t
e

t

t

( )
sin

=
2

 is not analytic at t = ± ± ± ± ± ±0
2

3
2

2
5
2

3, ,  ,  ,  ,  ,  
p

p
p

p
p

p . The

function q t
t

t t
( )

( )sin
=

-25 22  is also not analytic at t = ±5 . Therefore,

t = ± ± ± ± ± ± ±0
2

3
2

2
5
2

3 5, ,  ,  ,  ,  ,  ,  
p

p
p

p
p

p  are the singular points in - < <10 10t .
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5. Consider the differential equation ( ln ) ( )1 1 02+ ¢¢ + ¢ + + =t y y t y . Putting the differential

equation into the form of equation (1), we see that the coefficient function p t t( ) ( ln )= + -1 1 is

not analytic at t t e= = ± -0 1 or at  . Similarly, the coefficient function q t t t( ) ( )( ln )= + + -1 12 1

is not analytic t t e= = ± -0 1 or at  . These three points are the only singular points in the interval
- < <10 10t .

6. The function p t
t

t
( ) =

+1
 is not analytic at t = 0. The function q t t( ) tan=  is not analytic at

t = ± ± ± ,  ,   ,...
p p p
2

3
2

5
2

 . Therefore, t = ± ± ± ,  ,  ,   0
2

3
2

5
2

p p p
are the singular points in

- < <10 10t .
7. Consider the differential equation ¢¢ + + ¢ + - =- -y t y t t y( ) ( )1 2 1 01 2 1 . Since the coefficient

functions are rational functions, each is analytic with a radius of convergence R equal to the
distance from t0 0=  to its nearest singularity; see Figure 10.2. The only singularity of
p t t( ) ( )= + -1 2 1 is t = -1 2/  while the only singularities of q t t t( ) ( )= - -1 2 1 are t = ±1. Thus, the
radius of convergence of the series for p(t) is R = 1 2/  while the series for q(t) has radius of
convergence R = 1. The given initial value problem is guaranteed to have a unique solution that
is analytic in the interval - < <1 2 1 2/ /t .

8. p t t( ) ( )= - -4 1 9 2 1  and q t t t( ) ( )= - -1 9 2 1 are not analytic at t = ±1 3/ . Thus, for t0 1= , R =
2
3

.

9. Consider the differential equation ¢¢ + - ¢ + + =- -y t y t t y( ) ( )4 3 3 5 30 01 1 . Since the coefficient
functions are rational functions, each is analytic with a radius of convergence R equal to the
distance from t0 1= -  to its nearest singularity; see Figure 10.2. The only singularity of
p t t( ) ( )= - -4 3 1 is t = 4 3/  while the only singularity of q t t t( ) ( )= + -3 5 30 1 is t = -1 6/ . Thus,

the radius of convergence of the series for p(t) is R = - - =1 4 3 7 3( / ) /  while the series for

q(t) has radius of convergence R = - - - =1 1 6 5 6( / ) / . The given initial value problem is
guaranteed to have a unique solution that is analytic in the interval - < + <5 6 1 5 6/ /t .

10. p t t( ) ( )= + -1 4 2 1  is not analytic at t
i

= ±
2

 and q t t t( ) ( )= + -4 1 is not analytic at t = -4 . Thus,

for t0 0= , R =
1
2

.

11. Consider the differential equation ¢¢ + + - ¢ + =-y t y t y( ( )) (sin )1 3 2 01 . The coefficient function
p t t( ) ( )= - -3 5 1 is a rational function and is analytic with a radius of convergence R equal to

the distance from t0 2=  to its nearest singularity; see Figure 10.2. The only singularity of
p t t( ) ( )= - -3 5 1 is t = 5 3/ . The other coefficient function, q t t( ) sin= , is analytic everywhere

with an infinite radius of convergence. The radius of convergence of the series for p(t) is
R = - =2 5 3 1 3( / ) / . Therefore, the given initial value problem is guaranteed to have a unique
solution that is analytic in the interval - < - <1 3 2 1 3/ /t .

12. p t t t( ) ( )( )= + + -3 1 2 1  is not analytic at t i= ±  and q t t( ) = 2 is analytic everywhere. Thus, for

t0 1= , R = 2 .

13 (a). Consider the differential equation ¢¢ + ¢ + =y ty y 0. Let the solution be given by y t a tn
n

n

( ) =
=

•

Â
0

.

Differentiating, we obtain ¢ = ¢¢ = --

=

•
-

=

•

Â Ây t na t y t n n a tn
n

n
n
n

n

( ) ( ) ( )1

1

2

2

1 and  .



278 • Chapter 10  Series Solutions of Linear Differential Equations

Inserting these series into the differential equation, we have

n n a t t na t a tn
n

n
n
n

n
n
n

n

( )- + + =-

=

•
-

=

•

=

•

Â Â Â1 02

2

1

1 0

 or n n a t na t a tn
n

n
n
n

n
n
n

n

( )- + + =-

=

•

=

•

=

•

Â Â Â1 02

2 1 0

.

Adjusting the indices, we obtain ( )( )n n a t na t a tn
n

n
n
n

n
n
n

n

+ + + + =+
=

•

=

•

=

•

Â Â Â2 1 02
0 1 0

 or

2 2 1 1 02 0 2
1

a a n n a n a tn
n

n
n+ + + + + + =+

=

•

Â[( )( ) ( ) ] . Consequently, the recurrence relation is

given by a a a a n nn n2 0 22 2 1 2= - = - + =+/ / ( ), , , and  K.
13 (b). The recurrence leads us to

          a a a a a2 0 4 2 02 4 8= - = - =/ , / / ,K
          a a a a a3 1 5 3 13 5 15= - = - =/ , / / ,K
Thus, the general solution is

          y t a
t t

a t
t t

y t y t( ) [ ] [ ] ( ) ( )= - + - + - + - = +0

2 4

1

3 5

1 21
2 8 3 15

L L .

13 (c). Since the coefficient functions are analytic for -• < < •t , the series converges for -• < < •t .
13 (d). The coefficient function p t t( ) =  is odd and the coefficient function q t( ) = 1 is even. Therefore,

Theorem 10.2 guarantees that the given equation has even solutions and odd solutions.

14 (a). [( )( ) ]n n a na a tn n n
n

n+ + + + =+
=

•

Â 2 1 2 3 02
0

. Consequently, the recurrence relation is given by

a
n a

n n
nn

n
+ =

- +
+ +

=2

2 3
2 1

0 1 2
( )

( )( )
, , , ,K.

14 (b). The recurrence leads us to
          a a a a a a a a a a2 0 3 1 4 2 0 5 3 13 2 5 6 7 12 7 8 9 20 3 8= - = - = - = = - =/ , / ,  / / ,  / / K
          a a a a a3 1 5 3 13 5 15= - = - =/ , / / ,K
Thus, the general solution is

          y t a
t t

a t
t t

( ) [ ] [ ]= - + - + - + -0

2 4

1

3 5

1
3
2

7
8

5
6

3
8

L L .

14 (c). Since the coefficient functions are analytic for -• < < •t , R = • .
14 (d). p t t( ) = 2  is odd and q t( ) = 3 is even. Therefore, Theorem 10.2 guarantees that the given

equation has even solutions and odd solutions.
15 (a). Consider the differential equation ( )1 2 02+ ¢¢ + ¢ + =t y ty y . Let the solution be given by

y t a tn
n

n

( ) =
=

•

Â
0

. Differentiating, we obtain ¢ = ¢¢ = --

=

•
-

=

•

Â Ây t na t y t n n a tn
n

n
n
n

n

( ) ( ) ( )1

1

2

2

1 and  .

Inserting these series into the differential equation, we have

( ) ( )1 1 2 02 2

2

1

1 0

+ - + + =-

=

•
-

=

•

=

•

Â Â Ât n n a t t na t a tn
n

n
n
n

n
n
n

n

 or

n n a t n n a t na t a tn
n

n
n

nn
n
n

n
n
n

n

( ) ( )- + - + + =-

=

•

=

•

=

•

=

•

ÂÂ Â Â1 1 2 02

22 1 0

. Adjusting the indices, we obtain

( )( ) ( )n n a t n n a t na t a tn
n

n
n
n

n
n
n

n
n
n

n

+ + + - + + =+
=

•

=

•

=

•

=

•

Â Â Â Â2 1 1 2 02
0 2 1 0

. Consequently, the recurrence

relation is given by a a a a a n a n n nn n2 0 3 1 2
2 2 2 1 2 3= - = - = - + + + =+, / 2,  and  ( ) / [( )( )], , ,K.
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15 (b). The recurrence leads us to
          a a a a a2 0 4 2 02 2= - = - =, / / ,K
          a a a a a3 1 5 3 12 11 20 11 40= - = - =/ , / / ,K
Thus, the general solution is

          y t a t
t

a t
t t

y t y t( ) [ ] [ ] ( ) ( )= - + - + - + - = +0
2

4

1

3 5

1 21
2 2

11
40

L L .

15 (c). The coefficient functions p t t t( ) ( )= + -1 2 1 and q t t( ) ( )= + -2 1 2 1 fail to be analytic at t i= ± .
Therefore, the radius of convergence for each coefficient function is R = 1. Consequently,
Theorem 10.1 guarantees that the power series solution converges in the interval - < <1 1t .

15 (d). The coefficient function p t t t( ) ( )= + -1 2 1 is odd and the coefficient function q t t( ) ( )= + -2 1 2 1 is
even. Therefore, Theorem 10.2 guarantees that the given equation has even solutions and odd
solutions.

16 (a). [( )( ) ( ) ]n n a n a a tn n n
n

n+ + - + + =+ +
=

•

Â 2 1 5 1 6 02 1
0

. Consequently, the recurrence relation is given

by a
n a a

n n
nn

n n
+

+=
+ -

+ +
=2

15 1 6
2 1

0 1 2
( )
( )( )

, , , ,K.

16 (b). The recurrence leads us to
          a a a a a a a a a a2 1 0 1 0 3 2 1 1 05 6 2 5 2 3 5 2 6 3 2 19 6 5= - = - = - ◊ = -( ) / / , ( ( ) ) / ( ) /
Thus, the general solution is

          y t a t t a t
t t

( ) [ ] [ ]= - - - + + + +0
2 3

1

2 3

1 3 5
5
2

19
6

L L .

16 (c). Since the coefficient functions are analytic for -• < < •t , R = • .
16 (d). p t( ) = -5 and q t( ) = 6 are both even. Therefore, Theorem 10.2 does not apply.
17 (a). Consider the differential equation ¢¢ - ¢ + =y y y4 4 0. Let the solution be given by

y t a tn
n

n

( ) =
=

•

Â
0

. Differentiating, we obtain ¢ = ¢¢ = --

=

•
-

=

•

Â Ây t na t y t n n a tn
n

n
n
n

n

( ) ( ) ( )1

1

2

2

1 and  .

Inserting these series into the differential equation, we have

n n a t na t a tn
n

n
n
n

n
n
n

n

( )- - + =-

=

•
-

=

•

=

•

Â Â Â1 4 4 02

2

1

1 0

. Adjusting the indices, we obtain

( )( ) ( )n n a t n a t a tn
n

n
n

n

n
n
n

n

+ + - + + =+
=

•

+
=

•

=

•

Â Â Â2 1 4 1 4 02
0

1
0 0

. Consequently, the recurrence relation

is given by a n a a n n nn n n+ += + - + + =2 14 1 4 2 1 0 1[ ( ) ] / [( )( )], , ,K.
17 (b). The recurrence leads us to

  a a a a a a a a a a a2 1 0 3 2 1 1 0 1 1 02 2 8 4 6 16 16 4 6 2 8 3= - = - = - - = -, ( ) / ( ) / ( / ) ,K
Thus, the general solution is

          y t a t
t

a t t t y t y t( ) [ ] [ ] ( ) ( )= - - + + + + = +0
2

3

1
2 3

1 21 2
8
3

2 2L L .

17 (c). The coefficient functions are constant and hence analytic everywhere. Consequently, Theorem
10.1 guarantees that the power series solution converges in the interval -• < < •t .

17 (d). The coefficient function p t( ) = -4  is even and hence Theorem 10.2 does not apply.
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18 (a). [( )( ) ( ) ]n n a n na a tn n n
n

n+ + + + + =+ +
=

•

Â 2 1 1 02 1
0

. Consequently, the recurrence relation is given

by a
n na a

n nn
n n

+
+=

- + +[ ]
+ +2

11

2 1

( )

( )( )
.

18 (b). The recurrence leads us to

          a
a

a
a a a a

a
a a a a

2
0

3
2 1 0 1

4
3 2 0 1

2

2 1

3 2 6 6

3 2

4 3 8 12
=

-
=

- +[ ]
◊

= - =
- +[ ]

◊
= - +,

( )( )
,  

( )( )

Thus, the general solution is

          y t a
t t

a t
t t

( ) [ ] [ ]= - - - + - + +0

2 3

1

3 4

1
2 6 6 12

L L .

18 (c). q t
t

( ) =
+
1

1
 is not analytic at t = -1, R = 1.

18 (d). q t
t

( ) =
+
1

1
 is neither even nor odd. Therefore, Theorem 10.2 does not apply.

19 (a). Consider the differential equation ( )3 3 0+ ¢¢ + ¢ + =t y ty y . Let the solution be given by

y t a tn
n

n

( ) =
=

•

Â
0

. Differentiating, we obtain ¢ = ¢¢ = --

=

•
-

=

•

Â Ây t na t y t n n a tn
n

n
n
n

n

( ) ( ) ( )1

1

2

2

1 and  .

Inserting these series into the differential equation, we have

( ) ( )3 1 3 02

2

1

1 0

+ - + + =-

=

•
-

=

•

=

•

Â Â Ât n n a t t na t a tn
n

n
n
n

n
n
n

n

 or

3 1 1 3 02 1

22 1 0

n n a t n n a t na t a tn
n

n
n

nn
n
n

n
n
n

n

( ) ( )- + - + + =- -

=

•

=

•

=

•

=

•

ÂÂ Â Â . Adjusting the indices, we obtain

3 2 1 1 3 02
0

1
1 1 0

( )( ) ( )n n a t n na t na t a tn
n

n
n

n

n
n
n

n
n
n

n

+ + + + + + =+
=

•

+
=

•

=

•

=

•

Â Â Â Â . Consequently, the

recurrence relation is given by
a a a n n a n a n n nn n n2 0 2 11 3 1 3 2 1 1 2= - = - + + + + + =+ +/ 6 and  [ ( ) ( ) ] / [ ( )( )], , ,K.

19 (b). The recurrence leads us to
   a a a a a a a a a2 0 3 2 1 0 1 0 16 2 4 18 2 6 4 18 12 54= - = - + = - - + = -/ , ( ) / ( / ) / ( ) / ,K
Thus, the general solution is

          y t a
t t

a t
t

y t y t( ) [ ] [ ] ( ) ( )= - + + + - + = +0

2 3

1

3

1 21
6 54

2
9

L L .

19 (c). The coefficient functions p t t t( ) ( )= + -3 3 1 and q t t( ) ( )= + -3 1 fail to be analytic at t = -3.
Therefore, the radius of convergence for each coefficient function is R = 3. Consequently,
Theorem 10.1 guarantees that the power series solution converges in the interval - < <3 3t .

19 (d). The coefficient function p t t t( ) ( )= + -3 3 1 is neither even nor odd. Therefore, Theorem 10.2
does not apply.

20 (a). [ ( )( ) ( ) ]2 2 1 1 4 02
0

n n a n n a a tn n n
n

n+ + + - + =+
=

•

Â . Consequently, the recurrence relation is given

by a
n n a

n nn
n

+ =
- - +[ ]

+ +2

1 4
2 2 1

( )
( )( )

.
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20 (b). The recurrence leads us to

          a a a
a

a
a

a
a

2 0 3
1

4
0

5
1

3 4 12
= - = - = =, ,  ,  

Thus, the general solution is

          y t a t
t

a t
t t

( ) [ ] [ ]= - + - + - + +0
2

4

1

3 5

1
4 3 12

L L .

20 (c). R = 2 .

20 (d). p t( ) = 0 can be considered odd and q t
t

( ) =
+
4

22  is even. Therefore, Theorem 10.2 guarantees

that the given equation has even solutions and odd solutions.

21 (a). Consider the differential equation ¢¢ + =y t y2 0. Let the solution be given by y t a tn
n

n

( ) =
=

•

Â
0

.

Differentiating, we obtain ¢ = ¢¢ = --

=

•
-

=

•

Â Ây t na t y t n n a tn
n

n
n
n

n

( ) ( ) ( )1

1

2

2

1 and  . Inserting these

series into the differential equation, we have n n a t t a tn
n

n
n
n

n

( )- + =-

=

•

=

•

Â Â1 02 2

2 0

 or

n n a t a tn
n

n
n
n

n

( )- + =-

=

•
+

=

•

Â Â1 02

2

2

0

. Adjusting the indices, we obtain

( )( )n n a t a tn
n

n
n

n

n

+ + + =+
=

•

-
=

•

Â Â2 1 02
0

2
2

. Consequently, the recurrence relation is given by

a a a a n n nn n2 3 2 20 0 2 1 2 3= = = - + + =+ -, , / [( )( )], , , and  K.
21 (b). The recurrence leads us to

   a a a a a a2 3 4 0 5 10 0 12 20= = = - = -, , / , / ,K
Thus, the general solution is

          y t a
t

a t
t

y t y t( ) [ ] [ ] ( ) ( )= - + + - + = +0

4

1

5

1 21
12 20

L L .

21 (c). The coefficient functions are polynomials and hence analytic everywhere. Consequently,
Theorem 10.1 guarantees that the power series solution converges in the interval -• < < •t .

21 (d). The coefficient function p t( ) = 0 can be considered an odd function while q t t( ) = 2 is clearly
an even function. Therefore, Theorem 10.2 guarantees that the given equation has even
solutions and odd solutions.

22 (a). [( )( ) ]( )n n a na a tn n n
n

n+ + + + - =+
=

•

Â 2 1 1 02
0

. Consequently, the recurrence relation is given by

a
n a

n n

a

n
nn

n n
+ =

- +
+ +

=
-

+
=2

1
2 1 2

0 1 2
( )

( )( )
, , , ,....

22 (b). The recurrence leads us to

   a
a

a
a

a
a a

a
a a

2
0

3
1

4
2 0

5
3 1

2 3 4 8 5 15
= - = - = - = = - =,  ,  ,  

Thus, the general solution is

          y t a
t t

a t
t t

( ) [
( ) ( )

] [( )
( ) ( )

]= -
-

+
-

+ + - -
-

+
-

+0

2 4

1

3 5

1
1

2
1

8
1

1
3

1
15

L L .

22 (c). The coefficient functions are analytic everywhere. Consequently, R = • .
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23 (a). Consider the differential equation ¢¢ + =y y 0. Let the solution be given by

y z a z tn
n

n

( ) = = -
=

•

Â
0

1 where  z . Differentiating, we obtain

¢ = ¢¢ = --

=

•
-

=

•

Â Ây z na z y z n n a zn
n

n
n

n

n

( ) ( ) ( )1

1

2

2

1 and  . Inserting these series into the differential

equation, we have n n a z a zn
n

n
n

n

n

( )- + =-

=

•

=

•

Â Â1 02

2 0

. Adjusting the indices, we obtain

( )( )n n a z a zn
n

n
n

n

n

+ + + =+
=

•

=

•

Â Â2 1 02
0 0

. Consequently, the recurrence relation is given by

a a n n nn n+ = - + + =2 2 1 0 1/[( )( )], , ,K.
23 (b). The recurrence leads us to

   a a a a a2 0 4 2 02 12 24= - = - =/ , / / ,K
   a a a a a3 1 5 3 16 20 120= - = - =/ , / / ,K
Thus, the general solution is

          y t a
t t

a t
t t

( ) [
( ) ( )

] [( )
( ) ( )

]= -
-

+
-

+ + - -
-

+
-

+0

2 4

1

3 5

1
1

2
1

24
1

1
6

1
120

L L .

23 (c). The coefficient functions are constants and hence analytic everywhere. Consequently, Theorem
10.1 guarantees that the power series solution converges in the interval -• < - < •t 1 .

24 (a). [( ) ( )( ) ( ) ]( )n na n n a n a a tn n n n
n

n+ - + + + + + - =+ + +
=

•

Â 1 2 1 1 1 01 2 1
0

. Consequently, the recurrence

relation is given by a
n a a

n n
nn

n n
+

+=
+ +

+ +
=2

2
11

2 1
0 1 2

( )
( )( )

, , , ,....

24 (b). The recurrence leads us to

   a
a a a a

a
a a a a

2
1 0 1 0

3
2 1 1 0

2 2 2
4

3 2 2 3
=

+
= + =

+
◊

= +,  

Thus, the general solution is

          y t a
t t

a t
t t

( ) [
( ) ( )

] [( )
( ) ( )

]= +
-

+
-

+ + - -
-

+
-

+0

2 3

1

2 3

1
1

2
1

3
1

1
2

1
2

L L .

24 (c). p t q t
t

( ) ( )= =
-
1

2
 are not analytic at t = 2. Consequently, R = 1.

25 (a). Consider the differential equation ¢¢ + ¢ + - =y y t y( )2 0 or  ¢¢ + ¢ + - - =y y t y[( ) ]1 1 0. Let the

solution be given by y z a z tn
n

n

( ) = = -
=

•

Â
0

1 where  z . Differentiating, we obtain

¢ = ¢¢ = --

=

•
-

=

•

Â Ây z na z y z n n a zn
n

n
n

n

n

( ) ( ) ( )1

1

2

2

1 and  . Inserting these series into the differential

equation, we have n n a z na z a z a zn
n

n
n

n
n

n

nn
n

n

n

( )- + + - =- -

=

•
+

=

•

=

•

=

•

Â ÂÂ Â1 02 1

1

1

02 0

. Adjusting the

indices, we obtain ( )( ) ( )n n a z n a z a z a zn
n

n
n

n
n

n

nn
n

n

n

+ + + + + - =+ +
=

•

-
=

•

=

•

=

•

Â ÂÂ Â2 1 1 02 1
0

1
10 0

.

Consequently, the recurrence relation is given by
a a a a n a a a n n nn n n n2 0 1 2 1 12 1 2 1 1 2= - = - + - + + + =+ + -( ) / [( ) ] / [( )( )], , , and  K.
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25 (b). The recurrence leads us to
   a a a a a a3 2 1 0 0 12 6 3= - - + = - -( ) / ( ) / ,K
Thus, the general solution is

          y t a
t t

a t
t t

( ) [
( ) ( )

] [( )
( ) ( )

]= +
-

-
-

+ + - -
-

+
-

+0

2 3

1

2 3

1
1

2
1

3
1

1
2

1
3

L L .

25 (c). The coefficient functions are polynomials and hence analytic everywhere. Consequently,
Theorem 10.1 guarantees that the power series solution converges in the interval
-• < - < •t 1 .

26. a
n a

n n
nn

n
+ =

-
+ +

=2

2 2

2 1
0 1 2

( )
( )( )

, , , ,...
m

For m = = - = = = = = - +5 4
16
5

0 43 1 5 1 7 9 5 1
3 16

5
5,  ,  ,  ... ,  ( ) [ ]a a a a a a T t a t t t .

Set T a a5 1
16
5 11 1 4 1 5( ) [ ]= - + = fi = .  Therefore, T t t t t5

5 316 20 5( ) = - +
For m = = - = = - = - + - = -6 18 48 32 1 18 48 32 12 0 4 0 6 0 6 0

2 4 6
0,  ,  ,  ,  ( ) [ ]; a a a a a a T t a t t t a .

Therefore, T t t t t6
6 4 232 48 18 1( ) = - + -

27 (c).

27 (d). T t tN ( ) £ - < <1 1 1  for .  For t ≥ = •
Æ ±•

1, lim ( )
t

NT t .

28 (a). [( )( ) ( ) ( ) ]n n a n n a na a tn n n n
n

n+ + - - - + + =+
=

•

Â 2 1 1 2 1 02
0

m m . Therefore the recurrence relation

is a
n n a

n n
nn

n
+ =

+ - +
+ +

=2

1 1
2 1

0 1 2
[ ( ) ( )]

( )( )
, , , ,...

m m

28 (b). When m = = = = =+ + +N a a aN N N,  ... .2 4 6 0  Therefore, if m = 2M , a polynomial solution of the
form a a t a tM

M
0 2

2
2

2+ + +...  exists, while if m = +2 1M , a polynomial solution of the form
a t a t a tM

M
1 3

3
2 1

2 1+ + + +
+...  exists.
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28 (c). If m = = - - + =0 1 1 0 2 0 0 1 02 and y t t,  ( )( ) ( ) ( ) .
If m = = - - + =1 1 0 2 1 1 2 02 and y t t t t,  ( )( ) ( ) ( )( ) .

28 (d). If m = =
+ -

+ +
fi = -2

1 6
2 1

3
2

1
22 2

2,  
[ ( ) ]
( )( )

( ) +a
n n a

n n
P t tn

n .

If m = =
+ -

+ +
fi = -3

1 12
2 1

5
2

3
22 3

3,  
[ ( ) ]

( )( )
( ) +a

n n a

n n
P t t tn

n .

If m = =
+ -

+ +
fi = - +4

1 20
2 1

35
8

15
4

3
82 4

4 2,  
[ ( ) ]

( )( )
( ) +a

n n a

n n
P t t tn

n .

If m = =
+ -

+ +
fi = - +5

1 30
2 1

63
8

35
4

15
82 5

5 3,  
[ ( ) ]

( )( )
( ) +a

n n a

n n
P t t t tn

n .

29 (a). Consider the differential equation ¢¢ - ¢ + =y ty y2 2 0m . Let the solution be given by

y t a tn
n

n

( ) =
=

•

Â
0

. Differentiating, we obtain ¢ = ¢¢ = --

=

•
-

=

•

Â Ây t na t y t n n a tn
n

n
n
n

n

( ) ( ) ( )1

1

2

2

1 and  .

Inserting these series into the differential equation, we have

n n a t na t a tn
n

n
n

n
n
n

nn

( )- - + =-

=

•

=

•

=

•

Â ÂÂ 1 2 2 02

1 02

m . Adjusting the indices, we obtain

( )( )n n a t na t a tn
n

n
n

n
n
n

nn

+ + - + =+
=

•

=

•

=

•

Â ÂÂ 2 1 2 2 02
1 00

m . Consequently, the recurrence relation is

given by a a a n a n n nn n2 0 2 2 2 2 1 1 2= - = - + + =+m m and  ( ) / [( )( )], , ,K.
29 (d). For m = 2, the even indexed coefficients an  vanish when n > 2. From the recurrence relation,

H t a a t a t2 0 0
2

0
22 2 1( ) ( )= - = - - . Choosing a0 2= -  leads us to H t t2

24 2( ) = - . For m = 3, the
odd indexed coefficients an  vanish when n > 3. From the recurrence relation,
H t a t a t a t t3 1 1

3
1

32 3 2 3( ) ( / ) [( / ) )= - = - - . Choosing a1 12= -  leads us to H t t t3
38 12( ) = - .

Similarly, H t t t4
4 216 48 12( ) = - +  and H t t t t5

5 332 160 120( ) = - + .

30 (a). Try y t a t n na n a a tn
n

n
n n n

n

n( ) [( ) ( ) ]= fi + + + - =
=

•

+ +
=

•

Â Â
0

1 1
0

1 1 0 .

fi =
+

fi =
++

=

•

Âa
a

n
y t a

t

nn
n

n

n
1 2 0 2

01 1( )
( )

( )
.  By the ratio test, lim

( )
( )n

n

n

t n

t n
t

Æ •

+ +
+

=
1 2

2

1
2

 and the series

converges in - < <1 1t .

30 (b). Try y t a t n n a t n n an
n

n
n

n

n
n( ) [ ( ) ] [ ( ) ]= fi - + = fi - + =

=

•

=

•

Â Â
0 0

1 1 0 1 1 0.

The polynomial x x2 1- +  has roots 
1 1 4

2
± -

. Since there are no positive integer roots, the

factor [ ( ) ]n n - +1 1  is nonzero for all n = 0 1 2, , ,...  Therefore, a n y tn = = =0 0 1 2 0, , , ,... ( ) ,  and  
The trivial solution results.

33. The coefficient function p t t( ) sin=  is odd and analytic everywhere. The coefficient function
q t t( ) = 2 is even and analytic everywhere. Thus, Theorem 10.2(b) applies. The differential
equation has a general solution of the form (15).

34. No. p t t( ) cos=  is even; q t t( ) =  is odd.
35. The coefficient function p t( ) = 0 can be regarded as a function that is odd and analytic

everywhere. The coefficient function q t t( ) = 2 is even and analytic everywhere. Thus, Theorem
10.2(b) applies. The differential equation has a general solution of the form (15).
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36. No. p t( ) = 1 and q t t( ) = 2 are both even.
37. The coefficient function q t t( ) =  is odd. Thus, Theorem 10.2(b) does not apply.
38. No. p t et( ) =  is neither even nor odd and q t( ) = 1 is even.
39. Consider the differential equation ¢¢ + ¢ + =y ay by 0. The coefficient function p t a( ) =  can be

regarded as an odd function if a = 0, but is even if a is nonzero. The coefficient function
q t b( ) =  is even. Both coefficient functions are analytic everywhere. Thus, Theorem 10.2(b)
applies if a = 0 and b is arbitrary.

40 (a). p t q t
t

( ) ,  ( )= =
+

0
1

1 2  . The denominator of q t( ) vanishes at t i R= ± fi = 1.

40 (b). y t a t n n a n n a a tn
n

n
n n n

n

n( ) [( )( ) ( ) ]= fi + + + - + =
=

•

+
=

•

Â Â
0

2
0

2 1 1 0

fi = + + = - +r n n n s n n n( ) ( )( ), ( ) ( )2 1 1 1. Then lim lim
( )

( )( )n

n

n
n

a

a

n n

n nÆ •

+

Æ •
=

- +
+ +

=2 1 1
2 1

1. Therefore,

the series diverges for t t2 1 1> fi >  by the Ratio Test.

40 (c). No contradiction. The unique solution of the initial value problem exists for -• < < •t , but its
Maclaurin series has a radius of convergence R = 1.

Section 10.3

1 (a). l a l a l al a2 2 2 22 1 1 2 0+ - + - + = - + =( )
1 (b). Using the technique in Section 4.5, the general solution is y c t c t t t= + >1 2 0a a ln , .

2. W
t t t t

t t t t t t
t=

- +
= π- -

-
g g

g g
gd d

g d d d g d d d
d

cos( ln ) sin( ln )

[ cos( ln ) sin( ln )] [ sin( ln ) cos( ln )]1 1
2 1 0 

in  since 0 0< < • πt d .
3. When put in standard form, the differential equation is ¢¢ - ¢ + =- -y t y t y4 6 01 2 . Thus, t0 0=  is

the only singular point. The characteristic equation is l l2 5 6 0- + =  which has roots
l l1 22 3= = and  . Hence, the general solution is y c t c t t= + π1

2
2

3 0, .
4. t0 0= . The characteristic equation is l l2 6 0- - =  which has roots l l1 22 3= - = and  .

Hence, the general solution is y c t c t t= + π-
1

2
2

3 0, .
5. When put in standard form, the differential equation is ¢¢ - ¢ + =- -y t y t y3 4 01 2 . Thus, t0 0=  is

the only singular point. The characteristic equation is l l2 4 4 0- + =  which has roots
l l1 22 2= = and  . Hence, the general solution is y c t c t t t= + π1

2
2

2 0ln , .

6. t0 0= . The characteristic equation is l l2 2 5 0- + =  which has roots
l l1 21 2 1 2= + = -i i and  . Hence, the general solution is y c t t c t t t= + π1 22 2 0cos( ln ) sin( ln ), .

7. When put in standard form, the differential equation is ¢¢ - ¢ + =- -y t y t y3 29 01 2 . Thus, t0 0=  is
the only singular point. The characteristic equation is l l2 4 29 0- + =  which has roots
l l1 22 5 2 5= + = -i i and  . Hence, the general solution is
y c t t c t t t= + π1

2
2

25 5 0cos( ln ) sin( ln ), .

8. t0 0= . The characteristic equation is l l2 6 9 0- + =  which has roots l l1 2 3= = . Hence, the
general solution is y c t c t t t= + π1

3
2

3 0ln , .
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9. When put in standard form, the differential equation is ¢¢ + ¢ + =- -y t y t y1 29 0. Thus, t0 0=  is
the only singular point. The characteristic equation is l2 9 0+ =  which has roots
l l1 23 3= = -i i and  . Hence, the general solution is y c t c t t= + π1 23 3 0cos( ln ) sin( ln ), .

10. t0 0= . The characteristic equation is l l2 2 1 0+ + =  which has roots l l1 2 1= = - . Hence, the
general solution is y c t c t t t= + π- -

1
1

2
1 0ln , .

11. When put in standard form, the differential equation is ¢¢ + ¢ + =- -y t y t y3 17 01 2 . Thus, t0 0=  is
the only singular point. The characteristic equation is l l2 2 17 0+ + =  which has roots
l l1 21 4 1 4= - + = - -i i and  . Hence, the general solution is
y c t t c t t t= + π- -

1
1

2
14 4 0cos( ln ) sin( ln ), .

12. t0 0= . The characteristic equation is l l2 10 25 0+ + =  which has roots l l1 2 5= = - . Hence,
the general solution is y c t c t t t= + π- -

1
5

2
5 0ln , .

13. Consider the differential equation ¢¢ + ¢ + =- -y t y t y5 40 01 2 . We see that, t0 0=  is the only
singular point. The characteristic equation is l l2 4 40 0+ + =  which has roots
l l1 22 6 2 6= - + = - -i i and  . Hence, the general solution is
y c t t c t t t= + π- -

1
2

2
26 6 0cos( ln ) sin( ln ), .

14. t0 0= . The characteristic equation is l l2 3 0- =  which has roots l l1 20 3= =,  . Hence, the
general solution is y c c t t= + π1 2

3 0, .
15. When put in standard form, the differential equation is ¢¢ - - ¢ - - =- -y t y t y( ) ( )1 3 1 01 2 . Thus,

t0 1=  is the only singular point. The characteristic equation is l l2 2 3 0- - =  which has roots
l l1 23 1= - = and  . Hence, the general solution is y c t c t t= - + - π-

1
3

2
11 1 1( ) ( ) , .

16. t0 1= . The characteristic equation is l l2 2 17 0+ + =  which has roots
l l1 21 4 1 4= - + = - -i i,  . Hence, the general solution is
y c t t c t t t= - - + - - π- -

1
1

2
11 4 1 1 4 1 1( ) cos( ln ) ( ) sin( ln ), .

17. When put in standard form, the differential equation is ¢¢ + + ¢ + + =- -y t y t y6 2 6 2 01 2( ) ( ) .
Thus, t0 2= -  is the only singular point. The characteristic equation is l l2 5 6 0+ + =  which
has roots l l1 23 2= - = - and  . Hence, the general solution is
y c t c t t= + + + π -- -

1
3

2
22 2 2( ) ( ) , .

18. t0 2= . The characteristic equation is l2 4 0+ =  which has roots l l1 22 2= = -i i,  . Hence, the
general solution is y c t c t t= - + - π1 22 2 2 2 2cos( ln ) sin( ln ), .

19. From the form of the general solution, t0 2= -  and the characteristic equation has roots
l l1 21 2= = - and  . Therefore, the characteristic equation is l l2 2 0+ - = . Matching the
characteristic equation with the general form given in equation (3), we see that
a b- = = -1 1 2 and  . Thus, the differential equation is ( ) ( )t y t y y+ ¢¢ + + ¢ - =2 2 2 2 02 .

20. t0
21 0 0 0 1 0= = \ = fi = =,  , . ,  l l a b .

21. From the form of the general solution, t0 0=  and the characteristic equation has roots
l l1 22 2= + = -i i and  . Therefore, the characteristic equation is l l2 4 5 0- + = . Matching
the characteristic equation with the general form given in equation (3), we see that
a b- = - =1 4 5 and  . Thus, the differential equation is t y ty y2 3 5 0¢¢ - ¢ + = .

22. The characteristic equation has roots l l1 22 1= = - and  . Therefore, the characteristic equation
is l l a b2 2 0 0 2- - = fi = = -,  .  Thus, the differential equation is t y ty y g t2 ¢¢ + ¢ - = ( ) . We
can determine the nonhomogenous term g(t) by inserting the given particular solution
y t tP ( ) = +2 1. Doing so, we obtain  t t t t g t2 0 2 2 2 1 2 2( ) ( ) ( ) ( )+ - + = - - = .
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23. From the form of the general solution, the characteristic equation has roots l l1 22 3= = and  .
Therefore, the characteristic equation is l l2 5 6 0- + = . Matching the characteristic equation
with the general form given in equation (3), we see that a b- = - =1 5 6 and  .
Thus, the differential equation is t y ty y g t2 4 6¢¢ - ¢ + = ( ). We can determine the
nonhomogenous term g(t) by inserting the given particular solution y t tP ( ) ln= . Doing so, we
obtain t y ty y g tP P P

2 4 6¢¢ - ¢ + = ( )  or t t t t t g t2 2 14 6( ) ( ) ln ( )- - + =- - . Thus, g t t( ) ln= - +5 6 .
24. Under the change of variable t ez= , the differential equation transforms into

¢¢ - ¢ - =Y z Y z Y z( ) ( ) ( )2 2. The general solution is Y z c e c e y c t c tz z( ) = + - fi = + -- -
1 2

2
1

1
2

21 1.
25. Under the change of variable t ez= , the differential equation t y ty y t2 1¢¢ - ¢ + = -  transforms

into ¢¢ - ¢ + = -Y z Y z Y z ez( ) ( ) ( ) ( )2 1 or ¢¢ - ¢ + = -Y z Y z Y z e z( ) ( ) ( )2 . Solving this constant
coefficient equation using the techniques of Chapter 4, we find the general solution
Y z c e c ze ez z z( ) .= + + -

1 2 0 25 . Since z t= ln , the solution can be converted to
y t c t c t t t( ) ln .= + + -

1 2
10 25 .

26. Under the change of variable t ez= , the differential equation transforms into
¢¢ + =Y z Y z ez( ) ( )9 10 .

The general solution is Y z c z c z e y c t c t tz( ) cos( ) sin( ) cos( ln ) sin( ln )= + + fi = + +1 2 1 23 3 3 3 .
27. Under the change of variable t ez= , the differential equation t y y t2 26 10 6¢¢ - = --  transforms

into ¢¢ - ¢ - = --Y z Y z Y z ez( ) ( ) ( ) ( )6 10 62  or ¢¢ - ¢ - = --Y z Y z Y z e z( ) ( ) ( )6 10 62 . Solving this
constant coefficient equation using the techniques of Chapter 4, we find the general solution
Y z c e c e zez z z( ) = + - +- -

1
3

2
2 22 1. Since z t= ln , the solution can be converted to

y t c t c t t t( ) ln= + - +- -
1

3
2

2 22 1.
28. Under the change of variable t ez= , the differential equation transforms into

¢¢ - ¢ + =Y z Y z Y z z( ) ( ) ( )5 6 3 . Therefore, Y c e c e Y Az B zc
z z

p= + = + = +1
2

2
3 1

2
5

12
, .

The general solution is Y z c e c e z y c t c t tz z( ) ln= + + + fi = + + +1
2

2
3

1
2

2
31

2
5

12
1
2

5
12

.

29. Under the change of variable t ez= , the differential equation t y ty y t t2 18 10 36¢¢ + ¢ + = + -( )
transforms into ¢¢ + ¢ + = + -Y z Y z Y z e ez z( ) ( ) ( ) ( )7 10 36 . Solving this constant coefficient
equation using the techniques of Chapter 4, we find the general solution
Y z c e c e e ez z z z( ) = + + +- - -

1
5

2
2 2 9 . Since z t= ln , the solution can be converted to

y t c t c t t t( ) = + + +- - -
1

5
2

2 12 9 .
30. The complementary solution is y t c t c tC ( ) = +-

1
1

2
3. For a particular solution, use

y t At BP ( ) = + . Then, the general solution is y t c t c t t( ) = + - --
1

1
2

3 2 2. Imposing the initial
conditions, we obtain y c c( )1 2 2 11 2= + - - =  and ¢ = - + - =y c c( )1 3 2 31 2 . Solving, we find

the solution of the initial value problem is y t t t t( ) = + - --5
2

5
2

2 21 3 . The interval of existence

is 0 < < •t .
31. Consider the initial value problem t y ty y y y2 5 5 10 1 4 1 6¢¢ - ¢ + = = ¢ =, ( ) , ( ) . The complementary

solution is y t c t c tC ( ) = +1
5

2 . By inspection, a particular solution is y tP ( ) = 2. Thus, the general
solution is y t c t c t( ) = + +1

5
2 2 . Imposing the initial conditions, we obtain y c c( )1 2 41 2= + + =

and ¢ = + =y c c( )1 5 61 2 . Solving, we find the solution of the initial value problem is
y t t t( ) = + +5 2. The interval of existence is the entire t-axis.
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32. The complementary solution is y t c t c t tC ( ) ln( )= + -- -
1

1
2

1 . For a particular solution, use
y t At BP ( ) = + . Then, the general solution is y t c t c t t tC ( ) ln( )= + - + +- -

1
1

2
1 2 9 . Imposing the

initial conditions, we obtain y c( )- = - - + =1 2 9 11  and ¢ - = - + + =y c c( )1 2 01 2 .
Solving, we find the solution of the initial value problem is y t t t t t( ) ln( )= + - + +- -6 4 2 91 1 .
The interval of existence is -• < <t 0 .

33. Consider the initial value problem t y ty y t y y2 13 2 1 2 1 1¢¢ + ¢ + = = - ¢ =- , ( ) , ( ) . The
complementary solution is y t c t c t tC ( ) ln= +- -

1
1

2
1 . Using the change of variable t ez=  as in

Example 2, we find a particular solution y t t tP ( ) (ln )= -1 2 . Thus, the general solution is
y t c t c t t t t( ) ln (ln )= + +- - -

1
1

2
1 1 2 . Imposing the initial conditions, we obtain y c( )1 21= = -  and

¢ = - + =y c c( )1 11 2 . Solving, we find the solution of the initial value problem is
y t t t t t t( ) ln (ln )= - - +- - -2 1 1 1 2 . The interval of existence is the positive t-axis.

34.
dy

dt

dy

dz

dz

dt t

dy

dz

d y

dt t

dy

dz t

d y

dz t t

d y

dz

dy

dz
= = = - + = -

Ê
ËÁ

ˆ
¯̃

1 1 1 1 12

2 2

2

2 2

2

2; .

d y

dt t

d y

dz

dy

dz t

d y

dz

d y

dz t

d y

dz

d y

dz

dy

dz

3

3 3

2

2 3

3

3

2

2 3

3

3

2

2

2 1 1
3 2= - -

Ê
ËÁ

ˆ
¯̃

+ -
Ê
ËÁ

ˆ
¯̃

= - +
Ê
ËÁ

ˆ
¯̃

. Therefore,

t y t y ty y
d Y

dz

d Y

dz

dY

dz

d Y

dz

dY

dz

dY

dz
Y3 2

3

3

2

2

2

23 2 0¢¢¢ + ¢¢ + ¢ + = - + + -
Ê
ËÁ

ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃ + =a b g a b g

fi + - + - + + =
d Y

dz

d Y

dz

dY

dz
Y

3

3

2

23 2 0( ) ( )a b a g .

35. Consider the differential equation t y t y ty3 23 3 0¢¢¢ + ¢¢ - ¢ = . Assuming a solution of the form
y t t( ) = l , we obtain the characteristic equation l l3 4 0- = . The roots are
l l l1 2 30 2 2= = = -,  and  . The general solution is y t c c t c t( ) = + + -

1 2
2

3
2 , t π 0.

36. a b g= = = - fi ¢¢¢ - ¢¢ + ¢ - =0 1 1 3 3 0, ,  Y Y Y Y . The characteristic equation is
l l l l3 2 33 3 1 1 0- + - = - =( ) . The roots are l l l1 2 3 1= = = . Therefore,
Y c e c ze c z e y c t c t t c t tz z z= + + fi = + +1 2 3

2
1 2 3

2ln (ln ) .
37. Consider the differential equation t y t y ty t3 2 23 8 12¢¢¢ + ¢¢ + ¢ = + . Using the change of variable

t ez=  as suggested in Exercise 34, the differential equation transforms to ¢¢¢ = +Y z e z( ) 8 122 .
The general solution is Y z c c z c z e zz( ) = + + + +1 2 3

2 2 32 . Using the fact that z t= ln , the general
solution becomes y t c c t c t t t t( ) ln (ln ) (ln ) , = + + + + >1 2 3

2 2 32 0.
38. a b g= = = fi ¢¢¢ + ¢¢ + ¢ + =6 7 1 3 3 0, ,  Y Y Y Y . The characteristic equation is ( )l + =1 03 . The

roots are l l l1 2 3 1= = = - . Therefore,
Y c e c ze c z e Y Az B Y c e c ze c z e zc

z z z
p

z z z= + + = + fi = + + + -- - - - - -
1 2 3

2
1 2 3

2 1, 

fi = + + + -- - -y c t c t t c t t t1
1

2
1

3
1 2 1ln (ln ) ln .

Section 10.4

1. When put in standard form, the differential equation is ¢¢ + ¢ + =- -y t t y t y1 1 0(cos ) .
Thus, t = 0 is the only singular point. The coefficient functions are p t t t( ) (cos )= -1  and
q t t( ) = -1. Clearly tp t t( ) cos=  and t q t t2 ( ) =  are analytic. Therefore, t = 0 is a regular singular
point.
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2. p t
t

t
( )

sin
= 2  and q t

t
( ) =

1
2 . Since  tp t

t

t

t t t
( )

sin
! ! !

...= = - + - +1
3 5 7

2 4 6

 and t q t2 1( ) =  are both

analytic at t = 0, then t = 0 is a regular singular point.
3. When put in standard form, the differential equation is ¢¢ + + ¢ + - =- -y t y t y( ) ( )1 1 01 2 1 . Thus,

t t= = -1 1 and   are singular points. The coefficient functions are p t t( ) ( )= + -1 1 and
q t t( ) ( )= - -2 11 . Clearly ( ) ( ) ( )( )t p t t t- = - + -1 1 1 1 and ( ) ( ) ( )( )t q t t t- = - + -1 1 12 1 are analytic at
t = 1. Therefore, t = 1 is a regular singular point. Similarly, t = -1 is also a regular singular
point.

4. p t
t

t t t
( )

( ) ( ) ( )
=

+
-

=
- +

1
1

1
1 12 2 2  and q t

t t
( )

( ) ( )
=

- +
1

1 12 2 .

At t t p t
t

t q t
t

t= - + =
-

Æ + =
-

Æ Æ -1 1
1
1

1
4

1
1
1

1
4

12
2

2,  ( ) ( )
( )

( ) ( )
( )

 and  as . Therefore, t = -1

is a regular singular point.

At t t p t
t tt t

= - =
- +Æ Æ

1 1
1

1 11 1
,  lim( ) ( ) lim

( )( )
 does not exist.. Therefore, t = 1 is an irregular singular

point.
5. When put in standard form, the differential equation is ¢¢ + - ¢ + =- -y t t y t y2 21 0( cos ) . Thus,

t = 0 is the only singular point. The coefficient functions are p t t t( ) ( cos )= --2 1  and q t t( ) = -2.

Using a Maclaurin series, tp t t t
t t t

( ) ( cos )
! ! !

= - = - + --1
3 5

1
2 4 6

L is analytic at t = 0 as is

t q t2 1( ) = . Therefore, t = 0 is a regular singular point.

6. p t q t
t

( ) ( )= =
1

. Since neither tp t
t

t
t q t

t

t
( ) ( )= = nor 2

2

 are analytic at t = 0, there is an irregular

singular point at t = 0.
7. When put in standard form, the differential equation is ¢¢ + - ¢ + - =- -y e y e yt t( ) ( )1 1 01 1 . Thus,

t = 0 is the only singular point. The coefficient functions are p t et( ) ( )= - -1 1 and
q t et( ) ( )= - -1 1. Using a Maclaurin series,

tp t t e t t
t t t tt( ) ( )
! ! ! !

= - = - - - -
Ê
ËÁ

ˆ
¯̃

= - - - -
Ê
ËÁ

ˆ
¯̃

-
- -

1
2 3

1
2 3

1
2 3 1 2 1

L L  is analytic at t = 0 as is t q t2 ( )..

Therefore, t = 0 is a regular singular point.

8. p t
t

t t t
( )

( )( ) ( )
=

+
- +

=
-
-

2
2 2

1
2

 and q t
t t t

( )
( ) ( ) ( )

=
-

=
- +

1
4

1
2 22 2 2 2 .

At t t p t
t

t
t q t

t
t= - + =

- +
-

Æ + =
-

Æ Æ -2 2
2

2
0 2

1
2

1
16

22
2,  ( ) ( )

( )
( )

( ) ( )
( )

 and  as . Therefore,

t = -2 is a regular singular point.

At t t p t t q t
t

t= - = - - =
+

Æ Æ2 2 1 2
1
2

1
16

22
2,  ( ) ( ) ( ) ( )

( )
 and  as . Therefore, t = 2 is a regular

singular point.
9. When put in standard form, the differential equation is ¢¢ + - ¢ + - =- -y t y t ty( ) ( )/ /1 1 02 1 3 2 1 3 .

Thus, t t= = -1 1 and   are singular points. The coefficient functions are p t t( ) ( ) /= - -1 2 1 3 and
q t t t( ) ( ) /= - -1 2 1 3 . Neither of the functions ( ) ( )t p t± 1  or ( ) ( )t q t± 1 2  is analytic at t = ±1.
Therefore, t = 1 is an irregular singular point as is t = -1.
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10. p t q t t( ) ,  ( )= =1
1
3 . Since tp t t( ) =   is analytic at t = 0, but t q t t2 7

3( ) =  is not, there is an irregular
singular point at t = 0.

11. For this problem, p t t P t( ) (sin ) / ( )= 2 . Since we know there are singular points at
t t= = ±0 1 and  , we know that P t( )  must be zero at those points. Since tp t( ) is analytic at
t = 0 and since (sin ) /2t t  tends to 2 as t Æ 0, it follows that t2 is a factor of P t( ) . Similarly,
( ) ( )t p t- 1  is not analytic at t = 1 and thus ( )t - 1 2 must be a factor of P t( ) . The same argument
applies at t = -1 and thus ( )t + 1 2 must be a factor of P t( ) . In summary,
P t t t t t t( ) ( ) ( ) ( )= - + = -2 2 2 2 2 21 1 1 .

12. P t( ) = 1.
13. For this problem, p t tP t( ) [ ( )]= -1. Since we know there are singular points at t = ±1, we know

that P t( )  must be zero at t = ±1. Since t q t t2 1( ) /= , it follows [without any assumptions on
P t( )] that t = 0 is an irregular singular point. Since, ( ) ( )t p t- 1  is not analytic at t = 1 it follows
that ( )t - 1 2 must be a factor of P t( ) . The same argument applies at t = -1 and thus ( )t + 1 2

must be a factor of P t( ) . In summary, P t t t t( ) ( ) ( ) ( )= - + = -1 1 12 2 2 2 .
14(a). t = 0 is a regular singular point if n = 1.
14(b). t = 0 is an irregular singular point if n ≥ 2.
15. For this problem, tp t t t( ) / (sin )=  and t q t tn2 21( ) /= - . Since t t/ (sin )  is analytic at t = 0, it

follows that t = 0 is a regular singular point if n = 0 1 2, ,  and an irregular singular point if n > 2.

16 (a). tp t( ) = -
1
2

 and t q t
t

t2 1
2

1
2

0( ) =
+

Æ Æ as . Thus, t = 0 is a regular singular point.

16 (b). Substituting the series y a tn
n

n

= +

=

•

Â l

0

 into the differential equation, we obtain

[ ( ) ] [( ( )( ) ( ) ) ]2 1 1 2 1 1 00 1
1

l l l l l ll l- - + + + + - - + + + =-
+

=

•

Âa t n n n a a tn n
n

n

. Therefore, the

indicial equation is F F( ) ( )l l l l= = - +0 2 3 12 where  . The roots of the indicial equation are

l l1 2

1
2

1= = and  .

16 (c). a
a

F n

a

n n
nn

n n=
-

+
=

-
+ - + +

=- -1 1
22 3 1

1 2
( ) ( ) ( )

, , ,
l l l

K

For l2 1= , the recurrence relation is a
a

n n
nn

n=
-

+ - + +
=-1

22 1 3 1 1
1 2

( ) ( )
, , ,K..

16 (d).  y t a t
t t

( ) = - + +
È

Î
Í

˘

˚
˙0

2 3

3 30
L .

17 (a). For this problem, tp t( ) = 1 and t q t t2 1 4( ) ( ) /= - . Thus, t = 0 is a regular singular point.

17 (b). Substituting the series y a tn
n

n

= +

=

•

Â l

0

 into the differential equation 4 4 1 02t y ty t y¢¢ + ¢ + - =( ) ,

we obtain ( ) [( ( ) ) ]4 1 4 1 02
0

2
1

1

l ll l- + + - + =-
+

=

•

Âa t n a a tn n
n

n

. Therefore, the indicial equation

is F F( ) ( )l l l= = -0 4 12 where  . The roots of the indicial equation are
l l1 21 2 1 2= - =/ / and  .
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17 (c). a
a

F n

a

n
nn

n n=
-

+
=

-
+ -

=- -1 1
24 1

1 2
( ) ( )

, , ,
l l

K

For l = 1 2/ , the recurrence relation is a a n nn n= - + - =-1
24 0 5 1 1 2/[ ( . ) ], , ,K..

17 (d).  y t a t t t( ) [ ( / ) ( / ) ]/ / /= - + -0
1 2 3 2 5 21 8 1 192 L .

18 (a). tp t
t

( ) =
16

 and t q t2 3
16

( ) = .  Both limits exist as t Æ 0 . Thus, t = 0 is a regular singular point.

18 (b). Substituting the series y a tn
n

n

= +

=

•

Â l

0

 into the differential equation, we obtain

[ ( ) ] [( ( )( ) ) ( ) ]16 1 3 16 1 3 1 00 1
1

l l l l ll l- + + + + - + + + - =-
+

=

•

Âa t n n a n a tn n
n

n

. Therefore, the

indicial equation is F F( ) ( )l l l l= = - +0 16 16 32 where  . The roots of the indicial equation

are l l1 2

1
4

3
4

= = and  .

18 (c). a
n a

F n

n a

n n
nn

n n=
- + -

+
=

- + -
+ + - +

=- -( )
( )

( )
( )( )

, , ,
l

l
l

l l
1 1

16 1 3
1 21 1 K

For l2

3
4

= , the recurrence relation is a
n a

n n
nn

n=
- + -

+ + - +
=-( / )

( / )( / )
, , , ,

3 4 1
16 3 4 3 4 1 3

1 21 K ..

18 (d).  y t a t
t t

t( ) ,  = - + +
È

Î
Í
Í

˘

˚
˙
˙

>0

3
4

7
4

11
4

32
7

10240
0L .

19 (a). For this problem, tp t( ) = 1 and t q t t2 9( ) = - . Thus, t = 0 is a regular singular point.

19 (b). Substituting the series y a tn
n

n

= +

=

•

Â l

0

 into the differential equation t y ty t y2 9 0¢¢ + ¢ + - =( ) , we

obtain ( ) [(( ) ) ]l ll l2
0

2
1

1

9 9 0- + + - + =-
+

=

•

Âa t n a a tn n
n

n

. Therefore, the indicial equation is

F F( ) ( )l l l= = -0 92 where  . The roots of the indicial equation are l l1 23 3= - = and  .

19 (c). a
a

F n

a

n
nn

n n=
-

+
=

-
+ -

=- -1 1
2 9

1 2
( ) ( )

, , ,
l l

K

For l = 3, the recurrence relation is a a n nn n= - + - =-1
23 9 1 2/[( ) ], , ,K..

19 (d).  y t a t t t( ) [ ( / ) ( / ) ]= - + -0
3 4 51 7 1 112 L .

20 (a). tp t t( ) = + 2  and t q t t2 ( ) = - .  Both limits exist as t Æ 0 . Thus, t = 0 is a regular singular point.

20 (b). Substituting the series y a tn
n

n

= +

=

•

Â l

0

 into the differential equation, we obtain

[ ( ) ] {[( )( ) ( )] ( ) }l l l l l l ll l- + + + + + + + + + + - =-
+

+

=

•

Â1 2 1 2 1 1 00
1

1
0

a t n n n a n a tn n
n

n

.

Therefore, the indicial equation is F F( ) ( )l l l l= = +0 2 where  . The roots of the indicial
equation are l l1 21 0= - = and  .

20 (c). a
n a

n n
nn

n
+ =

- + -
+ + + +

=1

1
2 1

0 1 2
( )

( )( )
, , , ,

l
l l

K

For l2 0= , the recurrence relation is a
n a

n n
nn

n=
- -

+ +
=

( )
( )( )

, , , , ,
1

2 1
0 1 2 K ..
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20 (d).  y t a
t

( ) = +È
ÎÍ

˘
˚̇0 1

2
.

21 (a). For this problem, tp t( ) = 3 and t q t t2 2 1( ) = + . Thus, t = 0 is a regular singular point.

21 (b). Substituting the series y a tn
n

n

= +

=

•

Â l

0

 into the differential equation t y ty t y2 3 2 1 0¢¢ + ¢ + + =( ) ,

we obtain ( ) [(( ) ( ) ) ]l l l ll l2
0

2
1

1

2 1 2 1 2 0+ + + + + + + + =-
+

=

•

Âa t n n a a tn n
n

n

. Therefore, the

indicial equation is F F( ) ( )l l l l= = + +0 2 12 where  . The roots of the indicial equation are
l l1 2 1= = - .

21 (c). a
a

F n

a

n
nn

n n=
-

+
=

-
+ +

=- -2 2
1

1 21 1
2( ) (( ) )
, , ,

l l
K

For l = -1, the recurrence relation is a a n nn n= - =-2 1 21
2/ , , ,K..

21 (d). y t a t t( ) [ ]= - + --
0

1 2 L .
22 (a).  Both limits exist as t Æ 0 . Thus, t = 0 is a regular singular point.

22 (b). Substituting the series y a tn
n

n

= +

=

•

Â l

0

 into the differential equation, we obtain

[ ( ) ] {[( ) ( ) )] ( ) }l l l l l ll l- - - + + - + - + + - =-
+

=

•

Â1 3 2 3 1 00
2

1
1

a t n n a n a tn n
n

n

. Therefore, the

indicial equation is F F( ) ( )l l l l= = - -0 2 32 where  . The roots of the indicial equation are
l l1 21 3= - = and  .

22 (c). a
n a

F n

n a

n n
nn

n n=
- + -

+
=

- + -
+ - + -

=- -( )
( )

( )
( ) ( )

, , ,
l

l
l

l l
1 1

2 3
1 21 1

2 K

For l2 3= , the recurrence relation is a
n a

n n
nn

n=
- +

+
=-( )

( )
, , , ,

2
4

1 21 K ..

22 (d).  y t a t
t t

( ) = - + +
È

Î
Í

˘

˚
˙0

3
4 53

5 5
L .

23 (a). For this problem, tp t t( ) = - 2 and t q t t2 ( ) = . Thus, t = 0 is a regular singular point.

23 (b).  Substituting the series y a tn
n

n

= +

=

•

Â l

0

 into the differential equation ty t y y¢¢ + - ¢ + =( )2 0 , we

obtain ( ) ( )[( ) ]l l l ll l2
0

1
1

0

3 1 2 0- + + + + - + =-
-

+

=

•

Âa t n n a a tn n
n

n

. Therefore, the indicial

equation is F F( ) ( )l l l l= = -0 32 where  . The roots of the indicial equation are
l l1 20 3= = and  .

23 (c). a
n a

F n

n a

n n

a

n
nn

n n n
+ =

- + +
+

=
- + +

+ + + -
=

-
+ -

=1

1 1
1 2 2

0 1 2
( )

( )
( )

( )( ) ( )
, , , ,

l
l

l
l l l

K

For l = 3, the recurrence relation is a a n nn n= - + =-1 1 0 1/ ( ), , ,K..
23 (d). y t a t t t( ) [ ( / ) ]= - + -0

3 4 51 2 L .

24 (a). tp t
t

t
t( )

sin
= - Æ - Æ

2
2 0 as  and t q t t t2 2 2 0( ) = + Æ Æ as . Thus, t = 0 is a regular singular

point.
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24 (b). t y ty t y a t a t a t2
0 1

1
2

22 2 1 1 2 1¢¢ - ¢ + + = - + + + + + +[ ]+ +sin ( ) ( ) ( ) ( )( )l l l l l ll l l L

- - +
È

Î
Í

˘

˚
˙ + + + + +[ ] + + + + +[ ] =- + + +2

3
1 2 2 0

3

0
1

1 2
1

0 1
1

2
2t

t
a t a t a t t a t a t a t

!
... ( ) ( ) ( ) ...l l ll l l l l lL .

For  t a a a a al l l l l l l l: ( ) ( ) ( )( )- - + = - + = - - =1 2 2 3 2 1 2 00 0 0
2

0 0 .
For  t a a a a a al l l l l l+ + - + + + = + - + + =1

1 1 1 0 1 01 2 1 2 1 2 2 0: ( ) ( ) [( )( ) ] .

For  t a a a a al l l l l+ + + - + + + + =2
2 2 0 2 12 1 2 2

2
3

2 0: ( )( ) ( )
!

.

Therefore, the indicial equation is F( ) ( )( )l l l= - - =1 2 0 . The roots of the indicial equation
are l l1 21 2= = and  .

24 (c). y t a t
t t

( ) [ ]= - - -0
2

3 4

2 6
L

25 (a). For this problem, tp t( ) = 4  and t q t tet2 ( ) = . Thus, t = 0 is a regular singular point.

25 (b). Given the series y a tn
n

n

= +

=

•

Â l

0

, we have ty a t a t¢¢ = - + + +-l l l ll l( ) ( )1 10
1

1 L,

- ¢ = + + +-4 10
1

1y a t a tl ll l( ) L, and
e y t t a t a t a t a tt = + + + + + = + + ++ +[ ( / !) ][ ] ( )1 1 2 12

0 1
1

0 1
1L L Ll l l l .

Therefore, substituting the series into the differential equation ty y e yt¢¢ - ¢ + =4 0, we obtain
l l l ll l( ) [( )( ) ]- + + - + + =-5 1 4 00

1
0a t a t L . Therefore, the indicial equation is l l2 5 0- = .

The roots of the indicial equation are l l1 20 5= = and  .
25 (c). y t a t t t( ) [ ( / ) ( / ) ]= - - -0

5 6 71 6 5 84 L

26 (a). tp t
t

t
t( )

sin
= - Æ - Æ1 0 as  and t q t

t

t
t2

2

0 0( )
sin

= Æ Æ as . Thus, t = 0 is a regular singular

point.
26 (b). (sin )t y y y¢¢ - ¢ + =

t
t t

a t a t a t a t- +
È

Î
Í

˘

˚
˙ - + + + + + + + + +[ ]- - +

3 5

0
2

1
1

2 3
1

3 5
1 1 2 1 3 2

! !
... ( ) ( ) ( )( ) ( )( )l l l l l l l ll l l l L

- + + + + +[ ] + + + +[ ] =- + + +l l ll l l l l la t a t a t a t a t a t0
1

1 2
1

0 1
1

2
21 2 0( ) ( ) L L ..

For  t a a a al l l l l l l l- - - = - = - =1
0 0

2
0 01 2 2 0: ( ) ( ) ( ) .

For  t a a a a al l l l l l: ( ) ( ) ( )( )+ - + + = + - + =1 1 1 1 01 1 0 1 0 .

For  t a a a a a a al l l l l l l l l+ + + + + - - + = + + - - =1
2 2 0 1

2
2 1 02 1 2

1
3

1 2
1
6

1 0: ( )( ) ( )
!

( ) ( ) ( ) .

Therefore, the indicial equation is F( ) ( )l l l= - =2 0 . The roots of the indicial equation are
l l1 20 2= = and  .

26 (c). y t a t
t t

( ) [ ]= - + +0
2

3 4

3 24
L

27 (a). For this problem, tp t t et( ) / ( )= -2 2  and t q t t et2 2 1( ) / ( )= - . Thus, t = 0 is a regular singular
point.

27 (b). Given the series y a tn
n

n

= +

=

•

Â l

0

, we have

( ) ( ) [ . ( ) ( ) ]1 1 0 5 1 10
1

0 1- ¢¢ = - - - - - + +-e y a t a a tt l l l l l ll l L,
0 5 0 5 10

1
1. . [ ( ) ]¢ = + + +-y a t a tl ll l L .
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Therefore, substituting the series into the differential equation ( ) ( / )1 1 2 0- ¢¢ + ¢ + =e y y yt , we
obtain - - + - + - + - + + + =-l l l l l ll l( . ) [ ( )( . ) . ( ) ]1 5 1 0 5 0 5 2 00

1
1

2
0a t a a t L . Therefore, the

indicial equation is l l2 1 5 0- =. . The roots of the indicial equation are l l1 20 1 5= = and  . .
27 (c). y t a t t t( ) [ ( / ) ( / ) ]/ / /= + - +0

3 2 5 2 7 21 2 17 96 L

Section 10.5

1 (a). When put in standard form, the differential equation is ¢¢ - + ¢ + =- -y t t y t y( ) ( )2 1 01 1 .
Therefore, t = 0 is a regular singular point.

1 (b). Substituting the series y a tn
n

n

= +

=

•

Â l

0

 into the differential equation, we obtain

( ) [( )( ( ) ) ( ) ]2 3 1 2 1 2 02
0

1
1

0

l l l l ll l- + + + + - - + - =-
+

+

=

•

Âa t n n a n a tn n
n

n

.

Therefore, the exponents at the singularity are l1 0=  and l2 1 5= . .
1 (c). The recurrence relation is a n a n nn n+ = + - + + + -1 2 1 2 2 1[( ) ] / [( )( )]l l l , n = 0 1, ,K.
1 (d). For l1 0= , y a t t= + -0

21 2[ ] is a polynomial solution.
For l2 3 2= / , y a t t t= - - -0

3 2 5 2 7 21 10 1 280[ ( / ) ( / ) ]/ / / L .
1 (e). Note that tp t t q t( ) ( ) and  2  are analytic everywhere. Thus, see equations (18)-(21), the second

series found in part (d) converges for 0 < t.
2 (b). Substituting the series into the differential equation, we obtain

2 1 5 2 1 5 1 2 1 5 2 30
1

1 1 1
1

l l l l l l l ll l l( ) ( ) ( ) [ ( )( / ) ]- +[ ] + + + +[ ] + + + + + +-
+ -

+

=

•

Âa t a t n n a a tn n
n

n

= 0.  Therefore, F( ) ( / ) ,  l l l l l= + fi = - =2 3 2
3
2

01 2 .

2 (c). The recurrence relation is a
a

n n
n an

n
+

-=
-

+ + + +
= + + =1

1
1

3
2 1 5 2

1 2 1 2 5 0
( )( / )

,  , ,... ( )( )
l l

l l and 

2 (d). For l1

3
2

= - , y a t t t= - + +-
0

3 2 1 2 5 23 2 9 40[ ( / ) ( / ) ]/ / / L .

For l2 0= , y a t t= - + -0
2 41 3 14 9 616[ ( / ) ( / ) ]L .

2 (e). The series  converges for 0 < t.
3 (a). When put in standard form, the differential equation is ¢¢ - ¢ + + =- -y t y t t y( ) ( ) ( )3 3 1 01 2 1 .

Therefore, t = 0 is a regular singular point.

3 (b). Substituting the series y a tn
n

n

= +

=

•

Â l

0

 into the differential equation, we obtain

( ) {[ ( )( ) ] }3 4 1 3 1 1 02
0 1

1

l l l l ll l- + + + + - - - + + =-
+

=

•

Âa t n n n a a tn n
n

n

.

Therefore, the exponents at the singularity are l1 1 3= /  and l2 1= .
3 (c). The recurrence relation is a a n n nn n= - + + - - - +-1 3 1 1/[ ( )( ) ]l l l , n = 1 2, ,K.
3 (d). For l1 1 3= / , y a t t t= - + +0

1 3 4 3 7 31 8[ ( / ) ]/ / / L .
For l2 1= , y a t t t= - + +0

2 31 5 1 80[ ( / ) ( / ) ]L .
3 (e). Note that tp t t q t( ) ( ) and  2  are analytic everywhere. Thus, see equations (18)-(21), the series

found in part (d) converge for 0 < t.
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4 (b). Substituting the series into the differential equation, we obtain

6 1 1 6 1 1 00 1
1

l l l l l ll l( ) {[ ( )( ) ( ) ] }- + +[ ] + + + - + + + - =-
+

=

•

Âa t n n n a a tn n
n

n

. Therefore,

F( ) ,  l l l l l= - + fi = =6 5 1
1
3

1
2

2
1 2 .

4 (c). The recurrence relation is a
a

n n n
nn

n=
+ + - + + +

=-1

6 1 1
1 2

( )( ) ( )
,  , ,...

l l l

4 (d). For l1

1
3

= , y a t t t= + + +0
1 3 4 3 7 31 5 1 110[ ( / ) ( / ) ]/ / / L .

For l2

1
2

= , y a t t t= + + +0
1 2 3 2 5 21 7 1 182[ ( / ) ( / ) ]/ / / L .

4 (e). The series  converges for 0 < t.
5 (a). When put in standard form, the differential equation is ¢¢ - ¢ + + =- -y t y t t y5 9 01 2 2( ) .

Therefore, t = 0 is a regular singular point.

5 (b). Substituting the series y a tn
n

n

= +

=

•

Â l

0

 into the differential equation, we obtain

 

( ) [( ) ( ) ]

{[( )( ) ( ) ] }

l l l l l

l l l

l l

l

2
0 1

1

1
2

6 9 1 5 1 9

1 5 9 0

- + + + - + + +

+ + - - + + + =

+

-
+

=

•

Â

a t a t

n n n a a tn n
n

n

.

Therefore, the exponents at the singularity are l l1 2 3= = .
5 (c). The recurrence relation is a a nn n= - + -- 2

23/ ( )l , n = 2 3, ,K.
5 (d). For l1 3= , y a t t t= - + +0

3 5 71 4 1 64[ ( / ) ( / ) ]L .
5 (e). Note that tp t t q t( ) ( ) and  2  are analytic everywhere. Thus, see equations (18)-(21), the series

found in part (d) converges for 0 < t.
6 (b). Substituting the series into the differential equation, we obtain

4 1 8 1 4 4 1 2 02
1

1

l l l l ll l( ) [ ( ) ( ) ]- + +[ ] + + + + + -{ } =-
+

=

•

Âa t n n a a tn n n
n

n

. Therefore,

F( )l l l l l= + + fi = = -4 4 1
1
2

2
1 2 .

6 (c). The recurrence relation is a
a

n
nn

n=
+ +( )

=-2

2 1
1 21

2
( )

,  , ,...
l

6 (d). For l1

1
2

= - , y a t t t= + + +-
0

1 2 1 2 3 21 2 1 8[ ( / ) ( / ) ]/ / / L .

6 (e). The series  converges for 0 < t.
7 (a). When put in standard form, the differential equation is ¢¢ - ¢ + + =- -y t y t t y2 2 01 2( ) . Therefore,

t = 0 is a regular singular point.

7 (b). Substituting the series y a tn
n

n

= +

=

•

Â l

0

 into the differential equation, we obtain

( ) {[( ) ( ) ] }l l l ll l2
0

2
1

1

3 2 3 2 0- + + + - + + + =-
+

=

•

Âa t n n a a tn n
n

n

.

Therefore, the exponents at the singularity are l1 1=  and l2 2= .
7 (c). The recurrence relation is a a n nn n= - + - + --1 1 2/[( )( )]l l , n = 1 2, ,K.
7 (d). For l2 2= , y a t t t= - + +0

2 3 41 2 1 12[ ( / ) ( / ) ]L .
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7 (e). Note that tp t t q t( ) ( ) and  2  are analytic everywhere. Thus, see equations (18)-(21), the series
found in part (d) converges for 0 < t.

8 (b). Substituting the series into the differential equation, we obtain

l l l l l l l ll l l( ) ( ) ( ) [( )( )]- +[ ] + + + +[ ] + + + + + -{ } =+
+ -

+

=

•

Â1 4 1 4 1 1 4 2 00 1
1

1 1
1

a t a t n n a a tn n
n

n

Therefore, F( ) ,  l l l l l= + fi = - =2
1 23 3 0 .

8 (c). The recurrence relation is a
a

n n
n an

n
+

-=
+ + + +

= + + =1
1

1

2
1 4

1 2 1 4 0
( )( )

,  , ,... ( )( )
l l

l l and 

8 (d). For l2 0= , y a t t= + + +0
2 41 1 5 1 70[ ( / ) ( / ) ]L .

8 (e). The series  converges for 0 < t.
9 (a). When put in standard form, the differential equation is ¢¢ + ¢ - + =- -y t y t t y1 2 21 0( ) . Therefore,

t = 0 is a regular singular point.

9 (b). Substituting the series y a tn
n

n

= +

=

•

Â l

0

 into the differential equation, we obtain

 ( ) [( ) ] {[( ) ] }l l ll l l2
0

2
1

1 2
2

2

1 1 1 1 0- + + - + + - - =+
-

+

=

•

Âa t a t n a a tn n
n

n

.

Therefore, the exponents at the singularity are l1 1= -  and l2 1= .
9 (c). The recurrence relation is a a nn n= + -- 2

2 1/[( ) ]l , n = 2 3, ,K.
9 (d). For l2 1= , y a t t t= + + +0

3 41 8 1 192[ ( / ) ( / ) ]L .
9 (e). Note that tp t t q t( ) ( ) and  2  are analytic everywhere. Thus, see equations (18)-(21), the series

found in part (d) converges for 0 < t.
10 (b). Substituting the series into the differential equation, we obtain

l l l l l ll l( ) ( ) ( )- + +[ ] + + + + +[ ] +1 5 4 1 5 1 40 1
1a t a t

+ + + + + -{ } =-
+

=

•

Â [( )( ) ]l l ln n a a tn n
n

n

4 4 02
2

. Therefore, F( )l l l l l= + + fi = = -2
1 24 4 2 .

10 (c). The recurrence relation is a
a

n
n an

n=
+ +

= + + =- 2
2 12

2 3 1 5 0
( )

, , ,... ( )( )
l

l l and 

10 (d). For l = -2 , y a t t= + + +-
0

2 21 4 1 64[ ( / ) ( / ) ]L .
10 (e). The series  converges for 0 < t.
11 (a). When put in standard form, the differential equation is ¢¢ + ¢ - + =- -y t y t t y1 2 16 0( ) . Therefore,

t = 0 is a regular singular point.

11 (b). Substituting the series y a tn
n

n

= +

=

•

Â l

0

 into the differential equation, we obtain

( ) {[( ) ] }l ll l2
0

2
1

1

16 16 0- + + - - =-
+

=

•

Âa t n a a tn n
n

n

.

Therefore, the exponents at the singularity are l1 4= -  and l2 4= .
11 (c). The recurrence relation is a a nn n= + --1

2 16/[( ) ]l , n = 1 2, ,K.
11 (d). For l2 4= , y a t t t= + + +0

4 5 61 9 1 180[ ( / ) ( / ) ]L .
11 (e). Note that tp t t q t( ) ( ) and  2  are analytic everywhere. Thus, see equations (18)-(21), the series

found in part (d) converges for 0 < t.
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12 (b). Substituting the series into the differential equation, we obtain

8 2 1 8 2 1 02
0

2
1

1

l l l ll l- -[ ] + + - + - +{ } =-
+

=

•

Âa t n n a a tn n
n

n

[ ( ) ( ) ] . Therefore,

F( ) ,  l l l l l= - - fi = - =8 2 1
1
4

1
2

2
1 2 .

12 (c). The recurrence relation is a
a

n n
nn

n=
-

+ + + -
=-1

4 1 2 1
1 2

( ( ) )( ( ) )
,  , ,...

l l

12 (d). For l1

1
4

= - , y a t t t= - + +-
0

1 4 3 4 7 41 2 1 40[ ( / ) ( / ) ]/ / / L .

For l2

1
2

= , y a t t t= - + +0
1 2 3 2 5 21 14 1 616[ ( / ) ( / ) ]/ / / L ..

12 (e). The series  converges for 0 < t.
13 (a). When put in standard form, the differential equation is

¢¢ - + + ¢ + + =- - - -y t t t y t t y1 2 1 1 2 11 1 1 0( ) ( ) ( ) . Therefore, t = 0 is a regular singular point and all
other points are ordinary points.

13 (b). Substituting the series y a tn
n

n

= +

=

•

Â l

0

 into the differential equation, we obtain

( )( ) ( )( )l l l ll l+ - + - + + + + --
+

+
+

= -

•

=

•

ÂÂ n n a t n n a tn
n

n
n

nn

1 2 1 11 1
11

- + - =+

=

•

Â( )l ln a tn
n

n

1 0
0

Therefore, indicial equation is l l2 2 0- = . The exponents at the singularity are l1 0=  and
l2 2= .

14 (a). tp t
t

t
t( )

sin
= Æ Æ

3
3 0 as  and t q t t t2 1 0( ) cos= Æ Æ as . Thus, t = 0 is a regular singular

point.

14 (b). t y t
t

y
t

y2
3 2

3
3
3

1
2

0¢¢ + - +
Ê
ËÁ

ˆ
¯̃

¢ + - +
Ê
ËÁ

ˆ
¯̃

=
( )

!
...

!
... .

Therefore, indicial equation ( )l l l+ = fi = = -1 0 12
1 2 .

15 (a). When put in standard form, the differential equation is ¢¢ - - ¢ + - =- -y t y t y( ) ( )2 2 2 24 4 0.
Therefore, t t= = -2 2 and   are irregular singular points. All other points are ordinary points.

16 (a). tp t
t

t( )
( )

=
-

Æ Æ
1

1
1 01

3
 as  and t q t

t
t2 1

1
1 01

3
( )

( )
= -

-
Æ - Æ as . Thus, t = 0 is a regular

singular point.
Neither ( ) ( ) ( )t p t t q t- 1 1 2 nor ( - )  are analytical at  t = 1, so t = 1 is an irregular singular point.

16 (b). ( ) ... ...1 1
1
3

1
9

1
1
3

1
9

0
1
3 2 2 2- = - - + fi - - +Ê

ËÁ
ˆ
¯̃ ¢¢ + ¢ - =t t t t t t y ty y .

Therefore, indicial equation l l l2
1 21 0 1 1- = fi = - =,  .
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17 (a). We need to substitute the series y a tn
n

n

= - +

=

•

Â ( )1
0

l  into the differential equation. Before doing

so, let us make the change of variable t = -t 1. We now substitute the series y an
n

n

= +

=

•

Â t l

0

 into

the transformed equation, - + ¢¢ - + ¢ + + =t t t a a( ) ( ) ( )2 2 1 1 0y y y , obtaining

- + - + - + + + - + + =-
+

+

=

•

Â2 1 2 1 02
0

1 2 2
1

0

l t l l a a l tl la n n a n an n
n

n

{[ ( ) ( ) ( )] ( ) .

Thus, the exponents at the singularity are l l1 2 0= = .
17 (b). For l = 0, the recurrence relation is a n n a nn n+ = - - + + +1

2 21 2 1[ ( )] / [ ( ) ]a a .

Thus, y t a t t( )
( )

( )
( )[ ( )]

( )= +
+

- +
+ - + +

- +È
ÎÍ

˘
˚̇0

21
1

2
1

1 2 1
16

1
a a a a a a

L .

17 (c). When a = 1, y t a t( ) = 0 .
18 (a). ( ) ( )( ) ( )(( ) ), ( ) .1 1 1 1 1 2 1 12- = - - + = - - - + = - +t t t t t t t  Let t = -t 1. We now substitute the

series into the transformed equation, - + ¢¢ - + ¢ + =t t t a( ) ( )2 1 02y y y , obtaining

- - +[ ] + - + + + + + + + - + +-
+

+

=

•

Â2 1 2 1 10
1

1
2 2

0

l l l t l l l l a tl l( ) { [ ( )( ) ( )] [ ( ) ] }a n n n a n an n
n

n

.

Thus, F( )l l l= - =2 02  and the exponents at the singularity are l1 0=  and l2

1
2

= .

18 (b). For l1 0= , the recurrence relation is a
n a

n nn
n

+ =
- +[ ]

+ +1

2 2

1 2 1

a
( )( )

.

and y t a t t( ) ( )
( )

( )= + - +
-

- +
È

Î
Í

˘

˚
˙0

2
2 2

21 1
1

6
1a

a a
L .

For l2

1
2

= , the recurrence relation is a
n a

n nn
n

+ =
- + +[ ]

+ +1

2 21 2

3 2 2 2

( / )

( / )( )

a
.

and y t a t t t t( ) ( )
( )

( )
( )( )

( ) ,  = - +
-

- +
- -

- +
È

Î
Í

˘

˚
˙ - >0

2 1
4

2 1
4

2 9
41

3
1

30
1 1 0

1
2

3
2

5
2

a a a
L .

18 (c). By the Ratio Test, lim lim
( )

( )( )n

n

n
n

a

a

n

n nÆ •

+

Æ •
=

- + +
+ + + +

=1
2 2

1 2 2 1
1
2

l a
l l

fi < - < \ =convergence for  or 
1
2

1 1 2 2t t R .

18 (d). When a =
1
2

, one solution (with l =
1
2

) reduces to y t a t( ) ( )= -0 1
1
2 .

19 (a). Substituting the series y a tn
n

n

= +

=

•

Â l

0

 into the differential equation, we obtain

l l l al l2
0

1 2
1

0

1 0a t n a n a tn n
n

n

-
+

+

=

•

+ + + - + - =Â{( ) ( ) } .

19 (b). The recurrence relation is a n a nn n+ = - +1
21( ) / ( )a . For a = 5, the solution is

y t a t t t t t( ) [ ( / ) ( / ) ( / ) ]= - + - + -0
2 3 4 51 5 5 5 3 5 24 1 120 .

19 (c). y t( ) is neither an even nor an odd function. Theorem 10.2 does not apply.
20. The indicial equation is l l al b l a l b( ) ( )- + + = + - + =1 1 02 . Since l l1 21 2= =,  , then

l a l b l l l l a b2 21 1 2 3 2 2 2+ - + = - - = - + fi = - =( ) ( )( ) ,  .
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21. The indicial equation is l a l b2 1 0+ - + =( ) . In order to have l1 1 2= + i  and l2 1 2= - i , we
need ( )( ) ( )l l l l l l l l l l l l- - = - + + = - +1 2

2
1 2 1 2

2 2 5. Therefore, a b= - =1 5 and  .
22. The indicial equation is l l al( )- + + =1 2 0 has l = 2 as a root. Therefore,

2 1 2 2 0 2( ) + + = fi = -a a . Therefore,

t y ty t y n n n a t a tn
n

n
n

n

n

2

0
1

1

2 2 1 2 2 0¢¢ - ¢ + + = + + - - + + + =+

=

•

-
+

=

•

Â Â( ) {( )( ) ( ) }b l l l bl l

fi - - + + + - + + + =
=

•

-
+Â[ ( ) ] {[( ) ( ) ] }l l l l l bl l1 2 2 3 2 00

2

1
1a t n n a a tn

n
n

n .

For l = 2, the recurrence relation becomes ( ) ( ) ,  , ,...n n a a nn n+ - + +[ ] + = =-2 3 2 2 0 1 22
1b

Therefore, n n n a a n n a an n n n
2

1
2

14 4 3 6 2 0 4+ + - - +[ ] + = + + = fi = -- -b b b( ) .

23. The indicial equation is l2 0=  and the corresponding recurrence relation is
( )n a na an n n+ + + =+ -1 02

1 1a b . Therefore, a b= - =1 3 and  .
24 (a). p t( )  is odd and q t( ) is even, so we expect even and odd solutions.
24 (b). The indicial equation is l l l u l l u l u l u( ) ( ) ,  - + - = = - fi = - =1 02 2 2

1 2 or F .
For the Bessel equation, l l l u l l u( ) ( )- + - = = -1 02 2 2 or F .
The indicial equation and exponents at the singularity are the same for both equations.

24 (c). [ ] [( ) ] {[( ) ] }l u l u l ul l l2 2
0

2 2
1

1 2 2
2

2

1 0- + + - + + - - =-
-

+

=

•

Âa t a t n a a tn n
n

n

fi =
+ -

=-a
a

n
nn

n 2
2 2 2 3

( )
, , ,...

l u

For Bessel’s equation, a
a

n
nn

n=
-

+ -
=- 2

2 2 2 3
( )

, , ,...
l u

  The minus sign creates a “term-to-term”

change of sign in the series solution. This sign alteration is not present in the series solutions of
the modified Bessel equation.


