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This book is dedicated to my students.
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Preface to the
Second Edition

Since the publication of the Glimpses in 1998, I spent a consider-
able amount of time collecting “mathematical pearls” suitable to
add to the original text. As my collection grew, it became clear that
a major revision in a second edition needed to be considered. In
addition, many readers of the Glimpses suggested changes, clarifi-
cations, and, above all, more examples and worked-out problems.
This second edition, made possible by the ever-patient staff of
Springer-Verlag New York, Inc., is the result of these efforts. Al-
though the general plan of the book is unchanged, the abundance
of topics rich in subtle connections between algebra and geometry
compelled me to extend the text of the first edition considerably.
Throughout the revision, I tried to do my best to avoid the inclusion
of topics that involve very difficult ideas.

The major changes in the second edition are as follows:

1. An in-depth treatment of root formulas solving quadratic, cubic,
and quartic equations à la van der Waerden has been given in a
new section. This can be read independently or as preparation
for the more advanced new material encountered toward the
later parts of the text. In addition to the Bridge card symbols,
the dagger † has been introduced to indicate more technical
material than the average text.

vii
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2. As a natural continuation of the section on the Platonic solids, a
detailed and complete classification of finite Möbius groups à la
Klein has been given with the necessary background material,
such as Cayley’s theorem and the Riemann–Hurwitz relation.

3. One of the most spectacular developments in algebra and geom-
etry during the late nineteenth century was Felix Klein’s theory
of the icosahedron and his solution of the irreducible quintic in
terms of hypergeometric functions. A quick, direct, and modern
approach of Klein’s main result, the so-called Normalformsatz,
has been given in a single large section. This treatment is inde-
pendent of the material in the rest of the book, and is suitable
for enrichment and undergraduate/graduate research projects.
All known approaches to the solution of the irreducible quin-
tic are technical; I have chosen a geometric approach based on
the construction of canonical quintic resolvents of the equation
of the icosahedron, since it meshes well with the treatment of
the Platonic solids given in the earlier part of the text. An al-
gebraic approach based on the reduction of the equation of the
icosahedron to the Brioschi quintic by Tschirnhaus transforma-
tions is well documented in other textbooks. Another section
on polynomial invariants of finite Möbius groups, and two new
appendices, containing preparatory material on the hyperge-
ometric differential equation and Galois theory, facilitate the
understanding of this advanced material.

4. The text has been upgraded in many places; for example,
there is more material on the congruent number problem, the
stereographic projection, the Weierstrass ℘-function, projective
spaces, and isometries in space.

5. The new Web site at http://mathsgi01.rutgers.edu/∼gtoth/
Glimpses/ containing various text files (in PostScript and HTML
formats) and over 70 pictures in full color (in gif format) has
been created.

6. The historical background at many places of the text has been
made more detailed (such as the ancient Greek approxima-
tions of π), and the historical references have been made more
precise.

7. An extended solutions manual has been created containing the
solutions of 100 problems.
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I would like to thank the many readers who suggested improve-
ments to the text of the first edition. These changes have all been
incorporated into this second edition. I am especially indebted to
Hillel Gauchman and Martin Karel, good friends and colleagues,
who suggested many worthwhile changes. I would also like to ex-
press my gratitude to Yukihiro Kanie for his careful reading of
the text and for his excellent translation of the first edition of
the Glimpses into Japanese, published in early 2000 by Springer-
Verlag, Tokyo. I am also indebted to April De Vera, who upgraded
the list of Web sites in the first edition. Finally, I would like to thank
Ina Lindemann, Executive Editor, Mathematics, at Springer-Verlag
New York, Inc., for her enthusiasm and encouragement through-
out the entire project, and for her support for this early second
edition.

Camden, New Jersey Gabor Toth
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Preface to the
First Edition

Glimpse: 1. a very brief passing
look, sight or view. 2. a momentary
or slight appearance. 3. a vague
idea or inkling.

—Random House College Dictionary

At the beginning of fall 1995, during a conversation with my re-
spected friend and colleague Howard Jacobowitz in the Octagon
Dining Room (Rutgers University, Camden Campus), the idea
emerged of a “bridge course” that would facilitate the transition
between undergraduate and graduate studies. It was clear that
a course like this could not concentrate on a single topic, but
should browse through a number of mathematical disciplines. The
selection of topics for the Glimpses thus proved to be of utmost im-
portance. At this level, the most prominent interplay is manifested
in some easily explainable, but eventually subtle, connections be-
tween number theory, classical geometries, and modern algebra.
The rich, fascinating, and sometimes puzzling interactions of these
mathematical disciplines are seldom contained in a medium-size
undergraduate textbook. The Glimpses that follow make a humble
effort to fill this gap.

xi
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The connections among the disciplines occur at various levels
in the text. They are sometimes the main topics, such as Rational-
ity and Elliptic Curves (Section 3), and are sometimes hidden in
problems, such as the spherical geometric proof of diagonalization
of Euclidean isometries (Problems 1 to 2, Section 16), or the proof
of Euler’s theorem on convex polyhedra using linear algebra (Prob-
lem 9, Section 20). Despite numerous opportunities throughout the
text, the experienced reader will no doubt notice that analysis had
to be left out or reduced to a minimum. In fact, a major source
of difficulties in the intense 8-week period during which I pro-
duced the first version of the text was the continuous cutting down
of the size of sections and the shortening of arguments. Further-
more, when one is comparing geometric and algebraic proofs, the
geometric argument, though often more lengthy, is almost always
more revealing and thereby preferable. To strive for some original-
ity, I occasionally supplied proofs out of the ordinary, even at the
“expense” of going into calculus a bit. To me, “bridge course” also
meant trying to shed light on some of the links between the first
recorded intellectual attempts to solve ancient problems of number
theory, geometry, and twentieth-century mathematics. Ignoring
detours and sidetracks, the careful reader will see the continuity
of the lines of arguments, some of which have a time span of 3000
years. In keeping this continuity, I eventually decided not to break
up the Glimpses into chapters as one usually does with a text of
this size. The text is, nevertheless, broken up into subtexts corre-
sponding to various levels of knowledge the reader possesses. I
have chosen the card symbols ♣, ♦, ♥, ♠ of Bridge to indicate four
levels that roughly correspond to the following:

♣ College Algebra;
♦ Calculus, Linear Algebra;
♥Number Theory, Modern Algebra (elementary level), Geometry;
♠ Modern Algebra (advanced level), Topology, Complex Variables.

Although much of♥ and♠ can be skipped at first reading, I encour-
age the reader to challenge him/herself to venture occasionally
into these territories. The book is intended for (1) students (♣ and
♦) who wish to learn that mathematics is more than a set of tools
(the way sometimes calculus is taught), (2) students (♥ and ♠) who
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love mathematics, and (3) high-school teachers (⊂ {♣,♦,♥,♠})
who always had keen interest in mathematics but seldom time to
pursue the technicalities.

Reading what I have written so far, I realize that I have to make
one point clear: Skipping and reducing the size of subtle arguments
have the inherent danger of putting more weight on intuition at
the expense of precision. I have spent a considerable amount of
time polishing intuitive arguments to the extent that the more ex-
perienced reader can make them withstand the ultimate test of
mathematical rigor.

Speaking (or rather writing) of danger, another haunted me for
the duration of writing the text. One of my favorite authors, Iris
Murdoch, writes about this in The Book and the Brotherhood, in
which Gerard Hernshaw is badgered by his formidable scholar Lev-
quist about whether he wanted to write mediocre books out of great
ones for the rest of his life. (To learn what Gerard’s answer was, you
need to read the novel.) Indeed, a number of textbooks influenced
me when writing the text. Here is a sample:

1. M. Artin, Algebra, Prentice-Hall, 1991;
2. A. Beardon, The Geometry of Discrete Groups, Springer-Verlag,

1983;
3. M. Berger, Geometry I–II, Springer-Verlag, 1980;
4. H.S.M. Coxeter, Introduction to Geometry, Wiley, 1969;
5. H.S.M. Coxeter, Regular Polytopes, Pitman, 1947;
6. D. Hilbert and S. Cohn-Vossen, Geometry and Imagination,

Chelsea, 1952.
7. J. Milnor, Topology from the Differentiable Viewpoint, The Univer-

sity Press of Virginia, 1990;
8. I. Niven, H. Zuckerman, and H. Montgomery, An Introduction

to the Theory of Numbers, Wiley, 1991;
9. J. Silverman and J. Tate, Rational Points on Elliptic Curves,

Springer-Verlag, 1992.

Although I (unavoidably) use a number of by now classical ar-
guments from these, originality was one of my primary aims.
This book was never intended for comparison; my hope is that
the Glimpses may trigger enough motivation to tackle these more
advanced textbooks.
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Despite the intertwining nature of the text, the Glimpses contain
enough material for a variety of courses. For example, a shorter ver-
sion can be created by taking Sections 1 to 10 and Sections 17 and
19 to 23, with additional material from Sections 15 to 16 (treating
Fuchsian groups and Riemann surfaces marginally via the exam-
ples) when needed. A nonaxiomatic treatment of an undergraduate
course on geometry is contained in Sections 5 to 7, Sections 9 to 13,
and Section 17.

The Glimpses contain a lot of computer graphics. The material
can be taught in the traditional way using slides, or interactively
in a computer lab or teaching facility equipped with a PC or a
workstation connected to an LCD-panel. Alternatively, one can
create a graphic library for the illustrations and make it accessi-
ble to the students. Since I have no preference for any software
packages (although some of them are better than others for par-
ticular purposes), I used both Maple®1 and Mathematica®2 to create
the illustrations. In a classroom setting, the link of either of these
to Geomview3 is especially useful, since it allows one to manipu-
late three-dimensional graphic objects. Section 17 is highly graphic,
and I recommend showing the students a variety of slides or three-
dimensional computer-generated images. Animated graphics can
also be used, in particular, for the action of the stereographic pro-
jection in Section 7, for the symmetry group of the pyramid and
the prism in Section 17, and for the cutting-and-pasting technique
in Sections 16 and 19. These Maple® text files are downloadable
from my Web sites

http://carp.rutgers.edu/math-undergrad/science-vision.html
and
http://mathsgi01.rutgers.edu/∼gtoth/.

Alternatively, to obtain a copy, write an e-mail message to

gtoth@camden.rutgers.edu

1Maple is a registered trademark of Waterloo Maple, Inc.
2Mathematica is a registered trademark of Wolfram Research, Inc.
3A software package downloadable from the Web site: http://www.geom.umn.edu.
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or send a formatted disk to Gabor Toth, Department of Mathemat-
ical Sciences, Rutgers University, Camden, NJ 08102, USA.

A great deal of information, interactive graphics, animations,
etc., are available on the World Wide Web. I highly recommend
scheduling at least one visit to a computer or workstation lab and
explaining to the students how to use the Web. In fact, at the first
implementation of the Glimpses at Rutgers, I noticed that my stu-
dents started spending more and more time at various Web sites
related to the text. For this reason, I have included a list of recom-
mended Web sites and films at the end of some sections. Although
hundreds of Web sites are created, upgraded, and terminated daily,
every effort has been made to list the latest Web sites currently
available through the Interent.

Camden, New Jersey Gabor Toth
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S E C T I O N

...........................................

“A Number Is a
Multitude Composed
of Units”—Euclid

♣ We adopt Kronecker’s phrase: “God created the natural numbers,
and all the rest is the work of man,” and start with the set

N � {1, 2, 3, 4, 5, 6, . . .}
of all natural numbers. Since the sum of two natural numbers is
again a natural number, N carries the operation1 of addition + :
N × N → N.

Remark.
Depicting natural numbers by arabic numerals is purely tradi-
tional. Romans might prefer

N � {I, II, III, IV, V, VI, . . .},
and computers work with

N � {1, 10, 11, 100, 101, 110, . . .}.
Notice that converting a notation into another is nothing but an iso-
morphism between the respective systems. Isomorphism respects

1If needed, please review “Sets” and “Groups” in Appendices A and B.

1
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addition; for example, 29+33 � 62 is the same as XXIX+XXXIII �
LXII or 11101 + 100001 � 111110.

From the point of view of group theory, N is a failure; it does
not have an identity element (that we would like to call zero) and
no element has an inverse. We remedy this by extending N to the
(additive) group of integers

Z � {0,±1,±2,±3,±4,±5,±6, . . .}.
Z also carries the operation of multiplication × : Z×Z → Z. Since
distributivity holds, Z forms a ring with respect to addition and
multiplication.

Although we have 1 as the identity element with respect to ×,
we have no hope for Z to be a multiplicative group; remember the
saying: “Thou shalt not divide by zero!” To remedy this, we delete
the ominous zero and consider

Z# � Z − {0} � {±1,±2,±3,±4,±5,±6, . . .}.
The requirement that integers have inverses gives rise to fractions
or, more appropriately, rational numbers:

Q � Q # ∪ {0} � {a/b | a, b ∈ Z#} ∪ {0},
where we put the zero back to save the additive group structure.
All that we learned in dealing with fractions can be rephrased ele-
gantly by saying that Q is a field: Q is an additive group, Q # is an
abelian (i.e., commutative) multiplicative group, and addition and
multiplication are connected through distributivity.

After having created Z and Q , the direction we take depends
largely on what we wish to study. In elementary number theory,
when studying divisibility properties of integers, we consider, for
a given n ∈ N, the (additive) group Zn of integers modulo n. The
simplest way to understand

Zn � Z/nZ � {[0], [1], . . . , [n − 1]}
is to start with Z and to identify two integers a and b if they differ
by a multiple of n. This identification is indicated by the square
bracket; [a] means a plus all multiples of n. Clearly, no numbers
are identified among 0, 1, . . . , n − 1, and any integer is identified
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2nn0 Figure 1.1

with exactly one of these. The (additive) group structure is given by
the usual addition in Z. More explicitly, [a]+ [b] � [a+ b], a, b ∈ Z.
Clearly, [0] is the zero element in Zn, and−[a] � [−a] is the additive
inverse of [a] ∈ Zn. Arithmetically, we use the division algorithm
to find the quotient q and the remainder 0 ≤ r < n, when a ∈ Z
is divided by n:

a � qn + r,

and set [a] � [r]. The geometry behind this equality is clear. Con-
sider the multiples of n, nZ ⊂ Z, as a one-dimensional lattice (i.e., an
infinite string of equidistantly spaced points) in R as in Figure 1.1.
Now locate a and its closest left neighbor qn in nZ (Figure 1.2).
The distance between qn and a is r, the latter between 0 and n− 1.
Since a and r are to be identified, the following geometric picture
emerges for Zn: Wrap Z around a circle infinitely many times so
that the points that overlap with 0 are exactly the lattice points in
nZ; this can be achieved easily by choosing the radius of the circle
to be n/2π. Thus, Zn can be visualized as n equidistant points on
the perimeter of a circle (Figure 1.3). Setting the center of the cir-
cle at the origin of a coordinate system on the Cartesian plane R2

such that [0] is the intersection point of the circle and the posi-
tive first axis, we see that addition in Zn corresponds to addition
of angles of the corresponding vectors. A common convention is to
choose the positive orientation as the way [0], [1], [2], . . . increase.
This picture of Zn as the vertices of a regular n-sided polygon (with
angular addition) will recur later on in several different contexts.

(q + 1)nqn(q − 1)n a Figure 1.2



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

1. “A Number Is a Multitude Composed of Units”—Euclid4

Figure 1.3

Remark.
In case you’ve ever wondered why it was so hard to learn the clock
in childhood, consider Z60. Why the Babylonian choice2 of 60? Con-
sider natural numbers between 1 and 100 that have the largest
possible number of small divisors.

♥ The infinite Z and its finite offsprings Zn, n ∈ N, share the
basic property that they are generated by a single element, a prop-
erty that we express by saying that Z and Zn are cyclic. In case of
Z, this element is 1 or −1; in case of Zn, a generator is [1].

♣You might be wondering whether it is a good idea to reconsider
multiplication in Zn induced from that of Z. The answer is yes;
multiplication in Z gives rise to a well-defined multiplication in Zn

by setting [a] · [b] � [ab], a, b ∈ Z. Clearly, [1] is the multiplicative
identity element. Consider now multiplication restricted to Z#

n �
Zn − {[0]}. There is a serious problem here. If n is composite, that
is, n � ab, a, b ∈ N, a, b ≥ 2, then [a], [b] ∈ Z#

n, but [a] · [b] � [0]!
Thus, multiplication restricted to Z#

n is not even an operation.

2Actually, a number system using 60 as a base was developed by the Sumerians about 500 years before it
was passed on to the Babylonians around 2000 b.c.
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We now pin our hopes on Zp, where p a prime. Elementary num-
ber theory says that if p divides ab, then p divides either a or b.
This directly translates into the fact that Z#

p is closed under multi-
plication. Encouraged by this, we now go a step further and claim
that Z#

p is a multiplicative group! Since associativity follows from
associativity of multiplication in Z, it remains to show that each el-
ement a ∈ Z#

p has a multiplicative inverse. To prove this, multiply
the complete list [1], [2], . . . , [p − 1] by [a] to obtain

[a], [2a], . . . , [(p − 1)a].

By the above, these all belong to Z#
p. They are mutually disjoint.

Indeed, assume that [ka] � [la], k, l � 1, 2, . . . , p− 1. We then have
[(k − l )a] � [k − l] · [a] � [0], so that k � l follows. Thus, the list
above gives p − 1 elements of Z#

p. But the latter consists of exactly
p − 1 elements, so we got them all! In particular, [1] is somewhere
in this list, say, [āa] � [1], ā � 1, . . . , p − 1. Hence, [ā] is the mul-
tiplicative inverse of [a]. Finally, since distributivity in Zp follows
from distributivity in Z, we obtain that Zp is a field for p prime.

We give two applications of these ideas: one for Z3 and another
for Z4. First, we claim that if 3 divides a2 + b2, a, b ∈ Z, then 3
divides both a and b. Since divisibility means zero remainder, all
we have to count is the sum of the remainders when a2 and b2 are
divided by 3. In much the same way as we divided all integers to
even (2k) and odd (2k + 1) numbers (k ∈ Z), we now write a �
3k, 3k + 1, 3k + 2 accordingly. Squaring, we obtain a2 � 9k2, 9k2 +
6k + 1, 9k2 + 12k + 4. Divided by 3, these give remainders 0 or 1,
with 0 corresponding to a being a multiple of 3. The situation is the
same for b2. We see that when dividing a2 + b2 by 3, the possible
remainders are 0 + 0, 0 + 1, 1 + 0, 1 + 1, and the first corresponds
to a and b both being multiples of 3. The first claim follows.

Second, we show the important number theoretical fact that no
number of the form 4m + 3 is a sum of two squares of integers.
(Notice that, for m � 0, this follows from the first claim or by
inspection.) This time we study the remainder when a2 +b2, a, b ∈
Z, is divided by 4. Setting a � 4k, 4k + 1, 4k + 2, 4k + 3, a2 gives
remainders 0 or 1. As before, the possible remainders for a2 + b2

are 0 + 0, 0 + 1, 1 + 0, 1 + 1. The second claim also follows.
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♥ The obvious common generalization of the two claims above
is also true and is a standard fact in number theory. It asserts that if
a prime p of the form 4m+3 divides a2+b2, a, b ∈ Z, then p divides
both a and b. Aside from the obvious decomposition 2 � 12 + 12,
the primes that are left out from our considerations are of the form
4m + 1. A deeper result in number theory states that any prime
of the form 4m + 1 is always representable as a sum of squares of
two integers. Fermat, in a letter to Mersenne in 1640, claimed to
have a proof of this result, which was first stated by Albert Girard
in 1632. The first published verification, due to Euler, appeared in
1754. We postpone the proof of this result till the end of Section 5.

Problems

1. Use the division algorithm to show that (a) the square of an integer is of the
form 3a or 3a + 1, a ∈ Z; (b) the cube of an integer is of the form 7a, 7a + 1
or 7a − 1, a ∈ Z.

2. Prove that if an integer is simultaneously a square and a cube, then it must
be of the form 7a or 7a + 1. (Example: 82 � 43.)

3. (a) Show that [2] has no inverse in Z4. (b) Find all n ∈ N such that [2] has an
inverse in Zn.

4. Write a ∈ N in decimal digits as a � a1a2 · · · an, a1, a2, . . . , an ∈ {0, 1, . . . , 9},
a1 �� 0. Prove that [a] � [a1 + a2 + · · · + an] in Z9.

5. Let p > 3 be a prime, and write

1
12 + 1

22 + · · · + 1
(p − 1)2

as a rational number a/b, where a, b are relatively prime. Show that p|a.

Web Sites

1. www.utm.edu/research/primes

2. daisy.uwaterloo.ca/∼alopez-o/math-faq/node10.html
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S E C T I O N

...........................................

“. . . There Are No
Irrational Numbers
at All”—Kronecker

♣ Although frequently quoted, the epigraph to this chapter and
some other statements of Kronecker on irrational numbers have
been shown to be distortions.1 (See H.M. Edwards’s articles on
Kronecker in History and Philosophy of Modern Mathematics (Min-
neapolis, MN, 1985) 139–144, Minnesota Stud. Philos. Sci., XI, Univ.
Minnesota Press, Minneapolis, MN, 1988.)

In calculus, the field of rational numbers Q is insufficient for
several reasons, including convergence. Thus, Q is extended to
the field of real numbers R. It is visualized by passing the Cartesian
Bridge2 connecting algebra and geometry; each real number (in
infinite decimal representation) corresponds to a single point on
the real line. Do we actually get new numbers? Here is a simple
answer known to Pythagoras (c. 570–490 b.c.):

1I am indebted to Victor Pambuccian for pointing this out.
2Cartesius is the Latinized name of René Descartes, who, contrary to widespread belief, did not invent
the coordinate axes, much less analytic geometry. Here we push this gossip a little further. Note that
analytic geometry was born in Fermat’s Introduction to Plane and Solid Loci in 1629; although circulated
from 1637 on, it was not published in Fermat’s lifetime. The notion of perpendicular coordinate axes can
be traced back to Archimedes and Apollonius. Both Descartes and Fermat used coordinates but only with
nonnegative values; the idea that coordinates can also take negative values is due to Newton.

7
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Proposition 1.√
2 (the unique positive number whose square is 2) is not rational.

Proof.
¬3 Assume that

√
2 is rational; i.e.,

√
2 � a/b for some a, b ∈ Z. We

may assume that a and b are relatively prime, since otherwise we
cancel the common factors in a and b. Squaring, we get a2 � 2b2.
A glimpse of the right-hand side shows that a2 is even. Thus a must
be even, say, a � 2c. Then a2 � 4c2 � 2b2. Hence b2 and b must
be even. Thus 2 is a common factor of a and b. ¬

Remark.
Replacing 2 by any prime p, we see that

√
p is not rational. Instead

of repeating the argument above, we now describe a more powerful
result due to Gauss. (If you study the following proof carefully,
you will see that it is a generalization of the Pythagorean argument
above.) The idea is very simple (and will reoccur later) and is based
on the fact that

√
p is a solution of the quadratic equation x2−p � 0.

To show irrationality of
√
p, we study the rational solutions of this

equation. More generally, assume that the polynomial equation

P(x) � c0 + c1x + · · · + cnx
n � 0, cn �� 0,

with integer coefficients c0, c1, . . . , cn ∈ Z, has a rational root x �
a/b, a, b ∈ Z. As usual, we may assume that a and b are relatively
prime. Substituting, we have

c0 + c1(a/b) + · · · + cn(a/b)
n � 0.

Multiplying through by bn−1, we obtain

c0b
n−1 + c1ab

n−2 + · · · + cn−1a
n−1 + cna

n/b � 0.

This says that cnan/b must be an integer, or equivalently, b divides
cna

n. Since a and b are relatively prime, we conclude that b divides

3¬ indicates indirect argument; that is, we assume that the statement is false and get (eventually) a
contradiction (indicated by another ¬).



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

2. “. . . There Are No Irrational Numbers at All”—Kronecker 9

cn. In a similar vein, if we multiply through by bn/a, we get

c0b
n/a + c1b

n−1 + · · · + cna
n−1 � 0,

and it follows that a divides c0.
Specializing, we see that if x � a/b is a solution of xn � c, then

b � ±1 and so c � (±a)n. Thus, if c is not the nth power of an
integer, then xn � c does not have any rational solutions. This is
indeed a vast generalization of the Pythagorean argument above!

Algebraically, we think of a real number as an infinite deci-
mal. This decimal representation is unique (and thereby serves
as a definition), assuming that we exclude representations termi-
nating in a string of infinitely many 9’s; for example, instead of
1.2999 . . . we write 1.3. How can we recognize the rational num-
bers in this representation? Writing 1/3 as 0.333 . . . gives a clue to
the following:

Proposition 2.
An infinite decimal represents a rational number iff it terminates or

repeats.

Proof.
We first need to evaluate the finite geometric sum

1 + x + x2 + · · · + xn.

For x � 1, this is n+ 1, hence we may assume that x �� 1. This sum
is telescopic; in fact, after multiplying through by 1− x, everything
cancels except the first and last term. We obtain

(1 − x)(1 + x + x2 + · · · + xn) � 1 − xn+1,

or equivalently

1 + x + x2 + · · · + xn � 1 − xn+1

1 − x
, x �� 1.
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Letting n → ∞ and assuming that |x| < 1 to assure convergence,
we arrive at the geometric series formula4

1 + x + x2 · · · � 1
1 − x

, |x| < 1.

We now turn to the proof. Since terminating decimals are clearly
rationals, and after multiplying through by a power of 10 if nec-
essary, we may assume that our repeating decimal representation
looks like

0.a1a2 · · · aka1a2 · · · aka1a2 · · · ak · · · ,
where the decimal digits ai are between 0 and 9. We rewrite this as

a1a2 · · · ak(10−k + 10−2k + 10−3k + · · ·)
� a1 · · · ak10−k(1 + 10−k + (10−k)2 + · · ·)

� a1 · · · ak10−k

1 − 10−k � a1 · · · ak
10k − 1

where we used the geometric series formula. The number we ar-
rive at is clearly rational, and we are done. The converse statement
follows from the division algorithm. Indeed, if a, b are integers and
a is divided by b, then each decimal in the decimal representation
of a/b is obtained by multiplying the remainder of the previous step
by 10 and dividing it by b to get the new remainder. All remain-
ders are between 0 and b − 1, so the process necessarily repeats
itself.

Irrational numbers emerge quite naturally. The two most
prominent examples are

π � half of the perimeter of the unit circle

and

e � 1 + 1
1!

+ 1
2!

+ 1
3!

+ · · · .

4A special case, known as one of Zeno’s paradoxes, can be explained to a first grader as follows: Stay 2
yards away from the wall. The goal is to reach the wall in infinite steps, in each step traversing half of the
distance made in the previous step. Thus, in the first step you cover 1 yard, in the second 1/2, etc. You
see that 1 + 1/2 + 1/22 + · · · � 2 � 1/(1 − 1/2).
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e is also the principal and interest of $1 in continuous compounding
after 1 year with 100% interest rate:

e � lim
n→∞

(
1 + 1

n

)n
.

The equivalence of the two definitions of e is usually proved5 in
calculus.

♦ To prove that π and e are irrational, we follow Hermite’s ar-
gument, which dates back to 1873. Consider, for fixed n ∈ N, the
function f : R → R defined by

f(x) � xn(1 − x)n

n!
� 1

n!

2n∑
k�n

ckx
k.

Expanding (1 − x)n, we see that ck ∈ Z, k � n, n + 1, . . . , 2n. In
fact, ck � (−1)k

(
n

n−k
) � (−1)k

(
n

k

)
(by the binomial formula), but we

will not need this. For 0 < x < 1, we have

0 < f(x) <
1
n!

and f(0) � 0. Differentiating, we obtain

f (m)(0) �



0, if m < n or m > 2n
cmm!
n!

, if n ≤ m ≤ 2n.

In any case f (m)(0) ∈ Z (since n! divides m! for n ≤ m). Thus, f and
all its derivatives have integral values at x � 0. Since f(x) � f(1−x),
the same is true for f at x � 1.

Theorem 1.
ek is irrational for all k ∈ N.

Proof.
¬ Assume that ek � a/b for some a, b ∈ Z. Define F : R → R by

F(x) � k2nf(x)− k2n−1f ′(x)+ k2n−2f ′′(x)+ · · · − kf (2n−1)(x)+ f (2n)(x).

5For a direct proof based on the binomial formula (with integral coefficients), see G.H. Hardy, A Course
of Pure Mathematics, Cambridge University Press, 1960.
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The sum F ′(x) + kF(x) is telescopic; in fact, we have

F ′ + kF(x) � k2n+1f(x).

We now use a standard trick in differential equations (due to
Bernoulli) and multiply both sides by the integrating factor ekx to
obtain

[ekxF(x)]′ � ekx[F ′(x) + kF(x)] � k2n+1ekxf(x).

Integrating both sides between 0 and 1:

k2n+1
∫ 1

0
ekxf(x) dx � [ekxF(x)]10 � ekF(1) − F(0)

� (1/b)(aF(1) − bF(0)).

In other words,

bk2n+1
∫ 1

0
ekxf(x) dx � aF(1) − bF(0)

is an integer. On the other hand, since f(x) < 1/n!, 0 < x < 1, we
have

0 < bk2n+1
∫ 1

0
ekxf(x) dx <

bk2n+1ek

n!
� bkek

(k2)n

n!
.

For fixed k, (k2)n/n! tends to zero as n → ∞. Thus, for n sufficiently
large, the entire right-hand side can then be made < 1. We found
an integer

0 < aF(1) − bF(0) < 1

strictly between 0 and 1! ¬

Remark.
Another proof of irrationality of e can be given using the geometric
series formula as follows: Let [·] : R → Z be the greatest integer
function defined by [r] � the greatest integer ≤ r. Let k ∈ N. We
claim that

[k!e] � k!
k∑
j�0

1
j!
.
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Indeed, since the left-hand side is an integer, all we have to show
is

k!
∞∑

j�k+1

1
j!
< 1.

For this, we estimate

k!
∞∑

j�k+1

1
j!

� k!
(k + 1)!

+ k!
(k + 2)!

+ k!
(k + 3)!

+ · · ·

� 1
k + 1

+ 1
(k + 1)(k + 2)

+ 1
(k + 1)(k + 2)(k + 3)

+ · · ·

<
1
2

+ 1
22

+ 1
23

+ · · · � 1
1 − (1/2)

− 1 � 1.

Clearly, k!
∑k

j�0 1/j! < k!e, so that, for k ∈ N, we have

[k!e] < k!e.

But this implies that e is irrational. ¬ Indeed, assume that e � a/b,
a, b ∈ N. If we choose k � b, then the number b!e � b!(a/b) is an
integer, so that [b!e] � b!e. ¬

Corollary.
eq is irrational for all 0 �� q ∈ Q .

Proof.
If eq is rational, then so is any power (eq)m � eqm. Now choose m to
be the denominator of q (written as a fraction) to get a contradiction
to Theorem 1.

Remark.
Q is dense in R in the sense that, given any real number r, we can
find a rational number arbitrarily close to r. This is clear if we write
r in a decimal representation and chop off the tail arbitrarily far
away from the decimal point. For example,

√
2 � 1.414213562 . . .

means that the rationals 1, 1.4 � 14/10, 1.41 � 141/100, 1.414 �
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1414/1000 . . . get closer and closer to
√

2. Indeed, we have 1.42 �
1.96, 1.412 � 1.9981, 1.4142 � 1.999396.

Theorem 2.
π is irrational.6

Proof.
It is enough to prove that π2 is irrational. ¬ Assume that π2 � a/b

for some a, b ∈ Z. Using the idea of the previous proof, we define
F : R → R by

F(x) � bn[π2nf(x) − π2n−2f ′′(x) + π2n−4f (4)(x) − · · · + (−1)nf (2n)(x)],

where f is given above. Since π2n � an/bn, F(0) and F(1) are again
integers. This time, F ′′(x) + π2F(x) is telescopic, so that we have

[F ′(x) sin(πx) − πF(x) cos(πx)]′ � [F ′′(x) + π2F(x)] sin(πx)

� bnπ2n+2f(x) sin(πx)

� anπ2f(x) sin(πx).

Integrating, we obtain∫ 1

0
anπf(x) sin(πx) dx � 1

π
[F ′(x) sin(πx) − πF(x) cos(πx)]10

� F(1) + F(0) ∈ Z.

On the other hand,

0 <

∫ 1

0
anπf(x) sin(πx) dx <

anπ

n!
< 1

if n is large enough. ¬

♣Although π is irrational, it is not only tempting but very impor-
tant to find good approximations of π by rational numbers7 such as
the Babylonian 25/8 (a clay tablet found near Susa) or the Egyptian

6Irrationality of π was first proved by Lambert in 1766.
7For an interesting account on π, see P. Beckmann, A History of π, The Golem Press, 1971. For a recent
comprehensive treatment of π, see L. Berggren, J. Borwein, and P. Borwein, π: A Source Book, Springer,
1997.
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28/34 (Rhind papyrus, before 1650 b.c.). The Babylonians obtained
the first value by stating that the ratio of the perimeter of a regu-
lar hexagon to the circumference of the circumscribed circle was
“equal” to 57/60 + 36/602. (Recall that the Babylonians used 60 as
a base.) The Egyptians obtained the second value by inscribing a
circle into a square of side length 9 units, putting a 3 × 3 grid on
the square by trisecting each edge, and approximating the circle
by the octagon obtained by cutting off the corner triangles (Figure
2.1). The area of the octagon, 63 units, was rounded up to 82, and
the approximate value of π turned out to be 82/(9/2)2 � 28/34.

A well-known recorded approximation of π was made by
Archimedes (c. 287–212 b.c.), who applied Eudoxus’s method of ex-
haustion, the approximation of the circumference of the unit circle
by the perimeters of inscribed and circumscribed regular polygons.
By working out the perimeters of regular 96-sided polygons in-
scribed in and circumscribed about a given circle, he established
the estimate

3
10
71

< π < 3
1
7
.

The difference between the upper and lower bounds is 1/497 ≈
0.002, a remarkable accomplishment! To arrive at this estimate,
Archimedes first worked out the perimeters of the inscribed and

Figure 2.1
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circumscribed hexagons and obtained

3 < π <
6√
3
.

He then estimated
√

3 from below by 265/153 (4-decimal preci-
sion!) and obtained 918/265 as an upper bound. Finally, to arrive
at a polygon with 96 � 6 × 24 sides, he progressively doubled the
sides of the polygons and made more and more refined estimates
of certain radicals (such as

√
349450 � 591 1/8). The algorithm

Archimedes used is treated in Problem 12.
Other rational approximations of π are 22/7 (3-decimal pre-

cision) and 355/113 (6-decimal precision).
√

10 was used by
Brahmagupta (c. a.d. 600). Numerous ingenious approximations
of π were given by Ramanujan, such as the 9-decimal precision

63
25

(
17 + 15

√
5

7 + 15
√

5

)
.

and the infinite series expansion

1
π

� 2
√

2
9801

∞∑
j�0

(4j)!(1103 + 26390j)
(j!)43964j

,

where each term of the series produces an additional 8 correct
digits in the decimal representation of π.

♦ Another way to approximate π is to use the integral formula

tan−1 y �
∫ y

0

dt

1 + t2

from calculus, expand the integrand into a power series and inte-
grate. In fact, replacing x by −t2 in the geometric series formula,
we obtain

1
1 + t2

� 1 − t2 + t4 − t6 + t8 − t10 + · · · ,

so that

tan−1 y �
∫ y

0

dt

1 + t2
� y − y3

3
+ y5

5
− y7

7
+ y9

9
− y11

11
+ · · · ,
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and, setting y � 1, we arrive at the Gregory–Leibniz series

π

4
� 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
+ · · · .

(The Scottish mathematician David Gregory discovered the infi-
nite series expansion of tan−1 in 1671, three years before Leibniz
derived the alternating series for π/4. Published by Leibniz in 1682,
the expansion is sometimes named after him. For Størmer’s ap-
proach to the Gregory numbers ta/b � tan−1(b/a), a, b ∈ N, see
Problem 14.) Since the series on the right-hand side converges very
slowly (several hundred terms are needed for even 2-decimal preci-
sion!), numerous modifications of this procedure have been made,
using, for example,

π/4 � 4 tan−1(1/5) − tan−1(1/239)

(see Problem 14) and

π/4 � 6 tan−1(1/8) + 2 tan−1(1/57) + tan−1(1/239).

To close this section, we give a brief account on a geometric
method devised by Gauss that produces rational approximations
of π with arbitrary decimal precision. Consider the two-dimensional
square lattice Z2 ⊂ R2 of points with integral coordinates. For r > 0,
let N(r) denote the total number of lattice points contained in the
(closed) disk D̄r with center at the origin and radius r:

N(r) � | D̄r ∩ Z2 |

(see Figure 2.2). Each lattice point (a, b) ∈ D̄r, contributing toN(r),
can be considered as the lower left corner of a unit square with
sides parallel to the coordinate axes. Thus, N(r) can be thought of
as the total area of the squares whose lower left corner is contained
in D̄r. To see how far N(r) is from the area πr2 of D̄r, let B(r) denote
the total area of those squares that intersect the boundary circle of
D̄r. We have |N(r) − πr2| ≤ B(r). Moreover, since the diagonal of a
unit square has length

√
2,

B(r) < π((r +
√

2)2 − (r −
√

2)2) � 4
√

2πr.
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Figure 2.2

Dividing by r2, we obtain the estimate∣∣∣∣N(r)r2
− π

∣∣∣∣ < 4
√

2π
r

.

Choosing r to be an integer, we see that N(r)/r2 gives a rational
approximation of π with precision 4

√
2π/r. For example, r � 300

gives N(300)/3002 � 3.14107 (3-decimal precision).
♥ To see an interesting connection with number theory, notice

that N(r) counts the number of ways that nonnegative integers
n ≤ r2 can be written as sums of two squares of integers. As shown
in number theory,8 the number of representations of a positive
integer n as a sum of two squares is four times the excess in the
number of divisors of n of the form 4m + 1 over those of the form
4m + 3 (cf. also the discussion at the end of Section 1). In terms
of the greatest integer function, the total number of divisors of the
form 4m + 1 of all positive integers n ≤ r2 is

[r2] +
[
r2

5

]
+
[
r2

9

]
+ · · · ,

8See I. Niven, H. Zuckerman, and H. Montgomery, An Introduction to the Theory of Numbers, Wiley, 1991.



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

2. “. . . There Are No Irrational Numbers at All”—Kronecker 19

and those of the form 4m + 3 is[
r2

3

]
+
[
r2

7

]
+
[
r2

11

]
+ · · · .

Taking into account the trivial case (0 � 02 + 02), we obtain

N(r) − 1
4

� [r2] −
[
r2

3

]
+
[
r2

5

]
−
[
r2

7

]
+
[
r2

9

]
−
[
r2

11

]
+ · · · .

The right-hand side contains only finitely many nonzero terms.
Assuming from now on that r is an odd integer, we find that the
number of nonzero terms is (r2 + 1)/2. To estimate this alternat-
ing series, we remove the greatest integer function from the first r
terms and observe that we make an error less than r. The remain-
ing terms are dominated by the leading term [r2/(r + 1)] since the
series is alternating. We thus have

N(r) − 1
4

� r2 − r2

3
+ r2

5
− r2

7
+ r2

9
− r2

11
+ . . . ± r2

r
± cr,

where 0 ≤ c ≤ 2. Dividing by r2 and letting r → ∞ through odd
integers, we recover the Gregory–Leibniz series

π

4
� 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
+ · · · .

♦ For the approximation of π above we used unit squares with
vertices in Z2 to more or less cover the closed disk D̄r for r large.
Instead of squares we can use parallelograms Fa,b � F + (a, b),
a, b ∈ Z (Fa,b is F translated by the vector (a, b)), where the fun-
damental parallelogram F � F0,0 (and hence Fa,b) has vertices in Z2

but no other points in Z2 (not even on the boundary). (See Figure
2.3.) The parallelograms Fa,b tesselate the whole plane in the sense
that they cover R2 with no overlapping interiors. To make F unique
we can assume that a specified vertex of F is the origin. The two
vertices of F adjacent to the origin are then given by vectors v and
w (with integral components), and the vertex of F opposite to the
origin is v + w. The argument of Gauss goes through with obvious
modifications. We obtain

|NF(r) − πr2| < BF(r) < π((r + δ)2 − (r − δ)2) � 4δπr,
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Figure 2.3

where δ is the diameter, the length of the longer diagonal, of F ;
NF(r) is the total area of the parallelograms whose specified vertex
lies in D̄r; and BF(r) is the total area of the parallelograms that
intersect the boundary circle of D̄r. Since NF(r) � area (F)N(r),
letting r → ∞, we obtain

lim
r→∞

NF(r)

r2
� area (F) lim

r→∞
N(r)

r2
.

Since both limits are equal to π, we conclude that the area of a
fundamental parallelogram in a square lattice is always unity.

Since F is fundamental, the integral linear combinations of v
and w exhaust Z2; i.e., we have

Z2 � {kv + lw | k, l ∈ Z}.
The passage from the unit square to the fundamental parallelogram
F is best described by the transfer matrix A between the bases
{(1, 0), (0, 1)} and {v, w}. The column vectors of A are v and w. In
particular, A has integral entries. Viewing v and w as vectors in R3

with zero third coordinates, we have

area (F) � |v × w| � | det (A)|.
This is unity, since F is fundamental. We thus have det (A) ± 1.
Switching v and w changes the sign of the determinant. A 2 × 2
matrix with integral entries and determinant 1 (and the associ-
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ated linear transformation) is called unimodular. The inverse of a
unimodular matrix is unimodular, and the product of unimodu-
lar matrices is also unimodular. ♥ Thus, under multiplication, the
unimodular matrices form a group. This is called the modular group

SL(2, Z) �
{
A �

[
a b

c d

]
| det (A) � ad − bc � 1, a, b, c, d ∈ Z

}
.

The unimodular transformations preserve the square lattice Z2 (in
fact, this property can be used to define them). Finally, the uni-
modular transformations are area-preserving. The proof of this is
an application of the argument of Gauss above to planar sets more
general than disks. The only technical difficulty is to define what
area means in this general context.

Problems

1. Let a be a positive integer such that n
√
a is rational. Show that a must be the

nth power of an integer.

2. ♦ Show that cos 1 is irrational.

3. Show that the cubic polynomial P(x) � 8x3 − 6x − 1 has no rational roots.
Use the trigonometric identity cos(θ) � 4 cos3(θ/3) − 3 cos(θ/3) to conclude
that cos 20◦ is a root of P, and thereby irrational.

4. ♦ Work out the integral
∫ a

1 xn dx, a > 1, n �� −1, using the geometric series
formula in the following way: Let m ∈ N and consider the Riemann sum
(approximating the integral) on the partition {αk}m

k�0, where α � m
√
a.

5. ♦ Show that, for n ∈ N, we have

1 + 2 + · · · + n � n(n + 1)
2

.

6. Solve Problem 5 in the following geometric way: Consider the function f :
[0, n] → R, defined by f(x) � 1 + [x], 0 ≤ x ≤ n, and realize that the area of
the region S under the graph of f gives 1+2+· · ·+n. (S looks like a “staircase.”)
Cut S into triangles and work out the area of the pieces. Generalize this to
obtain the sum of an arithmetic progression.

7. ♦ Show that, for n ∈ N, we have

12 + 22 + · · · + n2 � n(n + 1)(2n + 1)
6

.
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8. Solve Problem 7 along the lines of Problem 6 by building a 3-dimensional
pyramid staircase whose volume represents 12+22+· · ·+n2. Cut the staircase
into square pyramids and triangular prisms.

9. Show that

13 + 23 + · · · + n3 �
(
n(n + 1)

2

)2

in the following geometric way (this was known to the Arabs about 1000
years ago): For k � 1, . . . , n, consider the square Sk ⊂ R2 with vertices
(0, 0), (k(k + 1)/2, 0), (k(k + 1)/2, k(k + 1)/2), and (0, k(k + 1)/2). For n ≥ 2,
view Sn as the union of S1 and the L-shaped regions Sk − Sk−1, k � 2, . . . , n.
By splitting Sk − Sk−1 into two rectangles, show that the area of Sk − Sk−1 is
k3.

10. Given n ∈ N, define a finite sequence of positive integers: a0 � a, a1 �
[a0/2], a2 � [a1/2], . . .. Show that for b ∈ N we have

ab �
∑
an odd

2nb.

(This algorithm of multiplication, consisting of systematic halving and dou-
bling, was used by the ancient Greeks, and was essentially known to the
ancient Egyptians.)

11. A triangular array of dots consists of 1, 2, . . . , n dots, n ∈ N, stacked up to
form a triangle. The total number of dots in a triangular array is the nth
triangular number Tri (n) � 1 + 2 + 3 + · · · + n � n(n+ 1)/2 (cf. Problem 5).

(a) Define the nth square number Squ (n) � n2, n ∈ N. By fitting two
triangular arrays into a square, show that Squ (n) � Tri (n) + Tri (n − 1).
(This is due to Nicomachus, c. a.d. 100.) Define the nth pentagonal number
Pen (n) � Squ (n) + Tri (n − 1) and arrange the corresponding dots in a
pentagonal array. Generalize this to define all polygonal numbers.

(b) By fitting 8 triangular arrays into a square, show that a ∈ N is a trian-
gular number iff 8a + 1 is a perfect square. (This is attributed to Plutarch, c.
a.d. 100.)

(c) Prove that

∞∑
n�1

1
Tri (n)

� 2.

(d) Define the nth k-gonal number inductively9 as the sum of the nth (k−1)-
gonal number and Tri(n − 1). Show that the nth k-gonal number is equal to
((k−2)n2 − (k−4)n)/2 by observing that this number is the sum of the first n
terms of an arithmetic progression with first term 1 and common difference
k − 2. Conclude that a hexagonal number is triangular, and a pentagonal

9See L.E. Dickson, History of the Theory of Numbers, II, Chelsea Publishing, 1971.
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Figure 2.4

number is 1/3 of a triangular number. What is the geometry behind these
conclusions?

12. Let sn and Sn denote the side lengths of the inscribed and circumscribed
regular n-sided polygons to a circle.

(a) Derive the formulas

S2n

Sn − S2n
� sn

Sn
and 2s2

2n � snS2n

by looking for similar triangles in Figure 2.4.
(b) Let pn � nsn and Pn � nSn be the corresponding perimeters. Use (a)

to conclude that

P2n � 2Pnpn
Pn + pn

and p2n � √
pnP2n.

(c) Assume that the circle has unit radius and show that

p6 � 6, P6 � 4
√

3, p12 � 12
√

2 − √
3, P12 � 24

(
2 − √

3
)
.

How well do p12 and P12 approximate 2π?
(d) Use the inequality

2ab
a + b

≤
√
ab, a, b > 0,

to show10 that

P2np
2
2n < Pnp

2
n

and
1
P2n

+ 2
p2n

<
1
Pn

+ 2
pn

.

10This interpolation technique is due to Heinrich Dörrie, 1940.



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

2. “. . . There Are No Irrational Numbers at All”—Kronecker24

Define

An � 3
√
Pnp2

n and Bn � 3Pnpn
2Pn + pn

.

Translate the inequalities above to prove monotonicity of the sequences {An}
and {Bn}, and conclude that

Bn < 2π < An.

Finally, use (c) to show that

A12 � 12 3

√
2
(
2 − √

3
)2

and B12 � 72(2 − √
3)

4
√

2 − √
3 + 1

.

How well do A12 and B12 approximate 2π? Does this method surpass
Archimedes’ approximation of π using 96-sided polygons?

13. Evaluate the expansion of tan−1 at 1/
√

3, and obtain

π

6
� 1√

3

(
1 − 1

3 · 3
+ 1

32 · 5
− 1

33 · 7
+ · · ·

)
.

(This expansion was used by Sharp (1651–1742) to calculate πwith 72 decimal
precision.)

14. Define the rth Gregory number tr , r ∈ R, as the angle (in radians) in an uphill
road that has slope 1/r. Equivalently, let tr � tan−1(1/r). (As indicated in
the text, Gregory found the infinite series expansion

tr � 1
r

− 1
3r3 + 1

5r5 − · · · ,

an equivalent form of the Taylor series for tan−1.) ♦ Use Størmer’s observa-
tion11 that the argument of the complex number a + bi is ta/b (and additivity
of the arguments in complex multiplication) to derive Euler’s formulas

t1 � t2 + t3,

t1 � 2t3 + t7,

t1 � 5t7 + 2t18 − 2t57.

Generalize the first equation to prove Lewis Caroll’s identity

tn � tn+s + tn+t iff st � n2 + 1,

and Machin’s formula

t1 � 4t5 − t239.

The latter translates into

π/4 � 4 tan−1(1/5) − tan−1(1/239).

11For more details, see J. Conway and R. Guy, The Book of Numbers, Springer, 1996.
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(This was used by Machin, who calculated π with 100-decimal precision in
1706.) Derive the last formula using trigonometry. (Let tan θ � 1/5 and use
the double angle formula for the tangent to work out tan(2θ) � 5/12 and
tan(4θ) � 120/119. Notice that this differs from tan(π/4) � 1 by 1/119. Work
out the error tan(4θ − π/4) � 1/239 using a trigonometric formula for the
tangent.)

15. ♦ Given a basis {v, w} in R2, the set L � {kv+ lw | k, l ∈ Z} is called a lattice in
R2 with generators v andw. Generalize the concept of fundamental parallelo-
gram (from Z2) to L, and show that every possible fundamental parallelogram
of a lattice L has the same area. Use this to prove that the transfer matrix,
with respect to the basis {v, w}, between two fundamental parallelograms is
unimodular.

Web Sites

1. www.maa.org

2. www.math.psu.edu/dna/graphics.html

3. www.dgp.utoronto.ca/people/mooncake/thesis

4. www.mathsoft.com/asolve/constant/pi/pi.html
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S E C T I O N

...........................................

Rationality, Elliptic
Curves, and Fermat’s
Last Theorem

♣ A point in R2 with rational coordinates is called rational. The ra-
tional points Q 2 form a dense set in R2 (that is, any open disk in R2

contains a point in Q 2). Theorem 1 of Section 2 can be reformulated
by saying that the only rational point on the graph

{(x, ex) | x ∈ R} ⊂ R2

of the exponential function is (0, 1). (It is quite amazing that this
smooth curve misses all points of the dense subset Q 2 − {(0, 1)} of
R2!) An easier example (to be generalized later to Fermat’s famous
Last Theorem) is the unit circle

S1 � {(x, y) ∈ R2 | x2 + y2 � 1},

and we ask the same question of rationality: What are the ra-
tional points on the unit circle? Apart from the trivial (±1, 0),
(0,±1), and the less trivial examples (3/5, 4/5), (5/13, 12/13),
and (8/17, 15/17), we can actually give a complete description of
these points. Indeed, assume that x and y are rational and satisfy
x2 + y2 � 1. Write x and y as fractions of relatively prime integers
x � a/c and y � b/d. Substituting and multiplying out both sides

26
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of the equation by c2d2, we obtain

a2d2 + b2c2 � c2d2.

This immediately tells us that c2 divides a2d2, and d2 divides b2c2.
Since a, c and b, d have no common divisors, c2 and d2 divide each
other, and so they must be equal. The equation above reduces to

a2 + b2 � c2.

We see that the question of rationality is equivalent to finding
positive integer solutions of the Pythagorean equation above. A
solution (a, b, c) with a, b, c ∈ N is called a Pythagorean triple. The
obvious reason for this name is that each Pythagorean triple gives
a right triangle with integral side lengths a, b, and c (with c corre-
sponding to the hypotenuse). By the way, in case you have not seen
a proof of the Pythagorean Theorem,1 Figure 3.1 depicts one due to
Bhaskara (1114–c. 1185). The rotated 4-sided polygon on the right
is a square, which you can show from symmetry or by calculating
angles.

Remark.
Another cutting-and-pasting gem of Greek geometry is due to Hip-
pocrates of Chios (c. 430 b.c.), and it states that the crescent lune
in Figure 3.2 has the same area as the inscribed triangle. To show
this, verify that A � 2a in Figure 3.3. The significance of this
should not be underrated. In contrast to the futile attempts to

cc

baba Figure 3.1

1Have you noticed that the Pythagorean Theorem, the Euclidean distance formula, the trigonometric
identity sin2 θ + cos2 θ � 1, and the equation of the circle are all equivalent to each other?
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Figure 3.2

square the circle, this is the first recorded successful measurement
of the exact area of a plane figure bounded by curves!

All Pythagorean triples have been known since the time of Eu-
clid (see Book X of Euclid’s Elements2) and can be found in the third
century work Arithmetica by Diophantus. An ancient Babylonian
tablet (c. 1600 b.c.) contains a list of Pythagorean triples including
(4961, 6480, 8161)! It indicates that the Babylonians in the time of

Figure 3.3

A

aa

2T.L. Heath, The Thirteen Books of Euclid’s Elements, Dover, New York, 1956.
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Hammurabi were well aware of the significance of these numbers,
including the fact that they are integral side lengths of a right tri-
angle. The time scale is quite stunning; this is about 1000 years
before Pythagoras! The first infinite sequence of all Pythagorean
triples (a, b, c) with b,c consecutive was found by the Pythagoreans
themselves:

(a, b, c) � (n, (n2 − 1)/2, (n2 + 1)/2),

where n > 1 is odd. Plato found Pythagorean triples (a, b, c) with
b + 2 � c, namely, (4n, 4n2 − 1, 4n2 + 1), n ∈ N. Finally, note also
that Euclid, although he obtained all Pythagorean triples, provided
no proof that his method gave them all. We give now a brief account
of the solution to the problem of Pythagorean triples.

We may assume that a, b, and c are relatively prime (i.e., a,
b, and c have no common divisor). This is because (a, b, c) is a
Pythagorean triple iff (ka, kb, kc) is a Pythagorean triple for any
k ∈ N. (Notice also that (ka, kb, kc) gives the same rational point
on S1 for all k ∈ N.) It follows that a and b are also relatively prime.
(¬ If a prime p divides both a and b, then it also divides c2 � a2+b2.
Being a prime, p also divides c, so that p is a common divisor of a,
b, and c, contrary to our choice. ¬)

Similarly, b, c and a, c are also relatively prime. We now claim
that a and b must have different parity. Since they are relatively
prime, they cannot be both even. ¬ Assume that they are both
odd, say, a � 2k + 1 and b � 2l + 1. Substituting, we have c2 �
a2 + b2 � 4(k2 + k + l2 + l)+ 2 � 2(2(k2 + k + l2 + l)+ 1), but this
is impossible since the square of a number cannot be the double
of an odd number! ¬ (Compare this with the proof of Proposition
1 which shows the irrationality of

√
2.)

Without loss of generality, we may assume that a is even and b

is odd. Hence, c must be odd. Since the difference and sum of odd
numbers is even, c − b and c + b are both even. We can thus write

c − b � 2u and c + b � 2v,

where u, v ∈ N. Equivalently, c � v + u and b � v − u. These
equations show that u and v are relatively prime (since b and c

are). An argument similar to the one above shows that u and v

have different parity. Recall now that a is even, so that a/2 is an
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integer. In fact, in terms of u and v, we have(
a

2

)2

�
(
c − b

2

) (
c + b

2

)
� uv.

Let p be a prime divisor of a/2. Then p2 divides uv; and since u and
v are relatively prime, p2 must divide either u or v. It follows that
u and v are pure square numbers: u � s2 and v � t2. In addition, s
and t are also relatively prime and of different parity. With these,
we have a � 2

√
uv � 2st. Putting everything together, we arrive

at

a � 2st, b � t2 − s2, c � t2 + s2.

We claim that this is the general form of a Pythagorean triple (with
relatively prime components) parametrized by two integers s and
t, where t > s, and s, t are relatively prime and of different parity.
To show this we just have to work backward:

a2 + b2 � 4s2t2 + (t2 − s2)2 � (t2 + s2)2 � c2,

and we are done.

The following table shows a few values:

t s a � 2st b � t2 − s2 c � t2 + s2

2 1 4 3 5
3 2 12 5 13
4 1 8 15 17
4 3 24 7 25
5 2 20 21 29
5 4 40 9 41
6 1 12 35 37

There is a lot of geometry behind the Pythagorean triples. For
example, one can easily show that the radius of the inscribed cir-
cle of a right triangle with integral sides is always an integer (see
Problem 2). On the number theoretical side, the components of a
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Pythagorean triple (a, b, c) contain many divisors; for example, the
Babylonian 60 always divides the product abc! (See Problem 3.)

Remark.
A much harder ancient problem is to find a simple test to determine
whether a given positive rational number r is a congruent number,
the area of a right triangle with rational side lengths a, b, and c. In
general, any nonzero rational number r can be made a square free
integer by multiplying r by the square of another rational number
s. As the name suggests, square free means that the integer (in
this case s2r) has no nontrivial square integral divisors. Now, if r
is the area of a triangle with side lengths a, b, c, then s2r is the
area of a similar triangle with side lengths sa, sb, sc. Thus, we
may (and will) assume that a congruent number is a square free
natural number. As an example, we immediately know that 6 is a
congruent number, since it is the area of a right triangle with side
lengths 3, 4, 5. Euler showed that 7 is a congruent number, and
Fermat that 1 is not. (The latter is a somewhat stronger form of
Fermat’s last theorem in the exponent 4, to be treated later in this
section; see Problem 20.) As a further example, 5 is a congruent
number, as shown in Figure 3.4. Eventually, it became clear that
1, 2, 3, 4 are not congruent numbers, while 5, 6, 7 are. A major
breakthrough in the “congruent number problem” was provided
by Tunnell in 1983. His deep result, in its simplest form, states
that if an odd square free natural number n is congruent, then the
number of triples of integers (x, y, z) satisfying 2x2 + y2 + 8z2 � n

is equal to twice the number of triples of integers (x, y, z) satisfying
2x2 + y2 + 32z2 � n. For n an even square free natural number,
the same is true with 2x2 replaced by 4x2, and n replaced by n/2.
The converse statements are also true, provided that the so-called

b

a=3/2, b=20/3, c=41/6

c

a

Figure 3.4
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Figure 3.5

a

b

c

6803298487826435051217540
411340519227716149383203

=a

411340519227716149383203

21666555693714761309610
=b

224403517704336969924557513090674863160948472041

8912332268928859588025535178967163570016480830
=c

Birch–Swinnerton–Dyer conjecture is true. To appreciate the sub-
tlety of the problem, take a look at Figure 3.5, showing that 157 is
a congruent number. (This is due to Zagier.)3

Returning to Pythagorean triples, we see that the rational points
on the unit circle are of the form(

2st
t2 + s2

,
t2 − s2

t2 + s2

)

where s, t are relatively prime integers.
There is a beautiful geometric way to obtain these points. Con-

sider a line l through the rational point (0, 1) ∈ S1 given by the
equation

y � mx + 1.

For m �� 0, l intersects S1 in a point other than (0, 1). This inter-
section point is obtained by coupling this equation with that of the

3Cf. N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, 1993.
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unit circle. Substituting, we obtain

x2 + (mx + 1)2 � 1.

The left-hand side factors as

x((1 + m2)x + 2m) � 0,

so that we obtain the coordinates of the intersection:

x � − 2m
1 + m2

and y � mx + 1 � 1 − m2

1 + m2
.

This shows that (x, y) is a rational point on S1 iff m is rational.
(Indeed, m ∈ Q clearly implies x, y ∈ Q . The converse follows
from the equation m � (y − 1)/x.) Varying m in Q , we obtain
all rational points on S1 (except (0,−1), which corresponds to a
vertical line intersection point). Setting m � −s/t, t �� 0, s, t ∈ Z,
we recover the solution set above.

This “method of rational slopes” works for all quadratic curves
described by f(x, y) � 0, where f is a quadratic polynomial with
rational coefficients in the variables x, y, provided that there is at
least one rational point on the curve. There may not be any; for
example, there are no rational points on the circle (with radius

√
3)

given by the equation

x2 + y2 � 3.

This follows because we showed in Section 1 that 3 does not divide
any sums of squares a2 +b2, a, b ∈ Z, with a and b relatively prime.

We are now tempted to generalize this approach to find rational
points on all algebraic curves. An algebraic curve is, by definition,
the locus of points on R2 whose coordinates satisfy a polynomial
equation

f(x, y) � 0.

The locus as a point-set is denoted by

Cf � {(x, y) ∈ R2 | f(x, y) � 0}.
We say that Cf is rational if f has rational coefficients. Among all
the polynomials whose zero sets give the algebraic curve, there
is one with minimum degree. This degree is called the degree of
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the algebraic curve. We will consider cubic (degree-three) algebraic
curves below.

♦ As in calculus, it is convenient to consider the graph

{(x, y, f(x, y)) ∈ R3 | (x, y) ∈ R2}
of the polynomial f . This is a smooth surface in R3. The algebraic
curve Cf is obtained by intersecting this graph with the horizontal
plane spanned by the first two coordinate axes. (This is usually
called the level curve of f corresponding to height 0.) We say that
(x0, y0) is a critical point of f if the plane tangent to the graph at
(x0, y0) is horizontal. In terms of partial derivatives, this means
that

∂f

∂x
(x0, y0) � ∂f

∂y
(x0, y0) � 0.

If (x0, y0) ∈ Cf is not a critical point of f , then near (x0, y0), Cf is
given by a smooth curve across (x0, y0). If Cf is cubic and (x0, y0) ∈
Cf is a critical point of f , then near (x0, y0) the curve Cf displays
essentially two kinds of singular behavior. At the assumed singular
point, Cf either forms a cusp or it self-intersects in a double point
(cf. Figure 3.6). The two typical nonsingular cubic curves are
depicted in Figure 3.7. At present, we are most interested in the
second type of singular point. This is the case when the singular
point (x0, y0) of Cf is a saddle point for f . For example, compare
the simple saddle point in Color Plate 1a depicting the graph of
a quadratic polynomial, with Color Plate 1b, where the saddle is
given by a cubic polynomial.

Figure 3.6
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Figure 3.7

Again by calculus, this configuration is guaranteed by the “saddle
condition” (

∂2f

∂x2

)(
∂2f

∂y2

)
−
(
∂2f

∂x∂y

)2

< 0

near (x0, y0). Assuming this, if (x0, y0) is onCf , then intersecting the
surface with the horizontal coordinate plane, we obtain that, near
(x0, y0), Cf consists of two smooth curves crossing over at (x0, y0).
In this case, we say that the algebraic curve Cf has a double point
at (x0, y0). The significance of this concept follows from the fact
that any double point on a cubic rational curve is rational! We will
not prove this in general. ♣ Instead, we restrict ourselves to the
most prominent class of cubic rational curves given by the so-called
Weierstrass form

y2 � P(x),

where P is a cubic polynomial with rational coefficients. (♠ As
far as rationality is concerned, restricting ourselves to Weierstrass
forms results in no loss of generality. In fact, any cubic curve is “bi-
rationally equivalent” to a cubic in Weierstrass form. This means
that for any cubic curve a new coordinate system can be intro-
duced; the new coordinates depend rationally on the old ones; and
in terms of the new coordinates, the cubic is given by a Weierstrass
form. Because of the rational dependence of the old and new co-
ordinates, the rational points on the original curve correspond to
rational points on the new curve. (For a special case, see Problem
19.)
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Remark.
♣ The origins of this equation go back to ancient times. This is
easily understood if we consider the special case P(x) � x3 + c, c ∈
N, and realize that integer solutions of this equation are nothing
but the possible ways to write c as the difference of a square and a
cube:

y2 − x3 � c.

This special case is called the Bachet equation. The Bachet curve
corresponding to the Bachet equation is nonsingular unless c �
0, in which case it reduces to a cusp. In 1917, Thue proved that
for any c, there are only finitely many integral solutions to this
equation. There may be none; for example, Bachet’s equation has
no solutions for c � 7. Although the proof is elementary, we will
not show this, except to mention that the proof depends on writing
the equation as

y2 + 1 � x3 + 8 � (x + 2)(x2 − 2x + 4)

and studying the remainders of x and y under division by 4. How-
ever, Bachet’s equation most often has infinitely many rational
solutions. A little more about this later.

We now return to cubics in Weierstrass form. A good example on
which to elaborate is given by the equation

y2 � x3 − 3x + 2.

The cubic curve is depicted in Figure 3.8. Here, (1, 0) is a double
point. (This will follow shortly.) Color Plate 1b shows the intersec-
tion of the graph of the polynomial f(x, y) � x3 − 3x + 2 − y2 in
R3 with equidistant (horizontal) planes. Projecting the intersection
curves to the coordinate plane spanned by the first two axes, we
obtain the level curves of f (Figure 3.9). This indeed shows the
three basic types discussed earlier!

♦ Let us try our machinery for the Weierstrass form. Since
f(x, y) � P(x) − y2, we have

∂f

∂x
� P ′(x) and

∂f

∂y
� −2y.
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Figure 3.8

Let (x0, y0) be a critical point of f . Then y0 � 0 and P ′(x0) � 0. If,
furthermore, (x0, y0) ∈ Cf , then y2

0 � P(x0) � 0. Thus, a critical
point of f on Cf is of the form (r, 0), where P(r) � P ′(r) � 0.
Differentiating once more, we see that (r, 0) is a saddle point if
P ′′(r) > 0.

We now look at these conditions on P from an algebraic point of
view. P(r) � 0 means that r is a root of P. By the factor theorem,
the root factor (x − r) divides P. The second condition P ′(r) � 0
means that r is a root of P of multiplicity at least 2; that is, (x − r)2

Figure 3.9
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divides P. Finally, P ′′(r) > 0 means that r is a root of multiplicity
exactly 2, or equivalently, (x − r)2 exactly divides P. Since P is of
degree 3, we obtain the complete factorization:

P(x) � a(x − r)2(x − s), r �� s.

Since P has rational coefficients, multiplying out, it follows by easy
computation that r, and hence s, is rational!

♣ Summarizing, we find that a double point on a cubic curve
y2 � P(x) occurs at (r, 0), where r ∈ Q is a root of multiplicity 2.
In the example above, we see that y2 � x3−3x+2 � (x−1)2(x+2),
so that (1, 0) is a double point. (Moreover, it also follows that the
cusp corresponds to a triple root of P; in fact, the cusp in Figure
3.6 is given by the singular Bachet equation y2 � x3.)

Returning to the general situation, we now apply the method
of rational slopes to describe all rational points on the cubic curve
y2 � P(x) by considering lines through a rational double point (r, 0)
whose existence we assume. The general form of a line through
(r, 0) is given by

y � m(x − r).

To find the intersection point, we put this and the defining equation
together and solve for x and y:

m2(x − r)2 � P(x).

Since r is a root of P with multiplicity two,

P(x) � a(x − r)2(x − s), r �� s,

where a, r, and hence s, are rational. Thus,

x � s + m2/a and y � m(s − r + m2/a),

and these are rational iffm is. As before, varyingm on Q , we obtain
all rational points on our cubic curve.

In the elusive case where P has three distinct roots, the method
of rational slopes does not work. A cubic rational curve in Weier-
strass form y2 � P(x), where the cubic polynomial P has no double
or triple roots, is called elliptic. (♦ The name “elliptic” comes from
the fact that when trying to determine the circumference of an
ellipse one encounters elliptic integrals of the form

∫
R(x, y)dx,
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where R is a rational function of the variables x and y, and y is the
square root of a cubic or quartic polynomial in x.) By the discussion
above, an elliptic curve is everywhere nonsingular.

Remark.
The “congruent number problem” noted above is equivalent to a
problem of rationality for a specific elliptic curve. As usual, we
discuss only the beginning of this deep subject.4 Let n ∈ N be a
congruent number. By definition, there exists a right triangle with
rational side lengths a, b, c, and area n. We have a2 + b2 � c2

and ab � 2n. Adding or subtracting twice the second equation
from the first, we get (a ± b)2 � c2 ± 4n. Setting x � (c/2)2, we
see that x, x + n, and x − n are squares of rational numbers. We
obtain that if a natural number n is congruent, then there exists
a nonzero rational number x such that x, x + n, and x − n are
squares of rational numbers. The converse of this statement is also
true, since a � √

x + n − √
x − n, b � √

x + n + √
x − n, and

c � 2
√
x are the rational side lengths of a right triangle with area n,

provided that x is a nonzero rational number with x, x+n, and x−n

squares of rational numbers. If a, b, c are the rational side lengths
of a right triangle with congruent area n, then multiplying the two
equations ((a±b)/2)2 � (c/2)2±n together, we get ((a2−b2)/4)2 �
(c/2)4 − n2. We see that the equation u4 − n2 � v2 has a rational
solution u � c/2 and v � (a2 − b2)/4. Setting x � u2 � (c/2)2 and
y � uv � (a2 − b2)c/8, we obtain that (x, y) is a rational point on
the elliptic curve in the Weierstrass form

y2 � x3 − n2x.

♣ The theory of elliptic curves displays one of the most beautiful
interplays between number theory, algebra, and geometry. In what
follows, all the examples of elliptic curves will be in Weierstrass
form y2 � P(x), where we assume that P has rational coefficients
and no multiple roots. (For an elliptic curve in Weierstrass form, P
has either one or three real roots as in Figure 3.7.)

4See N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, 1993.
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As a variation on the theme, we try the following “chord-method”:
Given an elliptic curve, we consider the line l though two of its
rational points, say, A and B. The slope of l is rational since A and
B have rational coordinates. Since the elliptic curve is cubic, there
must be a third intersection point with l. We denote this by A ∗ B.
This point is rational. (This follows from the fact that if a cubic
polynomial has rational coefficients and two rational roots, then
the third root is also rational. Indeed, the sum r1 + r2 + r3 of the
three roots of a cubic rational polynomial c0 + c1x + c2x

2 + c3x
3 �

c3(x − r1)(x − r2)(x − r3), c3 �� 0, is equal to −c2/c3 ∈ Q .)
The operation (A, B)  → A ∗ B on the set of rational points of an

elliptic curve does not define a group structure, since there is no
point O playing the role of the identity element. Instead, we fix a
rational point O (assuming it exists) and define A + B as the third
intersection of the line through O and A ∗ B. Before going further,
take a look at Figure 3.10.

Our aim is to show that the operation (A, B)  → A + B defines a
group structure5 on the set of rational points on the elliptic curve.
Ignoring the finer point of what happens if the initial points co-

Figure 3.10

A + B

O

BA ∗ B
A

5Although the definition of the sum of two rational points on an elliptic curve appears in the works of
Cauchy (c. 1835), the fact that this operation defines a group structure was only recognized by Poincaré
around 1901.
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A+O = A

A∗O

O

Figure 3.11

incide, it is easy to give visual proofs that the group axioms are
satisfied.

We begin with the identity A + O � A (Figure 3.11).
For the existence of the negative of a point, the identity A +

(−A) � O requires that the line through A ∗ (−A) and O should
have no further intersection with the elliptic curve. It follows that
this line must be tangent to the curve atO. (As will be shown below,
a nonvertical line tangent to the elliptic curve meets the curve at
exactly one other point.) The construction of −A is depicted in
Figure 3.12.

AssociativityA+ (B+C) � (A+B)+C is slightly more complex6

(Figure 3.13).
Since commutativity (A + B � B + A) is clear, we are done!
Now, the finer point of coincidences. As we saw above, all is well

and the chord construction applies if A �� B; but what happens if
A � B? At this point we have to rely on our geometric intuition. As
usual, let the distinct A and B define A ∗ B as the third intersection
point of the line l through A and B. Now pretend to be Newton and
let B approach A. At the limit point A � B, the chord l becomes
tangent to the elliptic curve at A � B! Thus, we define A ∗ A to be
the intersection of the tangent at A with the elliptic curve. The big

6For details, see J. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer, 1992.
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Figure 3.12

O

−A

A

question, of course, is whether or not this intersection is a single
point (including the case when it is empty)!

Remark.
For Bachet’s equation y2 � x3 + c, c ∈ Z, this so-called tangent
method gives an interesting duplication formula. Given a rational
solution A ∈ Q 2, the line tangent to the algebraic curve at A

Figure 3.13
(A + B) ∗ C = A ∗ (B + C)

B + C

C

A + B

A

B

O
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B

A

Figure 3.14

meets the curve at another point B that is easily seen to be rational
(Figure 3.14).

Letting A � (x, y), y �� 0, computation shows that

B �
(
x4 − 8cx

4y2
,
−x6 − 20cx3 + 8c2

8y3

)
.

By using ingenious algebraic manipulations, Bachet discovered this
duplication formula in 1621, before calculus was developed (see
Problem 9). Before going any further, let us play around with this
formula in two special cases. Since 32 � 23 + 1, we see that A �
(2, 3) is an integer point on the Bachet curve given by y2 � x3 + 1.
The duplication formula gives A ∗ A � A ∗ A ∗ A ∗ A � (0,−1).
(For more on this, see Problem 18.) For a less trivial example, start
with 3 � 22 − 1, multiply both sides of this equation by 24 · 33,
and obtain (22 · 32)2 � (22 · 3)3 − 24 · 33. This shows that A �
(22 · 3, 22 · 32) � (12, 36) is an integer point on the Bachet curve
given by y2 � x3 − 432. (If this is too ad hoc, take a look at Problem
19.) The duplication formula gives A ∗A � A! These two examples
seem to crush our hope that by applying the duplication formula
iteratively to an initial rational point we will obtain infinitely many
distinct rational points on our Bachet curve. Fortunately, these are
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the only exceptional cases, and it can be proved7 that starting with
A � (x, y), with xy �� 0 and c �� 1,−432, we do get infinitely many
distinct rational points on the Bachet curve.

♦ Back to A ∗ A! Overflowing with confidence, we now believe
that we can handle this technically and actually compute A ∗ A.
This needs a little calculus. Let A � (x0, y0) be a rational point
on the elliptic curve y2 � P(x) in question; y2

0 � P(x0). Assuming
y0 �� 0, the slope m � y′ � dy/dx of the tangent at x0 can be
obtained by implicit differentiation. We have

2yy′ � P ′(x),

which at x0 gives

m � P ′(x0)

2y0
∈ Q .

(Note that the numerator is rational because P is.) Substituting this
into the equation y− y0 � m(x− x0), we obtain the equation of the
tangent line

y � y0 +
(
P ′(x0)

2y0

)
(x − x0).

To look for intersections, we combine this with the defining
equation of the elliptic curve and obtain(

y0 +
(
P ′(x0)

2y0

)
(x − x0)

)2

� P(x).

Equivalently,

(2P(x0) + P ′(x0)(x − x0))
2 � 4P(x0)P(x).

Several terms look as if they jumped out of Taylor’s formula. In
fact, expanding P into Taylor series, we have

P(x) � P(x0) + P ′(x0)(x − x0) +
(
P ′′(x0)

2

)
(x − x0)

2

+
(
P ′′′(x0)

6

)
(x − x0)

3.

7See N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, 1993.
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(Notice that since P is cubic this is all we have.) After substituting,
and allowing some mutual self-destruction of the opposite terms,
we end up with

x � x0 + 3
P ′(x0)

2 − 2P ′′(x0)P(x0)

2P ′′′(x0)P(x0)
.

This gives the first rational coordinate of the intersection A ∗ A.
(Do not worry about the denominator; it is twelve times the leading
coefficient of P, and thereby nonzero.) Notice that, in the particu-
lar case P(x) � x3 + c, our result reduces to Bachet’s duplication
formula! Since the point (x0, y0) is on a line with rational slope, the
second coordinate is also rational. We thus obtain a unique rational
point A ∗ A. The remaining case y0 � 0 sets the tangent line ver-
tical (perpendicular to the first axis) at x0 which, by assumption,
is a rational root of P (since y2

0 � P(x0) � 0). Clearly, there is no
further intersection of this line with the elliptic curve.

The usual way to circumvent this difficulty is to attach “ideal
points” to the Euclidean plane to each “direction” or, more pre-
cisely, to each pencil of parallel lines. Attaching these ideal points
to the Euclidean plane, we obtain the classical model of the projec-
tive plane. More about this in Section 16. ♣ Here we just say that
the vertical tangent line intersects the extended elliptic curve at
the ideal point given by the pencil of vertical lines. Since the ver-
tical ideal point has to be attached to our elliptic curve, we might
as well choose it to be the identity O! Addition then takes a simple
form depicted in Figure 3.15.

The negative of a point is illustrated in Figure 3.16. (In fact, keep
A fixed in Figure 3.15 and let B tend to −A. Then both A ∗ B and
A + B tend to the ideal point.)

Summarizing, we find that the rational points on a rational ellip-
tic curve in the projective plane form a group under the addition
rule (A, B)  → A + B defined above.

♠ A deep theorem of Mordell (1923) asserts that this group is
finitely generated. More plainly, this means (in the spirit of Ba-
chet’s duplication formula) that on an elliptic curve with at least
one rational point, there exist finitely many rational points such
that all other rational points can be “generated” from these by the
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Figure 3.15

A + B

A

A ∗ B
B

“chord-and-tangent” method. This gives a very transparent descrip-
tion of the rational points on any elliptic curve. As an example, the
rational points of the elliptic curve8 y2 + y � x3 − x (y is shifted!)
form an infinite cyclic group (thereby isomorphic with Z). In Fig-
ure 3.17, the zero O is set at the vertical ideal point and the rational
points are labelled with the integers (isomorphically).

Figure 3.16

A

−A

8See R. Hartshorne, Algebraic Geometry, Springer, 1977.
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Figure 3.17.
R. Hartshorne,
Algebraic Geometry,
1977, 336. Reprinted
by permission of
Springer-Verlag New
York, Inc.

Remark.
We saw above that if n is a congruent number, then each right trian-
gle with rational side lengths and area n can be made to correspond
to a specific rational point on the elliptic curve En given in Weier-
strass form by y2 � x3 − n2x. It turns out9 that the points A on En,
for n congruent, that correspond to “rational triangles” are exactly
the doubles of rational points (A � B + B � 2B for B rational) on
En. On the other hand, in the group of rational points of En, the only
rational points of finite order are the four points of order two: the
identity O (the vertical ideal point), (0, 0), and (±n, 0) (cf. Problem
11). In this statement we need only to assume that n is a square free
natural number. If n is a congruent number, then the rational point
that corresponds to the right triangle with side lengths a, b, c, and
area n, has x-coordinate x � (c/2)2 (see the computations above).
Since this is different from the x-coordinates of the four points of
order two above, we see that this rational point must be of infinite
order. The converse of this statement is also true. We obtain that
n is a congruent number iff the group of rational points of En is
infinite! This is the first (and most elementary) step in proving
Tunnell’s characterization of congruent numbers. All that we said
here can be put in an elegant algebraic framework. If we denote

9See N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, 1993.
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by En(Q ) the group of rational points on En, then, by Mordell’s the-
orem, En(Q ) is finitely generated. Since this is an abelian group,
its elements of finite order form a (finite) subgroup, the so-called
torsion subgroup: En(Q )tor. By what we said above, the order of
this torsion subgroup is 4. By the fundamental theorem on finitely
generated abelian groups,

En(Q ) ∼� En(Q )tor × Zr,

where r is called the rank of En(Q ). Again by the above, En(Q )

has nonzero rank iff n is a congruent number. It turns out that
determining r is much more difficult than locating the rational
points of finite order on En.

♣ Another direction in which to generalize the Pythagorean
problem is to find rational points on the algebraic curve

{(x, y) ∈ R2 | xn + yn � 1}
for n ≥ 3. The graph of x4 + y4 � 1 is depicted in Figure 3.18.

The method of rational slopes breaks down, despite the fact that
(1, 0) and (0, 1) are rational points. (Try to pursue this for n � 3.)
As in the Pythagorean case, we can reformulate this problem to
finding all positive integer solutions of the equation

an + bn � cn, n ≥ 3.

This problem goes back to Fermat10 (1601–1665), who wrote the
following marginal note in his copy of Diophantus’s Arithmetica:

It is impossible to write a cube as a sum of two cubes, a fourth
power as a sum of fourth powers, and, in general, any power
beyond the second as a sum of two similar powers. For this, I
have discovered a truly wonderful proof, but the margin is too
small to contain it.

Fermat thus claimed that there is no all-positive solution of this
equation for any n ≥ 3. His “truly wonderful proof” went with him
to the grave, and despite intense efforts of many great minds, it was

10By profession, Fermat was a lawyer and a member of the supreme court in Toulouse. He did mathematics
only as a hobby.
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Figure 3.18

not until the year 1994 that this so-called Fermat’s Last Theorem
was finally proved by Andrew Wiles. On the modest side, as always,
we will here reduce the problem to n an odd prime, and give some
fragmentary historical notes. We set n � 4 and follow Fermat, who
actually jotted down a sketch proof for this case, and Euler, who
gave the first complete proof for this in 1747.

More generally, we claim that there is no all-positive integral
solution of the equation

a4 + b4 � c2, a, b, c ∈ N.

We employ here what is known as “Fermat’s method of infinite
descent.” It starts with an all-positive solution a0, b0, c0, that we
assume to exist and creates another all-positive solution a, b, cwith
c < c0. Since it cannot go on forever, we get a contradiction. (By the
way, I almost forgot! ¬) We may assume that a0, b0, c0 are relatively
prime, as in the Pythagorean case. Substituting, we find

(a2
0)

2 + (b2
0)

2 � c2
0,

so that (a2
0, b

2
0, c0) is a Pythagorean triple. By what we derived

earlier, we have

a2
0 � 2st, b2

0 � t2 − s2, c0 � t2 + s2,

where t > s, and s, t are relatively prime and of different parity.
We claim that t is odd and s is even. ¬ If t is even and s is odd, then
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t2−s2 is a multiple of 4 minus 1. On the other hand, b0 is odd, so that
b2

0 is a multiple of 4 plus 1. These cannot happen simultaneously! ¬
We can now write s � 2r. Substituting this into the expression

for a2
0, we obtain (

a0

2

)2

� rt.

This reminds us of an analogous equation for Pythagorean triples!
Since r and t are relatively prime, it follows in exactly the same
way that r and t are pure squares: t � c2 and r � d2. Next we write
the expression for b2

0 in the Pythagorean form s2 + b2
0 � t2 and

apply the description of Pythagorean triples again to get

s � 2uv, b0 � u2 − v2, t � u2 + v2,

where u > v, and u, v are relatively prime and of different parity.
The equation

uv � s/2 � r � d2

tells us that u and v are pure squares: u � a2 and v � b2. We finally
have

c2 � t � u2 + v2 � a4 + b4,

so that (a, b, c) is another solution! Comparing the values of c and
c0, we get

c ≤ c2 � t ≤ t2 < t2 + s2 � c0,

and we are done. ¬

In particular, a4 + b4 � c4 does not have any all-positive solu-
tions. Now look at the general case an + bn � cn. If n is divisible
by 4, say, n � 4k, then we can rewrite this as (ak)4 + (bk)4 � (ck)4,
and, by what we have just proved, there is no positive solution
in this case either. Assume now that n is not divisible by 4. Since
n ≥ 3, this implies that n is divisible by an odd prime, say p,
and we have n � kp. We can then write the original equation as
(ak)p + (bk)p � (ck)p and Fermat’s Last Theorem will be proved if
we show that, for p an odd prime, no all-positive solutions exist for

ap + bp � cp,
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or equivalently, there are no rational points (with positive
coordinates) on the Fermat curve defined by the equation

xp + yp � 1.

Now, some history. The first case, p � 3, although it seems to
have attracted attention even before a.d. 1000, was settled by Euler
in 1770 with a gap filled by Legendre. Around 1825, Legendre and
Dirichlet independently settled the next case, p � 5. The next
date is 1839, when Lamé succesfully completed a proof for p � 7.
With the proofs getting more and more complex, it became clearer
and clearer that a good way to attack the problem was to consider
numbers that are more general than integers.

A good class of numbers turned out to be those that are roots
of polynomial equations with integral or rational coefficients. We
will investigate these in the next section. Kummer went further
and, introducing the so-called “ideal numbers,” managed to prove
Fermat’s Last Theorem for a large class of “regular” primes. Be-
fore Wiles’ recent proof, one has to mention a result of Faltings in
1983 that implies that there may be only finitely many solutions
(a, b, c) for a given odd prime p. A brief account on the final phase
in proving Fermat’s Last Theorem is as follows. ♠ The work of Hel-
legouarch between 1970 and 1975 revealed intricate connections
between the Fermat curve and elliptic curves. This led to a sugges-
tion made by Serre that the well-developed theory of elliptic curves
should be exploited to prove results on Fermat’s Last Theorem. In
1985, Frey pointed out that the elliptic curve

y2 � x(x + ap)(x − bp),

where ap + bp � cp, a, b, c ∈ N, is very unlikely to exist due to its
strange properties. Working on the so-called Taniyama–Shimura
conjecture, in 1986, Ribet proved that the Frey curve above is not
modular,11 that is, it cannot be parametrized by “modular functions”
(in a similar way as the unit circle given by the Pythagorean equa-
tion x2 + y2 � 1 can be parametrized by sine and cosine). Finally,

11For a good expository article, see R. Rubin and A. Silverberg, “A Report on Wiles’ Cambridge Lectures,”
Bulletin of the AMS, 31, 1 (1994) 15–38.
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in a technical paper, Wiles showed that elliptic curves of the form

y2 � x(x − r)(x − s)

can be parametrized by modular functions provided that r and s

are relatively prime integers such that rs(r − s) is divisible by 16.
This, applied to the Frey curve with r � −ap and s � bp finally
gives a contradiction since rs(r − s) � apbpcp is certainly divisible
by 16 for p ≥ 5 (as one of the numbers a, b, c must be even).

Problems

1. Following Euclid, prove the Pythagorean theorem by working out the areas
of triangles in Figure 3.19.

2. Show that the radius of the inscribed circle of a right triangle with integral
side lengths is an integer.

3. Use the general form of Pythagorean triples to prove that 12|ab and 60|abc
for any Pythagorean triple (a, b, c).

4. Show that the only Pythagorean triple that involves consecutive numbers is
(3, 4, 5).

5. Find all integral solutions a, b ∈ Z of the equation

a2b + (a + 1)2b � (a + 2)2b.

Figure 3.19

Administrator
ferret
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6. Find all right triangles with integral side lengths such that the area is equal
to the perimeter.

7. Show that a2 + b2 � c3 has infinitely many solutions.

8. Use the chord-method to find all rational points on the curves: (a) y2 �
x3 + 2x2; (b) y2 � x3 − 3x − 2.

9. Consider Bachet’s curve y2 � x3 + c, c ∈ Z. Show that if (x, y), y �� 0, is a
rational point, then(

x4 − 8cx
4y2 ,

−x6 − 20cx3 + 8c2

8y3

)

is also a rational point on this curve. ♥ Use calculus to verify that this is the
second intersection of the tangent line to the curve at (x, y).

10. Find all rational points on the circle with center at the origin and radius
√

2.

11. Prove that on an elliptic curve in Weierstrass form y2 � P(x), the points (�� O)
of order 2 are the intersection points of the curve with the first axis.

12. (a) Devise a proof of irrationality of
√

2 using Fermat’s method of infinite
descent. (b) Demonstrate (a) by paper folding: Assume that

√
2 � a/b, a, b ∈

N, consider a square paper of side length b and diagonal length a, and fold
a corner of the square along the angular bisector of a side and an adjacent
diagonal.

13. Use a calculator to work out the first two iterates of the duplication formula
for the Bachet equation y2 � x3 − 2, starting from (3, 5).

14. Does there exist a right triangle with integral side lengths whose area is 78?

15. Use the result of Gauss in Section 2 on the rational roots of a polynomial
with integer coefficients to describe the rational points on the graph of the
polynomial.

16. ♠ Let C be the cubic cusp given by y2 � x3. (a) Show that the set Cns(Q ) of all
nonsingular rational points (“ns” stands for nonsingular) forms a group under
addition given by the chord method (the identity is placed at the vertical ideal
point). (b) Verify that the map φ : Cns(Q ) → Q defined by φ(x, y) � x/y and
φ(O) � 0 is an isomorphism. (Since the additive group of Q is not finitely
generated, this shows that Mordell’s theorem does not extend to singular
curves!)

17. Derive the analytical formulas for adding points on an elliptic curve in Weier-
strass form in the case where the identity is placed at the vertical ideal
point.

18. Placing the identity O at the vertical ideal point, show that the integer point
A � (2, 3) has order 6 in the group of rational points of the Bachet curve
given by y2 � x3 + 1. (Hint: Rewrite A ∗ A � A ∗ A ∗ A ∗ A. Note that this is
the largest finite order a rational point can have on a Bachet curve.)
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19. Show that the cubic curve given by x3 + y3 � c can be transformed into a
Weierstrass form by the rational transformation

(x, y)  →
(
a + y

bx
,
a − y

bx

)
.

Choose a � 36c and b � 6 to obtain the Bachet equation y2 � x3 − 432c2.
(Notice that c � 1 gives the birational equivalence of the Fermat curve in
degree 3 and the Bachet curve given by y2 � x3 − 432. Since the former has
(1, 0) and (0, 1) as its only rational points, it follows that (away from O, the
vertical ideal point) the Bachet curve also has only two rational points. Can
you find them? With O, these form a cyclic group of order 3.)

20. Show that if 1 were a congruent number, then the equation a4 − c4 � b2

would have an all-positive integral solution with b odd, and a, c relatively
prime. (Hint: If 1 were congruent, then u4 − 1 � v2 would have a rational
solution. Substitute u � a/c and v � b/d, where a, c and b, d are relatively
prime. Note that a Fermat’s method of infinite descent, resembling the one in
the text, can be devised to show that a4 − c4 � b2 has no all-positive integral
solutions. It thus follows that 1 is not a congruent number.)

21. Use Tunnell’s theorem to show that 5, 6, 7 are congruent numbers.

Web Sites

1. www-groups.dcs.st-and.ac.uk/∼history/HistTopics/
Fermat’s last theorem.html

2. www.math.niu.edu/∼rusin/papers/known-math/elliptic.crv/
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4
S E C T I O N

...........................................

Algebraic or
Transcendental?

♣ We managed to split the real numbers into two disjoint sub-
sets: the rationals and irrationals. Is there a further split of the
irrationals? For example, which is more subtle:

√
2 or e? For the

answer, we go back to Q and make the following observation: If
x ∈ Q , then, writing x � a/b, a, b ∈ Z, we see that x is the root of
the linear equation

a − bx � 0

with integral coefficients. Raising the degree by one, we see that√
2 has the same property; i.e., it is a root of the quadratic equation

x2 − 2 � 0,

again with integral coefficients. We are now motivated to introduce
the following definition: A real number r is algebraic if it is a root
of a polynomial equation

c0 + c1x + . . . + cnx
n � 0, cn �� 0

with integral (or what is the same, rational; see Problem 1) coef-
ficients. The least degree n is called the degree of r. A number is
called transcendental if it is not algebraic.

55
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We see immediately that the degree 1 algebraic numbers are
the rationals and that

√
2 is an algebraic number of degree 2. What

about e andπ? It turns out that they are both transcendental, but the
proof (especially for π) is not easy. A proof of transcendentality for
ewas first given by Hermite in 1873 and simplified considerably by
Hilbert in 1902. Transcendentality of π was first proved by Linde-
mann.1 To appreciate these revolutionary results, one may note the
scepticism that surrounded transcendentality in those days (espe-
cially coming from the constructivists). As Kronecker, the leading
contemporary to Lindemann, noted: “Of what use is your beauti-
ful research on π? Why study such problems, since there are no
irrational numbers at all?”

♥ From the point of view of abstract algebra, Q is a subfield of
R. Are there any fields between Q and R? The answer is certainly
yes; just pick an irrational number r and consider the smallest
subfield of R that contains both Q and r. This subfield is denoted
by Q (r). The structure of Q (r) depends on whether r is algebraic
or transcendental.

♣ To see what happens when r is algebraic, consider r � √
2.

Since all even powers of
√

2 are in N ⊂ Q , an element of Q (
√

2)
is of the form

a1 + b1
√

2

a2 + b2
√

2
, a1, a2, b1, b2 ∈ Q ,

with the assumption that a2 and b2 do not vanish simultaneously.
Rationalizing the denominator now gives

a1 + b1
√

2

a2 + b2
√

2
· a2 − b2

√
2

a2 − b2
√

2
� a1a2 − 2b1b2 + (a2b1 − a1b2)

√
2

a2
2 − 2b2

2

� a1a2 − 2b1b2

a2
2 − 2b2

2
+ a2b1 − a1b2

a2
2 − 2b2

2

√
2.

1For an interesting account, see F. Klein, Famous Problems of Elementary Geometry, Chelsea, New York,
1955. For a recent treatment, see A. Jones, S. Morris, and K. Pearson, Abstract Algebra and Famous
Impossibilities, Springer, 1991.
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The fractions are rational, so we conclude that Q (
√

2) consists of
numbers of the form

a + b
√

2, a, b ∈ Q .

In particular, Q (
√

2) is a vector space of dimension 2 over Q (with
respect to ordinary addition in Q (

√
2) ⊂ R and multiplication of

elements in Q (
√

2) by Q ). The generalization is clear. Given an
algebraic number r of degree n over Q , the field Q (r) is a vector
space over Q of dimension n.

Example
For n ∈ N, define Tn, Un : [−1, 1] → R by Tn(x) � cos(n cos−1(x))

and Un(x) � sin((n + 1) cos−1(x))/ sin(cos−1(x)), x ∈ [−1, 1]. By
the addition formulas, we have

cos((n + 1)α) � cos(nα) cos(α) − sin(nα) sin(α),

sin((n + 2)α) � sin((n + 1)α) cos(α) + cos((n + 1)α) sin(α).

For α � cos−1(x), these can be rewritten as

Tn+1(x) � xTn(x) − (1 − x2)Un−1(x),

Un+1(x) � xUn(x) + Tn+1(x).

Since T1(x) � x and U0(x) � 1, these recurrence relations im-
ply that Tn and Un are polynomials. We obtain that cos(π/n) is
algebraic, since it is a root of the polynomial Tn + 1. (What about
sin(π/n)?) �

If r is transcendental, then Q (r) is isomorphic to the field of all
rational functions

a0 + a1r + · · · + anr
n

b0 + b1r + · · · + bmrm
, an �� 0 �� bm,

with integral coefficients. In this case, we have every reason to call
r a variable over Q .

♦ We finish this section by exhibiting infinitely many tran-
scendental numbers. Let a ≥ 2 be an integer. We claim
that

r �
∞∑
j�1

1
aj!
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is transcendental. To show convergence of the infinite series, we
first note that

1
aj!

≤ 1
2j
,

with sharp inequality for j ≥ 2. Thus

∞∑
j�1

1
aj!

<

∞∑
j�1

1
2j

� 1
1 − (1/2)

− 1 � 1,

and so the series defining r converges, and the sum gives a real
number r ∈ (0, 1). Now for transcendentality: ¬ Assume that r is
the root of a polynomial

P(x) � c0 + c1x + · · · + cnx
n, c0, . . . , cn ∈ Z, cn �� 0.

For k ∈ N, let

rk �
k∑
j�1

1
aj!

be the kth partial sum. We now apply the Mean Value Theorem of
calculus for P on [rk, r] and obtain θk ∈ [rk, r] such that the slope
of the line through (rk, P(rk)) and (r, P(r)) � (r, 0) is equal to the
slope of the tangent to the graph of P at θk:

P(r) − P(rk)

r − rk
� P ′(θk)

(Figure 4.1). Taking absolute values, we rewrite this as

|P(rk)| � |P(r) − P(rk)| � |r − rk| · |P ′(θk)|.

We now estimate each term as follows: For l � 0, . . . , n, clrlk is a
rational number with denominator al·k!. Thus,

|P(rk)| � |c0 + c1rk + · · · + cnr
n
k | ≥ 1/an·k!.
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rkr θk

Figure 4.1

Second, we have

|r − rk| �
∞∑

j�k+1

1
aj!

� 1
a(k+1)!

(
1 + 1

a(k+2)!−(k+1)!
+ 1

a(k+3)!−(k+1)!
+ · · ·

)

<
1

a(k+1)!

1
1 − (1/a)

,

where we applied the geometric series formula (after comparison).
Finally, taking the derivative of P:

|P ′(θk)| � |c1 + 2c2θk + · · · + ncnθ
n−1
k |

≤ |c1| + 2|c2| + · · · + n|cn| � c, c ∈ N,

where we used 0 ≤ θk ≤ 1. Putting all these together, we arrive at

1
an·k!

≤ 1
a(k+1)!

c

1 − (1/a)
.

For k large, this is impossible since a(k+1)! grows faster than an·k!. ¬
For a � 10, we obtain transcendentality of the number

∞∑
j�1

1
10j!

� 0.110001000000000000000001000 . . . .

This goes back to Liouville in 1844.
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Remark 1.
A deep theorem of Gelfond and Schneider, proved in 1935, asserts
that if r �� 0, 1 is algebraic and s is not rational, then rs is transcen-
dental. (r, s can both be complex; see Section 5.) For example, 2

√
2

and eπ (� i−2i; see Section 15) are transcendental. In 1966, Alan
Baker2 found effective close approximations for sums of natural
logarithms, and proved transcendence results for sums of num-
bers of the form a ln b, where a, b are algebraic. In particular, he
reproved transcendence of

√
2
√

2 and transcendence of the Gregory
numbers ta/b � tan−1(b/a), a, b ∈ N. (ta/b is the imaginary part of
the complex logarithm of the Gaussian integer a + bi ∈ Z[i].) Fi-
nally, going back to geometry, we note that according to a result
of Schneider in 1949, the perimeter of an ellipse with algebraic
semimajor axes is transcendental.

Remark 2.
We saw in Section 2 that the only rational point on the graph of the
exponential function is (0, 1). As Lindemann proved, with the ex-
ception of (0, 1), the graph actually avoids all points with algebraic
coordinates.

Problems

1. Show that if a real number is the root of a polynomial with rational
coefficients, then it is also the root of a polynomial with integer coefficients.

2. Show that the numbers
√
a−√

b, a, b ∈ N, are algebraic. What is the degree?

3. Let c be a positive real number. Prove that if c is algebraic, then so is
√
c.

4. Verify that if c1 and c2 are algebraic, then so is c1 + c2.

5. ♠ Show that the fields Q (
√

2) and Q (
√

3) are not isomorphic.

6. Prove the divison algorithm for polynomials: Given polynomials P, S there
exist polynomials Q, R such that P � QS + R, where R is zero or has degree
less than the degree of S. Moreover, Q and R are unique. In addition, show
that if P and S have rational coefficients, then so do Q and R.

2See “Linear Forms in the Logarithms of Algebraic Numbers I–II–III–IV,” Mathematica, 13 (1966) 204–216;
14 (1967) 102–107; 14 (1967) 220–228; 15 (1968) 204–216.
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7. Let p be a prime. Assume that a polynomial P with rational coefficients has
a root of the form a + b

√
p, where a, b ∈ Q . Show that a − b

√
p is also a

root. (Hint: Divide P by (x − (a + b
√
p))(x − (a − b

√
p)), and consider the

remainder.)

8. ♠Generalize Problem 7 to polynomials over a field and a quadratic extension.

9. Use a calculator to show that the polynomial x6 − 7.5x3 − 19x+ 2.1 evaluated
on the Liouville’s number

∑∞
j�1 1/10j! vanishes to 8-decimal precision.

10. ♦ Let m �� 1 be positive. Show that the equation

ex � mx + 1

has a unique nonzero solution x0. In addition, show that x0 is irrational if m
is rational, and x0 is transcendental if m is algebraic.
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...........................................

Complex Arithmetic

♣ We now turn the setting around and ask the following: Given a
polynomial equation

c0 + c1x + · · · + cnx
n � 0, cn �� 0, c0, c1, . . . , cn ∈ R,

what can be said about the roots?
This is one of the oldest problems of algebra. The factor theorem

says that there are at most n roots. It also says that it is enough to
prove the existence of one root r, since after dividing by the root
factor (x− r), the quotient has degree n− 1, to which the existence
result can again be applied. If we pretend that we do not know the
FTA (fundamental theorem of algebra), then the existence of roots
seems to carry some inherent difficulty. For example, the quadratic
equation

x2 + 1 � 0

is unsolvable in R since the left-hand side is always ≥ 1 for x real.
This, of course, we knew all along. In general, the solutions of the
quadratic polynomial equation

ax2 + bx + c � 0

62
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are given by the quadratic formula

r1, r2 � −b ± √
b2 − 4ac

2a
,

with r1 corresponding to the positive and r2 to the negative sign in
front of the square root. This is an easy exercise in completing the
square. (To show this in the Greek way, we first divide through by
a and obtain

x2 + px + q � 0,

where p � b/a and q � c/a. Consider the expression x2 + px as the
area of a square with side length x plus the areas of two rectangles
of side lengths p/2 and x. When the rectangles are joined with the
square along two adjacent sides of the square, they form a larger
square of side length x + p/2 with a small square of side length
p/2 missing. Inserting the missing small square completes the big
square, and we obtain x2 + px+ (p/2)2 � (x+ p/2)2. The quadratic
formula follows, since

x2 + px + q � (x + p/2)2 − (p/2)2 + q,

so that the roots are −p/2 ± √
(p/2)2 − q.) Now, depending on

whether b2 − 4ac is positive, zero, or negative, we have two, one,
or no roots among the reals. Thus, it is clear that real numbers are
insufficient and that we have to introduce new numbers. These
should form a field if we want to do ‘decent’ mathematics. Among
the new numbers, there must be one that is a root of x2 + 1 � 0,
as above. Thus, we introduce the complex unit i with the property

i2 + 1 � 0.

The complex unit i is sometimes denoted by
√
(−1) for obvious

reasons. We will use only the former to prevent silly errors such
as 1 � √

1 � √
(−1)(−1) � √−1

√−1 � −1. For degree 2 poly-
nomials, the problem is now solved. Indeed, for b2 − 4ac < 0, the
quadratic formula can be written as

r1, r2 � − b

2a
±
√−(4ac − b2)

2a
� − b

2a
±

√
4ac − b2

2a
i.

(Notice that the first equality is somewhat heuristic; nevertheless
the final expression does satisfy the quadratic equation.)



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

5. Complex Arithmetic64

We now consider the field R(i) (an algebraic extension of R of
degree 2) consisting of all elements of the form

a1 + b1i

a2 + b2i
, a1, a2, b1, b2 ∈ R,

with the assumption that a2 and b2 do not vanish simultaneously.
(The reason for considering only linear fractions is clear; all even
powers of i are real.) We now “rationalize the denominator”:

a1 + b1i

a2 + b2i
� a1 + b1i

a2 + b2i
· a2 − b2i

a2 − b2i
� (a1a2 + b1b2)

a2
2 + b2

2
+ (a2b1 − a1b2)

a2
2 + b2

2
i.

The fractions are real, so we conclude that R(i) consists of numbers
of the form

z � a + bi, a, b ∈ R.

For notational convenience, we write C � R(i) and call it the com-
plex number field. The typical element z above is called a complex
number. a � !(z) is the real part of z and b � "(z) is the imag-
inary part of z. The complex number z is real iff "(z) � 0 and
purely imaginary iff !(z) � 0. Notice finally that rationalizing the
denominator as above gives a formula for complex division!

In view of the analogy between the algebraic field extensions
Q (

√
2) in Section 4 and R(i) above, it is perhaps appropriate to

remember Titchmarsh’s words:

There are certainly many people who regard
√

2 as something
perfectly obvious, but jib at

√
(−1). This is because they think

they can visualize the former as something in physical space,
but not the latter. Actually

√
(−1) is a much simpler concept.

Summarizing, every quadratic polynomial equation has exactly
two roots among the complex numbers. If b2 − 4ac � 0, we say
that we also have two roots that happen to coincide. (The elegant
phrase “root with multiplicity 2” is not without reason; think again
of the corresponding root factors!)

We now pin our hopes on C for solving cubic, quartic, quintic, etc.
polynomial equations. Our doubts are not completely unfounded
if we go back to Roman times when only rational numbers were
accepted, and pretend that we want to invent reals by considering
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Q (
√

2) (and alike), which is definitely not the whole of R. Fortu-
nately this is not the case, and we can stop pretending that we did
not know the

Fundamental Theorem of Algebra.
Every polynomial equation

c0 + c1z + · · · + cnz
n � 0, cn �� 0,

with complex coefficients c0,c1, . . . ,cn ∈ C, has a complex root.

Having been stated as early as 1629 by Albert Girard, the FTA
was first proved by Gauss in 1799. Earlier attempts were made by
D’Alembert (1746), Euler (1749), and Lagrange (1772). Many ele-
mentary proofs exist. A typical proof uses Liouville’s theorem in
complex analysis which, in turn, is based on a trivial estimate of
the Cauchy formula. (By the way, have you noticed that almost ev-
erything in one-variable complex calculus goes back to the Cauchy
formula?) To do something out of the ordinary, we prove the FTA
by a “differential topological” argument.1 Note that four additional
proofs are outlined in Problems at the end of Section 8.

Before proving the FTA, we explore some geometric features
of complex arithmetic. To define a complex number z � a + bi,
we need to specify its real and imaginary parts a and b. Put to-
gether, they form a point (a, b) on the Cartesian plane or, similarly,
they form a plane vector. This representation of a complex num-
ber as a plane vector is called the Argand diagram. This geometric
representation of complex numbers is named after Jean Robert
Argand, 1806, although nine years earlier it had been announced
by the Norwegian cartographer Caspar Wessell before the Danish
Academy of Sciences.

You may say, “Well, in Euclidean plane geometry we talked about
points on the plane. In calculus, we were told that a vector drawn
from the origin is essentially the same thing as a point. Now we
are saying that a planar point can also be thought of as a complex

1See J. Milnor, Topology from the Differentiable Viewpoint, The University Press of Virginia, 1990. For a
recent comprehensive study of the FTA and its relation to various mathematical disciplines, see B. Fine
and G. Rosenberger, The Fundamental Theorem of Algebra, Springer, 1997.
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number, an element of an abstract field. Why can we not decide
on just one of these?” The answer is that all three are conceptually
different, but are represented by the same mathematical model. As
you go on, these kinds of identifications become more and more
common.

Thus, there is a one-to-one correspondence between C and the
plane R2; we are thereby entitled to call this the Gauss plane or
complex plane. The field operations in C carry over to operations
on planar vectors. Addition gives nothing new; z1 � a1 + b1i and
z2 � a2 + b2i add up to

z1 + z2 � (a1 + a2) + (b1 + b2)i,

and we see that complex addition corresponds to the usual
“parallelogram rule” for planar vectors. The product

z1z2 � (a1a2 − b1b2) + (a1b2 + a2b1)i

is more subtle and needs to be analyzed. To do this, we rewrite z1

and z2 in polar coordinates:

z1 � r1(cos θ1 + i sin θ1),

z2 � r2(cos θ2 + i sin θ2)

and compute

z1z2 � r1r2(cos θ1 cos θ2 − sin θ1 sin θ2)

+ r1r2(cos θ1 sin θ2 + sin θ1 cos θ2)i

� r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)),

where we used the addition formulae for sine and cosine. This tells
us two things: First, introducing the absolute value, or modulus, of
a complex number z � a + bi � r(cos θ + i sin θ) as the length of
the corresponding vector

|z| �
√
a2 + b2 � r,

we have

|z1z2| � |z1| · |z2|.
Second, introducing the multiple-valued argument

arg z � {θ + 2kπ | k ∈ Z},
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we also have

arg (z1z2) � arg z1 + arg z2

(as sets!). The geometry behind this is the following: Consider
arg : C → R as a multiple-valued function on C � R2. Its graph
is a surface in R3 that resembles an infinite spiral staircase; multi-
plying z1 by z2 has the effect of walking up and down the staircase
(see Color Plate 2b). In particular, consider complex numbers of
modulus one:

z(θ) � cos θ + i sin θ, θ ∈ R.

They fill the unit circle

S1 � {z ∈ C | |z| � 1}.

Since

z(θ1)z(θ2) � z(θ1 + θ2), θ1, θ2 ∈ R,

S1 is a multiplicative subgroup of C# � C − {0}. ♥ In fact, as the
identity shows, θ  → z(θ), θ ∈ R, is a homomorphism of the ad-
ditive group R onto the multiplicative group S1 with kernel 2πZ.
Note also that, using the complex exponential function, z(θ) � eiθ

by the Euler formula (proved in Section 15). Since we are using
only the multiplicative property of z(θ) above, we can postpone
the introduction of complex exponentials.

♣ Fix n ∈ N. The complex numbers

z(2kπ/n), k � 0, 1, . . . , n − 1,

are (for n ≥ 3) the vertices of a regular n-sided polygon inscribed in
S1 (with a vertex on the positive first (or real) axis). By the identity
above, for fixed n these vertices form a multiplicative subgroup
of S1 (and thereby of C#) that is isomorphic with Zn, the group of
congruence classes of integers modulo n. This is a convenient way
to view Zn, since we can use the field operations in C to discover
some of the geometric features of this configuration. Here is one:
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Proposition 3.
For n ≥ 2, we have

n−1∑
k�0

z

(
2kπ
n

)
� 0.

Remark.
Geometrically, the sum of vectors from the centroid to the vertices
of a regular polygon is zero.

Proof.
This is clear for n even, but we give a proof that is independent of
the parity of n. First, by complex multiplication,

z

(
2kπ
n

)
� z

(
2π
n

)k
,

so that
n−1∑
k�0

z

(
2kπ
n

)
� 1 + ω + ω2 + · · · + ωn−1,

where ω � z(2π/n). This looks very familiar! In fact, switching
from real to complex, the proof of Proposition 2 in Section 2 gives

1 + z + z2 + · · · + zn−1 � 1 − zn

1 − z
, z �� 1, z ∈ C.

Substituting z � ω and noting that ωn � z(2nπ/n) � z(2π) � 1,
the proposition follows.

The first idea used in the proof gives another interpretation of
the numbers z(2kπ/n), k � 0, . . . , n − 1. In fact, raising them to
the nth power, we get

z

(
2kπ
n

)n
� z

(
2knπ
n

)
� z(2πk) � 1,

so that they all satisfy the equation

zn − 1 � 0.

By the complex version of the factor theorem, there are at most n
roots; so we got them all! We call z(2kπ/n), k � 0, . . . , n − 1, the
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nth roots of unity. The number ω � z(2π/n) is called a primitive nth
root of unity. The powers ωk � z(2kπ/n), k � 0, . . . , n − 1, give all
nth roots of unity. We now begin to believe that complex numbers
should suffice, and that after all, the FTA ought to be true!

The nth roots of a complex number z can be written down in a
convenient way using the polar form

z � |z| · z(θ), θ ∈ arg z.

Indeed, we have
n
√
z � n

√
|z| n
√
z(θ + 2kπ) � n

√
|z|z(θ/n)ωk, k ∈ Z.

For z �� 0, these complex numbers are distinct for k � 0, . . . , n−1.
Notice that they have the same absolute value and are equally
spaced. Geometrically, they are the vertices of a regular n-sided
polygon inscribed in a circle with radius n

√|z| and center at the
origin.

Remark.
If p ≥ 3 is odd, then the solutions of the equation zp+1 � 0 are the
negatives of the pth roots of unity z � −z(2kπ/p) � −z(2π/p)k,
k � 0, . . . , p− 1. Setting ω � z(2π/p), the factor theorem says that

zp + 1 � (z + 1)(z + ω) · · · (z + ωp−1).

Letting z � a/b, a, b ∈ Z, we obtain the identity

ap + bp � (a + b)(a + ωb) · · · (a + ωp−1b).

Going back to Fermat’s Last Theorem, we see that if there is an
all-positive solution to

ap + bp � cp,

then

cp � (a + b)(a + ωb) · · · (a + ωp−1b)

must hold. ♥ The right-hand side is a factorization of cp with factors
not quite in the ring Z but in the ring Z[ω] obtained from Z by “ad-
joining” ω. If the factors have no common divisors in this extended
ring, then, based on the analogy with the unique factorization in
Z, we would think that each factor must be a pth power. Looking
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back to Pythagorean triples, we see that this would be an essential
step toward a resolution of Fermat’s Last Theorem. This idea goes
back to Kummer.2 Unfortunately, in Z[ω], unique factorization does
not hold for all p (in fact, the first prime when it fails is p � 23
as was recognized by Cauchy), so he had to adjoin further “ideal
numbers” to this ring. In this way, he managed to prove Fermat’s
Last Theorem for a large class of primes p.

To illustrate how far-reaching the validity of unique factorization
in Z[ω] is, we now consider the case n � 4 (ω � i) and prove that
unique factorization in the square lattice Z[i] of Gaussian integers
(cf. Section 2) implies that any prime p of the form 4m+1 is a sum of
squares of two integers. This is a result of Fermat already discussed
at the end of Section 1. Let p � 4m+ 1, m ∈ N, be a prime in Z. By
Wilson’s criterion for primality (usually proved in an introductory
course in number theory), p must divide (p− 1)! + 1. We write the
latter as

(p − 1)! + 1 � (4m)! + 1

� 1 · 2 · · · (2m − 1)(2m)(2m + 1)(2m + 2)

· · · (4m − 1)(4m) + 1.

Modulo p this is equal to

1 ·2 · · · (2m−1)(2m)(−2m)(−2m+1) · · · (−2)(−1)+1 � (2m)!2+1.

This number lives in Z, but factors in Z[i] as

(2m)!2 + 1 � ((2m)! + i)((2m)! − i).

Since p divides the left-hand side in Z, it also divides the right-
hand side in Z[i]. Clearly, p cannot divide the factors. Thus, by a
mild generalization of Euclid’s characterization of primes (Book IX
of the Elements), p cannot be a prime in Z[i]! Hence p must have
proper divisors. A proper divisor must have the form a+ bi, where
b �� 0, since p is a prime in Z. Since p is real, the conjugate a − bi

2Emil Grosswald’s book Topics from the Theory of Numbers (Macmillan, New York, 1966) gives an excellent
account of Kummer’s work.
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also divides p. We obtain that (a + bi)(a − bi) � a2 + b2 divides p.
Since a2 + b2 is real and p is a prime in Z, we arrive at p � a2 + b2.

Problems

1. Show that the roots r1, r2 of a quadratic polynomial ax2+bx+c can be obtained
in the following geometric way:3 Consider the points O � (0, 0), A � (1, 0),
B � (1,−b/a), and C � (1 − c/a,−b/a). Let the circle with diameter OC
intersect the line through A and B at points P and Q . Then r1 and r2 are the
(signed) lengths of the segments AP and AQ . Is there a generalization of this
construction to cubic polynomials?

2. Find all values of 3
√−i.

3. Let z1, z2, z3, z4 ∈ C with z1 �� z2 and z3 �� z4. Show that the line through
z1, z2 is perpendicular to the line through z3, z4 iff !((z1 − z2)/(z3 − z4)) � 0.

4. Factor the quartic polynomial z4 + 4 first over C and then over R.

5. Show that the triangles with vertices z1, z2, z3 and w1, w2, w3 are similar iff
the complex determinant ∣∣∣∣∣∣∣

1 1 1
z1 z2 z3

w1 w2 w3

∣∣∣∣∣∣∣ .
is equal to zero.

6. ♥ Show that unique factorization does not hold in Z[
√

5i].

7. Use the complex identity |z1|2|z2|2 � |z1z2|2, z1, z2 ∈ C, to show that if a and
b are both sums of squares of integers, then ab is also a sum of squares of
integers. ♥ Use the results of Section 1 to prove the following theorem of
Fermat: A positive integer a is the sum of two squares of integers iff in the
prime factorization of a the primes 4k + 3 occur with even exponents.

3Cf. G.H. Hardy, A Course of Pure Mathematics, Cambridge University Press, 1960.
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6
S E C T I O N

...........................................

Quadratic, Cubic,
and Quartic
Equations

†1 ♣ Beyond the pure existence of complex roots of polynomials of
degree n, guaranteed by the FTA, the next question to ask concerns
their constructibility in terms of radicals such as the quadratic for-
mula for n � 2. Although the quadratic case was known around
300 b.c. by the Greeks,2 it was not until François Viète (1540–1603)
that the quadratic formula was cast in its present form, due to its
creator’s insistence on systematic use of letters to represent con-
stants and variables. For later purposes, it is instructive to derive
the quadratic formula in a somewhat nontraditional way. In what
follows it will be convenient to normalize our polynomials by di-
viding through by the leading coefficient. We will call a polynomial
with leading coefficient 1 monic. To emphasize that we are dealing
with complex variables, we replace the real variable x by the com-
plex variable z. In particular, we take our quadratic polynomial in

1This symbol indicates that the material in this section is more technical than the average text.
2The fact that extraction of square roots can be used to solve quadratic equations had already been
recognized by the Sumerians. Furthermore, an ancient Babylonian tablet (c. 1600 b.c.) states problems
that reduce to the solution of quadratic equations.

72
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the form

P(z) � z2 + pz + q � (z − z1)(z − z2).

Here we have already factored P into root factors. The complex
roots z1, z2 are to be determined. We will allow the coefficients p
and q to be complex numbers. Multiplying out, we obtain

z1 + z2 � −p and z1z2 � q.

These formulas are symmetric with respect to the interchange
z1 ↔ z2. Since the discriminant

δ � (z1 − z2)
2

is also symmetric, it is reasonable to expect that we can express δ
in terms of the coefficients p and q. This is indeed the case, since

δ � (z1 + z2)
2 − 4z1z2 � p2 − 4q.

The two values ±√
δ � ±(z1 − z2) can be combined with the

expression for the sum of the roots above. We obtain

2z1, 2z2 � −p ±
√
δ � −p ±

√
p2 − 4q.

The quadratic formula for P follows. Substituting p � b/a and q �
c/a, we obtain the quadratic formula for the polynomial az2+bz+c
discussed in Section 5.

The solution of the cubic equation (with no quadratic term)
in terms of radicals was first obtained by del Ferro in 1515. He
passed this on to some of his students. In 1535, one of the students,
Fiore, challenged Fontana (nicknamed Tartaglia), who had treated
some particular cases of cubics, to a public contest of solving cu-
bic equations. Before the contest, Fontana found the solution for
general cubics, and inflicted a humiliating defeat on Fiore. Bent
on persuasion, Fontana told the trick to Cardano (in a poem),
and allegedly swore him to secrecy that he would not reveal it
to anyone. Nevertheless, Cardano (with generous references to del
Ferro and Fontana) published it in his Ars Magna3 in 1545, and the
formula was subsequently named after him. To derive the Ferro–
Fontana–Cardano formula for the roots of a cubic polynomial, we

3For a brief account on the story, see Oystein Ore’s Foreword in the Dover edition of the Ars Magna.
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will employ a method due to Lagrange. This is somewhat tedious,
but less ad hoc than the more traditional approach (cf. Problem
1). The further advantage of presenting the Lagrange method now
is that it will reappear in a more subtle setting for the solution of
quintics in Section 25.

The first step is the same for all methods. We reduce the general
monic cubic equation

z3 + az2 + bz + c � 0, a, b, c ∈ C,

to the special cubic equation

P(z) � z3 + pz + q � 0

by means of the substitution z  → z − a/3. (Once again, a
generalization of this seemingly innocent reduction (termed the
Tschirnhaus transformation later) will gain primary importance in
solving quintic equations. We could also have performed this re-
duction for quadratic equations, but that would have been the same
as completing the square, a standard way to derive the quadratic
formula.)

Assume now that z1, z2, z3 are the roots of P:

z3 + pz + q � (z − z1)(z − z2)(z − z3).

Multiplying out, we have

z1 + z2 + z3 � 0, z1z2 + z2z3 + z3z1 � p, z1z2z3 � −q.

Remark.
As an application, we show that z1, z2, z3 are the vertices of an
equilateral triangle iff

z2
1 + z2

2 + z2
3 � z1z2 + z2z3 + z3z1.

First, we notice that this equation remains unchanged when
z1, z2, z3 are simultaneously subjected to the substitution z  → z−d,
where d is any complex number. (Geometrically, this corresponds
to translation of the triangle by the translation vector −d.) Choos-
ing d � (z1 + z2 + z3)/3 (the centroid of the triangle), and adjusting
the notation, we may thus assume that z1 + z2 + z3 � 0 holds. Since

(z1 + z2 + z3)
2 � z2

1 + z2
2 + z2

3 + 2(z1z2 + z2z3 + z3z1) � 0,
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the stated criterion splits into two equations,

z1 + z2 + z3 � 0 and z1z2 + z2z3 + z3z1 � 0.

Now consider the monic cubic polynomial with roots z1, z2, z3.
Expanding, we have

(z − z1)(z − z2)(z − z3) � z3 + az2 + bz + c.

Our conditions translate into a � b � 0. Equivalently, z1, z2, z3 are
the solutions of the equation z3 + c � 0. Since these are the three
cubic roots of −c, they are equally spaced on the circle |z| � 3

√|c|.
The claim follows. (For another solution to this problem, we could
have used the factorization

z2
1 + z2

2 + z2
3 − z1z2 − z2z3 − z3z1 � (z1 + z2ω+ z3ω

2)(z1 + z2ω
2 + z3ω),

where ω � z(2π/3) is a primitive third root of unity, but we
preferred a less ad hoc approach.)

Returning to the main line, once again we consider the
discriminant

δ �
∏

1≤j<l≤3

(zj − zl)
2 � (z1 − z2)

2(z2 − z3)
2(z3 − z1)

2.

A mildly unpleasant calculation gives

δ � −4(z1z2 + z2z3 + z3z1)
3 − 27(z1z2z3)

2

� −4p3 − 27q2 � −108

((
p

3

)3

+
(
q

2

)2
)
.

(For the discriminant of the general monic cubic, see Problem 2.)
Let ω � z(2π/3) � (−1 +√

3)/2 be a primitive third root of unity,
and consider the so-called Lagrange substitutions

ξl � 1
3

3∑
j�1

ω(j−1)lzj, l � 0, 1, 2.

Expanding the sums and using ω3 � 1, we obtain

3ξ0 � z1 + z2 + z3,

3ξ1 � z1 + ωz2 + ω2z3,

3ξ2 � z1 + ω2z2 + ωz3.
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Since our cubic is reduced, ξ0 vanishes. Moreover, ξ3
1 and ξ3

2 remain
unchanged when the roots z1, z2, z3 are subjected to even (in our
case cyclic) permutations. Thus, it is reasonable to expect that ξ3

1
and ξ3

2 can be expressed as polynomials in p, q, and
√
δ, since the

latter three seem to be more “elementary” and possess the same
symmetries. Once again a somewhat tedious calculation gives

ξ3
1 � − q

2
+

√
3

18
i
√
δ � − q

2
+
√(

p

3

)3

+
(
q

2

)2

,

ξ3
2 � − q

2
−

√
3

18
i
√
δ � − q

2
−
√(

p

3

)3

+
(
q

2

)2

.

The second formula follows from the first because

9ξ1ξ2 � z2
1 + z2

2 + z2
3 + (ω + ω2)(z1z2 + z2z3 + z3z1)

� (z1 + z2 + z3)
2 − 3(z1z2 + z2z3 + z3z1) � −3p.

Here we used Proposition 3 to the effect that 1 + ω + ω2 � 0.
Summarizing, we obtain

ξ1 � 3

√√√√− q

2
+
√(

p

3

)3

+
(
q

2

)2

,

ξ2 � 3

√√√√− q

2
−
√(

p

3

)3

+
(
q

2

)2

,

where the cubic roots are chosen such that ξ1ξ2 � −p/3 is satis-
fied. Finally, the Lagrange substitutions can be solved uniquely for
z1, z2, z3 in terms of ξ1 and ξ2, since the determinant∣∣∣∣∣∣∣

1 1 1
1 ω ω2

1 ω2 ω

∣∣∣∣∣∣∣ � 3(ω2 − ω) � −3
√

3i

is nonzero. The solution is

zj �
2∑
l�1

ω−(j−1)lξl, j � 1, 2, 3.
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Indeed, substituting we have

3∑
j�1

ω(j−1)lzj �
3∑
j�1

(
2∑

k�1

ω(j−1)lω−(j−1)k

)
ξk

�
2∑

k�1


 3∑

j�1

ω(j−1)(l−k)


 ξk � 3ξl,

since the sum in the last set of parentheses is 3 for k � l and zero
for k �� l. Putting everything together, we finally obtain the roots
of the reduced cubic:

z1 � ξ1 + ξ2,

z2 � ω2ξ1 + ωξ2,

z3 � ωξ1 + ω2ξ2,

where ξ1 and ξ2 are given in terms of p and q above.

Remark.
Recall that in the formulas for ξ1 and ξ2 we have to choose the values
of the cube roots such that the constraint ξ1ξ2 � −p/3 holds. With
a fixed choice of cube roots, z1, z2, z3 give the solutions to our cubic
equation. Notice, however, that ξl, ωξl, and ω2ξl are the 3 cube roots
of ξ3

l , l � 1, 2, so that our three solutions can be (and usually are)
written more concisely as

3

√√√√− q

2
+
√(

p

3

)3

+
(
q

2

)2

+ 3

√√√√− q

2
−
√(

p

3

)3

+
(
q

2

)2

with the understanding that we choose the cube roots appropri-
ately.

We now turn to quartic equations. Cardano’s student Ferrari
(1522–1565) settled the problem of solving quartic equations; this
is still included in Cardano’s Ars Magna. As in the cubic case, the
solution of the general quartic equation

z4 + az3 + bz2 + cz + d � 0, a, b, c, d ∈ C,
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can be reduced to the special case

P(z) � z4 + pz2 + qz + r � 0,

by means of the substitution z  → z − a/4. Assuming that
z1, z2, z3, z4 are the roots of this reduced quartic, expanding the
root factors, we obtain the following equations:

z1 + z2 + z3 + z4 � 0, z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4 � p,

z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4 � −q, z1z2z3z4 � r.

To follow our earlier path, we would need to work out the
discriminant

δ �
∏

1≤j<k≤4

(zj − zk)
2

in terms of p, q, r, but this seems a rather unpleasant task. In-
stead, based on the analogy with

√
δ, we look for polynomials

in z1, z2, z3, z4 that possess only partial symmetries when these
variables are permuted. We set

z∗1 � (z1 + z2)(z3 + z4),

z∗2 � (z1 + z3)(z2 + z4),

z∗3 � (z1 + z4)(z2 + z3).

Each of these new variables is symmetric only with respect to
specific permutations of z1, z2, z3, z4. The elementary symmetric
polynomials z∗1 + z∗2 + z∗3, z∗1z

∗
2 + z∗2z

∗
3 + z∗3z

∗
1 and z∗1z

∗
2z

∗
3 produced

from z∗1 , z
∗
2 , z

∗
3, however, are symmetric with respect to all permu-

tations, and thereby they should be expressible in terms of the
coefficients p, q, r! For example, expanding, we obtain

z∗1 + z∗2 + z∗3 � 2(z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4) � 2p.

Similarly, we have

z∗1z
∗
2 + z∗2z

∗
3 + z∗3z

∗
1 � p2 − 4r and z∗1z

∗
2z

∗
3 � −q2.

We conclude that z∗1 , z
∗
2 , z

∗
3 are the three roots of the cubic

P∗(z) � z3 − 2pz2 + (p2 − 4r)z + q2.
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But to find the roots of a cubic is exactly what we just accomplished!
Thus, using our earlier reduction and formulas, z∗1 , z

∗
2 , z

∗
3 can be

explicitly expressed in terms of p, q, r. Finally, to pass from the
roots of P∗ to the roots of our original quartic P is now easy. Since
P is reduced, we have z1 + z2 + z3 + z4 � 0, and the formulas
defining z∗1 , z

∗
2 , z

∗
3 can be resolved, yielding

z1 + z2 � √−z∗1 , z3 + z4 � −√−z∗1 ,
z1 + z3 � √−z∗2 , z2 + z4 � −√−z∗2 ,
z1 + z4 � √−z∗3 , z2 + z3 � −√−z∗3 .

Once again, we have to fix the ambiguity inherent in the choice of
the square roots. As computations confirm, we need√−z∗1

√−z∗2
√−z∗3 � −q

to be satisfied. Finally, solving the system above for z1, z2, z3, z4,
we obtain

2z1 � √−z∗1 + √−z∗2 + √−z∗3 ,
2z2 � √−z∗1 − √−z∗2 − √−z∗3 ,
2z3 � −√−z∗1 + √−z∗2 − √−z∗3 ,
2z4 � −√−z∗1 − √−z∗2 + √−z∗3 .

One final remark. Since we have

z∗1 − z∗2 � −(z1 − z4)(z2 − z3),

z∗1 − z∗3 � −(z1 − z3)(z2 − z4),

z∗2 − z∗3 � −(z1 − z2)(z3 − z4),

the discriminant of P∗ is the same as the discriminant of P! From
the explicit formula of the discriminant for cubics (cf. Problem 2),
we obtain that the discriminant of P is

δ � 16p4r − 4p3q2 − 128p2r2 + 144pq2r − 27q4 + 256r3.

The cubic P∗ that helped to solve the quartic equation is called
the resolvent cubic. For the future discussion of quintics in Section
25 all we need to remember is that a resolvent is a polynomial
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whose roots are prescribed functions of the roots of the original
polynomial.

The solvability of degree-five polynomial equations eluded
mathematicians for nearly 300 years, until Abel showed the impos-
sibility of a radical formula in 1824. (Eleven years earlier Ruffini
attempted to prove the impossibility but the proof contained sev-
eral gaps.) The final phase was completed by Galois (and published
in 1846 posthumously, 14 years after he was killed in a duel), who
gave a group-theoretical criterion as to which equations of a given
degree have solutions in terms of radicals.

Problems

1. Find the Ferro–Fontana–Cardano formula for a root of a general cubic
polynomial

z3 + az2 + bz + c

following these steps: (a) Make the substitution z  → z − a/3 and verify that
in terms of z, the polynomial has the form

P(z) � z3 + pz + q.

(b) Make the substitution z � u − v and show that the polynomial reduces
to

P(u − v) � u3 − v3 + q − (3uv − p)(u − v).

(c) Set 3uv − p � 0 and u3 − v3 + q � 0, solve the first equation for v,
substitute it into the second equation, and arrive at

33u6 + 33u3q − p3 � 0.

(d) Solve this forw � u3 using the quadratic formula and obtain for z � u−v,

u � 3

√√√√√− q

2
+

√√√√( q
2

)2

+
(
p

3

)3

, v � 3

√√√√√+ q

2
+

√√√√( q
2

)2

+
(
p

3

)3

.

(Note also that the single substitution4 z � p/(3v)− v reduces the cubic P to
a quadratic polynomial in v3.)

4This was suggested by Viète and appeared in print posthumously in 1615 in De aequationum recognitione
et emendatione.
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2. Derive the formula

δ � a2b2 − 4b3 − 4a3c − 27c2 + 18abc

for the discriminant of the general cubic z3 + az2 + bz + c.

3. Show that the roots of a reduced cubic with real coefficients are all real iff
δ ≥ 0. Assuming δ > 0, derive a formula for the roots that involves only real
numbers.5 (Hint: Write ξ3

1,2 � −q/2 ± i
√

3δ/18 in polar form.)

4. In this (admittedly long) problem we deal with geometric constructions. We
start with two points in the plane. These points will be called constructible,
as will any other points that can be obtained from them by making repeated
use of straightedge and compass. The rules for the constructions are the fol-
lowing. (i) The line passing through two constructible points is constructible.
(ii) A circle with center at a constructible point and passing through another
constructible point is constructible. (iii) The points of intersection of con-
structible lines and circles are constructible. (a) Show that the line through
a constructible point and perpendicular or parallel to a constructible line
is constructible. (b) By marking off the distance between two constructible
points on a constructible line starting at a constructible point, prove that we
arrive at a constructible point. (c) Set up Cartesian coordinates such that the
two initial points correspond to (0, 0) and (1, 0), and the coordinate axes are
constructible. Call a number a ∈ R constructible if |a| is the distance between
two constructible points. Show that a point p � (a, b) is constructible iff the
components a, b are constructible. (d) Use similar right triangles and the re-
lations a : 1 � ab : b and 1 : a � 1/a : 1 to prove that the constructible
numbers form a subfield of R. As a byproduct, conclude that all rational
numbers are constructible. (e) Use Problem 1 of Section 5 to prove that a
quadratic polynomial ax2 + bx + c with constructible coefficients a, b, c has
constructible roots r1 and r2. (f) ♥ Show that r ∈ R is constructible iff r is
contained in a subfield K of R, and there is a chain of subfields

Q � K0 ⊂ K1 ⊂ · · · ⊂ Kn � K

such that for each j � 1, . . . , n, Kj � Kj−1(
√
rj), where rj ∈ Kj−1 is a positive

real number (that is not a square in Kj−1). (♠ Conclude that if r ∈ R is
constructible, then the degree [Q (r) : Q ] of the field extension Q (r)/Q is a
power of 2. Warning: The converse is fase! In fact, there are degree-4 field
extensions of Q that contain nonconstructible numbers.) (g) ♥ Show that
if a cubic polynomial x3 + ax2 + bx + c with rational coefficients has no
rational root, then it has no constructible root. (Hint: ¬ Assume that r is
a constructible root of the cubic such that the number n in (f) is minimal.
Write r � s + t

√
rn with s, t ∈ Kn−1 and prove that r̃ � s − t

√
rn is also a

root (cf. Problems 7–8 of Section 4). Verify that the third root of the cubic
is in Kn−1. ¬) Derive the following results of Wantzel (1837): (i) 3

√
2 is not

5The case δ > 0 is historically called “casus irreducibilis,” since the Ferro–Fontana–Cardano formula
involves complex numbers, while the roots are real.
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constructible. (♠ Alternatively, [Q (
3
√

2) : Q ] � 3.) ♥ Interpret this result in
view of the Delian problem:6 Construct an altar for Apollo twice as large as the
existing one without changing its cubic shape. (ii) Use Problem 3 of Section 2
to show that cos 20◦ is an irrational root of the polynomial P(x) � 8x3−6x−1,
thereby not constructible. Since cos 60◦ is constructible, the impossibility of
the trisection of a 60◦ angle follows. This problem dates back to the fifth
century b.c. in Greek geometry. (h) Show that constructibility of the regular
n-sided polygon Pn is equivalent to the constructibility of the primitive nth
root of unity ω � z(2π/n). (Note that according to the example in Section 4,
ω is a point with algebraic coordinates.)

5. ♠ (a) Construct a regular pentagon in the following algebraic way: The fifth
roots of unity, other than 1 itself, satisfy the equation

z4 + z3 + z2 + z + 1 � 0.

Divide both sides of this equation by z2, rearrange the terms, and notice
that the substitution w � z + 1/z reduces the equation to w2 + w − 1 � 0.
Solve this by the quadratic formula and construct the roots (cf. Problem 1 of
Section 5). (In Book IV of the Elements Euclid constructed a regular pentagon.
Simpler constructions were given by Ptolemy, and also by Richmond in 1893.)
(b) Apply the argument in (a) to the regular 7-sided polygon. Show that the
equation z7 � 1 reduces to the cubic equation

w3 + w2 − 2w − 1 � 0

and w � 2 cos(360◦/7) is a solution, thereby irrational. Verify that this
equation has no rational roots, so that the regular 7-sided polygon is not
constructible.7

6. Solve the problem of Zuane de Tonino da Coi (c. 1540): “Divide 10 into 3 parts
such that they shall be in continued proportion and that the product of the
first two shall be 6.” (Hint: a + b + c � 10, a/b � b/c, and ab � 6 give a
quartic equation in b.)

6For a concise treatment of Galois theory including the solutions of some problems of antiquity, see Ian
Stewart’s Galois Theory, Chapman and Hall, 1973.
7Gauss proved that a regular n-sided polygon, n ≥ 3, is constructible iff n � 2mp1 · · · pk, where pj �
22aj + 1, aj � 0, 1, 2, . . . , j � 1, . . . , k, are distinct Fermat primes. (To be precise, Gauss did not state
explicitly that the condition that the Fermat primes are distinct is necessary; this gap was filled by Wantzel
in 1837.) For a fairly comprehensive account of geometric constructions, including the construction of
Gauss of the regular 17-sided polygon, see Klein, Famous Problems in Elementary Geometry, Chelsea, New
York, 1955.
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...........................................

Stereographic
Projection

♣ Consider the complex plane C imbedded in R3 as the plane
spanned by the first two axes. Algebraically, we view a complex
number z � a + bi, a, b ∈ R, as the 3-vector (a, b, 0) ∈ R3. The set
of unit vectors in R3 form the 2-sphere:

S2 � {p ∈ R3 | |p| � 1}.
(S2 intersects C in the unit circle S1.) We now pretend that we are
Santa Claus; we sit at the North Pole N � (0, 0, 1) and look down
to Earth S2. We realize that every time we see a location on the
transparent Earth, we also see a unique point on C. Associating
the point on Earth with the point on the complex plane C that we
see simultaneously gives the stereographic projection

hN : S2 − {N} → C.

Geometrically, given p ∈ S2, p �� N , hN(p) is the unique point in
C such that N, p, and hN(p) are on the same line (Figure 7.1).
hN is clearly invertible. Santa Claus aside, the importance of hN

is clear: it allows us to chart maps of various parts of the curved
globe on a flat piece of paper.

If we are in Brazil, we may want to use the South Pole
S � (0, 0,−1) instead of the North Pole. We arrive at another

83
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Figure 7.1

stereographic projection

hS : S2 − {S} → C.

Looking down or up we see that hN(S) � hS(N) � 0, the origin at
C. We can thus form the composition

hN ◦ h−1
S : C − {0} → C − {0}.

We claim that

(hN ◦ h−1
S )(z) � z

|z|2 , 0 �� z ∈ C.

Fix a nonzero complex number z. Since all the actions of hN and
hS are happening in the plane spanned by N , S and z, we arrive at
Figure 7.2.

The angles � SNh−1
S (z) and � 0zS have perpendicular sides, so Eu-

clid’s Elements tells us that they are equal. Thus, the right triangles

Figure 7.2

N

S

z

(z)−1
Sh

N (z)−1
Sh h
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%0N(hN ◦ h−1
S )(z) and %0zS are similar. Again by Euclid, we have

|hN ◦ h−1
S (z)| � 1

|z| ,

and this gives the required formula.
We need to rewrite z → z/|z|2 in a more convenient form by

introducing complex conjugation. Given a complex number z � a+
bi, its complex conjugate z̄ is defined as

z̄ � a − bi.

Crossing the Gaussian Bridge we see that conjugation corresponds
to reflection in the real axis. As far as our algebra is concerned, we
have

z1 + z2 � z̄1 + z̄2,

z1 · z2 � z̄1 · z̄2,

as can be easily verified. The real and imaginary parts of a complex
number z can be written in terms of conjugation as

!(z) � (z + z̄)

2
and "(z) � (z − z̄)

2i
.

Moreover,

zz̄ � |z|2,
since zz̄ � (a+bi)(a−bi) � a2+b2. This Length2-Identity is impor-
tant, since it ties complex multiplication to the length of the vector
corresponding to z. More generally, the dot product of z1, z2 ∈ C
considered as vectors in R2, is given by

z1 · z2 � (z̄1z2 + z1z̄2)

2
� !(z1z̄2)

because !(z1z̄2) � !((a1 + b1i)(a2 − b2i)) � a1a2 + b1b2 (with
obvious notations). Cross-dividing, we see that

1
z

� z̄

|z|2 , z �� 0.

This also provides a convenient formula for complex division.
Going back to our stereographic projections, we obtain

(hN ◦ h−1
S )(z) � 1/z̄, 0 �� z ∈ C.



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

7. Stereographic Projection86

It is rewarding to study the geometry of the stereographic projec-
tion more closely. Let p ∈ S2, p �� N , q � hN(p), and let l denote
the line through these points. Consider the configuration of the
three planes VN , Vp, and C, where VN is tangent to S2 at N , and Vp
is tangent to S2 at p. By the geometry of the sphere, the perpendic-
ular bisector of the segment connecting N and p contains the line
VN ∩ Vp. Since VN and C are parallel, the perpendicular bisector of
the segment connecting p and q � hN(p) contains Vp ∩ C. Figure
7.3 depicts the situation with an edge-on view of the three planes.
A plane W that contains the line l (through N, p, and q) intersects
Vp ∪ C in 2 lines meeting at a point v0 ∈ Vp ∩ C. The configuration
consisting of the two half-lines emanating from v0 and containing
p and q and the segment connecting p and q looks like a figure A
laid on its side (see Figure 7.4). We call this an A-configuration and
denote it by A. The segment connecting p and q is called the median
of A. Since the perpendicular bisector of the median contains v0,
geometrically, an A-configuration is an isosceles triangle whose
two sides are extended beyond the vertices of the base. We call
these the extensions of A. The upper extension is tangent to S2 at its
initial point p, and the lower extension is a half-line in C emanating
from q. The inner angles of the two extensions with the median at
p and at q are equal. Rotating W around l, we obtain a continuous
family of A-configurations whose upper extensions sweep the tan-
gent plane Vp around. Similarly, the lower extensions centered at
q sweep C around.

Figure 7.3

1

V
V

C

p

N

q

p

N
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Figure 7.4

Now let v ∈ Vp be a tangent vector, and let w be the image
of v under the (stereographic) projection from N . Then the A-
configuration whose upper extension contains v also contains w in
its lower extension, and the terminal points of v andw are collinear
with N (see Figure 7.5).

Consider now two vectors v1 and v2 tangent to S2 at p, and let
w1 and w2 be their respective projections from N . The two A-
configurations A1 and A2 contain v1, w1 and v2, w2. Moreover, the
segment connecting p and q is the common median of A1 and A2.
By bilateral symmetry with respect to the perpendicular bisector
of this common median, the angle between v1 and v2 is the same
as the angle between w1 and w2. We obtain that the sterographic
projection is angle-preserving!

We close this section by showing that the stereographic projec-
tion hN is also circle-preserving in the sense that ifC ⊂ S2 is a circle

Figure 7.5
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that avoids the North Pole N , then S � hN(C) ⊂ C is also a circle.
(If C passes through the North Pole, then S is a line. Why?) There
are beautiful geometric arguments to prove this.1 For a change, we
give here an algebraic proof. A circle C on S2 is the intersection of a
plane with S2. Using a, b, c as coordinates, p � (a, b, c) ∈ S2 ⊂ R3,
the equation of the plane is given by

αa + βb + γc � δ,

where α, β, γ, δ ∈ R are the coefficients. Since C does not pass
through the North Pole, we have γ �� δ. Using the explicit expres-
sion of the inverse of hN (Problem 1(c)), the image hN(C) is given
by

α
2!(z)
|z|2 + 1

+ β
2"(z)
|z|2 + 1

+ γ
|z|2 − 1
|z|2 + 1

� δ,

where we used the complex variable z on C. Letting z � x + iy,
x, y ∈ R, we obtain

2αx + 2βy + γ(x2 + y2 − 1) � δ(x2 + y2 + 1).

Equivalently,

(δ − γ)(x2 + y2) − 2αx − 2βy + γ + δ � 0.

This is the equation of a circle, since δ− γ �� 0. The claim follows.

Problems

1. (a) Given p � (a, b, c) ∈ S2 ⊂ R3, c �� 1, show that

hN(p) � a + bi

1 − c
∈ C.

(b) Verify the identity

hN(−p) � −1/hN(p), p ∈ S2.

(c) Given z ∈ C, show that

h−1
N (z) �

(
2z

|z|2 + 1
,
|z|2 − 1
|z|2 + 1

)
∈ S2.

1See D. Hilbert and S. Cohn-Vossen, Geometry and Imagination, Chelsea, 1952.
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(Recall that C is imbedded in R3 as the plane spanned by the first two
coordinate axes.)

(d) Let ω � z(2π/3) be a primitive third root of unity. For what value of
r > 0 are the points 0, r, rω, and rω2 the stereographically projected vertices
of a regular tetrahedron inscribed in S2?

2. Using the formula for hN in Problem 1 and a similar formula for hS, work out
hN ◦ h−1

S explicitly.

3. Show that z1z2 � z̄1z̄2.

4. Prove that ∣∣∣∣ z − w

1 − zw̄

∣∣∣∣ < 1

if |z| < 1 and |w| < 1.

Web Site

1. www.geom.umn.edu/∼sullivan/java/stereop/
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...........................................

Proof of the
Fundamental
Theorem of Algebra

♣ Consider the polynomial

P(z) � c0 + c1z + . . . + cnz
n, cn �� 0,

as a map P : C → C. We “pull P up to S2” by using the stereographic
projection hN : S2 − {N} → C. Analytically, we define f : S2 → S2

by

f(p) �
{
(h−1

N ◦ P ◦ hN)(p), if p �� N ,
N, if p � N .

f is clearly smooth on S2 − {N} since hN is smooth. We claim that
f is smooth1 across N . To show this, we “pull f down to S2” by the
stereographic projection hS : S2 − {S} → C and consider

Q � hS ◦ f ◦ h−1
S .

Notice that smoothness of f near N corresponds to smoothness of
Q near zero. We now compute

Q(z) � (hS ◦ f ◦ h−1
S )(z)

1See “Smooth Maps” in Appendix D.

90
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� [(hN ◦ h−1
S )−1 ◦ P ◦ (hN ◦ h−1

S )](z)

� (hN ◦ h−1
S )−1(P(1/z̄))

� 1

P(1/z̄)

� zn

c̄0zn + c̄1zn−1 + · · · + c̄n
.

This is a complex rational function with nonvanishing denomi-
nator at z � 0. Since any rational function is smooth wherever
it is defined, we conclude that Q is smooth near z � 0. Thus
f : S2 → S2 is smooth near N and hence everywhere.

Before going any further, we work out a particular example in
order to get a feel for f . Setting P(z) � z2, we first describe the
transformation z  → z2 on the complex plane C. Consider first
what happens to the unit circle S1 ⊂ C: Since S1 is parametrized
by the points

z(θ) � cos θ + i sin θ, θ ∈ R,

and z(θ)2 � z(2θ), we see that S1 is mapped onto itself, and,
on S1, f corresponds to doubling the angle. Topologically, S1 is
stretched to twice its perimeter and then wrapped around itself
twice (Figure 8.1).

Going a step further, it is now clear that any circle concentric
to S1 on C is mapped to another concentric circle (with the radius
changing from r to r2) and, restricted to these, the transformation
has the same stretch and wraparound effect. Finally, since under
hN the concentric circles correspond to parallels of latitude on S2,
we see that f : S2 → S2 wraps each parallel twice around an-
other parallel and keeps the North and South Poles fixed. What is

Figure 8.1
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important to us is that, apart from the poles (which we will call
“singular”), each point q ∈ S2 − {N, S} has exactly two inverse im-
ages; that is, |f −1(q)| � 2. (Actually, f : S2 → S2 is called a “twofold
branched covering with singular points N and S.” The wraparound
effect or, more precisely, the branching is shown in Color Plate 3a
with f being vertical projection to a disk.) Moreover, the singular
points are N and S and the latter corresponds (under hN ) to the
origin in C where the derivative of P vanishes.

The description for P(z) � zn, n ∈ N, is similar with two replaced
by n; that is, |f −1(q)| � n, for q ∈ S2 − {N, S}.

♠ We now return to the main discussion with a good clue. First
we have to settle the problem of singular points. The complex
derivative of P is a polynomial of degree n − 1:

P ′(z) � c1 + 2c2z + · · · + ncnz
n−1.

P ′ vanishes on, at most, n−1 points. Let σ ⊂ S2 denote the (f ◦h−1
N )-

image of these points plus N . Then σ consists of at most n points.
We now claim that the function # : S2 − σ → N ∪ {0} defined by

#(q) � |f −1(q)|, q ∈ S2 − σ,

is actually a constant. Since S2−σ is connected, it is enough to show
that # is locally constant; that is, for every q ∈ S2 − σ, there is an
open neighborhood V of q in S2−σ such that # is constant on V . Let
q ∈ S2 − σ be fixed and p ∈ f −1(q). The derivative P ′ of P at hN(p)
is nonzero (since p /∈ σ), so that P is a local diffeomorphism2 near
hN(p). Since the stereographic projection hN is a diffeomorphism,
f is a local diffeomorphism at each point of f −1(q). In particular,
f −1(q) cannot have any accumulation points, so it must be finite.
Let #(q) � m with f −1(q) � {p1, . . . , pm}. (Actually, m ≤ n be-
cause a degree-n polynomial can have at most n roots, but we do
not need this additional fact.) For each pj, j � 1, . . . , m, there ex-
ists an open neighborhood Vj of pj such that f |Vj : Vj → f(Vj) is a
diffeomorphism. By cutting finitely many times, we may assume
that the Vj’s are mutually disjoint and they all map under f diffeo-
morphically onto a single V0, an open neighborhood of q. Finally,

2We are using here some basic facts in complex calculus. For a quick review, see the beginning of Section
15 and “Smooth Maps” in Appendix D.
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we delete from V0 the closed set f(S2 − (V1 ∪ · · · ∪ Vm)) to obtain
an open neighborhood V of q. (Notice that S2 − (V1 ∪ · · · ∪ Vm) is
closed in S2; hence, it is compact. Its f -image is also compact and
thus closed in S2.) Clearly, # is constant (� m) on V0. The claim
follows.

The globally constant function # cannot be identically zero, since
otherwise f would map into the finite σ and the polynomial P would
reduce to a constant. Thus # is at least one on S2 − σ. In particular,
S2 − σ is contained in the image of f . The latter is closed in S2 so
that the image must be the whole of S2. We obtain that f is onto.
Thus, P must be onto. In particular, 0 ∈ C is in the image of P. This
means that there exists z ∈ C with P(z) � 0. This is the FTA!

Problems
Fill in the details in the first four problems, which outline additional proofs of
the FTA.

1. Let

P(z) � c0 + c1z + · · · + cnz
n, cn �� 0,

be a polynomial with complex coefficients.
(a) Show that the nonnegative real function z  → |P(z)| attains its global

minimum on C. (Let R > 0 and use the triangle inequality to show that, for
|z| > R, we have

|P(z)| > |z|n
(
|cn| − |cn−1|

R
− · · · − |c0|

Rn

)
.

Choose R large enough so that |P| will be above its greatest lower bound m for
|z| > R. Refer to closedness and boundedness of the domain and show that
|P| attains m on the disk {z | |z| ≤ R}.)

(b) Show that if z0 ∈ C is a local minimum of |P|, then z0 is a zero of P.
Assume that P(z0) �� 0 and show that z0 is not a local minimum of |P| as
follows: Consider the polynomial Q(z) � P(z + z0)/P(z0) of degree n and with
constant term 1 and verify that |P| has no local minimum at z0 iff |Q | has no
local minimum at 0 (iff |Q | takes values < 1 near 0). Let

Q(z) � b0 + b1z + · · · + bnz
n, bn �� 0, b0 � 1.

Let k be the least positive number with bk �� 0. Let r > 0 and use the triangle
inequality again to show that for |z| � r, we have

|Q(z)| ≤ |bn|rn + · · · + |bk+1|rk+1 + |bkzk + 1|.
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For r small enough, this is dominated by (1/2)|bk|rk + |bkzk + 1|. Choose z on
the circle |z| � r such that bkzk + 1 � −|bk|rk + 1. Comparing with the above,
for this z, |Q(z)| ≤ 1 − |bk|rk/2 < 1.

2. ♠ ¬ Let P be a nonzero polynomial that has no complex roots. Define f as in
the text and observe that the image Y of f does not contain the South Pole S.

(a) Use compactness of Y to show that S has an open neighborhood disjoint
from Y .

(b) Use the local diffeomorphism property to prove that whenever P ′(z) ��
0, the point f(h−1

N (z)) is in the interior of Y .
(c) Exhibit infinitely many boundary points of Y by considering the

“southernmost” point in the intersection of Y with any meridian of longitude.
(d) Conclude that P ′ vanishes at infinitely many points. ¬

3. ¬ Let P : C → C − {0} be as in Problem 2. For each r > 0, consider the closed
curve wr : [0, 2π] → C − {0}, wr(θ) � P(rz(θ)), 0 ≤ θ ≤ 2π. Let M ⊂ R3

be the graph of the multivalued function arg : C − {0} → R with projection
p : M → C − {0}.

(a) Show that wr can be “lifted” to a curve w̃r : [0, 2π] → M satisfying
p ◦ w̃r � wr . (Define w̃r locally using a subdivision 0 � θ0 < θ1 < . . . < θm �
2π of [0, 2π] into sufficiently small subintervals such that arg is single-valued
on each subarc wr([θi−1, θi]), i � 1, . . . , m.)

(b) Verify that the winding number3 (1/(2π))(w̃r(2π) − w̃r(0)) of wr is a
nonnegative integer and is independent of the choice of the lift. Note that w̃r

is unique up to translation with an integer multiple of 2π along the third axis
in M ⊂ R3.

(c) Prove that for r large, the winding number is n, the degree of P. (arg wr

is increasing in θ ∈ [0, 2π] for r large. For this, work out the dot product
(iwr) · (∂/∂θ)wr and use the first estimate in Problem 1 to conclude that it is
positive for r large.)

(d) Observe that for r small, the winding number is zero.
(e) Use a continuity argument to show that the winding number is

independent of r. ¬
4. Let P be a polynomial of degree n as in Problem 1. Assume first that P has

real coefficients. (a) If n is odd, use calculus to show that P has a real root. (In
particular, for n � 3, this means that R3 is not an extension field of R, so that,
unlike R2, no multiplication makes R3 a field.) (b) In general, write n � 2ma,
where a is odd and use induction with respect to m to prove that P has at
least one complex root. For the general induction step, let α1, . . . , αn denote
the roots of P over a splitting field of P. For k ∈ Z, let Qk be the polynomial
with roots αi + αj + kαiαj, 1 ≤ i < j ≤ n, and leading coefficient one. Use the
fundamental theorem of symmetric polynomials to show that the coefficients
of Qk are real. Check that the degree of Qk is 2m−1b, where b is odd; apply the

3The winding number can also be defined by the integral (1/2π)
∫
wr

dθ, where θ is the polar angle on

R2 − {0}. (Observe that θ is multiple-valued, but dθ gives a well-defined 1-form on R2 − {0}.)
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induction hypothesis, and conclude that αi + αj + kαiαj is a complex number
for some 1 ≤ i < j ≤ n. Use the dependence of i and j on k to prove that
αiαj ∈ C and αi + αj ∈ C for some 1 ≤ i < j ≤ n. Apply the quadratic formula
to show that αi, αj ∈ C. (c) Extend the results of (a) and (b) to polynomials P
with complex coefficients by considering the real polynomial PP̄, where P̄ is
obtained from P by conjugating the coefficients.

5. Show that if a polynomial with real coefficients has a root of the form a + bi,
then the complex conjugate a − bi is also a root.

Web Site

1. www.cs.amherst.edu/∼djv/fta.html
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S E C T I O N

...........................................

Symmetries of
Regular Polygons

♣ We now go back again to ancient Greek mathematics, in which
regular polygons played a central role. We learned that a regu-
lar n-sided polygon, Pn, n ≥ 3, can be represented by its vertices
z(2kπ/n), k � 0, 1, . . . , n− 1, on the complex plane C (Figure 9.1).

By the multiplicative property of z(θ), θ ∈ R (see Section 5), we
have

z(2kπ/n)z(2lπ/n) � z(2(k + l )π/n), k, l ∈ Z.

We see that multiplication by z(2kπ/n) causes the index of the ver-
tex to shift by k. More geometrically, the multiplicative property
also tells us that multiplying complex numbers by z(θ) corresponds
to the geometric transformation of counterclockwise rotation Rθ by
angle θ around the origin (see Figure 9.2). In particular, the group

Figure 9.1

96
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z(θ)

z(θ)z

z

z

Figure 9.2

of rotations

{R2kπ/n | k � 0, . . . , n − 1}
(isomorphic with Zn) leaves the regular n-sided polygon invariant.
Regularity thus implies that each vertex (and each edge) can be
carried into any vertex (and any edge) by a suitable symmetry
that leaves the polygon invariant. This seemingly innocent remark
gives a profound clue to defining regularity of polyhedra in space.

We now ask the following more general question: What is the
largest group of geometric transformations that leaves the regu-
lar n-sided polygon invariant? To answer this question, we need
to make the term “geometric transformation” precise. Transfor-
mation usually refers to a bijection of the ambient space, which,
in this case, is the Cartesian plane R2. (A finer point is whether
we should require continuity or differentiability; fortunately, this
is not essential here.) Since in Euclidean plane geometry we al-
ways work in the concrete model R2 (and avoid the headache
of axiomatic treatment), we have the Euclidean distance function
d : R2 × R2 → R,

d(p, q) � |p − q|, p, q ∈ R2,

and the concepts of angle, area, etc. The term “geometric”
stands for transformations that preserve some of these geometric
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quantities. In our present situation, we require the geometric trans-
formation to preserve d; that is, we consider isometries. Explicitly,
a transformation S : R2 → R2 is an isometry if

d(S(p), S(q)) � d(p, q), p, q ∈ R2.

Euclid’s Elements tells us that an isometry also preserves angles,
areas, etc. The set of all plane isometries form a group denoted by
Iso (R2). (Actually, R2 equipped with d is usually denoted by E2.
Since we have no fear of confusing R2 with other (non-Euclidean)
models built on R2, we ignore this finer point.)

We now look at examples of planar isometries.

1. Rθ(p): rotation with center p ∈ R2 and angle θ ∈ R;
2. Tv: translation with vector v ∈ R2;
3. Rl: reflection in a line l ⊂ R2;
4. Gl,v: glide reflection1 along a line l with vector v (parallel to l);

in fact, Gl,v � Tv ◦ Rl � Rl ◦ Tv.
We now claim that every plane isometry is one of these. Al-

though this result is contained in many textbooks, the proof is
easy (especially in our model R2), so we will elaborate on it a
little. Before the proof we assemble a few elementary facts.

Given two lines l and l′, the composition Rl′ ◦ Rl is a rotation
if l and l′ intersect and a translation if l and l′ are parallel. The
rotation angle is twice the signed angle from l to l′; the transla-
tion vector is perpendicular to these lines, and its length is twice
the signed distance from l to l′. (Thus, rotations and translations
are not all that different; consider a rotation and move the center
“slowly to infinity”; when the center leaves the plane, the rotation
becomes a translation!) Notice that when decomposing a rotation
with center at p as a product of reflections Rl and Rl′ , the line l (or
l′) through p can be chosen arbitrarily. (What is the analogue of
this for translations?)

Let R2α(p) and R2β(q) be rotations with p �� q and let l denote
the line through p and q. By the above, R2α(p) � Rl′ ◦ Rl, where l′

is the unique line through p such that the angle from l to l′ is α.

1You may say, “I do not understand this!” and push this book away closing it. Well, you just performed a
glide!
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Similarly, R2β(q) � Rl ◦ Rl′′ , where l′′ is the line through q such that
the angle from l′′ to l is β. The composition

R2α(p) ◦ R2β(q) � (Rl′ ◦ Rl) ◦ (Rl ◦ Rl′′) � Rl′ ◦ Rl′′
is the product of reflections in the lines l′ and l′′. If α + β ∈ πZ,
then l′ and l′′ are parallel, and the composition is a translation with
translation vector twice the vector from q to p. If α + β /∈ πZ, then
the lines l′ and l′′ intersect at a point r, and composition is a rotation
with center r. It is convenient to write this rotation as R−2γ(r), since
then

R2α(p) ◦ R2β(q) ◦ R2γ(r) � I

with α + β + γ ∈ πZ. This is due to W.F. Donkin (1851). If in the
latter argument the roles of R2α(p) and R2β(q) are interchanged,
then we obtain a rotation R2γ(s) � R2α(p)

−1 ◦ R2β(q)
−1 with s �� r.

In particular, the commutator

R2α(p)
−1 ◦ R2β(q)

−1 ◦ R2α(p) ◦ R2β(q)

is a translation. ♥ As a byproduct, we obtain that if a subgroup
G ⊂ Iso (R2) contains no translations, then all the rotations in G

have the same center.
♣ Finally, note that an isometry that fixes three noncollinear

points is the identity, a fact that is easy to show.
We are now ready to prove the claim. Let S : R2 → R2 be an

isometry. Assume first that S is direct, that is, orientation preserving.
We split the argument into two cases according to whether or not S
has a fixed point. If S has a fixed point p ∈ R2, that is, S(p) � p, then
choose q ∈ R2 different from p. Let θ be the angle � qpS(q). The
compositionRθ(p)−1◦S leaves p and q fixed. It thus fixes every point
on the line through p and q. On the other hand, Rθ(p)−1 ◦ S is direct
(since S is), so that it must be the identity. We obtain S � Rθ(p).
Assume now that S has no fixed points. Let p ∈ R2 be arbitrary and
consider the vector v emanating from p and terminating in S(p).
The composition (Tv)

−1 ◦ S is direct and leaves p fixed. By the first
case, it is a rotation Rθ(p), i.e., S � Tv ◦ Rθ(p). We claim that Rθ(p)
is the identity, i.e., S � Tv. ¬ Assume not. Arrange v to be the base
of the isosceles triangle with vertex p opposite to v and angle θ at
p as Figure 9.3 shows. Clearly, q is a fixed point of S � Tv ◦Rθ(p). ¬
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Figure 9.3

v

q

p

θ

Second, assume that S is opposite, that is, orientation reversing. If
S has a fixed point p, then let l be a line through p and consider
the composition Rl ◦ S. This is a direct isometry that fixes p. By the
previous case, it must be a rotation Rθ(p). We obtain Rl ◦ S � Rθ(p),
or equivalently, S � Rl ◦ Rθ(p). We now write Rθ(p) � Rl ◦ Rl′ ,
where l′ meets l at p and the angle between l and l′ is θ/2. We
obtain S � Rl ◦ Rl ◦ Rl′ � Rl′ , so that S is a reflection in a line. If
S has no fixed point, then let p ∈ R2 be arbitrary and denote by
q ∈ R2 the midpoint of the segment connecting p and S(p). If p, q
and S(q) are collinear, it is easy to see that the line l through these
points is invariant under S. Thus, the direct isometry Rl ◦ S keeps
l invariant so that it is a translation Tv with translation vector v
parallel to l. Thus Rl ◦ S � Tv and so S � Rl ◦ Tv � Tv ◦ Rl � Gl,v

is a glide. If p, q and S(q) are not collinear then let r and s denote
the orthogonal projections of p and S(p) to the line l through q and
S(q) (Figure 9.4).

We claim that s � S(r). The triangle %qS(p)S(q) is isosceles,
since d(p, q) � d(q, S(p)) � d(S(p), S(q)). Thus, the angles � sqS(p)
and � sS(q)S(p) are equal. We obtain that the triangles %pqr and
%S(p)S(q)s are congruent and oppositely oriented. But the same is
true for %pqr and %S(p)S(q)S(r), so that s � S(r) follows. Let Gl,v

be the glide that sends %pqr to %S(p)S(q)S(r), where v has initial
point q and terminal point S(q). Then (Gl,v)

−1 ◦ S fixes p, q, and r,
and so it is the identity. S � Gl,v follows.
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qr s S(q)

p

S(p)

l

Figure 9.4

Remark.
Since rotations and translations are products of two reflections,
as a byproduct of the argument above we obtain that any planar
isometry is the product of at most three reflections.

We now go back to our regular polygons. Let X be a set (figure)
in the plane and define the symmetry group of X as

Symm (X) � {S ∈ Iso (R2) | S(X) � X}.

Theorem 3.
For n ≥ 3, Symm (Pn) consists of the rotations

R2kπ/n � R2kπ/n(0), k � 0, 1, . . . , n − 1,

and n reflections Rl1 , . . . ,Rln in the lines l1, . . . ,ln joining the origin to
the vertices and to the midpoints of the sides.

Proof.
Let S ∈ Symm (Pn). It is clear that S can only be a rotation or a
reflection. Indeed, just look at Figure 9.5.

Under S, vertices go to vertices and midpoints of sides go to
midpoints of sides; in fact, S is a permutation on these two sets.
Thus, the origin—the centroid of Pn—is left fixed by S. (For n even,
the centroid is the midpoint of a diagonal connecting two vertices.
For n odd, the centroid is on a line connecting the midpoint of a
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Figure 9.5

side and the opposite vertex, and the center splits this segment in
a specified ratio. What is this ratio?) If S is a rotation, then S �
Rθ � Rθ(0) and θ � 2kπ/n clearly follow. If S is reflection in a line
l, then l must go through the origin. Again it follows that l is one
of the li’s, i � 1, . . . , n.

Remark.
As seen from the proof, there is a slight distinction between the
structure of the lines l1, . . . , ln for n even and n odd. For example,
take a look at the triangle P3 and the square P4 in Figure 9.6.

We now take an algebraic look at the group Symm (Pn). Letting
a � R2π/n, we see that ak � R2kπ/n, k � 0, . . . , n − 1, so that the
rotations generate the cyclic subgroup

e � a0, a, a2, . . . , an−1.

Figure 9.6
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We denote this by Cn. Let b � Rl1 . Then b2 � e since b is a
reflection, and ba � a−1b. (This needs verification.) The reflec-
tions b, ab, a2b, . . . , an−1b are mutually distinct in Symm (Pn), so
that they must give Rl1 , . . . , Rln (in a possibly permuted order). We
obtain that Symm (Pn) is generated by two elements a and b and
relations an � b2 � e and ba � a−1b. The elements of Symm (Pn)

are

e, a, a2, . . . , an−1; b, ab, a2b, . . . , an−1b.

This is called the dihedral group Dn of order 2n. The name comes
from the fact that Dn is the symmetry group of a dihedron (as Klein
called it), a spherical polyhedron with two hemispheres as faces
and n vertices distributed uniformly along the common boundary.
(Dn is also the symmetry group of the “reciprocal” spherical poly-
hedron with two antipodal vertices connected by n semicircles as
edges that split the sphere into n congruent spherical wedges as
faces.)

Looking back, we see that studying the symmetries of regular
polygons leads us to the cyclic group Cn of order n and the dihedral
groupDn of order 2n. It is a remarkable fact that any finite subgroup
of Iso (R2) is isomorphic to one of these.

Theorem 4.
Let G ⊂ Iso (R2) be a finite subgroup. Then G fixes a point p0 ∈ R2

and is one of the following:

1. G is a cyclic group of order n, generated by the rotation R2π/n(p0).
2. G is a dihedral group of order 2n, generated by two elements:

R2π/n(p0) and a reflection Rl in a line l through p0.

Proof.
Let p ∈ R2 be any point and consider the orbit of G through p:

G(p) � {S(p) | S ∈ G}.
This is a finite subset of R2 with elements listed as G(p) �
{p1, . . . , pm}. Each element in G is a permutation on this set. Now
consider the centroid

p0 � p1 + · · · + pm

m
.
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We claim that p0 is left fixed by G. Let S ∈ G. We now use the
classification of plane isometries above, along with the fact that S
permutes p1, . . . , pm, to conclude that S(p0) � p0. To determine
the structure of G, we split the proof into two cases.

(1) G contains only direct isometries. Since G fixes p0, every ele-
ment in G is a rotation Rθ(p0) with center p0. In what follows, we
suppress p0. Let θ be the smallest positive angle of rotation. We
claim that G is generated by Rθ. Since G is finite, it will then fol-
low that G is cyclic. Indeed, let Rα ∈ G be arbitrary. The division
algorithm tells us that

α � mθ + β, m ∈ Z,

with remainder 0 ≤ β < θ. Since G is a group, Rβ � Rα−mθ �
Rα ◦ (Rθ)−m ∈ G. Since θ is the smallest positive angle with Rθ ∈ G

this is possible only if β � 0. We obtain that α � mθ, and hence

Rα � Rmθ � (Rθ)
m.

The rest is clear, since (Rθ)n � I for |G| � n so that θ � 2π/n.

(2) Assume that G contains an opposite isometry. Any opposite
isometry with fixed point p0 must be a reflection Rl in a line l

through p0. Thus, G contains rotations and reflections, the former
being a subgroup of G denoted by G+. By the previous case, G+

is generated by a rotation Rθ (with θ � 2π/n). Let Rl ∈ G. As
in the proof of Theorem 3, we have the following 2n elements
in G:

I, Rθ, R
2
θ , . . . , R

n−1
θ ,

Rl, Rθ ◦ Rl, R2
θ ◦ Rl, . . . , Rn−1

θ ◦ Rl.

These isometries are all distinct, and they form a subgroup G′ (of
G) isomorphic with Dn. We must show that G′ � G. It is enough to
show that G′ contains all reflections in G. Let Rl′ ∈ G, l �� l′. Since
l and l′ intersect in p0, Rl′ ◦ Rl is a rotation in G, hence Rl′ ◦ Rl � Rkθ
for some k � 0, . . . , n − 1. Thus Rl′ � Rkθ ◦ Rl, and this is listed
above.



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

Problems 105

Theorem 4 asserts in particular that the only possible groups of
central symmetries in two dimensions are

C1, C2, C3, . . . and D1, D2, D3, . . . .

Central symmetry frequently occurs in nature. Most of us observed
in childhood that snowflakes have sixfold (some threefold) symme-
tries. Flowers usually have fivefold symmetries, and depending
on whether the petals are bilaterally symmetric or not, their sym-
mety group isD5 or only C5. We finish this section with a quotation
from Hermann Weyl’s Symmetry regarding Theorem 4: “Leonardo
da Vinci engaged in systematically determining the possible sym-
metries of a central building and how to attach chapels and niches
without destroying the symmetry of the nucleus. In abstract mod-
ern terminology, his result is essentially our above table of the
possible finite groups of rotations (proper and improper) in two
dimensions.”

Problems

1. Show that the 3-dimensional cube ([0, 1]3 ⊂ R3) can be sliced by planes to
obtain a square, an equilateral triangle, and a regular hexagon.

2. Prove that any two rotations Rθ(p) and Rθ(q) with the same angle θ ∈ R are
conjugate in Iso (R2); that is, Rθ(q) � Tv ◦Rθ(p) ◦T−v, where v is a vector from
p to q.

3. (a) Let sn, n ≥ 3, denote the side length of Pn, the regular n-sided polygon
inscribed in the unit circle. Show that

s2n �
√

2 −
√

4 − s2
n.

Deduce from this that

s4 �
√

2, s8 �
√

2 −
√

2, s16 �
√

2 −
√

2 +
√

2, . . . .

Generalize these to show that

s2n �

√
2 −

√
2 +

√
2 + · · · +

√
2,

with n − 1 nested square roots.
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(b) Let An be the area of Pn. Derive the formula

A2n+1 � 2n−1s2n � 2n−1

√
2 −

√
2 +

√
2 + · · · +

√
2,

with n − 1 nested square roots. (Hint: Half of the sides of Pn serve as heights
of the 2n isosceles triangles that make up P2n, so that A2n � nsn/2.) Conclude
that

lim
n→∞ 2n

√
2 −

√
2 +

√
2 + · · · +

√
2 � π,

where in the limit there are n nested square roots. In particular, we have

lim
n→∞

√
2 +

√
2 + · · · +

√
2 � 2.

4. (a) Prove that in the product of three reflections, one can always arrange
that one of the reflecting lines is perpendicular to both the others. (b) Derive
Theorem 4 without the “orbit argument,” using the previously proved fact that
all the rotations in G have the same center.

5. The reciprocal of a point p � (a, b) ∈ R2 to the circle with center at the origin
and radius r > 0 is the line given by the equation ax + by � r2. Show that the
reciprocals of the vertices z(2kπ/n), k � 0, . . . , n − 1, of the regular n-sided
polygon Pn to its inscribed circle give the sides of another regular n-sided
polygon whose vertices are the midpoints of the sides of Pn.

Web Sites

1. www.maa.org

2. aleph0.clarku.edu/∼djoyce/java/elements/elements.html
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...........................................

Discrete Subgroups
of Iso (R2)

♣ In Section 9, we obtained a classification of all finite subgroups
of the group of isometries Iso (R2) of R2 by studying symmetry
groups of regular polygons. We saw that such subgroups cannot
contain translations or glides, a fact that is intimately connected
to boundedness of regular polygons. If we want to include trans-
lations and glides in our study, we have to start with unbounded
plane figures and their symmetry groups. It turns out that classi-
fication of these subgroups is difficult unless we assume that the
subgroup G ⊂ Iso (R2) does not contain rotations of arbitrarily
small angle and translations of arbitrarily small vector length. (As
we will see later, we do not have to impose any condition on reflec-
tions and glides.) GroupsG ⊂ Iso (R2) satisfying this condition are
called discrete. In this section we give a complete classification of
discrete subgroups of Iso (R2). Just as cyclic and dihedral groups
can be viewed as orientation-preserving and full symmetry groups
of regular polygons, we will visualize these groups as symmetries
of frieze and wallpaper patterns. Thus, next time you look at a
wallpaper pattern, you should be able to write down generators
and relations for the corresponding symmetry group!

Let G ⊂ Iso (R2) be a discrete group. Assume that G contains
a translation Tv ∈ G that is not the identity (v �� 0). All powers

107
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of Tv are then contained in G (by the group property): Tk
v ∈ G,

k ∈ Z. Since Tk
v � Tkv, we see that all these are mutually distinct.

It follows that G must be infinite. (The same conclusion holds for
glides, since the square of a glide is a translation.) We see that the
presence of translations or glides makes G infinite. The following
question arises naturally: If we are able to excise the translations
from G, is the remaining “part” of G finite? The significance of an
affirmative answer is clear, since we just classified all finite sub-
groups of Iso (R2). This gives us a good reason to look at translations
first.

Let T be the group of translations in R2. It is clearly a subgroup
of Iso (R2). From now on we agree that for a translation Tv ∈ T ,
we draw the translation vector v from the origin. Associating to Tv
the vector v (just made unique) gives the map

ϕ : T → R2,

defined by

ϕ(Tv) � v, v ∈ R2.

Since

Tv1 ◦ Tv2 � Tv1+v2 , v1, v2 ∈ R2,

and

(Tv)
−1 � T−v, v ∈ R2,

we see that ϕ is an isomorphism. Summarizing, the translations
in Iso (R2) form a subgroup T that is isomorphic with the additive
group R2.

Let G ⊂ Iso (R2) be a discrete group. The translations in G

form a subgroup T � G ∩ T of G. Since G is discrete, so is T.
The isomorphism ϕ : T → R2 maps T to a subgroup denoted by
LG ⊂ R2. This latter group is also discrete in the sense that it does
not contain vectors of arbitrarily small length. By definition, LG is
the group of vectors v ∈ R2 such that the translation Tv is in G. We
now classify the possible choices for LG.

Theorem 5.
Let L be a discrete subgroup of R2. Then L is one of the following:
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1. L � {0};
2. L consists of integer multiples of a nonzero vector v ∈ R2:

L � {kv | k ∈ Z};
3. L consists of integral linear combinations of two linearly indepen-

dent vectors v,w ∈ R2:

L � {kv + lw | k,l ∈ Z}.

Proof.
We may assume that L contains a nonzero vector v ∈ R2. Let l �
R · v be the line through v. Since L is discrete, there is a vector
in l ∩ L of shortest length. Changing the notation if necessary, we
may assume that this vector is v. Let w be any vector in l ∩ L. We
claim that w is an integral multiple of v. Indeed, w � av for some
a ∈ R since w is in l. Writing

a � k + r,

where k is an integer and 0 ≤ r < 1, we see thatw−kv � (a−k)v �
rv is in L. On the other hand, if r �� 0, then the length of rv is less
than that of v, contradicting the minimality of v. Thus r � 0, and
w � kv, an integer multiple of v. If there are no vectors in L outside
of l, then we land in case 2 of the theorem.

Finally, assume that there exists a vector w ∈ L not in l. The
vectors v and w are linearly independent, so that they span a par-
allelogram P. Since P is bounded, it contains only finitely many
elements of L. Among these, there is one whose distance to the
line l is positive, but the smallest possible. By changing w (and P),
we may assume that this vector is w. We claim now that there are
no vectors of L in P except for its vertices. ¬ Assume the contrary
and let z ∈ L be a vector in P. Due to the minimal choice of v and
w, this is possible only if z terminates at a point on the opposite
side of v or w. In the first case, z−w ∈ L would be a vector shorter
than v; in the second, z would be closer to l than w. ¬ Summariz-
ing, we conclude that there are two linearly independent vectors v
and w that span a parallelogram P such that P contains no vectors
in L except for its vertices. Clearly, {kv + lw | k, l ∈ Z} is contained
in L. To land in case 3 we now claim that every vector z in L is an
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integral linear combination of v and w. By linear independence, z
is certainly a linear combination

z � av + bw

of v and w with real coefficients a, b ∈ R. We now write

a � k + r and b � l + s,

where k, l ∈ Z and 0 ≤ r, s < 1. The vector z − kv − lw � rv + sw

is in L and is contained in P. The only way this is possible is if
r � s � 0 holds. Thus z � kv + lw, and we are done.

We now return to our discrete groupG ⊂ Iso (R2) and see that we
have three choices for LG. If LG � {0}, then G does not contain any
translations (or glides, since the square of a glide is a translation).
In this case, G consists of rotations and reflections only. By a result
of the previous section, the rotations in G have the same center,
say, p0. Since G is discrete, it follows that G contains only finitely
many rotations. If Rl ∈ G is a reflection, then l must go through
p0, since otherwise, Rl(p0) would be the center of another rotation
in G. Finally, since the composition of two reflections in G is a
rotation in G, there may be only at most as many reflections in G

as rotations (cf. the proof of Theorem 4). Summarizing, we obtain
that if G is a discrete group of isometries with LG � {0} then G

must be finite. In the second case T, the group of all translations
in G, is generated by Tv, and we begin to suspect that G is the
symmetry group of a frieze pattern. Finally, in the third case T

is generated by Tv and Tw, and T is best viewed by its ϕ-image
LG � {kv + lw | k, l ∈ Z} in R2. We say that LG is a lattice in R2 and
G is a (2-dimensional) crystallographic group. Since any wallpaper
pattern repeats itself in two different directions, we see that their
symmetry groups are crystallographic.

We now turn to the process of “excising” the translation part
from G. To do this, we need some preparations. Recall that at the
discussion of translations we agreed to draw the vectors v from
the origin so that the translation Tv by the vector v ∈ R2 acts on
p ∈ R2 by Tv(p) � p + v. Now given any linear transformation
A : R2 → R2 (that is, A(v1 + v2) � A(v1) + A(v2), v1, v2 ∈ R2,
and A(rv) � rA(v), r ∈ R, v ∈ R2), we have the commutation rule
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A ◦ Tv � TA(v) ◦ A. Indeed, evaluating the two sides at p ∈ R2, we
get

(A ◦ Tv)(p) � A(Tv(p)) � A(p + v) � A(p) + A(v)

and

(TA(v) ◦ A)(p) � TA(v)(A(p)) � A(p) + A(v).

Let O(R2) denote the group of isometries in Iso (R2) that leave
the origin fixed. O(R2) is called the orthogonal group. From the
classification of the plane isometries, it follows that the elements
of O(R2) are linear.

Remark.
♠ We saw above that a direct isometry in O(R2) is a rotation
Rθ. These rotations form the special orthogonal group SO(R2), a
subgroup of O(R2). Associating to Rθ the complex number z(θ)

establishes an isomorphism between SO(R2) and S1. Any oppo-
site isometry in O(R2) can be written as a rotation followed by
conjugation. Thus topologically O(R2) is the disjoint union of two
circles.

♣Occasionally, it is convenient to introduce superscripts± to in-
dicate whether the isometries are direct or opposite. Thus Iso +(R2)

denotes the set of direct isometries in Iso (R2). Note that it is a sub-
group, since the composition and inverse of direct isometries are
direct. Iso−(R2) is not a subgroup but a topological copy of Iso+(R2).

♥ The elements of O(R2) are linear, so that the commutation
rule above applies. We now define a homomorphism

ψ : Iso (R2) → O(R2)

as follows: Let S ∈ Iso (R2) and denote by v the vector that termi-
nates at S(0). The composition (Tv)

−1 ◦ S fixes the origin so that it
is an element of O(R2). We define ψ(S) � (Tv)

−1 ◦ S. To prove that
ψ is a homomorphism, we first write (Tv)−1 ◦ S � U ∈ O(R2), so
that S � Tv ◦ U . This decomposition is unique in the sense that if
S � Tv′ ◦U ′ with v′ ∈ R2 and U ′ ∈ O(R2), then v � v′ and U � U ′.
Indeed, Tv ◦ U � Tv′ ◦ U ′ implies that (Tv′)−1 ◦ Tv � U ′ ◦ U−1. The
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right-hand side fixes the origin so that the left-hand side, which is
a translation, must be the identity. Uniqueness follows.

Using the notation we just introduced, we haveψ(S) � U , where
S � Tv ◦ U . Now let S1 � Tv1 ◦ U1 and S2 � Tv2 ◦ U2, where
v1, v2 ∈ R2 and U1, U2 ∈ O(R2). For the homomorphism property,
we need to show that ψ(S2 ◦ S1) � ψ(S2) ◦ ψ(S1). By definition,
ψ(S1) � U1 and ψ(S2) � U2, so that the right-hand side is U2 ◦ U1.
As for the left-hand side, we first look at the composition

S2 ◦ S1 � Tv2 ◦ U2 ◦ Tv1 ◦ U1.

Using the commutation rule for the linear U2, we have U2 ◦ Tv1 �
TU2(v1) ◦ U2. Inserting this, we get

S2 ◦ S1 � Tv2 ◦ TU2(v1) ◦ U2 ◦ U1.

Taking ψ of both sides amounts to deleting the translation part:

ψ(S2 ◦ S1) � U2 ◦ U1.

Thus ψ is a homomorphism.
ψ is onto since it is identity on O(R2) ⊂ Iso (R2). The kernel of

ψ consists of translations:

ker ψ � T .
In particular, T ⊂ Iso (R2) is a normal subgroup. Having con-
structed ψ : Iso (R2) → O(R2), we return to our discrete group
G ⊂ Iso (R2). The ψ-image of G is called the point-group of G, de-
noted by Ḡ � ψ(G). The kernel of ψ|G is all translations in G, that
is, T. Thus, we have the following:

ψ|G : G → Ḡ ⊂ O(R2)

and

ker(ψ|G) � T.

For nontrivial LG, the point-group Ḡ interacts with LG in a
beautiful way:

Theorem 6.
Ḡ leaves LG invariant.
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Proof.
Let U ∈ Ḡ and v ∈ LG. We must show that U(v) ∈ LG. Since
U ∈ Ḡ, there exists S ∈ G, with S � Tw ◦ U for some w ∈ R2. The
assumption v ∈ LG, means Tv ∈ G, and what we want to conclude,
U(v) ∈ LG, means TU(v) ∈ G. We compute

TU(v) � TU(v) ◦ Tw ◦ (Tw)−1

� Tw ◦ TU(v) ◦ (Tw)−1

� Tw ◦ U ◦ Tv ◦ U−1 ◦ (Tw)−1

� S ◦ Tv ◦ S−1 ∈ G,

where the last but one equality is because of the commutation
relation

U ◦ Tv � TU(v) ◦ U

as established above. The theorem follows.

Ḡ is discrete in the sense that is does not contain rotations with
arbitrarily small angle. This follows from Theorem 6 if LG is non-
trivial. If LG is trivial, then by a result of the previous section, G
is finite, and so is its (isomorphic) image Ḡ under ψ. Since Ḡ is
discrete and fixes the origin, it must be finite! Indeed, by now this
argument should be standard. Let Rθ ∈ Ḡ with θ being the smallest
positive angle. Then any rotation in Ḡ is a multiple of Rθ. More-
over, using the division algorithm, we have 2π � nθ+ r, 0 ≤ r < θ,
n ∈ Z, and r must reduce to zero because of minimality of θ. Thus
θ � 2π/n, and the rotations form a cyclic group of order n. Finally,
there cannot be infinitely many reflections, since otherwise their
axes could get arbitrarily close to each other, and composing any
two could give rotations of arbitrarily small angle. We thus accom-
plished our aim. Ḡ gives a finite subgroup in O(R2) consisting of
rotations and reflections only. In particular, if LG � {0}—that is,
if G contains no nontrivial translations—then the kernel of ψ|G is
trivial and so ψ|G maps G isomorphically onto Ḡ. In particular, G
is finite. By Theorem 4 of Section 9, G is cyclic or dihedral.



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

This spread is one line short.

10. Discrete Subgroups of Iso (R2)114

We are now ready to classify the possible frieze patterns, of which
there are seven. According to Theorem 6, a frieze group G keeps
the line c through LG invariant, and the group of translations T in
G is an infinite cyclic subgroup generated by a shortest translation,
say, τ, in the direction of c. The line c is called the “center” of the
frieze group. In addition to T, the only nontrivial direct isometries
are rotations with angle π, called “half-turns,” and their center must
be on c. The only possible opposite isometries are reflection to c,
reflections to lines perpendicular to c, and glides along c. In the
classification below we use the following notations: If G contains a
half-turn, we denote its center by p ∈ c. If G does not contain any
half-turns, but contains reflections to lines perpendicular to c, the
axis of reflection is denoted by l, and p is the intersection point of
l and c. Otherwise p is any point on c. Let pn � τn(p), n ∈ Z, and
m � the midpoint of the segment connecting p0 and p1. Finally,
let mn � τn(m), the midpoint of the segment connecting pn and
pn+1 (Figure 10.1).

We are now ready to start. First we classify the frieze groups that
contain only direct isometries:

1. G � T � 〈τ〉, so that G contains1 no half-turns, reflections or
glide reflections.

2. G � 〈τ, Hp〉. Aside from translations, G contains the half-turns
τn ◦ Hp. For n � 2k even, τ2k ◦ Hp has center at pk, and for
n � 2k + 1 odd, τ2k+1 ◦ Hp has center at mk.

It is not hard to see that these are all the frieze groups that con-
tain only direct isometries. We now allow the presence of opposite
isometries.

3. G � 〈τ, Rc〉. Since R2
c � I and τ ◦ Rc � Rc ◦ τ, aside from T, this

group consists of glides τn ◦ Rc mapping p to pn.

Figure 10.1

c

p m p1

1IfG ⊂ Iso (R2), then 〈G〉 denotes the smallest subgroup in Iso (R2) that containsG. We say thatG generates
〈G〉 (cf. “Groups” in Appendix B).
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4. G � 〈τ, Rl〉. Since R2
l � I and Rl ◦ τ � τ−1 ◦ Rl, aside from T, G

consists of reflections τn ◦ Rl. The axes are perpendicular to c,
and according to whether n � 2k (even) or n � 2k + 1 (odd),
the intersections are pk or mk.

5. G � 〈τ, Hp, Rc〉. We have Hp ◦ Rc � Rl ◦ Rc ◦ Rc � Rl ∈ G. In
addition to this and τ, G includes the glides τn ◦ Rc (sending p
to pn) and τn ◦ Rl discussed above.

6. G � 〈τ, Hp, Rl′ 〉. Then l′ must intersect c perpendicularly at the
midpoint of p and mk, for some k ∈ Z.

7. G � 〈Gc,v〉 is generated by the glide Gc,v with G2
c,v � τ.

Figure 10.2 depicts the seven frieze patterns. (The pictures were
produced with Kali (see Web Site 2), written by Nina Amenta
of the Geometry Center at the University of Minnesota.) Which
corresponds to which in the list above?

The fact that the point-group Ḡ leaves LG invariant imposes a
severe restriction on G if LG is a lattice, the case we turn to next.

Figure 10.2
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Figure 10.3
θ

θ

w

R   (v)

v

Crystallographic Restriction.
Assume thatG is crystallographic. Let Ḡ denote its point-group. Then

every rotation in Ḡ has order 1,2,3,4, or 6, and Ḡ is Cn or Dn for some
n � 1,2,3,4, or 6.

Proof.
As usual, letRθ be the smallest positive angle rotation in Ḡ, and let v
be the smallest length nonzero vector in LG. Since LG is Ḡ-invariant,
Rθ(v) ∈ LG. Consider w � Rθ(v) − v ∈ LG (Figure 10.3).

Since v has minimal length, |v| ≤ |w|. Thus,

θ ≥ 2π/6,

and so Rθ has order ≤ 6. The case θ � 2π/5 is ruled out since
R2
θ (v) + v is shorter than v (Figure 10.4).

Figure 10.4
π/5

θ

θ

R   (v)

v

2

R   (v)
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The first statement follows. The second follows from the
classification of finite subgroups of Iso (R2) in the previous
section.

Remark.
For an algebraic proof of the crystallographic restriction, consider
the trace tr (Rθ) of Rθ ∈ Ḡ, 0 < θ ≤ π. With respect to a basis in
LG, the matrix of Rθ has integral entries (Theorem 6). Thus, tr (Rθ)
is an integer. On the other hand, with respect to an orthonormal
basis, the matrix of Rθ has diagonal entries both equal to cos(θ). In
particular, tr (Rθ) � 2 cos(θ). Thus, 2 cos(θ) is an integer, and this
is possible only for n � 2, 3, 4, or 6.

Example
If ω � z(2π/n) is a primitive nth root of unity, then Z[ω] is a
lattice iff n � 3, 4, or 6. Indeed, the rotation R2π/n leaves Z[ω]
invariant, since it is multiplication by ω. By the crystallographic
restiction, n � 3, 4, or 6. How do the tesselations look for n � 3
and n � 6? �

The absence of order-5 symmetries in a lattice must have
puzzled some ancient ornament designers. We quote here from
Hermann Weyl’s Symmetry: “The Arabs fumbled around much with
the number 5, but they were of course never able honestly to insert
a central symmetry of 5 in their ornamental designs of double infi-
nite rapport. They tried various deceptive compromises, however.
One might say that they proved experimentally the impossibility
of a pentagon in an ornament.”

Armed with the crystallographic restriction, we now have the te-
dious task of considering all possible scenarios for the point-group
Ḡ and its relation to LG. This was done in the nineteenth century
by Fedorov and rediscovered by Polya and Niggli in 1924. A de-
scription of the seventeen crystallographic groups that arise are
listed as follows:

Generators for the 17 Crystallographic Groups

1. Two translations.
2. Three half-turns.
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3. Two reflections and a translation.
4. Two parallel glides.
5. A reflection and a parallel glide.
6. Reflections to the four sides of the rectangle.
7. A reflection and two half-turns.
8. Two perpendicular glides.
9. Two perpendicular reflections and a half-turn.

10. A half-turn and a quarter-turn.
11. Reflections in the three sides of a (π/4, π/4, π/2) triangle.
12. A reflection and a quarter-turn.
13. Two rotations through 2π/3.
14. A reflection and a rotation through 2π/3.
15. Reflections in the three sides of an equilateral triangle.
16. A half-turn and a rotation through 2π/3.
17. Reflections is in the three sides of a (π/6, π/3, π/2) triangle.

Remark.
The following construction sheds some additional light on the
geometry of crystallographic groups. Let G be crystallographic
and assume that G contains rotations other than half-turns. Let
R2α(p) ∈ G, 0 < α < π/2, be a rotation with integral π/α (cf. the
proof of Theorem 4 of Section 9). Let R2β(q) ∈ G, 0 < β < π/2,
be another rotation with integral π/β such that d(p, q) is minimal.
(R2β(q) exists since G is crystallographic.) Let l denote the line
through p and q. Write R2α(p) � Rl′ ◦ Rl, where l′ meets l at p and
the angle from l to l′ is α. Similarly, R2β(q) � Rl ◦Rl′′ , where l′′ meets
l at q and the angle from l′′ to l is β. Since α+β < π, the lines l′ and
l′′ intersect at a point, say, r. In fact, r is the center of the rotation
R2γ(r) � (R2α(p) ◦ R2β(q))

−1 � Rl′′ ◦ Rl′ . Since α, β, and γ are the
interior angles of the triangle %pqr, we have α+ β+ γ � π. On the
other hand, since G is discrete, π/γ is rational. It is easy to see that
minimality of d(p, q) implies that π/γ is integral. We obtain that

α

π
+ β

π
+ γ

π
� 1,

where the terms on the left-hand side are reciprocals of integers.
Since π/α, π/β ≥ 3 (and π/γ ≥ 2), the only possibilities are α �
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Figure 10.5

β � γ � π/3; α � β � π/4, γ � π/2; and α � π/6, β � π/3, γ �
π/2. (Which corresponds to which in the list above?)

As noted above, these groups can be visualized by patterns
covering the plane with symmetries prescribed by the acting crys-
tallographic group. Figure 10.5 shows a sample of four patterns
(produced with Kali).

Symmetric patterns2 date back to ancient times. They appear
in virtually all cultures; on Greek vases, Roman mosaics, in the
thirteenth century Alhambra at Granada, Spain, and on many other
Muslim buildings.

2For a comprehensive introduction see B. Grünbaum and G.C. Shephard, Tilings and Patterns, Freeman,
1987.
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To get a better view of the repetition patterns, we introduce the
concept of fundamental domain. First, given a discrete group G ⊂
Iso (R2), a fundamental set for G is a subset F of R2 which contains
exactly one point from each orbit

G(p) � {S(p) | S ∈ G}, p ∈ R2.

A fundamental domain F0 for G is a domain (that is, a connected
open set) such that there is a fundamental set F between F0 and
its closure3 F̄0; that is, F0 ⊂ F ⊂ F̄0, and the 2-dimensional area of
the boundary ∂F0 � F̄0 − F0 is zero.

The simplest example of a fundamental set (domain) is given by
the translation group G � T � 〈Tv, Tw〉. In this case, a fundamen-
tal domain F0 is the open parallelogram spanned by v and w. A
fundamental set F is obtained from F0 by adding the points tv and
tw, 0 ≤ t < 1. By the defining property of the fundamental set,
the “translates” S(F), S ∈ G, tile4 or, more sophisticatedly, tessellate
R2. (Numerous tessellations appear in Kepler’s Harmonice Mundi,
which appeared in 1619.) If a pattern is inserted in F , translating
it with G gives the wallpaper patterns that you see. You are now
invited to look for fundamental sets in Figure 10.5!

Problems

1. Prove directly that any plane isometry that fixes the origin is linear.

2. Identify the frieze group that corresponds to the pattern in Figure 10.6.

3. Let L ⊂ R2 be a lattice. Show that half-turn around the midpoint of any two
points of L is a symmetry of L.

4. Identify the discrete group G generated by the three half-turns around the
midpoints of the sides of a triangle.

Figure 10.6

3See “Topology” in Appendix C.
4We assume that the tiles can be turned over; i.e., they are decorated on both sides.
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Web Sites

1. www.geom.umn.edu/docs/doyle/mpls/handouts/node30.html

2. www.geom.umn.edu/apps/kali/start.html

3. www.math.toronto.edu/∼coxeter/art-math.html

4. www.texas.net/escher/gallery

5. www.suu.edu/WebPages/MuseumGaller/Art101/aj-webpg.htm

6. www.geom.umn.edu/apps/quasitiler/start.html
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Möbius Geometry

♣ Recall from Section 7 that the stereographic projections hN :
S2 − {N} → R2 and hS : S2 − {S} → R2 combine to give

hN ◦ h−1
S : R2 − {0} → R2 − {0},

where

(hN ◦ h−1
S )(z) � z/|z|2 � 1/z̄, 0 �� z ∈ C � R2.

Strictly speaking, this is not a transformation of the plane since it
is undefined at z � 0. Under hN , however, it corresponds to the
transformation of the unit sphere S2:

h−1
N ◦ (hN ◦ h−1

S ) ◦ hN � h−1
S ◦ hN : S2 → S2

which sends a spherical point p � (a, b, c) to (a, b,−c) so that it is
spherical reflection in the equatorial circle S1 of S2! That this holds
can be seen from Figure 11.1.

Reflections in lines play a central role in Euclidean geometry. In
fact, we saw in Section 9 that every isometry of R2 is the product of
at most three reflections. In spherical geometry the ambient space
is S2, lines are great circles of S2, and reflections are given by spatial
reflections in planes in R3 spanned by great circles. For example,
h−1
S ◦ hN : S2 → S2 is the restriction to S2 of the spatial reflection

122
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S

N

(a, b, c)

(a, b, −c)

Figure 11.1

(a, b, c)  → (a, b,−c) in the coordinate plane R2 ⊂ R3 spanned by
the first two axes.

We could now go on and study isometries of S2 and develop
spherical geometry in much the same way as we developed plane
geometry. Instead, we put a twist on this and insist that we want to
view all spherical objects in the plane! “Viewing”, of course, means
not only the visual perception, but also the description of these
objects in terms of Euclidean plane concepts. This is possible by the
stereographic projection hN : S2 −{N} → R2, which does not quite
map the entire sphere to R2 (this is impossible), but leaves out the
North Pole N . Our spherical reflections will thus become “singu-
lar” when viewed on R2. To circumvent this difficulty, we attach an
“infinite point” ∞ to R2 and say that the singular point of the trans-
formation must correspond to ∞. For example, the transformation
z  → 1/z̄ is singular at the origin but becomes well defined on the
extended plane R̂2 � R2 ∪{∞}, where we agree that it should send
0 to ∞. Of course R̂2 is nothing but S2, but it is much easier to view
the action on R2 plus one point than on S2. Our path is now clear;
we need to consider all finite compositions of spherical reflections
in great circles of S2 and pull them down to R2 (via hN ). The trans-
formations of R2 (or rather R̂2) obtained this way are named after
Möbius. (The concept of reflection in a circle in R̂2, the case of a
single spherical reflection, was invented by Steiner around 1828.)

Although this project is not difficult to carry out, we will pursue
a different track and work in R̂2 from the beginning. Our starting
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Figure 11.2

point is the following observation: Consider the equatorial circle
S1 ⊂ R2 ⊂ R3. Under hN , it corresponds to itself. Now rotate S1

around the first axis in R3 by various angles (Figure 11.2).
Under hN , the rotated great circles correspond to various circles

and, when the great circle passes through N , to a straight line!
The conclusion is inevitable. In Möbius geometry we have to treat
circles and lines on the same footing. Thus when we talk about
circles we really mean circles or lines. For the farsighted this is
no problem; a line on the extended plane R̂2 becomes a circle by
closing it up with ∞! Analytically, however, circles and lines have
different descriptions:

Sr(p0) � {p ∈ R2 | d(p, p0) � r},
and

lt(p0) � {p ∈ R2 | p · p0 � t} ∪ {∞},
where Sr(p0) ⊂ R2 is the usual Euclidean circle with center p0 and
radius r, and lt(p0) is the usual Euclidean line (extended with ∞)
with normal vector p0 (· is the dot product). Notice that by fixing p0

and varying r and t, we obtain concentric circles and parallel lines
(Figure 11.3).

Figure 11.3
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To define the reflection RS : R̂2 → R̂2 in a circle S � Sr(p0)

in general, we rely on the special case where RS is obtained from
a spherical reflection RC : S2 → S2 in a great circle C ⊂ S2, i.e.,
where RS � hN ◦ RC ◦ h−1

N . Since hN(C) � S, this is precisely the
case where S ∩ S1 contains an antipodal pair of points. At the end
of Section 7, we proved that hN is circle-preserving. Since this is
automatically true for isometries (such asRC), we see thatRS is also
circle-preserving in our special case. We now define the reflection
RS in a general circle S � Sr(p0) by requiring that (i) RS should
be circle-preserving, (ii) it should fix each point of S, and (iii) RS
should interchange p0 and ∞. That these conditions determine RS
uniquely follows by taking a careful look at the construction in Fig-
ure 11.4, in which the point p is chosen outside of S. (The segment
connecting p and q is tangent to S at q.) When p is inside S, the
points p and RS(p) should be interchanged. With this in mind, our
argument is the following. The line l through p and p0 should be
mapped by RS to itself, since it contains both p0 and ∞ (which are
interchanged), and it also goes through two diametrically opposite
points of S (which stay fixed). Thus if p is on l then so is RS(p). The
circle S′ through q, q′ and p0, and the line l′ through q, q′ (and∞) are
interchanged by RS since they both contain q, q′ (that stay fixed).
Thus, if p is outside of S, then RS(p) must be the common intersec-
tion of the lines l and l′. As noted above, the situation is analogous
when p is inside S with the roles of p and RS(p) interchanged.

0 S
p

l

q′

q

R (p)

r
l′

p

Figure 11.4
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The analytical formula for RS can also be read off from Figure
11.4. We have

RS(p) � p0 +
(

r

d(p, p0)

)2

(p − p0), p ∈ R̂2,

with p0 and ∞ corresponding to each other. To see that this is true,
we first note that p0, p, and RS(p) are collinear, so that RS(p)− p0 �
λ(p − p0) for some λ ∈ R to be determined. We have

λ � d(RS(p), p0)

d(p, p0)
.

The angles � qpp0 and � p0qRS(p) are equal (Euclid!), so that the
triangles %qpp0 and %p0qRS(p) are similar. Thus,

d(RS(p), p0)

r
� r

d(p, p0)
,

so that

λ � d(RS(p), p0)

d(p, p0)
�
(

r

d(p, p0)

)2

,

and the formula forRS follows when p is outside S. Instead of check-
ing our computations for the case where p is inside S, it suffices to
show that R2

S is the identity. To work out R2
S, we first note that

RS(p) − p0 �
(

r

d(p, p0)

)2

(p − p0),

so that

d(RS(p), p0) �
(

r

d(p, p0)

)2

d(p, p0) � r2

d(p, p0)
.

We now compute

R2
S(p) � p0 +

(
r

d(RS(p), p0)

)2

(RS(p) − p0)

� p0 +
(

r

r2/d(p, p0)

)2(
r

d(p, p0)

)2

(p − p0)

� p0 + p − p0 � p.
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11. Möbius Geometry 127

t

l

l  (p  )

R  (p)

p

0

Figure 11.5

Thus, R2
S is the identity, as it should be for a true reflection.

The story is the same for the reflection Rl in the line lt(p0) with
normal vector p0. The explicit formula is

Rl(p) � p − 2(p · p0 − t)p0

|p0|2 ,

and Rl(∞) � ∞ (Figure 11.5).
To show this we note first that Rl(p) − p must be parallel to the

normal vector p0 of lt(p0); that is,

Rl(p) − p � λp0.

We determine λ using the fact that lt(p0) is the perpendicular bi-
sector of the segment connecting p and Rl(p). Analytically, the
midpoint

p + Rl(p)

2
of this segment must be on lt(p0):

(p + Rl(p)) · p0 � 2t.

On the other hand, Rl(p) � p + λp0, so that

λ � 2(t − p · p0)

|p0|2
and the formula for Rl follows.

We now define the Möbius group Möb (R̂2) as the group of all
finite compositions of reflections in circles and lines. Aside from
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this being a group, one more fact is clear. Our plane isometries are
contained in the Möbius group

Iso (R2) ⊂ Möb (R̂2).

This is because every plane isometry is the composition of (at most
three) reflections in lines. (Note also that we automatically ex-
tended the plane isometries to R̂2 by declaring that they should
send ∞ to itself.)

Before we go any further, note that any spherical isometry of
S2 is the composition of spherical reflections. (The proof is analo-
gous to the planar case.) Thus, conjugating the group Iso (S2) of all
spherical isometries by the stereographic projection hN , we obtain
that hN ◦ Iso (S2) ◦ h−1

N is a subgroup of Möb (Ĉ)! Finally, notice that
Iso (R2) and hN ◦ Iso (S2) ◦ h−1

N intersect in the orthogonal group
O(R2) (cf. Section 10).

♣ Let k > 0. Let R◦
S be reflection in S1(0) and RS reflection in

S√k(0). The composition RS ◦ R◦
S works out as follows:

(RS ◦ R◦
S)(p) � RS

(
p

|p|2
)

�
( √

k

d(0, p/|p|2)
)2

p

|p|2 � kp.

We see that RS ◦ R◦
S is nothing but central dilatation with ratio of

magnification k > 0.
We introduced reflections in circles by the requirement that they

should be circle-preseving. This enabled us to derive an explicit
formula for RS as above. It is, however, not clear whether RS is
actually circle-preserving. Our next result states just this.

Theorem 7.
Let S be any Möbius transformation on R̂2. Then S maps circles to

circles.

Proof.
Since isometries and central dilatations send circles to circles, we
may assume that S is reflection in a circle Sr(p0). Since (Tp0)

−1 ◦
S ◦ Tp0 is reflection in the circle Sr(0), we may assume that p0 � 0.
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ReplacingTp0 in the previous argument with central dilatation with
ratio r > 0, we may assume that S � R◦

S, reflection in the unit circle
S1(0). Now let I be any circle. I can be described by the equation

α|p|2 − 2p · p0 + β � 0, p ∈ R2,

where α, β ∈ R and p0 ∈ R2. The choice α � 1 gives the circle
with center at p0, and α � 0 defines the line with normal vector p0.
Dividing by |p|2 and rewriting this in terms of q � R◦

S(p) � p/|p|2,
we obtain

α − 2q · p0 + β|q|2 � 0,

and this is the equation of another circle. We are done.1

Remark.
♥ Möbius transformations generalize to any dimensions. In fact,
the defining formula for the reflection RS works for Rn if we think
of d as the Euclidean distance function on Rn. Here, S � Sr(p0) is
the (n − 1)-dimensional sphere with center p0 and radius r. As an
interesting connection between Möbius geometry and the stereo-
graphic projection hN , we note here that, for n � 3, hN is nothing
but the restriction of RS to S2 ⊂ R3, where S � S√2(N) is the sphere
with center at the North Pole N and radius

√
2. This can be worked

out explicitly by looking at Figure 11.6. (Do you see the Lune of
Hippocrates here?) In fact, all we need to show is thatRS(p), p ∈ S2,
is in R2, or equivalently that RS(p) and N are orthogonal. Taking
dot products and using |p| � 1, we compute

RS(p) · N � 1 + 2
|p − N |2 (p − N) · N

� 1 + 2
2 − 2p · N (p · N − 1) � 0.

1The first part of the proof was to reduce the case of general Möbius transformations to the single case
of reflection in the unit circle. Systematic reduction is a very useful tool in mathematics. Here’s a joke:
A mathematician and a physicist are asked to solve two problems. The first problem is to uncork a bottle
of wine and drink the contents. They solve the problem the same way: They both uncork the bottles
and drink the wine. The second problem is the same as the first, but this time the bottles are open. The
physicist (without much hesitation) drinks the second bottle of wine. The mathematician puts the cork
back in the bottle and says, “Now apply the solution to the first problem!”
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Figure 11.6

SR  (p)

p

N

We can be even bolder and realize that no computation is needed
if we accept the generalization of Theorem 7 to dimension 3, since
RS maps S2 to a “sphere” that contains ∞ � RS(N), so that (looking
at the fixed point set S2 ∩ S√2(N)) the image of S2 under RS must
be R2.

Problems

1. Show that the Möbius group is generated by isometries, dilatations with center
at the origin, and one reflection in a circle.

2. Generalize the observation in the text and show that the composition of re-
flections in two concentric circles with radii r1 and r2 is a central dilatation
with ratio of magnification (r1/r2)

2.
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...........................................

Complex Linear
Fractional
Transformations

♣ In Section 11 we created the Möbius group by playing around
with stereographic projections, which were a fundamental ingre-
dient in our proof of the FTA. Taking a closer look at the proof,
however, we see that we have not attained full understanding of
Möb (R̂2). For example, in the proof of the FTA, it is a crucial fact
that reflection to the unit circle can be written not only as z  →
z/|z|2, but also as z  → 1/z̄ (only the latter gave smoothness of the
polynomial P on S2 across the North Pole). The key to better under-
standing of the Möbius group is to introduce what is called “complex
language in geometry.” As usual, we start modestly and express the
basic geometric transformations in terms of complex variables:

1. Translation Tv by v ∈ C (considered as a vector in R2) can be
defined as Tv(z) � z + v.

2. Rotation Rθ with center at the origin and angle θ ∈ R is nothing
but multiplication by z(θ) � cos θ+ i sin θ; that is, Rθ(z) � z(θ)z,
z ∈ C. Now the rotation Rθ(p0)with center p0 ∈ C can be written
asRθ(p0) � Tp0 ◦Rθ◦(Tp0)

−1, so thatRθ(p0)(z) � Rθ(z−p0)+p0 �
z(θ)(z − p0) + p0.

3. Reflection Rl in a line can be written in terms of complex vari-
ables as follows: Let the line l � lt(p0) be given by !(zp̄0) � t,

131
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p0 �� 0. (The dot product of two complex numbers z and w

considered as plane vectors is given by the real part !(zw̄) �
(zw̄ + z̄w)/2. This is what we just used here.) Now, by Section
11, Rl can be written as

Rl(z) � z − 2(!(zp̄0) − t)p0

|p0|2 � z − zp̄0 + z̄p0 − 2t
p̄0

� − p0z̄ − 2t
p̄0

.

4. The complex expression for the glide Gl,v � Tv ◦ Rl � Rl ◦ Tv
follows from the expressions of Tv and Rl above.

5. Reflection RS to the circle Sr(p0), r > 0, is given by

RS(z) � r2

z̄ − p̄0
+ p0 � p0z̄ + (r2 − |p0|2)

z̄ − p̄0
.

Comparing (3) and (5), we see something in common! They are
both of the form

z  → az̄ + b

cz̄ + d
, ad − bc �� 0.

(In the first case the “determinant” ad−bcworks out to be −p0p̄0 �
−|p0|2 �� 0, and in the second, −p0p̄0 − (r2 − |p0|2) � −r2 �� 0.)

Theorem 8.
Let Möb+(Ĉ) denote the group of direct (orientation-preserving)

Möbius transformations of the extended plane Ĉ. Then Möb+(Ĉ) is
identical to the group of complex linear fractional transformations

z  → az + b

cz + d
, ad − bc �� 0, a, b, c, d, ∈ C.

Proof.
Möb+(Ĉ) is the subgroup of Möb (Ĉ) consisting of those Möbius
transformations that are compositions of an even number of re-
flections to lines and circles. As noted above, a reflection has the
form

z  → az̄ + b

cz̄ + d
, ad − bc �� 0, a, b, c, d ∈ C.
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The composition of two such reflections (with different a’s, b’s,
c’s, and d’s) is clearly a linear fractional transformation (cf. also
Problem 1), so we have proved that Möb+(Ĉ) is contained in the
group of linear fractional transformations.

For the converse, let g be a linear fractional transformation

g(z) � az + b

cz + d
, ad − bc �� 0.

If c � 0, then g(z) � (a/d)z + (b/d), so that if a � d, then g is a
translation, and if a �� d, then g is the composition of a translation,
a rotation, and a central dilatation. This latter statement follows
from rewriting g as

g(z) �
(
a

d

)
(z − p) + p,

where p � (b/d)/(1− (a/d)), and then looking at the complex form
of rotations. (a/d � |a/d| · z(θ), where θ � arg(a/d) and |a/d| gives
the ratio of magnification.) Thus, we may assume c �� 0. To begin
with this case, we first note that z  → 1/z is in Möb (Ĉ) since it is
reflection to the unit circle followed by conjugation (reflection to
the real axis). We now rewrite g as

g(z) � bc − ad

c2(z + d/c)
+ a

c

and conclude that g is the composition of a translation, the Möbius
transformation z  → 1/z, a rotation, a central dilatation, and finally
another translation. Thus g ∈ Möb (Ĉ), and we are done.

Remark.
More geometric insight can be gained by introducing the isometric
circle Sg of a linear fractional transformation

g(z) � az + b

cz + d
, ad − bc �� 0, a, b, c, d ∈ C,

as

Sg � {z ∈ C | |cz + d| � |ad − bc|1/2}.
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(Here we assume that c �� 0.) That Sg is a circle is clear. The name
“isometric” comes from the fact that if z, w ∈ Sg, then we have

|g(z) − g(w)| �
∣∣∣∣ az + b

cz + d
− aw + b

cw + d

∣∣∣∣
�
∣∣∣∣ (ad − bc)(z − w)

(cz + d)(cw + d)

∣∣∣∣ � |z − w|,

so that g behaves on Sg as if it were an isometry! Let RS denote
the reflection in Sg. Since Sg has center −d/c and radius

√|K|/|c|,
where K � ad − bc, we have

RS(z) � |K|/|c|2
z̄ + d̄/c̄

− d

c

� |K|
c(cz + d)

− d

c
.

The composition g ◦ RS is computed as

(g ◦ RS)(z) � aRS(z) + b

cRS(z) + d

� a(cRS(z) + d) − (ad − bc)

c(cRS(z) + d)

� a|K|/(cz + d) − K

c|K|/(cz + d)

� − K

c|K| (cz + d) + a

c
.

This map is of the form z  → pz̄ + q with |p| � 1. It can be
decomposed as

z  → z̄  → pz̄  → pz̄ + q.

The first arrow represents reflection to the first axis; the second,
rotation by angle arg p around the origin; the third, translation by
q. The second and third are themselves compositions of two reflec-
tions. So we find that z  → pz̄ + q, |p| � 1, is the composition of an
odd number of at most five reflections.
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Summarizing, we find that g ◦ RS is the composition of an odd
number of reflections, so that g is the composition of an even
number of reflections.

As a corollary to Theorem 7, we find that linear fractional
transformations are circle-preserving. We will return to this later.

Given a direct Möbius transformation represented by the linear
fractional transformation

z  → az + b

cz + d
, ad − bc �� 0,

multiplying a, b, c, d by the same complex constant represents
the same Möbius transformation. Choosing this complex constant
suitably, we can attain

ad − bc � 1.

We now introduce the complex special linear group SL(2, C), consist-
ing of complex 2 × 2-matrices with determinant 1. ♥ By the above,
we have

Möb+
(Ĉ) ∼� SL(2, C)/{±I}.

This complicated-looking isomorphism (see Problems 1 and 2)
means that each Möbius transformation can be represented by a
matrix A in SL(2, C), with A and −A representing the same Möbius
transformation. If we write A as

A �
[
a b

c d

]
,

then the Möbius transformation is given by the linear fractional
transformation

z  → az + b

cz + d
, z ∈ Ĉ.

In what follows, we will not worry about the ambiguity caused by
the choice in ±A; our group to study is SL(2, C).

♣ To illustrate how useful it is to represent direct Möbius trans-
formations by linear fractional transformations, we now show that
given two triplets of distinct points z1, z2, z3 ∈ Ĉ andw1, w2, w3 ∈ Ĉ,
there is a unique direct Möbius transformation that carries z1 tow1,
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z2 to w2, and z3 to w3. Clearly, it is enough to show this for w1 � 1,
w2 � 0, and w3 � ∞. If none of the points z1, z2, z3 is ∞, then the
Möbius transformation is given by

z  → z − z2

z − z3

/
z1 − z2

z1 − z3

If z1, z2, or z3 � ∞, then the transformation is given by

z − z2

z − z3
,

z1 − z3

z − z3
,

z − z2

z1 − z2
.

As for unicity, assume that a direct Möbius transformation

z  → az + b

cz + d
, ad − bc � 1,

fixes 1, 0, and ∞. Since 0 is fixed, b � 0. Since ∞ is fixed, c � 0.
Now 1 is fixed, so that 1 � (a/d) and we end up with the identity.

We finally note that any opposite Möbius transformation can be
written as

z  → az̄ + b

cz̄ + d
, ad − bc � 1, a, b, c, d ∈ C.

Indeed, if g is an opposite Möbius transformation, then z  → g(z̄)

gives an element of Möb+(Ĉ), a linear fractional transformation.
One final note: Möbius transformations are not only circle-

preserving but angle-preserving as well. What do we mean by this?
An angle, after all, consists of two half-lines meeting at a point.
An arbitrary transformation maps an angle to two curves that join
at the image of the meeting point. The answer, as you know from
calculus, is that two curves that meet at a point also have an angle
defined by the angle of the corresponding tangent vectors at the
meeting point.

We now turn to the proof of preservation of angles (termed con-
formality later) under Möbius transformations. This follows from
conformality of the stereographic projection. We give here an in-
dependent analytic proof. (For a geometric proof, see Problem 8.)
Since isometries preserve angles (congruent triangles in Euclid’s
Elements), we can reduce the case of general Möbius transforma-
tions to the case of reflections in circles. Since central dilatations
preserve angles (Euclid’s Elements again on similar triangles), the
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only case we have to check is reflection to the unit circle S1 ⊂ C.
This is given by z  → 1/z̄, 0 �� z ∈ C. Even conjugation can be left
out, since it is an isometry. Thus, all that is left to check is that
z  → 1/z preserves angles. ♦ Let 0 �� z0 ∈ C and γ : (−a, a) → C,
a > 0, a smooth curve with γ(0) � z0. The Möbius transforma-
tion z  → 1/z sends the tangent vector γ ′(0) to the tangent vector
(d/dt)(1/γ(t))t�0. The latter computes as

d

dt

(
1
γ(t)

)
t�0

� − γ ′(t)
γ(t)2

∣∣∣∣
t�0

� − γ ′(0)
z2

0

since γ(0) � z0. Thus z  → 1/z acts on the vector γ ′(0) by multiply-
ing it with the constant factor −1/z2

0. This is central dilatation by
ratio 1/|z0|2 followed by rotation by angle arg(−1/z2

0) � π−2 arg z0.
Both of these preserve angles, and we are done.

If we accept that Möbius transformations in R3 are angle-
preserving (Problem 8 extended to R3), then the construction in
the remark at the end of Section 11 shows that the stereographic
projection is also angle-preserving. This we proved in Section 7
directly.

We are now ready to introduce hyperbolic plane geometry in the
next section.

Problems

1. Show that composition of linear fractional transformations corresponds to
matrix multiplication in SL(2, C).

2. Check that the inverse of the linear fractional transformation z  → (az +
b)/(cz + d), ad − bc �� 0, is w  → (dw − b)/(−cw + a).

3. Find a linear fractional transformation that carries 0 to 1, i to −1, and −i to 0.

4. Let z1, z2, z3, z4 ∈ Ĉ with z2, z3, z4 distinct.
(a) Find a linear fractional transformation f that carries z2 to 1, z3 to 0, and

z4 to ∞.
(b) Define the cross-ratio (z1, z2, z3, z4) as f(z1) ∈ Ĉ. Show that the cross-ratio

is invariant under any linear fractional transformation; that is, if g is a linear
fractional transformation, we have (g(z1), g(z2), g(z3), g(z4)) � (z1, z2, z3, z4).

(c) Prove that (z1, z2, z3, z4) ∈ R iff z1, z2, z3, z4 lie on a circle or a straight
line.
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(d) Using (a)–(c), conclude that linear fractional transformations are circle-
preserving.

5. Find a linear fractional transformation that maps the upper half-plane {z ∈
C | "(z) > 0} to the unit disk {z ∈ C | |z| < 1}.

6. Describe the Möbius transformation z  → 1 + z̄, z ∈ Ĉ, in geometric terms.

7. Show that the non-Möbius transformation z  → z + 1/z, z ∈ Ĉ, maps circles
with center at the origin to ellipses. What is the image of a half-line emanating
from the origin?

8. Show that Möbius transformations preserve angles in the following geometric
way: (a) Consider a single reflection RS in a circle S � Sr(p0). Use the identity

d(p, p0)d(RS(p), p0) � r2

(Figure 11.4) to show that RS maps circles orthogonal to S to themselves.
(b) Given a ray emanating from a point p not in S, construct a circle that is

orthogonal to the ray at p, and also orthogonal to S at the intersection points.
(c) Apply (b) to the two sides of an angle, and notice that two intersecting

circles meet at the same angle at their two points of intersection.
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...........................................

“Out of Nothing I
Have Created a New
Universe”—Bolyai

♣ Plane isometries have one characteristic property that, although
obvious, has not been mentioned so far. They map straight lines
to straight lines! The more general Möbius transformations do not
have this property, but we have seen that they map circles (in the
general sense; i.e., circles and lines) to circles. Thus the question
naturally arises: Does there exist a “geometry” in which “lines” are
circles and “isometries” are Möbius transformations? The answer is
not so easy if we think of the strict guidelines, called the Five Pos-
tulates, that Euclid gave around 300 b.c. in the Elements to obtain a
decent geometry. Although we again shy away from the axiomatic
treatment, we note here that for any geometry it is essential that
through any two distinct points there be a unique line. The famous
Fifth Postulate (actually, the equivalent Playfair’s axiom),

Through a given point not on a given line there passes a unique
line not intersecting the given line.

is another matter. Even Euclid seemed reluctant to use this in his
proofs.

Returning to our circles and Möbius transformations, we now
have a general idea how to build a geometry in which “lines” are
circles. We immediately encounter difficulty, since looking at the

139
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Figure 13.1

pencil of circles in Figure 13.1 we see that the required unicity of
the “line” (that is a circle) through two distinct points fails. There
are too many ‘lines’ in our geometry! This is because a circle is
determined by three of its distinct points, not two. Thus, to ensure
unicity, we have to rule out a lot of circles. This can be done ele-
gantly by imposing a condition on our circles. One simple idea is to
fix a point on the plane and require all circles to pass through this
point. This point cannot be in the model. Assuming that it is the
origin, we perform the transformation z  → 1/z, z ∈ Ĉ, and realize
that our “circles” become straight lines! (This is because this trans-
formation, like any Möbius transformation, is circle-preserving,
so that circles through the origin transform into “unbounded cir-
cles” that are straight lines.) We thus rediscover Euclidean plane
geometry.

A somewhat more sophisticated idea is to fix a line l and con-
sider only those circles that intersect l perpendicularly. The points
on this line cannot be in our model. l splits the plane into two
half-planes of which we keep only one, denoted by H2, where the
superscript indicates the dimension. That this works can be seen
as follows: Take two distinct points p and q inH2. If the line through
p and q is perpendicular to l, then we are done. Otherwise, the per-
pendicular bisector of p and q intersects l at a point c. Now draw a
circle through p and q with center c. Since we keep only H2 as the
point-set of our geometry, we see that the “line” through p and q

is, in the first case, the vertical half-line through p and q (ending
at a point in l not in H2) and, in the second case, the semicircle
through p and q perpendicular to l at its endpoints. The location
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of l is irrelevant, so we might just as well take it the real axis. We
choose H2 to be the upper half-plane. We thus arrive at the half-
plane model of hyperbolic geometry, due to Poincaré. In this model
hyperbolic lines are Euclidean half-lines or semi-circles perpendic-
ular to the boundary of H2. The boundary points of H2 are called
ideal or (for the obvious reason) points at infinity. It is easy to see
that this geometry satisfies the first four postulates of Euclid, along
with unicity of the hyperbolic line through two distinct points.

What about the Fifth Postulate? In Figure 13.2 four hyperbolic
lines meet at a point, and they are all parallel to the vertical hy-
perbolic line. The Fifth Postulate thus fails in this model. We have
accomplished what mathematicians have been unable to do for al-
most 2000 years—independence of the Fifth Postulate from the first
four! (In fact, we are concentrating here on the explicit model too
much. One of the greatest discoveries of Bolyai was the invention
of “absolute geometry” in the axiomatic treatment.) This geometry
(although not this particular model) was discovered about 1830 by
Bolyai (1802–1860) and Lobachevsky (1793–1856), and the story in-
volving Gauss is one of the most controversial pieces in the history
of mathematics.1

We now return to Möbius transformations. Our path is clear; we
need to see which Möbius transformations map H2 onto itself. No-
tice that a Möbius transformation of this kind automatically maps
the real axis to itself so that, being circle-preserving and confor-
mal (� angle-preserving), it will automatically map our hyperbolic

Figure 13.2

1For a good summary, see M.J. Greenberg, Euclidean and non-Euclidean Geometries, Development and
History, Freeman, 1993.
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lines to hyperbolic lines (since it preserves perpendicularity at
the boundary points). We first treat the case of direct Möbius
transformations, viewed as elements of SL(2, C).

Theorem 9.
A matrix in SL(2,C) leaves H2 invariant iff its entries are real; that

is, the matrix belongs to SL(2,R).

Proof.
Let g be a linear fractional transformation

g(z) � az + b

cz + d
, ad − bc � 1, a, b, c, d ∈ C,

and assume that g maps H2 onto itself. Then g maps the real axis
onto itself. In particular, g−1(0) � r0 is real or ∞. We assume that
r0 ∈ R since r0 � ∞ can be treated analogously. The composition
g ◦ Tr0 fixes the origin. It has the form

(g ◦ Tr0)(z) �
a(z + r0) + b

c(z + r0) + d
� az + b + ar0

cz + d + cr0
.

The numbers a, b+ ar0, c, d+ cr0 are real iff a, b, c, d are. Thus, it is
enough to prove the theorem for g ◦ Tr0 . Since this transformation
fixes the origin, by changing the notation we can assume that the
original linear fractional transformation g fixes the origin. This
means that b � 0 and

g(z) � az

cz + d
, ad � 1.

First assume that c � 0, so that g(z) � (a/d)z. Since g maps the
real axis onto itself, a/d is real. Since ad � 1, it follows that a/d �
a2 is real. This means that a is real or purely imaginary. In the
first case we are done. In the second, a � ia0 with a0 real. Thus,
d � 1/a � −i/a0 and g(z) � (a/d)z � −a2

0z. This maps i ∈ H2

outside of H2, so that this case is not realized.
Next, we assume that c �� 0. Taking z � r real and working

out ar/(cr + d), it follows easily that this latter fraction is real iff
a/c and a/d are both real. As before a/d � a2, so that a is real or
purely imaginary. If a is real then so are d and c, and we are done.
If a � ia0 with a0 real, then d � −i/a0 and c � ic0 for some c0 real.
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We have

g(z) � ia0z

ic0z − i/a0
� a2

0z

a0c0z − 1
.

Consider z � εi, ε > 0, in H2. We have

g(εi) � a2
0εi

a0c0εi − 1
� − a2

0εi(a0c0εi + 1)
(a0c0ε)2 + 1

.

For ε small enough, this is not in H2. This case is not realized.
Summarizing, we find that if g maps H2 onto itself then

g(z) � az + b

cz + d
, ad − bc � 1,

with a, b, c, d real.
Conversely, assume that g is of this form with real coefficients.

We claim that g(H2) ⊂ H2. (It is clear that g maps the real axis onto
itself.) We have

"(g(z)) � "(z)
|cz + d|2 .

This is a simple computation. In fact, we have

"(g(z)) � "
(
az + b

cz + d

)
� "

(
(az + b)(cz̄ + d)

|cz + d|2
)

� "
(
adz + bcz̄

|cz + d|2
)

� "
(
adz − bcz

|cz + d|2
)

� "(z)
|cz + d|2 .

Thus, "(z) > 0 implies "(g(z)) > 0; in particular, g(H2) ⊂ H2. The
theorem follows.

Corollary.
A general Möbius transformation that maps H2 onto itself can be

represented by

z  → az + b

cz + d
or z  → a(−z̄) + b

c(−z̄) + d

where a, b, c, d ∈ R.
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Proof.
We need to consider only opposite Möbius transformations. If g
is opposite, the transformation z  → g(−z̄) is direct and maps H2

onto itself since both g and z  → −z̄ do. The corollary follows.
(Note that z  → z̄ does not work, since it maps H2 to the lower
half-plane.)

Having agreed that the upper half-plane is the model of our new
hyperbolic geometry in which the hyperbolic lines are Euclidean
half-lines or semi-circles perpendicular to the boundary, we now
see that the natural candidate for the group of transformations
in this geometry is SL(2,R). The elements of SL(2,R), acting as
linear fractional transformations, preserve angles but certainly do
not preserve Euclidean distances. The question arises naturally:
Does there exist a distance function dH onH2 with respect to which
the elements of SL(2,R) act as isometries?

We seek a quantity that remains invariant under Möbius trans-
formations. The naive approach is to work out the Euclidean
distance d(g(z), g(w)) of the image points g(z) and g(w) under

g(z) � az + b

cz + d
, ad − bc � 1, a, b, c, d, ∈ R.

Here it is:

d(g(z), g(w)) � |g(z) − g(w)| �
∣∣∣∣ az + b

cz + d
− aw + b

cw + d

∣∣∣∣
�
∣∣∣∣ (ad − bc)(z − w)

(cz + d)(cw + d)

∣∣∣∣ � d(z, w)

|cz + d||cw + d| .

The Euclidean distance d(z, w) is divided by the “conformality fac-
tors” |cz + d| and |cw + d|. Notice, however, that these factors also
occur in the expressions of "(g(z)) and "(g(w)) at the end of the
proof of Theorem 9! Dividing, we obtain

d(g(z), g(w))2

"(g(z))"(g(w)) � d(z, w)2

"(z)"(w) ,

and we see that this quotient remains invariant! It is now just a
matter of scaling to define the hyperbolic distance function dH : H2×
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H2 → R by

cosh dH(z, w) � 1 + d(z, w)2

2"(z)"(w) .

We use here the hyperbolic cosine function: cosh t � (et + e−t)/2,
t ∈ R. Note that cosh : [0,∞) → [1,∞) is strictly increasing, so
that the formula for dH makes sense since the right-hand side is
≥ 1. The choice of cosh is not as arbitrary as it seems. As we will
show shortly, it is determined by the requirement that measuring
hyperbolic distance along a hyperbolic line should be additive in
the sense that if z1, z2, and z3 are consecutive points on a hyperbolic
line, then dH(z1, z2) + dH(z2, z3) � dH(z1, z3) should hold.

Summarizing, we obtain a model of hyperbolic plane geometry
on the upper half-plane H2 with hyperbolic distance function dH
and group of direct isometries SL(2,R)/{±I}. (Here we inserted
{±I} back for precision.) The hyperbolic lines are Euclidean half-
lines and semicircles meeting the boundary ofH2 at right angles. As
in Euclidean geometry, the segment on a hyperbolic line between
two points is the shortest possible path joining these two points.
We emphasize here that “shortest” means with respect to dH !

By the conformal (angle-preserving) nature of this model, the
hyperbolic angles are ordinary Euclidean angles. Let us take a
closer look at dH by traveling along a vertical line toward the
boundary of H2 in Figure 13.3.

w

z

Figure 13.3
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Let z � a + si and w � a + ti. We have

cosh dH(z, w) � 1 + (s − t)2

2st
� s2 + t2

2st
� 1

2

(
s

t
+ t

s

)
.

Thus,

dH(z, w) � | log(s/t)|.
Note that additivity of dH along a hyperbolic line is apparent from
this formula. If we fix s and let t → 0, we see that d(z, w) tends to
∞ in logarithmic order. More plainly, the distances get more and
more distorted as we approach the boundary of H2.

Another novel feature of hyperbolic geometry is termed as “an-
gle of parallelism.” Consider a segment l0 on a hyperbolic line
which, by the abundance of hyperbolic isometries, we may assume
to be a vertical line connecting z and w as above. There is a unique
hyperbolic line l through w that meets l0 at a right angle. In our
setting, l is nothing but the Euclidean semicircle through w with
center at the vertical projection of l0 to the boundary. Let ω denote
the ideal point of l to the right of l0. Finally, let l′ be the unique
segment of the hyperbolic line (semicircle) from z to ω. We call l′

the right-sensed parallel to l (Figure 13.4).
The angle θ at z between l0 and l′ is called the angle of parallelism.

The length of l0 (denoted by the same letter) and θ determine each

Figure 13.4 ω

θ

l l ′

l

z

w

0

π/2
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other uniquely. Since, unlike Euclidean distances, angles are abso-
lute in both geometries (in the sense that they have absolute unit
of measurement), we find that, through the angle of parallelism,
hyperbolic distances are also absolute!

Taking a closer inspection of Figure 13.4, we realize that we
can actually derive an explicit formula relating θ and l0. Indeed,
inserting some crucial lines, we arrive at the more detailed Figure
13.5.

The Pythagorean Theorem tells us that

r2 � s2 + (r − t)2, z � a + si, w � a + ti.

Using this, we find

sin θ � s

r
� 2st

s2 + t2
.

Comparing this with our earlier computation for dH , we see that the
right-hand side is the reciprocal of cosh of (the hyperbolic length
of) l0! We thus arrive at the angle of parallelism formula

sin θ cosh l0 � 1.

Encouraged by this, we expect that there must be a formula
expressing the area A of a hyperbolic triangle T in terms of its
angles α, β, and γ. Here it is:

A � π − (α + β + γ).

θ

l l ′

l

z

w

0

π/2

θ

r

Figure 13.5
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Figure 13.6

π/2

β

β

T

The right-hand side is called angular defect for obvious reasons. For
the proof, we first start with an “asymptotic triangle” with angles
α � π/2 and γ � 0. As before, we may assume that the sides of
the angle γ are vertical, as in Figure 13.6.

We arrange (by an isometry) for the left vertical side to be on
the imaginary axis and the finite side to be on the unit circle. Or-
thogonal angles being equal, a look at Figure 13.6 shows that the
right vertical side projects down to the real axis at cos β. Using the
logarithmic growth formula for hyperbolic distances, we see that
the element of arc length in H2 is ds � |dz|/"(z). Hence, the met-
ric is ds2 � (dx2 + dy2)/y2, where z � x + yi. By calculus, the area
element is thus dxdy/y2. We compute the area A of T as follows:

A �
∫ cos β

0

(∫ ∞
√

1−x2

dy

y2

)
dx

�
∫ cos β

0

dx√
1 − x2

� π/2 − β � π − (π/2 + β).

Still in the asymptotic category, it is easy to generalize this to the
area formula for a triangle with angles α, β arbitrary and γ � 0
(we do this by pasting two asymptotic triangles together along a
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vertical side). Adding areas, we arrive at

A � π − (α + β).

Finally, the general formula follows by cutting and pasting; that
is, by considering the area of a hyperbolic triangle with nonzero
angles as an algebraic sum of the areas of three asymptotic
triangles.

As a consequence of the angular defect formula, we find a new
non-Euclidean phenomenon: All hyperbolic triangles have area
≤ π.

We derived the angular defect formula as a consequence of the
special form of the hyperbolic distance in our model. In an ax-
iomatic setting, the angular defect formula can be derived starting
from Lobachevsky’s angle of parallelism, proving that all trebly
asymptotic triangles (triangles with three ideal vertices) are con-
gruent, and finally following2 the argument of Bolyai (as published
in Gauss’s collected works).

The angular defect formula is strikingly similar to Albert Gi-
rard’s spherical excess formula,3 stating that the area of a spherical
triangle in S2 is

α + β + γ − π,

where α, β, and γ are the spherical angles of the triangle at the
vertices. A proof of this is as follows. The extensions of the sides of
the spherical triangle give three great circles that divide the sphere
into eight regions, the original triangle whose area we denote by A
and its opposite triangle, three spherical triangles with a common
side to the original triangle whose areas we denote by X, Y and Z,
and their opposites. Let α, β, and γ denote the spherical angles of
the original triangle opposite to the sides that are common to the
other three triangles with areas X, Y , and Z. Notice that A + X is
the area of a spherical wedge with spherical angle α. We thus have
A + X � 2α. Similarly, A + Y � 2β and A + Z � 2γ. Adding,
we obtain 3A + X + Y + Z � 2(α + β + γ). On the other hand,

2See H.S.M. Coxeter, Introduction to Geometry, Wiley, 1969.
3This appeared in A. Girard’s Invention nouvelle en algèbre in 1629.
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2(A+ X + Y + Z) � 4π, the area of the entire sphere. Subtracting,
the spherical excess formula follows.

As another consequence of the hyperbolic distance formula, we
now describe how a hyperbolic circle looks. Let p0 ∈ H2 and r > 0
and work out

{z ∈ H2| dH(z, p0) � r}.
We can rewrite the defining equation as

cosh dH(z, p0) � cosh r,

or equivalently

1 + d(z, p0)
2

2"(z)"(p0)
� cosh r.

Writing z � x + yi and p0 � a + bi, we have

(x − a)2 + (y − b)2 � 2(cosh r − 1)by.

This gives

(x − a)2 + (y − b cosh r)2 � (b sinh r)2,

where we used the identity cosh2
r − sinh2

r � 1. But this is
the equation of a Euclidean circle! The radius of this circle is
b sinh r, and the center has coordinates a and b cosh r. Compar-
ing (a, b cosh r) with p0 � (a, b), we see that p0 is closer to the
boundary of H2. Thus, a hyperbolic circle looks like a Euclidean
circle with center moved toward the boundary (Figure 13.7).

We now go back to the roots of this long line of arguments.
Remember that the starting point was our study of Möbius
transformations—finite compositions of reflections in circles and
lines. After much ado, we concluded that analytically they are
given by linear fractional transformations (possibly precomposed
by conjugation). Restricting to real coefficients, we understood that
they act as isometries of the upper half-plane model H2 of hyper-
bolic geometry. In the decomposition of a Möbius transformation
as a finite composition of reflections, we must take reflections that
map H2 onto itself, and these are exactly the ones with hyperbolic
line axes! Thus, for a single reflection, we have the following cases
depicted in Figure 13.8.
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Figure 13.7

Let us explore some of the possible combinations. If we com-
pose two reflections with distinct vertical axes, we get an ordinary
Euclidean translation along the real axis such as z  → z + 1. The
situation is the “same” if we consider reflection to a vertical axis
followed by reflection in a circle with one common endpoint (Fig-
ure 13.9), or composition of reflections in circles with one common
endpoint (Figure 13.10). Notice that parallel vertical lines also have
a common endpoint at infinity. Isometries of H2 of this kind are
called parabolic.

If the axes intersect in H2, then the intersection is a fixed point
of the composition (Figure 13.11).

These isometries ofH2 are called elliptic. Without loss of general-
ity, we may assume that the fixed point is i ∈ H2. (This is because
SL(2,R) carries any point to any point in H2.) Let g be an elliptic

Figure 13.8
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Figure 13.9

Figure 13.10

isometry with fixed point i. Since g is direct, we can write

g(z) � az + b

cz + d
, ad − bc � 1, a, b, c, d ∈ R.

Since i is a fixed point,

i � ai + b

ci + d
.

Figure 13.11
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Multiplying, we get a � d and b � −c. Thus,

ad − bc � a2 + b2 � 1.

This calls for the parameterization

a � cos θ, b � − sin θ, θ ∈ R,

so that we arrive at

g(z) � cos θ · z − sin θ

sin θ · z + cos θ
.

The careless reader may now say, “Well, we have not discovered
anything new! After all, the matrix[

cos θ − sin θ

sin θ cos θ

]

represents Euclidean rotation on R2.” But this is a grave error, since
this matrix is viewed as an element of SL(2,R), and thereby rep-
resents a hyperbolic rotation in H2 given by a linear fractional
transformation. If you are still doubtful, substitute θ � π (not 2π!)
and verify that g is the identity (and not a half-turn).

Finally, isometries arising from a no-common-endpoint case are
called hyperbolic. This confusing name has its own advantages.
Do not confuse the term “isometry of the hyperbolic plane” with
“hyperbolic isometry.” A hyperbolic isometry possesses a unique
hyperbolic line, called the translation axis, perpendicular to both
axes (Figure 13.12). Indeed, as the drawing on the left of Figure
13.12 shows, in case one of the axes is vertical with ideal point at
c ∈ R, then the translation axis is the unique Euclidean semicircle
with center at c, intersecting the other axis at the point of tangency
with the radial line from c. In general (see the drawing at the right
of Figure 13.12), one of the axes can be brought to a vertical Eu-
clidean line by a suitable isometry, and the previous construction

Figure 13.12
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applies. Clearly, the translation axis is the unique hyperbolic line
that the hyperbolic isometry leaves invariant. A typical example
for a hyperbolic isometry is z  → kz, k �� 1, with the positive imag-
inary axis as the translation axis. In fact, all hyperbolic isometries
are conjugate to z  → kz for some k �� 1, and the conjugation is
given by an isometry that carries the translation axis to the positive
imaginary axis. Since in this special case the two axes of reflection
of the hyperbolic isometry are on concentric Euclidean circles,
we have proved the following: Two nonintersecting circles can be
brought to a pair of concentric circles by a Möbius transformation.
Indeed, if the two circles are disjoint and nonconcentric, then by
a suitable Euclidean isometry that carries the line passing through
their centers to the real axis, this configuration can be carried into
a setting in hyperbolic geometry.

As an application of these constructions, we now realize that we
have solved the famous Apollonius problem: Find a circle tangent to
three given circles. Indeed, first subtract the smallest radius from
the three radii to reduce one circle to a point. If the remaining
two circles have a common point, then this point can be carried
to ∞ by a Möbius transformation, and the Apollonius problem re-
duces to finding a circle tangent to two lines and passing through
a given point. If the reduced circles are disjoint, then they can
be brought to two concentric circles, and once again, the Apol-
lonius problem reduces to a trivial one: Find a circle tangent to
a pair of concentric circles and passing through a given point.
(Notice that the cases where the Apollonius problem has no solu-
tion can now be easily listed.) You may feel mildly uncomfortable
with the expression “find.” To be precise, we really mean here
geometric construction as explained in Problem 4 in Section 6.
Now realize that all steps that involve Möbius transformations are
constructible.

Looking back to the classification of isometries of the hyperbolic
plane, we see that parabolic and hyperbolic isometries are of in-
finite order (that is, all their powers are distinct, or equivalently,
their powers generate infinite cyclic groups).

We close this section with a final note: Hyperbolic geometry has
several models, and each has its own advantages and disadvan-
tages. One prominent model (also due to Poincaré) is based on the
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unit disk D2 � {z ∈ C | |z| < 1}. It is easy to derive this from the
upper half-plane model H2. In fact, consider the linear fractional
transformation

z → i
i + z

i − z
.

It is easy to see that this transformation sendsD2 ontoH2. (Indeed,
this transformation fixes ±1, sends i to ∞, and sends 0 to i.)

Remark.
♥ Since this formula seems farfetched, we elaborate on it a little.
Recall from Section 11 that conjugating spherical isometries of S2 by
the stereographic projection hN gives Möbius transformations of Ĉ.
We now claim that the linear fractional transformation of D2 to H2

above is obtained from the spherical rotationQ around the real axis
with angle π/2. Indeed, h−1

N maps D2 to the southern hemisphere
of S2, Q rotates this to the “front” hemisphere between the (prime)
0◦ and 180◦ meridians of longitude, and finally, hN maps this toH2.
To check that hN ◦Q ◦h−1

N gives the linear fractional transformation
above is an easy computation.

♣ Using the linear fractional transformation of D2 to H2, we
see that whatever we developed in H2 can now be transported
to D2. We find that hyperbolic lines in D2 are segments of circles
meeting the boundary S1 of D2 perpendicularly. In particular, if
s is the Euclidean distance beween the origin (the center of D2)
and the “midpoint” of a hyperbolic line, and r is the Euclidean
radius of the circular segment representing the hyperbolic line,
then perpendicularity at the boundary gives

(s + r)2 � 1 + r2

(Figure 13.13).
Hyperbolic isometries of D2 are generated by reflections in

hyperbolic lines. Analytically, the isometries of D2 have the form

z → az + c̄

cz + ā
or z → az̄ + c̄

cz̄ + ā
,
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Figure 13.13

1

s

r

where |a|2 − |c|2 � 1. The hyperbolic metric dD on D2 takes the
form

tanh
(
dD(z, w)

2

)
� d(z, w)

|1 − zw̄| , z, w ∈ D2,

or equivalently,

dD(z, w) � log
|1 − zw̄| + |z − w|
|1 − zw̄| − |z − w| .

With these distance formulas, the linear fractional transformation
of D2 to H2 above becomes an isometry between the two models.

Problems

1. Show that every complex linear fractional transformation of the unit disk D2

onto itself is of the form z  → eiθ(z − w)/(1 − zw̄), where w ∈ D2 and θ ∈ R
(cf. Problem 4 of Section 7).

2. Solve Monge’s problem: Find a circle orthogonal to three given circles.

3. In the upper half-plane H2, consider two Euclidean rays l1 and l2 emanating
from a boundary point ω.

(a) Show that all circular segments l0 with centerω connecting l1 and l2 have
the same hyperbolic length. (Hint: Use hyperbolic reflections in semi-circles
with center at ω.)

(b) What is the connection between the angle of parallelism for the common
hyperbolic length of l0 in (a) and the angle between l1 and l2 at ω?

4. Consider a hyperbolic right triangle with hyperbolic side lengths a, b, and
hypotenuse c, and angles α, β, and π/2.
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(a) Prove the Pythagorean Theorem:

cosh a cosh b � cosh c.

(b) Show that

sinh a tan β � tanh b.

5. Cut a sphere of radius 1/2 into two hemispheres along the equator and keep
the southern hemisphere H. Let H sit on R2 with the South Pole touching the
plane. Let h : H → D2 be the stereographic projection from the North Pole
N � (0, 0, 1), and let v : H → D2

1/2 be the vertical projection to the disk D2
1/2

with center at the origin and radius 1/2. Show that v ◦ h−1 : D2 → D2
1/2 maps

hyperbolic lines in D2 to chords in D2
1/2. Using this correspondence, develop

hyperbolic geometry in D2
1/2. (This model is due to F. Klein.)

6. In the upper half-space model

H3 � {(z, s) ∈ C × R | s > 0} ⊂ C × R ∪ {∞}
of hyperbolic space geometry, hyperbolic lines are Euclidean semicircles or
half-lines meeting the ideal boundary

Ĉ � {(z, 0) | z ∈ C} ∪ {∞}
at right angles. The hyperbolic distance function dH : H3 ×H3 → R is defined
by

cosh dH((z, s), (w, t)) � 1 + |z − w|2 + |s − t|2
2st

, (z, s), (w, t) ∈ H3.

Given a reflection RS in a circle S � Sr(p0) on the ideal boundary Ĉ, define
the Poincaré extension R̃S as reflection to the upper hemisphere (in H3) with
boundary circle S. Given a Möbius transformation g of the ideal boundary Ĉ,
define the Poincaré extension g̃ : H3 → H3 by decomposing g into a finite
composition of reflections and taking the Poincaré extension of each factor.

(a) Show that g̃ is well defined (that is, it does not depend on the particular
representation of g as a composition of reflections).

(b) Verify that g̃ is a hyperbolic isometry of H3. (The Poincaré extension
thus defines Möb+(Ĉ) as a subgroup of Iso (H3).)

7. Develop hyperbolic space geometry in the 3-dimensional unit ball

D3 � {p ∈ R3 | |p| < 1}
with hyperbolic distance function dD : D3 × D3 → R defined by

cosh(dD(p, q)) � 1 + 2|p − q|2
(1 − |p|2)(1 − |q|2) , p, q ∈ D3.
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...........................................

Fuchsian Groups

♥ We are now ready to discuss the final task in hyperbolic
geometry: classification of discrete subgroups of the group of
direct hyperbolic isometries in SL(2,R). Unlike the case of
crystallographic groups, we do not consider opposite Möbius
transformations here. However, this does not prevent us from con-
structing these discrete subgroups by means of opposite isometries
(such as groups generated by reflections in the sides of a hyper-
bolic triangle; see the discussion of triangle groups at the end of
this section). Here we are entering an area in which full under-
standing has not been obtained, although a vast number of results
are known. To be modest, we will only give a few illustrations that
reveal some subtleties of the subject.

First some definitions. Given a linear fractional transformation

g(z) � az + b

cz + d
, ad − bc � 1, a, b, c, d ∈ C,

we introduce its norm:

|g| �
√
|a|2 + |b|2 + |c|2 + |d|2.

This is well defined since the right-hand side is unchanged if we
replace a, b, c, d by their negatives. (Remember the ambiguity

158
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{±I}.) A subgroup G ⊂ Möb+
(Ĉ) is discrete if for any n > 0, the set

{g ∈ G | |g| < n}

is finite. A discrete group G, considered as a subgroup in SL(2, C)
is said to be Kleinian.

The most typical example of a Kleinian group is the modular
group SL(2, Z) consisting of linear fractional transformations

z → az + b

cz + d
, ad − bc � 1,

with integral coefficients a, b, c, d ∈ Z.
A Kleinian group that leaves a half-plane or a disk invariant is

called Fuchsian.1 In the case of a Fuchsian group we may assume
that the invariant half-plane is H2 or the invariant disk is D2. In
the first case (and this is where we give most of the examples), we
thus have a discrete subgroup of SL(2,R). As expected, the theory
of Fuchsian groups is very well developed; much less is known
about Kleinian groups.

We wish to visualize Fuchsian groups as hyperbolic tilings,
or tesssellations, of H2. We thus have to introduce the notion of
fundamental set (domain) in much the same way as we did for crys-
tallographic groups on R2. Given a Fuchsian group G ⊂ SL(2,R),
we say that F ⊂ H2 is a fundamental set if F meets each orbit

G(z) � {g(z) | g ∈ G}, z ∈ H2,

exactly once. A fundamental domain for G is a domain F0 in H2

such that there is a fundamental set F for G between F0 and F̄0 and
∂F0 � F̄0 − F0 has zero dimensional area.2

The simplest Fuchsian groups, G, are cyclic; that is, they are
generated by a single linear fractional transformation g ∈ SL(2,R).
We write this as G � 〈g〉. Depending on whether g is parabolic,
hyperbolic, or elliptic, we arrive at the following examples:

1The terms ‘Kleinian’ and ‘Fuchsian’ are due to Poincaré.
2A word of caution. The closure here is taken in H2, and by “area” we mean hyperbolic area.
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Figure 14.1

Example 1
Let g be the parabolic isometry

g(z) � z + 1, z ∈ H2.

A fundamental domain F0 for G � 〈g〉 is given by 0 < !(z) < 1,
shown in Figure 14.1.

Figure 14.2 shows the transformed fundamental domain and
tiling on D2. �

Figure 14.2
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Remark.
It is instructive to look at the transformation g from D2 to H2 via
hN ◦ Q ◦ h−1

N , where Q is a quarter-turn around the real axis (cf.
Section 13).

Example 2
Let k > 1 and consider the hyperbolic isometry

g(z) � kz, z ∈ H2.

A fundamental domain for G � 〈g〉 is given by

F0 � {z ∈ H2 | 1 < |z| < k}
(Figure 14.3).

The corresponding fundamental domain and tiling on D2 is
shown in Figure 14.4. �

Example 3
Let g be elliptic with fixed point at i ∈ H2. As noted above, g can
be written as

g(z) � cos θ · z − sin θ

sin θ · z + cos θ
, z ∈ H2,

and discreteness implies that θ � π/n for some n ≥ 2. The tiling
for G � 〈g〉 is shown in Figure 14.5 for H2 and in Figure 14.6 for
D2 (noting that i corresponds to the origin). �

Before we leave the cyclic Fuchsian groups, here is one more
simple example, in which G is generated by an elliptic and a
hyperbolic isometry.

Figure 14.3
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Figure 14.4

Figure 14.5

Figure 14.6
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Figure 14.7

Example 4
Let k > 1 and G � 〈g1, g2〉, where

g1(z) � −1/z and g2(z) � kz, z ∈ H2.

A fundamental domain and the tiling is shown in Figure 14.7. �

Examples 1 to 4 (and their conjugates in SL(2,R)) make up what
we call elementary Fuchsian groups. From now on we concentrate
on nonelementary Fuchsian groups.

Example 5
Let G � SL(2, Z) be the modular group. We claim that F0 defined
by

|z| > 1 and |!(z)| < 1/2

is a fundamental domain (Figure 14.8).
Let g be an arbitrary element in G and write

g(z) � az + b

cz + d
, ad − bc � 1, a, b, c, d ∈ Z.

Assume that z ∈ F0, i.e., the defining inequalities for F0 hold. We
compute

|cz + d|2 � c2|z|2 + 2!(z)cd + d2 > c2 + d2 − |cd|
� (|c| − |d|)2 + |cd|.

The lower bound here is a nonnegative integer and is zero iff c �
d � 0. This cannot happen since ad − bc � 1. Thus,

|cz + d|2 > 1, z ∈ F0.
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Figure 14.8

Using this, we have

"(g(z)) � "(z)
|cz + d|2 < "(z), z ∈ F0,

where we used the formula for "(g(z)) in the proof of Theorem 9.
We now show that F0 contains at most one point from each orbit
of G. ¬ Assuming the contrary, we can find z ∈ F0 and g ∈ G such
that g(z) ∈ F0. By the computation above,

"(g(z)) < "(z).
Replacing z by g(z) and g by g−1 in this argument, we obtain

"(g−1(g(z))) � "(z) < "(g(z)),
and this contradicts the inequality we just obtained! ¬

The parabolic isometry z  → z + 1 and the elliptic “half-turn”
z  → −1/z are in G, and by applying them, we can easily move
any point in H2 to F̄0. Thus, F0 is a fundamental domain for G. (As
a by-product, we obtain that SL(2, Z) is generated by z  → z+ 1 and
z  → −1/z, z ∈ H2.) Notice that F0 is a hyperbolic triangle (in the
asymptotic sense with one vertex at infinity). A fundamental set F
with F0 ⊂ F ⊂ F̄ is given by the inequalities −1/2 < !(z) ≤ 1/2,
|z| ≥ 1, and !(z) ≥ 0 if |z| � 1. Geometrically, we add to F0 the
right half of the boundary circle and the right vertical side of F0.
Thus, the modular group tiles H2 with triangles (Figure 14.9). �
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Figure 14.9

Remark.
At the end of Section 2, we introduced the modular group SL(2, Z)
by studying various bases in a lattice in R2 � C2 (cf. Problem 15).
Since we constructed a fundamental set F for SL(2, Z) above, it
follows that for all the bases {v, w} of a given lattice L ⊂ C there
is a unique ratio τ � w/v in F . A basis {v, w} with this property is
called canonical. Given a ratio τ ∈ F corresponding to a canonical
basis, there is a choice of two, four, or six canonical bases with this
ratio. Indeed, {−v,−w} is always canonical, and more canonical
bases occur if τ is the fixed point of an element in SL(2, Z). This
happens only if τ � i (z  → −1/z) and τ � ω � e2πi/3 (z  →
−(z + 1)/z,−1/(z + 1)).

The complexity of Fuchsian groups increases as we look at more
and more “random” examples such as the following:

Example 6
Let G � 〈g1, g2〉, where

g1(z) � 3z + 4
2z + 3

and g2(z) � 2z, z ∈ H2.

A fundamental domain for G is shown in Figure 14.10. �

−2 −1 21 Figure 14.10
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A group G of isometries of H2 is said to be a triangle group of type
(α, β, γ) if G is generated by reflections in the sides of a hyperbolic
triangle with angles α, β, and γ. Here α, β, γ ≥ 0, and we have

α + β + γ < π.

Notice thatG cannot be Fuchsian, since it contains opposite isome-
tries. We remedy this by considering the subgroup G+ of direct
isometries in G. The elements of G+ are compositions of elements
in G with an even number of factors. We call G+ a conformal group
of type (α, β, γ). For example, if l, l′, and l′′ denote the sides of a
hyperbolic triangle, then Rl′ ◦ Rl, Rl ◦ Rl′′ (and Rl′′ ◦ Rl′) all belong
to (in fact, generate!) G+. Let the triangle be as shown in Figure
14.11. Rl′ ◦ Rl fixes p so that it is either elliptic (with rotation angle
2α, α > 0) or parabolic (α � 0). Similarly, Rl ◦ Rl′′ fixes q and is
elliptic or parabolic depending on whether β > 0 or β � 0. Thus
G+ is generated by two isometries g1, g2, each being parabolic or
elliptic. If G+ is discrete, then every elliptic element must have
finite order in G+. It follows that if α, β, and γ are positive, then
π/α, π/β, and π/γ are rational.

Example 7
Let T be the asymptotic triangle inH2 with vertices z(π/3), ∞, and
i as shown in Figure 14.12. The triangle groupG corresponding toT

Figure 14.11

γβ

α
l ′

l ″

l

p

q r
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T

π/2

2π/3

Figure 14.12

is of type (π/3, 0, π/2). Hyperbolic reflections in the sides of T give
z  → −z̄, z  → 1/z̄, and z  → −z̄+1, z ∈ H2. Taking compositions of
these, we see that the corresponding conformal group G+ of type
(π/3, 0, π/2) is generated by the translation z  → z + 1 and the
half-turn z  → −1/z, z ∈ H2. In perfect analogy with Example 5,
we obtain that G+ is the modular group SL(2, Z). �

Poincaré proved that a triangle group of type (α, β, γ) is discrete
if π/α, π/β, and π/γ are integers ≥ 3 (possibly ∞) with

α

π
+ β

π
+ γ

π
< 1

(cf. the remark at the end of Section 10). It can also be proved that
the corresponding conformal group of type (α, β, γ) tiles the hyper-
bolic plane H2. Thus, the situation is radically different from the
Euclidean case of crystallographic groups, where there are only
finitely many (in fact, 17) different tilings. You are now invited
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Figure 14.13

to look at Figure 14.13, depicting a hyperbolic tiling of a trian-
gle group3 of type (π/6, π/4, π/2), and discover various elliptic
isometries of the corresponding conformal group.

Our last two examples involve regular n-sided hyperbolic poly-
gons P in D2 with centroid at the origin. Let c be the center of a
circle that contains a side of P, m the midpoint of the side, and v

a vertex of P adjacent to m. Let r be the Euclidean radius of the
circle and s the Euclidean distance between the origin 0 and m.
Figure 14.14 depicts the case n � 3. Finally, let α � � 0vm. Since
� v0m � π/n, the (Euclidean) law of sines gives

s + r

cos α
� r

sin(π/n)
,

where we used the identity sin(α + π/2) � cos α. As noted at the
end of Section 13, we have

(s + r)2 � 1 + r2.

3See H.S.M. Coxeter, Introduction to Geometry, Copyright 1969 by John Wiley & Sons, Inc. Reprinted by
permission of John Wiley & Sons, Inc.
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π/24

1

s

v

m c

r

Figure 14.14

Combining these, we obtain

r � sin(π/n)√
cos2 α − sin2(π/n)

and

s � cos α − sin(π/n)√
cos2 α − sin2(π/n)

.

Example 8
A triangle group G of type (π/4, π/4, π/4) is generated by reflec-
tions in the sides of a hyperbolic (equilateral) triangle with α � π/8
as shown in Figure 14.14. The formulas above reduce to

r �
√

3√√
2 − 1

and s �
√

2 + √
2 − √

3√√
2 − 1

.

With these, we have

v � s + r(1 + z(23π/24)).

The corresponding conformal group G+ of type (π/4, π/4, π/4)
is generated by elliptic quarter-turns around the vertices v and
z(2π/3)v. What is a suitable fundamental domain for G+? �

Example 9
Finally, we discuss tilings of H2 with fundamental polygons of 4p
sides, p ≥ 2, and Fuchsian groups generated by 2p hyperbolic ele-
ments. We consider in full detail the case p � 2 of a Fuchsian group



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

14. Fuchsian Groups170

Figure 14.15

(s+r)i

v

si α

α

generated by four hyperbolic elements. A fundamental polygon is
the hyperbolic octagon depicted in Figure 14.15. Each hyperbolic
isometry will map a side of the octagon to the opposite side. We
first work out the hyperbolic isometry g that maps the bottom side
of the octagon to the top side. Let si ∈ D2 be the midpoint of the
top side, and v an adjacent vertex of the octagon. The hyperbolic
triangle with vertices 0, si and v has angle α � π/8 at 0 and v.
This is because D2 is tesselated by images of the octagon under
the Fuchsian group. Extending a side to a circle of radius r, the
formulas above reduce to

r � sin α√
cos(2α)

and s � cos α − sin α√
cos(2α)

.

The hyperbolic distance of si from the origin computes as

dD(si, 0) � log
1 + s

1 − s
� log

cos α + √cos(2α)
sin α

(see Section 13).
As in Example 2, we represent g on H2 by z  → kz, z ∈ H2, and

the normalization in SL(2,R) implies that the matrix associated to
g is [√

k 0
0 1/

√
k

]
.
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On D2, g maps −si, the midpoint of the bottom side, to si, the
midpoint of the top side. By symmetry, the hyperbolic distance
between these points is 2dD(si, 0). On H2, the hyperbolic distance
between i and ki is log k (see Section 13). It follows that

log k � 2dD(si, 0),

so that

√
k � cos α + √cos(2α)

sin α
.

The formula representing g as a linear fractional transformation
follows. By using symmetries of the octagon, we see that g, con-
jugated by rotations around the origin with angles π/4, π/2, and
3π/4, defines the three other hyperbolic isometries.

Replacing α � π/8 by α � π/4p, p ≥ 2, we obtain a Fuch-
sian group generated by 2p hyperbolic elements with fundamental
domain a regular 4p-sided hyperbolic polygon. �

Problems

1. Show that an isometry of the hyperbolic plane H2 is conjugate in SL(2, Z) to
(a) z  → z + 1 iff it is parabolic;
(b) to z  → (cos θ · z − sin θ)/(sin θ · z + cos θ), θ ∈ R, iff it is elliptic;
(c) z  → k · z, k �� 1, iff it is hyperbolic.

2. Characterize the parabolic, elliptic, and hyperbolic isometries of the hyper-
bolic plane in terms of their fixed points on H2 ∪ R ∪ ∞.

3. Let g(z) � (az + b)/(cz + d), ad − bc � 1, a, b, c, d ∈ R, be an isometry of
H2. Show that trace2(g) � (a + d)2 is well defined (that is, it depends only on
g and not on a, b, c, d). Prove that g is parabolic iff trace2(g) � 4, elliptic iff
0 ≤ trace2(g) < 4 and hyperbolic iff trace2(g) > 4. (The latter two relations
imply that trace2(g) is real.)

4. Use Problems 2–3 to conclude that an isometry g of H2 has no fixed point in
H2 iff trace2(g) ≥ 4.

5. Let g be a linear fractional transformation that satisfies gn(z) � z for some
n ≥ 2. Show that g is elliptic.

6. Let g1 and g2 be isometries of H2 such that g1 ◦ g2 � g2 ◦ g1. Show that g1

parabolic implies that g2 is also parabolic.
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7. Let T1 and T2 be adjacent asymptotic hyperbolic triangles in H2 with vertices
z(π/3), ∞, i and z(π/3), 1, ∞ (see Example 7). Show that the conformal groups
corresponding to T1 and T2 are both equal to SL(2, Z). (Thus, incongruent
triangles can define the same conformal group.)

8. Work out the vertices of a regular hyperbolic pentagon in D2 (with centroid
at the origin) whose consecutive sides are perpendicular. Generalize this to
regular n-sided polygons in D2 for n ≥ 5.
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...........................................

Riemann Surfaces

♦ Having completed our long journey from Euclidean plane ge-
ometry through crystallographic groups, Möbius transformations,
and hyperbolic plane geometry, we are now ready to gain a geo-
metric insight into the structure of Fuchsian groups on H2. Before
this, however, we need a bit of complex calculus. Just like linear
fractional transformations, complex functions are usually defined
on open sets U of the complex plane C and have their values in
C. Given a complex valued function f : U → C, we say that f is
differentiable (in the complex sense) at z0 ∈ U if the limit

lim
z→z0

f(z) − f(z0)

z − z0

exists. In this case, we call the limit the derivative of f at z0 and
denote it by f ′(z0). We say that f is differentiable (in the complex
sense) on U if f ′(z0) exists for all z0 ∈ U . One of the most stun-
ning novelties of complex calculus is that the existence of the first
derivative of f on U implies the existence of all higher derivatives
f (n), n ∈ N, on U ! (This is clearly nonsense in real calculus; for
example, f : R → R defined by

f(x) �
{

xn, if x ≥ 0
−xn, if x < 0

173
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has derivatives up to order n − 1 at x0 � 0, but

f (n)(x) �
{

n!, if x ≥ 0
−n!, if x < 0

is discontinuous at x0 � 0.) As a matter of fact, even more is true!
If f ′ exists on U , then f is analytic on U ; that is, given z0 ∈ U , f can
be expanded into a power series

f(z) �
∞∑
n�0

cn(z − z0)
n

that is absolutely convergent in a neighborhood of z0 (contained
in U). (♠ Like almost everything in complex calculus, this is a
consequence of the Cauchy formula.) ♦ The coefficients of the
expansion have no other choice but to be equal to

cn � f (n)(z0)

n!
,

so that the power series is actually Taylor. (Once analyticity is ac-
cepted, this follows since an absolutely convergent series can be
differentiated term by term.) From now on we use the term ana-
lytic for a complex function f : U → C whose derivative exists on
U . The usual rules of differentiation are valid, and the proofs are
the same as in the real case. In particular, every rational function
(such as a linear fractional transformation)

a0 + a1z + · · · + anz
n

b0 + b1z + · · · + bmzm
,

an �� 0 �� bm, a0, . . . , an; b0, . . . , bm ∈ C,

is analytic everywhere except at finitely many (≤ m) points where
the denominator vanishes. Moreover, and this is very important for
Riemann surfaces, composition of analytic functions is analytic.

Complex functions f : U → C are often thought of as being
locally defined transformations of the complex plane. As such, the
existence of the derivative of f must carry a geometric meaning.
Let us eleborate on this a little. Let f be analytic on U and assume
that f ′(z0) �� 0 at z0 ∈ U . Let γ : (−a, a) → C, a > 0, be a
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smooth curve through z0 with γ(0) � z0. Consider the image f ◦ γ.
Differentiating, we get

(f ◦ γ)′(0) � f ′(γ(0)) · γ ′(0) � f ′(z0)γ
′(0).

This means that

|(f ◦ γ)′(0)| � |f ′(z0)| · |γ ′(0)|
and

arg(f ◦ γ)′(0) � arg f ′(z0) + arg γ ′(0).

Thus, f acts on tangent vectors at z0 by multiplying them by the
constant |f ′(z0)| and rotating them by arg f ′(z0). In particular, f
preserves (signed) angles, a property that we note by saying that f
is conformal. Summarizing, we obtain that an analytic function is
conformal1 where its derivative does not vanish! Notice that this ar-
gument applies to linear fractional transformations and was given
earlier for Möbius transformations.

We begin to suspect that the big leap from first-order differ-
entiability to analyticity will rule out a lot of (otherwise nice)
functions. The simplest example is conjugation z  → z̄, z ∈ C. We
claim that conjugation is nowhere differentiable. In fact, setting
z − z0 � r(cos θ + i sin θ) and keeping θ fixed, we have

lim
z→z0

z̄ − z̄0

z − z0
� lim

r→0

r(cos θ − i sin θ)

r(cos θ + i sin θ)

� cos θ − i sin θ

cos θ + i sin θ
� cos(2θ) − i sin(2θ),

and for different arguments θ, this takes different values! Thus, the
limit and hence the derivative do not exist.

Using this, a number of nondifferentiable complex functions can
be manufactured; f(z) � 1/z̄ will appear shortly. (♠ You know,
of course, the underlying theme that differentiability in complex
sense is smoothness plus the Cauchy-Riemann equations. These we
avoided as part of our desperate effort to keep the length and level
of the exposition to a minimum.)

1The connection between complex differentiability and conformality was first recognized by Gauss in
1825.
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♦ Let f : U → C be analytic on U and f ′(z0) � 0 at z0 ∈ U . The
Taylor expansion of f at z0 implies that

f(z) − f(z0) � (z − z0)
mg(z)

for some m ≥ 2, where g is analytic and nonzero on an open
neighborhood U0 ⊂ U of z0. Choosing a suitable branch of the mth
root of g, we have

f(z) − f(z0) �
(
(z − z0)

m
√
g(z)

)m
.

In other words, f is themth power of an analytic function h defined
on U0 by

h(z) � (z − z0)
m
√
g(z), z ∈ U0.

Notice that h(z0) � 0 and h′(z0) �� 0, so that h establishes a con-
formal equivalence between a neighborhood of z0 (in U0) and a
neighborhood of the origin.

It is now time to introduce the most basic elementary function
in complex calculus: the exponential function. We define it by the
power series

ez �
∞∑
n�0

zn

n!
,

which is clearly convergent on the entire complex plane. In
particular, (ez)′ � ez. When z � r is real, this reduces to the ordi-
nary exponential function. To see what happens in the imaginary
direction, we take z � iθ, θ ∈ R. We compute

eiθ �
∞∑
n�0

inθn

n!

�
∞∑
k�0

i2kθ2k

(2k)!
+

∞∑
k�0

i2k+1θ2k+1

(2k + 1)!

�
∞∑
k�0

(−1)kθ2k

(2k)!
+ i

∞∑
k�0

(−1)kθ2k+1

(2k + 1)!

� cos θ + i sin θ.
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Notice that in the second equality we split the infinite sum into
two sums; one running on even indices (n � 2k), the other on odd
indices (n � 2k+1). This is legitimate, since the series is absolutely
convergent. Then we used the fact that i2k � (i2)k � (−1)k, and
finally we remembered the Taylor expansion of sine and cosine.
We arrive at the famous Euler formula

eiθ � cos θ + i sin θ, θ ∈ R.

This is our old friend z(θ), whom we met a long time ago when
discussing complex arithmetic! Multiplying through by r, we obtain
the exponential form of a complex number:

z � reiθ, |z| � r, arg z � θ + 2kπ, k ∈ Z.

θ � π in the Euler formula gives the equation

eiπ � −1,

connecting the three most prominent numbers π, e, and i of math-
ematics. This appears in Euler’s Introductio, published in Lausanne
in 1748. Aside from its commercial value shown on the T-shirts of
mathematics students, “We are all number −eiπ!”, its significance
can hardly be underrated. Without much explanation, we humbly
recite the words of Benjamin Pierce (1809–1880) to his students:

Gentlemen, that is surely true, it is absolutely paradoxical; we
cannot understand it, and we don’t know what it means, but
we have proved it, and therefore we know it must be the truth.

The natural extension of the relation

ex � lim
n→∞

(
1 + x

n

)n
to complex exponents can easily be understood. For purely
imaginary exponents Euler’s formula implies

eiθ � lim
n→∞

(
1 + i

θ

n

)n
.

Indeed, the argument of the complex number 1+iθ/n is tan−1(θ/n),
so that the argument of the right-hand side is limn→∞ n tan−1(θ/n)�
θ. The absolute value of the right-hand side is unity, since
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Figure 15.1

limn→∞(1 + θ2/n2)n/2 � 1 (a simple consequence of the binomial
formula). There is a beautiful geometric interpretation of this. For
fixed n, the points (1 + iθ/n)k, k � 0, . . . , n, are vertices of n right
triangles arranged in a fanlike pattern as shown in Figure 15.1
for n � 10 and n � 50. Complex multiplication by (1 + iθ/n)

amounts to multiplication by
√

1 + θ2/n2 and rotation by the angle
tan−1(θ/n). Thus, the hypotenuse of each triangle in the fan is the
base of the next.

Remark.
The equation 1 + eiπ � 0 was used by Lindemann to prove tran-
scendentality of π (cf. Section 4). In fact, he proved2 that in an
equation of the form

c0 + c1e
a1 + · · · + cne

an � 0,

the coefficients c0, . . . cn and the exponents a1, . . . , an cannot all
be complex algebraic numbers.

The exponential function satisfies the usual exponential identity

ez1+z2 � ez1 · ez2 , z1, z2 ∈ C,

which follows easily from trigonometric identities. (If you try to
prove this from the Taylor series definition, you have to work a little
harder and use the binomial formula.) In particular, ez is periodic
with period 2πi:

ez+2kπi � ez, k ∈ Z.

The exponential map exp : C → C has image C− {0}, as can easily
be seen by writing an image point in exponential form. In fact,

2For a lively account, see F. Klein. Famous Problems of Elementary Geometry, Chelsea, New York, 1955.
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given 0 �� w ∈ C, the complex numbers

log |w| + i arg w

(arg w has infinitely many values!) all map under exp to w. This is
thus the inverse of exp, legitimately called the complex logarithm
log w of w. It is now the multiple valuedness of log that gives rise
to Riemann surfaces. In fact, attempting to make log single valued
is the same as trying to make the exponential map one-to-one. This
is what we will explain next.

Consider the complex plane C . The periodicity formula for exp
tells us that z and z+ 2kπi, k ∈ Z, are mapped to the same point by
exp. Thus, we should not consider these two points different in C!
Identifying them means rolling C into a cylinder in the imaginary
direction. (This can be demonstrated easily by pouring paint on
the Chinese rug at home and rolling it out.) We obtain that exp
actually maps the cylinder to the punctured plane (see Color Plate
2a).

The rulings of the cylinder are mapped to rays emanating from
the origin. (This is because the rulings can be parametrized by
t  → t + θi with θ ∈ R fixed, and the images are parametrized
by t  → et · eiθ.) Similarly, circles on the cylinder map to concen-
tric circles around the origin. We now see that the exponential
map establishes a one-to-one correspondence between the cylin-
der and the punctured plane. We will say later that the cylinder and
the punctured complex plane are conformally equivalent Riemann
surfaces. We now notice that the set of points

z + 2kπi ∈ C, k ∈ Z,

that are to be identified form the orbit3 of the first frieze group
generated by the translation T2πi!

It is clear how to generalize this to obtain more subtle Riemann
surfaces. We consider discrete groups on C � R2 or Fuchsian
groups on H2, and in each case, we identify points that are on
the same orbit of the acting group. The concept of fundamental
set (domain), which we used to visualize wallpaper patterns, now
gains primary importance! By its very definition, it contains exactly

3For group actions, refer to the end of “Groups” in Appendix B.
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one point from each orbit, so that as a point-set, it is in one-to-one
correspondence with the Riemann surface. In our cases, the funda-
mental domain is a Euclidean or hyperbolic polygon, so that when
taking the closure of our fundamental set, the points that are on the
same orbit (and thereby are to be identified) appear on the sides of
this polygon. Thus, to obtain our Riemann surface topologically,
we need to paste the polygon’s sides together in a certain man-
ner as prescribed by the acting group. This prescription is called
side-pairing transformation.

Enough of these generalities. Let us now consider crystallo-
graphic groups on C � R2. We first consider translation groups.
Any such crystallographic groupG is generated by two translations
Tv and Tw with v and w linearly independent. A fundamental do-
main F0 for G is a parallelogram with vertices 0, v, w, v+w (Figure
15.2).

The boundary ∂F0 consists of the four sides of the parallelogram.
The restriction of the action of the group G to these sides gives the
side-pairing transformations. It is clear that underTw, tv, 0 ≤ t ≤ 1,
gets identified with Tw(tv) � tv + w (Figure 15.3).

Similarly, under Tv, tw, 0 ≤ t ≤ 1, gets identified with Tv(tw) �
tw + v (Figure 15.4).

Thus, the Riemann surface is obtained by pasting together the
base and top sides and the left and right sides. We obtain what is
called a complex torus (Figure 15.5).

Figure 15.2

w

v
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You might say that all these tori (the plural of torus) look alike,
so why did not we just take v and w to be orthogonal unit vec-
tors spanning the integer lattice Z2 in R2? The answer depends
on what we mean by “alike”. A topologist would certainly consider
all of them the same, since they are actually homeomorphic.4 But
from the analyst’s point of view, they may be different, since the
conformal structure (the way we determine angles) should depend
on the vectors v and w. This we will make more precise shortly.

Looking back, we see that we used the term Riemann surface a
number of times without actually defining what it is. We now have
enough intuition to fill the gap properly. To tell you the truth, in
the proof of the FTA we came very close to this concept! Recall the
stereographic projections hN : S2 −{N} → C and hS : S2 −{S} → C
and their connecting relation

(hN ◦ h−1
S )(z) � 1/z̄, 0 �� z ∈ C.

Putting hN and hS on symmetric footing, in the proof of the FTA
they were used to “view” the map f : S2 → S2 in two different
ways. One was the original polynomial

P � hN ◦ f ◦ h−1
N : C → C,

and the other,

Q � hS ◦ f ◦ h−1
S : C → C,

was a rational function. hN and hS both have the “defect” that their
domains do not cover the entire sphere, but the union of these
domains is S2, and so P and Q describe f completely. We will call
hN and hS coordinate charts for S2.

There is, however, one minor technical difficulty. To define the
notion of analyticity of functions defined on open sets of S2, we
would use hN and hS to pull the functions down to open sets of C
and verify analyticity there. Take, for example, the function hN . To
pull this down to C we use hN itself and obtain hN ◦ h−1

N : C → C,
the identity. If we use hS, however, we obtain hN ◦ h−1

S : C → C,
and this is not analytic, since z → z̄ is nowhere differentiable! The

4See “Topology” in Appendix C.
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problem, of course, is the presence of conjugation, and it is easily
remedied by taking h̄S instead of hS. This gives

(hN ◦ h̄−1
S )(z) � 1

z
, 0 �� z ∈ C,

and now analyticity of a function on S2 no longer depends on
whether it is viewed by hN or h̄S! (Replacing hS with h̄S is natural,
since z  → 1/z is the simplest direct Möbius transformation that is
not an isometry. Notice also the role of this transformation in the
proof of Theorem 8 of Section 12.) Now the general definition:

♠ A connected (Hausdorff) topological space5 M is a Riemann
surface if M is equipped with a family

{ϕj : Uj → C | j ∈ N}
called the atlas (each ϕj : Uj → C is called a coordinate chart of M)
such that

1. ∪j∈NUj � M;
2. Each ϕj is a homeomorphism ofUj to an open set of the complex

plane C;
3. If U � Uk ∩ Uj is nonempty, then

ϕk ◦ ϕ−1
j : ϕj(U) → ϕk(U)

is an analytic map between open sets of the complex plane C
(Figure 15.6).

φφ

UU

kj

kj

Figure 15.6

5See “Topology” in Appendix C.
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Remark.
We can use a subset of the set of positive integers as the index set for
the atlas, which is not required in the usual definition of a Riemann
surface. It is, however, a deeper result that every Riemann surface
carries a countable atlas, so that this choice can always be made.
Looking back, we see that

{hN : S2 − {N} → C, h̄S : S2 − {S} → C}
is an atlas for S2, so that S2 is a Riemann surface.

Analyticity is a local property, so that any open subset of a Rie-
mann surface is also a Riemann surface. Thus, the complex plane
C, the punctured complex plane C−{0}, etc. are Riemann surfaces.

The Riemann surface structure on the cylinder and tori are de-
rived from the Riemann surface structure of the complex plane C
in the following way: Recall that they are defined by identifying the
points that are on the same orbit of the acting (translation) groupG.
The identification space, that is, the space of orbits C/G, is a topo-
logical space under the quotient topology. Actually, the topology on
C/G is defined to make continuous the natural projection π : C →
C/G associating to z ∈ C its orbit G(z) � {g(z) | g ∈ G}. Now let
z0 ∈ C and consider the open diskDr0(z0) � {z ∈ C | |z−z0| < r0} of
radius r0 and center z0. The restriction π|Dr0(z0) is one-to-one onto
an open subset U0 of C/G, provided that r0 is small. In our explicit
cases, this happens if r0 is less than half of the minimum transla-
tion length in G. Now define ϕ0 � (π|Dr0(z0))

−1 : U0 → Dr0(z0).
The definition of quotient space topology translates into ϕ0 being a
homeomorphism. It is clear that we can choose small disks Drj (zj),
j ∈ N, as above, such that they all cover C. Finally,

ϕk ◦ ϕ−1
j � (π|Drk(zk))

−1 ◦ (π|Drj (zj))

is the restriction of an element in G (a translation) and thereby
analytic. The cylinder and all complex tori thus become Riemann
surfaces.

We may still feel uneasy about the initial choice of the group G

acting on C, since it consists of translations only. As a matter of fact,
we may think that less trivial choices of G may lead to more subtle



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

15. Riemann Surfaces 185

Riemann surfaces C/G. That this is not the case for the complex
plane C is one result in the theory of Riemann surfaces.

In seeking new domains, we may also consider the extended
complex plane Ĉ or, what is the same, the sphere S2. The question
is the same: “Does there exist a discrete group G acting on S2 that
gives a Riemann surface S2/G?” As far as the group G is concerned,
the answer is certainly yes; we just have to remember the proof of
the FTA, where the map z → zn induced an n-fold wrap of S2 to
itself, leaving the North and South Poles fixed. It is not hard to see
that this map can be thought of as the projection π : S2 → S2/G,
where G is generated by the rotation R2π/n around the origin in
C ⊂ Ĉ. As far as the Riemann surface S2/G is concerned, it is
again a result in the theory of Riemann surfaces that we do not get
anything other than S2. Summarizing, the only Riemann surfaces
that are quotients of S2 or C are the sphere, the complex plane, the
cylinder, and the complex tori.

We now take the general approach a little further and define
analyticity of a map f : M → N between Riemann surfaces M and
N . Given p0 ∈ M, we say that f is (complex) differentiable at p0 if the
composition

ψk ◦ f ◦ ϕ−1
j

shown in Figure 15.7 is (complex) differentiable at ϕj(p0). Here
ϕj : Uj → C is a chart covering p0; that is, p0 ∈ Uj, and ψk :
Vk → C is a chart covering f(p0), so that the composition is defined
near ϕj(p0). (To be perfectly precise, the composition is defined on
ϕj(Uj ∩ f −1(Vk)), but this is really too much distraction.) We also
see that we defined the concept of Riemann surfaces in just such a

U
f

V

k

j k

j ψφ

Figure 15.7
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way as to make this definition independent of the choice of charts!
(You are invited to choose other charts, work out the compositions,
and verify independence. Advice: Draw a detailed picture rather
than engage in gory computational details.)

If f : M → N is differentiable at each point of M, we say that
f is analytic. As an example, it is clear from the way we defined
C/G for G a discrete translation group on C, that the projection
π : C → C/G is analytic. At the other extreme, an invertible
analytic map (whose inverse is also analytic) is called a confor-
mal equivalence. (The name clearly comes from the fact that if f
is invertible, then its derivative is everywhere nonzero, so that f
viewed as a transformation is conformal.) Finally, two Riemann
surfaces are called conformally equivalent if there is a conformal
equivalence between them. Our prominent example: The cylin-
der and the punctured complex plane are conformally equivalent
Riemann surfaces.

If f : M → N is an analytic map between Riemann surfaces
and p0 ∈ M, then the nonvanishing of the derivative of the local
representation ψk ◦ f ◦ φ−1

j at p0 is independent of the choice of the
charts φj and ψk. In this case, f is a local conformal equivalence
between some open neighborhoods U0 of p0 and V0 of f(p0). If the
derivative ofψk ◦ f ◦φ−1

j vanishes at p0, then as the Taylor expansion
shows (cf. the argument above for a complex function f ), there are
local charts φj and ψk such that ψk ◦ f ◦ φ−1

j is the mth power
function for some m. This is exactly the case when f has a branch
point at p0 with branch number m− 1. (In fact, this can be taken as
the definition of the branch point.) We now see that we used this
(somewhat) intuitively in the proof of the FTA in Section 8!

Liouville’s theorem in complex calculus implies that the entire
complex plane C is not conformally equivalent to D2. (Another
proof is based on Schwarz’s lemma, which asserts that the con-
formal self-maps of D2 are linear fractional transformations, and
thereby they have the form given in Problem 1 of Section 13. They
can be parametrized by three real parameters: !(w), "(w), and
θ. In contrast, the linear transformations z  → az + b, a, b ∈ C,
form a 4-parameter family of conformal self-maps of the complex
plane.) On the other hand, the linear fractional transformation
z  → i(i + z)/(i − z) restricted to the unit disk D2 establishes a con-
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formal equivalence betweenD2 and the upper half-planeH2. More
generally, the Riemann mapping theorem states that any simply
connected6 domain in C that is not the whole plane is conformally
equivalent to D2.

The question about the tori being “alike” can now be reformu-
lated rigorously: “Which tori are conformally equivalent?” This is
a question of Riemann moduli, an advanced topic.7

A beautiful result of complex function theory asserts that two
complex tori T1 � C/G1 and T2 � C/G2 with G1 � 〈Tv1 , Tw1〉 and
G2 � 〈Tv2 , Tw2〉 are conformally equivalent iff w1/v1 and w2/v2

are on the same orbit under the modular group SL(2, Z). To give
a sketch proof, we notice first that up to conformal equivalence, a
torus can be realized as C/〈T1, Tτ〉, where τ ∈ H2. Assume now that
we have a conformal equivalence f : C/〈T1, Tτ1〉 → C/〈T1, Tτ2〉 be-
tween two tori given by τ1 and τ2 inH2. Since both tori are obtained
from fundamental parallelograms in C by side-pairing transforma-
tions, it is clear that f can be “lifted up” to a conformal equivalence
f̃ : C → C satisfying f̃ (0) � 0 and the relation π2◦ f̃ � f ◦π1, where
π1 : C → C/〈T1, Tτ1〉 and π2 : C → C/〈T1, Tτ2〉 are natural projec-
tions. Complex calculus tells us that a conformal equivalence of C
is linear, so that we have

f̃ (z) � αz, z ∈ C,

for some α ∈ C. (This follows since a conformal equivalence of
C has a removable singularity at infinity, so that it extends to a
conformal equivalence of the Riemann sphere.) The commutation
relation for f and f̃ above implies that f̃ maps any linear combina-
tion of 1 and τ1 with integer coefficients to a linear combination of
1 and τ2 with integer coefficients. We thus have

f̃ (1) � α � a + bτ2,

f̃ (τ1) � ατ1 � c + dτ2,

6In topology, the definition of simply connectedness requires a short detour into homotopy theory. For-
tunately, simply connectedness of a domain in the complex plane C is equivalent to connectedness of its
complement in the extended plane Ĉ.
7See H. Farkas and I. Kra, Riemann Surfaces, Springer, 1980.
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for some a, b, c, d ∈ Z. Since f̃ is invertible, we have ad − bc � ±1.
Solving for τ1, we obtain

τ1 � c + dτ2

a + bτ2
,

so that τ1 is in the SL(2, Z)-orbit of τ2. (Note that ad − bc � 1, since
both τ1 and τ2 are in H2.)

♥ We turn now to the most important case of Fuchsian groups
acting on the hyperbolic plane H2. Discreteness of the Fuchsian
group G on H2 implies that H2/G is a Riemann surface with an-
alytic projection π : H2 → H2/G. The proof of this is a souped
up version of the one we just did for discrete translation groups
for C. We omit the somewhat technical details. It is more impor-
tant for us that a rich source of Riemann surfaces can be obtained
this way. (In fact, all Riemann surfaces arise as quotients; this
is “uniformization,” a more advanced topic.) Instead, we look at
the examples of Fuchsian groups obtained in the previous sec-
tion and find the corresponding Riemann surface by looking at
the side-pairing transformations on the fundamental hyperbolic
polygon.

Example 1
G � 〈g〉 with g(z) � z + 1, z ∈ H2. The modified exponential map

z → exp(2πiz), z ∈ H2,

is invariant under G, so that it projects down to H2/G and gives
a conformal equivalence between H2/G and the punctured disk
D2 −{0} (Figure 15.8). This example gives us the clue that parabolic
elements in G are responsible for punctures in H2/G. (In general,

Figure 15.8
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there is a one-to-one correspondence between the punctures of
H2/G and the conjugacy classes of parabolic elements in G.) �

Example 2
Let k > 1 and G � 〈g〉 with g(z) � kz, z ∈ H2. The Rie-
mann surface H2/G is conformally equivalent to the annulus
Ar � {z ∈ C | 1 < |z| < r}, where r � e2π2/ log k. In fact, the map
z  → exp(−2πi log z/ log k) is analytic on H2, and, being invariant
under G, it projects down to H2/G and gives the conformal equiv-
alence of H2/G and Ar. This representation of the annulus can be
used to show that two annuli, Ar1 and Ar2 , are conformally equiva-
lent iff r1 � r2. Indeed, a conformal equivalence f : Ar1 → Ar2 can
be lifted up to a conformal equivalence f̃ : H2 → H2 that satisfies
the commutation relation

f̃ (k1z) � k2 f̃ (z), z ∈ H2,

where k1 � e2π2/ log r1 and k2 � e2π2/ log r2 . Complex calculus (the
Schwarz lemma) tells us that a conformal equivalence of H2 is
necessarily Möbius, so that

f̃ (z) � az + b

cz + d
, ad − bc � 1, a, b, c, d ∈ R.

Combining this with the commutation relation above, we see that
b � 0, k1 � k2, and hence r1 � r2. �

Example 3
Let n ∈ N and G � 〈g〉 with

g(z) � cos(π/n) · z − sin(π/n)
sin(π/n) · z + cos(π/n)

, z ∈ H2.

This is best viewed on D2 where G is generated by the Euclidean
rotation R2π/n around the origin (Figure 15.9).

The map z  → zn is invariant under 〈R2π/n〉, projects down to the
quotient, and defines a conformal equivalence between H2/G and
the unit disk D2. �
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Figure 15.9

2π/n

Example 4
Let k > 1 and G � 〈g1, g2〉 with g1(z) � −1/z and g2(z) � kz,
z ∈ H2. A somewhat involved argument shows that H2/G is
conformally equivalent to the unit disk. �

Example 5
Let G � SL(2, Z) be the modular group. The Riemann surface
H2/G is conformally equivalent to C. This example is important for
the Riemann moduli of tori. In fact, we now see that H2/SL(2, Z)
and thereby C “parametrizes” the set of conformally inequivalent
tori. �

Example 6
Let G � 〈g1, g2〉, where

g1(z) � 3z + 4
2z + 3

and g2(z) � 2z, z ∈ H2.

Looking at the fundamental set, we see that H2/G is conformally
equivalent to the punctured sphere; that is, to C. �

Finally, if a Fuchsian group G has a fundamental polygon
with 4p sides (and G identifies the opposite sides), then H2/G is
conformally equivalent to a compact genus p Riemann surface, or
more plainly, a “torus with p holes.” As an example, use the four
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Figure 15.10

hyperbolic side-pairing transformations for the hyperbolic octagon
at the end of Section 14 as a fundamental domain of a Fuchsian
group and realize that H2/G is a genus 2 Riemann surface (Figure
15.10).

To close this section, we make a note on the origins of the theory
of Riemann surfaces. We saw that the exponential map exp : C →
C gives rise to a conformal equivalence between the cylinder and
the punctured plane, with inverse being the complex logarithm

log w � log |w| + i arg w, w �� 0.

If we reject the cylinder as range and keep log to be defined on
the punctured plane C − {0}, then it is inevitably multiple valued.
How can we get around this difficulty? Well, since log is multiple
valued, the domain C−{0} has to be replaced by a Riemann surface
on which it becomes single valued. The new domain has to have
infinitely many layers of C−{0}, so that it must look like an infinite
staircase denoted by St∞ (see Color Plate 2b). With this, we see that
exp : C → St∞ is a conformal equivalence and that the Riemann
surfaces are simply connected (no holes!).

The situation is similar for the power function z → zn. In this
case, the inverse w → n

√
w is n-valued (FTA!), so that the finite

staircase Stn will do. Color Plates 3a–b depict the cases n � 2 and
n � 3.

(Notice that St2 and St3 seem to have self-intersections. But
remember, this is due to our limited 3-dimensional vision; as a
matter of fact, Stn, the graph of z → zn, lives in C × C � R4,
and for a surface in 4 dimensions there is plenty of room to avoid
self-intersections!)
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♠ Given a monic complex polynomial P of degree n, by cutting
and pasting, a compact Riemann surface MP can be constructed8

on which
√
P is single-valued and analytic. P can be assumed to

have distinct roots, since the square root of a double root factor
is single-valued. MP comes equipped with an analytic projection
π : MP → Ĉ, and π is a twofold branched covering with branch
points above the roots of P (and ∞ for n odd). If z ∈ C is away from
the roots of P, then the two points π−1(z) correspond to ±√P(z). We
will construct MP explicitly for n ≤ 4. From this the general case
will follow easily. If P is monic and linear with root a ∈ C, then
the Riemann surface MP of P(z) � √

z − a is essentially St2 (See
Color Plate 3a) centered at a. MP is obtained by stacking up two
copies of Ĉ, making in each copy a (say) radial cut from a to ∞, and
finally, pasting9 the four edges crosswise. The map π : MP → Ĉ
corresponds to vertical projection, and this is a twofold branched
covering with branch points above a and∞. The function 1/

√
P has

a simple pole above a and a simple zero above ∞. Notice that MP is
conformally equivalent to Ĉ, and with the identification MP � Ĉ,
π becomes the map z  → (z − a)2, z ∈ Ĉ. We now realize that we
met this a long time ago in the proof of the FTA!

The situation for quadratic P with distinct roots a, b ∈ C is
similar. The Riemann surface MP for P(z) � √

(z − a)(z − b) is
obtained by cutting the two copies of Ĉ by the line segment (ac-
tually, any smooth curve) connecting a and b, and pasting the
four edges crosswise. The map π has branch points above a and
b. The double-valued

√
P lifted up along π : MP → Ĉ becomes

single-valued on MP , since the winding number (cf. Problem 3 of
Section 8) of a closed curve that avoids the cuts is the same with
respect to the points above a and b. The function 1/

√
P has sim-

ple poles at the points above a and b and simple zeros at the two
points above ∞. Once again,MP is conformally equivalent to Ĉ. We
also see that the quadratic case can be reduced to the linear case
by sending b to ∞ by a linear fractional transformation. Analyti-

8In the rest of this section, we describe Siegel’s approach to the Weierstrass ℘-function. For details, see
C.L. Siegel, Topics in Complex Function Theory, Vol. I, Wiley-Interscience, New York, 1969.
9For pasting topological spaces in general, see “Topology” in Appendix C.
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cally, the substitution z  → 1/z + b transforms
√
(z − a)(z − b) to

(1/z)
√
b − a

√
z + 1/(b − a).

It is rewarding to take a closer look at the particular case P(z) �
z2 − 1. Let the cuts be the line segments that connect ±1 in the
two copies of Ĉ. Since

√
P becomes single-valued on MP , we can

consider the line integral

I(C) �
∫
C

dz√
P(z)

,

where the curve C emanates from a fixed point p0 ∈ MP and
terminates at a variable point p ∈ MP . Although MP is simply con-
nected, the integral I depends on C due to the simple poles of 1/

√
P

above a and b. (To be precise, by the monodromy theorem, the
line integral I(C) with respect to a curve C that avoids a, b, and
∞ depends only on the homotopy class of C in MP − {a, b,∞}.)
To make the integral I path-independent, we have to construct a
Riemann surface M above MP by taking infinitely many copies
of MP and then cutting and pasting, following the recipe that the
integration prescribes (counting the residues à la Cauchy). The pre-
scription in question becomes more transparent when we realize
that the inverse of the complex sine function is the antiderivative
of 1/

√
1 − z2 � i/

√
z2 − 1, so that M should be the Riemann sur-

face of sin−1! The sine function itself is given by the Euler formula
for complex exponents:

sin z � eiz − e−iz

2i
.

This is one-to-one on any vertical strip (k − 1/2)π < !(z) <

(k + 1/2)π, k ∈ Z, and each strip is mapped onto the whole com-
plex plane with cuts (−∞,−1) and (1,∞) along the real axis (cf.
Problem 2). The line !(z) � (k + 1/2)π corresponds to the two
edges of the positive cut if k is even, and to the negative cut if k
is odd. Thus, the Riemann surface on which the inverse of sine is
single-valued is obtained from infinitely many copies of the com-
plex plane with the cuts (−∞,−1) and (1,∞) as above, and the
even and odd layers connect each other alternately.

If P is cubic with three distinct roots a, b, c ∈ C, then we group
a, b, c, and ∞ into two pairs, connect them by disjoint smooth
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curves, cut the two copies of Ĉ along these curves, and join the
edges crosswise. This time MP becomes conformally equivalent to
a complex torus. (This can be seen most easily by arranging the
cuts in different hemispheres of S2 � Ĉ, cutting one of the copies
of S2 along the equator, pasting first along the branch cuts cross-
wise, and finally pasting the cut equators back together.) As before,
π : MP → Ĉ is an analytic twofold branched covering with branch
points above a, b, c, and ∞, and

√
P is single-valued on MP . The

function 1/
√
P has simple poles at a, b, c and a triple zero at ∞.

By a linear change of the variables, we can put P in the classical
Weierstrass form

P(z) � 4z3 − g2z − g3.

Since P has distinct roots, the discriminant δ of P (cf. Section 6) is
nonzero:

δ � 1
16

(g3
2 − 27g2

3) �� 0.

The line integral

I(C) �
∫
C

dz√
4z3 − g2z − g3

is called an elliptic integral of the first kind. As before, the mon-
odromy theorem says that for a curve C that avoids a, b, c, the
line integral I(C) depends only on the homotopy class of C in
MP − {a, b, c}. In addition, being a complex torus, MP itself has
nontrivial topology. Instead of cutting and pasting we unify these
path-dependencies into a single concept. We collect the values of
the line integral I(C) for all closed curves C (based at a fixed point
p0 away from a, b, c) and call them periods. By additivity of the in-
tegral, the set LP of all periods forms an additive subgroup of C. In
fact, LP is a 2-dimensional lattice in C. (This is because the funda-
mental group π1(MP, p0) is Z2.) We call LP the period lattice. We see
that in order to make the line integral I(C) dependent on the termi-
nal point of C only, we need to consider the value of I(C) modulo
the period lattice LP . In other words, I effects a conformal equiv-
alence from the Riemann surface MP to the complex torus C/LP .
The inverse of this map is the Weierstrass ℘-function, which is best
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viewed as an analytic map lifted from C/LP to C. By definition, ℘
satisfies the differential equation

(℘′)2 � 4℘3 − g2℘ − g3, w ∈ C.

(What is the analogue for the sine function?) Moreover, ℘ is doubly
periodic with periods in LP :

℘(w + ω) � ℘(w), w ∈ C, ω ∈ LP.

This is all very elegant but does not give ℘ in an explicit form.
To get to this, we first notice that ℘ must have poles (Liouville’s
theorem). In fact, ℘ is the simplest doubly periodic function. After
a detailed analysis we arrive at the partial fractions expansion

℘(w) � 1
w2

+
∑

ω∈LP,ω ��0

(
1

(w − ω)2
− 1

ω2

)
.

Notice that ℘ has double poles at the lattice points in LP , and the
difference is needed to ensure convergence. (The series converges
absolutely and uniformly on any compact subset in C−LP .) Finally,
we note that the lattice LP itself determines the coefficients g2 and
g3 in the classical Weierstrass form above. In fact, we have

g2 � 60
∑

ω∈LP,ω ��0

1
ω4

and g3 � 140
∑

ω∈LP,ω ��0

1
ω6

(cf. Problem 3).
We now take a closer look at the differential equation that ℘

satisfies. This looks very familiar! In fact, we immediately notice
that, for any w ∈ C, the pair (℘(w), ℘′(w)) satisfies the equation

y2 � P(x) � 4x2 − g2x − g3.

This is our old friend the elliptic curveCf , f(x, y) � y2−P(x), which
we studied in Section 3! The only difference is that here x and y

are complex variables, so that our elliptic curve sits in C2 (rather
than in R2). In fact, we also need to recall the points at infinity that
needed to be attached to R2. In our case, an ideal point is a pencil
of complex lines in C2, and, in analogy with the real case, C2 with
the ideal points becomes the complex projective plane CP2. Thus the
equation above defines a complex elliptic curve Cf (C) in CP2, and
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we have an analytic map

(℘, ℘′) : C/LP → Cf (C) ⊂ CP2.

It is not hard to show that this map is a conformal equivalence.
With this, we obtain that Cf (C) is a complex torus. We now realize
that Figures 3.10 to 3.17 depict various slices of this torus; the only
visual problem is the absence of the vertical infinity!

We want to assert that our conformal equivalence is actually an
algebraic isomorphism. We have a little technical trouble here. It is
clear how to add points in C/LP , but we defined addition on elliptic
curves only for real coordinates and not, in general, for points on
Cf (C). This problem can be easily resolved. All we need to do is
to work out the algebraic formulas for the geometric rule for the
addition (the chord method), and the formulas will automatically
extend to the complex case (cf. Problem 17 of Section 3). Notice
also that the algebraic isomorphism between C/LP and Cf (C) is
nothing but the classical addition formula for the ℘-function:

℘(w1 + w2) � −℘(w1) − ℘(w2) + 1
4

(
℘′(w1) − ℘′(w2)

℘(w1) − ℘(w2)

)2

.

Remark.
In Section 3, we defined addition of points on an elliptic curve
using geometry (chord method). In an analytical approach10 we
could first define the Weierstrass ℘-function, then use ℘ to estab-
lish the conformal equivalence of an elliptic curve (over C) with a
complex torus (by choosing the lattice suitably), and finally define
addition on the elliptic curve by carrying over the obvious addition
on the torus to the curve, or equivalently, declaring the conformal
equivalence to be an algebraic isomorphism.

As expected, the case of a quartic polynomial P with distinct
roots a, b, c, d ∈ C can be reduced to the cubic case. The complex
algebraic curve defined by y2 � P(x) is birationally equivalent to
an elliptic curve.

Without going into details, we mention yet another connection.
The elliptic integral for a quartic P can be put into the Legendre

10This is followed in Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, 1993.
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form

I(C) �
∫
C

dz√
(1 − z2)(1 − kz2)

,

and this gives the Schwarz–Christoffel formula for a conformal map
of the rectangle with vertices (±1,±k) onto the upper half-plane
H2!

The construction of the Riemann surface MP for P a monic
polynomial of any degree n (with distinct roots) can be easily gen-
eralized from the particular cases above. As before, we group the
roots in pairs with ∞ added if n is odd, connect the pairs of points
with disjoint smooth curves, make the [(n + 1)/2] cuts on each
copy of Ĉ along the curves, and, finally, join the corresponding
cuts crosswise. The Riemann surfaceMP is conformally equivalent
to a torus with [(n − 1)/2] holes.

Problems

1. Derive Euler’s formula for complex exponents using ez � limn→∞(1 + z/n)n,
where z is a complex number.

2. Prove the basic identities for the complex sine function and derive its mapping
properties stated in the text.

3. Use (the derivative of) the geometric series formula for 1/(w − ω)2 − 1/ω2 to
derive the expansion

℘(w) � 1
w2 + 3G4w

2 + 5G6w
4 + 7G8w

6 + · · · ,

where

Gk �
∑

ω∈LP ,ω ��0

1
ωk

.

Substitute this into the differential equation of ℘ to obtain the formulas for g2

and g3 stated in the text.

4. Work out the side pairing transformations for the hyperbolic octagon in the
last example of Section 14 and verify that pasting11 gives the two-holed torus.

11For a different cutting-and-pasting construction of hyperbolic octagons and dodecagons, cf. D. Hilbert
and S. Cohn-Vossen, Geometry and Imagination, Chelsea, New York, 1952.
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Web Site

1. www.geom.umn.edu/∼banchoff/script/CFGPow.html
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16
S E C T I O N

...........................................

General Surfaces

♥ All Riemann surfaces can be listed as either S2, C/G with G a
translation group acting on C or H2/G with G a Fuchsian group
acting on H2. The meager possibilities for S2 and C tempt us to
think that we may obtain surfaces more general than Riemann
surfaces by relaxing some of the conditions on the acting discrete
group G. What should we expect to give up to arrive at these more
general surfaces?

To answer this question, we need to reconsider the definition
of a Riemann surface. The main restriction there came from re-
quiring the chart-changing transformation ϕk ◦ ϕ−1

j , j, k ∈ N, to be
differentiable in the complex sense since, as we have seen, there are
many transformations that are nice (in the real sense) but fail to be
analytic. For example, any Riemann surface carries an orientation
given a Riemann surface, we know how to rotate positively around
a point. This is because the local orientations given by the charts
ϕj patch up to a global orientation, since changing charts amounts
to performing ϕk ◦ ϕ−1

j , and this, being conformal, preserves the
local orientations.

♠ It is now clear how to define the concept of a general surface.
Just repeat the definition of a Riemann surface (replacing C by R2),
and instead of saying that each ϕk ◦ϕ−1

j , j, k ∈ N, is analytic, we just

199
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require this to be differentiable1 in the real sense! We now expect
to obtain interesting new surfaces of the form R2/G, where G is a
discrete group of diffeomorphisms acting on R2. The classification
of these quotients is possible but still a formidable task.

Since we wish to stay in geometry, we require the elements of
G to be isometries. In addition, we will assume that each element
of G (that is not the identity) acts on R2 without fixed points. If
you worry about this condition being too restrictive, recall z → zn,
z ∈ C, from the proof of the FTA, where the corresponding quotient
did not give anything new but S2! Your worry, however, is not un-
founded. Excluding transformations with fixed points makes the
projection map π : R2 → R2/G a simple covering, while at the
fixed points of the elements in G, π would “branch over”—a much
more interesting phenomenon. Our reason for leaving out the
branched coverings is mostly practical; otherwise we would never
get out of two dimensions and on to later parts of the Glimpses!

We now discuss examples. First assume thatG is one of the seven
frieze groups (see Section 10). SinceG can only contain translations
and glides, this leaves us only the first and seventh types. The first
frieze group is generated by a translation, and the resulting surface
R2/G is a cylinder, a Riemann surface discussed in Section 15.
Assume now that G is of the seventh type; that is, it is generated
by a single glide Gl,v. We may assume that l is the first axis and v

is 2π times the first unit vector: v � (2π, 0) ∈ R2. A fundamental
domain F0 forG is the vertical strip (0, 2π)×R, and the side-pairing
transformation

Gl,v|{0} × R : {0} × R → {2π} × R

is given by

Gl,v(0, y) � (2π,−y), y ∈ R.

The quotient R2/G is called the infinite Möbius band. It can be
visualized in the following way: Consider the unit circle S1 ⊂ R2 ⊂
R3 (in the plane spanned by the first two axes) and the line parallel
to the third axis in R3 through (1, 0) ∈ S1. If you slide the line
along S1 by keeping it perpendicular to R2 all the time, it sweeps

1See “Smooth Maps” in Appendix D.
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an ordinary cylinder. Now slide the line along S1 with unit speed
and, while sliding, rotate it by half of that speed. (Do not worry
about self-intersections at this point; in fact, if you rotate the line in
an extra 2-dimensional plane perpendicular to S1 ⊂ R2, then there
will be no self-intersections, and the Möbius band will be imbedded
in R2 ×R2 � R4!) Upon going around S1 once, we complete a half-
turn of the line. Now, what the line sweeps is the Möbius band. It
is much easier to visualize this when we consider the action of the
glide only on a finite strip R × (−h/2, h/2) of height h > 0. We
obtain the finite Möbius band.

A note about orientability: We observed above that for a Riemann
surface, changing the charts from ϕj : Uj → C to ϕk : Uk → C
amounts to performing ϕk ◦ ϕ−1

j , and this, being complex differ-
entiable, is always orientation preserving. In the case of general
surfaces, we see that the surface is orientable if there exists an atlas
in which every chart-changing transformation ϕk ◦ ϕ−1

j is orienta-
tion preserving2. It is easy to see that such an atlas cannot exist on
a Möbius band, and therefore it is not orientable. The same applies
to all surfaces that contain the Möbius band, and this observation
is sufficient for all the examples that follow.

A note before we go any further: The square of a glide is a trans-
lation, and the quotient of R2 by a group generated by a single
translation is the cylinder. Thus, the map

R2/〈G2
l,v〉 → R2/〈Gl,v〉

that associates to the orbit 〈G2
l,v〉(p) the orbit 〈Gl,s〉(p) is two-to-one

(that is, every point on the range has exactly two inverse images).
We obtain that the cylinder is a twofold cover of the Möbius band!

♥ We now turn to crystallographic groups acting on R2. To obtain
a surface that has not been listed so far, we assume thatG contains a
glide. A quick look at the seventeen crystallographic groups shows
that we are left with only the case when G is generated by two
parallel glide reflections. (Note that the case of two perpendicular
glides cannot occur. In fact, ifG � 〈Gl1,v1 , Gl2,v2〉with v1 ·v2 � 0, then
(v2−v1)/2 is a fixed point of the compositionGl2,v2 ◦Gl1,v1 � Tv2 ◦Rl2 ◦
Rl1 ◦Tv1 , since Rl2 ◦Rl1 � H is a half-turn.) We set G � 〈Gl1,v1 , Gl2,v2〉,

2See “Smooth Maps” in Appendix D.
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Figure 16.1

2

1v

v

where l1 � R × {0}, l2 � R × {h}, h > 0, and v1 � v2 � (2π, 0).
A fundamental domain is given by F0 � (0, 2π) × (−h, h) (Figure
16.1). The side-pairing transformations are illustrated in Figure
16.2.

The first side-pairing transformation is the glide Gl1,v1 , and the
second is the translation G−1

l2,v2
◦ Gl1,v1 . The resulting quotient C/G

is called the Klein bottle, denoted by K2. We claim that K2 is ob-
tained by pasting two copies of the Möbius band together along
their boundary circle (of perimeter 4π). Indeed, cut the fundamen-
tal domain F horizontally along the lines R×{h/2} and R×{−h/2}
(Figure 16.3).

This cut is a topological circle on K2 since (0, h/2) is identified
with (2π,−h/2) and (0,−h/2) is identified with (2π, h/2). The mid-
dle portion gives a Möbius band. The upper and lower portions
(identified by G−1

l2,v2
◦ Gl1,v1) first give a rectangle (Figure 16.4), the

two vertical sides are identified again by a glide (from appropri-
ate restrictions of Gl1,v1), and this gives another Möbius band! A
somewhat more visual picture of K2 is shown in Color Plate 4a.

Here, instead of rotating a straight segment, we rotated two
halves of the lemniscate (Figure 16.5) to obtain two topological
copies of the Möbius band. Then pasting is no problem! No-
tice that since K2 contains a Möbius band (actually, it contains

Figure 16.2
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Figure 16.3

Figure 16.4

two), it is nonorientable. Notice also that K2 can be covered by
a torus with a twofold covering. In fact, the torus in question is
R2/〈G−1

l2,v2
◦ Gl1,v1 , G

2
l1,v1

〉, and the fundamental domain of the torus
cover is obtained by “doubling” F in the horizontal direction.

♦ Finally, we consider discrete groups acting on the sphere S2.
Our condition that the isometries act on S2 without fixed points
imposes a severe restriction. The following theorem is essentially
due to Euler:

Figure 16.5
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Theorem 10.
Let S:S2 → S2 be a nontrivial isometry. If S has a fixed point on S2,

then S is the restriction of a spatial reflection or a spatial rotation. If S
has no fixed point on S2, then there exists p0 ∈ S2 such that S(p0) �
−p0, S leaves the great circle C orthogonal to p0 invariant, and S acts
on C as a rotation.

Proof.
First note that S is the restriction of an orthogonal transforma-
tion U : R3 → R3. This follows from the following argument:
Let p1, p2, p3 ∈ S2 be points not on the same great circle. Then
there exists an orthogonal transformation U : R3 → R3 such that
U(pl) � S(pl), l � 1, 2, 3. (This is because the spherical triangles
Kp1p2p3 and KS(p1)S(p2)S(p3) are congruent.) The composition
U−1 ◦ S is an isometry on S2 and fixes pl, l � 1, 2, 3. As in the
Euclidean case, it follows that U−1 ◦ S is the identity, so that S � U

on S2.
U is represented by a 3 × 3 orthogonal matrix. To look for

eigenvectors p and eigenvalues λ for U , we solve the equation
U(p) � λ · p. We know from linear algebra that λ satisfies the
characteristic equation det(U − λI) � 0. Since U is a 3 × 3 matrix,
this is a cubic polynomial in λ. Every cubic (in fact, odd degree)
polynomial P(λ) has a real root λ0 (see Problem 4 of Section 8). Let
p0 ∈ R3 be an eigenvector ofU corresponding to the eigenvalue λ0.
Since U preserves lengths, we have λ0 � ±1, so that U(p0) � ±p0.
Let C ⊂ S2 be the great circle perpendicular to p0. C is the intersec-
tion of the plane p⊥0 perpendicular to p0 and S2. We now claim that
U leaves p⊥0 invariant. This follows from orthogonality. In fact, ifw
is perpendicular to p0, then U(w) is perpendicular to U(p0) � ±p0,
and the claim follows. U restricted to p⊥0 is a linear plane isometry,
so it must be a rotation or a reflection. By looking at the possible
combinations, we see that the theorem follows.

Let G be a discrete group of isometries of S2 and assume that
each nonidentity element of G has no fixed point. We consider
only the simplest case in which G is cyclic and generated by a
single element g ∈ G. Discreteness, along with Theorem 10, im-
plies that g is a spatial rotation with angle 2π/n, n �� 2, followed
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by spatial reflection in the plane of the rotation (perpendicular
to the axis of the rotation). It is now a simple fact that S2/G is
topologically the same for all n. (Look at a fundamental domain
bounded by two meridians of longitude!) We set n � 2. Then
g becomes the antipodal map −I : S2 → S2, −I(p) � −p, and
G � {±I}. The quotient S2/{±I} is called the real projective plane
denoted by RP2.

In the standard model for the real projective plane, projective
points are interpreted as lines through the origin in R3, and projec-
tive lines as planes containing the origin of R3. Since the origin is
a multiple intersection point, it is deleted from the model. Since
every two projective lines intersect, we obtain a model for elliptic
geometry. Algebraically, we let ∼ be the equivalence relation on
R3 − {0} defined by p1 ∼ p2 iff p2 � tp1 for some nonzero real
t. The equivalence class containing p ∈ R3 − {0} is the projec-
tive point that corresponds to the line R · p passing through p and
with the origin deleted. If p � (a, b, c), then this projective point
is classically denoted by [a : b : c]. We also say that a, b, c are
the homogeneous coordinates of the projective point with the under-
standing that for t nonzero, ta, tb, tc are also projective coordinates
of the same projective point. By definition, the set R3 − {0}/ ∼ of
equivalence classes is the real projective plane RP2. Associating to
a nonzero point the equivalence class it is contained in gives the
natural projection R3 − {0} → RP2.

Since we have no space-time here to explore the sublime beauty
of projective geometry, we will understand RP2 in topological
terms only. The idea is to replace R3 − {0} by the unit sphere
S2 and to consider the intersections of projective points and lines
with S2. Each projective point intersects S2 at an antipodal pair of
points. Moreover, knowing this pair, one can reconstruct the pro-
jective point by considering the Euclidean line through them. The
intersection of a projective line with S2 is a great circle (which we
see as a better representative of a line than a plane anyway). Every
projective line is thus a topological circle.3

3I heard the following story from a reliable source: A desperate student asked a professor what he could do
for a passing grade in geometry. “Draw a projective line,” was the answer. The student took the chalk and
started drawing a horizontal line. “Go on,” said the professor when he got to the end of the chalkboard. So
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Since every projective point corresponds to a pair of antipo-
dal points of S2, a topological model of the projective plane is
obtained by identifying the antipodal points with each other:
RP2 � S2/{±I}. We also see that the identification projection
π : S2 → RP2 is a twofold cover.

How can we visualize this? Think of S2 as being the Earth and
divide it into three parts with the Arctic and Antarctic Circles.
Between these parallels of latitude lies a spherical belt that we
further divide by the 0◦ and 180◦ meridians of longitude. Since
the two spherical caps and the two halves of the belt are identi-
fied under −I, we keep only one of each (see Color Plate 4b). The
longitudinal sides of the half-belt are identified under −I, and we
obtain a Möbius band. The cap is attached to this. Thus, RP2 is a
Möbius band and a disk pasted together along their boundaries! In
particular, RP2 is nonorientable.

The real projective plane has another classical model, based on
an extension of the Euclidean plane by adding a set of so-called
ideal points. To describe these, consider the equivalence relation of
parallelism on the set of all straight lines in R2. We call an equiv-
alence class (that is, a pencil of parallel lines) an ideal point. We
define RP2 as the union of R2 and the set of all ideal points. Thus,
a projective point is either an ordinary point in R2 or an ideal point
given by a pencil of parallel lines. A projective line is the union of
points on a line l plus the ideal point given by the pencil of lines
parallel to l. There is a single ideal line, filled by all ideal points.
Incidence is defined by (set-theoretical) inclusion. How does the
algebraic description fit in with the geometric description of RP2

as the extension of R2 with ideal points corresponding to pencils
of parallel lines? If c �� 0, then [a : b : c] and [a/c : b/c : 1] denote
the same projective point. Hence, adjusting the notation (or setting
c � 1), the Euclidean point (a, b) ∈ R2 can be made to correspond
to the projective point [a : b : 1] ∈ RP2, and this correspondence
is one-to-one with the plane of ordinary points in RP2. Thus, the
ordinary points in RP2 are exactly those that have nonzero third
homogeneous coordinates. For an ideal point [a : b : 0] ∈ RP2, we

he continued drawing on the wall, went out of the classroom, down the hallway and out to the street. By
the time he got back from his roundabout tour, the professor had already marked in the passing grade.
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either have a �� 0 and [a : b : 0] � [1 : m : 0], m � b/a, so that
this may be thought to represent the pencil of parallel lines with
common slope m, or a � 0 and [0 : b : 0] � [0 : 1 : 0], which
represents the pencil of vertical lines.

It is clear that two distinct projective lines always intersect. (In
axiomatic treatment, this is called “the elliptic axiom.”) Indeed,
they either meet at an ordinary point or (their Euclidean restic-
tions) are parallel, in which case they meet at the common ideal
point given by these lines.

This model is the same as the topological model given by RP2 �
S2/{±I}. Indeed, cut a unit sphere into two hemispheres along the
equator and keep only the southern hemisphereH. LetH sit on R2

with the south pole S touching the plane (see Figure 16.6). Apply
stereographic projection from the center O of H. The points in
R2 correspond to points of the interior of H (i.e., H without the
boundary equatorial circle). Each line in R2 corresponds to a great
semicircle on H ending at two antipodal points of the equatorial
circle. These endpoints, identified by the antipodal map, give the
single ideal point of the projective extension of the line. Thus, the
ideal points correspond to our horizontal view, and the boundary
equatorial circle (on H modulo the antipodal map) gives the ideal
projective line. You are now invited to check the basic properties
of this model.

Figure 16.6
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Problems

1. Fill in the details in the following argument, which gives another proof of
Theorem 10.

(a) Show that if S leaves a great circle C on S2 invariant, then each of the
two p0 ∈ S2 perpendicular to C satisfies S(p0) � ±p0.

(b) To construct C, consider the function f : S2 → R defined by f(p) �
the spherical distance between p and S(p), p ∈ S2. Assume that 0 < f < π,
since otherwise Theorem 10 follows. Let q0 ∈ S2 be a point where f attains
its (positive) minimum. Use the spherical triangle inequality to show that the
great circle C through q0 and S(q0) is invariant under S.

2. Generalize the previous problem to show that any orthogonal transformation
U : Rn → Rn can be diagonalized with diagonal 2 × 2 blocks[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

corresponding to planar rotation with angle θ (and, for n odd, by a single 1× 1
block with unit entry).

3. Define and study Iso (RP2).

4. Make a topological model of the Klein bottle K2 from a finite cylinder bent
into a half-torus by pasting the two boundary circles together appropriately.

5. Define the real projective n-space RPn using homogeneous coordinates.
(a) Show that RP1 is homeomorphic to S1. (b) Imbed RPn−1 into RPn using
the inclusion Rn ⊂ Rn+1 given by augmenting n-vectors with an extra zero
coordinate. What is the difference RPn − RPn−1?

Web Site

1. vision.stanford.edu/∼birch/projective/node3.html
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S E C T I O N

...........................................

The Five Platonic
Solids

♣ A triangle in the plane can be thought of as the intersection
of three half-planes whose boundary lines are extensions of the
sides of the triangle. More generally, a convex polygon is defined
as a bounded region in the plane that is the intersection of finitely
many half-planes. A convex1 polygon has the property that for each
pair p1, p2 of points of the polygon, the segment connecting p1 and
p2 is entirely contained in the polygon (Figure 17.1).

The regular n-sided polygon is a primary example of a convex
polygon. It is distinguished among all convex polygons by the fact
that all its sides and angles are congruent.

Figure 17.1

1Nonconvex objects surround us. Next time you eat breakfast, take a closer look at your croissant or bagel.

209
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In a similar vein, in space, a convex polyhedron K is defined as
a bounded region in R3 that is the intersection of finitely many
half-spaces. The notion of convexity carries over to three (and in
fact any) dimensions. The part of the boundary plane of the half-
space participating in the intersection that is common with the
polyhedron is called a face of K. Any common side of two faces is
an edge. The endpoints of the edges are the vertices of K. Regularity
of convex polyhedra, although simple in appearance, is not so easy
to define. It is clear that the faces of a regular polyhedron must be
made up of regular polygons all congruent to each other. That this
is not enough for regularity is clear when one considers a double
pentagonal pyramid called Bimbo’s lozenge (Figure 17.2). At two
vertices five equilateral triangles meet, while only four meet at
the remaining five vertices.

To define regularity, we turn to group theory. First we define
Iso (R3), the group of isometries of R3 (in much the same way as
we did for R2); a transformation S : R3 → R3 belongs to Iso (R3)

if S preserves spatial distances:

d(S(p), S(q)) � d(p, q), p, q ∈ R3,

where d : R3 × R3 → R is the Euclidean distance function:

d(p, q) � |p − q|, p, q ∈ R3.

As in two dimensions, we can easily classify all spatial isome-
tries. Those that have a fixed point have been described in Theorem
10 (see Section 16). In fact, this result can be rephrased by saying
that any element of Iso (R3) that leaves a point fixed is either a
spatial reflection or a rotatory reflection, a rotation followed by re-

Figure 17.2
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flection in the plane perpendicular to the rotation axis. (What is a
rotatory half-turn?) Notice that Theorem 10 is actually stated in a
bit stronger setting; for the conclusions all we need is the restriction
of the spatial isometry S to the unit sphere S2(p0) with center p0, a
fixed point of S. As in the plane, a spatial isometry S with no fixed
points is the composition of a spatial translation Tv and another
spatial isometry U that leaves the origin fixed; S � Tv ◦ U , where
v � S(0). (U is linear, but we do not need this additional fact here.)
Since we are in space, the possible outcomes of the composition
of Tv and U depend on how the translation vector v relates to the
reflection plane or the rotation axis for U ; think of the motion of
the frisbee or uncorking a bottle! If U is a spatial reflection, then S

is a glide reflection, a reflection in a plane followed by a translation
with vector parallel to the reflection plane. (Indeed, this follows by
writing v � v1 + v2 and Tv � Tv1 ◦ Tv2 , where v1 is parallel and v2

perpendicular to the reflection plane. Notice the presence of the
two-dimensional statement that any plane reflection in a line fol-
lowed by a translation with translation vector perpendicular to the
reflection axis is another reflection; see Section 9.) If U is a rota-
tion, then S � Tv ◦ U is a screw displacement, a rotation followed
by a translation along the rotation axis. (Once again this follows by
decomposing v � v1 + v2 as above, and using the two-dimensional
statement, any plane rotation followed by a translation is another
rotation; see Section 9.) Finally, piecing these arguments together
to a single proof we obtain that if U is a rotatory reflection, then so
is S. (A spatial reflection and a translation commute if the transla-
tion vector is parallel to the reflection plane. Now distributeTv1 and
Tv2 to the rotation and reflection part of U .) Summarizing, every
spatial isometry is either a rotation, a reflection, a rotatory reflec-
tion, a translation, a glide reflection, or a screw displacement. As a
byproduct we obtain that any spatial isometry is the composition of
at most four spatial reflections. (For example, a rotatory half-turn,
the negative of the identity, is the composition of three reflections
in mutually perpendicular planes!)

We want to consider a convex polyhedron K regular if we can
carry each vertex of K to another vertex by a suitable spatial isom-
etry in Symm (K), the group of spatial isometries that leave K
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invariant. In two dimensions, regularity of a polygon was certainly
equivalent to this; think of the cyclic group of rotations leaving
the regular n-sided polygon invariant (see Section 9). Similar sym-
metry conditions should be required for the edges and faces of K.
Between vertices, edges, and faces there are incidence relations
that essentially define K.

To incorporate all these into a single symmetry condition, we
introduce the concept of a flag in K as a triple (p, e, f) where p is
a vertex, e is an edge, f is a face of K, and p ∈ e ⊂ f . We now say
that K is regular if given any two flags (p1, e1, f1) and (p2, e2, f2) of K,
there exists a spatial isometry S ∈ Symm (K) that carries (p1, e1, f1)

to (p2, e2, f2); that is, S(p1) � p2, S(e1) � e2, and S(f1) � f2.
Let K be a convex polyhedron with vertices p1, . . . , pn. Define

the centroid of K as

c � p1 + · · · + pn

n
.

We claim that every spatial isometry in Symm (K) fixes c. To do
this,2 we consider the function f : R3 → R defined by f(p) �∑n

j�1 d(p, pj)
2, p ∈ R3. Let S ∈ Symm (K). Since S permutes

the vertices of K, {S(p1), . . . , S(pn)} � {p1, . . . , pn}. It follows that
f(S(p)) � f(p), p ∈ R3. Indeed, we compute

f(S(p)) �
n∑
j�1

d(S(p), pj)
2 �

n∑
j�1

d(p, S−1(pj))
2

�
n∑
j�1

d(p, pj)
2 � f(p).

To show that S(c) � c, we now notice that f has a global minimum

2Beautiful geometric arguments exist to prove this claim; see H.S.M. Coxeter, An Introduction to Geometry,
Wiley, 1969. For a change, we give here an analytic proof.
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at c. This follows by completing the square:3

f(p) �
n∑
j�1

d(p, pj)
2 �

n∑
j�1

|p − pj|2

�
n∑
j�1

(|p|2 − 2p · pj + |pj|2)

� n|p|2 − 2np · c +
n∑
j�1

|pj|2

� n|p − c|2 − n|c|2 +
n∑
j�1

|pj|2,

where we used the definition of c and the dot product. Since the last
two terms do not depend on p, it is clear that f(p) attains its global
minimum where |p − c|2 does—that is, at p � c. The composition
f ◦ S−1 takes its global minimum at S(c). But f ◦ S−1 � f , so these
minima must coincide. S(c) � c follows.

If K is regular, its centroid has the same distance from each ver-
tex. This is because regularity ensures that every pair of vertices
can be carried into one another by a spatial isometry in Symm (K)

that fixes c. The same is true for the edges and the faces of K. In
particular, a sphere that contains all the vertices can be circum-
scribed around K. Notice that by projecting K from the centroid
to the circumscribed sphere, we obtain spherical tessellations (see
Problem 10).

How many regular polyhedra are there? Going back to the plane
is misleading; there we have infinitely many regular polygons,
one for each positive integer n ≥ 3, where n is the number of
edges or vertices. As we will show in a moment, there are only five
regular polyhedra in R3. They are called the five Platonic solids (Fig-
ure 17.3), since Plato gave them a prominent place in his theory
of ideas.

3Did you notice how useful completing the square was? We used this to derive the quadratic formula, to
find the center of a hyperbolic circle, to integrate rational functions, etc.
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Figure 17.3

Remark.
The two halves of Bimbo’s lozenge are hiding in the icosahedron
with a “belt” of ten equilateral triangles separating them! The belt
configuration (closed up with two regular pentagons) was called
by Kepler a pentagonal antiprism. In a similar vein, an octahe-
dron can be thought of as a triangular antiprism. (The pentagonal
antiprism appeared about 100 years earlier as octaedron elevatum
in Fra Luca Pacioli’s Da Divina Proportione, printed in 1509. This
classic is famous for its elaborate drawings of models made by
Leonardo da Vinci.) Following the “icosahedral recipe,” we can also
insert a square antiprism between two square pyramids (two halves
of an octahedron) and obtain a nonregular polyhedron with sixteen
equilateral triangular faces (see Figure 17.4).

Figure 17.4
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π/2 − π/a2π/a

Figure 17.5

We describe a regular polyhedron by the so-called Schläfli symbol
{a, b}, where a is the number of sides of a face and b is the number
of faces meeting at a vertex. Each face is a regular a-sided polygon.
The angle between two sides meeting at a vertex is therefore π −
2π/a (Figure 17.5). (Split the polygon into a isosceles triangles by
connecting the vertices of the polygon to the centroid.)

At a vertex of the polyhedron, b faces meet. By convexity, the
sum of angles just computed for the b faces must be < 2π. We
obtain

b(π − 2π/a) < 2π.

Dividing by π, we obtain

b(1 − 2/a) < 2,

or equivalently,

(a − 2)(b − 2) < 4.

On the other hand, a, b > 2 by definition. A case-by-case check
gives all possibilities for the Schläfli symbol:

{3, 3}, {3, 4}, {4, 3}, {3, 5}, {5, 3}.
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We could now go on and describe these solutions geometrically.
Instead, for the moment, we take a brief look at the examples4 (but
not the last column!) in Figure 17.6.

Following Euler, we refine the somewhat crude argument above
to obtain the number of possible faces, edges, and vertices of each
Platonic solid. We start with an arbitrary (not necessarily regular)
convex polyhedron K.

Euler’s Theorem for Convex Polyhedra.5

Let

V � number of vertices of K;
E � number of edges of K;
F � number of faces of K.

Then we have

V − E + F � 2.

Proof.
We first associate to a convex polyhedron K a planar graph called
the Schlegel diagram of K. To do this we use stereographic projec-
tion. Adjust K in space so that the top face is horizontal (that is,
parallel to the coordinate plane spanned by the first two axes).
Sit in the middle of the top face and look down to the transparent
polyhedron K. The perspective image of the edges (the wireframe)
gives a graph on the horizontal coordinate plane and defines a
planar graph (with nonintersecting edges) if you are not too tall.
Each face of K will correspond to a polygonal region in the plane
bounded by the edges of the graph. We let the face you are sitting
on correspond to the unbounded region that surrounds the graph.
We can now analyze the last column of Schlegel diagrams of the
five Platonic solids in Figure 17.6.

Under stereographic projection, edges and vertices of K corre-
spond to edges and vertices of the Schlegel diagram, so we begin to

4See H.S.M. Coxeter, Introduction to Geometry, Copyright 1969 by John Wiley & Sons, Inc. Reprinted by
permission of John Wiley & Sons, Inc.
5This was known to Descartes, and according to widespread belief, to Archimedes as well.
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Figure 17.6
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suspect that Euler’s theorem must be valid in general for connected
planar graphs, where any graph is defined by a finite number of
points of the plane (called vertices) and a finite number of non-
intersecting segments (called edges) connecting the vertices. The
graph is further assumed to be connected, and it decomposes the
plane into nonoverlapping regions.

We now claim that Euler’s theorem is true for all connected pla-
nar graphs consisting of at least one vertex. To show this, we build
a planar graph step by step, starting from a single vertex graph. For
this trivial case the alternating sum V − E + F is 2, since V � 1,
E � 0, and F � 1. To build the graph, at each step we apply one
of the following operations:

1. A new edge is added that joins an old vertex and a new vertex;
2. A new edge is added that joins two old vertices.

In each case, we have the following changes:

1. V + 1  → V , E + 1  → E, F  → F ;
2. V  → V , E + 1  → E, F + 1  → F .

The alternating sum remains unchanged; Euler’s theorem
follows!

We now return to our regular polyhedra with Schläfli symbol
{a, b} and use the additional information we just gained:

V − E + F � 2.

The numbers in {a, b} relate to V , E and F by

bV � 2E � aF.

Indeed, if we count the b edges at each vertex, we counted each
edge twice. Similarly, if we count the a sides of each face, we again
counted each edge twice. Combining these, we easily arrive at the
following:

V � 4a
2a + 2b − ab

, E � 2ab
2a + 2b − ab

, F � 4b
2a + 2b − ab

.
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We now look at Figure 17.6 again and see that the numbers of
vertices, edges, and faces determined by these give6 the tetrahe-
dron, cube, octahedron, dodecahedron, and icosahedron—the five
Platonic solids!

In ancient times, the existence of only five regular polyhe-
dra called for much mysticism. In Plato’s Timaeus, the four basic
elements—air, earth, fire, and water—were mysteriously con-
nected to the octahedron, cube, tetrahedron, and icosahedron (in
this order). To the dodecahedron was associated the entire Uni-
verse. The latter is probably due to Timaeus of Locri, one of the
earliest Pythagoreans. The twelve faces of the dodecahedron were
believed to correspond to the twelve signs of the Zodiac. Figure
17.7 is adapted from a drawing by Kepler.

Unlike the tetrahedron, the cube and the octahedron are
common, basic structures for many crystals (such as sodium sul-
fantimoniate, common salt, and chrome alum). The occurrence
of dodecahedral and icosahedral structures are rare in nonliving
nature. However, these do occur in living creatures; for example,
they are found in the skeletons of some microscopic sea animals
called radiolaria.7 Moreover, a number of viruses such as the ade-
novirus (which causes the flu and a host of other illnesses) have
icosahedral structure.

Let us now go back to mathematics and take a closer look at
the Platonic solids. We have demonstrated above that there are
only five regular polyhedra in space, but their actual existence was
largely taken for granted. Of course, nobody doubts the existence
of the regular tetrahedron, much less the cube, but how the faces
of the dodecahedron, the icosahedron, and, to a lesser extent, the
octahedron piece together remains to be seen. To reduce the num-
ber of cases, we now make some preparations and introduce the
concept of reciprocal for regular polyhedra.

Let {a, b}, a, b ≥ 3, be the Schläfli symbol of a Platonic solid
P whose existence we now assume. Let p be a vertex of P. At p,

6It is perhaps appropriate to recall some of the Greek number prefixes here: 2 = di, 3 = tri, 4 = tetra, 5
= penta, 6 = hexa, 7 = hepta, 8 = octa, 9 = ennia, 10 = deca, 12 = dodeca, 20 = icosa. The cube does
not fit in; how would you rename it?
7See H. Weyl, Symmetry, Princeton University Press, 1952.
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Figure 17.7.
M. Berger, Geometry
II, 1980, 32.
Reprinted by
permission of
Springer-Verlag New
York, Inc.

exactly b edges and faces meet. We denote the edges by e1, . . . , eb,
and the faces by f1, . . . , fb in such a way that e1, e2 ⊂ f1, e2, e3 ⊂
f2, . . . , eb, e1 ⊂ fb (Figure 17.8).

Let S ∈ Symm (P) be an isometry that carries the flag (p, e1, f1)

into (p, e2, f2). (This is the first time when regularity comes in with
full force!) Like every element of Symm (P), S fixes the centroid c

of P, and thus it must fix the line l through c and p. (Notice that
c and p must be distinct. Why?) S(e2) � e3 since S(e2) is an edge



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

17. The Five Platonic Solids 221

f

f

f ee

e e

2
1

b b3

2 1

Figure 17.8

of f2 � S(f1) other than e2. Thus S2(e1) � S(e2) � e3. Iterating, we
obtain Sj(e1) � ej+1, j � 1, . . . , b − 1, and Sb(e1) � e1. Thus S is a
rotation of order b and axis l. It is now easy to see that the cyclic
group 〈S〉 generated by S is precisely the subgroup of Symm (P) of
direct isometries that leaves p fixed.

Armed with this description of Symm (P) at a vertex, we are now
ready to define the reciprocal of P. Let P have Schläfli symbol {a, b}.
Consider a vertex p of P and denote by e1, . . . , eb the edges of P that
meet at p. Let m1, . . . , mb be the midpoints of e1, . . . , eb. Since the
endpoints of e1, . . . , eb other than p are in the orbit of 〈S〉, so are the
midpoints. Thus, m1, . . . , mb are the vertices of a regular b-sided
polygon, and this polygon is in a plane perpendicular to the axis of
rotation l of S (Figure 17.9). The polygon with vertices m1, . . . , mb

is called the vertex figure of p at P. There is a vertex figure for each
vertex of P, of which we have V in number. The V planes of the
vertex figures enclose a polyhedron P0 that is called the reciprocal
of P.

What is the Schläfli symbol of P0? Looking at the local picture of
two adjacent vertices of P, we see that the edges of P0 bisect the
edges of P at right angles. Of these bisecting edges (of which we
have E in number), those that bisect the a sides of a face of P all
go through a vertex of P0. Thus, exactly a edges meet at a vertex of
P0. Finally, those edges of P0 that bisect the b edges at a vertex of
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Figure 17.9
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P are the edges of a face of P0. Thus each face of P0 is a regular b-
sided polygon. We obtain that the Schläfli symbol of P0 is {b, a}. We
can now study Color Plates 5a–c, which depict the three reciprocal
pairs.

Notice that the reciprocal of a tetrahedron is another tetrahe-
dron. The reciprocal pair of tetrahedra—the stella octangula, as
Kepler called it—is the simplest example of a compound polyhedron,
and it occurs in nature as a crystal-twin of tetrahedrite. Histori-
cally, the first complete understanding of the relationship between
a polyhedron and its reciprocal is attributed to Maurolycus (1494–
1575), although inscribing various regular solids into each other
appears in Book XV of the Elements. (Note that Book XIV was writ-
ten by Hypsicles and, as the language and style suggest, Book XV
is attributed to several authors.)

Reciprocity is a powerful tool in our hands, and we will use it in
a variety of ways. First of all, if a regular polyhedron exists, then so
does its reciprocal. Thus, the obvious existence of the cube, with
Schläfli symbol {4, 3}, implies the existence of its reciprocal, the
octahedron. Moreover, since the dodecahedron and icosahedron
are reciprocal, it is enough to show that one of them exists! Since
the existence of a tetrahedron is quite clear, our task is now reduced
to showing that the dodecahedron exists.
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The dodecahedron has Schläfli symbol {5, 3}, and this shows that
exactly three regular pentagons meet at a vertex. This configura-
tion exists (Figure 17.10), since between two adjacent edges of a
regular pentagon the angle is π − 2π/5 � 3π/5, and three of these
add up to 9π/5 < 2π.

We claim that the lines l1, l2 shown in Figure 17.10 are per-
pendicular. Indeed, l1 is parallel to the side l, and l is certainly
perpendicular to l2. Thus we are able to pick perpendicular di-
agonal lines in adjacent pentagonal faces. The dodecahedron has
exactly twelve faces, so we can pick twelve lines with orthogonality
conditions among them. But twelve is exactly the number of edges
of a cube! It is impossible to resist the temptation to pick these lines
to form the edges of a cube. Figure 17.11 shows the configuration.
Notice that we have not proved the existence of the dodecahedron,
but have found a cube on which we want to build it. Thus, we start
with a cube, pick a vertex, and arrange the three pentagonal faces
to meet at this vertex (Figure 17.12). How to attach the remaining
pentagonal faces? As usual, group theory helps us out. In fact, we
now apply to the installed three pentagonal faces the symmetries
of the cube that are spatial half-turns around the symmetry axes
that go through the centroids of pairs of opposite faces (see Figure
17.13). Thus the pentagons fit together, and we created the dodeca-
hedron! (For a different proof of the existence of the dodecahedron,
cf. Problem 20.) So now we have shown that all five Platonic solids
exist.
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Figure 17.11

Pursuing the analogy with regular polygons, we next work out
the symmetry groups of these regular polyhedra. Reciprocity re-
duces the cases to consider to three, since reciprocal polyhedra
have the same symmetry group. This follows immediately if we
recall how the reciprocal P0 of P was constructed. (Assume that
S ∈ Symm (P), construct P0, and realize that S carries P0 to itself
because P0 is determined by P using data such as midpoints of
edges, etc. that remain invariant under S.)

♥ Before we actually determine these three groups explicitly,
we would like to see what the possibilities are for any such group.
As noted above, the symmetry group of any polyhedron (regular
or not) is finite, so we now take up the more ambitious task of

Figure 17.12
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Figure 17.13

classifying all finite subgroups of Iso (R3) (cf. Theorem 4 of Section
9 for the 2-dimensional case).

LetG ⊂ Iso (R3) be a finite group. First we observe the existence
of a point p0 ∈ R3 that is left fixed by every element of G. Indeed,
let p ∈ R3 be arbitrary and consider the orbit

G(p) � {S(p) | S ∈ G}.
This is a finite set

G(p) � {p1, . . . , pn}
since G is finite. Since the elements of G permute the pj’s, j �
1, . . . , n, we can repeat the argument that was used to find the
centroid of a polyhedron and conclude that

p0 � p1 + · · · + pn

n

is left fixed by all elements of G. It is quite remarkable that the
“centroid argument” for polyhedra applies to this more general
situation.

We now assume that G consists of direct isometries only. Every
nontrivial element R of G is a rotation (see Theorem 10 of Section
16) around an axis l that must go through p0, since R fixes p0. The
axis cuts the unit sphere S2(p0) around p0 into a pair of antipodal
points. We call these points poles (Figure 17.14).
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Figure 17.14
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There are two poles on S2(p0) for each rotation inG. Any rotation
R in G must have finite order, since G is finite. We now let q be a
pole and R be the smallest positive angle rotation with pole q. We
call the order of R the degree of the pole q. Thus, q has degree
d ∈ N if Rd � I, and d is the smallest positive integer with this
property.

Let Q denote the (finite) set of all poles on S2(p0). We claim that
G leaves Q invariant. G certainly leaves S2(p0) invariant, since it
fixes p0. Let q ∈ Q as above and assume that q corresponds to the
rotation R ∈ G. Let S ∈ G be any rotation. Then S ◦ R ◦ S−1 ∈ G

is a rotation that fixes S(q) so that it must be a pole. Invariance of
Q under G follows. Notice that the poles q and S(q) have the same
degree, since Rd � I iff (S ◦ R ◦ S−1)d � I.

The classification of possible cases for G now depends on the
successful enumeration of the elements in Q . To do this, we intro-
duce an equivalence relation ∼ onQ such that q1 ∼ q2, q1, q2 ∈ Q ,
if q2 � S(q1) for some S ∈ G. That this is an equivalence follows
from the fact that G is a group. The equivalence classes are actu-
ally the orbits of G on Q , and they split Q into mutually disjoint
subsets. As noted above, poles in the same equivalence class have
the same degree. Let C ⊂ Q be an equivalence class and d � dC
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the common degree of the poles in C. We claim that

|C| � |G|
dC

.

To show this, let q ∈ C, and let R ∈ G be the rotation that corre-
sponds to the pole q as above. By assumption, R has degree d, so
that the cyclic subgroup 〈R〉 consists of the distinct elements

I, R, R2, . . . , Rd−1 (Rd � I).

Let p ∈ S2(p0) be any point not in Q . Apply the elements in 〈R〉
to p to obtain a regular d-sided polygon with vertices

p, R(p), R2(p), . . . , Rd−1(p).

Other rotations in G transform this polygon into congruent poly-
gons around the poles in C. We can choose p so close to q that all
the transformed polygons are disjoint (Figure 17.15). The number
of vertices of all these polygons is d|C|. On the other hand, this set
of vertices is nothing but the orbit

G(p) � {S(p) | S ∈ G}.
We obtain that |G(p)| � d|C|. Finally, note that no element in G

(other than the identity) fixes p, since p is not in Q . Thus, |G(p)| �
|G|, and the claim follows.

R  (p)
R(p)

p

0

1

S  (p  )

p

q

2

2
    0

Figure 17.15
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Next, we count how many nontrivial rotations have poles in C.
Each axis, giving two poles in C, is the axis of d − 1 nontrivial
rotations. Thus, the number of nontrivial rotations with poles in C

is (
1
2

)
(dC − 1)|G|

dC
, d � dC,

where the (1/2) factor is because each rotation axis gives two poles.
Thus, the total number of nontrivial rotations in G is

|G| − 1 � |G|
2

∑
C

(dC − 1)
dC

,

where the summation runs through the equivalence classes of
poles. Rearranging, we find

2 − 2
|G| �

∑
C

(
1 − 1

dC

)
.

We now see how restrictive this crucial equality is. We may assume
that G consists of at least two elements. Since

1 ≤ 2 − 2
|G| < 2,

the number of equivalence classes in the summation above can
only be 2 or 3. (¬ If we had at least four terms 1 − 1/dC, they
would add up to a sum ≥ 4(1 − 1/2) � 2. ¬)

Assume first that we have two equivalence classes, C1 and C2,
with dC1 � d1 and dC2 � d2. We have

2 − 2
|G| �

(
1 − 1

d1

)
+
(

1 − 1
d2

)

or, equivalently,

|G|
d1

+ |G|
d2

� 2.

On the left-hand side the terms are positive integers, since |C1| �
|G|/d1 and |C2| � |G|/d2 as proved above. Thus both terms must
be equal to one. We obtain

d1 � d2 � |G|.
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This means thatG is cyclic and consists of rotations around a single
axis that cuts S1(p0) at an antipodal pair of poles.

To get something less trivial, we assume now that there are three
equivalence classes:

2 − 2
|G| �

(
1 − 1

d1

)
+
(

1 − 1
d2

)
+
(

1 − 1
d3

)

(with obvious notation). We rewrite this as

1
d1

+ 1
d2

+ 1
d3

� 1 + 2
|G| .

Since 1/3 + 1/3 + 1/3 � 1 < 1 + 2/|G|, there must be at least
one degree that is equal to 2. We may assume that it is d3. Setting
d3 � 2, the equality above reduces to

1
d1

+ 1
d2

� 1
2

+ 2
|G| .

A little algebra now shows that

(d1 − 2)(d2 − 2) � 4
(

1 − d1d2

|G|
)
< 4.

We obtain the same restriction as for regular polyhedra! Setting,
for convenience, d1 ≤ d2, we summarize the possible values of d1,
d2, d3, and |G| in the following table:

d1 2 3 3 3

d2 n 3 4 5

d3 2 2 2 2

|G| 2n 12 24 60

The first numerical column d1 � 2, d2 � n, d3 � 2 and |G| � 2n
corresponds to the dihedral group Dn discussed in Section 9. There
is, however, a little geometric trouble here. Recall that Dn is the
symmetry group of a regular n-sided polygon and that this group
includes not only rotations but reflections as well. Our symmetry
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group here consists of direct isometries only. This virtual contra-
diction is easy to resolve. In fact, a spatial half-turn is a direct spatial
isometry, yet its restriction to a plane through its axis gives a reflec-
tion! Thus, increasing the dimension by one enables us to represent
our planar opposite isometries by spatial direct isometries. We can
now give a “geometric representation” of Dn as follows: Consider
the regular n-sided polygon Pn ⊂ R2 inscribed in the unit circle S1

as in Section 5. Take the Cartesian product of Pn with the interval
[−h/2, h/2] ⊂ R, h > 0. We obtain what is called a regular prism
Pn × [−h/2, h/2] ⊂ R2 × R � R3 (of height h).

We now claim that Symm+(Pn × [−h/2, h/2]), the group of direct
spatial isometries of the prism, is the dihedral groupDn. (For n � 4,
we assume that h �� √

2 so that Pn× [−h/2, h/2] is not a cube.) Since
the centroid (the origin) of the prism must stay fixed, it is clear that
every element S ∈ Symm (Pn× [−h/2, h/2]) leaves the middle slice
Pn × {0} invariant. Thus, S, restricted to the coordinate plane R2

spanned by the first two axes, is an element of Symm (Pn).
Recall from Section 9 that the elements of Symm (Pn) are re-

flections to the symmetry axes or rotations by angles 2kπ/n, k �
0, . . . , n − 1. If S restricts to a planar reflection to a symmetry
axis of Pn, then S is a spatial half-turn around the same axis. If S
restricts to a planar rotation around the origin with angle 2kπ/n,
k � 0, . . . , n − 1, then S is a spatial rotation around the verti-
cal third coordinate axis with the same angle. Altogether, we have
n+ 1 rotation axes, n half-turn axes in R2, and the third coordinate
axis (for rotations with angles 2kπ/n, k � 0, . . . , n− 1). These give
2(n+1) � 2n+2 poles on the unit sphere S2. The set of poles splits
into three equivalence classes. Each half-turn switches the North
and South Poles, and these form a two-element equivalence class.
On the plane of Pn, there are two intertwining equivalence classes,
with n elements in each class. Summarizing, we showed that the
dihedral group Dn of spatial rotations is the symmetry group of a
regular prism with base Pn. ♠ Conversely, if G acts on R3 with di-
rect isometries and orbit structure described by the first numerical
column of the table above, then G is conjugate to Dn in Iso (R3).
Indeed, G contains a degree-n rotation whose powers form a cyclic
subgroup of order n in G. The rest of G is made up by n half-turns.
The axis of the degree-n rotation is perpendicular to the axes of
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the half-turns. This is because the two poles that correspond to the
axis of the degree-n rotation form a single orbit, and these two poles
must be interchanged by each half-turn. The 2n poles correspond-
ing to the n half-turns are divided into two orbits consisting of n
poles each. The degree-n rotation maps this set of poles into itself.
The only way this is possible is that the angle between adjacent
axes of the n half-turns is π/n. By a spatial isometry, the configura-
tion of all the axes can be brought to that of the prism above. The
same isometry conjugates G into Dn. ♥ This completely describes
the first numerical column in the table above.

The trivial case of a cyclic G with two equivalence classes, dis-
cussed above, can be geometrically represented as the symmetry
group of a regular pyramid with base Pn.

We could go on and do the same analysis for the remaining
columns of the table. Each case corresponds to a single group
whose generators and defining relations can be written down
explicitly. We follow here a more geometric path. We go back to
our five Platonic solids and work out the three symmetry groups
that arise. We will then realize (repeating the counting argument
above for nearby poles p and q) that they must correspond to the
last three columns of the table.

We start with the symmetry group of the regular tetrahedron T .
Looking at Figure 17.16, we see that the only spatial reflections
that leave T invariant are those in planes that join an edge to the
midpoint of the opposite edge. There are exactly six of these planes,

Figure 17.16
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each corresponding to an edge of T . Symm (T ) thus contains six
reflections. Let 1, 2, 3, 4 denote the vertices of T . Each element
S ∈ Symm (T ) permutes these vertices; that is, S gives rise to a
permutation (

1 2 3 4
S(1) S(2) S(3) S(4)

)
.

Conversely, S is uniquely determined by this permutation. (In-
deed, if S1 and S2 in Symm (T ) give the same permutation on the
vertices, then S−1

2 ◦ S1 fixes all the vertices. A spatial isometry that
fixes four noncoplanar points is the identity. Thus S−1

2 ◦S1 � I, and
S1 � S2 follows.) Each reflection gives a transposition (a permuta-
tion that switches two numbers and keeps the rest of the numbers
fixed). In fact, the two vertices that are on the plane of the reflection
stay fixed, and the other two get switched. The six reflections thus
give six transpositions. The symmetric group8 S4 on four letters,
consisting of all permutations of {1, 2, 3, 4}, has exactly six trans-
positions, so we got them all! It is a standard fact (easily verified
in our case) that the transpositions generate the symmetry group.
Thus, Symm (T ) ∼� S4.

The direct isometries in Symm (T ) are compositions of even
number of reflections. They correspond to permutations that can
be written as products of even number of transpositions. These
are called even permutations, and they form a subgroup A4 ⊂ S4

called the alternating group on four letters. We obtain that the
group of direct isometries Symm+(T ) is isomorphic with A4. Since
|S4| � 4! � 24, we have |A4| � |S4|/2 � 12. Looking at our table,
we see that we recovered the second numerical column. The group
Symm+(T ) ∼� A4 is called the tetrahedral group. Now explore some
rotations in Symm+(T ) as shown in Figures 17.17 to 17.19.

Remark.
While the tetrahedral group consists only of rotations, an opposite
spatial symmetry of T is not necessarily a reflection. For example,

8See “Groups” in Appendix B.
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Figure 17.17

Figure 17.18

Figure 17.19
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the cycle (
1 2 3 4
2 3 4 1

)

corresponds to a rotatory reflection (a rotation followed by a
reflection).

Next, we have a choice between a cube and an octahedron, since
they are reciprocal to each other. Let us choose the latter. We think
of the regular octahedron O in the following way: First take a reg-
ular tetrahedron T . At each of the four vertices, we take the vertex
figure, which in this case is a triangle whose vertices are the mid-
points of the three edges that meet at the given vertex of T . We now
slice off the four tetrahedra containing the vertices of T along the
vertex figures. What is left after this truncation is a regular octahe-
dron O (see Figure 17.20). You may already have noticed in Color
Plate 5a that O is actually the intersection of T and its reciprocal
T 0.

Symmetries of T automatically become symmetries of O:

Symm (T ) ⊂ Symm (O).
There are exactly four faces of the octahedron O that are contained
in those of T . These four faces are nonadjacent and meet only at
vertices, and any member determines the group uniquely. The

Figure 17.20
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other four faces of O form the same configuration relative to the
reciprocal tetrahedron T 0.

Now let S ∈ Symm+(O). We claim that either S(T ) � T or
S(T ) � T 0, depending on whether S is in Symm+(T ) or not.
Indeed, looking at how S acts on the two groups of four nonad-
jacent faces above, we see that S either permutes the faces in
each group separately or it interchanges the faces between the
two groups. Extending the faces in each group, we obtain T and
T 0, and the claim follows (see Color Plate 6). Note that the sec-
ond case does occur; e.g., take a spatial quarter-turn about an axis
that joins two opposite vertices of O. Considering the four pos-
sible cases of compositions of two elements of Symm+(O), it is
now clear that there are exactly two left-cosets in Symm+(O) by
the subgroup Symm+(T ) (corresponding to the two cases above).
Comparing Symm+(T ) ⊂ Symm+(O) and A4 ⊂ S4, we see that
Symm+(O) is isomorphic to the symmetric group S4. A more ex-
plicit way to obtain this isomorphism is to mark the vertices of one
tetrahedron by 1, 2, 3, 4, and their antipodals by 1’, 2’, 3’, 4’ (the
vertices of the reciprocal) and to consider the action of Symm+(O)
on the “diagonals” 11’, 22’, 33’, 44’. Since |S4| � 24, we recovered the
third numerical column in our table! The group of direct isometries
Symm+(O) ∼� S4 is called the octahedral group.

Remark.
Our argument was based on the fact that a regular tetrahedron
and its reciprocal intersect in an octahedron. You may be won-
dering what we get if we intersect the other two reciprocal pairs.
Well, we obtain nonregular polyhedra! The intersection of the re-
ciprocal pair of a cube and an octahedron gives what is called a
cuboctahedron, a convex polygon with eight equilateral triangular
faces and six square faces (Figure 17.21). The intersection of the
reciprocal pair of an icosahedron and a dodecahedron is an icosi-
dodecahedron. It has twenty equilateral triangular faces and twelve
pentagonal faces (Figure 17.22).

Finally, we take up the task of determining the group of direct
isometries of the dodecahedron. It will be easier to work with its
reciprocal, the icosahedron I. In Color Plate 7, the twenty faces of
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Figure 17.21

I have been colored with five different colors, with the property
that in each color group the four faces are mutually disjoint. Figure
17.23 shows one color group in a wireframe setting.

A simple algorithm to find four faces in a color group is the
following: Stand on a face F with bounding edges ek, k � 1, 2, 3. For
each k, step on the face Fk adjacent to F across ek. At the vertex vk
of Fk opposite to ek, five faces meet, three of which are not disjoint
from F . The remaining two faces disjoint from F are adjacent and
appear to you to the right and to the left. Now, if you are right-
handed, add the right face to the color group of F , and if you are
left-handed, add the left face to the color group.

The plane extensions of each of the four faces in a color group
enclose a regular tetrahedron (Figure 17.24). Since each color

Figure 17.22
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Figure 17.23

group gives one tetrahedron, altogether we have five tetrahedra.
The five tetrahedra is one of the most beautiful compound poly-
hedra (Figure 17.25). Its Schläfli symbol {5, 3}[5{3, 3}]{3, 5} reflects
that the twenty vertices of the five tetrahedra give the vertices of
a dodecahedron (see Problem 19), and the twenty faces enclose
an icosahedron (see the front cover illustration). (With this termi-
nology, the reciprocal pair of two tetrahedra has Schläfli symbol
{4, 3}[2{3, 3}]{3, 4} (see Problem 18).)

Figure 17.24
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Figure 17.25

Now let S ∈ Symm+(I). Looking at the way we colored the icosa-
hedron, we see that S acts on the set of the five tetrahedra as an
even permutation, so Symm+(I) can be represented as a subgroup
of A5. The twelve spatial rotations of a fixed tetrahedron act on the
remaining four tetrahedra as even permutations. We obtain that
the group of direct isometries Symm+(I) is isomorphic with the
alternating group A5 on five letters. We arrive at the icosahedral
group.

Remark.
♠ The icosahedral group plays a prominent role in Galois theory
in connection with the problem of solving quintic (degree 5) poly-
nomial equations in terms of radicals (in a similar way as the
quadratic formula solves all quadratic equations). In fact, Galois
proved that a polynomial equation is solvable by radicals iff the
associated Galois group (the group of automorphisms of the split-
ting field) is solvable. The connection beween the symmetries of
the icosahedron and unsolvable quintics is subtle9 but it is based
on the fact that a quintic with Galois group A5 is an example of a
degree 5 equation for which no root formula exists. Any irreducible
(over Q ) quintic with exactly 3 real roots (and a pair of complex
conjugate roots) provides such an example.

9See F. Klein, Lectures on the icosahedron, and the solution of equations of the fifth degree, Trübner and Co.,
1888.
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Remark.
♣ Our understanding of the octahedral and icosahedral groups was
based on their tetrahedral subgroups. Many different treatments of
this topic exist. For example, given a Platonic solid P with Schläfli
symbol {a, b}, it is clear that the axis of a rotational symmetry must
go through a vertex or the midpoint of an edge or the centroid of
a face. In the first case, the rotation angle is an integer multiple of
2π/b; in the second, an integer multiple ofπ; in the third, an integer
multiple of 2π/a. The number of nontrivial rotations is therefore
(1/2)(V(b − 1)+ E + F(a − 1)), where V , E, and F are the number
of vertices, edges, and faces of P. The one-half factor is present be-
cause when considering lines through vertices, midpoints of edges,
and centroids of faces, we actually count the rotation axes twice.
Since bV � 2E � aF , this number is (1/2)(2E+ 2E− 2) � 2E− 1,
where we also used Euler’s theorem. Thus the order of Symm+(P)
is 2E.

We summarize our hard work in the following:10

Theorem 11.
The only finite groups of direct spatial isometries are the cyclic groups

Cn, the dihedral groups Dn, the tetrahedral group A4, the octahedral
group S4, and the icosahedral group A5.

The argument in the remark after the list of the 17 crystallo-
graphic groups in Section 10 can be adapted to spherical geometry
to give another proof of Theorem 11. We assume that G is a fi-
nite group of rotations in R3 with fixed point p0 and set of poles
Q ⊂ S2(p0). If Q contains only one pair of antipodal points, then
G is cyclic. From now on we assume that this is not the case. Let
R2α(p) and R2β(q) be rotations in G with least positive angles 2α
and 2β and distinct poles ±p and ±q. Since α and β are minimal,
π/α and π/β are integers (≥ 2). Following the argument in Section
10 cited above, we obtain another pole r ∈ Q such that p, q, r are

10This result is due to Klein. Note also that, based on analogy with Euclidean plane isometries, a possible
continuation of this topic would include discrete subgroups of Iso (R3) and 3-dimensional crystallography.
Alas, we are not prepared to explore this beautiful subject here.
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vertices of a spherical triangle in S2(p0) with angles α, β, γ , and we
have

R2α(p) ◦ R2β(q) ◦ R2γ(r) � I.

In particular, if α � β � π/2 (that is, R2α(p) and R2β(q) are half-
turns), then r is perpendicular to the great circle through ±p and
±q. Then the rotation R2γ is a half-turn iff p and q are perpendicu-
lar. We see that if a noncyclic finite group G consists of half-turns
only, then G must be isomorphic to the dihedral group D2 of order
4, containing exactly three half-turns with mutually perpendicular
axes. In a similar vein, if G contains exactly one pair of poles of
degree greater than or equal to 3, then all the poles corresponding
to the half-turns in G must be perpendicular to this, and G must
be dihedral. From now on we assume that G contains at least two
rotations of degrees greater than or equal to 3 and distinct axes.
Using the notation above, we choose R2α(p) and R2β(q), two rota-
tions in G of degrees greater than or equal to 3, and distinct poles
±p and ±q such that the (spherical) distance between p and q is
minimal among all the poles in Q of degree greater than or equal to 3.
As above, we have R2γ(r) � R−2β(q) ◦ R−2α(p) ∈ G. By the minimal
choice of p, q, in addition to π/α and π/β being integral, π/γ must
also be an integer greater than or equal to 3. The spherical excess
formula (cf. Section 13) gives

α

π
+ β

π
+ γ

π
> 1.

In particular, at least one of the integers π/α, π/β, π/γ must be 2.
Because of our initial choices, π/α, π/β ≥ 3, we must have π/γ �
2. The constraint above reduces to

α

π
+ β

π
>

1
2
.

Rearranging, we obtain

(π/α − 1)(π/β − 2) < 4, π/α, π/β ≥ 3.

Sinceπ/α andπ/β are integers, one of them must be 3 and the other
must be 3, 4, or 5. A simple analysis shows that the subgroup G0 ⊂
G generated by R2α(p) and R2β(q) is the symmetry group of a tetra-
hedron, an octahedron/cube, or an icosahedron/dodecahedron.
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More precisely, the orbit G0(p) is the set of vertices of a regu-
lar polygon with Schläfli symbol {π/β, π/α}. In fact, the powers
of R2β(q) applied to p give a (π/β)-gonal face, and the powers of
R2α(p) transform this face to the configuration of π/α faces sur-
rounding the vertex p. The rest of G0 installs the remaining faces
of the polyhedron with vertices G0(p). In a similar vein, G0(q) is
the set of vertices of the reciprocal polyhedron with Schläfli sym-
bol {π/α, π/β}, while G0(r) is the set of common midpoints of the
edges of both polyhedra. For convenience, we now project these
polyhedra to S2(p0) radially from p0, and obtain spherical tessel-
lations. The spherical triangle with vertices p, q, r is characteristic
in the sense that in a flag of the spherical polyhedron with ver-
tices G0(p), p is a vertex, q is the midpoint of a face, and r is the
midpoint of an edge in the flag. More about this in Sections 24–25.
Now, it takes only a moment to realize that G0 � G. Indeed, by
the minimal choice of p, q, G − G0 cannot contain any rotations
of order greater than or equal to 3, since one of the correspond-
ing poles of degree greater than or equal to 3 (transformed by an
appropriate element in G0) would show up in the face of the spher-
ical polygon with centroid q and vertices in G(p). Thus G − G0 can
contain only half-turns. If Rπ(s) were a half-turn in G − G0, then
Rπ(r) ◦ Rπ(s) ∈ G − G0 would also be a half-turn, so that r and s

would be perpendicular. Thus the axis R · swould be perpendicular
to all axes R · g0(r), g0 ∈ G0, and this is impossible. Thus G � G0,
and Theorem 11 follows. We also realize that we have obtained the
following as a byproduct: Any finite group of rotations in R3 is
generated by one or two elements!

Remark.
♠ We now pick up the opposite isometries. Let G ⊂ Iso (R3) be
any finite group. Let G+ ⊂ G denote the subgroup consisting of
the direct isometries of G. The possible choices of G+ are listed in
the theorem above. To get something new, we may assume that
G+ ⊂ G is a proper subgroup. Since composition of two opposite
isometries is direct, G+ is of index 2 in G, that is, |G| � 2|G+|. In
other words, G+ and any element in G− � G − G+ generate G. We
now have to study the possible configurations of G+ (listed above)
and a single opposite isometry. We have two cases, depending on
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whether the antipodal map −I : R3 → R3 (which is opposite
in R3) belongs to G or not. If −I ∈ G, then G− � (−I) · G+,
since the right-hand side is a set of |G+| opposite isometries in
G. Since −I commutes with the elements of G, the cyclic subgroup
{±I} ⊂ G (isomorphic to C2) is normal. Since index-2 subgroups
(such as G+ ⊂ G) are always normal, we obtain G ∼� G+ × C2.
Using Theorem 11, we arrive at the list

Cn × C2, Dn × C2, A4 × C2, S4 × C2, A5 × C2.

Assume now that −I �∈ G. We first show that G+ is contained in a
(finite) group G∗ of direct isometries as an index-2 subgroup. To do
this, we define

G∗ � G+ ∪ (−I) · G−.

Notice that G∗ is a group, since −I commutes with the elements
of G. Moreover, G∗ consists of direct isometries, since −I and the
elements of G− are opposite. G+ and (−I) · G− are disjoint, since
−I �∈ G. In particular, |G∗| � 2|G+|, and G+ is an index-2 subgroup
in G∗. The possible inclusions G+ ⊂ G∗ are easily listed, since
all the isometries involved are direct and Theorem 11 applies. We
obtain

Cn ⊂ C2n, Cn ⊂ Dn, Dn ⊂ D2n, A4 ⊂ S4.

Finally, G can be recovered from G∗ via the formula

G � G+ ∪ (−I) · (G∗ − G+).

In general, we denote byG∗G+ the group defined by the right-hand
side of this equality, when G+ ⊂ G∗ is an inclusion of finite groups
of direct isometries, and G+ is of index 2 in G∗. We finally arrive at
the list

C2n · Cn, Dn · Cn, D2n · Dn, S4 · A4.

For example, for the full symmetry groups of the Platonic solids,
we have the following:

Symm (T ) � Symm+(O) · Symm+(T ) � S4 · A4,

Symm (O) � Symm+(O) × C2 � S4 × C2,

Symm (I) � Symm+(I) × C2 � A5 × C2.



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

17. The Five Platonic Solids 243

Figure 17.26

♣ Aside from constructibility, for computational purposes it
will be important to realize the five Platonic solids in convenient
positions in R3. Since every convex polyhedron is uniquely deter-
mined by its vertices, our task is to find for each Platonic solid a
“symmetric” position with vertex coordinates as simple as possible.

We start with the tetrahedron T . A natural positon of T in R3 is
defined by letting the coordinate axes pass through the midpoints
of three edges, as shown in Figure 17.26.

The four vertices of T are

(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1).

The tetrahedral group contains the three half-turns around the co-
ordinate axes and the rotation around the “front vertex” (1, 1, 1) by
angle 2π/3. It is easy to see that these four rotations generate the
twelve rotations that make up the tetrahedral group. It would be
very easy to write down these transformations in terms of orthogo-
nal 3×3 matrices. We skip this, since the description of Symm+(T )
is much easier using quaternions, which we will discuss in Section
23.

Truncating the tetrahedron by chopping off the four tetrahedra
along the vertex figures, we arrive at the octahedron O with vertices

(±1, 0, 0), (0,±1, 0), (0, 0,±1).

Taking the midpoints of the edges of O, we obtain the midpoints
of the reciprocal cube C:(

± 1
2
,± 1

2
,± 1

2

)
.
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The cube described this way has edge length 1, and the edges are
parallel to the coordinate axes. The centroid of all three Platonic
solids T , O, and C is the origin.

To realize the dodecahedron D and the icosahedron I in R3 is
a less trivial task. We start with the icosahedron I and make the
following observation. Let v be a vertex of I. The five faces of I that
contain v form a pyramid whose base is a regular pentagon. We call
v the vertex of the pentagonal pyramid. Taking the edge length of
I to be 1, the length τ of a diagonal of the regular pentagonal base
is the so-called golden section (attributed to Eudoxus in 400 b.c.)

τ � 2 sin
(
π

2
− π

5

)
� 2 cos

(
π

5

)

(Figure 17.27). Inserting two additional diagonals in the base, an
interesting picture emerges (Figure 17.28). Notice that p0, p1, p2, p3

is a rhombus and the triangles %p0p1p3 and %p0p4p5 are similar.
Thus, d(p0, p4) � 1/τ. But adding 1 to this gives the diagonal again:

1 + 1/τ � τ.

Multiplying out, we see that τ is the positive solution of the
quadratic equation

τ2 − τ − 1 � 0.

Figure 17.27

τ

1
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0

1

p

1

τ

1/τ

3p

p2

p1

5p 4p Figure 17.28

The quadratic formula gives

τ �
√

5 + 1
2

.

Remark.
Alternatively, the golden section τ can be defined as the unique
ratio of side lengths of a rectangle with the property that if a
square is sliced off, the remaining rectangle is similar to the orig-
inal rectangle. This definition gives τ − 1 � 1/τ, which leads to
the same quadratic equaion as above. Used recursively, a circular
quadrant can be inserted into each sliced off square to obtain an
approximation of an Archimedes spiral (see Figure 17.29). The most
commonly known phenomenon in nature that patterns this is

Figure 17.29
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the nautilus shell, where the shell grows in a spiral for structural
harmony in weight and strength.

Iterating τ � 1 + 1/τ, we obtain the continued fraction

τ � 1 + 1
1 + 1

1+···
,

and this can be used to give rational approximations of τ (cf. Prob-
lem 14). In a similar vein, iterating τ � √

1 + τ, we arrive at the
infinite radical expansion

τ �
√

1 +
√

1 + √
1 + · · ·.

Recall that the icosahedron I can be sliced into two pentagonal
pyramids with opposite vertices v1 and v2 and a pentagonal an-
tiprism (a belt of ten equilateral triangular faces). Consider now
two opposite edges e1 and e2 of the pyramids emanating from v1

and v2. They are parallel and form the opposite sides of a rectangle
whose longer sides are diagonals of two pentagonal bases! Since
the side lengths of this rectangle have ratio τ : 1, it is called a
golden rectangle. (Ancient Greeks attributed special significance to
this; for example, the Parthenon in Athens (fifth century b.c.) fits
perfectly in a golden rectangle.) A beautiful model of the icosahe-
dron (due to Pacioli and shown in Figure 17.30) emerges this way;
the twelve vertices of I are on three golden rectangles in mutually
perpendicular planes! Considering now these planes as coordinate
planes for our coordinate system, we see immediately that the

Figure 17.30
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Figure 17.31

twelve vertices of the icosahedron are

(0,±τ,±1), (±1, 0,±τ), (±τ,±1, 0).

A golden rectangle can be inscribed in a square such that each
vertex of the golden rectangle divides a side of the square in the
ratio τ : 1 (Figure 17.31). Inserting these squares around the three
golden rectangles that make up the icosahedron, we obtain an oc-
tahedron circumscribed about I (Figure 17.32). Looking at Figure
17.33, we see that the vertices of the octahedron are

(±τ2, 0, 0), (0,±τ2, 0), (0, 0,±τ2)

and this is homothetic (with ratio of magnification τ2) to our earlier
model O.

Figure 17.32
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Figure 17.33

1

τ

Finally, note that the dodecahedron D constructed on the cube
with vertices (±1,±1,±1) as above has vertices

(0,±1/τ,±τ), (±τ, 0,±1/τ), (±1/τ,±τ, 0).
That these are the correct vertices for D can be verified using
reciprocity. An alternative approach is given in Problem 20.

Problems

1. Using the isomorphism Symm(T ) ∼� S4, work out for the regular tetrahedron
the rotational symmetries that correspond to all possible products of two
transpositions.

2. Let T be a regular tetrahedron.
(a) Given a flag (p, e, f) of T , what is the composition of S1, S2 ∈

Symm+(T ), where S1 and S2 are counterclockwise rotations by 2π/3 about p
and the centroid of f ?

(b) Given opposite edges e1 and e2, list all possible scenarios for flags
(p1, e1, f1) and (p2, e2, f2) and symmetries of T that carry one flag to the other.

(c) Let e1 and e2 be opposite edges. Show that the midpoints of the four
complementary edges are vertices of a square. Slice T with the plane spanned
by this square; prove that the two pieces are congruent and find a symmetry
of T that carries one piece to the other.
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3. Let S ∈ Symm+(O) be an isometry that does not leave T invariant. Show
that

S ◦ Symm+(T ) ◦ S−1 � Symm+(T ).
4. Derive that Symm+(O) is isomorphic to S4 using a cube rather than an

octahedron.

5. (a) Construct a golden rectangle and a regular pentagon with straightedge
and compass.

(b) Use the fact that the vertices of a regular pentagon inscribed in the
unit circle are the powers ωk, k � 0, . . . , 4, of the primitive fifth root of unity
ω � e2πi/5 to show that

τ � ω − ω4

ω2 − ω3 � −(ω2 + ω3) � 1
ω + ω4 .

(c) Use (b) to derive the formula√
τ2 + 1 � −i(ω − ω4).

(d) Let s and d be the side length and the diagonal length of a regular
pentagon; τ � d/s. Show that the side length and the diagonal length of
the regular pentagon whose sides extend to the five diagonals of the original
pentagon are 2s − d and d − s. Interpret this via paper folding. Conclude
that τ is irrational. (Hint: Assume that τ � d/s with s and d integral, and
use Fermat’s method of infinite descent. Compare this with Problem 12 in
Section 3.)

6. Prove that the icosahedral group Symm+(I), is simple11 using the following
argument: Let N ⊂ Symm+(I) be a normal subgroup.

(a) Show that if N contains a rotation with axis through a vertex of I then
N contains all rotations with axes through the vertices of I.

(b) Derive similar statements for rotations with axes through the
midpoints of edges and the centroids of faces of I.

(c) Counting the nontrivial rotations in N , conclude from (a)–(b) that
|N | � 1 + 24a + 20b + 15c, where a, b, c are 0 or 1.

(d) Use the fact that |N | divides 60 to show that either a � b � c � 0 or
a � b � c � 1.

7. Establish an isomorphism between Symm+(I) and A5 by filling in the details
for the following steps:

(a) There are exactly five cubes inscribed in a dodecahedron (see Color
Plate 8).

(b) The icosahedral group permutes these cubes.
(c) The mapφ : Symm+(I) → S5 defined by the action in (b) is an injective

homomorphism with image A5.

11See “Groups” in Appendix B.
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8. True or false: Two cubes inscribed in a dodecahedron have a common di-
agonal. (The five cubes inscribed in a dodecahedron form a compound
polyhedron with Schläfli symbol 2{5, 3}[5{4, 3}], where the 2 means that each
vertex of the dodecahedron belongs to two of the cubes (see the back cover
illustration). It can also be obtained from the compound of five tetrahe-
dra by circumscribing a cube around each participating tetrahedron and its
reciprocal.)

9. Find two flags in Bimbo’s lozenge that cannot be carried into each other by
a symmetry.

10. Classify spherical tilings following the argument in the remark at the end of
Section 10. Observe that for a spherical triangle with angles α, β, and γ such
that π/α, π/β, and π/γ are integers, the inequality α/π + β/π + γ/π > 1
gives only finitely many possibilities.

11. Show that the area of a spherical n-sided polygon is the sum of its angles
minus (n − 2)π.

12. Prove Euler’s theorem for convex polyhedra using Problem 11 as follows: Let
K be a convex polyhedron. Place K inside S2 (by scaling if necessary) such
that K contains the origin in its interior. Project the boundary of K onto S2

from the origin. Sum up all angles of the projected spherical graph with V

vertices, E edges, and F faces in two ways: First, counting the angles at each
vertex, find that this sum is 2πV . Second, count the angles for each face by
converting the angle sum into spherical area (Problem 11) and use that the
total area of S2 is 4π.

13. Show that a polyhedron is regular iff its faces and vertex figures are regular.

14. ♦ Let Fn denote the nth Fibonacci12 number defined recursively by F1 � 1,
F2 � 1, and Fn+2 � Fn+1 +Fn, n ∈ N. (Fn can be interpreted as the number of
offspring generated by a pair of rabbits, assuming that the newborns mature
in one iteration and no rabbits die.) (a) Let qn � Fn+1/Fn. Show that the nth
convergent of the continued fraction

τ � 1 + 1
1 + 1

1+···
,

is qn. (b) Prove that limn→∞ qn � τ. (This observation is due to Kepler.) Use
induction with respect to n to show that the ratios qn alternate above and
below τ, that is, qn < τ for n odd, and qn > τ for n even. (c) Verify the
recurrence relation τn+1 � Fn+1τ + Fn. Define F−n � F−n+2 − F−n+1 for
nonnegative integers n, so that F−n � (−1)n+1Fn, and extend the validity of
the recurrence relation to all integers n. (d) Define the nth Lucas number Ln
recursively by Ln+1 � Ln + Ln−1, n ∈ N, L0 � 2, L1 � 1. Show that Ln �

12Leonardo of Pisa (13th century) wrote under the name Fibonacci, a shortened version of filius Bonacci
(son of Bonacci).
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Fn−1 + Fn+1, n ≥ 0. Verify that limn→∞ Ln+1/Ln � τ and limn→∞ Ln/Fn �√
5. Use (c) to show that Ln � τn + (−1)n/τn. Derive the formula

Fn � τn − (−1)n/τn

τ + 1/τ
,

due to Binet (1843).

15. (a) Show that the sum of vectors from the centroid to each vertex of a Platonic
solid is zero.

(b) Prove that the midpoint of each edge of a Platonic solid is on a sphere.
(c) Derive an analogous statement for the centroids of the faces.
(d) Show that the centroids of the faces of a Platonic solid are the vertices

of another Platonic solid. What is the relation between these two Platonic
solids?

16. Show that the icosahedron can be truncated13 such that the resulting convex
polyhedron has 12 pentagonal and 20 hexagonal faces. This polyhedron is
called the buckyball (Figure 17.34). (It has great significance in chemistry,
since, besides graphite and diamond, it is a third form of pure carbon (Figure
17.35).) Show that the buckyball14 has the following rotational symmetries:

(a) Half-turns around axes that bisect opposite pairs of edges;
(b) Rotations around axes through the centroids of opposite pairs of

hexagonal faces with rotation angles that are integral multiples of 2π/3;
(c) Rotations around axes through the centroids of opposite pairs of

pentagonal faces, with rotation angles that are integral multiples of 2π/5.
(d) Realize that (a)–(b)–(c) account for 59 nontrivial rotations, so that

(adding the identity) we obtain the icosahedral group.
(e) Show that no vertex stays fixed under any nontrivial rotational

symmetry of the buckyball.

Figure 17.34

13Truncating the five Platonic solids in various ways, one arrives at the thirteen Archimedean solids. It is
very probable that Archimedes knew about these, but the first surviving written record is by Kepler from
1619. We already encountered two of these, the cuboctahedron and the icosidodecahedron.
14For an excellent article, see F. Chung and S. Sternberg, Mathematics and the Buckyball, American Scientist,
Vol. 81 (1993).
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Figure 17.35

17. (a) Show that the reciprocal of the side length of a regular decagon inscribed
in the unit circle is the golden section.

(b) Inscribe an equilateral triangle into a circle. Take a segment connecting
the midpoints of two sides of the triangle and extend it to a chord of the circle.
Show that one midpoint splits the length of the chord in the square of the
golden section.

18. The 8 vertices of a reciprocal pair of tetrahedra are those of a (circumscribed)
cube (cf. Problem 4). Show that this cube is homothetic to the reciprocal
cube of the octahedral intersection of the two tetrahedra. What is the ratio of
magnification?

19. Show that the 20 vertices of the 5 tetrahedra circumscribed to an icosahe-
dron are the vertices of a dodecahedron. Prove that this dodecahedron is
homothetic to the dodecahedron reciprocal to the icosahedron.

20. A diagonal splits a pentagon with unit side length into an isosceles triangle
and a symmetric trapezoid with a base length of the golden section. Define
a convex polyhedron with a square base of side length that of the golden
section, and let it have four additional faces: two isosceles triangles and two
symmetric trapezoids, attached to each other along their unit-length sides in
an alternating manner. We call this polyhedron a roof.15 The top unit-length
side of the trapezoids, which forms a single edge opposite the base, is called
the ridge. Notice that the solid dodecahedron is the union of an inscribed
cube and six roofs whose bases are the faces of the cube (Figure 17.11).

(a) Prove the existence of the dodecahedron by showing that in a roof the
dihedral angle between a triangular face and the base and the dihedral angle
between a trapezoidal face and the base are complementary.

(b) In a given roof, extend the lateral sides of a trapezoid beyond the ridge
to form an isosceles triangle. Prove that the four nonbase vertices of the four

15The four planes spanned by the four faces of a tetrahedron divide R3 into the tetrahedron itself, four
frusta, four trihedra, and six roofs. See M. Berger, Geometry I–II, Springer, 1980. Although this is unbounded,
we use this classical terminology in our situation. The author’s students called the argument for the
existence of the dodecahedron the roof-proof. It is essentially contained in Book XIII of the Elements.
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isosceles triangles obtained from four trapezoids in an opposite pair of roofs
form a golden rectangle (see Color Plate 9).

(c) Show that two edges of the golden rectangle in (b) contain the ridges
of another pair of opposite roofs.

(d) By (b), the three pairs of opposite roofs in a dodecahedron give three
mutually perpendicular golden rectangles around which an icosahedron can
be circumscribed. Prove that this icosahedron is homothetic to the reciprocal
of the dodecahedron. What is the ratio of magnification?

(e) Circumscribe an octahedron to the icosahedron obtained in (d) and
relate it to the reciprocal of the cube inscribed in the dodecahedron.

21. A triangular array of dots consists of rows of 1, 2, . . . , n dots, n ∈ N, stacked
up in a triangular shape. The total number of dots in a triangular array is the
nth triangular number Tri (n) � 1 + 2 + · · · + n � n(n + 1)/2 (see Problem
11 of Section 2). A tetrahedral array of dots consists of triangular arrays of
1, 3, . . . , n(n+ 1)/2 dots stacked up in a tetrahedral shape. The total number
of dots Tet (n) � ∑n

k�1 k(k + 1)/2 in a tetrahedral array is called the nth
tetrahedral number. In a similar vein, define the nth square pyramid number
Pyr (n) � 12 + 22 + · · · + n2 as the total number of dots in a square pyramid
obtained by stacking up square arrays of 1, 4, . . . , n2 dots. Finally, define the
nth octahedral number16 Oct (n) � Pyr (n) + Pyr (n − 1) as the total number
of dots in the octahedron viewed as the union of two square pyramids.

(a) Show that Pyr (n) � n(n + 1)(2n + 1)/6 by fitting six square pyramids
in an n × (n + 1) × (2n + 1) box (cf. also Problem 8 of Section 2).

(b) Prove that Pyr (n) � 2 Tet (n − 1) + n(n + 1)/2 by slicing the array of
dots in a square pyramid into two tetrahedral arrays and a triangular array.
Conclude that Tet (n) � n(n + 1)(n + 2)/6. (This is attributed to the Hindu
mathematician Aryabhatta, c. a.d. 500.)

(c) Show that Oct (n) � Tet (2n − 1) − 4 Tet (n − 1) � n(2n2 + 1)/3
by considering the octahedron as a tetrahedron truncated along the vertex
figures.

22. Use the 3-dimensional ball modelD3 of hyperbolic space geometry (see Prob-
lem 7 of Section 13) to prove the existence of a hyperbolic dodecahedron with
right dihedral angles (cf. Problem 8 of Section 14). Show that D3 can be tes-
sellated by hyperbolic dodecahedra with right dihedral angles. (Observe the
close analogy between dodecahedral tessellations of the hyperbolic space
and tessellations of the Euclidean space by cubes.)

23. Prove that (a) the full symmetry group of the regular pyramid with base Pn
is Dn · Cn, and (b) the full symmetry group of the regular prism with base Pn
is Dn × C2 for n even, and D2n · Dn for n odd.

16For an interesting account on these and other related numbers, see J. Conway and R. Guy, The Book of
Numbers, Springer, 1996.
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S E C T I O N

...........................................

Finite Möbius
Groups

† ♣ Recall from Section 11 that a spherical reflection RC in a great
circle C ⊂ S2 can be pulled down by the stereographic projection
hN : S2 → Ĉ (extended to the North Pole N by hN(N) � ∞) to
a reflection RS : Ĉ → Ĉ in the circle S � hN(C). In other words,
RS � hNRCh

−1
N . Utilizing the rich geometric setting, we were able

to derive an explicit formula for RS. A spherical rotation Rθ(p0)

around an axis R · p0, p0 ∈ S2, is the composition of two spherical
reflections (in great circles that meet in angle θ/2 at p0). Conju-
gating (this time) Rθ(p0) by the stereographic projection, we thus
obtain the composition of two reflections in circles intersecting at
hN(p0) in an angle of θ/2, a direct Möbius transformation with fixed
point hN(p0). In Section 12 we learned that direct Möbius trans-
formations are nothing but linear fractional tranformations of the
extended complex plane Ĉ. Thus, to Rθ(p0) there corresponds a lin-
ear fractional transformation whose coefficients depend on θ and
the coordinates of p0. It is natural to try to determine these depen-
dencies explicitly. This is given in the folowing theorem, due to
Cayley in 1879.

255
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Cayley’s Theorem.
For p0 � (a0,b0,c0) ∈ S2 and θ ∈ R, the spherical rotation Rθ(p0)

conjugated with the stereographic projection hN is a linear fractional
transformation given by

(hN ◦ Rθ(p0) ◦ h−1
N )(z) � λz − µ̄

µz + λ̄
, z ∈ Ĉ,

where

λ � cos
(
θ

2

)
+ sin

(
θ

2

)
c0i and µ � sin

(
θ

2

)
(b0 + a0i).

Remark.
♠ Under the isomorphism Möb(Ĉ) � SL(2, C)/{±I}, the linear
fractional transformation in Cayley’s theorem corresponds to the
matrix

A �
[
λ −µ̄
µ λ̄

]
, |λ|2 + |µ|2 � 1, λ, µ ∈ C.

This is a special unitary matrix, that is,

A∗ � Ā+ � A−1,

and A has determinant 1. The special unitary matrices form a
subgroup of SL(2, C), denoted by SU(2). The importance of this
subgroup will be apparent in Sections 22 to 24.

Proof.
♣ The statement is clear for p0 � N , since under hN , Rθ(p0) cor-
responds to multiplication by eiθ. Let {e1, e2, N} ⊂ R3 denote the
standard basis. We work out the composition hNRθ(p0)h

−1
N in the

particular case p0 � e1 � (1, 0, 0). First note that the matrix of
Rθ(e1) is

R �


 1 0 0

0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


 .
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Using this and the explicit form of hN given in Problem 1 of Section
7, we have

(hN ◦ Rθ(p0) ◦ h−1
N )(z) � (hN ◦ Rθ(p0))

(
2z

|z|2 + 1
,
|z|2 − 1
|z|2 + 1

)

� hN

(
2!(z)
|z|2 + 1

,
2"(z)
|z|2 + 1

cos(θ) − |z|2 − 1
|z|2 + 1

sin(θ),

2"(z)
|z|2 + 1

sin(θ) + |z|2 − 1
|z|2 + 1

cos(θ)
)

� 2!(z) + 2i"(z) cos(θ) − i(|z|2 − 1) sin(θ)
|z|2 + 1 − 2"(z) sin(θ) − (|z|2 − 1) cos(θ)

� (z cos(θ/2) + i sin(θ/2))(z̄ sin(θ/2) + i cos(θ/2))
(iz sin(θ/2) + cos(θ/2))(z̄ sin(θ/2) + i cos(θ/2))

� cos(θ/2)z + i sin(θ/2)
i sin(θ/2)z + cos(θ/2)

.

The formula follows in this special case. Turning to the general
case, we first note that hNRθ(p0)h

−1
N is a linear fractional transfor-

mation of the form above (with |λ|2 + |µ|2 � 1), since any rotation
can be written as the composition of rotations with axes R · N and
R · e1, and these cases have already been treated. Thus, it remains
to show that the explicit expressions for the coefficients λ and µ

are valid. To do this we use the result from Section 12 asserting that
a linear fractional transformation is uniquely determined by its ac-
tion on three points. For the first two points we choose the fixed
points of the linear fractional transformation claimed to be equal
to our conjugated spherical rotation. The fixed points are obtained
by solving the quadratic equation

µz2 − 2i"(λ)z + µ̄ � 0

for z. We find that the fixed points are (c0±1)/(a0−b0i) � hN(±p0).
For the third point we choose ∞, and verify that under hN ,
Rθ(p0)(N) corresponds to λ/µ. Indeed, since |λ|2 + |µ|2 � 1, we
have

h−1
N (λ/µ) � (2λµ̄, |λ|2 − |µ|2) ∈ S2,
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and this is Rθ(p0)(N), as an easy computation shows. The theorem
follows.

Remark.
The first part of the proof of Cayley’s theorem can be skipped
if we use the fact that hN is conformal and that any conformal
transformation of Ĉ (such as hNRθ(p0)h

−1
N ) is a linear fractional

transformation.
To simplify the terminology, we say that the linear fractional

transformation with parameters λ, µ, and Rθ(p0) correspond to each
other. Notice that replacing the rotation angle θ by θ + 2π has the
effect of changing λ and µ to their negatives.

Our main quest, to be fully accomplished in Section 24, is to
classify all finite subgroups of the Möbius group Möb (Ĉ). To begin
with, here we confine ourselves to giving a list of finite Möbius
groups most of which arise from the geometry of Platonic solids.

An example to start with is the cyclic group Cn of order n. This
group can be realized as the group of rotations

z  → e2kπi/nz, k � 0, . . . , n − 1.

Notice that each rotation can be viewed as a linear fractional tran-
formation with λ � ekπi/n and µ � 0, k � 0, . . . , n − 1. In fact, Cn
corresponds to the group of rotations R2kπ/n(N), k � 0, . . . , n − 1,
with common vertical axis through the North and South Poles.

If we adjoin to Cn the linear fractional transformation z  → 1/z
(characterized by λ � 0 and µ � i) that corresponds to the half-
turn Rπ(e1), we obtain the dihedral Möbius group Dn of order 2n:

z  → e2kπi/nz,
e−2kπi/n

z
, k � 0, . . . , n − 1.

This group corresponds to the symmetry group of Klein’s dihedron,
the regular spherical polyhedron with two hemispherical faces, n
spherical edges, and n vertices distributed equidistantly along the
equator of S2. If we fix one vertex at e1, then the half-turn Rπ(e1)

is a symmetry of the dihedron that interchanges the two faces. We
also see that the first group of linear fractional transformations in
the dihedral Möbius group above corresponds to λ � ekπi/n, µ � 0,
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k � 0, . . . , n− 1, and the second corresponds to λ � 0, µ � iekπi/n,
k � 0, . . . , n − 1.

As a straightforward generalization, we inscribe a Platonic solid
P in S2, apply Cayley’s theorem, and obtain a finite Möbius group
G isomorphic to the symmetry group of P. Since reciprocal pairs
of Platonic solids have the same symmetry group, we may restrict
ourselves to the tetrahedron, octahedron, and icosahedron. We call
the corresponding groups tetrahedral, octahedral, and icosahedral
Möbius groups. The dihedral Möbius group discussed above can be
considered as a member of this family if we replace P with its spher-
ical tessellation obtained by projecting P radially from the origin to
S2. In what follows we call these configurations spherical Platonic
tesselations. Before we actually determine the Möbius groups ex-
plicitly, we should note that, again by Cayley’s theorem, the Möbius
groups obtained by inscribing the same Platonic solid into S2 in two
different ways are conjugate subgroups in Möb (Ĉ). Thus, we can
choose our spherical Platonic tesselations in convenient positions
in S2.

We choose our regular tetrahedron such that its vertices are al-
ternate vertices of the cube, and the cube is inscribed in S2 such
that its faces are orthogonal to the coordinate axes. We also agree
that the first octant contains a vertex of the tetrahedron. This is a
scaled version of the regular tetrahedron discussed in Section 17.
(The scaling is only to circumscribe S2 around the tetrahedron.)
The vertex in the first octant must be(

1√
3
,

1√
3
,

1√
3

)
.

The three coordinate axes go through the midpoints of the three
opposite pairs of edges of the tetrahedron. The three half-turns
around these axes are symmetries of the tetrahedron. Applying
these half-turns to the vertex above, we obtain the remaining three
vertices(

1√
3
,− 1√

3
,− 1√

3

)
,

(
− 1√

3
,

1√
3
,− 1√

3

)
,

(
− 1√

3
,− 1√

3
,

1√
3

)
.

As noted above, the half-turn Rπ(e1) corresponds to the linear frac-
tional transformation z  → 1/z. For the half-turn Rπ(e2), we have
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λ � 0 and µ � 1, and the corresponding linear fractional transfor-
mation is z  → −1/z. Finally, Rπ(N) corresponds to z  → −z, the
negative of the identity map, with λ � i and µ � 0. Adjoining the
identity, we have

z  → ±z, ± 1
z
.

This is the dihedral Möbius group D2 of order 4. We obtain that D2

is a subgroup of the tetrahedral Möbius group T.
The four lines passing through the origin and the four vertices

above intersect the opposite faces of the tetrahedron at the cen-
troids. These are axes of symmetry rotations with angles 2π/3
and 4π/3. For example, for the rotation with angle 2π/3 and axis
through (1/

√
3, 1/

√
3, 1/

√
3), we obtain λ � µ � (1 + i)/2, so that

the corresponding linear fractional transformation is

z  → (1 + i)z − (1 − i)

(1 + i)z + (1 − i)
� z + i

z − i
.

In a similar vein, the 8 linear fractional transformations corre-
sponding to these rotations are

z  → ±i z + 1
z − 1

, ±i z − 1
z + 1

, ± z + i

z − i
, ± z − i

z + i
.

These correspond to λ � (±1 + i)/2, µ � ±(1 + i)/2, and λ �
(±1 − i)/2, µ � ±(1 − i)/2.

Putting everything together, we arrive at the 12 elements of the
tetrahedral Möbius group T:

z  → ±z, ± 1
z
, ±i z + 1

z − 1
, ±i z − 1

z + 1
, ± z + i

z − i
, ± z − i

z + i
.

We choose the octahedron in S2 such that its vertices are the six
intersections of the coordinate axes with S2. This octahedron is
homothetic to the intersection of the tetrahedron above and its re-
ciprocal. As we concluded in Section 17, the octahedral group is
generated by the tetrahedral group and a symmetry of the octa-
hedron that interchanges the tetrahedron with its reciprocal. An
example of the latter is the quarter-turn around the first axis. This
quarter-turn corresponds to the linear fractional transformation
z  → iz characterized by λ � eπi/4 andµ � 0. Thus, the 24 elements
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of the octahedral Möbius group O are as follows:

z  → ikz,
ik

z
, ik

z + 1
z − 1

, ik
z − 1
z + 1

,

ik
z + i

z − i
, ik

z − i

z + i
, k � 0, 1, 2, 3.

Finally, we work out the icosahedral Möbius group I. We inscribe
the icosahedron in S2 such that the North and South Poles become
vertices. The icosahedron can now be considered as being made
up of northern and southern pentagonal pyramids separated by a
pentagonal antiprism. The rotations Sj, j � 0, . . . , 4, S � R2π/5(N),
are symmetries of the icosahedron, and they correspond to the
linear fractional transformations

Sj : z  → ωjz, j � 0, . . . , 4,

where ω � e2πi/5 is a primitive fifth root of unity. We still have the
freedom to rotate the icosahedron around the vertical axis for a
convenient position. We fine-tune the position of the icosahedron
by agreeing that the second coordinate axis must go through the mid-
point of one of the cross edges of the pentagonal antiprism. The
half-turnU around this axis thus becomes a symmetry of the icosa-
hedron, and as noted above, it corresponds to the linear fractional
transformation

U : z  → − 1
z
.

The rotations S and U do not generate the entire symmetry group
of the icosahedron because they both leave the equator invariant.
We choose for another generator the half-turn V whose axis is or-
thogonal to the axis of U and goes through the midpoint of an edge
in the base of the upper pentagonal pyramid (Figure 18.1). Since
U and V are (commuting) half-turns with orthogonal rotation axes,
their composition W � UV is also a half-turn whose rotation axis
is orthogonal to those of U and V . With the identity, U , V , and W

form a dihedral subgroup D2 of the icosahedral group I.
To see what linear fractional transformations correspond to V

and W , we need to work out the coordinates of the axis of V .
To do this we first claim that the vertices of the icosahedron
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18. Finite Möbius Groups262

Figure 18.1

UV

S

stereographically projected to Ĉ are

0, ∞, ωj(ω + ω4), ωj(ω2 + ω3), j � 0, . . . , 4.

Clearly, the poles correspond to 0 and ∞. The remaining ten ver-
tices of the pentagonal antiprism projected to Ĉ appear in two
groups of five points equidistantly and alternately distributed in
two concentric circles (Figure 18.2). As in Section 17, we now
think of the icosahedron as being the convex hull of three mutually
orthogonal golden rectangles. Consider the golden rectangle that
contains the North Pole as a vertex. The two sides of this golden
rectangle emanating from the North Pole can be extended to Ĉ
and give one projected vertex on each of the concentric circles.
Considering similar triangles on the plane spanned by this golden
rectangle, we see that the radii of the two concentric circles are τ
and 1/τ (Figure 18.3). By Problem 5 (b) in Section 17, in terms of
ω, these radii are

τ � −ω2 − ω3 and
1
τ

� ω + ω4.

To finish the proof of our claim, we now note that the projected
vertices have a 5-fold symmetry given by multiplication by ω. By
construction, one of the vertices in the outer concentric circle must
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Figure 18.2

be on the negative first axis. The formula above for the projected
vertices now follows by easy inspection.

Returning to the main line, we now discuss how the projected
vertices can be used to obtain coordinates of the axis of rotation for
the half-turn V . Since the axis of U , the second coordinate axis, is
orthogonal to the axis of V , the latter goes through the midpoint of
the segment connnecting h−1

N (ω2(ω2 + ω3)) and h−1
N (ω3(ω2 + ω3)).

By the explicit form of h−1
N (cf. Problem 1 (c) of Section 7), this

τ1/τ

Figure 18.3
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midpoint is

2
(

τ2

τ2 + 1
, 0,

τ2 − 1
τ2 + 1

)
.

Normalizing, we obtain that V � Rπ(p0), where

p0 �
(

τ√
τ2 + 1

, 0,
1√

τ2 + 1

)
.

Using the notation of Cayley’s theorem, we thus have

λ � i√
τ2 + 1

and µ � iτ√
τ2 + 1

.

We can rewrite λ and µ in terms of ω. A simple computation gives

λ � − 1
ω − ω4

� ω2 − ω3

√
5

and

µ � ω2 + ω3

ω − ω4
� ω − ω4

√
5

(cf. Problem 5 (c) of Section 17.)

Remark.
The usual argument leading to λ andµ above involves computation
of the angle of the axis of the rotation of V with a coordinate axis.
In our approach we adopted Schläfli’s philosopy and expressed all
metric properties in terms of the golden section.

The linear fractional transformation corresponding to the half-
turn V finally can be written as

V : z  → (ω2 − ω3)z + (ω − ω4)

(ω − ω4)z − (ω2 − ω3)
.

Composing this withU : z  → −1/z, we obtain the linear fractional
transformation corresponding to W � UV :

W : z  → −(ω − ω4)z + (ω2 − ω3)

(ω2 − ω3)z + (ω − ω4)
.

As noted above, W is also a half-turn, since the axes of U and V

are orthogonal. Making all possible combinations of these linear
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18. Finite Möbius Groups 265

fractional transformations with those corresponding to multiplica-
tion by ωj, j � 0, . . . , 4, we finally arrive at the 60 elements of the
icosahedral Möbius group I:

z  → ωjz, − 1
ωjz

, ωj −(ω − ω4)ωkz + (ω2 − ω3)

(ω2 − ω3)ωkz + (ω − ω4)
,

ωj (ω
2 − ω3)ωkz + (ω − ω4)

(ω − ω4)ωkz − (ω2 − ω3)
, j, k � 0, . . . , 4.

♠ One final note. Under the aegis of Cayley’s theorem we con-
structed a list of finite Möbius groups. Each of these groups G has
a double cover G∗ in SU(2). G∗ is a finite group of special unitary
matrices, and |G∗| � 2|G|. G∗ is called the binary group associated
to G. By definition, G∗ is the inverse image of G under the natu-
ral projection SU(2) → SU(2)/{±I}. Thus, we can talk about the
binary dihedral group D∗

n, the binary tetrahedral group T∗, the binary
octahedral group O∗, and the binary icosahedral group I∗. (We left the
cyclic group out. Why?) We will return to these groups in Section
23 in a more geometric setting.
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S E C T I O N

...........................................

Detour in Topology:
Euler–Poincaré
Characteristic

♣ Euler’s theorem for convex polyhedra states that for any convex
polyhedron, the alternating sum V − E + F is 2. This suggests that
this quantity is a property that refers to something more general
than the actual polyhedral structure. We thus venture away from
convexity and try the alternating sum on nonconvex objects.

We immediately run into difficulty, since we have not defined
the concept of a nonconvex polyhedron; so far, all the polyhedra
we’ve constructed have been convex. Fortunately, this is not a se-
rious problem. We can simply say that a general polyhedron is the
union of finitely many convex polyhedra, with the property that
each two in the union are either disjoint or meet at a common face.
This common face is deleted from the union. Figure 19.1 shows an
example. Counting, we have V � 16, E � 32, and F � 16, so
V − E + F � 0! (That Euler’s theorem fails for nonconvex polyhe-
dra was first noticed by Lhuilier in 1812.) We begin to suspect that
the fact that we ended up with 0 rather than 2 as before may have
something to do with our new polyhedron having a “hole” in the
middle. This is definitely a topological property!

The alternating sum somehow detects the presence of “holes”
(rather than the actual polyhedral structure), so that it is time to
say farewell (but not goodbye!) to our Platonic solids. We do this

266
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Figure 19.1

by circumscribing around each solid a sphere—a copy of S2—and
projecting the faces radially to the sphere from the centroid. The
faces projected to S2 become spherical polygons. We also realize
that it does not matter whether we count V − E + F on the poly-
hedron or on S2. Turning the question around, we now start with
S2. Consider a spherical graph on S2 with simply connected faces,
and count V − E + F . Repeating the proof of Euler’s theorem, we
realize that we always end up with 2. The conclusion is inevitable:
This magic number 2 is a property of S2, not the actual spherical
graphs!

We say that the Euler–Poincaré characteristic of S2 is 2, and write
χ(S2) � 2. One fine point: The regular tetrahedron, octahedron,
and icosahedron projected to S2 give spherical graphs whose faces
are spherical triangles. When S2 is subdivided into spherical trian-
gles, we say that S2 is triangulated. Going back to the neglected cube
and dodecahedron, we see that (discarding regularity) we can split
their faces into triangles without changingV−E+F , so that project-
ing these to S2 also give triangulations of S2. It is thus convenient
to restrict ourselves to triangulations.

We have now accumulated enough information to go beyond
S2. Taking a look at Figure 19.1 again, we see that the appropriate
surface to circumscribe about this polyhedron is the torus. The
story is the same as before; the proof of Euler’s theorem leads to
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the conclusion that the Euler–Poincaré characteristic of the torus
T2 is zero:

χ(T2) � 0.

♠ We now have great vistas ahead of us. We can take any general
compact1 surface, triangulate it, and work out the Euler–Poincaré
characteristic. For example, looking at the “two-holed torus” de-
picted in Figure 19.2, we see that its Euler–Poincaré characteristic
is −2. In general, a “p-holed torus” or, more elegantly, a closed
Riemann surface Mp of genus p, has Euler–Poincaré characteristic

χ(Mp) � 2 − 2p.

Another fine point: You might be wondering why we did not
consider the cylinder and all the noncompact examples H2/G,
where G is Fuchsian, containing parabolic or hyperbolic isome-
tries. The answer is that, at this point, we restrict ourselves to
finite triangulations. Otherwise, the direct evaluation of V − E+ F

is impossible.
Instead of going further along this line (which would lead us

straight into homology theory, a branch of algebraic topology), we

Figure 19.2

1See “Topology” in Appendix C.
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explore some of the compact surfaces such as the Klein-bottle K2

and the real projective plane RP2. Recall that K2 is obtained from
R2 by a discrete group generated by two glides with parallel axes.
The fundamental domain again becomes a key player. In fact, if
we triangulate the fundamental domain so that the side-pairing
transformations map edges to edges, we obtain a triangulation of
the quotient surface!

In our case, we take the fundamental domain of the Klein bottle
as described in Section 16 and triangulate it as in Figure 19.3. The
simplicity of this is stunning;K2 can be obtained from two triangles
by pasting their edges together appropriately! The Euler–Poincaré
characteristic is

χ(K2) � 1 − 3 + 2 � 0.

Notice that the four vertices of the fundamental domain are iden-
tified by the side-pairing transformations so that, on K2, we have
only one vertex. Similarly, the two horizontal and the two vertical
edges are identified, and the diagonal stays distinct.

We do the same for RP2 � S2/{±I} by triangulating S2 so that
the antipodal map −I : S2 → S2 leaves the triangulation invariant;
that is, it maps triangles to triangles, edges to edges, and vertices to
vertices. The task is easier if we consider triangulation of the lower
hemisphere only and make sure that the antipodal map restricted

Figure 19.3
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Figure 19.4

to the equatorial circle maps edges to edges and vertices to vertices.
A triangulation is given in Figure 19.4. We have V � 3, E � 6, and
F � 4. The Euler–Poincaré characteristic is

χ(RP2) � 3 − 6 + 4 � 1.

In Section 17, when studying symmetries of the octahedron,
we came very close to a polyhedral model related to RP2. This
model is called a heptahedron, since it has four triangular and three
square faces. For the four triangles we take four nonadjacent faces
of the octahedron. The four vertices complementary to a pair of
opposite vertices of the octahedron are the vertices of a square.
There are exactly three opposite pairs of vertices in the octahedron
whose complements give the three square faces of the heptahedron
(Figure 19.5). The three square faces intersect in three diagonals
(connecting the three opposite pairs of vertices), and the diago-
nals intersect at the centroid of the octahedron in a triple point.
Although the heptahedron is self-intersecting and “singular” at the
vertices, it has Euler–Poincaré characteristic of 1, since it has 6 ver-
tices, 12 edges, and 7 faces. Furthermore, it is “nonorientable” in the
sense that there is a triangle-square-triangle-square sequence of 4
adjacent faces that constitutes a polyhedral model of the Möbius
band.

A natural question arises whether the heptahedron can be
“deformed” into a smooth surface. Self-intersection cannot be elim-
inated. In fact, it is not hard to prove that any compact surface
that contains a Möbius band cannot be realized as a smooth sur-
face in R3 without self-intersections. As a first attempt to make
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Figure 19.5

a smooth heptahedral model, we consider the quartic (degree 4)
surface given in coordinates p � (a, b, c) ∈ R3 by the equation

a2b2 + b2c2 + c2a2 � abc

(see Figure 19.6). This is called the Roman surface, and it was stud-
ied by Steiner. Although this surface patterns the structure and the
symmetries of the heptahedron, it still contains six singular points.
(Where are they?) A somewhat better model can be obtained from
the hemisphere model H of RP2 discussed at the end of Section
16. Indeed, identifying first two pairs of equidistant antipodal pairs
of points on the boundary circle of H and then pasting the remain-
ing quarter circles together, we arrive at another model of RP2,
algebraically given by the equation

(a2 + 2b2)(a2 + b2 + c2) − 2c(a2 + b2) � 0.

In cylindrical coordinates a � r cos θ, b � r sin θ, and c, the
equation reduces to

r2 + (c − c(θ))2 � c(θ)2,

Figure 19.6
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Figure 19.7

where c(θ) � 1/(1 + sin2(θ)). Thus the surface is swept by a ro-
tating vertical circle with center at (0, 0, c(θ)) and radius c(θ) (see
Figure 19.7). This surface self-intersects in the vertical segment
connecting (0, 0, 1) and (0, 0, 2), and at the two endpoints it is still
singular! The puzzling question whether RP2 has a realization in
R3 as a smooth (self-intersecting) surface without singular points
has been resolved by W. Boy,2 and the resulting surface is called
the Boy’s surface. The basic building block of the Boy’s surface is
a cylinder whose base curve is a leaf of the four-leaved rose given
by the polar equation r � sin(2θ), 0 ≤ θ ≤ 2π. In Figure 19.8, the
leaf is situated in the third quadrant of the plane spanned by the
second and third axes in R3 so that the rulings of the cylinder are
parallel to the first axis. It is important to observe that the cylinder
has right “dihedral” angle along the first axis. We need a finite por-
tion of the cylinder in the negative octant of R3 between the origin
and the negative of the arc length of the leaf.

We now rotate the cylinder around the axis R · (1, 1, 1) by 120◦

and 240◦. The configuration of the three cylinders is shown in Fig-
ure 19.9 (a view from the positive octant) and in Figure 19.10 (a
view from the negative octant). The cylinders intersect in three
curves that meet in two triple intersection points. It is clear that
this configuration can be made smooth along these curves, leaving

2D. Hilbert and S. Cohn-Vossen, Geometry and Imagination, Chelsea, New York, 1952, or W. Lietzmann,
Visual Topology, Elsevier, 1969.
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Figure 19.8

the right dihedral angles intact. For the next step we bend the first
cylinder such that the original ruling on the first axis is bent exactly
to the shape of a leaf in the second quadrant of the plane spanned
by the first and third axes (see Figure 19.11). Notice that the right
dihedral angle can be retained, and that the hole created by the
bending is congruent to the initial and terminal base leaves of the
bent cylinder. We cover the hole by a flat leaf and perform the same
bending and covering procedure to each of the three cylinders in
the configuration in Figure 19.9.

The final result is the Boy’s surface depicted in Figure 19.12.
Since the dihedral angles were kept 90◦, this configuration is a

Figure 19.9
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Figure 19.10

smooth self-intersecting surface with no singular points. The in-
tersection is a closed curve consisting of three leaves forming a
triple intersection point at the origin. A small strip cut from the
surface along this curve gives a Möbius band, and its complement
is a topological disk. It follows that the Boy’s surface is a topological
model of the real projective plane.

It should be clear by now that the Euler–Poincaré characteris-
tic is a topological invariant; that is, two homeomorphic compact

Figure 19.11
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Figure 19.12

surfaces have the same Euler–Poincaré characteristic. This is be-
cause a triangulation on one surface can be carried over to the
other by a homeomorphism. The big question is, of course, the con-
verse: Given two compact surfaces with the same Euler–Poincaré
characteristic, are these surfaces homeomorphic? The answer is,
in general, no. For example, the torus T2 and the Klein bottle K2

both have vanishing Euler–Poincaré characteristic, but they are
not homeomorphic, since the torus is orientable while the Klein
bottle is not. It is a result of surface theory that two compact sur-
faces are homeomorphic iff their Euler–Poincaré characteristics
are equal and they are both orientable or nonorientable. This is
indeed very beautiful, since a single number, plus the knowledge
of orientability, characterizes the entire surface topologically!

Many new examples of compact surfaces can be obtained by
forming connected sums. Let M1 and M2 be compact surfaces. The
connected sum M1 # M2 is obtained from M1 and M2 by cutting out
open disks D1 ⊂ M1 and D2 ⊂ M2 and then pasting M1 − D1 and
M2 − D2 together along the boundary circles ∂D1 and ∂D2. To be
precise, by a disk here we mean the inverse image of a circular
disk of R2 in the image of a chart.

To show that we obtain a smooth surface requires some smooth-
ing argument. It is also a technical matter (which we will not
go into) that M1#M2 is unique up to homeomorphism; that is, its
topological type does not depend on the disks chosen.
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When triangulations are given on both M1 and M2, then D1 and
D2 can be chosen to be the interiors of some triangles. Forming
M1#M2, we have the following changes for V1, E1, F1 (for M1) and
V2, E2, F2 (for M2):

V � V1 + V2 − 3 (since 3 pairs of vertices are identified);

E � E1 + E2 − 3 (since 3 pairs of edges are identified);

F � F1 + F2 − 2 (since 2 faces are deleted).

The Euler–Poincaré charasteristic of the connected sum is
therefore equal to

χ(M1 # M2) � χ(M1) + χ(M2) − 2.

Before we investigate this formula, we note that M1#M2 is
orientable iff both M1 and M2 are orientable.

For our first application of the formula above, we see that
RP2 # RP2 is homeomorphic to the Klein bottle K2! Indeed, both
are nonorientable, and χ(RP2 # RP2) � 2χ(RP2)− 2 � 0 as for K2.
For a more direct argument, recall that RP2 is the Möbius band and
a disk pasted together along their boundaries. To form RP2 # RP2,
we delete the corresponding two disks and paste the remaining
Möbius bands together along their boundaries.

As a second example, we see that for any compact surface M the
connected sum M # S2 is homeomorphic to M.

As a third example, the connected sum of p copies of the torus
T2 gives the p-holed torus, or a compact surface of genus p:

Mp � T2 # · · · # T2 (p times).

Here, equality means “homeomorphic.” Keeping this practice,
we can write the first two examples as

RP2 # RP2 � K2 and M # S2 � M.

(Algebraically, “twice” RP2 is K2, and S2 is the “zero” element for
#. It may sound a little weird to add surfaces, but actually it is not
as strange as it first sounds.)

Finally, we compile the following table:
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Surface Euler–Poincaré Characteristic

T2 # · · · # T2 (p times) 2 − 2p
RP2 # · · · # RP2 (p times) 2 − p

RP2 #T2# · · · #T2 (p times) 1 − 2p
K2#T2 # · · · #T2 (p times) − 2p

♠ Let f : M → N be a nonconstant analytic map between com-
pact Riemann surfaces, and assume that M has genus p and N

has genus q. By the table above, we have χ(M) � 2 − 2p and
χ(N) � 2 − 2q. As shown in complex analyis, f : M → N is
an n-fold covering with finitely many branch points in M. Near a
branch point on M and near its f -image (called a branch value) lo-
cal coordinates z andw can be introduced that vanish at the branch
point (z � 0) and at the branch value (w � 0) such that in these
coordinates, f has the form w � zm. We call m− 1 the branch num-
ber of f at the branch point (cf. Section 15). The sum of all branch
numbers is called the total branch number, and it is denoted by B.
A standard argument3 shows that each point in N is assumed pre-
cisely n times onM by f , counting multiplicities. At a branch value,
this means that n is equal to the sum of all m’s ([branch number
plus 1]’s), where the sum is over those branch points that map to
the given branch value.

To relate the Euler–Poincaré characteristics of M and N , tri-
angulate first N such that every branch value is a vertex of the
triangulation. LetV , E, and F denote the number of vertices, edges,
and faces of this triangulation. By Euler’s theorem, we have

V − E + F � χ(N) � 2 − 2q.

Now pull the triangulation on N back to a triangulation on M via f .
Looking at what happens at a branch point reveals that the induced
triangulation on M has nV − B vertices, nE edges, and nF faces.
Once again by the Euler’s theorem, we have

nV − B − nE + nF � χ(M) � 2 − 2p.

3See H.M. Farkas and I. Kra, Riemann surfaces, Springer, 1980.
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Comparing this with the previous formula, we obtain the Riemann–
Hurwitz relation

p � n(q − 1) + 1 + B/2.

There are a number of important consequences of this relation.
For example, the total branching number B is always even; p � 0
implies q � 0; and if p, q ≥ 1 and p �� q, then f must have
branch points. We will use the Riemann–Hurwitz relation for an-
alytic maps f : S2 → S2, in which case it asserts that the total
branching number is given by B � 2n − 2.

Problems

1. Prove directly that T2 # RP2 is homeomorphic to RP2 # RP2 # RP2.

2. Check the computations leading to the table above.

Film

S. Levy, D. Maxwell and T. Munzner: Outside In, Geometry Center, University of

Minnesota; A K Peters, Ltd. (289 Linden Street, Wellesley, MA 02181).
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S E C T I O N

...........................................

Detour in Graph
Theory: Euler,
Hamilton, and the
Four Color Theorem

♣ If we lived in the early 1700s in the village of Königsberg (now
Kaliningrad, formerly part of East Prussia), on nice sunny Sunday
afternoons we would stroll along the river Pregel and walk over
its seven bridges, which connect the banks and two islands in the
river (Figure 20.1). We would overhear the people who pass by say
that no one has ever been able to pass over all the bridges exactly
once during one stroll. Some people would even say that this is
impossible. (If you plan to visit the city, you may note that two
more bridges have been built since then, one serving as a railway
link. Our analysis however remains the same.)

When this problem arrived at Euler’s desk around 1736, graph
theory was born. Euler recognized that (as far as passing the bridges
is concerned) it does not matter what our exact location is at any
time during the walk as long as we know which of the two banks
or two islands we are on. We can thus collapse these four pieces of
land to four points (called vertices), and the bridges will become
edges connecting these points. We arrive at the graph shown in
Figure 20.2.

The Königsberg bridge problem can thus be reformulated as fol-
lows: Does there exist a “walk” in this graph that passes along each
edge exactly once? To be exact, we also have to specify whether

279
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Figure 20.1

Pregel

Kneiphof Island

Shopkeepers

Bridge

Blacksmith

Bridge

Wooden

Bridge

Honey

Bridge

Green

Bridge

"Guts" Giblets

Bridge

High

Bridge

we wanted to arrive at the same spot we started at or not. In the
former, we say that the walk is a “circuit”; in the latter, a “trail.”

Due to the low number of vertices and edges (plus the axial
symmetry), it is easy to see that there are no circuits or trails of
this kind. Instead of doing a case-by-case check, we will follow
Euler’s simple and powerful argument. Since this applies to any
graph, it is now time to give some general definitions.

Figure 20.2
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A graph G consists of a finite set V of vertices and a finite set E of
edges. Each edge e ∈ E connects a two-element subset {v1, v2} from
V. There may be multiple edges; that is, the same two vertices can
be joined by more than one edge.

Given a graph G, a walk in G is a sequence of vertices
v1, v2, . . . , vk, where at least one edge e connects each pair of con-
secutive vertices {vi, vi+1}, i � 1, . . . , k−1, in the sequence. In case
of multiple edges, each two-element subset in a walk specifies a
chosen edge. We usually denote a walk by v1 · · · vk. We say that the
walk joins the vertices v1 and vk. The graph is connected if there
is a walk joining any two of its vertices. A walk is spanning if the
vertices in the walk make up the whole of V. A walk is closed if
v1 � vk. If no vertices are repeated in a walk, we have a path. If
no edges are repeated, the walk is a trail. A closed trail is called a
circuit. Finally, a circuit that has at least one edge, and in which
the only repeated vertex is v1 � vk, is called a cycle.

We see that the Königsberg bridge problem is equivalent to find-
ing a circuit that includes each edge of the graph exactly once. Such
circuits are called Eulerian. The graph is Eulerian if it contains an
Eulerian circuit. Thus our problem is to decide whether the graph
of the Königsberg bridge problem is Eulerian or not. There is a
very simple criterion for the Eulerian property expressed in terms
of the degree of vertices of the given graph. The degree of a vertex
v in a graph G is the number of edges having v as an endpoint.

Theorem 12.
A connected graph is Eulerian iff every vertex of the graph has even

degree.

Proof.
The proof is embarrassingly simple. Assume that G is Eulerian.
Given an Eulerian circuit along which we are moving, every time
we traverse a vertex v we do it by leaving an “entrance” edge and
getting onto an “exit” edge. Since we have to traverse each edge
exactly once, we discard these two edges, which contribute 2 in the
degree. As we continue discarding, the degree of each vertex goes
down by 2’s. Finally we run out of edges. Thus each vertex must
have even degree. Conversely, assume that the degree condition
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holds and let us get started. At any point of our circuit-making
trail, upon entering in a vertex (along an “entrance” edge), the
question arises whether we have an exit edge that has not been
used so far and can then be used to go on. The answer is yes,
since each previous visit to v “consumed” exactly two edges, and
if we were unable to go on the degree of v would be a sum of 2’s
plus 1 corresponding to the entrance edge—an odd number. We are
done.

It now takes only a second to realize that the graph in the
Königsberg bridge problem has all odd-degree vertices, so it is not
Eulerian! (This can be pushed a little further. We cannot traverse
each bridge exactly once even if we drop the assumption that we
arrive back at the same spot. For this, there must be exactly two
odd-degree vertices (corresponding to departure and arrival), and
all the other vertices must have even degrees.)

What has this to do with Platonic solids? To explain this, we
should consider vertices and edges as some sort of reciprocal no-
tions. In an Eulerian circuit we must traverse each edge exactly
once, but we can visit the vertices as many times as needed. Switch-
ing the roles of edges and vertices, we now ask whether a given
graph G has a spanning cycle; i.e., a circuit traversing each ver-
tex of G exactly once. A spanning cycle is called Hamiltonian, and
a graph possessing a Hamiltonian cycle is called Hamiltonian as
well. Our first contact with the regular solids comes from Hamil-
ton’s marketing ambitions (around 1857), which involved a wooden
dodecahedron with each of its 20 vertices labeled with the name
of a town. The puzzle was to find a circuit along the edges of the
dodecahedron which passed through each town exactly once. A so-
lution is given in Figure 20.3. We can say elegantly that the Schlegel
diagram of a dodecahedron is Hamiltonian!

Despite reciprocity of the Eulerian and Hamiltonian properties,
there is no efficient algorithm to determine whether a graph is
Hamiltonian. Instead of showing the subtleties of this problem, we
switch to another problem closely related to regular solids. Recall
that a graph was defined “abstractly” by its set of vertices and edges,
and no reference was made to whether the graph can be realized
(more elegantly, imbedded) in the plane such that vertices corre-
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Figure 20.3

spond to points and edges to continuous curves connecting these
points. No edges are allowed to intersect away from the vertices.
A graph with this property is called planar. Figure 20.4 shows two
typical examples of nonplanar graphs. (In fact, a deep result of
Kuratowski asserts that a graph is planar if it does not contain any
subgraphs like these.)

Figure 20.4
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A representation of a connected planar graph on the plane is ex-
actly what we used to prove Euler’s theorem on convex polyhedra.
Thus, we immediately know that

V − E + F � 2.

The structure of faces here depends on the specific representation
while V and E do not. To get a result for planar graphs independent
of the planar representation, we therefore try to eliminate F from
this formula. We arrive at the following:

Theorem 13.
Let G be a connected planar graph with no multiple edges, and

assume that E > 1. Then E ≤ 3V − 6.

Proof.
The case E � 2 is trivial. We may therefore assume that E > 2.
Consider a specific representation of G in the plane. Since there
are no multiple edges, each face is bounded by at least three edges.
When counting edges this way, going from face to face, each edge
(bounding two faces) is counted at most twice. We obtain that 3F ≤
2E. Combining this with Euler’s theorem F � 2−V +E, we obtain
3F � 6 − 3V + 3E ≤ 2E.

In 1852, a London law student named Francis Guthrie asked the
following question: “Suppose you have a map, and want to color the
various countries so that any two countries which share a common
border always have different colors. What is the maximum number
of colors that you might need?” Note that two different countries
are allowed to have the same color provided that they do not share
a common border. So, for example, Canada and Mexico may have
the same color, but the United States must be colored differently
from both Canada and Mexico. Also note that two countries may
have the same color if they touch only at a corner, so if you have
sixty-four countries arranged like the squares of a checker board,
then the usual red and black coloring is legal. Guthrie conjectured
that every map can be colored with at most four different colors.

Guthrie was surely not the first person to guess that four colors
suffice to color any map; some mapmaker must have made the
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same guess long before. But Guthrie seems to have been the first
person to notice that this is a mathematical question. If it is really
true that any map can be colored with four colors, then this ought
to be a theorem with a mathematical proof. Guthrie himself was
unable to find such a proof, but he was also unable to find a map
that required five colors. So he told his brother Frederick about the
problem. Frederick was studying mathematics at University Col-
lege London with Augustus De Morgan (as Francis had done before
deciding to study law) and he passed the problem on to De Mor-
gan, who was also unable to find a proof or a counterexample. Over
the years, the problem was passed around, mostly among British
mathematicians, and in 1878 Arthur Cayley published the ques-
tion in the Proceedings of the London Mathematical Society. The
next year an amateur mathematician named Alfred Kempe pub-
lished what he believed was a proof. Even Cayley was convinced
by Kempe’s argument, but in 1890 Percy Heawood found a subtle
flaw in Kempe’s reasoning. Heawood was, however, able to prove
that no map requires more than five colors.

No apparent progress was made for the next 86 years, and the
four color problem became one of the most famous unsolved
problems in mathematics. Finally, in 1976, Wolfgang Haken and
Kenneth Appel, carrying out an idea suggested a few years earlier
by Heesch, proved that Guthrie was right; every map can be colored
with four colors. It is not surprising that such first-class mathemati-
cians as De Morgan and Cayley were unable to solve this problem,
because the proof that Haken and Appel discovered was far longer
than any previous proof in the history of mathematics. The full
proof, with all the details, has never been published, or even
written down. If it were written down, it would certainly occupy
millions, or perhaps billions, of pages. Naturally, Haken and Appel
could not check all the details themselves; instead they wrote a
computer program to check the proof for them. The program ran
day and night for about two months! (Longer computer-assisted
proofs have been discovered since 1976. For example, in 1990 Bren-
dan McKay proved that at any dinner party with at least 27 guests,
one can always find 3 people who all know each other or 8 people
who are all strangers to each other, but that this is not always true
with 26 guests. McKay’s proof consisted of checking every possible
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combination of acquaintance and non-acquaintance among the
guests. Although he found an extremely efficient way to check
huge numbers of combinations simultaneously, he still had to run
his computer for three years. McKay’s result is certainly a theorem,
but somehow it strikes one as being of much narrower scope than
the four color theorem. A handful of similar results exist in other
branches of mathematics.)

The problem of coloring maps is in fact a problem in graph
theory, as we can see by assigning a vertex to each country and
connecting two vertices with an edge whenever the corresponding
countries share a common border. In this formulation, we must
color the vertices of a graph, using different colors for any two
vertices connected by an edge. The minimum number of colors
needed to color a graph G in this way is called the chromatic num-
ber of G. If a map is drawn on a plane, then the corresponding
graph is planar (see Problem 17). In other words, the four color
theorem is equivalent to the statement that the chromatic number
of a planar graph cannot be greater than four.

Remark.
In Section 17, we described an algorithm to color the faces of
the icosahedron with 5 colors such that the faces with the same
color were disjoint. To obtain a 4-coloring we pick the four faces
of a specific color group and recolor them using the remaining
4 colors such that no two faces with the same color meet at a
common edge. (This can be done because each face has 3 adja-
cent faces and we have 4 colors.) This way we obtain a coloring of
the faces of the icosahedron with 4 colors subject to the condition
that faces with the same color can touch each other only at ver-
tices. By reciprocity, this gives a coloring of the Schlegel diagram of
the reciprocal dodecahedron with 4 colors in the sense discussed
above.

The advantage of reformulating the four color problem as a ques-
tion about planar graphs is that we can now apply Theorem 13. One
slight obstacle remains: Theorem 13 requires that G have no multi-
ple edges. But this is not a serious difficulty, because the chromatic
number of a graph will not change if we remove all the multiple
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edges; all adjacent vertices will remain adjacent. (Suppose, for ex-
ample, that five colors were required to color a map of Asia. The
graph corresponding to this map does have multiple edges, be-
cause Russia and China share two common borders, one east and
one west of Mongolia. If we were to eliminate the latter border by
extending Mongolia to the west, then the map would still require
five colors. In fact, conceivably it could require six, because Mon-
golia would now share a border with Kazakhstan. So if there existed
a counterexample to the four color theorem, we could surely find
it among singly connected planar graphs.)

An immediate consequence of Theorem 13 is the following:

Six Color Theorem.
The chromatic number of a planar graph cannot be greater than 6.

Proof.
First we must show that every planar graph with no multiple edges
must include at least one vertex of degree 5 or less. (Before reading
the rest of this proof, you may want to do Problem 8 at the end of
this section.) Suppose there exists a planar graph G such that each
vertex has degree 6 or more, with no multiple edges. If we add up
the number of edges coming out of all the vertices, then each edge
will be counted twice, because each edge connects two vertices.
Therefore, 2E ≥ 6V and E ≥ 3V . This contradicts Theorem 13,
which says that E ≤ 3V − 6.

Now suppose there exist planar graphs with chromatic number
greater than 6. Let G be such a graph with the minimum possible
number of vertices (since V is positive, such a graph G must exist).
Then if we remove a single vertex from G, along with its edges, the
resulting graph G′ will have chromatic number 6 or less. In partic-
ular, we can remove one of the vertices v1 with five or fewer edges,
and color the remaining vertices with six colors. Now restore the
missing vertex v1. Every other vertex ofG has already been colored;
in particular the five (or fewer) vertices which share an edge with
v1 have already been colored with five or fewer colors. Therefore,
we can legally use the sixth color for v1, so contrary to our assump-
tion, G can be colored with six colors. This contradiction implies
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that G does not exist, and every planar graph can be colored with
six colors.

Heawood’s five color theorem1 and Haken and Appel’s four color
theorem also follow from Theorem 13, but in a more roundabout
way.

Five Color Theorem.
Every planar graph has a chromatic number less than or equal to 5.

Proof.
Suppose there exists a planar graph with chromatic number 6. Let
G be the smallest such graph (that is, a graph with the smallest
possible V). ClearlyG cannot have any vertex with degree 4 or less,
because we could then remove such a vertex, color the remaining
(smaller) graph with five colors, and then replace the vertex, giving
it a color different from that of its four neighbors. But, as we have
seen, it follows from Theorem 13 that G must have a vertex of
degree 5. Call one such vertex v1. If we remove v1, the other vertices
of G can be colored with five colors. Furthermore, it must be the
case that the five vertices adjacent to v1 will use all five colors,
because if only four different colors were needed for those five
vertices, then the fifth color could be used for v1.

Call the five vertices v2, v3, v4, v5, and v6, moving clockwise in
the plane around v1. This is illustrated in Figure 20.5; note that
v2v3v4v5v6 is shown as a circuit with edges connecting the five ver-
tices. There is no harm in making this assumption, because if the
required edges were not originally present in G, we can surely
add them without making G nonplanar or decreasing its chromatic
number. Let us say that v2, v3, v4, v5, and v6 are colored red, yel-
low, green, blue, and violet respectively. Now suppose we were to
remove all yellow, blue, and violet vertices from our graph, along
with all the edges attached to those vertices. There are two possibil-
ities: either v2 and v4 are still connected (that is, there is a path from
v2 to v4 consisting only of red and green vertices), or they are not.

1This appeared in Volume 24 of the Quarterly Journal of Mathematics in 1890.
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Figure 20.5

In the latter case, we can take the component of the graph con-
nected to v4 and color all the green vertices red and the red vertices
green, while leaving the component connected to v2 unchanged.
We still have a legal coloring, because to get from one component
to the other, you must pass through a region of yellow, blue, and
violet vertices. But v4 is now red, and v2 is still red, so we can color
v1 green.

On the other hand, suppose that there is a path of red and green
vertices connecting v2 and v4. In that case, there cannot be a path
of yellow and blue vertices connecting v3 and v5, because the graph
is planar, and the red-green path cannot cross the yellow-blue path.
But if there is no such yellow-blue path, then we can swap the colors
yellow and blue throughout the yellow-blue component connected
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to v5, while leaving the colors alone in the yellow-blue component
connected to v3. We now have v3 and v5 both yellow, so we can color
v1 blue. In either case, the entire graph, including v1, can be col-
ored with five colors, contrary to our hypothesis. This contradiction
establishes the theorem.

Kempe’s fallacious proof of the four color theorem was in two
parts. He first proved that if G is the smallest graph (in terms of
vertices) with chromatic number 5, thenG has no vertices of degree
4 or less (see Problem 20). This part of the proof was correct. He
then continued as follows: Let v1 be a vertex of G with degree 5 (by
Theorem 13 and Problem 20, v1 must exist), and let v2, v3, v4, v5,
and v6 be the vertices adjacent to v1, counting clockwise, as in the
proof of the five color theorem. Since G is minimal, we can color
all the vertices except v1 with four colors. Such a coloring must
use all four colors for v2, v3, v4, v5, and v6; otherwise we could use
the fourth color for v1. That means two of the five vertices must
be the same color, and the other three different. The two vertices
that are the same color cannot be adjacent, so we might as well
assume that v3 and v6 are the same color (if not, just rename the
vertices by moving the names around the circuit). In particular,
let’s suppose that v3 and v6 are yellow, v2 is red, v4 is green, and v5

is blue (see Figure 20.6). Now suppose there is no red-green path
connecting v2 and v4. Then we can recolor v4 red (also recoloring
the red-green component connected to v4) while v2 remains red; v1

can then be green. If there is no red-blue path connecting v2 and
v5, then we can recolor v5 red, and color v1 blue. The only other
possibility is that a red-green path connects v2 to v4 and a red-blue
path connects v2 to v5. In that case, there cannot be a yellow-blue
path connecting v3 with v5, because, as one can see in Figure
20.6, such a yellow-blue path would have to cross the red-green
path if it is to remain in the plane. Likewise, there cannot be a
yellow-green path connecting v6 and v4, because such a path would
have to cross the red-blue path. Therefore, we can swap the colors
yellow and blue for all vertices inside the red-green path, and we
can swap the colors yellow and green for all vertices inside the
red-blue path. This changes v3 to blue (but leaves v5 blue) and
changes v6 to green (but leaves v4 green). In that case, we can
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color v1 yellow. So in all three cases, the entire graph, including v1,
can be colored with four colors, contrary to our hypothesis. This
contradiction establishes the theorem.

Although Kempe’s proof doesn’t quite work, he was on the right
track. He merely had to consider a few additional cases.

Theorem 13 tells us that the average degree of the vertices in
a planar graph is always less than 6. That means every planar
graph has vertices of degree 5 (or less, but Problem 20 tells us
that a minimal 5-color graph cannot have vertices of degree less
than 5). But Theorem 13 actually tells us a good deal more than
that. For example, it rules out the possibility that every vertex of
degree 5 is surrounded by five vertices of degree ≥ 7, because in
such a graph, the average vertex would have degree > 6. In other
words, any minimal 5-color graph must include instances where
(a) two vertices of degree 5 are adjacent or (b) a vertex of degree
5 is adjacent to a vertex of degree 6. The two configurations are
shown in Figure 20.7, and they are said to make up an unavoidable
set, which we define to be any set of subgraphs with the property
that at least one of them is included in a minimal 5-color graph. Of
course a single vertex of degree 5 is also, by itself, an unavoidable
set, but it does us no good, because we cannot rule it out by using
Kempe’s method of paths of alternating colors to show that a 5-color
graph containing such a vertex cannot be minimal.
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Figure 20.7

(a)

(b)

Suppose, however, it were possible to successfully carry out
Kempe’s method on both the subgraphs shown in Figure 20.7. That
is, suppose that for each of these subgraphs, we could prove that
if a graph G containing that subgraph could be 4-colored except
for one vertex in the subgraph, then it would always be possible to
recolor G so that the missing vertex could also be legally colored. A
subgraph on which we successfully carry out such a proof is said to
be reducible. In that case, we would know that any graph contain-
ing subgraph (a) or (b) from Figure 20.7 could not be the minimal
5-color graph. But the minimal 5-color graph must include one of
these subgraphs. Consequently, the minimal 5-color graph could
not exist, and we would have proved the four color theorem.

Unfortunately, Kempe’s method of paths of alternating colors
cannot be successfully applied to the subgraphs in Figure 20.7. But
it can be carried out with a number of slightly larger subgraphs,
such as those in Figure 20.8. So perhaps we should try to find
a somewhat larger unavoidable set of larger subgraphs. All that
we need to prove the four color theorem is an unavoidable set of
reducible subgraphs.

In 1969, Heesch put forward a statistical argument which sug-
gested, but did not prove, that there exists an unavoidable set of
about 8900 reducible subgraphs, each having no more than 18



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

20. Detour in Graph Theory 293

Figure 20.8

vertices around its perimeter. (In order to prove that a subgraph
is reducible, you must consider every possible way to color its
perimeter, so it is helpful to have the perimeter as short as possi-
ble.) He also developed methods, which could be carried out quite
mechanically, for proving that a given set is unavoidable, and also
for proving that a given subgraph is reducible. But Heesch had no
way of finding this unavoidable set. And even if the set had some-
how been handed to him (by divine revelation, say), it would have
been completely impractical, given the computer hardware avail-
able in 1969, to prove that the set was unavoidable, or that each
member of the set was reducible.

Haken and Appel were able to sharpen Heesch’s statistical ar-
gument enough to convince themselves that an unavoidable set
of reducible subgraphs could be constructed with no more than
14 vertices on the perimeter of each. This greatly decreased the
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time needed to prove reducibility. By 1976 computers were signif-
icantly faster than in 1969, and so, after examining about 100,000
subgraphs, Haken and Appel managed to find an unavoidable set
of 1936 reducible subgraphs, finally proving the four color theo-
rem. Later they managed to decrease the size of their set to 1476.
It is, to say the least, rather difficult to check such a proof, and no
one seems to have actually done so. Even if one accepts the prin-
ciple that a proof can be checked by computer, one would have
to rewrite the software from scratch; simply rerunning the pro-
gram that Haken and Appel wrote, even on a different computer,
would mean little, since the program could contain errors. How-
ever, in 1997 Neil Robertson, Daniel Sanders, Paul Seymour, and
Robin Thomas were able to greatly simplify Haken and Appel’s
proof by finding an unavoidable set of 633 reducible subgraphs.
They also found a much faster algorithm for proving unavoidabil-
ity, and they claim that in principle one could check the proof by
hand in a few months (needless to say, no one has actually done
this!), although a computer is still needed to check that each of the
633 subgraphs is in fact reducible. For details, including pictures of
all 633 subgraphs, see Web Site 1 after the problems.

Problems

1. Call a graph G complete if any two distinct vertices in G are connected by
a single edge. Given a complete graph G, show that G is Hamiltonian and
2E � V(V − 1).

2. Show that if any vertex in a graph has at least degree 2, then the graph has a
cycle.

3. Let G be a graph with no multiple edges. Show that if G has more than
(V − 1)(V − 2)/2 edges, then G is connected.

4. Which Platonic solids have Hamiltonian Schlegel diagrams?

5. Define the Euler-Poincaré characteristic of a graph as the number of vertices
minus the number of edges. Show that if the graph is a tree (connected, with
no cycle), then the Euler-Poincaré characteristic is 1. (Note: The converse
statement is also true.)

6. ♠ Show that the two typical examples of nonplanar graphs in Figure 20.4
cannot be imbedded into the plane.
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7. Use Theorem 13 to show that a complete planar graph can have at most four
vertices.

8. Use Theorem 13 to show that a connected planar graph with no multiple
edges must have at least one vertex of degree ≤ 5.

9. ♦ Prove Euler’s theorem for convex polyhedra using linear algebra. Assume
that the connected graph G is directed, that is, the edges are ordered pairs
of vertices of G. (Geometrically, this means that each edge has an arrow
indicating its direction.) Index the vertices of G by 1, 2, . . . , V and the edges
by 1, 2, . . . , E. Define the E × V edge-vertex matrix A of G as follows: If ek �
(vi, vj), i, j � 1, . . . , V , k � 1, . . . , E, the kth edge from the ith vertex to the
jth vertex, then, in the kth row of A, define the ith entry to be −1, the jth
entry +1, and zeros elsewhere.

(a) Show that the kernel of A : RV → RE is one-dimensional and is
spanned by (1, 1, . . . , 1) ∈ RV .

(b) Using (a), conclude that the rank of A is V − 1.
(c) Assuming that G is planar, show that the number F − 1 of bounded

faces is the dimension of the kernel of A+ : RE → RV , the transpose of A.
(d) Using that A and A+ have the same rank, conclude that E − (F − 1) �

V − 1.

10. Complete the steps in von Staudt’s proof of Euler’s theorem for convex
polyhedra.

(a) Let G be a connected planar graph with V vertices, E edges, and F

faces. Show that G contains a spanning tree T. (Spanning means that each
vertex of G is a vertex of T.)

(b) Define a graph T ′ as follows: Pick a point from each region defined by
G and call it a vertex of T ′. Thus T ′ has F vertices. For each edge e of G not
in T, choose a curve that avoids T and connects the two vertices of T ′ that
are contained in the regions meeting along e. Call this curve an edge of T ′.
Prove that T ′ is a tree.

(c) Use Problem 5 to count the edges of G by first counting those in T.
Conclude that (V − 1) + (F − 1) � E.

11. Show that a map of the United States cannot be colored with three different
colors so that no two states with a common border have the same color.

12. Find a necessary condition for a map to be colorable with three colors. Is this
condition also sufficient?

13. Suppose we require that two countries have different colors even if they only
touch at one point. How many colors are needed to color a checker board?
What is the maximum number of colors required to color any map?

14. As in Problem 13, we require that two countries have different colors even
if they only touch at one point, but this time we specify that no more than
four countries may come together at one point. Make a conjecture about the
maximum number of colors required to color any such map.



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

20. Detour in Graph Theory296

15. Rephrase McKay’s result about the dinner party with 27 guests as a theorem
about a complete graph on 27 vertices, where each edge is colored either red
or green.

16. Show that the maximum number of colors required for any map drawn on
the plane is the same as the maximum number of colors required for any
map drawn on the sphere.

17. Prove that if a map is drawn on a plane, then the corresponding graph is
planar.

18. What is the chromatic number of a complete graph on n vertices?

19. Give an example of a graph with chromatic number 4 which does not contain
a complete subgraph of order 4. In other words, the four color theorem does
not immediately follow from the fact that a complete planar graph cannot
have five vertices.

20. Let G be the smallest graph (in terms of vertices) with chromatic number 5.
Show that G has no vertices of degree 4 or less.

21. Find the flaw in Kempe’s proof of the four color theorem. (This should take
you much less than eleven years, even if you are not as smart as Cayley,
because unlike Cayley you know that there is a flaw.)

22. In this problem all graphs are imbedded in the real projective plane RP2.
(a) Let G be a connected graph with no multiple edges imbedded in RP2

and assume that E > 0. Using χ(RP2) � 1 � V − E + F , apply the proof of
Theorem 13 to conclude that E ≤ 3V − 3.

(b) Modifying the proof of the six color theorem, show that the chromatic
number of a graph imbedded in RP2 cannot be greater than 6.

(c) Show that the complete graph on six vertices can be imbedded in RP2.
(Since the chromatic number of a complete graph on six vertices is 6 (see
Problem 18), this shows that the upper bound in (b) is the best possible.)

23. Let M be a compact surface with Euler-Poincaré characteristic χ(M) ≤ 0.
Show that the chromatic number of any connected graph G imbedded in M

cannot be greater than [(7 + √
49 − 24χ(M))/2] using the following steps:

Notice first that the number inside the greatest integer function is a solution
of the quadratic equation x2 − 7x + 6χ(M) � 0. Rewrite this equation in the
form 6(1− χ(M)/x) � x− 1 and apply the argument in the proof of Theorem
13 to conclude that there is a vertex of G with degree ≤ [x] − 1. Finally,
modify the argument in the proof of the six color theorem for the present
situation. (This result is due to Heawood. With the exception of the Klein
bottle, the upper bound on the chromatic number is sharp.)2

2See G. Ringel and W.T. Youngs, “Solution to the Heawood map-colouring problem,” Proceedings of the
National Academy of Sciences (U.S.A.), 1968.
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Web Sites

1. www.math.gatech.edu/∼thomas/FC/fourcolor.html

2. www-groups.dcs.st-and.ac.uk/∼history/HistTopics/
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S E C T I O N

...........................................

Dimension Leap

♦ The success of developing complex calculus and the beauty
of Riemann surfaces come about largely because we are able to
multiply complex numbers and thus can form polynomials, power
series, linear fractional transformations, etc. When we view com-
plex numbers as planar vectors, complex multiplication becomes a
specific operation F : R2 × R2 → R2. To extend our development
to higher dimensions, we are now motivated to find an operation

F : Rn × Rn → Rn

on the n-dimensional Euclidean real number space Rn. What con-
ditions should F satisfy? Although opinions differ, most agree that
F has to be bilinear, i.e., linear in both arguments:

F(a1p1 + a2p2, q) � a1F(p1, q) + a2F(p2, q),

F(p, a1q1 + a2q2) � a1F(p, q1) + a2F(p, q2),

where p, p1, p2, q, q1, q2 ∈ Rn and a1, a2 ∈ R. (This corresponds
to distributivity and homogeneity.) Instead of requiring that F be
associative (which is hard to handle technically), we impose the
condition that F be normed:

|F(p, q)| � |p| · |q|, p, q ∈ Rn.

298
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The advantage of this condition is clear. It connects algebra to ge-
ometry by simply declaring that the length of the product of two
vectors must be the product of the lengths of the vectors! Our belief
that this is the right condition is strengthened by our knowledge
of complex multiplication, where this is a characteristic identity.
A normed bilinear map F : Rn × Rn → Rn is called an orthogonal
multiplication. Convinced as we are that the existence of an orthog-
onal multiplication is the key to developing higher dimensional
analysis, our hopes are crushed by the following result of Hurwitz
and Radon (c. 1898–1923).

Theorem 14.
Orthogonal multiplications F :Rn × Rn → Rn exist only for n �

1,2,4, and 8.

Remark 1.
One is tempted to weaken the condition that F be normed as
follows: A real division algebra structure on Rn is a bilinear map
F : Rn × Rn → Rn such that F has no zero divisors, in the sense
that p �� 0 �� q implies F(p, q) �� 0. This is absolutely necessary
for our purposes; otherwise, we can’t form fractions. Theorem 14,
however, can be generalized to the effect that real division algebra
structure exists on Rn iff n � 1, 2, 4, or 8.

Remark 2.
You might object to all this by saying that we do have a multiplica-
tion that works in every dimension—the dot product! However, the
dot product is not a genuine multiplication, because the dot prod-
uct of two vectors is not a vector but a number. (Also, we cannot
form triple products, and we have a lot of zero divisors.) If you are
somewhat more sophisticated, you may ask why we don’t concen-
trate only on R3, where we have a multiplication× : R3×R3 → R3

given by the cross product of vectors. (Recall that, given v1, v2 ∈ R3,
the cross product v1 ×v2 is zero iff v1 and v2 are linearly dependent,
and if they are linearly independent, then v1, v2, v1 × v2 (in this or-
der) form a positively-oriented basis, with |v1×v2| equal to the area
of the parallelogram spanned by v1 and v2.) The cross product is
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not suitable either, since× is anticommutative1 (v1×v2 � −v2×v1,
v1, v2 ∈ R3)—in particular, we cannot even form squares!

A modern proof of Theorem 14 was given by Atiyah, Bott, and
Shapiro. It relies on the classification of Clifford algebras and Clif-
ford modules, a beautiful piece of modern algebra. It would not
be too difficult to reproduce their work here, but since the proof
uses the concept of the tensor product of algebras, we will go only
as far as the definition of Clifford algebras. This is very much in
the spirit of the Glimpses, and has the further advantage that the
quaternionic identities will arise naturally.

Let F : Rn × Rn → Rn be an orthogonal multiplication. Let
e1 � (1, 0, . . . , 0), e2 � (0, 1, 0, . . . , 0) , . . . , en � (0, . . . , 0, 1)
denote the standard basis vectors in Rn. We define

uαi � F(eα, ei) ∈ Rn, i, α � 1, . . . , n,

using Greek and Latin indices to distinguish between first and sec-
ond arguments. (F is not symmetric!) We claim that, for fixed α,
{uαi }ni�1 ⊂ Rn is an orthonormal basis.

First, uαi is a unit vector, since

|uαi | � |F(eα, ei)| � |eα| · |ei| � 1.

Second, let i �� k, i, k � 1, . . . , n. On the one hand, we have

|uαi + uαk |2 � |uαi |2 + |uαk |2 + 2uαi · uαk
� 2 + 2uαi · uαk .

On the other hand,

|uαi + uαk |2 � |F(eα, ei) + F(eα, ek)|2

� |F(eα, ei + ek)|2

� |eα|2|ei + ek|2 � 2.

Combining these, we obtain

uαi · uαk � 0, i �� k,

1This does not mean that the cross product is not useful. In fact, it is the primary example of a Lie algebra
structure on R3.
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which proves the claim. Similarly, for fixed i, {uαi }nα�1 ⊂ Rn is also
an orthonormal basis.

Next we fix α, β and consider the orthonormal bases

{uαi }ni�1 and {uβk }nk�1

of Rn. Recall from linear algebra that the transfer matrix, denoted
by Pβ,α, between these two orthonormal bases is an orthogonal
matrix. In coordinates, Pβα � (p

βα

ik )
n
i,k�1, and we have the change of

bases formula

u
β

i �
n∑

k�1

p
βα

ik u
α
k .

Orthogonality of Pβα is expressed by

Pβα(Pβα)+ � I,

where + stands for transpose.
We now claim that, for α �� β, Pβα is skew-symmetric:

(Pβα)+ � −Pβα.
(Notice that by assuming α �� β, we exclude the case n � 1.) To
show this, we let i �� k and compute (using orthogonality of the
uαi ’s and u

β

i ’s, etc.):

|F(eα + eβ, ei + ek)|2 � |eα + eβ|2 · |ei + ek|2 � 4

� |uαi + uαk + u
β

i + u
β

k |
� 4 + 2uαi · uβk + 2uαk · uβi .

We obtain the following fundamental identity:

uαi · uβk + uαk · uβi � 0, α �� β.

This also holds for i � k by orthogonality.
Substituting the change of bases formula into this, we have

uαi ·
( n∑

l�1

p
βα

kl u
α
l

)
+ uαk ·

( n∑
l�1

p
βα

il u
α
l

)
� 0,

and orthogonality of the uαi ’s gives

p
βα

ki + p
βα

ik � 0.
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The claimed skew-symmetry follows. Combining skew-symmetry
and orthogonality of Pβ,α, we obtain

(Pβα)2 � −I.
We see that Pβα is a complex structure on Rn. In general, a complex
structure on Rn is a linear isometry J : Rn → Rn (represented
by an orthogonal matrix) such that J2 � −I. Beyond the formal
analogy with the complex identity i2 � −1, a complex structure
J can be thought of as a prescription for rotating vectors in Rn by
π/2.

Let us elaborate on this. First, given 0 �� v ∈ Rn, we claim that v
and J(v) are orthogonal and of the same length. Indeed, |J(v)| � |v|
since J is an isometry, and

v · J(v) � J(v) · J2(v) � −J(v) · v � −v · J(v);
so, v · J(v) must be zero.

It is now clear how to rotate v by angle θ using the partial
coordinate system {v, J(v)}; just define

Rθ(v) � cos θ · v + sin θ · J(v), θ ∈ R.

Let us see if we can do this inductively. Let v1 � v and denote by
σ1 the plane spanned by v and J(v). Let 0 �� v2 ∈ Rn be orthogonal
to σ1. We have

J(v2) · v1 � J2(v2) · J(v1) � −v2 · J(v1) � 0

and

J(v2) · J(v1) � v2 · v1 � 0,

so that J(v2) is also orthogonal to σ1. We obtain that the plane σ2

spanned by v2 and J(v2) is orthogonal to σ1. Continuing in this man-
ner, we see that Rn can be decomposed into the sum of mutually
orthogonal J -invariant planes:

Rn � σ1 + σ2 + · · · + σm,

and on each plane J acts by a quarter-turn. In particular, n � 2m
is even!

All this can be put into a very elegant algebraic framework. Given
a complex structure J on Rn, we can make Rn a complex vector
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space by defining multiplication of a vector v ∈ Rn to be given by
a complex number z � a + bi to be given by z · v � a · v + b · J(v).

We now return to our orthogonal multiplication F : Rn × Rn →
Rn and investigate the fundamental identity above a little more.
As before, we substitute the change of bases formula into the first
term of the fundamental identity, but now we switch α and β in the
change of bases formula and substitute this into the second term.
We obtain

uαi ·
( n∑

l�1

p
βα

kl u
α
l

)
+
( n∑

l�1

p
αβ

kl u
β

l

)
· uβi � 0.

Using orthogonality of the uαi ’s and u
β

i ’s again, we arrive at

p
βα

ki + p
αβ

ki � 0,

or equivalently

Pβα � −Pαβ.
Finally, let α, β, and γ be distinct indices from 1, . . . , n and iterate
the change of bases formula twice:

u
γ

i �
n∑

k�1

p
γβ

ik u
β

k

�
n∑
l�1

p
γα

il u
α
l �

n∑
l�1

p
γα

il

( n∑
k�1

p
αβ

lk u
β

k

)

�
n∑

k�1

( n∑
l�1

p
γα

il p
αβ

lk

)
u
β

k .

Equating coefficients, we obtain

p
γβ

ik �
n∑
l�1

p
γα

il p
αβ

lk .

In matrix terminology, this means that

Pγβ � PγαPαβ,

or, using skew-symmetry in the upper indices,

PγαPβα � −Pγβ.
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In particular,

PγαPβα � −PβαPγα,
so Pγα and Pβα anticommute!

Letting α � n and introducing Jβ � Pβ,n, β � 1, . . . , n − 1, we
see that

J1, . . . , Jn−1

are pairwise anticommuting complex structures on Rn.
Summarizing, we see that the existence of an orthogonal mul-

tiplication F : Rn × Rn → Rn implies that there exists a family
{J1, . . . , Jn−1} of anticommuting complex structures on Rn. ♥ These
complex structures generate (under composition by multiplica-
tion) what is called a Clifford algebra. Since the elements of the
Clifford algebra act on Rn as linear transformations, the vector
space Rn becomes a Clifford module.

To prove Theorem 14 we would need to show that this is possible
only for n � 2, 4, and 8. Regretably, this is beyond the scope of
these Glimpses. Let us mollify ourselves by instead taking a closer
look at what happens in four dimensions.

Problems

1. Let J1 and J2 be complex structures on R2. Show that either J1 � J2 or J1 � −J2.

2. Let {J1, . . . , Jn−1} be a family of anticommuting complex structures on Rn.
Prove that there exists an orthogonal multiplication F : Rn × Rn → Rn.
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...........................................

Quaternions

♦ We consider orthogonal multiplications for the case n � 4, i.e.,
F : R4 × R4 → R4. We saw in the previous section that the exis-
tence of such F implies the existence of three complex structures
J1, J2, J3 on R4 that pairwise anticommute.

Proposition 4.
Let {J1,J2,J3} be an anticommuting family of complex structures on

R4. Then we have

J1 ◦ J2 � ±J3.

Proof.
Consider the linear isometry

U � J1 ◦ J2 ◦ J3
of R4. We claim that U commutes with each complex structure Jl,
l � 1, 2, 3, andU2 � I. Both claims follow by simple computations.
For the first, assuming l � 1, we compute

U ◦ J1 � J1 ◦ J2 ◦ J3 ◦ J1 � J2
1 ◦ J2 ◦ J3 � J1 ◦ U.

305
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For the second, we have

U2 � (J1 ◦ J2 ◦ J3) ◦ (J1 ◦ J2 ◦ J3)
� J2

1 ◦ J2 ◦ J3 ◦ J2 ◦ J3
� −J2

1 ◦ J2
2 ◦ J2

3 � I.

Because U is an isometry whose square is the identity, it has
only real eigenvalues, and they can only be ±1. Moreover, the
eigenspaces

V+ � {v ∈ R4 |U(v) � v} and V− � {v ∈ R4 |U(v) � −v}
are orthogonal, and together they span R4:

R4 � V+ + V−.

By definition, U |V+ � I and U |V− � −I. That Jl commutes with U

for each l � 1, 2, 3, translates into Jl leaving V+ and V− invariant.
(In fact, if U(v) � ±v, v ∈ R4, then U(J1(v)) � J1(U(v)) � ±J1(v).)
Thus, {J1, J2, J3} restricts to an anticommuting family of complex
structures on V+ (and on V−). In particular, dim V+ is even, i.e.,
0, 2, or 4. The middle dimension 2 cannot occur, since on a
2-dimensional vector space a complex structure is essentially de-
termined by the orientation. Therefore, it is impossible for three
complex structures to coexist with anticommutation (cf. Problem 1
of Section 21). Thus,V+ is either trivial or all of R4. The same is true
in reversed order forV−. Thus,U � ±I, and we have J1◦J2◦J3 � ±I.
Composing both sides by J3 from the right and using J2

3 � −I, we
obtain J1 ◦ J2 � ±J3 as claimed.

We have the liberty of choosing a sign for ±J3 without changing
the entire structure (that is, the relations). We therefore assume
that J1, J2 and J3 are arranged so that

J1 ◦ J2 � J3.

Summarizing, we obtained that the existence of an orthogonal mul-
tiplication F : R4 × R4 → R4 implies the existence of three linear
isometries J1, J2, J3 on R4 satisfying the relations:

J2
1 � J2

2 � J2
3 � −I,
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and

J1 ◦ J2 � −J2 ◦ J1 � J3,

J2 ◦ J3 � −J3 ◦ J2 � J1,

J3 ◦ J1 � −J1 ◦ J3 � J2,

where the last two equalities can be derived from the first. Now
look at the following analogy: J2 � −I makes R2 a complex vector
space with complex unit i � (0, 1) satisfying i2 � −1. Yielding to
the obvious temptation, we introduce the vectors

i � (0, 1, 0, 0),

j � (0, 0, 1, 0),

k � (0, 0, 0, 1),

in R4 and declare the rules for multiplication to be

i2 � j2 � k2 � −1

and

ij � −ji � k,

jk � −kj � i,

ki � −ik � j.

After adding 1 � (1, 0, 0, 0) to {i, j, k}, each vector q ∈ R4 can be
written as a linear combination of 1, i, j, k:

q � a + bi + cj + dk, a, b, c, d, ∈ R,

where we suppressed 1 from the notation. q expanded like this is
called a quaternion. It is now clear how to multiply two quaternions
using these identities. R4 equipped with this so-called quaternionic
multiplication becomes a skew field that we denote by H. (“Skew”
means having noncommutative multiplication.)

Multiplication of quaternions was introduced by Hamilton in
1843. According to the story, he had struggled with the problem of
defining multiplication of vectors in R3 since 1833, and his family
took a great interest in this. Each morning at breakfast, his boys
would ask, “Well, Papa, can you multiply triplets?” (meaning vec-
tors in R3) and would receive the sad reply “No, I can only add and
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subtract them.” Then, when strolling with his wife by Brougham
Bridge in Dublin one day, it suddenly occurred to him that all the
difficulties would disappear if he used quadruples—that is, vectors
in R4. Overwhelmed with joy, he carved the identities above into
the stonework of the bridge.

Given a quaternion q � a + bi + cj + dk ∈ H, in analogy with
complex numbers it is customary to define the real part of q as
!(q) � a, and the pure part of q as P(q) � bi + cj + dk. We also
write q � a + p with a ∈ R and p � P(q). The conjugate of
q � a+p is then defined as q̄ � a−p. Finally, we call a quaternion
pure if its real part vanishes. The pure quaternions form the three-
dimensional linear subspace H0 � {q ∈ H | q̄ � −q} of H spanned
by i, j, k.

Quaternionic multiplication satisfies the same identities as its
complex brother. A word of caution is needed, however, for the
identity

q1q2 � q̄2q̄1, q1, q2 ∈ H,

in which the factors on the right-hand side get switched!
Taking the analogy with complex arithmetic further, we now

ask whether the ordinary dot product in R4 � H can be written in
terms of quaternions. Here it is:

q1 · q2 � q̄1q2 + q̄2q1

2
, q1, q2 ∈ H.

To show this, we first note that the right-hand side is just !(q̄1q2).
Setting q1 � a1 + b1i + c1j + d1k and q2 � a2 + b2i + c2j + d2k, we
have

!(q̄1q2) � !((a1 − b1i − c1j − d1k)(a2 + b2i + c2j + d2k))

� a1a2 + b1b2 + c1c2 + d1d2,

since the mixed terms are all pure. The formula for the dot product
follows. In particular, if q � q1 � q2, we obtain

|q|2 � q · q � q̄q,
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the usual Length2-Identity. With this, the quaternionic inverse of
a nonzero quaternion q ∈ H can be written as

q−1 � q̄

|q|2 .

This shows that H is indeed a skew field.
The 3-sphere S3 ⊂ H in quaternionic calculus is like the unit

circle S1 ⊂ C in complex calculus. In fact,

S3 � {q ∈ H | |q| � 1}
constitutes a group under quaternionic multiplication; this is an
immediate consequence of the fact that quaternionic multiplica-
tion is normed;

|q1q2| � |q1| · |q2|, q1, q2 ∈ H.

To check this, we compute

|q1q2|2 � q1q2q1q2 � q1q2q̄2q̄1

� q1|q2|2q̄1 � q1q̄1|q2|2

� |q1|2|q2|2,
where we used the fact that reals (such as |q2|2) commute with all
quaternions.

What does S3 ⊂ H look like? The answer depends on whether
you want an algebraic description or a “three-dimensional vision”
in R4! We’ll use both approaches, beginning with the first.

Since we are already familiar with complex arithmetic, we just
write

q � (a + bi) + j(c + di) � a + bi + cj − dk � z + jw,

z � a + bi, w � c + di ∈ C.

We obtain that a quaternion is nothing but a pair of complex
numbers; H � C2. In terms of complex variables, quaternionic
multiplication can be written as

q1q2 � (z1 + jw1)(z2 + jw2)

� z1z2 + jw1jw2 + z1jw2 + jw1z2

� (z1z2 − w̄1w2) + j(w1z2 + z̄1w2),
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so that, under the correspondence H � C2, multiplying q1 by q2

corresponds to matrix multiplication[
z1 −w̄1

w1 z̄1

] [
z2

w2

]
.

Suppressing the indices, we say that multiplication by q � z + jw

corresponds to multiplication by the matrix

A �
[
z −w̄
w z̄

]
.

Restricting q to S3 is equivalent to assuming |q|2 � |z|2 + |w|2 � 1,
and we see that A is special unitary, that is,

A∗ � Ā+ � A−1

with determinant one. As observed in Section 18, these matrices
constitute the important group SU(2) of special unitary 2 × 2 matri-
ces. The correspondence that associates to the quaternion q ∈ S3

the special unitary matrix A is an isomorphism ϕ : S3 → SU(2) (it
is clearly one-to-one and onto); that is, it satisfies

ϕ(q1q2) � ϕ(q1) · ϕ(q2), q1, q2 ∈ S3.

This follows by setting q1 � z1 + jw1 and q2 � z2 + jw2, and
comparing the first column of the product

ϕ(q1)ϕ(q2) �
[
z1 −w̄1

w1 z̄1

] [
z2 −w̄2

w2 z̄2

]

with the complex expression of the product q1q2 above.
The identification SU(2) � S3 allows us to use spherical concepts

such as meridians of longitude and parallels of latitude on SU(2).
Let

A(z, w) �
[
z −w̄
w z̄

]
, |z|2 + |w|2 � 1,

be a typical element of SU(2), where we have displayed the depen-
dence of A on z and w. The characteristic polynomial for A(z, w)
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can be written as

det(A(z, w) − tI) � (z − t)(z̄ − t) + ww̄

� t2 − (z + z̄)t + 1 � t2 − 2!(z)t + 1.

Since the real part !(z) of z is between −1 and +1, for fixed r ∈
[−1, 1], we call {A(z, w) | !(z) � r} the parallel of latitude at r.
We see that two special unitary matrices are on the same parallel
of latitude iff their characteristic polynomials are the same. The
parallels of latitude corresponding to r � 1 and r � −1 are the
single-point sets {I} and {−I}, which we may just as well call North
and South Poles. For −1 < r < 1, the parallel of latitude at r is
topologically a 2-sphere sitting in S3. This is clear algebraically if
we work out the equations

|z|2 + |w|2 � 1 and !(z) � r

in real coordinates and also geometrically, since the parellel of
latitude at r is nothing but the slice cut out from S3 by the 3-
dimensional space defined by !(z) � r in C2. Since !(z) is half
of the trace of A(z, w), the equator r � 0 corresponds to trace-
less matrices. The meridians of longitude are great circles going
through the poles. One prominent meridian of longitude is given
by the diagonal matrices in SU(2). For a diagonal A(z, w), we have
w � 0, so that |z|2 � 1. Letting z � eiθ, a diagonal matrix can be
written in the form[

eiθ 0
0 e−iθ

]
∈ SU(2), θ ∈ R.

This meridian of longitude cuts the equator at[
i 0
0 −i

]

and its negative.

Remark.
Let A ∈ SU(2). The conjugacy class of A is the set

{BAB−1 | B ∈ SU(2)}.
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Since trace (BAB−1) � traceA, it is clear that each conjugacy class
is contained in a parallel of latitude. ♥ A somewhat more refined
analysis shows that the converse is also true, so that the parallels
of latitude are exactly the conjugacy classes of matrices in SU(2).

The description of SU(2) � S3 in terms of parallels of latitude
(as conjugacy classes), though very pleasing, does not contain any-
thing new about the geometry of S3. After all, the same geometric
picture is valid in the one less dimension of S2! We now give a novel
insight of the subtlety of the geometry of S3 absent in S2.

♦ In what follows, we parameterize S3 ⊂ C2 by two complex
variables (z, w) satisfying |z|2 + |w|2 � 1. (Recall that z + jw is
the quaternion corresponding to (z, w) ∈ C2.) Note that z runs on
the first and w on the second factor of C2 � C × C. Consider the
function f : S3 → R given by

f(z, w) � |z|2 − |w|2, (z, w) ∈ S3.

Since |z|2 + |w|2 � 1, we have −1 ≤ f ≤ 1. We now want to
visualize the level sets

Cr � {(z, w) ∈ S3 | f(z, w) � r}, −1 ≤ r ≤ 1.

We have (z, w) ∈ Cr iff

|z|2 − |w|2 � r,

and, since |z|2 + |w|2 � 1, adding and subtracting yields

|z|2 � 1 + r

2
and |w|2 � 1 − r

2
.

For r � 1, we obtain that |z| � 1 and w � 0, so that C1 is the unit
circle in the first factor of C2 � C × C. Similarly, C−1 is the unit
circle in the second factor of C2 � C × C; in particular, C1 and C−1

are perpendicular to each other. Now let −1 < r < 1 and notice
that the right-hand sides of the equations above are positive. They
are uncoupled; the first describes a circle around the origin with
radius

√
(1 + r)/2 in the first factor of C2, and the second describes

a similar circle with radius
√
(1 − r)/2 in the second factor of C2.

Thus,

Cr �
{
(z, w) ∈ C2

∣∣ |z|2 � 1 + r

2
, |w|2 � 1 − r

2

}
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is the Cartesian product of two circles—a torus! We see that apart
from the great circles C±1, the tori Cr, −1 < r < 1, decompose (or
foliate) S3. These tori are called Clifford tori. We understand this
visually as follows: Consider ourselves in S3 moving along the great
circle C−1 � {(0, eiθ) | θ ∈ R}. At each point we see the direction
in which we are moving (given by the vector tangent to C−1 at
our location). We see that a three-dimensional space surrounds us
because we are in S3! Thus, within S3, we can hold a circle made of
wire orthogonally to our direction of motion. If we move around
C−1 and drag the circle along, keeping it perpendicular to our path,
it will sweep a Clifford torus. By increasing the radius of the circle
we carry, we get fatter and fatter tori. At the other extreme value,
r � 1, the tori reduce to C1. The situation is depicted in Color Plate
10.

Removing the middle torus C0 from S3, we see that S3 falls into
the disjoint union of two solid tori. Going backward, we reach the
inevitable conclusion: The 3-sphere is obtained from two solid tori
by pasting them together along their boundaries!

Going back to the group structure of S3 leads to another interest-
ing discovery. Consider S1 � {eiθ | θ ∈ R} ⊂ C acting on S3 by the
4-dimensional rotation eiθ(z, w)  → (eiθz, eiθw). Each orbit is a great
circle and is contained in a Clifford torus. In fact, the orbit

S1(z0, w0) � {(eiθz0, e
iθw0) | θ ∈ R}

is the intersection of S3 with the 2-dimensional linear subspace in
C2 defined by the equation zw0 − wz0 � 0. Since

f(eiθz, eiθw) � |eiθz|2 − |eiθw|2 � |z|2 − |w|2 � f(z, w),

the second statement also follows.
What is the quotient S3/S1? This should be two-dimensional

since in S3 we are compressing great circles into points, so that
the dimension must drop by one. We claim that S3/S1 and S2 are
homeomorphic. To do this, we need to understand how to associate
to an orbit S1(z0, w0) � {(eiθz0, e

iθw0) | θ ∈ R}, |z0|2 + |w0|2 � 1, a
unique point on the two-sphere S2. The easiest way to do this is
to identify the projection map S3 → S3/S1. We introduce the Hopf
map H : S3 → S2 given by

H(z, w) � (|z|2 − |w|2, 2zw̄) ∈ R × C � R3.



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

This spread is one line long.

22. Quaternions314

First, note that H maps S3 to S2, since

|H(z, w)|2 � (|z|2 − |w|2)2 + 4|z|2|w|2 � (|z|2 + |w|2)2 � 1

if (z, w) ∈ S3. Second, H is invariant under the action of S1, since

H(eiθz, eiθw) � (|eiθz|2 − |eiθw|2, 2eiθzeiθw)
� (|z|2 − |w|2, 2zw̄) � H(z, w).

Thus, H maps each orbit of S1 in S3 into a single point. To show
that S3/S1 � S2, we need to prove that the orbits are precisely
the inverse images of points from S2. In other words, we have to
show that whenever H(z1, w1) � H(z2, w2), the points (z1, w1) and
(z2, w2) are on the same orbit under S1. Now the fact that the Hopf
images are equal translates into

|z1|2 − |w1|2 � |z2|2 − |w2|2

and

z1w̄1 � z2w̄2.

The first equality means that (z1, w1) and (z2, w2) are on the same
Clifford torus, say Cr, so we have

|z1|2 � |z2|2 � 1 + r

2
and |w1|2 � |w2|2 � 1 − r

2
.

Letting z2 � eiθz1 and w2 � eiϕw1, we substitute these back to the
second equation and obtain

z1w̄1 � ei(θ−ϕ)z1w̄1,

and so (exluding the trivial cases when z1 � 0 or w1 � 0, which
can be handled separately)

ei(θ−ϕ) � 1

follows. By the periodicity property of the exponential function, θ
and ϕ differ by an integer multiple of 2π. Thus w2 � eiθw1, and we
are done.

♠ We can define the complex projective n-space CPn using the
same construction as for the real projective n-space RPn (Problem
5 in Section 16). CPn comes equipped with the natural projection
Cn+1−{0} → CPn associating to a nonzero complex vector p ∈ Cn+1
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the complex line C · p minus the origin. Restricting the projec-
tion to the unit sphere S2n+1 ⊂ Cn+1 (� R2n+2), we obtain a map
S2n+1 → CPn that associates to p ∈ S2n+1 the set of multiples eiθp,
θ ∈ R, that span the complex projective point corresponding to
p. This is better understood when we define a natural action of
S1 ⊂ C on S2n+1 ⊂ Cn+1 given by multiplying complex vectors by
eiθ ∈ S1. Then S2n+1 → CPn is nothing but the orbit map. Note that
each orbit of S1 on S2n+1 is a great circle. In particular, S2n+1 can be
thought of as composed of circles attached to every point of CPn!
For n � 1, the orbit map S3 → CP1 is nothing but the Hopf map.
Hence CP1 can be identified with S2! This is not too surprising,
though; the ordinary points [z : w] ∈ CP1 with complex homo-
geneous coordinates z, w ∈ C are exactly those with nonzero w.
Thereby they can be made to correspond to ratios z/w ∈ C, and
the only ideal point is [1 : 0], corresponding to ∞. We thus have
CP1 � C ∪ {∞} � S2!

We close this section with an advanced remark. If we look at
two orbits of the action of S1 on S3 (on the same Clifford torus), it
is apparent that they are “linked” in S3. This means that the Hopf
map H : S3 → S2 cannot be deformed continuously through maps
into a constant map S3 → S2 that sends the whole S3 to a single
point. We express this by saying that H is homotopically nontriv-
ial, or, even more formally, that the third homotopy group π3(S

2)

is nontrivial. This was a pioneering result of Hopf’s during the
early development of homotopy theory, since because of the ap-
parent similarity between homotopy and homology theories, one
expected to find π3(S

2) to be trivial since the third homology group
H3(S

2) � 0.

Problems

1. Consider the 3-dimensional subspace V � C × R · k ⊂ H. Show that the map
q  → kqk−1, q ∈ V , leaves V invariant. Show that this map is an opposite
isometry of V and describe it geometrically using V � R3.

2. Let q1, q2 ∈ H0 be purely imaginary quaternions. Show that the quaternionic
product q1q2 ∈ H projected to R · 1 is the negative of the dot product of q1

and q2 considered as spatial vectors under the identification H0 � R3. Show
that q1q2 projected to H0 is the cross product of q1 and q2.
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3. Use the quaternionic identity |q1|2|q2|2 � |q1q2|2, q1, q2 ∈ H, to prove the four
square formula:1

(a2
1 + b2

1 + c2
1 + d2

1)(a
2
2 + b2

2 + c2
2 + d2

2)

� (a1a2 − b1b2 − c1c2 − d1d2)
2

+ (a1b2 + b1a2 + c1d2 − d1c2)
2

+ (a1c2 − b1d2 + c1a2 + d1b2)
2

+ (a1d2 + b1c2 − c1b2 + d1a2)
2.

4. Use the four square formula of Problem 3 to show that if a and b are both sums
of four squares of integers, then ab is also a sum of four squares of integers.
(Lagrange proved in 1772 that any positive integer can be expressed as the sum
of four squares of integers (cf. Problem 7 of Section 5). This problem has a
rich and complex history. In 1638, Fermat asserted that every positive number
is a sum of at most three triangular numbers, four squares, five pentagonal
numbers, and so on (cf. Problem 11 of Section 2). In 1796, in one of the earliest
entries in his mathematical diary, Gauss recorded that he had found a proof
for the triangular case. The general problem was resolved by Cauchy in 1813.)

5. Define the quaternionic Hop map H : H2 → R × H by

H(p, q) � (|p|2 − |q|2, 2pq̄), p, q ∈ H,

and show that H maps the unit sphere S7 ⊂ H2(� R8) onto the unit sphere
S4 ⊂ R × H(� R5). Verify that the inverse image of a point in S4 under
H : S7 → S4 is a great 3-sphere S3 in S7.

6. Associate to the spatial rotation with axis R · p0, p0 � (a0, b0, c0) ∈ S2, and
angle θ ∈ R, the antipodal pair ±(a + bi + cj + dk) ∈ S3 of unit quaternions,
where a � cos(θ/2), b � c0 sin(θ/2), c � b0 sin(θ/2), and d � a0 sin(θ/2).

(a) Describe the set of spherical rotations that correspond to parallels of
latitude in S3.

(b) ♠ Study the correspondence between the group of spherical rotations,
the quotient group S3/{±1}, and Möb+(Ĉ).

Web Sites

1. www.geom.umn.edu/∼banchoff/script/b3d/hypertorus.html

2. www.maths.tcd.ie/pub/HistMath/People/Hamilton/Letters
/BroomeBridge.html

1This identity appears in a letter Euler wrote to Goldbach in 1705.
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...........................................

Back to R3!

♦ After our frustration over the nonexistence of orthogonal multi-
plications in three dimensions, we now try to incorporate R3 into
our skew field H. The symmetric role of the quaternionic units
i, j, and k indicates that R3 should sit in H as the linear space
H0 � {q ∈ H | q̄ � −q} of pure quaternions. As we did in our in-
vestigations of complex arithmetic, we now want to see what kind
of geometric transformations arise in R3 from quaternionic multi-
plication restricted to H0. As an elementary example, conjugation
in H restricts to the antipodal map in H0!

Theorem 15.
Let 0 �� q0 ∈ H. Then the transformations q  → ±q0qq

−1
0 , q ∈ H,

are linear isometries that leave H0 invariant.

(1) If q0 ∈ H0, then the restriction of q  → −q0qq
−1
0 to H0 is reflection

to the plane orthogonal to q0.

(2) If q0 � a0 + p0, 0 �� a0 ∈ R, 0 �� p0 ∈ H0, then the restriction of
q  → q0qq

−1
0 to H0 is rotation with axis R · p0 and angle 0 < θ < π

given by tan (θ/2) � |p0|/a0.

317
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Proof.
Since |q0qq

−1
0 | � |q0||q||q0|−1 � |q|, it is clear that the transforma-

tions q  → ±q0qq
−1
0 are linear isometries of H � R4. The invariance

of H0 under these transformations can be proved directly. Instead,
we will develop a criterion for a quaternion to belong to H0, which
will turn out to be useful later on.

We claim that q ∈ H0 iff q2 is a nonpositive real number. Indeed,
given q � a + p, a ∈ R, 0 �� p ∈ H0 (we may assume that p is
nonzero, since otherwise the claim follows), we have

q2 � a2 + 2ap + p2.

The last term p2 is a nonpositive real number, since

p2 � (bi + cj + dk)2 � −(b2 + c2 + d2)

(the mixed terms cancel because of anticommutativity of i, j, k).
Thus, the pure part of q2 is equal to 2aP(p) � 2ap, and this is zero
iff a � 0.

Returning to the proof of invariance of H0, we need to show that
q ∈ H0 implies q0qq

−1
0 ∈ H0. Using the criterion just proved, this is

equivalent to the statement that whenever q2 is a nonpositive real
number, then so is (q0qq

−1
0 )2. We compute the latter as

(q0qq
−1
0 )2 � q0qq

−1
0 q0qq

−1
0 � q0q

2q−1
0

� q2q0q
−1
0 � q2,

where the last but one equality is because a real number commutes
with all quaternions. Invariance of H0 follows. The transformations
q → ±q0qq

−1
0 send p0 to ±p0, since

q0p0q
−1
0 � q0(q0 − a0)q

−1
0 � q0q0q

−1
0 − a0q0q

−1
0 � q0 − a0 � p0.

Since these are also isometries, the plane P perpendicular to p0

remains invariant. Let q ∈ P and compute the cosine of the angle
θ between q and q0qq

−1
0 (Figure 23.1).

Using the dot product formula, we have

cos θ � q · (q0qq
−1
0 )

|q|2 � 1
2|q|2 (q̄(q0qq

−1
0 ) + q0qq

−1
0 q)

� 1
2|q|2|q0|2 (q̄q0qq̄0 + q0qq̄0q)
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0    0
q q  qq

θ
−1

0
p

Figure 23.1

� 1
2|q|2|q0|2 (q̄q0qq̄0 + q0q̄q̄0q)

� − 1
2|q|2|q0|2 (qq0qq̄0 + q0qq̄0q),

where we used q̄ � −q. To rewrite this into a more conve-
nient form, we now use orthogonality of q and p0. We claim that
orthogonality implies the commutation relation

qq0 � q̄0q.

Indeed, since q and p0 are orthogonal, q · p0 � (q̄p0 + p̄0q)/2 �
−(qp0 + p0q)/2 � 0, so q and p0 anticommute. With this, we have

qq0 � q(a0 + p0) � qa0 + qp0 � a0q − p0q � (a0 − p0)q � q̄0q.

Returning to the main computation,

cos θ � − 1
2|q|2|q0|2 (qq0qq̄0 + q0qq̄0q)

� − 1
2|q|2|q0|2 (q̄0q

2q̄0 + q0q
2q0) (q2 is real!)

� − q2

2|q|2|q0|2 (q̄
2
0 + q2

0)

� 1
|q0|2 !(q

2
0) �

a2
0 + p2

0

a2
0 − p2

0
.

For case (1) of the theorem, we have a0 � 0 (and p0 � q0), so
that cos θ � −1 follows. Thus θ � π and q  → q0qq

−1
0 restricted to
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P is a half-turn. Incorporating the negative sign, q  → −q0qq
−1
0 is

identity on P and, as we have seen earlier, it sends q0 to −q0. Thus
q  → −q0qq

−1
0 is reflection in the plane P.

For case (2) of the theorem, p0 is left fixed, and q  → q0qq
−1
0

restricted to P is rotation with angle 0 < θ < π where

cos θ � a2
0 + p2

0

a2
0 − p2

0

Now the trigonometric identity tan2(θ/2) � (1 − cos θ)/(1 + cos θ)
gives tan(θ/2) � |p0|/a0. The theorem follows.

Theorem 15 means that spatial reflections and rotations can be
obtained from quaternionic multiplications restricted to R3 � H0.
These make up the group of all linear isometries of R3 (leaving the
origin fixed), that is, they make up the orthogonal group O(R3).

Returning to our original aim, we now place the Platonic solids
in H0 (with centroids at the origin) and express the symmetries
in terms of quaternions. In this way, we obtain a very transparent
description of the symmetry groups of Platonic solids.

Before we do this, let us formalize what we just said about rep-
resenting the elements of O(R3) by quaternions. For simplicity,
we restrict ourselves to direct linear isometries that constitute the
special orthogonal group SO(R3), a subgroup of O(R3).

Theorem 16.
The map ψ that associates to each unit quaternion q0 ∈ S3 the

transformation q  → q0qq
−1
0 restricted to H0 is a surjective group

homomorphism

ψ : S3 → SO(R3)

with kernel

ker ψ � {±1}.

Proof.
By Theorem 15, if q0 �� ±1, then q0 defines a rotation, an element
of SO(R3). On the other hand, q0 � ±1 defines the identity ele-
ment in SO(R3) so that ψ maps into SO(R3). It is clear that ψ is
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a homomorphism of groups, and, by what we just said, ±1 are in
the kernel of ψ. By Theorem 10 of Section 16 and Theorem 15,
ψ is onto since all elements in SO(R3) are rotations. It remains
to show that the kernel of ψ is exactly {±1}. Let q0 ∈ ker ψ, that
is, q0qq

−1
0 � q for all q ∈ H0. Equivalently, q0 commutes with all

pure quaternions. Writing this condition out in terms of i, j, and k,
we obtain that q0 must be real. Since it is in S3, it must be one of
±1.

Remark.
♥Theorem 16 implies that the group S3 of unit quaternions modulo
the normal subgroup {±1} is isomorphic with the group SO(R3) of
direct spatial linear isometries. The quotient group S3/{±1} is, by
definition, the group of right- (or left-) cosets of {±1}. A right-coset
containing q ∈ S3 thus has the form {±1}q � {±q}. Thus, topologi-
cally, S3/{±1} can be considered as a model for the projective space
RP3. The classical model of RP3 is the same as the model of RP2

discussed in Section 16; that is, a projective point is a line through
the origin of R4, etc. By Theorem 16 above, RP3 can be identified
by the group of direct spatial isometries SO(R3)!

♦Let us explore some concrete settings. As we learned in Section
22, a quaternion q can be represented by a pair of complex numbers
(z, w) ∈ C2 via q � z + jw. The second variable w ∈ C in this
representation corresponds to jw ∈ jC, and we see that jC is the
complex plane in H0 spanned by the vectors j and k(� ij). The
complex unit i ∈ H0 is orthogonal to jC in H0.

As an example, we now describe a rotation in H0 with axis R · i
and angle θ, 0 < θ < π. According to Theorem 15, this rotation is
described by the quaternion q0 � a + p0, a ∈ R, p0 ∈ H0, via q  →
q0qq

−1
0 , q ∈ H0. Since p0 � i, q0 happens to be a complex number.

The condition on the angle can be written as tan(θ/2) � |i|/|a| �
1/|a|, so that, choosing a positive, we have q0 � cot(θ/2) + i. We
normalize q0 to a unit:

q0

|q0| � cot(θ/2) + i√
cot2(θ/2) + 1

� cos
(
θ

2

)
+ i sin

(
θ

2

)
.
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We obtain that rotation with axis R · i and angle θ corresponds to
the complex number eiθ/2 viewed as a quaternion. To check that
this is correct, we compute

q0iq
−1
0 � eiθ/2ie−iθ/2 � i,

so that i is kept fixed. Moreover, eiθ/2 acts on jw ∈ jC as

eiθ/2jwe−iθ/2 � eiθjw

and this is indeed rotation by angle θ on jC! Notice now that eiθ/2

and its negative −eiθ/2 � ei(π+θ/2) represent the same rotation, since
by Theorem 16, there is a two-to-one correspondence between unit
quaternions in S3 and linear isometries acting on H0.

We now consider the cone Cn in H0 with vertex hi (where h > 0 is
the height) and base jPn, where the regular n-sided polygon Pn ⊂ C
is placed in jC (Figure 23.2).

We see that the cyclic group C2n � {elπi/n | l � 0, . . . , 2n − 1}
of unit quaternions is a double cover of the symmetry group
Symm+(Cn), in the sense that, for l � 0, . . . , n − 1, elπi/n and
−elπi/n � e(n+l)πi/n correspond to the same rotation in H0.

The same argument can be used for the prism Pn given by(
− h

2
,
h

2

)
i × jPn.

Besides the elements of C2n, we have half-turns at the vertices and
the midpoints of edges of jPn. They correspond to the quaternions

{jeliπ/n | l � 0, . . . , 2n − 1}.

Figure 23.2

jPn

hi
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Putting these elements together, we obtain the so-called binary
dihedral group

D∗
n � {elπi/n | l � 0, . . . , 2n − 1} ∪ {jelπi/n | l � 0, . . . , 2n − 1}

and this is a double cover of Symm+(Pn).
We will now turn to the Platonic solids and derive double covers

of the tetrahedral, octahedral, and icosahedral groups in terms of
quaternions.

We begin with the tetrahedral group. We position the regular
tetrahedron T in R3 � H0 as in Section 17 with vertices

i + j + k, i − j − k, −i + j − k, −i − j + k.

Symm+(T ) is generated by the three half-turns around the coordi-
nate axes and by the rotation around i + j + k by angle 2π/3. The
first three correspond to the three pairs of quaternions

±i, ±j, ±k,
and the latter is given by the quaternion (normalized to belong to
S3)

± 1√
a2 + 3

(a + i + j + k), a > 0,

where

tan(π/3) � |i + j + k|
a

�
√

3
a
.

We obtain that a � 1, so the pair of quaternions corresponding to
rotation at the front vertex i + j + k is

± (1 + i + j + k)

2
.

Putting these together, we see that the binary tetrahedral group
defined by

T∗ � {±1,±i,±j,±k} ∪
{
(±1 ± i ± j ± k)

2

}
⊂ S3

is a double cover of Symm+(T ).
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Let us visualize T∗ ⊂ S3 through the Clifford decomposition of
S3 discussed in Section 21. Recall that S3 � ⋃

−1≤r≤1 Cr, where

Cr �
{
(z, w) ∈ C2

∣∣ |z|2 � 1 + r

2
, |w|2 � 1 − r

2

}
.

C±1 are orthogonal great circles cut out from S3 ⊂ R4 by the coor-
dinate planes spanned by the first two and the last two axes. For
−1 < r < 1, Cr is a Clifford torus imbedded in S3. Recall also that
a unit quaternion is represented by a pair of complex numbers,
q � z + jw, z, w ∈ C, and |q|2 � 1 corresponds to |z|2 + |w|2 � 1.
With this, we see that {±1,±i} ⊂ T∗ correspond to the vertices of
a square inscribed in C1.

Similarly, {±j,±k} ⊂ T∗ correspond to the same picture on C−1.
Finally, the elements (±1 ± i ± j ± k)/2 correspond to(

(±1 ± i)

2
,
(±1 ± i)

2

)
∈ C2,

so that they are all in the middle Clifford torus C0. We now view C0

as [0, 2π]2 with opposite sides identified as in Section 15. In this rep-
resentation (z, w) ∈ C0 corresponds to the point (arg(z), arg(w)) ∈
[0, 2π]2. (Here we take the value of arg in [0, 2π].) Working out
the arguments of (±1 ± i)/2, we obtain all odd multiples of π/4
on [0, 2π]. Thus, on C0, the binary tetrahedral group has sixteen
points whose coordinates are odd multiples of π/4. Putting these
together, we get 4 + 4 + 16 � 24 � |T∗| points! (See Figure 23.3.)

The other examples are treated similarly. The octahedron O is
placed in R3 � H0 with vertices

±i, ±j, ±k,

Figure 23.3
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and the rotations around each vertex with angle π/2 are given by
the quaternions

±1 ± i√
2

,
±1 ± j√

2
,

±1 ± k√
2

.

Since Symm+(T ) ⊂ Symm+(O) (recall that O can be obtained from
T by four truncations), these and T∗ generate the binary octahedral
group

O∗ � T∗ ∪
(

1 + i√
2

)
T∗ ⊂ S3.

This is a double cover of Symm+(O). Notice that (1 + i)/
√

2 � eiπ/4

corresponds to rotation around the imaginary axis R · i with angle
π/2 and this is precisely the isometry that carries T into its recip-
rocal T ◦. We thus see the algebraic counterpart of the geometric
argument used to determine the octahedral group in Section 17.

Multiplication by eπi/4 has the effect of adding π/4 to the param-
eters arg (z) and arg (w) of the Clifford decomposition of S3. Note
that D∗

4 becomes a subgroup of O∗. The entire binary octahedral
group is depicted in Figure 23.4.

Finally, working out all quaternions that give icosahedral
rotations, we arrive at the double cover of Symm+(I):

I∗ � T∗ ∪ σT∗ ∪ σ2T∗ ∪ σ3T∗ ∪ σ4T∗,

where σ � 1
2 (τ+i+ j/τ) and τ is the golden section (see Section 17).

This is called the binary icosahedral group. We omit the somewhat
gory details (cf. Problem 2). Note again the perfect analogy between
this algebraic splitting of I∗ and the geometric description of the
icosahedral group in terms of the five circumscribed tetrahedra in
Section 17.

To place I∗ in the Clifford setting needs a bit of computation. It
is clear that the elements ±ωk and ±jωk, k � 0, . . . , 4, make up

Figure 23.4
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the vertices of two copies of a regular decagon, one inscribed in
C−1, the other in C1. These account for 20 elements of I∗. For the
remaining 100 elements, we have

|z|2 − |w|2 � ± 1√
5
(|ω − ω4|2 − |ω2 − ω3|2)

� ∓ 1√
5
((ω − ω4)2 − (ω2 − ω3)2)

� ± 1√
5
(ω + ω4 − ω2 − ω3)

� ± 1√
5

(
1
τ

+ τ

)
� ± 1√

5
.

We see that these elements (in two groups of 50) are on the two
Clifford tori C±1/

√
5. Calculating the arguments is now easy, since

ω − ω4 and ω2 − ω3 are both purely imaginary. On C1/
√

5, we
obtain(

3π
2

+ 2kπ
5

,
π

2
+ 2lπ

5

)
,

(
π

2
+ 2kπ

5
,

3π
2

+ 2lπ
5

)
,

where k, l are integers modulo 5. Similarly, on C−1/
√

5 we have(
π

2
+ 2kπ

5
,
π

2
+ 2lπ

5

)
,

(
3π
2

+ 2kπ
5

,
3π
2

+ 2lπ
5

)
,

where again k, l are integers modulo 5. The entire binary icosahe-
dral group I∗ is depicted in Figure 23.5.

Thus, quaternions can be used to describe the symmetry groups
of the Platonic solids in a simple and elegant manner. Any compu-
tation involving these groups can be carried out using quaternionic
arithmetic.

Figure 23.5



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

23. Back to R3! 327

♥ One final algebraic note: In searching for quaternionic repre-
sentation of the symmetries of the Platonic solids, we found the
following finite subgroups of S3:

1. Cn � {e2πli/n | l � 0, . . . , n − 1};
2. D∗

n � C2n ∪ jC2n; in particular, D∗
2 � {±1,±i,±j,±k};

3. T∗ � D∗
2 ∪ {(±1 ± i ± j ± k)/2};

4. O∗ � T∗ ∪ ((1 + i)/
√

2)T∗;
5. I∗ � T∗ ∪ σT∗ ∪ σ2T∗ ∪ σ3T∗ ∪ σ4T∗, where σ � 1

2 (τ + i + j/τ).

We finish this section by showing that this is an exhaustive list
of all finite subgroups of S3.

Theorem 17.
Any finite subgroup of S3 � SU(2) is either cyclic, or conjugate to

one of the binary subgroups D∗
n, T

∗, O∗, or I∗.

Proof.
Let G ⊂ S3 ∼� SU(2) be a finite subgroup with corresponding
subgroup G0 in SU(2)/{±I}. Let G∗ ⊂ S3 be the inverse image of
G0 under the canonical projection SU(2) → SU(2)/{±I}. Clearly,
G ⊂ G∗. By Theorem 16, G0 is isomorphic to a finite subgroup of
SO(3). If G � G∗, then G∗ is the double cover of the group G0. In
this case the theorem follows from the classification of finite sub-
groups in SO(3) (Theorem 11). Thus, we need only study the case
where G �� G∗. In this case G is of index 2 in G∗, and G and G0

are isomorphic. We first claim that G is of odd order. Assume, to
the contrary, that G has even order. By a standard result in group
theory (due to Cauchy), G must contain an element of order 2.
Since the only element of order 2 in SU(2) is −I, it must be con-
tained in G. But {±I} is the kernel of the canonical projection,
and this contradicts G �� G∗. Thus, G has odd order. G is isomor-
phic to G0, and as noted above, the latter has an isomorphic copy
in SO(3). The odd order subgroups in SO(3) are cyclic, as follows
again from the classification of all finite subgroups in SO(3). The
theorem follows.

♠ One truly final note: In the same way as we derived the real
projective plane RP2 as the quotient of S2 by the group {±I}, we can
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consider quotients of S3 by the finite subgroups above. We obtain
the lens spaces L(n; 1) � S3/Cn, the prism manifolds S3/D∗

n, the
tetrahedral manifold S3/T∗, the octahedral manifold S3/O∗, and the
icosahedral manifold S3/I∗.

Problems

1. Verify the following inclusions among the binary groups:

C2 ⊂ C4 ⊂ T∗, C3 ⊂ C6 ⊂ T∗, D∗
2 ⊂ T∗;

C2 ⊂ C4 ⊂ C8 ⊂ O∗, D∗
2 ⊂ D∗

4 ⊂ O∗, D∗
3 ⊂ O∗;

C2 ⊂ C4 ⊂ I∗, C3 ⊂ C6 ⊂ I∗, C5 ⊂ C10 ⊂ I∗, D∗
2, D

∗
3, D

∗
5,⊂ I∗.

2. Verify by explicit calculation that the rotation in H0 represented by the quater-
nion σ � (1/2)(τ + i + j/τ) permutes the vertices of the icosahedron. (What
is the rotation angle?)
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...........................................

Invariants

† ♣ Recall from Section 18 that we set ourselves to the task of
finding all finite Möbius groups. Using Cayley’s theorem, we con-
structed a list of finite Möbius groups most of which arose from
the symmetry groups of Platonic solids. To see the difficulty in our
quest, we now briefly recall from Section 17 the more elementary
classification of all finite groups G of spatial rotations. To pin down
the structure of G, we considered the set Q of antipodal pairs of
poles in S2, the intersections of the axes of the rotations with S2

that constituted G. We showed that Q was G-invariant and that the
rotations that corresponded to the poles in a single G-orbit C had
the same order. The number of rotations in G with poles in a fixed
G-orbit C and of order dC worked out to be

(dC − 1)|G|
2dC

.

Adding up, we obtained the Diophantine equation

2|G| − 2 � |G|
∑

C∈Q/G

(
1 − 1

dC

)
.

We finally realized that this Diophantine equation was so restrictive
that we could simply list all possible scenarios.

329
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In the more general case when G is a finite subgroup of Möb (Ĉ),
we do not have as much Euclidean structure as for the finite rota-
tion groups, but a simple observation gives a clue how to proceed.
Assume that we can find a rational function q : C → C whose
invariance group is G, that is, q ◦ g � q for g ∈ Möb (Ĉ) iff
g ∈ G. Extended to Ĉ, q can be considered as the projection of
an analytic |G|-fold branched covering q : Ĉ → Ĉ (denoted by the
same symbol). The branch points are the fixed points of the linear
fractional transformations in G, and the branch numbers corre-
spond to the orders of the rotations (minus one) in the special case
when G is defined by a rotation group via Cayley’s theorem. By the
Riemann–Hurwitz relation (Section 19), the total branching num-
ber is 2|G| − 2. This will give the same Diophantine restriction for
our finite Möbius group G as above!

We actually want to prove that the list of finite Möbius groups ob-
tained in Section 18 is exhaustive, that is, any finite Möbius group
G is conjugate to one of the groups in that list. To do this, we first
construct, for each finite Möbius group in our list, an invariant ra-
tional function. This way we obtain a list of rational functions. We
then construct an invariant rational function for a general finite
Möbius group G. Finally, we compare our list of rational functions
with the latter using either uniformization or counting residues. We
now see the idea behind this seemingly circuitous argument: A ra-
tional function completely characterizes its invariance group, and
comparing rational functions is a lot easier than comparing Möbius
groups, since to accomplish the former task the entire arsenal of
complex analysis is at our disposal!

Remark.
There is a quick algebraic way to find all finite Möbius groups G ⊂
Möb (Ĉ). It is based on the fact that any finite subgroup of SL(2, C)
(such as the binary cover G∗ of G) is conjugate to a subgroup of
SU(2) (and the finite subgroups of SU(2) are classified in Theorem
17). This is usually proved by averaging the standard scalar product
on C2 over the finite subgroup of SL(2, C). Finally, by Cayley’s
theorem, a finite subgroup of SU(2) corresponds to a finite group of
spatial rotations whose classification was accomplished in Section
17. Despite the existence of this short and elegant proof, we prefer
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to follow a longer path not only because of its beauty but because
we will use some of the ingredients in later developments.

The geometry of the spherical Platonic tessellations (including
the dihedron) can be conveniently described by the so-called char-
acteristic triangle. Given a spherical Platonic tessellation, a spherical
flag (v, e, f) consists of a vertex v, an edge e, and a face f with
v ∈ e ⊂ f(⊂ S2). Each spherical flag (v, e, f) contains one charac-
teristic triangle whose vertices are v0 � v, v1, the midpoint of the
edge e, and v2, the centroid of the face f . (For spherical tessellations
we use the spherical analogues of the Euclidean polyhedral con-
cepts such as vertex, edge, face, etc., with obvious meanings.) The
spherical angles of a characteristic triangle at the respective ver-
tices are π/ν0, π/ν1, and π/ν2, where ν0, ν1, ν2 are integers greater
than or equal to 2. Since v1 is the midpoint of an edge, we always
have ν1 � 2. For the dihedron, we have ν0 � 2, ν2 � n; for the
tetrahedron, ν0 � ν2 � 3; for the octahedron, ν0 � 4, ν2 � 3;
and, finally, for the icosahedron, ν0 � 5, ν2 � 3. (Also, ν0 is the
number of faces meeting at a vertex, and ν2 is ν0 of the recipro-
cal; {ν2, ν0} is then the Schläfli symbol.) ♥ Reflections in the sides
of a characteristic triangle generate the symmetry group in which
the group of direct symmetries of the tessellation is a subgroup of
index two.

♣ Each symmetry axis of a spherical Platonic tessellation goes
through a vertex, or the midpoint of an edge, or the centroid of
a face. It follows that ν0, ν1, and ν2 are the orders of the rota-
tions with axes through the respective points. In particular, the
symmetry rotations around the midpoints of edges are always
half-turns.

The acting symmetry group G of the tessellation has three spe-
cial orbits on S2. The vertices of the tessellation constitute one
special orbit. Since a symmetry rotation around a vertex has or-
der ν0, this orbit consists of |G|/ν0 elements. At the same time, this
is the number of vertices of the tessellation. Another special orbit
consists of the midpoints of the edges; the orbit consists of |G|/ν1

points, and this is also the number of edges. Finally, the third spe-
cial orbit consists of the centroids of the faces, or equivalently, the
vertices of the reciprocal tessellation. The number of faces is thus
|G|/ν2. By Euler’s theorem for convex polyhedra (Section 17), we
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have
|G|
ν0

− |G|
ν1

+ |G|
ν2

� 2.

All other orbits of G are principal, that is, the number of points in
the orbit is the order |G| of G.

Recall that our intermediate purpose is to construct a rational
function q : C → C whose invariance group is a given finite Möbius
group G in our list. It is now time to discuss our plan. We first
consider the binary group G∗ ⊂ SU(2) associated to G, and study
invariance of polynomials F : C2 → C under G∗. We will assume
that F is homogeneous (of degree d), that is,

F(tz1, tz2) � tdF(z1, z2), for all t, z1, z2 ∈ C.

We will be able to construct two linearly independent G∗-invariant
homogeneous polynomials E, F : C2 → C of the same degree.
(The common degree will turn out to be equal to the order |G| of
the group G.) Due to homogeneity, the rational quotient E/F will
define our analytic function q : Ĉ → Ĉ by

q(z) � E(z1, z2)

F(z1, z2)
, z � z1

z2
, z1, z2 ∈ C.

(The quotient E/F factors through the canonical projection C2 −
{0} → CP1, where CP1 is the complex projective line identified
with S2 � Ĉ; cf. Section 22.) This is because q(z1, z2) depends
only on the homogeneous coordinates of the projective point
[z1 : z2] ∈ CP1. Notice, finally, thatG∗-invariance can be defined up
to constant multiples since common multiples, of E and F cancel
in the ratio E/F .

Remark.
q is usually called the fundamental rational function, and the prob-
lem of inverting q (to be discussed shortly), the fundamental
problem.

We are now ready to get started. For brevity, we call a homo-
geneous polynomial F : C2 → C a form. Given any subgroup
G∗ ⊂ SL(2, C), we say that F is G∗-invariant if there exists a
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character χF : G∗ → C − {0}, a homomorphism of G∗ into the
multiplicative group C − {0}, such that

F ◦ g � χF(g) · F, g ∈ G∗.

Here g ∈ G∗ acts on the argument (z1, z2) ∈ C2 by ordinary matrix
multiplication. The character χF is uniquely determined by F . We
say that F is an absolute invariant of G∗ if χF � 0. In general, F is
an absolute invariant of the subgroup ker χF ⊂ G∗. If G∗ is finite,
then χF maps into the unit circle S1 ⊂ C∗ − {0} (why?), and the
quotient G∗/ ker χF , being isomorphic to a finite subgroup of S1, is
cyclic.

According to our plan, for each finite Möbius group G in our
list, with corresponding binary Möbius group G∗ ⊂ SU(2), we will
exhibit two forms E, F of degree |G| such that E and F are both
G∗-invariant and have the same character. The function q defined
above is the G-invariant rational function we seek.

The cyclic group G � Cn does not fit in the general framework,
since it is not the symmetry group of a spherical Platonic tessella-
tion. Although it is easy to obtain the general Cn-invariant rational
function q : C → C of degree n by inspection, it is instructive to go
through the planned procedure in this simple case. We thus seek
the most general C∗

n-invariant form F of degree n, where C∗
n � C2n

is cyclic. A typical diagonal matrix in SU(2) has diagonal entries
a, a−1 � 1/a, where a ∈ C − {0}. We identify this matrix with the
first diagonal element a. It acts on (z1, z2) as (az1, a

−1z2), z1, z2 ∈ C.
The character χF is uniquely determined by its value on the gen-
erator ω � eπi/n, a primitive 2nth root of unity. Since ω2n � 1,
χF(ω) must be a 2nth root of unity, that is, χF(ω) � ωm for some
m � 0, . . . , 2n − 1. The condition of C∗

n-invariance for F reduces
to

F(ωz1, ω
−1z2) � ωmF(z1, z2), z1, z2 ∈ C.

Being homogeneous of degree n, the typical monomial participat-
ing in F is zj1z

n−j
2 , where j � 0, . . . , n. Substituting this into the

equation of invariance, we obtain ω2j � ωm+n. Since ω is a 2nth
root of unity, we have

2n |m + n − 2j.
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In particular, n|m−2j, or equivalently,m−2j � nl for some integer
l. Hence, 2n|n(l + 1), and l is odd. Inspecting the ranges of j and
m, we see that |m − 2j| < 2n, so that l � ±1. We have 2j � m ± n,
so that m and n have the same parity, and j � (m ± n)/2. For
l � 1, we have m ≥ n, and for l � −1, m ≤ n. The corresponding
monomials are

z
(m±n)/2
1 z

n−(m±n)/2
2 .

Two linearly independent C∗
n-invariant forms of degree n and the

same character (the same m) exist iff m � n, and in this case, the
generalC∗

n-invariant form is a linear combination of zn1 and zn2 . Since
z � z1/z2, the general rational function q with invariance group
Cn is a quotient of two linearly independent forms. We obtain that
the most general Cn-invariant rational function is a linear fractional
transformation applied to zn. Notice, in particular, that zn � zn1/z

n
2

vanishes at the fixed points 0 and ∞ of the rotations that make
up Cn. Analytically, the fixed points are the branch points of q
considered as a self-map of Ĉ. (Compare this with the discussion
before the proof of the FTA in Section 8!)

This last remark gives a clue how to obtain invariant forms in
the case of spherical Platonic tessellations. We first discuss the di-
hedron with the special position given in Section 18. Recall that
the vertices of a dihedron are the n points distributed uniformly
along the equator of S2 with e1 being a vertex. On Ĉ, these points
constitute the roots of the equation zn � 1. Since z � z1/z2, we
see that the most general degree-n form that vanishes on these
vertices is a constant multiple of zn1 − zn2 . What do we mean by a
form F vanishing at a point in Ĉ? After all, F has two complex ar-
guments, z1 and z2! If F(z1, z2) � 0, then by homogeneity, we also
have F(tz1, tz2) � 0 for all t ∈ C, so that vanishing of F(z1, z2) is a
property of the projective point [z1 : z2] rather than the property of
a specific representative (z1, z2). Using more modern terminology,
a form F factors through the canonical projection C2 − {0} → CP1

and gives a well-defined function on CP1 � Ĉ. We set

α(z1, z2) � zn1 − zn2

2
.
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In a similar vein, the most general degree-n form that vanishes on
the midpoints of the edges of the dihedron is a constant multiple
of zn1 + zn2 . We define

β(z1, z2) � zn1 + zn2

2
.

Finally, the midpoints of the 2 hemispherical faces correspond to
0 and ∞, and we set

γ(z1, z2) � z1z2.

We say that the forms α, β, and γ belong to the dihedron. As a simple
computation shows, all three forms are D∗

n-invariant, with χα � χβ
and χγ � ±1, with +1 corresponding to the cyclic kernel C∗

n ⊂ D∗
n.

The forms α, β, and γ are algebraically dependent. In fact, we have

α2 − β2 + γn � 0.

Notice that the degrees of α, β, and γ are |Dn|/ν0, |Dn|/ν1, and
|Dn|/ν2, and consequently, the exponents in the equation above
are ν0, ν1, and ν2.

It is worthwhile to generalize some of the properties of the forms
of the dihedron derived above. In fact, in each of the remaining
cases of Platonic tessellations, we will have three forms F0, F1, and
F2 that will be said to belong to the tessellation in the sense that F0

vanishes on the projected vertices, F1 vanishes on the projected
midpoints of the edges, and F2 vanishes on the projected centroids
of the faces.

Remark.
In trying to make an up-to-date treatment of the subject, we
adopted a number of changes, retaining as much classical termi-
nology as possible. For example, our nonstandard notation for the
forms F0, F1, and F2 reflects the fact that our Fj, j � 0, 1, 2, vanishes
on the centroids of the j-dimensional “cells” of the Platonic solid.

Since the zero sets of F0, F1, and F2 are the 3 special orbits of the
action of G on Ĉ, these forms are all invariants of the correspond-
ing binary Möbius group G∗. They have degrees |G|/ν0, |G|/ν1, and
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|G|/ν2. We now claim that the forms Fν0
0 , Fν1

1 , and F
ν2
2 (all of de-

gree |G|) are linearly dependent. To do this, recall that away from
the three special orbits of G on S2, all orbits are principal. Given
a principal orbit, we can find a complex ratio µ0 : µ1 such that
µ0F

ν0
0 + µ1F

ν1
1 vanishes at one point of this orbit. By invariance,

this linear combination vanishes at each point of the orbit. In a
similar vein, for another ratio µ1 : µ2, µ1F

ν1
1 + µ2F

ν2
2 vanishes

on the same orbit. These two linear combinations are polynomi-
als of degree |G|, and both vanish on a principal orbit containing
|G| points. It follows that they must be constant multiples of each
other. We obtain that

λ0F
ν0
0 + λ1F

ν1
1 + λ2F

ν2
2 � 0

for some λ0 : λ1 : λ2. Notice that for the dihedron, this reduces to
the algebraic relation we just derived for the dihedral forms α, β,
and γ.

We finally claim that every G∗-invariant form F can be written
as a polynomial in F0, F1, and F2. We proceed by induction with
respect to the degree of F and exhibit a polynomial factor of F in F0,
F1, and F2. Consider the zero set of F . By invariance of F , this set is
G-invariant, the union of some G-orbits. If there is a special orbit
among these, then F0, F1, or F2 divides F . Otherwise, there must
be a principal orbit on which F vanishes. As above, for a complex
ratio µ0 : µ1, the linear combination µ0F

ν0
0 +µ1F

ν1
1 vanishes on this

principal orbit, and therefore it must be a factor of F . The claim
follows.

We now consider the tetrahedron. Applying the stereographic
projection to the vertices of our tetrahedron, we obtain the points

± 1 + i√
3 − 1

, ± 1 − i√
3 + 1

.

A form R of degree 4 that vanishes at these points can be obtained
by multiplying out the linear factors:

R(z1, z2) �
(
z2

1 −
(

1 + i√
3 − 1

)2

z2
2

)(
z2

1 −
(

1 − i√
3 + 1

)2

z2
2

)

� z4
1 − 2

√
3iz2

1z
2
2 + z4

2 .
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The vertices of the reciprocal tetrahedron are the negatives of the
original. By Problem 1 (b) in Section 7, hN(−p) � −1/hN(p), p ∈ S2,
so that these vertices projected to Ĉ are

∓ 1 + i√
3 + 1

, ∓ 1 − i√
3 − 1

.

The corresponding form S of degree 4 is

S(z1, z2) � z4
1 + 2

√
3iz2

1z
2
2 + z4

2 .

The vertices of the tetrahedron and its reciprocal are the two al-
ternate sets of vertices of the circumscribed cube. As a byproduct,
we see that the product RS vanishes on the vertices of this cube.
Expanding, we obtain

RS(z1, z2) � z8
1 + 14z4

1z
4
2 + z8

2 .

The midpoints of the edges of any one of the tetrahedra are the
vertices of the octahedron. Projected to Ĉ, these are

0, ∞, ±1, ±i.
Since z1 vanishes at 0, and z2 vanishes at ∞, a form T of degree 8
that vanishes on the vertices above takes the form

T(z1, z2) � z1z2(z
2
1 − z2

2)(z
2
1 + z2

2) � z1z2(z
4
1 − z4

2).

We say that the formsR,T, andS belong to the tetrahedron. Recall
that this means thatR � 0 on the vertices,S � 0 on the midpoints
of the edges, and T � 0 on the centroids of the faces of the tetra-
hedron. We also see that the degrees of R, T, and S are |T|/ν0,
|T|/ν1, and |T|/ν2. The forms R and S are invariants of the binary
tetrahedral group T∗; χR � χS with kernel D∗

2. The form T is an
absolute invariant. By the general discussion above, R3, S3, and
T2 are linearly dependent. Comparing some of the coefficients,
we have

R3 − 12
√

3iT2 − S3 � 0.

It is again convenient to make another observation about in-
variant forms. Given a G∗-invariant form F , the Hessian Hess (F)
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defined by

Hess (F)(z1, z2) �

∣∣∣∣∣∣∣∣∣

∂2F

∂z2
1

∂2F

∂z1∂z2
∂2F

∂z2∂z1

∂2F

∂z2
1

∣∣∣∣∣∣∣∣∣
is also G∗-invariant. Furthermore, given two G∗-invariant forms F0

and F1, the Jacobian Jac (F0, F1) defined by

Jac (F0, F1)(z1, z2) �

∣∣∣∣∣∣∣∣
∂F0

∂z1

∂F0

∂z2
∂F1

∂z1

∂F1

∂z2

∣∣∣∣∣∣∣∣
is also G∗-invariant. Thus, once we have a G∗-invariant form F0, we
automatically have two additional G∗-invariant forms: the Hessian
F1 � Hess (F0) and then the Jacobian F2 � Jac (F0, F1).

We first try this for the tetrahedral form R of degree 4. Since
the Hessian Hess (R) is of degree 4, it can only be a linear
combination of R and S. By an easy computation, we see that
Hess (R) � −48

√
3iS. The Jacobian of R and S is of degree 6, so

that without any computation we see that it must be a constant
multiple of T. Working out the leading coefficient, we see that
Jac (R, S) � 32

√
3iT.

Remark.
For the dihedral forms α, β, and γ, we have Hess (α) � − Hess (β) �
−(n2(n − 1)2/4)γn−2, Hess (γ) � 1, and Jac (α, β) � n2

2 γ
n−1,

Jac (α, γ) � nβ, Jac (β, γ) � nα.

Recall that the octahedral Möbius group contains the tetrahedral
Möbius group, so that the same is true for the associated binary
groups. Thus the O∗-invariant forms are polynomials of the tetra-
hedral forms R, S, and T. To obtain the forms that belong to the
octahedron, we first note that by construction, the octahedral form
that vanishes on the vertices of the octahedron is T. It is equally
clear that the form RS of degree 8 vanishes on the midpoints of
the faces of the octahedron, since these points are nothing but the
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vertices of the cubic reciprocal. Note also that Hess (T) � −25RS.
We finally have to find a form of degree 12 that vanishes on the
midpoints of the edges of the octahedron. Based on analogy with
the tetrahedral forms, this form of degree 12 must be the Jacobian

Jac (T, RS) � R Jac (T, S) + S Jac (T, R).

A simple computation shows that Jac (T, R) � −4S2 and
Jac (T, S) � −4R2. Normalizing, we obtain that the middle
octahedral form is

R3 + S3

2
.

An explicit expression of this form is obtained by factoring

R3 + S3

2
� 1

2
(R + S)(R2 − RS + S2)

� (z4
1 + z4

2)(z
8
1 − 34z4

1z
4
2 + z8

2)

� z12
1 − 33z8

1z
4
2 − 33z4

1z
8
2 + z12

2 .

Summarizing, the three forms that belong to the octahedron are
T, (R3 + S3)/2, and RS. They are all absolute invariants of the
binary tetrahedral groupT∗. As octahedral invariants we have χT �
χ(R3+S3)/2 � ±1, while RS is an absolute octahedral invariant. The
linear relation among T4, (R3 +S3)2/4, and (RS)3 can be deduced
from the previous relation between R, S, and T. Squaring both
sides of the equation

R3 + S3

2
� 6

√
3iT2,

we have
1
4
(R3 − S3)2 � 1

4
(R3 + S3)2 − (RS)3 � 108T4.

We arrive at

108T4 +
(
R3 + S3

2

)2

− (RS)3 � 0.

We now turn to the final case of the icosahedron. Recall that
in Section 18 we determined the vertices of the iscosahedron (in
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special position) projected to Ĉ by the stereographic projection. An
icosahedral form I of degree 12 that vanishes on these projected
vertices is

I(z1, z2) � z1z2

4∏
j�0

(z1 − ωj(ω + ω4)z2)

4∏
j�0

(z1 − ωj(ω2 + ω3)z2)

� z1z2(z
5
1 − (ω + ω4)5z5

2)(z
5
1 − (ω2 + ω3)5z5

2)

� z1z2(z
5
1 − τ−5z5

2)(z
5
1 + τ5z5

2)

� z1z2(z
10
1 + (τ5 − τ−5)z5

1z
5
2 − z10

2 ).

Here we used the identity

t5 − 1 �
4∏
j�0

(t − ωj)

with the substitutions t � z/(ω + ω4) and t � z/(ω2 + ω3) (cf.
Problem 5 (b) of Section 17). The coefficient τ5 − 1/τ5 is the Lucas
number L5 � 11 (cf. Problem 14 (d) of Section 17). (Another way
to see this is to factor first as

τ5 − 1
τ5

�
(
τ − 1

τ

)(
τ4 + τ2 + 1 + 1

τ2
+ 1

τ4

)
,

and then square the defining relation τ − 1/τ � 1 to obtain τ2 +
1/τ2 � 3, and square again to get τ4 + 1/τ4 � 7. Adding up, we
obtain τ5 − 1/τ5 � 11.)

Summarizing, we arrive at the first icosahedral form

I(z1, z1) � z1z2(z
10
1 + 11z5

1z
5
2 − z10

2 ).

Here I is an absolute invariant of I∗. In fact, all invariants of I∗

are absolute, since I∗ has no proper normal subgroup (cf. Problem
6 of Section 17), and thereby no nontrivial character. (The ker-
nel of a nontrivial character would be a proper normal subgroup.)
The Hessian Hess (I) is an absolute invariant of degree 20. Thus,
it must vanish on the centroids of the faces of the icosahedron,
or equivalently, on the vertices of the reciprocal dodecahedron.
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Normalizing, we compute

H(z1, z2) � 1
121

Hess (I) (z1, z2)

� −(z20
1 + z20

2 ) + 228(z15
1 z

5
2 − z5

1z
15
2 ) − 494z10

1 z
10
2 .

The Jacobian Jac ( I, H) is an absolute invariant of degree 30, so it
must vanish on the midpoints of the edges of the icosahedron. An
easy computation shows that

J (z1, z2) � 1
20

Jac ( I, H)(z1, z2)

� (z30
1 + z30

2 ) + 522(z25
1 z

5
2 − z5

1z
25
2 ) − 10005(z20

1 z
10
2 + z10

1 z
20
2 ).

The icosahedral forms I, J , and H are algebraically dependent. A
comparison of coefficients shows that

1728 I5 − J 2 − H3 � 0.

♠ Let C[z1, z2] denote the ring of polynomials in the variables
z1 and z2. Since all icosahedral invariants are absolute, we obtain
that the ring C[z, w]I

∗
of icosahedral invariants is isomorphic to the

polynomial ring

C[z, w]I
∗ � C[ I, J , H]/(1728 I5 − J 2 − H3),

where we factor by the principal ideal generated by 1728 I5 −J 2 −
H3.

♣ We now return to the general situation. Forming the six possi-
ble quotients of Fν0

0 , Fν1
1 , and Fν2

2 , we obtain six G-invariant rational
functions that solve our problem. Since we have linear relations
among these forms, the six rational functions can be written in
terms of each other in obvious ways. A more elegant way to express
these is to use homogeneous coordinates and write

q : q − 1 : 1 � −λ2F
ν2
2 : λ1F

ν1
1 : λ0F

ν0
0 ,

where q � −λ2F
ν2
2 /λ0F

ν0
0 . We make an exception for the dihedron

and define q such that q : q − 1 : 1 � α2 : β2 : −γn.
We summarize our results in the following tables:
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Platonic solid G |G| ν0 ν1 ν2 F0 F1 F2

Dihedron Dn 2n 2 2 n α β γ

Tetrahedron T 12 3 2 3 R T S

Octahedron O 24 4 2 3 T R3+S3

2 RS

Icosahedron I 60 5 2 3 I J H

G λ0F
ν0
0 + λ1F

ν1
1 + λ2F

ν2
2 � 0 q : q − 1 : 1

Dn α2 − β2 + γn � 0 α2 : β2 : −γn

T R3 − 12
√

3iT2 − S3 � 0 S3 : −12
√

3iT2 : R3

O 108T4 + ( R3+S3

2

)2 − (RS)3 � 0 (RS)3 :
(
R3+S3

2

)2 : 108T4

I 1728I5 − J 2 − H3 � 0 H3 : −J 2 : 1728I5

We are finally ready to prove that any finite Möbius group is
conjugate to one of the Möbius groups listed in Section 18. This
result is due to Klein.

Theorem 18.
Any finite Möbius group G ⊂ Möb (Ĉ) is cyclic, or conjugate to Dn,

T, O, or I.

Proof.
Let G ⊂ Möb(Ĉ) be a finite subgroup. Let a, b ∈ C such that g(a) ��
b, for all g ∈ G. It follows that g(b) �� a, for all g ∈ G. Consider the
rational function q̃ : C → C defined by

q̃(z) �
∏
g∈G

g(z) − a

g(z) − b
, z ∈ C.
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The condition on a and b guarantees that q̃ is nonconstant. Given
w ∈ C, to find z ∈ C such that q̃(z) � w, we need to solve the
equation ∏

g∈G
(g(z) − a) � w

∏
g∈G

(g(z) − b).

Multiplying out the denominators in the linear fractions g(z), g ∈
G, this becomes a polynomial equation of degree |G| with w as a
parameter. Extended to Ĉ, q̃ is an analytic map of degree |G|. On
the other hand, q̃ is G-invariant. It follows that for fixed w ∈ Ĉ, the
solution set of q̃(z) � w is a single G-orbit, and q̃ : Ĉ → Ĉ/G � Ĉ
is the orbit map. The point z ∈ Ĉ is a branch point iff the G-orbit
G(z) through z is not principal. In this case, |G(z)| � |G|/ν, and the
branch number associated to z is ν− 1. Letting U denote the set of
branch points of q̃, the total branching number is

B �
∑
U/G

|G|
ν
(ν − 1),

where the summation is over all branch values. By the Riemann–
Hurwitz relation (Section 19), the total branching number is equal
to 2|G| − 2, since both the domain and the range have zero genera.
We thus have ∑

U/G

(
1 − 1

ν

)
� 2 − 2

|G| .

As noted at the beginning of this section, this is the same Diophan-
tine restriction as the one for the classification of finite rotation
groups. Adopting the analysis there in our setting, we see that
the sum on the left-hand side either consists of two terms with
ν0 � ν1 � |G| or consists of three tems with ν0, ν1, and ν2

as given in the table above. In the first case, let w0 and w1 be
the branch values corresponding to ν0 and ν1. By performing a
linear fractional transformation on the range, we may assume
that w0 � 0 and w1 � ∞. For the rest of the cases, let w0,
w1, and w2 be the three branch values. Performing a linear frac-
tional transformation on the range again, we may assume that
these are w0 � 0, w1 � 1, and w2 � ∞, and they correspond
to ν2, ν1, and ν0. (This patterns the zeros and poles of q, since
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q : q − 1 : 1 � −λ2F
ν2 : λ1F

ν1
1 : λ0F

ν0
0 . In the case of the di-

hedron ν0 and ν2 are switched.) Matching the branch points of
q̃ with one of the rational functions q in our list, we arrive at a
scenario in which the analytic branched coverings q and q̃ have
the same branch points and branch numbers. We now apply a gen-
eral uniformization theorem for branched coverings1 and conclude
that the group G is conjugate to the Möbius group that defines q
and that the conjugation is a linear fractional transformation that
establishes the conformal equivalence of the branched coverings
q and q̃.

Remark.
The use of the powerful uniformization therorem at the end of
our proof can be dispensed with. We will give a more elementary
approach to the final step in the proof above in Section 25/B.

Problem

1. Derive the following table for the absolute invariants of the finite Möbius
groups:

G∗ Absolute invariants Relation

D∗
n z2n

1 + z2n
2 z1z2(z

2n
1 − z2n

2 ) z2
1z

2
2 [z2n

1 + z2n
2 ]2z2

1z
2
2 − [z1z2(z

2n
1 − z2n

2 )]2 � 4[z2
1z

2
2]n+1

T∗ T R3+S3

2 RS 108T4 +
(
R3+S3

2

)2 − (RS)3 � 0

O∗ T2 T R3+S3

2 RS 108[T2]3 +
[
T R3+S3

2

]2 − T2[RS]3 � 0

I∗ I J H 1728I5 − J 2 − H3 � 0

1See H. Farkas and I. Kra, Riemann surfaces, Springer, 1980.
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...........................................

The Icosahedron and
the Unsolvable
Quintic

† ♠ According to Galois theory1 a polynomial equation is solvable
by radicals iff the associated Galois group is solvable. For example,
since the alternating group A5 is simple (cf. Problem 6 of Section
17), there is no root formula for a quintic with Galois group A5.

Since the symmetry group of the icosahedron is (isomorphic to)
A5 (Section 17), the question arises naturally whether there is any
connection between the icosahedron and the solutions of quintic
equations. This is the subject of Klein’s famous Icosahedron Book.2

We devote this (admittedly long) section to sketch Klein’s main
result. We will treat the material here somewhat differently than
Klein, and rely more on geometry. Unlike the Icosahedron Book,

1From now on, we will use some basic facts from Galois theory. For a quick summary, see Appendix F.
2The Icosahedron Book first appeared in German: Vorlesungen über das Ikosaeder und die Auflösung der
Gleichungen vom fünften Grade, Teubner, Leipzig, 1884. Several English editions exist today, for example,
Lectures on the icosahedron, and the solution of equations of the fifth degree, Kegan Paul, Trench, Trübner and
Co., 1913. A new German edition with the original title (containing various comments and explanations)
was published by Birkhäuser-Basel, Teubner-Leipzig in 1993. A good summary of the Icosahedron Book
is contained in Slodowy’s article, Das Ikosaeder und die Gleichungen fünften Grades, in Mathematischen
Miniatüren, Band 3, Birkhäuser-Basel, 1986. For a recent easy-to-follow text, see J. Shurman, Geometry of
the Quintic, John Wiley & Sons, 1997.

345
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we will take as direct a path to the core results as possible. Due
to the complexity of the exposition, we divide our treatment into
subsections.

A. Polyhedral Equations

In Section 24, we defined, for each finite Möbius group G, a
G-invariant rational function q : C → C. Geometrically, the exten-
sion q : Ĉ → Ĉ is the analytic projection of a branched covering
between Riemann spheres, and the branch values are w � 0,
w � 1, and w � ∞, with branch numbers ν2, ν1, and ν0 minus
one. (In the case of the dihedron ν0 and ν2 are switched.) As in the
proof of Theorem 18, for a given w ∈ C, the equation q(z) � w for
z can be written as a degree-|G| polynomial equation

P(z) − wQ(z) � 0,

where q � P/Q with P and Q the polynomial numerator and
denominator of q (with no common factors). We call this the poly-
hedral equation associated to G. Clearly, this polynomial equation
has |G| solutions (counted with multiplicity, and depending on the
parameter w). We now consider this equation for each G. The case
of the cyclic group Cn is obvious, since the associated equation is
zn � w, and the solutions are simply the nth roots of w. Using
the second table in Section 24, for the equation of the dihedron we
have

qDn
(z) � − α(z1, z2)

2

γ(z1, z2)n
� − (zn1 − zn2 )

2

4zn1z
n
2

� − (zn − 1)2

4zn
� w,

where we have indicated the acting group by a subscript. Multi-
plying out, we obtain the equation of the dihedron, a quadratic
equation in zn. This can easily be solved:

z � q−1
Dn
(w) � n

√
1 − 2w ± 2

√
w(w − 1).

Inverting qDn
amounts to extracting a square root followed by the

extraction of an nth root.



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

A. Polyhedral Equations 347

For the tetrahedron, we have

qT(z) � S(z1, z2)
3

R(z1, z2)3
�
(
z4

1 + 2
√

3iz2
1z

2
2 + z4

2

z4
1 − 2

√
3iz2

1z
2
2 + z4

2

)3

�
(
z4 + 2

√
3iz2 + 1

z4 − 2
√

3iz2 + 1

)3

� w.

Taking the cube root of both sides, we arrive at an equation that is
quadratic in z2 and can be easily solved. Inverting qT thus amounts
to extracting a cube root followed by the extraction of two square
roots. Comparing the expression of qT just obtained with that of
qDn

for d � 2, we have

qT(z) �
(
qD2(z) − eπi/3

qD2(z) + e2πi/3

)3

.

As noted in Section 24, the octahedral invariants can be written
as polynomials in the tetrahedral invariants. We have

qO(z)

qO(z) − 1
� (RS)3

((R3 + S3)/2)2
� (S/R)3

((S/R)3 + 1)/2)2
� w

w − 1
,

where we have omitted the arguments z1 and z2 for simplicity.
Multiplying out, we obtain a quadratic equation in (S/R)3. Since
this is qT(z), we see that inverting qO amounts to extracting a square
root followed by the extraction of a cube root, and followed by the
extraction of two square roots.

Remark.
In view of Galois theory, it is illuminating to match the sequence of
roots in the root formulas for q−1

G with the indices of the consecutive
normal subgroups in a composition series of G, where G is one of
our (solvable) groupsG � Cn, Dn, T, O. For example, a composition
series for O is S4 ⊃ A4 ⊃ D2 ⊃ C2, and the sequence of indices is
2, 3, 2, 2!

The situation for the icosahedron is radically different. We have

qI(z) � H3

1728 I5
� w.
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As we will see later, it is impossible to express the solutions of the
icosahedral equation

H3(z, 1) − 1728w I5(z, 1) � 0

in terms of a radical formula (depending on w). Using the explicit
expressions of the forms involved, the equation of the icosahedron
can be written as

((z20 + 1)− 228(z15 − z5)+ 494z10)3 + 1728wz5(z10 + 11z5 − 1)5 � 0.

B. Hypergeometric Functions

We just noted that there is no general root formula for the solu-
tions of the icosahedral equation. The question arises naturally as
to what kind of additional “transcendental” procedure is needed
to express the solutions in an explicit form. In this subsection we
show that any solution of a polyhedral equation can be written
as the quotient of two linearly independent solutions of a homo-
geneous second-order linear differential equation with exactly 3
singular points, all regular. These differential equations are called
hypergeometric.3 Equivalently, we will show that for each spherical
Platonic tessellation, the inverse q−1 of the rational function q is
the quotient of two hypergeometric functions.

Remark.
Now some history. Bring (in 1786) and Jerrard (in 1834) inde-
pendently showed that the general quintic can be reduced to
z5 + bz + c (by a suitable Tschirnhaus tranformation; cf. the next
subsection). This is usually called the Bring–Jerrard form. By scal-
ing, the Bring–Jerrard form can be further reduced to the special
quintic z5 + z − c � 0. A root of this polynomial is called an ul-
traradical, and it is denoted by ∗√c. Using the defining equation, an
ultraradical can be easily expanded into a convergent series. Bring
and Jerrard thus showed that the general quintic can be solved by
the use of radicals and ultraradicals. The relation of this special

3From now on, we use the definitions and results of Appendix E without making further references.
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quintic to the so-called modular equation was used by Hermite,
who pointed out that the general quintic can be solved in terms of
elliptic modular functions.

As usual, we let G ⊂ Möb (Ĉ) denote the invariance group of q.
Recall that q is an analytic branched covering with branch values
w0 � 0, w1 � 1, and w2 � ∞, and branch numbers ν2, ν1, and
ν0 minus one. The inverse q−1 is multiple-valued. By G-invariance,
composing q−1 with an element ofG allows us to pass from a single-
valued branch of q−1 to another. Since the Schwarzian is invariant
under any linear fractional transformation, S(q−1) must be single-
valued:

S(q−1) � s,

where s : C → C is a rational function. Following Riemann, who
was a strong proponent of the principle that a rational function is
best described by its poles, we determine s explicitly by taking its
Laurent expansion at its poles. Near a branch value wj, j � 0, 1, 2,
q−1 can be expanded locally as

q−1(w) − q−1(wj) � a1(w − wj)
1/ν2−j + a2(w − wj)

2/ν2−j + · · · ,
where q−1(wj) denotes any one of the |G|/ν2−j preimages, and
q−1(w) is near q−1(wj). As usual in complex analysis, we agree that
forwj � ∞,w−wj means 1/w. Substituting this expansion into the
expression for the Schwarzian S, we obtain that the initial terms
of the series for s at w0 � 0, w1 � 1, and w2 � ∞ are

ν2
2 − 1

2ν2
2w

2
,

ν2
1 − 1

2ν2
1(w − 1)2

,
ν2

0 − 1
2ν2

0w
2
.

(In the case of the dihedron, ν0 and ν2 are switched.) We obtain

s(w) � ν2
2 − 1

2ν2
2w

2
+ A

w
+ ν2

1 − 1
2ν2

1(w − 1)2
+ B

w − 1
+ C,

where A, B, C are complex constants. These constants are deter-
mined by the behavior of s at infinity, namely, by the requirement
that s, expanded into a Laurent series at ∞, have the initial term
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(ν2
0 − 1)/2ν2

0w
2. We find that A + B � 0, C � 0, and

ν2
2 − 1
2ν2

2
+ ν2

1 − 1
2ν2

1
+ B � ν2

0 − 1
2ν2

0
.

Putting all these together, we finally arrive at

s(w) � ν2
2 − 1

2ν2
2w

2
+ ν2

1 − 1
2ν2

1(w − 1)2
+

1
ν2

1
+ 1

ν2
2
− 1

ν2
0
− 1

2w(w − 1)
.

Remark.
Recall that in the proof of Theorem 18 we constructed, for a given
finite Möbius group G, a rational function q̃ that had the same
branch points and branch numbers as q. Once again, passing from a
single-valued branch of q̃−1 to another amounts to the composition
of q̃−1 with a linear fractional transformation in G. We thus have
S (q̃−1) � s̃, where s̃ is a rational function. On the other hand,
since the branch points and branch numbers of q and q̃ are the
same, the singularities of s and s̃ are also the same. Since a rational
function is determined by its singularities, we must have s � s̃. We
obtain S(q−1) � S(q̃−1), so that q and q̃ differ by a linear fractional
transformation. This linear fractional transformation conjugates G
to the finite Möbius group corresponding to q. Thus, Theorem 18
follows.

Returning to the main line, we see that q−1 satisfies the third-
order differential equation

S(q−1) � ν2
2 − 1

2ν2
2w

2
+ ν2

1 − 1
2ν2

1(w − 1)2
+

1
ν2

1
+ 1

ν2
2
− 1

ν2
0
− 1

2w(w − 1)
.

Although of third order, the general solution of this equation is
remarkably simple and can be given in terms of solutions of the
homogeneous second-order linear differential equation

z′′ � p(w)z′ + q(w)z,

where

s � p′ − 1
2
p2 − 2q.
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We set p(w) � 1/w, and choose q to satisfy the equation for s.
Substituting the actual expression of s into p and q, we obtain

z′′ + z′

w
+ z

4(w − 1)2w2

(
− 1
ν2

2
+w

(
1
ν2

0
+ 1
ν2

2
− 1
ν2

1
+1
)
− w2

ν2
0

)
� 0.

This is a special case of the hypergeometric differential equation. In
fact, with

α1 � −α2 � 1
2ν2

, β1 � 1
2ν1

, β2 � ν2
1 − 1
2ν1

, γ1 � −γ2 � 1
2ν0

,

the hypergeometric differential equation reduces to our equation,
since ν1 � 2. We have accomplished our goal and proved that the
function q−1 can be written as the quotient of two hypergeometric
functions!

C. The Tschirnhaus Transformation

In this subsection, we will reduce the general irreducible quintic

z5 + a1z
4 + a2z

3 + a3z
2 + a4z + a5 � 0

to a simpler form

z5 + ã1z
4 + ã2z

3 + ã3z
2 + ã4z + ã5 � 0,

in which some (but not all) coefficients vanish. This reduction is
made possible by the Tschirnhaus transformation. It is given by

z̃ �
4∑
l�1

λlz
(l),

where

z(l) � zl − 1
5

5∑
j�1

zlj ,

and z1, . . . , z5 are the roots of the original quintic. In the expression
of z(l), the sum of powers is a symmetric polynomial in the roots,
and thus, by the fundamental theorem on symmetric polynomials,
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it can be expressed as a polynomial in the coefficients a1, . . . , a5.
For example, since

5∑
j�1

zj � −a1,

5∑
j�1

z2
j � a2

1 − 2a2,

we have

z(1) � z + a1

5
, z(2) � z2 − 1

5

(
a2

1 − 2a2

)
.

Hence, z̃ is a polynomial in z of degree less than or equal to 4
with coefficients in Q [a1, . . . , a5] depending on λ1, . . . , λ4. The re-
quirement on the vanishing of the prescribed coefficients in the
reduced quintic amounts to polynomial relations of degree less
than or equal to 4 in the coefficients λ1, . . . , λ4. These polynomial
relations are solvable by explicit root formulas (cf. Section 6).

The way the Tschirnhaus transformation z̃ acts on the original
quintic is to transform its roots z1, . . . , z5 to the roots z̃1, . . . , z̃5 of
the reduced quintic, where

z̃j �
4∑
l�1

λlz
(l)

j , j � 1, . . . , 5.

Since
∑5

j�1 z̃j � ∑4
l�1 λl

∑5
j�1 z

(l)

j � 0, we have ã1 � 0
for any Tschirnhaus transformation. The simplest Tschirnhaus
transformation is

z̃ � z(1) � z + a1

5
,

where we put λ1 � 1, λ2 � λ3 � λ4 � 0. (Note that the analogue
of this for cubics and quartics was used in Section 6.) Next, we look
for a Tschirnhaus transformation that yields ã2 � 0 in the form

z̃ � λz(1) + z(2) � λ

(
z + a1

5

)
+ z2 − 1

5

(
a2

1 − 2a2

)
,

where λ ∈ C is a parameter to be determined. Here we set λ � λ1,
λ2 � 1, and λ3 � λ4 � 0. Since

∑5
j�1 z̃j � 0, by squaring we see

that the vanishing of ã2 amounts to the vanishing of
∑5

j�1 z̃
2
j . This
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gives the following quadratic equation for λ:

5∑
j�1

z̃2
j �

5∑
j�1

(λz
(1)
j + z

(2)
j )2

� λ2
5∑
j�1

(
z
(1)
j

)2 + 2λ
5∑
j�1

z
(1)
j z

(2)
j +

5∑
j�1

(
z
(2)
j

)2 � 0.

Again, by the fundamental theorem on symmetric polynomials,
the coefficients of this quadratic polynomial in λ depend only on
a1, . . . , a5. The corresponding quadratic equation can be solved for
λ in terms of a1, . . . , a5. The two solutions for λ involve the square
root of the expression

4
( 5∑

j�1

z
(1)
j z

(2)
j

)2

− 4
5∑
j�1

(
z
(1)
j

)2 5∑
j�1

(
z
(2)
j

)2
.

This is the discriminant δ multiplied by (
∑5

j�1(z
(1)
j )2)2. The small-

est ground field over which the original quintic is defined is
k � Q (a1, . . . , a5). We have δ ∈ k, but in general,

√
δ /∈ k. Thus, if

we want λ to be in the ground field,
√
δ needs to be adjoined to k.

Summarizing (and adjusting the notation), the problem of solv-
ability of the general quintic is reduced (at the expense of a
quadratic extension of the ground field) to solvability of the
equation

P(z) � z5 + 5az2 + 5bz + c � 0.

(Here we have inserted numerical factors for future convenience.)
A quintic with vanishing terms of degree 3 and 4 (such as P above)
is said to be canonical. For future reference we include here the
discriminant

δ �
∏

1≤j<l≤5

(zj − zl)
2

of our canonical quintic as a polynomial in the coefficients a, b, c:

δ

55
� 108a5c − 135a4b2 + 90a2bc2 − 320ab3c + 256b5 + c4.
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This formula is obtained by a somewhat tedious but elementary
computation.4

Consider the roots z1, . . . , z5 of the canonical equation as homo-
geneous coordinates of a point [z1 : · · · : z5] in the 4-dimensional
complex projective space CP4 (cf. Section 21). (Here the trivial case
P(z) � z5 needs to be excluded, since it gives z1 � · · · � z5 � 0.)
The roots z1, · · · , z5 can be reconstructed from the projective point
[z1 : · · · : z5] by extracting a square and a cube root, so that no
information is lost in the homogenization. Since ordering the roots
cannot be prescribed universally, to the roots there correspond
120 projective points obtained from one another by permuting the
coordinates. To incorporate this ambiguity, we consider the sym-
metric group S5 acting on CP4 by permuting the homogeneous
coordinates. In other words, the 120 points form an orbit in CP4

under the action of S5. Notice that under the action of S5, the
points

[
z
(l)

1 : · · · : z(l)5

]
, l � 1, . . . , 4, are permuted the same way as

[z1 : · · · : z5].
Since our equation is canonical, the roots z1, . . . , z5, satisfy the

relations

5∑
j�1

zj � 0 and
5∑
j�1

z2
j � 0.

Thus, [z1 : · · · : z5] lies in the (smooth) complex surface

Q0 �
{

[z1 : · · · : z5] ∈ CP4 |
5∑
j�1

zj �
5∑
j�1

z2
j � 0

}
.

Actually, Q0 can be identified with the so-called standard complex
projective quadric in CP3, once we identify the complex projective
space CP3 with the linear slice CP3

0 of CP4 defined by
∑5

j�1 zj � 0.
We thus set

CP3
0 �

{
[z1 : · · · : z5] ∈ CP4 |

5∑
j�1

zj � 0
}
.

4I must confess the advantage in using a computer algebra system such as Maple or Mathematica that
reduces the computation of δ to a fraction of a second.
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The geometry behind the Tschirnhaus transformation that reduces
the general quintic to a canonical form is now clear. We start with
the point [z1 : · · · : z5] ∈ CP4 whose homogeneous coordinates
are the roots of a general quintic (with no quartic term). We form
the projective points [z(1)1 : · · · : z(1)5 ] and [z(2)1 : · · · : z(2)5 ] that both
lie in CP3

0 . We then consider one of the two intersections of the
projective line through these two points with the quadric Q0. The
Tschirnhaus transformation associates to [z1 : · · · : z5] this inter-
section point in Q0. As emphasized above, this process generally
requires a quadratic extension of the ground field k.

D. Quintic Resolvents of the
Icosahedral Equation

Let k be our ground field. For the sake of concreteness, we assume
that k ⊂ C. Since k has characteristic zero, we also have Q ⊂ k.
Since the icosahedral equation contains an arbitrary parameter w,
it is natural to consider this equation to be defined over k(w), the
field of rational functions in the variable w and with coefficients
in k. Let z denote a solution of the icosahedral equation. Since
q(z) � w, the field k(z) contains k(w). Assume from now on that
ω � e2πi/5, a primitive fifth root of unity, is contained in k, so that
Q (ω) ⊂ k ⊂ C. This ensures that the linear fractional transfor-
mations in the icosahedral Möbius group I � A5 are defined over
k. They act, by substitutions, as automorphisms of the field k(z).
(More precisely, g ∈ I acts on r∗ ∈ k(z) by g : r∗  → r∗ ◦ g−1.)
Since q is A5-invariant, these automorphisms fix the subfield k(w).
In fact, since q : Ĉ → Ĉ is the orbit map of A5, the fixed field k(z)A5

is k(w). We obtain that k(z)/k(w) is a Galois extension with Galois
group A5. Moreover, k(z) is the splitting field of the icosahedral
equation over k(w); the solutions are the linear fractions that rep-
resent the transformations in the icosahedral Möbius group. Since
A5 is transitive on the solutions, the icosahedral equation is irre-
ducible over k(w). As before, a rational function r∗ ∈ k(z) has the
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resolvent polynomial

P∗(X) �
n∗∏
j�1

(X − r∗j ),

with coefficients in k(w), where A5(r
∗) � {r∗1 , . . . , r∗n∗} is the orbit

through r∗. Since I is simple, k(z) � k(r∗1 , . . . , r
∗
n∗).

The rest of this subsection is going to be very technical. In
order to see through the details we now sketch our plan. Recall
that our main objective is to establish a connection between the
(irreducible) quintic in canonical form

P(z) � z5 + 5az2 + 5bz + c

and the solutions of the icosahedral equation

H3(z, 1) − 1728w I5(z, 1) � 0.

Since the latter is a polynomial equation of degree 60, based on
the analogy with the cubic resolvent of quartics (cf. Section 6),
we must find a suitable quintic resolvent of H3 − 1728w I5 directly
comparable to our canonical quintic. Our task is actually harder than
in the quartic case, since P depends on three complex coefficients.5

Thus, we need to find a quintic resolvent in canonical form that
contains, in addition to w, two extra parameters, u and v, say. We
write this resolvent as

P∗(z) � z5 + 5a(u, v, w)z2 + 5b(u, v, w)z + c(u, v, w).

We expect the coefficients to be explicitly computable rational
functions in u, v, w. Since P∗ is an icosahedral resolvent, we also
need to be able to express the roots of P∗ in terms of the solu-
tions of the icosahedral equation, or, what is the same, in terms of
hypergeometric functions.

Once P∗ is worked out explicitly, the matching with the irre-
ducible quintic P with coefficients a, b, c amounts to solving the

5Shurman’s approach in his Geometry of the Quintic cited above is different (see also Problem 4). Both
approaches are contained in the Icosahedron Book.
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system

a(u, v, w) � a,

b(u, v, w) � b,

c(u, v, w) � c.

This we will be able to carry out with the additional constraint√
δ(u, v, w) �

√
δ,

where δ(u, v, w) is the discriminant of P∗. This matching process
will establish that the roots of P and P∗ coincide as sets. To obtain
a root-by-root match we will also need to look at how the Galois
group A5 acts on each set of roots.

The five roots of a quintic resolvent constitute an orbit of A5 in
the extension k(z)/k(w). We thus need to find five rational func-
tions in z that are permuted among themselves by the icosahedral
substitutions. During the construction of the rational function q

we learned that it is much easier to construct forms first. Our
task thus reduces to finding an A5-orbit of five forms. A further
advantage in using forms is that we can derive them from geo-
metric situations. An obvious example for five geometric objects
that are permuted among themselves by the symmetries of the
icosahedron are Kepler’s five cubes inscribed in the reciprocal do-
decahedron (cf. Section 17). We could immediately construct five
degree-8 forms that vanish at the vertices of these cubes. This
would give us a quintic resolvent. For technical purposes, how-
ever, it is more convenient to construct the five degree-6 forms
that vanish on the vertices of the octahedral reciprocals. Thus, we
stay with (Pacioli’s model of) the icosahedron and notice that the 6
midpoints of the 6 shorter edges of the three mutually perpendicu-
lar golden rectangles give the 6 vertices of an octahedron. There are
5 configurations each consisting of three mutually perpendicular
golden rectangles. (The 15 opposite pairs of edges of the icosahe-
dron give 15 golden rectangles inscribed in the icosahedron. By
further grouping, these 15 golden rectangles form the 5 configura-
tions.) To each configuration we can attach an octahedron as above.
Putting these together, we arrive at the compound of 5 octahedra
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inscribed in the icosahedron. The octahedral forms corresponding
to the five octahedra will be the roots of our quintic resolvent.

To choose the first octahedron, we recall that the commuting
half-turns U and V introduced in Section 18 have orthogonal axes,
so that the compositionW � UV is also a half-turn and its axis is or-
thogonal to those of U and V . The linear fractional transformation
that corresponds to U is z  → −1/z, while those that correspond to
V and W have been explicitly worked out in Section 18. We choose
the first octahedron (projected to Ĉ) to have vertices as the fixed
points of these half-turns. The fixed points of U are the solutions
of z2 � −1, and the form that vanishes at these points is z2

1 + z2
2,

z1, z2 ∈ C, z � z1/z2. Using the explicit form for V , for the fixed
points of V we need to consider

(ω2 − ω3)z1 + (ω − ω4)z2

(ω − ω4)z1 − (ω2 − ω3)z2
� z1

z2
.

Multiplying out, we have

z2
1 − 2(ω + ω4)z1z2 − z2

2 � 0.

By Problem 5 (b) of Section 17, ω + ω4 can be replaced by 1/τ,
where τ is the golden section. We obtain that the fixed points of V
are given by the zeros of the quadratic form

z2
1 − 2

τ
z1z2 − z2

2 .

In a similar vein, the fixed points of W are given by the zeros of

z2
1 + 2τz1z2 − z2

2 .

We define the first octahedral formT1 as the product of these three
forms:

T1(z1, z2) � (z2
1 + z2

2)(z
4
1 + 2z3

1z2 − 6z2
1z

2
2 − 2z1z

3
2 + z4

2).

The remaining four octahedral forms Tj+1, j � 1, . . . , 4, are
obtained by applying to T1 the homogeneous substitutions

z1  → ±ω3jz1, z2  → ±ω2jz2,
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which correspond to the rotations Sj, j � 1, . . . , 4, introduced in
Section 18. Multiplying out, we arrive at the five octahedral forms

Tj+1(z1, z2) � ω3jz6
1 + 2ω2jz5

1z2 − 5ωjz4
1z

2
2

− 5ω4jz2
1z

4
2 − 2ω3jz1z

5
2 + ω2jz6

2 , j � 0, . . . , 4.

How does A5 act on {T1, . . . , T5}? It is enough to see how the
icosahedral generators S and W act on these octahedral forms. By
definition, S permutes Tj, j � 1, . . . , 5, cyclically. Geometrically,
the midpoints of the 5 edges that meet at the North Pole N are
vertices of the 5 distinct octahedra. Since the rotation axis of S
passes through N , S must permute these vertices cyclically. It is
equally clear that U, V, W(� UV) all fix T1, since T1 is defined by
the requirement that it should vanish at the fixed points ofU, V , and
W . The simplest of these three commuting Möbius tranformations
is U : z  → −1/z. The corresponding homogeneous substitution is
z1  → z2, z2  → −z1. Substituting this into the explicit expression of
the octahedral forms above and looking at the leading coefficients,
we see immediately that U acts as follows:

U : T1  → T1, T2 ↔ T5, T3 ↔ T4.

Recall from Section 18 that the axis of the half-turn V is perpen-
dicular to the axis of U , and it passes through the midpoint of the
base of the upper pentagonal pyramid U of the icosahedron. The
vertex of U is N . As noted above, the midpoints of the 5 edges of
U that meet at N belong to the 5 inscribed octahedra. Since S per-
mutes these edges cyclically, we denote them by e1, e2, e3, e4, e5,
where S(ej) � ej(mod 5)+1, j � 1, . . . , 5. We adjust the index such that
e1 is an edge of a golden rectangle that defines T1. Then, for all
j � 1, . . . , 5, ej is an edge of a golden rectangle that defines Tj.
Due to this arrangement the fixed point of V is the midpoint of the
base of the triangular face with sides e3 and e4. Now a careful look
at how V acts on e2, e3, e4, e5 reveals that V(e3) and e5 are edges of
two golden rectangles in the same configuration. Similarly, V(e4)

and e2 are edges of two golden rectangles in another configration.
Since V is a half-turn, we obtain that it acts on the five octahedra
as follows:

V : T1  → T1, T2 ↔ T4, T3 ↔ T5.
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Finally, the way the permutation W acts follows, since W � UV .
For future reference, we summarize the actions of S and W as
follows:

S : Tj  → Tj(mod 5)+1, j � 1, . . . , 5,

W : T1  → T1, T2 ↔ T3, T4 ↔ T5.

Despite their simplicity, these octahedral forms will not be suit-
able for our purposes, since

∑5
j�1 T

2
j �� 0, so that the quintic

icosahedral resolvent constructed from these forms will not be
canonical. (Nevertheless, this resolvent is of great interest, since∑5

j�1 Tj � 0 and
∑5

j�1 T
3
j � 0; see Problem 4.) This temporary

setback is easy to fix. Consider the Hessians Vj � Hess (Tj),
j � 1, . . . , 5, that are forms of degree 8, and also constitute an
A5-orbit. They clearly satisfy the relations

5∑
j�1

Vj � 0,
5∑
j�1

V2
j � 0,

since there are no icosahedral forms in degrees 8 and 16. (Any
icosahedral form is a polynomial in I, J , and H; cf. Section 24.)
Thus, the quintic icosahedral resolvent constructed from these
forms will be canonical! For future reference we include here the
explicit form

Vj+1(z1, z2) � −ω4jz8
1 + ω3jz7

1z2 − 7ω2jz6
1z

2
2 − 7ωjz5

1z
3
2

+ 7ω4jz3
1z

5
2 − 7ω3jz2

1z
6
2 − ω2jz1z

7
2 − ωjz8

2

� (ω4jz1 − ω3jz2)(−z7
1 + 7z2

1z
5
2)

+ (ω2jz1 − ωjz2)(−7z5
1z

2
2 − z7

2), j � 0, . . . , 4.

Recall that we need a two-parameter family of these forms. Notice
that we have

5∑
j�1

TjVj � 0,
5∑
j�1

TjV
2
j � 0,

5∑
j�1

(TjVj)
2 � 0,

since left-hand sides are icosahedral invariants of degrees 14, 22,
and 28, respectively, and (once again) there are no icosahedral
invariants in these degrees. For future reference, we include here
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the explicit forms

Tj+1(z1, z2)Vj+1(z1, z2)

� (ω4jz1 − ω3jz2)(−26z10
1 z

3
2 + 39z5

1z
8
2 + z13

2 )

+ (ω2jz1 − ωjz2)(−z13
1 + 39z8

1z
5
2 + 26z3

1z
10
2 ), j � 0, . . . , 4.

For greater generality, we seeek a resolvent for the linear
combinations

ϒj � E Vj + F TjVj, j � 1, . . . , 5,

where by homogeneity, the coefficientsE and F are forms of degree
30 and 24. In fact, we will put

E � 12u J , F � 144v I2,

where u and v are complex parameters, but for the time being,
we keep E and F arbitrary. It remains to work out the resolvent
explicitly. Staying in the realm of forms for a while, we write the
resolvent polynomial as

5∏
j�1

(X − ϒj) � X 5 + b1X 4 + b2X 3 + b3X 2 + b4X + b5,

where we used X as variable. By what we said above, the rela-
tions above imply that b1 � b2 � 0. Expanding, and using the fact
that the coefficients must be (absolute) invariants of the icosahe-
dral group, after somewhat tedious computations, we arrive at the
following:

X 5 + 5X 2(8E3I2 + E2FJ + 72EF2I3 + F3IJ )

+ 5X (−E4IH + 18E2F2I2H + EF3HJ + 27F4I3H)

+ (E5H2 − 10E3F2IH2 + 45EF4I2H2 + F5J H2).

We introduce the new variable

X � I
J H X

along with

rj � 12
I2

J Tj, sj � 12
I
HVj, j � 1, . . . , 5.
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Comparing the degrees of the forms involved we see that rj and
sj are rational functions in z � z1/z2. Rewriting our variables in
terms of these, we obtain

ϒj � J H
I tj, j � 1, . . . , 5,

where

tj � usj + vrjsj, j � 1, . . . , 5.

In terms of these new variables, our resolvent polynomial becomes

P∗(X) �
5∏
j�1

(X − tj)

� X5 + 5X2

w

(
8u3 + 12u2v + 6uv2 + v3

1 − w

)

+ 15X
w

(
−4u4 + 6u2v2 + 4uv3

1 − w
+ 3v4

4(1 − w)2

)

+ 3
w

(
48u5 − 40u3v2

1 − w
+ 15uv4 + 4v5

(1 − w)2

)
.

This is called the canonical resolvent polynomial of the icosahe-
dral equation. By homogeneity, the roots tj � tj(u, v, z) � usj(z) +
vrj(z)sj(z), j � 1, . . . , 5, of the resolvent P∗ are rational functions
in z � z1/z2 and linear functions in u and v. As in the case of the
octahedral forms, the icosahedral generators S and W induce the
following permutations on the roots:

S : tj  → tj( mod 5)+1, j � 1, . . . , 5,

W : t1  → t1, t2 ↔ t3, t4 ↔ t5.

As in the case of the canonical quintic, the projective points corre-
sponding to the roots of the canonical resolvent lie in the complex
projective quadric

Q0 �
{

[t1 : . . . : t5] ∈ CP4 |
5∑
j�1

tj �
5∑
j�1

t2j � 0
}
.

Finally, since the solution set contains two parameters, it is reason-
able to expect that the projective points corresponding to the roots
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of the canonical resolvent fill Q0. This will follow as a byproduct
of stronger results in Subsection G.

Summarizing, we have found that the complex projective
quadric Q0 in CP3

0(⊂ CP4) serves as a simple “parameter space” for
the solutions of the canonical resolvent of the icosahedral equation.
Since the solutions of the canonical resolvent depend rationally on
the solutions of the icosahedral equation, our remaining task is to
find a matching parametrization of the solutions of the quintic in
canonical form. This we will accomplish in the remaining three
subsections.

E. Solvability of the Quintic à la Klein

In view of the fact that zn − w � 0 is the “polyhedral equation”
for the cyclic group Cn, it is natural to look for a noncommutative
analogue of the theorem in Appendix F, in which the field extension
K/k is generated by any solution of the equation zn − w � 0,
and the Galois group of the field extension is Cn. In order that
the linear fractional transformations that make up the icosahedral
Möbius group I become k-automorphisms of the splitting field of
the icosahedral equation, we need to assume that ω ∈ k, where
ω � e2πi/5.

Theorem 19.
Let k be a field satisfying Q (ω) ⊂ k ⊂ C, and let K ⊂ C be a Galois

extension of k with Galois group A5. Then, replacing k by a suitable
quadratic extension, there exists w∗ ∈ k such that K is generated by
any solution z∗ of the icosahedral equation with parameterw∗ � q(z∗).
Moreover, each solution z∗ gives rise to an isomorphism ϕ:A5 → I of
the Galois group A5 to the icosahedral Möbius group I such that if σ ∈
A5 is a k-automorphism of K that is mapped under this isomorphism
to

ϕ(σ) � ±
[
a(σ) b(σ)

c(σ) d(σ)

]
,
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then

σ−1(z∗) � ϕ(σ)(z∗) � a(σ)z∗ + b(σ)

c(σ)z∗ + d(σ)
.

Remark.
Theorem 19, the so called “Normalformsatz,” is the cornerstone
of Klein’s theory of the icosahedron. In 1861, Kronecker showed
that the “suitable quadratic extension” k′/k (“akzessorische Irra-
tionalität” as Klein called it) in the Normalformsatz cannot, in
general, be dispensed with. As shown in the text, this extension
appears in reducing the general quintic to a canonical form (called
“Hauptgleichung” by Klein) by a Tschirnhaus transformation.

Remark.
Quadratic extensions do not change the setting in Theorem 19. In
fact, if k′ is a quadratic extension of the ground field k, then k′ is
not contained in K, since the Galois group A5 of the extension K/k

cannot contain any subgroup of index 2. We thus haveG(K ·k′/k′) �
G(K/k) � A5.

Every irreducible quintic

P(z) � z5 + a1z
4 + a2z

3 + a3z
2 + a4z + a5, a1, . . . , a5 ∈ C,

over k, Q (ω) ⊂ k ⊂ C, with Galois group A5 has a splitting field
K as in Theorem 19. Conversely, given K/k as in Theorem 19,
there exists an irreducible quintic over k whose splitting field is K,
and whose Galois group is A5. Indeed, consider a subgroup of A5

isomorphic to A4. By abuse of notation, we denote this subgroup
by A4. The field k is properly contained in the fixed field KA4 ,
so that there exists z1 ∈ KA4 − k. The A5-orbit of z1 consists of 5
elements z1, . . . , z5, since A4 is maximal in A5. Let P(z) � ∏5

j�1(z−
zj) be the quintic resolvent associated to z1. Then P is irreducible
over k, K is the splitting field of P over k, and the Galois group A5

can be identified with the group of even permutations of the roots
z1, . . . , z5.

To prove Theorem 19, we will view K as the splitting field of an
irreducible quintic (with Galois group A5). The “suitable quadratic
extension” k(

√
δ) of the ground field k is due to the reduction of
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the quintic to canonical form by a Tschirnhaus transformation as
discussed in Subsection C.

F. Geometry of the Canonical Equation:
General Considerations

We saw in Subsections D and E that the complex projective quadric
Q0 parametrizes the points that correspond to the roots of the
canonical resolvent of the icosahedral equation, and to the roots
of the irreducible quintic in canonical form (obtained from the
general quintic by a Tschirnhaus transformation). In the two sub-
sections that follow, by “matching” these two parametrizations we
obtain a constructive proof of Theorem 19 as well as the explicit
formulas that solve the canonical quintics. In this subsection we
will follow the main argument with few technical details. In the
last subsection we will work out all formulas in detail.

The geometry of the projective quadric Q0 ⊂ CP3
0 as a “doubly

ruled surface” is well known. In fact, the so-called Lagrange sub-
stitution, a linear equivalence between CP3

0 and CP3, transforms
the defining equations

∑5
j�1 zj �

∑5
j�1 z

2
j � 0 of Q0 into the single

equation

ξ1ξ4 + ξ2ξ3 � 0, [ξ1 : · · · : ξ4] ∈ CP3.

(The Lagrange substitution will be given explicitly in Subsection G;
cf. also the analogous case in Section 6 for solving cubic equations.)
This equation defines the complex surface

Q � {[ξ1 : · · · : ξ4] ∈ CP3 | ξ1ξ4 + ξ2ξ3 � 0}
in CP3. In what follows, we will identify Q0 with Q under this linear
equivalence. For each value of a parameter c∗ ∈ Ĉ, the equations

− ξ1

ξ2
� ξ3

ξ4
� c∗

define a complex projective line in Q; we call this a generating line
of the first kind (with parameter c∗). In a similar vein, for c∗∗ ∈ Ĉ,
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the equations

ξ1

ξ3
� − ξ2

ξ4
� c∗∗

define in Q a generating line of the second kind (with parameter c∗∗).
As can be seen from the defining formulas, the two families of
generating lines satisfy the following properties: (1) Each point of
the quadric is the intersection of two generating lines of different
kinds; (2) any two generating lines of different kinds intersect at
exactly one point; (3) any two distinct generating lines are disjoint.
(For a (more than) good analogy, consider a hyperboloid of one
sheet as a doubly ruled surface with the two rulers corresponding
to the generating lines of the first and second kind.)

Due to the linear equivalence between Q and Q0, the entire
construction in Q can be carried over to our initial quadric Q0.
The parameters c∗ and c∗∗ become quotients of linear froms in the
variables z1, . . . , z5 subject to

∑5
j�1 zj �

∑5
j�1 z

2
j � 0.

If we fix a point o ∈ Q0 as the origin, then the generating lines
CP∗ and CP∗∗ of the first and second kind through o can be viewed as
axes of a “rectilinear” coordinate system for Q0. With respect to this
coordinate system, any point in Q0 can be uniquely represented by
a pair of complex coordinates (c∗, c∗∗) ∈ CP∗ × CP∗∗ in an obvious
manner. This gives a conformal equivalence

Q0 � CP∗ × CP∗∗.

Recall that the symmetric group S5 acts on CP4 by permuting
the homogeneous coordinates. In view of the symmetries, this ac-
tion leaves Q0 ⊂ CP3

0 invariant. Each permutation in S5 maps
generating lines to generating lines. This follows from well-known
projective geometric considerations, or by the explicit formulas
given in Subsection G. In fact, the elements of S5 act on CP4 as
projective transformations, since they act on C5 as permutation
matrices. In particular, restricted to Q0, the elements of S5 act as
projective collineations; i.e., they take projective lines to projec-
tive lines. By continuity, each collineation in S5 either maps the
generating lines within a family to generating lines in the same
family, or interchanges the generating lines between the two fam-
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ilies. Let G ⊂ S5 be the subgroup that preserves the generating
lines in each family. We claim that G � A5. It is clear that the
index of G in S5 is at most 2. Since the alternating group A5 is the
only index 2 subgroup in S5, it follows that A5 ⊂ G. For the reverse
inclusion, notice that G acts on CP∗ by complex automorphisms.
This realizes G as a subgroup of Aut (CP∗), where the latter is the
group of all complex automorphisms of the projective line CP∗.
The choice of an inhomogeneous coordinate in CP∗ identifies CP∗

with Ĉ, and Aut (CP∗) with the Möbius group Möb (Ĉ). This identi-
fication makes G a finite subgroup of Möb (Ĉ). On the other hand,
by Theorem 18, the largest finite subgroup of Möb (Ĉ) is A5. Thus
G � A5 follows. In particular, we also obtain that the collineations
that correspond to the odd permutations in S5 do interchange the
two families of generating lines.

By the very definition of the conformal equivalence above, the
action of A5 on the two families of generating lines induces an
action of A5 on both CP∗ and CP∗∗ such that the conformal equiv-
alence is A5-equivariant, where A5 is considered to act on the
product CP∗ × CP∗∗ diagonally.

As we saw above, the action of A5 on generating lines of the first
and second kind realizes A5 as a subgroup in Aut (CP∗) and also in
Aut (CP∗∗). In a similar vein, an odd permutation in S5 gives rise to
a conformal equivalence of CP∗ and CP∗∗. Conjugating A5 by this
odd permutation (within S5) then carries the action of A5 on CP∗∗

into an action of A5 on CP∗, and this latter action is equivalent to
the original action of A5 on CP∗ via complex automorphisms of
CP∗.

We now consider the projections π∗ : Q0 → CP∗ and π∗∗ : Q0 →
CP∗∗. Let

Q̃0 �

(z1, . . . , z5) ∈ C5 − {0} |

5∑
j�1

zj �
5∑
j�1

z2
j � 0


 ,

and define π : Q̃0 → Q0 to be the restriction of the canonical
projection C5 − {0} → CP4. We set

z∗ � π∗ ◦ π and z∗∗ � π∗∗ ◦ π.
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We take a closer look at z∗. An inhomogeneous coordinate on CP∗

identifies CP∗ with Ĉ, and z∗ can be viewed as the composition

(C5 − {0} ⊃) Q̃0
π→Q0

π∗→CP∗ � Ĉ(⊃ C).

In view of the linear equivalence of Q0 and Q, we see that z∗ is
a rational function in the variables z1, . . . , z5 subject to

∑5
j�1 zj �∑5

j�1 z
2
j � 0. By construction, A5 acts on these variables by even

permutations, and this induces an action of A5 on CP∗ by complex
automorphisms. With a choice of an inhomogeneous coordinate on
CP∗, this latter action is by linear fractional transformations. This
identifies A5 with a subgroup of Möb (Ĉ). Different choices of in-
homogeneous coordinates on CP∗ give rise to conjugate subgroups
in Möb (Ĉ). By Theorem 18, there is an inhomogeneous coordinate
on CP∗ with respect to which A5 is identified with the icosahedral
Möbius group I. From now on we assume that this choice has been
made, and we let ϕ : A5 → I denote the corresponding isomor-
phism. Summarizing, we see that z∗ : Q̃0 → Ĉ is ϕ-equivariant,
where A5 acts on Q̃0 by permuting the coordinates, and I acts on
Ĉ as the icosahedral Möbius group.

When K is considered as the splitting field of a canonical quintic
P(z) � z5 + az2 + bz + c with roots z1, . . . , z5 and Galois group A5,
then z∗(z1, . . . , z5) becomes an element of K � k(z1, . . . , z5), since
z∗ depends rationally on z1, . . . , z5. Since z∗ is ϕ-equivariant, the
60 roots of the resolvent polynomial are nothing but the icosa-
hedral linear fractional tranformations applied to z∗(z1, . . . , z5).
Summarizing, we have shown that z∗ satisfies the icosahedral
equation

q(z∗(z1, . . . , z5)) � w∗(a, b, c,
√
δ),

where z1, . . . , z5 are subject to
∑5

j�1 zj �
∑5

j�1 z
2
j , and the parame-

terw∗ on the right-hand side depends on a, b, c,
√
δ rationally. (The

presence of
√
δ is due to the fact that the Galois group is A5 not

S5.) To complete the proof of Theorem 19, we need to show that
z∗ generates K over k. (Along with the claimed technical details,
we will do this in the next subsection.) The situation is completely
analogous for the generating lines of the second kind. We obtain an



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

G. Geometry of the Canonical Equation: Explicit Formulas 369

element z∗∗(z1, . . . , z5) ∈ K that satisfies the icosahedral equation

q(z∗∗(z1, . . . , z5)) � w∗∗(a, b, c,
√
δ).

The parameters a, b, c are invariant under the entire symmetric
group S5, while

√
δ changes its sign when the roots are subjected

to odd permutations. Since the two actions of A5 on CP∗ and CP∗∗

are conjugate under the odd permutations in S5, we obtain

w∗(a, b, c,−
√
δ) � w∗∗(a, b, c,

√
δ).

G. Geometry of the Canonical Equation:
Explicit Formulas

To exhibit the stated linear equivalence between Q0 and Q, we first
define ι : CP3 → CP4 by

ι([ξ1 : · · · : ξ4]) � [z1 : · · · : z5],

where

zj �
4∑
l�1

ω−(j−1)lξl, j � 1, . . . , 5.

Since 1 + ω + ω2 + ω3 + ω4 � 0, we have

5∑
j�1

zj �
4∑
l�1

( 5∑
j�1

ω−(j−1)l
)
ξl � 0.

Thus, the linear map ι sends CP3 into the linear slice CP3
0 ⊂ CP4.

Actually, ι is a linear isomorphism between CP3 and CP3
0 . As simple

computation shows, the inverse ι−1 : CP3
0 → CP3 is given by

ξl � 1
5

5∑
j�1

ω(j−1)lzj, l � 1, . . . , 4.
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To translate the defining equation
∑5

j�1 z
2
j � 0 of Q0 in terms of

the ξl’s, we compute

5∑
j�1

z2
j �

5∑
j�1

( 4∑
l�1

ω−(j−1)lξl

)2

�
4∑

l,l′�1

( 5∑
j�1

ω−(j−1)(l+l′)
)
ξlξl′

� 10(ξ1ξ4 + ξ2ξ3).

The last equality holds because
∑5

j�1 ω
−(j−1)(l+l′) � 5 iff l + l′ �

5, and zero otherwise. This shows that the quadrics Q and Q0

correspond to each other.
Given that the variables ξl, l � 1, . . . , 4, are linear forms in

z1, z2, z3, z4, z5, the equations for the generating lines give explicit
rational dependence of z∗ and z∗∗ on z1, z2, z3, z4, z5. Due to our
explicit formulas, we can determine the linear fractional transfor-
mations that z∗ and z∗∗ undergo when the variables z1, z2, z3, z4, z5

are subjected to even permutations. It is enough to work this out
forπ∗, since the homogeneous and inhomogeneous coordinates are
permuted in the same way. (The case of π∗∗ can be treated anal-
ogously.) We will give explicit formulas only for the generators S
and W of the icosahedral group. We claim that S (multiplication by
ω) corresponds to the cyclic permutation

S : zj  → zj( mod 5)+1, j � 1, . . . , 5.

Indeed, applying the latter, we have

c∗ � − ξ1

ξ2
� −

∑5
j�1 ω

j−1zj∑5
j�1 ω

2(j−1)zj
 → −

∑5
j�1 ω

(j−1)zj( mod 5)+1∑5
j�1 ω

2(j−1)zj( mod 5)+1

� −
∑5

j�1 ω
j−2zj∑5

j�1 ω
2(j−2)zj

� ωc∗,

and the claim follows. In a similar vein, W corresponds to the
permutation

W : z1  → z1, z2 ↔ z3, z4 ↔ z5.
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Since this is tedious, we give a proof. Using the explicit form of W
derived in Section 18, and Problem 5(b) of Section 17, we have

Wc∗ � − (ω − ω4)ξ1 + (ω2 − ω3)ξ2

(ω2 − ω3)ξ1 − (ω − ω4)ξ2
� − τξ1 + ξ2

ξ1 − τξ2
,

where τ is the golden section. On the other hand, permuting the
zj’s according to the recipe above, and rewriting the corresponding
quotient in terms of the ξl’s, we have

− z1 + ω2z2 + ωz3 + ω4z4 + ω3z5

z1 + ω4z2 + ω2z3 + ω3z4 + ωz5

� − (1 + 2ω + 2ω4)ξ1 + (3 + ω2 + ω3)ξ2 + (3 + ω + ω4)ξ3 + (1 + 2ω2 + 2ω3)ξ4

(3 + ω2 + ω3)ξ1 + (1 + 2ω2 + 2ω3)ξ2 + (1 + 2ω + 2ω4)ξ3 + (3 + ω + ω4)ξ4

� − (1 + 2/τ)ξ1 + (3 − τ)ξ2 + (3 + 1/τ)ξ3 + (1 − 2τ)ξ4

(3 − τ)ξ1 + (1 − 2τ)ξ2 + (1 + 2/τ)ξ3 + (3 + 1/τ)ξ4

� − ξ1 + ξ2/τ + ξ3τ − ξ4

ξ1/τ − ξ2 + ξ3 + ξ4τ

� − (τξ1 + ξ2)(1/τ + ξ3/ξ1)

(ξ1 − τξ2)(1/τ + ξ3/ξ1)
� − τξ1 + ξ2

ξ1 − τξ2
.

Here we used 1 + 2/τ � √
5, 3 − τ � √

5/τ, 3 + 1/τ � √
5τ,

1 − 2τ � −√
5, and ξ1ξ4 + ξ2ξ3 � 0. The permutation rule for W

follows.
Comparing how S and W transform the zj’s and the tj’s, we see

that when z∗ is subjected to the linear fractional transformations
of the icosahedral group I, then this action can be realized as even
permutations on its variables in exactly the same manner as A5 acts
on the roots t1, . . . , t5 of the icosahedral resolvent. This means that
an A5-equivariant one-to-one correspondence zj ↔ tj, j � 1, . . . , 5,
can be established between the two sets {z1, . . . , z5} and {t1, . . . , t5}.
(z1 and t1 are the unique fixed points of W , and zj+1 � Sj(z1)

corresponds to tj+1 � Sj(t1), j � 1, . . . , 4.)

Remark.
The odd permutation

z1  → z1, z2  → z4, z3  → z2, z4  → z5, z5  → z3
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has the effect of replacing ω by ω2 and interchanging c∗ and c∗∗.
Thus, the formulas for the generating lines of the second kind
can be derived from those of the first kind by the substitution
ω  → ω2.

Remark.
The Lagrange substitutions above that establish the linear equiva-
lence between the quadrics Q and Q0, as well as make the structure
of the generating lines transparent, are derived in the Icosahedron
Book based on the requirement that the transformation rules for S
and W should match with those of the roots of the quintic icosahe-
dral resolvent. Here we followed a somewhat ad hoc but quicker
approach.

To get a closer look at the correspondence above, we now work
out the generating lines in terms of the roots {t1, . . . ,t5} of the icosahe-
dral resolvent. In perfect analogy with the Lagrange substitutions,
we put

tj �
4∑
l�1

ω−(j−1)lXl, j � 1, . . . , 5,

and

Xl � 1
5

5∑
j�1

ω(j−1)ltj, l � 1, . . . , 4.

To work out Xl, we use the explicit forms of Vj and TjVj derived
in Subsection C. Substituting them into the expression for tj above,
we obtain

tj � (ω4(j−1)z1 − ω3(j−1)z2)A + (ω2(j−1)z1 + ωj−1z2)B,

where A, B are linear in u and v. (Here z1 and z2 are the complex
arguments of our forms with z � z1/z2. Do not confuse them with
the first two roots of the canonical quintic! In any case, z1 and z2

appear here only briefly.) With this, the inverse of the Lagrange
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substitution becomes

Xl � 1
5

5∑
j�1

ω(j−1)l(ω4(j−1)z1 − ω3(j−1)z2)A

+ 1
5

5∑
j�1

ω(j−1)l(ω2(j−1)z1 − ωj−1z2)B

� (δ1lz1 − δ2lz2)A + (δ3lz1 + δ4lz2)B,

where we used the Kronecker delta function δjl (� 1 iff j � l and
zero otherwise). Writing the cases out, we have

X1 � z1A, X2 � −z2A, X3 � z1B, X4 � z2B.

For the parameters C∗ and C∗∗ of the generating lines defined by

− X1

X2
� X3

X4
� C∗,

X1

X3
� − X2

X4
� C∗∗,

we obtain

C∗ � z1

z2
� z, C∗∗ � A

B
.

Since z∗ and z∗∗ are essentially given by the projections (C∗, C∗∗)  →
C∗ and (C∗, C∗∗)  → C∗∗, we thus have

z∗(t1, . . . , t5) � z and z∗∗(t1, . . . , t5) � A

B
.

The first equation is of paramount importance. Writing the
canonical resolvent in the short form

P∗(X) �
5∏
j�1

(X− tj) � X5 +5a(u, v, w)X2 +5b(u, v, w)X+ c(u, v, w),

we have

q(z∗(t1, . . . , t5)) � w∗(a(u, v, w), b(u, v, w), c(u, v, w),
√
δ(u, v, w))

� q(z) � w.

Here δ(u, v, w) is the discriminant of the canonical quintic resol-
vent. (It has the same expression as δ in Subsection C with a, b, c

replaced by a(u, v, w), b(u, v, w), c(u, v, w).)
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The system

a(u, v, w) � a,

b(u, v, w) � b,

c(u, v, w) � c,

can be inverted, provided that we also match the square roots of
the discriminants

√
δ(u, v, w) � √

δ:

u � u(a, b, c,
√
δ),

v � v(a, b, c,
√
δ),

w � w(a, b, c,
√
δ).

We will do this inversion explicitly at the end of this subsection.
By solving this system we attain that the roots of the canonical
quintic P and the roots of the quintic resolvent P∗ coincide as sets.
On the other hand, we saw that there exists an A5-equivariant
correspondence between these sets of roots. Imposing this we
obtain

zj � tj, j � 1, . . . , 5.

With this we can now describe how to solve a given irreducible
quintic. First we use the Tschirhaus transformation to reduce the
quintic to a canonical form P(z) � z5+5az2+5bz+c. This amounts
to solving a quadratic equation. We also compute the discriminant
δ from the explicit form given in Subsection C. Then we substitute
the coefficients a, b, c into the right-hand sides of the equations in
the inverted system above and obtain u, v, andw. We now solve the
icosahedral equation for this particular value of w to obtain z as a
ratio of hypergeometric functions as in Subsection B. By working
out the forms Tj and Vj using the particular values of u and v and
z we obtain

tj � tj(u, v, z), j � 1, . . . , 5.

Since tj � zj, these are the five roots of our quintic. Tracing our
steps back, we see that z1, . . . , z5 depend rationally on z∗. In par-
ticular, whenK � k(z1, . . . , z5) is the splitting field of the canonical
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quintic, we obtain that z∗ generates K over k. This was the missing
piece in the proof of Theorem 19.

Our final task is to invert the system above. Using the explicit
forms of the coefficients of the canonical quintic in Subsection D,
we write the system as

w · a � 8u3 + 12u2v + 6uv2 + v3

1 − w
,

w · b
3

� −4u4 + 6u2v2 + 4uv3

1 − w
+ 3v4

4(1 − w)2
,

w · c
3

� 48u5 − 40u3v2

1 − w
+ 15uv4 + 4v5

(1 − w)2
.

A small miracle (due to our ad hoc approach) happens here. In
trying to cancel the top terms in u and v, if we multiply the first
equation by −4v2/(1 −w) and the second by 12u, and then add all
three then everything cancels on the right-hand sides! Rearranging
the terms on the left-hand side, we obtain

v2

1 − w
� 12ub + c

12a
.

We call this the fundamental relation. Continuing, we can create
cubic binomial terms as follows:

−uc + v2

1 − w
b � − 9

4w

(
4u2 − v2

1 − w

)3

and

a2 − 4
81

1 − w

v2
(3ua + 2b)2 � 1

w

(
4u2 − v2

1 − w

)3

.

Combining these, we obtain

a2 − 4
81

1 − w

v2
(3ua + 2b)2 � 4

9

(
uc − v2

1 − w
b

)
.

Using the fundamental relation, this becomes

a2 − 16
27

a

12ub + c
(3ua + 2b)2 � 4

9

(
uc − 12ub + c

12a
b

)
.
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This is a quadratic equation in u! The quadratic formula gives

u � u(a, b, c,
√
δ) � (11a3b + 2b2c − ac2) ± a

√
δ/(25

√
5)

24(a4 − b3 + abc)
,

where the sign in front of
√
δ needs to be determined.

Since u is now known in terms of a, b, c, and
√
δ, we can use

the fundamental relation in the first equation containing a cubic
binomial term and solve for w. We obtain

w � w(a, b, c,
√
δ) � (48u2a − 12ub − c)2

64a2(12u(ac − b2) − bc)
.

Finally, the first equation of our system can be rewritten as(
12u2 + v2

1 − w

)
v � wa − 8u3 − 6u

v2

1 − w
.

Using once again the fundamental relation, we finally arrive at

v � v(a, b, c,
√
δ) � − 96u3a + 72u2b + 6uc − 12a2w

144u2a + 12ub + c
.

To determine the sign of
√
δ, we set

√
δ � √

δ(u, v, w), where

δ(u, v, w) �
∏

1≤j<l≤5

(tj − tl)
2

is the discriminant of the canonical resolvent. It is enough to work
out

√
δ(u, v, w) for u � 1 and v � 0. For these values of the

parameters our system reduces to

a � 8
w
, b � − 12

w
, c � 144

w
.

Substituting these and u � 1 into the formula for u with the sign
ambiguity, we obtain

±
√
δ � 124 · 25

√
5

1 − w

w3
.

Remark.
Note that as a good check of our computations we can also sub-
stitute the values of a, b, c above into the discriminant formula in
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Subsection C and get

δ � 128 · 55 (1 − w)2

w6
.

On the other hand, for u � 1 and v � 0, tj reduces to sj �
12 (I/H) Vj, and hence,

√
δ(1, 0, w) �

∏
1≤j<l≤5

(sj − sl) � 1210 I10

H10

∏
1≤j<l≤5

(Vj − Vl).

The last product is a degree-80 icosahedral invariant, so that it must
be a linear combination of J 2H and H4. Comparing coefficients,
we obtain ∏

1≤j<l≤5

(Vj − Vl) � −25
√

5J 2H.

Using w : w − 1 : 1 � H3 : −J 2 : 1728 I5, we finally end up
with the following:

√
δ(1, 0, w) � −1210 · 25

√
5
( I5

H3

)2( J 2

H3

)
� −124 · 25

√
5

1 − w

w3
.

For
√
δ � √

δ(1, 0, w), we thus need to choose the negative sign in
front of

√
δ.

Problems

1. Verify the following identities:

Hess (R) � −48
√

3iS,

Hess (S) � 48
√

3iR,

Jac (R, S) � 32
√

3iT,

Hess (T) � −25RS,

Jac (T, R) � −4S2,

Jac (T, S) � −4R2.

2. Interpret the zeros of the degree-8 forms Vj, j � 1, . . . , 5, geometrically.

3. Locate the axes of the half-turns SjUS−j, SjVS−j, SjWS−j, j � 1, . . . , 5, in our
model of the icosahedron.
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4. (a) Work out the resolvent of the five octahedral forms using the following
steps. First consider the product

5∏
j�1

(X − Tj) � X 5 + a1X 4 + a2X 3 + a3X 2 + a4X + a5,

where X is used as a variable. Using the description of the invariants of the
icosahedral group, conclude that this quintic resolvent is

X 5 − 10I X 3 + 45I2 X − J .

Introduce the new variable

X � 12
I2

J X

(depending only on z � z1/z2), and use the second table in Section 24 to arrive
at the quintic icosahedral resolvent polynomial

P∗(X) �
5∏
j�1

(X − r∗j ) � X5 − 5
6(1 − w)

X3 + 5
16(1 − w)2

X − 1
12(1 − w)2

.

(b) Describe the geometry of the “solution set” (r∗1 (w), . . . , r
∗
5 (w)) ∈ C5 as

w varies in Ĉ and q(z) � w as follows. Introduce the sums of various powers

σl �
5∑
j�1

(r∗j )
l, l � 1, . . . , 4,

and verify

σ1 � 0, σ2 � 5
3(1 − w)

, σ3 � 0, σ4 � 5
36(1 − w)2

.

Notice that σ2
2 � 20σ4. Define

D �

[r∗1 : . . . : r∗5 ] ∈ CP4 |

5∑
j�1

r∗j �
5∑
j�1

(r∗j )
3 � 0




and

F �

[r∗1 : · · · : r∗5 ] ∈ CP4 |

5∑
j�1

r∗j � 0,

(
5∑
j�1

(r∗j )
2

)2

� 20
5∑
j�1

(r∗j )
4


 ,

and prove that D and F are smooth algebraic surfaces in CP3 of degree 3 and
4, respectively, (CP3 is identified with the linear slice CP3

0 of CP4 defined by∑5
j�1 r

∗
j � 0). Show that the projective points that correspond to the solutions

of the quintic icosahedral resolvent above fill the smooth algebraic curve D ∩
F ⊂ CP3 of degree 12. (This problem is rich in history. The quintic resolvent
for X is called the Brioschi quintic. The surface D was named by Clebsch the
diagonal surface, since this surface contains 15 diagonals of the coordinate
pentahedron. The intersection of the diagonal surface D with the canonical
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surface Q is a (smooth) curve called the Bring–Jerrard curve.6 A generating line
through the point [z1 : · · · : z5] ∈ Q, corresponding to the roots of a canonical
quintic, intersects the Bring–Jerrard curve in 3 points, and these intersection
points can be obtained by extracting suitable square and cube roots. There
is a beautiful geometric interpretation of the Bring–Jerrard curve in terms of
stellated dodecahedra7.)

5. (a) Derive an icosahedral resolvent polynomial of degree 6 based on the 6
quartic forms that vanish on the 6 pairs of antipodal vertices of the icosahedron
as follows. Set φ∞ � 5z2

1z
2
2, and apply the icosahedral substitutions Sj to φ∞ to

obtain

φj(z1, z2) � (ωjz2
1 + z1z2 − ω4jz2

2)
2, j � 0, . . . , 4.

Comparing coefficients, show that the resolvent form satisfies

φ6 − 10Iφ3 + Hφ + 5I2 � 0.

(b) Work out the action of the icosahedral generators S and W on φ∞ and
φj, j � 0, . . . , 4, and verify

S : φ∞  → φ∞, φj  → φj+1( mod 5), j � 0, . . . , 4;
W : φ∞ ↔ φ0, φ1 ↔ φ4, φ2 ↔ φ3.

Interpret these transformation rules as congruences

S : j′ ≡ j + 1( mod 5),

W : j′ ≡ − 1
j
( mod 5).

Show that the icosahedral group (the Galois group of this resolvent) is
isomorphic to SL(2, Z5)/{±I}:

j′ ≡ − aj + b

cj + d
( mod 5), ad − bc ≡ 1( mod 5), a, b, c, d ∈ Z.

6For a very detailed exposition, see R. Fricke, Lehrbuch der Algebra, Vol. II, Braunschweig, 1926. For a
recent text, see J. Shurman, Geometry of the Quintic, John Wiley and Sons, 1997.
7See P. Slodowy, Das Ikosaeder und die Gleichungen fünften Grades, in Mathematische Miniatüren, Band 3,
Birkhäuser-Basel, 1986.
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26
S E C T I O N

...........................................

The Fourth
Dimension

♣ In Section 22, we encountered a number of objects in the 4-
dimensional Euclidean space, such as S3. Although it sits in R4,
S3 is essentially a 3-dimensional object. In fact, the generalized
stereographic projection gives rise to a diffeomorphism hN : S3 −
{N} → R3 where N � (0, 0, 0, 1) is the North Pole and R3 is the
linear subspace of R4 spanned by the first three coordinate axes.
(In coordinates, the inclusion R3 ⊂ R4 is given by assigning to
(a, b, c) ∈ R3 the point (a, b, c, 0) ∈ R4.) The definition of hN is the
same as its 2-dimensional brother; hN(p),N �� p ∈ S3, is the unique
intersection point of R3 and the line through N and p. (Notice that
N ,O, p and hN(p) all lie in a 2-dimensional plane which cuts a great
circle from S3 ⊂ R4.) The stereographic projection hN enables us
to visualize objects that lie in S3 as objects in R3; in fact, this was
used to create Color Plate 10 (Clifford tori).

Remark.
♦ Quaternions can be used to give a simple and explicit form of
the stereographic projection. If we let R3 correspond to the linear
space H0 of pure quaternions and 1 ∈ H correspond to the North

380



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

26. The Fourth Dimension 381

Pole N , then hN : S3 → H0 is given by

hN(q) � q − !(q)
1 − !(q) , 1 �� q ∈ S3.

Indeed, since 1, q, and hN(q) are on the same line, we have

t(1 − q) � 1 − hN(q)

for some t > 0. Taking the real part of both sides and using the fact
that hN(q) is pure, we obtain

t � 1
1 − !(q) .

Substituting this back, the formula follows.

♣ The purpose of this section is to give a few examples that
will enable us to get a feel for objects whose natural environment
is R4. We begin with a cube1 in R4. The best way to understand
how a 4-dimensional cube and an ordinary 3-dimensional cube are
related is to observe how a 3-dimensional cube is derived from a 2-
dimensional cube, i.e., a square. As for the latter, given a flat square
in space, choose a vector perpendicular to the plane of the square
(Figure 26.1). We assume that the magnitude of the vector is given
by the side length of the square. Performing spatial translation with
this vector, we see that the square sweeps a 3-dimensional cube.
During this process the number of vertices doubles, the number of
edges doubles plus the old vertices sweep four new vertices, and
finally, the number of faces doubles plus the old edges sweep four
new faces.

Obtaining a 4-dimensional cube is now remarkably simple; just
repeat this process! Take a 3-dimensional cube in R4, choose a
vector perpendicular to the 3-dimensional linear subspace spanned
by the cube and watch the object that is swept by translating the
cube along this vector (Figure 26.2).

In particular the same counting principles hold, and we see that
a 4-dimensional cube has 2 × 8 vertices, (2 × 12) + 8 edges, and
(2 × 6) + 12 faces!

1The first pioneers of 4-dimensional geometric vision were Möbius (c. 1827), Schläfli, Cayley, and
Grassmann (c. 1853).
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Figure 26.1

The skeptical reader may now say, “This is all humbug; the 4-
dimensional cube is drawn on a 2-dimensional sheet of paper, so
there is no way to get a feel for this object!” It is true, the picture
you see is the projection of a 4-dimensional cube to a 2-dimensional
plane, but remember that we use the same trickery every day on
the chalkboard to visualize 3-dimensional objects!

Remark.
Observing how the 3-dimensional tetrahedron is derived from
the 2-dimensional triangle, it is easy to obtain a model of the 4-
dimensional tetrahedron. We already encountered this object in
Section 20; in fact, the pentagonal graph in Figure 20.4 gives a 2-
dimensional projection of the regular tetrahedron in R4. (Can you
identify the five tetrahedral faces?)

Figure 26.2
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All 4-dimensional regular polytopes2 were discovered and clas-
sified by Schläfli around 1853. Bypassing some computational
details, we now sketch3 this classification.

Note first that the relevant concepts (flag, regularity, vertex
figure, reciprocality, etc.) introduced in Section 17 for regular
polyhedra can be extended to convex polytopes in 4 dimen-
sions. In particular, a (4-dimensional) polytope has vertices, edges,
faces, and 3-dimensional faces, called cells. For example, the 4-
dimensional tetrahedron, or pentatope, has 1 + 4 tetrahedral cells,
and the 4-dimensional cube, or hypercube, has 2 + 6 cubical cells.

The Schläfli symbol of a regular polytope is a triple {a, b, c},
where {a, b} is the Schläfli symbol of a typical cell, and each edge
of the polytope is shared by c cells. A closer look at Figure 20.4
and Figure 26.2 shows that the Schläfli symbol of the pentatope is
{3, 3, 3}, and the Schläfli symbol of the hypercube is {4, 3, 3}.

By a bit of a stretch of Euclid’s argument in Section 17 we can
list all possible Schläfli symbols. Take c congruent cells (regular
polyhedra) of Schläfli symbol {a, b}, and cluster them around a
single common edge (with consecutive cells pasted together along
a single commmon face) in a fanlike pattern. This can be done in 3
dimensions. (For analogy, paste three, four, or five congruent equi-
lateral triangles together to form a fanlike pattern sharing a single
common vertex in the plane.) There are exactly two faces (one for
the initial cell, and one for the terminal cell) in the fan sharing the
common edges that have not been pasted together. Now place the
entire configuration in 4 dimensions, and paste these remaining
two faces together. Notice that as you move the two faces together,
the entire configuration pops out in the fourth dimension! (Con-
tinuing the analogy, the fans of the equilateral triangles above pop
out in 3 dimensions to form the sides of triangular, square, and pen-
tagonal pyramids, the basic ingredients to make the tetrahedron,
octahedron, and icosahedron!)

For the existence of the fan of c cells, it is clearly necessary that

cδ < 2π,

2In 4-dimensions we use the word polytope rather than polyhedron.
3For a detailed account, see H.S.M. Coxeter, Regular Polytopes, Pitman, 1947.
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where δ is the dihedral angle of the cell with Schläfli sybol {a, b}.
As we will see below, this constraint will give all possible Schläfli
symbols {a, b, c} of a regular polytope. Thus, we need to work out
the dihedral angle for each of the Platonic solids.

We begin with the tetrahedron. In Figure 17.16, the grey triangle
(cut out from the tetrahedron by a symmetry plane) is isosceles,
and its larger angle at the midpoint of the edge is the dihedral angle
δ. We have sin(δ/2) � 1/

√
3, or δ ≈ 70.5287793◦. The constraint

above gives 3, 4, 5 as the possible values of c. We obtain that the
possible Schläfli symbols for a regular polytope with tetrahedral
cells are {3, 3, 3}, {3, 3, 4}, and {3, 3, 5}.

The dihedral angle of a cube is δ � π/2, so that c � 3 and the
only possible Schläfli symbol is {4, 3, 3}.

A symmetry plane of the octahedron containing two opposite
vertices and two midpoints of sides cuts out a rhombus from the
octahedron, and δ is the larger angle of the rhombus at the mid-
points. We have tan(δ/2) � √

2, or δ ≈ 109.4712206◦. Thus, c � 3,
and the only possible Schläfli symbol is {3, 4, 3}.

A good look at Figure 17.30 shows that the dihedral angle of the
icosahedron satisfies tan(δ/2) � τ/(τ − 1), where τ is the golden
section. A bit of computation gives δ ≈ 138.1896851◦. We see that
there cannot be a regular polytope with icosahedral cells.

Finally, the dihedral angle of the dodecahedron can be obtained
from the roof-proof (Problem 20 of Section 17). The perpendicular
bisector of the ridge of a roof is a symmetry plane that cuts out an
isosceles triangle from the roof, and the larger angle (at the mid-
point of the ridge) of this triangle is δ. From the metric properties
of the roof, we have tan(δ/2) � τ, or δ ≈ 116.5650512◦. We obtain
c � 3 and the Schläfli symbol {5, 3, 3}.

Summarizing, we see that the possible Schläfli symbols of a
regular polytope are

{3, 3, 3}, {4, 3, 3}, {3, 3, 4}, {3, 4, 3}, {5, 3, 3}, {3, 3, 5}.
The first two give the Schläfli symbols of the pentatope and the
hypercube. Amazingly, the rest are also realized as Schläfli symbols
of regular polytopes! To complete the classification, we now give
brief geometric descriptions for each of these new pentatopes. (For
pictures, see H.S.M. Coxeter, Regular Polytopes, Pitman, 1947, or
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D. Hilbert and S. Cohn-Vossen, Geometry and Imagination, Chelsea,
New York, 1952.)

Recall that 4 alternate vertices of the cube are the vertices of an
inscribed tetrahedron. Each omitted vertex corresponds to a face
of the tetrahedron. (For an omitted vertex, the vertex figure of the
cube is parallel to the face.) Analogously, 8 alternate vertices of
a hypercube are the vertices of a regular polytope. This polytope
has 16 tetrahedral cells, and for this reason it is called the 16-cell.
Eight tetrahedra correspond to each of the omitted vertices, and 8
other tetrahedra are inscribed in each of the 8 cubic cells of the
hypercube. The 16-cell has 24 edges that are the diagonals of the
24 square faces of the hypercube. (Since we are selecting alternate
vertices of the hypercube, we get only one diagonal for each square
face.) It follows that each edge must be surrounded by 4 tetrahedra,
so that the Schläfli symbol is {3, 3, 4}. The 16-cell has 16×4/2 � 32
triangular faces.

A plane projection of the 16-cell can be obtained by starting with
the vertices of a regular octagon, and connecting all but opposite
pairs of vertices by line segments.

The regular polytope with Schläfli symbol {3, 4, 3}, the so-called
24-cell, can be obtained from the 16-cell as follows. The vertices of
the 24-cell are the midpoints of the 24 edges of the 16-cell. It has
24 octahedral cells. Eight of these cells are the vertex figures of
the 16-cell, and 16 are inscribed in the 16 tetrahedra of the 16-cell.
(For analogy, in Figure 17.20 of the truncated tetrahedron, 4 of the
8 faces of the inscribed octahedron are the vertex figures of the
tetrahedron, and the 4 remaining faces are inscribed in the faces
of the tetrahedron.) Each edge of the 24-cell is surrounded by 3
octahedra. The 24-cell has 24×12/3 � 96 edges and 24×8/2 � 96
triangular faces.

It is easier to visualize the remaining two regular polytopes pro-
jected to the 3-sphere S3 from the origin. For the spherical regular
polytope with Schläfli symbol {5, 3, 3}, we first construct a typical
cell, a spherical dodecahedron in S3. Recall from above that the di-
hedral angle of the Euclidean dodecahedron is δ ≈ 116.5650512◦. If
this dodecahedron is small, its metric properties are close to those
of the spherical dodecahedron of the same size. At the other ex-
treme, if a small spherical dodecahedron is inflated, at one stage it
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will cover an entire hemisphere in S3, and hence the dihedral angle
will become 180◦. By continuity, there must be a spherical dodec-
ahedron whose dihedral angle is 120◦. As expected, this puffy (and
tiny) dodecahedron is almost indistinguishable from its Euclidean
brother. Due to the fact that the dihedral angle is 120◦ � 2π/3, ex-
actly 3 of these dodecahedra fit together to share a common edge.
Hence, if we are able to tesselate S3 with spherical dodecahedra of
this size, the regular polytope obtained must have Schläfli symbol
{5, 3, 3}.

It turns out that this construction is possible, and we need 120
dodecahedra for the tesselation. For this reason, this polytope is
called the 120-cell.

The explicit construction of the 120-cell is technical. There is
an easy way, however, to see how these 120 dodecahedra fit to-
gether in S3, and it is based on the fact that, up to adjustment by
an isometry, the centroids of the dodecahedral cells can be consid-
ered as the 120 elements of the binary icosahedral group I∗ in S3

discussed in Section 23. Recall that in terms of the Clifford decom-
position of S3, I∗ is made up of the vertices of two regular decagons
inscribed in the orthogonal circles C±1, and the rest appear (in two
groups of 50) in the Clifford tori C±1/

√
5 (Figure 23.5). In view of

this, the 120-cell can be constructed as follows. First make a “neck-
lace” of 10 (spherical) dodecahedra such that the centroids of the
dodecahedra are the 10 elements of I∗ on C1. It turns out that these
dodecahedra have dihedral angle 120◦ as above. A pair of consecu-
tive dodecahedra in the necklace are pasted together at a common
pentagonal face. Each of the 5 edges of this common face is the
shared edge of two other pentagonal faces, one from each of the
consecutive dodecahedra. These two faces meet at a dihedral angle
of 120◦, so that another dodecahedron can be pasted in. Since we
have five edges (of the common pentagonal face), we can paste in
5 extra dodecahedra around the two consecutive dodecahedra in
the necklace. This cluster of 5 dodecahedra makes a “bulge” in the
necklace. Since the necklace has 10 places (of consecutive dodeca-
hedra) for this construction, we can add 10 bulges to the necklace,
a total of 10 × 5 dodecahedra. These, along with the original 10
dodecahedra, use up 60 dodecahedra, and give a “bumpy” polyhe-
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dral Clifford torus in S3. As computation shows, the centroids of
the dodecahedra in the bulges make up the 50 elements of I∗ in
C1/

√
5.

Finally, the entire construction can be repeated for C−1 and
C−1/

√
5, and the two bumpy Clifford tori fit together to form the

120-cell. (This visualization of the 120-cell also reveals that the
faces of each dodecahedral cell are contained in the perpendicular
bisectors of the line segments connecting the centroid (in I∗) of the
cell and the 2+5+5 nearby elements in I∗.)

The 120-cell has 120×12/2 � 720 faces (by double counting the
faces of the 120 dodecahedra), 120 × 30/3 � 1200 edges (since 3
dodecahedra share a common edge), and 120×20/4 � 600 vertices
(since 4 dodecahedra meet at a common vertex).

The reciprocal of the 120-cell is the 600-cell, a regular polytope
with 600 tetrahedral cells and Schläfli symbol {3, 3, 5}. A typical
cell is a puffy spherical tetrahedron with dihedral angle 72◦. As the
Schläfli symbol suggests, exactly 5 share a common edge. At each
vertex exactly 20 tetrahedra meet. (Indeed, consider the configu-
ration of rays tangent to the edges at a vertex. This configuration
intersected with a sphere around the vertex (within the tangent
space of S3 at the vertex) gives the vertices of a regular polyhe-
dron. This polyhedron must have the largest number of vertices;
that is, it must be a dodecahedron.) Since each of the 600 tetrahe-
dra contributes 4 vertices to the tesselation, and this way the total
number of vertices is overcounted 20 times, we see that the num-
ber of vertices of the tesselation is 600 × 4/20 � 120. Once again,
it turns out that up to an adjustment of the tessellation in S3 by an
isometry, these 120 vertices make up the binary icosahedral group
I∗ ⊂ S3. Finally, note that the 600-cell has 600 × 4/2 � 1200 faces,
and 600 × 6/5 � 720 edges.

We summarize our classification of regular polytopes in Table
26.1.

To search for new objects, we now go back to Section 16. Recall
that we had difficulty realizing certain nonorientable surfaces in
R3 because of self-intersections. We will now clarify this.

First some examples: Recall that the infinite Möbius band is
obtained by continuously sliding and tilting a straight line along a
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Table 26.1

Polytope Schläfli symbol V E F C

Pentatope {3, 3, 3} 5 10 10 5

Hypercube {4, 3, 3} 16 32 24 8

16-cell {3, 3, 4} 8 24 32 16

24-cell {3, 4, 3} 24 96 96 24

120-cell {5, 3, 3} 600 1200 720 120

600-cell {3, 3, 5} 120 720 1200 600

circle so that in a full round the line completes a half-turn. The mo-
tion of the intersection point of the line with the unit circle S1 takes
place in the Euclidean plane R2 and is conveniently parameterized
by θ  → (cos θ, sin θ), θ ∈ R (Figure 26.3).

The motion of the line takes place in another copy of R2

perpendicular to this, as shown in Figure 26.4.

Figure 26.3

θ
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θ/2

Figure 26.4

At (cos θ, sin θ) ∈ S1, this line must have slope tan(θ/2) because
of the half-turn matching condition. It can be parameterized by

t  → (t cos(θ/2), t sin(θ/2)), t ∈ R.

We obtain that the infinite Möbius band can be parameterized by

(θ, t)  →
(

cos θ, sin θ, t cos
(
θ

2

)
, t sin

(
θ

2

))
∈ R2 × R2 � R4.

Encouraged by being able to imbed the infinite Möbius band into
R4, we now take a look at two other nonorientable surfaces: the
Klein bottle K2 and the real projective plane RP2. In Section 16
we realized K2 by rotating a lemniscate in the same way as we
rotated a line to obtain the Möbius band. Another (the plumber’s)
way of depicting the Klein bottle in R3 is given in Color Plate 11.
Apart from the trunk, this picture of K2 is obtained by cutting and
pasting pieces of tori and cylinders. These pieces can actually be
given by analytical formulas! Slicing K2 along its symmetry plane
(with, say, a hacksaw), we obtain two halves of the Klein bottle,
one of which is shown in Color Plate 12. Taking a closer look, we
see that it is a Möbius band.4 So is the second half, and by pasting
we indeed get K2!

4Here is a limerick for the Klein bottle:
A mathematician named Klein

Thought the Möbius band was divine.
Said he, “If you glue

The edges of two
You’ll get a weird bottle like mine.”
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Figure 26.5

Remark.
♦ One fine point is worth noting. At the welding circles, the surface
is only once differentiable. This is because if a straight line and a
circle meet with the same tangent, as in Figure 26.5, then the joined
curve is continuously differentiable only up to first order. (Indeed,
the graph above is given by f : [−1,∞) → R, f(x) � √

1 − x2,
−1 ≤ x ≤ 0, and f(x) � 1, x ≥ 0. Now differentiate at x � 0.)
This lack of sufficient smoothness is a minor technical problem.
As shown in differential topology, there exists an infinitely many
times differentiable surface arbitrarily close to the one given.

♣This representation ofK2 in R3 self-intersects in a circle, where
the slim 3/4 torus penetrates into the trunk. To get rid of this self-
intersection, we now imbed K2(⊂ R3) into R4 using the inclusion
R3 ⊂ R4, and then modify the surface locally around this circle
so that the modified surface will not self-intersect in R4. For a
good lower dimensional analogy, consider the intersection of the
coordinate axes in R2; imbed R2 into R3 and “lift” one axis near
the origin. The “lifting” is obtained by introducing the so-called
bump-function f : R2 → R, whose graph is depicted in Figure 26.6.

Figure 26.6
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Analytically a bump is given by

f(p) �




exp
(

1
|p|2 − 1

)
, |p| < 1

0, |p| ≥ 1.

♦Notice that f is infinitely many times differentiable even along
the unit circle! (To show this, differentiate the exponential function
at points |p| �� 1, let |p| → 1, and use the fact from calculus that
exponential growth is faster than any polynomial growth, that is,
limx→∞ P(x)/ex � 0 for any polynomial P.)

♣ Bump functions can be “localized.” The function fr : R2 → R,
r > 0, defined by fr(p) � f(rp)/r, p ∈ R2, becomes “supported” on
the disk D1/r � {p ∈ R2 | |p| < 1/r} (that is, D1/r is the locus of
points on which fr is nonzero).

It is now obvious how to steer clear the two axes of R2 in R3.
Just take a bump function f and project one axis to the graph of f .

This process not only gives us a good clue but tells us what to do
to avoid self-intersections of K2 in R4. Just take the model of K2 in
R3 with a self-intersection circle assumed to be centered at the ori-
gin. Take a bump function f : R3 → R (and notice that we defined
f so that it immediately generalizes to any dimensions), localize
it on a sufficiently small open ball (so as to avoid interaction with
other parts of K2), and project the pipe that penetrates to the trunk
to the graph of fr. We obtain K2 in R4 without self-intersections!
This process can be generalized to any compact surface. A fancy
way of saying this is that any compact surface can be smoothly
imbedded into R4. (Imbedding refers to no self-intersections.)

Remark.
Taking this a little further, some apparently strange phenomena
emerge when dealing with objects in R4. For example, it is clear
what we mean by two circles being “linked” in R3. (Recall from
Section 22 that this happens to any two orbits of S1 acting on S3

defining the Hopf map.) Contrary to the evidence demonstrated
by some magicians, it is quite obvious that these two circles cannot
be unlinked by a continuous motion (homotopy) without breaking
one of the circles. The exact proof of this is quite easy once we
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are acquainted with some elements of homotopy theory. On the
other hand, if we place the circles (linked in R3) in R4, they can
be unlinked by moving one circle away from the coordinate space
R3 in the fourth direction. The popularly stated conclusion is that
one cannot be chained in R4!

The imbedding result above applies to the real projective plane
as well. Instead of repeating the previous argument, we will di-
rectly realize RP2—well, not quite in R4, but in S4. Leaving a point
out, we can use stereographic projection for S4 to get back to R4.
This imbedding will be defined by a map named after Veronese.
We first define the Veronese map f : S2 → S4 by

f(x, y, s) �
(

1√
6
(2x2 − y2 − s2),

1√
6
(2y2 − x2 − s2),

1√
6
(2s2 − x2 − y2),

√
3xy,

√
3xs,

√
3ys
)
,

(x, y, s) ∈ S2 ⊂ R3.

This is actually a map from R3 to R6, but we claim that it sends
the unit sphere S2 ⊂ R2 given by x2 + y2 + s2 � 1 to the unit
sphere S5 ⊂ R6. Indeed, we work out the sum of squares of the
coordinates:

|f(x, y, s)|2 � (1/6)((2x2 − y2 − s2)2 + (2y2 − x2 − s2)2

+ (2s2 − x2 − y2)2) + 3x2y2 + 3x2s2 + 3y2s2

� (x2 + y2 + s2)2.

Restricting to spheres, we thus land in S5. Taking a closer look at the
first three components of f , we see that they add up to zero. Thus
the image of f lies in the 5-dimensional linear subspace of R6 given
by the normal vector (1, 1, 1, 0, 0, 0) ∈ R6. Think of this linear
subspace as a copy of R5. This copy of R5 cuts from S5 ⊂ R6 a copy
of the 4-dimensional unit sphere S4! Thus, abusing the notation a
bit, we think of the Veronese map being given by f : S2 → S4.
The components of f are homogeneous quadratic polynomials in
the variables x, y, and s. In particular, f(−x,−y,−s) � f(x, y, s)

for all (x, y, s) ∈ S2. This means that f takes the same value on
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each antipodal pair of points in S2. It thus defines a map from the
quotient RP2 � S2/{±I}, so we end up with a map from RP2 to S4.
It is now a technical matter to check that this is an imbedding—
in particular, it is one-to-one, smooth, and its inverse (from the
image to RP2) is also smooth. As noted above, we can now apply
stereographic projection to obtain RP2 imbedded into R4.

The Roman surface discussed in Section 19 can be obtained from
the Veronese map as follows: Project R6 to the linear subspace
R3 spanned by the last three coordinate axes. The Veronese map
followed by this projection gives a map g : S2 → R3 defined by
g(x, y, s) � (xy, xs, ys), (x, y, s) ∈ S2 ⊂ R3, where we also deleted
the coefficient

√
3 by performing a central dilatation. Since x2 +

y2 + s2 � 1, the components a � xy, b � xs, c � ys satisfy the
equation

a2b2 + b2c2 + c2a2 � abc

defining the Roman surface!

Remark.
♦ A more subtle property of the Veronese imbedding is that RP2

sits in S4 as a “soap bubble,” a property that we term minimal. This
intuitively means that if we take a small piece of RP2 bounded
by a wireframe, the soap film in S4 stretched over the frame is
given by the Veronese map. Omitting the details, we only hint that
minimality is closely connected to the fact that the polynomial
components of the Veronese map are harmonic.

♠ Our ambition to understand surfaces such as the Klein bottle
and the real projective plane drove us right into four dimensions.
The inevitable conclusion is that if we want to do decent mathe-
matics, we have to be able to handle any dimensions. Continuing
this multidimensional thought eventually leads us to twenty-first-
century mathematics. Since we began these notes with the dawn
of mathematical thinking, it is perhaps appropriate to finish it with
a note from the nineties. Remember that in Section 17 we classi-
fied all finite subgroups of direct spatial isometries. Among these,
a prominent role was played by the tetrehedral, octahedral, and
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icosahedral groups. They, or more appropriately, their binary dou-
ble covers, can be realized as finite subgroups of quaternions in
S3 ⊂ H. Based on analogy with RP2 � S2/{±I}, in Section 23
we arrived at the tetrahedral S3/T∗, octahedral S3/O∗, and icosa-
hedral S3/I∗ “manifolds.” Can we view these in some perhaps
high-dimensional spheres in the same way as we viewed RP2 in
S4? The answer is yes. In fact, DeTurck and Ziller5 showed in 1992
that all these polyhedral manifolds can be imbedded minimally (as
spatial soap bubbles) into spheres of large dimension.

♣ We are now getting dangerously close to the research interests
of the author6 of these Glimpses. It is time to say goodbye. I hope
that you found enough motivation in the sublime beauty of the
objects discussed here to carry on with your studies!

Problems

1. Show that the 4-dimensional cube ([0, 1]4 ⊂ R4) can be sliced by 3-dimensional
hyperplanes to obtain a 3-dimensional cube, a regular tetrahedron, and a
regular octahedron.

2. (a) Show that each edge of the 4-dimensional cube is surrounded by three 3-
dimensional cubes. Interpret the Schläfli symbol {4, 3, 3} of the 4-dimensional
cube.

(b) Work out the number of vertices, edges, and faces of an n-dimensional
cube.

3. (a) Draw several 2-dimensional projections of a 4-dimensional tetrahedron.
(b) Show that each edge of the 4-dimensional tetrahedron is surrounded by

three 3-dimensional tetrahedra. Interpret the Schläfli symbol {3, 3, 3} of the
4-dimensional tetrahedron.

4. ♠ Let H denote the linear space of harmonic homogeneous quadratic polyno-
mials in three real variables. Show that the components of the Veronese map
span H so that H is 5-dimensional. (With respect to the L2-scalar product on H

5See “Minimal Isometric Immersions of Spherical Space Forms in Spheres,” Comment. Math. Helvetici 67
(1992) 428–458.
6The author determined the modular structure of the “space” of spherical soap bubbles in any dimensions
in “Eigenmaps and the Space of Minimal Immersions Between Spheres,” Indiana U. Math. J. 46 (1997) 637–
658. See also the author’s new monograph Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli,
Springer, 2002.
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defined by integration on S2, the first three components of the Veronese map
are the vertices of an equilateral triangle; the last three components form an
orthonormal basis in the orthogonal complement of the triangle.)

5. Consider a regular polytope with Schläfli symbol {a, b, c}. Show that the vertex
figures have Schläfli symbol {b, c}.

Film
T. Banchoff: The Hypercube: Projections and Slicing, Brown University; Interna-
tional Film Bureau Inc. (322 S. Michigan Ave., Chicago, IL 60604-4382).

No epilogue, I pray you—for your
play needs no excuse.

—W. Shakespeare,
A Midsummer’s Night’s Dream
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Sets

In native set theory, the concept of a set is undefined. You may
try to say that a set is a family or collection of objects, but these
words are just synonyms. We usually denote sets by uppercase
Latin letters: A, B, C, etc. If a is an element of A, we write a ∈ A.
Otherwise a /∈ A. A set A is contained in a set B, or A is a subset of
B, written as A ⊂ B if c ∈ A implies c ∈ B. Two sets A and B are
equal,A � B, ifA ⊂ B and B ⊂ A. The Cartesian product of two sets
A and B is the set A × B consisting of pairs (a, b) with a ∈ A and
b ∈ B. The union and intersection of two sets A and B are defined
by

A ∪ B � {c | c ∈ A or c ∈ B}
and

A ∩ B � {c | c ∈ A and c ∈ B}.
A map f from a set A to a set B, denoted by f : A → B, is a rule that
assigns to each element a ∈ A an element b ∈ B. If b is assigned to
a, then we write b � f(a) and say that b is the value of f on a. The
set A is the domain of f , the set B is the range of f , and the image
of f is the subset f(A) � {b ∈ B | b � f(a) for some a ∈ A} of B.

397
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The graph of f is the subset ofA×B defined by {(a, f(a)) | a ∈ A}.
The map f : A → B is one-to-one if a1 �� a2 implies f(a1) �� f(a2).
The map f is onto if f(A) � B. Finally, f : A → B is a one-to-one
correspondence if f is one-to-one and onto. In this case the inverse
f −1 : B → A of f exists, with f(a) � b if f −1(b) � a, a ∈ A, b ∈ B.

Two sets have the same cardinality if there is a one-to-one cor-
respondence between them. If A is finite, |A| denotes the number
of elements in A. A set is countable if it has the same cardinality
as the set of positive integers. The set of all real numbers is not
countable.

If f : A → B and g : B → C are maps, then the composition
g ◦ f : A → C is the map given by (g ◦ f)(a) � g(f(a)), a ∈ A. The
inverse of f , if it exists, can be defined by saying that f −1 ◦ f � IA
and f ◦ f −1 � IB. Here IA : A → A is the identity map on A—that
is, IA(a) � a, a ∈ A,—and similarly, IB is the identity map on B.
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Groups

An operation on a set A is a map f : A × A → A. It associates to
a pair (a1, a2) ∈ A × A the element f(a1, a2) of A. We usually write
f(a1, a2) � a1 ∗ a2, a1, a2 ∈ A, and call ∗ an operation on A. The
operation ∗ on A is associative if

(a1 ∗ a2) ∗ a3 � a1 ∗ (a2 ∗ a3), a1, a2, a3 ∈ A,

and commutative if

a1 ∗ a2 � a2 ∗ a1, a1, a2 ∈ A.

A group G is a set on which an associative operation ∗ : G×G → G

is given such that

1. There exists a unique element e ∈ G, called the identity, such
that e ∗ g � g ∗ e � g for all g ∈ G;

2. Each element g ∈ G possesses a unique inverse g−1 ∈ G such
that g ∗ g−1 � g−1 ∗ g � e.

A groupG is called abelian if it is commutative. In specific groups
the operation ∗ is written as addition or multiplication. Additive
terminology always assumes that the group is Abelian.

If a group G is finite, then the number of elements |G| in G is
called the order of G.

399
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H ⊂ G is a subgroup if the group operation ∗ on G restricts to H,
and defines a group structure on H.

The intersection of two subgroups is always a subgroup. Given
two groups G and H the Cartesian product G × H carries a group
structure. In fact (with obvious notations) we define (g1, h1) ∗
(g2, h2) � (g1 ∗ g2, h1 ∗ h2), g1, g2 ∈ G, h1, h2 ∈ H.

A homomorphism f : G → H between groups is a map of the
underlying sets such that

f(g1 ∗ g2) � f(g1) ∗ f(g2), g1, g2 ∈ G.

The image of a homomorphism f : G → H is always a sub-
group of H. The kernel of f : G → H is the subgroup defined
by ker (f) � {g ∈ G | f(g) � e}. A homomorphism is one-to-one
iff its kernel is trivial (that is, consists of the identity element
alone). A homomorphism that is a one-to-one correspondence be-
tween the underlying sets is called an isomorphism. Two groups
G and H are called isomorphic, written as G ∼� H, if there is
an isomorphism f : G → H. The composition of homomor-
phisms is a homomorphism. The inverse of an isomorphism is
an isomorphism.

Given a group G and a subset G ⊂ G, the smallest subgroup of G
that contains G is called the subgroup generated by G; it is denoted
by 〈G〉. In particular, if 〈G〉 � G, then G is generated by G; if G is
finite, we say that G is finitely generated.

If g ∈ G, the subgroup 〈g〉 consists of all integral powers of g,
that is, 〈g〉 � {e, g±1, g±2, . . .} (g0 � e). This is called the cyclic sub-
group generated by g. If all integral powers of g are distinct, then 〈g〉
is called infinite cyclic. If two powers of g with distinct exponents
coincide, then there is a least positive integer n such that gn � e.
In this case g is said to have order n, and 〈g〉 consists of n elements:
〈g〉 � {e, g, . . . , gn−1}. We say that 〈g〉 is cyclic of order n. Two cyclic
groups are isomorphic iff their underlying sets have the same car-
dinality. Infinite cyclic groups are denoted by the symbol C∞, and
finite cyclic groups of order n are denoted by Cn.

If G is an abelian group, then the elements of finite order in G

form a subgroup called the torsion subgroup Gtor. If, in addition, G



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

B. Groups 401

is finitely generated, then Gtor is finite, and we have

G ∼� Gtor × Cr
∞,

where r is called the rank of G.
A permutation on a set A � {a1, . . . , an} is a one-to-one cor-

respondence f : A → A. A permutation is usually given
as (

a1 . . . an
f(a1) . . . f(an)

)

We usually assume that A � {1, 2, . . . , n}. The set of all permu-
tations form a group Sn, called the symmetric group on n letters.
We have |Sn| � n! A subgroup of Sn is called a permutation
group. Every finite group is isomorphic to a permutation group.
A permutation in Sn is called a transposition if it switches two ele-
ments in {1, 2, . . . , n} and leaves the other elements fixed. Every
permutation can be written as the composition of finitely many
transpositions. This decomposition is not unique, but the parity
(even or odd) of the number of transpositions occuring in the com-
position is. We say that a permutation is even if it can be written
as a composition of an even number of transpositions. Otherwise
the permutation is odd. The alternating group An, n ≥ 2, is the
subgroup of Sn that consists of all even permutations. We have
|An| � n!/2.

Given a group G and a subgroup H, the left-coset of H by g ∈ G is
the subset gH � {gh | h ∈ H}. The set of left-cosets gives a partition
of the underlying subset of G. The quotient G/H of G by H is the
set of all left-cosets:

G/H � {gH | g ∈ G}.
The number of distinct left-cosets is the index of H in G denoted
by [G : H] � |G/H|. (This notation usually assumes that G/H
is finite.) G/H is a group under the multiplication (g1H)(g2H) �
(g1g2)H, g1, g2 ∈ G, iff H is a normal subgroup in G; that is, iff
gHg−1 � H for all g ∈ G. The kernel of a homomorphism f : G →
H is always normal, and the quotient groupG/ ker (f) is isomorphic
to the image of f . A subgroup of index 2 (such as An in Sn) is always
normal, and the quotient is C2.
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A group is simple if it has no normal subgroups other than itself
and the trivial subgroup (consisting of the identity element alone).
The alternating group An is simple for n ≥ 5.

A group G is said to act on a set A if, to each element g ∈ G, there
is associated a one-to-one correspondence fg : A → A. In addition,
we require that fe � IA, fg−1 � (fg)

−1, g ∈ G, and fg1g2 � fg1 ◦ fg2 ,
g1, g2 ∈ G. Given an action of G on A, we usually write g instead
of fg. If G acts on A, then the orbit through a ∈ A is the subset

G(a) � {g(a) | g ∈ G} ⊂ A.

The isotropy at a ∈ A is the subgroup

Ga � {g ∈ G | g(a) � a}.
The map that sends the left-coset gGa, g ∈ G, to g(a) establishes
a one-to-one correspondence between the quotient G/Ga and the
orbit G(a). G acts transitively on G(a) in the sense that any two
points in the orbit G(a) can be carried into each other by suitable
elements of G.
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Topology

Given a set X, a topology on X is a family T � {Uα ⊂ X | α ∈ A} of
subsets of X indexed by a set A with the following properties:

1. ∪α∈BUα ∈ T for any B ⊂ A;
2. Uα ∩ Uβ ∈ T for any α, β ∈ A;
3. ∅, X ∈ T .

The elements of a topology on X are called open subsets of X. If
a topology T is given on X, then X is said to be a topological space
(with T suppressed). A topological space X is Hausdorff if for any
two distinct points x1, x2 ∈ X there exist disjoint open sets U1 and
U2 such that x1 ∈ U1 and x2 ∈ U2. (The Hausdorff property is
sometimes included in the definition of topology.)

Given a set X, a distance function on X is a map d : X × X → R
such that

1. d(x1, x2) ≥ 0, x1, x2 ∈ X, and equality holds iff x1 � x2;
2. d(x1, x2) � d(x2, x1), x1, x2 ∈ X;
3. d(x1, x2) + d(x2, x3) ≥ d(x1, x3), x1, x2, x3 ∈ X (triangle

inequality).

A set X with a distance function d is called a metric space. Given
a metric space X with a distance function d, the metric ball with
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center at x0 ∈ X and radius r > 0 is defined as

Br(x0) � {x ∈ X | d(x, x0) < r}.
A subset U ⊂ X is called open if for every x0 ∈ U there exists

ε > 0 such that Bε(x0) ⊂ U . In other words, the open sets are
unions of metric balls. The triangle inequality ensures that metric
balls are open. The open sets form a topology Td on X called the
metric topology. The metric topology is always Hausdorff.

In the set R of all real numbers, the Euclidean distance between
two real numbers x1, x2 ∈ R is d(x1, x2) � |x1 − x2|. This defines the
Euclidean (metric) topology on R. An open set in R is nothing but
the union of (countably many) open intervals in R. Similarly, in
then-dimensional number space Rn the Euclidean distance defines
the Euclidean topology in Rn.

Given a topological space X with topology T , a subset Y ⊂ X

inherits a topology from T by declaring that the open sets in Y are
intersections of the elements in T and Y . We say that Y carries the
subspace topology.

Given two topological spaces X and Y , the Cartesian product X ×
Y carries a topology by declaring that the open sets in X × Y are
unions of sets U × V , where U is open in X and V is open in Y .

A subsetY ⊂ X of a topological space X with topology T is called
closed if its complement X − Y is open, that is, X − Y ∈ T .

Given a subset Y ⊂ X of a topological space X, the closure Ȳ of Y
is the intersection of all closed sets in X that contain Y . The closure
Ȳ of Y is the smallest closed set that contains Y . In the Euclidean
topology, the closure of an open interval (a, b) ⊂ R is the closed
interval [a, b] ⊂ R.

A map f : X → Y between topological spaces is continuous at
x0 ∈ X if for every open set V in Y that contains f(x0) there exists
an open set U in X containing x0 such that f(U) ⊂ V . This gener-
alizes the usual Cauchy definition of continuity of real functions.
A function f : X → Y is continuous if it is continuous at every
point of X. f : X → Y is continuous iff the inverse image f −1(V)

of any open set V in Y is open in X. A one-to-one correspondence
f : X → Y between topological spaces such that f and f −1 are
continuous is called a homeomorphism. Two topological spaces are
homeomorphic if there is a homeomorphism between them.
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Given a topological space X and a partition P of X into mutually
disjoint subsets {Xα | α ∈ A}, the family X/P of these disjoint sub-
sets can be made a topological space by requiring that a subset V
of X/P be open if the union U of Xα’s that participate in V is open
in X. This definition is used to define “pasting” topological spaces
as follows: Given two topological spaces X and Y and a homeo-
morphism f : X1 → Y1 between subspaces X1 ⊂ X and Y1 ⊂ Y ,
pasting X and Y along f is the quotient X ∪f Y � (X ∪ Y)/Pf ,
where Pf is a partition of X ∪ Y defined as follows: Any point in
(X −X1)∪ (Y −Y1) is a one-element subset of the partition Pf and,
for x ∈ X1, {x, f(x)} is a two-element subset in Pf . (In (X ∪ Y)/Pf ,
the points that are “pasted together” are x and f(x), x ∈ X1.)

A topological space X is compact if from any covering of X
by open subsets, finitely many members can be extracted that
still cover X. A closed subspace of a compact Hausdorff space is
compact. The continuous image of a compact topological space is
compact. R with respect to the Euclidean topology is noncompact.
A subspace X ⊂ Rn is compact iff X is closed and contained in a
metric ball.
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Smooth Maps

A real-valued function f : U → R of an open set U in Rn is said
to be smooth if f possesses continuous partial derivatives up to any
order on U . A map f : U → Rm is smooth if each component
of f is smooth. Given any subsets X ⊂ Rn and Y ⊂ Rm, a map
f : X → Y is smooth if there exists an open set U ⊂ Rn covering
X and a smooth extension of f̃ : U → Rm of f , that is f̃ |X � f .

A smooth map f : X → Y between subsets X ⊂ Rn and Y ⊂ Rm

is a diffeomorphism if f is a one-to-one correspondence and f −1 :
Y → X is also smooth. X ⊂ Rn and Y ⊂ Rm are diffeomorphic if
there is a diffeomorphism f : X → Y . In this case m � n.

Given a smooth map f : U → V between open sets U ⊂ Rn

and V ⊂ Rm, the Jacobi matrix of f at x0 is the m × n matrix
given by Jac (f)x0 � (∂f i/∂xj)

m,n

i�1,j�1, where the partial derivatives
are evaluated at x0. Multiplication by Jac (f)x0 gives a linear map
(df)x0 : Rn → Rm called the differential of f at x0. If Jac (f)x0 is non-
singular, then m � n and f is a local diffeomorphism at x0. This
means that there exists an open set U0 ⊂ U covering x0 and an
open set V0 ⊂ V covering f(x0) such that the restriction f |U0 is a
diffeomorphism of U0 to V0. The determinant of the Jacobi matrix
of f at x0 is called the Jacobian of f at x0. If it is positive, then we say
that f is orientation preserving at x0. If it is negative, we say that f is
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orientation reversing at x0. If Jac (f) is nonsingular on a connected
open setU , then either f is orientation preserving at every point of
U or f is orientation reversing at every point of U . In this case we
simply say that f is orientation preserving or orientation reversing.

In particular, if f : U → C is a complex function defined on
an open set U ⊂ C, and at z0 ∈ U the complex derivative f ′(z0)

is nonzero, then Jac (f)z0 is nonsingular and f is a local diffeomor-
phism at z0. Moreover, the Jacobian of f at z0 is |f ′(z0)|2, so f is
orientation preserving at z0.

Composition of smooth maps corresponds to composition of
their differentials, which in turn corresponds to the product of
their Jacobi matrices. By the product theorem for determinants,
composition follows the usual parity rule; for example, the compo-
sition of two orientation-reversing diffeomorphisms is orientation
preserving.
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The
Hypergeometric
Differential
Equation and the
Schwarzian

We summarize1 here some facts on the solutions of second-order
homogeneous linear differential equations of the form

z′′ � p(w)z′ + q(w),

where p and q are rational functions of the complex variable w ∈ C.
A pointw0 is said to be an ordinary point of the differential equation
if p and q have removable singularities at w0, i.e., if w0 is not a pole
for p and q. This concept is also extended to w0 � ∞ as follows.
The substitution w̃ � 1/w interchanges 0 and ∞, and since

dz

dw
� −w̃2 dz

dw̃
,

d2z

dw2
� 2w̃3 dz

dw̃
+ w̃4 d

2z

dw̃2
,

the transformed differential equation has the form

d2z

dw̃2
� −

(
2
w̃

+ 1
w̃2

p

(
1
w̃

))
dz

dw̃
+ 1

w̃4
q

(
1
w̃

)
z.

1For more information, see L. Ahlfors, Complex Analysis, McGraw-Hill, Inc., 1979.
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We say that w0 � ∞ is an ordinary point of the original equa-
tion if w̃0 � 0 is an ordinary point for the transformed equation.
This is the case when −(2w+w2p(w)) andw4q(w) have removable
singularities at w0 � ∞.

Ifw0 is an ordinary point of our differential equation, then p and
q are analytic at w0, and hence there exists a local solution z (de-
fined on an open neighborhood of w0) with arbitrarily prescribed
values z(w0) � z0 and z′(w0) � z′0. The local solution z is analytic
atw0, and its germ atw0 is uniquely determined. (Indeed, a simple
induction in the use of the Cauchy inequality shows that a formal
power series expansion z � ∑∞

n�0 an(w − w0)
n has positive radius

of convergence.) Analytic continuation along curves that avoid the
poles of p and q extends any local solution to a global solution. The
global solution is, in general, multiple-valued.

We now begin to study the behavior of the solutions of our differ-
ential equation near a singular point w0. We first assume that w0 is
the simplest possible singularity in the sense that both p and q have
only simple poles at w0. For simplicity, we assume that w0 � 0.
(This can always be attained by replacingw−w0 withw.) We write
the Laurent expansions of p and q at w0 � 0 as follows:

p(w) � p−1

w
+ p0 + p1w + · · · ,

q(w) � q−1

w
+ q0 + q1w + · · · .

Once again, if we substitute the formal power series z � ∑∞
n�0 anw

n

into the differential equation, we find that only a0 can be cho-
sen arbitrarily, and the recurrence formula for the coefficients an
works only under the condition that p−1 �∈ {0, 1, 2, . . .}. With this
restriction there is always an analytic solution in a neighborhood
of w0.

The most general case for which this process gives an explicit
solution is that in which w0 is a regular singular point of the dif-
ferential equation, i.e., when p has at most a simple pole at w0,
and q has at most a double pole at w0. Assume that w0 is a regular
singular point. We seek a solution of the form z � (w − w0)

αg(w),
where g is analytic and nonzero at w0. Once again, setting w0 � 0
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and substituting, we find that g satisfies the differential equation

g′′ �
(
p(w) − 2α

w

)
g′ +

(
q(w) + αp(w)

w
− α(α − 1)

w2

)
g.

If we choose α to satisfy the indicial equation

α(α − 1) � p−1α + q−2,

where

q(w) � q−2

w2
+ q−1

w
+ q0 + q1w + · · · ,

then in the differential equation for g, the coefficients have at most
simple poles at w0 � 0, so that the previous discussion applies.
We obtain that the original differential equation has a solution of
the form z � wαg(w), where g is analytic and nonzero at w0 � 0,
provided that p−1 − 2α �∈ {0, 1, . . .}. Here α is one of the two indicial
roots α1, α2, solutions of the indicial equation. Since α1 + α2 �
p−1 + 1, the condition for the existence of a solution z � wαg(z)

as above for α � α1 is equivalent to α2 − α1 �∈ {1, 2, . . .}. Switching
the roles of α1 and α2, we see that our differential equation has
two linearly independent solutions of the form z1 � wα1g1(w) and
z2 � wα2g2(w), provided that α1 − α2 is not an integer.

Theorem.
If w0 is a regular singular point of the differential equation

z′′ � p(w)w′ + q(w),

then there exist linearly independent solutions of the form

(w − w0)
α1g1(w) and (w − w0)

α2g2(w),

where α1,α2 are the solutions of the indicial equation

α(α − 1) � p−1α + q−2,

and g1,g2 are analytic and nonzero at w0, provided that α1 − α2 is not
an integer. If α2 − α1 is a nonnegative integer, then there is always one
solution of the form (w−w0)

α1g1(w), where g1 is analytic and nonzero
at w0.
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A simple analysis shows that our differential equation with one
or two regular singular points (and all other points ordinary) can
be explicitly solved. To get something new, we thus assume that we
have three regular singular points. Since a linear fractional trans-
formation does not change the structure of the differential equation
(including the character of the singularities), we may assume that
the three regular singular points are 0, 1, and ∞ (in fact, by the
results of Section 12, any three points in the extended complex
plane Ĉ can be mapped to 0, 1, and ∞ by a suitable linear frac-
tional transformation). Since 0 and 1 are regular singular points
(and all other points are ordinary), we must have

p(w) � A

w
+ B

w − 1
+ P(w),

q(w) � C

w2
+ D

w
+ E

(w − 1)2
+ F

w − 1
+ Q(w),

where P and Q are polynomials. Since the singularity at ∞ is also
regular, 2w + w2p(w) must have at most a simple pole at ∞, and
w4q(w)must have at most a double pole at∞. The former condition
amounts to the vanishing of P, the latter to the vanishing of Q and
D + F . We obtain

p(w) � A

w
+ B

w − 1
,

q(w) � C

w2
− D

w(w − 1)
+ E

(w − 1)2
.

We now bring in the indicial equations. At w0 � 0 the indicial
equation is

α(α − 1) � Aα + C.

Letting α1, α2 denote the indicial roots, we have A � α1 + α2 − 1
and C � −α1α2. Similarly, at w0 � 1, the indicial equation is

β(β − 1) � Bβ + E.

If β1, β2 are the roots, then B � β1 + β2 − 1 and E � −β1β2.
Finally, since at w0 � ∞ the leading coefficients of −2w−w2p(w)

and w4q(w) are −(2 + A+ B) and C − D + E, the indicial equation
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at w0 � ∞ is

γ(γ − 1) � −(2 + A + B)γ + C − D + E.

If γ1, γ2 are the roots, then we have γ1 + γ2 � −A − B − 1 and
γ1γ2 � −C + D − E. Expressing A, B, C, D, E in terms of the six
roots, our differential equation takes the form

z′′ +
(

1 − α1 − α2

w
+ 1 − β1 − β2

w − 1

)
z′

+
(
α1α2

w2
− α1α2 + β1β2 − γ1γ2

w(w − 1)
+ β1β2

(w − 1)2

)
z � 0,

and

α1 + α2 + β1 + β2 + γ1 + γ2 � 1.

This is called the hypergeometric differential equation. The solutions
of the hypergeometric differential equation are called hypergeo-
metric functions. By construction, the hypergeometric differential
equation is the canonical form of a homogeneous second-order
differential equation with exactly three regular singular points
(and ordinary points elsewhere). The hypergeometric differential
equation is often written in the equivalent form

z′′ − z′

w(w − 1)

(
(1 − α1 − α2) − (1 + γ1 + γ2)w

)
+ z

w2(w − 1)2
(
α1α2 − (α1α2 − β1β2 + γ1γ2)w + γ1γ2w

2) � 0.

From now on, we assume that none of the differences α1 − α2,
β1 −β2, γ1 − γ2 is an integer. To simplify and at the same time solve
the hypergeometric differential equation, we recall that the substi-
tution wαg(w) determines for g a similar differential equation. As
a simple computation shows, the indicial roots of the differential
equation for g are α1 − α and α2 − α, and the indicial roots at ∞ are
γ1 + α and γ2 + α. Introducing (somewhat prematurely) Riemann’s
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notation, we express this as

P




0 1 ∞
α1 β1 γ1

α2 β2 γ2

, w


 � zαP




0 1 ∞
α1 − α β1 γ1 + α

α2 − α β2 γ2 + α

, w


 .

Here the Riemann P-function on the left-hand side stands for all
locally defined solutions of our differential equation, and the equal-
ity means that any local solution is equal to a solution of the
differential equation for g multiplied by zα, and the indicial roots
undergo the changes as indicated. (We are not going into the proper
interpretation of relations like this; in particular, we will not discuss
unicity in any detail. We find, however, this notation undeniably
suitable for tabulating the indicial roots.) We can also separate the
factor (w − 1)β from g and obtain

P




0 1 ∞
α1 β1 γ1

α2 β2 γ2

, w




� wα(w − 1)βP




0 1 ∞
α1 − α β1 − β γ1 + α + β

α2 − α β2 − β γ2 + α + β

, w


 .

Up to this point, α and β did not have any preassigned values. We
now set α � α1 and β � β1. After separating the factorwα1(w−1)β1 ,
the remaining functions

P




0 1 ∞
0 0 γ1 + α1 + β1

α2 − α1 β2 − β1 γ2 + α1 + β1

, w




satisfy the hypergeometric differential equation

z′′ +
(
c

w
+ 1 − c + a + b

w − 1

)
z′ + ab

w(w − 1)
z � 0.

Here we used classical notation

a � α1 + β1 + γ1, b � α1 + β1 + γ2, c � 1 + α1 − α2,
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noting also that

c − a − b � β2 − β1.

Multiplying out, we can write this differential equation as

w(1 − w)z′′ + (c − (a + b + 1)w)z′ − abz � 0.

This equation has a solution in the form z � ∑∞
n�0 Anw

n. In fact,
substituting we find an embarrassingly simple recurrence relation
that, up to a constant multiple, gives the solution

F(a, b, c, w) � 1 + a · b
1 · c w + a(a + 1) · b(b + 1)

1 · 2 · c(c + 1)
w2

+ a(a + 1)(a + 2) · b(b + 1)(b + 2)
1 · 2 · 3 · c(c + 1)(c + 2)

w3 + · · · .

In a similar vein, setting α � α2 and β � β1, after separating the
factor wα2(w − 1)β1 , the remaining functions are

P




0 1 ∞
α1 − α2 0 γ1 + α2 + β1

0 β2 − β1 γ2 + α2 + β1

, w


 .

Rewriting this in terms of the parameters a, b, c, we find that
w1−cF(1 + a − c, 1 + b − c, 2 − c, w) is another solution linearly
independent of F(a, b, c, w). (The factor w1−c � wα2−α1 makes up
the quotient wα2(w − 1)β1/wα1(w − 1)β1 .)

Linearly independent solutions near 1 can be found using the
identity

P




0 1 ∞
α1 β1 γ1

α2 β2 γ2

, w


 � P




0 1 ∞
β1 α1 γ1

β2 α2 γ2

, 1 − w


 .

Solutions near ∞ can be written down in an analogous way.
Summarizing, we find that up to various multiplicative powers

of the independent variable (depending on the indicial roots at 0,
1, and ∞), all solutions of the hypergeometric differential equation
can be written in terms of the hypergeometric functions F .
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We now return to the general setting and consider again our
differential equation

z′′ � p(w)z′ + q(w)z,

where p and q are rational functions. Given two linearly indepen-
dent but possibly multiple-valued solutions z1 and z2, any solution
of the differential equation can be written as a linear combina-
tion of z1 and z2. Consider the ratio z � z1/z2. (We are overusing
the symbol z a little here. Whether z stands for the ratio z1/z2 or
for the general variable in our differential equation will be clear
in the text.) If instead of z1 and z2 we choose a different pair
of linearly independent solutions, then the corresponding ratio
will be a linear fractional transformation applied to z. Indeed, if
z̃1 � az1 + bz2 and z̃2 � cz1 + dz2 (a, b, c, d ∈ C, ad − bc � 1), then
z̃ � z̃1/z̃2 � (az + b)/(cz + d).

Remark.
Considering closed paths based at a fixed point (and away from the
poles of p and q), analytic continuation of solutions along these
paths give rise to the concept of monodromy, a homomorphism
of the fundamental group of Ĉ minus the poles of p and q into
SL(2, C). In 1873 Schwarz classified all hypergeometric differential
equations with finite monodromy.

This motivates us to seek a differential expression S that remains
invariant under all linear fractional transformations. Among the
four quantities a, b, c, d there is a relation ad − bc � 1, so that S
must be a third-order differential operator. An explicit expression
for S can be derived in complete generality as follows. We let z be
an analytic function and z̃ � (az + b)/(cz + d). Suppressing the
variable w ∈ C, we write this as

czz̃ + dz̃ − az − b � 0.

Differentiating, we obtain

c(z′z̃ + zz̃′) + dz̃′ − az′ � 0,

c(z′′z̃ + 2z′z̃′ + zz̃′′) + dz̃′′ − az′′ � 0,

c(z′′′z̃ + 3z′′z̃′ + 3z′z̃′′ + zz̃′′′) + dz̃′′′ − az′′′ � 0.
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We view these three equations as a linear system for a, c, and d.
Its determinant, after canceling the highest-order derivative mixed
terms by column operations, is

−

∣∣∣∣∣∣∣
0 z̃′ z′

2z′z̃′ z̃′′ z′′

3z′′z̃′ + 3z′z̃′′ z̃′′′ z′′′

∣∣∣∣∣∣∣ .
This determinant must vanish, since ad − bc � 1. Expanding and
grouping similar terms together, we obtain(

z̃′′

z̃′

)′
− 1

2

(
z̃′′

z̃′

)2

�
(
z′′

z′

)′
− 1

2

(
z′′

z′

)2

.

This tells us that S should be defined as

S(z) �
(
z′′

z′

)′
− 1

2

(
z′′

z′

)2

.

We call S(z) the Schwarzian of z. By our computations, the
Schwarzian is invariant under linear fractional transformations.
Conversely, if the Schwarzians of two analytic functions coincide,
then the two functions differ by a linear fractional transformation.
This follows from unicity of solutions of third-order differential
equations.

We now return to the main line. If z1 and z2 are linearly inde-
pendent solutions of our differential equation, then the Schwarzian
S(z) of the ratio z � z1/z2 will not depend on the particular choice
of z1 and z2, but only on the coefficients p and q. To work out this
dependence explicitly, we fix a choice for z1 and z2. Since they both
satisfy our differential equation, we have

z′′1z2 − z1z
′′
2 � p(w)(z′1z2 − z1z

′
2).

Using this, we work out the ingredients of the Schwarzian
derivative of z. We have

z′ � z′1z2 − z1z
′
2

z2
2

.

Logarithmic differentiation gives

z′′

z′
� (ln z′)′ � (ln(z′1z2 − z1z

′
2))

′ − 2(ln z2)
′ � z′′1z2 − z1z

′′
2

z′1z2 − z1z
′
2
− 2

z′2
z2
.
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Combining this with the above, we obtain

z′′

z′
� p − 2

z′2
z2
.

Finally, we compute

S(z) �
(
z′′

z′

)′
− 1

2

(
z′′

z′

)2

� −
(
−p + 2

z′2
z2

)′
− 1

2

(
−p + 2

z′2
z2

)2

� p′ − 1
2
p2 − 2

z′′2 − pz′2
z2

� p′ − 1
2
p2 − 2q.

Summarizing, we obtain that if z1 and z2 are linearly indepen-
dent solutions of our differential equation, then z � z1/z2 has
Schwarzian derivative

S(z) � p′ − 1
2
p2 − 2q.

We see that to every third-order differential equation of the form

S(z) � s,

with s a rational function, there corresponds a homogeneous
second-order linear differential equation via

s � p′ − 1
2
p2 − 2q.

The rational function s obviously does not determine the coeffi-
cients p and q uniquely.
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Galois Theory

We review here some basic ingredients of Galois theory.1 A field K
is a set equipped with two operations: + (addition) and × (multipli-
cation), such thatK is an abelian group with respect to the addition,
K − {0} is an abelian group with respect to the multiplication, and
the distributive law holds in K. The prime subfield of a field K is
the intersection of all subfields of K. The prime subfield is either
isomorphic to the field Q of rational numbers, or the field Zp, for
some prime p. In the former case, we say that K has zero character-
istic, in the latter that K has characteristic p. All fields considered
here will be of characteristic zero.

Given a field extension k ⊂ K (k is a subfield ofK), written asK/k,
the degree [K : k] of K/k is the dimension of K as a linear space
over k. If k ⊂ L ⊂ K is a chain of field extensions, then [K : k] �
[K : L][L : k]. We say that the field extension K/k is finite if [K : k] is
finite. For example, a field extension K/k is quadratic if [K : k] � 2.
A quadratic field extension K/k can be obtained by adjoining a
square root

√
δ to k, where δ ∈ k but

√
δ �∈ k; we write the extension

as K � k(
√
δ). A k-automorphism of K is an automorphism of K that

1For more details, see M. Artin, Algebra, Prentice Hall, 1991, or I. Stewart, Galois Theory, Chapman and
Hall, 1973.

419
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fixes k. The Galois group G � G(K/k) of the extension K/k is the
group of k-automorphisms of K. If K/k is a finite field extension,
then the Galois group G is finite. For any finite field extension K/k,
the order |G| of G divides [K : k]. We call K/k a Galois extension if
|G| � [K : k]. If K/k is Galois then the fixed field KG is equal to k.
Conversely, if G is a finite group of automorphisms of a field K and
k � KG denotes its fixed field, then K/k is a Galois extension with
Galois group G. Given a Galois extension K/k with Galois group G,
there is a one-to-one correspondence between the subgroups H of
G and the intermediate fields k ⊂ L ⊂ K. The correspondence is
given by L � KH and H � G(K/L). We also have [K : L] � |H| and
[L : k] � [G : H]. In addition, L/k is Galois iff H is normal in G,
and in this case, G(L/k) � G/H.

Let k[z] denote the ring of polynomials with coefficients in k in
the variable z. Given a nonconstant monic polynomial P ∈ k[z], a
splitting field for P over k is an extension field K such that P factors
into linear factors inK, andK is the smallest extension of kwith this
property. A splitting field K is generated over k by the roots of P. A
splitting field always exists and is unique up to a k-isomorphism,
an isomorphism between the splitting fields that fixes the common
ground field k. A splitting field over k is always a Galois extension
of k. Conversely, any Galois extension of k is the splitting field of
some polynomial P ∈ k[z]. If P ∈ k[z] is irreducible, then the Galois
group G of the splitting field of P is uniquely determined by P. For
this reason, we say that G is the Galois group of P.

Given a splitting field K of a polynomial P ∈ k[z] of degree n

over k with roots z1, . . . , zn, the Galois group G acts on the roots
faithfully, so that G can be thought of as a subgroup of the sym-
metric group Sn on n letters. The action on the roots is transitive
iff P is irreducible over k. The discriminant δ of P is

δ �
∏

1≤j<l≤n
(zj − zl)

2.

The discriminant is nonzero iff P has distinct roots. In particu-
lar, this is the case if P is irreducible (since otherwise, P and
its derivative P ′ would have a common divisor). Being fixed by
Sn, δ is contained in k. In addition,

√
δ ∈ k iff G is a subgroup

of the alternating group An ⊂ Sn. In general, we always have
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G(K/k(
√
δ)) ⊂ An, so that by adjoining

√
δ to k (at the expense

of a quadratic extension) we can make G a subgroup of An.
Let K/k be a Galois extension with Galois group G. Given z∗ ∈

K − k, consider the orbit

G(z∗) � {z∗1 , . . . , z∗n∗}
and the polynomial

P∗(z) �
n∗∏
j�1

(z − z∗j ).

Then P∗ ∈ k[z] is irreducible and [k(z∗) : k] � n∗. In particular, n∗

divides |G|. If K is the splitting field of a polynomial P ∈ k[z] with
roots z1, . . . , zn, then z∗ is a rational function of the roots z1, . . . , zn.
In this case we call P∗ a resolvent polynomial of P.

Example
Let K be the splitting field of an irreducible quartic P ∈ k[z] with
roots z1, z2, z3, z4. Let

z∗1 � (z1 + z2)(z3 + z4),

z∗2 � (z1 + z3)(z2 + z4),

z∗3 � (z1 + z4)(z2 + z3).

These elements are distinct, since P is irreducible (cf. the argu-
ment at the end of Section 6). The symmetric group S4 acts on
{z∗1 , z∗2 , z∗3} transitively. If the Galois group G ⊂ S4 is also transitive
on {z∗1 , z∗2 , z∗3}, then the resolvent cubic

P∗(z) �
3∏
j�1

(z − z∗j )

of P is irreducible over k, and G is A4 or S4 according as
√
δ ∈ k or√

δ /∈ k.
Let w ∈ C, and consider the splitting field of the polynomial

P(z) � zn − w,

where n ≥ 2 is an integer. We choose k to be generated over Q by
w and the primitive nth root of unity ω � e2πi/n. The complex roots
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of P are the nth roots of w, and if z∗ denotes one of them, then the
roots of P can be listed as

z∗, z∗ω, z∗ω2, . . . , z∗ωn−1.

It follows that the splitting fieldK of P is generated over k by a single
root: K � k(z∗). If w is not an nth power in k, then [K : k] � n, and
the Galois group G(K/k) is a cyclic group of order n.

Theorem.
Let n ≥ 2 be an integer. Let k be a field and assume that k contains

the primitive nth root of unity ω � e2πi/n. Assume that K is a Galois
extension of k with Galois group G, a cyclic group of order n. Then
there exists w∗ ∈ k such that K is the splitting field of the polynomial
zn − w∗, and K is generated by any of the roots. Moreover, for a given
root z∗ ∈ K, K � k(z∗), there is an isomorphism

ϕ : G → Cn

such that σ−1(z∗) � ϕ(σ)(z∗), σ ∈ G.

Remark.
We call a solution z∗ ∈ K of the equation zn � w∗, w∗ ∈ k, a radical
over k. We also write z∗ � n

√
w∗.

In general, let P ∈ k[z] and let K be the splitting field of P with
Galois group G. Consider a composition series of G:

G � G0 ⊃ G1 ⊃ · · · ⊃ GN � {1}.
Here, each Gm+1 is a maximal normal subgroup in Gm, and thus,
the factor Gm/Gm+1 is simple, m � 0, . . . , N − 1. The composition
series of G is not unique, but by the Jordan–Hölder theorem, up
to order, the factor groups are. Consider the corresponding chain
of field extensions

k � k0 ⊂ k1 ⊂ · · · ⊂ kN � K,

where km is the fixed field of Gm, m � 1, . . . , N − 1. Since Gm+1 is
normal in Gm, km+1 is a Galois extension of km with Galois group
Gm/Gm+1. Being a Galois extension, km+1 can be thought of as the
splitting field of a polynomial Pm over km. We see that finding the
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roots of P amounts to solving the polynomial equations Pm(z) � 0,
for all m � 0, . . . , N − 1.

Assume now that G is solvable, that is, each factor Gm/Gm+1

is abelian, thereby cyclic of (prime) order pm � |Gm/Gm+1|. By
the theorem above, km+1 is generated over km by a radical pm

√
wm,

wm ∈ km. Applying this procedure inductively, we obtain that every
element of K (including the roots z1, . . . , zn of P) can be expressed
by radicals over k (in the obvious sense). Since the converse is
clear, we see that the roots of a polynomial P ∈ k[z] are expressible
by radicals over k iff the Galois group of the splitting field of P over
k is solvable.

All subgroups of S4 are solvable. It follows that the roots of poly-
nomials of degree 4 or less are expressible by radicals. We derived
the explicit root formulas in Section 6. In contrast, an irreducible
quintic with Galois group A5 has no radical formula, since A5 is
simple.
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Solutions for 100
Selected Problems

Section 1.

1. (a) Write the number in the form 3k, 3k + 1, or 3k + 2, take the
squares of these integers, and consider the remainders modulo
3. (b) Write the number in the form 7k, 7k ± 1,7k ± 2, or 7k ± 3,
take the cubes of these, and consider the remainders modulo 7.

2. By Problem 1(b), we need to show that 7a − 1 is not a square.
This follows as in 1(b) by squaring the numbers 7k, 7k±1,7k±2,
and 7k ± 3, and studying the remainders modulo 7.

4. Let a � a110n−1 + a210n−2 + · · · + an, where a1, a2, . . . , an ∈
{0, 1, . . . , 9}, a1 �� 0. Write 10 � 9 + 1, and use the binomial
theorem to expand the powers of 10 in the expression for a.

5. Since Zp is a field, the statement is equivalent to the vanishing
of

p−1∑
a�1

[1/a2] �
p−1∑
a�1

[a]−2 �
p−1∑
a�1

[ā]2,

where [ā] is the inverse of [a] in Zp. Now notice that the last sum
is the sum of squares of the nonzero elements in Zp.

425
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Section 2.

1. n
√
a is a rational solution of the equation xn � a.

2. Write cos 1 � ∑∞
k�0(−1)k/(2k + 1)! and repeat, with appropri-

ate modifications, the proof of irrationality of e as in the remark
following Theorem 1.

3. If a/b is a root of P(x) � 8x3 − 6x − 1, then a � ±1 and b|8.
Now check all possible combinations.

4. Using the geometric series formula, a Riemann sum can be
worked out as

m∑
k�1

(αk)n(αk − αk−1) � α − 1
α

m∑
k�1

α(n+1)k

� (α − 1)αn
αm(n+1) − 1
α(n+1) − 1

� an+1 − 1
αn + αn−1 + · · · + α + 1

.

For m → ∞, we have α � m
√
a → 1, so that the Riemann sum

converges to

an+1 − 1
n + 1

.

5. This is a primary example for induction. For another proof,
differentiate the geometric series formula with respect to x,
substitute x � 1 and obtain 1+2+· · ·+n � limx→1

d
dx

( 1−xn+1

1−x
)
.

To evaluate the limit, use L’Hospital’s rule.
7. As in Problem 5, differentiate the geometric series formula

with respect to x twice and substitute x � 1.
8. The pyramid staircase can be cut into a large square pyramid

of volume n3/3, and two sets each consisting of n triangular
prisms of heights 1, 2, . . . , n, common base area 1/2, and total
volume (1 + 2 + · · · + n)/2. Notice that the two sets of prisms
overlap in n small square pyramids with total volume n/3, and
this has to be subtracted from the volume. The volume of the
pyramidal staircase is thus n3/3+ (1+ 2+ . . .+ n)− n/3. Now
use Problem 5.

10. Write a � ∑N

n�0 cn2
n with cn ∈ {0, 1}. Notice that cn � 1 iff an

is odd.
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11. (c) 1/ Tri (n) � 2(1/n − 1/(n + 1)).

Section 3.

2. Split the triangle into 3 subtriangles by drawing line segments
from the center of the inscribed circle to the vertices. The sum
of the areas of the subtriangles, ar/2 + br/2 + cr/2, must be
equal to the area of the original triangle, ab/2. We obtain r �
ab/(a + b+ c). Without loss of generality we may assume that
a, b, c are relatively prime. Since (a, b, c) is Pythagorean, we
have a � 2st, b � t2 − s2, and c � t2 + s2. Substitute these into
the expression of r and simplify.

3. We may assume that a, b, c are relatively prime. Let a � 2st,
b � t2 − s2, and c � t2 + s2 with t > s relatively prime and
of different parity. Since 2|a and 2|st, we have 4|a. Write ab �
2st(t−s)(t+s) and notice that 3 must divide one of the numbers
s, t, t − s, or t + s. (This follows by considering the remainders
of t and s modulo 3). Thus 12|ab. Similarly, 5 divides one of
the numbers s, t, t − s, t + s, or t2 + s2. (This follows again by
looking at the remainders of s and t modulo 5.)

4. For a, b, c consecutive, we have a + c � 2b. Substituting this
into the Pythagorean equation, we obtain 4a � 3b. Since a, b

are relatively prime, a � 3 and b � 4 follow.
5. We claim that there is no solution a for b ≥ 2. Notice first that

a and a + 2 have the same parity, so that a + 1 must be even,
say, a + 1 � 2k. Substituting, we have

(2k − 1)2b + (2k)2b � (2k + 1)2b.

Expanding both sides by the binomial formula and grouping,
conclude that k must divide b. On the other hand, dividing all
terms by (2k)2b, we have(

1 − 1
2k

)2b

+ 1 �
(

1 + 1
2k

)2b

;

in particular, the estimate(
1 + 1

2k

)2b

< 2
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holds. Use the binomial formula again to conclude that b/k <
1. This contradicts k|b.

6. If (a, b, c) is a Pythagorean triple with a + b + c � ab/2, then
(a − 4)(b − 4) � 8.

7. For n ≥ 4, let a � n(n2 − 3) and b � 3n2 − 1.
8. (a) (0, 0) is a double point; y2 � x2(x + 2). Setting y � mx,

m ∈ Q , we obtain x � m2 − 2 and y � m(m2 − 2). (b) (−1, 0)
is a double point; y2 � (x + 1)2(x − 2). Setting y � m(x + 1),
m ∈ Q , we obtain x � m2 + 2 and y � m(m2 + 2).

9. Let (x0, y0), y0 �� 0, be a rational point on the Bachet curve
given by y2 � x3 + c. Implicit differentiation gives 2yy′ � 3x2,
so that the slopem of the tangent line at (x0, y0) ism � 3x2

0/2y0.
We need to couple the equation of the tangent line y − y0 �
m(x − x0) with Bachet’s equation y2 � x3 + c to obtain the
coordinates of the intersection point. Since y2

0 � x3
0 + c, we

write Bachet’s equation as y2 − y2
0 � x3 − x3

0. After factoring,
we have (y− y0)(y+ y0) � (x− x0)(x

2 + xx0 + x2
0). Substituting

y − y0 � m(x − x0) and canceling the factor x − x0, we obtain

m(y + y0) � x2 + xx0 + x2
0.

Substituting again y − y0 � m(x − x0), we finally arrive at

m(2y0 + m(x − x0)) � x2 + xx0 + x2
0.

This is a quadratic equation in x that has x0 as a root, since
m � 3x2

0/2y0. Factoring, we obtain

(x − x0)

(
x − x4

0 − 8cx0

4y2
0

)
� 0.

Bachet’s formula follows.
10. (1, 1) is a rational point. Write the equation of the circle as

(x2 − 1) + (y2 − 1) � 0 and use y − 1 � m(x − 1), m ∈ Q ,
when factoring.

12. (a) a2 � 2b2 implies that (2b − a)2 � 2(a − b)2.
14. 78 � 2 · 3 · 13 � ab/2 and a2 + b2 � c2. In particular, a, b are

relatively prime, since 62 + 262 � 712 is not a square. Setting
a � 2st, b � t2 − s2, and c � t2 + s2, we obtain 2 · 3 · 13 �
st(t − s)(t + s) with t > s relatively prime and of different
parity. This is impossible.
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Section 4.

1. Multiply the polynomial by the least common multiple of the
denominators of the coefficients.

3. If c is a root of a polynomial P with integer coefficients, then√
c is a root of the polynomial Q , where Q(x) � P(x2).

4. Let P andQ be polynomials of degreesm and nwith rational co-
efficients and leading coefficient one such that P(c1) � Q(c2) �
0. Let P and Q have roots c1 � α1, . . . , αm and c2 � β1, . . . , βn.
Consider the polynomial R(x) � ∏m

i�1

∏n

j�1(x − (αi + βj)). The
coefficients of R are symmetric in αi and βj, and therefore, by
the fundamental theorem of symmetric polynomials, they can
be expressed as polynomials (with integral coefficients) in the
coefficients of P and Q . In particular, the coefficients of R are
rational. Since R(c1 + c2) � 0, c1 + c2 is algebraic.

5. An isomorphism would associate to
√

3 an element a + b
√

2
and thus to 3 the element (a + b

√
2)2. Since 3 � 1 + 1 + 1 in

both fields, in Q (
√

2) we have 3 � (a + b
√

2)2.
7. Since (x − (a + b

√
p))(x − (a − b

√
p)) � x2 − 2ax + a2 + b2p,

the remainder is a polynomial of degree less than or equal to
1 with rational coefficients.

10. The existence and uniqueness of x0 follow from the properties
of the exponential function. Let m be rational. If x0 is rational,
then so is ex0 � mx0 + 1, and this contradicts the corollary to
Theorem 1 in Section 2. Transcendentality of x0 for algebraic
m follows from Lindemann’s theorem.

Section 5.

1. The equation of the circle is(
x − a − c

2a

)2

+
(
y + b

2a

)2

� (a − c)2 + b2

4a2
.

Setting x � 1 and solving for y, we obtain the quadratic formula
for r1 and r2. A generalization of this construction to cubic poly-
nomials would mean that the roots of a cubic polynomial with
constructible coefficients would be constructible. This is false
(cf. Problem 4 in Section 6).
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2. 3
√−i � 3

√
z(3π/2) � z(π/2 + 2kπ/3), k � 0, 1, 2. These give i

and ±√
3/2 − i/2.

3. The two lines are parallel iff (z1 − z2)/(z3 − z4) is real. Thus,
we may assume that the two lines intersect. The condition
!((z1 − z2)/(z3 − z4)

) � 0 is invariant under translation (which
amounts to adding a constant to each variable), so that we may
assume that the lines intersect at the origin. Then z1, z2 and
z3, z4 are real constant multiples of each other, and the condi-
tion reduces to !(z1/z3) � 0. Now write z1 and z3 in polar form
and consider the argument of the ratio z1/z3.

5. The condition remains invariant when we translate, rotate, and
scale each triangle individually. (For example, translation cor-
responds to the row operation of adding a constant multiple
of the first row to the row representing the triangle.) We can
thus reduce the problem to the case where z1 � w1 � 0 and
z2 � w2 � 1. The condition now reduces to z3 � w3.

6. 2 · 3 � (1 + √
5i)(1 − √

5i).
7. Letting z1 � a1+b1i, and z2 � a2+b2i, a1, a2, b1, b2 ∈ N, we have

|z1|2|z2|2 � (a2
1 +b2

1)(a
2
2 +b2

2) � |z1z2|2 � (a1a2−b1b2)
2+ (a1b2+

a2b1)
2. Any integer can be written as a power of 2 multiplied by

numbers of the form 4k + 1 and 4k + 3. Now apply Fermat’s
theorem and the above.

Section 7.

1. (a)N � (0, 0, 1), p � (a, b, c), and hN(p) �
(
a/(1 − c), b/(1 − c),

0
)

are collinear. (c) The stated expression for h−1
N (z) has unit

length, and N , z, and h−1
N (z) are collinear.

2. As in Problem 1, for p � (a, b, c) ∈ S2, we have

hS(p) � a + bi

1 + c
∈ C.

Moreover,

h−1
S (z) �

(
2z

|z|2 + 1
,− |z|2 − 1

|z|2 + 1

)
∈ S2, z ∈ C.
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Hence,

(hN ◦ h−1
S )(z) � 2z/(|z|2 + 1)

1 + (|z|2 − 1)/(|z|2 + 1)
� z

|z|2 .

4. We have

|z − w|2 � (z − w)(z̄ − w̄) � |z|2 − zw̄ − z̄w + |w|2

and

|1 − zw̄|2 � (1 − zw̄)(1 − z̄w) � 1 − zw̄ − z̄w + |z|2|w|2.
The stated inequality is thus equivalent to 0 < (1 − |z|2)(1 −
|w|2).

Section 8.

4. (a) If P is an odd-degree polynomial with real coefficients, then
limx→±∞ P(x) � ± sgn (cn)∞, where sgn (cn) is the sign of the
leading coefficient cn of P. By continuity, P must have a real
zero. (b) The polynomial Qk, k ∈ Z, has coefficients that are, up
to sign, the elementary symmetric polynomials in the variables
αi + αj + kαiαj, 1 ≤ i < j ≤ n. But an elementary symmetric
polynomial in these variables is symmetric in αi, i � 1, . . . , n,
and hence it can be written as a real polynomial in the coeffi-
cients of P. Thus the coefficients of Qk are real. The degree of
Qk is n(n − 1)/2 � 2m−1a(2ma − 1), m ≥ 1. Since a(2ma − 1) is
odd, the induction hypothesis applies. Thus, for each k, there
are indices 1 ≤ i < j ≤ n such that the root αi + αj + kαiαj
is a complex number. Since there are finitely many roots αi
but infinitely many choices of k, for some 1 ≤ i < j ≤ n,
αi + αj and αiαj are both complex numbers. The polynomial
z2 − (αi + αj)z+ αiαj � (z− αi)(z− αj) has complex coefficients,
so that by the complex form of the quadratic formula, αi and αj
are complex. (c) If P is a complex polynomial, then PP̄ has real
values; in particular, its coefficients must be real. By the above,
PP̄ has a complex root α. Since |P|2 � PP̄, α is also a complex
root of P.

5. If z is a root of P with real coefficients, then P(z) � P(z̄) � 0,
so that z̄ is also a root of P. For another proof, divide P by the
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quadratic polynomial (x − z)(x − z̄) � x2 − 2!(z)x + |z|2 and
study the remainder.

Section 9.

1. The regular hexagon is obtained by slicing the cube with a plane
through the origin with normal vector (1, 1, 1). The plane exten-
sions of the three sides of the cube meeting at (1, 1, 1) cut an
equilateral triangle out of this plane, and the plane extensions of
the other three sides of the cube meeting at (−1,−1,−1) further
truncate this triangle to a regular hexagon.

2. Tv ◦ Rθ(p) ◦ T−v is a direct isometry, and it leaves q fixed. Thus
it must be a rotation with center at q. The translations do not
change the angle.

3. (a) The vertices of P2n are those of Pn plus the midpoints of the
circular arcs over the sides of Pn. Thus, half of a side of Pn and
a side of P2n meeting at a vertex of Pn are two sides of a right
triangle whose third side is 1 − √1 − (sn/2)2. We thus have

s2
2n �

(
sn

2

)2

+

1 −

√
1 −

(
sn

2

)2



2

.

This gives

s2n �
√

2 −
√

4 − s2
n.

In particular, since s4 � √
2, we have

s2n �

√
2 −

√
2 +

√
2 + · · · +

√
2,

with n− 1 nested square roots. (b) Let An denote the area of Pn.
Since half of the sides of Pn serve as heights of the 2n isosceles
triangles that make up P2n, we have A2n � nsn/2. In particular,
we have

A2n+1 � 2n−1s2n � 2n−1

√
2 −

√
2 +

√
2 + · · · +

√
2,

with n − 1 nested square roots.
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5. (a, b) is the normal vector of the reciprocal line. Thus, by sym-
metry, it is enough to consider the reciprocal of z(0) � 1. The
radius of the circle inscribed in Pn is r � |1 + z(2π/n)|/2, and
the line reciprocal to 1 is x � r2. Now the statement follows
from the identity !(1 + z(θ))/2 � |1 + z(θ)|2/4.

Section 10.

2. Type 5.
3. Let L � {kv + lw | k, l ∈ Z} be a lattice. A half-turn about the

midpoint of the lattice points k1v + l1w and k2v + l2w sends a
point p to (k1 + k2)v + (l1 + l2)w − p.

4. Type 2.

Section 11.

1. Let G ⊂ Möb (Ĉ) be the group generated by isometries, dilata-
tions with center at the origin, and one reflection in a circle.
Since G contains all translations, G also contains all dilatations
with arbitrary center, and all reflections in circles concentric
to the given circle. Finally, using the translations again, G
contains reflections in all circles with arbitrary center. Thus,
G � Möb (Ĉ).

Section 12.

5. A linear fractional transformation that maps the unit disk D2 to
the upper half-plane H2 is z  → i i+z

i−z . Its inverse is z  → −i i−z
i+z .

6. This transformation is a glide with axis the real axis, and the
translation vector is 1.

7. Setting z � |z|z(θ), the image of a circle |z| � r < 1 is an ellipse
with semimajor axis r + 1/r and semiminor axis r − 1/r. The
image of a half-line emanating from the origin is a hyperbola.
The ellipses and the hyperbolas are confocal.

Section 13.

1. Problem 4 of Section 7 implies that the given linear fractional
transformations are self maps of the unit disk D2. Theorem 9
asserts that the group of linear fractional transformations of H2
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onto itself is 3-dimensional (with a, b, c, d ∈ R being the param-
eters subject to the constraint ad − bc � 1). Since D2 and H2

are equivalent through a linear fractional transformation (Prob-
lem 5 of Section 12), it follows that the group of linear fractional
transformations that leave D2 invariant is also 3-dimensional.
On the other hand, the linear fractional transformations given
in the problem form a group, and they depend on 3 parame-
ters, !(w), "(w), and θ. Thus, these give all the linear fractional
transformations preserving D2.

4. We may assume that the triangle has vertices i, ti, t > 1, and
z(θ), 0 < θ < π

2 . Let α and β be the angles at z(θ) and at ti.
(a) From the hyperbolic distance formula, we obtain

cosh a � t2 + 1
2t

, cosh b � 1
sin θ

, cosh c � t2 + 1
2t sin θ

.

The Pythagorean theorem follows. (b) Let r > 0 be the radius
and c ∈ R the center of the semicircle that represents the hy-
perbolic line through ti and z(θ). Let δ be the angle at c between
the radial segment connecting c and z(θ), and the real axis. We
have

sin β � t

r
, r cos δ � r cos β + cos θ, r sin δ � sin θ.

The identity cos2 δ + sin2 δ � 1 gives

r2 � r2 cos2 β + 2r cos β cos θ + 1,

so that we have

t2 � r2 sin2 β � 2r cos β cos θ + 1.

Using this and α � θ − δ, we compute

cos α � cos(θ − δ) � cos θ cos β + 1
r

� t

r

(
t2 − 1

2t
+ 1

t

)

� sin β cosh a.

Switching the roles of a, b and α, β, we also have

cos β � sin α cosh b.
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Now the identity

sinh a tan β � tanh b

follows by eliminating α.

Section 14.

1. (a) A parabolic isometry g is the composition of two reflections
in hyperbolic lines that meet at a common endpoint on the
boundary of H2. Conjugating g with an isometry that carries
this endpoint to ∞, the two hyperbolic lines become vertical
Euclidean lines, and the conjugated g has the form z  → z + a,
a ∈ R. Now conjugate this with z  → 1

a
z to obtain z  → z + 1.

2. Parabolic isometries have a unique fixed point on R ∪ {∞}. El-
liptic isometries have a unique fixed point in H2. Hyperbolic
isometries have two fixed points on R ∪ {∞}.

3. Since a linear fractional transformation determines the corre-
sponding matrix in SL(2, C) up to sign, trace2 is well-defined.
Given an isometry g, the condition

g(z) � az + b

cz + d
� z, a, b, c, d ∈ R,

for z to be a fixed point of g amounts to solving a quadratic
equation with discriminant (a − d)2 − 4bc � (a + d)2 − 4 �
trace2(g)−4. If trace2(g) � 4, then g has a unique fixed point on
R ∪ {∞}. Conjugating g by a suitable isometry, we may assume
that this fixed point is ∞. This means that c � 0 and b �� 0 (by
unicity of the fixed point). As in Problem 1, we obtain that g is
parabolic. If 0 ≤ trace2(g) < 4, then there are two fixed points
of g, and they are conjugate complex numbers. Thus, there is a
unique fixed point in H2. The argument in the text shows that g
is elliptic. Finally, if trace2(g) > 4, then g has two fixed points
on R ∪ {∞}, which may be assumed to be 0 and ∞. We thus
have b � c � 0, and g is hyperbolic.

5. Any positive integral power of a parabolic or hyperbolic
isometry is of the same type.

6. If z0 ∈ R∪{∞} is the unique fixed point of the parabolic g1, then
by the stated commutativity, g2(z0) is left fixed by g1, and we
must have g2(z0) � z0. Thus, g2 is either parabolic or hyperbolic.
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Ifw0 ∈ R∪{∞}were another fixed point of g2, then g1(w0)would
also be left fixed by g2. This is a contradiction, since g1(w0) ��
w0, z0.

7. As shown in the text, the conformal group corresponding to
T � T1 is SL(2, Z). It remains to consider the conformal group
defined by T2. The composition of reflections to the vertical
sides of T2 gives z  → z + 1. The composition of z  → −z̄ + 1
and z  → 1/z̄ gives z  → −1/z + 1, so that z  → −1/z is also
contained in this conformal group.

8. This follows from Example 8 by minor modifications.

Section 15.

2. Using the Euler formula for complex exponents, we have

sin θ � eiθ − e−iθ

2i
.

The complex extension of sine is therefore defined by

sin z � eiz − e−iz

2i
.

Since the exponential function is periodic with period 2πi, the
sine function is periodic with period 2π. To show that sin z is
one-to-one on any vertical strip (k−1/2)π < !(z) < (k+1/2)π,
k ∈ Z, write the difference of two sines as the product of a sine
and a cosine, relate these to various complex exponentials, and
recall the mapping properties of ez on horizontal strips.

Section 16.

1. (b) Let m0 ∈ S2 be the midpoint of the shorter great circular
arc connecting q0 and S(q0). If S2(q0) /∈ C, then consider the
spherical triangle %m0S(q0)S(m0) and get a contradiction to the
triangle inequality.

Section 17.

1. Label the vertices of the tetrahedron 1, 2, 3, 4. The three prod-
ucts of disjoint transpositions such as (12)(34) correspond
to the three half-turns around the midpoints of the three pairs
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of opposite edges. In addition, we have four 60◦ rotations cor-
responding to products such as (12)(13) � (123), and four
120◦ rotations corresponding to products such as (13)(12) �
(132).

2. (a) Label the vertices of the tetrahedron such that p corre-
sponds to 1, e connects 1 and 2, and f has vertices 1, 2, 3.
Then S1 corresponds to the permutation (243), and S2 corre-
sponds to (132). The product is (13)(24), and it corresponds
to a half-turn. (c) Let S be the half-turn with axis connecting
the midpoints of e1 and e2. The midpoints of the edges com-
plementary to e1 and e2 form a quadrangle that has equal sides
and parallel opposite edges. Since e1 and e2 are perpendicular,
the quadrangle also has perpendicular adjacent edges, so it is
a square. The quarter-turn around the axis of S followed by
reflection in the plane of the square carries the two pieces into
one another.

3. The symmetry groups of T and its reciprocal are the same.
4. The vertices of a pair of reciprocal tetrahedra are those of a

cube. Take a good look at Color Plate 5a.
5. (a) Notice that the midpoint of an edge in a unit square has

distance
√

5/2 from an opposite vertex.
7. (c) Use the fact that Symm+(I) ∼� A5 is simple. For the image,

compose φ with the even–odd homomorphism S5 → {±1}.
8. By the construction of the dodecahedron in the text, every

vertex of the dodecahedron is the vertex of at most two cubes.
The 5 inscribed cubes have the total of 40 vertices. Since the
dodecahedron has 20 vertices, it follows that every vertex of
the dodecahedron is the vertex of exactly two cubes. These two
cubes have a common diagonal. There are exactly 20/2 � 10
diagonals. The number of different pairs of cubes is also 10.
Thus, the statement is true.

9. No symmetry carries the polar vertices to the equatorial
vertices.

13. Since the vertex figures are regular, all the faces meeting at a
vertex must have equal side lengths and face angles. It follows
that all the faces are congruent (and regular). Reciprocally,
all vertex figures must be congruent (and regular). Thus, all
dihedral angles of adjacent faces must be equal.
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15. (a) The sum is a vector left fixed by the entire symmetry group
of the Platonic solid. Thus, it must be zero. (b) Any symmetry
carries midpoints of edges to midpoints of edges. (c) Same as
in (b). (d) The two Platonic solids are reciprocal. This follows
by considering their Schläfli symbols.

16. Notice that at each vertex two hexagons and one pentagon
meet.

17. (a) In Figure 17.28, the triangles %p0p3p4 and %p1p3p4 are sim-
ilar (by the definition of the golden section). Thus all three
angles at p3 are congruent and thereby equal to π/5. It follows
that the segment connecting p0 and p4 is the side of a decagon
inscribed in a unit circle. (b) We may assume that the line seg-
ment from the midpoint of a side (of the inscribed triangle) to
the circle has unit length. Insert two crucial right triangles and
study their intersection.

18. The vertices of the octahedron are the midpoints of the faces of
the cube circumscribed around the reciprocal pair of tetrahe-
dra. The vertex figure at a vertex v of the octahedron is parallel
to the face of the cube whose midpoint is v. Homothety of
the two cubes follows. Since the edges of the reciprocal cube
bisect those of the octahedron perpendicularly, the ratio of
magnification is 1

2 .
19. The 20 vertices of the 5 tetrahedra are vertices of a regular

polyhedron with symmetry group A5. Thus, it must be a do-
decahedron. At a fixed vertex v of the colored icosahedron all
5 colors are represented. Consider the 5 triangular faces, one
for each tetrahedron, that are extensions of the 5 icosahedral
faces meeting at v. The 5 vertices closest to v in each of these
triangular faces form a regular pentagon, since the order-5 ro-
tation with axis through v permutes these vertices cyclically.
The pentagon is perpendicular to this axis and hence parallel
to the vertex figure of the icosahedron at v. Homothety of the
two dodecahedra follows.

20. Take slices of the roof perpendicular to the base and use the
Pythagorean theorem twice to conclude that the height of the
roof is

√
1 − (τ/2)2 − ((τ − 1)/2)2 � 1/2.
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Look for similar right triangles and write the defining equality
of the golden section as

τ/2
1/2

� 1/2
(τ − 1)/2

.

22. Inscribe a Euclidean dodecahedron in D3 with vertices v1, . . . ,

v20 ∈ S2. By the hyperbolic geometry of D3, for 0 < t < 1
there is a unique hyperbolic dodecahedron in D3 with ver-
tices tv1, . . . , tv20. Let δ(t) be the common dihedral angle of
this hyperbolic dodecahedron. The angle δ is a continuous de-
creasing function on (0, 1). We have limt→1 δ(t) � π/3 < π/2
(by symmetry), and the limit δ0 � limt→0 δ(t) is the dihedral
angle of the Euclidean dodecahedron. We have tan δ0/2 � τ,
where τ is the golden section. (Take a good look at Figure
17.30: Focus on the top horizontal edge of the icosahedron,
and superimpose the reciprocal dodecahedron.) Thus, we have
tan δ0 � 2τ/(1 − τ2) � −2, so that δ0 � arctan(−2) > π

2 . By
continuity, there is a value t0 ∈ (0, 1) for which δ(t0) � π

2 .
The fact that hyperbolic dodecahedra with this dihedral angle
tesselate D3 follows, since at each vertex the three faces are
mutually prependicular.

Section 19.

1. RP2#RP2 is homeomorphic to K2. Cut a hole in T2#RP2 so
that it becomes the connected sum of a Möbius strip and a
torus. Cut a hole in RP2#RP2#RP2 � K2#RP2 so that it be-
comes the connected sum of a Möbius strip and a Klein bottle.
Compare.

Section 20.

6. Use the Jordan curve theorem.
11. Find a state surrounded by an odd number of states.
12. If we assume that no more than three countries touch at one

point (so that the corresponding graph is a triangulation), then
a necessary and sufficient condition is that each country have
an even number of neighbors.
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13. Four colors are needed for a checkerboard, but no finite
number will suffice for every map.

14. Six.
15. Take a complete graph on 27 vertices, and color each edge

red or green. Then we can find a subgraph that is either (i) a
triangle with all edges colored green, or (ii) a complete graph
on eight vertices with all edges colored red.

16. Use a stereographic projection to go between maps on the
sphere and maps on the plane. One point (the point at infin-
ity) will be missing from the sphere, but that does not affect
the number of colors, because countries that touch at only one
point are not required to have different colors.

17. Establish customs stations at every frontier between neighbor-
ing countries, and build roads from each customs station to
the capitals of both countries. If two roads should cross, re-
build them by changing the connections so that they do not
cross. The capitals are the vertices and the roads are the edges
of a planar graph. (The roads should not cross any frontiers ex-
cept at the customs stations. This can be done if every country
is pathwise connected.)

18. The chromatic number is n.
19. Consider the graph whose vertices are those of a regular pen-

tagon plus the centroid, and whose edges are the sides of the
pentagon plus the five radial segments from the centroid to the
vertices of the pentagon.

20. There cannot be a vertex of degree 3; else we could remove that
vertex, color the remaining graph with four colors, replace the
vertex, and color it differently from its three neighbors. If there
is a vertex of degree 4, and we use four colors to color every
other vertex, then the four neighbors of the vertex of degree 4
must require four different colors, say red, green, yellow, and
blue; otherwise, the missing color could be used to color the
vertex of degree 4. We can now use the same argument as in
the proof of the five color theorem, looking at red–green paths
or yellow–blue paths, and swapping either red and green or
yellow and blue for part of the graph.

21. The red–blue path might cross the red–green path in Figure
20.6.
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Section 21.

1. Let v ∈ R2, v �� 0. Since both J1v and J2v are perpendicular to v,
we have J1v � ±J2v. Moreover, J2

1v � J2
2v � −v. Since a linear

map is uniquely determined by its values on a basis, we have
J1 � ±J2.

2. Define Pαβ for α �� β, α, β � 1, . . . , n, using the relations in the
text.

Section 22.

1. The map is a reflection in the plane R × R · k in V .
5. This follows by adjusting the argument in the text to the quater-

nionic case. The action of S3 ⊂ H on H2 is given by g : (p, q)  →
(p · g−1, q · g−1), g ∈ S3.

6. (a) The parallel of latitude at r corresponds to rotations with
fixed angle θ � 2 cos−1(r). (b) The group of spherical rota-
tions and S3/{±1} are isomorphic. SU(2) � S3 is a subgroup
of SL(2, C), and Möb (Ĉ) � SL(2, C)/{±1}.

Section 23.

2. A rotation generating the orbit of the 5 tetrahedra circumscribed
around the colored icosahedron has angle 2π/5. Its axis lies in
the coordinate plane orthogonal to the first axis, and the slope
of the axis is the golden section τ (see Figure 17.30). This is
because at the common vertex (0, 1, τ) of the icosahedron and
a golden rectangle all 5 colors are represented. This axis goes
through (

0,
1√

τ2 + 1
,

τ√
τ2 + 1

)
.

Using the notation in Problem 6 of Section 22, we have θ � 2π/5
and

a � cos
(
π

5

)
� τ

2
,

b � τ√
τ2 + 1

sin
(
π

5

)
� 1

2
,
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c � 1√
τ2 + 1

sin
(
π

5

)
� 1

2τ
,

d � 0.

Hence, the pair of quaternions that corresponds to this rotation
is

± 1
2

(
τ + i + j

τ

)
.

Section 26.

1. A vertex figure of the 4-dimensional cube is a regular 3-
dimensional polyhedron with four vertices, since exactly four
edges meet at a vertex. It is thus a regular tetrahedron. The
3-dimensional hyperplane through the origin with normal vec-
tor (1, 1, 1, 1) gives an octahedral slice of the cube; the four
3-dimensional cubic faces that meet at (1, 1, 1, 1) intersect this
hyperplane in a regular tetrahedron, while the other four cubic
faces meeting at (−1,−1,−1,−1) further truncate this tetrahe-
dron to yield the octahedron. For an analogy, consider Problem
1 in Section 9.

2. (a) Take a good look at Figure 26.2. The Schläfli symbol {4, 3, 3}
means that the 3-dimensional faces of the 4-dimensional cube
are ordinary 3-dimensional cubes with Schläfli symbol {4, 3},
and each edge is surrounded by 3 of these. (b) Let Vn, En, and
Fn denote the number of vertices, edges, and faces of the n-
dimensional cube. We have Vn � 2n, En+1 � 2En + Vn, E1 � 1,
and Fn+1 � 2Fn + En, F1 � 0. These recurrences can be solved
easily, and they give En � n2n−1 and Fn � n(n−1)

2 2n−2.
3. (a) A 2-dimensional projection of the 4-dimensional tetrahedron

is the pentagram star (top of Figure 20.4). (b) Each edge is sur-
rounded by 3 ordinary tetrahedral faces; thus the Schläfli symbol
is {3, 3, 3}.

4. Consider the general form of a quadratic polynomial in 3
variables, and impose harmonicity.
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Girard, A., 6, 65, 149
Glide, 98
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Eulerian, 281
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area, 148
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half-plane model of, 141
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differential equation, 348, 351, 413
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symmetry group of, 238



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

Index 447

Icosahedron book, 345
Icosidodecahedron, 235
Indicial

equation, 411
root, 411

Invariant, absolute, 333, 344
Isometric circle, 133
Isometry

Euclidean
direct, 99
of the plane, 98
of the space, 210
opposite, 99

of the hyperbolic plane, 151
elliptic, 151
hyperbolic, 153
parabolic, 151

Isomorphism, 400

Jacobian, 338
Jerrard, G.B., 348

Kali, 115, 119
Kempe, A., 285
Kepler, J., 120, 219, 250
Klein, F., 56
Klein bottle, 202

in four dimensions, 389
Königsberg bridge problem,

279
Kronecker, L., 7
Kummer, E.E., 51, 70
Kuratowski, K., 283

Lagrange, R.L., 65, 74, 316
Lagrange substitution, 74, 365
Lambert, J.H., 14
Lamé, G., 51
Lattice, 25

one-dimensional, 3
two-dimensional square, 17

Legendre, A.M., 51, 196
Leibniz, W., 17
Lens space, 238

Level curve, 36
Lindemann, F., 56
Liouville, J., 65, 186
Liouville’s theorem, 186
Lobachevsky, N.I., 141, 149
Lucas, 250

Machin, J., 24–25
Manifold

icosahedral, 328, 394
octahedral, 328, 394
tetrahedral, 328, 394

Map, 397
bilinear, 298

normed, 298
differential of, 407
Hopf, 313
identity, 398
Jacobian of, 407
smooth, 407
Veronese, 392

Maurolycus, 222
McKay, B., 285
Median, 86
Mersenne, M., 6
Method

chord-and-tangent, 40, 46
of exhaustion, 15
of rational slopes, 33
tangent, 42

Metric space, 403
Möbius band

finite, 201
infinite, 200

in four dimensions,
388

Monic polynomial, 72
Mordell, L.J., 45
Multiplication

complex, 64–66
Egyptian, 22
Greek, 22
quaternionic, 307

Nautilus shell, 246



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

Index448

Nicomachus, 22
Normalformsatz, 363
nth roots of unity, 69
Number

algebraic, 55
complex, 64
congruent, 31, 39, 47–48
constructible, 81
Gregory, 17, 24, 60
irrational, 10
k-gonal, 22
Liouville, 59
octahedral, 253
pentagonal, 22–23
polygonal, 22
square, 22
square pyramid, 253
tetrahedral, 253
transcendental, 55

existence of, 57
triangular, 22–23

Octahedron, 219
symmetry group of, 235

One-to-one correspondence, 398
Orbit, 103

principal, 332
special, 331

Order
of a group, 399
of an element in a group, 400

Ordinary point, 409
Orthogonal multiplication, 299

Pacioli, Fra Luca, 214, 246
Parallel

right-sensed, 146
Pattern

frieze, 114
wallpaper, 117

Pentatope, 383
Period lattice, 194
Permutation, 401
π, 10

Archimedes’ approximation of, 15,
24

Babylonian approximation of, 14–15
Egyptian approximation of, 14–15
irrationality of, 14

Pierce, B., 177
Plato, 29, 213, 219
Platonic solid, 213

full symmetry group of, 242
Playfair Axiom, 139
Plutarch, 22
Poincaré, H., 40
Poincaré extension, 157
Polygon, 209

regular n-sided, 3, 67, 96
symmetries of, 101

Polygonal numbers, 22
Polyhedral equations, 346
Polyhedron

centroid of, 212
compound, 222
convex, 210
edge of, 210
face of, 210
regular, 212
vertex of, 210

Polynomial, homogeneous, 332
Projective

geometry, 205
ideal points in, 206

line, 205
plane, 45, 205

models of, 205
point, 205
space, 208

Ptolemy, 82
Pythagoras, 7
Pythagorean

theorem, 27
hyperbolic, 157

triple, 27, 29

Quadratic formula, 63
Quaternion, 307

conjugate, 308
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pure part of, 308
real part of, 308

Radical, 422
Radiolaria, 219
Radon, J., 299
Ramanujan, R., 16
Rational curve, 33

degree of, 34
Rational point, 26
Real division algebra, 299
Reciprocal

of a point, 106
of a polyhedron, 221

Reflection
Euclidean

of the plane, 98
Möbius

in a circle, 125
Regular polytope, 383
Resolvent

canonical, 362
cubic, 79
Isosahedral, 372
quintic, 356

Rhind papyrus, 15
Ribet, K., 51
Richmond, H.W., 82
Riemann–Hurwitz relation, 278, 343
Riemann moduli

of annuli, 189
of complex tori, 187

Riemann surface, 183
conformal equivalence of, 186
of genus p, 190

Roman surface, 271
Roof-proof, 252
Rotation, Euclidean, of the plane, 98
Rotatory reflection, 210, 234
Ruffini, P., 80

Saddle condition, 35
Santa Claus, 83
Schläfli symbol, 215

Schlegel diagram, 216
Schneider, T., 60
Schwarz–Christoffel formula, 197
Schwarzian, 349, 417
Schwarz’s lemma, 186
Screw displacement, 211
Series

geometric, 10
Gregory–Leibniz, 17

Sharp, A., 24
Singular point, 410

regular, 410
Sodium sulfantimoniate, 219
Sphere, 83

three-dimensional, 309
Clifford tori in, 313

Steiner, J., 271
Stella octangula, 222
Stereographic projection, 83
Størmer, C., 17, 24
Subgroup, 400

index of, 401
left-coset of, 401

Sumerians, 4, 72
Surface, 199

triangulation of, 267

Taniyama–Shimura conjecture, 51
Tartaglia (Fontana), N., 73
Tessellation

Euclidean, 19
hyperbolic, 159

by hyperbolic octagons, 169
spherical (Platonic), 213, 259

Tetrahedron, 219
symmetry group of, 232

Thue, A., 36
Timaeus of Locri, 219
Topological space, 403

compact, 405
Hausdorff, 403

Total branch number, 277
Transformation

complex linear fractional, 132
conformal, 136, 175
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Transformation (cont.)
Möbius, 127
side-pairing, 180

Tschirnhaus, 74, 351
Translation, Euclidean, of the plane,

98
Transposition, 401
Trisection, of an angle, 82
Tunnell, J., 31, 47

Ultraradical, 348
Uniformization, 344
Unimodular, 20
Unit circle, 26, 67

Van der Waerden, B.L., vii
Vertex figure, 221
Viète, F., 72, 80

Wantzel, P., 81
Weierstass form, 35, 194
Weierstass P-function, 194
Wessell, C., 65
Wiles, A., 49
Wilson’s criterion, 70
Winding number, 94

Zagier, D., 32
Zeno’s paradox, 9




