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PREFACE.

THE present volume, constituting Part IIL of this
work, deals with the theory of ordinary linear differential
equations. The whole range of that theory is too vast to
be covered by a single volume; and it contains several
distinct regions that have no organic relation with one
another. Accordingly, I have limited the discussion
to the single region specially occupied by applications
of the theory of functions; in imposing this limitation,
my wish has been to secure a uniform presentation of
the subject.

As a natural consequence, much is omitted that
would have been included, had my decision permitted
the devotion of greater space to the subject. Thus the
formal theory, in its various shapes, is not expounded,
save as to a few topics that arise incidentally in the
functional theory. The association with homogeneous
forms is indicated only slightly. The discussion of com-
binations of the coefficients, which are invariantive under
all transformations that leave the equation linear, of the
associated equations that are covariantive under these
transformations, and of the significance of these invariants
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and covariants, is completely omitted. Nor is any appli-
cation of the theory of groups, save in a single functional
investigation, given here. The student, who wishes to
consider these subjects, and others that have been passed
by, will find them in Schlesinger’s Handbuch der Theorie
der linearen Differentialgleichungen, in treatises such as
Picard’s Cours d’Analyse, and in many of the memoirs
quoted in the present volume.

In preparing the volume, I have derived assistance
from the two works just mentioned, as well as from the
uncompleted work by the late Dr Thomas Craig. But,
as will be seen from the references in the text, my main
assistance has been drawn from the numerous memoirs
contributed to learned journals by various pioneers in the
gradual development of the subject.

Within the limitations that have been imposed, it
will be seen that much the greater part of the volume is
assigned to the theory of equations which have uniform
coefficients. ©~ When coefficients are not uniform, the
difficulties in the discussion are grave: the principal
characteristics of the integrals of such an equation have,
as yet, received only slight elucidation. On this score,
it will be sufficient to mention equations having algebraic
coefficients : nearly all the characteristic results that have
been obtained are of the nature of existence-theorems,
and little progress in the difficult task of constructing
explicit results has been made.

Moreover, I have dealt mainly with the general
theory and have abstained from developing detailed
properties of the functions defined by important par-
ticular equations. The latter have been used as illustra-
tions ; had they been developed in fuller detail than is
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given, the investigations would soon have merged into
discussions of the properties of special - functions. In-
stances of such transition are provided in the functions,
defined by the hypergeometric equation and By the

modern form of Lamé’s equation respectively.

A Drief summary of the contents will indicate the
actual range of the volume. In the first Chapter, the
synectic integrals of a linear equation, and the conditions
of their uniqueness, are investigated. The second Chapter
discusses the general character of a complete system of
integrals near a singularity of the equation. Chapters
III, IV, and V are concerned with equations, which have
their integrals of the type called regular; in particular,
Chapter V contains those equations the integrals of which
are algebraic functions of the variable. In Chapter VI,
equations are considered which have only some of their
integrals of the regular type; the influence of such
integrals upon the reducibility of their equation is in-
dicated. Chapter VII is occupied with the determination
of integrals which, while not regular, are irregular of
specified types called normal and subnormal; the
functional significance of such integrals is established,
in connection with Poincaré’s development of Laplace’s
solution in the form of a definite integral. Chapter VIII
is devoted to equations, the integrals of which do not
belong to any of the preceding types; the method of
converging infinite determinants is used to obtain the
complete solution for any such equation. Chapter IX
relates to those equations, the coefficients of which are
uniform periodic functions of the variable : there are two
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classes, according as the periodicity is simple or double.
The final Chapter deals with equations having algebraic
coefficients; it contains a brief general sketch of Poincaré’s
association of such equations with automorphic functions.

In the revision of the proof-sheets, 1 have received
valuable assistance from three of my friends and former
pupiis, Mr. E. T. Whittaker, M.A., and Mr. E. W. Barnes,
M.A., Fellows of Trinity College, Cambridge, and Mr.
R. W. H. T. Hudson, M.A., Fellow of St John’s College,
Cambridge ; I gratefully acknowledge the help which
they have given me.

And I cannot omit the expression of my thanks to the
Staff’ of the University Press, for the unfailing courtesy
and readiness with which they have lightened my task
during the printing of the volume.

A. R. FORSYTH.

TrINITY COLLEGE, CAMBRIDGE,
1 March, 1902.
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CHAPTER 1.

LINEAR EQUATIONS; EXISTENCE OF SYNECTIC INTEGRALS:
FUNDAMENTAL SYSTEMS.

1. THE course of the preceding investigations has made it
manifest that the discussion of the properties of functions, which
are defined by ordinary differential equations of a general type,
rapidly increases in difficulty with successive increase in the order
of the equations. Indeed, a stage is soon reached where the
generality of form permits the deduction of no more than the
simplest properties of the functions. Special forms of equations
can be subjected to special treatment; but, when such special
forms conserve any element of generality, complexity and difficulty
arise for equations of any but the lowest orders. There is one
exception to this broad statement; it is constituted by ordinary
equations which are linear in form. They can be treated, if not
in complete generality, yet with sufficient fulness to justify their
separate discussion; and accordingly, the various important results
relating to the theory of ordinary linear differential equations
constitute the subject-matter of the present Part of this Treatise.

Some classes of linear equations have received substantial
consideration in the construction of the customary practical
methods used in finding solutions. One particular class is com-
posed of those equations which have constants as the coefficients
of the dependent variable and its derivatives. There are, further,
equations associated with particular names, such as Legendre,
Bessel, Lamé; there are special equations, such as those of the
hypergeometric series and of the quarter-period in the Jacobian
theory of elliptic functions. The formal solutions of such equations

F. IV, 1
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can be regarded as known; but so long as the investigation is
restricted to the practical construction of the respective series
adopted for the solutions, no indication of the range, over which
the deduced solution is valid, is thereby given. It is the aim of
the general theory, as applied to such equations, to reconstruct
the various methods of proceeding to a solution, and to shew
why the isolated rules, that seem so sourceless in practice, actually
prove effective. In prosecuting this aim, it will be necessary to
revise for linear equations all the customarily accepted results, so
as to indicate their foundation, their range of validity, and their
significance.

For the most part, the equations considered will be kept as
general as possible within the character assigned to them. But
from time to time, equations will be discussed, the functions
defined by which can be expressed in terms of functions already
known ; such instances, however, being used chiefly as illustrations.
For all equations, it will be necessary to consider the same set of
problems as present themselves for consideration in the discussion
of unrestricted ordinary equations of the lowest orders: the exist-
ence of an integral, its uniqueness as determined by assigned
conditions, its range of existence, its singularities (as regards
position and nature), its behaviour in the vicinity of any singu-
larity, and so on: together with the converse investigation of the
limitations to be imposed upon the form of the equation in order to
secure that functions of specified classes or types may be solutions.
As is usual iIn discussions of this kind, the variables and the
parameters will be assumed to be complex. It is true that, for
many of the simpler applications to mechanics and physics, the
variables and the parameters are purely real; but this is not the
case with all such applications, and instances occur in which the
characteristic equations possess imaginary or complex parameters
or variables. Quite independently of this latter fact, however, it
is desirable to use complex variables in order to exhibit the proper
relation of functional variation.

2. Let z denote the independent variable, and w the dependent
variable ; z and w varying each in its own plane. The differential
equation is considered linear, when it contains no term of order
higher than the first in w and its derivatives; and a linear equation
is called homogeneous, when it contains no term independent of w




2.] LINEAR EQUATIONS .3

and its derivatives. By a well-known formal result*, the solution
of an equation that is not homogeneous can be deduced, merely by
quadratures, from the solution of the equation rendered homo-
geneous by the omission of the term independent of w and its
derivatives; and therefore it is sufficient, for the purposes of the
general investigation, to discuss homogeneous linear equations.
The coefficients may be uniform functions of z, either rational or
transcendental ; or they may be multiform functions of z, the
simplest instance being that in which they are of a form ¢ (s, 2),
where ¢ is rational in s and z, and s is an algebraic function of 2.
Examples of each of these classes will be considered in turn. The
coefficients will have singularities and (it may be) critical points;
all of these are determinable for a given equation by inspection,
being fixed points which are not affected by any constants that
may arise in the integration. Such points will be found to include
all the singularities and the critical points of the integrals of the
equation; in consequence, they are frequently called the singu-
larities of the equation. Accordingly, the differential equation,
assumed to be of order m, can be taken in the form

d™w d™w ™=y
E;m =p1 Wi +p2 a‘z—r‘n:; + “en +_pm'LU,

where the coefficients p,, P, ..., Pm are functions of z. In the
earlier investigations, and until explicit statement to the contrary
is made, it will be assumed that these functions of z are uniform
within the domain considered ; that their singularities are isolated
points, so that any finite part of the plane contains only a limited
number of them : and that all these singularities (if any) for finite
values of z are poles of the coefficients, so that their only essential
singularity (if any) must be at infinity. Let ¢ denote any point in
the plane which is ordinary for all the coefficients p; and let a
domain of ¢ be constructed by taking all the points z in the
plane, such that
|z —¢i<la—¢l,

where a is the nearest to § among all the singularities of all the
coefficients. Then within this domain (but not on its boundary)

we have
DPs= PS (Z - g)’

* See my Twreatise on Differential Equations, § 75.

(s=1,2, ..., m),

1—2

4 SYNECTIC [2.

where P; denotes a regular function of z — & which generally is
an infinite series of powers of z— ¢ converging within the domain
of £ An integral of the equation existing in this domain is
uniquely settled by the following theorem :—

In the domain of an ordinary point &, the dyfferential equation
possesses an integral, which vs a regular function of z— & and, with
its first m — 1 dervvatives, acquires arbitrarily asssgned values when
z=2¢§; and this integral is the only regular function of z— & in
the specified domarn, which satisfies the equation and jfulfils the
asstgned conditions*.

The integral thus obtained will be called+ the synectic integral.

SYNECTIC INTEGRALS.

8. The existence of an integral which is a holomorphic
function of z — ¢ within the domain will first be established.

Let 7 be the radius of the domain of &; let M,, ..., M,, denote
quantities not less than the maximum values of |p|, ..., | Pl
respectively, for points within the domain; and let dominant

functions ¢, ..., ¢, defined by the expressions
M,
¢8=-_z_s'—_§’ (s=1, ..., m),
1—
p

be constructed. Then}

|deps | _ Ao

dz* ,—¢ | dz® ¢’

for every positive integer a. The dominant functions ¢ are used
to construct a dominant equation

dm™u dmiy adm—2y
dzm b dzm1 + dzm—2 R 2

which is considered concurrently with the given equation.

* The conditions, as to the arbitrarily assigned values to be acquired at { by w
and its derivatives, are ecalled the initial conditions; the values are called the
initial values.

+ As it is a regular function of the variable, it would have been proper to call
it the regular integral. This term has however been appropriated (see Chapter 111,
§ 29) to describe another class of integrals of linear equations; as the use in this
other connection is now widespread, confusion would result if the use were changed.

+ See my Theory of Functions, 2nd edn., § 22: quoted hereafter as 7. F.
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Any function which is regular in the domain of { can be
expressed as a converging series of powers of z—¢; and the
coefficients, save as to numerical factors, are the values of the
various derivatives of the function at { Accordingly, if there is
an integral w which is a regular function of z — ¢, it can be formed
when the values of all the derivatives of w at { are known. To
w, MW AW

T dz’ 7 dgmt
conditions are assigned. All the succeeding derivatives of w can
be deduced from the differential equation in the form

290 m—lw m—2

ot = A s+ A g
(for a=m, m+1, ... ad inf), by processes of differentiation,
addition, and multiplication: as the coefficient of the highest
derivative of w in the equation (and in every equation deduced
from it by differentiation) is unity, new critical points are not
introduced by these processes, so that all the coefficients 4 are
regular within the domain of ¢.

the arbitrary values specified in the initial

.+ Aupw,

The successive derivatives of w are similarly expressible in the
form

deu dmy dm 2y
doe Ba1W:+Ba2 W—i— coo + Bou,

(for a=m, m+1, ... ad int)), obtained in the same way as the
equation for the derivatives of w. The coefficients B have the
same form as the coefficients 4, and can be deduced from them by
changing the quantities p and their derivatives into the quantities
¢ and their derivatives respectively.

The values of the derivatives of w and u at ¢ are required.
When z=¢, all the terms in each quantity B are positive; on
account of the relation between the derivatives of the quantities p
and ¢, it follows that

Bas > Aus), (s=1, ..., m),
... dw dm™
when z=¢ Let the initial values of |w|, a2z dam |’ when
z=¢, be assigned as the values of u, %, e, %;n%? when z=¢;
then
drw | _ deu
dze | S dzs’

6 EXISTENCE OF [3.

when z = ¢, for the values m, m+1, ... of 2. If the series
_ (z—-é’)2 d?u
@+E=-0 (B + 5T (T4

converges, where (g;—?) denotes the value of % when 2z = ¢, the

series

@)+ =5 (G) + E5E (G2) +

d*w . dow )
where (%) denotes the value of e when z = ¢, also converges;

it then represents a regular function of z — £ which, after the mode
of formation of its coefficients, satisfies the differential equation.

We therefore proceed to consider the convergence of the series
for u, obtained as a purely formal solution of the dominant equa-
tion. To obtain explicit expressions for the various coefficients in
this series, let z — §{ =7z, taking « as the new independent variable.
Points within the domain of § are given by |z|< 1; and the
dominant equation becomes

m dm—su

d™u )
(1 —2) dx™ s§1 Mo dam—s"
‘When the series for u, taken in the form
= 2 by
a=0
is substituted in the equation which then becomes an identity, a

comparison of the coefficients of «* on the two sides leads to the
relation

=(m+k—1)! b+ Mr)bpsp+ > (m+k—5)! Masbp oz,
§=2

holding for all positive integer values of k.

This relation shews that all the coefficients b are expressible
linearly and homogeneously in terms of b, by, ..., b, : and that, as
the first m of these coefficients have been made equal to the moduli
of the m arbitrary quantities in the initial conditions for w and
therefore are positive, all the coefficients b are positive. Hence

:IC+M17'

bm+k> k+m

bm+k—1 .
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By the initial definition of M,, it was taken to be not less than
the maximum value of | p,| within the domain of §; it can there-
fore be chosen so as to secure that M;r> m. Assuming this
choice made, we then have

b+ > bk,
so that the successive coefficients increase.

From the difference-equation satisfied by the coefficients b, it
follows that
by k+ Moy = (m+k—s)!
bt k+m s (m+k)!

Bosto
M s STth=s

bm+k~1

So far as regards the m —1 terms in the summation, the ratio
biit—s =+ Omir—_y 1s less than unity for each of them; My * is finite
for each of them; and (m+k —s)! + (m + k)! is zero for each of
them, in the limit when % is made infinite. Hence we have

Lim Ok _ 1,
k= bm+k—1
and therefore
by |@ft _
%:121 byl = ||

<1,

for points within the domain of &, so that* the series
3 ba®
a=0

converges within the domain of & The convergence is not estab-
lished for the boundary, so that it can be affirmed only for points
within the domain; it holds for all arbitrary positive values
assigned to by, by, ..., bypy.

It therefore follows that, at all points within the domain of ¢,
a regular function of z— ¢ exists which satisfies the original
differential equation for w, and, with its first m — 1 derivatives,
acquires at ¢ arbitrarily assigned values.

4. Now that the existence of a synectic integral is established,
the explicit expression of the integral in the form of a power-series
in z—¢ this series being known to converge, can be obtained

* Chrystal’s Algebra, vol. 11, p. 121,

8 UNIQUENESS OF [4.

directly from the equation. As ¢ is an ordinary point for each of
the coefficients p, we have

ps=Ps(z2—0), (s=1,2,...,m),
where P, denotes a regular function of z2—¢ Let a,, oy, ..., am_
be the arbitrary values assigned to w dw A when z=¢;
y g Y dz T dgm—1 =65
and take
an an
w ~——n§0 m (Z -_ g)n,

which manifestly satisfies the initial conditions. In order that
this may satisfy the equation, it must make the equation an
identity when the expression is substituted therein. When the
substitution is effected, and the coefficients of (z — §)* on the two
sides of the identity are equated, we have a relation of the form

Anits
s!

= Am—i—S)

where 4,,1, is a linear homogeneous function of the coefficients a,,
such that «<m + s, and is also linear in the coefficients in the
quantities P, (z2—28), ..., Py (z—¢); and the relation is valid for
§=0,1,2,...,ad inf. Using the relation for these values of s in
succession, we find o, dmis, Gnte, ... expressed (in each instance,
after substitution of the values of the coefficients which belong to
earlier values of s) as a linear homogeneous function of the quanti-
ties &, @, ..., Gy : and in o, the expressions, of which the
initial constants a,, a,, ..., a,,_, are coefficients, are polynomials of
degree s+ 1 in the coefficients of the functions P,(z—{), ...,
P, (z—¢&). The earlier investigation shews that the power-series
for w converges ; accordingly, the determination of the coefficients
a in this manner leads to the formal expression of an integral w
satisfying the equation.

5. Further, the integral thus obtained is the only regular
function, which is a solution of the equation and satisfies the
initial conditions associated with a,, a;, ..., dp. If 1t were
possible to have any other regular function, which also is a solu-
tion and satisfies the same 1initial conditions, its expression would
be of the form

w="S %G—ty+ S TGy
n=0 w! ,,,.—_:m,u«! ’
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a regular function of z — § The coefficients would be determin-
able, as before, from a relation

/
am—i-s __A/

s ! m-8>
where 4’ is the same function of @, ..., Gp—y, W, covs Wpis—
as Auyys 18 of g, ooy Ay, Oy «vvy Amas—- Hence
7’ / .
am,':Am =Am=am>

iy = A i1 = Ay, after substitution for oy,
= Omt1s
and so on, in succession. The coefficients agree, and the two
series are the same, so that w=w"; and therefore the initial con-
ditions uniquely determine an integral of the equation, which is a
regular function of z — ¢ in the domain of the ordinary point &

CoroLLARY 1. If all the wnitial constants o,, o, ..., Oy_y ATE
zero, then the synectic integral of the equation s identically zero.
For in the preceding discussion it has been proved that a,,,, for
all the values of s, is a linear homogeneous function of a,, ...,
%nm—1; hence, in the circumstances contemplated, a,., =0 for all
the values of s. Thus every coefficient in the series vanishes;
accordingly, the integral is an identical zero.

CorROLLARY II. The wnstral constants o,, ¢, ..., Upm_y OCCUT
linearly in the expression of the synectic integral ; and each of the
m variable quantities, which have those constants for coefficients, @s
a synectic tntegral of the equation. The first part is evident,
because all the coefficients in w are linear and homogeneous in
Olg, Qs «ovy Bm—. As regards the second part, the variable quantity
multiplied by a; is derivable from w by making a; =1, and all the
other constants a equal to zero; these constitute a particular set
of initial values which, according to the theorem, determine a
synectic integral of the equation. Thus the synectic integral,
determined by the initial values ay, ..., @y, is of the form

ooUy + Oy Uy + oon + Oy U,

where each of the quantities u,, u,, ..., %, is a synectic integral of
the equation.

Note 1. The series of powers of z — & which represents the
synectic integral, has been proved to converge within the domain

10 EXISTENCE OF [5.

of ¢ so that its radius of convergence is |a — {|, where a is the
singularity of the coefficients which is nearest to ¢ All these
singularities lying in the finite part of the plane are determinable
by mere inspection of the forms of the coefficients: another
method must be adopted in order to take account of a possible
singularity when z= oo because, even though z= o may be an
ordinary point of the coefficients, infinite values of the variable
affect the character of w and its derivatives.

For this purpose, we may change the variable by the substi-
tution
2 =1,

and we then consider the relation of the z-origin to the trans-

formed equation as a possible singularity. The transformation of

the equation is immediately obtained by means of the formula
dFw LokV(E—-1)! afte  dew

?z?=(—1)ka§1 al(a— 1! (k—a)! da=’

inspection of the transformed equation then shews whether « =0
1s, or is not, a singularity. Or, without changing the independent
variable, we may consider a series for w in descending powers of z:
examples will occur hereafter.

It may happen that there is no singularity of the coefficients
in the finite part of the plane, infinite values then providing the
only singularity. In that case, we should not take the quantity »
in the preceding investigation as equal to |0 — &}, that is, as
infinite ; it would suffice that » should be finite, though as large
as we please.

It may happen that there is no singularity of the coefficients
for either finite or infinite values of z; if the coefficients are
uniform, they then can only be constants. The dominant equa-
tion is then effectively the same as the original equation; the
investigation is still applicable, but it furnishes less information
as to the result than a method which will be indicated later (§ 6).

Note 2. The preceding proof is based upon that which is
given*® by Fuchs in his initial, and now classical, memoir on the
theory of linear differential equations.

* COrelle, t. Lxv1 (1866), pp. 122—125,
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The theorem can also be established by regarding it as a
particular case of Cauchy’s theorem, which relates to the posses-
sion of unique synectic integrals by a system of simultaneous
equations. If

d*w

wa—‘:"d;x’ <a=07 1)""m—1)>

the homogeneous linear equation of order m can be replaced by
the system

dw
bT; =Wy, for s=0,1, ..., m—2,
AW gy
(5; = P1Wm—1 + PWm—s + ... + PWp .
These equations possess integrals, expressible as regular functions
of z—¢& such that w,, w,, ..., Wy, assume arbitrarily assigned

values when z=¢ and the integrals are unique when thus
determined : which, in effect, is the theorem as to the synectic
integral of the linear equation*.

Note 3. A different method for establishing the existence of
the integrals, though it does mnot indicate fully the region of
their convergence, can be based upon a suggestion made by
Giinthert. It consists in the adoption of another subsidiary
equation

d™y dm 1y dm—z,v
d "P‘l dzm—1 + "lt 2 dzm—2 --e F ‘\[I’m'U,
M,
where ‘\IJ‘,‘L = I-—-—ZE-FL s
=)
r
for w=1, ..., m. The advantage of this form of equation is that

its integrals are explicitly given in the form

(-5
r
where o is a root of the equation
c(c—-1...(c—m+1)=—rMo(c —1)...(c —m+ 2)
+ Mo (0 —1)...(6 —m+ 3)+ ...
+ (= Ly 19ym1 M, o+ (— 1)™r™M,,

* See Part 11 of this Treatise, §§ 4, 10—13.

1 COrelle, t. cxvir (1897), pp. 351-—333; see also some remarks thereupon by
Fuchs, ib., pp. 354, 355.

12 EXAMPLES [5.

If a root o is multiple, the correspondmg group of integrals is
easily obtained*.

The construction of the actual proof on the foregoing lines is
left as an exercise.

Ex. 1. Consider the equation

d?w 2z dw K 0
dz?2 1—-22dz ' 1—-22
where « is a constant.

The singularities in the finite part of the plane are z=1, z=—1. On
transforming the equation by the substitution zz=1, so that it becomes

da?  1—a? dx x‘(l—ﬂ)

we see that £=0 (and therefore z=ow ) is another singularity of the coeffi-
cients : so that the preceding investigation does not apply to the immediate
vicinity of #=0.

It is clear that the z-origin is an ordinary point of the coefficients of the
original equation : the domain of 2=0 is a circle of radius unity. The equa-
tion therefore possesses a synectic integral, which is a series of powers of z
converging within the circle; it is uniquely determined by the conditions
that w=a, (ﬂ}: B, when z=0, where o« and 8 are arbitrary constants. To

dz
obtain its expression, let

w= 3 b,2z"
. - n=0
be substituted in

dw
(1——22) d 5 — 22— - +kw=0,
which then must be an identity. In order that the coefficient of z* may
vanish after substitution, we must have
<n+2) (n+ 1) bn+2—“ (7Z2+7L— K) bn=01
so that
o et
n+2_‘(n+2) (’)’L—l—l) n
Now by the initial conditions, we have
by=a, b;=8;
hence
b _(2m-1) (2771—-2)—1:()
e 2m (2m — 1) =

— SE": (25—1) (25— 2) — &} ;

* See my Treatise on Differential Equations, §§ 47, 48.
y
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and, similarly,

B

bom+1= @m+1)! . 1} {2s(2s—1)—«};

the expressed products being taken for integer values of s from 1 to m. The
synectic integral satisfying the initial conditions is

z2m+1

(2m+1) '

both series, if infinite, converging for values of z such that |z| < 1.

a: 32% n {(2s=1)(2-2) =} +8 =

2 Sm {23 (2s—1)—«};

The best known instance of this equation is that which is usually asso-
ciated with Legendre’s name : « then is p (p+1), and p (in the simplest form)
is a positive integer. If p be an even integer, all the coefficients b,,, for
2m > p, vanish, so that the quantity multiplying a is then a polynomial ; the
quantity multiplying 8 is an infinite series. If p be an odd integer, all the
coefficients by, 44, for 2m+1 > p, vanish, so that the quantity multiplying 8
is then a polynomial ; the quantity multiplying a is an infinite series. In all
other cases, the quantities multiplying a and B are, each of them, infinite
series ; in every instance, the series converge when |z | < 1.

Ez. 2. Obtain the synectic integral of the equation
dzw 1 dw
d22 z dz +< )w 0,
(which includes Bessel's equation as a special case), with the initial conditions

that w=a, %:B when z=¢, where |¢| > 0.
Ex. 3. Determine the synectic integral of the equation of the hyper-
geometric series

z(l—z)fl?§+{y (a+B+1)2} ———an 0,

the initial conditions being that w=4 ccl[ =D, when z=1%.
Exz. 4. Determine the synectic integrals in the domain of z=0, possessed
by the equation
Y Ad?w
d T
with the initial conditions (i) that w=1, a;=0, when 2=0;

(ii) that w=0, 5’Ziu=1, when z=0.
dz
Ez. 5. Prove that the synectic integral in the domain of z=0, possessed
by the equation
d2w

— wel?
a2 we™,

14 EQUATIONS WITH [5.

dw

with the initial condltlons that w=1, P =0, when z=0, is

2 3 2
w= ]_}_i CLZ_+17—f:(l 2+

dat+ad . 14+11la24-at
27 5 26+

51 7 6!

. . . . c
and if the term in w involving z® be — 2, then
7!

Cp=a? 2 (22— a4 {332 (n—4) 2" 3 —sn— 3} a0+,
Prove also that the prlmltlve can be expressed in terms of Bessel’s functions

of order zero and argument = b haz

E=z. 6. The equation with constant coefficients may be taken in the form

dmaw dam—ly am—2y
P cq =1 [ PR + .o tcpw;

it possesses a synectic integral in the form
o
w == 2 ak/c 1

which converges everywhere in the finite part of the plane: and a,, ..., @nm_1,
are the arbitrarily assigned initial constants.

Substituting in the differential equation this value of w, and equating

. 1
coefficients of o 2", we have

A 40 =C1 P 4 n—1 T Colan g — g oo e A Cop -

The expression of the coefficients ¢y, @piq, ... in terms of a4, ay, o0y Gy
depends (by the solution of the foregoing difference-equation) upon the
algebraical equation

P (O)=6m—c, 0" 1—cy6m 2~ ... —cp=0.

When the roots of ¢ (8)=0 are different from one another, let them be
denoted by a;, ag, ..., amn; and in connection with the m arbitrary constants
@y Qpy +-ey Om—q, determine m new constants A,, 4y, ..., 4w, by the relations

= 2 a, "A (r=0,1, ..., m—1).
pn=1
The determination is unique: for on solving these m relations as m linear
equations in 4,, ..., 4,,, the determinant of the right-hand sides is

1 , 1 yeeey 1 )
a; ,  ay 3 asey Uy
2 2 2
ay )  ay s reey Uy
- m—1 -1
a,™ L a, ) eeey ™

which is equal to the product of the differences of the roots and is therefore
not zero. Hence, as the constants ag, aq, ..., @p—; are arbitrary, the m new
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constants 4, ..., 4,,, when used to replace the former set, can be regarded
as m independent arbitrary constants. With these constants thus determined,
we have

m m
21 a”m+n[1}l'= 21 (claum+n-—1+02a”m+n—2+ e +cmai&n> AF-
o= =

m
___01 2 aMm+n 1Aﬂ-+02 2 aMm+n 2Af’-+ +Cm s a”'rAH',
pn=1 m=1 p=1
for all values of . When n=0, we have
m
S apm Ap=0C10mo gt Com_nt o FCpay=a,, ;
m=1
when n=1, we have
m
S aumtlAu=010n+Coly_3 + o FCn A =0Cpiq}
=1
and so on, the general result being that

m
m+n i
S au AN-—am+n7

p=1
for all values of n. Hence
Zk
W= 2 ak
k=0 k!

%

=3 (Ayaf+Agaf+ ... + Apayk) —

k=0 k!
=A%+ Age®P 4 ... 4 A ooz,

the customary form of the solution, 4,, ..., 4,, being m independent arbitrary
constants.

Ex. 7. Apply the preceding method to obtain a similar expression in
finite terms, when the roots of the equation ¢ (6)=0 are not all different from
one another.

6. A different method of discussing the linear equation with
constant coefficients has been given by Hermite.

Taking the equation, as before, in the form

d™y d™'w dm 2y
om0 1 1 Ce m—2
dz dz dz

+ ... F e,

we associate with it the expression
b (£) = £ — (™ + cuf™ 4 ... + o).
Denoting by £({) any polynomial in &, let

- s L) g
2% ¢ (&)

~ integration being taken round any simple contour in the {-plane.

16 HERMITE'S METHOD FOR EQUATIONS [6.

In the first place, the degree of the polynomial f({) may be
taken to be less than m. If initially it is not so, then we have

S J1(©)

JAST + ,

YGRSy
on division, g ({) being a polynomial, and £ ({) a polynomial of
order less than that of ¢, that is, less than m. Now

[ @ dz=o,

round any simple contour in the ¢-plane; in the remaining inte-
gral, the polynomial is of the form indicated. Accordingly, f(£)
will be assumed to be of order less than m.

We have

EW_ 1 (SO, _
dzr T 2 g¢(§) £ g, (r=0.12 )

taken round the same contour; so that

W ( dm W g
dz™ 1 dgm—1 + 0 dzm—2

1 {zgf(é’){m

4 ... +cmW>

— (8™ 4 8™ L+ e} A

20w )7 $€)
— i [ @) 2
=0,

because f(&) is a polynomial and the integral is taken round a
simple contour in the ¢-plane. Thus W is a solution of the
equation.

The only restriction upon f (&) is that, effectively, its degree
must be less than m. It may therefore be taken as the most
general polynomial of degree m —1; in this form, it will contain
m disposable coefficients which can be used to satisfy the initial
conditions. Let these conditions require that, when 2 =0, the

variable w and its first m — 1 derivatives acquire values k,, k4, ...,
km—: respectively ; then we determine f({) as follows. Since
(AW " S©
=k, = d
(o). 5%

we shall draw the simple contour in the {-plane so as to enclose
the origin; and then the preceding relation shews that, when
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‘éj 22 is expanded in descending powers of &, the coefficient of
&—r-11is k,; so that, as it holds for »r =0, 1, ..., m — 1, we have
f(:) ko o, km_y
PALE + 4.+ + ..,
¢ ¢ R

and therefore

iRy bm— }
= el I
F®=$®) { RS I
As (&) is a polynomial in & all terms involving negative powers
of ¢ must disappear, when multiplication is effected on the right-
hand side ; and therefore

F@="5 e (77 = @ o,

the coefficient of k,,—, being unity. If therefore w and its first s
derivatives are all to acquire the value zero when z= 0, then the
degree of the polynomial f({)is m —s— 2.

In order to obtain the customary expression for W, let the
contour be chosen so as to include 'all the zeros of ¢ (£). Let o
be a zero, and let its multiplicity be n,, so that

b (&)= (&= a)™ b, (&),
where the roots of ¢, (&) are the other roots of ¢ (£). Let

JE& _ Ay A A'pn J1(©)
s tm T E-art T Eman T (©)
A’y, A'y, ..., being constants, and f; () a polynomial of order

m—mn,—1. So far as the first n, terms are concerned, their
contribution to the value of the expression for W is given by
taking a contour round a, only. We then have
1 A’y AQ1 ar—
2@'/"’ (€ —ay =G = 1)t dag— (O

Alrl r—1 pza
(T_i)*‘z €

— A“ Zr—1 62a|,

on changing the constants; and therefore the part, arising through
the root &, of multiplicity n,, in the expression for the integral is

A+ Adge+ ...+ Apy 2™ e,
1

18 HERMITE'S METHOD FOR EQUATIONS (6.

involving a number of constants equal to the multiplicity of the
root. This formm holds for each root in turn; and therefore the
number of constants is the sum of the multiplicities, that is, it is
equal to m, the degree of ¢ (&). But m is the number of arbi-
trary constants in (), when it is initially chosen: these can
therefore be replaced by the constants A in the expression

S(A,+ Az + ...+ A27 ) e,

the summation extending over the roots a of ¢(£)=0, and =
denoting the multiplicity of a. The simplest case, of course,
occurs when all the roots of qb(é’)—-O are different from one
another.

The method can be applied to the equation
dmw < dm 1y

@\ g

+ ...+ omw) = F(z),

where #(z) is any function of z. Consider

where ¢ (¢) has the same s1gn1hcance as before, Sz ¢) is a polynomial
in ¢ with (unknown) functions of z as coefficients of the powers of ¢, and
integration extends round a simple contour that includes all the roots of
¢ ($)=0. Then

d W 8¢ VACKY, d¢,

| N b (©)
provided g
S
/quo 5/ & OdE=0;
also
azw 2o S5 )
ovided “d2 —]e ¢ 303 de,
provi

S D
/a@faﬂz, Hd¢=0;

and so on in succession, until we have

M— z; m— f(Z C}
provided e / “ $© “
=< 0
. [f e are ac=o
en

cjﬂ___ z;m,f( () m—
o = [T e ace [T e L rs o
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Hence, remembering that f (7, ¢) is a polynomial in ¢ and that therefore

f e*S f (2, ¢) d¢=0,

we have W as a solution of the given equation if, in addition to the other
conditions, which are that

fe—zg e 2 f G O de=0
YA ’

forr=2, 3, ..., m, we have
/ S et L pe = @)
(O oz 7

Now as the contour embraces all the roots of ¢ ({), we have*

cmer _
b %=

for r=2, ..., m ; so that, taking

25 0=00e%,

where 4 (z) is a function of z at our disposal, we satisfy the m—1 formal
conditions unconnected with #'(z); and then @ (¢) must be such that

" ) de=F
qu@ (2) de=F(2).

But as
P (O=¢m—(e ™ 1+ ... +0m),
we havet -
b g =i

and therefore
1
8 (z)= G F(2).

Hence

0 1
é‘zf(za §)=2‘7;7;e ng(Z);
so that

£ 0=g kg [ e F@

where g (¢) is, so far as concerns this mode of determining f(z, ), any function
of ¢, and integration with regard to « is along any path that ends in z.  When
F(z) is zero, f(z, ¢) reduces to g ({); and then the solution of the differential
equation shews that g (¢) is a polynomial in ¢, of degree not higher than m —1.
Accordingly, as g (¢) is independent of z, we take it to be a polynomial of
degree m —1 in ¢, with arbitrary constants for the coefficients ; and then the
integral of the equation has the form

z{g(f) 1
Wf % 2m ¢<c>

* T. F., § 24, 1

/ F (u) ¢ #=" Sy,

+ T. F., § 24, m, Cor.
2—2

20 CONTINUATION OF THE [6.

where the {-integration extends round any simple contour including all the
roots of ¢ (¢)=0, and the w-integration extends from any arbitrary initial
point along any path (the simpler the better) to z.

The single integral in the expression for W is clearly the complementary
function, and the double integral is the particular integral, in the primitive of
the differential equation. The expression can be developed into the customary
form, in the same way as in the simpler case when Z'(z) vanishes.

Hermite’s investigation, based upon Cauchy’s treatment by the calculus of
residues as expounded in the Ewercices de Mathématiques, is given in a remoir
in Darboux’s Bull. des Sciences Math., 2me Sér. t. 111 (1879), pp. 311—325: it is
followed by a brief note (I c., pp. 3256—328), due to Darboux. A memoir
by Collet, Ann. de UEe. Norm. Sup., 3me Sér. t. 1v (1887), pp. 129—144, may
also be consulted.

THE ProCESs OF CONTINUATION APPLIED TO THE SYNECTIC
INTEGRAL.

7. The synectic integral P (z — {) is known at all points in
the domain of § being uniquely determined by the assigned
initial conditions at & So long as the variable remains within
this domain, the integral at z does not depend upon the path of
passage from ¢ to z, so that the path from § to z can be deformed
at will, provided it remains always within the domain. Let ¢ be
any point in the domain; then the values of the integral and its
first m — 1 derivatives at §’ are uniquely determined by the initial
conditions at & and they can themselves be taken as a new set of
initial conditions for a new origin §’. Accordingly, construct the
domain of ¢’; and, with the values at { taken as a new set of
initial values, form the synectic integral which they determine.
As the new initial values are themselves dependent upon -the
initial values at ¢, the synectic integral in the domain of ¢’ may
be denoted by P, (z — &, {).

If the domain of ¢ lies entirely within that of & (it then will
touch the boundary of the domain of & internally), the series
P, (z—¢, & must give the same value as P (z—): for every
point z in the domain of ¢ is then within the domain of { and it
is known that the synectic integral is unique within the original
domain.

If part of the domain of ¢’ lies without that of & then in the
remainder (which is common to the two domains) the series P,
must give the same value as P. But in that part which is
outside, the series P, defines a synectic integral in a region where
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P does not exist; it therefore extends our knowledge of the
integral, and it is a continuation of the synectic integral out of
the original domain.

Let Z be any point in the plane; and join Z to ¢ by any
curve, drawn so as not to approach infinitesimally near any of
the singularities of the coefficients in the differential equation.
Beginning with ¢, construct the domains of a succession of points
along this curve, choosing the points so that each lies in the
domain of a preceding point and each new domain includes some
portion of the plane not included by any previous domain. Owing
to the way in which the curve is drawn, this choice is always
possible and, after the construction of a limited number of
domains, it will bring Z within a selected region. With each
domain we associate its own series: so that there is a succession of
series, each contributing a continuation of its predecessor. We
can thus obtain at Z a synectic integral of the equation, which is
uniquely determined by the initial values at & and by the path
from ¢ to Z.

Further, taking the values of the integral and its first m — 1
derivatives at Z as a set of new initial values, and taking the
preceding curve reversed as a path from Z to & we obtain at { the
original set of assigned initial values. To establish this state-
ment, it is sufficient to choose the succession of points along the
curve in the preceding construction, so that the centre of any
domain lies within the succeeding domain, and to pass back from
centre to centre. Stating the proposition briefly, we may say
that the reversal of any path restores the initial values.

By imagining all possible paths drawn from any initial point &
to all possible points z that are not singular, we can construct the
whole region of continuity of the integral, as defined by the
differential equation and by the initial values arbitrarily assigned
at §: moreover, we shall thus have deduced all possible values of
the integral at 2z, as determined by the initial values at {. It is
clear, from the construction of the domain of any point and after
the establishment of a synectic integral in that domain, which
can be continued outside the domain (unless the boundary of the
domain is a line of singularity, and this has been assumed not to
be the case), that the region of continuity of the integral is
bounded by the singularities of the coefficients. As has already
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been remarked, these singularities are called the singularities of
the equation. Thus all the critical points of the integral are fixed
points ; and if the equation be taken in the form

dmw _ dmTw
b ggm = D gm=t T T Gt

where the functions q,, ..., ¢, are holomorphic over the finite part
of the plane and have no common factor, these critical points are
included among the roots of ¢,, with possibly z=oc also as a
critical point. The value of the integral at an ordinary point near
a singularity has been obtained as a synectic function valid over
the domain of the point, which excludes the singularity. In
later investigations, other expressions for the integral at the
point will be determined, when the point belongs to a different
domain that includes the singularity.

8. Any path from § to z can be deformed in an unlimited
number of ways: and it is not inconceivable that these deforma-
tions should lead to an unlimited number of values of the integral
at z, as determined by a given set of initial values: but the
number is not completely unlimited, because all paths from § to z
lead to the same final value at z with a giwen set of nitial values at
&, provided they are deformable into one another without crossing
any of the singularities. To prove this, consider a path from ¢ to
z, drawn so that no point of it is within an infinitesimal distance
of a singularity, and draw a second path between the same two
points obtained by an infinitesimal deformation of the first; no
point of the second path can therefore be within an infinitesimal
distance of a singularity. On the first path, take a succession of
points z, 2,, ..., so that z, lies within the domains of ¢ and of z,,
2, within the domains of z; and z;, and so on. On the second path,
take a similar succession of points 2/, z,, ..., near z,, 2,, ... respec-
tively, in such a way that 2z  lies in the part common to the
domains of ¢ and z;, while z; is in the domain of 2z ; z, in the
part common to the domains of z; and z,, while z, is in the domain
of z,'; and so on. Join #2/, z,2,, ... by short arcs in the form of
straight lines.

Now we have seen that, in any domain, the path from the
centre to a point can be deformed without affecting the value of
the integral at the point, provided every deformed path lies within
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the domain. Hence in the domain of §, the path {z gives at z
the same integral as the path £z/z. This integral furnishes a set
of initial values for the domain of z;; and then the path z2, gives
at z, the same integral as the path 2z2,/22,. Consequently the
path §z.2, gives at z, the same integral as the path £z/z, followed
by z2/2/2z,. But the effect of 2z followed at once by 22, is nul,
because a reversed path restores the values at the beginning of
the path ; and therefore the path {zz2, gives at 2z, the same integral
as the path §z/z,/2,. And so on, from portion to portion: the last
point on the first path is z, which also is the last point on the
second path; and therefore the path {z2....z gives at z the same
integral as the path §z/z,) ...z

Now take any two paths between { and z, such that the closed
contour formed by them encloses no singularity of the equation.
Either of them can be changed into the other by a succession of
infinitesimal deformations: each intermediate path gives at z the
same integral as its immediate predecessor: and therefore the
initial path and the final path from ¢ to z give the same integral
at z; which is the required result.

If however two paths between ¢ and z are such that the closed
contour formed by them encloses a singularity of the equation,
then at some stage in the intermediate deformation the curve will
pass through the singularity, and we cannot infer the continuation
along the curve or the deformation into a consecutive curve as
above. It may or may not be the case that the two paths from
¢ to z give at z one and the same integral determined by a given
set of initial values; but we cannot assert that it is the case.

Accordingly, we may deform a given path without affecting
the integral at the final point, provided no singularity is crossed
in the process. Moreover, in order to take account of different
paths not so deformable into one another, it will be necessary to
consider the relation of the singularities to the function represent-
ing the integral: this will be effected in a later investigation.

When two paths can be deformed into one another, without
crossing any singularity, they are called reconcileable; when they
cannot so be deformed, they are called rreconcileable. If two
irreconcileable paths lead at z to different integrals from the same
initial values at &, the closed circuit made up of the two paths
leads at & to a set of values different from the initial values.
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These new values can be taken as a new set of initial values:
when the same circuit is described, they are not restored, so that
either the old initial values or a further set of values will be
obtained : and so on, for repeated descriptions of the circuit. By
this process, we may obtain any number, perhaps even an unlimited
number, of sets of values at § deduced from a given initial set;
and thus there may be any number, perhaps even an unlimited
number, of values of the integral at any point 2.

Consider any path from ¢ to z; and without crossing any of
the singularities, let it be deformed into loops, drawn from ¢ to the
singularities and back, (these loops coming in appropriate success-
ion), followed by a simple path (say a straight line) from ¢ to z.
The final value of the integral at z is determined by the values
at ¢ at the beginning of the straight line, and these values are
deducible from the initial values originally assigned. Hence the
generality of the integral at z is not affected by taking any particular
path from & to z, provided complete generality be reserved jfor the
mittal values : and therefore, from this aspect, it will be sufficient
to discuss the complete system of integrals as arising from com-
pletely arbitrary systems of initial values at an ordinary point.
This investigation relates to properties of the integrals, which will
be found useful in discussing the effect of a singularity upon a
given integral ; it will accordingly be undertaken at once.

9. It has already been remarked that the synectic integral,
determined by the arbitrary constants which are assigned as the
initial values of the function and its derivatives, is linear and
homogeneous in those constants: so that, if uy;, g, -.., pam denote
the arbitrary constants, and w, denotes the synectic integral which
they determine in the domain of an ordinary point £, we have

Wy = Uy + Pypths + oo+ iU,

where u,, Uy, ..., Uy are holomorphic functions of z — &, not involv-
ing any of the arbitrary coefficients u. Take other m — 1 sets of
arbitrary constants w, such that the determinant

M1z sy Maz 5 <++5 Ham |» =A(§) say,
M2 > M2, «--5 HMom

........................

Mmi; Mme, - #'mm!
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is different from zero. Each set of m constants, regarded as a set
of initial values, determines a synectic integral in the domain of
¢; as the quantities w,, us, ..., %y, in the expression for w, do not
involve the arbitrary constants determining w,, it is clear that the
expressions for these other m — 1 integrals are

W = Py + sl + oo+ s, (s=2, ..., m).
Let M, denote the minor of uy in the non-vanishing determinant
A (§); then from the expressions for the m integrals w, ..., w, 1n
terms of u,, ..., U, we have

A (8 u = Myw, + Myw, + ... + My, t=1,..., m).

Now any other synectic integral, determined in the domain of §
by assigned initial values 6, 6,, ..., 0,,, is given by

w= Ou, + Ou, +... + U,
=D, + D + .o+ Y,

where the constants & are given by

18 B
:’A%é'—) EletMﬂ, (r=1, ..., m).
These constants & cannot all vanish, when the constants 6,, 6,, ...,
0., are not simultaneous zeros: for the determinant of the minors
M, is {A (&)™, and therefore is mot zero. Accordingly, any
integral can be expressed as a linear combination of any m
integrals, provided the determinant of the initial values of those
m integrals and their first m — 1 derivatives does not vanish. But
it is not yet clear that the integrals w,, ..., w,, are linearly inde-
pendent of one another; until this property is established, we
cannot affirm that the expression obtained is the simplest obtain-

able.

Consider therefore, more generally, the determinant of the m
integrals and their first m — 1 derivatives, not solely at ¢ but for
any value of z in the domain of &, say

Sy

A | dm e, dmrw

(Z) - dzzm_l s dZm_2 g eeey Wy
dmw, d™ %,
dzm= * dgm M
dm~1wm dm—2wm
dom=1 ? gm— 0 "t Wm
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When z = ¢, it becomes the determinant of initial values denoted

by A(§). We have
dA (2) 1 d™wy d™ 2,

dz dzm > dgm— 0 o M
dmay,  d™ 2w,
dzm * dgm—z >t e

d™w,  d™ 2w,
| dzm ’ dzm—e e

=p1A(Z):

.. d™w, d™w,,
on substituting for gam o dgm

derivatives of lower orders as given by the equation. Hence

their values in terms of the

[z Pz

A=A e ¢

Now within the domain of ¢, the function p, is regular, being of
the form P, (z—¢); hence the integral in the exponent of ¢ is of
the form R (z—¢), where R is a regular function that vanishes
when z= ¢ Consequently the exponential term on the right-hand
side does not vanish at any point in the domain of &; also A (&)
1s not zero; so that A(z) has no zero within the domain of &
Moreover, each of the quantities w,, ..., w, is a holomorphic
function of z—¢ in that domain, so that A (z) is holomorphic
also ; hence A (2) has no zero and no infinity within the domain
of the ordinary point ¢

As a matter of fact, the only points where A (z) may vanish or may
become infinite are the singularities of p;. For in any region of common
existence of the functions wy, ..., w,,, we have

A (Z) Jg’pldz

a~° ’
the path from ¢ to z lying within that region, while z is not now necessarily in
the domain of ¢{. If @ be one of the singularities of p,, the expression of p; in
any part of an annular region round « as centre is of the form

a2

=g 4
P1=9g (Z)+z_a+<z_“>2+“'a

where the number of terms in negative powers of z—a is finite or infinite,
according as the singularity is accidental or essential ; and g’ (2) is holo-




9.] FUNDAMENTAL SYSTEMS 27

morphic in the vicinity of @. Taking the simplest case as an instance, let
ay=az=...=0; then

2 0.d
S _ <z—“>“leg<z>—g<§>
{—a ’

shewing that a is a zero of A (2) if the real part of a, be positive, and that it
is an infinity of A (z) if the real part of @, be negative. More generally, the
nature of A (z) in the vicinity of any singularity @ depends upon the character
of p, in that vicinity : in the case of the above more general form, a is an
essential singularity of A (2).

FUNDAMENTAL SYSTEMS OF INTEGRALS.

10. The linear independence of wy, ..., w;,, and the property
that A(z) has a finite non-zero value at any point in the plane
which is not a singularity of the equation, are involved each in
the other.

It is easily seen that, if a homogeneous linear relation between
Wy, eevy Wy Of the form

CW; + oo + CpwWpy =0

were to exist, the quantities ¢,, ..., ¢, being constants, then A (2)
would vanish for all values of z  The inference 1s at once
established by forming the m —1 derived equations
d"w drw
1 —dz"'l + .ot Cm —‘dzf“mz 0, (r=1,...,m—1),
and eliminating the m constants ¢, ..., ¢, between the m equa-
tions which involve them linearly; the result of the elimination is

A(z) =0.
Hence if, for any set of integrals w;, ..., w,,, the determinant A (2)
does mnot vanish (except possibly at the singularities of the

equation), no homogeneous linear relation between the integrals
exists.

To establish the inference that, if A(z) does vanish for all
values of z, a homogeneous linear relation between w, ..., wn
exists, we proceed as follows.

In the first place, suppose that some minor of a constituent in

the first column of A (2), e.g. the minor of El(—gz—m in A(z), say
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A, (2), does not vanish for all ordinary values of z; and take m

quantities ¥, ..., ¥m, the ratios of which are defined by the
relations
YW+ oo + YmWn =0,
daw, dw,y,
tdz + T Ym “dz 0,
dm-—2w C_lm—zwm

From the hypotheses that A (z) =0 and that A, does not vanish, it

follows that
d'm—l,w1 dm—l,wm
Yiggoa T ¥ Ym g =0

Because of the assumption that A, does not vanish, the ratios
Ym  Ym Ym
are determinate finite functions of z.
Differentiate the first of the relations: then, using the second,

we have
Y W+ e Yo W, = 0,

where y,” denotes dy,/dz, for the n values of r. Differentiating
the second of the relations, and using the third, we have

and so on, up to
dm—zwl , dm—2w
ylf dzm_2~ 4+ eee 4 Ym -C—Jz—m-:glb = O,

obtained by differentiating the last of the postulated relations
and by using the deduced relation. We thus have m — 1 relations,

homogeneous and linear in the quantities %, ..., %, ; in form,
they are precisely the same as the m —1 relations, which are
homogeneous and linear in the quantities w, ..., ¥.,. Hence, as
A, does not vanish, we have
,
I Ir (r=1,2,...,m—1),
Ym  Ym

that 1is,

d [y, _
@(y_,n)-o’
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so that
y—":consbant=}—r~, (r=1,2,...,m—1),
m A’777;
where Ay, ..., Mp—1, A are simultaneous values of %y, ..., Ym—s, Ym

for any particular value of z: that is, the quantities A are con-
stants. This particular value of z is at our disposal; we may
assume that A, is different from zero, because the ratios of ¥, ..
Ym— tO Yy, are determinate and finite. Now

.o

Yy + oo F YWy =05
hence
MWy + oo+ AW = 0,

that is, a linear relation exists among the quantities w, if A (2) is
zero, and some minor of a constituent in the first column does not
vanish.

Next, suppose that the minor of every constituent in the first
column vanishes: in particular, let A,;(2)=0, for all ordinary
values of z. Then A, (2) is a determinant of m —1 rows and
columns, constructed from m — 1 quantities w,, ..., w,_, in the
same way as A(z), a determinant of m rows and columns, is
constructed from the m quantities w,, ..., w,. The preceding
analysis shews that, if some minor of a constituent in the first
column of A, (z) does not vanish for all ordinary values of z, then
a relation

KWy + oo+ Koy Wpy—y = 0,
where «y, ..., km—1 are constants, is satisfied: so that a linear
relation exists among the quantities w, and it happens not to
involve w,,.

Let the process of passing from A (z) to A, (2), from A, (2) to a
corresponding minor, and so on, be continued: the successive
steps are effected by removing the successive columns in A (2)
beginning from the left and by removing a corresponding number
of rows. At some stage, we must reach some minor which is not
zero for all ordinary values of z: so that

dm—s—l,w1
dzm—s—1 ’ > W
dm——s—l Won—s
_g— ) > W —s
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vanishes when s=0, 1, ..., , but is different from zero when
s=17+ 1. Then the earlier analysis shews that a linear relation
of the form
P+ oo+ P sWin—s = 0

exists, where p,, ..., pm—s are constants: in effect, a linear homo-
geneous relation among the quantities w,, ..., wy, which happens
not to involve wWy,_siy, ..., wy. Hence, ¢f the determinant A (2),
constructed from the m wntegrals w,, ..., Wy, vanishes jfor all
ordinary values of z, there is a homogeneous linear relation between
these integrals.

Integrals are sometimes called <ndependent when they are
linearly independent, that is, connected by no homogeneous linear
relation ; but the independence is not functional, because all the
integrals are functions of the one variable z. A set of m linearly
independent integrals w is called a fundamental system ; and each
integral of the set is called an element or a member of the system.
The determinant A (z), constructed out of a set of m integrals, is
called the determinant of the system ; so that the preceding results
may be stated in the form :—

If the determinant of a set of m integrals vanishes for ordinary
(that s, non-singular) values of the variable, the set cannot constitute
a fundamental system ; and the determinant of a fundamental
system does not vanish for any non-singular value of the variable.

11. We now have the important proposition :—

Every integral, which is determined by assigned instial values,
can be expressed as a homogeneous linear combination of the
elements of a jfundamental system.

Let W denote the integral determined by the assigned values
at & taken to be an ordinary point of all the coefficients in the

differential equation; and let w;,, ..., w,, be a fundamental system.
Let constants ¢, ..., ¢, be deduced such that, when z=¢, we
have
m
W= E CAW A
A=1
aw m  daw,
T = 3 Cp e
z A=1 dz ?
dm--lW m dm—l
D Wa
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This deduction is uniquely possible; because the determinant of

the quantities ¢ on the right-hand sides is the determinant of a

fundamental system, and therefore does not vanish when z=¢{
m

Thus W — 2 cywa is an integral of the equation; this integral
A=1

and its first m — 1 derivatives vanish when z=1{¢; so that it

vanishes everywhere (Cor. I, § 5), and therefore

m
W= 2 CAW A,
A=1
the constants ¢ being properly determined as above.

Cor. I. Between any m+1 branches of the gemeral solution,
there must be a homogeneous linear relation. For if m of them be
linearly independent, the remaining branch can be regarded as
another integral: by the proposition, it is expressible linearly in
terms of the other m.

Cor. II. Any system of integrals u,, ..., Uy is fundamental vf
no relation exvsts of the form

A, + ...+ A, =0,

where A,, ..., A, are constants. For taking a fundamental system
Wy, ..., Wm, We can express each of the solutions » in the form
Uy = Uy Wy + «vo + QWi (r=1,2, ..., m),

where the coefficients @ are constants. If C denote the determ-
inant of these m? coefficients, C' must be different from zero: for
otherwise, on solving the m equations to express w, in terms of
Uy, «.., Um, We should have a relation of the form

Ay + ...+ Ay, = Cwy =0

and no such relation can exist. If, then, A, (2) denote the deter-
minant of the set of integrals u, and if A, (2) denote that of the
fundamental system w,, ..., w,,, we have

Ay, (2) = CA, (2),

by the properties of determinants. Now C does not vanish, nor
does A, (2) at any ordinary point in the plane; hence A, (z) does
not vanish at any ordinary point in the plane, and therefore
Uy, ..., Uy are a fundamental system of integrals.
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The result may be stated also as follows: If m integrals u be
gwen by equations

Uy = Wy F oo + CpppWi s (r=1, ..., m),

where the determinant of the coefficients a 1s not zero, and the
integrals w are a fundamental system, then the system of integrals
u 18 also fundamental.

12. One particular fundamental system for the differential
equation can be obtained as follows. Let w, be a special integral
of the equation, that is, an integral determined by any special set
of initial conditions, and substitute

w = w,[vdz
in the equation; then v is determined by the equation

dm—lv dm—zv

dam—t 91 o + ...+ Qm?,
where
_ . _mdw
h=mM w, dz

Similarly, let v, be a special integral of this new equation, with
the appropriate conditions; then substituting

v = v, fudz,

we find that the equation, which determines u, is of the form

dm—2u dm——su
W=T1W+...+Tm_zu,
where
” m— 1 dv,
1= @ v, dz’

And so on.
It is manifest that the quantities
wy, wfvndz, wf(v,fudz)dz, ...

are integrals of the original equation. Moreover, they constitute
a fundamental system; for, otherwise, they would be linearly
connected by a relation of the form ‘

cw; + cow, fvidz + cav [ (v fud2)dz + ... =0,
that is,

¢+ cfvidz + e f(vifudz)dz + ... = 0.
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“When this is differentiated, it gives

ety + ey fudz 4 ... =0,
that is,
c + csfudz + ... = 0.
Effecting m — 1 repetitions of this operation of differentiating and
removing a non-zero factor, we find

Cm=20
as the result at the last stage. Using this in connection with the
equation at the last stage but one, we have
Cm—1 = O.

And so on, from the equations at the various stages, we find that
all the coefficients ¢ vanish. The homogeneous linear relation
therefore does not exist: the system of integrals, obtained in the
preceding manner, is a fundamental system.

As an immediate corollary from the analysis, we infer that
v, v fwdsz,..

constitute a fundamental system for the equation in v; and so for
each of the equations in succession.

The determinant of this particular fundamental system is
simple in expression. Denoting it by A, and denoting by A, the
determinant of the fundamental system of the equation in v,
we have, as in §9,

1dAa _
Adz P
1ada, o _modw
A, dz TP Ty de
so that
1dA 1 da,_m dw
Adz A dz  w dz’
hence
§=>"1wlm:
‘1

where A, is a constant. Similarly, if A, denote the determinant
of the fundamental system of the equation in u, we have
A,

~ =M™

AV
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and so on. The last determinant of all is the actual integral of
the last of the equations; hence

A = Cw, ™y, 1u,m2 ..,

3

where C is a constant. Moreover, A is the determinant of a par-
ticular system, so that C is a determinate constant. It is not
difficult to prove that

AM=(—1m"73, A =(=1)m"2 ...,
and therefore
€= (= 1ypmin—
consequently,
A = (= 1)Imm—1) gy my m—lym—2

Ex. Verify the last result, as to the form of A, in the case of
(i) Legendre’s equation :
(ii) the equation of the hypergeometric series :

(iii) Bessel’s equation.




CHAPTER IL

GENERAL ForRM AND PROPERTIES OF INTEGRALS NEAR A
SINGULARITY.

13. WE have seen that, within the domain of an ordinary
point, a synectic integral of a linear differential equation is
uniquely determined by a set of assigned initial values; and that
the said integral can be continued beyond that domain, remaining
unique for all paths between the initial and the final values of the
variable which are reconcileable with one another. When the
variable is permitted to pass out of its initial domain though
returning to it for a final value, or when two paths between the
initial and the final values are not reconcileable, the various
propositions that have been established are not necessarily valid
under the modified hypothesis: it is therefore desirable to con-
sider the influence of irreconcileable paths upon an integral,
still more upon a set of fundamental integrals. Remembering
that any path is deformable without affecting the integral if, in
the deformation, it does not pass over a singularity, we shall
manifestly obtain the effect of a singularity, that renders two
paths irreconcileable, by making the variable describe a simple
circuit, which passes from the point 2z round the singularity
and returns to that point 2z, and which encloses no other
singularity. '

Let a be the singularity round which the simple closed circuit

is completely described by the variable. Let w;, ..., wy, denote a
fundamental system at z; and suppose that the effect of the
3—2
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circuit is to change the m integrals into w,, ..., w, respectively.
That the set of m new integrals thus obtained is a fundamental
system can be seen as follows. If it were not a fundamental
system, some relation of the form

]0.,.?,0,./ =0
1

T Ms

would exist, with constant coefficients k&, for all values of z in the
immediate vicinity. In that case, the quantity = k,w,” (which is
an integral) is zero everywhere, together with all its derivatives,
as it is continued with the variable moving in the ordinary part
of the plane. Accordingly, let the integral be continued from 2z
along the closed circuit reversed until it returns to z where, by
what has been stated, it is zero. The effect of the reversal is
(§ 7) to change w,” into w,: and so the integral after the reversed
circuit has been described is 3 k,w,, so that we should have

"
S kaw,=0,
r=1

contrary to the fact that w,, ..., w,, constitute a fundamental

system. The initial hypothesis from which this result is deduced
is therefore untenable: there is no homogeneous linear relation
among the quantities w,, ..., wy/, which therefore form a funda-
mental system.

Since the system wj, ..., Wy, is fundamental, each of the inte-
grals wy, ..., w, is expressible linearly in terms of the elements
of that system; so that we have equations of the form

Wy = taW;, + ..o + OgWni,

where the coefficients a are constants. As the system w, is
fundamental, the determinant of these coefficients is different
from zero: this being necessary in order to ensure the property
that w,, ..., w, are expressible linearly in terms of w,, ..., wy’, a
fundamental system.

Take any arbitrary linear combination of the system, say
Py + oo At P Wi,

where the coefficients p are disposable constants; and denote this
integral by u. When the variable describes the complete closed
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circuit round the singularity, let «’ denote the modified value of
u, so that
W= pyw + ... + prWu

m m
=p; 3 W, + oo+ P 2 QW
r=1 r=1

It is conceivable that the coefficients p could be chosen so that
the integral reproduces itself except as to a possible constant
factor; a relation

u = 6u
would then be satisfied, @ being a constant quantity. This rela-
tion, in terms of wy, ..., Wy, 1S

m m
P12 AW, + o+ P 2 O Wy
r=1 r=1
=6 (pyw; + ... + PwmWm),
which, as it involves only the members of a fundamental system
linearly, must be an identity: the coefficients of w,, ..., w, must
therefore be equal on the two sides. Hence we have

P1 (o — 0) + Pl + oo+ PO =0
P1%e + po (azz - 9) + ...+ PiOme =

...................................................

P1%m + Polam + ...+ pm (Otmm, — 9) =0

If, therefore, 8 be determined as a root of the equation

A=|a;—6, ay s eees Oy =0,
O , Oy — 6, » Ome
Am, > Oom s o5 Omm — 0

the preceding relations then lead to values for the ratios of the
constants p for each such root. It is to be noted that, in this
equation, the term, which is independent of 6, does not vanish,
for it is the determinant of the coefficients a; hence the equation
has no zero root.

As the equation definitely possesses roots 6, it follows that
integrals exist which, after a description of the simple contour
round a, reproduce themselves save as to a constant factor. If it
should happen that the constant factor is unity, then the effect of
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description of the contour upon the integral is merely to leave it
unchanged : in other words, such an integral is uniform in the
vicinity of the singularity.

PROPERTIES OF THE FUNDAMENTAL EQUATION,

14. The special significance of the equation, in relation to
the singularity a, lies in the proposition that the coefficients of the
various powers of 6 in A =0 are independent of the fundamental
system inatially chosen for discussion. 'To prove* the statement,
it will be sufficient to shew that the same equation is obtained
when another fundamental system is initially chosen. For this
purpose, let %, ..., ¥ denote some other fundamental system ;
and suppose that, by the simple closed contour round e described
by the variable, the members of the system become %/, ..., ym'
respectively. Then, as both these systems are fundamental, there
are relations of the form

:’/s/=831y1+---+,88mym’ (3:1: cee, M),

where the determinant of the coefficients B is not zero. The
equation B =0, corresponding to 4 =0 for the determination of
the factor 6, is formed from the coefficients @ in the same way
as A from the coefficients a, so that the expression for B is

B = 311—9, 621 3 e Bml
612 > 62‘2 - 9) LERS 18m2
Blm 3 B2m 3 s ,Bmm - 6
Because each of the sets w,, ..., Ww; Y1, ..., Ym; is a funda-

mental system, the members are connected by relations of the

form
Yp = YWy + YWy + oo + Yo Win, (r=1, ..., m),

where the determinant of the coefficients, which may be denoted
by T, is different from zero. The quantity

Yr— ('le'wl + ...+ 'Yrm’wm)

is zero everywhere in the vicinity of z; and it is an integral,
which accordingly is zero everywhere in its continuations over the

* The proof adopted is due to Hamburger, Crelle, t. Lxxvr (1873), pp. 118—125.
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ordinary part of the plane. When it is continued along the
simple contour round a, the variable returning to z, the integral
is zero there; that is,

yr/ = "le’wl’ + ..o+ 'Ywnwm/-

Hence
’I'l/ m
Brlyl +...+ ,B'rmym =t2’1 EI'Yrsast’wt;
=1 s§=
and therefore '
m m m K12
DD Brs")’st'wt =3 3 Yrs st Wi -
t=1s=1 t=1 s=

This relation involves only the members of a fundamental system
linearly ; hence it must be an identity. We therefore have

m m
b3 Brsyst = ) Vs Ast
s=1 s=1

= Opt,
say, the relation among the constants holding for all values of »

and &. Now forming the product of the determinants I' and A4,
we have

T'd = v, Y1z VYiss - oy — 0, ay > Og1 5 ees
Yo15 Vo2, Vo3, -ee O , Op— 0, oy PR
Yais Va2, Vazs .- A3 5 Oog , Qg — 0, ..

...................................................

=18y — '7110: S — 'Yme, eeo | =D,
8 — ')’210: 8o — ’)’220: oee

...........................

say; and similarly, forming the product of B and I', we have

Bl'= Bu - 6’ 81-2 s Bls y see Y11, Yo, Ys1s eee
Ba » B — 0, Bes > see Yizs Y225 Ws2s -
Ba s 532 s 633 - 9: see Y3, Yezs sz ee

.................................

= 811 - '}’119, 812 - 'Yme: ces | = D,
821 - 'Yme; 822 - ")’226, ..

..................

...........................

so that
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identically. Also I" does not vanish ; hence

A =B,
for all values of 6.

Accordingly, the equation 4 =0 is invariantive for all funda-
mental systems in regard to the effect of the singularity a upon
the members of the system: it is called* the fundamental equation
belonging to the singularity a. We note that its degree is equal to
the order of the differential equation.

While the equation is thus invariantive for all fundamental
systems, the actual invariance of one of its coefficients is put in

evidence, either when the differential equation of § 2 is initially
m—1
devoid of the term involving :l?m'—?i} , or after the equation has

been transformed by the relation

1
w= Wenl" "

2

. . ._dm W

so as to be devoid of the term involving g In A =0, the
term which vs independent of 0 is equal to unity, a property first
noted by Poincarét. For when p, is zero, the determinant A of
the fundamental system is a constant, for (§ 9) its derivative
vanishes ; it therefore is unchanged when the variable describes
a simple closed circuit round the singularity. The effect of such
a circuit upon A is to multiply it by the term in 4 which is
independent of 8: accordingly, that term is unity.

The linear equation can always be modified so that the term
involving the derivative of the dependent variable next to the

highest is absent; and the necessary linear modification of the

dependent variable leaves the independent variable unaltered.
This change does not influence the law giving the effect, upon
the integrals, of a description of a loop round the singularity;
and the fundamental equation is independent of the choice of
the fundamental system. -Accordingly, the coefficients of the
various powers of @ (except the highest, which has a coefficient
(=17, and the lowest, which has a coefficient unity) are fre-
quently called the invariants of the singularity: they are m —1
in number.

* Sometimes also the characteristic equation.
+ Adcta Math., t. 1v (1884), p. 202.
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15. There is a further important invariantive property of the
determinants A (6), B(0), viz.: If all minors of order n (and
therefore all minors of lower order) in A (0) vanish for a particular
value of 6, but not all those of order n + 1, then all minors of order
n wn B(0) also vanish for that value of 60, but not all those of order
n+ L

A minor of order » is obtained by suppressing n rows and n
columns ; accordingly, the number of them is

m ! 2 .
{(m—n)l n!} P TS

say. Let them be denoted by ay, by, ¢y, di when formed from
A(6), B(8), I', D respectively, where ¢ and j have the values
1, ..., p, these numbers corresponding to the various suppressions
of the rows and the columns. Then, regarding D as the product
of A and T, we have*

dij= CaOj + CoaQjp + - + Cipju;
and regarding D as the product of B and I', we have
dij = bﬁ cp + bizcjg + ... 4 bwcj“.
All the quantities a;; are supposed to vanish for a particular value
of 8; hence for that value all the quantities d; vanish. Assigning
to j all the values 1, ..., u in turn, we therefore have
0= Cubil -+ 6121)1'2 + ... + Clnbi,‘
0 =Cuby + Cobiy + ... + Coubin

0 = Cur by + Cuzbin + ... + Cupbin

The determinant of the coefficients of by, bs, ..., by is equal tot

TA

b

where
_ (7n-f1)I .
A lm—n—1)! nl’

that is, the determinant does not vanish. Accordingly, we must

have
bi1=0, bi2=0, ooy bw=0;

as this holds for all values of 2, it follows that all the minors of
B (0) of order n vanish for the particular value of 6.

* Scott’s Determinants, p. 53. + <b., p- 61.
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The minors of B (), which are of order n + 1, cannot all vanish
for the value of @; for then, by applying the result just obtained,
all those of 4 (8), which are of order n + 1, would vanish, contrary
to hypothesis.

16. A more general inference can be made. Leaving 6 arbi-
trary and not restricting it to be a root of the fundamental
equation, the two expressions for dy give

® 2
p Cir Ajr = 3 stbi.s:
r=1 s=1

holding for all values of 7 and j. Taking this equation for any one
value of j and for all the u values of ¢, we have u equations in all,
expressing @, Qjs, ..., & linearly in terms of by,. The determi-
nant of coefficients on the left-hand side is I'*, as before, and does
not vanish ; so that each of the quantities a; is expressible linearly
in terms of the quantities b,,, the coefficients involving only the
constituents of I'. Similarly, taking the equation for any one
value of 7 and for all the wu values of j, we find that each of the
quantities by, is expressible linearly in terms of the quantities ay,
the coefficients involving only the constituents of I.  If therefore
all the quantities a; have a common factor & — 6,, and if that factor
be of multiplicity o, then all the quantities by, also have that
factor common and of the same multiplicity o ; and conversely.

These results associate themselves at once with Weierstrass’s
theory of elementary divisors*. If (6 — 6,)” is the highest power
of @— 6, in A4 (0),if (6 — 8,)*: is the highest power of that quantity
common to all its minors of the first order, if (8 — 6,)*: is the
highest power common to all its minors of the second order, and
so on, then (as will be proved immediately)

T >0L>0,> ...,
and

(6 — )=, (6—0)7 7, ...

are called elementary divisors of the determinant A4 (6). It follows
from the preceding investigation that the elementary divisors of
the fundamental equation are invariantive, as well as the equation

* Berl. Monatsber., (1868), pp. 310—338 ; Ges. Werke, t. 11, pp. 19—44. See
also a memoir by Sauvage, Ann. de U'Ec. Norm., 2¢ Sér., t. virt (1891), pp. 285—340;
and a treatise by Muth, Elementartheiler, (Leipzig, 1899).
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itself; for they are independent of the particular choice of a
fundamental system. :

If the earliest set of minors of the same order that do not all
vanish when 6 =0, is of order p, so that they are of degree m —p
in the coefficients in 4, then the elementary divisors are

(9 - 0])0— B Ul, (9 - 61)0“1 - 0.2) ceey (6 - el)a'p—2 - O—p—l, (6 - 01)69~1’

being p in number: and then p is one of the invariantive numbers
associated with the particular singularity of the equation.

As two of the properties of the invariantive equation, associated with the
elementary divisors, are required, they will be proved here : for full discussion
of other properties, reference may be made to the authorities quoted.

It is easy to obtain the result

0127092 aany
just stated above. For

oA m

ﬁ = ’I‘EI rrs

where A,,is the minor of a,.,—4. In A4, there is a factor (4 - 6,)°, for each
of the quantities 4,,. is a first minor : therefore that factor occurs in their
sum and, owing to the combination of terms, it may have an even higher
index than o;. On the left, the factor in 8 — 4, has the index ¢ —1; hence

o—1>o0y,
that is,

>0y,

Similarly for the other inequalities.

Again, we know* that any minor of degree p which can be formed out of
the first minors of 4 () is equal to the product of 42-1(4) by the comple-
mentary of the corresponding minor of 4 (4). Hence, taking p=2, we have
relations of the form

A By— 4,B,=A4C,
where A4,, 4y, By, B, are minors of the first order, and € is a minor of the
second order. Choose a minor of the second order which is divisible by no
‘higher power of -8, than (8~ 6,)”; the left-hand side is certainly divisible
by (6 —6,)*", and it may be divisible by a higher power if the terms combine :
hence

20, € o+ 0y,
that is,
-0y 20— 0y
Similarly, we have the other inequalities of the set
C—0{ 20 —0,20;—05>... 20’,,_1 ,
so that the indices of the elementary divisors, as arranged above, form a
series of decreasing numbers.

* Scott’s Determinants, p. 58.

44 BRANCHES OF AN ALGEBRAIC FUNCTION [17.

ASSOCIATION OF DIFFERENTIAL EQUATIONS WITH ALGEBRAIC
FuNoTIONS,

17. Before considering the roots of the fundamental equation,
it is worth while establishing a converse* of the propositions in
§ 13, as follows::

Let y,, ..., ym be m linearly independent functions of z, which
are uniform over any simply-connected area mot including any
critical point of the functions: let the critical points be vsolated and
let each of them be such that, when a simple contour enclosing it s
described, the values of the functions at the completion of the contour
are gien by relations of the form

’
Yy = A Yy + ...+ L Ym s

where the determinant of the coefficients a is not zero, and the
constants may change from onme critical point to another: then the
m functions are a fundamental system of integrals for a linear
differential equation of order m with uniform coefficients.

It is clear that, if the functions are integrals of such an equation,
they form a fundamental system because they are linearly indepen-
dent. On account of this linear independence, the determinant

dm-ly dm——zy ! s
A, = 3‘;{[_1{’ dZ1n_21 s erey

.................................

does not vanish for all values of z. Let A, denote the determinant

m.
which is derived from A by changing the sth column into (fiz’:’y@ 2,
.. 4" and consider the quantity
S e
Ps="K-

For any contour that encloses no critical point, A and A, are
uniform, so that p, is uniform for such a contour. For a simple
contour, which encloses the critical point a and no other, the

* It is given by Tannery, dnn. de UEc. Norm., Sér. 2me, t. 1v (1875), p. 180.
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determinant A after a single description acquires a constant factor
R, where R is the (non-zero) determinant of the coefficients in the
set of relations
Yy =ty + oo+ G Y, (r=1, ..., m).
The determinant A; acquires the same factor R, in the same
circumstances ; and therefore p, is unchanged in value by a
description of the contour, that is, it is uniform for such a
contour. As this holds for each contour, it follows that p, is
uniform over the plane.
The m quantities ,, ..., ¥ evidently are special integrals of

the equation
dmy dm-—ly dm—2?/
dam P gpm— TP o e TPl

which is linear and the coefficients in which have been proved
uniform functions of z.

COROLLARY. If all the critical points of the jfunctions are of
an algebraic character, that s, of the same nature as the critical
points of a function defined by an algebraic equation, and are
limited wn number, then the uniform coeffictents p wn the differential
equation are rational functions of z. For as p, is uniform, the
critical point @ is either an infinity, or an ordinary value (including
zero). If it is an infinity, it can be only of finite multiplicity ;
for the critical point is one, where A and A; can vanish only to
finite order because of the hypothesis as to the nature of the
critical point: that is, the point is then a pole of finite order.
Likewise, if it is a zero, the multiplicity of the zero is finite.
This holds at each of the critical points of the functions y,, ..., ¥n;
and the number of such points is finite. Moreover, every point
that is ordinary for each of the functions is ordinary for A and A,
and, in particular, A cannot vanish there: so that no such point
can be a pole of any of the coefficients p. It therefore follows*
that each of these coefficients is a rational meromorphic function
of 2.

The converse of the corollary is not necessarily (nor even
generally) true: it raises the question as to the tests sufficient
and necessary to secure that the integrals of a linear equation with
rational coefficients should be algebraic functions of the variable.
This discussion must be deferred.

* T. F., § 48.

46 ALGEBRAIC FUNCTIONS [17.

Ezx. 1. The most conspicuous instance arises when the dependent vari-
able w is an algebraic function of z, defined by an algebraic equation

f (’w7 Z) =0,
of degree m in w. Each branch of the function so defined is uniform in the
vicinity of an ordinary point; in the vicinity of a branch-point, the branches
divide themselves into groups ; and any linear combination of them is subject
to the foregoing laws of change (which take a particularly simple form in this
case) when z describes a circuit round a branch-point.

To obtain the homogeneous linear equation of order m which is satisfied
by every root of f=0, we can proceed as follows. Let ¢ (2)=0 be the
eliminant of f=0 and a%)" =0; so that* all the branch-points of the alge-
braic function are included among the roots of ¢ =0, though not every root is
a branch-point. By a resultt in the theory of elimination, we know that the
resultant of two quantics % and v of degree m and » respectively in a variable
to be eliminated is of the form

uv; + Uy,
where u; and », are of degrees m— 1, n — 1 respectively in that variable ; and
therefore
pE=Ur+ VL
o aw 2
where U is of degree m—2 in w and V is of degree m—1 in w. But fis
permanently equal to zero for all the values of w considered ; hence

of
* T. F., ch. v
+ It is most easily derivable from Sylvester’s dialytic form of the eliminant, as
follows. Let
U= Z™ 4+ a, 2™ 1+ a2+ L,
U =Coa™ a2 L
the eliminant is

E=| ay, a,, ag, ...
0, ay a,
0’ 0 ’ )

To the last column, add the first column multiplied by z™t»~1, the second
multiplied by 2™*t7~2, and so on : a change which does not affect the value of E.
The constituents in the new last column are

vy, 22, .., u, w, 2™ o, 2™, .., 2V, V;
expanding E by taking every term in this last column with its minor, collecting all
the terms involving u into one set and those involving v into another, we have
E=uv; +vu,,

where v, is of degree n -1 in = and w, is of degree m —1 in z.
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Now
vy
d_w= NE _ _-_53
210N
ow

By means of f=0 which is of degree m in w, we can reduce V@—‘ so that it

0z
contains no power of w higher than the (m — 1)th, say

dw _ Py
dz ¢ (2)’
where P, is a polynomial in w of degree not higher than m—1. (If the
highest term in f has unity for its coefficient, then P, is a polynomial in z
also.) Again,
@w_ P 0P, 1 0P, P, 0
de?  ¢2(z) ow ' P (z) 0z P*(2) Oz
— Ly
RHON
on reducing to a common denominator ; by means of f=O0, the polynomial
P, can be made of degree not higher than m —1 in w, and its coefficients are

uniform functions of z. And so on, up to

arw - Py

dn = ¢m(z)
where P,, is a polynomial in w of degree not higher than m — 1, the coefficients
being uniform functions of z. We thus have

dw
P1='&2 b,

d2w
PZ=%§¢2>

dmw
Pm=‘d27 ¢m.

Among these m equations we can, by a linear combination, eliminate the
m — 1 quantities »% w? ..., w1 from the left-hand sides ; and the result has
the form
dw d2w admw
Q=@ ¢+ @y 5 P*+ ... + P o P
where @q, @y, +-oy Qm are uniform functions of z. This is satisfied for every
root w of the algebraic equation : and it is of order .

Corollary. There is one special case, when the differential equation is of
order m — 1, viz., when the algebraic equation is
f=wm+a2/wm—2+ . +Otm=0,
so that the term in w™~1! is absent. We then have

W+ wo+ ... +w,y,=0,

48 EXAMPLES OF [17.

so that one of the m branches w can be expressed linearly in terms of the
others ; Tannery’s result shews that the differential equation is then of order
not kigher than m—1. In that case, it would be sufficient to take only the
m—1 equations

drw
P"=d7 P, (r=1, ..., m—1).

For instance, consider the algebraic equation
w34 3w=mu,

where % is any function of z; it is to be expected that the linear differential
equation satisfied by each of the three branches of the function defined by
this cubic equation will be of the second order, say

2w dw
J2 +4 (E~+Bw=0,

where 4 and B are functions of zz 'We have
dw
2 XY 1y
(w2+1) dz U,

d2w dw\?
24-1) - y 27N =14 -
(i +1) dz? +2w<dz> R
s0, substituting in

d? d
(w?+1) Eg + A (wr+1) 07;-"+B(ws+w)=o,

and using w3+ 3w=wu, we have
2
B(u—2w)+ 44 +3u" =2w (‘;%J) .
Multiplying the right-hand side by (w?41)% and the left-hand side by its
equivalent 1+4wwu—w?, we have
2wiuw?=(1+wu—w?) {$4vw +Lu" + B (u— 2w)}
=1 +wu—w?) (34Av +3u”) + B Bu+w (u? - 8) — 3wu},

on reduction by the original algebraic equation. This will hold for each of
the three roots of that equation, if

2ul=u (3 A4v +iu")+ B (u?—-8)
O0=344 +iu"+3Bu '

These conditions give the values of 4 and B; and the equation for w is easily

found to be
2w w w"\ dw u'?
a2t ( ) =% “

wird W )dz Yuitd
where % and «” are the first and the second derivatives of u. The equation
is of the second order as indicated. '

Note 1. When the algebraic equation of degree m In w is of quite
general form, the linear differential equation satisfied by its roots is of order
m. But when the algebraic equation has very special forms, though still
irresoluble, the differential equation may be of order less than m ; for the
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elimination of various powers of w may not require derivatives up to that of
order m. The most conspicuously simple case is that in which the alge-
braic equation is

w =R (z),
where R is a rational function of z ; the differential equation is

dw 1 R(z)
&t m B "

only of the first order.

Other cases occur hereafter, in Chapter v, where quantities connected with
the roots of algebraic equations of degree higher than two satisfy linear
differential equations of the second order.

Note 2. The differential equations considered have, in each case, been
homogeneous. If we admit non-homogeneous linear differential equations,
viz. those which have a term independent of w and its derivatives, then in
the general case, where f(w, ) has a term in w™ =1, the differential equation is
of order m—1 only. This can be seen at once from the elimination of
w2, wi, ..., w1 between

dw
Plz%d)

am =1 B
})m_l_; dem~1 d)m 1

leading to a (non-homogeneous) linear equation of order m—1. This result
appears to have been first stated by Cockle*: it is the initial result in the
formal theory of differential resolvents+.

Ez. 2. Shew that, when the algebraic equation is
w2 — 2zw — 2t =0,

the two linear differential equations, homogeneous and non-homogeneous
respectively, are

d?w _ 3+ 222 gZﬂJ 34222

dz2 2423 dz 22424

dw 1422 22

dz 24238 w=—.1+z2'

w=0,

Ez. 3. Obtain the differential equations satisfied by each root of
1) wPr—3uw?+26=0;
(i1) w—3zw+23=0.
Ez. 4. Shew that any root of the equation
yr—ny=(n—1)x

* Phil. Mag., t. xx1 (1861), pp. 379-—383.
+ For references, see a paper by Harley, Manch. Lit. and Phil. Memoirs, t. v
(1892), pp. 79—89.

F. IV, 4
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(n being greater than 2) satisfies the equation

AN gn-1y2-n D122 1Y)
dxnr—1 “ d(x-—a)n~—1 )
where a=1 —%. What is the form for n=27 (Heymann.)

Ez. 5. Shew that any root of the equation
Y —nxy=n—1
(n being greater than 2) satisfies the equation
ar— 13/ n—1 dry
dzn=1 20 ™" d (log oy’

where the constants a, arise as the coefficients in the algebraic equation

(_ 1)n~1x

n—1
S (-1 aA"=0,
=0
when the roots are

for k=1, ...,n—1,and a,_,=1. (Heymann.)

Ez. 6. Prove that, if
Yy — by + by —4x+2=0,
then
diy | 20-1 dy ¥y
dn2 " 2 (w—1) de 26z (x—1)

0;

and explain the decrease in the order of the differential equation.
(Math. Trip., Part 11, 1900.)

FUNDAMENTAL SYSTEM OF INTEGRALS ASSOCIATED WITH A
FUNDAMENTAL EQUATION.

18. We now proceed to the consideration of the fundamental
equation 4 =0 appertaining to the singularity a.

The simplest case is that in which the m roots of that equation
are distinct from one another, say 6,, 6,, ..., 6,. Not all the
minors of the first order vanish for any one of the roots : if they
did vanish, the root would be multiple for the original equation.
Hence each root 6, determines ratios of coefficients ¢, Cpz;y -+, Com
uniquely, such that an integral of the equation exists, having the
value

Uy = CpWy + «ov + CrmWmn,
and possessing the property that

w, = G,u,,
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where u,’ 1s the value of u, after z has described a complete simple
contour round a. We thus obtain a set of m integrals.

These m integrals constitute a fundamental system : otherwise
a permanent relation of the form

Kty + Koty + ooo + Ky, =0

would exist. This quantity Zs,u, is an integral: as it is zero
and all its derivatives are zero at and near 2, it is zero everywhere
when continued over the regular part of the plane. Accordingly,
let z describe a simple closed contour round «: when it has
returned to its initial position, the zero-integral is Z«,u,’, that is,

.00, + k:O0sus + ... + KOty = O.

Similarly, after a second description of the simple closed contour,

we have
1,020, + 1,020, + ... + K002, = 0.

Let m — 1 descriptions of the contour be made in this way: we
have
10,71y + 120700+ oo+ KO U =0,

for »=0,1, ..., m—1. Unless all the coefficients «,, ..., &, are
zero, we have
| ]_ N 1 5 > 1 = 0)
! 91 3 9; 3 ) em
9 m—1 gzm—], , gmm—l

that is, the product of the differences of the roots is zero. This is
impossible when the roots are distinct from one another; hence
the coefficients «,, ..., x, vanish, and there is no homogeneous
linear relation among the integrals w,, ..., %, which accordingly
constitute a fundamental system.

The general functional character of these integrals is easily
found. Let
0# — e27r‘i?‘IL,
so that », i1s a new constant, which is determinate save as to any
additive integer; as the roots 6, ..., 6, are unequal, no two of
the m constants »,, ..., 7, can differ by an integer. Now the
quantity

(z —a)™*
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acquires a factor 627'-2:7"", that is, 8,, when z describes the simple
complete circuit round «. Hence the quantity

Uy (2 —a)”"®

returns to its initial value after the variable has described the
simple complete circuit round a; .and therefore it is a uniform
function of z in the immediate vicinity of a, say ¢,, so that

w=(2 — )" ¢p,.
As this holds for each of the integers u, it follows that we have a
system of fundamental integrals in the form

(z—a)*¢py, (z—a)*s, ..., (2— a)' ™,
where ¢y, ¢o, ..., bm are uniform functions of z in the vicinity of
a, the quantities v, are given by the relations

1
V= —2—;;1; ].Og' 6“,

and the roots 0,, ..., On of the fundamental equation are supposed
distinct from one another, no one of them being zero.

As regards this result, it must be noted that the functions ¢
are merely uniform in the vicinity of a: they are not necessarily
holomorphic there. Each such function can be expressed in the
form of a series of positive and negative powers of z — a, converg-
ing in an annular space bounded by two circles having a for a
common centre and enclosing no other singularity of the equation.
There may be no negative powers of z—a, in which case the
function ¢ is holomorphic at a; or there may be a limited number
of negative powers, in which case a is a pole of ¢ ; or there may
be an unlimited number of negative powers, in which case a is an
essential singularity. Moreover, r, is only determinate save as to
additive integers: it will, where possible (that is, when a is not an
essential singularity), be rendered determinate hereafter; so that,
in the meanwhile, the result obtained is chiefly important as
indicating the precise kind of multiform character possessed by
the integrals near a singularity.

19. Now consider the case in which the fundamental equation
A = 0 appertaining to the singularity a has repeated roots, say A,
roots equal to €,, A, roots equal to 6,, and so on, where 6,, 6,, ...
are unequal quantities, and A, + A, + ... =m. It will appear that
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a group of linearly independent integrals is associated with each
such root, the number in the group being equal to the multiplicity

of the root; that each such group can be arranged in a number of

sub-groups, the extent and the number of which are determined
by the elementary divisors connected with the root; and that the
aggregate of the various groups of integrals, associated with the
respective roots of the fundamental equation, constitutes a funda-
mental system.

GROUP OF INTEGRALS ASSOCIATED WITH A MULTIPLE RoOT OF
THE FUNDAMENTAL EQUATION,

Let x denote any such root of multiplicity o, and let the
elementary divisors of 4 (6) in its determinantal form be

O@—x) "% (0—k)7% .., (B—k) 271 (0—k)1;
then the minors of order + (and consequently of degree m — 7 in

the coefficients of A) are the earliest in increasing order which do
not all vanish when 6 = . Consequently, in the set of equations

P1%1y + Pollay + oo+ P%iny = PrK, <7° =1, ..., ’)’I'L),
7 of them are linearly dependent upon the rest; hence taking
m — 7 which are independent, we can express m — 7 of the con-
stants p linearly in terms of the other 7, which thus remain
arbitrary. Let the latter be p;, ..., p.; then the integral, given
by

U= pW; + Pz + ...+ PpWn,
becomes

wu=p, Wi+p, Wot+ ... +p,W,,

where

Wy =, + by 1 Weps + oo+ K1 Wi,
Wy =w, + l‘/‘r+1,2w-r+1 + ...+ km,z’wm,
’

We=w,+ ke s W1 + oo+ ko v Wiy }
and the determinate constants k are given by
Pryq1 = k1+1,1P1 + IC1'+1,2P2 +...+ kr+1,rP1 ‘
Prae = Kepo1p1+ Krpoapo+ oo 4 Krpo 2 pr

.............................................

Pm = ]‘/'m,xpx + km,?,oz + ...+ km,-rpr
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being the expressions for the m — 7 quantities p in terms of the
7 quantities p which remain arbitrary.

Evidently each of the quantities W is an integral of the
equation: and they have the property

Wr’ =K W’l"

for r=1, ..., 7. Moreover, they are linearly independent; any
non-evanescent relation of the form

EW, +...+EW,=0

would lead to a relation between w,, ..., w,, which would be homo-
geneous, linear, and non-evanescent, a possibility excluded by the
fact that w,, ..., wy, constitute a fundamental system.

The only case, in which 7=, occurs when the indices o — o,
01— 0y, ..., 0, Of the elementary divisors are each unity. In
that case, we have obtained a set of integrals, in number equal to
the multiplicity of the root.

20. We shall therefore assume that 7 < o; and we then use
the integrals W,, ..., W, to modify the original fundamental
system w, ..., w,,, substituting them for w,, ..., w,. When the
variable z describes a simple closed contour round a, the effect
upon the elements of the modified system is to change them into

Vs WY, o, W, Wi, ..., wy, where
W, =W,
wy =LBaW,+ ...+ B W, + Bs,-r+1'w-r+1 +...+ Bs,mwm,
for r=1,...,7, and s=7+1, ..., m. The fundamental equation
derived from this system for the singularity a is
4 (Q)=0
where
AQ)=|x—-Q, 0 ,..., 0 |, 0 , o ,..., 0
0, «—-Q,.., 0 , 0 , 0 ..., 0
0O, 0 ,.., x—Q, 0 , o ..., 0

:81‘+1,1a Br+1,2;-~-a B‘r+1,'r: /81'+1,1'+1—Q’ BT+1,T+2)"’, Br—i—l,wz

.....................................................................

Bml ) 18171'2 ey 187714' 5 B?n,‘r-i—l > Bm,-r+2 e Bmm_ﬂ
= (k — Q) 4,(Q),
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where
4, (Q> = :31-+1,r+1 -, B‘r—(—l, TH2y cees :8‘r+14,'m .

Bm,'r-i—l ) /8m,-r+2 3 ceey B’mm-ﬂ

As « 1s a root of 4 (Q) of multiplicity o, it is root of 4, (L) of
multiplicity o — 7; and a question arises as to the elementary
divisors of 4, (Q) associated with «.

The elementary divisors of A4, (L), which are powers of « — Q,

are
(Q — K;)o’—a’;—l) (Q — K)”x'“z*l, (Q — K)crz—ca—l’ ..

being, in each instance, of index less by unity than those of
A (Q). This result, which is due to Casorati*, follows from the
property that 4,(Q) is divisible by (2 —«)°~7; its first minors
are divisible by (Q —«)»~¢ and not simultaneously by any
higher power; its second minors are divisible by (2 — )7~
and not simultaneously by any higher power; and so on.

This property, that all the minors of 4, (@) of order u are divisible by

(k —Q)7w~ (T =#) and not simultaneously by any higher power, can be proved
as followst.

Any minor of order p of A (Q) must contain at least m —r —p of the last
m—7 columns : let it contain m—r—p+a of these columns, where a can
range from O to p. It then must contain 7—a of the first = columns.
Similarly, it must contain at least m —r~—pu of the last m—7 rows: let it
contain 7 —r—p+a’ of these rows, where o' can range from O to p. It then
must contain r—a of the first r rows. The minor may be identically zero :
if not, then, owing to the early columns and early rows that are retained, it is
divisible by (x—@)" ™", and possibly by a higher power of x—. Conse-
quently, some among these minors are expressible as the product of (x — Q)" ™*
by a linear combination of minors of 4,(2) which are of order u ; the coeffi-
cients in the combination are composed of the constants, which occur in the
first 7 —u columns and the last m —r rows, and thus are independent of Q.
But a minor of order p of A4 (Q) is not necessarily divisible by a power of
k— with an index higher than 0, thus

(x — ). polynomial in @=(k ~ )" ~ #.sum of minors of 4, (Q).
It therefore follows that the power of x —Q common to all those minors of

A4, (2) is of index not higher than :ru—(r—y.).

* Comptes Rendus, t. xc1x (1881), p. 177.
+ Heffter, Einleitung in die Theorie der linearen Differentialgleichungen,
pp. 250-—256.
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Next, we know that there are some minors of the original 4 (Q) of order =,
which do not vanish when ©@=x and which therefore are not divisible by
«—Q. Clearly they cannot contain any of the first + rows in 4 (@); and thus
they must be composed of sets of m—+ columns selected among the last
m —r vrows. Take the minors of order u of any one of these non-vanishing
determinants, their number being V2, where

_(m—r)t R
=y i
and denote these minors by
-B[hk’ (/1'5 ]C=1, [RE}) N);

the integers 4 and £ corresponding to the obliteration of a set of u columns
and a set of u rows out of the non-vanishing determinant of order m —r.
Let my; be the complementary of My in its own determinant.

Now take the minors of 4, (@) which are of order u: their number is V2
and they may be denoted by a;;, for 7, j=1, ..., &V, with the same significance
in the integers as for M};. Construct an expression

My g+ Mg Qg+ .oy aiwy, =,
say, where J;, is a determinant of order m —r. Then either (i), J, vanishes
identically, owing to identities of rows or columns: or (ii), J; is equal to
+.4,(2) and therefore is divisible by (x - )77, that is, certainly divisible
by (x —Q)"'M—(T_'“), for (§ 16) we have
Ty o -0y 2. 20, =1;
or (iii) /3, when bordered by r—pu of the first rows, and the first columns in
A (Q), is a minor of order u of 4 (@) and is therefore divisible by (x—Q)%®, so
that the equivalence of the two expressions for the minor of 4 (Q) gives
(k — Q)% . polynomial in @=(k — Q)" ~#.J,,
and therefore J, is divisible by (k—Q)7s~ (T=#), Tt thus follows that Jy is
divisible by (K—Q)‘TIL‘(T“"‘), in every case when it is not zero: and this
holds for all values of 2. Taking then
My @iy + Mopg Ay + oo+ N div =g,

for 2=1, ..., ¥V and for one particular value of 7, we have a series of ¥V linear
equations in the quantities a;, ..., a;ar. The determinant of their coefficients
is a power of the non-vanishing determinant of order m -, for it is a
determinant of all its minors of one order : and therefore it does not vanish.
Hence, so far as powers of « — @ are concerned, each of the minors a;, ..., a;x
is a linear combination of J;, ..., Jy: all of these are divisible by
(K—Q)"M"(T“’“‘), and therefore each of the minors ay, ..., a;x is certainly
divisible by that power. The result holds for each of the values of <.

It has been seen that the power of «—Q, common to all these minors of
4, (2), has an index not greater than o, —(r—pu); combining the results, we

infer that the highest power of «x — @, common to all the minors of 4,(Q) of
order p, has its index equal to o, (v —p).
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21. The indices of the elementary divisors of 4, () are
oc—o—1, o—0s—1, co—0;—1, ...
let there be +’ of them, where 7' € 7, so that the last + — 7’ of the
indices of those of 4 (Q) are equal to unity, on account of the
property
C— 0120, —03 20— 032 ... = 0, = 1.

Then the minors of A, of order 7 (and consequently of degree
m — 1 — 7’ in the coefficients of A4,) are the earliest in successively
increasing order, which do not all vanish when Q =«; conse-
quently, in the set of equations

Pl,Br,v—H + Pz/;Br,1+2 + ..o+ le-—1 Br,m = fCPr’, (_’)" =741, .., m);
7" of them are linearly dependent upon the rest. Hence taking
m — 1 — 7 of the equations which are independent, we can express

m — 7 — 7 of the constants p’ in terms of the other 7/, which thus
remain arbitrary and which may be taken to be p/, ..., p’r.
Now take an integral
V= Pl/w'r—l—l + ...+ le—r Wip
and substitute for the various coefficients p’ in terms of p/, ..., p.
The integral becomes
v= Pll Wi+ P2l We+ ...+ P/T’ Wi,
where, writing A = 7 + 7/, we have

Wi = W,y + lt\+1,a'w/\+l + ...+ lm.,r'wm;

for r =1, ..., v; and the determinate constants { are given by
Pr's = l)\+s,1P1/ + .o+ lM—s, T'P,-r';
for s=1, ..., m — A, being the expressions of the constants p’ in

terms of p,’, ..., p'r.

Clearly each of the quantities Wy, Wy, ..., Wi is an integral
of the equation. Moreover, they are linearly independent of one
another and of W,, ..., W,; for any non-evanescent linear relation
of the form

FW, +. . .+ F W, +F ' Wy+...+F W,.=0
would lead, after substitution for W,, ..., W., W,, ..., Wi in
terms of the original fundamental system w,, ..., w,, to a non-

evanescent homogeneous linear relation among the members of
that system—a possibility that is excluded.
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As regards the effect, which is caused upon each of these
newly obtained integrals by the description of a simple contour
round the singularity, we have

WM'/ = wl‘r-}-?' + l}\+1, 7‘w’A+l + ...+ lm,rwm’
=Wy, + V.,
where V,. denotes a homogeneous linear combination of Wi, ...,
W,. Now no one of the quantities V, can be evanescent, nor
can any linear combination of the form

nVi+ oo+ ey Vo
be evanescent : for in the former case, we should have

Wh-l =K Wn-,
and in the latter

P Wot oo + 92 W) = (punWa + oo + 0 W),

As W, and o, Wy, + ... + Wi 1n the respective cases are linearly
independent of W,, ..., W,, we should thus have a new integral
of the same type as W,, ..., W,; and then, instead of having some
of the minors of order 7 in 4 (Q) different from zero when Q = «,
all of them of that order would be zero, and we should only be
able to declare that some of order 741 are different from zero :
in other words, the number of elementary divisors of 4 () would
be 7 +1 instead of 7. The quantities V, ..., V,» are thus linearly
equivalent to 7" of the quantities W, ..., W,,say to W,, ..., W,;
hence constructing the linear combinations of Vi, ..., ¥V, which
are equal to W,, ..., W, respectively, and denoting by w,, ...,
w,, the linear combinations of W,,, ..., W, with the same coeffici-
ents as occur In these combinations of V,, ..., V.., we have a set
of 7’ integrals w;,, ..., Wy, such that

wy,’ = kwy, + W, (r=1, ..., 7).

These integrals are linearly independent of one another, and also
of W,,..., W,, before obtained. They constitute the aggregate
of linearly independent integrals of this type; for if there were
another linearly independent of them, it would imply that 4,(Q)
had 7+ 1 elementary divisors instead of only 7.

As regards the two sets of integrals already obtained, it may
be noted, (i), that the set W,, ..., W, can be linearly combined
among themselves, without affecting the characteristic equation

W, =«W,;
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(11), that to each integral of the set wy, ..., w,,» there may be added
any linear combination of the integrals of the set W,, ..., W,,
without affecting the characteristic equation

’
wy,' = kwy, + W,.

If the index of each of the elementary divisors of A4,(Q) is
unity, then 7'=o—7, so that the number =+ 7 of integrals
obtained is then equal to o, the multiplicity of the root of
A(Q)=0 in question. In every other case, ¥+ 7 < 0.

22. When 7+ 7<o, so that 7 is less than the degree of

A,(Q), we use the integrals wy, ..., wy,» to modify the funda-
mental system Wi, ..., W,, w.,y, ..., Wy, substituting them for
Wyiy, ++vs Wrpp in that system. When the variable z describes a
simple closed contour round «, the effect upon the elements of the
modified fundamental system is to change them into W, ..., W,
Wy'y eeey Wigry Wiagys ooy Wy, Wwhere 7+ 77 = A, and

Wr’ =K Wry

Wi = kwys + W, 4
w =gyu W+ ... + %,‘W,

+ Vi, Wit oo YW F v aaWarr Fooos T YL Wi,
forr=1,...,7;s=1,...,7;t=A+1, ..., m. The fundamental
equation derived through this system is

A(Q) = (k= QY +4,(2) =0,

where

.............................................

| Y, A+1 s YmyAd2 5 eees 'Ym,m'_Q

Also « is of a root of A4,(Q) of multiplicity ¢ —7—7. By a
further application of the proposition (§ 20) connecting the
elementary divisors of 4 () and A4,(Q), the indices of the
elementary divisors of A4,(Q), which are powers of x—(, are
seen to be

c—0,—2, o1—0,—2, g.—05—2, ...

say 7" 1n number.

The procedure from the equation 4,(2)=0 to the corre-
sponding sub-group of integrals is similar to that adopted in the
case of the equation 4,(Q)=0; and the conclusion is that there
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exists a sub-group of 7”7 integrals w,, W, ..., Wy, characterised
by the equations

’
Wyt = KWy + Wy,
for t=1,2,...,7".

And so on, for the sub-groups in succession. Combining these
results, we have the theorem™* :

When a root of the fundamental equation A (Q)=0 s of
multiplicity o, and when the elementary divisors of A (2) associated
with that root are

(/c _ Q)a'—al’ (/c . Q)Ul—dg, . (K — Q)a-'r-—l’
a group of o linearly independent integrals is associated with that

root: this group consists of a number o — oy of sub-groups, which
satisfy the equations

w, = kw,, for r=1, ..., 7,
wyy = kW, + wg, for s=1, ..., 7,
Wy = KWy + wy, for t=1, ..., 77,

and so on. Tle integer T is the number of elementary divisors of
A (Q); T is the number of those divisors with an index greater
than unsty ; v <s the number of those diwwisors with an index greater
than two ; and so on.

The group of o integrals, and m — o other integrals, all
linearly independent of one another, make up a fundamental
system: the m — o other integrals being associated with the
m — o roots of 4 (Q)=0 other than Q =«. When these roots are
taken in turn, we have a single integral associated with each
simple root, and a group of integrals of the preceding type asso-
ciated with each multiple root, the number in the group being
equal to the order of multiplicity of the root. We thus have a
system of integrals of the original differential equation distributed
among the roots of the fundamental equation associated with the

* That part of the theorem, which establishes the existence of the group of
integrals associated with a multiple root, is due to Fuchs, Crelle, t. rxvi (1866),
p. 186 : but the initial expression given to the members of the group was much
more complicated. The part which arranges the group in sub-groups, each with
its own characteristic equation, is due to Hamburger, Crelle, t. nxxvr (1873),
p. 121; he takes it in an arrangement, which will be found in the next section.
The association of the sub-groups with the elementary divisors of 4 (Q) is due to
Casorati, Comptes Rendus, t. xci1 (1881), p. 177.
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singularity : that the system is fundamental is manifest from the
facts, that the initial system was fundamental, and that all modi-
fications introduced have been such as to leave it fundamental.

Ez. 1. Two independent integrals of the equation

2.

+3(Bz+1)w=0
are given by
1 3 1
wy =22, wy=2%+2%logz
Hence when the variable describes a simple closed contour round the origin
in the positive direction, we have
wy' = —wy,
wy = — 2miwy — W, 5
and therefore the fundamental equation belonging to the origin (which is a
singularity of the equation) is
-1-6, © =0,
-27t, —1—-6
that is, it is
(0+1)2=0.
Similarly, two independent integrals of the equation

2w dw
2T _ 5 +Zw=
Cdp T gy Y 0
are given by

1
2

4
wy=2%, wy=7z%.

Hence after a simple closed contour round the origin, we have
7 ’
wy)'=—w;, Wy =aw,,

where a is 2™ ; the fundamental equation belonging to the origin is

| —1-6, 0 |=0,
‘ o a—6 |

that is,
(6+41) (6 -y =0.

Ez. 2. Construct the linear differential equation of the third order,

having

13 13 14

Z18, zZ1slogz, Z°
for three linearly independent integrals; obtain the fundamental equation
appertaining to the origin as a singularity ; and from the form of the
differential equation, verify Poincaré’s theorem (§ 14) that the product of
the three roots of this fundamental equation is unity.

62 HAMBURGER’S [23.

HAMBURGER'S RESOLUTION OF A GROUP OF INTEGRALS INTO
SUB-GROUPS.

23. In the case when the roots of the fundamental equation
are all distinct from one another, the general analytical character
of each of the integrals of the fundamental system in the vicinity
of the singularity has been obtained (§ 18). We proceed to the
corresponding investigation of the general analytical character
of the group of integrals in the vicinity of the singularity, when
the group is associated with a multiple root of the fundamental
equation.

We have seen that the group of linearly independent integrals
can be arranged in sub-groups of the form

W, W, ..., W,
Wy, Wig, «ovy Wiy |
Wary Wag, «vny Wop

........................

the members of each sub-group being arranged in a line and
satisfying an equation characteristic of the line. Let these be
rearranged in the form#*

Wi, wy, wa, wsy, ..

W, Wy, Wa, Wi, ...

each of the integrals in the new line satisfies an equation, and the
set of characteristic equations for any line is, in sequence, the
same as for any other line, so far as the members extend. When
any such line is taken in the form

Uy, Uz, ooy U,

where the integer u changes from line to line, the set of the
characteristic equations is

w, = ru,

Us = KUy + Uy

4
U = KUy + Uy

* These are Hamburger’s sub-groups; see note, p. 60. Their number is equal
to the number of elementary divisors of 4 () connected with the multiple root.
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Let

27ria = log « ;
[(z — )] =« (z—a),

[, (2 —a)y™) =u, (2 —a)™
Thus w, (z — a)~* is unaltered by the description of a simple closed
contour round a; it therefore is uniform in the vicinity of «, but
it cannot be declared holomorphic in that vieinity, for @ might be
a pole or an essential singularity of u,(z —a)™™ Denoting this
uniform function of z —a by 4, we have

Uy, = (2 — a)* VY.
To obtain expressions for the other integrals, Hamburger*

proceeds as follows. Introduce the function L, defined by the
relation

we have

and therefore

1
L—Q—'n'—z.log(z—a),

then, after the description of a simple contour, we have

L'=L+1.
We consider an expression

F(L)y=F =\, + (";1) s L+ (”‘;1> Vs Lt ...

e (“ N 1) A Lo 4 Ay Lo,

where

(‘,u—1>= (p—=1)!
r /. (u—1—=—mr)t !’
and the functions A, ..., Y. are uniform functions of z—a.
Then if, for all values of n, we take

Yun, = (2 — A)* K" A" F,
where the symbolical operator A is defined by the relation

AF=F(L+1)—F(L)=F -F,

we have

Y un = (2 — a) AR

= (z — a)*xk™ (A"F + AH1F)
= KYu—n + Yu—n—1,
* Crelle, t. Lxxv1 (1873), p. 122.
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holding for all values of n. These are the characteristic equations
of the modified sub-group; and therefore we can write

Up—p = (2 — Q)* kA",
with the above notations. This is Hamburger’s functional form
for the integrals.

24. The integrals u,, ..., u, are a linearly independent set
out of the fundamental system; and the system will remain
fundamental if w,, ..., u, are replaced by u other functions, linearly
independent of one another and linearly equivalent to w,, ..., u,.
A modification of this kind, leading to simpler expressions for the
sub-group of integrals, can be obtained. In association with #,
take a series of quantities, defined by the relations

v =Yy,

Vo = ‘l”z + ‘lflL;

V=g + 24, L + L2,

vy = ry+ 31[r3L + 3\[/‘2L2 + \[r1L3,

F=v“;\h+ ("I 1) Vrun L + <“ ; 1> S/ SN

.t (“ N 1) A, L2 oy L,
Then we have
AF =y, + QuVu—s+ CzVp—s+ oo + Ay, a1,
AF = a,, Yy + QoaVp3 + oo + Qg 001,
AF = Uy s+ AgaVp—g + ... + Qg 3,
Ar—2f = Q9,12+ Aps 274,
A =@,y 40,
where the constants @ are non-vanishing numbers, the exact
expressions for which are not needed for the present purpose.
Then (z— a)*v, is a constant multiple of (z — a)*A*~1F, that is,
of u,;; and it therefore is an integral of the differential equation.
By the last two of the above equations, (2 —a)*v, is a linear
combination of (z— a)*A*2F and (2 — a)*A*'F, that is, it is a
linear combination of u, and u,; it therefore is an integral of the
differential equation.
By the last three of the above equations, (z — a)*v; is a linear
combination of (z— a)*A*—3F, (z — a)*A*2F, (z — a)*A**F, that is,
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it is a linear combination of w,, w,, u;; it therefore i1s an‘integral
of the differential equation.
Proceeding in this way, we obtain u integrals of the form
(z—a)w, (z—a)v, ..., (2—a) V.
Moreover, these are linearly independent, and so are linearly
equivalent to u,, ..., u,; for, having regard to the expressions of
AF, ..., Av1F, we see at once that any homogeneous linear rela-
tion among the quantities v,, ..., v, would imply a homogeneous
linear relation among the quantities F, AF, ..., A*7'F, that is,
among u, ..., #%,; and no such linear relation exists. Hence
Hamburger’s sub-group of integrals is equivalent to (and can be
replaced by) the sub-group
(z —a)yv, (z—a)* v, ..., (z—a)*v,.
Accordingly, we now can enunciate the following result as
giving the general analytical expression of the group of integrals,
associated with a multiple root « of the fundamental equation*:—

When a root x of the fundamental equation A (8)=0 1is of
multiplicity o, the group of o integrals associated with that root
can be arranged in sub-groups ; the number of these sub-groups s
equal to the number of elementary divisors of A (0) which are
powers of x—0; the number of wintegrals in any sub-group ds
determined by means of the exponents of the elementary divisors;
and a sub-group, which contains p integrals, is linearly equivalent
to the p quantities

(z—a)yv, (z—a)*v,, ..., (Z2—a)Vu,
where 2mio = log k, and the u quantities v are of the form

v = "I"l;

Yy = "I"z + \1’11;;

Uy = ‘!"3 + Q\If‘zb + ‘I’1L2»

vy =y + 3Yrs L + 3y, L2 + Y, L2,

.......................................

C+ <”’ 1 1) Vrg LE2 4 Ay L,

* This form of expression for the group of integrals appears to have been given
first by Jiirgens, Crelle, t. rxxzx (1875), p. 154. See also a memoir by Fuchs,
Berl. Sitzungsber., 1901, pp. 34—48.

F. IV. 5
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1 -1 (p—1)!
, L= — H .
where D log (z — a), ( - ) denote§ S s and
the pu quantities ry, :.., Y. are uniform (but not mnecessarily

holomorphic) functions of z—a in the vicimity of the singularity.

DIFFERENTIAL EQUATION OF LOWER ORDER SATISFIED BY
A SUB-GROUP OF INTEGRALS.

25. The preceding form of the integrals in each sub-group of
a group, associated with a multiple root of the fundamental
equation, has been inferred on the supposition that the coefficients
of the linear equation are uniform functions.

It will be noticed that the coefficient of the highest power of
L in each of the members of the sub-group is the same, being an
integral of the equation,—a result which is a special case of a
more general theorem. Moreover, it is of course possible to verify
that each member of the sub-group satisfies the differential
equation ; and it happens that the kind of analysis subsidiary to
this purpose leads to the more general theorem above indicated,
as well as to a result of importance which will be useful in the
subsequent discussion of the reducibility of a given equation. We
proceed to establish the following theorem*, which is of the nature
of a converse to the theorem just established:

If an expression for a quantity w be given in the form

U= ¢’ﬂ + ¢n—1L + ¢n—2 Lr4 ...+ (/‘_)QL"_? + ¢1Ln—17

where Lzéli log (z—a), and each of the quantities ¢ is of the
w

Jorm
¢ = (z— a)* . umform functeon of z — a,

a being a constant, then w satisfies a homogeneous linear differential
equation of order n, the coefficients of which are jfunctions of z
uniform in the vicinity of z=a; moreover,

ou  *u ol

oL> ol*’ "7 oL
are integrals of the same equation and, taken together with u, they
constitute a fundamental system for the equation.

* Fuchs, in the memoir quoted on the preceding page.
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1
(It is clear that aLn — is a numerical multiple of ¢,, and that

the coefficient of the highest power of L in each of the announced
integrals is, save as to a numerical constant, the same for all; it
is a multiple of ¢,, which is an integral of the equation.)

It is convenient to make a slight modification in the form of u;
we take

0= Ay + ("]_ 1> N (” 5 1) N

+ (n N 1> Yo L2 e L,

where .
n—1
< P ) "l"n——r»z ¢n—7‘a

so that the character of the functions 4» and their form (except
as to a mere numerical constant) are the same as those of the
functions ¢. Further, no change, either in the property that

ou  Fu
oL’ oL’ "
are integrals of the equation or in the property that, taken

together with wu, they constitute a fundamental system, will be
caused if they are multiplied by constants: so that, if the theorem’

can be established for w,, ..., u,_,, where
1 0"
RGNS
11 0"
= Grmyrazes = etk
2! 0" 3

U= = 1y ragps = Yo+ 2l L

................................................

4 _(n—=2)'0u <n-—2
Wp—1 —m!ajl = rp + 1 >"Pn—2L + ...

o (% I 2> ‘lran—s + 11,.1Ln»2)
the theorem holds for the quantities as given in the enunciation

of the theorem.
5H—2
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26. Merely in order to abbreviate the analysis, we take n=4;
with the above forms, it will be found that the analysis for any
particular case such as n = 4 is easily amplified into the analysis
for the general case. Accordingly, we deal with quantities w, u,
U, Uz, Where

U =Yy + 3Yrs L + 3y, L? + Y, L3,

Us = Yrs + 2y, L + r, L2,

Uy = '\pz + '\I/’lL

Uy = ;.
If % can be an integral of a linear equation of the fourth order
with coefficients that are uniform functions of z— a in the vicinity
of a, let the equation be

., d
A_d—4+1 — +Qd 2+Rd +8=0.
Let the variable z describe a simple contour round a; this leaves
the differential equation (if it exists) unaltered, and so the new

form of w is an integral, say «', where
W=+ 3rrs (L + 1) + 3uyr, (L + 12+ ey (L + 1),

where « 1s the factor common to all the functions +» after the
description of the circuit. As » and «’ are integrals of a homo-
geneous linear equation, so also is

v, =-u —u
K

= Buz + 3w, + .
Hence v’ also is an integral, and it is given by
v' =3 {xyrs + 269y (L + 1) + &9y (L + 1)}
+ 3 {wrs + ke (L + 1)} + wdry:

and therefore

1
w, =1 <;v’—v>=uz+uh

is also an integral. Hence w’ is also an integral, and it is given
by
W =k e (L 1) + ey,

and therefore
|
b= w - w=n =,

is also an integral.
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Thus integrals are given by
t, = Uy,
w—1, = U,
3 (v—3w+2t), =us,
which proves one part of the theorem, viz. that u, w, u., u; are
simultaneous integrals of the linear equation if it exists.

27. In order to establish the property that u, u,, %, u; con-
stitute a fundamental system of the equation if it exists, a pre-
liminary lemma will be useful; viz. if 4, B, C, D be functions
free from logarithms and if they be such that a simple closed
contour round @ restores their initial values, except as to a con-
stant factor the same for all, then no identical relation of the
kind

ad + BBL +yCL:+3DL?=0
can exist, in which a, B, v, 6 are constants different from zero.
For let the simple contour be described any number, IV, of times
in succession; and let f be the constant factor acquired by the
functions A, B, C, D after a single description of the simple
contour. Then we should have the relation

S¥[aAd +BB(L+N)+yC0(L+Ny+3D(L+DNy]=0,
and consequently the relation
ad +BB(L+N)+yCO(L+Ny2+8D(L+N)y3=0,

valid for all integer values of N. Consequently, the coefficients of
the various powers of N must vanish : hence

0= 38D,

0=38DL + ~C,

0=33DL?+ 2¢CL + BB,

0= &DL*+ «CL*+ BBL + ad,
the last of which is the original postulated relation. From the
first of these relations, it follows that

0=0;
then, from the second, that
0;

I

then, from the third, that

I

B=0;
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and so, from the original relation, that
a=0.
The lemma 1s thus established.
It may also be proved that, if 4, B, U, D be functions free
from logarithms, and if they be such that a simple closed contour

round @ restores their initial values, except as to constant factors

which are not the same for all, then no identical relation of the
kind
ad + BBL +yCL*+ 8DL*=0

can exist, in which a, B, vy, & are constants different from zero.
The proof is left as an exercise.
It is an immediate inference from the course of the lemma
that no relation of the form
au+ Bus + yuy + 8uy; =0

can exist, in which o, B, v/, 8 are constants different from zero;
for proceeding as before, it would require

0= dan,

0 =3y + B,

0 = 3adv; +28vYr, + 'Y,

0= a'Y,+ B+ v+ Y,
which clearly are satisfied only if o = B =+"=8=0. Hence there
is no homogeneous linear relation among the quantities u, u,, %,

us; and they therefore constitute a fundamental system for the
linear equation if it exists.

28. If the equation exists, we must have
Au=0, Au;=0, Au,=0, Au,=0;

and in the operator A, the functions P, @, R, S are to be uniform
functions of z in the vicinity of a. Let Z denote any function of z
with the same characteristic properties as r, ¥, Vs, ¥ry; then
with such an operator A, we have

A(ZL) = LAZ + 7,

A(ZIA)=12AZ +2L7 + Z7,

A(ZIP)=IPAZ + 3127 +3LZ" + Z",
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where Z', Z”, Z'" are functions of the same characteristic properties
as Z, that 1s, as {r;, Vs, Y5, Yy, and they are free from logarithms.
Now as Awu, =0, we have
A, = 0.
As Au,= 0, we have

Avry + LAY + 4’ = 0,
A'\lfg + '\lrll = O.

that 1s,

As Awu,; =0, we have
ANry + 2 (LA, + ) + LEANry + 2L + " =0,
that is, by using the two preceding relations,

Avrs + 290 + 4" = 0.
As Au =0, we have
Ay + 3 (LA + ') + 3 (L2ANr, + 2L, 4+ 4r")
+ L*ANr, + 3L + 3Ll + " =0,
that is, by using the three preceding relations,
Arnry + 3y 4+ 3ny” + 4, = 0.
Thus there are four equations; each of them involves the coeffici-
ents P, Q, R, S linearly and not homogeneously. The required

inferences will be obtained if the equations determine P, @, R, S
as functions of z, uniform in the vicinity of a.

Now each of the functions 4 is such that (z—a) 2y is a
uniform function of z — @ in the vicinity of a; accordingly, let

(z— a)y*Yrn=10,, (r=1, 2,3, 4),

where each of the &’s denotes a uniform function. Substituting
(z — @)*0, for ¢, in each of the four equations, the factor (z — a)*
can be removed after the differential operations have been per-
formed ; and then all the coefficients of P, @, &, S, and the term
independent of them, are uniform functions of z in the vicinity of
a. Solving these four equations of the first degree for P, @, R, S,
we obtain expressions for them as uniform functions of z -« in
the vicinity of a. (In general, this point is a singularity for each
of the expressions.) It follows that, for these values of P, @, R, S,
the four quantities u,, ., u;, u are integrals of the linear differen-
tial equation of the fourth order.
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As already remarked, similar analysis leads to the establish-
ment of the result for the general case; and thus the theorem is
proved.

CoroLrLaRYy I. It is an obvious inference from the preceding
theorem that, when a group of integrals is associated with a
multiple root of the fundamental equation, any (Hamburger)
sub-group, containing (say) n of the integrals, is a fundamental
system of a linear equation of order n with uniform coefficients.
Further, it is at once inferred that the n’ members of that sub-
group, which contain the lowest powers of the logarithm, constitute
a fundamental system for a linear equation of order »” with uniform
coefficients.

CoroLLARY II. Similarly it may be established that one
(Hamburger) sub-group containing = integrals, and another sub-
group containing p integrals, constitute together a fundamental
system for a linear equation of order n+ p with uniform coefficients.
And so on, for combinations of the sub-groups generally.

Fz. Prove that if the linear equation in w has a sub-group of = integrals
which, in the vicinity of a singularity o, have the form

le = \1’17
wy=ra+ YL,
wy =g+ 2 L, L7,

where 2#7L=1og (¢ — a), and each of the functions » is such that (z—a)™ *+ is
uniform, where ¢®™* is a multiple root of the fundamental equation with
which the sub-group of integrals is associated, then if the linear equation for
v be constructed, where

w=w, [vdz,

that linear equation has a corresponding sub-group of n—1 integrals of the
form

vy=¢y,

vy=py+ Py L,

vg=cpg+2cpo L+ P L7,

........................

where the functions ¢ are of the same character as the functions .




CHAPTER III

REGULAR INTEGRALS; EQUATION HAVING ALL ITS INTEGRALS
REGULAR NEAR A SINGULARITY.

29. THE general character of a fundamental system of
integrals in the vicinity of a singularity has now been ascertained.
For this purpose, the main property of the linear equation which
has been used. is that « is a singularity of the uniform coefficients ;
the precise nature of the singularity has not entered into the
discussion. On the other hand, the functions ¢ which occur in
the integrals are merely uniform in the vicinity of a: no know-
ledge as to the nature of the point ¢ in relation to these functions
has been derived, so that it might be an ordinary point, or a
pole, or an essential singularity. Moreover, the index » in the
expressions for the integrals is not definite; being equal to

1 . .
5y log 6, it can have any one of an unlimited number of values

differing from one another by integers. Hence, merely by changing
7 into one of the permissible alternatives, the character of a for
the changed functions ¢ may be altered, if originally o were
either an ordinary point or a pole: that character would not be
altered, if « originally were an essential singularity.

It is obvious that the character of a for the integral is bound
up with the nature of a as a singularity of the differential
equation, each of them affecting, and possibly determining, the
other. Accordingly, we proceed to the consideration of those
linear equations of order m such that no singularity of the
equation can be an essential singularity of any of the functions
¢, which occur in the expression of the integrals in its vicinity.
In this case, the functions ¢, which are uniform in the vicinity of
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a and therefore, by Laurent’s theorem, can be expanded in a series
of positive and negative integral powers of 2z — a converging within
an annulus round a, will at the utmost contain only a limited
number of negative powers. To render r definite, we absorb all
these negative indices into r by selecting that one among its
values which makes the function ¢ in an expression

(z—ayed

finite (but not zero) when z = a.

An integral of the form
Cu=(z—a) [¢o+ ¢, log(z —a) + ... + ¢, {log (z — a)}<],

where ¢,, ¢y, ..., ¢, are uniform functions having the point «
either an ordinary point or a zero, is called* regular near a.
When a value of r is chosen, such that (z—a) 7w is not zero
and (if infinite) is only logarithmically infinite like

G +clog(z—a)+... + ¢ {log(z— a)lx,

the integral is sald to belong to the <ndex (or exponent) r: the
coefficients ¢ being constants and not all of them zero. Similarly,
when the singularity a is at infinity, and there is an integral

2P {1#0 + 4, log % + oo (log %)K] ,

where v, Yy, ..., Yo, are uniform functions having z= o for an
ordinary point or a zero, the integral is said to belong to the index
or exponent p.

It will be possible later to consider one class of integrals that
do not answer to this definition of regularity: but it is clear that
regular integrals, as a class, are the simplest class of integrals, and
that the first attempt at obtaining integrals would be directed
towards the regular integrals, if any. Accordingly, we proceed to
consider the characteristics of linear differential equations which
possess regular integrals: and in the first place, we shall consider
equations all of whose integrals are regular in the vicinity of one
of its singularities, in order to determine the form of equation in
that vicinity.

* After Thomé, Crelle, t. rxxv (1873), p. 266. The use of this name for a
funection, which is not regular in the variable, may seem anomalous: but it is

now wide-spread, and confusion might be caused by the introduction of another
name. See footnote, p. 4.
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" As subsidiary to the investigation, one or two simple properties, associated
with the indices to which the functions belong, will first be proved.

If a regular function w (in the present sense of the term) belong to an
index r and another v to an index s, then u--v belongs to the index r—s: asis
obvious from the definition.

If a regular function w belong to an tndex r, then ngf belongs to the index
r—1. 'To prove this, let
u={z—a)" g b, {log (z—a)< ;
then e
du n
Cmmay=i] 3 i - b Hiog (- Y+ x, flog (-} |,

so that % can only belong to the index r — 1, if some at least of the coefficients

of powers of log (z— a) are different from zero when z=a. These coefficients
in succession are '

7‘¢0 + ¢1 >
7y + 2y,
7y +3g,

7Pn— 1+ 7Py,

7Pus
when z=a is substituted : they cannot all vanish, for then ¢q, ¢;, ... Pp
would vanish when z=a, so that ¢, ¢, ..., ¢, would all be zero, and then u
du

would not belong to the index ». Thus g

belongs to the index » —1.

There is one slight exception, viz. when % is uniform and the index » is

zero ; then —- is also uniform, and it may even vanish when z=a ; so that,

dz

if % were said to belong to the index 0, ng[’ could be said to belong to an index

not less than O.

Form oF THE DIFFERENTIAL EQUATION WHEN ALL THE
INTEGRALS ARE REGULAR NEAR A SINGULARITY.

30. As a first step towards the determination of the form of
a differential equation that has all its integrals regular, we shall
obtain the index to which the determinant of a fundamental
system belongs. Let the system be w,, w,, ..., ws: and let the
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indices of the members be 7, 7, ..., 7, respectively. We take

the determinant in the form ‘
Cw,™ v, 1y,m2, ..

of § 12, where C is a constant.

The quantity », is a solution of an equation, a fundamental
system for which is given by

w=gi () i ()

It is clear that, if w,, w,, ... are all free from logarithms, then
¥, ¥y, ... are also free from them. If however there be a group or
a sub-group of integrals associated with a repeated root 0 of the
fundamental equation, we may take (§ 23)

w/ =6w,, w,=w,+ Ow,,

) %’)_ie %)_v :
Y de <w1’ T de €+wl T
thus v, is uniform and therefore free from logarithms. Similarly,

u, and all the quantities used in the special form of the determ-
inant are free from logarithms.

so that

The indices to which v, v,, ... respectively belong are
ro—1—1, r,—r—1, r,—r,—1, ...

unless it should happen that, for instance, r,=1,. In that case,
we replace w, by w,+ aw,, choosing a so as to make the new
integral belong to an index higher than », or » : this change will
be supposed made in each case where it is required.

Again, the quantity u, is a solution of an equation, a funda-
mental system for which is given by ‘

d (v, d (v,
n=gz () w=gz ()

The index to which u, belongs is
ry—r—1l—(ry—rn—1)—1, =r; - —1,
and so for w,, ... ; that is, their indices are
ry—re—1, ry—1ry—1, ....

And so on, down the series.
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Hence the index to which

Cw, ™ 1y,™ 2,
belongs is
=mry+m—=1)(r,—r—1)+(m—=2)(rs—rs— 1)+ ...
B B (e S )
=ri+ret ...+ rm—gm(m—1);
so that, denoting the determinant of the fundamental system by
A (2) as in § 9, it follows that, in the vicinity of the singularity a,
we have
A (Z) —_ (Z — a)1‘1+7'2+...+'rm—-5m (m—1) R (Z — CL),
where R is a holomorphic function of its argument in that
immediate vicinity, and does not vanish at a.

31. This result enables us to infer the form of the differential
equation in the vicinity of the singularity «. Manifestly, the
equation 1is

d™w dm 1y a2y
dzm P gpm— TP W+ B
if
PKZ%: (K=1; LR EE) m))

where A is the determinant of the m integrals in the fundamental
system, and A, is the determinant that is obtained from A on
replacing the column arrw, for s=1, ..., m, by the column drw,

dzm=x’ S dz™’
fors=1, ..., m.

Now consider a simple closed path round a. After it has been
described, A and A, resume their initial values multiplied by the
same constant factor, which is the non-vanishing determinant of
the coefficients a (§ 13) in the expressions for the transformed
integrals; thus p, is uniform for the circuit. Hence, when the
expressions for the regular integrals are substituted in A and A,
all the terms involving powers of log (z — @) disappear. Moreover,
A belongs to the index

et e+ —tm(m—1);
and so far as concerns the index to which A, belongs, it contains a

column of derivatives of order x, =m — (m — «), higher than the
corresponding column in A, so that A, belongs to the index

Lt +rm—tm(m —1)— «.
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Hence p, belongs to the index — « and therefore, in the immediate
vicinity of a, the form of p, is given by

_Pu(z—a)
pK (Z—CI;)K 2

where, at o and in the immediate vicinity of «, the function
P,.(z—a) is a holomorphic function which, in the most general
instance, does not vanish when z=a, though it may do so in
special instances. As this result holds for x=1, ..., m, we con-
clude that, when a homogeneous lLinear differential equation of
order m has all its integrals regular vn the vicintty of a singularity
a, the equation vs of the form

dmy Py d™ 7w N P, -d™ 2w . P, w
de®  z—a dz® ' (z—a)l dz™ T (g —a)™
in that vicwnity, where Py, P,, ..., Py, are holomorphic functions of

z—a m a region round a that encloses no other singularity of the
equation.

CONSTRUCTION OF REGULAR INTEGRALS, BY THE METHOD
OF FROBENIUS.

32. The argument establishing this result, which is due to
Fuchs*, is somewhat general, being directed mainly to the
deduction of the uniform meromorphic character of the coefficients
of the derivatives of w in the equation. No account is taken of
the constants in the integrals: and it is conceivable that they
might require the existence of relations among the constants in
the functions P, ..., P,,. Hence for this reason alone, even if for
no other, the converse of the above proposition cannot be assumed
without an independent investigation. The conditions, which -
have been shewn to apply to the form of the equation, are
necessary for the converse: their sufficiency has to be discussed.
Accordingly, we now consider the integrals of the equation in
the vicinity of the singularity +.

Denoting the singularity by a, we write
z—a=gx P,(z—a)=p (2)=p, (r=1, ..., m);

* Crelle, t. LxvI (1866), p. 146.
+ The following method is due to Frobenius ; references will be given later.
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so that the equation can be taken in the form

L d™w g . AW dw
Dw = a” da <.1: a2 W-{» +xpm_1% +pmw>=0,
valid in the vicinity of « = 0.
If regular integrals exist in this vicinity, they are of the form
indicated in §§ 18, 24, the simplest of them being of the form

o
w=ar 3 g,a*= 2 g,art”
0

v=0 v=
=g (z, p),
say; should this be an integral, it must satisfy the equation
identically. We have

Dar={c(c—1)...(c —m+1)—0c (o —1)...(c —m+ 2‘)])1- .

oo — P} T
=.cv"f(w, O-)’

say. Here, f(«, o) is a holomorphic function of « in the vicinity of
the z-origin and is a polynomial of degree m in o, the coefficient of
o™ being unity: so that, if it be arranged as a power-series in z,

we have
Sz, a)y=f, (o) + zfi (o) + a2 fo (o) + ...,

where f; (o) is a polynomial in o of degree m, and f, (o), f. (o), ...
are polynomials in o of degree not higher than m — 1. Then

Dy (z, p) = S gv Dt
v=0

I M8

>

gv?" f (@, p +v)

<

1 M8

v {g, fo(p+v)+ g fi(ptrv—1)+ ~~-+90fv(P)}-

N

If the postulated expression for w is to satisfy the equation, the
coefficients of the various powers of # on the right-hand side must
vanish : hence

0 = go/o(p);

0=go/1(p) +9:./o(p + 1),

0=90/2(p) + grf2(p + 1)+ 9. /0 (p +2),
and so on. These equations shew that the values of p, which are
to be considered, are the roots of the algebraical equation

Jo(p)=0
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of degree m in p: and that, for each such value of p,

= 9o ,
I Jolp+1) folp+2)... fo(p+v) h, (p),

where — A, (p) is the value of the determinant

folp+1), 0 0o ..., o . AP
fl(p+1)’ fo(P+2)’ 0 R | 0 ) fﬂ(p)
Selp+ 1), filp+2), folp+3), ..., 0., Jfi(p

f"—2(p + 1)’ fv—s(P + 2)) .fv—4(P + 3)» treo fo(P +v _1)’ fV—l(p)

Soalp+1), frsp +2), Sfus(p+3) -oos filp+rv=1),  Jfilp)
so that A, (p) is a polynomial in p.

If no two of the roots of the equation f,(p)= 0 differ by whole
numbers, then no denominator in the expressions for the successive
coefficients ¢, vanishes; the expression g(«, p) is formally adequate
for an integral, but the convergence of the series must be estab-
lished to ensure the significance of the expression.

If a group of roots of the equation f,(p) =0 differ among one
another by whole numbers, let them be

P: P+€1) ey P+€:

where the real part of p is the smallest, and that of p 4+ ¢ is the
largest, among the real parts of these roots; equality of roots
would be indicated by corresponding equalities among the positive
integers O, €, ..., . We then take

Jo=JSolp+1)... folp+e)yg,

and thus secure that no one of the coefficients g, becomes infinite.
The condition, that the equation shall formally be satisfied, has
imposed no limitation upon g,, which accordingly can be regarded
as arbitrary ; hence g also can be regarded as arbitrary.

33. In order to deal with both sets of cases simultaneously,
the formal expression is constructed in a slightly different manner.
A parametric quantity a is introduced and it is made to vary
within regions round the roots of f,(p) =0, each such region round
a root being chosen so as to contain no other root. The quantity
go in the first set of cases, and the quantity g in the second set,
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are arbitrary ; they are made arbitrary functions of a. Quantities
91, 9a, .. are determined by the equations

O0=g fo(a+1)+ gofi(a),
0=g.fo(a+2)+ g f1(a+ 1)+ g0 /2 (),

................................................

the same in form as the earlier equations other than the first :
these quantities g are functions of . Moreover, we have
_ go (@) .

9= r @Dy Fola + D Falar ) (@5
in consequence of the assumption as to g, (a) in the second set of
cases, and of the regions round the roots of f,(p)=0 in which a
varies, it follows that the quantities g, g., ... are each of them
finite for all variations of a within the regions indicated. We
thus have an expression

y=g(z, a)= 2 gzt
v=0
also

Dy = § v Daotr

- %Oww lgofo(@+v) +gmfi(atv—=1)+...+g.f (D}
= go () fo(2) z°,

the coefficient of every power of z except 2* vanishing, in conse-
quence of the law of formation of the quantities g.

34. We proceed next to consider the convergence of the
power-series for y, before bringing the equation satisfied by » into
relation with the original differential equation. We denote by R
the radius of a circle round the z-origin within and upon which
the functions pi, ..., P are holomorphic: so that the circle lies
within the domain of this origin. Then f(«, @) and its derivatives
with regard to # are also holomorphic for values of « within the
circle and for all values of « considered. As the first of them, say
J (z, &), is of degree in a one less than f(z, «), it is convenient
to consider that first derivative: let M (a) be the greatest value
of | f/ (x, a)| for the values of # and «, so that, as

F@o=3% e+ @,

WF. IV. 6
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we have* .
M (a
0+ 1) fon @] < T2,

and therefore, as » + 1 is a positive integer > 1, also

|fora (| < B M (o).

By the definition of the regions of variation of @ and the signi-
ficance of the integer ¢, it follows that the quantity fj(a+ v +1) is
distinct from zero, for all values of v > e and for all values of a;

hence, as
e e E L L R S ACENE A CERY)

from the equations that define the coefficients g, it follows that

(9o011< gy 196l LFo @1+ 1,113 ()]}

1
|fo(a+v+ 1)

< {19 B M (a) + |gy| R M (a + 1) + ...

coo + 90| M (a + v)}
('Yv+1)

say, where v,;, denotes the expression on the right-hand side.
Evidently

Yoia | fo(a+v+ 1) =7, | fo(la+v)| R =|g,| M (a +v)
< o M(a+w),

- {_M_@‘ﬂL 1 folaty) }
Y41 < Yo lfo(a'i‘v'i‘]-)l _R ‘ﬁ)(a+ll+1) .
Let a series of quantities I', be determined by the equation
(Matn 1) St |
| fola+v+1)| " B| fila+v+1)|[)’

for values of v >e€; and let I',=¢,. Then all the quantities I
thus determined are positive, and we have

and therefore

Fv+1 = Fv

Ig"-l-ll < Yv+1 < PV+1-
Consider the series

TFias+ st + ...+ Doav + ..

* . F. § 22.
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its radius of convergence is determined * as the reciprocal of

Lim T
Now M () is the greatest value of the modulus of
—0(@—-1...0—m+2)p/ —... —pu

within the circle |#|=R. As the functions p/, ..., p, are holo-

morphic within the circle, there are finite upper limits to the

values of | p/|, ..., | px’| within the region, say M,, ..., M,,; then
M@)<o(oc+1)..(c+m—2YM,+ ... + M, 2 (o),

say, where || =0. Again

fo(@=000~-1)..0—m+1)—60(@—1)...(0 —m+2)p, (0)— ...

) v — P (0),
so that, if

Pp(e)y=—0c"+o(c+1)...(c +m—1)

+o(c+D...(c+m—=2)p, (0)|+ ... + | pn (0)],
we have

[ fo ()| = |07] = [ /0(8) — 6| > ™ — | £1(6) — 6™,
| fo(6) — 7] < & (o),

the term in @™ being absent from f,(0) — 6™, and the term in o™
being absent from ¢ (o). Moreover, as these quantities are
required for a limit when » tends to infinity, the quantities o
and @ will be large where they occur; thus o™ is greater than
¢ (o), which is a polynomial in o only of degree m — 1. Hence

S0 (0)| = o™ — & (o).

Returning now to the expression for I'y,,, + T, let 8 denote
|a|; then

an

la+v+1|2v+1-—2,

so that

la +v+ 1> @+ 1-—8)™
Again,

la+v+1|2v+14+0,
so that

dp(Ja+rv+1DN<Z (v +1+8),

and therefore

|fola+rv+D]Z2@F+1-B"—d@+1+5).

* Chrystal’s 4dlgebra, vol. 11, p. 150.
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Finally, |a + v| 2 v + B, and therefore

Ma+v)<ylatv| <y @+8);
so that
M (a + v) < v (v+B)
| fo(la+ v+ 1) (v+1—/6’)m—gb(v+l+3)‘
Now 4 (o) is a polynomial in o of degree m — 1, as also is ¢ (o) ;

hence, owing to the term (v + 1 — 8)™ in the denominator on the
right-hand side, we have

Ma+v)
Lim e+ 1y~

for all values of B, that is, for all values of a within its regions of
variation. Again, as f,(a) is a polynomial in a of degree m, it
follows that

L R R

for all the values of a, and therefore

i l fo(a+v)
%Iflfo(a+V+1)

Using these results, we have
. I, 1
Lim “5% = 55
and therefore the series

=1.

Fos+ Doyt + ...

converges within the circle || = R and for the values of a: conse-
quently also the series »

Ve + YT+ L
converges for the same ranges of variation for # and a. The

addition of a limited number of terms that are finite does not
affect the convergence: and therefore

2 g,
v=0
converges, for values of ¢ within the circle || = R, and for values

of o within its regions of variation.

Let any region for a be defined by the condition |a—p|< 7.
Then the series converges absolutely within the x-circle of radius
R and the a-circle of radius . TLet R’ < R, and ' <r; and let
«, & denote any finite positive quantities which may be taken
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small: then* the series converges uniformly for values of # and a
such that

|z| < R —x, |a—p|<? —«'
Thus the series converges uniformly in the vicinity of the z-origin,
for all values of a in the regions assigned to that parametric
variable.

By a theorem due to Weierstrass+, the uniform convergence
of the series, which is a power-series in # and a function-series in
a, permits it to be differentiated with regard to a; and the
derivatives of the series are the derivatives of the function
represented by the series within the a-regions considered.

SIGNIFICANCE OF THE INDICIAL EQUATION.

35. We now associate the factor z* with the preceding series,
and then we have

,(] (6(/', a)= P 2 guxv= z gyxa.-i*u
v=0 v=0

as a series, which converges uniformly within a finite region
round the @-origin and can be differentiated with regard to «
term by term. (It may happen that the origin must be excluded
from the region of continuity of g (#, a), as would be the case if
the real part of @ were negative; the origin must then be excluded
from the region of continuity of the derivatives with regard to a,
owing to the presence of terms such as g,x*log .)

The function ¢(z, a) thus determined has been shewn to

satisfy the equation
Dy (z, &) = a%fs (2) go ().
As associated with the original differential equation, this result
requires the consideration of the algebraical equation (hereafter
called the <ndicial equation)
Jo(p)=0

of degree m. The preceding analysis indicates that two cases
have to be discussed, according as a root does not, or does, belong
to a group the members of which differ from one another by

* The uniform convergence with regard to z is known, T. F., § 14, finis. The
uniform convergence with regard to « is established by means of a theorem due to
Osgood, Bull. Amer. Math. Soc., t. 111 (1897), p. 73 ; see the Note, p. 122, at the
end of this chapter.

+ Ges. Werke, t. 11, p. 208; see T. F., §§82, 83.
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whole numbers (including a difference by zero, so as to take
account of equal roots).

Firstly, let p be a simple root of f,(p) =0, in the sense that it
is not equal to any other root and that the difference between p
and any other root is not a whole number. Then when we take
a = p, all the coefficients g, ¢., ... in g («, p) are finite; we have

Dy (x, p)=0,

w=g(x, p)
is an integral of the differential equation: it is associated with

the simple root p of the equation f,(p)=0, and it is a regular
integral.

that 1is,

36. Secondly, let po, p1, ..., pn constitute a group of roots of
Jo(p) =0, differing from one another by whole numbers and from
each of the other roots by quantities that are not whole numbers ;
and let them be arranged so that the real parts of the successive
roots decrease : thus the real part of p, is the greatest and that of
p= 1s the least in the group. In order to secure the finiteness of
the coefficients ¢,, g., ..., it now is necessary to take

go()=fo(a+1) fi(a+2) ... fi(a+e) g (0), =f(2)g(a)

say, where €>p, — pn, and g (@) is an arbitrary function of a: and
now

Dyg (@, &) =a%g (@) 11 fi(a+s) = a%g (a) F (@),
where

F(2) = 11 {fi(a+5).

Further, there may be equalities among the roots in the group:
let po, pis Pj, pus --- be the distinct roots taken from the succession
in the group as they occur, so that p,is a root of multiplicity 7,
pi of multiplicity j — ¢, p; of multiplicity k£ —j, and so on. Then in
F(a), there is a factor (a— p,)* through its occurrence in f, (a);
there is a factor (a— p;)/, through the occurrence of (a — p;) % in
Jo(a), and the occurrence of (a— p;)’in f,(a+p,— p;); there is a
factor (a— p;)¥, through the occurrence of (a—p;*7 in £, (a), the
occurrence of (a— p;)’~% in fy(a+ p;— p;), and the occurrence of
(a—pp) in folatps—p). Now
O<ei<jy<k<...,
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so that, for F (a), p, is a root of multiplicity 7, that is, 1 at least:
pi is a root of multiplicity j, that is, 741 at least; p; is a root of
multiplicity %, that is, 7+ 1 at least ; and so on. Hence if p, be a
root in the group as arranged, it is a root of F (a) of multiplicity
x +1 at least ; and therefore

[8“17' (a )] —0,
0a*  Jja=p,

for w=0,1, ..., x. But
Dy (2, a) = z=g (a) F (o),
and g (#, o) can be differentiated with regard to a; hence

p[PoleD] o T @]

=0,
for u =0, 1, ..., « certainly, and for all other integer values of u

less than the multiplicity of p. as a root of F(a)=0. Conse-
quently, the expression

w— [8“9 (# oc)]
oo+ Ja=p,

_ g (2, pe)
op.* ?

a=p,

say, for the same values of u, provides a set of integrals of the
equation.

Moreover, each of the distinct roots in the group thus provides
a set of Integrals; we must therefore enquire how many of the
integrals out of this aggregate are linearly independent.

37. We first consider the members of any set; they are
furnished by
org (z, &)
oa*

for a value p assigned to a, and for a number of values of u, say
0,1, ..., x. Now

9@ @) =a* 2 g,(a)a;
»=0
and therefore
org (x, @)
oo~
o+ 1g,
oot

=aza[§, %Liw”+p(logw)§ x"+...+(loga:)“29,,(a)w"],
v=0 OO0 v=0 v=0
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where it will be noticed that the coefficient of the highest power
of log # on the right-hand side is g (#, «). Hence the set is
yO = ’LU,
=9 (w’ o),
Y, =wlogx + w,,

9, = w (log z)* + 2w, log & + w,,

Y. = w (log 2)< + ww, (log )< + s (¢ — 1) w, (log )< + ...
+ xw,, log z + w,,

where the coefficients w, are independent of logarithms. From
the fact that y, contains a power of log« higher than any
occurring in %, ¥, ..., Yp—, it follows (by the lemma in § 27)
that no linear relation of the form

ColYoF+ CiYr+ oo FCYe=0
can subsist among the integrals.
38. Next, we consider the sets in turn, associated with the

values p,, pi, pj» --- of &, as arranged in decreasing order of real
parts. The earliest of them 1is given by a=p,: and it contains

the ¢ members
g (2, a)
ot a=py

for u=0,1,...,7—1. Now
Jo(a)=(a — poYi (a — py~ (o — p)¥7 ... (2 — p)"+H' 74,
F(a)=(ax—p) (a—p:;) (a—p)f ...(a—p)"* A,
and therefore
F ) )
F@)= B = (= p (= ) (2= i,

where A,, A,, A; are quantities which neither vanish nor become
infinite for any of the values p,, p;, ..., pr of «.  Also

go(0) =g (&) f (e),

where g(a) is an arbitrary function of a; so that g,(a) does not
vanish for a = p,; and therefore the various quantities derived
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from g,(a) for a= p,, including g,(a) itself, given by ‘g"ia) for
pw=0,1,...,7—1 do not all vanish. Further

og (%, a)
oo a=p,

=.¢cPﬂ[§ a#g"w"+/.c(logw)2 "9 +...+(logw)“§,gusc”:l,
= 0 v=0

/J.—l
which is one of the integrals ; as the quantities

*ge 0" g, 09,

op’ Ope » 8?:), go

do not all vanish, this integral belongs to the index p,; and the
coefficient of the highest power of log # is g (z, p,). The first set
thus gives ¢ linearly independent integrals obtained by taking
pw=0,1,...,2—1 in the preceding expression. That which arises
from p =0 is

w =g (=, po)
=g (po) (1 + @hy (po) + #%hs (po) + #hs (po) + ...}

where all the coefficients are finite : thus it is a constant multiple
of
2P + 2Py (po) + &P 2Ry (po) + ...,

an integral that is uniquely determinate.

Now consider the second set: it is given by a =p;, and it

contains the members
o*g(z, )
oa*  Ja=p;

for u=0,...,v—1,47,¢2+1, ...,7—1. The value of g(z, @) is
@D
g (@ a)=a* % g,(a)a”
rv=0

po—pi—1 ®
=2 3 g (a)ar4attrr S I+ py— p; (A) &
y=0 v=0 ¢
As regards the first part of this expression, we note that all
the coefficients g, (a) for v=0, 1, ..., pp— p; — 1 contain the factor
(a — py)t; and therefore all the derivatives

[a%l{ _2 1gu(a)wﬂa:m
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for u=0,1,..., ©— 1, vanish when a is made equal to p;, while
they do not necessarily vanish for higher values of .

As regards the second part of the expression for g(z, a), we
write it in the full form

— 0, —p+1 .
xa-i-f’o PzngHpi(a)_'_waﬁ*Po pit+ gpo—p7;+1(a)+"' ;

when o= p;, this becomes

1
wpogpo—pi(pi)+mp0+ gp0~pi+1(pi)+" ’

which accordingly is an integral, and it belongs to the index p,,
being free from logarithms. But it has been seen that the
integral, which belongs to the index p, and is free from logarithms,
is uniquely determinate, being g («, p,); hence the foregoing
integral, being the non-vanishing part of g (z, «) when a is p;, is a
constant multiple of g («, p,), say Kg (x, p,). It might happen
that K =0. :

A similar vesult holds for the derivatives of g («, a), for the
values p=1, ...,7—1.

Consequently, it follows that the integrals

o~
@],

for u=0,1,...,2—1, can be compounded from the integrals of
the first set; they are ¢ in number, but they provide no integrals
additional to those in the first set; and therefore, without limiting
the range of their own set, they can be replaced by the ¢ integrals
of that set. As for the remainder arising from other values of u,
they are

2P l: s 9 89,;(;%) x"+p(logw) 2 Pg"(m) Yt +(10°“m)“ 2 W (pi) “’{!
v=0 v

for w=72,7+1,...,7—1. Now
go(2) = g (a) (@ — pi)* (o — p)7 ... (@ — pi) 4,

so that the quantities
0" go (@)
aa[.L—°~S ap, 3

for the values s=0,1, ..., # in any one integral, and for the values
w=11+1,...,7—1 in the different integrals, do not all vanish.
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All these integrals therefore belong to the index p;, and they are
j — < in number. Moreover, the original set of j integrals, com-
posed of these j— ¢ and of the replaced ¢ integrals, was a set of
linearly independent members; and therefore we now have j—<¢
integrals, linearly independent of one another and of the former
set of ¢ integrals. Thus our second set provides j—<¢ new
integrals, distinct from those of the first set; and each of them
belongs to the index p;. The first of them is given by u=7<:

it 1s
wP@[E 598»(;01) w"+zlogw2 Q:g-}_(fi)w”%»...] ,
v=0 Pi v=0 aPz

which certainly contains terms not involving loga; if j—1>¢4,
the second of them is

S 790 (i) (s $ 99.(p0) ,
xf [:EO——apiTw +(z+1)10gm50—~%—f;jp—m + .,

which certainly contains terms multiplying the first power of
log#; if j—1 >7+1, the third of them certainly contains terms
involving the second power of log «; and so on.

The third set among our integrals is connected with the value
o = pj, and it is given by
org (x, a)
[ oo ]“:Pi ’

for u=0,1,...,k—1. Now
D

9@ a)=a 3 g.(a)a”

Pz p—1
== 2 gv(a)wv+xa+pz Py 2 gV‘f‘Pz p (a)wv
v=0

The coefficients g, (a) contain (a — p;)/ as factor for all integers »
which are less than p; — p;; hence the quantities

OF’ (.’Lp« { 1 4
ol 2y 0,

vanish for =0, 1, ..., 7 — 1, and are different from zero only for
uw=3 j+1, ...,k —1. As in the case of the preceding set, the

quantities
___.au a+P'L Pi 2 ) id
OaM Vo0 gv-{—p —pj (a' 4 a:p:,-!
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for u=0, 1, ...,4—1, are linearly expressible in terms of the ¢
integrals of the first set; while for p =74, ¢+1, ..., j—1, they are
linearly expressible in terms of the j —< integrals of the second
set, subject to additive linear combinations of the first set. Thus
the integrals in the present set which are given by

[8"9 (2, @)
oar a—p; ’

for u=0, 1, ..., j—1, provide no integrals linearly independent
of the ¢ integrals of the first set and the j —<¢ integrals of the
second set; the j integrals in this new aggregate are linearly
expressible in terms of those in the old. Now the present set of
integrals, for u=0,1, ..., j—1,4, j+1,..., k—1, are linearly
independent of one another; and therefore the integrals for

w=g,7+1 ..., k=1

are linearly independent of one another, of the ¢ integrals of the
first set, and the j —¢ integrals of the second set. Thus the third
set provides k —j new independent integrals, given by the &k —3
highest values of u. The first of them, determined by u =, is
& 9, (pj) L 979, (py)

P LIV ALY IV e

i [L_,o “onr x +J10gmy§0 Fp '+ ...,
which certainly contains terms not involving logx; if kA—1 >3,
the second of them, determined by u=j+1,

. < 37+19u(P) o gV(P)
P, S Jv AR v J xv
xj[;zo Fpy @ +(]+1)logx,,20 o7 + ...,
which certainly contains terms multiplying the first power of
logz; if k—1 >j+ 1, the third of them certainly contains terms

multiplying the second power of log #; and so on. Moreover, it
is clear that all these £ —j integrals belong to the index p;.

The law of the successive sets is now clear. The last of them,
determined by « = p;, contains the integrals

g (z, a)
dat a=s, ’

for w=1 I +1,..., n, which are linearly independent of one
another and of all the integrals of the preceding sets already
retained. All these integrals, being n +1 — [, in number, belong
to the index p;.
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The results thus obtained may be summarised as follows:
When the equation f,(p) =0 has a group of roots p,, pi, --+) Pn,
which differ from one another by integers (vncluding zero) and
differ from all the other roots by quantities that are mot integers ;
when also the distinct roots are arranged in decreasing succession of
real parts, so that p, vs a root of wmultiplicity v, p; is a root of
multiplicity j — <, p; is a root of multiplicity k —j, and so on, where
Pos Pis Pjy --- are distinct from one another and are arranged in
decreasing successton of real parts; then, corresponding to that
group of roots, there exists a group of n + 1 linearly independent
wntegrals which are regular in the vicinity of the singularity. Thas
group of wntegrals is composed of a set of v wntegrals, which are

gwen by
g (z, )
aa“ *=pg ’

Jor w=0,1,...,7—1, and belong to the index p,; of a set of j—1
wntegrals, which are gien by

o+ g (z, a)
oat a=p.

Jor p=1, i+1, ..., 3—1, and belong to the index p;; of a set of
k —j integrals, which are given by

Jor p=y3, 7+ 1,..., k=1, and belong to the index p;; and so on,
the last set being composed of n+1—1 integrals, which are

gwen by )
aig@,ﬁ)J
Oat a—p,

Jor w=1,1+1,..., n, and belong to the index p;.

The preceding investigation is in substantial agreement with that which
is given by Frobenius*.

A different proof is given by Fuchs+: briefly stated, it amounts to the
establishment of an integral w, belonging to the index p,, to the transforma-
tion of the equation of order m by the substitution

w=w, {vdz

* Crelle, t. Lxxvi (1873), pp. 214-—224.
T Crelle, t. Lxv1 (1866), pp. 148-—154; 4b., t. Lxvix (1868), pp. 361—367.
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into a linear equation in » of order m —1, and to the discussion of this new
equation in a manner similar to that in which the equation of order m is
discussed. Expositions of the method devised by Fuchs will also be found in
memoirs by Tannery * and Fabryt.

39. All the integrals of the differential equation, which has
the specified form in the vicinity of the singularity, are regular in
that vicinity; their particular characteristics are governed by the
roots of the equation f,(p) =0, that is,

plp=1)...(p—m+1)—p(p—1)...(p = m + 2) p:(0) —...— p,(0) =0,

the differential equation in the vicinity of the singularity being of
the form
dmay m dm—"w
m — pm—r z —
dam = 2P @) gy =0

This algebraic equation is of degree m, equal to the order of the
differential equation; it is called} the ndicial equation of the
singularity, and the function f (=, p), of which f,(p) is the term
independent of «, is called the wndicial function. From the form
of the integrals which belong to the roots p of the indicial equa-
tion of a singularity, and those which belong to the roots 8 of the
(§ 13) fundamental equation of the same singularity, it is clear
that the roots of the two equations can be associated in pairs such
that
0 = e?mir,

‘When the roots of the indicial equation are such that no two of
them differ by an integer, the roots of the fundamental equation
are different from one another; there is a system of m regular
integrals, and the m members belong to the m different values of
p-  When the indicial equation possesses a group of n roots which
differ from one another by integers (including zero), the corre-
sponding root of the fundamental equation is of multiplicity n:
there is a corresponding group of n» regular integrals, the ex-
pressions of the members of which in the vicinity of the singularity
may (but do not necessarily) involve integer powers of log .
When a root of the indicial equation occurs in multiplicity «,

* Ann. de PEc. Norm., 2¢ Sér. t. 1v (1875), pp. 113—182.

+ Thése, Faculté des Sciences, Paris (1885).

+ Cayley, Coll. Math. Papers, vol. xi1, p. 398. The names adopted by Fuchs
are determinirende Fundamentalgleichung, and determinirende Function, respectively.
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so that the corresponding root of the fundamental equation occurs
in at least multiplicity «, there is a set of x associated integrals,
the' expressions of all but one of which certainly involve integer
powers of log .

40. Having now obtained the form of integral or integrals
associated with a root of the indicial equation f,(p)=0, we must
shew that the aggregate of the integrals obtained in association
with all the roots constitutes a fundamental system.

First, suppose that the roots of the indicial equation are such
that no two of them differ by an integer; denoting them by
Pi, P35 ---» Pm, and the m integrals associated with these roots
respectively by w,, ..., w,, we have

ws = (2 — a)s Py (z — a),

where P;(z — a) is a holomorphic function that does not vanish
when z=a. No homogeneous linear relation can exist among
these integrals: for, otherwise, we should have some equation of

the kind
CWy + CoWy + oo + CppWi = O.
Writing

0, = &>™Ps, (s=1,2, ..., m),

so that no two of the quantities 6,, ..., 8,, are equal to one another,
we can, as in § 18, deduce the equation

07wy + 07w, + ...+ Cpbi Wy, = 0,

for any number of integer values of r, from the above equation, by
making z describe 7 times a simple contour round a. Taking the

latter equation for » =1, ..., m — 1, the set of m equations can
exist with values of ¢, ..., ¢, differing from simultaneous zeros,
only if

1 , 1 , , 1 =0,

1 ) 92 > 3 m

glm-—l, 6. m—1 . gmm——l

which cannot hold as no two of the quantities € are equal.
Hence we must have ¢,=0=¢,=... =c¢,, and no homogeneous
linear relation exists: the system of integrals is a fundamental
system.
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Next, suppose that the roots of the indicial equation can be
arranged in sets, such that the members contained in each set
differ from one another by integers. With each such set of roots
a group of integrals is associated, the number of integrals in the
group being the same as the number of roots in the set.

It is impossible that any homogeneous linear relation among
the members of a group can exist: if it could, it would have
the form

by, + ... + byw, = 0.

If w,, ..., w, involve logarithms, then (§ 27) the aggregate coeffi-
cient of the highest power of log (# — @) must vanish; in the case
of each integral in which the logarithm occurs, this coefficient
(§ 25) is itself an integral of the equation, and therefore we should
have a relation of the form

b,w, + ... + byw,= 0,

where the quantities w,, ..., w; belong to different indices, say
Prs «--, ps, Do two of which are the same; and w,, ..., w; are free

from logarithms. Dividing by (z — a)”s, we should have an equa-
tion of the form

br(Z— a:)PT_pS—Po'(Z_ a) + oo+ bSPS (Z—Cl)= O’

where P,, ..., Ps are holomorphic functions of z — @, not vanishing
when z=a. No one of the indices p, — p; 1s zero: no two are the
same : and so the preceding equation can be satisfied identically,
only if b, =... =0b;. We therefore remove the corresponding terms
from

by, + ... + b, =0,
and proceed as before: we ultimately obtain zero as the only
possible value of each of the coefficients b.

If w,, ..., wy do not involve logarithms, the argument, above
applied to w,, ..., w,, can be repeated: there is no linear relation.
The initial statement is thus established.

If the tale of the groups, the members of each of which
are linearly independent among themselves, is not made up of
linearly independent integrals, then an equation of the form

Wy + ... + CpWm =0
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exists. Equating to zero (§ 27) the aggregate coefficient of the
highest power of log z that occurs, we have, as above, a relation of
the form

CWy + oo FCWs + CpwWp + s F o+ ... =0,
where w,, ..., w, belong to one group, w,, ..., w, belong to another
group, and so on. Writing

CWrt oo Fesws=Wi, w4+ ... Fewa =W, ...
we have
Wi+ W.+...=0.
Now let 8,, = e®, be the factor which, after description of a loop
round a, should be associated with W,; let 8, be the corresponding
factor for W,; and so on: the quantities 6,, 0,, ... being unequal
to one another, because W,, W,, ... belong to different groups.
Then, as in § 18, we deduce the equation
OA W, + 02 W, +...=0,

after A descriptions of the loop; and this would hold for all
integer values of A. As before, taking a sufficient number of
these equations for successive values of A, we infer that

W,=0, W,=0, ...;
if these are not evanescent, they would imply relations among the
members of a group, and so they can be satisfied only if

=0=...=¢, C=0=...=¢4, ...

Remove therefore the corresponding terms from the relation

Cyy + oo+ Cpwy =0,
and proceed as before: we ultimately obtain zero as the only

possible value of each of the coefficients ¢. Hence no homogeneous
linear relation exists: the system is fundamental.

Some examples illustrating the preceding method of obtaining
the integrals of a linear equation will now be given.

Lz. 1. Consider the integrals of the equation*
D wy=xz(2—a%)w" — (22 +42+2) {(1 —z) W +w}=0
in the vicinity of the origin. To obtain a regular integral, we take

a0
w=az* 3 ca";
n=0
* The equation is not in the exact form indicated in the text. We have m=2,
P5(0)=0, and so a factor « has been removed; also we have multiplied by the factor
2 — x2.

F. IV. 7
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substituting, we have

ded zDw=2a(a—2) c,z%,
provide
0=0; (a?—1) = (a+1),

0=2¢ya (a+2) —2¢; (a+2) — ¢4 (a — 2)?,
and

2(n+a+1l) {(72+a—1) cn+1'—cn}=<n+a_3) {(7L+a—3) cn—l_cn—Z}:
the last holding for n=2, 3, ....

The indicial equation is
a{a—2)=0,

giving (simple) roots a=2, a=0, so that a factor a+41 can be neglected : the
relations among the coefficients are equivalent to

(a+2n—1) ¢y 1~ Con=0,

_ ___00<a'_2>2 a
(@a+2n) Con 0= Cons1= - %1 (a+2n)(a+2n+2)"

Firstly, consider the root a=2. 'We have

€1="2Cp>
2¢y=2¢y,
3cg=¢y, ...

so that the integral belonging to the index 2 is

Z2 3
co2? <1+x+? +% +> ;

say the integral is %, where
= z%e.

Secondly, consider the root a=0. From the original form of the relations,
we have
€= —Cp»
by the first relation: and the second relation is then identically satisfied,

leaving ¢, arbitrary. Using the reduced form of the relations for the higher
coefficients, we have

C3==Cy,
ey =y,
3cg=1¢45 ...

and therefore the integral belonging to the index O is

22 2t
¢o (1 — )+ cya? (1+x+? + 3 +> .
On subtracting cyu from this integral, the remainder is still an integral, and it
belongs to the index 0 in the form (say)
v, =1—u.
Thus the system of two integrals, regular in the vicinity of #=0, is

2 - p—
u, =x%*; v, =1—a.
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This method of dealing with the root a=0 is not quite in accord with the
course of the general theory ; it happens to be successful because ¢, is left
arbitrary. In order to follow the general theory, we note that the coefficient
of ¢, in the original difference-equation contains a factor a which vanishes for
the present root. Hence, taking

co="Ca,
we find
Ca
cl=a_ 1’
.y Ca(a®—ba+10)
272 T ata-2
=2
03—a+ 1°

(a+2)ey=cy+a%4d,

where 4 is finite, and so on ; thus

_ a v a+2 x%
w= Cax <1+ )+cx {1+a+1 (a+1)(a+2)+ }—i—aQR(x, a),

where R (z, a) is a holomorphic function of # which, by the general theory,
is finite when a=0. According to the general theory, this quantity should
give rise to two integrals, viz.

dw
o [ ]

Taking account of the value of ¢, the first of them is zero, thus giving an
evanescent integral. The second is

C(l—2)—5Cx%",
or adding to this integral £Cu, which is an integral, we have
C(1—-x),

thus giving 1 — & as the integral.

Ez. 2. Discuss in a similar manner the regular integrals of the equation

x4 uw —w=0
in the vicinity of the origin : likewise those of the equation
z(1l—x)w' —(1+42+22%) W' +(B+32—22) w=0

in the same vicinity.

FEz. 3. Consider the integrals of the equation

Dw=x2(1+x) v — (1 +2x) (2w’ —w)=0

in the vicinity of the origin. Substituting the expression

o
ze T c,x",
n=(
we have
Dw=(a—1)?c 2,
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provided
(a+n—1)2¢,= —(a+n—2) (a+n—3) Cp—y,

for n=1, 2, 3, ...; these values give
W=y x* {1 _(‘—_”a ) ga 2) } +(a—1)27,
a

where ¥ is a holomorphic function of # which is finite when a=1.

The indicial equation has a repeated root a=1; hence two regular
integrals are
dw
[w]a:]_’ % a,:l.

The former is cy2, say the integral is %, where
U=z;
the latter is cya log £+ ¢, #% say the integral is », where
v=uxlog &+ 2%
Both integrals belong to the index 1; and one of them must contain a
logarithm, since the index is a repeated root of the indicial equation.
Ex. 4. Consider Bessel’s equation for functions of order zero, viz.

Dw=a2v" 4w +2w=0.

Substituting
w=cyre+c x*t 4 et tP ..,
we have
xDw=c,a’xe,
provided
¢, =0,
(a+p+1)2cpeytep—1=0,
the latter holding for p=1, 2, 3, .... When these relations are solved, the

value of w is
1 22 2t
w=ar {1 Gt G

The indicial equation is a?=0, so that a==0 is a repeated root; thus the
integrals of the equation, both of them belonging to the index zero, are

dw
[’w]a =0 [g;
x? Zt
%@*@+ﬁjrr}?

in effect, J, (#), on making ¢,=1. The second is

x? e
CO].Og{I) 1‘—§‘2+‘W_...

22 8
+60{§‘2 42(1+2)+22—4——‘*162<1+22‘+%)—...}.

The first of them is
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Denoting this by &, when ¢,=1, we have

(=11 fa\2
Ey=Jyloga+ 3 S (5) v

where y» (p) denotes the value of dilz {log I1 (2)} when z=p. The two integrals,

regular in the vicinity of #=0, are J, and K.

Ez. 5. Consider next Bessel’s equation for functions of order =, viz.
Dw=ax?w" + 2w + (22— 2%) w=0.
Substituting an expréssion
w=cywrt+e x4 . AepartP4 L

in the equation, we have
Dw=c,(a®=n?) ze,
provided
e {(a+1)2—n% =0,
cp {(a+p)?—n?;+cp_,=0,

for p=1, 2, 3, ...; we thus have

a2 x4
e R o = e e
The roots of the indicial equation are
a=+n, a= —"nN.

When 2 is not an integer, the corresponding integrals are seen to be
effectively ,, J_,.

When 7 is zero, we have a repeated root ; this case has been discussed in
the preceding example (Ex. 4). _
When # is an integer different from zero, the two roots belong to a group ;

and for a= —n, the coefficient of #?* is formally infinite, so that we have an
illustration of the general theory in §§ 36—38. We take the roots in order.

Firstly, let a= 4= : then the integral is

w0 x 1
o 2 (é T (p) T (n+p)’

: 1
on taking ¢, equal to P TIm) W

and it belongs to the index #.

This is the function usually denoted by o/, ;

Secondly, when a= —n, one of the coefficients becomes formally infinite
through the occurrence of a denominator factor (a+2n)2—n% Accordingly,
we write

a=Cfa+2ap—nY, (~1pC=E T {(a+2rf—n%;
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and then
w=C {(a+2n)? - n2} z= |:

x? N a2n—2
e

T {(at 220

? ot
o+ 2n S —
+ &z |:1 (a+2n+2)% —n? + {{a+2n+42)2 —n?} {(a+2n+ 4)% — n?} :l

=’L(}1+’w2,

say : and now
Dw=C(a?—n?) {(a+2n)%— n?} o

Two integrals arise through this root, viz.
Ow, | Ow,
[w,+wy], = l:‘l+ '*{] .
a= -7

For the first of them, we have

£
[wl]a: - ’IL=O’ [w2]a_ —_n 211, I (,n> Jn H

so that it provides no new integral. For the second of them, we have

owy 1 20n n21< >2PH(n 1-p)_ W
:l AT (n—1) 2 \2 I (p) b
say ; and

aw? n ? A
P =Fz (logx)[ 22(n+1>+24<n+ Dxr+2)1. 2-...:]

= W,,
say : so that the integral is W, 4 W,.
In W,, the part represented by
1) 2
pm  GLIEEY ) (o)

=0 IL(r)II(n-+7)

is a constant multiple of J, and therefore can be omitted, owing to the earlier
retention of ./,,. Rejecting this part, and taking

1
C= —%2"‘111(7@—1),

so that

_ 1 1

= o1 (n)’
the integral becomes

-G e G >2”

()2 weymurn Blosrv Oy e ()

which differs, only by a constant multiple of /,,, from the expression given by
Hankel*.

* Math. Ann., t. 1 (1869), pp. 469—471, quoted in my Treatise on Differential
Equations, p. 167.
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Zz. 6. Discuss in a similar manner the integrals of the equation
2(1—2)w' +{l—(a+b+1)z} 2w —abw=0.

in the vicinities of #=0, and #=1: indicating the form for the latter vicinity
when a+b=1. :

This equation is the differential equation of the hypergeometric series
F(a,b,1, 2z). When, in Legendre’s equation

(-2 DY 2% 4 p (pr1)w=0,

the independent variable is ’cransformed to x, where z=1 — 2, it becomes
z(Q-2)w'+1—-22)w +p(p+1)w=0,
which is the special case of the above given by b=p+1, a=—p. The
1ntegrals of Legendre’s equation in the vicinity of #=0 and of x#=1, that is,
in the vicinity of z=1 and of z=—1, can be deduced from those of the
hypergeometric equat}on ; the actual deductlon is left as an exercise.
Ex. 7. Apply the general theory to obtain the integrals of
3w’ — Bzt +Txw — 8w=0,

which are regular in the vicinity of #=0.

Fz. 8. Consider in the same way the equation
D (w)=(1+2) 230" — (24 42) 220" + (4 + 10x) 2w’ — (44 122) w=
Substituting for w the expression
w=coxe+tc 22t e,
‘as in the earlier examples, we have

Dw=cy(a—1) (a—2)% 2,
provided
ep(nta—1)(n+a—-22+c, . (nta-3)2%n+ta—4)=0,
for n=1, 2, 3, ....
The roots of the indicial equation are 2, repeated, and 1, so that they form
a group the members of which differ by integers. Moreover, when a=1, the
coefficient ¢;, which is

o (@—2) (a=3)
is formally infinite ; for that root, we shall take
co=C(a—1)2
Firstly, for the repeated root a=2, we have
w=cyxe{l+(a—2)2 R (», a)},

where R is a holomorphic function of & which remains finite when a=2. The

two integrals are
ow
[w]a:-z; Pa :L:z 5
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it is easy to see that they are constant multiples of
Uy =22 us=ux’logx, .
both of which belong to the index 2.
Secondly, for the root a=1, we take ¢y=C (a—1)% and then
D (w)y=0C(a—1)3(a—2)% x,
where

w=C(a—1)2ze— (m—:g)

et
(a— 1)?(a—2)° (a—

oD et (=100 ),

where @ (#, a) is a holomorphic function of # which remains finite when a=1.
In connection with this expression, three integrals are derivable, viz.

ow 02w
[w]a=l’ 5&]&:1: E"/Z]d:l

C 222,
which is 2C%, : it is not a new integral. The second is
2Cx2log x — 7023,
which is 20uy, — 7Cu, : it is not a new integral. The third is
20z + 2022 (log x)?— 14Cx?log x + 22022 42023 ;

adding to it 14Cu,—22Cu,, the new expression is still an integral and is a
constant multiple of «;, where

uy=x+a3+ 22 (log x)?%,

The first of these is

which manifestly belongs to the index 1.

Ez. 9. Obtain the integrals of the equations
1) (1422 28w —(2 + 42?) 220" + (4+ 102%) v’ — (4 4+ 122%) w=0 ;
(i) (1 +4x) 2*w" — (44 202) 230" + (14 + 722) x%w”
— (324 168z) xw’ + (36 +1922) w=0 ;
which are regular in the vicinity of the origin.

FEz. 10. Consider the integrals of
Dw=zw" +(a;+bx+...) w +(ag+br+...) w +(ag+bx+...) w=0
in the vicinity of x=0, the constant a; not being an integer. To obtain the
regular integrals, we substitute
w=xa 3 Cp ™,
n=0
so that
22Dw=a(a—1) (a—2+a,) ¢,z
provided )
(n4a)(nta—1) (n+a—2+a;) Ca=Foln-y+[iln-g+F--s
for values of n greater than zero, no one of the quantities f, f;, ... being of
degree in » greater than 2.
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The roots of the indicial equation are
a=0,1, 2—a,.

For a=2-a,, the difference-equation determines coefficients ¢,, which
lead to a series converging for values of |#| within the common region of
convergence of the coefficients of w", ', w.

For a=0 or 1, the difference-equation holds for values of » greater than

2 or 1 respectively ; the only other conditions are
ay . 205+ by . C; 4+ A3¢y=0
for a=0, and
.20, +ay. cg=0

for a=1. Then the difference-equation again determines coefficients which
in each case lead to a series that converges within the same region as the
series that belongs to the exponent 2—a,. Rach of the latter integrals is
a holomorphic function of #; and therefore the three integrals of the equation,
which are regular in the vicinity of #=0, are :—one, a holomorphic function
of & belonging to the index 0 ; a second, likewise a holomorphic function of
belonging to the index 1; and a third, belonging to the index 2—a,.

Ez. 11. Discuss the regular integrals of the equation in the preceding
example, when «, is an integer.

Ez. 12. Prove that the equation
d
d pey (a1+bl.7c+ )d P 1+ +(a’n+bnx+ ) =0

has m —1 integrals which are holomorphic functions of «# in the vicinity of

=0, when «, is not an integer, the various coefficients a,+b,x+... in the

differential equation being holomorphic in that vicinity ; and discuss the
regular integrals when a; is an integer. (Poincaré.)

FEz. 13. Shew that the series

o a(a+1)
2lplp+o(a+1)r (T+1)

Fa, p, o, 7, )= 1+ 224 ..

satisfies the equation

5 By d3y 2
(-i—“4+(p+0'+1'+3)x2 +(1+p+o-+r+po'+a'r+rp)xf§z‘z
2,
o e
and obtain the other integrals, regular in the vicinity of 2 =0.

Verify that, when a=r, the form of the function 7, say G (p, o, x), satisfies
the equation of the third order

asaG a2G adq
2 - - -
@€ Z13+(p+o-+1)x Tx2+p ar G=0;

and indicate the relation between the two differential equations.
(Pochhammer. )
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REGULAR INTEGRALS, FREE FROM LOGARITHMS.

41. Alike in the general investigation and in the particular
examples, it has appeared that the regular integrals are sometimes
atfected with logarithms, sometimes free from them. Thus if no
two of the roots of the indicial equation differ by a whole number,
each one of the integrals in the vicinity of the singularity is
certainly free from logarithms ; if a root of the indicial equation is
a repeated root of multiplicity n, then the first n —1 powers of
log # certainly appear in the group of » integrals which belong
to that root. When a root of the indicial equation, though not a
repeated root, belongs to a group the members of which ditfer
from one another by whole numbers, the integral belonging to
the root may or may not involve logarithms: we proceed to find
the conditions which will secure that every integral belonging to
that root is free from logarithms.

Let the group of roots be denoted by p,, pi, ..., pu, ..., arranged
in descending order of real parts, so that p, — p,, for «k =0, 1,
@ —1, i1s in each case a positive integer: and consider the root
pu, in order to obtain the conditions under which every integral
belonging to p, shall be free from logarithms. In the first place,
p. must be a simple root of the indicial equation. Assuming this
to be the case, we know that the integral belonging to p, is

otg (x, o)
oot a= pM ’

in the notation of § 38. If we further admit the legitimate
possibility that, to this expression, we may add constant linear
multiples of the integrals which belong to the earlier roots
Po> P1s --+ pu— and still have an integral belonging to the root
pu, then, in order to secure that every integral belonging to p,.
shall be free from logarithms, the integrals belonging to the
earlier roots must also be free from logarithms; hence, as
further conditions, each of the roots p,, pi1, ..., pu—s Of the indicial
equation must be simple. These conditions also will be assumed
to be satisfied.

The full expression for the integral belonging to p,. is the
value, when a = p,, of the expression

a* E ag"w”+y(lova)28 2”w”+...+(10gw)*‘§g,w" ;
v=0 Oat* oar v=0
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in order to be free from logarithms, the quantities

079, (a0)
Ba" o= Pp. ’

for c=0,1, ..., u—1, and for all values »=0, 1, ... ad inf, must
vanish : and if these conditions be satisfied, the above expression
will acquire the desired form. The conditions will be satisfied for
every value of o, if g, (@) contains (a— p,)* as a factor. But (p. 81)

9u(a) _ by ()

Go(@)  fola+1) fola+2)... fo(a+v)
say; and g,(a), which (§ 36) is equal to g(«)f(a), contains
(a — pu)* as a factor on account of its occurrence in f (a);
hence it is sufficient that H,(«) should remain finite (that is,
not become infinite) when a = p,, for all values of ». Moreover,
H,(a)=1. Having regard to the equation by which g, (a) is
determined, we obtain the relation

H, fo(a+v)+H,  fi(a+v—1)+...
vt H foa(a+ 1)+ Hof,()=0
All the quantities f;(a +v — 1), ..., f, (&) are finite for values of a
that are considered ; hence H, f,(a+ v) is finite if H,(=1), H,, ...,
H, , are finite, and therefore, on the same hypothesis, H, will be
finite for all values of », if it remains finite for those values of the
positive integer v, which make p, + » a root of the indicial equa-

tion f,(6)=0. These values are known; in ascending order of
magnitude, they are

=M, (a),

Pu—1 Pp.) u—2 " Pus +ee5 Lo Pu-
Consider them in ascending order. We have
h, (o)
f(,(a-I— 1) fola+2)... fo(a+v)’

When v =p,_, — p,, a single factor

Jo(a+v)

in the denominator vanishes when a =p,; and it vanishes to the
first order, because p, ., is a simple root of the indicial equation.
Hence, in order that H, may be finite for this value of » when
o = p,, it is necessary that

o, (pu) =0, when v=p, ;—pu;
and it is sufficient that %, (p.) should vanish to the first order.
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When v = p,_, — pu, two factors

fo(a"‘v"f’u——?"'lou—l), fo(a'*‘v)
in the denominator vanish when a=p, ; and each of them vanishes
to the first order, because p,; and p,_, are simple roots of the
indicial equation. Hence, in order that H, may be finite for this
value of » when a=p,, it is necessary and sufficient that 2, («)
should vanish to the second order when «=p,: the analytical
conditions are that
oh, (a)
b, () =0, ———=0,
(@ oa

when v=p, ,— p. and a =p,.

When v = pu_; — pu, then the three factors

So(od+v—pus+pu), fola+v—pus+pu)s Jfola+r)
in the denominator vanish when a = p,; and each of them vanishes
to the first order, because p._, pu—s, pu—s are simple roots of the
indicial equation. Hence, in order that H, may be finite for this
value of v when a = p,, it is necessary and sufficient that h, (a)
should vanish to the third order when wa=p,; the analytical
conditions are that

_ oh, (a) *h, (a)
b (@) = 0, oo =0 oz

when v=p, ;—p, and a=p,.

Proceeding in this way, we obtain the conditions for the
successive values of v that need to be considered: the last set
is that

07h., (o)

oa®

=0, <0—=0’ 1)"':#‘_1)’
when v =p,—p,. and a=p,.

Such 1s the aggregate of conditions for a = p,. We have seen
that, in order to secure the freedom from logarithms of every
integral belonging to p,, every preceding integral in the set as
arranged must similarly be free: and so we have, in addition, all
the similar conditions for p, ., pu_s, ..., p1, there being no condition
for the simple root p,. When all these conditions are satisfied,
every tntegral belonging to p, ts free from logarithms.

Manifestly these conditions also secure that every integral
belonging to the roots pu—, pu—s, ..., p1 of the indicial equation
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is free from logarithms : (one integral, belonging to p,, is always
unconditionally free from logarithms): it being assumed that each
of the roots p,, p1, .., pu is & simple root of the indicial equation.
The conditions thus secure that, when each of the u + 1 greatest
roots in the group of roots of the indicial equation is simple, the
#+ 1 integrals belonging to those roots respectively are free from
logarithms.

The preceding investigation is based upon the results obtained by
Frobenius, Crelle, t. Lxxv1 (1873), pp. 224—226.

A different investigation is given by Fuchs, Crelle, t. LxvIiz (1868),
pp. 361—367, 373—378 ; see also Tannery, Ann. de U Ke. Norm., t. 1v (1875),
pp. 167—170.

Ez. 1. A simple illustration arises in BEx. 1, § 40, for the equation

z(2—at) W' — (22442 +2){(1-2)w +w}=0.
With the notation of the text, we have
fo(@=a(a—2),

po=2, p=1, p=0:

so that

we thus have to consider 4, (a) for a=p,=0, v=p,—p;=2. But

kg (@) go (@)

9= at 1) fo (a+2)’
so that, as
4—a
g2(a)= g 5% (a),
we have
4—a
hy (a)=mfo (a+1) fo(a+2)

=(4—a)(a+1)(a+2)a.
The (one) condition in the present case is that
hy (a)=0,
when a=0: which manifestly is satisfied.

Ex. 2. If the roots of the indicial equation are different from one another,
then the integrals which belong to them certainly possess terms free from
logarithms. (Fuchs.)

Ex. 3. Let py, pyy «.es pn be the roots of the indicial equation which form
a group, the members differing by integers and no two being equal ; and
assume them ranged in descending order of real parts. Denote p,—p, by
s—1; and form the equation satisfied by

- Al _ .
W=%3 (wax = PnY;
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then according as the indicial equation for the singularity #=0 of the equa-
tion in W has no negative roots or has negative roots which are integers, the
integrals of the original equation in w are free from logarithms or are affected
by logarithms. (Fuchs.)

FEz. 4. Shew that the integrals of the equations

. 2
1) w'4qu -—ﬁw:O,

i) W' — <ig2+ ~2—> w=0,

]
, 2
(iii) @’ 4 (g—20)w + (62 —qb — 07‘) w=0,
where ¢ and 8 are constants, are free from logarithms.

Ex. 5. Discuss the integrals of the equation
222 (2—a)w' —x(4—x)W +(3—-2)w=0

in the vicinity of the origin. [They are 2%, (x - ya?)b.]

42. If, instead of requiring (as in § 41) that every integral
belonging to an exponent p, shall be free from logarithms, when
pw 1s one of a group of roots of the indicial equation of the type
indicated in § 36, we consider the possibility that there shall be
some one integral free from logarithms, belonging to the exponent
and belonging to no earlier exponent in the group as arranged, no
such large aggregate of conditions is needed as for the earlier
requirement. Thus it is no longer necessary to specify that
Pos ---» pu— shall be simple roots of the indicial equation; nor is
it necessary to specify that, even if these roots are simple, the
integrals associated with them are of the required form. The
conditions that arise will be particularly associated with a=p,;
but they will be affected by modifications arising out of the possible
multiplicity of py, ..., pu—s as roots of the indicial equation.

The detailed results are complicated: a mode of obtaining
them will be sufficiently indicated by an investigation of the con-
ditions needed to secure that some integral free from logarithms
exists belonging to p; and not to p,, with the notation of §§ 36—38.
Suppose that p, is a root of the indicial equation of multiplicity ¢;
and let v, ..., y; denote the set of integrals associated with p,,
where the expression of vy, for s =0, 1, ..., 7-- 1, is given by

_ |29 (= o)
yS_H B [: aas :!'l=Po '
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If p; 1s a root of the indicial equation of multiplicity j — <, only
the first of the set of associated j — < integrals can be free from
logarithms: even that this may be the case, conditions will be
required. Denoting that first integral by W, we have

3y (x, o)
W= [ @ L

Now W certainly belongs to the exponent p;. Its expression, in
general, involves logarithms ; but there is a possibility of obtaining
a modification of its expression, so as to free it from logarithms, if
we associate with W a linear combination of ,, ..., y; with con-
stant coefficients ; and the modified integral will still belong to p;
but not to p,. Accordingly, consider the combination

U=W=3 Ay,
t=2

where the constant coefficients A are at our disposal ; this gives

7— [Big (uc, a)] _ é 4, ['at—lg (@, a)]

oa’ =0, t=9 oat1

S : v! n g" v
= gP: > > {‘—“n—)‘ (10g x) z—n & }

v=om=0 (7! (2
- 3 % fa TT"T*( 5 305 7}
What we require are the conditions that may, if possible, secure
that no logarithms occur in this expression for U.
The least aggregate of conditions that will secure this result
1s: first,
gv (Pz') =0,
for all values of », which secures the disappearance of (log)’;
next,
99" = 49, (p)
ap m 0/>

for all values of m and n such that p; + n= p, + m, as well as

?ﬂ’=0

8pz-
for p=0, 1, ..., p,— p;— 1, these conditions securing the dis-
appearance of (log 2)™; next,

PG —1) &gn

Gn _ agm
T aPiz ’b—lgm(pﬂ) + ("’ 1) A
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for all values of m and » such that p; + n = p, + m, as well as

82.9'19
op: 0,
for p=0,1, ..., pp—p;—1, these conditions securing the dis-

appearance of (log )2; next,

1(t—1) (¢ — 2) a3g"=Ai_2gm(Po) +(1—2) Ai_l%&n

3! apf
L= DE=2) 4 PYn
2 4 op*’
for all values of m and n such that p; + n = p, + m, as well as
e O9p _
op:® =0

for p=0, 1,..., po—p;—1; and so on. This aggregate is both
necessary and sufficient.

Manifestly any attempt to reduce it to conditions independent
of the constants A4 would be exceedingly laborious, even if possible.
The difficulty arises in even greater measure when we deal with
the conditions that some integral belonging to p,., where w >, and
to no earlier index, should exist free from logarithms.

43. If we assume zero values for all the constants 4,, ..., 4;
in the preceding investigation, the surviving conditions are cer-
tainly sufficient to secure the result that the integral exists, free
from logarithms and belonging to its proper exponent: but the
conditions cannot be declared necessary.

The aggregate of this set of sufficient conditions is, in the case
of p;, that the equation

shall hold for ¢=0, 1, ..., 7 —1, and for all values of n. As in
§ 41, it can be proved that all these conditions will be satisfied if
the equation

P (a) =

has a simple root equal to p;. Assuming this to be the case, then
an integral exists in the form

0 ai -1
zPi 3 Y v,
v=0 aa’b a=p.
i
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which is free from logarithmns and belongs to p; (but not to p,)
as its proper exponent. If p; is a multiple root of the indicial
equation, the remaining integrals belonging to p; as their proper
exponent are certainly affected with logarithms.

Corresponding conditions, that are sufficient (but are more
than can be declared necessary) to secure the existence of an
integral, free from logarithms and belonging to an exponent p,.
(but to no earlier exponent in its group), can similarly be found ;
they are inferred from the investigation in § 41. If the equation

Ay (a)=0,

when n = p._, — p., has a simple root equal to p,; if the same
equation, when n = p,_, — p., has a double root equal to p,; if the
same equation, when n = p,_; — p,, has a triple root equal to p,;
and so on, up to the case of n=p,— p,, when the equation must
have a root equal to p, of multiplicity u: then an integral exists,
belonging to p, as its proper exponent (and not to any of the
exponents p,, Py, ..., pu—), and free from logarithms. If p, is a
multiple root of the indicial equation, the remaining integrals

belonging to p, as their proper exponent are certainly affected
with logarithms.

On the preceding basis, the identification of the integrals,
belonging to the group of exponents, with the sub-groups as
arranged by Hamburger (§ 23, 24) can be effected. The aggre-
gate of integrals in the group, which are free from logarithms and
belong to their proper exponents, not merely indicate the number
of sub-groups in Hamburger’s arrangement but constitute the
respective first members in the respective sub-groups. The
general functional forms of the remaining integrals belonging to
any exponent are (save as to a power of a factor 27¢) similar to
those which occur in Jiirgens’ form of the integrals in a sub-
group*.

44. In the practical determination of the integrals of specified
equations, it sometimes is convenient to begin with that root

* In this connection, the following memoirs may be consulted: Jiirgens,

Crelle, t. Lxxx (1875), pp. 150—168; Schlesinger, Crelle, t. cxiv (1895), pp. 159—
169, 309--311.

1 As to this process, see the remarks by Cayley, Coll. Math. Papers, t. vii,
pp. 458—462.
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among the group of roots which has the smallest real part,
instead of beginning with the root that has the largest real part,
as in § 36. When the process about to be discussed is effective,
it has the advantage of indicating at once the number of integrals
associated with the group which are free from logarithms; but it
is not always effective for this purpose, and it does not determine
the integrals that are affected with logarithms.

The equations determining the successive coefficients g¢,, g,. ...
in the expression

]

nga+v
=0

1 4

in the method of Frobenius are (§ 33)

O=gnfo(@a+n)+gnafi(a+n—1)+ ... + g fn(2),

forn=1,2,.... Let a group of roots of the indicial equation
Jo(a)=0,
differing from one another by integers, be denoted by p,, p, ..., o,

where o is the root of the group with the smallest real part; and
replace a by o in the foregoing typical equation for the g’s. Then,
whenever o + » is equal to another root of the group, the equation
in its given form ceases to determine g,, as a unique finite
quantity.

It may happen that the equation is satisfied identically; in
that case g, is arbitrary, as well as g,. It may happen that the
equation appears to determine g, as an infinite quantity: in that
case, we modify g, as in § 36, and g, is determinate after the
modification.

As often as the former case arises, we have a new arbitrary
coefficient ; if « be the number of these coefficients left arbi-
trary, then « is the number of different integrals, associated with
the group of roots and free from logarithms. These integrals
themselves are the quantities multiplying the arbitrary coefficients
in the expression

(=]

gv xcr+v‘
=0

v

Ez. 1. As an example in which the process, of dealing first with the root
of a group that has the smallest real part, is effective as indicating the
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number of integrals free from logarithms, consider the equation
d*w 3w d2w
5y VY _ 7.3 4 5 g 2 3 4 5y LY
(24 +25) o (7234122 +4Z)dz3+(292 + 5723+ 3024 4 62°) e
— (742 + 1542249323 + 2824 + 425) %’—: + (90 41942+ 12522+ 43284 924+ 25) w=0.

The indicial equation is easily found to be

(p—2) (p—3)*(p—5)=0,
so that there certainly will be an integral belonging to the exponent 5, free
from logarithms ; there may be a similar integral belonging to the exponent 3,
and there will certainly be an integral, belonging to that exponent and
affected with logarithms; and there may be an integral belonging to the
exponent 2, free from logarithms.

Accordingly, take the value p=2, and substitute
w=cy22+ 284 cort+ e3P+ ...

in the equation ; for the immediate purpose, we need not consider powers
higher than 2% in w, because p =25 is the root of the indicial equation with the

highest real part. The equations for determining the successive coefficients
are
0=¢,.0,

O=¢;.0+4¢,.0,

O=cy(—2)+¢(2)+¢(—1),

O0=cy.04¢c, (—2)+c; (2)+cy(—~1);
from which we see that ¢;, ¢;, ¢; remain arbitrary. All the other coeffi-
cients are expressible in terms of them. Consequently, the equation has

three integrals free from logarithms belonging to 2, 3, 5, as their respective
proper exponents.

(The equation was constructed so as to have
Per, Pe?, zieflogetate?, z%e?
for a fundamental system ; the system is easily derived by writing
y=we™%
when the equation for y is
A1 42)y" —B(T+82)y" +2° (294+362) y’ — 2 (74 +962) ¥ + (90 +1202) y =0,
which can easily be treated by the general method of Frobenius.)

Ex. 2. As an example in which the process is ineffective, consider the
equation
d?w
dz?

Dw=(1-2)2* +(5z—4)zozll'l—:+(6—9z)w=0.

Taking, as usual,
W= = ¢c,a»+P,

n=0
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we have

DW=(p—2) (p—3) ¢y,

provided ’
(p+n—2)(p+n—3)c,=(p+n—4)2c,_,,

for values n=1, 2, ....
b bl

If instead of beginning with the root p=3 as in the general theory (§§ 35,
36), we try p=2, the equation for the coefficients ¢ gives

nn—1)c,=n—-2)2¢c,.q,
determining ¢, apparently as infinite. To modify this, we take
co=C(p—2);
the equation for ¢, then becomes
(b= (p—=2)cr=(p—-3)?2(p—-2)C,

which is satisfied identically, when p=2. Thus ¢, remains arbitrary ; but
¢y=0. The integral which would be obtained is, in fact, that which belongs
to p=3; and the process is ineffective. There happens to be no integral
belonging to p=2 (and not to p=3) free from logarithms.

The actual solution is easily obtained by the general method of Frobenius.
We have

W= Cro {(p —2)+ (i}:?% e+ (p— 22 (o —3)2 R (s, p)} ,
where R (z, p) is a holomorphic function of z when p is either 2 or 3; and then
DW=C{p—-2)2(p—3)2"
For p=3, we have the integral
wy=[ Wlpmyg=C.
For p =2, we have the two integrals

wy=[ Wlp—y=C =10y,

wy= B__ = (724 C23 log 2 — 3C%3.
aP p=2

The integral belonging to the index 3 is

and

23,
free from logarithms ; that which belongs to the index 2 is effectively
22428 log z,

which is affected with a logarithm, so that the index 2 possesses no proper
integral free from logarithms.
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DISCRIMINATION BETWEEN REAL SINGULARITY AND APPARENT
SINGULARITY.

45. The singularity, in the vicinity of which the integrals
have been considered, is a singularity of coefficients of the equa-
tion ‘

P, (2)

+...+(—Z—*_:7)77n’ll/'=o;

d™w + P, (2) d™w

dz™ z—a dzm 1

and the indices to which the integrals belong are the roots of the
indicial equation for z =@, which is

plp—1) ..(p—m+1)+p(p—1)...(p—m+2) P, (a)+...
cee+ P, (a) =0.

In general, the integrals of the equation in the vicinity of a cease
to be holomorphic functions of z—a; thus they may involve
fractional powers or negative powers of z—a, and they may
involve powers of log (z—a). When this is the case, a is called *
a real singularity. If, on the contrary, every integral of the
equation in the vicinity of @ is a holomorphic function of 2z —a,
then a is called an apparent singularity of the differential equa-
tion. The conditions that must be satisfied when a singularity of
the equation is only apparent, so that it is an ordinary point for
each of the integrals, may be obtained as follows.

Let wy, ws, ..., w,, denote a fundamental system of integrals
in the vicinity of the singularity ¢ ; and suppose that each member
of the system is a holomorphic function of z— @ in that vicinity,
so that the singularity e is only apparent. Let A denote the
determinant (§ 10) of this fundamental system, so that

A= dm 1w, d™ 2w, dw, )
T Tdemt 0 gm0t Tgp W
dm 1w, d™w, dw,
dzm * dgm 0t gy 0 e
dr 1w dm 2w dw,,
dzm1 °  dzm2 dz ™

* Weierstrass (see Fuchs, Crelle, t. Lxvir (1868), p. 878) calls the singularity
wesentlich in this case.: in the alternative case, he calls it ausserwesentlich.
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and let A, denote the determinant which results from A when the
m—r
column

W—% dd;,s'?, (for s=1, ..., m). Then

as every constituent in A, and A is a holomorphic function of
z—a in the vicinity of @, both A, and A are holomorphic func-
tions of z—a in that vicinity; neither of them is infinite there.
But as in § 31, we have

P.(2) A, .
m__zf, (r=1, ..., m),

is replaced by

and some one at least of the quantities P, (a) is not zero; hence,
for that value of 7,

A, (a)

A (a)

1s infinite, and therefore

A (a) =0,

or the determinant of a fundamental system vanishes at an
apparent singularity. Moreover, as in § 10, we have

lda_ P __P(a) dG(—a)
AdZ_ Z—-a_ zZ—q dZ

>

where G (z — a) is a holomorphic function of z — @ ; whence
A@E)=A(z—a) T (@) ¢Gz-a)

where A is a constant. Now A is not identically zero near a, for
the system of integrals is fundamental ; hence 4 is not zero. We
have seen that A (¢) =0, and A (z) is a holomorphic function of
z —a; hence P, (a) must be a negative integer, numerically greater
than zero. This condition is required, in order to ensure that a
is a singularity of the equation.

As each of the integrals is a function, that is holomorphic in
the vicinity of a, it follows that the respective indices to which
they belong must be positive integers; and therefore the roots of
the indicial equation

plp—1D) ... (p—m+D+p(p—1)...(p—m+2) P (a)+ ...
oo + pPpy(a)+ P(a)=0

must be positive integers. (When one of these is zero, then
P, (a) vanishes.) Moreover, no two of these roots may be equal;
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for otherwise, the expressions for the integrals that belong to the
repeated root would certainly include logarithms, contrary to the
current hypothesis. Accordingly, let the roots be pi, ps, ..., P>
a set of unequal positive integers which we shall assume to be
ranged in decreasing order of magnitude : they thus form a single
group the members of which differ from one another by integers.
The integral belonging to p, involves no logarithm. In order that
every integral belonging to p, may involve no logarithm, one
condition must be satisfied : it is as set out in § 41. In order that
every integral belonging to p, may involve no logarithm, two
further conditions must be satisfied ; they are as set out in § 41.
And so on, for each of the roots in succession until the last:
in order that every integral belonging to p, may involve no
logarithms, m — 1 further conditions must be satisfied, being the
conditions set out in § 41.

The aggregate of these conditions, and the property that the
roots of the indicial equation are unequal positive integers, give
the requisite character to the integrals. The condition that P, (a)
is a negative integer makes a a singularity of the differential
equation. When all the conditions are satisfied, the singularity is
apparent.

In all other cases, the singularity is real.
Ez. 1. Consider whether it is possible that =0 should be only an
apparent singularity of the equation
Dw=2z2w" — (4x+A2%) W + (4 — kx) w=0,
where « and A are constants.

The first condition, that P, (a) should be equal to a negative integer, is
satisfied : in the present instance, it is —4. To discuss the integrals, let
Ww=cyx*+ ezttt e, 2T,
and substitute : then
Dw=cy(a—4)(a—1) 2,
provided :
Cn (a+’n—4:) (a+’n-— 1>= {}‘ <a+n— 1>+K} Cn=1y
for n=1, 2, ....
The indicial equation, being (a—4) (a—1)=0, has all its roots equal to

positive integers ; so that another of the conditions is satisfied. The two
roots form a group.
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The integral, which belongs to the (greater) root 4 as its index, is a holo-
morphic function of # ; it is easily proved to be a constant multiple of (say) v,
where

v it { AN+k  AA+k BA4k o, AN+k BA+«k 67\+Kx3+.‘.}

T %t 123 5%T 1225 3.6

=z (L+y,2+ vy 22 +y32°+...),
for brevity.

As regards the other root given by a=1, we have to assign the conditions
that the integral which belongs to it contains no logarithms. In accordance
with the results of § 41, we see that there will be a single condition ;
expressing it in the notation there used, we write

po=4% py=1, v=py—p;=3, p=1,
and we have to find 24w (a) for v=3, a=p,=1. Now (§ 38)
Jo(a)=(a—4) (a—1),
gs3(a)=Ag, go(a)=4,,

s (@)= kg (a) 9o (a)
8 Jola+1) fo (a+2) fy (a+3)°

and

so that .
Ay (@)= (a+2)+«k} (A (a4 1)+ &} {hat«}.
The sole condition is that
kg (1)=0;
and therefore we must have
k= —QA, Or —2\, or —3A.
If « has any one of these values, the origin is only an apparent singularity of
the equation.
If k= — A, the independent integral belonging to the root 1 is

v=ua.
If k= — 21, the integral is
v=x+3%Az%
If «= — 3], the integral is
v=x+A2r?+FN225,
In all other cases, the origin is a real singularity of the differential equation.
The result, as to the relations between X and u, can be verified inde-
pendently. As w and u are solutions of the differential equation, we have

ww —wu” = <§ + )\> (ww — wu'),
and therefore
ww — wu' = Katerw,
where K is a constant. Hence

eA®

a <zv>_!.f
de \u) a* Q+yo+y2®+y;25+.0)°2°
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If every integral is to be holomorphic in the vicinity of the origin, it is easy
to see that, as « belongs to the index 4, the only condition necessary is that the

coefficient of j—g on the right-hand side should be zero. Thus

EN =4 29+ A (Bys® — 29y) — 2y3+ 6y172 — 49, ° =0,
which, on substitution for y,, y,, v;, and multiplication by — 36, gives
A +x) (2N +k) BN +«)=0,
thus verifying the condition obtained by the general method.

In this example it appears that the integral, which belongs to the smaller
root of the indicial equation, is, in each of the three possible instances, a
polynomial in . It must not be assumed that such a result always holds
when a singularity is only apparent ; this is not the case®.

Ez. 2. Prove that the origin is an apparent singularity for the equation

220" — 2 (44 A2?) W + (6 + pa?) w=0,

where A and p are constants ; and shew that no integral, holomorphic in the
vicinity of the origin, can be a polynomial in o unless p is a positive integer
multiple of A.

Ex. 3. Prove that z=0 and z=1 are real singularities for the equation
z(l=2)w"+(1—2)w —fw=0;
and that z=1, z= — 1, are real singularities for
A-2)w — 22 +n(n+1)w=0,
when 7 is an integer.
Ez. 4. Shew that z=w is a real singularity for every equation of the
form

d2w
-CZ_Z—2 +?0R (Z) —_—O,

where R (z) denotes a rational function of z.

Ex. 5. Shew that, if z=o be an apparent singularity for each integral of

the equation
2w 1\ dw 1
W*’P(Z) EZR Q(;) w=0

where P and @ are holomorphic functions of z~! for large values of |z|,
then, if

zP (2) =2\ +negative powers of z,

22Q) <}>=p+ ........................ ,

* See some remarks by Cayley, in the memoir quoted on p. 113, note.
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A must be a positive integer equal to or greater than 2, and x must be a
positive integer which may be zero. Shew also that, if A=2, then u must be
zero.

Are these conditions sufficient to secure that each integral of the equation
is a holomorphic function of z—! for large values of |z|?

Lz. 6. Verify that every integral of the equation

a2 3 1\ dw 1 1
722+<;+272 d (2—924)’“:0

is holomorphic for large values of |z|.

Note on § 34, p. 85.

To establish the uniform convergence of a series Sg «” for values of q,

Osgood shews (Z.c., p. 85) that it is sufficient to have quantities #,,, indepen-
dent of a, such that
|gne™| < My,

provided the series SM,, converges.

Take a circle in the a-plane large enough to enclose all the regions round
the roots of f(p)=0 given by |a—p|=7"—«"; and let this circle be of radius
7, 50 that 7, is a constant independent of a. With the notation of § 34, take
constants ¢, for values of » > ¢, such that

_ ¥ (r+v) l
Oy+1—0y{(_7.1+,,)m_q§(rl+u)+R} ’

while ¢, =T _=1vy_ Then, as

¥ (40> M(atv), (=m0 (r+0) < | fo (atr+ 1),
we have
Y1 X L1 <Oy

for all values of ». Now, as in § 34 for the ratios of the I's, we find

C, 1
. v-l—l___.
Lim o =’

and therefore the series
C AR =) +C (R =)+
converges, R’ being less than R. Accordingly, by taking
M,=C, (R — x)*,

the uniform convergence of the series Sg 4 is established.




CHAPTER 1IV.

EQUATIONS HAVING THEIR INTEGRALS REGULAR IN THE VICINITY
OF EVERY SINGULARITY (INCLUDING INFINITY).

46. WE have seen that, if a linear differential equation is to
have all its integrals regular in the vicinity of any singularity a, it
1s necessary and sufficient that the equation should be of the form

d™w P, drw P, d" 2w P,

dz™  z—a dz™ ' (z—a)P dz?2 T (22— a)™ “

in the vicinity of that singularity, the quantities P, P,, ..., P,
being holomorphic functions of z—a in a region round a that
encloses no other singularity of the equation. We can immediately
infer the general form of a homogeneous linear differential equa-
tion which has all its integrals regular in the vicinity of every
singularity of the equation, including z= . As Fuchs was the
first to give a full discussion® of this class of equations, it is
sometimes described by his name; the equations are saidt to be
of Fuchsian type or of Fuchsian class.

Let a,, a,, ..., a, denote all the singularities of the differential
equation in the finite part of the z-plane, and write

Yr=(CE—a)(z—ay)...(2—a,);
then the conditions are satisfied for each of these singularities by
the equation
d™w m QK d™m—rq
(jZ%_—- k=1 ,_\}‘_x dzm—’
* See his memoir, Crelle, t. Lxvi (1866), pp. 139—154.
+ Care must be exercised in order to discriminate between equations of Fuchsian

type and Fuchsian equations. The latter arise in connection with automorphie
functions and differential equations having algebraic coefficients : see Chap. x.
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provided the functions @), are holomorphic functions of z every-
where in the finite part of the plane. To secure that the integrals
possess the assigned characteristics for infinitely large values of z,
we note that

—»R( l)
Yr=2’R 2
where R is a polynomial in i« and is unity when z=o0, and
therefore
1 1
P = 2R (;) =k (2) ’

where R, is of the same polynomial character as I, and is unity
when z= . Now suppose that, for very large values of z, the
determinant A (2) of a fundamental system belongs to the index o,
so that

A(z)= T (; ,

where 7' is a regular function of % which does not vanish when

z=o0. Then, with the notation of § 31, we have
1
Ac@) =27 (3).

where 7', is of the same character as 7, save that it may possibly
vanish when z= o0 : taking account of the latter, we have

—O—K—€ 4 l
AK(Z)—Z T" <Z>’
where € is an integer >0. Thus
A, e 1
pK = -—& =z U (—Z—> 5
where U is a regular function of % which does not vanish when

z= o0 ; and therefore
Qe =pYP*

= pl—k—e R, (%) 7 <.Zl_) ,
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for very large values of z. But @, is a holomorphic function of z
near z = oo ; this property, imposed on the preceding expression,
shews* that @, is a polynomial in z, of degree not higher than
(p—1)x.
Moreover, it was proved in the last chapter that all the
integrals of the equation
d™w P, dm™w P,
dem =~ z—a dz™ -t (z — a)™
are regular in the vicinity of z = a, when the quantities Py, ..., Py,
are holomorphic functions of z in that vicinity. Applying this

proposition to each of the singularities (including o) of the
equation

w

d™w m Q;: dm—rq
d%?r; - e '\F( dzm—«’
with the restriction upon @, ..., @ as polynomials in z of the
appropriate degrees, we infer that all its integrals are regular in

the vicinity of each of the singularities (including <« ).

Combining the results, we have the theorem, due to Fuchs+:—

When the m integrals wn the fundamental system of a linear
homogeneous equation of order m have a,, a,, ..., a, as the whole of
their possible singularities wn the finite part of the z-plane; and
when all the integrals are regular in the wvicinity of each of these
singularities, as well as for wnfinitely large values of z ; the equation
is of the form

d™w Gp_l d™w G2 (p—1) d™ 2w G’m(p—l)
dz™ = A dzn Y2 dzm? Hee Ww’

where r denotes H (z—a.) and Gup—y, for p=1,2,...,m, 18 a
polynomial in z of degree not higher than u(p — 1).

Conversely, all the integrals of this differential equation are
everywhere regular, whatever be the polynomials G and r of proper
degree.

Accordingly, this is the most general form of linear equation of
order m, which is of Fuchsian type.

* This result may also be obtained by using the transformation zz=1 and
applying to the equation, transformed by the relations in § 5, the proper conditions
for the immediate vicinity of x=0.

1 Crelle, t. Lxvi (1866), p. 146.
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Fz. 1. Legendre’s equation is

Q=2 w' —2zw +n (n+1) w=0,
say
. 2z n(n+1)

w =1—z2w/— 1-—-22

Its form satisfies all the necessary conditions ; hence its integrals are regular
in the vicinity of z=1, 2= —1, and are regular also for infinitely large values
of z.

Similarly, the hypergeometric equation, which is
z(1-2)w" +{y—(a+B+1)2} &' —aBw=0,

has all its integrals regular in the vicinity of z=0, z=1, and regular also for
infinitely large values of z.

Bessel’s equation of order zero is

1
w=—"w—w
z
1 22
=——w—-5w;
Tz z

its integrals are regular in the vicinity of z=0; but, on account of the order
of the numerator of the coefficient of w in its fractional form, they are not
regular for infinitely large values of 2.

The same result as the last holds for

1 n2— 22
w=—=w+ 20,
z 22

which is Bessel’s equation of order n.

A form of Lamé’s equation, which proves useful (see Chap. 1x, §§ 148—
151), is
w'= {4 (2)+ B} w,
where 4 and B are constants; its integrals are regular in the vicinity of any
point in the finite part of the z-plane congruent with z=0, and these are all
the singularities in the finite part of the plane; but they are not regular
for infinitely large values of =

Ex. 2. The sum of all the exponents associated with all the singularities
(including « ) of the equation of Fuchsian type obtained at the end of the
preceding investigation is the integer § (o — 1) m (m — 1), a result first given by
Fuchs¥*. - The proof is simple.

The polynomial G, is of order not higher than p—1: say
Gp_1=A42P"1+ ...

The indicial equation for the singularity a,, is

0(6—1)...(9-—m+1)—G§’ t(“;)ew—1)...<e—m+2)+...,

* Crelle, t. LxvI, p. 145,
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the unexpressed terms on the right-hand side constituting a polynomial in 4
of order not higher than m —2. Hence the sum of the indices for the singu-
larity a, is
GP—-I (an) .

G
and therefore the sum of the indices for all the singularities a;, a,, ..., @, in
the finite part of the plane

3m (m—1)+

2 Gy (ay)

-1 14 5 Ze-1n)

gpm(m-D+ 2 (@)
=%ipm(m—1)+4,

because a,, ,, ..., ap are the roots of {=0.

The indices for o are obtainable by substituting

wmaor (142 4..)

the indicial equation for « is
(=Dmp (p+D(p+m—1)=(-1y""14p (p+1)...(p+m—2)+...,
so that the sum of the indices for w is
—tm (m—1)— 4.
The total sum of all the indices is therefore
L(p—1) m(m—1).

Ez. 3. 'The general equation of Fuchsian type, which has all its integrals
regular in the vicinity of every singularity (including oo ), has been obtained.
The limitations upon the form of the type are mainly as to degree, so that
generally the construction of the equations, when definite singularities and
definite exponents at the singularities are assigned, will leave arbitrary
elements in the form. The instances when the equations are made com-
pletely determinate by such an assignment are easily found.

Taking the equation as of order m, we have polynomials
Gp_1(2), Gop_3(2), ety Grnp—m (2)
which, in their most general form, contain
p+(2p—1)+(Bp—2)+...(mp—m-+1)
=4pm (m+1)—4m (m—1)

constants.

The assignment of the positions of the singularities merely determines - :
it gives no assistance to the determination of the constants in the poly-
nomials G.

Each of the p singularities in the finite part of the plane requires m
exponents, as does also the point z=co ; so that there are m (p+1) constants
thus provided. But, by the preceding example, their sum is definite : and
thus the total number of independent constants thus provided is

m(p+4+1)—1.
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If therefore the equation is to be made fully determinate by the assign-
ment of these constants, we must have
dpm (m+1)—Fm (m—1)=m (p+1)-1,
and therefore
3pm (m—1)=} (m 1) (m +2).

When m=1, p can have any value; that is, any homogeneous linear
equation of the first order, which has its integral regular in the vicinity of
each of its singularities and of z=o0, is completely determined by the assign-
ment of singularities and of the exponents for the integral in the vicinity of
the singularities.

For such equations of the first order, let a,, ..., a, be the singularities in
the finite part of the plane; let m,, ..., m, be the indices to, which the
integral belongs in their respective vicinities, and let m be the index for

P . .
z=w, 80 that m+ 3 m,=0. The equation is
r=1
dw L m,
=" e

P
which gives the index for z=w as equal to — 3 m,, being its proper value.
r=1
‘When m>1, then
p=1+ m’

so that, as p is an integer, m must be 2 and then p=2. Thus the only homo-
geneous linear equation of order higher than the first, which is of the
Fuchsian type, and is completely determined by the assignment of the singu-
larities and of the exponents to which the integrals at the singularities
belong, is an equation of the second order: it has two singularities in the
finite part of the plane, and it has z= o for a singularity ; and the sum of the
six indices to which the integrals belong, two at each of the singularities, is
3(2-1) 2(2—1), that is, the sum is unity.

The discussion of the determinate equation of the second order of the
foregoing type will be resumed later (§§ 47—50).

Note. If p=0, so that the equation has no singularities in the finite part
of the plane, the coefficients are constants if the equation is to be of Fuchsian
type. The only singularity of the integrals is at .

If p=1, m >1, the number of arbitrary constants is less than the number
of constants, due from the assignment of the indices at the finite point and
at z=o0 : the latter cannot then all be assigned at will.

For values of p greater than 1 and for values of m greater than 1, the
number of arbitrary constants in a linear differential equation, which are
left undetermined by the assignment of the singularities and their indices, is

=4pm (m+1)—%m (@m—-1)—{m(p+1)—1}

=g (m—-1){m(p—1)—2}
which for all the specified values of p and m, other than m =2 and p=2 taken
simultaneously, is greater than zero.
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Ez. 4. Consider the equation, indicated in the Note to Ex. 3, all whose
integrals are regular at the only finite singularity, which can be taken at the
origin, and regular also at infinity : it is

d™w  fy dnw | fy & 2w

i
dem =z dgnr T gt T m V1

om

where £, /3, ..., fm are constants. The assignment of indices for z=0 determ-
ines fi, ..., fm, and so determines the indices for z=ow ; and similarly the
assignment of indices for z=co determines those for z=0. In fact, the
indicial equation for z=0 is

plp— 1>...<p—m+1>=K"§1p<p—1>...<p—m+n—1>fx,

and the indicial equation for z=co is
m
(=1)™8(6+1)...6+m—1)= 3 (—1)" <@ (6+1)...(0+m—k+1) fi:
k=1

it is at once evident that the roots can be arranged in pairs, one from each
equation, in the form p+4=0.

As regards the integrals, it is easy to verify, in accordance with the
general theory, that the integral which belongs to a simple root » of the
indicial equation for z=0 is a constant multiple of 27: and that the =»
integrals, which belong to any n-tuple root s of that equation, are constant
multiples of

2% (log 2)%,
for a=0, 1, ..., n—1.

Ez. 5. Consider the equation
Dw=z(1-2)w" +(1—22)w —Fw=0,

which* clearly satisfies the conditions that its integrals should be regular,
both in the vicinity of its singularities and for large values of z.

To obtain the integrals in the vicinity of z=0, we substitute
w=ce2®+c 2* 14+ . 22t 4.,
and find
zDw=cya2",
provided

(a+n)e,=(a+n—32cus;
so that, writing

_fler B e o tm -
Ym (a+1) (a+2)...{a+m) ’
the value of w is

w=0cy2* (1 +y2+7y,2%+...).

* It is the differential equation of the quarter-period in elliptic functions: for a
detailed discussion of the equation, see Tannery, Ann. de VEc. Norm. Sup., Sér. 2me,
t. vz (1879), pp. 169—194, and Fuchs, Crelle, t. 1xx1 (1870), pp. 121—136.

F. IV. 9
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The indicial equation is a2=0: accordingly, the two integrals belong to the
index O, and they are given by

ow
[®]a—o» a]a=o .
To particularise the integrals, we take ¢y=% = ; the first of the integrals then
becomes
1\2 1.3\?2
K (@)=bn {i1+ (§> o+ (32) zz+...}
=im{l+az+a,22+...},

say: and the second of them becomes L (z), where

L&)=K (@) 1ogz+%7rm°2;amzm2 {é+§++m—1_% B - _2_%&}
—K () 10gz+27rm§_1am6mz’"
=K (¢)logz+ 1 (2),
say, where L
Bn=i =5 gty g

And now the two integrals in the vicinity of the origin are
K (2), L(z).
To obtain the integrals in the vicinity of z=1, we substitute

z=1—uz,
when the equation takes the form

a? a
z(l—2z) Ex—zé)+(1—-2x)d—i;—iw=0,

which is of the same form as in the vicinity of z=0. Accordingly, the
integrals in the vicinity of z=1 are given by

K (z), L(x).
To obtain the integrals in the vicinity of z=co, we substitute
1

z==,

[4
when the equation takes the form

2,
2(1—1) ";;;’—52%’+iw=0.

The indicial equation for =0 is

a(a—1)+7=0;
we take

1
w=t*u,

and we find the equation for » to be

a2 d
t(1—1) d—;‘+(1 —9%) é:—iu:O,
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of the same form as in the first and the second cases. Accordingly, the
integrals of the original equation in the vicinity of z=w are

BE ), AL®.

The integrals are thus regular in the vicinity of the three singularities
0, 1, oo. Of these, the integrals X (z), L(z) are significant in the domain
|zl <<1, say in D, ; the integrals K (x), L (z) are significant in the domain
|z|=]z—1| <1, say in D, ; and the integrals K (1), # L () are significant in
the domain |#| << 1, that is, 2| > 1, say in D_. The series K (2) diverges when
z=1, so that the integrals cease to be significant for such a value.

The domains D, and D, have a common portion, so that values of z exist
which are defined by

<1, |z—1]<1.
Within this common portion, the integrals A (z), L(z), K (x), L(x) are

significant : so that, as A (2) and L (2) make up a fundamental system, we
have '

K(x)=AK (2)+ BL (2), L(x2)=AK (2)+B'L(z),
where 4, B, A’, B’ are constants. The values of the constants are determined

as follows by Tannery.

The integrals are compared for real values of z which are positive and
slightly less than 1, so that, as z then approaches 1, K () tends to an infinite
value. To obtain this infinite value, we note that, as

2.4...2n 2
1 R
37 (2n+1) > {1 3. @n— 1)} =
by Wallis’s theorem, we have
1

(n+3%) S

and therefore, for real values of z between 0 and 1, we have

1 3 1 2
QW{H_”Z (n+%)w}<K(Z)<2ﬂ-{1+ p> }

n=1 N

The difference of the two quantities, between which the value of A (2) lies, is

2 (1__1\n.
n=1 \7 n+% 2

which increases as the real value of z increases and, for z=1, is

8 (5o—3m1)
=1 \27 2n+1/°

that is, 1 —log2. Hence we may take

(S

K@)=e()+3 3 2
n=17

= (@)~ 3log(1-2),
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where

r>e(eg)>4m—1+log 2;
and the values of z are real, positive, and less than 1. The result shews that
K (z) is logarithmically infinite for z=1.

Proceeding similarly with 7 (2) in the expression for L (z), we have, for real
values of z between O and 1,

ey B

Bim
m2=1 2m+1

<)< T Lmogm,
m=1

2m

The difference of the two quantities, between which the value of }7(z)
lies, is

o 1 1
e — —— U
mil B <2m 2m + 1) Z5

which increases as the real value of z increases and, for z=1, is

$ 8. (- 1
m=1 \2m 2m+1/°

Now
.2 . . 1 1
Pn=1—3t3 2% Y1 " am
<log2;

and therefore the foregoing difference is less than

log 2m°2; (5,1;2 —_ ﬁ) s
that is, less than (1 —1log 2)log 2. Hence we may take

1= 8 Praonmco)
where, for real positive values of z that are less than 1,

0 << ¢ (2) < (1—1log 2)log 2.
The expression can be further modified. We have

)
&‘zm<10g2 s =
m

Red
2 >
m=1 M

m=1
for the values of z considered. The difference between these two series is
g log 2 -8, o,
m=1 m

a quantity which increases as the real value of z increases and, for z=1, is

w ]
s m (log 2 —Byu).

me=
But 1
1
10g2—6m=m1 —m-i'
1

<2m+1 ’
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and therefore the difference is

o0

1
<m2=1m<2(1—10g2)’

on evaluating the series. We may therefore take

o0 Bm o0 z?‘)l ”
S 2 2ym= 3 —log2—¢€"(?)
m=1 ™M m—1 T

= —log(1—-2)log2—¢€"(2),
where
0<e (2)<<2(1—log?2).

Therefore, finally, we have

11 ()= —%log (1 —2)log 2 — e (2),

€ (2)=¢€ (2)+ %" (2),

where

so that
0<<e (2)<<1—(log2)?;

and the values of z considered are real, positive, and less than 1.
In the region common to D, and D,, we have
K (x)y=AK (2)+BL(2);

and therefore, for real values of z less than (but nearly equal to) 1, that is, for
real, positive, small values of ,

K (2)=Ae(2)— % Alog 2 — 2Blog xlog 2 —4Be, (2)+ B {e (2) —% log 2} log 2.

‘When z tends to the value 1, the term log 2 log z tends to the value O : more-
over, K (z) then tends to the value 3= ; hence, taking account of the infinite
terms on the right-hand side, we have

A4+4Blog 2=0.
Again, when z is real, small, and positive, # is real, positive, and less than

(but nearly equal to) 1; hence

K(@z)=¢(x)—3%log(l—x)=e(1—2)—3%logz
so that
e(1—2)—4logz=AK (2)+ BK (2) logz+ BI (2),

all the terms in which are finite except those involving logz; moreover,
when |z| is small,
K (5)y=%m+2R (2),

where £ is a holomorphic function of z; thus

B=-L.
mw
Consequently,
4
A= = log 2 ;

so that 4 and B are known.

134 EQUATION OF QUARTER-PERIOD [46.

Similarly, for the other equation
L(2)=A'K ()+B'L (2),
for values of # and z in the common region, we have, for real, positive values
of z less than 1, that is, for real, positive values of # that are small,
K (z)logz+1(x)=A"{e (z) —%log (1 —2)}— 4B {$1log (1 —2)log 2+ ¢ (2)} ;

hence, taking account of the logarithmically infinite terms on both sides, we

see that
A'+4DB8 log 2= — .

Next, taking the same equation for values of z that are small, real, and
positive, so that # is real, positive, and less than 1, we have

A'K (2)+ B {K (2)logz+ I (2)} = K (x)log x+ I (x).

‘When z is nearly unity,

K (z)=e () —%1og (1 - ),
so that K (z)log z, for x nearly equal to 1, is small: and it vanishes when
x=1. Also, for those values of x,

I (x)=—2log (1 —=)log 2 — 4e; (%)
= —2logzlog2—4e (2);

whence, equating coefficients, we have

7B = —2log2.
Thus

it =16 log2)2 -
B= 77_log2, A~ﬂ_(10g2) .

Accordingly, when z lies within the portion common to the two domains D,
and D,, defined by the relations

. ‘z|<1’ lz—1i<1’

we have

K (x):—-(% log 2) K ()— % L)

L (x):{l;G (log 2)?— r} K@) — (% log 2) Loy |
where x=1-—z. ’

These results shew that, for complex values of z such that |z|=1, both
K (z) and L(z) converge. The first of them is a known result in the theory
of elliptic integrals ; writing z=42, =42 K (2)=K, K (#)=K’, we have

2K

r T % < 2m
K= - log/C Qmiamﬁm/ﬂ A

an equation which is specially useful for small values of 4 Similarly, for
values of £ nearly equal to unity, we have
2K 4

= S /2m,
K - log 7 2m2=lam[3m/c
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Ez. 6. With the notation of the preceding example shew that, for values
of z common to the domains D; and D, as defined by
IZ|>17 '2_1I<1’
the integrals X (), L (%), BEK( t), 8L (¢) are connected by the relations

t%K(t)=ilfif__ﬂ K () —%L(x)
1 2_ ; — 2
AL ()= 6 (log 2) :Lrn-z log2—= K (%) _41(7)rg2 L (@)

(Tannery.)

Ez. 7. Denoting the integrals of the equation in Ex. 5 that are associated
with the values 2=0,1, 0 by K, L; K’, L' ; K", L” ; respectively ; denoting
also the effect upon a function U of a simple cycle round a point a by [U],,
and of simple cycles round a and b in succession by [ U]y, prove that

[Kly=K, [Lly=L+2miK;
’ 87 , 2 ,
[K]o=<1—; 10g2>K + ;;L ;
- 7 o 3 G 2,
[E Jn=— <3+—7;log2> B+ L
and express [L'}y, [L]y in terms of K, L. (Tannery.)

Ez. 8. Discuss, in the same manner as in Ex. 5, the integrals of the
equations
i) zQ-z)v'—3tw=0;
(1) z(Q—=2)w'+(1—2)w+Fw=0;
(ii) z2(1—2)w" +uw' —Fw=0.

RIEMANN’S P-FUNCTION.

47. It has already been proved (Ex. 3, § 46) that the only
linear differential equation of any order other than the first, which
is made completely determinate by the assignment of its singu-
larities and of the exponents to which the integrals belong in the
respective vicinities of those singularities, is an equation of the
second order which, if it have oo for a singularity, has two other
singularities in the finite part of the plane. If the latter be
at A, %k, then the transformation :

z2—h hc—bazx—a
z—k kc—aax—0b

gives a, b, ¢ in the wz-plane as the representatives of %, &k, » in the
z-plane. The transformation manifestly does not affect the order
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of the equation, its sole result being to make a, b, ¢ (but not now
oo ) singularities ; we shall therefore suppose this transformation
made. Accordingly, we proceed to consider the properties of the
function, which thus determines a differential equation; they
depend upon the properties initially assigned, which are taken as
follows.

In the vicinity of all values of 2z, except @, b, ¢ (and not
excepting « when a, b, ¢ are finite), the function is a holomorphic
function of the variable.

In the vicinity of any point (including the three points a, b, ¢),
there are two distinct branches of the function; and all branches
of the function in the vicinity of any point are such that, between
any three of them, a linear relation

A/P/ + A//P// + AI’/P/// — O
exists, having constant coefficients A’, 4", A”’. (So far as this

condition affects the differential equation, it manifestly determines
the order as equal to two.)

As exponents are assigned to the three points, let them be a
and a"for a: B and B for b: ¢ and " for ¢; these quantities
being subject (§ 46, Ex. 2) to the condition

at+ad +B+B +y+o =1
It further is assumed that a— o/, 8 — B, vy —«  are not equal to
integers. The branches distinct from one another in the respective
vicinities are denoted by P, and P, ; Pg and Pg; P, and P,.
From the definition of the exponents to which they belong, the
functions (2 —a)*P, and (z—a) *P, are holomorphic in the
domain of @ and do not vanish when z=qa. Similarly for b and c.

After the earlier assumption, it follows that any branch

existing in the vicinity of @ can be expressed in a form
Calo + Car Py,

where ¢, and ¢, are constants; and likewise for branches in the
vicinity of b and ¢. The assumption made as to a—a, 8 -4,
v —« not being integers will, by the results obtained in §§ 35—38,
secure the absence of logarithms from the integrals of the
differential equation: it manifestly excludes the possibility of
either of the branches P, and P., Pg and Pp, P, and Py, being
absorbed into the other.
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Riemann * denotes the function, which is thus defined, by

a b ¢
Pia B g a

o B«
and the function itself is usually called Riemann’s P-function. It
is clear that a and o« are interchangeable without affecting P;
likewise B and B’; likewise  and r'. Also, the three vertical
columns in the symbol can be interchanged among one another
without affecting P ; six such interchanges are possible. Again,
if P be multipliedt by (z—a)®(z—b)=>=(x —c), the effect
is to give a new function, having a singularity at o with expo-
nents a+ 5, ' + 8: a singularity at b with exponents 8 — 8 — ¢,
B —8 —e; and a singularity at ¢ with exponents 4+ ¢, v +e.
Every other point (including o) is of the same character as
for P. Hence

(@=ay@=or p, [¢ 5 ¢ @ 0 °
Ty L2 B v e=r xa+8 B ~8—¢y+eap,
. x a/ B/ 'Y, a’+3 ,8/—8—6 'y/+€

the exponents on the right-hand side still satisfying the condition
that the sum of the exponents shall be equal to unity.

A homographic transformation of the independent variable
can always be chosen so as to give any three assigned points
a’, V', ¢ as the representatives of a, b, c. Accordingly, let such a
transformation be adopted as will make @ and 0,5 and o, ¢ and 1,
respectively correspond to one another: it manifestly is

, ®x—ac—>b
X = .
x—bc—a

The indices are transferred to the critical points 0, wo, 1; every
other point is ordinary for the new function, as every other point
was for the old. For brevity, the transformed function is denoted by

a
P58 ),
o B vy
* Ges. Werke, p. 63.

+ The sum of the indices in the factor is made zero; otherwise x=ow would be
a singularity for the new function.
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where the two-term columns are to be associated with 0, o, 1 in
order. Also, since

it follows that, except as to a constant factor,

(# — a)’ (# — o)
(@ —b)P+e

and 2% (1 — a)°

agree ; and thus, as regards general character, we have

—8—€e vy +e
8 (1 — 2')¢ a B v /)___ a+3 8 4 /)_
@ w>P<a'B'fy’w P(\a'—}—S B —d8—e fy’—l—ex
As a—ad, B—f', y—¢« are the same for the P-function on the
right-hand side as for the P-function on the left, Riemann denotes
all functions of the type represented by the expression on the
left by
Pla—d, B—=B, y—v', &).

In the transformation of the variable, the points a, b, ¢ were
made to be congruent with 0, «, 1 in the assigned order. A similar
result would follow if they had been made congruent with 0, «, 1
in any order or, in other words, if 0, oo, 1 be interchanged among
themselves by homographic substitution. As is known, six such
substitutions are possible, viz.

1 1 @’ 1

7 ’ ’ .
X =ua, 1'-—.%', E/: 1_60/, .’L‘/——l’ 1—".%',’

or, taking account of the association of the exponents with the
first arrangement, the table of singularities, exponents, and
variables for the six cases is

0 o0 1 0 o 1 0w 1

a B vy &; ¥y B al—a; Baw s

al BI 'y’ '}/ B/ a/ /5)/ a/ r)I/

0 o1 0 ol , 0 ol
aBl_._l_- a B z . B o 1 .

(yl 7/ / xl, I'yl /x/—l, /ryl ll—_m/,

v a B o v B By a

so that P-functions of these arguments with properly permuted
exponents can be associated with one another.
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48. The significance of the relation
a+d +B+B +y+o =1,

in connection with the function, appears from the following con-
siderations. When the singularities are taken at 0, «, 1, the axis
of real variables, stretching from — oo to + oo, divides the plane
into two parts in each of which every branch of the function is
uniform ; or, if the singularities be taken at a, b, ¢, then a circle
through a, b, ¢ divides the plane in the same way. In either case,
taking (say) the positive side of the axis or the inside of the
circle, the linear relations among the branches of the function
give

Pa:BlPs—i—BzPBl .Pa=(]1P7+02P.y/

P, =B/Pg + BZ’PB«} T P =C/P,+ C/Py } ’

say
-Pa.gpa’z(BlyB2 §P3’Pﬁ')=(b§PB:-PB'))
| B, By
Py, Pp=(C, C, QP,, Py)=(cy Py, Py);
oy, o

and with the usual notation of substitutions, let

-1

Pg, Ppr=(bQ P, P,),
-1

Py, Py =(cQP., Po).

Consider the effect upon any two branches, say P, and Pgu, of
circuits of the variable round the singularities.

When it describes positively a circuit round « alone, they
become 2" P, and e?>™ P, respectively, so that, in the above
notation,

P,, P, become (e, 0 {P,, P,).
! 0 , e?,-rria.'l
When it describes positively a circuit round b alone, then Pg and
Py become ¢ Pg and e Py respectively ; and therefore

-1
P,, P, become (bQe#, 0 {HbQ P, Pu).
{ 0 s ezriﬁ"

Similarly, when it describes positively a circuit round c alone,

1
P, P, become (c(e*, 0 Ye§ L., Po).

l 0 s e?friy’
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Accordingly, when z describes a simple circuit round a, b, ¢, the
initial branches P,, P, are transformed into branches

(@hemr, 0 [oQbTem®, 0 [blers, 0 TP, Pu),
0, e‘*‘"iY'I l 0, ez”iﬁ'i ] 0, em“'l

say IQP,, Pu).
Such a circuit encloses all the singularities of the functions; and
therefore* each of the functions returns to its initial value at the
end of the circuit, so that

I)=(1, 0).

0, 1]
The determinant of the right-hand side is unity; hence the
determinant of 7 is unity, and it is the product of the determinants
of all the component substitutions. Now as (c¢) and (c)™ are
inverse, the product of their determinants is unity; and likewise,
the product of the determinants of (b) and (b)™* is unity. Hence
we must have
ermilata’+8+B8"+y+y) — 1,

an equation which is satisfied in virtue of the relation

at+ad +B+B +y+o=1:
the sum of the exponents could be equal to any integer merely so
far as the preceding considerations are concerned.

In the present instance, the property, that a function returns
to its initial value after the description of a circuit enclosing all
its singularities, can be used in the form that the effect of a
positive circuit round c is the same as the effect of a negative
circuit round @ and round b. Applying this to P,, we have

C,P,e™ + O, Pye®y™ = e~ (B, Pge ™ + B, Pge ™) ;
and from the expressions for P,, we have
C,P,+ C, P, = B, Pg + B, Pg..

As Pg and Ppg are linearly independent of one another, it follows
that €™ — ¢ must not be zero, that is, ¢y — 4 must not be an
integer. Similarly for @ —a” and 8 — 3.

Ex. Prove, by means of these relations, that

_C'%e(a_a/),,i_ Bisin (a+B+y)w  Bysin(a+B+9)w

0, T B/sin(d+B+y)w Bysin(d+B+y)w’
C‘Yz e(u.—a’)ﬂ"t' — 431 sin (a+B+‘y)'n‘ — B2 Siﬂ (a+Bl+‘Y) v
Cy B/sin(d +B+y)m Bysin(a+8+y)w’
(Riemann.)
* T. F. § 90.
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DIFFERENTIAL EQUATION DETERMINED BY RIEMANN’S
P-FUNCTION.

49. As regards the differential equation, associated with these
P-functions, and determined by the assignment of the three
singularities a, b, ¢, and their exponents, we know that it must be
of the form
d?w Az2+Bz+C" dw A"+ B'22+C"22+ D"z+E"
A2 T = (—0ds T (z—ay(z—bY(z — oy

which (§ 46) secures that a, b, ¢, 0 are points in whose vicinity
the integrals are regular. Now the singularities are to be merely
the three points a, b, ¢, so that o must be an ordinary point of
the integral. Taking the most general case, when the value of
every integral is not necessarily zero for z= o, we have an
integral

w=0,

K, K
w=K,+=—=+=+...,
z |z

where K, does not vanish. Substituting, we have

Bl L@ A) K+ 47K+ (B +24"(a+ b+ o)} K] +...=0,

the unexpressed terms being lower powers of z; hence

K,A4” =0,

2—AYK, + A"K,+ {B"+2A4" (a+b+¢)} K,=0,

that is, )

A// — O,

(2—-4)K,+B"K,=0,

and so on. Using the result that A” =0, the equation may be
written in the form

d2w A B C N\ dw

a§+«2:a+;:z+;fda;
w

tTe=a) -0 (=0

Forming the indicial equations for the singularities, we have

(B”+ ALKk >=0‘
z—a z—b z-—c

0(0—1)+ A6+ 0

X oo
(@a—b)(a—o)
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as the indicial equation for a; and therefore, as its roots are to be
o and o, it follows that

A=1—a—d, A= ad (a—Db)(a—c).

B=1-B-8, p=BB0b-a)(®-o),
C=1—-y—¢, v=oy(c—a)(c—0>)

Similarly

Moreover
A =A+B+C=2,
on account of the value of the sum of the six exponents; the
condition
(2—4)K,+B"K,=0 ;
is thus satisfied by B”=0. All the quantities are thus determined,
and the equation has the form*

d*w l—a—d 1-B-F  1—-—y—o\dw
(e e ) E
P E=DEm9 B0 00 1 (=) D)
zZ—Q z—5b Zz—2C
w 0

(z—a)y(z=b)(z—0)
from the mode of construction we know that the integrals are
regular in the vicinity of the singularities «, b, ¢, and are holo-
morphic for large values of 2. This is the differential equation,
associated with (and determined by) the function

a b ¢
Pla B v =«
a/ B, (yl
The branches of the integral in the vicinity of a are P,, P,;

those in the vicinity of b are Pg, Py ; and those in the vicinity of
¢ are Py, Py.

Passing to the form of the function represented by

Pe5 7).

where the three singularities are 0, o, 1, we deduce the associated
differential equation from the preceding case by taking

a=0, b=w, c=1;

* First given by Papperitz, Math. dnn., t. xxv (1885), p. 213.




49.] BY RIEMANN’S P-FUNCTION 143

after a slight reduction, the equation is found to be

dw 1—a—d—(1+8+)zdw

dz? z2(1 —2) dz
o B e B,
22 (1 —2)

The branches of the integral in ‘the vicinity of the origin are P,,
P, so that z=*P,, 2=+ P, are holomorphic functions of 2z, not
vanishing when z = 0; those in the vicinity of z=1 are P,, Py,
so that (z —1)"*P,, (# — 1) P, are holomorphic functions of
z—1, not vanishing when z=1; and those in the vicinity of
z=o are Ppg, Pp, so that 28 Pg, 28’ Py are holomorphic functions of

=, not vanishing when z= o

Lastly, passing to the form of the functions included in
Pa—d, B=F, y—7, 2),

we saw that they arise from the association of arbitrary powers of
z and 1 — 2z with the above function in the form

Zs(l —Z)EP (a/ BI (y/ Z) ’
a By
and that they lead to a function
‘o +8, B —8—¢€, v +e >
P ’ ’ .
(a’—i— 6, B —8—e¢, o +e ‘
Thus we can make any (the same) change on a and o’ and, as they
are interchangeable, we can select either for the determinate
change ; accordingly, we take
a—a=0, a'—a =1—uy,
say, as the modified exponents. Similarly, we can make any (the
same) change on y and v': we take
y—v=0, ¥ —y=v—-A—p,
say. Then the new values of the exponents for oo are

B +a+r, =2, say,
and

B+at+y =at+ty+l—(a+ad +B+q+7)
=M,
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on reduction : or the exponents are

0, 1—v» , for z2=0 ,

A, © , for z= o0,

0, v—A—u, for z=1 .
Their sum clearly is unity: moreover, with the preceding hypo-
theses, the quantities 1 —», 4 —X, v — X —u are not integers.
Specialising the last form of the equation by substituting this set

of values for a, o', B, B, v, v/, we find the equation, after reduction,
to be

z(l—z)§g+{v—(x+p+1)z}%—hww:O,

which is the differential equation of Gauss’s hypergeometric series
with elements A, u, v. Either from the original form of the
P-function, or from the resulting form of the equation, the
quantities A and u are interchangeable.

50. Taking the equation in the more familiar notation
2,
z(l——z)cch‘;) +{y—(@+B+1) }-d———a,Bw 0,

so that the exponents are 0, 1 —r, for 2=0; «, B, for z=00;
0, vy —a— B, for z=1, we use the preceding method to deduce the
well-known set of 24 integrals.

Denoting as usual by F («, 8B, v, z) the integral which belongs

to the exponent zero for the vicinity of z =0, we have
_ af3 a(a+1)YB(B+1)
F(a, By, 2)=1 —I—l-ryz+ 1.2.9(y+1)
assigning to the integral the value unity when z=0. If
2=z F, B, v, 2)

be also an integral, then the exponents for each of the critical
points must be the same as above; hence

224 ...,

S, 64+1—¢« =0, 1l—vw , for z=0 ,
€, ety —ad -3 =0 y—a—p0, for z=1 ,
a—8—e B —0—¢ =a, B , for z=o0.

Apparently there are eight solutions of these equations; but as «
and B can be interchanged, and likewise a’ and @', there are only
four independent solutions. These are:—
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I. 8=0, e=0; giving a'=a, B =8B, v =«¢; and the
integral is
F(a, B, v, 2);

II. 8=1—¢«, e=0; giving d =1l4+a—v, B=1+L—v,
v =2 —; and the integral is

YAl +a—g, 1+8—q9, 2—v, 2);

III. 6=0,e=y—a—B; givingad' =y—a, B =9—0, v =v;
and the integral is

A=z PBF(y—a, y—p5, v 2);

IV. 8=1—v, e=y—a—3; giving ¢’ =1—-8, B'=1—a,
v =2 —v; on interchanging the first two elements,
the integral is

21—y F(l—a 1—08, 2—¢q, 2).

Next, it has been seen (§ 47) that, in the most general case,
P-functions can be associated with a given P-function, when the
argument of the latter is submitted to any of the six homographic
substitutions which interchange 0, 1, oo among one another,
provided there is the corresponding interchange of exponents.
Taking the substitution z’z =1, the new arrangement of exponents
is

a, B , for 2/=0,
0, y—a—p0, for /=1,
0, 1—¢« , for Z/=o0;

hence, if
251 =2y F(d, B, v, 2)

is an integral, we must have

S5, 6+1—¢ = q, , for Z=0,
e, e+ —d —B =0, y—a—@B, for z/=1,
a'—8—¢ B —0—c¢ =0, 1—¢g , for Z/=w.

Again there are four independent solutions; they are :—

IX. 8=a, e=0; givingad' =a, B =1+a—vy,¥=1+a—7;
and the integral is

z‘“F(a, l4+a—g, 14+a—-2, %),
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X. 8=8,e=0;givinga' =8, 8=14+B—v9, v =1—a+p;
and the integral is

Z—BF(B, 148—q 1—a+A, —zl-)

XI. 8=8, e=y—a—fB; giving a =y —a, B =1-—aqa,
v =1—a+B; on interchanging o and &', the
integral is

—a—B
2—6(1—%)y F(l—a,ry—-a,l—a+;6’, %),

XII. 8=a, e=gy—a—B; giving a=y—8, B=1-2,
v =1+ a—/3; on interchanging o« and ', the
integral is

y—a—B 1
e (1-1) T P(1-8 v=8 1+a=8, 3).
The remaining four sets, each containing four integrals, and
belonging to the substitutions
1 z z—1
1—-2° z-1" z

Zd=1—z,

respectively, can be obtained in a similar manner*. They are :—
V. F(a, B, a+B—-y+1, §;
VI A= vF(a—y+1,8—gy+1,a+B—v+1,0);
VIL gr=#F(y—a vy—8 y—a—B+1, §);
VIII. A—-¢7¢r=BFQl—a 1—8, y—a—B+1, §);
in which set ¢ denotes 1 — z:
XIIL & F(a, y=B, a—B+1, §);
XIV. PFF(B v—a B—a+1, §);
XV, A= *rfFa—y+1, 1 =8, a—B+1, §);
XVI 1- P FB—g+1, 1—a, B—a+1, §);

in which set ¢ denotes

1—
XVII. A—=¢*F(a, y—R, v &);
XVIII. (1 —C)ﬂF(IB’ Yo, Y C)a

* The complete set of expressions, differently obtained and originally due to
RKummer, are given in my Treatise on Differential Equations, (2nd ed.), pp. 192—
194; the Roman numbers, used above to specify the cases, are in accord with the
numbers there used.
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XIX. &7 =8 F(a—y+1,1-8, 2~9, §);
XX, A -0FF(B—v+1, 1—a 2—q, {);

in which set £ denotes £ i and

S —
XXL (1=8eF(a, a—g+1, a+B—y+1, §);

XXIL (1—¢BPF(B B—y+1l, a+B—g+1, &);

XXIIL ¢y« fQ—¢PF(1l—a y—a y—a—B+1, &);

XXIV. gvefA - FA-B, y—B v—a—B+1, &);

in which set ¢ denotes =

The preceding investigations have been based upon the assumption,
among others, that no one of the quantities

-y, y—a—B, a-—5
is an integer or zero: the determination of the integrals of the differential
equation
Dw=z(1—-2)w’'+{y—(a+B+1) 2z} w— aBw=0,

when the assumption is not justified, can be effected by the methods of
§$ 36—38.

Consider, in particular, the integrals in the vicinity of 2=0, when 1 —1 is
an integer ; there are three cases, according as the integer is zero, positive, or
negative. We substitute

w=cyd® +o; T4 e

+...
in the equation ; and we find

2Dw=0(0+y—1)c,2%,
provided
en(0+n) (0+n—1+y)=0oy (6+n—1+a)(f+n—1+p),

o _(@=14a+6)..(a+0) (2=1+B+6)...(8+8)
T 4 6)...A+8) (n—1+y+8)...(y+6) o

(i) Let 1—4=0, so that the indicial equation is #2=0: then the two
integrals belong to the index O, and one of them certainly involves a
logarithm ; and they are given by

so that

dw
Wp_ s i .
[wlo—o d6_ly_,

The former, when we take ¢,=1, is
F(a, B, 1, 2),

with the usual notation for the hypergeometric function ; as the coefficients
are required for the other integral, we write

Fa,B,1,2)=14xk12+ K22+ ...+ Kk, 2%+ uee
10—2

‘148 THE HYPERGEOMETRIC [50.

The second integral, when to it we add

{‘I’ (@ +¢ ([3)} v (a, B, 1, 2),

¢, again being made equal to unity, becomes
F(a, B, 1, 2)logz+ §1 & (Y (nta—1)+¥ (n+8-1)—2¢ ()},
n=
where » (m) denotes olim {log I1 (m)}.

(ii) Let 1~y be a positive integer, say p, where p>0. The indicial
equation, being 8 (§ — p)=0, has its roots equal to p, 0. We have
c =('n-— l14+a+8)...(a+8)(n—14+B+0)...(8+0) c
" n+6)...1+80)(n—p+86)...(1 —p+0) o
Of the two integr ls, that, which belongs to the greater of the two exponents,
is equal to

P F(a+p, B+p, 1+p, 2),
when we take ¢,=0. The other integral may or may not involve logarithms.
If it is not to involve logarithms, then, as in § 41, the numerator of ¢, must
vanish when =0, so that
(p—14a)...a(p—14+pB)...8
must vanish : in other words, either a or 8 must be zero or a negative integer
not less than y. When this condition is satisfied, the integral belonging to
the index zero is effectively a polynomial in z of degree —a or —f3 as the case
may be, and it contains a term independent of z,
When the preceding condition is not satisfied, the integral certainly
involves logarithms. In accordance with § 36, we take
co=C8,
so that
zDw=06%(0 —p)2°;
and now
weO s (n—14+a+6)....a+8) (n—1+B+86)...(8+8) 00+,
0 n+6)...(1+6) (n—p+6)...1—p+86)

There are two integrals given by

[%]o—o» I:%]azo'

The first is easily seen to be a constant multiple of
2P F (atp, B+p, 1+p, 2),
thus in effect providing no new integral. The second, after reduction, and
making O=1, is
(p—1+a)...a(p—1+8)...8
plp-—DH(=1pt
I’gl (n—=14+a)...a(n—1+8)...8 n
n=on!(n—p)(n—1-p)...1-p)
.2 (n—14+a)c.a(n—1+408)...
+(=1r 1,2,,( n!(;—l;!(n—p)ﬁ!}) °

ZDF(‘I"_P; B+p, 1+p, 2) IOgZ

e, ,
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where
Pp=Y (n—1+a)+ ¥ (2—-1+8)— ¥ (n) — (n—p).

(iiil) Let 1—9 be a negative integer, say — ¢, where ¢ >0. The indicial
equation, being 8 (6+ ¢) =0, has its roots equal to 0, —¢g. We have

e(@=1%a+0)..(a+8) (n-1+B+6)...(8+8)
T (n4+8)..(1+0)(n+tg+08)...(1+g+6) o

The greater of the two exponents is 0; the integral which belongs to it, on
making ¢,=1, becomes '

Fa, B, 1+4gq, z).

The integral which belongs to the exponent —¢ may, or may not, involve
logarithms. If it is not to involve logarithms, then, as before, the numerator
of ¢, must vanish when 8= — ¢, so that

(a=1.la—q) (B-1)...(B—9)
must vanish : hence either a or 8 must be a positive integer greater than O
and less than y(=1+¢). When the condition is satisfied, the integral is
a polynomial in z—1, beginning with z~9¢, and ending with z~¢ or z~8, as the
case may be.

When the preceding condition is not satisfied, the integral certainly
involves logarithms. As before, in accordance with § 36, we take

o=(0+q) K,
so that
zDw=K6 (6+q)22° ;
and now
w=K2<n~ 14+a+8)...(a+8) (n—14+B+0)...(B+6)

(ntq+0)(ltg+0)  (n+0)..(1+06)

Two integrals are given by

@+9q) P

dw
[w]9='°q’ 6 o=—q.
The first is easily seen to be a constant multiple of
F(a, B, 1+¢, 2),

so that no new integral is thus provided. The second, after reduction, and.
making A =1, is _

(a=1)...(a=¢)(B=1)...(B=9)

gl(g— D=1z

41 (n—1+a—g)..(a=g) (2= 1+8=9)..(B=9) ._,
=0 nl(n—-gq)...(1—q)

1ve- © (n—1+a—¢q)...(a-q)(n—14+B—-9)...(B—9)
H=1e 2 CEDICETE

F(a, B, 1+¢, z)logz

-+

LD,

where
O,=Y(m—-1l+ta—q@)+¥(n—1+B~-q)—YR)—¥ (n—9).

The integrals are thus obtained in all the cases, when v is an integer.
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Similar treatment can be applied to the integrals of the equation, when
y—a—f3 is an integer, positive, zero, or negative, contrary to the original
hypothesis as to the exponents for z=1; likewise, when a— 3 is an integer,
positive, zero, or negative, contrary to the original hypothesis as to the
exponents for z=ow. These instances are left as exercises.

Note. There is a great amount of literature dealing with the
hypergeometric series, with the linear equation which it satisfies,
and with the integrals of that equation. The detailed properties
of the series and all the associated series are of great importance :
but as they are developed, they soon pass beyond the range of
illustrating the general theory of linear differential equations, and
become the special properties of the particular function. Accord-
ingly, such properties will not here be discussed: they will be
found in Klein’s lectures Ueber dve hypergeometrische Function

(Gottingen, 1894), where many references to original authorities
will be found.

EQUATIONS OF THE SECOND ORDER AND FucHSIAN TYPE.

51. No equations of the Fuchsian type, other than those
already discussed, are made completely determinate merely by
the assignment of the singularities and their exponents. It is
expedient to consider one or two instances of equations, which
shall indicate how far they contain arbitrary elements after singu-
larities and exponents are assigned.

Suppose that an equation of the second order has p singulari-
ties in the finite part of the plane and has oo for a singularity;
the sum of the exponents which belong to these p + 1 singularities
is (by Ex. 2, § 46) equal to p—~1. Now let a homographic substi-
tution be applied to the independent variable, and let it be chosen
so that all the points, congruent to the p+ 1 singularities, lie in
the finite part of the plane. Thus o is not a singularity of the
transformed equation: there are p + 1, say n, singularities in the
finite part of the plane: and the adopted transformation has not
affected the exponents, which accordingly are transferred to the
respective congruent points. Hence, when an equation of the
second order and Fuchsian type has n singularities in the finite
part of the plane and when infinity is not a singularity, the sum
of the exponents belonging to the n points is equal to n — 2. For
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such an equation of the second order, let the singularities and
their exponents be

a’l) (1/2, LR ] an’
al; a?) e an)
‘ Bi, Bzs ooes Bas
thén
n
S (a,+ By)=n—2.
r=1
Let

Y=v@)=0¢-a)(E—-a).(2—-a);

then, as the equation is of the second order and as all its integrals
are regular, it is of the form

7 Fl s 7 F2
w' + ——w+-—w=0,
¥ '
where F, and F, are polynomials in z of orders not higher than
n—1 and 2n — 2 respectively. Also, let
F, A, A A,

P 2
e e el SRR ;
vy oz—a, z—a, z — ay,

and let
Fo=F,(2)= A"z B2 4 Oz + ....

The indicial equation for the point z = a, is

6(6—1)+A76+Wi?%2=0;

aa"*‘ﬂr: ]-—A?"

and therefore

so that
A, =1—a,— B
Hence

%Ar=n"2(ar+/8r)

=92,
and therefore the polynomial ¥ is of the form
F, =227 + lower powers of 2.

Again, o is to be an ordinary point of an integral; hence, taking
the most general case, we must have an integral

K, K
w=K,+—+="+...,
z z
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where K, is not zero: for otherwise we should have a special
limitation that every integral is zero at infinity. Substituting, so
as to have the equation identically satisfied, and writing

n
p ATCLTK = 8>
r=1

(so that s,= 2), we find, as the necessary conditions,
0=K,A",

0=2—s) K, + K, A" + K, {B" 24" 3 a,r} ,
. r=1

0=(6—2s,+A")K,+ K, <— s+ B +24” s ar>
r=1

+ K, {A”<3 S a2+23 a,.as) +2B”
1 .

r=

$ oo,
r=1
and so on. The first gives
A" =0;
then the second gives
B”"=0;

both of these equations leaving K, and K, arbitrary. The third
equation then gives
2K, =sK, - C'K,,

and so on, in succession. The remaining coefficients K are
uniquely determinate; they are linear in K, and K, the various
coefficients involving the singularities and their exponents, as well
as the coefficients in F,. The equation therefore has z= o for
an ordinary point of its integrals, provided F, is of order not hrgher
than 2n — 4.

The equation can, in this case, be expressed in a different
form. Let

Moy M e ,
Z2—a; Z—a, Z2— Qy

where P,_, is a polynomial of order n — 4. (Of course, if 2n — 4
is less than n, which is the case when n =3, there is no such
polynomial.) As the coefficients in F, are not subject to any
further conditions in connection with the nature of z= oo for the
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integrals, any values or relations imposed upon Ay, A, ..., A, and
the coefficients in P,_, must be associated with the singularities.
The equation now is

w"+< s }_ﬂ)w +\!’KP,¢_4+ zlz—a)w:()'

_1 22—
The indicial equation for z =a, is
60—+ —a,—B)0+ 77—
and its roots must be a,, B,: thus

Ap = arBr"!’/ (a.),

and therefore the equation is

+< < 1—%—37) w+ ¥
r=1 Z—Qr Y
It follows that the only coefficients which remain arbitrary are
the n — 3 coefficients in the polynomial P, , (where n>4). When

the polynomial P, _, is arbitrarily taken, the foregoing is the
~ most general form of equation of the second order and of Fuchsian
type, which has n assigned singularities in the finite part of the
plane with assigned exponents, and has o for an ordinary point of
its integrals. This is the form adopted by Klein*.

Vv =%

M

{Pn_4+ s L@M} — 0.

r=1 Z— Qa,

If a new dependent variable y be introduced, defined by the
relation
w=1y(z2—a)P (2~ a)’... (2 —an)f»,
then the exponents to which y belongs in the vicinity of a, are

- Pz Br—Pry
the difference of which is the same as for w; but z=0 will
have become a singularity, unless

pr+pat ... +pr=0.
Now

T%I{(ar_Pr)+(Br-Pr)}=n—2'—2r%1 Prs

and therefore
%1{1 —(r=p) = (Br=pl}=2+2 2 py.

* Vorlesungen iiber lineare Differentialgleichungen der zweiten Ordnung (Gottingen,
1894), p. 7.
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Hence, if 2= w0 is not to be a singularity, the quantities p,, ..., pn
cannot all be chosen so that each of the magnitudes

1—(or—pr) = (Br=pr)
vanishes. Conversely, if the quantities p, be chosen so that each
of these magnitudes vanishes, then z= oo has become a singularity
of the equation; having regard to the form of w for large values
of z, we see that 0 and 1 are the exponents to which y belongs for

large values of z; and the differential equation for y is easily seen .
to be

y” + % l; n—s + % % {1 - (ar—'Br)2} %‘,_—(C;—’:)} =0,

where P,_; is a polynomial of order n — 3.

This equation, however, has n singularities in the finite part
of the plane, and a specially limited singularity at z=o: we
proceed, in the next paragraph, to the more general case.

Note. The indicial equation for z=ow in the case of the
equation for w is

p(@+1—¢ 2 (1—a,—F)=0
that is, ‘ =
$(6—1)=0

The root ¢ = 0 gives an integral of the form
C
K, (1 —%;2"+ ) ;
and the root ¢ =1 gives an integral of the form
1 s
Kl(;+%j2+...>;
both of which are holomorphic for large values of |z|, so that all

integrals are holomorphic functions of % for large values of |z|.

In this case, © is not a singularity of the integrals: it can be
regarded as an apparent singularity of the differential equation,
and (if we please) we may consider 0 and —1 as its exponents.

Lz. Shew that the preceding equation can be exhibited in the form
wr/+< ki 1 a?‘ B'l‘) w/+{ g arBr + % C,- }w_:o’

r=1(2—0p)2 " y=12—0p
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where the = constants ¢, ..., ¢, satisfy the three relations
n n n n n R R
S ¢=0, 3% ca,+ = a,3,=90, 2= c¢2,24+27% a,Ba,=0,
r=1 r=1 r=1 r=1 r=1

and otherwise are arbitrary in the most general case. (Klein.)

52. Now consider the equation of the second order and of
Fuchsian type, which has n singularities in the finite part of the
plane, say a,, @, ..., a,, with exponents «; and 3, ..., a, and B,,
respectively, and for which o also is a singularity with exponents
a and B: the exponents being subject to the relation

S (@ +B)=n—1-a-p.

Let 4 denote (z—a,) (2 —as)... (z —a,): then the equation is of
the form

w//_l_(g: Ar>w/+_gw___0’
r=1% — Qr
where G is a polynomial of order not higher than 2n—2. When
G is divided by +», we have a polynomial of order n —2 and a
fractional part: and so we may write
G — n—2 n—3 S Hr
¢ —kn_gz +h.n__3Z + ... +h0 +r§1 ZTa,,..
The indicial equation for z=a, now is
00— +4,0+ Fr-=o,
@= ¥ (@)
A,=1—oa —B,,
Mr = afr:G'r"P"’ (aaﬁ) :

holding for r=1,2,...,n. The indicial equation for z = o is

so that

¢(§b+ 1)“‘¢ §1Ar+hn—2=0:
so that
a+B=322 A, —1, h,,=aB:"
r=1

the former being satisfied on account of the relation between the
exponents. The equation thus is

1 Z— a0y
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the coefficients Ay, %y, ..., hns being independent of the singu-
larities and their exponents. :

When a new dependent variable y is defined by the trans-
formation '
w=(2 — a)* (2 — a)* ... (2. — ay)*y,
then the exponents of y for a, are 0 and 8, — a,, say 0 and A,, this
holding for »=1, 2, ..., n: and its exponents for «c are

n n
a+ X a, B+ a,

r=1 r=1
=0, T say: where

o+ T+ § A=mn~— 1.
r=1
The function ¥ is, in general character, similar to w: it has the
same singularities as w, and it is regular in the vicinity of each of
them but with altered exponents: and it thus satisfies an equa-
tion of the second order and Fuchsian type, which (after the earlier
investigation) is :

n1l1—N, , oTe" 24k, 2"+ ... +k
77 + 2 7 + —3 — 0,
Y 1 z—ary (z—al)(z—-ag)...(z-a%)y
where k,_s, ..., k, are independent of the singularities and their

exponents *.

This transformation of an equation

F n—1 7 F 21n—2
w + 5
¥ v

14 G'ﬂ—l 7 G'n-—2
¥y + v Y + A
where F,_;, Fy, », Gy, Gy, are polynomials of order indicated
by their subscript index, appears to have been given first by
Fuchst. The simplest example of importance occurs for n =2,

when the hypergeometric equation is once more obtained.

w=0

wll +

to an equation

y=0,

53. It is well known that, when y is determined by the
equation
y’,+-Py/+Q=O,

* The equation for y can be obtained by the direct substitution of the expression
for w in the earlier differential equation for w. When reduction takes place, there
are n— 2 linear homogeneous relations between the constants k and k.

t Heffter, Einleitung in die Theorie der linearen Differentialgleichungen, (1894),
p. 224. :
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and a new variable Y is introduced by the relation
yet Pz = ¥,
the differential equation for Y is

a2y

So 1Y =0,

where

In the case of the preceding equation, the relation between

y and Y 1s :
Y={II(z— a0}y,

so that ¥ is a regular integral in the vicinity of all the singular-
ities and of oo, the exponents being

A -N), FA 4N, for z=a,,

and
3 (=1l4+o—1), 3(—1—0c+7), for z=.

From the form of P and ), it is easy to see that

1% = polynomial of order 2n — 2

—‘1!"[Pn—2+§ B H

12— Qy
where P,_, is a polynomial of order n — 2, say
P, .=0z"24+1, ;2" 34 ... +1,.

In order that (1 —2,), 3 (1 4+A,) may be the exponents of a, for

the equation
Y"+1Y =0,

they must be the roots of

B,
6(0—1)+ 7t =0

B, =11 =2 (a).

In order that $ (— 140 —17), $(—1 — o+ 7) may be the exponents
of o for the same differential equation, they must be the roots of

b(p+1)+C=0:
O=1{1—(o 7).

hence

hence
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The remaining constants f, I,, ..., {,—; are expressible as homo-
geneous linear functions of k,, k,, ..., ky_s, so that they are inde-
pendent of the singularities and the exponents: and thus the
equation is
ay Y ; .
e w[ (1= (o — 7)) 2 4 by 5 .. + Lo
+ % 1A =22 (ar):l =0

r=1 Z — Qy

CoroLLARY. For the original equation, « was a singularity
of the integrals with exponents o and 7. 1If it were only an
apparent singularity of the original equation, so that the integrals
are regular for large values of |z|, then we have the case indicated
in the Note, § 51, so that we can take

o, 7=0, — 1.
The modified equation now is

d2Y Y n— 4(1 k‘ )"1}‘ (a"l‘)
dzﬁ\[r{zn_gz R } 0.

For this differential equation and its integrals, the exponents to
which the integrals belong in the vicinity of a, are 4 (1 —2A,),
(1 +2x,); but x is now a singularity of the integrals, and the
exponents for z= o are 0, — 1, so that 2= o i1s a simple zero of
one of the linearly independent integrals of the modified equation.

These forms of the equation, from which the term in ax is

dz
absent, are the normal forms used by Klein.

The simplest example of the class of equations, not made entirely determ-
inate by the assignment of the singularities and their exponents, occurs when
there are three singularities in the finite part of the plane and « also is a
singularity. By a homographic transformation of the variable, two of the
singularities can be made to occur at O and 1, and « can be left unaltered ;
let @ denote the remaining singularity. Let the exponents be

0,1-A,forz=0; 0,1—A;forz=1; O,Aforz=a;

o, T for z=0w ;
where
c+T—Ag— A +A=0.

Then the differential equation is

” )\0 )\1 1-x ' oT (Z—g) .
4 +<;+z—1+z—a>y +z(z—1)(z——a,)y_0’
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where ¢ is the (sole) arbitrary constant, left undetermined by the assigned
properties. The integral of this equation, which is regular in the vicinity of
z=0 and belongs to the index 0, is denoted* by

F'(a, g3 oy T, Agy Ay3 2).

If a=1, ¢g=1, the equation degenerates into that of a Gauss’s hypergeometric
series : likewise if =0, ¢=0.

Ez. 1. Verify that, when a=1%, the group of substitutions

1 1 —1 -1 L, 1
s 1, E ofTE =3 =5 §(-1) d2
b bl Z, z ? Z"-l, 2_17 Z—'% bl Z—%,

interchanges among themselves the four points 0, %, 1, .

Prove that, when a= —1 and when a=2, there is in each case a corre-
sponding group of eight substitutions interchanging the points 0, 1, a, «©
among themselves : and that, when a=%(1+474/3) and when a=%(1—174/3),
there is in each case a corresponding group of twelve substitutions. Construct
these groups. (Heun.)

FEz. 2. Prove that there are eight integrals of Heun’s equation of the
form
(2= 1) (z—a)! F(a, q; oy, A N5 %),
which are regular in the vicinity of the origin and have the same exponents
as F'(a, q; o, 7, Ay, Ay; 2). Hence construct a set of 64 integrals for the
equation when a=1%, which correspond to Kummer’s set of 24 integrals for

the hypergeometric series.
Indicate the corresponding results when
a=—1, 2, }(1+iv3), 3 1 —iv3).

Ex. 3. A homogeneous linear differential equation of order # is to have 7
singularities ¢y, @4, ..., @, in the finite part of the plane and also to have
o for a singularity: the integrals are to be regular in the vicinity of each of
the singularities, and the exponents of a, are to be 0, 1, ..., n—2, a, (for
r=1, ..., n), while the exponents of « are to be 0, 1, ..., n— 2, a, so that

n
at+ = a,=(n-1)2
r=1

Shew that the differential equation is
drw | % dr— 2w
V&) g T 2 e @) g =0
where ¥ (2) = (2— a;) (2= ay)...(z—a,), the coefficient X, (2) is a polynomial in 2
of order not greater than s, (for s=1, ..., »), and

B &)= 3 (e-n+1) Y.

(Pochhammer.)

* Heun, Math. 4Ann., t. xxx111 (1889), pp. 161—179, who has developed some of
the properties of these equations, and has applied them, in another memoir (Lc.,
pp- 180—196), to Lamé’s functions.
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EquaTioNs IN MATHEMATICAL PHYsICS AND EQUATIONS OF
Fuchsian TypE.

54. These equations of Fuchsian type include many of the
differential equations of the second order that occur in mathe-
matical physics; sometimes such an equation is explicitly of
Fuchsian type, sometimes it is a limiting form of an equation of
Fuchsian type.

One such example has already been indicated, in Legendre’s
differential equation (Ex. 1, § 46). Another rises from a transform-
ation of Lamé¢’s differential equation which (§ 148) is of the form

! —@@+Ag)(z)+B:0,

w dz?
where 4 and B are constants*. Writing
p(2)==,

so that « is a new independent variable, we have

0.

@+< . + 3 1 )g@ 1 Az + B =
da? x—e xx—e, x&—e dx (w—e)(xz —e) (v —e)

The singularities of this equation are e, e,, e;, 0 ; the exponents
to which the integrals belong in the vicinity of e,, e,, ¢; are 0 and %,
in each case; the exponents, to which they belong for large values
of z, are the roots of the equation

p(p+1)—3§p+14=0.
The new equation is of Fuchsian type: and, in this form, it is
frequently called Lamé’s equation.

An equation, similar to Lamé’s equation, but having » singu-
larities in the finite part of the plane, each of them with O and %
as their exponents, as well as z= o0 with exponents a and B3, such
that (§ 52)

a+B=%n—1,
is sometimes called Lamé’s generalised equation. By § 52, it is of
the form

2% G
W w3 2

o — w=0,
r=127 % (z—a,
r=1( 1)

* This is the general form; the value —m(nr+1) is assigned (l.c.) to 4, in
order to have those cases of the general form which possess a uniform integral.
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where @,_, is a polynomial of order n — 2, the highest term in
which is aB8z"2,

55. The equation of Fuchsian type which, next after the
equation determined by Riemann’s P-function, appears to be of
most interest is that for which there are five singularities in the
finite part of the plane, while 2= o0 is an ordinary point. The
interest is caused by a theorem*, due to Bocher, to the effect that
when the five points are made to coalesce wn all possible ways, each
limiting form of the equation contains, or is equivalent to, one of the
linear equations of mathematical physics.

Let the points be a,, @, a;, aq, a5, with indices a, and 8,, for
r=1,2, 3,4, 5; then

%1(0(7' + /87') =3,

and the equation (p. 153) is
51—
W oy S LT =By ‘#{P 43 B (ar)}

r=1 & —0Qr

where ¢ = 1§I (2 — a,), and P, is a linear polynomial Az + B. The
substantiall;_:iistinct modes of coalescence are :—

(i), a4 and q; into one point;

(i1), a, and q; into one point, a, and a; into another;

(iil), as, a4, a5 into one point ;

(iv), @, and @, into one point, a;, a4, a; into another;

(V), as, as, a4, a5 into one point ;

(vi), all five into one point;

and the various cases will be considered in turn.

Case (). Let the indices for a,, a,, a; be made 0, 1 for each
point ; then, as ¥ (a,) =0, ¥’ (a;) = 0 in the present case, and

1—0‘4_:84'*'1"“5"‘35:%',

* Ueber die Reihenentwickelungen der Potentialtheorie, Gott. gekronte Preis-
schrift, (1891), p. 44; and a separate book under the same title, p. 193. See also
Klein, Vorlesungen tiber lineare Differentialgleichungen der zweiten Ordnung, (1894),
p. 40.

F. IV. 11

162 BOCHER'S THEOREM ON [55.

the equation is
3 P
w” + W s 3 -+ :
. rm12=ap (2—ay)(z—ay) (z2—ay) (2 — a,)
Write

w=0.

1
z_a,4=5, (a,—aye. =1, forr=1,2, 8;

the equation becomes
dw dw/ % % % ) Cx+D
dz? " dx w—el+w—-ez+fc——e +(w—el)(w——e2)(w—e3)

in effect, the preceding ungeneralised Lamé’s equation.

w=0,

Case (i1). The equation becomes

., , 1 — o — 1 __a/_BI 1 _all___ I/)
w +w{ : Bl+ + B
z— Z — Uy Z— Qy

w alB 1

— @) (@ — )2 =
* (2 — ay) (2 — ay) (2 — a,)? iPl tr_a ( a2)® (2 — @) } 0,
after coalescence of the points, where

1—d ’—,BI =2_a2—,8-2_a3'—63:
l—a"—B"=2—a,—B,—a,— 35,

and therefore
a1+181+a/+131+a11+18//:1
Writing 8 =(z—a,)(z —a,) (¢ — a,), we have the coefficient of

W in the form

6
P, (Z — a‘l) + 2,8, (al — a/2>2 (al - a,4)2
(z—a) (2 —ay)(z —a,)
- a1,819' (al) Ql
zZ—ay (z—ay)(z—ay)’
where @, like P,, is an arbitrary linear polynomial. Thus @,

contains two arbitrary coefficients; these can be determined so
that

P a'B'e (az) a’B3"0" (a,)
(z——a2)(z-—a4) Z— z2—a, ’

and then the equatlon becomes

_ -~ PR/ 74
w// +w/{ Bl a B + 1 a B }
z— al

+ %1 {alﬁﬂ’ (@)  oBY (a) a'BO (%)}

z—a, Z— Uy Z— a,
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Owing to the form of 8 and the relation X (a+ 8) =1, this is the
equation of Riemann’s P-function (§ 49).

When we write a;=1; ap=—1; a,=;
. / Y4 . 7 /l_ .
abBl:O:O: a;18=0:07a’:8 ——n,n+1,

the equation becomes

_(z+ 1)(z—-1)w=0’

1 1 ) n(n+ 1)

W+ w (z—],+z+1

that is, ~
A-2Dw" — 2z +n(n+1)w=0,

which is Legendre’s equation.
Case (ii1). Let a;, 8,=0, %; a,, B,=0, %; so that
l—o,—Bs+1—o,—Bs+1—0a,—B;=1
After the coalescence of the points, the equation is
% % 1 ) P, w
z—a, z2—ay, z2—az (z2—a)(z— ay)(z—as)

where P, is a linear polynomial, say {4 (z — a;) + B} (a; — a,)(a; — as).
Now let

=0,

’I,U” + ’tl)/<

Z_a3=5;

after some easy reduction, the equation becomes

@_'_ldﬂ 1 + 1 ]
da? ' % da 1 }
€ + x +
ay — Ay A3 — Ao
+ A + Bz —0
(TS O
x + <x+ )
Az — Ay Az — Ay
Let a; =0, a3 —a,=—1; the equation is
Q2w 20—1 dw A+ Bz

1

%5+2m(w—1)%+x(w—l)w=o'

Writing « = sin?¢, we have

d*w
de

— 3w (4 + Bsin?t) = 0,
11—2
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which is known* as the equation of the elliptic cylinder. This
equation will be discussed hereafter (§§ 138-—140).

Case (iv). Let a,8,=0,%; a, B:=0, §; so that, as in the

last case,
1—a3—33+1—d4—-',34+1—a5—85=1.

After coalescence of the points, the equation is

+w< 1 1 > P, w=0
w z2—a, z—a;)  (z—a) (2~ asy
Let
1
2= =, Pr={a(z—a;)+ B} (a1 — ), c(t—as)=1;

then the equation becomes

d2w 1 dw a4+ Bz

d7 T s —cdn (w—c)2w=0;
or, taking
x—c=19>%
we have
dw 1 dw 40’
ay+y dy v G+ 48) =0

which includes Bessel’s equation, sometimes called the equation of
the circular cylinder.

Case (v). Let o, 8,=0, 4 ; then
5
= d-a-g)=}

and the equation, after coalescence of the points, becomes

w+w< LI >+- i =0
z—a, z—a, (z—al)(z——ag)“w— ’

Let
1
z—ay=_, P={a(z—a)+ B} (@:—a), b(a,—a,)=1;

then the equation is

dw dw % a+ Bz
d VAo o—b 50 w=0.

* Heine, Kugelfunctionen, t. 1, p. 404.
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Writing
x—b=ys
the equation becomes
dz
E;i:+4w(a+,86+,3y2)=0,
which is the equation® of the parabolic cylinder.

Case (vi). The equation is

4 ’ —P‘l
w4+ w4

z—a (z—a,)5w=0:

when we take
z—a=£, P*—:a(z—a)-}-ﬁ,

the equation becomes

d*w

dw2+w(a+,8x)=0.

This corresponds to no particular equation in mathematical
physics : it will be recognised as a very special instance of equa-
tions most simply integrated by definite integralst.

Ez. Discuss, in a similar manner, the limiting forms which are obtained
when the singularities of
(i) the equation determined by Riemann’s P-function,
(i) Lamé’s equation, expressed as an equation of Fuchsian type,

are made to coalesce in the various ways that are possible.

EQuATIONS WITH INTEGRALS THAT ARE PoLyNOMIALS.

56. There is one simple class of integrals which obey the
condition of being everywhere regular, so that their differential
equations are of the Fuchsian type; it is the class constituted by
functions which are algebraic. We shall, however, reserve the
discussion of linear differential equations having algebraic inte-
grals until the next chapter; and we proceed to a brief discussion
of a more limited question.

* Weber, Math. Ann., t. 1, p. 33.
+ See Ch. vir of my Treatise on Differential Equations.
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We have seen that an equation of the second order and of

Fuchsian type can be transformed to
Dy=vy" + Goyy + Grsy=0.

Its integrals are regular in the vicinity of each of n singularities
and of infinity ; the question arises whether the coefficients in the
polynomials G,_, and G,_, can be chosen so that one integral of
the equation at least shall be, not merely free from logarithms
or even algebraic, but actually a polynomial in z. This question
has been answered by Heine*; the result is that G,_, can be
taken arbitrarily, and G,_, has then a limited number of determ-
inations.

If the above equation, in which
V=(2—t)(z2—a) ... (2—ay),
Gno=C2™" 1+ 2" 2 4 ... + Cps? + Cny,
Gpoo=rkoz" 2+ k2" 34 ... +hp sz +Fps,
is satisfied by a polynomial of order m, say by
Y=9" + 912"+ .o + GmarZ + I,

then
Dy = (k Qu, 1)+ 2 =0,

so that there are m +n — 1 relations among constants. The form
of these relations shews that ¢., ¢s, ..., gm are multiples of g,: to
express these multiples, m of the relations are required, and when
the values obtained are substituted in the remainder, we have
n — 1 relations left, involving the constants ¢ and k. Assuming
the points a,, @s, ..., a, arbitrarily taken, and the coefficients
Cos €1y ---» Cn— arbitrarily assigned, we shall have these n—1 rela-
tions independent of one another, and therefore sufficient for the
determination of the n — 1 constants k,, &y, ..., kn—s.

The first of these relations is
m(m —1)+com +k, =0,
so that &, is uniquely determinate. Denoting by
(&1, Ksy -..s Kol

the generic expression of a function of &, k., ..., k,, which is
polynomial in those quantities, and the terms of highest weight in

* Heine, Kugelfunctionen, t. 1, p. 473.
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which are of weight », when weights 1, 2, ..., n — 2 are assigned
to ky, ks, ..., kns, we have, from the m relations next after the
first,

gr=0 ks, ks, .., kr]s,
for r=1,2, ..., m. When these are substituted in the remaining
n — 2 relations, we have

[kl) kz: ) kn-—z]m+s = O:

for s=1, 2, ..., n—2. These determine the n — 2 constants
ky, ks, ..., kpnp; the number of determinations may be obtained
as follows. Writing

y=uw, ky=a? k= ...,

the equations become n — 2 equations to determine » — 2 quantities
&y, T, ..., Tn_s. In these quantities, the equations are of degrees

m+1, m+2, ...,m+n—2

respectively ; and therefore the number of sets of values for
Ty, Xy ooey Bp_g 18
(m+1)(m+2)... (m+n—2).

But the same value of k, is given by two values of «,, inde-
pendently of the other constants k; so that the sets of values
of =, @,, ..., &n_, must range themselves in twos on this account.
Similarly, the same value of k; is given by three values of «,
independently of the other constants k; hence the arranged sets
of values must further range themselves in threes, on account of
k;. And so on, up to k,—,. Hence, finally, the number of sets of
values of ki, ..., kn_s 18

(m+1D)(m+2)...(m+n—2)
2.3...n—2 ’

_(m4+n—2)!
T oml(n—2)!"

which therefore is the number of different quantities Gn—, per-
mitting the equation

Yy + Goay + Gosy =0

to possess* a polynomial integral of degree m.

* In connection with these equations, a memoir by Humbert, Journ. de UEcole
Polytechnique, t. xx1x (1880), pp. 207—220, may be consulted.
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This result is of importance, as being related to those special
forms of Lamé’s differential equation which possess an integral
expressible as a polynomial in an appropriate variable. This
polynomial can be taken as one of the regular integrals belonging
to each of the singularities; the other regular integral belonging
to any singularity is, in general, a transcendental function and, in
general, it involves a logarithm in its expression.

Ez. 1. Shew that a linear equation of the third order, having all its
integrals regular, can, by appropriate transformation of its dependent variable,

be changed to the form
\Ifzy"'—f-\!rPy"-i— er+Ry=0’
Y= (a2~ al) (z— a’2)' (2 - @),
@y, @y ..., &y being all the singularities in the finite part of the z-plane, and

where P, @, R are polynomial functions in z of degrees n—1, 2n—2, 2n—3
respectively.

Shew that, if P and @ be arbitrarily chosen, R can be determined so that
one integral of the equation is a polynomial in z; and prove that the number
of distinct values of & is

where

(m+2n—3)!
m!(2n—3)!"°

where m is the degree of the polynomial integral.
Ez. 2. Determine the conditions to be satisfied if

VY + G 1y + G oy=0

has two distinct polynomials as integrals, so that every integral is a poly-
nomial.

Ez. 3. Determine how far the constants in the equation
.\l,2ylll+\1/Py//+ Q?/"I‘Ry‘:O

may be assumed arbitrarily if the equation is to possess two polynomial
integrals.

Ex. 4. Prove that the equation
az N/
@) S5+ @ i+ o+ Ry y=0

where n is an integer, f (#)=a3+ax2+bx+ ¢, and a, b, ¢ are constants, admits

of two integrals whose product is a polynomial in .

Ez. 5. Shew that the only cases, in which the differential equation of the
hypergeometric series

d? dy -
x(l_x)glg;'*'{')"‘(a"'ﬁ"‘l)x}(TZ"‘“B&”‘:O
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possesses two integrals whose product is a polynomial in x of degree =, are as

follows. If » is an even integer, then either a= —3%n; or B= —%{n; or
a+B=—n, and y=3, or —3%, or —3, ..,,or —n+3%. If » ig an odd integer,
then either a= —3n and y=%, or -3, or —%, ..., or —4n+1,0r B, or B—-1,
wey Or B—%(n—1); or B=—%4n and y=%, or —%, or —3, ..., or —%n+1,
or qor a=1,..,0ora~4(n—1); or a+fB=—n, and y=%, or —%, or —3, ...,
or —n+3. (Markoff.)

Kz 6. Shew that, if the square root of a polynomial of degree m can be
an integral of the equation
Py S (L Aa— e\ Y
dz? + 351 ( x— e, dz
n
A\p— Elxsps)x““2+a1x"—3+ cee Oy g
5=

Agpts _
e [V

+ P
I (o — )
s=1

where the exponents A and p are subject to the usual relation, one of the
exponents A, p,, S8y Ag, must be half of a non-negative integer, this holding
for each value of s; also 3m— 3\, must be a non-negative integer ; and one
exponent of the singularity at infinity must be equal to — Lm.

If these conditions are satisfied, how many such equations exist ?
(van Vleck.)
FEz. 7. If the differential equation
2 n d
352 > x(-l—re c;l%—‘— ”\b(x)
& r=1 r I ( z— er)

r=1

y=0,

where 4y () is a polynomial, the constants @ are real and positive, and the
constants ¢ are real and distinct from one another, be satisfied by a poly-
nomial ¢ (x), then all the roots of ¢ (x) are real, and no root is less than the
least or greater than the greatest of the quantities e. (Stieltjes ; Bdcher.)

EqQuAaTIONS WITH RATIONAL INTEGRALS.

57. The investigation in § 56 suggests another question:
what are those linear equations, all the integrals of which are
rational meromorphic functions of z?

Let a,, ..., am be the singularities in the finite part of the
plane; let oy, oy, ..., an, be the roots of the indicial equation for
a,; and let B, ..., B, be the roots of the indicial equation for
z=oo. If every integral is to be a rational function of z, all the
ToOtS &y, gy, .., Any must be integers; as no integral is to involve
a logarithm, no two of them may be equal. Let the arrangement
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of these roots be in decreasing order of the integers. The integral
belonging to the index a;, involves no logarithms; in order that
the integrals belonging to the indices @y, o, ..., &, respectively
may involve no logarithms,

1+2+...4+(n—1),

that is, 4n (n — 1), conditions in all must be satisfied, these
conditions being as set out in § 41. Corresponding conditions
hold for each of the singularities, and also for z= o ; so that there
are
in(n—1)(m+1)

conditions of relation among the constants of the equation, in
addition to the necessity that the indicial equation of each singu-
larity shall have unequal integers for its roots.

These conditions are certainly necessary; they are also suffi-
cient to secure that any integral of the equation is a rational
function of z. For considering the vicinity of a,, each integral in
that vicinity is of the form

(z — ay)*» P, (2 — a,.),

where a,, is the least of the roots of the indicial equation, and
P,, (z —a,) is holomorphic in the vicinity of a,, for m=1, ..., n;
when m =a, P(z — a,) does not vanish, and for all other values
of m it does vanish. If then a,, be zero or positive, the point

= q, is an ordinary point for every integral in the vicinity of a, ;
if a,, be negative, then a, is a pole of some integral, and it may be
a pole of several or of all.

As this holds in the vicinity of each of the singularities and of
z= o, it follows that, in the vicinity of every singularity of the
equation, including z = o, every integral is uniform and has that
singularity either for an ordinary point or a pole; moreover, every
integral is synectic in the vicinity of every other point: hence*
the integral is a rational function, which is a polynomial if oo be
the only pole. Thus the conditions are necessary and sufficient.

It has been seen that the indicial equation for each singularity
of the differential equation must have unequal integers for its
roots. When these are assigned arbitrarily, subject to the one
relation (Ex. 2,§ 46) which they are bound to satisfy, they amount

* 7. F. § 48.
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to (m + 1) n — 1 conditions ; so that the total number of necessary
conditions is
in(n—1)(m+1)+@m+1)n—1

=n@n+1)(m+1)—1.

If such equations are being constructed, they are necessarily of

the form
d"w G dr 1w Gn

ty dea Tty =0
where ¥ = (2 — @,) ... (¢ — @), and G, is a polynomial of order not
greater than 7 (m — 1), for »=1, ..., n. Hence the total number

of disposable constants is

m, from the positions of the singularities,

n
+ 3 {r (m —1)+1}, from the constant coefficients in G, ..., Ga,

r=1

that is,
Inn+1D)(m—1)+n+m

constants in all; and therefore, in order that the equations may
exist, we must have

Inn+1)(m—-—1D+n+m=2inn+1)(m+1)—1,

so that
m=n?—1.

In obtaining this result, an arbitrary assignment of unequal
integers as roots of the indicial equations has been made: and
it has been assumed that these conditions are independent of the
necessary conditions attaching to the coefficients, in order that
the integrals of the equation may be free from logarithms. It
may, however, happen that a particular assignment does not leave
all these conditions independent of one another, so that we might
have

In(n+1D)(m-1)+n+m=%nn+1)(m+1)—1-=2r
and therefore

m=n2—1—Nx,

and still have the equation determinate. An instance is furnished
by the equation
xy’ — 2xy’ + 2y =0,

172 EQUATIONS WITH [57.

which, although it has only one singularity in the finite part of
the plane, so that m =1, n = 2, has an integral 4a®*+ Bzx. For the
most general case, however, we have

m>=n2—1.
FEz. 1. Investigate all the cases in which the differential equation of the

hypergeometric series has every integral a rational function of the independ-
ent variable.

Ez. 2. When the equation is of the second order, and all the assignments
of integer roots are quite general, the smallest value of m is 3. Let the

singularities be @, ..., @,,, with exponents a;, B;; as, B3; ... am, Bm; and
let the exponents for z=w be a, 8. Choosing in each case the smaller of the
two indices qa, and 8,, let it be a,, for r=1, ..., m ; then writing

m m
A=B,—a,, a+ 2 ap=0, B+ 2 a,=v,
r=1 r=1
we have (§ 52)
m
o+r+ = N=m—1,

r=1

which is the necessary relation among the exponents. Writing
w=(2—a)" (= ay)*...(2—a,)’" g,

so that 7 also is a rational function of z, our equation in y becomes

:y,,+ 3 112\7,‘?/'_{_ A Y T 7}

=0,

S A TN CET AN CEr I

say
1-2. , G
D //+ 2 = I+ O
| Y=Y i—a? V(@ 7=

and here the integers Ay, Ay, ..., Rm are, each of them, equal to or greater than
unity.

Substituting, in the vicinity of a,, the expression

y:co(z—a,.)6+cl(z—ar)0+1+ cten (z—a)? T4
we have
(5= a,)? Dy=c,8 (6 -7,) &,
provided & (@)
_ As—1 (ar}
¢ (6+1) (6+1 7\.,.)+co{ e +1!, (@) 0,
and
G (ar)
/ _ T\
Cn (042) (647 )\")+c""1\lr’(a,‘)
Ae—1 O4n—2 0
w3zl {cn (@ n =Ty beny T e o 1}
G(a) 1 { o }
-3 R e e )
V(@) @—a " g —a, @—ay— ="
and the summation for s is for s=1, ..., m except s=7. As A, is a positive

integer, and thus is the greater root of the modified indicial equation, there is
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one regular integral belonging to the exponent A,., which is a constant multiple
of

(z=a)" {14y, (2= a)+y; (2= @)+
=¥, say, where y, =c¢,--c,, when §=A,.
‘When we write

F(8)=8(8-1),

and solve the equations for ¢,, ¢,, ..., we find
fen (6)

"= F(0+1).. f(0+n)

‘We know (§ 41) that there is a single condition to be satisfied in order that

the integral belonging to the exponent O may be free from logarithms ; as
f(8+n) vanishes to the first order for =0 when n=A»,, the condition is

b, (0)=0.

There is a corresponding condition for each of the singularities and for z=w ;
so that we have m-+1 conditions, which involve the arbitrary constants
ks «ous B3, and the positions of the singularities, as well as the assigned
integers A;, ..., Am, 0, 7. Keeping the latter arbitrary, we see that there
must be at least three singularities in the finite part of the plane: when
there are only three, we obtain a limited number of determinations of the
equation ; if there are 3+p, then p elements are left arbitrary among an
otherwise limited number of determinations of the equation*.

As the equation is of the second order, it is possible to proceed otherwise.
Assuming that the integral Y which belongs to the exponent A, of the
singularity «, is known, and denoting by Z the integral which belongs to the
exponent O of the same singularity, we have

YZ"-Y"'Z+(YZ — Y'Z)E =2
r=12"04

=0,

2

so that
m
YZ'—-Y'Z=A 11 (z—a,)y "},
=1
and therefore !

Z 1 m -
—}-f) =A—ITZTI=II (Z—-—a,.)'\' 1

‘When the right-hand side is expanded in powers of z—a,, the first term
involves (z—a,) "17™, that is, the index is negative. If Z is to be free from

logarithms, the term in in this expansion must have its coefficient equal

T
to zero—a condition which must be the equivalent of

4, (0)=0.
* The hypergeometric case indicated in the preceding example is given by

N=A=...=Np=1, G=07(2—az)...(¢~-ay),

which will be found to satisfy the conditions for ag, ..., a,, given in the text.

CHAPTER V.

LiNEAR EQUATIONS OF THE SECOND AND THE THIRD ORDERS
POSSESSING ALGEBRAIC INTEGRALS.

58. THE general form of equation, having all its integrals
regular in the vicinity of each of the singularities (including o),
has been obtained ; in the vicinity of a singularity a, each such
integral is of the form

(z—a)*[do+ prlog (z — @) + ¢, {log (2 — a)} -+ ¢ {log (z — )],
where each of the functions ¢,, ¢y, ..., P, is holomorphic at and
near a. In general, each of the functions ¢ is a transcendental
function in the domain of a: they are polynomials only when
special relations among the coefficients are satisfied.

When attention is paid to the aggregate of the integrals so
obtained, it is to be noted that the branches of a function defined
by means of an algebraic equation belong to this class. If
algebraic functions are to be integrals of the differential equation,
they constitute a special class; special relations among coefficients
of the differential equation must then be satisfied, and, it may be,
special restrictions must be imposed upon its form. Accordingly,
we proceed to consider those linear equations whose integrals are
algebraic functions, that is, functions of z defined by an algebraic
equation between w and z. It has already been proved (§ 17)
that each root of such an algebraic equation of any degree in w
satisfies a homogeneous linear differential equation, the coefficients
of which are rational functions of z. If the algebraic equation
were resoluble into a number of other algebraic equations, neces-
sarily of lower degree, each such component equation would lead
to its own differential equation of correspondingly lower order;
accordingly, we shall assume that the algebraic equation is irre-
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soluble and proceed to consider linear differential equations whose
integrals are the roots of an algebraic equation. . In the most
general case, the degree of the algebraic equation is equal to the
order of the differential equation : in particular cases (§ 17, Note 1)
it can be greater than the order: and as we seek algebraic inte-
grals, it may be expected that these particular cases will occur.

The investigation can be connected with an equivalent problem
that arises in a different range of ideas. It has been proved that,
given a fundamental system w,, w,, ..., wy, of integrals of a linear
equation of order m, the effect upon the system, caused by the
description of a closed path enclosing one or more of the singu-
larities, is to replace the system by another of the form

/
w, = ay Wy + O Wy + ..+ Ayyp 'wm}
b

/
Win = Wy + QppWs + oo + QWi
Sa:y

(wlla LA ] 'wm/) = S (wl 3t 10777:);

where S denotes a linear substitution. By making the inde-
pendent variable describe an unlimited number of contours any
number of times, we may obtain an unlimited number of linear
substitutions; and so each integral could, in that case, be
made to have an unlimited number of values. If, however, the
fundamental system is equivalent to the m roots of an algebraic
equation, then each of the integrals can acquire only a limited
number of values at a point which are distinct from one another:
that is, there can be only a limited number of substitutions in
the aggregate. When therefore we know all the groups of linear
substitutions in m variables which are of finite order, only those
linear differential equations which possess such groups need be
considered. Accordingly, if we proceed by this method, it is
necessary to construct the finite groups of linear substitutions.

Further, it is clear that the investigation can be associated
with the theory of invariantive forms; for the relations between
wy, ..., wy and wy, ..., w, constitute a linear transformation of
the type under which these invariantive forms persist. Indeed,
it was by this association with binary, ternary, and quaternary
forms that the earliest results, relating to linear equations of the
orders two, three, and four, were obtained. Some brief indications

of this method will be given later (§§ 69—72).
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KLEIN'S METHOD FOR EQUATIONS OF THE SECOND ORDER.

59. The determination of linear equations of the second order,
whose integrals are everywhere algebraic, is effected by Klein*, by
a special method that associates it with the finite groups of linear
substitutions of two homogeneous variables.

Let w, and w, denote a fundamental system of integrals for
the differential equation; and let

W, =aw, + Bw,, W,=yw, + dw,,

be any one of the linear substitutions, representing the change
made upon the fundamental system by the description of a closed
path. Then taking

e wl

=

the quotient of two algebraic integrals, so that s itself is an
algebraic function, we have

W_a+8.
W, os+8’
thus s is subject to a homographic substitution. Accordingly,
the determination of the finite groups of linear substitutions in

the present case is effectively the determination of the finite
groups of homographic substitutions.

S =

Let any such group containing IV substitutions be represented

Vo (8)y A (8), «evs Yy (8)

and let 4, (s) =s, the identical substitution: every possible com-
bination of these substitutions can be expressed as some one of
the members of the group. Take a couple of arbitrary constants
a and b, subject solely to the negative restrictions that a is not
equal to v, (b) and b is not equal to {r;(a), for any of the values
0,1,..., N—1 of » and of s; and form the equation

Vo —a Y(D—a  Yya()—a_
Yo @) =b Vi (©) = b A (5) = b

* Math. Ann., t. x1 (1877), pp. 115—118, ¢b., t. xux (1877), pp. 167—179;
Vorlesungen iiber das Ikosaeder, (Lieipzig, Teubner, 1884), pp. 115—123.

by

X,
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which is an algebraic equation of degree NV in s. It is unaltered
when s is submitted to any of the substitutions of the group; for
such a substitution only effects a permutation of the various NN
fractions on the left-hand side among one another. Hence, if any
root s be known, all the N roots can be derived from it by
submitting it to the N substitutions of the group in turn.

For quite general values of X, the IV roots of the equation are
distinct; but it can happen that, for particular values of X, a
repeated root arises, of multiplicity ». From the nature of the
equation in relation to the group of substitutions, it follows that
each distinet root is of multiplicity v, so that there are N +w
distinet roots. To consider the effect of this property of the
equation, let the latter be changed so that the numerator and
denominator are multiplied by the denominators of +(s), ...,
Yry—1(s). It thus can be expressed in the form

G (s, a)
GG, b) X,

where G (s, @) is a polynomial in s of degree N, the coefficients
being functions of a, and G (s, b) is a similar polynomial, its
coefficients being the same functions of b. Let X, be a value
of X, such that s =0, is a root of multiplicity », when X = X,
then the equation
G(s,a) G(oy, a)
G(s,b) G(ar, b)

X—-X,

has ad roots each of multiplicity », when X = X,. But each such

vy
root is a root of multiplicity »; — 1 of the equation

d (G(s,a) G(av,a) _
ds {G s, ) G(oy, b)} =0,

that is, of the equation

A =6 0)Y00D 6 0 dTED o,
as there are f}x such roots, it follows that these repeated roots
account for 1 ¥
” (n—1)
F. IV, 12
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of the roots of this derived equation. Moreover, we then have

(g

G (s, b) G (ay, b)=X_X1’

where @, is a polynomial in s of degree g
1
Let X, be another value of X, such that s = o, is a root of the
equation of multiplicity », when X = X,. A precisely similar
argument shews that each distinct root of the equation is of
multiplicity v,; that there are IV + », distinct roots; that each
such root is of multiplicity », — 1 for the equation A (s)=0; that
these roots account for

N
;‘2(”2“ 1)

of the roots of the derived equation; and that we have

D

G (s, b) G(oa) b) X=X,

where @, is a polynomial in s of degree g
2
Proceeding in this way with the various values of X that lead
to multiple roots of the initial equation, we shall exhaust all the
roots of the equation A(s)=0. The degree of A(s) is 2N — 2;
for if
G (s, a) =sYfo(a) + s f (a) + ...,

G b)=s"f, D)+ /1 (b)) + ...

then

and therefore
As)=s¥2{fo(a) fr(B)— fo (D) fi(a)} + ....

But taking account of the roots of A (s)=0, as associated with the
multiple roots of the original equation for the respective values of
X, we see that its degree is

N
—(n—1D+ HJY(vz——l)-{— vee
vy vy
and therefore
lv!(vl——l)-x-‘%v(yg—l)+ .=2N -2,

<1-%1)+<1-;1;>+...=2—

whence

e
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Each of the integers » is equal to or greater than 2, so that each
of the quantities 1 —-% is equal to or greater than 1. Hence the

smallest number of different integers v is two ; if there were only
one, the left-hand side would be < 1, while the right-hand side is
> 1. The largest number of different integers » is three; if there
were four or more, the left-hand side would be equal to or greater
than 2, while the right-hand side is less than 2.

In the first place, let there be only two integers, », and w,;
then

From the nature of the case, v, € N, v,€ N, so that
r,1r 1.1
n- N v~ N’
hence the only possible solution is
=N, va=N, . eiiiiiiiiiiiiiininnn. D,

and &V is an undetermined integer.

In the next place, let there be three integers, vy, v,, v;: then

v, vy Vs N’

At least one of the integers » must be 2: for if each of these
integers were >3, the left-hand side would be <1, while the
right-hand side is > 1, as &V is a finite integer.
Taking »,= 2, we have
1 1
—_ + —_
Ve Vs

Another of the integers » may be 2. Let it be »,; then NV = 2y,
and we have the solution

=2, v,=2, vy=n N=2n...cce.vc...... (I1),

where n is an undetermined integer.

2
T+

If neither of the integers v, and »; be 2, one of them

. . 1
must be 3; for if each of them were > 4, then o -+ 3— Z 4, and so
2 3

12—2
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could certainly not be equal to +% . Taking v, = 3, we have
1 =1 4 3
v, ¢ N’

so that »; < 6: thus possible values of v; are 3, 4, 5. The solu-
tions are

n=2 1,=3, v,=3, N=12, ............ (11I),
n=2 v,=38, =4, N =24, (IV),
=2, 1=38, v=5, N=060, cco.oovrveee... (V).

60. The finite groups are thus known; the corresponding
equations in s are required. The solutions will be taken in
order.

I. Instead of X, we take a quantity Z, defined by the rela-
tion
X-X

Z=%_7%x.

so that Z=0 gives X = X,, that is, gives s=s;, a root repeated
N times, and Z = gives X =X,, that is, gives s=s,, a root
repeated IV times. We have

_ (s —s)¥
X—X = G (s, 0) G (s, )’
X X,= o )T

*= G (s, 0) G (s, b)’

‘'S — 8 N
(=) -2
S — 8y

absorbing the constant G (s, b) + G (s,, b) into the variable Z.

and therefore

II, III, IV, V. These cases are of the same general form.
Instead of X, we take a quantity Z, defined by the relation

X'—'.Xg .Xl_'Xg'
X-X, X, — X’
then Z=0 gives X =X,, Z=1 gives X =X,, Z= 0 gives X = X,
and thus
Z:Z—-1:1
=X -X) (X, — Xy (X - X)X~ X)) : (X = Xp) (X, — X)),

7 =
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But
— qjlv‘
A -X,= G (s, b) G (o4, b)’
b
X =G0 G b’
X—X Dy

*= G (s, b) G (o, b)’
and therefore

Z:Z—-1:1= AP (s): BD(s) : Pys(s),

where A and B are constants which, if we please, may be absorbed
into the functions ®, and ®, respectively.

Now these groups are the groups that occur in connection
with the polyhedral functions* : and the polyhedral functions can
be associated with the conformal representation¥, upon a half-plane,
of a triangle, bounded by three circular arcs and having angles
equal to :—T, :—T, T. The analytical results connected with these

1 2 Vs .,
investigations can be at once applied to the present problem.
Denoting derivatives of Z with regard to s by Z2°, Z”, Z"”, ..., we

have (T. F., § 275)
—— -1

1 [z Z"\? T2 ,° v v vl
— ol S =3 () | = ) e b L e 12 N
Z’2[Z’ 2(2')] T it tT -1
or, taking account of the propertieéi of the Schwarzian derivative,

we have
1 1 1 1 1
1 — 1 —_— 1( e -
2 (1 V22) 2 <1 V12> + : (V12 * v,: vl 1>

7= T Z =1y Z(Z —1)

1 1 1 1 1
— —+ =

{3’ Z}=

The forms of the functions for the various cases II, III, IV, V
are -—

for II,
Z:Z—-1:1=F@E"=-DP:E@E+Dp2: —s7;

T. F., §§ 276—279, 300—302.
T. F., §§ 274, 275.

*
+
T See Ex. 3, § 62, of my Treatise on Differential Equations.
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for III,
Z:Z—-1:1
=(s*+ 2s%/3 — 1) : 12y/3 2 (s*+ 1)? : (s* — 2s%/3 — 1)*;
for IV,
Z:Z—-1:1

= (s*+14s* 4+ 1) : (s2— 3355 —33s* + 1)2 : 108s*(s* — 1)2;
and for V,
Z:Z—1:1=(s*—228s%+ 4945+ 22855 + 1)
2 {84+ 1+ 5225%(s* — 1) — 100055 (s + 1)}
: — 17285 (s + 118°— 1)5.
These results* can be obtained by purely algebraic processes,
from the properties of finite groups proved by Gordan+.

61. These results can be applied at once to the determination
of linear equations of the second order
dw + dw +quw=20
det TP T
all the integrals of which are algebraic. Denoting the quotient
of two integrals w, and w, by s, we have§

=% -%fpdz —
, W,=8 ‘e ,  WeS = Wy,

{s, z}=2q—%p2—?£=21,

-3 -4pd
wy, =g ¥ g HPE

say. As all integrals are to be algebraic, it follows that s and
s'~% are algebraic; accordingly, [pdz must be the logarithm of an
algebraic jfunction, which is a first condition. Further, in the
equations under consideration, both p and ¢ (and therefore also
27) are rational functions of z; and therefore

{s, z} =rational function of z,

* They are slightly changed from the forms in § 302, § 278 (l.c.) ; the change is
made, 8o as to associate the indices »,, »;, v with the values Z=0, Z=1, Z=w
respectively. :

+ Math. Ann., t. x11 (1877), pp. 28—46. See also Cayley’s memoir, ‘‘On the
Schwarzian derivative and the polyhedral functions,” Coll. Math. Papers, t. x1,
pp. 148--216.

§ See my Treatise on Differential Equations, §§ 61, 62.
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and the quantity s is subject to the transformation of the finite
group. Now we have seen that

1 1 1 1 1
1 J—— L - L= L -
2 <1 v22> 2 <1 v12> 2 <v12 + V22 V32 1)

-+

s 2} =—7 Z—1F T ZZ 1) ’

in cases II, III, IV, V; and for case I, it is easy to verify directly
that

{8, Z} =4 =—pr

From the properties of the Schwarzian derivative, we have

s 2l =5 2} (90) + 12,95

hence, taking account of the particular form of {s, Z} which is
actually known, and of the generic form of {s, z} which is required,
we see that, in order to satisfy the conditions, we must have

Z = R(z),

where R is a rational function of z. Conversely, the conditions will
be satisfied if Z is any rational function of z. Accordingly, the
differential equation of the second order must have the coefficient of
w’ in the form

1 du

udsz’

where w s an algebraic function of z; and its tnvariant I (2),

which is ¢ — tp*— % g—]zz , must be of the form

TR
Z(Z-1) \dz

1 1 1 1 1 1

1 — .

V22 V12

H—7 "z—m

-+

or
1 1
T N2/dZ\e
b () #4129

where Z ts any rational function of z; the integers v, v,, v, wn the
Jirst form are the integers of the finite groups in cases 11, 111, IV,
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V; and N in the second form s an integer. When these con-
ditions are satisfied, the integrals are given by

wy, =§"Suts, w,=¢"tu}
where, for the first form, s is determined in terms of Z, the
rational function of z, by the equations at the end of §60; and for

the second form,
sV = 7.

CONSTRUCTION OF AN INTEGRAL, WHEN IT IS ALGEBRAIC.

62. The preceding investigation is adequate for the general
construction of linear equations of the second order which are
integrable algebraically; there still remains the question of
determining whether any particular given equation satisfies
the test.

When the equation is of the form

d*w dw

d2° +p%+qw—0,
inspection of the form of p at once determines whether it satisfies
the condition which governs it specially. Assuming this con-
dition to be satisfied, we construct the invariant 7 (z) of the
equation, where

d
I(Z)=q—%p2—%3§;
and then, if the original equation is algebraically integrable, we

must also have

1 1 1 1 1 + 1 1 1
T oz T2 p2 Lz L2 IAY
(e 1 Vo vy v,y v, V3 <ﬁ_ 1
I(z)=1% VA +(Z—1)2+ Z(Z—1) dz +3%{Z, 2},
or else

1 1
T N2 /dZN\?
I(z):%z_(a;) + 3 {Z, 2},

2
where Z is a rational function of z, and the integers v,, v, v,
belong to one of four definite systems.

It may happen that the identification is easy, because Z has
some simple value; the simplest of all is, of course, given by
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Z =z When the identification is not thus obvious, it is desirable
to have a method of constructing the rational function Z if it
exists; when it has been constructed, the further identification is
only a matter of comparing coefficients. Should this identification
be completely effected, then the integration of the equation is
given by the results of § 60.

Such a method is given by Klein*, who uses for the purpose a
comparison of those terms on the two sides, which are connected
with the poles and have the highest negative index. A rational
function is determinate save as to a constant factor, when its
zeros, its poles in the finite part of the plane, and their respective
multiplicities, all are known; and this constant factor is determ-
inate, when the value of the rational function is known for any
other value of the variable. Accordingly, let ¢ denote a zero of Z
of multiplicity @, and so for all the zeros; let ¢ denote a pole of Z
(and therefore also of Z— 1) of multiplicity , and so for all the
poles; and let b denote a zero of Z —1 of multiplicity 8, and so
for all its zeros: then

Z=H(z——a)" II(d—cy

II(b—a)y " (z—c)y’
where the multiplicity 8 of b is not used directly in the ex-
pression.

Consider now the right-hand side of the expression for I (z).
In the vicinity of a, we have

Z=(z-a)yU,
where U is a regular function of 2 — «, not vanishing when z =a;
so that

1 olZ a

Zds = +R(z—a)
and

(7,5 =4 A2

% Goap T
the unexpressed terms in {Z, z} having exponents greater than — 2.
In the vicinity of ¢, we have
Z=z—c)"V, Z—1=(z—-c)yrV,

* Math. Ann., t. xiz (1877), pp. 173—176: the exposition given in the text
does not follow his exactly, as he transforms the equation so as to secure that
z=o0 is an ordinary point.
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where V and V, are regular functions of 2z — ¢, not vanishing when
z=c; thus
1d7Z
Zdz 2z
1 dZ _
Z—1dz

1—7

R e SR
the unexpressed terms in {Z, z} having exponents greater than — 2.

In the vicinity of b, we have
Z—1=(z—-0bFW,

where W is a regular function of z — b, not vanishing when z2=5;
so that
1 dZ B
Z—-1dz z—0b

+ T(z —D),

1 1-p
{Z’Z}=§(z~b)2+

the unexpressed terms in {Z, z} having exponents greater than — 2.

ceey

We thus have taken account of all the highest terms with
negative indices which arise through zeros or poles of Z and Z — 1.
On account of the form of {Z, z}, which is

YA VAGY

z (Z)’
it is necessary to take account of the poles and the zeros of Z’.
As Z is rational, all its poles are poles of Z’ and the latter has no
others; so that, on this score, no new terms arise. A repeated
zero of Z is a zero of Z’, and all these have been taken into
account ; likewise for a repeated zero of Z—1. Hence we need

only consider those roots of Z’, which are not repeated roots of Z
or of Z —1; let such an one be ¢, of multiplicity =, so that

Z'=(z—-tyQ(z—1),

where ) is a regular function of z — ¢, not vanishing when 2z =¢;
then

____'7'+%'r2
(Z, 2} = (z—t)2+"

the unexpressed terms in {Z, z} having exponents greater than — 2.

*
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Gathering together the terms with the largest negative index,
we have, for Cases II, III, IV, V,

~®Y (1B K
o —(<1_“)_;g+2§ Ij)lj>+2%5z—c§f>“2%(;ﬁ;2

where the unexpressed terms have integer exponents greater
than — 2; and in this expression the significance of a, b, ¢, for the
construction of Z, must be borne in mind. Actual comparison
with the form of I (2) then gives indications as to which set of
values of v, v,, v, must be chosen, and determines the values of
o, B,v. The construction of Z is then possible and, Z being known,
the complete identification of the right-hand side with the known
value of 7 (2) is merely a matter of numerical calculation.

For Case I, we have

(-2 102 s
](Z)*——E—(—mrﬁ-z =0 E(z_§)2>

and the method of proceeding is the same as before.

In particular instances, it may happen that no terms of the
type

occur: Z’ then contains no roots other than the repeated roots of
Zand Z —1. An example is given by

(z—1)

Z=- 4z

Further, it may happen that a=w,, or 8=, or y=1v;: SO
that the corresponding value of z, viz. a, b, or ¢, is then not a
singularity of the differential equation. And, in particular, if
z= 00 is not a singularity of the differential equation and there-
fore also not a singularity of the integral, then, if the equation be
integrable algebraically, the numerator of the rational function Z
is a polynomial in z of the same degree as the denominator*.

* This form of equation is discussed by Klein in the memoir already quoted
(note, p. 185) : reference should be made to it for further developments.
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Zz. 1. The equation
d?w 418 —z41
dz2 716 22 (z 1)2

is integrable algebraically. For

w=0

2Z—z+1
LE)=%s z -1y
3 3. 3
=16 16 ___ 16
(z—1)2 " 22 z2(z—1)’
so that
Z=z;
= <1 ) whence v,=2 ;
H= i( ——~> whence v; =2 ;

iP]l-‘

( ;;2— — 1) , Whence vy =2.

We thus have an instance of case II, when n=2. All the conditions are
satisfied : and thus (§ 60) the integrals of the equation are given by

(82— 1)
—ds T4

. [ds -3 _[(ds -4
wy =8 d—Z> 5 Wo== ‘(E .

Ez. 2. Construct a linear differential equation of the second order in its
normal form, such that the quotient s of two of its solutions is given by
(s8+14st+1)8  (z—1)%
108s (st —1)2 4z

Ez. 3. Consider the equation
1 d%w | 22— 823 — 1522 — 8z+2+ 5 (2—1)2

w di? 922 (22 — 1)? Sz(2+1) =0.
‘We have
4 8,3 _ 1522 9 —1)2
() _ 24— 85— 152" — 82+ 3 (z—-1)
922 (22 —1)? 2z (22+1)2
2 3 3 B ,
4

=3+ Lo 18+

Ry S R S R
the terms indicated constituting all the infinities of Z () of the second order.

First, it is clear that there is only one root of Z’ other than repeated roots
of Z and Z—1; it is characterised by
t=1, 7r=1.

As regards the remaining terms, the numbers »;, vy, v3 must be 2 or 3; so
that we either have an instance of case II with »=3, or we have an instance
of case III.
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If it were possibly an instance of case IT with »=3, then we must have

‘ 2
3 <1 ——@2 =%, so that »,=2, B=1, b=4,

vy

N a2 .

I<1“'—é =, e vy,=2, a=1, a= —71,
Ve
2

i(l——~2 =2, ciienins v3=3, y=1, ¢=0,
V3
¥?

1 (1——;3 =35§, ......... l'3——-3,‘y—2, C———].,
3

and therefore
z417
Z_Az(z-}—l)"

with the condition that Z=1 when z=0=1, so that 4=<. But then

[g—

R Y
== G (2224 37z 4-7),

shewing that Z’ does not possess a root z=¢=1; hence the example is not an
instance of case II.

If therefore the equation is algebraically integrable, it must be an instance
of case III. 'We must have therefore

1=2 =3, r,=3;

so that
2
Py <1—-vB—2 =%, whence 8=1, b=/,
1
2
l(l——vz =, veeens B=1,0=—z;
and then, either
2 ¥2
H1-5)- 1 (-5
giving
a=1, a=0, y=2, c¢=—1;
or else
(12 ‘y
4%(1_”22):35@; l<1_7g 8>
giving

a=2, a=-—1, y=1, c¢=0.
Taking the former, we have

z
= e

from the poles and zeros of Z; as Z=1, when z=%, we have 4 =2, so that

2z 2241
Serre T Erne
so that Z~1 has the roots z=v, z= —7; but

-2
T (z+1)3’

’
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shewing that Z’ does not possess the root 1; and thus the first assignment of
values is not possible.

Taking the latter, we have
2
=
z

from the poles and zeros of Z; as Z=1 when z=1, we have 4=4%, and then

(e +1)2 _ 241
I="gy s Zol=mg
, 22-—1
=%z
so that Z—1 has z=¢, z= —¢ for roots, and Z’ has z=1 for a root.

The preliminary conditions are thus satisfied ; it is easy to verify that
this value of Z gives the complete value of 7(z). Hence, after the results of
§ 60, the integral of the differential equation is given by the equations

<s4+282¢3-1>3=(z+1>2

s-2ty3=1) T 2

ds\ " ¥ ds\ " ¥
=3\ . y Wy= d—z> :

so that the differential equation is algebraically integrable.

Ex. 4. Shew that the equations
d*w dw
2(1-2) 75 +(§ - §2) 7 +asw=0,

d2w daw
s(1=2) 5 +(3—2) o +dsw=0,

are integrable algebraically : and obtain their integrals.

Ex. 5. Taking the equation, which has three singularities in the finite
part of the plane and for which infinity is an ordinary point, in the form
given in § 49, so that, by § 53,
1 /
— a[ y
‘I’ ‘I’ ( T)

where §»=(z—a;) (2—ay) (- a3), and My =4 (a—a'), M=% (B—F'), As=%(y—7);
discuss the possibilities of algebraic integrability for the values

% (1 - )\1‘2)
(z—a)*

1(z)=

3
2
r=1

M=% M=%, A=1%
In particular, shew that, if ay= —1, @;=0, then

;= —182, (Klein.)
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EqQuaTioNs oF THE THIRD ORDER WITH ALGEBRAIC INTEGRALS.

63. When we pass to the consideration of linear equations of
order higher than the second which are algebraically integrable,
the discussion can be initiated in the same way as for equations
of the second order; but the detailed development proves to be
exceedingly laborious, and it has not been fully completed for
each case. Only a sketch will here be given.

Dealing in particular with the linear equation of the third
order, we take it in the form

w” + 3pw” + 3qw’ + rw =0,

where p, q, r are rational functions of z, subject to the limitations
imposed by the regularity of the integrals in the vicinity of each
singularity (o included). If w,, w,, w, denote three linearly
independent integrals, we have (§ 9)

17 7" 77 —
wl ) Ws 'ws =Ae 3J‘pdz,

|
i’wl, Wy , Wy |

so that, as w,, w,, w, are algebraic functions of z, it follows that p,
a rational function of z, must be of the form

_ Ldu

T udz’
where w» is an algebraic function of z. This is a first condition : it
is the same as for the equation of the second order (§ 61): and it

is easily obtained as a universal condition attaching to any linear
equation which is algebraically integrable.

Now substitute for w by the relation
welPdz = y,

and let %, ¥,, y; denote the three integrals corresponding to
w;, W, w;; owing to the character of p and the functional
character of the integrals w, the integrals y are also algebraic
functions of z. Thus the equation in ¥, being

yl/l + SQy/JrR —_ 0,
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where

Q=g—p'—p }

R =1r—3pqg + 2p*— p” ’

is to be algebraically integrable. Denoting by s and ¢ the
quotients of two integrals by a third, we have

G We_Ys Wi _ T
w, U ’ Wy Y )
The quantities s and ¢ are algebraic functions of 2 for equations

of the class under consideration.

The effect upon a fundamental system, when the independent
variable describes a circuit enclosing one or more of the singulari-
ties, is represented by relations of the form

Y,=a y1+b Yo+ C Ys

Yo=ad'y+0 g+ ys

Ys — a///yl + bl/y2 + c//ys
If S and 7 denote the corresponding integral-quotients, then
a’ +bs+c't _a’ b s+t

8= a+bs+ct’ T a+bs+ct

Now if the equation is integrable algebraically, there can exist
only a limited number of different sets of values of the integrals;
so that the number of sets Y;, Y,, Y, is finite, and the number of
simultaneous values of S and 7' is finite. If then we know all the
homogeneous linear groups in three variables, or (what is the
same thing) all the lineo-linear groups in two variables, which are
finite, then each such finite group determines its set of values of
Y,, V,, Y, and the set of values of S and 7', and so it determines
a linear equation the integrals of which are algebraic: and con-
versely, each such linear equation is characterised by a finite
group. '

64. In order to utilise the method for the present purpose
on the lines adopted for the equation of the second order, it is
necessary to deduce from the differential equation certain differen-
tial invariants involving s and ¢, these invariants being expressed
in terms of Q and R. This can be done in two ways. It is clear
that, as s implicitly contains five arbitrary constants, it satisfies a
differential equation of order five; and that, as ¢ is of the same
functional form as s, it satisfies the same differential equation.
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On the other hand, as s and ¢ combined contain eight arbitrary
constants implicitly, it may be expected that the two differential
equations, which they satisfy and which will involve both of them,
will be each of the fourth order or will be equivalent to two of
the fourth order. The single equation is, for some purposes, the
more important in the formal theory of the linear equation, which
will be left undiscussed; for the present purpose, the two equa-
tions prove to be the more important. Accordingly, we substitute

sy, for y,, and ty, for y,,
in turn in the equation
y" +3Qy + Ry=0;

whence, remembering that y, is an integral of this equation, we
have
s’y + 38"y +(BRS +5") yy = O}
3t1ylll + 3t11y1/ + (SQtl + tl//) y] — O
Differentiating each of these once, and substituting for y" from
the linear equation which it satisfies, we have
65"y," + (48" — 6Qs) ' + {7 + 3Qs” + 3(Q' — B) '}y = O}
6ty + (4t —6Q) y' + " +3Q" +3(Q —R)t} y, =0

2

so that there are four equations, linear and homogeneous in the
quantities %", %,’, .. When the ratios of »,”: y,: y, are eliminated
from the first pair and the first of the second pair, we have
s, 48", 6s”|—8Q1|s”, 28, 0 |—3(R—-@)|s, 0, 0]=0;
8///’ 38//’ 381 8’”, 38//’ 381 S///’ 3811’ 38/
t”, 3¢, 3t t", 3t”, 3¢ t'”, 3¢, 3¢
and when the same ratios are likewise eliminated from the first
pair and the second of the second pair, we have
£, 4, 68" |—3Q|t", 2t', 0 |—=3(R—-Q)|t, 0, 0 |=0.
s”, 88", 3¢ s”, 3s”, 3¢ s, 3s”, 3¢
", 8t”, 3t t”, 3t”7, 3t t”, 3t”’, 3t

These, in fact, are the two equations, each of the fourth order,
satisfied by s and ¢

F. 1IV. 13
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Suppose now that two solutions (other than the trivial solu-
tions, s = constant, ¢ = constant) are known, say

s=o, t=T.

Solving the first pair of the foregoing equations for z,": ¥,
we have
3 (O_IITI — O_ITII) yll + (o_/ll’r/ — O_IT/I/) yl —_ O,
and therefore
—1

Y= O'”‘T/—O"T” 3’
neglecting an arbitrary constant arising as a factor on the right-
hand side. Hence a fundamental system of integrals of the
original equation is

(O',IT, — O_IT// - %} o O-//T/ — O—I'T,/ - %, T o_//T/ — ()_/'r// - % ;

or the original equation can be integrated if two particular
solutions of the equations in s and ¢ are known.

65. Moreover, from the source of the two equations which serve
to determine s and ¢, it is to be expected that, when the above
two (being any two) particular solutions s= o, ¢ =7, are known,
the complete primitive of the two equations is

8_a,'+b'0'+c"'r _ a’+ b+ 't
T a4-bo+er’ T a-+bo+er

2

where the constants a, b, ¢, &/, V', ¢/, a”, b”, ¢’ are arbitrary so far
as those two equations are concerned. This result can be stated
in a different form. The two equations in question can be written

A" +4Bs” + 6Cs" —8Q(As" +2Bs)—3(R— Q") As' =0,
At + 4Bt + 60" —3Q (At” +2Bt) — 3 (R~ Q) At =0,
where A, B, C are the three determinants in

s 8s”, 3s
t///, 3t’, 3t

Now let
w,=8" t =8t ,
u2 —_ SII/ t’ _— Slt/// ,
u3 — S//// t, — Slt/l// , vz — Sl’/ t// — S//t///’

Uy = 7Y — s/t/////, vy = 7 — S//t////,




65.] OF THE THIRD ORDER 195

so that
A =9y, B=—3u, C=3u,;
then solving the preceding equations for ¢ and for R — ' in turn,

we find

2 2
3Q_”3_+_l’2 4 (?> = I(s, t, 2)
1 1

and H
A 3
— 2T (R—Q)=9 %_G”ﬁﬁ”}%ﬂ_*.g (%) =J (s t, 2)
1 1 1
say. The latter equations may be regarded as the equivalent of

the two equations, which have been solved ; and therefore we may
expect that

(CLI—F b,S+C,t q{//+bus+ C”t ‘
a+bs+ct’ a+bs+ct’

7 7 ’ 174 7”7 77
J<a +bs+c't a’+b's+c t’ z>=J(s, £ 2);

a+bs+ct’ a+bs+ct
the actual verification, which is comparatively simple, is left as an
exercise. Clearly these are generalisations of the property of the
Schwarzian derivative, represented by

as+b —{
{c_—s—)—d’z ={s, z}.

The two invariant functions / and J were first indicated* by
Painlevé ; they subsequently were simplified to a form, which is the
equivalent of the above, by Boulanger+.

Z> =1I(s, t, 2),

The invariance of the functions I and J, as indicated, exists
for lineo-linear transformation of s and ¢ There is also an
invariance for any transformation of the independent variable z;
for we easily find the equations

L(s,t,2)=1(s,t, Z)Z*+ 2 {Z, 2},

Tty ) =T (s, t, ) B2 =91 (s, t, £) ZZ' =9 & (Z, ),

where Z is any function of z. Also
, d
I (st 2)= e (I (s, t, 2)}
=1'(s, t,Z) 2%+ 21 (s, t, Z) Z'Z" + 2 % {Z, 21,
* Comptes Rendus, t. civ (1887), p. 1830.

+ See his Thése, Contribution & Vétude des équations différenticlles linéaires
et homogenes intégrables algébriguement, (Paris, Gauthier-Villars, 1897).

13—2
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and therefore

T(s t, )+ 31 (5, 6, )= [ (5, &, Z) + 317 (5, 8, Z)] 27,
or
J(s, b 2)+ 817 (s, 8, 2)
is an invariant for any change of the independent variable z.
Dropping a numerical constant, this is the function

R-3%

2 dz’

which is the known Laguerre invariant in the formal theory; that
is*, if the equation
y//l + 3le + Ry — O

be transformed, by the relation

dZN\1
y=Y <dz > ’
to the form - -
3
oMs+3Qle+R Y=0,
then 0
dQ 5 A6
~15=(r-152) ()
As the transformation
dZN\"?
y=Y <dz )

leaves the quotient of two integrals transformed only as by a
lineo-linear substitution, it follows that the preceding function, say

L(s, t,2)y=J(s, t, 2)+ 31" (s, t, 2),

is unchanged by lineo-linear transformations effected on s, ¢;
also, except as to a factor Z”, it is unchanged by transformation
effected on the independent variable. Now

uy =y vy, v =y,
/’
Uy = Uy +Vy, U = U,
so that we have

L(s, t, 2) = u, + ddv, 49u2

2u, s (4 + 20,) + 20 < 1>

* See a paper by the author, Phil. Trans. (1888), pp. 383, 390. Laguerre’s
invariant was first announced in two notes, Comptes Rendus, t. Lxxxviz (1879),
pp. 116—119, 224—227.
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which is the full expression of Laguerre’s invariant in terms of
the derivatives of s and ¢

66. The next stage is to associate these invariants with the
algebraic equations in two variables, which admit of one or other
of the finite groups. These groups have been obtained by Jordan*
and Valentinert; and references to other writers are given by
Boulangeri. A method of using the results is outlined by Pain-
levé§ as follows.

Let ¢ (s, t), ¥ (s, ) denote two irreducible invariant functions
of a finite group of order IV; the functions are given by Klein|| for
the group of order 168, and by Boulanger (l.c.) for the group of
order 216. As these functions are invariable for each substitution
of the group, and as s, ¢ are algebraic functions of z, it follows
that ¢ and +r are rational functions of z, say

¢ (s, ) =D (2), ¥ (s t)="T(2)

Conversely, taking ® and ¥ to be arbitrary rational functions of z,
these two equations give rise to N sets of simultaneous values
of s and ¢ as algebraic functions of z; and if any one set of
values be represented by o, 7, all the others are obtained on
transforming o and T by all the N —1 substitutions of the group
other than the identical substitution. These two equations are
used to obtain the first four derivatives of s and ¢ with regard to z;
and with these derivatives, the two invariants

I(s, t, z), J(st 2)

are constructed. The functions so formed involve derivatives of
® and ¥; and the coefficients of these quantities are rational in
the derivatives of ¢ (s, £) and Y- (s, t). As ] and J are invariantive
for the group, the coefficients specified are rational functions of s
and ¢, which must be invariantive for the group and are therefore
rationally expressible in terms of ¢ and , that is, in terms of ®

* Crelle, t. uxxxiv (1878), pp. 89—215; Atti della R. Accad. di Napoli, t. viix
(1879), No. 11.

1 Kjgb. Vidensk. Selsk. Skr., 6 R., t. v (1889), pp. 64—235.

1+ In the These, already cited on p. 195, note.

§ Comptes Rendus, t. civ (1887), pp. 1829—1832, ib. t. cv (1887), pp. 58—61.

|| Math. Ann., t. xv (1879), pp. 265—267.
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and V. Thus I(s, ¢, 2) and J(s, ¢, 2) would be expressed as
rational functions of z. Accordingly, taking

3Q=1(s, t, 2),
R=31"(s,t,2)— & J(s, ¢, 2),
we have the differential equation
¥y + 3Qy + Ry = 0.

The earlier investigations shewed that its integrals are expressible
in terms of s, ¢, and their derivatives; and we thus have a method
of counstructing all the linear differential equations of the third
order which are integrable algebraically. There is a double
arbitrary element for each group, viz. the arbitrary forms of the
rational functions ® and W¥; and there is a limited number of
groups.

67. While this outline is simple enough in general descrip-
tion, the application to particular cases requires extremely elabo-
rate calculations. These have been effected by Boulanger for the
group of order 216; they do not appear to have been yet effected
for any one of the other groups. As, however, the enumeration
of the finite groups in two quantities s and ¢ is complete, the
subject offers an interesting, if a laborious, field of investigation.

In the absence of the complete table of equations, for all the
finite groups and for two arbitrarily assumed functions ® and "V,
it is not possible to use a method, analogous to that of § 62, to
determine whether a given equation of the third order is algebrai-
cally integrable or not: it is not even possible to recognise to
which of the groups it would belong if it were algebraically
integrable. Indications of two general methods of procedure have
been given by Painlevé and have been developed to some extent
by Boulanger; but the methods, while general in description,
suffer from the same kind of difficulty as the method indicated
for the construction of the equations, for the calculations are
exceedingly laborious. We have seen that, if two particular
values of s and ¢, say o and 7, are known, then an integral of
the differential equation is given by

-1
y — O’”'T, _ 0_/7_//) 3,
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Hence, if we take

¥y

y 2

U =

we have

gy dT =d T
U=—3 5 >
o’'tT — o't
so that the number of values, which u can acquire, is equal to IV
or to a submultiple of IV, where IV is the order of the associated
group: let the number of values be n. Now if y is algebraic,
every zero of y and every infinity of y are of a finite order, which
is commensurable in every instance ; and therefore all the infinities
of w are simple poles with commensurable residues. Substituting
for » in the equation

y" +3Qy + Ry =0,
we find

u”’ + Buu +uwP+ 3Qu + B=0,

a non-linear equation of the second order satisfied by u. This
equation renders it possible to test the character of the poles and
the residues of w. If these are of the appropriate type, then the
equation is satisfied by a relation of the form

Awr+ A w4+ ...4+ 4, 3u+A4A,=0,

where 4,, 4,, ..., 4, are polynomials in z, and 4, is the product
of the factors corresponding to the poles of u. Then there is the
further test that this algebraic function » must be such that

ej'udz

is algebraic. Manifestly, the calculations will generally be too
elaborate to make the method effective in practice.

EquaTtioNs oF THE FourRTH ORDER.

68. As pointed out* by Painlevé, the processes just indicated
can formally be applied to linear equations of any order: but of
course, if any advance towards final conditions is to be made, it is
necessary to know all the finite lineo-linear groups of transforma-
tions in a number of variables less by one than the order of the

* Comptes Rendus, t. cv (1887), p. 59.
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equation. Towards this enumeration of groups in three varia-
bles, which are associated with the linear-equation of the fourth
order, Jordan* has constructed a characteristic numerical equation
which, when completely resolved, would indicate the order and
the composition of each such group: but the resolution is exceed-
ingly long and, owing to the number of cases that must be
considered, it has not been completed. In these circumstances,
no detailed results of a final critical character can be obtained for
an equation of the fourth order or of any higher order: the only
results obtainable are of a general character,and arise through the
association of groups in general with linear equations.

The equation of the fourth order, which may be written
W’ + dpw” + 6quw’ + drw’ + sw =0,

can be transformed by
welPdz = y
into
yll// + Gle/-I_ éRy,—i- Sy —_ 0.

We denote a system of four integrals by ., ¥., ¥s, vs, and we
introduce three quotients s, ¢, w, such that
Yo =118, Ys=1t, Ys=7U;

then s, f, © are simultaneous solutions of three equations of the
fifth order in the derivatives. If o, 7, v are a special set of
solutions, then

12/ 174 7 -l
3/1 = c , o, 0 z’
177 ’/ ’
T, T, T
717 4 4
v, v, VvV

and
Yo = Y0, Ys=U1T, Ys= Y1V.
The complete primitive of the three equations is of the form

s t w
a +bo+cr+dv " +bo+cr+dv a’ +b"c+c"r+d"v

1
T a+botcer+dv’

* Atti della R. Accad. di Napoli, t. viri (1879), No. 11, p. 25; instead of
dealing with lineo-linear transformations in three variables, Jordan deals with
homogeneous linear substitutions in four variables.
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There are three functions of the derivatives of s, ¢, u, with regard
to z, which are invariantive for substitutions such as the preceding
relations expressing s, ¢, u, in terms of o, 7, v; and they are
equal to

Q@ R-% 59 50
If the determinants
3+ (W), 3+ (sVEW), D& (sVHW), =+ (st7u)

be denoted by p, p., pa, ps respectively, then

_3pst5ps ()P ,
Q"_ 12[) 16 (P) _Il<8) t’ u, Z),

say ; if, in addition, the determinants
S+ S, S+ (8VEW)
be denoted by p, and p, respectively, then

dQ) _ 2P5 + 5p, _ P (6P3 —+ 25P2) 5 [P 8 _
(R T dz) 12p 72p? kS <;> =L(s b, 2),
say; and if the determinant = + (s"s”’s’") be denoted by ps, then
dR . .
S—— —3@= 4 ~is; 2(6P1P5+25P1P4+6P2P3+10P2)
3 . 2
+ 3—2_’)3 pi* (ps + 5p2) — 15 (%)
= I,(s, t, u, 2),

say. The three quantities I, (s, ¢, w, 2), 1,(s, t, w, 2), I; (s, t, u, 2)
are unchanged when lineo-linear substitutions are effected on
s, t, w; and the combinations

I,—%1/,
I3 + 212' - %Illl - §6§ 1'12’

are also unchanged, except as to a power of Z’, when z is replaced
by Z, any function of 2.

The proofs of these various statements are left as exercises.
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EQUATIONS, HAVING ALGEBRAIC INTEGRALS, ASSOCIATED WITH
HoMmocENEOUS FoRMS.

69. It has already (§ 58) been stated that the discussion of
the equations, which have algebraic integrals, has been associated
with the theory of homogeneous forms: the association can be
seen to occur as follows.

Using the preceding notation of § 63—66 for the quantities
connected with any linear equation of the third order, we denote
by s and ¢ the quotients of any two by the third out of any three
linearly independent integrals of the equation

Py

d3+3Q +Ry 0.

If, then, all the integrals of this equation are algebraic, both s
and ¢ are algebraic functions of z; they may therefore be
regarded as determined, in the most general case, by a couple of
distinct algebraic equations, say

Si(s, t,2)=0, fi(s,t,2)=0

g: (s, 2) = O, gs (¢, 2) = 0.

Eliminating z between the pair of equations in whichever form
they are taken, we obtain a relation of the type

Fo(s, t)=0,

where F, is a non-homogeneous polynomial in s and ¢, because it
is the eliminant of two polynomials. Replacing s and ¢ by y, + v,
and y; + 7, respectively, and multiplying by the proper power of
4, to free the equation from fractions, we have

F(yl: Ye» 3/3) =0

where F' is a homogeneous polynomial in its arguments or, in
other phrase, is a ternary form in 7, v., ¥s.

or by

Further, the above form of equation is obtained from

ol%u_’-_j d*w
dzt " P gz

by the transformation

+3q%——+rw 0,

rwefpdz =1,
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and therefore

F (wefr @, wpelr®  welrd?) =0,
that is,
F<w1: wz: ws) = 0;

on rejecting the factor em/?22, which occurs because F is a ternary
form (say) of order m. Hence it follows that when the integrals of
a linear equation of the third order are algebraic functions, a
homogeneous relation of finite order exists among any three linearly
independent integrals.

Moreover, when any other set of fundamental integrals Y3, Y3,
Y, is taken, we know that

Yy = &Y+ a Y, +aYs
Yo = b Y, 4+ b,Y, + b, Y )
Ys = C1171 + Y, + Y,

where the coefficients a, b, ¢ are constants. The variables in the
homogeneous ternary form are therefore subject to linear trans-
formation; and thus the theory of ternariants can be associated
with those homogeneous linear equations of the third order, which
have their integrals algebraic. The various cases will arise
according to the order of the form F#; this order is always
greater than unity, because the integrals considered are linearly
independent.

If, still further, we choose to combine the geometry of the
ternary form with the form in its association with the equation,
then the preceding algebraic relation #'=0 is the equation of an
algebraic plane curve referred to homogeneous coordinates: the
curve is usually called the wntegral curve.

We may proceed similarly with an equation of the fourth
order
diw d’w d>w

dw
a;+4pdzg+6qd—z2—+4‘?"a;+sw=0,

when all its integrals are algebraic. If we choose, we may trans-
form it by the relation

weh’dz =%,
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the quantity e/?92 must be algebraic, because

= (et

wl 3 w2 > w3 3 w4 - Ce fp dz)
’ ’ ’ ’

wy ’ w2 ’ w3 y Wy
” 7" ,” ”

W, Wy, Wy , Wy

”r 177 1777

117
wy , We , W3 , Wy

where C is a non-vanishing constant; and the equation in y,
which is of the form

dy ., d¥ d

dot AP L+ Py =0,
has all its integrals algebraic. Taking any four linearly inde-
pendent solutions ¥, ¥, ¥s, ¥4, and writing

Py1=3/2, O-yl=y3’ Ty1=y4’
then as p, o, T are algebraic functions of z, they must be given
by three equations of the form

Sfilp, o, 7, 2)=0, fi(p,o,7,2)=0, fi(p,o, 7,2)=0,

or of simpler equivalent forms, which are completely algebraic in
character. Eliminating z between the first and second, and also
between the first and third, and taking the eliminants in a form
free from irrational quantities if these occur, we have two
equations
Fy(p, o, 7)=0, Gy(p, o, 7)=0,

two mnon-homogeneous polynomials in p, o, 7. Replacing these
quantities by their values in terms of v,, s, ¥s, ¥4, and multiplying
each equation by the power of y,, appropriate to free it from
fractions, we find

F(y1s Yo> Yo, Yyu) = 0}
G(yl, Yo, Ys, y4) =0
where F" and G' are homogeneous polynomials in their arguments
or, in other phrase, are quaternary forms in ¥, ¥., ¥s, ¥Ya- As in
the case of the cubic, these equations imply the further equations
F (wy, w,, ws, w4)=0}
G (wh w2a 'ws; ’LU4) = O

B

so that, when the integrals of a homogeneous linear equation oy the
Sourth order are algebraic functions, two homogeneous relations of
finite order exist among any four linearly independent integrals.
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Again, when the variables v,, ¥, ¥s, y: are replaced by any
other set of fundamental integrals Y,, Y,, ¥;, ¥, the two sets of
variables are connected by homogeneous linear relations: and
thus the theory of quaternariants can be associated with those
homogeneous linear equations of the fourth order which have
their integrals algebraic. The various cases will arise according
to the orders of the forms F and (G'; these orders are always
greater than unity, because the integrals ¥, ¥., ¥s, ¥4 are linearly
independent.

We may also combine the geometry of quaternary forms with
the forms themselves as associated with the equation. In that case,
each of the equations =0, ¢ =0 is the equation of a non-planar
surface in three dimensions referred to homogeneous coordinates:
the two equations combined determine a skew curve, which ac-
cordingly is the entegral curve.

Similarly, in the case of equations of the fifth order, of which
all the integrals are algebraic, we have three homogeneous non-
linear relations among any fundamental set of integrals; and there
are corresponding associations with the theory of homogeneous
forms in five variables and the allied geometry. And so also for
linear equations of higher orders.

Note 1. There cannot be two homogeneous relations among a
set of three linearly independent integrals of an equation of the
third order: for they would determine a limited number of sets of
constant values for the ratios ¥, : %, : ¥;, contrary to the postulate
of linear independence.

Similarly, there cannot be three homogeneous relations among
a set of four linearly independent integrals of an equation of the
fourth order: for their existence would imply a corresponding
contradiction of the same postulate. And so for other equations

of higher orders.

It might however happen that, for an equation of the foirth
order, only a single homogeneous relation exists among four
linearly independent integrals; that, for an equation of the fifth
order, the number of homogeneous relations among a fundamental
set of integrals is less than three; and so on. If the relations thus
given in each of the respective cases are the maximum number of
homogeneous relations that can exist, we can infer that not all
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the integrals of the respective equations are algebraic: and a
question arises as to the significance of the respective relations.

Note 2. The converse of the general argument must not be
assumed valid : that is to say, the existence of a homogeneous rela-
tion between the members of a fundamental system of integrals
of an equation of the third order is not sufficient to ensure the
property that all the integrals are algebraic. Thus we know
that a number of transcendental functions of a variable can be
connected by algebraic relations: and such instances are not the
only possible exceptions.

70. The preceding method of associating the theory of forms
with linear equations does not apply directly when the equation
is of the second order: for a homogeneous relation between two
integrals would imply one or other of a limited number of con-
stant values for the ratio of the integrals, which accordingly
could not be linearly independent. This deficiency, however, is
rendered relatively unimportant, because Klein’s method explained
in §§ 59—62 for the equation of the second order gives the
complete solution of the question propounded as to the cases
when all its integrals are algebraic. The results there given
can be (and have been) obtained by processes directly connected
with the theory of binary forms. After the preceding exposition,
the analysis is mainly of formal interest, and adds little to
the knowledge of the solutions regarded as functions of the
independent variable.

It will be sufficiently illustrated® by one or two examples.

Ez. 1. We take the differential equation in the form

and consider the value of a homogeneous polynomial function of two integrals
¥, and g,, linearly independent of one another. Let this polynomial be of
order n, and write

S @1 y2)=(0, @15 - Y15 .7/2)"=y2” (@, Qs ovey @, ¥, 1y
=Y
* For fuller discussion and details, see Fuchs, Crelle, t. Lxxx1 (1876), pp. 97—
142, ib., t. Lxxxv (1878), pp. 1—25; Brioschi, Math. Ann., t. x1 (1877), pp. 401—411;
Forsyth, Quart. Journ., t. xxx (1889), pp. 45—78.
A memoir by Pepin, ‘“ Méthode pour obtenir les intégrales algébriques des équations
différentielles linéaires du second ordre,” Rom. Acc. P. d. N. L., t. xxx1v (1882),
pp. 243—389, may also be consulted with advantage.
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say, where s is the quotient y,<+y,. When substitution is made for y; and
¥, in terms of x, let the value of f be ¢ (z), so that

JF @15 ¥2) = (%)

Now if H (y,, ¥2)=H (f) be the Hessian of £, and if H (u) be the Hessian
of w, so that

H(f)=(agay—a’ Ty, )74
H (u) = (agay—a% .. Js, 1)1
we have

H(f)=ys™~* H (u),

. o [OF O (BN
H(f)=n"2(n-1) {aylzay—f— 09195 }’
H(u)=n‘2(n——1)“1{n“d—u“ ——1)<du>}

‘We have also

Y ZZZ{} - % =constant=C,
say, so that
o s
25 dx =C.
Now
yu=o¢(x);
hence

ZZ_OE_-/? C1duw 1d¢p

Yo dx ' yluds ¢dx’

Differentiating, and substituting for the second derivative of y,, we have

I—— (gl,‘yZ> 20 dy, 1 du  C% d%(logw) d?(log¢)
Y2 \dx yp dow u ds oyt ds dz?
Multiply by », and add the squares of the sides of the preceding equation :
then
C2( d?(logu) , 1 [du 1 /dp\2 ,  d2(log )
n? S L (ZE '
T (&)} =30 (&) +n =25
The coefficient of C%y,~* on the left-hand side is
n d?u
i weva(%)
n? (n—1)
= -—uz— H(’l&)
it (uny L2
so that

(=1 CH (1, )= {5 78 - o Y i} g,

thus expressing the Hessian in terms of functions of # : let this be written

H (yy, 72)=P?x-
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If now & (7,, ¥,) denote the cubicovariant of f, so that
. 1 of o of oH
® 0 99=Gu=3) (i, 0y~ 905 s
=(ay2ay — Bayayda + 20,3 .. Ly, ¥o)*r 6,

then, proceeding in a similar way, we find

¢? X X 2P}

q)(yl’y‘.)) 'n(n 2)0 +4¢)d

And so for other covariants.

As a special case¥, let it be required to find the value of ¢, if when the
binary form is the quadratic
oY1+ 20,91 Y5+ gy,

¢ (#) is a root of some rational function of #. In this instance,

H (Y1, Y2) = o5 — a1
a constant ; hence ¢ (#) is either a rational function, or is the square root of
a rational function. The integration is immediate ; for

Yo& (28?4205 + ag) = ¢ (@),

yids =CCdz,
whence
ds Cdx

ays?+2a,s+ay = ¢ (x)°

The value of s is thus known : and the consequent values of y, and y, are
immediately givent.

Ex. 2. Shew that, if the integrals of the equation

d2y
d—xé + s Y= 0
are such that

(@s @15 Gay A3y Y2)2 = (2),

and ¢ is a root of some rational function of #, then ¢* must be rational ; and
obtain the relation between 7 and ¢ (#).

Ez. 3. The integrals of the equation

LY v 1y=0
are such that

(@5 @15 Ay, @3y AJ Yy, Yo ) =P (%),

and ¢ () is a root of some rational function of »; shew that, unless ¢ (z) is
actually rational, the quadrinvariant of the binary quartic must vanish. In
either case, find the relation between I and ¢ (z). (Brioschi.)

* Fuchs, Crelle, t. Lxxx1 (1876), p. 116.
+ See my Treatise on Differential Equations, § 62.
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Ez. 4. Find the value of 7 in the equation

&y

d-}-lyo

when, in the relation
ay,"+ by = (#)

connecting two integrals, the function ¢ is supposed known.

Ex. 5. Shew that, if two integrals of the equation

@y _pdy
dor=F dut Y

are connected by a relation
Ay ®+ Byyys+ Cys* + D=0,
where 4, B, C, D are constants, then

dQ —2P@=0.
Assuming the condition satisfied, integrate the equation.

Ez. 6. Two integrals of the equation

PP gy
are connected by a relation of the form

Ays®+ By %5+ Conyy® + Dys* + E=0,
where 4, B, C, D, E are constants : prove that

a2 aQ AP . . oo
- 5P 25— 3¢*+ 6P*Q=o0.

209

(Appell.)

Shew that the quantity on the left-hand side of this conditional equation is

invariantive for change of the independent variable; and hence, assuming

the condition satisfied, shew that the equation can be transformed so as to

become a particular case of Lamé’s equation (Chap. 1x).

(Appell.)

EquatTtioNs oF THE THIRD ORDER AND TERNARIANTS.

71. Returning now to the differential equation of the third

order in the form
d’y

d53+3Q +Ry 0,

and supposing that all its integrals are algebraic, we proceed to

consider the equation

F (y1, 425 ) =0

14
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where F is a homogeneous polynomial in any three linearly
independent integrals. For this purpose, it will be convenient
to have an equivalent simpler form of the equation which is given
by a known transformation*®, viz. we have

where
y%”‘" d (@)3:5" —392, 2 =10
If we take

the last of these relations may be replaced by the equation

dz0
e + Q8 =0.

The equation among any three integrals is
F (uy, uyy, ug) =0

Consider the simplest case; it arises when n =2, so that ¥ is
then a quadratic polynomial involving six terms. Writing

Ay = A Uy + AUy + A3Us,

where a,, a,, a; are umbral symbols, the equation can be symbolic-
ally represented by
a.2=0.
We have
Ay Oy = 0,
Qoy Ayt +- Ay® = 0,

r’

where «' is duw/dt, and so for u”.
replacing «w” by — Iu, we have

Ditferentiating again, and

— Ta,2 + By yr =0,
that 1is,

gyt Ayt = 0,

on using the original equation. Similarly, on differentiating this
result,
— Tty + Ayt =0,
that is,
A = 0:

* See a paper by the author, Phil. Trans., (1888), p. 441.
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on using the first derivative of the original equation. Differen-
tiating once more, we have
lTaya, =0,
so that either I = 0 or a,ay = 0.
If 7 is not zero, then we must have
Qu Oy = 0,
and therefore, by the second derivative of the original equation,
a2 = 0.
Hence, on the present hypothesis, we have
=0, auaw =0, a2=0, auty =0, awayw=0, a,*=0.

Now each of these equations is linear and homogeneous in the
six real coefficients that occur in a,?; eliminating these coeffi-
cients, we obtain, as equal to zero, a determinant which is the
fourth power of

Uy 5, Up , U |,

’ ’
Uy , Uy , Ug

3

174 Vi4 7"
U, U, Ug

and the latter ought therefore to vanish. But because u;, u,, us
are linearly independent, this determinant (being the determinant
of a fundamental system) does not vanish—it is a non-zero
constant in the present case. Accordingly, the hypothesis that
I is not zero is invalid.

Hence I =0; and therefore, on returning to the original
equation, we have

dQ
3 2%
R-—3 7 =0
Writing
dP
3Q=4P, E=2-r,
our original equation becomes
d*y dy ar
dzs—l—éLP S +2 - y=0.

Any three linearly independent integrals are connected by a

quadratic relation

F(y1, ¥, ys)= 0.
14—2
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To obtain the integrals, we note that one value of w is a constant,
say unity; thus

dz
=z
where
20, poss

Thus three integrals of the original equation are 6.2, 6,0,, 6.2,
where 6, and @, are two linearly independent integrals of the
latter equation of the second order.

It may be noted that three independent integrals of the
u-equation are 1, ¢, *; so that

dt dt dt

‘%672721’ Z/zbE:t, 3/3&;'—‘&

and therefore
’ Y: — y1Ys =0,

thus verifying the existence of the quadratic relation obtained in
a canonical form.

Assuming € known, we have

dt 1
dz 6%’
so that
‘_ dz

ﬁ?
and thus three integrals of the original equation are
dz dz)?
2 2 ) 77 -
e, 6%, 92{~ 92} .
The comparison of these integrals with %, 6,0,, 6,? is immediate ;

for it is a well-known theorem that, if 8, is a solution of an
equation -
a0
dz?
then another solution, which is linearly independent of 6,, is given
by

+ P6=0,

dz
AN

Denoting this by 6,, the above three integrals are at once seen to
be 6.2, 6,0,, 6.,

6,




71.] EXAMPLES 213

Ez. 1. Prove that, if % be a solution of the equation
d3y apP
TP e g y=0,

the primitive can be expressed in the form

_y:Au-l—Buexp(a [Li—x)+ Cu exp (—af%),

where 4, B, C are arbitrary constants, and a is a determinate constant.
‘What is the primitive when a vanishes? (Math. Trip. Part 1, 1895.)
Ex. 2. Prove that, if three linearly independent integrals of the equation,
a3y

da® ™

be connected by a relation F (y,, ¥,, ¥5) =0, where F' is a homogeneous
polynomial of the third degree, then / must satisfy the equation

(6612 — 481 ”) I 454112 - 1441171 4182 71307 + 3 24213

2.30.72
——5—]——-0.

=1y

—7.362[2[']" 84211 +
Exz. 3. Prove that, if both the fundamental invariants* of an equation of
the fourth order vanish, so that it can be taken in the form
¥ +10Py’ +10Py +(3P" +9P2) y =0,

then four linearly independent integrals are given by 6,3, 6,20,, 6,6,% 6,3,
where 6; and 6, are linearly independent integrals of

d26
T+ Po=0.
Shew also that, if the relations
Y15 Y Y3 ||=0
Yoy Y3 Ya

* These arise in the same manner as for the cubic. If the equation

daz d
z{ +6P, S+ 4P, L Py =0
be transformed by the relations
dz _, , &0 . . s
a}—ﬂ s [—Zx—2+gP20_O, Yy =ub?,
into 2
U
dZ4 4QB d + Q4u O
then 5 APy d dP o 2P,
- 8 — —$1P2
Qs=0° (P3 dw) Q-2%%_¢ (J_D4 Rt PR A BT )

ng .

and the fundamental invariants are @, Q4—2
p. 210, note.

See my memoir quoted
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‘subsist among four linearly independent integrals of an equation of the

fourth order, (so that the integral curve is a twisted cubic), the equation
must be of the above form.

Ezx. 4. Construct the equation of the fourth order having 6,¢,, 6;¢q,
0,0p,, Oy, for a set of linearly independent integrals, where 6, and 6,, ¢, and
¢4, are linearly independent integrals of the respective equations

a2

20 ro=0, TP qp—o.

Hence infer the form of a quartic equation when a single homogeneous
quadratic relation subsists among a fundamental system of integrals.

Ez. 5. Shew that the equation
Yy sy’ + (68 +4rs) y' +2 (s +rs’) y=0
is satisfied by y= 6%, where 6 is an integral of
6" 4+50=0;
and hence integrate the equation. (Fano.)

FExz. 6. Shew that, if five linearly independent integrals of an equation of
the fifth order are connected by the relations

Yo Yoo Yz Ya
Y20 Y3 Y Ys t
the equation can be taken in the form

dsy a3y ds dy dy das\
olx5+20 an 3+300Z T2t 18-—+64 > + d 3+648dx)3/_0,

7

and thence integrate the equation as far as possible. (Fano.)

72. Consider noxlv the more general case when three linearly
independent integrals of the equation
&’y
dz?

are connected by an irresoluble relation

F (Y 92 4) =0,
where F' is a homogeneous polynomial of order greater than two:
the question is as to the character of the integrals of the equation.
For the discussion, it is assumed that the differential equation

has its integrals regular and free from logarithms: it thus is of
Fuchsian type.

+3Qdy+Ry 0

Let K denote any non-evanescent covariant of the quantic #;
such a covariant is the Hessian, which would vanish only if F
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contained a linear factor. Let z describe any contour, which
encloses any one of the singularities, and return to its initial
value ; the effect upon the fundamental system of integrals v, ¥,
Y5 i3 to change them into another fundamental system Y, ¥,, ¥,
the two systems being connected by relations

Y,= %Y +/81'y2 + Ve Ys, (7'= 1,2, 3).

The determinant of the coefficients a, B3, v (say A) is different
from zero in every such case; in the present case, owing to the
d?y

absence of the term in ds? from the equation, we have (§ 14)

A=1,
by Poincaré’s theorem.

Now the preceding relations constitute a linear transformation
of the variables in the foregoing homogeneous forms; hence if u
be the index of K, and A denote the same function of Y,, V,, ¥,
as K is of y,, va, 95, we have

K=AK
:K’

for u is necessarily an integer. It thus appears that the value of
K is unaltered by the description of the contour.

This holds for each of the singulaﬁties, as well as for z= o0
hence K, when expressed as a function of 2z, is a uniform function.
To obtain the form of K in the vicinity of any singularity a, we
take account of the fact that the equation is of Fuchsian type:
hence in the vicinity we have, for any integral y,

(z — a)~*y = holomorphic function of z — a,

where |p| is a finite quantity. Now K is of finite order in the
variables u,, ¥, ¥s; accordingly substituting for them, and remem-
bering that K is a uniform function of z, we have

(2 — a)~*K =holomorphic function of z — a,

where ¢ is an integer, positive or negative. This holds for each of
the singularities, the number of which is limited when @ and B
are rational functions of z; it holds also for z=o. Hence K is
not merely a uniform function, but it is a rational function, of 2.
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It therefore follows that every covariant of the quantic ¥ is
a rational function of 2z, exceptions of course arising in the case
when the covariant in an invariant, so that it is a mere constant.

Take then any two covariants, say the Hessian H, and any
other, say K : we have

F=O, H=¢, K':‘\’/‘:

where ¢ and + are rational functions of z. These are three
algebraical equations to determine v, ¥,, ¥; in terms of z; and
therefore the differential equation s integrable algebraically, a
theorem first announced* by Fuchs.

A case of exception arises, when the Hessian is a constant : the
quantic /' is then of the second order so that the case has already
been discussed ; the integration of the original equation depends
upon the integrals of a linear equation of the second order.

As an illustration, consider the equation
¥+ 3@y + Ry =0,

when a fundamental set of integrals is connected by a homogeneous cubic
relation. We assume that the equation is of Fuchsian type.

Taking the cubic in the canonical form, we have

=" +2°+y5’ +60519:93=0,

! being a constant. The Hessian is a rational function, say ¢ (1+8%%); so
that

H=0(y2+y°+y5°) — (1 +20) y1y,y5= (L +80),
and therefore

YN1Y2Ys= —P,
Y+ yl +y,P=6lp.

Taking the other symmetric covariantt of the cubic, which also is a rational
function, we have

¥ =(1+80) {15+ 5" +¥5° — 10 (45°:° + ¥5°9:> + 4:°92° )
and ¥ is equal to a rational function ; so that, taking account of the above
value of ¥, +,3+ 743, we can write
13y +y5yP + Yty =
Thus 7,3, ¥,°, ¥35° are the roots of
73— 6lpn® + 4y +Pp*=0,

* Acta Math., t. 1 (1882), p. 330.
1 Cayley, Coll. Math. Papers, t. x1, p. 345.
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an irreducible cubic. So far as the coefficients are concerned, they are known
to be rational functions of z; the denominator of each such function is known,
because its factors arise through the singularities of the equation and the
multiplicity of any factor can be determined through the associated indicial
equation ; and the degree of the numerator has an upper limit, determined
by the behaviour of the integrals for large values of z. Hence ¢ and  can
be regarded as known, save as to a polynomial numerator in each case.

We have
y® =6~ — 5
o =An?+Bn+C }
7' =Am?+ B+ C; {’
n"'=Ami+ By + C

the last three being obtained, after differentiation, by repeated use of the
cubic equation for 5, and the quantities 4, B, C, ... being functions of ¢, v

and their derivatives. Now writing g/=ry§ in the differential equation, we
find

0% = 3" + 399" + @0y’ + Bn?=0.
‘When the above values are substituted and the result is reduced by means of

the cubic equation, so that no power of 5 higher than the second occurs, we
have an equation of the form

sz + Y +Y;=0,

where Y, Y,, Y, involve ¢, y and their derivatives, and are linear in @, .
As the cubic is irreducible, so that this equation holds for each root, we have

¥, =0, Y,=0, Y;=0,

three equations to determine ¢ and {». There consequently exists a relation
among the remaining quantities, viz. @ and R : and this must be equivalent
to the condition (§ 71, Ex. 2), which must be satisfied in order that the
equation F'=0 may exist.

Similar results hold for the cubic equation, when the homo-
geneous relation between the integrals is of order greater than
three; and corresponding results hold for linear differential
equations of higher orders. In fact, ¢f a general homogeneous
relation of finite order higher than the second subsists among a
Jundamental system of integrals of a linear diflerentral equation of
order n, then the equation is integrable algebraically: the proof
follows the lines of the preceding proof exactly.

This range of investigations will not, however, be pursued
further, as it becomes mainly formal in character, depending upon
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the theory of covariants and upon the application of the theory of
groups to linear differential equations. An excellent account of
what bhas been achieved, together with many references, is given
in a memoir* by Fano who has made many contributions to the
subject ; a memoirt by Brioschi contains some investigations con-
nected with ternariants; and other detailed references are given
in Schlesinger’s treatise}, which contains an ample discussion of
the subject.

* Math. Ann., t. vix (1900), pp. 493—590.

+ Ann. di Mat., 22 Ser., t. x1r (1885), pp. 1—21.

1 Theorie der linearen Differentialgleichungen, 11, 1 (1897), pp. vili—xi. The
discussion is to be found in chapters 2—6 of the tenth section of the treatise.




CHAPTER VI

EQUATIONS HAVING ONLY SOME OF THEIR INTEGRALS REGULAR
NEAR A SINGULARITY.

73. It has been seen that, if all the integrals of an equation
are to be regular in the vicinity of each singularity, the coefficients
in the equation must be rational functions of z of appropriate
form and degree.

It may, however, happen that the coefficients are rational
functions of z but are not of the appropriate form and degree:
in that case, it is not the fact that all the integrals are regular,
and 1t may even be the fact that none of the integrals are regular.
This deviation from regularity need not occur at each singularity
of the equation: a fundamental system may be entirely regular in
the vicinity of one (or more than one) of the singularities, and
may not possess its entirely regular character in the vicinity of
some other. The conditions necessary and sufficient to secure
that all the integrals are regular in the vicinity of a singularity «
have already (Ch. 111) been obtained. If these conditions are not
satisfied, then the composition of the fundamental system in the
vicinity of the singularity a is no longer of an entirely regular
character: we desire to know the deviations from regularity.

It may also happen that not all the coefficients are rational
functions of z; in that case, if uniform, they are transcendental
functions and possess at least one essential singularity, say c.
Further, owing either to a possibly excessive degree of the
numerator in a rational meromorphic coefficient or to a possibility
that z = o0 is an essential singularity of some one or more of the
coefficients, it can happen that the conditions for regularity of
integrals near z = oo are not satisfied. The fundamental system
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is then not entirely regular near ¢ or for large values of |z|, in
the respective cases indicated, and it may even be devoid of any
regular element; the same question as to its composition arises
as in the corresponding hypothesis for the singularity a.

Accordingly, for our present purpose we assume that the
coefficients in the differential equation are everywhere uniform:
that (unless as otherwise stated) they may have any number of
poles, and that they may have one or more essential singularities.
When a is a pole of one (or more than one) of the coefficients,
and is not an essential singularity of any of them, we have one
of the cases just indicated; when oo is a pole of coefficients,
not being an essential singularity of any one of them, we have
another. We write

z—a=x, z=—,

1
@
in these respective cases; and then our differential equation takes
the form

d™w d™w dm—2 dw

p + pu g +P2W + oo+ P %‘F})m’w =0,

where the point « =0 is a pole of some (and it may be of all) the
coefficients. If all the integrals were regular in the vicinity of
x = 0, then a7p, for r=1, 2, ..., m would be a uniform function of
« that does not become infinite when #=0. As some of the
integrals are to be not regular in the vicinity of z =0, the
multiplicity of the origin as a pole of p, must be greater than »,
for some value or values of . Let

pr=ax""r P, (), (r=1,...,m),
where @, is a positive integer (which may be zero for particular
coefficients), and P, () is a uniform function of # which does not
become infinite when = 0: also it will be assumed that, unless
p, vanishes identically, =, has been chosen so that P, (0) does not
vanish, so that =, measures the multiplicity of the pole of p, at
the origin. Then one or more than one of the quantities

w, =T (r=1, ..., m)
is a positive integer greater than zero.
As in § 23, let
1
271

L= log «;
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and suppose that
br+ Pas L + Pas L2+ oo+ G LA P LA

is an integral of the equation, regular in the vicinity of =0 and
belonging to an exponent w; then it is known (§§ 25—28) that
¢, is a regular integral also belonging to the exponent u, so that

¢0 = w‘u(pﬁy
where ®, is a uniform function of # which does not vanish when
«#=0. As this expression, when substituted for w, should make
the equation satisfied identically, the aggregate coefficient of the
lowest power of # must vanish (as, of course, must all the other

aggregate coefficients). The lowest power of « in the respective
terms has for its index

p—m, p—a;—(m—1), p—wy—(m—2), ..., p = — 1, p—wp:
and for any other integral, belonging to an exponent o, the
corresponding numbers would be

c—m,c—w—(m—1),c—w,—(Mm—2),..., 0 —wp_1— 1, 0 —wpy.

Let

ws + (m —s)= 1, (s=0,1, ..., m),

and consider the set of integers
11, It,, ..., 11,,.

Of these, let the greatest be chosen. It may occur several times
in the set; when this is the case, let the first occurrence be at
IT,,, as we pass in the order of increasing subscripts, so that

II,<II, , for r=0,1,...,n—1,

I, >1,.., r=0,1, ..., m —n
Then = is called * the characteristic wndex of the equation: when
n =0, all the integrals are regular.

The lowest power of =z after substitution of the expression for
the regular integral has u —1II, for its index; it arises through
d™ "
Pn —gon—
coefficient of this lowest power must vanish, the exponent u must

and later terms in the differential equation; as the

* Thomdé, Crelle, t. Lxxv (1873), p. 267.
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satisfy an algebraic equation of degree m —mn. Similarly for an
exponent o to which any other regular integral belongs; it also is
a root of the same algebraic equation; and each such exponent
satisfies that same algebraic equation of degree m —mn, which
accordingly is called the <ndictal equation. But it must not be
assumed (and, in fact, 1t is not necessarily the case when n> 0)
that the number of regular integrals is equal to the degree of the
indicial equation. It is clear that, in all cases where n >0, the
degree of the indicial equation is less than m.

74. Suppose now that the given differential equation of order
m has a number s of regular integrals, which are linearly inde-
pendent of one another, where s <m : (the case s =m has already
been discussed): and that there do not exist more than s linearly
independent integrals. After the earlier discussion of fundamental
systems, it is clear that any regular integral of the equation is
expressible as a homogeneous linear combination of the s integrals,
with constant coefficients; also that, if every regular integral of
the equation is expressible as such a combination of s (and not
fewer than s) such integrals, the number of regular integrals
linearly independent of one another is s.

Further, a linear relation among the integrals of the equation,
involving a number of regular integrals and only a single one that
is not of the regular type, cannot exist; for the single non-regular
integral would involve an unlimited number of negative powers of
@, while each of the others occurring in the linear relation involves
only a limited number of such negative powers.

A linear relation might exist among the integrals of the
equation, involving a number of regular integrals and two integrals
that are not of the regular type. We then regard the relation as
shewing that the deviation from regularity is the same for the
two integrals: and in constituting the fundamental system for the
equation, we could use the relation as enabling us to reject one
of the non-regular integrals, because it is linearly expressible in
terms of integrals already retained. So also for a linear relation
with constant coefficients between regular integrals and more than
two integrals of a non-regular type.

Again, suppose that our differential equation of order m has
an aggregate of n integrals, regular in the vicinity of =0 and
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linearly independent of one another; and let it be formed of sub-
groups of integrals of the type

x(x

1
Vars + ML + ) rasn D oo Mg LA 4 2 I,

forA=0,1, 2, ..., x, where

S+ =mn
Then, after § 25—28, we know that these n linearly independent
integrals constitute a fundamental system for a linear differential

equation of order =, the coefficients of which are functions of z,
uniform in the vicinity of = 0; let it be

d'n dn—l dn——zy
d n+ 1d n—1+72d n—»z

d
e FTp El% +rpy =0.

Now this equation, being of order n, cannot have more than n
linearly independent integrals: and its fundamental system in the
vicinity of # =0 is composed of the n regular integrals of the
original equation. Hence, by § 31, we must have

7. =a "R, (z), (w=1, 2, ..., n),

where R, (x) is a holomorphic function of z in the vicinity of
=0, such that R, (0) is not infinite. Accordingly, the aggregate
of the n linearly independent regular integrals of the original
equation are the n wntegrals in a fundamental system of a linear
equation of order m of the foregoing type.

REDUCIBILITY OF EQUATIONS.

75. If therefore some (but not all) of the integrals of the
given equation of order m are of the regular type, it has integrals
in common with an equation of lower order. On the analogy of
rational algebraic equations, which possess roots satisfying an
algebraic equation of the same rational form and of lower
degree, the differential equation is said to be reducible.

Consider two equations

dmy dm—l J
O dam 1 dam—1

..+ P _1d'/+Pmy 0

dy
N =Sl Q2 4t Qua Wt Quy=0

M(y)=P +P
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where m > n; and take an expression
dly d-y - d
L(Z’/) = RO d.’l?l +R1 dx[_f + ..o+ Rl—1 d—:;/? + Rly,
where the coefficients R,, R,, ..., R; are at our disposal, and
l =m —n.

Let these disposable coefficients be chosen, so as to make the order

of the equation
M(y) - LN (@)=
as low as possible. By taking the [+ 1 relations
P,=R\Q,,
Pr=R,Q, + R, IQ) + Q),
Py= R0+ B (1= 1) Q'+ Q) + Ry {ll(l - 1) Q" +1Q) + @},

.............................................................................

= RiQo + Byy (@ + @) + B2 (Q" + 201" + Qo) +.

which determine R,, ..., R;, we can secure that the terms involving
derivatives of y of order higher than n —1 disappear. Accordingly,
writing

d dk——2
Ky)= ;S'ooly,c-!f-;S'1 cﬁk—yf" e + Sy,
where S,, Si, ..., S; are determinate quantities and
kE€n-—1,
we have
M—LN =K,
where K is of order less than N. Moreover, if P,, ..., Py,
@, ..., Qo are uniform functions of @, having # =0 either an

ordinary point or only a pole, the same holds of the coefficients R
and the coefficients S; so that L and K are of the same generic -
character as M and V.

From this result several conclusions can be drawn.

I.  Any integral, common to the equations M =0, N =0, is an
integral of the equation K = 0. If, therefore, every integral of
N =0 is also an integral of M =0, it follows that K =0 must
possess n linearly independent integrals; as its order is less than
n, the equation is evanescent, and we then have

M (y) = L {N (y)}.
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II. Any integral, common to the equations N =0, K =0, is
an integral of the equation M = 0; and therefore, in connection
with the first part of the preceding result, the integrals common
to M =0, N =0 constitute the integrals common to V=0, K =0.

The process of obtaining the integrals (if any), common to
two given equations M =0 and N =0, can thus be made a kind of
generalisation of the process of obtaining the greatest common
measure of two given polynomials. Proceeding as above, we have

M =LN +K
N =LK +K,
K =LK +K,[’

K o= LK, ,+ K
where K, K,, ..., K, are of successively decreasing orders. Then
unless an evanescent quantity X of non-zero order is reached,
sooner or later a quantity K is reached which is of order zero,
that is, contains no derivative.

In the former case, let K, ., be evanescent ; then the integrals
of the equation K,= 0 constitute the aggregate of integrals common
to M =0, N=0.

In the latter case, let K, be the quantity of order zero; then
the integrals common to M =0, N = 0 are integrals of

K,=yf(z)=0.

Now f(z) is not zero, for otherwise K, would be evanescent; and
therefore we have

y=0,
the trivial solution common to all homogeneous linear equations.
We then say that M = 0, N = 0 have no common integral.

III. An equation having regular integrals is reducible. For
one such integral exists in the form

y=a"f(2),
where |0| is finite, and f(«) is holomorphic in the vicinity of =0,
while £(0) is not zero. We have

ldy 0. 1 =)
ydoe =z f(a)

Sy 10
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where R (z) is a holomorphic function in the vicinity of #=0,
such that R (0) is not zero. Thus the given differential equation
has an integral satisfying the equation

d
m&%—yR(x)zO,

that is, it has an integral common with an equation, which 1s of
the first order and is of the same form as itself: in other words,
the equation is reducible.

But it is not to be inferred that such equations are the only
reducible equations.

IV. If an equation M =0 has p (and not more than p)
linearly independent regular integrals, it can be expressed in
the form

M (y) = LN (y)} =0,
where IV is of order p, and L is of order m — p.

For the p regular integrals are known (§§ 25—28, 74) to

satisfy an equation of the form

N =0,
of order p. Every integral of N =0 is an integral of M =0;
whence, by L, the result follows.

76. We proceed to utilise the last result in order to obtain
some conclusions as regards the regular integrals (if any) of a
given equation, say,

dmw dm™w dw
P (fw) = e + P ———-dmm_l + oo + P J + ppw = 0.
The result of substituting «* for w in P (w), where p is a constant
quantity, is
P () =ar {p(p—-l)...(p —m+1) +p plp—1)...(p—m + 2)+.”

xm xm-—l

+pm~1§+pm};

this 1s called*® the characteristic function of the equation P =0 or
of the operator P. We have

a—e P () = plp—1)...(p—m+1) +p p(p——l)...(p-—m+2)+.“

mm w’rﬂr—l

o Prns &t p
* Frobenius, Crelle, t. Lxxx (1875), p. 318.
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when the right-hand side is expanded in ascending powers of «, it
contains (owing to the form of the coefficients p) only a limited
number of powers with negative indices. The highest powers of

2™, arising out of the m + 1 terms in = P (2°), have exponents
m, o, +m—1, w,+m—2, ..., wp_+1, oy,
that is,
I, 11,, ..., 11,..

Let n be the characteristic index of the equation, so that II, is
the greatest integer in the set: if several of the quantities IT be
equal to this greatest integer, then II, is the first that occurs as
we proceed through the set from left to right. Denoting the
value of Il, by g, let

Pr

x9 @m_rzqr(w) =gy, (r=1,2, ..., m),

so that ¢,(0) is not zero, and no one of the quantities g, (0) is
infinite. Then

PP (2f) = 279G (p, =),
where G is a polynomial in p and is holomorphic in z in the
vicinity of #=0. Moreover, expanding G (p, ) in ascending
powers of z, we have

G (p, ) =go(p) + 291 (p) + - -,

where each of the coefficients ¢ is a polynomial in p, of degree not
higher than m; the degree of g,(p) is m —n, and the degree of
Jg—m (p) is m.  Also, g, (p) is the quantity called (§ 39) the indicial
Junction ; the equation

9o(p) =0
is called the indicial equation.
Now take
N (w) = a9 P (w)
dmw dm dw
= Qme &ﬁ + qlxm—l daxm—1 + oo F G EE + gm0,

where q,= #9™™; the equation P =0 can manifestly be replaced

by the equivalent

N (w) =0,
which is taken to be the normal form for the present purpose.
We have

wP N (2) = G (p, #) = g0 (p) + g1 (p) + ...,
152
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which thus contains only positive powers of # when the equation
is in its normal form, and which has the indicial function for the
term independent of .

We have seen that, if P (w)=0 possess regular integrals, it
is a reducible equation: and the operator P can then be repre-
sented as a product of operators. Consider, more generally in the
first instance, two operators 4 and B, each in its normal form ; and
let C, also an operator, denote AB. Further, let the characteristic
functions of 4, B, C, respectively be

A (@°) = ar f (@, p) = a* MEO Julp) o = NEO Ju(p) a+te
B@)=org @ p) = % guprar= % gup)are 1,
(@) =arh (@ p) =2 S hu(p)ar= 3 hu(p)arto

where the summations in f(«, p) and g («, p) include no negative
powers of @, because 4 and B are in their normal forms. Now, as

C = AB, we have
C (2°) = AB (z)
=4 { Eogﬂ (p) a++r}
I,L:

= ,;Eo gu(p) A (x+)

- §0 ,\E_Zog"" (P) f;\ (,LL + p) artete,
and therefore “

She(p)a= 2 3 g, (o) fr(+p) .

As A and u are incapable of negative values, there are no negative
values for o ; and therefore C is vn a normal form. Also

o (p) = 90 (p) Jo (P),
so that the indictal function of C s the product of the indicial
functrons of its component operators: and

he (p) = éogg (P) fo—u (1 + p).

Further, if ¢ be known to possess a component factor B which,
when operated upon by A4, produces C, then A4 can be obtained.
For, take B and C in their normal forms: the equation

th, (p) &* = EO 2 gu(p) fr (1 + p) ar e
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then holds. The values of A are clearly 0, 1, ..., so that 4 is then
in its normal form; and the successive quantities fy are given by
the equation

he (0) = 2 gos(p) S (o =1 +p)

for 0=0, 1, ..., p, the values obtained being polynomials in p,
because C is known to be composite of 4 and B.

Of course, this merely gives the characteristic function of the
operator ; but the characteristic function uniquely determines the
operator. For let f(«, p) be a function, which is a polynomial
in p, and the coefficients of which are functions of #: and let
the degree of the polynomial be m. Then we have*

m-1

S @ p)= 2 ttnnp(p=1)...(p=m+n+1)+u,

where, taking finite differences in the form

Af (2, p) = f(z, p+ 1) = f(=, p),

we have _
n! u, = {A" (@, p)}ozo-
Thus
—1D...(p— 1
wpf(w, p)=x9{uma;mp(p 1) (me+n+ )+...+u1w§+uo},

which is the characteristic function of the operator

m m—i

d
m m—1
WUn& —+ Up— 1 & dzv pres—y

d
da™ + .o F U5+ Uyt

dz

the operator is determined by the characteristic function.

CHARACTERISTIC INDEX, AND NUMBER OF REGULAR INTEGRALS.

77. Now let the equation of order m, taken in its normal
form, be
d™w _ dmiy dw
N(’w) =q0a;m hadiihad +glwm 1 d + .o + @ d—w + @ = 0 ;

da™

and suppose that it possesses s (and not more than s) regular
integrals, linearly independent of one another. These s integrals

* Boole’s Finite Differences, 2nd ed., p. 35.
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are a fundamental system of an equation, of order s and of Fuchs-
ian type; when this equation is taken in its normal form, let it be

dsw o dsw dw
S(w)=a® 5— + o, 2577 dws_i»+...+as_]w~d—w

das +o,=0,

where o, o5, ..., o5 are holomorphic functions of « in the vicinity
of =0. As all the integrals of S=0 are possessed by N =0,
there exists a differential operator 7' of order m — s, such that

N=TS;

because N and S are in their normal forms, 7’ also 1s in its normal
form, so that we can take

. m—s dm—s—1 d

m — M—$ pm—s—-1 —

T=q,x s + T o + oo F Tr—s & g + Ton—s,
where 7,, 75, ..., T;m—s are holomorphic functions of # in the vicinity

of z=0. If then
T (xf) = 20 (x, p),

the indicial function of 7'is the coefficient of 2° in 6 («, p), which
is a polynomial in p and contains no negative powers of x. This
coefficient may be independent of p; in that case, the character-
istic index of 7' is m —s. Or it may be a polynomial in p, say of
degree k in p, where k£ > 0; the characteristic index of 7' then is
m—s—k.

Because N =TS, the indicial function of N is the product of
the indicial functions of 7" and 8; so that the indicial function of
S, which gives all the regular integrals of N, vs a factor of the
ndicial function of the original equation. The degree of the
indicial funection of S is equal to s, because S = 0 is an equation of
order s of Fuchsian type; the degree of the indicial function of NV
is m — n, where n is the characteristic index of ¥ =0. Hence

s+ k=m—n,
that is,
s=m—-n—=Fk
€m—n;
so that (assuming for the moment that £ may be either zero or
greater than zero) an upper limit for the number of regular
tntegrals which an equation can possess is gwen by

m—n,
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where m 1is the order of the equation, and n s s characteristic
index (supposed to be greater than zero). It is known that, when
n =0, the number of regular integrals is equal to m.

CoroLLARY L. An equation, whose wndicial function s a
constant, so that its indecial equation has no roots, has no regular
wntegrals ; for its characteristic index is equal to its order. But
such equations are not the only equations devoid of regular
integrals.

CoroLLARY II. When % is equal to zero, then s is equal to
m —n, so that the number of regular integrals of the equation
is actually equal to the degree of the indicial function. The
necessary and sufficient condition for this result is that the
equation, which is reducible, must be capable of expression in
the form

N=T8S,

where the indicial function of 7' is a constant, and the degree of
the indicial function of S is equal to the order of S.

This result, which is of the nature of a descriptive condition,
appears to have been first given in this form by Floquet*. Other
forms, of a similar kind, had been given earlier by Thomé+ and by
Frobenius} (see § 83, post).

Vote.  On the basis of the preceding analysis, it is easy to
frame an independent verification that the characteristic index
is not greater than m—s. For in the operator 7', the quantity
Tm—s—t does not vanish when #=0; and all the quantities T, such
that

A<m—s—k,
do vanish when #=0. Hence, when we take IV as expressed in
the form

N=1T8,
the coefficient of
ds+kw
ws-l—k dw3+k
is the first (in the succession from left to right) in which 7,
occurs ; it also contains ¢, Ty, ..., Tm—s—k—1, all of them occurring

* Ann. de VEc. Norm. Sup., 2¢ Sér., t. viiz (1879), Suppl., pp. 63, 64.
F Crelle, t. LxxvI (1873), p. 285.
T Crelle, t. Lxxx (1875), pp. 331, 332.
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linearly. When «=0, all of these except 7m, s vanish, and
Tm—s—x does not vanish ; and therefore ¢, s does not vanish when
2=0. In the coefficient of

dtaw

dz*’

a*

where u > s + k, the quantities g,, 71, ..., Tm—u occur linearly: each
of these vanishes when 2 =0, and therefore ¢,,. does vanish when
x=0. As this holds for all values of u, it follows that ¢m—s—x is
the first of the quantities ¢ which does not vanish when z=10;
hence the characteristic index of N is m —s—k, that is, it is
€ m—s, where s is the number of regular integrals possessed by
the equation N = 0.

FEx. 1. If w=w, be an integral, regular and free from logarithms, of an
equation P =0, which is of order m and has s regular integrals, and if a new
dependent variable » be given by

w=w, [udz,

shew that » satisfies an equation @=0, which is of order m —1 and has s—1
regular integrals ; and obtain the relation between the characteristic index of
P =0 and that of §=0. (Thomsé.)

FEz. 2. The equation
dmy m gmeTy
dgm 2P g
has m — s integrals, regular in the vicinity of z=0 and linearly independent of
one another, and z=0 is a pole for py, ..., ps; shew that it is a pole (not an
essential singularity) for each of the remaining coefficients p. (Thomsé.)

Ez. 3. If, in the equation in the preceding example, p,, ..., ps; are
arbitrarily assigned, subject to the condition that z=0 is a pole or an
ordinary point, prove that the remaining coefficients p can be determined
so as to permit the equation to possess m—s arbitrarily assigned regular
integrals, linearly independent of one another. (Thomsé.)

Ex. 4. Prove that the condition, necessary and sufficient to secure that
an equation ¥ =0, of order m and having an indicial function of degree
m — 1, shall have m —y —§ linearly independent regular integrals, is that ¥V
shall be a product of the form @MD, where the indicial functions of @, M, D
are of degrees §, 0, m —y—& respectively, and D is of order m—y—98. Is
there any limitation upon the order of M? (Cayley.)

£z, 5. Shew that an equation @OD=0 has at least as many regular
integrals as D=0, and not more than @=0 and D=0 together ; and that, if
all the integrals of D=0 are regular, then @D=0 has as many regular
integrals as @ =0 and D=0 together.
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Hence (or otherwise) shew that, if an equation P=0 has all its integrals
regular, then P can be resolved into a product of operators, each of the first
order and such that, equated to zero, it has a regular integral. Is this
resolution unique? (Frobenius.)

78. In the two extreme cases, first, where the degree of the
indicial function is equal to the order of the equation, and second,
where its degree is zero, the number of regular integrals is equal
to that degree. The preceding proposition shews that, in the
intermediate cases, the degree merely gives an upper limit for the
number of regular integrals. It is natural to enquire whether
the number can fall below that upper limit.

As a matter of fact, it is possible* to construct equations, the
number of whose regular integrals is less than the degree of the
indicial function. Taking only the simplest case leading to equa-
tions of the second order, consider the two equations

. dy _ _dy _

of the first order; and form the equation
av alu
do =V dw =

which manifestly is of the second order, say

dry dy _
do PP e T =0

U 0,

where
1dh _dk  kdh

Thde’ TdeT hds

If we can arrange so that #=0 is a pole of p of order n, where
n > 2, then z = 0 in general will be a pole of ¢ of order n 4+ 1; and
the indicial function will then be of the first degree.

p=k

Consider now the equation of the second order. Since

U=V +#h,
it can be written
av dh
which is satisfied by
V=_A4h,

where 4 is any arbitrary constant.
* Thomé, Crelle, t. Lxxiv (1872), pp. 211—213,
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Let Y be an integral of the equation of the second order. It
may be an integral of V' = 0; if it is not, then, when we take

Y
yl =_Z7
we have
dy, .
Ta +ky,+h=0,

that is, 7%, is an integral of U=0. Thus any integral of the
equation of the second order either is an integral of =0 or is a
constant multiple of an integral of U=0. If, then, U=0 and
V' =0 are such that they possess no regular integral, the differ-
ential equation of the second order can possess no regular integral ;
at the same time, its indicial function is of the first degree.
The equation V' =0 will not have a regular integral, if £ =0 is a
pole of % of order greater than unity; and the equation U = 0 will
then not have a regular integral, if & is a rational function of «.

LEz. 1. The aggregate of conditions can be satisfied simultaneously in
many ways. For instance, take

1
10=“,72, h=x;
then
1 1 342
/c=—~ -+ — g: —

x? " x
The differential equation of the second order is

d 1 dy 3+2v .
dat " 22 dx 2 YTV

its indicial equation is of the first degree, and it has no regular integrals : or
the number of its regular integrals is less than the degree of its indicial
equation.

The conclusion can otherwise be verified ; for it is easy to obtain two
linearly independent integrals in the form
1 1
1 z 1z

1
2 T=
e, e |a%e "da
x x

no linear combination of which gives rise to a regular integral.

Ez. 2. Shew that the equation

.. 1 , bB+2a°
K/ +EZ;?/_ 5 y=0

has no regular integrals: and verify the result by obtaining the integrals of
the equation. (Thomé, Floquet.)




79.] DETERMINATION OF THE REGULAR INTEGRALS 235

DETERMINATION OF SUCH REGULAR INTEGRALS AS EXIST.

79. When the degree of the indicial function of an equation
of order m is less than m, no precise information is given as to the
number of regular integrals possessed by the equation. The further
conditions, sufficient to determine whether a regular integral
should or should not be associated with any root of the indicial
equation, can be obtained in a form, which is mainly descriptive
for the equation of general order and can be rendered completely
explicit for any particular given equation.

Let the equation be

m—1,

d™w d
N(w) = q0x7n a‘;{rn + glxm"l JW 4+ ...+ qmw = O,

of characteristic index n. Let #(0) be the indicial function, and
let ¢ be one of its zeros, so that

E(c)=0.

Then, if a regular integral is to be associated with o, it must be of
the form
w=a% (Co+ C1% + Co&® + ... + Cpa? + ...).

This expression, when substituted in the equation, must satisfy it
identically, so that, after substitution, the coefficient of z“+? must
vanish for every value of p: and therefore

Jo(PYep +fi(P)Cprat+ oo + J2 (P) Cpir =0,
where the number of terms in this ditference-relation depends
upon the actual forms of ¢,, ¢1, ..., ¢gm. Of the coefficients f;, fi1,

.ws fr, the first is
Jo(p) = E (o +p),

which is of degree m —n in p; of the remainder, one at least, viz.
Sy—m, is of degree m in p, where g has the same significance as in

§ 76.

The successive use of this difference-relation, together with the
equations for the earlier coefficients, the first of which is

¢l (a)=0,

leads to the values of all the quantities c, + ¢,, for the successive
values of w; and thus a formal expression for u is obtained that
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satisfies the equation. If, however, the expression is an infinite
series, it has no functional significance when it diverges: that this
frequently, even generally, is the case, may be inferred as follows.
For if ¢, =+ c., with indefinite increase of u, tends to a limit that
is not infinite, so also would cuis+ Cut1, Cuis—+ Cuis, and so on;
and therefore ‘
Cuta _ Cptr Outo e
Cu  Cu  Cutr Cutams’

for finite values of «, also would tend to a limit that is not infinite.
Now a number of the quantities

Jo(u)
Jow)’

for various values of 8, undoubtedly tend to zero as u increases
indefinitely ; some of them may have a finite limit: but one at
least is infinite, viz.

fq~4m (lf)
Jo(p) ’

because the numerator is of degree n higher than the denominator,
both of them being polynomials in w. Consequently, the ex-
pression

Ji(p) s, fo (i) Cuts So(B) Curs
Jo(w) cu = fo(p) cu Jo(u) cu

acquires an infinite value as u increases without limit. The
difference-relation requires the value of the expression to be
always — 1, so that the hypothesis leading to the wrong inference
must be untenable. Therefore c.,, + c., with indefinite increase
of u, does not tend to a limit that is finite, and therefore the
series diverges®*. There is then no regular integral to be asso-
ciated with the root o.

+ ..o+

* It is not inconceivable that, for special values of m and of n, and for special
forms of the coefficients ¢, as well as for a special value of the limit cy,;—cu, the
infinite parts of the expression

3 JSr(8) Cusr
r=1fo (1) Cu

might disappear, and the expression itself be equal to —1. In that case, the
series would converge : and an exception to the general theorem would occur. But
it is clear that such an exception is of a very special character: it will be left
without further attempt to state the conditions explicitly.
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As the series thus generally diverges when it contains an un-
limited number of terms, the regular integral is thus generally
illusory. The only alternative is that the series should contain
a limited number of terms: and then the regular integral would
certainly exist. Accordingly, let it be supposed that the series
contains %k 41 terms, so that

G G Gk

.oy

¢’ € Co
are quantities known from the difference-relation, and that
Chk+1s Chkye, ... ad 1nf.

all vanish. If we secure that cgy,, Cryss --., Cpyr all vanish, then
every succeeding coefficient must vanish in virtue of the difference-
relation ; and these T relations will then secure the existence of a
regular integral to be associated with the exponent o. Taking
p=Fk k—1, ..., k—7+1 in succession, we find the 7 necessary
conditions to be

Jo(k) ey =0, that is, £, (k)=0,
and generally

EO JSsk=7)eyp_ris=0,

s=

for values r=1, 2, ..., 7— 1. The first of these is
E(c+k)=0,

so that the indicial equation, which possesses a root o, must
possess also a root o + k%, where k is a positive integer. (In the
special instance, when k=0, no condition is thus imposed : in the
general instance, when & is a positive integer greater than zero, it
is easy to verify that & (o + k) is the indicial function for z=.)

When the aggregate of conditions, which will not be examined
in further detail, is satisfied in connection with a root of the
indicial equation, a regular integral exists, belonging to that root
as its exponent; and there are as many regular integrals, thus
determined, as there are sets of conditions satisfied for each root
of the indicial equation.

Explicit expressions for the various coefficients ¢ can be derived,
when the explicit forms of the quantities ¢ are known: but the
general results involve merely laborious calculation, and would
hardly be used in any particular case. The results are therefore,
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as already remarked, mainly descriptive: and so, in any particular
case, it remains chiefly a matter for experimental trial (to be
completed) whether a regular integral is necessarily associated
with a root of the indicial equation.

For this purpose, and also for the purpose of discussing the
regular integrals associated with a multiple root of the indicial
equation, a convenient plan is to adopt the process given by
Frobenius (Chap. 111) when all the integrals are regular. We
substitute an expression

W= CoP + Pt + ...+ artH + .
in the equation

dmw m—1
N (w) = gya™ dam T G a1 Toi oo+ gmtt,
of characteristic index n. After the substitution, the first term is

co (p) a®,
where ' (p) is the indicial function, of degree m —n; and we make
all the succeeding terms vanish, by choosing the relations among
the constants ¢ appropriate for the purpose. We thus have

N (w) = c, K (p) ";
and the relations among the constants ¢ are of the form
Cull (p+ ) = G p Cuy F Ou,p—s Cus + oo + Ay oCo,
where the constants au ,—i, ..., 0., are polynomials in u and,
when this relation is the general difference-relation between the
coefficients ¢, one at least of these polynomials a, , is of degree m
in u. When the ditference-relation is used for successive values
of u, we obtain expressions for the successive coefficients ¢, which
give each of them as a multiple of ¢, by a quantity that is a

rational function of u. When these coefficients are used, we have
the formal expression of a quantity w which satisfies the equation

N (w) = co e (p) ar.
Unfortunately for the establishment of the regular integrals, this
formal expression does not necessarily (nor even generally) con-
verge : for, in the difference-relation among the constants ¢, the
right-hand side is a polynomial of degree m in u, while the left-
hand side is a polynomial of degree m —n in u, so that the series
Scparte

would, as in the preceding investigation, generally diverge.
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But while this is the fact in general, it may happen that the
series would converge when p acquires a value occurring as a root
of the equation

L (p)=0.
In that case, the series satisfies the equation
N(w)y=0

in other words, it is a regular integral of the differential equation.
Further, if the particular value of p be a multiple root of the
indicial equation, it can happen that the series

ow
9p
converges for this particular value of p; and then

N (50) = 55 ekl (p) o
=0,

because the value of p is a multiple root of £=0: in other words,
9 is then a regular integral of the differential equation. And so
op &' &

possibly for higher derivatives with regard to p, according to the
multiplicity of the root of £ =0.

The whole test in this method is therefore as to whether the

series
ScuaPtr

converges for the particular value (or values) of p given as the
roots of the indicial equation. The method of dealing with a
repeated root of the indicial equation has been briefly indicated.
Corresponding considerations arise, when & =0 has a group of
roots differing among one another by integers. In fact, all the
processes adopted (in Ch. 111) when all the wntegrals are regular,
are a]mlwable when only some of them are regular, provided the
various serves, whether original or derived, are converging series.
The deficiency, that arises through the occurrence of diverging
series, represents the deficiency in the number of regular integrals
below m —n. As already stated, the tests necessary and sufficient
to discriminate between the convergence and divergence of the
various series are not given in any explicit form, that admits of
immediate application.
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Lz. 1. Consider the equation
2%y +xy — (3+22)y =0,
constructed in § 78, Ex. 1. The indicial equation is
p—3=0,

so that there is not more than one regular integral ; if it exists, it belongs
to an exponent 3. To determine the existence, we substitute

y=cyxdtcrxt+tc,ad+ ...
in the original equation ; that it may be satisfied, we must have
0={(n+2)(n+1)—2} cp—y+nCp,
for n=1, 2, .... We at once find
On=—(n~+3)0p_1,
e=%(—1)"(n+3)!.

and therefore

The series S c,a3*+" diverges, and therefore the one possible regular integral
n=0

does not exist ; that is, the original equation possesses no regular integral,
although the indicial equation is of the first degree.

If there were a regular integral, it would satisfy an equation

d
x(ji—uy:O,

where % is a holomorphic function of x# ; and the original equation could then

be written
d dy
2 @ _ - =
(x dx v) (x dx ug/) =0,

where v is some holomorphic function in the vicinity of #=0. It might be
imagined that, as the indicial equation is of degree unity (a property that
does not forbid the existence of a regular integral), it would be possible to
obtain the regular integral through a determination of u, and that the
divergence of the series in the preceding analysis is due to the operator

2 @

.
dx’

which annihilates only expressions that are not regular. That this is not the
case may easily be seen. We have

(x‘———v)(:o———u/) x3 +(x2—vx xzu) y (‘”2__”“)%

so that, if the resolution be possible, we have

22 — vz — U =2,

x2%—vu=3+2x.




79.] EXAMPLES 241
Substituting in the second of these the value of v given by the first, we find
2% d—u+xu2—xu+u=3+2x,
dx

as an equation to determine u, supposed a holomorphic function of #. Let
U=ay— @y &+ 22— ...
be substituted ; in order that the equation for « may be satisfied, we have
a,=3,
all—ay—a,=2,
and, for values of » higher than zero,
(n+2a5—1) @p+2 (A — 1+ Ay Oy g+ o) = A 1 =0.
Hence ay=3, a,=4, a,=24, and so on. The relation giving a,..,, when taken
for successive values of n, shews that all the coefficients a are positive ; hence
Uy 1 = (R+ 209~ 1) 0

> (n+5) ay,
that is,
30a,>(n+4)!,
and so the series for » diverges: in other words, there is no function «, and
the hypothetical resolution of the equation is not possible.

Note. This argument is general ; it does not depend upon the particular
coefficients for the special equation that has been discussed.

Ez. 2. Consider the equation
Dy=ay" +2%(1-2—222)y" —x (b+4x+422) y +(9+ 10z + 42%) y =0,
which is in the normal form. The characteristic index is 1; the indicial
equation is
- 8(6—1)~50+9=0,
that is,
(6—3)*=0,
s0 that the number of regular integrals cannot be greater than two, and such
as exist belong to the exponent 3.

To determine these regular integrals (if any), we adopt the Frobenius
method of Ch. 1. Taking

y=coaP+e, P4 e, a4,
we have

o Dy=cy (p—3)2 a7,
provide

. and, for values of n# greater than unity,
0= (p+1—3) tut-{p?+p (20— 4) + 72— dn—2} 05y — 2 (p+7) 0p_sy

a factor p+4-n—3 having been removed, because it does not vanish for these
values of n. Let
(p+n—38)cpn—20q 1= kn,

F. 1IV. 16
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so that
ky=(p=2) ¢, —2¢==(p—3) (p+1)c.

Also the difference-equation for the coefficients ¢ becomes

En+(p+n)kn_1=0,
so that

bp=(=1"1(p+n) (p+n—1)c.(p+2) &y
=(=1)"(p=3)(p+1)(p+2)...(p+n) ¢

I (p+n)
=(—1)7(p—3) — Co-
Hence, writing
on
Cn

T (p+n—3) Hn
in the relation
(P +n— 3) Cpn— 201;—-1 =/Cna

and substituting the value of £,,, we have

11 (p)

Adding the sides of this equation, taken successively for n, n—1, ..., 3, 2, and
noting that

Un— Up—1=(—%) (p—3) -

uy =4I (p—2) ¢

=%(5+2p—p*) IL(p —3) ¢,
we have

tn=co| § (520 =) T (p=3)+(p~3) 3 (~p EFTlEm=A],

11 (p)
‘We thus have a value of 7 in the form
Y= 3 c,ar™*m,
n=0

where

n

3 (=) (p+m) I (p+m—4)

—3 ol 2

I gn =1 (5+2p — p?) Mip=3) [+ (p—3) 22 2n;

Co I (p+n—3) I (p) I (p+n—3)
and this satisfies the relation
DY =cy(p—3)2xr.

It is clear that formal solutions of the original differential equation are

oY
Y, ﬁ] :
[Flps % Jos

n

I (n)’

Of these, the first is

:Z/O=CO s x3+n
n=0
in effect, a constant multiple of #3¢2* ; and the second is

¥yolog # +a diverging series,
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because a series, in which
n
S (=3I (m+3)H(m—1)
1 m=2
6 II (n)

is the coefficient of z»+3, manifestly diverges*.

on

It thus appears that, although the indicial equation for =0 is of the
second degree, the differential equation possesses only one integral which is
regular in that vicinity ; and this integral is a constant multiple of #3¢%,

This regular integral satisfies the equation
d
.z;é{—— (34+2x)y=0,

so that the original equation must be reducible. It is easy to verify that it
can be expressed in the form

d? a
{x3w+xa}—(3+2x)} {x %—(3+2x)y}=0.

Fzx. 3. As an example which allows the convergence of the series for the
regular integral to occur in a different way, consider the equation

2y — (1 =22+22%) v +(1 —2x+2?) y=0.
The indicial equation is
p=0,

so that one regular integral may exist. To determine whether this is so or
not, we substitute

y=ag+a;r+axi+...,
which (if it exists) belongs to the exponent zero. Comparing coefficients,
we find

ay=0ay, 20y=0ay,
and, for all values of n that are greater than unity,
(n+1) @y 1 =n24n+1) @p— 2005+ Ty _q.
Let
Cn =My, — Ay —1 5

then

Cnor=(@n+1)Cp—0Cp_q.
In general, the values of ¢ (and the consequent values of @) as determined by
the last equation, lead to diverging series; but in our particular case,

c=a,— a;=0,
Cy=2ay — a;=0,

s0 that ¢;=0, ¢,=0, and generally ¢,, =0, that is,

My == Ay~ 15

* The series in y, is saved from divergence because, in it, these coefficients are
multiplied by the factor p — 8, which vanishes for the special value of p and which
therefore removes the quantities that cause the divergence in the second integral.

16—2
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and therefore
= %
Doy, == mi’

so that a regular integral exists. It is a constant multiple of e*.

Ez. 4. Consider the equation
D ()= (254 2% y"" + (23 +4xt +42°) ¥y — (2024 323+ 22%)
+ Bz + 622+ 4a3) i — (3+ 6w+ 422) y=0.
The characteristic index is unity ; hence the number of regular integrals is
not greater than three. To determine them, if they exist, we take an
expression
y=coaP +c; P T e 2P T,

and form D (y), choosing relations among the coefficients ¢ such that all
terms after the first in the quantity D (y) vanish. We thus find

D (y)=co(p—1)(p—3) 2,
e1p?(p—2)+co(p—1) (p—2) (p2+p—3)=0,
and, for values of » greater than unity,

enlp+n—1(p+n=3)+cu_y(p+n—2)(p+n—3){(p+n)’—(o+n)—3}
+ g (ptn—3)(p+n—4) (p+n)=0.

provided

The indicial equation is

(p—1)*(p—3)=0,
of degree 3 as was to be expected (=4 -—1), because the characteristic index
is 1. The roots form a single group ; if a regular integral exists belonging to
the root 3, it will be free from logarithms; if two regular integrals exist
belonging to the root 1, one of them may or may not be free from logarithms,
and the other will certainly involve logarithms.

Consider the root p=3. As p+mn—3 then vanishes for no one of the
values of », we may remove it from the difference-equation, so that the latter
becomes

o (p4n— 1)+ tny (p 1 —2) {(p+ 1)~ (p+n) — 3}

+ s (p+n—3) (p+n—4) (p+m)=0.
Taking
calptn—12+c,_y (p+n—2)(p+n—3)=ky,
we at once find
knt+(p+n)kp_y=0.

‘We require the value of £,. We have, for p=3,

¢y = — 2¢,
16¢,+ 51¢; +10¢, =0,
so that
ky =160, + 6¢; =80c,.
Now

ky=(—1)"(n+3)(n+2)...6k,
=3 (=1 (n+3)ley
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so that, writing
Cp= ( - 1)” Ay
we have
(n+2>2an_n (71+1) an—1=(n+3>!%c()'
As o, and a, are positive, it follows that all the coefficients o are positive ;
and clearly
Ap > <n+ 1) ! %CO)
so that the series
a3 (cg— a2+ agx?—...)
diverges ; and there is no regular integral belonging to the root 3. Moreover,
the coefficient of ¢,, being (p+7—1)?, does not vanish when p=3 for any
value of 7 ; hence, if two regular integrals exist belonging to the root unity
of the indicial equation, one of them will certainly be free from logarithms.

Consider now the repeated root p=1. As p+n—3 vanishes for this
value of p when n=2, the difference-equation is then evanescent for n=2 and
it does not determine ¢,. For other values of n, the quantity p-+n—3 does
not then vanish, so that it may be removed. We then have, for values of
n >3, the same form of equation as before, viz.

enlptn—12+cpy (p+n—2){(p+n)2—(p+n)—3}

+ep_g(pt+n—3)(p+n—4)(p+n)=0.
Also

C,
e=—(p—1) (p*+p—3) p—;’,

the value p=1 not yet being inserted because we have to differentiate with
regard to p. The difference-equation for n==3 gives
9¢;+18¢,=0,
so that
Cg= — 2¢,.
For values of n >4, let p=0 —2, so that the value of ¢ is 3; take n—2=m,
so that the values of m are > 2 ; and write

Cp= bm 5

then the difference-equation becomes
b (0 +m—1)2+ by (o +m —2) {(c+m)?— (0 +m)— 3}

+by—g(c+m—3)(c+m—4) (c+m)=0.
Here 0=3, m>2; c¢y=0by, ¢;=b;=—2b,: so that this equation is now
exactly the same as in the former case for p=3. The series thence determ-
ined is

23 (by— g+ a,x?—...)

with the earlier notation ; it certainly diverges unless b,==0. If b=0, every
coefficient vanishes, and the series itself vanishes. As we require regular

integrals, we shall therefore assume b,=0, that is, ¢,=0; and then all the
remaining coefficients vanish, so that we have

Y=co[w"—m°+l (p=1) (p?+p—3) ;}—]
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an expression which is such that

DY=c,(p—1)2(p—3) 2"

Accordingly
’ oY
[ Y—_Ip =12 a - b
are integrals of the equation g
Dw=0.

The former is ¢y : one regular integral thus is

w= .
The latter is
o (2 log x +42%);

another regular integral is
w=2x2+4xlog x.

The original differential equation accordingly has two regular integrals.

Ez. 5. Shew that the equation
221ty —(1+22+222 - 24y — (1 4220+ 3224+ 22%) y =0

has one integral regular in the vicinity of #=0; and express the equation in
a reducible form.

FEx. 6. Shew that the equation
22 (1422 + 222+ 2*) y""' + (1 + 62 + 622 — 32t — 225) y”
— (24 122+ 1522+ 62° — 28) o/ + (1 + 62+ 822+ 423 +2*) y=0
has two regular integrals in the vicinity of #=0, in the form
%, xe®;

and obtain the integral that is not regular.

Ez. 7. Shew that the equation
2y +@Bx—-1)y' +y=0

has no integral, that is regular in the vicinity of #=0; express the equation
in a reducible form, and thence obtain the integral by quadratures. (Cayley.)

Ezx. 8. An equation P=0 can be expressed in the form
@D=0,

where D=0 has no regular integrals; can P=0 have any regular integrals ?
Illustrate by a special case.

FEz. 9. In the equation

dny+P dr—1y

Pogam ™ P1 gan=1

+...+P,y=0,

the coefficients P are polynomials in # of degree p, and p<<n: shew that it
possesses n — p integrals, which are integral functions of . (Poincaré.)
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EXISTENCE OF IRREDUCIBLE EQUATIONS.

80. We have seen that an equation is reducible when it is
satisfied by one or more of the integrals of an equation of lower
order,-in particular, by the integral of an equation of the first
order. The main use so far made of this property has been in
association with the regular integrals of the equation: but it
applies equally if the equation possesses non-regular integrals
that satisfy an equation of lower order. It is superfluous to
indicate examples.

It must not be assumed, however, that every equation is
reducible by another, if only that other be chosen sufficiently
general. On the contrary, it is possible to construct an irre-
ducible equation of any order m, as follows*.

We construct an appropriate characteristic function which, as
is known (§ 76), uniquely determines the equation. Take a poly-
nomial in p of degree m, say

h(z, p);

let the coefficients of the powers of p be holomorphic functions of
x, not all vanishing when #=0; and let the function, subject to
these limitations, be so chosen that, when arranged in powers of
« in the form

b (@, )=y (p) + ahs (p) + @*hs (p) + ...,

ho (p) is independent of p and not zero, and k, (p) is of degree m in
p. Then if N =0 is the equation determined by A (z, p) as its
characteristic function, N = 0 is irreducible.

Were N reducible, an equation S =0 of lower order s would
exist such that each of its integrals satisfies N =0; and then an
operator ), of order m — s, could be found such that

N =QD.

We take @ and D in their normal form ; and so NV is in its normal
form. Now

Q (af) = xf {my (p) + 2, (p) + 2®n, () + ...},
D (ar) = a* {§ (p) + & (p) + 2282 () + ...},

* Frobenius, Crelle, t. Lxxx (1875), p. 332.
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the right-hand sides of which are polynomials in p of degrees m —s
and s respectively. Then, as in § 76, we have

h (P) =& (P) Mo (P),
hy (P) ={, (P) T (P) +& (P) Mo (P + 1)-

Now 4, (p) is a constant, being independent of p; hence, owing to
the polynomial character of @ («°) and D (2*) in terms of p, the
two quantities &(p) and 7,(p) are constants. Accordingly, n,(p + 1)
is a constant ; and therefore the degree of

&) mp)+8&(p)n(p+1)

in p is the degree of 7, (p) or & (p), whichever is the greater. But
the degree of 7, (p) is not greater than s, and that of &, (p) is not
greater than m — s; so that, as s> 0, the degree is certainly less
than m. But the expression is equal to h, (p), which is of degree
m. Hence the hypothesis adopted is untenable ; and the equation
N =0, as constructed, is irreducible.

EQUATIONS HAVING REGULAR INTEGRALS ARE REDUCIBLE.

81. Suppose now that, by the preceding processes or by some
equivalent process, the regular integrals of the equation N =0
have been obtained, s in number, and that the equation of which
they constitute a fundamental system is S=0, of order s: a
question arises as to the other m — s integrals of a fundamental
system of VN =0. Let

N=1T8§,

where 7" and S (and therefore also V) are taken in their normal
forms. The s regular integrals of IV, say ., ¥s, ..., ¥s, all satisfy
S =0; and no one of the m —s non-regular integrals of N, say
Wy, Wy, +.., Wn—s, Satisfies S'=0, for this equation has all its integrals
regular. Let

S (w,) = u,, (r=1, ..., m—s);

then, as N (w,) =0, we have
T (u,)=0.

Now w, is not a regular expression; hence u, is not regular,
that is, it contains an unlimited number of positive and negative
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exponents when it is expressed as a power-series. Accordingly,
the m — s quantities w are integrals of the equation

T(u)=0,
which is of order 7 — s and has no regular integrals; and the m—s
non-regular integrals of V=0 are given by
S (wy) = u,,
it being sufficient for this purpose to take the particular integral

and not the complete primitive of the latter equation.

The case which is next in simplicity to those already discussed
arises when s = m — 1, so that the original equation then possesses
only one integral which is not regular. The equation 7'=0 is
then of the first order.

With the limitations laid down, the normal form of T is

d
Qo do + g1,

where ¢, and ¢, do not become infinite when z=0. As the integral
of T'(u)=0 is not regular, it follows that ¢, does not vanish and
that g, does vanish when #=0; so that, if

o= Z* Q (w):

where o is a positive integer >1 and @ («) is a holomorphic
function in the vicinity of # =0, such that @ (0) is not zero, the
equation determining w is

ld_u 1 "

ﬁdw’*—w““Q(x):O’
say
ldu  a@ | a;(a—1) a _
de T pent e +...+w+R(w)_O,

where R (z) is a holomorphic function of # in the vicinity of # = 0.
This gives

% 4y Qa—1

Ei-*_ ;a.-—"i"' et =
u=a"e P, (),

where P; is a holomorphic function of x in the vicinity of # =0;
and then to determine w, the non-regular integral of N =0, we
need only take the particular integral of

S (w)=mu,
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where
_ m—1 . m—2 . d
S = qowm 1 da;m_l + qlmm dmm__z + ...+ Qm_gw @ + q'yn,_l )
in which ¢, ¢y, ..., gm—; denote holomorphic functions of #, and g,

does not vanish. Writing

a, Aa—y
e

Q=24
x
w = ve<,
the equation for v takes the form

dm-—lv I dm—zv Pe dm—Bv

9o dwm—i + a0+ gm—2 ;'Za.—lj‘i a3

+ ...

Pm—1 — g—a— ,
.o+ w(m_";) g 0= a7 Py (),
where q,, p1, Ps, --., Pm_y are holomorphic functions of #, such that
9. and p,,_, do not vanish when x = 0.

In some cases it happens that a particular integral of this
equation exists, in the form of a converging power-series repre-

sented by et P ()
@ m—1)o—o x s

where P (z) is a holomorphic function of #: in each such case, the
non-regular integral of the original equation is

pm—la—0o eQP (w)'

But, in general, the particular integral of the v-equation is not of
the same type as the regular integrals of the original equation:
and then the non-regular integral of the preceding equation
cannot be declared to be of that type.

Ez. An illustration is furnished by the equation in Ex. 6, § 79, viz.
22 (1 4224222+ 2% "' + (1 + 62 4 62% — 3zt — 225) y”
— (241224 1522+ 62° — 25) 3/’ + (1 + 62 + 842 + 423+ 2*) y =O.
It has two regular integrals, viz.
Y1=6% Y=z}
and these constitute the fundamental system of

¥ =2y +y=0,
or
2%y — 2%y’ + 2%y =0,
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in the normal form. To have the given equation in the normal form, we
multiply throughout by #?; and then it must be the same as

{xz (1422 +22% + o) %—i—p} (2% — 2% + 2%y) =0,

when p is properly determined. We easily find that
p=14+4r+42®+2*— 225 ;
and so the equation for determining u, where
w=x%y" — 2% + 22y,

¥ being the non-regular integral, is

22 (1 + 22 + 222 4 2t @-{— 1 +4x 4 422 4 2% — 225) u =O0.
d

Hence
1 du 144w+ 422+ 2t — 225
wdz @2 (1+2x+ 2%+ at)
1 2 244z + 428
== s T Trosioitas
so that

1422 + 2242 4 2% %6
y= 6
a2
Hence the non-regular integral of the original equation arises as the
particular integral of
1+ 22+ 222+ ot ei

?/”_2?/"*',?/= -

1
Let y=wve® ; the equation for v is easily found to be

24 b . 2.4 g4
P — D <1+§1_2>+vl+2x+2x + 2 :1+2x+2x +x

2t 2t ’

satisfied by v=1: and therefore the non-regular integral is

Yy=e€".

Tae ADJOINT EQUATION, AND ITS PROPERTIES.

82. Of the properties characteristic of a linear equation, not
a few are expressed by reference to the properties of an associated
equation, frequently called Lagrange’s adjoint equation. It is a
consequence of the formal theory of our subject, as distinct from
the functional theory to which the present exposition is mainly
limited, that Lagrange’s is only one of a number of covariantive
equations assoclated with the original. As its properties have been
studied, while those of the others remain largely undeveloped,

252 PROPERTIES OF LAGRANGE'S [82.

there may be an advantage in giving some indication of a few
of its relations to the original linear equation.

The latter is taken in the customary form
P (w)=Pyw™ + P ™ 4 Pow®™? 4 ... + P, w=0,

where w® is the rth derivative of w with respect to z; and from
among the various definitions of the adjoint equation, we choose
that which defines it to be the relation satisfied by a quantity v wn
order that vP (w) may be a perfect differential. Now, on inte-
grating by parts, we find

f vP,wn"dz = v Pawmr"10 — g; (vP,) win—r=4
_}__di(vl).)w(n—'r——a —. +(_ ]_)n—rf/w d—n—_r(vP )dZ
d2? ! ) / dzmr T
for all the values of »; hence, writing

Po = P,,
— Pw—2 P,
by =147 dz 0)>

d d?
P =LPyv— P (P + g (v Py),

d — dn—l
p'n—l = Pn—lv —_ % (an___2) + . s + (—' 1) 1 EJZ—”Zi (’UPO),
R (w, v) = pw™™ + pw®™ + ... + ppw,
(w)=P v—-i(P 1))+£(P v)—...+(—=1)” d—n(vP)

p "o de M dz2\ "7 dz® > 7

we have
f v P (w) dz = R (w, v)+ f wp (v) dz,
and therefore
d
wP (w) — wp (1) = o (R (w, v)}.

It is clear that, in order to make »P (w) a perfect differential,
whatever be the value of w, it is necessary and sufficient that v
should satisfy

p () =0,
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a linear equation of order =, commonly called Lagrange’s adjoint
equation ; and further that, if v is regarded as known, then a first
integral of the equation P (w)=0 is given by

R (w, v) =q,
a being an arbitrary constant, and R being a function manifestly
linear in w and its derivatives.

Further, since

pr(v) dz=— R (w, v)—}—fvP(w) dz,

1t is clear that wp (v) is a perfect differential if
P (w)=0,
shewing that the original equation is the adjoint of the Lagrangian
derived equation: or the two equations are reciprocally adjoint to
one another.
Ezx. Shew that, if w,, ..., w, be a fundamental system of integrals of the

equation P(w)=0, then a fundamental system of integrals of the adjoint
equation p(v)=0 is given by

1 —[Eas w8, e L w2
Py
ey Up=5"€ - -3 -
V15 eeey Un P, w,3) = 3) W3
’ ’ ’
wy s Wy 3 eeey Wy
Wy s Wo 3 eeey Wa

Shew also that the product of the respective determinants of the two sets of
fundamental integrals depends only upon P,.

One immediate corollary can be inferred from the general
result, in the case when the equation P (w)=0 is reducible.

Suppose that
P(w)= P, P,(w) =P, (W),

say, where W= P,(w); then we have

fvP (w) dz =fvP1(W)dz

= R.(W, ) +fWT>1(u) dz,

where P, is the adjoint of P,, and R, is of order in W and in v
one unit less than P,. Again, writing

V=P, (v),
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we have

f WP, (v) de = f VP, (w)dz

— R, (V, v)+fw152(V)dz,

where P, is the adjoint of P,, and R, is of order in V and in v one
unit less than P,. Combining these results, we have

f’uP('w) dz = Ry (W, v)+ Ry (V, v)+fwP;(V) dz

— R (w, v) + waE (v)dz,

where R is of order one unit less than P in w and in ». It follows
that
Epl (v)=0
is the adjoint of
P(w)y= P, P;(w)=0,

where P,, P, are adjoint to one another, and likewise P,, P,.

By repeated application of this result, we see that the adjoint
of
Pw)y=P,P,... P, (w)=0
is given by
PP, ,...P, P, (v)=0.
Hence the adjoint of a composite equation is compounded of the
adjoints of the factors taken in the reverse order. Manifestly
an equation and its adjoint are reducible together, or irreducible
together.

The expression R (w, v) is linear in the derivatives of w, up to
order n — 1 inclusive, and also in those of v, up to the same order:
it may be called the bilinear concomitant® of the two mutually
adjoint equations.

For further formal developments in respect to adjoint equa-

“tions and the significance of the bilinear concomitant, reference

may be made to Frobeniust, Halphenj, Dini§, Cels|, and
Darboux 1.

* Begleitender bilinearer Differentialausdruck, with Frobenius.

+ Crelle, t. uxxxv (1878), pp. 185—213; references are given to other writers.

I Liowville’s Journal, 4° Sér., t. 1 (1885), pp. 11—85,

§ Ann. di Mat., 3* Ser., t. 11 (1899), pp. 297—324, <b., t. 111 (1899), pp. 125—183.
I dAnn. de UEe. Norm., 8¢ Sér., t. virx (1891), pp. 341—415.

T Théorie générale des surfaces, t. 11, pp. 99—121.




82.] EXAMPLES 255

Ex. 1. Prove that, if a linear equation of the second order is self-adjoint,
it is expressible in the form
a P dw + Quw=0;
dz dz 7

dz
that if a linear equation of the third order, in the form
dPw dPw
?l;é“*-gpd 5 +3Q +Rw 0,

is effectively the same as its adjoint equation, then

and find the conditions that a linear equation of the fourth order should be
self-adjoint.

Ex. 2. Prove that, if the equations

Gow™ +ngwr =1 4 (n -1 g A4 =0,
707’(”)‘*‘”717)("—1)_*-%(7;! L G
are adjoint to one another, then
Yo= Yo Jo=  Yos
y1=—91+9¢ g1=—v1+%0>

2= 92— 29/ +90", 9a=  v2— 27 +¥%
V3= —93+392 — 39" +90"s  g3= —ya+3y = 3v"+ ¥

..................... Ge8csracssanacctcetvonns

and obtain the expression of the bilinear concomitant. (Halphen.)

Ezx. 3. Let z, 2, ..., 2, denote any n arbitrary functions of z, such that
the determinant

dz, dr—lz

= z. — ——

@ 17 g’ 7 dam—1
-1

dz, ar—1z,

I R R e o ¥

does not vanish identically; and suppose that these functions of » are
regular in a given region of the variable, as well as the coefficients @ of the

equation
any,, arn— 1
(229 ax i"*‘ ay P o 1+ tagy= X.

Further, let a set of quantities p be constructed according to the law

d; d, dp,
Do=2Cg, 201_—‘5“1—3%), P2=2a2“a%a ooy P_Zan“‘zzle5
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and let the last of them be denoted by — Z, so that there are n functions Z
corresponding to the n functions z.  Shew that, if @ (¢) is the value of ¢ when
the last column of the latter is replaced by constants ¢y, ..., ¢, if @ (z, 2,) is
its value when the last column is similarly replaced by z; (), 25 (@), ..,
2n (), and if @ (x, #,) is its value when the last column is similarly replaced
by Zl ('xl)a Z2 (x1)7 mee Zn (-?71), then

—~1 n—1 ' @x —
y= 0 e+ [1X @) @ o dak [(9(2) T (o ) o}
@ a @
where @ is a value of x within the given region and the constants ¢ are
determined in association with a.

Indicate the form of this result when z, ..., 2, are a fundamental system
of the equation, which is the adjoint of the left-hand side of the above
equation.

Also shew how, in even the most general case, it can be used as a formula
of recurrence to obtain an infinite converging series of integrals as an
expression for y. (Dini.)

88. Consider an expression P (w) and its Lagrangian adjoint
p (v), and let R (w, v) denote their bilinear concomitant ; then

vP (w) — wp (v) = diz (R (w, v)},

which holds for all values of v and w. Accordingly, let
w=z P51 p= 2P,
where s 1s any integer; then

2PP (z7P571) — z7p—571 p (2P) = C% {R (2P, 2°)}.

Now the left-hand side is a series of powers of z, having integers
for indices; as it is equal to the right-hand side, which is the
first derivative of a similar series of powers, the left-hand side
must be devoid of a term in 27
Let
P (), =2 u(r)z ",

be the characteristic function of P (w); then the coefficient of z—*
in z2P (z7*51) is f;(— p —s—1). Further, let

P (2#), =Zpu(p) 227H,

be the characteristic function of p (v); then the coefficient of 2z
in 2751 p (2°) is ¢ps(p). Hence

¢ (p)=Sfs(—p—s—1),
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and therefore

fs(P)"—“‘;bs(—P_‘s'_ b);
2 fu(p) e

be the characteristic function of a given equation, then

2fu(—p—p—1)zete
is the characteristic function of the adjoint equation.

so that, if

When P (w) is in its normal form, all the coefficients f, (p)
vanish for negative values of u, but f,(p) i1s not zero. Hence
Ju(—p—pm—1) vanishes for negative values of x, but not
JSo(—p—1); and therefore the adjoint expression p (v) is in its
normal form. Moreover, their indicial functions f; (p), ¢,(p) are

such that
Jo(p)=¢(—p—=1), $o(p)=/fo(—p—1),

so that they are of the same degree*, or the characteristic
indices are the same. Hence if an equation has all its integrals
reqular in the vicinity of a singularity, the adjoint equation also
has all uts integrals regular tn the vicinity of that singularity ; for
the characteristic index is then zero for the original equation, and
it therefore is zero for the adjoint equation. Similarly, +f an
equation has all its integrals non-regular in the wvicinity of a
stngularity, the adjoint equation also has all its integrals mon-
regular in the vicinity of that singularity ; for the characteristic
index is then equal to the order of the original equation, and 1t
therefore is equal to the (same) order of the adjoint equation.

On the basis of these two results, we can obtain a descriptive
condition necessary and sufficient to secure that, if a differential
equation of order m has an indicial function of degree m —n, the
number of its regular integrals is actually equal to m —n.

Let P=0 be the differential equation, with an indicial func-
tion of degree m—n. Let R=0 be the differential equation
of order m —n, which has the aggregate of regular integrals of
P =0 for its fundamental system ; its indicial function is of degree
m—n. Then (§ 75, 1v) the equation P =0 can be expressed in
the form

P=QR=0,

* Thomé, Crelle, t. uxxv (1873), p. 276; Frobenius, Crelle, t. Lxxx (1875},
p. 320.
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where @ is a differential operator of order n. Because the degrees
of the indicial functions of P and R are equal to one another, it
follows (from § 76) that the degree of the indicial function of @ is
zero, that is, the indicial function of @ is a constant, and therefore
(§ 77, Cor. 1) the equation @ =0 has no regular integral.

Now construct the equations which are adjoint to P =0, @ =0,
R =0 respectively; and denote them by p=0, ¢g=0, »=0.
Because R and r are adjoint, and because all the integrals of
R =0 are regular, it follows that all the integrals of »=0 are
regular; and conversely. Similarly, because  and ¢ are adjoint,
and because @ =0 has no regular integral, it follows that ¢=0
has no regular integral; and conversely. Further, by § 82, we
have
prp=rye
so that the equation adjoint to P =0 is
p=rq=0,

and this equation possesses all the integrals of ¢ =0, an equation
whose indicial function is a constant. Hence it is necessary that
the equation adjoint to P =0 should possess all the integrals of an
equation of order =, having a constant for its indicial function, if
P =0 is to have m —n linearly independent regular integrals.

But this descriptive condition is also sufficient to secure this
result. For, as the condition is satisfied, we have

p=rq
where the indicial function of ¢ is a constant; hence, with the
preceding notation, we also have

P =QR,
and the indicial function of @ is a constant. Accordingly, as the
indicial function of P is of degree m — n, it follows (§ 76) that the
indicial function of R is of degree m —n; and therefore (Ch. 111),
as the order of R =0 is m —n, all its integrals are regular. But

P =0 possesses all the integrals of B=0; and therefore it has
m — n regular integrals.

We therefore infer the theorem :—

In order that an equation of order m, having an indrcial function
of degree m — n, may possess m —n regular integrals, it vs necessary
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and suffictent that the adjoint equation should possess all the inte-
grals of an equation of order n, having an indictal function which
18 a constant.

This result was first established by Frobenius*; and it may
be compared with the corresponding result obtained by Floquet
(§77). The special case, when n =1, had been previously discussed
by Thomé+, who obtained the result that an equation of order m,
having an indicial function of degree m — 1, possesses m — 1 regular
integrals, if the adjoint equation has an wntegral of the form

¢(2) 3
e \* 2 an’n—f-a.’
n=0

where G (%) ts a polynomeal in i, and a vs a constant.

We shall not pursue this part of the formal theory of linear
differential equations further: we refer students to the authorities
already (§ 82) quoted, as well as to Thoméj, Floquet§, and
Griinfeld|.

* Crelle, t. uxxx (1875), pp. 331, 332.

+ Crelle, t. Lxxv (1873), pp. 278, 279.

+ A summary of many of the memoirs upon linear differential equations by
Thomé, published in Crelle’s Journal, will be found in Crelle, t. xcvr (1884),
pp. 185—281.

§ Ann. de UEc. Norm. Sup., 2° Sér., t. vzt (1879), Supplément, p. 132.

I Crelle, t. cxv (1895), pp. 328—342, ib., t. cxvir (1897), pp. 273—290,
ib., t. cxxir (1900), pp. 43—52, 88.

17—2

CHAPTER VII.
NORMAL INTEGRALS; SUBNORMAL INTEGRALS.

84. IT is now necessary to consider those integrals of the
differential equation in the vicinity of a singularity, which are not
of the regular type. Suppose that such an integral, or a set of
such integrals, is associated with a root € of the fundamental
equation (§ 13) of the singularity which, as in the last chapter,
will be transformed to the origin by the substitution

z—a=x z==,
x
according as it is in the finite part of the plane, or at infinity.
Let p denote any one of the values of
1
27t

log 6 ;

then it is known that an integral exists in the form

are,

where ¢ is a uniform function of « in the vicinity of the origin.
As this integral is not of the regular type, the function ¢ will
contain an unlimited number of negative powers, so that the origin
is an essential singularity of ¢: in the case of the integrals con-
sidered earlier, the origin was either a pole or an ordinary point.
Accordingly, when ¢ is expressed as a power-series, it will contain
an unlimited number of negative powers: it may contain an
unlimited number of positive powers also, and in that case it has
the form of a Laurent series.

Classification of such integrals might be effected in accordance
with a classification of essential singularities; but the discrimina-
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tion that thus far has been effected among essential singularities
is of a descriptive type*, and has not led to functions whose general
expressions are characteristic of various classes of singularities.
Accordingly, it is possible to choose one function after another
with differing forms of essential singularity, and to construct
(where practicable) the corresponding linear equations possessing
integrals with the respective types of singularity: but there is no
guarantee that such a process will lead to a complete enumeration.

There is one such function, however, which is simpler than any
other, and yet is general of its class. It suffices for the complete
integration of the linear equation of the first order when the origin
is a pole of the coefficient ; and an indication has been given (§ 81)
that it may serve for the expression of an integral of an equation
higher than the first. The equation of the first order may be
taken to be

where #'*P is a holomorphic function, s being some positive
integer. Let

sa;  (s—1a 205, as p ,
P:a—gsq:f—{—*——:%s 2+..+783—+;:‘—{;—I (.CU),

where I’ (2) is a holomorphic function ; then we easily have
y = e%Pel @ = ePl (),

where 4 (2) is a holomorphic function of #, and

Q_

+ %
.z” .x"s“ oz’

It is clear that #=0 is an essential singularity of the integral;
and also that we thus have the complete primitive of the equation
of the first order.

Tt appeared, in § 81 and the example there discussed, that
such an expression, if not in general, still in particular cases, can
be an integral of an equation of higher order.

As all expressions of the form
e%zPyr (),

* T, F. § 88.
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where () is a polynomial in —1», possess the same generic type of

essential singularity, we proceed to the consideration of equamons
that may possess integrals of this form. Such an integral is
called* a normal elementary wntegral or (where no confusion will
occur) simply normal. The quantity e®, through the occurrence
of which the point =0 is an essential singularity, is called the
determaning factor of the integral; the other part of the integral,
being 2*+r (x) where 4 is holomorphic, is of the type of a regular
integral, and so the quantity p i1s called the exponent of the
integral.

CONSTRUCTION OF NORMAL INTEGRALS.

85. We proceed, in the first place, to indicate Thomé’s
method+ of obtaining such normal integrals as the equation

dm™w + d™w ot dw N —0
dam T P gt T T P g T Pt =

may possess. (The method gives no criteria as to the actual
existence of normal integrals: and therefore, if any criteria are
to be obtained for equations of order higher than the first, they
must be investigated otherwise.) If a normal integral exists, it

is of the form
w = ey,

where Q is a polynomial in 32; and Q is determined so that, if

possible, the equation satisfied by w may possess at least one
regular integral. Let

dneﬂ
dz™ e%tn,
so that
=1, t=90, tpu=t+Q, (p=1,2,..);
then
d™w

du d» d"u
dz™ = ¢ (tn’uf + nbp_y 'CT” + oo 5 da"—1 + by —5—; dz™ )

* Thomé, Crelle, t. xcv (1883), p. 75. Cayley, b., t. ¢ (1887), p. 286, suggested
the name subregular; but the name normal is that which has generally been
adopted.

F Orelle, t. LxxvI (1873), p. 292.
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When these quantities, for the successive values of n, are substi-
tuted in the differential equation for w, the determining factor ¢®
can be removed; and the differential equation for « then is

@_{_ dm‘lu_!_ du -0
dam D g+ O gy F gt =0,
where
_ m ! (m —1)! (m — 2)!
gr_r!(m—r)!tr+(r~1)!(m—r)!pltr”l_k(1"—2)!(m—7~)!p2t"_2+"'
oo+ (m—r 4+ 1) pit + pilo,

forr=1,2, ..., m.

If the original equation possesses a normal integral, then, after
the proper determination of Q, the differential equation for « will
possess at least one regular integral: its characteristic index
cannot then be greater than m — 1, which (after the results in the
preceding chapter) is a necessary but not a sufficient condition.

As Q is a polynomial in 27, its form and degree being un-
known, let its degree be s—1, so that s>2; we then have for Q'
an expression of the form

Q’=@+q—g’+ R
@€

a2 as °

Hence in ¢,, the governing term (that is, the term with highest
2
negative exponent of z) is %:; in %, it is %:—é; and so on, so that, in

K3
t,, it is g;-g. Asin § 73, let =, denote the multiplicity of =0 as
@&

a pole of p,; then in g,, the governing exponents of its respective
parts are

rs, w+(r—1)s, w+(@r—2)s, ..., w3 +S, T,

Thus the governing exponents in ¢, are, so far as they go, less than
those in ¢,4, by s, and s >2. Hence, in forming the characteristic
index for the equation in w, for the purpose of determining whether
it may possess a regular integral, the governing exponent in ¢,
is certainly greater by s than that in any other coefficient; the
characteristic index is m, the indicial function is a constant, and
the equation has no regular integral. But, thus far,  is quite
arbitrary ; and it may be possible, by proper choice of its constant
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coefficients, to secure that a number of the terms in ¢, with the
greatest exponents of 27! shall disappear. If by thus utilising the
governing exponent and the constants in )/, we can secure that
the characteristic index of the equation in w is less than m, the
indicial function ceases to be a constant and the equation may
have a regular integral.

In order that the indicial function may not be a constant, the
governing exponent of ¢, must be less than that of g, by unity
at the utmost, or that of ¢,,_, must be less than that of ¢, by two
at the utmost, or (for some value of ) the governing exponent of
gm—r must be less than that of ¢, by r at the utmost; whereas at
the present moment, these diminutions are s, 2s, s respectively,
where s > 2. Hence an initial necessity is that the s — 1 terms in
@m With the highest exponents of 2~ shall vanish. Now

Gm =t + Pl + oo + Pmaly + P

The s —1 terms in ¢, with the highest exponents of 27! are the
same as in Q'* because of the form of £’ and because

b= t,’f‘_l -+ Q’t,k_l,

(but not more than those s —1 terms are the same); hence the
s—1 terms with the highest exponents of #, say the first s —1
terms, in

Q™4+ p Q™A P QA+ Py
must vanish.

86. To render this result attainable, it is necessary that the
greatest exponent must not occur in only a single term of the
preceding expression, for then the term could vanish only by
having a,=0; the greatest exponent must occur in at least two
terms. Consequently no one of the numbers '

ms, w+(m—1)s, w,+(m—2)s, ..., @,
may be greater than all the rest, that is, no one of the numbers
‘ 0, ov,—8, w,—28, ..., @Wy—MS,
may be greater than all the rest. Of the quantities
1

1 1
T, §m2) E‘ws, LER Y Ew'mu
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let g be the greatest. Evidently ¢ is greater than unity; for the
original differential equation has not all its integrals regular, and
8o @, >n for at least one value of n. Now s cannot be greater
than g; for any such value would make all the integers in the
series

0, w—s, w,—2s, ..., @y—ms,

negative except the first, that is, the first would then be greater
than all the rest. Hence s<€g: and s>2, from the nature of the
case.

I. When g <2, no value of s s possible; and then there is no
~normal integral of the type indicated. Such a case arises for the
equation

4 1 4 1 _O
Y+ vy + 5 9y=0,

when p and ¢ are holomorphic in the domain of #=0 and neither
vanishes when 2 =0. The quantity g is the greater of 1, §, that
is, it is less than 2; so that there is no normal integral. Moreover,
as the indicial function of the particular equation is a constant, it
has no regular integral.

II. When g is an integer (necessarily greater than unity), we
manifestly might take s=g. For two at least of the numbers

0, =, —s, w—28, ..., @yp—mS,

would then be equal to the greatest among them, which is zero;
and then two at least of the numbers

ms, w+(m—1)s, wo+(m—2)s, ..., T +S, Tm,
would be equal to the greatest among them, one of these being ms.

More generally, let n be the characteristic index of the original
equation, so that
Ty t+M—NZwy+Mm— pu,

for all values of u that are greater than n; then, adding (m—n)(s—1)
to each side of the inequality, we have '

wp+(m—n)s>w,+(m—p)s+(p—n)(s—1),

where u>n. In the case of all these numbers, (u —n)(s—1) is
certainly positive; so that the first s —1 terms in our expression
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are not affected by the quantities corresponding to =, + (m — u)s,
and they can occur only through the quantities corresponding to

@+ (m—2N)s,

for x=0,1, ..., n, where w,=0, and n is the characteristic index
of the original equation. We thus consider the first s — 1 terms in

Q'm= (" 4 p, 2"+ P, Q"2 L+ Paa) + pr) s
and this holds for any value of s equal to or greater than two.
As regards g, which is the greatest among the quantities

1 1 1
Wi, gWa, ZWg, -eny %wm,

it occurs only among the first n, in the present circumstances ; for
it certainly is greater than unity and if any one of the last m — n,

(say %m“ is the greatest of these last m —n), is greater than unity,

then because
@y + M —N =, +m— U,

we have
-z (1))
n yos yrs n
that is,
Wy Ty
n T ow’

for p is greater than n. Thus g does not occur in the last m —n
of the quantities, if one or more than one of them is greater than
unity ; and it certainly does not occur among them, if no one of
them is greater than unity. Hence g is the greatest among the

quantities
1

1 1
@y, TTWg, BWgy e n@'n.

. . . 1
It may occur several times in this set; let ~ P be the first occur-

rence, in passing from left to right, and %m—,. be the last. Take
first s=g; then we have
@+ (m—r)s=mg, w,+(m—7r)s=mg,

wr+(m—A)s<mg, if A<k, orif A>r;
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so that the highest terms of all, being those with index mg,
oceur 1n
Qm’, P Qn—=x .. +p, Q/n—r,
H then
pd=w_w’(c‘,+d,,x+...), (c=1, 2, ...),
the equation which determines a,, the coefficient of =9 in ’, is
ag"+ ceag 4+ ... 4c.=0.

The remaining g — 2 coefficients in )’ are given by equating to
zero the coefficients of the next g — 2 terms in

Q74 p Q" L+ P+ P

Each set of values of the coefficients determines a possible form
of Q' and therefore a possible form of determining factor. The
number of sets, different from one another, 1s < 7.

The preceding cases arise through s=g; but if ¢, being an
integer, is greater than 2, other values of s, less than g, may be
admissible. They can be selected as follows*. Mark the points

0, n; =, n—1; @y, n—2; ...; @y, 0;

in a plane referred to two rectangular axes; and taking a line
through the first of them parallel to the axis of «, make it swing
round that point in a clockwise direction, until it meets one or
more of the other points; then make it swing in the same direc-
tion round the last of these, until it meets one or more of the
remaining points; and so on, until the line passes through the
last of the points. There thus will be obtained a broken line,
outside which none of the marked points can lie.

If a line be drawn through any of the points, say =, n —«, at
an inclination tan~ u to the negative direction of the axis of y, its
distance from the origin is

I+ ) Hme+ (0 — 1) pl,
so that, for a given direction u, the distance is proportional to
@, + (N — k) p.

It therefore follows that an appropriate value of s is given by any
portion of the broken line, which is inclined at an angle tan= u to

* The method is due to Puiseux; see 7. F., § 96.
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the mnegative direction of the axis of y, where u is a positive
integer, >2: the value of s being

s = p.
As many values of s are admissible as there are portions of the

broken line with inclinations tan—' u, where u is a positive integer,
which is > 2.

For each admissible value of s, arising from a portion of the
broken line, the terms in

Q7+ p Q"+ L+ P+ Py,

which correspond to the points on that portion, give the terms of
highest negative power in . If, for instance, a portion of line,
having as its extremities the points corresponding to

Q7 and p, Q7 (t>nr),

gives a value g’ (necessarily an integer, as being a value of s), then
the coefficient a, satisfies an equation

Crayt T+ ...+ =0,

and the remaining g’ — 2 coefficients in Q' are obtained in the
same manner as before. Each set of values of the coefficients
determines a form of Q' and therefore also a possible determining
factor; and the number of sets different from one another is
<l —r.

And so on, with each piece of broken line that provides an
admissible value of s.

III.  When the greatest of the quantities
W, Wy tws, ...

is greater than 2 but is not an integer, we construct a tableau of
points as in the preceding case, and draw the corresponding line.
Only such values of s (if any) are admissible as arise from portions
of the line, which are inclined at an angle tan™ u to the negative
part of the axis of y, u being an integer > 2.

87. In every case, where a possible form of Q’ and thence a
possible form of Q have been obtained, we take

w = e%u.
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If a normal integral of the original equation exists, the equation
for w must possess a regular integral ; and each regular integral of
the latter determines a normal integral of the former having the
determining factor ¢% An upper limit to the number of integrals
thus obtainable is furnished by the degree of the indicial function
of w; but the investigations of the last chapter shew that, when
the degree of the indicial function is less than the order of the
differential equation, the number of regular integrals may be less
than the degree and might indeed be zero. The simplest mode of
settling the matter is to take a series of the appropriate form,
determined by the indicial function of the w-equation, substitute
it in the differential equation, and decide whether the coefficients
thence determined make the series converge. The normal
integral exists or is illusory, according as the series converges
or diverges.

When the normal integral exists, we say that it is of grade
equal to the degree of Q as a polynomial in 2™

SUBNORMAL INTEGRALS.

88. In the preceding investigation of normal integrals, it was
essential that the number s should be an integer >2: and
accordingly, such values of u, as were given by the Puiseux
diagram and did not satisfy the condition, were rejected. But
though they are ineligible for the construction of normal integrals,
they may be subsidiary to the construction of other integrals.

Let p denote such a quantity, given by the Puiseux diagram
in the form of a positive magnitude that is not an integer: its
source in the diagram makes it a rational fraction which, being
expressed in its lowest terms, may be denoted by % -=k. The
terms which, for this quantity as representing a possible degree
for {, have the highest index of #= in

Q74 p Q" A P+ Pa,
are those which correspond to points on the portion of the line
that gives the value of u. Hence, taking
A

’—-—_
Q —x“+...,
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an equation is obtained by making the aggregate coefficient of
this term of highest order disappear; the equation determines A.

Now take a new independent variable £ such that
x = £k,
and make it the independent variable for the differential equation ;

. a) .
the expression for —— is

dx
a_4
dw — gt
so that
aQ
—_ — (h—k—1)
JE kAE + ..,
and therefore
k
- — (h—k)
0 T AE + ...

Thus Q is infinite when 2 =0, provided % >k, that is, for values of
w that are greater than unity. Accordingly, when we proceed to
consider the differential equation with & as the variable, values of
Q of the preceding form can be obtained by the earlier method :
in fact, we may obtain a normal integral of the equation in its
new form, the conditions being that the equation for v, which
results from the substitution

w = e,

shall have a regular integral or regular integrals. When once the
value of %k is known and the transformation from z to £ has been
effected, the remainder of the investigation is the same as for the
construction of normal integrals of the untransformed equation.

Examples will be given later, shewing that such integrals do
1

exist. As they are of a normal type in a variable 2%, where k is a
positive integer, they may be called subnormal®*. Their existence
appears to have been indicated first by Fabry+.

89. We have seen that, if g denote the greatest of the
quantities
wl: %EQ) .715—@—3, seey

* Poincaré, Adcta Math., t. viii, p. 304, calls them anormales.
T Sur les intégrales des équations différentielles lin€aires & coefficients rationels,
(Thése, 1885, Gauthier-Villars, Paris), Section 1v.
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and if the equation possesses a normal or a subnormal integral of
the form

27 ¢ (2),

then Q' is a polynomial in z7 (or in some root of z7) of order
equal to or less than g; and therefore ) is a polynomial in 2z of
order equal to or less than g —1. Let

9—1=R;
then R is called the rank of the differential equation for z= 0.

When R is an integer, the grade of a normal integral may be
equal to R: if not, it is less than B. When R is not an integer,
let p denote the integer immediately less than R ; the grade of a
normal integral may be equal to p or may be less than p. When

R is a fraction, equal to ZZ—. when in its lowest terms, then a sub-

normal integral may exist having a determining factor e?, where
1

Q is a polynomial of degree & in z ¢ ; it will still be said to be of
grade % in 2z, that is, of grade R. All subnormal integrals are of
grade R or of grade less than R.

FEz. Obtain the rank of the equation

n Aar—rw

z p,

r=0 dzn—7r

0

for z=c0, the coefficients p being polynomials in z.

90. The converse proposition, due* to Poincaré, is true as
follows :—

If n normal or subnormal functions are of grade equal to or
less than R, and have the origin for an essential singularity, they
satisfy a linear differential equation of order m and rank not
greater than R for z=0.

Any n functions satisfy a linear differential equation of order
n: in the present case, let it be

d™w a1y
dz" +P dzn!

* Acta Math., t. viir (1886), p. 305: the form has been somewhat altered, so as
to admit the discussion of normal and subnormal integrals together.

+ ... +P,w=0.
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Let the normal and the subnormal functions be arranged in a
sequence of descending grade: when so arranged, let them be

wy = €Mz, w,=eNz%U,, ..., W, = eMzruy,,
so that, if R, R,, ..., R, be their respective grades,

R>R,>R,>...2R, .,>R, > R,.
Now
PrA +An,r=0’

where A is the fundamental determinant of the » functions, viz.

A dr—1 w, dn~~1,w2 dn—lwn
Tlde dert T det |
dn—zwl dn—z,wz dn—2wn
dzn—2 4 dzn—2 » °°% dzv—2
Wy, Wy, > wn

and A, , is obtained from A by substituting the derivatives of
order n for the derivatives of order n —r in the rth row. The

value of P, is
An,r

Po=—"2

In order to obtain the degree of z =0 as an infinity of P,, it will
be sufficient to consider only the governing terms in A and A, ,;
and the degree is determined through the differences between the
two sets of most important terms in the rth rows. Now if

— 0
Wy = €222 Uy,
we have
d%w,
dz1

— »—q (Rp+1) .0
=2z q( o )6pqu¢q:p’

where ¢, , is finite (but not zero) when z=0. We take out of

the pth column a factor
€% 2%,

for each of the n values of p; we take out of the mth row a

factor
z—m (Rx"’ 1)
b

for each of the m values of m; and then every constituent in the
surviving determinants A and A, , is finite. The initial terms in
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these constituents are the same for all the rows except the
(r— 1)th: the difference there is that «,", a7, ..., @,® occur in A’ ,,
while o7, a,» 7, ..., @, " occur in A’, where A’, , and A’ are the
modified determinants, and a,, «,, ..., a, are the coefficients of the
governing terms in Q,, Q,, ..., Q,. Accordingly, if

A =A28+ ...,
then

A=A+ ..,
where the other indices are higher than 8, and 4, 4" are constants;
and therefore

A =g inmen Rk g2 JZop A7

An,q- = g—inn—1) (Bi+1) -+ (Ry+1) 6291’ Zzap A’n,'r,

the summation in the exponents being for values 1, 2, ..., n of p.
Hence
A+ ...
Py= = e S

Now A, being the fundamental determinant, does not vanish
identically: and as z=0 is an essential singularity, and not
merely an apparent singularity, A does not vanish when z=0;
thus 4 is not zero. It might happen that 4’=0; but in any
case, if =, denote the order of z=0 as a pole of the coefficient P,,

we have @, €7 (L;+ 1). Thus the largest of the numbers -}‘wr

is 2R, +1= R+ 1; and therefore, for z=0, the rank of the
equation € K, which proves the proposition.

When all the integrals are normal, which is the circumstance
contemplated by Poincaré, the quantities R are integers and the
determinants A’, A’, , are uniform : so that the coefficients P then
are uniform functions of z. The coefficients P are uniform also
when the aggregate of subnormal integrals is retained : the proof
of this statement is left as an exercise.

NOTE. An equation, which has a number of normal integrals,
1s reducible; so also vs an equation, which has a number of sub-
normal integrals.

By the preceding proposition, the aggregate of the normal
integrals (or of the subnormal integrals) satisfies a linear equa-
tion with uniform coefficients, say N =0, of which they are a

F. 1V. 18
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fundamental system. Denoting the original equation by P = 0, we

can prove, exactly as in § 75, that P can be expressed in the form
P =QWN,

where @ is an appropriate differential operator. In other words,

P is reducible.

The investigation of the detailed conditions, imposed upon
the form of P by the possibility of such reducibility, will not
be attempted here.

Further, it must not be assumed (and it is not the fact) that
reducible equations are limited to equations, which have regular,
or normal, or subnormal integrals.

Exz. 1. Consider the equation

It

1 /"’ 1 !
Y+ BP9y + 5 7y=0,

1
z
where p, ¢, 7 are holomorphic functions of # that do not vanish when #=0.
To investigate the possible kinds of determining factor, we form the
tableau of points
0, 3; 3,2; 5,1; 7, 0;
and then construct the broken line. There are two pieces: one gives u=3,

the other u=2 ; the former joins the first two points; the last three lie on
the latter. The possible expressions for Q" are therefore

’ a B 1Y
P=ata T
where @ and B are uniquely determinate, and 5 is the root of a quadratic
equation.

Of course, the actual existence of normal integrals depends upon the
actual forms of p, ¢, 7.

Ez. 2. Shew that the equation
211 1 17 1 / ]‘
'+ @ py + 599 + 5 ry=0
where p, ¢, 7 are holomorphic functions of # that do not vanish when z=0,
possesses no normal integrals in the vicinity of x=0: but that it may
possess subnormal integrals.

Ez. 3. Consider the equation

o w3 ., 3 141223
A+62%) y"+ 9"+ 5y’ + ——y=0,
which has no regular integral, because the indicial function is a constant.
The numbers @w,, @w,, wy are 1, 2, 6; so that g=2, and we therefore take
s=2, so that
a
Q==
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We have to make the single (s—1) highest power of #—! vanish, in the

expansion of
302 300 1+122%
z(1+6x%)  2:(1+62%)  x°(1462%)

in ascending powers of # ; hence

@3+

al=1,

so that a is a cube root of unity, and
=2
z

Accordingly, we write
a

y=e§0 w3
after reduction, the equation satisfied by « is found to be

w 3u” (a—z+ Bax®)
= S22 AT aAr )

2% (1 +625)
3u' (a®+ 2%+ 6a’23+12az4)  Bu (a®+ ax — 222+ 12a°2% + 12a2*) _ 0
* 2% (1 + 64%) 2 (1+ 629 =%
The indicial equation for =0 is

a?(6—-1)=0,
which has a single root §=1; so that the u-equation possibly may possess a
single regular integral which, if it exists, will belong to the exponent 1, and
so will be of the form
w=x (Co+cyx+ e 22+ ...).
As a matter of fact, the u-equation is satisfied by
u=cy (x+ a®2?),

as may easily be verified ; and thus the original equation possesses a normal

integral

Y= (a+aa),

where a is a cube-root of unity. But a may be any one of the three cube
roots of unity ; and therefore the original equation in y possesses the three

normal integrals
1 a a?

& (z+a2), & (z+a2a?), e® (x+ax),
where a is now an imaginary cube-root of unity.
The singularities of the equation given by 1+462°=0 are only apparent
(§ 45).
Ez. 4. Prove that the equation
2%y — (a4 b2%) y=0
has, in the vicinity of w=w, two linearly independent normal integrals,

provided a is of the form p(p+1), where p is an integer =0 ; and obtain
them.

18—2
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Ex. 5. Prove that each of the equations

23y +2zxy — y=0,
24"+ 22%y' — (0% +22%) y=0,

has, in the vicinity of #=0, two linearly independent normal integrals; and
obtain them.

FEz. 6. Prove that the equa,tion
st 6 ’ i 0
y ! x2 y y

has, in the vicinity of x#=o0, three linearly independent normal integrals ;
and obtain them.

Ex. 7. Prove that the equation
dzty” — (4+ 1224 32%) y=0

possesses one normal integral in the vicinity of #=0; and that one normal
integral is illusory in that vicinity.

Erx. 8. Shew that the equation
(z+2) 25" + (22432 — 2) 2%y" — (v +2) 2% — (322 —bxr — 2) y=0

possesses three normal integrals in the vicinity of #=0.

1 1 1
[They are ze”, xe *, xe *logx.]

FEx. 9. Prove that a solution of the equation
7] o+ 1 ’ 4 a (0’+ 1)
is expressed by

e%(”—“)mx_"[l +%7\nw+...+A(A—(/:_>l:.1'§)(\/;—,)/;+1)(nx)k+~--:|’

where
n?=a?—4b, n(A+1)=a(oc+1)—c.

(Math.. Trip., Part 1, 1896.)

HAMBURGER’S EQUATIONS.

91. The conditions, sufficient to secure that an equation, of
order m and not of the FKuchsian type, shall have a regular
integral, have not been set out in completely explicit form
(8§ 78, 79); and consequently, the conditions sufficient to secure
that such an equation shall have a normal integral have not been
set out in explicit form. The foregoing examples (§ 90) afford
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illustrations of the detailed process of settling such questions in
individual instances; and the following investigation* gives the
appropriate tests for a particular class of equations, which afford
an illustration of the general method of proceeding.

We consider the equation

w' =T Py B; + s w,
in which a must be different from zero (§ 86) if the equation is to
possess a normal integral. For any integral that occurs, z=0 is
an essential singularity. For large values of 2z, the integrals are
regular ; and a fundamental system for z=0 is composed of two
regular integrals, which belong to exponents — p, and — p, arising
as roots of the quadratic equation

plp—1)=r.
These two regular integrals may be denoted by

2z -Pl (1) s Zl-’z‘P2 <l> 5
z z

where P,, P, are converging power-series. As the origin is the
only other singularity of the equation (and it is an essential
singularity), it follows that P, and P, have z = 0 for an essential
singularity ; all other points in the plane are ordinary points for
P, and P,.

The expression of a uniform function having only a single
essential singularity, say the origin, and no accidental singularity,
is known by Weierstrass’s theorem+ to be of the form

()0

where P(%) is a uniform function having all the zeros of the
original function (the simplest form of P being admissible), and
g<%> is a holomorphic function of % which is finite everywhere

except at z=0.

* It is due to Hamburger, Crelle, t. cix (1888), pp. 238—273.
T T. F., § 52.
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The function g may be polynomial or it may be transcendental ;
the discrimination depends upon the character of the origin as an
essential singularity for the original function. As the present
application is directed towards the determination of normal inte-
grals, the function g (%) will be taken to be a polynomial in %

If the original function has an unlimited number of assigned
zeros in the plane outside any small circle round the origin, P

is transcendental. When the number of zeros is limited, P(%)

is a polynomial in —Zl—, which can be taken in the form

P (1> — 2 £(2),

zZ

where k is a finite positive integer, /'is a polynomial in z of degree
not greater than k, its degree being actually & when z =0 is not
a zero.

The equations to be considered are those which have integrals

2. P, (%) , znbP, (%) s

as above, one (or both) of the functions P, and P, having only a
limited number of zeros outside any small circle round the origin,
with the further condition that the essential singularity at the
origin is of the preceding type. Thus an integral is to be of the
form

w=¢é (z_) 27k f(2)

= ¢22° f(2) = eu,

. N | .
say, where Q is a polynomial in L the exponent o is a constant,

and f(2) is a polynomial in z; and the differential equation for «
is to have a regular integral which, except as to a factor 27, is to
be a polynomial in 2. Let

a . o a
QJ_—2+Z;+... Z—::;
then the equation for w is
at Bzt

w+ 20+ u(Q2+ Q) =u =
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After the earlier explanations, it is clear that we must take
m=1, a*=a.
The equation for » then is

n 20,
2

28 ’

which is to have a regular integral of the type
w=2° f(2)
=27(Co+ G2+ ... + 2™+ ...),

there being only a limited number of terms on the right-hand
side. The indicial equation for z2=0 is

- 2a0+4+2a—-8=0,

c=1 B

2"

so that

Substituting the expression for u, and equating coefficients, we
have, after a slight reduction,

{(n+o)(n+o—=1)-g}cp={2a (n+ ) + B} Cp
=2a (n+ 1) Caya;

and therefore

o :(n—!—a—)(n+o-—1)—iyaC

nH 2a (n+ 1) "
It is clear that, if the series with the coefficients ¢ were to be an
infinite series, it would diverge and the integral would be illusory.
For this reason also, as well as by the initial condition, all the
coefficients from and after some definite one, say after ¢z, must
vanish; and therefore we must have

k+o)ylb+o—1)=x,

or substituting for o its value, we see that the quadratic equation

(e1-£)(o- £) -

where a*= a, must have a posittive integer (or zero) jfor a root.
This condition is sufficient to secure the significance of the series,
and therefore sufficient to secure the existence of a normal integral
of the equation

o+ Bz +y2?
W = AT By
24
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Clearly, there are two values of a. If for either value the
condition is satisfied, there is a normal integral of the form

2
e*u,,

where a has the value for which the condition is satisfied.

The condition cannot be satisfied for both values, if the values
of o are different, and arise from different values of p; for if it
could, we should have

B B

0'1+0'2=1—§E+1+—2—a=2.

Now p, + p.,=1; and therefore
ki +k,=p — a1+ pp—oy=—1,
which is impossible, as neither &, nor k, is negative.

The condition can be satisfied for both values of a, if the
values of o are the same, that is, if

B=0:
for then the condition, that the equation (6 + 1) 0=« can have a
positive integer as a root, shews that the equation
i e 2
- z*
possesses two normal integrals of the form

a
€e#z(Co+ 12+ ... + cg2%),
a

e 2z(co—ciz+ ... + coz%).

The condition can be satisfied for both values of a, if the
values of o arise through the same value of p, whether they are
the same or not; and the equation then possesses two normal
integrals. The limitations on the constants are given in the
first of the succeeding examples.

Ez. 1. Prove that the equation
2
w~=ﬁi%+_7ﬁw
possesses two normal integrals, if

B

1
a?

=4 4‘Y+1=P2>

where ¢ is any integer, positive, negative, or zero, and p is an integer that
may not vanish. (Hamburger.)
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Ez. 2. Obtain the conditions sufficient to secure that the equation

2 31 et
2a-i;bzw,+a+,82+-yzz4+az +e w=0

w” +

may have a normal integral of the foregoing type. Can it have two normal
integrals ?

Ez. 3. Prove that the equation

(4

w”+% w -|—é w=0

2t

possesses two normal integrals, if @ is an integer (positive, negative, or Zero).

Ex. 4. Prove that the equation

2 4
w~=“j532(fi w

possesses a normal integral if the quadratic equation

B B

s P 1. P Y\

(o575 (e+1-57) =

has a positive integer (or zero) for one of its roots for either value of J/a.

‘What happens (i) when both its roots are integers for the same value of J/a,
(ii) when, for each value of \/a, the equation has a positive integer for a root ?

Ez. 5. Prove that the equation
- W’ 'ZI/’, 1 4
W —2n (n+1) 2-2+4n(n+1)§+ ;n(n+1)(n+3) (n—2)+atr w=0,

where # is an integer and « is any constant, has four normal integrals of the

form
()
z b

where ¢ (%) is a polynomial in zl (Halpheh.)

92. In an earlier paper, Cayley* had proceeded in a different
manner. If

w=20¢(2),

where ¢ (2) is a holomorphic function of 2z not vanishing with z,
we have

w_p ¢ ()
w 7z $(2)
=§+ R (2),

* Crelle, t. ¢ (1887), pp. 286—295; Coll. Math. Papers, vol. x11, pp. 444—452.
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where R (z) is a holomorphic function of 2z in the vicinity of the
origin. Further, if
w=e2° ¢ (2),

where ¢ (z) is a holomorphic function of z not vanishing with z,

and Q is a polynomial in %, we have

’ , E’( )
w 2 ¢(2)
L 24 F
o+ 24P L R(a),

say, where R (z) is holomorphic in the vicinity of the origin.
Cayley transformed the equation by the substitution

and then proceeded to obtain, from the differential equation for y,
an expansion in ascending powers of z. When once a significant

expression for y has been obtained, the value of w can immediately
be deduced.

Applying this method to the equation

2
' = LBy
Z4

>

the equation for ¥ is at once found to be

p « B, v
Hamburger’s investigation shews that the integrals of the equa-
tion in w are

Wy = ZP]PI (%\) H Wy = ZP2P2 (%) ’

which are valid over the whole plane but have z= 0 for an essen-
tial singularity. If an integral, say w,, has an unlimited number
of zeros, the origin being its only essential singularity, then*
any circle round the origin, however small, contains an unlimited

* T, F. §§ 32, 33.
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number of these zeros: so that if, in the vicinity of the origin,
the expression of w, is

w, = 294) (Z))

¢ (2) would have an unlimited number of zeros within the small
circle so drawn. The expression for y is

_p P,
V=T 6@’
but the function i((g has an unlimited number of poles in the

immediate vicinity of the origin, and so the right-hand side
cannot be changed into an expression of the form

S+ 2424 R(),

where m is a finite integer. Accordingly, the assumed expansion
is not valid in this case: and the method does not lead to signifi-
cant results.

But when the integral has only a limited number of zeros, so
that ¢ (2) is expressible in the form

6@ =tf() D),

in the vicinity of z= 0, where ¢ <§> is a polynomial in ; and f(2)

is a polynomial in z that does not vanish with 2z, then “;((j)) can
be changed into an expansion
Z—:: +. + - - -]{3 + R (2),

and so the assumed expansion for y is valid in this case. The
method therefore does then lead to a significant result*.

Assuming the method applicable, and returning to the equa-
tion
B

y+y _“+ +Zz’

* The discrimination between the cases, and the explanation, are due to
Hamburger, Crelle, t. cix (1888), p. 242,
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we easily find

a,
y-~ + +a2+a32+...,
where
CL02 =a,
2a,a, — 2a, = 3,
20,00 + a* — a; =1y,

and, for any value n which is greater than 2,
2(@nty + Anyay+...)+(n—3)ap_,=0.

If the constants in the equation were unconditioned, the co-
efficients thus determined would give a diverging series for y.
But we are assuming that the method is applicable, so that the
conditions for convergence are to be satisfied ; and then, as

w _ %
— + +a2 cee s
w  2®

we have
%

w=e zz“1(00+clz+ D

- where the last series converges. The method does not, however,

give the tests for convergence of the series for y, at least without
elaborate calculation: still less does it indicate that the con-
vergence of the series for y is bound up with the polynomial
character of the series in the expression for w. It can therefore
be regarded only as a descriptive method, capable of partly
indicating the form of integral when such an integral exists:
manifestly, it is not so effective as Hamburger’s.

But the method, if thus limited in utility, has the advantage
of indicating an entirely ditferent kind of integrals of the original
differential equation, which are in fact subnormal integrals, though
it does not establish the existence of such integrals: for the latter
purpose, other processes are necessary. It will be sufficient to
consider an equation, say of the fourth order, in the form

1777 77

W + pyw” + pw” + pyw’ + pow

where the origin is a pole of p, of multiplicity @, for =1, 2, 3, 4.
Taking

g8

=:7/,
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we have

wll , .
w Yty
w/ll

o =Y By
o =Y Ay’ +3y" + by +
so that the equation for y is
Y +dyy” +3y° + 6%y +yt+ p (Y + 3y + )
+0: (Y + Y + sy +pa= 0.
If this equation is satisfied by an expression of the form
y=2z""(d + 02+ ...),

the coefficient of the lowest power of z must vanish. Now the
governing exponents for the terms in succession are

—m=-3, —2m—2, —2m —2, —3m —1, —4m,

- —m—2, —w —2m—1, —a, —3m,
——’m’z—m—l, —'@"2—2’/”,

— @y —Mm,

— Ty

To determine which groupings of terms will give the lowest power
of z, we use a Puiseux diagram®*; and in connection with each
quantity =, + km + [, for the various values of u, k, [, mark a point
(wn+1, k) referred to two rectangular axes Oz, Oy. Through the
point (0, 4) take a line parallel to the axis Oz, and make it swing
in a clockwise sense until it meets one or more of the points:
round the last of the points then lying in its direction, make it
continue to swing until it meets some other point or points; and
so on, until it passes through the point (=, 0). A broken line
is thus obtained ; the inclination of any portion to the negative
direction of the axis Oy being tan™ u, the quantity u is a possible
value of m, and the terms giving rise to the lowest index of z in
the differential equation for y are those which correspond to the
points on that portion of the line. There are as many possible
values of m thus suggested as there are portions of the line.

* See vol. 11 of this work, ch. ¥, passim.
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It is not, however, a necessity of a Puiseux diagram that only
integer values of m shall thus be provided: and it does, in fact,
frequently happen that rational fractional values arise. Let such

an one be g, where r and s are prime to each other ; and take
z=1_",
y=238 (a,+ a, &+ ...).
When the independent variable is changed from z to {, an expres-
sion for y of this type can be constructed, and it will be a formal
solution of the equation; if the series for y converges, then such
an integral exists, expressed in the form of a series of fractional

powers, and a corresponding integral w will be deducible. Such
an integral, when it exists, is a subnormal integral.

so that

It is easy to verify that the only points, which need be marked
in the diagram for the purpose of obtaining the possible values of
m, are those which correspond with the quantities

4m, @+ 3m, w,+ 2m, w;+m, v,

as in § 86 ; but fractional values of m are now admissible in every
case, instead of being so only under conditions as in the former
use of the diagram.

Ez. 1. This indication of integrals in a series of fractional powers was
applied by Cayley and Hamburger, in the memoirs already cited, to the

equation®
! 4
7 B Y
W={%+ ?> w,

which possesses neither a regular integral nor a normal integral in the
vicinity of z==0.

The only points to be marked for the Puiseux diagram are 0, 2; 3, 0;
there is one portion of line, and it gives

m=5%.
Accordingly, we take
z=(%;
and the equation for w then becomes
d?w 1ldw (48" 4y’
@t (e )
or, writing
w=¢EW,

* This equation is used only for purposes of illustration; its integrals are
regular in the vicinity of z=w,
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we have

/AN TS
which is a special form of the earlier equation in § 91. It possesses two
integrals, normal in ¢, if the quadratic
0(0+1)=4y'+1
has one of its roots an integer, that is, if
'=15(20-1)(20+3),

where 8 is any positive integer (or zero).

2w 4’ 4y'+g>
3

To find the integrals, we have merely to adapt the solution in § 91, by
taking
a=4B', B=0, y=4y'+3=0(6+1).

Thus a=a?=28"% o=1, and
43'%(n+1)cn+1={(n+1)n“6(6+1)}0n

=(n—-0)(n+0+1)cy;
and so, taking ¢,=1, we have

¢ 1 \* (6+n)! .
W=e fni()(‘zﬁf%) AICETOIN

as a normal integral of the equation in ¢. Accordingly, the equation

L, W z
W= {a+1—6 (26— 1)(26—{-3)} s
where 6 is a positive integer or zero, and a is a constant, has an integral

weo?@zh 2 s {(_ L\ _(0+m)! ZL,,}
n=0 407/ n!l(6—n)!
Manifestly, the other integral is given by
_ ~%a%z"% 3 9 1\* (6+n)! %n}
w=e 2 3 {( %> n—-————!w_%)!z ’

n=0 \\4a*®

the two constituting a fundamental system. Hach of them is of the type of
normal integral : but the series proceed in fractional powers of the variable.

It will be noted that the two values of o are the same, and that only
one value of p is used ; the relation is

p=oc+8=1+46.
Ez. 2. Prove that the equation
A
v”—i—g v’+g3 v=0,

where A is a constant and 2u is an odd integer, positive or negative, possesses
two subnormal integrals.
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EqQuaTtioNs OF HiGHER ORDER HAVING NORMAL OR
SUBNORMAL INTEGRALS.

93. There is manifestly no reason why Hamburger’s metbhod
should be restricted to equations of the second order; and he has
applied it to obtain the corresponding class of equations of general
order, the properties of the integrals defining the class being

(i) the integrals are of the regular type in the domain of
z= 0,

(i1) the origin is an essential singularity for each of the
integrals, and at least one of the integrals must be of
the normal type in the vicinity of z=0;

(ii1) all the points, except z=0 and z=o0, are ordinary
points of the integrals and the equation;

(iv) the number of zeros of at least one integral, which lie
outside any small circle round the origin, is limited ;

the second and the fourth of which are not entirely independent.

Let the equation be of order =, and have its coefficients
rational. The first of this set of properties requires the equation
to be of the form

LW dM dw
Z ?i?"_*_z 1Wi+...+zpn_lgz—+pnw=0,

where p,, ps, ..., pn are holomorphic functions of z for large values
of z, and thus are expressible in series of powers of z of the form
1 1
a,‘+b#2+0“;2+... (M=1,...,n).
The third of the above set of properties requires that every value
of 2, except 2=0, shall be an ordinary point for each of the

coefficients: and by the second of the properties, z= 0 is a singu-
larity of the equation and therefore of some of the coefficients.

" Accordingly, the power-series for the coefficients p, which have

been taken to be rational and are limited so that every point
except z=0 is ordinary for them, are polynomials in 27
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As the integrals are regular in the vicinity of z = o, one at
least is of the form
1
— P =
w=2z"Q <z> )

where @ is a series of powers of z%, which does not vanish when
z= oo and converges for all values of z outside an infinitesimal
circle round the origin, and where p is a root of the equation

plp=1D...(p—n+1)+ap(e—1)...(p —n+2)+...
oot anap+a,=0,

the indicial equation for z=ow. The exponents to which the
integrals belong, being regular in the vicinity of z= «, are the
roots of this equation with their signs changed ; and they exist in
groups or are isolated, according to the character of the roots.
Let the above integral be one which, under the second of the set
of properties, is a normal integral in the vicinity of z = 0, neces-
sarily an essential singularity; in that vicinity, its expression is
of the type
w = €227 R (2),

where R (z) is a function of z, which is holomorphic in the vicinity
of z=0 and does not vanish when z=0, and where Q is a poly-
nomial in z7%, say

and o is a constant. Then, in the vicinity of z =0, we have

W O Ome w o R(2)
w =gt Tt At o

=T+ Rl)
where T is a polynomial in %, constituted by Q' +% , and R, is

the holomorphic function of z given by R'(z)+ R (z). But as
this arises through a form of the integral, postulated for the
vicinity of z=0, while the integral is actually known to be

#Q(3),
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the above form for w’/w must be deducible from this actual value.
This is possible only if Q(%), which has z=0 for an essential

singularity, possesses at the utmost a limited number of zeros
outside an infinitesimal circle round the origin; for if it had an
unlimited number of zeros in the plane, other than z=0, any
circle round the origin, however small, would include an infinite
number, and then
, /1
1 @ (Z)

2 (1
2(z)
would be incapable of such an expansion. The requirement, that

thus arises, has been anticipated by the assignment of the fourth
among the set of properties of the integrals; and so we may

AY
assume @ <§) to have only a limited number of zeros. Accord-

ingly, as in § 91, the form of @ (%) must be
\
1
P <l> e ’
z
N . N . .
where P (2) is a polynomial in . having as its roots all the zeros

of @ @—) , and g <%> is a holomorphic function of ;, finite every-
where except at z=0.
Let £ be the number of zeros of @ ; then P (;) is a polynomial
of degree k, and so it can be represented in the form
G,

where G (z) is a polynomial in 2z of degree k. Thus the integral is
of the form
o(2)
2 kG (z)e \=/ .
The postulated form must agree with this form; hence g (%)

is the polynomial Q of that form, and the holomorphic function
R (2) of that form is the polynomial G (2): also

c=p—k.
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The expression for w'/w in ascending powers of z is thus valid,
under the conditions assigned, provided R (2) is a polynomial in z.
Taking ' '

T+ R =2z"1P,

so that P, is a function of 2, which is holomorphic in the vicinity
of z=0 and is equal to a,, when z=0, we have

7/

w
_— = Z__m—lpl.
w

Then

o (@] ()
w <w dz\w)/

= g—2m—2 (P12 + Zle) = Z—2m72P2,
say. Similarly,

74

/,wa = g—sm—3 (P13 + g™ Qg) — Z—-sm——sPs,

say, and so on: where all the functions P,, P;, ..., @, @, ... are
holomorphic functions of z, and the first m terms in P, arise from
P Substituting in the equation

n, NnN—1

w dw
2™ azl,n + Zn—lpl W‘i‘... + 2Pp— EZ_ +pnw=0,

we have
P, + 2"p, Py + 22™ 2 Pn s+ ..o+ 2" Py = 0,

which must be identically satisfied. The coefficients p are poly-
nomials in %; hence*
ZK?ﬂpK

is expressible as a polynomial in 2, and so the highest negative
power in p, is z7<™ at the utmost. Accordingly, let
Q1 a’x,‘z a/K M

K,
pn“‘axo+7+ 22 ""+ gxm

for k=1, ..., m.
Now we have

P=a,+op2+...+a2mr 27 =v+ 277,

* If this were not the case, the assignment of a larger value of m could secure
it: and so the assumption really is no limitation beyond that which is necessary for
a normal integral, viz. m must be a finite integer.

19—2
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say, where 7" is a holomorphic function of z; and
P,=Pr+27Q,.
=q* + 2],
where 7,._, is a holomorphic function of z; so that the first m
terms in P;, which give all the coefficients in the exponent of the

determining factor e?, are given as the first m terms of a root of
the equation

VT 4 2 v 4 22, L - 2V, = 0,

when the root is expanded in ascending powers of z. When the
first m terms in v are obtained, then the determining factor is
known; for we have

2
0= / ™ ydg.
Moreover, after this determination, the terms involving the powers
2% 2 ...,z in
P, + Zmpl-Pn—l + ZQmp2P71—2 + ...+ 2" p,

have disappeared, so that this quantity is divisible by 2™, leaving
a holomorphic function of z as the quotient.

94. Having obtained the determining factor, let

w = e%u

be substituted in the differential equation, which can now be
taken in the form

Zmn+n dnw § ( Zrm ) g (n—7) (m+1) "2
dZn et N _pT dzn—r

For this purpose, derivatives of ¢® are required. We have

oL o P .
dZ Zm—+~1 2
let
2
e d‘ e = Y1
d22 zm+e?
3
o P oo U
d23 Z3m=+3 ’
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and so on, where v is identical with the first m terms of P,
v, 1s identical with the first m terms of P,, and generally, v, is
identical with the first m terms of P,,,. Now

dw o2 { Al Ve ol""“u}
k=0 ’

dz* €1 (N— k) | gemte dzh-x

with the convention v,=wv, v_;=1; and therefore the equation
for u, after dropping the factor €%, is

§”é" (n—n)!

(Y
7~=0K=0/CI(7’L'—7'—IC)!

dn—?’—n U

rm (n—r—«) (m+1) =
k—1 & " PrZ dgn—r—=« O’

which can be written in the form

g é {( (n — ’)‘) ! Vg—p—1 ZTmpfr} 5 (M=) (m+1) @ —~0

s—or=0 (R —8)l(s—17)! Azt ’

where p,=1. The coefficient of u is
n
=2 Un—pr—1 2" Py
=0

= Vpoy + 2PV + PV + . F V2TV, 4 2,

Because the first m terms in v,_; are the same as in P,, the first
m terms in the preceding coefficient are the same as in

P, +Zmp1Pn—1+ cee + 2"y,

and they are known to vanish, for the coefficients of 2°, 2%, ..., 2™
were made zero to determine »; hence the preceding coefficient is
divisible by 2™, so that we can take

Vnr + 2"P1Vp_o + ... + 2", = 2" (0, + 0,2 + ...),

where 6, 1s a determinate constant, because v is known.

The coefficient of zm+! % 18

= riol(n — 1) Vpyy "D,

=V +M—1)v, s2™p, + ... + 20z AWy, @My, .
The first m terms here are the same as the first m terms in

Py, +m—=1)z"p, Py s+ ...+ 2P,z 2™p, ,+ z0mp, .,
that is, the same as the first' m terms in

nt  (n— 1) " 2gmp + ..+ 2020, + 2™y,
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