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How to read this book?

This volume contains the supplements for the translation presented in the first
volume. The supplements aren’t made to be read alone.

Indeed, Volume I contains an English translation of a VIIth Century Sanskrit
commentary written by an astronomer called Bhāskara, and an extensive Intro-
duction to the text. Because Bhāskara’s text alone is difficult to understand, I
have added for each verse commentary a supplement which discusses the linguis-
tic and mathematical matter exposed by the commentator. These supplements are
gathered in the present volume (Volume II), which also contains glossaries and the
bibliography. The two volumes should be read simultaneously.

Abbreviations and Symbols

When referring to parts of the treatise, the Āryabhat.ı̄ya, we will use the abbrevi-
ation: ‘Ab’. A first number will indicate the chapter referred to, and a second the
verse number; the letters ‘abcd’ refer to each quarter of the verse. For example,
‘Ab. 2. 6. cd’ means the two last quarters of verse 6 in the second chapter of the
Āryabhat.ı̄ya.

With the same numbering system, BAB refers to Bhāskara’s commentary. Mbh
and Lbh, refer respectively to the Māhabhāskar̄ıya and the Laghubhāskar̄ıya, two
treatise written by the commentator, Bhāskara.

[] refer to the editor’s additions;

〈〉 indicates the translator’s addition;

() provide elements given for the sake of clarity. This includes the transliteration
of Sanskrit words.





Supplements

The first part of Bhāskara’s commentary on the mathemathematical chapter of
the Āryabhat.ı̄ya ( e.g. his introduction to the chapter and the two first verse com-
mentaries) has not been given any supplements. However, explanatory footnotes
with references to secondary literature have been provided with the translations.



2 Supplements

A BAB.2.3

A.1 Arithmetical squaring and its geometrical interpretation

In answer to an ambiguous objection1:

āyatacaturaśraks.etrādis.u vargakarman. o ’stitvāt tes. ām
asamacaturaśrān. ām api vargasam. jñāprasaṅgah. |
〈Objection〉 Because a square operation exists in rectangular fields, and
so on, there is the possibility for the name ‘square’ to be 〈given to〉 fields
which are not equi-quadrilaterals also.

Bhāskara prescribes the construction of a square made by the diagonals of four
rectangles2. This diagram, as seen in Figure 1, supposedly “shows” that the arith-
metical squaring of the length of a diagonal corresponds to the area of a square.

Figure 1: Bhāskara’s diagram
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Several difficulties arise concerning this objection and the following paragraph.

First of all, the objection concerns the action of naming “square” (varga) fields
that wouldn’t even be equilateral quadrilaterals. Bhāskara does not answer directly
on this point3.

Secondly, an expression used by Bhāskara when describing the construction of this
field remains open to several interpretations. The description starts in this way4:

samacaturaśraks.etram ālikhya as.t.adhā vibhajya . . .
When one has sketched an equi-quadrilateral field and divided 〈it〉 in
eight . . .

1[Shukla 1976; p. 48, lines 9-10]
2[Shukla 1976; p. 48, lines10-16]
3We can notice, however, that even if he states before that the object samacaturaśra (equi-

quadrilateral) has the name varga (square), he in fact never uses the latter for a geometrical
object. A varga in his commentary is always the result of the arithmetical operation of squaring.

4[Shukla 1976; p. 48, line 10]
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The question is then: how should one understand the expression
“as./dtadhā vibhajya” ?

Implicitly, as can be seen in Figure 2, the editor considers that the square con-
structed has sides that measure 8.

Figure 2: Bhāskara’s diagram in Shukla’s edition

The understanding of the expression as.t.adhā vibhajya (cut into eight) would then
be that the rectangles are drawn by cutting into the sides of the squares. However
the diagram that can be seen in our photographic copy of mss D, does not show
such a square. This may be seen in Figure 3.

Figure 3: Bhāskara’s diagram in a manuscript

Another understanding of the expression could be to count the sub-surfaces, cut
into the square whose sides measure 7, by the four rectangles and their diagonals.
This is illustrated in Figure 4.
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Figure 4: Counting sub-surfaces
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Indeed these cuts draw eight right-angle triangles. The square in the middle would
be left out because it is not considered in Bhāskara’s reasoning. However, because
one needs to omit the innermost square, this interpretation remains unsatisfactory.

Finally, one can consider that once the square whose sides measure 7 is constructed,
the four rectangles and their diagonals are drawn in eight strokes. These strokes
are illustrated in Figure 5.

None of these alternative interpretations prevents the expression from remaining
quite enigmatic.

Returning to the problems occurring in the paragraph at stake we can note that
the meaning of the objection remains ambiguous. We do not know what is a
‘vargakarman’ (square-operation): Is it the numerical squaring of any length?

Certainly, Bhāskara’s goal is to discuss the geometrical meaning of the squaring of
a length, as when previously he discussed the nature of the karan. ı̄ operation5. We
believe that the expression vargakarman used in the objection does not concern
the squaring of any length, but only that of a diagonal or hypotenuse (karn. a).
Neither the questioner nor Bhāskara mentions the fact that this could be true for
any length.

Indeed, it is surprising that his answer to the objection does not concern the
arithmetical square of the side of any geometrical figure. His first reply runs as
follows:

5See the introduction to the gan. itapāda.
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Figure 5: Counting strokes
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nais.a dos.ah. | tes.v api yo vargah. sa samacaturaśraks.etraphalam|
This is not wrong. In these 〈fields〉 too, a square is the area of an equi-
quadrilateral field.

The demonstrative (tes.u) refers to a list of fields given in the objection (rectangles,
etc.). Bhāskara’s drawing illustrates the squaring of the diagonals of a rectangle.
He adds, referring certainly to a right-angle triangle:

tribhuje ’py etad eva darśanam, ardhāyatacaturaśratvāt tribhujasya|
Just this exposition (darśana) 〈exists〉 in a trilateral (tribhuja) also,
because a trilateral is half a rectangle.

Even though this discussion does not concern directly the “Pythagoras Theorem”6

it is closely related to it.

Let us look at Figure 1 page 2 again. The area of the square in the middle can be
seen as the square of the diagonal of the rectangle (c2). But we can also consider
the area of the first drawn square. This is equal to the square of the sum of the two
adjoining sides of the rectangle ((a + b)2). Now if we cut off the areas of the four
triangles that corner this big square, we obtain once again the area of the square
in the middle. The area of each triangle is half the area of one rectangle (4 × ab

2 )
“because a trilateral is half a rectangle”. So we then see that c2 = (a+b)2−2×ab.

6Quotation marks are used to indicate that the name is a convention with a story to it, and
that we do not consider that Pythagoras is the real discoverer of this property of right-triangles.
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From which the formulation of the “Pythagoras Theorem” (stated in Ab.2.17.ab),
algebraically c2 = a2 + b2, may be deduced.

Even though Bhāskara does not elaborate this reasoning, it is noteworthy that
the diagram he describes can be used in a geometrical demonstration of the
“Pythagoras Theorem”.

Figure 6: Ganes.a’s ‘proof’ of the ‘Pythagoras Theorem’

One can note that the “Pythagoras Theorem” was known and used by the au-
thors of the śulba-sūtras, who considered it always in a rectangle. Ab.2.17.ab. as
interpreted by Bhāskara, on the other hand, is almost systematically used in ref-
erence to a right-angle triangle. Concerning such a type of field before the time of
Bhāskara, Datta & Singh are of the opinion that it was known by Āpastamba who
used it in a proof of the “Pythagoras Theorem”7. However, no such field appears
in any of these two authors’ works. Its existence is deduced by Datta & Singh
through the fact that its properties are used by Āpastamba and Baudhyāna, in
the procedure for enlarging squares.

A similar type of field is known to have been presented for proofs or verifications
of the “Pythagoras Theorem” after the time of Bhāskara I, by Bhāskara II8 and
by some of his commentators (namely Gan. es.a)9. But only the triangular part is
considered with different lengths. This is illustrated in Figure 6.

In this diagram, the area of the interior small square whose sides are equal to b−a
(so the area is (b − a)2) is increased by the area of the four triangles whose sides
are a and b (the area of each triangle is therefore ab

2 ). This gives the area of the
big square whose sides are the hypotenuse of the four triangles (in other words:
c2 = (a− b)2 + 4(ab

2 ) = a2 + b2). This last reasoning uses also the fact, mentioned
by Bhāskara I, that ‘a trilateral is half a rectangle’.

7[Datta&Singh 1980; p.134-135]
8[Jain 1995; p.57]
9[Srinivas 1990;p.39]
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A.2 Squares and cubes of greater numbers

A.2.1 Squaring

Bhāskara quotes a rule (included in Shukla’s list of quotations from other works
[Shukla 1976; Appendix V, p.347]) to square numbers with more than one digit.

antyapadasya ca vargam. kr. tvā dvigun. am. tad eva cāntyapadam|
śes.apadair āhanyād utsāryotsārya vargavidhau‖
When one has made the square of the last term, one should multiply

twice that very last term|
〈separately〉 by the remaining terms, shifting again and again, in the

operation for squares‖

The procedure is elliptic for we do not know how it was carried out practically.
How were the successive computations set down? Where did the final square ap-
pear? And some expressions are ambiguous. Indeed, the statement ‘shifting again
and again’ (utsārya utsārya) can have a double meaning. It may refer to the suc-
cessive multiplications of the doubled last term with the following digits, or to
the repetition of the process itself, considering one after the other the digits of
the number to be squared. Even though we have considered, in the reconstruction
of the procedure reflected in Table 1, that the shifting refers to the iteration of
the process itself, it most probably should be understood as explaining both the
iteration of the process and the iteration of the shifting.

If the ambiguity and ellipticity make the verse difficult to read, one should not
neglect the simplicity of the algorithm stated in such a way. Its core is pointed
out; it is a succession of squarings and doublings.

This is how, step by step, we reconstruct the squaring process (for a.102+b.10+c):

Step 1 Squaring the last digit (a2.104);

Step 2 Computing the successive products of 2 times the last digit with the re-
maining digits (2ab.103 and 2ac.102);

Step 3 Adding the successive products, according to their respective powers of 10
to the partial square (a2.104 + 2ab.103 + 2ac.102);

Step 4 Erasing the last digit, and “shifting”. Then starting the process again, until
no more digits of the initial number are left. (Reiterating the process with
the number b.10 + c, then c, considering each time the partial square found
in Step 3).

This hypothetical construction is illustrated in Table 1. Comparing it with other
processes known in Sanskrit mathematical literature would have enabled us to
justify the way we have presented it. For instance, as the process begins by squaring
the last-term, we have inferred that this involved erasing the term that previously
entered with that label into the process.
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Table 1: Squaring: a heuristic presentation

Rule Example: squaring 125 Squaring a.102 + b.10 + c
‘When one has
made the square
of the last term’

12 is the square of
the last digit. This is
how one would have set
down the number:

1 2 5
1 − − − −

a2.104 is computed

‘one should mul-
tiply twice that
very last term
〈separately〉 by
the remaining
terms’

2 × 2 = 4 and 2 × 5 =
10. When adding these
numbers according to
their respective powers
of 10, the disposition
obtained would be:

1 2 5
1 5 − − −

(a.102)2 + 2a102(b.10 + c)

‘Shifting again
and again’

Erasing the digit which
previously started the
computation:

2 5
1 5 − − −

b.10 + c is now the number to
be squared

‘when one has
made the square
of the last term’

22 = 4 is the square of
the last term. When
adding this quantity
according to its power
of 10 to the partial
square found, the
disposition obtained
would be:

2 5
1 5 4 − −

(a.102)2 + 2a102(b.10 + c) +
(b.10)2
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‘one should mul-
tiply twice that
very last term
〈separately〉 by
the remaining
terms’

(2×2)×5 = 20 is com-
puted. When adding
these values according
to the respective deci-
mal places, and placing
them:

2 5
1 5 4 − −

+2 0 −
1 5 6 0 −

(a.102)2 + 2a102(b.10 + c) +
(b.10)2 + 2b10.c

‘Shifting again
and again’

When erasing the
digit which previ-
ously started the
computation:

5
1 5 6 0 −

‘when one has
made the square
of the last term’

52 = 25. When adding
this value to the partial
square found according
to its power of ten, and
placing it:

5
1 5 6 2 5

(a.102)2 + 2a102(b.10 + c) +
(b10)2 + 2b10.c + c2

The process ends here
as there are no more
digits. The square ob-
tained is: 15625

(a.102 + b.10 + c)2
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A.2.2 Cubing

No extensive rule for cubing is given by Bhāskara in his commentary to the latter
part of Ab.2.3. Cubing appears in the text as a natural extension of squaring. He
quotes the beginning of a verse that recalls the structure of the verse he gave for
the squaring of numbers:

atrāpi yes. ām. ”antyapadasya ghanam. syāt” ityādi laks.an. asūtram, tes. ām
ekād̄ınām. ghanasaṅkhyā vaktavyā
In this case also, the cube-numbers of those 〈digits〉 beginning with 1
are to be recited 〈by those〉 whose rule which is a characterization is
‘the cube of the last place should be, etc.’.

We can, however, infer the successive steps of the procedure involved, some of
which may have seemed to the practitioners part of the natural process of com-
puting (cubing a.10 + b):

Step 1 Cubing the last digit (a3.103);

Step 2 Computing the successive products of 3 times the square of the last digit
with the remaining digits (3a2b.102); and adding the successive products,
according to their respective powers of 10, to the partial cube (a3.103 +
3a2b.102).

Step 3 Computing the successive products of 3 times the last digit with the squares
of the remaining digits (3ab210); and adding the successive products, accord-
ing to their respective powers of 3, to the partial cube (a3.103 + 3a2b.102 +
3ab210).

Step 4 Erasing the last digit, and “shifting”. Then starting the process again, until
no more digits of the initial number are left. The partial cube considered being
the one found in Step 3.

This hypothetical computation is illustrated in Table 2.

Table 2: Cubing 63

Hypothetical rule The cubing of 63 The cubing of a.10 + b
cube the last digit 63 = 216. The disposition

would be:

6 3
2 1 6 − − −

(a.10)3
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Table 2: Cubing 63

Considering the suc-
cessive product of
3times the square of
the last digit with
the remaining digits

As 3 × 62 × 3 = 324, the
disposition would be:

6 3
2 1 6 − − −

3 2 4 − −

Adding according to the
respective decimal places
of each digit:

6 3
2 4 8 4 − −

(a.10)3 + 3a2102.b

Computing succes-
sively the product of
3 times the last digit
with the square of
the following digits

As 3 × 6 × 32 = 162, the
disposition would be:

6 3
2 4 8 4 − −

1 6 2 −

Adding according to the
respective decimal places
of each digit:

6 3
2 5 0 0 2 −

(a.10)3 + 3a2102.b +
3a10.b2

Erasing the last digit

3
2 5 0 0 2 −

Considering that the num-
ber to cube is b.
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Table 2: Cubing 63

Cubing the next
digit

As 33 = 27, the disposi-
tion would be:

3
2 5 0 0 2 −

2 7

Adding according to the
respective places of each
digit:

3
2 5 0 0 4 7

a3.103 + 3a2102.b +
3a10.b2 + b3

As there are no more
digits the process
ends here. The cube
found is therefore:

250047 (a.10 + b)3

A.3 Squaring and cubing with fractions

The number a+ b
c

is noted in this edition of Bhāskara’s commentary in the following

way10:
a
b
c

.

This is what is called in this part of the text ‘a fraction’ (bhinna).

The computation of the square of fractions is described here in two sequences.

Firstly:

bhinnavargo ’py evam eva| kintu sadr. ś̄ıkr. tayoś chedām. śarāśyoh. pr. thak
pr. thag vargam. kr. tvā chedarāśivargen. ām. śarāśivargasya bhāgalabdham.
bhinnavargah. |
The square of fractions is also just like this. However, when one has made
separately the squares of the numerator and denominator quantities,
that were made into the same kind, the result of the division of the
square of the numerator quantity by the denominator quantity is the
square of the fraction.

10One should keep in my mind that this is the way manuscripts note fractions. Moreover, the
notations adopted in manuscripts may have been different from those used by Bhāskara, more
than 1000 years earlier.
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Secondly:

chedagun. am. sām. śam iti|
‘〈the whole number〉 having the denominator for multiplior increased
by the numerator’

Probably the expression used in the first sequence: ‘...(the numerator and de-
nominator) are made into a same kind’, refers to the operation described in the
second sequence. This operation transforms the fractionary number given in the
problem into a fraction with just a denominator and a numerator. Indeed, if we
consider simultaneously the general notations we have adopted and the quantity
(6 + 1

2 ) treated in detail by Bhāskara in Example 2, we can infer the following
computation11:

a 6
b 1
c 4

becomes (‘〈the whole number〉 having the denominator for multiplior’)

ac (6 × 4)
b 1
c 4

‘increased by the numerator’

ac + b (6 × 4) + 1
c 4

If we follow then, the first sequence for squaring fractions:
(ac + b)2 252

c2 42

The numerator is then divided by the denominator:

(ac + b)2 = q.c2 + r 625 = 39 × 16 + 1

The result obtained is noted as a fractionary number:
q 39
r 1
c2 16

.

No rule is given concerning a whole number decreased by a part, however such a
fraction appears in Example 2.

The cubing of fractions is, as is the case for the cubing of whole numbers, referred
to briefly as a mere extension of the process for squaring fractions. Please see Table
3 for how we guess this was carried out.

11We do not know how the intermediary steps were presented, this whole presentation is
therefore arbitrary.
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Table 3: Cubing a fraction

Example 4 of BAB.2.3.cd is stated as follows:

s.at.pañcadaśās. t.ānām. tāvadbhāgair vih̄ınagan. itānām| ghanasaṅkhyām. vada
vísadam. yadi ghanagan. ite matir vísadā‖
4. Say, clearly, the cube-number of six, five, ten and eight that are computed
as decreased by their respective parts|
If 〈you have〉 a clear knowledge in cube-computations‖

The fractions considered in the text are, for us, of the following form:

6 − 1

6
= 5 +

5

6

5 − 1

5
= 4 +

4

5

10 − 1

10
= 9 +

9

10

8 − 1

8
= 7 +

7

8

This set of numbers, which is equal in value to the one above, is set down:
5 4 9 7
5 4 9 7
6 5 10 8

Let us consider the process involved in the cubing of the last fraction of this

example:
7
7
8

This column of numbers, representing the number 7 + 7
8 , should be first trans-

formed
into a form with numerator and denominator only.

That is into
63
8

.

Then, the cubes of the numerator and denominator are made separately.
The hypothetical steps followed for cubing 63 (the result found is 250047) are
illustrated in Table 2.The cube of 8 (512) is given in the resolution of Example
3 of BAB.2.3.cd.
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Table 3: Cubing a fraction

Dividing the cube of the numerator by the cube of the denominator:

250047
512 = 488 + 191

512 , which corresponds to the last column set down as a result:

488
191
512

.

B BAB.2.4-5

B.1 Extracting square-roots

B.1.1 Square and non-square places

The procedure of square root extraction rests upon a categorization of the places
of the decimal place-value system (defined in AB.2.2). Āryabhat.a distinguishes
square (varga) and non-square (a-varga) places. A square place is one which stands
for an even power of ten (e.g. 100, 102, 104,. . . ). A non-square place stands for a
power of ten which is not a square (e.g. 101, 103, 105,. . . ).

Bhāskara substitutes for it his own categorization. He considers the places where
the digits forming the number whose root is to be extracted are to be noted. He
counts them from right to left, distinguishing between places associated to an even
number and places associated to an odd number. The place for the digit whose
power of ten is 100 is the first to be counted, therefore the so-called “square” places
are found for all odd numbers of places, and the so-called “non-square” places for
all even numbers of places. This is for instance how both categorize the places
associated to 625 (whose square-root is extracted in Example 1 of BAB.2.4 and
whose extraction is illustrated in Table 412:

odd(3) pair(2) odd(1)
102 101 100

v av v
6 2 5

B.1.2 The procedure

The detail of the procedure and how precisely it was carried out is not known to us.
A heuristic reconstruction is given in Table 4. In the following, we will consider

12For a brief analysis of the way the rule is composed see the Introduction in Volume I section
2.3.
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that the digits forming a number are ordered from left to right: the first digit
being the one standing in the highest place. The steps that we have reconstructed
– some of which may have seemed so natural that it wasn’t deemed necessary to
state them – may be summed up as follows:

Step 1 Probably by trial and error, find the biggest square (a2) smaller than the
first digit. (Or the biggest square smaller than a two digit number, if the last
digit does not fall on a place standing for a square power of ten).

Step 2 Subtract it from the last digit, and substitute the difference in place of
the former digit. The square-root of this square (a) is the last digit of the
square-root sought.

Step 3 Considering the next place to the right, divide the number formed by
considering all the digits to the left of that place (that place included) by
twice the partial square-root obtained.

Step 4 Replace the dividend by the remainder of the division. The quotient is
considered here to be the next digit of the square-root sought. In fact it is
either the quotient or the quotient increased by 1, which is the next digit of
the square-root to be extracted. Bhāskara never goes into the detail of his
root extractions, therefore we do not know if he was aware of such a step.

Step 5 Considering the next place to the right, subtract from the number formed
by all the digits to the left of that place (that place included) the square of
the quotient. Replace that number by the difference. Re-iterate the process
starting from Step 3. The process ends when one cannot shift to the right
anymore.

Among the steps that are neither mentioned by Āryabhat.a nor by Bhāskara, we
can list:

• The way the square-root of the first digit (or two-digit number when the last
digit of the number whose root is to be extracted falls in a non-square place)
is found is not mentioned.

We can note here that both Āryabhat.a and Bhāskara, by not indicating how
the procedure starts, seem to emphasis its iterative quality.

• The place where the successive digits of the square-root extracted are placed
is not mentioned. Later authors have indicated that they should be noted on
a separate line. Bhāskara may be referring to such a line when he comments
on the compound stānāntare (in a different place) used in Ab.2.4:

sthānād anyasthānam. sthānāntaram. , tasmin sthānāntare tasya lab-
dhasya mūlasam. jñā| yatra punah. sthānāntaram eva na vidyate,
tatra tasya tatraiva mūlasamjñā|
A place other than the 〈given〉 place is a different place ; in this
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different place, the quotient has the name root. When, however,
a different place precisely does not exist, then that 〈quotient〉 has
the name root in that very place 〈where it was obtained〉.

There are two ways of understanding this sentence: it may refer to the shifting
to a different place in the decimal place value notation used to set down the
digits. It may also here indicate a separate space on the working surface where
the digits of the square-root extracted appear progressively as the process
follows its way. The sybillin last sentence of this paragraph, in both cases,
refers to the way the process ends. If it concerns the space where the digits of
the square-root extracted appear, it may mean that in the case of a square-
root found at once (as for digits or two digit numbers) no separate space is
needed. Among the other steps not specified by Āryabhat.a or Bhāskara we
can note:

• When the division is performed, the remainder replaces the digits that for-
merly entered the division as dividend. This may have been a regular feature
of the division procedure13.

• The way that the intermediary operations of placing the remainder, the result
of the subtraction etc, are noted and how they interplay with their respective
powers of ten is not indicated either. This may also have been a feature of
computation considered as self-evident.

Table 4: Extracting the square-root of a three digit number

Āryabhat.a’s rule Example: extracting the
square root of 625

Extracting the square-
root of A = (a.10 + b)2

When subtracting
the square from the
square 〈place〉

The biggest square smaller
than 6, which is the digit in
the “highest square place”, is
4. So that 2 is the first digit
of the square-root to be ex-
tracted. This is how the num-
ber may have been set down:

v av v
6 2 5
−4 − −
2 2 5

A − a2.102 is com-
puted. a.10 is the
partial square-root
extracted.

13See for instance [Datta&Singh 1938; p.152]
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Table 4: Extracting the square-root of a three digit number

Āryabhat.a’s rule Example: extracting the
square root of 625

Extracting the square-
root of A = (a.10 + b)2

One should divide,
constantly, the non-
square 〈place〉 by
twice the square-
root.

22 is considered to be in the
‘non-square’ place. Twice the
partial square root is 2 × 2 =
4. One performs the following
division:

22

4
= 5 +

2

4
.

5 is the quotient, it is the sec-
ond digit of the square-root
to be extracted. The partial
square-root is, at this point:
25. The remainder of the di-
vision of 22 by 5 is set down
in the place of the previously
written digits:

av v
2 5

b is computed as the
quotient of the division
of the two higher dig-
its by a2. Then A −
a2.102 − 2ab10 is set
down. a.10 + b is the
partial square-root ex-
tracted.

The quotient is the
root in the next
place. When sub-
tracting the square
from the square

The quotient is 5. The next
place being a square-place,
one subtracts the square of 5.

av v
2 5

−52

0

A−a2.102−2ab10− b2

is computed.

The square-root
found is

25 a.10 + b

B.2 Extracting cube-roots

B.2.1 Cube and non-cube places

As for square-root extraction, the cube root extraction procedure uses a catego-
rization of the places of the decimal place-value system: there are cube (ghana)
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and non-cube (aghana) places. They form an ordered set. Āryabhat.a’s rule refers
to a first and a second non-cube place. In BAB.2.5., Bhāskara glosses as well:

atra gan. ite ghana ekah. , dvāvaghanau|
In this computation, there is one cube, two non-cube 〈places〉.

These names correspond to the respective power of tens of the places: a cube
place is a place whose power of ten is a multiple of three (e.g. 100, 103, 106, . . . );
a non-cube place is a place whose power of ten is not a multiple of three (e.g.
101, 102, 104, . . . ). The place for 100 is considered to be a cube place. The second
non-cube place is the second from the right in the sub-triplet of the ordered set
made of (a cube place, a non-cube place, a non-cube place).

This categorization is illustrated with the number 1728 (whose cube-root is ex-
tracted in Example 1 of BAB.2.5 and whose extraction is shown in Table 5):

103 102 101 100

g a − g a − g g
1 7 2 8

B.2.2 The procedure

We do not know precisely how each step of the procedure was carried out. We have
presented heuristically a reconstruction of the procedure in Table 5, although this
would need to be justified and be compared with other procedures known to us
from the Sanskrit tradition. In this reconstruction, the digits of the number whose
cube-root is considered are considered from left to right. The first digit is therefore
the one which stands for the multiple of the highest power of ten.

Step 1 Find, probably by trial and error, the biggest cube smaller than the first
digit. (Or smaller than a two-digit/three digit-number if the first digit of the
number whose root is extracted does not fall on a place whose power of ten
is a cube.)

Step 2 Subtract the cube from the first digit (or from the two-digit/three-digit
number). Replace the digit (resp. two-digit/three-digit number) by the dif-
ference. The cube-root of the subtractor is the first digit of the cube-root
sought.

Step 3 Shift by one place to the right. Compute the product of three times the
square of the partial cube-root obtained. Divide the number obtained by
considering all the digits to the left of this place (this place included) with
the previous product. Erase the number and replace it with the remainder
of the division. The quotient is considered to be the next digit of the cube-
root sought. In fact once again, this may not be exactly the right digit and
one may have to increase by one or by two so that the computation remains
correct. However we do not know if this step was carried out in such a way.
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Step 4 Considering the next place to the right, compute the product of three times
the square of the quotient with the partial cube-root obtained before Step 3.
Subtract from the number obtained by considering all the digits to the left
of that place (that place included) the product. Replace that number with
the difference obtained.

Step 5 Shift by one place to the right. Subtract from the number obtained by
considering all the digits to the left of this place (this place included) the
cube of the quotient obtained in Step 3. Reiterate the process starting with
Step 3. The process ends when one cannot shift to the right anymore.

Among the steps that are neither mentioned by Āryabhat.a nor by Bhāskara, we
can list:

• The way the cube-root of the first digit (or two/three-digit number when the
last digit of the number whose root is to be extracted falls in a non-cube
place) is found is not given by either of the two authors. This step involves
finding the greatest cube smaller than that digit (or two/three-digit number).

Once again, this may be a way of emphasizing the iterative quality of the
procedure.

• The space where the successive digits of the cube-root extracted are placed is
not referred to. Later authors have indicated that they should be noted on a
separate line. If this was suggested elliptically in the commentary to Ab.2.4.,
it may then be assumed here.

• We include in this list an elliptic formulation:

The square of 〈the quotient〉 multiplied by three and the former
〈quantity〉 should be subtracted from the first 〈non-cube place〉

Though nowhere explained the “former 〈quantity〉” is the partial cube-root
obtained, before the computation of the quotient (the quotient obtained be-
fore Step 3 in our presentation).

• The fact is that when the division is performed, the remainder replaces the
digits that formerly entered the division as dividend. As in the process de-
scribed in BAB.2.4., this may be a regular feature of the division procedure.

• The way that the intermediary operations of placing the remainder, the result
of the subtraction etc, are noted and how they interplay with their respective
powers of ten is not indicated. This may also be a feature of the computation,
considered as so usual that it was not thought to have to be described.
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Table 5: An example of the procedure for extracting the cube-root

Āryabhat.a’s rule Example: extracting the
cube-root of 1728

Extracting the cube-
root of A = (a.10 + b)3

‘And the cube
〈should be
subtracted〉 from
the cube place’

The digit in the “cube place”
is 1, the highest cube smaller
than 1 is 13, it is subtracted in
the cube placed, and replaced
by the result:

g a − g a − g g
1 7 2 8
−1 − − −
0 7 2 8

1 is the first digit of the
partial cube-root extracted.

A − (a.10)3 is com-
puted. a.10 is the first
digit of the cube-root
extracted.

One should divide
the second non-
cube place by three
times the square
of the root of the
cube

The digit in the second non-
cube place is 7. The square of
the root of the former cube is
12

7

3
= 2 × 3 + 1

The remainder of the division
of 7 by 3 replaces the digit of
the “second non-cube place”:

g a − g a − g g
7 2 8
1 2 8

12 is the partial cube-root ex-
tracted.

b is found as the quo-
tient of the division of
the digit of the sec-
ond non-cube place by
3a2. A − [(a.10)3 −
3a2102.b)]is computed.
a.10 + b is the partial
cube-root extracted.
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Table 5: An example of the procedure for extracting the cube-root

Āryabhat.a’s rule Example: extracting the
cube-root of 1728

Extracting the cube-
root of A = (a.10 + b)3

The square of
〈the quotient〉
multiplied by 3
and the former
〈quantity〉 should
be subtracted from
the first 〈non-cube
place〉

The “former quantity” con-
sidered here is the first digit
of the cube-root found: 1, the
quotient of the division of 7
by 3 is 2 × 3 × 22 × 1 = 12.
This is subtracted:

g a − g a − g g
1 2 8
−1 2 −
− − 8

A − [(a.10)3 −
3a2102.b − 3a.10.b2)] is
computed.

and the cube from
the cube 〈place〉

The digit in the cube-place is
8. The cube of the quotient is
23.

g a − g a − g g
8

−23

0

The process ends here as
there are no more digits. The
cube-root extracted is 12.

A − [(a.10)3 −
3a2102.b − 3a.10.b2) −
b3] is computed. The
cube-root extracted is
a.10 + b

C BAB.2.6

C.1 Area of a triangle

Āryabhat.a’s rule, according to Bhāskara’s interpretation14 concerns a general case:

Ab.2.6.ab. The bulk of the area of a trilateral is the product of half the
base and the perpendicular|

This can be understood as follows:

14Because Āryabhat.a uses the compound samadalakot.ı̄ or “halving upright”, probably this
rule was intended originally only for equilaterals and isosceles.
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Table 5: An example of the procedure for extracting the cube-root

Āryabhat.a’s rule Example: extracting the
cube-root of 1728

Extracting the cube-
root of A = (a.10 + b)3

The square of
〈the quotient〉
multiplied by 3
and the former
〈quantity〉 should
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the first 〈non-cube
place〉

The “former quantity” con-
sidered here is the first digit
of the cube-root found: 1, the
quotient of the division of 7
by 3 is 2 × 3 × 22 × 1 = 12.
This is subtracted:

g a − g a − g g
1 2 8
−1 2 −
− − 8

A − [(a.10)3 −
3a2102.b − 3a.10.b2)] is
computed.

and the cube from
the cube 〈place〉

The digit in the cube-place is
8. The cube of the quotient is
23.

g a − g a − g g
8

−23

0

The process ends here as
there are no more digits. The
cube-root extracted is 12.

A − [(a.10)3 −
3a2102.b − 3a.10.b2) −
b3] is computed. The
cube-root extracted is
a.10 + b

C BAB.2.6

C.1 Area of a triangle

Āryabhat.a’s rule, according to Bhāskara’s interpretation14 concerns a general case:

Ab.2.6.ab. The bulk of the area of a trilateral is the product of half the
base and the perpendicular|

This can be understood as follows:

14Because Āryabhat.a uses the compound samadalakot.ı̄ or “halving upright”, probably this
rule was intended originally only for equilaterals and isosceles.
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Figure 7: Equilateral and isoceles triangles
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As illustrated in Figure 8, let MNO be a triangle. If MD is the height issued from
M and falling on the base NO, then the area A of MNO will be

A =
NO

2
× MD.

C.1.1 Equilaterals and isosceles triangles

Bhāskara gives in his commentary to Example 1 of Ab.2.6.ab a property of equi-
lateral triangles:

samatryaśriks.etre samaivāvalambakasthitih. iti
‘In an equi〈lateral〉 trilateral field the location of the perpendicular is
precisely equal.’

In other words, in an equilateral triangle any height sections the corresponding
base into two equal segments.

This is also stated for isosceles triangles:

dvisamatryaśriks.etrasyāpi ‘samaivāvalambakasthitih. ’ iti
For an isosceles trilateral also, ‘the location of the perpendicular is pre-
cisely equal.’

This property is used along with Ab.2.17 which states the so-called ‘Pythagoras
Theorem’ to justify the following procedure:

Problem Knowing the length of the sides of an equilateral or isosceles triangle,
find its area. Let EFG be such an equilateral triangle illustrated in Figure
7, which also shows an isoceles triangle.
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Step 1 Compute the length of any height in the case of an equilateral, issued from
the vertex in the case of an isosceles triangle.

Using the property stated above, if EK is the perpendicular issued from D
onto FG, we know that

FK = KG =
EF

2
.

Bhāskara specifies when quoting Ab.2.17:

‘yaś ca eva bhujāvargah. kot.ı̄vargaś ca karn. avargah. sa [Ab.2.17] iti
bujākot.yor vargau karn. avargah. | tena bhujāvarge karn. avargāc chud-
dhe śes.am. samadalakot.ı̄vargah.

‘That which is the square of the base and the square of the height5
is the square of the hypotenuse’.
Therefore, the square of the hypotenuse is 〈produced with〉 the
squares of both the base and the height. Hence, when the square
of the base is subtracted from the square of the hypotenuse, the
remainder is the square of the perpendicular. . ..

In other words
EK2 = EF 2 − FK2 = EG2 − KG2.

Step 2 In the cases observed, the square found for the length of the perpendicular
is not perfect – i.e, its square root cannot be extracted without an approxi-
mation. Therefore, the length of half the base is squared so that it can enter

the rule given by Āryabhat.a. In other words FG2

4 is computed.

Step 3 The rule given in the verse is applied:

A2 =
EK2 × FG2

4
⇔

√
A2 =

√

EK2 × FG2

4
.

The square-root expression is written here to recall the double meaning that
the word karan. ı̄ may take here.

C.1.2 Uneven triangles

Bhāskara uses the following property of the lengths of any triangle:

bhujayor vargavíses.ah. tayor vā samāsavíses. ābhyāsah.
tribhujaks.etre ābādhāntarasamāsavíses. ābhyāsbhavati
In a trilateral field the difference of the squares of the two sides, or the
product of the sum and the difference of the two, is the product of the
sum and the difference of 〈its〉 different sections of the base.



C. BAB.2.6 25

Figure 8: Any triangle
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In other words:

Let MNO be any triangle such as is illustrated in Figure 8, let MD be a height.

The sections of the base are the two segments ND and DO for the sides MN and
MO. The first sentence of this paragraph may be translated in our algebraical
language as

MN2 − MO2 = (MN + MO)(MN − MO) = (ND + DO)(ND − DO)

The last equality, which may also be stated as MN2 − MO2 = ND2 − DO2, is
easily derived from the “Pythagoras Theorem”.

Bhāskarra then writes:

bhūmyā ābādhāntarasamāsapramān. ayā vibhajya labdham. bhūmāv eva
sam. kraman. am|
When one has divided by the base whose size is the sum of 〈its〉 different
sections, a sam. kraman. a is 〈applied〉 to the same base together with the
quotient.

Dividing the above equalities by the base:

MN2 − MO2

NO
=

(ND + DO)(ND − DO)

NO
.

Since the base is the sum of its segments, NO = ND + DO, then

MN2 − MO2

NO
= ND − DO.

In the sam. kraman. a operation, stated in Ab.2.24, this quantity is considered under
the name “quotient” (labdha):

x =
MN2 − MO2

NO
= ND − DO.
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It is used along with the size of the base, NO = ND + DO, which is the quantity
that is ‘increased or decreased’. The sam. kraman. a operation can be understood,
then, as the computation of the two following quantities:

u =
NO + x

2

and

v =
NO − x

2
.

One can easily check that

u = ND

and

v = DO.

With either one of these different segments of the base, it is understood that one
can follow the method described above for equilateral and isosceles triangles to
reckon the perpendicular’s length, and from there compute the area of the triangle.

The different steps of the procedure to be followed are therefore:

Problem Knowing the lengths of the sides of triangle MNO, find the area.

Step 1 Compute

x =
MN2 − MO2

NO
.

Step 2 Use a sam. kraman. a in order to find the lengths of the two different sections
of the base:

NO + x

2
= ND,

NO − x

2
= DO.

Step 3 Find the length of the perpendicular by either one of the following com-
putations:

AD2 = MN2 − MD2 = NO2 − DO2.

Step 4 The area is

A2 =
MD2 × NO2

4
⇔

√
A2 =

√

MD2 × NO2

4
.
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Figure 9: An equilateral pyramid with a triangular base
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C.2 Volume of a pyramid

C.2.1 General rule

The rule given by Āryabhat.a, in the second half of verse 6, is interpreted by
Bhāskara as giving the volume of a triangular based equilateral pyramid. We may
relate the relation given here as follows:

Given an ABCD pyramid, illustrated in Figure 9, AH is the perpendicular issued
from A onto the triangle BDC. If the area of BDC is A, then the volume V of
ABDC is

V =
1

2
A× AH.

This formula for the volume of a pyramid is incorrect.

The correct formula is

V =
1

3
A× AH.

Although we do not know why and how Āryabhat.a derived this wrong relation,
we can make the following hypothesis: the solid equilateral is probably seen as
deriving geometrically from the area by the same process that derives from two
lines a surface. This continuity between the two-dimensional field and the three-
dimensional field may be the key to the relation given here. As Ab.2.6ab. derives
the area of an equilateral triangle by the product of half the base and the height,
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the volume of the pyramid seems to be derived by half its base (which is here the
area of an equilateral triangle) and its height.

C.2.2 A śr.ṅgāt.aka

Bhāskara gives the following description and explanation15:

ūrdhvabhujā hi nāma ks.etramadhye ucchrāya iti pratyaks.am| sa ca tirya-
gavasthitasya śr. ṅgāt.akaks.etrabāhoh. karn. avadavasthitasya kot.ih. | bhujā
karn. amūlaks.etrakendrāntāralam

It is obvious (pratyaks.a) that the so-called “upward-side” is a height in
the middle of the field. And that is the upright-side (kot.i) for the side of
a śr. ṅgāt.aka field which is located obliquely as an ear, 〈while〉 the base
is the intermediate space in between the root of the ear and the center
of the field.

Let ABCD be an equilateral triangular based pyramid as represented in Figure
10. Let AH be the height issued from A and falling onto the triangle BCD.

Figure 10: A Śr.ṅgataka
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AC is what is called the ear (karn. a), it is also the hypotenuse of AHC. AH is
what is called the upward-side (ūrdhvabhujā) of the śr. ṅgāt.aka. It is defined at the
beginning of the commentary of this half-verse:

15[Shukla 1976; p.48, lines 8-10]
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ūrdhvabhujā ks.etramadhye ucchrāya
The upward side is a height in the middle of the field.

And this sentence is recalled at the beginning of the text quoted above.

sa ca tiryagavasthitasya śr. ṅgāt.akaks.etrabāhoh. karn. avadavasthitasya kot.ih.
16

and that is the upright-side for the side of a śr. ṅgāt.aka field which is lo-
cated obliquely as an ear....

CH, in the above quoted text, is called the base (bhujā).

In the resolution of Example 1, Bhāskara writes:

labdho ’ntah. karn. ah. [karan. yah. ] 48| ayam eva karn. ah.
ūrdhvam avasthitatribhuja[ks.etrasya bhujā]|
The inner ear obtained is 48 [karan. ı̄s]. This very ear is the [base] of the
trilateral [field] located upwards.

So that here CH is referred to both as an inner-ear (antah. karn. a) – that is as the
hypotenuse of CB′H – and as the base of the right-angle triangle AHC. The word
base has been added in brackets by the editor as all manuscripts, except one, omit
this word.

The first text quoted in this section is the part of the commentary where the word
śr. ṅgāt.aka appears for the first time. Because it is used in examples to refer to
the pyramid itself, we understand it as the name of an equilateral pyramid with
a triangular base with a perpendicular issued from one top to the center of the
triangular base.

C.2.3 A Rule of Three

The computation of CH, from which the upright side AH may be computed, rests
upon the proportional properties of similar triangles.

Bhāskara states such properties by formulating them through a Rule of Three:

tadānayane trairāśikam- yadi tribhujaks.etrāvalambakena
tribhujaks.etrabāhur labhyate tadā tasyaiva
tribhujaks.etrabāhudalasaṅkhyakasyāvalambakasya
kiyān bāhur iti
When computing that 〈base〉, a Rule of Three: ‘If the side of a trilateral
field is obtained with the perpendicular of that very trilateral field,
then for the perpendicular whose amount is half the side of the 〈initial〉
trilateral field, how much is the side?’

This can be understood as follows, as illustrated in Fig 11, next page.

16Two manuscrits read kot.ı̄. However it is also the upright-side (kot.i) of the right-angle triangle
(AHC), which would be in accordance with the regular use of the word.
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Figure 11: Rule of Three
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The triangles BB′C and B′CH are similar:

BB′ : CB = CB′ : CH.

So that in other words

CH =
CB × CB′

BB′
.

Because BDC is an equilateral field, CB′ = CB
2 . CB′ is thus ‘the perpendicular

whose value is half the the side of 〈initial〉 trilateral’.

If the lengths considered are karan. ı̄s, the square of such an equality is considered.

C.2.4 The procedure followed

Problem Knowing the side of an equilateral triangular based pyramid ABCD,
find its volume.

Step 1 If AH is the perpendicular issued from A onto BCD, then with a Rule of
Three we know that

CH =
CB × CB′

BB′
.

If CB is a karan. ı̄, in which case BB′ may be one, the following computation
is in fact carried out:

CH2 =
CB2 × CB′2

BB′2
.
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Step 2 Then we use Ab.2.17ab, from which we know that:

karn. akr. teh. bhujāvargavíses.ah. ūrdhvabhujāvargah.
The difference of the square of the base and the square of the
hypotenuse is the square of the upright side.

So that

AH2 = AC2 − CH2.

Step 3 Then according to the rule given by Āryabhat.a here, as Bhāskara specifies:

ardhamityatra karan. itvād dvayoh. karan. ı̄bhíscaturbhirbhāgo hriyate|
Since 〈the rule uses the expression〉 “half”, because two are karan. ı̄s,
one should divide by four karan. ı̄s.

V2 =
1

4
A2 × AH2 ⇔

√
V2 =

√

1

2
A2 × AH2.

D BAB.2.7

D.1 Area of a circle

D.1.1 The general rule

Āryabhat.a gives the following rule:

samaparin. āhasyārdham. vis.kambhārdhahatam eva vr. ttaphalam|
Ab.2.7.ab. Half of the even circumference multiplied by the semi-diameter,
only, is the area of the circle|

In other words, for a circle of circumference C and diameter D, the area A is
according to this definition:

A =
C
2
× D

2
.

D.1.2 Procedure used in examples

Problem Knowing the diameter D of a circle, find its area A.

Step 1 Using the values given in Ab.2.10, and a Rule of Three, find the (approxi-
mate) circumference C of the circle.

Ab.2.10 states that a circle of diameter 20 000 has a circumference of 62832.
Bhāskara indicates:
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Step 2 Then we use Ab.2.17ab, from which we know that:

karn. akr. teh. bhujāvargavíses.ah. ūrdhvabhujāvargah.
The difference of the square of the base and the square of the
hypotenuse is the square of the upright side.

So that

AH2 = AC2 − CH2.

Step 3 Then according to the rule given by Āryabhat.a here, as Bhāskara specifies:

ardhamityatra karan. itvād dvayoh. karan. ı̄bhíscaturbhirbhāgo hriyate|
Since 〈the rule uses the expression〉 “half”, because two are karan. ı̄s,
one should divide by four karan. ı̄s.

V2 =
1

4
A2 × AH2 ⇔

√
V2 =

√

1

2
A2 × AH2.

D BAB.2.7

D.1 Area of a circle

D.1.1 The general rule

Āryabhat.a gives the following rule:

samaparin. āhasyārdham. vis.kambhārdhahatam eva vr. ttaphalam|
Ab.2.7.ab. Half of the even circumference multiplied by the semi-diameter,
only, is the area of the circle|

In other words, for a circle of circumference C and diameter D, the area A is
according to this definition:

A =
C
2
× D

2
.

D.1.2 Procedure used in examples

Problem Knowing the diameter D of a circle, find its area A.

Step 1 Using the values given in Ab.2.10, and a Rule of Three, find the (approxi-
mate) circumference C of the circle.

Ab.2.10 states that a circle of diameter 20 000 has a circumference of 62832.
Bhāskara indicates:
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...trairāśikena vaks.yamān. avis.kambhaparidhi
pramān. aphalābhyām. ...

...by means of a Rule of Three, with as measure and fruit 〈quantities〉,
the diameter and the circumference to be told [in Ab.2.10]...

setting down a Rule of Three as described in BAB.2.26:

The measure quantity The fruit quantity The desire quantity
20 000 62832 D

Then the fruit of the desire, the circumference (C) is

C =
D × 62832

20000
.

The result obtained, if it is not integer, is in the form of an integer with a
fractional part (see the procedure described in the Annex on BAB.2.3).

Step 2 Having thus the diameter and the circumference, one can then compute
the area according to Āryabhat.a’s rule:

A =
C
2
× D

2
.

The result obtained is an approximation, as Āryabhat.a states that the ratio given
in verse 10 is one. Bhāskara does not stress this point here, on the contrary, he
insists, rightly, that the procedure, given in all its generality, is accurate.

D.2 Volume of a sphere

D.2.1 General rule

Āryabhat.a gives the following rule:

tannijamūlena hatam. ghanagolaphalam. niravaśes.am‖
Ab.2.7.cd. That multiplied by its own root is the volume of the circular

solid without remainder.

In other words, for a sphere whose volume is V, whose diametral subsection has
an area A, the volume would be

V = A×
√
A.

Bhāskara reinterprets the rule as follows, because in most cases the square-root of
the area cannot be obtained exactly:
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tat punah. ks.etraphalam. mūlakriyamān. am.
karan. itvam. pratipadyate yasmāt karan. ı̄nām. mūla[mapeks. itam]|
tatah. punar api karan. ı̄nām akaran. ı̄bhih. sam. vargo nāst̄ıti
ks.etraphalam. karan. yate| evam ayam artho ’rthād avas̄ıyate
ks.etraphalavargah. ks.etraphalena gun. ita iti|

On the other hand, that area becomes a karan. ı̄ when being made into a
root (mūlakr̄ıyamāna), because a root is [required] of a square (karan. ı̄).
However, also, as there is no product of a karan. ı̄ by a non-karan. ı̄, the
area of the field is made into a karan. ı̄/the area of the field is squared
(karan. yate). Consequently, the following meaning is understood in fact:
the square (varga) of the area of the field is multiplied by the area of
the field.

Following Bhāskara’s interpretation, with the same notation as before, this is the
computation to be used:

V2 = A2 ×A.

Bhāskara discusses another rule, dismissed as “practical” (vyāvahārika):

vyāsārdhaghanam. bhittvā
navagun. itam ayogud. asya ghanagan. itam|

When one has halved the cube of half the diameter and multiplied
by nine, the computation of the volume (ghanagan. ita) of the sphere
(ayogud. a lit. iron ball) 〈is obtained〉 |

In other words, for a sphere whose volume is V, whose diameter is D, the ‘practical’
volume would be

V =
9 × (D

2 )3

2
.

This relation given by Āryabhat.a for the volume of a sphere is incorrect, as well
as the one quoted by Bhāskara. The correct rule is, if the diameter of the sphere
is D = 2R:

V =
4

3
πR3 =

2

3
× D ×A.

We do not know how this rule was derived, nor why this specific wrong relation
was considered. As in the case of an equilateral triangular based pyramid, it may
have been linked to the conception of the geometrical derivation of the solid from
the surface: that of the “product” of a height on the disk.
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D.3 Procedure followed in examples

Problem Knowing the diameter D of a sphere, compute its volume.

Step 1 Compute the area, A of the diametral section, according to the procedure
described above.

Step 2 If the area is a perfect square, compute

V = A×
√
A.

If not, compute
V2 = A2 ×A.

If the quantities obtained are not integers, the result has the form of an
integer with an additional fractional part.

Once again, as this supposes the computation of the area, which is obtained with an
approximate ratio, even if the relation was correct, the answer obtained would have
been an approximation. However, Bhāskara once again insists that Āryabhat.a’s
rule is accurate, whereas the above mentioned “practical” relation is not.

E BAB.2.8

E.1 General rule

Āryabhat.a gives a rule that can be summed up as follows: If ABCD is an isoce-
les trapezium whose heights, AH, EG, BI are always equal to one another, as
illustrated in Figure 12,

Figure 12: An isoceles trapezium
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then:

EF =
AB × EG

AB + CD

FG =
CD × EG

AB + CD

and the area A is:

A = EG × (AB + CD)

2
.

E.2 Description of the field

Bhāskara replaces, to a certain extent, Āryabhat.a’s terminology by his own. For
instance, the uneven sides of an isoceles trapezium (AB and CD in Figure 12),
are paraphrased by the commentator in the following way17:

ke te? pārśve| bhūr ekam. mukhami taram
What are those? The sides. One side is the earth, the other the face.

Bhāskara also explains the unusual technical term svapātalekhā (a line on its own
falling)18:

svapātalekhā nāma antah. karn. ayoh. sam. pātasya
bhūmukhamadhyasya cāntarālam
Svapātalekhā is the name of the inner space 〈delimited by〉 the intersec-
tion (sam. pāta) of the two interior ears and the middle of 〈respectively〉
the earth and the face.

He refers elliptically to these segments, by using the word sam. pāta (〈the line(s)
whose top is〉 the intersection)19, sam. pātāgra (〈the line(s)〉 whose tops is the inter-
section20 and also with the compound karn. āvalambakasampāta (〈the lines whose
tops are〉 the intersection of the perpendicular and the 〈interior〉 ears21. We can
note that previous translators of the Āryabhat.̄ıya seemed to have confused svapāta
(a falling of one’s own) and sam. pāta (an intersection). Thus Kaye22 translates the
compound svapātalekhā as if it was sampātalekhā: “the lines from the point of
intersection”. P. C. Sengupta23 follows by giving the following translation, which
is not literal: “the distance of the point of intersection of the diagonals from one

17[Shukla 1976; p.63]
18[Shukla 1976, p. 63]
19[Shukla 1976;p.63, lines 2 and 19]
20[Shukla 1976; Example 1, p.63]
21[Shukla 1976; p. 63, line 19]. Please refer also to the Glossary for the translations we have

adopted of these terms.
22[Kaye 1908; p. 121]
23[Sengupta 1927; p.16]
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of the parallel sides”. Both Clark24 and Shukla25 seem to understand svapāta as
relating to the orthogonality of the segments, and add the other understanding of
the compound in parenthesis. In all cases, there is no ambiguity concerning the
segments that this compound refers to.

The correspondence between Āryabhat.a’s technical terms for the sides of a trapez-
ium and Bhāskara’s are given in Table 6.

We can note here that if such segments are mediators for isoceles trapeziums this
is not the case for any trapezium. When Bhāskara comments on the fact that they
“fall in the middle” of the earth and the face, he thus restricts his description to
the case of these trapeziums.

E.3 Bhāskara’s interpretation

At the end of his general commentary on the verse, before the resolution of exam-
ples, Bhāskara gives an explanation, which may very well be a proof of the two
rules given by Āryabhat.a:

samyagādis. t.ena26 likhite ks.etre svapātalekhāpramān. am.
trairāśikagan. itena pratipādayitavyam|
tathā trairāśikenaivobhayapārśve karn. āvalambakasampātānayanam|

The size of the ‘lines on their own fallings’ should be explained with the
computation of a Rule of Three on a field drawn by 〈a person〉 properly
instructed. Then, by means of just a Rule of Three with regard to the
two sides which are a pair, the computation of 〈the line whose top is〉
the intersection of the diagonals and the perpendicular 〈is made〉.

Indeed, as illustrated in Figure 13, the triangles ABF and CFD are similar.
Therefore

EF

AB
=

FG

CD
=

EG

AB + CD
.

Such ratios are always given, in Bhāskara’s commentary, as a Rule of Three.
They are not stated explicitly here. One Sanskrit expression is rather difficult to
understand here: trairāśikenaivobhayapārśve . Indeed we have translated it in this
way: “by means of just a Rule of Three with regard to the two sides which are a
pair”. The compound ubhayapārśve should most usually be understood as: the
side of both. We couldn’t make much sense of all this. . .

24[Clark 1930; 27]: “the perpendiculars (from the point where the two diagonals intersect) to
the perpendicular sides”.

25[Sharma&Shukla 1976; p.42]: “the lengths of the perpendiculars on the base and the face
(from the point of intersection of the diagonals)”.

26Reading this instead of samyagānadis.t.ena of the printed edition.
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Table 6: Names for the sides of a geometrical figure, as illustrated in Figure 12,
given by Āryabhat.a and Bhāskara.

Segments Sanskrit names used by
Āryabhat.a

English Translation

AH, EG, BI āyāma height
AB, CD vistara, pārśva width, side
EF, FG svapātalekhā The ‘lines on their own

falling’

Segments Sanskrit names used by
Bhāskara

English Translation

AC, BD pārśva, karn. a side, ear
AB mukha, vadana face
CD bhū, bhūmi, dhātr̄ı, va-

sudhā
earth

AD, BC antah. karn. a, karn. a interior ears, diagonals
AH, EG, BI āyāma, vistara, dairghya height
AH, EG, BI avalambaka perpendicular

EF, FG svapātalekhā The ‘lines on their own
falling’

sam. pāta The 〈lines whose top is〉
the intersection 〈of the in-
terior ears〉

sam. pātāgra The 〈lines〉 whose top is
the intersection 〈of the in-
terior ears〉

karn. āvalambakasampāta 〈The lines whose tops
are〉 the intersection of
the perpendicular and the
〈interior〉 ears

HC, ID bhujā The base



38 Supplements

Figure 13: Fields inside a trapezium
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He further adds:

pūrvasūtren. ātra dvisamavis.amatryaśraks.etraphalam. darśayitavyam |
vaks.yamān. asūtren. āntarāyatacaturaśraks.etraphalaānayanam anena vā...
Here, with a previous rule (Ab.2.6.ab) the area of isoceles and uneven
trilaterals should be shown. Or, with a rule which will be said (Ab.2.9.)
the computation of the area of the inner rectangular field 〈should be20
made〉

As illustrated in Figure 12, a trapezium can be seen as the sum of several triangles
(AFC, CFD, AFB and BFD) or as the sum of two right angle triangles (AHC
and BID) and a rectangle (ABIH).

Furthermore, Bhāskara distinguishes the case of isoceles trapeziums (which may
even have three equal sides as in Example 3) from the case of uneven trapeziums,
in the types of problems that may be solved by such a rule, the latter recquiring
a beforehand knowledge of the height of the trapezium. The procedure given by
Āryabhat.a, in this case, only concerns the area.

In fact the part of the rule which computes the area of the trapezium is analyzed by
Bhāskara as being applicable to any quadrilateral. To state this property Bhāskara
needs to specify the terminology he is using. He therefore distinguishes what he
calls ‘uneven quadrilaterals” (vis.amacaturaśra, i.e a non-isoceles trapezium), from
what is called with the same name in other treatises (i.e. any quadrilateral). To
do so he actually states a definition of what is trapezium:

atra ca yad upadísyate tasya yāv avalambakau tau tulyasaṅkhyau|
The two perpendiculars of the 〈field〉 which is instructed here (in Ab.2.8)
have the same value.

He then can write the above mentioned property:
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atha yad gan. itaśāstrāntaraupadis. t.avis.amacaturaśraks.etra.m
yac cehaupādísyate tayor dvayor api phalanirdeśo
py anenopadeśena śakyate [kartum]|
Now 〈concerning〉 that uneven-quadrilateral-field explained in a differ-
ent treatise on mathematics and that 〈field〉 which is explained here (i.e
fields which have equal perpendiculars), the specification of the area of
these very two 〈types of fields〉 can be [made] with this instruction (i.e.
the one given in Ab.2.8.cd) as well.

E.4 Procedure followed in examples

E.4.1 Isoceles trapezium

Problem Knowing the sides, face and earth of an isoceles trapezium, find the two
lines on their own falling and its area.

Step 1 Find the height, considering an inner right angle triangle using Ab.2.17.ab.
As illustrated in Fig 12, considering triangle AHC or BID we have

CH = ID =
CD − AB

2
,

and

EG2 = AH2 = AC2 − HC2,

or

EG2 = BI2 = BD2 − ID2.

In all examples here, the value found for the square of the height is a perfect
square.

Step 2 Compute according to Āryabhat.a’s rule the two segments of the height:

EF =
AB × EG

AB + CD
,

FG =
CD × EG

AB + CD
.

Step 3 Compute according to Āryabhat.a’s rule the area of the trapezium:

A = EG × (AB + CD)

2
.
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E.4.2 Uneven trapeziums

In this case, the height should already be given. Then both Step 2 and Step 3 of
the previous procedure can be followed.

F BAB.2.9

F.1 Ab.2.9.ab

Āryabhat.a gives the following general rule:

sarves. ām. ks.etrān. ām. prasādhya pārśve phalam. tadabhyāsah. |
For all fields, when one has acquired the two sides, the area is their
product|

This is interpreted by Bhāskara in three ways: It is first read as giving a procedure
to compute the area of rectangles. Then it is understood as a way of verifying the
areas of the fields for which Āryabhat.a has already given procedures that allow a
computation of the area. Finally, it is read as a method to find the area of any
field.

F.1.1 Procedure for the area of a rectangle

The area of the rectangle may be seen as a direct application of the method given
by Āryabhat.a here, as the area is a product of its width (vistāra) and length
(āyāma). Bhāskara seems to admit that this is a very well-known fact. A verse
quoted in the general commentary states:

vyaktam. phalam āyate yasmāt

since in rectangles the area is obvious

However, the first example of the commentary concerns rectangles.

F.1.2 Verifications

All the procedures given previously by Āryabhat.a to compute the area of given
fields can be seen as products of two quantities. Bhāskara re-reads these procedures
as therefore producing the areas of rectangles having the same area as the initially
computed field. He gives a name to this reasoning, it is called pratyaykaran. a. Liter-
ally this word means “producing conviction”. This we would translate as “proof”
or “demonstration”. However, historians of science seem to have all understood
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this word as meaning verification27. We have adopted the commonly used trans-
lation of this word.

We have discussed the nature of this reasoning as a verification in our thesis28

giving two hypotheses on the nature of the reasoning elaborated here. The first
hypothesis is that the reasoning considers the ability to find a rectangle with the
same area as the field whose area is verified. This would interpret Ab.2.9.ab. as
giving an essential property of plane geometry as conceived by Bhāskara: all fields
can be transformed into a rectangle bearing the same area as the original field29.
Another hypothesis would be to consider that a method was known starting with
a given field to construct a rectangle with the same area. By then computing the
area of such a rectangle, the area of the initial field would be verified. Bhāskara
would then explicitly define arithmetically the link between the sides of the initial
field and the newly constructed rectangle, explaining the validity of the procedure
of construction.

These are hypotheses. We have here described the procedure followed formally, as
they appear in the text.

a Verifying the area of trilaterals

a.1 equilaterals The idea is that the area of such triangles is equal to the rec-
tangle whose sides are respectively the height and half the corresponding base, as
illustrated in Figure 14.

Figure 14: An equilateral triangle and a rectangle with same areas

Problem Knowing the length of a side in an equilateral triangle, find the rectangle
which has the same area and compute the area.

Step 1 Draw the triangle. Compute as described in BAB.2.6.ab. the height and
half the base.

27See [Hayashi 1995; p. 72-75], who also analyses the use of the term in this text, and in
non-mathematical texts. One can also see [Shukla 1976; intro p.liv]

28See [Keller 2000; I p. 104-127]
29This is exposed by T. Hayashi in [Hayashi 1995]
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Step 2 Draw the corresponding rectangle. The area is the product of both.

The case of the isosceles is not treated. Bhāskara just adds:

evameva [dvi]sames.u, vis.ames.u ca|
〈The computation〉 is just like that in isosceles and uneven 〈trilaterals
also〉.

b Uneven trilaterals Two methods are given. The first proceeds just as in the
case of equilaterals, and therefore considers that any trilateral’s area is equal to
the area of the rectangle having for length and breadth respectively the height
and half the base. We have given an illustration of this mathematical property in
Figure 15, although no such drawing is in the text itself.

Figure 15: Any triangle has the same area as a rectangle whose sides are one height
and half the corresponding base

half the base

The second procedure is as follows, and is illustrated in Figure 16:

Step 1 Compute the sections of the base (BD, DC) created by the given height
(AD) as described in BAB.2.6.ab.

Step 2 Compute the areas of the two rectangles (AEBD and AFDC), having
drawn the corresponding figure. Halve the given areas.

Step 3 The area of the triangle is the sum of the half-areas of the rectangles.
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Figure 16: Any triangle has the area of two half rectangles

�
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F.1.3 Circles

There is no illustration, but the following rule, is given:

vr. ttaks.etre vis.kambhārdha vistārah. , paridhyardham āyāmah. ,
tad evāyatacaturaśraks.etram

In a circular field, the semi-diameter is the width, half the circumference
is the length, just that 〈gives〉 the rectangular field.

As we have noted before this rule seems a reinterpretation of the arithmetical rule
for computing the area of a circle as the product of two quantities, and, as an
arithmetical explicitation of the link between the segment and circumference of a
circle and the rectangle having the same area.

F.1.4 Trapeziums

Oddly, an isosceles trapezium is presented by Bhāskara as part of the group of mis-
cellaneous fields (prak̄ırn. aks.etra). This may be due to the fact that the trapezium,
as represented in a diagram, is considered here horizontally30.

A trapezium has the same area as a rectangle having for sides, respectively its
perpendicular and half the sum of its parallel sides (or faces: mukha and prati-
mukha).

Problem Find the area of a trapezium whose two parallel sides and height is
known.

30We have discussed the sometimes implicit orientation of fields in [Keller 2000; I. p.228-230]
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Step 1 Compute half the sum of the parallel sides.

Step 2 The area of the trapezium is equal to the area of the rectangle having for
sides half the sum of the parallel sides and the height, therefore the area is
their product.

F.1.5 A drum shaped, two dimensional figure

This field, illustrated in Figure 17, is characterized by a separation (vyāsa) or
width (vistāra), corresponding to its smallest height (a) and its two parallel sides
(mukha; b and c, which are equal in the only given example).

Figure 17: A two dimensional, drum-shaped field

a bc mukha

vyåsa

viståramukha

dairghya

d

According to Bhāskara, the area of this field is the area of a rectangle having for

sides respectively d and
b+c
2 +a

2
31. Therefore, its area A is

A = d ×
b+c
2 + a

2
.

This corresponds to the area of two trapeziums having a common parallel segment.
In other words:

A =
d

2
× a + c

2
+

d

2
× a + b

2
.

The diagram illustrating the solved example of this related text, in the edition, is
a figure formed with two arcs (represented in filligrane in Figure 17): this may be

31The computation described by Bhāskara shows that the two sides can have different lengths.
In the written example, even though the two sides are equal, Bhāskara writes: mukhayoh. samāsah. |
(The sum of the faces.) And afterwards he considers its half. He therefore computes: 2b

2
. In the

computation of the following value he proceeds likewise.
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Figure 18: A two-dimensional tusk field

a

b

c

viståra

udara

p®∑†ha

due to a deformation of the approximative straight lines often seen in the diagrams
of palm-leaf manuscripts.

F.1.6 A two dimensional tusk-field

A tusk field, as illustrated in Figure 18, is characterized by a width (vistāra, a),
a belly (udara, b) and a back (pr.s. t.ha, c). Its area is considered to be equal to the

rectangle whose sides are (b + c)/2 and a/2. Therefore the area, A, of such a field
is

A =
b + c

2
× a

2
.

We do not know how this formula was found, but we can note that it presents
an analogy with the formula giving the area of a circle. The area of such a field
is known to have been studied in later mathematical texts. Some times it is con-
sidered as made of two arcs of a circle32.

F.2 Ab.2.9.cd

Āryabhat.a states in the second half of verse 9 that the chord that subtends an arc
of 60 degrees is equal to the radius. This is illustrated in Figure 19.

F.2.1 Rāśis

A rāśi, as can be seen in Figure 19, is 1/12th of a circle, or 30 degrees. Bhāskara
seems to consider the arc made of two rāśis as a field of its own. As we have
stated in the Introduction, a circle is seen by Bhāskara not so much as a disk –

32[Datta&Singh 1979; p.168 sqq]
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Figure 19: The chord of a sixth part of the circumference, which is the chord
subtending two rāśis, is equal to the radius

Two råßis 

or a two råßi field

 is the 6th part of the
circumference

ardha-jyå

half-chord

of one råßi 

jyå
R

a

this is the idea of Prabhākara – then as the couple formed by a diameter and a
circumference. In the same way, a two-rāśi field, even if the word “field” (ks.etra)
conveys the idea of extension, would be restricted to the arc.

F.2.2 Half-chords

The vocabulary used in Bhāskara’s commentary is confusing; but it makes sense
in regard to the notion we use today of the sinus of an arc: If α is the measure of
an arc measuring one rāśi, in a circle of radius R, half the chord of 2α is called by
Bhāskara the half-chord of α. It corresponds precisely to Rsinα, where an Rsinus
is the product of the sinus with the given radius. In other words:

chrd(2α)

2
= Rsinα.

F.2.3 A pair of compasses

Bhāskara describes here, very briefly, a pair of compasses. The sentence where he
does so, can be understood in various ways. For instance, the word vart̄ı could
refer to a piece of wood, a paint brush or some chalk. And the word sita could
be a past participle (has been secured) or mean the color white. So that the same
Sanskrit sentence

asmin ca viracitamukhadeśasitavartyaṅkurakarkat.ena ālikhite chedyake
yat s.ad. bhāgajyāyāh. ardham tat rāśeh. ardhajyā|

can be read in at least five different ways. For instance as:

And in this diagram, which is drawn with a compass with a white and
sharp chalk (sitavartyaṅkura) fastened to the mouth-spot (mukhadeśa),
that which is half of the chord of a sixth part is the half-chord of a rāśi.
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or as

And in this diagram, which is drawn with a compass with a secured
(sita) and sharp paint brush (vartyaṅkura) fastened to the mouth-spot,
etc.

Hence several images of compasses rise from this sentence. The interpretation we
have adopted rests upon Parameśvara’s descriptions of a pair of compasses, which
we have discussed in the supplement for verse 13.

F.2.4 Fields within a circle

Figure 20: Fields seen inside a circle, whose circumference is divided in six equal
parts

Two råßis 

or a two råßi field

 is the 6th part of the
circumference

ardha-jyå

half-chord

of one råßi 

jyå
R

a

Bhāskara describes in the commentary several fields within a circle. The term
“chedyaka”, which we have translated by “diagram” as it is used with this sense
in the Mahābhaskar̄ıya, an astronomical treatise written by our commentator, is
only used in this commentary to refer to the figure whose drawing is described
in BAB.2.1133. Verse 11 of the chapter on mathematics is closely linked to this
one: it is the place where the application of such a relation will become clear in
Bhāskara’s commentary.

G BAB.2.10

G.1 Āryabhat.a’s verse

Ab.2.10 relates a given diameter (measuring here 20000 units) to an approximate
circumference (62832). Bhāskara insists on the fact that an approximation of the
constant ratio linking the diameter of a circle (2R) and its circumference (C), which
we call π, is given here. A procedure to compute the diameter or circumference of

33Please see the supplement for this commentary for an illustration of the particular diagram
it may refer to.
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Two råßis 

or a two råßi field

 is the 6th part of the
circumference

ardha-jyå

half-chord

of one råßi 

jyå
R

a

Bhāskara describes in the commentary several fields within a circle. The term
“chedyaka”, which we have translated by “diagram” as it is used with this sense
in the Mahābhaskar̄ıya, an astronomical treatise written by our commentator, is
only used in this commentary to refer to the figure whose drawing is described
in BAB.2.1133. Verse 11 of the chapter on mathematics is closely linked to this
one: it is the place where the application of such a relation will become clear in
Bhāskara’s commentary.

G BAB.2.10

G.1 Āryabhat.a’s verse

Ab.2.10 relates a given diameter (measuring here 20000 units) to an approximate
circumference (62832). Bhāskara insists on the fact that an approximation of the
constant ratio linking the diameter of a circle (2R) and its circumference (C), which
we call π, is given here. A procedure to compute the diameter or circumference of

33Please see the supplement for this commentary for an illustration of the particular diagram
it may refer to.
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any circle is deduced from this verse. It rests on a Rule of Three. The steps of the
procedure to be applied in the case of the circle follow those of any Rule of Three,
and are not exposed here.

With our notations, we can state the rule given by Bhāskara as follows. If a circle
whose circumference is C and diameter is 2R, then:

If 2R is known, approximately,

C =
2R × 62832

20000
.

If C is known, approximately,

2R =
C × 20000

62832
.

Or

π ≃ 62832

20000
= 3, 141634.

According to Afzal Ahmad35, this value derives from the computation of the
perimeter of a regular polygon of 256 sides inscribed in a circle.

G.2 The “ten karan. ı̄s” theory

Bhāskara exposes in this part of his commentary another set of rules that may be
ascribed to Jain authors. All are given in a dialect of Sanskrit. They are exposed
in order to refute the first of these rules, which gives an alternative computation
for the circumference of a circle. These rules have been discussed in [Shukla 1972].

The different steps of this refutation are given in the following subsection36. We
will only unravel here the mathematical contents of each of these rules.

First rule vikkham. bhavaggad sagun. akaran. ı̄ vat.t.assa parirao hodi|
[vis.kambhavargadaśagun. akaran. ı̄ vr. ttasya parin. āho bhavati|]
textbfThe karan. ı̄ which is ten times the square of the diameter is

the circumference of the circle|

To understand simply the mathematical idea of a karan. ı̄, one may consider
it as a square root, although this is, to a certain extent, a heuristic trans-
position in our modern language. This rule can be formalized as follows: if
C is the circumference of a circle, and 2R its diameter, this verse gives the
computation

C =
√

10.(2R)2 (1)

34For commentaries on approximations of π in India, see [Datta 1926], [Hayashi&Kusuba&Yano
1989], [Hayashi 1997b]

35[Ahmad 1981]
36An analysis can be found in [Keller 2000; I p.120-126]



G. BAB.2.10 49

π is thus approximated as
√

10.

The Jain canonical works, known to us as preceding the time of Bhāskara,
such as the Sūryaprajñapti (or Sūryapan. n. ati), use this value for π37. It is
usually considered that such an approximation derives from the computation
of the perimeter of a regular polygon with 12 sides, inscribed in a circle38.

Second rule The second verse stated is:

ogāhūn. am. vikkhambham.
39 egāhen. a sam. gun. am. kuryāt|

caügun. iassa tu mūlam. j̄ıvā savvakhattān. am‖
[avagāhonam. vis.kambham avagāhena40 saṅgun. am. kuryāt|
caturgun. itasya tu mūlam. sā j̄ıvā sarvaks.etrān. ām‖]
The diameter decreased by the penetration should be multiplied

by the penetration|
Then the root of the product multiplied by four is the chord of all

fields‖
The same verse, except for the last quarter, is given in verse 180 of the Jain
work Jyotis.karan. d. aka, an exposition in the line of the Sūryaprajñapti41.

With the same notations as before, as illustrated in Figure 21, if a is the
penetration (avagāha)42, j (jyā), the chord, then

j =
√

4(2R − a)a. (2)

This may be linked to the second part of verse 17 of the Āryabhat.ı̄ya:

17cd. In a circular 〈field〉 (vr.tta), the square of the half chord,
that is certainly the product of the arrows (śarasam. varga) of
two bows‖

Let C be a circle of diameter AB and CDE a chord as illustrated in Figure
22, then we can understand the verse as

DE2 = AD × DB.

The two “bows” are thus the two arcs formed by CE, whose arrows are CD
and DE.

If j = 2DE, and DB = a, so that AD = 2R − a, then we have
(

j

2

)2

= (2R − a)a ⇔ j =
√

4(2R − a)a.

37See [Datta&Singh 1979; p. 152-154], [Hayashi 1997a; p. 12], [Sarasvati 1979; p. 62sqq]
38[Sarasvati 1979; p.65]
39The edition reads vikkhambha.
40The edition reads avagāhen. a.
41[Sarasvati 1979; p. 63, note 4]
42Or the “arrow” (śara), these two expressions refer to the same segments.
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Figure 21: The field described in Bhāskaraś refutation
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Figure 22: The figure illustrating the rule of the second half of Ab.2.17
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We can note that although this verse is quoted along with verses that are
refuted, the fact that it can be seen as another formulation of Ab.2.17ab.
shows that what is questioned by Bhāskara is not this procedure, which was
probably considered correct, but precisely the value

√
10 used for the ratio

of the diameter to the circumference of a circle.



G. BAB.2.10 51

Third rule isupāyagun. ā j̄ıvā dasikaran. i bhaved vigan. iya padam|
dhanupat.t.a ammikhatte edam. karan. am. tu āavvam‖

[is.upādagun. ā j̄ıvā daśakaran. ı̄bhir
43 bhaved vigun. ya

44 phalam45|
dhanuh. pat.te śmin ks.etre etat karan. am. tu jñātavyam‖]

The chord with the quarter of the penetration as multiplier once
multiplied by ten karan. ı̄s will be the area|
In that field which is a strip like a bow, this procedure should be
known‖

In other words, with the same notations as above, the area of a segment b of
a disk is

b = j × a

4
×
√

10. (3)

As before we do not know from where this computation was derived. We can
note that it is consistent with the computation of the area of a circle.

Fourth rule Then a rule to sum karan. ı̄s is stated:

aüvat.t.i a dassaken. a i mūlasamāsassamotthavat|
ovat.t.an. āyagun. iyam karan. isamāsam tu n. āavvam‖
[apavartya ca daśakena hi mūlasamāsah. samottham yat|
apavartanāṅkagun. itam karan. isamāsam tu jñātavyam‖]
When one has reduced 〈the two karan. ı̄sto be summed〉 by ten,

then, the sum of the roots 〈of the results is taken〉. That which
arises from the same 〈sum〉 (i.e. it is squared) is|

Multiplied by the digits of the reducer (i.e. ten), 〈the result is a
karan. ı̄; in this way〉 the sum of 〈two〉 karan. ı̄s should be known.‖

K. S. Shukla gives the following formulae for this verse (in the introduction
p.lvi)

√
a +

√
b =

√

√

√

√10

(

√

a

10
+

√

b

10

)2

. (4)

This is used when both a
10 and b

10 become perfect squares. So that the two
“
√

” symbols used over these quantities do not represent their irrationality
but a successful procedure of root extraction. Brahmagupta, a contemporary

43Although the plural instrumental ending makes sense Sanskritwise, it does not have any
parallel in the prākr. ta verse.

44Likewise, if the substitution of the vowel u for the vowel a in vigan. iya makes sense mathe-
maticaly (the verb instead of meaning ‘to compute’, becomes‘to multiply’, it doesn’t seem to be
based on any phonological evidence.

45Once again phala is more meaningful than pada, but isn’t supported by phonology.
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of Bhāskara, gives a rule to sum karan. ı̄s which is more general then this one,
but follows the same idea46.

Fifth rule jyāpādaśarārdhayutih. svagun. ā [daśasaṅgun. ā karan. yas tāh. ]|
The sum of a half arrow and 〈its〉 quarter-chord, multiplied to

itself, [with ten as a multiplier, these are the karan. ı̄s 〈that
measure the back of the bow field〉]|

In other words, with the same notation as before, considering that an arc
p (pr.s. t.ha) of a circle is computed knowing a chord j, and its arrow (or
penetration) a

p =

√

10

(

j

4
+

a

2

)2

. (5)

We do not know from where this computation derives. It differs from those
generally found in Jain canonical texts47. As this was rightly pointed out
to me by Pr. Johannes Bronkhorst, this procedure is obviously false: if one
adds the two complementary bow fields of one same chord (considering a and
2R − a , one obtains the according circumference only if the chord is equal
to the radius (e.g. if j = 2R).

G.3 Steps used to refute the “ten karan. ı̄s” theory

The global refutation is made of two separate refutations. The first one arrives at
an impossibility of applying a given procedure – and the overall argument has to
do with the expression of karan. ı̄s as numbers. In the second refutation, the result
obtained is absurd.

The aim of the refutation is to discard
√

10 as an exact value of π. The second
refutation, in fact, shows that it is an extremely rough approximation. Bhāskara
proceeds by taking specific counter-examples. His reasoning rests not on the pro-
cedure quoted to compute the circumference of a circle, but on others that also
use

√
10 as an approximation of π. (Namely those that we have transcribed as for-

mulas (3) and (5)). He does not discuss the validity of these procedures as such,
but seems to assume that, as they use the approximation he seeks to discard, this
is the reason why they are faulty48. We present here the different steps that the
two refutations take.

First refutation In the first refutation, Bhāskara attempts to compute the area of
a circle as the sum of its interior fields. Though this is his program he does

46See [Hayashi 1997]
47See [Datta&Singh 1979; p.160sqq] and [Sarasvati 1979; p.63-64]
48For a more thorough analysis of the types of reasoning involved in the refutation see [Keller

2000; I p.120-126 ]
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not, apparently, follow it to the end. He takes a specific case, in the form of
a versified problem.

He then uses the procedure that we have transcribed as formula (3) to com-
pute the areas of four bow-fields. They are obtained as karan. ı̄s. In order to
sum the areas first of the bow fields, then of the interior rectangle he uses a
rule that we have transcribed as formula (4). When trying to sum the areas
of the bow fields, which amounts to ‘ka.1210’ (or 11

√
10) and the area of

the rectangle, which amounts to ‘ka.2304’ (or 48) he cannot obtain a simple
number: in other words, he cannot write 11

√
10 + 48 as a single irrational

quantity. Bhāskara states:

dhanuh. ks.etraphalasamāsarāśer asya ca karan. isamāsakriyayā
samasyamāne rāśyor asam. ks.epatā|
When summing, with the method to sum karan. ı̄s, the quantity
which is the sum of the areas of the bow fields and this (i.e, the
area of the rectangle), both quantities are unsummable.

And this seems sufficient to show that an impossibility arises because of the
use of

√
10. Takao Hayashi proposes to understand that as the area was

considered to be the product of the circumference with the quarter of the
diameter, the result obtained for the area of a circle should be written as one
number and not as a non-reducible sum of karan. ı̄s.

However, if this was the case, wouldn’t the procedure used to sum karan. ı̄s
be what should have been under discussion?

We do not know if considering this procedure as part of the “ ten karan. ı̄s
theory”, and thus considering it to derive from the use of this value for an
approximation of π, it was to be discarded. We do not have an instance in
another context in which Bhāskara attempts to sum karan. ı̄s.

Second refutation Bhāskara gives two counter examples for which the rule tran-
scribed as formula (5) gives a value for the arc higher than that of its corre-
sponding chord. This contradiction is commented upon by Bhāskara, twice,
with some irony. The computation transcribed as formula (5) also uses

√
10

as a value for π, and therefore this procedure is seemingly refuted and not
the one given for the circumference of the circle. Implicitly, Bhāskara assumes
that the absurdity arises because the value for π is a very rough approxima-
tion.

Bhāskara concludes this refutation assuming that he has thus showed the impos-
sibility of finding an exact procedure to compute the circumference of a circle
knowing its diameter.
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H BAB.2.11

Bhāskara, in his commentaries on verses 11 and 12, aims at showing how the
table of sine difference given by Āryabhat.a in verse 12 of the first chapter of the
Āryabhat.ı̄ya is derived. This is not explicit in his commentary on verse 11, but
becomes clear as we read BAB.2.12.

In this section, in a first part we will discuss Bhāskara’s interpretation of Ab.2.11.
In a second part we will explain the procedure he gives and in a third part we will
discuss Bhāskara’s remark concerning a chord equal to the arc it subtends.

H.1 Bhāskara’s understanding of Ab.2.11.

In Ab.2.11. Āryabhat.a just alludes to a geometrical situation (a circle whose cir-
cumference is first divided in quarters; trilaterals and quadrilaterals, related to
arcs in a given quadrant...), in which half-chords should be computed, but he does
not give any precise procedure. Both a geometrical context, namely a diagram,
and a procedure followed within this diagram are supplied by the commentator.

H.1.1 “The quarter of the circumference of an even-circle”

The first quarter of verse 11 locates the procedure within a quarter of a cir-
cle (samavr. ttaparidhipāda). The expression used in the verse to name a circle:
samavr. tta, means “even circle”. It is probably opposed to an “elongated circle”
(āyatavr. tta), which is an ellipse. Bhāskara as he comments on the compound, in-
dicates that what is considered is not the quarter of the disk but the quarter of
the circumference. We will see how the procedure he provides uses several charac-
teristics of the quarter of the circumference.

A rāśi is, in this case49, a standard unit when considering a uniform subdivision
of the circumference of a circle: it corresponds to 1/12th of the circumference, or
1/3rd of the quadrant.

Bhāskara states explicitly that the quadrant is convenient for it contains a whole
number of rāśis, and that all the half-chords computed in one quarter are equal
to those of other quarters.

H.1.2 “Trilaterals and Quadrilaterals”: the diagram

The procedure Bhāskara gives may be understood as four sub-geometrical proce-
dures used, within a diagram, to compute the length of a half-chord. This proce-
dure will be described in a section below.

Bhāskara describes the construction of a diagram, very precisely, so that we can
reconstruct it ourselves. Such a diagram is illustrated in Figure 23.
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Figure 23: The diagram prescribed by Bhāskara

We note that in India the East (pūrva) is in front, the West (paścima) is behind,
the North (uttara) is on the left and the South (daks. in. a) on the right. The cardinal
directions are represented in the diagram of the printed edition of the commentary,
but may not have been present in the manuscripts.

The procedure Bhāskara describes derives half-chords from right-angle triangles
and a square that can be seen within the diagram he has prescribed. This is
illustrated in Figure 24.

Figure 24: The trilaterals and the quadrilateral used by Bhāskara

We note that rectangles appear also in this diagram: it is possible that Āryabhat.a

49For the different meanings that rāśi can bear, please see the Glossary.
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himself did not restrict his idea of “quadrilaterals” to the square considered by
Bhāskara.

H.1.3 Chords and half-chords.

This may be recalled here: Let there be a whole chord (jyā) subtending an arc
β. Half the chord subtending β is called the half-chord (ardhajyā) of the arc β/2.
This half-chord corresponds to the Rsinus (R times the sinus) of β/2.

This can be quite confusing as we read Bhāskara’s commentary and is important
to bear in mind. In fact Bhāskara himself often omits the word ardha (half) when
he refers to a half-chord. In later works jyā or jivā alone name the half-chord50.

A bow-field involves both a chord and a half-chord of a given arc, and also an
“arrow” (śara) which is ascribed to the arc of the half-chord. The arrow in the
case of a bow-field of two unit-arcs is illustrated in Figure 25.

Figure 25: A bow-field of two unit-arcs

Arrow of
one unit-arc

Half-chord of
one unit-arc

Whole chord of
two unit-arcs

The arrow is a segment that Bhāskara uses in the diagrammatic procedure de-
scribed below.

Chords and half-chords were first introduced in Bhāskara’s commentary on the
second half of verse 9. This half-verse states that the chord subtending one sixth
of a circle is equal to the radius of the circle. He also introduces in this commentary
of verse the arc corresponding to one twelfth of a circumference, which is called a
rāśi. Thus with the second half of verse 9 we know that in any circle, the half-chord
of one twelfth of the circumference is equal to half the radius. The result given
by this verse is fundamental for Bhāskara’s diagrammatic procedure, since it is on
the basis of this chord that all other chords (and their corresponding half-chords)
will be deduced.

50For remarks of later Sanskrit authors on the links between a chord and a half-chord see
[Datta&Singh 1983; p. 40]
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H.1.4 Equal or even unit-arcs?

Bhāskara gives here a particular interpretation of the compound samacāpa, used
in Ab.2.11: “sama” would be a reference to the fact that only half-chords of an
even number of unit-arcs (cāpa) are to be produced by means of this procedure51:

jyāvibhāgena samavr. ttaparidhau khan. d. yamāne tribhujāc caturbhujāt
ca ks.etrāt samacāpajyārdhāni nis.padyante, na vis.amacāpajyārdhāni|
tāni vísis. t.āny eva parigr.hyante, dvicaturas. t.as.od. aśadvātrim. śadityādini
dvigun. auttarān. i|
“the half-chords of an even 〈number of〉 unit-arcs” are produced “from
a trilateral and a quadrilateral field”, and not half-chords of an uneven
〈number of〉 unit-arcs.
Just those particular ones, which are doubled successively, are understood:
two, four, eight, sixteen, thirty two, etc...

Furthermore, Bhāskara glosses the word tu (“and”) in order to add all the even
arcs that this first interpretation omits:

‘tu’́sabdāt dvicatus.s.ad. as. t.adaśadvādaśacaturdaśād̄ıni ca|
And, due to the word ‘tu’ (and), two, four, six, eight, twelve, fourteen,
etc... 〈are understood.〉

Two pieces of information are given to us in this part of the commentary.

First of all, we understand that Bhāskara assumes that the quadrant is divided by
equal arcs.

Indeed, “equal arcs” could be another interpretation of the compound sama (equal)-
cāpa (arc or unit-arc); this translation has been adopted by most of the translators
of this verse with the exception of P.-S. Filliozat in [Filliozat 1988a]. Āryabhat.a’s
idea may have been to insist that the arcs were equal, as for instance T. Hayashi
has understood it in [Hayashi 1997], since the use of sama in the Āryabhat.ı̄ya does
not corroborate this interpretation of Bhāskara’s as “even”52.

As we have recalled above, the second half of verse 9 considers the twelfth-part of
the circumference of a circle, which is called a rāśi. The twelfth-part of the circum-
ference, or the third part of the quadrant, is the first, and most rough, subdivision
(or partition, vibhāga) of the circumference that is considered by Bhāskara in the
diagrammatic procedure.

What is called a “unit-arc” here is a given arc which produces a uniform subdivi-
sion of the circumference of a circle.

51[Shukla 1976; p. 77, line 15 sqq.]
52All occurrences of the word in the Āryabhat.ı̄ya convey the meaning of “equal” or “unifor-

mity”.
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In his commentary, Bhāskara, does not use the word cāpa (given by Āryabhat.a) to
name the unit-arcs considered but substitutes for it the word kās. t.ha. The unit-arcs
called kās. t.ha considered in the procedure, are always an even subdivision of rāśis
(i.e. 1/2, 1/4, 1/8th of a rāśi).

Table 7 gives the relations between rāśis, degrees and the number of unit-arcs
considered.

Let us stress here that Bhāskara’s interpretation of the compound leads him to
understand that the diagrammatic procedure works only for half-chords of an even
number of unit-arcs. As we will see in the next section, half-chords of an uneven
number of unit-arcs can be derived from the diagrammatic procedure, and indeed
they are, but when they are produced they stop the iteration of the process and
indicate that a new procedure or a new field should be considered, in order to
go further. Deriving a new half-chord with the half-chord of an uneven number
of unit-arcs, with the given procedures, would indeed produce half-chords of a
non-integer number of unit-arcs. This is probably why such a limitation is put
forth.

The iterative aspect of the process is given by Āryabhat.a with the expression
yathes. tāni (as many as one desires).

H.1.5 “On the semi-diameter”

Bhāskara explains in three reasonings that complete one another how he un-
derstands the expression “the production of half-chords on the semi-diameter”:
First, the radius is fundamental because the trilaterals and the quadrilateral con-
sidered each have at least one side which is the radius. Secondly, the biggest value
possible for the half-chord (the Rsine) is the radius. Finally, the radius as the
chord subtending one sixth of the circumference is the first numerical input that
starts the procedure.

H.2 The steps of the diagrammatic procedure

As we have explained above, the procedure described by Bhāskara uses four dif-
ferent procedures, that each rest upon right-angle triangles and a square that
can be drawn inside a circle. These are specific fields that are drawn along the
uniform subdivision of the circumference into equal unit-arcs. In the procedures
described by Bhāskara, even subdivisions of rāśis are considered. However the dia-
gram whose construction is described in the commentary only considers a circum-
ference subdivided by whole rāśis. Thus the diagram prescribed in the commentary
is archetypical, it does not represent the effective triangles considered.

The four sub-procedures described in a diagram may be explained as follows53:

53The notations adopted are those used by Takao Hayashi in his article on Ab.2.12, [Hayashi
1997a]
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Table 7: Number of rāśis, unit-arcs and degrees
For each application of the diagrammatic procedure, Bhāskara considers even sub-
division of rāśis. This table gives the correspondence between the subdivision of
rāśis considered, the three successive unit-arcs considered and the length in degrees
of the arc considered.

rāśis degrees unit-arcs 1 unit-arcs 2 unit-arcs 3
1/8 3,75 - - 1
1/4 7,5 - 1 2
3/8 11,25 - - 3
1/2 15 1 2 4
5/8 18, 75 - - 5
3/4 22,5 - 3 6
7/8 26, 25 - - 7
1 30 2 4 8

9/8 33,75 - - 9
5/4 37,5 - 5 10
11/8 41,25 - - 11
3/2 45 3 6 12
13/8 48,75 - - 13
7/4 52,5 - 7 14
15/8 56,25 - - 15

2 60 4 8 16
17/8 63,75 - - 17
9/4 67,5 - 9 18
19/8 71,25 - - 19
5/2 75 5 10 20
21/8 78,75 - - 21
11/4 82,5 - 11 22
23/8 86,25 - - 23

3 90 6 12 24
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Let 3×2m, m being any integer, be the number of unit-arcs α in which a quadrant,
of radius R, is divided (the quadrant then measures 3×2mα). A quadrant contains
three rāśis (r), so that r = 2mα (or α = r

2m ). Let Ji be the Rsine (jyā, R times
the sine) of iα, 0 < i ≤ 3 × 2m. This is illustrated in Figure 26.

Figure 26: A quadrant with half-chords
The arc AiAi+1 = α, the arc A0A3×2m = 3 × 2mα.
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procedure 1 Uses Ab.2.9.cd which states that the semi-diameter is equal to the
whole chord of one sixth of the circumference (two rāśis). In other words, R
is the whole chord of 2m+1α.

Then

J2m =
R

2
.

This is the half-chord which can always be known and from which the itera-
tion of the process may start.

For instance, in the first series of half-chords computed by Bhāskara, the
unit-arc is half a rāśi, so that with our notation m = 1. Bhāskara shows that
R is the whole chord of four unit-arcs, and therefore its half is the half-chord
of two unit-arcs54:

54[Shukla 1976, p.79, lines 7-8]
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atrālekhye vyāsārdhatulyā caturn. ām. kās. t.hānām. [pūrn. a]jyā| tadardham.
dvikās. t.hajyā|
In this drawing the [whole] chord of four unit-arcs is equal to the
semi-diameter. Half of that is the 〈half-〉chord of two unit-arcs.

Procedure 2 With a known half-chord Ji, considering the right-angled triangle
formed by R, Ji and J3×2m−i, as illustrated in Figure 26, using Ab.2.17ab
J3×2m−i is computed:

J3×2m−i =
√

R2 − J2
i .

For example, in the first series of half-chords computed by Bhāskara, the unit-
arc considered is half a rāśi (m = 1). From the half-chord of two unit-arcs
(J2) computed with procedure 1, the half-chord of four unit-arcs, illustrated
in Figure 27, is computed according to the following geometrical reasoning55:

tadardham. dvikās. t.hajyā| sā ca 1719| es. ā bhujā, vyāsārdham. karn. ah.
iti, bhujākarn. avargavíses.asya mūlam avalambakah. | saiva caturn. ām.
kās. t.hānām. jyā| sā ca 2978|
Half of that is the 〈half-〉chord of two unit-arcs. And that is 1719.
This is the the base, the semi-diameter is the hypotenuse, therefore
the perpendicular is the root of the difference of the squares of the
base and the hypotenuse. That exactly is the 〈half-〉chord of four
unit-arcs. And that is 2978.

Another right-angled triangle considered is illustrated in Figure 28, as when
Bhāskara, with the same unit-arc, computes the half-chord of five unit-arcs56:

es. ā bhujā, vyāsārdham. karn. ah. | bhujākarn. avargavíses.asya
mūlam. kot.ih. | sā ca pañcān. ām. kās. t.hānām. jyā, sā ca 3321,
vis.amatvād ato jyā notpadyante|
This (the half-chord of one unit-arc) is the base, the semi-diameter
is the hypotenuse. The perpendicular is the root of the difference of
the squares of the base and the hypotenuse. And that is the 〈half-〉
chord of five unit-arcs. And that is 3321. Because 〈the number, 5,
of unit-arcs〉 is uneven, no 〈half-〉chords are produced from this.

As indicated in the last remark of the above quotation, if J3×2m−i is a half-
chord of an uneven number of arcs (i.e 3 × 2m − i is uneven) then no new
half-chord is derived with procedure 3. If this is not the case, procedure 3 is
followed.

Procedure 3 With two known half-chords Ji and J3×2m−i, J i
2

is computed. A

segment called the arrow (śara) of i unit-arcs (or the arrow of the half-chord

55[Shukla 1976; opcit. lines 8-9]
56idem, lines 11-13
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Figure 27: A quadrant subdivided in half rāśis
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of i unit-arcs.), and noted here Si, is considered. By definition:

Si = R − J3×2m−i,

as illustrated in Figure 26. This computation considers the right-angled tri-
angle formed by Si, Ji and the whole chord of iα, using Ab.2.17.ab.:

J i
2

=

√

S2
i + J2

i

2
.

Once J i
2

is obtained, procedure 2 is used with J i
2
.

For instance, in the above example, Bhāskara, as illustrated in Figure 27,
considers the right-angled triangle formed of the half-chord of two unit-arcs
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Figure 28: Right-angled triangles in a circle
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(J2), the arrow of two unit-arcs (S2 = R − J4) and the whole chord of two
unit-arcs, from which he deduces the half-chord of one unit-arc57:

etām. vyāsārdhād vísodhya śes.am. dvikās. t.haśarah. ,
śaradvikās. t.hajyāvargayogamūlam. karn. ah. |
saiva dvikās. t.ha[pūrn. a]jyā ca 1780|
ardham asyāh. kās. t.hasyaikasya jyā, 890|
When one has subtracted this (i.e the half-chord of four unit-arcs)
from the semi-diameter, the remainder is the arrow of 〈the half-
chord of〉 two unit-arcs. The hypotenuse is the root of the sum of
the squares of the arrow and the 〈half-〉chord of two unit-arcs. And
that precisely is the [whole] chord of two unit-arcs, which is 1780.
Half of that is the 〈half-〉chord of one unit-arc, 890.

From this half-chord of one unit-arc, with procedure 2 he deduces, as in the
text quoted as an illustration in the description of procedure 1, the half-chord
of five unit-arcs.

Procedure 4 Uses the fact that the diagonal of the square in the middle of the
diagram, whose sides are equal to the semi-diameter (R), is the whole chord
of three rāśis which is the whole chord of the quadrant itself. By using the
“Pythagoras theorem” he can deduce the value of a half-chord.

57[Shukla 1976; idem lines 9-11]
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In other words

J3×2m−1 =

√
2R2

2
.

If m = 1, then the half-chord of an uneven number of unit-arcs is obtained
and no new chord is derived from the value found for J3.

When the unit-arc considered is half a rāśi, then m = 1, Bhāskara computes
as follows, the half-chord of three unit-arcs (illustrated in Figure 28)58:

antah. samacaturaśraks.etre vyāsārdhatulyā bāhavah. |
tasya karn. o vyāsārdhayor vargayogamūlam|
tac ca 4862| asyārdham. trayān. ām. kās. t.hānām. jyā| sā ca 2431|
In the interior equi-quadrilateral field the sides are equal to the
semi-diameter. Its diagonal is the root of the sum of the squares of
two semi-diameters. And that is 4862. Its half is the 〈half-〉chord
of three unit arcs. And that is 2431.

The last relation shows – as one should compute
√

2 – that the square-roots given
in this part of the commentary are systematically approximated.

This is illustrated in Table 8.

A similar table is given in [Hayashi 1997a], p. 402, where the line J∗i gives the
approximate results according to the computation described in BAB.2.11. I do not
find the same values as those given in this table (furthermore we have distinguished
the approximate whole chords found from the half-chords that are deduced from
them). This may be due to difference of approximations in the respective pocket
calculators we have used to do these computations. Consequently the discrepan-
cies of more than 0.5 do not always agree: although we both find discrepancies
corresponding to the values of J6 ≃ 1215, J7 ≃ 1520 and J16 ≃ 2978. As explained
by T. Hayashi in the above quoted article the three discrepancies observed may
be explained by the fact that Bhāskara here is explaining how the table of sine
difference given in Ab.1.12 was derived.

H.2.1 Additional Remarks

We can note that the restriction of the iteration of the procedure (from procedure
2 to procedure 3) to the half-chords of an even number of unit-arcs is probably
due to the fact that it is always the Rsine of a whole number of unit-arcs that is
considered. If i were uneven then J i

2
, computed by procedure 3, would give the

half-chord of a non-integral number of unit-arcs.

The order in which the four procedures are applied in the diagrammatical pro-
cedure is illustrated in Table 9. Furthermore, Bhāskara seems to consider always
an additional half-chord, since he systematically counts one more in the set of

58idem, lines 15-17.
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Table 8: Bhāskara’s given values and approximations
The results in bold indicate a discrepancy of more than 0.5 between the result
stated in the commentary and the square-root obtained with an approximation
of 10−2. Arcs are considered in degrees. In his commentary on the following verse
(BAB.2.12) Bhāskara comments on the process he uses when approximating quan-
tities: for an integer obtained with an additional part smaller than a half the integer
itself is used as an approximation; for an integer obtained with an additional part
bigger than a half, the next integer is used as an approximation.

Arc in de-
grees

value given
by Bh for
the whole
chord

Approx.
value at a
range of
10−2

Half-chord
(Rsin) de-
rived

Given value
of Rsin

7,5 450 449,94 Rsin3, 75 225
15 898 897,65 Rsin7,5 449
22,5 1342 1340, 65 Rsin11,25 671
30 1780 1779, 50 Rsin15 890
37,5 2210 2210, 15 Rsin18, 75 1105
45 26300 2631, 31 Rsin22,5 1215
52,5 3040 3041,55 Rsin26,25 1520
60 3438 - Rsin30 1719
67,5 3820 3821, 05 Rsin33,75 1910
75 42876 4185, 85 Rsin37,5 2093
82,5 4534 4533,81 Rsin41, 25 2267
90 4862 4862, 07 Rsin45 2431

The discrepancies observed in the above table can be understood by the fact that
the whole chord should be even: halved, it should produce a half-chord which is
an integer.

Half-chord (Rsin) Given value Approximate value
Rsin48,75 2585 2584, 68
Rsin52, 5 2728 2727, 49
Rsin56, 25 2859 2858, 63

Rsin60 2978 2977, 40
Rsin63, 75 3084 3083, 74
Rsin67,5 3177 3176, 57

Rsin71, 25 3256 3255, 58
Rsin75 3321 3320, 80

Rsin78, 75 3372 3371, 88
Rsin82,5 3409 3408, 55
Rsin86,25 3177 3176,57
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Table 9: Order of derivation of the half-chords in the diagrammatic procedure
procedure Half-chord derived unit-arc 1 unit-arc 2 unit-arc 3

1 J2m J2 J4 J8

2 J2m+1 J4 J8 J16

3 J2m−1 J1 J2 J4

2 J5×2m−1 J5 J10 J20

3 applied with J2m−1 J2m−2 - J1 J2

2 J11×2m−2 - J11 J22

3 applied with J2m−2 J2m−3 - - J1

2 J23×2m−3 - - J23

3 applied with J5×2m−1 J5×2m−2 - J5 J10

2 J7×2m−2 - J7 J14

3 applied with J5×2m−2 J5×2m−3 - - J5

p2 J19×2m−3 - - J19

3 applied with J11×2m−2 J11×2m−3 - - J11

2 gives J13×2m−3 - - - J13

3 applied with J7×2m−2 J7×2m−3 - - J7

2 J17×2m−3 - - J17

4 J3×2m−1 J3 J6 J12

3 J3×2m−2 - J3 J6

2 J9×2m−2 - J9 J18

3 applied to J3×2m−2 J3×2m−3 - - J3

2 J21×2m−3 - - J21

3 applied with J9×2m−2 J9×2m−3 - - J9

2 J15×2m−3 - - J15

half-chords obtained. This most probably is the half-chord which has for length
the radius.

If we look at the geometrical aspect of the procedures applied, and especially
at what the balancing between procedure 2 and procedure 3 effectively does, we
can notice that procedure 2 always produces a segment orthogonal to the one
it derives from. Procedure 3 produces the segment of a hypotenuse from which
another orthogonal side may be produced.

The graphic aspect of the process is illustrated in Figure 29, in the case where
the unit-arc corresponds to half a rāśi; and in Figure 30, in the case where the
unit-arc corresponds to a quarter of a rāśi.
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Figure 29: Geometrical representation of the half-chords derived for a unit-arc
equal to half a rāśi
The number between () indicates the order in which the half-chord is derived.

procedure half-chord derived with unit-arc 1
1 J2m J2

2 J2m+1 J4

3 J2m−1 J1

2 J5×2m−1 J5

4 J3×2m−1 J3

J 2 (1)

J 4 (2)
J (4)

J 1 (3)

J 3 (5)
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J 6 (known?)

A

B

C
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Figure 30: Geometrical representation of the half-chords derived, when the unit-arc
is a quarter of a rāśi
The number between () indicates the order in which the half-chord is derived.

procedure Half-chord derived with unit-arc 2
1 J2m J4

2 J2m+1 J8

3 J2m−1 J2

2 J5×2m−1 J10
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H.3 A chord of the same length as the arc it subtends

Bhāskara states here his dissension with another scholar, Prabhākara, concerning
the existence of an arc having the same length as the chord it subtends. He quotes
a verse:

Because of its sphericity (golaka-́sar̄ıra) 〈a sphere〉 touches the earth
with the hundredth part of its circumference |

In Lalla’s Śis.yādh̄ıvr.ddhida (VIIIth or early IXth century according to Pingree,
beginning of Xth century and before the middle of the XIth century according to
Billard) and in the Siddhāntaśiroman. i by Bhāskara II (1150 A.D.) similar opinions
are stated. We can note that the sphere, and the great circle of such a sphere, seem
here to be confused or at least collected in the same idea.

Bhāskara, however, states that this arc, which can be assimilated to its chord, is the
96th part of the circumference. The 96th part of the circumference corresponds
to the unit-arc measuring one eighth of a rāśi. The half-chord of such an arc
is computed by Bhāskara as measuring 225. Now according to the procedures
described in BAB.2.10 giving the ratio of an arc to its subtending chord, we can
show that because of the type of approximations used for extracting the square
root, both the whole chord and the arc measure 225 as well.

225 appears thus as the smallest unit for which computations of arcs and chords
could be carried out by Bhāskara. Āryabhat.a’s sine difference table starts with
the value 225.

I BAB.2.12

In Ab.2.12, Āryabhat.a gives a method to compute a series of Rsine differences.
Several understandings of this verse have been discussed by historians of mathe-
matics, following different commentators of Āryabhat.a. They have all been listed
in [Hayashi 1997a; p.398-399]. Takao Hayashi himself gives a new interpretation, in
this article (p. 399 sqq), of this verse based on Nı̄lakan. t.ha’s (born 1444) interpre-
tation. The particularity of Bhāskara’s (mis)understanding is – beyond a specific
grammatical and semantic analysis of the rule which brings forth a specific pro-
cedure – to link it with the preceding verse. This analysis disqualifies the rule in
his eyes. This interpretation, however, is ascribed by Bhāskara to Prabhākara, a
scholar of whom we do not have any work but whose interpretations of Āryabhat.a’s
rules are often discussed in this commentary.

We will not discuss here, for mere lack of time, how several such interpretations
can arise from Āryabhat.a’s verse59. Such a thread, as it would highlight the inter-
pretation a commentary ascribes to a given rule, would be of great interest.

59Indeed, this would involve reading the Sanskrit commentary of each author and analyzing in
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Bhāskara, however, states that this arc, which can be assimilated to its chord, is the
96th part of the circumference. The 96th part of the circumference corresponds
to the unit-arc measuring one eighth of a rāśi. The half-chord of such an arc
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In this section, we will first explain Bhāskara’s understanding of this verse, indi-
cating here and there and in no way exhaustively, alternative interpretations given
by other commentators. In a second part we will give the different steps of the
procedure he prescribes, and the method of approximation he uses. In a brief last
section we will comment on the last sentence of this commentary, which deals with
Rversed sines.

I.1 A specific interpretation of the rule

This way we have translated Bhāskara/Prabhākara’s understanding of Ab.2.12:

prathamāc cāpajyārdhāt yair ūnam. khan. d. itam. dvit̄ıyārdham|
tatprathamajyāardhām. śais tais tair ūnāni śes. āni‖
The segmented second half-〈chord〉 is smaller than the first half-chord

of a 〈unit〉 arc by certain 〈amounts〉 |
The remaining 〈segmented half-chords〉 are smaller 〈than the first half-

chord, successively〉 by those 〈amounts〉 and by fractions of the first
half-chord accumulated.‖

I.1.1 Segmented half-chord of unit-arcs

What Bhāskara calls a “segmented half-chord of unit arcs” (cāpajyārdhaccheda
or cāpajyārdhām. śa) is the object of the computation here, a difference of Rsine.
Indeed the difference of two Rsine, can be seen, geometrically, as a segment of the
largest of the two half-chords considered. This is illustrated in Figure 31.

In this verse, as in Bhāskara’s commentary, the half-chords form an ordered set:
the half-chord of one unit-arc is called “the first half-chord 〈of a unit-arc〉”, the
half-chord of two unit-arcs is called “the second half-chord 〈of two unit-arcs〉” and
so on. Numerically, the set of half-chords considered is the one that was derived
in BAB.2.11 for a unit-arc measuring 1/8th of a rāśi.

“Segmented half-chord” is Bhāskara’s interpretation of one expression of Ārya-
bhat.a’s verse: khan. d. itam. dvit̄ıyārdham (the segmented second half-chord), that he
glosses as follows:

khan. d. itam. dvit̄ıyārdham. , khan. d. itam. pūrvāryābhihitachedyakavidhinā chinnam.
“The segmented second half 〈chord〉”, 〈it〉 is segmented, 〈in other words〉
the second half-chord of 〈unit〉 arc is cut (chinna) by means of the dia-
grammatical rule (chedyakavidhi) told in the previous āryā 〈verse〉.

The use of chinna here might be a pun. Chinna obviously glosses khan. d. ita, both
can have the meaning of “divided”, “segmented”, “cut”. Only in BAB.2.11 no

what way, syntactically, semantically, and mathematically, this interpretation has been derived.
Takao Hayashi, in the above mentioned article, just presents what the final reading amounts to,
and provides a mathematical analysis of them.
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Figure 31: Ki+1 appears as a “section” or segment of Ji+1
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“segmented” half-chord, i.e. no sine difference is obtained. But the word translated
as “diagram”, chedyaka, uses the same verbal root, ChID-, as chinna. So that we
can understand the use of this word as both referring to the fact that the sine
difference using the second half-chord is obtained with a diagrammatic method
(by taking the difference of the half-chords obtained by the procedure described
in BAB.2.11), and that it is a segment of a half-chord.

The first half of the verse, as Bhāskara understands it, therefore compares the
first half-chord with the difference between the first half-chord and the second
half-chord.

In other words, using the same notations as those used in our supplement for
BAB.2.11: Let 3 × 2m be the number of 〈unit〉 arcs, α, a quadrant is divided in,
Ji is the Rsine of αi, (0 ≤ i ≤ 3 × 2m). And let for i > 1, Ki = Ji − Ji−1 be the
Rsine differences (khan. d. itam. ardhajyām. ). (This is illustrated in Figure 31)

Bhāskara therefore understands the first half of the verse, as concerning the dif-
ference J1 − K2.

We can note here that Bhāskara understands the expression cāpajyārdha in the first
quarter of the verse as meaning “the half-chord of one unit-arc”. Nı̄lakan. t.ha, with
a different interpretation of the same compound, understands it, in T. Hayashi
words, as meaning “the first half-chord, which is 〈approximately equated to〉 the
〈corresponding〉 arc (α)”. The first half-chord considered in Āryabhat.a’s table is
225, a value that we have noted in BAB.2.11 corresponds to what Bhāskara calls
“a chord equal to its arc”.



72 Supplements

I.1.2 “Certain Amounts”

Bhāskara considers this difference between the first half-chord (which is the half-
chord of one unit arc), and the difference between the first half-chord and the
second half-chord (J1 − K2) always in a plural form.

This arises from his interpretation of the instrumental plural relative pronoun of
the first half of the verse: yais. We have translated it as: “(is smaller) by certain
〈amounts〉”.

Glossing this term, Bhāskara writes (p. 83, line14):

yair ūnam. yāvadbhir am. śair ūnam aprāptasadr. śam
(The second partial half chord) “is smaller by certain 〈amounts〉”, 〈it〉
is smaller, that is shorter (than the first half-chord), by certain parts.

But when he computes this difference (p. 84, line 4), he writes:

prathamam. cāpajyārdham idam. chedyakena nis.pannam 225| dvit̄ıyam.
cāpajyārdhac chedam 224| etat prathamacāpajyārdhād ekenonam|
This first half-chord of 〈unit〉 arc produced with a diagram is 225. The
second partial half-chord of 〈unit〉 arcs is 224. This is smaller than the
first half-chord of 〈unit〉 arc by one.

So that the “parts” or “certain 〈amounts〉” given in the plural form, amount, in
this case, to one unit. Evidently here, Bhāskara’s interpretation is not consistent
with what he computes.

This plural form may be, however, understood less literally: It can be seen as an
elliptic formulation used by Bhāskara to indicate that the difference of the two
first half-chords (J2 − J1), should be considered in a plural form. Indeed, the idea
of a “plurality of amounts”, a way of indicating a number which is higher than
one appears p. 83, line 16:

yāvadbhih. prathamacāpajyārdhād dvit̄ıyacāpajyārdham ūnam. tāvantas
taih. parigr.hyante
. . . they understand so many 〈amounts〉, by means of which the second
half-chord of 〈unit〉 arcs is less than the first half-chord of a 〈unit〉 arc.

We can also understand it as expressing a general case: it is only in the table
computed here that J1 − K2 is unity.

If we do not accept these hypotheses, we will then conclude that this plural form
is certainly due to Bhāskara’s misunderstanding of Āryabhat.a’s rule. In fact the
relative plural pronoun most probably is to be ascribed to the second half verse.

I.1.3 “fractions accumulated”

The second half of the verse states, as Bhāskara understands it, that this first dif-
ference J1−K2, and “fractions of the first half-chord accumulated” (prathamacāpa-
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jyārdhām. śa) when subtracted from the first half-chord give the remaining Rsine
differences.

Bhāskara is quite elusive in his general commentary on what these fractions are.
He states that the first half-chord is their denominator:

prathamajyārdhām. śāś ca prathamajyārdhena bhāgam. hr. tvā labdhā yathā
pañcām. śah. , s.ad. am. śah.
And a fraction of the first half-chord is what has been obtained when
one has divided by the first half-chord, just like “a fraction of five” (one
fifth) and “a fraction of six” (one sixth).

He also indicates that their is an “accumulation” of these fractions: this should
be understood as meaning that they are added. These are the only two elements
that are explained by Bhāskara in his general commentary. It is by following the
effective computation of the first five Rsine differences that we get a clear idea of
the computation he bears in mind, as we will see in the next section.

I.2 Understanding the procedure

Now, with the same notations as before, let 3 × 2m be the number of 〈unit〉 arcs,
α, a quadrant is divided in, Ji is the Rsine of αi, (0 ≤ i ≤ 3 × 2m). And let for
i > 1, Ki = Ji−Ji−1 be the Rsine differences (khan. d. itārdhajyā). The computation
of a given Ki+1, knowing Ki may be understood as follows:

Step 1 “The segmented second half-〈chord〉 is smaller than the first half-chord of
a 〈unit〉 arc by certain 〈amounts〉”: Consider J1 − K2.

Assuming
J1 = 225,

K2 = J2 − J1 = 224.

Then
J1 − K2 = 1.

We have noted above that even though this difference is considered to be
one, it is always referred to in a plural form. This may indicate that this
interpretation of Āryabhat.a’s verse has a flaw. It may also be an elliptic
formulation, where the plural, in fact refers to J2 − J1, or an indication that
the computation considered here is a particular one: considered in all its
generality, J1 − K2 can be higher than 1.

Step 2 Compute a “fraction of the first half-chord”, that is the quotient of the sum
of the first half-chord and of all the partial half-chords already computed (all
the Kj , 2 < j ≤ i) with the first half-chord. In other words, compute

J1 +
∑

i
n=2Kn

J1
.
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If the non-integer part of the quotient is greater than a half, approximate the
quotient by adding 1.

This step is not given in Āryabhat.a’s verse, nor in Bhāskara’s general com-
mentary. When computing, for example, the 4th sine difference, knowing that
K3 = 222, Bhāskara writes:

trayān. ām. sam. yogah. 671| asya prathamacāpajyārdhena
bhāgalabdham ardhādhikena tr̄ın. i rūpān. i
The sum of the three 〈partial half-chords〉 is 671. The division of
that with the first half-chord of a 〈unit〉 arc 〈is made〉, the quotient,
because it is greater than one half, is three unities.

In other words J1 + K2 + K3 is considered (J1 = K1 being the short-cut
adopted for the brackets.) We then have

J1 + K2 + K3 = 225 + 224 + 222 = 671.

Then a process of approximation is clearly described. In this case, the quo-
tient considered is

K4 =
J1 + K2 + K3

J1
=

671

225
= 2 +

221

225
.

As 221
225 > 1

2 , the whole quotient is approximately considered to be equal to 3.

Step 3 “The remaining 〈segmented half-chords〉 are smaller 〈than the first half-
chord, successively〉 by those 〈amounts〉 and by fractions of the first half-chord
accumulated.” In other words:

Ki+1 = J1 −
{

(J1 − K2) −
∑

i
j=2

J1 +
∑ j

n=2Kn

J1

}

.

Because
J1 +

∑

j
n=2Kn = Jj ,

we would have

Ki+1 = J1 −
{

(J1 − K2) −
∑

i
j=2

Jj

J1

}

as stated in [Hayashi 1997a; note 5 p. 399].

For example, when computing the fourth sine difference, Bhāskara writes:

taih. pūrvalabdhaís ca tribhir ūnam. prathamacāpajyārdham.
caturthajyārdham. bhavati| tac ca 219|
The fourth 〈partial〉 half-chord is smaller than the first half-chord of
〈unit〉 arc, by these 〈three〉 and by the previously obtained fractions,
and that is 219.
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In a previous computation, the approximate quotient was given

J1 + K2

J1
≃ 2.

So that here

K4 = J1 − (J1 − K2) − (
J1 + K2

J1
) − (

J1 + K2 + K3

J1
).

Or numerically:

K4 = 225 − 1 − 2 − 3 = 219.

This process is reiterated in order to obtain all Ki’s for 1 < i ≤ 3 × 2m.

For a mathematical analysis of this computation, please see [Hayashi 1997a].

I.3 Rversed sine

Bhāskara ends this verse by declaring:

etā evotkramen. āntyād ārabhyotkramajyāh.
These 〈partial half-chords, added〉 in the reverse order beginning from
the last, are the utkramajyā (Rversed sine).

Although he does not elaborate, we can notice that since R = J3×2m , the last
sine difference corresponds to R − J3×2m−1 which is the Rversed sine of the arc
α(3 × 2m − 1). By summing the differences of the half-chord in reverse order, we
obtain in this way successively R− J3×2m−2, R− J3×2m−3 etc. This (the segment
R − Ji) is what bears the name utkramajyā or Rversed sine. This segment is
often used by Bhāskara with other names: it is the arrow (śara) of the half-chord
of α(3 × 2m − 1) in BAB.2.11 for instance, or the penetration (avagāhin) when
considering two intersecting circles, as we can see in the commentary on verse 18.

J BAB.2.13

J.1 What Bhāskara says of compasses

A pair of compasses appears among the tools quoted by Āryabhat.a in this verse.
Āryabhat.a calls compasses a bhrama “a rolling 〈object〉”. Bhāskara calls it a
karkat.a or karkat.aka, literally a “crab”. In his commentary on verse 13 Bhāskara
gives only a brief explanation of this object60:

60[Shukla 1976; p.85]





J. BAB.2.13 75

In a previous computation, the approximate quotient was given

J1 + K2

J1
≃ 2.

So that here

K4 = J1 − (J1 − K2) − (
J1 + K2

J1
) − (

J1 + K2 + K3

J1
).

Or numerically:

K4 = 225 − 1 − 2 − 3 = 219.

This process is reiterated in order to obtain all Ki’s for 1 < i ≤ 3 × 2m.

For a mathematical analysis of this computation, please see [Hayashi 1997a].

I.3 Rversed sine
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bhramaśabdena karkat.akah. parigr.hyate| tena karkat.akena samavr. ttam.
ks.etram. parilekhāpramān. ena parimı̄yate|
With the word bhrama a pair of compasses (karkat.a) is understood.
With that pair of compasses an evenly circular field is delimited by the
size of the out-line (parilekhā).

Elsewhere he is slightly more specific. Thus in his commentary on the latter half
of verse 9 of the chapter on mathematics, he writes61:

asmin ca viracitamukhadeśasitavartyaṅkurakarkat.ena ālikhite chedyake. . .
And in this diagram, which is drawn with a compass (karkat.a) for
which a sharp stick (vartyaṅkura) secured (sita) at the mouth spot
(mukhadeśa) has been arranged. . . .

As we have noted in our supplement for verse 9, according to the meanings we
give to vart̄ı (or vartikā; usually the wick of a lamp, a paint-brush or chalk) and
to sita (has been fastened, white color), different readings of this description are
possible, and hence different images of compasses appear. We also do not know
what is a compass’ “mouth spot” (mukhadeśa). The same difficulties arise when
we read the short description in Bhāskara’s commentary on verse 1162:

tathā ca paridhinis.pannam. ks.etram. karkat.akena viracitavartikāmukhena
likhyate
And thus a field produced by a circumference is drawn with a pair of
compasses whose opening (mukha) has a sharpened stick (viracitavar-
tikā).

We have adopted the improbable reading of vart̄ı (or vartikā that we have read
as a synonym of the first) as “stick” by accepting Parameśvara’s interpretation of
the compound vartikāṅkura.

J.2 Parameśvara’s descriptions of a pair of compasses

Parameśvara is a well known as a prolific astronomical commentator of the XVth
century63. He wrote commentaries on Bhāskara II’s works as well as on the Ārya-
bhat.ı̄ya

64. He also wrote a direct and a super commentary on Bhāskara I’s Mahā-
bhāskar̄ıya and a direct commentary on the same author’s Laghubhāskar̄ıya65.

The following excerpt has been extracted and translated from his own commentary
to verse 13 of the mathematical chapter of the Āryabhat.ı̄ya

66:

61[Shukla 1976, p.71]
62[Shukla 1976; p.79]
63See [CESS, Volume IV; pp. 187-192]
64The first edition of the Āryabhat.ı̄ya was published with his commentary: [Kern 1874]
65[Sastri, 1957]
66[Kern 1874; p. 32]
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“With a bhrama, that is, with an instrument (yantra) called a karkat.a
a circle should be brought about. This is what has been stated:

Having acquired any straight stick (yās. ti), having bound it, firmly, with
a cord on its upper-part at the throat-spot (kan. t.hapradeśa), having also
split 〈it, vertically〉 from the lower tip to the throat, 〈and thus〉 having
made two sticks (śalākā), one should make their two tips sharp ones. In
this way is produced a karkat.a instrument having an under mouth (or
opening adhomukham. ). Having further fixed a stick in the space be- 5
tween the 〈previous〉 two sticks one should make a pair of compasses hav-
ing a revolving opening (vivr. ttāsya). Having made the karkat.a’s opening
equal to the semi-diameter of the desired circle by moving up and down
the stick which lies in the intermediate space, having laid the tip of one
stick on the central spot of the circle to be brought about, having laid
the other tip on the spot on circumference of the circle one should turn
the karkat.a. That is the desired circle.”

An even more detailed description of the making of a karkat.a can be found in
Parameśvara’s super commentary to Govindasvāmin’s commentary of the Mahā-
bhāskar̄ıya. When glossing on verse 1 of the 3rd chapter of this treatise, which de-
scribes the circular, flat setting where a gnomon should be placed, Govindasvāmin
writes67:

evam. dharātalasya samatvam avagamya
mukhavinyastavartikāṅkuraśobhinā karkat.ena vr. ttam ālikhet|
Having, in this way, brought evenness to the ground’s surface, one
should draw a circle with a pair of compasses (karkat.a) beautiful with
a sharp stick (vartikāṅkura) inlaid at its opening.

Notice that Govindasvāmin uses the compound vartikāṅkura which is almost the
same expression that we have found difficult to read in the Āryabhat.ı̄yabhās.ya:
Bhāskara used the compound vartyaṅkura, and once the word vartikā, probably
as a synonym of vart̄ı. Parameśvara glosses the compound used by Govindasvāmin
extensively68:

“With the word karkat.a an instrument fit for bringing about the out-
line (parilekhana) of a circle is meant. In this case, having acquired any
evenly circular stick (yas.t.i), having bound 〈it〉 firmly above its middle at
the throat spot (kan. t.hapradeśa) with a string (rajju), and so on, having
furthermore split 〈it〉 at its root, one should make it in such a way that
below the throat (ākan. t.ha) there are two equal sticks (śalākā). After-
wards one should make the tip of 〈each〉 stick a sharp tip (t̄ıks.nāgra).
This is called a ‘karkat.aka’.

67[Sastri ; p.103-104]
68idem.
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The intermediate space between is called “the compasses’ mouth (or
opening)” (karkat.āsya). Afterwards, having taken another stick (śalākā)
whose width is bigger than the compasses’ sticks (śalāke), and whose
length is several aṅgulas, having cut its two tips, with a knife, one
should make a revolving opening (vivr. ttāsya). In this way, a stick hav-
ing a mouth (mukha) at its two 〈tips〉 is called a vartikāṅkura (a sharp
stick).

Furthermore, having made a revolving-opening-pair of compasses, hav-
ing placed transversally the sharp stick in its opening, one should place
the two sticks of the compasses on the two mouths (āsya) of the sharp
stick. In this way, having acquired an instrument called a karkat.a adorned
with a sharp stick placed at 〈its〉 mouth (mukha) one should draw a
circle with it. Having made the compasses’ opening equal to the semi-
diameter by moving the sharp stick up and down, having fixed one
stick (śr. ṅga) in the middle of the circle one should turn the other one
all around. When made in this way, the desired circle appears.

Or else, with the word vartikāṅkura another instrument is meant. When
one has placed two iron sticks on the tips of the two sticks of a pair of
compasses, that is vartikān. kura. A line is made with that.”

We have given a tentative illustration of Parameśvara’s two representations of
compasses in Figure 32.

Almost 800 years separate Parameśvara’s and Bhāskara’s commentaries. Most
probably compasses underwent technical changes during that lapse of time. Para-
meśvara has left us a quite precise testimony of what he considered a pair of
compasses. Bhāskara, on the other hand, never seems to have been prolific on this
subject. We have therefore, rather than letting our imagination run free, echoed
Parameśvara’s compasses in our translation of Bhāskara’s descriptions.

K BAB.2.14

We will study here the meaning of Āryabhat.a’s verse, attempt to understand the
astronomical extension Bhāskara gives to it, and finally will indicate what we can
understand of the different gnomons described by Bhāskara.

K.1 Āryabhat.a’s verse

Verse 14 runs as follows:

śaṅkoh. pramān. avargam. chāyavargen. a sam. yutam. kr. tvā|
yat tasya vargamūlam. vis.kambhārdham. svavr. ttasya‖
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Figure 32: A pair of compasses as described by Parameśvara
vartikå∫kura

a sharp stick

a stick having two mouths at its tips

mouth

or

mouth

karka†a

throat spot

under mouth
or revolving
opening

throat spot

karka†a

iron tips

vartikå∫kura

Ab.2.14. Having summed the square of the size of a gnomon and the
square of the shadow|
The square root of that 〈sum〉 is the semi-diameter of one’s own circle‖

The situation described here is the following: a vertical gnomon and the shadow it
casts form a right-angle triangle, if we consider the imaginary line that links the
tip of the shadow to the top of the gnomon. This imaginary line is called “the semi-
diameter of one’s own circle” (vis.kambhārdham. svavr. ttasya). This is illustrated in
Figure 33.

Probably, it is by analogy with the celestial sphere – in order to render the ratio,
between the gnomon and the position of the midday sun, as we will see in the next
section – that the concept of “one’s own circle” (svavr. tta) is developed. This circle
is the one, having the tip of the shadow for center and the distance of the top of
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Figure 33: A gnomon, its shadow and the “semi-diameter of one’s own circle”
OG is the gnomon; OC is the shadow; the circle with C for center and CG for

radius is “one’s own circle”.

C
O

G

the gnomon to the tip of the shadow for radius. Bhāskara adds:

svavr. ttavis.kambhārdham. nāma chāyāgrād ārabhya śan. kumastakaprāpi
sūtram| tatsūtrānusāren. a bhūmau dr.s. t.im. nidhāya śan. kumastakāsktam.
vivasvantam. paśyati|

The thread starting from the tip of the shadow and reaching the top
of the gnomon is called “the semi-diameter of one’s own circle”. When
one has set down the eye, along that thread, on the earth, one sees the
sun adhering to the top of the gnomon.

Because we have a right-angle triangle we can apply the so-called “Pythagoras
Theorem”, stated in Ab.2.17.ab. The relation expressed in this verse can be written
with our modern mathematical knowledge, using the notations of Figure 33:

GC =
√

OG2 + OC2.

K.2 Understanding Bhāskara’s astronomical extension

The astronomical idea behind the use of the gnomon is that the gnomon itself is
parallel to the Rsine of the altitude of the sun at mid-day (Rsinα), which is thus
called by the same name (śaṅku). Likewise, the mid-day shadow of the gnomon
is parallel to the Rsine of the zenith distance of the mid-day sun (Rsinz), both
are called chāyā69. This explains why verticality is an essential feature of the
constructed gnomons: the zenith is by definition the point where the line passing
through the observer and perpendicular to the horizon, touches the celestial sphere,

69For a definition of the altitude, the zenith distance, the latitude etc., please see Appendix
giving some elements of Hindu astronomy at the end of this volume.
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Figure 34: A disproportionate representation of a gnomon and its astronomical
interpretation. SuSu’ is the orbit of the sun on one particular day. Su is the
position of the sun at mid-day. α is the altitude; z is the zenith distance.

CO

G

Su

S’u

above the observer. It is therefore the verticality of the gnomon that secures that
it is parallel to the zenith and therefore to the Rsine of the altitude, and the
horizontality of the earth where the shadow is cast, that secures that the mid-day
shadow is parallel to the Rsine of zenith distance. In other words, as illustrated in
Figure 34, SuS′uO and GOC should form similar triangles.

Knowing the shadow (OC) at mid-day, that is when the sun is on the celestial
meridian, and the size of the gnomon (OG) one can compute the Rsine of the
altitude or the Rsine of the zenith distance with a Rule of Three.

trairāśikaprasiddhyartham– yady asya svavr. ttavis.kambhārdhasya ete
śan. kuc chāye tadā golavis.kambhārdhasya ke iti śan. kuc chāye labhyete

And in this case, the stating of a semi-diameter of one’s own circle is
〈made〉 in order to establish a Rule of Three: “If for the semi-diameter of
one’s own circle both the gnomon and the shadow 〈have been obtained〉,
then for the semi-diameter of the 〈celestial〉 sphere, what are the two
〈quantities obtained〉?” In that way are obtained the Rsine of altitude
(śaṅku) and the Rsine of the zenith distance (chāyā). Precisely, these two
on an equinoctial day are told to be the Rsine of colatitude (avalambaka)
and the Rsine of the latitude (aks.ajyā).

In other words, with the same notations as before:

SuS′u

OG
=

OS′u

OC
=

OSu

CG
.

In this case, as stated in the Appendix on Some Elements of Indian astronomy,
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Figure 35: Gnomon and Celestial sphere
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the distance of the observer to the sun is taken to be equal to the radius of the
celestial sphere, R = OSu = 3438.

Bhāskara adds that other parameters may be computed with this extension of the
rule stated in verse 14:

chāyayā gat.ikānayane, madhyāhne chāyayā ca sūryānayane
svavr. ttavis.kambhārdhasyāyam eva vidhih. |

When computing the 〈time in〉 ghat.ikās by means of the shadow and
when computing the 〈altitude of the〉 sun by means of the mid-day
shadow, just that method (vidhi) 〈is used〉 for the semi-diameter of
one’s own circle.

We do not know what was the procedure used to compute the time using the
shadow of the gnomon, according to Bhāskara or Āryabhat.a. However, the above
ratio can help us understand the sentence that follows:

kintu chāyayā ghat.ikānayane śan. kunā kāryam iti śan. kur evān̄ıyate|

However, 〈this has been told〉: when computing the 〈time in〉 ghat.ikās
by means of the shadow, 〈this〉 should be performed with the Rsine of
altitude (śaṅku); then just the gnomon (śaṅku) is computed.

What should be understood here is that, knowing the Rsine of altitude and the
gnomon, then the mid-day shadow can be computed. Using the above ratios, one
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can reconstruct a probable computation: To compute the mid-day shadow, one
uses the following ratio, where OC is the mid-day shadow:

SuS′u

OG
=

OS′u

OC
⇐⇒ OC =

OG × OS′u

SuS′u
.

SuS′u is the Rsine of the altitude, and OG the gnomon. OS′u is the Rsine of
zenith distance, which does not seem to be requested. But the triangle OSuS′u is
right-angled, so that with the “Pythagoras Theorem” we have:

OS′u =
√

OSu2 − SuS′u2.

OSu is the radius of the celestial sphere, which is a known constant R = 3438.

So that finally:

OC =
OG × (

√
OSu2 − SuS′u2)

SuS′u
.

In the same way, Bhāskara adds:

samaman. dalacchāyayā sūryānayane sa eva| madhyāhnacchāyayā
sūryānayane natajyayā prayojanam iti chāyaiva ān̄ıyate|

When computing the 〈zenith distance of the〉 sun with the shadow of
〈the sun when it is on〉 the prime vertical (samaman. d. ala i.e. at mid-
day), 〈it is〉 just like that; when computing the sun with the midday
shadow, the Rsine of the zenith distance (natajyā) is needed, in this
way (iti) the shadow (chāyā) is computed.

I do not know what corresponds to the “shadow of the prime-vertical”, nor what
is the coordinate of the sun that was derived from it. But concerning the Rsine of
the altitude of the sun, Bhāskara’s sentence can be understood as indicating that
one just needs to know the Rsine of the zenith distance and the mid-day shadow.
We know from the above ratios, where OS′u is the Rsine of the sun’s altitude,
that

OSu

CG
=

OS′u

OC
⇐⇒ OS′u =

OC × OSu

CG
.

OSu is the radius of the celestial sphere, a known constant, and OC the mid-day
shadow. CG is the “semi-diameter of one’s own-circle” and may not have been
requested. But by Ab.2.14 we know that

CG =
√

OG2 + OC2.

OG is the length of the gnomon and had a standard measure. In Bhāskara’s
commentary it is always 12 aṅgulas. So that in the end we would have

OS′u =
OC × OSu√
OG2 + OC2

.
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Figure 36: A disproportionate representation of a gnomon on an equinoctial day

The equinoctial mid-day sun is at the crossing point of the celestial equator and
the celestial meridian.

Z

P

Q=Su

Q’

Z'

P'

C
N

W

E

S

O

 is the latitude

90-  is the colatitude

R is the radius of the celestial sphere.

SuSu' is the Rsine of the observer's colatitude

OSu' is the Rsine of the observer's latitude

G

Su'

90-90-

R

As we have remarked in the Appendix on astronomy, on an equinoctial day, the
sun is on the celestial equator, so that the Rsine of altitude becomes the co-latitude
and the Rsine of the zenith distance, the latitude of the observer and gnomon. This
is illustrated in Figure 36.

Bhāskara states this:

tāv eva vis.uvati avalambakāks.ajye ity ucyete|
Precisely, these two (i.e. the Rsine of the sun’s altitude, and the Rsine of
the sun’s zenith distance) on an equinoctial day are told to be the Rsine
of co-latitude (avalambaka) and the Rsine of the latitude (aks.ajyā)

One can note here that all the values obtained by Bhāskara in the illustrative
examples are approximations.

K.3 Different types of gnomons

Bhāskara describes three types of gnomons in this part of the commentary. These
have been noted and studied by Yukio Ōhashi in [Ōhashi 1994; p.170 sqq]. Our
translation differs at some times from his. This part has remained quite obscure,
and we have just given some tentative representations of such gnomons.
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K.3.1 The first gnomon

The first gnomon described by Bhāskara is as follows:

kecit tāvad āhuh. - dvādaśāṅgulaśaṅkur mūlatribhāge caturaśro, madya-
tribhāge tryaśrih. , uparitribhāge śūlaākāra iti|
sūks.matvād vigrahasya sūks.mayaikayā kot.iyā chāyāgrasya sulaks.yatvāc
ches. āís ca dursampādatvād iti

First, some say: ‘A gnomon of twelve aṅgulas has four edges on 〈its〉
lower third, has three edges on 〈its〉 middle third and has 〈the form
of〉 a spear on its upper third. Because 〈the top of the gnomon〉 has a
sharp shape and because it is easy to characterize a shadow by means of
one sharp upright side and because it is difficult to acquire by all other
〈means, this is a good gnomon〉.

From such a description, we do not know what indeed was the shape of the gnomon:
for we do not know how the respective cube, triangular pyramid and the spear
were arranged according to one another. A hypothetical reconstruction is given in
Figure 37.

We do not know how the different shapes (the cube, the pyramid and the spear)
were arranged in respect to one another. Maybe the center of gravity of each object
was on the same line, in which case the pyramid and the cube would have been at
the center of the cube. Here we have assumed that they were all disposed along one
vertical edge of the gnomon, which would therefore be the sharpest.The reasons
why Bhāskara discards such a gnomon, namely that its verticality is difficult to
ascertain, may suggest that indeed, the shape we propose here, is not correct.

Yukio Ōhashi understands the four edged solid to be a prism70.

K.3.2 The second gnomon

The second gnomon is described as follows:

Apara āhuh. caturaśraś caturdísam avalambakasādhanasambhavāt
kot.idvayena chāyāgrahan. ād abh̄ıs. takot.yām. dikgrahan. asiddhir iti|

Others say: “ 〈It should〉 have four edges because it is possible to bring 20
about and secure with a plumb-line (avalambaka) four directions71, and,
the knowledge of the direction 〈of the sun〉 is established, in the direction
of any desired upright side, from the knowledge of the shadow, with two
〈opposite〉 upright sides”.

70[Ōhashi 1994; p.171]
71Reading caturdísām rather than the caturdísam of the printed edition.
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Figure 37: The first gnomon described by Bhāskara

The problem we have in understanding this gnomon, is that we do not know
exactly what the “directions” (dís), Bhāskara writes about, consist of. Bhāskara
rejects this gnomon on the basis that it is difficult to construct, and then adds:

tathāpi pratiks.an. am. sūryasyābhimukhasthāpanāt punah. punah. śaṅkor
mukhacālanam. kartavyam| tathā cātisūks.madr. śas tāvat (tāvat ābh̄ıs. ta)
abh̄ıs. t.acchāyātikrāntā syād iti dośas, etasmāt parityājyo ’yam api śaṅkuh. |
anena eva sarvatra śaṅkavah. prayuktāh. |

Then also because 〈it should〉 stand at every moment facing the sun,
constantly the face of the gnomon should be made to move. But since,
then, for 〈that gnomon〉 which at first seems exceedingly precise, the
desired shadow will be slightly exceeding, 〈there is〉 a draw-back. There-
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Figure 38: A hypothetical reconstruction of the second gnomon described by
Bhāskara

One sharp up-right (ko†i) of  

12 a∫gulas

fore, this gnomon also should be set aside. Gnomons are used everywhere
with this very 〈form〉.

We have made a hypothetical reconstruction of this gnomon, with its shadow
“‘facing the sun” in Figure 38. With such a reconstruction, the reference to the
shadows of two opposite directions makes sense: one appears on the plane in the
middle of the gnomon, the other, parallel to it, and to the two others on the
ground. Why and how the shadow was considered to be “exceeding”, I do not
know.

Yukio Ōhashi gives a very different understanding of this gnomon72:

A right prism [whose four sides are] directed towards the four directions.
For ascertaining the verticality, the shadow of two uprights are made
coincided (sic), and the direction [of the sun] is ascertained to be in the
direction of this desired up-right.

72[Ōhashi 1994; p.171]



88 Supplements

As he does not give any illustration of such a gnomon, we do not understand
how the prism is oriented “toward the four directions”, nor what are the uprights
considered and how they are made to coincide with each other.

K.3.3 The gnomon of Āryabhat.a’s followers

Bhāskara gives the following description of a gnomon according to the “followers
of Āryabhat.a (Āryabhat.ı̄ya):

āryabhat.īyāh. svamatam abhininis. t.hāpayis.avo vyāvarn. ayanti|
tad yathā– praśastadārūmayo hy asus. iro rājigranthivran. avarjito bhra-
masiddho mūlamadhyāgrāntarālatulyavr. tto nālpavyāso nālpaāyāmaś ca
praśastah. |
tribhís caturbhir vā avalambakair asya r. justhitih. sādhayitavyā|

The followers of Āryabhat.a, wishing to ground firmly their own thoughts,
describe 〈a gnomon〉 as follows:

The best 〈gnomon〉 indeed is made of excellent wood, has no holes,5
is without streaks, knots or fractures; is produced (siddha) with a pair
of compasses (bhrama), has the shape of a circle which is the same
at the base, the middle, the top, and in the intermediate space; has
a big diameter (vyāsa) and a big length (ayāma). Its vertical position
(r. justhiti) is to be secured with three or four plumb lines.

Thus we understand that it is a solid cylinder.

Bhāskara explains then a method to secure verticality:

śan. kum mucce pradeśe níscalam. nidhāya avalambakena
śan. kumūlamastakayor madhye vijñāya tadagrasaktam.
prasāryobhayapārśve ca lekhe kūryad| etad ubhayapārśvamadyalekhe,
tatah. punar api karkat.akena lohena mūlāgramadhyasūtrābhyām. mat-
syam utpādya śes.amadhyalekhāsādhanam|

When one has placed the gnomon, firmly, on an elevated spot, having
found the two middle points of the gnomon’s base and top respectively,
and having extended a thread fixed to its tip, one should make two lines
on each side (parśva). These are the two middle lines (madhyalekha)10
on each pair of sides; then, once again, having produced, with a pair
of iron compasses (karkat.a), a fish from the two middle threads 〈which
went through〉 the base and the top, one secures the remaining 〈two〉
middle lines.
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Bhāskara also adds on the top a stick, so as to make the shadow of the gnomon
as precise as possible. We have not quite understood exactly the construction
described here with several threads. A hypothetical reconstruction of this gnomon
is given in Figure 39.

Overall a thorough study of the different types of gnomons, and of the meaning
of this part of Bhāskara’s text, is still needed.

L BAB.2.15

L.1 Understanding the rule

The situation described by Āryabhat.a’s rule is the following: A gnomon (śaṅku,
DE) casts a shadow (EC), produced by a source of light (AB). This is illustrated
in Figure 40.

The geometrical figure formed by the source of light, the ray of light and the tip
of the shadow is a right-angle triangle (ABC). The height of the source of light,
is referred to as the base (bhujā), and the space between the foot of the light and
the tip of the shadow is also called the upright side (kot.i). The gnomon (DE) is
parallel to AB: its tip, D, lies on the hypotenuse of the triangle and its foot (mūla),
E, lies on the upright side. BE is the distance between the source of light and the
gnomon. The rule given in this verse can be written with the above notations as

EC =
BE × DE

AB − DE
.

This relation is interpreted by Bhāskara as a Rule of Three:

etatkarma trairāśikam| katham? śaṅkuto ’dhikāyā uparibhujāyā yadi
śaṅkubhujāntarālapramān. am. chāyā labhyate tadā śaṅkunā keti chāyā
labhyate|
This computation is a Rule of Three. How? If from the top of the base
which is greater than the gnomon, the size of the space between the
gnomon and the base, which is a shadow, has been obtained, then,
what is 〈obtained〉 with the gnomon? The shadow is obtained.

With the same notations as before, what is stated is that the ratio of AD to
BE(=DF ) is equal to the ratio of DE to EC. In other words:

EC

DE
=

BE

AB − DE
.

If AF on the segment AB represents the distance AB − DE, this ratio and the
relation given in the verse can be understood as resulting from the similarity of
the triangles AFD and DEC.
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Figure 39: A hypothetical reconstruction of Āryabhat.a’s followers’ gnomon.

First two middle-lines constructed

with a thread.

Second pair of middle-lines

constructed with a pair

of compasses.
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Figure 40: A schematized gnomon and a light
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L.2 Procedure

The procedure as it appears in the first versified problem of BAB.2.15 can be
summed up by the following steps:

Problem Knowing the height of the light, and the distance separating it from a
gnomon of 12 aṅgulas, find the length of the shadow cast by the gnomon.

Step1 Multiply the distance between the gnomon and the light by the height of
the gnomon (BE × DE).

Step 2 The difference of heights between the light and the gnomon (AB −DE) is
the divisor of the previous product.

In fact Bhāskara in his commentary, treats all the cases that can appear when a
source of light, a gnomon and a shadow are considered. Verse 15 gives a way of
finding the length of the shadow knowing the height of the light, of the gnomon,
and the distance separating both.

In a second versified problem of BAB.2.15, Bhāskara considers another type of
problem: knowing the length of the shadow (EC) cast by a gnomon of 12 aṅgulas
produced by a source of light of a known height, find the distance (BE) between
the light and the gnomon. Bhāskara quotes here the first half of Ab.2.28, which
gives a rule to reverse procedures:

gun. akārā bhāgaharā bhāgaharāste bhavanti gun. akārāh. |
〈In a reversed operation〉, multipliers become divisors and divisors,
multipliers|
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In the “procedure” (karan. a) part of the resolution, he explicitly presents the res-
olution as a way of undoing the computation given in Ab.2.15: one first reverses
Step 2 by multiplying by the difference of heights (AB − DE), then Step 1 is
reversed by dividing by the length of the gnomon (DE).

In the third versified problem given by Bhāskara here, the length of the shadow
(EC) cast by a gnomon of 12 aṅgulas and the distance separating the gnomon and
the light (BE) are known, the height of the light on a pole (AB) is sought.

The resolution here does not use Ab.2.15 at all, but the latter part of the following
verse, Ab.2.1673:

śaṅkugun. ā kot.ı̄ sā chāyābhaktā bhujā bhavati
That upright side, having the gnomon for multiplier, divided by 〈its〉
shadow, becomes the base ‖

Bhāskara reformulates the versified problem in order to show how this rule should
be applied:

śaṅkubhujāvivarayuktacchāyā kot.ir bhavat̄ıti
the shadow increased by the space between the base and the gnomon is
the upright side.

In other words, as in Ab.2.15, AB is the base, BC = BE +EC is the upright-side.

We can notice that the successive examples solved in this part of the commentary
do not function to explain or propound the relation given in Ab.2.15 specifically.
They rather seem to examine all the aspects of a given type of problem: with a
light on a pole, a gnomon and a shadow, according to the initial values known,
different procedures are given in order to deduce the missing values.

M BAB.2.16.

M.1 Āryabhat.a’s rule

The rule given by Āryabhat.a in Ab.2.16 involves two computations. This may be
understood as follows, according to Bhāskara’s interpretation. Let AB be a light
disposed on a pole (yas.t.i) whose tip is in A, CD a first gnomon, CH its shadow, EF
a second gnomon, whose height is the same as CD, EI its shadow. So the distance
between the tips of the two shadows is HI. The distance between the foot of the
light and the tip of any of the two shadows (BH and BI), called in Āryabhat.a’s
verse “the decrease” (ūna), is also referred to as “the earth within the boundary
〈defined by the foot of the light and the tip of the shadow〉” (avasānabhūmi). This
is illustrated in Figure 41.
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Figure 41: A source of light with two gnomons

�

� �

�

�

�

� �

Ab.2.16.ab thus gives a rule to find the distance between the foot of the light and
the tip of any shadow, knowing the distance between the tips of the two shadows,
the length of one shadow and the difference in length of both shadows.

As in BAB.2.15, the height of the light on a pole is also called the base (bhujā).
The distance between the foot of the light and the tip of any of the two shadows
is also called the upright-side (kot.ı̄). Therefore, the presence of two right-angle
triangles (ABH and ABI) is emphasized by underlining.

The generality of the rule, for it applies for either one of the two gnomons, is
specified by Bhāskara:

tad yadi prathamacchāyayā gun. itam. tadā
prathamacchāyāgrayas.t.iprad̄ıpāntarālam. bhavati, dvit̄ıyayā chāyayā
yadi tadagrayas.t.iprad̄ıpāntarālam|
If that 〈difference〉 is multiplied by the first shadow, then 〈the result of
the computation〉 becomes the space between 〈the foot of〉 the light on
a pillar and the tip of the first gnomon〈’s shadow〉. If that 〈difference〉
is multiplied by the second shadow, 〈then the result becomes〉 the space
between the light on a pillar and that 〈shadow’s〉 tip.

So this computation can be written as74

BH =
HI × CH

EI − CH
,

73Please see the supplement for BAB.2.16. (Volume II, M on the facing page, for an analysis
of the use of the rule in this situation

74In all cases the examples treated by Bhāskara considers EI > CH.
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and

BI =
HI × EI

EI − CH
.

These equalities may be understood because of a set of similar triangles: ABH
and CDH are similar, therefore

AB

CD
=

BH

CH
,

ABI and EFI are similar so:

AB

FE
=

BI

EI
.

And since CD=EF

BH

CH
=

BI

EF
=

BI − BH

EI − CH
.

The second rule given by Āryabhat.a in the second half of the verse is:

śaṅkugun. ā kot.ı̄ sā chāyābhaktā bhujā bhavati‖
That upright side, having the gnomon for multiplier, divided by 〈its〉
shadow, becomes the base ‖

With the same notations as before:

AB =
BH × CD

CH
=

BI × EF

EI
.

This derives directly from the similarity of triangles and the corresponding ratios
as stated above. Ab.2.16.cd gives a rule to find the height of the source of light,
knowing the distance between the foot of the light and the tip of any shadow, and
the length of that same shadow. Therefore this rule can be applied in the case
where only one gnomon is considered: this may explain why it is illustrated in the
commentary of verse 15.
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Another remark is given by Bhāskara:

chāyādvayam api tatkot.ibhyām. prasādhyate|
The two shadows also are brought about using their two upright sides.

This remark we can understand in other words as stating that if BH and BI are
known, both CH and EI can be found.

As this statement is not further developed we can just note here a way of imagining
how they were found: the shadows, may have been obtained by reversing the rule
given in Ab.2.16.ab. Instead of deriving the upright-side from one of the shadows;
one of the shadows is found, knowing one of the upright sides (BH or BI), EI−CH
and HI, then:

CH =
BH × (EI − CH)

HI
,

EI =
BI × (EI − CH)

HI
.

We can note however that if AB is known, then by similarity of the triangles

EI =
EF × BI

AB
,

and

CH =
CD × BH

AB
.

In this case the uprights of the shadows that are referred to would be the heights
of the gnomons EF and CD. Now in BAB.2.14 the right-angle triangle formed of
a gnomon, its shadow, and the “semi-diameter of one’s circle”, calls the length of
the gnomon the “upright side”.

M.2 Astronomical misinterpretations

Bhāskara takes care here to explain how this verse and the previous (Ab.2.15)
should not be interpreted astronomically. Many of the arguments he has given
remained obscure to us: we will note here what we have understood and what we
haven’t.

Bhāskara, in order to justify that Ab.2.16 should not be used to find the distance
between the sun and the earth, first mentions verse 39 of the fourth Chapter of
the Āryabhat.ı̄ya (the golapāda, chapter on the sphere). This verse computes the
length of the “shadow of the earth”:
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Figure 42: The shadow of the earth
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bhūravivivaram. vibhajed bhūgun. itam. tu ravibhūvíses.en. a|
bhūcchāyād̄ırghatvam. labdham. bhūgolavis.kambhāt
One should divide the distance of the earth to the sun multiplied by the
diameter of the earth by the difference between 〈the diameters of〉 the
sun and the earth|
The quotient is the length of the shadow of the earth from 〈the middle
of〉 the diameter of the sphere of the earth‖

Let d1 be the diameter of the sun, d2 the diameter of the earth, a the distance
between the sun and the earth, b the shadow of the earth. This is illustrated in
Figure 42.

We can write the computation given in the rule as

b =
a × d2

d1 − d2
.

In Ab.1.7 Āryabhat.a states the diameters of the earth and the sun: d2 = 1050
yojanas (≈ 14360 km75) and d1 = 4410 yojanas (≈ 60330km76). The distance
between the sun and the moon is given by Someśvara in his commentary to Ab.4.39
as being 3360 yojanas (≈ 459585 km), consequently the value found for b is 143620

75Considering that a yojana is roughly 13.68 km. For information, we consider today that the
diameter of the earth is 12756 km

76Today we consider the diatemeter of the sun to be 14.105km.
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yojanas (≈ 19666472km77).

As we have noted in a footnote in the main translation, we do not know what
was Bhāskara’s commentary on this verse, but in fact, his commentary on Ab.2.16
looks very much like an explanation of Ab.4.39.

He first gives an interpretation of Ab.4.39 in terms of “gnomons and light on a
pole”, in which the diameter of the earth, d2 is considered as the gnomon, the
diameter of the sun d1 is the height of the light, and a is the true distance between
the sun and the earth. Because the computation described in Ab.4.39 differs from
the one used when reversing Ab.2.15 and described in BAB.2.15, the latter is
disqualified for the computation of the distance between the sun and the earth:

bhūh. śaṅkuh. , raviyojanakarn. ah. śaṅkubhujāvivaram. ,
sakalajagadekaprad̄ıpo bhagavān Bhāskarah. svayam eva
prad̄ıpaucchrāya ity ato vivasvadavanitalāntarālayojanānayanam.
na ghat.ate, ‘bhūravivivaram’ iti siddhānām eva yojanānām upadeśāt|

The 〈diameter of the〉 earth is a gnomon, the true distance (karn. a) in
yojanas to the sun is the distance between 〈this〉 gnomon and the base,
the 〈diameter of the〉 glorious sun which is the unique light of the whole
world, is itself the height of the light. It follows that the computation of
the yojanas which make the distance between the sun and the surface of
the earth is improper, because of the teaching of the yojanas that have
already been established from the “distance between the earth and the
sun”. (Ab. 4. 39)

In the paragraph following this interpretation, Bhāskara makes an obscure state-
ment, in which he seems to state that the distinction between the true sun and the
mean sun, disqualifies the second part of Ab.2.16 for giving a way of computing
the diameter of the sun.

Bhāskara takes additional care to distinguish the case treated in Ab.4.39 both
from Ab.2.16, and Ab.2.15. Concerning Ab.2.16 he notes that the configuration as
illustrated in Figure 42 does not have two gnomons.

As for Ab.2.15 this results from the sphericity of the earth, as illustrated in Figure
43:the first quarter of verse 6 of the Chapter on the sphere says that the earth is
a globe (vr. tta)78.

Bhāskara also speaks about the difficulties that would arise from considering a
literally huge gnomon whose shadow would not be properly horizontal because of
the natural asperities of the earth. Other obscure parts concern the use of Ab.2.15

77For information, today we consider that the distance between the earth and the sun is 150.106

km.
78See [Sharma&Shukla 1976; p.118]
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Figure 43: Sphericity of the earth
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to compute the distance between two cities Laṅkā and Sthāneśvara. Two other
statements are given as improper at the end of the commentary without any expla-
nation. We can note here that aṅgulas are much smaller than yojanas, considering
that a gnomon of 12 aṅgulas could give shadows in yojanas is nonsensical.

M.3 Ūjjayin̄ı, Laṅkā and Sthaneśvara

From the midday equinoctial shadow of a gnomon, Bhāskara computes here the
latitude of Ūjjayin̄ı and Sthāneśvara. From these latitudes he deduces the distance
in yojanas of these cities to Laṅkā. These three towns are well known to Sanskrit
astronomical literature. By definition, Laṅkā is on the intersection of the meridian
passing through Ūjjayin̄ı and the equator.

We will, without quoting the text itself, retrace the computation which was made.

M.3.1 Finding the Rsine of Latitude

This operation uses the method described in BAB.2.14 (which we have explained
in the Annex of this commentary). Knowing the midday equinoctial shadow of a
gnomon (G) of 12 aṅgulas, with a Rule of Three using the radius of the celestial
sphere (R), 3438 yojanas, we can find the Rsine of Latitude (Rsinφ)for both of
these places.

a Ujjayin̄ı The length of the equinoctial midday (CU ) shadow is 5 aṅgulas. The
length of the “semi-diameter of one’s own circle” (RU ) is therefore according to
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Ab.2.14:

RU =
√

G2 + C2
U =

√

122 + 52 = 13.

With a Rule of Three the Rsine of Latitude for Ūjjayin. ı̄ (RsinφU ) is deduced:

RsinφU =
CU × R

RU

=
5 × 3438

13
= 1322 +

4

33
.

b Sthāneśvara With the same type of notations as before (with “S” as super-
script), since CS = 7:

RS =
√

G2 + C2
S =

√

122 + 72 =
√

193.

The result obtained is an irrational number: we do not know how it was approxi-
mated. By assuming that

√
193 ≃ 14 we have

RsinφS =
CS × R

RS

=
7 × 3438

14
= 1719.

M.3.2 Interpolating the Rsinus

In the second half of verse 2 and the first half of verse 3 of the second chapter of
the Laghubhāskar̄ıya, a method is given to compute an Rsine from a given length,
using the table of Rsine differences given in Ab.1.12. This method is translated,
explained and discussed in [Shukla 1963; p. 16sqq]. From it we can deduce a method
to interpolate the arc whose Rsine we have found, however the results found with
this method do not correspond to the values given by Bhāskara. We do not know
what method he used. We can note, concerning the latitude of Sthāneśvara, that
the value we have found for RsinφS , which depends on the approximate value
chosen for

√
193, is 1719. This we know is the Rsine of 30 degrees, as it was stated

as such in BAB.2.11. The value given for the latitude of Sthāneśvara is however
30◦15′. The value given for the latitude of Ūjjayin̄ı is 22◦37′.

M.3.3 The distance in between Ūjjayin̄ı, Laṅkā and Sthāneśvara

From what we know of these cities, the distance from Ūjjayin̄ı to Laṅkā would be
the measure in yojanas of that portion of the terrestrial meridian lying in between
Ūjjayin̄ı and the equator: that is a transfer to a value in yojanas of the latitude
found previously. Using the procedures and values given in this commentary, we
know that the diameter of the earth is 1050 yojanas. Using BAB.2.10 we can
deduce the circumference (parin. āha) of the earth (p) in yojanas:

p =
62832 × 1050

20000
= 3298 +

34

5
.
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We can use then a Rule of Three: the ratio of 360 degrees to the circumference of
the earth in yojanas is the same as the one from the latitude in degrees of Ūjjayin̄ı
(22◦37′) to the distance (dU ) to Laṅkā in yojanas. Converting the values in degrees
into minutes, we thus have

dU =
p × φU

21600
≃ 207.4.

The value given by Bhāskara is 207 yojanas.

Assuming that Sthāneśvara is on the same meridian as Ūjjayin̄ı, the distance of
Sthāneśvara to Laṅkā (dS) is therefore the distance covered by the meridian from
Sthaneśvara to the terrestrial equator. With the same reasoning as before,

dS =
p × φS

21600
≃ 274.9.

The value given by Bhāskara is 275 yojanas.

N BAB.2.17

N.1 The “Pythagoras Theorem”

Ab.2.17.ab states the so-called “Pythagoras Theorem” in a right-angle triangle.
Bhāskara adds in the resolution of example 1:

evam adhyardhāśriks.etre āyatacaturaśraks.etre vā karn. o yojyah.
In this way, the diagonal should be considered in a field with an addi-
tional half side (adhyardhāśriks.etra) or in a rectangular field.

We do not know what the field “with an additional half side” (adhyardhāśriks.etra)
is, as no illustration is given by the commentator. This compound may be con-
nected to the one used in the commentary of Ab.2.17.cd79: ardhatryaśriks.etra (a
half and a trilateral), which may be referring to the type of field considered within
a circle of a right-angle triangle whose upright-side is extended along a diameter,
as illustrated in Figure 44.

The additional half side would then be the semi-diameter. Indeed, Bhāskara writes,
concerning the trilateral field:

ya eva dvit̄ıyo mahāśarah. sa eva vam. śabhan. gapade
ardhatryaśriks.etrākāren. a vyavasthitah. |

That very second large arrow, in the quarter of verse on the breaking of
a bamboo, is determined as the shape of semi- 〈diameter and the side
of〉 a trilateral field (ardhatryaśriks.etra).

79[Shukla 1976; p. 98, line 13]
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Bhāskara adds in the resolution of example 1:
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Figure 44: A right-angled triangle with an additional half-side?

As we will see concerning the interpretation of the second half of verse 17, the
“large arrow” is the segment made of the upright side of the right-angle triangle
extended by the semi-diameter. The trilateral with an additional half-side referred
to here would not be the one illustrated in Figure 45. The latter considers a right-
angle triangle having a half-chord for side. The other half of the chord would be
the additional half.

Figure 45: A triangle with the other half of the chord

N.2 Two arrows and their half-chord

The second half of Ab.2.17 states the following relation:

vr. tte śarasam. vargo ’rdhajyāvargah. sa khalu dhanus.oh. ‖
Ab.2.17.cd. In a circle, the product of the arrows that is the square of
the half-chord, certainly, for two bow 〈fields〉 ‖
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Figure 46: Arrows in a circle

A B

C

DO

E

In other words, let a circle of center O have AB a diameter, and CDE a chord.
This is illustrated in Figure 46.

We can understand the verse as stating that:

DE2 = AD × DB.

The two “bows” are thus the two arcs formed by ⁀CE. This property derives from
the similarity of triangles EDB and EDA.

A certain number of traditional problems are solved with this relation.

N.2.1 Rat and Hawks, Breaking Bamboos and Sinking Lotuses

a The Problems With the same notation as before, we can state the variety of
problems given here as follows. This is illustrated in Figure 47.

Hawk and Rats A hawk on a height, ED, sees a rat in A whose hole is in D. The
rat, seeing the hawk attempts to run back to his hole, but the hawk flying
along E0 kills the rat at O. Both the distance crossed by the hawk and the
distance missing for the rat to reach his hole are sought.

Broken Bamboos A bamboo of height AD is broken by the wind, it hits the ground
at E. The distance between the root of the bamboo and the broken tip is
ED. The bamboo is thus formed of two parts, AO and OD, that are sought.

Sinking Lotuses A lotus is seen above the water, the flower itself being of height
DB. It is pushed by the wind for an extent of ED before it sinks. Both the
level of the water, OD, and the total size of the lotus, OE are sought.
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Figure 47: Hawks and Rats, Broken Bamboos and Sinking Lotuses

A B

C

DO

E

In other words, the general problem treated here is knowing ED and one of the
two arrows (AD or DB), both the radius of the circle (EO = AO) and OD are to
be found.

b procedure Bhāskara states the link between a right-angle triangle and this
property of segments within a circle, then relates the computation given in Ab.2.17cd
to the “rat and hawk problems”80.

This computation rests on the fact that

DB =
DE2

AD
.

This is a direct consequence of the computation given in Ab.2.17.cd.

Bhāskara then quotes Ab.2.24. This rule gives a computation called sam. kraman. a
which is discussed in the supplement for BAB.2.24.

Precisely, we have

EO =
AD + DB

2
,

OD =
AD − DB

2
.

The first equality computes the radius of the circle AD+DB
2 , the second one derives

from the fact that OD is the radius of the circle decreased by DB.

Bhāskara does not explain in all generality the link Ab.2.17.cd bears with “broken
bamboos”, but he considers it a simple variation of “rat and hawk” problems81.

80See BAB.2.17cd. [Shukla 1976; p. 198, line 3-14]
81See the resolution of example 4 [Shukla 1976; p. 100, line 13-15]
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Figure 48: Fish and Cranes

E

DA O

F

G

N.2.2 Fish and Cranes

The “fish and crane” problems are slightly different as the setting is in a rectangle.

The problem exposed goes as follows, and is illustrated in Figure 48.

A fish is at one corner of a rectangular tank (E) and a crane at another (G). The
fish crosses the tank diagonally (EO) while the crane walking along the sides of
the tank (GF and FD) catches the fish in O where he is eaten. It is assumed that
the paths of the fish and the crane have the same length (EO = GF + FO in
lengths). It is also assumed that GF = AF . Knowing the sides of tank, and the
respective places of the fish and the crane one should find the length of the paths
of the animals (EO), and the distance separating the fish, when it is killed at one
corner of the tank (OD or OF ).

Bhāskara relates this situation to the rule given in Ab.2.17.cd as follows:

matsyabakoddeśakes.v apy evam evāyatacaturaśraks.etrasyaiko bāhur
ardhajyā, bāhudvayam. mahāśarah. , śes.am. mūs. ikoddeśakavat karma|
In fish and crane examples, exactly in the same way also, the half-chord
is one side of a rectangle (ED). The two sides are the greater arrow
(GF + FO = AO), what remains is 〈as〉 the method for rat and hawk
examples.

So that, if we imagine a circle having O for center and EO for radius, as illustrated
in Figure 48, the same procedure as the one for “rats and hawks” will produce
both the radius of the circle AO = EO and OD.
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Bhāskara adds at the end of example 8:

pārśvapatite śes.o daks. in. āparakon. aprāptir matsyasya|

When the remaining portion of the side is subtracted from the side,
the remainder is what 〈was left〉 for the fish to reach to the south-west
corner.

In other words, FO = AO − GF , since AF = GF .

O BAB.2.18

The rule given by Āryabhat.a in Ab.2.18 concerns two intersecting circles. Bhāskara
interprets it as concerning an eclipse. The mathematical situation supposed can
be described as follows.

Let two circles intersect in G and F . ABCDE is the straight line, passing through
their respective centers, where AD is the diameter of one circle, BE is the diameter
of the second circle and C the point of intersection of that line with the segment
[GF ]. The grāsa is the segment BD. This is illustrated in Figure 49.

Figure 49: Two intersecting circles

A B C D E

F

G

The arrow of the circle AD for the penetrating circle BE is BC. Since AD−BD =
AB and BE − BD = DE it is equal to

BC =
AB × BD

AB + DE
.
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And in the same way, for the circle BE:

CD =
DE × BD

AB + DE
.

The ratios linking the segments of the diameters of intersecting circles, with the
same notation as before, may be written as follows(BC + CD = BD):

BC

AB
=

CD

DE
=

BD

AB + DE
.

These relations are the key to the rule given in the verse. In this part, Bhāskara
does not state them with a Rule of Three as he usually does. He states that the
arrow is inversely proportional to the diameter82. He also relates the “curving” of
the arc and the diameter of the circle. Both explanations are given one after the
other. They underline the relation between arrows and diameters, a mathematical
interpretation of the word parasparatah. (one and another) used in the commented
verse.

The astronomical context of the verse may be seen through the only versified prob-
lem solved in BAB.2.18. It is also given in the following statement by Bhāskara:

dve vr. tte, grāhyagrāhakaman. d. aladvayam
dve vr. tte, that is two circles , which are the seized and the seizer.

An eclipse (grahana) or “seizing” involves a seized planet (grāhya) and a seizer
(grāhaka). In the case of moon eclipses, a demon, Rāhu, is said to swallow the
moon. The extent of the eclipse is measured by the length of the grāsa, which
literally means “a mouthful”. Let us note here that computing the “arrows” of
the penetration gives segments of the right-angle triangles FBC and FDC (resp.
GCB and GCD), from which the extent of the eclipse (FG) may be deduced.

P BAB.2.19-22

This set of commentaries concerns the rules for progressions and series in the
mathematical part of the Āryabhat.ı̄ya. The progressions considered are arithmeti-
cal ones. Special attention is given either to the sequence of the natural numbers or
to the sequence of their squares or cubes. A śred. h̄ı (series) is defined from the first
term of this sequence (mukha) and its common difference (uttara, lit. increase).
The terms of the sequence, and the number of terms of the sequence considered,
are both called by Āryabhat.a pada. Bhāskara calls the latter gaccha. Different

82From the above equalities we know that BC (resp. CD) is inversely proportional to DE

(resp. AB), which itself is proportional to the semi-diameter.
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sums of these terms are considered, which all bear the name dhana (value). Be-
cause the mathematical computations concerning the sequence always concern the
sum of a finite terms of the sequence, śred. h̄ı is translated as “series”. If a finite
number of terms of the sequence is considered, their sum is called the “whole
value” (sarvadhana). madhyadhana is the “mean value” of the whole sum.

P.1 Ab.2.19

Bhāskara interprets this rule in a very special way. Apparently three rules are
given but the first one should not be read literally here. According to Bhāskara’s
interpretation, the mean value is obtained, as shown below, by omitting the in-
crease by the “previous term”. In fact Bhāskara by omitting certain terms reads
five rules, in Ab.2.19, that we will expose here.

P.1.1 The mean value

This rule is stated in the first half of Ab.2.19, omitting the computation “increased
by the previous 〈number of terms〉” (sa-pūrva):

is. t.am. vyekam. dalitam. uttaragun. am. samukham. ’iti
mdhaydhanānayanārtham. sūtram|
“The desired 〈number of terms〉 decreased by one, halved, having the
common difference for multiplier, and increased by the first term”, is
the rule in order to compute the mean value.

With a modern mathematical notation, let (Ui) be an arithmetical progression of
first term (mukha) U1, of common difference (uttara) a. Let the “desired number
of terms” (is. t.a) be n. By definition the mean value (madhyadhana), M, of n terms
is

M =

∑

n
i=1Ui

n
.

M can be computed as follows, according to the rule read in Āryabhat.a’s verse by
Bhāskara:

M =

[

(n − 1)

2
× a

]

+ U1. (6)
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P.1.2 The value of all terms

By considering the middle part of Ab.2.19, Bhāskara gives a rule to compute the
sum of terms in an arithmetical progression:

‘madhyam is.t.agun. itam is. t.adhanam’ iti gacchadhanānayanārtham
“The mean 〈value〉 multiplied by the desired 〈number of terms〉 is the
value of the desired 〈number of terms〉”, is 〈the rule〉 in order to compute
the value of the 〈desired〉 number of terms (gaccha).

With the same notation as before:

∑

n
i=1Ui = M × n. (7)

P.1.3 The partial mean value

Two interpretations are given of this rule by Bhāskara: both rest on the ambiguous
meaning of dhana (value) which can apply to the term of the series (and thus refer
to a sum) or to a term of the sequence. A problem occurs because of the discrepancy
between Shukla’s interpretation of the general rule and the manuscripts, all of
which are noted in the main translation.

By omitting the final word evoking the mean value, out of the first half of Ab.2.19,
the commentator deduces the following rule:

‘is. t.am. vyekam. dalitam. sapūrvam uttaragun. am. samukham’ ity
antyopāntyādidhanānayanārtham
“The desired 〈number of terms〉 is decreased by one, halved, increased
by the previous 〈number of terms〉, having the common difference for
multiplier, and increased by the first term”, is 〈the rule〉 in order to
compute the value of the last, the penultimate, etc. 〈terms〉.

This rule can concern the mean value, Mn, of the sum of n terms (is. t.a: the desired
〈number of terms〉) starting with Up+1 –p being the previous (pūrva) number of
terms. By definition

Mn =

∑ p+n
i=p+1Ui

n
.

This rule would give:

Mn =

[

(n − 1)

2
+ p

]

× a + U1. (8)
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If the desired number of terms is 1, this means that the value of one term is
computed.

The word dhana which literally means “wealth”, and which technically in math-
ematics can mean “ value of the terms of a series” or the “value of the terms of
the sequence”, collects these two meanings here.

In Example 3, which is the only example to illustrate this rule, the former compu-
tation is deduced from the first general rule given. The conditions of this example
are summed up in the “setting down” (nyāsa) part of the solved example:

nyāsah. – ādih. 7, uttara 11, gacchah. 25|
setting down: the first term is 7, the common difference is 11, the number
of terms is 25.

The first part of the resolution seems to describe, in this specific case, how the
general rule for the mean value of partial sums may be analyzed to compute the
value of specific terms:

karan. am– is. t.am. pañcavim. śati-(Edition reads vim. śatih. ) 25, pūran. am. padam
ekam iti ekam. rūpam. 1, etad eva vyekam. śūnyam 0, etad eva sapūrvam
iti śūnyena ks. iptā caturvim. śatih. 24, uttaragun. am. 264,
samukham. 271, etad antyadhanam|
procedure: the desired 〈term〉 is the twenty-fifth term only, and therefore
it (the desired number of terms) is one, 25 ; one is unity, 1. Precisely,
this decreased by one is zero, 0. Precisely this is “increased by the pre-
vious” (here 24), it is increased by zero, and therefore twenty-four, 24,
“having the common difference for multiplier”, 264, is “increased by the
first,” 271, this is the ultimate value.

In other words, in the case examined, the number of desired terms, n, is equal
to 1. If we substitute 1 for n in the general computation of mean partial sums
considered before, then we have:

Up+1 = M1 =

[

(1 − 1)

2
+ p

]

× a + U1 = (0 + p) × a + U1.

K.S. Shukla gives a different interpretation of this rule. Although all manuscripts
read dalitam. (halved), he omits this word from the rule given here (see p. 105, line
14-15 and note 3), and thus reads:

‘is. t.am. vyekam. sapūrvam uttaragun. am. samukham’ ity
antyopāntyādidhanānayanārtham
“The desired 〈number of terms〉 is decreased by one, increased by the
previous 〈number of terms〉, having the common difference for multi-
plier, and increased by the first term”, is 〈the rule〉 in order to compute
the value of the last, the penultimate, etc. 〈terms〉.
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Thus he understands this rule, as giving only a way of computing the value of each
term separately83. In other words, if we keep our own notations, he understands
the following:

Up+1 = [(1 − 1) + p] × a + U1.

This would explain, step by step, Bhāskara’s computation in Example 3, where
we have assumed that the halving did not occur, because the numerator was zero.

P.1.4 Partial sum

By quoting the first three quarters of Ab.2.19, omitting the word madhya (mean),
a rule for the partial sums of the terms of the sequence is derived:

‘is. t.am. vyekam. dalitam. sapūrvam uttaragun. am. samukham is.t.agun. itam
is. t.adhanam’ ity avāntarayathes. t.apadasaṅkhyānayanārtham|
“The desired 〈number of terms〉 decreased by one, halved, increased15
by the previous 〈number of terms〉, having the common difference for
multiplier, increased by the first, and multiplied by the desired 〈number
of terms〉 is the value of the desired 〈number of terms〉”, is a 〈rule〉 in
order to compute a number of as many terms as desired.

With the same notations as before, if one computes the sum of n terms starting
with the term Up+1, then

∑

n+p
i=p+1Ui = n ×

[

U1 + a

(

n − 1

2
+ p

)]

. (9)

P.1.5 Another way of computing the whole value

In the last quarter of the ārya another relation is given:

tv athādyantam. padārdhahatam‖
Or else, the first and last 〈added together〉 multiplied by half the number
of terms 〈is the value〉.‖

With the same notation as before, if U1 is the first term and Un the last, then

∑

n
i=1Ui = (U1 + Un) × n

2
. (10)

83See [Sharma&Shukla 1976; p. 62, formula 3]
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P.2 Ab.2.20: The number of terms

The rule given by Āryabhat.a here, runs as follows:

gaccho’s. t.ottaragun. ād dvigun. itādyuttaravíses.avargayutāt|
mūlam. dvigun. ādyūnam. svottarabhajitam. sarūpārdham‖
The square-root of the value of the terms (gaccha) multiplied by eight
and by the common difference, increased by the square of the difference
of twice the first term and the common difference,|
Decreased by twice the first term, divided by its common difference,
increased by one and halved.‖

Bhāskara gives here a particular interpretation of the word gaccha used in the
verse. Gaccha is the term used in Bhāskara’s commentary for the number of terms
of a series. However concerning its meaning in Ab.2.19, he gives the following gloss:

gacchah. ity anena [p]adadhanam. parigr.hyate|
〈As for〉 gaccha, the value of the terms ([p]adadhana) is understood with
that 〈word〉.

Further in this general commentary, the compound gacchadhana is used with the
meaning “the value of the terms”; in this case gaccha seems to be a substitute for
pada (a term of a series). This peculiar understanding of gaccha is restricted to
this gloss of Ab.2.20. In both cases the compound thus refers to the values of the
terms of the series, or, in other words, to the value of the sum of the terms of a
finite sequence.

Using this particular interpretation, this rule can be understood in the following
way, with a modern mathematical notation:

For a finite arithmetical progression of first term U1, of common difference a, of
total sum N , the number of terms of the progression is

n =

[

√

8Na + (2U1 − a)2 − 2U1

a
+ 1

]

× 1

2
.

The formulation here is quite surprising. It seems to bear some similarities with
the procedure described in Ab.2.24. These links remain to be investigated.

P.3 Ab.2.21: Progressive sums of natural numbers

Ab.2.20 gives two alternative procedures to obtain the same sum. The first part
of Ab.2.20 runs as follows:

ekottarādyupaciter gacchādyekottaratrisam. vargah. |
s.ad. bhaktah. sa citighanas
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The product of three 〈quantities〉 starting with the number of terms
of the sub-pile whose common difference and first term is one, and
increasing by one,|
Divided by six, that is the solid 〈made〉 of a pile,

The “sub-pile (upaciti) whose common difference and first term is one” corresponds
to the series, (Si), of the progressive sums of natural numbers84: 1, 1 + 2, 1 + 2 +
3, · · · , 1+2+· · ·+i, . . . (Si = 1+2+· · ·+i). A finite sequence of this series, starting
with its first term, is considered. Let the number of terms be n. Thus “the product
of three 〈quantities〉 starting with the number of terms (. . . ) and increasing by
one corresponds to the product n(n + 1)(n + 2). The “solid 〈made〉 of a pile”
(citighana), corresponds to the series, (Σj) having for terms (Si) (Σj =

∑ j
i=1Si).

According to this understanding, the computation described above may be noted
as follows:

Σn =
∑

n
i=1Si =

n(n + 1)(n + 2)

6
. (11)

The last quarter gives an alternative rule:

saikapadaghano vimūlo vā‖
Or the cube of the number of terms increased by one, decreased by 〈its
cube〉root, 〈divided by six produces the same result〉 ‖

With the same notation as before:

Σn =
∑

n
i=1Si =

(n + 1)3 − (n + 1)

6
. (12)

In his introduction to the chapter on mathematics (gan. itapāda), Bhāskara includes
series (śred. h̄ı) in geometry. A close look at the vocabulary used by Āryabhat.a and
at the only example of BAB.2.21 may explain how this is understood.

The series (Σj) is called by Āryabhat.a “a solid 〈made〉 of a pile” (citighana). The
example considers a three-edged pile of objects, of which we have given a tentative
illustration in Figure 50.

We can note here, as it will become clear in the following rules as well, that
the geometrical vocabulary on series is the one used by Āryabhat.a. Bhāskara
substitutes for it a more arithmetical one, using the term saṅkalanā (sum). Thus,
the “sub-pile” (upaciti), which corresponds to one layer of the “solid 〈made〉 of a
pile”, is called saṅkalanā by Bhāskara. The “solid 〈made〉 of a pile” (ghanaciti) is
called saṅkalanāsaṅkalanā.

84As before, the series is constructed considering the sequence which has such first term and
common difference (here the sequence of the natural numbers). The progressive sums of the
terms of the sequence, produces the terms of the series.
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Figure 50: “The solid made of a pile”

citighana  with 5 layers

1

1+2

1+2+3

1+2+3+4

1+2+3+4+5

P.4 Ab.2.22: Sum of squares and cubes

Ab.2.22 gives two rules, one for the sum of squares – called the solid 〈made〉 of a
pile of squares (vargacitighana), and one for the sum of cubes – called the solid
〈made〉 of a pile of cubes (ghanacitighana).

The first rule goes as follows:

saikasagacchapadānām. kramāt trisam. vargitasya s.as. t.ho’m. śah. |
vargacitighanah. sa bhavec
One sixth of the product of three 〈quantities which are〉, in due order,
the number of terms, 〈that〉 increased by one, and 〈that〉 increased by
the 〈number of〉 terms|
That will be the solid 〈made〉 of a pile of squares.

Bhāskara gives here a particular gloss of the word usually meaning the term of a
progression or series, pada:

padam. gacchas
Pada is the number of terms.

With this particular interpretation, let n be the number of terms then, with the
same notations as before, this rule may be understood as

∑

n
i=1i

2 =
n(n + 1)(n + 1 + n)

6
=

n(n + 1)(2n + 1)

6
. (13)

Bhāskara calls this the sum of squares (vargasaṅkalanā).

The second rule is told as follows:

citivargo ghanacitighanaś ca‖
and the square of a pile is the solid 〈made〉 of a pile of cubes‖
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This computation uses the rule 10 given in the last quarter of verse 19, which
computes the sum of the terms of a finite arithmetical sequence. This is called
here “a pile” (citi). In this case the sequence considered is that of the natural
numbers, zero excluded. Let n be the number of terms considered. According to
the rule of verse 19 we know that

∑

n
i=1i = (n + 1) × n

2
.

According to the rule given in the last quarter of verse 22, we thus have

∑

n
i=1i

3 =
[

∑

n
i=1i

]2

.

Or in other words:

∑

n
i=1i

3 =
[

(n + 1) × n

2

]2

(14)

Bhāskara calls this sum the sum of cubes (ghanasaṅkalanā).

Geometrically, the sum of squares, as the diagrams associated to the solved ex-
ample suggest, seem to be considered as a pile of flat square objects, the smallest
having a side of length a unit, the second of length two units etc. In the same way,
the sum of cubes seems to be considered as a pile of cubic bricks, the smallest
having a side of length one unit etc. These are illustrated in Figure 51.

Q BAB.2.23-24

Q.1 BAB.2.23: Knowing the product from the sum of the squares
and the square of the sum

With a modern mathematical notation, if a and b are any two numbers, the rule
given in Ab.2.23 can be summarized as follows:

ab =
(a + b)2 − (a2 + b2)

2
.

We can note that when several products are to be computed, each couple is dis-
posed vertically in a column. That is, if the product of a and b and the product
of c and d are sought, the “setting-down” (nyāsa) will be:

a c
b d

.

Āryabhat.a’s verse seems to be useful when the quantities are not known, but only
their sums and squares, a typical algebraical problem. Bhāskara’s introduction is
therefore surprising: he seems to understand it as if it were an alternative multi-
plication rule. A way of verifying the multiplication algorithm?
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Figure 51: Piles

A pile of flat square objects:

the smallest one' s area is 1

the second one' s area is 2
2

etc.

2

A pile of cubic bricks

The smallest brick' s volume is 13

The second brick' s volume is 2
3

etc.

Q.2 BAB.2.24: Finding two quantities knowing their difference and
product

With a modern mathematical notation, this is how the rule given in Ab.2.24 may
be understood: let a and b be two quantities (a > b), then

a =

√

(22ab) + (a − b)2 + (a − b)

2
; b =

√

(22ab) + (a − b)2 − (a − b)

2
.

The last sentence of the commentary states the commutativity of the multiplica-
tion:

atra gun. yagun. akārayor avíses. āt gun. akāradvayam ity ucyate|
In this case because there is no difference between the multiplicand and
the multiplier both are called “multipliers”.

We can note here that the procedure given in this verse is partially used in other
computations. The computation considered involves only the latter half of the
verse which involves subtracting or adding to a same quantity a given quantity
and halving. It bears the name sam. kraman. a.
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R BAB.2.25

R.1 The rule given by Āryabhat.a

Ab.2.25 can be formalized as follows. Let m (mūla) be a capital; p1 (phala) the
interest on m during a unit of time, usually a month, k1 = 1 (kāla) ; p2, the
interest on p1, at the same rate, for a period of time k2. When p1 + p2, m, and k2

are known, in a modern mathematical notation the rule can be understood as

p1 =

√

mk2(p1 + p2) + (m
2 )2 − m

2

k2
.

This rule derives from a constant ratio:

m

p1
=

p1

p2
k2.

We can note that this is algebraically equivalent to the following equation where
p1 is the unknown:

k2p
2
1 + mp1 − m(p1 + p2) = 0.

Historians of science have deduced from this that Āryabhat.a knew how to solve
second order equations even though their resolution is not stated as such in the
treatise. Second order equations (vargāvarga) are quoted by Bhāskara in BAB.1.1.,
under a list of subjects of mathematics considered in all its generality85. However,
Bhāskara states a verification of the rule given in Ab.2.25, using a Rule of Five.
This rule, therefore, is likely to have been considered by Indian authors as deriving
from rules of proportion. The Rule of Five, as described in BAB.2.26-27.ab, and
presented in the Annex to this commentary, typically concerns such commercial
problems, where k1 – here always equal to one – may be variable, and where a
different value than the initial interest p1 may be considered as lent at the same
rate for a time k2. The Rule of Five computes a value for p2:

p2 =
p2
1k2

mk1
.

A reversed Rule of Five would therefore give a value for p1, from which the above
computation may be found. The Rule of Five, in fact, rests upon the same ratio
as the rule given in Ab.2.25, only k1 may be different from 1:

m

p1
k1 =

p1

p2
k2.

85See [Keller 2000; I, 2.1] and [Keller forthcoming]
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R.2 Procedure followed by Bhāskara in examples

Problem Let m be a capital whose monthly interest p1 is not known. This interest
on the capital is lent elsewhere at the same rate. After k2 months a certain
amount p1 + p2 is obtained. Both p1 the initial interest on the capital, and
p2 the interest on the interest are sought.

The tabular “setting down” of such a problem, where the unknown p1 is
noted with a zero, is as follows:

Interest on the capital Interest on the Interest
Capital m 0
Time 1 k2

Interest 0 p1 + p2

Step 1 Following the procedure described in Ab.2.25, p1 is found.

Step 2 The interest on the interest is:

p2 = (p1 + p2) − p1.

R.3 Verification with a Rule of Five

Bhāskara at the end of the first solved example of BAB.2.25, describes a verification
(pratyayakaran. a). This example states the case where:

m = 100
k2 = 4

p1 + p2 = 6

The value found for p1 is 5.

The verification is stated as follows:

pratyayakaran. am. pañcarāśikena– yadi śatasya māsik̄ıvr.ddhih. pañca tadā
catubhir māsaih. śatavr.ddheh. [pañcadhanasya] kā vr.ddhir iti|
Verification with a Rule of Five: “If the monthly interest on a hundred is
five, then what is the interest of the interest [of value-five] on a hundred,
in four months?”

In other words, the verification consists in: knowing m, p1 and k2, find p2 and
verify that its value, increased by p1, will give the same value for p1 + p2 as stated
in the problem.

The Rule of Five, as we have stated above, finds the value of p2. This is how it is

set down:
1 4

100 5
5 0
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So that here the disposition of the Rule of Five follows this pattern:

Interest on the capital Interest on the Interest
Time 1 k2

Capital m p1

Interest p1

However, a regular Rule of Five would be set down as follows:

Interest on the capital Interest on the Interest
Capital m p1

Time 1 k2

Interest p1

So that the two upper rows of the table set-down in BAB.2.25 are inverted. The
setting-down of the rule given in Ab.2.25. follows exactly the pattern of a regular
Rule of Five.

S BAB.2.26-27

In this Appendix we will first analyse the procedure given by Āryabhat.a for the
Rule of Three. Afterwards, we will study the rules with several quantities and the
Reversed Rule of Three, which are introduced by Bhāskara.

S.1 Rule of Three

Bhāskara treats separately the integral and fractionary cases.

S.1.1 Integers

The Rule of Three is given in verse 26:

trairāśikaphalarāśim. tam athecchārāśinā hatam. kr. tvā|
labdham. pramān. abhajitam. tasmād icchāphalam idam. syāt‖
Now, when one has multiplied that fruit quantity in the Rule of Three
by the desire quantity|
The quotient of that divided by the measure should be this fruit of the
desire‖

The quantities involved in a Rule of Three and in all the other proportion rules
are classified and named according to a typology linked to the kind of problem
involved: a measure quantity (pramān. arāśi) produces a fruit quantity (phalarāśi),
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both are known. A desire quantity (icchārāśi) is a new measure quantity whose
fruit, the fruit of the desire (icchāphala) also glossed as “the fruit of the desire
quantity” (icchārāśeh. phalam. ), is sought. The ratio of the first two quantities
is equal to the one of the two others. As we will see in the following subsections,
Rules of Five involve two known measures and desires, Rules of Seven, three known
measures and desires, etc.

According to Bhāskara’s commentary, we may describe the Rule of Three as fol-
lows:

Problem There is a standard way (called vāco yukti) of stating a problem which
involves a Rule of Three, in such a way that the values involved according to
the typology are immediately recognizable:

If by means of a measure (pramān. a, m), a fruit (phala, p) has been obtained,
then by means of a desire (icchā, i), what is the quantity, called the fruit of
the desire (icchāphala, r), obtained?

As studied in [Keller 2000; I.1. 5], we believe that this formulation states
together a mathematical property (equal ratios are involved), serves as a way
of relating a specific problem to the Rule of Three (there are equal ratios in
this problem, which are the following), and prepares the computation of the
Rule of Three, as it underlines the typology of the quantities involved.

Setting-down Bhāskara quotes a verse of unknown origin for the positioning of
the quantities on the working surface:

ādyantayos tu sadr. śau vijñeyau sthāpanāsu rāś̄ınām|
asadr. śarāśir madhye trairāśikasādhanāya budhaih. ‖
In order to bring about a Rule of Three the wise should know that
in the dispositions|
The two similar (sadr. śa) 〈quantities〉 are at the beginning and the
end. The dissimilar quantity (asadr. śa) is in the middle.‖

The quantities which are “similar” (sadr. śa), are those which are similar from
the point of view of the typology of the problem: the measure and the desire,
both of which produce a fruit. The “dissimilar” (asadr. śa) one, is the only
known fruit.

The row on which the quantities are written has the following columns:

measure quantity fruit quantity desire quantity
m p i

Procedure Following the rule given by Āryabhat.a, the fruit is multiplied by the
desire and divided by the measure:

r =
p × i

m
.
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S.1.2 Fractions

As noted before, what is considered a fraction by Bhāskara is a number of the

form a ± b
c

noted in the text as:
a
b
c

Bhāskara glosses the first part of verse 27, to explain how a Rule of Three is carried
out with fractions:

chedāh. parasparahatā bhavanti gun. akārabhāgahārān. ām|
The denominators are respectively multiplied to the multipliers and the
divisor.

This rule would only give the core of the operation to be made when a Rule of
Three involves fractions.

Therefore, when fractions are involved, another typology of the quantities entering
in a Rule of Three is described. This typology concerns their function within the
procedure: a quantity is either a multiplier or a divisor. When multipliers and
divisors have denominators, as we will see, their denominators become respectively
divisors and multipliers. This property of denominators in the Rule of Three is
qualified by Bhāskara as being part of their nature (dharma), and the fact of
becoming a multiplier or a divisor is stated as a change of condition, by using the
verbal root NĪ-:

. . . yasmāt taddharmāya chedāh. parasparam. n̄ıyante|

. . . since according to their nature (dharma) denominators are brought
to one or the other 〈condition〉.

We can explain the different steps to be followed according to Bhāskara’s com-
mentary as follows:

Problem If the problem is the same as the one stated before, with p, m or i as
fractionary quantities:

If by means of a measure (pramān. a, m), a fruit (phala, p) has been obtained,
then by means of a desire (icchā, i), what is the quantity, called the fruit of
the desire (icchāphala, r), obtained?

Step 1 All are put into a “same category86” (savarn. ita), which means that the
fractionary quantity (i.e a quantity plus or minus a fractional part) is made
into a “fraction”87, with just a numerator and a denominator. So that if p

86In fact the same word is used in the second half of verse 27 to evoke fractions with a same
denominator. See the supplement for BAB.2.27.cd and [Keller 2000; I.2.2]

87In [Keller 2000; I.2.2] the status of this intermediary form in respect to fractionary quantities
and fractions per se is studied.
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was fractionary it becomes of the form
np

dp
, etc. The quantities are “set down”

as before, fractions disposed in a column. If all the quantities are fractions
the disposition would be as follows:

measure quantity fruit quantity desire quantity
nm np ni

dm dp di

Step 2 The computation described in Ab.2.27.ab, as understood by Bhāskara, is
carried out. He explains that the denominators of the multipliers (e.g. the
denominators of p and i) become divisors and respectively the denominator
of the divisor (i.e. the denominator of m) becomes a multiplier.

atas tes. ām. gun. akārabhāgahārān. ām. chedāh. parasparahatāh. ye
gun. akārachedāh. bhāgahārahatās te bhāgahārā bhavanti,
bhāgahāracchedāś ca gun. akārahatāh. gun. akārā bhavanti| (. . . )
gun. akārān. ām. sam. vargo gun. akāra ity arthād avagamyate|
Therefore, the denominators are respectively multiplied to those
multipliers and the divisor; those denominators of the multipli-
ers which are multiplied to the divisor become divisors and the
denominators of the divisor multiplied to the multipliers become
multipliers. (...) Because the meaning is: the product of divisors
is a divisor; the product of multipliers is a multiplier, 〈the above
computation〉 is understood.

In this particular case, the plural ending of the “denominators of the divisor”
may be understood as indicating simply the plurality of unities of the denom-
inator (i.e. it is not one). Another interpretation of this plural form as that of
a plurality of denominators, makes sense, as we have discussed below, when
considering the computation with fractions in rules of proportions involving
more than three quantities.

The computation described here involves, probably before the multiplications
themselves, a movement of the quantities on the working surface. In Example
2 Bhāskara indicates a movement, by using the verb Gam- which means “to
go”:

gun. akārayoś chedā bhāgahāram. gatāh.
The two denominators of the multipliers go to the divisor.

So the denominators of the multipliers would move to the column of the
divisor and reciprocally, the denominator of the divisor would move to the
columns of the multipliers. As there are two columns for the multipliers we
do not know where exactly this denominator was placed. We have tentatively
represented this movement here:
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divisor Multiplier
nm np ni

dp dm

di

No such intermediary disposition, however, is found in the text.

Step 3 As in the procedure described in verse 26, the product of the multipliers
is divided by the product of the divisors.

Simplification by common factors were probably commonly used, as among others,
the remark quoted below from the resolution of Example 7 shows. We can note that
by placing divisors and multipliers in separate but adjoining columns, common
factors would appear very clearly.

S.1.3 Conversions

This is a specificity of the problems solved within this commentary: an extra
arithmetical computation is required by using different measures of weights and
therefore conversions. This may be due to the fact that a quantity, when considered
as belonging to a worldly practice (lokavyavahāra), should be as much as possible
stated as a set of integers rather than with fractional parts. For instance, the result
found in the first example has been obtained as a fraction of palas, Bhāskara writes:

tatra pales.u bhāgam. na prayacchat̄ıti “catus.kars.am. palam” iti
In this case, since parts (bhāga) in palas are not desired 〈one should
use:〉 “a pala is four kars.as”

It is as if the fractional parts themselves occurred because the measuring units were
not thin enough. This may have been a common required computation, as even
today, measuring units are not uniform throughout the Indian sub-continent. The
close link that conversion computations bear with a Rule of Three is underlined
in the versified problems concerned with the reversed Rule of Three.

For the sake of simplicity we have not rendered here the computations involving
conversions.

S.1.4 Variations

Several examples of problems which involve a Rule of Three are given here. The
initial problem is transformed and reformulated in order to make the Rule of Three
apparent.

a Motions In Example 4 the motion of a coiled snake entering its hole is de-
scribed. The medium speed gives a first ratio between a distance and a time,
knowing the size of the snake, the time for the snake to enter the hole is sought.
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b Cattle In Example 5, a herd divided in tamed and untamed cattle is con-
sidered. Knowing the ratio of the tamed to the total number of heads of one
given herd, the ratio to the tamed in another herd is asked. The ratio being thus
considered constant from one herd to another.

c Commercial Problems N merchants invest in a capital (mūla) each with their
own sum: the first merchant invests m1, the second m2 etc. The total initial
investment is m. The total profit (lābha) is known to be l. The respective interests
on the initial capital for each merchant is computed with a Rule of Three, the
ratio of m to l being the same as the ratio of m1 to l1 etc. In example 7, all the
initial values are fractionary. They are reduced to a same denominator, Bhāskara
then adds:

chedaih. prayojanam. nāst̄ıty am. śāh. kevalāh.
There is no use of the denominators, only the numerators 〈are taken
into account〉.

This makes sense as ratios only are considered.

S.2 Rule of Five and the following

Bhāskara explains at length the case of the Rule of Five, through an example. The
Rule of Seven is briefly illustrated. These two cases are sufficient to understand
how a rule of 2n + 1 quantities may be perceived.

These additional rules of proportions may be understood in two separate ways.

1. The first way is only alluded to by Bhāskara in his resolution of Example 8.
This is the one we think was usually used in computations, because of its
simplicity.

By generalizing the case presented in Example 8, we can deduce the
following situation for a Rule of Five:

Problem A Rule of Five typically concerns a triple ratio- where two linked
measure quantities produce one fruit. This can be expressed as follows:
If by means of m1 and m2, p is obtained, then by means of i1 and i2
what has been obtained?
Typically this happens in commercial problems, where m1 is a certain
capital invested for m2 months, p being the interest, i1 being another
capital invested for i2 months, and r being the interest of this second
investment, and is what is sought.

Setting-down The disposition of a Rule of Five, as seen in the edition88, has
two columns and not three, as in the Rule of Three:

88One should bear in mind that there certainly is a disrepancy between the edition and the
manuscripts on one hand, the manuscripts and Bhāskara’s original intentions on the other.
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Known Ratios Sought Ratios
Capital m1 i1
Time m2 i2

Interest p

In one case, in the last row of the second column, where we can suppose
that the value sought, r, was placed, a zero (0) is found.89

Procedure As in the Rule of Three, where the fruit and the desire are mul-
tipliers and the measures are divisors, a rule of Five can be seen as the
product of its fruit and desires divided by the product of the measures.
In other words:

r =
p × i1 × i2
m1 × m2

.

Accordingly, a greater generalization would consider a rule of 2n + 1 quanti-
ties, typically dealing with the known ratios of n linked measures m1, . . . , mn

producing p. Knowing the values of i1, i2, . . . , in a value r is sought.

The setting-down would then be of the form:

Known Ratios Sought Ratios
m1 i1
m2 i2
.
.
.

mn in
p

And the computation:

r =
p × i1 × i2 × · · · × in
m1 × m2 × · · · × mn

.

2. However, Bhāskara insists on the link that rules of proportions have with the
Rule of Three. He explains that they all can be understood as a collection of
rules of Three:

pañcarāśikād̄ınām. trairāśikasan. ghātatvāt| kasmāt pañcarāśy-
ādayas trairāśika sam. hatāh. ? pañcarāśike trairāisikadvayam.
sam. hatam. , saptarāśike trairāśikatrayam. , navarāśike
trairāśikacatus. t.ayam ity ādi
Because the Rule of Five, etc. is a collection of rules of Three.

〈Question〉
How are 〈these rules of Three〉 to be known?

89This is presented as such in the edition. We do not know if such a fact was common to all
manuscripts. For a discussion, please see [Keller 2000; I.2.2]
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In a Rule of Five, two rules of Three are collected, in a Rule of
Seven, three rules of Three are collected, in a Rule of Nine, four
rules of Three are collected, and so forth.

As we have emphasized elsewhere90, this involves taking each ratio separately,
and considering for each rule the triple first formed of (m1, p, i1), and, if p2

is what is found with a first Rule of Three, then the triple (m2, p2, i2), is
considered and so forth. Thus considering n rules of Three in a rule of 2n+1
quantities. In the above mentioned paper we have analyzed the way the
disposition itself, by its systematicity, also conveys this somewhat automatic
generation of a new rule, by adding a row.

In the light of these procedures, the discussion Bhāskara carries on the compu-
tations with fractions makes sense with several denominators for divisors, since a
rule of 2n + 1 quantities probably has n divisors. That the computation follows
also the same movement of quantities on the working surface is suggested by the
following sentence at the end of the resolution of example 8 (illustrating a Rule of
Five):

chedā api pūrvavad gun. akārabhāgahārān. ām. parasparam. gacchanti|
Furthermore, denominators, as before, go respectively to the divisors
and multipliers.

S.3 The Reversed Rule of Three

If a Rule of Three may be expressed as

r =
p × i

m
,

then the reversed Rule of Three is

r =
p × m

i
.

These ratios typically concern shifting measuring units. We could sum up the
typical problem in this way:

p of a certain thing has been obtained when measured by a given unit
u1 which measures m times another unit, u2. When u1 measures i times
u2, what is the measure r of the same certain thing, in terms of the unit
u1?

90[Keller 1995]
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Figure 52: True and mean positions of a planet
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A same quantity is measured with different ratios of conversions, but the unit of
measure u2 is constant, thus that quantity when measured by u2 amounts to

m × p = i × r,

from which the reversed Rule of Three ratio derives.

An astronomical application of the reversed Rule of Three is given in this part
of the commentary. The astronomical parameters it refers to are briefly exposed
in the Appendix 3. Bhāskara starts by stating the ratio between two different
corrections of the arc distance between the mean position of a planet at a given
time (M) and its mean apogee (U):

svasiddhānte yadi vyāsārdhaman. d. ale bhujāphalam idam. labhyate tadā
tatkālotpannakarn. avis.kambhārdhaman. d. ale kimiti
And in this Siddhānta 〈such a problem requires a Rule of Three〉 “when
this bhujāphala has been obtained in the great circle (vyāsārdhaman. dala),
then how much 〈is it〉 in the circle whose semi-diameter is the hy-
potenuse produced at that time?”

Let M1 be an approximation of the true position of G when its mean position is
in M . This is illustrated in Figure 52.

Here Bhāskara does not consider the epicycle defined by MM1, but the circle hav-
ing for radius OM1: tatkālotpannakarn. avis.kambhārdhaman. d. ala (the circle which
has for semi-diameter the diagonal produced at that time).
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Let A be the point of OM1 that intersects with the mean orbit of G. Let B be
a point of (MO) such that AB is perpendicular to (MO). Let B1 be a point
of (MO) such that M1B1 is perpendicular to (MO). Both AB and M1B1 are
called the bhujāphala (the correction to the bhujā). OA is the radius of the orbit
(vyāsārdha) and OM1 is called the hypotenuse (karn. a).

The ratio given here can be written, with these notations, as

AB

OA
=

B1M1

OM1
.

Therefore we have:

AB =
B1M1 × OA

OM1
.

Now, Bhāskara remarks that AB is inversely proportional to OM1:

tatra mahati karn. apramān. o ’lp̄ı yasyo [bhujāphalakalā] bhavanti,
alpakarn. e bahuvya iti
In this case when the size of the hypotenuse is great, [the minutes of
the bhujāphala] become smaller, and when the hypotenuse is small, 〈the
minutes of the bhujāphala〉 increase.

Now since this portion is stated as he glosses the reversed Rule of Three, we
can understand that Bhāskara, with this relation between the bhujāphala and the
hypotenuse, draws a relation from which another analysis of the problem, as a
reversed Rule of Three, could appear: knowing the bhujāphala with the radius of
the orbit, we would try to obtain the same segment with the hypotenuse. However
this analysis seems queer as this would suppose that M1B1 and AB, which both
bear the same name, are the same segments. This is evidently not the case. The
first bhujāphala obtained would be M1B1, which seems to derive from the epicycle
and not directly from the radius of the orbit.

Another hypothesis, more convincing maybe, would be to consider that this por-
tion of the text has been displaced in an original scribal error due to the common
ancestor of all manuscripts, and does comment simply on a Rule of Three.
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T BAB.2.28

We will discuss here the astronomical computation described by Bhāskara in this
part of the commentary.

T.1 Notations and references

Some elements of Hindu astronomy have been given in the Appendix bearing this
name. For an understanding of the computation whose steps only are described
here, please see [Ōhashi 1994; p. 191-193], [Shukla 1963; p.47-48], [Shukla 1960;
p.75-76].

Let the given time in prān. as be t; the ascenscional difference c; the sun’s altitude
α and the latitude of the observer φ, the earthsine (ks. it̄ıjyā) k, the day radius a.

T.2 Computing the time with the Rsine of the sun’s altitude

We can distinguish several steps in the computation given in BAB.2.28, that we
may formalize in a modern mathematical form as follows:

1. “when computing the 〈time in〉 ghatis from the Rsine of altitude produced
from the Rsine of zenith distance”

Rsinα is given

2. “the semi-diameter was a divisor and therefore 〈becomes〉 a multiplier”

Rsinα × R

3. “the Rsine of the observer’s co-latitude was a multiplier and therefore
〈becomes〉 a divisor”

Rsinα×R
Rsin(90−φ)

4. “In this case, in the northern 〈hemi-〉sphere, one had to add the earth sine,
and therefore 〈it〉 is subtracted; in the southern 〈hemi-〉sphere one had to
subtract 〈it〉 and therefore it is added. ”

(

Rsinα×R
Rsin(90−φ)

)

∓ k

5. “Then, just because it has the state of being reversed the semi-diameter is a
multiplier”

[(

Rsinα×R
Rsin(90−φ)

)

∓ k
]

× R
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6. “the day radius is a divisor.”

[( Rsinα×R
Rsin(90−φ) )∓k]×R

a

7. “The sine obtained is made into 〈its〉 elemental arcs.”

Rsin−1

(

[( Rsinα×R
Rsin(90−φ) )∓k]×R

a

)

8. “In the northern 〈hemi-〉sphere in arcs the prān. as of the ascenscional dif-
ference are added, because 〈they〉 had the state of being subtracted; in the
southern 〈hemi-〉sphere they are subtracted, because they had the state of
being added, etc.”

Rsin−1

(

[( Rsinα×R
Rsin(90−φ) )∓k]×R

a

)

∓ c

9. t is obtained.

T.3 Which procedure is reversed?

In verse 28 of the Golapāda, Āryabhat.a gives the following rule91, which computes
the Rsine of altitude from the Rsine of the angular distance of the horizon to the
day circle at a given time:

1. Find the Rsine of the arc of the day circle from the horizon (up to the point
occupied by the heavenly body) at the given time;

2. Multiply that by Rsine of co-latitude (avalambaka)

3. and divide by the radius (vis.kambhārdha):

4. The result is the Rsine of the altitude (śaṅku) (of the heavenly body) at the
given time elapsed since sunrise in the forenoon or to elapse before sunset in
the afternoon.

This rule is not exactly the one that Bhāskara reverses, since it doesn’t start
from the time. However the procedure reversed may have been part of Bhāskara’s
commentary on this verse. We do not have, however, Bhāskara’s commentary
on this verse, since none of the known manuscripts have preserved his commen-
tary to the golapāda. Procedures are found both in the Laghubhāskar̄ıya and the
Māhabhāskar̄ıya.

91As translated by Sharma&Shukla 1976, p.139- I have added the indentations and the terms
in Sanskrit within parentheses.
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In verses 7-11 of the third chapter of the Laghubhāskar̄ıya the following algorithm
is given92, which from the time derives the Rsine of altitude:

1. The ghat.ı̄s elapsed (since sunrise) and to be elapsed (before sunset), in the
first half and the other half of the day (respectively), should be multiplied
by 60 and again by 6: then they (i.e those ghat.ı̄s) are reduced to asus (that
is to minutes of arc or prān. as

93:

2. (When the sun is) in the northern hemisphere, the asu of the sun’s ascen-
scional difference should be subtracted from them and (when the sun is) in
the southern hemisphere, they should be added to them.

3. (Then) calculate the Rsine (of the resulting difference or sum) and multiply
that by the day-radius.

4. Then dividing that (product) by the radius (vis.kambhārdha), operate (on the
quotient) with the earth-sine contrarily to that above (i.e. add or subtract the
earth-sine according as the sun is in the northern or southern hemisphere).

5. Multiply that (sum or difference) by the Rsine of the co-latitude (lambaka)
and divide by the radius: the result is the Rsine of the sun’s altitude (śaṅku).

6. The square root of the difference between the squares of that and of the
radius is the Rsine of the sun’s zenith distance (chāyā).

7. That multiplied by twelve and divided by the Rsine of the sun’s altitude
(śaṅku) is the true shadow (of the gnomon).

In verses 18-20 of the third chapter of the Māhabhāskar̄ıya the following algorithm
is given94which from the time derives the Rsine of altitude:

1. Add the (sun’s) ascenscional difference derived from the local latitude to or
subtract from the asus elapsed (since sunrise in the forenoon or to elapse
before sunset in the afternoon) according as the sun is in the southern or
northern hemisphere.

2. (When the sun is) in the northern hemisphere, the asu of the sun’s ascen-
scional difference should be subtracted from them and (when the sun is) in
the southern hemisphere, they should be added to them.

3. By the Rsine of that (sum or difference) multiply the day-radius,

92[Shukla 1963; Sanskrit text p.11; English translation p.46]. I have added the subdivisions
into different steps of the procedure and the names in Sanskrit of terms which occur also in the
paragraph of his commentary on verse 28 of chapter 2.

93This is the translation adopted by K.S. Shukla of this term (see [Sharma&Shukla 1976; p.
26]).

94[Shukla 1960; Sanskrit text p.15; English translation p. 74-75]. I have added the subdivisions
into different steps of the procedure and the names in Sanskrit of terms which occur also in the
paragraph of his commentary on verse 28 of the gan. itapāda of the Āryabhat.ı̄ya.
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4. and then divide ( the product) by the radius (vis.kambhārdha).

5. In the resulting quantity apply the earthsine reversely to the application of
the ascensional difference (cara) (i.e. subtract the earth sine when the sun
is in the southern hemisphere and add the earthsine when the sun is in the
northern hemisphere).

6. Then multiply that (i.e the resulting difference or sum) by the Rsine of the
co-latitude (lambaka) of the local place and then divide (the product) by the
radius again. Thus is obtained the Rsine of the sun’s altitude (śaṅku) for the
given time in ghat.̄ıs.

7. The square root of the difference between the squares of the radius and that
(Rsine of the sun’s altitude) is known as the (great) shadow.

So that with the same notation as before, we can formalize in a modern math-
ematical language the computation of the Rsine of the sun’s altitude with the
time:

1. t is given

2. t ∓ c

3. Rsin(t ∓ c)

4. Rsin(t ∓ c) × a

5. Rsin(t∓c)×a

R

6.
(

Rsin(t∓c)×a

R

)

± k

7.
[(

Rsin(t∓c)×a

R

)

± k
]

× Rsin(90 − φ)

8.
[(Rsin(t∓c)×a

R )±k]×Rsin(90−φ)

R

9. Rsinα

The fact that each step of this operation is the reverse of the other is illustrated
in Table 10.
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Table 10: A reversed astronomical procedure

Step rule to find the Rsinα Step Reversed rule

1 t is given 9 t is obtained.

2 t ∓ c 8 Rsin−1

(

[( Rsinα×R
Rsin(90−φ) )∓k]×R

a

)

± c

3 Rsin(t ∓ c) 7 Rsin−1

(

[( Rsinα×R
Rsin(90−φ) )∓k]×R

a

)

4 Rsin(t ∓ c) × a 6
[( Rsinα×R

Rsin(90−φ) )∓k]×R

a

5 Rsin(t∓c)×a

R
5

[(

Rsinα×R
Rsin(90−φ)

)

∓ k
]

× R

6
(

Rsin(t∓c)×a

R

)

± k 4
(

Rsinα×R
Rsin(90−φ)

)

∓ k

7
[(

Rsin(t∓c)×a

R

)

± k
]

× Rsin(90 − φ) 3 Rsinα×R
Rsin(90−φ)

8
[(Rsin(t∓c)×a

R )±k]×Rsin(90−φ)

R
2 Rsinα × R

9 Rsinα is obtained 1 Rsinα is given

U BAB.2.29

The procedure given in Ab.2.29 may be understood, with a modern mathematical
computation, as follows:

Two series are defined here. Both use the terms of a given set of quantities, (xi).
One series is obtained with a method that Bhāskara calls “the decreased by a
quantity”-method (rāśyūnakrama or rāśyūnanyāya). This series is defined as fol-
lows:

S1 = x1 + x2 + · · · + xn − x1 =
∑

n
i=1xi − x1 = x2 + · · · + xn, · · ·

S2 = x1 + x2 + · · · + xn − x2 =
∑

n
i=1xi − x2 = x1 + x3 + · · · + xn, · · ·

Sj =
∑

n
i=1xi − xj ,
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∑
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Sn =
∑

n
i=1xi − xn.

Each term of this series is known. From these terms, the terms of a second series
(Xi) are found. Each term Xi consists of the sum of the terms of the set (xi). In
other words:

Xi =
∑

n
i=1xn.

When the series (Si) is considered, each term xi appears in every sum except in
the sum Si, thus it appears n−1 times. Therefore when the sum of n terms of the
series Si are considered in due order, to obtain Xi one can just divide by n − 1.
In other words:

Xi =
∑

n
i=1xn =

∑

n
j=1Sj

n − 1
.

Xi is called the “value of the terms” (gacchadhana) or the “whole value” (sarvad-
hana).

Bhāskara however understands that this verse does not only compute the terms
of Xi, but also the value of each term xi, separately. In other words, from both
the term Xi and each Si, all the terms of the set (xi) called the “value of a term”
(padadhana) can be found:

xi = Xi − Si.

We note that Bhāskara indicates that the terms of the series Si should be stored
separately in an “undestroyed disposition” (avinis. t.asthāpana) in order to be used
in this operation.

V BAB.2.30

V.1 General resolution of first order equations

This verse gives a procedure to solve first order equations.

Let x be “the price of a bead” (gulikāmūlya); it is the unknown. Let a and b be the
number of beads belonging respectively to two persons. These are the coefficients
of the unknown. Bhāskara also names them yāvattāvat (as much as), in which case
the unknown is named “the value of the yāvattāvat” (yāvattāvatpramān. a). Let c
and d be the additional amount of money respectively belonging to each of the
two persons. Ab.2.30 reads as follows:
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Bhāskara however understands that this verse does not only compute the terms
of Xi, but also the value of each term xi, separately. In other words, from both
the term Xi and each Si, all the terms of the set (xi) called the “value of a term”
(padadhana) can be found:

xi = Xi − Si.
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gulikāntaren. a vibhajed dvayoh. purūs.ayos tu rūpakavíses.am|
labdham. gulikāmūlyam. yadyarthakr. tam. bhavati tulyam‖
One should divide the difference of coins95 〈belonging〉 to two men by
the difference of beads.|
The result is the price of a bead, if what is made into money 〈for each
man〉 is equal.

Since it is assumed that “what is made into money 〈for each man〉 is equal”, with
a modern mathematical notation, the problem considered can be noted:

ax + c = bx + d.

The setting-down of such an equation (samakaran. a) as seen in examples has the
following pattern:

beads coins
Person 1 a c
Person 2 b d

Āryabhat.a’s verse, in its usual succinct way, indicates that the unknown is found
by dividing the difference of constants (or coins i.e. c and d) by the difference
of coefficients (or beads, i.e. a and b). Bhāskara, firstly, gives a place for the
respective subtracting operations, in the resolution parts of Examples 3 to 5:
the coefficients (or beads or yāvattāvats) are subtracted “above” (upari) and the
coefficients “below” (adhas).

In the first two examples treated by Bhāskara, b < a and c < d. So that the
quotient he computes is

x =
d − c

a − b
.

The disposition as described in words (no intermediary step is represented) would
then be as follows:
beads a-b
coins d-c

Therefore the dividend is below and the divisor above (in fractions the positioning
is reversed).

In the two following examples treated by Bhāskara, a < b and d < c, and according
to the intermediary values found, we understand that the following quotient is
computed:

x =
c − d

b − a
.

Obviously, a subtraction is always made by removing the smallest quantity from
a larger one.

95Even though a rūpaka is a particular coin, since Bhāskara glosses it with d̄ınāra and in
examples with dravya, he probably understands it here as a coin in general.
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V.2 Debts and wealth

In the last example a “debt” (r.n. a) is considered, among the number of coins given.
In other words, −c or −d may be considered. It is set down, in the printed edition,
with a small circle affixed to it (c◦), as when a part is subtracted in a fractionary
quantity.

The quality of “debt” and “wealth” seems to be only an attribute of the coins at
the beginning of the problem. The compound r.n. agata “the state of being a debt”
is used once (p. 127; line 10) to qualify the “negative” coin. However, the results of
the computation never bear such a quality. A negative/positive quantity appears
as the quality conferred to the number of coins, when these coins counted in the
evaluation of the total wealth of a person are subtracted or added. The number
itself, however is always positive. So it seems that from this part of Bhāskara’s
text alone, we cannot consider that negative and positive quantities were used in
the meaning that we confer to them now.

It is assumed that the wealth of both people is equal, consequently the quotient
obtained in the end can never be “negative”. It would be meaningless in terms
of debts and wealths. As we have seen, the rules given here only work for certain
specific cases of equations. We may assume that problems were devised in order
to obtain a meaningful result.

To sum it up, we consider here that the notion of “debt” and “wealth” seems to
be restricted to the coins which represent the constants of the equation. We do
not see them applied to the “beads” or “yāvattāvats” which name the coefficient
of the unknowns. Nor is it transferred to the “equal wealth” of both people.

Bhāskara quotes a prakr. t verse, which is quite corrupted in the manuscripts used
for the edition. This rule concerns debts and wealths (dhana). To understand
it, one should consider first of all that implicitly, a subtraction is always made
from the largest quantity in absolute value. Secondly, that this verse concerns
the specific computation described in verse 30, as Bhāskara does not specify that
its meaning can be extended to other cases. Finally, we think that the quality of
“debt” and “wealth” applies to the quantity, and not to the number. We think that
the “signs” of the quantities indicate their status in the procedure, signs explicitly
what operations quantities should undergo. It does not affect the number itself.
According to their nature, the quantities as “positive numbers” are subtracted or
added. The result considered is always a “positive number”. In other words, we
understand the rule given here as describing, according to a typology of the coins
in terms of wealth or debt, the different computations to be carried out.

The rule given in BAB.2.30 may be understood as a succession of four rules. Let
us consider c and d two positive integers, with c < d.

First rule According to Shukla’s Sanskrit interpretation, the first rule given is:

śodhyam r.n. ād r.n. am.
The debt should be subtracted from the debt.
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In this case, for us, the subtraction is made from a negative quantity, and
a negative quantity is subtracted from it96. Thus the operation considered
usually when solving the equation would be

(−d) − (−c).

The rule quoted would indicate that in fact, what is to be computed in this
case is

c − d.

Let us note here, that the final result of the equation is correct, only if b− a,
(b − a > 0) is computed.

Second rule According to Shukla’s Sanskrit interpretation, the second rule given
is:

dhanam. dhanatah.
The wealth 〈should be subtracted〉 from the wealth.

Reasoning as previously, when solving the equation, the operation considered
would be

d − c.

This is the case seen in the first two examples of the commentary. The result
given is correct only if a − b, (a − b > 0) is computed.

Third and fourth rule According to Shukla’s interpretation the third and fourth
rule given is:

na dhanato na r.n. at.ah. śodhyam| vipar̄ıte śodhanam eva dhanam.
〈a debt〉 should not be subtracted from a wealth, 〈a wealth〉 not
from a debt|
When it is reversed, just the subtraction 〈becomes〉 wealth.

In other words, when solving the equation, if a negative quantity is to be
subtracted from a positive quantity, usually d − (−c) should be computed.
The verse indicates, that in this case, the subtraction should be considered
as reversed, i.e. it becomes an addition. Therefore c + d should be computed
in fact.

When solving the equation, if a positive quantity is subtracted from a nega-
tive quantity, that is if −d− c is what should be computed according to the
usual rule, the verse indicates that the subtraction should be reversed, that
is c + d should be in fact computed. This is the case illustrated in Example
5. The result obtained is correct only if b − a, (b − a > 0) is computed.

96We do not have any example where such a computation is carried out.
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W BAB.2.31

W.1 Understanding the verse

Verse 31 gives a procedure that may be understood in an abstract way. Bhāskara
gives two examples in “worldly computations” (laukikagan. ita), however his general
interpretation is astronomical. We will discuss here this aspect of his interpreta-
tion.

Let there be two planets, planet 1 and planet 2 whose respective longitudes at
the time of the computation are λ1 and λ2, so that the distance between them is
λ1−λ2 ( hence λ1 > λ2). This value is called “vilomavivara” when the two planets
are going in opposite directions, “anulomavivara” when the planets are going in
the same directions. Planet 1 stands in the east; planet 2 in the west. The direct
motion is from west to east. Their respective motions (gati) g1 and g2, correspond
to the distance they cross in a finite unit of time.

If they are in opposite motions, then the meeting time, ∆t will be

∆t =
λ1 − λ2

g1 + g2
,

and if they are going in the same direction,

∆t =
λ1 − λ2

| g1 − g2 | .

As explained by the commentator, these results are approximate. Bhāskara dis-
tinguishes several cases, and explains the rule as a Rule of Three. He also explains
how from the time of meeting, the longitude of the meeting spot is found, approx-
imately.

W.2 Bhāskara’s distinctions and explanations

Bhāskara justifies the procedure for each of the cases (i.e. when the planets move
in opposite directions and when they move in the same direction). The basic
idea is that the variation of the distance separating two planets in a given time
is, approximately, a constant ratio. This ratio can therefore give an approximate
meeting time or longitude of the meeting. This variation of the distance separating
two planets in a day is called the “daily passing” (āhniko bhogah. , noted ∆g).

W.2.1 Planets with opposite movements

According to Bhāskara (p. 130; lines 13-14), when two planets move in opposite
directions, their “daily passing” is equal to the sum of their motions during a day
(∆g = g1 + g2).
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Bhāskara then understands the rule to find the meeting time of G1 and G2 as a
Rule of Three:

tena trairāśikakr̄ıyate– yady anenāhnikena bhogenaiko divaso labhyate,
tadā ’nena vilomavivaren. a kim iti|
A Rule of Three is performed, with that 〈daily passing〉: If one day is
obtained with that daily passing, then what is 〈the time obtained〉 with
that distance of 〈two bodies in〉 opposite 〈motions〉?

With the same notations as before, the ratios understood here are

∆g : 1 = λ1 − λ2 : ∆t,

so that

∆t =
(λ1 − λ2) × 1

g1 + g2

for a time in days, and

∆t =
(λ1 − λ2) × 60

g1 + g2

for a time in ghat.ikās, since one day is sixty ghat.ikās.

W.2.2 Planets moving in the same direction

When two planets are in moving in the same direction, their “daily passing” is
equal to the difference of their motions (∆g =| g1 − g2 |). Bhāskara states this
rather elliptically:

yadā punar anulomagat̄ı etau bhavatas tadā bhuktivíses.en. ānulomavi-
varasya bhāgah. , yasmād bhuktivíses.atulyam āhnikam. gatyantaram. tayoh. |
Furthermore, when both 〈planets〉 are in a direct motion, then, the di-
vision of, the distance of 〈two bodies〉 with a direct 〈motion〉, by the
difference of daily motions 〈is made〉, because the difference of daily
motions is equal to their daily difference of motions.

Once again, a Rule of Three is stated considering in this case a time given in nād. ı̄s
or ghat.ı̄kās, being two different names for the same measuring unit:

tato ’nena gatyantaren. a bhuktivíses.en. a janitena s.as. t.ir nād. yā upalab-
hyante tada anulomavivaren. a kim iti ghat.ikā labhyante|
Then, 〈if〉 sixty nād. ı̄ are obtained with that 〈daily〉 difference of mo-
tions, produced as the difference of daily motions, then what 〈is the
time produced〉 with the distance of 〈two bodies with a〉 direct motion?
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This Rule of Three, would express the ratio:

∆g : 60 = λ1 − λ2 : ∆t.

So that for a time in ghat.ikās:

∆t =
(λ1 − λ2) × 60

| g1 − g2 | .

That this meeting time is an approximation is clearly stated in the first verse that
Bhāskara quotes from his own astronomical treatise, the Mahābhāskar̄ıya. This
verse also explains that because of this approximation, the determination of the
longitude of the meeting point requires extra work.

W.3 Finding the longitude of the meeting point

Using the same type of ratios, Bhāskara also gives a rule to find the longitude of
the meeting point of two bodies.

W.3.1 Two planets moving in opposite directions

Concerning two bodies with opposite directions, Bhāskara describes the following
case:

yadaiko grahah. purastāt sthito vakr̄ı, [anyah. ] paścād avasthitaś cāren. a
gacchati, tayor antarālaliptā vilomavivaram|
When one planet, standing in the east, goes in a retrograde 〈motion〉
and [the other], existing in the west, goes in an 〈ordinary〉 motion; the
minutes (liptās) of the interval (antarāla) 〈separating them〉 is “the
distance of 〈two bodies moving in〉 opposite directions”.

The situation described here is illustrated in Figure 53.

Let λ0 be the meeting spot of G1 and G2, and ∆λi =| λ0−λi |, for i=1,2. Bhāskara
states the following Rule of Three, once one has found the meeting time in ghat.ikās
of G1 and G2 (∆t):

yady s.as.yā ghat.ikābhih. grahasphut.agatir labhyate,
tadā vilomotpannaghat.ikābhih. kā bhuktir
If the true 〈daily〉 motion of a planet is obtained with sixty ghat.ikās,
then what is the motion 〈obtained〉 with the ghat.ikās known 〈as the
meeting time of two planets with〉 opposite 〈motions〉?

With the same notation as before, the ratio expressed here would be
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Figure 53: Two planets moving in opposite directions, the second having a direct
motion
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60 : gi = ∆t : ∆λi,

so that

∆λi =
gi × ∆t

60
.

Once again this ratio may be understood if we consider that numerically gi corre-
sponds to the distance crossed by planet Pi during a day or 60 ghat.ikās.

Bhāskara then states:

labdham anulomagatau grahe praks. ipyate vilomagater apan̄ıyate|
What is obtained is summed into the 〈longitude of〉 the planet with a
direct motion, or subtracted from 〈the planet with〉 a retrograde motion.

That is, if planet 1 is going in a retrograde motion and planet 2, goes in a direct
one, with the same notation as before:

λ0 = λ1 − ∆λ1 = λ2 + ∆λ2.

∆λi represents the correction of longitudes, taking in account the approximate
meeting time obtained.

Bhāskara describes a second case of planets moving in opposite directions, illus-
trated in Figure 54.
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Figure 54: Two planets moving in opposite direction; The first planet has a direct
motion
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With the same notations as before, and with the same type of reasoning, con-
sidering that planet 1 is going in a direct motion, and planet 2 is going in a
retrograde motion:

λ0 = λ1 − ∆λ1 = λ2 + ∆λ2.

W.3.2 Two planets moving in the same direction

Bhāskara, in the case of two planets moving in the same direction, distinguishes
between one that goes faster than the other. Whether they are in direct or retro-
grade motion is explicitly stated to be irrelevant:

labdham. ś̄ıghragatau paścād vyavāsthite ubhayam ubhayatra svam. svam.
praks. ipyate| śighragatau puras. sthite tad ubhaym ubhayasmād apan̄ıyate|
When the 〈planet with〉 a faster motion stands westward ; the pair is
added into the pair, respectively. When the 〈planet with〉 a faster motion
stands eastwards, that pair is subtracted from the pair. In this way the
past or future meeting times of both are produced.

The situation described in both cases is illustrated in Figure 55.

In this case, the pairs referred to are probably the results obtained for each planet,
respectively in the Rule of Three (i.e. ∆λ1 and ∆λ2). We can transcribe the
reasoning in a modern mathematical language. If v1 < v2, then

λ0 = λ1 + ∆λ1 = λ2 + ∆λ2,
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Figure 55: Two planets moving in the same direction
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and if v1 > v2,

λ0 = λ1 − ∆λ1 = λ2 − ∆λ2.

X BAB.2.32-33: The pulverizer

Bhāskara has two general interpretations of the procedure given in verses 32-
33 that describe a “pulverizer computation” (kut.t.ākāragan. ita). He reads in these
verses a “pulverizer with remainder (sāgrakut.t.ākāra)” and a “pulverizer without
remainder (niragrakut.t.ākāra)”. Having explained and illustrated these two differ-
ent interpretations, he then gives a long list of solved examples which show how
one or the other procedure is used in an astronomical context97.

We will describe and comment on the two different procedures given by Bhāskara,
and then we will explain the many astronomical situations in which he applies
them. Descriptions, under the label “General comments”, will use a symbolical
algebraization of the problem.

X.1 Two different problems

The problems that a pulverizer “with remainder” and that a pulverizer “without
remainder” solve, are different but nevertheless equivalent.

Indeed, the problem solved by a pulverizer “with remainder” is the following:

What is the natural number N that divided by a leaves R1 for remainder and
divided by b leaves R2 for remainder?98

97For Āryabhat.a’s and Bhāskara’s treatment of the pulverizer, see [Jain 1995; p. 422-447]
98Concerning the conditions under which this problem is solvable, please see section X.2.2 of

this supplement.
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Figure 55: Two planets moving in the same direction
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them. Descriptions, under the label “General comments”, will use a symbolical
algebraization of the problem.

X.1 Two different problems

The problems that a pulverizer “with remainder” and that a pulverizer “without
remainder” solve, are different but nevertheless equivalent.

Indeed, the problem solved by a pulverizer “with remainder” is the following:

What is the natural number N that divided by a leaves R1 for remainder and
divided by b leaves R2 for remainder?98

97For Āryabhat.a’s and Bhāskara’s treatment of the pulverizer, see [Jain 1995; p. 422-447]
98Concerning the conditions under which this problem is solvable, please see section X.2.2 of

this supplement.
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In a modern mathematical language:

N = ax + R1 0 ≤ R1 < a

N = by + R2 0 ≤ R2 < b

The problem solved by a pulverizer “without remainder” is the following:

What is the integer x that, multiplied by a, increased or decreased by c and divided
by b, produces an integer y?

In other words the problem consists of finding two integers (x, y) that verify

y =
ax ± c

b
,

where a, b and c are known positive integers. x is called the pulverizer or the
multiplier (gun. aka), y the quotient (labdha).

If we consider the problem solved by a pulverizer with remainder: R1 > R2, and
R1 − R2 = c, then

{

N = ax+ R1

N = by+ R2
⇔ y =

ax + c

b

What is called “the divisor of the greater remainder” (a) in the pulverizer with
remainder process is called in the pulverizer without remainder “the divisor which
is a large number” or “the dividend”; what is called “the divisor of the smaller
remainder” in the procedure of the pulverizer with remainder is called here “the
divisor”; and what is called the “difference of remainders” (R1−R2) is called “the
interior of a number”.99

As we will see, the pulverizer with remainder transforms the problem it solves
into a pulverizer without remainder problem. Both procedures, therefore, share
common steps. However the two problems and their two procedures are separated
in Bhāskara’s commentary.

We will now describe the process followed for a pulverizer without remainder.

X.2 Procedure for the pulverizer “with remainder”

We will present here the different steps of this algorithm. We will then expose some
of its variations as observed in solved examples, and finally present a mathematical
analysis of it.

99For a brief description of how Bhāskara proceeds to give two different interpretations of the
same compound see [Keller 2000; Volume I, I] and in Volume I, Introduction.
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X.2.1 General case

Problem

The problem this procedure solves is the following:

What is the natural number N that divided by a leaves R1 for remainder and
divided by b leaves R2 for remainder?100

In a modern mathematical language:

N = ax + R1 0 ≤ R1 < a

N = by + R2 0 ≤ R2 < b

For R1 > R2 the “setting-down”, in examples, follows this pattern:
R2 R1

b a

Step 1

Sanskrit Ab. 2.32ab. adhikāgrabhāgahāram. chindyād ūnāgrabhāgahāren. a

English Ab. 2.32ab. One should divide the divisor of the greater remainder by the
divisor of the smaller remainder.

General Comments Supposing R1 > R2, then a is “the divisor of the greater
remainder”, and b is “the divisor of the smaller remainder”; the following
computation is then carried out:

a

b
= q1 +

r1

b
⇔ a = bq1 + r1

We can note that Bhāskara in examples describes the result as follows: “the re-
mainder is r1 above, b below”. This is probably a way of describing the fractional
part that the division produces.

Step 2

Sanskrit Ab.2.32c. śes.aparasparabhaktam.

English Ab.2.32c. The mutual division 〈of the previous divisor〉 by the remainder
〈is made continuously.〉

General comments In other words, the following successive divisions are carried

100Concerning the conditions under which this problem is solvable, please see the last part of
this section of the supplement BAB.2.32-33.
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out:

b

r1
= q2 +

r2

r1
⇔ b = r1q2 + r2

r1

r2
= q3 +

r3

r2
r1 = r2q3 + r3

r2

r3
= q4 +

r4

r3
r2 = r3q4 + r4

...
rn−2

rn−1
= qn +

rn

rn−1
rn−2 = rn−1qn + rn

No indication is given concerning how to end the process. The “procedure” parts
of solved examples suggest that it was stopped when the remainder obtained was
considered sufficiently small, i.e. before zero was obtained as remainder. We do not
know according to what criteria a quantity was considered to be small enough.

Step 3

Sanskrit Ab.2.32cd matigun. am agrāntare ks. iptam

English Ab.2.32cd 〈The last remainder〉 having a clever 〈quantity〉 for multiplier
is added to the difference of the 〈initial〉 remainders 〈and divided by the last
divisor〉.

General comments As we will see in the next step, Bhāskara indicates how the
clever quantity should be placed in regard to the previously computed remain-
der. The placement presupposed, though not explicitly mentioned, would be:

q2

q3

...
qn

Bhāskara adds the following gloss which explains under what conditions and
how the “clever 〈quantity〉” is found101:

matigun. am. , svabhuddhigun. am ity arthah. |
katham. punah. svabuddhigun. ah. kriyate ?
ayam. rāśih. kena gun. itedam 〈edition reads gun. itam idam〉
agrāntaram. praks. ipya vísodhya vā asya rāśeh. śuddham. bhāgam.
dāsyat̄ıti agrāntare ks. iptam| sames.u ks. iptam. vis.ames.u śodhyam iti

101[Shukla 1976; p.132, lines 15 to 19]
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sampradāyāvicchedād vyākhyāyate|
〈As for〉 “having a clever 〈quantity〉 for multiplier”, the meaning
is: having a multiplier according to one’s own intelligence.

〈Question〉
But how is the multiplier according to one’s own intelligence?

〈It should answer this question:〉 Will this quantity (the remain-
der), multiplied by what 〈is sought〉 give an exact division, when
one has added or subtracted this difference of remainders 〈to the
product〉?
〈As for〉 “Added to the difference of remainders”; 〈it is〉 added
when 〈the number of placed terms is〉 even, subtracted when un-
even, as it has been explained by an uninterrupted tradition.

From this remark, we can deduce the following computation.

If the number of placed terms is even (n = 2p+1, and, because the placement
starts with the quotient q2, the number of placed terms is n − 1 = 2p)
one should solve the following equation having the following pair of integer
unknowns: (k, l), where k is called “the clever 〈quantity〉” (mati).

l =
rnk + c

rn−1
=

r2p+1k + c

r2p

,

where c = R1 − R2.

If the number of placed terms is not even (n = 2p, so that the number of
placed terms is n − 1 = 2p − 1), the following equation should be solved:

l =
rnk − c

rn−1
=

r2pk − c

r2p−1
.

We do not know how these equations where solved. They have the same form
as the problem solved by a pulverizer without remainder. However, only one
solution is sought. It is not required that this solution is the smallest possible.
The clever quantity, may have been found by trial and error.

Step 4

Sanskrit Ab.2.33a. adhoparigun. itam antyayug

English Ab.2.33a. The one above is multiplied by the one below, and increased by
the last.

Bhāskara furthermore adds:102:
102[Shukla 1976; p.132 lines 20 to 23]
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evam. parasparen. a labdhāni padāny āsthāpya, matís cādhah. ,
paścimalabdhaś ca matyā adhah. | (. . . ) evam. bhūyo bhūyah. karma
yāvat karma parisamāptitam iti|
When one has placed in this way the terms obtained by the mu-
tual 〈division〉, the clever 〈quantity〉 is placed below, and the last
obtained below the clever 〈quantity〉. (. . . ) In this way, again and
again the operation 〈is repeated〉 until the computation comes to
an end.

General comments The placement will then be:

q2

q3

...
qn

k
l

Then the operation:“ The one above is multiplied by the one below, and
increased by the last ”, is repeated, for all rows, beginning from the bottom
(i = n, n − 1, ..., 2):

qi qiq
′
i+1 + q′i+2

q′i+1 −→ q′i+1

q′i+2

The third element from the bottom of the column is replaced by the result
of the computation prescribed, and the last element is deleted.

This procedure is repeated until only two elements remain.

q′2
q′3

(q′2, q
′
3) is a pair of integer solutions of the original problem103, which is not

mentioned in the text. The procedure continues, considering q′2, from which
another couple of solutions will be derived.

103Please see the last part of this section of the supplement BAB.2.32-33.
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Step 5

Sanskrit Ab.2.33b ūnāgracchedabhājite

English Ab.2.33b. When 〈the result of this procedure〉 is divided by the divisor of
the smaller remainder.

Bhāskara furthermore adds 104:

ūnāgracchedhabhājite śes.am, (. . . ) pūrvagan. itakarman. ā
nis.pannarāśer vibhaktaśes.am. parigr.hyate|
〈As for〉 “When 〈the result of this procedure〉 is divided by the divi-
sor of the smaller remainder, the remainder”. (. . . ) of the division
of, the quantity produced by means of the previous mathematical
operation, by the divisor of the smaller remainder is understood.

General comments In other words, the solution, q′2, is divided by b:

q′2
b

= t +
s

b
⇔ q′2 = bt + s (o ≤ s < b).

The remainder, s, is thereafter considered. s is the least positive solution for
x of the original problem105, this is not mentioned in the text.

Step 6

Sanskrit Ab.2.33bcd. śes.am adhikāgracchedagun. am dvicchedāgram adhikāgrayutam

English Ab.2.33bcd. The remainder multiplied by the divisor of the greater re-
mainder and increased by the greater remainder, is the 〈quantity that has
such〉 remainders for two divisors.

Bhāskara furthermore adds106:

tad dvayor api chedayor bhājyarāśir bhavat̄ıti|
. . . That is the quantity to be divided for (i.e. by) both of these
two divisors.

General comments
N1 = as + R1.

N1 is the least positive integer that satisfies the original problem, and, at the
same time, it is regarded as the “remainder” (agra) corresponding to the two
divisors, a and b, when there is another problem: Find the number N that
when divided by ab leaves for remainder N1, and when divided by another
number leaves another given remainder.

104[Shukla 1976; p. 132 lines 23 to 25]
105Please see the last part of this section of the supplement for BAB.2.32-33.
106[Shukla 1976; p.133, lines 2-3]
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X.2.2 Understanding the general case of the pulverizer with remainder

Let us recall that the problem treated (“What is the natural number N that
divided by a leaves R1 for remainder and divided by b leaves R2 for remainder?”),
can be summarized as follows:

N = ax + R1 0 ≤ R1 < a

N = by + R2 0 ≤ R2 < b

a Preliminary remarks

a.1 Conditions on a and b The original problem supposes that a, b > 1, since a
division by 1 would leave no remainder, and that the problem if one of them were
equal to zero would equally have no sense in this context.107

If R2 = R1 = R when a and b are not coprime (that is their only common divisor
is 1), as we can see in Example 4, then the smallest integer solution N would be

N = LCM(a, b) + R,

where LCM(a, b) is the Least Common Multiple of a and b. This is the case of
the five first quantities in example 4. We do not know, however, how Bhāskara
proceeded in this case.

a.2 Conditions on the remainders Usually, in examples, R1 �= R2 and R1 �=
0, R2 �= 0.

Let us remark here that the above system of equations has a solution if and only
if R1 − R2 is a multiple of the Greatest Common Divisor of a and b. Indeed, let
(x0, y0) be a solution. Then:

R1 − R2 = by0 − ax0.

It is a common result of elementary number theory108 that such a number is
necessarily a multiple of the Greatest Common divisor of a and b. So that there
should always be a common multiple for a, b, and R1 − R2.

107If we consider however the set of equations written above, let us suppose that: either a or b

are equal to zero. If say a would be equal to zero, then we would have a value for N , R1, that
would verify the original problem, if and only if

R1 = by + R2

has an integer solution, that is if and only if R1 − R2 is a multiple of b.
108See for instance, [Gareth&Jones 1998; Proof of Theorem 1.8., p. 10]
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If a and b are coprime, then for any difference of remainders solutions can be
found. Bhāskara in the case of this interpretation of the pulverizer problem does
not make any such remark on a and b. However concerning a pulverizer without
remainder, such a fact is stated rather clearly, as we have noted in the section
concerning this procedure below.

When R1 = R2 = 0, then N is a common multiple of both a and b. If (x0, y0)
is the smallest solution of this set of equations then by definition, N is the Least
Common Multiple of a and b.

Bhāskara at the beginning of example 14 writes:

kaścid rāśih. sūryasya nirapavartitabhūdivasair bhāgam. hriyamān. ah.
śūnyāgrah. , candrasyāpi śūnyāgrah. eva sah. |
Some quantity when divided by the reduced number of terrestrial days
〈in a yuga〉 for the sun, has a zero-remainder (śūnyāgra), just that 〈same
quantity when divided by the reduced number of civil days in a yuga〉
for the moon too has a zero-remainder.

He later exhibits as such a quantity, the Least Common Multiple of both numbers.

b Understanding the procedure In the following we will consider that a, b > 1
and that R1 > R2, c = R1 − R2.

The process is interrupted, it seems, when the remainder obtained is sufficiently
small109. We can formalize the process in the following way (in exactly the same
terms as in Step 1 and 2 of the procedure described in the commentary):

For an arbitrary n:

a

b
= q1 +

r1

b
⇔ a = bq1 + r1

b

r1
= q2 +

r2

r1
⇔ b = r1q2 + r2

r1

r2
= q3 +

r3

r2
r1 = r2q3 + r3

r2

r3
= q4 +

r4

r3
r2 = r3q4 + r4

...
rn−2

rn−1
= qn +

rn

rn−1
rn−2 = rn−1qn + rn.

109Bhāskara’s contemporary, Brahmagupta, and all following known authors continue the
process until zero is obtained as remainder, and therefore do not compute the “clever quan-
tity”.
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By using this set of equations, the equation (*) can be rewritten as a set of two
equations, (A, i) and (B, i), for i = 1, . . . , n.

y = ax+c
b

= (bq1+r1)x+c

b
= q1x + y1 where

y1 =
r1x + c

b
(A, 1),

x = by1−c
r1

= (r1q2+r2)y1−c

r1
= q2y1 + x1 where

x1 =
r2y1 − c

r1
(B, 1),

y1 = r1x1+c
r2

= (r2q3+r3)x1+c

r2
= q3x1 + y2 where

y2 =
r3x1 + c

r2
(A, 2),

x1 = r2y2−c
r3

= (r3q4+r4)y2−c

r3
= q4y2 + x2 where

x2 =
r4y2 − c

r3
(B, 2),

...
{

yp−1 = q2p−1xp−1 + yp

yp =
r2p−1xp−1+c

r2p−2
(A, p)

{

xp−1 = q2pyp + xp

xp =
r2pyp−c

r2p−1
(B, p)

{

yp = q2p+1xp + yp+1

yp+1 =
r2p+1xp+c

r2p
(A, p + 1)

etc.

Now, with the equation (B, p) is associated an even number of quotients (q2p),
and in the computation of xp, c is subtracted.

With the equation (A, p+1) is associated an uneven number of quotients (q2p+1),
and in the computation of yp+1, c is added.

We can recognize here the computation of the clever quantity and the quotient
that is associated to it, as in Step 3 of the algorithm.

If the number of quotients is uneven, the equation (A, p + 1) should be solved by
trial and error; the solution, k, for xp is called “the clever 〈quantity〉” (mati).
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l =
rnk + c

rn−1
=

r2p+1k + c

r2p

.

If the number of quotients is even, the equation of (B, p) should be solved by trial
and error; the solution, k , for yp is called “the clever 〈quantity〉” (mati).

l =
rnk − c

rn−1
=

r2pk − c

r2p−1
.

Once a couple of solutions is found, by working the solutions backwards, one arrives
at a solution x for (*).

Indeed, by solving the second equation of (A, p+1) (resp. of (B, p)), one obtains a
numerical value for both (xp, yp+1) (resp. of (xp, yp)), which in turn gives a value
for yp (resp. for xp−1). With this value of yp (resp. of xp−1) the value of xp (resp.
for yp−1) can be computed and so forth until we have obtained a value for (x1, y1),
which gives a value for x.

In other words, by using the succession of equations, for example in the case of an
uneven number of quotients:

yp = q2p+1xp + yp+1 (A, p)
xp−1 = q2pyp + xp (B, p − 1)

yp−1 = q2p−1xp−1 + yp (A, p − 1)
...

x1 = q4y2 + x2 (B, 1)
y1 = q3x1 + y2 (A, 1)
x = q2y1 + x1;

one thus arrives at a solution for x.

Now in this succession of equations we can recognize the computations of Step 4,
taking for example an even number of quotients:

q2 q2

q3 q3

... −→
... −→ · · ·

q2p−1 q2p−1

q2p q2pyp + xp = xp−1

k = yp yp

l = xp

q2 −→ q2 −→ q′2 = q2y1 + x2 = x
q3 q′3 = q3x1 + y2 q′3 = y1

q′4 = x1 x1

q′5 = y2
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As we can see, only q2 is needed to compute x, which may explain why there is
no need to “set down” q1.

Step 5, by dividing that very value of x by the “smaller divisor”, and thereafter
considering the remainder of the division, assures that the value found for x is the
smallest possible. Step 6 replaces the value for x in the first equation:

N = ax + R1,

So that N1, the value obtained for N is such that

N1 = as + R1.

c Procedure with more than two quantities and short cut N1 satisfies the orig-
inal problem, and, at the same time, it is regarded as the “remainder” (agra)
corresponding to the two divisors, a and b, when there is another problem: Find a
number N that when divided by ab leaves for remainder N1. This can be formalized
as

N = (ab)u + N1.

A solution, N , of this problem is also such that when divided by a, it has for
remainder R1. Likewise, when N is divided by b, it has R2 for remainder. This
property is used when the problem concerns more than two couples of divisors
and remainders. This is the case for instance in examples 3 and 4. If one has to
solve a problem with more than two couples of divisors and remainders, if all the
remainders are equal an evident solution will be the LCM of all divisors increased
by the remainder (this is the case of the solution the example of Ms. E would
bear). If just a certain number of these integers have the same remainder, the
problem will be equivalent to solving the pulverizer of the LCM of those integers
with their common remainder, and the others.

In Example 1, Bhāskara stops short of the “Euclidian Algorithm”. The clever quan-
tity he computes and the corresponding quotient, correspond, with our notations,
to the computation of:

y1 =
r1x + c

b
(A, 1).

The clever quantity is hence a value for x, which is then reduced to its smallest
possible value by Step 5, and with which the value of N is computed in Step 6.

We will briefly expose here the steps followed by Bhāskara when he uses his short
cut, and when considering more than two quantities.
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X.2.3 Bhāskara’s short cut

In Example 1, Bhāskara uses a “short-cut” whose steps we will now expose. The
problem solved is the same and starts in the same way:

Step 1

“One should divide the divisor of the greater remainder by the divisor of the
smaller remainder.”

Supposing R1 > R2, then a is “the divisor of the greater remainder”, and b is “the
divisor of the smaller remainder”:

a

b
= q1 +

r1

b
⇔ a = bq1 + r1.

However here r1 is considered sufficiently “small” and step 2 is skipped

Step 3

The number of placed terms is considered to be even.

One should solve the following equation having the following pair of integer un-
knowns: (k, l), where k is called “the clever 〈quantity〉” (mati),

l =
r1k + c

b
.

Step 4 is skipped also but the “setting-down” would be:
k
l

Step 5

The upper element of this column, k is divided by b:

k

b
= t +

s

b
⇔ k = bt + s (o ≤ s < b).

The remainder, s, is thereafter considered.

Step 6

N1 = as + R1.

N1 is the least positive integer that satisfies the original problem.
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X.2.4 Procedure for problems with more than two couples of numbers

Problem

What is the integer N that when divided by a1 has r1 for remainder, that when
divided by a2 has r2 for remainder, · · · , that when divided by an has rn for
remainder?

Procedure

A first pair of couples is chosen (say (a1, r1) and (a2, r2)) to which the pulverizer
procedure is applied, and for which an integer N1 is found. Then a following pair
is taken (say, (a3, r3)) , to which the pulverizer procedure is applied together with
the couple formed of the product of the previous divisors and the result found
( (a1a2, N1)). And so forth, until all the couples are used. The last pulverizer
procedure applied gives the solution of the problem. If two remainders are the
same, Bhāskara indicates in Example 4:

atrecchayā ’dhikāgro rāśih. parikalpan̄ıyah. |
In this case, the quantity which has the greater remainder should be
chosen according to one’s will.

We do not know if Bhāskara computed the largest common multiple of these
divisors, in order to overcome the problem that occurs when two divisors are
multiples of one another.

X.3 Procedure of the pulverizer without remainder

We will present here the different steps of this algorithm such as described in the
general commentary. Then we will present two alternative procedures, solving the
same problem, and found in the “procedure” part of solved astronomical examples.

X.3.1 General procedure

Problem

What is the integer x, that multiplied by a, increased or decreased by c and divided
by b, produces an integer y?

In other words the problem consists of finding two integers (x, y) that verify

y =
ax ± c

b
.

a, b and c are known positive integers. x is called the pulverizer or the multiplier
(gun. aka), y the quotient (labdha).
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In the “setting-down” part of examples, this is the pattern followed:
a c
b

Sometimes c is omitted.

At the beginning of Example 22 Bhāskara writes110:

bhāgahārabhājyāgrām. am ekena apavartanacchedena apavartan. an. kr. tvā
pūrvavat kut.t.ākārah. kriyate| atha punar etāni bhāgahārabhājyāgrān. i
chedenaikanāpavartanam. na prayacchati yathā tathā sāv uddeśakah. ,
tādr.s.a’.s caiko rāśir eva nāsty ato na ān̄ıyate|
When one has performed the reduction, by a unique reducing divisor, of
the divisor, dividend and remainder, as before, a pulverizer is performed.
Now, on the other hand, 〈if〉 that example is such that these divisor,
dividend and remainder do not allow such a reduction with a unique
divisor, as there is no such one quantity 〈that satisfies this equation〉,
〈such a quantity〉 is not computed 〈with a pulverizer〉.

So that as we have noted above, Bhāskara suggests reducing the numbers used in
examples before starting the computation (these truly get to huge proportions in
astronomical problems) but is also well aware that c should be a multiple of a and
b in order for such a problem to have a solution.

Step 1

Sanskrit adhikāgrabhāgahāram. chindyād ūnāgrabhāgahāren. a

English One should reduce the divisor which is a large number 〈and the dividend〉
by a divisor which is a small number.

General Comments In other words, one should discard common factors from a
(the dividend) and b (the divisor), a new couple (a′, b′) is therefore considered;
where a′ and b′ are coprime (that is their sole common divisor is 1). This
step can be seen as a “short-cut” for the following process of the “Euclidian
Algorithm”. Practically, Bhāskara always discards their GCD.

Step 2–Step 4

As we have noted before, if we consider the problem solved by a pulverizer with
remainder: R1 > R2, and R1 − R2 = c,

{

N = ax+ R1

N = by+ R2
⇔ y =

ax + c

b

Therefore, as noted by Bhāskara as well, these steps are similar to Step 2- Step 4
of the pulverizer with remainder.

110[Shukla 1976; last paragraph p.149-150]



X. BAB.2.32-33: The pulverizer 157

Therefore here, the first division is that of the divisor by the dividend. In the end
of this process we have two quantities, q′2 and q′3.

Step 5

Sanskrit ūnāgracchedabhājite śes.am

English When 〈the remaining upper quantity〉 is divided by the divisor which is a
small number, the remainder is 〈the pulverizer. When the lower one remaining
is divided by the dividend the quotient of the division is produced.〉
Bhāskara further glosses111:

upari[rāśih. ] bhāgahāren. a bhaktah. [kāryah. ], adhorāśir bhājya rāśinā
bhājyah.

The upper [quantity should be made to be] divided by the divisor;
the lower quantity should be divided by the dividend quantity.
(. . . )

The two remainders are the pulverizer and the quotient of the division.

General With the same notation as before q′2 (“the upper quantity”) is divided
by b (“the divisor”):

q′2 = tb + u.

u is called the pulverizer.

q′3 (“the lower quantity”) is divided by a (“the dividend”):

q′3 = va + w.

w is called the quotient.

The result is usually set down in a column:
u
w

At the end of his resolution of Example 9112, Bhāskara indicates:

[athavā] yāvad abhirūcitam. pr.cchakāya

[Or else] until it pleases the inquirer (pr.cchaka), 〈the values should
be increased by multiples of the constants〉.

This somewhat elliptic remark, may refer to the following rule, given in the
Mahābhāskar̄ıya [Shukla 1960; sk p. 8, eng. p. 40]:

111[Shukla 1976; p.135 lines 17 to 21]
112[Shukla 1976; p.139]



158 Supplements

praks. ipya bhāgahāram. kut.t.ākāre punah. punah. prājñāih. |
yojyam. ca bhāgalabdham. bhājye prastārayuktyaiva‖
Mbh.1.50. (To obtain the other solutions of a pulverizer) the in-
telligent (astronomer) should again and again add the divisor to
the multiplier and the dividend to the quotient as in the process
of prastāra (“representation of combinations”).

In other words if (m, n) is a solution of

y =
ax ± c

b
,

where (x, y) are the unknowns, then, for any integer t,

mt = m + tb
nt = n + ta

,

are also solutions of this problem.

X.3.2 Alternative procedures

a The sthirakut.t.āka In his commentary on Example 7, and then system-
atically in all resolutions after this one, when solving

y =
ax ± c

b
,

Bhāskara, instead of the usual procedure, proposes as an alternative to solve
with the same procedure the following problem:

y′ =
ax′ ± 1

b
.

The values found as solution are then used in a Rule of Three, with the
following proportions:

1 : x′ = c : x′′

1 : y′ = c : y′′

The smallest values possible for x and y are found, by considering the re-
mainders of the divisions of x′′ by b, and of y′′ by a.

This is known in later literature as the sthirakut.t.āka (fixed-pulverizer).

The versified table that ends the gan. itapāda gives the smallest possible solu-
tions for problems of the type
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y =
ax − 1

b
,

using many different types of astronomical constants113.

Solutions of

u =
av + 1

b

may be easily derived from the type above, as

x = b − v
y = a − u

If no general rule is given by Bhāskara in his commentary, such a process is
described in the Mahābhāskar̄ıya [Shukla 1960; p. 32-33]:

Mbh.45. rūpam. ekam apāsyāpi kut.t.ākārah. prasādhyate|
gun. akāro ‘tha labdham. ca rāś̄ı syātām uparyadhah. ‖
Mbh.46.ab. is. t.ena śes.am abhihatya bhajed dr.d. hābhyām.
śes.am dināni bhagan. ādi ca k̄ırtyate ‘tra|
Mbh.I.45-46ab. Alternatively, the pulverizer is solved by subtract-
ing one (i.e., by assuming the residue to be unity). The upper and
lower quantities (in the reduced chain) are the (corresponding)
multiplier and quotient (respectively). By the multiplier and quo-
tient (thus obtained) multiply the given residue, and then divide
the respective products by the abraded divisor and dividend. The
remainders obtained are here (in astronomy) the ahargan. a and the
revolutions (performed respectively).

This can be understood as follows:

If (m, n) is a solution of

y =
ax ± 1

b
,

where (x, y) are the unknowns. If (m0, n0) are respectively the remainders of
the division of cm by b, and of cn by a,

m0 = cm − bq (0 ≤ m0 < b),
n0 = cn − aq (0 ≤ n0 < a),

then, (m0, n0) is a solution of

y =
ax ± c

b
.

113We have not translated this versified table. It is summarized, and all values given, in [Shukla
1976; Appendix ii, p.335-339]
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b Another alternative In his resolution of Example 11114, Bhāskara de-
scribes an alternative procedure:

atra bhāgahāren. a bhājyam. vibhajya labdham. pr. thagavinas.t.am.
sthāpayet| śes.asya bhūdivasānām. ca kut.t.ākāram. kr. tvā
labdhasyoparirāśim. kut.t.ākāram avinas.t.asthāpitena pr. thak
sam. gun. ayya bhāgalabdham. praks. ipet| bhāgalabdham. bhavati|
In this case, having divided the dividend by the divisor, one should
place the quotient separately 〈and keep it〉 unerased. When one has
performed the pulverizer of the terrestrial days and the residue,
when one has multiplied separately the higher quantity of the
〈two〉 obtained by the pulverizer of the 〈quantity〉 kept unerased,
one should add the quotient of the division 〈which stands below〉.
〈This〉 produces the quotient of the division.

Which can be understood as follows. What is obtained at the end of the
process which proceeds upwards is

q′2 = x
y1

where y1 is defined as
y = xq1 + y1.

Bhāskara, here indicates that one should set aside q1 defined as the quotient
of the division of a by b:

a = bq1 + r1.

Therefore the computation described here corresponds to a computation of
y:

xq1 + y1 = y.

X.4 Astronomical applications

The kind of astronomical problem solved by the procedure of the pulverizer with-
out remainder is introduced in Bhāskara’s commentary without an explanation
relating that process to given astronomical problems. These relations, however,
can be found in the Mahābhāskar̄ıya.

The basic idea is that the number of revolutions of a given planet, during a certain
time is not a round number, but has, in addition to an integral value, a fractional
part, or residue (śes.a). This is also true, if are considered not only the number
of revolutions, but also the number of signs (rāśi or bhagan. a), degrees (bhāga) or

114[Shukla 1976; p.141, line 15-18]



X. BAB.2.32-33: The pulverizer 161

minutes (liptā), crossed by the planet during a given time. This time is usually
evaluated in terms of civil days (ahargan. a).

We will consider from now on, the following notations115:

Let Ay be the number of civil days in a yuga, Gy the number of revolutions
performed by planet g in a yuga.

All the planet’s revolutions in a yuga are given in Ab.1.3; the number of civil
days in a yuga are deduced from both Ab.1.3 and Ab.3.3 and 5. This computation
is described in the Appendix 4, which shows how this value of Ay is obtained:
Ay = 1577917500.

As Ay and Gy will respectively be the dividend and divisor of a pulverizer with-
out remainder, they are systematically reduced by their greatest common divisor.
This can be seen in Bhāskara’s commentary, at the beginning of the section on
man. d. alakut.t.ākāra (p. 135-136):

etāv ūnāgracchedārtham. parasparen. a bhājyau| s.es.am ūnāgracchedah.
These two should be divided by one another in order 〈to obtain〉 the
divisor which is a smaller number. What remains is the divisor which is
a smaller number. . .

Since the “divisor which is a smaller number” is, in this case, the greatest common
divisor of the two first numbers, it appears that it was found by what is commonly
called “the Euclidian Algorithm”.

In the following, for the sake of convenience, we will also call Ay and Gy the
numbers obtained after reduction. (Gy is usually called in secondary literature,
the “revolution number” of the planet.)

Let A be the number of days elapsed since a given epoch (ahargan. a). Here it is
always the number of civil days elapsed since the beginning of the Kaliyuga.

Let G be the number of revolutions performed by a planet g in A days. G can
be decomposed as the integral number of revolutions (man. d. ala) performed, M ,
the integral number of signs (rāśi), R, degrees (bhāga), B, and minutes (liptā), L
crossed.

All the procedures use the ratio

A

Ay

=
G

Gy

.

The reasoning followed in all the problems is basically the same, involving different
ratios, according to the units considered, and occasionally a difference of sign in
the pulverizer to solve, whether the fractional part of the path of g is considered

115All the notations used in this supplement are summed up on a list, at the end of this
supplement.
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as a surplus of the integral number of revolutions, or the part missing to obtain an
integral number of revolutions. For the sake of simplicity, we have set aside here
both the operations involving the reduction of the numbers of days and revolutions
in a yuga and those converting values given in examples in homogeneous units (that
is the conversion of a latitude given in degrees and minutes into minutes, etc.).

X.4.1 Planet’s pulverizer (man.d. alakut.t.āka)

This computation concerns the commentary on verses 32-33, p.136-138. The planet
considered is the sun.

a Planet’s pulverizer with the residue of revolutions

Problem Let A = x, be the number of days elapsed since a given epoch (ahargan. a),
usually the beginning of the Kaliyuga. Let M = y be the integral number of
revolutions (man. d. ala) of a planet g during x days. These are the unknowns
to be found, knowing:

-λ, the mean longitude of planet g in minutes after x days. (λ = (30×60)R+
(60 × B) + L.)

- Gy, the reduced number of revolutions of planet g in a yuga.

- Ay, the reduced number of civil days in a yuga.

In the “setting down” part of examples, the disposition follows this pattern:

Integral number Integral number Integral number

of signs crossed of degrees crossed of minutes crossed

R B L

or

Integral number of signs crossed R
Integral number of degrees crossed B
Integral number of minutes crossed L

Procedure with the mean longitude Let λ be the mean longitude of planet g in
minutes. RM the “residue of revolutions”, is defined as follows:

RM =
λ × Ay

21600
.

In the Mahābhāskar̄ıya, the following rule occurs ([ Shukla 1960; p. 33]116):

116The first example given on this topic in Bhāskaraś commentary is explained in the pages
34-35.
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rāśyādayo nirapavartitav āsaraghnā rāśyādimānabhajitāh.
pravadanti śes.am
Mbh.1.46cd. (In the case the longitude of a planet is given in terms
of signs, etc.) the signs, etc. are multiplied by the abraded number
of civil days (in a yuga) and the product is divided by the number
of signs, etc., (in a circle). The quotient is stated to be the residue
(of revolutions).

In this case here the mean longitude of g (λ) is reduced to minutes, so that
the divisor is the number of minutes in a circle.

The residue of revolutions, RM , can be understood as the number of civil
days taken to accomplish that part of a revolution indicated by λg. Since
21600 is the number of minutes in a circle, we have

RM

Ay

=
λ

21600
.

When computing RM in his commentary, Bhāskara always considers an ap-
proximation of the quotient obtained, so that it may be an integer.

Two alternative methods are proposed having obtained this“residue of revo-
lution”, to solve the above problem:

Procedure 1 Find a couple solution of

y =
Gyx − RM

Ay

.

x = A is the number of days elapsed since a given epoch and y = M is the
integral number of revolutions of a planet g during x days.

We can understand the process used here as the follows. When
λg

21600 , the
residual mean longitude in terms of revolutions, is the non-integer part of
the number of revolutions performed by G:

x

Ay

=
y + λ

21600

Gy

.

This is equivalent to

y =
Gyx − RM

Ay

,

where RM =
λ×Ay

21600 .
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Procedure 2 Uses a “sthirakut.t.āka” process117, that is:

Find a couple solution of

y′ =
Gyx′ − 1

Ay

.

The values obtained for this pulverizer are tabulated by Bhāskara at the end
of the gan. itapāda

118.

Then using the following ratios, x′′ and y′′ are computed:

1 : x′ = RM : x′′

1 : y′ = RM : y′′ ,

the smallest values possible for x and y are found, by considering the remain-
ders of the divisions of x′′ by Ay, and of y′′ by Gy.

b Planet’s pulverizer with the revolutions to be accomplished A similar proce-
dure is found when considering the complementary part of the partial revolution
accomplished. In this case, the part of the revolution to be crossed is added, when
considering the pulverizer to solve.

Problem Let A = x be the number of days elapsed since the beginning of the
Kaliyuga (ahargan. a). Let M = y be the integral number of revolutions of a
planet g during x days. These are the unknowns to be found, knowing:

-∆, the part of a revolution to be accomplished by g so that the number of
revolutions would be integer (λ + ∆ = 1 revolution).

- Gy, the reduced number of revolutions of planet g in a yuga.

- Ay, the reduced number of civil days in a yuga.

In the “setting down” part of examples, the disposition follows this pattern:

Integral number of signs to be crossed R
Integral number of degrees to be crossed B
Integral number of minutes to be crossed L

A rule is given for this problem in the Mahābhāskar̄ıya119:

gantavyam is.t.am. yadi kasyacit syād gantavyayogād idam eva karma|
rūpen. a vā yojya vidhir vacintyah. sarvam. samānam. khalu laks.an. ena‖
Mbh.1.51. When the part (of the revolution) to be traversed by

117This process is explained in the section on the pulverizer without remainder.
118We have not translated this versified table. This table is summarized in [Shukla 1976; Ap-

pendix ii, p.335-339]
119[Shukla 1960; sk p. 8-9, eng. p. 41]
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some (planet) is the given quantity, then (also) the same process
should be applied, treating the part to be traversed as the addi-
tive, or taking unity as the additive. All details of procedure are
the same (as before).

Finding the part of a revolution to be accomplished The computation is exactly
the same as the one described above. That is, if ∆ is the part of a revolution
to be accomplished by g in minutes, since 21600 is the number of minutes in
a circle, then the “ part of a revolution to be accomplished”, R′

M , is:

R′
M =

∆ × Ay

21600
.

Having obtained this value two alternative methods are proposed to solve
the above problem:

Procedure 1 Find the smallest couple solution of

y =
Gyx + R′

M

Ay

.

Procedure 2 Find the smallest couple solution of

y′ =
Gyx′ + 1

Ay

.

The values of

u′ =
Gyv′ − 1

Ay

,

are tabulated by Bhāskara at the end of the gan. itapāda. From these, x′ and
y′ are obtained:

x′ = Ay − v′

y′ = Gy − u′

Then, using the same following ratios:

1 : x′ = R′
M : x′′

1 : y′ = R′
M : y′′ ,

the smallest values possible for x and y are found, by considering the remain-
ders of the division of x′′ by Ay, and of y′′ by Gy.
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X.4.2 Pulverizer with the residue of signs

Here, both the integral number of revolutions performed by g, M , and the following
number of signs crossed by this planet, R, are unknown.

Problem Let A = x be the number of days elapsed since the beginning of the
Kaliyuga (ahargan. a). Let 12 × M + R = y be the integral number of signs
crossed by g during x days. These are the unknowns to be found, knowing:

-λ′, the remaining degrees and minutes crossed by g after x days in minutes
(λ′ = 60 × B + L).

- G′
y, the reduced number of signs crossed by planet g in a yuga.

G′y = Gy × 12,

as there are 12 signs in a revolution.

- Ay, the reduced number of civil days in a yuga.

In the “setting down” part of examples, the disposition follows this pattern,
where the “0” indicates what is unknown or an empty space:

Integral number of revolutions crossed 0
Integral number of signs crossed 0

Integral number of degrees crossed B
Integral number of minutes crossed L

Finding the “residue of signs” A similar ratio to the one used in the cases above
gives us the residue of signs (RR), from λ′, 1800 being the number of minutes
in a sign:

RR

Ay

=
λ′

1800
.
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In other words

RR =
λ′ × Ay

1800
.

Having obtained the residue of signs three alternative methods are proposed
to solve the above problem:

Procedure 1 Find the smallest couple solution of

y =
G′

yx − RR

Ay

.

The value found for y is the number of signs crossed by g during x days.
The remainder of the division of y by 12 will give the number of revolutions
performed by g in x days.

Procedure 2 Find a couple solution of

y′ =
G′

yx′ − 1

Ay

.

These values are tabulated by Bhāskara at the end of the gan. itapāda. Per-
forming a Rule of Three with 1 and RR, and dividing the results respectively
by Ay and G′

y will give the results.

Procedure 3 Find a couple solution of

v′ =
12u′ − 1

Ay

.

The following procedure is not given by Bhāskara, thought he indicates that
a Rule of Three should be used. We can consider the following, thought this
is just a hypothetical construction in order to understand why this pulverizer
is computed:

We have the ratio
λ

21600
=

RM

Ay

,

where, as in section C.3.1, RM is the residue of revolutions and λ = (30 ×
60)R + (60 × B) + L = (30 × 60)R + λ′. So this is equivalent to

(30 × 60)R + λ′

21600
=

RM

Ay

.
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Now if we consider this residual part of revolutions accomplished, not in
terms of minutes, but in terms of signs (or if we reduce the left-hand fraction
by 30 × 60 = 1800) we have

R + λ′

30×60

12
=

RM

Ay

.

Let v = R and u = RM and we recognize here:

v =
12u − λ′×Ay

1800

Ay

=
12u − RR

Ay

.

Bhāskara would thus solve this problem by a sthirakut.t.āka.

u being the residue of revolutions, the problem

y′ =
Gyx − u

Ay

,

when solved gives with x the number of days elapsed since a given epoch,
and with y′ the number of revolutions accomplished in x days. Together with
the value found for v, we can find the total number of signs crossed by g in
x days.

a Pulverizer for the residue of degrees The process follows the same pattern
as before, the difference being that one seeks the total number of degrees crossed
by g in x days, that is that, M , R and B are unknown.

Problem Let A = x be the number of days elapsed since a given epoch (ahargan. a).
Let 12 × 30M + 30 × R + B = y be the integral number of degrees crossed
by g during x days. These are the unknowns to be found, knowing:

-λ′′
g = L, the remaining minutes crossed by g after x days.

- G′′
y , the reduced number of degrees crossed by planet g in a yuga.

G′′y = Gy × 360,

as there are 360 degrees in a revolution.

- Ay, the reduced number of civil days in a yuga.

In the “setting down” part of examples, the disposition follows this pattern,
where the “0” indicates what is unknown or an empty space:

Integral number of revolutions crossed 0
Integral number of signs crossed 0
Integral number of degrees crossed 0
Integral number of minutes crossed L
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Finding the“residue of degrees” A similar ratio to the one used in the cases above
gives us the residue of degrees (RB), from λ′′

g , 60 being the number of minutes
in a degree:

RB

Ay

=
λ′′

g

60
.

In other words

RB =
λ′′

g × Ay

60
.

Having obtained the residue of degrees three alternative methods are pro-
posed to solve the above problem:

Procedure 1 Find the smallest couple solution of:

y =
G′′

yx − RB

Ay

.

The value found for y is the number of degrees crossed by g during x days.
The remainder of the division of y by 360 will give the number of revolutions
performed by g in x days.

Procedure 2 Find a couple solution of

y =
G′′

yx − 1

Ay

.

These values are tabulated by Bhāskara at the end of the gan. itapāda.

Performing a Rule of Three with 1 and RB , and dividing the results respec-
tively by Ay and G′′

y will give the required results. The remainder of the
division of y by 360 (i.e. the number of degrees in a revolution) will give the
number of revolutions performed by g in x days.

Procedure 3 Find a couple solution of

v′ =
30u′ − 1

Ay

.

The following procedure is not given by Bhāskara, though he indicates that
a Rule of Three should be used. We can consider the following:

We have the ratio
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λ′
g

1800
=

RR

Ay

which is equivalent to:
(60 × B) + L

1800
=

RR

Ay

.

Now if we consider this residual part of signs crossed, not in terms of signs
but in terms of degrees (or if we simplify the left-hand fraction by 60):

B + L
60

30
=

RR

Ay

.

Let v = B and u = RR, then

v =
30u − λ′′

g ×Ay

60

Ay

=
30u − RB

Ay

.

Since u is residue of signs, the problem

y′ =
G′

yx − u

Ay

,

when solved, gives with x the number of days elapsed since the beginning of
the Kaliyuga, and with y′ the number of revolutions accomplished and the
number of signes crossed in x days. Together with the value found for v, we
can find the total number of degrees crossed by g in x days.

b Pulverizer for the residue of minutes The procedure follows the same pattern,
considering residual seconds, crossed by G.

X.4.3 Week-day pulverizer

Problem A planet g, has a given mean longitude, λ, on a week day V . After
a certain number of weeks (w) and a couple of days (a), g has the same
longitude on another week-day, Va.

Let a be the number of week-days seperating V from Va (V excluded, Va

included; a ≤ 7).

Let AV be the number of days elapsed in the Kaliyuga when the sun is in V .

Let AVa
be the number of civil days elapsed in the Kaliyuga for which the

sun on Va has the given mean longitude in V .

AV and AVa
are to be found, knowing λ on V ; Ay and Gy.
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Resolution The computation of AV corresponds to a usual “planet-pulverizer”: If
AV = x and y=M , then by solving with a pulverizer the problem:

y =
Gyx − RM

Ay

,

the required value for AV is found. Let x0 be such a value.

In the Mahābhāskar̄ıya there is the following rule120:

apavartitav āsarādíses. āt. kramaśastān apan̄ıya rūpapūrvam|
kut.t.ākalabdharāśim es. ām. gun. akāram. samuśanti vārahetoh. ‖
MBh.1.48. Divide the abraded number of civil days (in a yuga)
by 7. Take the remainder as the dividend and 7 as the divisor.
Also take the excess 1,2, etc., of the required day over the given
day as the residue. Whatever number (i.e. multiplier) results on
solving this pulverizer is the multiplier of the abraded number of
civil days. The product of these added to the ahargan. a calculated
(for the given day) gives the ahargan. a for the required day.

And in his introduction to Example 12 of the commentary to verses 32-33,
Bhāskara writes:

nirapavartitabhūdines.u saptahr. tāvaśis. t.es.u kut.t.ākārah. kriyate|
grahavāro yo nirdis. t.as tasmād y[ad u]ttaro grahavāras tatah.
prabhr. ti ekottarayā vr.ddhyāpacayam. parikalpya evam. labdham.
kut.t.ākāro nirapavartitabhūdinānām. gun. akāras tena gun. ites.u
nirapavartitabhūdines.u nirdis. t.asūryen. ān̄ıtam ahargan. am.
praks. ipya jātadivasatulyah. kāla ādes. t.avyah.
A pulverizer should be performed for the residue of the division
by seven of the reduced terrestrial days. When one has chosen a
subtractive 〈term for the pulverizer〉 by means of a one-by-one in-
crease beginning with the weekday which is immediately after the
indicated week-day, what is obtained in this way is the pulverizer
which is the multiplier of the reduced terrestrial days; when one
has added the passed number of days 〈in the Kaliyuga, obtained
with〉 the indicated sun, to the reduced terrestrial days multiplied
by that 〈pulverizer〉, the time equal to what has been produced
should be announced 〈as the answer.

In this case, the pulverizer considered is, if A′
y is the residue of the division

of Ay by seven (A′
y = Ay − 7q), a corresponding to the “one-by-one increase

beginning with the weekday which is immediately after the indicated week-
days”:

120[Shukla 1960; sk p. 8, eng. p.36-37(this is an adaptation – see note 1, p.37)]
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w′ =
A′

yv′ − a

7
.

If (v′
0, w

′
0) is a solution, then

AVa
= Ayv′

0 + x0.

This can be understood as follows: if Ay is the reduced number of civil days

in a yuga, so that the number of weeks in a yuga is
Ay

7 , then we have the
proportion:

A∆V

Ay

=
w + a

7
Ay

7

,

where A∆V is the number of civil days after which the sun, having had that
given longitude in V , has the same longitude in Va, and w is the number of
weeks in A∆V , so that A∆V = 7w + a.

If121 v = A∆V

Ay
, then we have

v

7
=

w + a
7

Ay

.

From this proportion we can deduce the following problem solved by a pul-
verizer:

w =
Ayv − a

7
.

Let (v0, w0) be a solution of that problem.

Since AV is the number of days elapsed in the Kaliyuga when the sun is in
V , AVa

the number of civil days elapsed in the Kaliyuga for which the sun
on Va has the given mean longitude, and A∆V the number of civil days after
which the sun, having had that given longitude in V , has the same longitude
in Va then

AVa
= AV + A∆V .

121There seems to be a paradox here, as A∆V is thus defined as a multiple of Ay , therefore
A∆V > Ay . This assumption without any comment is also made by K.S. Shukla, when he solves
example 12. [Shukla 1976; p.317] (A being what we denote A∆V , 210389 being the reduced
number of civil days in a yuga for the sun). We can, nonetheless, remark that Ay is, here, the
reduced number of terrestrial days in a yuga and not the total number, so that this is not as
absurd as it may seem. However, just why should this be presupposed and whether this is the
exact rending of the computation described by Bhāskara, remains to be investigated.
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By definition of v0, and x0:

AVa
= x0 + Ayv0.

Now the particular solution, v′
0, for v′ makes also the quotient

Ayv − a

7

integer because

w′ + 7q =
Ayv′ − a

7
.

X.4.4 Particular pulverizers

Some of the examples proposed by Bhāskara combine several of the problems and
procedures exposed above.

a A particular planet’s pulverizer The problem here considers the remaining
part of a degree to be crossed by a planet, combining thus a “pulverizer for a
revolution to be accomplished” and “a pulverizer with the residue of degrees”. In
Example 13 [Shukla 1976; p.143] is exposed a problem and resolution of this type.

Problem Let A = x be the number of days elapsed since a given epoch (ahargan. a).
Let (12× 30)M + 30R + B = y be the integral number of degrees crossed by
g during x days. These are the unknowns to be found, knowing:

-∆′′, the part of a degree to be crossed by g so that the number of degrees
crossed since the beginning of the Kaliyuga would be integer.

- G′′
y , the reduced number of degrees crossed by planet g in a yuga.

G′′y = 360 × Gy,

as there are 360 degrees in a revolution.

- Ay, the reduced number of civil days in a yuga.

Procedure After having computed the residue of degrees to be crossed,

R′
B =

∆′′ × Ay

60
,

the following problem is to be solved directly by a pulverizer procedure, or
by using a sthirakut.t.āka:
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y =
G′′

yx + R′
B

Ay

.

The value found for y − 1, when divided by 360 gives the integral number of
revolutions performed by g in x days.

b A particular week-day pulverizer

Problem In this case, the mean longitude of planet g1 (λ1), and the mean longitude
of planet g2 (λ2) are known, for a given week-day (V ); the number of days
until they will both be of the same longitude again on another week-day (Va)
is what is sought.

Finding the LCM Let A1 be the reduced number of days in a yuga for g1; A2 the
reduced number of days in a yuga for g2. The Lowest Common Multiple of
these two numbers (LCM(A1, A2)), can be defined as:

LCM(A1, A2) =
A1 × A2

GCD(A1, A2)
.

It is found by the following process:

-The Greatest Common divisor (GCD(A1, A2)) is found, probably by a “Eu-
clidian algorithm”.

In the case of the preliminary part of Example 14, it is defined as the quan-
tity which leaves a zero remainder (śūnyāgra), when divided by A1 or by
A2. It bears the name “〈quantity〉 having such remainder for two divisors.”
(dvicchedāgra).

-The quotient of the division of A1 (resp. A2) by GCD(A1, A2) (q1) (resp.
q2) is considered.

Then

LCM(A1, A2) = A1 × q2 = A2 × q1.

This is expressed quite elliptically in the preliminary part of Example 14, but
corresponds to the computations carried out:

dvicchedāgrasam. vargo hi nāma sadr. śikaran. am.
the product of 〈one reduced day by the quotient of the other by the
quantity〉 having such remainder for two divisors (dvicchedāgrasam. vargo)
has the name “procedure of equalizing (sadr. ś̄ıkaran. am. ) for two
quantities”.
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Finding the number of days elapsed in the Kaliyuga when g1 and g2 are in V

This involves a usual planet-pulverizer: The smallest integral solution found
for x (x0) in any of these equations gives the desired value

{

y =
G1x−RM1

A1
,

y =
G2x−RM2

A2
.

A week-day pulverizer The following problem is solved by a pulverizer:

w =
LCM(A1, A2)v − a

7
.

Let v0 be the smallest integral value found. Then

A∆V
= LCM(A1, A2)v0 + x0.

Thus , the following equality explains this formulation of the problem:

w + a
7

LCM(A1, A2)
=

v

7
,

where

v =
A∆V

LCM(A1, A2)
.

X.4.5 A pulverizer using the sum of the longitudes of planets

Problem Let A = x be the number of days elapsed in the Kaliyuga. This is the
unknown to be found, knowing:

-Σλ, the sums of the mean longitudes of n planets, in minutes, after x days.
(Σλ =

∑

n
i=1λi =

∑

n
i=1(30 × 60)Ri + (60 × Bi) + Li, n ≤ 7)122.

- ΣGy, the reduced sum of the number of revolutions performed by each
planet in a yuga.

- Ay, the reduced number of civil days in a yuga.

122A list of the planets is given in Ab.3.15.
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Procedure The procedure, with these constants, is the same as in a regular planet’s
pulverizer. Having computed the residue of revolution of the sun,

ΣRM =
Σλ × Ay

21600
,

the problem to be solved by a pulverizer or by a sthirakut.t.āka is

y =
ΣGyx − ΣRM

Ay

.

The smallest solution found for y is the sum of the revolutions performed by
n planets in x days.

As before, the constant ratio behind this problem is

A

Ay

=
G1

Gg1

= · · · =
Gn

Ggn

,

so that

A

Ay

=
ΣGy

ΣG
.

This procedure is described in example 15 [Shukla 1976; p.144sqq]; where only two
planets are considered, the sun and the moon. However Bhāskara adds:

evam anyes. ām api samāsapraśnes.u kut.t.ākārah. kalpan̄ıyah. ,
rāśibhāgaliptāśes.vapi| evam eva tricatuh. samases.vapi vistaren. a vyākhyeyam|

In this way, in questions concerning the sums of other 〈planets〉 too, a
pulverizer is to be performed (kalpan̄ıya), and also 〈in questions〉 con-
cerning residues of signs, degrees and minutes. In this very way, in the
case of the sums of three or four 〈planets〉 also an explanation should
be given in detail 〈if necessary〉.

X.4.6 Knowing the number of revolutions performed by two planets

Problem The number of revolutions performed since the beginning of the Kaliyuga
by g1 (y) and the integral number of revolutions performed by g2 (z) are
sought, knowing:

-λ2, the mean longitude of g2 in minutes, known when g1 completes a revo-
lution.

-G1 and G2, (previously reduced by their greatest common divisor), the re-
duced sum of revolutions performed by g1 and g2 in a yuga.
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Resolution The problem to be solved by a pulverizer without remainder or by a
sthirakut.t.āka is

z =
G2y − RM2

G1
.

This is understood by the following reasoning: If A is the number of civil

days elapsed at a given time, Ay the number of civil days in a yuga, then we
have:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

A

Ay

=
M1 + λ1

21600

G1

A

Ay

=
M2 + λ2

21600

G2

And therefore

M1 + λ1

21600

G1
=

M2 + λ2

21600

G2
,

with the notation adopted above, that is

y

G1
=

z + λ2

21600

G2
.

From this equality the problem to be solved by a pulverizer is readily deduced.

Similarly, if the ratio considered for g1 is measured in minutes then

21600M1 + λ1

G′′
1

=
M2 + λ2

21600

G2
,

and the problem to be solved by a pulverizer would then be

z =
G2Y − RM2

G′′
1

,

where Y = 21600y, is the number of minutes crossed by g1 since the beginning
of the Kaliyuga.
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The problem and method to solve such a pulverizer is described in general terms
by Bhāskara in this way123:

atha kaścid divasakaraman. d. alaśes.aparisamāptikāle janitam.
divicaramuddísya divasakaram. divicarabhagan. ān pr.cchati, tasyāyam
upāyah. nirdis. t.adivicaram. ravibhagan. ām. ścāpavartya kut.t.ākāro yojyah. |
Now, when pointing at 〈the longitude of〉 a planet produced at the time
when the sun completes what remains of a revolution, someone asks the
〈number of〉 revolutions 〈performed〉 by 〈that planet〉, this is a method
for that 〈question〉 -When one has reduced the 〈number of〉 revolutions
〈performed〉 by a planet 〈in a yuga〉 and the 〈number of〉 revolutions
〈performed〉 by the sun 〈in a yuga〉, a pulverizer should be applied.

He then proceeds to solve the problem given in example 16, and concludes by the
following statement124:

athavā graham uddísya graham evānyam. [pr.cchati tatr]āpi
bhāgahārabhājyaparikalpanayā kut.t.ākārah. kalpan̄ıyah. |
Or else when 〈someone〉 pointing at a planet asks 〈the number of passed
revolutions〉 of another planet only, then again a pulverizer should be
performed by choosing 〈an appropriate〉 divisor and dividend.

Here therefore Bhāskara does not stress the unit in which the number of elapsed
revolutions are obtained.

Mbh.1.10 gives the following procedure125

nísākaram. vā graham uccam eva vā kal̄ıkr. tam. tat saha yātaman. d. alaih. |
yathes. tanaks.atragan. air hatam. haret tad̄ıyanaks.atraganais tatah. kalāh. ‖
10. The (mean) longitude of the moon, the planet, or the ucca (whichever
is known) together with the revolutions performed should be reduced to
minutes. The resulting minutes should then be multiplied by the revolu-
tion-number of the desired planet and (the product obtained should be)
divided by the revolution-number of that (known) planet. The result is
(the mean longitude of the desired planet) in terms of minutes.

In fact Example 16 of BAB.2.32-33 follows a computation in terms of revolutions
whereas Example 17 follows the above rule given in the Māhabhāskar̄ıya.

123[Shukla 1976; p.145, line 16 sqq]
124[Shukla 1976; p.146, line 13 sqq]
125[Shukla 1960; p.2-3 skt, p. 7 eng.]
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X.4.7 Time-pulverizer (velākut.t.ākāra)

In this case, the number of days elapsed since the beginning of the Kaliyuga is not
integral: the longitude of planet g is not given at sunrise – a day is defined from
one sunrise to another in this treatise – but at another time of the day: midnight,
noon, or sunset126.

Problem The integral number of days elapsed since the beginning of the Kaliyuga
(x) and the number of revolutions performed by g in that time (y) are sought,
knowing λ the mean longitude of g at a fractional part of the day (day± 1

m
,

2 ≤ m ≤ 4), Gy and Ay.

Procedure The problem to be solved by a pulverizer without remainder or a
sthirakut.t.āka is

y =
Gy

m
× X − RM

Ay

,

where y is the number of revolutions performed by g in x ± 1
m

days and
X = mx ± 1.

If 1
m

is subtractive (X
m

= x − 1
m

⇔ X = mx − 1), then the integral value of
days elapsed since the beginning of the Kaliyuga is x−1. Therefore the value
sought is x − 1 = X+1

m
− 1.

If 1
m

is additive (X
m

= x + 1
m

⇔ X = mx + 1) then x = X−1
m

should be
computed to obtain a solution.

The problem exposed in words here can be algebrised, in regard to a regular
planet-pulverizer in this way:

y =
Gy(x ± 1

m
) − RM

Ay

⇔ y =
Gy

m
(mx ± 1) − RM

Ay

.

Bhāskara does not in fact describe exactly such a computation, concerning the
passing first, from the pulverizer considering x to the one considering X and then
from the result obtained for X to the one giving x.

In the part preceding Example 19, Bhāskara writes127:

kaścit graham udayakālād anyakālajanitam. pradaśyam. divasagan. am.
pr.cchati, tasyāyam ānayanopāyah. : is. t.akālacchedagun. itān
nirapavartitabhūdivasān kr. tvā pūrvavat kut.t.ākāram. nis.pādya
is. t.akālachedhabhakto ’hargan. ah. |

126Other subdivisions of the days can be also considered: this is indicated by Bhāskara in the
part just before Example 21 which considers a fractional part of a day in nād. ı̄s (1/60th of a day).
127[Shukla 1976; p. 147, line 15-17]
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When someone pointing at 〈the mean longitude of〉 a planet produced
at a time different from sunrise, asks the number of days 〈elapsed in the
Kaliyuga〉, this is a method of computation for that 〈question〉:When
one has multiplied the reduced 〈number of〉 days 〈in a yuga, for that
planet〉 by the denominator of the desired time, and brought about a
pulverizer, as before, 〈the pulverizer〉 is divided by the denominator of
the desired time is the number of days 〈elapsed in the Kaliyuga〉.

Bhāskara, quite typically since he is summing up a general case, is elliptic concern-
ing the computation of the integral number of days elapsed since the beginning
of the Kaliyuga. The first step he describes, that of multiplying by m a “reduced
number of days” has continued to be not understood. He states this again in
the “procedure” part of solved examples, but with no numerical illustration. This
may be referring to the computation X = mx±1, however why then x would bear
such a name remains unclear. Secondly, repeatedly the passing from the pulverizer
obtained to the result sought (the integral number of days elapsed since the be-
ginning of the Kaliyuga) is stated as a simple “division by the denominator of the
desired time”, no other computation being stated. We note also that the integral
part of X

m
will give the value of x − 1 if m is subtractive, and the value of x if m

is additive. Therefore, this may have been the computation carried out here.

To sum it up, probably the computation we have algebrised in this case does not
render the exact steps followed by Bhāskara.

X.4.8 Finding the Residue of revolutions and a certain number of days, for two
planets

This problem combines two pulverizers. Such a procedure may be seen in Example
23, where the two planets considered are the sun and Mars.

Problem Two planets g1 and g2 are considered. A certain amount of days, N is
sought, knowing that divided by A1 (the reduced number of days in a yuga
for g1) it leaves a remainder r1 whose value is unknown, and divided by A2,
it leaves a remainder r2 whose value is unknown.

We can recognize here a problem that can be solved by a “pulverizer with
remainder” procedure, when r1 and r2 are known:

N = A1q1 + r1,

N = A2q2 + r2.

The values of r′1 and r′2 are known, and defined as

G1r1

A1
= q′1 +

r′1
A1

,
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G2r2

A2
= q′2 +

r′2
A2

,

where G1 and G2 respectively are the reduced number of revolutions per-
formed in a yuga by g1 and g2.

Procedure The last problem is equivalent to this one:

q′1 =
G1r1 − r′1

A1
,

q′2 =
G2r2 − r′2

A2
,

so that values of r1 and r2 may be found by means of one of the procedures
for a “pulverizer without remainder”.

r1 (resp. r2) is interpreted as the number of days elapsed since the beginning
of the Kaliyuga; q′1 (resp. q′2) as the integral number of revolutions performed
by g1 (resp. g2) during that time, and r′1 (resp. r′2) as the residue of revolu-
tions, RM1 (resp. RM2).

Having obtained r1 and r2, N is found by applying a second pulverizer.

X.4.9 Planetary pulverizer with several planets using orbital computations

This is the last type of problem illustrated by Bhāskara (in Examples 24-26), it
combines a planetary pulverizer and the computations linking the length of the
orbit of a planet to its mean longitude for a given number of elapsed days since
the beginning of the Kaliyuga.

a Residues in respect to a planet’s orbit Let λ be the mean longitude of a given
planet g.

λ = (M, R, B, L, S),

where M is the integer number of revolutions (man. d. ala) performed by the planet
since the beginning of the Kaliyuga; R the remaining integer number of signs
(rāśi) crossed, B the remaining integer number of degrees (bhāga) crossed, L the
remaining integer number of minutes (liptā) crossed, and S, the remaining (śes.a)
fractional part of minutes crossed by that planet.

In terms of revolutions,

λ = M +
R

12
+

B

12 × 30
+

L

12 × 30 × 60
+

S

12 × 30 × 60 × (K × Ay)
.
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The residue of revolutions in respect to the planet’s orbit is

RkM =
R

12
+

B

12 × 30
+

L

12 × 30 × 60
+

S

12 × 30 × 60 × (K × Ay)
.

The residue of signs in respect to the planet’s orbit is

RkM =
B

30
+

L

30 × 60
+

S

30 × 60 × (K × Ay)
.

The residue of degrees in respect to the planet’s orbit is:

RkM =
L

60
+

S

60 × (K × Ay)
.

b Case with two planets using a Residue of revolutions in respect to the planet’s
orbits

Problem The number of days elapsed since the beginning of the Kaliyuga and the
mean longitudes, at that time, of two planets: λ1, λ2, are sought knowing:

-Kk the length in yojanas of the “orbit of the sky” (khakaks.yā) – the circum-
ference of a great circle of the celestial sphere),

-K1, K2 the length in yojanas of the “orbit of the planets”,

-Ay, the number of terrestrial days in a yuga,

-RkM1 , RkM2 the residue of revolutions of each planets at that time, in respect
to the planet’s orbit.

Orbital computations In the resolution of Example 24, Bhāskara quotes the fol-
lowing rule:

kaks.yābhir grahānayane khakas.yāyā ahargan. o gun. akākrah. ,
svakas.yābhūdinasam. vargo bhāgahāra iti
In a computation of 〈the mean longitude of〉 planets by means
of the orbits, the number of days 〈elapsed in the Kaliyuga〉 is a
multiplier of the orbit of the sky, the divisor is the product of the
terrestrial days 〈in a yuga〉 with its (the planet’s) own orbit

In other words, for any planet:

λi =
Kx

Ay × Ki

.

So that for our two planets we have

Kx = Ay × K1 × λ1 = Ay × K2 × λ2 = N.
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Procedure Bearing the above equality in mind, for any planet:

AyλiKi = AyKiMi + RkMi
.

In this problem Mi is sought and RkMi
is known.

The above equality may be written as a system of equations:

⎧

⎪

⎨

⎪

⎩

N = AyK1y + RkM1

⇔ z =
AyK1y−(RkM2

−RkM1
)

AyK2

N = AyK2z + RkM2

where y is the integral number of revolutions performed by the first planet
and z the integral number of revolutions performed by the second planet.

This problem may be solved by a “pulverizer with remainder” procedure.
Any one value found for y or z thus gives a value for N .

As Bhāskara states in the resolution of example 24:

pūrva likhitadvicchedāgrarāśir apavartitakhakaks.yāhargan. asam. -
vargaity atah. svabhāgahārābhyām. vibhajya labdham.
sūryācandramasor yātabhāgan. āh.
Since the previously written quantity that has 〈such〉 remainders
for two divisors is the product of the number of days 〈elapsed in the
Kaliyuga〉 and the reduced orbit of sky, therefore, having divided
〈it〉 by their own divisors, the quotient is the passed revolutions of
the sun and the moon.

In other words, since

N = Ay × K1 × λ1 = Ay × K2 × λ2,

then

λ1 =
N

Ay × K1
λ2 =

N

Ay × K2
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And, as Bhāskara adds:

asminn eva dvicchedagre apavartitakhakaks.yayā vibhakte labdham
ahargan. ah.
When that which has 〈such〉 remainders is divided by the reduced
orbit of the sky, the quotient is the number of days 〈elapsed in the
Kaliyuga〉

In other words,

x =
N

K
.

c Case with two planets and the residue of minutes in respect to the planet’s or-
bits The problem is the same as before, only instead of the residue of revolutions
in terms of the planet’s orbits the residue of minutes RkL1 and RkL2 are given.

Two procedures are given to find the integral number of revolutions, signs, degrees
and minutes crossed by both planets since the beginning of the Kaliyuga:

Procedure 1 If y (resp. z) is the integral number of revolutions, signs, degrees and
minutes crossed, in terms of revolutions by the first planet (resp. the second
planet), then the problem may be formalized as

z × 21600 =
AyK1 × 21600y − (RkM2 − RkM1)

AyK2
.

It can be solved by any of the two methods used for this type of problem (a
pulverizer without remainder or a sthirakut.t.āka).

Procedure 2 In this case the residue of degrees in terms of the planet’s orbit (RkB)
is found by solving the problem

yB =
60 × xB − RkL

Ay × K
,

where xB is the residue of degrees in terms of the planet’s orbit, and yB the
integral number of degrees crossed by that planet.

Then the residue of signs in terms of the planet’s orbit (RkR) is found by
solving the following problem:

yR =
30 × xR − RkB

Ay × K
,

where xR is the residue of signs in terms of the planet’s orbit, and yR the
integral number of signs crossed by that planet.
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From this the residue of revolutions in terms of the planet’s orbit (RkM ) is
found by solving the following problem:

yM =
30 × xM − RkR

Ay × K
,

where xM is the residue of revolutions in terms of the planets’ orbit, and yM

the integral number of revolutions crossed by that planet.

d Case with more than two planets This combines the above described proce-
dures, with the case of the problems where what is sought is an integer N having
given remainders for n different divisors.

For a first two couple of planets, g1 and g2, N1 is found as described above, for
the couple of divisors and remainders (AyK1, RkM1

; AyK2, RkM2
), if the residue

of revolutions in terms of the planet’s orbits is given. Then for a third planet, g3,
the same procedure is applied to the couple (A2

yK1K2, N1; AyK3, RkM3). And so
forth.



Appendix: Some elements of
Indian astronomy

1 Generalities

The sky is considered as a sphere (gola) whose radius is 3438 minutes (kalās)128,
with the earth at its center. Stars are fixed on the sphere, which is thus called
bhagola, “sphere of the asterisms/stars”. We will call it here the Celestial sphere.
Tradition states that the earth does not move, and that the Celestial sphere turns
daily around the line going from the North pole (P ) to the South pole (P ′) called
the Celestial axis. Āryabhat.a however considered that the earth rotated from West
to East, and therefore that the movement of the Celestial sphere was only apparent.
Because of the violent reactions such a statement provoked, later commentators
changed the verse in order for it to mean exactly the contrary129. The planets,
among which the sun and the moon, revolve in the space between the earth and
the Celestial sphere. The Celestial Equator (vis.uvat) is defined as the great circle
(i.e. a circle belonging to the sphere and having the earth for center) perpendicular
to the Celestial axis.

Let us imagine an observer (O) on earth. Since the earth and thus the point where
the observer stands is very small compared to the radius of the Celestial sphere,
both are collected together. Apart from the Celestial axis and Equator, in the
following representations, all the other planes and lines will be defined according
to this observer.

The imaginary vertical line, which through the observer’s feet extends itself to
two points on the surface of the sphere, defines respectively the zenith (Z, nata),
which is the point above, and the Nadir (Z ′), which is the point below. This is
illustrated in Figure 56.

128The reason why a circular measuring unit is used here remains mysterious to me.
129See for instance [Sharma&Shukla 1976; Intro, p.xxix; p. 8; p. 119-120], [Yano 1980], and

[Bhattacharya 1991]
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Figure 56: The Celestial sphere
NESW is the Horizon for the observer in O;

ZPZ ′P ′ is the Celestial Meridian;
ZEZ ′W is the prime vertical;

WQEQ′ is the Celestial Equator.
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The great circle perpendicular to ZOZ ′ is called the Horizon. The plane it encloses
is the plane of the observer. It intersects the Celestial Equator in two points called
the East (E) and West (W ).

The great circle which passes through the zenith, nadir and the poles is called the
Celestial Meridian for this observer. It intersects the Horizon at the North (N)
and South (S).

The great circle perpendicular to the Celestial Meridian, passing through the
zenith and Nadir, and the the East (E) and the west (W ) is called the prime
vertical (samaman. dala).

2 Coordinates

The latitude of the observer, O, usually noted φ, is the angular distance between
the Equator and the zenith (the arc ZQ as illustrated in Figure 57.)

The distance of the pole to the Horizon (the arc PN) is called the altitude of the
pole. Because the angles ZOQ and PON are equal, the altitude of the pole and
the latitude of the observer are equal. The co-latitude is 90◦ − φ (as the arc QS).
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Figure 57: Coordinates
φ is the latitude of the observer in O;

90 − φ is the co-latitude.
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Let us now consider the orbit of the sun.

The path of the sun in the sky relatively to the stars, and to a fixed earth, when
noted during a year, at a given time, in a given place, every day, draws an ellipse.
This ellipse is in fact a mirror of the motion of the earth around the sun. The
plane defined by this ellipse intersects the Celestial sphere in a great circle called
the Ecliptic (apaman. d. ala). The Ecliptic intersects the Celestial Equator in two
points γ and Ω. The angle of the sun with the Equator is constantly changing. In
γ and Ω it is zero. The points where it is the greatest is called the obliquity of the
Ecliptic (paramāraprama, lit. “greatest declination”). This is illustrated in Figure
58, page 189.

Today this angle, which is also that of the Ecliptic with the Equator, is roughly
considered to be 23◦7′. γ is the point of the Equator through which the sun is
considered to move from the southern hemisphere to the northern hemisphere. It
is called the vernal equinox. Ω is the point on the Equator through which the sun
is considered to move from the northern hemisphere to the southern hemisphere.
It is called the autumnal equinox. The two points where the sun is at its greatest
angular distance from the Celestial Equator are called the summer (Y ) and Winter
(M) solstice.

The Ecliptic represents the yearly path of the sun on the Celestial sphere. Daily,
however, the sun is considered to have a motion parallel to that of the Equator,
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Figure 58: Apparent motion of the sun in a year
γ is the vernal equinox;

Ω is the autumnal equinox;
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because of the rotation of the Celestial sphere around the axis of the poles. In
fact, if we would represent the daily motions of the sun in a year, it would appear
as a spiral made of roughly 365 spins parallel to the Equator. It would be a spiral
because in 24 hours the sun slightly moves along the Ecliptic. During the vernal
and autumnal equinox the apparent motion of the sun is on the Equator. The days
are equal to the nights. The day of the winter solstice is the shortest of the year.
The day of the summer solstice is the longest of the year. Whatever the day, at
mid-day the sun is on the Celestial Meridian. This is illustrated in Figure 59, page
190.

Let’s take any day of the year, and consider the sun at mid-day, as illustrated in
Figure 60, page 190.

The straight line SuSu′ represents the orbit of the sun. At mid-day the sun is in
Su. The angular distance between the zenith and the sun at Su (the arc ZSu)
is called the zenith distance of the sun (z). The angular distance between the
Horizon and the sun at Su is the altitude of the sun (a).

On an equinoctial day, the sun is on the Celestial Equator, as illustrated in Figure
61. At mid-day the sun is in Q. The zenith distance of the sun in Q is then the lati-
tude (aks.a) of the observer. And its altitude becomes the co-latitude (avalambaka)
of the observer.

These concepts are used in Bhāskara’s commentary, when studying the astronom-
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Figure 59: Daily and yearly apparent motions of the sun
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Figure 60: Daily motion of the sun
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Figure 61: The sun on an equinoctial day
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ical interpretation of the shadow cast by a gnomon, at mid-day (in BAB.2.14).

3 Movement of planets

One aspect of the Hindu planetary theory bearing traces of a Hellenistic influence
concerns the description of the apparent motion of planets. These are rendered
through an epicycle theory: the problem then being the constant discrepancy be-
tween the mean motions and the true ones. We will expose very briefly here some
elements of Bhāskara’s epicyclic theory. For a more detailed analysis see the ex-
planations given in Chapter IV of [Shukla 1960].

A planet G (graha) has a mean circular motion, along a great circle of the Ce-
lestial sphere, the deferent, called in Bhāskara’s commentary vyāsārdhaman. d. ala
(“the circle 〈of that〉 semi-diameter”). Āryabhat.a calls it kaks.yāman. d. ala (Ab.3.18)
“orbit’s circle”. Let O, the earth, be its center, and R, the radius of the celestial
sphere, its radius. This is illustrated in Figure 62.

However, at a specific time of a specific day, the tabulated position of G is con-
sidered to be on a second smaller circle, the epicycle (pratiman. d. ala), which revolves
in a direction opposite to the revolution described by the deferent. Although the
point on the epicycle representing G at that time on that day is not yet the true
position of G, it is considered a first, better approximation of it.
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Figure 62: Orbit of a planet
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Let U1 be the apogee (ucca) of G. Bhāskara defines in BAB.3.4ab [Sharma& Shukla
1976; p.179, line22-23], the ucca as follows:

yatra grahāh. sūks.mā laks.ayante (Shukla’s readings)/labhyante (Mss.
reading) karn. asya mahattvāt sa ākāśapradeśa uccasam. jñitah.

That we can understand as follows:

A spot in the sky where a planet is perceived to be small because of the
greatness of the hypotenuse (karn. a) is called ucca (high).

The apogee is the apparent remotest point of G along its orbit, and U is its mean
position along its orbit. UU1 serves as reference both for the radius of the epicycle
at any time, and for the exact place on the epicycle where the tabulated position
of G on the epicycle should be.

Let M be the mean position of G on its circular orbit on a given day at a given time.
The arc UM represents the mean arc distance of G to its apogee at that given time,
and is called the bhujā. Let M1 be an approximation of the true position of G when
its mean position is in M . M1 is such that MM1 = UU1. This defines the epicycle.
In his commentary on Ab.2.26-27.ab, Bhāskara does not consider the epicycle itself,
but the circle having for radius OM1: tatkālotpannakarn. avis.kambhārdhaman. d. ala
(the circle which has for semi-diameter the hypotenuse produced at that time).

Let A be the point of OM1 that intersects with the mean orbit of G. Let B be
a point of (MO) such that AB is perpendicular to (MO). Let B1 be a point
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of (MO) such that M1B1 is perpendicular to (MO). Both AB and M1B1 are
called the bhujāphala (the correction of the bhujā). OA is the radius of the orbit
(vyāsārdha) and OM1 is called the hypotenuse (karn. a).

Bhāskara states in BAB.2.26-27.ab that

AB

OA
=

B1M1

OM1
,

and thus that AB is inversely proportionate to OM1.

This section and the following give several supplementary remarks on the astro-
nomical aspects of BAB.2.32-33.

4 Time cycles

Traditional Hinduism considers time as cyclical: there are four ages, called yugas,
at the end of which the universe is destroyed and reborn again. The four yugas, in
which the conditions of life increasingly deteriorates, are in due order: the kr. tayuga,
the tretāyuga, the dvāparayuga, and the kaliyuga in which we presently live.

Ab.1.3-4 gives the numbers of revolutions of the sun, moon, earth etc. in a yuga,
and the date of the beginning of the current yuga. Ab.3.5 defines solar years
(sam. vatsara), lunar months and civil and sidereal days. A solar year is defined by
the time taken by the sun, apparently, to make a full rotation around the earth.
The number of solar revolutions, which gives the number of years, in a yuga is
stated to be 4 320 000.

Traditional astronomy also distinguishes between civil days (bhūdivasa/dina, lit.
terrestrial days) and celestial ones (naks.atradivasa). A celestial day corresponds
to one apparent rotation of the celestial sphere from East to West. A civil day
corresponds to the daily apparent rotation of the sun around the earth: since the
sun every day slides slightly on the ecliptic there is a discrepancy between celestial
and civil days.

The civil days are defined in Ab.3.5: “The conjunctions of the sun and the earth
are (civil) days”130. The computation of the number of conjunctions in a yuga is
defined in Ab.3.3ab: “The difference between the revolution-numbers of any two
planets is the number of conjunctions of those planets in a yuga.” 131 The “revo-
lution-number” (bhagan. a) of a planet is the number of revolutions of a planet in
a yuga: these are constant and given in Ab.3-4. The number of terrestrial rev-
olutions in a yuga is given by Āryabhat.a in Ab.1.3: 1582237500. So that the
number of civil days in a yuga (Ay

132) is equal to the number of revolutions

130[Sharma&Shukla 1976; p. 91]
131op. cit., p.86.
132This corresponds to the notations we have adopted in our supplement for BAB.2.32-33.
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of the sun in a yuga minus the number of revolutions of the earth in a yuga:
1582237500 − 4320000 = 1577917500. Therefore Ay = 1577917500.

This value is important when evaluating the number of days elapsed in the Kaliyuga,
when the longitude of a given planet is known. This is one of the astronomi-
cal problems solved by a pulverizer computation, as described by Bhāskara in
BAB.2.32-33.

5 Orbits and non-integral residues of revolutions

The mean orbit (kaks.yā) of a planet, as we have seen above, is considered to be
a circle (kaks.yāvr. tta). It represents the apparent motion of a planet, around the
earth, on the Celestial sphere. One movement of the planet along its orbit is called
a revolution (man. d. ala). A revolution is divided into twelve equal signs (rāśi). A
revolution is also divided into three hundred and sixty degrees (bhāga), so that
there are thirty degrees per sign. A degree is divided into sixty minutes (liptā), a
minute into sixty seconds (vikalā)133. This is summed up in Table 11.

Table 11: The different subdivisions of a revolution

Sanskrit English Respective Amounts

Rev Signs Deg Min Seconds
man. d. ala Revolution 1

rāśi Sign 12 1
bhāga Degree 360 30 1
liptā Minute 216000 300 60 1
vikalā Second 1296000 18000 3600 60 1

At the beginning and at the end of a yuga, all planets are in conjunction. It is
assumed that, along their respective orbits, all the planets cross the same distance
in a yuga. This is stated in Ab.3.12 (op. cit. p. 100). The distance described by
any planet in a yuga gives the “circumference of the sky”134. In verse 6 of the
Gı̄tikāpāda, Āryabhat.a gives the following rule (given here with the non-literal
translation by K.S. Shukla and K.V. Sharma op. cit., p.13) to compute the length
in yojanas of the orbit of any planet:

Ab.1.6.
khayugām. śe grahajavo

The circumference of the sky divided by the revolutions of a planet in
a yuga gives (the length of) the orbit on which the planet moves.

133These subdivisions, of course, recover those that divide a circle in mathematics. See the
Section of the Glossary on time units.
134op. cit., p. 14



5. Orbits and non-integral residues of revolutions 195

From this verse of the Āryabhat.ı̄ya we also indirectly know that the circumference
of the sky in yojanas is: 12474720576000 yojanas. The orbit of the moon, according
to the value given in Ab.1.3, is

12474720576000

57753336
= 216000 yojanas.

And the orbit of the sun is

12474720576000

4320000
= 2887666, 8.

In the Mahābhāskar̄ıya, the following verse gives a rule to find the mean longitude
of a planet 135:

Mbh.i.20
ambaroruparidhir vibhājito bhūdinair divasayojanāni taih. |
saṅgun. ayya divasān athā haret kaks.yayā bhagan. arāśayah. svayā‖
Divide the (yojanas of the) circumference of the sky by the number of
civil days (in a yuga): the result is the number of yojanas traversed (by
a planet) per day. By those (yojanas) multiply the ahargan. a and then
divide (the product) by the length (in yojanas) of the own orbit of the
planet. From that are obtained the revolutions, signs, etc. (of the mean
longitude of the planet).

The ahargan. a, is the number of days elapsed in the Kaliyuga at that time. If x is
the ahargan. a, since we know that the number of civil days in a yuga is 1577917500,
then, for example, the mean longitude of the sun (λS) is

λS =
12474720576000x

1577917500 × 2887666, 8
.

We can recognize here the type of problem solved by a pulverizer without remain-
der. Such problems are seen in Examples 24-26 of BAB.2.32-33. Note that there
would be an obvious simplification here, that does not seem to be carried out in
the resolution of these examples:

λS =
12474720576000x

1577917500
× 4320000

12474720576000
=

4320000x

1577917500
=

576x

210389
.

135[Shukla 1960; Skt, p. 4; Eng, p.15]



Glossary

1 General

The words are given in the Sanskrit order. Double quotes indicate the technical
translation chosen, as opposed to the literal translation of a word or expression.
Are noted as synonyms, those that are given as such by Bhāskara136.

A

Aks.a Latitude. Aks.ajyā The Rsine of the latitude.

Aks.epa Non-additive. Said of two karan. ı̄s that cannot be summed.

Agra Remainder. In one instance of far-fetched interpretation (BAB.2.32-33),
Bhāskara understands this word used in Āryabhat.a’s verse as meaning
“a number”.

Adhikāgrabhāgahāra or adhikāgraccheda Technical term of the kut.t.akāra proce-
dure. It is “the divisor of the greater remainder” in a pulverizer with remain-
der (sāgrakut.t.akāra) procedure. It is “the divisor which is a large number”
in the pulverizer without remainder (niragrakut.t.aka) procedure.

Anuloma Same direction. Direct. Anulomagati is a direct motion, as opposed to
vilomagati, a retrograde motion. Anulomacārin has the same meaning. Anu-
lomavivara is the distance of 〈two bodies moving in〉 the same direction.

Anta Last term of a series.

Antara Distance, difference. Deśāntara, lit. difference of spots, is the “longitude”.
Sthānāntara is a different place. In common Sanskrit it means particular,

as in upāyāntara (a particular method) or different, as in ābhādhāntara: the
different sections (of the base).

Antarāla Space between. An interval.

136Please see in the section “Conventions of translations” in Introducing the Translation, the
paragraph on synonyms, for a short discussion of this topic.
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Figure 63: A bow-field
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Antya Last.

Apacaya Decrease; Subtractive (quantity), subtrahend.

Apanayed One should subtract.

Apavartita, apavartya Reduced (by a common factor).

Aparvartana Division. Reducer (as one who does the action described as apavar-
tita). Given as a synonym of bhāga (division, part) in BAB.2.4.

apa-VR. T To reduce (by a common factor), to divide.

Abhyasta Multiplied.

Abhyāsa Product. The product of two or more quantities, as opposed to the mul-
tiplication of a quantity by another.

Am. śa Part. numerator of a fraction. A fraction. When a fractional number is
stated, the denominator is marked with am. śa. Also used as a substitute for
bhāga with the meaning of “degree”.

Ardha Half. Increase in commercial problems.

Ardhita Halved.

Avagāhya, avagāha Penetration. Lit. “having plunged”. Segment of the diameter
of a circle. Also used for the arrow (śara), of a bow-field (illustrated in Figure
63)

Avayava Part.

Avarga see varga.

Avalambaka Perpendicular. Plumb-line. Rsine of the co-latitude. The Rsine of
the co-latitude is proportional, on an equinoctial day, to the perpendicular
formed by the body of a gnomon.

Avasāna Distance. Literally it means a boundary. Only used in BAB.2.16 to refer
to the distance between a gnomon and a source of light.
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Aśes.agan. ita Mathematics as a whole, i.e. mathematics seen as a global subject.
See gan. ita.

Aśra or Aśri Side, edge. Used in the names of planes and solids.

A caturaśraks.etra A quadrilateral field, and a dvādaśāśri “a twelve edged
〈solid〉”, which is one of the names, here, for a cube. However in BAB.2.14.
a caturaśra is used to qualify a solid – this may be another name for a cube,
or that of a prism.

A tryaśraks.etra A “trilateral field” and a s.adaśri is “a six-edged solid”, which
is the name, here, of an equilateral pyramid with a triangular base. However
in BAB.2.14, a tryaśra is used to qualify a solid, maybe a pyramid with a
triangular base.

Asata Incorrect 〈value〉. Companion term of sata (correct 〈value〉).
Ahargan. a Lit. group of days, is the number of days elapsed since a given epoch,

usually the Kaliyuga.

Ā

Ācārya Master, teacher, learned one. It is often attached, as an honorific suffix,
to the name of a person.

Ādi The first term of a series.

Ānayana To compute, computation. Mostly used in the introductory sentence,
preceding the quotation of a verse of the Āryabhat.ı̄ya about to be commented,
which gives the aim of the procedure which will be treated.

Ābhādhā Technical term naming a segment of the base delimited by a perpendic-
ular.

Āyata Elongated. length. Āyatacaturaśraks.etra, lit. elongated quadrilateral field

is always a rectangular field.

Āyāma Length. In a trapezium, it is one of the names of the height; length in a
rectangle as opposed to vistāra which then means width.

Ārya This is the meter in which the three last quarters of the Āryabhat.ı̄ya, in-
cluding the gan. itapāda, are written.

Ālekhya Lit. written, painted. A “drawing”.

Āsanna Approximate, approximation. Lit. close to. Companion term of sūks.ma,
accurate.

However, sūks.masya āsanna is the approximation of an accurate 〈value〉.
Vyāvahārikasya āsanna is the approximation of a practical value. The first
being of better quality than the latter.
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Figure 64: A tusk-field
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Āhniko bhogah. Daily passing. This is the name of the sum of the daily motions
of two planets.

I

Icchā Desire.

Icchārāśi The “desire quantity” in a Rule of Three. Icchāphala is the “fruit
of the desire” in a Rule of Three.

Is.t.a Desired. Sometimes close to the meaning of optional. In computation with
series, is. t.a is the desired number of terms.

U

Ucchrāya Height. Used when relating the geometrical cube to the square it is
derived from, and when defining a triangular based pyramid.

Utkramajyā The Rversed sine, i.e Rsin. See the Annex to BAB.2.12.

Uttara The common difference in arithmetical series. Increase.

Udara Belly. Used to characterize one of the sides of a tusk-field, see Figure 64.

Uddeśaka Example.

Uddeśana Example.

Udvartanā Multiplication. Given as a synonym of sam. varga in BAB.2.3ab.

Upacaya Increase. Additive (quantity).

Upaciti Lit. accumulation. Is the name of the series of (the progressive sum of)
natural numbers.

Upapatti Proof. Opposed to tradition (āgama) in BAB.2.10.

Uparirāśi See rāśi.

Upalaks.ita Characterized.
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Figure 65: Right-angled triangle in a śr. ṅgāta field.

B
C

D

H

çrdhva-bhujÁ

bhujÁ

karNa

Upāya Method.

Ū

Ūn. a Decreased. Subtractive 〈quantity〉.

Ūnāgraccheda or ūnāgrabhāgahāra Is “the divisor for the smaller remainder”
in a pulverizer with remainder and “the divisor which is a small number” in
a pulverizer without remainder procedure.

Ūrdhvabhujā Upward side. Used for the perpendicular issued from one vertex on
to the triangular base in a śr. ṅgātaka field, as illustrated in Figure 65.

R.

R. ks.a Sign. 1/12th of the circumference of a circle.

R. ju Vertical.

R. juta Verticality. R. justhiti is a steady vertical.

R. n. a Debt. When opposed to dhana (wealth) it is a “subtractive 〈quantity〉”.

E

Ekatra kr.tvā Summed. lit. having made in one place; this may refer to the fact
that the two summed quantities were erased from the working surface, and
replaced by one quantity, their sum, that occupied thereafter only “one place”
on the working surface.
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Figure 66: Right-angled triangle
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Ek̄ı bhavā, ek̄ı kr.tya Sum. Lit. the state of becoming one, having made into one;
this may refer to the fact that the two summed quantities were erased from
the working surface, and replaced by one quantity, their sum. See ekatrakr. tvā.

Ka

Kaks.yā Orbit of a planet.

Karan. a Procedure. Name given to the part of an example which exposes its res-
olution.

Pratilomakaran. a Is a reversed procedure.

Karan. ika Which belongs to karan. ı̄s, which measures the karan. ı̄ (of a given quan-
tity).

Karan. ika Is derived from the word karan. ı̄, to which the suffix -ka is added,
followed by a diminution of the long ı̄.

Karan. ı̄ Usually considered as a “surd”, the expression “the karan. ı̄s of a” may be
translated as meaning: “that whose square is a”, or

√
a. However, it seems to

be a geometrical concept. It may be a specific way of considering the square
of the measure of a geometrical object (see the section 1 of part I). It is given
as a synonym of varga in BAB.2.3ab.

karan. ı̄parikarman The geometrical operation of constructing the square hav-
ing the hypotenuse for side: its area is equal to the sum of the two other sides
of a right-angle triangle, as well as the numerical squaring of the length of
the hypotenuse as the sum of the squares of the two other sides.

Karidantaks.etra A (two dimensional) tusk-field. see Figure 64, page 200.

Karkat.a, karkat.aka Lit. a crab; it is the name of “ a pair of compasses”.

Karn. a hypotenuse. Diagonal. In customary Sanskrit it is an “ear”.
Karn. a is used in the traditional enumeration of the sides of a right-angle
triangle: karn. abhujākot.i. See Figure 66.
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We will use the literal translation when it is used to describe the side of a
field or a solid, where no right-angle triangle is immediately involved. But
usually it names a segment of a geometrical figure, in which Ab.2.17 (i.e.
the “Pythagoras Theorem”) may be applied; when this is the case, it be-
comes then the hypotenuse of a right-angle triangle, and we have translated
it accordingly. See for instance Figure 65, page 201.

In any triangle, the sides for a given base are also called karn. a, which means
“ears”. These may also be named by synonyms of this term as śravan. a and
so forth.

Karman Computation, operation.

Gan. itakarman A mathematical operation. vipar̄ıta-, pratiloma- and vilomakar-
man mean a reversed operation.

Kārikā Verse.

Kāla Time. Kālakr̄ıyā,“ time reckoning” is the third chapter of the Āryabhat.ı̄ya.

yogakāla The meeting time (of two moving bodies).

Kās.t.ha Unit arc. This is a terminology particular to Bhāskara. It glosses Ārya-
bhat.a’s use of capa in Ab.2.11 but can be found in the Mahābhāskar̄ıya as
well137.

Kut.t.ākāra or Kut.t.āka Pulverizer. Name of the procedure described in verses 32-
33 of the Chapter on mathematics of the Āryabhat.ı̄ya.

Sāgrakut.t.ākāra A pulverizer with remainder. Niragrakut.t.āka is a pulverizer
without remainder.

Velākut.t.ākāra The time pulverizer.

Kr.ti Square. Given as a synonym of varga in BAB.2.3ab.

Kendra Center.

Kot.̄ı or kot.i The upright-side; see Figure 66.

It is usually one of the sides of a right-angle triangle, the other one is called
bhujā, and the hypotenuse karn. a. See Figure 66. This word is also used to
name the vertical edge of a gnomon.

Krama Method.

Kriyyā Method.

Ks.aya Decrease.

137See Shukla’s remark in [Shukla 1976; Intro, p.xlii]
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Ks.etra Field, and by extension a geometrical figure. It sometimes refers to the
surface delimited by a number of sides or a line. It sometimes refers only
to the set of lines and inner segments that draw the field, and not to the
delimited surface.

Ks.etragan. ita The mathematics of fields or computations with fields.

Ks.epa Additive 〈quantity〉.

Ga

Gaccha The number of terms in a series. In one instance, BAB.2.20, it is also
interpreted as a term of the series. This would be rather Āryabhat.a’s un-
derstanding of the word, rather than Bhāskara’s. In BAB.2.29 it is a term of
a set: pada and paryavasāna are given as synonyms of this word.

Gan. aka Mathematician? A literal translation would be computer (in the sense of
someone who computes), we have translated it by “calculator”.

Gan. ita Mathematics. computation. By extension gan. ita sometimes names the re-
sult of any computation, and therefore means sometimes: area, sum, quantity.

Aśes.agan. ita Lit. mathematics without remainder, is “mathematics as a whole”
which englobes both samānyagan. ita, general mathematics, and its counter-
part, víses.agan. ita, “specific mathematics”.

Gan. itakarman A mathematical operation.

Średdh̄ıgan. ita The sum of a series.

Laukikagan. ita Is wordly computations.

Gata Lit. gone, “exponention”; i.e. the raising to any power of a quantity. The
word with this technical meaning is only used in BAB.2 introduction.

A dvigata, a double-gata, is a square (varga); a trigata is a cube (ghana). By
the same token, gatasya mūla or gatamūla, lit. the root of a gata, is a root
extraction from any power.

Gāthā Synonym of ārya as a name of a verse-meter.

Gun.a Multiplier. Occasionally translated as “times”.

Gun.akāra Multiplier.

Gun.anā Multiplication (of two different quantities, counterpart of the term gata);
however it is given as a synonym of sam. varga in BAB.2.3ab.

Gun. ita Multiplied. This word is given as a synonym of hata in BAB.2.7.ab.

Gun.ya Multiplicand.

Gulikā Bead. Name of the coefficient of the unknown quantity in first order equa-
tions.
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Gūha Sign. 1/12th of the circumference of a circle.

Gola, golaka Sphere.

Golapāda The name of the fourth chapter of the Āryabhat.ı̄ya.

Ghanagola A circular solid.

Graha Planet.

Grahacāra The “motion of planets”. Grahagan. ita is the “mathematics of
planets/planetary computations”.

Grāsa Lit. mouthful. Segment of the diameter of two intersecting circles. Name of
the part of the sun eclipsed by the moon, or of the part of the moon eclipsed
by the shadow of the earth (i.e. the part of the moon eaten by Rāhu).

Gha

Ghana Cube. Solid. A cube 〈place〉, i.e. in the decimal place-value notation it is a
place whose power of ten is a cube. Conversely, a non-cube 〈place〉 is a place
whose power of ten is not a cube.

Ghanaphala The volume. Ghanamūla is the cube-root.

Ghanagola A circular solid.

Citighana A solid 〈made of〉 a pile. This is the name used by Āryabat.a for
the series of the progressive sums of natural numbers (i.e. the sum of 1, 1 +
2, 1 + 2 + 3, · · · , 1 + 2 + 3 + · · · + i, . . .).

Ghāta Multiplication. Given as a synonym of sam. varga in BAB.2.3ab.

Ghna Multiplier.

Ca

Cakra A revolution. In customary Sanskrit it is a circle.

Caturaśraks.etra Quadrilateral field. Sometimes the term field (ks.etra) is omitted
in which case we translate the compound as ‘quadrilateral’. Means literally:
“ a field with four sides”.

Cāpa Unit arc.

Citi Pile. Used in the geometrical description of series.

Cha

Chāya Shadow. Rsine of the zenith distance. It is the name of a specific field of
mathematics, related to computations using the data given by a gnomon. It
is the length of the midday shadow cast by a gnomon. It is proportionate to
the Rsine of zenith distance which thus sometimes bears the same name.
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Figure 67: The diagram in BAB.2.11

Chindyāt One should divide.

Cheda Part. Denominator of a fraction. divisor. In BAB.2.12 once used as meaning
“partial (half-chord)”.

Adhikāgraccheda The divisor of the greater remainder.

Ūnāgraccheda The divisor of the smaller remainder.

Chedyaka A diagram. In this commentary the word is only used in reference to a
specific diagram, whose construction is described in BAB.2.11., with which
the measure of half-chords (ardhajyā) or Rsinuses (R times the sinus) is
derived. See Figure 67.

Ja

J̄ıvā A chord.

Jyā Chord.

Ardhajyā A half-chord. Half the chord subtending the arc 2α ( crd(2α)
2 ) is

called the half-chord of α. This is what we call Rsinα, see Figure 68 and the
Annex to BAB.2.11.

By extension jyā is sometimes the half-chord.

Jyotpatti A production of 〈half〉-chords.

Jyāvibhāga A partition of chords. In BAB.2.11, this refers to the subdivision
of the perimeter of the circle into equal arcs and to the interior fields drawn
inside the circle, as illustrated in Figure 67. In BAB.2.12, this refers, along
with other expressions as “khan. ditam. . . . ardham. ” (the expression used by
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Figure 68: Chord and half-chord

half chord of the arc 

or Rsin

R

Cord subtending the arc 2

arrow of  arc 
or R-Rcos

jyÁ

ßara

ardha-jyÁ

Āryabhat.a in Ab.2.12) and “chinnam. . . . ardham. ” (the expression used by
Bhāskara), both meaning “sectioned half〈-chord〉”, to the difference of two
successive half-chords. The difference of two half-chords appears as a segment
of the biggest half-chord. See Figure 69.

Aks.ajyā The Rsine of the latitude. Natajyā is the Rsine of the zenith distance.

Ta

Tatparās Seconds.

Tithi Lunar day.

Tulya Equal.

Trairāśika Rule of Three.

Da

Dalita Halved.

Dairghya Length. Given as a synonym of āyāma in BAB.2.8.

Dik (Cardinal) direction. Also used in a figurative sense.

Dina Day.

Dinarāśi, lit. the amount of days, is the number of days elapsed in the
Kaliyuga. Dinagana, lit. the group of days, has the same meaning.

Divicara Planet. lit. roaming the sky.
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Figure 69: The difference of two half-chords
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Dravya Object. Sum.

Dvicchedāgra 〈A quantity that has such〉 remainders for two divisors. Technical
term denoting the number to be found in a “pulverizer with remainder”
process.

Dha

Dhatr̄ı Lit. earth, the “base” of a triangle, or the “earth” in a trapezium (the
“earth” here is the base of the trapezium, but we have kept the literal trans-
lation here in order to distinguish it from its segments which can be the
“base” of a triangle).

Dhana Lit. wealth. value, especially the value of the term of a series, i.e. the sum
of the terms of a finit sequence. Amount. With the meaning of wealth as
opposed to the word r.n. a (debt) it is an additive quantity.

Madhyadhana The mean value, i.e. the mean sum of the terms of the sequence.
Sarvadhana is the whole value, i.e. the sum of all the terms of a sequence.
Padadhana is the value of the terms, which ambiguously may refer to the
terms of the sequence or to its corresponding series.

Dhanuh.ks.etra Bow-field. It is made of an arc of a circle (called “the back” pr.s. t.ha),
the chord that subtends it (jyā) and an arrow (śara). It is illustrated in Figure
63, page 198.
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Na

Nata Zenith distance.

Natajyā The Rsine of the zenith distance.

Nād. ı̄ Time unit equal to half a muhūrta, or 24 minutes.

Nirapavartita Reduced. See apavartita.

Niravaśes.a Without remainder; without exception.

Niravaśes.agan. ita Is “mathematics as a whole”, which englobes both samānya-
gan. ita ( general mathematics), and its counterpart, víses.agan. ita, (special(ised)
/ specific mathematics).

Nı̄yamāna Computing.

Nyāya Rule. Method. Logic?

Pa

Pada Term of a sequence, a series or of a set. Given as a synonym of gaccha in
BAB.2.29. In Āryabhat.a’s understanding it would be the number of terms of
a sequence. For Bhāskara however, its meaning is restricted to the meanings
given as entries. Name given to the successive remainders that are placed, in
the mutual division of the pulverizer (kut.t.ākāra) procedure.

Padapramān. a The number of terms in a series.

Pan. avaks.etra A drum-field. See illustrations in BAB.2.9.ab.

Parikarman Operation.

Parikalpaniyā Calculation.

Parin. āha Circumference. Given in BAB.2.9.cd as a synonym of paridhi.

Paridhi Circumference, given in BAB.2.7ab and BAB.2.10 as a synonym of
parin. āha.

Parilekha The out-line 〈of a circle〉, i.e. the line that draws the circumference.

Parihāra Refutation.

Paryavasānam Term of a set. Given as a synonym of gaccha in BAB.2.29.

Pārśva Lit. a flank, it has the technical meaning of “side”. In Āryabhat.a’s un-
derstanding it may be any side. In Bhāskara’s understanding it may be re-
stricted to orthogonal sides. It is however given by Bhāskara as a synonym
of bhujā in BAB.2.6.ab.

Pārśvatā “Sideness”, maybe an expression meaning orthogonality.

Pin.d. ita Added. This term is used by Āryabhat.a rather than by Bhāskara.
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Pr.s.t.ha Back. Name of one of the sides of a tusk-field, see Figure 64, page 200 and
of the arc of a bow-field, see Figure 63, page 198. This may be a general term
for anything curved.

Prakriyā Calculation. In grammatical Sanskrit it means a derivation, i.e. what is
done step by step.

Praks.epa Sum. In commercial problems as the original sum invested by each mem-
ber in a commercial transaction, so that it is sometimes translated as “in-
vestment”.

Pratiloma Reversed.

Pratilomakaran. a is a reversed procedure. pratilomakarman is a reversed op-
eration.

Pratyayakaran. a Lit. a conviction-procedure, a “verification”.

Pramān. a Size, amount.

Pramān. arāśi The “measure-quantity” in a Rule of Three.

Pha

Phala Fruit; result. Thus the “interest” in commercial problems.

Ks.etraphala The area. Ghanaphala is the volume. By extension, in a geomet-
rical context, phala alone has sometimes been translated by area or volume.
In a specific part of BAB.2.3cd phala is used as meaning ‘surface’, although
this understanding can generally be attributed to the word ks.etra (field).

Phalarāśi The “ fruit quantity” in a Rule of Three.

Mūlaphala The interest on the capital.

Ba

Bāhu Its usual meaning is arm or forearm, as a synonym of bhuja (given as such
in BAB.2.6.ab), it is translated as “side”.

B̄ıja Seed.

Brahma A pair of compasses. Terminology used by Āryabhat.a.

Bha

Bhakta Divided.

Bhagan. a Revolution.

Bhavana Zodiacal sign.
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Bhāga Part; division. Degree, the 60th part of a circle or revolution in an astro-
nomical context.

This word is derived from the verbal root Bhaj-, to share, distribute, which
has the technical meaning “to divide”. Bhāgahr. tvā, lit. when one has removed
a part, means “when one has divided”. Bhāgalabdha is what is obtained from
the division or “the quotient of the division”.

When expressing in words the fraction a
b
, bhāga may be affixed to the de-

nominator (b), thus meaning a out of b parts. It may also be affixed to the
numerator (a), thus meaning a parts of b.

Śuddham. bhāgam. , Lit. a pure division is “an exact division” that is it has no
remainder.

Bhāgaśes.a “The residue of degrees” , i.e the non-integer part of the number
of degrees crossed by a planet since the beginning of the Kaliyuga.

Bhāgahāra Divisor. lit. removing a part.

Adhikāgrabhāgahāra The divisor of the greater remainder. A technical term
of the kut.t.akāra operation/procedure.

Bhajana Division. Given as a synonym of bhāga in BAB.2.4.

Bhās.ya Commentary. Āryabhat.ı̄yabhās.ya is the name of Bhāskara’s commentary
on Āryabhat.a’s work.

Bhinna Fraction, an integer increased or decreased by a fractional part, part.

Bhukti Daily motion.

Bhujā Side. In customary Sanskrit it is the corporeal arm. Bhujā can be any side
of a field.

When considered in a bahuvr̄ıhi compound, modified by ks.etra, it loses its
ā: tribhujaks.etra is a trilateral field. Sometimes the word field (ks.etra) is
omitted, the compound is then translated as “trilateral”. Caturbhujaks.etra
is a quadrilateral field.

Sometimes the meaning of bhujā is restricted to that of the base of a trilateral.
Bhujā is one of the sides of the right-angle in a right-angle triangle, the other
side is called kot.ı̄ and the hypotenuse karn. a. See Figure 66, page 202.

Bhujā In astronomy is the name for the mean arc distance of a planet at a
given time, to its apogee. Bhujāphala “the correction of the bhujā” is a seg-
ment, which approximates the true position of a planet to its mean position
at the same time. Please refer to the astronomical Appendix.

Bhū Lit. earth; the “base” of a triangle or the “earth” of a trapezium.

In the case of the trapezium, to distinguish it from its segments which may
be the base of interior triangles, we have translated it as “earth”. It is the
companion term, in a trapezium, of mukha or vadana. See Figure 70
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Figure 70: An isoceles trapezium

earth

flanks, ears

base

lines on their
 own falling
(svapÁtalekha)

perpendicular, height

(pÁrßva, karNa)

(bhÆ, bhÆmi, etc.)

(avalambaka, ÁyÁma)

(bhujÁ)

diagonals,
internal ear

(karNa, antaHkarNa)

face (mukha, vadana, etc)

Bhūmi Lit. earth; the “base” of a triangle or the “earth” of a trapezium.

Bheda A part. Sometimes used figuratively, but also as the (fractional) part of a
number.

Ma

Man.d. ala A circle. A revolution.

Man. d. alaśes.a “The residue of revolutions”, that is the non integer part of
the number of revolutions performed by a planet since the begining of the
Kaliyuga. This is illustrated in Figure 71.

Madhya Middle. Zenith. Mean.

Madhyadhanam The mean value, i.e. the mean value of the sum of the terms
of an arithmetical series.

Mah̄ı Lit. earth, the “base” of a trilateral.

Mísrata Lit. mixture, “increased”.

Mukha The face or mouth. Name of the side opposite to the earth in a trapezium.
See Figure 70.

It is also the name of the opening of a pair of compasses.

The first term of a series.

Muhūrta Period of time equal to 48 minutes.
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Figure 71: Residue of revolutions and residue of signs

G

Residue of revolutions:

the non interger part of a revolution

 performed by G

Residue of signs

Mūla Root (in the common and mathematical sense). The “capital” in commercial
problems.

Vargamūla A square root. Ghanamūla is a cube root. Gatamūla is the root
of an exponention, the fact of extracting a root. The latter compound is only
used in BAB.2 introduction.

In BAB.2.14 The word mūla is used to qualify the lower base of a gnomon.

mūlaphala The interest on the capital.

Maurika Minute (as a unit used in longitudes).

Ya

Yāma Unit of time equal to 1/8th of a day or 3 hours.

Yāvakaran. a Square. Given as a synonym of varga in BAB.2.3ab.

Yāvattāvat Lit. “as much as”. Name of the the coefficient of the unknown quantity
in first order equations. Used only by Bhāskara.

Yāvattāvatpramān. a The “value of the yāvattāvat, that which is unknown.

Yukta Increased. summed.
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Yuktyā Adverb meaning “cleverly”. The word yukti, with the meaning “reasoning”,
has an important posterity in Sanskrit mathematical texts.

Yuga A period of 4320000 years. There are traditionally four yugas, the last one
being the Kaliyuga (which corresponds to our time) after which the earth is
destroyed, and the cycle starts again.

Yuta Increased. Summed.

Yoga Sum. Meeting point (of two moving bodies).

yogakāla The meeting time (of two moving bodies).

Ra

Rāśi A quantity. Traditionally, the 12th part of the ecliptic. It is the 12th part of
a circle or 30 degrees.

Rāśigan. ita Is lit. the mathematics of quantities or computations with quan-
tities; we have translated it as “arithmetic” or “arithmetical computations”.

Rāśirūpa The integer 〈part〉 of the quantity. This expression is solely used in
BAB.2.26-27.ab.

Uparirāśi The “higher quantity”, i.e. the integer in a fraction increased or

decreased by a part; the disposion
a
b
c

corresponding to a + b
c
.

Bhāskara uses in BAB.2.9.cd the expression rāśidvayaks.etra, a two-rāśi field,
which would be the name of an arc measuring 60 degrees.

Rāśíses.a is “the residue of signs” that is the non-integer part of the number
of signs crossed by a planet since the beginning of the Kaliyuga (measured
in degrees and minutes). This is illustrated in Figure 71.

Rūpa A unit. A digit (i.e numbers from 1 to 9). A whole number.

rāśirūpa The integer 〈part〉 of a fractionary quantity.

Rekha A line. Used in the drawing of a diagram.

La

Laks.an. asūtra A rule which is a characterization. A way of expressing an abstract
or general rule.

Labdha What is obtained, the result, the quotient when connected with division
(bhāga).

Lava Degree. 1/30th of the circumference of a circle.
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Liptā or Liptika Minutes, the 60th part of a degree.

Liptāśes.a The “residue of minutes”, that is the non-integer part of the number
of minutes crossed by a certain planet since the beginning of the Kaliyuga.

Lekha A line. Used in the drawing of a diagram.

Parilekha The out-line of a circle, i.e. the line that draws its circumference.

Laukikagan. ita Wordly computation.

Va

Vadana Face, the side opposite to the earth in a trapezium. See Figure 70, page
212.

Varga Square. The geometrical square as well as the square of a number, according
to Āryabhat.a. Practicaly, Bhāskara uses it for the square of a quantity. The
square-place, i.e. a place in the decimal place-value notation whose power of
ten is pair.

Vargakarman. , Square-operation, may be the squaring of the length of a diag-
onal in a quadrilateral or the hypothenuse of a right-angle triangle (karn. a).
See the discussion in the Annex of BAB.2.3.ab.

Vargagan. ita Square computation. The squaring of a digit in the procedure of
extraction of a square-root.

Vargamūla A square root.

Avarga A non-square place. In the decimal place-value notation, it is a place
whose power of ten is odd.

Vargan. ā Square. Given as a synonym of varga in BAB.2.3ab.

Vasudhā Earth, in a trapezium, that is the side opposite to the face. See Figure
70, page 212.

Vastu Subject, substance, object. Used to indicate the subjects of the treatise.

Vikalā A second, a unit used in giving longitudes.

Vigan. aya, vigan. ayya Having computed.

Vi Decreased. Lit. “is removed”.

Vidhi Operation. Method.

Vidhāna Method.

Vinādika Time unit equal to 1/60th of a nād. ı̄.

Vipar̄ıtakarma The reversed operation.
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Vibhāga Partition.

Jyāvibhāga “A partition of chords”, see jyā.

Vibhājed One should divide.

Virahita Decreased.

Viloma Reversed. Opposite directions. Retrograde.

Vilomakarman A reversed operation. Vilomagati is a retrograde motion. Vilo-
mavivara is the distance of 〈two bodies moving in〉 opposite directions.

Vivara Distance. See viloma.

Víses.a Difference.

Vísodhayed One should subtract.

Vis.ama Uneven. Odd. This word is also used with a different meaning in BAB.1.1,
where it is the name given to equations with several unknowns.

Vis.amacaturbhuja “An uneven quadrilateral”, i.e. in Bhāskara’s commentary
a non-isoceles trapezium. However Bhāskara notes in BAB.2.8 that in other
treatises this could refer to any quadrilateral.

Vis.kambha Diameter.

Vis.kambhārdha The semi-diameter or radius.

Vistara Width. Bhāskara in BAB.2.8. interprets the word as meaning literally a
kind of spreading.

Vistāra Width. Given as a synonym of āyāma (length) in BAB.2.8, however in
rectangles it is opposed to this very term.

Vr.tta A circle, circular.

Vr.ttaks.etra A circular field. Given in BAB.2.9.cd as a synonym of paridhi, it
then would mean circumference, although it is not used with this meaning
in the commentary on the gan. itapāda. Samavr. ttaparidhi is interpreted by
Prabhākara as a bahuvr̄ıhi , meaning literally: an evenly-circular circumfer-
enced 〈field〉; Bhāskara explains that this interpretation understands the
compound as refering to a disk. The same compound is analysed as a kar-
madhāraya by Bhāskara meaning literally: a circumference which is evenly
circular.

In Āryabhat.a’s verses, in the chapter on the sphere (golapāda), vr. tta is used
to characterise the sphericity of three dimensional objects. In BAB.2.7cd gola
is paraphrased by vr. tta in the compound ghanagolaphala. In this compound
ghanagola is a sub-kamadhāraya therefore gola and with it vr. tta means rather
“a circular solid”, rather than “a sphere/circle which is a solid”.

Svavr. tta is one’s own circle. It is the circle having for center the tip of the
shadow of a gnomon, whose radius extends to the tip of the gnomon.
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Vr.ddhi Increase. Common difference in an arithmetically series. Interest in com-
mercial problems. This is a word only used by Bhāskara.

Velā Time.

Velākut.t.ākāra The time-pulverizer.

Vyavahāra Name of a set of eight subjects that form mathematics understood as
a global subject (only part of which is presented in the Āryabhat.ı̄ya.

Lokavyavahāra “Wordly practice”, the particular case where a rule is applied,
or the common use of a rule.

Vyāvahāragan. ita Practical computation. Companion term of sūks.magan. ita, an
accurate computation.

Vyākhyāna Explanation. commentary. Used by Bhāskara to characterize his own
work in the introductory verse of the chapter on mathematics.

Vyāsa Diameter (literally the seperating 〈line〉), vyāsārdha is the semi-diameter.
This word is given as a synonym of vis.kambha in BAB.2.7.ab.

Śa

Śara Arrow. One of the segments of a bow-field, illustrated in Figure 63, page 198.

Śaṅku Gnomon, by extension 〈the height of〉 a gnomon; the Rsine of the altitude.
For the relation between the size of the gnomon and the Rsine of altitude see
the Annex on BAB.2.14.

Śāstra Science, treatise.

Śes.a Remainder (of a subtraction). Residue.

Man. d. alaśes.a is “the residue of revolutions”, that is the non-integer part of
the number of revolutions performed by a planet since the beginning of the
Kaliyuga (measured in signs, degrees and minutes).

Rāśíses.a is “the residue of signs” that is the non-integer part of the number
of signs crossed by a planet since the beginning of the Kaliyuga (measured
in degrees and minutes).

Bhāgaśes.a is “the residue of degrees” that is the non-integer part of the
number of degrees crossed by a planet since the beginning of the Kaliyuga
(measured in minutes).

Śr.ṅgātaka Probably an equilateral, triangular based pyramid, with the perpen-
dicular issued from one of its tops onto the triangular base. It is illustrated
in Figure 65, page 201.

Śravan. a Ear, side of a geometrical field.
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Średh̄ı Series.

Sa

Saṅkalanā Summation.

Saṅkalanāsaṅkalanā The “summation of a summation”, this is the name
given by Bhāskara to the sum of the series of progressive sums of natural
numbers (i.e. the sum of the series 1, 1 + 2, 1 + 2 + 3, · · · , 1 + 2 + · · ·+ i, · · · ).

Saṅkhyā Number, amount, value. Calculation.

Saṅkhyāsthānāh. “The places of numbers”, the places in which digits are writ-
ten in the decimal place-value notation.

Sata Correct 〈value〉. Companion term of asata (incorrect 〈value〉).
Sadr.s.a Same kind. Equal.

Used with the first meaning for the result of the transformation of an integer
increased or decreased by a fractional part into a fraction with only a nu-
merator and a denominator. Also used to characterise the type of quantity
which enters the multiplication when squaring and cubing.

Sama Same. Equal. Even. Pair. This word does not seem to have exactly the same
meaning for Āryabhat.a and for Bhāskara. For the first, it would have had
the meaning “even”, in the sense of “uniform”; the meanings understood by
the commentator are those given as entries.

Dvisamatryaśraks.etra, Lit. a three sided field with two equal sides, we have
translated it as an “isoceles trilateral”.

Samacaturaśraks.etra, An equi-quadrilateral field, samacaturaśratā, lit. the
quality of being an equi-quadrilateral; we have translated this expression
by “equi-quadrilateralness”, samacaturaśratvā, the state of being an equi-
quadrilateral.

Dvisamacaturbhuja, Lit. a field with four sides, two 〈of which〉 are equal, is
“an isoceles quadrilateral” i.e. an isoceles trapezium.

Samakaran. a Lit. making equal. An equation.

Samadalakot.i Perpendicular. According to Bhāskara, other scholars interpret this
word as a karmadhāraya meaning a mediator.

Samaparin. āha An even circumference.

This compound is analysed by Bhāsakara as a karmadhāraya, meaning liter-
ally: that field which is and evenly circular and a circumference (an evenly
circular circumference). According to our commentator other scholars inter-
preted it as a bahuvr̄ıhi meaning lit.: that field which has an even circumfer-
ence (i.e. a disk).
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Samavr.ttaparidhi See Vr.tta.

Samasta Sum. Lit, mingled.

Samāsa Sum. Lit, joining.

Sam. kraman. a Name of the rule given in Ab.2.24.

Samparka Sum. Vocabulary used by Āryabhat.a in Ab.2.23 rather than by Bhāskara.

Sampāta 〈Line whose top is〉 the intersection. It is a substitute word for svapātalekha.

Pāta Means “falling”, sampāta, “falling together”; this is a substantiated
adjective.

In astronomy, this word means “meeting”: it is the moment where a planet
eclipses another, or the moment of the greatest span of the eclipse.

Sam. yoga, sam. yojamāna Addition.

Sam. varga Product.

Sahita Increased.

Sūks.ma Accurate. Exact. Companion term of vyāvahāra (practical) and of āsanna
(approximate). Sharp (as the tip of a gnomon), precise.

Sūks.magan. ita An accurate computation.

Sūtra Thread or string. It is used in the construction of geometrical figures (as tri-
laterals and quadrilaterals) and of three dimensional objects (as a gnomon).

A technical rule given in the form of an aphoristic verse. We have translated
it when it is used with the latter meaning as “rule”. It can be contrasted
with ārya and kārikā both refering to the verse, in its metrical dimension.

Sthāna Place (for a digit or number).

Sthānāntaram A different place. The next place, to the right or to the left,
according to the context, when considering the places in the decimal place-
value notation. Maybe in the procedure for extracting the square root, an
allusion to a different space where the successive digits of the partial square-
root extracted are placed.

Sthāpana Placement. Disposition. Used as an alternative for nyāsa “setting-down”,
which specifies how a quantity or a geometrical field is represented on a work-
ing surface.

Sthūlatā The state of being rough.

atyantasthūlatā The state of being exceedingly rough (said of an approximate
value).

Sphut.a Correct, true. Used as a substitute for sūks.ma in BAB.2.10.
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Svapātalekhā A literal translation would be: “the line on its own falling”. This
expression names any of the two segments of a perpendicular in a trapezium,
as illustrated in Figure 70, page 212. These two segments of the perpendicular
(or lines, lekhā) are defined from the point of intersection of the diagonals to
the middle of the earth and the mouth (the names of the parallel segment in
a trapezium). The middle points of the parallel sides being each considered
as the “falling” (pāta) of the line. However such “lines” are segments of the
mediator in isoceles trapeziums but not in uneven trapeziums.

Ha

Hata Multiplied.

Hati Multiplication. Given as a synonym of sam. varga in BAB.2.3ab.

Hı̄na Decreased.

Hr.ta Divided.

Hr.ti Division. Given as a synonym of bhāga in BAB.2.4.

Hrāsa Subtraction, diminution.
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2 Peculiar and metaphoric expressions to

name numbers

The reference in parentheses indicates the first occurrence of the expression.

Zero Kha, void; śūnya (BAB.2.32-33, ex. 14), viyad, void (idem, ex. 18), ākāśa,
idem (idem, ex. 22); gagana, the sky (idem, ex. 26).

One Indu, the moon (BAB.2.5, ex. 1); śaśāṅka, lit. “marked with a rabbit”, the
moon (BAB.2.32-33; ex. 14); ud. upa, the moon (idem, ex. 19); ś̄ıtām. śu, “with
cold rays” i.e. the moon (idem, ex. 20); ś̄ıtakiran. a, idem (idem, ex. 23);
nísākara, “the maker of the night”, i.e. the moon (idem, ex. 24).

Two Yama, a pair (BAB.2.4, ex. 1); aśvin, name of the twin sons of the sun
(BAB.2.5, ex. 1); netra the eyes (BAB.2.32-33, ex. 23); dasra, another name
of the aśvins (idem, ex. 26).

Three Rāma, there are three famous Rāmas: the hero of the Rāmayan. a, Balarāma
(Kr.s.n. a’s brother) and Parasurāma (BAB.2.10, example 2). Dahana, fire, as
there are three sacrificial fires (BAB.2.11, ex. 1); hutāśana, idem; gun. a as
the three qualities of all created things (truth/goodness for gods (sattva),
matter/passions for men (rajas), darkness/ignorance for demons (tamas)
(BAB.2.32-33, ex. 19); śikhin, fire (idem, ex. 23); bhuvana world, as the three
worlds of god, men and demons (idem, ex. 24); pus.kara, a lake, there are
three sacred lakes (idem).

Three and a half Ardhacaturthā the fourth 〈unit〉 is a half.

Four Kr.ta, the best of the four casts in a vedic dice game (BAB.2.5, ex.2); abdhi,
ocean, it is considered that there are four oceans (BAB.2.5, ex.2); sāgara,
ocean (BAB.2.32-33, ex. 14); udadhi idem (idem, ex. 24).

Five Śara, as the five arrows of Kāma, the god of love (BAB.2.4; ex.1); vis.aya,
lit. the objects of the senses (BAB.2.32-33, ex. 13); bhūta, the five elements
(earth, air, fire, water and stone) (idem, ex.20); is.u, arrow (idem, ex. 24);
artha, as objects of the senses (idem, ex. 26).

Six Rasa, perfume, taste. There are six tastes: kat.u (acrid), amla (sour, acid),
madhura (sweet), lavan. a (saline), tikta (bitter) and kas. āya (astringent, fra-
gant); aṅga, as the six Vedāṅgas (BAB.2.32-33, ex. 23); r. tu a season, there
are six seasons (idem).

Seven Muni, a sage, there are seven great sages or seers (r.s. i) or maybe the
seven stars of the constellation Ursa Major (BAB.2.5, ex. 10); naga, “that
which does not move”, a mountain, there are seven chains of mountains
(BAB.2.5, ex.2); bhūdhara, “supporting the earth” mountains, (BAB.2.32-
33, ex. 14); adri, mountains (BAB.2.16); ks.on. ı̄dhara, idem (BAB.2.32-33, ex.
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23); ks.amābhr. t, a mountain (idem); adri, mountain (idem); svara, the seven
notes that can constitute a rāga (idem, ex. 26).

Eight Vasu, a class of eight deities (BAB.2.5, ex.1); nāga elephant; there are eight
elephants symbolising the eight cardinal directions (East, West, South, North,
South-east, South-west, North-east, North-west) (BAB.2.32-33, ex. 23).

Nine Randhra, orifice; the nine orifices of the human body are: the two eyes, the
two nostrils, the mouth , the two ears, the sex, the anus (BAB.2.5, ex. 2);
chidra, idem (BAB.2.32-33, ex. 24); nanda either the nine treasures of Kubera
or the nine brother-kings called “Nanda” (idem).

Ten Paṅkti a verse with ten syllables in a quarter (BAB.2.9ab, ex.1).

Eleven Śiva, as the head of a group of eleven gods called collectively rudra138

(BAB.2.32-33, ex. 13).

Fourteen Manu the fourteen successive manus, progenitors or sovereigns of the
earth mentioned in the Manusmr.ti 1 63139. (BAB.2.9.ab. ex.1).

Sixteen As.t.i a meter with sixteen syllables per quarter of verse (BAB.2.9.ab, ex.
1)

Eighteen Dhr. ti, name of a meter with eighteen syllables per quarter of verse
(BAB.2.32-33, ex. 14).

Nineteen Ekonavim. śati, twenty minus one.

Twenty-one Trisapta, three-(times)-seven (BAB.2.32-33, ex. 9).

Twenty-five Śarakr. ti, the square of five.

Fifty-nine Navapañca, lit. nine-five (BAB.2.32-33, ex. 9).

3 Measure units

3.1 Units of length

Aṅgula Smallest unit of length. Literally an aṅgula is a finger or a thumb.

Nr. Lit. a man. 1 nr. = 96 aṅgulas= 4 hastas.

Yojana A measure of distance. 1 yojana = 800 nr. .

Hasta Lit. a hand or forearm. 24 aṅgulas = 1 hasta.

138For further information see [Doniger 1975; glossary, p.351]
139See also [Doniger 1975; Glossary, p.347]
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Table 12: Units of length
aṅgula hasta nr. yojana

aṅgula 1
hasta 24 1
nr. 96 4 1

yojana 76800 1200 800 1

3.2 Measures of weight

Kars.a 4 kars.as = 1 pala.

Kud.uva 1 kud. uva = 4 setikas.

Guñjā 5 guñjās = 1 mās.aka. Used traditionaly by jewelers.

Pala 4 kars.as = 1 pala. 1 bhāra = 2000 palas.

Bhāra 1 bhāra = 2000 palas.

Mānaka 4 mānakas = 1 setikā.

Mās.aka 5 guñjās = 1 mās.aka.

Setikā 1 setikā = 4 mānakas. 4 setikās =1 kud. uva.

Sauvarn. ika Equal to a kars.a? Measure of weight specific to gold.

Table 13: Units of weight

Measures of Grain
mān. aka setikā kud. uva

mān. aka 1
setikā 4 1
kud. uva 16 4 1

Measures of Gold
guñja mās.aka kars.a pala bhāra

guñja 1
mās.aka 5 1

kars.a/sauvarn. ika 80 16 1
pala 320 64 4 1
bhāra 640 000 128 000 8 000 2 000 1

3.3 Coins

One name of a specific coin (dravya) is mentioned in the commentary, without
any given value: d̄ınāra.
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Rūpaka Probably the ancestor of the rupee. 1 rūpaka = 20 vim. śopakas.

Vim. śopaka 20 vim. śopakas = 1 rūpaka.

3.4 Time units

Ghat.ikā One sixtieth of a day, half a muhūrtta or twenty-four liptās. A ghat.ikā
originally is the name of a clay pot, and by extension became the name of a
water pot used in measuring time, and especially the ghat.ikās of the day.

Nad. ı̄ or nād. ika A synonym of ghat.ikā. Half a muhūrtta, or 1/60th of a day.

Muhūrtta or Muhurta 1/30th of a day, roughly 48 minutes.

Yāma 1/8th of a day or 3 hours.

Liptā Minute.

Vinād. ika 1/60th of a nād. ı̄.

Table 14: Divisions of the day
dina yāma muhurta nād. ika vinād. ika

dina (a day) 1 8 30 60 3600
yāma 1 3 + 3/4 7 + 1/2 450

muhurta or muhūrtta 1 2 120
nād. ika, nad. ı̄ or ghat.ikā 1 60

vinād. ika 1

3.5 Subdivisions of a circle

Rāśi A sign. 1/12th of the circumference of the circle.

Liptā A minute. 1/3600th of the circumference.

Kalā A minute. 1/3600th of the circumference.

Bhāga A degree. 1/60th of the circumference.

4 Names of planets, constellations, zodiac signs

The first occurrence of the name is indicated in between parenthesis.

Aśvin̄ı Name of a naks.atra- roughly, a constellation–derived from the names of
the twin vedic gods Aśvin. Contains stars of what is called today the Taurus
constellation.
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Balance Tulādharanara, litt. the man holding a balance or balance holder
(BAB.2.32-33, ex. 14).

Earth Ku (Ab.2.1).

Jupiter Guru, (Ab.2.1); adhirūd. hamahendrasūrau (BAB.2.32-33, ex. 17).

Leo Mr.gapati, lord of the beasts (Ab.2.32-33, ex. 7).

Mars Kuja, born from the earth (Ab.2.1), medin̄ıhr.dayaja, born in the heart of
the earth (BAB.2.32-33, ex.16);aṅgāraka(BAB.2.32-33, ex. 23); bhauma “pro-
duced from the earth” (idem).

Mercury Budha (Ab.2.1).

Moon Śaśin, lit. that which has a rabbit (Ab.2.1), candra, lit. that which is bright;
candramas (BAB.2.32-33, ex.13); nísānātha, litt. lord of the night (idem, ex.
14).

Rāhu tamomaya “made of darkness” (BAB.2.18, ex. 1).

Saturn Kon. a, (Ab.2.1).

Sagittarius Dhanu, bow (BAB.2.32-33 ex. 7); Dhanvin, the archer (BAB.2.32-33
ex. 12).

Sun Ravi (Ab.2.1), Mayūkhamāla, litt. wreathed with rays (BAB.2.1); sahasra-
mar̄ıca, “with a thousand rays” (BAB.2.16.); Sūrya (BAB.2.32-33),savit.r.
(Ab.2.32-33, ex. 7); bharttur divasasya, dinabharttur140 “lord of the day”
(idem, ex. 9); bhānu (a ray of light, by extension) (idem, ex.12) divasakara,
litt. maker of days (idem. ex.13); arka, vedic ray of light (idem, ex.14); bhāsvat
“with lustre” (idem. ex. 19); tigmāḿs.u, “with harsh rays” (idem, ex.21).

Venus Bhr.gu (Ab.2.1).

5 Days of the week

Appear in commentary to verses 32-22

Monday Somadina (com. preceding Example 12).

Wednesday (Mercury day) jñavāra, rātreh. pātustanujadivasa, litt. the son of the
protector of the night (the moon) (ex.12), budhadivasa (resolution of ex. 12).

Thursday (Jupiter day) j̄ıvavāra (ex.12).

Friday (Venus day) śukravāra (ex.12).

Saturday (Saturn day) śanaíscarasya divasa (ex.14).

Sunday (sun day) Sūryadina (com. preceding Example 12).

140In classical Sanskrit the word “lord” is usually written with one ‘t’: bhartur. This may be
the trace of some dialectical writting or just a scribal error.
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6 Gods and mythological figures

They do not appear often in the text, however occasionally, in examples, numbers’
names and in the introductory verses, reference are made to some elements of
Hindu Mythology. Therefore, we will briefly give some explanations on this topic.

One thing to bear in mind is that roughly the three major gods of Hinduism
are Brahmā (the creator and grandfather), Śiva (the destroyer) and Vis.n. u (the
preserver). Vis.n. u has eleven incarnations (avatāra). Brahmā, a masculine noun (in
the nominative case) is the god; when a neutral noun, brahman, it is a philosophical
concept141. Āryabhat.a was a worshiper of Brahmā, a fact quite rare in India today,
Bhāskara was a worshiper of Śiva, as the first verse introducing the gan. itapāda
seems to indicate.

Kr.s.n. a Is the 8th avatāra of Vis.n. u.

Brahmā The “Lotus-Born” (Kamalodbhava), Brahmā is said to be born from a
lotus growing out of Vis.n. u’s navel (BAB.introduction to Ab.2).

The “Creator”(vedhas); Svāyam. bhū, litt. self-existent or self-created; gives
the name to the Svāyam. bhuvasidhānta(BAB.2.1).

Ka, lit. “who?”, would have arisen from the interpretation of a vedic verse:
‘Who (ka) knows whence this creation was born?’, later interpreted as: ‘〈The
god〉 ka knows whence this creation was born.’ 142

Rāhu The demon of eclipses. He is thought to swallow the moon or part of it
during an eclipse.

7 Cardinal directions

North Uttara.

South Daks. in. a (at the right).

East Pūrva, purastāt (in front).

West Apara, paścād (the last).

141The essence of all things, the absolute see [Biardeau 1981; p.24-28, and glossaire, p. 183]
142See [Doniger 1975; p. 139, note 2]
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Āryabhat.a
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Parameśvara. Reprint from Eastern Book Linkers, 1874.

[Sengupta 1927] P. C. Sengupta. The Aryabhatiyam, translation. In Journal of the
Department of Letters of the University of Calcutta, XVI: 1-56, 1927.

[Sharma & Shukla 1976] K. V. Sharma and K. S. Shukla. Āryabhat.ı̄ya of Ārya-
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Parameśvara. Anandāśrama, Skt. series no. 128, Poona, 1946.
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bhat.a et Bhāskara I’ in Bulletin des Études Indiennes, 6: 255-274, 1988.

[Filliozat 1988b] Pierre-Sylvain Filliozat. Grammaire Sanskrite Pān. inéenne. Pi-
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in Indian Journal of History of Science, 12 (2): 200-206, 1977.

[Hayashi 1977] Takao Hayashi. ‘Karan. ı̄ and the karan. ı̄-operation’ in Japanese
Studies in the History of Science, 17, pp. 51-59. 1977.

[Hayashi 1994] Takao Hayashi. ‘Indian mathematics’ in Companion Encyclopedia
of History and Philosophy of the Mathematical Sciences. volume 1: pp. 118-
130. Edited by I. Grattan-Guiness, Routledge, London, 1994.



B. Secondary sources 231
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on the Āryabhat.ı̄ya. Historia Mathematica 32: 275-302.

[Keller forthcoming] Agathe Keller. ‘Qu‘est-ce que les mathématiques ? les ré-
ponses taxinomiques de Bhāskara un commentateur, mathématicien et as-
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isoceles, 23, 34–36, 38, 39

Jain, 48, 49, 52, 231
Jupiter, 225

karan. ı̄, 202
karan. ı̄, 24, 29–31, 33, 48–53, 197, 202

length, 2, 4, 6, 23, 24, 26, 30, 36, 40–
44, 54, 59, 66, 69, 78, 83, 88,
91–96, 98, 99, 104, 106, 114,
181, 182, 194, 195, 199, 202,
205, 207, 215, 216, 222, 223

longitude, 162, 163, 170, 172, 174–
176, 178–182, 194, 195, 197,
213, 215

mathematics, 39, 47, 69, 76, 109, 112,
116, 194, 199, 203–205, 209,
214, 217, 228, 230–233

mean, xiii, 70–73, 107–111, 113, 119–
121, 123, 126, 127, 135, 146,
148, 162, 163, 170–172, 174–
176, 178–182, 186, 191, 192,
194, 195, 197–200, 202–212,
214, 216, 218, 219, 231

measure, 3, 4, 32, 46, 52, 60, 69, 83,
99, 106, 118–126, 177, 202,
206, 210, 214, 217, 222, 223,
239

method, 26, 40–42, 53, 69–71, 82, 88,
98, 99, 104, 132, 163, 165,
167, 169, 178, 180, 184, 197,
201, 203, 209, 215, 233

month, 116, 117, 123, 193
moon, 96, 150, 176, 178, 183, 186,

193, 195, 205, 221, 225, 226

number, xiii, 7, 8, 10–20, 52–54, 57–
61, 64, 67, 68, 71–73, 99, 102,
106–114, 120, 123, 133, 135,
142–144, 146, 148–157, 160–
185, 193–195, 197–201, 204,
205, 207–209, 211, 212, 214,
215, 217–219, 221, 226, 230

numerator, 12–15, 110, 120, 123, 198,
211, 218

object, 112, 114, 202, 208, 215, 216,
219, 221, 233

operation, 2, 4, 7, 13, 17, 20, 25, 26,
91, 98, 120, 131, 133–136,
147, 148, 162, 202–204, 209–
211, 215, 216, 230

orbit, 181–185, 188, 189, 191–195, 202

part, xiii, 1, 6–10, 12–14, 16–21, 29,
32, 34, 38, 43, 46–49, 53, 54,
57, 64, 65, 69, 70, 72–75, 77,
81, 84, 89, 92, 97, 102, 106,
108–111, 113, 115, 120–122,
126, 128, 129, 134, 135, 144,
145, 147, 148, 155, 156, 160–
166, 168, 170, 173, 174, 179–
181, 186, 197, 198, 202–206,
209–212, 214–219, 226–228

perpendicular, 22–24, 26, 27, 29, 30,
35–39, 43, 61, 80, 127, 186,
187, 192, 193, 198, 199, 201,
217, 218, 220



238 Index

pile, 112–115, 205
place-value, 15, 18, 205, 215, 218, 219
planet, 106, 137–142, 160–166, 168,

170, 171, 173–176, 178–186,
191–195, 200, 202, 205, 207,
211, 212, 214, 215, 217, 219,
224, 232
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