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Preface

The idea of writing a book on all the areas of mathematics that appear in the
evaluation of integrals occurred to us when we found many beautiful results
scattered throughout the literature.

The original idea was naive: inspired by the paper “Integrals: An Introduc-
tion to Analytic Number Theory” by Ilan Vardi (1988) we decided to write
a text in which we would prove every formula in Table of Integrals, Series,
and Products by 1. S. Gradshteyn and 1. M. Rhyzik (1994) and its precursor
by Bierens de Haan (1867). It took a short time to realize that this task was
monumental.

In order to keep the book to a reasonable page limit, we have decided to
keep the material at a level accesible to a junior/senior undergraduate student.
We assume that the reader has a good knowledge of one-variable calculus
and that he/she has had a class in which there has been some exposure to a
rigorous proof. At Tulane University this is done in Discrete Mathematics,
where the method of mathematical induction and the ideas behind recurrences
are discussed in some detail, and in Real Analysis, where the student is
exposed to the basic material of calculus, now with rigorous proofs. It is our
experience that most students majoring in mathematics will have a class in
linear algebra, but not all (we fear, few) study complex analysis. Therefore
we have kept the use of these subjects to a minimum. In particular we have
made an effort not to use complex analysis.

The goal of the book is to present to the reader the many facets involved
in the evaluation of definite integrals. At the end, we decided to emphasize
the connection with number theory. It is an unfortunate fact of undergraduate,
and to some extent graduate, education that students tend to see mathematics
as comprising distinct parts. We have tried to connect the discrete (prime num-
bers, binomial coefficients) with the continuous (integrals, special functions).
The reader will tell if we have succeeded.

X1




Xii Preface

Many of the evaluations presented in this book involve parameters. These
had to be restricted in order to make the resulting integrals convergent. We
have decided not to write down these restrictions.

The symbolic language Mathematica™ is used throughout the book. We
do not assume that the reader has much experience with this language, so we
incorporate the commands employed by the authors in the text. We hope that
the reader will be able to reproduce what we write. It has been our experience
that the best way to learn a symbolic language 1s to learn the commands as you
need them to attack your problem of interest. It is like learning a real language.
You do not need to be fluent in Spanish in order to order empanadas, but more
is required if you want to understand Don Quixote. This book is mostly at the
empanada level.

Symbolic languages (like Mathematica) are in a constant state of improve-
ment, thus the statement this cannot be evaluated symbolically should always
be complemented with the phrase at the time of writing this text.

We have tried to motivate the results presented here, even to the point of
wasting time. It is certainly shorter to present mathematics as facts followed
by a proof, but that takes all the fun out of it.

Once the target audience was chosen we decided to write first about the
elementary functions that the student encounters in the beginning sequence
of courses. This constitutes the first seven chapters of the book. The last part
of the book discusses different families of integrals. We begin with the study
of a rational integral, and there we find a connection with the expansion of
the double square root. The reader will find here a glimpse into the magic
world of Ramanujan. The next three chapters contain the normal integral, the
Eulerian integrals gamma and beta, and Euler’s constant. The book concludes
with a short study on the integrals that can be evaluated in terms of the
famous Riemann zeta function and an introduction to logarithmic integrals;
we finish with our master formula: a device that has produced many interesting
evaluations.

We hope that the reader will see that with a good calculus background it 1s
possible to enter the world of integrals and to experience some of its flavor.
The more experienced reader will certainly know shorter proofs than the ones
we have provided here. The beginning student should be able to read all the
material presented here, accepting some results as given. Simply take these
topics as a list of things to learn later in life.

As stated above, the main goal of the book is to evaluate integrals. We
have tried to use this as a springboard for many unexpected investigations and
discoveries in mathematics (quoted from an earlier review of this manuscript).
We have tried to explore the many ramifications involved with a specific
evaluation. We would be happy to hear about new ones.




Preface Xiii

The question of integrating certain functions produces many reactions. On

page 580 of M. Spivak’s calculus book (1980) we find

The impossibility of integrating certain functions in elementary terms is one of the most
esoteric subjects in mathematics

and this should be compared with G. H. Hardy’s famous remark
I could never resist an integral
and R. Askey’s comment!

If things are nice there is probably a good reason why they are nice: and if you do not
know at least one reason for this good fortune, then you still have work to do.

We have tried to keep these last two remarks in mind while writing.

The exercises are an essential part of the text. We have included alternative
proofs and other connections with the material presented in the chapter. The
level of the exercises is uneven, and we have provided hints for the ones we
consider more difficult. The projects are exercises that we have not done in
complete detail. We have provided some ideas on how to proceed, but for
some of them we simply do not know where they will end nor how hard they
could be. The author would like to hear from the reader on the solutions to
these questions.

Finally the word Experiments in the subtitle requires an explanation. These
are computer experiments in which the reader is required to guess a closed
form expression for an analytic object (usually a definite integral) from
enough data produced by a symbolic language. The final goal of the
experiment is to provide a proof of the closed form. In turn, these proofs
suggest new experiments.

The author would like to acknowledge many people who contributed to this
book:

» First of all my special thanks to Dante Manna, who checked every formula
(i)

in the book. He made sure that every f*! was not a mistake for f,"|.

Naturally all the psosible errors are the author’s responsibility.

¢ Bruce Berndt, Doron Zeilberger who always answered my emails.

*  Michael Trott at Wolfram Research, Inc. who always answered my most
trivial questions about the Mathematica language.

* Sage Briscoe, Frank Dang, Michael Joyce, Roopa Nalam, and Kirk
Soodhalter worked on portions of the manuscript while they were under-
graduates at Tulane.

! Quoted from a transparency by Doron Zeilberger.




Xiv Preface

The students of SIMU 2000: Jenny Alvarez, Miguel Amadis, Encarnacion
Gutierrez, Emilia Huerta, Aida Navarro, Lianette Passapera, Christian
Roldan, Leobardo Rosales, Miguel Rosario, Maria Torres, David Uminsky,
and Yvette Uresti and the teaching assistants: Dagan Karp and Jean Carlos
Cortissoz.

The students of SIMU 2002: Benjamin Aleman, Danielle Brooker, Sage
Briscoe, Aaron Cardona, Angela Gallegos, Danielle Heckman, Laura
Jimenez, Luis Medina, Jose Miranda, Sandra Moncada, Maria Osorio,
and Juan Carlos Trujillo and the teaching assistants: Chris Duncan and

Dante Manna.
* The organizers of SIMU: Ivelisse Rubio and Herbert Medina.

* The participants of a 1999 summer course on a preliminary version of this

material given at Universidad Santa Maria, Valparaiso, Chile.

The second author acknowledges the partial support of NSF-DMS

0070567, Project Number 540623,

George Boros passed away during the final stages of this project. I have often

expressed the professional influence he had on me, showing that integrals

were interesting and fun. It is impossible to put in words what he meant as a

person. We miss him.

— Victor Moll
New Orleans
January 2004

Notation

The notation used throughout the book is standard:

N = {1, 2, 3, ...} are the natural numbers.

Ny =NU {0}.

Z =N U {0} U —N are the integers.

R are the real numbers and R™ are the positive reals.

In x is the natural logarithm.

[x] is the integer part of x € R and {x} is the fractional part.
n!is the factorial of n € M.

n . . L.
are the binomial coefficients.

C,, 1s the central binomial coefficients
m

(ay =ala+ 1)a+2)---(a+k—1) is the ascending factorial
Pochhammer symbol.

or
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Factorials and Binomial Coefficients

1.1. Introduction
In this chapter we discuss several properties of factorials and binomial coef-
ficients. These functions will often appear as results of evaluations of definite
integrals.

Definition 1.1.1. A function f : N — N is said to satisfy a recurrence if
the value f(n) is determined by the values {f(1), f(2), ..., f(n — 1)}. The
recurrence is of order kif f(n)is determined by the values { f(n — 1), f(n —
2), ..., f(n —k)}, where k is a fixed positive integer. The notation f, is
sometimes used for f(n).

For example, the Fibonacci numbers F, satisfy the second-order recur-
rence
1‘;1 = Fn—l_i_f';r—l- (l]])

Therefore, in order to compute £, one needs to know only Fy and F>. In this
case F; = 1 and F, = 1. These values are called the initial conditions of the
recurrence. The Mathematica command

Fln_l:= If[(n==0,1, If[n==1,1, F[n-1]1+F[(n-2]11]
gives the value of F,,. The modified command
F[n_l:= F[nl= If[(n==0,1, If[n==1,1, F[n-1]1+F[n-211]

saves the previously computed values, so at every step there is a single sum
to perform.

Exercise 1.1.1. Compare the times that it takes to evaluate
Iy = 832040 (1.1.2)

using both versions of the function F.
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Factorials and Binomial Coefficients

A recurrence can also be used to define a sequence of numbers. For instance
Dy =n(Dy+Dyy),n=2 (1.1.3)
with D; = 0, D, = 1 defines the derangement numbers. See Rosen (2003)
for properties of this interesting sequence.
We now give a recursive definition of the factorials.
Definition 1.1.2. The factorial of n € N is defined by
nl=n-n—1)-n—2)---3-2-1. (1.1.4)
A recursive definition is given by
I'=1 (1.1.5)

nl=nxm-—1.

The first exercise shows that the recursive definition characterizes n!. This
technique will be used throughout the book: in order to prove some iden-
tity, you check that both sides satisfy the same recursion and that the initial
conditions match.

Exercise 1.1.2. Prove that the factorial is the unique solution of the recursion
Xp =R X Xy_g (1.1.6)
satisfying the initial condition x; = 1. Hint. Let v,, = x,,/n! and use (1.1.5)

to produce a trivial recurrence for y,,.

Exercise 1.1.3. Establish the formula

~ (=D
k!

D,=n!x (1.1.7)

k=0
Hint. Check that the right-hand side satisfies the same recurrence as D, and
then check the initial conditions.
The first values of the sequence n! are
I'=1, 2!1=2 3!'=6, 4!=24 (1.1.8)
and these grow very fast. For instance
50! = 30414093201713378043612608 166064 76884437764 15689605 12000000000000

and 1000! has 2568 digits.
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Mathematica 1.1.1. The Mathematica command for n! is Factorial
[n] . The reader should check the value 1000! stated above. The number
of digits of an integer can be obtained with the Mathematica command
Length[IntegerDigits[n]].

The next exercise illustrates the fact that the extension of a function from
N to R sometimes produces unexpected results.

Exercise 1.1.4. Use Mathematica to check that (%) = ‘/2};

The exercise is one of the instances in which the factorial is connected
to m, the fundamental constant of trigonometry. Later we will see that the
growth of n! as n — o0 is related to e: the base of natural logarithms. These
issues will be discussed in Chapters 5 and 6, respectively. To get a complete
explanation for the appearance of m, the reader will have to wait until Chapter
10 where we introduce the gamma function.

1.2. Prime Numbers and the Factorization of n!

In this section we discuss the factorization of n! into prime factors.

Definition 1.2.1. An integer n € N is prime if its only divisors are 1 and
itself.

The reader is refered to Hardy and Wright (1979) and Ribenboim (1989)
for more information about prime numbers. In particular, Ribenboim’s first
chapter contains many proofs of the fact that there are infinitely many primes.
Much more information about primes can be found at the site

http://www.utm.edu/research/primes/

The set of prime numbers can be used as building blocks for all integers.
This is the content of the Fundamental Theorem of Arithmetic stated below.

Theorem 1.2.1. Every positive integer can be written as a product of prime
numbers. This factorization is unique up to the order of the prime factors.

The proof of this result appears in every introductory book in num-
ber theory. For example, see Andrews (1994), page 26, for the standard
argument.
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Mathematica 1.2.1. The Mathematica command FactorInteger[n]

gives the complete factorization of the integer n. For example

FactorInteger [1001] gives the prime factorization 1001 =7 - 11 - 13.

The concept of prime factorization can now be extended to rational numbers
by allowing negative exponents. For example

1001

1003

The efficient complete factorization of a large integer n is one of the ba-

sic questions in computational number theory. The reader should be careful

with requesting such a factorization from a symbolic language like Mathe-

7-11-13-17"1.5971, (1.2.1)

matica: the amount of time required can become very large. A safeguard is
the command

FactorInteger[n, FactorComplete -> False]

which computes the small factors of n and leaves a part unfactored. The
reader will find in Bressoud and Wagon (2000) more information about these
1sSsues.

Definition 1.2.2. Let p be prime and r € @*. Then there are unique integers
a, b, not divisible by p, and m € Z such that
r o= 4 x p™. (1.2.2)
b

The p-adic valuation of r is defined by
vp(r) = p~". (12.3)

The integer m in (1.2.2) will be called the exponent of p in m and will be
denoted by ,(r), that is,

vp(r) = p~Hr. (124

Extra 1.2.1. The p-adic valuation of a rational number gives a new way of
measuring its size. In this context, a number is small if it is divisible by a large
power of p. This is the basic idea behind p-adic Analysis. Nice introductions

to this topic can be found in Gouvea (1997) and Hardy and Wright (1979).

Exercise 1.2.1. Prove that the valuation v, satisfies

U!;(F]}‘z) = Up(rl) X Vp(-rZ)-

vp(rl/rZ) = vp(rl)/vp{rl)‘
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1.2. Prime Numbers and the Factorization of n!

and
Vp(r + 1) = Max (v,(r1), vp(r2)) .
with equality unless v,(ry) = v, (r2).
Extra 1.2.2. The p-adic numbers have many surprising properties. For in-

stance, a series converges p-adically if and only if the general term converges
to 0.

Definition 1.2.3. The floor of x € R, denoted by |.x ], is the smallest integer
less or equal than x. The Mathematica command is Floor [x].

We now show that the factorization of n! can be obtained withour actually
computing its value. This is useful considering that n! grows very fast—for
instance 10000! has 35660 digits.

Theorem 1.2.2. Let p be prime and n € N. The exponent of p in n! is given
by

wpn) =" l - J . (1.2.5)

ok
k=1 LP

Proof. In the product defining n! one can divide out every multiple of p, and
there are [n/p] such numbers. The remaining factor might still be divisible
by p and there are Ln/pgj such terms. Now continue with higher powers of

p. O

Note that the sum in (1.2.5) is finite, ending as soon as p“ = n. Also, this
sum allows the fast factorization of n!. The next exercise illustrates how to
do it.

Exercise 1.2.2. Count the number of divisions required to obtain
500 =2%7.3%2.5". 78 114137 . 177197237 . 2931 -37 - 41 -43 - 47,
using (1.2.5).

Exercise 1.2.3. Prove that every prime p < n appears in the prime factoriza-
tion of n! and that every prime p = n/2 appears to the first power.
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There are many expressions for the function 1, (n). We present a proof
of one due to Legendre (1830). The result depends on the expansion of an
integer in base p. The next exercise describes how to obtain such expansion.

Exercise 1.2.4. Let n, p € N. Prove that there are integers ny, ny,...,n,
such that
n=ng+np+np +-+np (1.2.6)

where 0 < n; < p for 0 <1 < r. Hint. Recall the division algorithm: given
a, b € N there are integers ¢, r, with 0 <r < b such that a = gb +r. To
obtain the coefficients n; first divide n by p.

Theorem 1.2.3. The exponent of p in n! is given by

n—s,(n)
() = =20

where s,(n) = ng + ny + - - -+ n, is the sum of the base-p digits of n. In

(1.2.7
particular,
wa(n!) =n — s2(n). (1.2.8)

Proof. Write n in base p as in (1.2.6). Then

=52

k=1
= +mp+-Anp Y+ tnmp+-tnp )
+' . +ni's

so that

upn) = np+ma(+ p)ns(Lp+p (It pt oo+ p

1 i
= =7 (= D na(pt = Dt (p = D)

_n—sp(n) 0
_7‘0_1 .

Corollary 1.2.1. The exponent of p in n! satisfies

—1
up(nt) < =
p—1

(1.2.9)

with equality if and only if n is a power of p.




1.3. The Role of Symbolic Languages 7

Mathematica 1.2.2. The command IntegerDigits[n,p] gives the
list of numbers n; in Exercise 1.2.4.

Exercise 1.2.5. Define

m n

Ay(m) = 2m + 1) [Je4k — 1) — [ J4k + D). (1.2.10)
k=1 k=1
Prove that, for any prime p £ 2,

Hint. Leta,, = [[;—,(4k — 1)and b,, = [];—,(4k + 1) so that a,, is the prod-
uct of the least m positive integers congruent to 1 modulo 4. Observe that for
p = 3prime and k € N, exactly one of the first Pt positive integers congruent
to 3 modulo 4 is divisible by p* and the same is true for integers congruent
to 1 modulo 4. Conclude that A;(m) is divisible by the odd part of m!. For
instance,
A1(30)  359937762656357407018337533
300 22 '

(1.2.12)

The products in (1.2.10) will be considered in detail in Section 10.9.

1.3. The Role of Symbolic Languages

In this section we discuss how to use Mathematica to conjecture general
closed form formulas. A simple example will illustrate the point.

Exercise 1.2.3 shows that n! is divisible by a large number of consecutive
prime numbers. We now turn this information around to empirically suggest
closed-form formulas. Assume that in the middle of a calculation we have
obtained the numbers

x; = 5356234211328000
x2 = 102793666719744000
x3 = 2074369080655872000
x4 = 43913881247588352000
x5 = 973160803270656000000,
and one hopes that these numbers obey a simple rule. The goal is to obtain a

function x : N — N that interpolates the given values, that is, x(i) = x; for
1 =i = 5.Naturally this question admits more than one solution, and we will
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use Mathematica to find one. The prime factorization of the data is

x, =22.30.5.72.11.13
X =2.30.5. 72 11.13 .17
xy=218.32.5.72.11.13.17
xy=21.3%.53.72.11.13.17-19°
xs=222.3%.55.72.11.13-17-19

and a moment of reflection reveals that x; contains all primes less thani + 15.

This is also true for (i + 15)!, leading to the consideration of y; = x;/

(i + 15)!. We find that

i = 256
v = 289
ys = 324
ys = 361
ys = 400,

sothat y; = (i + 15)2. Thus x; = (i + 15)% x (i + 15)!is one of the possible
rules for x;. This can be then tested against more data, and if the rule still
holds, we have produced the conjecture

=i xil, (13.0)
where z; = x;1s.

Definition 1.3.1. Given a sequence of numbers {a; : k € N}, the function
(=8}
T(x) =Y ax* (132)
k=0

is the generating function of the sequence. If the sequence is finite, then we
obtain a generating polynomial

T,(x) = Z apxk. (1.3.3)
k=0

The generating function is one of the forms in which the sequence {«; :
0 < k < n} can be incorporated into an analytic object. Usually this makes it
easier to perform calculations with them. Mathematica krnows a large number
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of polynomials, so if {a;} is part of a known family, then a symbolic search
will produce an expression for T,,.

Exercise 1.3.1. Obtain a closed-form for the generating function of the
Fibonacci numbers. Hint. Let f(x) = Y..° F,x" be the generating func-
tion. Multiply the recurrence (1.1.1) by x" and sum from n = 1 to co. In
order to manipulate the resulting series observe that

=
E Fn-{— 1 x"

n=1 n=2

I
M
Z
L

1
—(f(x) = Fo — Fix).
X
The answer is f(x) = x/(1 — x — x2). The Mathematica command to gen-
erate the first n terms of this is
list[n_]:= CoefficientList

[Normal [Series[ x/(1l-x-x"{2}), {x,0,n-1}]],x]

For example, 1ist [10] gives {0, 1, 1, 2, 3, 5, 8, 13, 21, 34}.

Itis often the case that the answer is expressed in terms of more complicated
functions. For example, Mathematica evaluates the polynomial

G,(x) = Zktx" (1.3.4)

k=0
das

-1 .I’.l'r

G,x)= — O, -H+=D"T(r+2)0 (=1 —n,-H}, (135)

X

where ¢" is the usual exponential function,
oo
I'x) = / et dt (1.3.6)
Jo
is the gamma function, and
oo
MNa,x) = / e~ dt (1.3.7)

is the incomplete gamma function. The exponential function will be dis-
cussed in Chapter 5, the gamma function in Chapter 10, and the study of
I"(a, x) is postponed until Volume 2.
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1.4. The Binomial Theorem

The goal of this section is to recall the binomial theorem and use it to find
closed-form expressions for a class of sums involving binomial coeffici-
ents.

Definition 1.4.1. The binomial coefficient is

(”) - " g<k<n (14.1)
k K (n —k)!

Theorem 1.4.1. Leta, b € R and n € N. Then

@+ =% (:)a"“'b". (1.42)

k=0

Proof. We use induction. The identity (a + b)" = (a + b) x (a + b)"~! and
the induction hypothesis yield

n—1 n—1
(a+b)' = E (” . )a”_kb" +§ : (” L )ﬂn—k—]bk+]

k=0 k=0

n—1
n—1 n—1 ko k
— n E n b bf!.
¢ +»‘-‘=l ( k )_i_(k_l)la !

The result now follows from the identity

-

that admits a direct proof using (1.4.1). O

Exercise 1.4.1. Check the details.

Note 1.4.1. The binomial theorem

(I4x) =Y (z)x" (1.4.4)

k=0

shows that (1 + x)" is the generating function of the binomial coefficients

6+
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In principle it is difficult to predict if a given sequence will have a simple
generating function. Compare (1.3.5) with (1.4.4).

We now present a different proof of the binomial theorem in which we
illustrate a general procedure that will be employed throughout the text. The
goal is to find and prove an expression for (a + b)".

a) Scaling. The first step is to write
(a+b)" =b"(1+x)" (1.4.5)

with x = a/b, so that it suffices to establish (1.4.2) fora = 1.

b) Guessing the structure. The second step is to formulate an educated
guess on the form of (1 + x)". Expanding (1 + x)" (for any specific n) shows
that it is a polynomial in x of degree n, with positive integer coefficients,
that is,

L+x)" =) buxt (1.4.6)
k=0

for some undetermined b, ; € N. Observe that x = 0 yields b,y = 1.

¢) The next step is to find a way to understand the coefficients b, ;.

Exercise 1.4.2. Differentiate (1.4.6) to produce the recurrence
n
byt =—b,1p 0<k<n-—1. 1.4.7
Dnkrt = g btk n ( )

Conclude that the numbers b, ; are determined from (1.4.7) and initial con-
dition b,y = 1.

We now guess the solution to (1.4.7) by studying the list of coeffi-
cients

Linl:=1{b,.: 0=k <nj}. (1.4.8)
The list L[r] can be generated symbolically by the command

term[n_,k_]1:=If[n==0,1, If[ k==0, 1,

nxterm[n-1,k-11/k11;
L[n_]:= Table[ term[n,k], {k,0,n}]l;
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that produces a list of the coefficients b, ; from (1.4.7). For instance,

L[0] = {1}

L= (1, 1)

L2l =1(1.2 1)

L3 ={l. 3,3, 1)

L4l = (1, 4,6, 4, 1)

LI5] = (1.5, 10, 10, 5, 1)

LI6] = (1, 6, 15, 20, 15, 6, 1}. (1.4.9)

The reader may now recognize the binomial coefficients (1.4.1) from the
list (1.4.9) and conjecture the formula

n n!
JIi]'.' = = 1.4.10
nk (k) k' (n — k) ( )

from this data. Naturally this requires a priori knowledge of the binomial
coefficients. An alternative is to employ the procedure described in Section
1.3 to conjecture (1.4.10) from the data in the list L[n].

The guessing of a closed-form formula from data is sometimes obscured
by dealing with small numbers. Mathematica can be used to generate terms
in the middle part of L[100]. The command

t:= Table[ L[100][[4i]],{1,45,49}]
chooses the elements in positions 45 to 49 in L[100]:

LI100][[45]11 = 49378235797073715747364762200
L[100][[46]] = 61448471214136179596720592960
LI100][[47]11 = 73470998190814997343905056800
LI100][[48]] = 84413487283064039501507937600
LI100][[49]] = 93206558875049876949581681100,  (1.4.11)

and, as before, we examine their prime factorizations to find a pattern.
The prime factorization of n = L[100][[45]] is

n=2.3.52.7.19.23.29.31-47-59-61-67-71-73-79-83-89.97,

suggesting the evaluation of n/97!. It turns out that this the reciprocal of an
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integer of 124 digits. Its factorization
o7
n

=291.34.520 73 118,137 .17° . 19* . 23% . 292 . 312 . 37% . 412
.43% .47 .53

leads to the consideration of

97!
T =230 88 P 14137177 192.23 .29 .31 - 37 - 41 - 43,
n x 53!
and then of
971 2 x3x11
— ) 1.4.12
n x 53! x 43! 5% 7 ( )
The numbers 97, 53 and 43 now have to be slightly adjusted to produce
100! 100 a3
"= Serxaal T\ 56 ) (14.13)

Repeating this procedure with the other elements in the list (1.4.11) leads to
the conjecture (1.4.10).

Exercise 1.4.3. Use the method described above to suggest an analytic ex-
pression for

1 = 33422213193503283445319840060700101890113888695441601636800,
1 = 47865783109185901637528055700883208512000182209549068756000,
13 = 63273506018045330510555274728827082768779925144537753208000,
14 = T72186537259697948007105490934041043000570796994 19429079500.

d) Recurrences. Finally, in order to prove that our guess is correct, define

-1
n
tp = (k) bn_.k (1.4.14)

and show that (1.4.7) becomes
Ap e+l = dp—1ky N = LO0<k<=n-1, (1.4.15)

sothata,; = 1.

Exercise 1.4.4. Check that b, ; = (:) by verifying that (:) satisfies (1.4.7)
and that this recurrence admits a unique solution with b, o = 1.
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Note 1.4.2. The sequence of binomial coefficients has many interesting prop-
erties. We provide some of them in the next exercises. The reader will find
much more in

http://www.dms .umontreal .ca/~andrew/Binomial/
index.htlm

Exercise 1.4.5. Prove that the exponent of the central binomial coefficients
C, = (1:7) satisfies

2sp(n) — sp(2n)

(1.4.16)
p—1

Ju'[J{CH) =
Hint.Letn = ag+aip + -+ + a, p" be the expansion of n in base p. Define
Ajby2a; =k;p+v;, where 0 <v; < p — 1. Check that A is either O or 1
and confirm the formula

1p(C) =D A (14.17)

=0

In particular p,(C,) < r + 1. Check that C, is always even. When is C,, /2
odd?

The binomial theorem yields the evaluation of many finite sums involving
binomial coefficients. The discussion on binomial sums presented in this
book is nonsystematic; we see them as results of evaluations of some definite
integrals. The reader will find in Koepf (1998) and Petkovsek et al. (1996). a

more complete analysis of these ideas.

Exercise 1.4.6. Letn € .
a) Establish the identities

2f B n—2
k r =2""n(n + 1). (1.4.18)

k=0

Hint. Apply the operator xﬁ to the expansion of (1 + x)" and evaluate at
x = 1. The operator xi: will reappear in (4.1.12).
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b) Determine formulas for the values of the alternating sums
. . n
> })
k=0 k

for p =0, 1 and 2. Make a general conjecture.

Mathematica 1.4.1. The sums in Exercise 1.4.6 can be evaluated directly by
Mathematica by the command

s(n_,p_]:=Sum[k”p*Binomial [n,k], {k,0,n}]

For example,

Sk (:) = 2""On(n + D)(n* + 14n® + 31n* — 46n + 16). (1.4.19)
k=0

The Appendix describes a technique developed by Wilf and Zeilberger that

yields an automatic proof of identities like (1.4.19).

The generalization of the sums in Exercise 1.4.6 is the subject of the next
project.

Project 1.4.1. Consider the expression

k=0

Zi(p.m)y=> Kk’ (Z) forn, p € N. (1.4.20)

a) Use a symbolic language to observe that
Zi(p.n)=2"""T,n) (14.2D)

where T,(n) is a polynomial in n of degree p.
b) Explore properties of the coefficients of T,.
¢) What can you say about the factors of T},(n)? The factorization of a poly-
nomial can be accomplished by the Mathematica command Factor.
The result of the next exercise will be employed in Section 7.5.
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Exercise 1.4.7. Prove the identities

i: (2;12: 1) _

k=0

n 2 1

Zk( " ) = @2n+ 122

2k

k=0

n 2 1 )
Zkz( "2:: ) = (n+ 1)2n + 12273, (14.22)
k=0

Hint. Consider the polynomial (1 + x)2 (1 — x)? ! and its derivatives
atx = 1.

Project 1.4.2. Define the function

n 2 l
Zo(p,m) = Zk”( ”2:: ) (14.23)

k=0

a) Observe that 272" Z,(p, n) is a polynomial in n with rational coefficients.
b) Make a prediction of the form of the denominators of the coefficients in
Z,(p, n). Hint. First observe that these denominators are powers of 2. To
obtain an exact formula for the exponents is slightly harder.

¢) Study the factorization of Z>(p, n). Do you observe any patterns? Make a
prediction on the signs of the coefficients of the polynomials in the factoriza-
tion of Z>(p, n).

1.5. The Ascending Factorial Symbol

The binomial coefficient

(n):n‘(n—])---{n—k+]) (1.5.1)
k 1.2k

contains products of consecutive integers. The ascending factorial symbol,
also called the Pochhammer symbol, defined by

1 ifk=0
(a), := . (1.5.2)
{a(a—l—l)(a—l—?)‘u{a—l—k—]) ifk=0
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generalizes this idea. In terms of the ascending factorial symbol we have

n) _ (kA De (1.53)
k (I

Mathematica 1.5.1. The Mathematica command Binomial [n, k] gives
(1’) and (a)g is given by Pochhammer [a, k].

Exercise 1.5.1. Prove the following properties of the ascending factorial sym-
bol:

a) Prove that (1), = n!.

b) Check that (—=x),, = (=1)"(x —n + 1),.

¢) Check the dimidiation formulas

Y)Qn = 22” _ ( )

R +x
(X)amsy = 22+ (%) +1( : ) . (1.5.4)

A generalization of these formulas considered by Legendre is described in
Section 10.4.
d) Establish the duplication formulas:

2”{1)% (x + 1/2)% for n even

(2x), = N (1.5.5)
2'"(x)ptt (x +1/2)u—1 for n odd.
2 2

¢) Prove that

)+ myp ifn=m
@ | +n)yl, ifn<m.

f) Prove that

n—1

d 1
a(l)n = () ; J+x . (1.5.6)

¢) Find an expression for (1/2),,.
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The next exercise shows that the behavior of the ascending factorial with
respect to addition is similar to the binomial theorem.

Exercise 1.5.2. Establish Vandermonde’s formula

X +Va= . (j) () (¥ (1.5.7)

J=0

Observe that (1.5.7) is obtained formally from the binomial theorem 1.4.2 by
replacing x/ by (x);. Hint. Use induction.

The next comment requires some basic linear algebra. The set of poly-
nomials {x, x%, ..., x"} forms a basis for the vector space of polynomi-
als of degree at most n, that vanish at x = 0. The same is true for the set
{(x)1, (x)2, -+, (x),}. Therefore any polynomial in one of these sets can be
written as a linear combination of the other one. The exercise below will prove
this directly.

Exercise 1.5.3. a) Prove the existence of integers c¢(n, k), 0 <k < n, such
that

n

(x), = Zc(n,k)x*‘ . (1.5.8)

k=0

For instance

(x) =x
(X =x(x+1)=x"+x
(X)3 = x(x + D(x +2) = x* +3x% + 2x.

b) The (signed) Stirling numbers of the first Kind S}f") are defined by the
generating function

Xx=DEx =2 -@—n+1D)=>_ 5Pk (1.5.9)
k=0

Establish a relation between ¢(n, k) and Sff ). General information about these
number appears in Weisstein (1999), page 1740.

¢) Write a Mathematica command that generates a list of c(n, k) for
0 <k <n as a function of n. Compare your list with the command
StirlingSl[n,k].
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d) Check that c(n, 0y =0forn = 1.
e) Use (x)yo1 = (x +n) x (x), to obtain

cn+1.n+1)=c(n, n)
cn+ 1, k)=cn, k—1)+nc(n, k) for2 <k <n

cn+1,1) =neln, 1). (1.5.10)
) Prove that

Y (=Dfcn,k)=0 and > c(n k) =n!. (1.5.11)

k=0 k=0

1.6. The Integration of Polynomials

The Fundamental Theorem of Calculus relates the evaluation of the definite
integral

b
1:/ Fx)dx (1.6.1)

to the existence of a primitive function for f. This is a function F(x) such
that F'(x) = f(x). In this case we obtain

b
[ fx)dx = F(b) — F(a). (1.6.2)

In theory every continuous function admits a primitive: the function defined
by

F(x) := f f(0)dt. (1.6.3)

is a primitive for f and it is unique up to an additive constant. Many of the

functions studied in elementary calculus appear in this form. For example,

the natural logarithm and the arctangent, defined by
X df

Jio1

Inx = (1.6.4)

and

X dr
an—1 v —
tan™ " x _ﬁ 1 (1.6.5)
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appear in the basic calculus courses. These will be considered in Chapters 5
and 6 respectively.

The problem of primitives becomes more interesting if one consid-
ers a fixed class of functions. For example, if f is a polynomial of
degree n, i.e.

)y =" pixt, (1.6.6)
k=0
then
Flx) = Z Pk _ ki (1.6.7)
—k+ 1

is a primitive for f. Therefore, the fundamental theorem of calculus yields
the evaluation

b n bk+1 _ (‘.‘k+]
X)dx = p —— 1.6.8
| @ kZ:;}m o (1.6.8)
The coefficients py, py, ..., p, in (1.6.6) can be considered as elements

of a specific number system such as the real numbers [ or the integers Z,
or they can be seen as parameters, that is, variables independent of x. This
point of view allows us to perform analytic operations with respect to these
coefficients. For example,

9
d _ x5, (1.6.9)
api

so differentiating (1.6.8) with respect to p; yields

b k k+1
/ x*dx = b+1—ﬂ+‘ (1.6.10)
ol k + ]

and we recover a particular case of (1.6.8). Later chapters will show that
differentiating a formula with respect to one of its parameters often yields
new evaluations for which a direct proof is more difficult.

Note 1.6.1. The value of a definite integral can sometimes be obtained directly
by Mathematica. By a blind evaluation we mean that one simply asks the
machine to evaluate the integral without any intelligent input. For example,
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the command
Integrate[ x"n, {x,a,b} ]
provides a blind evaluation of (1.6.13). The command

Fullsimplify[ Integrate[x™n, {x,0,1}1,
Element[n,Reals]]

tells Mathematica to simplify the answer of the evaluation under the assump-
tion that n is a real parameter.

Note 1.6.2. The justification of differentiation with respect to a parameter

under an integral sign is given in Hijab (1997), page 189. Let u(x;A) be a

function of the variable x and the parameter A. Suppose u is differentiable in
du . . . . - .

A and TN 1s a continuous function. Then differentiation with respect to the

parameter A,

3 b b 3
- / ul(x; ) dx :/ u(x:Aydx, (1.6.11)
dA i a dA

holds.

Exercise 1.6.1. This exercise establishes the definite integral of the power
function x — x".
a) Use the method of induction to check that

d

E,‘(" = nx""! (1.6.12)
forn € N.
b) Extend (1.6.12) ton = p/q € @, g # 0, by differentiating y7 = x? im-
plicitly.
¢) Establish the formula
b b"_H o an+l
/ dx="—"%" neQ.n#-1L (1.6.13)
a n+1
In particular, we have
! 1
ﬂx"dx:.q_'_l. neq, n#—1. (1.6.14)

Note 1.6.3. The extension of (1.6.14) to n € B, n # —1 presents analytic
difficulties related to the definition of x" for n & Q. This is discussed in
Section 5.6. For instance, one has to provide a meaning to the expression
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xV2. This difficulty is usually solved by introducing a sequence of rational

. )
numbers: given a sequence a, € @ such that a, — /2, we can define xVv~=

as the limit of x“. This is the subject of real analysis and can be found in
many texts; Hijab (1997) and Stromberg (1981) are suggested for general
information.

The reader is familiar with the method used to exchange the order of
integration in a double integral. The next exercise provides a way to exchange
double sums.

Exercise 1.6.2. Leta, ; : 0 <k, j <n be an array of numbers. Prove that

n n

n k
YD ai =3 (1.6.15)

k=0 j=0 =0 k=j
This identity is referred as reversing the order of summation.
Exercise 1.6.3. This exercise illustrates how to use a simple evaluation to

obtain the value of some sums involving binomial coefficients.
a) Combine (1.6.13) with the change of variable x = (b — a)f 4+ a to produce

i n Hj _ 1 b"+| _aHJ.—l (1 ¢ 16)
J j-l—l_.-:a'”(n—l—l)>< b—a o

j=0

withu = bfa — 1.

b) The special case b = 2a yields

n 1 n 2n+| -1 {1 ¢ 1?)
Z,i—l—l il T vl o

Jj=0"

Prove this directly by integrating the expansion

I+xyr =% (’f)xf (1.6.18)

=0 \J
between 0 and 1.
¢) Establish the identity

n+l (I"+]

=b" 4+ b" a4+ +ba" ' +a" (1.6.19)

b

b—a
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and use it in (1.6.16) to produce

n

. (n) W 1
Z()j_l_l:n_l_lzmﬂ)*. (1.6.20)

=0 \/ =0

Expand the binomial (z + 1)* and reverse the order of summation to obtain

" (n u! 1 ~ "k .
Z()j-l—l:n-l-lz Z() ul. (1.6.21)

=0 \/ =0 k= \/

Conclude that

n k
Q: ntl (1.6.22)
k=j f) j+l

Hint. Both sides of (1.6.21) are polynomials in « so you can match coefficients
of the same degree.
d) Use the ascending factorial symbol to write (1.6.22) as

m

_ (m+ j)
20 = GGy (1629

e) Replace m by n + 1 and j by n in (1.6.23) to obtain

5 (n +k) _ (2n + 1)_ (16.24)
=0 n H

Exercise 1.6.4. Use Mathematica to check that the sum appearing in (1.6.21)
is given by

[k r2+mn)
= . 1.6.25
Z(i) F@+ )T~ ) +m (1:62)

k=j
Similarly, the sum in (1.6.23) is given by

I+ j+m)
k)= ————. 1.6.26
;( =05 j)Tam) (1620
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Finally, check that a blind evaluation of (1.6.24) yields

- n -+ k 22ir+l ['-{3/2 + H)
> ( ‘ ) i (2] e

Extra 1.6.1. The gamma function appearing in (1.6.25) will be studied in
Chapter 10. In particular we show that

'n)=m -1 and '(n + %;) =y .0

so that (1.6.27) is consistent with (1.6.24).




2
The Method of Partial Fractions

2.1. Introduction
The method of partial fractions is normally introduced in calculus courses as
a procedure to integrate rational functions R(x) = P(x)/Q(x). The idea is
very simple, and we illustrate it with an example.
The rational function
x2—2x -5

R = e v ix+6

(2.1.1)

is to be integrated from 0 to 1. The basic idea of the method is to consider
the integrand R(x) as the result of a sum of rational functions with simpler
denominators. Thus the method consists of two parts:

a) The factorization of Q(x).
b) The decomposition of R(x) into simpler factors.

In the example, Q(x) factors as!
Q) =x*+6x>+1lx+6=(x+ Dx+2)x +3), (2.1.2)
so we seck a decomposition of R(x) in the form

x2=2x-5 a b

= + .
x4+ Dx+2)x+3) x+4+1 x+2+x+3

(2.1.3)

for some constants a, b, c. It remains to find the coefficients a, b, ¢ and to
evaluate the simpler integrals

/1 x2—=2x -5 4 f'adx+f' bdx [1 cdx
o X3 +6xr4+11x+6 e o x+1  Jo x+2+40 x+3

(2.1.4)

! The reader now understands why we chose this Q(x).

25
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The solution to partb) is particularly easy when Q(x) has simple real roots.
The procedure is illustrated with (2.1.3). To obtain the value of @, multiply
(2.1.3) by x + 1 to obtain

2-2x—5 b(x + 1 1
x 4 (x+1)  clx+ ), 2.15)
(x+2)0x +3) x+2 x+3
and then let x = —1 to obtain @ = —1. Similarly » = —3 and ¢ = 5. Thus

the integration of R(x) is reduced to more elementary integrals. Each of the
pieces in (2.1.4) can be evaluated as

/1 dx (l+s)
=In ,
0 X+¢§ 5

oy —2x =5 9
dx = —4In (2 ). 2.16
£ Credtllitre “(8) (2.1.6)

Note 2.1.1. The reader has certainly encountered these evaluations in the

so that

basic calculus courses. Chapter 5 presents a discussion of the logarithm func-
tion.

Mathematica 2.1.1. The Mathematica command Apart [R[x]] gives
the partial fraction decomposition of the rational function R, provided it can
evaluate the roots of the denominator of R. For example,

A 1[7“[2 ] 1y ! 4 2.1.7)
dl’ = - R
P X2 +3x+2 l+x 2+4x
and
X X
Apart - : 218
Par L5+2x+1] St (21.8)

Mathematica 2.1.2. It is possible to ask Mathematica for a direct evaluation
of the integral in (2.1.6) via the command

int:= Integrate[(x"2 - 2x - 5)/
(x"3 + 6x"2 + 11x + 6), %x,0,1].

The answer given is

2 Log[2] - 8 Log[3] + 5 Logl[4]
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and we would like to simplify its result. The command FullSim-
plify yields

6 Log[4] - 8 Log[3]

as the value, but it does not simplify automatically the expression
Log[4] = 2 Logl[2]. In order to reduce the arguments of logarithms
to its minimal expression requires the introduction of a Complexity Function.
The complete command is

penalyzelLogOfIntegerPowers [expr_] := (Plus @&
(Plus @@ (Last /@ FactorInteger[First[#]]) -

1)& /@ Cases[{expr}, Logl[_Integer],

Infinity])) + (% avoid Log[rationalNumber]

too *) 10 Count[{expr}, Log[_Rationall, Infinity]

simplifies the integral to the finalresult 4( 3 Log[2] - 2 Log([3] )
via the command

FullSimplify[ int, ComplexityFunction
->penalyzelLog0fIntegerPowers] .

The optimal answer for the integral

b
I :/ R(x)dx (2.1.9)
of a rational function
R(x) = L) (2.1.10)
x)= \ 1.
O(x)

with P(x), Q(x) polynomials in x, namely,

P(x) = pux" + puaxX™ '+ -+ pix + po
Q) = gux" + gar1x" ™' + -+ q1x + qo, (2.1.11)
would be an explicit function of the parameters
P = {a.b:m,n; pp.---. pos g -+ qo}- (2.1.12)
We begin the study of the evaluation of such an integral by normalizing

the interval of integration into the half-line [0, oc).

Exercise 2.1.1. Let R(x) be arational functionand —o¢ < a < b < oo, Use
the change of variable x — y = (x — a)/(b — x) to show that we can always
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assume ¢ = 0 and b = oc. Show that an alternate construction can be used

in the case @ = —o00, b = 00. Use this transformation to check that
I o}
d> rdv
[ Sk :f M (2.1.13)
Jo x+1 o Cy+ D+ 1)°

The example shows that the degree of R might increase in the normalization
of the interval of integration.

Now that we have normalized the interval of integration to [0, o0) we show
how to normalize some of the coefficients.

Exercise 2.1.2. Let [ be the integral in (2.1.9).

a) Prove that if the integral / from 0 to oc¢ is convergent, then g, and gy must
have the same sign.

b) Show that in the evaluation of (2.1.9), under the normalization ¢ = 0 and
b = oo, we may assume g, = go = 1. Hint. Use a change of variable of the
form x — Ax.

¢) Compute the normalized form of the quartic integral

h= [ 2.1.14
]_ﬂ bx* +2ax?+ ¢’ (2.1.14)

The method of partial fractions provides the value of the integral of a
rational function in terms of the roots of its denominator. The next proposition
gives the explicit formula in the case in which these roots are real and simple.

Proposition 2.1.1. Let P and Q be polynomials, with deg P < deg Q — 2.
Assume that all the roots x ; of Q(x) = 0 are real, negative, and simple. Then

Pu) =~ P(x D)
(2.1.15)
0 Q \’) Z Q Xj ) *
Proof. The constants «; in the decomposition
Px - o :
= 2.1.16
Q{Y) Z X=X ( )

can be evaluated by multiplying by x — x; to produce

m

g + Z a(x xk)

j=t#k YT

P(x) ><
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letting x + x; we obtain

P(x;)
Q' (xx)
The fact that Q'(x;) # 0 follows from the simplicity of the roots, see Exercise
2.4.2. Thus

o = 2.1.17)

m

b Pix
x) d,x_Zajln(l—b/rj (2.1.18)

o(x

Now observe that

P(l/s) B a;s
o(l/s) 2

1 ,
= - SXJ;‘

so dividing both sides by s and letting s — 0 we obtain

n

> a;=0. (2.1.19)

Computing the limit as b — o0 in (2.1.18) yields (2.1.15). O

Exercise 2.1.3. Check the details.

Throughout the text we will employ the normalization [0, oc) for the
interval of integration. The next series of exercises presents an alternative
normalization.

Exercise 2.1.4. Let R be a rational function. Prove that
1
Ri(x) = R(x)+ = R(1/x) (2.1.20)
x?

is also a rational function, with the property

&0 1
/ R(x)dx = / Ry(x)dx. (2.1.21)
0 0

Conclude that we can always normalize the interval of integration to
[0, 1].

Exercise 2.1.5. A polynomial P is called symmetric if it satisfies

P(x) = x4 pe1 /). (2.1.22)
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a) Describe this condition in terms of the coefficients of P.
b) Prove the identity
P /' x"2P(1/x)Q(x) + x" Q(1/x)P(x)
0o Q) 0 x"Qx)0O(1/x)

with m = deg(Q). Hint. Split the original integral at x = 1 and let x +— 1/x
in the piece from x = 1 to x = o0.

dx (2.1.23)

¢) Check that the numerator and denominator of the rational function ap-
pearing on the right hand side of (2.1.23) are symmetric. Conclude that the
integration of any rational function can be reduced to that of a symmetric one
on [0, 1].

d) Give the details in the case P(x) = 1 and Q(x) = ax® + bx +c.

The next project discusses some of the properties of the map that sends R
to R;. The reader with some background in linear algebra will see that this
map is linear and has many eigenfunctions.

Project 2.1.1. The map T(R(x)) = R;(x), with R;(x) defined in (2.1.20) is
a transformation on the space of rational functions. The goal of the project is
to explore its properties.
a) Prove that for any rational function R, the image R, satisfies

T(R)) = 2R,. (2.1.24)
Therefore the map T has many eigenfunctions with eigenvalue 2.
b) Is it possible to characterize all other eigenvalues of T? These are solutions
to T(R(x)) = AR(x).
¢) Find all functions that are mapped to 0 under T.

d) Part a) shows that every function in the range of T is an eigenfunction of
T. Characterize this range.

2.2. An Elementary Example

In this section we consider the evaluation of

La, 1 m[w dx 221
g{a.))_‘[) x4+ 2ax + b @2.h)

in terms of the parameters a and . Completing the square we obtain

= dt
b(a,b) :f o (2.2.2)
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where D = a® — b is (one quarter of) the discriminant of the quadratic
Ps(x) = x? + 2ax + b. The evaluation of I, is discussed according to the
signof D.

2.2.1. Negative Discriminant

a®> < b. In this case the evaluation employs the arctangent function defined
in (1.6.5). Let D = —¢2, then

ba.b) = 1/«; e _1 [5 — tan™! (9)} . (2.2.3)
€ Jage 1412 ¢ L2 ¢
Naturally
=< dr T
/0 == (2.2.4)

In the discussion of trigonometric functions given in Chapter 6, we actually
use (2.2.4) to define m.

Exercise 2.2.1. Differentiate (2.2.3) to produce
/“’o dx a T tan"!(a/v/'b —a?)

o (X2 +2ax +b2  2b(b — a?) + Mb—a)P? 2Ab—ad)pi?
(2.2.5)

Obtain a similar formula for

= dx
_— 226
/o (x2 + 2ax + b)? (226)

A generalization of this identity is discussed in Project 2.3.1.

2.2.2. Positive Discriminant

a? > b. In this case the quadratic P>(x) has two real roots ry = —a + \/5
The partial fraction decomposition of the integrand is

1 | 1 1
s - . 227
xX+2ax+b 2D (x—r+ x—r_> ( )

The integral is now expressed in terms of the logarithm function defined in
(1.6.4).

Exercise 2.2.2. Prove that if a*> > b, then the integral converges if and only
ith = 0.
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We now integrate (2.2.7) from 0 to oo to obtain

Lab) = (2T vD (2.2.8)
Ald, D) = n . e
- 2D — /D

We now summarize the discussion:

Theorem 2.2.1. The integral

L(a. b) [m dx 229
xa. b o x*+2ax+b (229)

converges precisely when b = Q. Its value is

—— | = —tan” | — ]| ifb>a
b—a? |2 Vb —a?

1 Jaz—b
L(a.b) = { m [ Ve ifh < a
2var —b a—+at—b
1
- if b =a’.
“

2.3. Wallis’ Formula

In this section we establish a formula of Wallis (1656) that is one the first
exact evaluations of a definite integral. This example will reappear throughout
the book.

The first proof uses the method of introduction of a parameter. In order
to evaluate an integral, one consideres a more general problem obtained by
changing numerical values by a parameter. In this proof we replace

x dx
[0 (2 4 LyntL 23.1)
by
* dx
[o (2 + byntl” (23.2)

The extra parameter gives more flexibility. For instance, we can differentiate
with respect to b.

Theorem 2.3.1. Let m € N. Then

* dx T [2m
J“"‘m = /0 {x2 + l)m+1 = 22m+1 (m ) : (23'3)
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Proof. Introduce the function
In(b) = / S (2.34)
Jo o (x* 4 byntl
for b = 0. Thus J5,, = L,,(1).

Exercise 2.3.1. Check that [,,(b) satisfies
I'(b) = —(m + D1 (b). (2.3.3)

The initial value
T
Iy(b) = —= (2.3.6)
0 275

is a particular case of Theorem 2.2.1. Now use (2.3.5) to produce the first few
values of I,,,(b):

b4
Ii(b) = W

in
L(b) = ——.
20 = Tgpn

This data suggests the definition

Fu(b) = D"V L (b). (2.3.7)

Exercise 2.3.2. The goal of this exercise is to provide an analytic expression
for 1,(b).
a) Check that f,,(b) satisfies
, 2m + 1

bf;,,{b) - Tﬁn(b) = _(J” + ])ﬁn+l(b)- (238)
b) Use the value of Iy(b) to check that fy(b) is independent of . Now use
induction and (2.3.8) to show that f,,(b) is independent of b for all m € N.
Conclude that f;, satisfies

2m + 1

m+1l = n- 2.39
S+ 2m+2f ( )

¢) Prove that

(lm )
m

f’” = 22m+1 T

(2.3.10)

Hint. To guess the form of f,, from (2.3.9) compute

fi=s.2.2.2. T (2.3.11)
J
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and insert in the numerator and denominator the missing even numbers to

obtain
=S 1.6 5 4 3 2 Lz
4_2-4 8 2.3 6 2.2 4 2.1 2 2
_ 8! =
T 284227
To prove the form of f, define
" 2'_’m+l
8m == 7f 5 (2.3.12)
Gl
and check that g,,.1 = g,.
The proof of Wallis’s formula is complete. O

Project 2.3.1. The goal of this project is to discuss the structure of the integral

e dx
L,,,(G) = / - 1

o (x%42ax + 1)ym*
as an explicit function of @ and m. Properties of the indefinite version
of L, (a) appear in Gradshteyn and Ryzhik (1994) [G & R], 2.171.3 and
2.171.4.
a) Describe the values of the parameter a for which the integral converges.

In the first part we assume —1 < a < 1, so that

Lola) = # {E — tan™! ( a )] . (2.3.14)
V1—a?]2 1—a?

b) Prove that L,,(a) satisfies the recurrence

(2.3.13)

2m — 1 a
Lnla)=———0L,_ e e—— 2.3.15
@) 2m(l — a?) @) 2m(1 — a?) ( )
Hint. Write 1 = (x2 + 2ax + 1) — %(2.1: + 2a) — ax.
¢) Use part b) to show that L,,(a) can be written in the form
RH! {a) JT CE"! ﬁ yJiT
Lm{a) = + ' + .
@1y e @ e @y
(2.3.16)
where
,B—tan_'( a ) (2.3.17)
N V1—a2)’ o
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O, Vi are constants and R, (a) 1s a function of a. These will be determined
in the remainder of the exercise.
d) Use (2.3.15) to show that «,,, and y,, satisfy the recurrence

2mx, = —2m — Dx,_1. (2.3.18)

To solve this recurrence, obtain a new recurrence for y,, := (2’:’])(,,,.

¢) Prove that the function R,,(a) satisfies the recurrence

2m — 1
2m

with initial condition Ry(a) = 0. Conclude that R,,(a) is a polynomial. The

precise closed form for its coefficients seems to be difficult to obtain.

) Prove that R, (@) 1s an odd polynomial (only odd powers appear), of degree

2m — 1 and that its coefficients alternate sign starting with a positive leadind

term.

g) Prove, or at least provide convincing symbolic evidence, that the least

common denominator f,, of the coefficients of R, (a) satisfies

Ry(a) = —

Ru_i(a) + —@—1)""', (23.19)
2m

1 if 2m — 1is prime
f 1 . . . .
2 if 2m — 1is not prime but not a prime power
2mity, 2m — 1
3 ] if 2m — 1 = p" for some prime pand 1 <n € N.
m—

h) Obtain similar results for the case a® > 1, in which case the integral is
expressed in terms of logarithms.

1) Evaluate L,,(1).

j) Discuss the evaluation of L,,(a) by considering the derivatives of

h(c) fx dx (2.3.20)
¢) = e L.
0 x242ax+1+c¢

with respect to the parameter ¢ at ¢ = 0.
Mathematica 2.3.1. The command

Integrate[l/ (x"2+2xaxx+1), {x, 0 , Infinity},
Assumptions -> a > 0]

gives the value of Lo(a) in (2.3.14).

Note 2.3.1. The quartic analog integral

> dx
Y= 2.3.21
8(©) A xt+2ax?+1+c¢ ( )
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appears in Section 7.7 and plays a crucial role in the evaluation of integrals
with denominators of degree 4 and in the Taylor expansion of the function

hic) =+v'a+ 1+ c.

2.4. The Solution of Polynomial Equations

The zeros of the polynomial
Q{X) =x" + QH—]X"_I + fhr—z-fn_z + -+ qi1x + qo {241)

with g; € R, form an essential part of the decomposition of the rational func-
tion R(x) = P(x)/Q(x) into partial fractions. In this section we discuss the
question of how to produce formulas for the solutions of Q(x) = 0in terms of
the coefficients {go, qi, -, g.—1}. We will provide details for polynomials
of small degree and use these formulas to give explicit closed forms for a
class of integrals of rational functions.

Exercise 2.4.1. Let xy be a real root of Q(x) = 0. Prove that there exists
a polynomial Q(x) with real coefficients such that Q(x) = (x — x¢)Q;(x).
Hint. Use (1.6.19) to factor Q(x) — Q(xy).

Exercise 2.4.2. Let x5 be a double root of Q(x) =0, that is, Q(x) =
(x — x0)2 0 (x) for some polynomial O with Q(xg) # 0. Prove that this
is equivalent to Q(xp) = Q'(xg) = 0 and Q"(xp) # 0. Check that a root is
double if it appears exactly twice in the list of all roots of Q(x) = 0. Gen-
eralize to roots of higher multiplicity (this being the number of times a root
appears in the list).

Extra 2.4.1. The reader is familiar with the fact that a real polynomial might
not have any real roots, for example P(x) = x% 4 1. The solution to this
question was one of the motivation for the creation of complex numbers:

C={a+bi:a beR, i*=-1). (2.4.2)

The operations in C are defined in a natural way: treat the number i as a
variable and simplify the expressions using i = —1. The complex numbers
come with an extra operation: conjugation. The conjugate of 7 = a + bi is
Z=a— bi.

Exercise 2.4.3. Prove that if a + bi is a root of a polynomial with real co-
efficients, then so is its conjugate. Hint: Do it first for polynomials of small
degree to get the general idea.
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We conclude from the previous exercise that the polynomial Q(x) can be
factored in the form

O(x) = (x — x))" (x — 1) -+ (x — x;)" (2.4.3)

where x; are the roots of Q(x) = 0, some of which might be complex. A real
form of this factorization is obtained by combining the complex conjugate
pairs into a form
Q) =(x —r)" (x —ra)™ - (x — ;)"
x (x = 2ayx +aj + )™ (x? = 2ax + af + b)), (2.4.4)
The next exercise produces a relation between the roots of a polynomial

and its coefficients. In Chapter 11, Exercise 11.3.1, we will use an extension
of this result to give Euler’s proof of the identity

=1 ?
Z = (2.4.5)

Exercise 2.4.4. a) Prove that the polynomial Q can be written as

m

o) =Cx'[] (1 - xi) (2.4.6)
i=1 !

where the product runs over all the nonzero roots of Q(x) =0
b) Check that

m

C=n"]]x (2.4.7)
=1
¢) Assume that Q(0) # 0. Prove that

— = —Cqi. (2.4.8)

Extra 2.4.2. Once the factorization (2.4.4) is given the rational function
P(x)/Q(x) can be written as

Px)  wilx)  wix)
Q(x)  (x —rpm (x —rjym
z1(x) - Zx(x)
(x2 = 2a;x + ai + b}ym (x2 = 2a;x + ai + b}y™

+




38 The Method of Partial Fractions

for some polynomials wy, ..., w;, z1,..., 2. This is the partial fraction
decomposition of R.

Thus if the roots of the polynomial QO are assumed to be known, the
integration of a rational function is reduced to integrals of the form

/‘C’o x!dx
Jo (x—r)

and

/” xldx
o (x2=2ax +a®+ b2y’

corresponding to the real and complex roots of Q(x) = 0, respectively.

2.4.1. Quadratics

The question of finding the roots of a polynomial equation starts with the
familiar quadratic formula, which expresses the roots of

Y qx+q=0 (24.9)

1 /
X4+ = 5 (—(“ + q;’j - 4(][;) . {2410)

Exercise 2.4.5. Determine the restrictions on the parameters gqg, g1, g2 S0

that
/w P(x)dx
0 (g2x? 4+ qix + goymt!

das

converges.

2.4.2. Cubics

There are similar formulas that express the solution of
4@ qx+q0=0 (2.4.11)

in terms of the coefficients {go, g1, ¢2}. The next exercise describes how to
find them. The first step is to eliminate the coefficient gs.

Exercise 2.4.6. Prove that the transformation y = x + ¢/3 transforms
(2.4.11) into
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with
1 2 1
g =q — §q§ and ¢qf = ﬁqi?' = 30401+ 9.

We now present a method due to Cardano (1545/1968) to solve
X} +3q1x + 20 = 0. (2.4.13)

The scaling factors 3 and 2 are introduced so the final formulas have a simpler
form.
Define u and v by

U+v=x (2414)
uv = —¢qj.
Substituting in (2.4.13) gives
w? + v} = —2g,. (2.4.15)

We thus have a symmetric system

U+V =-2q (2.4.16)
Uv =—qf

where U = u® and V = v?. It is easy to check that U and V are roots of the
quadratic

X2 420X —qi = 0. (2.4.17)
The discriminant of this quadratic is
D = q& | qf (2.4.18)

and D is also known as the discriminant of the cubic x* + 3¢,x + 2¢o. The
solutions of (2.4.13) can now be expressed as

X = \'y—qf; ++D+ \7—4‘0 -vD (24.19)
x2=p\/=qo+VD+p*\/~g0— VD
X3 :pz\"/—qg+\/ﬁ+,0\"/—f?0—\/5

where p = (—1 + iﬁ)/Z is a primitive cube root of 1, that is, a cube root of
I not equal to 1.

Note 2.4.1. Hellman (1958, 1959) presents an interesting discussion of the
solution of the cubic and quartic equation.
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Exercise 2.4.7. Use Cardano’s method to solve the cubic x* — 6x2 + 11x —
6 =10.

Exercise 2.4.8. Check that the roots of the cubic x* + 3x2 + 2x + 1 = O can
be given in terms of

1/3
o= (108 + 12«/69) (2.4.20)

a 2
X = - g-l';-l-l

o 1 V=372 o«
‘”Z’F(EJ’E"])iT(E"E)'

ds

This specific cubic will appear in Section 3.8.

Mathematica 2.4.1. The Mathematica command to find the roots of x* +
3x24+2x+1=0is

Solve[ x"3 + 3%x™2 + 2%x + 1 == 0,x ]
and this yields the three roots in the form

1/3
) s (3o -ve9) :
x—= —1- ( ) - ,
3(9 — +/69) 323

(2.4.21)

and with a similar expression for the complex roots. An attempt to simplify
this root produces

Root[l + 2 #1 + 3#17°2 + #1"3 &, 1]

that simply identifies the number as the first root of the original equation.

Project 2.4.1. The goal of this project is to determine the region in the (a, b)
plane on which the integral

I(a,b) = /m dx (2.4.22)

@ _,0 X tax? 4+ bx+1 o
converges. Observe first that there are no problems near infinity, so the ques-
tion of convergence of the integral is controlled by the location of the zeros
of the denominator.
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Define
A= {(a,b) €eR*: I(a,b) < )} (2.4.23)

and Py(x) = x* 4+ ax? + bx + 1.

a) Prove that I(a, b) converges if and only if the equation P;(x) = 0 has no
real positive roots. Hint. Consider first the case of three real roots ry, ra, 13,
and then the case of a single real root and a pair of complex conjugate roots.
The first case should be divided into three subcases: 1) all roots distinct,
Dri=rmErand3)r=rn =r;.

b) Suppose a? < 3b. Then (a, b) € A. Hint. This corresponds to the case in
which P;(x) > 0 for all x € R, so P3(x) has one real root and two complex
(not real) roots.

¢)Assumea’ > 3b.Lett, = (—a + +/a® — 3b)/3bethe largest of the critical
points of P. Prove thatz. < Qis equivalenttoa, b = 0.Confirmthatifr; < 0
then (a, b) € A.

d) Suppose a’® > 3b and t; = 0. Prove that (a, b) € A if and only if P(1;) >
0.

e) Suppose again that @ > 3band ¢, > 0. Show thatif 27 4 2a* — 9ab < 0,
then (a, b) &€ A.

f) The discriminant curve

R(a,b) = 4a® + 4B — 18ab — a®b*> +27 =0 (2.4.24)

consists of two separate branches R.(a, b). Let R_(a, b) be the branch con-
taining (—1, —1). Prove that

(a,b)e A & R _(a,b) = 0. (2.4.25)

g) Check that the point (3, 3) is on the discriminant curve. Compute the Taylor
series of R(a, b) = 0 at (3, 3) and confirm that this is a cusp. Hint. Consider
the Taylor series up to third order, let # = a + 3, v = b + 3 to translate the
cusp from (3, 3) to the origin. Now write everything in the new coordinates
x=(u—v)/2and y = (1 + v)/2.

Extra 2.4.3. The reader will find that region A is related to the dynamical
system
a, b, + 5a, + 5b,, +9
(an + by +2)¥3
ay + b, +6
(an + b, + 2)23°

Uy =

er—l =
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These expressions comes from the fact that the integral

*  ext4dx®te
U b:c.d, e) = dx 2.4.26
o(a bc.d,e) A x0 4 axt 4+ bx? + 1 ! ¢ )

remains the same if (a, b) is replaced by (a;, b;) and (c, d, ) are changed
according to similar rules. More information about these results is given by
Moll (2002). See also Extra 5.4.2 for the original invariant integral.

Exercise 2.4.9. Use the method of partial fractions to evaluate the integrals

Coola. b) / ” dx (2.4.27)
a, = . N
0.0 0 XP4ax?+bx+1

and

e xdx
C b)) = _ 2.4.28
Lola, b) A eI ( )

in terms of the roots of the cubic equation x* + ax® + bx + 1. Describe how
to obtain the values of

Co1( b)m/x dx (2.4.29)
0.1, B} = o (¥4 ax?+bx+ 1) o

and

Ci1a, b) /x rdx (2.4.30)
Ll Br= o (FFax?4+bx+1)? o

by differentiation with respect to the parameters a and b.

These are special cases of the family

o x/dx
Cin(a.b) = _ 2.4.31
jmta, b) ﬁ (x3 + ax? 4 bx + 1yn+! ( )

2.4.3. Quartics

A simple procedure can now be used to describe the roots of the quartic
g3 + gox® + qix + o = 0. (2.4.32)
The details are left as an exercise.

Exercise 2.4.10. We present here methods developed by Cardano and
Descartes to solve the general equation of degree 4.
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a) Use a translation of the variable x to show that the general quartic can be
written as

x4 gix? + gix 4+ g = 0. (2.4.33)

b) Show that one can choose the parameter y inz = x> + y to reduce (2.4.33)
to the form

2+ y)P =(Az+ B). (2.4.34)

This involves the solution of a cubic equation. The case y = ¢2/2 requires
special treatment. The equation (2.4.34) can be solved directly.
¢) An alternative method due to Descartes is based on the factorization

@t 4 gix + qf = (¢ 4 ax + b)(x? + cx + d).

Show that a” satisfies a cubic equation, so it can be solved by Cardano’s
formulas, and that b, ¢, d are rational functions of a.
d) Use these methods to solve the quartic x* 4 10x? 4 35x2 + 50x + 24 = 0.

Extra2.4.4. Intheory, the formulato solve the general cubic and quarticequa-
tions provides analytic expressions for the integral of any rational function
such that every term in its partial fraction decomposition has denominators
of degree at most 4. In particular they may be used to evaluate the integral

/‘x P(x)dx
Jo (x* + qax3 + gax? + qix + qoyt!

for a polynomial P(x) of degree at most 4m + 2 in terms of the roots of the
quartic.

The fact that the roots of the general equation of degree 5, Qs(x) = 0,
can not be expressed in terms of the coefficients of Qs using only radicals
was indicated by Ruffini (1799/1950) and proved by Abel (1826) and Galois
(1831) at the beginning of the 19t century; see McKean and Moll (1997),
Chapter 4 for a discussion of this classical problem. The reader will find
in Ayoub (1982) the proof of the nonsolvability of the general polynomial
equation.

The existence of formulas for the solution of the quintic is full of beauti-
ful connections: it involves the study of symmetries of the icosahedron; see
Shurman (1997) for an introduction to these ideas. In Chapter 6 we show
how to solve the general cubic and quartic using trigonometric functions;
this idea extends to degrees 5 and 6. It is possible to express the roots of a
general quintic in terms of deubly-periodic functions. Details can be found in
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McKean and Moll (1997). It turns out that the solutions to a polynomial equa-
tion can be given (explicitly?) in terms of theta functions of a hyperelliptic
curve. This is quite advanced, the details appear in Umemura (1983).

In his classical treatise (1958), page 9, Hardy states
The solution of the problem” in the case of rational functions may therefore be said to

be complete; for the difficulty with regard to the explicit solution of algebraic equations
is one not of inadequate knowledge but of proved impossibility.

2.5. The Integration of a Biquadratic

The method of partial fractions is now used to evaluate the integral

Noatasm) / X o (2.5.1)
a,m) = . 5
o Jo (x* 4 2ax? 4 1m+!

As the notation indicates, this integral is part of a family that will be discussed
in Chapter 7.
The quartic denominator factors as

2axt 41 = (xz + 1*']2)(,1(2 + r%), (2.5.2)
where
rfﬁa—i— a?—1 and rf:a— a—1. (2.5.3)

Exercise 2.5.1. Prove that the integral converges if ¢ > — 1. Hint. Consider
the cases a = 1 and —1 < a < 1 separately.

In this evaluation we assume thata = l and ry > 1 > ra.

Exercise 2.5.2. Prove that
(\fa—l—]—f—«/fr—l) and ry = - (\/a-l—l—'\/{r—]).

(2.5.4)

1 1
=
V2 V2
Now write = x? and consider the partial fraction decomposition of the
integrand
1
(t + 1 )m+| (t + IZ)HH_I !

h(1) = (2.5.5)

2 Hardy is discussing the problem of integrating a function in elementary terms.
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where we have written 1} = r? and 1, = r%. The Mathematica command

flm_,t_]:= Apart[ h[m,t]]

yields
§ s
ho(t) = - 2.5.6
olt) I+ t+ 1 ( )
h({)_( s 253)+( 52 +253)
TN+ 4 t+0)? t+n
and
() ( s? 35t N 6s° ) ( 5> N 3s* N 6s° )
.l = - - .
i (t+n)P +n)? t+n) \t+n} @+n)? t+n
(2.5.7)
with s = 1/(f2 — ;). These examples suggest the conjecture
m (_l)jl‘.m+|+j m Pan syl
hy(t) = e B (= [T e (2,58
" JZ::O (t + qy)ymtt=i ™ +=D ; (t + oy 1= (229
for some coefficients B, ; : 0 = j = m.
The first few coefficients are
1
12
13 6
1 4 10 20
and we recognize the binomial coefficients
Bu, = (m T ) (2.5.9)
J

from the previous data.

Exercise 2.5.3. Use Mathematica to generate the partial fraction decompo-
sition of h,,(t) for 3 <m < 10 and use the guessing method described in
Chapter 1 to produce a formula for B,, ;.

An alternative procedure is to access Neil Sloane’s web site
The On-Line Encyclopedia of Integer Sequences at http://
www.research.att.com/~njas/sequences to find out (2.5.9).
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Thus the conjecture (2.5.8) becomes

oSS [t s (=s)" 1
(1) = (=1) Z ( m ) ({r +32)m+1—f + (t +I|)m+1—f '

j=0

Exercise 2.5.4. Prove this conjecture by induction on m. Hint. Expand the
identity

t+t t ¢ n+1
1= ( 2 I 1) (2.5.10)
fa — Iy fr — 1

by the binomial theorem, and repeatedly use

I+t 4+

— (2.5.11)
h—h ©h—0h
in order to show
m m + ]
1 _{ l)m—H
2\
t t m+lr t i -1 "H—‘H_lf t jr t m+1
{"rl) ('fz)__( ) (+1){+2) . (25.12)
(rz — I|)m+_ﬂ+| (rz —_ I|)m+_§+1

Exercise 2.5.5. Use Wallis’s formula given in Theorem 2.3.1 and the expres-
sion (2.5.8) to evaluate Ny 4 as

oo m m+_f 2m—2j
N(j‘4(a;m) = / dx ( 1)"!+13‘T Z )( A AN. )

(x4 + 2ax? 4 1yn+! 24m—2+5/2

(P — N)Zm+1—2j + (_l)m+1+j(P + N)_J:r+l—2j
< ( Nm+1+j pmtl+]j )

(2.5.13)
where P = /a+ land N = \/a — L.
Project 2.5.1. Chapter 7 describe proofs that the function
m+3/2
P.(a) = (a + D"TYING (a;m) (2.5.14)

1s a polynomial in a, of degree m, with positive rational coefficients. The
goal of this project is to establish this result directly from Exercise 2.5.5.
Observe that the expression in this exercise contains the term (a — 1yn+liz
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in the denominator. In view of (2.5.14) the first step in the project is to show
that these denominators must cancel.
Obtain a closed form expression for the coefficients d;(m) in

m

P,(a) = Zd,(m)a‘. (2.5.15)

1=0

Exercise 2.5.6. Use the method of partial fractions described above to check
the evaluation

= . (2.5.16)

/w dx (2a+3) 7
Jo (x*+ 2ax? + ])2 o972 (a + 1)3;3

Conclude that Pi(a) = (2a + 3)/2. Repeat the procedure to check that the
next polynomial is Pa(a) = %(4{72 + 10a + 7).




3
A Simple Rational Function

3.1. Introduction
The method of partial fractions described in Chapter 2 shows that the com-
plexity of an integral increases with the number of poles of Q. In this chapter
we evaluate the definite integral of a rational function R that has a single pole
of multiplicity m + 1; that is, we consider the integral
* P(x)

—————dx, meN, (3.1.1)
Jo (q1x + qo)m+!

where P(x) is a polynomial of degree at most m — 1. The goal is to describe
the integral in (3.1.1) in terms of the parameters

By = {m; qy. g1} Y { coefficients of P}. (3.1.2)

We will show that

Jo (qix +qo)"tt gt gttt m—j \j) T

j=0

The next question in this evaluation is whether one accepts a finite sum of
binomial coefficients as an admissible closed form. In this case we show that
this sum can be reduced to a much simpler form.

The identity (3.1.3) is of the form

/:Z (3.1.4)

where a sum 1s equal to an integral. The expression (3.1.4) is a variation of a
colloquium title given by Doron Zeilberger at Tulane University on April 9,
1999. Many more similar expressions will appear throughout this book.

48
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3.2. Rational Functions with a Single Multiple Pole

The integral in (3.1.1) is a linear combination of

o0 l‘” dx
I(m,n)= / B (3.2.1)
o (gix + go)ym !

for0 < n < m — 1, so it suffices to give a closed form of these.
The next exercise establishes a link between /(m, n) and a finite sum.

Exercise 3.2.1. Define

S(m,n) = i: ﬂ (n) n < m. (3.2.2)
—o M—J\J
Prove that
I(m,n) = ql_"_'qu_"'Jr"S(m. n). (3.2.3)
Hint. Use the change of variable # = g;x + ¢ and expand the integrand by

the binomial theorem.

Section 3.4 presents an evaluation of /(m, n) based on a recursion. The
mnitial data for this recursion is established in the next exercise.

Exercise 3.2.2. Use the result of Exercise 3.2.1 to obtain the value

I(m, 0) = (3.2.4)

maqiq

We have obtained the value of I(m, n) in terms of a finite sum. This is an
explicit formula that can be used to evaluate /(m, n) in specific cases. Note
that the sum S(m, n) becomes undefined if n = m, which is a reflection of the
condition n < m for convergence of the integral.

3.3. An Empirical Derivation
The goal of this section is to use the empirical method described in Chapter
1 to guess the value of the sum

n =i
S(m,n)zzi(",)_ n<m (3.3.1)

moom—J\J

introduced in Section 3.2. An alternative way to obtain a simple formula for
§(m, n) exists is discussed in the Appendix.




50 A Simple Rational Function

The first step is to use Mathematica to produce a large number of evalua-
tions of the sum S(m, n) via the command

Slm_,n_] := Sum[ (-1)"{n-j}*Binomial([n,j]/
(m_j)f{jto!n} ]-

The first few evaluations

|
53,2)= -
(3,2) 3
85,2 :
(5,2) = 30
1
S(10,5) = —
( ) 1260
suggest that S(m, n) is the reciprocal of a positive integer. The example
1
S(100, 50) = (3.3.2)

5044567227278209666740624862800

should convince the reader of the validity of this statement.
The next step is to study the factorization of the numbers

Sim,n) = (3.3.3)

S(m, n)

conjectured to be integers.

Exercise 3.3.1. Determine the factorization of y = §;(500, 300). Check that
v has 148 digits and its prime factorization contains all primes from 307 to
499. Moreover these primes appear to the first power.

The presence of consecutive primes suggests that 500! might be linked to
$1(500, 300). We therefore compute (500, 300)/500! in order to eliminate
these prime factors. The resulting rational number contains in the denomina-
tor all primes between 211 and 293. We therefore compute S,(500, 300) x
300!/500!. We continue this process and multiply by 200! to obtain

300! - 200!
5,(500, 300) x ———— = 200. (3.3.4)
500!
At this point one has the strong belief that this cancellation is not accidental.
We therefore compute

301! - 349!
8510650, 301) x ————— = 349, (3.3.5)
650!
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which leads to the conjecture

n!-(m—n)!

m! m
Siim,p)= ——— x(m—n)= ( ) x (m—n). (3.3.6)
n
This will be proved in the next section.

Exercise 3.3.2. Use the procedure described above to evaluate §; (1000, 500)
and check that (3.3.6) holds for these values.

Exercise 3.3.3. The four numbers

x; = 32118821490799144825027127893311699600
X2 = 72088910457126969496171998160544036880
x3 = 156715022732884716296026082957704428000
x4 = 330101856394799721559714515166228476000

are known to be consecutive terms of a sequence. Use the technique described
in this section to develop a reasonable conjecture for an analytic formula that
yields these values. (After finishing the problem, the reader should look back
at Section 1.4).

3.4. Scaling and a Recursion

The goal of this section is to provide a proof of the identity (3.3.6). The first
part of the proof consists in scaling the integral f(m, n), so as to describe the
role of the parameters g, ¢q;.

Exercise 3.4.1. Prove that

J(m,
I(m,n) = % (3.4.1)
1 qo
where
o I” dr
Jim,n) = (3.4.2)

o (4 Lymt”

Conclude that S(m, n) = J(m, n). Hint. Consider a change of variable of the
form x + Ax with an appropriate A.

The change of variable in the previous exercise is a natural one for this
problem. It allows us to factor both parameters from the integrand so that
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the dependence of I(m, n) upon gqo, ¢, is explicit and we are left with the
evaluation of a simpler integral.
The next exercise produces a closed-form formula for J(m, n).

Exercise 3.4.2. Integrate (3.4.2) by parts to produce the recurrence
J(m,n) = n Jim—1,n—1). (3.4.3)
m
Iterate this to obtain
nn—1--(n—j+1)

J(m,n) = mm — 1) (m—j+ 1) Jm—j,n—j).

Now use J(m, 0) = 1/m to obtain

-1
J(m,n) = M =™ (m —n) . (3.4.4)
m!(m —n) n

This completes the evaluation of the original integral. We summarize the
previous discussion in a theorem.

Theorem 3.4.1. Letm, n € Nandn < m. Then

-1
oo n d. 1
/ - - 1 SRS — " (m - H) . {345)
Jo (gix + qu)”‘+ a7 qn n

The evaluation of integrals is a subject full of unintended consequences.
The first one presented here is the evaluation of a finite sum involving binomial
coefficients.

Corollary 3.4.1. Let m, n € N, withn = m. Then

2527 ()= [() o]
Z ; L= (m—n) . (3.4.6)
iz m—j ] n

The question of how to evaluate the sum (3.4.6) directly is discussed the
Appendix. Observe that the sum is positive. The reader should try to give a
direct proof of this, that is, without evaluating the sum.

The next exercise describes a certain symmetry of J(m, n).
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Exercise 3.4.3. Prove that the integral J(m, n) satisfies the relation
Jm,n)=Jm,m —n—1). (3.4.7)
Hint. The change of variable x +— 1/x does it.

In terms of the sum S(m, n) (3.4.7) states

n

. : m—n—1 _qym—1—j _ .
Z( y (n) S L(’" " ‘)_ (3.4.8)
m-—j

m— j
=0 J =0 J J

The fact that two finite sums are equal

i: ap = i: by (3.4.9)

k=0 k=0

sometimes indicates that the sets of numbers {a;} and {b;} are identical. For
instance, for any m, n € M, 0 < m < n, we have

;(z):g{(n;1)+(:::)} (3.4.10)

in view of a basic identity for binomial coefficients. The sums in (3.4.8) are
not of this type: the individual terms do not agree, only their sums do. In fact,
it is clear that the limits of the sums may not agree.

3.5. A Symbolic Evaluation

In this section we describe the results of a blind evaluation of the sum S(m, n)
using Mathematica.

A direct symbolic evaluation of the sum S(m, n) can be achieved by the
Mathematica command

FullSimplify[Sum[ (-1)"(n-7j)*Binomial([n,j]/
(m_j)r {]!Dfrl}]] -

Mathematica yields the answer

(=D Al (—m) T'(n)
Jn) = 3.5.
S(m, n) Fd—m+n) \ (3.5.1)

where ['(x) is the gamma function defined in (1.3.6).
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A symbolic evaluation of the primitive of the integrand in /(m, n) yields

" dx il s - 2+ qi1x
= n, m, n, ——1.,
. (le +qﬂ)m+1 '?(r}rr+l(?I + 1)3 1 o
(3.5.2)
and
1 'im—n)I’ 1
I(m,n) = (m —m)[n + 1) (3.5.3)

q;i—!-lq(};r—n r(”.! + 1)

for the definite integral.
The hypergeometric function appearing in (3.5.2) is defined by the series

k=0

(3.54)

where (a); is the ascending factorial symbol. This is a special case of the
function
o

) 1 (@i)x (@ ---(;ca';,);().c_jr
»Fy [{m, as, sapl. (b1, by, ,bq},x] = g Box (b -~ (b .

(3.5.5)

The reader 1s referred to Andrews et al. (1999) for more information about
this function. Most of the functions that appear in this book can be expressed
as special cases of this hypergeometric series. See Exercises 5.2.6 and 6.2.8
for details.

Exercise 3.5.1. The goal of this exercise is to provide an alternative way to
evaluate the integral (3.5.2).
a) Prove that
x"dx m—n  —n—1 t"dt
J gt TR ey

b) Let u =t + 1 to obtain a closed form for the integral.

(3.5.6)

Extra 3.5.1. The formula for the sum S(m, n) obtained from (3.5.3) by using
(3.2.3) 1s now compared to the one in (3.5.1) to produce the identity
(=D)"'al(=m)T'(n)  T(m—n)T(n+1)
r(l—m-+n) C(m + 1)
which will be established in Chapter 10, Exercise 10.1.6. Similarly (3.4.8)
becomes

(3.5.7)

(=Yt D(m — n) _ Tn+1)
C'(—=n) T (L —=m+n)

(3.5.8)
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The point to be made here is that different evaluations of the same object
sometimes lead to interesting identities.

3.6. A Search in Gradshteyn and Ryzhik

In view of the existence of very complete tables of integrals, throughout the
text we encourage the reader to search for a given integral in these tables. For
instance, in an attempt to find /(m, n), we look at the index of Gradshteyn
and Ryzhik (1994) [G & R] and find under Sections 2.19-2.23 the title:
Combinations of powers of x and powers of binomials of the form (« + Bx).
In this section, we find® 3.194.4

o0 =1 -
o (14 Bxyrt! B m sin(u )

forg e R™ and 0 < g < m + 1. The formula in [G & R] refers to the Bate-
man Manuscript Project (Bateman, 1953). This is large table of formulas of
special functions compiled by a group of mathematicians known as the Staff
of the Bateman Manuscript Project. The formula (3.6.1) appears in Volume
I, chapter 5 (Mellin transforms), section 5.2 (Algebraic functions and pow-
ers with arbitrary index), formula 6. The Bateman compendium contains no
proofs and the reader is referred to Doetsch (1950) and Titchmarsh (1948)
for details on the Mellin transform.

Observe that the denominator of (3.6.1) vanishes when p becomes an
integer. Therefore, the evaluation of J(m, n) requires the limit of (3.6.1) as
p — n+ 1 € N. This can now be computed directly. Indeed, we have

(=1 I =D)"r(p =D =2)---(nx—m)
B -
and now isolate from the numerator the factor that vanishes in the limit to get

sin QL Bim! sin( )
A T 1 (—1y"m . mw—n-—1
-1 m — _
Y ﬁ( m )sinm o 110 D> S

(_ l)iﬂ

m

m

< ] =i

j=n+2
Passing to the limit as u — n + 1 yields (3.4.5). The required limit

] nw—n-— 1 (_l)}!+]
lim - =
pu—n+l sIm(r) b

(3.6.2)

! We have changed 1 to m to be consistent with our notation.




56 A Simple Rational Function

is based on elementary properties of trigonometric functions. These are de-
scribed in Chapter 6.

3.7. Some Consequences of the Evaluation

In this section we discuss the evaluation of some series that follow from the
integral evaluated in Section 3.4. This evaluation can be written as

—1

o0 3 n d . 1
/ x| (Tt G7.1)
Jo (qix + gyttt gl g n
forr, n € N. In the special case gy = ¢ = 1 we have
—1
oo -n d-
/ XA (e (3.7.2)
Jo (.Y + 1)J+n+1 n

The result (3.7.2) is next employed to obtain the sum of a series involving
binomial coefficients. The technique illustrated here will be used throughout
the book: once we succeed in evaluating an integral that contains parameters,
summing over a certain range sometimes yields new results. The question of
convergence of the series require to understand the asymptotic behavior of
n!. This will be discussed in Chapter 5.

Exercise 3.7.1. Prove that

=1 1
> = (3.7.3)

Hint. Sum (3.7.2) from r = 1 to r = oc¢ and recognize the resulting integral
as f(n,n — 1). Check the result with Mathematica.

Some interesting series can be produced from (3.7.2) by choosing r as an
appropriate function of n before summing. The next exercise illustrates this

point.

Exercise 3.7.2. Prove that

> 1 T
E — = —— 394
n (") 33 ( )

n=1 n
Hint. Letr = nin(3.7.2) and then sum overn € N. The resulting integral can
be evaluated directly. A slick proof follows from the normalization described
in Exercise 2.1.4. A different proof appears in Exercise 6.6.1.
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Exercise 3.7.3. Prove that forn € N,

l)r+1 o0 X" dx
Z (" [0 (x+ D+ +2) (3-72)

r=1

Conclude that

=) " dx n—1 _ l)n j—1
=2"In2 - @ -2/ 396
fn (x+ D (x +2) Z() n—j - BT0

Hint. Multiply (3.7.2) by (—1)" and then sum over r € N. The change of
variable x + x/(x + 1) is useful in the resulting integral.

Project 3.7.1. This project generalizes the integral in (3.7.6):
a) For y < 0 define

oo “,'.FT dx
n(y) = 3.79
S /n (x + D+ x —y) ( )
and

Pa() =n! {(y + ' f,(0) + " In(=y)} . (3.7.8)

Prove that f, satisfies

1

F10) = =" )+ 1 £O) (3.19)

and use it to check that p, (y) satisfies the recurrence

Par1(y) = n2y + Dp,(y) — y(y + DpL(y) +n!y"(y + 1), (3.7.10)

with po(y) = 0. Conclude that p, is a polynomial of degree n.
b) Confirm the values

pi(y) =y+1,
p2(y) =2y* +3y + 1,
pa(y) = 6y° + 11y" + Ty + 2.
¢) Derive a recurrence for the coefficients of p,(v) and conclude that they are

positive integers.
d) Can you find a closed-form expressions for the coefficients?
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3.8. A Complicated Integral

In this section we illustrate the method of partial fractions to evaluate a definite
integral.
The identity (3.7.2) is

/'x: x"dx _
0 (x+ l)r+n+| -

and for r = 2n yields

/“‘ x"dx _|» 3n -
0 (x+l)3n+1 - n n :

Summing from n = 1 to infinity yields

o0 2x dx
= / - . (3.8.1)
Jo x4+ DO +3x24+2x+ 1)

20 1

>

n=1 1

The method of partial fractions requires the roots {x;, x2, x3} of the cubic
equation x* 4+ 3x2 4+ 2x + 1 = 0. These are given in Exercise 2.4.8. Now let

a := —x; and introduce the quadratic factor
xX4bx+c=(x—x)x—x3) (3.8.2)
so that
A2+ 1= (x + .{3)(.\:3 + bx 4+ ¢) (3.8.3)
with » = —(x2 + x3) and ¢ = x3x3. The reader will observe that the co-

efficients b and ¢ are real even though the roots x» and x; are not.
The integrand in (3.8.1) can be expanded in partial fractions in the
form

2x a b, ¢ +dx
x4+ D3 +3x2+2x+ 1) =X + 1 +x+a + x24bx+c’
An elementary calculation, similar as the one in (2.1.3), yields the values
2
T U-a1-b+o)
2a
- (a—Da?—ab+c)

(3.8.4)

ay

})1

To evaluate the remaining two constants, it suffices to give x two specific
values in (3.8.4), say x =0 and x = 1, to produce a linear system that
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yields
2e(l +a — b)
] =
T (U =b+o)a2—ab+o)
4, 2(a —c)

T U-btoa—abto)

We now write (3.8.4) in the form

2x a by dl 2x+b
5 = + + —
x+DE3+3x24+2x+1D) x4+1 x4a 2 x4+ bx+e
1 Qe — bdy)
2x+bx+c

and integrate term by term to produce

/m 2x dx e ey Q6= b
= — na— —Inc E—
0 : 2 Jac - b2

32420 +1
< (3w (=)
— — tan e — .
2 4c —b?

This answer illustrates the fact that an explicit answer to the inte-
gral of a rational function cannot always be expressed in simple alge-
braic form. The real root x;, obtained by Cardano’s formula described in
Section 2.4, is

[ 2 I [9-69
xx=—l—-y—--—=\ ——
1 39-69) Vo 2

3.8.1. Warning
A symbolic evaluation of the integral in (3.8.1) yields the answer oco. This is
clearly incorrect. Mathematica performs a partial fraction decomposition of
the integrand to obtain
2x 2 2(x +1)°
x4+ DE3+3x24+2x+1) 14x 3 43x2+2x2+1

and the divergence of the integrals of the parts leads to the incorrect evaluation.

Note 3.8.1. A symbolic evaluation of

fk) =
2 )

(3.8.5)

=
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using Mathematica yields the answer

f3) = —m [t 98], (3.8.6)
f(4)——41~3 [ERPEREIRER I N= (38.7)
and
1) = —m (L8 L L4, (3.8.8)
The pattern is now clear. The simplicity of f(2) is due to the fact that
f@ = 1R [(1L1), 3 4] (38.9)

can be expressed in terms of simpler numbers, namely 7 /3 V3.

The question of special values of the hypergeometric function can be ex-
pressed in simple terms is a difficult one. We will touch upon this in the
simpler case of the trigonometric functions in Extra 6.6.1.




4

A Review of Power Series

4.1. Introduction
The class of polynomial functions

P(x) = po+ pix + pax*+--- 4 ppx" (4.1.1)

is the most elementary class considered in calculus. The goal of this chapter
is to give a brief overview of power series. These are representations of
a function, similar to (4.1.1), in which the degree n is allowed to become
infinite.

Definition 4.1.1. A power series centered at x = @ is a sum of the form
%]

f) =) ak—a)f (4.12)

k=0

where the coefficients ¢, € E.

Most of the functions considered in this book have a power series repre-
sentation. This includes the advanced functions that appear from blind Math-
ematica evaluations. For example, the hypergeometric function is defined in
(3.5.4) by its power series.

Given a value of x, the sum in (4.1.2) becomes a sum of real numbers
and as such it may or may not converge. A simple argument shows that
the set of points x for which the series converges is an interval of the form
(a — R, a + R),called the interval of convergence of the series. The number
R is the radius of convergence. The expression (4.1.2) defines a function for
xe€(a—R.,a+ R).

Example 4.1.1. The geometric series

Z_r" = (4.1.3)
1l —x

has radius of convergence 1.
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Exercise 4.1.1. Establish (4.1.3) and check that

l a0
= E (—1 )kXQk. (4.1.4)
[+x* =

Hint. Use (1.6.19) and then pass to the limit.

Note 4.1.1. Observe that the function f(x) = 1/(1 — x) is well defined on R
with the single exception of x = I, but its power series representation centered
at x = O converges only on (—1, 1). The incorrect use of f outside its radius
of convergence is at the center of false identities like

14+244+8+164--=—1. 4.15)

The presence of a discontinuity at x = 1 is reflected in the interval of conver-
gence of the series representation for f. This phenomena is sometimes harder
to visualize: the function in the left-hand side of (4.1.4) is well defined for
all x € R but the series converges only for x € (—1, 1). In this case the sin-
gularity at x = i € C is what prevents the series from converging in a larger
region.

Note 4.1.2. The radius of convergence of a series is given by

. —1
R= (lim M) (4.1.6)

n—=00 |c,|
with the conventions 1/0 = oo and 1/0c = 0. An alternative expression is
given by
-1
R = (lim Ec,;|””) . 4.1.7)
n—o0
These formulas are obtained by applying to (4.1.2) the ratio and root test

respectively.

Exercise 4.1.2. Compute the radius of convergence of the hypergeometric
series as a function of the parameters p and g.

Itis asurprising fact that functions defined by power series with coefficients

given by simple formulas are sometimes not elementary. For instance, the
dilogarithm function defined by

o0k
DiLog(x) = 3 12 4.18)
.kzl
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was considered by Euler and after a period of silence it has reappeared in
many aspects of modern mathematics. The reader will find in Lewin (1981)
a fascinating collection of results including the evaluation

{\3'5—1};21 1 —x 51 72
f I](_)c) dx = In’ (\/_ ----------- ) T (4.1.9)
0

that is connected to the dilogarithm. The proceedings (Lewin, 1991) present
much advanced material on this function. On the other hand, the tangent
function that is one of the elementary functions of calculus has the power
series
oo A A
22 (2% — 1) o
tan x = S B xR 4.1.10
; o 1Bl (4.1.10)
where B,; are the Bernoulli numbers. These numbers will be considered
in Chapter 5 and the Taylor series for the tangent is established in Exercise
6.9.5.

Note 4.1.3. In this text we will manipulate power series as if they were finite
sums. The justification of differentiation and integration rules are given in the
next two theorems. The details of the proofs can be found in Hijab (1997),
pages 89 and 107 respectively.

Theorem 4.1.1. Let f(x) = .- a,x" be a power series with radius of
convergence R > 0. Then
0

Znanx”_] =a —1—203_\’2 —1—3&312 + .- (4.1.11)

n=I

has radius of convergence R, f is differentiable on(—R, R), and f'(x) equals
(4.1.11) for all x in (—R, R).

Similarly R is the radius of convergence of apx + ayx2/2 + a»x*/3 + - -
and

oo

" ty n+1
f(tydt = —_— on(—R, R).
0 kzz(:; n—+ 1

The formula (4.1.11) can be written as

x o Y anx" =" na,x” (4.1.12)
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so, in the context of power series, the operator # = x % is more natural than
differentiation.
The next exercise introduces a new family of polynomials studied origi-

nally by Euler.

Exercise 4.1.3. Define

Ay(x) = (1 — )ttt (x i) ! ) (4.1.13)
dx 1l —x

a) Prove that A, (x)1s a polynomial in x. These are the Eulerian polynomials.
b) Check that

Aplx) =1

A(x) =x,

Ax(x) = x 427,

Ay(x)=x + 4x? 4+ X3,
Ayx)=x+ 11x2 4 11x® 4 x*.

¢) Establish the recurrence
Ap(X) = nx A, (x)+x(1 —x)A,_(x) (4.1.14)

and derive from it a recurrence for the coefficients of A, (x):

Ap(x) = Z A-ir.kxk- (4.1.15)

k=0

Exercise 4.1.4. Evaluate the sums

S(n) = Z k' x* (4.1.16)
k=0
and
Sy(n) = Z{k nxt. 4.1.17)
k=0

Use the evaluations to establish the identity

n

> e, H1—x)"TAj(x) =n!x, (4.1.18)
j=0
where A ;(x) are the Eulerian polynomials defined in Exercise 4.1.3 and c(n, k)
appear in Exercise 1.5.3.
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4.2. Taylor Series
The behavior of a function f(x) near a point x = a can be determined
by expanding f in powers of x — a. For example, the binomial theorem
yields

" =[x —a)+al"
= Z (H) a"(x - a).
J

The coefficients in this expansion are

n "_}._l d j_”
il T \ax) Tl

Definition 4.2.1. The Taylor series of the function f(x) centered at x = a
is the sum

> ()
L!(a){x —a). (4.2.1)

j=0

A function is called analytic if, for x inside the interval of convergence of
the Taylor series, this series agrees with the function f.

Exercise4.2.1. Use the Taylor series of f(x) = x"*!and (1.6.19)to establish

the identity
n - k l - k
S (TR (TR < 4.2.2)
j+k+1 k

=0

for all n, k € N. Can you provide a direct proof?

Exercise 4.2.2. In this exercise we consider the extension of the binomial
theorem

d+x' =3 (z)x* (4.2.3)

k=0

to noninteger exponents.
Define the extended binomial coefficients by

- + ] m
(a) = {am !)‘ a e R, m e N, (424)
m:

m

where (@ — m + 1),, is the ascending factorial defined in Section 1.5.
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a) Check that fora € N and 0 < m < a this definition yields the usual bino-
mial coefficients.

b) Compute the Taylor series of the function f(x) = (1 + x)* and establish
the binomial theorem

1+ =Y (i)x". (4.2.5)

Ignore the issues of convergence.
¢) Compute (_kl) and confirm that (4.1.3) and (4.2.5) are consistent.

Many special cases of the binomial theorem produce closed-form
expressions for some classes of binomial coefficients. The next exercise il-
lustrates the point.

Exercise 4.2.3. Let C, := (:r‘) for k € N be the central binomial coefficient
considered in Exercise 1.4.5.

a) Use the binomial theorem established in Exercise 4.2.2 to prove that the
generating function of the central binomial coefficients Cy, is given by

i il P S (4.2.6)
n=0 n ‘ B m -

b) Use the ratio test (4.1.6) to check that the series converges for |x| < 7.

This is consistent with the singularity of the radical in (4.2.6).
¢) Establish an asymptotic formula for Cy using (4.1.7).

In the next exercise we establish a formula due to Cauchy to multiply
power series.

Exercise 4.2.4. Prove Cauchy’s formula:

(i a”x") (Zx: b,,x") = i cpx”, 427

n=() n=0 n=l)

where

Cp = Zﬂjbn—j- (4.2.8)

=0
The reader will observe that the expression for ¢, can be written as a sum is
n

over all possible solutions of the equation i 4+ j = n, where i, j € N:

=Y abj. (4.2.9)

i+ j=n
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The next exercise will be used in Chapter 5 to check that two different
approaches to the exponential function are consistent.

Exercise 4.2.5. Prove that

(Z%)x Z{_]V =1. (4.2.10)

il
k=0 j=0 J:

The reader will recognize this identity as e x 3; =1L

Exercise 4.2.6. Square the identity (4.2.6) to obtain the evaluation

3 (21) (2” - 2J) — o (4.2.11)
=0 \/ =l

The formula of Cauchy shows how to multiply two power series. The next
exercise outlines the basic properties of division of power series. The word
formal proof simply means that convergence issues are to be ignored.

Exercise 4.2.7. Give a formal proof that the reciprocal of the power series

f)=>"ax" (4.2.12)

n=0

exists 1f and only if @y # 0. Hint. Consider the identity

o0 oc
Zanx” X Zh,,x” =1 (4.2.13)

n=>0 n=0

and show that one can solve for the unknown b,, provided ay # 0. Compute
b, for 0 < n < 4 in terms of the coefficients of f.

4.3. Taylor Series of Rational Functions
In this section we describe properties of the Taylor series of a rational function
P(x)
Q(x)

R(x) =

where

P(x) = pux" + pacix" ™ 4+ prx + po
Q{j’) = qum + qrn—]xm_] +---+ q1x + 0. (431)
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We canreduce to the case n < m by dividing P by Q. The algorithm is similar
to the division algorithm of elementary school: it produces a quotient quot(x)
and a remainder rem(x) with degree smaller than that of Q such that

P(x) _ ) rem(x) 437
—Q(x) = quot(x) + 00) (4.3.2)
For example,
4 a2
X 2ax 1 (433)

x4 2ax? + 1 x4 2ax? + 1

Theorem 4.3.1. The division algorithm for polynomials. Let P and Q as
above, with p;, q; € R and assume n = m. Then there exists unique polyno-
mials quot(x) and rem(x), such that

P(x) = quot(x)Q(x) + rem(x), (4.3.4)
and either rem(x) = 0 or
deg(rem) < deg(Q) = m.
Proof. We proceed by induction on the degree of P to show the existence of
the quotient and remainder. Observe that

Pi(x) = P(x) — &x"_”’Q(x) (4.3.5)
QJJ‘!
1s a polynomial of degree strictly less than P. This reduction of degree can
be iterated as long as the new polynomials have degree larger than deg(Q),
completing the induction.
In order to prove uniqueness assume that

quot(x) Q(x) + rem(x) = quot;(x)Q(x) + rem;(x) (4.3.6)
Then
(quot(x) — quot;(x)) @(x) = rem;(x) — rem(x). (4.3.7)

The right-hand side is a multiple of Q of degree smaller than deg(Q), so it
must vanish. This shows that rem(x) = rem;(x) and (4.3.7) yields quot(x) =
quot;(x). O

Extra 4.3.1. The division algorithm can be used to find the greatest com-
mon divisor of the polynomials P and Q. After (4.3.4) has been obtained
one replaces the pair (P, @) by (Q, rem). In this process the degree of the
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second component decreases so eventually becomes 0. The last nonzero re-
mainder is the greatest common divisor. The example below will reappear in
Section 7.6.

P(x)=x*+2ax>+1 and Ox)=P'(x)= 4x> 4 dax. (4.3.8)

Dividing P by Q yields

X4 2ax?+1 = % (4)«"‘ + 4ax) + (ax? + 1).

In the next step we divide 4x* + 4ax by ax? + 1 to obtain

. 4
4x* + dax = = (ax>+1) + 4(a — 1/a)x.
a

In the final step we obtain

Y 4@—1/ayx +1.

2pl= 2
= LoD

The reader can check that the next step will leave a zero remainder. Therefore
the greatest common divisor of P and Q is 1.

Exercise 4.3.1. Use the calculations described above to find polynomials
a, B such that

a(x)P(x)+ B(xX)P'(x) = 1. (4.3.9)
Hint. The last step yields a polynomial y (x) such that
1= (ax>+ 1)+ y(x)-4(a — 1/a)x.

Solve for 4(a — 1/a)x in the second step and express 1 as a combination of
4x? + dax and ax” + 1. Repeat one more time to finish the calculation.

The subject of Taylor coefficients of a rational function or, equivalently, the
sequences with rational generating function is very beautiful. For instance,
a remarkable result of Lech, Mahler and Skolem states that the coefficients
of the Taylor series of a rational function that vanish must be contained in a
finite number of arithmetic progressions; see Myerson and van der Poorten
(1995) and van der Poorten (1984) for details. The reader can find more infor-
mation about this topic in Stanley (1999) Chapter 4 and in Everest etal. (2003).

The next theorem states that the sequence of coefficients of a rational
function satisfies a linear recurrence. Before presenting the proof we illustrate
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the result with the example

14+x
Let
~
R(x)=> rax* 43.11)
k=0

be the Taylor series of R. Then

oo o0 o0
l+x= Z rpxk =2 Z rxtt — Z rpxt?
k=0 k=0

k=0

)
=rg+ (r; — 2rg)x + Z (Fpe2 — 2}}_,_1 - rki)tz.
k=0

Matching equal powers we obtain ry = 1, r; =3 and fork = 2,
P = 2}‘;‘-_| + Fr_a.
This is a linear recursion, of order 2 (the degree of the denominator

of R).

Theorem 4.3.2. Let R(x) = P(x)/Q(x) be a rational function, with P and
O given in (4.3.1). Then the coefficients ry of the Tavlor series of R satisfy
the linear recurrence

qoTk+m + 1 k+m—1 + 42T k+m—-2 +- 4+ ¥l = 0. (43 12)

Proof. Let
-
R(x) = Zrkxk (4.3.13)
k=0

be the Taylor expansion centered at x = (. The identity R(x)Q(x) = P(x)
now yields

irjxj (iqjx’) = i:pfo. (4.3.14)
i=0

=0 1=0

Define ¢; = 0 for i = m, so that (4.3.14) yields

o0 k n
> (Z rk—v‘?lr) A= .
I=0

k=0 \v=0
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The series on the left is now split at k = m to produce

m k =] m n
>, (Z n-_pqp) ¥+ Yy (Z -"k—v'?u) =3t
I=0

k=0 v=0 k=m+1 p=0

For0 <i < n we obtain

> giovr = pi, (4.3.15)
1?:0

forn+1<i<m,
> giur =0, (43.16)
v=0

and fori = m,
> gioor =0. 43.17)

v=i—m

This is a recurrence of the type stated. The leading order term is gor; with
go = Q(0) # 0, so the recurrence always be solved for r;. O

Example 4.3.1. Consider the function

R(x) = (4.3.18)

1 —x —x2

Then n = 0 and m = 2, and the only nonzero coefficients are pp = 1, gqp =
1. g1 = —1 and g2 = —1. Then (4.3.15) gives ry = 1, (4.3.16) then gives
ri =1, ro = 2. Finally, (4.3.17) produces

Fp=ri_y+r_y fori>2. (4.3.19)
We conclude that r; is the Fibonacci number F;4; and we recognize R(x) as
the generating function of this sequence.
Extra 4.3.2. It is possible to get a closed form solution for the recurrence
Fo=F_i+ F_ (4.3.20)

satisfied by the Fibonacci sequence with initial conditions F; = F, = 1. The
method consists in looking for a solution of (4.3.20) of the form F; = ol
Replacing in (4.3.20) yields the values oy = (1 + «/5)/2 The theory of




72 A Review of Power Series

difference equations now states that
F; = Ad’, + Ba' 4.3.21)

for some constants A and B. See Rosen (2003) for details. The initial condi-
tions determine these constants. The final result is

N T AN Y
b () () e

Extra 4.3.3. The result of Theorem 4.3.2 actually is equivalent to the fact
that the sequence {r;} has a rational generating function. See Stanley (1999)
for details.

Exercise 4.3.2. Determine the recurrence satisfied by the coefficients of

Can you find a closed form for the coefficients of the Taylor expansion of
RYHint. Let R =rp + rix +rx2 + - - satisfyro =0, i =1, r, = —4
and r;_» + 3r;,_1 +r; = 0fori = 3. Use the method described in Extra 4.3.2
to obtain

2i—1 2i—1
Fp = {_I)H_I (#) +{_1)i+1 (%) ' i 2 1 (4323)

Exercise 4.3.3. Repeat the previous problem with the function

1

RO = e

(4.3.24)
Hint. Use the factorization x* — 1 = (x — 1)(x — p)(x — p?), where p =
(=141 \/?; )/2. To simplify the expressions for the Taylor coefficients of R,
keep in mind that 1 + p + p* = 0.




5

The Exponential and Logarithm Functions

5.1. Introduction

The rule of integration

X a+l 1
/ P T — (5.1.1)
1 n+1

has been discussed in Chapter 1 forn € (), n # —1. The evaluation of (5.1.1)
is elementary since the power function f(x) = x" admits a primitive that is
also a power. In order to complete the integration of powers, we need to discuss

the case n = —1. The primitive of f(x) = 1/x is called the logarithm, that
1s,
X d!
Inx := / + (5.1.2)
J1

The logarithm function is often introduced in an informal and unmotivated
manner in which the student is simply made aware of its properties as a form of
definition. In this chapter we develop many of the same elementary properties
of Inx from its integral representation. This approach presents a pedagogical
problem: the student has the feeling that one is proving properties that are
already known.

We also introduce one of the basic constants of analysis, the Euler num-
ber! e, and discuss some of its arithmetical properties.

The technique employed in (5.1.2) of defining a function as the primitive
of a simpler one will be repeated throughout this text. This will allow us
to increase the list of known functions. The reader should be aware of the
possibility that the new functions defined might be already known. Theorem
5.2.3 states that there is no rational function R(x) that satisfies R'(x) = 1 /x.
The Mathematica notation for the logarithmis Log[x].

! This is not be confused with the Euler constant defined in Chapter 9.
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5.2. The Logarithm

The logarithm function defined by (5.1.2) is the unique primitive of f(x) =
1/x that satisfies In 1 = 0:
—Inx = l forx e R,.
X X
This definition completes the family given in (5.1.1). It remains to establish
some properties of In x directly from (5.1.2). This discussion is given in some
detail because it will serve as a model for more complicated functions. We
have tried to provide proofs that employ techniques from integration.
The first result describes functional properties of In x.

Theorem 5.2.1. The logarithm function satisfies
a)In(xy) =Inx +Iny, forx, yeR,.
b)In(x‘)=alnx, forx,aeR..

Proof. To prove a) observe that

/.l’_\,- d.“ /_‘- df /_‘..‘. df
lll.Y\‘ — — — _'_
i J1 t J1oof x t

Then a) follows by the change of variable ¢ + xt in the second integral.
Property b) appears from the change of variable ¢ + t* in the integral that

defines In(x“). O

Note 5.2.1. Implicit in this argument is the validity of the formula
d
dx

for any a € R. This is justified in Section 5.6.

x = ax! (3.2.1)

Exercise 5.2.1. Conclude from the form of the integrand in (5.1.2) thatIn x >
Oforx > landlnx < 0for0 < x < L.

Exercise 5.2.2. Prove that In (:) =Inx —Iny.
Exercise 5.2.3. Verify that Inx is increasing and concave down.

Exercise 5.2.4. Prove thatInx < x — 1 forx = 1. Hint. Determine a bound

for the integrand. Derive from this Napier’s inequality
1 Inb-1 1
e R (52.2)
b b—a a

for b = a. Hint. Lett = b/a.




5.2. The Logarithm 75

Exercise 5.2.5. Prove the arithmetic—logarithmic—geometric mean inequality

a-+b b—a
2 - Inb —Ina
for b = a. Hint. Let t = b/a again. Compare derivatives of each side with
respect to f.

> v ab (5.2.3)

We now establish the Taylor series of In(1 + x).

Theorem 5.2.2. The Taylor series expansion of In(1 + x) at x = 0 is given
by

0

In(l +x) =Y =, (5.2.4)

n=1

which is valid for |x| < 1.
Proof. This follows by expanding the integrand in
X df
In(l +x) = / ------------
in a geometric series. O

Extra 5.2.1. The evaluation of the power series (5.2.4) at x = | gives

50

_qyn—1
1112:2( A (5.2.5)

n

n=I

This is justified by Abel’s limit theorem: Assume that we have

o0
flx)= Za,,x”, if —r<=x=<r

n=0

If the series converges at x = r, then the limit lim f(x) exists and we have

X—r—

oo
_lin}_ flx) = Za,,r”.

n=0

See Apostol (1957), page 421 for details.

Exercise 5.2.6. Check that the logarithm function can be expressed in terms
of the hypergeometric series (3.5.4) as

In(1 +x) =x -2 F [{1, 1}, {2}; —x]. (5.2.6)




76 The Exponential and Logarithm Functions

Exercise 5.2.7. This exercise uses the expansion of In(1 + x) to produce the
expansion of other functions.

a) Check that
oo tl’i
In(l —x)=-% —. 527
n(l = x) Z:; - (527)
b) Given the expansion
(=5}
f) = ax", (5.2.8)

n=1
determine the expansion of f(x)/(1 — x). Hint. Use Cauchy’s formula to
multiply power series given in Exercise 4.2.4.
¢) Use part b) to establish

o0

—In(1 — x)
—_— H,x", 529
T Z:; x (5.29)
where
1 1
Hy:=1+ -+ -4 — (5.2.10)
2 n
are the harmonic numbers.
d) Integrate (5.2.9) to obtain
o
H
In¥(1 — x) = 22 R et (5.2.11)
—n+ 1

This appears in [G & R] 1.516.1.

nr

Project 5.2.1. Express the power series for In” (1 — x) in terms of the har-

monic numbers. For instance,

o ‘n+2 n H
(1 -x) =63 3 (5.2.12)

nzln+2k=1k+1'

This appears in [G & R] 1.516.2.

Exercise 5.2.8. Verify the Taylor series expansion

(5.2.13)

This appears in [G & R] 1.516.3.
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Exercise 5.2.9. Prove that the harmonic numbers H,,, n > 2 are not integers.
Hint from Graham et al. (1989). Let 2¢ be the largest power of 2 less or
equal than n. Consider the number 2*~'H, — 1. Hint for a second proof:
use induction and the inequality _

vo(H,) < Max{va(H,_). va(l/n)}, (5.2.14)

with equality unless va( H,_1) = va(1/n), to prove v2(H,) > 1. Separate into
two cases according to whether v2(H,,_;) = v»(1/n) or not.

Extra 5.2.2. An apparently simpler solution of Exercise 5.2.9 starts by writ-
ing

g 23ndl 3 ng 124 g 412 ()

n!
and let p be the largest prime less than or equal to n. Then p divides n!
and every term in the numerator is divisible by p, with the single exception
of 1-:2---(p—=1)-(p+1)---n, provided 2p > n. This is a fact of prime
numbers called Bertrand’s postulate. The reader will find the proof in Hardy
and Wright (1979), page 343 quite readable.

The harmonic number also appear in the remarkable inequality

> d < H, + exp(H,) In(H,) (5.2.15)

din
where the sum on the left is over all the divisors of n. Lagarias proved that this

bound is equivalent to the Riemann hypothesis, one of the most important

unsolved problems in mathematics. See Chapter 11 for more comments and
Lagarias (2002) for the details.

We now discuss some basic analytic properties of the logarithm.

Lemma 5.2.1. The function f(x) = Inx is increasing and satisfies

lim nx = ¢ (5.2.16)
X—=o0
Proof. The only part that needs to be proven is (5.2.16). The upper and lower
Riemann sums for 1/x yield

1
H,—1l< Inn < H, ——, (5.2.17)
n

where H,, 1s the harmonic number. Therefore the fact that Inx — occasx —
0o 1s equivalent to the divergence of the harmonic series. The standard proof
of this second fact is presented is the next exercise. O
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oo
Exercise 5.2.10. The harmonic series Y 1/n diverges. Hint. Prove that the

tails of partial sums =l
onl
Sii= 2 : (5.2.18)
J=27+1 J
satisfy S, = 1/2.
Exercise 5.2.11. Evaluate
2n

im 3
This appears in Goode (1956).

Exercise 5.2.12. Prove that

o0 o u)
Zi :22”%. (5.2.19)
=1 n=1

This appears in Klamkin (1951, 1952). Prove also the result of Klamkin
(19535):

o0 4

H, T

= 5.2.20
Z:: n3 72 ¢ )

Extra 5.2.3. Boas and Wrench (1971) examined the partial sums of the har-
monic series. For a given a € R they established a relation between

n, :———min{neN:l+.1;+~‘+i2a}

and the Euler constant y = llm l—|— + -+ ﬁ — Inn. This constant is
studied in Chapter 9.

Exercise 5.2.13. This exercise establishes the divergence of the harmonic
series given that In x — oo asx — o0o. The proof is due to D. Bradley (2000).
Hint. Observe that

n—1

> In(l 4 1/k) = Inn (5.2.21)

and now use Exercise 5.2.4.
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Note 5.2.2. The fact that Inx — 00 as x — oo was implicitly used in the
proof of Proposition 2.1.1.

The growth of In x at infinity is slower than any power of x. A clever proof
of this was presented by Greenstein (1965):

Lemma 5.2.2. Leta > 0. Then

Inx 2Iny/x 2x 2
0< —= < = —=,
x X x Jx
so that lim x ! Inx = 0. The result follows by replacing x by x*. O

X—00
We now follow Hamming (1970) to prove that In x is not arational function.
Theorem 5.2.3. The function In x is not rational.
Proof. Suppose Inx = N(x)/D(x), with N and D polynomials without a
common factor. Differentiate to produce
D*=x (DN'—D'N). (5.2.22)

sox divides D(x), say D(x) = x* Dy (x), with D;(0) # Oand k = 1. Replacing
in (5.2.22) we obtain

x*D} = xD|N' —kND; — xND,
and letting x = 0 shows that N(0) = 0, so x must also divide N. This is a

contradiction that completes the proof. O

Note 5.2.3. Observe that the previous proof is purely algebraic. The only
property of In x that is used is the fact that its derivative is 1/x.

Exercise 5.2.14. Give a direct analytic proof of Theorem 5.2.3 by using
Lemma 5.2.2.

Extra 5.2.4. An algebraic function y = f(x) is one that satisfies a polyno-
mial equation, where the coefficients are polynomials in x. Thus y is algebraic
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if there exist polynomials {a;(x) : 0 = j < n}, with a,(x) # 0, such that

Z ag(x)y* = 0. (5.2.23)
k=0

For example every rational function is algebraic and so is the double square
root function

y=\Va++1+x (5.2.24)

since it satisfies y* — 2ay> — x +a”> — 1 = 0. This function will make a
mysterious appearance in Section 7.7.

This is a generalization of the notion of algebraic number: these are
numbers x that are solutions of a polynomial equation

n

Zakxk = 0. (5.2.25)
k=0

with integers ay. For example x = V3solvesx® — 1 =0andx = 5+ /5
solves x* — 10x2 420 = 0.

Not every algebraic number can be expressed in terms of radicals and
this issue is connected with the fundamental questions of algebra of the
19th century. It was one of the motivating forces to in the development of
the subject.

The set of algebraic numbers is a field, in the sense that if x, y are algebraic,
soisx +y, xyand I/x if x £ 0.

Exercise 5.2.15. This exercise outlines a proof by Hamming (1970) of the
fact that y = Inx is not an algebraic function.

Suppose y = Inx satisfies (5.2.23).
a) Prove that there is an equation of minimal degree, and this is unique up to
scaling.
b) Differentiate the minimal equation

In" x + an-1(x) " x4+ ao(x) =0 (5.2.26)
ay (x) ay (-‘:)

to produce

n—1 d a"_l(x) n—1
nln"" x +x— In""x4---=0. (5.2.27)
dx \ a,(x)

If all the coefficients of In’ x do not vanish identically, we get an equation for
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In x of degree lower than n. Otherwise we obtain

nda,1x) —0

x  dx a,(x)

Integrate to conclude that In x is a rational function. This is a contradiction.

5.3. Some Logarithmic Integrals

This section describes some indefinite integrals involving the logarithm func-
tions. This is an introduction to the material described in Chapter 12. The
implicit constant of integration is omitted throughout.

Exercise 5.3.1. Consider the class of functions
n m

£= {f(.r) = szzi_jx’- In’ x : a ;R n,me N}. (5.3.1)

i=0 j=0

For example £ contains the function 3x Inx + x’ In” x. The goal of the exer-
cise 1s to establish that £ is closed under primitives, that is, any function in
£ admits a primitive in £.

a) Prove that

m,n) = /x" In" x dx (5.3.2)
satisfies the recurrence
1 m
I(im,n) = ——x" ' In" x — Iim —1,n). 533
(m,n) n—l—ll n™ x n—l—l(m n) ( )
b) Establish the formula
xi]’+1 In x Xi1'+|
M Inx dx = - 534
/x nx dx — TR ( )
for n € N. The special case
/lnx dx =xIlnx — x (5.3.5)
appears in [G & R]: 2.711.
¢) Prove the identity
n _ " ¢ n! k
‘ In" xdx =(=1)"x AZ{:’ E(— Inx)". (5.3.6)

This is also part of [G & R] 2.711.
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d) Derive [G & R] 2.722

(= D¥m 4+ 1 — k) In"Fx

I =
(m, n) m+ 1 & (n + 1k+!

¢) Conclude that £ is closed under primitives.

Exercise 5.3.2. Introduce the polynomial

n k
X
Ex(x, n) := Z i (5.3.7)
k=0
$0 (5.3.6) can be written as
[ln" xdx =(—1)"nlx Ex(—Inx, n). (5.3.8)

Use a symbolic language to check that
“r 1,
Ex(x.n)= St L x) (53.9)
Cn+1)

where I'(a, x) is the incomplete gamma function defined in (1.3.7).

Project 5.3.1. This project deals with the iterated integral of the function
In x. We thank T. Amdeberhan for this example.
a) Define f,(x) inductively by fy(x) = Inx and

fu(x) = /f,,_|{x) dx, forn=1. (5.3.10)
Prove that there exist coefficients a,, and b,, such that
fa(x) = a,x"Inx — b,x". (5.3.11)

Describe the choices made on the constants of integration to obtain this form.
b) Find a recurrence for a, and conclude that a, = 1/n!.
¢) Check that b, satisfies

1
by = —(a, +by_1) . (5.3.12)
n
Prove that «,, := m!b,, satisfies a;,, = &1 + ﬁ and obtain
HH
b, = —. (5.3.13)
n!

Project 5.3.2. This project deals with the iterated integral of the function
In(1 + x).
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a) Check that
/ln{l +x)dx =(14+x) In(l +x)—x

and

(x 4+ 1)? x(3x +2)

f[{l-l—x) In(1 +x) —x] dx = In(1 +x) — 7

b) Define f,(x) inductively by fy(x) = In(1 + x) and

fulx) = / fao1(x)dx. (5.3.14)
Prove that there exist polynomials a, (x) and b, (x) such that
Ja(x) = a,(x) + b,(x) In(1 + x), (5.3.15)

where the implicit constant of integration is chosen so that a,(0) = 0.

¢) Prove that b,(x) = (1 + x)"/n!. Hint. Use (5.3.14) to derive a recurrence
for b,,.

d) Prove that a,(x) = —x ¢,(x), where ¢,(x) is a polynomial with positive
rational coefficients.

¢) Establish the recurrence

(14 x)"

m. (5.3.16)

ay (%) = ay(x) —

f) Write ¢,(x) = d,(x)/r,, where d,, is a polynomial with integer coefficients
and r, is the least common multiple of the denominators in ¢,(x). Check that

difx) =1

dr(x) = 3x 42

dy(x) = 11x* + 15x + 6

dy(x) = 25x° + 52x% + 42x + 12.
g) Define s, = r, /(1 r,_1). Provide convincing symbolic evidence that

1 if n is divisible by two disctinct primes

Sy =
p ifn = p* for some k € N.

Thus

5, = ™, (5.3.17)
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where A(n) is the classical von Mangoldt function
An) = {0 if n is divisible by two distinct primes
Inp ifn= p* for somek € N.
Conclude that
ra = n! x e MO (5.3.18)

where e is the well-known base of the natural logarithm. This constant is
discussed in the next section. The reader will find in Weisstein (1999), page
1135, more information about the von Mangoldt function.

h) The more general problem

fo(x) = In(a + x)
fu(x) = A.‘ Jao1(6)dt,
where a = 0, 1s described in Underwood (1924). Prove that
n! f(x) = (x +a)" [In(x +a) — H,] + Ina [x" —(x + a)"] (5.3.19)

+ i H, (:) a x"",

r=
where H,, are the harmonic numbers. Discuss the connection between the
Mangoldt function and the harmonic numbers H,, that is derived from this
identity.

1) Conclude that

1 n—1 n -
a,(x) = 0 (x [Z H, (}_)x"_’ !
. r=1

5.4. The Number e

+H, [1—(x+ 1)"]) . (5.3.20

There are many real numbers that are important in several areas of mathe-
matics. This prominent role is reflected in that they have been given special
symbols. In this section we introduce the first of these numbers. We define
the Euler number ¢ by the relation

Ine =1,
that 1s,
¢ dt
Ji 1 B

l. (54.1)
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Note 5.4.1. The reader will find in Coolidge (1950), Finch (2003) and Maor
(1998) interesting information about e.

The function Inx increases from In1 = 0 to In oo = o0, so the number ¢
is uniquely defined by (5.4.1).

There are many alternative ways to introduce this constant. In the rest of
this section, we prove that ¢ can be expressed as a limit

1 n
¢ = lim (l + —) . (5.4.2)
n—*00 i1
Or as a series
=1
e = Z o (5.4.3)
k=0

We will see that each of these forms has its own advantages.

Exercise 5.4.1. Prove that 2 < ¢ < 4. Hint. Compute upper and lower esti-
mates for the area under y = 1/x.

We now follow Barnes (1984) to establish the number e as the limit of a
sequernce.

Proposition 5.4.1. The number e is given by

1 n
e = lim (l + —-) . (5.4.4)

n—00 n
Proof. Integration by parts produces

Lin 1 (n+ 1)
/mwlnx “= D (l" (ﬁ) - 1) . (545)

The mean value theorem for integrals Thomas and Finney (1996), page 329,
yields the existence of a number ¢, such that

I/n 1 1
/ Inx dx = (— - ) In ¢, (5.4.6)
1/(n+1) n n+l
with
1 1
< = -, (5.4.7)
n+1 n
s0 that
lim ne, = 1. (5.4.8)
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Then (5.4.5) and (5.4.6) produce

(n+ 1)" 1
In o —] = l,
?‘il'"+1 Cy

1y 1
e = (l + —) X . (5.4.9)
n ney

l n
(l + —) <e
n

and (5.4.8) yields (5.4.4). We actually see that the sequence (1 + 1/n)" in-
creases to e. O

and thus

Observe that nc,, < 1, so

The next exercise outlines a different proof of Proposition 5.4.1.

Exercise 5.4.2. Prove that for any @ > 0 there exists a unique number e(w)

such that
elw)
/ “dt = 1.
1

Itis possible to prove that the function (@) is continuous. Evaluate the integral
to obtain

ela) = (1 +a)"/,
and conclude that

lim(l + a)"* = e.
a—0

Extra 5.4.1. The double inequality

e I e
r— (14— 5.4.10
2!::—1—2{8 (+n> {2n—l—l ¢ )
appears in Polya and Szego (1972), problem 170. An extension for n € R 1s
discussed in Sandor and Debnath (2000).

Project 5.4.1. We establish the alternative form (5.4.3) following Kazarinoff
(1961). The goal is to prove the inequality

1 R n 1 1 n+l
1+ — = — < (1 — 534.11
( n) _ZkT - ( +n> ¢ )

k=0 """
from which (5.4.3) will follow.
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a) Check that n(n — 1)---(n — k + 1) < n* for 0 < k < n. Conclude that

ny 1 1
— < —,
k|t~ k!

and so the inequality on the left of (5.4.11) is established.

b) Prove that a, = (1 + 1/n)""! is decreasing, so in order to prove the in-
equality on the right of (5.4.11), it suffices to prove that for each n € N there
exists ¥ = r(n) such that

n 1 1 r+l1
DS (L+;) (5.4.12)

withr = n
¢) Now fix n € M. Check that forr = n

NV &L &) ~ [r+1)
(o) Ea- S0 £ ()
=l = =n+1

(5.4.13)

d) Prove that fork =1,..., n,

1 1 -+
(F 1' )r“‘ —— =l (@t et e ) (54.14)

for some coefficients a; that are independent of r. Let M be the largest of the
(fixed number of) constants {a,, ..., a,,}. Prove that

r+1\ 1
R
k k!

so the absolute value of the first sum in (5.4.13) is bounded from above by
Mn /(r — 1). Now choose r = r(n) sufficiently large so that the upper bound
1s increased to %{n + Dl

e) Prove that the first term in the second sum in (5.4.13) is bounded by
i(n + D! for r = r(n) sufficiently large. Hint. The term (Hl)r_“""” tends

M

r—1

(5.4.15)

n+1
to 1 as r — oo and n is fixed.
This proves (5.4.11).
Note 5.4.2. Exercise (4.2.5) and (5.4.3) show that
~o .
-1y 1
yer_L (5.4.16)

! e
— -

[
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Exercise 5.4.3. This exercise provides a proof of the existence of the limit
(5.4.4) based on the arithmetic—geometric mean inequality.

a) Let {a; } and {p; } be sequences of positive numbers witha; < a; < --- <
a, and py + --- 4+ p, = 1. Prove that

n n
" — Pi E —
P" T Hai I <—: pid; 1= Sne
i=1 i=l

with equality if and only if a; = a3 = - - - = a,,. Hint (due to Alzer (1996)):
let k be the unique index such that @y < P, < ag4,. Then

e [ () S (1)

i=k+1
b) Choose p; = -+ = p, to obtain the arithmetic—geometric mean inequality
G, < A,
where
A, = at-ta and G, = (a; ---a,)"".

n

¢) Give an inductive proof of G, < A,. Hint (due to Chong, 1976): assume
thata; < --- < a, and prove a; + a, — A, > a,a,/A,. Hint. The inequality
(A, — a;)(A, — a,) is easy to check. Now compute the arithmetic mean of
a, ..., a,_y and a; + a, — A,.

d) This part describes a proof of Mendelson (1951) of the existence of the
limit (5.4.4). Use the arithmetic—geometric mean inequality with the n + 1
numbers 1, 1 + % ..... 1+ % to prove that a, = (1 + 1/m)" 1s increasing.
The fact that b, = (] + 1/n)"+] is decreasing follows by considering the
n + 2 numbers 1,
the same limit.

+] fe "+1 Now b, > a,, so they both converge and to

Extra5.4.2. Gauss(1799/1981) observed that the arithmetic meana; = (a +
b)/2 and the geometric mean a; = +/ab of two numbers leave the elliptic
integral

I

Gla.b) = / : a6 (5.4.17)
0 Va2cos?d + b2sin’ 0

invariant, that is, G(a;, b1) = G(a, b). The substitution a, b +— a;, b; can

be repeated, the succesive terms having a common limit M (a, b). This is the

arithmetic—geometric mean of ¢ and b. The transformations in Extra 2.4.3

represent a rational version of this phenomena. See Borwein and Borwein

(1987) for more details.
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Exercise 5.4.4. Newman (1985) found a very clever proof of the invariance
of G(a, b). The substitution x = b tané converts 2G(a, b) into

dx
—o V(@ +xDH(B? + x2)
Now make the substitution x + x + +/x2 + ab.

5.5. Arithmetical Properties of ¢
This section contains the proof of irrationality of the constant e. This is a
theme that will reappear throughout the book: we are interested in arithmetical
properties of constants appearing in analysis.

Exercise 5.5.1. Prove that the value of an alternating series

§ = Z{—l)”a,,, (5.5.1)

n=0
with a,, monotonically decreasing to 0, satisfies ay < S < gy + a;.

We now present a classical result due to Lambert (1761). This proof has
been reproduced by Pennisi (1953).

Theorem 5.5.1. The number e is irrational.

Proof. Suppose e is rational and use (5.4.16) to write

—e _Z _”” (5.5.2)

n=l()

Now multiply by (—1)#*! a! to obtain

1 1
a+1 —_ I — - = - a
(-1) (b(a ! g( Ly HI) a+1 (a+1)a+2)

The right-hand side is a convergent alternating series, so by Exercise 5.5.1 its
value lies between 1/(a + 1) and 1/(a + 2). This is impossible because the
left hand side is an integer. O

Hermite (1873) proved that e is transcendental, that is, there is no poly-
nomial P with integer coefficients such that P(e) = 0. The proof of this result
can be found in Hardy and Wright (1979), page 172. We present a proof of
the weaker result that ¢ does not satisfy a quadratic equation with integer
coefficients. The proof is due to Liouville (1840) and has been reproduced by
Beatty (1955).
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Theorem 5.5.2. The number e is not quadratic algebraic.

Proof. Suppose that e satisfies
ae’ + be + ¢ = Owith a, b, ¢ € Z not all zero. (5.5.3)

From the series (5.4.3) for e we obtain

I n! n!
nle = 2 i +k=n+1 h
Now
S
S kT D ntl
and
= n = 1 [
k:,z,;l kS ; m+D _n (5.5.4)
so that
>, n! 1
WSk +6°

k=n+1
and
i (_,l)kn_r _ ﬂ
k=n+1 k! n+ I + {'b,

where 0 < ¢ < | depends upon n. Multiplying (5.5.3) by n!/e we obtain

(‘+ ! )+b '+ ('-1— Cu™ )
at n. C —_— | =
n+6 / n+1-+¢

for some integers i, j. Thus

a N ¢ _

n+8 n+l+e¢

because the left-hand side is an integer and arbitrarily small for n
large. We conclude that a = —c and 0 <8 <1 < 1+4+¢ =#6. This is a
contradiction. ]

(5.5.5)
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5.6. The Exponential Function

In this section we consider the exponential function defined by the series

coyt 5.6
e .:Z x (5.6.1)
k=0

Observe that (5.4.3) and (5.4.16) state that ¢! = ¢ and e™! = 1/e, so the

notation (5.6.1) is consistent.

x|

Note 5.6.1. We have

e’ = lim Ex(x,n), (5.6.2)

n—od

where Ex(x, n) has been introduced in (5.3.7).

Exercise 5.6.1. Prove that

¢* = lim (1 + i) (5.6.3)

n—s a0 n

Hint. Expand by the binomial theorem.

Exercise 5.6.2. This exercise outlines some of the most important properties
of the exponential function.
a) Check that

d

—e' =e". 5.64
= =€ (5.6.4)

b) Prove that e = x for all x > 0 and In(e*) = x for all x € R. Therefore
these two functions are inverses of each other. Hint. Compute the derivatives.
¢) Prove that "t = ¢* x ¢”. Hint. Use Cauchy’s formula given in Exercise
4.2.7 to multiply the two series.

d) Conclude that e* £ 0.

e) Assume that E(x) = Zf:u axt is a power series that satisfies E'(x) =
E(x)and E(0) = 1. Prove that @, = 1/k!, so that E(x) = e*.

Note 5.6.2. The arbitrary powers of x € RT can be defined in terms of the
exponential function. Indeed, we let

x¢ = et 1Y, (5.6.5)

a—1

The differentiation rule (-ji-x“ = ax is now valid for a € R.
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Exercise 5.6.3. In this exercise we prove that In x and e* are inverses of each
other using the function e(a) introduced in Exercise 5.4.2 by

elo)
/ “ldr = 1. (5.6.6)
1

a) Use a change of variable to establish
el x)
/ e = x, (5.6.7)
J1

where e(a, x) = e(a)*.
b) Let « — 0 to conclude

et d
/ T’ - (5.6.8)
J1

Exercise 5.6.4. Prove that ¢* is not a rational function. Hint. Reason along
the lines of the proof of Theorem 5.2.3.

5.7. Stirling’s Formula

The goal of this section is to present an approximation for n!, valid for n large,
due to Stirling (1730). The first theorem establishes the existence of a certain
limit, the exact value of which will be described in future chapters. The proof
presented here is due to D. Romik (2000). The reader is referred to Tweedle
(1988) for more information on James Stirling’s scientific work and to Blyth
and Pathak (1986) for another simple proof.

Theorem 5.7.1. Let ¢(n) = n" 12" Then the limit

|
C = lim w
n—00 (P{H)

(5.7.1)

exists.

Proof. Write

Inn! —Zlnk—~2/ d)‘, (5.7.2)

k=2
use
i—1

i+l
dl - Z/ dx (5.7.3)

j=1
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and exchange the order of the two sums to produce

Inn! = / n - Lx dx.
J1

X

Now x = |x ] + {x}, with {x} the fractional part of x, yields
nx})—1/2
Inn!=m+1/2)hn—n+14 | ——-— dx. (5.7.4)

1 X

We now prove that the integral has a limit as n — oo. Using the fact that
{x + m} = {x}) form € N we have

SO PR WA
/1 B d)«_ZA Tk dx.

k=1

For x € [0, 1] we have {x} = x and after integrating by parts we get

n {)‘} _ : 1 n—l1 fl ¥ — 2
Sdx = = ——— dx. 5795
J1 X T2 Z_: o (x+k)? * ( )

It is now easy to check that the integral is monotone in n and bounded. We

conclude that the limit as n — oo exits and 1s finite:

/M Mﬂ’x < 00. (5.7.6)
Ji .
Exponentiating the identity (5.7.4) establishes the result, with the constant C
given by
C =exp (l + /;00 ud.¥> ; (5.7.7)
O

Note 5.7.1. The value C = +/2m will be established by different methods.
For instance see Exercises 6.4.4 and 8.2.8. Thus Stirling’s formula states

n! ~ «/2mxn(nje)", (5.7.8)
and as a corollary we obtain the evaluation
® {x}—1/2
/ Md} =Inv2m — 1. (5.7.9)
1 X

Extra 5.7.1. The proof of Theorem 5.7.1 is an example of the Euler—
MacLaurin summation formula. Given a function f with continuous
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derivative on the interval [1, n] we would like to compare

> fk) with f f(x)dx. (5.7.10)
k=1 1

Consider the integral of f on the interval [k, k + 1] for k € N. Integrate
by parts and choose the primitive of 1 to be x — k — 1/2; this function has
integral O on [k, k + 1]. We obtain

k+1

l k+1 ,
F@dx = Zk+ D+ F0) = [ ()= 1725 0)d
Jk
where we have used the fact that k = | x| on the interval of integration.
Summing from k = 1 ton — 1 produces
1

Zf(k):/ f(x)dx + / (x} f'o)dx + f(1).  (5.7.11)
k=1 J1 -

This is the Euler—MacLaurin summation formula. The choice f(x) = Inx
leads directly to (5.7.4). The reader will find in Apostol (1999) a detailed
account of these ideas.

Exercise 5.7.1. Prove that the central binomial coefficients C,, satisfy

~2n

Cn ~

(5.7.12)

T
Exercise 5.7.2. Let g, := n!". Prove that
1

lim (ﬂ" - an—]) = -
n—oG e

Exercise 5.7.3. Check that the radius of convergence of the series
i 2n\ 1 (5.7.13)
M E e .13
n=0 n I —dx
is 1/4.

Exercise 5.7.4. Prove thatfor p = 0

o |
./ e —px d} = —.
0 P
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This 1s [G & R] 3.310. Differentiate n times with respect to p to obtain

o0 n!
f x"e P dx = e (5.7.14)
0 p"

This is [G & R] 3.351.3.

Project 5.7.1. The proof of Stirling’s formula sketched in this project is due
to G. and J. Marsaglia (1990).
a) Check that

o0
n! :n"+le_"/ (ve'=)" dy. (5.7.15)
0

Hint. See Exercise 5.7.4.
b) Prove that the equation

yel=™Y = ¢=7/2 (5.7.16)

has two branches accordingto0 <=y < lorl <y < co.
¢) Use the relation y'(y — 1) = zy to prove that the coefficients in the expan-
sion

y=l+az+azt+ay +--- (5.7.17)
satisfy a,z =1 a= % a = Tlm and
A\, = a,_| — 2asa,_1 — 3aza,_s — - - - (5.7.1%)
for n = 3. Conclude that
y=1ltaz+ a3+ a3 + - (5.7.19)

v

solves ye! ™Y = e~ for 1 < y < oo and
y=1l-aiz+ad’ —ad’ +-- (5.7.20)
solves ye! ™Y = e~ for 0 =y<=L
d) Verify that (5.7.15) becomes
= 2\ > L.
nl = 2" tle™ Z(Zj + Dazjs (—) / u-le™ du. (5.7.21)
=0 nsh

¢) Let

S 2
I; = / u e du. (5.7.22)
1]
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Integrate by parts to obtain the recurrence

2j — 1
I = -"2 1. (5.7.23)
Conclude that
2)!
I = i'; = lo. (5.7.24)

The first term of the identity (5.7.21) gives Stirling’s formula up to the eval-
uation of the integral

0 2
Iy = / e " du. (5.7.25)
Jo
This is will done in Chapter 8, where we establish the value I, = /7 /2.

Project 5.7.2. The goal of this project is to present a proof of Stirling’s
formula due to Feller (1967):
a) Define

I(x) = / Inydy =xInx —x
0

and the numbers

k k k41,2 )
a = / In (—) dx and by = / In (i) dx. (5.7.26)
k=12 Y Jk k
Check that
1 1
ap = Elnk —Iky+Hk—-1/2) and b =1Ik+1/2)—1(k)— Elnk.
b) Prove that
1
a,—bi+ar—bs+---+a, =Inn! — Elnn — I(n)+ I(1/2).

c) Establish the identities

12 1/2
ap = —/ In(l —t/k)dt and by = / In(l +t/k)dt

Jo Jo
and conclude that a; > by > ay; = 0.
d) Define
{aw-,;g if k is odd
Cp =

by if k is even
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so that

2n—1

, 1
Z(—])i‘_]c;\. = Inn! — Elnn — I(n) + I(1/2).
k=1

Check that the series on the left converges giving the existence of the limit
(5.7.1) with

C =exp (Z{—l)k‘]ck +1n2+ 1)) :
k=1

5.8. Some Definite Integrals

In this section we derive several integrals from the basic formula

1

1

I, := / xMdx = . (5.8.1)
Jo n 41

validforn e R, n > —1.
Exercise 5.8.1. Let n, k € M. Check that
: —D)*k!
f it xdy = D KL (5.8.2)
0

(n + l)k-i—l
Hint. Differentiate (5.8.1) with respect to n.

Exercise 5.8.2. Change variables in (5.8.2) to establish
oo
/ xke™ dx = k! (5.8.3)
Jo
The left-hand side makes sense for £ € R™ and it gives an extension of the
factorial function to the positive reals. This is the gamma function that will

be discussed in Chapter 10.

Mathematica 5.8.1. Integrating (5.8.1) fromn = 0ton = | gives

1 . 1
/ T dx =In2. (5.8.4)
J0

Inx

The function f(x) = (x — 1)/ In x does not admit an elementary primitive.
A symbolic calculation using Mathematica yields

=1
/ Xl dx = ExplntegralEi (2 In x) — LogIntegral(x),
nx
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where
oo —i

Ei(x) = ExplntegralEi(x) := — / er dt (5.8.5)

is the exponential integral function (if x > 0 the definition is slightly mod-
ified to avoid the singularity at at x = 0) and

X dr
Li(x) = Logntegral(x) := — (5.8.6)
Jo Int
is the logarithmic integral function. These two functions will be discussed in

Volume 2. The introduction to Chapter 11 explains the relation of the function
Li(x) and the distribution of prime numbers.

Exercise 5.8.3. Leta € R™. Then

00 ,—ay _ n—2ay
/ ¢ T dy=m2 (5.8.7)
0 y
Hint. Reduce to (5.8.4). Establish the generalization
oo ,—t L, —ix
/ % dt = Inx. (5.8.8)
0

Extra 5.8.1. The integral presented in (5.8.8) is an example of a Frullani in-
tegral. Under some mild conditions on the function f, such that the existence
of the limiting value f(00), the result

= d>
/ [f{ax)—ftbx)l%:[f(m—f(oo)]ln(b/a). (5.8.9)

0
holds.

Project 5.8.1. In this project we will find the Eulerian polynomials A, (x)
that appeared in Exercise 4.1.3.

a) Prove that for p > 0
® s In2
/ v _ 2 (5.8.10)
Jo T+ers ™ p

This is [G & R] 3.311.1.

b) Differentiate the integrand on the left-hand side of (5.8.10) n times with
respect to p to conclude there exists a polynomial Q,, of degree n — 1, with
positive integer coefficients, such that

4 o) ) xlePx ).( ;;.\') (5.8.11)
dp) Trer (A gerymnn=e) B
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¢) Use (5.8.11) to derive the recurrence
d
Qi]’+|(v) = U(l - U)d_ QFT(U) + (1 + HU)QF]’(U)' (5A812)
v

Conclude that Q,, is the Eulerian polynomial A,.
d) Use (5.8.10) to obtain

/ (l—l—.“)”"'lA”(_r)df = {— 1)”?‘.‘1 In2. (58 13)
1

e) Define the coefficients a}"] by

n—1

A,(0) =) a"vl. (5.8.14)

=0

Use part a) to derive a recurrence for af,-"] and prove that aj”) e N.
) Prove that

i n+1
ﬂj-"] — Z(_l)_f-+k+]kn (} 1l k) ] (5‘815)
k=1 :

Hint. Use Exercise 1.4.6 to complete an inductive step.
g) Prove that A, is a symmetric polynomial in the sense of Exercise 2.1.5,
that is, it satisfies A, (x) = x""1A,(1/x).

5.9. Bernoulli Numbers

In this section we consider the Taylor series expansion

] In
x X X
=1-=+ By, —— (5.9.1
et — 1 2 "Z_; 2 (2n)! )
around x = 0. The coefficients B, are the Bernoulli numbers and we
discuss some of their arithmetical properties. These numbers will reappear
in Chapter 6 in several Taylor series expansions. The reader will find more
information about these numbers in K. Dilcher’s Web site (2003).

The fact that x is the only odd power in (5.9.1) is justified by the following
exercise.

Exercise 5.9.1. Prove that the function

S = e-‘): 1 (l B %)

is even, that is, f(—x) = f(x).
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Exercise 5.9.2. Prove that the Bernoulli numbers satisfy

! "L (241
5-n+z(” )32,,,=o. (59.2)

2m
m=1

Conclude that B, are rational numbers. Use the recurrence (5.9.2) to obtain
B, form = 1,---, 5. Hint. Use the identity

(e — 1) x

= X. (5.9.3)

et — 1

Mathematica 5.9.1. The Bernoulli numbers are included in Mathematica.
For instance the command

BernoulliB[50]
yields

495057205241079648212477525
50 = .
66

(5.9.4)

The next theorem describes a second recurrence for the Bernoulli numbers
that will determine their sign. The proof presented here appears in Mordell
(1973):

Theorem 5.9.1. The Bernoulli numbers satisfy

—2¥ —1(2n
Bu==) 55— |BrBumrforn=2 (5.9.5)

r=

Proof. Write
x = X"
i "Z:;}bnﬁ’ (5.9.6)
sothat by =1, by = —1/2, by,sy = 0forn = 1, and by, = B,,. Then
Y x 2x

e-"+l:e-"—1_el"—l

n

=@ -1p, .

|
n.
n=0

Multiply by x/(e* — 1) so the left-hand side becomes X2/ = 1).
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Expanding we obtain
X — x" i x’ = xf
=) b2"— =~ 2" — b, — by— | .
ZHZZ;) n! ('Z:‘:}( ) r!) . (‘2:; 5 s!)

Now equate the coefficients of x2"+1 1o obtain (5.9.5). O

Corollary 5.9.1. The Bernoulli numbers are rational numbers and satisfy
(=1)"""'By, > 0.

Extra 5.9.1. The arithmetical properties of the Bernoulli numbers are very
interesting. The denominators are completely determined by a theorem dis-
covered independently by von Staudt and Clausen in 1840: If n = 1 then

By=1,— )

p—1|2n

l. (5.9.7)
P

where [, is an integer and the sum runs over all primes p such that p — 1
divides n. A proof due to Lucas appears as an exercise in Apostol (1976),
page 275. On the other hand the numerators seem to be more mysterious. The
mathematical interest in these numerators is mainly due to their connection
to Fermat's last theorem:

If n = 3. then the equation x" + y" = z" has no solutions
for which x, y, z # 0.

Kummer introduced in 1847 the concept of a regular prime number and
established that Fermat’s last theorem is true if the exponent n is a regular
prime. It turns out that » is not a regular prime if and only if n divides the
numerator of one of the Bernoullinumbers B, By, ..., B,_3.The only primes

n < 100 that are not regular are 37, 59 and 67. More information about this

subject can be found in Ribenboim’s books (1979, 1999).

Project 5.9.1. In this project we introduce the Bernoulli polynomials B, (x)
by their generating function

tet! B > B t 508
1 —Z J'!('Y)E' ( T )

er —_
n=0

a) Prove that forn > 1

1
/ B,(x)dx =0.

J0
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b) Establish the formula

B,(x) = Z (z) Bk.\f"_;‘-.

k=0

c) Prove

Bix+y) =) (:) Bi(x)y" .

k=0
d) Establish the values B,(0) = B, and B, (1) = (—1)"B,,.
e) Prove the symmetry rules B,(1 —x)=(—-1)"B,(x) and B,(—x)=
(—=1)" (B,(x) + nx""1).
f) Check the value B, (1/2) = —(1 — 2'="B,.
g) Establish the recurrences B)(x) =nB,_i(x) and B,(x + 1) — B,(x) =

J“,xn—l

h) Check the identity

n

(n
k=0

Conclude that forn = 1

~ +

1
)B;;.(x) =(n+ Dx".

1) Prove that
¥ 1

/ Bir(-")d-‘v = [Bn+1(y) - Bn+1(x)]

Jx n+1
and

a+1
/ B,(s)ds = x".

Finally deduce

i:l.p By + 1) = (=D"Bpy,
p+1

(5.9.9)

Extra 5.9.2. The optimal growth of the Bernoulli numbers has been deter-
mined by Alzer (2000): the best possible constants « and 8 for which
2(2n)! < 1By < 2(2n)!

(QJT)ZH(I _ 2«—2:;) - nl = (zn)zn(l _ zﬁ—zn)

area =0and f =2+ In(1 — &)/In2.

(5.9.10)
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5.10. Combinations of Exponentials and Polynomials

In this section we consider integrals of the form
b
Lop(p) = / P(x)e"" dx (5.10.1)

where a < b and ;o € R and P is a polynomial function.
We show that the class of functions

¢ = {f(_r) = ZZa,-_J-.ri e g jopujeRnme N} (5.10.2)
i=0 j=0
is closed under the formation of primitives.

Exercise 5.10.1. Define /,, = [x"e" dx. Prove the recursion [G & R]
2.321.1

Iiﬂ

Il

1 !
_;‘_mea.\ . _!m—l (5‘103)
a a

and use it to establish

w m (_ l)i‘xm —k
I, =mle Z m
k=0
and [G & R] 2.323: a polynomial P of degree m satisfies
/P(Y)e“"' dx = Lo Z D pgyy
i Ca a* o

k=0

Conclude that € is closed under the formation of primitives.

Exercise 5.10.2. Evaluate the definite integrals related to Exercise 5.10.1.

Check [G & R] 3.351.1. Foru = 0

n

k

u | |
n. . H
/ xtemdx = nrl e Z F n—k+1
0 H =0 M
n!

= i (1 — e ™ Ex(uu,n)).
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(Note that the function Ex has been introduced in (5.3.7)). In particular,

u 1 1
/ xe ™Mdy = — — —e "1 + pu),
Jo [
Yo 2 L 2.2
xe Mdx = — = 3¢ 2 4 2pu + p-ues),
40 (S M
u 6 1 .
[ Xle M dx = -~ —46_”“(6 + 6pu + 3ptu’ + ey
Jo M H

These formulas are [G & R] 3.351.7, 3.351.8, 3.351.9, respectively.

Extra 5.10.1. The evaluation of definite integrals that combine exponentials
with rational functions require the exponential integral function

Ei(x) := —/ ?dr. (5.10.4)

—X
introduced in (5.8.5). Many definite integrals can be expressed in terms of Ei,
for instance,

box
— dx = Ei(b) — Ei(a), (5.10.5)
a X
and
1 et dx —p'btu)/2a
/0 ax3+bx+c: u

x [¢"/“Ei(c1) — e“Ei(1 + ¢1) — Ei(e2) + Ei(l + ¢)]
(5.10.6)

where u = +/b? —4ac, c; = (b —u)/2a and ¢; = (b + u)/2a.
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The Trigonometric Functions and 7

6.1. Introduction

Chapter 3 described the evaluation of

o0 P E d .
!:/ _PMdx N, (6.1.1)
o (gqix + go)y"*!

in terms of the parameters qq, ¢, m and the coefficients of the polynomial P.
In this chapter we continue with our program to find closed-form evaluations
of integrals of rational functions and consider the evaluation of

o P E d .
":/ W e, (6.1.2)
0 (g2x? + q1x + gy !

for P(x) a polynomial of degree 2m, in terms of the parameters
Lo = {m; qo, q1, g2} U { coefficients of P}. (6.1.3)

The degree of the polynomial is restricted to ensure convergence of the in-
tegral. A restriction on the parameters ¢, ¢; and ¢» to ensure convergence
appears in Exercise 2.4.5.

The integral / is a linear combination of the integrals

= x"dx i
I(m,n;a):= 3 TN 2m, (6.1.4)
0 (qx*+qix + gyt

so it suffices to give closed forms of these.

Exercise 6.1.1. Prove that, forn < 2m,

& x"dx .
Im,n.a)=C / - (6.1.5)
Jo (x2 4 2ax + 1)yn+!

for a = ¢ /2./goq> and an appropriate constant C = C(m, n; qo, ¢2).

105
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Exercise 6.1.2. Let

o0 xi]’ dl. ]
J(m.,n;a) = ), G2t 2ax 4 1y n<2m (6.1.6)

be the integral in the previous exercise.
a) Prove the recurrence
Jm,na)=Jm—1,n—2;a)—2al(m.n—1,a)— Jm,n —2;a).
6.1.7)

Hint. Divide x" by x? + 2ax + 1. Conclude that the value of J(m, n;a) can
be determined once J(m, 0;a) and J(m, 1;a) are known.
b) Check that

J(m,l;a):i—a.!(m,f);a) (6.1.8)

2m

so that the family J(m, n; a) is completely determined from

J(m. 0:a) /w dx (6.1.9)
m,uia) = . 2.1,
Jo (x2 4 2ax + 1yn+!

In this chapter we develop the basic material required for the evaluation of
these integrals.

6.2. The Basic Trigonometric Functions and the Existence of
The standard approach to trigonometry that appears in calculus texts is to
define them by geometric means and use these to establish their analytical
properties. For instance, Thomas and Finney (1996), after giving a geometric
definition of sin x, proceeds to establish its continuity and the crucial limit
sinx

lim =1, (6.2.1)

x—0 X

the latter also by geometric arguments. Thomas states on page 3 that w is
irrational and on page 35 claims since the circumference of the circle is 2m . . .
without giving a definition of . This is a perfectly reasonable approach, given
that the students have already heard about 7 in this way.

A more rigorous approach is described in Spivak (1980). The number &
1s defined by the integral

1
= 2/ V1 —x2dx. (6.2.2)
J-i




6.2. The Basic Trigonometric Functions and the Existence of @ 107

Then the area of the sector of angle x is defined to be

1 1
A(x) = 5% 1 —x2+4 / V' 1 —f2dr, (6.2.3)

and the trigonometric functions are defined in terms of A. For instance, for
0 < x < m, the function cos x is the unique function satisfying A(cos x) =
x/2, and sin x is defined as /1 — cos? x.

In this text we define the arctangent function by the integral

X d,{
tan~!x := / vk x>0, (6.2.4)
0 2

and we consider this to be our most basic trigonometric function. Similarly
we define the aresine function by

) Yo dt

sin'xi= [ ———, 0<x<1. (6.2.5)
0o V1—1?
The number m is defined by the integral
> dt
T = 2/ — (6.2.6)
Jo 1412

so that 7 = 2 tan™! cc.

Exercise 6.2.1. Prove the inequalities tan~! x < x andx < tan x. Hint. Com-
pare their derivatives.

Proposition 6.2.1. For x > 0 we have

tan~"! (\/%) =sin"'x, (6.2.7)
-x

so that sinm /2 = 1.

Proof. The required identity is

/.1‘{'\"1—.\'2 dt _ /.1‘ du 62.8)
0 1+22 Jo V1=u? o

and this is established by the change of variable r = u/+/1 — u?. ]

Note6.2.1. Theidentity (6.2.7) could have been used to define sin =" x directly
in terms of tan™" x.
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Exercise 6.2.2. This exercise outlines the derivation of the formulas for the
area and length of a circle of radius r.
a) Check that the area of a circle of radius r is given by

A(r) = 4/ Vit — x2dx. (6.2.9)
0

Prove that
A(r) = rr A,

so that the area of a circle is proportional to the square of its radius.
b) Check that the length of a circle of radius r is given by

T rdx

L(r) = A ﬁ, (6.2.10)
and that
L(ry=rL(1).
¢) Integrate by parts to prove that
2A(1) = L(D). (6.2.11)

d) Conclude that A(r) = 72 and L(r) = 27r.

The authors, having employed the foregoing argument in their classroom as
original, were disappointed to find it in Assmus (1985).

Exercise 6.2.3. Prove, along the lines of Proposition 6.2.1, the identity
-1 1 —x r 1. ]
tan~! [ — ] ................ = — — —gin~ !y, (6.2.12)

Check that the value of 7 is given by

L dr
= 2/ . (6.2.13)
0 A1 —12

Exercise 6.2.4. Check that

Uodr T )
A =T (6.2.14)

Hint. The change of variable x +— 1/x should do it. Conclude that
tan(r /4) = 1. Now use (6.2.7) to obtain the value sin(r /4) = l;’s/i
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Exercise 6.2.5. Prove that tan~! x is not a rational function. Hint. Write it as
P/Q and differentiate to prove first that 1 + x> must divide Q. Then write
O(x) = (1 + x2)™Q,(x) and obtain a contradiction.

Theorem 6.2.1. The Taylor series expansion of tan™" x is

tan~'x = Z M (6.2.15)
— 2n +1

for x| < L According to Ranjan Roy (1990), this was discovered indepen-
dently by G. W. Leibniz, J. Gregory, and an Indian mathematician of the
fourteenth or fifteenth century whose identity is not definitely known.

Proof. Expand the integrand in (6.2.4) in a geometric series. ]

Exercise 6.2.6. Check that

S =) T (6.2.16)
2o+l 4

Exercise 6.2.7. Prove the identity

/ tan~ X (=" 62.17
A D o GEnd 210

This number is known as Catalan’s constant, usually denoted by G. The
reader will find in Adamchik (1997) and Bradley (1998) a large collection of
formulas for this constant.

Exercise 6.2.8. Establish the hypergeometric representation
tan~'x = x -2 F) % I, %; —xz) . (6.2.18)

Exercise 6.2.9. Define sin x as the inverse of sin™! x and prove (6.2.1). The
value

sin (’2—‘) =1 (6.2.19)

is given in Exercise 6.2.3. Then prove that y = sin x satisfies y' = /1 — y2.
Introduce the function cos x by cosx = \/1 — sin” x and establish the rule

d
— COSX = —sinx. (6.2.20)
dx
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The special values like cos0 =1 and cosw/2 =0 follow from those of
the sine.

Exercise 6.2.10. Obtain the Taylor series expansions

- — . (_])A 2k+1 . d R . - (_])R 2k 6221
sinx = Z {2k—|—l)'l and cosx =) —— x (6.2.21)

k=0

and compute their radius of convergence.

Note 6.2.2. Most of the standard results in trigonometry can be proved di-
rectly from the integral representation of the inverse functions. The one ex-
ception seems to be the addition theorem:

sin(x + y) = sin x cos y + cos x sin y,

cos(x + y) = cosx cos y — sin x sin y. (6.2.22)
This difficulty reappears in the description of elliptic functions as inverses
of elliptic integrals:

* dt
k) = e . 6.2.23
S b A V(=) — K2?) ( )

The case k = 0 corresponds to sin~"' x. Information about these functions can
be obtained in Borwein and Borwein (1987), McKean and Moll (1997) and
Whittaker and Watson (1961).

Exercise 6.2.11. Use power series to give a proof of (6.2.22). Hint. Use
Cauchy’s formula to multiply power series given in Exercise 4.2.4.

Exercise 6.2.12. This exercise presents an extension of the identity cos(2x) =
2cos?x — 1.
a) Prove that

cos(nx) = T,(cosx) (6.2.24)

where 7}, is a polynomial of degree n with integer coefficients. The polynomial
T,, is called the Chebyshev polynomial of the first kind.
b) Show that

To(x) =1

Ti(x)=x

Ty(x) = 2x% — 1

Ty(x) = 4x° —3x. (6.2.25)
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¢) Prove the recursion formula
Tho(x) = 2xT,(x) — T,—1(x). (6.2.26)

d) Prove that, for n odd, sin(nx) is a polynomial in sin x.
¢) Prove that

T o }1 S {_1)! n—=r n—2r -
1,00 =3 Z:(:} — ( . )(2,0 . (6.2.27)

More information about these polynomials appears in Weisstein (1999),

page 232.

Note 6.2.3. There is a large literature on the number , we simply quote
our favorites: Blatner (1999), and Arndt and Haenel (2001), chapter 4 in
Ebbinghaus et al. (1991), Weisstein (1999), page 1355, and Berggren et al.
(1997). There are also plenty of Web sites dedicated to m, with varying degrees
of interest. Qur favorites are

http://www.cecm.sfu.ca/pi
http://mathworld.wolfram.com/Pi.html
http://numbers.computation.free. fr/Constants/
constants.html

6.3. Solution of Cubics and Quartics by Trigonometry
In this section we express the roots of the cubic polynomial
Pi(x) := o+ qzxz +gix+go=0 (6.3.1)
in terms of trigonometric functions. The identity
sin3x = —4sin’ x + 3sinx (6.3.2)
shows that y = sinx solves a cubic equation, provided we think of sin3x as

one of the coefficients. The next exercise shows how to transform the general
cubic (6.3.1) to a form similar to (6.3.2).

Exercise 6.3.1. In Exercise 2.4.6 we have shown that the general cubic can
be transformed to one without the quadratic term.

a) Find a transformation of the form y = Az to convert the general cubic to
the form

477 3z 4+ B =0. (6.3.3)
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To find the solutions, choose an angle « so that
sine = . (6.3.4)

The roots of the cubic (6.3.3) are then given by

. [a o fa  2m . a 4
Xy = sin (3) , X2 = sin 3 + 3 ) x3 =sin| 3 + EWE (6.3.5)

This method shows that the three roots are real provided
(295 — 9192 + 27q0)" < 4(g2 — 3q1)’. (6.3.6)
In the reduced case g; = 0 this becomes

4g; +274¢ < 0. (6.3.7)

Extra 6.3.1. The reader will find in McKean and Moll (1997), Chapter 4,
a discussion on how to use elliptic functions to solve algebraic equations of
degree 5.

6.4. Quadratic Denominators and Wallis’ Formula
In this section we consider the evaluation of
> P(x)dx

1 ::‘0 W, {641)

where P(x)is a polynomial of degree 2m. This is the special caseag = a; = 1
and a; = 00of (6.1.2). The recurrence (6.1.2) shows that it suffices to consider

o0 - >
I = / B (6.4.2)
Jo {X‘ + l)m-rl

the two cases

and

= dx
Jop = e, 6.4.3
2, A (XE_|_ ])m+] () )

The first integral is elementary because the integrand admits a rational prim-
itive:

d -1 X

dx 2m(.¥3 + l)m - {)(-2 + ])m+1 '

(6.4.4)

that yields /; = 1/2m. This leaves only J; ,, for discussion.
The integral J> ,, was evaluated by Wallis (1656). The first proof of Theo-
rem 6.4.1 is sometimes found in calculus books (see e.g. Larson et al. (1998),
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page 492). Different proofs of Wallis’ formula (6.4.5) will be presented in
Chapter 10 and in the Appendix.

Theorem 6.4.1. Wallis’ formula. Ler m € IN. Then

I /'x' dx
B N CER

i "
7/ /2 x (2
- /y cos 0 do = /y sin?0do = o). (6.4.5)
Jo Jo 25m4 m

Proof. The change of variable x = tan 6 ( or x = cot#) transforms one inte-
gral into the other, and integration by parts yields the recursion
2m — 1 .
Jl.m = —-"2..!}!—1- (646)
2m
Itis then easy to verify that the right side of (6.4.5) satisfies the same recursion
and that both sides yield /2 for m = 0. O

Exercise 6.4.1. Solve the recursion (6.4.6) directly. Hint. Define b, =
I (;;:;,)—1 and find a recursion for b,,. Compare with (2.3.18).

Note 6.4.1. Observe that the quadratic integral ./ ,, is a rational multiple of

T
1 Com_y [ 2m )
=2 e Q. (6.4.7)
i m
Note 6.4.2. Wallis’ formula appears in [G & R] 3.621.3 expressed as
72 /2
/ / 2m — ! s
/ sin” x dx = / cos” xdx = wz (6.4.8)
Jo Jo 2m)!t 2

where 2m — D!!'=0C2m - DC2Cm—=3)---3-1 and Cm)!! = 2m)(2m —
2).--4.2,

Exercise 6.4.2. Prove [G & R] 3.621.4:
w2
/ 2n)!
/ sin? ! ydx = L n=0. (6.4.9)
0 2n + 1!

Hint. Integrate by parts to produce a recurrence.

Exercise 6.4.3. In this exercise we present a series of integrals that can be
evaluated using Wallis™ formula (6.4.5). The answer is expressed in terms of
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semi-factorials
nl=n-n-=2)-n—4)--- (6.4.10)

where the product ends in 2 or 1 according to the parity of n. These semifac-
torials can be transformed to factorials using

2n)!
2m)!1 = 2" n!and 2n — ! = (2””:1 . (6.4.11)
a) Prove these identities.
b) Prove [G & R] 3.249.1:
/"0 dx @@=
o (xX4a?r  22n —2)Nat

¢) Prove [G & R] 3.249.2:

2(2n)n

d) Prove [G & R] 3.251.4:

[” x™dx  Qm— DI Qn—2m-3)n
o (@x*+cy  22n—2Namcrm-1 Jac

fora =0, ¢ > 0, n > m + 1. Hint. Do first the case m = 0 and then differ-
entiate with respect to the parameter a. What happens atn =m + 1?

e) Prove [G & R] 3.251.5:

o yZmtl gy m!'(n—m—2)

Jo (ax3 + )" o 2(n — Dlgmt! en—m—1 ?

a,c>0,n>m+1.

Project 6.4.1. This project confirms that the class of functions
Ti=1 flx)= Z Za,-‘j sin’ x cos’ x : aijeRin,meN

i=0 j=0

is closed under the formation of primitives.
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a) Prove that the identities

1 n—1 2 2
sin” x = S {;(—l)"_k ( kn) cos2(n — k)x + % ( nn) }

2n+1
2r1+| n—k - _
sin 2:%! Z( 1) ( k ) sin(2n — 2k + 1x

k=0

Cos™ X = —— cos2(n — k)x + 3
2t k=0 k n
n 2 1
ot cos(2n — 2k + 1)x,
: k

are valid for n > 0. Conclude that sin” x and cos™ x admit a primitive in T.
b) Prove that in the expression for f € T, we may assume m = 0 or 1. Con-

Zn+l X =

1
o
2 k=l
clude then that every function in ¥ admits a primitive in that class. The case

m = ( 1s Wallis’ formula (6.4.5) and m = 1 is elementary.

Exercise 6.4.4. This exercise outlines a proof of the value of the constant C
in Stirling’s formula described in Theorem 5.7.1. Write (6.4.14) as

24;! u
L= Q (6.4.12)
2 (i’ﬂ)~ 2n+1
and then use llm Q, = 1 and Exercise 5.7.1 to obtain C = +/2m.
Exercise 6.4.5. Prove Wallis’ product
2k
=2 6.4.13
= H Zk —1 2%+1 (04.13)
using Wallis’ formula. Hint. Divide (6.4.9) by (6.4.8) to produce
T 2 2 4 4 2n 2n (6.4.14
21335 T w1 414

with

7
Q" — [ s.m“" Yaix/ / 2n+l

Show that 1 < @, = | + 1/2n and pass to the limit.
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Extra 6.4.1. The expression

> ool hoam

i (Y T S I S 6.4.15

= Vayatava\z2TV2*t2Va ®4.15)
due to Vieta (1970) is one of the oldest representations of m. Osler (1999)
showed that the product

2 L 1+1 1+1 1+ +lfT dical
— = —t+ -\ z+\/z+-+ 2\ 7 nradicals
w1l 2722 2V2
X ol 1 2ptlp 4
X& 20+l ’ I+
(=1

yields Wallis’s formula (6.4.13) for p = 0 and Vieta’s expression as p — oc.

Mathematica 6.4.1. A direct symbolic evaluation can be obtained by the
command

Integrate [ 1/(x~{2} + 1)"{m+1}, {x, 0, Infinity}]

to give
T (m+3)
2001 + m]
Mathematica indicates that the answer
VT (m + %)
2001 + m)
is valid only for Re[m] = —%, and does not evaluate the integral outside
this range. However restrictions on parameters can be introduced via the
Assumptions command. The new input

If(Re[m] > —3, / (14+x%)™ 'dx).  (6.4.16)

(6.4.17)

Integrate [ 1/(x"{2} + 1)~{m+1}, {x,0, Infinity},
Assumptions \rightarrow { Re[m] > -1/2}]
yields

ﬁ Gamma[% - m]. (6.4.18)
2 Gamma[l + m]

The gamma function appearing above will be studied in Chapter 10. There
we show that, for m € N, the expression (6.4.18) reduces to (6.4.5).
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6.5. Arithmetical Properties of
In this section we discuss a proof of the irrationality of m. This comple-
ments the results of Section 5.5 which proved the irrationality of e. There
are several other proofs in the literature, see for example Breusch (1954)
and Desbrow (1990). The fact that  is transcendental was established by F.
Lindemann (1882). A modified proof appears in Hardy and Wright (1979),
page 173.

Extra 6.5.1. The question of irrationality of specific numbers is full of sub-
tleties. Forinstance, itis an open question to decide if w + e or we are irrational
numbers.

The proof of the irrationality of m begins with some exercises.
Exercise 6.5.1. Let
1
D,(r) = / (1 — x3)" cos(rx)dx.
~1
Check that
2sinr Asinr — rcosr)
DO(F) —_ —— al-ld D|{J‘) — X
r
Prove the recurrence
1
Dy(r) = — (2n(2n — 1)Dy_((r) — 4n(n — 1)D, »(r)).
r

Conclude that there exist polynomials P, and Q, of degree at most n, with
integer coefficients, such that

n!

D,(r)= " (P,(r)ysinr — Q,(r)cosr). (6.5.1)

2n+
We now present a proof of the irrationality of 7, based on the polynomials
D, (r), that is due to Niven (1947). The final step of the proof employs the

result of the next exercise.

Exercise 6.5.2. Prove that, for any a > 0, the term a"/n! — 0 as n — oc.
Hint. Use Stirling’s formula (5.7.8).

Theorem 6.5.1. The number 7 is irrational.
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Proof. Suppose m = a/b and define r := 7/2 = a/2bh. Then evaluating
(6.5.1) at m/2 we have

(35)" e () =mma (5):

Now clear the denominators and write D,, for D,(a/2b); we then have that
z = a1 D, /n!is an integer. But

1
| Dy (r) | s/ [cos(rx)[dx =2
—1

independently of n, so that |z]| < 2a**1/n! — Oasn — oo, and thus 7 = 0.
We conclude that D,, = 0 for all n, a contradiction. O

6.6. Some Expansions in Taylor Series
In this section we describe some functions that contain the central binomial
coefficients in their Taylor series. We analyze, for example,

fix) = an( ) (6.6.1)

n=1

and

o0 (Eir)
- Ao/ on
gin=> it (6.6.2)
n=1
The specialization of these series to a given value of x leads to some interesting
numerical series. The proofs have appeared in Lehmer (1985).
The first formula is the generating function for the central binomial coef-

ficients,
2n
E— - 6.6.3
l - 4)‘ n=0 ( ) ( :
which is the result of Exercise 4.2.2, part ¢).

Project 6.6.1. Prove that there is a polynomial S;(x) with positive integer
coefficients such that

oo j 2n\ , 2x §;(2x)
Z.‘I n X = W {664)
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Obtain a recurrence for S,. The first few are

Si(x) =1 (6.6.5)
SH(x)=14+x

S3(x) = 1+ 5x 4+ x?

Sa(x) = 1+ 15x + 18x% 4+ x*

Ss(x) = 14 37x + 129x7 + 58x% + x*.

Can you find a closed-form for the coefficients of S,?
The second formula is the Taylor series expansion for sin~' x.

Theorem 6.6.1. The inverse sine function is given by

., o0 (Zir) x‘.’;a+1
s X = Zﬂ ﬁm (6.66)

H=l

Proof. Replace 4x by 12 in (6.6.3) and integrate from 0 to x. O

Corollary 6.6.1. Let x € (0, 1). Then

3 L (2")x" =20 (1_7 21_‘”) . (6.6.7)
X

n\n
n=1

In particular

Z 1( )2—3’** =21In2. (6.6.8)
— n

Proof. Divide (6.6.3) by x and integrate from 0 to x. O
We now continue with our discussion of special Taylor series.

Theorem 6.6.2.

2x sin~!' x Z (2x)‘” (6.6.9)

V1 —=x2

n=l1
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Proof. We start with Gregory’s series (6.2.15) and sett = x /+/1 — x? so that,
according to (6.2.7), we have tan~!r = sin~! x. Then

xsin~'x i: (— 1)1y
(2n — D(1 — x2)"

_l)n 1 i i) —n

S

_ i: (=Dt f: (n + j = l)xz(,ﬁ"}
2n —1 j

n=l j=0 Y

M8
I

i 2m (=1 m - 1)
= ‘t )
=1 =1 (k —Dlm—k!2k-1)

The identity (6.6.9) is thus reduced to proving

2m m—1 (—l)j (m _ l)! o
m(m);gnﬂ(’"—j—l)!aj-pl)_2 . (6.6.10)

To check this identity write the sum as
m—1 i m—1
(—1y (m - 1) IZ -1\ 5
> - ) = =D Yy
2L : J

— / (1 _yZ)m—l d}’
JO

w2
= [ sin”" ' 9 a6,
Jo

The value of (6.6.10) now follows from Wallis® formula (6.4.5). O

Exercise 6.6.1. Use Theorem 6.6.2 to establish the sums

i 1 T
P 6.6.11
2 "3 @610

T 6.6.12
=2 6.6.12)
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Z (6.6.13)

n=1

L‘/g)" - 2_” 5 —24/5. (6.6.14)
Zl n2n Zn) 5

Hint. The last sum requires the value

1 [5—+/5
sin () =5 V5 (6.6.15)
5 2 2
To establish this value, let & = /10, so that sin 26 = cos 36 and check that

u = sin @ satisfies 4u”> +2u — 1 = 0.

Extra 6.6.1. The problem of determining the rational numbers m/n such
that the sine of the angle # = & is expressed by radicals was considered by
Gauss. The following informatlou appears in

http://mathworld.wolfram. com/
TrigonometryaAngles.html

The angles . for which the trigonometric functions may be expressed in
terms ofradu.alx of real numbers are those n for which the regular polygon of
n sides is constructible (with compass and ruler). Gauss proved that n must
be of the form

n=2%pipy- ps (6.6.16)

where k € N and p; are distinct Fermat primes (a prime of the form 22" 4+ 1).
The only known Fermat primes are 3, 5, 17, 257 and 65537. Therefore, the

value sin(sr/7) cannot be expressed by radicals.

Exercise 6.6.2. Prove that

2

2= X xsin~!x
Z (zn) = 1 —x2 + (1 _x2)3/2 (6.6.17)

n

n=1

and obtain the value

Z M (6.6.18)

n=1

Hint. Apply x> Z:T L to both sides of (6.6.9).

X
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Exercise 6.6.3. Find a closed from for the sum

=
?’:'.Y"
E Ty "

> (6.6.19)
n=l (n )
In particular, check that

> n2"
Y S-=m+3 (6.6.20)
n=1 ( n )
This expression for w was employed by Plouffe (2003) to develop an efficient
method to compute it.

Exercise 6.6.4. Establish the cxpdmion

b3 |

> 2n
(sin™! x Z Z\rzn )

(6.6.21)
Hint. Divide (6.6.9) by x and integrate

Exercise 6.6.5. Prove

. (6.6.22)
1 o (::r) 8
Exercise 6.6.6. Establish the value

e 1 2
Zﬁ" = e

(6.6.23)
2 T 18
n=1 ( n )

Mathematica 6.6.1. Continuation of this process yields
2 n 2
( ”ﬂ 5 / (“” (6.6.24)

This function is not clcmcutary_ A symbolic evaluation using Mathematica
yields

= (20
Z 'l2n -

e = 2x“Hypergeometric, F; [{l. 1.1, 1), {2.2,2)
n=l1 n n

.
The hypergeometric functions appearing here are defined in (3.5.5). Mathe-
matica also gives special values of the identity (6.6.24). For instance

U (sin~ ! 1)? 72ln2 7
Jo

- =z(3). 6.6.25
4 SC{ ) (6.6.25)
The number ¢ (3) is called Apery’s constant and is discussed in Chapter 11
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Project 6.6.2. Study the power series expansion of (sin™! x)". The first non-
trivial case is

- _ S 3! 1 (2
(hln x) = g 2+ D! :}_II(Zm + 1) Z (2} n l)~ \

that appears in [G & R] 1.645.3. Hauss (1994) provides some information
about these expansions.

Exercise 6.6.7. This exercise presents some formulas for  given by Ewell
(1992).
a) Integrate by parts to prove that

X 1 3 -
/n V1—12dt = Esin_lx+ %\/l - x2

b) Integrate the expansion (6.6.6) to produce

1
= —sin_1x+§\x’1 —x2

(M -2 Py
Z k 22k— 1'2k+1_2

Let x = sint and integrate from 0 to 7 /2 to yield

: !
1216 .
" g(%— D2k + 12

(6.6.26)

¢) Using a similar technique to parts a) and b), prove

128 > k+1
x? =
- 128
9 Z (4k% — 1)(2k + 3)?

and
oo
kz: 2k — 1)(2k + 1)?
by using
a0 (2;;'—’4)
2 2 _ 42 i=2 2
V1= =1 — —
2 G-z
and
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6.7. A Sequence of Polynomials Approximating tan—! x
The goal of this section is to describe a sequence of polynomials that provide a
very good approximation for tan~! x on the interval [0, 1]. The details appear
in Medina (2003).
The Taylor series for tan—! x yields

tau_lr:/-‘- d :/I i(—])krzkdr
o Jo 1422

0 =0
| x f2"+2
:,,x+—1"+/ :
fu)+ (1 [
where
fuo = 3 A e 6.7.1)
ot 2k +1
Exercise 6.7.1. Prove that
2n+3

|tan~' x — f(x

)| = T (6.7.2)

In particular & /4 — £,(1)| = 1/(2(2n + 3)). Hint. Write the difference as an

integral and obtain an inequality for the denominator.

Project 6.7.1. Let
pi(x) = x° —dx® + 5x* —4x? +- 4 (6.7.3)
and
P () = x* (1 = x)* i (x) + (=)™ py(x) (6.7.4)

for m = 2. Prove that

.Y4m(l . X)dm N {_4)m 675
T+ = Pm(x) L (6.7.5)
Hint. Use induction.
b) Use the definition of p,,(x) to establish
m—1
pu(x) = pr(x) Y (=" = 0 (6.7.6)

k=0
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¢) Prove that

2m—1

pu(t) = (=1)"F4" 3 (D 4 (S — 4t 4 1)
k=0

m

% Z(l _ r)4(nr—k}(_4)k—1.

Hint. Use (6.7.5) and

2m—1

Z( l)k "k

d) Define

m—+1
hm(t) = me—I(x) + 4) f 4"!(5 —dt + {3)
0

x> (1= n*mb—ay—"ar.

k=1

and prove that

Lfl—x)t 22
/f_(_m____‘.f_)mdxz -
J

14 x2 7
In particular this evaluation proves that 7 # :;_2 Write (6.7.7) as

1 /22
h()—tan~'1 = 2 (7 —:rr) .

125

(6.7.7)

(6.7.8)

¢) Evaluate h;(1) and compute the number of digits of  obtained from 4/4(1).

Exercise 6.7.2. Prove that
{ 1 )m +1 4m s
n(E)— T dr ‘ < 27,
‘ [ Pult) = 1+ 12 -
Hint. Use x(1 —x) < 1/4for0 < x < 1.

Theorem 6.7.1. Define

(_ l)m+l X

km(x) = >m / pm{f) di.
2 0

Then the polynomials h,,(x) satisfy

] 1 degulm +1
H(x) — tan x‘ < (25?>

forall x € [0, 1].

(6.7.9)

(6.7.10)

(6.7.11)
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Proof. This is the result of Exercise 6.7.2. O

f) Establish the closed-form expression

2m 4m—2
m 1) = .._,r I+ Y4m+j+l,
{ ) Z 2 ; ])m+]4m(4m+J + 1)

where

2m 2m—1
4
AP A ( ) and a1 = (=D 3 (-D* (2k1’1)-

k=i+1 k=i

Hint. Prove that

m—2
(1= “Z L D) .
W = aj-.“’ + 1-|——r2' (6.7.12)
j=0

where r,, is a polynomial of degree at most 1.

Project 6.7.2. Find a rational function R such that

The number 333/106 is the second convergent of the continued fraction of
m, 22/7 being the first. General information about continued fractions can be
found in Hardy and Wright (1979). This may be a difficult project, F. Beukers
(2000) states that

Itis not clear whether there exists anatural choice of F which produces the approximation
333/106.

The author is seeking rational approximations to & in the form
i VF(r)dt _
J(F)y= [ —— > (6.7.13)
J0

The reader should analyze Beukers’ approximations

1 Izn(l _ rZ)ln et i )
J, = Trrm [+ + (1 =ity dr, (6.7.14)
0 ;

P . . . .
where i = —1 is the imaginary unit.

6.8. The Infinite Product for sin x

In this section we discuss the product representations for trigonometric func-
tions that appeared in Euler’s treatise in 1748 (1988). The reader will find
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in Nahim (1998) historical information about these topics. The products dis-
cussed here generalize the factorization (2.4.4) to the case in which the poly-
nomial Q is replaced by sin x.

Theorem 6.8.1. The product representations for sin x and cos x are given by

sinx = x H (l B (:‘;)2) (6.8.1)

k=1

and

= —————— 6.8.2
cosx = H ( ('r(k — 2)) ) ( )

Proof. The argument given here appears in Venkatachaliengar (1962). Start
with

w2
[(x) = [ cosxt cos" t dt
Jo

and integrate by parts to obtain
2 2
nn — Di,_2(x) = (" —x7) 1, (x).

Since 1,(0) = 0 we get forn = 2
L o(x X2\ L(x .
2() _ (1 - L) x) (6.8.3)
1”—2{0) Hz 1”{0)
Using the values /p(0) = 7/2 and [1(0) = 1 we have

. (r{x wx Ip(x)
sin —) =

‘ o (Txy _gfl(x)
> > 1o0) and (.05( )_{l

2 700
Now

/2

/2
] (1 —cosxt)cos" t dr
0

tln({)) - Ii]'(x)t =

1 72
< —x“/ t-cos" tdi
2 J
1 , w2
< —x* / tcos" 't sintdt
2 Jo
1
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where we have used ¢+ < tant. Thus

In(x) 6.8.4
i L,(0) (6.8.4)
Now replace mx /2 by x, so (6.8.1) follows from (6.8.4). O

Exercise 6.8.1. Use the recurrence (6.8.3) to obtain a closed form for the
mntegral I,(x).

Exercise 6.8.2. Use the product (6.8.1) to derive the Wallis product

< 2k 2k
=272 685
d Ezk—l 2% + 1 (6.8.3)

Exercise 6.8.3. This exercise outlines a proof of the product representation
(6.8.1).

a) Prove the identity

(n—1)/2 .2
sin” x
sin(nx) = K(n)sinx x l— ——|,
E ( 51112(11;‘/”)
for n odd. This is a representation for the polynomial requested in Exercise
6.2.12. Hint. Locate the zeros of sin(nx).
b) Let x — 0 to obtain K(n) = n.
¢) Conclude that

sinx = nsin(x/n) H{] + fi(n,x)), (6.8.6)
]'=]
where
0 r=(n-1)/2
(n,x) = sinZ( 6.8.7
fr(n, x) B Tll: (x/n) F <12 (6.8.7)
sin“(rm/n)

d) Let n — oo to obtain (6.8.1). The representation (6.8.2) follows from the
identity cos x = sin(2x)/2sinx.

Extra 6.8.1. The convergence of an infinite product can be treated in parallel
to that of infinite series. Given a sequence of positive numbers {a, }, we form
the partial products

Pn:(]‘f’ﬂl)(]‘f'ﬂz)“‘(]‘l'ﬂn) (688)
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and if p, converges to a limit p then we write

o0

n=1

It turns out that p, converges if and only if the series > a, converges. See
Hijab (1997) for details and examples.

The naive extension of (2.4.4), that gives the factorization of a polynomial
in terms of its roots, fails. The construction of a function f with roots at
{a;, az,---} via

o0 -
=11 (1 - i) (6.8.10)
k=1 %
might not be convergent. Weierstrass introduced elementary factors
Ey(z) = l -z,
Ey2)=(1—2exp(z+2%/2+---+2"/p)

and showed that it is possible to choose indices p; so that the modified
product

Px)=[[E, (—)

gives an honest function with the desired zeros. Greene and Krantz (2002)
give complete details.

6.9. The Cotangent and the Riemann Zeta Function

In this section we discuss some elementary properties of the cotangent func-
tion

CosXx

cotx =

(6.9.1)

sinx

Exercise 6.9.1. Check that cot x 1s the logarithmic derivative of sin x, that
is,

cotx = — Insinx. (6.9.2)
dx

The product representation given in Theorem 6.8.1 yields a similar one for
cotx. Replacing x by mx simplifies the form of the factors.
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Exercise 6.9.2. Check the product representation

x ] —
cotmxy = ! Hﬂ (6.9.3)

We next describe the Taylor series expansion of cotx — 1/x.

Proposition 6.9.1. The expansion of cotangent is given by

1 o0 ] , XZJ!—l
CMX:;—E;—U B%?E%i. (6.9.4)
Proof. The expansion (5.9.1) and the identity
e +1 - 2
e’ —1 e’ — 1
yield
. o0 2n
==Y By 2 A (69.5)
tanx — n 2m)’ o
after letting y = 2ix. This is equivalent to (6.9.4). |

We now compare two expansions of cotx to obtain a relation be-
tween the Bernoulli numbers B, and the values of the Riemann zeta
function

=1
(D=3 (6.9.6)
n=1

at the even integers. This is due to Euler. The function ¢ (s) will be discussed
in Chapter 11.

Proposition 6.9.2. The expansion of cotangent is

oty = — —23 . 6.9.7
cotx B Z 5 (6.9.7)
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Proof. Logarithmic differentiation of (6.8.1) yields

ad 2x
cotxy = — + :
X Z XE - nzkz

“1+§: Lo
T x k= x+mk’

where to keep the sum convergent we sum the terms k and —k together.
Expanding 1/(x — k) in power series we get

: Clyxi N
cotr=—+Y 3 C Yy Y

k=1 j=0 k=—nm0 " " j=0

1 S, P
cotx = ; - ZZ k2

and this is (6.9.7). O

Corollary 6.9.1. The Bernoulli numbers are given by

t(2n)  (2n)!

By = (=175 X (6.9.8)
In particular, £(2n) is a rational multiple of =*".
Exercise 6.9.3. Integrate the expansion of cotx to derive
o
L £(2n) 5, )
Insinx =Inx — Z i x". (6.9.9)
n=1

Confirm that the special case x = 7 /2 yields
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Exercise 6.9.4. Prove the identity

1

= 2
SN~ X

oo 1 -
= > - (6.9.10)

H=—

Hint. Compute (Insinx)”. See 10.7.2 for a related calculation.

Exercise 6.9.5. Check the expansion

0 Anradn
222 — 1) . _
lan.r:E —G | By, |21 (6.9.11)

n=I

Hint. Use tanx = cot x — 2cot 2x. This appears in [G & R] 1.411.5.
Exercise 6.9.6. Check the expansion
l+i 2 | By, |x2 1 (6.9.12)
cosec x = — —— | Bay|x . 9.
x = 2n)! >
Hint. Use cosec x = cot x + tan(x/2). This appears in [G & R] 1.411.11.

Project 6.9.1. The expansion of sec x requires the introduction of a new class
of numbers.
a) Prove that the Taylor series for secant has the form

o0

(—D"Ezp s, :
sec x = Z Wf , (6.9.13)
n=0

where the Euler numbers E», are defined recursively by

J—1 .
2
Eo=1 and Ey:=-)Y (zi) Ex. (6.9.14)

k=0
Hint. Use the identity cos x x sec x = 1.
b) Check that the Euler numbers E», are integers and show that Ey = 1, E» =
—1, E4 =35, Eq = —61, Eg = 1385.
¢) Use the identity % tanx = sec” x to obtain

(-=1)""'n = fop—2 L )
By, = P — 1) Z oy Ly Eyy 2. (6.9.13)

r=0

d) What does one get from E-;‘-r‘-_ secx = tanx secx ?
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Note 6.9.1. The expansion of secant appears in [G & R] 1.411.9. The reader
will find in Atkinson (1986) a description of the expansion of sec x and tan x.

6.10. The Case of a General Quadratic Denominator

The reader is familiar with the decomposition
R(x) = Re(x) + Ro(x) (6.10.1)

where

R(x)+ R(—x R(x) — R(—x)
Ry = ROFRED) 4 Ry = RO = RED 6100
2 2
are the even and odd parts of R respectively. In this section we describe the
relation of this decomposition and the integration of rational functions.

Let R be arational function. Then (6.10.1) yields

/ R{x)dx:/ Re{x)dx—l—/ Ry(x)dx, (6.10.3)
Jo Jo Jo

where we assume that all the integrals are finite. In the integral of the odd
part, let x = /7 to obtain

°‘= -1 [®R(J1) = R(—=/1) _
[ Ro(x)dx = 2‘4 NG dt. (6.10.4)

Exercise 6.10.1. Let R be a rational function. Prove that

(V) — R(—y7)
2Jx

R i
F(R(x)) = (6.10.5)

1s also rational.
Therefore (6.10.3) yields

/ R(x)dx:/ RE,(x)dx—l—%/ F(R(x)dx,  (6.10.6)

i 1] i

and the question of integration of rational functions is reduced to the integra-
tion of even functions and the study of the map §.

Extra 6.10.1. The map § has many interesting properties. We have studied
in Boros et al. (2003, 2004) the action of § on rational functions of the form
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R(x) = P(x)/Q,(x), where P is a polynomial and
0.(x) =[[a™ -1 (6.10.7)
L-:I

where n € M and my are odd positive integers. This choice of denominator
was motivated by the fact that if R has a pole at x; then F(R) has a pole at xé.
Therefore the existence of a pole of modulus different than 1 leads to growth
of the coefficients of §"(R). The reader can verify that the rational function
F(R) has the same denominator as R.

In the case n = 1 we have

i Yl )
3( * ) == (6.10.8)

xm - 1 XM — 1

with
. J (m—1)(j—1)

m(j) = - 6.10.9
Ym(Jj) =m {2J > ( )
The study of the iterates of § is therefore reduced to that of y,, : Z — Z. The
iterates of y,, reach the set A, = {0, 1, 2, ..., m — 2} in a finite a number of

steps and leave this set invariant. The behavior of y,, inside 2, is determined
by arithmetical properies of m. For instance, for m prime, there is a single
orbit precisely when 2 is a primitive root modulo m, that is, the numbers {2/ :
0 < j <m — 1} reduced modulo m are all distinct. Artin (1964) conjectured
that 2 is a primitive root for infinitely many primes. See Murty (1988) for an
update on this conjecture. The primes m < 100 for which 2 is a primitive root
are

(3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83}.

In the case of n = 1 the iterates of R, appropriately normalized, converge
to a limit: we state the result only in the case when the integers m, ..., m,
are relatively prime, the general case appears in Boros et al. (2003). Let
L=1/(m;---m,), then

FPR@) LA, ()
oo 207D T (1= xyi(n — 1))

(6.10.10)

where A,_;(x) is the Eulerian polynomial defined in (4.1.13).

In Chapter 2, Project 2.3.1 we have analyzed the form of the integral

L()—/m dx
mid) = Jo (.\1'3 + 2ax + 1)m+1 '

(6.10.11)
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The even part of the integrand can be written as a linear combination of
integrals of the form

> x% dx
A (xq +2(1 — 2112)X2 + l)m-i—]

that will be studied in the next chapter. The map § yields linear combinations
of integrals of the form

/x I” d'r
Jo (24 2(1 —2a®)t + Dym+t”

Exercise 6.10.2. Check that it suffices to consider the case n = (0. Hint.
Divide " by the quadratic denominator.

Project 6.10.1. The process described above and the results of Chapter 7 give
a relation between the integrals L, (a) and L,,(1 — 2a?). Describe it.

6.11. Combinations of Trigonometric Functions and Polynomials

This section contains the analog of Section 5.10 for the classes of functions

n m
E=4 flx)= Z Zs!-_jxi sin’ x sijeR n,meN (6.11.1)
i=0 j=0
and
n m . .
¢=< flx)= ZZ cijx'cos’x: ¢ eR, n,meN3. (6.112)
i=0 j=0

The conclusion of the exercise is that & and € are closed under the forma-
tion of primitives.

Exercise 6.11.1. Let m, n € N. Prove the recurrences

A ym—l Siun—] X .
x"sin" x dx = —— (m sinx — nXx COsX)
n

n—1 o mim — 1) s
+ / x"sin" 2 x dx — ———— [ X" “sin" xdx
n- .

n
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and
=1 oni—1 .
mo,.n . X cos X N ol -
x"cos" xdx = ——————(m cosx + nx sinx)
n—1 _ m(m — 1) .
-+ /x’” cos" 2 xdx — ————— [x" " cos" x dx.
n n+

These expressions appear in [G & R] 2.631.2 and 2.631.3 respectively.

The integration of the product of a trigonometric function and a rational
one requires the sine integral

. > sint ]
si(x) = —/ Tdr (6.11.3)
and the cosine integral
OC Ao
ci(x) = — / Sy 6.11.4)
x I

For instance

4 ::-Hf; dx = (% - Si(b’”)) cos(bm) + ci(bm) sin(bm)

and

ax?+bx+c 2y
+ cos(r)(m — 2s1(ry) — cos(r)(m — 2si(r2)),

/ 7511]{}"”(” = L(2(:i{1*'|)sin{r|) — 2ci(ra) sin(rs)
0

where

L RRRER TR b —v I :
y= Vb —dac, r = b= ym and rh = M
2a 2a
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A Quartic Integral

7.1. Introduction
Chapter 3 described the evaluation of
= Px)dx
P E—— (7.1.1)
o (qix +qo)"*

and Chapter 6 continued the program of evaluating integrals of rational func-
tions with a discussion of

/°° P(x)dx (7.12)
0 (@2x + qix + gyt o

The natural next step of

[ Gt a1
1] (Q‘SI3 + q2x3 + gq1x + qo)m+l -1

is left for to the reader to explore. In this chapter we consider the evaluation
of the quartic integral

/‘” P(x)dx (7.1.4)
0 (qax* + gax? + go)mt! o

where P is a polynomial and m € . The convergence of the integral requires
the degree of P to be at most 4m + 2. Dividing P by the denominator g4x* +
g2x2 + qo expresses (7.1.4) as a sum of integrals of the same type in which
the numerator is only of degree 3. The identity

/” p3x® + pix dr — 1/” psu+ pi
0 (g4 qux? g0t T 2o (qau’ + qaue + go)t!
shows that the odd part of the polynomial P yields the elementary integral

du (7.1.5)

considered in Chapter 6. For example, the evaluation of

=) 8 3
F303 41
i :/ rror (7.1.6)

B e s
o razrp

137
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uses

B3l = =4 4 15 x (0t - 4x2 + 1) + (3x° — 5622 — 14)

and
AP 15 =1 x (x4 4x + 1) + (14 — 8xD)
to obtain
/m 3xY —56x2 — 14 2 _8x? 4 14
I = L dx+ S e S
Jo (xt4+4x24+1)° Jo (P +4x24+ 1)

+/°° dx
Jo (x4 4 4x2 413

Exercise 7.1.1. Use the method of partial fractions to confirm the value

(x4 4+ 4x2 4+ 15 20736

/x. 3 dx 5(60+7v3 In(7 — 4V3))
J0O

Mathematica 7.1.1. The Mathematica commands
PolynomialQuotient [p, q, x]

and
PolynomialRemainder [p,q,x]

give the quotient and remainder of the divison of the polynomials p and ¢,

respectively.
Therefore the problem is reduced to the study of the integrals

o dx
Noa(qa, g2, gosm) := /0 G T o gy (7.1.7)
and
N1 4(g4, g2, gosm) := /m x*dx (7.1.8)
0 (gax* + q2x? 4 go)m*!

The next exercise shows the normalization of both families (7.1.7) and
(7.1.8) in terms of the integrals

Noa(a: )_/m dx (7.1.9)
0@, m) = 0 {“:4+20x2+1)m+1 e
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and

Niata: )-/x et (7.1.10)
14ldsm) = o {)('4+2G.Y2+ l)m—H' o

Exercise 7.1.2. Check the identities

No.4(qa, g2, qosm) = — 57 Noa | 5 —=

qy qy (Z\IQU% )
and

1
N1.a(ga, g2, qoim) = — 77 Nia

a0 g (2«/4[)@‘4 )

Exercise 7.1.3. Prove that

Noa(lsm) = —2 (4'"”). (7.1.11)

24rn+3 2m+1

In the next section we present an explicit formula for the quartic inte-
gral Ng 4(a; m); the corresponding expressions for Ny 4(a;m) are obtained in
similar form.

7.2. Reduction to a Polynomial
In this section we establish a preliminary closed form evaluation for a quartic
integral. More refined versions appear in Section 7.9.

Theorem 7.2.1. Let

- dx
Nn_4(a;m)=ﬂ G+ 2ax? 4 oo (7.2.1)
and define

P.(a) = --!--2’”+‘ a4+ D)™ Ny a(a; m). (7.2.2)

Then P, (a) is a polynomial in a of degree m with rational coefficients given
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by

m m—j s
P.(a) = Z (21112::- 1)(‘ﬂ L1y Z (m . J’)

=0 k=0

% (2(”1 - k)) 2—3(::!—!\')(‘1 _ l)m—.k—j. (723)

m—k

Proof. In order to evaluate Ny 4(a; m) for a nonnegative integer m, we start
with the change of variable x = tan#, yielding

T2 COS4 i m+1 46
Noalazm) = X —
JO

sin* @ + 2asin” 8 cos2 0 + cos* 6 cos’@’

After the substitution # = 26, the integral becomes

Nostasmy =200 [° (tcosw?  \""'  du
ST = o V(1 +a)+(1—a)costu

The substitution y = 1/x in (7.2.1) produces a different expression for

No.ala;m):
00 4 m+1
y dy
Ny 4la;m) = [ (7) —,
04 Jo \y*+2ayr+1 y2

and, as before, the substitutions y = tan#, u = 26 produce

T _ 82 nm+1
Noa(a;m) = 27m+D f ( (1 — cosu) ) X _du
0

(1+a)+ (1 —a)cos?u 1 —cosu

1 4 cosu’

These two expressions are averaged in order to obtain an integral representa-
tion for Ny 4(a;m) that contains only even powers of cos u. Thus

T (1 = cos u)> ! 4 (1 + cos u)?m+!
Noatazmy =272 [ ) ( ",

] ((l +a)+(1 _H)COSZH)"’H

where the integrand is a function of cos? u. Indeed, expanding the powers by
the binomial theorem yields

m 2 l
Nyala;m) = 2—(m+1;2 ( m + )
j=0 2j

X / ((l +a)+(l—a)c0$21f)_m+”
Jo

cos™ u du. (7.2.4)
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We now compute the integral appearing in (7.2.4). Let
I)(a) = / (A+a)+d - a)coszu)_U"Jr”coszf u du.
Jo
Then
I
I,;'!(a) = m—J [ (3 +a)+ (1 —a)cosv) "D (1 4 cos v) dv
= it / (B +a)+ (1 —a)cosv) " V(1 + cosv)’ dv,
0
where we have made the substitution v = 2u and used the symmetry of the
cosine in the last step.
For each fixed value of the index j, the integrand is a rational function of

cos v, so the substitution z = tan(v/2) is a natural one. It yields

f,;’;(a) = 2/ [2 + (1 + a)gz] —(n+D) % (1 + 7)™ idz

) —(m+1})
= 2(1 +a [m+1}/ (4,24- )
( ) | T a
—1 m—f
L2
* ( + 1+a +1

i —J 2 —m—1+k
_ 2 1 (m+ ]
(1 +a)” kz: k 1+a)
— 1\ j—k
X (a ) dz.
a+1

Finally let z = /2/(1 + a)tan¢ in order to scale the last integral. Using
Wallis® formula (6.4.5), we obtain

f;r{a) =7 % 2—1/’2—3::1(1 +a)—nr—I;'2

—j _ ; . .
Z (2(”1 k)) ( 1)231&(0 +Dia—=1""7* (7.25)
o m — k

Thus

m 2 l ]
Noalasm) = x Z ( :' )(a + )2

Jj=0

m—j N
% m=j 2(”1 - k) 23&—4»:—3{3(6' _ l)m—j—k. (?.26)
k m—k

k=0

O
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Note 7.2.1. Gradshteyn and Ryzhik’s table of integrals (1994) [G & R] con-
tains Wallis” formula as 3.249.1. We were surprised not to find (7.2.6).

Corollary 7.2.1. Let a € Q. Then
dx

1 o
Ty2(1 + a) /0 (x* 4 2ax? 4 1ym+! ©

Q. (7.2.7)

Proof. The expression in (7.2.7) is P, (a) divided by 2"+2(1 4 a)"*!. O

The expression given for Ny 4(a; m) allows the explicit evaluation of this
integral for a given value of the parameter a. This is efficient only for small
values of m.

Exercise 7.2.1. Check that

Pya) =1
Pi(a) = 5(2a +3)

Py(a) = (4a® + 10a +7)

Pi(a) = L(40a* + 140a* + 172a + 77).

Exercise 7.2.2. Show that

Noa(a, 0) / h dx 7 1 a8
. — — % 1. 5
o o (@t 42ax?4+1)  23%a+ D2
_ °° dx -
Noala: D= 0 Gt 2ax’ 12 2@t e (2a +3). (729

Exercise 7.2.3. Check the values

/x xtdx . T
0 X4+ QRa—Dxt+1  2J2a+ 1

[m dx - (7.2.10)
Jo bxt+2ax2+1 22 \Ja+ Vb -

and

/°“ x2dx T 1
o bxt+2ax?+1 2.7 \*’a+\/f;.

Hint. Use x — 1/x in the first integral to reduce it to an Ny 4 case.
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7.3. A Triple Sum for the Coefficients
In this section we discuss the first formula for the coefficients d,(m) in

m

P, (a) = Zd;(m)a". (7.3.1)

1=0
The formula developed here is a consequence of the elementary evaluation
of Ny 4(a;m). The expression in Theorem 7.3.1 can be used to evaluate d;(m)
efficiently if / is small compared to m. We illustrate this with the calculation
of do(m) and d,(m).
Theorem 7.3.1. The coefficients d;(m) are given by
I m—j m

(=D 2k f2m 41\ (m—s—j
d,s(m)“zz Z T (k)(Q{.s+j))( m—k

J=0 s=0 k=s+{l

)00)

Proof. We start by reversing the order of summation in the expression for
Py(a) in Theorem 7.2.1 and replacing k by m — k to write

_ - 3k 2m + 1 u ke—v
Pm(a)—g( )2 Z;( . o k{””‘ e,

We now expand the terms (a + 1)" and (a — ])"_", giving

m kv kv
Pula) = 22222 'k( )(2”:2:]) (:::;)

k=0 v=0 j=0 r=0

3% (]}) (k - U)(_ ])k—\'—raj+r
] r

SRR ()0 ()

k=0 v=0 j=0 r=0

% (]}) (k - U){_])k—v—raj+r‘
J r

where we have extended all the sums to m, the added terms vanishing. Now
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replace r by I — j to obtain

2k\ (2m + 1 -
,,Ia;._zzzzw( )(”; )(:;_;:)

1=0 k=0 v=0 j=0

% 'I) k_l)‘ (_l)f\'—l'—f+jaf_
JJ\L—J

We will now rewrite the sums over the ranges where the coefficients are
non-zero. First consider the coefficient ( ) Its presence restricts j to the range

(0 < j = v. The appearance of ( ] then yields 0 </ — j < k — v, so that

0 = k — v.From (“"'+]) we obtain thc, restriction 0 < v < m, and from (’” D
we getv <m, k <mandv <k, sothat v < k < m. Finally, (!_}.) leads to
kzv, l=jandk —v=1-j.

Now that we have derived the new ranges for the indices we proceed
to perform the inversion. First choose ! in the range 0 <! <m. Then
choose j so that 0 < j <[. Next we pick v in the range j < v < m, and
finally & is chosen so that [ — j + v < k < m. This completes the change of
variable. O

Exercise 7.3.1. Check the evaluations of the constant and linear term:

moom _])k s 2m + 1 m-—s
do(m) = ZZ i ( )( ” )(m_k) (73.2)

s=0 k=s
and
m—1 ne
—1)yf=s=1 ok 2m+2\ [fm—s5—1
dl(m)_z Z %k (k) (m - )( —i—])( m—k )
3=0 k=s+1

(7.3.3)

Use WZ theory described in the Appendix to obtain recurrences for these
sums.

Exercise 7.3.2. Use Mathematica to create a list of the coefficients of P, (a)
and observe that, in spite of the alternating sign appearing in the expression
for dj(m) given in (7.3.1), these coefficients seem to be positive. A proof of
this result appears in Section 7.9, Corollary 7.9.1.

7.4. The Quartic Denominators: A Crude Bound

The expression in Theorem 7.3.1 shows that d;(m) is a rational number whose
denominatoris a power of 2. In this section we establish a bound for the 2-adic
valuation of the coefficients d;(m). See Section 1.2 for the notation.
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Exercise 7.4.1. Prove that the 2-adic valuation of d;(m) satisfies the lower
bound pa(di(m)) = —3m.

The worst possible case for the value of ps(d;(m)) appears from the term
k = m in the sum in Theorem 7.3.1. But this coefficient is multiplied by the
central binomial coefficient C,,. Using

lu'ﬁ{cm) =m - ,ug{mf)

we obtain an improvement of the bound given in Exercise 7.4.1.
Proposition 7.4.1. The 2-adic valuation of d;(m) satisfies

paldym)) = D = —2m =Y E—’J . (7.4.1)

i=1

Extra 7.4.1. Optimal bounds for

) =3 {%J (7.4.2)

k=1
have been given by Berndt and Bhargava (1993), page 593, in an expository

paper about Ramanujan’s work. They have established that

n In(n + 1) n—1
- Sﬁ;}(”‘)f
p—1 Inp

(7.4.3)

Exercise 7.4.2. Check that the bound D in (7.4.1) satisfies

l l
SJJJ—M = —-D <3m— 1.

In2

In particular, lim —D/m = 3.
n—00

We conclude that the contribution of the central binomial coefficient to
the value of p2(d;(m)) is asymptotically negligible as m — oc. In Corollary
7.9.1 we establish that g5(d;(m)) = 2m — 1. This requires a new method.

7.5. Closed-Form Expressions for d;(m).
Itis now possible to evaluate explicitly an expression for the first few leading
coefficients of P, (a). These evaluations require the value of the binomial
sums discussed in Section 1.4.
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Proposition 7.5.1. The leading coefficient d,,,(m) is given by
2
d,, = 2—"*( ”’). (7.5.1)
m

2
dyr1(m) = 2m + 1)2~ D ( m) (1.5.2)
m

The next term is

Proof. The sum in Theorem 7.3.1 yields

L3 [ 2m o 2m+ 1
dn(m) =2 (m ) Z ( 21 )

1=0

This gives (7.5.1). To establish (7.5.2), the corresponding sum is

m—1 [+1 m . W 2m + 1 N
2 B 1 [y

I=0 v=l k=m—1-l+v

v k—v ke v—mH L
x(:’) (m—]—l)( b '

The inner sum in v contains only two terms and a simple calculation

produces

2m —2 . 2m i 2m + 1
d,”_ — 2—_\(»1—” — 2~ 3m - l
o= (070) - () g7 )
o 2m) & 2m + 1
2-.‘”! l
+ ( m ) ; ( 21 )
2 .
= (2m + )27+ ( m) U

m

Exercise 7.5.1. Compute the next two terms. The results are

m—1

dy—2(m) = 2"” 27D 4m? 4+ 2m + l)( ”:,)

and

dy_3(m) = %2_("'”’(8”:" dm 4 3)(:)
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Hint. Use the results of Exercise 1.4.7 and

mn 2 1
ZH( ”2:: ) = (n+2)2n + 1)2225. (7.5.3)
k=0

7.5.1. Scaling of Coefficients

Based on the structure of the first few coefficients described above we intro-
duce the scaling

(m + f)f —m
dj(m) = {mz } e;(.‘ﬂ). (?.54)
Project 7.5.1. Define
— : O R S
Qi(m) = — ”!zﬁ [5.—1,—m;2]. (7.5.5)

Check that for / fixed and independent of m, the expression @,;(m) is a poly-
nomial of degree I with integer coefficients. Confirm the values

Qo(m) =1

Qimy=m+1

Qs(m) =m?> +m + 1

Qs(m) = m +2m +3

Q4(m) = m* —2m? + 5m* +8m + 9

Os(m) = m> — 5m* + 15m> + 5m* + 29m + 45 (7.5.6)

Verify that e;(m) defined in (7.5.4) satisfies

e;(m) = Qm—f(zm) (75?)
and prove that, for / odd, Q;(m) is divisible by m + 1.

7.6. A Recursion

In this section we prove a recursion for the integrals Ny 4(a; m). The argument
is based on Hermite’s reduction procedure for the indefinite integration of
rational functions. Bronstein (1997) contains a detailed description of these
ideas.

Let V(x) = x* 4+ 2ax® + 1. Then V and V' have no common factor so the
Euclidean algorithm produces polynomials B and C such that

1
——=CV + BV (7.6.1)

m
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Indeed, a simple calculation yields

1 2 3
B(x) = “amai 1 ((l —2a°)x —ax’) and
1 a
Cx)=—— (1 7).
x) m( +az—1x)

This is the answer to Exercise 4.3.1.
Divide (7.6.1) by V™! and integrate from 0 to oo to produce

1 - 242
Noglaz:m)= {1+ m Noala;m — 1)
(4m — 3a
e Y im— 1).
4m(a® — 1) 14(@;m )

This recursion can be also be written as
1 — 24>
dm(a® — 1)

o2 dN (a; 2) (7.6.2)
8m(m — 1)(a? — 1) da o.4la;m . 6.

No4la;m) = (1+ )No.:t(ﬂ;m"'l)

Proposition 7.6.1. The polynomials P,,(a) satisfy

Pnr(a) = (2m - 3)(4m - S)G Pm—Z{a) - (4m - S)G(a * 1) iPna—Z(a)
dm(m — 1)a — 1) 2m(m — 1)a — 1) da
dma® — D+ 1—24%
2”‘!{6‘ _ l) Pm—l(a)- {76‘3)
Proof. Use (7.2.2) in (7.6.2). O

Exercise 7.6.1. The goal of this exercise is to provide an evaluation of the
integral

omy= [ — 7.6.4
No.a( ,-‘ﬂ)—‘o W (7.6.4)
as
Noa(0;m) = 27232 5 T4l — 1. (7.6.5)
m! o
a) Verify that the recursion (7.6.2) reduces to
dm — 1

Ny a(O:m) = e Noa(O;m = 1). (7.6.6)
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Therefore the proof of (7.6.5) reduces to the evaluation of

N 0-0—[00 dx 7.6.7
0,4(,)—‘0 e (7.6.7)

b) Check the factorization
=2 V2 D= V2 + 1) (7.6.8)

$0 (7.6.7) can be evaluated by partial fractions. The more general case can be
done by the decomposition

1 2x + ¢ 1
xX2+cex+Dx2=cx+1) - de(x2+cx+1) + 4x24+cx+1)
2x —c¢ 1
_4C{x2 —cx + 1) + 4x2—cx + 1)

Check it and obtain from it the value of the integral

/‘:’O dx
Jo 24 cex+ Dx2—cx+ 1)

¢) The particular value ¢ = /2 yields

% dx T
= —, 7.6.9
/0 x4+ 232 ( )

Mathematica 7.6.1. The command
Factor([x™4 + 1]

returns the polynomial x* + 1 unfactored. To instruct Mathematica to factor
using different types of algebraic numbers use

Factor[x™4 + 1, Extension -> Sqgrt[2]]
The result is (7.6.8).
Exercise 7.6.2. Confirm the special values
4m + 1 m(m + 1)
Py(l)y=272" and PL(1)= ———Pu(1) (7.6.10
(1 (2!” ) and P, (1) 43 (1« )
and use them to show that the right-hand side of (7.6.3) is, in spite of its

appearance, a polynomial in a. These special values will reappear in Exercise
10.5.3.
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Project 7.6.1. a) Use the recurrence (7.6.3) to obtain a recurrence for the
coefficients d;(m).

b) Obtain formulas for dy(m) and d;(m).

¢) Produce a recurrence for the polynomial @;(m) defined in Project 7.5.1.

7.7. The Taylor Expansion of the Double Square Root
We now present the results given by Boros and Moll (2001) to evaluate the
coefficients of the Taylor expansion of i(c) := \/ra + /1T + c. The particular
case a = | is a standard example often used to illustrate Lagrange’s inversion
formula. Berndt (1985), pages 71, 72 and 304-307, gives a complete history
of this problem.

Lemma 7.7.1. Let

© f N d

C) =

£ o x+2ax?+1+¢

and h(c) = Va+~'14+c. Thenglc)=m s/_h ). In particular,

h'(0) No.a(a;0).

-rf

Proof. Write g(c) as

1 o dx
8©) =172 A A t+o+Qa/l+ol+1

and now use Exercise 7.2.3 to evaluate g(c). O

Note 7.7.1. Compare with part j) of Project 2.3.1.

Theorem 7.7.1. The Taylor expansion of h(c) = m is given by
Va+VT+e=Va+1+ nl/ig - ]k)H Noa(a:k — Dk, (7.7.1)

Proof. Evaluate h*'(0) using Lemma 7.7.1. O

Corollary 7.7.1. We have

\,-]—I—«/l—l—c:s/ﬁ
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Proof. Use the value 2%~ !Ny 4(1;k—1) =7 Gi:?) -

This appears in Bromwich (1926), page 192, exercise 21, and is a special
case of [G & R] 1.114.1.

7.8. Ramanujan’s Master Theorem and a New Class of Integrals

We establish a connection between Ny 4(a; m) and a new family of integrals.
This is used to establish a single sum formula for P, (a).

Theorem 7.8.1. Define

y ( ) /x x’”"d:{ (? g ])
mhd) 1= . 0.
o (a+/1+x)m+12

-1
1 4 2

Jula) = —20m+3/2 [JJ!( m) ( m)‘| x Nogagla;m). (7.8.2)
T 2m m

The proof of Theorem 7.8.1 is based on Ramanujan’s Master Theorem stated
below.

Then

Theorem 7.8.2. Suppose F has a Taylor expansion around ¢ = 0 of the form

i nt

F(c)= Z {:n‘ (ﬂ(m)c’"_

m=0

Then the moments of F, defined by

o
M, = / ! F(c)dc, (7.8.3)
Jo
can be computed via
M, = (m — D!lg(—m). (7.8.4)

Berndt (1985) provides a proof and exact hypotheses for the validity of
the Master Theorem. Observe that the expression (7.8.4) requires the ability
to compute the function ¢ outside its original range, namely at negative
indices.

Proof of Theorem 7.8.1. We apply the Master Theorem to the expansion in
Theorem 7.7.1. Differentiate the integral Ny a(a; k — 1) j times and replace
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x by 1/x to produce

d\’ (=127 (k + j — 1! o HkH2j-2
—_ Noalask —1) = % / N
da (k= D! o (x4 2ax? + DFH

From (7.7.1) we obtain
(i)j \/a +Vl+c = (—) Va+1 +Z —rp{k) .
da

with

> ak+2j-2
W‘)=(-1)”1L{k+1-—1)!2fXfm o
72 o (x4 4 2ax? + Dkti

Now replace k by —m to produce

= —dm 22
p(-m) = (~ 17— g - 112 /°‘~ e
I\/i 0 (xd + 2ax? e l)—m+J

The choice j = 2m + 1 yields

m! 22"!+1

p(—m) = e

The moments of the function H(c) := (J—‘;)J a++/1 + ¢ are computed
directly as

———=—Ny.4(a;m). (7.8.5)

M, =

(=17 12j - 3)! . /w ck=lde
220D (j —2)! 0 (a+m)f—1f’2’

and the choices j = 2m + | and k = m produce

dm —1)!

MHT = i A 1
24 2m — 1)!

X Ju(a).
Ramanujan’s Master Theorem now yields (7.8.2).
Exercise 7.8.1. Check the details.

Note 7.8.1. The Ramanujan Master Theorem will be used in Chapter 10,
Exercise 10.4.6 to give a new proof of a classical identity of Legendre.
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7.9. A Simplified Expression for P,(a)
In this section we evaluate the integrals J,,(a) defined in the previous section.
This will prove that the function

1 Ny ;
Py(a) := =27 (a + 1)" T2 No 4(a; m) (7.9.1)
bg
is a polynomial in a. The expression for P, (a) will show that P, (a) is a

Jacobi polynomial with parameters m + % —(m + %). This classical family
of polynomials is defined by

. (=D /d\" .
o o B oploBle oy o n+ce An+f
A=A+ PP = = (dx) [(1—x)" (1 + x)" ] .

Lemma 7.9.1. Let f,,(u) = w(u? — 1)""L. Then the integral J,,(a) in (7.8.1)
is given by

21JJ!+1(2m)! m 22j (2m _ 2_})

(i+m=11 1 (2m—2j+1)/2
@m)! f, (D x(I+a)

(m . I}’)‘ n

Inla) =
=0

Proof. The substitution u = /1 + x yields

20
Jpla) =2 / Fu(u)a + u)_(z’”“mdu. (7.9.2)
J1

The result now follows by repeated integration by parts. The derivatives
f(u) vanish identically for j = 2m, and they also vanish at ¥ = 1 for
O0<j<m-—2 O

Lemma 7.9.2. The polynomial P, (a) is given by

m

2% 2m — ktm—1)
Pul@) = S5y 3 1m1 5> 2 {m_ f,E,+ () x (14 a).
k=0

Proof. Substitute the formula in Proposition 7.9.1 into (7.8.2) and use
(7.9.1). O

We now find a closed form for the derivatives of f,, atu = 1.

Proposition 7.9.1. Let 0 < k < m. Then

o m = Dlm +k)!
(k+m—1) m—k—1
T hH=2 ST (7.9.3)
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Proof. Expanding f,,(u) and differentiating we have

(etm=—1) () @2 D
Fa P = 1)( ; )x 2o

j=0

It suffices to prove

fm =1 2m —2j —1 iy (M k
by = -1/ ' =2" 1+— 1.,
ri= 2 )( j )(k+m—l) (k)(er)

i=0
(7.9.4)

which is equivalent to (7.9.3). Indeed:

o -1\ (2m —-2j —
k4m—1 __ i k+m 1
fm—1 2m —2j -1\ .,
= {—I)J( . ) ( " )Xﬁ+m 1
; j ; k+m—1
fm—1 Zm -2 -1\ ,
HUU)EU
=> 1 (m R 1) (1
j=0 J
= (x + l)lm ]Z ( _ )()‘ + 1)—1_;.
J=0

=@+ D" x 1@+ D"
= x™" ](Y+2)m_ m— l(l_i_z)m 1

_ i ( )2»1—&—] (l + 5) XfH—m—].
k=0 m

Thus (7.9.4) holds and the proof is complete. O

Theorem 7.9.1. The polynomial P, (a) is given by

" 2m m+k
=272y " gk + D 795
> (m_k )( N ){a ) (7.9.5)

k=0

Proof. This follows directly from Propositions 7.9.2 and 7.9.1. O
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Exercise 7.9.1. Check the hypergeometric representation

2m

m

P,(a) = 272" ( ) 2 Fy (—m, m+1; % —m; ';—”) . (7.9.6)

Extra 7.9.1. The expression (7.9.5) fits the pattern of the explicit form of the
Jacobi polynomials

(e, B) i - _qym—k m+ﬁ m+k+a+ﬁ a+1 k
Pyfa):=) (1) (m_k)( . .

k=0

with parameters o« = m + % and 8§ = —(m + ,IE)A Therefore
P(a) = Pml2mm=12 ), (7.9.7)

The reader should be very careful on the interpretation of this identity. There
are several properties of the Jacobi polynomials P*#)(a) that are established
under the assumption that the parameters «, § are independent of m. For
instance, the recursion
2m+ Dm +a+ B+ D2m +a + ﬁ)P,fff](a) = (7.9.8)
Cm+a+p+1) {(2m +o+ Ba+a’ - ,82} ij-‘fg](a)
—2(m + a)(m + B)2m + o +  + )P (@)

n—1

does notreduce to (7.6.3) afterreplacinga = m + 1/2and 8 = —(m + 1/2).

Corollary 7.9.1. The coefficients di(m) are given by

” 2m —2k\ fm+k\ (k
di(m) = 27" 2"( ) ( ) ( ) (7.9.9)
kzz; m—k m I}

Extra 7.9.2. Let aj(m)=m — [ + 2, b(m) = 8m? — 41> + 24m + 19 and
c;(m) = (4m + 5)dm + 3)(m + [ + 1). Define

di(m) == m!2"d;(m). (7.9.10)
The WZ method described in the Appendix yields the recurrence
ar(m)d;’ (m + 2) + by(m)d] (m + 1) + ¢;(m)d"(m) = 0. (7.9.11)

It would be interesting to explore properties of the coefficients d)(m) that can
be obtained from this recursion.
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Project 7.9.1. Reconsider the polynomials Q;(m) defined in Project 7.5.1.
In particular, find an expression for its coefficients.

Exercise 7.9.2. Use the value of Ny 4(0;m) to obtain the identity

" (2m—=2k\ [m+k om M
2k 4k — 1 79.12
Z ( m =k ) ( ) m! H{ ) ( )

k=0

Conclude that the odd part of m! divides the product [[}",(4k — 1).

Exercise 7.9.3. Use the values of P,,(1) obtained from (7.2.2) and (7.9.5) to

prove that
m 2k m 2 + ]
Zz-z“(k)( ) Yoo ”*( )( ”'2k ) (7.9.13)
k=0 k=0

Use the WZ method described in the Appendix to check that both sides of
(7.9.13) satisfy

@m +3)2m +2)f(m + 1) = (4m + 5)dm +3)f(m) (7.9.14)

and that they agree at m = 1. This gives an automatic proof of (7.9.13).

Corollary 7.9.2. The integral Ny 4(a;m) is given by

T m of 2m =2k (m+k f
N(}.ﬂ{a J”) 2\:n+§ /2 (] +ﬂ)JFI+1 Zz ( m—k ) ( N (ﬂ + l) :

k=0

Corollary 7.9.3. The integral J,(a) in (7.8.1) is given by

. Lan— D! 2m)! <~ (2m —2k\ [m +k .
@) =2 2 2k D,
(@) (dm)! (1 + ayn+1/2 Z ( m—k ) ( m )(a +1)

=0

Project 7.9.2. Give a direct proof of (7.9.13).

Extra 7.9.3. The coefficients d;(m) have many interesting properties that
need to be explored. We present information about a couple of them.

7.9.1. Unimodality
A finite sequence of real numbers {c¢; : 0 < j < m]} is said to be unimodal
if there exists an index 0 < j < m such that ¢; increases up to i = j and
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decreases from then on, thatis,co < ¢ = --- < cjandc; = ¢jp1 = - - = cp.
A polynomialis said to be unimodal if its sequence of coefficients is unimodal.
Unimodal polynomials arise often in combinatorics, geometry and algebra,
and have been the subject of considerable research in recent years. Techniques
employed in the discussion of unimodality are surveyed by Brenti (1994) and
Stanley (1989).

A stronger concept is that of logconcavity: a sequence of positive real
numbers {cg, ¢y, ..., ) 18 said to be logarithmically concave (or logconcave
for short) if ¢, ¢ < ci forl <j<m-—1.

The original motivation for this definition came from studying roots of
polynomials. A sufficient condition for logeconcavity of a polynomial is given
by the location of its zeros: a polynomial, all of whose zeros are real and
negative, is logconcave and therefore unimodal (Wilf, 1990). A second criteria
for the logconcavity of a polynomial was determined by Brenti (1994). A
sequence of real numbers is said to have no internal zeros if whenever a;, a;, #
Oandi < j < kthena; # 0. Brenti’s criteria state that if P(x)isalogconcave
polynomial with nonnegative coefficients and no internal zeros, then P(x + 1)
is logconcave. In this spirit we have produced an elementary proof of (Boros

and Moll, 1999).

Theorem 7.9.2. The polynomial P(x + 1) is unimodal if the coefficients of
P(x) are positive and nondecreasing.

It follows from here that the coefficients d;(m) are unimodal. It is an open
problem to establish if they form a logconcave sequence. Much more is con-
jectured: introduce an operator on sequences by the rule

Lia;} = {af —a;_la,—+]} (7.9.15)

with the understanding that if the sequence {a;} is finite, say fromi = 1 to
i = n, then we declare a; = 0fori < 0 and i > n. Thus £ maps logconcave
sequences to positive ones. We say that {a;} is oo-logconcave if £0(a)
is always positive. We have conjectured that the sequence {d;(m)}, which
motivated all these ideas, has this property.

The binomial coefficients are the usual sequence on which properties re-
lated to unimodality are tested. The next project is a first step towards the
oo-logconcavity of di(m).

Project 7.9.3. Prove that the binomial coefficients are oo-logconcave.
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The next exercise presents a connection between logconcavity and series

expansions. The details were given by L. Carlitz as a response to a question
proposed by D. Newman; see Newman and Carlitz (1959).

Exercise 7.9.4. Let f(x) = co+ cix + x>+ --- be a power series with
¢y = 0andcyricy-1 = c,::. Prove that the expansion of 1/f(x) has all negative
coefficients d, (except for the constant term). Hint. Check that

n
0= Cn + Z djcn—_,ie
j=1
n
dn+] = —Cp+1 — Zdjcn—j+]-
j=1
Multiply the first equation by —c,; and the second one by ¢, and add.

Divisibility properties. The p-adic valuation of the coefficients d;(m) was
studied by Boros et al. (2000) in the case p = 2. The value

valdp(m)) = —(m + va(m!)) (7.9.16)

1s elementary. The result

m+1
valdi(mN =1—=2m + v» (( ) )) + sa(m) (7.9.17)

where s2(m) 1s the sum of the binary digits of m was established by Boros
et al. (2000).

The problem for odd primes seems more difficult. Extensive symbolic
calculations suggest the existence of a sequence of positive integers m; such
that v3(m ;) = 0. These integers satisfy

mi—m;e (2,7 20,61, 182,...} (7.9.18)

where the sequence {g;} in (7.9.18) is defined by gy =2 and g4, = 3q; +
(=1,

Project 7.9.4. Discover formulas for v,(d;(m)).
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7.10. The Elementary Evaluation of N; 4(a;m)

The goal of this section is to provide elementary expressions for

%0 x% dx
Niala; =
}‘4(‘1 m) A (Xa. + 2(”‘-2 + ])m+1

based on the formula for the coefficients of P, (a). The values of N; 4(a;m)
form + 1 < j < 2m + 1 can be obtained by using the symmetry relation

Nja(@;m) = Nogsi—ja(a;m),

S0 we may restrict to the case 0 < j < m.

Exercise 7.10.1. Establish the formula

d (m+r)! /”‘3 x¥idx
Jo

o« N : = (—1)2"
(dﬂ) 0-4(‘3 m) { ) (X'l + 2‘1_‘,2 + l)m+r+1

m!

and use it to obtain an expression for N; 4(a; m) in terms of Ny 4.

Exercise 7.10.2. Use the finite sum expression for Ny 4(a;m) to obtain a
similar formula for the family of integrals N; 4(a;m). Answer:

i
23m+'.3,-’2(a + 1 )m+ 1/2

m_j 2m —2k\ fm—j+k\[2k\[m B y
2k D,
X g ( m—k 2% K J\k) @t

Exercise 7.10.3. Let >0, ¢ >0, a > —vbe, me N, and 0 < j < m.
Then

Njala;m) =

x¥ dx

bx* + 2ax? + c)

m+1

oo
Njala, b, c;m) = /
Jo (

e

2m —1/2
=7 {c(c/b)’”_j {8(6 + m)}u +]}
Y (2m =2k (m—j+k\ 2k
k
()0
k=0
—1 &
(™ (L—i—l)
(£) (i

Hint. Use the scaling u = Ax with a carefully chosen value of A.
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Exercise 7.104. Let b =0, c =0, a>= —v/be, meN,andm+1<j <
2m + 1. Prove that

o9 x4 dx
'NJ'_-rl{a! b! cy m) = / m—+1
0 (bx“ +2ax? +¢)

=7 {b(b/c]f =1 {Sm + JE)}%’H}
T2 (2m =2\ (m— j+k) 2k
()6
m - a 1 k

(1) (&)

7.11. The Expansion of the Triple Square Root

—1/2

This section consists of a single project that produces the Taylor series ex-
pansion of the triple square root

hn_.b(c) = Jﬂ + \ b+ 1 +ec. (7.11.1)

The formula proposed in (7.11.6) was discovered by symbolic manipulations.
It involves the idea of the homogenization of a polynomial: given

P(x) =apx" + aix""' 4+ +a, (7.11.2)
it is often useful to construct the polynomial in two variables
P*(x,y) = apx" + alx"_'y + o a ", (7.11.3)

in which every monomial has the form x"~*y*. These polynomials satisfy
P*(tx,ty) = t"P*(x, ), so that if (x, y) is a zero of P* and ¢ € R, then
(zx, ty) is also a zero. The reader will find this expressed as the zeros of a
homogeneous polynomial make projective sense. These ideas are presented
by Cox et al. (1998). The interesting part of the project below is to explain
why these formulas occur.

Project 7.11.1. Prove that the coefficients of the Taylor series expansion

hap(e) = Bula, b)c" (7.11.4)

=0
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are given by

Pola.b) =\a+1+b (7.11.5)

and
—1yt 2 (-2 —k ,
Bula by = S g 2P a, T+ D). (7.11.6)
n 220+l g n—1

where ¢ := (1 + b)(a + +/1 + b) and
Pi(a,z) = 7' Pua/z)

is the homogenization of Py.




8
The Normal Integral

8.1. Introduction

The evaluation
o
/ e ‘dx =1 (8.1.1)
0

is elementary because the integrand f(x) = e admits a primitive. In this
chapter we discuss several evaluations of the normal integral

20 2
I := / e " dx. (8.1.2)
Jo

Most of the calculus texts discuss this problem in a chapter on improper in-
tegrals and postpone its evaluation to the section on several variables. For
instance Thomas and Finney (1996) state in Exercise 28, page 364, that the
error function, important in probability and in the theory of heat flow and
signal transmission, must be evaluated numerically because there is no el-
ementary expression for the antiderivative of e™
with a numerical evaluation of the error function

X
erfr) = — [ e ar. (8.1.3)
NEWD
The fact that e does not have an elementary primitive is a consequence of
Liouville’s work (1835) on integration in finite terms. The reader will find in
Marchisotto and Zakeri (1994) an elementary introduction to these ideas.
The case of the normal integral is settled by the following result.

", The exercise continues

8.1.1. Strong Liouville Theorem (Special Case, 1835)

If f(x)and g(x) are rational functions with g(x) nonconstant, then f(x)e*™

has an elementary primitive if and only if there exists a rational function R (x)
such that f(x) = R'(x) + R(x)g'(x).

162
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The next result appears in Marchisotto and Zakeri (1994). The next exercise
is used in the proof.

Exercise 8.1.1. Suppose the polynomials A, B, g satisfy

d
A)g(x) = B(x) - -q(x). (8.1.4)
X

and g and B have no common zeros. Prove that ¢ has no zeros.

Theorem 8.1.1. The integral
1, = / e ' dx, forn € N (8.1.5)

is nonelementary.

Proof. We use Liouville’s theorem with f(x) = x2" and g(x) = —x2. Then
we must have x* = R'(x) — 2x R(x), where R(x) = p(x)/g(x), so that,

[xPg(x) — p'(x) + 2xp(x)] g(x) = —p(x)g’ (x). (8.1.6)

It follows from Exercise 8.1.1 that ¢(x) has no zeros, so we may assume
g(x) = 1. Then (8.1.6) becomes

X" = p'(x) — 2xp(x). (8.1.7)

The degree of p must be 2n — 1, and (8.1.7) produces

2n—-2
XM=+ Z [(j + Dejsr — 2¢j] x7 — 2e 0™ = ey yx ™
J=1
Therefore ¢z, =—1/2 and ¢; =0, (j + )cj41 —2¢cj-;1 =0 for j =
1.2,....2n — 2, from where we conclude thatc; =0, ¢5s =0, ..., =
0. This is a contradiction. O

Exercise 8.1.2. Let n ¢ NU {0} and p > 0. Prove that x***'¢="*" has an
elementary primitive and confirm the evaluation

[ R UL (8.1.8)
Jo 2pn+1

This is [G & R] 3.461.3. The companion formula

50 j |
/ xlne—p.\"dx — L T (819)
0

- 22n+ly !pn+1{2
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appears in [G & R] (1994), 3.461.2 and in Project 5.7.1. Check it by reducing
to the case n = 0.

8.2. Some Evaluations of the Normal Integral
In this section we present several proofs of the identity

oo
/ e dx = ﬁ (8.2.1)
0 2

8.2.1. The Squaring Trick

The usual trick is to square the integral and evaluate the resulting double
integral by polar coordinates:

P ) .,
T = / / e XY gy d_‘;-‘
0 Jo
/2 %) )
/ / e " rdrdf
0 J0
T

T

Il

8.2.2. Small Variation

Start as above and square (8.1.2) to produce

3 oo T 2
:/ [ = du dx “/ / e " xdydx
0 0 0 Jo
f / e 1) gy dy
o Jo

I

N
_2(} ]+}‘
“JT
4

This proof yields the basic identity

o0 2 )
2 1 dy
T dx | = = —. 8.2.2
(4 ¢ x) 2,4 1+ y2 (8:2.2)

Exercise 8.2.1. This appears in Borwein and Borwein (1987), p. 27, Ex. 3

Let
X 2 L dt
x) = " d , ) = S L
) (A e r) 2(x) ﬂ e L
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Check that f'(x) + g'(x) = 0 so f(x) + g(x) = g(0) = 7 /4. Conclude that
I = f(x)= /7/2.

8.2.3. A Proof Using Wallis’ Formula
This proof uses Wallis” formula (6.4.5). We start with an exercise

Exercise 8.2.2. Prove that

l—x><e ™ for0<x <1
and

2
—y2

e’ =

1
g forx = 0.

Proof. The inequalities in Exercise 8.2.2 yicld

1 1
(1 _ xl)n dx < f —nx? dy = ——
0 i]

Jo
Similarly

/m- dx }_/W_mﬂd 1
— e dy = —
o (I+x2" = Jo v o

e dy.
Wallis’s formula yields

/"C' dx . mn 2n
Jo (L4+x2  222n -1\ n

e dv< -
Jo

and
5 22n
I, = (1 x)'dx = . (8.2.3)

(2” 1) {2!!

This evaluation is outlined in the next exercise. Therefore
22:: 50 . 3/2 In

‘\/?_"l - <_: / e—_\ d 7R (H )

Cn+DEN "o

Y= pan -1
and now use (5.7.12) to pass to the limit

Exercise 8.2.3. This exercise provides a proof of (8.2.3)
a) Check that [, satisfies

2, 2
ey (8.2.4)
2n 43

JrJ'H—I =
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and that the right-hand side of (8.2.3) satisfies the same recursion and both
sides agree at n = 0.
b) Solve (8.2.4) and produce a closed form expression for f,.

Exercise 8.2.4. Prove the identity

n

{_ ])_,r n 22}!
S S— 8.2.5
jzzjﬂ(j) 2n+D(7) (6.2

=0

Hint. Expand (1 — _\’2)” and use (8.2.3).
Give a proof of (8.2.5) using the WZ method described in the Appendix.

8.2.4. Reduction to a Special Value of T

The gamma function
oo
I'(x) = / e dt (8.2.6)
Jo
will be studied in Chapter 10. In particular the special value

re)=vn (8.2.7)
will appear in (10.1.22). The integral definition of I" gives

a0
/ et = (8.2.8)

0

and the change of variable x — x? yields the value of the normal integral.

8.2.5. A Proof of Kortram and Sums of Two Squares

The next proof is due to Kortram (1993). This proof connects the normal
integral to sums of two squares. This is a classical problem in number theory.
The number of solutions of the equation

n% + n% =n (8.2.9)

inintegers ny, ns is denoted by r»(n). For example, r2(2) = 4, corresponding
to (£1)? + (£1)2 = 2 and r»(3) = 0 as the reader can easily check. There
are many interesting expressions for r2(n). Jacobi proved in 1829 that r2(n)
is four times the excess (if any) of its positive divisors d = 1 mod 4 over
its positive divisors d = 3 mod 4. Fermat's theorem (1640), that odd primes
congruent to 1 modulo 4 are sums of two squares but primes congruent to 3
modulo 4 are not, is a special case.
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Exercise 8.2.5. Establish the identity

~ 2 .
( Z x"z) = Zra(m)t’"

n=—00 m=0

Let 0 < x < 1 and consider the decreasing function

? 2 lnx
f—=x =e *.

Then

&0 2 i 3 0o 3
/ e ]n.tdr < an' < 1 + / e Il”dr.

J0 n=0 /0

The change of variables u + 1 x /— Inx shows that

limV—luxe" = f — du.
At n=0
Now use lim,_.; Inx/(x — 1) = 1 to conclude
20 50
lim+/1—x Zx"z = f e du.
i n=0 o
Squaring we get

(/ﬂ”e—nf du) = lim (1 —x) (Z " )

n=0

= llm(l —X) Z ra(n)x".

n=0

In order to evaluate the limit we require a lemma:

167

(8.2.10)

(8.2.11)

Lemma 8.2.1. Let A, > O such that the power series Y .-, A,x" converges

for 0 < x < landdivergesatx = 1. Let B,, be such that lim,,_.

Then

EB,,X" B
m ST At

BH/AFT = A"
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Proof. Choose € > 0 such that |B,/A, — A| < €/2. Then

_ -1
Bn— n 0 ad
%A_Y - 1‘ = E (B, — RA)X" X (E A,;X”)
i]'l-”

n=>0 n=0
00 -1 s N e X
= Anxn Bn — ) An + - Airx" .
< (Saw) (Simrnies 3 an)
n=0 n=0 n=N+1
a0 -1 N €
< (Z A”x") (Z |B, — AA,| + 5)
n=0 n=0
<€
for x sufficiently close to 1. O

Now we apply the lemma to A, =n-+1 and B, = izzznrg(k). The
number B, counts the number of lattice points inside a quarter circle of
radius /n. Then associate to each lattice point the unit northeast square to
obtain the bound

}(«/H)2 <B, < %u/ﬂ 2y,

It follows that

The lemma now gives

T (l - )") z an”
N ltlpll (1 —x)>(n+ xn’

Using part b) of Exercise 5.2.7 this reduces to

T

] . n
1 = Z!‘_llr‘ril{] —x)z ra(n)x".

The value of the normal integral now follows from (8.2.11).

Exercise 8.2.6. This exercise outlines a proof by Yzeren (1979).

a) Define fort = 0
20 e—:L_\-3+1]
= —— dx.
f(r) /—x 1'2 + 1 '
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b) Use ph < e”" — 1 < phe”" for p = x> + 1 and integrate over x to obtain

Jem U+ - f@) — f(t+h) - Te™!
(t+ h)'/2 h 2

with

¢) Let h — 0O to produce
flity=—11""%".

d) Prove f(t) <Ie 'so f(r) — O0ast — oo. Thus

o0 oo a
fiy=1 / u e dy =21 / e ™ dx.
t S

Evaluating at t = 0 to obtain the value of I.

Exercise 8.2.7. This exercise outlines a proof by Coleman (1954).
a) Prove that

oo 2
Ly = / x"e ™ dy (8.2.12)
J0
satifies the recursion
-1
Ly = m—‘fn,m—z- (8.2.13)
n
b) The inequality
* 2
./ x’”(x - '{)ze_’” /2 dx = rszl,m - 2r!ﬂ__?ﬂ+1 + !n,m+3 =0
0
yields
!H.ﬂ'!+1 < IH’.H! ‘(n.m+3' (8214)

¢) Choose m = n in (8.2.14) and use (8.2.13) to get

n
Jfln_.n'+1 < 3/ !n,n J‘rn',n+2 = \.' m‘fri,n+3 = IH__H'"—Z'

d) Choose m = n — 1 to obtain

In,n = vV "n_.n—l Jfn_.ir+| = Inn+l1-

Conclude that !n,n = !ﬂ,n-l—l = IH’J!+2‘
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e) Letn = 2k + 1| and use the reduction formula (8.2.13) to obtain the value
of Ioy126+1, T2k41.2642 and Iy 2443 in terms of £, o.
f) Check that

(= 4] 2 2n
)'n,(] = / e ™" /2 dx = —u/2 du.
JO

l oo
P — e
A2n+1 /o
Let

 2.4.6--0n)
T =3 s e V!

and check that

.f(?ﬂ{/ e dy < (1+
Jo

Conclude that

. 1) £(n) (8.2.15)

o 2.4.6.--(20)
2y = 1 V2n + 1.
/0 ¢ RT3 s eV

Now recognize the limit from (6.8.5).

Exercise 8.2.8. This exercise describes the evaluation of Romik (2000) of the
constant C in Stirling’s formula (5.7.1). Recall that the constant C is given
by

23}:+le
= lim ——.
n—00 (2:)‘/5

a) Prove that for a polynomial f and n €

(8.2.16)

| , |
f(x)= fO)+ f'Ox + 51‘ "(O)x? + -+ ;f M0)x" + Ry(x)

(8.2.17)
with
1 X
R,(x) = - / FrE Y (x — 0" dt. (8.2.18)
n:Jo
Hint. Integrate by parts.
b) Use (8.2.18) with f(x) = (1 + x) o prove that
R, (1
lim ,—{) = ﬁ . (8.2.19)
n—sno 22n+1 ﬁc

Hint. Use the change of variable t — u/\/n to produce the normal integral.
¢) Use (8.2.17) to evaluate R,(1) = 2%". Conclude that C = /2.
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8.3. Formulae from Gradshteyn and Rhyzik (G & R)
This section contains a list of integrals appearing in [G & R] that can be
evaluated in terms of the normal integral.

Exercise 8.3.1. Prove [G & R]3.321.3. Forg = 0

oo L ]
/ e TV dx = £
Jo 2q

Exercise 8.3.2. Prove [G & R] 3.323.2:

o0 2
/ e—p'.r':l:q.r dx = exp ( 4q 1) ﬂ
o 4p°/) 1pl

Exercise 8.3.3. Prove [G & R] 3.361.2. Forqg = O and a € R:
00 gy T
——dx =
—a AMNX+a \/

The special cases @ = 0, 1 and —1 appear in [G & R]: 3.361.2, 3.361.3 and
3.362.1, respectively.

The next exercise presents an indefinite integral that can be reduced to the
error function erf(x) introduced in (8.1.3).

Exercise 8.3.4. Check [G & R] 2.33;
—(u.\':+2b.r+c) . ! /; .
e dx:iv—crf(s/ﬁ_u—l—b/s/ﬁ_z).
. a

Exercise 8.3.5. Check [G & R] 3.462.7:

fas] = 2
2 2w v T 2vt 4 1,1,”{ ( v )]
x“e dx =——+ ,/— e’ Ml —erf| — |].
/ e Vs Ji

Exercise 8.3.6. Check [G & R] 3.468.2:

o0

xeh 1

*r
—d H Is ] . f
Jo ~a*+ x? 2\, [ o af)]

8.4. An Integral of Laplace

In this section we present the evaluation of an integral due to Laplace. It
appears in [G & R] 3.325. The technique of the proof is due to Schlomilch
and more examples of it will be discussed in Chapter 13.
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Example 8.4.1. Leta, b € R*. Then

20 2 2 1
L{a, b):= f e b gy — —\/—Ee_z‘/“_"’. (8.4.1)
0 2V a

Proof. The change of variable { = Jax shows that L(a, b) = f(ab)//a
where

fle) = [ e gy (8.4.2)
JO

To evaluate f(c) we make the change of variable y = /c/t in (8.4.2) and
add the resulting integral to the original one to produce

flo)= %/ e/ (1 + £) dt
1]

I
_! / e~ e g
2 )

by introducing s =t — \/c/t. The result now follows from the value of the
normal integral. O

Exercise 8.4.1. Leta, b € BT Prove that

/.ooe—({n+b-"l} dx - ’\/_ —2\/.“!; {84 3)
0 S el -

In particular

> .—(\+b}'r] —_ \/_ _2‘/_ (84‘4)
L

Exercise 8.4.2. The four integrals in this exercise are in Section 3.472 of
[G & R]. Check them by reducing them to Laplace’s example.

Eﬁ (e_“{"'z — l) e dx = %\/g [e_z‘/""'} — 1]

) 1 B
f x2 cxXp (""ﬂ/xz _ #‘\:2) dx = Z "'J'T'{(l + 2@ e—l‘/au,
0 s

o0 dx 1 =
—alx? — ) o D
/0. cxp( a/x* — ux ) 2 =5\ 5 e .

/N { Ly 2)] d—x—\/ﬂ(w et
Jo CXp zax X x‘1‘_ ) a)e .
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Euler’s Constant

The Euler-Mascheroni constant y defined by

] n ]
y = ”llpgo; 3 —Inn

is regarded as an important constant of analysis, shadowed only by ¢ and &
in significance. Havil (2003) provides an excellent history of this constant.

9.1. Existence of Euler’s Constant

In this section we present an elementary proof of the existence of Euler’s
constant. The notation

n ]
Ho=Y (9.1.1)
k=1

for the harmonic numbers is employed throughout.

Lemma 9.1.1. The limit
y = lim H, —Inn
n—d

exists.

Proof. Leta, = H, — Inn. To prove the existence of y first observe that

1 1 n
1 - n:—_l +1)+1 = | 0
Apy) —d nr n(n )+ Ilnn .*1—|—]+“(.*1+]><

because In(l1 — x)+4 x < 0. On the other hand (5.2.17) shows that ﬁ <
a, < 1. The sequence a, s, therefore, decreasing and bounded. The bounds

ona, show0 <y < 1. O

173
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9.2. A Second Proof of the Existence of Euler’s Constant
In the proof of the existence of e given in Section 5.2 we have established in
(5.4.8) the existence of a sequence ¢, satisfying

lim ne, = 1.

n—0o
Now write
l n
e = ay, (] —i——) (9.2.1)
n
where a, := f satisfies 1 = a,, <=1+ % 50 that
lim a, = 1.
n—00

Now from (9.2.1) we have

l =Ina, +n(n(n+ 1) — Inn)

and now replacen = 1, 2, - - - to obtain
1 = Inag+In2—-1Inl
1 12
5 = Ina,”” +1In3 —In2
1 ;
3 = lna;§’3—|—1114—ln3
1 Y
— = Ing," +In(n + 1) — Inn.
n

Adding we get
H,=1In (a.a;ﬂa;f" . -ai:f") + In(n + 1).
Let

b, = In (alaz'f"za!f'-‘ ay") 92.2)

then b, is increasing and bounded from above because

1 1
b, =Ina; + - Ina, +---+ —Ina,
2 n

<111{]+]/])—i—%lu{]—i—l/2)—|—~‘+lln{l +1/n)
n

1 1 1
{]+2—2+3—2‘|‘"'+n_1
* 1
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It follows from the integral test that the last series converges and we conclude
that H,, — In(n + 1) is increasing and bounded from above. Therefore

= lim H, —In(n + 1)

n—o0

exists.
Note 9.2.1. In Chapter 11 we give proofs of Euler’s remarkable formula

£(2) 1= Z — = (9.2.3)

n]

therefore the sequence b, is bounded by n2/6.

Extra 9.2.1. Alzer and Brenner (1992) have studied the sequences
Hi]' Hi]' - l
Xp=-——"— and y, = =t (9.2.4)
In(n + 1) In(n + 1)
and have shown that y, < 1 < x, and that x,, is strictly increasing and con-
verges to 1. Similarly, y, decreases to 1.

Exercise 9.2.1. This exercise outlines a proof by Johnsonbaugh (1981) of the
existence of Euler’s constant.
a) Apply the trapezoidal rule (Thomas and Finney, 1996), page 346, to f(t) =

1/t to obtain
/k dt 1 (1 N 1 ) 1 ©02.5)
Joor t 7 2\k k-1 65; -

withk — 1 < & < k.
b) Sum (9.2.5) and pass to the limit as n — o¢ to prove that

. | &
lim Inn — H, = _E - EZ_: (9.2.6)

n— o0

Check that r, := % ZE‘;,H_] "g‘;‘__" satisfies
1 1
12(n + 1)? == 12(n — 1)
Hint. Estimate the series r,, by an integral.
¢) Estimate y in terms of the Apery constant

©
ORI (9.2.7)
k=1
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In other words, obtain bounds on y in terms of ¢(3) using the inequality from
part b). The Apery constant will be considered in Chapter 11.

9.3. Integral Forms for Euler’s Constant

We now establish the first of many integral representation for y.

Exercise 9.3.1. Prove that

1 . Y i1
/ =A==,y ©3.1)
(1]

X

Proposition 9.3.1. The Euler constant y is given by

1 | — e 5 p—x
y = / ——dx — / —dx. (9.3.2)
0 X 1 X

Proof. Use (9.3.1) to obtain

H, = /" (] — (1 —x/n)”) d—l
X

Jo 1

1 3l .
= / (1 =1 —=x/n)") dx + / (1—(1—x/m)") di
Jo X J1 X

1 n
=/ (]—(]—x/n)”)d—x—/ (l—x;’n]”ﬁ+lnn.
Ji

Jo X X

Therefore

y = lim H, —lnn

n—oo
1 1—(1—x n "l —x n
— lim / a-a=x/my _ [fAd=x/n"
n— oo . U x I ‘Y
1 ] —e™* o0,
= / ¢ dx — / ¢ dx.
0 X 1 X
where we have used the basic limit for e™" given in (5.6.3). O

The next expression for y appears in [G & R]: 4.229.

Proposition 9.3.2. Euler’s constant is given by

o0
/ e "Inxdx = —y. (9.3.3)

]
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Proof. Start with

a0 1 e's}
/ e "lnxdx = / e lnxdx + / e 'lnxdx.
0 Jo J1

Now integrate by parts in the first integral to obtain
1 L g
f e "Inxdx = -—f —(™" = 1)x Inxdx
0 0 dx

[1 e — 1
= d.\f,
Jo x

similar for second integral. Now use (9.3.2). O

Exercise 9.3.2. Check that
1
/ In(—Inx)dx = —y. (9.3.4)
0
Hint. Reduce to (9.3.3).

Proposition 9.3.3. The Euler’s constant is given by

< 1 1
¥ :/ e " - — — | dx. (9.3.5)
0 l—e* x

Proof. We follow Rao (1956). Start with

o0 1
/ e dx = - (9.3.6)
Jo F
and integrate (9.3.6) from r = 1 to n to produce
0 =X _ phX
/ —dx=Inn. (9.3.7)
Jo X
Now use (9.3.6) forr = 1,2, ..., n and (9.3.7) to obtain
o0 ; 00 gk _ p—hX
a,:=H,—Inn= / (e_"' +e N +e_""') dx --/ —dx.
JO 0 X

Now rewrite this as

x 1 1 B | 1
a, = [ e X - — - dx +/ e nx S dx
Jo l—e—* x 0 x e =1

and now both integrals are convergent. Now use the inequalities

1 1 1
A S (9.3.8)
8 x e —1 2

B2 =
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/x —nx l l d l/x —H.\'d. ]
UE X et — 1 )‘{2(}8 1_2?7

s0 as n — 00, we get the representation (9.3.5). O

to obtain

Note 9.3.1. The evaluation (9.3.7) appeared in Exercise 5.8.3 as an example
of a Frullani integral.

Exercise 9.3.3. Check that the Euler’s constant is given by

b7 1
= —+ — | dt 9.3.9
v A (l—r+111r> ¢ )

Proposition 9.3.4. Let n € N. Then

= {x})
y=H,—Inn— / —za'x. (9.3.10)
n X
In particular
o0
y =1 —f %a‘x. (9.3.11)
1 J

Here {x} is the fractional part of x. Compare with (5.7.9).

Proof. Form = n we have

Mmoo m—1 i
wdx = Z /}H ﬁn"x
i

n x? . x2
j=n
m—1 i+l 1 .
=S [
j=n" i A X
n—1 1
=Inm—Inn — —
Jj=n J + 1

=Inm—-Inn-H, + H,.
Now let m — o0 to obtain the result. O
We now present an integral representation that appears in Volume V of

Berndt’s book on Ramanujan’s Notebooks Berndt (1994). This is part of the
proof of Entry 21 on Chapter 36.
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Proposition 9.3.5. Let f(x) = e " 4+ ¢ %" — 1. Then

/ f(x)dx = —y — Inc.
40

In particular
o
y = --/ (exp(—e®) + exp(—e ™) — 1) dx.
0
Proof. Observe that f is even so that

2/ .f{.t) dx = [ (cxp{-—ae'“) + exp(—ae™™)) dx
0 J-

[=e}

o0 g e—a‘fu -1
_ / e e -1,
JO

i

Vo | _ p—au 0 p—ou lja el
= - [ —  du +/ du + [ du
JO u lja U JO i
0] — _—u/’n
- / édu.
Jje u
1 1l —e* 00 =X o0 X
:-—[ ¢ dx+/ ¢ dx+/ ¢ dx
Jo X J1 X ? X
o’ ] —e
-—f ¢ dx
Jo x
> e Ll —e™™ o dx
=—-y+ dx — dx — —
1 X J0 X 1 X

= -2y + Ina).
O
Exercise 9.3.4. Prove the representation
ab [Xe " —e "
y = [ dt (9.3.12)
a—bJy t

valid fora, b = O with a # b.

Exercise 9.3.5. Establish Catalan’s formula

! i 2k dx
r=1~/0 > ox Tix (9.3.13)

k=1
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and read about the generalization

! n 1 = k_|
= - x" T ds 9.3.14
14 A ( 1 —x" 1 — X) Z X x ( )

k=1

due to Berndt and Bowman (2000).

9.4. The Rate of Convergence to Euler’s Constant

In the next theorem we establish that the rate of convergence of a, to y is
comparable to 1/n.

Theorem 9.4.1. The sequence a, .= H, — Inn converges to y and

1
lim n(a, —y) = =. (9.4.1)

n—00 2

Proof. Start with

= 1 1
ay —y = / I - dx
0 X et — 1

so that from (9.3.8) we have
1 1 1
——— g, -y < —.
2n  8n? Y= on

This shows that a,, — y and (9.4.1). O

A proof by Young. The following proof of Theorem 9.4.1 is due to Young
(1991). Let R, be the area of between y = 1/x and the horizontal line
y=1/(n+ 1) fromx =ntox =n + L. Then

n+ldx | 1
Rn:/ — - l:ln(n—i—l)—lun——.

X n-+ n+1
Therefore

n+j

Z Ry =ay — any 1

k=n
where, as usual,
a, = H, —In n.

Observe that R, is bounded from above by the area of the triangle connecting
the endpoints and pushing all the regions R, ;;; to theregionn <x <= n + 1
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we obtain a, — y < 1/2n. To obtain a lower bound for R,, bound it from

below by the area of the triangle 7> connecting the points (m + 1, =) and

m+1
(m + 2, m%) and with base onm + 1 < x < m + 2. To see that R, has area

bigger that T translate it along its diagonal to have base overm < x < m + 1.
We conclude

R 1 1 1
”1}2 m+ 1 m-+ 2

50 that
i R = 1. ( 1 1 ) 1
n y_mzz,:, ’"_szz;r m 1 m+2/) 2n+1)
We have shown
1 |
<a,—y < — 9.42
2n+2 “ v= 2n ( )

and the proof is complete.

Extra9.4.1. Theinequalities (9.4.2) show thata, — y is comparable to 1/2n.
The optimal values of @ and b for the inequalities
1
<da,—y <
2n+a 4 2n+b
area = (2y — 1)/(1 — y)and b = 1/3. See Chen and Q;: (2003) for details.

(9.4.3)

9.4.1. A Quicker Convergence to Euler’s Constant

In this section we follow De Temple (1993) to prove that a small modifica-

tion of the sequence defining the Euler’s constant, produces a sequence that
. 2

converges to ¥ with error of the order 1/n~.

Proposition 9.4.1. Ler
b, = H, —In(n + %).
Then

I 1
bn -
Um0z TV T o

so that

1
lim n’(b, — y) = —.
n l!‘gl(_. n( v) 24
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Proof. Observe that

bn - n+] f(n)

with

__ b 3 1

flx)= T 1 + In (x + 2) In (x + 3) \

then

f'e) = -

T A+ D2+ D+ 3
Then

P A A TR I

The upper bound is clear, for the lower bound use
G+ha+dH=xr"+20+3 <(x+ D

Now

for== [ feax <t [ oo
R A A A D

The proof follows now from the inequality

k+1
(k + %)_3 < [ x Y dx
Ji

that can be verified directly. Now

-y = an bir+| Z f(k)

k=n k=n

1 i 1 /w dx 1
— < — — = —-
12 & 1/2)3 12, x*  24n?

For the lower bound use

(k) lfm = -i(k H~
o= | i = pkth

to conclude that

oo

1 1 dx 1
by—y > —S k+1)" = —/ el S
y}IZZ{ +1 12 3 T 24 + 1)2

k=n
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9.5. Series Representations for Euler’s Constant
In this section we discuss several representations of y in terms of infinite
series.
The first class of series are modifications of the fundamental definition

y = lim H, — Inn. (9.5.1)
n—2o0
Introduce the notation
2 2 (—)k+!
5, = g k o sz and O, = g k

Exercise 9.5.1. a) The Euler constant is given by

y = lim 5, —n In2. (9.5.2)
(=0

n—

Hint. Replace n by 2" in (9.5.1).
b) Write In2 = a,, + r,, with

o0 k1
(=1)
ey
k=2"+1
Show that lim,,_, ., nr, = 0so
y = lim s, — nao,. (9.5.3)
n—0oo

¢) Lett, = s, — no,. Prove that the identity

N
Z Intt =0y =INy1 — 0

n=l1
yields
o

Yy = 1= ZH(JHJ.—] - O,) (954)

n=1

and

o0 e
n
=1- —_—.
¥ Z Z | 2m(2m — 1)

n=1 m=214
d) Addison (1967) improved the result in part ¢) with

s 21

1 "
= — 4 . 055
4 2 Z Z , 2m(2m + 1)(2m + 2) ( )

n=1 pp=02%-
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Prove this by expanding the right-hand side in partial fractions.

Exercise 9.5.2. The series

= (=1 | Ini
= —— 9.5.6
¥ ; i lln 2J ©--6)
is due to Vacca (1910). Prove it by reducing it to (9.5.5). This identity is
reminiscent of the classical

[

In % = Z ) 9.5.7)
i=l

9.6. The Irrationality of ~

The question of whether y is a rational number is still open. Sondow (2003)
has developed a criterion based on the integral

50 n! 2
Fn(r) = / ( : ) dx {961)
Jit (x)n+1
and the sequence
o0 2 0 2
n n
L,:= Fo(j) — ;- 6.
n Z H{J) (H)}"FZ(’) Hn+r {962)
J=n+1 i=0
The criterion states that y & (Q if
T Lnd n
i (Ledn}
n—00 1

for some 1 € (0, ez/]()). Here d, is the least common multiple of the first
n integers. The appearance of this number theoretical function is due to
its relation with the denominators of the harmonic numbers H, = 1 + .l, +
e %

Project 9.6.1. Write the harmonic number in reduced form H, = a,,/b,. Ex-
plore the relation between b,, and the least common multiple of {1, 2, -- -, n}.

The question of irrationality of y has motivated its numerical evaluation
to high precision. Knuth (1962) obtained 1271 places of Euler’s constant in
1962, using the Euler-MacLaurin summation. Sweeney (1963) obtained 3683
places the following year, which was subsequently extended by Brent (1977)
to 20700 places in 1977. Brent and McMillan (1980) computed 30100 places
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in 1980 using certain identities involving modified Bessel functions. They also
calculated the first 29200 partial quotients in the regular continued fraction
expansion of y and deduced that if y € (), then its integer denominator must
exceed 10"%%_ J. Borwein used a variant of Brent’s algorithm to compute
172,000 digits of ¥ in December 1993. Then they conclude that if y is rational,
then its denominator must have at least 60,000 digits. T. Papanikolaou in 1997
improved this to 242080 digits. It seems unlikely that y is rational.
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Eulerian Integrals: The Gamma and
Beta Functions

10.1. Introduction

The origin of the gamma function is found in the works of Leonard Euler
in his search for an interpolating function for n!. In this book, the gamma
function has appeared in Chapter 3 in the evaluation of a finite sum

n _iyn—j _jyn+l aF l
Z{ 1) ‘; (n) _ 1)~ al(—m)(n) (10.1.1)
m—j \j 'l —m+n)

j=0
in Corollary 3.4.1. The established value of this sum yields the identity

—1
(=D ul(=m)T(n) | m
C(l —m+n) o l(n) (m n)‘| ' (10.1.2)

for m > n € N. This function has also appeared in the symbolic evaluation
of the definite integral

/"3 x"dx _ | Cm —n)C(n+1) (10.13)
o (ayx + axy"+! af""ag’_" C(m+1)
and Wallis’ formula (6.4.5):
> d ENE
/ dx___JTlGtm) (10.1.4)
o (x2 4 Iy 2'm + 1)

In this chapter we will study the gamma function that appears in these
symbolic answers.
The modern definition of the gamma function

oo
I(x) ;:/ et dt (10.1.5)
J0

is due to Legendre (1809). Euler preferred the equivalent expression

1
'x)= | (—=lney* 'dr. (10.1.6)
0

186
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This integral appears in Gradshteyn and Ryzhik (1994) [G & R]: 4.215.1. The
history of this function is presented by Davis (1959). Dunham (1999) offers
more information about the mathematical work of Euler.

One of the most important properties of the gamma function is the fune-
tional equation. This is proved in the next proposition.

Proposition 10.1.1. The I function satisfies the functional equation
Fx+1)=xT(x). (10.1.7)
In the case of integer argument we have

I'tk) = (k- 1! (10.1.8)

Proof. The functional equation is obtained by integration by parts. The value
(1) = 1 and (10.1.7) yield (10.1.8). O

Note 10.1.1. The gamma function definition in (10.1.5) is valid for x € R™.
The functional equation (10.1.7) provides an extension of I'(x) to x e R
except for the nonpositive integers. This gives the desired extension of the
factorial. Compare with Exercise 5.8.2.

Corollary 10.1.1. The T function satisfies
Cix + k) = Q) (x)y (10.1.9)

where (x); = x(x + 1)---(x + k — 1) is the ascending factorial symbol.

Proof. Apply (10.1.7) k times. O

There are many alternative ways to characterize the Gamma function. For
instance Bohr and Mollerup (1922) proved that I'(x) is the only function
[ (0, 0¢) = (0, 00) with f(1) = 1 that for x = 0 satisfies a) f(x) = 0, b)
flx+ 1) =xf(x)and ¢) f 1s log-convex, that is, In f is convex.

Wielandt characterized the gamma function as the only analytic function
that satsifies the functional equation f(z + 1) = zf(z), z € Candis bounded
on the strip {1 < Re z < 2}. The reader should consult Remmert (1996), who
proves classical properties of I'(z) from this point of view. A different charac-
terization based on an approximation for Inn! is discussed by Laugwitz and
Rodewald (1987).

We now follow Berndt (unpublished) and prove that the functional equa-
tion, the value I'(1) = 1 and limiting behavior characterize I uniquely. The
original definition of Euler is a consequence of the proof.
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Theorem 10.1.1. Letx € R — {0, —1, —2,---}. Then there is a unique func-
tion F(x) that satisfies

F(l) =1 (10.1.10)
F(x+ 1) = xF(x) (10.1.11)
fim S (10.1.12)

n—oo n¥ F(n)
The function F is given by

. . (n—=D!n*
Fix)= lim ——. (10.1.13)
=00 (.\'.')"

Proof. From (10.1.10) and (10.1.11) we obtain F(n) = (n — 1)! and

Fx+nm=x+n—Dx+n-2)---(x+ DxF(x) (10.1.14)

so that
P{-vjkn) _ (x)u{'(x) (10.1.15)
n* Fn) n* F(n)

and the limiting behavior yields (10.1.13). O

The original expression for I'(x) discovered by Euler is a consequence of

Theorem 10.1.1.

Corollary 10.1.2. The gamma function is given by

. o (n—=D'nt
Nx)= lim ———.
(x) "_lpgc (.\'.')"

(10.1.16)

Proof. 1t suffices to check that the right-hand side of (10.1.5) satisfies the
condition of Theorem 10.1.1. The first two have already been established. We

now verify (10.1.12) for 0 < x < 1, which sufficient in view of the identity
(10.1.11).
Let

oo
H(x) = / e 'dr
Jo

sothat H(n) = (r — 1)!. Now let t = ny to obtain

Hi> n oo
(x 'H_') _ / yrnlmm gy, (10.1.17)
Hmn*  (n=1!Jo
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Now

=] 1 o
[ y.\'+n—le—n_\'dy — / y_1-+n—le—n_\-dy + / yx+n—|e—n_\'dy
J0 J0 1

1 [=9]
> [ yie ™ dy + / YTl ™y, (10.1.18)
Jo I

Now integrate
1 d
ndy

(yne—n_\') — vn—le—n_\' . yne—n_\'

from y = 0 to 1 to obtain

1 1 —n
[ y"_le_"-"d}’ _ / yne—n_\'dy — ¢ (10.1.19)
Jo 0 n

so that (10.1.18) yields

oo
[ y.\'+n—le—n_\'dy -
JO

Now conclude that

n—1)0 ™

=0
- _ - {/ yx+”_|€_""ldy{
0

n=1)1 e

n" n

(10.1.20)

(n—l)!+e__".

n" n

The result now follows from Stirling’s formula given in Theorem 5.7.1. O
Exercise 10.1.1. Check the details.

Proposition 10.1.2. The I" function satisfies the reflection rule

)l —x) =

(10.1.21)

sinwx’

Proof. Use the expression for I'(x) and I'(1 — x) given in Corollary 10.1.2
to obtain

. (n—Dn* (n— n't*
PP -x) = lm G tn—D) 002 -0 (1 —x)

lim (n—1D'n

n—oo x(12 —xH(22 —xH)-- - ((n — 12 = xH(n — x)

= lim [x (1=x%/1%) (1=2%/2%) - (1 = 2*/(n = 1)?)
x (1 —x/n)]_l

[xﬁ (1 —_vzfnz)]_l.

n=1

The result now follows from the factorization of sinmx in (6.8.1). O
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Exercise 10.1.2. Prove that

r (% —-x)T (% +x) =

T

cosmx’
Corollary 10.1.3. The gamma function satisfies
rédy=yn (10.1.22)

Proof. The value I“{%) is positive, and by (10.1.21) it satisfies l’“{%)2 =.
O

Note 10.1.2. This corollary confirms the evaluation of the normal integral
given in (8.2.8).

Exercise 10.1.3. Prove that form € N
M VT (2m)!
T

Hint. Use induction and I'(x + 1) = xI"(x).

I(m+3) (10.1.23)

Exercise 10.1.4. Check [G & R] 3.371. Forn € M and ;¢ = 0,

]9"' n172 —px JT2n—=D T(n+1/2)
X" e dx = s = .
0 2!1’ Hi]’. /e n

n+1/2

Exercise 10.1.5. Check [G & R] 4.215.2:

1
/ (—Inx)"dx = ﬂ;
0 I'(pe) sin o

and obtain the special cases [G & R] 4.215.3:

1
/ v—Inxdx = ?
Jo

and [G & R] 4.215.4:

= /7.

/' dx
Jo ~—Inx N
Exercise 10.1.6. Check the identities (3.5.7) and (3.5.8).

Exercise 10.1.7. Prove that ['(1) = —y. Hint. Differentiate (10.1.5) and use
(9.3.3).
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Exercise 10.1.8. In this exercise we collect some of the many integrals ap-
pearing in [G & R] that can be reduced to values of the gamma function.
a) Check that, for g, v = 0,

0o r
/ Xv—]e—u.r d)C — (U) (]0124)
Jo w

This appears in [G & R]: 3.381.4.
b) Check that, for p = 0, v = =1, u = 0,

oo
/ (x—w)e ™dx = p " leT I (v 4+ 1). (10.1.25)

This appears in [G & R]: 3.382.2.
¢) Check [G & R]: 3.326. For i = 0,

o 1 1
/ exp(—x*)dx = —I'| — . (10.1.26)
Jo I L
d) Check [G & R]: 3.338. For u > 0,
o
/ exp(—e“) e dx = I'(w). (10.1.27)
-

Exercise 10.1.9. Determine the values of a, b, ¢ € R for which
oc n
/ xe " dx (10.1.28)
0

is convergent. For those values express the integral in terms of the gamma
function. Discuss the special cases a, b, ¢ € N.

Extra 10.1.1. The gamma function satisfies many interesting inequalities.
For instance, Gautschi (1974) showed that the harmonic mean of I"(x) and
I"(1/x) is greater than or equal to 1,

2
=1, x>0 10.1.29
T+ /T = * 7 ( )
and Alzer (1999) proved the analogous result:
2
=1, x=0. (10.1.30)

1/T2(x)+ 1/T2(1/x) ~
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10.2. The Beta Function
The beta function given by

1
B(x.y) = / A =) de (10.2.1)
S0

is considered an essential companion to I'(x). The first result provides a
fundamental relation between these two functions. The proof presented here
is given by Brown (1961) and employs the notion of convolution: given two
functions f and g define the convolution f * g by

2
(f*g)t)= / f(r)g(t —1)dr. (10.2.2)
Jo
The reader will recall that the Laplace transform, defined by
oo
L)) = / eV f(t)dt (10.2.3)
Jo
satisfies
£(f xg)=L(f)- £(g). (10.2.4)

Exercise 10.2.1. The gamma function appears in the evaluation of
one the simplest Laplace transforms. Confirm this by establishing the
identity

Proposition 10.2.1. The functions beta and gamma are related by the func-
tional equation

F)C(y)
Cx+y)

!
£ (/ N — 1) ! dr)
JO
1
Iy (r.r+_\'—]/ p.r—l{l _’O)_\'—]dp)
0

= £ (7' B(x, ).

B(x,y) = (10.2.5)

Proof. Form

I

Cix)s™ (y)s™
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Exercise 10.2.1, used in the first line is now used again to complete the

proof. O

Exercise 10.2.2. Check that forn,m e N

-1
1 | m+n
B(m,n)= (— + - .
m n m
-1
2 (2m
Bim,m)= — .
m\ m

10.3. Integral Representations for Gamma and Beta

In particular

In this section we consider some elementary properties of the gamma and
beta functions. The section consists mostly of definite integrals that can be
expressed in terms of these functions.

The next exercise establishes the symmetry of B.

Exercise 10.3.1. The beta function is symmetric in x and y, that is
B(x,y) = B(y, x). (10.3.1)
Hint. The identity is equivalent to

1 1
/ L=y = / =) dx (10.3.2)

] ]

that follows by a simple change of variable. This appears in [G & R]: 3.191.3.
Exercise 10.3.2. The beta function is represented by
=] l,‘.\'—]
Bx,y)= / —dt (10.3.3)
Jo

(1 + r).H—_\' :
Hint. Find a change of variables that maps [0, oo) to [0, 1].

Exercise 10.3.3. Check [G & R] 3.251.6:
= xu+| i

dx = — :

Jo (14 x2)? 4sin(um/2)

Hint. Reduce to (10.3.3).

(10.3.4)
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Exercise 10.3.4. Evaluate

% dx
fm,n = /t; W (1035)

in terms of the beta function.
Exercise 10.3.5. Check [G & R] 3.166.16

Ly -
/ S r2(l) (103.6)
0o V1—x*  4y2m

and [G & R] 3.166.18

/l xdr _ r2 () (10.3.7)
0 V1—x'  V2n 4 o
Evaluate also
1 1.3
xdx x”dx
and / (10.3.8)
/0 V1 —=x4 0 1 —x*

Exercise 10.3.6. Prove that
e 1
/ (" + DY —x) dx = 5 BA=2/n1/m). (1039
0 n

This was proposed by Spiegel and Rosenbaum (1955).

Extra 10.3.1. The results of Exercise 10.3.5 lead to the relation

I dx I x2dx b
X = —. (10.3.10)

./0 V1 =x4 /0 N 4
This is the lemniscatic identity of Euler (1781). The formula is a special case

of an important identity of Legendre among the periods of an elliptic integral.
See McKean and Moll (1997), page 69, for details.

The next exercise establishes an integral representation for the beta function
in terms of trigonometric functions.

Exercise 10.3.7. The beta function is given by

w2
B(x,y) = 2/ cos>* g sin? 1o de. (103.11)
0
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Thus

/2 1 +1 1
/ cos” 0 sin? 0d0 = - B (p— ‘i) . (103.12)
Jo 2 2 2

In particular

w2 2 1 11
/ cos”’ Bde = / sin” 8df = - B i - (10.3.13)
0 Jo 2 2 2

_ T((p+1/2)Jm
Co2T(p/2+ )
The identity (10.3.12) appears in [G & R] 3.621.5. Use this to confirm
[G&R]3.621.2:

T V2 50
/0 sinx dx ﬁr (3.)’

T2 1
sin?/2 x dx (L.
/n 6+/27 (3)

Exercise 10.3.8. Give a proof of Wallis’ formula (6.4.5) using (10.3.12).

Exercise 10.3.9. Thisexercise outlines a new proof of the functional equation
for the gamma and beta functions given in Proposition 10.2.1. First check that

fo. ] .
I'x) = 2/ s le™ gy
Jo

and now compute the product I'(x)I"'(y) in polar coordinates to obtain
72 ) ) > 2 z
Fr(y) =4 / cos™ '@sin™ ' 0 dB x [ A [
Jo Jo

Now identify the last integral as %I’(x + y) and use (10.3.11) to obtain the
result.

10.4. Legendre’s Duplication Formula

The trigonometric functions satisfy an addition theorem: the relation
sin(x + y) = sinx cos y 4 sin y cosx (10.4.1)

and the special case sin 2x = 2 sin x cos x are familiar to the reader. This last
result can be written as

sin(2mwx) . |
— = 2sin(m(x + 3))- (10.4.2)
sin(Tx)
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In this section we establish a duplication formula of Legendre for I' that is
reminiscent of (10.4.2).
In order to motivate the final result, we try to evaluate the integral J> ,,
defined in (6.4.5) directly by a symbolic language. Such an attempt yields
JT Tim+1/2)

-’E.m = L L {1043)
2 T'im+1)

and using the value for J; ,, established in (6.4.5) we obtain
u_ VT (2m)!
T2 g

This is Exercise 10.1.3. Legendre’s relation extends (10.4.4) for m ¢ M. The
proof presented here is due to S. K. Lakshmana Rao (1955). It employs the
Mellin transform defined by

I (m+ %)

(10.4.4)

M (f(x)) () = f)x*dx. (10.4.5)
0

This transform satisfies a convolution rule analog to (10.2.4):
M f1(x) - M fr(x) = Mg(x) (10.4.6)
where

glx) = ‘[x}fl (5) fz(u)%

is the convolution of f; and f,. Paris and Kaminski (2001) provide more
information about this transform and its uses.

Theorem 10.4.1. Let x € R, Then

L FEorg)

e+ 5= F o (104.7)

In particular, if m € N we recover (10.4.4).

Proof. Consider the functions
fitk)=e" and folx) = ety 12
Then

Mfx)=T(s) and M fo(x)=T(s + 1/2)
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and the convolution of f; and f3 is

X du Yy,
g(x) = / e ("*'"+"-“|—,, = Jmwe vV (10.4.8)
J0 o
in view of Exercise 8.4.1. This gives

o @]
Mg(x) =V e ey
Jo

= o]
=V [ e/ dy
J0

VT T(2s)
The convolution rule (10.4.6) concludes the proof. O

Exercise 10.4.1. This exercise reproduces Serret’s proof of Legendre’s iden-
tity. Compute

1
B(x.x)= / (u — az)"-_l du

0

I
= [ -
0
1/2 _
= 2/ (3-— {% = u)l)"_] du.
Jo

Change variables u +— (1 —./v)/2 to evaluate the last integral as
2172 B(1. x).

— u)z)'r_l du

[

Exercise 10.4.2. This exercise outlines Liouville’s proof of Legendre’s du-
plication formula (10.4.7) for the gamma function. Hint. Use (8.4.3) in the
form

X

~ —(x+k2/x) dx —2k
-+ f:‘/;e 2 (10.4.9)
S0

multiply by &*~! and integrate from k = 0 to oo. Evaluate the resulting inte-
grals to produce (10.4.7).

Exercise 10.4.3. Let x € R™. Prove that
I‘Q{X) 22.\'—]

R T '2x)
B+ )= (10.4.11)

T ox 22x-1 ) I*Q{x)
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In the case x = n € N this can be written as

] 22n
AR

T {2n
B(H-f- . ):ﬁ(n)

Find also an expression for B(n, m + %) and B(n + % m + %).

and

ok | =
ok | =

Exercise 10.4.4. Derive the value of Wallis’ integral (6.4.5) from Legendre’s
duplication formula (10.4.7). Hint. Use the change of variables u = 2 to
express Ja,, in terms of the beta function.

Exercise 10.4.5. Establish the dimidiation and duplication formulas for the
ascending factorial symbol given in (1.5.4) and (1.5.5) by using Legendre’s
formula.

Exercise 10.4.6. Prove Legendre’s duplication formula by applying the Ra-
manujan Master Theorem 7.8.2 to the function 1/+/1 + 4x. The required
Taylor expansion is given in (4.2.6).

10.5. An Example of Degree 4
In Chapter 7 we have shown that

No.a( ) /x dx
a,m) =
. Jo (x* 4 2ax? + 1y

= snmpt@+ DR

where P, (a) is a polynomial. In this section we evaluate some special cases
in terms of I" and B. The first example is a quartic version of Wallis’ formula.

Theorem 10.5.1. Let m € N. Then

o /x dx _ T ﬁ(4k_ 1) (10.5.1)
Jdm = o (Xd + l)rrH—] - m122m—+3/2 P . fa

Proof. The change of variables r = x* and (10.3.3) produce

Lo /90 34 dr Ly (1w 4 2)
m = T — T -, M =1.
4, 4 0 (1 + l,‘)m+] 4 4 4
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Using (10.2.5) and (10.1.7) we obtain
1 1
Jim=-—T (T +3)

1 1 3 m
= 2l Q) H(“k“)

Finally, the symmetry formula (10.1.21) gives ['(1/4)I'(3/4) = J‘T‘\/E. This
yields (10.5.1). O

Exercise 10.5.1. Check that

:4_\5 cQ (105.2)
and
( "‘“”) > 3m — | (10.5.3)
V2

with equality if and only if m is a power of 2.

Exercise 10.5.2. Prove the identity

m

H(4k - 1) = 22” (%)m (1054)
k=1

and conclude that

Vs
Jom=——(3) . 10.5.5
ES 2'\/5}?1' (4):::' ( )

Exercise 10.5.3. Establish the special values

Noa(03m) = — 2-2"* x [Jet-n
=1

Noa(l;m) = — (4m * 1)

24m+2 2m

m

No.a(03m) = 22m+5{2 H(‘”'H)

, dm+3 m 4m + 1
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and deduce the special values for P,,:

m

1
mi2m !1_[](4!} -

4m + 1
Pm 1) = 2—2»1
M) ( 2m )

] m
P (0) = [ H(4r + D+ Cm+D][J@r -1

12m+1
m!2 . i

m(m + 1)
P = —P,(1). 10.5.7
m(1) = 2m + 3 D ( )

Pm{o) =

These values were used in Exercise 7.6.2. Hint. Use a method similar to the
proof of Theorem 10.5.1.

Note 10.5.1. The values of dy(m) produced in (7.3.2) and (10.5.7) yield the
(uninteresting) identity:

AL 2k 2m + 1 m—s 1 -
. = 41 — 1.

s=0 k=s I=1

In particular, the sum on the left-hand side is nonnegative.

Exercise 10.5.4. The previous identity shows that the odd part of m! divides
the product of the first m numbers congruent to 3 modulo 4. Give a direct
proof. See Exercise 1.2.5 for a related problem.

Similarly, the two expressions for d(m) yield

m—1 m
e | 2k 2m+2\(m—s—1
ks -1y -3k .
gkgl( ) k) TN g4 m—k

m m

m + ])H{4;‘— 1)—H{41+ 1)

= 2m+]1”|
=1

Exercise 10.5.5. Prove that the odd part of m! divides

m m

A(m) = 2m + ])H{4.-'— 1) — H(41+ 1). (10.5.8)

=1 =1

Hint. Use the previous identity. Compare with Exercise 1.2.5.
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10.6. The Expansion of the Loggamma Function
The values of the Riemann zeta function

oo

1
OED P (10.6.1)

n=1

at the even integers appeared in (6.9.6) in relation to the expansion of the
cotangent function. In this section we show that all the values of ¢(k), for
k € N, appear in the Taylor expansion of InI'(x 4+ 1) and we postpone the
study of ¢(s) to Chapter 11. This expansion also involves the Euler constant
y considered in Chapter 9.

Theorem 10.6.1. The Taylor series expansion of In (1 + x) is given by

G B
InT(14x)=—yx+Y {li,(icmx’* (10.6.2)
k=2

is valid for |x| < 1.

Proof. The expression

l —ev\* )
Hm | e =
o — 0 o

o0
I'(1 +.r):/ vie 'dv

0

is replaced in

to produce

xe—y(l _ E—uv).\'

'l +x)= lim/ e f U,
a—0t fy at

v

Let @ = 1/b and use the change of variable y = e~*/* to obtain

1
I'(1+x)= lim b**! / Y (1 = v)¥dy

h—no Jo
= lim P 'B (. x +1).
h—n0
We conclude that

. I
lim p* ' ————— ) o
b—00 Ce+x+1)
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and thus
lim a+b)x+b—1--(x+DI'(x+1) -1
b—o0 (b — 1! x b+l
Therefore
In(x+1)= lim xInb —In(l +x) —In(l +x/2) — --- — In(1 4+ x/b).
e (10.6.3)
Expanding the logarithms in (10.6.3) and using the notation
HY =% % (10.6.4)
k=1
for the harmonic numbers of order k, we obtain
In'x+ 1 = llm —(Hy, —Inb)x + (2] 2
and this is (10.6.2). O
Exercise 10.6.1. Use the relation
Fril4+x/m)I'(l —x/m) = (10.6.5)

sinx

to derive an expansion for Insinx.

Exercise 10.6.2. Derive Legendre’s formulas

(1 +x) I +x
(i) = () -

i {2k+1) -1 (2t
p

2k+1

and

sinmwx 1—x

1 X 1 1+x
lnI'{x-l-l)_Elu(_ )-5111( )—-(y-—l)x

__ig(z"'*'l)"’lrzu]

e 2kt 1

Exercise 10.6.3. Prove Euler’s formula

*(—1)ke(k
y = 27( )kg( ) (10.6.6)

Establish also the identities

¢(k)
y —111( )+2Z{ DS
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and
r=1on(3) R G
Note 10.6.1. The text by H. Srivastava and J. Choi (2001) contains an over-

whelming number of series representations for the Euler constant and other
constants of analysis. For instance

o k
S (-1 (k) — 1 (E) — 32_34.1:1(15‘/’?) (10.6.7)
k=2 k 8

2 2 2

appears on page 174, formula (154).

Extra 10.6.1. The value
1
/ InI'(x)dx =In+2m (10.6.8)
0
is due to Euler. The cxamplc

I
2 —_ e [
folll IM'(x)dx 12+48+ }flnv

1n2\/_ (v +2ln\/_)§(2) 2

23!2
was obtained by Espiuosa and Moll (2002). These two are examples of the

family
1
L, = [ In" I'(x)dx (10.6.9)
J0O

which is the subject of current research. See Espinosa and Moll (2004) for
details.
We now define a weight to some real numbers according to the rules:

s w(r)=0ifr e Q.

o w(CY(k)) =k + jfork, j e N. Forexample w(Z"(3)) = 5.
e w(m)=1.

* w(y) = 1. This is consistent with the heuritiscs £(1) = ¢

o w(xy)=w(x)+ w(y)forx, y e R

* The weight is invariant under In or radicals. For example

w(lnv27) = wr) =w) +wx)=1.  (10.6.10)

Under these assumptions we observe that for n = | and 2 the integral L,
is a homogencous form! of weight n.

! Every term has the same weight n.
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10.7. The Product Representation for I'(x)
The infinite product

00 2
sinmx :J’rxH(l —;—2) (10.7.1)

k=1
given in (6.8.1) makes it explicit that sinwx is a function that vanishes pre-
cisely atx = k € Z. Itturns out that the problem of finding an analytic function
that vanishes precisely at the negative integers leads to the reciprocal of the
gamma function. The naive candidate

F(x) :XH(]-F%) (10.7.2)

has to be modified due to lack of convergence of the infinite productin (10.7.2).
See Extra 6.8.1. This leads to the product

1 ad X
.............. - 14 2 ) ek 10.7.3
Fx) xe E( +k)e ( )
where y is the Euler constant discussed in Chapter 9.
Exercise 10.7.1. Check the identity by showing that the reciprocal of the
product satisfies Theorem 10.1.1. Hint. The identities

X k41 ,
eV = H (%) e VK, (10.7.4)
k=1

x+1 ol k+x k+1
Yx o __ x —x/k
e _"lﬂ‘rglon He

might be helpful.
Exercise 10.7.2. Derive

Inl'x)=—Inx — yx — Z {111(1 +x/n)— i} . (10.7.5)
n

n=1

Compute (In ['(x))" and check that I" is log-convex so it satisfies the hypoth-
esis of the Bohr—Mollerup theorem.

Extra 10.7.1. The second logarithmic derivative operation in Exercises
6.9.4 and 10.7.2 reappears in the context of elliptic functions. The two
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competing theories are due to Weierstrass with his function

1 1 1
pl) = x2 + Z ((x —nw, — man):  (nw; + ::1(03)3) (10.7.6)

(where the sum extends over (m,n) € 7% - (0, 0)) and to Jacobi with his
theta function

191(-"-', w) =i Z(_l)nE(Zn—|]Jrix+(ir—1{3)1Jricu. (1077)

nel

The two are related by
p(x) = — (log 1 (x))" (10.7.8)
up to a constant. See McKean and Moll (1997) for details.

Exercise 10.7.3. Derive Legendre’s duplication formula (10.4.7) from the
product representation (10.7.3). Hint. Use the identities

(+52) ()= () (10D) (1 52)

2.{_.\:_1_ 2x N X
kK k 2k+1 kQk+1)

and

(10.7.9)

Project 10.7.1. In this project we present a proof of Gauss’ multiplicative
formula

nm—1

1
H I (z+ i) = 2m)" V2 27" (mg).
k=0

mn

The special case m = 2 gives Legendre’s duplication formula (10.4.7).
a) Check that

1 m—1 o
(Z)n I+ — ez A+ =m (mZ)nm- (10‘?10)
m n m n

b) Let G(z) be the left-hand side of the formula. Confirm that

I'(mz) L m~" (mn — 1)!

———— - = lim
mmz G(Z) n—0o (1 — l)!m plm—1)/2

is independent of z.
¢) Use Stirling’s asymptotic formula for n! to check that the constant in part
b) is (25 )~ =1/2p—1/2,
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10.8. Formulas from Gradshteyn and Rhyzik (G & R)
The goal of this section is to confirm some of the integrals appearing in
[G & R] by using the Eulerian functions gamma and beta introduced in this
chapter.

Exercise 10.8.1. Check that

> xi=ldy 1 wl
=-B|— -—-—]. 10.8.1
/{; JI+xv v (1,- 2 v) ( )
This appears in [G & R]: 3.248.1.

Exercise 10.8.2. Check that

1x21r+] dx _ {ZH)” {1082)
Jo Vi = Gue )

and

Uox2n gy 2n—-D!'m
- —. 10.8.3
Jo V1 —x2 2! 2 ( )

These appear in [G & R]: 3.248.2 and 3.248.3 respectively.

Exercise 10.8.3. Check that
x t—1 i v—1 1 4
=D dx=—-B([l=v—=—.v]. (10.8.4)
1 P P
This appears in [G & R]: 3.251.3.

Exercise 10.8.4. Check that for p = 0

I
=0 ldy = ———,
t}{ v ! pip+1)

This appears in [G & R]: 3.249.6.

(10.8.5)

Exercise 10.8.5. Check that forn e N, n > 1

[ (er_> dx:“?m_l%(”_l).{mﬁm
) n—1 [(n/2) 2

This appears in [G & R]: 3.249.8.

Exercise 10.8.6. Check thatfor it = v = 0

=) o
lxﬁ:zﬁﬁx=va—m. (10.8.7)
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This appears in [G & R]: 3

Exercise 10.8.7. This exercise gives the evaluation of an integral that will be
used in the next section. Prove that

* xdx Lp(r | £ 3
[ ( """"""""""" :HB(i+ﬁ‘m_§+3)' (10.8.8)
)

10.9. An Expression for the Coefficients d;(m)

In this section we prove the existence of polynomials oy (x) and S;(x) with
positive integer coefficients such that

di(m) = 2,”” (a‘;(m) H(4k — 1) = Bi(m) H(4k + ]))

where d,(m) are the coefficients of the polynomial P, (a) introduced in Section
7.2. These polynomials are efficient for the calculation of d;(m) if I is small
relative to m, so they complement the results of Corollary 7.9.1.

For example

ap(m) =1
ay(m)=2m + 1
as(m) = 2(2m? + 2m + 1)
ay(m) = 4(2m + ])(m + m -|- 3)
oy(m) = 8{211: +4m® + 26m’ + 24m + 9).
and
Po(m) =0
Bi(m) = 1
Ba(m) = 2(2m + 1)
Ba(m) = 12{.11'1'1 +m+ 1)
Ba(m) = 8(2m + l)(2m1 + 2m + 9).

The terms cr; and f; appeared in Exercise 1.2.5.
The proof of the next theorem will use the next two exercises.

Exercise 10.9.1. Prove that for m, j € N,

m m m-H 1
H(4v—l—|—2j):H(4v—|—])( 41)—1—1)/1_[{41;—1—1))

v=1 v=1 v=m+1 v=1
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with j =2t — 1 and

m n m—+i
[[év-1+2))= H{4v-- 1) ( 1] @ - l)/H{4v - 1))

v=1 v=m+1 =1

for j = 21.

Exercise 10.9.2. Check that form, r e N

!
(m+1) =H(j+m+l—-r)
J=1

m+1-=r)

and

en+2 o (11 -
m—z (E(I#-m-{-l r)) (H{2I+2m+l 2}‘)).

i=1
Exercise 10.9.3. Check the identity

(41)!
H(4v -1 H(4v +1) = Tk (10.9.1)

=1

Theorem 10.9.1. There exist polynomials «)(x) and Bi(x) with integer coef-
ficients such that

l m m
ditm) = Jo (a;(m)H(dlk —1) - ,8;{!11)1_[(4k + 1))

k=1 k=1

Proof. The proof consists in computing the expansion of P,,(a) via the Leib-

nitz rule:

gm+3/2 ! i d\! g\
P,,, = S 1 m+1/2 (_) N, .

(a) i g (J) (dﬂ') (a + ) a=0 \ da 0‘4(a m) a=0

‘We have

d\’ S Cm+2)! m—=r+ D!

. 1 m+1/2 -2 2y

(dﬂ) @+D) a=0 (m+ 1! 2m —2r +2)!

and

d\’ _ S x¥dx
(d_a) Ng_‘;{a,m)‘ﬂzo =D m! 2 /0 (x4 4 Tymtrtl”
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The integral is evaluated in Exercise 10.8.7. The beta expression can now be

simplified using (10.1.9), (10.2.5) and (10.1.21). The final result is

4y e o
(E) Nﬂ,-’l(ﬂ,.‘ﬂ)LZO = m W E{4f —1 + 2;—)

Therefore

pi gy — @M+ 2! z‘: (=DJ(m =1+ j + D'(2))!
m 2m+2fm!(m + 1)! « j!lu —)2m -2+ 2j +2)!

x [J@v —1+2)).

v=l

We now split the sum according to the parity of j and use the result of Exercise

10.9.1 to obtain

di(m) = X(m, 1) H{4v —1)=Y(n, .")H(4v +1)
v=1 pr=1
with
Qm+2)! WA (m —1 + 2t + 1)!(41)!
Xn, D)= 5.5 Z
27 ml(m + 1) = 20121 — 20)!/(2m — 20 + 4t +2))!
1@y — 1)
T_ (v — 1)
and
dm 42y WA — 1 420)(4t — 2)!
Yom.l) = 2m + 2) (m + 20 )

2m 2 (m + 1)!
L@+
i@+

The quotients of factorials appearing above can be simplified via the results
of Exercise 10.9.2 to obtain

1 m mn
dy(m) = T (a;(m] 1:[](41; = 1) = Bim) [J4v + 1))

2t — D2 = 2r + DI2m — 21 + 41)!

t=1

v=lI
with
/2] 4¢ m—+i m
4v — 1
am =1y = Q)o@ D) II
22 22 20! [, (4v — 1)

2v+1)
v=m—{l—2r—1)
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and

LU+1)/2) 4r-2 m+i—1
'B'f('i”) =1 Z (Zf_l) Hl':}?!+|{4v + 1)
P 22-1(] — 2t + 1)! f.;]1(4v+1)

m

X H Qu+1)

v=m—({—2t)

The identity (10.9.1) is now employed to produce
Uzl /N mtt m =
oy(m) = Z:; (2;) vzl}ﬂ(atv - l)l.:,,,_ggf_.}(zv + 1)£[|{4u +1)
and

[(I+13/2] m+i—1 m —1
I
Bim) = (2; - 1) I[I @+ J[ @ +d]Jdv-1.

=1 v=m+1 v=m—(—21) r=I

O

Exercise 10.9.4. Express the polynomials ¢; and §; in terms of the ascending
factorial symbol. Hint. See Exercise 10.5.2.

Extra 10.9.1. The polynomials «;(m) and f;(m) have all their roots on the
line Re(m) = —1/2. This remarkable fact was proved by John Little (2004).
The proof employs the auxiliary polynomials

Ci(t) == (=) oy (51) (10.9.2)
that satisfy the three-term recurrence
Crar(t) = 2tCi(1) — (2 + 21 — DHC_1 (1) (10.9.3)
and that the same holds for

Dy(r) == (=)' B (451) . (10.9.4)

10.10. Holder’s Theorem for the Gamma Function

The functions f(x) = Inx and g(x) = tan~! x have been shown to be nonra-
tional. On the other hand it is relatively simple to produce differential equa-
tions that they satisfy

xf'(x)—=1=0 (10.10.1)
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and
1+ xHg'(x)—1=0. (10.10.2)

The goal of this section is to prove that I"(x) does not satisfy a differential
equation with polynomial coefficients. The proof presented here is given by
Totik (1993).

Theorem 10.10.1. There is no polynomial P = P(x, yg, y1, -+, ¥u) such
that

P(x,T(x), T'(x),---. "™ (x) = 0. (10.10.3)

Proof. Let
P = qu)y{{“}’i" ey (10.10.4)
where k = (ay, a1, - - -, a,) be the polynomial of minimal degree that satisfies

(10.10.3). The leading term of P is the one with largest (ap, a1, - -, an).
The relation I'(x 4+ 1) = xI"(x) shows that

Q(x, yo, y1, -+ ya) = Px 4+ 1, xy0, xy1 + y0, -+ X¥u + nYn—1)
is also a counterexample and its leading term is
LT(Q) = gp(x + Dx@orart sty ..y (10.10.5)

Applying the euclidean algorithm to the leading terms of Q and P shows that
P must divide 0. Any nonzero remainder would violate the minimality of
the degree of P. Thus

P(x + 1, xyo, x¥1 + Yo, == -5 X¥p + 1Y¥n—1) = R(X)P(X, Yo, Y1, -+, ¥n)
(10.10.6)

with deg(R) = 1. Considering the leading terms we obtain
G(X)R(x) = gi(x + Dxrat o (10.10.7)
Now replace x = xg, a zero of R, in (10.10.6) to obtain
P(xo + L xoyo, -+, Xoyn + nyn—1) = 0.

Inthe case xp £ 0, we conclude thatx — (xp + 1) mustdivide P, contradicting
the minimality of its degree. Therefore xo = 0 and

P(lsOsZIs"'sZn):O- (10‘108)
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The relation (10.10.6) now yields
P(im,0,z;,--+,2,)=0 (10.10.9)

for any m € N. Therefore P(x,0,z;,---,z,) = 0. This shows that P is

divisible by yy and we obtain a final contradiction to the minimality
of P. O

10.11. The Psi Function

In this section we consider the logarithmic derivative of the I" function

P = e (10.11.1)
x):= r) g1
This function is the analog of cot x studied in Chapter 6.
The first representation of 1/ (x) is by a series.
Proposition 10.11.1. The v function is given by
Yo : i( ! 1) (10.11.2)
X)= — —_ = = _— . . .
Y=X —\k+x k

Proof. This follows directly by differentiating the series for InI'(x) given in
(10.7.5). O

Exercise 10.11.1. Check that (1) = —y. Conclude that I''(1) = —y.

Proposition 10.11.2. Let Hy be the harmonic number and Hy = 0. The func-
tion ¥ satisfies

k
1
Yix +k) = ¢(x)+ ;;"_"'_“}"“_“l",

w{k) = -V + Hk—ls
w(k-l- 1/2) ==y - 211’12+2H2;‘ - H;‘-,
Wr(x) — (1l — x) = —m cot(mx). (10.11.3)

Proof. The logarithmic derivative of I'(x)I'(1 — x) = 7/ sinx yields the
first property. The second one follows from letting x = 1 in (10.11.3) and
the proof of the third one is similar. Finally, the last property is obtained from
the logarithmic derivative of I'(x)I"(1 — x) = n/sinmx. O
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Theorem 10.11.1. The function Jr(x) is given by

1 - :
Yy =———y+> (D, (10.11.4)
X P
Proof. Differentiate the result of Theorem 10.6.1. O

Exercise 10.11.2. Prove that the function v satisfies

Y+ 3) =202%) = Y(x) — 2In2, (10.11.5)
=—(y +2In2) + Z{_l)"g(k) [21:—1 - l] e
k=2

Exercise 10.11.3. Use Theorem 10.6.1 to obtain the values

2

Y(1)=—y, and a,;;-'m:%_ (10.11.6)

Extra 10.11.1. The values of 4 for a rational argument were given by Gauss.
For p, ¢ € M, 0 < p < g we have:

o(8) = 3(?)
q 2 q

g—1
2k Tk
—In(2¢g) + E cos (ﬂ) In (sin (T—)> .
k=1 q q

See Andrews et al. (1999) for a proof.

Project 10.11.1. Use the expansion of ¢ and I" at x = 1 to produce

(=1
r'() =~y
r'(1) = ¢(2) +y*
r9 = - (2¢3) +3y¢(2) + v?)
1) = 6¢(4) + 3¢22) + 8y (3) + 6y%¢(2) + y*
rO(1) = — (240(5) +20£2)¢ (3) + 157¢2(2) + 30y £ (4) +20y%¢(3)

+10y°c@) + 7).

Use the notion of weight defined in Extra 10.6.1 to prove that '(1) is a
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homogeneous polynomial of degree n. Hint. Establish the recursion
— )f«+|
—k)!

I*(ir+l](l) _ yI [nl(l) +n! Z C(k + ])In(n—k](l)_

Shrivastavaand Choi’s text (2001) contains the values of '*(1)for | <n < 10.

Exercise 10.11.4. Check the special values

¥ (3) =—(y +2n2),
1
2

l’”( ) = —/7 (y +2In2).
Exercise 10.11.5. Let S(k) = ¢ (k) — 1. Check that
o0
D Stoxt = (1 —y)x — xy(2 - x). (10.11.7)
Establish the identities
o0
3 Sk = % W2+ x)— ¢ — )],

?xk ={l—-yx+mnl2-x),

M -

k=2

w2
[

Z : k)_r“ =In(I'Q2 - )2 + x)),
k=1 k

SRk +1) 1 re-—x)
; k+1 1 — ; —1 .
; %1 d=yx+s ”(r{2+x)>

The following special values appear in Bromwich (1926) in the section on
miscellaneous examples, page 526, statement 6. A direct evaluation of these
cases is provided by Johnson (1906).

Exercise 10.11.6. Confirm the evaluations

Z Stk) = 1, Z S® _ Z S(2k) =
k=2

k=2

\ iS = [n2.

Extra 10.11.2. The  function is the first element of the family of
polygamma functions defined by

-I“A-ILA

|-..r

d m
PolyGamma([m, x] = (d ) Prix) (10.11.8)
X
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s0 that PolyGamma[0, x] = 1/(x). These functions are related to the Hurwitz
zeta function

oo

1
(6.9 =) P (10.11.9)

n=0

by PolyGamma[m, q] = (—1)" 'm!c(m + 1, q). Gosper (1997) and
Adamchik (1998) have generalized these functions to the case m < 0. These
are so-called negapolygamma functions. An extension to m € C is given
the expression

Vi) = e {e]':M} . (10.11.10)
=1—m

a9z 'l —2z)].
See Espinosa and Moll (2004) for details.

10.12. Integral Representations for /(x)
In this section we consider several integrals associated with the v function.
Differentiating

o0
Mx) = / rleTdt (10.12.1)
0
yields [G & R] 4.352.4:
o3
I'x) = / e 't* 'Inr dr. (10.12.2)
J0
In particular, for x = &k + 1, using the values in Proposition 10.11.2 we have
oo
/ e'HFlntdt =k (—y + Hy). (10.12.3)
J0O
This can be written as
1 [
y=Ho— e " t* Int dr (10.12.4)
“Jo

a one-parameter family of integral representations for the Euler constant.

Exercise 10.12.1. Write the evaluation of an integral that corresponds to the
value of yr(k + 1/2).

Exercise 10.12.2. Check that the change of variables t — ut yields

%0 I(x
/ e M Intdt = T'x) (Y (x) —Inp)
Jo e
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which appears in [G & R] 4.352.4. Confirm also the special values

> . n!
/ x"e " Inxdx = —— (H, —y —Inp)
0 [

and

x* p ) T (2n)!
/] X"V 2 Inxdx = 27;&_1](&”:, ~ (2H,, — H, — y — Indp)
C : =

that appear in [G & R] 4.352.2 and 4.352.3 respectively.

The next result is an integral representation of /(x) that generalizes
(9.3.2).

Proposition 10.12.1. The function v is given by

V(x) = [x (i _ e )dr (10.12.5)
JO

t 1 —e!

Proof. Start with the series (10.11.2) and write

] o
= e gy
X+n Jo

The result follows by summing the geometric series. O

Exercise 10.12.3. Prove the representation

a,;;(x):/ idr—y. (10.12.6)
0

| —et
Exercise 10.12.4. The 1 function is given by
=, _..dt
Pr(x) :/ e —(1+0n ")-r (10.12.7)
0

Hint. In the expression (10.12.2) replace In ¢ by its representation as a Frullani
integral given in (5.8.8).
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Extra 10.12.1. The i functions admit many other integral representations.
For example
V() /' L)
x)= - o e |
0 Int 1 —1t

&/”( ______ L L )?’_{_

T s axo0) 7
lr.r—]_l

— - .dlf_

‘A I_l y’

> —xt 1 1
=Inx+ e | - — dt.
Jo t l—e

See Whittaker and Watson (1961) for details.

10.13. Some Explicit Evaluations
In this section we evaluate several integrals that are direct consecuences
of the integral representations of I'(x) and yr(x) described in the previous
sections.

Proposition 10.13.1. Leta, x, y = 0. Then

b - C(x/a)T(y)
x—1 _ otyy—1 -
A sl =5 T ds = aTG/aty) (10.13.1)

Proof. In the representation

LTI [
B(x,y)= FGty) —Ar (1—10)"""dr

lett = s“ and then replace x by x /a. O

Exercise 10.13.1. Check that

FO) (PTG + y) = TV & + )
a2 T2(x + y)

1
/ s — s lnsds =
Jo

Confirm the special case

1
/ s*insds = x 2 (p(1) — ¥(2) = —Lz.
J0 X

Hint. Differentiate (10.13.1) with respect to the parameter x.
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Example 10.13.1. Let r, g € R™ and define p = %(q +4r —1) and 5 =
H(g +1). Then

rQr+1)

A1) [ ()T (p) = Y (p)T(s)]

w2
/ sin? i cos” ulnsin u du =
0

Proof. The change of variables s — sinu in Proposition 10.13.1 witha = 2
gives the result. O

As a special case we obtain

/2 1
/ sin(2u) Insinu du = —3 (10.13.2)
0
Project 10.13.1. Let
w2
L(k) = / sin(ku)Insinu du. (10.13.3)
0
Check that
L(l)=—1+1n2
1
L(2)=—=
(2) 5

7 1

1
L&) =~3.

Prove that for k € N we have L(2k) € Q@ and L(2k + 1) — 21;_51 € . Obtain
closed forms for these integrals.
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The Riemann Zeta Function

11.1. Introduction

The Riemann zeta function defined by

|
(6)=>_ 55 (11.1.1)
k=1

is one of the fundamental functions of number theory. It appeared in Euler’s
work on prime numbers in the form

()= [Ja-p™" (11.1.2)

g

where the product extends over all the primes.

This function plays a remarkable role in the study of the distribution
of prime numbers. Riemann proposed to study the associated function
>, Aln), where A(n) is the von Mangoldt function which appeared
in connection with iterates of primitives of In(1 4+ x) in Project 5.3.2.
Davenport (2000) gives the identity

0 !
S am=x-3 - o _ log(1—-x7%),  (11.13)

n=xy il

where the sum in p is over all the zeros of the Riemann zeta function in the
critical strip 0 < Re (p) < 1. (The formula has some technical details that we
will suppress). The famous Riemann hypothesis states that all these zeros
are on the vertical line Re p = 1. It turns out that the asymptotic behavior
of the sum on the left-hand side of (11.1.3) determines the behavior of the
function

(x) = Number of primes less or equal than x. (11.1.4)

219
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The famous prime number theorem states that

7)) ~ —— (11.15)
Inx

and Newman (1998) offers a simple analytic proof. The errors in this approx-
imation are controlled by the zeros of the Riemann zeta function. Riemann
proposed the approximation

m(x) ~ Li(x) (11.1.6)

where Li(x) is the logarithmic integral defined in (5.8.6). Koch proved in
1901 that the estimate

rr{x)—Li(x)‘ < Ca/x Inx (11.1.7)

is equivalent to the Riemann hypothesis. The last chapter of Havil (2003) has
interesting accessible information about these issues.

In this book, the Riemann zeta function appeared in Theorem 6.9.2 where
we establish the value of the Bernoulli number

n—1 C{ZH) {2“)1

By, = (=1) o X i (11.1.8)
for example
2
(@)=~ (11.1.9)
and
-
(@ =55 (11.1.10)

in view of the values By = 1/6 and B4 = 1/30. In particular we see that { (2n)
is a rational multiple of 7*" and questions about £ (2n) can be reduced to those
about Bernoulli numbers. The next exercise illustrates this point.

Exercise 11.1.1. The values of the Riemann zeta function at the even integers
satisfy the recursion

n—1 g,-

zn)wzzzjn g(zr r(2n — 2r). (11.1.11)

Hint. Replace (11.1.8) in (5.9.5).
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Note 11.1.1. Extra 5.9.2 can now be restated as follows: the optimal values
of a and g for which
2 <2 (1—-¢@n)!) <2f

holds foralln € Naree =0and 8 = 2 4 In(l — 1/¢(2))/In2.

Exercise 11.1.2. Prove the identities

oo

1 (2° - 1)
g(zk— YT c(s) (11.1.12)

(- @ -

P ks 2.\'—1

¢(s). (11.1.13)

Note 11.1.2. The special case s = 2 yields

% 2
Y (11.1.14)
P 2k — ])~
The alternating analogue of (11.1.14)
5 k—1
(-1
e 11.1.15
Z 2k — 1) ( )
is the Catalan’s constant discussed in Volume 2.

Project 11.1.1. This project comes from Elkies (2003). The goal is to prove
that §(n) is a rational multiple of =", where

00 i

Sn) = P E——
kzz_:x (4k + 1)y

4) Prove that

S(n)y=(1—-2""¢(n) if n 1s even (11.1.16)
and
= (=Dt e
S{n):z ------------------------ if n is odd. (11.1.17)

= (2k 4 1)t
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b) Introduce the generating function
o
G@) =) Sy
n=1

and prove that
G(z) = %i (sec(mz/2) + tan(mwz/2)).

Hint. Compare the partial fraction decompositions of zG(z) and
YT (sec(mwz/2) + tan(r z/2)).
¢) Conclude that

(_l)n—l(z'_’ﬂ _ I)BQHJT}!
2(2n)!

S(2n) =

and

(_ 1 )n J_r21'1+1 EZn

S(Zn + l) = 22n+2 (2?’:‘)1

E>», are the Euler numbers defined in (6.9.13).

11.2. An Integral Representation

This section describes a basic integral representation of ¢(s) in terms of the
gamma function.

Theorem 11.2.1. Lets € Rand s = 1. Then

l o0 H.s‘—l
L(s) = m./a du. (11.2.1)

et —1

Thisis [G & R] 3.411.1.

Proof. Observe that
[=.4] oxJ
I'(s) = / y"'_le_-" dy = k“'/ w ek gy
0 0
so that

1 ~
— = — w e ™ du. (11.2.2)
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Adding over k we obtain

[ R
L(s) = —[ ' e " du
I'(s)Jo kzz;
and (11.2.1) follows by summing the geometric series. ]

Corollary 11.2.1. Letn € M. Then

OOH"dH
/ [ =nleln+ ). (11.2.3)
JO

el —

Exercise 11.2.1. Obtain the integral representation of the Bernoulli number

00 .U2n—1
By, :4}‘."[0 mdl}. (11.2.4)

Exercise 11.2.2. Prove that

a0 u.\'—l 2.\'—I -1
/0 o ldu = > I'(5)(s5).

From the representation (11.2.1) we prove a relation between ¢ (s) and
Euler’s constant y.

Proposition 11.2.1. The zeta function satisfies

1
lim¢(s) — —— = y. (11.2.5)
s—=1 5 = 1

Proof. From (11.2.1) and I'(s) = (s — )I"(s — 1) it follows that

o gs—1 50
(5(6‘) - —l ) F{S) = / f di — [ e—lr.\'—Z dt
5§ = l 0 el — 1 Jo

R 1 1
=f r.\—l — —\ dr
0 el —1 te
Now let s — 1 to produce

. 1 2 1 1
lim ¢(s) — = / e’ —— | dt
s—1 5 - 1 0 l — e—r f

and the integral is Euler’s constant; see (9.3.5). O
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Extra 11.2.1. The expansion of ¢ (s) at the pole s = 1 is written as

1 = ., _
()= —+ D> A= 1) (11.2.6)

n=0

where A, are called Stieltjes constants. Little is known about them. Briggs
and Chowla (1955) established that

m n+1

(-=1) . In"j In""'m
Ay ="— lim »  —= — . (11.2.7)

n! m—00 = J n -+ 1

Observe that (11.2.5) yields Ag = y and (11.2.7) reduces to the definition of
y whenn = 0.

Project 11.2.1. Prove that

_ Ak -1
y = 2; . (11.2.8)

(3%

where A is the von Mangoldt function defined in (5.3.18).
Hints. Prove first the identity

ZA(G‘) = Inn. (11.2.9)

dn

This follows directly from the prime decomposition of n. Then multiply the
series Y A(n)n~* and Z(s) to obtain

Conclude that
(11.2.10)

The left hand side approaches 2y as s — 1 by (11.2.6).

Chapter 11 in Apostol’s text (1976) contains more information about the
Dirichlet series Y f(n)/n*.
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11.3. Several Evaluations for {(2)

In this section we present several evaluations of the identity

£(2):

Ma
Ml'_‘
1]
o9,

k=1

Some of the proofs provide the equivalent form (11.1.14). An entertaining

discussion of the many ways to evaluate this famous series is presented by
Kalman (1993).

11.3.1. Euler’s Proof
Euler’s original proof is based on the representation (6.8.1) of sinx as an
infinite product. That is
2
) 11.3.1
‘Tk]z) ( )

Exercise 11.3.1. a) Give a formal proof of ¢(2) = 72/6 by applying (2.4.8)

‘311I X

. o0

s x

LA (] _
X k=1

to the function
b) Obtain the valut. of ¢(4) by comparing coefficients in the expansion of

(11.3.1).

11.3.2. Apostol’s Proof
This appears in Apostol (1983). Start with

ku [/ kl;"de)

and sum over k to produce

. )
5{2)=/ / dxdy (1132)
o Jo 1—xy

In order to evaluate the double integral letu = (x + y)/2and v = (y — x)/2

to get
(2) = / / du dv
1 —u?+2?

over the square of vertices (0, 0), (1/2, —1/2), (1,0), (1/2, 1/2). Then using
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the symmetry of the integrand we have

172 dvdu M dvdu
= [U [ e [
0 0 1—u2+uv 12 Jo l —u+v

Y2 tan Y u/V1 — u?) " tan™'(1 — u/A/1 — u?)
=4 du +4 du
0 V1—u? 12 AT

Now observe that in the first integral

-1 u . 1
tan | =S8N u
V1 —u?

and in the second one

tan~! 1 —u o |
dan ﬁ —E—EMH i

(this relation was proved in Exercise 6.2.3) so that

/2
I U /4 —sin~'u

0 &1 —u? V1—u?

/6 w2 T I
:4/ ra‘r+4/ (———)dr
0 Jaje 4 2

2

%

(2) = ——Ju+4

11.3.3. Calabi’s Proof
The next proof is due to E. Calabi. The story behind this proof and its gener-
alizations is provided by Elkies (2003). Start as in Apostol’s proof with

o0

Z // dxdy (1133)
k—])“ o Jo I—Y)“

=1

The change of variables

(x.y) = (sm u sin u) (1134)

COsSUV COosSH

has Jacobian 1 — x”y? and we obtain that 3¢(2)/4 is the area of the image of
the unit square under (11.3.4).
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11.3.4. Matsuoka’s Proof
The next proof is given by Matsuoka (1961). Consider the integrals

72 /2
! 2 ! 2 )
I, = / cos"xdx and J, = / x° cos™xdx.
Jo Jo

The integral /,, has been evaluated by Wallis’ formula as

Q)
" Q2

We now prove an estimate on J, that yields the value of ¢(2). Integrate by
parts to produce

w2
. Tn—
I, = 2}1-/ x sinx cos™ ' xdx
0
w2
2 2 . 2 =2
= -n / x° (cos“" x —(2n = 1)sin” x cos™ “x) dx
0
=n2n — )J,_y — 2n%J,.

It follows that
T 3 22}1—2 n — 1);2 22J!H !2

n—1

A LA
4n? 2n — 2)! (2n)!

Iy
Now summing fromn = 1 to N

N 2N A7Y2
T 1 2=V N
E E n_z = Jy— W.!N. (11.3.5)

n=1

T

The result follows from Jy = 7?/24 and the inequality x < 7 sinx to obtain

1_{2 o2
Iy < — / sin® x cos™ x dx
4 Jo
,
2
=7 Uv = Iy
Hz L\-‘
T8N+ 1)
Therefore
22N N2 3

< Jy < — 0
=N N E N+
as N — oo. The value of ¢£(2) follows from (11.3.5).
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Corollary 11.3.1. Letn € N. Then

o 1 (2n\ = "1 _
Jo x“cosxdx = 22"‘ n ;.i: 5(2) - - k2 . (1 ]3(})

Note 11.3.1. The previous formula can be written as

n

—1 i
1 1 (2n\m i
(-3 5= (ﬁ(n)l) A x2cos¥ xdx (113.7)

k=1

I

and the integral gives an expression for the error obtained in the approximation
of the real number ¢(2) = m2/6 by the rational number obtained by cutting
the series after n terms.
The next project discusses the integral
T2
fn, p)= / x” cos™ xdx. (11.3.8)
0

In the previous proof we have employed f(n.0) = 1, and f(n,2) = J,.

Exercise 11.3.2. The goal of this exercise is to produce a closed form for

T2
f(n, 1) = / xcos? x dx. (11.3.9)
Jo
a) Prove that
fn, D= fn—-1,1)—-K, (11.3.10)
where
w2
K, = / xcos? 2 x sin® x. (11.3.11)
Jo
b) Integrate by parts to check that
2n — 1 1
f(n, 1) = o f{n—].])—{inl. (11.3.12)

¢) Use Mathematica to evaluate the first few values of f(n, 1) and conjec-
ture that f(n,1) = a, + b,mtwitha,, b, € Q. Then use the recurrence in b)
to obtain

2n — 1 1
ay = Tﬂn—l - 4”—2
2n —1

bir = —bn—l
2n

with initial conditions @y = 0 and by = 1/8.
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d) Prove that b,, = 2~ 23 (2"). Hint. Let

n

~1
2

¢ :22"( ”) b, (11.3.13)
I

and obtain a recurrence for ¢,,.
e) Similarly define

n

5 [ 2n -
d, =27 a, (11.3.14)

and check that
221!—2

()

di]’ - dn—l = -

Now sum from n = 2 to n to produce

—1 R
" {20\ (2j 2~ 2n—j)=2
= ) 11.3.15
‘ Z()(J) 72 N

Exercise 11.3.3. This exercise establishes the recurrence

p(p—1)

2n —1 ( L)
for—1.p) =

2n

fln, p)= fn,p—2). (11.3.16)

Hint. Integrate by parts.

In particular, the values of f(n,0) given by Wallis’ formula and f(n, 1)
given in Exercise 11.3.2 determine the value of f(n, p).

Project 11.3.1. Use the results of Exercise 11.3.3 to determine a closed form
formula for f(n, p).

Exercise 11.3.4. In this exercise we obtain a closed form expression for

/2
!

T(p) = / xtan” x dx —-2<p=<l. (11.3.17)
JO

This is given by Lossers (1985).
a) Check that

o0 yP |
T(P):/ - tan~' ydy.
o 1+)?
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b) Define

and confirm that

T at—1
- X )
2sin(rp/2) 1 —a?

d
—S8S(p,a) =
1a (p, a)

Conclude that

]a—p_l

2sin(mp/2) Jy 1 —a?

T(p)=S(p. )= da.

¢) Use the result in part b) and the integral representation (10.12.7) to conclude

that
T(p) = — % N _,(L=r
V)= Ton(ep/2) ("” (°> ”‘”( 2 D

2
T(0) = lim T(p) = . (11.3.18)
p—0 8

In particular

11.3.5. Boo Rim Choe’s Proof
This proof appeared in Choe (1987). We use the expansion (6.6.6)

oo
sin~!x = x + Z} ﬁxu*']. (11.3.19)
with
o =27 % (2:) (11.3.20)

First, substitute x +> sin £, and then integrate (11.3.19) from 0 to 7t /2 and use
Wallis® formula in the form

w2
c;;./ sin? !y dx = : (11.3.21)
0 2k +1

to produce the equivalent form (11.1.14).
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11.3.6. The Proof of Yue and Williams (1994)

In this proof we start with the expansion (6.6.21):

R 5 n 2k
(sin_' x)“ = %Z (2x) (11.3.22)

with C = (sz), and put x = sinf to get

o 1 <X sin?* ¢
2= Z . (11.3.23)

Integration from O to 7 /2 and Wallis’ formula yield the result.

11.4. Apery’s Constant: {(3)

In this section we discuss several expressions for

Zi (11.4.1)
et |3

This constant is called Apery’s constant honoring R. Apery’s celebrated
proof of its irrationality. The values ¢(2n) are rational multiples of 7r>", there-
fore they are all irrational numbers in view of the trascendence of m men-
tioned in Section 6.5.1. The corresponding result for the odd values of zeta has
shown to be much more difficult. In 1978 Roger Apery in Luminy announced
his remarkable result. van der Poorten (1979) gives a description of the reac-
tion of mathematicians after Apery’s lecture. The essence of his proof is the
recurrence

(n+ 1Py — Bdn® + 510 +27n + 5)y, + 1y, = 0. (11.42)

The sequence a, solves (11.4.2) with initial conditions ap = 1, a; = 5 and
b, solves the same recurrence with by = 0, b; = 6. Apery shows that

a_zf)fw)
ACTARYY ¢ 1)’“'
B0 )

and
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that a, /b, — £(3) and then he concludes with a proof of the irrationality of
£(3). Beukers (1979) used the triple integral

; N /*I /1 /I ”n(l — H)"U"(l — U)nwn(l — w)n dudvduw (11 4 3)
e o ((1 = w)z + uvw ! -

to provide a new proof of Apery’s result.

None of these proofs extend to ¢(5). The irrationality of this number
is still an open question, but may be not for too long. In a series of pa-
pers T. Rivoal (2002) and W. Zudilin (2001) have managed to prove that
at least one of the numbers ¢(5), ¢(7), £(9), ¢(11) is irrational. There is
hope.

Huylebrouck (2001) presents Beukers’ proof and provides unified irra-
tionality proofs for r, In2 and £(2) along these lines.

In this section we discuss several representations of Apery’s constant ¢ (3).
Naturally one obtains a representation of ¢ (3) as a special case of expressions
for £ (s). For instance, Exercise 11.1.2 yields

8 — 1
(3) = ZW (11.4.4)
and
_l).ﬁ 1
(3) = 32 (114.5)

and the (11.2.1) gives

1 u?du
((3) = 2—)[0 .

et — 1

11.4.1. A Formula of Ewell
The expression for ¢ (3) in the next equation is offered by Ewell (1990).

Proposition 11.4.1. The value of £(3) is given by

n? = ¢(2n)
(3)=— (1 —4§ Grihan s |0 1140

Proof. Start with the expansion (6.6.6) and integrate to produce

¥ gin~ !y ad Cre
di — Gk ke
/a : Y A
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with ¢, = 2~ ﬁk) as in (11.3.20). Let u = sin~' ¢ to obtain

Py i c
k ey
/ du = Z —_— sin+1 ¢,
o tanu P 2k 4 1)*

then integrate the expansion of the cotangent (6.9.7) to get
o0 o
2 I,QH . .
(2% £@m) 17 S L S
o o 2n 41 = (2k + 1)*

Finally integrate from 0 to 7 /2 and use Wallis’ formula in the form (11.3.21)
to produce

H.E 2§: g(zn) (H/2)2"+2 B i 1

8 o2 Qn4+D2n+2) =2k + 1)
This result reduces to (11.4.6) by using (11.4.4). O
Note 11.4.1. The typical term in the series (11.4.6) is asymptotic to n—227"

and so the new series converges much faster than the original.

11.4.2. A Formula of Yue and Williams
In this section we describe an expression for ¢(3) due to Yue and Williams
(1993).

Theorem 11.4.1. The Riemann zeta function satisfies

= £ (2n)
3) = —2n? . 11.4.7
(@)= -2n ; (21 + 2)Q2n + 3)22 (114.7)
Proof. Start with the expansion (6.6.21)
> 22n—1
(sin_l .r)z = Z X, (11.4.8)
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and with x = sin u we obtain
&0 221!—2

)
f u’ cotu du = Z ----- , 3(2”) sin®" 7. (11.4.9)

0

Now recall the expansion (6.9.7), integrate from 0 to w /2 and use Wallis’
formula to produce the result. O

Exercise 11.4.1. Establish

n—l 1 1 oo Yzf:'_”"
k=1 :

which appears in [G & R] 3.411.14. This identity is in the same style as
(11.3.7). There are similar expressions for other constants, for instance

% yp—2nx m—1 2n —1)*
Xe X { n )M n2 4 Z )
0 elx 4 1 (2! 2

and

20 ye—(2n—1x Jy (2?‘.‘ . 2)” 2n—1 (_])k
........................................ — In2
[ = = 2 2 S

provide representations for In 2. These appear in [G & R] 3.454.1 and 3.454.2
respectively. Check them.

Exercise 11.4.2. Prove the analogue of (11.3.2) due to Beukers (1979):

1 /' ! lnxy
[(3) = —= / / dyvdy. (11.4.11)
2Jo Jo 1—=xy

Extra 11.4.1. Sondow (2002) has established the representation

I —x
dx dy
4 4 l—x))lnn xa

and the antisymmetric formula Sondow (1998)

(L L
v ‘Ln|1+ nx xn /)

n=1

There are many other integral representations of special values of the Riemann
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zeta function. A remarkable one is given by Borwein and Borwein (1995):

Lo 11
— / x° In"(2cosx)dx = —(4).
0 16

.

11.5. Apery Type Formulae

The proof of the irrationality of £(3) given by Apery is based on the repre-
sentation

5 i (_ 1 )3«'+1
(3)== T (11.5.1)
2 k=1 k-‘ (k)
The analogous formulae
=1
c2)=3 g e (11.5.2)
and
36 o 1
() =— T (11.5.3)
72 )
suggest the possibility of expressions of the form
a oo (_l)f\'-i—l
{(5) = — (11.54)
b g k5 ()
and
€ ]
£(6) = — S (11.5.5)
PRI

Extensive computation by Borwein and Bradley (1997) ruled out the existence
of such a formula when a, b, ¢, d are moderately sized integers.
There are beautiful representations for £(5) due to Koecher (1980).

2 k1 %
(—D 5 (—1) 1
C{S):z % + = " 5
:; ) 2;;'"‘(;-) =
and for £(7) due to Borwein and Bradley:
5 o (_])k-i-l 25 o0 (_])k-i-] k—1 1
N=3) 5 +3) . —x —.  (1156)
2Ic=I k?(k) 2 k=1 k%(;\-) =1 A
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So far these formulae have not produced the desired proof of irrationality
of ¢(5) and ¢(7). These cases have been extended by Borwein and Bradley
(1997) and Almkvist and Granville (1999) to produce a generating function
of £(4n + 3):

Z (@ +3)27 = Z n3(1 — z4/n*

k=0 n=l1

oo —1y 1 n—1 +4-
Z Zir n _,4 H

m=1

and
= 1

| L
gmk =D i

n=1

(— l)ir— 2 2 n—l ZZ
-3 () (- ).

n=1 m=1

There are similar identities that involve the constant t := In((1 + NG )/2):

(__l)n—l 5
2w

Finally we mention Amdeberhan’s beautiful formula (1996):

o0

1 {_l)n—l (56}‘.‘2 —32n + 5)
§(3) = Z n3 (Sn) (3”) X 2n — 1)2

n n

n=l1

that has been used to compute the decimal expansion of {(3).
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Logarithmic Integrals

The goal of this chapter is to explore the evaluation of integrals of the type

b
/ Ri(x) In R>y(x)dx

[

where R;, R; are rational functions. The examples presented here are ele-
mentary and Chapter 13 contains some more advanced ones.
The evaluation

“In(l — x n
/ Md_r = Inx* — T
] X 10

with x* = (Jg — 1)/2 appeared in the description of the dilogarithm (4.1.8)
and it gives a measure of the complexity of this type of problems.

Integrals of the form
1
R(
/ @) dx
o Inx

are much more complicated and are the subject of current research. Adamchik
(1997) studied them in the equivalent form

1
/ R(x) Inln (1) dx
Jo X

and evaluates some of them with the help of the Hurwitz zeta function. The
evaluations lead to magnificent expressions. For instance,

Lo | V27 3
[ ——— Inln (—) dx = ~1n Til{:l)
Jo 1+)L X 2 I(Z)

the example in Vardi’s paper (1988) coming from [G & R] 4.229.7 which was

237
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our original motivation, and
] -
] 1 1 6+/3
f %lnln(—) dx:—z——lu —f
0o (I—x+x°) X 3 3 T

73
27

+

(5In27 —6InI(})).

12.1. Polynomial Examples
In this section we describe integrals that are combinations of polynomials and
powers of logarithms. They will be expressed in terms of
1
I, = / x" In* x dx. (12.1.1)
Jo
Starting with a polynomial

m

P(x)= Z pnx” (12.1.2)
n=0
we have
b n b
/ P)Inf xdx = ZP;;/ x" Inf x dx. (12.1.3)
v n=0 a

Exercise 5.3.1 shows that the integrand admits an elementary primitive. The
change of variables x = bt yields

b k 1
. AT :
/x"ln*xdx:b"“E _ lu"‘fb/ Inf tdr,  (12.1.4)
Jafb

L _f=0 J’

so we need to evaluate integrals of the form
I
L(c) = / x" In* x dx
.

1 :.'
:/ x" Inf x dx — / x" Inf x dx.
0 Jo

The second integral can be scaled as before to write it as a finite sum of
integrals of the form 1/, ;.

Exercise 12.1.1. Check this.
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Proposition 12.1.1. Letk, n € N. Then

! k!
/ x"Inf xdx = (- 1Df ——. (12.1.5)
0 (n + D+
Proof. The change of variable 1 = — Inx gives
1 o0
/ x"Inf xdx = {—l)k/ e~ gy
0 Jo
(=D /"" ki
= e tYe” " dt
1y €
and the integral is '(k + 1) = k. O

Exercise 12.1.2. Obtain the value

3 1
/ X Infxdx = 35 (65 +641n2—128 In’2 —3241n3 + 6481n*3) .
2 3

12.2. Linear Denominators

In this section we consider the closed-form evaluation of

b n* x
[ / mx (12.2.1)
Ja 41X + qo

in terms of the parameters a, b, py and p;. In general the combination of
logarithms and rational functions produces integrals that are evaluated in
terms of the polylogarithm function defined by

o0 n
Lic(x) = PolyLoglk.x] = 3 . (1222)
n
n=1

The special case k = 2 is the dilogarithm introduced by Euler and defined in
(4.1.8). For instance, Mathematica gives

b

Inx d> 1

e (InbIn(1 + bg*) — InaIn(1 + ag™))
a q1X+4qgo i

|
—— (PolyLog[2, —aq™] — PolyLog[2, —bq7]) ,
q1

with ¢* = q1/qo.
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Simple expressions will exist only for special values of these parameters.
Gosper (1996) has studied the Nielsen—-Ramanujan constants

2 lnk x
ay, :/ ldx. fork =1 (12.2.3)
1

and proved that a; = £(2)/2, a» = ¢(3)/4 and

k—1

k P In2 . 1
aj :krg(k-f—l)— mlﬂ+ 2_kf§ j—!Ll,H_]_J,'(E). (1224)
Example 12.2.1. Letk € N. Then
1 1 k
/ 1" odx = (— )RR+ 1), (12.2.5)
0 - X

This appears in [G & R] 4.271.3. To check it, expand the denominator in a
power series to get

o0

1 1 J’\" 1 )
/ pa dx = Z / x/ In* x dx
o I—x 0

j=0"

°© 00
= Z{—l)"/ ke~ gy

=0 0

= (=
=M G

j=0

The result follows from Exercise 11.1.2.

Exercise 12.2.1. Prove the identities [G & R] 4.271.1, 4.271.2:

dx = x ¢ (k + 1). (12.2.6)

/1 In* x (—DFkN 2 — 1)
Jo x+1 2k

Exercise 12.2.2. Establish the value

1 Il +x X m?
/ In = (12.2.7)
Jo l—x/ «x 4

Exercise 12.2.3. Check [G & R] 0.241.4:

9

? In(1 — 5 2
/ nd=x , - % — PolyLog[2, p]. (12.2.8)
1 X
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12.3. Some Quadratic Denominators

In this section we consider integrals of the form

1 ko
Qk{ﬂebsf)‘—_/ In”x dx (123.1)

0o ax?4bx+c’
Exercise 12.3.1. Confirm [G & R] 4.271.7:

/°° In®*' x dx _
o L4+bx+x2

provided |b| < 2. Hint. Let y = 1/x. The special case b = n = 0 yields

BC.I 3 d .
/ ]“i—r" ~0 (12.3.2)
0 -

aresult due to Euler. This evaluation has been reproduced by Arora, Goel and
Rodriguez (1988).

Exercise 12.3.2. Confirm [G & R] 4.271.9:

50 Ei]" d>
/ n“" x 1¥:0
o 1—x-

Proposition 12.3.1. Letn € N. Then

U In* x dx _ 2k+1
/ 2 :(—1)*ktg(,¢<+1)zkT (12.3.3)
0 — AT

and

1 . k
X (DMK D)
A . In* x dx = — (12.3.4)

The first integral appears in [G & R] 4.271.7.

Proof. The first one is the average of (12.2.5) and (12.2.6), the second comes
from their difference. O

Note 12.3.1. The previous evaluation can be written in terms of the Bernoulli
numbers as

dx =
o 1—2x2 X 4n

/I ln?ir—l X Hlir(zzn . 1)

2n-

Some more complicated integrals appear from elementary manipulations
of the one presented here, but a systematic evaluation requires more advanced
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functions. For example, the value

1 ke — 1yt
/1n(1—x2) 1n*‘-'xﬁ:{ 'k ”'“k“). (12.3.5)
JO X 2"

comes from integrating (12.3.4) by parts.
The integrals discussed above also have a trigonometric version. The next
exercise appears as a problem in Linis and Grosswald (1957) and it was solved

by E. Grosswald.

Exercise 12.3.3. Prove that

fm/nﬁ lnsec 6 ,p_ % (12.3.6)
- 0 tan @ 247 o

As before one obtains the evaluation of apparently more complicated def-
inite integrals by introducing a parameter.

Example 12.3.1. Leta € R and x = y“ in (12.3.2) vields

3] ¥” 1
Inydy = 0. 12.3.7
A Y11 nyay = ( )
Differentiating with respect to a yields
00 ya I(‘,er . ]) ,
——  In"ydy=0. (12.3.8)
/[; (}:?_cr o 1)1 ya)
We conclude the existence of a sequence of polynomials C,(x) such that
00 4,0—1 In" v
/ 2R o~y dy = 0. (123.9)
o (4 Dntt
The polynomials
Colx) = Zaj X" (12.3.10)

=0
satisfy the differential-difference equation

Co1(x) = 2x(1 = x)CL(x)+ [1 + (2n + Dx] Cu(x), (12.3.11)
and their coefficients satisfy

Apn+1 = dop
Alnt1 = 3a1, + (2n + Dag ,
Ajny1 =Q2j+Da;,+2m+1— jlaj_1,
Ayttt = Uy g (12.3.12)
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Therefore a; , are positive integers. Moreover, the polynomial is symmetric,
that is
C.(x) =x"C,(1/x). (12.3.13)
The first few polynomials are

Co(x) =1, (12.3.14)
Cilx)=x+1

Co(x) = x>+ 6x+1

Ci(x) = x> +23x2 +23x + 1

Ci(x) = x* + 76x> +230x2 + 76x + 1

Cs(x) = x° +237x* + 1682x° + 1682x> + 237x + 1.

The list of coefficients
{1, 1,1, 1,6, 1, 1, 23, 23, 1, 1, 76, 230, 76, 1}

are identified by N. Sloane’s Handbook of Integer Sequences (1973) as the
triangle numbers 7'(n, k).

Example 12.3.2. The evaluation of

Uln(l 4+ x) T
————dx=—In2 12.3.15
/(; 1+ x2 8 ( )

is due to Serret (1844). The integral can be found in [G & R]: 4.291.8.

The change of variable x = tanr yields

U in(] + /4
[ Ind+x 0 / In(1 + tant) dt
JO 0

14 x2
/4 2 cos(m /4 —
/ I(M) 0
0 cost
/4

T /4
3 In2 + / Incos(m /4 — t)dr — [ Incostdt,
0 Jo

and the last two are equal by symmetry about t = 7/8.

Project 12.3.1. Let n € N. Then

1 In4-1 In+1
(Inx) p )
Jo 1 + xZ r= 23ir+2 bz"’ (12316)

where E,, are the Euler numbers defined in (6.9.13).
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12.4. Products of Logarithms
In this section we present one example of an integral of the form

b
In Ry(x) In Ry(x)dx

Ja

where R and R; are rational functions.
Example 12.4.1.

1
/ In(1 4+ x) In(1 — x)dx = In?2 —2In2+2 — £(2). (124.1)
0

The evaluation of this problem is given by Kerney and Stenger (1976).
Observe that

I 1
/ In(1 +x)In(l — x)dx = % / In(1 + x)In(l — x)dx
J-1

J0

1
= / In(2¢) In(2 — 21) dt

i

1
:/ [n2 +1Int] x [In2 + In(1 — )]

0

1 1
:11122+21112-/ Int dt +/ IntIn(l = 1)dt.
0 0

Integrate by parts to check that the first integral is —1. To evaluate the second
one expand In(1 — £) to obtain

1
Int In(1 — ) dt = / t“ Intdt
: Z

Zkk+l

k=

I

I

> 1
T k+ 1) {k+])2>

1-(@2)-1)=2-¢Q2).

I

Exercise 12.4.1. Use the expansion in (5.2.8) to obtain

=5} 1 R
> FETD (Hy — Hy — %) =In°2 = 2In2 42— ¢(2). (124.2)




12.5. The Logsine Function 245

Exercise 12.4.2. Check that

o0 2 2

1 72 m2
Y=L _ZTZ (12.4.3)
LT 12 2

Hint. Let u = In(1 + x) in (12.4.1) and integrate by parts. The resulting in-
tegral can be expanded in a geometric series.

Extra 12.4.1. The series (12.4.3) is the special value x = 1/2 of the diloga-
rithm function defined in (4.1.8):
72 In®2

DiLog(1/2) = — —
iLog(1/2) = 15 = —

(12.4.4)

According to Loxton (1984), the only known values of the function L(z) =
DiLog(z) + % log 7 - log(1 — z) are Euler’s results
2 nz
L()=— and LH)=
(1) G=7

(12.4.5)

and those given by Landen

3

L(35-1) = T{; and L (13 -5)) = % (12.4.6)

Mathematica 12.4.1. A direct Mathematica computation provides the value
and also gives the primitive

[ln(l —x)In(l +x)dx = —1 +2x — (1 + x)In(1 + x)

+ (1 —=x—=In4+({14+x)In(l +x) In(1 —x)
+ 2 PolyLog(2, (1 — x)/2).

12.5. The Logsine Function
In this section we consider the evaluation of

S, = / (Insinx)" dx. (12.5.1)

U]

This function has appeared in Exercise 10.6.1.
The first integral is due to Euler and has reappeared in Arora, Goel and

Rodriguez (1988).
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Proposition 12.5.1.

S = / In sin x dx = —7 In2. (12.5.2)
0

Proof. Use sinx = 2sin(x/2) cos(x/2) to obtain
S =In2+ / In sin (%) dx + / Incos (%) dx.
JA0 JO
Replace x /2 bt ¢ in the first integral and by 7 /2 — ¢ in the second, we find

/2
Si=mIn2+4 Insint dt

0
=nln2+ 2§,

and the result follows. O
We now follow Beumer (1961) to prove a recursion for the integrals §,.

Theorem 12.5.1. The integrals S,, satisfy

n—1 (22" - 1) 2n

S182-1 = S$283m2+ -+ S8 = (=1) (2n)!

B, (125.3)

n—1

28,1+ > (1 =25k + DS, iy = (1 = DS, (1254)
k=1

Proof. Consider the Dirichlet series

fas] s (Zir)
X(s5) = It (12.5.5)
"Zz;} (2n + 1y
and observe that
1 1 et
- = / x¥ Tl n=hx gy (12.5.6)
Cn+1y T(s)Jo

so by the binomial theorem we obtain
o0 x.v—l dx
Jo IEZ.\' -1

The change of variable e + sin# yields, for s = n,

= I'(s)X(s). (12.5.7)

(_l)n—l /2 ) »
5= /0 (sin6)"! dé. (12.5.8)
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Integrate
oo .
o (Insing)" |
(sinr)" = Z:; — T« (12.5.9)

from x = 0 to /2 to obtain

= X 72 w/2

Z P [ (Insing)'dé = / sin® rdr.

n! Jo 0

n=(
Now use (10.3.12) to obtain

> . 0 VT x4+ (X
D1 Sppaxt = T ( ) x T (5+1). (125.10)

n=0 2
Similarly
- n ‘\/_ J g fx+1
"Zz(:)S,,Hx :Tntan(%)l"(%+l)xl" 1(‘7)

The product of these last two series yields

(Z(_I)HSHHJ‘:") X (Z Su+|x") = %{- tan (22-{)

n=0 n=0

i1

2 (22;1 _ 1)(_1)!:—I32"n2n ,
= X

n=1 (2.‘1)1
Then (12.5.3) follows from here. The values
T
S1=—
‘T2
T
S5=—In2
2 2 n
we obtain
7 on
S3 = — + —1In?2.
=TIt

In order to evaluate the remaining S, we differentiate (12.5.10) to produce

© | N
DD ST = /24 1/2) =0/ 24 D) X Y (=1 S0

n=1 n=l)

Expanding v in its Taylor series produces

Y(x/2+1/2) —(x/2+4+1) = —2In2+2 Z(-l)"“(l — 27 (n + D",

n=1

and we obtain (12.5.4). O
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Exercise 12.5.1. a) Prove that

72
S, =2" [ (Insinx)"dx
Jo

/2
=2" [ (Incos x)"dx.
Jo

b) Check that
1 l n d
S,,=2"/ n" f z,
Jo V1 —12
and
—1)yr ey —vl/'_’,d
5, — (—=1) / vie v
2 Jo 1 —ev
and
¢ 1 ' In"tdt
" 0 T —1)
Exercise 12.5.2. This appears in Tyler and Chernhoff (1985). Prove that
fae]
2
D el N (125.11)

— n(2n + 1)22n
Hint. Use the infinite product for sin x to obtain

o
2
Insinmx =Ilnmx — Z mez".

n=1

(12.5.12)
n

Now integrate from 0 to 1/2. Integration from 0 to 1 yields the companion
formula

= ()

— " —In27 — 1. 12.5.13
gn(2n+l) i ( )

It was pointed out by Danese (1967) that this series is a particular case of

Z £(2k, 2) =Qz— 1Dz —1/2) =2z + 1 +In27 — 2InT(z)
PRU + k) |

where

(s,=) e (12.5.14)

n=0

is the Hurwitz zeta function which will be studied in Volume 2.
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Exercise 12.5.3. Gradshteyn and Ryzhik’s compilation (1994) contains many
other integrals involving products of logarithms. For instance, 4.315.1 and
4.315.3 are

! _y dx L B

/ In(l +x)In"" x = ==D""n-D{1=2") ¢+ 1)
Jo

and

1
/ In(1 —x)In"'x dx =(=1"(n—D!'¢n+1).
X

0
Check them. The integrals 4.315.2 and 4.315.4 are the cases n odd for which
¢(n + 1) can be expressed in terms of the Bernoulli numbers.
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A Master Formula

13.1. Introduction

The goal of this chapter is to present a transformation due to Schlomilch that
yields the evaluation of many definite integrals. The main application of this
transformation is to present an evaluation of the integral

> x* " ¥ 41
My(a;r, s) = d
(7. 5) _L (.\r4 + 2ax? + l) X 2+

Br- 1.}

— 2!+I2(ﬂ+1)r—1£2 (13.1.1)
in terms of Euler’s beta function
1
B{p.q)—_—/ xP7H 1 = x)4 Vdx. (13.1.2)
0

The evaluation described here is a master formula, provided by Boros and
Moll (1998). Many different integrals can be derived from it through varying
the parameters, changes of variable, differentiation and other more sophisti-
cated transformations. In this form, (13.1.1) unifies large classes of integrals,
and we illustrate its power through a number of examples. Some of these are
well known, by which we mean that they can be computed by a symbolic
language or can be found in a table of integrals. We have used Mathematica
as a source for the former and Gradshteyn and Ryzhik (1994) [G & R] for the
latter; others appear to be entirely new, as we have been unable to find any-
thing resembling them in the literature. The variety of definite integrals that
can be deduced from (13.1.1) is immense and we just show some examples.
For example, in (13.6.10) we show that

/x [ + DY+ 1)}_1 « In ( u ) dx = (—%m/s)) .

0 x3+l

250
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13.2. Schlomilch Transformation

We now present a result that connects the integral of a function f in two dif-
ferent scales. The conditions that f must satisfy are simply that the improper
integrals appearing in the next result are finite. This will be easy to verify in
the examples presented below.

Theorem 13.2.1. Leta, ¢ = 0. Then

/.x.f((m—a/x) f fu®)du. (13.2.1)
0

Proof. Transform the integral / on the left of (13.2.1) by t = a/cx and add
it to the original to obtain

20 = lf £ ((cx —a/x)?) (c+a/x?) dx. (13.2.2)

cJo
The change of variables u = cx — a/x maps the half line [0, c0) to the real
line (—oc, 0o) and it yields (13.2.1). O

Example 13.2.1. Let f(x) =e™". Then (13.2.1) gives Laplace’s integral
(8.4.1).

Example 13.2.2. The details in this example were shown to the authors by
R. Posey. It simplifies the original proof given by Boros and Moll (1998). Let
f(x)=1/(1 +x) withr = 1/2. Then (13.2.1) vields

o0 2y —F _1 o dh‘
/0 (l+(cx—a/x)) dx_c‘/o Ty (13.2.3)

Take ¢ = a and replace a by +/2(a + 1), to obtain
2(a+1 d: 13.24
(2a+ DY / ( +2m: + l) * ( )
for the left-hand side. The right-hand side is
V2 +1)/w du L Aa+ DB (r—11) (1325
a —_—— = a F—3.5 2.
Jo {1 + H‘.’.)J" 2 272

where we have used (10.3.3). We conclude that

J R DR TSI
—_— X = )
o \xt+2ax? 41 2124 (] 4 g)r—1/2
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This example can be written in many different ways by using appropriate
changes of variables. For example x — 1/x yields

fm'( x2 )r dx B(r-—i—‘,%)
0 \xt42ax24+1/) x2 7 U1 4 q)y V2

In the next section we show how to expand this idea and how to introduce

free parameters into this evaluation.

13.3. Derivation of the Master Formula

In this section we present an evaluation of the integral with three parameters.

Theorem 13.3.1. Let
2

o0 x " _\:3 +1 dx
Malaer s) = -—. (13.3.1
alasr, s) /l; (x“+2ax3+ 1) % x*4+1 x? ( )

Then My(a;r, s) is independent of s and

oo x2 " odx
My(a;r.s) = _ — 13.3.2
a@r,s) /g (f* + 2ax? + l) * x2 ( )
) ‘:3 r
= —_— ] 1333
/U (_\:4 + 2ax? + l) ' ¢ )

: ["‘"( . ) sy (1334)
- X 3.
2 Jo \x*+2ax?+1 22

: x? Toxi 41
d 1335
/ﬂ (x4+2&x3+ l) T 4 ¢ )

B(r—11)

23

21{3+r(1 + a)r—l,fl .

Proof. The equivalence of the four integrals is easy to establish. The second
one follows from the first by the change of variable x — 1/x. The third one
is the average of the first two and the last one is obtained by splitting the
original integral on [0, 1] and [1, o) and converting the integral over [1, co)
back to [0, 1].

To obtain the common value of these integrals observe that the result has
been established in Example 13.2.2 for 5 = 2, so the result follows from the
next lemma with g(x) = x4 2a + x5 (x + 27N O
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Lemma 13.3.1. Suppose g satisfies the functional equation g(1/x) = g(x).
Then

X g(x) dx
K(s)= — 13.3.6
() /r; Yrlx ( )

is independent of s.

Proof. Split the integral into two pieces on [0, 1] and [1, oc) and make the
substitution x + 1/x in the second one. Then

1 1 .8 1
_ g(x) dx /‘ xg(l/x)dx _ / dx
K(s) = _/(} x+1 x + 0 xX4+1 x  Jy 8(x) X

and the last expression is independent of s. ]

13.4. Applications of the Master Formula
In this section we present several classical evaluations that are consequences
of the master formula.
We begin with some numerical evaluations.

Example 13.4.1. Leta = 1/2, r = 31n (13.3.2) to obtain

4 T

o X
——dx = ——.
/a (x* +x2+ 1) 4843
Thentakea = 7/2, r =5/21in (13.3.2) to get

> x? 2
[ e =5
Jo (x*4+7x2 4+ 1) 243
The third integral presented here corresponds to the valuesa =7, r =5/4
in (13.3.3):

/90 VX J r2(3/4)

o Gf a2+ DT T 4o

A more complicated example appears by taking @ =1/2, r =3/4 in
(13.3.3):

dx 32

./(} Jrt o+ 1) T 2G4 V12

Example 13.4.2. Using the fact that My(a;r, 5) is independent of s we can
evaluate some strange integrals. For example: s = 10, a = (1 + 23/2))2,
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r=1in(13.3.3) yield

e dx
/n X124 2210 4 (1 — 24208 4 (=1 4+ 24/2)x6 4+ (1 — 2/2)x4 + 24222 + 1

T

T 214D

Some more artificial evaluations come from s=102, a=(1+
2\/5)/2, r=1 in (13.3.3). As mentioned above, the integral is inde-

pendent of 5, so we get the same answer as in the previous case:

dx T

/ﬂ [x4+(1+2\/§)x2+1} [x100 — x98 4 ... 4 1] :2(1+~/5)'

Example 13.4.3. The next evaluation is a classical one. Leta = 1, r = lin

(13.3.2) to obtain
/"C' dx o
o (ZHDEE+1) 4

(see, for instance, Edwards (1922), page 262). This can be transformed via
x = tanf to the familiar form

/2 de T
/ﬂ 1+ (tan @) 4

The next example is also well known.

Example 13.4.4. The case s =0, = 1 and r = 3/4 in (13.3.3) produces

l/"sz do I'2(1/4)
2 Jo  4/sinf cosd N 4./

so that, after the change of variable 26 — 6 we get

/”52 de r2(1/4)
0

Vsing  2v2m
This can also be obtained by letting r = —1/2 in (13.4.3).

We now present a series of classical results of analysis that form part of
the master formula.
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Example 13.4.5. Wallis’ integral formula. Let r € R, Then @« = 1 and
s = 2 in the master formula yield

~
/ x+1/x)"dx=2""B(r-11) (13.4.1)
o 2
and
o
/ X+ 1) T de=2""B(r-1.1) (13.4.2)
o 2
The change of variables x = tan# in the expression (13.4.1) yields
T2
/ sin? 20 cos¥29dp =2'"¥B [r - %, %) .
0

The substitution 26 by § and 2r — 2 by r produces Wallis’ integral:

/2 1 11
/ Sin"0 do = —B (H' ,—) Cforr > —1.  (13.43)
0 2 2 2

This appeared in (10.3.13).

Example 13.4.6. The duplication formula of Legendre. We now use the
formula

o x? g B(r—1.3)
T g ) dx= (13.4.4)
Jo \bx*+2ax2+1 20+112 (a4 by 112

to derive Legendre’s duplication formula (10.4.7) for the gamma function.
The expression (13.4.4) follows from (13.3.4) by a simple scaling.

Theorem 13.4.1. Letr € . Then
'2mi(1/2)

F(r + ]-/2) = Iﬂ(r)zlr—l

(13.4.5)

Proof. Consider the special case of (13.4.4) with b = a?; we then have

[OC‘ xzr d _B(F—%,%)
0

(0.1:3 + I)Zr X = 221'ar+1}2

The integral on the left-hand side can be evaluated using (10.3.3) to produce
B(r —1/2,1/2) =2""'B(r + 1/2,r — 1/2).

Now use (10.2.5) to complete the proof. ]
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Example 13.4.7. The generating function of the central binomial coeffi-
cients. This is given by

* (25 1
S —— 13.4.6
Z ( n ) W1 —=4b ( )

n=0

and appeared in Exercise 4.2.3.
Proof. The expression (13.3.3) yields

/oc( xZ )ﬂd B(FI-{-%,%)I
0 x4 + 2ax? + 1 X = 21/3+n(1 +a)n—lg‘2

_Te-12Vx  JT+a
- I“(n) 21{3+n(1 +f|‘)"

2
2327 l+a( "

n—1

) Bl +a]™.

Now sum from n = 1 to n = o¢ to obtain, on the left-hand side,

/m xtdx _ T

o X' +Qa—-Dx2+1 2J2a+1

where the resulting integral has been evaluated in Exercise 7.2.10. The proof
is complete by choosing b = [8(a + DL O

Example 13.4.8. A series involving central binomial coefficients. We now
derive the value
> 1 T
— = = (13.4.7)
DTN
from the master formula. This appeared in (6.6.11).
Start with (13.3.3). Replacing n by 2n + 1 and using Legendre’s formula
(13.4.5) produces

/m 20 \*dx 2w _ () (o -

o \x2+41 2 arem  \ " '

The bound 2.{/(x2 + 1) < 1/2 permits to sum from n = 1 to n = o0 to pro-
duce

* x dx 13 1
/0 (xl + l)(x4 4+ x2 + 1) = EZ ﬁ(Zn)'
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The change of variables y = x> permits an elementary evaluation of the
integral on the left by partial fractions. This gives (13.4.7).

13.5. Differentiation Results

The formula

Ma( ) /”( x? )rxx2+1 dx
ar,s)= i
¢ o \xt 4 2ax?+1 x+1 xZ

_ Blr=33)
231 +ay 2

and other equivalent versions used depend on the three independent parame-
ters a, r, 5. We have seen that it is possible to derive the evaluation in closed
form of a large number of integrals by appropriate manipulations of the
parameters. One can obtain additional results by differentiation with respect

to r. For example, with a = —1/2 in (13.3.3), we have
= x? " odx 1 |
so= [ (war) w=aflobh sy
B Jr (- %)
2 T

Differentiation of (13.3.2) produces

f;{)_/x’ x? r><l x? dx
S = 0 = xT41 1 xt—x241) x2

and differentiating the expression in (13.3.3) gives

VA DO —1/2) =T = 1/2)I'(r)
2~ I2(r) '

flir)=

Several interesting evaluations can now be obtained by specifying the value
of the parameter ». Such calculations produce nice results in terms of well-
known constants, provided we know the values of the function I' and its
derivatives at the arguments r and r — 1/2 in terms of these constants. The
following examples illustrate this.
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Example 13.5.1. r = 1 produces

o] 2
x dx
"1 = |
F /ﬂ n(.t4—x2+l)x4—x2+l

VA T(OI'(1/2) = T(1/2)r'(1)
2 r(1)

= —mwIn2.

0o x? dx
| = —mIn2.
[0 n(x4—x2+l> xt=x241 T

In this calculation we used the value I'(1/2) = — /7 (y + 21In2).

Thus

Example 13.5.2. The value r = 3/2 produces

/m o x 1 o dx =In2— 1
n X =1In — 1.
Jo o (xt—x24 1) xt—x2 41

and r = 3/4 yields

e 2 34 %2 JT
In( ———— ) dx = —X_1r%1/4).
_/(} (_t4—x2+l> Xn(xd—xz-l-l) o 272 (/9

Extra 13.5.1. Further differentiation of the function f(r) produces more
examples of integrals that can be evaluated in closed form. These calculations
now require the explicit knowledge of the values of I', IV and I'" at the
arguments r and r — 1/2. For example, the calculation of (1) gives the result

/"013 x? dx T n2+4122
Jo TAM o) Yoy T2\ f '

Many other similar integrals can be evaluated.

Note 13.5.1. Differentiation with respect to s gives zero, reflecting the fact
that the integral is independent of s, and differentiation with respect to a
merely returns an equivalent form of the original integral.

13.6. The casea =1

In this section we discuss in more detail the special case a = 1. Theorem

13.3.1 yields
o 2r
= X dx -2 11
J (o51) mrree-iy
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and the equivalent form
> x \ —2r 11
‘/0 (x2+1) a'x=2 B(F’—i,i)

-39 1 L
=tz = mPl s

VI[P x \Tdx
26(")_‘/0 (x2+1) 2

Differentiation produces

a0 X 2r X dx ﬁw
[ () () 5= Foo ae

and logarithmic differentiation of G gives

Define G as

G(r)

so that

G'(r)=Gr)[Yr—1/2) = ¢(r) —2In2],
from which
G"'(r) =G x [Y' =1/ =¥') + (W = 1/2) = ¥() — 2In2)’]

follows.

As before, certain values of r produce some interesting integrals. In order
to obtain a clean-looking result, in addition to knowing the values of I', I"" at
the arguments r and r — 1 /2, we also need to know the values of 1 and .

Example 13.6.1. Let r = 1. Then (13.6.1) yields

/“’o 1 1 X 4 7 ln2
Jo GZynr M \y) YT T

where we have used the appropriate values of ¢ to compute G'(1). We now
use [G & R]’s formula 4.234.6 on page 566:

/“’ Inx dx wh; 1 (a.)
= | —
o (al + b1 +x2)  2a(bf —ad) \ b

in the limiting case a; — 1, b; — 1 to obtain

* Inx dx T
[0 = (13.6.2)
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and combining this with the previous result we get

/°° In(x2+ 1) dx
0

b g
EEED = Z(2ln2 - 1). (13.6.3)

Note 13.6.1. If we repeat the same procedure used to obtain (13.6.1) but use
Theorem 13.3.1 with (13.3.2) in lieu of (13.3.3), we obtain

o0 x r x 241 1
| dx = — G'(r). (13.64
/o (x2+1) * “(x1+1> X P = Va0, (1364

Example 13.6.2. The valuer = 1 and s = 0 in (13.6.4) yields

%/ x r
fﬂ (.\:3 n 1) x In (.\:3 n 1) dx = Eq/;G (D)= —mIn2. (13.6.5)

Using (12.3.2) we thus get

* In(x? + 1
/ O+ D gy — 7 1n2. (13.6.6)
0 X-= + ].

The change of variables x = tanf yields

72 T
/ Incosd dff = -—Ean. (13.6.7)
0

Extra 13.6.1. The integral

. ® In(x2+ 1)
I(n) := 4 (xz + l)n+1dx

can be evaluated as follows: the substitution x + tan @ yields
w2
I = -—Zf cos? 0 In(cos 8) d8,
0
and this is given in [G & R] 4.387.9 as
[ =B(n+3. 35){In2+ H, — Hy}. (13.6.8)

The examples given in (13.6.3) and (13.6.6) are particular cases (n = 1 and
n = 0 respectively) of this formula. It would be interesting to derive a proof
of (13.6.8) from the master formula.

Example 13.6.3. Differentiation of (13.6.1) yields

8 20 X b X dx
G'(r)= — — In® —  (13.69
) \/J'T/O (x2+l> e (x2+l>x2 ( )
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and, as usual, special values of r produce some exact evaluations. We provide
just one such example.

Letr = 11in (13.6.9). Then

/w L w2 Var= & (22 +481n°2).
— = n| ——r x = T n
Jo (24 1)? x4 1 48

We conclude this section with two examples that we find aesthetically
pleasing.
We have not been able to evaluate these examples symbolically.

Example 13.6.4. Letr = 3/4in (13.6.1). We then obtain

foo [(\:2+1)\/x(\:3+1)}_1 xln( o )dx — _(r+2In2)
o L ' 241 SJ_
x T2(1/4).

The last one is obtained with the value ¢ = 5/6 in (13.6.1):

3
f [(x + DVx(2 4 1) ] xln( a )dx: (wlm/s)) .
0 x241 2

(13.6.10)

Aren’t they pretty?

Project 13.6.1. It would be interesting to relate the integrals in Example
13.6.4 to [G & R] 4.244.1 which states

: In > 1
/ Y = —-13(173), (13.6.11)
0 vx(l—x?)? 8
and 4.244.11:
1
2 -2
[ e S P el T N
Jo /x(l —x2) 8
Perhaps one can use the master formula to prove
' Inxdx _ - B(1/2n, 1/2n) i
o J1—x2n  8nZsin(m/2n) "=
! Inxdx —mB(1/2n, 1/2n)
= n=>1

ofxn=1(1 — x2n) 8 sin(sr/2n)

These are 4.243.1 and 4.243.2 respectively.
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Extra 13.6.2. The fact that two apparently different integrals produce the
same answer, as we have observed in (13.6.10) and (13.6.11), might be nothing
more than a coincidence since there is a large amount of flexibility in the rep-
resentation of a real number such as %l’"s(l /3). Kontsevich and Zagier (2001)
have proposed a remarkable conjecture for periods. A period is a complex
number whose real and imaginary part are values of absolutely convergent
integrals of rational functions with rational coefficients, over domains in R"
given by polynomial (in)equalities with rational coefficients. For example

2 dx
In2 = e
1 X
and
T = / dxdy
P |
are periods.

Conjecture. If a period has two integral representations, then one can pass
from one formula to the other using only the following rules:

1) Additivity:
b b b
/ (f(x)+ g(x)) dx :/ f(x)dx—l—/ g(x)dx,

b c b
f(x)dx:/ f(x)dx—l—/ flx)dx.

2) Change of variables: If y = f(x) is an invertible change of variables, then

£l b
/ F(y)dy = / F(f() f'(x)dx.
I oSl

la)
3) Newton—Leibnitz:

b

f'x)dx = f(b) - f(a)

Sl
and higher dimensional versions of these rules.

All the functions and domains of integrations allowed in the passage from
one representation to another are algebraic with algebraic coefficients.

Exercise 13.6.1. Prove that I'(p/q)9 is a period. In particular ['(1/3)* is a
period.
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13.7. A New Series of Examples

Starting with the expression

G =TI 2 (5 N
CrenRrt o \x2+1 x?

and differentiating n times we obtain

/m[ x r' { ( x )] dx Jm d" (F{r—1/2))
x |In|{ —— - = - .
0 xz + 1 xz + 1 xz 2n+1 dr r(r)zzr—l
(13.7.1)

In particular, for r = 3/2 and n = 3 we obtain

~ X X 3 dx 3
/0 Klz-}-l)xm( )} .x_2=§[§(3)+§'(2)—4].

x2 41
From here, using the substitution ¢ = x/(x? + 1), it follows that

G=d_tys s [T,
(E)=4-¢ 3Jo JT—4ar2

Exercise 13.7.1. Check (13.7.2) directly. Hint. Use the expansion for
1/+/1 — 4t? and integrate term by term.

(13.7.2)

Nowletr =3/2andn = 41in (13.7.1):

o |x241 ol x24+1 x?

1
=1 [=37* — 80m? + 1920 — 480¢(3)] .

Note 13.7.1. The values of the previous integrals are rational combinations
of the values of the Riemann zeta function (s) at s = 2, 3, and 4. Higher
values of n produce similar algebraic combinations of the values of ¢(j).
Define

H(rin) =y (%) G(r). (13.7.3)

Then, for example,

H(3,3/2) = n? +60(3) — 24
H(4,3/2) = =37*/10 — 87% + 192 — 48¢(3)
H(5,3/2) = 360¢(5) + 480 (3) + 802 + 37* — 20¢ (3)m? — 1920.
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Naturally, the appearance of the values of the Riemann zeta function is due
to the expression for the polygamma function
n+1

PolyGammal[n, x] = Tl In I"'(x)

oo 1
— _1 n+1 I -
{ ) n g (x + k)n+|

and the special valuesatx = 1 and x = 3/2:

PolyGamma(n, 1] = (—=1)" 'nl¢(n + 1)
PolyGamma(n, 3/2] = (—1)""'n! [(2"+1 — e+ 1) — 2”+1] _

The series expansion for In I"(x) appears in Theorem 10.6.1.

Example 13.7.1. The formula (13.7.1) can be used to produce many more
exact evaluations of definite integrals. For example, we now show that

o0 2+l dx H; — Hy;, —1/2j
[ (%) x {m(%ﬂ E 2L 2] 1374
Jo \x?+1 xt 41 x 2;(}.)

for any positive integer j, and a similar formula for even exponents. Here H;

is the harmonic number.

We start with (13.7.1):

I(rn)'—/w( X )er[m( x )] dx
Uy \x241 x2+1 x2

() [t

= i \dr [(r)22r-1

Now split the domain of integration into [0, 1] and [1, c0), and let u = 1/x
in the second part to obtain

o= () ()Y
(}‘,}?)—‘0 e x |In e S

The change of variable v = x/(x* + 1) yields

1/2
I(r,n)= [ w2 n"u -
J0

du
V1 —du?

Letting v = 2u and expanding the term [In v — In2]" then gives

dv

n 1
Ir.n) = 2% k(T 12;;—&/ 2215 vk _
(r.n) g{ ) (k)(“) v s
(13.7.5)




13.7. A New Series of Examples 265

Now define
1 UZr—Z duv
F(r):= —_, (13.7.6)
Jo &1 =2
50 that

f T L (iYF(r) (13.7.7)
0 N/ dr ' o

The function F(r) can be computed by the change of variables v = sin@
resulting in

1
F(r) =3B (r—11.

We conclude that

N, n d k
I(r,n) = (In2)"2~ Z("l)"_k (z) @2m2)™* (5) B(r— %, %) ,

k=0

and the special case n = | gives

1 d
Ir,)=2""In2x |-B(r—11 —B(r—1 4.
(r, ) neax |: (?‘ 2 2) + 2102 dr (}‘ 2 '_’.)
This can be simplified using the function
d
y(r) = —1Inl'(r), (13.7.8)
dr

the final result being
I, ) =2"%*DB (r — 1, 1) [-2In2 + Y (r — 1/2) — ¥ (r)].

In the special case r = j + 1/2 with j an integer, the previous expression
can be simplified using the values

J
V(j)=—y+H;_ and wu+1/2>=-y-4+§2rml,
yielding
Wr—1/2) = ¥(r)=2[H; — Hyj +In2 — 1/2/)] .

This gives the evaluation (13.7.4).
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13.8. New Integrals by Integration
In this section we describe some interesting examples that appear as conse-
quences of the formula

ff’c { x ]2" 8 [l ( X )]"’ dx Jm (d )'” {I‘(r - 1/2)]

— n — = — ——].
0o lx2+1 x241 x2  2m+l \ gr [(r)2%-!
Using our general principle, we can multiply the integrand by (x? + 1)/
(x* + 1) and the result is independent of s. Define

o ()[R

= Qm+l E I“(r)zlr—l

We then have

©r x ¥ x X241 dx
I = p x |In 5 X — X —.
Jo [x*+1 x-+1 41 x

Now integrate this equation with respect to s from s = b to s = ¢ and use the
value

/" ds 1 ! x¢(1 + xb)

Jp x*+1  Inx 1 xB(1 4 x9)
to conclude that

el o)
Jo [x2+1 A . xP(14+x9] xInx
N (d)"‘ [I"(r— 1/2)}

2m+1 E I“(}.)zlr—l

=(c—b)

Example 13.8.1. Takem =0, ¢ =1, b = 2p + 1 with a positive integer p.
Then
L‘F‘Cb) — [1 - \:+\:3—x3+---+t3*”]
xb(l+x9) o N

and the integral becomes

/:’o X =l — x + - - + x2P) dx
Jo |x2+1 Inx X

P
= _22r_|B (?’ - %’ %) :
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Now observe that

o0 er—Z dx 1 o0 Ir—}g‘Z
S R A —
/U (xl + ]_)Zr—l 2 /0 (]_ + I)Zr—l

%B(r - 1/2,r—=1/2),

where we have used the representation (10.2.1). Using Legendre duplication
formula (10.4.7) and replacing r by r — 1, we conclude that

/"C' X (] — x4 - -+ x2P) d_\: B pral’(2r) 138.1)
o x2+1 Inx x 2%+ 1) (13.8.

In particular, when r is an integer n:

/x |: X :|2n+1 {ln(l — X - ..+x‘-"P)} d_x _ pr 2n . (13.82)
Jo 150 Inx X An

For instance,

9

®In(l — x + x?)
i LT N 13.8.3
/0 +Dhhx T2 ( )

Example 13.8.2. We now sum (13.8.2) from n = 0to n = oc¢ to obtain

0 | In(l — > P T > 2,
/ x*+ o nd—x+x +x )a,x:f_{zf:m ",
0o A Hx241 In x 2 — n

and the series can be summed via (13.4.6) to obtain

/‘oc' X241 In(l —x +x% — ... 4 x27) pr
5 X dx =
0 Xx44+x241 Inx

)

The case p = 1 produces

/"x' x2+1 In(l1 —x 4+ x3) T
X dx = —
0 xY4x241 Inx \/5

and x = tan # transforms this into

[ﬂ In(2 — sin@) — In(1 + cos #) do (13.8.4)
0

X = .
In(l1 —cosA) —In(l +cos®) 4 —sind 43
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Exercise 13.8.1. Prove that
/-x; XQ[r-i—p'l dx ‘“ T 2y
o (1 _!_X2)2r+](xzp +1D - 21| |7

Many more similar integrals can be derived by these methods.

13.9. New Integrals by Differentiation

Several interesting evaluations of definite integrals can be obtained from the
special case @ = 1 of (13.3.1) written as

o X e+1 ,Yz-f—l dx s .
A (x?+l) oyl 2 =2 B(5y) 39

where ¢ := 2r — 1. Differentiating (13.9.1) with respect to b yields a two-

parameter family of vanishing integrals:

o0 Xb+c'—l Inx
H(b, c):= dx = 0. 13.9.2
&, ¢) A (1 4 x2) (1 + xh)2 ' ( )

The vanishing of H (b, ¢) can be established directly by the change of variables
X 1/t

Project 13.9.1. Observe that the three-parameter integral
oo e l 3
Hy(a, b, ¢) ::/ i (13.9.3)
Jo (14 x2)e(1 4+ xb)?

is not identically zero. For instance Mathematica yields

-

/x x% Inx
.,—.’d.Y =
Jo (L+x)(1 +x9) 16

=

and

= x Inx 27
— dx = — (1 — 3/3).
A TR S i TR )

The project 1s to evaluate H;(a, b, ¢) as a function of its parameters.

Example 13.9.1. Differentiation of (13.9.2) with respect to the parameter b
yields

o0 hte—1 ¢ b 1) (In 2
/ o (l )( n X) dx =0 (13.9.4)
1]
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that in the special case b = 2 and ¢ = 1 produces

o0y 202 2
/ x(x 1) (Inx) dx = 0.
0

(1 + x2)

Mathematica confirms this evaluation.

Extra 13.9.1. Further examples can be obtained by forcing the parameter ¢
to be a function of b, before differentiating. This leads to

o bte—1 | ’
/ﬂ (1 ':\fz)"(] n+xtb)3 {((l +xb)(1ﬂx — In(1 +.Y‘)) c'(b)

— ("= Dnx}dx=0.

To obtain a larger class of results we differentiate (13.9.4) n times and observe
that
( d )H xb—!—c'—l Inx xb+c—| lnn+| X

- _ R
db) a2 (4302 = (@ aryi2 (1 a2y < Q) 1399

where () is a polynomialint, of degree i, with positive integer coefficients.
The first few are

Qo(t) =1 (13.9.6)
Oin=t+1

Qx(1) = 1>+ 4t + 1
Os() =1+ 1112 + 11t + 1

and we recognize the Eulerian polynomials A, (r).
Exercise 13.9.1. Prove that 1 O, (1) = A, (7).

Example 13.9.2. Now differentiate (13.9.2) with respect to ¢ to obtain

/oo s S /mxbﬂ'—l Inx In(l + x2)
0 0

(14 x2) (1 + xP)? (1 + x2) (1 + xb)? dx. (13.9.7)

For example, in the case b = ¢ = 1, Mathematica 4.0 evaluates

/“’ xIn’x dx _ 7237 — 8)
o (L+x)2(1+x%) 48

but it cannot evaluate the right-hand side of (13.9.7).
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Example 13.9.3. The case a = 1 of (13.3.1) yields

20 X 241 dx _a

Differentiate (13.9.8) m times with respect to r to obtain

) Ir 2 m 1
/‘ X 1" X 8 x4+ 1 a'_x _ ﬁ i I'(r—3) -
0 x2 41 x24+1 xb 41 x2 2m+1 A dy [(r)22-1

In the special case r = 1 we obtain that the right-hand side is a linear

combination of products of the constants 7, In2 and the values of the zeta
function at odd integers. This is one more instance of the weight assignment
described in Extra 10.6.1. The integral above is a homogeneous polynomial
of weight m. For example

1 /Nl X dx —In2
— n —
. 241/ (2412 2

x dx 1
_[ (‘f +1)(x2+1)2=ﬁ(481n12+n2)
—[ 1n3( o ) dx :“—1(161n32+3;(3)+n21n2)
7 Jo x2+1) (x2+ 1)
l[mln“( o ) dx 1 e i a2 43¢y,
7 Jo 1) 212 960" T2

There are many more integrals to evaluate. We pause here.




Appendix: The Revolutionary WZ Method

A.1. Introduction
The goal of this chapter is to give a very short introduction to a revolutionary
method discovered by H. Wilf and D. Zeilberger to find closed-form expres-
sions for a special kind of finite sums. The reader will find in

http://www.math. temple.edu/~akalu/html/pgl.html

Akalu Tefera’s very nice review of the methods presented here.

The reader should read George E. Andrews” entertaining article (1994)
responding to Doron Zeilberger’s opinion (1993, 1994) about rigorous proofs,
computer-generated proofs and The Death of Proof?

The problem of evaluating finite sums involving binomial coefficients is
described in many elementary textbooks. For instance, the binomial theorem

n - n n—k k
k = E ’ Al
Gt =) (k) "y (A.L1)
k=0
in the special case x = y = 1, yields the value
Z (:) =" (A.1.2)
k=0

Many other sums can be obtained by algebraic manipulations of (A.1.1).
For example, differentiating (A.1.1) with respect to y and setting x = y = 1
yields

n n
Zk(k) =n2""L. (A.1.3)

k=0

The evaluation of these sums was proposed in Exercise 1.4.6.
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Appendix: The Revolutionary WZ Method

A.2. An Introduction to WZ Methods
The WZ method developed by H. Wilf and D. Zeilberger has produced an

algorithm that evaluates a large number of these sums. Let F(n, k) be the
summand of the expression that we are trying to evaluate and suppose there
is a function G(n, k) such that

Fn,k)=Gn, k+1)— G(n, k). (A2.1)

Then, summing over k gives

Z F(n, k)= Gn,n+ 1)— G(n, 1. (A2.2)
.{:I

Example A.2.1. Let F(n, k) =k - k!, then G(n, k) = k! and
> k-kl=@m+1! -1 (A2.3)
k=1

In this case both F and G are independent of n.

The condition (A.2.1) is very rare, but the great discovery of Wilf and
Zeilberger is that for a large class of summands F(n, k) there exists a function
G(n, k) such that

Zaj-(n)l’{n - LK)=Gn,k+1)—G(n, k) (A24)

j=0

for some coefficients a ;(n). The functions (F, G) are called a WZ pair.

_1yn—k
—

Sum(n) = Z F(n, k)
k=1

Example A.2.2. Let

and let

be the sum that we are trying to evaluate. The command

zeilpap ( (-1)~{n-k} * binomial(n, k) /
(m-k), k ,n,YourName)
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writes a short paper entitled “A proof of the Your Name identity” authored
by Shalosh B. Ekhad (Doron Zeilberger’s computer), with the proof that

Sum(n) satisfies the linear recurrence equation
(n+ DSum(n)+ (n —m 4+ 1)Sum(n + 1) = 0.

The proof is the construction of the function

. _1yn—k
Gn k) = k(—m + k)(—1) (n)

n+1—-kym-—k) \k
50 that

M+ DFn k) +n—m+ DFm+1.k) =G, k+ 1) — Gn, k).
(A.2.5)

Naturally once the computer has produced (A.2.5) one is free to verify it by
hand. In order to complete the evaluation one needs to check that the right-
hand side satisfies (A.2.5) and that they have the same initial conditions. This
is routine.

Example A.2.3. The identity (3.4.6) can be written as

n yi—j
S =3 m —n)(:i:) {mli ; (j) = 1. (A.2.6)

=0

The algorithm now shows that S(n) satisfies §(n + 1) = S(n), and in view of
S(0) = 1, it is identically 1.

A.3. A Proof of Wallis’ Formula

In this section we present a proof of Wallis’ formula (6.4.5) in the form

7 /2
— ' - _ T 2Zm
Jo = A cos™" B df = Ty ( n ) (A.3.1)

First observe that

)2 1 08 20\ ™
Jz.m = / (%) dQ, (A32)
S0

introduce y = 26, expand the power, and simplify the result by using the
fact that, by symmetry, the odd powers of the cosine integrate to zero. We
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conclude that J>,, satisfies

my2]
—nt m
Jrm = 2 Z (2]{) Ja k. (A3.3)

k=0

Note that J5 5, is uniquely determined by (A.3.3) along with the initial value
Jrg = /2.

Exercise A.3.1. Use the recurrence (A.3.3) to produce the first few values of
J2.m. Use the prime factorization of this data to guess the formula

2
Do = Z)ZLH ( ;’) . (A3.4)

We now prove (A.3.4) by induction. The recursion (A.3.3) shows that the
inductive step amounts to proving the identity

2]
. [ m 2k Com 2m
f(m) = ; 2 (Zk) (k) =2 (m ) (A3.5)

To prove this consider the summand

Fm. k) =2~ (”’) (2k) (A3.6)
K= 2%\ & o

and introduce the rational function

4K*
R(m, k) = m (A3?)
Then
2k =2
G(m. k) i= F(m, OR(m, k) = 2%k — 1| "
(m, k) (m, k)R(m, k) ( ) ok — 1 E—1
satisfies

Gm, k+1)—Gm k)y=0C2m+ DF(m, k) — (m+ 1)F(m + 1, k).
(A.3.8)

We now sum (A.3.8) from k = 0 to k = m to produce the recurrence

2m+1

1+ 1) =
flm +1) e

f(m). (A3.9)
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Exercise A.3.2. Finish the proof of Wallis” formula by checking that 2= (::;:')
satisfies the recurrence (A.3.9) with the same initial value as f.

Extra A.3.1. The mystery of this proof is the appearance of the rational func-
tion R(m, k) defined in (A.3.7). This function is called a rational certificate
for F(m, k). The construction of these certificates is now an automatic pro-
cess due to the theory developed by Wilf and Zeilberger. This is explained
in Nemes et al. (1997) and Petkovsek et al. (1996). The sum (A.3.5) is the
example used by Petkovsek (1996) (page 113) to illustrate their method.
The automatic proof of (A.3.5) can be achieved by downloading the sym-

bolic package EKHAD from D. Zeilberger’s web site
http://www.math.rutgers.edu/~zeilberg
and asking EKHAD to sum the left-hand side directly. The command

ct(binomial (m, 2k) binomial (2k, k)
2"{—2}(}, 1, k, m, N)

produces the recursion (A.3.8) and the rational certificate R.

Exercise A.3.3. Use WZ methods to discuss the sum

n—1 1y—i—1
n—j

=0 \J

that appeared in (3.7.6).

Exercise A.3.4. Prove the identity

2m) = (=1 (m = 1! .
J”(JH)Zj!{!i!—j—])!{zl’i_F])_2 (A3.11)

=0 -

that appeared in (6.6.10).
Exercise A.3.5. Use the WZ method to discuss the sums in (3.4.8).

Many more examples of this technique can be found in Nemes et al. (1997).
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